1 //===- ValueMapper.cpp - Interface shared by lib/Transforms/Utils ---------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the MapValue function, which is shared by various parts of
11 // the lib/Transforms/Utils library.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/Utils/ValueMapper.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/IR/CallSite.h"
18 #include "llvm/IR/Constants.h"
19 #include "llvm/IR/DebugInfoMetadata.h"
20 #include "llvm/IR/Function.h"
21 #include "llvm/IR/GlobalAlias.h"
22 #include "llvm/IR/GlobalVariable.h"
23 #include "llvm/IR/InlineAsm.h"
24 #include "llvm/IR/Instructions.h"
25 #include "llvm/IR/Metadata.h"
26 #include "llvm/IR/Operator.h"
27 using namespace llvm;
28 
29 // Out of line method to get vtable etc for class.
30 void ValueMapTypeRemapper::anchor() {}
31 void ValueMaterializer::anchor() {}
32 
33 namespace {
34 
35 /// A basic block used in a BlockAddress whose function body is not yet
36 /// materialized.
37 struct DelayedBasicBlock {
38   BasicBlock *OldBB;
39   std::unique_ptr<BasicBlock> TempBB;
40 
41   DelayedBasicBlock(const BlockAddress &Old)
42       : OldBB(Old.getBasicBlock()),
43         TempBB(BasicBlock::Create(Old.getContext())) {}
44 };
45 
46 struct WorklistEntry {
47   enum EntryKind {
48     MapGlobalInit,
49     MapAppendingVar,
50     MapGlobalAliasee,
51     RemapFunction
52   };
53   struct GVInitTy {
54     GlobalVariable *GV;
55     Constant *Init;
56   };
57   struct AppendingGVTy {
58     GlobalVariable *GV;
59     Constant *InitPrefix;
60   };
61   struct GlobalAliaseeTy {
62     GlobalAlias *GA;
63     Constant *Aliasee;
64   };
65 
66   unsigned Kind : 2;
67   unsigned MCID : 29;
68   unsigned AppendingGVIsOldCtorDtor : 1;
69   unsigned AppendingGVNumNewMembers;
70   union {
71     GVInitTy GVInit;
72     AppendingGVTy AppendingGV;
73     GlobalAliaseeTy GlobalAliasee;
74     Function *RemapF;
75   } Data;
76 };
77 
78 struct MappingContext {
79   ValueToValueMapTy *VM;
80   ValueMaterializer *Materializer = nullptr;
81 
82   /// Construct a MappingContext with a value map and materializer.
83   explicit MappingContext(ValueToValueMapTy &VM,
84                           ValueMaterializer *Materializer = nullptr)
85       : VM(&VM), Materializer(Materializer) {}
86 };
87 
88 class MDNodeMapper;
89 class Mapper {
90   friend class MDNodeMapper;
91 
92 #ifndef NDEBUG
93   DenseSet<GlobalValue *> AlreadyScheduled;
94 #endif
95 
96   RemapFlags Flags;
97   ValueMapTypeRemapper *TypeMapper;
98   unsigned CurrentMCID = 0;
99   SmallVector<MappingContext, 2> MCs;
100   SmallVector<WorklistEntry, 4> Worklist;
101   SmallVector<DelayedBasicBlock, 1> DelayedBBs;
102   SmallVector<Constant *, 16> AppendingInits;
103 
104 public:
105   Mapper(ValueToValueMapTy &VM, RemapFlags Flags,
106          ValueMapTypeRemapper *TypeMapper, ValueMaterializer *Materializer)
107       : Flags(Flags), TypeMapper(TypeMapper),
108         MCs(1, MappingContext(VM, Materializer)) {}
109 
110   /// ValueMapper should explicitly call \a flush() before destruction.
111   ~Mapper() { assert(!hasWorkToDo() && "Expected to be flushed"); }
112 
113   bool hasWorkToDo() const { return !Worklist.empty(); }
114 
115   unsigned
116   registerAlternateMappingContext(ValueToValueMapTy &VM,
117                                   ValueMaterializer *Materializer = nullptr) {
118     MCs.push_back(MappingContext(VM, Materializer));
119     return MCs.size() - 1;
120   }
121 
122   void addFlags(RemapFlags Flags);
123 
124   Value *mapValue(const Value *V);
125   void remapInstruction(Instruction *I);
126   void remapFunction(Function &F);
127 
128   Constant *mapConstant(const Constant *C) {
129     return cast_or_null<Constant>(mapValue(C));
130   }
131 
132   /// Map metadata.
133   ///
134   /// Find the mapping for MD.  Guarantees that the return will be resolved
135   /// (not an MDNode, or MDNode::isResolved() returns true).
136   Metadata *mapMetadata(const Metadata *MD);
137 
138   void scheduleMapGlobalInitializer(GlobalVariable &GV, Constant &Init,
139                                     unsigned MCID);
140   void scheduleMapAppendingVariable(GlobalVariable &GV, Constant *InitPrefix,
141                                     bool IsOldCtorDtor,
142                                     ArrayRef<Constant *> NewMembers,
143                                     unsigned MCID);
144   void scheduleMapGlobalAliasee(GlobalAlias &GA, Constant &Aliasee,
145                                 unsigned MCID);
146   void scheduleRemapFunction(Function &F, unsigned MCID);
147 
148   void flush();
149 
150 private:
151   void mapGlobalInitializer(GlobalVariable &GV, Constant &Init);
152   void mapAppendingVariable(GlobalVariable &GV, Constant *InitPrefix,
153                             bool IsOldCtorDtor,
154                             ArrayRef<Constant *> NewMembers);
155   void mapGlobalAliasee(GlobalAlias &GA, Constant &Aliasee);
156   void remapFunction(Function &F, ValueToValueMapTy &VM);
157 
158   ValueToValueMapTy &getVM() { return *MCs[CurrentMCID].VM; }
159   ValueMaterializer *getMaterializer() { return MCs[CurrentMCID].Materializer; }
160 
161   Value *mapBlockAddress(const BlockAddress &BA);
162 
163   /// Map metadata that doesn't require visiting operands.
