1 //===- ValueMapper.cpp - Interface shared by lib/Transforms/Utils ---------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the MapValue function, which is shared by various parts of
11 // the lib/Transforms/Utils library.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/Utils/ValueMapper.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/IR/CallSite.h"
18 #include "llvm/IR/Constants.h"
19 #include "llvm/IR/DebugInfoMetadata.h"
20 #include "llvm/IR/Function.h"
21 #include "llvm/IR/GlobalAlias.h"
22 #include "llvm/IR/GlobalVariable.h"
23 #include "llvm/IR/InlineAsm.h"
24 #include "llvm/IR/Instructions.h"
25 #include "llvm/IR/Metadata.h"
26 #include "llvm/IR/Operator.h"
27 using namespace llvm;
28 
29 // Out of line method to get vtable etc for class.
30 void ValueMapTypeRemapper::anchor() {}
31 void ValueMaterializer::anchor() {}
32 
33 namespace {
34 
35 /// A basic block used in a BlockAddress whose function body is not yet
36 /// materialized.
37 struct DelayedBasicBlock {
38   BasicBlock *OldBB;
39   std::unique_ptr<BasicBlock> TempBB;
40 
41   // Explicit move for MSVC.
42   DelayedBasicBlock(DelayedBasicBlock &&X)
43       : OldBB(std::move(X.OldBB)), TempBB(std::move(X.TempBB)) {}
44   DelayedBasicBlock &operator=(DelayedBasicBlock &&X) {
45     OldBB = std::move(X.OldBB);
46     TempBB = std::move(X.TempBB);
47     return *this;
48   }
49 
50   DelayedBasicBlock(const BlockAddress &Old)
51       : OldBB(Old.getBasicBlock()),
52         TempBB(BasicBlock::Create(Old.getContext())) {}
53 };
54 
55 struct WorklistEntry {
56   enum EntryKind {
57     MapGlobalInit,
58     MapAppendingVar,
59     MapGlobalAliasee,
60     RemapFunction
61   };
62   struct GVInitTy {
63     GlobalVariable *GV;
64     Constant *Init;
65   };
66   struct AppendingGVTy {
67     GlobalVariable *GV;
68     Constant *InitPrefix;
69   };
70   struct GlobalAliaseeTy {
71     GlobalAlias *GA;
72     Constant *Aliasee;
73   };
74 
75   unsigned Kind : 2;
76   unsigned MCID : 29;
77   unsigned AppendingGVIsOldCtorDtor : 1;
78   unsigned AppendingGVNumNewMembers;
79   union {
80     GVInitTy GVInit;
81     AppendingGVTy AppendingGV;
82     GlobalAliaseeTy GlobalAliasee;
83     Function *RemapF;
84   } Data;
85 };
86 
87 struct MappingContext {
88   ValueToValueMapTy *VM;
89   ValueMaterializer *Materializer = nullptr;
90 
91   /// Construct a MappingContext with a value map and materializer.
92   explicit MappingContext(ValueToValueMapTy &VM,
93                           ValueMaterializer *Materializer = nullptr)
94       : VM(&VM), Materializer(Materializer) {}
95 };
96 
97 class MDNodeMapper;
98 class Mapper {
99   friend class MDNodeMapper;
100 
101 #ifndef NDEBUG
102   DenseSet<GlobalValue *> AlreadyScheduled;
103 #endif
104 
105   RemapFlags Flags;
106   ValueMapTypeRemapper *TypeMapper;
107   unsigned CurrentMCID = 0;
108   SmallVector<MappingContext, 2> MCs;
109   SmallVector<WorklistEntry, 4> Worklist;
110   SmallVector<DelayedBasicBlock, 1> DelayedBBs;
111   SmallVector<Constant *, 16> AppendingInits;
112 
113 public:
114   Mapper(ValueToValueMapTy &VM, RemapFlags Flags,
115          ValueMapTypeRemapper *TypeMapper, ValueMaterializer *Materializer)
116       : Flags(Flags), TypeMapper(TypeMapper),
117         MCs(1, MappingContext(VM, Materializer)) {}
118 
119   /// ValueMapper should explicitly call \a flush() before destruction.
120   ~Mapper() { assert(!hasWorkToDo() && "Expected to be flushed"); }
121 
122   bool hasWorkToDo() const { return !Worklist.empty(); }
123 
124   unsigned
125   registerAlternateMappingContext(ValueToValueMapTy &VM,
126                                   ValueMaterializer *Materializer = nullptr) {
127     MCs.push_back(MappingContext(VM, Materializer));
128     return MCs.size() - 1;
129   }
130 
131   void addFlags(RemapFlags Flags);
132 
133   Value *mapValue(const Value *V);
134   void remapInstruction(Instruction *I);
135   void remapFunction(Function &F);
136 
137   Constant *mapConstant(const Constant *C) {
138     return cast_or_null<Constant>(mapValue(C));
139   }
140 
141   /// Map metadata.
142   ///
143   /// Find the mapping for MD.  Guarantees that the return will be resolved
144   /// (not an MDNode, or MDNode::isResolved() returns true).
145   Metadata *mapMetadata(const Metadata *MD);
146 
147   // Map LocalAsMetadata, which never gets memoized.
148   //
149   // If the referenced local is not mapped, the principled return is nullptr.
150   // However, optimization passes sometimes move metadata operands *before* the
151   // SSA values they reference.  To prevent crashes in \a RemapInstruction(),
152   // return "!{}" when RF_IgnoreMissingLocals is not set.
153   //
154   // \note Adding a mapping for LocalAsMetadata is unsupported.  Add a mapping
155   // to the value map for the SSA value in question instead.
156   //
157   // FIXME: Once we have a verifier check for forward references to SSA values
158   // through metadata operands, always return nullptr on unmapped locals.
