1 //===- ValueMapper.cpp - Interface shared by lib/Transforms/Utils ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the MapValue function, which is shared by various parts of 11 // the lib/Transforms/Utils library. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Utils/ValueMapper.h" 16 #include "llvm/ADT/DenseSet.h" 17 #include "llvm/IR/CallSite.h" 18 #include "llvm/IR/Constants.h" 19 #include "llvm/IR/DebugInfoMetadata.h" 20 #include "llvm/IR/Function.h" 21 #include "llvm/IR/GlobalAlias.h" 22 #include "llvm/IR/GlobalVariable.h" 23 #include "llvm/IR/InlineAsm.h" 24 #include "llvm/IR/Instructions.h" 25 #include "llvm/IR/Metadata.h" 26 #include "llvm/IR/Operator.h" 27 using namespace llvm; 28 29 // Out of line method to get vtable etc for class. 30 void ValueMapTypeRemapper::anchor() {} 31 void ValueMaterializer::anchor() {} 32 33 namespace { 34 35 /// A basic block used in a BlockAddress whose function body is not yet 36 /// materialized. 37 struct DelayedBasicBlock { 38 BasicBlock *OldBB; 39 std::unique_ptr<BasicBlock> TempBB; 40 41 // Explicit move for MSVC. 42 DelayedBasicBlock(DelayedBasicBlock &&X) 43 : OldBB(std::move(X.OldBB)), TempBB(std::move(X.TempBB)) {} 44 DelayedBasicBlock &operator=(DelayedBasicBlock &&X) { 45 OldBB = std::move(X.OldBB); 46 TempBB = std::move(X.TempBB); 47 return *this; 48 } 49 50 DelayedBasicBlock(const BlockAddress &Old) 51 : OldBB(Old.getBasicBlock()), 52 TempBB(BasicBlock::Create(Old.getContext())) {} 53 }; 54 55 struct WorklistEntry { 56 enum EntryKind { 57 MapGlobalInit, 58 MapAppendingVar, 59 MapGlobalAliasee, 60 RemapFunction 61 }; 62 struct GVInitTy { 63 GlobalVariable *GV; 64 Constant *Init; 65 }; 66 struct AppendingGVTy { 67 GlobalVariable *GV; 68 Constant *InitPrefix; 69 }; 70 struct GlobalAliaseeTy { 71 GlobalAlias *GA; 72 Constant *Aliasee; 73 }; 74 75 unsigned Kind : 2; 76 unsigned MCID : 29; 77 unsigned AppendingGVIsOldCtorDtor : 1; 78 unsigned AppendingGVNumNewMembers; 79 union { 80 GVInitTy GVInit; 81 AppendingGVTy AppendingGV; 82 GlobalAliaseeTy GlobalAliasee; 83 Function *RemapF; 84 } Data; 85 }; 86 87 struct MappingContext { 88 ValueToValueMapTy *VM; 89 ValueMaterializer *Materializer = nullptr; 90 91 /// Construct a MappingContext with a value map and materializer. 92 explicit MappingContext(ValueToValueMapTy &VM, 93 ValueMaterializer *Materializer = nullptr) 94 : VM(&VM), Materializer(Materializer) {} 95 }; 96 97 class MDNodeMapper; 98 class Mapper { 99 friend class MDNodeMapper; 100 101 #ifndef NDEBUG 102 DenseSet<GlobalValue *> AlreadyScheduled; 103 #endif 104 105 RemapFlags Flags; 106 ValueMapTypeRemapper *TypeMapper; 107 unsigned CurrentMCID = 0; 108 SmallVector<MappingContext, 2> MCs; 109 SmallVector<WorklistEntry, 4> Worklist; 110 SmallVector<DelayedBasicBlock, 1> DelayedBBs; 111 SmallVector<Constant *, 16> AppendingInits; 112 113 public: 114 Mapper(ValueToValueMapTy &VM, RemapFlags Flags, 115 ValueMapTypeRemapper *TypeMapper, ValueMaterializer *Materializer) 116 : Flags(Flags), TypeMapper(TypeMapper), 117 MCs(1, MappingContext(VM, Materializer)) {} 118 119 /// ValueMapper should explicitly call \a flush() before destruction. 120 ~Mapper() { assert(!hasWorkToDo() && "Expected to be flushed"); } 121 122 bool hasWorkToDo() const { return !Worklist.empty(); } 123 124 unsigned 125 registerAlternateMappingContext(ValueToValueMapTy &VM, 126 ValueMaterializer *Materializer = nullptr) { 127 MCs.push_back(MappingContext(VM, Materializer)); 128 return MCs.size() - 1; 129 } 130 131 void addFlags(RemapFlags Flags); 132 133 Value *mapValue(const Value *V); 134 void remapInstruction(Instruction *I); 135 void remapFunction(Function &F); 136 137 Constant *mapConstant(const Constant *C) { 138 return cast_or_null<Constant>(mapValue(C)); 139 } 140 141 /// Map metadata. 142 /// 143 /// Find the mapping for MD. Guarantees that the return will be resolved 144 /// (not an MDNode, or MDNode::isResolved() returns true). 145 Metadata *mapMetadata(const Metadata *MD); 146 147 // Map LocalAsMetadata, which never gets memoized. 148 // 149 // If the referenced local is not mapped, the principled return is nullptr. 150 // However, optimization passes sometimes move metadata operands *before* the 151 // SSA values they reference. To prevent crashes in \a RemapInstruction(), 152 // return "!{}" when RF_IgnoreMissingLocals is not set. 153 // 154 // \note Adding a mapping for LocalAsMetadata is unsupported. Add a mapping 155 // to the value map for the SSA value in question instead. 156 // 157 // FIXME: Once we have a verifier check for forward references to SSA values 158 // through metadata operands, always return nullptr on unmapped locals. 