1 #include "llvm/Transforms/Utils/VNCoercion.h" 2 #include "llvm/Analysis/ConstantFolding.h" 3 #include "llvm/Analysis/ValueTracking.h" 4 #include "llvm/IR/IRBuilder.h" 5 #include "llvm/Support/Debug.h" 6 7 #define DEBUG_TYPE "vncoerce" 8 9 namespace llvm { 10 namespace VNCoercion { 11 12 static bool isFirstClassAggregateOrScalableType(Type *Ty) { 13 return Ty->isStructTy() || Ty->isArrayTy() || isa<ScalableVectorType>(Ty); 14 } 15 16 /// Return true if coerceAvailableValueToLoadType will succeed. 17 bool canCoerceMustAliasedValueToLoad(Value *StoredVal, Type *LoadTy, 18 const DataLayout &DL) { 19 Type *StoredTy = StoredVal->getType(); 20 21 if (StoredTy == LoadTy) 22 return true; 23 24 // If the loaded/stored value is a first class array/struct, or scalable type, 25 // don't try to transform them. We need to be able to bitcast to integer. 26 if (isFirstClassAggregateOrScalableType(LoadTy) || 27 isFirstClassAggregateOrScalableType(StoredTy)) 28 return false; 29 30 uint64_t StoreSize = DL.getTypeSizeInBits(StoredTy).getFixedSize(); 31 32 // The store size must be byte-aligned to support future type casts. 33 if (llvm::alignTo(StoreSize, 8) != StoreSize) 34 return false; 35 36 // The store has to be at least as big as the load. 37 if (StoreSize < DL.getTypeSizeInBits(LoadTy).getFixedSize()) 38 return false; 39 40 // Don't coerce non-integral pointers to integers or vice versa. 41 if (DL.isNonIntegralPointerType(StoredVal->getType()->getScalarType()) != 42 DL.isNonIntegralPointerType(LoadTy->getScalarType())) { 43 // As a special case, allow coercion of memset used to initialize 44 // an array w/null. Despite non-integral pointers not generally having a 45 // specific bit pattern, we do assume null is zero. 46 if (auto *CI = dyn_cast<Constant>(StoredVal)) 47 return CI->isNullValue(); 48 return false; 49 } 50 51 52 // The implementation below uses inttoptr for vectors of unequal size; we 53 // can't allow this for non integral pointers. Wecould teach it to extract 54 // exact subvectors if desired. 55 if (DL.isNonIntegralPointerType(StoredTy->getScalarType()) && 56 StoreSize != DL.getTypeSizeInBits(LoadTy).getFixedSize()) 57 return false; 58 59 return true; 60 } 61 62 template <class T, class HelperClass> 63 static T *coerceAvailableValueToLoadTypeHelper(T *StoredVal, Type *LoadedTy, 64 HelperClass &Helper, 65 const DataLayout &DL) { 66 assert(canCoerceMustAliasedValueToLoad(StoredVal, LoadedTy, DL) && 67 "precondition violation - materialization can't fail"); 68 if (auto *C = dyn_cast<Constant>(StoredVal)) 69 StoredVal = ConstantFoldConstant(C, DL); 70 71 // If this is already the right type, just return it. 72 Type *StoredValTy = StoredVal->getType(); 73 74 uint64_t StoredValSize = DL.getTypeSizeInBits(StoredValTy).getFixedSize(); 75 uint64_t LoadedValSize = DL.getTypeSizeInBits(LoadedTy).getFixedSize(); 76 77 // If the store and reload are the same size, we can always reuse it. 78 if (StoredValSize == LoadedValSize) { 79 // Pointer to Pointer -> use bitcast. 80 if (StoredValTy->isPtrOrPtrVectorTy() && LoadedTy->isPtrOrPtrVectorTy()) { 81 StoredVal = Helper.CreateBitCast(StoredVal, LoadedTy); 82 } else { 83 // Convert source pointers to integers, which can be bitcast. 