1 //===- ValueMapper.cpp - Interface shared by lib/Transforms/Utils ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the MapValue function, which is shared by various parts of 11 // the lib/Transforms/Utils library. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Utils/ValueMapper.h" 16 #include "llvm/ADT/DenseSet.h" 17 #include "llvm/IR/CallSite.h" 18 #include "llvm/IR/Constants.h" 19 #include "llvm/IR/DebugInfoMetadata.h" 20 #include "llvm/IR/Function.h" 21 #include "llvm/IR/GlobalAlias.h" 22 #include "llvm/IR/GlobalVariable.h" 23 #include "llvm/IR/InlineAsm.h" 24 #include "llvm/IR/Instructions.h" 25 #include "llvm/IR/Metadata.h" 26 #include "llvm/IR/Operator.h" 27 using namespace llvm; 28 29 // Out of line method to get vtable etc for class. 30 void ValueMapTypeRemapper::anchor() {} 31 void ValueMaterializer::anchor() {} 32 33 namespace { 34 35 /// A basic block used in a BlockAddress whose function body is not yet 36 /// materialized. 37 struct DelayedBasicBlock { 38 BasicBlock *OldBB; 39 std::unique_ptr<BasicBlock> TempBB; 40 41 DelayedBasicBlock(const BlockAddress &Old) 42 : OldBB(Old.getBasicBlock()), 43 TempBB(BasicBlock::Create(Old.getContext())) {} 44 }; 45 46 struct WorklistEntry { 47 enum EntryKind { 48 MapGlobalInit, 49 MapAppendingVar, 50 MapGlobalAliasee, 51 RemapFunction 52 }; 53 struct GVInitTy { 54 GlobalVariable *GV; 55 Constant *Init; 56 }; 57 struct AppendingGVTy { 58 GlobalVariable *GV; 59 Constant *InitPrefix; 60 }; 61 struct GlobalAliaseeTy { 62 GlobalAlias *GA; 63 Constant *Aliasee; 64 }; 65 66 unsigned Kind : 2; 67 unsigned MCID : 29; 68 unsigned AppendingGVIsOldCtorDtor : 1; 69 unsigned AppendingGVNumNewMembers; 70 union { 71 GVInitTy GVInit; 72 AppendingGVTy AppendingGV; 73 GlobalAliaseeTy GlobalAliasee; 74 Function *RemapF; 75 } Data; 76 }; 77 78 struct MappingContext { 79 ValueToValueMapTy *VM; 80 ValueMaterializer *Materializer = nullptr; 81 82 /// Construct a MappingContext with a value map and materializer. 83 explicit MappingContext(ValueToValueMapTy &VM, 84 ValueMaterializer *Materializer = nullptr) 85 : VM(&VM), Materializer(Materializer) {} 86 }; 87 88 class MDNodeMapper; 89 class Mapper { 90 friend class MDNodeMapper; 91 92 #ifndef NDEBUG 93 DenseSet<GlobalValue *> AlreadyScheduled; 94 #endif 95 96 RemapFlags Flags; 97 ValueMapTypeRemapper *TypeMapper; 98 unsigned CurrentMCID = 0; 99 SmallVector<MappingContext, 2> MCs; 100 SmallVector<WorklistEntry, 4> Worklist; 101 SmallVector<DelayedBasicBlock, 1> DelayedBBs; 102 SmallVector<Constant *, 16> AppendingInits; 103 104 public: 105 Mapper(ValueToValueMapTy &VM, RemapFlags Flags, 106 ValueMapTypeRemapper *TypeMapper, ValueMaterializer *Materializer) 107 : Flags(Flags), TypeMapper(TypeMapper), 108 MCs(1, MappingContext(VM, Materializer)) {} 109 110 /// ValueMapper should explicitly call \a flush() before destruction. 111 ~Mapper() { assert(!hasWorkToDo() && "Expected to be flushed"); } 112 113 bool hasWorkToDo() const { return !Worklist.empty(); } 114 115 unsigned 116 registerAlternateMappingContext(ValueToValueMapTy &VM, 117 ValueMaterializer *Materializer = nullptr) { 118 MCs.push_back(MappingContext(VM, Materializer)); 119 return MCs.size() - 1; 120 } 121 122 void addFlags(RemapFlags Flags); 123 124 Value *mapValue(const Value *V); 125 void remapInstruction(Instruction *I); 126 void remapFunction(Function &F); 127 128 Constant *mapConstant(const Constant *C) { 129 return cast_or_null<Constant>(mapValue(C)); 130 } 131 132 /// Map metadata. 133 /// 134 /// Find the mapping for MD. Guarantees that the return will be resolved 135 /// (not an MDNode, or MDNode::isResolved() returns true). 136 Metadata *mapMetadata(const Metadata *MD); 137 138 void scheduleMapGlobalInitializer(GlobalVariable &GV, Constant &Init, 139 unsigned MCID); 140 void scheduleMapAppendingVariable(GlobalVariable &GV, Constant *InitPrefix, 141 bool IsOldCtorDtor, 142 ArrayRef<Constant *> NewMembers, 143 unsigned MCID); 144 void scheduleMapGlobalAliasee(GlobalAlias &GA, Constant &Aliasee, 145 unsigned MCID); 146 void scheduleRemapFunction(Function &F, unsigned MCID); 147 148 void flush(); 149 150 private: 151 void mapGlobalInitializer(GlobalVariable &GV, Constant &Init); 152 void mapAppendingVariable(GlobalVariable &GV, Constant *InitPrefix, 153 bool IsOldCtorDtor, 154 ArrayRef<Constant *> NewMembers); 155 void mapGlobalAliasee(GlobalAlias &GA, Constant &Aliasee); 156 void remapFunction(Function &F, ValueToValueMapTy &VM); 157 158 ValueToValueMapTy &getVM() { return *MCs[CurrentMCID].VM; } 159 ValueMaterializer *getMaterializer() { return MCs[CurrentMCID].Materializer; } 160 161 Value *mapBlockAddress(const BlockAddress &BA); 162 163 /// Map metadata that doesn't require visiting operands. 