1 //===- ValueMapper.cpp - Interface shared by lib/Transforms/Utils ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the MapValue function, which is shared by various parts of 11 // the lib/Transforms/Utils library. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Utils/ValueMapper.h" 16 #include "llvm/ADT/DenseSet.h" 17 #include "llvm/IR/CallSite.h" 18 #include "llvm/IR/Constants.h" 19 #include "llvm/IR/DebugInfoMetadata.h" 20 #include "llvm/IR/Function.h" 21 #include "llvm/IR/GlobalAlias.h" 22 #include "llvm/IR/GlobalVariable.h" 23 #include "llvm/IR/InlineAsm.h" 24 #include "llvm/IR/Instructions.h" 25 #include "llvm/IR/Metadata.h" 26 #include "llvm/IR/Operator.h" 27 using namespace llvm; 28 29 // Out of line method to get vtable etc for class. 30 void ValueMapTypeRemapper::anchor() {} 31 void ValueMaterializer::anchor() {} 32 void ValueMaterializer::materializeInitFor(GlobalValue *New, GlobalValue *Old) { 33 } 34 35 namespace { 36 37 /// A basic block used in a BlockAddress whose function body is not yet 38 /// materialized. 39 struct DelayedBasicBlock { 40 BasicBlock *OldBB; 41 std::unique_ptr<BasicBlock> TempBB; 42 43 // Explicit move for MSVC. 44 DelayedBasicBlock(DelayedBasicBlock &&X) 45 : OldBB(std::move(X.OldBB)), TempBB(std::move(X.TempBB)) {} 46 DelayedBasicBlock &operator=(DelayedBasicBlock &&X) { 47 OldBB = std::move(X.OldBB); 48 TempBB = std::move(X.TempBB); 49 return *this; 50 } 51 52 DelayedBasicBlock(const BlockAddress &Old) 53 : OldBB(Old.getBasicBlock()), 54 TempBB(BasicBlock::Create(Old.getContext())) {} 55 }; 56 57 struct WorklistEntry { 58 enum EntryKind { 59 MapGlobalInit, 60 MapAppendingVar, 61 MapGlobalAliasee, 62 RemapFunction 63 }; 64 struct GVInitTy { 65 GlobalVariable *GV; 66 Constant *Init; 67 }; 68 struct AppendingGVTy { 69 GlobalVariable *GV; 70 Constant *InitPrefix; 71 }; 72 struct GlobalAliaseeTy { 73 GlobalAlias *GA; 74 Constant *Aliasee; 75 }; 76 77 unsigned Kind : 2; 78 unsigned MCID : 29; 79 unsigned AppendingGVIsOldCtorDtor : 1; 80 unsigned AppendingGVNumNewMembers; 81 union { 82 GVInitTy GVInit; 83 AppendingGVTy AppendingGV; 84 GlobalAliaseeTy GlobalAliasee; 85 Function *RemapF; 86 } Data; 87 }; 88 89 struct MappingContext { 90 ValueToValueMapTy *VM; 91 ValueMaterializer *Materializer = nullptr; 92 93 /// Construct a MappingContext with a value map and materializer. 94 explicit MappingContext(ValueToValueMapTy &VM, 95 ValueMaterializer *Materializer = nullptr) 96 : VM(&VM), Materializer(Materializer) {} 97 }; 98 99 class MDNodeMapper; 100 class Mapper { 101 friend class MDNodeMapper; 102 103 #ifndef NDEBUG 104 DenseSet<GlobalValue *> AlreadyScheduled; 105 #endif 106 107 RemapFlags Flags; 108 ValueMapTypeRemapper *TypeMapper; 109 unsigned CurrentMCID = 0; 110 SmallVector<MappingContext, 2> MCs; 111 SmallVector<WorklistEntry, 4> Worklist; 112 SmallVector<DelayedBasicBlock, 1> DelayedBBs; 113 SmallVector<Constant *, 16> AppendingInits; 114 115 public: 116 Mapper(ValueToValueMapTy &VM, RemapFlags Flags, 117 ValueMapTypeRemapper *TypeMapper, ValueMaterializer *Materializer) 118 : Flags(Flags), TypeMapper(TypeMapper), 119 MCs(1, MappingContext(VM, Materializer)) {} 120 121 /// ValueMapper should explicitly call \a flush() before destruction. 122 ~Mapper() { assert(!hasWorkToDo() && "Expected to be flushed"); } 123 124 bool hasWorkToDo() const { return !Worklist.empty(); } 125 126 unsigned 127 registerAlternateMappingContext(ValueToValueMapTy &VM, 128 ValueMaterializer *Materializer = nullptr) { 129 MCs.push_back(MappingContext(VM, Materializer)); 130 return MCs.size() - 1; 131 } 132 133 void addFlags(RemapFlags Flags); 134 135 Value *mapValue(const Value *V); 136 void remapInstruction(Instruction *I); 137 void remapFunction(Function &F); 138 139 Constant *mapConstant(const Constant *C) { 140 return cast_or_null<Constant>(mapValue(C)); 141 } 142 143 /// Map metadata. 144 /// 145 /// Find the mapping for MD. Guarantees that the return will be resolved 146 /// (not an MDNode, or MDNode::isResolved() returns true). 147 Metadata *mapMetadata(const Metadata *MD); 148 149 // Map LocalAsMetadata, which never gets memoized. 150 // 151 // If the referenced local is not mapped, the principled return is nullptr. 152 // However, optimization passes sometimes move metadata operands *before* the 153 // SSA values they reference. To prevent crashes in \a RemapInstruction(), 154 // return "!{}" when RF_IgnoreMissingLocals is not set. 155 // 156 // \note Adding a mapping for LocalAsMetadata is unsupported. Add a mapping 157 // to the value map for the SSA value in question instead. 158 // 159 // FIXME: Once we have a verifier check for forward references to SSA values 160 // through metadata operands, always return nullptr on unmapped locals. 