1 //===- ValueMapper.cpp - Interface shared by lib/Transforms/Utils ---------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the MapValue function, which is shared by various parts of 10 // the lib/Transforms/Utils library. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Utils/ValueMapper.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/DenseSet.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/Optional.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/IR/Argument.h" 23 #include "llvm/IR/BasicBlock.h" 24 #include "llvm/IR/Constant.h" 25 #include "llvm/IR/Constants.h" 26 #include "llvm/IR/DebugInfoMetadata.h" 27 #include "llvm/IR/DerivedTypes.h" 28 #include "llvm/IR/Function.h" 29 #include "llvm/IR/GlobalObject.h" 30 #include "llvm/IR/GlobalIndirectSymbol.h" 31 #include "llvm/IR/GlobalVariable.h" 32 #include "llvm/IR/InlineAsm.h" 33 #include "llvm/IR/Instruction.h" 34 #include "llvm/IR/Instructions.h" 35 #include "llvm/IR/Metadata.h" 36 #include "llvm/IR/Operator.h" 37 #include "llvm/IR/Type.h" 38 #include "llvm/IR/Value.h" 39 #include "llvm/Support/Casting.h" 40 #include <cassert> 41 #include <limits> 42 #include <memory> 43 #include <utility> 44 45 using namespace llvm; 46 47 // Out of line method to get vtable etc for class. 48 void ValueMapTypeRemapper::anchor() {} 49 void ValueMaterializer::anchor() {} 50 51 namespace { 52 53 /// A basic block used in a BlockAddress whose function body is not yet 54 /// materialized. 55 struct DelayedBasicBlock { 56 BasicBlock *OldBB; 57 std::unique_ptr<BasicBlock> TempBB; 58 59 DelayedBasicBlock(const BlockAddress &Old) 60 : OldBB(Old.getBasicBlock()), 61 TempBB(BasicBlock::Create(Old.getContext())) {} 62 }; 63 64 struct WorklistEntry { 65 enum EntryKind { 66 MapGlobalInit, 67 MapAppendingVar, 68 MapGlobalIndirectSymbol, 69 RemapFunction 70 }; 71 struct GVInitTy { 72 GlobalVariable *GV; 73 Constant *Init; 74 }; 75 struct AppendingGVTy { 76 GlobalVariable *GV; 77 Constant *InitPrefix; 78 }; 79 struct GlobalIndirectSymbolTy { 80 GlobalIndirectSymbol *GIS; 81 Constant *Target; 82 }; 83 84 unsigned Kind : 2; 85 unsigned MCID : 29; 86 unsigned AppendingGVIsOldCtorDtor : 1; 87 unsigned AppendingGVNumNewMembers; 88 union { 89 GVInitTy GVInit; 90 AppendingGVTy AppendingGV; 91 GlobalIndirectSymbolTy GlobalIndirectSymbol; 92 Function *RemapF; 93 } Data; 94 }; 95 96 struct MappingContext { 97 ValueToValueMapTy *VM; 98 ValueMaterializer *Materializer = nullptr; 99 100 /// Construct a MappingContext with a value map and materializer. 101 explicit MappingContext(ValueToValueMapTy &VM, 102 ValueMaterializer *Materializer = nullptr) 103 : VM(&VM), Materializer(Materializer) {} 104 }; 105 106 class Mapper { 107 friend class MDNodeMapper; 108 109 #ifndef NDEBUG 110 DenseSet<GlobalValue *> AlreadyScheduled; 111 #endif 112 113 RemapFlags Flags; 114 ValueMapTypeRemapper *TypeMapper; 115 unsigned CurrentMCID = 0; 116 SmallVector<MappingContext, 2> MCs; 117 SmallVector<WorklistEntry, 4> Worklist; 118 SmallVector<DelayedBasicBlock, 1> DelayedBBs; 119 SmallVector<Constant *, 16> AppendingInits; 120 121 public: 122 Mapper(ValueToValueMapTy &VM, RemapFlags Flags, 123 ValueMapTypeRemapper *TypeMapper, ValueMaterializer *Materializer) 124 : Flags(Flags), TypeMapper(TypeMapper), 125 MCs(1, MappingContext(VM, Materializer)) {} 126 127 /// ValueMapper should explicitly call \a flush() before destruction. 128 ~Mapper() { assert(!hasWorkToDo() && "Expected to be flushed"); } 129 130 bool hasWorkToDo() const { return !Worklist.empty(); } 131 132 unsigned 133 registerAlternateMappingContext(ValueToValueMapTy &VM, 134 ValueMaterializer *Materializer = nullptr) { 135 MCs.push_back(MappingContext(VM, Materializer)); 136 return MCs.size() - 1; 137 } 138 139 void addFlags(RemapFlags Flags); 140 141 void remapGlobalObjectMetadata(GlobalObject &GO); 142 143 Value *mapValue(const Value *V); 144 void remapInstruction(Instruction *I); 145 void remapFunction(Function &F); 146 147 Constant *mapConstant(const Constant *C) { 148 return cast_or_null<Constant>(mapValue(C)); 149 } 150 151 /// Map metadata. 152 /// 153 /// Find the mapping for MD. Guarantees that the return will be resolved 154 /// (not an MDNode, or MDNode::isResolved() returns true). 155 Metadata *mapMetadata(const Metadata *MD); 156 157 void scheduleMapGlobalInitializer(GlobalVariable &GV, Constant &Init, 158 unsigned MCID); 159 void scheduleMapAppendingVariable(GlobalVariable &GV, Constant *InitPrefix, 160 bool IsOldCtorDtor, 161 ArrayRef<Constant *> NewMembers, 162 unsigned MCID); 163 void scheduleMapGlobalIndirectSymbol(GlobalIndirectSymbol &GIS, Constant &Target, 164 unsigned MCID); 165 void scheduleRemapFunction(Function &F, unsigned MCID); 166 167 void flush(); 168 169 private: 170 void mapAppendingVariable(GlobalVariable &GV, Constant *InitPrefix, 171 bool IsOldCtorDtor, 172 ArrayRef<Constant *> NewMembers); 173 174 ValueToValueMapTy &getVM() { return *MCs[CurrentMCID].VM; } 175 ValueMaterializer *getMaterializer() { return MCs[CurrentMCID].Materializer; } 176 177 Value *mapBlockAddress(const BlockAddress &BA); 178 179 /// Map metadata that doesn't require visiting operands. 