1a17f03bdSSanjay Patel //===------- VectorCombine.cpp - Optimize partial vector operations -------===// 2a17f03bdSSanjay Patel // 3a17f03bdSSanjay Patel // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4a17f03bdSSanjay Patel // See https://llvm.org/LICENSE.txt for license information. 5a17f03bdSSanjay Patel // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6a17f03bdSSanjay Patel // 7a17f03bdSSanjay Patel //===----------------------------------------------------------------------===// 8a17f03bdSSanjay Patel // 9a17f03bdSSanjay Patel // This pass optimizes scalar/vector interactions using target cost models. The 10a17f03bdSSanjay Patel // transforms implemented here may not fit in traditional loop-based or SLP 11a17f03bdSSanjay Patel // vectorization passes. 12a17f03bdSSanjay Patel // 13a17f03bdSSanjay Patel //===----------------------------------------------------------------------===// 14a17f03bdSSanjay Patel 15a17f03bdSSanjay Patel #include "llvm/Transforms/Vectorize/VectorCombine.h" 16a17f03bdSSanjay Patel #include "llvm/ADT/Statistic.h" 17575e2affSFlorian Hahn #include "llvm/Analysis/AssumptionCache.h" 185006e551SSimon Pilgrim #include "llvm/Analysis/BasicAliasAnalysis.h" 19a17f03bdSSanjay Patel #include "llvm/Analysis/GlobalsModRef.h" 2043bdac29SSanjay Patel #include "llvm/Analysis/Loads.h" 21a17f03bdSSanjay Patel #include "llvm/Analysis/TargetTransformInfo.h" 2219b62b79SSanjay Patel #include "llvm/Analysis/ValueTracking.h" 23b6050ca1SSanjay Patel #include "llvm/Analysis/VectorUtils.h" 24a17f03bdSSanjay Patel #include "llvm/IR/Dominators.h" 25a17f03bdSSanjay Patel #include "llvm/IR/Function.h" 26a17f03bdSSanjay Patel #include "llvm/IR/IRBuilder.h" 27a17f03bdSSanjay Patel #include "llvm/IR/PatternMatch.h" 28a17f03bdSSanjay Patel #include "llvm/InitializePasses.h" 29a17f03bdSSanjay Patel #include "llvm/Pass.h" 3025c6544fSSanjay Patel #include "llvm/Support/CommandLine.h" 31a17f03bdSSanjay Patel #include "llvm/Transforms/Utils/Local.h" 325006e551SSimon Pilgrim #include "llvm/Transforms/Vectorize.h" 33a17f03bdSSanjay Patel 34300870a9SFlorian Hahn #define DEBUG_TYPE "vector-combine" 35300870a9SFlorian Hahn #include "llvm/Transforms/Utils/InstructionWorklist.h" 36300870a9SFlorian Hahn 37a17f03bdSSanjay Patel using namespace llvm; 38a17f03bdSSanjay Patel using namespace llvm::PatternMatch; 39a17f03bdSSanjay Patel 4043bdac29SSanjay Patel STATISTIC(NumVecLoad, "Number of vector loads formed"); 41a17f03bdSSanjay Patel STATISTIC(NumVecCmp, "Number of vector compares formed"); 4219b62b79SSanjay Patel STATISTIC(NumVecBO, "Number of vector binops formed"); 43b6315aeeSSanjay Patel STATISTIC(NumVecCmpBO, "Number of vector compare + binop formed"); 447aeb41b3SRoman Lebedev STATISTIC(NumShufOfBitcast, "Number of shuffles moved after bitcast"); 450d2a0b44SSanjay Patel STATISTIC(NumScalarBO, "Number of scalar binops formed"); 46ed67f5e7SSanjay Patel STATISTIC(NumScalarCmp, "Number of scalar compares formed"); 47a17f03bdSSanjay Patel 4825c6544fSSanjay Patel static cl::opt<bool> DisableVectorCombine( 4925c6544fSSanjay Patel "disable-vector-combine", cl::init(false), cl::Hidden, 5025c6544fSSanjay Patel cl::desc("Disable all vector combine transforms")); 5125c6544fSSanjay Patel 52a69158c1SSanjay Patel static cl::opt<bool> DisableBinopExtractShuffle( 53a69158c1SSanjay Patel "disable-binop-extract-shuffle", cl::init(false), cl::Hidden, 54a69158c1SSanjay Patel cl::desc("Disable binop extract to shuffle transforms")); 55a69158c1SSanjay Patel 562db4979cSQiu Chaofan static cl::opt<unsigned> MaxInstrsToScan( 572db4979cSQiu Chaofan "vector-combine-max-scan-instrs", cl::init(30), cl::Hidden, 582db4979cSQiu Chaofan cl::desc("Max number of instructions to scan for vector combining.")); 592db4979cSQiu Chaofan 60a0f96741SSanjay Patel static const unsigned InvalidIndex = std::numeric_limits<unsigned>::max(); 61a0f96741SSanjay Patel 62b4447054SBenjamin Kramer namespace { 636bdd531aSSanjay Patel class VectorCombine { 646bdd531aSSanjay Patel public: 656bdd531aSSanjay Patel VectorCombine(Function &F, const TargetTransformInfo &TTI, 66575e2affSFlorian Hahn const DominatorTree &DT, AAResults &AA, AssumptionCache &AC) 67575e2affSFlorian Hahn : F(F), Builder(F.getContext()), TTI(TTI), DT(DT), AA(AA), AC(AC) {} 686bdd531aSSanjay Patel 696bdd531aSSanjay Patel bool run(); 706bdd531aSSanjay Patel 716bdd531aSSanjay Patel private: 726bdd531aSSanjay Patel Function &F; 73de65b356SSanjay Patel IRBuilder<> Builder; 746bdd531aSSanjay Patel const TargetTransformInfo &TTI; 756bdd531aSSanjay Patel const DominatorTree &DT; 762db4979cSQiu Chaofan AAResults &AA; 77575e2affSFlorian Hahn AssumptionCache &AC; 78300870a9SFlorian Hahn InstructionWorklist Worklist; 796bdd531aSSanjay Patel 8043bdac29SSanjay Patel bool vectorizeLoadInsert(Instruction &I); 813b95d834SSanjay Patel ExtractElementInst *getShuffleExtract(ExtractElementInst *Ext0, 823b95d834SSanjay Patel ExtractElementInst *Ext1, 833b95d834SSanjay Patel unsigned PreferredExtractIndex) const; 846bdd531aSSanjay Patel bool isExtractExtractCheap(ExtractElementInst *Ext0, ExtractElementInst *Ext1, 85*0dcd2b40SSimon Pilgrim const Instruction &I, 866bdd531aSSanjay Patel ExtractElementInst *&ConvertToShuffle, 876bdd531aSSanjay Patel unsigned PreferredExtractIndex); 88de65b356SSanjay Patel void foldExtExtCmp(ExtractElementInst *Ext0, ExtractElementInst *Ext1, 89de65b356SSanjay Patel Instruction &I); 90de65b356SSanjay Patel void foldExtExtBinop(ExtractElementInst *Ext0, ExtractElementInst *Ext1, 91de65b356SSanjay Patel Instruction &I); 926bdd531aSSanjay Patel bool foldExtractExtract(Instruction &I); 936bdd531aSSanjay Patel bool foldBitcastShuf(Instruction &I); 946bdd531aSSanjay Patel bool scalarizeBinopOrCmp(Instruction &I); 95b6315aeeSSanjay Patel bool foldExtractedCmps(Instruction &I); 962db4979cSQiu Chaofan bool foldSingleElementStore(Instruction &I); 974e8c28b6SFlorian Hahn bool scalarizeLoadExtract(Instruction &I); 98a69158c1SSanjay Patel 99300870a9SFlorian Hahn void replaceValue(Value &Old, Value &New) { 10098c2f4eeSSanjay Patel Old.replaceAllUsesWith(&New); 10198c2f4eeSSanjay Patel New.takeName(&Old); 102300870a9SFlorian Hahn if (auto *NewI = dyn_cast<Instruction>(&New)) { 103300870a9SFlorian Hahn Worklist.pushUsersToWorkList(*NewI); 104300870a9SFlorian Hahn Worklist.pushValue(NewI); 10598c2f4eeSSanjay Patel } 106300870a9SFlorian Hahn Worklist.pushValue(&Old); 107300870a9SFlorian Hahn } 108300870a9SFlorian Hahn 109300870a9SFlorian Hahn void eraseInstruction(Instruction &I) { 110300870a9SFlorian Hahn for (Value *Op : I.operands()) 111300870a9SFlorian Hahn Worklist.pushValue(Op); 112300870a9SFlorian Hahn Worklist.remove(&I); 113300870a9SFlorian Hahn I.eraseFromParent(); 114300870a9SFlorian Hahn } 115300870a9SFlorian Hahn }; 116300870a9SFlorian Hahn } // namespace 11798c2f4eeSSanjay Patel 11843bdac29SSanjay Patel bool VectorCombine::vectorizeLoadInsert(Instruction &I) { 119b2ef2640SSanjay Patel // Match insert into fixed vector of scalar value. 12047aaa99cSSanjay Patel // TODO: Handle non-zero insert index. 121ddd9575dSSanjay Patel auto *Ty = dyn_cast<FixedVectorType>(I.getType()); 12243bdac29SSanjay Patel Value *Scalar; 12348a23bccSSanjay Patel if (!Ty || !match(&I, m_InsertElt(m_Undef(), m_Value(Scalar), m_ZeroInt())) || 12448a23bccSSanjay Patel !Scalar->hasOneUse()) 12543bdac29SSanjay Patel return false; 126ddd9575dSSanjay Patel 127b2ef2640SSanjay Patel // Optionally match an extract from another vector. 128b2ef2640SSanjay Patel Value *X; 129b2ef2640SSanjay Patel bool HasExtract = match(Scalar, m_ExtractElt(m_Value(X), m_ZeroInt())); 130b2ef2640SSanjay Patel if (!HasExtract) 131b2ef2640SSanjay Patel X = Scalar; 132b2ef2640SSanjay Patel 133b2ef2640SSanjay Patel // Match source value as load of scalar or vector. 1344452cc40SFangrui Song // Do not vectorize scalar load (widening) if atomic/volatile or under 1354452cc40SFangrui Song // asan/hwasan/memtag/tsan. The widened load may load data from dirty regions 1364452cc40SFangrui Song // or create data races non-existent in the source. 137b2ef2640SSanjay Patel auto *Load = dyn_cast<LoadInst>(X); 138b2ef2640SSanjay Patel if (!Load || !Load->isSimple() || !Load->hasOneUse() || 1394452cc40SFangrui Song Load->getFunction()->hasFnAttribute(Attribute::SanitizeMemTag) || 1404452cc40SFangrui Song mustSuppressSpeculation(*Load)) 14143bdac29SSanjay Patel return false; 14243bdac29SSanjay Patel 14312b684aeSSanjay Patel const DataLayout &DL = I.getModule()->getDataLayout(); 14412b684aeSSanjay Patel Value *SrcPtr = Load->getPointerOperand()->stripPointerCasts(); 14512b684aeSSanjay Patel assert(isa<PointerType>(SrcPtr->getType()) && "Expected a pointer type"); 146c36c0fabSArtem Belevich 147c36c0fabSArtem Belevich // If original AS != Load's AS, we can't bitcast the original pointer and have 148c36c0fabSArtem Belevich // to use Load's operand instead. Ideally we would want to strip pointer casts 149c36c0fabSArtem Belevich // without changing AS, but there's no API to do that ATM. 15012b684aeSSanjay Patel unsigned AS = Load->getPointerAddressSpace(); 15112b684aeSSanjay Patel if (AS != SrcPtr->getType()->getPointerAddressSpace()) 15212b684aeSSanjay Patel SrcPtr = Load->getPointerOperand(); 15343bdac29SSanjay Patel 15447aaa99cSSanjay Patel // We are potentially transforming byte-sized (8-bit) memory accesses, so make 15547aaa99cSSanjay Patel // sure we have all of our type-based constraints in place for this target. 