1 //===- ValueMapper.cpp - Interface shared by lib/Transforms/Utils ---------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the MapValue function, which is shared by various parts of 10 // the lib/Transforms/Utils library. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Utils/ValueMapper.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/DenseSet.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/Optional.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/IR/Argument.h" 23 #include "llvm/IR/BasicBlock.h" 24 #include "llvm/IR/Constant.h" 25 #include "llvm/IR/Constants.h" 26 #include "llvm/IR/DebugInfoMetadata.h" 27 #include "llvm/IR/DerivedTypes.h" 28 #include "llvm/IR/Function.h" 29 #include "llvm/IR/GlobalObject.h" 30 #include "llvm/IR/GlobalIndirectSymbol.h" 31 #include "llvm/IR/GlobalVariable.h" 32 #include "llvm/IR/InlineAsm.h" 33 #include "llvm/IR/Instruction.h" 34 #include "llvm/IR/Instructions.h" 35 #include "llvm/IR/Metadata.h" 36 #include "llvm/IR/Operator.h" 37 #include "llvm/IR/Type.h" 38 #include "llvm/IR/Value.h" 39 #include "llvm/Support/Casting.h" 40 #include <cassert> 41 #include <limits> 42 #include <memory> 43 #include <utility> 44 45 using namespace llvm; 46 47 // Out of line method to get vtable etc for class. 48 void ValueMapTypeRemapper::anchor() {} 49 void ValueMaterializer::anchor() {} 50 51 namespace { 52 53 /// A basic block used in a BlockAddress whose function body is not yet 54 /// materialized. 55 struct DelayedBasicBlock { 56 BasicBlock *OldBB; 57 std::unique_ptr<BasicBlock> TempBB; 58 59 DelayedBasicBlock(const BlockAddress &Old) 60 : OldBB(Old.getBasicBlock()), 61 TempBB(BasicBlock::Create(Old.getContext())) {} 62 }; 63 64 struct WorklistEntry { 65 enum EntryKind { 66 MapGlobalInit, 67 MapAppendingVar, 68 MapGlobalIndirectSymbol, 69 RemapFunction 70 }; 71 struct GVInitTy { 72 GlobalVariable *GV; 73 Constant *Init; 74 }; 75 struct AppendingGVTy { 76 GlobalVariable *GV; 77 Constant *InitPrefix; 78 }; 79 struct GlobalIndirectSymbolTy { 80 GlobalIndirectSymbol *GIS; 81 Constant *Target; 82 }; 83 84 unsigned Kind : 2; 85 unsigned MCID : 29; 86 unsigned AppendingGVIsOldCtorDtor : 1; 87 unsigned AppendingGVNumNewMembers; 88 union { 89 GVInitTy GVInit; 90 AppendingGVTy AppendingGV; 91 GlobalIndirectSymbolTy GlobalIndirectSymbol; 92 Function *RemapF; 93 } Data; 94 }; 95 96 struct MappingContext { 97 ValueToValueMapTy *VM; 98 ValueMaterializer *Materializer = nullptr; 99 100 /// Construct a MappingContext with a value map and materializer. 101 explicit MappingContext(ValueToValueMapTy &VM, 102 ValueMaterializer *Materializer = nullptr) 103 : VM(&VM), Materializer(Materializer) {} 104 }; 105 106 class Mapper { 107 friend class MDNodeMapper; 108 109 #ifndef NDEBUG 110 DenseSet<GlobalValue *> AlreadyScheduled; 111 #endif 112 113 RemapFlags Flags; 114 ValueMapTypeRemapper *TypeMapper; 115 unsigned CurrentMCID = 0; 116 SmallVector<MappingContext, 2> MCs; 117 SmallVector<WorklistEntry, 4> Worklist; 118 SmallVector<DelayedBasicBlock, 1> DelayedBBs; 119 SmallVector<Constant *, 16> AppendingInits; 120 121 public: 122 Mapper(ValueToValueMapTy &VM, RemapFlags Flags, 123 ValueMapTypeRemapper *TypeMapper, ValueMaterializer *Materializer) 124 : Flags(Flags), TypeMapper(TypeMapper), 125 MCs(1, MappingContext(VM, Materializer)) {} 126 127 /// ValueMapper should explicitly call \a flush() before destruction. 128 ~Mapper() { assert(!hasWorkToDo() && "Expected to be flushed"); } 129 130 bool hasWorkToDo() const { return !Worklist.empty(); } 131 132 unsigned 133 registerAlternateMappingContext(ValueToValueMapTy &VM, 134 ValueMaterializer *Materializer = nullptr) { 135 MCs.push_back(MappingContext(VM, Materializer)); 136 return MCs.size() - 1; 137 } 138 139 void addFlags(RemapFlags Flags); 140 141 void remapGlobalObjectMetadata(GlobalObject &GO); 142 143 Value *mapValue(const Value *V); 144 void remapInstruction(Instruction *I); 145 void remapFunction(Function &F); 146 147 Constant *mapConstant(const Constant *C) { 148 return cast_or_null<Constant>(mapValue(C)); 149 } 150 151 /// Map metadata. 152 /// 153 /// Find the mapping for MD. Guarantees that the return will be resolved 154 /// (not an MDNode, or MDNode::isResolved() returns true). 155 Metadata *mapMetadata(const Metadata *MD); 156 157 void scheduleMapGlobalInitializer(GlobalVariable &GV, Constant &Init, 158 unsigned MCID); 159 void scheduleMapAppendingVariable(GlobalVariable &GV, Constant *InitPrefix, 160 bool IsOldCtorDtor, 161 ArrayRef<Constant *> NewMembers, 162 unsigned MCID); 163 void scheduleMapGlobalIndirectSymbol(GlobalIndirectSymbol &GIS, Constant &Target, 164 unsigned MCID); 165 void scheduleRemapFunction(Function &F, unsigned MCID); 166 167 void flush(); 168 169 private: 170 void mapAppendingVariable(GlobalVariable &GV, Constant *InitPrefix, 171 bool IsOldCtorDtor, 172 ArrayRef<Constant *> NewMembers); 173 174 ValueToValueMapTy &getVM() { return *MCs[CurrentMCID].VM; } 175 ValueMaterializer *getMaterializer() { return MCs[CurrentMCID].Materializer; } 176 177 Value *mapBlockAddress(const BlockAddress &BA); 178 179 /// Map metadata that doesn't require visiting operands. 