164 Optional<Metadata *> mapSimpleMetadata(const Metadata *MD); 165 166 Metadata *mapToMetadata(const Metadata *Key, Metadata *Val); 167 Metadata *mapToSelf(const Metadata *MD); 168 }; 169 170 class MDNodeMapper { 171 Mapper &M; 172 173 /// Data about a node in \a UniquedGraph. 174 struct Data { 175 bool HasChanged = false; 176 unsigned ID = ~0u; 177 TempMDNode Placeholder; 178 }; 179 180 /// A graph of uniqued nodes. 181 struct UniquedGraph { 182 SmallDenseMap<const Metadata *, Data, 32> Info; // Node properties. 183 SmallVector<MDNode *, 16> POT; // Post-order traversal. 184 185 /// Propagate changed operands through the post-order traversal. 186 /// 187 /// Iteratively update \a Data::HasChanged for each node based on \a 188 /// Data::HasChanged of its operands, until fixed point. 189 void propagateChanges(); 190 191 /// Get a forward reference to a node to use as an operand. 192 Metadata &getFwdReference(MDNode &Op); 193 }; 194 195 /// Worklist of distinct nodes whose operands need to be remapped. 196 SmallVector<MDNode *, 16> DistinctWorklist; 197 198 // Storage for a UniquedGraph. 199 SmallDenseMap<const Metadata *, Data, 32> InfoStorage; 200 SmallVector<MDNode *, 16> POTStorage; 201 202 public: 203 MDNodeMapper(Mapper &M) : M(M) {} 204 205 /// Map a metadata node (and its transitive operands). 206 /// 207 /// Map all the (unmapped) nodes in the subgraph under \c N. The iterative 208 /// algorithm handles distinct nodes and uniqued node subgraphs using 209 /// different strategies. 210 /// 211 /// Distinct nodes are immediately mapped and added to \a DistinctWorklist 212 /// using \a mapDistinctNode(). Their mapping can always be computed 213 /// immediately without visiting operands, even if their operands change. 214 /// 215 /// The mapping for uniqued nodes depends on whether their operands change. 216 /// \a mapTopLevelUniquedNode() traverses the transitive uniqued subgraph of 217 /// a node to calculate uniqued node mappings in bulk. Distinct leafs are 218 /// added to \a DistinctWorklist with \a mapDistinctNode(). 219 /// 220 /// After mapping \c N itself, this function remaps the operands of the 221 /// distinct nodes in \a DistinctWorklist until the entire subgraph under \c 222 /// N has been mapped. 223 Metadata *map(const MDNode &N); 224 225 private: 226 /// Map a top-level uniqued node and the uniqued subgraph underneath it. 227 /// 228 /// This builds up a post-order traversal of the (unmapped) uniqued subgraph 229 /// underneath \c FirstN and calculates the nodes' mapping. Each node uses 230 /// the identity mapping (\a Mapper::mapToSelf()) as long as all of its 231 /// operands uses the identity mapping. 232 /// 233 /// The algorithm works as follows: 234 /// 235 /// 1. \a createPOT(): traverse the uniqued subgraph under \c FirstN and 236 /// save the post-order traversal in the given \a UniquedGraph, tracking 237 /// nodes' operands change. 238 /// 239 /// 2. \a UniquedGraph::propagateChanges(): propagate changed operands 240 /// through the \a UniquedGraph until fixed point, following the rule 241 /// that if a node changes, any node that references must also change. 242 /// 243 /// 3. \a mapNodesInPOT(): map the uniqued nodes, creating new uniqued nodes 244 /// (referencing new operands) where necessary. 245 Metadata *mapTopLevelUniquedNode(const MDNode &FirstN); 246 247 /// Try to map the operand of an \a MDNode. 248 /// 249 /// If \c Op is already mapped, return the mapping. If it's not an \a 250 /// MDNode, compute and return the mapping. If it's a distinct \a MDNode, 251 /// return the result of \a mapDistinctNode(). 252 /// 253 /// \return None if \c Op is an unmapped uniqued \a MDNode. 254 /// \post getMappedOp(Op) only returns None if this returns None. 255 Optional<Metadata *> tryToMapOperand(const Metadata *Op); 256 257 /// Map a distinct node. 258 /// 259 /// Return the mapping for the distinct node \c N, saving the result in \a 260 /// DistinctWorklist for later remapping. 261 /// 262 /// \pre \c N is not yet mapped. 263 /// \pre \c N.isDistinct(). 264 MDNode *mapDistinctNode(const MDNode &N); 265 266 /// Get a previously mapped node. 267 Optional<Metadata *> getMappedOp(const Metadata *Op) const; 268 269 /// Create a post-order traversal of an unmapped uniqued node subgraph. 270 /// 271 /// This traverses the metadata graph deeply enough to map \c FirstN. It 272 /// uses \a tryToMapOperand() (via \a Mapper::mapSimplifiedNode()), so any 273 /// metadata that has already been mapped will not be part of the POT. 274 /// 275 /// Each node that has a changed operand from outside the graph (e.g., a 276 /// distinct node, an already-mapped uniqued node, or \a ConstantAsMetadata) 277 /// is marked with \a Data::HasChanged. 