1 //===- ValueMapper.cpp - Interface shared by lib/Transforms/Utils ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the MapValue function, which is shared by various parts of 11 // the lib/Transforms/Utils library. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Utils/ValueMapper.h" 16 #include "llvm/ADT/DenseSet.h" 17 #include "llvm/IR/CallSite.h" 18 #include "llvm/IR/Constants.h" 19 #include "llvm/IR/DebugInfoMetadata.h" 20 #include "llvm/IR/Function.h" 21 #include "llvm/IR/GlobalAlias.h" 22 #include "llvm/IR/GlobalVariable.h" 23 #include "llvm/IR/InlineAsm.h" 24 #include "llvm/IR/Instructions.h" 25 #include "llvm/IR/Metadata.h" 26 #include "llvm/IR/Operator.h" 27 using namespace llvm; 28 29 // Out of line method to get vtable etc for class. 30 void ValueMapTypeRemapper::anchor() {} 31 void ValueMaterializer::anchor() {} 32 33 namespace { 34 35 /// A basic block used in a BlockAddress whose function body is not yet 36 /// materialized. 37 struct DelayedBasicBlock { 38 BasicBlock *OldBB; 39 std::unique_ptr<BasicBlock> TempBB; 40 41 // Explicit move for MSVC. 42 DelayedBasicBlock(DelayedBasicBlock &&X) 43 : OldBB(std::move(X.OldBB)), TempBB(std::move(X.TempBB)) {} 44 DelayedBasicBlock &operator=(DelayedBasicBlock &&X) { 45 OldBB = std::move(X.OldBB); 46 TempBB = std::move(X.TempBB); 47 return *this; 48 } 49 50 DelayedBasicBlock(const BlockAddress &Old) 51 : OldBB(Old.getBasicBlock()), 52 TempBB(BasicBlock::Create(Old.getContext())) {} 53 }; 54 55 struct WorklistEntry { 56 enum EntryKind { 57 MapGlobalInit, 58 MapAppendingVar, 59 MapGlobalAliasee, 60 RemapFunction 61 }; 62 struct GVInitTy { 63 GlobalVariable *GV; 64 Constant *Init; 65 }; 66 struct AppendingGVTy { 67 GlobalVariable *GV; 68 Constant *InitPrefix; 69 }; 70 struct GlobalAliaseeTy { 71 GlobalAlias *GA; 72 Constant *Aliasee; 73 }; 74 75 unsigned Kind : 2; 76 unsigned MCID : 29; 77 unsigned AppendingGVIsOldCtorDtor : 1; 78 unsigned AppendingGVNumNewMembers; 79 union { 80 GVInitTy GVInit; 81 AppendingGVTy AppendingGV; 82 GlobalAliaseeTy GlobalAliasee; 83 Function *RemapF; 84 } Data; 85 }; 86 87 struct MappingContext { 88 ValueToValueMapTy *VM; 89 ValueMaterializer *Materializer = nullptr; 90 91 /// Construct a MappingContext with a value map and materializer. 92 explicit MappingContext(ValueToValueMapTy &VM, 93 ValueMaterializer *Materializer = nullptr) 94 : VM(&VM), Materializer(Materializer) {} 95 }; 96 97 class MDNodeMapper; 98 class Mapper { 99 friend class MDNodeMapper; 100 101 #ifndef NDEBUG 102 DenseSet<GlobalValue *> AlreadyScheduled; 103 #endif 104 105 RemapFlags Flags; 106 ValueMapTypeRemapper *TypeMapper; 107 unsigned CurrentMCID = 0; 108 SmallVector<MappingContext, 2> MCs; 109 SmallVector<WorklistEntry, 4> Worklist; 110 SmallVector<DelayedBasicBlock, 1> DelayedBBs; 111 SmallVector<Constant *, 16> AppendingInits; 112 113 public: 114 Mapper(ValueToValueMapTy &VM, RemapFlags Flags, 115 ValueMapTypeRemapper *TypeMapper, ValueMaterializer *Materializer) 116 : Flags(Flags), TypeMapper(TypeMapper), 117 MCs(1, MappingContext(VM, Materializer)) {} 118 119 /// ValueMapper should explicitly call \a flush() before destruction. 120 ~Mapper() { assert(!hasWorkToDo() && "Expected to be flushed"); } 121 122 bool hasWorkToDo() const { return !Worklist.empty(); } 123 124 unsigned 125 registerAlternateMappingContext(ValueToValueMapTy &VM, 126 ValueMaterializer *Materializer = nullptr) { 127 MCs.push_back(MappingContext(VM, Materializer)); 128 return MCs.size() - 1; 129 } 130 131 void addFlags(RemapFlags Flags); 132 133 Value *mapValue(const Value *V); 134 void remapInstruction(Instruction *I); 135 void remapFunction(Function &F); 136 137 Constant *mapConstant(const Constant *C) { 138 return cast_or_null<Constant>(mapValue(C)); 139 } 140 141 /// Map metadata. 142 /// 143 /// Find the mapping for MD. Guarantees that the return will be resolved 144 /// (not an MDNode, or MDNode::isResolved() returns true). 145 Metadata *mapMetadata(const Metadata *MD); 146 147 // Map LocalAsMetadata, which never gets memoized. 148 // 149 // If the referenced local is not mapped, the principled return is nullptr. 150 // However, optimization passes sometimes move metadata operands *before* the 151 // SSA values they reference. To prevent crashes in \a RemapInstruction(), 152 // return "!{}" when RF_IgnoreMissingLocals is not set. 153 // 154 // \note Adding a mapping for LocalAsMetadata is unsupported. Add a mapping 155 // to the value map for the SSA value in question instead. 156 // 157 // FIXME: Once we have a verifier check for forward references to SSA values 158 // through metadata operands, always return nullptr on unmapped locals. 