164   Optional<Metadata *> mapSimpleMetadata(const Metadata *MD);
165 
166   Metadata *mapToMetadata(const Metadata *Key, Metadata *Val);
167   Metadata *mapToSelf(const Metadata *MD);
168 };
169 
170 class MDNodeMapper {
171   Mapper &M;
172 
173   /// Data about a node in \a UniquedGraph.
174   struct Data {
175     bool HasChanged = false;
176     unsigned ID = ~0u;
177     TempMDNode Placeholder;
178   };
179 
180   /// A graph of uniqued nodes.
181   struct UniquedGraph {
182     SmallDenseMap<const Metadata *, Data, 32> Info; // Node properties.
183     SmallVector<MDNode *, 16> POT;                  // Post-order traversal.
184 
185     /// Propagate changed operands through the post-order traversal.
186     ///
187     /// Iteratively update \a Data::HasChanged for each node based on \a
188     /// Data::HasChanged of its operands, until fixed point.
189     void propagateChanges();
190 
191     /// Get a forward reference to a node to use as an operand.
192     Metadata &getFwdReference(MDNode &Op);
193   };
194 
195   /// Worklist of distinct nodes whose operands need to be remapped.
196   SmallVector<MDNode *, 16> DistinctWorklist;
197 
198   // Storage for a UniquedGraph.
199   SmallDenseMap<const Metadata *, Data, 32> InfoStorage;
200   SmallVector<MDNode *, 16> POTStorage;
201 
202 public:
203   MDNodeMapper(Mapper &M) : M(M) {}
204 
205   /// Map a metadata node (and its transitive operands).
206   ///
207   /// Map all the (unmapped) nodes in the subgraph under \c N.  The iterative
208   /// algorithm handles distinct nodes and uniqued node subgraphs using
209   /// different strategies.
210   ///
211   /// Distinct nodes are immediately mapped and added to \a DistinctWorklist
212   /// using \a mapDistinctNode().  Their mapping can always be computed
213   /// immediately without visiting operands, even if their operands change.
214   ///
215   /// The mapping for uniqued nodes depends on whether their operands change.
216   /// \a mapTopLevelUniquedNode() traverses the transitive uniqued subgraph of
217   /// a node to calculate uniqued node mappings in bulk.  Distinct leafs are
218   /// added to \a DistinctWorklist with \a mapDistinctNode().
219   ///
220   /// After mapping \c N itself, this function remaps the operands of the
221   /// distinct nodes in \a DistinctWorklist until the entire subgraph under \c
222   /// N has been mapped.
223   Metadata *map(const MDNode &N);
224 
225 private:
226   /// Map a top-level uniqued node and the uniqued subgraph underneath it.
227   ///
228   /// This builds up a post-order traversal of the (unmapped) uniqued subgraph
229   /// underneath \c FirstN and calculates the nodes' mapping.  Each node uses
230   /// the identity mapping (\a Mapper::mapToSelf()) as long as all of its
231   /// operands uses the identity mapping.
232   ///
233   /// The algorithm works as follows:
234   ///
235   ///  1. \a createPOT(): traverse the uniqued subgraph under \c FirstN and
236   ///     save the post-order traversal in the given \a UniquedGraph, tracking
237   ///     nodes' operands change.
238   ///
239   ///  2. \a UniquedGraph::propagateChanges(): propagate changed operands
240   ///     through the \a UniquedGraph until fixed point, following the rule
241   ///     that if a node changes, any node that references must also change.
242   ///
243   ///  3. \a mapNodesInPOT(): map the uniqued nodes, creating new uniqued nodes
244   ///     (referencing new operands) where necessary.
245   Metadata *mapTopLevelUniquedNode(const MDNode &FirstN);
246 
247   /// Try to map the operand of an \a MDNode.
248   ///
249   /// If \c Op is already mapped, return the mapping.  If it's not an \a
250   /// MDNode, compute and return the mapping.  If it's a distinct \a MDNode,
251   /// return the result of \a mapDistinctNode().
252   ///
253   /// \return None if \c Op is an unmapped uniqued \a MDNode.
254   /// \post getMappedOp(Op) only returns None if this returns None.
255   Optional<Metadata *> tryToMapOperand(const Metadata *Op);
256 
257   /// Map a distinct node.
258   ///
259   /// Return the mapping for the distinct node \c N, saving the result in \a
260   /// DistinctWorklist for later remapping.
261   ///
262   /// \pre \c N is not yet mapped.
263   /// \pre \c N.isDistinct().
264   MDNode *mapDistinctNode(const MDNode &N);
265 
266   /// Get a previously mapped node.
267   Optional<Metadata *> getMappedOp(const Metadata *Op) const;
268 
269   /// Create a post-order traversal of an unmapped uniqued node subgraph.
270   ///
271   /// This traverses the metadata graph deeply enough to map \c FirstN.  It
272   /// uses \a tryToMapOperand() (via \a Mapper::mapSimplifiedNode()), so any
273   /// metadata that has already been mapped will not be part of the POT.
274   ///
275   /// Each node that has a changed operand from outside the graph (e.g., a
276   /// distinct node, an already-mapped uniqued node, or \a ConstantAsMetadata)
277   /// is marked with \a Data::HasChanged.
278   ///
279   /// \return \c true if any nodes in \c G have \a Data::HasChanged.
280   /// \post \c G.POT is a post-order traversal ending with \c FirstN.
281   /// \post \a Data::hasChanged in \c G.Info indicates whether any node needs
282   /// to change because of operands outside the graph.
