1 #include "llvm/Transforms/Utils/VNCoercion.h"
2 #include "llvm/Analysis/ConstantFolding.h"
3 #include "llvm/Analysis/ValueTracking.h"
4 #include "llvm/IR/IRBuilder.h"
5 #include "llvm/IR/IntrinsicInst.h"
6 #include "llvm/Support/Debug.h"
7
8 #define DEBUG_TYPE "vncoerce"
9
10 namespace llvm {
11 namespace VNCoercion {
12
isFirstClassAggregateOrScalableType(Type * Ty)13 static bool isFirstClassAggregateOrScalableType(Type *Ty) {
14 return Ty->isStructTy() || Ty->isArrayTy() || isa<ScalableVectorType>(Ty);
15 }
16
17 /// Return true if coerceAvailableValueToLoadType will succeed.
canCoerceMustAliasedValueToLoad(Value * StoredVal,Type * LoadTy,const DataLayout & DL)18 bool canCoerceMustAliasedValueToLoad(Value *StoredVal, Type *LoadTy,
19 const DataLayout &DL) {
20 Type *StoredTy = StoredVal->getType();
21
22 if (StoredTy == LoadTy)
23 return true;
24
25 // If the loaded/stored value is a first class array/struct, or scalable type,
26 // don't try to transform them. We need to be able to bitcast to integer.
27 if (isFirstClassAggregateOrScalableType(LoadTy) ||
28 isFirstClassAggregateOrScalableType(StoredTy))
29 return false;
30
31 uint64_t StoreSize = DL.getTypeSizeInBits(StoredTy).getFixedSize();
32
33 // The store size must be byte-aligned to support future type casts.
34 if (llvm::alignTo(StoreSize, 8) != StoreSize)
35 return false;
36
37 // The store has to be at least as big as the load.
38 if (StoreSize < DL.getTypeSizeInBits(LoadTy).getFixedSize())
39 return false;
40
41 bool StoredNI = DL.isNonIntegralPointerType(StoredTy->getScalarType());
42 bool LoadNI = DL.isNonIntegralPointerType(LoadTy->getScalarType());
43 // Don't coerce non-integral pointers to integers or vice versa.
44 if (StoredNI != LoadNI) {
45 // As a special case, allow coercion of memset used to initialize
46 // an array w/null. Despite non-integral pointers not generally having a
47 // specific bit pattern, we do assume null is zero.
48 if (auto *CI = dyn_cast<Constant>(StoredVal))
49 return CI->isNullValue();
50 return false;
51 } else if (StoredNI && LoadNI &&
52 StoredTy->getPointerAddressSpace() !=
53 LoadTy->getPointerAddressSpace()) {
54 return false;
55 }
56
57
58 // The implementation below uses inttoptr for vectors of unequal size; we
59 // can't allow this for non integral pointers. We could teach it to extract
60 // exact subvectors if desired.
61 if (StoredNI && StoreSize != DL.getTypeSizeInBits(LoadTy).getFixedSize())
62 return false;
63
64 return true;
65 }
66
67 /// If we saw a store of a value to memory, and
68 /// then a load from a must-aliased pointer of a different type, try to coerce
69 /// the stored value. LoadedTy is the type of the load we want to replace.
70 /// IRB is IRBuilder used to insert new instructions.
71 ///
72 /// If we can't do it, return null.
coerceAvailableValueToLoadType(Value * StoredVal,Type * LoadedTy,IRBuilderBase & Helper,const DataLayout & DL)73 Value *coerceAvailableValueToLoadType(Value *StoredVal, Type *LoadedTy,
74 IRBuilderBase &Helper,
75 const DataLayout &DL) {
76 assert(canCoerceMustAliasedValueToLoad(StoredVal, LoadedTy, DL) &&
77 "precondition violation - materialization can't fail");
78 if (auto *C = dyn_cast<Constant>(StoredVal))
79 StoredVal = ConstantFoldConstant(C, DL);
80
81 // If this is already the right type, just return it.