159 Metadata *mapLocalAsMetadata(const LocalAsMetadata &LAM); 160 161 void scheduleMapGlobalInitializer(GlobalVariable &GV, Constant &Init, 162 unsigned MCID); 163 void scheduleMapAppendingVariable(GlobalVariable &GV, Constant *InitPrefix, 164 bool IsOldCtorDtor, 165 ArrayRef<Constant *> NewMembers, 166 unsigned MCID); 167 void scheduleMapGlobalAliasee(GlobalAlias &GA, Constant &Aliasee, 168 unsigned MCID); 169 void scheduleRemapFunction(Function &F, unsigned MCID); 170 171 void flush(); 172 173 private: 174 void mapGlobalInitializer(GlobalVariable &GV, Constant &Init); 175 void mapAppendingVariable(GlobalVariable &GV, Constant *InitPrefix, 176 bool IsOldCtorDtor, 177 ArrayRef<Constant *> NewMembers); 178 void mapGlobalAliasee(GlobalAlias &GA, Constant &Aliasee); 179 void remapFunction(Function &F, ValueToValueMapTy &VM); 180 181 ValueToValueMapTy &getVM() { return *MCs[CurrentMCID].VM; } 182 ValueMaterializer *getMaterializer() { return MCs[CurrentMCID].Materializer; } 183 184 Value *mapBlockAddress(const BlockAddress &BA); 185 186 /// Map metadata that doesn't require visiting operands. 187 Optional<Metadata *> mapSimpleMetadata(const Metadata *MD); 188 189 Metadata *mapToMetadata(const Metadata *Key, Metadata *Val); 190 Metadata *mapToSelf(const Metadata *MD); 191 }; 192 193 class MDNodeMapper { 194 Mapper &M; 195 196 /// Data about a node in \a UniquedGraph. 197 struct Data { 198 bool HasChanged = false; 199 unsigned ID = ~0u; 200 TempMDNode Placeholder; 201 202 Data() {} 203 Data(Data &&X) 204 : HasChanged(std::move(X.HasChanged)), ID(std::move(X.ID)), 205 Placeholder(std::move(X.Placeholder)) {} 206 Data &operator=(Data &&X) { 207 HasChanged = std::move(X.HasChanged); 208 ID = std::move(X.ID); 209 Placeholder = std::move(X.Placeholder); 210 return *this; 211 } 212 }; 213 214 /// A graph of uniqued nodes. 215 struct UniquedGraph { 216 SmallDenseMap<const Metadata *, Data, 32> Info; // Node properties. 217 SmallVector<MDNode *, 16> POT; // Post-order traversal. 218 219 /// Propagate changed operands through the post-order traversal. 220 /// 221 /// Iteratively update \a Data::HasChanged for each node based on \a 222 /// Data::HasChanged of its operands, until fixed point. 223 void propagateChanges(); 224 225 /// Get a forward reference to a node to use as an operand. 226 Metadata &getFwdReference(MDNode &Op); 227 }; 228 229 /// Worklist of distinct nodes whose operands need to be remapped. 230 SmallVector<MDNode *, 16> DistinctWorklist; 231 232 // Storage for a UniquedGraph. 233 SmallDenseMap<const Metadata *, Data, 32> InfoStorage; 234 SmallVector<MDNode *, 16> POTStorage; 235 236 public: 237 MDNodeMapper(Mapper &M) : M(M) {} 238 239 /// Map a metadata node (and its transitive operands). 240 /// 241 /// Map all the (unmapped) nodes in the subgraph under \c N. The iterative 242 /// algorithm handles distinct nodes and uniqued node subgraphs using 243 /// different strategies. 244 /// 245 /// Distinct nodes are immediately mapped and added to \a DistinctWorklist 246 /// using \a mapDistinctNode(). Their mapping can always be computed 247 /// immediately without visiting operands, even if their operands change. 248 /// 249 /// The mapping for uniqued nodes depends on whether their operands change. 250 /// \a mapTopLevelUniquedNode() traverses the transitive uniqued subgraph of 251 /// a node to calculate uniqued node mappings in bulk. Distinct leafs are 252 /// added to \a DistinctWorklist with \a mapDistinctNode(). 253 /// 254 /// After mapping \c N itself, this function remaps the operands of the 255 /// distinct nodes in \a DistinctWorklist until the entire subgraph under \c 256 /// N has been mapped. 257 Metadata *map(const MDNode &N); 258 259 private: 260 /// Map a top-level uniqued node and the uniqued subgraph underneath it. 261 /// 262 /// This builds up a post-order traversal of the (unmapped) uniqued subgraph 263 /// underneath \c FirstN and calculates the nodes' mapping. Each node uses 264 /// the identity mapping (\a Mapper::mapToSelf()) as long as all of its 265 /// operands uses the identity mapping. 266 /// 267 /// The algorithm works as follows: 268 /// 269 /// 1. \a createPOT(): traverse the uniqued subgraph under \c FirstN and 270 /// save the post-order traversal in the given \a UniquedGraph, tracking 271 /// nodes' operands change. 272 /// 273 /// 2. \a UniquedGraph::propagateChanges(): propagate changed operands 274 /// through the \a UniquedGraph until fixed point, following the rule 275 /// that if a node changes, any node that references must also change. 276 /// 277 /// 3. \a mapNodesInPOT(): map the uniqued nodes, creating new uniqued nodes 278 /// (referencing new operands) where necessary. 279 Metadata *mapTopLevelUniquedNode(const MDNode &FirstN); 280 281 /// Try to map the operand of an \a MDNode. 282 /// 283 /// If \c Op is already mapped, return the mapping. If it's not an \a 284 /// MDNode, compute and return the mapping. If it's a distinct \a MDNode, 285 /// return the result of \a mapDistinctNode(). 286 /// 287 /// \return None if \c Op is an unmapped uniqued \a MDNode. 