180 Optional<Metadata *> mapSimpleMetadata(const Metadata *MD); 181 182 Metadata *mapToMetadata(const Metadata *Key, Metadata *Val); 183 Metadata *mapToSelf(const Metadata *MD); 184 }; 185 186 class MDNodeMapper { 187 Mapper &M; 188 189 /// Data about a node in \a UniquedGraph. 190 struct Data { 191 bool HasChanged = false; 192 unsigned ID = std::numeric_limits<unsigned>::max(); 193 TempMDNode Placeholder; 194 }; 195 196 /// A graph of uniqued nodes. 197 struct UniquedGraph { 198 SmallDenseMap<const Metadata *, Data, 32> Info; // Node properties. 199 SmallVector<MDNode *, 16> POT; // Post-order traversal. 200 201 /// Propagate changed operands through the post-order traversal. 202 /// 203 /// Iteratively update \a Data::HasChanged for each node based on \a 204 /// Data::HasChanged of its operands, until fixed point. 205 void propagateChanges(); 206 207 /// Get a forward reference to a node to use as an operand. 208 Metadata &getFwdReference(MDNode &Op); 209 }; 210 211 /// Worklist of distinct nodes whose operands need to be remapped. 212 SmallVector<MDNode *, 16> DistinctWorklist; 213 214 // Storage for a UniquedGraph. 215 SmallDenseMap<const Metadata *, Data, 32> InfoStorage; 216 SmallVector<MDNode *, 16> POTStorage; 217 218 public: 219 MDNodeMapper(Mapper &M) : M(M) {} 220 221 /// Map a metadata node (and its transitive operands). 222 /// 223 /// Map all the (unmapped) nodes in the subgraph under \c N. The iterative 224 /// algorithm handles distinct nodes and uniqued node subgraphs using 225 /// different strategies. 226 /// 227 /// Distinct nodes are immediately mapped and added to \a DistinctWorklist 228 /// using \a mapDistinctNode(). Their mapping can always be computed 229 /// immediately without visiting operands, even if their operands change. 230 /// 231 /// The mapping for uniqued nodes depends on whether their operands change. 232 /// \a mapTopLevelUniquedNode() traverses the transitive uniqued subgraph of 233 /// a node to calculate uniqued node mappings in bulk. Distinct leafs are 234 /// added to \a DistinctWorklist with \a mapDistinctNode(). 235 /// 236 /// After mapping \c N itself, this function remaps the operands of the 237 /// distinct nodes in \a DistinctWorklist until the entire subgraph under \c 238 /// N has been mapped. 239 Metadata *map(const MDNode &N); 240 241 private: 242 /// Map a top-level uniqued node and the uniqued subgraph underneath it. 243 /// 244 /// This builds up a post-order traversal of the (unmapped) uniqued subgraph 245 /// underneath \c FirstN and calculates the nodes' mapping. Each node uses 246 /// the identity mapping (\a Mapper::mapToSelf()) as long as all of its 247 /// operands uses the identity mapping. 248 /// 249 /// The algorithm works as follows: 250 /// 251 /// 1. \a createPOT(): traverse the uniqued subgraph under \c FirstN and 252 /// save the post-order traversal in the given \a UniquedGraph, tracking 253 /// nodes' operands change. 254 /// 255 /// 2. \a UniquedGraph::propagateChanges(): propagate changed operands 256 /// through the \a UniquedGraph until fixed point, following the rule 257 /// that if a node changes, any node that references must also change. 258 /// 259 /// 3. \a mapNodesInPOT(): map the uniqued nodes, creating new uniqued nodes 260 /// (referencing new operands) where necessary. 261 Metadata *mapTopLevelUniquedNode(const MDNode &FirstN); 262 263 /// Try to map the operand of an \a MDNode. 264 /// 265 /// If \c Op is already mapped, return the mapping. If it's not an \a 266 /// MDNode, compute and return the mapping. If it's a distinct \a MDNode, 267 /// return the result of \a mapDistinctNode(). 268 /// 269 /// \return None if \c Op is an unmapped uniqued \a MDNode. 270 /// \post getMappedOp(Op) only returns None if this returns None. 271 Optional<Metadata *> tryToMapOperand(const Metadata *Op); 272 273 /// Map a distinct node. 274 /// 275 /// Return the mapping for the distinct node \c N, saving the result in \a 276 /// DistinctWorklist for later remapping. 277 /// 278 /// \pre \c N is not yet mapped. 279 /// \pre \c N.isDistinct(). 280 MDNode *mapDistinctNode(const MDNode &N); 281 282 /// Get a previously mapped node. 283 Optional<Metadata *> getMappedOp(const Metadata *Op) const; 284 285 /// Create a post-order traversal of an unmapped uniqued node subgraph. 286 /// 287 /// This traverses the metadata graph deeply enough to map \c FirstN. It 288 /// uses \a tryToMapOperand() (via \a Mapper::mapSimplifiedNode()), so any 289 /// metadata that has already been mapped will not be part of the POT. 290 /// 291 /// Each node that has a changed operand from outside the graph (e.g., a 292 /// distinct node, an already-mapped uniqued node, or \a ConstantAsMetadata) 293 /// is marked with \a Data::HasChanged. 294 /// 295 /// \return \c true if any nodes in \c G have \a Data::HasChanged. 