180 Optional<Metadata *> mapSimpleMetadata(const Metadata *MD); 181 182 Metadata *mapToMetadata(const Metadata *Key, Metadata *Val); 183 Metadata *mapToSelf(const Metadata *MD); 184 }; 185 186 class MDNodeMapper { 187 Mapper &M; 188 189 /// Data about a node in \a UniquedGraph. 190 struct Data { 191 bool HasChanged = false; 192 unsigned ID = std::numeric_limits<unsigned>::max(); 193 TempMDNode Placeholder; 194 }; 195 196 /// A graph of uniqued nodes. 197 struct UniquedGraph { 198 SmallDenseMap<const Metadata *, Data, 32> Info; // Node properties. 199 SmallVector<MDNode *, 16> POT; // Post-order traversal. 200 201 /// Propagate changed operands through the post-order traversal. 202 /// 203 /// Iteratively update \a Data::HasChanged for each node based on \a 204 /// Data::HasChanged of its operands, until fixed point. 205 void propagateChanges(); 206 207 /// Get a forward reference to a node to use as an operand. 208 Metadata &getFwdReference(MDNode &Op); 209 }; 210 211 /// Worklist of distinct nodes whose operands need to be remapped. 212 SmallVector<MDNode *, 16> DistinctWorklist; 213 214 // Storage for a UniquedGraph. 215 SmallDenseMap<const Metadata *, Data, 32> InfoStorage; 216 SmallVector<MDNode *, 16> POTStorage; 217 218 public: 219 MDNodeMapper(Mapper &M) : M(M) {} 220 221 /// Map a metadata node (and its transitive operands). 222 /// 223 /// Map all the (unmapped) nodes in the subgraph under \c N. The iterative 224 /// algorithm handles distinct nodes and uniqued node subgraphs using 225 /// different strategies. 226 /// 227 /// Distinct nodes are immediately mapped and added to \a DistinctWorklist 228 /// using \a mapDistinctNode(). Their mapping can always be computed 229 /// immediately without visiting operands, even if their operands change. 230 /// 231 /// The mapping for uniqued nodes depends on whether their operands change. 232 /// \a mapTopLevelUniquedNode() traverses the transitive uniqued subgraph of 233 /// a node to calculate uniqued node mappings in bulk. Distinct leafs are 234 /// added to \a DistinctWorklist with \a mapDistinctNode(). 235 /// 236 /// After mapping \c N itself, this function remaps the operands of the 237 /// distinct nodes in \a DistinctWorklist until the entire subgraph under \c 238 /// N has been mapped. 239 Metadata *map(const MDNode &N); 240 241 private: 242 /// Map a top-level uniqued node and the uniqued subgraph underneath it. 243 /// 244 /// This builds up a post-order traversal of the (unmapped) uniqued subgraph 245 /// underneath \c FirstN and calculates the nodes' mapping. Each node uses 246 /// the identity mapping (\a Mapper::mapToSelf()) as long as all of its 247 /// operands uses the identity mapping. 248 /// 249 /// The algorithm works as follows: 250 /// 251 /// 1. \a createPOT(): traverse the uniqued subgraph under \c FirstN and 252 /// save the post-order traversal in the given \a UniquedGraph, tracking 253 /// nodes' operands change. 254 /// 255 /// 2. \a UniquedGraph::propagateChanges(): propagate changed operands 256 /// through the \a UniquedGraph until fixed point, following the rule 257 /// that if a node changes, any node that references must also change. 258 /// 259 /// 3. \a mapNodesInPOT(): map the uniqued nodes, creating new uniqued nodes 260 /// (referencing new operands) where necessary. 261 Metadata *mapTopLevelUniquedNode(const MDNode &FirstN); 262 263 /// Try to map the operand of an \a MDNode. 264 /// 265 /// If \c Op is already mapped, return the mapping. If it's not an \a 266 /// MDNode, compute and return the mapping. If it's a distinct \a MDNode, 267 /// return the result of \a mapDistinctNode(). 268 /// 269 /// \return None if \c Op is an unmapped uniqued \a MDNode. 270 /// \post getMappedOp(Op) only returns None if this returns None. 271 Optional<Metadata *> tryToMapOperand(const Metadata *Op); 272 273 /// Map a distinct node. 274 /// 275 /// Return the mapping for the distinct node \c N, saving the result in \a 276 /// DistinctWorklist for later remapping. 277 /// 278 /// \pre \c N is not yet mapped. 279 /// \pre \c N.isDistinct(). 280 MDNode *mapDistinctNode(const MDNode &N); 281 282 /// Get a previously mapped node. 283 Optional<Metadata *> getMappedOp(const Metadata *Op) const; 284 285 /// Create a post-order traversal of an unmapped uniqued node subgraph. 286 /// 287 /// This traverses the metadata graph deeply enough to map \c FirstN. It 288 /// uses \a tryToMapOperand() (via \a Mapper::mapSimplifiedNode()), so any 289 /// metadata that has already been mapped will not be part of the POT. 290 /// 291 /// Each node that has a changed operand from outside the graph (e.g., a 292 /// distinct node, an already-mapped uniqued node, or \a ConstantAsMetadata) 293 /// is marked with \a Data::HasChanged. 