1 #include "llvm/Transforms/Utils/VNCoercion.h" 2 #include "llvm/Analysis/AliasAnalysis.h" 3 #include "llvm/Analysis/ConstantFolding.h" 4 #include "llvm/Analysis/ValueTracking.h" 5 #include "llvm/IR/IRBuilder.h" 6 #include "llvm/IR/IntrinsicInst.h" 7 #include "llvm/Support/Debug.h" 8 9 #define DEBUG_TYPE "vncoerce" 10 namespace llvm { 11 namespace VNCoercion { 12 13 static bool isFirstClassAggregateOrScalableType(Type *Ty) { 14 return Ty->isStructTy() || Ty->isArrayTy() || isa<ScalableVectorType>(Ty); 15 } 16 17 /// Return true if coerceAvailableValueToLoadType will succeed. 18 bool canCoerceMustAliasedValueToLoad(Value *StoredVal, Type *LoadTy, 19 const DataLayout &DL) { 20 Type *StoredTy = StoredVal->getType(); 21 if (StoredTy == LoadTy) 22 return true; 23 24 // If the loaded/stored value is a first class array/struct, or scalable type, 25 // don't try to transform them. We need to be able to bitcast to integer. 26 if (isFirstClassAggregateOrScalableType(LoadTy) || 27 isFirstClassAggregateOrScalableType(StoredTy)) 28 return false; 29 30 uint64_t StoreSize = DL.getTypeSizeInBits(StoredTy).getFixedSize(); 31 32 // The store size must be byte-aligned to support future type casts. 33 if (llvm::alignTo(StoreSize, 8) != StoreSize) 34 return false; 35 36 // The store has to be at least as big as the load. 37 if (StoreSize < DL.getTypeSizeInBits(LoadTy).getFixedSize()) 38 return false; 39 40 // Don't coerce non-integral pointers to integers or vice versa. 41 if (DL.isNonIntegralPointerType(StoredVal->getType()->getScalarType()) != 42 DL.isNonIntegralPointerType(LoadTy->getScalarType())) { 43 // As a special case, allow coercion of memset used to initialize 44 // an array w/null. Despite non-integral pointers not generally having a 45 // specific bit pattern, we do assume null is zero. 46 if (auto *CI = dyn_cast<Constant>(StoredVal)) 47 return CI->isNullValue(); 48 return false; 49 } 50 51 return true; 52 } 53 54 template <class T, class HelperClass> 55 static T *coerceAvailableValueToLoadTypeHelper(T *StoredVal, Type *LoadedTy, 56 HelperClass &Helper, 57 const DataLayout &DL) { 58 assert(canCoerceMustAliasedValueToLoad(StoredVal, LoadedTy, DL) && 59 "precondition violation - materialization can't fail"); 60 if (auto *C = dyn_cast<Constant>(StoredVal)) 61 StoredVal = ConstantFoldConstant(C, DL); 62 63 // If this is already the right type, just return it. 64 Type *StoredValTy = StoredVal->getType(); 65 66 uint64_t StoredValSize = DL.getTypeSizeInBits(StoredValTy).getFixedSize(); 67 uint64_t LoadedValSize = DL.getTypeSizeInBits(LoadedTy).getFixedSize(); 68 69 // If the store and reload are the same size, we can always reuse it. 70 if (StoredValSize == LoadedValSize) { 71 // Pointer to Pointer -> use bitcast. 72 if (StoredValTy->isPtrOrPtrVectorTy() && LoadedTy->isPtrOrPtrVectorTy()) { 73 StoredVal = Helper.CreateBitCast(StoredVal, LoadedTy); 74 } else { 75 // Convert source pointers to integers, which can be bitcast. 76 if (StoredValTy->isPtrOrPtrVectorTy()) { 77 StoredValTy = DL.getIntPtrType(StoredValTy); 78 StoredVal = Helper.CreatePtrToInt(StoredVal, StoredValTy); 79 } 80 81 Type *TypeToCastTo = LoadedTy; 82 if (TypeToCastTo->isPtrOrPtrVectorTy()) 83 TypeToCastTo = DL.getIntPtrType(TypeToCastTo); 84 85 if (StoredValTy != TypeToCastTo) 86 StoredVal = Helper.CreateBitCast(StoredVal, TypeToCastTo); 87 88 // Cast to pointer if the load needs a pointer type. 89 if (LoadedTy->isPtrOrPtrVectorTy()) 90 StoredVal = Helper.CreateIntToPtr(StoredVal, LoadedTy); 91 } 92 93 if (auto *C = dyn_cast<ConstantExpr>(StoredVal)) 94 StoredVal = ConstantFoldConstant(C, DL); 95 96 return StoredVal; 97 } 98 // If the loaded value is smaller than the available value, then we can 99 // extract out a piece from it. If the available value is too small, then we 100 // can't do anything. 101 assert(StoredValSize >= LoadedValSize && 102 "canCoerceMustAliasedValueToLoad fail"); 103 104 // Convert source pointers to integers, which can be manipulated. 