296 /// \post \c G.POT is a post-order traversal ending with \c FirstN. 297 /// \post \a Data::hasChanged in \c G.Info indicates whether any node needs 298 /// to change because of operands outside the graph. 299 bool createPOT(UniquedGraph &G, const MDNode &FirstN); 300 301 /// Visit the operands of a uniqued node in the POT. 302 /// 303 /// Visit the operands in the range from \c I to \c E, returning the first 304 /// uniqued node we find that isn't yet in \c G. \c I is always advanced to 305 /// where to continue the loop through the operands. 306 /// 307 /// This sets \c HasChanged if any of the visited operands change. 308 MDNode *visitOperands(UniquedGraph &G, MDNode::op_iterator &I, 309 MDNode::op_iterator E, bool &HasChanged); 310 311 /// Map all the nodes in the given uniqued graph. 312 /// 313 /// This visits all the nodes in \c G in post-order, using the identity 314 /// mapping or creating a new node depending on \a Data::HasChanged. 315 /// 316 /// \pre \a getMappedOp() returns None for nodes in \c G, but not for any of 317 /// their operands outside of \c G. 318 /// \pre \a Data::HasChanged is true for a node in \c G iff any of its 319 /// operands have changed. 320 /// \post \a getMappedOp() returns the mapped node for every node in \c G. 321 void mapNodesInPOT(UniquedGraph &G); 322 323 /// Remap a node's operands using the given functor. 324 /// 325 /// Iterate through the operands of \c N and update them in place using \c 326 /// mapOperand. 327 /// 328 /// \pre N.isDistinct() or N.isTemporary(). 329 template <class OperandMapper> 330 void remapOperands(MDNode &N, OperandMapper mapOperand); 331 }; 332 333 } // end anonymous namespace 334 335 Value *Mapper::mapValue(const Value *V) { 336 ValueToValueMapTy::iterator I = getVM().find(V); 337 338 // If the value already exists in the map, use it. 339 if (I != getVM().end()) { 340 assert(I->second && "Unexpected null mapping"); 341 return I->second; 342 } 343 344 // If we have a materializer and it can materialize a value, use that. 345 if (auto *Materializer = getMaterializer()) { 346 if (Value *NewV = Materializer->materialize(const_cast<Value *>(V))) { 347 getVM()[V] = NewV; 348 return NewV; 349 } 350 } 351 352 // Global values do not need to be seeded into the VM if they 353 // are using the identity mapping. 354 if (isa<GlobalValue>(V)) { 355 if (Flags & RF_NullMapMissingGlobalValues) 356 return nullptr; 357 return getVM()[V] = const_cast<Value *>(V); 358 } 359 360 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 361 // Inline asm may need *type* remapping. 362 FunctionType *NewTy = IA->getFunctionType(); 363 if (TypeMapper) { 364 NewTy = cast<FunctionType>(TypeMapper->remapType(NewTy)); 365 366 if (NewTy != IA->getFunctionType()) 367 V = InlineAsm::get(NewTy, IA->getAsmString(), IA->getConstraintString(), 368 IA->hasSideEffects(), IA->isAlignStack(), 369 IA->getDialect()); 370 } 371 372 return getVM()[V] = const_cast<Value *>(V); 373 } 374 375 if (const auto *MDV = dyn_cast<MetadataAsValue>(V)) { 376 const Metadata *MD = MDV->getMetadata(); 377 378 if (auto *LAM = dyn_cast<LocalAsMetadata>(MD)) { 379 // Look through to grab the local value. 380 if (Value *LV = mapValue(LAM->getValue())) { 381 if (V == LAM->getValue()) 382 return const_cast<Value *>(V); 383 return MetadataAsValue::get(V->getContext(), ValueAsMetadata::get(LV)); 384 } 385 386 // FIXME: always return nullptr once Verifier::verifyDominatesUse() 387 // ensures metadata operands only reference defined SSA values. 388 return (Flags & RF_IgnoreMissingLocals) 389 ? nullptr 390 : MetadataAsValue::get(V->getContext(), 391 MDTuple::get(V->getContext(), None)); 392 } 393 if (auto *AL = dyn_cast<DIArgList>(MD)) { 394 SmallVector<ValueAsMetadata *, 4> MappedArgs; 395 for (auto *VAM : AL->getArgs()) { 396 // Map both Local and Constant VAMs here; they will both ultimately 397 // be mapped via mapValue (apart from constants when we have no 398 // module level changes, which have an identity mapping). 399 if ((Flags & RF_NoModuleLevelChanges) && isa<ConstantAsMetadata>(VAM)) { 400 MappedArgs.push_back(VAM); 401 } else if (Value *LV = mapValue(VAM->getValue())) { 402 MappedArgs.push_back( 403 LV == VAM->getValue() ? VAM : ValueAsMetadata::get(LV)); 404 } else { 405 // If we cannot map the value, set the argument as undef. 406 MappedArgs.push_back(ValueAsMetadata::get( 407 UndefValue::get(VAM->getValue()->getType()))); 408 } 409 } 410 return MetadataAsValue::get(V->getContext(), 411 DIArgList::get(V->getContext(), MappedArgs)); 412 } 413 414 // If this is a module-level metadata and we know that nothing at the module 415 // level is changing, then use an identity mapping. 416 if (Flags & RF_NoModuleLevelChanges) 417 return getVM()[V] = const_cast<Value *>(V); 418 419 // Map the metadata and turn it into a value. 