1 //===- ValueMapper.cpp - Interface shared by lib/Transforms/Utils ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the MapValue function, which is shared by various parts of 11 // the lib/Transforms/Utils library. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Utils/ValueMapper.h" 16 #include "llvm/IR/Constants.h" 17 #include "llvm/IR/Function.h" 18 #include "llvm/IR/InlineAsm.h" 19 #include "llvm/IR/Instructions.h" 20 #include "llvm/IR/Metadata.h" 21 using namespace llvm; 22 23 // Out of line method to get vtable etc for class. 24 void ValueMapTypeRemapper::anchor() {} 25 void ValueMaterializer::anchor() {} 26 27 Value *llvm::MapValue(const Value *V, ValueToValueMapTy &VM, RemapFlags Flags, 28 ValueMapTypeRemapper *TypeMapper, 29 ValueMaterializer *Materializer) { 30 ValueToValueMapTy::iterator I = VM.find(V); 31 32 // If the value already exists in the map, use it. 33 if (I != VM.end() && I->second) return I->second; 34 35 // If we have a materializer and it can materialize a value, use that. 36 if (Materializer) { 37 if (Value *NewV = Materializer->materializeValueFor(const_cast<Value*>(V))) 38 return VM[V] = NewV; 39 } 40 41 // Global values do not need to be seeded into the VM if they 42 // are using the identity mapping. 43 if (isa<GlobalValue>(V)) 44 return VM[V] = const_cast<Value*>(V); 45 46 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 47 // Inline asm may need *type* remapping. 48 FunctionType *NewTy = IA->getFunctionType(); 49 if (TypeMapper) { 50 NewTy = cast<FunctionType>(TypeMapper->remapType(NewTy)); 51 52 if (NewTy != IA->getFunctionType()) 53 V = InlineAsm::get(NewTy, IA->getAsmString(), IA->getConstraintString(), 54 IA->hasSideEffects(), IA->isAlignStack()); 55 } 56 57 return VM[V] = const_cast<Value*>(V); 58 } 59 60 if (const auto *MDV = dyn_cast<MetadataAsValue>(V)) { 61 const Metadata *MD = MDV->getMetadata(); 62 // If this is a module-level metadata and we know that nothing at the module 63 // level is changing, then use an identity mapping. 64 if (!isa<LocalAsMetadata>(MD) && (Flags & RF_NoModuleLevelChanges)) 65 return VM[V] = const_cast<Value *>(V); 66 67 auto *MappedMD = MapMetadata(MD, VM, Flags, TypeMapper, Materializer); 68 if (MD == MappedMD || (!MappedMD && (Flags & RF_IgnoreMissingEntries))) 69 return VM[V] = const_cast<Value *>(V); 70 71 // FIXME: This assert crashes during bootstrap, but I think it should be 72 // correct. For now, just match behaviour from before the metadata/value 73 // split. 74 // 75 // assert(MappedMD && "Referenced metadata value not in value map"); 76 return VM[V] = MetadataAsValue::get(V->getContext(), MappedMD); 77 } 78 79 // Okay, this either must be a constant (which may or may not be mappable) or 80 // is something that is not in the mapping table. 81 Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V)); 82 if (!C) 83 return nullptr; 84 85 if (BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 86 Function *F = 87 cast<Function>(MapValue(BA->getFunction(), VM, Flags, TypeMapper, Materializer)); 88 BasicBlock *BB = cast_or_null<BasicBlock>(MapValue(BA->getBasicBlock(), VM, 89 Flags, TypeMapper, Materializer)); 90 return VM[V] = BlockAddress::get(F, BB ? BB : BA->getBasicBlock()); 91 } 92 93 // Otherwise, we have some other constant to remap. Start by checking to see 94 // if all operands have an identity remapping. 95 unsigned OpNo = 0, NumOperands = C->getNumOperands(); 96 Value *Mapped = nullptr; 97 for (; OpNo != NumOperands; ++OpNo) { 98 Value *Op = C->getOperand(OpNo); 99 Mapped = MapValue(Op, VM, Flags, TypeMapper, Materializer); 100 if (Mapped != C) break; 101 } 102 103 // See if the type mapper wants to remap the type as well. 104 Type *NewTy = C->getType(); 105 if (TypeMapper) 106 NewTy = TypeMapper->remapType(NewTy); 107 108 // If the result type and all operands match up, then just insert an identity 109 // mapping. 