1 //===- ValueMapper.cpp - Interface shared by lib/Transforms/Utils ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the MapValue function, which is shared by various parts of 11 // the lib/Transforms/Utils library. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Utils/ValueMapper.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/DenseSet.h" 19 #include "llvm/ADT/None.h" 20 #include "llvm/ADT/Optional.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/IR/Argument.h" 24 #include "llvm/IR/BasicBlock.h" 25 #include "llvm/IR/CallSite.h" 26 #include "llvm/IR/Constant.h" 27 #include "llvm/IR/Constants.h" 28 #include "llvm/IR/DerivedTypes.h" 29 #include "llvm/IR/Function.h" 30 #include "llvm/IR/GlobalAlias.h" 31 #include "llvm/IR/GlobalObject.h" 32 #include "llvm/IR/GlobalVariable.h" 33 #include "llvm/IR/InlineAsm.h" 34 #include "llvm/IR/Instruction.h" 35 #include "llvm/IR/Instructions.h" 36 #include "llvm/IR/Metadata.h" 37 #include "llvm/IR/Operator.h" 38 #include "llvm/IR/Type.h" 39 #include "llvm/IR/Value.h" 40 #include "llvm/Support/Casting.h" 41 #include <cassert> 42 #include <limits> 43 #include <memory> 44 #include <utility> 45 46 using namespace llvm; 47 48 // Out of line method to get vtable etc for class. 49 void ValueMapTypeRemapper::anchor() {} 50 void ValueMaterializer::anchor() {} 51 52 namespace { 53 54 /// A basic block used in a BlockAddress whose function body is not yet 55 /// materialized. 56 struct DelayedBasicBlock { 57 BasicBlock *OldBB; 58 std::unique_ptr<BasicBlock> TempBB; 59 60 DelayedBasicBlock(const BlockAddress &Old) 61 : OldBB(Old.getBasicBlock()), 62 TempBB(BasicBlock::Create(Old.getContext())) {} 63 }; 64 65 struct WorklistEntry { 66 enum EntryKind { 67 MapGlobalInit, 68 MapAppendingVar, 69 MapGlobalAliasee, 70 RemapFunction 71 }; 72 struct GVInitTy { 73 GlobalVariable *GV; 74 Constant *Init; 75 }; 76 struct AppendingGVTy { 77 GlobalVariable *GV; 78 Constant *InitPrefix; 79 }; 80 struct GlobalAliaseeTy { 81 GlobalAlias *GA; 82 Constant *Aliasee; 83 }; 84 85 unsigned Kind : 2; 86 unsigned MCID : 29; 87 unsigned AppendingGVIsOldCtorDtor : 1; 88 unsigned AppendingGVNumNewMembers; 89 union { 90 GVInitTy GVInit; 91 AppendingGVTy AppendingGV; 92 GlobalAliaseeTy GlobalAliasee; 93 Function *RemapF; 94 } Data; 95 }; 96 97 struct MappingContext { 98 ValueToValueMapTy *VM; 99 ValueMaterializer *Materializer = nullptr; 100 101 /// Construct a MappingContext with a value map and materializer. 102 explicit MappingContext(ValueToValueMapTy &VM, 103 ValueMaterializer *Materializer = nullptr) 104 : VM(&VM), Materializer(Materializer) {} 105 }; 106 107 class Mapper { 108 friend class MDNodeMapper; 109 110 #ifndef NDEBUG 111 DenseSet<GlobalValue *> AlreadyScheduled; 112 #endif 113 114 RemapFlags Flags; 115 ValueMapTypeRemapper *TypeMapper; 116 unsigned CurrentMCID = 0; 117 SmallVector<MappingContext, 2> MCs; 118 SmallVector<WorklistEntry, 4> Worklist; 119 SmallVector<DelayedBasicBlock, 1> DelayedBBs; 120 SmallVector<Constant *, 16> AppendingInits; 121 122 public: 123 Mapper(ValueToValueMapTy &VM, RemapFlags Flags, 124 ValueMapTypeRemapper *TypeMapper, ValueMaterializer *Materializer) 125 : Flags(Flags), TypeMapper(TypeMapper), 126 MCs(1, MappingContext(VM, Materializer)) {} 127 128 /// ValueMapper should explicitly call \a flush() before destruction. 129 ~Mapper() { assert(!hasWorkToDo() && "Expected to be flushed"); } 130 131 bool hasWorkToDo() const { return !Worklist.empty(); } 132 133 unsigned 134 registerAlternateMappingContext(ValueToValueMapTy &VM, 135 ValueMaterializer *Materializer = nullptr) { 136 MCs.push_back(MappingContext(VM, Materializer)); 137 return MCs.size() - 1; 138 } 139 140 void addFlags(RemapFlags Flags); 141 142 void remapGlobalObjectMetadata(GlobalObject &GO); 143 144 Value *mapValue(const Value *V); 145 void remapInstruction(Instruction *I); 146 void remapFunction(Function &F); 147 148 Constant *mapConstant(const Constant *C) { 149 return cast_or_null<Constant>(mapValue(C)); 150 } 151 152 /// Map metadata. 153 /// 154 /// Find the mapping for MD. Guarantees that the return will be resolved 155 /// (not an MDNode, or MDNode::isResolved() returns true). 156 Metadata *mapMetadata(const Metadata *MD); 157 158 void scheduleMapGlobalInitializer(GlobalVariable &GV, Constant &Init, 159 unsigned MCID); 160 void scheduleMapAppendingVariable(GlobalVariable &GV, Constant *InitPrefix, 161 bool IsOldCtorDtor, 162 ArrayRef<Constant *> NewMembers, 163 unsigned MCID); 164 void scheduleMapGlobalAliasee(GlobalAlias &GA, Constant &Aliasee, 165 unsigned MCID); 166 void scheduleRemapFunction(Function &F, unsigned MCID); 167 168 void flush(); 169 170 private: 171 void mapGlobalInitializer(GlobalVariable &GV, Constant &Init); 172 void mapAppendingVariable(GlobalVariable &GV, Constant *InitPrefix, 173 bool IsOldCtorDtor, 174 ArrayRef<Constant *> NewMembers); 175 void mapGlobalAliasee(GlobalAlias &GA, Constant &Aliasee); 176 void remapFunction(Function &F, ValueToValueMapTy &VM); 177 178 ValueToValueMapTy &getVM() { return *MCs[CurrentMCID].VM; } 179 ValueMaterializer *getMaterializer() { return MCs[CurrentMCID].Materializer; } 180 181 Value *mapBlockAddress(const BlockAddress &BA); 182 183 /// Map metadata that doesn't require visiting operands. 