420 auto *MappedMD = mapMetadata(MD); 421 if (MD == MappedMD) 422 return getVM()[V] = const_cast<Value *>(V); 423 return getVM()[V] = MetadataAsValue::get(V->getContext(), MappedMD); 424 } 425 426 // Okay, this either must be a constant (which may or may not be mappable) or 427 // is something that is not in the mapping table. 428 Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V)); 429 if (!C) 430 return nullptr; 431 432 if (BlockAddress *BA = dyn_cast<BlockAddress>(C)) 433 return mapBlockAddress(*BA); 434 435 if (const auto *E = dyn_cast<DSOLocalEquivalent>(C)) { 436 auto *Val = mapValue(E->getGlobalValue()); 437 GlobalValue *GV = dyn_cast<GlobalValue>(Val); 438 if (GV) 439 return getVM()[E] = DSOLocalEquivalent::get(GV); 440 441 auto *Func = cast<Function>(Val->stripPointerCastsAndAliases()); 442 Type *NewTy = E->getType(); 443 if (TypeMapper) 444 NewTy = TypeMapper->remapType(NewTy); 445 return getVM()[E] = llvm::ConstantExpr::getBitCast( 446 DSOLocalEquivalent::get(Func), NewTy); 447 } 448 449 auto mapValueOrNull = [this](Value *V) { 450 auto Mapped = mapValue(V); 451 assert((Mapped || (Flags & RF_NullMapMissingGlobalValues)) && 452 "Unexpected null mapping for constant operand without " 453 "NullMapMissingGlobalValues flag"); 454 return Mapped; 455 }; 456 457 // Otherwise, we have some other constant to remap. Start by checking to see 458 // if all operands have an identity remapping. 459 unsigned OpNo = 0, NumOperands = C->getNumOperands(); 460 Value *Mapped = nullptr; 461 for (; OpNo != NumOperands; ++OpNo) { 462 Value *Op = C->getOperand(OpNo); 463 Mapped = mapValueOrNull(Op); 464 if (!Mapped) 465 return nullptr; 466 if (Mapped != Op) 467 break; 468 } 469 470 // See if the type mapper wants to remap the type as well. 471 Type *NewTy = C->getType(); 472 if (TypeMapper) 473 NewTy = TypeMapper->remapType(NewTy); 474 475 // If the result type and all operands match up, then just insert an identity 476 // mapping. 477 if (OpNo == NumOperands && NewTy == C->getType()) 478 return getVM()[V] = C; 479 480 // Okay, we need to create a new constant. We've already processed some or 481 // all of the operands, set them all up now. 482 SmallVector<Constant*, 8> Ops; 483 Ops.reserve(NumOperands); 484 for (unsigned j = 0; j != OpNo; ++j) 485 Ops.push_back(cast<Constant>(C->getOperand(j))); 486 487 // If one of the operands mismatch, push it and the other mapped operands. 488 if (OpNo != NumOperands) { 489 Ops.push_back(cast<Constant>(Mapped)); 490 491 // Map the rest of the operands that aren't processed yet. 492 for (++OpNo; OpNo != NumOperands; ++OpNo) { 493 Mapped = mapValueOrNull(C->getOperand(OpNo)); 494 if (!Mapped) 495 return nullptr; 496 Ops.push_back(cast<Constant>(Mapped)); 497 } 498 } 499 Type *NewSrcTy = nullptr; 500 if (TypeMapper) 501 if (auto *GEPO = dyn_cast<GEPOperator>(C)) 502 NewSrcTy = TypeMapper->remapType(GEPO->getSourceElementType()); 503 504 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) 505 return getVM()[V] = CE->getWithOperands(Ops, NewTy, false, NewSrcTy); 506 if (isa<ConstantArray>(C)) 507 return getVM()[V] = ConstantArray::get(cast<ArrayType>(NewTy), Ops); 508 if (isa<ConstantStruct>(C)) 509 return getVM()[V] = ConstantStruct::get(cast<StructType>(NewTy), Ops); 510 if (isa<ConstantVector>(C)) 511 return getVM()[V] = ConstantVector::get(Ops); 512 // If this is a no-operand constant, it must be because the type was remapped. 513 if (isa<UndefValue>(C)) 514 return getVM()[V] = UndefValue::get(NewTy); 515 if (isa<ConstantAggregateZero>(C)) 516 return getVM()[V] = ConstantAggregateZero::get(NewTy); 517 assert(isa<ConstantPointerNull>(C)); 518 return getVM()[V] = ConstantPointerNull::get(cast<PointerType>(NewTy)); 519 } 520 521 Value *Mapper::mapBlockAddress(const BlockAddress &BA) { 522 Function *F = cast<Function>(mapValue(BA.getFunction())); 523 524 // F may not have materialized its initializer. In that case, create a 525 // dummy basic block for now, and replace it once we've materialized all 526 // the initializers. 527 BasicBlock *BB; 528 if (F->empty()) { 529 DelayedBBs.push_back(DelayedBasicBlock(BA)); 530 BB = DelayedBBs.back().TempBB.get(); 531 } else { 532 BB = cast_or_null<BasicBlock>(mapValue(BA.getBasicBlock())); 533 } 534 535 return getVM()[&BA] = BlockAddress::get(F, BB ? BB : BA.getBasicBlock()); 536 } 537 538 Metadata *Mapper::mapToMetadata(const Metadata *Key, Metadata *Val) { 539 getVM().MD()[Key].reset(Val); 540 return Val; 541 } 542 543 Metadata *Mapper::mapToSelf(const Metadata *MD) { 544 return mapToMetadata(MD, const_cast<Metadata *>(MD)); 545 } 546 547 Optional<Metadata *> MDNodeMapper::tryToMapOperand(const Metadata *Op) { 548 if (!Op) 549 return nullptr; 550 551 if (Optional<Metadata *> MappedOp = M.mapSimpleMetadata(Op)) { 552 #ifndef NDEBUG 553 if (auto *CMD = dyn_cast<ConstantAsMetadata>(Op)) 554 assert((!