278 /// 279 /// \return \c true if any nodes in \c G have \a Data::HasChanged. 280 /// \post \c G.POT is a post-order traversal ending with \c FirstN. 281 /// \post \a Data::hasChanged in \c G.Info indicates whether any node needs 282 /// to change because of operands outside the graph. 283 bool createPOT(UniquedGraph &G, const MDNode &FirstN); 284 285 /// Visit the operands of a uniqued node in the POT. 286 /// 287 /// Visit the operands in the range from \c I to \c E, returning the first 288 /// uniqued node we find that isn't yet in \c G. \c I is always advanced to 289 /// where to continue the loop through the operands. 290 /// 291 /// This sets \c HasChanged if any of the visited operands change. 292 MDNode *visitOperands(UniquedGraph &G, MDNode::op_iterator &I, 293 MDNode::op_iterator E, bool &HasChanged); 294 295 /// Map all the nodes in the given uniqued graph. 296 /// 297 /// This visits all the nodes in \c G in post-order, using the identity 298 /// mapping or creating a new node depending on \a Data::HasChanged. 299 /// 300 /// \pre \a getMappedOp() returns None for nodes in \c G, but not for any of 301 /// their operands outside of \c G. 302 /// \pre \a Data::HasChanged is true for a node in \c G iff any of its 303 /// operands have changed. 304 /// \post \a getMappedOp() returns the mapped node for every node in \c G. 305 void mapNodesInPOT(UniquedGraph &G); 306 307 /// Remap a node's operands using the given functor. 308 /// 309 /// Iterate through the operands of \c N and update them in place using \c 310 /// mapOperand. 311 /// 312 /// \pre N.isDistinct() or N.isTemporary(). 313 template <class OperandMapper> 314 void remapOperands(MDNode &N, OperandMapper mapOperand); 315 }; 316 317 } // end namespace 318 319 Value *Mapper::mapValue(const Value *V) { 320 ValueToValueMapTy::iterator I = getVM().find(V); 321 322 // If the value already exists in the map, use it. 323 if (I != getVM().end()) { 324 assert(I->second && "Unexpected null mapping"); 325 return I->second; 326 } 327 328 // If we have a materializer and it can materialize a value, use that. 329 if (auto *Materializer = getMaterializer()) { 330 if (Value *NewV = Materializer->materialize(const_cast<Value *>(V))) { 331 getVM()[V] = NewV; 332 return NewV; 333 } 334 } 335 336 // Global values do not need to be seeded into the VM if they 337 // are using the identity mapping. 338 if (isa<GlobalValue>(V)) { 339 if (Flags & RF_NullMapMissingGlobalValues) 340 return nullptr; 341 return getVM()[V] = const_cast<Value *>(V); 342 } 343 344 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 345 // Inline asm may need *type* remapping. 346 FunctionType *NewTy = IA->getFunctionType(); 347 if (TypeMapper) { 348 NewTy = cast<FunctionType>(TypeMapper->remapType(NewTy)); 349 350 if (NewTy != IA->getFunctionType()) 351 V = InlineAsm::get(NewTy, IA->getAsmString(), IA->getConstraintString(), 352 IA->hasSideEffects(), IA->isAlignStack()); 353 } 354 355 return getVM()[V] = const_cast<Value *>(V); 356 } 357 358 if (const auto *MDV = dyn_cast<MetadataAsValue>(V)) { 359 const Metadata *MD = MDV->getMetadata(); 360 361 if (auto *LAM = dyn_cast<LocalAsMetadata>(MD)) { 362 // Look through to grab the local value. 363 if (Value *LV = mapValue(LAM->getValue())) { 364 if (V == LAM->getValue()) 365 return const_cast<Value *>(V); 366 return MetadataAsValue::get(V->getContext(), ValueAsMetadata::get(LV)); 367 } 368 369 // FIXME: always return nullptr once Verifier::verifyDominatesUse() 370 // ensures metadata operands only reference defined SSA values. 371 return (Flags & RF_IgnoreMissingLocals) 372 ? nullptr 373 : MetadataAsValue::get(V->getContext(), 374 MDTuple::get(V->getContext(), None)); 375 } 376 377 // If this is a module-level metadata and we know that nothing at the module 378 // level is changing, then use an identity mapping. 379 if (Flags & RF_NoModuleLevelChanges) 380 return getVM()[V] = const_cast<Value *>(V); 381 382 // Map the metadata and turn it into a value. 383 auto *MappedMD = mapMetadata(MD); 384 if (MD == MappedMD) 385 return getVM()[V] = const_cast<Value *>(V); 386 return getVM()[V] = MetadataAsValue::get(V->getContext(), MappedMD); 387 } 388 389 // Okay, this either must be a constant (which may or may not be mappable) or 390 // is something that is not in the mapping table. 