184 Optional<Metadata *> mapSimpleMetadata(const Metadata *MD); 185 186 Metadata *mapToMetadata(const Metadata *Key, Metadata *Val); 187 Metadata *mapToSelf(const Metadata *MD); 188 }; 189 190 class MDNodeMapper { 191 Mapper &M; 192 193 /// Data about a node in \a UniquedGraph. 194 struct Data { 195 bool HasChanged = false; 196 unsigned ID = std::numeric_limits<unsigned>::max(); 197 TempMDNode Placeholder; 198 }; 199 200 /// A graph of uniqued nodes. 201 struct UniquedGraph { 202 SmallDenseMap<const Metadata *, Data, 32> Info; // Node properties. 203 SmallVector<MDNode *, 16> POT; // Post-order traversal. 204 205 /// Propagate changed operands through the post-order traversal. 206 /// 207 /// Iteratively update \a Data::HasChanged for each node based on \a 208 /// Data::HasChanged of its operands, until fixed point. 209 void propagateChanges(); 210 211 /// Get a forward reference to a node to use as an operand. 212 Metadata &getFwdReference(MDNode &Op); 213 }; 214 215 /// Worklist of distinct nodes whose operands need to be remapped. 216 SmallVector<MDNode *, 16> DistinctWorklist; 217 218 // Storage for a UniquedGraph. 219 SmallDenseMap<const Metadata *, Data, 32> InfoStorage; 220 SmallVector<MDNode *, 16> POTStorage; 221 222 public: 223 MDNodeMapper(Mapper &M) : M(M) {} 224 225 /// Map a metadata node (and its transitive operands). 226 /// 227 /// Map all the (unmapped) nodes in the subgraph under \c N. The iterative 228 /// algorithm handles distinct nodes and uniqued node subgraphs using 229 /// different strategies. 230 /// 231 /// Distinct nodes are immediately mapped and added to \a DistinctWorklist 232 /// using \a mapDistinctNode(). Their mapping can always be computed 233 /// immediately without visiting operands, even if their operands change. 234 /// 235 /// The mapping for uniqued nodes depends on whether their operands change. 236 /// \a mapTopLevelUniquedNode() traverses the transitive uniqued subgraph of 237 /// a node to calculate uniqued node mappings in bulk. Distinct leafs are 238 /// added to \a DistinctWorklist with \a mapDistinctNode(). 239 /// 240 /// After mapping \c N itself, this function remaps the operands of the 241 /// distinct nodes in \a DistinctWorklist until the entire subgraph under \c 242 /// N has been mapped. 243 Metadata *map(const MDNode &N); 244 245 private: 246 /// Map a top-level uniqued node and the uniqued subgraph underneath it. 247 /// 248 /// This builds up a post-order traversal of the (unmapped) uniqued subgraph 249 /// underneath \c FirstN and calculates the nodes' mapping. Each node uses 250 /// the identity mapping (\a Mapper::mapToSelf()) as long as all of its 251 /// operands uses the identity mapping. 252 /// 253 /// The algorithm works as follows: 254 /// 255 /// 1. \a createPOT(): traverse the uniqued subgraph under \c FirstN and 256 /// save the post-order traversal in the given \a UniquedGraph, tracking 257 /// nodes' operands change. 258 /// 259 /// 2. \a UniquedGraph::propagateChanges(): propagate changed operands 260 /// through the \a UniquedGraph until fixed point, following the rule 261 /// that if a node changes, any node that references must also change. 262 /// 263 /// 3. \a mapNodesInPOT(): map the uniqued nodes, creating new uniqued nodes 264 /// (referencing new operands) where necessary. 265 Metadata *mapTopLevelUniquedNode(const MDNode &FirstN); 266 267 /// Try to map the operand of an \a MDNode. 268 /// 269 /// If \c Op is already mapped, return the mapping. If it's not an \a 270 /// MDNode, compute and return the mapping. If it's a distinct \a MDNode, 271 /// return the result of \a mapDistinctNode(). 272 /// 273 /// \return None if \c Op is an unmapped uniqued \a MDNode. 274 /// \post getMappedOp(Op) only returns None if this returns None. 275 Optional<Metadata *> tryToMapOperand(const Metadata *Op); 276 277 /// Map a distinct node. 278 /// 279 /// Return the mapping for the distinct node \c N, saving the result in \a 280 /// DistinctWorklist for later remapping. 281 /// 282 /// \pre \c N is not yet mapped. 283 /// \pre \c N.isDistinct(). 284 MDNode *mapDistinctNode(const MDNode &N); 285 286 /// Get a previously mapped node. 287 Optional<Metadata *> getMappedOp(const Metadata *Op) const; 288 289 /// Create a post-order traversal of an unmapped uniqued node subgraph. 