1 //===- ValueMapper.cpp - Interface shared by lib/Transforms/Utils ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the MapValue function, which is shared by various parts of 11 // the lib/Transforms/Utils library. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Utils/ValueMapper.h" 16 #include "llvm/ADT/DenseSet.h" 17 #include "llvm/IR/CallSite.h" 18 #include "llvm/IR/Constants.h" 19 #include "llvm/IR/DebugInfoMetadata.h" 20 #include "llvm/IR/Function.h" 21 #include "llvm/IR/GlobalAlias.h" 22 #include "llvm/IR/GlobalVariable.h" 23 #include "llvm/IR/InlineAsm.h" 24 #include "llvm/IR/Instructions.h" 25 #include "llvm/IR/Metadata.h" 26 #include "llvm/IR/Operator.h" 27 using namespace llvm; 28 29 // Out of line method to get vtable etc for class. 30 void ValueMapTypeRemapper::anchor() {} 31 void ValueMaterializer::anchor() {} 32 33 namespace { 34 35 /// A basic block used in a BlockAddress whose function body is not yet 36 /// materialized. 37 struct DelayedBasicBlock { 38 BasicBlock *OldBB; 39 std::unique_ptr<BasicBlock> TempBB; 40 41 // Explicit move for MSVC. 42 DelayedBasicBlock(DelayedBasicBlock &&X) 43 : OldBB(std::move(X.OldBB)), TempBB(std::move(X.TempBB)) {} 44 DelayedBasicBlock &operator=(DelayedBasicBlock &&X) { 45 OldBB = std::move(X.OldBB); 46 TempBB = std::move(X.TempBB); 47 return *this; 48 } 49 50 DelayedBasicBlock(const BlockAddress &Old) 51 : OldBB(Old.getBasicBlock()), 52 TempBB(BasicBlock::Create(Old.getContext())) {} 53 }; 54 55 struct WorklistEntry { 56 enum EntryKind { 57 MapGlobalInit, 58 MapAppendingVar, 59 MapGlobalAliasee, 60 RemapFunction 61 }; 62 struct GVInitTy { 63 GlobalVariable *GV; 64 Constant *Init; 65 }; 66 struct AppendingGVTy { 67 GlobalVariable *GV; 68 Constant *InitPrefix; 69 }; 70 struct GlobalAliaseeTy { 71 GlobalAlias *GA; 72 Constant *Aliasee; 73 }; 74 75 unsigned Kind : 2; 76 unsigned MCID : 29; 77 unsigned AppendingGVIsOldCtorDtor : 1; 78 unsigned AppendingGVNumNewMembers; 79 union { 80 GVInitTy GVInit; 81 AppendingGVTy AppendingGV; 82 GlobalAliaseeTy GlobalAliasee; 83 Function *RemapF; 84 } Data; 85 }; 86 87 struct MappingContext { 88 ValueToValueMapTy *VM; 89 ValueMaterializer *Materializer = nullptr; 90 91 /// Construct a MappingContext with a value map and materializer. 92 explicit MappingContext(ValueToValueMapTy &VM, 93 ValueMaterializer *Materializer = nullptr) 94 : VM(&VM), Materializer(Materializer) {} 95 }; 96 97 class MDNodeMapper; 98 class Mapper { 99 friend class MDNodeMapper; 100 101 #ifndef NDEBUG 102 DenseSet<GlobalValue *> AlreadyScheduled; 103 #endif 104 105 RemapFlags Flags; 106 ValueMapTypeRemapper *TypeMapper; 107 unsigned CurrentMCID = 0; 108 SmallVector<MappingContext, 2> MCs; 109 SmallVector<WorklistEntry, 4> Worklist; 110 SmallVector<DelayedBasicBlock, 1> DelayedBBs; 111 SmallVector<Constant *, 16> AppendingInits; 112 113 public: 114 Mapper(ValueToValueMapTy &VM, RemapFlags Flags, 115 ValueMapTypeRemapper *TypeMapper, ValueMaterializer *Materializer) 116 : Flags(Flags), TypeMapper(TypeMapper), 117 MCs(1, MappingContext(VM, Materializer)) {} 118 119 /// ValueMapper should explicitly call \a flush() before destruction. 120 ~Mapper() { assert(!hasWorkToDo() && "Expected to be flushed"); } 121 122 bool hasWorkToDo() const { return !Worklist.empty(); } 123 124 unsigned 125 registerAlternateMappingContext(ValueToValueMapTy &VM, 126 ValueMaterializer *Materializer = nullptr) { 127 MCs.push_back(MappingContext(VM, Materializer)); 128 return MCs.size() - 1; 129 } 130 131 void addFlags(RemapFlags Flags); 132 133 Value *mapValue(const Value *V); 134 void remapInstruction(Instruction *I); 135 void remapFunction(Function &F); 136 137 Constant *mapConstant(const Constant *C) { 138 return cast_or_null<Constant>(mapValue(C)); 139 } 140 141 /// Map metadata. 142 /// 143 /// Find the mapping for MD. Guarantees that the return will be resolved 144 /// (not an MDNode, or MDNode::isResolved() returns true). 145 Metadata *mapMetadata(const Metadata *MD); 146 147 // Map LocalAsMetadata, which never gets memoized. 148 // 149 // If the referenced local is not mapped, the principled return is nullptr. 150 // However, optimization passes sometimes move metadata operands *before* the 151 // SSA values they reference. To prevent crashes in \a RemapInstruction(), 152 // return "!{}" when RF_IgnoreMissingLocals is not set. 153 // 154 // \note Adding a mapping for LocalAsMetadata is unsupported. Add a mapping 155 // to the value map for the SSA value in question instead. 156 // 157 // FIXME: Once we have a verifier check for forward references to SSA values 158 // through metadata operands, always return nullptr on unmapped locals. 