159 Metadata *mapLocalAsMetadata(const LocalAsMetadata &LAM); 160 161 void scheduleMapGlobalInitializer(GlobalVariable &GV, Constant &Init, 162 unsigned MCID); 163 void scheduleMapAppendingVariable(GlobalVariable &GV, Constant *InitPrefix, 164 bool IsOldCtorDtor, 165 ArrayRef<Constant *> NewMembers, 166 unsigned MCID); 167 void scheduleMapGlobalAliasee(GlobalAlias &GA, Constant &Aliasee, 168 unsigned MCID); 169 void scheduleRemapFunction(Function &F, unsigned MCID); 170 171 void flush(); 172 173 private: 174 void mapGlobalInitializer(GlobalVariable &GV, Constant &Init); 175 void mapAppendingVariable(GlobalVariable &GV, Constant *InitPrefix, 176 bool IsOldCtorDtor, 177 ArrayRef<Constant *> NewMembers); 178 void mapGlobalAliasee(GlobalAlias &GA, Constant &Aliasee); 179 void remapFunction(Function &F, ValueToValueMapTy &VM); 180 181 ValueToValueMapTy &getVM() { return *MCs[CurrentMCID].VM; } 182 ValueMaterializer *getMaterializer() { return MCs[CurrentMCID].Materializer; } 183 184 Value *mapBlockAddress(const BlockAddress &BA); 185 186 /// Map metadata that doesn't require visiting operands. 187 Optional<Metadata *> mapSimpleMetadata(const Metadata *MD); 188 189 Metadata *mapToMetadata(const Metadata *Key, Metadata *Val); 190 Metadata *mapToSelf(const Metadata *MD); 191 }; 192 193 class MDNodeMapper { 194 Mapper &M; 195 196 /// Data about a node in \a UniquedGraph. 197 struct Data { 198 bool HasChanged = false; 199 unsigned ID = ~0u; 200 TempMDNode Placeholder; 201 202 Data() {} 203 Data(Data &&X) 204 : HasChanged(std::move(X.HasChanged)), ID(std::move(X.ID)), 205 Placeholder(std::move(X.Placeholder)) {} 206 Data &operator=(Data &&X) { 207 HasChanged = std::move(X.HasChanged); 208 ID = std::move(X.ID); 209 Placeholder = std::move(X.Placeholder); 210 return *this; 211 } 212 }; 213 214 /// A graph of uniqued nodes. 215 struct UniquedGraph { 216 SmallDenseMap<const Metadata *, Data, 32> Info; // Node properties. 217 SmallVector<MDNode *, 16> POT; // Post-order traversal. 218 219 /// Propagate changed operands through the post-order traversal. 220 /// 221 /// Iteratively update \a Data::HasChanged for each node based on \a 222 /// Data::HasChanged of its operands, until fixed point. 223 void propagateChanges(); 224 225 /// Get a forward reference to a node to use as an operand. 226 Metadata &getFwdReference(MDNode &Op); 227 }; 228 229 /// Worklist of distinct nodes whose operands need to be remapped. 230 SmallVector<MDNode *, 16> DistinctWorklist; 231 232 // Storage for a UniquedGraph. 233 SmallDenseMap<const Metadata *, Data, 32> InfoStorage; 234 SmallVector<MDNode *, 16> POTStorage; 235 236 public: 237 MDNodeMapper(Mapper &M) : M(M) {} 238 239 /// Map a metadata node (and its transitive operands). 240 /// 241 /// Map all the (unmapped) nodes in the subgraph under \c N. The iterative 242 /// algorithm handles distinct nodes and uniqued node subgraphs using 243 /// different strategies. 244 /// 245 /// Distinct nodes are immediately mapped and added to \a DistinctWorklist 246 /// using \a mapDistinctNode(). Their mapping can always be computed 247 /// immediately without visiting operands, even if their operands change. 248 /// 249 /// The mapping for uniqued nodes depends on whether their operands change. 250 /// \a mapTopLevelUniquedNode() traverses the transitive uniqued subgraph of 251 /// a node to calculate uniqued node mappings in bulk. Distinct leafs are 252 /// added to \a DistinctWorklist with \a mapDistinctNode(). 253 /// 254 /// After mapping \c N itself, this function remaps the operands of the 255 /// distinct nodes in \a DistinctWorklist until the entire subgraph under \c 256 /// N has been mapped. 257 Metadata *map(const MDNode &N); 258 259 private: 260 /// Map a top-level uniqued node and the uniqued subgraph underneath it. 261 /// 262 /// This builds up a post-order traversal of the (unmapped) uniqued subgraph 263 /// underneath \c FirstN and calculates the nodes' mapping. Each node uses 264 /// the identity mapping (\a Mapper::mapToSelf()) as long as all of its 265 /// operands uses the identity mapping. 266 /// 267 /// The algorithm works as follows: 268 /// 269 /// 1. \a createPOT(): traverse the uniqued subgraph under \c FirstN and 270 /// save the post-order traversal in the given \a UniquedGraph, tracking 271 /// nodes' operands change. 272 /// 273 /// 2. \a UniquedGraph::propagateChanges(): propagate changed operands 274 /// through the \a UniquedGraph until fixed point, following the rule 275 /// that if a node changes, any node that references must also change. 276 /// 277 /// 3. \a mapNodesInPOT(): map the uniqued nodes, creating new uniqued nodes 278 /// (referencing new operands) where necessary. 279 Metadata *mapTopLevelUniquedNode(const MDNode &FirstN); 280 281 /// Try to map the operand of an \a MDNode. 282 /// 283 /// If \c Op is already mapped, return the mapping. If it's not an \a 284 /// MDNode, compute and return the mapping. If it's a distinct \a MDNode, 285 /// return the result of \a mapDistinctNode(). 