84 if (StoredValTy->isPtrOrPtrVectorTy()) { 85 StoredValTy = DL.getIntPtrType(StoredValTy); 86 StoredVal = Helper.CreatePtrToInt(StoredVal, StoredValTy); 87 } 88 89 Type *TypeToCastTo = LoadedTy; 90 if (TypeToCastTo->isPtrOrPtrVectorTy()) 91 TypeToCastTo = DL.getIntPtrType(TypeToCastTo); 92 93 if (StoredValTy != TypeToCastTo) 94 StoredVal = Helper.CreateBitCast(StoredVal, TypeToCastTo); 95 96 // Cast to pointer if the load needs a pointer type. 97 if (LoadedTy->isPtrOrPtrVectorTy()) 98 StoredVal = Helper.CreateIntToPtr(StoredVal, LoadedTy); 99 } 100 101 if (auto *C = dyn_cast<ConstantExpr>(StoredVal)) 102 StoredVal = ConstantFoldConstant(C, DL); 103 104 return StoredVal; 105 } 106 // If the loaded value is smaller than the available value, then we can 107 // extract out a piece from it. If the available value is too small, then we 108 // can't do anything. 109 assert(StoredValSize >= LoadedValSize && 110 "canCoerceMustAliasedValueToLoad fail"); 111 112 // Convert source pointers to integers, which can be manipulated. 113 if (StoredValTy->isPtrOrPtrVectorTy()) { 114 StoredValTy = DL.getIntPtrType(StoredValTy); 115 StoredVal = Helper.CreatePtrToInt(StoredVal, StoredValTy); 116 } 117 118 // Convert vectors and fp to integer, which can be manipulated. 119 if (!StoredValTy->isIntegerTy()) { 120 StoredValTy = IntegerType::get(StoredValTy->getContext(), StoredValSize); 121 StoredVal = Helper.CreateBitCast(StoredVal, StoredValTy); 122 } 123 124 // If this is a big-endian system, we need to shift the value down to the low 125 // bits so that a truncate will work. 126 if (DL.isBigEndian()) { 127 uint64_t ShiftAmt = DL.getTypeStoreSizeInBits(StoredValTy).getFixedSize() - 128 DL.getTypeStoreSizeInBits(LoadedTy).getFixedSize(); 129 StoredVal = Helper.CreateLShr( 130 StoredVal, ConstantInt::get(StoredVal->getType(), ShiftAmt)); 131 } 132 133 // Truncate the integer to the right size now. 134 Type *NewIntTy = IntegerType::get(StoredValTy->getContext(), LoadedValSize); 135 StoredVal = Helper.CreateTruncOrBitCast(StoredVal, NewIntTy); 136 137 if (LoadedTy != NewIntTy) { 138 // If the result is a pointer, inttoptr. 139 if (LoadedTy->isPtrOrPtrVectorTy()) 140 StoredVal = Helper.CreateIntToPtr(StoredVal, LoadedTy); 141 else 142 // Otherwise, bitcast. 143 StoredVal = Helper.CreateBitCast(StoredVal, LoadedTy); 144 } 145 146 if (auto *C = dyn_cast<Constant>(StoredVal)) 147 StoredVal = ConstantFoldConstant(C, DL); 148 149 return StoredVal; 150 } 151 152 /// If we saw a store of a value to memory, and 153 /// then a load from a must-aliased pointer of a different type, try to coerce 154 /// the stored value. LoadedTy is the type of the load we want to replace. 155 /// IRB is IRBuilder used to insert new instructions. 156 /// 157 /// If we can't do it, return null. 158 Value *coerceAvailableValueToLoadType(Value *StoredVal, Type *LoadedTy, 159 IRBuilderBase &IRB, 160 const DataLayout &DL) { 161 return coerceAvailableValueToLoadTypeHelper(StoredVal, LoadedTy, IRB, DL); 162 } 163 164 /// This function is called when we have a memdep query of a load that ends up 165 /// being a clobbering memory write (store, memset, memcpy, memmove). This 166 /// means that the write *may* provide bits used by the load but we can't be 167 /// sure because the pointers don't must-alias. 