82 Type *StoredValTy = StoredVal->getType();
83
84 uint64_t StoredValSize = DL.getTypeSizeInBits(StoredValTy).getFixedSize();
85 uint64_t LoadedValSize = DL.getTypeSizeInBits(LoadedTy).getFixedSize();
86
87 // If the store and reload are the same size, we can always reuse it.
88 if (StoredValSize == LoadedValSize) {
89 // Pointer to Pointer -> use bitcast.
90 if (StoredValTy->isPtrOrPtrVectorTy() && LoadedTy->isPtrOrPtrVectorTy()) {
91 StoredVal = Helper.CreateBitCast(StoredVal, LoadedTy);
92 } else {
93 // Convert source pointers to integers, which can be bitcast.
94 if (StoredValTy->isPtrOrPtrVectorTy()) {
95 StoredValTy = DL.getIntPtrType(StoredValTy);
96 StoredVal = Helper.CreatePtrToInt(StoredVal, StoredValTy);
97 }
98
99 Type *TypeToCastTo = LoadedTy;
100 if (TypeToCastTo->isPtrOrPtrVectorTy())
101 TypeToCastTo = DL.getIntPtrType(TypeToCastTo);
102
103 if (StoredValTy != TypeToCastTo)
104 StoredVal = Helper.CreateBitCast(StoredVal, TypeToCastTo);
105
106 // Cast to pointer if the load needs a pointer type.
107 if (LoadedTy->isPtrOrPtrVectorTy())
108 StoredVal = Helper.CreateIntToPtr(StoredVal, LoadedTy);
109 }
110
111 if (auto *C = dyn_cast<ConstantExpr>(StoredVal))
112 StoredVal = ConstantFoldConstant(C, DL);
113
114 return StoredVal;
115 }
116 // If the loaded value is smaller than the available value, then we can
117 // extract out a piece from it. If the available value is too small, then we
118 // can't do anything.
119 assert(StoredValSize >= LoadedValSize &&
120 "canCoerceMustAliasedValueToLoad fail");
121
122 // Convert source pointers to integers, which can be manipulated.
123 if (StoredValTy->isPtrOrPtrVectorTy()) {
124 StoredValTy = DL.getIntPtrType(StoredValTy);
125 StoredVal = Helper.CreatePtrToInt(StoredVal, StoredValTy);
126 }
127
128 // Convert vectors and fp to integer, which can be manipulated.
129 if (!StoredValTy->isIntegerTy()) {
130 StoredValTy = IntegerType::get(StoredValTy->getContext(), StoredValSize);
131 StoredVal = Helper.CreateBitCast(StoredVal, StoredValTy);
132 }
133
134 // If this is a big-endian system, we need to shift the value down to the low
135 // bits so that a truncate will work.
136 if (DL.isBigEndian()) {
137 uint64_t ShiftAmt = DL.getTypeStoreSizeInBits(StoredValTy).getFixedSize() -
138 DL.getTypeStoreSizeInBits(LoadedTy).getFixedSize();
139 StoredVal = Helper.CreateLShr(
140 StoredVal, ConstantInt::get(StoredVal->getType(), ShiftAmt));
141 }
142
143 // Truncate the integer to the right size now.
144 Type *NewIntTy = IntegerType::get(StoredValTy->getContext(), LoadedValSize);
145 StoredVal = Helper.CreateTruncOrBitCast(StoredVal, NewIntTy);
146
147 if (LoadedTy != NewIntTy) {
148 // If the result is a pointer, inttoptr.
149 if (LoadedTy->isPtrOrPtrVectorTy())
150 StoredVal = Helper.CreateIntToPtr(StoredVal, LoadedTy);
151 else
152 // Otherwise, bitcast.