159 Metadata *mapLocalAsMetadata(const LocalAsMetadata &LAM); 160 161 void scheduleMapGlobalInitializer(GlobalVariable &GV, Constant &Init, 162 unsigned MCID); 163 void scheduleMapAppendingVariable(GlobalVariable &GV, Constant *InitPrefix, 164 bool IsOldCtorDtor, 165 ArrayRef<Constant *> NewMembers, 166 unsigned MCID); 167 void scheduleMapGlobalAliasee(GlobalAlias &GA, Constant &Aliasee, 168 unsigned MCID); 169 void scheduleRemapFunction(Function &F, unsigned MCID); 170 171 void flush(); 172 173 private: 174 void mapGlobalInitializer(GlobalVariable &GV, Constant &Init); 175 void mapAppendingVariable(GlobalVariable &GV, Constant *InitPrefix, 176 bool IsOldCtorDtor, 177 ArrayRef<Constant *> NewMembers); 178 void mapGlobalAliasee(GlobalAlias &GA, Constant &Aliasee); 179 void remapFunction(Function &F, ValueToValueMapTy &VM); 180 181 ValueToValueMapTy &getVM() { return *MCs[CurrentMCID].VM; } 182 ValueMaterializer *getMaterializer() { return MCs[CurrentMCID].Materializer; } 183 184 Value *mapBlockAddress(const BlockAddress &BA); 185 186 /// Map metadata that doesn't require visiting operands. 187 Optional<Metadata *> mapSimpleMetadata(const Metadata *MD); 188 189 Metadata *mapToMetadata(const Metadata *Key, Metadata *Val); 190 Metadata *mapToSelf(const Metadata *MD); 191 }; 192 193 class MDNodeMapper { 194 Mapper &M; 195 196 /// Data about a node in \a UniquedGraph. 197 struct Data { 198 bool HasChanged = false; 199 unsigned ID = ~0u; 200 TempMDNode Placeholder; 201 202 Data() {} 203 Data(Data &&X) 204 : HasChanged(std::move(X.HasChanged)), ID(std::move(X.ID)), 205 Placeholder(std::move(X.Placeholder)) {} 206 Data &operator=(Data &&X) { 207 HasChanged = std::move(X.HasChanged); 208 ID = std::move(X.ID); 209 Placeholder = std::move(X.Placeholder); 210 return *this; 211 } 212 }; 213 214 /// A graph of uniqued nodes. 215 struct UniquedGraph { 216 SmallDenseMap<const Metadata *, Data, 32> Info; // Node properties. 217 SmallVector<MDNode *, 16> POT; // Post-order traversal. 218 219 /// Propagate changed operands through the post-order traversal. 220 /// 221 /// Iteratively update \a Data::HasChanged for each node based on \a 222 /// Data::HasChanged of its operands, until fixed point. 223 void propagateChanges(); 224 225 /// Get a forward reference to a node to use as an operand. 226 Metadata &getFwdReference(MDNode &Op); 227 }; 228 229 /// Worklist of distinct nodes whose operands need to be remapped. 230 SmallVector<MDNode *, 16> DistinctWorklist; 231 232 // Storage for a UniquedGraph. 233 SmallDenseMap<const Metadata *, Data, 32> InfoStorage; 234 SmallVector<MDNode *, 16> POTStorage; 235 236 public: 237 MDNodeMapper(Mapper &M) : M(M) {} 238 239 /// Map a metadata node (and its transitive operands). 240 /// 241 /// Map all the (unmapped) nodes in the subgraph under \c N. The iterative 242 /// algorithm handles distinct nodes and uniqued node subgraphs using 243 /// different strategies. 244 /// 245 /// Distinct nodes are immediately mapped and added to \a DistinctWorklist 246 /// using \a mapDistinctNode(). Their mapping can always be computed 247 /// immediately without visiting operands, even if their operands change. 248 /// 249 /// The mapping for uniqued nodes depends on whether their operands change. 250 /// \a mapTopLevelUniquedNode() traverses the transitive uniqued subgraph of 251 /// a node to calculate uniqued node mappings in bulk. Distinct leafs are 252 /// added to \a DistinctWorklist with \a mapDistinctNode(). 253 /// 254 /// After mapping \c N itself, this function remaps the operands of the 255 /// distinct nodes in \a DistinctWorklist until the entire subgraph under \c 256 /// N has been mapped. 257 Metadata *map(const MDNode &N); 258 259 private: 260 /// Map a top-level uniqued node and the uniqued subgraph underneath it. 261 /// 262 /// This builds up a post-order traversal of the (unmapped) uniqued subgraph 263 /// underneath \c FirstN and calculates the nodes' mapping. Each node uses 264 /// the identity mapping (\a Mapper::mapToSelf()) as long as all of its 265 /// operands uses the identity mapping. 266 /// 267 /// The algorithm works as follows: 268 /// 269 /// 1. \a createPOT(): traverse the uniqued subgraph under \c FirstN and 270 /// save the post-order traversal in the given \a UniquedGraph, tracking 271 /// nodes' operands change. 272 /// 273 /// 2. \a UniquedGraph::propagateChanges(): propagate changed operands 274 /// through the \a UniquedGraph until fixed point, following the rule 275 /// that if a node changes, any node that references must also change. 276 /// 277 /// 3. \a mapNodesInPOT(): map the uniqued nodes, creating new uniqued nodes 278 /// (referencing new operands) where necessary. 279 Metadata *mapTopLevelUniquedNode(const MDNode &FirstN); 280 281 /// Try to map the operand of an \a MDNode. 282 /// 283 /// If \c Op is already mapped, return the mapping. If it's not an \a 284 /// MDNode, compute and return the mapping. If it's a distinct \a MDNode, 285 /// return the result of \a mapDistinctNode(). 