286 /// 287 /// \return None if \c Op is an unmapped uniqued \a MDNode. 288 /// \post getMappedOp(Op) only returns None if this returns None. 289 Optional<Metadata *> tryToMapOperand(const Metadata *Op); 290 291 /// Map a distinct node. 292 /// 293 /// Return the mapping for the distinct node \c N, saving the result in \a 294 /// DistinctWorklist for later remapping. 295 /// 296 /// \pre \c N is not yet mapped. 297 /// \pre \c N.isDistinct(). 298 MDNode *mapDistinctNode(const MDNode &N); 299 300 /// Get a previously mapped node. 301 Optional<Metadata *> getMappedOp(const Metadata *Op) const; 302 303 /// Create a post-order traversal of an unmapped uniqued node subgraph. 304 /// 305 /// This traverses the metadata graph deeply enough to map \c FirstN. It 306 /// uses \a tryToMapOperand() (via \a Mapper::mapSimplifiedNode()), so any 307 /// metadata that has already been mapped will not be part of the POT. 308 /// 309 /// Each node that has a changed operand from outside the graph (e.g., a 310 /// distinct node, an already-mapped uniqued node, or \a ConstantAsMetadata) 311 /// is marked with \a Data::HasChanged. 312 /// 313 /// \return \c true if any nodes in \c G have \a Data::HasChanged. 314 /// \post \c G.POT is a post-order traversal ending with \c FirstN. 315 /// \post \a Data::hasChanged in \c G.Info indicates whether any node needs 316 /// to change because of operands outside the graph. 317 bool createPOT(UniquedGraph &G, const MDNode &FirstN); 318 319 /// Visit the operands of a uniqued node in the POT. 320 /// 321 /// Visit the operands in the range from \c I to \c E, returning the first 322 /// uniqued node we find that isn't yet in \c G. \c I is always advanced to 323 /// where to continue the loop through the operands. 324 /// 325 /// This sets \c HasChanged if any of the visited operands change. 326 MDNode *visitOperands(UniquedGraph &G, MDNode::op_iterator &I, 327 MDNode::op_iterator E, bool &HasChanged); 328 329 /// Map all the nodes in the given uniqued graph. 330 /// 331 /// This visits all the nodes in \c G in post-order, using the identity 332 /// mapping or creating a new node depending on \a Data::HasChanged. 333 /// 334 /// \pre \a getMappedOp() returns None for nodes in \c G, but not for any of 335 /// their operands outside of \c G. 336 /// \pre \a Data::HasChanged is true for a node in \c G iff any of its 337 /// operands have changed. 338 /// \post \a getMappedOp() returns the mapped node for every node in \c G. 339 void mapNodesInPOT(UniquedGraph &G); 340 341 /// Remap a node's operands using the given functor. 342 /// 343 /// Iterate through the operands of \c N and update them in place using \c 344 /// mapOperand. 345 /// 346 /// \pre N.isDistinct() or N.isTemporary(). 347 template <class OperandMapper> 348 void remapOperands(MDNode &N, OperandMapper mapOperand); 349 }; 350 351 } // end namespace 352 353 Value *Mapper::mapValue(const Value *V) { 354 ValueToValueMapTy::iterator I = getVM().find(V); 355 356 // If the value already exists in the map, use it. 357 if (I != getVM().end()) { 358 assert(I->second && "Unexpected null mapping"); 359 return I->second; 360 } 361 362 // If we have a materializer and it can materialize a value, use that. 363 if (auto *Materializer = getMaterializer()) { 364 if (Value *NewV = Materializer->materialize(const_cast<Value *>(V))) { 365 getVM()[V] = NewV; 366 return NewV; 367 } 368 } 369 370 // Global values do not need to be seeded into the VM if they 371 // are using the identity mapping. 372 if (isa<GlobalValue>(V)) { 373 if (Flags & RF_NullMapMissingGlobalValues) 374 return nullptr; 375 return getVM()[V] = const_cast<Value *>(V); 376 } 377 378 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 379 // Inline asm may need *type* remapping. 380 FunctionType *NewTy = IA->getFunctionType(); 381 if (TypeMapper) { 382 NewTy = cast<FunctionType>(TypeMapper->remapType(NewTy)); 383 384 if (NewTy != IA->getFunctionType()) 385 V = InlineAsm::get(NewTy, IA->getAsmString(), IA->getConstraintString(), 386 IA->hasSideEffects(), IA->isAlignStack()); 387 } 388 389 return getVM()[V] = const_cast<Value *>(V); 390 } 391 392 if (const auto *MDV = dyn_cast<MetadataAsValue>(V)) { 393 const Metadata *MD = MDV->getMetadata(); 394 395 if (auto *LAM = dyn_cast<LocalAsMetadata>(MD)) { 396 // Look through to grab the local value. 397 if (Value *LV = mapValue(LAM->getValue())) { 398 if (V == LAM->getValue()) 399 return const_cast<Value *>(V); 400 return MetadataAsValue::get(V->getContext(), ValueAsMetadata::get(LV)); 401 } 402 403 // FIXME: always return nullptr once Verifier::verifyDominatesUse() 404 // ensures metadata operands only reference defined SSA values. 405 return (Flags & RF_IgnoreMissingLocals) 406 ? nullptr 407 : MetadataAsValue::get(V->getContext(), 408 MDTuple::get(V->getContext(), None)); 409 } 410 411 // If this is a module-level metadata and we know that nothing at the module 412 // level is changing, then use an identity mapping. 