153 StoredVal = Helper.CreateBitCast(StoredVal, LoadedTy);
154 }
155
156 if (auto *C = dyn_cast<Constant>(StoredVal))
157 StoredVal = ConstantFoldConstant(C, DL);
158
159 return StoredVal;
160 }
161
162 /// This function is called when we have a memdep query of a load that ends up
163 /// being a clobbering memory write (store, memset, memcpy, memmove). This
164 /// means that the write *may* provide bits used by the load but we can't be
165 /// sure because the pointers don't must-alias.
166 ///
167 /// Check this case to see if there is anything more we can do before we give
168 /// up. This returns -1 if we have to give up, or a byte number in the stored
169 /// value of the piece that feeds the load.
analyzeLoadFromClobberingWrite(Type * LoadTy,Value * LoadPtr,Value * WritePtr,uint64_t WriteSizeInBits,const DataLayout & DL)170 static int analyzeLoadFromClobberingWrite(Type *LoadTy, Value *LoadPtr,
171 Value *WritePtr,
172 uint64_t WriteSizeInBits,
173 const DataLayout &DL) {
174 // If the loaded/stored value is a first class array/struct, or scalable type,
175 // don't try to transform them. We need to be able to bitcast to integer.
176 if (isFirstClassAggregateOrScalableType(LoadTy))
177 return -1;
178
179 int64_t StoreOffset = 0, LoadOffset = 0;
180 Value *StoreBase =
181 GetPointerBaseWithConstantOffset(WritePtr, StoreOffset, DL);
182 Value *LoadBase = GetPointerBaseWithConstantOffset(LoadPtr, LoadOffset, DL);
183 if (StoreBase != LoadBase)
184 return -1;
185
186 uint64_t LoadSize = DL.getTypeSizeInBits(LoadTy).getFixedSize();
187
188 if ((WriteSizeInBits & 7) | (LoadSize & 7))
189 return -1;
190 uint64_t StoreSize = WriteSizeInBits / 8; // Convert to bytes.
191 LoadSize /= 8;
192
193 // If the Load isn't completely contained within the stored bits, we don't
194 // have all the bits to feed it. We could do something crazy in the future
195 // (issue a smaller load then merge the bits in) but this seems unlikely to be
196 // valuable.
197 if (StoreOffset > LoadOffset ||
198 StoreOffset + int64_t(StoreSize) < LoadOffset + int64_t(LoadSize))
199 return -1;
200
201 // Okay, we can do this transformation. Return the number of bytes into the
202 // store that the load is.
203 return LoadOffset - StoreOffset;
204 }
205
206 /// This function is called when we have a
207 /// memdep query of a load that ends up being a clobbering store.
analyzeLoadFromClobberingStore(Type * LoadTy,Value * LoadPtr,StoreInst * DepSI,const DataLayout & DL)208 int analyzeLoadFromClobberingStore(Type *LoadTy, Value *LoadPtr,
209 StoreInst *DepSI, const DataLayout &DL) {
210 auto *StoredVal = DepSI->getValueOperand();
211
212 // Cannot handle reading from store of first-class aggregate or scalable type.
213 if (isFirstClassAggregateOrScalableType(StoredVal->getType()))
214 return -1;
215
216 if (!canCoerceMustAliasedValueToLoad(StoredVal, LoadTy, DL))
217 return -1;
218
219 Value *StorePtr = DepSI->getPointerOperand();
220 uint64_t StoreSize =
221 DL.getTypeSizeInBits(DepSI->getValueOperand()->getType()).getFixedSize();
222 return analyzeLoadFromClobberingWrite(LoadTy, LoadPtr, StorePtr, StoreSize,
223 DL);
224 }
225
226 /// Looks at a memory location for a load (specified by MemLocBase, Offs, and
227 /// Size) and compares it against a load.