105 if (StoredValTy->isPtrOrPtrVectorTy()) { 106 StoredValTy = DL.getIntPtrType(StoredValTy); 107 StoredVal = Helper.CreatePtrToInt(StoredVal, StoredValTy); 108 } 109 110 // Convert vectors and fp to integer, which can be manipulated. 111 if (!StoredValTy->isIntegerTy()) { 112 StoredValTy = IntegerType::get(StoredValTy->getContext(), StoredValSize); 113 StoredVal = Helper.CreateBitCast(StoredVal, StoredValTy); 114 } 115 116 // If this is a big-endian system, we need to shift the value down to the low 117 // bits so that a truncate will work. 118 if (DL.isBigEndian()) { 119 uint64_t ShiftAmt = DL.getTypeStoreSizeInBits(StoredValTy).getFixedSize() - 120 DL.getTypeStoreSizeInBits(LoadedTy).getFixedSize(); 121 StoredVal = Helper.CreateLShr( 122 StoredVal, ConstantInt::get(StoredVal->getType(), ShiftAmt)); 123 } 124 125 // Truncate the integer to the right size now. 126 Type *NewIntTy = IntegerType::get(StoredValTy->getContext(), LoadedValSize); 127 StoredVal = Helper.CreateTruncOrBitCast(StoredVal, NewIntTy); 128 129 if (LoadedTy != NewIntTy) { 130 // If the result is a pointer, inttoptr. 131 if (LoadedTy->isPtrOrPtrVectorTy()) 132 StoredVal = Helper.CreateIntToPtr(StoredVal, LoadedTy); 133 else 134 // Otherwise, bitcast. 135 StoredVal = Helper.CreateBitCast(StoredVal, LoadedTy); 136 } 137 138 if (auto *C = dyn_cast<Constant>(StoredVal)) 139 StoredVal = ConstantFoldConstant(C, DL); 140 141 return StoredVal; 142 } 143 144 /// If we saw a store of a value to memory, and 145 /// then a load from a must-aliased pointer of a different type, try to coerce 146 /// the stored value. LoadedTy is the type of the load we want to replace. 147 /// IRB is IRBuilder used to insert new instructions. 148 /// 149 /// If we can't do it, return null. 150 Value *coerceAvailableValueToLoadType(Value *StoredVal, Type *LoadedTy, 151 IRBuilderBase &IRB, 152 const DataLayout &DL) { 153 return coerceAvailableValueToLoadTypeHelper(StoredVal, LoadedTy, IRB, DL); 154 } 155 156 /// This function is called when we have a memdep query of a load that ends up 157 /// being a clobbering memory write (store, memset, memcpy, memmove). This 158 /// means that the write *may* provide bits used by the load but we can't be 159 /// sure because the pointers don't must-alias. 160 /// 161 /// Check this case to see if there is anything more we can do before we give 162 /// up. This returns -1 if we have to give up, or a byte number in the stored 163 /// value of the piece that feeds the load. 164 static int analyzeLoadFromClobberingWrite(Type *LoadTy, Value *LoadPtr, 165 Value *WritePtr, 166 uint64_t WriteSizeInBits, 167 const DataLayout &DL) { 168 // If the loaded/stored value is a first class array/struct, or scalable type, 169 // don't try to transform them. We need to be able to bitcast to integer. 170 if (isFirstClassAggregateOrScalableType(LoadTy)) 171 return -1; 172 173 int64_t StoreOffset = 0, LoadOffset = 0; 174 Value *StoreBase = 175 GetPointerBaseWithConstantOffset(WritePtr, StoreOffset, DL); 176 Value *LoadBase = GetPointerBaseWithConstantOffset(LoadPtr, LoadOffset, DL); 177 if (StoreBase != LoadBase) 178 return -1; 179 180 // If the load and store are to the exact same address, they should have been 181 // a must alias. AA must have gotten confused. 182 // FIXME: Study to see if/when this happens. One case is forwarding a memset 183 // to a load from the base of the memset. 184 185 // If the load and store don't overlap at all, the store doesn't provide 186 // anything to the load. In this case, they really don't alias at all, AA 187 // must have gotten confused. 188 uint64_t LoadSize = DL.getTypeSizeInBits(LoadTy).getFixedSize(); 189 190 if ((WriteSizeInBits & 7) | (LoadSize & 7)) 191 return -1; 192 uint64_t StoreSize = WriteSizeInBits / 8; // Convert to bytes. 193 LoadSize /= 8; 194 195 bool isAAFailure = false; 196 if (StoreOffset < LoadOffset) 197 isAAFailure = StoreOffset + int64_t(StoreSize) <= LoadOffset; 198 else 199 isAAFailure = LoadOffset + int64_t(LoadSize) <= StoreOffset; 200 201 if (isAAFailure) 202 return -1; 203 204 // If the Load isn't completely contained within the stored bits, we don't 205 // have all the bits to feed it. We could do something crazy in the future 206 // (issue a smaller load then merge the bits in) but this seems unlikely to be 207 // valuable. 