159   Metadata *mapLocalAsMetadata(const LocalAsMetadata &LAM);
160 
161   void scheduleMapGlobalInitializer(GlobalVariable &GV, Constant &Init,
162                                     unsigned MCID);
163   void scheduleMapAppendingVariable(GlobalVariable &GV, Constant *InitPrefix,
164                                     bool IsOldCtorDtor,
165                                     ArrayRef<Constant *> NewMembers,
166                                     unsigned MCID);
167   void scheduleMapGlobalAliasee(GlobalAlias &GA, Constant &Aliasee,
168                                 unsigned MCID);
169   void scheduleRemapFunction(Function &F, unsigned MCID);
170 
171   void flush();
172 
173 private:
174   void mapGlobalInitializer(GlobalVariable &GV, Constant &Init);
175   void mapAppendingVariable(GlobalVariable &GV, Constant *InitPrefix,
176                             bool IsOldCtorDtor,
177                             ArrayRef<Constant *> NewMembers);
178   void mapGlobalAliasee(GlobalAlias &GA, Constant &Aliasee);
179   void remapFunction(Function &F, ValueToValueMapTy &VM);
180 
181   ValueToValueMapTy &getVM() { return *MCs[CurrentMCID].VM; }
182   ValueMaterializer *getMaterializer() { return MCs[CurrentMCID].Materializer; }
183 
184   Value *mapBlockAddress(const BlockAddress &BA);
185 
186   /// Map metadata that doesn't require visiting operands.
187   Optional<Metadata *> mapSimpleMetadata(const Metadata *MD);
188 
189   Metadata *mapToMetadata(const Metadata *Key, Metadata *Val);
190   Metadata *mapToSelf(const Metadata *MD);
191 };
192 
193 class MDNodeMapper {
194   Mapper &M;
195 
196   /// Data about a node in \a UniquedGraph.
197   struct Data {
198     bool HasChanged = false;
199     unsigned ID = ~0u;
200     TempMDNode Placeholder;
201 
202     Data() {}
203     Data(Data &&X)
204         : HasChanged(std::move(X.HasChanged)), ID(std::move(X.ID)),
205           Placeholder(std::move(X.Placeholder)) {}
206     Data &operator=(Data &&X) {
207       HasChanged = std::move(X.HasChanged);
208       ID = std::move(X.ID);
209       Placeholder = std::move(X.Placeholder);
210       return *this;
211     }
212   };
213 
214   /// A graph of uniqued nodes.
215   struct UniquedGraph {
216     SmallDenseMap<const Metadata *, Data, 32> Info; // Node properties.
217     SmallVector<MDNode *, 16> POT;                  // Post-order traversal.
218 
219     /// Propagate changed operands through the post-order traversal.
220     ///
221     /// Iteratively update \a Data::HasChanged for each node based on \a
222     /// Data::HasChanged of its operands, until fixed point.
223     void propagateChanges();
224 
225     /// Get a forward reference to a node to use as an operand.
226     Metadata &getFwdReference(MDNode &Op);
227   };
228 
229   /// Worklist of distinct nodes whose operands need to be remapped.
230   SmallVector<MDNode *, 16> DistinctWorklist;
231 
232   // Storage for a UniquedGraph.
233   SmallDenseMap<const Metadata *, Data, 32> InfoStorage;
234   SmallVector<MDNode *, 16> POTStorage;
235 
236 public:
237   MDNodeMapper(Mapper &M) : M(M) {}
238 
239   /// Map a metadata node (and its transitive operands).
240   ///
241   /// Map all the (unmapped) nodes in the subgraph under \c N.  The iterative
242   /// algorithm handles distinct nodes and uniqued node subgraphs using
243   /// different strategies.
244   ///
245   /// Distinct nodes are immediately mapped and added to \a DistinctWorklist
246   /// using \a mapDistinctNode().  Their mapping can always be computed
247   /// immediately without visiting operands, even if their operands change.
248   ///
249   /// The mapping for uniqued nodes depends on whether their operands change.
250   /// \a mapTopLevelUniquedNode() traverses the transitive uniqued subgraph of
251   /// a node to calculate uniqued node mappings in bulk.  Distinct leafs are
252   /// added to \a DistinctWorklist with \a mapDistinctNode().
253   ///
254   /// After mapping \c N itself, this function remaps the operands of the
255   /// distinct nodes in \a DistinctWorklist until the entire subgraph under \c
256   /// N has been mapped.
257   Metadata *map(const MDNode &N);
258 
259 private:
260   /// Map a top-level uniqued node and the uniqued subgraph underneath it.
261   ///
262   /// This builds up a post-order traversal of the (unmapped) uniqued subgraph
263   /// underneath \c FirstN and calculates the nodes' mapping.  Each node uses
264   /// the identity mapping (\a Mapper::mapToSelf()) as long as all of its
265   /// operands uses the identity mapping.
266   ///
267   /// The algorithm works as follows:
268   ///
269   ///  1. \a createPOT(): traverse the uniqued subgraph under \c FirstN and
270   ///     save the post-order traversal in the given \a UniquedGraph, tracking
271   ///     nodes' operands change.
272   ///
273   ///  2. \a UniquedGraph::propagateChanges(): propagate changed operands
274   ///     through the \a UniquedGraph until fixed point, following the rule
275   ///     that if a node changes, any node that references must also change.
276   ///
277   ///  3. \a mapNodesInPOT(): map the uniqued nodes, creating new uniqued nodes
278   ///     (referencing new operands) where necessary.
279   Metadata *mapTopLevelUniquedNode(const MDNode &FirstN);
280 
281   /// Try to map the operand of an \a MDNode.
282   ///
283   /// If \c Op is already mapped, return the mapping.  If it's not an \a
284   /// MDNode, compute and return the mapping.  If it's a distinct \a MDNode,
285   /// return the result of \a mapDistinctNode().
286   ///
287   /// \return None if \c Op is an unmapped uniqued \a MDNode.
288   /// \post getMappedOp(Op) only returns None if this returns None.
289   Optional<Metadata *> tryToMapOperand(const Metadata *Op);
290 
291   /// Map a distinct node.
292   ///
293   /// Return the mapping for the distinct node \c N, saving the result in \a
294   /// DistinctWorklist for later remapping.
295   ///
296   /// \pre \c N is not yet mapped.
297   /// \pre \c N.isDistinct().
