1 //===- ValueMapper.cpp - Interface shared by lib/Transforms/Utils ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the MapValue function, which is shared by various parts of 11 // the lib/Transforms/Utils library. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Utils/ValueMapper.h" 16 #include "llvm/ADT/DenseSet.h" 17 #include "llvm/IR/CallSite.h" 18 #include "llvm/IR/Constants.h" 19 #include "llvm/IR/DebugInfoMetadata.h" 20 #include "llvm/IR/Function.h" 21 #include "llvm/IR/GlobalAlias.h" 22 #include "llvm/IR/GlobalVariable.h" 23 #include "llvm/IR/InlineAsm.h" 24 #include "llvm/IR/Instructions.h" 25 #include "llvm/IR/Metadata.h" 26 #include "llvm/IR/Operator.h" 27 using namespace llvm; 28 29 // Out of line method to get vtable etc for class. 30 void ValueMapTypeRemapper::anchor() {} 31 void ValueMaterializer::anchor() {} 32 void ValueMaterializer::materializeInitFor(GlobalValue *New, GlobalValue *Old) { 33 } 34 35 namespace { 36 37 /// A basic block used in a BlockAddress whose function body is not yet 38 /// materialized. 39 struct DelayedBasicBlock { 40 BasicBlock *OldBB; 41 std::unique_ptr<BasicBlock> TempBB; 42 43 // Explicit move for MSVC. 44 DelayedBasicBlock(DelayedBasicBlock &&X) 45 : OldBB(std::move(X.OldBB)), TempBB(std::move(X.TempBB)) {} 46 DelayedBasicBlock &operator=(DelayedBasicBlock &&X) { 47 OldBB = std::move(X.OldBB); 48 TempBB = std::move(X.TempBB); 49 return *this; 50 } 51 52 DelayedBasicBlock(const BlockAddress &Old) 53 : OldBB(Old.getBasicBlock()), 54 TempBB(BasicBlock::Create(Old.getContext())) {} 55 }; 56 57 struct WorklistEntry { 58 enum EntryKind { 59 MapGlobalInit, 60 MapAppendingVar, 61 MapGlobalAliasee, 62 RemapFunction 63 }; 64 struct GVInitTy { 65 GlobalVariable *GV; 66 Constant *Init; 67 }; 68 struct AppendingGVTy { 69 GlobalVariable *GV; 70 Constant *InitPrefix; 71 }; 72 struct GlobalAliaseeTy { 73 GlobalAlias *GA; 74 Constant *Aliasee; 75 }; 76 77 unsigned Kind : 2; 78 unsigned MCID : 29; 79 unsigned AppendingGVIsOldCtorDtor : 1; 80 unsigned AppendingGVNumNewMembers; 81 union { 82 GVInitTy GVInit; 83 AppendingGVTy AppendingGV; 84 GlobalAliaseeTy GlobalAliasee; 85 Function *RemapF; 86 } Data; 87 }; 88 89 struct MappingContext { 90 ValueToValueMapTy *VM; 91 ValueMaterializer *Materializer = nullptr; 92 93 /// Construct a MappingContext with a value map and materializer. 94 explicit MappingContext(ValueToValueMapTy &VM, 95 ValueMaterializer *Materializer = nullptr) 96 : VM(&VM), Materializer(Materializer) {} 97 }; 98 99 class MDNodeMapper; 100 class Mapper { 101 friend class MDNodeMapper; 102 103 #ifndef NDEBUG 104 DenseSet<GlobalValue *> AlreadyScheduled; 105 #endif 106 107 RemapFlags Flags; 108 ValueMapTypeRemapper *TypeMapper; 109 unsigned CurrentMCID = 0; 110 SmallVector<MappingContext, 2> MCs; 111 SmallVector<WorklistEntry, 4> Worklist; 112 SmallVector<DelayedBasicBlock, 1> DelayedBBs; 113 SmallVector<Constant *, 16> AppendingInits; 114 115 public: 116 Mapper(ValueToValueMapTy &VM, RemapFlags Flags, 117 ValueMapTypeRemapper *TypeMapper, ValueMaterializer *Materializer) 118 : Flags(Flags), TypeMapper(TypeMapper), 119 MCs(1, MappingContext(VM, Materializer)) {} 120 121 /// ValueMapper should explicitly call \a flush() before destruction. 122 ~Mapper() { assert(!hasWorkToDo() && "Expected to be flushed"); } 123 124 bool hasWorkToDo() const { return !Worklist.empty(); } 125 126 unsigned 127 registerAlternateMappingContext(ValueToValueMapTy &VM, 128 ValueMaterializer *Materializer = nullptr) { 129 MCs.push_back(MappingContext(VM, Materializer)); 130 return MCs.size() - 1; 131 } 132 133 void addFlags(RemapFlags Flags); 134 135 Value *mapValue(const Value *V); 136 void remapInstruction(Instruction *I); 137 void remapFunction(Function &F); 138 139 Constant *mapConstant(const Constant *C) { 140 return cast_or_null<Constant>(mapValue(C)); 141 } 142 143 /// Map metadata. 144 /// 145 /// Find the mapping for MD. Guarantees that the return will be resolved 146 /// (not an MDNode, or MDNode::isResolved() returns true). 147 Metadata *mapMetadata(const Metadata *MD); 148 149 // Map LocalAsMetadata, which never gets memoized. 150 // 151 // If the referenced local is not mapped, the principled return is nullptr. 152 // However, optimization passes sometimes move metadata operands *before* the 153 // SSA values they reference. To prevent crashes in \a RemapInstruction(), 154 // return "!{}" when RF_IgnoreMissingLocals is not set. 155 // 156 // \note Adding a mapping for LocalAsMetadata is unsupported. Add a mapping 157 // to the value map for the SSA value in question instead. 158 // 159 // FIXME: Once we have a verifier check for forward references to SSA values 160 // through metadata operands, always return nullptr on unmapped locals. 