161 Metadata *mapLocalAsMetadata(const LocalAsMetadata &LAM); 162 163 void scheduleMapGlobalInitializer(GlobalVariable &GV, Constant &Init, 164 unsigned MCID); 165 void scheduleMapAppendingVariable(GlobalVariable &GV, Constant *InitPrefix, 166 bool IsOldCtorDtor, 167 ArrayRef<Constant *> NewMembers, 168 unsigned MCID); 169 void scheduleMapGlobalAliasee(GlobalAlias &GA, Constant &Aliasee, 170 unsigned MCID); 171 void scheduleRemapFunction(Function &F, unsigned MCID); 172 173 void flush(); 174 175 private: 176 void mapGlobalInitializer(GlobalVariable &GV, Constant &Init); 177 void mapAppendingVariable(GlobalVariable &GV, Constant *InitPrefix, 178 bool IsOldCtorDtor, 179 ArrayRef<Constant *> NewMembers); 180 void mapGlobalAliasee(GlobalAlias &GA, Constant &Aliasee); 181 void remapFunction(Function &F, ValueToValueMapTy &VM); 182 183 ValueToValueMapTy &getVM() { return *MCs[CurrentMCID].VM; } 184 ValueMaterializer *getMaterializer() { return MCs[CurrentMCID].Materializer; } 185 186 Value *mapBlockAddress(const BlockAddress &BA); 187 188 /// Map metadata that doesn't require visiting operands. 189 Optional<Metadata *> mapSimpleMetadata(const Metadata *MD); 190 191 Metadata *mapToMetadata(const Metadata *Key, Metadata *Val); 192 Metadata *mapToSelf(const Metadata *MD); 193 }; 194 195 class MDNodeMapper { 196 Mapper &M; 197 198 /// Data about a node in \a UniquedGraph. 199 struct Data { 200 bool HasChanged = false; 201 unsigned ID = ~0u; 202 TempMDNode Placeholder; 203 204 Data() {} 205 Data(Data &&X) 206 : HasChanged(std::move(X.HasChanged)), ID(std::move(X.ID)), 207 Placeholder(std::move(X.Placeholder)) {} 208 Data &operator=(Data &&X) { 209 HasChanged = std::move(X.HasChanged); 210 ID = std::move(X.ID); 211 Placeholder = std::move(X.Placeholder); 212 return *this; 213 } 214 }; 215 216 /// A graph of uniqued nodes. 217 struct UniquedGraph { 218 SmallDenseMap<const Metadata *, Data, 32> Info; // Node properties. 219 SmallVector<MDNode *, 16> POT; // Post-order traversal. 220 221 /// Propagate changed operands through the post-order traversal. 222 /// 223 /// Iteratively update \a Data::HasChanged for each node based on \a 224 /// Data::HasChanged of its operands, until fixed point. 225 void propagateChanges(); 226 227 /// Get a forward reference to a node to use as an operand. 228 Metadata &getFwdReference(MDNode &Op); 229 }; 230 231 /// An entry in the worklist for the post-order traversal. 232 struct POTWorklistEntry { 233 MDNode *N; ///< Current node. 234 const MDOperand *Op; ///< Current operand of \c N. 235 236 /// Keep a flag of whether operands have changed in the worklist to avoid 237 /// hitting the map in \a UniquedGraph. 238 bool HasChanged = false; 239 240 POTWorklistEntry(MDNode &N) : N(&N), Op(N.op_begin()) {} 241 }; 242 243 /// Worklist of distinct nodes whose operands need to be remapped. 244 SmallVector<MDNode *, 16> DistinctWorklist; 245 246 // Storage for a UniquedGraph. 247 SmallDenseMap<const Metadata *, Data, 32> InfoStorage; 248 SmallVector<MDNode *, 16> POTStorage; 249 250 public: 251 MDNodeMapper(Mapper &M) : M(M) {} 252 253 /// Map a metadata node (and its transitive operands). 254 /// 255 /// Map all the (unmapped) nodes in the subgraph under \c N. The iterative 256 /// algorithm handles distinct nodes and uniqued node subgraphs using 257 /// different strategies. 258 /// 259 /// Distinct nodes are immediately mapped and added to \a DistinctWorklist 260 /// using \a mapDistinctNode(). Their mapping can always be computed 261 /// immediately without visiting operands, even if their operands change. 262 /// 263 /// The mapping for uniqued nodes depends on whether their operands change. 264 /// \a mapTopLevelUniquedNode() traverses the transitive uniqued subgraph of 265 /// a node to calculate uniqued node mappings in bulk. Distinct leafs are 266 /// added to \a DistinctWorklist with \a mapDistinctNode(). 267 /// 268 /// After mapping \c N itself, this function remaps the operands of the 269 /// distinct nodes in \a DistinctWorklist until the entire subgraph under \c 270 /// N has been mapped. 271 Metadata *map(const MDNode &N); 272 273 private: 274 /// Map a top-level uniqued node and the uniqued subgraph underneath it. 275 /// 276 /// This builds up a post-order traversal of the (unmapped) uniqued subgraph 277 /// underneath \c FirstN and calculates the nodes' mapping. Each node uses 278 /// the identity mapping (\a Mapper::mapToSelf()) as long as all of its 279 /// operands uses the identity mapping. 280 /// 281 /// The algorithm works as follows: 282 /// 283 /// 1. \a createPOT(): traverse the uniqued subgraph under \c FirstN and 284 /// save the post-order traversal in the given \a UniquedGraph, tracking 285 /// nodes' operands change. 286 /// 287 /// 2. \a UniquedGraph::propagateChanges(): propagate changed operands 288 /// through the \a UniquedGraph until fixed point, following the rule 289 /// that if a node changes, any node that references must also change. 