288 /// \post getMappedOp(Op) only returns None if this returns None. 289 Optional<Metadata *> tryToMapOperand(const Metadata *Op); 290 291 /// Map a distinct node. 292 /// 293 /// Return the mapping for the distinct node \c N, saving the result in \a 294 /// DistinctWorklist for later remapping. 295 /// 296 /// \pre \c N is not yet mapped. 297 /// \pre \c N.isDistinct(). 298 MDNode *mapDistinctNode(const MDNode &N); 299 300 /// Get a previously mapped node. 301 Optional<Metadata *> getMappedOp(const Metadata *Op) const; 302 303 /// Create a post-order traversal of an unmapped uniqued node subgraph. 304 /// 305 /// This traverses the metadata graph deeply enough to map \c FirstN. It 306 /// uses \a tryToMapOperand() (via \a Mapper::mapSimplifiedNode()), so any 307 /// metadata that has already been mapped will not be part of the POT. 308 /// 309 /// Each node that has a changed operand from outside the graph (e.g., a 310 /// distinct node, an already-mapped uniqued node, or \a ConstantAsMetadata) 311 /// is marked with \a Data::HasChanged. 312 /// 313 /// \return \c true if any nodes in \c G have \a Data::HasChanged. 314 /// \post \c G.POT is a post-order traversal ending with \c FirstN. 315 /// \post \a Data::hasChanged in \c G.Info indicates whether any node needs 316 /// to change because of operands outside the graph. 317 bool createPOT(UniquedGraph &G, const MDNode &FirstN); 318 319 /// Visit the operands of a uniqued node in the POT. 320 /// 321 /// Visit the operands in the range from \c I to \c E, returning the first 322 /// uniqued node we find that isn't yet in \c G. \c I is always advanced to 323 /// where to continue the loop through the operands. 324 /// 325 /// This sets \c HasChanged if any of the visited operands change. 326 MDNode *visitOperands(UniquedGraph &G, MDNode::op_iterator &I, 327 MDNode::op_iterator E, bool &HasChanged); 328 329 /// Map all the nodes in the given uniqued graph. 330 /// 331 /// This visits all the nodes in \c G in post-order, using the identity 332 /// mapping or creating a new node depending on \a Data::HasChanged. 333 /// 334 /// \pre \a getMappedOp() returns None for nodes in \c G, but not for any of 335 /// their operands outside of \c G. 336 /// \pre \a Data::HasChanged is true for a node in \c G iff any of its 337 /// operands have changed. 338 /// \post \a getMappedOp() returns the mapped node for every node in \c G. 339 void mapNodesInPOT(UniquedGraph &G); 340 341 /// Remap a node's operands using the given functor. 342 /// 343 /// Iterate through the operands of \c N and update them in place using \c 344 /// mapOperand. 345 /// 346 /// \pre N.isDistinct() or N.isTemporary(). 347 template <class OperandMapper> 348 void remapOperands(MDNode &N, OperandMapper mapOperand); 349 }; 350 351 } // end namespace 352 353 Value *Mapper::mapValue(const Value *V) { 354 ValueToValueMapTy::iterator I = getVM().find(V); 355 356 // If the value already exists in the map, use it. 357 if (I != getVM().end()) { 358 assert(I->second && "Unexpected null mapping"); 359 return I->second; 360 } 361 362 // If we have a materializer and it can materialize a value, use that. 363 if (auto *Materializer = getMaterializer()) { 364 if (Value *NewV = Materializer->materialize(const_cast<Value *>(V))) { 365 getVM()[V] = NewV; 366 return NewV; 367 } 368 } 369 370 // Global values do not need to be seeded into the VM if they 371 // are using the identity mapping. 372 if (isa<GlobalValue>(V)) { 373 if (Flags & RF_NullMapMissingGlobalValues) 374 return nullptr; 375 return getVM()[V] = const_cast<Value *>(V); 376 } 377 378 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 379 // Inline asm may need *type* remapping. 380 FunctionType *NewTy = IA->getFunctionType(); 381 if (TypeMapper) { 382 NewTy = cast<FunctionType>(TypeMapper->remapType(NewTy)); 383 384 if (NewTy != IA->getFunctionType()) 385 V = InlineAsm::get(NewTy, IA->getAsmString(), IA->getConstraintString(), 386 IA->hasSideEffects(), IA->isAlignStack()); 387 } 388 389 return getVM()[V] = const_cast<Value *>(V); 390 } 391 392 if (const auto *MDV = dyn_cast<MetadataAsValue>(V)) { 393 const Metadata *MD = MDV->getMetadata(); 394 395 if (auto *LAM = dyn_cast<LocalAsMetadata>(MD)) { 396 // Look through to grab the local value. 397 if (Value *LV = mapValue(LAM->getValue())) { 398 if (V == LAM->getValue()) 399 return const_cast<Value *>(V); 400 return MetadataAsValue::get(V->getContext(), ValueAsMetadata::get(LV)); 401 } 402 403 // FIXME: always return nullptr once Verifier::verifyDominatesUse() 404 // ensures metadata operands only reference defined SSA values. 405 return (Flags & RF_IgnoreMissingLocals) 406 ? nullptr 407 : MetadataAsValue::get(V->getContext(), 408 MDTuple::get(V->getContext(), None)); 409 } 410 411 // If this is a module-level metadata and we know that nothing at the module 412 // level is changing, then use an identity mapping. 