161 Metadata *mapLocalAsMetadata(const LocalAsMetadata &LAM); 162 163 void scheduleMapGlobalInitializer(GlobalVariable &GV, Constant &Init, 164 unsigned MCID); 165 void scheduleMapAppendingVariable(GlobalVariable &GV, Constant *InitPrefix, 166 bool IsOldCtorDtor, 167 ArrayRef<Constant *> NewMembers, 168 unsigned MCID); 169 void scheduleMapGlobalAliasee(GlobalAlias &GA, Constant &Aliasee, 170 unsigned MCID); 171 void scheduleRemapFunction(Function &F, unsigned MCID); 172 173 void flush(); 174 175 private: 176 void mapGlobalInitializer(GlobalVariable &GV, Constant &Init); 177 void mapAppendingVariable(GlobalVariable &GV, Constant *InitPrefix, 178 bool IsOldCtorDtor, 179 ArrayRef<Constant *> NewMembers); 180 void mapGlobalAliasee(GlobalAlias &GA, Constant &Aliasee); 181 void remapFunction(Function &F, ValueToValueMapTy &VM); 182 183 ValueToValueMapTy &getVM() { return *MCs[CurrentMCID].VM; } 184 ValueMaterializer *getMaterializer() { return MCs[CurrentMCID].Materializer; } 185 186 Value *mapBlockAddress(const BlockAddress &BA); 187 188 /// Map metadata that doesn't require visiting operands. 189 Optional<Metadata *> mapSimpleMetadata(const Metadata *MD); 190 191 Metadata *mapToMetadata(const Metadata *Key, Metadata *Val); 192 Metadata *mapToSelf(const Metadata *MD); 193 }; 194 195 class MDNodeMapper { 196 Mapper &M; 197 198 /// Data about a node in \a UniquedGraph. 199 struct Data { 200 bool HasChanged = false; 201 unsigned ID = ~0u; 202 TempMDNode Placeholder; 203 204 Data() {} 205 Data(Data &&X) 206 : HasChanged(std::move(X.HasChanged)), ID(std::move(X.ID)), 207 Placeholder(std::move(X.Placeholder)) {} 208 Data &operator=(Data &&X) { 209 HasChanged = std::move(X.HasChanged); 210 ID = std::move(X.ID); 211 Placeholder = std::move(X.Placeholder); 212 return *this; 213 } 214 }; 215 216 /// A graph of uniqued nodes. 217 struct UniquedGraph { 218 SmallDenseMap<const Metadata *, Data, 32> Info; // Node properties. 219 SmallVector<MDNode *, 16> POT; // Post-order traversal. 220 221 /// Propagate changed operands through the post-order traversal. 222 /// 223 /// Iteratively update \a Data::HasChanged for each node based on \a 224 /// Data::HasChanged of its operands, until fixed point. 225 void propagateChanges(); 226 227 /// Get a forward reference to a node to use as an operand. 228 Metadata &getFwdReference(MDNode &Op); 229 }; 230 231 /// Worklist of distinct nodes whose operands need to be remapped. 232 SmallVector<MDNode *, 16> DistinctWorklist; 233 234 // Storage for a UniquedGraph. 235 SmallDenseMap<const Metadata *, Data, 32> InfoStorage; 236 SmallVector<MDNode *, 16> POTStorage; 237 238 public: 239 MDNodeMapper(Mapper &M) : M(M) {} 240 241 /// Map a metadata node (and its transitive operands). 242 /// 243 /// Map all the (unmapped) nodes in the subgraph under \c N. The iterative 244 /// algorithm handles distinct nodes and uniqued node subgraphs using 245 /// different strategies. 246 /// 247 /// Distinct nodes are immediately mapped and added to \a DistinctWorklist 248 /// using \a mapDistinctNode(). Their mapping can always be computed 249 /// immediately without visiting operands, even if their operands change. 250 /// 251 /// The mapping for uniqued nodes depends on whether their operands change. 252 /// \a mapTopLevelUniquedNode() traverses the transitive uniqued subgraph of 253 /// a node to calculate uniqued node mappings in bulk. Distinct leafs are 254 /// added to \a DistinctWorklist with \a mapDistinctNode(). 255 /// 256 /// After mapping \c N itself, this function remaps the operands of the 257 /// distinct nodes in \a DistinctWorklist until the entire subgraph under \c 258 /// N has been mapped. 259 Metadata *map(const MDNode &N); 260 261 private: 262 /// Map a top-level uniqued node and the uniqued subgraph underneath it. 263 /// 264 /// This builds up a post-order traversal of the (unmapped) uniqued subgraph 265 /// underneath \c FirstN and calculates the nodes' mapping. Each node uses 266 /// the identity mapping (\a Mapper::mapToSelf()) as long as all of its 267 /// operands uses the identity mapping. 268 /// 269 /// The algorithm works as follows: 270 /// 271 /// 1. \a createPOT(): traverse the uniqued subgraph under \c FirstN and 272 /// save the post-order traversal in the given \a UniquedGraph, tracking 273 /// nodes' operands change. 274 /// 275 /// 2. \a UniquedGraph::propagateChanges(): propagate changed operands 276 /// through the \a UniquedGraph until fixed point, following the rule 277 /// that if a node changes, any node that references must also change. 278 /// 279 /// 3. \a mapNodesInPOT(): map the uniqued nodes, creating new uniqued nodes 280 /// (referencing new operands) where necessary. 