290 /// 291 /// This traverses the metadata graph deeply enough to map \c FirstN. It 292 /// uses \a tryToMapOperand() (via \a Mapper::mapSimplifiedNode()), so any 293 /// metadata that has already been mapped will not be part of the POT. 294 /// 295 /// Each node that has a changed operand from outside the graph (e.g., a 296 /// distinct node, an already-mapped uniqued node, or \a ConstantAsMetadata) 297 /// is marked with \a Data::HasChanged. 298 /// 299 /// \return \c true if any nodes in \c G have \a Data::HasChanged. 300 /// \post \c G.POT is a post-order traversal ending with \c FirstN. 301 /// \post \a Data::hasChanged in \c G.Info indicates whether any node needs 302 /// to change because of operands outside the graph. 303 bool createPOT(UniquedGraph &G, const MDNode &FirstN); 304 305 /// Visit the operands of a uniqued node in the POT. 306 /// 307 /// Visit the operands in the range from \c I to \c E, returning the first 308 /// uniqued node we find that isn't yet in \c G. \c I is always advanced to 309 /// where to continue the loop through the operands. 310 /// 311 /// This sets \c HasChanged if any of the visited operands change. 312 MDNode *visitOperands(UniquedGraph &G, MDNode::op_iterator &I, 313 MDNode::op_iterator E, bool &HasChanged); 314 315 /// Map all the nodes in the given uniqued graph. 316 /// 317 /// This visits all the nodes in \c G in post-order, using the identity 318 /// mapping or creating a new node depending on \a Data::HasChanged. 319 /// 320 /// \pre \a getMappedOp() returns None for nodes in \c G, but not for any of 321 /// their operands outside of \c G. 322 /// \pre \a Data::HasChanged is true for a node in \c G iff any of its 323 /// operands have changed. 324 /// \post \a getMappedOp() returns the mapped node for every node in \c G. 325 void mapNodesInPOT(UniquedGraph &G); 326 327 /// Remap a node's operands using the given functor. 328 /// 329 /// Iterate through the operands of \c N and update them in place using \c 330 /// mapOperand. 331 /// 332 /// \pre N.isDistinct() or N.isTemporary(). 333 template <class OperandMapper> 334 void remapOperands(MDNode &N, OperandMapper mapOperand); 335 }; 336 337 } // end anonymous namespace 338 339 Value *Mapper::mapValue(const Value *V) { 340 ValueToValueMapTy::iterator I = getVM().find(V); 341 342 // If the value already exists in the map, use it. 343 if (I != getVM().end()) { 344 assert(I->second && "Unexpected null mapping"); 345 return I->second; 346 } 347 348 // If we have a materializer and it can materialize a value, use that. 349 if (auto *Materializer = getMaterializer()) { 350 if (Value *NewV = Materializer->materialize(const_cast<Value *>(V))) { 351 getVM()[V] = NewV; 352 return NewV; 353 } 354 } 355 356 // Global values do not need to be seeded into the VM if they 357 // are using the identity mapping. 358 if (isa<GlobalValue>(V)) { 359 if (Flags & RF_NullMapMissingGlobalValues) 360 return nullptr; 361 return getVM()[V] = const_cast<Value *>(V); 362 } 363 364 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 365 // Inline asm may need *type* remapping. 366 FunctionType *NewTy = IA->getFunctionType(); 367 if (TypeMapper) { 368 NewTy = cast<FunctionType>(TypeMapper->remapType(NewTy)); 369 370 if (NewTy != IA->getFunctionType()) 371 V = InlineAsm::get(NewTy, IA->getAsmString(), IA->getConstraintString(), 372 IA->hasSideEffects(), IA->isAlignStack()); 373 } 374 375 return getVM()[V] = const_cast<Value *>(V); 376 } 377 378 if (const auto *MDV = dyn_cast<MetadataAsValue>(V)) { 379 const Metadata *MD = MDV->getMetadata(); 380 381 if (auto *LAM = dyn_cast<LocalAsMetadata>(MD)) { 382 // Look through to grab the local value. 383 if (Value *LV = mapValue(LAM->getValue())) { 384 if (V == LAM->getValue()) 385 return const_cast<Value *>(V); 386 return MetadataAsValue::get(V->getContext(), ValueAsMetadata::get(LV)); 387 } 388 389 // FIXME: always return nullptr once Verifier::verifyDominatesUse() 390 // ensures metadata operands only reference defined SSA values. 391 return (Flags & RF_IgnoreMissingLocals) 392 ? nullptr 393 : MetadataAsValue::get(V->getContext(), 394 MDTuple::get(V->getContext(), None)); 395 } 396 397 // If this is a module-level metadata and we know that nothing at the module 398 // level is changing, then use an identity mapping. 399 if (Flags & RF_NoModuleLevelChanges) 400 return getVM()[V] = const_cast<Value *>(V); 401 402 // Map the metadata and turn it into a value. 403 auto *MappedMD = mapMetadata(MD); 404 if (MD == MappedMD) 405 return getVM()[V] = const_cast<Value *>(V); 406 return getVM()[V] = MetadataAsValue::get(V->getContext(), MappedMD); 407 } 408 409 // Okay, this either must be a constant (which may or may not be mappable) or 410 // is something that is not in the mapping table. 