168 /// 169 /// Check this case to see if there is anything more we can do before we give 170 /// up. This returns -1 if we have to give up, or a byte number in the stored 171 /// value of the piece that feeds the load. 172 static int analyzeLoadFromClobberingWrite(Type *LoadTy, Value *LoadPtr, 173 Value *WritePtr, 174 uint64_t WriteSizeInBits, 175 const DataLayout &DL) { 176 // If the loaded/stored value is a first class array/struct, or scalable type, 177 // don't try to transform them. We need to be able to bitcast to integer. 178 if (isFirstClassAggregateOrScalableType(LoadTy)) 179 return -1; 180 181 int64_t StoreOffset = 0, LoadOffset = 0; 182 Value *StoreBase = 183 GetPointerBaseWithConstantOffset(WritePtr, StoreOffset, DL); 184 Value *LoadBase = GetPointerBaseWithConstantOffset(LoadPtr, LoadOffset, DL); 185 if (StoreBase != LoadBase) 186 return -1; 187 188 // If the load and store are to the exact same address, they should have been 189 // a must alias. AA must have gotten confused. 190 // FIXME: Study to see if/when this happens. One case is forwarding a memset 191 // to a load from the base of the memset. 192 193 // If the load and store don't overlap at all, the store doesn't provide 194 // anything to the load. In this case, they really don't alias at all, AA 195 // must have gotten confused. 196 uint64_t LoadSize = DL.getTypeSizeInBits(LoadTy).getFixedSize(); 197 198 if ((WriteSizeInBits & 7) | (LoadSize & 7)) 199 return -1; 200 uint64_t StoreSize = WriteSizeInBits / 8; // Convert to bytes. 201 LoadSize /= 8; 202 203 bool isAAFailure = false; 204 if (StoreOffset < LoadOffset) 205 isAAFailure = StoreOffset + int64_t(StoreSize) <= LoadOffset; 206 else 207 isAAFailure = LoadOffset + int64_t(LoadSize) <= StoreOffset; 208 209 if (isAAFailure) 210 return -1; 211 212 // If the Load isn't completely contained within the stored bits, we don't 213 // have all the bits to feed it. We could do something crazy in the future 214 // (issue a smaller load then merge the bits in) but this seems unlikely to be 215 // valuable. 216 if (StoreOffset > LoadOffset || 217 StoreOffset + StoreSize < LoadOffset + LoadSize) 218 return -1; 219 220 // Okay, we can do this transformation. Return the number of bytes into the 221 // store that the load is. 222 return LoadOffset - StoreOffset; 223 } 224 225 /// This function is called when we have a 226 /// memdep query of a load that ends up being a clobbering store. 227 int analyzeLoadFromClobberingStore(Type *LoadTy, Value *LoadPtr, 228 StoreInst *DepSI, const DataLayout &DL) { 229 auto *StoredVal = DepSI->getValueOperand(); 230 231 // Cannot handle reading from store of first-class aggregate or scalable type. 232 if (isFirstClassAggregateOrScalableType(StoredVal->getType())) 233 return -1; 234 235 if (!canCoerceMustAliasedValueToLoad(StoredVal, LoadTy, DL)) 236 return -1; 237 238 Value *StorePtr = DepSI->getPointerOperand(); 239 uint64_t StoreSize = 240 DL.getTypeSizeInBits(DepSI->getValueOperand()->getType()).getFixedSize(); 241 return analyzeLoadFromClobberingWrite(LoadTy, LoadPtr, StorePtr, StoreSize, 242 DL); 243 } 244 245 /// Looks at a memory location for a load (specified