1 #include "llvm/Transforms/Utils/VNCoercion.h"
2 #include "llvm/Analysis/AliasAnalysis.h"
3 #include "llvm/Analysis/ConstantFolding.h"
4 #include "llvm/Analysis/MemoryDependenceAnalysis.h"
5 #include "llvm/Analysis/ValueTracking.h"
6 #include "llvm/IR/IRBuilder.h"
7 #include "llvm/IR/IntrinsicInst.h"
8 #include "llvm/Support/Debug.h"
9 
10 #define DEBUG_TYPE "vncoerce"
11 namespace llvm {
12 namespace VNCoercion {
13 
14 /// Return true if coerceAvailableValueToLoadType will succeed.
15 bool canCoerceMustAliasedValueToLoad(Value *StoredVal, Type *LoadTy,
16                                      const DataLayout &DL) {
17   // If the loaded or stored value is an first class array or struct, don't try
18   // to transform them.  We need to be able to bitcast to integer.
19   if (LoadTy->isStructTy() || LoadTy->isArrayTy() ||
20       StoredVal->getType()->isStructTy() || StoredVal->getType()->isArrayTy())
21     return false;
22 
23   uint64_t StoreSize = DL.getTypeSizeInBits(StoredVal->getType());
24 
25   // The store size must be byte-aligned to support future type casts.
26   if (llvm::alignTo(StoreSize, 8) != StoreSize)
27     return false;
28 
29   // The store has to be at least as big as the load.
30   if (StoreSize < DL.getTypeSizeInBits(LoadTy))
31     return false;
32 
33   // Don't coerce non-integral pointers to integers or vice versa.
34   if (DL.isNonIntegralPointerType(StoredVal->getType()->getScalarType()) !=
35       DL.isNonIntegralPointerType(LoadTy->getScalarType())) {
36     // As a special case, allow coercion of memset used to initialize
37     // an array w/null.  Despite non-integral pointers not generally having a
38     // specific bit pattern, we do assume null is zero.
39     if (auto *CI = dyn_cast<Constant>(StoredVal))
40       return CI->isNullValue();
41     return false;
42   }
43 
44   return true;
45 }
46 
47 template <class T, class HelperClass>
48 static T *coerceAvailableValueToLoadTypeHelper(T *StoredVal, Type *LoadedTy,
49                                                HelperClass &Helper,
50                                                const DataLayout &DL) {
51   assert(canCoerceMustAliasedValueToLoad(StoredVal, LoadedTy, DL) &&
52          "precondition violation - materialization can't fail");
53   if (auto *C = dyn_cast<Constant>(StoredVal))
54     if (auto *FoldedStoredVal = ConstantFoldConstant(C, DL))
55       StoredVal = FoldedStoredVal;
56 
57   // If this is already the right type, just return it.
58   Type *StoredValTy = StoredVal->getType();
59 
60   uint64_t StoredValSize = DL.getTypeSizeInBits(StoredValTy);
61   uint64_t LoadedValSize = DL.getTypeSizeInBits(LoadedTy);
62 
63   // If the store and reload are the same size, we can always reuse it.
64   if (StoredValSize == LoadedValSize) {
65     // Pointer to Pointer -> use bitcast.
66     if (StoredValTy->isPtrOrPtrVectorTy() && LoadedTy->isPtrOrPtrVectorTy()) {
67       StoredVal = Helper.CreateBitCast(StoredVal, LoadedTy);
68     } else {
69       // Convert source pointers to integers, which can be bitcast.
70       if (StoredValTy->isPtrOrPtrVectorTy()) {
71         StoredValTy = DL.getIntPtrType(StoredValTy);
72         StoredVal = Helper.CreatePtrToInt(StoredVal, StoredValTy);
73       }
74 
75       Type *TypeToCastTo = LoadedTy;
76       if (TypeToCastTo->isPtrOrPtrVectorTy())
77         TypeToCastTo = DL.getIntPtrType(TypeToCastTo);
78 
79       if (StoredValTy != TypeToCastTo)
80         StoredVal = Helper.CreateBitCast(StoredVal, TypeToCastTo);
81 
82       // Cast to pointer if the load needs a pointer type.