411 Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V)); 412 if (!C) 413 return nullptr; 414 415 if (BlockAddress *BA = dyn_cast<BlockAddress>(C)) 416 return mapBlockAddress(*BA); 417 418 auto mapValueOrNull = [this](Value *V) { 419 auto Mapped = mapValue(V); 420 assert((Mapped || (Flags & RF_NullMapMissingGlobalValues)) && 421 "Unexpected null mapping for constant operand without " 422 "NullMapMissingGlobalValues flag"); 423 return Mapped; 424 }; 425 426 // Otherwise, we have some other constant to remap. Start by checking to see 427 // if all operands have an identity remapping. 428 unsigned OpNo = 0, NumOperands = C->getNumOperands(); 429 Value *Mapped = nullptr; 430 for (; OpNo != NumOperands; ++OpNo) { 431 Value *Op = C->getOperand(OpNo); 432 Mapped = mapValueOrNull(Op); 433 if (!Mapped) 434 return nullptr; 435 if (Mapped != Op) 436 break; 437 } 438 439 // See if the type mapper wants to remap the type as well. 440 Type *NewTy = C->getType(); 441 if (TypeMapper) 442 NewTy = TypeMapper->remapType(NewTy); 443 444 // If the result type and all operands match up, then just insert an identity 445 // mapping. 446 if (OpNo == NumOperands && NewTy == C->getType()) 447 return getVM()[V] = C; 448 449 // Okay, we need to create a new constant. We've already processed some or 450 // all of the operands, set them all up now. 451 SmallVector<Constant*, 8> Ops; 452 Ops.reserve(NumOperands); 453 for (unsigned j = 0; j != OpNo; ++j) 454 Ops.push_back(cast<Constant>(C->getOperand(j))); 455 456 // If one of the operands mismatch, push it and the other mapped operands. 457 if (OpNo != NumOperands) { 458 Ops.push_back(cast<Constant>(Mapped)); 459 460 // Map the rest of the operands that aren't processed yet. 461 for (++OpNo; OpNo != NumOperands; ++OpNo) { 462 Mapped = mapValueOrNull(C->getOperand(OpNo)); 463 if (!Mapped) 464 return nullptr; 465 Ops.push_back(cast<Constant>(Mapped)); 466 } 467 } 468 Type *NewSrcTy = nullptr; 469 if (TypeMapper) 470 if (auto *GEPO = dyn_cast<GEPOperator>(C)) 471 NewSrcTy = TypeMapper->remapType(GEPO->getSourceElementType()); 472 473 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) 474 return getVM()[V] = CE->getWithOperands(Ops, NewTy, false, NewSrcTy); 475 if (isa<ConstantArray>(C)) 476 return getVM()[V] = ConstantArray::get(cast<ArrayType>(NewTy), Ops); 477 if (isa<ConstantStruct>(C)) 478 return getVM()[V] = ConstantStruct::get(cast<StructType>(NewTy), Ops); 479 if (isa<ConstantVector>(C)) 480 return getVM()[V] = ConstantVector::get(Ops); 481 // If this is a no-operand constant, it must be because the type was remapped. 482 if (isa<UndefValue>(C)) 483 return getVM()[V] = UndefValue::get(NewTy); 484 if (isa<ConstantAggregateZero>(C)) 485 return getVM()[V] = ConstantAggregateZero::get(NewTy); 486 assert(isa<ConstantPointerNull>(C)); 487 return getVM()[V] = ConstantPointerNull::get(cast<PointerType>(NewTy)); 488 } 489 490 Value *Mapper::mapBlockAddress(const BlockAddress &BA) { 491 Function *F = cast<Function>(mapValue(BA.getFunction())); 492 493 // F may not have materialized its initializer. In that case, create a 494 // dummy basic block for now, and replace it once we've materialized all 495 // the initializers. 496 BasicBlock *BB; 497 if (F->empty()) { 498 DelayedBBs.push_back(DelayedBasicBlock(BA)); 499 BB = DelayedBBs.back().TempBB.get(); 500 } else { 501 BB = cast_or_null<BasicBlock>(mapValue(BA.getBasicBlock())); 502 } 503 504 return getVM()[&BA] = BlockAddress::get(F, BB ? BB : BA.getBasicBlock()); 505 } 506 507 Metadata *Mapper::mapToMetadata(const Metadata *Key, Metadata *Val) { 508 getVM().MD()[Key].reset(Val); 509 return Val; 510 } 511 512 Metadata *Mapper::mapToSelf(const Metadata *MD) { 513 return mapToMetadata(MD, const_cast<Metadata *>(MD)); 514 } 515 516 Optional<Metadata *> MDNodeMapper::tryToMapOperand(const Metadata *Op) { 517 if (!Op) 518 return nullptr; 519 520 if (Optional<Metadata *> MappedOp = M.mapSimpleMetadata(Op)) { 521 #ifndef NDEBUG 522 if (auto *CMD = dyn_cast<ConstantAsMetadata>(Op)) 523 assert((!