*MappedOp || M.getVM().count(CMD->getValue()) || 555 M.getVM().getMappedMD(Op)) && 556 "Expected Value to be memoized"); 557 else 558 assert((isa<MDString>(Op) || M.getVM().getMappedMD(Op)) && 559 "Expected result to be memoized"); 560 #endif 561 return *MappedOp; 562 } 563 564 const MDNode &N = *cast<MDNode>(Op); 565 if (N.isDistinct()) 566 return mapDistinctNode(N); 567 return None; 568 } 569 570 MDNode *MDNodeMapper::mapDistinctNode(const MDNode &N) { 571 assert(N.isDistinct() && "Expected a distinct node"); 572 assert(!M.getVM().getMappedMD(&N) && "Expected an unmapped node"); 573 DistinctWorklist.push_back(cast<MDNode>( 574 (M.Flags & RF_ReuseAndMutateDistinctMDs) 575 ? M.mapToSelf(&N) 576 : M.mapToMetadata(&N, MDNode::replaceWithDistinct(N.clone())))); 577 return DistinctWorklist.back(); 578 } 579 580 static ConstantAsMetadata *wrapConstantAsMetadata(const ConstantAsMetadata &CMD, 581 Value *MappedV) { 582 if (CMD.getValue() == MappedV) 583 return const_cast<ConstantAsMetadata *>(&CMD); 584 return MappedV ? ConstantAsMetadata::getConstant(MappedV) : nullptr; 585 } 586 587 Optional<Metadata *> MDNodeMapper::getMappedOp(const Metadata *Op) const { 588 if (!Op) 589 return nullptr; 590 591 if (Optional<Metadata *> MappedOp = M.getVM().getMappedMD(Op)) 592 return *MappedOp; 593 594 if (isa<MDString>(Op)) 595 return const_cast<Metadata *>(Op); 596 597 if (auto *CMD = dyn_cast<ConstantAsMetadata>(Op)) 598 return wrapConstantAsMetadata(*CMD, M.getVM().lookup(CMD->getValue())); 599 600 return None; 601 } 602 603 Metadata &MDNodeMapper::UniquedGraph::getFwdReference(MDNode &Op) { 604 auto Where = Info.find(&Op); 605 assert(Where != Info.end() && "Expected a valid reference"); 606 607 auto &OpD = Where->second; 608 if (!OpD.HasChanged) 609 return Op; 610 611 // Lazily construct a temporary node. 612 if (!OpD.Placeholder) 613 OpD.Placeholder = Op.clone(); 614 615 return *OpD.Placeholder; 616 } 617 618 template <class OperandMapper> 619 void MDNodeMapper::remapOperands(MDNode &N, OperandMapper mapOperand) { 620 assert(!N.isUniqued() && "Expected distinct or temporary nodes"); 621 for (unsigned I = 0, E = N.getNumOperands(); I != E; ++I) { 622 Metadata *Old = N.getOperand(I); 623 Metadata *New = mapOperand(Old); 624 625 if (Old != New) 626 N.replaceOperandWith(I, New); 627 } 628 } 629 630 namespace { 631 632 /// An entry in the worklist for the post-order traversal. 633 struct POTWorklistEntry { 634 MDNode *N; ///< Current node. 635 MDNode::op_iterator Op; ///< Current operand of \c N. 636 637 /// Keep a flag of whether operands have changed in the worklist to avoid 638 /// hitting the map in \a UniquedGraph. 639 bool HasChanged = false; 640 641 POTWorklistEntry(MDNode &N) : N(&N), Op(N.op_begin()) {} 642 }; 643 644 } // end anonymous namespace 645 646 bool MDNodeMapper::createPOT(UniquedGraph &G, const MDNode &FirstN) { 647 assert(G.Info.empty() && "Expected a fresh traversal"); 648 assert(FirstN.isUniqued() && "Expected uniqued node in POT"); 649 650 // Construct a post-order traversal of the uniqued subgraph under FirstN. 651 bool AnyChanges = false; 652 SmallVector<POTWorklistEntry, 16> Worklist; 653 Worklist.push_back(POTWorklistEntry(const_cast<MDNode &>(FirstN))); 654 (void)G.Info[&FirstN]; 655 while (!Worklist.empty()) { 656 // Start or continue the traversal through the this node's operands. 657 auto &WE = Worklist.back(); 658 if (MDNode *N = visitOperands(G, WE.Op, WE.N->op_end(), WE.HasChanged)) { 659 // Push a new node to traverse first. 660 Worklist.push_back(POTWorklistEntry(*N)); 661 continue; 662 } 663 664 // Push the node onto the POT. 665 assert(WE.N->isUniqued() && "Expected only uniqued nodes"); 666 assert(WE.Op == WE.N->op_end() && "Expected to visit all operands"); 667 auto &D = G.Info[WE.N]; 668 AnyChanges |= D.HasChanged = WE.HasChanged; 669 D.ID = G.POT.size(); 670 G.POT.push_back(WE.N); 671 672 // Pop the node off the worklist. 673 Worklist.pop_back(); 674 } 675 return AnyChanges; 676 } 677 678 MDNode *MDNodeMapper::visitOperands(UniquedGraph &G, MDNode::op_iterator &I, 679 MDNode::op_iterator E, bool &HasChanged) { 680 while (I != E) { 681 Metadata *Op = *I++; // Increment even on early return. 682 if (Optional<Metadata *> MappedOp = tryToMapOperand(Op)) { 683 // Check if the operand changes. 684 HasChanged |= Op != *MappedOp; 685 continue; 686 } 687 688 // A uniqued metadata node. 689 MDNode &OpN = *cast<MDNode>(Op); 690 assert(OpN.isUniqued() && 691 "Only uniqued operands cannot be mapped immediately"); 692 if (G.Info.insert(std::make_pair(&OpN, Data())).second) 693 return &OpN; // This is a new one. Return it. 694 } 695 return nullptr; 696 } 697 698 void MDNodeMapper::UniquedGraph::propagateChanges() { 699 bool AnyChanges; 700 do { 701 AnyChanges = false; 702 for (MDNode *N : POT) { 703 auto &D = Info[N]; 704 if (D.HasChanged) 705 continue; 706 707 if (llvm::none_of(N->operands(), [&](const Metadata *Op) { 708 auto Where = Info.find(Op); 709 return Where != Info.end() && Where->second.HasChanged; 710 })) 711 continue; 712 713 AnyChanges = D.HasChanged = true; 714 } 715 } while (AnyChanges); 716 } 717 718 void MDNodeMapper::mapNodesInPOT(UniquedGraph &G) { 719 // Construct uniqued nodes, building forward references as necessary. 