by MemLocBase, Offs, and 246 /// Size) and compares it against a load. 247 /// 248 /// If the specified load could be safely widened to a larger integer load 249 /// that is 1) still efficient, 2) safe for the target, and 3) would provide 250 /// the specified memory location value, then this function returns the size 251 /// in bytes of the load width to use. If not, this returns zero. 252 static unsigned getLoadLoadClobberFullWidthSize(const Value *MemLocBase, 253 int64_t MemLocOffs, 254 unsigned MemLocSize, 255 const LoadInst *LI) { 256 // We can only extend simple integer loads. 257 if (!isa<IntegerType>(LI->getType()) || !LI->isSimple()) 258 return 0; 259 260 // Load widening is hostile to ThreadSanitizer: it may cause false positives 261 // or make the reports more cryptic (access sizes are wrong). 262 if (LI->getParent()->getParent()->hasFnAttribute(Attribute::SanitizeThread)) 263 return 0; 264 265 const DataLayout &DL = LI->getModule()->getDataLayout(); 266 267 // Get the base of this load. 268 int64_t LIOffs = 0; 269 const Value *LIBase = 270 GetPointerBaseWithConstantOffset(LI->getPointerOperand(), LIOffs, DL); 271 272 // If the two pointers are not based on the same pointer, we can't tell that 273 // they are related. 274 if (LIBase != MemLocBase) 275 return 0; 276 277 // Okay, the two values are based on the same pointer, but returned as 278 // no-alias. This happens when we have things like two byte loads at "P+1" 279 // and "P+3". Check to see if increasing the size of the "LI" load up to its 280 // alignment (or the largest native integer type) will allow us to load all 281 // the bits required by MemLoc. 282 283 // If MemLoc is before LI, then no widening of LI will help us out. 284 if (MemLocOffs < LIOffs) 285 return 0; 286 287 // Get the alignment of the load in bytes. We assume that it is safe to load 288 // any legal integer up to this size without a problem. For example, if we're 289 // looking at an i8 load on x86-32 that is known 1024 byte aligned, we can 290 // widen it up to an i32 load. If it is known 2-byte aligned, we can widen it 291 // to i16. 292 unsigned LoadAlign = LI->getAlignment(); 293 294 int64_t MemLocEnd = MemLocOffs + MemLocSize; 295 296 // If no amount of rounding up will let MemLoc fit into LI, then bail out. 297 if (LIOffs + LoadAlign < MemLocEnd) 298 return 0; 299 300 // This is the size of the load to try. Start with the next larger power of 301 // two. 302 unsigned NewLoadByteSize = LI->getType()->getPrimitiveSizeInBits() / 8U; 303 NewLoadByteSize = NextPowerOf2(NewLoadByteSize); 304 305 while (true) { 306 // If this load size is bigger than our known alignment or would not fit 307 // into a native integer register, then we fail. 308 if (NewLoadByteSize > LoadAlign || 309 !DL.fitsInLegalInteger(NewLoadByteSize * 8)) 310 return 0; 311 312 if (LIOffs + NewLoadByteSize > MemLocEnd && 313 (LI->getParent()->getParent()->hasFnAttribute( 314 Attribute::SanitizeAddress) || 315 LI->getParent()->getParent()->hasFnAttribute( 316 Attribute::SanitizeHWAddress))) 317 // We will be reading past the location accessed by the original program. 318 // While this is safe in a regular build, Address Safety analysis tools 319 // may start reporting false warnings. So, don't do widening. 