1 //===- ValueMapper.cpp - Interface shared by lib/Transforms/Utils ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the MapValue function, which is shared by various parts of
10 // the lib/Transforms/Utils library.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/Transforms/Utils/ValueMapper.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/DenseSet.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/Optional.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/IR/Argument.h"
23 #include "llvm/IR/BasicBlock.h"
24 #include "llvm/IR/Constant.h"
25 #include "llvm/IR/Constants.h"
26 #include "llvm/IR/DebugInfoMetadata.h"
27 #include "llvm/IR/DerivedTypes.h"
28 #include "llvm/IR/Function.h"
29 #include "llvm/IR/GlobalAlias.h"
30 #include "llvm/IR/GlobalIFunc.h"
31 #include "llvm/IR/GlobalObject.h"
32 #include "llvm/IR/GlobalVariable.h"
33 #include "llvm/IR/InlineAsm.h"
34 #include "llvm/IR/Instruction.h"
35 #include "llvm/IR/Instructions.h"
36 #include "llvm/IR/Metadata.h"
37 #include "llvm/IR/Operator.h"
38 #include "llvm/IR/Type.h"
39 #include "llvm/IR/Value.h"
40 #include "llvm/Support/Casting.h"
41 #include "llvm/Support/Debug.h"
42 #include <cassert>
43 #include <limits>
44 #include <memory>
45 #include <utility>
46
47 using namespace llvm;
48
49 #define DEBUG_TYPE "value-mapper"
50
51 // Out of line method to get vtable etc for class.
anchor()52 void ValueMapTypeRemapper::anchor() {}
anchor()53 void ValueMaterializer::anchor() {}
54
55 namespace {
56
57 /// A basic block used in a BlockAddress whose function body is not yet
58 /// materialized.
59 struct DelayedBasicBlock {
60 BasicBlock *OldBB;
61 std::unique_ptr<BasicBlock> TempBB;
62
DelayedBasicBlock__anon1394dca00111::DelayedBasicBlock63 DelayedBasicBlock(const BlockAddress &Old)
64 : OldBB(Old.getBasicBlock()),
65 TempBB(BasicBlock::Create(Old.getContext())) {}
66 };
67
68 struct WorklistEntry {
69 enum EntryKind {
70 MapGlobalInit,
71 MapAppendingVar,
72 MapAliasOrIFunc,
73 RemapFunction
74 };
75 struct GVInitTy {
76 GlobalVariable *GV;
77 Constant *Init;
78 };
79 struct AppendingGVTy {
80 GlobalVariable *GV;
81 Constant *InitPrefix;
82 };
83 struct AliasOrIFuncTy {
84 GlobalValue *GV;
85 Constant *Target;
86 };
87
88 unsigned Kind : 2;
89 unsigned MCID : 29;
90 unsigned AppendingGVIsOldCtorDtor : 1;
91 unsigned AppendingGVNumNewMembers;
92 union {
93 GVInitTy GVInit;
94 AppendingGVTy AppendingGV;
95 AliasOrIFuncTy AliasOrIFunc;
96 Function *RemapF;
97 } Data;
98 };
99
100 struct MappingContext {
101 ValueToValueMapTy *VM;
102 ValueMaterializer *Materializer = nullptr;
103
104 /// Construct a MappingContext with a value map and materializer.
MappingContext__anon1394dca00111::MappingContext105 explicit MappingContext(ValueToValueMapTy &VM,
106 ValueMaterializer *Materializer = nullptr)
107 : VM(&VM), Materializer(Materializer) {}
108 };
109
110 class Mapper {
111 friend class MDNodeMapper;
112
113 #ifndef NDEBUG
114 DenseSet<GlobalValue *> AlreadyScheduled;
115 #endif
116
117 RemapFlags Flags;
118 ValueMapTypeRemapper *TypeMapper;
119 unsigned CurrentMCID = 0;
120 SmallVector<MappingContext, 2> MCs;
121 SmallVector<WorklistEntry, 4> Worklist;
122 SmallVector<DelayedBasicBlock, 1> DelayedBBs;
123 SmallVector<Constant *, 16> AppendingInits;
124
125 public:
Mapper(ValueToValueMapTy & VM,RemapFlags Flags,ValueMapTypeRemapper * TypeMapper,ValueMaterializer * Materializer)126 Mapper(ValueToValueMapTy &VM, RemapFlags Flags,
127 ValueMapTypeRemapper *TypeMapper, ValueMaterializer *Materializer)
128 : Flags(Flags), TypeMapper(TypeMapper),
129 MCs(1, MappingContext(VM, Materializer)) {}
130
131 /// ValueMapper should explicitly call \a flush() before destruction.
~Mapper()132 ~Mapper() { assert(!hasWorkToDo() && "Expected to be flushed"); }
133
hasWorkToDo() const134 bool hasWorkToDo() const { return !Worklist.empty(); }
135
136 unsigned
registerAlternateMappingContext(ValueToValueMapTy & VM,ValueMaterializer * Materializer=nullptr)137 registerAlternateMappingContext(ValueToValueMapTy &VM,
138 ValueMaterializer *Materializer = nullptr) {
139 MCs.push_back(MappingContext(VM, Materializer));
140 return MCs.size() - 1;
141 }
142
143 void addFlags(RemapFlags Flags);
144
145 void remapGlobalObjectMetadata(GlobalObject &GO);
146
147 Value *mapValue(const Value *V);
148 void remapInstruction(Instruction *I);
149 void remapFunction(Function &F);
150
mapConstant(const Constant * C)151 Constant *mapConstant(const Constant *C) {
152 return cast_or_null<Constant>(mapValue(C));
153 }
154
155 /// Map metadata.
156 ///
157 /// Find the mapping for MD. Guarantees that the return will be resolved
158 /// (not an MDNode, or MDNode::isResolved() returns true).
159 Metadata *mapMetadata(const Metadata *MD);
160
161 void scheduleMapGlobalInitializer(GlobalVariable &GV, Constant &Init,
162 unsigned MCID);
163 void scheduleMapAppendingVariable(GlobalVariable &GV, Constant *InitPrefix,
164 bool IsOldCtorDtor,
165 ArrayRef<Constant *> NewMembers,
166 unsigned MCID);
167 void scheduleMapAliasOrIFunc(GlobalValue &GV, Constant &Target,
168 unsigned MCID);
169 void scheduleRemapFunction(Function &F, unsigned MCID);
170
171 void flush();
172
173 private:
174 void mapAppendingVariable(GlobalVariable &GV, Constant *InitPrefix,
175 bool IsOldCtorDtor,
176 ArrayRef<Constant *> NewMembers);
177
getVM()178 ValueToValueMapTy &getVM() { return *MCs[CurrentMCID].VM; }
getMaterializer()179 ValueMaterializer *getMaterializer() { return MCs[CurrentMCID].Materializer; }
180
181 Value *mapBlockAddress(const BlockAddress &BA);
182
183 /// Map metadata that doesn't require visiting operands.