290 /// 291 /// 3. \a mapNodesInPOT(): map the uniqued nodes, creating new uniqued nodes 292 /// (referencing new operands) where necessary. 293 Metadata *mapTopLevelUniquedNode(const MDNode &FirstN); 294 295 /// Try to map the operand of an \a MDNode. 296 /// 297 /// If \c Op is already mapped, return the mapping. If it's not an \a 298 /// MDNode, compute and return the mapping. If it's a distinct \a MDNode, 299 /// return the result of \a mapDistinctNode(). 300 /// 301 /// \return None if \c Op is an unmapped uniqued \a MDNode. 302 /// \post getMappedOp(Op) only returns None if this returns None. 303 Optional<Metadata *> tryToMapOperand(const Metadata *Op); 304 305 /// Map a distinct node. 306 /// 307 /// Return the mapping for the distinct node \c N, saving the result in \a 308 /// DistinctWorklist for later remapping. 309 /// 310 /// \pre \c N is not yet mapped. 311 /// \pre \c N.isDistinct(). 312 MDNode *mapDistinctNode(const MDNode &N); 313 314 /// Get a previously mapped node. 315 Optional<Metadata *> getMappedOp(const Metadata *Op) const; 316 317 /// Create a post-order traversal of an unmapped uniqued node subgraph. 318 /// 319 /// This traverses the metadata graph deeply enough to map \c FirstN. It 320 /// uses \a tryToMapOperand() (via \a Mapper::mapSimplifiedNode()), so any 321 /// metadata that has already been mapped will not be part of the POT. 322 /// 323 /// Each node that has a changed operand from outside the graph (e.g., a 324 /// distinct node, an already-mapped uniqued node, or \a ConstantAsMetadata) 325 /// is marked with \a Data::HasChanged. 326 /// 327 /// \return \c true if any nodes in \c G have \a Data::HasChanged. 328 /// \post \c G.POT is a post-order traversal ending with \c FirstN. 329 /// \post \a Data::hasChanged in \c G.Info indicates whether any node needs 330 /// to change because of operands outside the graph. 331 bool createPOT(UniquedGraph &G, const MDNode &FirstN); 332 333 /// Visit an operand of a node in the POT. 334 /// 335 /// Return \c true iff a new node was pushed onto \c Worklist. 336 bool visitOperand(UniquedGraph &G, Metadata *Op, 337 SmallVectorImpl<POTWorklistEntry> &Worklist); 338 339 /// Map all the nodes in the given uniqued graph. 340 /// 341 /// This visits all the nodes in \c G in post-order, using the identity 342 /// mapping or creating a new node depending on \a Data::HasChanged. 343 /// 344 /// \pre \a getMappedOp() returns None for nodes in \c G, but not for any of 345 /// their operands outside of \c G. 346 /// \pre \a Data::HasChanged is true for a node in \c G iff any of its 347 /// operands have changed. 348 /// \post \a getMappedOp() returns the mapped node for every node in \c G. 349 void mapNodesInPOT(UniquedGraph &G); 350 351 /// Remap a node's operands using the given functor. 352 /// 353 /// Iterate through the operands of \c N and update them in place using \c 354 /// mapOperand. 355 /// 356 /// \pre N.isDistinct() or N.isTemporary(). 357 template <class OperandMapper> 358 void remapOperands(MDNode &N, OperandMapper mapOperand); 359 }; 360 361 } // end namespace 362 363 Value *Mapper::mapValue(const Value *V) { 364 ValueToValueMapTy::iterator I = getVM().find(V); 365 366 // If the value already exists in the map, use it. 367 if (I != getVM().end()) { 368 assert(I->second && "Unexpected null mapping"); 369 return I->second; 370 } 371 372 // If we have a materializer and it can materialize a value, use that. 373 if (auto *Materializer = getMaterializer()) { 374 if (Value *NewV = 375 Materializer->materializeDeclFor(const_cast<Value *>(V))) { 376 getVM()[V] = NewV; 377 if (auto *NewGV = dyn_cast<GlobalValue>(NewV)) 378 Materializer->materializeInitFor( 379 NewGV, cast<GlobalValue>(const_cast<Value *>(V))); 380 return NewV; 381 } 382 } 383 384 // Global values do not need to be seeded into the VM if they 385 // are using the identity mapping. 386 if (isa<GlobalValue>(V)) { 387 if (Flags & RF_NullMapMissingGlobalValues) 388 return nullptr; 389 return getVM()[V] = const_cast<Value *>(V); 390 } 391 392 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 393 // Inline asm may need *type* remapping. 394 FunctionType *NewTy = IA->getFunctionType(); 395 if (TypeMapper) { 396 NewTy = cast<FunctionType>(TypeMapper->remapType(NewTy)); 397 398 if (NewTy != IA->getFunctionType()) 399 V = InlineAsm::get(NewTy, IA->getAsmString(), IA->getConstraintString(), 400 IA->hasSideEffects(), IA->isAlignStack()); 401 } 402 403 return getVM()[V] = const_cast<Value *>(V); 404 } 405 406 if (const auto *MDV = dyn_cast<MetadataAsValue>(V)) { 407 const Metadata *MD = MDV->getMetadata(); 408 409 if (auto *LAM = dyn_cast<LocalAsMetadata>(MD)) { 410 // Look through to grab the local value. 