298   MDNode *mapDistinctNode(const MDNode &N);
299 
300   /// Get a previously mapped node.
301   Optional<Metadata *> getMappedOp(const Metadata *Op) const;
302 
303   /// Create a post-order traversal of an unmapped uniqued node subgraph.
304   ///
305   /// This traverses the metadata graph deeply enough to map \c FirstN.  It
306   /// uses \a tryToMapOperand() (via \a Mapper::mapSimplifiedNode()), so any
307   /// metadata that has already been mapped will not be part of the POT.
308   ///
309   /// Each node that has a changed operand from outside the graph (e.g., a
310   /// distinct node, an already-mapped uniqued node, or \a ConstantAsMetadata)
311   /// is marked with \a Data::HasChanged.
312   ///
313   /// \return \c true if any nodes in \c G have \a Data::HasChanged.
314   /// \post \c G.POT is a post-order traversal ending with \c FirstN.
315   /// \post \a Data::hasChanged in \c G.Info indicates whether any node needs
316   /// to change because of operands outside the graph.
317   bool createPOT(UniquedGraph &G, const MDNode &FirstN);
318 
319   /// Visit the operands of a uniqued node in the POT.
320   ///
321   /// Visit the operands in the range from \c I to \c E, returning the first
322   /// uniqued node we find that isn't yet in \c G.  \c I is always advanced to
323   /// where to continue the loop through the operands.
324   ///
325   /// This sets \c HasChanged if any of the visited operands change.
326   MDNode *visitOperands(UniquedGraph &G, MDNode::op_iterator &I,
327                         MDNode::op_iterator E, bool &HasChanged);
328 
329   /// Map all the nodes in the given uniqued graph.
330   ///
331   /// This visits all the nodes in \c G in post-order, using the identity
332   /// mapping or creating a new node depending on \a Data::HasChanged.
333   ///
334   /// \pre \a getMappedOp() returns None for nodes in \c G, but not for any of
335   /// their operands outside of \c G.
336   /// \pre \a Data::HasChanged is true for a node in \c G iff any of its
337   /// operands have changed.
338   /// \post \a getMappedOp() returns the mapped node for every node in \c G.
339   void mapNodesInPOT(UniquedGraph &G);
340 
341   /// Remap a node's operands using the given functor.
342   ///
343   /// Iterate through the operands of \c N and update them in place using \c
344   /// mapOperand.
345   ///
346   /// \pre N.isDistinct() or N.isTemporary().
347   template <class OperandMapper>
348   void remapOperands(MDNode &N, OperandMapper mapOperand);
349 };
350 
351 } // end namespace
352 
353 Value *Mapper::mapValue(const Value *V) {
354   ValueToValueMapTy::iterator I = getVM().find(V);
355 
356   // If the value already exists in the map, use it.
357   if (I != getVM().end()) {
358     assert(I->second && "Unexpected null mapping");
359     return I->second;
360   }
361 
362   // If we have a materializer and it can materialize a value, use that.
363   if (auto *Materializer = getMaterializer()) {
364     if (Value *NewV = Materializer->materialize(const_cast<Value *>(V))) {
365       getVM()[V] = NewV;
366       return NewV;
367     }
368   }
369 
370   // Global values do not need to be seeded into the VM if they
371   // are using the identity mapping.
372   if (isa<GlobalValue>(V)) {
373     if (Flags & RF_NullMapMissingGlobalValues)
374       return nullptr;
375     return getVM()[V] = const_cast<Value *>(V);
376   }
377 
378   if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
379     // Inline asm may need *type* remapping.
380     FunctionType *NewTy = IA->getFunctionType();
381     if (TypeMapper) {
382       NewTy = cast<FunctionType>(TypeMapper->remapType(NewTy));
383 
384       if (NewTy != IA->getFunctionType())
385         V = InlineAsm::get(NewTy, IA->getAsmString(), IA->getConstraintString(),
386                            IA->hasSideEffects(), IA->isAlignStack());
387     }
388 
389     return getVM()[V] = const_cast<Value *>(V);
390   }
391 
392   if (const auto *MDV = dyn_cast<MetadataAsValue>(V)) {
393     const Metadata *MD = MDV->getMetadata();
394 
395     if (auto *LAM = dyn_cast<LocalAsMetadata>(MD)) {
396       // Look through to grab the local value.
397       if (Value *LV = mapValue(LAM->getValue())) {
398         if (V == LAM->getValue())
399           return const_cast<Value *>(V);
400         return MetadataAsValue::get(V->getContext(), ValueAsMetadata::get(LV));
401       }
402 
403       // FIXME: always return nullptr once Verifier::verifyDominatesUse()
404       // ensures metadata operands only reference defined SSA values.
405       return (Flags & RF_IgnoreMissingLocals)
406                  ? nullptr
407                  : MetadataAsValue::get(V->getContext(),
408                                         MDTuple::get(V->getContext(), None));
409     }
410 
411     // If this is a module-level metadata and we know that nothing at the module
412     // level is changing, then use an identity mapping.
413     if (Flags & RF_NoModuleLevelChanges)
414       return getVM()[V] = const_cast<Value *>(V);
415 
416     // Map the metadata and turn it into a value.
417     auto *MappedMD = mapMetadata(MD);
418     if (MD == MappedMD)
419       return getVM()[V] = const_cast<Value *>(V);
420     return getVM()[V] = MetadataAsValue::get(V->getContext(), MappedMD);
421   }
422 
423   // Okay, this either must be a constant (which may or may not be mappable) or
424   // is something that is not in the mapping table.
425   Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V));
426   if (!C)
427     return nullptr;
428 
429   if (BlockAddress *BA = dyn_cast<BlockAddress>(C))
430     return mapBlockAddress(*BA);
431 
432   auto mapValueOrNull = [this](Value *V) {
433     auto Mapped = mapValue(V);
434     assert((Mapped || (Flags & RF_NullMapMissingGlobalValues)) &&
435            "Unexpected null mapping for constant operand without "
436            "NullMapMissingGlobalValues flag");
437     return Mapped;
438   };
439 
440   // Otherwise, we have some other constant to remap.  Start by checking to see
441   // if all operands have an identity remapping.
