1 //===- ValueMapper.cpp - Interface shared by lib/Transforms/Utils ---------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the MapValue function, which is shared by various parts of
11 // the lib/Transforms/Utils library.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/Utils/ValueMapper.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/IR/CallSite.h"
18 #include "llvm/IR/Constants.h"
19 #include "llvm/IR/DebugInfoMetadata.h"
20 #include "llvm/IR/Function.h"
21 #include "llvm/IR/GlobalAlias.h"
22 #include "llvm/IR/GlobalVariable.h"
23 #include "llvm/IR/InlineAsm.h"
24 #include "llvm/IR/Instructions.h"
25 #include "llvm/IR/Metadata.h"
26 #include "llvm/IR/Operator.h"
27 using namespace llvm;
28 
29 // Out of line method to get vtable etc for class.
30 void ValueMapTypeRemapper::anchor() {}
31 void ValueMaterializer::anchor() {}
32 
33 namespace {
34 
35 /// A basic block used in a BlockAddress whose function body is not yet
36 /// materialized.
37 struct DelayedBasicBlock {
38   BasicBlock *OldBB;
39   std::unique_ptr<BasicBlock> TempBB;
40 
41   DelayedBasicBlock(const BlockAddress &Old)
42       : OldBB(Old.getBasicBlock()),
43         TempBB(BasicBlock::Create(Old.getContext())) {}
44 };
45 
46 struct WorklistEntry {
47   enum EntryKind {
48     MapGlobalInit,
49     MapAppendingVar,
50     MapGlobalAliasee,
51     RemapFunction
52   };
53   struct GVInitTy {
54     GlobalVariable *GV;
55     Constant *Init;
56   };
57   struct AppendingGVTy {
58     GlobalVariable *GV;
59     Constant *InitPrefix;
60   };
61   struct GlobalAliaseeTy {
62     GlobalAlias *GA;
63     Constant *Aliasee;
64   };
65 
66   unsigned Kind : 2;
67   unsigned MCID : 29;
68   unsigned AppendingGVIsOldCtorDtor : 1;
69   unsigned AppendingGVNumNewMembers;
70   union {
71     GVInitTy GVInit;
72     AppendingGVTy AppendingGV;
73     GlobalAliaseeTy GlobalAliasee;
74     Function *RemapF;
75   } Data;
76 };
77 
78 struct MappingContext {
79   ValueToValueMapTy *VM;
80   ValueMaterializer *Materializer = nullptr;
81 
82   /// Construct a MappingContext with a value map and materializer.
83   explicit MappingContext(ValueToValueMapTy &VM,
84                           ValueMaterializer *Materializer = nullptr)
85       : VM(&VM), Materializer(Materializer) {}
86 };
87 
88 class MDNodeMapper;
89 class Mapper {
90   friend class MDNodeMapper;
91 
92 #ifndef NDEBUG
93   DenseSet<GlobalValue *> AlreadyScheduled;
94 #endif
95 
96   RemapFlags Flags;
97   ValueMapTypeRemapper *TypeMapper;
98   unsigned CurrentMCID = 0;
99   SmallVector<MappingContext, 2> MCs;
100   SmallVector<WorklistEntry, 4> Worklist;
101   SmallVector<DelayedBasicBlock, 1> DelayedBBs;
102   SmallVector<Constant *, 16> AppendingInits;
103 
104 public:
105   Mapper(ValueToValueMapTy &VM, RemapFlags Flags,
106          ValueMapTypeRemapper *TypeMapper, ValueMaterializer *Materializer)
107       : Flags(Flags), TypeMapper(TypeMapper),
108         MCs(1, MappingContext(VM, Materializer)) {}
109 
110   /// ValueMapper should explicitly call \a flush() before destruction.
111   ~Mapper() { assert(!hasWorkToDo() && "Expected to be flushed"); }
112 
113   bool hasWorkToDo() const { return !Worklist.empty(); }
114 
115   unsigned
116   registerAlternateMappingContext(ValueToValueMapTy &VM,
117                                   ValueMaterializer *Materializer = nullptr) {
118     MCs.push_back(MappingContext(VM, Materializer));
119     return MCs.size() - 1;
120   }
121 
122   void addFlags(RemapFlags Flags);
123 
124   Value *mapValue(const Value *V);
125   void remapInstruction(Instruction *I);
126   void remapFunction(Function &F);
127 
128   Constant *mapConstant(const Constant *C) {
129     return cast_or_null<Constant>(mapValue(C));
130   }
131 
132   /// Map metadata.
133   ///
134   /// Find the mapping for MD.  Guarantees that the return will be resolved
135   /// (not an MDNode, or MDNode::isResolved() returns true).
136   Metadata *mapMetadata(const Metadata *MD);
137 
138   void scheduleMapGlobalInitializer(GlobalVariable &GV, Constant &Init,
139                                     unsigned MCID);
140   void scheduleMapAppendingVariable(GlobalVariable &GV, Constant *InitPrefix,
141                                     bool IsOldCtorDtor,
142                                     ArrayRef<Constant *> NewMembers,
143                                     unsigned MCID);
144   void scheduleMapGlobalAliasee(GlobalAlias &GA, Constant &Aliasee,
145                                 unsigned MCID);
146   void scheduleRemapFunction(Function &F, unsigned MCID);
147 
148   void flush();
149 
150 private:
151   void mapGlobalInitializer(GlobalVariable &GV, Constant &Init);
152   void mapAppendingVariable(GlobalVariable &GV, Constant *InitPrefix,
153                             bool IsOldCtorDtor,
154                             ArrayRef<Constant *> NewMembers);
155   void mapGlobalAliasee(GlobalAlias &GA, Constant &Aliasee);
156   void remapFunction(Function &F, ValueToValueMapTy &VM);
157 
158   ValueToValueMapTy &getVM() { return *MCs[CurrentMCID].VM; }
159   ValueMaterializer *getMaterializer() { return MCs[CurrentMCID].Materializer; }
160 
161   Value *mapBlockAddress(const BlockAddress &BA);
162 
163   /// Map metadata that doesn't require visiting operands.