411 if (Value *LV = mapValue(LAM->getValue())) { 412 if (V == LAM->getValue()) 413 return const_cast<Value *>(V); 414 return MetadataAsValue::get(V->getContext(), ValueAsMetadata::get(LV)); 415 } 416 417 // FIXME: always return nullptr once Verifier::verifyDominatesUse() 418 // ensures metadata operands only reference defined SSA values. 419 return (Flags & RF_IgnoreMissingLocals) 420 ? nullptr 421 : MetadataAsValue::get(V->getContext(), 422 MDTuple::get(V->getContext(), None)); 423 } 424 425 // If this is a module-level metadata and we know that nothing at the module 426 // level is changing, then use an identity mapping. 427 if (Flags & RF_NoModuleLevelChanges) 428 return getVM()[V] = const_cast<Value *>(V); 429 430 // Map the metadata and turn it into a value. 431 auto *MappedMD = mapMetadata(MD); 432 if (MD == MappedMD) 433 return getVM()[V] = const_cast<Value *>(V); 434 return getVM()[V] = MetadataAsValue::get(V->getContext(), MappedMD); 435 } 436 437 // Okay, this either must be a constant (which may or may not be mappable) or 438 // is something that is not in the mapping table. 439 Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V)); 440 if (!C) 441 return nullptr; 442 443 if (BlockAddress *BA = dyn_cast<BlockAddress>(C)) 444 return mapBlockAddress(*BA); 445 446 // Otherwise, we have some other constant to remap. Start by checking to see 447 // if all operands have an identity remapping. 448 unsigned OpNo = 0, NumOperands = C->getNumOperands(); 449 Value *Mapped = nullptr; 450 for (; OpNo != NumOperands; ++OpNo) { 451 Value *Op = C->getOperand(OpNo); 452 Mapped = mapValue(Op); 453 if (Mapped != C) break; 454 } 455 456 // See if the type mapper wants to remap the type as well. 457 Type *NewTy = C->getType(); 458 if (TypeMapper) 459 NewTy = TypeMapper->remapType(NewTy); 460 461 // If the result type and all operands match up, then just insert an identity 462 // mapping. 463 if (OpNo == NumOperands && NewTy == C->getType()) 464 return getVM()[V] = C; 465 466 // Okay, we need to create a new constant. We've already processed some or 467 // all of the operands, set them all up now. 468 SmallVector<Constant*, 8> Ops; 469 Ops.reserve(NumOperands); 470 for (unsigned j = 0; j != OpNo; ++j) 471 Ops.push_back(cast<Constant>(C->getOperand(j))); 472 473 // If one of the operands mismatch, push it and the other mapped operands. 474 if (OpNo != NumOperands) { 475 Ops.push_back(cast<Constant>(Mapped)); 476 477 // Map the rest of the operands that aren't processed yet. 478 for (++OpNo; OpNo != NumOperands; ++OpNo) 479 Ops.push_back(cast<Constant>(mapValue(C->getOperand(OpNo)))); 480 } 481 Type *NewSrcTy = nullptr; 482 if (TypeMapper) 483 if (auto *GEPO = dyn_cast<GEPOperator>(C)) 484 NewSrcTy = TypeMapper->remapType(GEPO->getSourceElementType()); 485 486 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) 487 return getVM()[V] = CE->getWithOperands(Ops, NewTy, false, NewSrcTy); 488 if (isa<ConstantArray>(C)) 489 return getVM()[V] = ConstantArray::get(cast<ArrayType>(NewTy), Ops); 490 if (isa<ConstantStruct>(C)) 491 return getVM()[V] = ConstantStruct::get(cast<StructType>(NewTy), Ops); 492 if (isa<ConstantVector>(C)) 493 return getVM()[V] = ConstantVector::get(Ops); 494 // If this is a no-operand constant, it must be because the type was remapped. 495 if (isa<UndefValue>(C)) 496 return getVM()[V] = UndefValue::get(NewTy); 497 if (isa<ConstantAggregateZero>(C)) 498 return getVM()[V] = ConstantAggregateZero::get(NewTy); 499 assert(isa<ConstantPointerNull>(C)); 500 return getVM()[V] = ConstantPointerNull::get(cast<PointerType>(NewTy)); 501 } 502 503 Value *Mapper::mapBlockAddress(const BlockAddress &BA) { 504 Function *F = cast<Function>(mapValue(BA.getFunction())); 505 506 // F may not have materialized its initializer. In that case, create a 507 // dummy basic block for now, and replace it once we've materialized all 508 // the initializers. 509 BasicBlock *BB; 510 if (F->empty()) { 511 DelayedBBs.push_back(DelayedBasicBlock(BA)); 512 BB = DelayedBBs.back().TempBB.get(); 513 } else { 514 BB = cast_or_null<BasicBlock>(mapValue(BA.getBasicBlock())); 515 } 516 517 return getVM()[&BA] = BlockAddress::get(F, BB ? BB : BA.getBasicBlock()); 518 } 519 520 Metadata *Mapper::mapToMetadata(const Metadata *Key, Metadata *Val) { 521 getVM().MD()[Key].reset(Val); 522 return Val; 523 } 524 525 Metadata *Mapper::mapToSelf(const Metadata *MD) { 526 return mapToMetadata(MD, const_cast<Metadata *>(MD)); 527 } 528 529 Optional<Metadata *> MDNodeMapper::tryToMapOperand(const Metadata *Op) { 530 if (!Op) 531 return nullptr; 532 533 if (Optional<Metadata *> MappedOp = M.mapSimpleMetadata(Op)) { 534 #ifndef NDEBUG 535 if (auto *CMD = dyn_cast<ConstantAsMetadata>(Op)) 536 assert((!