1 //===- ValueMapper.cpp - Interface shared by lib/Transforms/Utils ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the MapValue function, which is shared by various parts of 11 // the lib/Transforms/Utils library. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Utils/ValueMapper.h" 16 #include "llvm/IR/CallSite.h" 17 #include "llvm/IR/Constants.h" 18 #include "llvm/IR/Function.h" 19 #include "llvm/IR/InlineAsm.h" 20 #include "llvm/IR/Instructions.h" 21 #include "llvm/IR/Metadata.h" 22 using namespace llvm; 23 24 // Out of line method to get vtable etc for class. 25 void ValueMapTypeRemapper::anchor() {} 26 void ValueMaterializer::anchor() {} 27 28 Value *llvm::MapValue(const Value *V, ValueToValueMapTy &VM, RemapFlags Flags, 29 ValueMapTypeRemapper *TypeMapper, 30 ValueMaterializer *Materializer) { 31 ValueToValueMapTy::iterator I = VM.find(V); 32 33 // If the value already exists in the map, use it. 34 if (I != VM.end() && I->second) return I->second; 35 36 // If we have a materializer and it can materialize a value, use that. 37 if (Materializer) { 38 if (Value *NewV = Materializer->materializeValueFor(const_cast<Value*>(V))) 39 return VM[V] = NewV; 40 } 41 42 // Global values do not need to be seeded into the VM if they 43 // are using the identity mapping. 44 if (isa<GlobalValue>(V)) 45 return VM[V] = const_cast<Value*>(V); 46 47 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 48 // Inline asm may need *type* remapping. 49 FunctionType *NewTy = IA->getFunctionType(); 50 if (TypeMapper) { 51 NewTy = cast<FunctionType>(TypeMapper->remapType(NewTy)); 52 53 if (NewTy != IA->getFunctionType()) 54 V = InlineAsm::get(NewTy, IA->getAsmString(), IA->getConstraintString(), 55 IA->hasSideEffects(), IA->isAlignStack()); 56 } 57 58 return VM[V] = const_cast<Value*>(V); 59 } 60 61 if (const auto *MDV = dyn_cast<MetadataAsValue>(V)) { 62 const Metadata *MD = MDV->getMetadata(); 63 // If this is a module-level metadata and we know that nothing at the module 64 // level is changing, then use an identity mapping. 65 if (!isa<LocalAsMetadata>(MD) && (Flags & RF_NoModuleLevelChanges)) 66 return VM[V] = const_cast<Value *>(V); 67 68 auto *MappedMD = MapMetadata(MD, VM, Flags, TypeMapper, Materializer); 69 if (MD == MappedMD || (!MappedMD && (Flags & RF_IgnoreMissingEntries))) 70 return VM[V] = const_cast<Value *>(V); 71 72 // FIXME: This assert crashes during bootstrap, but I think it should be 73 // correct. For now, just match behaviour from before the metadata/value 74 // split. 75 // 76 // assert(MappedMD && "Referenced metadata value not in value map"); 77 return VM[V] = MetadataAsValue::get(V->getContext(), MappedMD); 78 } 79 80 // Okay, this either must be a constant (which may or may not be mappable) or 81 // is something that is not in the mapping table. 82 Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V)); 83 if (!C) 84 return nullptr; 85 86 if (BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 87 Function *F = 88 cast<Function>(MapValue(BA->getFunction(), VM, Flags, TypeMapper, Materializer)); 89 BasicBlock *BB = cast_or_null<BasicBlock>(MapValue(BA->getBasicBlock(), VM, 90 Flags, TypeMapper, Materializer)); 91 return VM[V] = BlockAddress::get(F, BB ? BB : BA->getBasicBlock()); 92 } 93 94 // Otherwise, we have some other constant to remap. Start by checking to see 95 // if all operands have an identity remapping. 96 unsigned OpNo = 0, NumOperands = C->getNumOperands(); 97 Value *Mapped = nullptr; 98 for (; OpNo != NumOperands; ++OpNo) { 99 Value *Op = C->getOperand(OpNo); 100 Mapped = MapValue(Op, VM, Flags, TypeMapper, Materializer); 101 if (Mapped != C) break; 102 } 103 104 // See if the type mapper wants to remap the type as well. 105 Type *NewTy = C->getType(); 106 if (TypeMapper) 107 NewTy = TypeMapper->remapType(NewTy); 108 109 // If the result type and all operands match up, then just insert an identity 110 // mapping. 