281 Metadata *mapTopLevelUniquedNode(const MDNode &FirstN); 282 283 /// Try to map the operand of an \a MDNode. 284 /// 285 /// If \c Op is already mapped, return the mapping. If it's not an \a 286 /// MDNode, compute and return the mapping. If it's a distinct \a MDNode, 287 /// return the result of \a mapDistinctNode(). 288 /// 289 /// \return None if \c Op is an unmapped uniqued \a MDNode. 290 /// \post getMappedOp(Op) only returns None if this returns None. 291 Optional<Metadata *> tryToMapOperand(const Metadata *Op); 292 293 /// Map a distinct node. 294 /// 295 /// Return the mapping for the distinct node \c N, saving the result in \a 296 /// DistinctWorklist for later remapping. 297 /// 298 /// \pre \c N is not yet mapped. 299 /// \pre \c N.isDistinct(). 300 MDNode *mapDistinctNode(const MDNode &N); 301 302 /// Get a previously mapped node. 303 Optional<Metadata *> getMappedOp(const Metadata *Op) const; 304 305 /// Create a post-order traversal of an unmapped uniqued node subgraph. 306 /// 307 /// This traverses the metadata graph deeply enough to map \c FirstN. It 308 /// uses \a tryToMapOperand() (via \a Mapper::mapSimplifiedNode()), so any 309 /// metadata that has already been mapped will not be part of the POT. 310 /// 311 /// Each node that has a changed operand from outside the graph (e.g., a 312 /// distinct node, an already-mapped uniqued node, or \a ConstantAsMetadata) 313 /// is marked with \a Data::HasChanged. 314 /// 315 /// \return \c true if any nodes in \c G have \a Data::HasChanged. 316 /// \post \c G.POT is a post-order traversal ending with \c FirstN. 317 /// \post \a Data::hasChanged in \c G.Info indicates whether any node needs 318 /// to change because of operands outside the graph. 319 bool createPOT(UniquedGraph &G, const MDNode &FirstN); 320 321 /// Map all the nodes in the given uniqued graph. 322 /// 323 /// This visits all the nodes in \c G in post-order, using the identity 324 /// mapping or creating a new node depending on \a Data::HasChanged. 325 /// 326 /// \pre \a getMappedOp() returns None for nodes in \c G, but not for any of 327 /// their operands outside of \c G. 328 /// \pre \a Data::HasChanged is true for a node in \c G iff any of its 329 /// operands have changed. 330 /// \post \a getMappedOp() returns the mapped node for every node in \c G. 331 void mapNodesInPOT(UniquedGraph &G); 332 333 /// Remap a node's operands using the given functor. 334 /// 335 /// Iterate through the operands of \c N and update them in place using \c 336 /// mapOperand. 337 /// 338 /// \pre N.isDistinct() or N.isTemporary(). 339 template <class OperandMapper> 340 void remapOperands(MDNode &N, OperandMapper mapOperand); 341 }; 342 343 } // end namespace 344 345 Value *Mapper::mapValue(const Value *V) { 346 ValueToValueMapTy::iterator I = getVM().find(V); 347 348 // If the value already exists in the map, use it. 349 if (I != getVM().end()) { 350 assert(I->second && "Unexpected null mapping"); 351 return I->second; 352 } 353 354 // If we have a materializer and it can materialize a value, use that. 355 if (auto *Materializer = getMaterializer()) { 356 if (Value *NewV = 357 Materializer->materializeDeclFor(const_cast<Value *>(V))) { 358 getVM()[V] = NewV; 359 if (auto *NewGV = dyn_cast<GlobalValue>(NewV)) 360 Materializer->materializeInitFor( 361 NewGV, cast<GlobalValue>(const_cast<Value *>(V))); 362 return NewV; 363 } 364 } 365 366 // Global values do not need to be seeded into the VM if they 367 // are using the identity mapping. 368 if (isa<GlobalValue>(V)) { 369 if (Flags & RF_NullMapMissingGlobalValues) 370 return nullptr; 371 return getVM()[V] = const_cast<Value *>(V); 372 } 373 374 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 375 // Inline asm may need *type* remapping. 376 FunctionType *NewTy = IA->getFunctionType(); 377 if (TypeMapper) { 378 NewTy = cast<FunctionType>(TypeMapper->remapType(NewTy)); 379 380 if (NewTy != IA->getFunctionType()) 381 V = InlineAsm::get(NewTy, IA->getAsmString(), IA->getConstraintString(), 382 IA->hasSideEffects(), IA->isAlignStack()); 383 } 384 385 return getVM()[V] = const_cast<Value *>(V); 386 } 387 388 if (const auto *MDV = dyn_cast<MetadataAsValue>(V)) { 389 const Metadata *MD = MDV->getMetadata(); 390 391 if (auto *LAM = dyn_cast<LocalAsMetadata>(MD)) { 392 // Look through to grab the local value. 393 if (Value *LV = mapValue(LAM->getValue())) { 394 if (V == LAM->getValue()) 395 return const_cast<Value *>(V); 396 return MetadataAsValue::get(V->getContext(), ValueAsMetadata::get(LV)); 397 } 398 399 // FIXME: always return nullptr once Verifier::verifyDominatesUse() 400 // ensures metadata operands only reference defined SSA values. 