228 ///
229 /// If the specified load could be safely widened to a larger integer load
230 /// that is 1) still efficient, 2) safe for the target, and 3) would provide
231 /// the specified memory location value, then this function returns the size
232 /// in bytes of the load width to use. If not, this returns zero.
getLoadLoadClobberFullWidthSize(const Value * MemLocBase,int64_t MemLocOffs,unsigned MemLocSize,const LoadInst * LI)233 static unsigned getLoadLoadClobberFullWidthSize(const Value *MemLocBase,
234 int64_t MemLocOffs,
235 unsigned MemLocSize,
236 const LoadInst *LI) {
237 // We can only extend simple integer loads.
238 if (!isa<IntegerType>(LI->getType()) || !LI->isSimple())
239 return 0;
240
241 // Load widening is hostile to ThreadSanitizer: it may cause false positives
242 // or make the reports more cryptic (access sizes are wrong).
243 if (LI->getParent()->getParent()->hasFnAttribute(Attribute::SanitizeThread))
244 return 0;
245
246 const DataLayout &DL = LI->getModule()->getDataLayout();
247
248 // Get the base of this load.
249 int64_t LIOffs = 0;
250 const Value *LIBase =
251 GetPointerBaseWithConstantOffset(LI->getPointerOperand(), LIOffs, DL);
252
253 // If the two pointers are not based on the same pointer, we can't tell that
254 // they are related.
255 if (LIBase != MemLocBase)
256 return 0;
257
258 // Okay, the two values are based on the same pointer, but returned as
259 // no-alias. This happens when we have things like two byte loads at "P+1"
260 // and "P+3". Check to see if increasing the size of the "LI" load up to its
261 // alignment (or the largest native integer type) will allow us to load all
262 // the bits required by MemLoc.
263
264 // If MemLoc is before LI, then no widening of LI will help us out.
265 if (MemLocOffs < LIOffs)
266 return 0;
267
268 // Get the alignment of the load in bytes. We assume that it is safe to load
269 // any legal integer up to this size without a problem. For example, if we're
270 // looking at an i8 load on x86-32 that is known 1024 byte aligned, we can
271 // widen it up to an i32 load. If it is known 2-byte aligned, we can widen it
272 // to i16.
273 unsigned LoadAlign = LI->getAlign().value();
274
275 int64_t MemLocEnd = MemLocOffs + MemLocSize;
276
277 // If no amount of rounding up will let MemLoc fit into LI, then bail out.
278 if (LIOffs + LoadAlign < MemLocEnd)
279 return 0;
280
281 // This is the size of the load to try. Start with the next larger power of
282 // two.
283 unsigned NewLoadByteSize = LI->getType()->getPrimitiveSizeInBits() / 8U;
284 NewLoadByteSize = NextPowerOf2(NewLoadByteSize);
285
286 while (true) {
287 // If this load size is bigger than our known alignment or would not fit
288 // into a native integer register, then we fail.
289 if (NewLoadByteSize > LoadAlign ||
290 !DL.fitsInLegalInteger(NewLoadByteSize * 8))
291 return 0;
292
293 if (LIOffs + NewLoadByteSize > MemLocEnd &&
294 (LI->getParent()->getParent()->hasFnAttribute(
295 Attribute::SanitizeAddress) ||
296 LI->getParent()->getParent()->hasFnAttribute(
297 Attribute::SanitizeHWAddress)))
298 // We will be reading past the location accessed by the original program.
299 // While this is safe in a regular build, Address Safety analysis tools
300 // may start reporting false warnings. So, don't do widening.
301 return 0;
302
303 // If a load of this width would include all of MemLoc, then we succeed.
304 if (LIOffs + NewLoadByteSize >= MemLocEnd)
305 return NewLoadByteSize;
306
307 NewLoadByteSize <<= 1;
308 }
309 }
310
311 /// This function is called when we have a
312 /// memdep query of a load that ends up being clobbered by another load. See if
313 /// the other load can feed into the second load.
analyzeLoadFromClobberingLoad(Type * LoadTy,Value * LoadPtr,LoadInst * DepLI,const DataLayout & DL)314 int analyzeLoadFromClobberingLoad(Type *LoadTy, Value *LoadPtr, LoadInst *DepLI,
315 const DataLayout &DL) {
316 // Cannot handle reading from store of first-class aggregate yet.