*MappedOp || M.getVM().count(CMD->getValue()) || 524 M.getVM().getMappedMD(Op)) && 525 "Expected Value to be memoized"); 526 else 527 assert((isa<MDString>(Op) || M.getVM().getMappedMD(Op)) && 528 "Expected result to be memoized"); 529 #endif 530 return *MappedOp; 531 } 532 533 const MDNode &N = *cast<MDNode>(Op); 534 if (N.isDistinct()) 535 return mapDistinctNode(N); 536 return None; 537 } 538 539 MDNode *MDNodeMapper::mapDistinctNode(const MDNode &N) { 540 assert(N.isDistinct() && "Expected a distinct node"); 541 assert(!M.getVM().getMappedMD(&N) && "Expected an unmapped node"); 542 DistinctWorklist.push_back(cast<MDNode>( 543 (M.Flags & RF_MoveDistinctMDs) 544 ? M.mapToSelf(&N) 545 : M.mapToMetadata(&N, MDNode::replaceWithDistinct(N.clone())))); 546 return DistinctWorklist.back(); 547 } 548 549 static ConstantAsMetadata *wrapConstantAsMetadata(const ConstantAsMetadata &CMD, 550 Value *MappedV) { 551 if (CMD.getValue() == MappedV) 552 return const_cast<ConstantAsMetadata *>(&CMD); 553 return MappedV ? ConstantAsMetadata::getConstant(MappedV) : nullptr; 554 } 555 556 Optional<Metadata *> MDNodeMapper::getMappedOp(const Metadata *Op) const { 557 if (!Op) 558 return nullptr; 559 560 if (Optional<Metadata *> MappedOp = M.getVM().getMappedMD(Op)) 561 return *MappedOp; 562 563 if (isa<MDString>(Op)) 564 return const_cast<Metadata *>(Op); 565 566 if (auto *CMD = dyn_cast<ConstantAsMetadata>(Op)) 567 return wrapConstantAsMetadata(*CMD, M.getVM().lookup(CMD->getValue())); 568 569 return None; 570 } 571 572 Metadata &MDNodeMapper::UniquedGraph::getFwdReference(MDNode &Op) { 573 auto Where = Info.find(&Op); 574 assert(Where != Info.end() && "Expected a valid reference"); 575 576 auto &OpD = Where->second; 577 if (!OpD.HasChanged) 578 return Op; 579 580 // Lazily construct a temporary node. 581 if (!OpD.Placeholder) 582 OpD.Placeholder = Op.clone(); 583 584 return *OpD.Placeholder; 585 } 586 587 template <class OperandMapper> 588 void MDNodeMapper::remapOperands(MDNode &N, OperandMapper mapOperand) { 589 assert(!N.isUniqued() && "Expected distinct or temporary nodes"); 590 for (unsigned I = 0, E = N.getNumOperands(); I != E; ++I) { 591 Metadata *Old = N.getOperand(I); 592 Metadata *New = mapOperand(Old); 593 594 if (Old != New) 595 N.replaceOperandWith(I, New); 596 } 597 } 598 599 namespace { 600 601 /// An entry in the worklist for the post-order traversal. 602 struct POTWorklistEntry { 603 MDNode *N; ///< Current node. 604 MDNode::op_iterator Op; ///< Current operand of \c N. 605 606 /// Keep a flag of whether operands have changed in the worklist to avoid 607 /// hitting the map in \a UniquedGraph. 608 bool HasChanged = false; 609 610 POTWorklistEntry(MDNode &N) : N(&N), Op(N.op_begin()) {} 611 }; 612 613 } // end anonymous namespace 614 615 bool MDNodeMapper::createPOT(UniquedGraph &G, const MDNode &FirstN) { 616 assert(G.Info.empty() && "Expected a fresh traversal"); 617 assert(FirstN.isUniqued() && "Expected uniqued node in POT"); 618 619 // Construct a post-order traversal of the uniqued subgraph under FirstN. 620 bool AnyChanges = false; 621 SmallVector<POTWorklistEntry, 16> Worklist; 622 Worklist.push_back(POTWorklistEntry(const_cast<MDNode &>(FirstN))); 623 (void)G.Info[&FirstN]; 624 while (!Worklist.empty()) { 625 // Start or continue the traversal through the this node's operands. 626 auto &WE = Worklist.back(); 627 if (MDNode *N = visitOperands(G, WE.Op, WE.N->op_end(), WE.HasChanged)) { 628 // Push a new node to traverse first. 629 Worklist.push_back(POTWorklistEntry(*N)); 630 continue; 631 } 632 633 // Push the node onto the POT. 634 assert(WE.N->isUniqued() && "Expected only uniqued nodes"); 635 assert(WE.Op == WE.N->op_end() && "Expected to visit all operands"); 636 auto &D = G.Info[WE.N]; 637 AnyChanges |= D.HasChanged = WE.HasChanged; 638 D.ID = G.POT.size(); 639 G.POT.push_back(WE.N); 640 641 // Pop the node off the worklist. 642 Worklist.pop_back(); 643 } 644 return AnyChanges; 645 } 646 647 MDNode *MDNodeMapper::visitOperands(UniquedGraph &G, MDNode::op_iterator &I, 648 MDNode::op_iterator E, bool &HasChanged) { 649 while (I != E) { 650 Metadata *Op = *I++; // Increment even on early return. 651 if (Optional<Metadata *> MappedOp = tryToMapOperand(Op)) { 652 // Check if the operand changes. 653 HasChanged |= Op != *MappedOp; 654 continue; 655 } 656 657 // A uniqued metadata node. 658 MDNode &OpN = *cast<MDNode>(Op); 659 assert(OpN.isUniqued() && 660 "Only uniqued operands cannot be mapped immediately"); 661 if (G.Info.insert(std::make_pair(&OpN, Data())).second) 662 return &OpN; // This is a new one. Return it. 663 } 664 return nullptr; 665 } 666 667 void MDNodeMapper::UniquedGraph::propagateChanges() { 668 bool AnyChanges; 669 do { 670 AnyChanges = false; 671 for (MDNode *N : POT) { 672 auto &D = Info[N]; 673 if (D.HasChanged) 674 continue; 675 676 if (llvm::none_of(N->operands(), [&](const Metadata *Op) { 677 auto Where = Info.find(Op); 678 return Where != Info.end() && Where->second.HasChanged; 679 })) 680 continue; 681 682 AnyChanges = D.HasChanged = true; 683 } 684 } while (AnyChanges); 685 } 686 687 void MDNodeMapper::mapNodesInPOT(UniquedGraph &G) { 688 // Construct uniqued nodes, building forward references as necessary. 689 SmallVector<MDNode *, 16> CyclicNodes; 690 for (auto *N : G.POT) { 691 auto &D = G.Info[N]; 692 if (!D.HasChanged) { 693 // The node hasn't changed. 