1 //===- ValueMapper.cpp - Interface shared by lib/Transforms/Utils ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the MapValue function, which is shared by various parts of
10 // the lib/Transforms/Utils library.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Utils/ValueMapper.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/DenseSet.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/Optional.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/IR/Argument.h"
23 #include "llvm/IR/BasicBlock.h"
24 #include "llvm/IR/Constant.h"
25 #include "llvm/IR/Constants.h"
26 #include "llvm/IR/DebugInfoMetadata.h"
27 #include "llvm/IR/DerivedTypes.h"
28 #include "llvm/IR/Function.h"
29 #include "llvm/IR/GlobalObject.h"
30 #include "llvm/IR/GlobalIndirectSymbol.h"
31 #include "llvm/IR/GlobalVariable.h"
32 #include "llvm/IR/InlineAsm.h"
33 #include "llvm/IR/Instruction.h"
34 #include "llvm/IR/Instructions.h"
35 #include "llvm/IR/Metadata.h"
36 #include "llvm/IR/Operator.h"
37 #include "llvm/IR/Type.h"
38 #include "llvm/IR/Value.h"
39 #include "llvm/Support/Casting.h"
40 #include <cassert>
41 #include <limits>
42 #include <memory>
43 #include <utility>
44 
45 using namespace llvm;
46 
47 // Out of line method to get vtable etc for class.
48 void ValueMapTypeRemapper::anchor() {}
49 void ValueMaterializer::anchor() {}
50 
51 namespace {
52 
53 /// A basic block used in a BlockAddress whose function body is not yet
54 /// materialized.
55 struct DelayedBasicBlock {
56   BasicBlock *OldBB;
57   std::unique_ptr<BasicBlock> TempBB;
58 
59   DelayedBasicBlock(const BlockAddress &Old)
60       : OldBB(Old.getBasicBlock()),
61         TempBB(BasicBlock::Create(Old.getContext())) {}
62 };
63 
64 struct WorklistEntry {
65   enum EntryKind {
66     MapGlobalInit,
67     MapAppendingVar,
68     MapGlobalIndirectSymbol,
69     RemapFunction
70   };
71   struct GVInitTy {
72     GlobalVariable *GV;
73     Constant *Init;
74   };
75   struct AppendingGVTy {
76     GlobalVariable *GV;
77     Constant *InitPrefix;
78   };
79   struct GlobalIndirectSymbolTy {
80     GlobalIndirectSymbol *GIS;
81     Constant *Target;
82   };
83 
84   unsigned Kind : 2;
85   unsigned MCID : 29;
86   unsigned AppendingGVIsOldCtorDtor : 1;
87   unsigned AppendingGVNumNewMembers;
88   union {
89     GVInitTy GVInit;
90     AppendingGVTy AppendingGV;
91     GlobalIndirectSymbolTy GlobalIndirectSymbol;
92     Function *RemapF;
93   } Data;
94 };
95 
96 struct MappingContext {
97   ValueToValueMapTy *VM;
98   ValueMaterializer *Materializer = nullptr;
99 
100   /// Construct a MappingContext with a value map and materializer.
101   explicit MappingContext(ValueToValueMapTy &VM,
102                           ValueMaterializer *Materializer = nullptr)
103       : VM(&VM), Materializer(Materializer) {}
104 };
105 
106 class Mapper {
107   friend class MDNodeMapper;
108 
109 #ifndef NDEBUG
110   DenseSet<GlobalValue *> AlreadyScheduled;
111 #endif
112 
113   RemapFlags Flags;
114   ValueMapTypeRemapper *TypeMapper;
115   unsigned CurrentMCID = 0;
116   SmallVector<MappingContext, 2> MCs;
117   SmallVector<WorklistEntry, 4> Worklist;
118   SmallVector<DelayedBasicBlock, 1> DelayedBBs;
119   SmallVector<Constant *, 16> AppendingInits;
120 
121 public:
122   Mapper(ValueToValueMapTy &VM, RemapFlags Flags,
123          ValueMapTypeRemapper *TypeMapper, ValueMaterializer *Materializer)
124       : Flags(Flags), TypeMapper(TypeMapper),
125         MCs(1, MappingContext(VM, Materializer)) {}
126 
127   /// ValueMapper should explicitly call \a flush() before destruction.
128   ~Mapper() { assert(!hasWorkToDo() && "Expected to be flushed"); }
129 
130   bool hasWorkToDo() const { return !Worklist.empty(); }
131 
132   unsigned
133   registerAlternateMappingContext(ValueToValueMapTy &VM,
134                                   ValueMaterializer *Materializer = nullptr) {
135     MCs.push_back(MappingContext(VM, Materializer));
136     return MCs.size() - 1;
137   }
138 
139   void addFlags(RemapFlags Flags);
140 
141   void remapGlobalObjectMetadata(GlobalObject &GO);
142 
143   Value *mapValue(const Value *V);
144   void remapInstruction(Instruction *I);
145   void remapFunction(Function &F);
146 
147   Constant *mapConstant(const Constant *C) {
148     return cast_or_null<Constant>(mapValue(C));
149   }
150 
151   /// Map metadata.
152   ///
153   /// Find the mapping for MD.  Guarantees that the return will be resolved
154   /// (not an MDNode, or MDNode::isResolved() returns true).
155   Metadata *mapMetadata(const Metadata *MD);
156 
157   void scheduleMapGlobalInitializer(GlobalVariable &GV, Constant &Init,
158                                     unsigned MCID);
159   void scheduleMapAppendingVariable(GlobalVariable &GV, Constant *InitPrefix,
160                                     bool IsOldCtorDtor,
161                                     ArrayRef<Constant *> NewMembers,
162                                     unsigned MCID);
163   void scheduleMapGlobalIndirectSymbol(GlobalIndirectSymbol &GIS, Constant &Target,
164                                        unsigned MCID);
165   void scheduleRemapFunction(Function &F, unsigned MCID);
166 
167   void flush();
168 
169 private:
170   void mapGlobalInitializer(GlobalVariable &GV, Constant &Init);
171   void mapAppendingVariable(GlobalVariable &GV, Constant *InitPrefix,
172                             bool IsOldCtorDtor,
173                             ArrayRef<Constant *> NewMembers);
174   void mapGlobalIndirectSymbol(GlobalIndirectSymbol &GIS, Constant &Target);
175 
176   ValueToValueMapTy &getVM() { return *MCs[CurrentMCID].VM; }
177   ValueMaterializer *getMaterializer() { return MCs[CurrentMCID].Materializer; }
178 
179   Value *mapBlockAddress(const BlockAddress &BA);
180 
181   /// Map metadata that doesn't require visiting operands.