317 if (DepLI->getType()->isStructTy() || DepLI->getType()->isArrayTy())
318 return -1;
319
320 if (!canCoerceMustAliasedValueToLoad(DepLI, LoadTy, DL))
321 return -1;
322
323 Value *DepPtr = DepLI->getPointerOperand();
324 uint64_t DepSize = DL.getTypeSizeInBits(DepLI->getType()).getFixedSize();
325 int R = analyzeLoadFromClobberingWrite(LoadTy, LoadPtr, DepPtr, DepSize, DL);
326 if (R != -1)
327 return R;
328
329 // If we have a load/load clobber an DepLI can be widened to cover this load,
330 // then we should widen it!
331 int64_t LoadOffs = 0;
332 const Value *LoadBase =
333 GetPointerBaseWithConstantOffset(LoadPtr, LoadOffs, DL);
334 unsigned LoadSize = DL.getTypeStoreSize(LoadTy).getFixedSize();
335
336 unsigned Size =
337 getLoadLoadClobberFullWidthSize(LoadBase, LoadOffs, LoadSize, DepLI);
338 if (Size == 0)
339 return -1;
340
341 // Check non-obvious conditions enforced by MDA which we rely on for being
342 // able to materialize this potentially available value
343 assert(DepLI->isSimple() && "Cannot widen volatile/atomic load!");
344 assert(DepLI->getType()->isIntegerTy() && "Can't widen non-integer load");
345
346 return analyzeLoadFromClobberingWrite(LoadTy, LoadPtr, DepPtr, Size * 8, DL);
347 }
348
analyzeLoadFromClobberingMemInst(Type * LoadTy,Value * LoadPtr,MemIntrinsic * MI,const DataLayout & DL)349 int analyzeLoadFromClobberingMemInst(Type *LoadTy, Value *LoadPtr,
350 MemIntrinsic *MI, const DataLayout &DL) {
351 // If the mem operation is a non-constant size, we can't handle it.
352 ConstantInt *SizeCst = dyn_cast<ConstantInt>(MI->getLength());
353 if (!SizeCst)
354 return -1;
355 uint64_t MemSizeInBits = SizeCst->getZExtValue() * 8;
356
357 // If this is memset, we just need to see if the offset is valid in the size
358 // of the memset..
359 if (const auto *memset_inst = dyn_cast<MemSetInst>(MI)) {
360 if (DL.isNonIntegralPointerType(LoadTy->getScalarType())) {
361 auto *CI = dyn_cast<ConstantInt>(memset_inst->getValue());
362 if (!CI || !CI->isZero())
363 return -1;
364 }
365 return analyzeLoadFromClobberingWrite(LoadTy, LoadPtr, MI->getDest(),
366 MemSizeInBits, DL);
367 }
368
369 // If we have a memcpy/memmove, the only case we can handle is if this is a
370 // copy from constant memory. In that case, we can read directly from the
371 // constant memory.
372 MemTransferInst *MTI = cast<MemTransferInst>(MI);
373
374 Constant *Src = dyn_cast<Constant>(MTI->getSource());
375 if (!Src)
376 return -1;
377
378 GlobalVariable *GV = dyn_cast<GlobalVariable>(getUnderlyingObject(Src));
379 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
380 return -1;
381
382 // See if the access is within the bounds of the transfer.
383 int Offset = analyzeLoadFromClobberingWrite(LoadTy, LoadPtr, MI->getDest(),
384 MemSizeInBits, DL);
385 if (Offset == -1)
386 return Offset;
387
388 // Otherwise, see if we can constant fold a load from the constant with the
389 // offset applied as appropriate.