*MappedOp || M.getVM().count(CMD->getValue()) || 537 M.getVM().getMappedMD(Op)) && 538 "Expected Value to be memoized"); 539 else 540 assert((isa<MDString>(Op) || M.getVM().getMappedMD(Op)) && 541 "Expected result to be memoized"); 542 #endif 543 return *MappedOp; 544 } 545 546 const MDNode &N = *cast<MDNode>(Op); 547 if (N.isDistinct()) 548 return mapDistinctNode(N); 549 return None; 550 } 551 552 MDNode *MDNodeMapper::mapDistinctNode(const MDNode &N) { 553 assert(N.isDistinct() && "Expected a distinct node"); 554 assert(!M.getVM().getMappedMD(&N) && "Expected an unmapped node"); 555 DistinctWorklist.push_back(cast<MDNode>( 556 (M.Flags & RF_MoveDistinctMDs) 557 ? M.mapToSelf(&N) 558 : M.mapToMetadata(&N, MDNode::replaceWithDistinct(N.clone())))); 559 return DistinctWorklist.back(); 560 } 561 562 static ConstantAsMetadata *wrapConstantAsMetadata(const ConstantAsMetadata &CMD, 563 Value *MappedV) { 564 if (CMD.getValue() == MappedV) 565 return const_cast<ConstantAsMetadata *>(&CMD); 566 return MappedV ? ConstantAsMetadata::getConstant(MappedV) : nullptr; 567 } 568 569 Optional<Metadata *> MDNodeMapper::getMappedOp(const Metadata *Op) const { 570 if (!Op) 571 return nullptr; 572 573 if (Optional<Metadata *> MappedOp = M.getVM().getMappedMD(Op)) 574 return *MappedOp; 575 576 if (isa<MDString>(Op)) 577 return const_cast<Metadata *>(Op); 578 579 if (auto *CMD = dyn_cast<ConstantAsMetadata>(Op)) 580 return wrapConstantAsMetadata(*CMD, M.getVM().lookup(CMD->getValue())); 581 582 return None; 583 } 584 585 Metadata &MDNodeMapper::UniquedGraph::getFwdReference(MDNode &Op) { 586 auto Where = Info.find(&Op); 587 assert(Where != Info.end() && "Expected a valid reference"); 588 589 auto &OpD = Where->second; 590 if (!OpD.HasChanged) 591 return Op; 592 593 // Lazily construct a temporary node. 594 if (!OpD.Placeholder) 595 OpD.Placeholder = Op.clone(); 596 597 return *OpD.Placeholder; 598 } 599 600 template <class OperandMapper> 601 void MDNodeMapper::remapOperands(MDNode &N, OperandMapper mapOperand) { 602 assert(!N.isUniqued() && "Expected distinct or temporary nodes"); 603 for (unsigned I = 0, E = N.getNumOperands(); I != E; ++I) { 604 Metadata *Old = N.getOperand(I); 605 Metadata *New = mapOperand(Old); 606 607 if (Old != New) 608 N.replaceOperandWith(I, New); 609 } 610 } 611 612 bool MDNodeMapper::createPOT(UniquedGraph &G, const MDNode &FirstN) { 613 assert(G.Info.empty() && "Expected a fresh traversal"); 614 assert(FirstN.isUniqued() && "Expected uniqued node in POT"); 615 616 // Construct a post-order traversal of the uniqued subgraph under FirstN. 617 bool AnyChanges = false; 618 SmallVector<POTWorklistEntry, 16> Worklist; 619 Worklist.push_back(POTWorklistEntry(const_cast<MDNode &>(FirstN))); 620 (void)G.Info[&FirstN]; 621 while (!Worklist.empty()) { 622 MDNode &N = *Worklist.back().N; 623 const MDOperand *&Op = Worklist.back().Op; // Careful of lifetime... 624 assert(N.isUniqued() && "Expected only uniqued nodes in POT"); 625 626 // Pick up the traversal from Op and continue. Since this is a DFS, pause 627 // as soon as a new node is pushed onto the worklist. 628 bool DidWorklistSizeChange = false; 629 for (const MDOperand *E = N.op_end(); Op != E;) { 630 assert(*Op != &N && "Uniqued nodes cannot have self-references"); 631 if (visitOperand(G, *Op++, Worklist)) { 632 DidWorklistSizeChange = true; 633 break; 634 } 635 } 636 if (DidWorklistSizeChange) 637 continue; 638 639 // All operands of N have been visited. Push N into the POT. 640 auto &D = G.Info[&N]; 641 AnyChanges |= D.HasChanged = Worklist.pop_back_val().HasChanged; 642 D.ID = G.POT.size(); 643 G.POT.push_back(&N); 644 } 645 return AnyChanges; 646 } 647 648 bool MDNodeMapper::visitOperand(UniquedGraph &G, Metadata *Op, 649 SmallVectorImpl<POTWorklistEntry> &Worklist) { 650 // Try to map Op, and check it for changes. 651 if (Optional<Metadata *> MappedOp = tryToMapOperand(Op)) { 652 Worklist.back().HasChanged |= Op != *MappedOp; 653 return false; 654 } 655 656 // Push Op onto the Worklist unless it's already in G. 657 MDNode &OpN = *cast<MDNode>(Op); 658 assert(OpN.isUniqued() && 659 "Only uniqued operands cannot be mapped immediately"); 660 if (!G.Info.insert(std::make_pair(&OpN, Data())).second) 661 return false; 662 663 Worklist.push_back(POTWorklistEntry(OpN)); 664 return true; 665 } 666 667 void MDNodeMapper::UniquedGraph::propagateChanges() { 668 bool AnyChanges; 669 do { 670 AnyChanges = false; 671 for (MDNode *N : POT) { 672 auto &D = Info[N]; 673 if (D.HasChanged) 674 continue; 675 676 if (!llvm::any_of(N->operands(), [&](const Metadata *Op) { 677 auto Where = Info.find(Op); 678 return Where != Info.end() && Where->second.HasChanged; 679 })) 680 continue; 681 682 AnyChanges = D.HasChanged = true; 683 } 684 } while (AnyChanges); 685 } 686 687 void MDNodeMapper::mapNodesInPOT(UniquedGraph &G) { 688 // Construct uniqued nodes, building forward references as necessary. 689 SmallVector<MDNode *, 16> CyclicNodes; 690 for (auto *N : G.POT) { 691 auto &D = G.Info[N]; 692 if (!D.HasChanged) { 693 // The node hasn't changed. 694 M.mapToSelf(N); 695 continue; 696 } 697 698 // Remember whether this node had a placeholder. 