283   bool createPOT(UniquedGraph &G, const MDNode &FirstN);
284 
285   /// Visit the operands of a uniqued node in the POT.
286   ///
287   /// Visit the operands in the range from \c I to \c E, returning the first
288   /// uniqued node we find that isn't yet in \c G.  \c I is always advanced to
289   /// where to continue the loop through the operands.
290   ///
291   /// This sets \c HasChanged if any of the visited operands change.
292   MDNode *visitOperands(UniquedGraph &G, MDNode::op_iterator &I,
293                         MDNode::op_iterator E, bool &HasChanged);
294 
295   /// Map all the nodes in the given uniqued graph.
296   ///
297   /// This visits all the nodes in \c G in post-order, using the identity
298   /// mapping or creating a new node depending on \a Data::HasChanged.
299   ///
300   /// \pre \a getMappedOp() returns None for nodes in \c G, but not for any of
301   /// their operands outside of \c G.
302   /// \pre \a Data::HasChanged is true for a node in \c G iff any of its
303   /// operands have changed.
304   /// \post \a getMappedOp() returns the mapped node for every node in \c G.
305   void mapNodesInPOT(UniquedGraph &G);
306 
307   /// Remap a node's operands using the given functor.
308   ///
309   /// Iterate through the operands of \c N and update them in place using \c
310   /// mapOperand.
311   ///
312   /// \pre N.isDistinct() or N.isTemporary().
313   template <class OperandMapper>
314   void remapOperands(MDNode &N, OperandMapper mapOperand);
315 };
316 
317 } // end namespace
318 
319 Value *Mapper::mapValue(const Value *V) {
320   ValueToValueMapTy::iterator I = getVM().find(V);
321 
322   // If the value already exists in the map, use it.
323   if (I != getVM().end()) {
324     assert(I->second && "Unexpected null mapping");
325     return I->second;
326   }
327 
328   // If we have a materializer and it can materialize a value, use that.
329   if (auto *Materializer = getMaterializer()) {
330     if (Value *NewV = Materializer->materialize(const_cast<Value *>(V))) {
331       getVM()[V] = NewV;
332       return NewV;
333     }
334   }
335 
336   // Global values do not need to be seeded into the VM if they
337   // are using the identity mapping.
338   if (isa<GlobalValue>(V)) {
339     if (Flags & RF_NullMapMissingGlobalValues)
340       return nullptr;
341     return getVM()[V] = const_cast<Value *>(V);
342   }
343 
344   if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
345     // Inline asm may need *type* remapping.
346     FunctionType *NewTy = IA->getFunctionType();
347     if (TypeMapper) {
348       NewTy = cast<FunctionType>(TypeMapper->remapType(NewTy));
349 
350       if (NewTy != IA->getFunctionType())
351         V = InlineAsm::get(NewTy, IA->getAsmString(), IA->getConstraintString(),
352                            IA->hasSideEffects(), IA->isAlignStack());
353     }
354 
355     return getVM()[V] = const_cast<Value *>(V);
356   }
357 
358   if (const auto *MDV = dyn_cast<MetadataAsValue>(V)) {
359     const Metadata *MD = MDV->getMetadata();
360 
361     if (auto *LAM = dyn_cast<LocalAsMetadata>(MD)) {
362       // Look through to grab the local value.
363       if (Value *LV = mapValue(LAM->getValue())) {
364         if (V == LAM->getValue())
365           return const_cast<Value *>(V);
366         return MetadataAsValue::get(V->getContext(), ValueAsMetadata::get(LV));
367       }
368 
369       // FIXME: always return nullptr once Verifier::verifyDominatesUse()
370       // ensures metadata operands only reference defined SSA values.
371       return (Flags & RF_IgnoreMissingLocals)
372                  ? nullptr
373                  : MetadataAsValue::get(V->getContext(),
374                                         MDTuple::get(V->getContext(), None));
375     }
376 
377     // If this is a module-level metadata and we know that nothing at the module
378     // level is changing, then use an identity mapping.
379     if (Flags & RF_NoModuleLevelChanges)
380       return getVM()[V] = const_cast<Value *>(V);
381 
382     // Map the metadata and turn it into a value.
383     auto *MappedMD = mapMetadata(MD);
384     if (MD == MappedMD)
385       return getVM()[V] = const_cast<Value *>(V);
386     return getVM()[V] = MetadataAsValue::get(V->getContext(), MappedMD);
387   }
388 
389   // Okay, this either must be a constant (which may or may not be mappable) or
390   // is something that is not in the mapping table.
391   Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V));
392   if (!C)
393     return nullptr;
394 
395   if (BlockAddress *BA = dyn_cast<BlockAddress>(C))
396     return mapBlockAddress(*BA);
397 
398   auto mapValueOrNull = [this](Value *V) {
399     auto Mapped = mapValue(V);
400     assert((Mapped || (Flags & RF_NullMapMissingGlobalValues)) &&
401            "Unexpected null mapping for constant operand without "
402            "NullMapMissingGlobalValues flag");
403     return Mapped;
404   };
405 
406   // Otherwise, we have some other constant to remap.  Start by checking to see
407   // if all operands have an identity remapping.
408   unsigned OpNo = 0, NumOperands = C->getNumOperands();
409   Value *Mapped = nullptr;
410   for (; OpNo != NumOperands; ++OpNo) {
411     Value *Op = C->getOperand(OpNo);
412     Mapped = mapValueOrNull(Op);
413     if (!Mapped)
414       return nullptr;
415     if (Mapped != Op)
416       break;
417   }
418 
419   // See if the type mapper wants to remap the type as well.
420   Type *NewTy = C->getType();
421   if (TypeMapper)
422     NewTy = TypeMapper->remapType(NewTy);
423 
424   // If the result type and all operands match up, then just insert an identity
425   // mapping.