413 if (Flags & RF_NoModuleLevelChanges) 414 return getVM()[V] = const_cast<Value *>(V); 415 416 // Map the metadata and turn it into a value. 417 auto *MappedMD = mapMetadata(MD); 418 if (MD == MappedMD) 419 return getVM()[V] = const_cast<Value *>(V); 420 return getVM()[V] = MetadataAsValue::get(V->getContext(), MappedMD); 421 } 422 423 // Okay, this either must be a constant (which may or may not be mappable) or 424 // is something that is not in the mapping table. 425 Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V)); 426 if (!C) 427 return nullptr; 428 429 if (BlockAddress *BA = dyn_cast<BlockAddress>(C)) 430 return mapBlockAddress(*BA); 431 432 auto mapValueOrNull = [this](Value *V) { 433 auto Mapped = mapValue(V); 434 assert((Mapped || (Flags & RF_NullMapMissingGlobalValues)) && 435 "Unexpected null mapping for constant operand without " 436 "NullMapMissingGlobalValues flag"); 437 return Mapped; 438 }; 439 440 // Otherwise, we have some other constant to remap. Start by checking to see 441 // if all operands have an identity remapping. 442 unsigned OpNo = 0, NumOperands = C->getNumOperands(); 443 Value *Mapped = nullptr; 444 for (; OpNo != NumOperands; ++OpNo) { 445 Value *Op = C->getOperand(OpNo); 446 Mapped = mapValueOrNull(Op); 447 if (!Mapped) 448 return nullptr; 449 if (Mapped != Op) 450 break; 451 } 452 453 // See if the type mapper wants to remap the type as well. 454 Type *NewTy = C->getType(); 455 if (TypeMapper) 456 NewTy = TypeMapper->remapType(NewTy); 457 458 // If the result type and all operands match up, then just insert an identity 459 // mapping. 460 if (OpNo == NumOperands && NewTy == C->getType()) 461 return getVM()[V] = C; 462 463 // Okay, we need to create a new constant. We've already processed some or 464 // all of the operands, set them all up now. 465 SmallVector<Constant*, 8> Ops; 466 Ops.reserve(NumOperands); 467 for (unsigned j = 0; j != OpNo; ++j) 468 Ops.push_back(cast<Constant>(C->getOperand(j))); 469 470 // If one of the operands mismatch, push it and the other mapped operands. 471 if (OpNo != NumOperands) { 472 Ops.push_back(cast<Constant>(Mapped)); 473 474 // Map the rest of the operands that aren't processed yet. 475 for (++OpNo; OpNo != NumOperands; ++OpNo) { 476 Mapped = mapValueOrNull(C->getOperand(OpNo)); 477 if (!Mapped) 478 return nullptr; 479 Ops.push_back(cast<Constant>(Mapped)); 480 } 481 } 482 Type *NewSrcTy = nullptr; 483 if (TypeMapper) 484 if (auto *GEPO = dyn_cast<GEPOperator>(C)) 485 NewSrcTy = TypeMapper->remapType(GEPO->getSourceElementType()); 486 487 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) 488 return getVM()[V] = CE->getWithOperands(Ops, NewTy, false, NewSrcTy); 489 if (isa<ConstantArray>(C)) 490 return getVM()[V] = ConstantArray::get(cast<ArrayType>(NewTy), Ops); 491 if (isa<ConstantStruct>(C)) 492 return getVM()[V] = ConstantStruct::get(cast<StructType>(NewTy), Ops); 493 if (isa<ConstantVector>(C)) 494 return getVM()[V] = ConstantVector::get(Ops); 495 // If this is a no-operand constant, it must be because the type was remapped. 496 if (isa<UndefValue>(C)) 497 return getVM()[V] = UndefValue::get(NewTy); 498 if (isa<ConstantAggregateZero>(C)) 499 return getVM()[V] = ConstantAggregateZero::get(NewTy); 500 assert(isa<ConstantPointerNull>(C)); 501 return getVM()[V] = ConstantPointerNull::get(cast<PointerType>(NewTy)); 502 } 503 504 Value *Mapper::mapBlockAddress(const BlockAddress &BA) { 505 Function *F = cast<Function>(mapValue(BA.getFunction())); 506 507 // F may not have materialized its initializer. In that case, create a 508 // dummy basic block for now, and replace it once we've materialized all 509 // the initializers. 510 BasicBlock *BB; 511 if (F->empty()) { 512 DelayedBBs.push_back(DelayedBasicBlock(BA)); 513 BB = DelayedBBs.back().TempBB.get(); 514 } else { 515 BB = cast_or_null<BasicBlock>(mapValue(BA.getBasicBlock())); 516 } 517 518 return getVM()[&BA] = BlockAddress::get(F, BB ? BB : BA.getBasicBlock()); 519 } 520 521 Metadata *Mapper::mapToMetadata(const Metadata *Key, Metadata *Val) { 522 getVM().MD()[Key].reset(Val); 523 return Val; 524 } 525 526 Metadata *Mapper::mapToSelf(const Metadata *MD) { 527 return mapToMetadata(MD, const_cast<Metadata *>(MD)); 528 } 529 530 Optional<Metadata *> MDNodeMapper::tryToMapOperand(const Metadata *Op) { 531 if (!Op) 532 return nullptr; 533 534 if (Optional<Metadata *> MappedOp = M.mapSimpleMetadata(Op)) { 535 #ifndef NDEBUG 536 if (auto *CMD = dyn_cast<ConstantAsMetadata>(Op)) 537 assert((!