156ddd9575dSSanjay Patel Type *ScalarTy = Scalar->getType(); 15743bdac29SSanjay Patel uint64_t ScalarSize = ScalarTy->getPrimitiveSizeInBits(); 158ddd9575dSSanjay Patel unsigned MinVectorSize = TTI.getMinVectorRegisterBitWidth(); 15947aaa99cSSanjay Patel if (!ScalarSize || !MinVectorSize || MinVectorSize % ScalarSize != 0 || 16047aaa99cSSanjay Patel ScalarSize % 8 != 0) 16143bdac29SSanjay Patel return false; 16243bdac29SSanjay Patel 16343bdac29SSanjay Patel // Check safety of replacing the scalar load with a larger vector load. 164aaaf0ec7SSanjay Patel // We use minimal alignment (maximum flexibility) because we only care about 165aaaf0ec7SSanjay Patel // the dereferenceable region. When calculating cost and creating a new op, 166aaaf0ec7SSanjay Patel // we may use a larger value based on alignment attributes. 1678fb05593SSanjay Patel unsigned MinVecNumElts = MinVectorSize / ScalarSize; 1688fb05593SSanjay Patel auto *MinVecTy = VectorType::get(ScalarTy, MinVecNumElts, false); 16947aaa99cSSanjay Patel unsigned OffsetEltIndex = 0; 17047aaa99cSSanjay Patel Align Alignment = Load->getAlign(); 17147aaa99cSSanjay Patel if (!isSafeToLoadUnconditionally(SrcPtr, MinVecTy, Align(1), DL, Load, &DT)) { 17247aaa99cSSanjay Patel // It is not safe to load directly from the pointer, but we can still peek 17347aaa99cSSanjay Patel // through gep offsets and check if it safe to load from a base address with 17447aaa99cSSanjay Patel // updated alignment. If it is, we can shuffle the element(s) into place 17547aaa99cSSanjay Patel // after loading. 17647aaa99cSSanjay Patel unsigned OffsetBitWidth = DL.getIndexTypeSizeInBits(SrcPtr->getType()); 17747aaa99cSSanjay Patel APInt Offset(OffsetBitWidth, 0); 17847aaa99cSSanjay Patel SrcPtr = SrcPtr->stripAndAccumulateInBoundsConstantOffsets(DL, Offset); 17947aaa99cSSanjay Patel 18047aaa99cSSanjay Patel // We want to shuffle the result down from a high element of a vector, so 18147aaa99cSSanjay Patel // the offset must be positive. 18247aaa99cSSanjay Patel if (Offset.isNegative()) 18347aaa99cSSanjay Patel return false; 18447aaa99cSSanjay Patel 18547aaa99cSSanjay Patel // The offset must be a multiple of the scalar element to shuffle cleanly 18647aaa99cSSanjay Patel // in the element's size. 18747aaa99cSSanjay Patel uint64_t ScalarSizeInBytes = ScalarSize / 8; 18847aaa99cSSanjay Patel if (Offset.urem(ScalarSizeInBytes) != 0) 18947aaa99cSSanjay Patel return false; 19047aaa99cSSanjay Patel 19147aaa99cSSanjay Patel // If we load MinVecNumElts, will our target element still be loaded? 19247aaa99cSSanjay Patel OffsetEltIndex = Offset.udiv(ScalarSizeInBytes).getZExtValue(); 19347aaa99cSSanjay Patel if (OffsetEltIndex >= MinVecNumElts) 19447aaa99cSSanjay Patel return false; 19547aaa99cSSanjay Patel 196aaaf0ec7SSanjay Patel if (!isSafeToLoadUnconditionally(SrcPtr, MinVecTy, Align(1), DL, Load, &DT)) 19743bdac29SSanjay Patel return false; 19843bdac29SSanjay Patel 19947aaa99cSSanjay Patel // Update alignment with offset value. Note that the offset could be negated 20047aaa99cSSanjay Patel // to more accurately represent "(new) SrcPtr - Offset = (old) SrcPtr", but 20147aaa99cSSanjay Patel // negation does not change the result of the alignment calculation. 20247aaa99cSSanjay Patel Alignment = commonAlignment(Alignment, Offset.getZExtValue()); 20347aaa99cSSanjay Patel } 20447aaa99cSSanjay Patel 205b2ef2640SSanjay Patel // Original pattern: insertelt undef, load [free casts of] PtrOp, 0 20638ebc1a1SSanjay Patel // Use the greater of the alignment on the load or its source pointer. 20747aaa99cSSanjay Patel Alignment = std::max(SrcPtr->getPointerAlignment(DL), Alignment); 208b2ef2640SSanjay Patel Type *LoadTy = Load->getType(); 20936710c38SCaroline Concatto InstructionCost OldCost = 21036710c38SCaroline Concatto TTI.getMemoryOpCost(Instruction::Load, LoadTy, Alignment, AS); 2118fb05593SSanjay Patel APInt DemandedElts = APInt::getOneBitSet(MinVecNumElts, 0); 212b2ef2640SSanjay Patel OldCost += TTI.getScalarizationOverhead(MinVecTy, DemandedElts, 213b2ef2640SSanjay Patel /* Insert */ true, HasExtract); 21443bdac29SSanjay Patel 21543bdac29SSanjay Patel // New pattern: load VecPtr 21636710c38SCaroline Concatto InstructionCost NewCost = 21736710c38SCaroline Concatto TTI.getMemoryOpCost(Instruction::Load, MinVecTy, Alignment, AS); 21847aaa99cSSanjay Patel // Optionally, we are shuffling the loaded vector element(s) into place. 219e2935dcfSDavid Green // For the mask set everything but element 0 to undef to prevent poison from 220e2935dcfSDavid Green // propagating from the extra loaded memory. This will also optionally 221e2935dcfSDavid Green // shrink/grow the vector from the loaded size to the output size. 222e2935dcfSDavid Green // We assume this operation has no cost in codegen if there was no offset. 223e2935dcfSDavid Green // Note that we could use freeze to avoid poison problems, but then we might 224e2935dcfSDavid Green // still need a shuffle to change the vector size. 225e2935dcfSDavid Green unsigned OutputNumElts = Ty->getNumElements(); 226e2935dcfSDavid Green SmallVector<int, 16> Mask(OutputNumElts, UndefMaskElem); 227e2935dcfSDavid Green assert(OffsetEltIndex < MinVecNumElts && "Address offset too big"); 228e2935dcfSDavid Green Mask[0] = OffsetEltIndex; 22947aaa99cSSanjay Patel if (OffsetEltIndex) 230e2935dcfSDavid Green NewCost += TTI.getShuffleCost(TTI::SK_PermuteSingleSrc, MinVecTy, Mask); 23143bdac29SSanjay Patel 23243bdac29SSanjay Patel // We can aggressively convert to the vector form because the backend can 23343bdac29SSanjay Patel // invert this transform if it does not result in a performance win. 23436710c38SCaroline Concatto if (OldCost < NewCost || !NewCost.isValid()) 23543bdac29SSanjay Patel return false; 23643bdac29SSanjay Patel 23743bdac29SSanjay Patel // It is safe and potentially profitable to load a vector directly: 23843bdac29SSanjay Patel // inselt undef, load Scalar, 0 --> load VecPtr 23943bdac29SSanjay Patel IRBuilder<> Builder(Load); 24012b684aeSSanjay Patel Value *CastedPtr = Builder.CreateBitCast(SrcPtr, MinVecTy->getPointerTo(AS)); 2418fb05593SSanjay Patel Value *VecLd = Builder.CreateAlignedLoad(MinVecTy, CastedPtr, Alignment); 2421e6b240dSSanjay Patel VecLd = Builder.CreateShuffleVector(VecLd, Mask); 243d399f870SSanjay Patel 24443bdac29SSanjay Patel replaceValue(I, *VecLd); 24543bdac29SSanjay Patel ++NumVecLoad; 24643bdac29SSanjay Patel return true; 24743bdac29SSanjay Patel } 24843bdac29SSanjay Patel 2493b95d834SSanjay Patel /// Determine which, if any, of the inputs should be replaced by a shuffle 2503b95d834SSanjay Patel /// followed by extract from a different index. 2513b95d834SSanjay Patel ExtractElementInst *VectorCombine::getShuffleExtract( 2523b95d834SSanjay Patel ExtractElementInst *Ext0, ExtractElementInst *Ext1, 2533b95d834SSanjay Patel unsigned PreferredExtractIndex = InvalidIndex) const { 2543b95d834SSanjay Patel assert(isa<ConstantInt>(Ext0->getIndexOperand()) && 2553b95d834SSanjay Patel isa<ConstantInt>(Ext1->getIndexOperand()) && 2563b95d834SSanjay Patel "Expected constant extract indexes"); 2573b95d834SSanjay Patel 2583b95d834SSanjay Patel unsigned Index0 = cast<ConstantInt>(Ext0->getIndexOperand())->getZExtValue(); 2593b95d834SSanjay Patel unsigned Index1 = cast<ConstantInt>(Ext1->getIndexOperand())->getZExtValue(); 2603b95d834SSanjay Patel 2613b95d834SSanjay Patel // If the extract indexes are identical, no shuffle is needed. 2623b95d834SSanjay Patel if (Index0 == Index1) 2633b95d834SSanjay Patel return nullptr; 2643b95d834SSanjay Patel 2653b95d834SSanjay Patel Type *VecTy = Ext0->getVectorOperand()->getType(); 2663b95d834SSanjay Patel assert(VecTy == Ext1->getVectorOperand()->getType() && "Need matching types"); 26736710c38SCaroline Concatto InstructionCost Cost0 = 26836710c38SCaroline Concatto TTI.getVectorInstrCost(Ext0->getOpcode(), VecTy, Index0); 26936710c38SCaroline Concatto InstructionCost Cost1 = 27036710c38SCaroline Concatto TTI.getVectorInstrCost(Ext1->getOpcode(), VecTy, Index1); 27136710c38SCaroline Concatto 27236710c38SCaroline Concatto // If both costs are invalid no shuffle is needed 27336710c38SCaroline Concatto if (!Cost0.isValid() && !Cost1.isValid()) 27436710c38SCaroline Concatto return nullptr; 2753b95d834SSanjay Patel 2763b95d834SSanjay Patel // We are extracting from 2 different indexes, so one operand must be shuffled 2773b95d834SSanjay Patel // before performing a vector operation and/or extract. The more expensive 2783b95d834SSanjay Patel // extract will be replaced by a shuffle. 2793b95d834SSanjay Patel if (Cost0 > Cost1) 2803b95d834SSanjay Patel return Ext0; 2813b95d834SSanjay Patel if (Cost1 > Cost0) 2823b95d834SSanjay Patel return Ext1; 2833b95d834SSanjay Patel 2843b95d834SSanjay Patel // If the costs are equal and there is a preferred extract index, shuffle the 2853b95d834SSanjay Patel // opposite operand. 