426   if (OpNo == NumOperands && NewTy == C->getType())
427     return getVM()[V] = C;
428 
429   // Okay, we need to create a new constant.  We've already processed some or
430   // all of the operands, set them all up now.
431   SmallVector<Constant*, 8> Ops;
432   Ops.reserve(NumOperands);
433   for (unsigned j = 0; j != OpNo; ++j)
434     Ops.push_back(cast<Constant>(C->getOperand(j)));
435 
436   // If one of the operands mismatch, push it and the other mapped operands.
437   if (OpNo != NumOperands) {
438     Ops.push_back(cast<Constant>(Mapped));
439 
440     // Map the rest of the operands that aren't processed yet.
441     for (++OpNo; OpNo != NumOperands; ++OpNo) {
442       Mapped = mapValueOrNull(C->getOperand(OpNo));
443       if (!Mapped)
444         return nullptr;
445       Ops.push_back(cast<Constant>(Mapped));
446     }
447   }
448   Type *NewSrcTy = nullptr;
449   if (TypeMapper)
450     if (auto *GEPO = dyn_cast<GEPOperator>(C))
451       NewSrcTy = TypeMapper->remapType(GEPO->getSourceElementType());
452 
453   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
454     return getVM()[V] = CE->getWithOperands(Ops, NewTy, false, NewSrcTy);
455   if (isa<ConstantArray>(C))
456     return getVM()[V] = ConstantArray::get(cast<ArrayType>(NewTy), Ops);
457   if (isa<ConstantStruct>(C))
458     return getVM()[V] = ConstantStruct::get(cast<StructType>(NewTy), Ops);
459   if (isa<ConstantVector>(C))
460     return getVM()[V] = ConstantVector::get(Ops);
461   // If this is a no-operand constant, it must be because the type was remapped.
462   if (isa<UndefValue>(C))
463     return getVM()[V] = UndefValue::get(NewTy);
464   if (isa<ConstantAggregateZero>(C))
465     return getVM()[V] = ConstantAggregateZero::get(NewTy);
466   assert(isa<ConstantPointerNull>(C));
467   return getVM()[V] = ConstantPointerNull::get(cast<PointerType>(NewTy));
468 }
469 
470 Value *Mapper::mapBlockAddress(const BlockAddress &BA) {
471   Function *F = cast<Function>(mapValue(BA.getFunction()));
472 
473   // F may not have materialized its initializer.  In that case, create a
474   // dummy basic block for now, and replace it once we've materialized all
475   // the initializers.
476   BasicBlock *BB;
477   if (F->empty()) {
478     DelayedBBs.push_back(DelayedBasicBlock(BA));
479     BB = DelayedBBs.back().TempBB.get();
480   } else {
481     BB = cast_or_null<BasicBlock>(mapValue(BA.getBasicBlock()));
482   }
483 
484   return getVM()[&BA] = BlockAddress::get(F, BB ? BB : BA.getBasicBlock());
485 }
486 
487 Metadata *Mapper::mapToMetadata(const Metadata *Key, Metadata *Val) {
488   getVM().MD()[Key].reset(Val);
489   return Val;
490 }
491 
492 Metadata *Mapper::mapToSelf(const Metadata *MD) {
493   return mapToMetadata(MD, const_cast<Metadata *>(MD));
494 }
495 
496 Optional<Metadata *> MDNodeMapper::tryToMapOperand(const Metadata *Op) {
497   if (!Op)
498     return nullptr;
499 
500   if (Optional<Metadata *> MappedOp = M.mapSimpleMetadata(Op)) {
501 #ifndef NDEBUG
502     if (auto *CMD = dyn_cast<ConstantAsMetadata>(Op))
503       assert((!*MappedOp || M.getVM().count(CMD->getValue()) ||
504               M.getVM().getMappedMD(Op)) &&
505              "Expected Value to be memoized");
506     else
507       assert((isa<MDString>(Op) || M.getVM().getMappedMD(Op)) &&
508              "Expected result to be memoized");
509 #endif
510     return *MappedOp;
511   }
512 
513   const MDNode &N = *cast<MDNode>(Op);
514   if (N.isDistinct())
515     return mapDistinctNode(N);
516   return None;
517 }
518 
519 MDNode *MDNodeMapper::mapDistinctNode(const MDNode &N) {
520   assert(N.isDistinct() && "Expected a distinct node");
521   assert(!M.getVM().getMappedMD(&N) && "Expected an unmapped node");
522   DistinctWorklist.push_back(cast<MDNode>(
523       (M.Flags & RF_MoveDistinctMDs)
524           ? M.mapToSelf(&N)
525           : M.mapToMetadata(&N, MDNode::replaceWithDistinct(N.clone()))));
526   return DistinctWorklist.back();
527 }
528 
529 static ConstantAsMetadata *wrapConstantAsMetadata(const ConstantAsMetadata &CMD,
530                                                   Value *MappedV) {
531   if (CMD.getValue() == MappedV)
532     return const_cast<ConstantAsMetadata *>(&CMD);
533   return MappedV ? ConstantAsMetadata::getConstant(MappedV) : nullptr;
534 }
535 
536 Optional<Metadata *> MDNodeMapper::getMappedOp(const Metadata *Op) const {
537   if (!Op)
538     return nullptr;
539 
540   if (Optional<Metadata *> MappedOp = M.getVM().getMappedMD(Op))
541     return *MappedOp;
542 
543   if (isa<MDString>(Op))
544     return const_cast<Metadata *>(Op);
545 
546   if (auto *CMD = dyn_cast<ConstantAsMetadata>(Op))
547     return wrapConstantAsMetadata(*CMD, M.getVM().lookup(CMD->getValue()));
548 
549   return None;
550 }
551 
552 Metadata &MDNodeMapper::UniquedGraph::getFwdReference(MDNode &Op) {
553   auto Where = Info.find(&Op);
554   assert(Where != Info.end() && "Expected a valid reference");
555 
556   auto &OpD = Where->second;
557   if (!OpD.HasChanged)
558     return Op;
559 
560   // Lazily construct a temporary node.