694 M.mapToSelf(N); 695 continue; 696 } 697 698 // Remember whether this node had a placeholder. 699 bool HadPlaceholder(D.Placeholder); 700 701 // Clone the uniqued node and remap the operands. 702 TempMDNode ClonedN = D.Placeholder ? std::move(D.Placeholder) : N->clone(); 703 remapOperands(*ClonedN, [this, &D, &G](Metadata *Old) { 704 if (Optional<Metadata *> MappedOp = getMappedOp(Old)) 705 return *MappedOp; 706 (void)D; 707 assert(G.Info[Old].ID > D.ID && "Expected a forward reference"); 708 return &G.getFwdReference(*cast<MDNode>(Old)); 709 }); 710 711 auto *NewN = MDNode::replaceWithUniqued(std::move(ClonedN)); 712 M.mapToMetadata(N, NewN); 713 714 // Nodes that were referenced out of order in the POT are involved in a 715 // uniquing cycle. 716 if (HadPlaceholder) 717 CyclicNodes.push_back(NewN); 718 } 719 720 // Resolve cycles. 721 for (auto *N : CyclicNodes) 722 if (!N->isResolved()) 723 N->resolveCycles(); 724 } 725 726 Metadata *MDNodeMapper::map(const MDNode &N) { 727 assert(DistinctWorklist.empty() && "MDNodeMapper::map is not recursive"); 728 assert(!(M.Flags & RF_NoModuleLevelChanges) && 729 "MDNodeMapper::map assumes module-level changes"); 730 731 // Require resolved nodes whenever metadata might be remapped. 732 assert(N.isResolved() && "Unexpected unresolved node"); 733 734 Metadata *MappedN = 735 N.isUniqued() ? mapTopLevelUniquedNode(N) : mapDistinctNode(N); 736 while (!DistinctWorklist.empty()) 737 remapOperands(*DistinctWorklist.pop_back_val(), [this](Metadata *Old) { 738 if (Optional<Metadata *> MappedOp = tryToMapOperand(Old)) 739 return *MappedOp; 740 return mapTopLevelUniquedNode(*cast<MDNode>(Old)); 741 }); 742 return MappedN; 743 } 744 745 Metadata *MDNodeMapper::mapTopLevelUniquedNode(const MDNode &FirstN) { 746 assert(FirstN.isUniqued() && "Expected uniqued node"); 747 748 // Create a post-order traversal of uniqued nodes under FirstN. 749 UniquedGraph G; 750 if (!createPOT(G, FirstN)) { 751 // Return early if no nodes have changed. 752 for (const MDNode *N : G.POT) 753 M.mapToSelf(N); 754 return &const_cast<MDNode &>(FirstN); 755 } 756 757 // Update graph with all nodes that have changed. 758 G.propagateChanges(); 759 760 // Map all the nodes in the graph. 761 mapNodesInPOT(G); 762 763 // Return the original node, remapped. 764 return *getMappedOp(&FirstN); 765 } 766 767 namespace { 768 769 struct MapMetadataDisabler { 770 ValueToValueMapTy &VM; 771 772 MapMetadataDisabler(ValueToValueMapTy &VM) : VM(VM) { 773 VM.disableMapMetadata(); 774 } 775 776 ~MapMetadataDisabler() { VM.enableMapMetadata(); } 777 }; 778 779 } // end anonymous namespace 780 781 Optional<Metadata *> Mapper::mapSimpleMetadata(const Metadata *MD) { 782 // If the value already exists in the map, use it. 783 if (Optional<Metadata *> NewMD = getVM().getMappedMD(MD)) 784 return *NewMD; 785 786 if (isa<MDString>(MD)) 787 return const_cast<Metadata *>(MD); 788 789 // This is a module-level metadata. If nothing at the module level is 790 // changing, use an identity mapping. 791 if ((Flags & RF_NoModuleLevelChanges)) 792 return const_cast<Metadata *>(MD); 793 794 if (auto *CMD = dyn_cast<ConstantAsMetadata>(MD)) { 795 // Disallow recursion into metadata mapping through mapValue. 796 MapMetadataDisabler MMD(getVM()); 797 798 // Don't memoize ConstantAsMetadata. Instead of lasting until the 799 // LLVMContext is destroyed, they can be deleted when the GlobalValue they 800 // reference is destructed. These aren't super common, so the extra 801 // indirection isn't that expensive. 802 return wrapConstantAsMetadata(*CMD, mapValue(CMD->getValue())); 803 } 804 805 assert(isa<MDNode>(MD) && "Expected a metadata node"); 806 807 return None; 808 } 809 810 Metadata *Mapper::mapMetadata(const Metadata *MD) { 811 assert(MD && "Expected valid metadata"); 812 assert(!isa<LocalAsMetadata>(MD) && "Unexpected local metadata"); 813 814 if (Optional<Metadata *> NewMD = mapSimpleMetadata(MD)) 815 return *NewMD; 816 817 return MDNodeMapper(*this).map(*cast<MDNode>(MD)); 818 } 819 820 void Mapper::flush() { 821 // Flush out the worklist of global values. 822 while (!Worklist.empty()) { 823 WorklistEntry E = Worklist.pop_back_val(); 824 CurrentMCID = E.MCID; 825 switch (E.Kind) { 826 case WorklistEntry::MapGlobalInit: 827 E.Data.GVInit.GV->setInitializer(mapConstant(E.Data.GVInit.Init)); 828 remapGlobalObjectMetadata(*E.Data.GVInit.GV); 829 break; 830 case WorklistEntry::MapAppendingVar: { 831 unsigned PrefixSize = AppendingInits.size() - E.AppendingGVNumNewMembers; 832 mapAppendingVariable(*E.Data.AppendingGV.GV, 833 E.Data.AppendingGV.InitPrefix, 834 E.AppendingGVIsOldCtorDtor, 835 makeArrayRef(AppendingInits).slice(PrefixSize)); 836 AppendingInits.resize(PrefixSize); 837 break; 838 } 839 case WorklistEntry::MapGlobalAliasee: 840 E.Data.GlobalAliasee.GA->setAliasee( 841 mapConstant(E.Data.GlobalAliasee.Aliasee)); 842 break; 843 case WorklistEntry::RemapFunction: 844 remapFunction(*E.Data.RemapF); 845 break; 846 } 847 } 848 CurrentMCID = 0; 849 850 // Finish logic for block addresses now that all global values have been 851 // handled. 