184 Optional<Metadata *> mapSimpleMetadata(const Metadata *MD);
185
186 Metadata *mapToMetadata(const Metadata *Key, Metadata *Val);
187 Metadata *mapToSelf(const Metadata *MD);
188 };
189
190 class MDNodeMapper {
191 Mapper &M;
192
193 /// Data about a node in \a UniquedGraph.
194 struct Data {
195 bool HasChanged = false;
196 unsigned ID = std::numeric_limits<unsigned>::max();
197 TempMDNode Placeholder;
198 };
199
200 /// A graph of uniqued nodes.
201 struct UniquedGraph {
202 SmallDenseMap<const Metadata *, Data, 32> Info; // Node properties.
203 SmallVector<MDNode *, 16> POT; // Post-order traversal.
204
205 /// Propagate changed operands through the post-order traversal.
206 ///
207 /// Iteratively update \a Data::HasChanged for each node based on \a
208 /// Data::HasChanged of its operands, until fixed point.
209 void propagateChanges();
210
211 /// Get a forward reference to a node to use as an operand.
212 Metadata &getFwdReference(MDNode &Op);
213 };
214
215 /// Worklist of distinct nodes whose operands need to be remapped.
216 SmallVector<MDNode *, 16> DistinctWorklist;
217
218 // Storage for a UniquedGraph.
219 SmallDenseMap<const Metadata *, Data, 32> InfoStorage;
220 SmallVector<MDNode *, 16> POTStorage;
221
222 public:
MDNodeMapper(Mapper & M)223 MDNodeMapper(Mapper &M) : M(M) {}
224
225 /// Map a metadata node (and its transitive operands).
226 ///
227 /// Map all the (unmapped) nodes in the subgraph under \c N. The iterative
228 /// algorithm handles distinct nodes and uniqued node subgraphs using
229 /// different strategies.
230 ///
231 /// Distinct nodes are immediately mapped and added to \a DistinctWorklist
232 /// using \a mapDistinctNode(). Their mapping can always be computed
233 /// immediately without visiting operands, even if their operands change.
234 ///
235 /// The mapping for uniqued nodes depends on whether their operands change.
236 /// \a mapTopLevelUniquedNode() traverses the transitive uniqued subgraph of
237 /// a node to calculate uniqued node mappings in bulk. Distinct leafs are
238 /// added to \a DistinctWorklist with \a mapDistinctNode().
239 ///
240 /// After mapping \c N itself, this function remaps the operands of the
241 /// distinct nodes in \a DistinctWorklist until the entire subgraph under \c
242 /// N has been mapped.
243 Metadata *map(const MDNode &N);
244
245 private:
246 /// Map a top-level uniqued node and the uniqued subgraph underneath it.
247 ///
248 /// This builds up a post-order traversal of the (unmapped) uniqued subgraph
249 /// underneath \c FirstN and calculates the nodes' mapping. Each node uses
250 /// the identity mapping (\a Mapper::mapToSelf()) as long as all of its
251 /// operands uses the identity mapping.
252 ///
253 /// The algorithm works as follows:
254 ///
255 /// 1. \a createPOT(): traverse the uniqued subgraph under \c FirstN and
256 /// save the post-order traversal in the given \a UniquedGraph, tracking
257 /// nodes' operands change.
258 ///
259 /// 2. \a UniquedGraph::propagateChanges(): propagate changed operands
260 /// through the \a UniquedGraph until fixed point, following the rule
261 /// that if a node changes, any node that references must also change.
262 ///
263 /// 3. \a mapNodesInPOT(): map the uniqued nodes, creating new uniqued nodes
264 /// (referencing new operands) where necessary.
265 Metadata *mapTopLevelUniquedNode(const MDNode &FirstN);
266
267 /// Try to map the operand of an \a MDNode.
268 ///
269 /// If \c Op is already mapped, return the mapping. If it's not an \a
270 /// MDNode, compute and return the mapping. If it's a distinct \a MDNode,
271 /// return the result of \a mapDistinctNode().
272 ///
273 /// \return None if \c Op is an unmapped uniqued \a MDNode.
274 /// \post getMappedOp(Op) only returns None if this returns None.
275 Optional<Metadata *> tryToMapOperand(const Metadata *Op);
276
277 /// Map a distinct node.
278 ///
279 /// Return the mapping for the distinct node \c N, saving the result in \a
280 /// DistinctWorklist for later remapping.
281 ///
282 /// \pre \c N is not yet mapped.
283 /// \pre \c N.isDistinct().
284 MDNode *mapDistinctNode(const MDNode &N);
285
286 /// Get a previously mapped node.
287 Optional<Metadata *> getMappedOp(const Metadata *Op) const;
288
289 /// Create a post-order traversal of an unmapped uniqued node subgraph.
290 ///
291 /// This traverses the metadata graph deeply enough to map \c FirstN. It
292 /// uses \a tryToMapOperand() (via \a Mapper::mapSimplifiedNode()), so any
293 /// metadata that has already been mapped will not be part of the POT.
294 ///
295 /// Each node that has a changed operand from outside the graph (e.g., a
296 /// distinct node, an already-mapped uniqued node, or \a ConstantAsMetadata)
297 /// is marked with \a Data::HasChanged.
298 ///
299 /// \return \c true if any nodes in \c G have \a Data::HasChanged.
300 /// \post \c G.POT is a post-order traversal ending with \c FirstN.
301 /// \post \a Data::hasChanged in \c G.Info indicates whether any node needs
302 /// to change because of operands outside the graph.
303 bool createPOT(UniquedGraph &G, const MDNode &FirstN);
304
305 /// Visit the operands of a uniqued node in the POT.
306 ///
307 /// Visit the operands in the range from \c I to \c E, returning the first
308 /// uniqued node we find that isn't yet in \c G. \c I is always advanced to
309 /// where to continue the loop through the operands.
310 ///
311 /// This sets \c HasChanged if any of the visited operands change.
312 MDNode *visitOperands(UniquedGraph &G, MDNode::op_iterator &I,
313 MDNode::op_iterator E, bool &HasChanged);
314
315 /// Map all the nodes in the given uniqued graph.
316 ///
317 /// This visits all the nodes in \c G in post-order, using the identity
318 /// mapping or creating a new node depending on \a Data::HasChanged.
319 ///
320 /// \pre \a getMappedOp() returns None for nodes in \c G, but not for any of
321 /// their operands outside of \c G.
322 /// \pre \a Data::HasChanged is true for a node in \c G iff any of its
323 /// operands have changed.
324 /// \post \a getMappedOp() returns the mapped node for every node in \c G.
325 void mapNodesInPOT(UniquedGraph &G);
326
327 /// Remap a node's operands using the given functor.