83       if (LoadedTy->isPtrOrPtrVectorTy())
84         StoredVal = Helper.CreateIntToPtr(StoredVal, LoadedTy);
85     }
86 
87     if (auto *C = dyn_cast<ConstantExpr>(StoredVal))
88       if (auto *FoldedStoredVal = ConstantFoldConstant(C, DL))
89         StoredVal = FoldedStoredVal;
90 
91     return StoredVal;
92   }
93   // If the loaded value is smaller than the available value, then we can
94   // extract out a piece from it.  If the available value is too small, then we
95   // can't do anything.
96   assert(StoredValSize >= LoadedValSize &&
97          "canCoerceMustAliasedValueToLoad fail");
98 
99   // Convert source pointers to integers, which can be manipulated.
100   if (StoredValTy->isPtrOrPtrVectorTy()) {
101     StoredValTy = DL.getIntPtrType(StoredValTy);
102     StoredVal = Helper.CreatePtrToInt(StoredVal, StoredValTy);
103   }
104 
105   // Convert vectors and fp to integer, which can be manipulated.
106   if (!StoredValTy->isIntegerTy()) {
107     StoredValTy = IntegerType::get(StoredValTy->getContext(), StoredValSize);
108     StoredVal = Helper.CreateBitCast(StoredVal, StoredValTy);
109   }
110 
111   // If this is a big-endian system, we need to shift the value down to the low
112   // bits so that a truncate will work.
113   if (DL.isBigEndian()) {
114     uint64_t ShiftAmt = DL.getTypeStoreSizeInBits(StoredValTy) -
115                         DL.getTypeStoreSizeInBits(LoadedTy);
116     StoredVal = Helper.CreateLShr(
117         StoredVal, ConstantInt::get(StoredVal->getType(), ShiftAmt));
118   }
119 
120   // Truncate the integer to the right size now.
121   Type *NewIntTy = IntegerType::get(StoredValTy->getContext(), LoadedValSize);
122   StoredVal = Helper.CreateTruncOrBitCast(StoredVal, NewIntTy);
123 
124   if (LoadedTy != NewIntTy) {
125     // If the result is a pointer, inttoptr.
126     if (LoadedTy->isPtrOrPtrVectorTy())
127       StoredVal = Helper.CreateIntToPtr(StoredVal, LoadedTy);
128     else
129       // Otherwise, bitcast.
130       StoredVal = Helper.CreateBitCast(StoredVal, LoadedTy);
131   }
132 
133   if (auto *C = dyn_cast<Constant>(StoredVal))
134     if (auto *FoldedStoredVal = ConstantFoldConstant(C, DL))
135       StoredVal = FoldedStoredVal;
136 
137   return StoredVal;
138 }
139 
140 /// If we saw a store of a value to memory, and
141 /// then a load from a must-aliased pointer of a different type, try to coerce
142 /// the stored value.  LoadedTy is the type of the load we want to replace.
143 /// IRB is IRBuilder used to insert new instructions.
144 ///
145 /// If we can't do it, return null.
146 Value *coerceAvailableValueToLoadType(Value *StoredVal, Type *LoadedTy,
147                                       IRBuilder<> &IRB, const DataLayout &DL) {
148   return coerceAvailableValueToLoadTypeHelper(StoredVal, LoadedTy, IRB, DL);
149 }
150 
151 /// This function is called when we have a memdep query of a load that ends up
152 /// being a clobbering memory write (store, memset, memcpy, memmove).  This
153 /// means that the write *may* provide bits used by the load but we can't be
154 /// sure because the pointers don't must-alias.
155 ///
156 /// Check this case to see if there is anything more we can do before we give
157 /// up.  This returns -1 if we have to give up, or a byte number in the stored
158 /// value of the piece that feeds the load.