852 while (!DelayedBBs.empty()) { 853 DelayedBasicBlock DBB = DelayedBBs.pop_back_val(); 854 BasicBlock *BB = cast_or_null<BasicBlock>(mapValue(DBB.OldBB)); 855 DBB.TempBB->replaceAllUsesWith(BB ? BB : DBB.OldBB); 856 } 857 } 858 859 void Mapper::remapInstruction(Instruction *I) { 860 // Remap operands. 861 for (Use &Op : I->operands()) { 862 Value *V = mapValue(Op); 863 // If we aren't ignoring missing entries, assert that something happened. 864 if (V) 865 Op = V; 866 else 867 assert((Flags & RF_IgnoreMissingLocals) && 868 "Referenced value not in value map!"); 869 } 870 871 // Remap phi nodes' incoming blocks. 872 if (PHINode *PN = dyn_cast<PHINode>(I)) { 873 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 874 Value *V = mapValue(PN->getIncomingBlock(i)); 875 // If we aren't ignoring missing entries, assert that something happened. 876 if (V) 877 PN->setIncomingBlock(i, cast<BasicBlock>(V)); 878 else 879 assert((Flags & RF_IgnoreMissingLocals) && 880 "Referenced block not in value map!"); 881 } 882 } 883 884 // Remap attached metadata. 885 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 886 I->getAllMetadata(MDs); 887 for (const auto &MI : MDs) { 888 MDNode *Old = MI.second; 889 MDNode *New = cast_or_null<MDNode>(mapMetadata(Old)); 890 if (New != Old) 891 I->setMetadata(MI.first, New); 892 } 893 894 if (!TypeMapper) 895 return; 896 897 // If the instruction's type is being remapped, do so now. 898 if (auto CS = CallSite(I)) { 899 SmallVector<Type *, 3> Tys; 900 FunctionType *FTy = CS.getFunctionType(); 901 Tys.reserve(FTy->getNumParams()); 902 for (Type *Ty : FTy->params()) 903 Tys.push_back(TypeMapper->remapType(Ty)); 904 CS.mutateFunctionType(FunctionType::get( 905 TypeMapper->remapType(I->getType()), Tys, FTy->isVarArg())); 906 return; 907 } 908 if (auto *AI = dyn_cast<AllocaInst>(I)) 909 AI->setAllocatedType(TypeMapper->remapType(AI->getAllocatedType())); 910 if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) { 911 GEP->setSourceElementType( 912 TypeMapper->remapType(GEP->getSourceElementType())); 913 GEP->setResultElementType( 914 TypeMapper->remapType(GEP->getResultElementType())); 915 } 916 I->mutateType(TypeMapper->remapType(I->getType())); 917 } 918 919 void Mapper::remapGlobalObjectMetadata(GlobalObject &GO) { 920 SmallVector<std::pair<unsigned, MDNode *>, 8> MDs; 921 GO.getAllMetadata(MDs); 922 GO.clearMetadata(); 923 for (const auto &I : MDs) 924 GO.addMetadata(I.first, *cast<MDNode>(mapMetadata(I.second))); 925 } 926 927 void Mapper::remapFunction(Function &F) { 928 // Remap the operands. 929 for (Use &Op : F.operands()) 930 if (Op) 931 Op = mapValue(Op); 932 933 // Remap the metadata attachments. 934 remapGlobalObjectMetadata(F); 935 936 // Remap the argument types. 937 if (TypeMapper) 938 for (Argument &A : F.args()) 939 A.mutateType(TypeMapper->remapType(A.getType())); 940 941 // Remap the instructions. 942 for (BasicBlock &BB : F) 943 for (Instruction &I : BB) 944 remapInstruction(&I); 945 } 946 947 void Mapper::mapAppendingVariable(GlobalVariable &GV, Constant *InitPrefix, 948 bool IsOldCtorDtor, 949 ArrayRef<Constant *> NewMembers) { 950 SmallVector<Constant *, 16> Elements; 951 if (InitPrefix) { 952 unsigned NumElements = 953 cast<ArrayType>(InitPrefix->getType())->getNumElements(); 954 for (unsigned I = 0; I != NumElements; ++I) 955 Elements.push_back(InitPrefix->getAggregateElement(I)); 956 } 957 958 PointerType *VoidPtrTy; 959 Type *EltTy; 960 if (IsOldCtorDtor) { 961 // FIXME: This upgrade is done during linking to support the C API. See 962 // also IRLinker::linkAppendingVarProto() in IRMover.cpp. 963 VoidPtrTy = Type::getInt8Ty(GV.getContext())->getPointerTo(); 964 auto &ST = *cast<StructType>(NewMembers.front()->getType()); 965 Type *Tys[3] = {ST.getElementType(0), ST.getElementType(1), VoidPtrTy}; 966 EltTy = StructType::get(GV.getContext(), Tys, false); 967 } 968 969 for (auto *V : NewMembers) { 970 Constant *NewV; 971 if (IsOldCtorDtor) { 972 auto *S = cast<ConstantStruct>(V); 973 auto *E1 = cast<Constant>(mapValue(S->getOperand(0))); 974 auto *E2 = cast<Constant>(mapValue(S->getOperand(1))); 975 Constant *Null = Constant::getNullValue(VoidPtrTy); 976 NewV = ConstantStruct::get(cast<StructType>(EltTy), E1, E2, Null); 977 } else { 978 NewV = cast_or_null<Constant>(mapValue(V)); 979 } 980 Elements.push_back(NewV); 981 } 982 983 GV.setInitializer(ConstantArray::get( 984 cast<ArrayType>(GV.getType()->getElementType()), Elements)); 985 } 986 987 