328 ///
329 /// Iterate through the operands of \c N and update them in place using \c
330 /// mapOperand.
331 ///
332 /// \pre N.isDistinct() or N.isTemporary().
333 template <class OperandMapper>
334 void remapOperands(MDNode &N, OperandMapper mapOperand);
335 };
336
337 } // end anonymous namespace
338
mapValue(const Value * V)339 Value *Mapper::mapValue(const Value *V) {
340 ValueToValueMapTy::iterator I = getVM().find(V);
341
342 // If the value already exists in the map, use it.
343 if (I != getVM().end()) {
344 assert(I->second && "Unexpected null mapping");
345 return I->second;
346 }
347
348 // If we have a materializer and it can materialize a value, use that.
349 if (auto *Materializer = getMaterializer()) {
350 if (Value *NewV = Materializer->materialize(const_cast<Value *>(V))) {
351 getVM()[V] = NewV;
352 return NewV;
353 }
354 }
355
356 // Global values do not need to be seeded into the VM if they
357 // are using the identity mapping.
358 if (isa<GlobalValue>(V)) {
359 if (Flags & RF_NullMapMissingGlobalValues)
360 return nullptr;
361 return getVM()[V] = const_cast<Value *>(V);
362 }
363
364 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
365 // Inline asm may need *type* remapping.
366 FunctionType *NewTy = IA->getFunctionType();
367 if (TypeMapper) {
368 NewTy = cast<FunctionType>(TypeMapper->remapType(NewTy));
369
370 if (NewTy != IA->getFunctionType())
371 V = InlineAsm::get(NewTy, IA->getAsmString(), IA->getConstraintString(),
372 IA->hasSideEffects(), IA->isAlignStack(),
373 IA->getDialect(), IA->canThrow());
374 }
375
376 return getVM()[V] = const_cast<Value *>(V);
377 }
378
379 if (const auto *MDV = dyn_cast<MetadataAsValue>(V)) {
380 const Metadata *MD = MDV->getMetadata();
381
382 if (auto *LAM = dyn_cast<LocalAsMetadata>(MD)) {
383 // Look through to grab the local value.
384 if (Value *LV = mapValue(LAM->getValue())) {
385 if (V == LAM->getValue())
386 return const_cast<Value *>(V);
387 return MetadataAsValue::get(V->getContext(), ValueAsMetadata::get(LV));
388 }
389
390 // FIXME: always return nullptr once Verifier::verifyDominatesUse()
391 // ensures metadata operands only reference defined SSA values.
392 return (Flags & RF_IgnoreMissingLocals)
393 ? nullptr
394 : MetadataAsValue::get(V->getContext(),
395 MDTuple::get(V->getContext(), None));
396 }
397 if (auto *AL = dyn_cast<DIArgList>(MD)) {
398 SmallVector<ValueAsMetadata *, 4> MappedArgs;
399 for (auto *VAM : AL->getArgs()) {
400 // Map both Local and Constant VAMs here; they will both ultimately
401 // be mapped via mapValue. The exceptions are constants when we have no
402 // module level changes and locals when they have no existing mapped
403 // value and RF_IgnoreMissingLocals is set; these have identity
404 // mappings.
405 if ((Flags & RF_NoModuleLevelChanges) && isa<ConstantAsMetadata>(VAM)) {
406 MappedArgs.push_back(VAM);
407 } else if (Value *LV = mapValue(VAM->getValue())) {
408 MappedArgs.push_back(
409 LV == VAM->getValue() ? VAM : ValueAsMetadata::get(LV));
410 } else if ((Flags & RF_IgnoreMissingLocals) && isa<LocalAsMetadata>(VAM)) {
411 MappedArgs.push_back(VAM);
412 } else {
413 // If we cannot map the value, set the argument as undef.
414 MappedArgs.push_back(ValueAsMetadata::get(
415 UndefValue::get(VAM->getValue()->getType())));
416 }
417 }
418 return MetadataAsValue::get(V->getContext(),
419 DIArgList::get(V->getContext(), MappedArgs));
420 }
421
422 // If this is a module-level metadata and we know that nothing at the module
423 // level is changing, then use an identity mapping.
424 if (Flags & RF_NoModuleLevelChanges)
425 return getVM()[V] = const_cast<Value *>(V);
426
427 // Map the metadata and turn it into a value.
428 auto *MappedMD = mapMetadata(MD);
429 if (MD == MappedMD)
430 return getVM()[V] = const_cast<Value *>(V);
431 return getVM()[V] = MetadataAsValue::get(V->getContext(), MappedMD);
432 }
433
434 // Okay, this either must be a constant (which may or may not be mappable) or
435 // is something that is not in the mapping table.
436 Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V));
437 if (!C)
438 return nullptr;
439
440 if (BlockAddress *BA = dyn_cast<BlockAddress>(C))
441 return mapBlockAddress(*BA);
442
443 if (const auto *E = dyn_cast<DSOLocalEquivalent>(C)) {
444 auto *Val = mapValue(E->getGlobalValue());
445 GlobalValue *GV = dyn_cast<GlobalValue>(Val);
446 if (GV)
447 return getVM()[E] = DSOLocalEquivalent::get(GV);
448
449 auto *Func = cast<Function>(Val->stripPointerCastsAndAliases());
450 Type *NewTy = E->getType();
451 if (TypeMapper)
452 NewTy = TypeMapper->remapType(NewTy);
453 return getVM()[E] = llvm::ConstantExpr::getBitCast(
454 DSOLocalEquivalent::get(Func), NewTy);
455 }
456
457 if (const auto *NC = dyn_cast<NoCFIValue>(C)) {
458 auto *Val = mapValue(NC->getGlobalValue());
459 GlobalValue *GV = cast<GlobalValue>(Val);
460 return getVM()[NC] = NoCFIValue::get(GV);
461 }
462
463 auto mapValueOrNull = [this](Value *V) {
464 auto Mapped = mapValue(V);
465 assert((Mapped || (Flags & RF_NullMapMissingGlobalValues)) &&
466 "Unexpected null mapping for constant operand without "
467 "NullMapMissingGlobalValues flag");
468 return Mapped;
469 };
470
471 // Otherwise, we have some other constant to remap. Start by checking to see
472 // if all operands have an identity remapping.
473 unsigned OpNo = 0, NumOperands = C->getNumOperands();
474 Value *Mapped = nullptr;
475 for (; OpNo != NumOperands; ++OpNo) {
476 Value *Op = C->getOperand(OpNo);
477 Mapped = mapValueOrNull(Op);
478 if (!Mapped)
479 return nullptr;
480 if (Mapped != Op)
481 break;
482 }
483
484 // See if the type mapper wants to remap the type as well.