294 /// 295 /// \return \c true if any nodes in \c G have \a Data::HasChanged. 296 /// \post \c G.POT is a post-order traversal ending with \c FirstN. 297 /// \post \a Data::hasChanged in \c G.Info indicates whether any node needs 298 /// to change because of operands outside the graph. 299 bool createPOT(UniquedGraph &G, const MDNode &FirstN); 300 301 /// Visit the operands of a uniqued node in the POT. 302 /// 303 /// Visit the operands in the range from \c I to \c E, returning the first 304 /// uniqued node we find that isn't yet in \c G. \c I is always advanced to 305 /// where to continue the loop through the operands. 306 /// 307 /// This sets \c HasChanged if any of the visited operands change. 308 MDNode *visitOperands(UniquedGraph &G, MDNode::op_iterator &I, 309 MDNode::op_iterator E, bool &HasChanged); 310 311 /// Map all the nodes in the given uniqued graph. 312 /// 313 /// This visits all the nodes in \c G in post-order, using the identity 314 /// mapping or creating a new node depending on \a Data::HasChanged. 315 /// 316 /// \pre \a getMappedOp() returns None for nodes in \c G, but not for any of 317 /// their operands outside of \c G. 318 /// \pre \a Data::HasChanged is true for a node in \c G iff any of its 319 /// operands have changed. 320 /// \post \a getMappedOp() returns the mapped node for every node in \c G. 321 void mapNodesInPOT(UniquedGraph &G); 322 323 /// Remap a node's operands using the given functor. 324 /// 325 /// Iterate through the operands of \c N and update them in place using \c 326 /// mapOperand. 327 /// 328 /// \pre N.isDistinct() or N.isTemporary(). 329 template <class OperandMapper> 330 void remapOperands(MDNode &N, OperandMapper mapOperand); 331 }; 332 333 } // end anonymous namespace 334 335 Value *Mapper::mapValue(const Value *V) { 336 ValueToValueMapTy::iterator I = getVM().find(V); 337 338 // If the value already exists in the map, use it. 339 if (I != getVM().end()) { 340 assert(I->second && "Unexpected null mapping"); 341 return I->second; 342 } 343 344 // If we have a materializer and it can materialize a value, use that. 345 if (auto *Materializer = getMaterializer()) { 346 if (Value *NewV = Materializer->materialize(const_cast<Value *>(V))) { 347 getVM()[V] = NewV; 348 return NewV; 349 } 350 } 351 352 // Global values do not need to be seeded into the VM if they 353 // are using the identity mapping. 354 if (isa<GlobalValue>(V)) { 355 if (Flags & RF_NullMapMissingGlobalValues) 356 return nullptr; 357 return getVM()[V] = const_cast<Value *>(V); 358 } 359 360 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 361 // Inline asm may need *type* remapping. 362 FunctionType *NewTy = IA->getFunctionType(); 363 if (TypeMapper) { 364 NewTy = cast<FunctionType>(TypeMapper->remapType(NewTy)); 365 366 if (NewTy != IA->getFunctionType()) 367 V = InlineAsm::get(NewTy, IA->getAsmString(), IA->getConstraintString(), 368 IA->hasSideEffects(), IA->isAlignStack(), 369 IA->getDialect()); 370 } 371 372 return getVM()[V] = const_cast<Value *>(V); 373 } 374 375 if (const auto *MDV = dyn_cast<MetadataAsValue>(V)) { 376 const Metadata *MD = MDV->getMetadata(); 377 378 if (auto *LAM = dyn_cast<LocalAsMetadata>(MD)) { 379 // Look through to grab the local value. 380 if (Value *LV = mapValue(LAM->getValue())) { 381 if (V == LAM->getValue()) 382 return const_cast<Value *>(V); 383 return MetadataAsValue::get(V->getContext(), ValueAsMetadata::get(LV)); 384 } 385 386 // FIXME: always return nullptr once Verifier::verifyDominatesUse() 387 // ensures metadata operands only reference defined SSA values. 388 return (Flags & RF_IgnoreMissingLocals) 389 ? nullptr 390 : MetadataAsValue::get(V->getContext(), 391 MDTuple::get(V->getContext(), None)); 392 } 393 if (auto *AL = dyn_cast<DIArgList>(MD)) { 394 SmallVector<ValueAsMetadata *, 4> MappedArgs; 395 for (auto *VAM : AL->getArgs()) { 396 // Map both Local and Constant VAMs here; they will both ultimately 397 // be mapped via mapValue (apart from constants when we have no 398 // module level changes, which have an identity mapping). 399 if ((Flags & RF_NoModuleLevelChanges) && isa<ConstantAsMetadata>(VAM)) { 400 MappedArgs.push_back(VAM); 401 } else if (Value *LV = mapValue(VAM->getValue())) { 402 MappedArgs.push_back( 403 LV == VAM->getValue() ? VAM : ValueAsMetadata::get(LV)); 404 } else { 405 // If we cannot map the value, set the argument as undef. 406 MappedArgs.push_back(ValueAsMetadata::get( 407 UndefValue::get(VAM->getValue()->getType()))); 408 } 409 } 410 return MetadataAsValue::get(V->getContext(), 411 DIArgList::get(V->getContext(), MappedArgs)); 412 } 413 414 // If this is a module-level metadata and we know that nothing at the module 415 // level is changing, then use an identity mapping. 416 if (Flags & RF_NoModuleLevelChanges) 417 return getVM()[V] = const_cast<Value *>(V); 418 419 // Map the metadata and turn it into a value. 