159 static int analyzeLoadFromClobberingWrite(Type *LoadTy, Value *LoadPtr,
160                                           Value *WritePtr,
161                                           uint64_t WriteSizeInBits,
162                                           const DataLayout &DL) {
163   // If the loaded or stored value is a first class array or struct, don't try
164   // to transform them.  We need to be able to bitcast to integer.
165   if (LoadTy->isStructTy() || LoadTy->isArrayTy())
166     return -1;
167 
168   int64_t StoreOffset = 0, LoadOffset = 0;
169   Value *StoreBase =
170       GetPointerBaseWithConstantOffset(WritePtr, StoreOffset, DL);
171   Value *LoadBase = GetPointerBaseWithConstantOffset(LoadPtr, LoadOffset, DL);
172   if (StoreBase != LoadBase)
173     return -1;
174 
175   // If the load and store are to the exact same address, they should have been
176   // a must alias.  AA must have gotten confused.
177   // FIXME: Study to see if/when this happens.  One case is forwarding a memset
178   // to a load from the base of the memset.
179 
180   // If the load and store don't overlap at all, the store doesn't provide
181   // anything to the load.  In this case, they really don't alias at all, AA
182   // must have gotten confused.
183   uint64_t LoadSize = DL.getTypeSizeInBits(LoadTy);
184 
185   if ((WriteSizeInBits & 7) | (LoadSize & 7))
186     return -1;
187   uint64_t StoreSize = WriteSizeInBits / 8; // Convert to bytes.
188   LoadSize /= 8;
189 
190   bool isAAFailure = false;
191   if (StoreOffset < LoadOffset)
192     isAAFailure = StoreOffset + int64_t(StoreSize) <= LoadOffset;
193   else
194     isAAFailure = LoadOffset + int64_t(LoadSize) <= StoreOffset;
195 
196   if (isAAFailure)
197     return -1;
198 
199   // If the Load isn't completely contained within the stored bits, we don't
200   // have all the bits to feed it.  We could do something crazy in the future
201   // (issue a smaller load then merge the bits in) but this seems unlikely to be
202   // valuable.
203   if (StoreOffset > LoadOffset ||
204       StoreOffset + StoreSize < LoadOffset + LoadSize)
205     return -1;
206 
207   // Okay, we can do this transformation.  Return the number of bytes into the
208   // store that the load is.
209   return LoadOffset - StoreOffset;
210 }
211 
212 /// This function is called when we have a
213 /// memdep query of a load that ends up being a clobbering store.
214 int analyzeLoadFromClobberingStore(Type *LoadTy, Value *LoadPtr,
215                                    StoreInst *DepSI, const DataLayout &DL) {
216   auto *StoredVal = DepSI->getValueOperand();
217 
218   // Cannot handle reading from store of first-class aggregate yet.
219   if (StoredVal->getType()->isStructTy() ||
220       StoredVal->getType()->isArrayTy())
221     return -1;
222 
223   // Don't coerce non-integral pointers to integers or vice versa.
224   if (DL.isNonIntegralPointerType(StoredVal->getType()->getScalarType()) !=
225       DL.isNonIntegralPointerType(LoadTy->getScalarType())) {
226     // Allow casts of zero values to null as a special case
227     auto *CI = dyn_cast<Constant>(StoredVal);
228     if (!CI || !CI->isNullValue())
229       return -1;
230   }
231 
232   Value *StorePtr = DepSI->getPointerOperand();
233   uint64_t StoreSize =
234       DL.getTypeSizeInBits(DepSI->getValueOperand()->getType());
235   return analyzeLoadFromClobberingWrite(LoadTy, LoadPtr, StorePtr, StoreSize,
236                                         DL);
237 }
238 
239 /// This function is called when we have a
240 /// memdep query of a load that ends up being clobbered by another load.  See if
241 /// the other load can feed into the second load.
242 int analyzeLoadFromClobberingLoad(Type *LoadTy, Value *LoadPtr, LoadInst *DepLI,
243                                   const DataLayout &DL) {
244   // Cannot handle reading from store of first-class aggregate yet.