401 return (Flags & RF_IgnoreMissingLocals) 402 ? nullptr 403 : MetadataAsValue::get(V->getContext(), 404 MDTuple::get(V->getContext(), None)); 405 } 406 407 // If this is a module-level metadata and we know that nothing at the module 408 // level is changing, then use an identity mapping. 409 if (Flags & RF_NoModuleLevelChanges) 410 return getVM()[V] = const_cast<Value *>(V); 411 412 // Map the metadata and turn it into a value. 413 auto *MappedMD = mapMetadata(MD); 414 if (MD == MappedMD) 415 return getVM()[V] = const_cast<Value *>(V); 416 return getVM()[V] = MetadataAsValue::get(V->getContext(), MappedMD); 417 } 418 419 // Okay, this either must be a constant (which may or may not be mappable) or 420 // is something that is not in the mapping table. 421 Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V)); 422 if (!C) 423 return nullptr; 424 425 if (BlockAddress *BA = dyn_cast<BlockAddress>(C)) 426 return mapBlockAddress(*BA); 427 428 // Otherwise, we have some other constant to remap. Start by checking to see 429 // if all operands have an identity remapping. 430 unsigned OpNo = 0, NumOperands = C->getNumOperands(); 431 Value *Mapped = nullptr; 432 for (; OpNo != NumOperands; ++OpNo) { 433 Value *Op = C->getOperand(OpNo); 434 Mapped = mapValue(Op); 435 if (Mapped != C) break; 436 } 437 438 // See if the type mapper wants to remap the type as well. 439 Type *NewTy = C->getType(); 440 if (TypeMapper) 441 NewTy = TypeMapper->remapType(NewTy); 442 443 // If the result type and all operands match up, then just insert an identity 444 // mapping. 445 if (OpNo == NumOperands && NewTy == C->getType()) 446 return getVM()[V] = C; 447 448 // Okay, we need to create a new constant. We've already processed some or 449 // all of the operands, set them all up now. 450 SmallVector<Constant*, 8> Ops; 451 Ops.reserve(NumOperands); 452 for (unsigned j = 0; j != OpNo; ++j) 453 Ops.push_back(cast<Constant>(C->getOperand(j))); 454 455 // If one of the operands mismatch, push it and the other mapped operands. 456 if (OpNo != NumOperands) { 457 Ops.push_back(cast<Constant>(Mapped)); 458 459 // Map the rest of the operands that aren't processed yet. 460 for (++OpNo; OpNo != NumOperands; ++OpNo) 461 Ops.push_back(cast<Constant>(mapValue(C->getOperand(OpNo)))); 462 } 463 Type *NewSrcTy = nullptr; 464 if (TypeMapper) 465 if (auto *GEPO = dyn_cast<GEPOperator>(C)) 466 NewSrcTy = TypeMapper->remapType(GEPO->getSourceElementType()); 467 468 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) 469 return getVM()[V] = CE->getWithOperands(Ops, NewTy, false, NewSrcTy); 470 if (isa<ConstantArray>(C)) 471 return getVM()[V] = ConstantArray::get(cast<ArrayType>(NewTy), Ops); 472 if (isa<ConstantStruct>(C)) 473 return getVM()[V] = ConstantStruct::get(cast<StructType>(NewTy), Ops); 474 if (isa<ConstantVector>(C)) 475 return getVM()[V] = ConstantVector::get(Ops); 476 // If this is a no-operand constant, it must be because the type was remapped. 477 if (isa<UndefValue>(C)) 478 return getVM()[V] = UndefValue::get(NewTy); 479 if (isa<ConstantAggregateZero>(C)) 480 return getVM()[V] = ConstantAggregateZero::get(NewTy); 481 assert(isa<ConstantPointerNull>(C)); 482 return getVM()[V] = ConstantPointerNull::get(cast<PointerType>(NewTy)); 483 } 484 485 Value *Mapper::mapBlockAddress(const BlockAddress &BA) { 486 Function *F = cast<Function>(mapValue(BA.getFunction())); 487 488 // F may not have materialized its initializer. In that case, create a 489 // dummy basic block for now, and replace it once we've materialized all 490 // the initializers. 491 BasicBlock *BB; 492 if (F->empty()) { 493 DelayedBBs.push_back(DelayedBasicBlock(BA)); 494 BB = DelayedBBs.back().TempBB.get(); 495 } else { 496 BB = cast_or_null<BasicBlock>(mapValue(BA.getBasicBlock())); 497 } 498 499 return getVM()[&BA] = BlockAddress::get(F, BB ? BB : BA.getBasicBlock()); 500 } 501 502 Metadata *Mapper::mapToMetadata(const Metadata *Key, Metadata *Val) { 503 getVM().MD()[Key].reset(Val); 504 return Val; 505 } 506 507 Metadata *Mapper::mapToSelf(const Metadata *MD) { 508 return mapToMetadata(MD, const_cast<Metadata *>(MD)); 509 } 510 511 Optional<Metadata *> MDNodeMapper::tryToMapOperand(const Metadata *Op) { 512 if (!Op) 513 return nullptr; 514 515 if (Optional<Metadata *> MappedOp = M.mapSimpleMetadata(Op)) { 516 #ifndef NDEBUG 517 if (auto *CMD = dyn_cast<ConstantAsMetadata>(Op)) 518 assert((!