485 Type *NewTy = C->getType();
486 if (TypeMapper)
487 NewTy = TypeMapper->remapType(NewTy);
488
489 // If the result type and all operands match up, then just insert an identity
490 // mapping.
491 if (OpNo == NumOperands && NewTy == C->getType())
492 return getVM()[V] = C;
493
494 // Okay, we need to create a new constant. We've already processed some or
495 // all of the operands, set them all up now.
496 SmallVector<Constant*, 8> Ops;
497 Ops.reserve(NumOperands);
498 for (unsigned j = 0; j != OpNo; ++j)
499 Ops.push_back(cast<Constant>(C->getOperand(j)));
500
501 // If one of the operands mismatch, push it and the other mapped operands.
502 if (OpNo != NumOperands) {
503 Ops.push_back(cast<Constant>(Mapped));
504
505 // Map the rest of the operands that aren't processed yet.
506 for (++OpNo; OpNo != NumOperands; ++OpNo) {
507 Mapped = mapValueOrNull(C->getOperand(OpNo));
508 if (!Mapped)
509 return nullptr;
510 Ops.push_back(cast<Constant>(Mapped));
511 }
512 }
513 Type *NewSrcTy = nullptr;
514 if (TypeMapper)
515 if (auto *GEPO = dyn_cast<GEPOperator>(C))
516 NewSrcTy = TypeMapper->remapType(GEPO->getSourceElementType());
517
518 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
519 return getVM()[V] = CE->getWithOperands(Ops, NewTy, false, NewSrcTy);
520 if (isa<ConstantArray>(C))
521 return getVM()[V] = ConstantArray::get(cast<ArrayType>(NewTy), Ops);
522 if (isa<ConstantStruct>(C))
523 return getVM()[V] = ConstantStruct::get(cast<StructType>(NewTy), Ops);
524 if (isa<ConstantVector>(C))
525 return getVM()[V] = ConstantVector::get(Ops);
526 // If this is a no-operand constant, it must be because the type was remapped.
527 if (isa<UndefValue>(C))
528 return getVM()[V] = UndefValue::get(NewTy);
529 if (isa<ConstantAggregateZero>(C))
530 return getVM()[V] = ConstantAggregateZero::get(NewTy);
531 assert(isa<ConstantPointerNull>(C));
532 return getVM()[V] = ConstantPointerNull::get(cast<PointerType>(NewTy));
533 }
534
mapBlockAddress(const BlockAddress & BA)535 Value *Mapper::mapBlockAddress(const BlockAddress &BA) {
536 Function *F = cast<Function>(mapValue(BA.getFunction()));
537
538 // F may not have materialized its initializer. In that case, create a
539 // dummy basic block for now, and replace it once we've materialized all
540 // the initializers.
541 BasicBlock *BB;
542 if (F->empty()) {
543 DelayedBBs.push_back(DelayedBasicBlock(BA));
544 BB = DelayedBBs.back().TempBB.get();
545 } else {
546 BB = cast_or_null<BasicBlock>(mapValue(BA.getBasicBlock()));
547 }
548
549 return getVM()[&BA] = BlockAddress::get(F, BB ? BB : BA.getBasicBlock());
550 }
551
mapToMetadata(const Metadata * Key,Metadata * Val)552 Metadata *Mapper::mapToMetadata(const Metadata *Key, Metadata *Val) {
553 getVM().MD()[Key].reset(Val);
554 return Val;
555 }
556
mapToSelf(const Metadata * MD)557 Metadata *Mapper::mapToSelf(const Metadata *MD) {
558 return mapToMetadata(MD, const_cast<Metadata *>(MD));
559 }
560
tryToMapOperand(const Metadata * Op)561 Optional<Metadata *> MDNodeMapper::tryToMapOperand(const Metadata *Op) {
562 if (!Op)
563 return nullptr;
564
565 if (Optional<Metadata *> MappedOp = M.mapSimpleMetadata(Op)) {
566 #ifndef NDEBUG
567 if (auto *CMD = dyn_cast<ConstantAsMetadata>(Op))
568 assert((!*MappedOp || M.getVM().count(CMD->getValue()) ||
569 M.getVM().getMappedMD(Op)) &&
570 "Expected Value to be memoized");
571 else
572 assert((isa<MDString>(Op) || M.getVM().getMappedMD(Op)) &&
573 "Expected result to be memoized");
574 #endif
575 return *MappedOp;
576 }
577
578 const MDNode &N = *cast<MDNode>(Op);
579 if (N.isDistinct())
580 return mapDistinctNode(N);
581 return None;
582 }
583
mapDistinctNode(const MDNode & N)584 MDNode *MDNodeMapper::mapDistinctNode(const MDNode &N) {
585 assert(N.isDistinct() && "Expected a distinct node");
586 assert(!M.getVM().getMappedMD(&N) && "Expected an unmapped node");
587 Metadata *NewM = nullptr;
588
589 if (M.Flags & RF_ReuseAndMutateDistinctMDs) {
590 NewM = M.mapToSelf(&N);
591 } else {
592 NewM = MDNode::replaceWithDistinct(N.clone());
593 LLVM_DEBUG(dbgs() << "\nMap " << N << "\n"
594 << "To " << *NewM << "\n\n");
595 M.mapToMetadata(&N, NewM);
596 }
597 DistinctWorklist.push_back(cast<MDNode>(NewM));
598
599 return DistinctWorklist.back();
600 }
601
wrapConstantAsMetadata(const ConstantAsMetadata & CMD,Value * MappedV)602 static ConstantAsMetadata *wrapConstantAsMetadata(const ConstantAsMetadata &CMD,
603 Value *MappedV) {
604 if (CMD.getValue() == MappedV)
605 return const_cast<ConstantAsMetadata *>(&CMD);
606 return MappedV ? ConstantAsMetadata::getConstant(MappedV) : nullptr;
607 }
608
getMappedOp(const Metadata * Op) const609 Optional<Metadata *> MDNodeMapper::getMappedOp(const Metadata *Op) const {
610 if (!Op)
611 return nullptr;
612
613 if (Optional<Metadata *> MappedOp = M.getVM().getMappedMD(Op))
614 return *MappedOp;
615
616 if (isa<MDString>(Op))
617 return const_cast<Metadata *>(Op);
618
619 if (auto *CMD = dyn_cast<ConstantAsMetadata>(Op))
620 return wrapConstantAsMetadata(*CMD, M.getVM().lookup(CMD->getValue()));
621
622 return None;
623 }
624
getFwdReference(MDNode & Op)625 Metadata &MDNodeMapper::UniquedGraph::getFwdReference(MDNode &Op) {
626 auto Where = Info.find(&Op);
627 assert(Where != Info.end() && "Expected a valid reference");
628
629 auto &OpD = Where->second;
630 if (!OpD.HasChanged)
631 return Op;
632
633 // Lazily construct a temporary node.