699 bool HadPlaceholder(D.Placeholder); 700 701 // Clone the uniqued node and remap the operands. 702 TempMDNode ClonedN = D.Placeholder ? std::move(D.Placeholder) : N->clone(); 703 remapOperands(*ClonedN, [this, &D, &G](Metadata *Old) { 704 if (Optional<Metadata *> MappedOp = getMappedOp(Old)) 705 return *MappedOp; 706 assert(G.Info[Old].ID > D.ID && "Expected a forward reference"); 707 return &G.getFwdReference(*cast<MDNode>(Old)); 708 }); 709 710 auto *NewN = MDNode::replaceWithUniqued(std::move(ClonedN)); 711 M.mapToMetadata(N, NewN); 712 713 // Nodes that were referenced out of order in the POT are involved in a 714 // uniquing cycle. 715 if (HadPlaceholder) 716 CyclicNodes.push_back(NewN); 717 } 718 719 // Resolve cycles. 720 for (auto *N : CyclicNodes) 721 if (!N->isResolved()) 722 N->resolveCycles(); 723 } 724 725 Metadata *MDNodeMapper::map(const MDNode &N) { 726 assert(DistinctWorklist.empty() && "MDNodeMapper::map is not recursive"); 727 assert(!(M.Flags & RF_NoModuleLevelChanges) && 728 "MDNodeMapper::map assumes module-level changes"); 729 730 // Require resolved nodes whenever metadata might be remapped. 731 assert(N.isResolved() && "Unexpected unresolved node"); 732 733 Metadata *MappedN = 734 N.isUniqued() ? mapTopLevelUniquedNode(N) : mapDistinctNode(N); 735 while (!DistinctWorklist.empty()) 736 remapOperands(*DistinctWorklist.pop_back_val(), [this](Metadata *Old) { 737 if (Optional<Metadata *> MappedOp = tryToMapOperand(Old)) 738 return *MappedOp; 739 return mapTopLevelUniquedNode(*cast<MDNode>(Old)); 740 }); 741 return MappedN; 742 } 743 744 Metadata *MDNodeMapper::mapTopLevelUniquedNode(const MDNode &FirstN) { 745 assert(FirstN.isUniqued() && "Expected uniqued node"); 746 747 // Create a post-order traversal of uniqued nodes under FirstN. 748 UniquedGraph G; 749 if (!createPOT(G, FirstN)) { 750 // Return early if no nodes have changed. 751 for (const MDNode *N : G.POT) 752 M.mapToSelf(N); 753 return &const_cast<MDNode &>(FirstN); 754 } 755 756 // Update graph with all nodes that have changed. 757 G.propagateChanges(); 758 759 // Map all the nodes in the graph. 760 mapNodesInPOT(G); 761 762 // Return the original node, remapped. 763 return *getMappedOp(&FirstN); 764 } 765 766 namespace { 767 768 struct MapMetadataDisabler { 769 ValueToValueMapTy &VM; 770 771 MapMetadataDisabler(ValueToValueMapTy &VM) : VM(VM) { 772 VM.disableMapMetadata(); 773 } 774 ~MapMetadataDisabler() { VM.enableMapMetadata(); } 775 }; 776 777 } // end namespace 778 779 Optional<Metadata *> Mapper::mapSimpleMetadata(const Metadata *MD) { 780 // If the value already exists in the map, use it. 781 if (Optional<Metadata *> NewMD = getVM().getMappedMD(MD)) 782 return *NewMD; 783 784 if (isa<MDString>(MD)) 785 return const_cast<Metadata *>(MD); 786 787 // This is a module-level metadata. If nothing at the module level is 788 // changing, use an identity mapping. 789 if ((Flags & RF_NoModuleLevelChanges)) 790 return const_cast<Metadata *>(MD); 791 792 if (auto *CMD = dyn_cast<ConstantAsMetadata>(MD)) { 793 // Disallow recursion into metadata mapping through mapValue. 794 MapMetadataDisabler MMD(getVM()); 795 796 // Don't memoize ConstantAsMetadata. Instead of lasting until the 797 // LLVMContext is destroyed, they can be deleted when the GlobalValue they 798 // reference is destructed. These aren't super common, so the extra 799 // indirection isn't that expensive. 800 return wrapConstantAsMetadata(*CMD, mapValue(CMD->getValue())); 801 } 802 803 assert(isa<MDNode>(MD) && "Expected a metadata node"); 804 805 return None; 806 } 807 808 Metadata *Mapper::mapLocalAsMetadata(const LocalAsMetadata &LAM) { 809 // Lookup the mapping for the value itself, and return the appropriate 810 // metadata. 811 if (Value *V = mapValue(LAM.getValue())) { 812 if (V == LAM.getValue()) 813 return const_cast<LocalAsMetadata *>(&LAM); 814 return ValueAsMetadata::get(V); 815 } 816 817 // FIXME: always return nullptr once Verifier::verifyDominatesUse() ensures 818 // metadata operands only reference defined SSA values. 819 return (Flags & RF_IgnoreMissingLocals) 820 ? nullptr 821 : MDTuple::get(LAM.getContext(), None); 822 } 823 824 Metadata *Mapper::mapMetadata(const Metadata *MD) { 825 assert(MD && "Expected valid metadata"); 826 assert(!isa<LocalAsMetadata>(MD) && "Unexpected local metadata"); 827 828 if (Optional<Metadata *> NewMD = mapSimpleMetadata(MD)) 829 return *NewMD; 830 831 return MDNodeMapper(*this).map(*cast<MDNode>(MD)); 832 } 833 834 void Mapper::flush() { 835 // Flush out the worklist of global values. 