*MappedOp || M.getVM().count(CMD->getValue()) || 538 M.getVM().getMappedMD(Op)) && 539 "Expected Value to be memoized"); 540 else 541 assert((isa<MDString>(Op) || M.getVM().getMappedMD(Op)) && 542 "Expected result to be memoized"); 543 #endif 544 return *MappedOp; 545 } 546 547 const MDNode &N = *cast<MDNode>(Op); 548 if (N.isDistinct()) 549 return mapDistinctNode(N); 550 return None; 551 } 552 553 MDNode *MDNodeMapper::mapDistinctNode(const MDNode &N) { 554 assert(N.isDistinct() && "Expected a distinct node"); 555 assert(!M.getVM().getMappedMD(&N) && "Expected an unmapped node"); 556 DistinctWorklist.push_back(cast<MDNode>( 557 (M.Flags & RF_MoveDistinctMDs) 558 ? M.mapToSelf(&N) 559 : M.mapToMetadata(&N, MDNode::replaceWithDistinct(N.clone())))); 560 return DistinctWorklist.back(); 561 } 562 563 static ConstantAsMetadata *wrapConstantAsMetadata(const ConstantAsMetadata &CMD, 564 Value *MappedV) { 565 if (CMD.getValue() == MappedV) 566 return const_cast<ConstantAsMetadata *>(&CMD); 567 return MappedV ? ConstantAsMetadata::getConstant(MappedV) : nullptr; 568 } 569 570 Optional<Metadata *> MDNodeMapper::getMappedOp(const Metadata *Op) const { 571 if (!Op) 572 return nullptr; 573 574 if (Optional<Metadata *> MappedOp = M.getVM().getMappedMD(Op)) 575 return *MappedOp; 576 577 if (isa<MDString>(Op)) 578 return const_cast<Metadata *>(Op); 579 580 if (auto *CMD = dyn_cast<ConstantAsMetadata>(Op)) 581 return wrapConstantAsMetadata(*CMD, M.getVM().lookup(CMD->getValue())); 582 583 return None; 584 } 585 586 Metadata &MDNodeMapper::UniquedGraph::getFwdReference(MDNode &Op) { 587 auto Where = Info.find(&Op); 588 assert(Where != Info.end() && "Expected a valid reference"); 589 590 auto &OpD = Where->second; 591 if (!OpD.HasChanged) 592 return Op; 593 594 // Lazily construct a temporary node. 595 if (!OpD.Placeholder) 596 OpD.Placeholder = Op.clone(); 597 598 return *OpD.Placeholder; 599 } 600 601 template <class OperandMapper> 602 void MDNodeMapper::remapOperands(MDNode &N, OperandMapper mapOperand) { 603 assert(!N.isUniqued() && "Expected distinct or temporary nodes"); 604 for (unsigned I = 0, E = N.getNumOperands(); I != E; ++I) { 605 Metadata *Old = N.getOperand(I); 606 Metadata *New = mapOperand(Old); 607 608 if (Old != New) 609 N.replaceOperandWith(I, New); 610 } 611 } 612 613 namespace { 614 /// An entry in the worklist for the post-order traversal. 615 struct POTWorklistEntry { 616 MDNode *N; ///< Current node. 617 MDNode::op_iterator Op; ///< Current operand of \c N. 618 619 /// Keep a flag of whether operands have changed in the worklist to avoid 620 /// hitting the map in \a UniquedGraph. 621 bool HasChanged = false; 622 623 POTWorklistEntry(MDNode &N) : N(&N), Op(N.op_begin()) {} 624 }; 625 } // end namespace 626 627 bool MDNodeMapper::createPOT(UniquedGraph &G, const MDNode &FirstN) { 628 assert(G.Info.empty() && "Expected a fresh traversal"); 629 assert(FirstN.isUniqued() && "Expected uniqued node in POT"); 630 631 // Construct a post-order traversal of the uniqued subgraph under FirstN. 632 bool AnyChanges = false; 633 SmallVector<POTWorklistEntry, 16> Worklist; 634 Worklist.push_back(POTWorklistEntry(const_cast<MDNode &>(FirstN))); 635 (void)G.Info[&FirstN]; 636 while (!Worklist.empty()) { 637 // Start or continue the traversal through the this node's operands. 638 auto &WE = Worklist.back(); 639 if (MDNode *N = visitOperands(G, WE.Op, WE.N->op_end(), WE.HasChanged)) { 640 // Push a new node to traverse first. 641 Worklist.push_back(POTWorklistEntry(*N)); 642 continue; 643 } 644 645 // Push the node onto the POT. 646 assert(WE.N->isUniqued() && "Expected only uniqued nodes"); 647 assert(WE.Op == WE.N->op_end() && "Expected to visit all operands"); 648 auto &D = G.Info[WE.N]; 649 AnyChanges |= D.HasChanged = WE.HasChanged; 650 D.ID = G.POT.size(); 651 G.POT.push_back(WE.N); 652 653 // Pop the node off the worklist. 654 Worklist.pop_back(); 655 } 656 return AnyChanges; 657 } 658 659 MDNode *MDNodeMapper::visitOperands(UniquedGraph &G, MDNode::op_iterator &I, 660 MDNode::op_iterator E, bool &HasChanged) { 661 while (I != E) { 662 Metadata *Op = *I++; // Increment even on early return. 663 if (Optional<Metadata *> MappedOp = tryToMapOperand(Op)) { 664 // Check if the operand changes. 665 HasChanged |= Op != *MappedOp; 666 continue; 667 } 668 669 // A uniqued metadata node. 670 MDNode &OpN = *cast<MDNode>(Op); 671 assert(OpN.isUniqued() && 672 "Only uniqued operands cannot be mapped immediately"); 673 if (G.Info.insert(std::make_pair(&OpN, Data())).second) 674 return &OpN; // This is a new one. Return it. 675 } 676 return nullptr; 677 } 678 679 void MDNodeMapper::UniquedGraph::propagateChanges() { 680 bool AnyChanges; 681 do { 682 AnyChanges = false; 683 for (MDNode *N : POT) { 684 auto &D = Info[N]; 685 if (D.HasChanged) 686 continue; 687 688 if (!llvm::any_of(N->operands(), [&](const Metadata *Op) { 689 auto Where = Info.find(Op); 690 return Where != Info.end() && Where->second.HasChanged; 691 })) 692 continue; 693 694 AnyChanges = D.HasChanged = true; 695 } 696 } while (AnyChanges); 697 } 698 699 void MDNodeMapper::mapNodesInPOT(UniquedGraph &G) { 700 // Construct uniqued nodes, building forward references as necessary. 701 SmallVector<MDNode *, 16> CyclicNodes; 702 for (auto *N : G.POT) { 703 auto &D = G.Info[N]; 704 if (!D.HasChanged) { 705 // The node hasn't changed. 