1 //===- ValueMapper.cpp - Interface shared by lib/Transforms/Utils ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the MapValue function, which is shared by various parts of 11 // the lib/Transforms/Utils library. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Utils/ValueMapper.h" 16 #include "llvm/IR/CallSite.h" 17 #include "llvm/IR/Constants.h" 18 #include "llvm/IR/Function.h" 19 #include "llvm/IR/InlineAsm.h" 20 #include "llvm/IR/Instructions.h" 21 #include "llvm/IR/Metadata.h" 22 #include "llvm/IR/Operator.h" 23 using namespace llvm; 24 25 // Out of line method to get vtable etc for class. 26 void ValueMapTypeRemapper::anchor() {} 27 void ValueMaterializer::anchor() {} 28 29 Value *llvm::MapValue(const Value *V, ValueToValueMapTy &VM, RemapFlags Flags, 30 ValueMapTypeRemapper *TypeMapper, 31 ValueMaterializer *Materializer) { 32 ValueToValueMapTy::iterator I = VM.find(V); 33 34 // If the value already exists in the map, use it. 35 if (I != VM.end() && I->second) return I->second; 36 37 // If we have a materializer and it can materialize a value, use that. 38 if (Materializer) { 39 if (Value *NewV = Materializer->materializeValueFor(const_cast<Value*>(V))) 40 return VM[V] = NewV; 41 } 42 43 // Global values do not need to be seeded into the VM if they 44 // are using the identity mapping. 45 if (isa<GlobalValue>(V)) 46 return VM[V] = const_cast<Value*>(V); 47 48 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 49 // Inline asm may need *type* remapping. 50 FunctionType *NewTy = IA->getFunctionType(); 51 if (TypeMapper) { 52 NewTy = cast<FunctionType>(TypeMapper->remapType(NewTy)); 53 54 if (NewTy != IA->getFunctionType()) 55 V = InlineAsm::get(NewTy, IA->getAsmString(), IA->getConstraintString(), 56 IA->hasSideEffects(), IA->isAlignStack()); 57 } 58 59 return VM[V] = const_cast<Value*>(V); 60 } 61 62 if (const auto *MDV = dyn_cast<MetadataAsValue>(V)) { 63 const Metadata *MD = MDV->getMetadata(); 64 // If this is a module-level metadata and we know that nothing at the module 65 // level is changing, then use an identity mapping. 66 if (!isa<LocalAsMetadata>(MD) && (Flags & RF_NoModuleLevelChanges)) 67 return VM[V] = const_cast<Value *>(V); 68 69 auto *MappedMD = MapMetadata(MD, VM, Flags, TypeMapper, Materializer); 70 if (MD == MappedMD || (!MappedMD && (Flags & RF_IgnoreMissingEntries))) 71 return VM[V] = const_cast<Value *>(V); 72 73 // FIXME: This assert crashes during bootstrap, but I think it should be 74 // correct. For now, just match behaviour from before the metadata/value 75 // split. 76 // 77 // assert(MappedMD && "Referenced metadata value not in value map"); 78 return VM[V] = MetadataAsValue::get(V->getContext(), MappedMD); 79 } 80 81 // Okay, this either must be a constant (which may or may not be mappable) or 82 // is something that is not in the mapping table. 83 Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V)); 84 if (!C) 85 return nullptr; 86 87 if (BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 88 Function *F = 89 cast<Function>(MapValue(BA->getFunction(), VM, Flags, TypeMapper, Materializer)); 90 BasicBlock *BB = cast_or_null<BasicBlock>(MapValue(BA->getBasicBlock(), VM, 91 Flags, TypeMapper, Materializer)); 92 return VM[V] = BlockAddress::get(F, BB ? BB : BA->getBasicBlock()); 93 } 94 95 // Otherwise, we have some other constant to remap. Start by checking to see 96 // if all operands have an identity remapping. 97 unsigned OpNo = 0, NumOperands = C->getNumOperands(); 98 Value *Mapped = nullptr; 99 for (; OpNo != NumOperands; ++OpNo) { 100 Value *Op = C->getOperand(OpNo); 101 Mapped = MapValue(Op, VM, Flags, TypeMapper, Materializer); 102 if (Mapped != C) break; 103 } 104 105 // See if the type mapper wants to remap the type as well. 106 Type *NewTy = C->getType(); 107 if (TypeMapper) 108 NewTy = TypeMapper->remapType(NewTy); 109 110 // If the result type and all operands match up, then just insert an identity 111 // mapping. 