164   Optional<Metadata *> mapSimpleMetadata(const Metadata *MD);
165 
166   Metadata *mapToMetadata(const Metadata *Key, Metadata *Val);
167   Metadata *mapToSelf(const Metadata *MD);
168 };
169 
170 class MDNodeMapper {
171   Mapper &M;
172 
173   /// Data about a node in \a UniquedGraph.
174   struct Data {
175     bool HasChanged = false;
176     unsigned ID = ~0u;
177     TempMDNode Placeholder;
178   };
179 
180   /// A graph of uniqued nodes.
181   struct UniquedGraph {
182     SmallDenseMap<const Metadata *, Data, 32> Info; // Node properties.
183     SmallVector<MDNode *, 16> POT;                  // Post-order traversal.
184 
185     /// Propagate changed operands through the post-order traversal.
186     ///
187     /// Iteratively update \a Data::HasChanged for each node based on \a
188     /// Data::HasChanged of its operands, until fixed point.
189     void propagateChanges();
190 
191     /// Get a forward reference to a node to use as an operand.
192     Metadata &getFwdReference(MDNode &Op);
193   };
194 
195   /// Worklist of distinct nodes whose operands need to be remapped.
196   SmallVector<MDNode *, 16> DistinctWorklist;
197 
198   // Storage for a UniquedGraph.
199   SmallDenseMap<const Metadata *, Data, 32> InfoStorage;
200   SmallVector<MDNode *, 16> POTStorage;
201 
202 public:
203   MDNodeMapper(Mapper &M) : M(M) {}
204 
205   /// Map a metadata node (and its transitive operands).
206   ///
207   /// Map all the (unmapped) nodes in the subgraph under \c N.  The iterative
208   /// algorithm handles distinct nodes and uniqued node subgraphs using
209   /// different strategies.
210   ///
211   /// Distinct nodes are immediately mapped and added to \a DistinctWorklist
212   /// using \a mapDistinctNode().  Their mapping can always be computed
213   /// immediately without visiting operands, even if their operands change.
214   ///
215   /// The mapping for uniqued nodes depends on whether their operands change.
216   /// \a mapTopLevelUniquedNode() traverses the transitive uniqued subgraph of
217   /// a node to calculate uniqued node mappings in bulk.  Distinct leafs are
218   /// added to \a DistinctWorklist with \a mapDistinctNode().
219   ///
220   /// After mapping \c N itself, this function remaps the operands of the
221   /// distinct nodes in \a DistinctWorklist until the entire subgraph under \c
222   /// N has been mapped.
223   Metadata *map(const MDNode &N);
224 
225 private:
226   /// Map a top-level uniqued node and the uniqued subgraph underneath it.
227   ///
228   /// This builds up a post-order traversal of the (unmapped) uniqued subgraph
229   /// underneath \c FirstN and calculates the nodes' mapping.  Each node uses
230   /// the identity mapping (\a Mapper::mapToSelf()) as long as all of its
231   /// operands uses the identity mapping.
232   ///
233   /// The algorithm works as follows:
234   ///
235   ///  1. \a createPOT(): traverse the uniqued subgraph under \c FirstN and
236   ///     save the post-order traversal in the given \a UniquedGraph, tracking
237   ///     nodes' operands change.
238   ///
239   ///  2. \a UniquedGraph::propagateChanges(): propagate changed operands
240   ///     through the \a UniquedGraph until fixed point, following the rule
241   ///     that if a node changes, any node that references must also change.
242   ///
243   ///  3. \a mapNodesInPOT(): map the uniqued nodes, creating new uniqued nodes
244   ///     (referencing new operands) where necessary.
245   Metadata *mapTopLevelUniquedNode(const MDNode &FirstN);
246 
247   /// Try to map the operand of an \a MDNode.
248   ///
249   /// If \c Op is already mapped, return the mapping.  If it's not an \a
250   /// MDNode, compute and return the mapping.  If it's a distinct \a MDNode,
251   /// return the result of \a mapDistinctNode().
252   ///
253   /// \return None if \c Op is an unmapped uniqued \a MDNode.
254   /// \post getMappedOp(Op) only returns None if this returns None.
255   Optional<Metadata *> tryToMapOperand(const Metadata *Op);
256 
257   /// Map a distinct node.
258   ///
259   /// Return the mapping for the distinct node \c N, saving the result in \a
260   /// DistinctWorklist for later remapping.
261   ///
262   /// \pre \c N is not yet mapped.
263   /// \pre \c N.isDistinct().
264   MDNode *mapDistinctNode(const MDNode &N);
265 
266   /// Get a previously mapped node.
267   Optional<Metadata *> getMappedOp(const Metadata *Op) const;
268 
269   /// Create a post-order traversal of an unmapped uniqued node subgraph.
270   ///
271   /// This traverses the metadata graph deeply enough to map \c FirstN.  It
272   /// uses \a tryToMapOperand() (via \a Mapper::mapSimplifiedNode()), so any
273   /// metadata that has already been mapped will not be part of the POT.
274   ///
275   /// Each node that has a changed operand from outside the graph (e.g., a
276   /// distinct node, an already-mapped uniqued node, or \a ConstantAsMetadata)
277   /// is marked with \a Data::HasChanged.
278   ///
279   /// \return \c true if any nodes in \c G have \a Data::HasChanged.
280   /// \post \c G.POT is a post-order traversal ending with \c FirstN.
281   /// \post \a Data::hasChanged in \c G.Info indicates whether any node needs
282   /// to change because of operands outside the graph.