208 if (StoreOffset > LoadOffset || 209 StoreOffset + StoreSize < LoadOffset + LoadSize) 210 return -1; 211 212 // Okay, we can do this transformation. Return the number of bytes into the 213 // store that the load is. 214 return LoadOffset - StoreOffset; 215 } 216 217 /// This function is called when we have a 218 /// memdep query of a load that ends up being a clobbering store. 219 int analyzeLoadFromClobberingStore(Type *LoadTy, Value *LoadPtr, 220 StoreInst *DepSI, const DataLayout &DL) { 221 auto *StoredVal = DepSI->getValueOperand(); 222 223 // Cannot handle reading from store of first-class aggregate or scalable type. 224 if (isFirstClassAggregateOrScalableType(StoredVal->getType())) 225 return -1; 226 227 // Don't coerce non-integral pointers to integers or vice versa. 228 if (DL.isNonIntegralPointerType(StoredVal->getType()->getScalarType()) != 229 DL.isNonIntegralPointerType(LoadTy->getScalarType())) { 230 // Allow casts of zero values to null as a special case 231 auto *CI = dyn_cast<Constant>(StoredVal); 232 if (!CI || !CI->isNullValue()) 233 return -1; 234 } 235 236 Value *StorePtr = DepSI->getPointerOperand(); 237 uint64_t StoreSize = 238 DL.getTypeSizeInBits(DepSI->getValueOperand()->getType()).getFixedSize(); 239 return analyzeLoadFromClobberingWrite(LoadTy, LoadPtr, StorePtr, StoreSize, 240 DL); 241 } 242 243 /// Looks at a memory location for a load (specified by MemLocBase, Offs, and 244 /// Size) and compares it against a load. 245 /// 246 /// If the specified load could be safely widened to a larger integer load 247 /// that is 1) still efficient, 2) safe for the target, and 3) would provide 248 /// the specified memory location value, then this function returns the size 249 /// in bytes of the load width to use. If not, this returns zero. 250 static unsigned getLoadLoadClobberFullWidthSize(const Value *MemLocBase, 251 int64_t MemLocOffs, 252 unsigned MemLocSize, 253 const LoadInst *LI) { 254 // We can only extend simple integer loads. 255 if (!isa<IntegerType>(LI->getType()) || !LI->isSimple()) 256 return 0; 257 258 // Load widening is hostile to ThreadSanitizer: it may cause false positives 259 // or make the reports more cryptic (access sizes are wrong). 260 if (LI->getParent()->getParent()->hasFnAttribute(Attribute::SanitizeThread)) 261 return 0; 262 263 const DataLayout &DL = LI->getModule()->getDataLayout(); 264 265 // Get the base of this load. 266 int64_t LIOffs = 0; 267 const Value *LIBase = 268 GetPointerBaseWithConstantOffset(LI->getPointerOperand(), LIOffs, DL); 269 270 // If the two pointers are not based on the same pointer, we can't tell that 271 // they are related. 272 if (LIBase != MemLocBase) 273 return 0; 274 275 // Okay, the two values are based on the same pointer, but returned as 276 // no-alias. This happens when we have things like two byte loads at "P+1" 277 // and "P+3". Check to see if increasing the size of the "LI" load up to its 278 // alignment (or the largest native integer type) will allow us to load all 279 // the bits required by MemLoc. 280 281 // If MemLoc is before LI, then no widening of LI will help us out. 282 if (MemLocOffs < LIOffs) 283 return 0; 284 285 // Get the alignment of the load in bytes. We assume that it is safe to load 286 // any legal integer up to this size without a problem. For example, if we're 287 // looking at an i8 load on x86-32 that is known 1024 byte aligned, we can 288 // widen it up to an i32 load. If it is known 2-byte aligned, we can widen it 289 // to i16. 