2863b95d834SSanjay Patel if (PreferredExtractIndex == Index0) 2873b95d834SSanjay Patel return Ext1; 2883b95d834SSanjay Patel if (PreferredExtractIndex == Index1) 2893b95d834SSanjay Patel return Ext0; 2903b95d834SSanjay Patel 2913b95d834SSanjay Patel // Otherwise, replace the extract with the higher index. 2923b95d834SSanjay Patel return Index0 > Index1 ? Ext0 : Ext1; 2933b95d834SSanjay Patel } 2943b95d834SSanjay Patel 295a69158c1SSanjay Patel /// Compare the relative costs of 2 extracts followed by scalar operation vs. 296a69158c1SSanjay Patel /// vector operation(s) followed by extract. Return true if the existing 297a69158c1SSanjay Patel /// instructions are cheaper than a vector alternative. Otherwise, return false 298a69158c1SSanjay Patel /// and if one of the extracts should be transformed to a shufflevector, set 299a69158c1SSanjay Patel /// \p ConvertToShuffle to that extract instruction. 3006bdd531aSSanjay Patel bool VectorCombine::isExtractExtractCheap(ExtractElementInst *Ext0, 3016bdd531aSSanjay Patel ExtractElementInst *Ext1, 302*0dcd2b40SSimon Pilgrim const Instruction &I, 303216a37bbSSanjay Patel ExtractElementInst *&ConvertToShuffle, 304ce97ce3aSSanjay Patel unsigned PreferredExtractIndex) { 3054fa63fd4SAustin Kerbow assert(isa<ConstantInt>(Ext0->getOperand(1)) && 306a69158c1SSanjay Patel isa<ConstantInt>(Ext1->getOperand(1)) && 307a69158c1SSanjay Patel "Expected constant extract indexes"); 308*0dcd2b40SSimon Pilgrim unsigned Opcode = I.getOpcode(); 30934e34855SSanjay Patel Type *ScalarTy = Ext0->getType(); 310e3056ae9SSam Parker auto *VecTy = cast<VectorType>(Ext0->getOperand(0)->getType()); 31136710c38SCaroline Concatto InstructionCost ScalarOpCost, VectorOpCost; 31234e34855SSanjay Patel 31334e34855SSanjay Patel // Get cost estimates for scalar and vector versions of the operation. 31434e34855SSanjay Patel bool IsBinOp = Instruction::isBinaryOp(Opcode); 31534e34855SSanjay Patel if (IsBinOp) { 31634e34855SSanjay Patel ScalarOpCost = TTI.getArithmeticInstrCost(Opcode, ScalarTy); 31734e34855SSanjay Patel VectorOpCost = TTI.getArithmeticInstrCost(Opcode, VecTy); 31834e34855SSanjay Patel } else { 31934e34855SSanjay Patel assert((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) && 32034e34855SSanjay Patel "Expected a compare"); 321*0dcd2b40SSimon Pilgrim CmpInst::Predicate Pred = cast<CmpInst>(I).getPredicate(); 322*0dcd2b40SSimon Pilgrim ScalarOpCost = TTI.getCmpSelInstrCost( 323*0dcd2b40SSimon Pilgrim Opcode, ScalarTy, CmpInst::makeCmpResultType(ScalarTy), Pred); 324*0dcd2b40SSimon Pilgrim VectorOpCost = TTI.getCmpSelInstrCost( 325*0dcd2b40SSimon Pilgrim Opcode, VecTy, CmpInst::makeCmpResultType(VecTy), Pred); 32634e34855SSanjay Patel } 32734e34855SSanjay Patel 328a69158c1SSanjay Patel // Get cost estimates for the extract elements. These costs will factor into 32934e34855SSanjay Patel // both sequences. 330a69158c1SSanjay Patel unsigned Ext0Index = cast<ConstantInt>(Ext0->getOperand(1))->getZExtValue(); 331a69158c1SSanjay Patel unsigned Ext1Index = cast<ConstantInt>(Ext1->getOperand(1))->getZExtValue(); 332a69158c1SSanjay Patel 33336710c38SCaroline Concatto InstructionCost Extract0Cost = 3346bdd531aSSanjay Patel TTI.getVectorInstrCost(Instruction::ExtractElement, VecTy, Ext0Index); 33536710c38SCaroline Concatto InstructionCost Extract1Cost = 3366bdd531aSSanjay Patel TTI.getVectorInstrCost(Instruction::ExtractElement, VecTy, Ext1Index); 337a69158c1SSanjay Patel 338a69158c1SSanjay Patel // A more expensive extract will always be replaced by a splat shuffle. 339a69158c1SSanjay Patel // For example, if Ext0 is more expensive: 340a69158c1SSanjay Patel // opcode (extelt V0, Ext0), (ext V1, Ext1) --> 341a69158c1SSanjay Patel // extelt (opcode (splat V0, Ext0), V1), Ext1 342a69158c1SSanjay Patel // TODO: Evaluate whether that always results in lowest cost. Alternatively, 343a69158c1SSanjay Patel // check the cost of creating a broadcast shuffle and shuffling both 344a69158c1SSanjay Patel // operands to element 0. 34536710c38SCaroline Concatto InstructionCost CheapExtractCost = std::min(Extract0Cost, Extract1Cost); 34634e34855SSanjay Patel 34734e34855SSanjay Patel // Extra uses of the extracts mean that we include those costs in the 34834e34855SSanjay Patel // vector total because those instructions will not be eliminated. 34936710c38SCaroline Concatto InstructionCost OldCost, NewCost; 350a69158c1SSanjay Patel if (Ext0->getOperand(0) == Ext1->getOperand(0) && Ext0Index == Ext1Index) { 351a69158c1SSanjay Patel // Handle a special case. If the 2 extracts are identical, adjust the 35234e34855SSanjay Patel // formulas to account for that. The extra use charge allows for either the 35334e34855SSanjay Patel // CSE'd pattern or an unoptimized form with identical values: 35434e34855SSanjay Patel // opcode (extelt V, C), (extelt V, C) --> extelt (opcode V, V), C 35534e34855SSanjay Patel bool HasUseTax = Ext0 == Ext1 ? !Ext0->hasNUses(2) 35634e34855SSanjay Patel : !Ext0->hasOneUse() || !Ext1->hasOneUse(); 357a69158c1SSanjay Patel OldCost = CheapExtractCost + ScalarOpCost; 358a69158c1SSanjay Patel NewCost = VectorOpCost + CheapExtractCost + HasUseTax * CheapExtractCost; 35934e34855SSanjay Patel } else { 36034e34855SSanjay Patel // Handle the general case. Each extract is actually a different value: 361a69158c1SSanjay Patel // opcode (extelt V0, C0), (extelt V1, C1) --> extelt (opcode V0, V1), C 362a69158c1SSanjay Patel OldCost = Extract0Cost + Extract1Cost + ScalarOpCost; 363a69158c1SSanjay Patel NewCost = VectorOpCost + CheapExtractCost + 364a69158c1SSanjay Patel !Ext0->hasOneUse() * Extract0Cost + 365a69158c1SSanjay Patel !Ext1->hasOneUse() * Extract1Cost; 36634e34855SSanjay Patel } 367a69158c1SSanjay Patel 3683b95d834SSanjay Patel ConvertToShuffle = getShuffleExtract(Ext0, Ext1, PreferredExtractIndex); 3693b95d834SSanjay Patel if (ConvertToShuffle) { 370a69158c1SSanjay Patel if (IsBinOp && DisableBinopExtractShuffle) 371a69158c1SSanjay Patel return true; 372a69158c1SSanjay Patel 373a69158c1SSanjay Patel // If we are extracting from 2 different indexes, then one operand must be 374a69158c1SSanjay Patel // shuffled before performing the vector operation. The shuffle mask is 375a69158c1SSanjay Patel // undefined except for 1 lane that is being translated to the remaining 376a69158c1SSanjay Patel // extraction lane. Therefore, it is a splat shuffle. Ex: 377a69158c1SSanjay Patel // ShufMask = { undef, undef, 0, undef } 378a69158c1SSanjay Patel // TODO: The cost model has an option for a "broadcast" shuffle 379a69158c1SSanjay Patel // (splat-from-element-0), but no option for a more general splat. 380a69158c1SSanjay Patel NewCost += 381a69158c1SSanjay Patel TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 382a69158c1SSanjay Patel } 383a69158c1SSanjay Patel 38410ea01d8SSanjay Patel // Aggressively form a vector op if the cost is equal because the transform 38510ea01d8SSanjay Patel // may enable further optimization. 38610ea01d8SSanjay Patel // Codegen can reverse this transform (scalarize) if it was not profitable. 38710ea01d8SSanjay Patel return OldCost < NewCost; 38834e34855SSanjay Patel } 38934e34855SSanjay Patel 3909934cc54SSanjay Patel /// Create a shuffle that translates (shifts) 1 element from the input vector 3919934cc54SSanjay Patel /// to a new element location. 3929934cc54SSanjay Patel static Value *createShiftShuffle(Value *Vec, unsigned OldIndex, 3939934cc54SSanjay Patel unsigned NewIndex, IRBuilder<> &Builder) { 3949934cc54SSanjay Patel // The shuffle mask is undefined except for 1 lane that is being translated 3959934cc54SSanjay Patel // to the new element index. Example for OldIndex == 2 and NewIndex == 0: 3969934cc54SSanjay Patel // ShufMask = { 2, undef, undef, undef } 3979934cc54SSanjay Patel auto *VecTy = cast<FixedVectorType>(Vec->getType()); 39854143e2bSSanjay Patel SmallVector<int, 32> ShufMask(VecTy->getNumElements(), UndefMaskElem); 3999934cc54SSanjay Patel ShufMask[NewIndex] = OldIndex; 4001e6b240dSSanjay Patel return Builder.CreateShuffleVector(Vec, ShufMask, "shift"); 4019934cc54SSanjay Patel } 4029934cc54SSanjay Patel 403216a37bbSSanjay Patel /// Given an extract element instruction with constant index operand, shuffle 404216a37bbSSanjay Patel /// the source vector (shift the scalar element) to a NewIndex for extraction. 405216a37bbSSanjay Patel /// Return null if the input can be constant folded, so that we are not creating 406216a37bbSSanjay Patel /// unnecessary instructions. 4079934cc54SSanjay Patel static ExtractElementInst *translateExtract(ExtractElementInst *ExtElt, 4089934cc54SSanjay Patel unsigned NewIndex, 4099934cc54SSanjay Patel IRBuilder<> &Builder) { 410216a37bbSSanjay Patel // If the extract can be constant-folded, this code is unsimplified. Defer 411216a37bbSSanjay Patel // to other passes to handle that. 412216a37bbSSanjay Patel Value *X = ExtElt->getVectorOperand(); 413216a37bbSSanjay Patel Value *C = ExtElt->getIndexOperand(); 414de65b356SSanjay Patel assert(isa<ConstantInt>(C) && "Expected a constant index operand"); 415216a37bbSSanjay Patel if (isa<Constant>(X)) 416216a37bbSSanjay Patel return nullptr; 417216a37bbSSanjay Patel 4189934cc54SSanjay Patel Value *Shuf = createShiftShuffle(X, cast<ConstantInt>(C)->getZExtValue(), 4199934cc54SSanjay Patel NewIndex, Builder); 420216a37bbSSanjay Patel return cast<ExtractElementInst>(Builder.CreateExtractElement(Shuf, NewIndex)); 421216a37bbSSanjay Patel } 422216a37bbSSanjay Patel 423fc445589SSanjay Patel /// Try to reduce extract element costs by converting scalar compares to vector 424fc445589SSanjay Patel /// compares followed by extract. 