245   if (DepLI->getType()->isStructTy() || DepLI->getType()->isArrayTy())
246     return -1;
247 
248   // Don't coerce non-integral pointers to integers or vice versa.
249   if (DL.isNonIntegralPointerType(DepLI->getType()->getScalarType()) !=
250       DL.isNonIntegralPointerType(LoadTy->getScalarType()))
251     return -1;
252 
253   Value *DepPtr = DepLI->getPointerOperand();
254   uint64_t DepSize = DL.getTypeSizeInBits(DepLI->getType());
255   int R = analyzeLoadFromClobberingWrite(LoadTy, LoadPtr, DepPtr, DepSize, DL);
256   if (R != -1)
257     return R;
258 
259   // If we have a load/load clobber an DepLI can be widened to cover this load,
260   // then we should widen it!
261   int64_t LoadOffs = 0;
262   const Value *LoadBase =
263       GetPointerBaseWithConstantOffset(LoadPtr, LoadOffs, DL);
264   unsigned LoadSize = DL.getTypeStoreSize(LoadTy);
265 
266   unsigned Size = MemoryDependenceResults::getLoadLoadClobberFullWidthSize(
267       LoadBase, LoadOffs, LoadSize, DepLI);
268   if (Size == 0)
269     return -1;
270 
271   // Check non-obvious conditions enforced by MDA which we rely on for being
272   // able to materialize this potentially available value
273   assert(DepLI->isSimple() && "Cannot widen volatile/atomic load!");
274   assert(DepLI->getType()->isIntegerTy() && "Can't widen non-integer load");
275 
276   return analyzeLoadFromClobberingWrite(LoadTy, LoadPtr, DepPtr, Size * 8, DL);
277 }
278 
279 int analyzeLoadFromClobberingMemInst(Type *LoadTy, Value *LoadPtr,
280                                      MemIntrinsic *MI, const DataLayout &DL) {
281   // If the mem operation is a non-constant size, we can't handle it.
282   ConstantInt *SizeCst = dyn_cast<ConstantInt>(MI->getLength());
283   if (!SizeCst)
284     return -1;
285   uint64_t MemSizeInBits = SizeCst->getZExtValue() * 8;
286 
287   // If this is memset, we just need to see if the offset is valid in the size
288   // of the memset..
289   if (MI->getIntrinsicID() == Intrinsic::memset) {
290     if (DL.isNonIntegralPointerType(LoadTy->getScalarType())) {
291       auto *CI = dyn_cast<ConstantInt>(cast<MemSetInst>(MI)->getValue());
292       if (!CI || !CI->isZero())
293         return -1;
294     }
295     return analyzeLoadFromClobberingWrite(LoadTy, LoadPtr, MI->getDest(),
296                                           MemSizeInBits, DL);
297   }
298 
299   // If we have a memcpy/memmove, the only case we can handle is if this is a
300   // copy from constant memory.  In that case, we can read directly from the
301   // constant memory.
302   MemTransferInst *MTI = cast<MemTransferInst>(MI);
303 
304   Constant *Src = dyn_cast<Constant>(MTI->getSource());
305   if (!Src)
306     return -1;
307 
308   GlobalVariable *GV = dyn_cast<GlobalVariable>(GetUnderlyingObject(Src, DL));
309   if (!GV || !GV->isConstant())
310     return -1;
311 
312   // See if the access is within the bounds of the transfer.
313   int Offset = analyzeLoadFromClobberingWrite(LoadTy, LoadPtr, MI->getDest(),
314                                               MemSizeInBits, DL);
315   if (Offset == -1)
316     return Offset;
317 
318   // Don't coerce non-integral pointers to integers or vice versa, and the
319   // memtransfer is implicitly a raw byte code
320   if (DL.isNonIntegralPointerType(LoadTy->getScalarType()))
321     // TODO: Can allow nullptrs from constant zeros
322     return -1;
323 
324   unsigned AS = Src->getType()->getPointerAddressSpace();
325   // Otherwise, see if we can constant fold a load from the constant with the
326   // offset applied as appropriate.