320 return 0; 321 322 // If a load of this width would include all of MemLoc, then we succeed. 323 if (LIOffs + NewLoadByteSize >= MemLocEnd) 324 return NewLoadByteSize; 325 326 NewLoadByteSize <<= 1; 327 } 328 } 329 330 /// This function is called when we have a 331 /// memdep query of a load that ends up being clobbered by another load. See if 332 /// the other load can feed into the second load. 333 int analyzeLoadFromClobberingLoad(Type *LoadTy, Value *LoadPtr, LoadInst *DepLI, 334 const DataLayout &DL) { 335 // Cannot handle reading from store of first-class aggregate yet. 336 if (DepLI->getType()->isStructTy() || DepLI->getType()->isArrayTy()) 337 return -1; 338 339 if (!canCoerceMustAliasedValueToLoad(DepLI, LoadTy, DL)) 340 return -1; 341 342 Value *DepPtr = DepLI->getPointerOperand(); 343 uint64_t DepSize = DL.getTypeSizeInBits(DepLI->getType()).getFixedSize(); 344 int R = analyzeLoadFromClobberingWrite(LoadTy, LoadPtr, DepPtr, DepSize, DL); 345 if (R != -1) 346 return R; 347 348 // If we have a load/load clobber an DepLI can be widened to cover this load, 349 // then we should widen it! 350 int64_t LoadOffs = 0; 351 const Value *LoadBase = 352 GetPointerBaseWithConstantOffset(LoadPtr, LoadOffs, DL); 353 unsigned LoadSize = DL.getTypeStoreSize(LoadTy).getFixedSize(); 354 355 unsigned Size = 356 getLoadLoadClobberFullWidthSize(LoadBase, LoadOffs, LoadSize, DepLI); 357 if (Size == 0) 358 return -1; 359 360 // Check non-obvious conditions enforced by MDA which we rely on for being 361 // able to materialize this potentially available value 362 assert(DepLI->isSimple() && "Cannot widen volatile/atomic load!"); 363 assert(DepLI->getType()->isIntegerTy() && "Can't widen non-integer load"); 364 365 return analyzeLoadFromClobberingWrite(LoadTy, LoadPtr, DepPtr, Size * 8, DL); 366 } 367 368 int analyzeLoadFromClobberingMemInst(Type *LoadTy, Value *LoadPtr, 369 MemIntrinsic *MI, const DataLayout &DL) { 370 // If the mem operation is a non-constant size, we can't handle it. 371 ConstantInt *SizeCst = dyn_cast<ConstantInt>(MI->getLength()); 372 if (!SizeCst) 373 return -1; 374 uint64_t MemSizeInBits = SizeCst->getZExtValue() * 8; 375 376 // If this is memset, we just need to see if the offset is valid in the size 377 // of the memset.. 378 if (MI->getIntrinsicID() == Intrinsic::memset) { 379 if (DL.isNonIntegralPointerType(LoadTy->getScalarType())) { 380 auto *CI = dyn_cast<ConstantInt>(cast<MemSetInst>(MI)->getValue()); 381 if (!CI || !CI->isZero()) 382 return -1; 383 } 384 return analyzeLoadFromClobberingWrite(LoadTy, LoadPtr, MI->getDest(), 385 MemSizeInBits, DL); 386 } 387 388 // If we have a memcpy/memmove, the only case we can handle is if this is a 389 // copy from constant memory. In that case, we can read directly from the 390 // constant memory. 391 MemTransferInst *MTI = cast<MemTransferInst>(MI); 392 393 Constant *Src = dyn_cast<Constant>(MTI->getSource()); 394 if (!Src) 395 return -1; 396 397 GlobalVariable *GV = dyn_cast<GlobalVariable>(getUnderlyingObject(Src)); 398 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer()) 399 return -1; 400 401 // See if the access is within the bounds of the transfer. 