413 if (Flags & RF_NoModuleLevelChanges) 414 return getVM()[V] = const_cast<Value *>(V); 415 416 // Map the metadata and turn it into a value. 417 auto *MappedMD = mapMetadata(MD); 418 if (MD == MappedMD) 419 return getVM()[V] = const_cast<Value *>(V); 420 return getVM()[V] = MetadataAsValue::get(V->getContext(), MappedMD); 421 } 422 423 // Okay, this either must be a constant (which may or may not be mappable) or 424 // is something that is not in the mapping table. 425 Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V)); 426 if (!C) 427 return nullptr; 428 429 if (BlockAddress *BA = dyn_cast<BlockAddress>(C)) 430 return mapBlockAddress(*BA); 431 432 // Otherwise, we have some other constant to remap. Start by checking to see 433 // if all operands have an identity remapping. 434 unsigned OpNo = 0, NumOperands = C->getNumOperands(); 435 Value *Mapped = nullptr; 436 for (; OpNo != NumOperands; ++OpNo) { 437 Value *Op = C->getOperand(OpNo); 438 Mapped = mapValue(Op); 439 if (Mapped != C) break; 440 } 441 442 // See if the type mapper wants to remap the type as well. 443 Type *NewTy = C->getType(); 444 if (TypeMapper) 445 NewTy = TypeMapper->remapType(NewTy); 446 447 // If the result type and all operands match up, then just insert an identity 448 // mapping. 449 if (OpNo == NumOperands && NewTy == C->getType()) 450 return getVM()[V] = C; 451 452 // Okay, we need to create a new constant. We've already processed some or 453 // all of the operands, set them all up now. 454 SmallVector<Constant*, 8> Ops; 455 Ops.reserve(NumOperands); 456 for (unsigned j = 0; j != OpNo; ++j) 457 Ops.push_back(cast<Constant>(C->getOperand(j))); 458 459 // If one of the operands mismatch, push it and the other mapped operands. 460 if (OpNo != NumOperands) { 461 Ops.push_back(cast<Constant>(Mapped)); 462 463 // Map the rest of the operands that aren't processed yet. 464 for (++OpNo; OpNo != NumOperands; ++OpNo) 465 Ops.push_back(cast<Constant>(mapValue(C->getOperand(OpNo)))); 466 } 467 Type *NewSrcTy = nullptr; 468 if (TypeMapper) 469 if (auto *GEPO = dyn_cast<GEPOperator>(C)) 470 NewSrcTy = TypeMapper->remapType(GEPO->getSourceElementType()); 471 472 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) 473 return getVM()[V] = CE->getWithOperands(Ops, NewTy, false, NewSrcTy); 474 if (isa<ConstantArray>(C)) 475 return getVM()[V] = ConstantArray::get(cast<ArrayType>(NewTy), Ops); 476 if (isa<ConstantStruct>(C)) 477 return getVM()[V] = ConstantStruct::get(cast<StructType>(NewTy), Ops); 478 if (isa<ConstantVector>(C)) 479 return getVM()[V] = ConstantVector::get(Ops); 480 // If this is a no-operand constant, it must be because the type was remapped. 481 if (isa<UndefValue>(C)) 482 return getVM()[V] = UndefValue::get(NewTy); 483 if (isa<ConstantAggregateZero>(C)) 484 return getVM()[V] = ConstantAggregateZero::get(NewTy); 485 assert(isa<ConstantPointerNull>(C)); 486 return getVM()[V] = ConstantPointerNull::get(cast<PointerType>(NewTy)); 487 } 488 489 Value *Mapper::mapBlockAddress(const BlockAddress &BA) { 490 Function *F = cast<Function>(mapValue(BA.getFunction())); 491 492 // F may not have materialized its initializer. In that case, create a 493 // dummy basic block for now, and replace it once we've materialized all 494 // the initializers. 495 BasicBlock *BB; 496 if (F->empty()) { 497 DelayedBBs.push_back(DelayedBasicBlock(BA)); 498 BB = DelayedBBs.back().TempBB.get(); 499 } else { 500 BB = cast_or_null<BasicBlock>(mapValue(BA.getBasicBlock())); 501 } 502 503 return getVM()[&BA] = BlockAddress::get(F, BB ? BB : BA.getBasicBlock()); 504 } 505 506 Metadata *Mapper::mapToMetadata(const Metadata *Key, Metadata *Val) { 507 getVM().MD()[Key].reset(Val); 508 return Val; 509 } 510 511 Metadata *Mapper::mapToSelf(const Metadata *MD) { 512 return mapToMetadata(MD, const_cast<Metadata *>(MD)); 513 } 514 515 Optional<Metadata *> MDNodeMapper::tryToMapOperand(const Metadata *Op) { 516 if (!Op) 517 return nullptr; 518 519 if (Optional<Metadata *> MappedOp = M.mapSimpleMetadata(Op)) { 520 #ifndef NDEBUG 521 if (auto *CMD = dyn_cast<ConstantAsMetadata>(Op)) 522 assert((!