327   Src =
328       ConstantExpr::getBitCast(Src, Type::getInt8PtrTy(Src->getContext(), AS));
329   Constant *OffsetCst =
330       ConstantInt::get(Type::getInt64Ty(Src->getContext()), (unsigned)Offset);
331   Src = ConstantExpr::getGetElementPtr(Type::getInt8Ty(Src->getContext()), Src,
332                                        OffsetCst);
333   Src = ConstantExpr::getBitCast(Src, PointerType::get(LoadTy, AS));
334   if (ConstantFoldLoadFromConstPtr(Src, LoadTy, DL))
335     return Offset;
336   return -1;
337 }
338 
339 template <class T, class HelperClass>
340 static T *getStoreValueForLoadHelper(T *SrcVal, unsigned Offset, Type *LoadTy,
341                                      HelperClass &Helper,
342                                      const DataLayout &DL) {
343   LLVMContext &Ctx = SrcVal->getType()->getContext();
344 
345   // If two pointers are in the same address space, they have the same size,
346   // so we don't need to do any truncation, etc. This avoids introducing
347   // ptrtoint instructions for pointers that may be non-integral.
348   if (SrcVal->getType()->isPointerTy() && LoadTy->isPointerTy() &&
349       cast<PointerType>(SrcVal->getType())->getAddressSpace() ==
350           cast<PointerType>(LoadTy)->getAddressSpace()) {
351     return SrcVal;
352   }
353 
354   uint64_t StoreSize = (DL.getTypeSizeInBits(SrcVal->getType()) + 7) / 8;
355   uint64_t LoadSize = (DL.getTypeSizeInBits(LoadTy) + 7) / 8;
356   // Compute which bits of the stored value are being used by the load.  Convert
357   // to an integer type to start with.
358   if (SrcVal->getType()->isPtrOrPtrVectorTy())
359     SrcVal = Helper.CreatePtrToInt(SrcVal, DL.getIntPtrType(SrcVal->getType()));
360   if (!SrcVal->getType()->isIntegerTy())
361     SrcVal = Helper.CreateBitCast(SrcVal, IntegerType::get(Ctx, StoreSize * 8));
362 
363   // Shift the bits to the least significant depending on endianness.
364   unsigned ShiftAmt;
365   if (DL.isLittleEndian())
366     ShiftAmt = Offset * 8;
367   else
368     ShiftAmt = (StoreSize - LoadSize - Offset) * 8;
369   if (ShiftAmt)
370     SrcVal = Helper.CreateLShr(SrcVal,
371                                ConstantInt::get(SrcVal->getType(), ShiftAmt));
372 
373   if (LoadSize != StoreSize)
374     SrcVal = Helper.CreateTruncOrBitCast(SrcVal,
375                                          IntegerType::get(Ctx, LoadSize * 8));
376   return SrcVal;
377 }
378 
379 /// This function is called when we have a memdep query of a load that ends up
380 /// being a clobbering store.  This means that the store provides bits used by
381 /// the load but the pointers don't must-alias.  Check this case to see if
382 /// there is anything more we can do before we give up.
383 Value *getStoreValueForLoad(Value *SrcVal, unsigned Offset, Type *LoadTy,
384                             Instruction *InsertPt, const DataLayout &DL) {
385 
386   IRBuilder<> Builder(InsertPt);
387   SrcVal = getStoreValueForLoadHelper(SrcVal, Offset, LoadTy, Builder, DL);
388   return coerceAvailableValueToLoadTypeHelper(SrcVal, LoadTy, Builder, DL);
389 }
390 
391 Constant *getConstantStoreValueForLoad(Constant *SrcVal, unsigned Offset,
392                                        Type *LoadTy, const DataLayout &DL) {
393   ConstantFolder F;
394   SrcVal = getStoreValueForLoadHelper(SrcVal, Offset, LoadTy, F, DL);
395   return coerceAvailableValueToLoadTypeHelper(SrcVal, LoadTy, F, DL);
396 }
397 
398 /// This function is called when we have a memdep query of a load that ends up
399 /// being a clobbering load.  This means that the load *may* provide bits used
400 /// by the load but we can't be sure because the pointers don't must-alias.