402 int Offset = analyzeLoadFromClobberingWrite(LoadTy, LoadPtr, MI->getDest(), 403 MemSizeInBits, DL); 404 if (Offset == -1) 405 return Offset; 406 407 unsigned AS = Src->getType()->getPointerAddressSpace(); 408 // Otherwise, see if we can constant fold a load from the constant with the 409 // offset applied as appropriate. 410 if (Offset) { 411 Src = ConstantExpr::getBitCast(Src, 412 Type::getInt8PtrTy(Src->getContext(), AS)); 413 Constant *OffsetCst = 414 ConstantInt::get(Type::getInt64Ty(Src->getContext()), (unsigned)Offset); 415 Src = ConstantExpr::getGetElementPtr(Type::getInt8Ty(Src->getContext()), 416 Src, OffsetCst); 417 } 418 Src = ConstantExpr::getBitCast(Src, PointerType::get(LoadTy, AS)); 419 if (ConstantFoldLoadFromConstPtr(Src, LoadTy, DL)) 420 return Offset; 421 return -1; 422 } 423 424 template <class T, class HelperClass> 425 static T *getStoreValueForLoadHelper(T *SrcVal, unsigned Offset, Type *LoadTy, 426 HelperClass &Helper, 427 const DataLayout &DL) { 428 LLVMContext &Ctx = SrcVal->getType()->getContext(); 429 430 // If two pointers are in the same address space, they have the same size, 431 // so we don't need to do any truncation, etc. This avoids introducing 432 // ptrtoint instructions for pointers that may be non-integral. 433 if (SrcVal->getType()->isPointerTy() && LoadTy->isPointerTy() && 434 cast<PointerType>(SrcVal->getType())->getAddressSpace() == 435 cast<PointerType>(LoadTy)->getAddressSpace()) { 436 return SrcVal; 437 } 438 439 uint64_t StoreSize = 440 (DL.getTypeSizeInBits(SrcVal->getType()).getFixedSize() + 7) / 8; 441 uint64_t LoadSize = (DL.getTypeSizeInBits(LoadTy).getFixedSize() + 7) / 8; 442 // Compute which bits of the stored value are being used by the load. Convert 443 // to an integer type to start with. 444 if (SrcVal->getType()->isPtrOrPtrVectorTy()) 445 SrcVal = Helper.CreatePtrToInt(SrcVal, DL.getIntPtrType(SrcVal->getType())); 446 if (!SrcVal->getType()->isIntegerTy()) 447 SrcVal = Helper.CreateBitCast(SrcVal, IntegerType::get(Ctx, StoreSize * 8)); 448 449 // Shift the bits to the least significant depending on endianness. 450 unsigned ShiftAmt; 451 if (DL.isLittleEndian()) 452 ShiftAmt = Offset * 8; 453 else 454 ShiftAmt = (StoreSize - LoadSize - Offset) * 8; 455 if (ShiftAmt) 456 SrcVal = Helper.CreateLShr(SrcVal, 457 ConstantInt::get(SrcVal->getType(), ShiftAmt)); 458 459 if (LoadSize != StoreSize) 460 SrcVal = Helper.CreateTruncOrBitCast(SrcVal, 461 IntegerType::get(Ctx, LoadSize * 8)); 462 return SrcVal; 463 } 464 465 /// This function is called when we have a memdep query of a load that ends up 466 /// being a clobbering store. This means that the store provides bits used by 467 /// the load but the pointers don't must-alias. Check this case to see if 468 /// there is anything more we can do before we give up. 469 Value *getStoreValueForLoad(Value *SrcVal, unsigned Offset, Type *LoadTy, 470 Instruction *InsertPt, const DataLayout &DL) { 471 472 IRBuilder<> Builder(InsertPt); 473 SrcVal = getStoreValueForLoadHelper(SrcVal, Offset, LoadTy, Builder, DL); 474 return coerceAvailableValueToLoadTypeHelper(SrcVal, LoadTy, Builder, DL); 475 } 476 477 Constant *getConstantStoreValueForLoad(Constant *SrcVal, unsigned Offset, 478 Type *LoadTy, const DataLayout &DL) { 479 ConstantFolder F; 480 SrcVal = getStoreValueForLoadHelper(SrcVal, Offset, LoadTy, F, DL); 481 return coerceAvailableValueToLoadTypeHelper(SrcVal, LoadTy, F, DL); 482 } 483 484 /// This function is called when we have a memdep query of a load that ends up 485 /// being a clobbering load. This means that the load *may* provide bits used 486 /// by the load but we can't be sure because the pointers don't must-alias. 