634 if (!OpD.Placeholder)
635 OpD.Placeholder = Op.clone();
636
637 return *OpD.Placeholder;
638 }
639
640 template <class OperandMapper>
remapOperands(MDNode & N,OperandMapper mapOperand)641 void MDNodeMapper::remapOperands(MDNode &N, OperandMapper mapOperand) {
642 assert(!N.isUniqued() && "Expected distinct or temporary nodes");
643 for (unsigned I = 0, E = N.getNumOperands(); I != E; ++I) {
644 Metadata *Old = N.getOperand(I);
645 Metadata *New = mapOperand(Old);
646 if (Old != New)
647 LLVM_DEBUG(dbgs() << "Replacing Op " << Old << " with " << New << " in "
648 << N << "\n");
649
650 if (Old != New)
651 N.replaceOperandWith(I, New);
652 }
653 }
654
655 namespace {
656
657 /// An entry in the worklist for the post-order traversal.
658 struct POTWorklistEntry {
659 MDNode *N; ///< Current node.
660 MDNode::op_iterator Op; ///< Current operand of \c N.
661
662 /// Keep a flag of whether operands have changed in the worklist to avoid
663 /// hitting the map in \a UniquedGraph.
664 bool HasChanged = false;
665
POTWorklistEntry__anon1394dca00411::POTWorklistEntry666 POTWorklistEntry(MDNode &N) : N(&N), Op(N.op_begin()) {}
667 };
668
669 } // end anonymous namespace
670
createPOT(UniquedGraph & G,const MDNode & FirstN)671 bool MDNodeMapper::createPOT(UniquedGraph &G, const MDNode &FirstN) {
672 assert(G.Info.empty() && "Expected a fresh traversal");
673 assert(FirstN.isUniqued() && "Expected uniqued node in POT");
674
675 // Construct a post-order traversal of the uniqued subgraph under FirstN.
676 bool AnyChanges = false;
677 SmallVector<POTWorklistEntry, 16> Worklist;
678 Worklist.push_back(POTWorklistEntry(const_cast<MDNode &>(FirstN)));
679 (void)G.Info[&FirstN];
680 while (!Worklist.empty()) {
681 // Start or continue the traversal through the this node's operands.
682 auto &WE = Worklist.back();
683 if (MDNode *N = visitOperands(G, WE.Op, WE.N->op_end(), WE.HasChanged)) {
684 // Push a new node to traverse first.
685 Worklist.push_back(POTWorklistEntry(*N));
686 continue;
687 }
688
689 // Push the node onto the POT.
690 assert(WE.N->isUniqued() && "Expected only uniqued nodes");
691 assert(WE.Op == WE.N->op_end() && "Expected to visit all operands");
692 auto &D = G.Info[WE.N];
693 AnyChanges |= D.HasChanged = WE.HasChanged;
694 D.ID = G.POT.size();
695 G.POT.push_back(WE.N);
696
697 // Pop the node off the worklist.
698 Worklist.pop_back();
699 }
700 return AnyChanges;
701 }
702
visitOperands(UniquedGraph & G,MDNode::op_iterator & I,MDNode::op_iterator E,bool & HasChanged)703 MDNode *MDNodeMapper::visitOperands(UniquedGraph &G, MDNode::op_iterator &I,
704 MDNode::op_iterator E, bool &HasChanged) {
705 while (I != E) {
706 Metadata *Op = *I++; // Increment even on early return.
707 if (Optional<Metadata *> MappedOp = tryToMapOperand(Op)) {
708 // Check if the operand changes.
709 HasChanged |= Op != *MappedOp;
710 continue;
711 }
712
713 // A uniqued metadata node.
714 MDNode &OpN = *cast<MDNode>(Op);
715 assert(OpN.isUniqued() &&
716 "Only uniqued operands cannot be mapped immediately");
717 if (G.Info.insert(std::make_pair(&OpN, Data())).second)
718 return &OpN; // This is a new one. Return it.
719 }
720 return nullptr;
721 }
722
propagateChanges()723 void MDNodeMapper::UniquedGraph::propagateChanges() {
724 bool AnyChanges;
725 do {
726 AnyChanges = false;
727 for (MDNode *N : POT) {
728 auto &D = Info[N];
729 if (D.HasChanged)
730 continue;
731
732 if (llvm::none_of(N->operands(), [&](const Metadata *Op) {
733 auto Where = Info.find(Op);
734 return Where != Info.end() && Where->second.HasChanged;
735 }))
736 continue;
737
738 AnyChanges = D.HasChanged = true;
739 }
740 } while (AnyChanges);
741 }
742
mapNodesInPOT(UniquedGraph & G)743 void MDNodeMapper::mapNodesInPOT(UniquedGraph &G) {
744 // Construct uniqued nodes, building forward references as necessary.
745 SmallVector<MDNode *, 16> CyclicNodes;
746 for (auto *N : G.POT) {
747 auto &D = G.Info[N];
748 if (!D.HasChanged) {
749 // The node hasn't changed.
750 M.mapToSelf(N);
751 continue;
752 }
753
754 // Remember whether this node had a placeholder.
755 bool HadPlaceholder(D.Placeholder);
756
757 // Clone the uniqued node and remap the operands.
758 TempMDNode ClonedN = D.Placeholder ? std::move(D.Placeholder) : N->clone();
759 remapOperands(*ClonedN, [this, &D, &G](Metadata *Old) {
760 if (Optional<Metadata *> MappedOp = getMappedOp(Old))
761 return *MappedOp;
762 (void)D;
763 assert(G.Info[Old].ID > D.ID && "Expected a forward reference");
764 return &G.getFwdReference(*cast<MDNode>(Old));
765 });
766
767 auto *NewN = MDNode::replaceWithUniqued(std::move(ClonedN));
768 if (N && NewN && N != NewN) {
769 LLVM_DEBUG(dbgs() << "\nMap " << *N << "\n"
770 << "To " << *NewN << "\n\n");
771 }
772
773 M.mapToMetadata(N, NewN);
774
775 // Nodes that were referenced out of order in the POT are involved in a
776 // uniquing cycle.
777 if (HadPlaceholder)
778 CyclicNodes.push_back(NewN);
779 }
780
781 // Resolve cycles.
782 for (auto *N : CyclicNodes)
783 if (!N->isResolved())
784 N->resolveCycles();
785 }
786
map(const MDNode & N)787 Metadata *MDNodeMapper::map(const MDNode &N) {
788 assert(DistinctWorklist.empty() && "MDNodeMapper::map is not recursive");
789 assert(!(M.Flags & RF_NoModuleLevelChanges) &&
790 "MDNodeMapper::map assumes module-level changes");
791
792 // Require resolved nodes whenever metadata might be remapped.
