1 //===- ValueMapper.cpp - Interface shared by lib/Transforms/Utils ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the MapValue function, which is shared by various parts of
10 // the lib/Transforms/Utils library.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Utils/ValueMapper.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/DenseSet.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/Optional.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/IR/Argument.h"
23 #include "llvm/IR/BasicBlock.h"
24 #include "llvm/IR/Constant.h"
25 #include "llvm/IR/Constants.h"
26 #include "llvm/IR/DebugInfoMetadata.h"
27 #include "llvm/IR/DerivedTypes.h"
28 #include "llvm/IR/Function.h"
29 #include "llvm/IR/GlobalObject.h"
30 #include "llvm/IR/GlobalIndirectSymbol.h"
31 #include "llvm/IR/GlobalVariable.h"
32 #include "llvm/IR/InlineAsm.h"
33 #include "llvm/IR/Instruction.h"
34 #include "llvm/IR/Instructions.h"
35 #include "llvm/IR/Metadata.h"
36 #include "llvm/IR/Operator.h"
37 #include "llvm/IR/Type.h"
38 #include "llvm/IR/Value.h"
39 #include "llvm/Support/Casting.h"
40 #include <cassert>
41 #include <limits>
42 #include <memory>
43 #include <utility>
44 
45 using namespace llvm;
46 
47 // Out of line method to get vtable etc for class.
48 void ValueMapTypeRemapper::anchor() {}
49 void ValueMaterializer::anchor() {}
50 
51 namespace {
52 
53 /// A basic block used in a BlockAddress whose function body is not yet
54 /// materialized.
55 struct DelayedBasicBlock {
56   BasicBlock *OldBB;
57   std::unique_ptr<BasicBlock> TempBB;
58 
59   DelayedBasicBlock(const BlockAddress &Old)
60       : OldBB(Old.getBasicBlock()),
61         TempBB(BasicBlock::Create(Old.getContext())) {}
62 };
63 
64 struct WorklistEntry {
65   enum EntryKind {
66     MapGlobalInit,
67     MapAppendingVar,
68     MapGlobalIndirectSymbol,
69     RemapFunction
70   };
71   struct GVInitTy {
72     GlobalVariable *GV;
73     Constant *Init;
74   };
75   struct AppendingGVTy {
76     GlobalVariable *GV;
77     Constant *InitPrefix;
78   };
79   struct GlobalIndirectSymbolTy {
80     GlobalIndirectSymbol *GIS;
81     Constant *Target;
82   };
83 
84   unsigned Kind : 2;
85   unsigned MCID : 29;
86   unsigned AppendingGVIsOldCtorDtor : 1;
87   unsigned AppendingGVNumNewMembers;
88   union {
89     GVInitTy GVInit;
90     AppendingGVTy AppendingGV;
91     GlobalIndirectSymbolTy GlobalIndirectSymbol;
92     Function *RemapF;
93   } Data;
94 };
95 
96 struct MappingContext {
97   ValueToValueMapTy *VM;
98   ValueMaterializer *Materializer = nullptr;
99 
100   /// Construct a MappingContext with a value map and materializer.
101   explicit MappingContext(ValueToValueMapTy &VM,
102                           ValueMaterializer *Materializer = nullptr)
103       : VM(&VM), Materializer(Materializer) {}
104 };
105 
106 class Mapper {
107   friend class MDNodeMapper;
108 
109 #ifndef NDEBUG
110   DenseSet<GlobalValue *> AlreadyScheduled;
111 #endif
112 
113   RemapFlags Flags;
114   ValueMapTypeRemapper *TypeMapper;
115   unsigned CurrentMCID = 0;
116   SmallVector<MappingContext, 2> MCs;
117   SmallVector<WorklistEntry, 4> Worklist;
118   SmallVector<DelayedBasicBlock, 1> DelayedBBs;
119   SmallVector<Constant *, 16> AppendingInits;
120 
121 public:
122   Mapper(ValueToValueMapTy &VM, RemapFlags Flags,
123          ValueMapTypeRemapper *TypeMapper, ValueMaterializer *Materializer)
124       : Flags(Flags), TypeMapper(TypeMapper),
125         MCs(1, MappingContext(VM, Materializer)) {}
126 
127   /// ValueMapper should explicitly call \a flush() before destruction.
128   ~Mapper() { assert(!hasWorkToDo() && "Expected to be flushed"); }
129 
130   bool hasWorkToDo() const { return !Worklist.empty(); }
131 
132   unsigned
133   registerAlternateMappingContext(ValueToValueMapTy &VM,
134                                   ValueMaterializer *Materializer = nullptr) {
135     MCs.push_back(MappingContext(VM, Materializer));
136     return MCs.size() - 1;
137   }
138 
139   void addFlags(RemapFlags Flags);
140 
141   void remapGlobalObjectMetadata(GlobalObject &GO);
142 
143   Value *mapValue(const Value *V);
144   void remapInstruction(Instruction *I);
145   void remapFunction(Function &F);
146 
147   Constant *mapConstant(const Constant *C) {
148     return cast_or_null<Constant>(mapValue(C));
149   }
150 
151   /// Map metadata.
152   ///
153   /// Find the mapping for MD.  Guarantees that the return will be resolved
154   /// (not an MDNode, or MDNode::isResolved() returns true).
155   Metadata *mapMetadata(const Metadata *MD);
156 
157   void scheduleMapGlobalInitializer(GlobalVariable &GV, Constant &Init,
158                                     unsigned MCID);
159   void scheduleMapAppendingVariable(GlobalVariable &GV, Constant *InitPrefix,
160                                     bool IsOldCtorDtor,
161                                     ArrayRef<Constant *> NewMembers,
162                                     unsigned MCID);
163   void scheduleMapGlobalIndirectSymbol(GlobalIndirectSymbol &GIS, Constant &Target,
164                                        unsigned MCID);
165   void scheduleRemapFunction(Function &F, unsigned MCID);
166 
167   void flush();
168 
169 private:
170   void mapAppendingVariable(GlobalVariable &GV, Constant *InitPrefix,
171                             bool IsOldCtorDtor,
172                             ArrayRef<Constant *> NewMembers);
173 
174   ValueToValueMapTy &getVM() { return *MCs[CurrentMCID].VM; }
175   ValueMaterializer *getMaterializer() { return MCs[CurrentMCID].Materializer; }
176 
177   Value *mapBlockAddress(const BlockAddress &BA);
178 
179   /// Map metadata that doesn't require visiting operands.