442   unsigned OpNo = 0, NumOperands = C->getNumOperands();
443   Value *Mapped = nullptr;
444   for (; OpNo != NumOperands; ++OpNo) {
445     Value *Op = C->getOperand(OpNo);
446     Mapped = mapValueOrNull(Op);
447     if (!Mapped)
448       return nullptr;
449     if (Mapped != Op)
450       break;
451   }
452 
453   // See if the type mapper wants to remap the type as well.
454   Type *NewTy = C->getType();
455   if (TypeMapper)
456     NewTy = TypeMapper->remapType(NewTy);
457 
458   // If the result type and all operands match up, then just insert an identity
459   // mapping.
460   if (OpNo == NumOperands && NewTy == C->getType())
461     return getVM()[V] = C;
462 
463   // Okay, we need to create a new constant.  We've already processed some or
464   // all of the operands, set them all up now.
465   SmallVector<Constant*, 8> Ops;
466   Ops.reserve(NumOperands);
467   for (unsigned j = 0; j != OpNo; ++j)
468     Ops.push_back(cast<Constant>(C->getOperand(j)));
469 
470   // If one of the operands mismatch, push it and the other mapped operands.
471   if (OpNo != NumOperands) {
472     Ops.push_back(cast<Constant>(Mapped));
473 
474     // Map the rest of the operands that aren't processed yet.
475     for (++OpNo; OpNo != NumOperands; ++OpNo) {
476       Mapped = mapValueOrNull(C->getOperand(OpNo));
477       if (!Mapped)
478         return nullptr;
479       Ops.push_back(cast<Constant>(Mapped));
480     }
481   }
482   Type *NewSrcTy = nullptr;
483   if (TypeMapper)
484     if (auto *GEPO = dyn_cast<GEPOperator>(C))
485       NewSrcTy = TypeMapper->remapType(GEPO->getSourceElementType());
486 
487   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
488     return getVM()[V] = CE->getWithOperands(Ops, NewTy, false, NewSrcTy);
489   if (isa<ConstantArray>(C))
490     return getVM()[V] = ConstantArray::get(cast<ArrayType>(NewTy), Ops);
491   if (isa<ConstantStruct>(C))
492     return getVM()[V] = ConstantStruct::get(cast<StructType>(NewTy), Ops);
493   if (isa<ConstantVector>(C))
494     return getVM()[V] = ConstantVector::get(Ops);
495   // If this is a no-operand constant, it must be because the type was remapped.
496   if (isa<UndefValue>(C))
497     return getVM()[V] = UndefValue::get(NewTy);
498   if (isa<ConstantAggregateZero>(C))
499     return getVM()[V] = ConstantAggregateZero::get(NewTy);
500   assert(isa<ConstantPointerNull>(C));
501   return getVM()[V] = ConstantPointerNull::get(cast<PointerType>(NewTy));
502 }
503 
504 Value *Mapper::mapBlockAddress(const BlockAddress &BA) {
505   Function *F = cast<Function>(mapValue(BA.getFunction()));
506 
507   // F may not have materialized its initializer.  In that case, create a
508   // dummy basic block for now, and replace it once we've materialized all
509   // the initializers.
510   BasicBlock *BB;
511   if (F->empty()) {
512     DelayedBBs.push_back(DelayedBasicBlock(BA));
513     BB = DelayedBBs.back().TempBB.get();
514   } else {
515     BB = cast_or_null<BasicBlock>(mapValue(BA.getBasicBlock()));
516   }
517 
518   return getVM()[&BA] = BlockAddress::get(F, BB ? BB : BA.getBasicBlock());
519 }
520 
521 Metadata *Mapper::mapToMetadata(const Metadata *Key, Metadata *Val) {
522   getVM().MD()[Key].reset(Val);
523   return Val;
524 }
525 
526 Metadata *Mapper::mapToSelf(const Metadata *MD) {
527   return mapToMetadata(MD, const_cast<Metadata *>(MD));
528 }
529 
530 Optional<Metadata *> MDNodeMapper::tryToMapOperand(const Metadata *Op) {
531   if (!Op)
532     return nullptr;
533 
534   if (Optional<Metadata *> MappedOp = M.mapSimpleMetadata(Op)) {
535 #ifndef NDEBUG
536     if (auto *CMD = dyn_cast<ConstantAsMetadata>(Op))
537       assert((!*MappedOp || M.getVM().count(CMD->getValue()) ||
538               M.getVM().getMappedMD(Op)) &&
539              "Expected Value to be memoized");
540     else
541       assert((isa<MDString>(Op) || M.getVM().getMappedMD(Op)) &&
542              "Expected result to be memoized");
543 #endif
544     return *MappedOp;
545   }
546 
547   const MDNode &N = *cast<MDNode>(Op);
548   if (N.isDistinct())
549     return mapDistinctNode(N);
550   return None;
551 }
552 
553 MDNode *MDNodeMapper::mapDistinctNode(const MDNode &N) {
554   assert(N.isDistinct() && "Expected a distinct node");
555   assert(!M.getVM().getMappedMD(&N) && "Expected an unmapped node");
556   DistinctWorklist.push_back(cast<MDNode>(
557       (M.Flags & RF_MoveDistinctMDs)
558           ? M.mapToSelf(&N)
559           : M.mapToMetadata(&N, MDNode::replaceWithDistinct(N.clone()))));
560   return DistinctWorklist.back();
561 }
562 
563 static ConstantAsMetadata *wrapConstantAsMetadata(const ConstantAsMetadata &CMD,
564                                                   Value *MappedV) {
565   if (CMD.getValue() == MappedV)
566     return const_cast<ConstantAsMetadata *>(&CMD);
567   return MappedV ? ConstantAsMetadata::getConstant(MappedV) : nullptr;
568 }
569 
570 Optional<Metadata *> MDNodeMapper::getMappedOp(const Metadata *Op) const {
571   if (!Op)
572     return nullptr;
573 
574   if (Optional<Metadata *> MappedOp = M.getVM().getMappedMD(Op))
575     return *MappedOp;
576 
577   if (isa<MDString>(Op))
578     return const_cast<Metadata *>(Op);
579 
580   if (auto *CMD = dyn_cast<ConstantAsMetadata>(Op))
581     return wrapConstantAsMetadata(*CMD, M.getVM().lookup(CMD->getValue()));
582 
583   return None;
584 }
585 
586 Metadata &MDNodeMapper::UniquedGraph::getFwdReference(MDNode &Op) {
587   auto Where = Info.find(&Op);
588   assert(Where != Info.end() && "Expected a valid reference");
589 
590   auto &OpD = Where->second;
591   if (!OpD.HasChanged)
592     return Op;
593 
594   // Lazily construct a temporary node.