390 unsigned IndexSize = DL.getIndexTypeSizeInBits(Src->getType());
391 if (ConstantFoldLoadFromConstPtr(Src, LoadTy, APInt(IndexSize, Offset), DL))
392 return Offset;
393 return -1;
394 }
395
getStoreValueForLoadHelper(Value * SrcVal,unsigned Offset,Type * LoadTy,IRBuilderBase & Builder,const DataLayout & DL)396 static Value *getStoreValueForLoadHelper(Value *SrcVal, unsigned Offset,
397 Type *LoadTy, IRBuilderBase &Builder,
398 const DataLayout &DL) {
399 LLVMContext &Ctx = SrcVal->getType()->getContext();
400
401 // If two pointers are in the same address space, they have the same size,
402 // so we don't need to do any truncation, etc. This avoids introducing
403 // ptrtoint instructions for pointers that may be non-integral.
404 if (SrcVal->getType()->isPointerTy() && LoadTy->isPointerTy() &&
405 cast<PointerType>(SrcVal->getType())->getAddressSpace() ==
406 cast<PointerType>(LoadTy)->getAddressSpace()) {
407 return SrcVal;
408 }
409
410 uint64_t StoreSize =
411 (DL.getTypeSizeInBits(SrcVal->getType()).getFixedSize() + 7) / 8;
412 uint64_t LoadSize = (DL.getTypeSizeInBits(LoadTy).getFixedSize() + 7) / 8;
413 // Compute which bits of the stored value are being used by the load. Convert
414 // to an integer type to start with.
415 if (SrcVal->getType()->isPtrOrPtrVectorTy())
416 SrcVal =
417 Builder.CreatePtrToInt(SrcVal, DL.getIntPtrType(SrcVal->getType()));
418 if (!SrcVal->getType()->isIntegerTy())
419 SrcVal =
420 Builder.CreateBitCast(SrcVal, IntegerType::get(Ctx, StoreSize * 8));
421
422 // Shift the bits to the least significant depending on endianness.
423 unsigned ShiftAmt;
424 if (DL.isLittleEndian())
425 ShiftAmt = Offset * 8;
426 else
427 ShiftAmt = (StoreSize - LoadSize - Offset) * 8;
428 if (ShiftAmt)
429 SrcVal = Builder.CreateLShr(SrcVal,
430 ConstantInt::get(SrcVal->getType(), ShiftAmt));
431
432 if (LoadSize != StoreSize)
433 SrcVal = Builder.CreateTruncOrBitCast(SrcVal,
434 IntegerType::get(Ctx, LoadSize * 8));
435 return SrcVal;
436 }
437
438 /// This function is called when we have a memdep query of a load that ends up
439 /// being a clobbering store. This means that the store provides bits used by
440 /// the load but the pointers don't must-alias. Check this case to see if
441 /// there is anything more we can do before we give up.
getStoreValueForLoad(Value * SrcVal,unsigned Offset,Type * LoadTy,Instruction * InsertPt,const DataLayout & DL)442 Value *getStoreValueForLoad(Value *SrcVal, unsigned Offset, Type *LoadTy,
443 Instruction *InsertPt, const DataLayout &DL) {
444
445 IRBuilder<> Builder(InsertPt);
446 SrcVal = getStoreValueForLoadHelper(SrcVal, Offset, LoadTy, Builder, DL);
447 return coerceAvailableValueToLoadType(SrcVal, LoadTy, Builder, DL);
448 }
449
getConstantStoreValueForLoad(Constant * SrcVal,unsigned Offset,Type * LoadTy,const DataLayout & DL)450 Constant *getConstantStoreValueForLoad(Constant *SrcVal, unsigned Offset,
451 Type *LoadTy, const DataLayout &DL) {
452 return ConstantFoldLoadFromConst(SrcVal, LoadTy, APInt(32, Offset), DL);
453 }
454
455 /// This function is called when we have a memdep query of a load that ends up
456 /// being a clobbering load. This means that the load *may* provide bits used
457 /// by the load but we can't be sure because the pointers don't must-alias.