112 if (OpNo == NumOperands && NewTy == C->getType()) 113 return VM[V] = C; 114 115 // Okay, we need to create a new constant. We've already processed some or 116 // all of the operands, set them all up now. 117 SmallVector<Constant*, 8> Ops; 118 Ops.reserve(NumOperands); 119 for (unsigned j = 0; j != OpNo; ++j) 120 Ops.push_back(cast<Constant>(C->getOperand(j))); 121 122 // If one of the operands mismatch, push it and the other mapped operands. 123 if (OpNo != NumOperands) { 124 Ops.push_back(cast<Constant>(Mapped)); 125 126 // Map the rest of the operands that aren't processed yet. 127 for (++OpNo; OpNo != NumOperands; ++OpNo) 128 Ops.push_back(MapValue(cast<Constant>(C->getOperand(OpNo)), VM, 129 Flags, TypeMapper, Materializer)); 130 } 131 Type *NewSrcTy = nullptr; 132 if (TypeMapper) 133 if (auto *GEPO = dyn_cast<GEPOperator>(C)) 134 NewSrcTy = TypeMapper->remapType(GEPO->getSourceElementType()); 135 136 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) 137 return VM[V] = CE->getWithOperands(Ops, NewTy, false, NewSrcTy); 138 if (isa<ConstantArray>(C)) 139 return VM[V] = ConstantArray::get(cast<ArrayType>(NewTy), Ops); 140 if (isa<ConstantStruct>(C)) 141 return VM[V] = ConstantStruct::get(cast<StructType>(NewTy), Ops); 142 if (isa<ConstantVector>(C)) 143 return VM[V] = ConstantVector::get(Ops); 144 // If this is a no-operand constant, it must be because the type was remapped. 145 if (isa<UndefValue>(C)) 146 return VM[V] = UndefValue::get(NewTy); 147 if (isa<ConstantAggregateZero>(C)) 148 return VM[V] = ConstantAggregateZero::get(NewTy); 149 assert(isa<ConstantPointerNull>(C)); 150 return VM[V] = ConstantPointerNull::get(cast<PointerType>(NewTy)); 151 } 152 153 static Metadata *mapToMetadata(ValueToValueMapTy &VM, const Metadata *Key, 154 Metadata *Val) { 155 VM.MD()[Key].reset(Val); 156 return Val; 157 } 158 159 static Metadata *mapToSelf(ValueToValueMapTy &VM, const Metadata *MD) { 160 return mapToMetadata(VM, MD, const_cast<Metadata *>(MD)); 161 } 162 163 static Metadata *MapMetadataImpl(const Metadata *MD, 164 SmallVectorImpl<MDNode *> &DistinctWorklist, 165 ValueToValueMapTy &VM, RemapFlags Flags, 166 ValueMapTypeRemapper *TypeMapper, 167 ValueMaterializer *Materializer); 168 169 static Metadata *mapMetadataOp(Metadata *Op, 170 SmallVectorImpl<MDNode *> &DistinctWorklist, 171 ValueToValueMapTy &VM, RemapFlags Flags, 172 ValueMapTypeRemapper *TypeMapper, 173 ValueMaterializer *Materializer) { 174 if (!Op) 175 return nullptr; 176 if (Metadata *MappedOp = MapMetadataImpl(Op, DistinctWorklist, VM, Flags, 177 TypeMapper, Materializer)) 178 return MappedOp; 179 // Use identity map if MappedOp is null and we can ignore missing entries. 180 if (Flags & RF_IgnoreMissingEntries) 181 return Op; 182 183 // FIXME: This assert crashes during bootstrap, but I think it should be 184 // correct. For now, just match behaviour from before the metadata/value 185 // split. 186 // 187 // llvm_unreachable("Referenced metadata not in value map!"); 188 return nullptr; 189 } 190 191 /// Resolve uniquing cycles involving the given metadata. 192 static void resolveCycles(Metadata *MD) { 193 if (auto *N = dyn_cast_or_null<MDNode>(MD)) 194 if (!N->isResolved()) 195 N->resolveCycles(); 196 } 197 198 /// Remap the operands of an MDNode. 199 /// 200 /// If \c Node is temporary, uniquing cycles are ignored. If \c Node is 201 /// distinct, uniquing cycles are resolved as they're found. 202 /// 203 /// \pre \c Node.isDistinct() or \c Node.isTemporary(). 204 static bool remapOperands(MDNode &Node, 205 SmallVectorImpl<MDNode *> &DistinctWorklist, 206 ValueToValueMapTy &VM, RemapFlags Flags, 207 ValueMapTypeRemapper *TypeMapper, 208 ValueMaterializer *Materializer) { 209 assert(!Node.isUniqued() && "Expected temporary or distinct node"); 210 const bool IsDistinct = Node.isDistinct(); 211 212 bool AnyChanged = false; 213 for (unsigned I = 0, E = Node.getNumOperands(); I != E; ++I) { 214 Metadata *Old = Node.getOperand(I); 215 Metadata *New = mapMetadataOp(Old, DistinctWorklist, VM, Flags, TypeMapper, 216 Materializer); 217 if (Old != New) { 218 AnyChanged = true; 219 Node.replaceOperandWith(I, New); 220 221 // Resolve uniquing cycles underneath distinct nodes on the fly so they 222 // don't infect later operands. 