425e9c79a7aSSanjay Patel /// cmp (ext0 V0, C), (ext1 V1, C) 426de65b356SSanjay Patel void VectorCombine::foldExtExtCmp(ExtractElementInst *Ext0, 427de65b356SSanjay Patel ExtractElementInst *Ext1, Instruction &I) { 428fc445589SSanjay Patel assert(isa<CmpInst>(&I) && "Expected a compare"); 429216a37bbSSanjay Patel assert(cast<ConstantInt>(Ext0->getIndexOperand())->getZExtValue() == 430216a37bbSSanjay Patel cast<ConstantInt>(Ext1->getIndexOperand())->getZExtValue() && 431216a37bbSSanjay Patel "Expected matching constant extract indexes"); 432a17f03bdSSanjay Patel 433a17f03bdSSanjay Patel // cmp Pred (extelt V0, C), (extelt V1, C) --> extelt (cmp Pred V0, V1), C 434a17f03bdSSanjay Patel ++NumVecCmp; 435fc445589SSanjay Patel CmpInst::Predicate Pred = cast<CmpInst>(&I)->getPredicate(); 436216a37bbSSanjay Patel Value *V0 = Ext0->getVectorOperand(), *V1 = Ext1->getVectorOperand(); 43746a285adSSanjay Patel Value *VecCmp = Builder.CreateCmp(Pred, V0, V1); 438216a37bbSSanjay Patel Value *NewExt = Builder.CreateExtractElement(VecCmp, Ext0->getIndexOperand()); 43998c2f4eeSSanjay Patel replaceValue(I, *NewExt); 440a17f03bdSSanjay Patel } 441a17f03bdSSanjay Patel 44219b62b79SSanjay Patel /// Try to reduce extract element costs by converting scalar binops to vector 44319b62b79SSanjay Patel /// binops followed by extract. 444e9c79a7aSSanjay Patel /// bo (ext0 V0, C), (ext1 V1, C) 445de65b356SSanjay Patel void VectorCombine::foldExtExtBinop(ExtractElementInst *Ext0, 446de65b356SSanjay Patel ExtractElementInst *Ext1, Instruction &I) { 447fc445589SSanjay Patel assert(isa<BinaryOperator>(&I) && "Expected a binary operator"); 448216a37bbSSanjay Patel assert(cast<ConstantInt>(Ext0->getIndexOperand())->getZExtValue() == 449216a37bbSSanjay Patel cast<ConstantInt>(Ext1->getIndexOperand())->getZExtValue() && 450216a37bbSSanjay Patel "Expected matching constant extract indexes"); 45119b62b79SSanjay Patel 45234e34855SSanjay Patel // bo (extelt V0, C), (extelt V1, C) --> extelt (bo V0, V1), C 45319b62b79SSanjay Patel ++NumVecBO; 454216a37bbSSanjay Patel Value *V0 = Ext0->getVectorOperand(), *V1 = Ext1->getVectorOperand(); 455e9c79a7aSSanjay Patel Value *VecBO = 45634e34855SSanjay Patel Builder.CreateBinOp(cast<BinaryOperator>(&I)->getOpcode(), V0, V1); 457e9c79a7aSSanjay Patel 45819b62b79SSanjay Patel // All IR flags are safe to back-propagate because any potential poison 45919b62b79SSanjay Patel // created in unused vector elements is discarded by the extract. 460e9c79a7aSSanjay Patel if (auto *VecBOInst = dyn_cast<Instruction>(VecBO)) 46119b62b79SSanjay Patel VecBOInst->copyIRFlags(&I); 462e9c79a7aSSanjay Patel 463216a37bbSSanjay Patel Value *NewExt = Builder.CreateExtractElement(VecBO, Ext0->getIndexOperand()); 46498c2f4eeSSanjay Patel replaceValue(I, *NewExt); 46519b62b79SSanjay Patel } 46619b62b79SSanjay Patel 467fc445589SSanjay Patel /// Match an instruction with extracted vector operands. 4686bdd531aSSanjay Patel bool VectorCombine::foldExtractExtract(Instruction &I) { 469e9c79a7aSSanjay Patel // It is not safe to transform things like div, urem, etc. because we may 470e9c79a7aSSanjay Patel // create undefined behavior when executing those on unknown vector elements. 471e9c79a7aSSanjay Patel if (!isSafeToSpeculativelyExecute(&I)) 472e9c79a7aSSanjay Patel return false; 473e9c79a7aSSanjay Patel 474216a37bbSSanjay Patel Instruction *I0, *I1; 475fc445589SSanjay Patel CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE; 476216a37bbSSanjay Patel if (!match(&I, m_Cmp(Pred, m_Instruction(I0), m_Instruction(I1))) && 477216a37bbSSanjay Patel !match(&I, m_BinOp(m_Instruction(I0), m_Instruction(I1)))) 478fc445589SSanjay Patel return false; 479fc445589SSanjay Patel 480fc445589SSanjay Patel Value *V0, *V1; 481fc445589SSanjay Patel uint64_t C0, C1; 482216a37bbSSanjay Patel if (!match(I0, m_ExtractElt(m_Value(V0), m_ConstantInt(C0))) || 483216a37bbSSanjay Patel !match(I1, m_ExtractElt(m_Value(V1), m_ConstantInt(C1))) || 484fc445589SSanjay Patel V0->getType() != V1->getType()) 485fc445589SSanjay Patel return false; 486fc445589SSanjay Patel 487ce97ce3aSSanjay Patel // If the scalar value 'I' is going to be re-inserted into a vector, then try 488ce97ce3aSSanjay Patel // to create an extract to that same element. The extract/insert can be 489ce97ce3aSSanjay Patel // reduced to a "select shuffle". 490ce97ce3aSSanjay Patel // TODO: If we add a larger pattern match that starts from an insert, this 491ce97ce3aSSanjay Patel // probably becomes unnecessary. 492216a37bbSSanjay Patel auto *Ext0 = cast<ExtractElementInst>(I0); 493216a37bbSSanjay Patel auto *Ext1 = cast<ExtractElementInst>(I1); 494a0f96741SSanjay Patel uint64_t InsertIndex = InvalidIndex; 495ce97ce3aSSanjay Patel if (I.hasOneUse()) 4967eed772aSSanjay Patel match(I.user_back(), 4977eed772aSSanjay Patel m_InsertElt(m_Value(), m_Value(), m_ConstantInt(InsertIndex))); 498ce97ce3aSSanjay Patel 499216a37bbSSanjay Patel ExtractElementInst *ExtractToChange; 500*0dcd2b40SSimon Pilgrim if (isExtractExtractCheap(Ext0, Ext1, I, ExtractToChange, InsertIndex)) 501fc445589SSanjay Patel return false; 502e9c79a7aSSanjay Patel 503216a37bbSSanjay Patel if (ExtractToChange) { 504216a37bbSSanjay Patel unsigned CheapExtractIdx = ExtractToChange == Ext0 ? C1 : C0; 505216a37bbSSanjay Patel ExtractElementInst *NewExtract = 5069934cc54SSanjay Patel translateExtract(ExtractToChange, CheapExtractIdx, Builder); 507216a37bbSSanjay Patel if (!NewExtract) 5086d864097SSanjay Patel return false; 509216a37bbSSanjay Patel if (ExtractToChange == Ext0) 510216a37bbSSanjay Patel Ext0 = NewExtract; 511a69158c1SSanjay Patel else 512216a37bbSSanjay Patel Ext1 = NewExtract; 513a69158c1SSanjay Patel } 514e9c79a7aSSanjay Patel 515e9c79a7aSSanjay Patel if (Pred != CmpInst::BAD_ICMP_PREDICATE) 516039ff29eSSanjay Patel foldExtExtCmp(Ext0, Ext1, I); 517e9c79a7aSSanjay Patel else 518039ff29eSSanjay Patel foldExtExtBinop(Ext0, Ext1, I); 519e9c79a7aSSanjay Patel 520300870a9SFlorian Hahn Worklist.push(Ext0); 521300870a9SFlorian Hahn Worklist.push(Ext1); 522e9c79a7aSSanjay Patel return true; 523fc445589SSanjay Patel } 524fc445589SSanjay Patel 525bef6e67eSSanjay Patel /// If this is a bitcast of a shuffle, try to bitcast the source vector to the 526bef6e67eSSanjay Patel /// destination type followed by shuffle. This can enable further transforms by 527bef6e67eSSanjay Patel /// moving bitcasts or shuffles together. 5286bdd531aSSanjay Patel bool VectorCombine::foldBitcastShuf(Instruction &I) { 529b6050ca1SSanjay Patel Value *V; 530b6050ca1SSanjay Patel ArrayRef<int> Mask; 5317eed772aSSanjay Patel if (!match(&I, m_BitCast( 5327eed772aSSanjay Patel m_OneUse(m_Shuffle(m_Value(V), m_Undef(), m_Mask(Mask)))))) 533b6050ca1SSanjay Patel return false; 534b6050ca1SSanjay Patel 535b4f04d71SHuihui Zhang // 1) Do not fold bitcast shuffle for scalable type. First, shuffle cost for 536b4f04d71SHuihui Zhang // scalable type is unknown; Second, we cannot reason if the narrowed shuffle 537b4f04d71SHuihui Zhang // mask for scalable type is a splat or not. 538b4f04d71SHuihui Zhang // 2) Disallow non-vector casts and length-changing shuffles. 539bef6e67eSSanjay Patel // TODO: We could allow any shuffle. 540b4f04d71SHuihui Zhang auto *DestTy = dyn_cast<FixedVectorType>(I.getType()); 541b4f04d71SHuihui Zhang auto *SrcTy = dyn_cast<FixedVectorType>(V->getType()); 542b4f04d71SHuihui Zhang if (!SrcTy || !DestTy || I.getOperand(0)->getType() != SrcTy) 543b6050ca1SSanjay Patel return false; 544b6050ca1SSanjay Patel 545b4f04d71SHuihui Zhang unsigned DestNumElts = DestTy->getNumElements(); 546b4f04d71SHuihui Zhang unsigned SrcNumElts = SrcTy->getNumElements(); 547b6050ca1SSanjay Patel SmallVector<int, 16> NewMask; 548bef6e67eSSanjay Patel if (SrcNumElts <= DestNumElts) { 549bef6e67eSSanjay Patel // The bitcast is from wide to narrow/equal elements. The shuffle mask can 550bef6e67eSSanjay Patel // always be expanded to the equivalent form choosing narrower elements. 551b6050ca1SSanjay Patel assert(DestNumElts % SrcNumElts == 0 && "Unexpected shuffle mask"); 552b6050ca1SSanjay Patel unsigned ScaleFactor = DestNumElts / SrcNumElts; 5531318ddbcSSanjay Patel narrowShuffleMaskElts(ScaleFactor, Mask, NewMask); 554bef6e67eSSanjay Patel } else { 555bef6e67eSSanjay Patel // The bitcast is from narrow elements to wide elements. The shuffle mask 556bef6e67eSSanjay Patel // must choose consecutive elements to allow casting first. 