1 //===- ValueMapper.cpp - Interface shared by lib/Transforms/Utils ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the MapValue function, which is shared by various parts of 11 // the lib/Transforms/Utils library. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Utils/ValueMapper.h" 16 #include "llvm/ADT/DenseSet.h" 17 #include "llvm/IR/CallSite.h" 18 #include "llvm/IR/Constants.h" 19 #include "llvm/IR/DebugInfoMetadata.h" 20 #include "llvm/IR/Function.h" 21 #include "llvm/IR/GlobalAlias.h" 22 #include "llvm/IR/GlobalVariable.h" 23 #include "llvm/IR/InlineAsm.h" 24 #include "llvm/IR/Instructions.h" 25 #include "llvm/IR/Metadata.h" 26 #include "llvm/IR/Operator.h" 27 using namespace llvm; 28 29 // Out of line method to get vtable etc for class. 30 void ValueMapTypeRemapper::anchor() {} 31 void ValueMaterializer::anchor() {} 32 33 namespace { 34 35 /// A basic block used in a BlockAddress whose function body is not yet 36 /// materialized. 37 struct DelayedBasicBlock { 38 BasicBlock *OldBB; 39 std::unique_ptr<BasicBlock> TempBB; 40 41 DelayedBasicBlock(const BlockAddress &Old) 42 : OldBB(Old.getBasicBlock()), 43 TempBB(BasicBlock::Create(Old.getContext())) {} 44 }; 45 46 struct WorklistEntry { 47 enum EntryKind { 48 MapGlobalInit, 49 MapAppendingVar, 50 MapGlobalAliasee, 51 RemapFunction 52 }; 53 struct GVInitTy { 54 GlobalVariable *GV; 55 Constant *Init; 56 }; 57 struct AppendingGVTy { 58 GlobalVariable *GV; 59 Constant *InitPrefix; 60 }; 61 struct GlobalAliaseeTy { 62 GlobalAlias *GA; 63 Constant *Aliasee; 64 }; 65 66 unsigned Kind : 2; 67 unsigned MCID : 29; 68 unsigned AppendingGVIsOldCtorDtor : 1; 69 unsigned AppendingGVNumNewMembers; 70 union { 71 GVInitTy GVInit; 72 AppendingGVTy AppendingGV; 73 GlobalAliaseeTy GlobalAliasee; 74 Function *RemapF; 75 } Data; 76 }; 77 78 struct MappingContext { 79 ValueToValueMapTy *VM; 80 ValueMaterializer *Materializer = nullptr; 81 82 /// Construct a MappingContext with a value map and materializer. 83 explicit MappingContext(ValueToValueMapTy &VM, 84 ValueMaterializer *Materializer = nullptr) 85 : VM(&VM), Materializer(Materializer) {} 86 }; 87 88 class MDNodeMapper; 89 class Mapper { 90 friend class MDNodeMapper; 91 92 #ifndef NDEBUG 93 DenseSet<GlobalValue *> AlreadyScheduled; 94 #endif 95 96 RemapFlags Flags; 97 ValueMapTypeRemapper *TypeMapper; 98 unsigned CurrentMCID = 0; 99 SmallVector<MappingContext, 2> MCs; 100 SmallVector<WorklistEntry, 4> Worklist; 101 SmallVector<DelayedBasicBlock, 1> DelayedBBs; 102 SmallVector<Constant *, 16> AppendingInits; 103 104 public: 105 Mapper(ValueToValueMapTy &VM, RemapFlags Flags, 106 ValueMapTypeRemapper *TypeMapper, ValueMaterializer *Materializer) 107 : Flags(Flags), TypeMapper(TypeMapper), 108 MCs(1, MappingContext(VM, Materializer)) {} 109 110 /// ValueMapper should explicitly call \a flush() before destruction. 111 ~Mapper() { assert(!hasWorkToDo() && "Expected to be flushed"); } 112 113 bool hasWorkToDo() const { return !Worklist.empty(); } 114 115 unsigned 116 registerAlternateMappingContext(ValueToValueMapTy &VM, 117 ValueMaterializer *Materializer = nullptr) { 118 MCs.push_back(MappingContext(VM, Materializer)); 119 return MCs.size() - 1; 120 } 121 122 void addFlags(RemapFlags Flags); 123 124 Value *mapValue(const Value *V); 125 void remapInstruction(Instruction *I); 126 void remapFunction(Function &F); 127 128 Constant *mapConstant(const Constant *C) { 129 return cast_or_null<Constant>(mapValue(C)); 130 } 131 132 /// Map metadata. 133 /// 134 /// Find the mapping for MD. Guarantees that the return will be resolved 135 /// (not an MDNode, or MDNode::isResolved() returns true). 136 Metadata *mapMetadata(const Metadata *MD); 137 138 void scheduleMapGlobalInitializer(GlobalVariable &GV, Constant &Init, 139 unsigned MCID); 140 void scheduleMapAppendingVariable(GlobalVariable &GV, Constant *InitPrefix, 141 bool IsOldCtorDtor, 142 ArrayRef<Constant *> NewMembers, 143 unsigned MCID); 144 void scheduleMapGlobalAliasee(GlobalAlias &GA, Constant &Aliasee, 145 unsigned MCID); 146 void scheduleRemapFunction(Function &F, unsigned MCID); 147 148 void flush(); 149 150 private: 151 void mapGlobalInitializer(GlobalVariable &GV, Constant &Init); 152 void mapAppendingVariable(GlobalVariable &GV, Constant *InitPrefix, 153 bool IsOldCtorDtor, 154 ArrayRef<Constant *> NewMembers); 155 void mapGlobalAliasee(GlobalAlias &GA, Constant &Aliasee); 156 void remapFunction(Function &F, ValueToValueMapTy &VM); 157 158 ValueToValueMapTy &getVM() { return *MCs[CurrentMCID].VM; } 159 ValueMaterializer *getMaterializer() { return MCs[CurrentMCID].Materializer; } 160 161 Value *mapBlockAddress(const BlockAddress &BA); 162 163 /// Map metadata that doesn't require visiting operands. 