180   Optional<Metadata *> mapSimpleMetadata(const Metadata *MD);
181 
182   Metadata *mapToMetadata(const Metadata *Key, Metadata *Val);
183   Metadata *mapToSelf(const Metadata *MD);
184 };
185 
186 class MDNodeMapper {
187   Mapper &M;
188 
189   /// Data about a node in \a UniquedGraph.
190   struct Data {
191     bool HasChanged = false;
192     unsigned ID = std::numeric_limits<unsigned>::max();
193     TempMDNode Placeholder;
194   };
195 
196   /// A graph of uniqued nodes.
197   struct UniquedGraph {
198     SmallDenseMap<const Metadata *, Data, 32> Info; // Node properties.
199     SmallVector<MDNode *, 16> POT;                  // Post-order traversal.
200 
201     /// Propagate changed operands through the post-order traversal.
202     ///
203     /// Iteratively update \a Data::HasChanged for each node based on \a
204     /// Data::HasChanged of its operands, until fixed point.
205     void propagateChanges();
206 
207     /// Get a forward reference to a node to use as an operand.
208     Metadata &getFwdReference(MDNode &Op);
209   };
210 
211   /// Worklist of distinct nodes whose operands need to be remapped.
212   SmallVector<MDNode *, 16> DistinctWorklist;
213 
214   // Storage for a UniquedGraph.
215   SmallDenseMap<const Metadata *, Data, 32> InfoStorage;
216   SmallVector<MDNode *, 16> POTStorage;
217 
218 public:
219   MDNodeMapper(Mapper &M) : M(M) {}
220 
221   /// Map a metadata node (and its transitive operands).
222   ///
223   /// Map all the (unmapped) nodes in the subgraph under \c N.  The iterative
224   /// algorithm handles distinct nodes and uniqued node subgraphs using
225   /// different strategies.
226   ///
227   /// Distinct nodes are immediately mapped and added to \a DistinctWorklist
228   /// using \a mapDistinctNode().  Their mapping can always be computed
229   /// immediately without visiting operands, even if their operands change.
230   ///
231   /// The mapping for uniqued nodes depends on whether their operands change.
232   /// \a mapTopLevelUniquedNode() traverses the transitive uniqued subgraph of
233   /// a node to calculate uniqued node mappings in bulk.  Distinct leafs are
234   /// added to \a DistinctWorklist with \a mapDistinctNode().
235   ///
236   /// After mapping \c N itself, this function remaps the operands of the
237   /// distinct nodes in \a DistinctWorklist until the entire subgraph under \c
238   /// N has been mapped.
239   Metadata *map(const MDNode &N);
240 
241 private:
242   /// Map a top-level uniqued node and the uniqued subgraph underneath it.
243   ///
244   /// This builds up a post-order traversal of the (unmapped) uniqued subgraph
245   /// underneath \c FirstN and calculates the nodes' mapping.  Each node uses
246   /// the identity mapping (\a Mapper::mapToSelf()) as long as all of its
247   /// operands uses the identity mapping.
248   ///
249   /// The algorithm works as follows:
250   ///
251   ///  1. \a createPOT(): traverse the uniqued subgraph under \c FirstN and
252   ///     save the post-order traversal in the given \a UniquedGraph, tracking
253   ///     nodes' operands change.
254   ///
255   ///  2. \a UniquedGraph::propagateChanges(): propagate changed operands
256   ///     through the \a UniquedGraph until fixed point, following the rule
257   ///     that if a node changes, any node that references must also change.
258   ///
259   ///  3. \a mapNodesInPOT(): map the uniqued nodes, creating new uniqued nodes
260   ///     (referencing new operands) where necessary.
261   Metadata *mapTopLevelUniquedNode(const MDNode &FirstN);
262 
263   /// Try to map the operand of an \a MDNode.
264   ///
265   /// If \c Op is already mapped, return the mapping.  If it's not an \a
266   /// MDNode, compute and return the mapping.  If it's a distinct \a MDNode,
267   /// return the result of \a mapDistinctNode().
268   ///
269   /// \return None if \c Op is an unmapped uniqued \a MDNode.
270   /// \post getMappedOp(Op) only returns None if this returns None.
271   Optional<Metadata *> tryToMapOperand(const Metadata *Op);
272 
273   /// Map a distinct node.
274   ///
275   /// Return the mapping for the distinct node \c N, saving the result in \a
276   /// DistinctWorklist for later remapping.
277   ///
278   /// \pre \c N is not yet mapped.
279   /// \pre \c N.isDistinct().
280   MDNode *mapDistinctNode(const MDNode &N);
281 
282   /// Get a previously mapped node.
283   Optional<Metadata *> getMappedOp(const Metadata *Op) const;
284 
285   /// Create a post-order traversal of an unmapped uniqued node subgraph.
286   ///
287   /// This traverses the metadata graph deeply enough to map \c FirstN.  It
288   /// uses \a tryToMapOperand() (via \a Mapper::mapSimplifiedNode()), so any
289   /// metadata that has already been mapped will not be part of the POT.
290   ///
291   /// Each node that has a changed operand from outside the graph (e.g., a
292   /// distinct node, an already-mapped uniqued node, or \a ConstantAsMetadata)
293   /// is marked with \a Data::HasChanged.
294   ///
295   /// \return \c true if any nodes in \c G have \a Data::HasChanged.
296   /// \post \c G.POT is a post-order traversal ending with \c FirstN.