182   Optional<Metadata *> mapSimpleMetadata(const Metadata *MD);
183 
184   Metadata *mapToMetadata(const Metadata *Key, Metadata *Val);
185   Metadata *mapToSelf(const Metadata *MD);
186 };
187 
188 class MDNodeMapper {
189   Mapper &M;
190 
191   /// Data about a node in \a UniquedGraph.
192   struct Data {
193     bool HasChanged = false;
194     unsigned ID = std::numeric_limits<unsigned>::max();
195     TempMDNode Placeholder;
196   };
197 
198   /// A graph of uniqued nodes.
199   struct UniquedGraph {
200     SmallDenseMap<const Metadata *, Data, 32> Info; // Node properties.
201     SmallVector<MDNode *, 16> POT;                  // Post-order traversal.
202 
203     /// Propagate changed operands through the post-order traversal.
204     ///
205     /// Iteratively update \a Data::HasChanged for each node based on \a
206     /// Data::HasChanged of its operands, until fixed point.
207     void propagateChanges();
208 
209     /// Get a forward reference to a node to use as an operand.
210     Metadata &getFwdReference(MDNode &Op);
211   };
212 
213   /// Worklist of distinct nodes whose operands need to be remapped.
214   SmallVector<MDNode *, 16> DistinctWorklist;
215 
216   // Storage for a UniquedGraph.
217   SmallDenseMap<const Metadata *, Data, 32> InfoStorage;
218   SmallVector<MDNode *, 16> POTStorage;
219 
220 public:
221   MDNodeMapper(Mapper &M) : M(M) {}
222 
223   /// Map a metadata node (and its transitive operands).
224   ///
225   /// Map all the (unmapped) nodes in the subgraph under \c N.  The iterative
226   /// algorithm handles distinct nodes and uniqued node subgraphs using
227   /// different strategies.
228   ///
229   /// Distinct nodes are immediately mapped and added to \a DistinctWorklist
230   /// using \a mapDistinctNode().  Their mapping can always be computed
231   /// immediately without visiting operands, even if their operands change.
232   ///
233   /// The mapping for uniqued nodes depends on whether their operands change.
234   /// \a mapTopLevelUniquedNode() traverses the transitive uniqued subgraph of
235   /// a node to calculate uniqued node mappings in bulk.  Distinct leafs are
236   /// added to \a DistinctWorklist with \a mapDistinctNode().
237   ///
238   /// After mapping \c N itself, this function remaps the operands of the
239   /// distinct nodes in \a DistinctWorklist until the entire subgraph under \c
240   /// N has been mapped.
241   Metadata *map(const MDNode &N);
242 
243 private:
244   /// Map a top-level uniqued node and the uniqued subgraph underneath it.
245   ///
246   /// This builds up a post-order traversal of the (unmapped) uniqued subgraph
247   /// underneath \c FirstN and calculates the nodes' mapping.  Each node uses
248   /// the identity mapping (\a Mapper::mapToSelf()) as long as all of its
249   /// operands uses the identity mapping.
250   ///
251   /// The algorithm works as follows:
252   ///
253   ///  1. \a createPOT(): traverse the uniqued subgraph under \c FirstN and
254   ///     save the post-order traversal in the given \a UniquedGraph, tracking
255   ///     nodes' operands change.
256   ///
257   ///  2. \a UniquedGraph::propagateChanges(): propagate changed operands
258   ///     through the \a UniquedGraph until fixed point, following the rule
259   ///     that if a node changes, any node that references must also change.
260   ///
261   ///  3. \a mapNodesInPOT(): map the uniqued nodes, creating new uniqued nodes
262   ///     (referencing new operands) where necessary.
263   Metadata *mapTopLevelUniquedNode(const MDNode &FirstN);
264 
265   /// Try to map the operand of an \a MDNode.
266   ///
267   /// If \c Op is already mapped, return the mapping.  If it's not an \a
268   /// MDNode, compute and return the mapping.  If it's a distinct \a MDNode,
269   /// return the result of \a mapDistinctNode().
270   ///
271   /// \return None if \c Op is an unmapped uniqued \a MDNode.
272   /// \post getMappedOp(Op) only returns None if this returns None.
273   Optional<Metadata *> tryToMapOperand(const Metadata *Op);
274 
275   /// Map a distinct node.
276   ///
277   /// Return the mapping for the distinct node \c N, saving the result in \a
278   /// DistinctWorklist for later remapping.
279   ///
280   /// \pre \c N is not yet mapped.
281   /// \pre \c N.isDistinct().
282   MDNode *mapDistinctNode(const MDNode &N);
283 
284   /// Get a previously mapped node.
285   Optional<Metadata *> getMappedOp(const Metadata *Op) const;
286 
287   /// Create a post-order traversal of an unmapped uniqued node subgraph.
288   ///
289   /// This traverses the metadata graph deeply enough to map \c FirstN.  It
290   /// uses \a tryToMapOperand() (via \a Mapper::mapSimplifiedNode()), so any
291   /// metadata that has already been mapped will not be part of the POT.
292   ///
293   /// Each node that has a changed operand from outside the graph (e.g., a
294   /// distinct node, an already-mapped uniqued node, or \a ConstantAsMetadata)
295   /// is marked with \a Data::HasChanged.
296   ///
297   /// \return \c true if any nodes in \c G have \a Data::HasChanged.
298   /// \post \c G.POT is a post-order traversal ending with \c FirstN.