164 Optional<Metadata *> mapSimpleMetadata(const Metadata *MD); 165 166 Metadata *mapToMetadata(const Metadata *Key, Metadata *Val); 167 Metadata *mapToSelf(const Metadata *MD); 168 }; 169 170 class MDNodeMapper { 171 Mapper &M; 172 173 /// Data about a node in \a UniquedGraph. 174 struct Data { 175 bool HasChanged = false; 176 unsigned ID = ~0u; 177 TempMDNode Placeholder; 178 }; 179 180 /// A graph of uniqued nodes. 181 struct UniquedGraph { 182 SmallDenseMap<const Metadata *, Data, 32> Info; // Node properties. 183 SmallVector<MDNode *, 16> POT; // Post-order traversal. 184 185 /// Propagate changed operands through the post-order traversal. 186 /// 187 /// Iteratively update \a Data::HasChanged for each node based on \a 188 /// Data::HasChanged of its operands, until fixed point. 189 void propagateChanges(); 190 191 /// Get a forward reference to a node to use as an operand. 192 Metadata &getFwdReference(MDNode &Op); 193 }; 194 195 /// Worklist of distinct nodes whose operands need to be remapped. 196 SmallVector<MDNode *, 16> DistinctWorklist; 197 198 // Storage for a UniquedGraph. 199 SmallDenseMap<const Metadata *, Data, 32> InfoStorage; 200 SmallVector<MDNode *, 16> POTStorage; 201 202 public: 203 MDNodeMapper(Mapper &M) : M(M) {} 204 205 /// Map a metadata node (and its transitive operands). 206 /// 207 /// Map all the (unmapped) nodes in the subgraph under \c N. The iterative 208 /// algorithm handles distinct nodes and uniqued node subgraphs using 209 /// different strategies. 210 /// 211 /// Distinct nodes are immediately mapped and added to \a DistinctWorklist 212 /// using \a mapDistinctNode(). Their mapping can always be computed 213 /// immediately without visiting operands, even if their operands change. 214 /// 215 /// The mapping for uniqued nodes depends on whether their operands change. 216 /// \a mapTopLevelUniquedNode() traverses the transitive uniqued subgraph of 217 /// a node to calculate uniqued node mappings in bulk. Distinct leafs are 218 /// added to \a DistinctWorklist with \a mapDistinctNode(). 219 /// 220 /// After mapping \c N itself, this function remaps the operands of the 221 /// distinct nodes in \a DistinctWorklist until the entire subgraph under \c 222 /// N has been mapped. 223 Metadata *map(const MDNode &N); 224 225 private: 226 /// Map a top-level uniqued node and the uniqued subgraph underneath it. 227 /// 228 /// This builds up a post-order traversal of the (unmapped) uniqued subgraph 229 /// underneath \c FirstN and calculates the nodes' mapping. Each node uses 230 /// the identity mapping (\a Mapper::mapToSelf()) as long as all of its 231 /// operands uses the identity mapping. 232 /// 233 /// The algorithm works as follows: 234 /// 235 /// 1. \a createPOT(): traverse the uniqued subgraph under \c FirstN and 236 /// save the post-order traversal in the given \a UniquedGraph, tracking 237 /// nodes' operands change. 238 /// 239 /// 2. \a UniquedGraph::propagateChanges(): propagate changed operands 240 /// through the \a UniquedGraph until fixed point, following the rule 241 /// that if a node changes, any node that references must also change. 242 /// 243 /// 3. \a mapNodesInPOT(): map the uniqued nodes, creating new uniqued nodes 244 /// (referencing new operands) where necessary. 245 Metadata *mapTopLevelUniquedNode(const MDNode &FirstN); 246 247 /// Try to map the operand of an \a MDNode. 248 /// 249 /// If \c Op is already mapped, return the mapping. If it's not an \a 250 /// MDNode, compute and return the mapping. If it's a distinct \a MDNode, 251 /// return the result of \a mapDistinctNode(). 252 /// 253 /// \return None if \c Op is an unmapped uniqued \a MDNode. 254 /// \post getMappedOp(Op) only returns None if this returns None. 255 Optional<Metadata *> tryToMapOperand(const Metadata *Op); 256 257 /// Map a distinct node. 258 /// 259 /// Return the mapping for the distinct node \c N, saving the result in \a 260 /// DistinctWorklist for later remapping. 261 /// 262 /// \pre \c N is not yet mapped. 263 /// \pre \c N.isDistinct(). 264 MDNode *mapDistinctNode(const MDNode &N); 265 266 /// Get a previously mapped node. 267 Optional<Metadata *> getMappedOp(const Metadata *Op) const; 268 269 /// Create a post-order traversal of an unmapped uniqued node subgraph. 270 /// 271 /// This traverses the metadata graph deeply enough to map \c FirstN. It 272 /// uses \a tryToMapOperand() (via \a Mapper::mapSimplifiedNode()), so any 273 /// metadata that has already been mapped will not be part of the POT. 274 /// 275 /// Each node that has a changed operand from outside the graph (e.g., a 276 /// distinct node, an already-mapped uniqued node, or \a ConstantAsMetadata) 277 /// is marked with \a Data::HasChanged. 