297   /// \post \a Data::hasChanged in \c G.Info indicates whether any node needs
298   /// to change because of operands outside the graph.
299   bool createPOT(UniquedGraph &G, const MDNode &FirstN);
300 
301   /// Visit the operands of a uniqued node in the POT.
302   ///
303   /// Visit the operands in the range from \c I to \c E, returning the first
304   /// uniqued node we find that isn't yet in \c G.  \c I is always advanced to
305   /// where to continue the loop through the operands.
306   ///
307   /// This sets \c HasChanged if any of the visited operands change.
308   MDNode *visitOperands(UniquedGraph &G, MDNode::op_iterator &I,
309                         MDNode::op_iterator E, bool &HasChanged);
310 
311   /// Map all the nodes in the given uniqued graph.
312   ///
313   /// This visits all the nodes in \c G in post-order, using the identity
314   /// mapping or creating a new node depending on \a Data::HasChanged.
315   ///
316   /// \pre \a getMappedOp() returns None for nodes in \c G, but not for any of
317   /// their operands outside of \c G.
318   /// \pre \a Data::HasChanged is true for a node in \c G iff any of its
319   /// operands have changed.
320   /// \post \a getMappedOp() returns the mapped node for every node in \c G.
321   void mapNodesInPOT(UniquedGraph &G);
322 
323   /// Remap a node's operands using the given functor.
324   ///
325   /// Iterate through the operands of \c N and update them in place using \c
326   /// mapOperand.
327   ///
328   /// \pre N.isDistinct() or N.isTemporary().
329   template <class OperandMapper>
330   void remapOperands(MDNode &N, OperandMapper mapOperand);
331 };
332 
333 } // end anonymous namespace
334 
335 Value *Mapper::mapValue(const Value *V) {
336   ValueToValueMapTy::iterator I = getVM().find(V);
337 
338   // If the value already exists in the map, use it.
339   if (I != getVM().end()) {
340     assert(I->second && "Unexpected null mapping");
341     return I->second;
342   }
343 
344   // If we have a materializer and it can materialize a value, use that.
345   if (auto *Materializer = getMaterializer()) {
346     if (Value *NewV = Materializer->materialize(const_cast<Value *>(V))) {
347       getVM()[V] = NewV;
348       return NewV;
349     }
350   }
351 
352   // Global values do not need to be seeded into the VM if they
353   // are using the identity mapping.
354   if (isa<GlobalValue>(V)) {
355     if (Flags & RF_NullMapMissingGlobalValues)
356       return nullptr;
357     return getVM()[V] = const_cast<Value *>(V);
358   }
359 
360   if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
361     // Inline asm may need *type* remapping.
362     FunctionType *NewTy = IA->getFunctionType();
363     if (TypeMapper) {
364       NewTy = cast<FunctionType>(TypeMapper->remapType(NewTy));
365 
366       if (NewTy != IA->getFunctionType())
367         V = InlineAsm::get(NewTy, IA->getAsmString(), IA->getConstraintString(),
368                            IA->hasSideEffects(), IA->isAlignStack(),
369                            IA->getDialect());
370     }
371 
372     return getVM()[V] = const_cast<Value *>(V);
373   }
374 
375   if (const auto *MDV = dyn_cast<MetadataAsValue>(V)) {
376     const Metadata *MD = MDV->getMetadata();
377 
378     if (auto *LAM = dyn_cast<LocalAsMetadata>(MD)) {
379       // Look through to grab the local value.
380       if (Value *LV = mapValue(LAM->getValue())) {
381         if (V == LAM->getValue())
382           return const_cast<Value *>(V);
383         return MetadataAsValue::get(V->getContext(), ValueAsMetadata::get(LV));
384       }
385 
386       // FIXME: always return nullptr once Verifier::verifyDominatesUse()
387       // ensures metadata operands only reference defined SSA values.
388       return (Flags & RF_IgnoreMissingLocals)
389                  ? nullptr
390                  : MetadataAsValue::get(V->getContext(),
391                                         MDTuple::get(V->getContext(), None));
392     }
393 
394     // If this is a module-level metadata and we know that nothing at the module
395     // level is changing, then use an identity mapping.
396     if (Flags & RF_NoModuleLevelChanges)
397       return getVM()[V] = const_cast<Value *>(V);
398 
399     // Map the metadata and turn it into a value.
400     auto *MappedMD = mapMetadata(MD);
401     if (MD == MappedMD)
402       return getVM()[V] = const_cast<Value *>(V);
403     return getVM()[V] = MetadataAsValue::get(V->getContext(), MappedMD);
404   }
405 
406   // Okay, this either must be a constant (which may or may not be mappable) or
407   // is something that is not in the mapping table.
408   Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V));
409   if (!C)
410     return nullptr;
411 
412   if (BlockAddress *BA = dyn_cast<BlockAddress>(C))
413     return mapBlockAddress(*BA);
414 
415   auto mapValueOrNull = [this](Value *V) {
416     auto Mapped = mapValue(V);
417     assert((Mapped || (Flags & RF_NullMapMissingGlobalValues)) &&
418            "Unexpected null mapping for constant operand without "
419            "NullMapMissingGlobalValues flag");
420     return Mapped;
421   };
422 
423   // Otherwise, we have some other constant to remap.  Start by checking to see
424   // if all operands have an identity remapping.
425   unsigned OpNo = 0, NumOperands = C->getNumOperands();
426   Value *Mapped = nullptr;
427   for (; OpNo != NumOperands; ++OpNo) {
428     Value *Op = C->getOperand(OpNo);
429     Mapped = mapValueOrNull(Op);
430     if (!Mapped)
431       return nullptr;
432     if (Mapped != Op)
433       break;
434   }
435 
436   // See if the type mapper wants to remap the type as well.
437   Type *NewTy = C->getType();
438   if (TypeMapper)
439     NewTy = TypeMapper->remapType(NewTy);
440 
441   // If the result type and all operands match up, then just insert an identity
442   // mapping.