223 if (IsDistinct) 224 resolveCycles(New); 225 } 226 } 227 228 return AnyChanged; 229 } 230 231 /// Map a distinct MDNode. 232 /// 233 /// Whether distinct nodes change is independent of their operands. If \a 234 /// RF_MoveDistinctMDs, then they are reused, and their operands remapped in 235 /// place; effectively, they're moved from one graph to another. Otherwise, 236 /// they're cloned/duplicated, and the new copy's operands are remapped. 237 static Metadata *mapDistinctNode(const MDNode *Node, 238 SmallVectorImpl<MDNode *> &DistinctWorklist, 239 ValueToValueMapTy &VM, RemapFlags Flags, 240 ValueMapTypeRemapper *TypeMapper, 241 ValueMaterializer *Materializer) { 242 assert(Node->isDistinct() && "Expected distinct node"); 243 244 MDNode *NewMD; 245 if (Flags & RF_MoveDistinctMDs) 246 NewMD = const_cast<MDNode *>(Node); 247 else 248 NewMD = MDNode::replaceWithDistinct(Node->clone()); 249 250 // Remap operands later. 251 DistinctWorklist.push_back(NewMD); 252 return mapToMetadata(VM, Node, NewMD); 253 } 254 255 /// \brief Map a uniqued MDNode. 256 /// 257 /// Uniqued nodes may not need to be recreated (they may map to themselves). 258 static Metadata *mapUniquedNode(const MDNode *Node, 259 SmallVectorImpl<MDNode *> &DistinctWorklist, 260 ValueToValueMapTy &VM, RemapFlags Flags, 261 ValueMapTypeRemapper *TypeMapper, 262 ValueMaterializer *Materializer) { 263 assert(Node->isUniqued() && "Expected uniqued node"); 264 265 // Create a temporary node and map it upfront in case we have a uniquing 266 // cycle. If necessary, this mapping will get updated by RAUW logic before 267 // returning. 268 auto ClonedMD = Node->clone(); 269 mapToMetadata(VM, Node, ClonedMD.get()); 270 if (!remapOperands(*ClonedMD, DistinctWorklist, VM, Flags, TypeMapper, 271 Materializer)) { 272 // No operands changed, so use the original. 273 ClonedMD->replaceAllUsesWith(const_cast<MDNode *>(Node)); 274 return const_cast<MDNode *>(Node); 275 } 276 277 // Uniquify the cloned node. 278 return MDNode::replaceWithUniqued(std::move(ClonedMD)); 279 } 280 281 static Metadata *MapMetadataImpl(const Metadata *MD, 282 SmallVectorImpl<MDNode *> &DistinctWorklist, 283 ValueToValueMapTy &VM, RemapFlags Flags, 284 ValueMapTypeRemapper *TypeMapper, 285 ValueMaterializer *Materializer) { 286 // If the value already exists in the map, use it. 287 if (Metadata *NewMD = VM.MD().lookup(MD).get()) 288 return NewMD; 289 290 if (isa<MDString>(MD)) 291 return mapToSelf(VM, MD); 292 293 if (isa<ConstantAsMetadata>(MD)) 294 if ((Flags & RF_NoModuleLevelChanges)) 295 return mapToSelf(VM, MD); 296 297 if (const auto *VMD = dyn_cast<ValueAsMetadata>(MD)) { 298 Value *MappedV = 299 MapValue(VMD->getValue(), VM, Flags, TypeMapper, Materializer); 300 if (VMD->getValue() == MappedV || 301 (!MappedV && (Flags & RF_IgnoreMissingEntries))) 302 return mapToSelf(VM, MD); 303 304 // FIXME: This assert crashes during bootstrap, but I think it should be 305 // correct. For now, just match behaviour from before the metadata/value 306 // split. 307 // 308 // assert(MappedV && "Referenced metadata not in value map!"); 309 if (MappedV) 310 return mapToMetadata(VM, MD, ValueAsMetadata::get(MappedV)); 311 return nullptr; 312 } 313 314 // Note: this cast precedes the Flags check so we always get its associated 315 // assertion. 316 const MDNode *Node = cast<MDNode>(MD); 317 318 // If this is a module-level metadata and we know that nothing at the 319 // module level is changing, then use an identity mapping. 