278 /// 279 /// \return \c true if any nodes in \c G have \a Data::HasChanged. 280 /// \post \c G.POT is a post-order traversal ending with \c FirstN. 281 /// \post \a Data::hasChanged in \c G.Info indicates whether any node needs 282 /// to change because of operands outside the graph. 283 bool createPOT(UniquedGraph &G, const MDNode &FirstN); 284 285 /// Visit the operands of a uniqued node in the POT. 286 /// 287 /// Visit the operands in the range from \c I to \c E, returning the first 288 /// uniqued node we find that isn't yet in \c G. \c I is always advanced to 289 /// where to continue the loop through the operands. 290 /// 291 /// This sets \c HasChanged if any of the visited operands change. 292 MDNode *visitOperands(UniquedGraph &G, MDNode::op_iterator &I, 293 MDNode::op_iterator E, bool &HasChanged); 294 295 /// Map all the nodes in the given uniqued graph. 296 /// 297 /// This visits all the nodes in \c G in post-order, using the identity 298 /// mapping or creating a new node depending on \a Data::HasChanged. 299 /// 300 /// \pre \a getMappedOp() returns None for nodes in \c G, but not for any of 301 /// their operands outside of \c G. 302 /// \pre \a Data::HasChanged is true for a node in \c G iff any of its 303 /// operands have changed. 304 /// \post \a getMappedOp() returns the mapped node for every node in \c G. 305 void mapNodesInPOT(UniquedGraph &G); 306 307 /// Remap a node's operands using the given functor. 308 /// 309 /// Iterate through the operands of \c N and update them in place using \c 310 /// mapOperand. 311 /// 312 /// \pre N.isDistinct() or N.isTemporary(). 313 template <class OperandMapper> 314 void remapOperands(MDNode &N, OperandMapper mapOperand); 315 }; 316 317 } // end namespace 318 319 Value *Mapper::mapValue(const Value *V) { 320 ValueToValueMapTy::iterator I = getVM().find(V); 321 322 // If the value already exists in the map, use it. 323 if (I != getVM().end()) { 324 assert(I->second && "Unexpected null mapping"); 325 return I->second; 326 } 327 328 // If we have a materializer and it can materialize a value, use that. 329 if (auto *Materializer = getMaterializer()) { 330 if (Value *NewV = Materializer->materialize(const_cast<Value *>(V))) { 331 getVM()[V] = NewV; 332 return NewV; 333 } 334 } 335 336 // Global values do not need to be seeded into the VM if they 337 // are using the identity mapping. 338 if (isa<GlobalValue>(V)) { 339 if (Flags & RF_NullMapMissingGlobalValues) 340 return nullptr; 341 return getVM()[V] = const_cast<Value *>(V); 342 } 343 344 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 345 // Inline asm may need *type* remapping. 346 FunctionType *NewTy = IA->getFunctionType(); 347 if (TypeMapper) { 348 NewTy = cast<FunctionType>(TypeMapper->remapType(NewTy)); 349 350 if (NewTy != IA->getFunctionType()) 351 V = InlineAsm::get(NewTy, IA->getAsmString(), IA->getConstraintString(), 352 IA->hasSideEffects(), IA->isAlignStack()); 353 } 354 355 return getVM()[V] = const_cast<Value *>(V); 356 } 357 358 if (const auto *MDV = dyn_cast<MetadataAsValue>(V)) { 359 const Metadata *MD = MDV->getMetadata(); 360 361 if (auto *LAM = dyn_cast<LocalAsMetadata>(MD)) { 362 // Look through to grab the local value. 363 if (Value *LV = mapValue(LAM->getValue())) { 364 if (V == LAM->getValue()) 365 return const_cast<Value *>(V); 366 return MetadataAsValue::get(V->getContext(), ValueAsMetadata::get(LV)); 367 } 368 369 // FIXME: always return nullptr once Verifier::verifyDominatesUse() 370 // ensures metadata operands only reference defined SSA values. 371 return (Flags & RF_IgnoreMissingLocals) 372 ? nullptr 373 : MetadataAsValue::get(V->getContext(), 374 MDTuple::get(V->getContext(), None)); 375 } 376 377 // If this is a module-level metadata and we know that nothing at the module 378 // level is changing, then use an identity mapping. 379 if (Flags & RF_NoModuleLevelChanges) 380 return getVM()[V] = const_cast<Value *>(V); 381 382 // Map the metadata and turn it into a value. 383 auto *MappedMD = mapMetadata(MD); 384 if (MD == MappedMD) 385 return getVM()[V] = const_cast<Value *>(V); 386 return getVM()[V] = MetadataAsValue::get(V->getContext(), MappedMD); 387 } 388 389 // Okay, this either must be a constant (which may or may not be mappable) or 390 // is something that is not in the mapping table. 