720 SmallVector<MDNode *, 16> CyclicNodes; 721 for (auto *N : G.POT) { 722 auto &D = G.Info[N]; 723 if (!D.HasChanged) { 724 // The node hasn't changed. 725 M.mapToSelf(N); 726 continue; 727 } 728 729 // Remember whether this node had a placeholder. 730 bool HadPlaceholder(D.Placeholder); 731 732 // Clone the uniqued node and remap the operands. 733 TempMDNode ClonedN = D.Placeholder ? std::move(D.Placeholder) : N->clone(); 734 remapOperands(*ClonedN, [this, &D, &G](Metadata *Old) { 735 if (Optional<Metadata *> MappedOp = getMappedOp(Old)) 736 return *MappedOp; 737 (void)D; 738 assert(G.Info[Old].ID > D.ID && "Expected a forward reference"); 739 return &G.getFwdReference(*cast<MDNode>(Old)); 740 }); 741 742 auto *NewN = MDNode::replaceWithUniqued(std::move(ClonedN)); 743 M.mapToMetadata(N, NewN); 744 745 // Nodes that were referenced out of order in the POT are involved in a 746 // uniquing cycle. 747 if (HadPlaceholder) 748 CyclicNodes.push_back(NewN); 749 } 750 751 // Resolve cycles. 752 for (auto *N : CyclicNodes) 753 if (!N->isResolved()) 754 N->resolveCycles(); 755 } 756 757 Metadata *MDNodeMapper::map(const MDNode &N) { 758 assert(DistinctWorklist.empty() && "MDNodeMapper::map is not recursive"); 759 assert(!(M.Flags & RF_NoModuleLevelChanges) && 760 "MDNodeMapper::map assumes module-level changes"); 761 762 // Require resolved nodes whenever metadata might be remapped. 763 assert(N.isResolved() && "Unexpected unresolved node"); 764 765 Metadata *MappedN = 766 N.isUniqued() ? mapTopLevelUniquedNode(N) : mapDistinctNode(N); 767 while (!DistinctWorklist.empty()) 768 remapOperands(*DistinctWorklist.pop_back_val(), [this](Metadata *Old) { 769 if (Optional<Metadata *> MappedOp = tryToMapOperand(Old)) 770 return *MappedOp; 771 return mapTopLevelUniquedNode(*cast<MDNode>(Old)); 772 }); 773 return MappedN; 774 } 775 776 Metadata *MDNodeMapper::mapTopLevelUniquedNode(const MDNode &FirstN) { 777 assert(FirstN.isUniqued() && "Expected uniqued node"); 778 779 // Create a post-order traversal of uniqued nodes under FirstN. 780 UniquedGraph G; 781 if (!createPOT(G, FirstN)) { 782 // Return early if no nodes have changed. 783 for (const MDNode *N : G.POT) 784 M.mapToSelf(N); 785 return &const_cast<MDNode &>(FirstN); 786 } 787 788 // Update graph with all nodes that have changed. 789 G.propagateChanges(); 790 791 // Map all the nodes in the graph. 792 mapNodesInPOT(G); 793 794 // Return the original node, remapped. 795 return *getMappedOp(&FirstN); 796 } 797 798 Optional<Metadata *> Mapper::mapSimpleMetadata(const Metadata *MD) { 799 // If the value already exists in the map, use it. 800 if (Optional<Metadata *> NewMD = getVM().getMappedMD(MD)) 801 return *NewMD; 802 803 if (isa<MDString>(MD)) 804 return const_cast<Metadata *>(MD); 805 806 // This is a module-level metadata. If nothing at the module level is 807 // changing, use an identity mapping. 808 if ((Flags & RF_NoModuleLevelChanges)) 809 return const_cast<Metadata *>(MD); 810 811 if (auto *CMD = dyn_cast<ConstantAsMetadata>(MD)) { 812 // Don't memoize ConstantAsMetadata. Instead of lasting until the 813 // LLVMContext is destroyed, they can be deleted when the GlobalValue they 814 // reference is destructed. These aren't super common, so the extra 815 // indirection isn't that expensive. 816 return wrapConstantAsMetadata(*CMD, mapValue(CMD->getValue())); 817 } 818 819 assert(isa<MDNode>(MD) && "Expected a metadata node"); 820 821 return None; 822 } 823 824 Metadata *Mapper::mapMetadata(const Metadata *MD) { 825 assert(MD && "Expected valid metadata"); 826 assert(!isa<LocalAsMetadata>(MD) && "Unexpected local metadata"); 827 828 if (Optional<Metadata *> NewMD = mapSimpleMetadata(MD)) 829 return *NewMD; 830 831 return MDNodeMapper(*this).map(*cast<MDNode>(MD)); 832 } 833 834 void Mapper::flush() { 835 // Flush out the worklist of global values. 836 while (!Worklist.empty()) { 837 WorklistEntry E = Worklist.pop_back_val(); 838 CurrentMCID = E.MCID; 839 switch (E.Kind) { 840 case WorklistEntry::MapGlobalInit: 841 E.Data.GVInit.GV->setInitializer(mapConstant(E.Data.GVInit.Init)); 842 remapGlobalObjectMetadata(*E.Data.GVInit.GV); 843 break; 844 case WorklistEntry::MapAppendingVar: { 845 unsigned PrefixSize = AppendingInits.size() - E.AppendingGVNumNewMembers; 846 // mapAppendingVariable call can change AppendingInits if initalizer for 847 // the variable depends on another appending global, because of that inits 848 // need to be extracted and updated before the call. 849 SmallVector<Constant *, 8> NewInits( 850 drop_begin(AppendingInits, PrefixSize)); 851 AppendingInits.resize(PrefixSize); 852 mapAppendingVariable(*E.Data.AppendingGV.GV, 853 E.Data.AppendingGV.InitPrefix, 854 E.AppendingGVIsOldCtorDtor, makeArrayRef(NewInits)); 855 break; 856 } 857 case WorklistEntry::MapGlobalIndirectSymbol: 858 E.Data.GlobalIndirectSymbol.GIS->setIndirectSymbol( 859 mapConstant(E.Data.GlobalIndirectSymbol.Target)); 860 break; 861 case WorklistEntry::RemapFunction: 862 remapFunction(*E.Data.RemapF); 863 break; 864 } 865 } 866 CurrentMCID = 0; 867 868 // Finish logic for block addresses now that all global values have been 869 // handled. 