283   bool createPOT(UniquedGraph &G, const MDNode &FirstN);
284 
285   /// Visit the operands of a uniqued node in the POT.
286   ///
287   /// Visit the operands in the range from \c I to \c E, returning the first
288   /// uniqued node we find that isn't yet in \c G.  \c I is always advanced to
289   /// where to continue the loop through the operands.
290   ///
291   /// This sets \c HasChanged if any of the visited operands change.
292   MDNode *visitOperands(UniquedGraph &G, MDNode::op_iterator &I,
293                         MDNode::op_iterator E, bool &HasChanged);
294 
295   /// Map all the nodes in the given uniqued graph.
296   ///
297   /// This visits all the nodes in \c G in post-order, using the identity
298   /// mapping or creating a new node depending on \a Data::HasChanged.
299   ///
300   /// \pre \a getMappedOp() returns None for nodes in \c G, but not for any of
301   /// their operands outside of \c G.
302   /// \pre \a Data::HasChanged is true for a node in \c G iff any of its
303   /// operands have changed.
304   /// \post \a getMappedOp() returns the mapped node for every node in \c G.
305   void mapNodesInPOT(UniquedGraph &G);
306 
307   /// Remap a node's operands using the given functor.
308   ///
309   /// Iterate through the operands of \c N and update them in place using \c
310   /// mapOperand.
311   ///
312   /// \pre N.isDistinct() or N.isTemporary().
313   template <class OperandMapper>
314   void remapOperands(MDNode &N, OperandMapper mapOperand);
315 };
316 
317 } // end namespace
318 
319 Value *Mapper::mapValue(const Value *V) {
320   ValueToValueMapTy::iterator I = getVM().find(V);
321 
322   // If the value already exists in the map, use it.
323   if (I != getVM().end()) {
324     assert(I->second && "Unexpected null mapping");
325     return I->second;
326   }
327 
328   // If we have a materializer and it can materialize a value, use that.
329   if (auto *Materializer = getMaterializer()) {
330     if (Value *NewV = Materializer->materialize(const_cast<Value *>(V))) {
331       getVM()[V] = NewV;
332       return NewV;
333     }
334   }
335 
336   // Global values do not need to be seeded into the VM if they
337   // are using the identity mapping.
338   if (isa<GlobalValue>(V)) {
339     if (Flags & RF_NullMapMissingGlobalValues)
340       return nullptr;
341     return getVM()[V] = const_cast<Value *>(V);
342   }
343 
344   if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
345     // Inline asm may need *type* remapping.
346     FunctionType *NewTy = IA->getFunctionType();
347     if (TypeMapper) {
348       NewTy = cast<FunctionType>(TypeMapper->remapType(NewTy));
349 
350       if (NewTy != IA->getFunctionType())
351         V = InlineAsm::get(NewTy, IA->getAsmString(), IA->getConstraintString(),
352                            IA->hasSideEffects(), IA->isAlignStack());
353     }
354 
355     return getVM()[V] = const_cast<Value *>(V);
356   }
357 
358   if (const auto *MDV = dyn_cast<MetadataAsValue>(V)) {
359     const Metadata *MD = MDV->getMetadata();
360 
361     if (auto *LAM = dyn_cast<LocalAsMetadata>(MD)) {
362       // Look through to grab the local value.
363       if (Value *LV = mapValue(LAM->getValue())) {
364         if (V == LAM->getValue())
365           return const_cast<Value *>(V);
366         return MetadataAsValue::get(V->getContext(), ValueAsMetadata::get(LV));
367       }
368 
369       // FIXME: always return nullptr once Verifier::verifyDominatesUse()
370       // ensures metadata operands only reference defined SSA values.
371       return (Flags & RF_IgnoreMissingLocals)
372                  ? nullptr
373                  : MetadataAsValue::get(V->getContext(),
374                                         MDTuple::get(V->getContext(), None));
375     }
376 
377     // If this is a module-level metadata and we know that nothing at the module
378     // level is changing, then use an identity mapping.
379     if (Flags & RF_NoModuleLevelChanges)
380       return getVM()[V] = const_cast<Value *>(V);
381 
382     // Map the metadata and turn it into a value.
383     auto *MappedMD = mapMetadata(MD);
384     if (MD == MappedMD)
385       return getVM()[V] = const_cast<Value *>(V);
386     return getVM()[V] = MetadataAsValue::get(V->getContext(), MappedMD);
387   }
388 
389   // Okay, this either must be a constant (which may or may not be mappable) or
390   // is something that is not in the mapping table.
391   Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V));
392   if (!C)
393     return nullptr;
394 
395   if (BlockAddress *BA = dyn_cast<BlockAddress>(C))
396     return mapBlockAddress(*BA);
397 
398   auto mapValueOrNull = [this](Value *V) {
399     auto Mapped = mapValue(V);
400     assert((Mapped || (Flags & RF_NullMapMissingGlobalValues)) &&
401            "Unexpected null mapping for constant operand without "
402            "NullMapMissingGlobalValues flag");
403     return Mapped;
404   };
405 
406   // Otherwise, we have some other constant to remap.  Start by checking to see
407   // if all operands have an identity remapping.
408   unsigned OpNo = 0, NumOperands = C->getNumOperands();
409   Value *Mapped = nullptr;
410   for (; OpNo != NumOperands; ++OpNo) {
411     Value *Op = C->getOperand(OpNo);
412     Mapped = mapValueOrNull(Op);
413     if (!Mapped)
414       return nullptr;
415     if (Mapped != Op)
416       break;
417   }
418 
419   // See if the type mapper wants to remap the type as well.
420   Type *NewTy = C->getType();
421   if (TypeMapper)
422     NewTy = TypeMapper->remapType(NewTy);
423 
424   // If the result type and all operands match up, then just insert an identity
425   // mapping.