391 Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V)); 392 if (!C) 393 return nullptr; 394 395 if (BlockAddress *BA = dyn_cast<BlockAddress>(C)) 396 return mapBlockAddress(*BA); 397 398 auto mapValueOrNull = [this](Value *V) { 399 auto Mapped = mapValue(V); 400 assert((Mapped || (Flags & RF_NullMapMissingGlobalValues)) && 401 "Unexpected null mapping for constant operand without " 402 "NullMapMissingGlobalValues flag"); 403 return Mapped; 404 }; 405 406 // Otherwise, we have some other constant to remap. Start by checking to see 407 // if all operands have an identity remapping. 408 unsigned OpNo = 0, NumOperands = C->getNumOperands(); 409 Value *Mapped = nullptr; 410 for (; OpNo != NumOperands; ++OpNo) { 411 Value *Op = C->getOperand(OpNo); 412 Mapped = mapValueOrNull(Op); 413 if (!Mapped) 414 return nullptr; 415 if (Mapped != Op) 416 break; 417 } 418 419 // See if the type mapper wants to remap the type as well. 420 Type *NewTy = C->getType(); 421 if (TypeMapper) 422 NewTy = TypeMapper->remapType(NewTy); 423 424 // If the result type and all operands match up, then just insert an identity 425 // mapping. 426 if (OpNo == NumOperands && NewTy == C->getType()) 427 return getVM()[V] = C; 428 429 // Okay, we need to create a new constant. We've already processed some or 430 // all of the operands, set them all up now. 431 SmallVector<Constant*, 8> Ops; 432 Ops.reserve(NumOperands); 433 for (unsigned j = 0; j != OpNo; ++j) 434 Ops.push_back(cast<Constant>(C->getOperand(j))); 435 436 // If one of the operands mismatch, push it and the other mapped operands. 437 if (OpNo != NumOperands) { 438 Ops.push_back(cast<Constant>(Mapped)); 439 440 // Map the rest of the operands that aren't processed yet. 441 for (++OpNo; OpNo != NumOperands; ++OpNo) { 442 Mapped = mapValueOrNull(C->getOperand(OpNo)); 443 if (!Mapped) 444 return nullptr; 445 Ops.push_back(cast<Constant>(Mapped)); 446 } 447 } 448 Type *NewSrcTy = nullptr; 449 if (TypeMapper) 450 if (auto *GEPO = dyn_cast<GEPOperator>(C)) 451 NewSrcTy = TypeMapper->remapType(GEPO->getSourceElementType()); 452 453 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) 454 return getVM()[V] = CE->getWithOperands(Ops, NewTy, false, NewSrcTy); 455 if (isa<ConstantArray>(C)) 456 return getVM()[V] = ConstantArray::get(cast<ArrayType>(NewTy), Ops); 457 if (isa<ConstantStruct>(C)) 458 return getVM()[V] = ConstantStruct::get(cast<StructType>(NewTy), Ops); 459 if (isa<ConstantVector>(C)) 460 return getVM()[V] = ConstantVector::get(Ops); 461 // If this is a no-operand constant, it must be because the type was remapped. 462 if (isa<UndefValue>(C)) 463 return getVM()[V] = UndefValue::get(NewTy); 464 if (isa<ConstantAggregateZero>(C)) 465 return getVM()[V] = ConstantAggregateZero::get(NewTy); 466 assert(isa<ConstantPointerNull>(C)); 467 return getVM()[V] = ConstantPointerNull::get(cast<PointerType>(NewTy)); 468 } 469 470 Value *Mapper::mapBlockAddress(const BlockAddress &BA) { 471 Function *F = cast<Function>(mapValue(BA.getFunction())); 472 473 // F may not have materialized its initializer. In that case, create a 474 // dummy basic block for now, and replace it once we've materialized all 475 // the initializers. 476 BasicBlock *BB; 477 if (F->empty()) { 478 DelayedBBs.push_back(DelayedBasicBlock(BA)); 479 BB = DelayedBBs.back().TempBB.get(); 480 } else { 481 BB = cast_or_null<BasicBlock>(mapValue(BA.getBasicBlock())); 482 } 483 484 return getVM()[&BA] = BlockAddress::get(F, BB ? BB : BA.getBasicBlock()); 485 } 486 487 Metadata *Mapper::mapToMetadata(const Metadata *Key, Metadata *Val) { 488 getVM().MD()[Key].reset(Val); 489 return Val; 490 } 491 492 Metadata *Mapper::mapToSelf(const Metadata *MD) { 493 return mapToMetadata(MD, const_cast<Metadata *>(MD)); 494 } 495 496 Optional<Metadata *> MDNodeMapper::tryToMapOperand(const Metadata *Op) { 497 if (!Op) 498 return nullptr; 499 500 if (Optional<Metadata *> MappedOp = M.mapSimpleMetadata(Op)) { 501 #ifndef NDEBUG 502 if (auto *CMD = dyn_cast<ConstantAsMetadata>(Op)) 503 assert((!*MappedOp || M.getVM().count(CMD->getValue()) || 504 M.getVM().getMappedMD(Op)) && 505 "Expected Value to be memoized"); 506 else 507 assert((isa<MDString>(Op) || M.getVM().getMappedMD(Op)) && 508 "Expected result to be memoized"); 509 #endif 510 return *MappedOp; 511 } 512 513 const MDNode &N = *cast<MDNode>(Op); 514 if (N.isDistinct()) 515 return mapDistinctNode(N); 516 return None; 517 } 518 519 MDNode *MDNodeMapper::mapDistinctNode(const MDNode &N) { 520 assert(N.isDistinct() && "Expected a distinct node"); 521 assert(!M.getVM().getMappedMD(&N) && "Expected an unmapped node"); 522 DistinctWorklist.push_back(cast<MDNode>( 523 (M.Flags & RF_MoveDistinctMDs) 524 ? M.mapToSelf(&N) 525 : M.mapToMetadata(&N, MDNode::replaceWithDistinct(N.clone())))); 526 return DistinctWorklist.back(); 527 } 528 529 static