870 while (!DelayedBBs.empty()) { 871 DelayedBasicBlock DBB = DelayedBBs.pop_back_val(); 872 BasicBlock *BB = cast_or_null<BasicBlock>(mapValue(DBB.OldBB)); 873 DBB.TempBB->replaceAllUsesWith(BB ? BB : DBB.OldBB); 874 } 875 } 876 877 void Mapper::remapInstruction(Instruction *I) { 878 // Remap operands. 879 for (Use &Op : I->operands()) { 880 Value *V = mapValue(Op); 881 // If we aren't ignoring missing entries, assert that something happened. 882 if (V) 883 Op = V; 884 else 885 assert((Flags & RF_IgnoreMissingLocals) && 886 "Referenced value not in value map!"); 887 } 888 889 // Remap phi nodes' incoming blocks. 890 if (PHINode *PN = dyn_cast<PHINode>(I)) { 891 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 892 Value *V = mapValue(PN->getIncomingBlock(i)); 893 // If we aren't ignoring missing entries, assert that something happened. 894 if (V) 895 PN->setIncomingBlock(i, cast<BasicBlock>(V)); 896 else 897 assert((Flags & RF_IgnoreMissingLocals) && 898 "Referenced block not in value map!"); 899 } 900 } 901 902 // Remap attached metadata. 903 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 904 I->getAllMetadata(MDs); 905 for (const auto &MI : MDs) { 906 MDNode *Old = MI.second; 907 MDNode *New = cast_or_null<MDNode>(mapMetadata(Old)); 908 if (New != Old) 909 I->setMetadata(MI.first, New); 910 } 911 912 if (!TypeMapper) 913 return; 914 915 // If the instruction's type is being remapped, do so now. 916 if (auto *CB = dyn_cast<CallBase>(I)) { 917 SmallVector<Type *, 3> Tys; 918 FunctionType *FTy = CB->getFunctionType(); 919 Tys.reserve(FTy->getNumParams()); 920 for (Type *Ty : FTy->params()) 921 Tys.push_back(TypeMapper->remapType(Ty)); 922 CB->mutateFunctionType(FunctionType::get( 923 TypeMapper->remapType(I->getType()), Tys, FTy->isVarArg())); 924 925 LLVMContext &C = CB->getContext(); 926 AttributeList Attrs = CB->getAttributes(); 927 for (unsigned i = 0; i < Attrs.getNumAttrSets(); ++i) { 928 for (Attribute::AttrKind TypedAttr : 929 {Attribute::ByVal, Attribute::StructRet, Attribute::ByRef}) { 930 if (Type *Ty = Attrs.getAttribute(i, TypedAttr).getValueAsType()) { 931 Attrs = Attrs.replaceAttributeType(C, i, TypedAttr, 932 TypeMapper->remapType(Ty)); 933 break; 934 } 935 } 936 } 937 CB->setAttributes(Attrs); 938 return; 939 } 940 if (auto *AI = dyn_cast<AllocaInst>(I)) 941 AI->setAllocatedType(TypeMapper->remapType(AI->getAllocatedType())); 942 if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) { 943 GEP->setSourceElementType( 944 TypeMapper->remapType(GEP->getSourceElementType())); 945 GEP->setResultElementType( 946 TypeMapper->remapType(GEP->getResultElementType())); 947 } 948 I->mutateType(TypeMapper->remapType(I->getType())); 949 } 950 951 void Mapper::remapGlobalObjectMetadata(GlobalObject &GO) { 952 SmallVector<std::pair<unsigned, MDNode *>, 8> MDs; 953 GO.getAllMetadata(MDs); 954 GO.clearMetadata(); 955 for (const auto &I : MDs) 956 GO.addMetadata(I.first, *cast<MDNode>(mapMetadata(I.second))); 957 } 958 959 void Mapper::remapFunction(Function &F) { 960 // Remap the operands. 961 for (Use &Op : F.operands()) 962 if (Op) 963 Op = mapValue(Op); 964 965 // Remap the metadata attachments. 966 remapGlobalObjectMetadata(F); 967 968 // Remap the argument types. 969 if (TypeMapper) 970 for (Argument &A : F.args()) 971 A.mutateType(TypeMapper->remapType(A.getType())); 972 973 // Remap the instructions. 974 for (BasicBlock &BB : F) 975 for (Instruction &I : BB) 976 remapInstruction(&I); 977 } 978 979 void Mapper::mapAppendingVariable(GlobalVariable &GV, Constant *InitPrefix, 980 bool IsOldCtorDtor, 981 ArrayRef<Constant *> NewMembers) { 982 SmallVector<Constant *, 16> Elements; 983 if (InitPrefix) { 984 unsigned NumElements = 985 cast<ArrayType>(InitPrefix->getType())->getNumElements(); 986 for (unsigned I = 0; I != NumElements; ++I) 987 Elements.push_back(InitPrefix->getAggregateElement(I)); 988 } 989 990 PointerType *VoidPtrTy; 991 Type *EltTy; 992 if (IsOldCtorDtor) { 993 // FIXME: This upgrade is done during linking to support the C API. See 994 // also IRLinker::linkAppendingVarProto() in IRMover.cpp. 995 VoidPtrTy = Type::getInt8Ty(GV.getContext())->getPointerTo(); 996 auto &ST = *cast<StructType>(NewMembers.front()->getType()); 997 Type *Tys[3] = {ST.getElementType(0), ST.getElementType(1), VoidPtrTy}; 998 EltTy = StructType::get(GV.getContext(), Tys, false); 999 } 1000 1001 for (auto *V : NewMembers) { 1002 Constant *NewV; 1003 if (IsOldCtorDtor) { 1004 auto *S = cast<ConstantStruct>(V); 1005 auto *E1 = cast<Constant>(mapValue(S->getOperand(0))); 1006 auto *E2 = cast<Constant>(mapValue(S->getOperand(1))); 1007 Constant *Null = Constant::getNullValue(VoidPtrTy); 1008 NewV = ConstantStruct::get(cast<StructType>(EltTy), E1, E2, Null); 1009 } else { 1010 NewV = cast_or_null<Constant>(mapValue(V)); 1011 } 1012 Elements.push_back(NewV); 