706 M.mapToSelf(N); 707 continue; 708 } 709 710 // Remember whether this node had a placeholder. 711 bool HadPlaceholder(D.Placeholder); 712 713 // Clone the uniqued node and remap the operands. 714 TempMDNode ClonedN = D.Placeholder ? std::move(D.Placeholder) : N->clone(); 715 remapOperands(*ClonedN, [this, &D, &G](Metadata *Old) { 716 if (Optional<Metadata *> MappedOp = getMappedOp(Old)) 717 return *MappedOp; 718 assert(G.Info[Old].ID > D.ID && "Expected a forward reference"); 719 return &G.getFwdReference(*cast<MDNode>(Old)); 720 }); 721 722 auto *NewN = MDNode::replaceWithUniqued(std::move(ClonedN)); 723 M.mapToMetadata(N, NewN); 724 725 // Nodes that were referenced out of order in the POT are involved in a 726 // uniquing cycle. 727 if (HadPlaceholder) 728 CyclicNodes.push_back(NewN); 729 } 730 731 // Resolve cycles. 732 for (auto *N : CyclicNodes) 733 if (!N->isResolved()) 734 N->resolveCycles(); 735 } 736 737 Metadata *MDNodeMapper::map(const MDNode &N) { 738 assert(DistinctWorklist.empty() && "MDNodeMapper::map is not recursive"); 739 assert(!(M.Flags & RF_NoModuleLevelChanges) && 740 "MDNodeMapper::map assumes module-level changes"); 741 742 // Require resolved nodes whenever metadata might be remapped. 743 assert(N.isResolved() && "Unexpected unresolved node"); 744 745 Metadata *MappedN = 746 N.isUniqued() ? mapTopLevelUniquedNode(N) : mapDistinctNode(N); 747 while (!DistinctWorklist.empty()) 748 remapOperands(*DistinctWorklist.pop_back_val(), [this](Metadata *Old) { 749 if (Optional<Metadata *> MappedOp = tryToMapOperand(Old)) 750 return *MappedOp; 751 return mapTopLevelUniquedNode(*cast<MDNode>(Old)); 752 }); 753 return MappedN; 754 } 755 756 Metadata *MDNodeMapper::mapTopLevelUniquedNode(const MDNode &FirstN) { 757 assert(FirstN.isUniqued() && "Expected uniqued node"); 758 759 // Create a post-order traversal of uniqued nodes under FirstN. 760 UniquedGraph G; 761 if (!createPOT(G, FirstN)) { 762 // Return early if no nodes have changed. 763 for (const MDNode *N : G.POT) 764 M.mapToSelf(N); 765 return &const_cast<MDNode &>(FirstN); 766 } 767 768 // Update graph with all nodes that have changed. 769 G.propagateChanges(); 770 771 // Map all the nodes in the graph. 772 mapNodesInPOT(G); 773 774 // Return the original node, remapped. 775 return *getMappedOp(&FirstN); 776 } 777 778 namespace { 779 780 struct MapMetadataDisabler { 781 ValueToValueMapTy &VM; 782 783 MapMetadataDisabler(ValueToValueMapTy &VM) : VM(VM) { 784 VM.disableMapMetadata(); 785 } 786 ~MapMetadataDisabler() { VM.enableMapMetadata(); } 787 }; 788 789 } // end namespace 790 791 Optional<Metadata *> Mapper::mapSimpleMetadata(const Metadata *MD) { 792 // If the value already exists in the map, use it. 793 if (Optional<Metadata *> NewMD = getVM().getMappedMD(MD)) 794 return *NewMD; 795 796 if (isa<MDString>(MD)) 797 return const_cast<Metadata *>(MD); 798 799 // This is a module-level metadata. If nothing at the module level is 800 // changing, use an identity mapping. 801 if ((Flags & RF_NoModuleLevelChanges)) 802 return const_cast<Metadata *>(MD); 803 804 if (auto *CMD = dyn_cast<ConstantAsMetadata>(MD)) { 805 // Disallow recursion into metadata mapping through mapValue. 806 MapMetadataDisabler MMD(getVM()); 807 808 // Don't memoize ConstantAsMetadata. Instead of lasting until the 809 // LLVMContext is destroyed, they can be deleted when the GlobalValue they 810 // reference is destructed. These aren't super common, so the extra 811 // indirection isn't that expensive. 812 return wrapConstantAsMetadata(*CMD, mapValue(CMD->getValue())); 813 } 814 815 assert(isa<MDNode>(MD) && "Expected a metadata node"); 816 817 return None; 818 } 819 820 Metadata *Mapper::mapLocalAsMetadata(const LocalAsMetadata &LAM) { 821 // Lookup the mapping for the value itself, and return the appropriate 822 // metadata. 823 if (Value *V = mapValue(LAM.getValue())) { 824 if (V == LAM.getValue()) 825 return const_cast<LocalAsMetadata *>(&LAM); 826 return ValueAsMetadata::get(V); 827 } 828 829 // FIXME: always return nullptr once Verifier::verifyDominatesUse() ensures 830 // metadata operands only reference defined SSA values. 831 return (Flags & RF_IgnoreMissingLocals) 832 ? nullptr 833 : MDTuple::get(LAM.getContext(), None); 834 } 835 836 Metadata *Mapper::mapMetadata(const Metadata *MD) { 837 assert(MD && "Expected valid metadata"); 838 assert(!isa<LocalAsMetadata>(MD) && "Unexpected local metadata"); 839 840 if (Optional<Metadata *> NewMD = mapSimpleMetadata(MD)) 841 return *NewMD; 842 843 return MDNodeMapper(*this).map(*cast<MDNode>(MD)); 844 } 845 846 void Mapper::flush() { 847 // Flush out the worklist of global values. 