111 if (OpNo == NumOperands && NewTy == C->getType()) 112 return VM[V] = C; 113 114 // Okay, we need to create a new constant. We've already processed some or 115 // all of the operands, set them all up now. 116 SmallVector<Constant*, 8> Ops; 117 Ops.reserve(NumOperands); 118 for (unsigned j = 0; j != OpNo; ++j) 119 Ops.push_back(cast<Constant>(C->getOperand(j))); 120 121 // If one of the operands mismatch, push it and the other mapped operands. 122 if (OpNo != NumOperands) { 123 Ops.push_back(cast<Constant>(Mapped)); 124 125 // Map the rest of the operands that aren't processed yet. 126 for (++OpNo; OpNo != NumOperands; ++OpNo) 127 Ops.push_back(MapValue(cast<Constant>(C->getOperand(OpNo)), VM, 128 Flags, TypeMapper, Materializer)); 129 } 130 131 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) 132 return VM[V] = CE->getWithOperands(Ops, NewTy); 133 if (isa<ConstantArray>(C)) 134 return VM[V] = ConstantArray::get(cast<ArrayType>(NewTy), Ops); 135 if (isa<ConstantStruct>(C)) 136 return VM[V] = ConstantStruct::get(cast<StructType>(NewTy), Ops); 137 if (isa<ConstantVector>(C)) 138 return VM[V] = ConstantVector::get(Ops); 139 // If this is a no-operand constant, it must be because the type was remapped. 140 if (isa<UndefValue>(C)) 141 return VM[V] = UndefValue::get(NewTy); 142 if (isa<ConstantAggregateZero>(C)) 143 return VM[V] = ConstantAggregateZero::get(NewTy); 144 assert(isa<ConstantPointerNull>(C)); 145 return VM[V] = ConstantPointerNull::get(cast<PointerType>(NewTy)); 146 } 147 148 static Metadata *mapToMetadata(ValueToValueMapTy &VM, const Metadata *Key, 149 Metadata *Val) { 150 VM.MD()[Key].reset(Val); 151 return Val; 152 } 153 154 static Metadata *mapToSelf(ValueToValueMapTy &VM, const Metadata *MD) { 155 return mapToMetadata(VM, MD, const_cast<Metadata *>(MD)); 156 } 157 158 static Metadata *MapMetadataImpl(const Metadata *MD, 159 SmallVectorImpl<MDNode *> &Cycles, 160 ValueToValueMapTy &VM, RemapFlags Flags, 161 ValueMapTypeRemapper *TypeMapper, 162 ValueMaterializer *Materializer); 163 164 static Metadata *mapMetadataOp(Metadata *Op, SmallVectorImpl<MDNode *> &Cycles, 165 ValueToValueMapTy &VM, RemapFlags Flags, 166 ValueMapTypeRemapper *TypeMapper, 167 ValueMaterializer *Materializer) { 168 if (!Op) 169 return nullptr; 170 if (Metadata *MappedOp = 171 MapMetadataImpl(Op, Cycles, VM, Flags, TypeMapper, Materializer)) 172 return MappedOp; 173 // Use identity map if MappedOp is null and we can ignore missing entries. 174 if (Flags & RF_IgnoreMissingEntries) 175 return Op; 176 177 // FIXME: This assert crashes during bootstrap, but I think it should be 178 // correct. For now, just match behaviour from before the metadata/value 179 // split. 180 // 181 // llvm_unreachable("Referenced metadata not in value map!"); 182 return nullptr; 183 } 184 185 /// \brief Remap nodes. 186 /// 187 /// Insert \c NewNode in the value map, and then remap \c OldNode's operands. 188 /// Assumes that \c NewNode is already a clone of \c OldNode. 189 /// 190 /// \pre \c NewNode is a clone of \c OldNode. 191 static bool remap(const MDNode *OldNode, MDNode *NewNode, 192 SmallVectorImpl<MDNode *> &Cycles, ValueToValueMapTy &VM, 193 RemapFlags Flags, ValueMapTypeRemapper *TypeMapper, 194 ValueMaterializer *Materializer) { 195 assert(OldNode->getNumOperands() == NewNode->getNumOperands() && 196 "Expected nodes to match"); 197 assert(OldNode->isResolved() && "Expected resolved node"); 198 assert(!NewNode->isUniqued() && "Expected non-uniqued node"); 199 200 // Map the node upfront so it's available for cyclic references. 