299   /// \post \a Data::hasChanged in \c G.Info indicates whether any node needs
300   /// to change because of operands outside the graph.
301   bool createPOT(UniquedGraph &G, const MDNode &FirstN);
302 
303   /// Visit the operands of a uniqued node in the POT.
304   ///
305   /// Visit the operands in the range from \c I to \c E, returning the first
306   /// uniqued node we find that isn't yet in \c G.  \c I is always advanced to
307   /// where to continue the loop through the operands.
308   ///
309   /// This sets \c HasChanged if any of the visited operands change.
310   MDNode *visitOperands(UniquedGraph &G, MDNode::op_iterator &I,
311                         MDNode::op_iterator E, bool &HasChanged);
312 
313   /// Map all the nodes in the given uniqued graph.
314   ///
315   /// This visits all the nodes in \c G in post-order, using the identity
316   /// mapping or creating a new node depending on \a Data::HasChanged.
317   ///
318   /// \pre \a getMappedOp() returns None for nodes in \c G, but not for any of
319   /// their operands outside of \c G.
320   /// \pre \a Data::HasChanged is true for a node in \c G iff any of its
321   /// operands have changed.
322   /// \post \a getMappedOp() returns the mapped node for every node in \c G.
323   void mapNodesInPOT(UniquedGraph &G);
324 
325   /// Remap a node's operands using the given functor.
326   ///
327   /// Iterate through the operands of \c N and update them in place using \c
328   /// mapOperand.
329   ///
330   /// \pre N.isDistinct() or N.isTemporary().
331   template <class OperandMapper>
332   void remapOperands(MDNode &N, OperandMapper mapOperand);
333 };
334 
335 } // end anonymous namespace
336 
337 Value *Mapper::mapValue(const Value *V) {
338   ValueToValueMapTy::iterator I = getVM().find(V);
339 
340   // If the value already exists in the map, use it.
341   if (I != getVM().end()) {
342     assert(I->second && "Unexpected null mapping");
343     return I->second;
344   }
345 
346   // If we have a materializer and it can materialize a value, use that.
347   if (auto *Materializer = getMaterializer()) {
348     if (Value *NewV = Materializer->materialize(const_cast<Value *>(V))) {
349       getVM()[V] = NewV;
350       return NewV;
351     }
352   }
353 
354   // Global values do not need to be seeded into the VM if they
355   // are using the identity mapping.
356   if (isa<GlobalValue>(V)) {
357     if (Flags & RF_NullMapMissingGlobalValues)
358       return nullptr;
359     return getVM()[V] = const_cast<Value *>(V);
360   }
361 
362   if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
363     // Inline asm may need *type* remapping.
364     FunctionType *NewTy = IA->getFunctionType();
365     if (TypeMapper) {
366       NewTy = cast<FunctionType>(TypeMapper->remapType(NewTy));
367 
368       if (NewTy != IA->getFunctionType())
369         V = InlineAsm::get(NewTy, IA->getAsmString(), IA->getConstraintString(),
370                            IA->hasSideEffects(), IA->isAlignStack(),
371                            IA->getDialect());
372     }
373 
374     return getVM()[V] = const_cast<Value *>(V);
375   }
376 
377   if (const auto *MDV = dyn_cast<MetadataAsValue>(V)) {
378     const Metadata *MD = MDV->getMetadata();
379 
380     if (auto *LAM = dyn_cast<LocalAsMetadata>(MD)) {
381       // Look through to grab the local value.
382       if (Value *LV = mapValue(LAM->getValue())) {
383         if (V == LAM->getValue())
384           return const_cast<Value *>(V);
385         return MetadataAsValue::get(V->getContext(), ValueAsMetadata::get(LV));
386       }
387 
388       // FIXME: always return nullptr once Verifier::verifyDominatesUse()
389       // ensures metadata operands only reference defined SSA values.
390       return (Flags & RF_IgnoreMissingLocals)
391                  ? nullptr
392                  : MetadataAsValue::get(V->getContext(),
393                                         MDTuple::get(V->getContext(), None));
394     }
395 
396     // If this is a module-level metadata and we know that nothing at the module
397     // level is changing, then use an identity mapping.
398     if (Flags & RF_NoModuleLevelChanges)
399       return getVM()[V] = const_cast<Value *>(V);
400 
401     // Map the metadata and turn it into a value.
402     auto *MappedMD = mapMetadata(MD);
403     if (MD == MappedMD)
404       return getVM()[V] = const_cast<Value *>(V);
405     return getVM()[V] = MetadataAsValue::get(V->getContext(), MappedMD);
406   }
407 
408   // Okay, this either must be a constant (which may or may not be mappable) or
409   // is something that is not in the mapping table.
410   Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V));
411   if (!C)
412     return nullptr;
413 
414   if (BlockAddress *BA = dyn_cast<BlockAddress>(C))
415     return mapBlockAddress(*BA);
416 
417   auto mapValueOrNull = [this](Value *V) {
418     auto Mapped = mapValue(V);
419     assert((Mapped || (Flags & RF_NullMapMissingGlobalValues)) &&
420            "Unexpected null mapping for constant operand without "
421            "NullMapMissingGlobalValues flag");
422     return Mapped;
423   };
424 
425   // Otherwise, we have some other constant to remap.  Start by checking to see
426   // if all operands have an identity remapping.
427   unsigned OpNo = 0, NumOperands = C->getNumOperands();
428   Value *Mapped = nullptr;
429   for (; OpNo != NumOperands; ++OpNo) {
430     Value *Op = C->getOperand(OpNo);
431     Mapped = mapValueOrNull(Op);
432     if (!Mapped)
433       return nullptr;
434     if (Mapped != Op)
435       break;
436   }
437 
438   // See if the type mapper wants to remap the type as well.
439   Type *NewTy = C->getType();
440   if (TypeMapper)
441     NewTy = TypeMapper->remapType(NewTy);
442 
443   // If the result type and all operands match up, then just insert an identity
444   // mapping.