487 /// Check this case to see if there is anything more we can do before we give 488 /// up. 489 Value *getLoadValueForLoad(LoadInst *SrcVal, unsigned Offset, Type *LoadTy, 490 Instruction *InsertPt, const DataLayout &DL) { 491 // If Offset+LoadTy exceeds the size of SrcVal, then we must be wanting to 492 // widen SrcVal out to a larger load. 493 unsigned SrcValStoreSize = 494 DL.getTypeStoreSize(SrcVal->getType()).getFixedSize(); 495 unsigned LoadSize = DL.getTypeStoreSize(LoadTy).getFixedSize(); 496 if (Offset + LoadSize > SrcValStoreSize) { 497 assert(SrcVal->isSimple() && "Cannot widen volatile/atomic load!"); 498 assert(SrcVal->getType()->isIntegerTy() && "Can't widen non-integer load"); 499 // If we have a load/load clobber an DepLI can be widened to cover this 500 // load, then we should widen it to the next power of 2 size big enough! 501 unsigned NewLoadSize = Offset + LoadSize; 502 if (!isPowerOf2_32(NewLoadSize)) 503 NewLoadSize = NextPowerOf2(NewLoadSize); 504 505 Value *PtrVal = SrcVal->getPointerOperand(); 506 // Insert the new load after the old load. This ensures that subsequent 507 // memdep queries will find the new load. We can't easily remove the old 508 // load completely because it is already in the value numbering table. 509 IRBuilder<> Builder(SrcVal->getParent(), ++BasicBlock::iterator(SrcVal)); 510 Type *DestTy = IntegerType::get(LoadTy->getContext(), NewLoadSize * 8); 511 Type *DestPTy = 512 PointerType::get(DestTy, PtrVal->getType()->getPointerAddressSpace()); 513 Builder.SetCurrentDebugLocation(SrcVal->getDebugLoc()); 514 PtrVal = Builder.CreateBitCast(PtrVal, DestPTy); 515 LoadInst *NewLoad = Builder.CreateLoad(DestTy, PtrVal); 516 NewLoad->takeName(SrcVal); 517 NewLoad->setAlignment(SrcVal->getAlign()); 518 519 LLVM_DEBUG(dbgs() << "GVN WIDENED LOAD: " << *SrcVal << "\n"); 520 LLVM_DEBUG(dbgs() << "TO: " << *NewLoad << "\n"); 521 522 // Replace uses of the original load with the wider load. On a big endian 523 // system, we need to shift down to get the relevant bits. 524 Value *RV = NewLoad; 525 if (DL.isBigEndian()) 526 RV = Builder.CreateLShr(RV, (NewLoadSize - SrcValStoreSize) * 8); 527 RV = Builder.CreateTrunc(RV, SrcVal->getType()); 528 SrcVal->replaceAllUsesWith(RV); 529 530 SrcVal = NewLoad; 531 } 532 533 return getStoreValueForLoad(SrcVal, Offset, LoadTy, InsertPt, DL); 534 } 535 536 Constant *getConstantLoadValueForLoad(Constant *SrcVal, unsigned Offset, 537 Type *LoadTy, const DataLayout &DL) { 538 unsigned SrcValStoreSize = 539 DL.getTypeStoreSize(SrcVal->getType()).getFixedSize(); 540 unsigned LoadSize = DL.getTypeStoreSize(LoadTy).getFixedSize(); 541 if (Offset + LoadSize > SrcValStoreSize) 542 return nullptr; 543 return getConstantStoreValueForLoad(SrcVal, Offset, LoadTy, DL); 544 } 545 