443   if (OpNo == NumOperands && NewTy == C->getType())
444     return getVM()[V] = C;
445 
446   // Okay, we need to create a new constant.  We've already processed some or
447   // all of the operands, set them all up now.
448   SmallVector<Constant*, 8> Ops;
449   Ops.reserve(NumOperands);
450   for (unsigned j = 0; j != OpNo; ++j)
451     Ops.push_back(cast<Constant>(C->getOperand(j)));
452 
453   // If one of the operands mismatch, push it and the other mapped operands.
454   if (OpNo != NumOperands) {
455     Ops.push_back(cast<Constant>(Mapped));
456 
457     // Map the rest of the operands that aren't processed yet.
458     for (++OpNo; OpNo != NumOperands; ++OpNo) {
459       Mapped = mapValueOrNull(C->getOperand(OpNo));
460       if (!Mapped)
461         return nullptr;
462       Ops.push_back(cast<Constant>(Mapped));
463     }
464   }
465   Type *NewSrcTy = nullptr;
466   if (TypeMapper)
467     if (auto *GEPO = dyn_cast<GEPOperator>(C))
468       NewSrcTy = TypeMapper->remapType(GEPO->getSourceElementType());
469 
470   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
471     return getVM()[V] = CE->getWithOperands(Ops, NewTy, false, NewSrcTy);
472   if (isa<ConstantArray>(C))
473     return getVM()[V] = ConstantArray::get(cast<ArrayType>(NewTy), Ops);
474   if (isa<ConstantStruct>(C))
475     return getVM()[V] = ConstantStruct::get(cast<StructType>(NewTy), Ops);
476   if (isa<ConstantVector>(C))
477     return getVM()[V] = ConstantVector::get(Ops);
478   // If this is a no-operand constant, it must be because the type was remapped.
479   if (isa<UndefValue>(C))
480     return getVM()[V] = UndefValue::get(NewTy);
481   if (isa<ConstantAggregateZero>(C))
482     return getVM()[V] = ConstantAggregateZero::get(NewTy);
483   assert(isa<ConstantPointerNull>(C));
484   return getVM()[V] = ConstantPointerNull::get(cast<PointerType>(NewTy));
485 }
486 
487 Value *Mapper::mapBlockAddress(const BlockAddress &BA) {
488   Function *F = cast<Function>(mapValue(BA.getFunction()));
489 
490   // F may not have materialized its initializer.  In that case, create a
491   // dummy basic block for now, and replace it once we've materialized all
492   // the initializers.
493   BasicBlock *BB;
494   if (F->empty()) {
495     DelayedBBs.push_back(DelayedBasicBlock(BA));
496     BB = DelayedBBs.back().TempBB.get();
497   } else {
498     BB = cast_or_null<BasicBlock>(mapValue(BA.getBasicBlock()));
499   }
500 
501   return getVM()[&BA] = BlockAddress::get(F, BB ? BB : BA.getBasicBlock());
502 }
503 
504 Metadata *Mapper::mapToMetadata(const Metadata *Key, Metadata *Val) {
505   getVM().MD()[Key].reset(Val);
506   return Val;
507 }
508 
509 Metadata *Mapper::mapToSelf(const Metadata *MD) {
510   return mapToMetadata(MD, const_cast<Metadata *>(MD));
511 }
512 
513 Optional<Metadata *> MDNodeMapper::tryToMapOperand(const Metadata *Op) {
514   if (!Op)
515     return nullptr;
516 
517   if (Optional<Metadata *> MappedOp = M.mapSimpleMetadata(Op)) {
518 #ifndef NDEBUG
519     if (auto *CMD = dyn_cast<ConstantAsMetadata>(Op))
520       assert((!*MappedOp || M.getVM().count(CMD->getValue()) ||
521               M.getVM().getMappedMD(Op)) &&
522              "Expected Value to be memoized");
523     else
524       assert((isa<MDString>(Op) || M.getVM().getMappedMD(Op)) &&
525              "Expected result to be memoized");
526 #endif
527     return *MappedOp;
528   }
529 
530   const MDNode &N = *cast<MDNode>(Op);
531   if (N.isDistinct())
532     return mapDistinctNode(N);
533   return None;
534 }
535 
536 MDNode *MDNodeMapper::mapDistinctNode(const MDNode &N) {
537   assert(N.isDistinct() && "Expected a distinct node");
538   assert(!M.getVM().getMappedMD(&N) && "Expected an unmapped node");
539   DistinctWorklist.push_back(cast<MDNode>(
540       (M.Flags & RF_ReuseAndMutateDistinctMDs)
541           ? M.mapToSelf(&N)
542           : M.mapToMetadata(&N, MDNode::replaceWithDistinct(N.clone()))));
543   return DistinctWorklist.back();
544 }
545 
546 static ConstantAsMetadata *wrapConstantAsMetadata(const ConstantAsMetadata &CMD,
547                                                   Value *MappedV) {
548   if (CMD.getValue() == MappedV)
549     return const_cast<ConstantAsMetadata *>(&CMD);
550   return MappedV ? ConstantAsMetadata::getConstant(MappedV) : nullptr;
551 }
552 
553 Optional<Metadata *> MDNodeMapper::getMappedOp(const Metadata *Op) const {
554   if (!Op)
555     return nullptr;
556 
557   if (Optional<Metadata *> MappedOp = M.getVM().getMappedMD(Op))
558     return *MappedOp;
559 
560   if (isa<MDString>(Op))
561     return const_cast<Metadata *>(Op);
562 
563   if (auto *CMD = dyn_cast<ConstantAsMetadata>(Op))
564     return wrapConstantAsMetadata(*CMD, M.getVM().lookup(CMD->getValue()));
565 
566   return None;
567 }
568 
569 Metadata &MDNodeMapper::UniquedGraph::getFwdReference(MDNode &Op) {
570   auto Where = Info.find(&Op);
571   assert(Where != Info.end() && "Expected a valid reference");
572 
573   auto &OpD = Where->second;
574   if (!OpD.HasChanged)
575     return Op;
576 
577   // Lazily construct a temporary node.