286 /// 287 /// \return None if \c Op is an unmapped uniqued \a MDNode. 288 /// \post getMappedOp(Op) only returns None if this returns None. 289 Optional<Metadata *> tryToMapOperand(const Metadata *Op); 290 291 /// Map a distinct node. 292 /// 293 /// Return the mapping for the distinct node \c N, saving the result in \a 294 /// DistinctWorklist for later remapping. 295 /// 296 /// \pre \c N is not yet mapped. 297 /// \pre \c N.isDistinct(). 298 MDNode *mapDistinctNode(const MDNode &N); 299 300 /// Get a previously mapped node. 301 Optional<Metadata *> getMappedOp(const Metadata *Op) const; 302 303 /// Create a post-order traversal of an unmapped uniqued node subgraph. 304 /// 305 /// This traverses the metadata graph deeply enough to map \c FirstN. It 306 /// uses \a tryToMapOperand() (via \a Mapper::mapSimplifiedNode()), so any 307 /// metadata that has already been mapped will not be part of the POT. 308 /// 309 /// Each node that has a changed operand from outside the graph (e.g., a 310 /// distinct node, an already-mapped uniqued node, or \a ConstantAsMetadata) 311 /// is marked with \a Data::HasChanged. 312 /// 313 /// \return \c true if any nodes in \c G have \a Data::HasChanged. 314 /// \post \c G.POT is a post-order traversal ending with \c FirstN. 315 /// \post \a Data::hasChanged in \c G.Info indicates whether any node needs 316 /// to change because of operands outside the graph. 317 bool createPOT(UniquedGraph &G, const MDNode &FirstN); 318 319 /// Visit the operands of a uniqued node in the POT. 320 /// 321 /// Visit the operands in the range from \c I to \c E, returning the first 322 /// uniqued node we find that isn't yet in \c G. \c I is always advanced to 323 /// where to continue the loop through the operands. 324 /// 325 /// This sets \c HasChanged if any of the visited operands change. 326 MDNode *visitOperands(UniquedGraph &G, MDNode::op_iterator &I, 327 MDNode::op_iterator E, bool &HasChanged); 328 329 /// Map all the nodes in the given uniqued graph. 330 /// 331 /// This visits all the nodes in \c G in post-order, using the identity 332 /// mapping or creating a new node depending on \a Data::HasChanged. 333 /// 334 /// \pre \a getMappedOp() returns None for nodes in \c G, but not for any of 335 /// their operands outside of \c G. 336 /// \pre \a Data::HasChanged is true for a node in \c G iff any of its 337 /// operands have changed. 338 /// \post \a getMappedOp() returns the mapped node for every node in \c G. 339 void mapNodesInPOT(UniquedGraph &G); 340 341 /// Remap a node's operands using the given functor. 342 /// 343 /// Iterate through the operands of \c N and update them in place using \c 344 /// mapOperand. 345 /// 346 /// \pre N.isDistinct() or N.isTemporary(). 347 template <class OperandMapper> 348 void remapOperands(MDNode &N, OperandMapper mapOperand); 349 }; 350 351 } // end namespace 352 353 Value *Mapper::mapValue(const Value *V) { 354 ValueToValueMapTy::iterator I = getVM().find(V); 355 356 // If the value already exists in the map, use it. 357 if (I != getVM().end()) { 358 assert(I->second && "Unexpected null mapping"); 359 return I->second; 360 } 361 362 // If we have a materializer and it can materialize a value, use that. 363 if (auto *Materializer = getMaterializer()) { 364 if (Value *NewV = Materializer->materialize(const_cast<Value *>(V))) { 365 getVM()[V] = NewV; 366 return NewV; 367 } 368 } 369 370 // Global values do not need to be seeded into the VM if they 371 // are using the identity mapping. 372 if (isa<GlobalValue>(V)) { 373 if (Flags & RF_NullMapMissingGlobalValues) 374 return nullptr; 375 return getVM()[V] = const_cast<Value *>(V); 376 } 377 378 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 379 // Inline asm may need *type* remapping. 380 FunctionType *NewTy = IA->getFunctionType(); 381 if (TypeMapper) { 382 NewTy = cast<FunctionType>(TypeMapper->remapType(NewTy)); 383 384 if (NewTy != IA->getFunctionType()) 385 V = InlineAsm::get(NewTy, IA->getAsmString(), IA->getConstraintString(), 386 IA->hasSideEffects(), IA->isAlignStack()); 387 } 388 389 return getVM()[V] = const_cast<Value *>(V); 390 } 391 392 if (const auto *MDV = dyn_cast<MetadataAsValue>(V)) { 393 const Metadata *MD = MDV->getMetadata(); 394 395 if (auto *LAM = dyn_cast<LocalAsMetadata>(MD)) { 396 // Look through to grab the local value. 397 if (Value *LV = mapValue(LAM->getValue())) { 398 if (V == LAM->getValue()) 399 return const_cast<Value *>(V); 400 return MetadataAsValue::get(V->getContext(), ValueAsMetadata::get(LV)); 401 } 402 403 // FIXME: always return nullptr once Verifier::verifyDominatesUse() 404 // ensures metadata operands only reference defined SSA values. 405 return (Flags & RF_IgnoreMissingLocals) 406 ? nullptr 407 : MetadataAsValue::get(V->getContext(), 408 MDTuple::get(V->getContext(), None)); 409 } 410 411 // If this is a module-level metadata and we know that nothing at the module 412 // level is changing, then use an identity mapping. 