445   if (OpNo == NumOperands && NewTy == C->getType())
446     return getVM()[V] = C;
447 
448   // Okay, we need to create a new constant.  We've already processed some or
449   // all of the operands, set them all up now.
450   SmallVector<Constant*, 8> Ops;
451   Ops.reserve(NumOperands);
452   for (unsigned j = 0; j != OpNo; ++j)
453     Ops.push_back(cast<Constant>(C->getOperand(j)));
454 
455   // If one of the operands mismatch, push it and the other mapped operands.
456   if (OpNo != NumOperands) {
457     Ops.push_back(cast<Constant>(Mapped));
458 
459     // Map the rest of the operands that aren't processed yet.
460     for (++OpNo; OpNo != NumOperands; ++OpNo) {
461       Mapped = mapValueOrNull(C->getOperand(OpNo));
462       if (!Mapped)
463         return nullptr;
464       Ops.push_back(cast<Constant>(Mapped));
465     }
466   }
467   Type *NewSrcTy = nullptr;
468   if (TypeMapper)
469     if (auto *GEPO = dyn_cast<GEPOperator>(C))
470       NewSrcTy = TypeMapper->remapType(GEPO->getSourceElementType());
471 
472   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
473     return getVM()[V] = CE->getWithOperands(Ops, NewTy, false, NewSrcTy);
474   if (isa<ConstantArray>(C))
475     return getVM()[V] = ConstantArray::get(cast<ArrayType>(NewTy), Ops);
476   if (isa<ConstantStruct>(C))
477     return getVM()[V] = ConstantStruct::get(cast<StructType>(NewTy), Ops);
478   if (isa<ConstantVector>(C))
479     return getVM()[V] = ConstantVector::get(Ops);
480   // If this is a no-operand constant, it must be because the type was remapped.
481   if (isa<UndefValue>(C))
482     return getVM()[V] = UndefValue::get(NewTy);
483   if (isa<ConstantAggregateZero>(C))
484     return getVM()[V] = ConstantAggregateZero::get(NewTy);
485   assert(isa<ConstantPointerNull>(C));
486   return getVM()[V] = ConstantPointerNull::get(cast<PointerType>(NewTy));
487 }
488 
489 Value *Mapper::mapBlockAddress(const BlockAddress &BA) {
490   Function *F = cast<Function>(mapValue(BA.getFunction()));
491 
492   // F may not have materialized its initializer.  In that case, create a
493   // dummy basic block for now, and replace it once we've materialized all
494   // the initializers.
495   BasicBlock *BB;
496   if (F->empty()) {
497     DelayedBBs.push_back(DelayedBasicBlock(BA));
498     BB = DelayedBBs.back().TempBB.get();
499   } else {
500     BB = cast_or_null<BasicBlock>(mapValue(BA.getBasicBlock()));
501   }
502 
503   return getVM()[&BA] = BlockAddress::get(F, BB ? BB : BA.getBasicBlock());
504 }
505 
506 Metadata *Mapper::mapToMetadata(const Metadata *Key, Metadata *Val) {
507   getVM().MD()[Key].reset(Val);
508   return Val;
509 }
510 
511 Metadata *Mapper::mapToSelf(const Metadata *MD) {
512   return mapToMetadata(MD, const_cast<Metadata *>(MD));
513 }
514 
515 Optional<Metadata *> MDNodeMapper::tryToMapOperand(const Metadata *Op) {
516   if (!Op)
517     return nullptr;
518 
519   if (Optional<Metadata *> MappedOp = M.mapSimpleMetadata(Op)) {
520 #ifndef NDEBUG
521     if (auto *CMD = dyn_cast<ConstantAsMetadata>(Op))
522       assert((!*MappedOp || M.getVM().count(CMD->getValue()) ||
523               M.getVM().getMappedMD(Op)) &&
524              "Expected Value to be memoized");
525     else
526       assert((isa<MDString>(Op) || M.getVM().getMappedMD(Op)) &&
527              "Expected result to be memoized");
528 #endif
529     return *MappedOp;
530   }
531 
532   const MDNode &N = *cast<MDNode>(Op);
533   if (N.isDistinct())
534     return mapDistinctNode(N);
535   return None;
536 }
537 
538 static Metadata *cloneOrBuildODR(const MDNode &N) {
539   auto *CT = dyn_cast<DICompositeType>(&N);
540   // If ODR type uniquing is enabled, we would have uniqued composite types
541   // with identifiers during bitcode reading, so we can just use CT.
542   if (CT && CT->getContext().isODRUniquingDebugTypes() &&
543       CT->getIdentifier() != "")
544     return const_cast<DICompositeType *>(CT);
545   return MDNode::replaceWithDistinct(N.clone());
546 }
547 
548 MDNode *MDNodeMapper::mapDistinctNode(const MDNode &N) {
549   assert(N.isDistinct() && "Expected a distinct node");
550   assert(!M.getVM().getMappedMD(&N) && "Expected an unmapped node");
551   DistinctWorklist.push_back(
552       cast<MDNode>((M.Flags & RF_MoveDistinctMDs)
553                        ? M.mapToSelf(&N)
554                        : M.mapToMetadata(&N, cloneOrBuildODR(N))));
555   return DistinctWorklist.back();
556 }
557 
558 static ConstantAsMetadata *wrapConstantAsMetadata(const ConstantAsMetadata &CMD,
559                                                   Value *MappedV) {
560   if (CMD.getValue() == MappedV)
561     return const_cast<ConstantAsMetadata *>(&CMD);
562   return MappedV ? ConstantAsMetadata::getConstant(MappedV) : nullptr;
563 }
564 
565 Optional<Metadata *> MDNodeMapper::getMappedOp(const Metadata *Op) const {
566   if (!Op)
567     return nullptr;
568 
569   if (Optional<Metadata *> MappedOp = M.getVM().getMappedMD(Op))
570     return *MappedOp;
571 
572   if (isa<MDString>(Op))
573     return const_cast<Metadata *>(Op);
574 
575   if (auto *CMD = dyn_cast<ConstantAsMetadata>(Op))
576     return wrapConstantAsMetadata(*CMD, M.getVM().lookup(CMD->getValue()));
577 
578   return None;
579 }
580 
581 Metadata &MDNodeMapper::UniquedGraph::getFwdReference(MDNode &Op) {
582   auto Where = Info.find(&Op);
583   assert(Where != Info.end() && "Expected a valid reference");
584 
585   auto &OpD = Where->second;
586   if (!OpD.HasChanged)
587     return Op;
588 
589   // Lazily construct a temporary node.