391 Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V)); 392 if (!C) 393 return nullptr; 394 395 if (BlockAddress *BA = dyn_cast<BlockAddress>(C)) 396 return mapBlockAddress(*BA); 397 398 auto mapValueOrNull = [this](Value *V) { 399 auto Mapped = mapValue(V); 400 assert((Mapped || (Flags & RF_NullMapMissingGlobalValues)) && 401 "Unexpected null mapping for constant operand without " 402 "NullMapMissingGlobalValues flag"); 403 return Mapped; 404 }; 405 406 // Otherwise, we have some other constant to remap. Start by checking to see 407 // if all operands have an identity remapping. 408 unsigned OpNo = 0, NumOperands = C->getNumOperands(); 409 Value *Mapped = nullptr; 410 for (; OpNo != NumOperands; ++OpNo) { 411 Value *Op = C->getOperand(OpNo); 412 Mapped = mapValueOrNull(Op); 413 if (!Mapped) 414 return nullptr; 415 if (Mapped != Op) 416 break; 417 } 418 419 // See if the type mapper wants to remap the type as well. 420 Type *NewTy = C->getType(); 421 if (TypeMapper) 422 NewTy = TypeMapper->remapType(NewTy); 423 424 // If the result type and all operands match up, then just insert an identity 425 // mapping. 426 if (OpNo == NumOperands && NewTy == C->getType()) 427 return getVM()[V] = C; 428 429 // Okay, we need to create a new constant. We've already processed some or 430 // all of the operands, set them all up now. 431 SmallVector<Constant*, 8> Ops; 432 Ops.reserve(NumOperands); 433 for (unsigned j = 0; j != OpNo; ++j) 434 Ops.push_back(cast<Constant>(C->getOperand(j))); 435 436 // If one of the operands mismatch, push it and the other mapped operands. 437 if (OpNo != NumOperands) { 438 Ops.push_back(cast<Constant>(Mapped)); 439 440 // Map the rest of the operands that aren't processed yet. 441 for (++OpNo; OpNo != NumOperands; ++OpNo) { 442 Mapped = mapValueOrNull(C->getOperand(OpNo)); 443 if (!Mapped) 444 return nullptr; 445 Ops.push_back(cast<Constant>(Mapped)); 446 } 447 } 448 Type *NewSrcTy = nullptr; 449 if (TypeMapper) 450 if (auto *GEPO = dyn_cast<GEPOperator>(C)) 451 NewSrcTy = TypeMapper->remapType(GEPO->getSourceElementType()); 452 453 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) 454 return getVM()[V] = CE->getWithOperands(Ops, NewTy, false, NewSrcTy); 455 if (isa<ConstantArray>(C)) 456 return getVM()[V] = ConstantArray::get(cast<ArrayType>(NewTy), Ops); 457 if (isa<ConstantStruct>(C)) 458 return getVM()[V] = ConstantStruct::get(cast<StructType>(NewTy), Ops); 459 if (isa<ConstantVector>(C)) 460 return getVM()[V] = ConstantVector::get(Ops); 461 // If this is a no-operand constant, it must be because the type was remapped. 462 if (isa<UndefValue>(C)) 463 return getVM()[V] = UndefValue::get(NewTy); 464 if (isa<ConstantAggregateZero>(C)) 465 return getVM()[V] = ConstantAggregateZero::get(NewTy); 466 assert(isa<ConstantPointerNull>(C)); 467 return getVM()[V] = ConstantPointerNull::get(cast<PointerType>(NewTy)); 468 } 469 470 Value *Mapper::mapBlockAddress(const BlockAddress &BA) { 471 Function *F = cast<Function>(mapValue(BA.getFunction())); 472 473 // F may not have materialized its initializer. In that case, create a 474 // dummy basic block for now, and replace it once we've materialized all 475 // the initializers. 476 BasicBlock *BB; 477 if (F->empty()) { 478 DelayedBBs.push_back(DelayedBasicBlock(BA)); 479 BB = DelayedBBs.back().TempBB.get(); 480 } else { 481 BB = cast_or_null<BasicBlock>(mapValue(BA.getBasicBlock())); 482 } 483 484 return getVM()[&BA] = BlockAddress::get(F, BB ? BB : BA.getBasicBlock()); 485 } 486 487 Metadata *Mapper::mapToMetadata(const Metadata *Key, Metadata *Val) { 488 getVM().MD()[Key].reset(Val); 489 return Val; 490 } 491 492 Metadata *Mapper::mapToSelf(const Metadata *MD) { 493 return mapToMetadata(MD, const_cast<Metadata *>(MD)); 494 } 495 496 Optional<Metadata *> MDNodeMapper::tryToMapOperand(const Metadata *Op) { 497 if (!Op) 498 return nullptr; 499 500 if (Optional<Metadata *> MappedOp = M.mapSimpleMetadata(Op)) { 501 #ifndef NDEBUG 502 if (auto *CMD = dyn_cast<ConstantAsMetadata>(Op)) 503 assert((!*MappedOp || M.getVM().count(CMD->getValue()) || 504 M.getVM().getMappedMD(Op)) && 505 "Expected Value to be memoized"); 506 else 507 assert((isa<MDString>(Op) || M.getVM().getMappedMD(Op)) && 508 "Expected result to be memoized"); 509 #endif 510 return *MappedOp; 511 } 512 513 const MDNode &N = *cast<MDNode>(Op); 514 if (N.isDistinct()) 515 return mapDistinctNode(N); 516 return None; 517 } 518 519 MDNode *MDNodeMapper::mapDistinctNode(const MDNode &N) { 520 assert(N.isDistinct() && "Expected a distinct node"); 521 assert(!M.getVM().getMappedMD(&N) && "Expected an unmapped node"); 522 DistinctWorklist.push_back(cast<MDNode>( 523 (M.Flags & RF_MoveDistinctMDs) 524 ? M.mapToSelf(&N) 525 : M.mapToMetadata(&N, MDNode::replaceWithDistinct(N.clone())))); 526 return DistinctWorklist.back(); 527 } 528 529 static