1 #include "llvm/Transforms/Utils/VNCoercion.h" 2 #include "llvm/Analysis/AliasAnalysis.h" 3 #include "llvm/Analysis/ConstantFolding.h" 4 #include "llvm/Analysis/MemoryDependenceAnalysis.h" 5 #include "llvm/Analysis/ValueTracking.h" 6 #include "llvm/IR/IRBuilder.h" 7 #include "llvm/IR/IntrinsicInst.h" 8 #include "llvm/Support/Debug.h" 9 10 #define DEBUG_TYPE "vncoerce" 11 namespace llvm { 12 namespace VNCoercion { 13 14 /// Return true if coerceAvailableValueToLoadType will succeed. 15 bool canCoerceMustAliasedValueToLoad(Value *StoredVal, Type *LoadTy, 16 const DataLayout &DL) { 17 // If the loaded or stored value is an first class array or struct, don't try 18 // to transform them. We need to be able to bitcast to integer. 19 if (LoadTy->isStructTy() || LoadTy->isArrayTy() || 20 StoredVal->getType()->isStructTy() || StoredVal->getType()->isArrayTy()) 21 return false; 22 23 uint64_t StoreSize = DL.getTypeSizeInBits(StoredVal->getType()); 24 25 // The store size must be byte-aligned to support future type casts. 26 if (llvm::alignTo(StoreSize, 8) != StoreSize) 27 return false; 28 29 // The store has to be at least as big as the load. 30 if (StoreSize < DL.getTypeSizeInBits(LoadTy)) 31 return false; 32 33 // Don't coerce non-integral pointers to integers or vice versa. 34 if (DL.isNonIntegralPointerType(StoredVal->getType()->getScalarType()) != 35 DL.isNonIntegralPointerType(LoadTy->getScalarType())) { 36 // As a special case, allow coercion of memset used to initialize 37 // an array w/null. Despite non-integral pointers not generally having a 38 // specific bit pattern, we do assume null is zero. 39 if (auto *CI = dyn_cast<Constant>(StoredVal)) 40 return CI->isNullValue(); 41 return false; 42 } 43 44 return true; 45 } 46 47 template <class T, class HelperClass> 48 static T *coerceAvailableValueToLoadTypeHelper(T *StoredVal, Type *LoadedTy, 49 HelperClass &Helper, 50 const DataLayout &DL) { 51 assert(canCoerceMustAliasedValueToLoad(StoredVal, LoadedTy, DL) && 52 "precondition violation - materialization can't fail"); 53 if (auto *C = dyn_cast<Constant>(StoredVal)) 54 if (auto *FoldedStoredVal = ConstantFoldConstant(C, DL)) 55 StoredVal = FoldedStoredVal; 56 57 // If this is already the right type, just return it. 58 Type *StoredValTy = StoredVal->getType(); 59 60 uint64_t StoredValSize = DL.getTypeSizeInBits(StoredValTy); 61 uint64_t LoadedValSize = DL.getTypeSizeInBits(LoadedTy); 62 63 // If the store and reload are the same size, we can always reuse it. 64 if (StoredValSize == LoadedValSize) { 65 // Pointer to Pointer -> use bitcast. 66 if (StoredValTy->isPtrOrPtrVectorTy() && LoadedTy->isPtrOrPtrVectorTy()) { 67 StoredVal = Helper.CreateBitCast(StoredVal, LoadedTy); 68 } else { 69 // Convert source pointers to integers, which can be bitcast. 