413 if (Flags & RF_NoModuleLevelChanges) 414 return getVM()[V] = const_cast<Value *>(V); 415 416 // Map the metadata and turn it into a value. 417 auto *MappedMD = mapMetadata(MD); 418 if (MD == MappedMD) 419 return getVM()[V] = const_cast<Value *>(V); 420 return getVM()[V] = MetadataAsValue::get(V->getContext(), MappedMD); 421 } 422 423 // Okay, this either must be a constant (which may or may not be mappable) or 424 // is something that is not in the mapping table. 425 Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V)); 426 if (!C) 427 return nullptr; 428 429 if (BlockAddress *BA = dyn_cast<BlockAddress>(C)) 430 return mapBlockAddress(*BA); 431 432 // Otherwise, we have some other constant to remap. Start by checking to see 433 // if all operands have an identity remapping. 434 unsigned OpNo = 0, NumOperands = C->getNumOperands(); 435 Value *Mapped = nullptr; 436 for (; OpNo != NumOperands; ++OpNo) { 437 Value *Op = C->getOperand(OpNo); 438 Mapped = mapValue(Op); 439 if (Mapped != Op) 440 break; 441 } 442 443 // See if the type mapper wants to remap the type as well. 444 Type *NewTy = C->getType(); 445 if (TypeMapper) 446 NewTy = TypeMapper->remapType(NewTy); 447 448 // If the result type and all operands match up, then just insert an identity 449 // mapping. 450 if (OpNo == NumOperands && NewTy == C->getType()) 451 return getVM()[V] = C; 452 453 // Okay, we need to create a new constant. We've already processed some or 454 // all of the operands, set them all up now. 455 SmallVector<Constant*, 8> Ops; 456 Ops.reserve(NumOperands); 457 for (unsigned j = 0; j != OpNo; ++j) 458 Ops.push_back(cast<Constant>(C->getOperand(j))); 459 460 // If one of the operands mismatch, push it and the other mapped operands. 461 if (OpNo != NumOperands) { 462 Ops.push_back(cast<Constant>(Mapped)); 463 464 // Map the rest of the operands that aren't processed yet. 465 for (++OpNo; OpNo != NumOperands; ++OpNo) 466 Ops.push_back(cast<Constant>(mapValue(C->getOperand(OpNo)))); 467 } 468 Type *NewSrcTy = nullptr; 469 if (TypeMapper) 470 if (auto *GEPO = dyn_cast<GEPOperator>(C)) 471 NewSrcTy = TypeMapper->remapType(GEPO->getSourceElementType()); 472 473 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) 474 return getVM()[V] = CE->getWithOperands(Ops, NewTy, false, NewSrcTy); 475 if (isa<ConstantArray>(C)) 476 return getVM()[V] = ConstantArray::get(cast<ArrayType>(NewTy), Ops); 477 if (isa<ConstantStruct>(C)) 478 return getVM()[V] = ConstantStruct::get(cast<StructType>(NewTy), Ops); 479 if (isa<ConstantVector>(C)) 480 return getVM()[V] = ConstantVector::get(Ops); 481 // If this is a no-operand constant, it must be because the type was remapped. 482 if (isa<UndefValue>(C)) 483 return getVM()[V] = UndefValue::get(NewTy); 484 if (isa<ConstantAggregateZero>(C)) 485 return getVM()[V] = ConstantAggregateZero::get(NewTy); 486 assert(isa<ConstantPointerNull>(C)); 487 return getVM()[V] = ConstantPointerNull::get(cast<PointerType>(NewTy)); 488 } 489 490 Value *Mapper::mapBlockAddress(const BlockAddress &BA) { 491 Function *F = cast<Function>(mapValue(BA.getFunction())); 492 493 // F may not have materialized its initializer. In that case, create a 494 // dummy basic block for now, and replace it once we've materialized all 495 // the initializers. 496 BasicBlock *BB; 497 if (F->empty()) { 498 DelayedBBs.push_back(DelayedBasicBlock(BA)); 499 BB = DelayedBBs.back().TempBB.get(); 500 } else { 501 BB = cast_or_null<BasicBlock>(mapValue(BA.getBasicBlock())); 502 } 503 504 return getVM()[&BA] = BlockAddress::get(F, BB ? BB : BA.getBasicBlock()); 505 } 506 507 Metadata *Mapper::mapToMetadata(const Metadata *Key, Metadata *Val) { 508 getVM().MD()[Key].reset(Val); 509 return Val; 510 } 511 512 Metadata *Mapper::mapToSelf(const Metadata *MD) { 513 return mapToMetadata(MD, const_cast<Metadata *>(MD)); 514 } 515 516 Optional<Metadata *> MDNodeMapper::tryToMapOperand(const Metadata *Op) { 517 if (!Op) 518 return nullptr; 519 520 if (Optional<Metadata *> MappedOp = M.mapSimpleMetadata(Op)) { 521 #ifndef NDEBUG 522 if (auto *CMD = dyn_cast<ConstantAsMetadata>(Op)) 523 assert((!