557bef6e67eSSanjay Patel assert(SrcNumElts % DestNumElts == 0 && "Unexpected shuffle mask"); 558bef6e67eSSanjay Patel unsigned ScaleFactor = SrcNumElts / DestNumElts; 559bef6e67eSSanjay Patel if (!widenShuffleMaskElts(ScaleFactor, Mask, NewMask)) 560bef6e67eSSanjay Patel return false; 561bef6e67eSSanjay Patel } 562e2935dcfSDavid Green 563e2935dcfSDavid Green // The new shuffle must not cost more than the old shuffle. The bitcast is 564e2935dcfSDavid Green // moved ahead of the shuffle, so assume that it has the same cost as before. 565e2935dcfSDavid Green InstructionCost DestCost = TTI.getShuffleCost( 566e2935dcfSDavid Green TargetTransformInfo::SK_PermuteSingleSrc, DestTy, NewMask); 567e2935dcfSDavid Green InstructionCost SrcCost = 568e2935dcfSDavid Green TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, SrcTy, Mask); 569e2935dcfSDavid Green if (DestCost > SrcCost || !DestCost.isValid()) 570e2935dcfSDavid Green return false; 571e2935dcfSDavid Green 572bef6e67eSSanjay Patel // bitcast (shuf V, MaskC) --> shuf (bitcast V), MaskC' 5737aeb41b3SRoman Lebedev ++NumShufOfBitcast; 574bef6e67eSSanjay Patel Value *CastV = Builder.CreateBitCast(V, DestTy); 5751e6b240dSSanjay Patel Value *Shuf = Builder.CreateShuffleVector(CastV, NewMask); 57698c2f4eeSSanjay Patel replaceValue(I, *Shuf); 577b6050ca1SSanjay Patel return true; 578b6050ca1SSanjay Patel } 579b6050ca1SSanjay Patel 580ed67f5e7SSanjay Patel /// Match a vector binop or compare instruction with at least one inserted 581ed67f5e7SSanjay Patel /// scalar operand and convert to scalar binop/cmp followed by insertelement. 5826bdd531aSSanjay Patel bool VectorCombine::scalarizeBinopOrCmp(Instruction &I) { 583ed67f5e7SSanjay Patel CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE; 5845dc4e7c2SSimon Pilgrim Value *Ins0, *Ins1; 585ed67f5e7SSanjay Patel if (!match(&I, m_BinOp(m_Value(Ins0), m_Value(Ins1))) && 586ed67f5e7SSanjay Patel !match(&I, m_Cmp(Pred, m_Value(Ins0), m_Value(Ins1)))) 587ed67f5e7SSanjay Patel return false; 588ed67f5e7SSanjay Patel 589ed67f5e7SSanjay Patel // Do not convert the vector condition of a vector select into a scalar 590ed67f5e7SSanjay Patel // condition. That may cause problems for codegen because of differences in 591ed67f5e7SSanjay Patel // boolean formats and register-file transfers. 592ed67f5e7SSanjay Patel // TODO: Can we account for that in the cost model? 593ed67f5e7SSanjay Patel bool IsCmp = Pred != CmpInst::Predicate::BAD_ICMP_PREDICATE; 594ed67f5e7SSanjay Patel if (IsCmp) 595ed67f5e7SSanjay Patel for (User *U : I.users()) 596ed67f5e7SSanjay Patel if (match(U, m_Select(m_Specific(&I), m_Value(), m_Value()))) 5970d2a0b44SSanjay Patel return false; 5980d2a0b44SSanjay Patel 5995dc4e7c2SSimon Pilgrim // Match against one or both scalar values being inserted into constant 6005dc4e7c2SSimon Pilgrim // vectors: 601ed67f5e7SSanjay Patel // vec_op VecC0, (inselt VecC1, V1, Index) 602ed67f5e7SSanjay Patel // vec_op (inselt VecC0, V0, Index), VecC1 603ed67f5e7SSanjay Patel // vec_op (inselt VecC0, V0, Index), (inselt VecC1, V1, Index) 6040d2a0b44SSanjay Patel // TODO: Deal with mismatched index constants and variable indexes? 6055dc4e7c2SSimon Pilgrim Constant *VecC0 = nullptr, *VecC1 = nullptr; 6065dc4e7c2SSimon Pilgrim Value *V0 = nullptr, *V1 = nullptr; 6075dc4e7c2SSimon Pilgrim uint64_t Index0 = 0, Index1 = 0; 6087eed772aSSanjay Patel if (!match(Ins0, m_InsertElt(m_Constant(VecC0), m_Value(V0), 6095dc4e7c2SSimon Pilgrim m_ConstantInt(Index0))) && 6105dc4e7c2SSimon Pilgrim !match(Ins0, m_Constant(VecC0))) 6115dc4e7c2SSimon Pilgrim return false; 6125dc4e7c2SSimon Pilgrim if (!match(Ins1, m_InsertElt(m_Constant(VecC1), m_Value(V1), 6135dc4e7c2SSimon Pilgrim m_ConstantInt(Index1))) && 6145dc4e7c2SSimon Pilgrim !match(Ins1, m_Constant(VecC1))) 6150d2a0b44SSanjay Patel return false; 6160d2a0b44SSanjay Patel 6175dc4e7c2SSimon Pilgrim bool IsConst0 = !V0; 6185dc4e7c2SSimon Pilgrim bool IsConst1 = !V1; 6195dc4e7c2SSimon Pilgrim if (IsConst0 && IsConst1) 6205dc4e7c2SSimon Pilgrim return false; 6215dc4e7c2SSimon Pilgrim if (!IsConst0 && !IsConst1 && Index0 != Index1) 6225dc4e7c2SSimon Pilgrim return false; 6235dc4e7c2SSimon Pilgrim 6245dc4e7c2SSimon Pilgrim // Bail for single insertion if it is a load. 6255dc4e7c2SSimon Pilgrim // TODO: Handle this once getVectorInstrCost can cost for load/stores. 6265dc4e7c2SSimon Pilgrim auto *I0 = dyn_cast_or_null<Instruction>(V0); 6275dc4e7c2SSimon Pilgrim auto *I1 = dyn_cast_or_null<Instruction>(V1); 6285dc4e7c2SSimon Pilgrim if ((IsConst0 && I1 && I1->mayReadFromMemory()) || 6295dc4e7c2SSimon Pilgrim (IsConst1 && I0 && I0->mayReadFromMemory())) 6305dc4e7c2SSimon Pilgrim return false; 6315dc4e7c2SSimon Pilgrim 6325dc4e7c2SSimon Pilgrim uint64_t Index = IsConst0 ? Index1 : Index0; 6335dc4e7c2SSimon Pilgrim Type *ScalarTy = IsConst0 ? V1->getType() : V0->getType(); 6340d2a0b44SSanjay Patel Type *VecTy = I.getType(); 6355dc4e7c2SSimon Pilgrim assert(VecTy->isVectorTy() && 6365dc4e7c2SSimon Pilgrim (IsConst0 || IsConst1 || V0->getType() == V1->getType()) && 637741e20f3SSanjay Patel (ScalarTy->isIntegerTy() || ScalarTy->isFloatingPointTy() || 638741e20f3SSanjay Patel ScalarTy->isPointerTy()) && 639741e20f3SSanjay Patel "Unexpected types for insert element into binop or cmp"); 6400d2a0b44SSanjay Patel 641ed67f5e7SSanjay Patel unsigned Opcode = I.getOpcode(); 64236710c38SCaroline Concatto InstructionCost ScalarOpCost, VectorOpCost; 643ed67f5e7SSanjay Patel if (IsCmp) { 644*0dcd2b40SSimon Pilgrim CmpInst::Predicate Pred = cast<CmpInst>(I).getPredicate(); 645*0dcd2b40SSimon Pilgrim ScalarOpCost = TTI.getCmpSelInstrCost( 646*0dcd2b40SSimon Pilgrim Opcode, ScalarTy, CmpInst::makeCmpResultType(ScalarTy), Pred); 647*0dcd2b40SSimon Pilgrim VectorOpCost = TTI.getCmpSelInstrCost( 648*0dcd2b40SSimon Pilgrim Opcode, VecTy, CmpInst::makeCmpResultType(VecTy), Pred); 649ed67f5e7SSanjay Patel } else { 650ed67f5e7SSanjay Patel ScalarOpCost = TTI.getArithmeticInstrCost(Opcode, ScalarTy); 651ed67f5e7SSanjay Patel VectorOpCost = TTI.getArithmeticInstrCost(Opcode, VecTy); 652ed67f5e7SSanjay Patel } 6530d2a0b44SSanjay Patel 6540d2a0b44SSanjay Patel // Get cost estimate for the insert element. This cost will factor into 6550d2a0b44SSanjay Patel // both sequences. 65636710c38SCaroline Concatto InstructionCost InsertCost = 6570d2a0b44SSanjay Patel TTI.getVectorInstrCost(Instruction::InsertElement, VecTy, Index); 65836710c38SCaroline Concatto InstructionCost OldCost = 65936710c38SCaroline Concatto (IsConst0 ? 0 : InsertCost) + (IsConst1 ? 0 : InsertCost) + VectorOpCost; 66036710c38SCaroline Concatto InstructionCost NewCost = ScalarOpCost + InsertCost + 6615dc4e7c2SSimon Pilgrim (IsConst0 ? 0 : !Ins0->hasOneUse() * InsertCost) + 6625dc4e7c2SSimon Pilgrim (IsConst1 ? 0 : !Ins1->hasOneUse() * InsertCost); 6630d2a0b44SSanjay Patel 6640d2a0b44SSanjay Patel // We want to scalarize unless the vector variant actually has lower cost. 66536710c38SCaroline Concatto if (OldCost < NewCost || !NewCost.isValid()) 6660d2a0b44SSanjay Patel return false; 6670d2a0b44SSanjay Patel 668ed67f5e7SSanjay Patel // vec_op (inselt VecC0, V0, Index), (inselt VecC1, V1, Index) --> 669ed67f5e7SSanjay Patel // inselt NewVecC, (scalar_op V0, V1), Index 670ed67f5e7SSanjay Patel if (IsCmp) 671ed67f5e7SSanjay Patel ++NumScalarCmp; 672ed67f5e7SSanjay Patel else 6730d2a0b44SSanjay Patel ++NumScalarBO; 6745dc4e7c2SSimon Pilgrim 6755dc4e7c2SSimon Pilgrim // For constant cases, extract the scalar element, this should constant fold. 6765dc4e7c2SSimon Pilgrim if (IsConst0) 6775dc4e7c2SSimon Pilgrim V0 = ConstantExpr::getExtractElement(VecC0, Builder.getInt64(Index)); 6785dc4e7c2SSimon Pilgrim if (IsConst1) 6795dc4e7c2SSimon Pilgrim V1 = ConstantExpr::getExtractElement(VecC1, Builder.getInt64(Index)); 6805dc4e7c2SSimon Pilgrim 681ed67f5e7SSanjay Patel Value *Scalar = 68246a285adSSanjay Patel IsCmp ? Builder.CreateCmp(Pred, V0, V1) 683ed67f5e7SSanjay Patel : Builder.CreateBinOp((Instruction::BinaryOps)Opcode, V0, V1); 684ed67f5e7SSanjay Patel 685ed67f5e7SSanjay Patel Scalar->setName(I.getName() + ".scalar"); 6860d2a0b44SSanjay Patel 6870d2a0b44SSanjay Patel // All IR flags are safe to back-propagate. There is no potential for extra 6880d2a0b44SSanjay Patel // poison to be created by the scalar instruction. 6890d2a0b44SSanjay Patel if (auto *ScalarInst = dyn_cast<Instruction>(Scalar)) 6900d2a0b44SSanjay Patel ScalarInst->copyIRFlags(&I); 6910d2a0b44SSanjay Patel 6920d2a0b44SSanjay Patel // Fold the vector constants in the original vectors into a new base vector. 693ed67f5e7SSanjay Patel Constant *NewVecC = IsCmp ? ConstantExpr::getCompare(Pred, VecC0, VecC1) 694ed67f5e7SSanjay Patel : ConstantExpr::get(Opcode, VecC0, VecC1); 6950d2a0b44SSanjay Patel Value *Insert = Builder.CreateInsertElement(NewVecC, Scalar, Index); 69698c2f4eeSSanjay Patel replaceValue(I, *Insert); 6970d2a0b44SSanjay Patel return true; 6980d2a0b44SSanjay Patel } 6990d2a0b44SSanjay Patel 700b6315aeeSSanjay Patel /// Try to combine a scalar binop + 2 scalar compares of extracted elements of 701b6315aeeSSanjay Patel /// a vector into vector operations followed by extract. Note: The SLP pass 702b6315aeeSSanjay Patel /// may miss this pattern because of implementation problems. 703b6315aeeSSanjay Patel bool VectorCombine::foldExtractedCmps(Instruction &I) { 704b6315aeeSSanjay Patel // We are looking for a scalar binop of booleans. 