401 /// Check this case to see if there is anything more we can do before we give
402 /// up.
403 Value *getLoadValueForLoad(LoadInst *SrcVal, unsigned Offset, Type *LoadTy,
404                            Instruction *InsertPt, const DataLayout &DL) {
405   // If Offset+LoadTy exceeds the size of SrcVal, then we must be wanting to
406   // widen SrcVal out to a larger load.
407   unsigned SrcValStoreSize = DL.getTypeStoreSize(SrcVal->getType());
408   unsigned LoadSize = DL.getTypeStoreSize(LoadTy);
409   if (Offset + LoadSize > SrcValStoreSize) {
410     assert(SrcVal->isSimple() && "Cannot widen volatile/atomic load!");
411     assert(SrcVal->getType()->isIntegerTy() && "Can't widen non-integer load");
412     // If we have a load/load clobber an DepLI can be widened to cover this
413     // load, then we should widen it to the next power of 2 size big enough!
414     unsigned NewLoadSize = Offset + LoadSize;
415     if (!isPowerOf2_32(NewLoadSize))
416       NewLoadSize = NextPowerOf2(NewLoadSize);
417 
418     Value *PtrVal = SrcVal->getPointerOperand();
419     // Insert the new load after the old load.  This ensures that subsequent
420     // memdep queries will find the new load.  We can't easily remove the old
421     // load completely because it is already in the value numbering table.
422     IRBuilder<> Builder(SrcVal->getParent(), ++BasicBlock::iterator(SrcVal));
423     Type *DestTy = IntegerType::get(LoadTy->getContext(), NewLoadSize * 8);
424     Type *DestPTy =
425         PointerType::get(DestTy, PtrVal->getType()->getPointerAddressSpace());
426     Builder.SetCurrentDebugLocation(SrcVal->getDebugLoc());
427     PtrVal = Builder.CreateBitCast(PtrVal, DestPTy);
428     LoadInst *NewLoad = Builder.CreateLoad(DestTy, PtrVal);
429     NewLoad->takeName(SrcVal);
430     NewLoad->setAlignment(SrcVal->getAlignment());
431 
432     LLVM_DEBUG(dbgs() << "GVN WIDENED LOAD: " << *SrcVal << "\n");
433     LLVM_DEBUG(dbgs() << "TO: " << *NewLoad << "\n");
434 
435     // Replace uses of the original load with the wider load.  On a big endian
436     // system, we need to shift down to get the relevant bits.
437     Value *RV = NewLoad;
438     if (DL.isBigEndian())
439       RV = Builder.CreateLShr(RV, (NewLoadSize - SrcValStoreSize) * 8);
440     RV = Builder.CreateTrunc(RV, SrcVal->getType());
441     SrcVal->replaceAllUsesWith(RV);
442 
443     SrcVal = NewLoad;
444   }
445 
446   return getStoreValueForLoad(SrcVal, Offset, LoadTy, InsertPt, DL);
447 }
448 
449 Constant *getConstantLoadValueForLoad(Constant *SrcVal, unsigned Offset,
450                                       Type *LoadTy, const DataLayout &DL) {
451   unsigned SrcValStoreSize = DL.getTypeStoreSize(SrcVal->getType());
452   unsigned LoadSize = DL.getTypeStoreSize(LoadTy);
453   if (Offset + LoadSize > SrcValStoreSize)
454     return nullptr;
455   return getConstantStoreValueForLoad(SrcVal, Offset, LoadTy, DL);
456 }
457 
458 template <class T, class HelperClass>
459 T *getMemInstValueForLoadHelper(MemIntrinsic *SrcInst, unsigned Offset,
460                                 Type *LoadTy, HelperClass &Helper,
461                                 const DataLayout &DL) {
462   LLVMContext &Ctx = LoadTy->getContext();
463   uint64_t LoadSize = DL.getTypeSizeInBits(LoadTy) / 8;
464 
465   // We know that this method is only called when the mem transfer fully
466   // provides the bits for the load.