201 mapToMetadata(VM, OldNode, NewNode); 202 bool AnyChanged = false; 203 for (unsigned I = 0, E = OldNode->getNumOperands(); I != E; ++I) { 204 Metadata *Old = OldNode->getOperand(I); 205 assert(NewNode->getOperand(I) == Old && 206 "Expected old operands to already be in place"); 207 208 Metadata *New = mapMetadataOp(OldNode->getOperand(I), Cycles, VM, Flags, 209 TypeMapper, Materializer); 210 if (Old != New) { 211 AnyChanged = true; 212 NewNode->replaceOperandWith(I, New); 213 } 214 } 215 216 return AnyChanged; 217 } 218 219 /// \brief Map a distinct MDNode. 220 /// 221 /// Distinct nodes are not uniqued, so they must always recreated. 222 static Metadata *mapDistinctNode(const MDNode *Node, 223 SmallVectorImpl<MDNode *> &Cycles, 224 ValueToValueMapTy &VM, RemapFlags Flags, 225 ValueMapTypeRemapper *TypeMapper, 226 ValueMaterializer *Materializer) { 227 assert(Node->isDistinct() && "Expected distinct node"); 228 229 MDNode *NewMD = MDNode::replaceWithDistinct(Node->clone()); 230 remap(Node, NewMD, Cycles, VM, Flags, TypeMapper, Materializer); 231 232 // Track any cycles beneath this node. 233 for (Metadata *Op : NewMD->operands()) 234 if (auto *Node = dyn_cast_or_null<MDNode>(Op)) 235 if (!Node->isResolved()) 236 Cycles.push_back(Node); 237 238 return NewMD; 239 } 240 241 /// \brief Map a uniqued MDNode. 242 /// 243 /// Uniqued nodes may not need to be recreated (they may map to themselves). 244 static Metadata *mapUniquedNode(const MDNode *Node, 245 SmallVectorImpl<MDNode *> &Cycles, 246 ValueToValueMapTy &VM, RemapFlags Flags, 247 ValueMapTypeRemapper *TypeMapper, 248 ValueMaterializer *Materializer) { 249 assert(Node->isUniqued() && "Expected uniqued node"); 250 251 // Create a temporary node upfront in case we have a metadata cycle. 252 auto ClonedMD = Node->clone(); 253 if (!remap(Node, ClonedMD.get(), Cycles, VM, Flags, TypeMapper, Materializer)) 254 // No operands changed, so use the identity mapping. 255 return mapToSelf(VM, Node); 256 257 // At least one operand has changed, so uniquify the cloned node. 258 return mapToMetadata(VM, Node, 259 MDNode::replaceWithUniqued(std::move(ClonedMD))); 260 } 261 262 static Metadata *MapMetadataImpl(const Metadata *MD, 263 SmallVectorImpl<MDNode *> &Cycles, 264 ValueToValueMapTy &VM, RemapFlags Flags, 265 ValueMapTypeRemapper *TypeMapper, 266 ValueMaterializer *Materializer) { 267 // If the value already exists in the map, use it. 268 if (Metadata *NewMD = VM.MD().lookup(MD).get()) 269 return NewMD; 270 271 if (isa<MDString>(MD)) 272 return mapToSelf(VM, MD); 273 274 if (isa<ConstantAsMetadata>(MD)) 275 if ((Flags & RF_NoModuleLevelChanges)) 276 return mapToSelf(VM, MD); 277 278 if (const auto *VMD = dyn_cast<ValueAsMetadata>(MD)) { 279 Value *MappedV = 280 MapValue(VMD->getValue(), VM, Flags, TypeMapper, Materializer); 281 if (VMD->getValue() == MappedV || 282 (!MappedV && (Flags & RF_IgnoreMissingEntries))) 283 return mapToSelf(VM, MD); 284 285 // FIXME: This assert crashes during bootstrap, but I think it should be 286 // correct. For now, just match behaviour from before the metadata/value 287 // split. 288 // 289 // assert(MappedV && "Referenced metadata not in value map!"); 290 if (MappedV) 291 return mapToMetadata(VM, MD, ValueAsMetadata::get(MappedV)); 292 return nullptr; 293 } 294 295 // Note: this cast precedes the Flags check so we always get its associated 296 // assertion. 297 const MDNode *Node = cast<MDNode>(MD); 298 299 // If this is a module-level metadata and we know that nothing at the 300 // module level is changing, then use an identity mapping. 301 if (Flags & RF_NoModuleLevelChanges) 302 return mapToSelf(VM, MD); 303 304 // Require resolved nodes whenever metadata might be remapped. 