595   if (!OpD.Placeholder)
596     OpD.Placeholder = Op.clone();
597 
598   return *OpD.Placeholder;
599 }
600 
601 template <class OperandMapper>
602 void MDNodeMapper::remapOperands(MDNode &N, OperandMapper mapOperand) {
603   assert(!N.isUniqued() && "Expected distinct or temporary nodes");
604   for (unsigned I = 0, E = N.getNumOperands(); I != E; ++I) {
605     Metadata *Old = N.getOperand(I);
606     Metadata *New = mapOperand(Old);
607 
608     if (Old != New)
609       N.replaceOperandWith(I, New);
610   }
611 }
612 
613 namespace {
614 /// An entry in the worklist for the post-order traversal.
615 struct POTWorklistEntry {
616   MDNode *N;              ///< Current node.
617   MDNode::op_iterator Op; ///< Current operand of \c N.
618 
619   /// Keep a flag of whether operands have changed in the worklist to avoid
620   /// hitting the map in \a UniquedGraph.
621   bool HasChanged = false;
622 
623   POTWorklistEntry(MDNode &N) : N(&N), Op(N.op_begin()) {}
624 };
625 } // end namespace
626 
627 bool MDNodeMapper::createPOT(UniquedGraph &G, const MDNode &FirstN) {
628   assert(G.Info.empty() && "Expected a fresh traversal");
629   assert(FirstN.isUniqued() && "Expected uniqued node in POT");
630 
631   // Construct a post-order traversal of the uniqued subgraph under FirstN.
632   bool AnyChanges = false;
633   SmallVector<POTWorklistEntry, 16> Worklist;
634   Worklist.push_back(POTWorklistEntry(const_cast<MDNode &>(FirstN)));
635   (void)G.Info[&FirstN];
636   while (!Worklist.empty()) {
637     // Start or continue the traversal through the this node's operands.
638     auto &WE = Worklist.back();
639     if (MDNode *N = visitOperands(G, WE.Op, WE.N->op_end(), WE.HasChanged)) {
640       // Push a new node to traverse first.
641       Worklist.push_back(POTWorklistEntry(*N));
642       continue;
643     }
644 
645     // Push the node onto the POT.
646     assert(WE.N->isUniqued() && "Expected only uniqued nodes");
647     assert(WE.Op == WE.N->op_end() && "Expected to visit all operands");
648     auto &D = G.Info[WE.N];
649     AnyChanges |= D.HasChanged = WE.HasChanged;
650     D.ID = G.POT.size();
651     G.POT.push_back(WE.N);
652 
653     // Pop the node off the worklist.
654     Worklist.pop_back();
655   }
656   return AnyChanges;
657 }
658 
659 MDNode *MDNodeMapper::visitOperands(UniquedGraph &G, MDNode::op_iterator &I,
660                                     MDNode::op_iterator E, bool &HasChanged) {
661   while (I != E) {
662     Metadata *Op = *I++; // Increment even on early return.
663     if (Optional<Metadata *> MappedOp = tryToMapOperand(Op)) {
664       // Check if the operand changes.
665       HasChanged |= Op != *MappedOp;
666       continue;
667     }
668 
669     // A uniqued metadata node.
670     MDNode &OpN = *cast<MDNode>(Op);
671     assert(OpN.isUniqued() &&
672            "Only uniqued operands cannot be mapped immediately");
673     if (G.Info.insert(std::make_pair(&OpN, Data())).second)
674       return &OpN; // This is a new one.  Return it.
675   }
676   return nullptr;
677 }
678 
679 void MDNodeMapper::UniquedGraph::propagateChanges() {
680   bool AnyChanges;
681   do {
682     AnyChanges = false;
683     for (MDNode *N : POT) {
684       auto &D = Info[N];
685       if (D.HasChanged)
686         continue;
687 
688       if (!llvm::any_of(N->operands(), [&](const Metadata *Op) {
689             auto Where = Info.find(Op);
690             return Where != Info.end() && Where->second.HasChanged;
691           }))
692         continue;
693 
694       AnyChanges = D.HasChanged = true;
695     }
696   } while (AnyChanges);
697 }
698 
699 void MDNodeMapper::mapNodesInPOT(UniquedGraph &G) {
700   // Construct uniqued nodes, building forward references as necessary.
701   SmallVector<MDNode *, 16> CyclicNodes;
702   for (auto *N : G.POT) {
703     auto &D = G.Info[N];
704     if (!D.HasChanged) {
705       // The node hasn't changed.
706       M.mapToSelf(N);
707       continue;
708     }
709 
710     // Remember whether this node had a placeholder.
711     bool HadPlaceholder(D.Placeholder);
712 
713     // Clone the uniqued node and remap the operands.
714     TempMDNode ClonedN = D.Placeholder ? std::move(D.Placeholder) : N->clone();
715     remapOperands(*ClonedN, [this, &D, &G](Metadata *Old) {
716       if (Optional<Metadata *> MappedOp = getMappedOp(Old))
717         return *MappedOp;
718       assert(G.Info[Old].ID > D.ID && "Expected a forward reference");
719       return &G.getFwdReference(*cast<MDNode>(Old));
720     });
721 
722     auto *NewN = MDNode::replaceWithUniqued(std::move(ClonedN));
723     M.mapToMetadata(N, NewN);
724 
725     // Nodes that were referenced out of order in the POT are involved in a
726     // uniquing cycle.