*MappedOp || M.getVM().count(CMD->getValue()) || 524 M.getVM().getMappedMD(Op)) && 525 "Expected Value to be memoized"); 526 else 527 assert((isa<MDString>(Op) || M.getVM().getMappedMD(Op)) && 528 "Expected result to be memoized"); 529 #endif 530 return *MappedOp; 531 } 532 533 const MDNode &N = *cast<MDNode>(Op); 534 if (N.isDistinct()) 535 return mapDistinctNode(N); 536 return None; 537 } 538 539 MDNode *MDNodeMapper::mapDistinctNode(const MDNode &N) { 540 assert(N.isDistinct() && "Expected a distinct node"); 541 assert(!M.getVM().getMappedMD(&N) && "Expected an unmapped node"); 542 DistinctWorklist.push_back(cast<MDNode>( 543 (M.Flags & RF_MoveDistinctMDs) 544 ? M.mapToSelf(&N) 545 : M.mapToMetadata(&N, MDNode::replaceWithDistinct(N.clone())))); 546 return DistinctWorklist.back(); 547 } 548 549 static ConstantAsMetadata *wrapConstantAsMetadata(const ConstantAsMetadata &CMD, 550 Value *MappedV) { 551 if (CMD.getValue() == MappedV) 552 return const_cast<ConstantAsMetadata *>(&CMD); 553 return MappedV ? ConstantAsMetadata::getConstant(MappedV) : nullptr; 554 } 555 556 Optional<Metadata *> MDNodeMapper::getMappedOp(const Metadata *Op) const { 557 if (!Op) 558 return nullptr; 559 560 if (Optional<Metadata *> MappedOp = M.getVM().getMappedMD(Op)) 561 return *MappedOp; 562 563 if (isa<MDString>(Op)) 564 return const_cast<Metadata *>(Op); 565 566 if (auto *CMD = dyn_cast<ConstantAsMetadata>(Op)) 567 return wrapConstantAsMetadata(*CMD, M.getVM().lookup(CMD->getValue())); 568 569 return None; 570 } 571 572 Metadata &MDNodeMapper::UniquedGraph::getFwdReference(MDNode &Op) { 573 auto Where = Info.find(&Op); 574 assert(Where != Info.end() && "Expected a valid reference"); 575 576 auto &OpD = Where->second; 577 if (!OpD.HasChanged) 578 return Op; 579 580 // Lazily construct a temporary node. 581 if (!OpD.Placeholder) 582 OpD.Placeholder = Op.clone(); 583 584 return *OpD.Placeholder; 585 } 586 587 template <class OperandMapper> 588 void MDNodeMapper::remapOperands(MDNode &N, OperandMapper mapOperand) { 589 assert(!N.isUniqued() && "Expected distinct or temporary nodes"); 590 for (unsigned I = 0, E = N.getNumOperands(); I != E; ++I) { 591 Metadata *Old = N.getOperand(I); 592 Metadata *New = mapOperand(Old); 593 594 if (Old != New) 595 N.replaceOperandWith(I, New); 596 } 597 } 598 599 namespace { 600 /// An entry in the worklist for the post-order traversal. 601 struct POTWorklistEntry { 602 MDNode *N; ///< Current node. 603 MDNode::op_iterator Op; ///< Current operand of \c N. 604 605 /// Keep a flag of whether operands have changed in the worklist to avoid 606 /// hitting the map in \a UniquedGraph. 607 bool HasChanged = false; 608 609 POTWorklistEntry(MDNode &N) : N(&N), Op(N.op_begin()) {} 610 }; 611 } // end namespace 612 613 bool MDNodeMapper::createPOT(UniquedGraph &G, const MDNode &FirstN) { 614 assert(G.Info.empty() && "Expected a fresh traversal"); 615 assert(FirstN.isUniqued() && "Expected uniqued node in POT"); 616 617 // Construct a post-order traversal of the uniqued subgraph under FirstN. 618 bool AnyChanges = false; 619 SmallVector<POTWorklistEntry, 16> Worklist; 620 Worklist.push_back(POTWorklistEntry(const_cast<MDNode &>(FirstN))); 621 (void)G.Info[&FirstN]; 622 while (!Worklist.empty()) { 623 // Start or continue the traversal through the this node's operands. 624 auto &WE = Worklist.back(); 625 if (MDNode *N = visitOperands(G, WE.Op, WE.N->op_end(), WE.HasChanged)) { 626 // Push a new node to traverse first. 627 Worklist.push_back(POTWorklistEntry(*N)); 628 continue; 629 } 630 631 // Push the node onto the POT. 632 assert(WE.N->isUniqued() && "Expected only uniqued nodes"); 633 assert(WE.Op == WE.N->op_end() && "Expected to visit all operands"); 634 auto &D = G.Info[WE.N]; 635 AnyChanges |= D.HasChanged = WE.HasChanged; 636 D.ID = G.POT.size(); 637 G.POT.push_back(WE.N); 638 639 // Pop the node off the worklist. 640 Worklist.pop_back(); 641 } 642 return AnyChanges; 643 } 644 645 MDNode *MDNodeMapper::visitOperands(UniquedGraph &G, MDNode::op_iterator &I, 646 MDNode::op_iterator E, bool &HasChanged) { 647 while (I != E) { 648 Metadata *Op = *I++; // Increment even on early return. 649 if (Optional<Metadata *> MappedOp = tryToMapOperand(Op)) { 650 // Check if the operand changes. 651 HasChanged |= Op != *MappedOp; 652 continue; 653 } 654 655 // A uniqued metadata node. 656 MDNode &OpN = *cast<MDNode>(Op); 657 assert(OpN.isUniqued() && 658 "Only uniqued operands cannot be mapped immediately"); 659 if (G.Info.insert(std::make_pair(&OpN, Data())).second) 660 return &OpN; // This is a new one. Return it. 661 } 662 return nullptr; 663 } 664 665 void MDNodeMapper::UniquedGraph::propagateChanges() { 666 bool AnyChanges; 667 do { 668 AnyChanges = false; 669 for (MDNode *N : POT) { 670 auto &D = Info[N]; 671 if (D.HasChanged) 672 continue; 673 674 if (!llvm::any_of(N->operands(), [&](const Metadata *Op) { 675 auto Where = Info.find(Op); 676 return Where != Info.end() && Where->second.HasChanged; 677 })) 678 continue; 679 680 AnyChanges = D.HasChanged = true; 681 } 682 } while (AnyChanges); 683 } 684 685 void MDNodeMapper::mapNodesInPOT(UniquedGraph &G) { 686 // Construct uniqued nodes, building forward references as necessary. 687 SmallVector<MDNode *, 16> CyclicNodes; 688 for (auto *N : G.POT) { 689 auto &D = G.Info[N]; 690 if (!D.HasChanged) { 691 // The node hasn't changed. 692 M.mapToSelf(N); 693 continue; 694 } 695 696 // Remember whether this node had a placeholder. 