590   if (!OpD.Placeholder)
591     OpD.Placeholder = Op.clone();
592 
593   return *OpD.Placeholder;
594 }
595 
596 template <class OperandMapper>
597 void MDNodeMapper::remapOperands(MDNode &N, OperandMapper mapOperand) {
598   assert(!N.isUniqued() && "Expected distinct or temporary nodes");
599   for (unsigned I = 0, E = N.getNumOperands(); I != E; ++I) {
600     Metadata *Old = N.getOperand(I);
601     Metadata *New = mapOperand(Old);
602 
603     if (Old != New)
604       N.replaceOperandWith(I, New);
605   }
606 }
607 
608 namespace {
609 
610 /// An entry in the worklist for the post-order traversal.
611 struct POTWorklistEntry {
612   MDNode *N;              ///< Current node.
613   MDNode::op_iterator Op; ///< Current operand of \c N.
614 
615   /// Keep a flag of whether operands have changed in the worklist to avoid
616   /// hitting the map in \a UniquedGraph.
617   bool HasChanged = false;
618 
619   POTWorklistEntry(MDNode &N) : N(&N), Op(N.op_begin()) {}
620 };
621 
622 } // end anonymous namespace
623 
624 bool MDNodeMapper::createPOT(UniquedGraph &G, const MDNode &FirstN) {
625   assert(G.Info.empty() && "Expected a fresh traversal");
626   assert(FirstN.isUniqued() && "Expected uniqued node in POT");
627 
628   // Construct a post-order traversal of the uniqued subgraph under FirstN.
629   bool AnyChanges = false;
630   SmallVector<POTWorklistEntry, 16> Worklist;
631   Worklist.push_back(POTWorklistEntry(const_cast<MDNode &>(FirstN)));
632   (void)G.Info[&FirstN];
633   while (!Worklist.empty()) {
634     // Start or continue the traversal through the this node's operands.
635     auto &WE = Worklist.back();
636     if (MDNode *N = visitOperands(G, WE.Op, WE.N->op_end(), WE.HasChanged)) {
637       // Push a new node to traverse first.
638       Worklist.push_back(POTWorklistEntry(*N));
639       continue;
640     }
641 
642     // Push the node onto the POT.
643     assert(WE.N->isUniqued() && "Expected only uniqued nodes");
644     assert(WE.Op == WE.N->op_end() && "Expected to visit all operands");
645     auto &D = G.Info[WE.N];
646     AnyChanges |= D.HasChanged = WE.HasChanged;
647     D.ID = G.POT.size();
648     G.POT.push_back(WE.N);
649 
650     // Pop the node off the worklist.
651     Worklist.pop_back();
652   }
653   return AnyChanges;
654 }
655 
656 MDNode *MDNodeMapper::visitOperands(UniquedGraph &G, MDNode::op_iterator &I,
657                                     MDNode::op_iterator E, bool &HasChanged) {
658   while (I != E) {
659     Metadata *Op = *I++; // Increment even on early return.
660     if (Optional<Metadata *> MappedOp = tryToMapOperand(Op)) {
661       // Check if the operand changes.
662       HasChanged |= Op != *MappedOp;
663       continue;
664     }
665 
666     // A uniqued metadata node.
667     MDNode &OpN = *cast<MDNode>(Op);
668     assert(OpN.isUniqued() &&
669            "Only uniqued operands cannot be mapped immediately");
670     if (G.Info.insert(std::make_pair(&OpN, Data())).second)
671       return &OpN; // This is a new one.  Return it.
672   }
673   return nullptr;
674 }
675 
676 void MDNodeMapper::UniquedGraph::propagateChanges() {
677   bool AnyChanges;
678   do {
679     AnyChanges = false;
680     for (MDNode *N : POT) {
681       auto &D = Info[N];
682       if (D.HasChanged)
683         continue;
684 
685       if (llvm::none_of(N->operands(), [&](const Metadata *Op) {
686             auto Where = Info.find(Op);
687             return Where != Info.end() && Where->second.HasChanged;
688           }))
689         continue;
690 
691       AnyChanges = D.HasChanged = true;
692     }
693   } while (AnyChanges);
694 }
695 
696 void MDNodeMapper::mapNodesInPOT(UniquedGraph &G) {
697   // Construct uniqued nodes, building forward references as necessary.
698   SmallVector<MDNode *, 16> CyclicNodes;
699   for (auto *N : G.POT) {
700     auto &D = G.Info[N];
701     if (!D.HasChanged) {
702       // The node hasn't changed.
703       M.mapToSelf(N);
704       continue;
705     }
706 
707     // Remember whether this node had a placeholder.
708     bool HadPlaceholder(D.Placeholder);
709 
710     // Clone the uniqued node and remap the operands.
711     TempMDNode ClonedN = D.Placeholder ? std::move(D.Placeholder) : N->clone();
712     remapOperands(*ClonedN, [this, &D, &G](Metadata *Old) {
713       if (Optional<Metadata *> MappedOp = getMappedOp(Old))
714         return *MappedOp;
715       (void)D;
716       assert(G.Info[Old].ID > D.ID && "Expected a forward reference");
717       return &G.getFwdReference(*cast<MDNode>(Old));
718     });
719 
720     auto *NewN = MDNode::replaceWithUniqued(std::move(ClonedN));
721     M.mapToMetadata(N, NewN);
722 
723     // Nodes that were referenced out of order in the POT are involved in a
724     // uniquing cycle.
725     if (HadPlaceholder)
726       CyclicNodes.push_back(NewN);
727   }
728 
729   // Resolve cycles.