836 while (!Worklist.empty()) { 837 WorklistEntry E = Worklist.pop_back_val(); 838 CurrentMCID = E.MCID; 839 switch (E.Kind) { 840 case WorklistEntry::MapGlobalInit: 841 E.Data.GVInit.GV->setInitializer(mapConstant(E.Data.GVInit.Init)); 842 break; 843 case WorklistEntry::MapAppendingVar: { 844 unsigned PrefixSize = AppendingInits.size() - E.AppendingGVNumNewMembers; 845 mapAppendingVariable(*E.Data.AppendingGV.GV, 846 E.Data.AppendingGV.InitPrefix, 847 E.AppendingGVIsOldCtorDtor, 848 makeArrayRef(AppendingInits).slice(PrefixSize)); 849 AppendingInits.resize(PrefixSize); 850 break; 851 } 852 case WorklistEntry::MapGlobalAliasee: 853 E.Data.GlobalAliasee.GA->setAliasee( 854 mapConstant(E.Data.GlobalAliasee.Aliasee)); 855 break; 856 case WorklistEntry::RemapFunction: 857 remapFunction(*E.Data.RemapF); 858 break; 859 } 860 } 861 CurrentMCID = 0; 862 863 // Finish logic for block addresses now that all global values have been 864 // handled. 865 while (!DelayedBBs.empty()) { 866 DelayedBasicBlock DBB = DelayedBBs.pop_back_val(); 867 BasicBlock *BB = cast_or_null<BasicBlock>(mapValue(DBB.OldBB)); 868 DBB.TempBB->replaceAllUsesWith(BB ? BB : DBB.OldBB); 869 } 870 } 871 872 void Mapper::remapInstruction(Instruction *I) { 873 // Remap operands. 874 for (Use &Op : I->operands()) { 875 Value *V = mapValue(Op); 876 // If we aren't ignoring missing entries, assert that something happened. 877 if (V) 878 Op = V; 879 else 880 assert((Flags & RF_IgnoreMissingLocals) && 881 "Referenced value not in value map!"); 882 } 883 884 // Remap phi nodes' incoming blocks. 885 if (PHINode *PN = dyn_cast<PHINode>(I)) { 886 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 887 Value *V = mapValue(PN->getIncomingBlock(i)); 888 // If we aren't ignoring missing entries, assert that something happened. 889 if (V) 890 PN->setIncomingBlock(i, cast<BasicBlock>(V)); 891 else 892 assert((Flags & RF_IgnoreMissingLocals) && 893 "Referenced block not in value map!"); 894 } 895 } 896 897 // Remap attached metadata. 898 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 899 I->getAllMetadata(MDs); 900 for (const auto &MI : MDs) { 901 MDNode *Old = MI.second; 902 MDNode *New = cast_or_null<MDNode>(mapMetadata(Old)); 903 if (New != Old) 904 I->setMetadata(MI.first, New); 905 } 906 907 if (!TypeMapper) 908 return; 909 910 // If the instruction's type is being remapped, do so now. 911 if (auto CS = CallSite(I)) { 912 SmallVector<Type *, 3> Tys; 913 FunctionType *FTy = CS.getFunctionType(); 914 Tys.reserve(FTy->getNumParams()); 915 for (Type *Ty : FTy->params()) 916 Tys.push_back(TypeMapper->remapType(Ty)); 917 CS.mutateFunctionType(FunctionType::get( 918 TypeMapper->remapType(I->getType()), Tys, FTy->isVarArg())); 919 return; 920 } 921 if (auto *AI = dyn_cast<AllocaInst>(I)) 922 AI->setAllocatedType(TypeMapper->remapType(AI->getAllocatedType())); 923 if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) { 924 GEP->setSourceElementType( 925 TypeMapper->remapType(GEP->getSourceElementType())); 926 GEP->setResultElementType( 927 TypeMapper->remapType(GEP->getResultElementType())); 928 } 929 I->mutateType(TypeMapper->remapType(I->getType())); 930 } 931 932 void Mapper::remapFunction(Function &F) { 933 // Remap the operands. 934 for (Use &Op : F.operands()) 935 if (Op) 936 Op = mapValue(Op); 937 938 // Remap the metadata attachments. 939 SmallVector<std::pair<unsigned, MDNode *>, 8> MDs; 940 F.getAllMetadata(MDs); 941 for (const auto &I : MDs) 942 F.setMetadata(I.first, cast_or_null<MDNode>(mapMetadata(I.second))); 943 944 // Remap the argument types. 945 if (TypeMapper) 946 for (Argument &A : F.args()) 947 A.mutateType(TypeMapper->remapType(A.getType())); 948 949 // Remap the instructions. 950 for (BasicBlock &BB : F) 951 for (Instruction &I : BB) 952 remapInstruction(&I); 953 } 954 955 void Mapper::mapAppendingVariable(GlobalVariable &GV, Constant *InitPrefix, 956 bool IsOldCtorDtor, 957 ArrayRef<Constant *> NewMembers) { 958 SmallVector<Constant *, 16> Elements; 959 if (InitPrefix) { 960 unsigned NumElements = 961 cast<ArrayType>(InitPrefix->getType())->getNumElements(); 962 for (unsigned I = 0; I != NumElements; ++I) 963 Elements.push_back(InitPrefix->getAggregateElement(I)); 964 } 965 966 PointerType *VoidPtrTy; 967 Type *EltTy; 968 if (IsOldCtorDtor) { 969 // FIXME: This upgrade is done during linking to support the C API. See 970 // also IRLinker::linkAppendingVarProto() in IRMover.cpp. 971 VoidPtrTy = Type::getInt8Ty(GV.getContext())->getPointerTo(); 972 auto &ST = *cast<StructType>(NewMembers.front()->getType()); 973 Type *Tys[3] = {ST.getElementType(0), ST.getElementType(1), VoidPtrTy}; 974 EltTy = StructType::get(GV.getContext(), Tys, false); 975 } 976 977 for (auto *V : NewMembers) { 978 Constant *NewV; 979 if (IsOldCtorDtor) { 980 auto *S = cast<ConstantStruct>(V); 981 auto *E1 = mapValue(S->getOperand(0)); 982 auto *E2 = mapValue(S->getOperand(1)); 983 Value *Null = Constant::getNullValue(VoidPtrTy); 984 NewV = 985 ConstantStruct::get(cast<StructType>(EltTy), E1, E2, Null, nullptr); 986 } else { 987 NewV = cast_or_null<Constant>(mapValue(V)); 988 } 989 Elements.push_back(NewV); 990 } 991 992 