793 assert(N.isResolved() && "Unexpected unresolved node");
794
795 Metadata *MappedN =
796 N.isUniqued() ? mapTopLevelUniquedNode(N) : mapDistinctNode(N);
797 while (!DistinctWorklist.empty())
798 remapOperands(*DistinctWorklist.pop_back_val(), [this](Metadata *Old) {
799 if (Optional<Metadata *> MappedOp = tryToMapOperand(Old))
800 return *MappedOp;
801 return mapTopLevelUniquedNode(*cast<MDNode>(Old));
802 });
803 return MappedN;
804 }
805
mapTopLevelUniquedNode(const MDNode & FirstN)806 Metadata *MDNodeMapper::mapTopLevelUniquedNode(const MDNode &FirstN) {
807 assert(FirstN.isUniqued() && "Expected uniqued node");
808
809 // Create a post-order traversal of uniqued nodes under FirstN.
810 UniquedGraph G;
811 if (!createPOT(G, FirstN)) {
812 // Return early if no nodes have changed.
813 for (const MDNode *N : G.POT)
814 M.mapToSelf(N);
815 return &const_cast<MDNode &>(FirstN);
816 }
817
818 // Update graph with all nodes that have changed.
819 G.propagateChanges();
820
821 // Map all the nodes in the graph.
822 mapNodesInPOT(G);
823
824 // Return the original node, remapped.
825 return *getMappedOp(&FirstN);
826 }
827
mapSimpleMetadata(const Metadata * MD)828 Optional<Metadata *> Mapper::mapSimpleMetadata(const Metadata *MD) {
829 // If the value already exists in the map, use it.
830 if (Optional<Metadata *> NewMD = getVM().getMappedMD(MD))
831 return *NewMD;
832
833 if (isa<MDString>(MD))
834 return const_cast<Metadata *>(MD);
835
836 // This is a module-level metadata. If nothing at the module level is
837 // changing, use an identity mapping.
838 if ((Flags & RF_NoModuleLevelChanges))
839 return const_cast<Metadata *>(MD);
840
841 if (auto *CMD = dyn_cast<ConstantAsMetadata>(MD)) {
842 // Don't memoize ConstantAsMetadata. Instead of lasting until the
843 // LLVMContext is destroyed, they can be deleted when the GlobalValue they
844 // reference is destructed. These aren't super common, so the extra
845 // indirection isn't that expensive.
846 return wrapConstantAsMetadata(*CMD, mapValue(CMD->getValue()));
847 }
848
849 assert(isa<MDNode>(MD) && "Expected a metadata node");
850
851 return None;
852 }
853
mapMetadata(const Metadata * MD)854 Metadata *Mapper::mapMetadata(const Metadata *MD) {
855 assert(MD && "Expected valid metadata");
856 assert(!isa<LocalAsMetadata>(MD) && "Unexpected local metadata");
857
858 if (Optional<Metadata *> NewMD = mapSimpleMetadata(MD))
859 return *NewMD;
860
861 return MDNodeMapper(*this).map(*cast<MDNode>(MD));
862 }
863
flush()864 void Mapper::flush() {
865 // Flush out the worklist of global values.
866 while (!Worklist.empty()) {
867 WorklistEntry E = Worklist.pop_back_val();
868 CurrentMCID = E.MCID;
869 switch (E.Kind) {
870 case WorklistEntry::MapGlobalInit:
871 E.Data.GVInit.GV->setInitializer(mapConstant(E.Data.GVInit.Init));
872 remapGlobalObjectMetadata(*E.Data.GVInit.GV);
873 break;
874 case WorklistEntry::MapAppendingVar: {
875 unsigned PrefixSize = AppendingInits.size() - E.AppendingGVNumNewMembers;
876 // mapAppendingVariable call can change AppendingInits if initalizer for
877 // the variable depends on another appending global, because of that inits
878 // need to be extracted and updated before the call.
879 SmallVector<Constant *, 8> NewInits(
880 drop_begin(AppendingInits, PrefixSize));
881 AppendingInits.resize(PrefixSize);
882 mapAppendingVariable(*E.Data.AppendingGV.GV,
883 E.Data.AppendingGV.InitPrefix,
884 E.AppendingGVIsOldCtorDtor, makeArrayRef(NewInits));
885 break;
886 }
887 case WorklistEntry::MapAliasOrIFunc: {
888 GlobalValue *GV = E.Data.AliasOrIFunc.GV;
889 Constant *Target = mapConstant(E.Data.AliasOrIFunc.Target);
890 if (auto *GA = dyn_cast<GlobalAlias>(GV))
891 GA->setAliasee(Target);
892 else if (auto *GI = dyn_cast<GlobalIFunc>(GV))
893 GI->setResolver(Target);
894 else
895 llvm_unreachable("Not alias or ifunc");
896 break;
897 }
898 case WorklistEntry::RemapFunction:
899 remapFunction(*E.Data.RemapF);
900 break;
901 }
902 }
903 CurrentMCID = 0;
904
905 // Finish logic for block addresses now that all global values have been
906 // handled.
907 while (!DelayedBBs.empty()) {
908 DelayedBasicBlock DBB = DelayedBBs.pop_back_val();
909 BasicBlock *BB = cast_or_null<BasicBlock>(mapValue(DBB.OldBB));
910 DBB.TempBB->replaceAllUsesWith(BB ? BB : DBB.OldBB);
911 }
912 }
913
remapInstruction(Instruction * I)914 void Mapper::remapInstruction(Instruction *I) {
915 // Remap operands.
916 for (Use &Op : I->operands()) {
917 Value *V = mapValue(Op);
918 // If we aren't ignoring missing entries, assert that something happened.
919 if (V)
920 Op = V;
921 else
922 assert((Flags & RF_IgnoreMissingLocals) &&
923 "Referenced value not in value map!");
924 }
925
926 // Remap phi nodes' incoming blocks.
927 if (PHINode *PN = dyn_cast<PHINode>(I)) {
928 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
929 Value *V = mapValue(PN->getIncomingBlock(i));
930 // If we aren't ignoring missing entries, assert that something happened.
931 if (V)
932 PN->setIncomingBlock(i, cast<BasicBlock>(V));
933 else
934 assert((Flags & RF_IgnoreMissingLocals) &&
935 "Referenced block not in value map!");
936 }
937 }
938
939 // Remap attached metadata.
940 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
941 I->getAllMetadata(MDs);
942 for (const auto &MI : MDs) {
943 MDNode *Old = MI.second;
944 MDNode *New = cast_or_null<MDNode>(mapMetadata(Old));
945 if (New != Old)
946 I->setMetadata(MI.first, New);
947 }
948
949 if (!TypeMapper)
950 return;
951
952 // If the instruction's type is being remapped, do so now.