420 auto *MappedMD = mapMetadata(MD); 421 if (MD == MappedMD) 422 return getVM()[V] = const_cast<Value *>(V); 423 return getVM()[V] = MetadataAsValue::get(V->getContext(), MappedMD); 424 } 425 426 // Okay, this either must be a constant (which may or may not be mappable) or 427 // is something that is not in the mapping table. 428 Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V)); 429 if (!C) 430 return nullptr; 431 432 if (BlockAddress *BA = dyn_cast<BlockAddress>(C)) 433 return mapBlockAddress(*BA); 434 435 auto mapValueOrNull = [this](Value *V) { 436 auto Mapped = mapValue(V); 437 assert((Mapped || (Flags & RF_NullMapMissingGlobalValues)) && 438 "Unexpected null mapping for constant operand without " 439 "NullMapMissingGlobalValues flag"); 440 return Mapped; 441 }; 442 443 // Otherwise, we have some other constant to remap. Start by checking to see 444 // if all operands have an identity remapping. 445 unsigned OpNo = 0, NumOperands = C->getNumOperands(); 446 Value *Mapped = nullptr; 447 for (; OpNo != NumOperands; ++OpNo) { 448 Value *Op = C->getOperand(OpNo); 449 Mapped = mapValueOrNull(Op); 450 if (!Mapped) 451 return nullptr; 452 if (Mapped != Op) 453 break; 454 } 455 456 // See if the type mapper wants to remap the type as well. 457 Type *NewTy = C->getType(); 458 if (TypeMapper) 459 NewTy = TypeMapper->remapType(NewTy); 460 461 // If the result type and all operands match up, then just insert an identity 462 // mapping. 463 if (OpNo == NumOperands && NewTy == C->getType()) 464 return getVM()[V] = C; 465 466 // Okay, we need to create a new constant. We've already processed some or 467 // all of the operands, set them all up now. 468 SmallVector<Constant*, 8> Ops; 469 Ops.reserve(NumOperands); 470 for (unsigned j = 0; j != OpNo; ++j) 471 Ops.push_back(cast<Constant>(C->getOperand(j))); 472 473 // If one of the operands mismatch, push it and the other mapped operands. 474 if (OpNo != NumOperands) { 475 Ops.push_back(cast<Constant>(Mapped)); 476 477 // Map the rest of the operands that aren't processed yet. 478 for (++OpNo; OpNo != NumOperands; ++OpNo) { 479 Mapped = mapValueOrNull(C->getOperand(OpNo)); 480 if (!Mapped) 481 return nullptr; 482 Ops.push_back(cast<Constant>(Mapped)); 483 } 484 } 485 Type *NewSrcTy = nullptr; 486 if (TypeMapper) 487 if (auto *GEPO = dyn_cast<GEPOperator>(C)) 488 NewSrcTy = TypeMapper->remapType(GEPO->getSourceElementType()); 489 490 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) 491 return getVM()[V] = CE->getWithOperands(Ops, NewTy, false, NewSrcTy); 492 if (isa<ConstantArray>(C)) 493 return getVM()[V] = ConstantArray::get(cast<ArrayType>(NewTy), Ops); 494 if (isa<ConstantStruct>(C)) 495 return getVM()[V] = ConstantStruct::get(cast<StructType>(NewTy), Ops); 496 if (isa<ConstantVector>(C)) 497 return getVM()[V] = ConstantVector::get(Ops); 498 // If this is a no-operand constant, it must be because the type was remapped. 499 if (isa<UndefValue>(C)) 500 return getVM()[V] = UndefValue::get(NewTy); 501 if (isa<ConstantAggregateZero>(C)) 502 return getVM()[V] = ConstantAggregateZero::get(NewTy); 503 assert(isa<ConstantPointerNull>(C)); 504 return getVM()[V] = ConstantPointerNull::get(cast<PointerType>(NewTy)); 505 } 506 507 Value *Mapper::mapBlockAddress(const BlockAddress &BA) { 508 Function *F = cast<Function>(mapValue(BA.getFunction())); 509 510 // F may not have materialized its initializer. In that case, create a 511 // dummy basic block for now, and replace it once we've materialized all 512 // the initializers. 513 BasicBlock *BB; 514 if (F->empty()) { 515 DelayedBBs.push_back(DelayedBasicBlock(BA)); 516 BB = DelayedBBs.back().TempBB.get(); 517 } else { 518 BB = cast_or_null<BasicBlock>(mapValue(BA.getBasicBlock())); 519 } 520 521 return getVM()[&BA] = BlockAddress::get(F, BB ? BB : BA.getBasicBlock()); 522 } 523 524 Metadata *Mapper::mapToMetadata(const Metadata *Key, Metadata *Val) { 525 getVM().MD()[Key].reset(Val); 526 return Val; 527 } 528 529 Metadata *Mapper::mapToSelf(const Metadata *MD) { 530 return mapToMetadata(MD, const_cast<Metadata *>(MD)); 531 } 532 533 Optional<Metadata *> MDNodeMapper::tryToMapOperand(const Metadata *Op) { 534 if (!Op) 535 return nullptr; 536 537 if (Optional<Metadata *> MappedOp = M.mapSimpleMetadata(Op)) { 538 #ifndef NDEBUG 539 if (auto *CMD = dyn_cast<ConstantAsMetadata>(Op)) 540 assert((!