ConstantAsMetadata *wrapConstantAsMetadata(const ConstantAsMetadata &CMD, 530 Value *MappedV) { 531 if (CMD.getValue() == MappedV) 532 return const_cast<ConstantAsMetadata *>(&CMD); 533 return MappedV ? ConstantAsMetadata::getConstant(MappedV) : nullptr; 534 } 535 536 Optional<Metadata *> MDNodeMapper::getMappedOp(const Metadata *Op) const { 537 if (!Op) 538 return nullptr; 539 540 if (Optional<Metadata *> MappedOp = M.getVM().getMappedMD(Op)) 541 return *MappedOp; 542 543 if (isa<MDString>(Op)) 544 return const_cast<Metadata *>(Op); 545 546 if (auto *CMD = dyn_cast<ConstantAsMetadata>(Op)) 547 return wrapConstantAsMetadata(*CMD, M.getVM().lookup(CMD->getValue())); 548 549 return None; 550 } 551 552 Metadata &MDNodeMapper::UniquedGraph::getFwdReference(MDNode &Op) { 553 auto Where = Info.find(&Op); 554 assert(Where != Info.end() && "Expected a valid reference"); 555 556 auto &OpD = Where->second; 557 if (!OpD.HasChanged) 558 return Op; 559 560 // Lazily construct a temporary node. 561 if (!OpD.Placeholder) 562 OpD.Placeholder = Op.clone(); 563 564 return *OpD.Placeholder; 565 } 566 567 template <class OperandMapper> 568 void MDNodeMapper::remapOperands(MDNode &N, OperandMapper mapOperand) { 569 assert(!N.isUniqued() && "Expected distinct or temporary nodes"); 570 for (unsigned I = 0, E = N.getNumOperands(); I != E; ++I) { 571 Metadata *Old = N.getOperand(I); 572 Metadata *New = mapOperand(Old); 573 574 if (Old != New) 575 N.replaceOperandWith(I, New); 576 } 577 } 578 579 namespace { 580 /// An entry in the worklist for the post-order traversal. 581 struct POTWorklistEntry { 582 MDNode *N; ///< Current node. 583 MDNode::op_iterator Op; ///< Current operand of \c N. 584 585 /// Keep a flag of whether operands have changed in the worklist to avoid 586 /// hitting the map in \a UniquedGraph. 587 bool HasChanged = false; 588 589 POTWorklistEntry(MDNode &N) : N(&N), Op(N.op_begin()) {} 590 }; 591 } // end namespace 592 593 bool MDNodeMapper::createPOT(UniquedGraph &G, const MDNode &FirstN) { 594 assert(G.Info.empty() && "Expected a fresh traversal"); 595 assert(FirstN.isUniqued() && "Expected uniqued node in POT"); 596 597 // Construct a post-order traversal of the uniqued subgraph under FirstN. 598 bool AnyChanges = false; 599 SmallVector<POTWorklistEntry, 16> Worklist; 600 Worklist.push_back(POTWorklistEntry(const_cast<MDNode &>(FirstN))); 601 (void)G.Info[&FirstN]; 602 while (!Worklist.empty()) { 603 // Start or continue the traversal through the this node's operands. 604 auto &WE = Worklist.back(); 605 if (MDNode *N = visitOperands(G, WE.Op, WE.N->op_end(), WE.HasChanged)) { 606 // Push a new node to traverse first. 607 Worklist.push_back(POTWorklistEntry(*N)); 608 continue; 609 } 610 611 // Push the node onto the POT. 612 assert(WE.N->isUniqued() && "Expected only uniqued nodes"); 613 assert(WE.Op == WE.N->op_end() && "Expected to visit all operands"); 614 auto &D = G.Info[WE.N]; 615 AnyChanges |= D.HasChanged = WE.HasChanged; 616 D.ID = G.POT.size(); 617 G.POT.push_back(WE.N); 618 619 // Pop the node off the worklist. 620 Worklist.pop_back(); 621 } 622 return AnyChanges; 623 } 624 625 MDNode *MDNodeMapper::visitOperands(UniquedGraph &G, MDNode::op_iterator &I, 626 MDNode::op_iterator E, bool &HasChanged) { 627 while (I != E) { 628 Metadata *Op = *I++; // Increment even on early return. 629 if (Optional<Metadata *> MappedOp = tryToMapOperand(Op)) { 630 // Check if the operand changes. 631 HasChanged |= Op != *MappedOp; 632 continue; 633 } 634 635 // A uniqued metadata node. 636 MDNode &OpN = *cast<MDNode>(Op); 637 assert(OpN.isUniqued() && 638 "Only uniqued operands cannot be mapped immediately"); 639 if (G.Info.insert(std::make_pair(&OpN, Data())).second) 640 return &OpN; // This is a new one. Return it. 641 } 642 return nullptr; 643 } 644 645 void MDNodeMapper::UniquedGraph::propagateChanges() { 646 bool AnyChanges; 647 do { 648 AnyChanges = false; 649 for (MDNode *N : POT) { 650 auto &D = Info[N]; 651 if (D.HasChanged) 652 continue; 653 654 if (none_of(N->operands(), [&](const Metadata *Op) { 655 auto Where = Info.find(Op); 656 return Where != Info.end() && Where->second.HasChanged; 657 })) 658 continue; 659 660 AnyChanges = D.HasChanged = true; 661 } 662 } while (AnyChanges); 663 } 664 665 void MDNodeMapper::mapNodesInPOT(UniquedGraph &G) { 666 // Construct uniqued nodes, building forward references as necessary. 667 SmallVector<MDNode *, 16> CyclicNodes; 668 for (auto *N : G.POT) { 669 auto &D = G.Info[N]; 670 if (!D.HasChanged) { 671 // The node hasn't changed. 672 M.mapToSelf(N); 673 continue; 674 } 675 676 // Remember whether this node had a placeholder. 