730   for (auto *N : CyclicNodes)
731     if (!N->isResolved())
732       N->resolveCycles();
733 }
734 
735 Metadata *MDNodeMapper::map(const MDNode &N) {
736   assert(DistinctWorklist.empty() && "MDNodeMapper::map is not recursive");
737   assert(!(M.Flags & RF_NoModuleLevelChanges) &&
738          "MDNodeMapper::map assumes module-level changes");
739 
740   // Require resolved nodes whenever metadata might be remapped.
741   assert(N.isResolved() && "Unexpected unresolved node");
742 
743   Metadata *MappedN =
744       N.isUniqued() ? mapTopLevelUniquedNode(N) : mapDistinctNode(N);
745   while (!DistinctWorklist.empty())
746     remapOperands(*DistinctWorklist.pop_back_val(), [this](Metadata *Old) {
747       if (Optional<Metadata *> MappedOp = tryToMapOperand(Old))
748         return *MappedOp;
749       return mapTopLevelUniquedNode(*cast<MDNode>(Old));
750     });
751   return MappedN;
752 }
753 
754 Metadata *MDNodeMapper::mapTopLevelUniquedNode(const MDNode &FirstN) {
755   assert(FirstN.isUniqued() && "Expected uniqued node");
756 
757   // Create a post-order traversal of uniqued nodes under FirstN.
758   UniquedGraph G;
759   if (!createPOT(G, FirstN)) {
760     // Return early if no nodes have changed.
761     for (const MDNode *N : G.POT)
762       M.mapToSelf(N);
763     return &const_cast<MDNode &>(FirstN);
764   }
765 
766   // Update graph with all nodes that have changed.
767   G.propagateChanges();
768 
769   // Map all the nodes in the graph.
770   mapNodesInPOT(G);
771 
772   // Return the original node, remapped.
773   return *getMappedOp(&FirstN);
774 }
775 
776 Optional<Metadata *> Mapper::mapSimpleMetadata(const Metadata *MD) {
777   // If the value already exists in the map, use it.
778   if (Optional<Metadata *> NewMD = getVM().getMappedMD(MD))
779     return *NewMD;
780 
781   if (isa<MDString>(MD))
782     return const_cast<Metadata *>(MD);
783 
784   // This is a module-level metadata.  If nothing at the module level is
785   // changing, use an identity mapping.
786   if ((Flags & RF_NoModuleLevelChanges))
787     return const_cast<Metadata *>(MD);
788 
789   if (auto *CMD = dyn_cast<ConstantAsMetadata>(MD)) {
790     // Don't memoize ConstantAsMetadata.  Instead of lasting until the
791     // LLVMContext is destroyed, they can be deleted when the GlobalValue they
792     // reference is destructed.  These aren't super common, so the extra
793     // indirection isn't that expensive.
794     return wrapConstantAsMetadata(*CMD, mapValue(CMD->getValue()));
795   }
796 
797   assert(isa<MDNode>(MD) && "Expected a metadata node");
798 
799   return None;
800 }
801 
802 Metadata *Mapper::mapMetadata(const Metadata *MD) {
803   assert(MD && "Expected valid metadata");
804   assert(!isa<LocalAsMetadata>(MD) && "Unexpected local metadata");
805 
806   if (Optional<Metadata *> NewMD = mapSimpleMetadata(MD))
807     return *NewMD;
808 
809   return MDNodeMapper(*this).map(*cast<MDNode>(MD));
810 }
811 
812 void Mapper::flush() {
813   // Flush out the worklist of global values.
814   while (!Worklist.empty()) {
815     WorklistEntry E = Worklist.pop_back_val();
816     CurrentMCID = E.MCID;
817     switch (E.Kind) {
818     case WorklistEntry::MapGlobalInit:
819       E.Data.GVInit.GV->setInitializer(mapConstant(E.Data.GVInit.Init));
820       remapGlobalObjectMetadata(*E.Data.GVInit.GV);
821       break;
822     case WorklistEntry::MapAppendingVar: {
823       unsigned PrefixSize = AppendingInits.size() - E.AppendingGVNumNewMembers;
824       mapAppendingVariable(*E.Data.AppendingGV.GV,
825                            E.Data.AppendingGV.InitPrefix,
826                            E.AppendingGVIsOldCtorDtor,
827                            makeArrayRef(AppendingInits).slice(PrefixSize));
828       AppendingInits.resize(PrefixSize);
829       break;
830     }
831     case WorklistEntry::MapGlobalIndirectSymbol:
832       E.Data.GlobalIndirectSymbol.GIS->setIndirectSymbol(
833           mapConstant(E.Data.GlobalIndirectSymbol.Target));
834       break;
835     case WorklistEntry::RemapFunction:
836       remapFunction(*E.Data.RemapF);
837       break;
838     }
839   }
840   CurrentMCID = 0;
841 
842   // Finish logic for block addresses now that all global values have been
843   // handled.
844   while (!DelayedBBs.empty()) {
845     DelayedBasicBlock DBB = DelayedBBs.pop_back_val();
846     BasicBlock *BB = cast_or_null<BasicBlock>(mapValue(DBB.OldBB));
847     DBB.TempBB->replaceAllUsesWith(BB ? BB : DBB.OldBB);
848   }
849 }
850 
851 void Mapper::remapInstruction(Instruction *I) {
852   // Remap operands.
853   for (Use &Op : I->operands()) {
854     Value *V = mapValue(Op);
855     // If we aren't ignoring missing entries, assert that something happened.
856     if (V)
857       Op = V;
858     else
859       assert((Flags & RF_IgnoreMissingLocals) &&
860              "Referenced value not in value map!");
861   }
862 
863   // Remap phi nodes' incoming blocks.
864   if (PHINode *PN = dyn_cast<PHINode>(I)) {
865     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
866       Value *V = mapValue(PN->getIncomingBlock(i));
867       // If we aren't ignoring missing entries, assert that something happened.