578   if (!OpD.Placeholder)
579     OpD.Placeholder = Op.clone();
580 
581   return *OpD.Placeholder;
582 }
583 
584 template <class OperandMapper>
585 void MDNodeMapper::remapOperands(MDNode &N, OperandMapper mapOperand) {
586   assert(!N.isUniqued() && "Expected distinct or temporary nodes");
587   for (unsigned I = 0, E = N.getNumOperands(); I != E; ++I) {
588     Metadata *Old = N.getOperand(I);
589     Metadata *New = mapOperand(Old);
590 
591     if (Old != New)
592       N.replaceOperandWith(I, New);
593   }
594 }
595 
596 namespace {
597 
598 /// An entry in the worklist for the post-order traversal.
599 struct POTWorklistEntry {
600   MDNode *N;              ///< Current node.
601   MDNode::op_iterator Op; ///< Current operand of \c N.
602 
603   /// Keep a flag of whether operands have changed in the worklist to avoid
604   /// hitting the map in \a UniquedGraph.
605   bool HasChanged = false;
606 
607   POTWorklistEntry(MDNode &N) : N(&N), Op(N.op_begin()) {}
608 };
609 
610 } // end anonymous namespace
611 
612 bool MDNodeMapper::createPOT(UniquedGraph &G, const MDNode &FirstN) {
613   assert(G.Info.empty() && "Expected a fresh traversal");
614   assert(FirstN.isUniqued() && "Expected uniqued node in POT");
615 
616   // Construct a post-order traversal of the uniqued subgraph under FirstN.
617   bool AnyChanges = false;
618   SmallVector<POTWorklistEntry, 16> Worklist;
619   Worklist.push_back(POTWorklistEntry(const_cast<MDNode &>(FirstN)));
620   (void)G.Info[&FirstN];
621   while (!Worklist.empty()) {
622     // Start or continue the traversal through the this node's operands.
623     auto &WE = Worklist.back();
624     if (MDNode *N = visitOperands(G, WE.Op, WE.N->op_end(), WE.HasChanged)) {
625       // Push a new node to traverse first.
626       Worklist.push_back(POTWorklistEntry(*N));
627       continue;
628     }
629 
630     // Push the node onto the POT.
631     assert(WE.N->isUniqued() && "Expected only uniqued nodes");
632     assert(WE.Op == WE.N->op_end() && "Expected to visit all operands");
633     auto &D = G.Info[WE.N];
634     AnyChanges |= D.HasChanged = WE.HasChanged;
635     D.ID = G.POT.size();
636     G.POT.push_back(WE.N);
637 
638     // Pop the node off the worklist.
639     Worklist.pop_back();
640   }
641   return AnyChanges;
642 }
643 
644 MDNode *MDNodeMapper::visitOperands(UniquedGraph &G, MDNode::op_iterator &I,
645                                     MDNode::op_iterator E, bool &HasChanged) {
646   while (I != E) {
647     Metadata *Op = *I++; // Increment even on early return.
648     if (Optional<Metadata *> MappedOp = tryToMapOperand(Op)) {
649       // Check if the operand changes.
650       HasChanged |= Op != *MappedOp;
651       continue;
652     }
653 
654     // A uniqued metadata node.
655     MDNode &OpN = *cast<MDNode>(Op);
656     assert(OpN.isUniqued() &&
657            "Only uniqued operands cannot be mapped immediately");
658     if (G.Info.insert(std::make_pair(&OpN, Data())).second)
659       return &OpN; // This is a new one.  Return it.
660   }
661   return nullptr;
662 }
663 
664 void MDNodeMapper::UniquedGraph::propagateChanges() {
665   bool AnyChanges;
666   do {
667     AnyChanges = false;
668     for (MDNode *N : POT) {
669       auto &D = Info[N];
670       if (D.HasChanged)
671         continue;
672 
673       if (llvm::none_of(N->operands(), [&](const Metadata *Op) {
674             auto Where = Info.find(Op);
675             return Where != Info.end() && Where->second.HasChanged;
676           }))
677         continue;
678 
679       AnyChanges = D.HasChanged = true;
680     }
681   } while (AnyChanges);
682 }
683 
684 void MDNodeMapper::mapNodesInPOT(UniquedGraph &G) {
685   // Construct uniqued nodes, building forward references as necessary.
686   SmallVector<MDNode *, 16> CyclicNodes;
687   for (auto *N : G.POT) {
688     auto &D = G.Info[N];
689     if (!D.HasChanged) {
690       // The node hasn't changed.
691       M.mapToSelf(N);
692       continue;
693     }
694 
695     // Remember whether this node had a placeholder.
696     bool HadPlaceholder(D.Placeholder);
697 
698     // Clone the uniqued node and remap the operands.
699     TempMDNode ClonedN = D.Placeholder ? std::move(D.Placeholder) : N->clone();
700     remapOperands(*ClonedN, [this, &D, &G](Metadata *Old) {
701       if (Optional<Metadata *> MappedOp = getMappedOp(Old))
702         return *MappedOp;
703       (void)D;
704       assert(G.Info[Old].ID > D.ID && "Expected a forward reference");
705       return &G.getFwdReference(*cast<MDNode>(Old));
706     });
707 
708     auto *NewN = MDNode::replaceWithUniqued(std::move(ClonedN));
709     M.mapToMetadata(N, NewN);
710 
711     // Nodes that were referenced out of order in the POT are involved in a
712     // uniquing cycle.
713     if (HadPlaceholder)
714       CyclicNodes.push_back(NewN);
715   }
716 
717   // Resolve cycles.
718   for (auto *N : CyclicNodes)
719     if (!N->isResolved())
720       N->resolveCycles();
721 }
722 
723 Metadata *MDNodeMapper::map(const MDNode &N) {
724   assert(DistinctWorklist.empty() && "MDNodeMapper::map is not recursive");
725   assert(!(M.Flags & RF_NoModuleLevelChanges) &&
726          "MDNodeMapper::map assumes module-level changes");
727 
728   // Require resolved nodes whenever metadata might be remapped.