561   if (!OpD.Placeholder)
562     OpD.Placeholder = Op.clone();
563 
564   return *OpD.Placeholder;
565 }
566 
567 template <class OperandMapper>
568 void MDNodeMapper::remapOperands(MDNode &N, OperandMapper mapOperand) {
569   assert(!N.isUniqued() && "Expected distinct or temporary nodes");
570   for (unsigned I = 0, E = N.getNumOperands(); I != E; ++I) {
571     Metadata *Old = N.getOperand(I);
572     Metadata *New = mapOperand(Old);
573 
574     if (Old != New)
575       N.replaceOperandWith(I, New);
576   }
577 }
578 
579 namespace {
580 /// An entry in the worklist for the post-order traversal.
581 struct POTWorklistEntry {
582   MDNode *N;              ///< Current node.
583   MDNode::op_iterator Op; ///< Current operand of \c N.
584 
585   /// Keep a flag of whether operands have changed in the worklist to avoid
586   /// hitting the map in \a UniquedGraph.
587   bool HasChanged = false;
588 
589   POTWorklistEntry(MDNode &N) : N(&N), Op(N.op_begin()) {}
590 };
591 } // end namespace
592 
593 bool MDNodeMapper::createPOT(UniquedGraph &G, const MDNode &FirstN) {
594   assert(G.Info.empty() && "Expected a fresh traversal");
595   assert(FirstN.isUniqued() && "Expected uniqued node in POT");
596 
597   // Construct a post-order traversal of the uniqued subgraph under FirstN.
598   bool AnyChanges = false;
599   SmallVector<POTWorklistEntry, 16> Worklist;
600   Worklist.push_back(POTWorklistEntry(const_cast<MDNode &>(FirstN)));
601   (void)G.Info[&FirstN];
602   while (!Worklist.empty()) {
603     // Start or continue the traversal through the this node's operands.
604     auto &WE = Worklist.back();
605     if (MDNode *N = visitOperands(G, WE.Op, WE.N->op_end(), WE.HasChanged)) {
606       // Push a new node to traverse first.
607       Worklist.push_back(POTWorklistEntry(*N));
608       continue;
609     }
610 
611     // Push the node onto the POT.
612     assert(WE.N->isUniqued() && "Expected only uniqued nodes");
613     assert(WE.Op == WE.N->op_end() && "Expected to visit all operands");
614     auto &D = G.Info[WE.N];
615     AnyChanges |= D.HasChanged = WE.HasChanged;
616     D.ID = G.POT.size();
617     G.POT.push_back(WE.N);
618 
619     // Pop the node off the worklist.
620     Worklist.pop_back();
621   }
622   return AnyChanges;
623 }
624 
625 MDNode *MDNodeMapper::visitOperands(UniquedGraph &G, MDNode::op_iterator &I,
626                                     MDNode::op_iterator E, bool &HasChanged) {
627   while (I != E) {
628     Metadata *Op = *I++; // Increment even on early return.
629     if (Optional<Metadata *> MappedOp = tryToMapOperand(Op)) {
630       // Check if the operand changes.
631       HasChanged |= Op != *MappedOp;
632       continue;
633     }
634 
635     // A uniqued metadata node.
636     MDNode &OpN = *cast<MDNode>(Op);
637     assert(OpN.isUniqued() &&
638            "Only uniqued operands cannot be mapped immediately");
639     if (G.Info.insert(std::make_pair(&OpN, Data())).second)
640       return &OpN; // This is a new one.  Return it.
641   }
642   return nullptr;
643 }
644 
645 void MDNodeMapper::UniquedGraph::propagateChanges() {
646   bool AnyChanges;
647   do {
648     AnyChanges = false;
649     for (MDNode *N : POT) {
650       auto &D = Info[N];
651       if (D.HasChanged)
652         continue;
653 
654       if (none_of(N->operands(), [&](const Metadata *Op) {
655             auto Where = Info.find(Op);
656             return Where != Info.end() && Where->second.HasChanged;
657           }))
658         continue;
659 
660       AnyChanges = D.HasChanged = true;
661     }
662   } while (AnyChanges);
663 }
664 
665 void MDNodeMapper::mapNodesInPOT(UniquedGraph &G) {
666   // Construct uniqued nodes, building forward references as necessary.
667   SmallVector<MDNode *, 16> CyclicNodes;
668   for (auto *N : G.POT) {
669     auto &D = G.Info[N];
670     if (!D.HasChanged) {
671       // The node hasn't changed.
672       M.mapToSelf(N);
673       continue;
674     }
675 
676     // Remember whether this node had a placeholder.
677     bool HadPlaceholder(D.Placeholder);
678 
679     // Clone the uniqued node and remap the operands.
680     TempMDNode ClonedN = D.Placeholder ? std::move(D.Placeholder) : N->clone();
681     remapOperands(*ClonedN, [this, &D, &G](Metadata *Old) {
682       if (Optional<Metadata *> MappedOp = getMappedOp(Old))
683         return *MappedOp;
684       assert(G.Info[Old].ID > D.ID && "Expected a forward reference");
685       return &G.getFwdReference(*cast<MDNode>(Old));
686     });
687 
688     auto *NewN = MDNode::replaceWithUniqued(std::move(ClonedN));
689     M.mapToMetadata(N, NewN);
690 
691     // Nodes that were referenced out of order in the POT are involved in a
692     // uniquing cycle.
693     if (HadPlaceholder)
694       CyclicNodes.push_back(NewN);
695   }
696 
697   // Resolve cycles.