426   if (OpNo == NumOperands && NewTy == C->getType())
427     return getVM()[V] = C;
428 
429   // Okay, we need to create a new constant.  We've already processed some or
430   // all of the operands, set them all up now.
431   SmallVector<Constant*, 8> Ops;
432   Ops.reserve(NumOperands);
433   for (unsigned j = 0; j != OpNo; ++j)
434     Ops.push_back(cast<Constant>(C->getOperand(j)));
435 
436   // If one of the operands mismatch, push it and the other mapped operands.
437   if (OpNo != NumOperands) {
438     Ops.push_back(cast<Constant>(Mapped));
439 
440     // Map the rest of the operands that aren't processed yet.
441     for (++OpNo; OpNo != NumOperands; ++OpNo) {
442       Mapped = mapValueOrNull(C->getOperand(OpNo));
443       if (!Mapped)
444         return nullptr;
445       Ops.push_back(cast<Constant>(Mapped));
446     }
447   }
448   Type *NewSrcTy = nullptr;
449   if (TypeMapper)
450     if (auto *GEPO = dyn_cast<GEPOperator>(C))
451       NewSrcTy = TypeMapper->remapType(GEPO->getSourceElementType());
452 
453   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
454     return getVM()[V] = CE->getWithOperands(Ops, NewTy, false, NewSrcTy);
455   if (isa<ConstantArray>(C))
456     return getVM()[V] = ConstantArray::get(cast<ArrayType>(NewTy), Ops);
457   if (isa<ConstantStruct>(C))
458     return getVM()[V] = ConstantStruct::get(cast<StructType>(NewTy), Ops);
459   if (isa<ConstantVector>(C))
460     return getVM()[V] = ConstantVector::get(Ops);
461   // If this is a no-operand constant, it must be because the type was remapped.
462   if (isa<UndefValue>(C))
463     return getVM()[V] = UndefValue::get(NewTy);
464   if (isa<ConstantAggregateZero>(C))
465     return getVM()[V] = ConstantAggregateZero::get(NewTy);
466   assert(isa<ConstantPointerNull>(C));
467   return getVM()[V] = ConstantPointerNull::get(cast<PointerType>(NewTy));
468 }
469 
470 Value *Mapper::mapBlockAddress(const BlockAddress &BA) {
471   Function *F = cast<Function>(mapValue(BA.getFunction()));
472 
473   // F may not have materialized its initializer.  In that case, create a
474   // dummy basic block for now, and replace it once we've materialized all
475   // the initializers.
476   BasicBlock *BB;
477   if (F->empty()) {
478     DelayedBBs.push_back(DelayedBasicBlock(BA));
479     BB = DelayedBBs.back().TempBB.get();
480   } else {
481     BB = cast_or_null<BasicBlock>(mapValue(BA.getBasicBlock()));
482   }
483 
484   return getVM()[&BA] = BlockAddress::get(F, BB ? BB : BA.getBasicBlock());
485 }
486 
487 Metadata *Mapper::mapToMetadata(const Metadata *Key, Metadata *Val) {
488   getVM().MD()[Key].reset(Val);
489   return Val;
490 }
491 
492 Metadata *Mapper::mapToSelf(const Metadata *MD) {
493   return mapToMetadata(MD, const_cast<Metadata *>(MD));
494 }
495 
496 Optional<Metadata *> MDNodeMapper::tryToMapOperand(const Metadata *Op) {
497   if (!Op)
498     return nullptr;
499 
500   if (Optional<Metadata *> MappedOp = M.mapSimpleMetadata(Op)) {
501 #ifndef NDEBUG
502     if (auto *CMD = dyn_cast<ConstantAsMetadata>(Op))
503       assert((!*MappedOp || M.getVM().count(CMD->getValue()) ||
504               M.getVM().getMappedMD(Op)) &&
505              "Expected Value to be memoized");
506     else
507       assert((isa<MDString>(Op) || M.getVM().getMappedMD(Op)) &&
508              "Expected result to be memoized");
509 #endif
510     return *MappedOp;
511   }
512 
513   const MDNode &N = *cast<MDNode>(Op);
514   if (N.isDistinct())
515     return mapDistinctNode(N);
516   return None;
517 }
518 
519 MDNode *MDNodeMapper::mapDistinctNode(const MDNode &N) {
520   assert(N.isDistinct() && "Expected a distinct node");
521   assert(!M.getVM().getMappedMD(&N) && "Expected an unmapped node");
522   DistinctWorklist.push_back(cast<MDNode>(
523       (M.Flags & RF_MoveDistinctMDs)
524           ? M.mapToSelf(&N)
525           : M.mapToMetadata(&N, MDNode::replaceWithDistinct(N.clone()))));
526   return DistinctWorklist.back();
527 }
528 
529 static ConstantAsMetadata *wrapConstantAsMetadata(const ConstantAsMetadata &CMD,
530                                                   Value *MappedV) {
531   if (CMD.getValue() == MappedV)
532     return const_cast<ConstantAsMetadata *>(&CMD);
533   return MappedV ? ConstantAsMetadata::getConstant(MappedV) : nullptr;
534 }
535 
536 Optional<Metadata *> MDNodeMapper::getMappedOp(const Metadata *Op) const {
537   if (!Op)
538     return nullptr;
539 
540   if (Optional<Metadata *> MappedOp = M.getVM().getMappedMD(Op))
541     return *MappedOp;
542 
543   if (isa<MDString>(Op))
544     return const_cast<Metadata *>(Op);
545 
546   if (auto *CMD = dyn_cast<ConstantAsMetadata>(Op))
547     return wrapConstantAsMetadata(*CMD, M.getVM().lookup(CMD->getValue()));
548 
549   return None;
550 }
551 
552 Metadata &MDNodeMapper::UniquedGraph::getFwdReference(MDNode &Op) {
553   auto Where = Info.find(&Op);
554   assert(Where != Info.end() && "Expected a valid reference");
555 
556   auto &OpD = Where->second;
557   if (!OpD.HasChanged)
558     return Op;
559 
560   // Lazily construct a temporary node.