*MappedOp || M.getVM().count(CMD->getValue()) || 541 M.getVM().getMappedMD(Op)) && 542 "Expected Value to be memoized"); 543 else 544 assert((isa<MDString>(Op) || M.getVM().getMappedMD(Op)) && 545 "Expected result to be memoized"); 546 #endif 547 return *MappedOp; 548 } 549 550 const MDNode &N = *cast<MDNode>(Op); 551 if (N.isDistinct()) 552 return mapDistinctNode(N); 553 return None; 554 } 555 556 MDNode *MDNodeMapper::mapDistinctNode(const MDNode &N) { 557 assert(N.isDistinct() && "Expected a distinct node"); 558 assert(!M.getVM().getMappedMD(&N) && "Expected an unmapped node"); 559 DistinctWorklist.push_back(cast<MDNode>( 560 (M.Flags & RF_ReuseAndMutateDistinctMDs) 561 ? M.mapToSelf(&N) 562 : M.mapToMetadata(&N, MDNode::replaceWithDistinct(N.clone())))); 563 return DistinctWorklist.back(); 564 } 565 566 static ConstantAsMetadata *wrapConstantAsMetadata(const ConstantAsMetadata &CMD, 567 Value *MappedV) { 568 if (CMD.getValue() == MappedV) 569 return const_cast<ConstantAsMetadata *>(&CMD); 570 return MappedV ? ConstantAsMetadata::getConstant(MappedV) : nullptr; 571 } 572 573 Optional<Metadata *> MDNodeMapper::getMappedOp(const Metadata *Op) const { 574 if (!Op) 575 return nullptr; 576 577 if (Optional<Metadata *> MappedOp = M.getVM().getMappedMD(Op)) 578 return *MappedOp; 579 580 if (isa<MDString>(Op)) 581 return const_cast<Metadata *>(Op); 582 583 if (auto *CMD = dyn_cast<ConstantAsMetadata>(Op)) 584 return wrapConstantAsMetadata(*CMD, M.getVM().lookup(CMD->getValue())); 585 586 return None; 587 } 588 589 Metadata &MDNodeMapper::UniquedGraph::getFwdReference(MDNode &Op) { 590 auto Where = Info.find(&Op); 591 assert(Where != Info.end() && "Expected a valid reference"); 592 593 auto &OpD = Where->second; 594 if (!OpD.HasChanged) 595 return Op; 596 597 // Lazily construct a temporary node. 598 if (!OpD.Placeholder) 599 OpD.Placeholder = Op.clone(); 600 601 return *OpD.Placeholder; 602 } 603 604 template <class OperandMapper> 605 void MDNodeMapper::remapOperands(MDNode &N, OperandMapper mapOperand) { 606 assert(!N.isUniqued() && "Expected distinct or temporary nodes"); 607 for (unsigned I = 0, E = N.getNumOperands(); I != E; ++I) { 608 Metadata *Old = N.getOperand(I); 609 Metadata *New = mapOperand(Old); 610 611 if (Old != New) 612 N.replaceOperandWith(I, New); 613 } 614 } 615 616 namespace { 617 618 /// An entry in the worklist for the post-order traversal. 619 struct POTWorklistEntry { 620 MDNode *N; ///< Current node. 621 MDNode::op_iterator Op; ///< Current operand of \c N. 622 623 /// Keep a flag of whether operands have changed in the worklist to avoid 624 /// hitting the map in \a UniquedGraph. 625 bool HasChanged = false; 626 627 POTWorklistEntry(MDNode &N) : N(&N), Op(N.op_begin()) {} 628 }; 629 630 } // end anonymous namespace 631 632 bool MDNodeMapper::createPOT(UniquedGraph &G, const MDNode &FirstN) { 633 assert(G.Info.empty() && "Expected a fresh traversal"); 634 assert(FirstN.isUniqued() && "Expected uniqued node in POT"); 635 636 // Construct a post-order traversal of the uniqued subgraph under FirstN. 637 bool AnyChanges = false; 638 SmallVector<POTWorklistEntry, 16> Worklist; 639 Worklist.push_back(POTWorklistEntry(const_cast<MDNode &>(FirstN))); 640 (void)G.Info[&FirstN]; 641 while (!Worklist.empty()) { 642 // Start or continue the traversal through the this node's operands. 643 auto &WE = Worklist.back(); 644 if (MDNode *N = visitOperands(G, WE.Op, WE.N->op_end(), WE.HasChanged)) { 645 // Push a new node to traverse first. 646 Worklist.push_back(POTWorklistEntry(*N)); 647 continue; 648 } 649 650 // Push the node onto the POT. 651 assert(WE.N->isUniqued() && "Expected only uniqued nodes"); 652 assert(WE.Op == WE.N->op_end() && "Expected to visit all operands"); 653 auto &D = G.Info[WE.N]; 654 AnyChanges |= D.HasChanged = WE.HasChanged; 655 D.ID = G.POT.size(); 656 G.POT.push_back(WE.N); 657 658 // Pop the node off the worklist. 659 Worklist.pop_back(); 660 } 661 return AnyChanges; 662 } 663 664 MDNode *MDNodeMapper::visitOperands(UniquedGraph &G, MDNode::op_iterator &I, 665 MDNode::op_iterator E, bool &HasChanged) { 666 while (I != E) { 667 Metadata *Op = *I++; // Increment even on early return. 668 if (Optional<Metadata *> MappedOp = tryToMapOperand(Op)) { 669 // Check if the operand changes. 670 HasChanged |= Op != *MappedOp; 671 continue; 672 } 673 674 // A uniqued metadata node. 675 MDNode &OpN = *cast<MDNode>(Op); 676 assert(OpN.isUniqued() && 677 "Only uniqued operands cannot be mapped immediately"); 678 if (G.Info.insert(std::make_pair(&OpN, Data())).second) 679 return &OpN; // This is a new one. Return it. 680 } 681 return nullptr; 682 } 683 684 void MDNodeMapper::UniquedGraph::propagateChanges() { 685 bool AnyChanges; 686 do { 687 AnyChanges = false; 688 for (MDNode *N : POT) { 689 auto &D = Info[N]; 690 if (D.HasChanged) 691 continue; 692 693 if (llvm::none_of(N->operands(), [&](const Metadata *Op) { 694 auto Where = Info.find(Op); 695 return Where != Info.end() && Where->second.HasChanged; 696 })) 697 continue; 698 699 AnyChanges = D.HasChanged = true; 700 } 701 } while (AnyChanges); 702 } 703 704 void MDNodeMapper::mapNodesInPOT(UniquedGraph &G) { 705 // Construct uniqued nodes, building forward references as necessary. 706 SmallVector<MDNode *, 16> CyclicNodes; 707 for (auto *N : G.POT) { 708 auto &D = G.Info[N]; 709 if (!D.HasChanged) { 710 // The node hasn't changed. 