*MappedOp || M.getVM().count(CMD->getValue()) || 523 M.getVM().getMappedMD(Op)) && 524 "Expected Value to be memoized"); 525 else 526 assert((isa<MDString>(Op) || M.getVM().getMappedMD(Op)) && 527 "Expected result to be memoized"); 528 #endif 529 return *MappedOp; 530 } 531 532 const MDNode &N = *cast<MDNode>(Op); 533 if (N.isDistinct()) 534 return mapDistinctNode(N); 535 return None; 536 } 537 538 MDNode *MDNodeMapper::mapDistinctNode(const MDNode &N) { 539 assert(N.isDistinct() && "Expected a distinct node"); 540 assert(!M.getVM().getMappedMD(&N) && "Expected an unmapped node"); 541 DistinctWorklist.push_back(cast<MDNode>( 542 (M.Flags & RF_MoveDistinctMDs) 543 ? M.mapToSelf(&N) 544 : M.mapToMetadata(&N, MDNode::replaceWithDistinct(N.clone())))); 545 return DistinctWorklist.back(); 546 } 547 548 static ConstantAsMetadata *wrapConstantAsMetadata(const ConstantAsMetadata &CMD, 549 Value *MappedV) { 550 if (CMD.getValue() == MappedV) 551 return const_cast<ConstantAsMetadata *>(&CMD); 552 return MappedV ? ConstantAsMetadata::getConstant(MappedV) : nullptr; 553 } 554 555 Optional<Metadata *> MDNodeMapper::getMappedOp(const Metadata *Op) const { 556 if (!Op) 557 return nullptr; 558 559 if (Optional<Metadata *> MappedOp = M.getVM().getMappedMD(Op)) 560 return *MappedOp; 561 562 if (isa<MDString>(Op)) 563 return const_cast<Metadata *>(Op); 564 565 if (auto *CMD = dyn_cast<ConstantAsMetadata>(Op)) 566 return wrapConstantAsMetadata(*CMD, M.getVM().lookup(CMD->getValue())); 567 568 return None; 569 } 570 571 Metadata &MDNodeMapper::UniquedGraph::getFwdReference(MDNode &Op) { 572 auto Where = Info.find(&Op); 573 assert(Where != Info.end() && "Expected a valid reference"); 574 575 auto &OpD = Where->second; 576 if (!OpD.HasChanged) 577 return Op; 578 579 // Lazily construct a temporary node. 580 if (!OpD.Placeholder) 581 OpD.Placeholder = Op.clone(); 582 583 return *OpD.Placeholder; 584 } 585 586 template <class OperandMapper> 587 void MDNodeMapper::remapOperands(MDNode &N, OperandMapper mapOperand) { 588 assert(!N.isUniqued() && "Expected distinct or temporary nodes"); 589 for (unsigned I = 0, E = N.getNumOperands(); I != E; ++I) { 590 Metadata *Old = N.getOperand(I); 591 Metadata *New = mapOperand(Old); 592 593 if (Old != New) 594 N.replaceOperandWith(I, New); 595 } 596 } 597 598 namespace { 599 /// An entry in the worklist for the post-order traversal. 600 struct POTWorklistEntry { 601 MDNode *N; ///< Current node. 602 MDNode::op_iterator Op; ///< Current operand of \c N. 603 604 /// Keep a flag of whether operands have changed in the worklist to avoid 605 /// hitting the map in \a UniquedGraph. 606 bool HasChanged = false; 607 608 POTWorklistEntry(MDNode &N) : N(&N), Op(N.op_begin()) {} 609 }; 610 } // end namespace 611 612 bool MDNodeMapper::createPOT(UniquedGraph &G, const MDNode &FirstN) { 613 assert(G.Info.empty() && "Expected a fresh traversal"); 614 assert(FirstN.isUniqued() && "Expected uniqued node in POT"); 615 616 // Construct a post-order traversal of the uniqued subgraph under FirstN. 617 bool AnyChanges = false; 618 SmallVector<POTWorklistEntry, 16> Worklist; 619 Worklist.push_back(POTWorklistEntry(const_cast<MDNode &>(FirstN))); 620 (void)G.Info[&FirstN]; 621 while (!Worklist.empty()) { 622 // Start or continue the traversal through the this node's operands. 623 auto &WE = Worklist.back(); 624 if (MDNode *N = visitOperands(G, WE.Op, WE.N->op_end(), WE.HasChanged)) { 625 // Push a new node to traverse first. 626 Worklist.push_back(POTWorklistEntry(*N)); 627 continue; 628 } 629 630 // Push the node onto the POT. 631 assert(WE.N->isUniqued() && "Expected only uniqued nodes"); 632 assert(WE.Op == WE.N->op_end() && "Expected to visit all operands"); 633 auto &D = G.Info[WE.N]; 634 AnyChanges |= D.HasChanged = WE.HasChanged; 635 D.ID = G.POT.size(); 636 G.POT.push_back(WE.N); 637 638 // Pop the node off the worklist. 639 Worklist.pop_back(); 640 } 641 return AnyChanges; 642 } 643 644 MDNode *MDNodeMapper::visitOperands(UniquedGraph &G, MDNode::op_iterator &I, 645 MDNode::op_iterator E, bool &HasChanged) { 646 while (I != E) { 647 Metadata *Op = *I++; // Increment even on early return. 648 if (Optional<Metadata *> MappedOp = tryToMapOperand(Op)) { 649 // Check if the operand changes. 650 HasChanged |= Op != *MappedOp; 651 continue; 652 } 653 654 // A uniqued metadata node. 655 MDNode &OpN = *cast<MDNode>(Op); 656 assert(OpN.isUniqued() && 657 "Only uniqued operands cannot be mapped immediately"); 658 if (G.Info.insert(std::make_pair(&OpN, Data())).second) 659 return &OpN; // This is a new one. Return it. 660 } 661 return nullptr; 662 } 663 664 void MDNodeMapper::UniquedGraph::propagateChanges() { 665 bool AnyChanges; 666 do { 667 AnyChanges = false; 668 for (MDNode *N : POT) { 669 auto &D = Info[N]; 670 if (D.HasChanged) 671 continue; 672 673 if (!llvm::any_of(N->operands(), [&](const Metadata *Op) { 674 auto Where = Info.find(Op); 675 return Where != Info.end() && Where->second.HasChanged; 676 })) 677 continue; 678 679 AnyChanges = D.HasChanged = true; 680 } 681 } while (AnyChanges); 682 } 683 684 void MDNodeMapper::mapNodesInPOT(UniquedGraph &G) { 685 // Construct uniqued nodes, building forward references as necessary. 686 SmallVector<MDNode *, 16> CyclicNodes; 687 for (auto *N : G.POT) { 688 auto &D = G.Info[N]; 689 if (!D.HasChanged) { 690 // The node hasn't changed. 691 M.mapToSelf(N); 692 continue; 693 } 694 695 // Remember whether this node had a placeholder. 