*MappedOp || M.getVM().count(CMD->getValue()) || 519 M.getVM().getMappedMD(Op)) && 520 "Expected Value to be memoized"); 521 else 522 assert((isa<MDString>(Op) || M.getVM().getMappedMD(Op)) && 523 "Expected result to be memoized"); 524 #endif 525 return *MappedOp; 526 } 527 528 const MDNode &N = *cast<MDNode>(Op); 529 if (N.isDistinct()) 530 return mapDistinctNode(N); 531 return None; 532 } 533 534 MDNode *MDNodeMapper::mapDistinctNode(const MDNode &N) { 535 assert(N.isDistinct() && "Expected a distinct node"); 536 assert(!M.getVM().getMappedMD(&N) && "Expected an unmapped node"); 537 DistinctWorklist.push_back(cast<MDNode>( 538 (M.Flags & RF_MoveDistinctMDs) 539 ? M.mapToSelf(&N) 540 : M.mapToMetadata(&N, MDNode::replaceWithDistinct(N.clone())))); 541 return DistinctWorklist.back(); 542 } 543 544 static ConstantAsMetadata *wrapConstantAsMetadata(const ConstantAsMetadata &CMD, 545 Value *MappedV) { 546 if (CMD.getValue() == MappedV) 547 return const_cast<ConstantAsMetadata *>(&CMD); 548 return MappedV ? ConstantAsMetadata::getConstant(MappedV) : nullptr; 549 } 550 551 Optional<Metadata *> MDNodeMapper::getMappedOp(const Metadata *Op) const { 552 if (!Op) 553 return nullptr; 554 555 if (Optional<Metadata *> MappedOp = M.getVM().getMappedMD(Op)) 556 return *MappedOp; 557 558 if (isa<MDString>(Op)) 559 return const_cast<Metadata *>(Op); 560 561 if (auto *CMD = dyn_cast<ConstantAsMetadata>(Op)) 562 return wrapConstantAsMetadata(*CMD, M.getVM().lookup(CMD->getValue())); 563 564 return None; 565 } 566 567 Metadata &MDNodeMapper::UniquedGraph::getFwdReference(MDNode &Op) { 568 auto Where = Info.find(&Op); 569 assert(Where != Info.end() && "Expected a valid reference"); 570 571 auto &OpD = Where->second; 572 if (!OpD.HasChanged) 573 return Op; 574 575 // Lazily construct a temporary node. 576 if (!OpD.Placeholder) 577 OpD.Placeholder = Op.clone(); 578 579 return *OpD.Placeholder; 580 } 581 582 template <class OperandMapper> 583 void MDNodeMapper::remapOperands(MDNode &N, OperandMapper mapOperand) { 584 assert(!N.isUniqued() && "Expected distinct or temporary nodes"); 585 for (unsigned I = 0, E = N.getNumOperands(); I != E; ++I) { 586 Metadata *Old = N.getOperand(I); 587 Metadata *New = mapOperand(Old); 588 589 if (Old != New) 590 N.replaceOperandWith(I, New); 591 } 592 } 593 594 bool MDNodeMapper::createPOT(UniquedGraph &G, const MDNode &FirstN) { 595 assert(G.Info.empty() && "Expected a fresh traversal"); 596 assert(FirstN.isUniqued() && "Expected uniqued node in POT"); 597 598 // Construct a post-order traversal of the uniqued subgraph under FirstN. 599 bool AnyChanges = false; 600 601 // The flag on the worklist indicates whether this is the first or second 602 // visit of a node. The first visit looks through the operands; the second 603 // visit adds the node to POT. 604 SmallVector<std::pair<MDNode *, bool>, 16> Worklist; 605 Worklist.push_back(std::make_pair(&const_cast<MDNode &>(FirstN), false)); 606 (void)G.Info[&FirstN]; 607 while (!Worklist.empty()) { 608 MDNode &N = *Worklist.back().first; 609 if (Worklist.back().second) { 610 // We've already visited operands. Add this to POT. 611 Worklist.pop_back(); 612 G.Info[&N].ID = G.POT.size(); 613 G.POT.push_back(&N); 614 continue; 615 } 616 Worklist.back().second = true; 617 618 // Look through the operands for changes, pushing unmapped uniqued nodes 619 // onto to the worklist. 620 assert(N.isUniqued() && "Expected only uniqued nodes in POT"); 621 bool LocalChanges = false; 622 for (Metadata *Op : N.operands()) { 623 assert(Op != &N && "Uniqued nodes cannot have self-references"); 624 if (Optional<Metadata *> MappedOp = tryToMapOperand(Op)) { 625 AnyChanges |= LocalChanges |= Op != *MappedOp; 626 continue; 627 } 628 629 MDNode &OpN = *cast<MDNode>(Op); 630 assert(OpN.isUniqued() && 631 "Only uniqued operands cannot be mapped immediately"); 632 if (G.Info.insert(std::make_pair(&OpN, Data())).second) 633 Worklist.push_back(std::make_pair(&OpN, false)); 634 } 635 636 if (LocalChanges) 637 G.Info[&N].HasChanged = true; 638 } 639 return AnyChanges; 640 } 641 642 void MDNodeMapper::UniquedGraph::propagateChanges() { 643 bool AnyChanges; 644 do { 645 AnyChanges = false; 646 for (MDNode *N : POT) { 647 auto &D = Info[N]; 648 if (D.HasChanged) 649 continue; 650 651 if (!llvm::any_of(N->operands(), [&](const Metadata *Op) { 652 auto Where = Info.find(Op); 653 return Where != Info.end() && Where->second.HasChanged; 654 })) 655 continue; 656 657 AnyChanges = D.HasChanged = true; 658 } 659 } while (AnyChanges); 660 } 661 662 void MDNodeMapper::mapNodesInPOT(UniquedGraph &G) { 663 // Construct uniqued nodes, building forward references as necessary. 664 SmallVector<MDNode *, 16> CyclicNodes; 665 for (auto *N : G.POT) { 666 auto &D = G.Info[N]; 667 if (!D.HasChanged) { 668 // The node hasn't changed. 669 M.mapToSelf(N); 670 continue; 671 } 672 673 // Remember whether this node had a placeholder. 674 bool HadPlaceholder(D.Placeholder); 675 676 // Clone the uniqued node and remap the operands. 