677 bool HadPlaceholder(D.Placeholder); 678 679 // Clone the uniqued node and remap the operands. 680 TempMDNode ClonedN = D.Placeholder ? std::move(D.Placeholder) : N->clone(); 681 remapOperands(*ClonedN, [this, &D, &G](Metadata *Old) { 682 if (Optional<Metadata *> MappedOp = getMappedOp(Old)) 683 return *MappedOp; 684 assert(G.Info[Old].ID > D.ID && "Expected a forward reference"); 685 return &G.getFwdReference(*cast<MDNode>(Old)); 686 }); 687 688 auto *NewN = MDNode::replaceWithUniqued(std::move(ClonedN)); 689 M.mapToMetadata(N, NewN); 690 691 // Nodes that were referenced out of order in the POT are involved in a 692 // uniquing cycle. 693 if (HadPlaceholder) 694 CyclicNodes.push_back(NewN); 695 } 696 697 // Resolve cycles. 698 for (auto *N : CyclicNodes) 699 if (!N->isResolved()) 700 N->resolveCycles(); 701 } 702 703 Metadata *MDNodeMapper::map(const MDNode &N) { 704 assert(DistinctWorklist.empty() && "MDNodeMapper::map is not recursive"); 705 assert(!(M.Flags & RF_NoModuleLevelChanges) && 706 "MDNodeMapper::map assumes module-level changes"); 707 708 // Require resolved nodes whenever metadata might be remapped. 709 assert(N.isResolved() && "Unexpected unresolved node"); 710 711 Metadata *MappedN = 712 N.isUniqued() ? mapTopLevelUniquedNode(N) : mapDistinctNode(N); 713 while (!DistinctWorklist.empty()) 714 remapOperands(*DistinctWorklist.pop_back_val(), [this](Metadata *Old) { 715 if (Optional<Metadata *> MappedOp = tryToMapOperand(Old)) 716 return *MappedOp; 717 return mapTopLevelUniquedNode(*cast<MDNode>(Old)); 718 }); 719 return MappedN; 720 } 721 722 Metadata *MDNodeMapper::mapTopLevelUniquedNode(const MDNode &FirstN) { 723 assert(FirstN.isUniqued() && "Expected uniqued node"); 724 725 // Create a post-order traversal of uniqued nodes under FirstN. 726 UniquedGraph G; 727 if (!createPOT(G, FirstN)) { 728 // Return early if no nodes have changed. 729 for (const MDNode *N : G.POT) 730 M.mapToSelf(N); 731 return &const_cast<MDNode &>(FirstN); 732 } 733 734 // Update graph with all nodes that have changed. 735 G.propagateChanges(); 736 737 // Map all the nodes in the graph. 738 mapNodesInPOT(G); 739 740 // Return the original node, remapped. 741 return *getMappedOp(&FirstN); 742 } 743 744 namespace { 745 746 struct MapMetadataDisabler { 747 ValueToValueMapTy &VM; 748 749 MapMetadataDisabler(ValueToValueMapTy &VM) : VM(VM) { 750 VM.disableMapMetadata(); 751 } 752 ~MapMetadataDisabler() { VM.enableMapMetadata(); } 753 }; 754 755 } // end namespace 756 757 Optional<Metadata *> Mapper::mapSimpleMetadata(const Metadata *MD) { 758 // If the value already exists in the map, use it. 759 if (Optional<Metadata *> NewMD = getVM().getMappedMD(MD)) 760 return *NewMD; 761 762 if (isa<MDString>(MD)) 763 return const_cast<Metadata *>(MD); 764 765 // This is a module-level metadata. If nothing at the module level is 766 // changing, use an identity mapping. 767 if ((Flags & RF_NoModuleLevelChanges)) 768 return const_cast<Metadata *>(MD); 769 770 if (auto *CMD = dyn_cast<ConstantAsMetadata>(MD)) { 771 // Disallow recursion into metadata mapping through mapValue. 772 MapMetadataDisabler MMD(getVM()); 773 774 // Don't memoize ConstantAsMetadata. Instead of lasting until the 775 // LLVMContext is destroyed, they can be deleted when the GlobalValue they 776 // reference is destructed. These aren't super common, so the extra 777 // indirection isn't that expensive. 778 return wrapConstantAsMetadata(*CMD, mapValue(CMD->getValue())); 779 } 780 781 assert(isa<MDNode>(MD) && "Expected a metadata node"); 782 783 return None; 784 } 785 786 Metadata *Mapper::mapMetadata(const Metadata *MD) { 787 assert(MD && "Expected valid metadata"); 788 assert(!isa<LocalAsMetadata>(MD) && "Unexpected local metadata"); 789 790 if (Optional<Metadata *> NewMD = mapSimpleMetadata(MD)) 791 return *NewMD; 792 793 return MDNodeMapper(*this).map(*cast<MDNode>(MD)); 794 } 795 796 void Mapper::flush() { 797 // Flush out the worklist of global values. 798 while (!Worklist.empty()) { 799 WorklistEntry E = Worklist.pop_back_val(); 800 CurrentMCID = E.MCID; 801 switch (E.Kind) { 802 case WorklistEntry::MapGlobalInit: 803 E.Data.GVInit.GV->setInitializer(mapConstant(E.Data.GVInit.Init)); 804 break; 805 case WorklistEntry::MapAppendingVar: { 806 unsigned PrefixSize = AppendingInits.size() - E.AppendingGVNumNewMembers; 807 mapAppendingVariable(*E.Data.AppendingGV.GV, 808 E.Data.AppendingGV.InitPrefix, 809 E.AppendingGVIsOldCtorDtor, 810 makeArrayRef(AppendingInits).slice(PrefixSize)); 811 AppendingInits.resize(PrefixSize); 812 break; 813 } 814 case WorklistEntry::MapGlobalAliasee: 815 E.Data.GlobalAliasee.GA->setAliasee( 816 mapConstant(E.Data.GlobalAliasee.Aliasee)); 817 break; 818 case WorklistEntry::RemapFunction: 819 remapFunction(*E.Data.RemapF); 820 break; 821 } 822 } 823 CurrentMCID = 0; 824 825 // Finish logic for block addresses now that all global values have been 826 // handled. 