705b6315aeeSSanjay Patel // binop i1 (cmp Pred I0, C0), (cmp Pred I1, C1) 706b6315aeeSSanjay Patel if (!I.isBinaryOp() || !I.getType()->isIntegerTy(1)) 707b6315aeeSSanjay Patel return false; 708b6315aeeSSanjay Patel 709b6315aeeSSanjay Patel // The compare predicates should match, and each compare should have a 710b6315aeeSSanjay Patel // constant operand. 711b6315aeeSSanjay Patel // TODO: Relax the one-use constraints. 712b6315aeeSSanjay Patel Value *B0 = I.getOperand(0), *B1 = I.getOperand(1); 713b6315aeeSSanjay Patel Instruction *I0, *I1; 714b6315aeeSSanjay Patel Constant *C0, *C1; 715b6315aeeSSanjay Patel CmpInst::Predicate P0, P1; 716b6315aeeSSanjay Patel if (!match(B0, m_OneUse(m_Cmp(P0, m_Instruction(I0), m_Constant(C0)))) || 717b6315aeeSSanjay Patel !match(B1, m_OneUse(m_Cmp(P1, m_Instruction(I1), m_Constant(C1)))) || 718b6315aeeSSanjay Patel P0 != P1) 719b6315aeeSSanjay Patel return false; 720b6315aeeSSanjay Patel 721b6315aeeSSanjay Patel // The compare operands must be extracts of the same vector with constant 722b6315aeeSSanjay Patel // extract indexes. 723b6315aeeSSanjay Patel // TODO: Relax the one-use constraints. 724b6315aeeSSanjay Patel Value *X; 725b6315aeeSSanjay Patel uint64_t Index0, Index1; 726b6315aeeSSanjay Patel if (!match(I0, m_OneUse(m_ExtractElt(m_Value(X), m_ConstantInt(Index0)))) || 727b6315aeeSSanjay Patel !match(I1, m_OneUse(m_ExtractElt(m_Specific(X), m_ConstantInt(Index1))))) 728b6315aeeSSanjay Patel return false; 729b6315aeeSSanjay Patel 730b6315aeeSSanjay Patel auto *Ext0 = cast<ExtractElementInst>(I0); 731b6315aeeSSanjay Patel auto *Ext1 = cast<ExtractElementInst>(I1); 732b6315aeeSSanjay Patel ExtractElementInst *ConvertToShuf = getShuffleExtract(Ext0, Ext1); 733b6315aeeSSanjay Patel if (!ConvertToShuf) 734b6315aeeSSanjay Patel return false; 735b6315aeeSSanjay Patel 736b6315aeeSSanjay Patel // The original scalar pattern is: 737b6315aeeSSanjay Patel // binop i1 (cmp Pred (ext X, Index0), C0), (cmp Pred (ext X, Index1), C1) 738b6315aeeSSanjay Patel CmpInst::Predicate Pred = P0; 739b6315aeeSSanjay Patel unsigned CmpOpcode = CmpInst::isFPPredicate(Pred) ? Instruction::FCmp 740b6315aeeSSanjay Patel : Instruction::ICmp; 741b6315aeeSSanjay Patel auto *VecTy = dyn_cast<FixedVectorType>(X->getType()); 742b6315aeeSSanjay Patel if (!VecTy) 743b6315aeeSSanjay Patel return false; 744b6315aeeSSanjay Patel 74536710c38SCaroline Concatto InstructionCost OldCost = 74636710c38SCaroline Concatto TTI.getVectorInstrCost(Ext0->getOpcode(), VecTy, Index0); 747b6315aeeSSanjay Patel OldCost += TTI.getVectorInstrCost(Ext1->getOpcode(), VecTy, Index1); 748*0dcd2b40SSimon Pilgrim OldCost += 749*0dcd2b40SSimon Pilgrim TTI.getCmpSelInstrCost(CmpOpcode, I0->getType(), 750*0dcd2b40SSimon Pilgrim CmpInst::makeCmpResultType(I0->getType()), Pred) * 751*0dcd2b40SSimon Pilgrim 2; 752b6315aeeSSanjay Patel OldCost += TTI.getArithmeticInstrCost(I.getOpcode(), I.getType()); 753b6315aeeSSanjay Patel 754b6315aeeSSanjay Patel // The proposed vector pattern is: 755b6315aeeSSanjay Patel // vcmp = cmp Pred X, VecC 756b6315aeeSSanjay Patel // ext (binop vNi1 vcmp, (shuffle vcmp, Index1)), Index0 757b6315aeeSSanjay Patel int CheapIndex = ConvertToShuf == Ext0 ? Index1 : Index0; 758b6315aeeSSanjay Patel int ExpensiveIndex = ConvertToShuf == Ext0 ? Index0 : Index1; 759b6315aeeSSanjay Patel auto *CmpTy = cast<FixedVectorType>(CmpInst::makeCmpResultType(X->getType())); 760*0dcd2b40SSimon Pilgrim InstructionCost NewCost = TTI.getCmpSelInstrCost( 761*0dcd2b40SSimon Pilgrim CmpOpcode, X->getType(), CmpInst::makeCmpResultType(X->getType()), Pred); 762e2935dcfSDavid Green SmallVector<int, 32> ShufMask(VecTy->getNumElements(), UndefMaskElem); 763e2935dcfSDavid Green ShufMask[CheapIndex] = ExpensiveIndex; 764e2935dcfSDavid Green NewCost += TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, CmpTy, 765e2935dcfSDavid Green ShufMask); 766b6315aeeSSanjay Patel NewCost += TTI.getArithmeticInstrCost(I.getOpcode(), CmpTy); 767b6315aeeSSanjay Patel NewCost += TTI.getVectorInstrCost(Ext0->getOpcode(), CmpTy, CheapIndex); 768b6315aeeSSanjay Patel 769b6315aeeSSanjay Patel // Aggressively form vector ops if the cost is equal because the transform 770b6315aeeSSanjay Patel // may enable further optimization. 771b6315aeeSSanjay Patel // Codegen can reverse this transform (scalarize) if it was not profitable. 77236710c38SCaroline Concatto if (OldCost < NewCost || !NewCost.isValid()) 773b6315aeeSSanjay Patel return false; 774b6315aeeSSanjay Patel 775b6315aeeSSanjay Patel // Create a vector constant from the 2 scalar constants. 776b6315aeeSSanjay Patel SmallVector<Constant *, 32> CmpC(VecTy->getNumElements(), 777b6315aeeSSanjay Patel UndefValue::get(VecTy->getElementType())); 778b6315aeeSSanjay Patel CmpC[Index0] = C0; 779b6315aeeSSanjay Patel CmpC[Index1] = C1; 780b6315aeeSSanjay Patel Value *VCmp = Builder.CreateCmp(Pred, X, ConstantVector::get(CmpC)); 781b6315aeeSSanjay Patel 782b6315aeeSSanjay Patel Value *Shuf = createShiftShuffle(VCmp, ExpensiveIndex, CheapIndex, Builder); 783b6315aeeSSanjay Patel Value *VecLogic = Builder.CreateBinOp(cast<BinaryOperator>(I).getOpcode(), 784b6315aeeSSanjay Patel VCmp, Shuf); 785b6315aeeSSanjay Patel Value *NewExt = Builder.CreateExtractElement(VecLogic, CheapIndex); 786b6315aeeSSanjay Patel replaceValue(I, *NewExt); 787b6315aeeSSanjay Patel ++NumVecCmpBO; 788b6315aeeSSanjay Patel return true; 789b6315aeeSSanjay Patel } 790b6315aeeSSanjay Patel 7912db4979cSQiu Chaofan // Check if memory loc modified between two instrs in the same BB 7922db4979cSQiu Chaofan static bool isMemModifiedBetween(BasicBlock::iterator Begin, 7932db4979cSQiu Chaofan BasicBlock::iterator End, 7942db4979cSQiu Chaofan const MemoryLocation &Loc, AAResults &AA) { 7952db4979cSQiu Chaofan unsigned NumScanned = 0; 7962db4979cSQiu Chaofan return std::any_of(Begin, End, [&](const Instruction &Instr) { 7972db4979cSQiu Chaofan return isModSet(AA.getModRefInfo(&Instr, Loc)) || 7982db4979cSQiu Chaofan ++NumScanned > MaxInstrsToScan; 7992db4979cSQiu Chaofan }); 8002db4979cSQiu Chaofan } 8012db4979cSQiu Chaofan 802c24fc37eSFlorian Hahn /// Helper class to indicate whether a vector index can be safely scalarized and 803c24fc37eSFlorian Hahn /// if a freeze needs to be inserted. 804c24fc37eSFlorian Hahn class ScalarizationResult { 805c24fc37eSFlorian Hahn enum class StatusTy { Unsafe, Safe, SafeWithFreeze }; 806c24fc37eSFlorian Hahn 807c24fc37eSFlorian Hahn StatusTy Status; 808c24fc37eSFlorian Hahn Value *ToFreeze; 809c24fc37eSFlorian Hahn 810c24fc37eSFlorian Hahn ScalarizationResult(StatusTy Status, Value *ToFreeze = nullptr) 811c24fc37eSFlorian Hahn : Status(Status), ToFreeze(ToFreeze) {} 812c24fc37eSFlorian Hahn 813c24fc37eSFlorian Hahn public: 814c24fc37eSFlorian Hahn ScalarizationResult(const ScalarizationResult &Other) = default; 815c24fc37eSFlorian Hahn ~ScalarizationResult() { 816c24fc37eSFlorian Hahn assert(!ToFreeze && "freeze() not called with ToFreeze being set"); 817c24fc37eSFlorian Hahn } 818c24fc37eSFlorian Hahn 819c24fc37eSFlorian Hahn static ScalarizationResult unsafe() { return {StatusTy::Unsafe}; } 820c24fc37eSFlorian Hahn static ScalarizationResult safe() { return {StatusTy::Safe}; } 821c24fc37eSFlorian Hahn static ScalarizationResult safeWithFreeze(Value *ToFreeze) { 822c24fc37eSFlorian Hahn return {StatusTy::SafeWithFreeze, ToFreeze}; 823c24fc37eSFlorian Hahn } 824c24fc37eSFlorian Hahn 825c24fc37eSFlorian Hahn /// Returns true if the index can be scalarize without requiring a freeze. 826c24fc37eSFlorian Hahn bool isSafe() const { return Status == StatusTy::Safe; } 827c24fc37eSFlorian Hahn /// Returns true if the index cannot be scalarized. 828c24fc37eSFlorian Hahn bool isUnsafe() const { return Status == StatusTy::Unsafe; } 829c24fc37eSFlorian Hahn /// Returns true if the index can be scalarize, but requires inserting a 830c24fc37eSFlorian Hahn /// freeze. 831c24fc37eSFlorian Hahn bool isSafeWithFreeze() const { return Status == StatusTy::SafeWithFreeze; } 832c24fc37eSFlorian Hahn 833e2f6290eSFlorian Hahn /// Reset the state of Unsafe and clear ToFreze if set. 834e2f6290eSFlorian Hahn void discard() { 835e2f6290eSFlorian Hahn ToFreeze = nullptr; 836e2f6290eSFlorian Hahn Status = StatusTy::Unsafe; 837e2f6290eSFlorian Hahn } 838e2f6290eSFlorian Hahn 839c24fc37eSFlorian Hahn /// Freeze the ToFreeze and update the use in \p User to use it. 840c24fc37eSFlorian Hahn void freeze(IRBuilder<> &Builder, Instruction &UserI) { 841c24fc37eSFlorian Hahn assert(isSafeWithFreeze() && 842c24fc37eSFlorian Hahn "should only be used when freezing is required"); 843c24fc37eSFlorian Hahn assert(is_contained(ToFreeze->users(), &UserI) && 844c24fc37eSFlorian Hahn "UserI must be a user of ToFreeze"); 845c24fc37eSFlorian Hahn IRBuilder<>::InsertPointGuard Guard(Builder); 846c24fc37eSFlorian Hahn Builder.SetInsertPoint(cast<Instruction>(&UserI)); 847c24fc37eSFlorian Hahn Value *Frozen = 848c24fc37eSFlorian Hahn Builder.CreateFreeze(ToFreeze, ToFreeze->getName() + ".frozen"); 849c24fc37eSFlorian Hahn for (Use &U : make_early_inc_range((UserI.operands()))) 850c24fc37eSFlorian Hahn if (U.get() == ToFreeze) 851c24fc37eSFlorian Hahn U.set(Frozen); 852c24fc37eSFlorian Hahn 853c24fc37eSFlorian Hahn ToFreeze = nullptr; 854c24fc37eSFlorian Hahn } 855c24fc37eSFlorian Hahn }; 856c24fc37eSFlorian Hahn 8574e8c28b6SFlorian Hahn /// Check if it is legal to scalarize a memory access to \p VecTy at index \p 8584e8c28b6SFlorian Hahn /// Idx. \p Idx must access a valid vector element. 