70 if (StoredValTy->isPtrOrPtrVectorTy()) { 71 StoredValTy = DL.getIntPtrType(StoredValTy); 72 StoredVal = Helper.CreatePtrToInt(StoredVal, StoredValTy); 73 } 74 75 Type *TypeToCastTo = LoadedTy; 76 if (TypeToCastTo->isPtrOrPtrVectorTy()) 77 TypeToCastTo = DL.getIntPtrType(TypeToCastTo); 78 79 if (StoredValTy != TypeToCastTo) 80 StoredVal = Helper.CreateBitCast(StoredVal, TypeToCastTo); 81 82 // Cast to pointer if the load needs a pointer type. 83 if (LoadedTy->isPtrOrPtrVectorTy()) 84 StoredVal = Helper.CreateIntToPtr(StoredVal, LoadedTy); 85 } 86 87 if (auto *C = dyn_cast<ConstantExpr>(StoredVal)) 88 if (auto *FoldedStoredVal = ConstantFoldConstant(C, DL)) 89 StoredVal = FoldedStoredVal; 90 91 return StoredVal; 92 } 93 // If the loaded value is smaller than the available value, then we can 94 // extract out a piece from it. If the available value is too small, then we 95 // can't do anything. 96 assert(StoredValSize >= LoadedValSize && 97 "canCoerceMustAliasedValueToLoad fail"); 98 99 // Convert source pointers to integers, which can be manipulated. 100 if (StoredValTy->isPtrOrPtrVectorTy()) { 101 StoredValTy = DL.getIntPtrType(StoredValTy); 102 StoredVal = Helper.CreatePtrToInt(StoredVal, StoredValTy); 103 } 104 105 // Convert vectors and fp to integer, which can be manipulated. 106 if (!StoredValTy->isIntegerTy()) { 107 StoredValTy = IntegerType::get(StoredValTy->getContext(), StoredValSize); 108 StoredVal = Helper.CreateBitCast(StoredVal, StoredValTy); 109 } 110 111 // If this is a big-endian system, we need to shift the value down to the low 112 // bits so that a truncate will work. 113 if (DL.isBigEndian()) { 114 uint64_t ShiftAmt = DL.getTypeStoreSizeInBits(StoredValTy) - 115 DL.getTypeStoreSizeInBits(LoadedTy); 116 StoredVal = Helper.CreateLShr( 117 StoredVal, ConstantInt::get(StoredVal->getType(), ShiftAmt)); 118 } 119 120 // Truncate the integer to the right size now. 121 Type *NewIntTy = IntegerType::get(StoredValTy->getContext(), LoadedValSize); 122 StoredVal = Helper.CreateTruncOrBitCast(StoredVal, NewIntTy); 123 124 if (LoadedTy != NewIntTy) { 125 // If the result is a pointer, inttoptr. 126 if (LoadedTy->isPtrOrPtrVectorTy()) 127 StoredVal = Helper.CreateIntToPtr(StoredVal, LoadedTy); 128 else 129 // Otherwise, bitcast. 130 StoredVal = Helper.CreateBitCast(StoredVal, LoadedTy); 131 } 132 133 if (auto *C = dyn_cast<Constant>(StoredVal)) 134 if (auto *FoldedStoredVal = ConstantFoldConstant(C, DL)) 135 StoredVal = FoldedStoredVal; 136 137 return StoredVal; 138 } 139 140 /// If we saw a store of a value to memory, and 141 /// then a load from a must-aliased pointer of a different type, try to coerce 142 /// the stored value. LoadedTy is the type of the load we want to replace. 143 /// IRB is IRBuilder used to insert new instructions. 144 /// 145 /// If we can't do it, return null. 146 Value *coerceAvailableValueToLoadType(Value *StoredVal, Type *LoadedTy, 147 IRBuilder<> &IRB, const DataLayout &DL) { 148 return coerceAvailableValueToLoadTypeHelper(StoredVal, LoadedTy, IRB, DL); 149 } 150 151 /// This function is called when we have a memdep query of a load that ends up 152 /// being a clobbering memory write (store, memset, memcpy, memmove). This 153 /// means that the write *may* provide bits used by the load but we can't be 154 /// sure because the pointers don't must-alias. 