848 while (!Worklist.empty()) { 849 WorklistEntry E = Worklist.pop_back_val(); 850 CurrentMCID = E.MCID; 851 switch (E.Kind) { 852 case WorklistEntry::MapGlobalInit: 853 E.Data.GVInit.GV->setInitializer(mapConstant(E.Data.GVInit.Init)); 854 break; 855 case WorklistEntry::MapAppendingVar: { 856 unsigned PrefixSize = AppendingInits.size() - E.AppendingGVNumNewMembers; 857 mapAppendingVariable(*E.Data.AppendingGV.GV, 858 E.Data.AppendingGV.InitPrefix, 859 E.AppendingGVIsOldCtorDtor, 860 makeArrayRef(AppendingInits).slice(PrefixSize)); 861 AppendingInits.resize(PrefixSize); 862 break; 863 } 864 case WorklistEntry::MapGlobalAliasee: 865 E.Data.GlobalAliasee.GA->setAliasee( 866 mapConstant(E.Data.GlobalAliasee.Aliasee)); 867 break; 868 case WorklistEntry::RemapFunction: 869 remapFunction(*E.Data.RemapF); 870 break; 871 } 872 } 873 CurrentMCID = 0; 874 875 // Finish logic for block addresses now that all global values have been 876 // handled. 877 while (!DelayedBBs.empty()) { 878 DelayedBasicBlock DBB = DelayedBBs.pop_back_val(); 879 BasicBlock *BB = cast_or_null<BasicBlock>(mapValue(DBB.OldBB)); 880 DBB.TempBB->replaceAllUsesWith(BB ? BB : DBB.OldBB); 881 } 882 } 883 884 void Mapper::remapInstruction(Instruction *I) { 885 // Remap operands. 886 for (Use &Op : I->operands()) { 887 Value *V = mapValue(Op); 888 // If we aren't ignoring missing entries, assert that something happened. 889 if (V) 890 Op = V; 891 else 892 assert((Flags & RF_IgnoreMissingLocals) && 893 "Referenced value not in value map!"); 894 } 895 896 // Remap phi nodes' incoming blocks. 897 if (PHINode *PN = dyn_cast<PHINode>(I)) { 898 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 899 Value *V = mapValue(PN->getIncomingBlock(i)); 900 // If we aren't ignoring missing entries, assert that something happened. 901 if (V) 902 PN->setIncomingBlock(i, cast<BasicBlock>(V)); 903 else 904 assert((Flags & RF_IgnoreMissingLocals) && 905 "Referenced block not in value map!"); 906 } 907 } 908 909 // Remap attached metadata. 910 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 911 I->getAllMetadata(MDs); 912 for (const auto &MI : MDs) { 913 MDNode *Old = MI.second; 914 MDNode *New = cast_or_null<MDNode>(mapMetadata(Old)); 915 if (New != Old) 916 I->setMetadata(MI.first, New); 917 } 918 919 if (!TypeMapper) 920 return; 921 922 // If the instruction's type is being remapped, do so now. 923 if (auto CS = CallSite(I)) { 924 SmallVector<Type *, 3> Tys; 925 FunctionType *FTy = CS.getFunctionType(); 926 Tys.reserve(FTy->getNumParams()); 927 for (Type *Ty : FTy->params()) 928 Tys.push_back(TypeMapper->remapType(Ty)); 929 CS.mutateFunctionType(FunctionType::get( 930 TypeMapper->remapType(I->getType()), Tys, FTy->isVarArg())); 931 return; 932 } 933 if (auto *AI = dyn_cast<AllocaInst>(I)) 934 AI->setAllocatedType(TypeMapper->remapType(AI->getAllocatedType())); 935 if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) { 936 GEP->setSourceElementType( 937 TypeMapper->remapType(GEP->getSourceElementType())); 938 GEP->setResultElementType( 939 TypeMapper->remapType(GEP->getResultElementType())); 940 } 941 I->mutateType(TypeMapper->remapType(I->getType())); 942 } 943 944 void Mapper::remapFunction(Function &F) { 945 // Remap the operands. 946 for (Use &Op : F.operands()) 947 if (Op) 948 Op = mapValue(Op); 949 950 // Remap the metadata attachments. 951 SmallVector<std::pair<unsigned, MDNode *>, 8> MDs; 952 F.getAllMetadata(MDs); 953 F.clearMetadata(); 954 for (const auto &I : MDs) 955 F.addMetadata(I.first, *cast<MDNode>(mapMetadata(I.second))); 956 957 // Remap the argument types. 958 if (TypeMapper) 959 for (Argument &A : F.args()) 960 A.mutateType(TypeMapper->remapType(A.getType())); 961 962 // Remap the instructions. 963 for (BasicBlock &BB : F) 964 for (Instruction &I : BB) 965 remapInstruction(&I); 966 } 967 968 void Mapper::mapAppendingVariable(GlobalVariable &GV, Constant *InitPrefix, 969 bool IsOldCtorDtor, 970 ArrayRef<Constant *> NewMembers) { 971 SmallVector<Constant *, 16> Elements; 972 if (InitPrefix) { 973 unsigned NumElements = 974 cast<ArrayType>(InitPrefix->getType())->getNumElements(); 975 for (unsigned I = 0; I != NumElements; ++I) 976 Elements.push_back(InitPrefix->getAggregateElement(I)); 977 } 978 979 PointerType *VoidPtrTy; 980 Type *EltTy; 981 if (IsOldCtorDtor) { 982 // FIXME: This upgrade is done during linking to support the C API. See 983 // also IRLinker::linkAppendingVarProto() in IRMover.cpp. 984 VoidPtrTy = Type::getInt8Ty(GV.getContext())->getPointerTo(); 985 auto &ST = *cast<StructType>(NewMembers.front()->getType()); 986 Type *Tys[3] = {ST.getElementType(0), ST.getElementType(1), VoidPtrTy}; 987 EltTy = StructType::get(GV.getContext(), Tys, false); 988 } 989 990 for (auto *V : NewMembers) { 991 Constant *NewV; 992 if (IsOldCtorDtor) { 993 auto *S = cast<ConstantStruct>(V); 994 auto *E1 = mapValue(S->getOperand(0)); 995 auto *E2 = mapValue(S->getOperand(1)); 996 Value *Null = Constant::getNullValue(VoidPtrTy); 997 NewV = 998 ConstantStruct::get(cast<StructType>(EltTy), E1, E2, Null, nullptr); 999 } else { 1000 NewV = cast_or_null<Constant>(mapValue(V)); 1001 } 1002 Elements.push_back(NewV); 