458 /// Check this case to see if there is anything more we can do before we give
459 /// up.
getLoadValueForLoad(LoadInst * SrcVal,unsigned Offset,Type * LoadTy,Instruction * InsertPt,const DataLayout & DL)460 Value *getLoadValueForLoad(LoadInst *SrcVal, unsigned Offset, Type *LoadTy,
461 Instruction *InsertPt, const DataLayout &DL) {
462 // If Offset+LoadTy exceeds the size of SrcVal, then we must be wanting to
463 // widen SrcVal out to a larger load.
464 unsigned SrcValStoreSize =
465 DL.getTypeStoreSize(SrcVal->getType()).getFixedSize();
466 unsigned LoadSize = DL.getTypeStoreSize(LoadTy).getFixedSize();
467 if (Offset + LoadSize > SrcValStoreSize) {
468 assert(SrcVal->isSimple() && "Cannot widen volatile/atomic load!");
469 assert(SrcVal->getType()->isIntegerTy() && "Can't widen non-integer load");
470 // If we have a load/load clobber an DepLI can be widened to cover this
471 // load, then we should widen it to the next power of 2 size big enough!
472 unsigned NewLoadSize = Offset + LoadSize;
473 if (!isPowerOf2_32(NewLoadSize))
474 NewLoadSize = NextPowerOf2(NewLoadSize);
475
476 Value *PtrVal = SrcVal->getPointerOperand();
477 // Insert the new load after the old load. This ensures that subsequent
478 // memdep queries will find the new load. We can't easily remove the old
479 // load completely because it is already in the value numbering table.
480 IRBuilder<> Builder(SrcVal->getParent(), ++BasicBlock::iterator(SrcVal));
481 Type *DestTy = IntegerType::get(LoadTy->getContext(), NewLoadSize * 8);
482 Type *DestPTy =
483 PointerType::get(DestTy, PtrVal->getType()->getPointerAddressSpace());
484 Builder.SetCurrentDebugLocation(SrcVal->getDebugLoc());
485 PtrVal = Builder.CreateBitCast(PtrVal, DestPTy);
486 LoadInst *NewLoad = Builder.CreateLoad(DestTy, PtrVal);
487 NewLoad->takeName(SrcVal);
488 NewLoad->setAlignment(SrcVal->getAlign());
489
490 LLVM_DEBUG(dbgs() << "GVN WIDENED LOAD: " << *SrcVal << "\n");
491 LLVM_DEBUG(dbgs() << "TO: " << *NewLoad << "\n");
492
493 // Replace uses of the original load with the wider load. On a big endian
494 // system, we need to shift down to get the relevant bits.
495 Value *RV = NewLoad;
496 if (DL.isBigEndian())
497 RV = Builder.CreateLShr(RV, (NewLoadSize - SrcValStoreSize) * 8);
498 RV = Builder.CreateTrunc(RV, SrcVal->getType());
499 SrcVal->replaceAllUsesWith(RV);
500
501 SrcVal = NewLoad;
502 }
503
504 return getStoreValueForLoad(SrcVal, Offset, LoadTy, InsertPt, DL);
505 }
506
getConstantLoadValueForLoad(Constant * SrcVal,unsigned Offset,Type * LoadTy,const DataLayout & DL)507 Constant *getConstantLoadValueForLoad(Constant *SrcVal, unsigned Offset,
508 Type *LoadTy, const DataLayout &DL) {
509 unsigned SrcValStoreSize =
510 DL.getTypeStoreSize(SrcVal->getType()).getFixedSize();
511 unsigned LoadSize = DL.getTypeStoreSize(LoadTy).getFixedSize();
512 if (Offset + LoadSize > SrcValStoreSize)
513 return nullptr;
514 return getConstantStoreValueForLoad(SrcVal, Offset, LoadTy, DL);
515 }
516
517 /// This function is called when we have a
518 /// memdep query of a load that ends up being a clobbering mem intrinsic.
getMemInstValueForLoad(MemIntrinsic * SrcInst,unsigned Offset,Type * LoadTy,Instruction * InsertPt,const DataLayout & DL)519 Value *getMemInstValueForLoad(MemIntrinsic *SrcInst, unsigned Offset,
520 Type *LoadTy, Instruction *InsertPt,
521 const DataLayout &DL) {
522 LLVMContext &Ctx = LoadTy->getContext();
523 uint64_t LoadSize = DL.getTypeSizeInBits(LoadTy).getFixedSize() / 8;
524 IRBuilder<> Builder(InsertPt);
525
526 // We know that this method is only called when the mem transfer fully
527 // provides the bits for the load.