ConstantAsMetadata *wrapConstantAsMetadata(const ConstantAsMetadata &CMD, 530 Value *MappedV) { 531 if (CMD.getValue() == MappedV) 532 return const_cast<ConstantAsMetadata *>(&CMD); 533 return MappedV ? ConstantAsMetadata::getConstant(MappedV) : nullptr; 534 } 535 536 Optional<Metadata *> MDNodeMapper::getMappedOp(const Metadata *Op) const { 537 if (!Op) 538 return nullptr; 539 540 if (Optional<Metadata *> MappedOp = M.getVM().getMappedMD(Op)) 541 return *MappedOp; 542 543 if (isa<MDString>(Op)) 544 return const_cast<Metadata *>(Op); 545 546 if (auto *CMD = dyn_cast<ConstantAsMetadata>(Op)) 547 return wrapConstantAsMetadata(*CMD, M.getVM().lookup(CMD->getValue())); 548 549 return None; 550 } 551 552 Metadata &MDNodeMapper::UniquedGraph::getFwdReference(MDNode &Op) { 553 auto Where = Info.find(&Op); 554 assert(Where != Info.end() && "Expected a valid reference"); 555 556 auto &OpD = Where->second; 557 if (!OpD.HasChanged) 558 return Op; 559 560 // Lazily construct a temporary node. 561 if (!OpD.Placeholder) 562 OpD.Placeholder = Op.clone(); 563 564 return *OpD.Placeholder; 565 } 566 567 template <class OperandMapper> 568 void MDNodeMapper::remapOperands(MDNode &N, OperandMapper mapOperand) { 569 assert(!N.isUniqued() && "Expected distinct or temporary nodes"); 570 for (unsigned I = 0, E = N.getNumOperands(); I != E; ++I) { 571 Metadata *Old = N.getOperand(I); 572 Metadata *New = mapOperand(Old); 573 574 if (Old != New) 575 N.replaceOperandWith(I, New); 576 } 577 } 578 579 namespace { 580 /// An entry in the worklist for the post-order traversal. 581 struct POTWorklistEntry { 582 MDNode *N; ///< Current node. 583 MDNode::op_iterator Op; ///< Current operand of \c N. 584 585 /// Keep a flag of whether operands have changed in the worklist to avoid 586 /// hitting the map in \a UniquedGraph. 587 bool HasChanged = false; 588 589 POTWorklistEntry(MDNode &N) : N(&N), Op(N.op_begin()) {} 590 }; 591 } // end namespace 592 593 bool MDNodeMapper::createPOT(UniquedGraph &G, const MDNode &FirstN) { 594 assert(G.Info.empty() && "Expected a fresh traversal"); 595 assert(FirstN.isUniqued() && "Expected uniqued node in POT"); 596 597 // Construct a post-order traversal of the uniqued subgraph under FirstN. 598 bool AnyChanges = false; 599 SmallVector<POTWorklistEntry, 16> Worklist; 600 Worklist.push_back(POTWorklistEntry(const_cast<MDNode &>(FirstN))); 601 (void)G.Info[&FirstN]; 602 while (!Worklist.empty()) { 603 // Start or continue the traversal through the this node's operands. 604 auto &WE = Worklist.back(); 605 if (MDNode *N = visitOperands(G, WE.Op, WE.N->op_end(), WE.HasChanged)) { 606 // Push a new node to traverse first. 607 Worklist.push_back(POTWorklistEntry(*N)); 608 continue; 609 } 610 611 // Push the node onto the POT. 612 assert(WE.N->isUniqued() && "Expected only uniqued nodes"); 613 assert(WE.Op == WE.N->op_end() && "Expected to visit all operands"); 614 auto &D = G.Info[WE.N]; 615 AnyChanges |= D.HasChanged = WE.HasChanged; 616 D.ID = G.POT.size(); 617 G.POT.push_back(WE.N); 618 619 // Pop the node off the worklist. 620 Worklist.pop_back(); 621 } 622 return AnyChanges; 623 } 624 625 MDNode *MDNodeMapper::visitOperands(UniquedGraph &G, MDNode::op_iterator &I, 626 MDNode::op_iterator E, bool &HasChanged) { 627 while (I != E) { 628 Metadata *Op = *I++; // Increment even on early return. 629 if (Optional<Metadata *> MappedOp = tryToMapOperand(Op)) { 630 // Check if the operand changes. 631 HasChanged |= Op != *MappedOp; 632 continue; 633 } 634 635 // A uniqued metadata node. 636 MDNode &OpN = *cast<MDNode>(Op); 637 assert(OpN.isUniqued() && 638 "Only uniqued operands cannot be mapped immediately"); 639 if (G.Info.insert(std::make_pair(&OpN, Data())).second) 640 return &OpN; // This is a new one. Return it. 641 } 642 return nullptr; 643 } 644 645 void MDNodeMapper::UniquedGraph::propagateChanges() { 646 bool AnyChanges; 647 do { 648 AnyChanges = false; 649 for (MDNode *N : POT) { 650 auto &D = Info[N]; 651 if (D.HasChanged) 652 continue; 653 654 if (none_of(N->operands(), [&](const Metadata *Op) { 655 auto Where = Info.find(Op); 656 return Where != Info.end() && Where->second.HasChanged; 657 })) 658 continue; 659 660 AnyChanges = D.HasChanged = true; 661 } 662 } while (AnyChanges); 663 } 664 665 void MDNodeMapper::mapNodesInPOT(UniquedGraph &G) { 666 // Construct uniqued nodes, building forward references as necessary. 667 SmallVector<MDNode *, 16> CyclicNodes; 668 for (auto *N : G.POT) { 669 auto &D = G.Info[N]; 670 if (!D.HasChanged) { 671 // The node hasn't changed. 672 M.mapToSelf(N); 673 continue; 674 } 675 676 // Remember whether this node had a placeholder. 