727     if (HadPlaceholder)
728       CyclicNodes.push_back(NewN);
729   }
730 
731   // Resolve cycles.
732   for (auto *N : CyclicNodes)
733     if (!N->isResolved())
734       N->resolveCycles();
735 }
736 
737 Metadata *MDNodeMapper::map(const MDNode &N) {
738   assert(DistinctWorklist.empty() && "MDNodeMapper::map is not recursive");
739   assert(!(M.Flags & RF_NoModuleLevelChanges) &&
740          "MDNodeMapper::map assumes module-level changes");
741 
742   // Require resolved nodes whenever metadata might be remapped.
743   assert(N.isResolved() && "Unexpected unresolved node");
744 
745   Metadata *MappedN =
746       N.isUniqued() ? mapTopLevelUniquedNode(N) : mapDistinctNode(N);
747   while (!DistinctWorklist.empty())
748     remapOperands(*DistinctWorklist.pop_back_val(), [this](Metadata *Old) {
749       if (Optional<Metadata *> MappedOp = tryToMapOperand(Old))
750         return *MappedOp;
751       return mapTopLevelUniquedNode(*cast<MDNode>(Old));
752     });
753   return MappedN;
754 }
755 
756 Metadata *MDNodeMapper::mapTopLevelUniquedNode(const MDNode &FirstN) {
757   assert(FirstN.isUniqued() && "Expected uniqued node");
758 
759   // Create a post-order traversal of uniqued nodes under FirstN.
760   UniquedGraph G;
761   if (!createPOT(G, FirstN)) {
762     // Return early if no nodes have changed.
763     for (const MDNode *N : G.POT)
764       M.mapToSelf(N);
765     return &const_cast<MDNode &>(FirstN);
766   }
767 
768   // Update graph with all nodes that have changed.
769   G.propagateChanges();
770 
771   // Map all the nodes in the graph.
772   mapNodesInPOT(G);
773 
774   // Return the original node, remapped.
775   return *getMappedOp(&FirstN);
776 }
777 
778 namespace {
779 
780 struct MapMetadataDisabler {
781   ValueToValueMapTy &VM;
782 
783   MapMetadataDisabler(ValueToValueMapTy &VM) : VM(VM) {
784     VM.disableMapMetadata();
785   }
786   ~MapMetadataDisabler() { VM.enableMapMetadata(); }
787 };
788 
789 } // end namespace
790 
791 Optional<Metadata *> Mapper::mapSimpleMetadata(const Metadata *MD) {
792   // If the value already exists in the map, use it.
793   if (Optional<Metadata *> NewMD = getVM().getMappedMD(MD))
794     return *NewMD;
795 
796   if (isa<MDString>(MD))
797     return const_cast<Metadata *>(MD);
798 
799   // This is a module-level metadata.  If nothing at the module level is
800   // changing, use an identity mapping.
801   if ((Flags & RF_NoModuleLevelChanges))
802     return const_cast<Metadata *>(MD);
803 
804   if (auto *CMD = dyn_cast<ConstantAsMetadata>(MD)) {
805     // Disallow recursion into metadata mapping through mapValue.
806     MapMetadataDisabler MMD(getVM());
807 
808     // Don't memoize ConstantAsMetadata.  Instead of lasting until the
809     // LLVMContext is destroyed, they can be deleted when the GlobalValue they
810     // reference is destructed.  These aren't super common, so the extra
811     // indirection isn't that expensive.
812     return wrapConstantAsMetadata(*CMD, mapValue(CMD->getValue()));
813   }
814 
815   assert(isa<MDNode>(MD) && "Expected a metadata node");
816 
817   return None;
818 }
819 
820 Metadata *Mapper::mapLocalAsMetadata(const LocalAsMetadata &LAM) {
821   // Lookup the mapping for the value itself, and return the appropriate
822   // metadata.
823   if (Value *V = mapValue(LAM.getValue())) {
824     if (V == LAM.getValue())
825       return const_cast<LocalAsMetadata *>(&LAM);
826     return ValueAsMetadata::get(V);
827   }
828 
829   // FIXME: always return nullptr once Verifier::verifyDominatesUse() ensures
830   // metadata operands only reference defined SSA values.
831   return (Flags & RF_IgnoreMissingLocals)
832              ? nullptr
833              : MDTuple::get(LAM.getContext(), None);
834 }
835 
836 Metadata *Mapper::mapMetadata(const Metadata *MD) {
837   assert(MD && "Expected valid metadata");
838   assert(!isa<LocalAsMetadata>(MD) && "Unexpected local metadata");
839 
840   if (Optional<Metadata *> NewMD = mapSimpleMetadata(MD))
841     return *NewMD;
842 
843   return MDNodeMapper(*this).map(*cast<MDNode>(MD));
844 }
845 
846 void Mapper::flush() {
847   // Flush out the worklist of global values.
848   while (!Worklist.empty()) {
849     WorklistEntry E = Worklist.pop_back_val();
850     CurrentMCID = E.MCID;
851     switch (E.Kind) {
852     case WorklistEntry::MapGlobalInit:
853       E.Data.GVInit.GV->setInitializer(mapConstant(E.Data.GVInit.Init));
854       break;
855     case WorklistEntry::MapAppendingVar: {
856       unsigned PrefixSize = AppendingInits.size() - E.AppendingGVNumNewMembers;
857       mapAppendingVariable(*E.Data.AppendingGV.GV,
858                            E.Data.AppendingGV.InitPrefix,
859                            E.AppendingGVIsOldCtorDtor,
860                            makeArrayRef(AppendingInits).slice(PrefixSize));
861       AppendingInits.resize(PrefixSize);
862       break;
863     }
864     case WorklistEntry::MapGlobalAliasee:
865       E.Data.GlobalAliasee.GA->setAliasee(
866           mapConstant(E.Data.GlobalAliasee.Aliasee));
867       break;
868     case WorklistEntry::RemapFunction:
869       remapFunction(*E.Data.RemapF);
870       break;
871     }
872   }
873   CurrentMCID = 0;
874 
875   // Finish logic for block addresses now that all global values have been
876   // handled.