546 template <class T, class HelperClass> 547 T *getMemInstValueForLoadHelper(MemIntrinsic *SrcInst, unsigned Offset, 548 Type *LoadTy, HelperClass &Helper, 549 const DataLayout &DL) { 550 LLVMContext &Ctx = LoadTy->getContext(); 551 uint64_t LoadSize = DL.getTypeSizeInBits(LoadTy).getFixedSize() / 8; 552 553 // We know that this method is only called when the mem transfer fully 554 // provides the bits for the load. 555 if (MemSetInst *MSI = dyn_cast<MemSetInst>(SrcInst)) { 556 // memset(P, 'x', 1234) -> splat('x'), even if x is a variable, and 557 // independently of what the offset is. 558 T *Val = cast<T>(MSI->getValue()); 559 if (LoadSize != 1) 560 Val = 561 Helper.CreateZExtOrBitCast(Val, IntegerType::get(Ctx, LoadSize * 8)); 562 T *OneElt = Val; 563 564 // Splat the value out to the right number of bits. 565 for (unsigned NumBytesSet = 1; NumBytesSet != LoadSize;) { 566 // If we can double the number of bytes set, do it. 567 if (NumBytesSet * 2 <= LoadSize) { 568 T *ShVal = Helper.CreateShl( 569 Val, ConstantInt::get(Val->getType(), NumBytesSet * 8)); 570 Val = Helper.CreateOr(Val, ShVal); 571 NumBytesSet <<= 1; 572 continue; 573 } 574 575 // Otherwise insert one byte at a time. 576 T *ShVal = Helper.CreateShl(Val, ConstantInt::get(Val->getType(), 1 * 8)); 577 Val = Helper.CreateOr(OneElt, ShVal); 578 ++NumBytesSet; 579 } 580 581 return coerceAvailableValueToLoadTypeHelper(Val, LoadTy, Helper, DL); 582 } 583 584 // Otherwise, this is a memcpy/memmove from a constant global. 585 MemTransferInst *MTI = cast<MemTransferInst>(SrcInst); 586 Constant *Src = cast<Constant>(MTI->getSource()); 587 588 unsigned AS = Src->getType()->getPointerAddressSpace(); 589 // Otherwise, see if we can constant fold a load from the constant with the 590 // offset applied as appropriate. 591 if (Offset) { 592 Src = ConstantExpr::getBitCast(Src, 593 Type::getInt8PtrTy(Src->getContext(), AS)); 594 Constant *OffsetCst = 595 ConstantInt::get(Type::getInt64Ty(Src->getContext()), (unsigned)Offset); 596 Src = ConstantExpr::getGetElementPtr(Type::getInt8Ty(Src->getContext()), 597 Src, OffsetCst); 598 } 599 Src = ConstantExpr::getBitCast(Src, PointerType::get(LoadTy, AS)); 600 return ConstantFoldLoadFromConstPtr(Src, LoadTy, DL); 601 } 602 603 /// This function is called when we have a 604 /// memdep query of a load that ends up being a clobbering mem intrinsic. 605 Value *getMemInstValueForLoad(MemIntrinsic *SrcInst, unsigned Offset, 606 Type *LoadTy, Instruction *InsertPt, 607 const DataLayout &DL) { 608 IRBuilder<> Builder(InsertPt); 609 return getMemInstValueForLoadHelper<Value, IRBuilder<>>(SrcInst, Offset, 610 LoadTy, Builder, DL); 611 } 612 613 Constant *getConstantMemInstValueForLoad(MemIntrinsic *SrcInst, unsigned Offset, 614 Type *LoadTy, const DataLayout &DL) { 615 // The only case analyzeLoadFromClobberingMemInst cannot be converted to a 616 // constant is when it's a memset of a non-constant. 617 if (auto *MSI = dyn_cast<MemSetInst>(SrcInst)) 618 if (!isa<Constant>(MSI->getValue())) 619 return nullptr; 620 ConstantFolder F; 621 return getMemInstValueForLoadHelper<Constant, ConstantFolder>(SrcInst, Offset, 622 LoadTy, F, DL); 623 } 624 } // namespace VNCoercion 625 } // namespace llvm 626