827 while (!DelayedBBs.empty()) { 828 DelayedBasicBlock DBB = DelayedBBs.pop_back_val(); 829 BasicBlock *BB = cast_or_null<BasicBlock>(mapValue(DBB.OldBB)); 830 DBB.TempBB->replaceAllUsesWith(BB ? BB : DBB.OldBB); 831 } 832 } 833 834 void Mapper::remapInstruction(Instruction *I) { 835 // Remap operands. 836 for (Use &Op : I->operands()) { 837 Value *V = mapValue(Op); 838 // If we aren't ignoring missing entries, assert that something happened. 839 if (V) 840 Op = V; 841 else 842 assert((Flags & RF_IgnoreMissingLocals) && 843 "Referenced value not in value map!"); 844 } 845 846 // Remap phi nodes' incoming blocks. 847 if (PHINode *PN = dyn_cast<PHINode>(I)) { 848 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 849 Value *V = mapValue(PN->getIncomingBlock(i)); 850 // If we aren't ignoring missing entries, assert that something happened. 851 if (V) 852 PN->setIncomingBlock(i, cast<BasicBlock>(V)); 853 else 854 assert((Flags & RF_IgnoreMissingLocals) && 855 "Referenced block not in value map!"); 856 } 857 } 858 859 // Remap attached metadata. 860 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 861 I->getAllMetadata(MDs); 862 for (const auto &MI : MDs) { 863 MDNode *Old = MI.second; 864 MDNode *New = cast_or_null<MDNode>(mapMetadata(Old)); 865 if (New != Old) 866 I->setMetadata(MI.first, New); 867 } 868 869 if (!TypeMapper) 870 return; 871 872 // If the instruction's type is being remapped, do so now. 873 if (auto CS = CallSite(I)) { 874 SmallVector<Type *, 3> Tys; 875 FunctionType *FTy = CS.getFunctionType(); 876 Tys.reserve(FTy->getNumParams()); 877 for (Type *Ty : FTy->params()) 878 Tys.push_back(TypeMapper->remapType(Ty)); 879 CS.mutateFunctionType(FunctionType::get( 880 TypeMapper->remapType(I->getType()), Tys, FTy->isVarArg())); 881 return; 882 } 883 if (auto *AI = dyn_cast<AllocaInst>(I)) 884 AI->setAllocatedType(TypeMapper->remapType(AI->getAllocatedType())); 885 if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) { 886 GEP->setSourceElementType( 887 TypeMapper->remapType(GEP->getSourceElementType())); 888 GEP->setResultElementType( 889 TypeMapper->remapType(GEP->getResultElementType())); 890 } 891 I->mutateType(TypeMapper->remapType(I->getType())); 892 } 893 894 void Mapper::remapFunction(Function &F) { 895 // Remap the operands. 896 for (Use &Op : F.operands()) 897 if (Op) 898 Op = mapValue(Op); 899 900 // Remap the metadata attachments. 901 SmallVector<std::pair<unsigned, MDNode *>, 8> MDs; 902 F.getAllMetadata(MDs); 903 F.clearMetadata(); 904 for (const auto &I : MDs) 905 F.addMetadata(I.first, *cast<MDNode>(mapMetadata(I.second))); 906 907 // Remap the argument types. 908 if (TypeMapper) 909 for (Argument &A : F.args()) 910 A.mutateType(TypeMapper->remapType(A.getType())); 911 912 // Remap the instructions. 913 for (BasicBlock &BB : F) 914 for (Instruction &I : BB) 915 remapInstruction(&I); 916 } 917 918 void Mapper::mapAppendingVariable(GlobalVariable &GV, Constant *InitPrefix, 919 bool IsOldCtorDtor, 920 ArrayRef<Constant *> NewMembers) { 921 SmallVector<Constant *, 16> Elements; 922 if (InitPrefix) { 923 unsigned NumElements = 924 cast<ArrayType>(InitPrefix->getType())->getNumElements(); 925 for (unsigned I = 0; I != NumElements; ++I) 926 Elements.push_back(InitPrefix->getAggregateElement(I)); 927 } 928 929 PointerType *VoidPtrTy; 930 Type *EltTy; 931 if (IsOldCtorDtor) { 932 // FIXME: This upgrade is done during linking to support the C API. See 933 // also IRLinker::linkAppendingVarProto() in IRMover.cpp. 934 VoidPtrTy = Type::getInt8Ty(GV.getContext())->getPointerTo(); 935 auto &ST = *cast<StructType>(NewMembers.front()->getType()); 936 Type *Tys[3] = {ST.getElementType(0), ST.getElementType(1), VoidPtrTy}; 937 EltTy = StructType::get(GV.getContext(), Tys, false); 938 } 939 940 for (auto *V : NewMembers) { 941 Constant *NewV; 942 if (IsOldCtorDtor) { 943 auto *S = cast<ConstantStruct>(V); 944 auto *E1 = mapValue(S->getOperand(0)); 945 auto *E2 = mapValue(S->getOperand(1)); 946 Value *Null = Constant::getNullValue(VoidPtrTy); 947 NewV = 948 ConstantStruct::get(cast<StructType>(EltTy), E1, E2, Null, nullptr); 949 } else { 950 NewV = cast_or_null<Constant>(mapValue(V)); 951 } 952 Elements.push_back(NewV); 953 } 954 955 GV.setInitializer(ConstantArray::get( 956 cast<ArrayType>(GV.getType()->getElementType()), Elements)); 957 } 958 959 void Mapper::scheduleMapGlobalInitializer(GlobalVariable &GV, Constant &Init, 960 unsigned MCID) { 961 assert(AlreadyScheduled.insert(&GV).second && "Should not reschedule"); 962 assert(MCID < MCs.size() && "Invalid mapping context"); 963 964 WorklistEntry WE; 965 WE.Kind = WorklistEntry::MapGlobalInit; 966 WE.MCID = MCID; 967 WE.Data.GVInit.GV = &GV; 968 WE.Data.GVInit.Init = &Init; 969 Worklist.push_back(WE); 970 } 971 972 void Mapper::scheduleMapAppendingVariable(GlobalVariable &GV, 973 Constant *InitPrefix, 974 bool IsOldCtorDtor, 975 ArrayRef<Constant *> NewMembers, 976 unsigned MCID) { 977 assert(AlreadyScheduled.insert(&GV).second && "Should not reschedule"); 978 assert(MCID < MCs.size() && "Invalid mapping context"); 979 980 WorklistEntry WE; 981 WE.Kind = WorklistEntry::MapAppendingVar; 982 WE.MCID = MCID; 983 WE.Data.AppendingGV.GV = &GV; 984 WE.Data.AppendingGV.InitPrefix = InitPrefix; 985 WE.AppendingGVIsOldCtorDtor = IsOldCtorDtor; 986 WE.AppendingGVNumNewMembers = NewMembers.size(); 987 Worklist.push_back(WE); 988 AppendingInits.append(NewMembers.begin(), NewMembers.end()); 989 } 990 991 void Mapper::scheduleMapGlobalAliasee(GlobalAlias &GA, Constant &Aliasee, 992 unsigned MCID) { 993 assert(AlreadyScheduled.insert(&GA).second && "Should not reschedule"); 994 assert(MCID < MCs.size() && "Invalid mapping context"); 995 996 WorklistEntry WE; 997 WE.Kind = WorklistEntry::MapGlobalAliasee; 998 WE.MCID = MCID; 999 WE.Data.GlobalAliasee.GA = &GA; 1000 WE.Data.GlobalAliasee.Aliasee = &Aliasee; 1001 Worklist.push_back(WE); 1002 } 1003 1004 void Mapper::scheduleRemapFunction(Function &F, unsigned MCID) { 1005 assert(AlreadyScheduled.insert(&F).second && "Should not reschedule"); 1006 assert(MCID < MCs.size() && "Invalid mapping context"); 1007 1008 WorklistEntry WE; 1009 WE.Kind = WorklistEntry::RemapFunction; 1010 WE.MCID = MCID; 1011 WE.Data.RemapF = &F; 1012 Worklist.push_back(WE); 1013 } 1014 1015 void Mapper::addFlags(RemapFlags Flags) { 1016 assert(!hasWorkToDo() && "Expected to have flushed the worklist"); 1017 this->Flags = this->Flags | Flags; 1018 } 1019 1020 static Mapper *getAsMapper(void *pImpl) { 1021 return reinterpret_cast<Mapper *>(pImpl); 1022 } 1023 1024 namespace { 1025 1026 class FlushingMapper { 1027 Mapper &M; 1028 1029 public: 1030 explicit FlushingMapper(void *pImpl) : M(*getAsMapper(pImpl)) { 1031 assert(!M.hasWorkToDo() && "Expected to be flushed"); 1032 } 1033 ~FlushingMapper() { M.flush(); } 1034 Mapper *operator->() const { return &M; } 1035 }; 1036 1037 } // end namespace 1038 1039 ValueMapper::ValueMapper(ValueToValueMapTy &VM, RemapFlags Flags, 1040 ValueMapTypeRemapper *TypeMapper, 1041 ValueMaterializer *Materializer) 1042 : pImpl(new Mapper(VM, Flags, TypeMapper, Materializer)) {} 1043 1044 ValueMapper::~ValueMapper() { delete getAsMapper(pImpl); } 1045 1046 unsigned 1047 ValueMapper::registerAlternateMappingContext(ValueToValueMapTy &VM, 1048 ValueMaterializer *Materializer) { 1049 return getAsMapper(pImpl)->registerAlternateMappingContext(VM, Materializer); 1050 } 1051 1052 void ValueMapper::addFlags(RemapFlags Flags) { 1053 FlushingMapper(pImpl)->addFlags(Flags); 1054 } 1055 1056 Value *ValueMapper::mapValue(const Value &V) { 1057 return FlushingMapper(pImpl)->mapValue(&V); 1058 } 1059 1060 Constant *ValueMapper::mapConstant(const Constant &C) { 1061 return cast_or_null<Constant>(mapValue(C)); 1062 } 1063 1064 Metadata *ValueMapper::mapMetadata(const Metadata &MD) { 1065 return FlushingMapper(pImpl)->mapMetadata(&MD); 1066 } 1067 1068 MDNode *ValueMapper::mapMDNode(const MDNode &N) { 1069 return cast_or_null<MDNode>(mapMetadata(N)); 1070 } 1071 1072 void ValueMapper::remapInstruction(Instruction &I) { 1073 FlushingMapper(pImpl)->remapInstruction(&I); 1074 } 1075 1076 void ValueMapper::remapFunction(Function &F) { 1077 FlushingMapper(pImpl)->remapFunction(F); 1078 } 1079 1080 void ValueMapper::scheduleMapGlobalInitializer(GlobalVariable &GV, 1081 Constant &Init, 1082 unsigned MCID) { 1083 getAsMapper(pImpl)->scheduleMapGlobalInitializer(GV, Init, MCID); 1084 } 1085 1086 void ValueMapper::scheduleMapAppendingVariable(GlobalVariable &GV, 1087 Constant *InitPrefix, 1088 bool IsOldCtorDtor, 1089 ArrayRef<Constant *> NewMembers, 1090 unsigned MCID) { 1091 getAsMapper(pImpl)->scheduleMapAppendingVariable( 1092 GV, InitPrefix, IsOldCtorDtor, NewMembers, MCID); 1093 } 1094 1095 void ValueMapper::scheduleMapGlobalAliasee(GlobalAlias &GA, Constant &Aliasee, 1096 unsigned MCID) { 1097 getAsMapper(pImpl)->scheduleMapGlobalAliasee(GA, Aliasee, MCID); 1098 } 1099 1100 void ValueMapper::scheduleRemapFunction(Function &F, unsigned MCID) { 1101 getAsMapper(pImpl)->scheduleRemapFunction(F, MCID); 1102 } 1103