561   if (!OpD.Placeholder)
562     OpD.Placeholder = Op.clone();
563 
564   return *OpD.Placeholder;
565 }
566 
567 template <class OperandMapper>
568 void MDNodeMapper::remapOperands(MDNode &N, OperandMapper mapOperand) {
569   assert(!N.isUniqued() && "Expected distinct or temporary nodes");
570   for (unsigned I = 0, E = N.getNumOperands(); I != E; ++I) {
571     Metadata *Old = N.getOperand(I);
572     Metadata *New = mapOperand(Old);
573 
574     if (Old != New)
575       N.replaceOperandWith(I, New);
576   }
577 }
578 
579 namespace {
580 /// An entry in the worklist for the post-order traversal.
581 struct POTWorklistEntry {
582   MDNode *N;              ///< Current node.
583   MDNode::op_iterator Op; ///< Current operand of \c N.
584 
585   /// Keep a flag of whether operands have changed in the worklist to avoid
586   /// hitting the map in \a UniquedGraph.
587   bool HasChanged = false;
588 
589   POTWorklistEntry(MDNode &N) : N(&N), Op(N.op_begin()) {}
590 };
591 } // end namespace
592 
593 bool MDNodeMapper::createPOT(UniquedGraph &G, const MDNode &FirstN) {
594   assert(G.Info.empty() && "Expected a fresh traversal");
595   assert(FirstN.isUniqued() && "Expected uniqued node in POT");
596 
597   // Construct a post-order traversal of the uniqued subgraph under FirstN.
598   bool AnyChanges = false;
599   SmallVector<POTWorklistEntry, 16> Worklist;
600   Worklist.push_back(POTWorklistEntry(const_cast<MDNode &>(FirstN)));
601   (void)G.Info[&FirstN];
602   while (!Worklist.empty()) {
603     // Start or continue the traversal through the this node's operands.
604     auto &WE = Worklist.back();
605     if (MDNode *N = visitOperands(G, WE.Op, WE.N->op_end(), WE.HasChanged)) {
606       // Push a new node to traverse first.
607       Worklist.push_back(POTWorklistEntry(*N));
608       continue;
609     }
610 
611     // Push the node onto the POT.
612     assert(WE.N->isUniqued() && "Expected only uniqued nodes");
613     assert(WE.Op == WE.N->op_end() && "Expected to visit all operands");
614     auto &D = G.Info[WE.N];
615     AnyChanges |= D.HasChanged = WE.HasChanged;
616     D.ID = G.POT.size();
617     G.POT.push_back(WE.N);
618 
619     // Pop the node off the worklist.
620     Worklist.pop_back();
621   }
622   return AnyChanges;
623 }
624 
625 MDNode *MDNodeMapper::visitOperands(UniquedGraph &G, MDNode::op_iterator &I,
626                                     MDNode::op_iterator E, bool &HasChanged) {
627   while (I != E) {
628     Metadata *Op = *I++; // Increment even on early return.
629     if (Optional<Metadata *> MappedOp = tryToMapOperand(Op)) {
630       // Check if the operand changes.
631       HasChanged |= Op != *MappedOp;
632       continue;
633     }
634 
635     // A uniqued metadata node.
636     MDNode &OpN = *cast<MDNode>(Op);
637     assert(OpN.isUniqued() &&
638            "Only uniqued operands cannot be mapped immediately");
639     if (G.Info.insert(std::make_pair(&OpN, Data())).second)
640       return &OpN; // This is a new one.  Return it.
641   }
642   return nullptr;
643 }
644 
645 void MDNodeMapper::UniquedGraph::propagateChanges() {
646   bool AnyChanges;
647   do {
648     AnyChanges = false;
649     for (MDNode *N : POT) {
650       auto &D = Info[N];
651       if (D.HasChanged)
652         continue;
653 
654       if (none_of(N->operands(), [&](const Metadata *Op) {
655             auto Where = Info.find(Op);
656             return Where != Info.end() && Where->second.HasChanged;
657           }))
658         continue;
659 
660       AnyChanges = D.HasChanged = true;
661     }
662   } while (AnyChanges);
663 }
664 
665 void MDNodeMapper::mapNodesInPOT(UniquedGraph &G) {
666   // Construct uniqued nodes, building forward references as necessary.
667   SmallVector<MDNode *, 16> CyclicNodes;
668   for (auto *N : G.POT) {
669     auto &D = G.Info[N];
670     if (!D.HasChanged) {
671       // The node hasn't changed.
672       M.mapToSelf(N);
673       continue;
674     }
675 
676     // Remember whether this node had a placeholder.
677     bool HadPlaceholder(D.Placeholder);
678 
679     // Clone the uniqued node and remap the operands.
680     TempMDNode ClonedN = D.Placeholder ? std::move(D.Placeholder) : N->clone();
681     remapOperands(*ClonedN, [this, &D, &G](Metadata *Old) {
682       if (Optional<Metadata *> MappedOp = getMappedOp(Old))
683         return *MappedOp;
684       (void)D;
685       assert(G.Info[Old].ID > D.ID && "Expected a forward reference");
686       return &G.getFwdReference(*cast<MDNode>(Old));
687     });
688 
689     auto *NewN = MDNode::replaceWithUniqued(std::move(ClonedN));
690     M.mapToMetadata(N, NewN);
691 
692     // Nodes that were referenced out of order in the POT are involved in a
693     // uniquing cycle.
694     if (HadPlaceholder)
695       CyclicNodes.push_back(NewN);
696   }
697 
698   // Resolve cycles.