155 /// 156 /// Check this case to see if there is anything more we can do before we give 157 /// up. This returns -1 if we have to give up, or a byte number in the stored 158 /// value of the piece that feeds the load. 159 static int analyzeLoadFromClobberingWrite(Type *LoadTy, Value *LoadPtr, 160 Value *WritePtr, 161 uint64_t WriteSizeInBits, 162 const DataLayout &DL) { 163 // If the loaded or stored value is a first class array or struct, don't try 164 // to transform them. We need to be able to bitcast to integer. 165 if (LoadTy->isStructTy() || LoadTy->isArrayTy()) 166 return -1; 167 168 int64_t StoreOffset = 0, LoadOffset = 0; 169 Value *StoreBase = 170 GetPointerBaseWithConstantOffset(WritePtr, StoreOffset, DL); 171 Value *LoadBase = GetPointerBaseWithConstantOffset(LoadPtr, LoadOffset, DL); 172 if (StoreBase != LoadBase) 173 return -1; 174 175 // If the load and store are to the exact same address, they should have been 176 // a must alias. AA must have gotten confused. 177 // FIXME: Study to see if/when this happens. One case is forwarding a memset 178 // to a load from the base of the memset. 179 180 // If the load and store don't overlap at all, the store doesn't provide 181 // anything to the load. In this case, they really don't alias at all, AA 182 // must have gotten confused. 183 uint64_t LoadSize = DL.getTypeSizeInBits(LoadTy); 184 185 if ((WriteSizeInBits & 7) | (LoadSize & 7)) 186 return -1; 187 uint64_t StoreSize = WriteSizeInBits / 8; // Convert to bytes. 188 LoadSize /= 8; 189 190 bool isAAFailure = false; 191 if (StoreOffset < LoadOffset) 192 isAAFailure = StoreOffset + int64_t(StoreSize) <= LoadOffset; 193 else 194 isAAFailure = LoadOffset + int64_t(LoadSize) <= StoreOffset; 195 196 if (isAAFailure) 197 return -1; 198 199 // If the Load isn't completely contained within the stored bits, we don't 200 // have all the bits to feed it. We could do something crazy in the future 201 // (issue a smaller load then merge the bits in) but this seems unlikely to be 202 // valuable. 203 if (StoreOffset > LoadOffset || 204 StoreOffset + StoreSize < LoadOffset + LoadSize) 205 return -1; 206 207 // Okay, we can do this transformation. Return the number of bytes into the 208 // store that the load is. 209 return LoadOffset - StoreOffset; 210 } 211 212 /// This function is called when we have a 213 /// memdep query of a load that ends up being a clobbering store. 214 int analyzeLoadFromClobberingStore(Type *LoadTy, Value *LoadPtr, 215 StoreInst *DepSI, const DataLayout &DL) { 216 auto *StoredVal = DepSI->getValueOperand(); 217 218 // Cannot handle reading from store of first-class aggregate yet. 219 if (StoredVal->getType()->isStructTy() || 220 StoredVal->getType()->isArrayTy()) 221 return -1; 222 223 // Don't coerce non-integral pointers to integers or vice versa. 224 if (DL.isNonIntegralPointerType(StoredVal->getType()->getScalarType()) != 225 DL.isNonIntegralPointerType(LoadTy->getScalarType())) { 226 // Allow casts of zero values to null as a special case 227 auto *CI = dyn_cast<Constant>(StoredVal); 228 if (!CI || !CI->isNullValue()) 229 return -1; 230 } 231 232 Value *StorePtr = DepSI->getPointerOperand(); 233 uint64_t StoreSize = 234 DL.getTypeSizeInBits(DepSI->getValueOperand()->getType()); 235 return analyzeLoadFromClobberingWrite(LoadTy, LoadPtr, StorePtr, StoreSize, 236 DL); 237 } 238 239 /// This function is called when we have a 240 /// memdep query of a load that ends up being clobbered by another load. See if 241 /// the other load can feed into the second load. 242 int analyzeLoadFromClobberingLoad(Type *LoadTy, Value *LoadPtr, LoadInst *DepLI, 243 const DataLayout &DL) { 244 // Cannot handle reading from store of first-class aggregate yet. 245 if (DepLI->getType()->isStructTy() || DepLI->getType()->isArrayTy()) 246 return -1; 247 248 // Don't coerce non-integral pointers to integers or vice versa. 