696 bool HadPlaceholder(D.Placeholder); 697 698 // Clone the uniqued node and remap the operands. 699 TempMDNode ClonedN = D.Placeholder ? std::move(D.Placeholder) : N->clone(); 700 remapOperands(*ClonedN, [this, &D, &G](Metadata *Old) { 701 if (Optional<Metadata *> MappedOp = getMappedOp(Old)) 702 return *MappedOp; 703 assert(G.Info[Old].ID > D.ID && "Expected a forward reference"); 704 return &G.getFwdReference(*cast<MDNode>(Old)); 705 }); 706 707 auto *NewN = MDNode::replaceWithUniqued(std::move(ClonedN)); 708 M.mapToMetadata(N, NewN); 709 710 // Nodes that were referenced out of order in the POT are involved in a 711 // uniquing cycle. 712 if (HadPlaceholder) 713 CyclicNodes.push_back(NewN); 714 } 715 716 // Resolve cycles. 717 for (auto *N : CyclicNodes) 718 if (!N->isResolved()) 719 N->resolveCycles(); 720 } 721 722 Metadata *MDNodeMapper::map(const MDNode &N) { 723 assert(DistinctWorklist.empty() && "MDNodeMapper::map is not recursive"); 724 assert(!(M.Flags & RF_NoModuleLevelChanges) && 725 "MDNodeMapper::map assumes module-level changes"); 726 727 // Require resolved nodes whenever metadata might be remapped. 728 assert(N.isResolved() && "Unexpected unresolved node"); 729 730 Metadata *MappedN = 731 N.isUniqued() ? mapTopLevelUniquedNode(N) : mapDistinctNode(N); 732 while (!DistinctWorklist.empty()) 733 remapOperands(*DistinctWorklist.pop_back_val(), [this](Metadata *Old) { 734 if (Optional<Metadata *> MappedOp = tryToMapOperand(Old)) 735 return *MappedOp; 736 return mapTopLevelUniquedNode(*cast<MDNode>(Old)); 737 }); 738 return MappedN; 739 } 740 741 Metadata *MDNodeMapper::mapTopLevelUniquedNode(const MDNode &FirstN) { 742 assert(FirstN.isUniqued() && "Expected uniqued node"); 743 744 // Create a post-order traversal of uniqued nodes under FirstN. 745 UniquedGraph G; 746 if (!createPOT(G, FirstN)) { 747 // Return early if no nodes have changed. 748 for (const MDNode *N : G.POT) 749 M.mapToSelf(N); 750 return &const_cast<MDNode &>(FirstN); 751 } 752 753 // Update graph with all nodes that have changed. 754 G.propagateChanges(); 755 756 // Map all the nodes in the graph. 757 mapNodesInPOT(G); 758 759 // Return the original node, remapped. 760 return *getMappedOp(&FirstN); 761 } 762 763 namespace { 764 765 struct MapMetadataDisabler { 766 ValueToValueMapTy &VM; 767 768 MapMetadataDisabler(ValueToValueMapTy &VM) : VM(VM) { 769 VM.disableMapMetadata(); 770 } 771 ~MapMetadataDisabler() { VM.enableMapMetadata(); } 772 }; 773 774 } // end namespace 775 776 Optional<Metadata *> Mapper::mapSimpleMetadata(const Metadata *MD) { 777 // If the value already exists in the map, use it. 778 if (Optional<Metadata *> NewMD = getVM().getMappedMD(MD)) 779 return *NewMD; 780 781 if (isa<MDString>(MD)) 782 return const_cast<Metadata *>(MD); 783 784 // This is a module-level metadata. If nothing at the module level is 785 // changing, use an identity mapping. 786 if ((Flags & RF_NoModuleLevelChanges)) 787 return const_cast<Metadata *>(MD); 788 789 if (auto *CMD = dyn_cast<ConstantAsMetadata>(MD)) { 790 // Disallow recursion into metadata mapping through mapValue. 791 MapMetadataDisabler MMD(getVM()); 792 793 // Don't memoize ConstantAsMetadata. Instead of lasting until the 794 // LLVMContext is destroyed, they can be deleted when the GlobalValue they 795 // reference is destructed. These aren't super common, so the extra 796 // indirection isn't that expensive. 797 return wrapConstantAsMetadata(*CMD, mapValue(CMD->getValue())); 798 } 799 800 assert(isa<MDNode>(MD) && "Expected a metadata node"); 801 802 return None; 803 } 804 805 Metadata *Mapper::mapLocalAsMetadata(const LocalAsMetadata &LAM) { 806 // Lookup the mapping for the value itself, and return the appropriate 807 // metadata. 808 if (Value *V = mapValue(LAM.getValue())) { 809 if (V == LAM.getValue()) 810 return const_cast<LocalAsMetadata *>(&LAM); 811 return ValueAsMetadata::get(V); 812 } 813 814 // FIXME: always return nullptr once Verifier::verifyDominatesUse() ensures 815 // metadata operands only reference defined SSA values. 816 return (Flags & RF_IgnoreMissingLocals) 817 ? nullptr 818 : MDTuple::get(LAM.getContext(), None); 819 } 820 821 Metadata *Mapper::mapMetadata(const Metadata *MD) { 822 assert(MD && "Expected valid metadata"); 823 assert(!isa<LocalAsMetadata>(MD) && "Unexpected local metadata"); 824 825 if (Optional<Metadata *> NewMD = mapSimpleMetadata(MD)) 826 return *NewMD; 827 828 return MDNodeMapper(*this).map(*cast<MDNode>(MD)); 829 } 830 831 void Mapper::flush() { 832 // Flush out the worklist of global values. 