110 if (OpNo == NumOperands && NewTy == C->getType()) 111 return VM[V] = C; 112 113 // Okay, we need to create a new constant. We've already processed some or 114 // all of the operands, set them all up now. 115 SmallVector<Constant*, 8> Ops; 116 Ops.reserve(NumOperands); 117 for (unsigned j = 0; j != OpNo; ++j) 118 Ops.push_back(cast<Constant>(C->getOperand(j))); 119 120 // If one of the operands mismatch, push it and the other mapped operands. 121 if (OpNo != NumOperands) { 122 Ops.push_back(cast<Constant>(Mapped)); 123 124 // Map the rest of the operands that aren't processed yet. 125 for (++OpNo; OpNo != NumOperands; ++OpNo) 126 Ops.push_back(MapValue(cast<Constant>(C->getOperand(OpNo)), VM, 127 Flags, TypeMapper, Materializer)); 128 } 129 130 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) 131 return VM[V] = CE->getWithOperands(Ops, NewTy); 132 if (isa<ConstantArray>(C)) 133 return VM[V] = ConstantArray::get(cast<ArrayType>(NewTy), Ops); 134 if (isa<ConstantStruct>(C)) 135 return VM[V] = ConstantStruct::get(cast<StructType>(NewTy), Ops); 136 if (isa<ConstantVector>(C)) 137 return VM[V] = ConstantVector::get(Ops); 138 // If this is a no-operand constant, it must be because the type was remapped. 139 if (isa<UndefValue>(C)) 140 return VM[V] = UndefValue::get(NewTy); 141 if (isa<ConstantAggregateZero>(C)) 142 return VM[V] = ConstantAggregateZero::get(NewTy); 143 assert(isa<ConstantPointerNull>(C)); 144 return VM[V] = ConstantPointerNull::get(cast<PointerType>(NewTy)); 145 } 146 147 static Metadata *mapToMetadata(ValueToValueMapTy &VM, const Metadata *Key, 148 Metadata *Val) { 149 VM.MD()[Key].reset(Val); 150 return Val; 151 } 152 153 static Metadata *mapToSelf(ValueToValueMapTy &VM, const Metadata *MD) { 154 return mapToMetadata(VM, MD, const_cast<Metadata *>(MD)); 155 } 156 157 static Metadata *MapMetadataImpl(const Metadata *MD, ValueToValueMapTy &VM, 158 RemapFlags Flags, 159 ValueMapTypeRemapper *TypeMapper, 160 ValueMaterializer *Materializer) { 161 // If the value already exists in the map, use it. 162 if (Metadata *NewMD = VM.MD().lookup(MD).get()) 163 return NewMD; 164 165 if (isa<MDString>(MD)) 166 return mapToSelf(VM, MD); 167 168 if (isa<ConstantAsMetadata>(MD)) 169 if ((Flags & RF_NoModuleLevelChanges)) 170 return mapToSelf(VM, MD); 171 172 if (const auto *VMD = dyn_cast<ValueAsMetadata>(MD)) { 173 Value *MappedV = 174 MapValue(VMD->getValue(), VM, Flags, TypeMapper, Materializer); 175 if (VMD->getValue() == MappedV || 176 (!MappedV && (Flags & RF_IgnoreMissingEntries))) 177 return mapToSelf(VM, MD); 178 179 // FIXME: This assert crashes during bootstrap, but I think it should be 180 // correct. For now, just match behaviour from before the metadata/value 181 // split. 182 // 183 // assert(MappedV && "Referenced metadata not in value map!"); 184 if (MappedV) 185 return mapToMetadata(VM, MD, ValueAsMetadata::get(MappedV)); 186 return nullptr; 187 } 188 189 const MDNode *Node = cast<MDNode>(MD); 190 assert(Node->isResolved() && "Unexpected unresolved node"); 191 192 auto getMappedOp = [&](Metadata *Op) -> Metadata *{ 193 if (!Op) 194 return nullptr; 195 if (Metadata *MappedOp = 196 MapMetadataImpl(Op, VM, Flags, TypeMapper, Materializer)) 197 return MappedOp; 198 // Use identity map if MappedOp is null and we can ignore missing entries. 199 if (Flags & RF_IgnoreMissingEntries) 200 return Op; 201 202 // FIXME: This assert crashes during bootstrap, but I think it should be 203 // correct. For now, just match behaviour from before the metadata/value 204 // split. 205 // 206 // llvm_unreachable("Referenced metadata not in value map!"); 207 return nullptr; 208 }; 209 210 // If this is a module-level metadata and we know that nothing at the 211 // module level is changing, then use an identity mapping. 212 if (Flags & RF_NoModuleLevelChanges) 213 return mapToSelf(VM, MD); 214 215 // Distinct nodes are always recreated. 