859c24fc37eSFlorian Hahn static ScalarizationResult canScalarizeAccess(FixedVectorType *VecTy, 860c24fc37eSFlorian Hahn Value *Idx, Instruction *CtxI, 8615131037eSFlorian Hahn AssumptionCache &AC, 8625131037eSFlorian Hahn const DominatorTree &DT) { 863c24fc37eSFlorian Hahn if (auto *C = dyn_cast<ConstantInt>(Idx)) { 864c24fc37eSFlorian Hahn if (C->getValue().ult(VecTy->getNumElements())) 865c24fc37eSFlorian Hahn return ScalarizationResult::safe(); 866c24fc37eSFlorian Hahn return ScalarizationResult::unsafe(); 867c24fc37eSFlorian Hahn } 868575e2affSFlorian Hahn 869c24fc37eSFlorian Hahn unsigned IntWidth = Idx->getType()->getScalarSizeInBits(); 870c24fc37eSFlorian Hahn APInt Zero(IntWidth, 0); 871c24fc37eSFlorian Hahn APInt MaxElts(IntWidth, VecTy->getNumElements()); 872575e2affSFlorian Hahn ConstantRange ValidIndices(Zero, MaxElts); 873c24fc37eSFlorian Hahn ConstantRange IdxRange(IntWidth, true); 874c24fc37eSFlorian Hahn 875c24fc37eSFlorian Hahn if (isGuaranteedNotToBePoison(Idx, &AC)) { 8765131037eSFlorian Hahn if (ValidIndices.contains(computeConstantRange(Idx, true, &AC, CtxI, &DT))) 877c24fc37eSFlorian Hahn return ScalarizationResult::safe(); 878c24fc37eSFlorian Hahn return ScalarizationResult::unsafe(); 879c24fc37eSFlorian Hahn } 880c24fc37eSFlorian Hahn 881c24fc37eSFlorian Hahn // If the index may be poison, check if we can insert a freeze before the 882c24fc37eSFlorian Hahn // range of the index is restricted. 883c24fc37eSFlorian Hahn Value *IdxBase; 884c24fc37eSFlorian Hahn ConstantInt *CI; 885c24fc37eSFlorian Hahn if (match(Idx, m_And(m_Value(IdxBase), m_ConstantInt(CI)))) { 886c24fc37eSFlorian Hahn IdxRange = IdxRange.binaryAnd(CI->getValue()); 887c24fc37eSFlorian Hahn } else if (match(Idx, m_URem(m_Value(IdxBase), m_ConstantInt(CI)))) { 888c24fc37eSFlorian Hahn IdxRange = IdxRange.urem(CI->getValue()); 889c24fc37eSFlorian Hahn } 890c24fc37eSFlorian Hahn 891c24fc37eSFlorian Hahn if (ValidIndices.contains(IdxRange)) 892c24fc37eSFlorian Hahn return ScalarizationResult::safeWithFreeze(IdxBase); 893c24fc37eSFlorian Hahn return ScalarizationResult::unsafe(); 8944e8c28b6SFlorian Hahn } 8954e8c28b6SFlorian Hahn 896abc0e012SRoman Lebedev /// The memory operation on a vector of \p ScalarType had alignment of 897abc0e012SRoman Lebedev /// \p VectorAlignment. Compute the maximal, but conservatively correct, 898abc0e012SRoman Lebedev /// alignment that will be valid for the memory operation on a single scalar 899abc0e012SRoman Lebedev /// element of the same type with index \p Idx. 900abc0e012SRoman Lebedev static Align computeAlignmentAfterScalarization(Align VectorAlignment, 901abc0e012SRoman Lebedev Type *ScalarType, Value *Idx, 902abc0e012SRoman Lebedev const DataLayout &DL) { 903abc0e012SRoman Lebedev if (auto *C = dyn_cast<ConstantInt>(Idx)) 904abc0e012SRoman Lebedev return commonAlignment(VectorAlignment, 905abc0e012SRoman Lebedev C->getZExtValue() * DL.getTypeStoreSize(ScalarType)); 906abc0e012SRoman Lebedev return commonAlignment(VectorAlignment, DL.getTypeStoreSize(ScalarType)); 907abc0e012SRoman Lebedev } 908abc0e012SRoman Lebedev 9092db4979cSQiu Chaofan // Combine patterns like: 9102db4979cSQiu Chaofan // %0 = load <4 x i32>, <4 x i32>* %a 9112db4979cSQiu Chaofan // %1 = insertelement <4 x i32> %0, i32 %b, i32 1 9122db4979cSQiu Chaofan // store <4 x i32> %1, <4 x i32>* %a 9132db4979cSQiu Chaofan // to: 9142db4979cSQiu Chaofan // %0 = bitcast <4 x i32>* %a to i32* 9152db4979cSQiu Chaofan // %1 = getelementptr inbounds i32, i32* %0, i64 0, i64 1 9162db4979cSQiu Chaofan // store i32 %b, i32* %1 9172db4979cSQiu Chaofan bool VectorCombine::foldSingleElementStore(Instruction &I) { 9182db4979cSQiu Chaofan StoreInst *SI = dyn_cast<StoreInst>(&I); 9196d2df181SQiu Chaofan if (!SI || !SI->isSimple() || 9206d2df181SQiu Chaofan !isa<FixedVectorType>(SI->getValueOperand()->getType())) 9212db4979cSQiu Chaofan return false; 9222db4979cSQiu Chaofan 9232db4979cSQiu Chaofan // TODO: Combine more complicated patterns (multiple insert) by referencing 9242db4979cSQiu Chaofan // TargetTransformInfo. 9252db4979cSQiu Chaofan Instruction *Source; 9266d2df181SQiu Chaofan Value *NewElement; 927575e2affSFlorian Hahn Value *Idx; 9282db4979cSQiu Chaofan if (!match(SI->getValueOperand(), 9292db4979cSQiu Chaofan m_InsertElt(m_Instruction(Source), m_Value(NewElement), 930575e2affSFlorian Hahn m_Value(Idx)))) 9312db4979cSQiu Chaofan return false; 9322db4979cSQiu Chaofan 9332db4979cSQiu Chaofan if (auto *Load = dyn_cast<LoadInst>(Source)) { 9346d2df181SQiu Chaofan auto VecTy = cast<FixedVectorType>(SI->getValueOperand()->getType()); 9352db4979cSQiu Chaofan const DataLayout &DL = I.getModule()->getDataLayout(); 9362db4979cSQiu Chaofan Value *SrcAddr = Load->getPointerOperand()->stripPointerCasts(); 9376d2df181SQiu Chaofan // Don't optimize for atomic/volatile load or store. Ensure memory is not 9386d2df181SQiu Chaofan // modified between, vector type matches store size, and index is inbounds. 9392db4979cSQiu Chaofan if (!Load->isSimple() || Load->getParent() != SI->getParent() || 9402db4979cSQiu Chaofan !DL.typeSizeEqualsStoreSize(Load->getType()) || 941c24fc37eSFlorian Hahn SrcAddr != SI->getPointerOperand()->stripPointerCasts()) 942c24fc37eSFlorian Hahn return false; 943c24fc37eSFlorian Hahn 9445131037eSFlorian Hahn auto ScalarizableIdx = canScalarizeAccess(VecTy, Idx, Load, AC, DT); 945c24fc37eSFlorian Hahn if (ScalarizableIdx.isUnsafe() || 9462db4979cSQiu Chaofan isMemModifiedBetween(Load->getIterator(), SI->getIterator(), 9472db4979cSQiu Chaofan MemoryLocation::get(SI), AA)) 9482db4979cSQiu Chaofan return false; 9492db4979cSQiu Chaofan 950c24fc37eSFlorian Hahn if (ScalarizableIdx.isSafeWithFreeze()) 951c24fc37eSFlorian Hahn ScalarizableIdx.freeze(Builder, *cast<Instruction>(Idx)); 952a213f735SNikita Popov Value *GEP = Builder.CreateInBoundsGEP( 953a213f735SNikita Popov SI->getValueOperand()->getType(), SI->getPointerOperand(), 954a213f735SNikita Popov {ConstantInt::get(Idx->getType(), 0), Idx}); 9552db4979cSQiu Chaofan StoreInst *NSI = Builder.CreateStore(NewElement, GEP); 9562db4979cSQiu Chaofan NSI->copyMetadata(*SI); 957abc0e012SRoman Lebedev Align ScalarOpAlignment = computeAlignmentAfterScalarization( 958abc0e012SRoman Lebedev std::max(SI->getAlign(), Load->getAlign()), NewElement->getType(), Idx, 959abc0e012SRoman Lebedev DL); 960abc0e012SRoman Lebedev NSI->setAlignment(ScalarOpAlignment); 9612db4979cSQiu Chaofan replaceValue(I, *NSI); 962300870a9SFlorian Hahn eraseInstruction(I); 9632db4979cSQiu Chaofan return true; 9642db4979cSQiu Chaofan } 9652db4979cSQiu Chaofan 9662db4979cSQiu Chaofan return false; 9672db4979cSQiu Chaofan } 9682db4979cSQiu Chaofan 9694e8c28b6SFlorian Hahn /// Try to scalarize vector loads feeding extractelement instructions. 9704e8c28b6SFlorian Hahn bool VectorCombine::scalarizeLoadExtract(Instruction &I) { 9714e8c28b6SFlorian Hahn Value *Ptr; 972300870a9SFlorian Hahn if (!match(&I, m_Load(m_Value(Ptr)))) 9734e8c28b6SFlorian Hahn return false; 9744e8c28b6SFlorian Hahn 975300870a9SFlorian Hahn auto *LI = cast<LoadInst>(&I); 9764e8c28b6SFlorian Hahn const DataLayout &DL = I.getModule()->getDataLayout(); 9774e8c28b6SFlorian Hahn if (LI->isVolatile() || !DL.typeSizeEqualsStoreSize(LI->getType())) 9784e8c28b6SFlorian Hahn return false; 9794e8c28b6SFlorian Hahn 9804e8c28b6SFlorian Hahn auto *FixedVT = dyn_cast<FixedVectorType>(LI->getType()); 9814e8c28b6SFlorian Hahn if (!FixedVT) 9824e8c28b6SFlorian Hahn return false; 9834e8c28b6SFlorian Hahn 9844e8c28b6SFlorian Hahn InstructionCost OriginalCost = TTI.getMemoryOpCost( 9854e8c28b6SFlorian Hahn Instruction::Load, LI->getType(), Align(LI->getAlignment()), 9864e8c28b6SFlorian Hahn LI->getPointerAddressSpace()); 9874e8c28b6SFlorian Hahn InstructionCost ScalarizedCost = 0; 9884e8c28b6SFlorian Hahn 9894e8c28b6SFlorian Hahn Instruction *LastCheckedInst = LI; 9904e8c28b6SFlorian Hahn unsigned NumInstChecked = 0; 9914e8c28b6SFlorian Hahn // Check if all users of the load are extracts with no memory modifications 9924e8c28b6SFlorian Hahn // between the load and the extract. Compute the cost of both the original 9934e8c28b6SFlorian Hahn // code and the scalarized version. 9944e8c28b6SFlorian Hahn for (User *U : LI->users()) { 9954e8c28b6SFlorian Hahn auto *UI = dyn_cast<ExtractElementInst>(U); 9964e8c28b6SFlorian Hahn if (!UI || UI->getParent() != LI->getParent()) 9974e8c28b6SFlorian Hahn return false; 9984e8c28b6SFlorian Hahn 99996ca0349SFlorian Hahn if (!isGuaranteedNotToBePoison(UI->getOperand(1), &AC, LI, &DT)) 100096ca0349SFlorian Hahn return false; 100196ca0349SFlorian Hahn 10024e8c28b6SFlorian Hahn // Check if any instruction between the load and the extract may modify 10034e8c28b6SFlorian Hahn // memory. 