877   while (!DelayedBBs.empty()) {
878     DelayedBasicBlock DBB = DelayedBBs.pop_back_val();
879     BasicBlock *BB = cast_or_null<BasicBlock>(mapValue(DBB.OldBB));
880     DBB.TempBB->replaceAllUsesWith(BB ? BB : DBB.OldBB);
881   }
882 }
883 
884 void Mapper::remapInstruction(Instruction *I) {
885   // Remap operands.
886   for (Use &Op : I->operands()) {
887     Value *V = mapValue(Op);
888     // If we aren't ignoring missing entries, assert that something happened.
889     if (V)
890       Op = V;
891     else
892       assert((Flags & RF_IgnoreMissingLocals) &&
893              "Referenced value not in value map!");
894   }
895 
896   // Remap phi nodes' incoming blocks.
897   if (PHINode *PN = dyn_cast<PHINode>(I)) {
898     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
899       Value *V = mapValue(PN->getIncomingBlock(i));
900       // If we aren't ignoring missing entries, assert that something happened.
901       if (V)
902         PN->setIncomingBlock(i, cast<BasicBlock>(V));
903       else
904         assert((Flags & RF_IgnoreMissingLocals) &&
905                "Referenced block not in value map!");
906     }
907   }
908 
909   // Remap attached metadata.
910   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
911   I->getAllMetadata(MDs);
912   for (const auto &MI : MDs) {
913     MDNode *Old = MI.second;
914     MDNode *New = cast_or_null<MDNode>(mapMetadata(Old));
915     if (New != Old)
916       I->setMetadata(MI.first, New);
917   }
918 
919   if (!TypeMapper)
920     return;
921 
922   // If the instruction's type is being remapped, do so now.
923   if (auto CS = CallSite(I)) {
924     SmallVector<Type *, 3> Tys;
925     FunctionType *FTy = CS.getFunctionType();
926     Tys.reserve(FTy->getNumParams());
927     for (Type *Ty : FTy->params())
928       Tys.push_back(TypeMapper->remapType(Ty));
929     CS.mutateFunctionType(FunctionType::get(
930         TypeMapper->remapType(I->getType()), Tys, FTy->isVarArg()));
931     return;
932   }
933   if (auto *AI = dyn_cast<AllocaInst>(I))
934     AI->setAllocatedType(TypeMapper->remapType(AI->getAllocatedType()));
935   if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) {
936     GEP->setSourceElementType(
937         TypeMapper->remapType(GEP->getSourceElementType()));
938     GEP->setResultElementType(
939         TypeMapper->remapType(GEP->getResultElementType()));
940   }
941   I->mutateType(TypeMapper->remapType(I->getType()));
942 }
943 
944 void Mapper::remapFunction(Function &F) {
945   // Remap the operands.
946   for (Use &Op : F.operands())
947     if (Op)
948       Op = mapValue(Op);
949 
950   // Remap the metadata attachments.
951   SmallVector<std::pair<unsigned, MDNode *>, 8> MDs;
952   F.getAllMetadata(MDs);
953   F.clearMetadata();
954   for (const auto &I : MDs)
955     F.addMetadata(I.first, *cast<MDNode>(mapMetadata(I.second)));
956 
957   // Remap the argument types.
958   if (TypeMapper)
959     for (Argument &A : F.args())
960       A.mutateType(TypeMapper->remapType(A.getType()));
961 
962   // Remap the instructions.
963   for (BasicBlock &BB : F)
964     for (Instruction &I : BB)
965       remapInstruction(&I);
966 }
967 
968 void Mapper::mapAppendingVariable(GlobalVariable &GV, Constant *InitPrefix,
969                                   bool IsOldCtorDtor,
970                                   ArrayRef<Constant *> NewMembers) {
971   SmallVector<Constant *, 16> Elements;
972   if (InitPrefix) {
973     unsigned NumElements =
974         cast<ArrayType>(InitPrefix->getType())->getNumElements();
975     for (unsigned I = 0; I != NumElements; ++I)
976       Elements.push_back(InitPrefix->getAggregateElement(I));
977   }
978 
979   PointerType *VoidPtrTy;
980   Type *EltTy;
981   if (IsOldCtorDtor) {
982     // FIXME: This upgrade is done during linking to support the C API.  See
983     // also IRLinker::linkAppendingVarProto() in IRMover.cpp.