729   assert(N.isResolved() && "Unexpected unresolved node");
730 
731   Metadata *MappedN =
732       N.isUniqued() ? mapTopLevelUniquedNode(N) : mapDistinctNode(N);
733   while (!DistinctWorklist.empty())
734     remapOperands(*DistinctWorklist.pop_back_val(), [this](Metadata *Old) {
735       if (Optional<Metadata *> MappedOp = tryToMapOperand(Old))
736         return *MappedOp;
737       return mapTopLevelUniquedNode(*cast<MDNode>(Old));
738     });
739   return MappedN;
740 }
741 
742 Metadata *MDNodeMapper::mapTopLevelUniquedNode(const MDNode &FirstN) {
743   assert(FirstN.isUniqued() && "Expected uniqued node");
744 
745   // Create a post-order traversal of uniqued nodes under FirstN.
746   UniquedGraph G;
747   if (!createPOT(G, FirstN)) {
748     // Return early if no nodes have changed.
749     for (const MDNode *N : G.POT)
750       M.mapToSelf(N);
751     return &const_cast<MDNode &>(FirstN);
752   }
753 
754   // Update graph with all nodes that have changed.
755   G.propagateChanges();
756 
757   // Map all the nodes in the graph.
758   mapNodesInPOT(G);
759 
760   // Return the original node, remapped.
761   return *getMappedOp(&FirstN);
762 }
763 
764 Optional<Metadata *> Mapper::mapSimpleMetadata(const Metadata *MD) {
765   // If the value already exists in the map, use it.
766   if (Optional<Metadata *> NewMD = getVM().getMappedMD(MD))
767     return *NewMD;
768 
769   if (isa<MDString>(MD))
770     return const_cast<Metadata *>(MD);
771 
772   // This is a module-level metadata.  If nothing at the module level is
773   // changing, use an identity mapping.
774   if ((Flags & RF_NoModuleLevelChanges))
775     return const_cast<Metadata *>(MD);
776 
777   if (auto *CMD = dyn_cast<ConstantAsMetadata>(MD)) {
778     // Don't memoize ConstantAsMetadata.  Instead of lasting until the
779     // LLVMContext is destroyed, they can be deleted when the GlobalValue they
780     // reference is destructed.  These aren't super common, so the extra
781     // indirection isn't that expensive.
782     return wrapConstantAsMetadata(*CMD, mapValue(CMD->getValue()));
783   }
784 
785   assert(isa<MDNode>(MD) && "Expected a metadata node");
786 
787   return None;
788 }
789 
790 Metadata *Mapper::mapMetadata(const Metadata *MD) {
791   assert(MD && "Expected valid metadata");
792   assert(!isa<LocalAsMetadata>(MD) && "Unexpected local metadata");
793 
794   if (Optional<Metadata *> NewMD = mapSimpleMetadata(MD))
795     return *NewMD;
796 
797   return MDNodeMapper(*this).map(*cast<MDNode>(MD));
798 }
799 
800 void Mapper::flush() {
801   // Flush out the worklist of global values.
802   while (!Worklist.empty()) {
803     WorklistEntry E = Worklist.pop_back_val();
804     CurrentMCID = E.MCID;
805     switch (E.Kind) {
806     case WorklistEntry::MapGlobalInit:
807       E.Data.GVInit.GV->setInitializer(mapConstant(E.Data.GVInit.Init));
808       remapGlobalObjectMetadata(*E.Data.GVInit.GV);
809       break;
810     case WorklistEntry::MapAppendingVar: {
811       unsigned PrefixSize = AppendingInits.size() - E.AppendingGVNumNewMembers;
812       // mapAppendingVariable call can change AppendingInits if initalizer for
813       // the variable depends on another appending global, because of that inits
814       // need to be extracted and updated before the call.
815       SmallVector<Constant *, 8> NewInits(
816           drop_begin(AppendingInits, PrefixSize));
817       AppendingInits.resize(PrefixSize);
818       mapAppendingVariable(*E.Data.AppendingGV.GV,
819                            E.Data.AppendingGV.InitPrefix,
820                            E.AppendingGVIsOldCtorDtor, makeArrayRef(NewInits));
821       break;
822     }
823     case WorklistEntry::MapGlobalIndirectSymbol:
824       E.Data.GlobalIndirectSymbol.GIS->setIndirectSymbol(
825           mapConstant(E.Data.GlobalIndirectSymbol.Target));
826       break;
827     case WorklistEntry::RemapFunction:
828       remapFunction(*E.Data.RemapF);
829       break;
830     }
831   }
832   CurrentMCID = 0;
833 
834   // Finish logic for block addresses now that all global values have been
835   // handled.
836   while (!DelayedBBs.empty()) {
837     DelayedBasicBlock DBB = DelayedBBs.pop_back_val();
838     BasicBlock *BB = cast_or_null<BasicBlock>(mapValue(DBB.OldBB));
839     DBB.TempBB->replaceAllUsesWith(BB ? BB : DBB.OldBB);
840   }
841 }
842 
843 void Mapper::remapInstruction(Instruction *I) {
844   // Remap operands.
845   for (Use &Op : I->operands()) {
846     Value *V = mapValue(Op);
847     // If we aren't ignoring missing entries, assert that something happened.
848     if (V)
849       Op = V;
850     else
851       assert((Flags & RF_IgnoreMissingLocals) &&
852              "Referenced value not in value map!");
853   }
854 
855   // Remap phi nodes' incoming blocks.
856   if (PHINode *PN = dyn_cast<PHINode>(I)) {
857     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
858       Value *V = mapValue(PN->getIncomingBlock(i));
859       // If we aren't ignoring missing entries, assert that something happened.
860       if (V)
861         PN->setIncomingBlock(i, cast<BasicBlock>(V));
862       else
863         assert((Flags & RF_IgnoreMissingLocals) &&
864                "Referenced block not in value map!");
865     }
866   }
867 
868   // Remap attached metadata.