677 bool HadPlaceholder(D.Placeholder); 678 679 // Clone the uniqued node and remap the operands. 680 TempMDNode ClonedN = D.Placeholder ? std::move(D.Placeholder) : N->clone(); 681 remapOperands(*ClonedN, [this, &D, &G](Metadata *Old) { 682 if (Optional<Metadata *> MappedOp = getMappedOp(Old)) 683 return *MappedOp; 684 (void)D; 685 assert(G.Info[Old].ID > D.ID && "Expected a forward reference"); 686 return &G.getFwdReference(*cast<MDNode>(Old)); 687 }); 688 689 auto *NewN = MDNode::replaceWithUniqued(std::move(ClonedN)); 690 M.mapToMetadata(N, NewN); 691 692 // Nodes that were referenced out of order in the POT are involved in a 693 // uniquing cycle. 694 if (HadPlaceholder) 695 CyclicNodes.push_back(NewN); 696 } 697 698 // Resolve cycles. 699 for (auto *N : CyclicNodes) 700 if (!N->isResolved()) 701 N->resolveCycles(); 702 } 703 704 Metadata *MDNodeMapper::map(const MDNode &N) { 705 assert(DistinctWorklist.empty() && "MDNodeMapper::map is not recursive"); 706 assert(!(M.Flags & RF_NoModuleLevelChanges) && 707 "MDNodeMapper::map assumes module-level changes"); 708 709 // Require resolved nodes whenever metadata might be remapped. 710 assert(N.isResolved() && "Unexpected unresolved node"); 711 712 Metadata *MappedN = 713 N.isUniqued() ? mapTopLevelUniquedNode(N) : mapDistinctNode(N); 714 while (!DistinctWorklist.empty()) 715 remapOperands(*DistinctWorklist.pop_back_val(), [this](Metadata *Old) { 716 if (Optional<Metadata *> MappedOp = tryToMapOperand(Old)) 717 return *MappedOp; 718 return mapTopLevelUniquedNode(*cast<MDNode>(Old)); 719 }); 720 return MappedN; 721 } 722 723 Metadata *MDNodeMapper::mapTopLevelUniquedNode(const MDNode &FirstN) { 724 assert(FirstN.isUniqued() && "Expected uniqued node"); 725 726 // Create a post-order traversal of uniqued nodes under FirstN. 727 UniquedGraph G; 728 if (!createPOT(G, FirstN)) { 729 // Return early if no nodes have changed. 730 for (const MDNode *N : G.POT) 731 M.mapToSelf(N); 732 return &const_cast<MDNode &>(FirstN); 733 } 734 735 // Update graph with all nodes that have changed. 736 G.propagateChanges(); 737 738 // Map all the nodes in the graph. 739 mapNodesInPOT(G); 740 741 // Return the original node, remapped. 742 return *getMappedOp(&FirstN); 743 } 744 745 namespace { 746 747 struct MapMetadataDisabler { 748 ValueToValueMapTy &VM; 749 750 MapMetadataDisabler(ValueToValueMapTy &VM) : VM(VM) { 751 VM.disableMapMetadata(); 752 } 753 ~MapMetadataDisabler() { VM.enableMapMetadata(); } 754 }; 755 756 } // end namespace 757 758 Optional<Metadata *> Mapper::mapSimpleMetadata(const Metadata *MD) { 759 // If the value already exists in the map, use it. 760 if (Optional<Metadata *> NewMD = getVM().getMappedMD(MD)) 761 return *NewMD; 762 763 if (isa<MDString>(MD)) 764 return const_cast<Metadata *>(MD); 765 766 // This is a module-level metadata. If nothing at the module level is 767 // changing, use an identity mapping. 768 if ((Flags & RF_NoModuleLevelChanges)) 769 return const_cast<Metadata *>(MD); 770 771 if (auto *CMD = dyn_cast<ConstantAsMetadata>(MD)) { 772 // Disallow recursion into metadata mapping through mapValue. 773 MapMetadataDisabler MMD(getVM()); 774 775 // Don't memoize ConstantAsMetadata. Instead of lasting until the 776 // LLVMContext is destroyed, they can be deleted when the GlobalValue they 777 // reference is destructed. These aren't super common, so the extra 778 // indirection isn't that expensive. 779 return wrapConstantAsMetadata(*CMD, mapValue(CMD->getValue())); 780 } 781 782 assert(isa<MDNode>(MD) && "Expected a metadata node"); 783 784 return None; 785 } 786 787 Metadata *Mapper::mapMetadata(const Metadata *MD) { 788 assert(MD && "Expected valid metadata"); 789 assert(!isa<LocalAsMetadata>(MD) && "Unexpected local metadata"); 790 791 if (Optional<Metadata *> NewMD = mapSimpleMetadata(MD)) 792 return *NewMD; 793 794 return MDNodeMapper(*this).map(*cast<MDNode>(MD)); 795 } 796 797 void Mapper::flush() { 798 // Flush out the worklist of global values. 799 while (!Worklist.empty()) { 800 WorklistEntry E = Worklist.pop_back_val(); 801 CurrentMCID = E.MCID; 802 switch (E.Kind) { 803 case WorklistEntry::MapGlobalInit: 804 E.Data.GVInit.GV->setInitializer(mapConstant(E.Data.GVInit.Init)); 805 break; 806 case WorklistEntry::MapAppendingVar: { 807 unsigned PrefixSize = AppendingInits.size() - E.AppendingGVNumNewMembers; 808 mapAppendingVariable(*E.Data.AppendingGV.GV, 809 E.Data.AppendingGV.InitPrefix, 810 E.AppendingGVIsOldCtorDtor, 811 makeArrayRef(AppendingInits).slice(PrefixSize)); 812 AppendingInits.resize(PrefixSize); 813 break; 814 } 815 case WorklistEntry::MapGlobalAliasee: 816 E.Data.GlobalAliasee.GA->setAliasee( 817 mapConstant(E.Data.GlobalAliasee.Aliasee)); 818 break; 819 case WorklistEntry::RemapFunction: 820 remapFunction(*E.Data.RemapF); 821 break; 822 } 823 } 824 CurrentMCID = 0; 825 826 // Finish logic for block addresses now that all global values have been 827 // handled. 