699   for (auto *N : CyclicNodes)
700     if (!N->isResolved())
701       N->resolveCycles();
702 }
703 
704 Metadata *MDNodeMapper::map(const MDNode &N) {
705   assert(DistinctWorklist.empty() && "MDNodeMapper::map is not recursive");
706   assert(!(M.Flags & RF_NoModuleLevelChanges) &&
707          "MDNodeMapper::map assumes module-level changes");
708 
709   // Require resolved nodes whenever metadata might be remapped.
710   assert(N.isResolved() && "Unexpected unresolved node");
711 
712   Metadata *MappedN =
713       N.isUniqued() ? mapTopLevelUniquedNode(N) : mapDistinctNode(N);
714   while (!DistinctWorklist.empty())
715     remapOperands(*DistinctWorklist.pop_back_val(), [this](Metadata *Old) {
716       if (Optional<Metadata *> MappedOp = tryToMapOperand(Old))
717         return *MappedOp;
718       return mapTopLevelUniquedNode(*cast<MDNode>(Old));
719     });
720   return MappedN;
721 }
722 
723 Metadata *MDNodeMapper::mapTopLevelUniquedNode(const MDNode &FirstN) {
724   assert(FirstN.isUniqued() && "Expected uniqued node");
725 
726   // Create a post-order traversal of uniqued nodes under FirstN.
727   UniquedGraph G;
728   if (!createPOT(G, FirstN)) {
729     // Return early if no nodes have changed.
730     for (const MDNode *N : G.POT)
731       M.mapToSelf(N);
732     return &const_cast<MDNode &>(FirstN);
733   }
734 
735   // Update graph with all nodes that have changed.
736   G.propagateChanges();
737 
738   // Map all the nodes in the graph.
739   mapNodesInPOT(G);
740 
741   // Return the original node, remapped.
742   return *getMappedOp(&FirstN);
743 }
744 
745 namespace {
746 
747 struct MapMetadataDisabler {
748   ValueToValueMapTy &VM;
749 
750   MapMetadataDisabler(ValueToValueMapTy &VM) : VM(VM) {
751     VM.disableMapMetadata();
752   }
753   ~MapMetadataDisabler() { VM.enableMapMetadata(); }
754 };
755 
756 } // end namespace
757 
758 Optional<Metadata *> Mapper::mapSimpleMetadata(const Metadata *MD) {
759   // If the value already exists in the map, use it.
760   if (Optional<Metadata *> NewMD = getVM().getMappedMD(MD))
761     return *NewMD;
762 
763   if (isa<MDString>(MD))
764     return const_cast<Metadata *>(MD);
765 
766   // This is a module-level metadata.  If nothing at the module level is
767   // changing, use an identity mapping.
768   if ((Flags & RF_NoModuleLevelChanges))
769     return const_cast<Metadata *>(MD);
770 
771   if (auto *CMD = dyn_cast<ConstantAsMetadata>(MD)) {
772     // Disallow recursion into metadata mapping through mapValue.
773     MapMetadataDisabler MMD(getVM());
774 
775     // Don't memoize ConstantAsMetadata.  Instead of lasting until the
776     // LLVMContext is destroyed, they can be deleted when the GlobalValue they
777     // reference is destructed.  These aren't super common, so the extra
778     // indirection isn't that expensive.
779     return wrapConstantAsMetadata(*CMD, mapValue(CMD->getValue()));
780   }
781 
782   assert(isa<MDNode>(MD) && "Expected a metadata node");
783 
784   return None;
785 }
786 
787 Metadata *Mapper::mapMetadata(const Metadata *MD) {
788   assert(MD && "Expected valid metadata");
789   assert(!isa<LocalAsMetadata>(MD) && "Unexpected local metadata");
790 
791   if (Optional<Metadata *> NewMD = mapSimpleMetadata(MD))
792     return *NewMD;
793 
794   return MDNodeMapper(*this).map(*cast<MDNode>(MD));
795 }
796 
797 void Mapper::flush() {
798   // Flush out the worklist of global values.
799   while (!Worklist.empty()) {
800     WorklistEntry E = Worklist.pop_back_val();
801     CurrentMCID = E.MCID;
802     switch (E.Kind) {
803     case WorklistEntry::MapGlobalInit:
804       E.Data.GVInit.GV->setInitializer(mapConstant(E.Data.GVInit.Init));
805       break;
806     case WorklistEntry::MapAppendingVar: {
807       unsigned PrefixSize = AppendingInits.size() - E.AppendingGVNumNewMembers;
808       mapAppendingVariable(*E.Data.AppendingGV.GV,
809                            E.Data.AppendingGV.InitPrefix,
810                            E.AppendingGVIsOldCtorDtor,
811                            makeArrayRef(AppendingInits).slice(PrefixSize));
812       AppendingInits.resize(PrefixSize);
813       break;
814     }
815     case WorklistEntry::MapGlobalAliasee:
816       E.Data.GlobalAliasee.GA->setAliasee(
817           mapConstant(E.Data.GlobalAliasee.Aliasee));
818       break;
819     case WorklistEntry::RemapFunction:
820       remapFunction(*E.Data.RemapF);
821       break;
822     }
823   }
824   CurrentMCID = 0;
825 
826   // Finish logic for block addresses now that all global values have been
827   // handled.
828   while (!DelayedBBs.empty()) {
829     DelayedBasicBlock DBB = DelayedBBs.pop_back_val();
830     BasicBlock *BB = cast_or_null<BasicBlock>(mapValue(DBB.OldBB));
831     DBB.TempBB->replaceAllUsesWith(BB ? BB : DBB.OldBB);
832   }
833 }
834 
835 void Mapper::remapInstruction(Instruction *I) {
836   // Remap operands.