677 TempMDNode ClonedN = D.Placeholder ? std::move(D.Placeholder) : N->clone(); 678 remapOperands(*ClonedN, [this, &D, &G](Metadata *Old) { 679 if (Optional<Metadata *> MappedOp = getMappedOp(Old)) 680 return *MappedOp; 681 assert(G.Info[Old].ID > D.ID && "Expected a forward reference"); 682 return &G.getFwdReference(*cast<MDNode>(Old)); 683 }); 684 685 auto *NewN = MDNode::replaceWithUniqued(std::move(ClonedN)); 686 M.mapToMetadata(N, NewN); 687 688 // Nodes that were referenced out of order in the POT are involved in a 689 // uniquing cycle. 690 if (HadPlaceholder) 691 CyclicNodes.push_back(NewN); 692 } 693 694 // Resolve cycles. 695 for (auto *N : CyclicNodes) 696 if (!N->isResolved()) 697 N->resolveCycles(); 698 } 699 700 Metadata *MDNodeMapper::map(const MDNode &N) { 701 assert(DistinctWorklist.empty() && "MDNodeMapper::map is not recursive"); 702 assert(!(M.Flags & RF_NoModuleLevelChanges) && 703 "MDNodeMapper::map assumes module-level changes"); 704 705 // Require resolved nodes whenever metadata might be remapped. 706 assert(N.isResolved() && "Unexpected unresolved node"); 707 708 Metadata *MappedN = 709 N.isUniqued() ? mapTopLevelUniquedNode(N) : mapDistinctNode(N); 710 while (!DistinctWorklist.empty()) 711 remapOperands(*DistinctWorklist.pop_back_val(), [this](Metadata *Old) { 712 if (Optional<Metadata *> MappedOp = tryToMapOperand(Old)) 713 return *MappedOp; 714 return mapTopLevelUniquedNode(*cast<MDNode>(Old)); 715 }); 716 return MappedN; 717 } 718 719 Metadata *MDNodeMapper::mapTopLevelUniquedNode(const MDNode &FirstN) { 720 assert(FirstN.isUniqued() && "Expected uniqued node"); 721 722 // Create a post-order traversal of uniqued nodes under FirstN. 723 UniquedGraph G; 724 if (!createPOT(G, FirstN)) { 725 // Return early if no nodes have changed. 726 for (const MDNode *N : G.POT) 727 M.mapToSelf(N); 728 return &const_cast<MDNode &>(FirstN); 729 } 730 731 // Update graph with all nodes that have changed. 732 G.propagateChanges(); 733 734 // Map all the nodes in the graph. 735 mapNodesInPOT(G); 736 737 // Return the original node, remapped. 738 return *getMappedOp(&FirstN); 739 } 740 741 namespace { 742 743 struct MapMetadataDisabler { 744 ValueToValueMapTy &VM; 745 746 MapMetadataDisabler(ValueToValueMapTy &VM) : VM(VM) { 747 VM.disableMapMetadata(); 748 } 749 ~MapMetadataDisabler() { VM.enableMapMetadata(); } 750 }; 751 752 } // end namespace 753 754 Optional<Metadata *> Mapper::mapSimpleMetadata(const Metadata *MD) { 755 // If the value already exists in the map, use it. 756 if (Optional<Metadata *> NewMD = getVM().getMappedMD(MD)) 757 return *NewMD; 758 759 if (isa<MDString>(MD)) 760 return const_cast<Metadata *>(MD); 761 762 // This is a module-level metadata. If nothing at the module level is 763 // changing, use an identity mapping. 764 if ((Flags & RF_NoModuleLevelChanges)) 765 return const_cast<Metadata *>(MD); 766 767 if (auto *CMD = dyn_cast<ConstantAsMetadata>(MD)) { 768 // Disallow recursion into metadata mapping through mapValue. 769 MapMetadataDisabler MMD(getVM()); 770 771 // Don't memoize ConstantAsMetadata. Instead of lasting until the 772 // LLVMContext is destroyed, they can be deleted when the GlobalValue they 773 // reference is destructed. These aren't super common, so the extra 774 // indirection isn't that expensive. 775 return wrapConstantAsMetadata(*CMD, mapValue(CMD->getValue())); 776 } 777 778 assert(isa<MDNode>(MD) && "Expected a metadata node"); 779 780 return None; 781 } 782 783 Metadata *Mapper::mapLocalAsMetadata(const LocalAsMetadata &LAM) { 784 // Lookup the mapping for the value itself, and return the appropriate 785 // metadata. 786 if (Value *V = mapValue(LAM.getValue())) { 787 if (V == LAM.getValue()) 788 return const_cast<LocalAsMetadata *>(&LAM); 789 return ValueAsMetadata::get(V); 790 } 791 792 // FIXME: always return nullptr once Verifier::verifyDominatesUse() ensures 793 // metadata operands only reference defined SSA values. 794 return (Flags & RF_IgnoreMissingLocals) 795 ? nullptr 796 : MDTuple::get(LAM.getContext(), None); 797 } 798 799 Metadata *Mapper::mapMetadata(const Metadata *MD) { 800 assert(MD && "Expected valid metadata"); 801 assert(!isa<LocalAsMetadata>(MD) && "Unexpected local metadata"); 802 803 if (Optional<Metadata *> NewMD = mapSimpleMetadata(MD)) 804 return *NewMD; 805 806 return MDNodeMapper(*this).map(*cast<MDNode>(MD)); 807 } 808 809 void Mapper::flush() { 810 // Flush out the worklist of global values. 811 while (!Worklist.empty()) { 812 WorklistEntry E = Worklist.pop_back_val(); 813 CurrentMCID = E.MCID; 814 switch (E.Kind) { 815 case WorklistEntry::MapGlobalInit: 816 E.Data.GVInit.GV->setInitializer(mapConstant(E.Data.GVInit.Init)); 817 break; 818 case WorklistEntry::MapAppendingVar: { 819 unsigned PrefixSize = AppendingInits.size() - E.AppendingGVNumNewMembers; 820 mapAppendingVariable(*E.Data.AppendingGV.GV, 821 E.Data.AppendingGV.InitPrefix, 822 E.AppendingGVIsOldCtorDtor, 823 makeArrayRef(AppendingInits).slice(PrefixSize)); 824 AppendingInits.resize(PrefixSize); 825 break; 826 } 827 case WorklistEntry::MapGlobalAliasee: 828 E.Data.GlobalAliasee.GA->setAliasee( 829 mapConstant(E.Data.GlobalAliasee.Aliasee)); 830 break; 831 case WorklistEntry::RemapFunction: 832 remapFunction(*E.Data.RemapF); 833 break; 834 } 835 } 836 CurrentMCID = 0; 837 838 // Finish logic for block addresses now that all global values have been 839 // handled. 