953 if (auto *CB = dyn_cast<CallBase>(I)) {
954 SmallVector<Type *, 3> Tys;
955 FunctionType *FTy = CB->getFunctionType();
956 Tys.reserve(FTy->getNumParams());
957 for (Type *Ty : FTy->params())
958 Tys.push_back(TypeMapper->remapType(Ty));
959 CB->mutateFunctionType(FunctionType::get(
960 TypeMapper->remapType(I->getType()), Tys, FTy->isVarArg()));
961
962 LLVMContext &C = CB->getContext();
963 AttributeList Attrs = CB->getAttributes();
964 for (unsigned i = 0; i < Attrs.getNumAttrSets(); ++i) {
965 for (int AttrIdx = Attribute::FirstTypeAttr;
966 AttrIdx <= Attribute::LastTypeAttr; AttrIdx++) {
967 Attribute::AttrKind TypedAttr = (Attribute::AttrKind)AttrIdx;
968 if (Type *Ty =
969 Attrs.getAttributeAtIndex(i, TypedAttr).getValueAsType()) {
970 Attrs = Attrs.replaceAttributeTypeAtIndex(C, i, TypedAttr,
971 TypeMapper->remapType(Ty));
972 break;
973 }
974 }
975 }
976 CB->setAttributes(Attrs);
977 return;
978 }
979 if (auto *AI = dyn_cast<AllocaInst>(I))
980 AI->setAllocatedType(TypeMapper->remapType(AI->getAllocatedType()));
981 if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) {
982 GEP->setSourceElementType(
983 TypeMapper->remapType(GEP->getSourceElementType()));
984 GEP->setResultElementType(
985 TypeMapper->remapType(GEP->getResultElementType()));
986 }
987 I->mutateType(TypeMapper->remapType(I->getType()));
988 }
989
remapGlobalObjectMetadata(GlobalObject & GO)990 void Mapper::remapGlobalObjectMetadata(GlobalObject &GO) {
991 SmallVector<std::pair<unsigned, MDNode *>, 8> MDs;
992 GO.getAllMetadata(MDs);
993 GO.clearMetadata();
994 for (const auto &I : MDs)
995 GO.addMetadata(I.first, *cast<MDNode>(mapMetadata(I.second)));
996 }
997
remapFunction(Function & F)998 void Mapper::remapFunction(Function &F) {
999 // Remap the operands.
1000 for (Use &Op : F.operands())
1001 if (Op)
1002 Op = mapValue(Op);
1003
1004 // Remap the metadata attachments.
1005 remapGlobalObjectMetadata(F);
1006
1007 // Remap the argument types.
1008 if (TypeMapper)
1009 for (Argument &A : F.args())
1010 A.mutateType(TypeMapper->remapType(A.getType()));
1011
1012 // Remap the instructions.
1013 for (BasicBlock &BB : F)
1014 for (Instruction &I : BB)
1015 remapInstruction(&I);
1016 }
1017
mapAppendingVariable(GlobalVariable & GV,Constant * InitPrefix,bool IsOldCtorDtor,ArrayRef<Constant * > NewMembers)1018 void Mapper::mapAppendingVariable(GlobalVariable &GV, Constant *InitPrefix,
1019 bool IsOldCtorDtor,
1020 ArrayRef<Constant *> NewMembers) {
1021 SmallVector<Constant *, 16> Elements;
1022 if (InitPrefix) {
1023 unsigned NumElements =
1024 cast<ArrayType>(InitPrefix->getType())->getNumElements();
1025 for (unsigned I = 0; I != NumElements; ++I)
1026 Elements.push_back(InitPrefix->getAggregateElement(I));
1027 }
1028
1029 PointerType *VoidPtrTy;
1030 Type *EltTy;
1031 if (IsOldCtorDtor) {
1032 // FIXME: This upgrade is done during linking to support the C API. See
1033 // also IRLinker::linkAppendingVarProto() in IRMover.cpp.
1034 VoidPtrTy = Type::getInt8Ty(GV.getContext())->getPointerTo();
1035 auto &ST = *cast<StructType>(NewMembers.front()->getType());
1036 Type *Tys[3] = {ST.getElementType(0), ST.getElementType(1), VoidPtrTy};
1037 EltTy = StructType::get(GV.getContext(), Tys, false);
1038 }
1039
1040 for (auto *V : NewMembers) {
1041 Constant *NewV;
1042 if (IsOldCtorDtor) {
1043 auto *S = cast<ConstantStruct>(V);
1044 auto *E1 = cast<Constant>(mapValue(S->getOperand(0)));
1045 auto *E2 = cast<Constant>(mapValue(S->getOperand(1)));
1046 Constant *Null = Constant::getNullValue(VoidPtrTy);
1047 NewV = ConstantStruct::get(cast<StructType>(EltTy), E1, E2, Null);
1048 } else {
1049 NewV = cast_or_null<Constant>(mapValue(V));
1050 }
1051 Elements.push_back(NewV);
1052 }
1053
1054 GV.setInitializer(
1055 ConstantArray::get(cast<ArrayType>(GV.getValueType()), Elements));
1056 }
1057
scheduleMapGlobalInitializer(GlobalVariable & GV,Constant & Init,unsigned MCID)1058 void Mapper::scheduleMapGlobalInitializer(GlobalVariable &GV, Constant &Init,
1059 unsigned MCID) {
1060 assert(AlreadyScheduled.insert(&GV).second && "Should not reschedule");
1061 assert(MCID < MCs.size() && "Invalid mapping context");
1062
1063 WorklistEntry WE;
1064 WE.Kind = WorklistEntry::MapGlobalInit;
1065 WE.MCID = MCID;
1066 WE.Data.GVInit.GV = &GV;
1067 WE.Data.GVInit.Init = &Init;
1068 Worklist.push_back(WE);
1069 }
1070
scheduleMapAppendingVariable(GlobalVariable & GV,Constant * InitPrefix,bool IsOldCtorDtor,ArrayRef<Constant * > NewMembers,unsigned MCID)1071 void Mapper::scheduleMapAppendingVariable(GlobalVariable &GV,
1072 Constant *InitPrefix,
1073 bool IsOldCtorDtor,
1074 ArrayRef<Constant *> NewMembers,
1075 unsigned MCID) {
1076 assert(AlreadyScheduled.insert(&GV).second && "Should not reschedule");
1077 assert(MCID < MCs.size() && "Invalid mapping context");
1078
1079 WorklistEntry WE;
1080 WE.Kind = WorklistEntry::MapAppendingVar;
1081 WE.MCID = MCID;
1082 WE.Data.AppendingGV.GV = &GV;
1083 WE.Data.AppendingGV.InitPrefix = InitPrefix;
1084 WE.AppendingGVIsOldCtorDtor = IsOldCtorDtor;
1085 WE.AppendingGVNumNewMembers = NewMembers.size();