697 bool HadPlaceholder(D.Placeholder); 698 699 // Clone the uniqued node and remap the operands. 700 TempMDNode ClonedN = D.Placeholder ? std::move(D.Placeholder) : N->clone(); 701 remapOperands(*ClonedN, [this, &D, &G](Metadata *Old) { 702 if (Optional<Metadata *> MappedOp = getMappedOp(Old)) 703 return *MappedOp; 704 assert(G.Info[Old].ID > D.ID && "Expected a forward reference"); 705 return &G.getFwdReference(*cast<MDNode>(Old)); 706 }); 707 708 auto *NewN = MDNode::replaceWithUniqued(std::move(ClonedN)); 709 M.mapToMetadata(N, NewN); 710 711 // Nodes that were referenced out of order in the POT are involved in a 712 // uniquing cycle. 713 if (HadPlaceholder) 714 CyclicNodes.push_back(NewN); 715 } 716 717 // Resolve cycles. 718 for (auto *N : CyclicNodes) 719 if (!N->isResolved()) 720 N->resolveCycles(); 721 } 722 723 Metadata *MDNodeMapper::map(const MDNode &N) { 724 assert(DistinctWorklist.empty() && "MDNodeMapper::map is not recursive"); 725 assert(!(M.Flags & RF_NoModuleLevelChanges) && 726 "MDNodeMapper::map assumes module-level changes"); 727 728 // Require resolved nodes whenever metadata might be remapped. 729 assert(N.isResolved() && "Unexpected unresolved node"); 730 731 Metadata *MappedN = 732 N.isUniqued() ? mapTopLevelUniquedNode(N) : mapDistinctNode(N); 733 while (!DistinctWorklist.empty()) 734 remapOperands(*DistinctWorklist.pop_back_val(), [this](Metadata *Old) { 735 if (Optional<Metadata *> MappedOp = tryToMapOperand(Old)) 736 return *MappedOp; 737 return mapTopLevelUniquedNode(*cast<MDNode>(Old)); 738 }); 739 return MappedN; 740 } 741 742 Metadata *MDNodeMapper::mapTopLevelUniquedNode(const MDNode &FirstN) { 743 assert(FirstN.isUniqued() && "Expected uniqued node"); 744 745 // Create a post-order traversal of uniqued nodes under FirstN. 746 UniquedGraph G; 747 if (!createPOT(G, FirstN)) { 748 // Return early if no nodes have changed. 749 for (const MDNode *N : G.POT) 750 M.mapToSelf(N); 751 return &const_cast<MDNode &>(FirstN); 752 } 753 754 // Update graph with all nodes that have changed. 755 G.propagateChanges(); 756 757 // Map all the nodes in the graph. 758 mapNodesInPOT(G); 759 760 // Return the original node, remapped. 761 return *getMappedOp(&FirstN); 762 } 763 764 namespace { 765 766 struct MapMetadataDisabler { 767 ValueToValueMapTy &VM; 768 769 MapMetadataDisabler(ValueToValueMapTy &VM) : VM(VM) { 770 VM.disableMapMetadata(); 771 } 772 ~MapMetadataDisabler() { VM.enableMapMetadata(); } 773 }; 774 775 } // end namespace 776 777 Optional<Metadata *> Mapper::mapSimpleMetadata(const Metadata *MD) { 778 // If the value already exists in the map, use it. 779 if (Optional<Metadata *> NewMD = getVM().getMappedMD(MD)) 780 return *NewMD; 781 782 if (isa<MDString>(MD)) 783 return const_cast<Metadata *>(MD); 784 785 // This is a module-level metadata. If nothing at the module level is 786 // changing, use an identity mapping. 787 if ((Flags & RF_NoModuleLevelChanges)) 788 return const_cast<Metadata *>(MD); 789 790 if (auto *CMD = dyn_cast<ConstantAsMetadata>(MD)) { 791 // Disallow recursion into metadata mapping through mapValue. 792 MapMetadataDisabler MMD(getVM()); 793 794 // Don't memoize ConstantAsMetadata. Instead of lasting until the 795 // LLVMContext is destroyed, they can be deleted when the GlobalValue they 796 // reference is destructed. These aren't super common, so the extra 797 // indirection isn't that expensive. 798 return wrapConstantAsMetadata(*CMD, mapValue(CMD->getValue())); 799 } 800 801 assert(isa<MDNode>(MD) && "Expected a metadata node"); 802 803 return None; 804 } 805 806 Metadata *Mapper::mapLocalAsMetadata(const LocalAsMetadata &LAM) { 807 // Lookup the mapping for the value itself, and return the appropriate 808 // metadata. 809 if (Value *V = mapValue(LAM.getValue())) { 810 if (V == LAM.getValue()) 811 return const_cast<LocalAsMetadata *>(&LAM); 812 return ValueAsMetadata::get(V); 813 } 814 815 // FIXME: always return nullptr once Verifier::verifyDominatesUse() ensures 816 // metadata operands only reference defined SSA values. 817 return (Flags & RF_IgnoreMissingLocals) 818 ? nullptr 819 : MDTuple::get(LAM.getContext(), None); 820 } 821 822 Metadata *Mapper::mapMetadata(const Metadata *MD) { 823 assert(MD && "Expected valid metadata"); 824 assert(!isa<LocalAsMetadata>(MD) && "Unexpected local metadata"); 825 826 if (Optional<Metadata *> NewMD = mapSimpleMetadata(MD)) 827 return *NewMD; 828 829 return MDNodeMapper(*this).map(*cast<MDNode>(MD)); 830 } 831 832 void Mapper::flush() { 833 // Flush out the worklist of global values. 