void Mapper::scheduleMapGlobalInitializer(GlobalVariable &GV, Constant &Init, 988 unsigned MCID) { 989 assert(AlreadyScheduled.insert(&GV).second && "Should not reschedule"); 990 assert(MCID < MCs.size() && "Invalid mapping context"); 991 992 WorklistEntry WE; 993 WE.Kind = WorklistEntry::MapGlobalInit; 994 WE.MCID = MCID; 995 WE.Data.GVInit.GV = &GV; 996 WE.Data.GVInit.Init = &Init; 997 Worklist.push_back(WE); 998 } 999 1000 void Mapper::scheduleMapAppendingVariable(GlobalVariable &GV, 1001 Constant *InitPrefix, 1002 bool IsOldCtorDtor, 1003 ArrayRef<Constant *> NewMembers, 1004 unsigned MCID) { 1005 assert(AlreadyScheduled.insert(&GV).second && "Should not reschedule"); 1006 assert(MCID < MCs.size() && "Invalid mapping context"); 1007 1008 WorklistEntry WE; 1009 WE.Kind = WorklistEntry::MapAppendingVar; 1010 WE.MCID = MCID; 1011 WE.Data.AppendingGV.GV = &GV; 1012 WE.Data.AppendingGV.InitPrefix = InitPrefix; 1013 WE.AppendingGVIsOldCtorDtor = IsOldCtorDtor; 1014 WE.AppendingGVNumNewMembers = NewMembers.size(); 1015 Worklist.push_back(WE); 1016 AppendingInits.append(NewMembers.begin(), NewMembers.end()); 1017 } 1018 1019 void Mapper::scheduleMapGlobalAliasee(GlobalAlias &GA, Constant &Aliasee, 1020 unsigned MCID) { 1021 assert(AlreadyScheduled.insert(&GA).second && "Should not reschedule"); 1022 assert(MCID < MCs.size() && "Invalid mapping context"); 1023 1024 WorklistEntry WE; 1025 WE.Kind = WorklistEntry::MapGlobalAliasee; 1026 WE.MCID = MCID; 1027 WE.Data.GlobalAliasee.GA = &GA; 1028 WE.Data.GlobalAliasee.Aliasee = &Aliasee; 1029 Worklist.push_back(WE); 1030 } 1031 1032 void Mapper::scheduleRemapFunction(Function &F, unsigned MCID) { 1033 assert(AlreadyScheduled.insert(&F).second && "Should not reschedule"); 1034 assert(MCID < MCs.size() && "Invalid mapping context"); 1035 1036 WorklistEntry WE; 1037 WE.Kind = WorklistEntry::RemapFunction; 1038 WE.MCID = MCID; 1039 WE.Data.RemapF = &F; 1040 Worklist.push_back(WE); 1041 } 1042 1043 void Mapper::addFlags(RemapFlags Flags) { 1044 assert(!hasWorkToDo() && "Expected to have flushed the worklist"); 1045 this->Flags = this->Flags | Flags; 1046 } 1047 1048 static Mapper *getAsMapper(void *pImpl) { 1049 return reinterpret_cast<Mapper *>(pImpl); 1050 } 1051 1052 namespace { 1053 1054 class FlushingMapper { 1055 Mapper &M; 1056 1057 public: 1058 explicit FlushingMapper(void *pImpl) : M(*getAsMapper(pImpl)) { 1059 assert(!M.hasWorkToDo() && "Expected to be flushed"); 1060 } 1061 1062 ~FlushingMapper() { M.flush(); } 1063 1064 Mapper *operator->() const { return &M; } 1065 }; 1066 1067 } // end anonymous namespace 1068 1069 ValueMapper::ValueMapper(ValueToValueMapTy &VM, RemapFlags Flags, 1070 ValueMapTypeRemapper *TypeMapper, 1071 ValueMaterializer *Materializer) 1072 : pImpl(new Mapper(VM, Flags, TypeMapper, Materializer)) {} 1073 1074 ValueMapper::~ValueMapper() { delete getAsMapper(pImpl); } 1075 1076 unsigned 1077 ValueMapper::registerAlternateMappingContext(ValueToValueMapTy &VM, 1078 ValueMaterializer *Materializer) { 1079 return getAsMapper(pImpl)->registerAlternateMappingContext(VM, Materializer); 1080 } 1081 1082 void ValueMapper::addFlags(RemapFlags Flags) { 1083 FlushingMapper(pImpl)->addFlags(Flags); 1084 } 1085 1086 Value *ValueMapper::mapValue(const Value &V) { 1087 return FlushingMapper(pImpl)->mapValue(&V); 1088 } 1089 1090 Constant *ValueMapper::mapConstant(const Constant &C) { 1091 return cast_or_null<Constant>(mapValue(C)); 1092 } 1093 1094 Metadata *ValueMapper::mapMetadata(const Metadata &MD) { 1095 return FlushingMapper(pImpl)->mapMetadata(&MD); 1096 } 1097 1098 MDNode *ValueMapper::mapMDNode(const MDNode &N) { 1099 return cast_or_null<MDNode>(mapMetadata(N)); 1100 } 1101 1102 void ValueMapper::remapInstruction(Instruction &I) { 1103 FlushingMapper(pImpl)->remapInstruction(&I); 1104 } 1105 1106 void ValueMapper::remapFunction(Function &F) { 1107 FlushingMapper(pImpl)->remapFunction(F); 1108 } 1109 1110 void ValueMapper::scheduleMapGlobalInitializer(GlobalVariable &GV, 1111 Constant &Init, 1112 unsigned MCID) { 1113 getAsMapper(pImpl)->scheduleMapGlobalInitializer(GV, Init, MCID); 1114 } 1115 1116 void ValueMapper::scheduleMapAppendingVariable(GlobalVariable &GV, 1117 Constant *InitPrefix, 1118 bool IsOldCtorDtor, 1119 ArrayRef<Constant *> NewMembers, 1120 unsigned MCID) { 1121 getAsMapper(pImpl)->scheduleMapAppendingVariable( 1122 GV, InitPrefix, IsOldCtorDtor, NewMembers, MCID); 1123 } 1124 1125 void ValueMapper::scheduleMapGlobalAliasee(GlobalAlias &GA, Constant &Aliasee, 1126 unsigned MCID) { 1127 getAsMapper(pImpl)->scheduleMapGlobalAliasee(GA, Aliasee, MCID); 1128 } 1129 1130 void ValueMapper::scheduleRemapFunction(Function &F, unsigned MCID) { 1131 getAsMapper(pImpl)->scheduleRemapFunction(F, MCID); 1132 } 1133