833 while (!Worklist.empty()) { 834 WorklistEntry E = Worklist.pop_back_val(); 835 CurrentMCID = E.MCID; 836 switch (E.Kind) { 837 case WorklistEntry::MapGlobalInit: 838 E.Data.GVInit.GV->setInitializer(mapConstant(E.Data.GVInit.Init)); 839 break; 840 case WorklistEntry::MapAppendingVar: { 841 unsigned PrefixSize = AppendingInits.size() - E.AppendingGVNumNewMembers; 842 mapAppendingVariable(*E.Data.AppendingGV.GV, 843 E.Data.AppendingGV.InitPrefix, 844 E.AppendingGVIsOldCtorDtor, 845 makeArrayRef(AppendingInits).slice(PrefixSize)); 846 AppendingInits.resize(PrefixSize); 847 break; 848 } 849 case WorklistEntry::MapGlobalAliasee: 850 E.Data.GlobalAliasee.GA->setAliasee( 851 mapConstant(E.Data.GlobalAliasee.Aliasee)); 852 break; 853 case WorklistEntry::RemapFunction: 854 remapFunction(*E.Data.RemapF); 855 break; 856 } 857 } 858 CurrentMCID = 0; 859 860 // Finish logic for block addresses now that all global values have been 861 // handled. 862 while (!DelayedBBs.empty()) { 863 DelayedBasicBlock DBB = DelayedBBs.pop_back_val(); 864 BasicBlock *BB = cast_or_null<BasicBlock>(mapValue(DBB.OldBB)); 865 DBB.TempBB->replaceAllUsesWith(BB ? BB : DBB.OldBB); 866 } 867 } 868 869 void Mapper::remapInstruction(Instruction *I) { 870 // Remap operands. 871 for (Use &Op : I->operands()) { 872 Value *V = mapValue(Op); 873 // If we aren't ignoring missing entries, assert that something happened. 874 if (V) 875 Op = V; 876 else 877 assert((Flags & RF_IgnoreMissingLocals) && 878 "Referenced value not in value map!"); 879 } 880 881 // Remap phi nodes' incoming blocks. 882 if (PHINode *PN = dyn_cast<PHINode>(I)) { 883 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 884 Value *V = mapValue(PN->getIncomingBlock(i)); 885 // If we aren't ignoring missing entries, assert that something happened. 886 if (V) 887 PN->setIncomingBlock(i, cast<BasicBlock>(V)); 888 else 889 assert((Flags & RF_IgnoreMissingLocals) && 890 "Referenced block not in value map!"); 891 } 892 } 893 894 // Remap attached metadata. 895 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 896 I->getAllMetadata(MDs); 897 for (const auto &MI : MDs) { 898 MDNode *Old = MI.second; 899 MDNode *New = cast_or_null<MDNode>(mapMetadata(Old)); 900 if (New != Old) 901 I->setMetadata(MI.first, New); 902 } 903 904 if (!TypeMapper) 905 return; 906 907 // If the instruction's type is being remapped, do so now. 908 if (auto CS = CallSite(I)) { 909 SmallVector<Type *, 3> Tys; 910 FunctionType *FTy = CS.getFunctionType(); 911 Tys.reserve(FTy->getNumParams()); 912 for (Type *Ty : FTy->params()) 913 Tys.push_back(TypeMapper->remapType(Ty)); 914 CS.mutateFunctionType(FunctionType::get( 915 TypeMapper->remapType(I->getType()), Tys, FTy->isVarArg())); 916 return; 917 } 918 if (auto *AI = dyn_cast<AllocaInst>(I)) 919 AI->setAllocatedType(TypeMapper->remapType(AI->getAllocatedType())); 920 if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) { 921 GEP->setSourceElementType( 922 TypeMapper->remapType(GEP->getSourceElementType())); 923 GEP->setResultElementType( 924 TypeMapper->remapType(GEP->getResultElementType())); 925 } 926 I->mutateType(TypeMapper->remapType(I->getType())); 927 } 928 929 void Mapper::remapFunction(Function &F) { 930 // Remap the operands. 931 for (Use &Op : F.operands()) 932 if (Op) 933 Op = mapValue(Op); 934 935 // Remap the metadata attachments. 936 SmallVector<std::pair<unsigned, MDNode *>, 8> MDs; 937 F.getAllMetadata(MDs); 938 for (const auto &I : MDs) 939 F.setMetadata(I.first, cast_or_null<MDNode>(mapMetadata(I.second))); 940 941 // Remap the argument types. 942 if (TypeMapper) 943 for (Argument &A : F.args()) 944 A.mutateType(TypeMapper->remapType(A.getType())); 945 946 // Remap the instructions. 947 for (BasicBlock &BB : F) 948 for (Instruction &I : BB) 949 remapInstruction(&I); 950 } 951 952 void Mapper::mapAppendingVariable(GlobalVariable &GV, Constant *InitPrefix, 953 bool IsOldCtorDtor, 954 ArrayRef<Constant *> NewMembers) { 955 SmallVector<Constant *, 16> Elements; 956 if (InitPrefix) { 957 unsigned NumElements = 958 cast<ArrayType>(InitPrefix->getType())->getNumElements(); 959 for (unsigned I = 0; I != NumElements; ++I) 960 Elements.push_back(InitPrefix->getAggregateElement(I)); 961 } 962 963 PointerType *VoidPtrTy; 964 Type *EltTy; 965 if (IsOldCtorDtor) { 966 // FIXME: This upgrade is done during linking to support the C API. See 967 // also IRLinker::linkAppendingVarProto() in IRMover.cpp. 968 VoidPtrTy = Type::getInt8Ty(GV.getContext())->getPointerTo(); 969 auto &ST = *cast<StructType>(NewMembers.front()->getType()); 970 Type *Tys[3] = {ST.getElementType(0), ST.getElementType(1), VoidPtrTy}; 971 EltTy = StructType::get(GV.getContext(), Tys, false); 972 } 973 974 for (auto *V : NewMembers) { 975 Constant *NewV; 976 if (IsOldCtorDtor) { 977 auto *S = cast<ConstantStruct>(V); 978 auto *E1 = mapValue(S->getOperand(0)); 979 auto *E2 = mapValue(S->getOperand(1)); 980 Value *Null = Constant::getNullValue(VoidPtrTy); 981 NewV = 982 ConstantStruct::get(cast<StructType>(EltTy), E1, E2, Null, nullptr); 983 } else { 984 NewV = cast_or_null<Constant>(mapValue(V)); 985 } 986 Elements.push_back(NewV); 987 } 988 989 