1086 Worklist.push_back(WE);
1087 AppendingInits.append(NewMembers.begin(), NewMembers.end());
1088 }
1089
scheduleMapAliasOrIFunc(GlobalValue & GV,Constant & Target,unsigned MCID)1090 void Mapper::scheduleMapAliasOrIFunc(GlobalValue &GV, Constant &Target,
1091 unsigned MCID) {
1092 assert(AlreadyScheduled.insert(&GV).second && "Should not reschedule");
1093 assert((isa<GlobalAlias>(GV) || isa<GlobalIFunc>(GV)) &&
1094 "Should be alias or ifunc");
1095 assert(MCID < MCs.size() && "Invalid mapping context");
1096
1097 WorklistEntry WE;
1098 WE.Kind = WorklistEntry::MapAliasOrIFunc;
1099 WE.MCID = MCID;
1100 WE.Data.AliasOrIFunc.GV = &GV;
1101 WE.Data.AliasOrIFunc.Target = &Target;
1102 Worklist.push_back(WE);
1103 }
1104
scheduleRemapFunction(Function & F,unsigned MCID)1105 void Mapper::scheduleRemapFunction(Function &F, unsigned MCID) {
1106 assert(AlreadyScheduled.insert(&F).second && "Should not reschedule");
1107 assert(MCID < MCs.size() && "Invalid mapping context");
1108
1109 WorklistEntry WE;
1110 WE.Kind = WorklistEntry::RemapFunction;
1111 WE.MCID = MCID;
1112 WE.Data.RemapF = &F;
1113 Worklist.push_back(WE);
1114 }
1115
addFlags(RemapFlags Flags)1116 void Mapper::addFlags(RemapFlags Flags) {
1117 assert(!hasWorkToDo() && "Expected to have flushed the worklist");
1118 this->Flags = this->Flags | Flags;
1119 }
1120
getAsMapper(void * pImpl)1121 static Mapper *getAsMapper(void *pImpl) {
1122 return reinterpret_cast<Mapper *>(pImpl);
1123 }
1124
1125 namespace {
1126
1127 class FlushingMapper {
1128 Mapper &M;
1129
1130 public:
FlushingMapper(void * pImpl)1131 explicit FlushingMapper(void *pImpl) : M(*getAsMapper(pImpl)) {
1132 assert(!M.hasWorkToDo() && "Expected to be flushed");
1133 }
1134
~FlushingMapper()1135 ~FlushingMapper() { M.flush(); }
1136
operator ->() const1137 Mapper *operator->() const { return &M; }
1138 };
1139
1140 } // end anonymous namespace
1141
ValueMapper(ValueToValueMapTy & VM,RemapFlags Flags,ValueMapTypeRemapper * TypeMapper,ValueMaterializer * Materializer)1142 ValueMapper::ValueMapper(ValueToValueMapTy &VM, RemapFlags Flags,
1143 ValueMapTypeRemapper *TypeMapper,
1144 ValueMaterializer *Materializer)
1145 : pImpl(new Mapper(VM, Flags, TypeMapper, Materializer)) {}
1146
~ValueMapper()1147 ValueMapper::~ValueMapper() { delete getAsMapper(pImpl); }
1148
1149 unsigned
registerAlternateMappingContext(ValueToValueMapTy & VM,ValueMaterializer * Materializer)1150 ValueMapper::registerAlternateMappingContext(ValueToValueMapTy &VM,
1151 ValueMaterializer *Materializer) {
1152 return getAsMapper(pImpl)->registerAlternateMappingContext(VM, Materializer);
1153 }
1154
addFlags(RemapFlags Flags)1155 void ValueMapper::addFlags(RemapFlags Flags) {
1156 FlushingMapper(pImpl)->addFlags(Flags);
1157 }
1158
mapValue(const Value & V)1159 Value *ValueMapper::mapValue(const Value &V) {
1160 return FlushingMapper(pImpl)->mapValue(&V);
1161 }
1162
mapConstant(const Constant & C)1163 Constant *ValueMapper::mapConstant(const Constant &C) {
1164 return cast_or_null<Constant>(mapValue(C));
1165 }
1166
mapMetadata(const Metadata & MD)1167 Metadata *ValueMapper::mapMetadata(const Metadata &MD) {
1168 return FlushingMapper(pImpl)->mapMetadata(&MD);
1169 }
1170
mapMDNode(const MDNode & N)1171 MDNode *ValueMapper::mapMDNode(const MDNode &N) {
1172 return cast_or_null<MDNode>(mapMetadata(N));
1173 }
1174
remapInstruction(Instruction & I)1175 void ValueMapper::remapInstruction(Instruction &I) {
1176 FlushingMapper(pImpl)->remapInstruction(&I);
1177 }
1178
remapFunction(Function & F)1179 void ValueMapper::remapFunction(Function &F) {
1180 FlushingMapper(pImpl)->remapFunction(F);
1181 }
1182
scheduleMapGlobalInitializer(GlobalVariable & GV,Constant & Init,unsigned MCID)1183 void ValueMapper::scheduleMapGlobalInitializer(GlobalVariable &GV,
1184 Constant &Init,
1185 unsigned MCID) {
1186 getAsMapper(pImpl)->scheduleMapGlobalInitializer(GV, Init, MCID);
1187 }
1188
scheduleMapAppendingVariable(GlobalVariable & GV,Constant * InitPrefix,bool IsOldCtorDtor,ArrayRef<Constant * > NewMembers,unsigned MCID)1189 void ValueMapper::scheduleMapAppendingVariable(GlobalVariable &GV,
1190 Constant *InitPrefix,
1191 bool IsOldCtorDtor,
1192 ArrayRef<Constant *> NewMembers,
1193 unsigned MCID) {
1194 getAsMapper(pImpl)->scheduleMapAppendingVariable(
1195 GV, InitPrefix, IsOldCtorDtor, NewMembers, MCID);
1196 }
1197
scheduleMapGlobalAlias(GlobalAlias & GA,Constant & Aliasee,unsigned MCID)1198 void ValueMapper::scheduleMapGlobalAlias(GlobalAlias &GA, Constant &Aliasee,
1199 unsigned MCID) {
1200 getAsMapper(pImpl)->scheduleMapAliasOrIFunc(GA, Aliasee, MCID);
1201 }
1202
scheduleMapGlobalIFunc(GlobalIFunc & GI,Constant & Resolver,unsigned MCID)1203 void ValueMapper::scheduleMapGlobalIFunc(GlobalIFunc &GI, Constant &Resolver,
1204 unsigned MCID) {
1205 getAsMapper(pImpl)->scheduleMapAliasOrIFunc(GI, Resolver, MCID);
1206 }
1207
scheduleRemapFunction(Function & F,unsigned MCID)1208 void ValueMapper::scheduleRemapFunction(Function &F, unsigned MCID) {
1209 getAsMapper(pImpl)->scheduleRemapFunction(F, MCID);
1210 }
1211