837   for (Use &Op : I->operands()) {
838     Value *V = mapValue(Op);
839     // If we aren't ignoring missing entries, assert that something happened.
840     if (V)
841       Op = V;
842     else
843       assert((Flags & RF_IgnoreMissingLocals) &&
844              "Referenced value not in value map!");
845   }
846 
847   // Remap phi nodes' incoming blocks.
848   if (PHINode *PN = dyn_cast<PHINode>(I)) {
849     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
850       Value *V = mapValue(PN->getIncomingBlock(i));
851       // If we aren't ignoring missing entries, assert that something happened.
852       if (V)
853         PN->setIncomingBlock(i, cast<BasicBlock>(V));
854       else
855         assert((Flags & RF_IgnoreMissingLocals) &&
856                "Referenced block not in value map!");
857     }
858   }
859 
860   // Remap attached metadata.
861   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
862   I->getAllMetadata(MDs);
863   for (const auto &MI : MDs) {
864     MDNode *Old = MI.second;
865     MDNode *New = cast_or_null<MDNode>(mapMetadata(Old));
866     if (New != Old)
867       I->setMetadata(MI.first, New);
868   }
869 
870   if (!TypeMapper)
871     return;
872 
873   // If the instruction's type is being remapped, do so now.
874   if (auto CS = CallSite(I)) {
875     SmallVector<Type *, 3> Tys;
876     FunctionType *FTy = CS.getFunctionType();
877     Tys.reserve(FTy->getNumParams());
878     for (Type *Ty : FTy->params())
879       Tys.push_back(TypeMapper->remapType(Ty));
880     CS.mutateFunctionType(FunctionType::get(
881         TypeMapper->remapType(I->getType()), Tys, FTy->isVarArg()));
882     return;
883   }
884   if (auto *AI = dyn_cast<AllocaInst>(I))
885     AI->setAllocatedType(TypeMapper->remapType(AI->getAllocatedType()));
886   if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) {
887     GEP->setSourceElementType(
888         TypeMapper->remapType(GEP->getSourceElementType()));
889     GEP->setResultElementType(
890         TypeMapper->remapType(GEP->getResultElementType()));
891   }
892   I->mutateType(TypeMapper->remapType(I->getType()));
893 }
894 
895 void Mapper::remapFunction(Function &F) {
896   // Remap the operands.
897   for (Use &Op : F.operands())
898     if (Op)
899       Op = mapValue(Op);
900 
901   // Remap the metadata attachments.
902   SmallVector<std::pair<unsigned, MDNode *>, 8> MDs;
903   F.getAllMetadata(MDs);
904   F.clearMetadata();
905   for (const auto &I : MDs)
906     F.addMetadata(I.first, *cast<MDNode>(mapMetadata(I.second)));
907 
908   // Remap the argument types.
909   if (TypeMapper)
910     for (Argument &A : F.args())
911       A.mutateType(TypeMapper->remapType(A.getType()));
912 
913   // Remap the instructions.
914   for (BasicBlock &BB : F)
915     for (Instruction &I : BB)
916       remapInstruction(&I);
917 }
918 
919 void Mapper::mapAppendingVariable(GlobalVariable &GV, Constant *InitPrefix,
920                                   bool IsOldCtorDtor,
921                                   ArrayRef<Constant *> NewMembers) {
922   SmallVector<Constant *, 16> Elements;
923   if (InitPrefix) {
924     unsigned NumElements =
925         cast<ArrayType>(InitPrefix->getType())->getNumElements();
926     for (unsigned I = 0; I != NumElements; ++I)
927       Elements.push_back(InitPrefix->getAggregateElement(I));
928   }
929 
930   PointerType *VoidPtrTy;
931   Type *EltTy;
932   if (IsOldCtorDtor) {
933     // FIXME: This upgrade is done during linking to support the C API.  See
934     // also IRLinker::linkAppendingVarProto() in IRMover.cpp.
935     VoidPtrTy = Type::getInt8Ty(GV.getContext())->getPointerTo();
936     auto &ST = *cast<StructType>(NewMembers.front()->getType());
937     Type *Tys[3] = {ST.getElementType(0), ST.getElementType(1), VoidPtrTy};
938     EltTy = StructType::get(GV.getContext(), Tys, false);
939   }
940 
941   for (auto *V : NewMembers) {
942     Constant *NewV;
943     if (IsOldCtorDtor) {
944       auto *S = cast<ConstantStruct>(V);
945       auto *E1 = mapValue(S->getOperand(0));
946       auto *E2 = mapValue(S->getOperand(1));
947       Value *Null = Constant::getNullValue(VoidPtrTy);
948       NewV =
949           ConstantStruct::get(cast<StructType>(EltTy), E1, E2, Null, nullptr);
950     } else {
951       NewV = cast_or_null<Constant>(mapValue(V));
952     }
953     Elements.push_back(NewV);
954   }
955 
956   GV.setInitializer(ConstantArray::get(
957       cast<ArrayType>(GV.getType()->getElementType()), Elements));
958 }
959 
960 void Mapper::scheduleMapGlobalInitializer(GlobalVariable &GV, Constant &Init,
961                                           unsigned MCID) {
962   assert(AlreadyScheduled.insert(&GV).second && "Should not reschedule");
963   assert(MCID < MCs.size() && "Invalid mapping context");
964 
965   WorklistEntry WE;
966   WE.Kind = WorklistEntry::MapGlobalInit;
967   WE.MCID = MCID;
968   WE.Data.GVInit.GV = &GV;
969   WE.Data.GVInit.Init = &Init;
970   Worklist.push_back(WE);
971 }
972 