828 while (!DelayedBBs.empty()) { 829 DelayedBasicBlock DBB = DelayedBBs.pop_back_val(); 830 BasicBlock *BB = cast_or_null<BasicBlock>(mapValue(DBB.OldBB)); 831 DBB.TempBB->replaceAllUsesWith(BB ? BB : DBB.OldBB); 832 } 833 } 834 835 void Mapper::remapInstruction(Instruction *I) { 836 // Remap operands. 837 for (Use &Op : I->operands()) { 838 Value *V = mapValue(Op); 839 // If we aren't ignoring missing entries, assert that something happened. 840 if (V) 841 Op = V; 842 else 843 assert((Flags & RF_IgnoreMissingLocals) && 844 "Referenced value not in value map!"); 845 } 846 847 // Remap phi nodes' incoming blocks. 848 if (PHINode *PN = dyn_cast<PHINode>(I)) { 849 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 850 Value *V = mapValue(PN->getIncomingBlock(i)); 851 // If we aren't ignoring missing entries, assert that something happened. 852 if (V) 853 PN->setIncomingBlock(i, cast<BasicBlock>(V)); 854 else 855 assert((Flags & RF_IgnoreMissingLocals) && 856 "Referenced block not in value map!"); 857 } 858 } 859 860 // Remap attached metadata. 861 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 862 I->getAllMetadata(MDs); 863 for (const auto &MI : MDs) { 864 MDNode *Old = MI.second; 865 MDNode *New = cast_or_null<MDNode>(mapMetadata(Old)); 866 if (New != Old) 867 I->setMetadata(MI.first, New); 868 } 869 870 if (!TypeMapper) 871 return; 872 873 // If the instruction's type is being remapped, do so now. 874 if (auto CS = CallSite(I)) { 875 SmallVector<Type *, 3> Tys; 876 FunctionType *FTy = CS.getFunctionType(); 877 Tys.reserve(FTy->getNumParams()); 878 for (Type *Ty : FTy->params()) 879 Tys.push_back(TypeMapper->remapType(Ty)); 880 CS.mutateFunctionType(FunctionType::get( 881 TypeMapper->remapType(I->getType()), Tys, FTy->isVarArg())); 882 return; 883 } 884 if (auto *AI = dyn_cast<AllocaInst>(I)) 885 AI->setAllocatedType(TypeMapper->remapType(AI->getAllocatedType())); 886 if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) { 887 GEP->setSourceElementType( 888 TypeMapper->remapType(GEP->getSourceElementType())); 889 GEP->setResultElementType( 890 TypeMapper->remapType(GEP->getResultElementType())); 891 } 892 I->mutateType(TypeMapper->remapType(I->getType())); 893 } 894 895 void Mapper::remapFunction(Function &F) { 896 // Remap the operands. 897 for (Use &Op : F.operands()) 898 if (Op) 899 Op = mapValue(Op); 900 901 // Remap the metadata attachments. 902 SmallVector<std::pair<unsigned, MDNode *>, 8> MDs; 903 F.getAllMetadata(MDs); 904 F.clearMetadata(); 905 for (const auto &I : MDs) 906 F.addMetadata(I.first, *cast<MDNode>(mapMetadata(I.second))); 907 908 // Remap the argument types. 909 if (TypeMapper) 910 for (Argument &A : F.args()) 911 A.mutateType(TypeMapper->remapType(A.getType())); 912 913 // Remap the instructions. 914 for (BasicBlock &BB : F) 915 for (Instruction &I : BB) 916 remapInstruction(&I); 917 } 918 919 void Mapper::mapAppendingVariable(GlobalVariable &GV, Constant *InitPrefix, 920 bool IsOldCtorDtor, 921 ArrayRef<Constant *> NewMembers) { 922 SmallVector<Constant *, 16> Elements; 923 if (InitPrefix) { 924 unsigned NumElements = 925 cast<ArrayType>(InitPrefix->getType())->getNumElements(); 926 for (unsigned I = 0; I != NumElements; ++I) 927 Elements.push_back(InitPrefix->getAggregateElement(I)); 928 } 929 930 PointerType *VoidPtrTy; 931 Type *EltTy; 932 if (IsOldCtorDtor) { 933 // FIXME: This upgrade is done during linking to support the C API. See 934 // also IRLinker::linkAppendingVarProto() in IRMover.cpp. 935 VoidPtrTy = Type::getInt8Ty(GV.getContext())->getPointerTo(); 936 auto &ST = *cast<StructType>(NewMembers.front()->getType()); 937 Type *Tys[3] = {ST.getElementType(0), ST.getElementType(1), VoidPtrTy}; 938 EltTy = StructType::get(GV.getContext(), Tys, false); 939 } 940 941 for (auto *V : NewMembers) { 942 Constant *NewV; 943 if (IsOldCtorDtor) { 944 auto *S = cast<ConstantStruct>(V); 945 auto *E1 = mapValue(S->getOperand(0)); 946 auto *E2 = mapValue(S->getOperand(1)); 947 Value *Null = Constant::getNullValue(VoidPtrTy); 948 NewV = 949 ConstantStruct::get(cast<StructType>(EltTy), E1, E2, Null, nullptr); 950 } else { 951 NewV = cast_or_null<Constant>(mapValue(V)); 952 } 953 Elements.push_back(NewV); 954 } 955 956 GV.setInitializer(ConstantArray::get( 957 cast<ArrayType>(GV.getType()->getElementType()), Elements)); 958 } 959 960 void Mapper::scheduleMapGlobalInitializer(GlobalVariable &GV, Constant &Init, 961 unsigned MCID) { 962 assert(AlreadyScheduled.insert(&GV).second && "Should not reschedule"); 963 assert(MCID < MCs.size() && "Invalid mapping context"); 964 965 WorklistEntry WE; 966 WE.Kind = WorklistEntry::MapGlobalInit; 967 WE.MCID = MCID; 968 WE.Data.GVInit.GV = &GV; 969 WE.Data.GVInit.Init = &Init; 970 Worklist.push_back(WE); 971 } 972 973 void Mapper::scheduleMapAppendingVariable(GlobalVariable &GV, 974 Constant *InitPrefix, 975 bool IsOldCtorDtor, 976 ArrayRef<Constant *> NewMembers, 977 unsigned MCID) { 978 assert(AlreadyScheduled.insert(&GV).second && "Should not reschedule"); 979 assert(MCID < MCs.size() && "Invalid mapping context"); 980 981 WorklistEntry WE; 982 WE.Kind = WorklistEntry::MapAppendingVar; 983 WE.MCID = MCID; 984 WE.Data.AppendingGV.GV = &GV; 985 WE.Data.AppendingGV.InitPrefix = InitPrefix; 986 WE.AppendingGVIsOldCtorDtor = IsOldCtorDtor; 987 WE.AppendingGVNumNewMembers = NewMembers.size(); 988 Worklist.push_back(WE); 989 AppendingInits.append(NewMembers.begin(), NewMembers.end()); 990 } 991 992 void Mapper::scheduleMapGlobalAliasee(GlobalAlias &GA, Constant &Aliasee, 993 unsigned MCID) { 994 assert(AlreadyScheduled.insert(&GA).second && "Should not reschedule"); 995 assert(MCID < MCs.size() && "Invalid mapping context"); 996 997 WorklistEntry WE; 998 WE.Kind = WorklistEntry::MapGlobalAliasee; 999 WE.MCID = MCID; 1000 WE.Data.GlobalAliasee.GA = &GA; 1001 WE.Data.GlobalAliasee.Aliasee = &Aliasee; 1002 Worklist.push_back(WE); 1003 } 1004 1005 void Mapper::scheduleRemapFunction(Function &F, unsigned MCID) { 1006 assert(AlreadyScheduled.insert(&F).second && "Should not reschedule"); 1007 assert(MCID < MCs.size() && "Invalid mapping context"); 1008 1009 WorklistEntry WE; 1010 WE.Kind = WorklistEntry::RemapFunction; 1011 WE.MCID = MCID; 1012 WE.Data.RemapF = &F; 1013 Worklist.push_back(WE); 1014 } 1015 1016 void Mapper::addFlags(RemapFlags Flags) { 1017 assert(!hasWorkToDo() && "Expected to have flushed the worklist"); 1018 this->Flags = this->Flags | Flags; 1019 } 1020 1021 static Mapper *getAsMapper(void *pImpl) { 1022 return reinterpret_cast<Mapper *>(pImpl); 1023 } 1024 1025 namespace { 1026 1027 class FlushingMapper { 1028 Mapper &M; 1029 1030 public: 1031 explicit FlushingMapper(void *pImpl) : M(*getAsMapper(pImpl)) { 1032 assert(!M.hasWorkToDo() && "Expected to be flushed"); 1033 } 1034 ~FlushingMapper() { M.flush(); } 1035 Mapper *operator->() const { return &M; } 1036 }; 1037 1038 } // end namespace 1039 1040 ValueMapper::ValueMapper(ValueToValueMapTy &VM, RemapFlags Flags, 1041 ValueMapTypeRemapper *TypeMapper, 1042 ValueMaterializer *Materializer) 1043 : pImpl(new Mapper(VM, Flags, TypeMapper, Materializer)) {} 1044 1045 ValueMapper::~ValueMapper() { delete getAsMapper(pImpl); } 1046 1047 unsigned 1048 ValueMapper::registerAlternateMappingContext(ValueToValueMapTy &VM, 1049 ValueMaterializer *Materializer) { 1050 return getAsMapper(pImpl)->registerAlternateMappingContext(VM, Materializer); 1051 } 1052 1053 void ValueMapper::addFlags(RemapFlags Flags) { 1054 FlushingMapper(pImpl)->addFlags(Flags); 1055 } 1056 1057 Value *ValueMapper::mapValue(const Value &V) { 1058 return FlushingMapper(pImpl)->mapValue(&V); 1059 } 1060 1061 Constant *ValueMapper::mapConstant(const Constant &C) { 1062 return cast_or_null<Constant>(mapValue(C)); 1063 } 1064 1065 Metadata *ValueMapper::mapMetadata(const Metadata &MD) { 1066 return FlushingMapper(pImpl)->mapMetadata(&MD); 1067 } 1068 1069 MDNode *ValueMapper::mapMDNode(const MDNode &N) { 1070 return cast_or_null<MDNode>(mapMetadata(N)); 1071 } 1072 1073 void ValueMapper::remapInstruction(Instruction &I) { 1074 FlushingMapper(pImpl)->remapInstruction(&I); 1075 } 1076 1077 void ValueMapper::remapFunction(Function &F) { 1078 FlushingMapper(pImpl)->remapFunction(F); 1079 } 1080 1081 void ValueMapper::scheduleMapGlobalInitializer(GlobalVariable &GV, 1082 Constant &Init, 1083 unsigned MCID) { 1084 getAsMapper(pImpl)->scheduleMapGlobalInitializer(GV, Init, MCID); 1085 } 1086 1087 void ValueMapper::scheduleMapAppendingVariable(GlobalVariable &GV, 1088 Constant *InitPrefix, 1089 bool IsOldCtorDtor, 1090 ArrayRef<Constant *> NewMembers, 1091 unsigned MCID) { 1092 getAsMapper(pImpl)->scheduleMapAppendingVariable( 1093 GV, InitPrefix, IsOldCtorDtor, NewMembers, MCID); 1094 } 1095 1096 void ValueMapper::scheduleMapGlobalAliasee(GlobalAlias &GA, Constant &Aliasee, 1097 unsigned MCID) { 1098 getAsMapper(pImpl)->scheduleMapGlobalAliasee(GA, Aliasee, MCID); 1099 } 1100 1101 void ValueMapper::scheduleRemapFunction(Function &F, unsigned MCID) { 1102 getAsMapper(pImpl)->scheduleRemapFunction(F, MCID); 1103 } 1104