10044e8c28b6SFlorian Hahn if (LastCheckedInst->comesBefore(UI)) { 10054e8c28b6SFlorian Hahn for (Instruction &I : 10064e8c28b6SFlorian Hahn make_range(std::next(LI->getIterator()), UI->getIterator())) { 10074e8c28b6SFlorian Hahn // Bail out if we reached the check limit or the instruction may write 10084e8c28b6SFlorian Hahn // to memory. 10094e8c28b6SFlorian Hahn if (NumInstChecked == MaxInstrsToScan || I.mayWriteToMemory()) 10104e8c28b6SFlorian Hahn return false; 10114e8c28b6SFlorian Hahn NumInstChecked++; 10124e8c28b6SFlorian Hahn } 10134e8c28b6SFlorian Hahn } 10144e8c28b6SFlorian Hahn 10154e8c28b6SFlorian Hahn if (!LastCheckedInst) 10164e8c28b6SFlorian Hahn LastCheckedInst = UI; 10174e8c28b6SFlorian Hahn else if (LastCheckedInst->comesBefore(UI)) 10184e8c28b6SFlorian Hahn LastCheckedInst = UI; 10194e8c28b6SFlorian Hahn 10205131037eSFlorian Hahn auto ScalarIdx = canScalarizeAccess(FixedVT, UI->getOperand(1), &I, AC, DT); 1021c24fc37eSFlorian Hahn if (!ScalarIdx.isSafe()) { 1022c24fc37eSFlorian Hahn // TODO: Freeze index if it is safe to do so. 1023e2f6290eSFlorian Hahn ScalarIdx.discard(); 1024007f268cSFlorian Hahn return false; 1025c24fc37eSFlorian Hahn } 1026007f268cSFlorian Hahn 10274e8c28b6SFlorian Hahn auto *Index = dyn_cast<ConstantInt>(UI->getOperand(1)); 10284e8c28b6SFlorian Hahn OriginalCost += 10294e8c28b6SFlorian Hahn TTI.getVectorInstrCost(Instruction::ExtractElement, LI->getType(), 10304e8c28b6SFlorian Hahn Index ? Index->getZExtValue() : -1); 10314e8c28b6SFlorian Hahn ScalarizedCost += 10324e8c28b6SFlorian Hahn TTI.getMemoryOpCost(Instruction::Load, FixedVT->getElementType(), 10334e8c28b6SFlorian Hahn Align(1), LI->getPointerAddressSpace()); 10344e8c28b6SFlorian Hahn ScalarizedCost += TTI.getAddressComputationCost(FixedVT->getElementType()); 10354e8c28b6SFlorian Hahn } 10364e8c28b6SFlorian Hahn 10374e8c28b6SFlorian Hahn if (ScalarizedCost >= OriginalCost) 10384e8c28b6SFlorian Hahn return false; 10394e8c28b6SFlorian Hahn 10404e8c28b6SFlorian Hahn // Replace extracts with narrow scalar loads. 10414e8c28b6SFlorian Hahn for (User *U : LI->users()) { 10424e8c28b6SFlorian Hahn auto *EI = cast<ExtractElementInst>(U); 10434e8c28b6SFlorian Hahn Builder.SetInsertPoint(EI); 1044d4c070d8SFlorian Hahn 1045d4c070d8SFlorian Hahn Value *Idx = EI->getOperand(1); 1046d4c070d8SFlorian Hahn Value *GEP = 1047d4c070d8SFlorian Hahn Builder.CreateInBoundsGEP(FixedVT, Ptr, {Builder.getInt32(0), Idx}); 10484e8c28b6SFlorian Hahn auto *NewLoad = cast<LoadInst>(Builder.CreateLoad( 10494e8c28b6SFlorian Hahn FixedVT->getElementType(), GEP, EI->getName() + ".scalar")); 10504e8c28b6SFlorian Hahn 105120542b47SRoman Lebedev Align ScalarOpAlignment = computeAlignmentAfterScalarization( 105220542b47SRoman Lebedev LI->getAlign(), FixedVT->getElementType(), Idx, DL); 105320542b47SRoman Lebedev NewLoad->setAlignment(ScalarOpAlignment); 105420542b47SRoman Lebedev 10554e8c28b6SFlorian Hahn replaceValue(*EI, *NewLoad); 10564e8c28b6SFlorian Hahn } 10574e8c28b6SFlorian Hahn 10584e8c28b6SFlorian Hahn return true; 10594e8c28b6SFlorian Hahn } 10604e8c28b6SFlorian Hahn 1061a17f03bdSSanjay Patel /// This is the entry point for all transforms. Pass manager differences are 1062a17f03bdSSanjay Patel /// handled in the callers of this function. 10636bdd531aSSanjay Patel bool VectorCombine::run() { 106425c6544fSSanjay Patel if (DisableVectorCombine) 106525c6544fSSanjay Patel return false; 106625c6544fSSanjay Patel 1067cc892fd9SSanjay Patel // Don't attempt vectorization if the target does not support vectors. 1068cc892fd9SSanjay Patel if (!TTI.getNumberOfRegisters(TTI.getRegisterClassForType(/*Vector*/ true))) 1069cc892fd9SSanjay Patel return false; 1070cc892fd9SSanjay Patel 1071a17f03bdSSanjay Patel bool MadeChange = false; 1072300870a9SFlorian Hahn auto FoldInst = [this, &MadeChange](Instruction &I) { 1073de65b356SSanjay Patel Builder.SetInsertPoint(&I); 107443bdac29SSanjay Patel MadeChange |= vectorizeLoadInsert(I); 10756bdd531aSSanjay Patel MadeChange |= foldExtractExtract(I); 10766bdd531aSSanjay Patel MadeChange |= foldBitcastShuf(I); 10776bdd531aSSanjay Patel MadeChange |= scalarizeBinopOrCmp(I); 1078b6315aeeSSanjay Patel MadeChange |= foldExtractedCmps(I); 10794e8c28b6SFlorian Hahn MadeChange |= scalarizeLoadExtract(I); 10802db4979cSQiu Chaofan MadeChange |= foldSingleElementStore(I); 1081300870a9SFlorian Hahn }; 1082300870a9SFlorian Hahn for (BasicBlock &BB : F) { 1083300870a9SFlorian Hahn // Ignore unreachable basic blocks. 1084300870a9SFlorian Hahn if (!DT.isReachableFromEntry(&BB)) 1085300870a9SFlorian Hahn continue; 1086300870a9SFlorian Hahn // Use early increment range so that we can erase instructions in loop. 1087300870a9SFlorian Hahn for (Instruction &I : make_early_inc_range(BB)) { 1088300870a9SFlorian Hahn if (isa<DbgInfoIntrinsic>(I)) 1089300870a9SFlorian Hahn continue; 1090300870a9SFlorian Hahn FoldInst(I); 1091a17f03bdSSanjay Patel } 1092fc3cc8a4SSanjay Patel } 1093a17f03bdSSanjay Patel 1094300870a9SFlorian Hahn while (!Worklist.isEmpty()) { 1095300870a9SFlorian Hahn Instruction *I = Worklist.removeOne(); 1096300870a9SFlorian Hahn if (!I) 1097300870a9SFlorian Hahn continue; 1098300870a9SFlorian Hahn 1099300870a9SFlorian Hahn if (isInstructionTriviallyDead(I)) { 1100300870a9SFlorian Hahn eraseInstruction(*I); 1101300870a9SFlorian Hahn continue; 1102300870a9SFlorian Hahn } 1103300870a9SFlorian Hahn 1104300870a9SFlorian Hahn FoldInst(*I); 1105300870a9SFlorian Hahn } 1106a17f03bdSSanjay Patel 1107a17f03bdSSanjay Patel return MadeChange; 1108a17f03bdSSanjay Patel } 1109a17f03bdSSanjay Patel 1110a17f03bdSSanjay Patel // Pass manager boilerplate below here. 1111a17f03bdSSanjay Patel 1112a17f03bdSSanjay Patel namespace { 1113a17f03bdSSanjay Patel class VectorCombineLegacyPass : public FunctionPass { 1114a17f03bdSSanjay Patel public: 1115a17f03bdSSanjay Patel static char ID; 1116a17f03bdSSanjay Patel VectorCombineLegacyPass() : FunctionPass(ID) { 1117a17f03bdSSanjay Patel initializeVectorCombineLegacyPassPass(*PassRegistry::getPassRegistry()); 1118a17f03bdSSanjay Patel } 1119a17f03bdSSanjay Patel 1120a17f03bdSSanjay Patel void getAnalysisUsage(AnalysisUsage &AU) const override { 1121575e2affSFlorian Hahn AU.addRequired<AssumptionCacheTracker>(); 1122a17f03bdSSanjay Patel AU.addRequired<DominatorTreeWrapperPass>(); 1123a17f03bdSSanjay Patel AU.addRequired<TargetTransformInfoWrapperPass>(); 11242db4979cSQiu Chaofan AU.addRequired<AAResultsWrapperPass>(); 1125a17f03bdSSanjay Patel AU.setPreservesCFG(); 1126a17f03bdSSanjay Patel AU.addPreserved<DominatorTreeWrapperPass>(); 1127a17f03bdSSanjay Patel AU.addPreserved<GlobalsAAWrapperPass>(); 1128024098aeSSanjay Patel AU.addPreserved<AAResultsWrapperPass>(); 1129024098aeSSanjay Patel AU.addPreserved<BasicAAWrapperPass>(); 1130a17f03bdSSanjay Patel FunctionPass::getAnalysisUsage(AU); 1131a17f03bdSSanjay Patel } 1132a17f03bdSSanjay Patel 1133a17f03bdSSanjay Patel bool runOnFunction(Function &F) override { 1134a17f03bdSSanjay Patel if (skipFunction(F)) 1135a17f03bdSSanjay Patel return false; 1136575e2affSFlorian Hahn auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1137a17f03bdSSanjay Patel auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 1138a17f03bdSSanjay Patel auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 11392db4979cSQiu Chaofan auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); 1140575e2affSFlorian Hahn VectorCombine Combiner(F, TTI, DT, AA, AC); 11416bdd531aSSanjay Patel return Combiner.run(); 1142a17f03bdSSanjay Patel } 1143a17f03bdSSanjay Patel }; 1144a17f03bdSSanjay Patel } // namespace 1145a17f03bdSSanjay Patel 1146a17f03bdSSanjay Patel char VectorCombineLegacyPass::ID = 0; 1147a17f03bdSSanjay Patel INITIALIZE_PASS_BEGIN(VectorCombineLegacyPass, "vector-combine", 1148a17f03bdSSanjay Patel "Optimize scalar/vector ops", false, 1149a17f03bdSSanjay Patel false) 1150575e2affSFlorian Hahn INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1151a17f03bdSSanjay Patel INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 1152a17f03bdSSanjay Patel INITIALIZE_PASS_END(VectorCombineLegacyPass, "vector-combine", 1153a17f03bdSSanjay Patel "Optimize scalar/vector ops", false, false) 1154a17f03bdSSanjay Patel Pass *llvm::createVectorCombinePass() { 1155a17f03bdSSanjay Patel return new VectorCombineLegacyPass(); 1156a17f03bdSSanjay Patel } 1157a17f03bdSSanjay Patel 1158a17f03bdSSanjay Patel PreservedAnalyses VectorCombinePass::run(Function &F, 1159a17f03bdSSanjay Patel FunctionAnalysisManager &FAM) { 1160575e2affSFlorian Hahn auto &AC = FAM.getResult<AssumptionAnalysis>(F); 1161a17f03bdSSanjay Patel TargetTransformInfo &TTI = FAM.getResult<TargetIRAnalysis>(F); 1162a17f03bdSSanjay Patel DominatorTree &DT = FAM.getResult<DominatorTreeAnalysis>(F); 11632db4979cSQiu Chaofan AAResults &AA = FAM.getResult<AAManager>(F); 1164575e2affSFlorian Hahn VectorCombine Combiner(F, TTI, DT, AA, AC); 11656bdd531aSSanjay Patel if (!Combiner.run()) 1166a17f03bdSSanjay Patel return PreservedAnalyses::all(); 1167a17f03bdSSanjay Patel PreservedAnalyses PA; 1168a17f03bdSSanjay Patel PA.preserveSet<CFGAnalyses>(); 1169a17f03bdSSanjay Patel return PA; 1170a17f03bdSSanjay Patel } 1171