249 if (DL.isNonIntegralPointerType(DepLI->getType()->getScalarType()) != 250 DL.isNonIntegralPointerType(LoadTy->getScalarType())) 251 return -1; 252 253 Value *DepPtr = DepLI->getPointerOperand(); 254 uint64_t DepSize = DL.getTypeSizeInBits(DepLI->getType()); 255 int R = analyzeLoadFromClobberingWrite(LoadTy, LoadPtr, DepPtr, DepSize, DL); 256 if (R != -1) 257 return R; 258 259 // If we have a load/load clobber an DepLI can be widened to cover this load, 260 // then we should widen it! 261 int64_t LoadOffs = 0; 262 const Value *LoadBase = 263 GetPointerBaseWithConstantOffset(LoadPtr, LoadOffs, DL); 264 unsigned LoadSize = DL.getTypeStoreSize(LoadTy); 265 266 unsigned Size = MemoryDependenceResults::getLoadLoadClobberFullWidthSize( 267 LoadBase, LoadOffs, LoadSize, DepLI); 268 if (Size == 0) 269 return -1; 270 271 // Check non-obvious conditions enforced by MDA which we rely on for being 272 // able to materialize this potentially available value 273 assert(DepLI->isSimple() && "Cannot widen volatile/atomic load!"); 274 assert(DepLI->getType()->isIntegerTy() && "Can't widen non-integer load"); 275 276 return analyzeLoadFromClobberingWrite(LoadTy, LoadPtr, DepPtr, Size * 8, DL); 277 } 278 279 int analyzeLoadFromClobberingMemInst(Type *LoadTy, Value *LoadPtr, 280 MemIntrinsic *MI, const DataLayout &DL) { 281 // If the mem operation is a non-constant size, we can't handle it. 282 ConstantInt *SizeCst = dyn_cast<ConstantInt>(MI->getLength()); 283 if (!SizeCst) 284 return -1; 285 uint64_t MemSizeInBits = SizeCst->getZExtValue() * 8; 286 287 // If this is memset, we just need to see if the offset is valid in the size 288 // of the memset.. 289 if (MI->getIntrinsicID() == Intrinsic::memset) { 290 if (DL.isNonIntegralPointerType(LoadTy->getScalarType())) { 291 auto *CI = dyn_cast<ConstantInt>(cast<MemSetInst>(MI)->getValue()); 292 if (!CI || !CI->isZero()) 293 return -1; 294 } 295 return analyzeLoadFromClobberingWrite(LoadTy, LoadPtr, MI->getDest(), 296 MemSizeInBits, DL); 297 } 298 299 // If we have a memcpy/memmove, the only case we can handle is if this is a 300 // copy from constant memory. In that case, we can read directly from the 301 // constant memory. 302 MemTransferInst *MTI = cast<MemTransferInst>(MI); 303 304 Constant *Src = dyn_cast<Constant>(MTI->getSource()); 305 if (!Src) 306 return -1; 307 308 GlobalVariable *GV = dyn_cast<GlobalVariable>(GetUnderlyingObject(Src, DL)); 309 if (!GV || !GV->isConstant()) 310 return -1; 311 312 // See if the access is within the bounds of the transfer. 