868       if (V)
869         PN->setIncomingBlock(i, cast<BasicBlock>(V));
870       else
871         assert((Flags & RF_IgnoreMissingLocals) &&
872                "Referenced block not in value map!");
873     }
874   }
875 
876   // Remap attached metadata.
877   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
878   I->getAllMetadata(MDs);
879   for (const auto &MI : MDs) {
880     MDNode *Old = MI.second;
881     MDNode *New = cast_or_null<MDNode>(mapMetadata(Old));
882     if (New != Old)
883       I->setMetadata(MI.first, New);
884   }
885 
886   if (!TypeMapper)
887     return;
888 
889   // If the instruction's type is being remapped, do so now.
890   if (auto *CB = dyn_cast<CallBase>(I)) {
891     SmallVector<Type *, 3> Tys;
892     FunctionType *FTy = CB->getFunctionType();
893     Tys.reserve(FTy->getNumParams());
894     for (Type *Ty : FTy->params())
895       Tys.push_back(TypeMapper->remapType(Ty));
896     CB->mutateFunctionType(FunctionType::get(
897         TypeMapper->remapType(I->getType()), Tys, FTy->isVarArg()));
898 
899     LLVMContext &C = CB->getContext();
900     AttributeList Attrs = CB->getAttributes();
901     for (unsigned i = 0; i < Attrs.getNumAttrSets(); ++i) {
902       for (Attribute::AttrKind TypedAttr :
903            {Attribute::ByVal, Attribute::StructRet, Attribute::ByRef}) {
904         if (Type *Ty = Attrs.getAttribute(i, TypedAttr).getValueAsType()) {
905           Attrs = Attrs.replaceAttributeType(C, i, TypedAttr,
906                                              TypeMapper->remapType(Ty));
907           break;
908         }
909       }
910     }
911     CB->setAttributes(Attrs);
912     return;
913   }
914   if (auto *AI = dyn_cast<AllocaInst>(I))
915     AI->setAllocatedType(TypeMapper->remapType(AI->getAllocatedType()));
916   if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) {
917     GEP->setSourceElementType(
918         TypeMapper->remapType(GEP->getSourceElementType()));
919     GEP->setResultElementType(
920         TypeMapper->remapType(GEP->getResultElementType()));
921   }
922   I->mutateType(TypeMapper->remapType(I->getType()));
923 }
924 
925 void Mapper::remapGlobalObjectMetadata(GlobalObject &GO) {
926   SmallVector<std::pair<unsigned, MDNode *>, 8> MDs;
927   GO.getAllMetadata(MDs);
928   GO.clearMetadata();
929   for (const auto &I : MDs)
930     GO.addMetadata(I.first, *cast<MDNode>(mapMetadata(I.second)));
931 }
932 
933 void Mapper::remapFunction(Function &F) {
934   // Remap the operands.
935   for (Use &Op : F.operands())
936     if (Op)
937       Op = mapValue(Op);
938 
939   // Remap the metadata attachments.
940   remapGlobalObjectMetadata(F);
941 
942   // Remap the argument types.
943   if (TypeMapper)
944     for (Argument &A : F.args())
945       A.mutateType(TypeMapper->remapType(A.getType()));
946 
947   // Remap the instructions.
948   for (BasicBlock &BB : F)
949     for (Instruction &I : BB)
950       remapInstruction(&I);
951 }
952 
953 void Mapper::mapAppendingVariable(GlobalVariable &GV, Constant *InitPrefix,
954                                   bool IsOldCtorDtor,
955                                   ArrayRef<Constant *> NewMembers) {
956   SmallVector<Constant *, 16> Elements;
957   if (InitPrefix) {
958     unsigned NumElements =
959         cast<ArrayType>(InitPrefix->getType())->getNumElements();
960     for (unsigned I = 0; I != NumElements; ++I)
961       Elements.push_back(InitPrefix->getAggregateElement(I));
962   }
963 
964   PointerType *VoidPtrTy;
965   Type *EltTy;
966   if (IsOldCtorDtor) {
967     // FIXME: This upgrade is done during linking to support the C API.  See
968     // also IRLinker::linkAppendingVarProto() in IRMover.cpp.
969     VoidPtrTy = Type::getInt8Ty(GV.getContext())->getPointerTo();
970     auto &ST = *cast<StructType>(NewMembers.front()->getType());
971     Type *Tys[3] = {ST.getElementType(0), ST.getElementType(1), VoidPtrTy};
972     EltTy = StructType::get(GV.getContext(), Tys, false);
973   }
974 
975   for (auto *V : NewMembers) {
976     Constant *NewV;
977     if (IsOldCtorDtor) {
978       auto *S = cast<ConstantStruct>(V);
979       auto *E1 = cast<Constant>(mapValue(S->getOperand(0)));
980       auto *E2 = cast<Constant>(mapValue(S->getOperand(1)));
981       Constant *Null = Constant::getNullValue(VoidPtrTy);
982       NewV = ConstantStruct::get(cast<StructType>(EltTy), E1, E2, Null);
983     } else {
984       NewV = cast_or_null<Constant>(mapValue(V));
985     }
986     Elements.push_back(NewV);
987   }
988 
989   GV.setInitializer(ConstantArray::get(
990       cast<ArrayType>(GV.getType()->getElementType()), Elements));
991 }
992 
993 void Mapper::scheduleMapGlobalInitializer(GlobalVariable &GV, Constant &Init,
994                                           unsigned MCID) {
995   assert(AlreadyScheduled.insert(&GV).second && "Should not reschedule");
996   assert(MCID < MCs.size() && "Invalid mapping context");
997 
998   WorklistEntry WE;
999   WE.Kind = WorklistEntry::MapGlobalInit;
1000   WE.MCID = MCID;
1001   WE.Data.GVInit.GV = &GV;
1002   WE.Data.GVInit.Init = &Init;
1003   Worklist.push_back(WE);
1004 }
1005 
1006 void Mapper::scheduleMapAppendingVariable(GlobalVariable &GV,