698   for (auto *N : CyclicNodes)
699     if (!N->isResolved())
700       N->resolveCycles();
701 }
702 
703 Metadata *MDNodeMapper::map(const MDNode &N) {
704   assert(DistinctWorklist.empty() && "MDNodeMapper::map is not recursive");
705   assert(!(M.Flags & RF_NoModuleLevelChanges) &&
706          "MDNodeMapper::map assumes module-level changes");
707 
708   // Require resolved nodes whenever metadata might be remapped.
709   assert(N.isResolved() && "Unexpected unresolved node");
710 
711   Metadata *MappedN =
712       N.isUniqued() ? mapTopLevelUniquedNode(N) : mapDistinctNode(N);
713   while (!DistinctWorklist.empty())
714     remapOperands(*DistinctWorklist.pop_back_val(), [this](Metadata *Old) {
715       if (Optional<Metadata *> MappedOp = tryToMapOperand(Old))
716         return *MappedOp;
717       return mapTopLevelUniquedNode(*cast<MDNode>(Old));
718     });
719   return MappedN;
720 }
721 
722 Metadata *MDNodeMapper::mapTopLevelUniquedNode(const MDNode &FirstN) {
723   assert(FirstN.isUniqued() && "Expected uniqued node");
724 
725   // Create a post-order traversal of uniqued nodes under FirstN.
726   UniquedGraph G;
727   if (!createPOT(G, FirstN)) {
728     // Return early if no nodes have changed.
729     for (const MDNode *N : G.POT)
730       M.mapToSelf(N);
731     return &const_cast<MDNode &>(FirstN);
732   }
733 
734   // Update graph with all nodes that have changed.
735   G.propagateChanges();
736 
737   // Map all the nodes in the graph.
738   mapNodesInPOT(G);
739 
740   // Return the original node, remapped.
741   return *getMappedOp(&FirstN);
742 }
743 
744 namespace {
745 
746 struct MapMetadataDisabler {
747   ValueToValueMapTy &VM;
748 
749   MapMetadataDisabler(ValueToValueMapTy &VM) : VM(VM) {
750     VM.disableMapMetadata();
751   }
752   ~MapMetadataDisabler() { VM.enableMapMetadata(); }
753 };
754 
755 } // end namespace
756 
757 Optional<Metadata *> Mapper::mapSimpleMetadata(const Metadata *MD) {
758   // If the value already exists in the map, use it.
759   if (Optional<Metadata *> NewMD = getVM().getMappedMD(MD))
760     return *NewMD;
761 
762   if (isa<MDString>(MD))
763     return const_cast<Metadata *>(MD);
764 
765   // This is a module-level metadata.  If nothing at the module level is
766   // changing, use an identity mapping.
767   if ((Flags & RF_NoModuleLevelChanges))
768     return const_cast<Metadata *>(MD);
769 
770   if (auto *CMD = dyn_cast<ConstantAsMetadata>(MD)) {
771     // Disallow recursion into metadata mapping through mapValue.
772     MapMetadataDisabler MMD(getVM());
773 
774     // Don't memoize ConstantAsMetadata.  Instead of lasting until the
775     // LLVMContext is destroyed, they can be deleted when the GlobalValue they
776     // reference is destructed.  These aren't super common, so the extra
777     // indirection isn't that expensive.
778     return wrapConstantAsMetadata(*CMD, mapValue(CMD->getValue()));
779   }
780 
781   assert(isa<MDNode>(MD) && "Expected a metadata node");
782 
783   return None;
784 }
785 
786 Metadata *Mapper::mapMetadata(const Metadata *MD) {
787   assert(MD && "Expected valid metadata");
788   assert(!isa<LocalAsMetadata>(MD) && "Unexpected local metadata");
789 
790   if (Optional<Metadata *> NewMD = mapSimpleMetadata(MD))
791     return *NewMD;
792 
793   return MDNodeMapper(*this).map(*cast<MDNode>(MD));
794 }
795 
796 void Mapper::flush() {
797   // Flush out the worklist of global values.
798   while (!Worklist.empty()) {
799     WorklistEntry E = Worklist.pop_back_val();
800     CurrentMCID = E.MCID;
801     switch (E.Kind) {
802     case WorklistEntry::MapGlobalInit:
803       E.Data.GVInit.GV->setInitializer(mapConstant(E.Data.GVInit.Init));
804       break;
805     case WorklistEntry::MapAppendingVar: {
806       unsigned PrefixSize = AppendingInits.size() - E.AppendingGVNumNewMembers;
807       mapAppendingVariable(*E.Data.AppendingGV.GV,
808                            E.Data.AppendingGV.InitPrefix,
809                            E.AppendingGVIsOldCtorDtor,
810                            makeArrayRef(AppendingInits).slice(PrefixSize));
811       AppendingInits.resize(PrefixSize);
812       break;
813     }
814     case WorklistEntry::MapGlobalAliasee:
815       E.Data.GlobalAliasee.GA->setAliasee(
816           mapConstant(E.Data.GlobalAliasee.Aliasee));
817       break;
818     case WorklistEntry::RemapFunction:
819       remapFunction(*E.Data.RemapF);
820       break;
821     }
822   }
823   CurrentMCID = 0;
824 
825   // Finish logic for block addresses now that all global values have been
826   // handled.
827   while (!DelayedBBs.empty()) {
828     DelayedBasicBlock DBB = DelayedBBs.pop_back_val();
829     BasicBlock *BB = cast_or_null<BasicBlock>(mapValue(DBB.OldBB));
830     DBB.TempBB->replaceAllUsesWith(BB ? BB : DBB.OldBB);
831   }
832 }
833 
834 void Mapper::remapInstruction(Instruction *I) {
835   // Remap operands.