834 while (!Worklist.empty()) { 835 WorklistEntry E = Worklist.pop_back_val(); 836 CurrentMCID = E.MCID; 837 switch (E.Kind) { 838 case WorklistEntry::MapGlobalInit: 839 E.Data.GVInit.GV->setInitializer(mapConstant(E.Data.GVInit.Init)); 840 break; 841 case WorklistEntry::MapAppendingVar: { 842 unsigned PrefixSize = AppendingInits.size() - E.AppendingGVNumNewMembers; 843 mapAppendingVariable(*E.Data.AppendingGV.GV, 844 E.Data.AppendingGV.InitPrefix, 845 E.AppendingGVIsOldCtorDtor, 846 makeArrayRef(AppendingInits).slice(PrefixSize)); 847 AppendingInits.resize(PrefixSize); 848 break; 849 } 850 case WorklistEntry::MapGlobalAliasee: 851 E.Data.GlobalAliasee.GA->setAliasee( 852 mapConstant(E.Data.GlobalAliasee.Aliasee)); 853 break; 854 case WorklistEntry::RemapFunction: 855 remapFunction(*E.Data.RemapF); 856 break; 857 } 858 } 859 CurrentMCID = 0; 860 861 // Finish logic for block addresses now that all global values have been 862 // handled. 863 while (!DelayedBBs.empty()) { 864 DelayedBasicBlock DBB = DelayedBBs.pop_back_val(); 865 BasicBlock *BB = cast_or_null<BasicBlock>(mapValue(DBB.OldBB)); 866 DBB.TempBB->replaceAllUsesWith(BB ? BB : DBB.OldBB); 867 } 868 } 869 870 void Mapper::remapInstruction(Instruction *I) { 871 // Remap operands. 872 for (Use &Op : I->operands()) { 873 Value *V = mapValue(Op); 874 // If we aren't ignoring missing entries, assert that something happened. 875 if (V) 876 Op = V; 877 else 878 assert((Flags & RF_IgnoreMissingLocals) && 879 "Referenced value not in value map!"); 880 } 881 882 // Remap phi nodes' incoming blocks. 883 if (PHINode *PN = dyn_cast<PHINode>(I)) { 884 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 885 Value *V = mapValue(PN->getIncomingBlock(i)); 886 // If we aren't ignoring missing entries, assert that something happened. 887 if (V) 888 PN->setIncomingBlock(i, cast<BasicBlock>(V)); 889 else 890 assert((Flags & RF_IgnoreMissingLocals) && 891 "Referenced block not in value map!"); 892 } 893 } 894 895 // Remap attached metadata. 896 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 897 I->getAllMetadata(MDs); 898 for (const auto &MI : MDs) { 899 MDNode *Old = MI.second; 900 MDNode *New = cast_or_null<MDNode>(mapMetadata(Old)); 901 if (New != Old) 902 I->setMetadata(MI.first, New); 903 } 904 905 if (!TypeMapper) 906 return; 907 908 // If the instruction's type is being remapped, do so now. 909 if (auto CS = CallSite(I)) { 910 SmallVector<Type *, 3> Tys; 911 FunctionType *FTy = CS.getFunctionType(); 912 Tys.reserve(FTy->getNumParams()); 913 for (Type *Ty : FTy->params()) 914 Tys.push_back(TypeMapper->remapType(Ty)); 915 CS.mutateFunctionType(FunctionType::get( 916 TypeMapper->remapType(I->getType()), Tys, FTy->isVarArg())); 917 return; 918 } 919 if (auto *AI = dyn_cast<AllocaInst>(I)) 920 AI->setAllocatedType(TypeMapper->remapType(AI->getAllocatedType())); 921 if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) { 922 GEP->setSourceElementType( 923 TypeMapper->remapType(GEP->getSourceElementType())); 924 GEP->setResultElementType( 925 TypeMapper->remapType(GEP->getResultElementType())); 926 } 927 I->mutateType(TypeMapper->remapType(I->getType())); 928 } 929 930 void Mapper::remapFunction(Function &F) { 931 // Remap the operands. 932 for (Use &Op : F.operands()) 933 if (Op) 934 Op = mapValue(Op); 935 936 // Remap the metadata attachments. 937 SmallVector<std::pair<unsigned, MDNode *>, 8> MDs; 938 F.getAllMetadata(MDs); 939 for (const auto &I : MDs) 940 F.setMetadata(I.first, cast_or_null<MDNode>(mapMetadata(I.second))); 941 942 // Remap the argument types. 943 if (TypeMapper) 944 for (Argument &A : F.args()) 945 A.mutateType(TypeMapper->remapType(A.getType())); 946 947 // Remap the instructions. 948 for (BasicBlock &BB : F) 949 for (Instruction &I : BB) 950 remapInstruction(&I); 951 } 952 953 void Mapper::mapAppendingVariable(GlobalVariable &GV, Constant *InitPrefix, 954 bool IsOldCtorDtor, 955 ArrayRef<Constant *> NewMembers) { 956 SmallVector<Constant *, 16> Elements; 957 if (InitPrefix) { 958 unsigned NumElements = 959 cast<ArrayType>(InitPrefix->getType())->getNumElements(); 960 for (unsigned I = 0; I != NumElements; ++I) 961 Elements.push_back(InitPrefix->getAggregateElement(I)); 962 } 963 964 PointerType *VoidPtrTy; 965 Type *EltTy; 966 if (IsOldCtorDtor) { 967 // FIXME: This upgrade is done during linking to support the C API. See 968 // also IRLinker::linkAppendingVarProto() in IRMover.cpp. 969 VoidPtrTy = Type::getInt8Ty(GV.getContext())->getPointerTo(); 970 auto &ST = *cast<StructType>(NewMembers.front()->getType()); 971 Type *Tys[3] = {ST.getElementType(0), ST.getElementType(1), VoidPtrTy}; 972 EltTy = StructType::get(GV.getContext(), Tys, false); 973 } 974 975 for (auto *V : NewMembers) { 976 Constant *NewV; 977 if (IsOldCtorDtor) { 978 auto *S = cast<ConstantStruct>(V); 979 auto *E1 = mapValue(S->getOperand(0)); 980 auto *E2 = mapValue(S->getOperand(1)); 981 Value *Null = Constant::getNullValue(VoidPtrTy); 982 NewV = 983 ConstantStruct::get(cast<StructType>(EltTy), E1, E2, Null, nullptr); 984 } else { 985 NewV = cast_or_null<Constant>(mapValue(V)); 986 } 987 Elements.push_back(NewV); 988 } 989 990 