711 M.mapToSelf(N); 712 continue; 713 } 714 715 // Remember whether this node had a placeholder. 716 bool HadPlaceholder(D.Placeholder); 717 718 // Clone the uniqued node and remap the operands. 719 TempMDNode ClonedN = D.Placeholder ? std::move(D.Placeholder) : N->clone(); 720 remapOperands(*ClonedN, [this, &D, &G](Metadata *Old) { 721 if (Optional<Metadata *> MappedOp = getMappedOp(Old)) 722 return *MappedOp; 723 (void)D; 724 assert(G.Info[Old].ID > D.ID && "Expected a forward reference"); 725 return &G.getFwdReference(*cast<MDNode>(Old)); 726 }); 727 728 auto *NewN = MDNode::replaceWithUniqued(std::move(ClonedN)); 729 M.mapToMetadata(N, NewN); 730 731 // Nodes that were referenced out of order in the POT are involved in a 732 // uniquing cycle. 733 if (HadPlaceholder) 734 CyclicNodes.push_back(NewN); 735 } 736 737 // Resolve cycles. 738 for (auto *N : CyclicNodes) 739 if (!N->isResolved()) 740 N->resolveCycles(); 741 } 742 743 Metadata *MDNodeMapper::map(const MDNode &N) { 744 assert(DistinctWorklist.empty() && "MDNodeMapper::map is not recursive"); 745 assert(!(M.Flags & RF_NoModuleLevelChanges) && 746 "MDNodeMapper::map assumes module-level changes"); 747 748 // Require resolved nodes whenever metadata might be remapped. 749 assert(N.isResolved() && "Unexpected unresolved node"); 750 751 Metadata *MappedN = 752 N.isUniqued() ? mapTopLevelUniquedNode(N) : mapDistinctNode(N); 753 while (!DistinctWorklist.empty()) 754 remapOperands(*DistinctWorklist.pop_back_val(), [this](Metadata *Old) { 755 if (Optional<Metadata *> MappedOp = tryToMapOperand(Old)) 756 return *MappedOp; 757 return mapTopLevelUniquedNode(*cast<MDNode>(Old)); 758 }); 759 return MappedN; 760 } 761 762 Metadata *MDNodeMapper::mapTopLevelUniquedNode(const MDNode &FirstN) { 763 assert(FirstN.isUniqued() && "Expected uniqued node"); 764 765 // Create a post-order traversal of uniqued nodes under FirstN. 766 UniquedGraph G; 767 if (!createPOT(G, FirstN)) { 768 // Return early if no nodes have changed. 769 for (const MDNode *N : G.POT) 770 M.mapToSelf(N); 771 return &const_cast<MDNode &>(FirstN); 772 } 773 774 // Update graph with all nodes that have changed. 775 G.propagateChanges(); 776 777 // Map all the nodes in the graph. 778 mapNodesInPOT(G); 779 780 // Return the original node, remapped. 781 return *getMappedOp(&FirstN); 782 } 783 784 Optional<Metadata *> Mapper::mapSimpleMetadata(const Metadata *MD) { 785 // If the value already exists in the map, use it. 786 if (Optional<Metadata *> NewMD = getVM().getMappedMD(MD)) 787 return *NewMD; 788 789 if (isa<MDString>(MD)) 790 return const_cast<Metadata *>(MD); 791 792 // This is a module-level metadata. If nothing at the module level is 793 // changing, use an identity mapping. 794 if ((Flags & RF_NoModuleLevelChanges)) 795 return const_cast<Metadata *>(MD); 796 797 if (auto *CMD = dyn_cast<ConstantAsMetadata>(MD)) { 798 // Don't memoize ConstantAsMetadata. Instead of lasting until the 799 // LLVMContext is destroyed, they can be deleted when the GlobalValue they 800 // reference is destructed. These aren't super common, so the extra 801 // indirection isn't that expensive. 802 return wrapConstantAsMetadata(*CMD, mapValue(CMD->getValue())); 803 } 804 805 assert(isa<MDNode>(MD) && "Expected a metadata node"); 806 807 return None; 808 } 809 810 Metadata *Mapper::mapMetadata(const Metadata *MD) { 811 assert(MD && "Expected valid metadata"); 812 assert(!isa<LocalAsMetadata>(MD) && "Unexpected local metadata"); 813 814 if (Optional<Metadata *> NewMD = mapSimpleMetadata(MD)) 815 return *NewMD; 816 817 return MDNodeMapper(*this).map(*cast<MDNode>(MD)); 818 } 819 820 void Mapper::flush() { 821 // Flush out the worklist of global values. 822 while (!Worklist.empty()) { 823 WorklistEntry E = Worklist.pop_back_val(); 824 CurrentMCID = E.MCID; 825 switch (E.Kind) { 826 case WorklistEntry::MapGlobalInit: 827 E.Data.GVInit.GV->setInitializer(mapConstant(E.Data.GVInit.Init)); 828 remapGlobalObjectMetadata(*E.Data.GVInit.GV); 829 break; 830 case WorklistEntry::MapAppendingVar: { 831 unsigned PrefixSize = AppendingInits.size() - E.AppendingGVNumNewMembers; 832 // mapAppendingVariable call can change AppendingInits if initalizer for 833 // the variable depends on another appending global, because of that inits 834 // need to be extracted and updated before the call. 835 SmallVector<Constant *, 8> NewInits( 836 drop_begin(AppendingInits, PrefixSize)); 837 AppendingInits.resize(PrefixSize); 838 mapAppendingVariable(*E.Data.AppendingGV.GV, 839 E.Data.AppendingGV.InitPrefix, 840 E.AppendingGVIsOldCtorDtor, makeArrayRef(NewInits)); 841 break; 842 } 843 case WorklistEntry::MapGlobalIndirectSymbol: 844 E.Data.GlobalIndirectSymbol.GIS->setIndirectSymbol( 845 mapConstant(E.Data.GlobalIndirectSymbol.Target)); 846 break; 847 case WorklistEntry::RemapFunction: 848 remapFunction(*E.Data.RemapF); 849 break; 850 } 851 } 852 CurrentMCID = 0; 853 854 // Finish logic for block addresses now that all global values have been 855 // handled. 