GV.setInitializer(ConstantArray::get( 993 cast<ArrayType>(GV.getType()->getElementType()), Elements)); 994 } 995 996 void Mapper::scheduleMapGlobalInitializer(GlobalVariable &GV, Constant &Init, 997 unsigned MCID) { 998 assert(AlreadyScheduled.insert(&GV).second && "Should not reschedule"); 999 assert(MCID < MCs.size() && "Invalid mapping context"); 1000 1001 WorklistEntry WE; 1002 WE.Kind = WorklistEntry::MapGlobalInit; 1003 WE.MCID = MCID; 1004 WE.Data.GVInit.GV = &GV; 1005 WE.Data.GVInit.Init = &Init; 1006 Worklist.push_back(WE); 1007 } 1008 1009 void Mapper::scheduleMapAppendingVariable(GlobalVariable &GV, 1010 Constant *InitPrefix, 1011 bool IsOldCtorDtor, 1012 ArrayRef<Constant *> NewMembers, 1013 unsigned MCID) { 1014 assert(AlreadyScheduled.insert(&GV).second && "Should not reschedule"); 1015 assert(MCID < MCs.size() && "Invalid mapping context"); 1016 1017 WorklistEntry WE; 1018 WE.Kind = WorklistEntry::MapAppendingVar; 1019 WE.MCID = MCID; 1020 WE.Data.AppendingGV.GV = &GV; 1021 WE.Data.AppendingGV.InitPrefix = InitPrefix; 1022 WE.AppendingGVIsOldCtorDtor = IsOldCtorDtor; 1023 WE.AppendingGVNumNewMembers = NewMembers.size(); 1024 Worklist.push_back(WE); 1025 AppendingInits.append(NewMembers.begin(), NewMembers.end()); 1026 } 1027 1028 void Mapper::scheduleMapGlobalAliasee(GlobalAlias &GA, Constant &Aliasee, 1029 unsigned MCID) { 1030 assert(AlreadyScheduled.insert(&GA).second && "Should not reschedule"); 1031 assert(MCID < MCs.size() && "Invalid mapping context"); 1032 1033 WorklistEntry WE; 1034 WE.Kind = WorklistEntry::MapGlobalAliasee; 1035 WE.MCID = MCID; 1036 WE.Data.GlobalAliasee.GA = &GA; 1037 WE.Data.GlobalAliasee.Aliasee = &Aliasee; 1038 Worklist.push_back(WE); 1039 } 1040 1041 void Mapper::scheduleRemapFunction(Function &F, unsigned MCID) { 1042 assert(AlreadyScheduled.insert(&F).second && "Should not reschedule"); 1043 assert(MCID < MCs.size() && "Invalid mapping context"); 1044 1045 WorklistEntry WE; 1046 WE.Kind = WorklistEntry::RemapFunction; 1047 WE.MCID = MCID; 1048 WE.Data.RemapF = &F; 1049 Worklist.push_back(WE); 1050 } 1051 1052 void Mapper::addFlags(RemapFlags Flags) { 1053 assert(!hasWorkToDo() && "Expected to have flushed the worklist"); 1054 this->Flags = this->Flags | Flags; 1055 } 1056 1057 static Mapper *getAsMapper(void *pImpl) { 1058 return reinterpret_cast<Mapper *>(pImpl); 1059 } 1060 1061 namespace { 1062 1063 class FlushingMapper { 1064 Mapper &M; 1065 1066 public: 1067 explicit FlushingMapper(void *pImpl) : M(*getAsMapper(pImpl)) { 1068 assert(!M.hasWorkToDo() && "Expected to be flushed"); 1069 } 1070 ~FlushingMapper() { M.flush(); } 1071 Mapper *operator->() const { return &M; } 1072 }; 1073 1074 } // end namespace 1075 1076 ValueMapper::ValueMapper(ValueToValueMapTy &VM, RemapFlags Flags, 1077 ValueMapTypeRemapper *TypeMapper, 1078 ValueMaterializer *Materializer) 1079 : pImpl(new Mapper(VM, Flags, TypeMapper, Materializer)) {} 1080 1081 ValueMapper::~ValueMapper() { delete getAsMapper(pImpl); } 1082 1083 unsigned 1084 ValueMapper::registerAlternateMappingContext(ValueToValueMapTy &VM, 1085 ValueMaterializer *Materializer) { 1086 return getAsMapper(pImpl)->registerAlternateMappingContext(VM, Materializer); 1087 } 1088 1089 void ValueMapper::addFlags(RemapFlags Flags) { 1090 FlushingMapper(pImpl)->addFlags(Flags); 1091 } 1092 1093 Value *ValueMapper::mapValue(const Value &V) { 1094 return FlushingMapper(pImpl)->mapValue(&V); 1095 } 1096 1097 Constant *ValueMapper::mapConstant(const Constant &C) { 1098 return cast_or_null<Constant>(mapValue(C)); 1099 } 1100 1101 Metadata *ValueMapper::mapMetadata(const Metadata &MD) { 1102 return FlushingMapper(pImpl)->mapMetadata(&MD); 1103 } 1104 1105 MDNode *ValueMapper::mapMDNode(const MDNode &N) { 1106 return cast_or_null<MDNode>(mapMetadata(N)); 1107 } 1108 1109 void ValueMapper::remapInstruction(Instruction &I) { 1110 FlushingMapper(pImpl)->remapInstruction(&I); 1111 } 1112 1113 void ValueMapper::remapFunction(Function &F) { 1114 FlushingMapper(pImpl)->remapFunction(F); 1115 } 1116 1117 void ValueMapper::scheduleMapGlobalInitializer(GlobalVariable &GV, 1118 Constant &Init, 1119 unsigned MCID) { 1120 getAsMapper(pImpl)->scheduleMapGlobalInitializer(GV, Init, MCID); 1121 } 1122 1123 void ValueMapper::scheduleMapAppendingVariable(GlobalVariable &GV, 1124 Constant *InitPrefix, 1125 bool IsOldCtorDtor, 1126 ArrayRef<Constant *> NewMembers, 1127 unsigned MCID) { 1128 getAsMapper(pImpl)->scheduleMapAppendingVariable( 1129 GV, InitPrefix, IsOldCtorDtor, NewMembers, MCID); 1130 } 1131 1132 void ValueMapper::scheduleMapGlobalAliasee(GlobalAlias &GA, Constant &Aliasee, 1133 unsigned MCID) { 1134 getAsMapper(pImpl)->scheduleMapGlobalAliasee(GA, Aliasee, MCID); 1135 } 1136 1137 void ValueMapper::scheduleRemapFunction(Function &F, unsigned MCID) { 1138 getAsMapper(pImpl)->scheduleRemapFunction(F, MCID); 1139 } 1140