313 int Offset = analyzeLoadFromClobberingWrite(LoadTy, LoadPtr, MI->getDest(), 314 MemSizeInBits, DL); 315 if (Offset == -1) 316 return Offset; 317 318 // Don't coerce non-integral pointers to integers or vice versa, and the 319 // memtransfer is implicitly a raw byte code 320 if (DL.isNonIntegralPointerType(LoadTy->getScalarType())) 321 // TODO: Can allow nullptrs from constant zeros 322 return -1; 323 324 unsigned AS = Src->getType()->getPointerAddressSpace(); 325 // Otherwise, see if we can constant fold a load from the constant with the 326 // offset applied as appropriate. 327 Src = 328 ConstantExpr::getBitCast(Src, Type::getInt8PtrTy(Src->getContext(), AS)); 329 Constant *OffsetCst = 330 ConstantInt::get(Type::getInt64Ty(Src->getContext()), (unsigned)Offset); 331 Src = ConstantExpr::getGetElementPtr(Type::getInt8Ty(Src->getContext()), Src, 332 OffsetCst); 333 Src = ConstantExpr::getBitCast(Src, PointerType::get(LoadTy, AS)); 334 if (ConstantFoldLoadFromConstPtr(Src, LoadTy, DL)) 335 return Offset; 336 return -1; 337 } 338 339 template <class T, class HelperClass> 340 static T *getStoreValueForLoadHelper(T *SrcVal, unsigned Offset, Type *LoadTy, 341 HelperClass &Helper, 342 const DataLayout &DL) { 343 LLVMContext &Ctx = SrcVal->getType()->getContext(); 344 345 // If two pointers are in the same address space, they have the same size, 346 // so we don't need to do any truncation, etc. This avoids introducing 347 // ptrtoint instructions for pointers that may be non-integral. 348 if (SrcVal->getType()->isPointerTy() && LoadTy->isPointerTy() && 349 cast<PointerType>(SrcVal->getType())->getAddressSpace() == 350 cast<PointerType>(LoadTy)->getAddressSpace()) { 351 return SrcVal; 352 } 353 354 uint64_t StoreSize = (DL.getTypeSizeInBits(SrcVal->getType()) + 7) / 8; 355 uint64_t LoadSize = (DL.getTypeSizeInBits(LoadTy) + 7) / 8; 356 // Compute which bits of the stored value are being used by the load. Convert 357 // to an integer type to start with. 358 if (SrcVal->getType()->isPtrOrPtrVectorTy()) 359 SrcVal = Helper.CreatePtrToInt(SrcVal, DL.getIntPtrType(SrcVal->getType())); 360 if (!SrcVal->getType()->isIntegerTy()) 361 SrcVal = Helper.CreateBitCast(SrcVal, IntegerType::get(Ctx, StoreSize * 8)); 362 363 // Shift the bits to the least significant depending on endianness. 364 unsigned ShiftAmt; 365 if (DL.isLittleEndian()) 366 ShiftAmt = Offset * 8; 367 else 368 ShiftAmt = (StoreSize - LoadSize - Offset) * 8; 369 if (ShiftAmt) 370 SrcVal = Helper.CreateLShr(SrcVal, 371 ConstantInt::get(SrcVal->getType(), ShiftAmt)); 372 373 if (LoadSize != StoreSize) 374 SrcVal = Helper.CreateTruncOrBitCast(SrcVal, 375 IntegerType::get(Ctx, LoadSize * 8)); 376 return SrcVal; 377 } 378 379 /// This function is called when we have a memdep query of a load that ends up 380 /// being a clobbering store. This means that the store provides bits used by 381 /// the load but the pointers don't must-alias. Check this case to see if 382 /// there is anything more we can do before we give up. 383 Value *getStoreValueForLoad(Value *SrcVal, unsigned Offset, Type *LoadTy, 384 Instruction *InsertPt, const DataLayout &DL) { 385 386 IRBuilder<> Builder(InsertPt); 387 SrcVal = getStoreValueForLoadHelper(SrcVal, Offset, LoadTy, Builder, DL); 388 return coerceAvailableValueToLoadTypeHelper(SrcVal, LoadTy, Builder, DL); 389 } 390 391 Constant *getConstantStoreValueForLoad(Constant *SrcVal, unsigned Offset, 392 Type *LoadTy, const DataLayout &DL) { 393 ConstantFolder F; 394 SrcVal = getStoreValueForLoadHelper(SrcVal, Offset, LoadTy, F, DL); 395 return coerceAvailableValueToLoadTypeHelper(SrcVal, LoadTy, F, DL); 396 } 397 398 /// This function is called when we have a memdep query of a load that ends up 399 /// being a clobbering load. This means that the load *may* provide bits used 400 /// by the load but we can't be sure because the pointers don't must-alias. 401 /// Check this case to see if there is anything more we can do before we give 402 /// up. 403 Value *getLoadValueForLoad(LoadInst *SrcVal, unsigned Offset, Type *LoadTy, 404 Instruction *InsertPt, const DataLayout &DL) { 405 // If Offset+LoadTy exceeds the size of SrcVal, then we must be wanting to 406 // widen SrcVal out to a larger load. 407 unsigned SrcValStoreSize = DL.getTypeStoreSize(SrcVal->getType()); 408 unsigned LoadSize = DL.getTypeStoreSize(LoadTy); 409 if (Offset + LoadSize > SrcValStoreSize) { 410 assert(SrcVal->isSimple() && "Cannot widen volatile/atomic load!"); 411 assert(SrcVal->getType()->isIntegerTy() && "Can't widen non-integer load"); 412 // If we have a load/load clobber an DepLI can be widened to cover this 413 // load, then we should widen it to the next power of 2 size big enough! 414 unsigned NewLoadSize = Offset + LoadSize; 415 if (!isPowerOf2_32(NewLoadSize)) 416 NewLoadSize = NextPowerOf2(NewLoadSize); 417 418 Value *PtrVal = SrcVal->getPointerOperand(); 419 // Insert the new load after the old load. This ensures that subsequent 420 // memdep queries will find the new load. We can't easily remove the old 421 // load completely because it is already in the value numbering table. 422 IRBuilder<> Builder(SrcVal->getParent(), ++BasicBlock::iterator(SrcVal)); 423 Type *DestTy = IntegerType::get(LoadTy->getContext(), NewLoadSize * 8); 424 Type *DestPTy = 425 PointerType::get(DestTy, PtrVal->getType()->getPointerAddressSpace()); 426 Builder.SetCurrentDebugLocation(SrcVal->getDebugLoc()); 427 PtrVal = Builder.CreateBitCast(PtrVal, DestPTy); 428 LoadInst *NewLoad = Builder.CreateLoad(DestTy, PtrVal); 429 NewLoad->takeName(SrcVal); 430 NewLoad->setAlignment(SrcVal->getAlignment()); 431 432 LLVM_DEBUG(dbgs() << "GVN WIDENED LOAD: " << *SrcVal << "\n"); 433 LLVM_DEBUG(dbgs() << "TO: " << *NewLoad << "\n"); 434 435 // Replace uses of the original load with the wider load. On a big endian 436 // system, we need to shift down to get the relevant bits. 437 Value *RV = NewLoad; 438 if (DL.isBigEndian()) 439 RV = Builder.CreateLShr(RV, (NewLoadSize - SrcValStoreSize) * 8); 440 RV = Builder.CreateTrunc(RV, SrcVal->getType()); 441 SrcVal->replaceAllUsesWith(RV); 442 443 SrcVal = NewLoad; 444 } 445 446 return getStoreValueForLoad(SrcVal, Offset, LoadTy, InsertPt, DL); 447 } 448 449 Constant *getConstantLoadValueForLoad(Constant *SrcVal, unsigned Offset, 450 Type *LoadTy, const DataLayout &DL) { 451 unsigned SrcValStoreSize = DL.getTypeStoreSize(SrcVal->getType()); 452 unsigned LoadSize = DL.getTypeStoreSize(LoadTy); 453 if (Offset + LoadSize > SrcValStoreSize) 454 return nullptr; 455 return getConstantStoreValueForLoad(SrcVal, Offset, LoadTy, DL); 456 } 