856 while (!DelayedBBs.empty()) { 857 DelayedBasicBlock DBB = DelayedBBs.pop_back_val(); 858 BasicBlock *BB = cast_or_null<BasicBlock>(mapValue(DBB.OldBB)); 859 DBB.TempBB->replaceAllUsesWith(BB ? BB : DBB.OldBB); 860 } 861 } 862 863 void Mapper::remapInstruction(Instruction *I) { 864 // Remap operands. 865 for (Use &Op : I->operands()) { 866 Value *V = mapValue(Op); 867 // If we aren't ignoring missing entries, assert that something happened. 868 if (V) 869 Op = V; 870 else 871 assert((Flags & RF_IgnoreMissingLocals) && 872 "Referenced value not in value map!"); 873 } 874 875 // Remap phi nodes' incoming blocks. 876 if (PHINode *PN = dyn_cast<PHINode>(I)) { 877 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 878 Value *V = mapValue(PN->getIncomingBlock(i)); 879 // If we aren't ignoring missing entries, assert that something happened. 880 if (V) 881 PN->setIncomingBlock(i, cast<BasicBlock>(V)); 882 else 883 assert((Flags & RF_IgnoreMissingLocals) && 884 "Referenced block not in value map!"); 885 } 886 } 887 888 // Remap attached metadata. 889 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 890 I->getAllMetadata(MDs); 891 for (const auto &MI : MDs) { 892 MDNode *Old = MI.second; 893 MDNode *New = cast_or_null<MDNode>(mapMetadata(Old)); 894 if (New != Old) 895 I->setMetadata(MI.first, New); 896 } 897 898 if (!TypeMapper) 899 return; 900 901 // If the instruction's type is being remapped, do so now. 902 if (auto *CB = dyn_cast<CallBase>(I)) { 903 SmallVector<Type *, 3> Tys; 904 FunctionType *FTy = CB->getFunctionType(); 905 Tys.reserve(FTy->getNumParams()); 906 for (Type *Ty : FTy->params()) 907 Tys.push_back(TypeMapper->remapType(Ty)); 908 CB->mutateFunctionType(FunctionType::get( 909 TypeMapper->remapType(I->getType()), Tys, FTy->isVarArg())); 910 911 LLVMContext &C = CB->getContext(); 912 AttributeList Attrs = CB->getAttributes(); 913 for (unsigned i = 0; i < Attrs.getNumAttrSets(); ++i) { 914 for (Attribute::AttrKind TypedAttr : 915 {Attribute::ByVal, Attribute::StructRet, Attribute::ByRef}) { 916 if (Type *Ty = Attrs.getAttribute(i, TypedAttr).getValueAsType()) { 917 Attrs = Attrs.replaceAttributeType(C, i, TypedAttr, 918 TypeMapper->remapType(Ty)); 919 break; 920 } 921 } 922 } 923 CB->setAttributes(Attrs); 924 return; 925 } 926 if (auto *AI = dyn_cast<AllocaInst>(I)) 927 AI->setAllocatedType(TypeMapper->remapType(AI->getAllocatedType())); 928 if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) { 929 GEP->setSourceElementType( 930 TypeMapper->remapType(GEP->getSourceElementType())); 931 GEP->setResultElementType( 932 TypeMapper->remapType(GEP->getResultElementType())); 933 } 934 I->mutateType(TypeMapper->remapType(I->getType())); 935 } 936 937 void Mapper::remapGlobalObjectMetadata(GlobalObject &GO) { 938 SmallVector<std::pair<unsigned, MDNode *>, 8> MDs; 939 GO.getAllMetadata(MDs); 940 GO.clearMetadata(); 941 for (const auto &I : MDs) 942 GO.addMetadata(I.first, *cast<MDNode>(mapMetadata(I.second))); 943 } 944 945 void Mapper::remapFunction(Function &F) { 946 // Remap the operands. 947 for (Use &Op : F.operands()) 948 if (Op) 949 Op = mapValue(Op); 950 951 // Remap the metadata attachments. 952 remapGlobalObjectMetadata(F); 953 954 // Remap the argument types. 955 if (TypeMapper) 956 for (Argument &A : F.args()) 957 A.mutateType(TypeMapper->remapType(A.getType())); 958 959 // Remap the instructions. 960 for (BasicBlock &BB : F) 961 for (Instruction &I : BB) 962 remapInstruction(&I); 963 } 964 965 void Mapper::mapAppendingVariable(GlobalVariable &GV, Constant *InitPrefix, 966 bool IsOldCtorDtor, 967 ArrayRef<Constant *> NewMembers) { 968 SmallVector<Constant *, 16> Elements; 969 if (InitPrefix) { 970 unsigned NumElements = 971 cast<ArrayType>(InitPrefix->getType())->getNumElements(); 972 for (unsigned I = 0; I != NumElements; ++I) 973 Elements.push_back(InitPrefix->getAggregateElement(I)); 974 } 975 976 PointerType *VoidPtrTy; 977 Type *EltTy; 978 if (IsOldCtorDtor) { 979 // FIXME: This upgrade is done during linking to support the C API. See 980 // also IRLinker::linkAppendingVarProto() in IRMover.cpp. 981 VoidPtrTy = Type::getInt8Ty(GV.getContext())->getPointerTo(); 982 auto &ST = *cast<StructType>(NewMembers.front()->getType()); 983 Type *Tys[3] = {ST.getElementType(0), ST.getElementType(1), VoidPtrTy}; 984 EltTy = StructType::get(GV.getContext(), Tys, false); 985 } 986 987 for (auto *V : NewMembers) { 988 Constant *NewV; 989 if (IsOldCtorDtor) { 990 auto *S = cast<ConstantStruct>(V); 991 auto *E1 = cast<Constant>(mapValue(S->getOperand(0))); 992 auto *E2 = cast<Constant>(mapValue(S->getOperand(1))); 993 Constant *Null = Constant::getNullValue(VoidPtrTy); 994 NewV = ConstantStruct::get(cast<StructType>(EltTy), E1, E2, Null); 995 } else { 996 NewV = cast_or_null<Constant>(mapValue(V)); 997 } 998 Elements.push_back(NewV); 999 } 1000 1001 GV.setInitializer(ConstantArray::get( 