1013 } 1014 1015 GV.setInitializer(ConstantArray::get( 1016 cast<ArrayType>(GV.getType()->getElementType()), Elements)); 1017 } 1018 1019 void Mapper::scheduleMapGlobalInitializer(GlobalVariable &GV, Constant &Init, 1020 unsigned MCID) { 1021 assert(AlreadyScheduled.insert(&GV).second && "Should not reschedule"); 1022 assert(MCID < MCs.size() && "Invalid mapping context"); 1023 1024 WorklistEntry WE; 1025 WE.Kind = WorklistEntry::MapGlobalInit; 1026 WE.MCID = MCID; 1027 WE.Data.GVInit.GV = &GV; 1028 WE.Data.GVInit.Init = &Init; 1029 Worklist.push_back(WE); 1030 } 1031 1032 void Mapper::scheduleMapAppendingVariable(GlobalVariable &GV, 1033 Constant *InitPrefix, 1034 bool IsOldCtorDtor, 1035 ArrayRef<Constant *> NewMembers, 1036 unsigned MCID) { 1037 assert(AlreadyScheduled.insert(&GV).second && "Should not reschedule"); 1038 assert(MCID < MCs.size() && "Invalid mapping context"); 1039 1040 WorklistEntry WE; 1041 WE.Kind = WorklistEntry::MapAppendingVar; 1042 WE.MCID = MCID; 1043 WE.Data.AppendingGV.GV = &GV; 1044 WE.Data.AppendingGV.InitPrefix = InitPrefix; 1045 WE.AppendingGVIsOldCtorDtor = IsOldCtorDtor; 1046 WE.AppendingGVNumNewMembers = NewMembers.size(); 1047 Worklist.push_back(WE); 1048 AppendingInits.append(NewMembers.begin(), NewMembers.end()); 1049 } 1050 1051 void Mapper::scheduleMapGlobalIndirectSymbol(GlobalIndirectSymbol &GIS, 1052 Constant &Target, unsigned MCID) { 1053 assert(AlreadyScheduled.insert(&GIS).second && "Should not reschedule"); 1054 assert(MCID < MCs.size() && "Invalid mapping context"); 1055 1056 WorklistEntry WE; 1057 WE.Kind = WorklistEntry::MapGlobalIndirectSymbol; 1058 WE.MCID = MCID; 1059 WE.Data.GlobalIndirectSymbol.GIS = &GIS; 1060 WE.Data.GlobalIndirectSymbol.Target = &Target; 1061 Worklist.push_back(WE); 1062 } 1063 1064 void Mapper::scheduleRemapFunction(Function &F, unsigned MCID) { 1065 assert(AlreadyScheduled.insert(&F).second && "Should not reschedule"); 1066 assert(MCID < MCs.size() && "Invalid mapping context"); 1067 1068 WorklistEntry WE; 1069 WE.Kind = WorklistEntry::RemapFunction; 1070 WE.MCID = MCID; 1071 WE.Data.RemapF = &F; 1072 Worklist.push_back(WE); 1073 } 1074 1075 void Mapper::addFlags(RemapFlags Flags) { 1076 assert(!hasWorkToDo() && "Expected to have flushed the worklist"); 1077 this->Flags = this->Flags | Flags; 1078 } 1079 1080 static Mapper *getAsMapper(void *pImpl) { 1081 return reinterpret_cast<Mapper *>(pImpl); 1082 } 1083 1084 namespace { 1085 1086 class FlushingMapper { 1087 Mapper &M; 1088 1089 public: 1090 explicit FlushingMapper(void *pImpl) : M(*getAsMapper(pImpl)) { 1091 assert(!M.hasWorkToDo() && "Expected to be flushed"); 1092 } 1093 1094 ~FlushingMapper() { M.flush(); } 1095 1096 Mapper *operator->() const { return &M; } 1097 }; 1098 1099 } // end anonymous namespace 1100 1101 ValueMapper::ValueMapper(ValueToValueMapTy &VM, RemapFlags Flags, 1102 ValueMapTypeRemapper *TypeMapper, 1103 ValueMaterializer *Materializer) 1104 : pImpl(new Mapper(VM, Flags, TypeMapper, Materializer)) {} 1105 1106 ValueMapper::~ValueMapper() { delete getAsMapper(pImpl); } 1107 1108 unsigned 1109 ValueMapper::registerAlternateMappingContext(ValueToValueMapTy &VM, 1110 ValueMaterializer *Materializer) { 1111 return getAsMapper(pImpl)->registerAlternateMappingContext(VM, Materializer); 1112 } 1113 1114 void ValueMapper::addFlags(RemapFlags Flags) { 1115 FlushingMapper(pImpl)->addFlags(Flags); 1116 } 1117 1118 Value *ValueMapper::mapValue(const Value &V) { 1119 return FlushingMapper(pImpl)->mapValue(&V); 1120 } 1121 1122 Constant *ValueMapper::mapConstant(const Constant &C) { 1123 return cast_or_null<Constant>(mapValue(C)); 1124 } 1125 1126 Metadata *ValueMapper::mapMetadata(const Metadata &MD) { 1127 return FlushingMapper(pImpl)->mapMetadata(&MD); 1128 } 1129 1130 MDNode *ValueMapper::mapMDNode(const MDNode &N) { 1131 return cast_or_null<MDNode>(mapMetadata(N)); 1132 } 1133 1134 void ValueMapper::remapInstruction(Instruction &I) { 1135 FlushingMapper(pImpl)->remapInstruction(&I); 1136 } 1137 1138 void ValueMapper::remapFunction(Function &F) { 1139 FlushingMapper(pImpl)->remapFunction(F); 1140 } 1141 1142 void ValueMapper::scheduleMapGlobalInitializer(GlobalVariable &GV, 1143 Constant &Init, 1144 unsigned MCID) { 1145 getAsMapper(pImpl)->scheduleMapGlobalInitializer(GV, Init, MCID); 1146 } 1147 1148 void ValueMapper::scheduleMapAppendingVariable(GlobalVariable &GV, 1149 Constant *InitPrefix, 1150 bool IsOldCtorDtor, 1151 ArrayRef<Constant *> NewMembers, 1152 unsigned MCID) { 1153 getAsMapper(pImpl)->scheduleMapAppendingVariable( 1154 GV, InitPrefix, IsOldCtorDtor, NewMembers, MCID); 1155 } 1156 1157 void ValueMapper::scheduleMapGlobalIndirectSymbol(GlobalIndirectSymbol &GIS, 1158 Constant &Target, 1159 unsigned MCID) { 1160 getAsMapper(pImpl)->scheduleMapGlobalIndirectSymbol(GIS, Target, MCID); 1161 } 1162 1163 void ValueMapper::scheduleRemapFunction(Function &F, unsigned MCID) { 1164 getAsMapper(pImpl)->scheduleRemapFunction(F, MCID); 1165 } 1166