GV.setInitializer(ConstantArray::get( 990 cast<ArrayType>(GV.getType()->getElementType()), Elements)); 991 } 992 993 void Mapper::scheduleMapGlobalInitializer(GlobalVariable &GV, Constant &Init, 994 unsigned MCID) { 995 assert(AlreadyScheduled.insert(&GV).second && "Should not reschedule"); 996 assert(MCID < MCs.size() && "Invalid mapping context"); 997 998 WorklistEntry WE; 999 WE.Kind = WorklistEntry::MapGlobalInit; 1000 WE.MCID = MCID; 1001 WE.Data.GVInit.GV = &GV; 1002 WE.Data.GVInit.Init = &Init; 1003 Worklist.push_back(WE); 1004 } 1005 1006 void Mapper::scheduleMapAppendingVariable(GlobalVariable &GV, 1007 Constant *InitPrefix, 1008 bool IsOldCtorDtor, 1009 ArrayRef<Constant *> NewMembers, 1010 unsigned MCID) { 1011 assert(AlreadyScheduled.insert(&GV).second && "Should not reschedule"); 1012 assert(MCID < MCs.size() && "Invalid mapping context"); 1013 1014 WorklistEntry WE; 1015 WE.Kind = WorklistEntry::MapAppendingVar; 1016 WE.MCID = MCID; 1017 WE.Data.AppendingGV.GV = &GV; 1018 WE.Data.AppendingGV.InitPrefix = InitPrefix; 1019 WE.AppendingGVIsOldCtorDtor = IsOldCtorDtor; 1020 WE.AppendingGVNumNewMembers = NewMembers.size(); 1021 Worklist.push_back(WE); 1022 AppendingInits.append(NewMembers.begin(), NewMembers.end()); 1023 } 1024 1025 void Mapper::scheduleMapGlobalAliasee(GlobalAlias &GA, Constant &Aliasee, 1026 unsigned MCID) { 1027 assert(AlreadyScheduled.insert(&GA).second && "Should not reschedule"); 1028 assert(MCID < MCs.size() && "Invalid mapping context"); 1029 1030 WorklistEntry WE; 1031 WE.Kind = WorklistEntry::MapGlobalAliasee; 1032 WE.MCID = MCID; 1033 WE.Data.GlobalAliasee.GA = &GA; 1034 WE.Data.GlobalAliasee.Aliasee = &Aliasee; 1035 Worklist.push_back(WE); 1036 } 1037 1038 void Mapper::scheduleRemapFunction(Function &F, unsigned MCID) { 1039 assert(AlreadyScheduled.insert(&F).second && "Should not reschedule"); 1040 assert(MCID < MCs.size() && "Invalid mapping context"); 1041 1042 WorklistEntry WE; 1043 WE.Kind = WorklistEntry::RemapFunction; 1044 WE.MCID = MCID; 1045 WE.Data.RemapF = &F; 1046 Worklist.push_back(WE); 1047 } 1048 1049 void Mapper::addFlags(RemapFlags Flags) { 1050 assert(!hasWorkToDo() && "Expected to have flushed the worklist"); 1051 this->Flags = this->Flags | Flags; 1052 } 1053 1054 static Mapper *getAsMapper(void *pImpl) { 1055 return reinterpret_cast<Mapper *>(pImpl); 1056 } 1057 1058 namespace { 1059 1060 class FlushingMapper { 1061 Mapper &M; 1062 1063 public: 1064 explicit FlushingMapper(void *pImpl) : M(*getAsMapper(pImpl)) { 1065 assert(!M.hasWorkToDo() && "Expected to be flushed"); 1066 } 1067 ~FlushingMapper() { M.flush(); } 1068 Mapper *operator->() const { return &M; } 1069 }; 1070 1071 } // end namespace 1072 1073 ValueMapper::ValueMapper(ValueToValueMapTy &VM, RemapFlags Flags, 1074 ValueMapTypeRemapper *TypeMapper, 1075 ValueMaterializer *Materializer) 1076 : pImpl(new Mapper(VM, Flags, TypeMapper, Materializer)) {} 1077 1078 ValueMapper::~ValueMapper() { delete getAsMapper(pImpl); } 1079 1080 unsigned 1081 ValueMapper::registerAlternateMappingContext(ValueToValueMapTy &VM, 1082 ValueMaterializer *Materializer) { 1083 return getAsMapper(pImpl)->registerAlternateMappingContext(VM, Materializer); 1084 } 1085 1086 void ValueMapper::addFlags(RemapFlags Flags) { 1087 FlushingMapper(pImpl)->addFlags(Flags); 1088 } 1089 1090 Value *ValueMapper::mapValue(const Value &V) { 1091 return FlushingMapper(pImpl)->mapValue(&V); 1092 } 1093 1094 Constant *ValueMapper::mapConstant(const Constant &C) { 1095 return cast_or_null<Constant>(mapValue(C)); 1096 } 1097 1098 Metadata *ValueMapper::mapMetadata(const Metadata &MD) { 1099 return FlushingMapper(pImpl)->mapMetadata(&MD); 1100 } 1101 1102 MDNode *ValueMapper::mapMDNode(const MDNode &N) { 1103 return cast_or_null<MDNode>(mapMetadata(N)); 1104 } 1105 1106 void ValueMapper::remapInstruction(Instruction &I) { 1107 FlushingMapper(pImpl)->remapInstruction(&I); 1108 } 1109 1110 void ValueMapper::remapFunction(Function &F) { 1111 FlushingMapper(pImpl)->remapFunction(F); 1112 } 1113 1114 void ValueMapper::scheduleMapGlobalInitializer(GlobalVariable &GV, 1115 Constant &Init, 1116 unsigned MCID) { 1117 getAsMapper(pImpl)->scheduleMapGlobalInitializer(GV, Init, MCID); 1118 } 1119 1120 void ValueMapper::scheduleMapAppendingVariable(GlobalVariable &GV, 1121 Constant *InitPrefix, 1122 bool IsOldCtorDtor, 1123 ArrayRef<Constant *> NewMembers, 1124 unsigned MCID) { 1125 getAsMapper(pImpl)->scheduleMapAppendingVariable( 1126 GV, InitPrefix, IsOldCtorDtor, NewMembers, MCID); 1127 } 1128 1129 void ValueMapper::scheduleMapGlobalAliasee(GlobalAlias &GA, Constant &Aliasee, 1130 unsigned MCID) { 1131 getAsMapper(pImpl)->scheduleMapGlobalAliasee(GA, Aliasee, MCID); 1132 } 1133 1134 void ValueMapper::scheduleRemapFunction(Function &F, unsigned MCID) { 1135 getAsMapper(pImpl)->scheduleRemapFunction(F, MCID); 1136 } 1137