305 assert(Node->isResolved() && "Unexpected unresolved node"); 306 307 if (Node->isDistinct()) 308 return mapDistinctNode(Node, Cycles, VM, Flags, TypeMapper, Materializer); 309 310 return mapUniquedNode(Node, Cycles, VM, Flags, TypeMapper, Materializer); 311 } 312 313 Metadata *llvm::MapMetadata(const Metadata *MD, ValueToValueMapTy &VM, 314 RemapFlags Flags, ValueMapTypeRemapper *TypeMapper, 315 ValueMaterializer *Materializer) { 316 SmallVector<MDNode *, 8> Cycles; 317 Metadata *NewMD = 318 MapMetadataImpl(MD, Cycles, VM, Flags, TypeMapper, Materializer); 319 320 // Resolve cycles underneath MD. 321 if (NewMD && NewMD != MD) { 322 if (auto *N = dyn_cast<MDNode>(NewMD)) 323 if (!N->isResolved()) 324 N->resolveCycles(); 325 326 for (MDNode *N : Cycles) 327 if (!N->isResolved()) 328 N->resolveCycles(); 329 } else { 330 // Shouldn't get unresolved cycles if nothing was remapped. 331 assert(Cycles.empty() && "Expected no unresolved cycles"); 332 } 333 334 return NewMD; 335 } 336 337 MDNode *llvm::MapMetadata(const MDNode *MD, ValueToValueMapTy &VM, 338 RemapFlags Flags, ValueMapTypeRemapper *TypeMapper, 339 ValueMaterializer *Materializer) { 340 return cast<MDNode>(MapMetadata(static_cast<const Metadata *>(MD), VM, Flags, 341 TypeMapper, Materializer)); 342 } 343 344 /// RemapInstruction - Convert the instruction operands from referencing the 345 /// current values into those specified by VMap. 346 /// 347 void llvm::RemapInstruction(Instruction *I, ValueToValueMapTy &VMap, 348 RemapFlags Flags, ValueMapTypeRemapper *TypeMapper, 349 ValueMaterializer *Materializer){ 350 // Remap operands. 351 for (User::op_iterator op = I->op_begin(), E = I->op_end(); op != E; ++op) { 352 Value *V = MapValue(*op, VMap, Flags, TypeMapper, Materializer); 353 // If we aren't ignoring missing entries, assert that something happened. 354 if (V) 355 *op = V; 356 else 357 assert((Flags & RF_IgnoreMissingEntries) && 358 "Referenced value not in value map!"); 359 } 360 361 // Remap phi nodes' incoming blocks. 362 if (PHINode *PN = dyn_cast<PHINode>(I)) { 363 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 364 Value *V = MapValue(PN->getIncomingBlock(i), VMap, Flags); 365 // If we aren't ignoring missing entries, assert that something happened. 366 if (V) 367 PN->setIncomingBlock(i, cast<BasicBlock>(V)); 368 else 369 assert((Flags & RF_IgnoreMissingEntries) && 370 "Referenced block not in value map!"); 371 } 372 } 373 374 // Remap attached metadata. 375 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 376 I->getAllMetadata(MDs); 377 for (SmallVectorImpl<std::pair<unsigned, MDNode *>>::iterator 378 MI = MDs.begin(), 379 ME = MDs.end(); 380 MI != ME; ++MI) { 381 MDNode *Old = MI->second; 382 MDNode *New = MapMetadata(Old, VMap, Flags, TypeMapper, Materializer); 383 if (New != Old) 384 I->setMetadata(MI->first, New); 385 } 386 387 if (!TypeMapper) 388 return; 389 390 // If the instruction's type is being remapped, do so now. 391 if (auto CS = CallSite(I)) { 392 SmallVector<Type *, 3> Tys; 393 FunctionType *FTy = CS.getFunctionType(); 394 Tys.reserve(FTy->getNumParams()); 395 for (Type *Ty : FTy->params()) 396 Tys.push_back(TypeMapper->remapType(Ty)); 397 CS.mutateFunctionType(FunctionType::get( 398 TypeMapper->remapType(I->getType()), Tys, FTy->isVarArg())); 399 return; 400 } 401 if (auto *AI = dyn_cast<AllocaInst>(I)) 402 AI->setAllocatedType(TypeMapper->remapType(AI->getAllocatedType())); 403 if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) { 404 GEP->setSourceElementType( 405 TypeMapper->remapType(GEP->getSourceElementType())); 406 GEP->setResultElementType( 407 TypeMapper->remapType(GEP->getResultElementType())); 408 } 409 I->mutateType(TypeMapper->remapType(I->getType())); 410 } 411