840 while (!DelayedBBs.empty()) { 841 DelayedBasicBlock DBB = DelayedBBs.pop_back_val(); 842 BasicBlock *BB = cast_or_null<BasicBlock>(mapValue(DBB.OldBB)); 843 DBB.TempBB->replaceAllUsesWith(BB ? BB : DBB.OldBB); 844 } 845 } 846 847 void Mapper::remapInstruction(Instruction *I) { 848 // Remap operands. 849 for (Use &Op : I->operands()) { 850 Value *V = mapValue(Op); 851 // If we aren't ignoring missing entries, assert that something happened. 852 if (V) 853 Op = V; 854 else 855 assert((Flags & RF_IgnoreMissingLocals) && 856 "Referenced value not in value map!"); 857 } 858 859 // Remap phi nodes' incoming blocks. 860 if (PHINode *PN = dyn_cast<PHINode>(I)) { 861 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 862 Value *V = mapValue(PN->getIncomingBlock(i)); 863 // If we aren't ignoring missing entries, assert that something happened. 864 if (V) 865 PN->setIncomingBlock(i, cast<BasicBlock>(V)); 866 else 867 assert((Flags & RF_IgnoreMissingLocals) && 868 "Referenced block not in value map!"); 869 } 870 } 871 872 // Remap attached metadata. 873 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 874 I->getAllMetadata(MDs); 875 for (const auto &MI : MDs) { 876 MDNode *Old = MI.second; 877 MDNode *New = cast_or_null<MDNode>(mapMetadata(Old)); 878 if (New != Old) 879 I->setMetadata(MI.first, New); 880 } 881 882 if (!TypeMapper) 883 return; 884 885 // If the instruction's type is being remapped, do so now. 886 if (auto CS = CallSite(I)) { 887 SmallVector<Type *, 3> Tys; 888 FunctionType *FTy = CS.getFunctionType(); 889 Tys.reserve(FTy->getNumParams()); 890 for (Type *Ty : FTy->params()) 891 Tys.push_back(TypeMapper->remapType(Ty)); 892 CS.mutateFunctionType(FunctionType::get( 893 TypeMapper->remapType(I->getType()), Tys, FTy->isVarArg())); 894 return; 895 } 896 if (auto *AI = dyn_cast<AllocaInst>(I)) 897 AI->setAllocatedType(TypeMapper->remapType(AI->getAllocatedType())); 898 if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) { 899 GEP->setSourceElementType( 900 TypeMapper->remapType(GEP->getSourceElementType())); 901 GEP->setResultElementType( 902 TypeMapper->remapType(GEP->getResultElementType())); 903 } 904 I->mutateType(TypeMapper->remapType(I->getType())); 905 } 906 907 void Mapper::remapFunction(Function &F) { 908 // Remap the operands. 909 for (Use &Op : F.operands()) 910 if (Op) 911 Op = mapValue(Op); 912 913 // Remap the metadata attachments. 914 SmallVector<std::pair<unsigned, MDNode *>, 8> MDs; 915 F.getAllMetadata(MDs); 916 for (const auto &I : MDs) 917 F.setMetadata(I.first, cast_or_null<MDNode>(mapMetadata(I.second))); 918 919 // Remap the argument types. 920 if (TypeMapper) 921 for (Argument &A : F.args()) 922 A.mutateType(TypeMapper->remapType(A.getType())); 923 924 // Remap the instructions. 925 for (BasicBlock &BB : F) 926 for (Instruction &I : BB) 927 remapInstruction(&I); 928 } 929 930 void Mapper::mapAppendingVariable(GlobalVariable &GV, Constant *InitPrefix, 931 bool IsOldCtorDtor, 932 ArrayRef<Constant *> NewMembers) { 933 SmallVector<Constant *, 16> Elements; 934 if (InitPrefix) { 935 unsigned NumElements = 936 cast<ArrayType>(InitPrefix->getType())->getNumElements(); 937 for (unsigned I = 0; I != NumElements; ++I) 938 Elements.push_back(InitPrefix->getAggregateElement(I)); 939 } 940 941 PointerType *VoidPtrTy; 942 Type *EltTy; 943 if (IsOldCtorDtor) { 944 // FIXME: This upgrade is done during linking to support the C API. See 945 // also IRLinker::linkAppendingVarProto() in IRMover.cpp. 946 VoidPtrTy = Type::getInt8Ty(GV.getContext())->getPointerTo(); 947 auto &ST = *cast<StructType>(NewMembers.front()->getType()); 948 Type *Tys[3] = {ST.getElementType(0), ST.getElementType(1), VoidPtrTy}; 949 EltTy = StructType::get(GV.getContext(), Tys, false); 950 } 951 952 for (auto *V : NewMembers) { 953 Constant *NewV; 954 if (IsOldCtorDtor) { 955 auto *S = cast<ConstantStruct>(V); 956 auto *E1 = mapValue(S->getOperand(0)); 957 auto *E2 = mapValue(S->getOperand(1)); 958 Value *Null = Constant::getNullValue(VoidPtrTy); 959 NewV = 960 ConstantStruct::get(cast<StructType>(EltTy), E1, E2, Null, nullptr); 961 } else { 962 NewV = cast_or_null<Constant>(mapValue(V)); 963 } 964 Elements.push_back(NewV); 965 } 966 967 GV.setInitializer(ConstantArray::get( 968 cast<ArrayType>(GV.getType()->getElementType()), Elements)); 