1002 cast<ArrayType>(GV.getType()->getElementType()), Elements)); 1003 } 1004 1005 void Mapper::scheduleMapGlobalInitializer(GlobalVariable &GV, Constant &Init, 1006 unsigned MCID) { 1007 assert(AlreadyScheduled.insert(&GV).second && "Should not reschedule"); 1008 assert(MCID < MCs.size() && "Invalid mapping context"); 1009 1010 WorklistEntry WE; 1011 WE.Kind = WorklistEntry::MapGlobalInit; 1012 WE.MCID = MCID; 1013 WE.Data.GVInit.GV = &GV; 1014 WE.Data.GVInit.Init = &Init; 1015 Worklist.push_back(WE); 1016 } 1017 1018 void Mapper::scheduleMapAppendingVariable(GlobalVariable &GV, 1019 Constant *InitPrefix, 1020 bool IsOldCtorDtor, 1021 ArrayRef<Constant *> NewMembers, 1022 unsigned MCID) { 1023 assert(AlreadyScheduled.insert(&GV).second && "Should not reschedule"); 1024 assert(MCID < MCs.size() && "Invalid mapping context"); 1025 1026 WorklistEntry WE; 1027 WE.Kind = WorklistEntry::MapAppendingVar; 1028 WE.MCID = MCID; 1029 WE.Data.AppendingGV.GV = &GV; 1030 WE.Data.AppendingGV.InitPrefix = InitPrefix; 1031 WE.AppendingGVIsOldCtorDtor = IsOldCtorDtor; 1032 WE.AppendingGVNumNewMembers = NewMembers.size(); 1033 Worklist.push_back(WE); 1034 AppendingInits.append(NewMembers.begin(), NewMembers.end()); 1035 } 1036 1037 void Mapper::scheduleMapGlobalIndirectSymbol(GlobalIndirectSymbol &GIS, 1038 Constant &Target, unsigned MCID) { 1039 assert(AlreadyScheduled.insert(&GIS).second && "Should not reschedule"); 1040 assert(MCID < MCs.size() && "Invalid mapping context"); 1041 1042 WorklistEntry WE; 1043 WE.Kind = WorklistEntry::MapGlobalIndirectSymbol; 1044 WE.MCID = MCID; 1045 WE.Data.GlobalIndirectSymbol.GIS = &GIS; 1046 WE.Data.GlobalIndirectSymbol.Target = &Target; 1047 Worklist.push_back(WE); 1048 } 1049 1050 void Mapper::scheduleRemapFunction(Function &F, unsigned MCID) { 1051 assert(AlreadyScheduled.insert(&F).second && "Should not reschedule"); 1052 assert(MCID < MCs.size() && "Invalid mapping context"); 1053 1054 WorklistEntry WE; 1055 WE.Kind = WorklistEntry::RemapFunction; 1056 WE.MCID = MCID; 1057 WE.Data.RemapF = &F; 1058 Worklist.push_back(WE); 1059 } 1060 1061 void Mapper::addFlags(RemapFlags Flags) { 1062 assert(!hasWorkToDo() && "Expected to have flushed the worklist"); 1063 this->Flags = this->Flags | Flags; 1064 } 1065 1066 static Mapper *getAsMapper(void *pImpl) { 1067 return reinterpret_cast<Mapper *>(pImpl); 1068 } 1069 1070 namespace { 1071 1072 class FlushingMapper { 1073 Mapper &M; 1074 1075 public: 1076 explicit FlushingMapper(void *pImpl) : M(*getAsMapper(pImpl)) { 1077 assert(!M.hasWorkToDo() && "Expected to be flushed"); 1078 } 1079 1080 ~FlushingMapper() { M.flush(); } 1081 1082 Mapper *operator->() const { return &M; } 1083 }; 1084 1085 } // end anonymous namespace 1086 1087 ValueMapper::ValueMapper(ValueToValueMapTy &VM, RemapFlags Flags, 1088 ValueMapTypeRemapper *TypeMapper, 1089 ValueMaterializer *Materializer) 1090 : pImpl(new Mapper(VM, Flags, TypeMapper, Materializer)) {} 1091 1092 ValueMapper::~ValueMapper() { delete getAsMapper(pImpl); } 1093 1094 unsigned 1095 ValueMapper::registerAlternateMappingContext(ValueToValueMapTy &VM, 1096 ValueMaterializer *Materializer) { 1097 return getAsMapper(pImpl)->registerAlternateMappingContext(VM, Materializer); 1098 } 1099 1100 void ValueMapper::addFlags(RemapFlags Flags) { 1101 FlushingMapper(pImpl)->addFlags(Flags); 1102 } 1103 1104 Value *ValueMapper::mapValue(const Value &V) { 1105 return FlushingMapper(pImpl)->mapValue(&V); 1106 } 1107 1108 Constant *ValueMapper::mapConstant(const Constant &C) { 1109 return cast_or_null<Constant>(mapValue(C)); 1110 } 1111 1112 Metadata *ValueMapper::mapMetadata(const Metadata &MD) { 1113 return FlushingMapper(pImpl)->mapMetadata(&MD); 1114 } 1115 1116 MDNode *ValueMapper::mapMDNode(const MDNode &N) { 1117 return cast_or_null<MDNode>(mapMetadata(N)); 1118 } 1119 1120 void ValueMapper::remapInstruction(Instruction &I) { 1121 FlushingMapper(pImpl)->remapInstruction(&I); 1122 } 1123 1124 void ValueMapper::remapFunction(Function &F) { 1125 FlushingMapper(pImpl)->remapFunction(F); 1126 } 1127 1128 void ValueMapper::scheduleMapGlobalInitializer(GlobalVariable &GV, 1129 Constant &Init, 1130 unsigned MCID) { 1131 getAsMapper(pImpl)->scheduleMapGlobalInitializer(GV, Init, MCID); 1132 } 1133 1134 void ValueMapper::scheduleMapAppendingVariable(GlobalVariable &GV, 1135 Constant *InitPrefix, 1136 bool IsOldCtorDtor, 1137 ArrayRef<Constant *> NewMembers, 1138 unsigned MCID) { 1139 getAsMapper(pImpl)->scheduleMapAppendingVariable( 1140 GV, InitPrefix, IsOldCtorDtor, NewMembers, MCID); 1141 } 1142 1143 void ValueMapper::scheduleMapGlobalIndirectSymbol(GlobalIndirectSymbol &GIS, 1144 Constant &Target, 1145 unsigned MCID) { 1146 getAsMapper(pImpl)->scheduleMapGlobalIndirectSymbol(GIS, Target, MCID); 1147 } 1148 1149 void ValueMapper::scheduleRemapFunction(Function &F, unsigned MCID) { 1150 getAsMapper(pImpl)->scheduleRemapFunction(F, MCID); 1151 } 1152