467   if (MemSetInst *MSI = dyn_cast<MemSetInst>(SrcInst)) {
468     // memset(P, 'x', 1234) -> splat('x'), even if x is a variable, and
469     // independently of what the offset is.
470     T *Val = cast<T>(MSI->getValue());
471     if (LoadSize != 1)
472       Val =
473           Helper.CreateZExtOrBitCast(Val, IntegerType::get(Ctx, LoadSize * 8));
474     T *OneElt = Val;
475 
476     // Splat the value out to the right number of bits.
477     for (unsigned NumBytesSet = 1; NumBytesSet != LoadSize;) {
478       // If we can double the number of bytes set, do it.
479       if (NumBytesSet * 2 <= LoadSize) {
480         T *ShVal = Helper.CreateShl(
481             Val, ConstantInt::get(Val->getType(), NumBytesSet * 8));
482         Val = Helper.CreateOr(Val, ShVal);
483         NumBytesSet <<= 1;
484         continue;
485       }
486 
487       // Otherwise insert one byte at a time.
488       T *ShVal = Helper.CreateShl(Val, ConstantInt::get(Val->getType(), 1 * 8));
489       Val = Helper.CreateOr(OneElt, ShVal);
490       ++NumBytesSet;
491     }
492 
493     return coerceAvailableValueToLoadTypeHelper(Val, LoadTy, Helper, DL);
494   }
495 
496   // Otherwise, this is a memcpy/memmove from a constant global.
497   MemTransferInst *MTI = cast<MemTransferInst>(SrcInst);
498   Constant *Src = cast<Constant>(MTI->getSource());
499   unsigned AS = Src->getType()->getPointerAddressSpace();
500 
501   // Otherwise, see if we can constant fold a load from the constant with the
502   // offset applied as appropriate.
503   Src =
504       ConstantExpr::getBitCast(Src, Type::getInt8PtrTy(Src->getContext(), AS));
505   Constant *OffsetCst =
506       ConstantInt::get(Type::getInt64Ty(Src->getContext()), (unsigned)Offset);
507   Src = ConstantExpr::getGetElementPtr(Type::getInt8Ty(Src->getContext()), Src,
508                                        OffsetCst);
509   Src = ConstantExpr::getBitCast(Src, PointerType::get(LoadTy, AS));
510   return ConstantFoldLoadFromConstPtr(Src, LoadTy, DL);
511 }
512 
513 /// This function is called when we have a
514 /// memdep query of a load that ends up being a clobbering mem intrinsic.
515 Value *getMemInstValueForLoad(MemIntrinsic *SrcInst, unsigned Offset,
516                               Type *LoadTy, Instruction *InsertPt,
517                               const DataLayout &DL) {
518   IRBuilder<> Builder(InsertPt);
519   return getMemInstValueForLoadHelper<Value, IRBuilder<>>(SrcInst, Offset,
520                                                           LoadTy, Builder, DL);
521 }
522 
523 Constant *getConstantMemInstValueForLoad(MemIntrinsic *SrcInst, unsigned Offset,
524                                          Type *LoadTy, const DataLayout &DL) {
525   // The only case analyzeLoadFromClobberingMemInst cannot be converted to a
526   // constant is when it's a memset of a non-constant.
527   if (auto *MSI = dyn_cast<MemSetInst>(SrcInst))
528     if (!isa<Constant>(MSI->getValue()))
529       return nullptr;
530   ConstantFolder F;
531   return getMemInstValueForLoadHelper<Constant, ConstantFolder>(SrcInst, Offset,
532                                                                 LoadTy, F, DL);
533 }
534 } // namespace VNCoercion
535 } // namespace llvm
536