1007                                           Constant *InitPrefix,
1008                                           bool IsOldCtorDtor,
1009                                           ArrayRef<Constant *> NewMembers,
1010                                           unsigned MCID) {
1011   assert(AlreadyScheduled.insert(&GV).second && "Should not reschedule");
1012   assert(MCID < MCs.size() && "Invalid mapping context");
1013 
1014   WorklistEntry WE;
1015   WE.Kind = WorklistEntry::MapAppendingVar;
1016   WE.MCID = MCID;
1017   WE.Data.AppendingGV.GV = &GV;
1018   WE.Data.AppendingGV.InitPrefix = InitPrefix;
1019   WE.AppendingGVIsOldCtorDtor = IsOldCtorDtor;
1020   WE.AppendingGVNumNewMembers = NewMembers.size();
1021   Worklist.push_back(WE);
1022   AppendingInits.append(NewMembers.begin(), NewMembers.end());
1023 }
1024 
1025 void Mapper::scheduleMapGlobalIndirectSymbol(GlobalIndirectSymbol &GIS,
1026                                              Constant &Target, unsigned MCID) {
1027   assert(AlreadyScheduled.insert(&GIS).second && "Should not reschedule");
1028   assert(MCID < MCs.size() && "Invalid mapping context");
1029 
1030   WorklistEntry WE;
1031   WE.Kind = WorklistEntry::MapGlobalIndirectSymbol;
1032   WE.MCID = MCID;
1033   WE.Data.GlobalIndirectSymbol.GIS = &GIS;
1034   WE.Data.GlobalIndirectSymbol.Target = &Target;
1035   Worklist.push_back(WE);
1036 }
1037 
1038 void Mapper::scheduleRemapFunction(Function &F, unsigned MCID) {
1039   assert(AlreadyScheduled.insert(&F).second && "Should not reschedule");
1040   assert(MCID < MCs.size() && "Invalid mapping context");
1041 
1042   WorklistEntry WE;
1043   WE.Kind = WorklistEntry::RemapFunction;
1044   WE.MCID = MCID;
1045   WE.Data.RemapF = &F;
1046   Worklist.push_back(WE);
1047 }
1048 
1049 void Mapper::addFlags(RemapFlags Flags) {
1050   assert(!hasWorkToDo() && "Expected to have flushed the worklist");
1051   this->Flags = this->Flags | Flags;
1052 }
1053 
1054 static Mapper *getAsMapper(void *pImpl) {
1055   return reinterpret_cast<Mapper *>(pImpl);
1056 }
1057 
1058 namespace {
1059 
1060 class FlushingMapper {
1061   Mapper &M;
1062 
1063 public:
1064   explicit FlushingMapper(void *pImpl) : M(*getAsMapper(pImpl)) {
1065     assert(!M.hasWorkToDo() && "Expected to be flushed");
1066   }
1067 
1068   ~FlushingMapper() { M.flush(); }
1069 
1070   Mapper *operator->() const { return &M; }
1071 };
1072 
1073 } // end anonymous namespace
1074 
1075 ValueMapper::ValueMapper(ValueToValueMapTy &VM, RemapFlags Flags,
1076                          ValueMapTypeRemapper *TypeMapper,
1077                          ValueMaterializer *Materializer)
1078     : pImpl(new Mapper(VM, Flags, TypeMapper, Materializer)) {}
1079 
1080 ValueMapper::~ValueMapper() { delete getAsMapper(pImpl); }
1081 
1082 unsigned
1083 ValueMapper::registerAlternateMappingContext(ValueToValueMapTy &VM,
1084                                              ValueMaterializer *Materializer) {
1085   return getAsMapper(pImpl)->registerAlternateMappingContext(VM, Materializer);
1086 }
1087 
1088 void ValueMapper::addFlags(RemapFlags Flags) {
1089   FlushingMapper(pImpl)->addFlags(Flags);
1090 }
1091 
1092 Value *ValueMapper::mapValue(const Value &V) {
1093   return FlushingMapper(pImpl)->mapValue(&V);
1094 }
1095 
1096 Constant *ValueMapper::mapConstant(const Constant &C) {
1097   return cast_or_null<Constant>(mapValue(C));
1098 }
1099 
1100 Metadata *ValueMapper::mapMetadata(const Metadata &MD) {
1101   return FlushingMapper(pImpl)->mapMetadata(&MD);
1102 }
1103 
1104 MDNode *ValueMapper::mapMDNode(const MDNode &N) {
1105   return cast_or_null<MDNode>(mapMetadata(N));
1106 }
1107 
1108 void ValueMapper::remapInstruction(Instruction &I) {
1109   FlushingMapper(pImpl)->remapInstruction(&I);
1110 }
1111 
1112 void ValueMapper::remapFunction(Function &F) {
1113   FlushingMapper(pImpl)->remapFunction(F);
1114 }
1115 
1116 void ValueMapper::scheduleMapGlobalInitializer(GlobalVariable &GV,
1117                                                Constant &Init,
1118                                                unsigned MCID) {
1119   getAsMapper(pImpl)->scheduleMapGlobalInitializer(GV, Init, MCID);
1120 }
1121 
1122 void ValueMapper::scheduleMapAppendingVariable(GlobalVariable &GV,
1123                                                Constant *InitPrefix,
1124                                                bool IsOldCtorDtor,
1125                                                ArrayRef<Constant *> NewMembers,
1126                                                unsigned MCID) {
1127   getAsMapper(pImpl)->scheduleMapAppendingVariable(
1128       GV, InitPrefix, IsOldCtorDtor, NewMembers, MCID);
1129 }
1130 
1131 void ValueMapper::scheduleMapGlobalIndirectSymbol(GlobalIndirectSymbol &GIS,
1132                                                   Constant &Target,
1133                                                   unsigned MCID) {
1134   getAsMapper(pImpl)->scheduleMapGlobalIndirectSymbol(GIS, Target, MCID);
1135 }
1136 
1137 void ValueMapper::scheduleRemapFunction(Function &F, unsigned MCID) {
1138   getAsMapper(pImpl)->scheduleRemapFunction(F, MCID);
1139 }
1140