457 458 template <class T, class HelperClass> 459 T *getMemInstValueForLoadHelper(MemIntrinsic *SrcInst, unsigned Offset, 460 Type *LoadTy, HelperClass &Helper, 461 const DataLayout &DL) { 462 LLVMContext &Ctx = LoadTy->getContext(); 463 uint64_t LoadSize = DL.getTypeSizeInBits(LoadTy) / 8; 464 465 // We know that this method is only called when the mem transfer fully 466 // provides the bits for the load. 467 if (MemSetInst *MSI = dyn_cast<MemSetInst>(SrcInst)) { 468 // memset(P, 'x', 1234) -> splat('x'), even if x is a variable, and 469 // independently of what the offset is. 470 T *Val = cast<T>(MSI->getValue()); 471 if (LoadSize != 1) 472 Val = 473 Helper.CreateZExtOrBitCast(Val, IntegerType::get(Ctx, LoadSize * 8)); 474 T *OneElt = Val; 475 476 // Splat the value out to the right number of bits. 477 for (unsigned NumBytesSet = 1; NumBytesSet != LoadSize;) { 478 // If we can double the number of bytes set, do it. 479 if (NumBytesSet * 2 <= LoadSize) { 480 T *ShVal = Helper.CreateShl( 481 Val, ConstantInt::get(Val->getType(), NumBytesSet * 8)); 482 Val = Helper.CreateOr(Val, ShVal); 483 NumBytesSet <<= 1; 484 continue; 485 } 486 487 // Otherwise insert one byte at a time. 488 T *ShVal = Helper.CreateShl(Val, ConstantInt::get(Val->getType(), 1 * 8)); 489 Val = Helper.CreateOr(OneElt, ShVal); 490 ++NumBytesSet; 491 } 492 493 return coerceAvailableValueToLoadTypeHelper(Val, LoadTy, Helper, DL); 494 } 495 496 // Otherwise, this is a memcpy/memmove from a constant global. 497 MemTransferInst *MTI = cast<MemTransferInst>(SrcInst); 498 Constant *Src = cast<Constant>(MTI->getSource()); 499 unsigned AS = Src->getType()->getPointerAddressSpace(); 500 501 // Otherwise, see if we can constant fold a load from the constant with the 502 // offset applied as appropriate. 503 Src = 504 ConstantExpr::getBitCast(Src, Type::getInt8PtrTy(Src->getContext(), AS)); 505 Constant *OffsetCst = 506 ConstantInt::get(Type::getInt64Ty(Src->getContext()), (unsigned)Offset); 507 Src = ConstantExpr::getGetElementPtr(Type::getInt8Ty(Src->getContext()), Src, 508 OffsetCst); 509 Src = ConstantExpr::getBitCast(Src, PointerType::get(LoadTy, AS)); 510 return ConstantFoldLoadFromConstPtr(Src, LoadTy, DL); 511 } 512 513 /// This function is called when we have a 514 /// memdep query of a load that ends up being a clobbering mem intrinsic. 515 Value *getMemInstValueForLoad(MemIntrinsic *SrcInst, unsigned Offset, 516 Type *LoadTy, Instruction *InsertPt, 517 const DataLayout &DL) { 518 IRBuilder<> Builder(InsertPt); 519 return getMemInstValueForLoadHelper<Value, IRBuilder<>>(SrcInst, Offset, 520 LoadTy, Builder, DL); 521 } 522 523 Constant *getConstantMemInstValueForLoad(MemIntrinsic *SrcInst, unsigned Offset, 524 Type *LoadTy, const DataLayout &DL) { 525 // The only case analyzeLoadFromClobberingMemInst cannot be converted to a 526 // constant is when it's a memset of a non-constant. 527 if (auto *MSI = dyn_cast<MemSetInst>(SrcInst)) 528 if (!isa<Constant>(MSI->getValue())) 529 return nullptr; 530 ConstantFolder F; 531 return getMemInstValueForLoadHelper<Constant, ConstantFolder>(SrcInst, Offset, 532 LoadTy, F, DL); 533 } 534 } // namespace VNCoercion 535 } // namespace llvm 536