869   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
870   I->getAllMetadata(MDs);
871   for (const auto &MI : MDs) {
872     MDNode *Old = MI.second;
873     MDNode *New = cast_or_null<MDNode>(mapMetadata(Old));
874     if (New != Old)
875       I->setMetadata(MI.first, New);
876   }
877 
878   if (!TypeMapper)
879     return;
880 
881   // If the instruction's type is being remapped, do so now.
882   if (auto *CB = dyn_cast<CallBase>(I)) {
883     SmallVector<Type *, 3> Tys;
884     FunctionType *FTy = CB->getFunctionType();
885     Tys.reserve(FTy->getNumParams());
886     for (Type *Ty : FTy->params())
887       Tys.push_back(TypeMapper->remapType(Ty));
888     CB->mutateFunctionType(FunctionType::get(
889         TypeMapper->remapType(I->getType()), Tys, FTy->isVarArg()));
890 
891     LLVMContext &C = CB->getContext();
892     AttributeList Attrs = CB->getAttributes();
893     for (unsigned i = 0; i < Attrs.getNumAttrSets(); ++i) {
894       for (Attribute::AttrKind TypedAttr :
895            {Attribute::ByVal, Attribute::StructRet, Attribute::ByRef}) {
896         if (Type *Ty = Attrs.getAttribute(i, TypedAttr).getValueAsType()) {
897           Attrs = Attrs.replaceAttributeType(C, i, TypedAttr,
898                                              TypeMapper->remapType(Ty));
899           break;
900         }
901       }
902     }
903     CB->setAttributes(Attrs);
904     return;
905   }
906   if (auto *AI = dyn_cast<AllocaInst>(I))
907     AI->setAllocatedType(TypeMapper->remapType(AI->getAllocatedType()));
908   if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) {
909     GEP->setSourceElementType(
910         TypeMapper->remapType(GEP->getSourceElementType()));
911     GEP->setResultElementType(
912         TypeMapper->remapType(GEP->getResultElementType()));
913   }
914   I->mutateType(TypeMapper->remapType(I->getType()));
915 }
916 
917 void Mapper::remapGlobalObjectMetadata(GlobalObject &GO) {
918   SmallVector<std::pair<unsigned, MDNode *>, 8> MDs;
919   GO.getAllMetadata(MDs);
920   GO.clearMetadata();
921   for (const auto &I : MDs)
922     GO.addMetadata(I.first, *cast<MDNode>(mapMetadata(I.second)));
923 }
924 
925 void Mapper::remapFunction(Function &F) {
926   // Remap the operands.
927   for (Use &Op : F.operands())
928     if (Op)
929       Op = mapValue(Op);
930 
931   // Remap the metadata attachments.
932   remapGlobalObjectMetadata(F);
933 
934   // Remap the argument types.
935   if (TypeMapper)
936     for (Argument &A : F.args())
937       A.mutateType(TypeMapper->remapType(A.getType()));
938 
939   // Remap the instructions.
940   for (BasicBlock &BB : F)
941     for (Instruction &I : BB)
942       remapInstruction(&I);
943 }
944 
945 void Mapper::mapAppendingVariable(GlobalVariable &GV, Constant *InitPrefix,
946                                   bool IsOldCtorDtor,
947                                   ArrayRef<Constant *> NewMembers) {
948   SmallVector<Constant *, 16> Elements;
949   if (InitPrefix) {
950     unsigned NumElements =
951         cast<ArrayType>(InitPrefix->getType())->getNumElements();
952     for (unsigned I = 0; I != NumElements; ++I)
953       Elements.push_back(InitPrefix->getAggregateElement(I));
954   }
955 
956   PointerType *VoidPtrTy;
957   Type *EltTy;
958   if (IsOldCtorDtor) {
959     // FIXME: This upgrade is done during linking to support the C API.  See
960     // also IRLinker::linkAppendingVarProto() in IRMover.cpp.
961     VoidPtrTy = Type::getInt8Ty(GV.getContext())->getPointerTo();
962     auto &ST = *cast<StructType>(NewMembers.front()->getType());
963     Type *Tys[3] = {ST.getElementType(0), ST.getElementType(1), VoidPtrTy};
964     EltTy = StructType::get(GV.getContext(), Tys, false);
965   }
966 
967   for (auto *V : NewMembers) {
968     Constant *NewV;
969     if (IsOldCtorDtor) {
970       auto *S = cast<ConstantStruct>(V);
971       auto *E1 = cast<Constant>(mapValue(S->getOperand(0)));
972       auto *E2 = cast<Constant>(mapValue(S->getOperand(1)));
973       Constant *Null = Constant::getNullValue(VoidPtrTy);
974       NewV = ConstantStruct::get(cast<StructType>(EltTy), E1, E2, Null);
975     } else {
976       NewV = cast_or_null<Constant>(mapValue(V));
977     }
978     Elements.push_back(NewV);
979   }
980 
981   GV.setInitializer(ConstantArray::get(
982       cast<ArrayType>(GV.getType()->getElementType()), Elements));
983 }
984 
985 void Mapper::scheduleMapGlobalInitializer(GlobalVariable &GV, Constant &Init,
986                                           unsigned MCID) {
987   assert(AlreadyScheduled.insert(&GV).second && "Should not reschedule");
988   assert(MCID < MCs.size() && "Invalid mapping context");
989 
990   WorklistEntry WE;
991   WE.Kind = WorklistEntry::MapGlobalInit;
992   WE.MCID = MCID;
993   WE.Data.GVInit.GV = &GV;
994   WE.Data.GVInit.Init = &Init;
995   Worklist.push_back(WE);
996 }
997 
998 void Mapper::scheduleMapAppendingVariable(GlobalVariable &GV,
999                                           Constant *InitPrefix,
1000                                           bool IsOldCtorDtor,