GV.setInitializer(ConstantArray::get( 991 cast<ArrayType>(GV.getType()->getElementType()), Elements)); 992 } 993 994 void Mapper::scheduleMapGlobalInitializer(GlobalVariable &GV, Constant &Init, 995 unsigned MCID) { 996 assert(AlreadyScheduled.insert(&GV).second && "Should not reschedule"); 997 assert(MCID < MCs.size() && "Invalid mapping context"); 998 999 WorklistEntry WE; 1000 WE.Kind = WorklistEntry::MapGlobalInit; 1001 WE.MCID = MCID; 1002 WE.Data.GVInit.GV = &GV; 1003 WE.Data.GVInit.Init = &Init; 1004 Worklist.push_back(WE); 1005 } 1006 1007 void Mapper::scheduleMapAppendingVariable(GlobalVariable &GV, 1008 Constant *InitPrefix, 1009 bool IsOldCtorDtor, 1010 ArrayRef<Constant *> NewMembers, 1011 unsigned MCID) { 1012 assert(AlreadyScheduled.insert(&GV).second && "Should not reschedule"); 1013 assert(MCID < MCs.size() && "Invalid mapping context"); 1014 1015 WorklistEntry WE; 1016 WE.Kind = WorklistEntry::MapAppendingVar; 1017 WE.MCID = MCID; 1018 WE.Data.AppendingGV.GV = &GV; 1019 WE.Data.AppendingGV.InitPrefix = InitPrefix; 1020 WE.AppendingGVIsOldCtorDtor = IsOldCtorDtor; 1021 WE.AppendingGVNumNewMembers = NewMembers.size(); 1022 Worklist.push_back(WE); 1023 AppendingInits.append(NewMembers.begin(), NewMembers.end()); 1024 } 1025 1026 void Mapper::scheduleMapGlobalAliasee(GlobalAlias &GA, Constant &Aliasee, 1027 unsigned MCID) { 1028 assert(AlreadyScheduled.insert(&GA).second && "Should not reschedule"); 1029 assert(MCID < MCs.size() && "Invalid mapping context"); 1030 1031 WorklistEntry WE; 1032 WE.Kind = WorklistEntry::MapGlobalAliasee; 1033 WE.MCID = MCID; 1034 WE.Data.GlobalAliasee.GA = &GA; 1035 WE.Data.GlobalAliasee.Aliasee = &Aliasee; 1036 Worklist.push_back(WE); 1037 } 1038 1039 void Mapper::scheduleRemapFunction(Function &F, unsigned MCID) { 1040 assert(AlreadyScheduled.insert(&F).second && "Should not reschedule"); 1041 assert(MCID < MCs.size() && "Invalid mapping context"); 1042 1043 WorklistEntry WE; 1044 WE.Kind = WorklistEntry::RemapFunction; 1045 WE.MCID = MCID; 1046 WE.Data.RemapF = &F; 1047 Worklist.push_back(WE); 1048 } 1049 1050 void Mapper::addFlags(RemapFlags Flags) { 1051 assert(!hasWorkToDo() && "Expected to have flushed the worklist"); 1052 this->Flags = this->Flags | Flags; 1053 } 1054 1055 static Mapper *getAsMapper(void *pImpl) { 1056 return reinterpret_cast<Mapper *>(pImpl); 1057 } 1058 1059 namespace { 1060 1061 class FlushingMapper { 1062 Mapper &M; 1063 1064 public: 1065 explicit FlushingMapper(void *pImpl) : M(*getAsMapper(pImpl)) { 1066 assert(!M.hasWorkToDo() && "Expected to be flushed"); 1067 } 1068 ~FlushingMapper() { M.flush(); } 1069 Mapper *operator->() const { return &M; } 1070 }; 1071 1072 } // end namespace 1073 1074 ValueMapper::ValueMapper(ValueToValueMapTy &VM, RemapFlags Flags, 1075 ValueMapTypeRemapper *TypeMapper, 1076 ValueMaterializer *Materializer) 1077 : pImpl(new Mapper(VM, Flags, TypeMapper, Materializer)) {} 1078 1079 ValueMapper::~ValueMapper() { delete getAsMapper(pImpl); } 1080 1081 unsigned 1082 ValueMapper::registerAlternateMappingContext(ValueToValueMapTy &VM, 1083 ValueMaterializer *Materializer) { 1084 return getAsMapper(pImpl)->registerAlternateMappingContext(VM, Materializer); 1085 } 1086 1087 void ValueMapper::addFlags(RemapFlags Flags) { 1088 FlushingMapper(pImpl)->addFlags(Flags); 1089 } 1090 1091 Value *ValueMapper::mapValue(const Value &V) { 1092 return FlushingMapper(pImpl)->mapValue(&V); 1093 } 1094 1095 Constant *ValueMapper::mapConstant(const Constant &C) { 1096 return cast_or_null<Constant>(mapValue(C)); 1097 } 1098 1099 Metadata *ValueMapper::mapMetadata(const Metadata &MD) { 1100 return FlushingMapper(pImpl)->mapMetadata(&MD); 1101 } 1102 1103 MDNode *ValueMapper::mapMDNode(const MDNode &N) { 1104 return cast_or_null<MDNode>(mapMetadata(N)); 1105 } 1106 1107 void ValueMapper::remapInstruction(Instruction &I) { 1108 FlushingMapper(pImpl)->remapInstruction(&I); 1109 } 1110 1111 void ValueMapper::remapFunction(Function &F) { 1112 FlushingMapper(pImpl)->remapFunction(F); 1113 } 1114 1115 void ValueMapper::scheduleMapGlobalInitializer(GlobalVariable &GV, 1116 Constant &Init, 1117 unsigned MCID) { 1118 getAsMapper(pImpl)->scheduleMapGlobalInitializer(GV, Init, MCID); 1119 } 1120 1121 void ValueMapper::scheduleMapAppendingVariable(GlobalVariable &GV, 1122 Constant *InitPrefix, 1123 bool IsOldCtorDtor, 1124 ArrayRef<Constant *> NewMembers, 1125 unsigned MCID) { 1126 getAsMapper(pImpl)->scheduleMapAppendingVariable( 1127 GV, InitPrefix, IsOldCtorDtor, NewMembers, MCID); 1128 } 1129 1130 void ValueMapper::scheduleMapGlobalAliasee(GlobalAlias &GA, Constant &Aliasee, 1131 unsigned MCID) { 1132 getAsMapper(pImpl)->scheduleMapGlobalAliasee(GA, Aliasee, MCID); 1133 } 1134 1135 void ValueMapper::scheduleRemapFunction(Function &F, unsigned MCID) { 1136 getAsMapper(pImpl)->scheduleRemapFunction(F, MCID); 1137 } 1138