969 } 970 971 void Mapper::scheduleMapGlobalInitializer(GlobalVariable &GV, Constant &Init, 972 unsigned MCID) { 973 assert(AlreadyScheduled.insert(&GV).second && "Should not reschedule"); 974 assert(MCID < MCs.size() && "Invalid mapping context"); 975 976 WorklistEntry WE; 977 WE.Kind = WorklistEntry::MapGlobalInit; 978 WE.MCID = MCID; 979 WE.Data.GVInit.GV = &GV; 980 WE.Data.GVInit.Init = &Init; 981 Worklist.push_back(WE); 982 } 983 984 void Mapper::scheduleMapAppendingVariable(GlobalVariable &GV, 985 Constant *InitPrefix, 986 bool IsOldCtorDtor, 987 ArrayRef<Constant *> NewMembers, 988 unsigned MCID) { 989 assert(AlreadyScheduled.insert(&GV).second && "Should not reschedule"); 990 assert(MCID < MCs.size() && "Invalid mapping context"); 991 992 WorklistEntry WE; 993 WE.Kind = WorklistEntry::MapAppendingVar; 994 WE.MCID = MCID; 995 WE.Data.AppendingGV.GV = &GV; 996 WE.Data.AppendingGV.InitPrefix = InitPrefix; 997 WE.AppendingGVIsOldCtorDtor = IsOldCtorDtor; 998 WE.AppendingGVNumNewMembers = NewMembers.size(); 999 Worklist.push_back(WE); 1000 AppendingInits.append(NewMembers.begin(), NewMembers.end()); 1001 } 1002 1003 void Mapper::scheduleMapGlobalAliasee(GlobalAlias &GA, Constant &Aliasee, 1004 unsigned MCID) { 1005 assert(AlreadyScheduled.insert(&GA).second && "Should not reschedule"); 1006 assert(MCID < MCs.size() && "Invalid mapping context"); 1007 1008 WorklistEntry WE; 1009 WE.Kind = WorklistEntry::MapGlobalAliasee; 1010 WE.MCID = MCID; 1011 WE.Data.GlobalAliasee.GA = &GA; 1012 WE.Data.GlobalAliasee.Aliasee = &Aliasee; 1013 Worklist.push_back(WE); 1014 } 1015 1016 void Mapper::scheduleRemapFunction(Function &F, unsigned MCID) { 1017 assert(AlreadyScheduled.insert(&F).second && "Should not reschedule"); 1018 assert(MCID < MCs.size() && "Invalid mapping context"); 1019 1020 WorklistEntry WE; 1021 WE.Kind = WorklistEntry::RemapFunction; 1022 WE.MCID = MCID; 1023 WE.Data.RemapF = &F; 1024 Worklist.push_back(WE); 1025 } 1026 1027 void Mapper::addFlags(RemapFlags Flags) { 1028 assert(!hasWorkToDo() && "Expected to have flushed the worklist"); 1029 this->Flags = this->Flags | Flags; 1030 } 1031 1032 static Mapper *getAsMapper(void *pImpl) { 1033 return reinterpret_cast<Mapper *>(pImpl); 1034 } 1035 1036 namespace { 1037 1038 class FlushingMapper { 1039 Mapper &M; 1040 1041 public: 1042 explicit FlushingMapper(void *pImpl) : M(*getAsMapper(pImpl)) { 1043 assert(!M.hasWorkToDo() && "Expected to be flushed"); 1044 } 1045 ~FlushingMapper() { M.flush(); } 1046 Mapper *operator->() const { return &M; } 1047 }; 1048 1049 } // end namespace 1050 1051 ValueMapper::ValueMapper(ValueToValueMapTy &VM, RemapFlags Flags, 1052 ValueMapTypeRemapper *TypeMapper, 1053 ValueMaterializer *Materializer) 1054 : pImpl(new Mapper(VM, Flags, TypeMapper, Materializer)) {} 1055 1056 ValueMapper::~ValueMapper() { delete getAsMapper(pImpl); } 1057 1058 unsigned 1059 ValueMapper::registerAlternateMappingContext(ValueToValueMapTy &VM, 1060 ValueMaterializer *Materializer) { 1061 return getAsMapper(pImpl)->registerAlternateMappingContext(VM, Materializer); 1062 } 1063 1064 void ValueMapper::addFlags(RemapFlags Flags) { 1065 FlushingMapper(pImpl)->addFlags(Flags); 1066 } 1067 1068 Value *ValueMapper::mapValue(const Value &V) { 1069 return FlushingMapper(pImpl)->mapValue(&V); 1070 } 1071 1072 Constant *ValueMapper::mapConstant(const Constant &C) { 1073 return cast_or_null<Constant>(mapValue(C)); 1074 } 1075 1076 Metadata *ValueMapper::mapMetadata(const Metadata &MD) { 1077 return FlushingMapper(pImpl)->mapMetadata(&MD); 1078 } 1079 1080 MDNode *ValueMapper::mapMDNode(const MDNode &N) { 1081 return cast_or_null<MDNode>(mapMetadata(N)); 1082 } 1083 1084 void ValueMapper::remapInstruction(Instruction &I) { 1085 FlushingMapper(pImpl)->remapInstruction(&I); 1086 } 1087 1088 void ValueMapper::remapFunction(Function &F) { 1089 FlushingMapper(pImpl)->remapFunction(F); 1090 } 1091 1092 void ValueMapper::scheduleMapGlobalInitializer(GlobalVariable &GV, 1093 Constant &Init, 1094 unsigned MCID) { 1095 getAsMapper(pImpl)->scheduleMapGlobalInitializer(GV, Init, MCID); 1096 } 1097 1098 void ValueMapper::scheduleMapAppendingVariable(GlobalVariable &GV, 1099 Constant *InitPrefix, 1100 bool IsOldCtorDtor, 1101 ArrayRef<Constant *> NewMembers, 1102 unsigned MCID) { 1103 getAsMapper(pImpl)->scheduleMapAppendingVariable( 1104 GV, InitPrefix, IsOldCtorDtor, NewMembers, MCID); 1105 } 1106 1107 void ValueMapper::scheduleMapGlobalAliasee(GlobalAlias &GA, Constant &Aliasee, 1108 unsigned MCID) { 1109 getAsMapper(pImpl)->scheduleMapGlobalAliasee(GA, Aliasee, MCID); 1110 } 1111 1112 void ValueMapper::scheduleRemapFunction(Function &F, unsigned MCID) { 1113 getAsMapper(pImpl)->scheduleRemapFunction(F, MCID); 1114 } 1115