984     VoidPtrTy = Type::getInt8Ty(GV.getContext())->getPointerTo();
985     auto &ST = *cast<StructType>(NewMembers.front()->getType());
986     Type *Tys[3] = {ST.getElementType(0), ST.getElementType(1), VoidPtrTy};
987     EltTy = StructType::get(GV.getContext(), Tys, false);
988   }
989 
990   for (auto *V : NewMembers) {
991     Constant *NewV;
992     if (IsOldCtorDtor) {
993       auto *S = cast<ConstantStruct>(V);
994       auto *E1 = mapValue(S->getOperand(0));
995       auto *E2 = mapValue(S->getOperand(1));
996       Value *Null = Constant::getNullValue(VoidPtrTy);
997       NewV =
998           ConstantStruct::get(cast<StructType>(EltTy), E1, E2, Null, nullptr);
999     } else {
1000       NewV = cast_or_null<Constant>(mapValue(V));
1001     }
1002     Elements.push_back(NewV);
1003   }
1004 
1005   GV.setInitializer(ConstantArray::get(
1006       cast<ArrayType>(GV.getType()->getElementType()), Elements));
1007 }
1008 
1009 void Mapper::scheduleMapGlobalInitializer(GlobalVariable &GV, Constant &Init,
1010                                           unsigned MCID) {
1011   assert(AlreadyScheduled.insert(&GV).second && "Should not reschedule");
1012   assert(MCID < MCs.size() && "Invalid mapping context");
1013 
1014   WorklistEntry WE;
1015   WE.Kind = WorklistEntry::MapGlobalInit;
1016   WE.MCID = MCID;
1017   WE.Data.GVInit.GV = &GV;
1018   WE.Data.GVInit.Init = &Init;
1019   Worklist.push_back(WE);
1020 }
1021 
1022 void Mapper::scheduleMapAppendingVariable(GlobalVariable &GV,
1023                                           Constant *InitPrefix,
1024                                           bool IsOldCtorDtor,
1025                                           ArrayRef<Constant *> NewMembers,
1026                                           unsigned MCID) {
1027   assert(AlreadyScheduled.insert(&GV).second && "Should not reschedule");
1028   assert(MCID < MCs.size() && "Invalid mapping context");
1029 
1030   WorklistEntry WE;
1031   WE.Kind = WorklistEntry::MapAppendingVar;
1032   WE.MCID = MCID;
1033   WE.Data.AppendingGV.GV = &GV;
1034   WE.Data.AppendingGV.InitPrefix = InitPrefix;
1035   WE.AppendingGVIsOldCtorDtor = IsOldCtorDtor;
1036   WE.AppendingGVNumNewMembers = NewMembers.size();
1037   Worklist.push_back(WE);
1038   AppendingInits.append(NewMembers.begin(), NewMembers.end());
1039 }
1040 
1041 void Mapper::scheduleMapGlobalAliasee(GlobalAlias &GA, Constant &Aliasee,
1042                                       unsigned MCID) {
1043   assert(AlreadyScheduled.insert(&GA).second && "Should not reschedule");
1044   assert(MCID < MCs.size() && "Invalid mapping context");
1045 
1046   WorklistEntry WE;
1047   WE.Kind = WorklistEntry::MapGlobalAliasee;
1048   WE.MCID = MCID;
1049   WE.Data.GlobalAliasee.GA = &GA;
1050   WE.Data.GlobalAliasee.Aliasee = &Aliasee;
1051   Worklist.push_back(WE);
1052 }
1053 
1054 void Mapper::scheduleRemapFunction(Function &F, unsigned MCID) {
1055   assert(AlreadyScheduled.insert(&F).second && "Should not reschedule");
1056   assert(MCID < MCs.size() && "Invalid mapping context");
1057 
1058   WorklistEntry WE;
1059   WE.Kind = WorklistEntry::RemapFunction;
1060   WE.MCID = MCID;
1061   WE.Data.RemapF = &F;
1062   Worklist.push_back(WE);
1063 }
1064 
1065 void Mapper::addFlags(RemapFlags Flags) {
1066   assert(!hasWorkToDo() && "Expected to have flushed the worklist");
1067   this->Flags = this->Flags | Flags;
1068 }
1069 
1070 static Mapper *getAsMapper(void *pImpl) {
1071   return reinterpret_cast<Mapper *>(pImpl);
1072 }
1073 
1074 namespace {
1075 
1076 class FlushingMapper {
1077   Mapper &M;
1078 
1079 public:
1080   explicit FlushingMapper(void *pImpl) : M(*getAsMapper(pImpl)) {
1081     assert(!M.hasWorkToDo() && "Expected to be flushed");
1082   }
1083   ~FlushingMapper() { M.flush(); }
1084   Mapper *operator->() const { return &M; }
1085 };
1086 
1087 } // end namespace
1088 
1089 ValueMapper::ValueMapper(ValueToValueMapTy &VM, RemapFlags Flags,
1090                          ValueMapTypeRemapper *TypeMapper,
1091                          ValueMaterializer *Materializer)
1092     : pImpl(new Mapper(VM, Flags, TypeMapper, Materializer)) {}
1093 
1094 ValueMapper::~ValueMapper() { delete getAsMapper(pImpl); }
1095 
1096 unsigned
1097 ValueMapper::registerAlternateMappingContext(ValueToValueMapTy &VM,
1098                                              ValueMaterializer *Materializer) {
1099   return getAsMapper(pImpl)->registerAlternateMappingContext(VM, Materializer);
1100 }
1101 
1102 void ValueMapper::addFlags(RemapFlags Flags) {
1103   FlushingMapper(pImpl)->addFlags(Flags);
1104 }
1105 
1106 Value *ValueMapper::mapValue(const Value &V) {
1107   return FlushingMapper(pImpl)->mapValue(&V);
1108 }
1109 
1110 Constant *ValueMapper::mapConstant(const Constant &C) {
1111   return cast_or_null<Constant>(mapValue(C));
1112 }
1113 
1114 Metadata *ValueMapper::mapMetadata(const Metadata &MD) {
1115   return FlushingMapper(pImpl)->mapMetadata(&MD);
1116 }
1117 
1118 MDNode *ValueMapper::mapMDNode(const MDNode &N) {
1119   return cast_or_null<MDNode>(mapMetadata(N));
1120 }
1121 
1122 void ValueMapper::remapInstruction(Instruction &I) {
1123   FlushingMapper(pImpl)->remapInstruction(&I);
1124 }
1125 
1126 void ValueMapper::remapFunction(Function &F) {
1127   FlushingMapper(pImpl)->remapFunction(F);
1128 }
1129 
1130 void ValueMapper::scheduleMapGlobalInitializer(GlobalVariable &GV,
1131                                                Constant &Init,
1132                                                unsigned MCID) {
1133   getAsMapper(pImpl)->scheduleMapGlobalInitializer(GV, Init, MCID);
1134 }
1135 
1136 void ValueMapper::scheduleMapAppendingVariable(GlobalVariable &GV,
1137                                                Constant *InitPrefix,
1138                                                bool IsOldCtorDtor,
1139                                                ArrayRef<Constant *> NewMembers,
1140                                                unsigned MCID) {
1141   getAsMapper(pImpl)->scheduleMapAppendingVariable(
1142       GV, InitPrefix, IsOldCtorDtor, NewMembers, MCID);
1143 }
1144 
1145 void ValueMapper::scheduleMapGlobalAliasee(GlobalAlias &GA, Constant &Aliasee,
1146                                            unsigned MCID) {
1147   getAsMapper(pImpl)->scheduleMapGlobalAliasee(GA, Aliasee, MCID);
1148 }
1149 
1150 void ValueMapper::scheduleRemapFunction(Function &F, unsigned MCID) {
1151   getAsMapper(pImpl)->scheduleRemapFunction(F, MCID);
1152 }
1153