1001                                           ArrayRef<Constant *> NewMembers,
1002                                           unsigned MCID) {
1003   assert(AlreadyScheduled.insert(&GV).second && "Should not reschedule");
1004   assert(MCID < MCs.size() && "Invalid mapping context");
1005 
1006   WorklistEntry WE;
1007   WE.Kind = WorklistEntry::MapAppendingVar;
1008   WE.MCID = MCID;
1009   WE.Data.AppendingGV.GV = &GV;
1010   WE.Data.AppendingGV.InitPrefix = InitPrefix;
1011   WE.AppendingGVIsOldCtorDtor = IsOldCtorDtor;
1012   WE.AppendingGVNumNewMembers = NewMembers.size();
1013   Worklist.push_back(WE);
1014   AppendingInits.append(NewMembers.begin(), NewMembers.end());
1015 }
1016 
1017 void Mapper::scheduleMapGlobalIndirectSymbol(GlobalIndirectSymbol &GIS,
1018                                              Constant &Target, unsigned MCID) {
1019   assert(AlreadyScheduled.insert(&GIS).second && "Should not reschedule");
1020   assert(MCID < MCs.size() && "Invalid mapping context");
1021 
1022   WorklistEntry WE;
1023   WE.Kind = WorklistEntry::MapGlobalIndirectSymbol;
1024   WE.MCID = MCID;
1025   WE.Data.GlobalIndirectSymbol.GIS = &GIS;
1026   WE.Data.GlobalIndirectSymbol.Target = &Target;
1027   Worklist.push_back(WE);
1028 }
1029 
1030 void Mapper::scheduleRemapFunction(Function &F, unsigned MCID) {
1031   assert(AlreadyScheduled.insert(&F).second && "Should not reschedule");
1032   assert(MCID < MCs.size() && "Invalid mapping context");
1033 
1034   WorklistEntry WE;
1035   WE.Kind = WorklistEntry::RemapFunction;
1036   WE.MCID = MCID;
1037   WE.Data.RemapF = &F;
1038   Worklist.push_back(WE);
1039 }
1040 
1041 void Mapper::addFlags(RemapFlags Flags) {
1042   assert(!hasWorkToDo() && "Expected to have flushed the worklist");
1043   this->Flags = this->Flags | Flags;
1044 }
1045 
1046 static Mapper *getAsMapper(void *pImpl) {
1047   return reinterpret_cast<Mapper *>(pImpl);
1048 }
1049 
1050 namespace {
1051 
1052 class FlushingMapper {
1053   Mapper &M;
1054 
1055 public:
1056   explicit FlushingMapper(void *pImpl) : M(*getAsMapper(pImpl)) {
1057     assert(!M.hasWorkToDo() && "Expected to be flushed");
1058   }
1059 
1060   ~FlushingMapper() { M.flush(); }
1061 
1062   Mapper *operator->() const { return &M; }
1063 };
1064 
1065 } // end anonymous namespace
1066 
1067 ValueMapper::ValueMapper(ValueToValueMapTy &VM, RemapFlags Flags,
1068                          ValueMapTypeRemapper *TypeMapper,
1069                          ValueMaterializer *Materializer)
1070     : pImpl(new Mapper(VM, Flags, TypeMapper, Materializer)) {}
1071 
1072 ValueMapper::~ValueMapper() { delete getAsMapper(pImpl); }
1073 
1074 unsigned
1075 ValueMapper::registerAlternateMappingContext(ValueToValueMapTy &VM,
1076                                              ValueMaterializer *Materializer) {
1077   return getAsMapper(pImpl)->registerAlternateMappingContext(VM, Materializer);
1078 }
1079 
1080 void ValueMapper::addFlags(RemapFlags Flags) {
1081   FlushingMapper(pImpl)->addFlags(Flags);
1082 }
1083 
1084 Value *ValueMapper::mapValue(const Value &V) {
1085   return FlushingMapper(pImpl)->mapValue(&V);
1086 }
1087 
1088 Constant *ValueMapper::mapConstant(const Constant &C) {
1089   return cast_or_null<Constant>(mapValue(C));
1090 }
1091 
1092 Metadata *ValueMapper::mapMetadata(const Metadata &MD) {
1093   return FlushingMapper(pImpl)->mapMetadata(&MD);
1094 }
1095 
1096 MDNode *ValueMapper::mapMDNode(const MDNode &N) {
1097   return cast_or_null<MDNode>(mapMetadata(N));
1098 }
1099 
1100 void ValueMapper::remapInstruction(Instruction &I) {
1101   FlushingMapper(pImpl)->remapInstruction(&I);
1102 }
1103 
1104 void ValueMapper::remapFunction(Function &F) {
1105   FlushingMapper(pImpl)->remapFunction(F);
1106 }
1107 
1108 void ValueMapper::scheduleMapGlobalInitializer(GlobalVariable &GV,
1109                                                Constant &Init,
1110                                                unsigned MCID) {
1111   getAsMapper(pImpl)->scheduleMapGlobalInitializer(GV, Init, MCID);
1112 }
1113 
1114 void ValueMapper::scheduleMapAppendingVariable(GlobalVariable &GV,
1115                                                Constant *InitPrefix,
1116                                                bool IsOldCtorDtor,
1117                                                ArrayRef<Constant *> NewMembers,
1118                                                unsigned MCID) {
1119   getAsMapper(pImpl)->scheduleMapAppendingVariable(
1120       GV, InitPrefix, IsOldCtorDtor, NewMembers, MCID);
1121 }
1122 
1123 void ValueMapper::scheduleMapGlobalIndirectSymbol(GlobalIndirectSymbol &GIS,
1124                                                   Constant &Target,
1125                                                   unsigned MCID) {
1126   getAsMapper(pImpl)->scheduleMapGlobalIndirectSymbol(GIS, Target, MCID);
1127 }
1128 
1129 void ValueMapper::scheduleRemapFunction(Function &F, unsigned MCID) {
1130   getAsMapper(pImpl)->scheduleRemapFunction(F, MCID);
1131 }
1132