320 if (Flags & RF_NoModuleLevelChanges) 321 return mapToSelf(VM, MD); 322 323 // Require resolved nodes whenever metadata might be remapped. 324 assert(Node->isResolved() && "Unexpected unresolved node"); 325 326 if (Node->isDistinct()) 327 return mapDistinctNode(Node, DistinctWorklist, VM, Flags, TypeMapper, 328 Materializer); 329 330 return mapUniquedNode(Node, DistinctWorklist, VM, Flags, TypeMapper, 331 Materializer); 332 } 333 334 Metadata *llvm::MapMetadata(const Metadata *MD, ValueToValueMapTy &VM, 335 RemapFlags Flags, ValueMapTypeRemapper *TypeMapper, 336 ValueMaterializer *Materializer) { 337 SmallVector<MDNode *, 8> DistinctWorklist; 338 Metadata *NewMD = MapMetadataImpl(MD, DistinctWorklist, VM, Flags, TypeMapper, 339 Materializer); 340 341 // When there are no module-level changes, it's possible that the metadata 342 // graph has temporaries. Skip the logic to resolve cycles, since it's 343 // unnecessary (and invalid) in that case. 344 if (Flags & RF_NoModuleLevelChanges) 345 return NewMD; 346 347 // Resolve cycles involving the entry metadata. 348 resolveCycles(NewMD); 349 350 // Remap the operands of distinct MDNodes. 351 while (!DistinctWorklist.empty()) 352 remapOperands(*DistinctWorklist.pop_back_val(), DistinctWorklist, VM, Flags, 353 TypeMapper, Materializer); 354 355 return NewMD; 356 } 357 358 MDNode *llvm::MapMetadata(const MDNode *MD, ValueToValueMapTy &VM, 359 RemapFlags Flags, ValueMapTypeRemapper *TypeMapper, 360 ValueMaterializer *Materializer) { 361 return cast<MDNode>(MapMetadata(static_cast<const Metadata *>(MD), VM, Flags, 362 TypeMapper, Materializer)); 363 } 364 365 /// RemapInstruction - Convert the instruction operands from referencing the 366 /// current values into those specified by VMap. 367 /// 368 void llvm::RemapInstruction(Instruction *I, ValueToValueMapTy &VMap, 369 RemapFlags Flags, ValueMapTypeRemapper *TypeMapper, 370 ValueMaterializer *Materializer){ 371 // Remap operands. 372 for (User::op_iterator op = I->op_begin(), E = I->op_end(); op != E; ++op) { 373 Value *V = MapValue(*op, VMap, Flags, TypeMapper, Materializer); 374 // If we aren't ignoring missing entries, assert that something happened. 375 if (V) 376 *op = V; 377 else 378 assert((Flags & RF_IgnoreMissingEntries) && 379 "Referenced value not in value map!"); 380 } 381 382 // Remap phi nodes' incoming blocks. 383 if (PHINode *PN = dyn_cast<PHINode>(I)) { 384 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 385 Value *V = MapValue(PN->getIncomingBlock(i), VMap, Flags); 386 // If we aren't ignoring missing entries, assert that something happened. 387 if (V) 388 PN->setIncomingBlock(i, cast<BasicBlock>(V)); 389 else 390 assert((Flags & RF_IgnoreMissingEntries) && 391 "Referenced block not in value map!"); 392 } 393 } 394 395 // Remap attached metadata. 396 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 397 I->getAllMetadata(MDs); 398 for (const auto &MI : MDs) { 399 MDNode *Old = MI.second; 400 MDNode *New = MapMetadata(Old, VMap, Flags, TypeMapper, Materializer); 401 if (New != Old) 402 I->setMetadata(MI.first, New); 403 } 404 405 if (!TypeMapper) 406 return; 407 408 // If the instruction's type is being remapped, do so now. 409 if (auto CS = CallSite(I)) { 410 SmallVector<Type *, 3> Tys; 411 FunctionType *FTy = CS.getFunctionType(); 412 Tys.reserve(FTy->getNumParams()); 413 for (Type *Ty : FTy->params()) 414 Tys.push_back(TypeMapper->remapType(Ty)); 415 CS.mutateFunctionType(FunctionType::get( 416 TypeMapper->remapType(I->getType()), Tys, FTy->isVarArg())); 417 return; 418 } 419 if (auto *AI = dyn_cast<AllocaInst>(I)) 420 AI->setAllocatedType(TypeMapper->remapType(AI->getAllocatedType())); 421 if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) { 422 GEP->setSourceElementType( 423 TypeMapper->remapType(GEP->getSourceElementType())); 424 GEP->setResultElementType( 425 TypeMapper->remapType(GEP->getResultElementType())); 426 } 427 I->mutateType(TypeMapper->remapType(I->getType())); 428 } 429