216 if (Node->isDistinct()) { 217 // Create the node first so it's available for cyclical references. 218 SmallVector<Metadata *, 4> EmptyOps(Node->getNumOperands()); 219 MDNode *NewMD = MDNode::getDistinct(Node->getContext(), EmptyOps); 220 mapToMetadata(VM, Node, NewMD); 221 222 // Fix the operands. 223 for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I) 224 NewMD->replaceOperandWith(I, getMappedOp(Node->getOperand(I))); 225 226 return NewMD; 227 } 228 229 // Create a dummy node in case we have a metadata cycle. 230 MDNodeFwdDecl *Dummy = MDNode::getTemporary(Node->getContext(), None); 231 mapToMetadata(VM, Node, Dummy); 232 233 // Check all operands to see if any need to be remapped. 234 for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I) { 235 Metadata *Op = Node->getOperand(I); 236 Metadata *MappedOp = getMappedOp(Op); 237 if (Op == MappedOp) 238 continue; 239 240 // Ok, at least one operand needs remapping. 241 SmallVector<Metadata *, 4> Elts; 242 Elts.reserve(Node->getNumOperands()); 243 for (I = 0; I != E; ++I) 244 Elts.push_back(getMappedOp(Node->getOperand(I))); 245 246 MDNode *NewMD = MDNode::get(Node->getContext(), Elts); 247 Dummy->replaceAllUsesWith(NewMD); 248 MDNode::deleteTemporary(Dummy); 249 return mapToMetadata(VM, Node, NewMD); 250 } 251 252 // No operands needed remapping. Use an identity mapping. 253 mapToSelf(VM, MD); 254 MDNode::deleteTemporary(Dummy); 255 return const_cast<Metadata *>(MD); 256 } 257 258 Metadata *llvm::MapMetadata(const Metadata *MD, ValueToValueMapTy &VM, 259 RemapFlags Flags, ValueMapTypeRemapper *TypeMapper, 260 ValueMaterializer *Materializer) { 261 Metadata *NewMD = MapMetadataImpl(MD, VM, Flags, TypeMapper, Materializer); 262 if (NewMD && NewMD != MD) 263 if (auto *G = dyn_cast<GenericMDNode>(NewMD)) 264 G->resolveCycles(); 265 return NewMD; 266 } 267 268 MDNode *llvm::MapMetadata(const MDNode *MD, ValueToValueMapTy &VM, 269 RemapFlags Flags, ValueMapTypeRemapper *TypeMapper, 270 ValueMaterializer *Materializer) { 271 return cast<MDNode>(MapMetadata(static_cast<const Metadata *>(MD), VM, Flags, 272 TypeMapper, Materializer)); 273 } 274 275 /// RemapInstruction - Convert the instruction operands from referencing the 276 /// current values into those specified by VMap. 277 /// 278 void llvm::RemapInstruction(Instruction *I, ValueToValueMapTy &VMap, 279 RemapFlags Flags, ValueMapTypeRemapper *TypeMapper, 280 ValueMaterializer *Materializer){ 281 // Remap operands. 282 for (User::op_iterator op = I->op_begin(), E = I->op_end(); op != E; ++op) { 283 Value *V = MapValue(*op, VMap, Flags, TypeMapper, Materializer); 284 // If we aren't ignoring missing entries, assert that something happened. 285 if (V) 286 *op = V; 287 else 288 assert((Flags & RF_IgnoreMissingEntries) && 289 "Referenced value not in value map!"); 290 } 291 292 // Remap phi nodes' incoming blocks. 293 if (PHINode *PN = dyn_cast<PHINode>(I)) { 294 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 295 Value *V = MapValue(PN->getIncomingBlock(i), VMap, Flags); 296 // If we aren't ignoring missing entries, assert that something happened. 297 if (V) 298 PN->setIncomingBlock(i, cast<BasicBlock>(V)); 299 else 300 assert((Flags & RF_IgnoreMissingEntries) && 301 "Referenced block not in value map!"); 302 } 303 } 304 305 // Remap attached metadata. 306 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 307 I->getAllMetadata(MDs); 308 for (SmallVectorImpl<std::pair<unsigned, MDNode *>>::iterator 309 MI = MDs.begin(), 310 ME = MDs.end(); 311 MI != ME; ++MI) { 312 MDNode *Old = MI->second; 313 MDNode *New = MapMetadata(Old, VMap, Flags, TypeMapper, Materializer); 314 if (New != Old) 315 I->setMetadata(MI->first, New); 316 } 317 318 // If the instruction's type is being remapped, do so now. 319 if (TypeMapper) 320 I->mutateType(TypeMapper->remapType(I->getType())); 321 } 322