973 void Mapper::scheduleMapAppendingVariable(GlobalVariable &GV,
974                                           Constant *InitPrefix,
975                                           bool IsOldCtorDtor,
976                                           ArrayRef<Constant *> NewMembers,
977                                           unsigned MCID) {
978   assert(AlreadyScheduled.insert(&GV).second && "Should not reschedule");
979   assert(MCID < MCs.size() && "Invalid mapping context");
980 
981   WorklistEntry WE;
982   WE.Kind = WorklistEntry::MapAppendingVar;
983   WE.MCID = MCID;
984   WE.Data.AppendingGV.GV = &GV;
985   WE.Data.AppendingGV.InitPrefix = InitPrefix;
986   WE.AppendingGVIsOldCtorDtor = IsOldCtorDtor;
987   WE.AppendingGVNumNewMembers = NewMembers.size();
988   Worklist.push_back(WE);
989   AppendingInits.append(NewMembers.begin(), NewMembers.end());
990 }
991 
992 void Mapper::scheduleMapGlobalAliasee(GlobalAlias &GA, Constant &Aliasee,
993                                       unsigned MCID) {
994   assert(AlreadyScheduled.insert(&GA).second && "Should not reschedule");
995   assert(MCID < MCs.size() && "Invalid mapping context");
996 
997   WorklistEntry WE;
998   WE.Kind = WorklistEntry::MapGlobalAliasee;
999   WE.MCID = MCID;
1000   WE.Data.GlobalAliasee.GA = &GA;
1001   WE.Data.GlobalAliasee.Aliasee = &Aliasee;
1002   Worklist.push_back(WE);
1003 }
1004 
1005 void Mapper::scheduleRemapFunction(Function &F, unsigned MCID) {
1006   assert(AlreadyScheduled.insert(&F).second && "Should not reschedule");
1007   assert(MCID < MCs.size() && "Invalid mapping context");
1008 
1009   WorklistEntry WE;
1010   WE.Kind = WorklistEntry::RemapFunction;
1011   WE.MCID = MCID;
1012   WE.Data.RemapF = &F;
1013   Worklist.push_back(WE);
1014 }
1015 
1016 void Mapper::addFlags(RemapFlags Flags) {
1017   assert(!hasWorkToDo() && "Expected to have flushed the worklist");
1018   this->Flags = this->Flags | Flags;
1019 }
1020 
1021 static Mapper *getAsMapper(void *pImpl) {
1022   return reinterpret_cast<Mapper *>(pImpl);
1023 }
1024 
1025 namespace {
1026 
1027 class FlushingMapper {
1028   Mapper &M;
1029 
1030 public:
1031   explicit FlushingMapper(void *pImpl) : M(*getAsMapper(pImpl)) {
1032     assert(!M.hasWorkToDo() && "Expected to be flushed");
1033   }
1034   ~FlushingMapper() { M.flush(); }
1035   Mapper *operator->() const { return &M; }
1036 };
1037 
1038 } // end namespace
1039 
1040 ValueMapper::ValueMapper(ValueToValueMapTy &VM, RemapFlags Flags,
1041                          ValueMapTypeRemapper *TypeMapper,
1042                          ValueMaterializer *Materializer)
1043     : pImpl(new Mapper(VM, Flags, TypeMapper, Materializer)) {}
1044 
1045 ValueMapper::~ValueMapper() { delete getAsMapper(pImpl); }
1046 
1047 unsigned
1048 ValueMapper::registerAlternateMappingContext(ValueToValueMapTy &VM,
1049                                              ValueMaterializer *Materializer) {
1050   return getAsMapper(pImpl)->registerAlternateMappingContext(VM, Materializer);
1051 }
1052 
1053 void ValueMapper::addFlags(RemapFlags Flags) {
1054   FlushingMapper(pImpl)->addFlags(Flags);
1055 }
1056 
1057 Value *ValueMapper::mapValue(const Value &V) {
1058   return FlushingMapper(pImpl)->mapValue(&V);
1059 }
1060 
1061 Constant *ValueMapper::mapConstant(const Constant &C) {
1062   return cast_or_null<Constant>(mapValue(C));
1063 }
1064 
1065 Metadata *ValueMapper::mapMetadata(const Metadata &MD) {
1066   return FlushingMapper(pImpl)->mapMetadata(&MD);
1067 }
1068 
1069 MDNode *ValueMapper::mapMDNode(const MDNode &N) {
1070   return cast_or_null<MDNode>(mapMetadata(N));
1071 }
1072 
1073 void ValueMapper::remapInstruction(Instruction &I) {
1074   FlushingMapper(pImpl)->remapInstruction(&I);
1075 }
1076 
1077 void ValueMapper::remapFunction(Function &F) {
1078   FlushingMapper(pImpl)->remapFunction(F);
1079 }
1080 
1081 void ValueMapper::scheduleMapGlobalInitializer(GlobalVariable &GV,
1082                                                Constant &Init,
1083                                                unsigned MCID) {
1084   getAsMapper(pImpl)->scheduleMapGlobalInitializer(GV, Init, MCID);
1085 }
1086 
1087 void ValueMapper::scheduleMapAppendingVariable(GlobalVariable &GV,
1088                                                Constant *InitPrefix,
1089                                                bool IsOldCtorDtor,
1090                                                ArrayRef<Constant *> NewMembers,
1091                                                unsigned MCID) {
1092   getAsMapper(pImpl)->scheduleMapAppendingVariable(
1093       GV, InitPrefix, IsOldCtorDtor, NewMembers, MCID);
1094 }
1095 
1096 void ValueMapper::scheduleMapGlobalAliasee(GlobalAlias &GA, Constant &Aliasee,
1097                                            unsigned MCID) {
1098   getAsMapper(pImpl)->scheduleMapGlobalAliasee(GA, Aliasee, MCID);
1099 }
1100 
1101 void ValueMapper::scheduleRemapFunction(Function &F, unsigned MCID) {
1102   getAsMapper(pImpl)->scheduleRemapFunction(F, MCID);
1103 }
1104