836   for (Use &Op : I->operands()) {
837     Value *V = mapValue(Op);
838     // If we aren't ignoring missing entries, assert that something happened.
839     if (V)
840       Op = V;
841     else
842       assert((Flags & RF_IgnoreMissingLocals) &&
843              "Referenced value not in value map!");
844   }
845 
846   // Remap phi nodes' incoming blocks.
847   if (PHINode *PN = dyn_cast<PHINode>(I)) {
848     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
849       Value *V = mapValue(PN->getIncomingBlock(i));
850       // If we aren't ignoring missing entries, assert that something happened.
851       if (V)
852         PN->setIncomingBlock(i, cast<BasicBlock>(V));
853       else
854         assert((Flags & RF_IgnoreMissingLocals) &&
855                "Referenced block not in value map!");
856     }
857   }
858 
859   // Remap attached metadata.
860   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
861   I->getAllMetadata(MDs);
862   for (const auto &MI : MDs) {
863     MDNode *Old = MI.second;
864     MDNode *New = cast_or_null<MDNode>(mapMetadata(Old));
865     if (New != Old)
866       I->setMetadata(MI.first, New);
867   }
868 
869   if (!TypeMapper)
870     return;
871 
872   // If the instruction's type is being remapped, do so now.
873   if (auto CS = CallSite(I)) {
874     SmallVector<Type *, 3> Tys;
875     FunctionType *FTy = CS.getFunctionType();
876     Tys.reserve(FTy->getNumParams());
877     for (Type *Ty : FTy->params())
878       Tys.push_back(TypeMapper->remapType(Ty));
879     CS.mutateFunctionType(FunctionType::get(
880         TypeMapper->remapType(I->getType()), Tys, FTy->isVarArg()));
881     return;
882   }
883   if (auto *AI = dyn_cast<AllocaInst>(I))
884     AI->setAllocatedType(TypeMapper->remapType(AI->getAllocatedType()));
885   if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) {
886     GEP->setSourceElementType(
887         TypeMapper->remapType(GEP->getSourceElementType()));
888     GEP->setResultElementType(
889         TypeMapper->remapType(GEP->getResultElementType()));
890   }
891   I->mutateType(TypeMapper->remapType(I->getType()));
892 }
893 
894 void Mapper::remapFunction(Function &F) {
895   // Remap the operands.
896   for (Use &Op : F.operands())
897     if (Op)
898       Op = mapValue(Op);
899 
900   // Remap the metadata attachments.
901   SmallVector<std::pair<unsigned, MDNode *>, 8> MDs;
902   F.getAllMetadata(MDs);
903   F.clearMetadata();
904   for (const auto &I : MDs)
905     F.addMetadata(I.first, *cast<MDNode>(mapMetadata(I.second)));
906 
907   // Remap the argument types.
908   if (TypeMapper)
909     for (Argument &A : F.args())
910       A.mutateType(TypeMapper->remapType(A.getType()));
911 
912   // Remap the instructions.
913   for (BasicBlock &BB : F)
914     for (Instruction &I : BB)
915       remapInstruction(&I);
916 }
917 
918 void Mapper::mapAppendingVariable(GlobalVariable &GV, Constant *InitPrefix,
919                                   bool IsOldCtorDtor,
920                                   ArrayRef<Constant *> NewMembers) {
921   SmallVector<Constant *, 16> Elements;
922   if (InitPrefix) {
923     unsigned NumElements =
924         cast<ArrayType>(InitPrefix->getType())->getNumElements();
925     for (unsigned I = 0; I != NumElements; ++I)
926       Elements.push_back(InitPrefix->getAggregateElement(I));
927   }
928 
929   PointerType *VoidPtrTy;
930   Type *EltTy;
931   if (IsOldCtorDtor) {
932     // FIXME: This upgrade is done during linking to support the C API.  See
933     // also IRLinker::linkAppendingVarProto() in IRMover.cpp.
934     VoidPtrTy = Type::getInt8Ty(GV.getContext())->getPointerTo();
935     auto &ST = *cast<StructType>(NewMembers.front()->getType());
936     Type *Tys[3] = {ST.getElementType(0), ST.getElementType(1), VoidPtrTy};
937     EltTy = StructType::get(GV.getContext(), Tys, false);
938   }
939 
940   for (auto *V : NewMembers) {
941     Constant *NewV;
942     if (IsOldCtorDtor) {
943       auto *S = cast<ConstantStruct>(V);
944       auto *E1 = mapValue(S->getOperand(0));
945       auto *E2 = mapValue(S->getOperand(1));
946       Value *Null = Constant::getNullValue(VoidPtrTy);
947       NewV =
948           ConstantStruct::get(cast<StructType>(EltTy), E1, E2, Null, nullptr);
949     } else {
950       NewV = cast_or_null<Constant>(mapValue(V));
951     }
952     Elements.push_back(NewV);
953   }
954 
955   GV.setInitializer(ConstantArray::get(
956       cast<ArrayType>(GV.getType()->getElementType()), Elements));
957 }
958 
959 void Mapper::scheduleMapGlobalInitializer(GlobalVariable &GV, Constant &Init,
960                                           unsigned MCID) {
961   assert(AlreadyScheduled.insert(&GV).second && "Should not reschedule");
962   assert(MCID < MCs.size() && "Invalid mapping context");
963 
964   WorklistEntry WE;
965   WE.Kind = WorklistEntry::MapGlobalInit;
966   WE.MCID = MCID;
967   WE.Data.GVInit.GV = &GV;
968   WE.Data.GVInit.Init = &Init;
969   Worklist.push_back(WE);
970 }
971 