1003 } 1004 1005 GV.setInitializer(ConstantArray::get( 1006 cast<ArrayType>(GV.getType()->getElementType()), Elements)); 1007 } 1008 1009 void Mapper::scheduleMapGlobalInitializer(GlobalVariable &GV, Constant &Init, 1010 unsigned MCID) { 1011 assert(AlreadyScheduled.insert(&GV).second && "Should not reschedule"); 1012 assert(MCID < MCs.size() && "Invalid mapping context"); 1013 1014 WorklistEntry WE; 1015 WE.Kind = WorklistEntry::MapGlobalInit; 1016 WE.MCID = MCID; 1017 WE.Data.GVInit.GV = &GV; 1018 WE.Data.GVInit.Init = &Init; 1019 Worklist.push_back(WE); 1020 } 1021 1022 void Mapper::scheduleMapAppendingVariable(GlobalVariable &GV, 1023 Constant *InitPrefix, 1024 bool IsOldCtorDtor, 1025 ArrayRef<Constant *> NewMembers, 1026 unsigned MCID) { 1027 assert(AlreadyScheduled.insert(&GV).second && "Should not reschedule"); 1028 assert(MCID < MCs.size() && "Invalid mapping context"); 1029 1030 WorklistEntry WE; 1031 WE.Kind = WorklistEntry::MapAppendingVar; 1032 WE.MCID = MCID; 1033 WE.Data.AppendingGV.GV = &GV; 1034 WE.Data.AppendingGV.InitPrefix = InitPrefix; 1035 WE.AppendingGVIsOldCtorDtor = IsOldCtorDtor; 1036 WE.AppendingGVNumNewMembers = NewMembers.size(); 1037 Worklist.push_back(WE); 1038 AppendingInits.append(NewMembers.begin(), NewMembers.end()); 1039 } 1040 1041 void Mapper::scheduleMapGlobalAliasee(GlobalAlias &GA, Constant &Aliasee, 1042 unsigned MCID) { 1043 assert(AlreadyScheduled.insert(&GA).second && "Should not reschedule"); 1044 assert(MCID < MCs.size() && "Invalid mapping context"); 1045 1046 WorklistEntry WE; 1047 WE.Kind = WorklistEntry::MapGlobalAliasee; 1048 WE.MCID = MCID; 1049 WE.Data.GlobalAliasee.GA = &GA; 1050 WE.Data.GlobalAliasee.Aliasee = &Aliasee; 1051 Worklist.push_back(WE); 1052 } 1053 1054 void Mapper::scheduleRemapFunction(Function &F, unsigned MCID) { 1055 assert(AlreadyScheduled.insert(&F).second && "Should not reschedule"); 1056 assert(MCID < MCs.size() && "Invalid mapping context"); 1057 1058 WorklistEntry WE; 1059 WE.Kind = WorklistEntry::RemapFunction; 1060 WE.MCID = MCID; 1061 WE.Data.RemapF = &F; 1062 Worklist.push_back(WE); 1063 } 1064 1065 void Mapper::addFlags(RemapFlags Flags) { 1066 assert(!hasWorkToDo() && "Expected to have flushed the worklist"); 1067 this->Flags = this->Flags | Flags; 1068 } 1069 1070 static Mapper *getAsMapper(void *pImpl) { 1071 return reinterpret_cast<Mapper *>(pImpl); 1072 } 1073 1074 namespace { 1075 1076 class FlushingMapper { 1077 Mapper &M; 1078 1079 public: 1080 explicit FlushingMapper(void *pImpl) : M(*getAsMapper(pImpl)) { 1081 assert(!M.hasWorkToDo() && "Expected to be flushed"); 1082 } 1083 ~FlushingMapper() { M.flush(); } 1084 Mapper *operator->() const { return &M; } 1085 }; 1086 1087 } // end namespace 1088 1089 ValueMapper::ValueMapper(ValueToValueMapTy &VM, RemapFlags Flags, 1090 ValueMapTypeRemapper *TypeMapper, 1091 ValueMaterializer *Materializer) 1092 : pImpl(new Mapper(VM, Flags, TypeMapper, Materializer)) {} 1093 1094 ValueMapper::~ValueMapper() { delete getAsMapper(pImpl); } 1095 1096 unsigned 1097 ValueMapper::registerAlternateMappingContext(ValueToValueMapTy &VM, 1098 ValueMaterializer *Materializer) { 1099 return getAsMapper(pImpl)->registerAlternateMappingContext(VM, Materializer); 1100 } 1101 1102 void ValueMapper::addFlags(RemapFlags Flags) { 1103 FlushingMapper(pImpl)->addFlags(Flags); 1104 } 1105 1106 Value *ValueMapper::mapValue(const Value &V) { 1107 return FlushingMapper(pImpl)->mapValue(&V); 1108 } 1109 1110 Constant *ValueMapper::mapConstant(const Constant &C) { 1111 return cast_or_null<Constant>(mapValue(C)); 1112 } 1113 1114 Metadata *ValueMapper::mapMetadata(const Metadata &MD) { 1115 return FlushingMapper(pImpl)->mapMetadata(&MD); 1116 } 1117 1118 MDNode *ValueMapper::mapMDNode(const MDNode &N) { 1119 return cast_or_null<MDNode>(mapMetadata(N)); 1120 } 1121 1122 void ValueMapper::remapInstruction(Instruction &I) { 1123 FlushingMapper(pImpl)->remapInstruction(&I); 1124 } 1125 1126 void ValueMapper::remapFunction(Function &F) { 1127 FlushingMapper(pImpl)->remapFunction(F); 1128 } 1129 1130 void ValueMapper::scheduleMapGlobalInitializer(GlobalVariable &GV, 1131 Constant &Init, 1132 unsigned MCID) { 1133 getAsMapper(pImpl)->scheduleMapGlobalInitializer(GV, Init, MCID); 1134 } 1135 1136 void ValueMapper::scheduleMapAppendingVariable(GlobalVariable &GV, 1137 Constant *InitPrefix, 1138 bool IsOldCtorDtor, 1139 ArrayRef<Constant *> NewMembers, 1140 unsigned MCID) { 1141 getAsMapper(pImpl)->scheduleMapAppendingVariable( 1142 GV, InitPrefix, IsOldCtorDtor, NewMembers, MCID); 1143 } 1144 1145 void ValueMapper::scheduleMapGlobalAliasee(GlobalAlias &GA, Constant &Aliasee, 1146 unsigned MCID) { 1147 getAsMapper(pImpl)->scheduleMapGlobalAliasee(GA, Aliasee, MCID); 1148 } 1149 1150 void ValueMapper::scheduleRemapFunction(Function &F, unsigned MCID) { 1151 getAsMapper(pImpl)->scheduleRemapFunction(F, MCID); 1152 } 1153