528 if (MemSetInst *MSI = dyn_cast<MemSetInst>(SrcInst)) {
529 // memset(P, 'x', 1234) -> splat('x'), even if x is a variable, and
530 // independently of what the offset is.
531 Value *Val = MSI->getValue();
532 if (LoadSize != 1)
533 Val =
534 Builder.CreateZExtOrBitCast(Val, IntegerType::get(Ctx, LoadSize * 8));
535 Value *OneElt = Val;
536
537 // Splat the value out to the right number of bits.
538 for (unsigned NumBytesSet = 1; NumBytesSet != LoadSize;) {
539 // If we can double the number of bytes set, do it.
540 if (NumBytesSet * 2 <= LoadSize) {
541 Value *ShVal = Builder.CreateShl(
542 Val, ConstantInt::get(Val->getType(), NumBytesSet * 8));
543 Val = Builder.CreateOr(Val, ShVal);
544 NumBytesSet <<= 1;
545 continue;
546 }
547
548 // Otherwise insert one byte at a time.
549 Value *ShVal =
550 Builder.CreateShl(Val, ConstantInt::get(Val->getType(), 1 * 8));
551 Val = Builder.CreateOr(OneElt, ShVal);
552 ++NumBytesSet;
553 }
554
555 return coerceAvailableValueToLoadType(Val, LoadTy, Builder, DL);
556 }
557
558 // Otherwise, this is a memcpy/memmove from a constant global.
559 MemTransferInst *MTI = cast<MemTransferInst>(SrcInst);
560 Constant *Src = cast<Constant>(MTI->getSource());
561 unsigned IndexSize = DL.getIndexTypeSizeInBits(Src->getType());
562 return ConstantFoldLoadFromConstPtr(Src, LoadTy, APInt(IndexSize, Offset),
563 DL);
564 }
565
getConstantMemInstValueForLoad(MemIntrinsic * SrcInst,unsigned Offset,Type * LoadTy,const DataLayout & DL)566 Constant *getConstantMemInstValueForLoad(MemIntrinsic *SrcInst, unsigned Offset,
567 Type *LoadTy, const DataLayout &DL) {
568 LLVMContext &Ctx = LoadTy->getContext();
569 uint64_t LoadSize = DL.getTypeSizeInBits(LoadTy).getFixedSize() / 8;
570
571 // We know that this method is only called when the mem transfer fully
572 // provides the bits for the load.
573 if (MemSetInst *MSI = dyn_cast<MemSetInst>(SrcInst)) {
574 auto *Val = dyn_cast<ConstantInt>(MSI->getValue());
575 if (!Val)
576 return nullptr;
577
578 Val = ConstantInt::get(Ctx, APInt::getSplat(LoadSize * 8, Val->getValue()));
579 return ConstantFoldLoadFromConst(Val, LoadTy, DL);
580 }
581
582 // Otherwise, this is a memcpy/memmove from a constant global.
583 MemTransferInst *MTI = cast<MemTransferInst>(SrcInst);
584 Constant *Src = cast<Constant>(MTI->getSource());
585 unsigned IndexSize = DL.getIndexTypeSizeInBits(Src->getType());
586 return ConstantFoldLoadFromConstPtr(Src, LoadTy, APInt(IndexSize, Offset),
587 DL);
588 }
589 } // namespace VNCoercion
590 } // namespace llvm
591