972 void Mapper::scheduleMapAppendingVariable(GlobalVariable &GV,
973                                           Constant *InitPrefix,
974                                           bool IsOldCtorDtor,
975                                           ArrayRef<Constant *> NewMembers,
976                                           unsigned MCID) {
977   assert(AlreadyScheduled.insert(&GV).second && "Should not reschedule");
978   assert(MCID < MCs.size() && "Invalid mapping context");
979 
980   WorklistEntry WE;
981   WE.Kind = WorklistEntry::MapAppendingVar;
982   WE.MCID = MCID;
983   WE.Data.AppendingGV.GV = &GV;
984   WE.Data.AppendingGV.InitPrefix = InitPrefix;
985   WE.AppendingGVIsOldCtorDtor = IsOldCtorDtor;
986   WE.AppendingGVNumNewMembers = NewMembers.size();
987   Worklist.push_back(WE);
988   AppendingInits.append(NewMembers.begin(), NewMembers.end());
989 }
990 
991 void Mapper::scheduleMapGlobalAliasee(GlobalAlias &GA, Constant &Aliasee,
992                                       unsigned MCID) {
993   assert(AlreadyScheduled.insert(&GA).second && "Should not reschedule");
994   assert(MCID < MCs.size() && "Invalid mapping context");
995 
996   WorklistEntry WE;
997   WE.Kind = WorklistEntry::MapGlobalAliasee;
998   WE.MCID = MCID;
999   WE.Data.GlobalAliasee.GA = &GA;
1000   WE.Data.GlobalAliasee.Aliasee = &Aliasee;
1001   Worklist.push_back(WE);
1002 }
1003 
1004 void Mapper::scheduleRemapFunction(Function &F, unsigned MCID) {
1005   assert(AlreadyScheduled.insert(&F).second && "Should not reschedule");
1006   assert(MCID < MCs.size() && "Invalid mapping context");
1007 
1008   WorklistEntry WE;
1009   WE.Kind = WorklistEntry::RemapFunction;
1010   WE.MCID = MCID;
1011   WE.Data.RemapF = &F;
1012   Worklist.push_back(WE);
1013 }
1014 
1015 void Mapper::addFlags(RemapFlags Flags) {
1016   assert(!hasWorkToDo() && "Expected to have flushed the worklist");
1017   this->Flags = this->Flags | Flags;
1018 }
1019 
1020 static Mapper *getAsMapper(void *pImpl) {
1021   return reinterpret_cast<Mapper *>(pImpl);
1022 }
1023 
1024 namespace {
1025 
1026 class FlushingMapper {
1027   Mapper &M;
1028 
1029 public:
1030   explicit FlushingMapper(void *pImpl) : M(*getAsMapper(pImpl)) {
1031     assert(!M.hasWorkToDo() && "Expected to be flushed");
1032   }
1033   ~FlushingMapper() { M.flush(); }
1034   Mapper *operator->() const { return &M; }
1035 };
1036 
1037 } // end namespace
1038 
1039 ValueMapper::ValueMapper(ValueToValueMapTy &VM, RemapFlags Flags,
1040                          ValueMapTypeRemapper *TypeMapper,
1041                          ValueMaterializer *Materializer)
1042     : pImpl(new Mapper(VM, Flags, TypeMapper, Materializer)) {}
1043 
1044 ValueMapper::~ValueMapper() { delete getAsMapper(pImpl); }
1045 
1046 unsigned
1047 ValueMapper::registerAlternateMappingContext(ValueToValueMapTy &VM,
1048                                              ValueMaterializer *Materializer) {
1049   return getAsMapper(pImpl)->registerAlternateMappingContext(VM, Materializer);
1050 }
1051 
1052 void ValueMapper::addFlags(RemapFlags Flags) {
1053   FlushingMapper(pImpl)->addFlags(Flags);
1054 }
1055 
1056 Value *ValueMapper::mapValue(const Value &V) {
1057   return FlushingMapper(pImpl)->mapValue(&V);
1058 }
1059 
1060 Constant *ValueMapper::mapConstant(const Constant &C) {
1061   return cast_or_null<Constant>(mapValue(C));
1062 }
1063 
1064 Metadata *ValueMapper::mapMetadata(const Metadata &MD) {
1065   return FlushingMapper(pImpl)->mapMetadata(&MD);
1066 }
1067 
1068 MDNode *ValueMapper::mapMDNode(const MDNode &N) {
1069   return cast_or_null<MDNode>(mapMetadata(N));
1070 }
1071 
1072 void ValueMapper::remapInstruction(Instruction &I) {
1073   FlushingMapper(pImpl)->remapInstruction(&I);
1074 }
1075 
1076 void ValueMapper::remapFunction(Function &F) {
1077   FlushingMapper(pImpl)->remapFunction(F);
1078 }
1079 
1080 void ValueMapper::scheduleMapGlobalInitializer(GlobalVariable &GV,
1081                                                Constant &Init,
1082                                                unsigned MCID) {
1083   getAsMapper(pImpl)->scheduleMapGlobalInitializer(GV, Init, MCID);
1084 }
1085 
1086 void ValueMapper::scheduleMapAppendingVariable(GlobalVariable &GV,
1087                                                Constant *InitPrefix,
1088                                                bool IsOldCtorDtor,
1089                                                ArrayRef<Constant *> NewMembers,
1090                                                unsigned MCID) {
1091   getAsMapper(pImpl)->scheduleMapAppendingVariable(
1092       GV, InitPrefix, IsOldCtorDtor, NewMembers, MCID);
1093 }
1094 
1095 void ValueMapper::scheduleMapGlobalAliasee(GlobalAlias &GA, Constant &Aliasee,
1096                                            unsigned MCID) {
1097   getAsMapper(pImpl)->scheduleMapGlobalAliasee(GA, Aliasee, MCID);
1098 }
1099 
1100 void ValueMapper::scheduleRemapFunction(Function &F, unsigned MCID) {
1101   getAsMapper(pImpl)->scheduleRemapFunction(F, MCID);
1102 }
1103