290 unsigned LoadAlign = LI->getAlignment(); 291 292 int64_t MemLocEnd = MemLocOffs + MemLocSize; 293 294 // If no amount of rounding up will let MemLoc fit into LI, then bail out. 295 if (LIOffs + LoadAlign < MemLocEnd) 296 return 0; 297 298 // This is the size of the load to try. Start with the next larger power of 299 // two. 300 unsigned NewLoadByteSize = LI->getType()->getPrimitiveSizeInBits() / 8U; 301 NewLoadByteSize = NextPowerOf2(NewLoadByteSize); 302 303 while (true) { 304 // If this load size is bigger than our known alignment or would not fit 305 // into a native integer register, then we fail. 306 if (NewLoadByteSize > LoadAlign || 307 !DL.fitsInLegalInteger(NewLoadByteSize * 8)) 308 return 0; 309 310 if (LIOffs + NewLoadByteSize > MemLocEnd && 311 (LI->getParent()->getParent()->hasFnAttribute( 312 Attribute::SanitizeAddress) || 313 LI->getParent()->getParent()->hasFnAttribute( 314 Attribute::SanitizeHWAddress))) 315 // We will be reading past the location accessed by the original program. 316 // While this is safe in a regular build, Address Safety analysis tools 317 // may start reporting false warnings. So, don't do widening. 318 return 0; 319 320 // If a load of this width would include all of MemLoc, then we succeed. 321 if (LIOffs + NewLoadByteSize >= MemLocEnd) 322 return NewLoadByteSize; 323 324 NewLoadByteSize <<= 1; 325 } 326 } 327 328 /// This function is called when we have a 329 /// memdep query of a load that ends up being clobbered by another load. See if 330 /// the other load can feed into the second load. 331 int analyzeLoadFromClobberingLoad(Type *LoadTy, Value *LoadPtr, LoadInst *DepLI, 332 const DataLayout &DL) { 333 // Cannot handle reading from store of first-class aggregate yet. 334 if (DepLI->getType()->isStructTy() || DepLI->getType()->isArrayTy()) 335 return -1; 336 337 // Don't coerce non-integral pointers to integers or vice versa. 338 if (DL.isNonIntegralPointerType(DepLI->getType()->getScalarType()) != 339 DL.isNonIntegralPointerType(LoadTy->getScalarType())) 340 return -1; 341 342 Value *DepPtr = DepLI->getPointerOperand(); 343 uint64_t DepSize = DL.getTypeSizeInBits(DepLI->getType()).getFixedSize(); 344 int R = analyzeLoadFromClobberingWrite(LoadTy, LoadPtr, DepPtr, DepSize, DL); 345 if (R != -1) 346 return R; 347 348 // If we have a load/load clobber an DepLI can be widened to cover this load, 349 // then we should widen it! 350 int64_t LoadOffs = 0; 351 const Value *LoadBase = 352 GetPointerBaseWithConstantOffset(LoadPtr, LoadOffs, DL); 353 unsigned LoadSize = DL.getTypeStoreSize(LoadTy).getFixedSize(); 354 355 unsigned Size = 356 getLoadLoadClobberFullWidthSize(LoadBase, LoadOffs, LoadSize, DepLI); 357 if (Size == 0) 358 return -1; 359 360 // Check non-obvious conditions enforced by MDA which we rely on for being 361 // able to materialize this potentially available value 362 assert(DepLI->isSimple() && "Cannot widen volatile/atomic load!"); 363 assert(DepLI->getType()->isIntegerTy() && "Can't widen non-integer load"); 364 365 return analyzeLoadFromClobberingWrite(LoadTy, LoadPtr, DepPtr, Size * 8, DL); 366 } 367 368 int analyzeLoadFromClobberingMemInst(Type *LoadTy, Value *LoadPtr, 369 MemIntrinsic *MI, const DataLayout &DL) { 370 // If the mem operation is a non-constant size, we can't handle it. 371 ConstantInt *SizeCst = dyn_cast<ConstantInt>(MI->getLength()); 372 if (!SizeCst) 373 return -1; 374 uint64_t MemSizeInBits = SizeCst->getZExtValue() * 8; 375 376 // If this is memset, we just need to see if the offset is valid in the size 377 // of the memset.. 378 if (MI->getIntrinsicID() == Intrinsic::memset) { 379 if (DL.isNonIntegralPointerType(LoadTy->getScalarType())) { 380 auto *CI = dyn_cast<ConstantInt>(cast<MemSetInst>(MI)->getValue()); 381 if (!CI || !CI->isZero()) 382 return -1; 383 } 384 return analyzeLoadFromClobberingWrite(LoadTy, LoadPtr, MI->getDest(), 385 MemSizeInBits, DL); 386 } 387 388 // If we have a memcpy/memmove, the only case we can handle is if this is a 389 // copy from constant memory. In that case, we can read directly from the 390 // constant memory. 391 MemTransferInst *MTI = cast<MemTransferInst>(MI); 392 393 Constant *Src = dyn_cast<Constant>(MTI->getSource()); 394 if (!Src) 395 return -1; 396 397 GlobalVariable *GV = dyn_cast<GlobalVariable>(GetUnderlyingObject(Src, DL)); 398 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer()) 399 return -1; 400 401 // See if the access is within the bounds of the transfer. 402 int Offset = analyzeLoadFromClobberingWrite(LoadTy, LoadPtr, MI->getDest(), 403 MemSizeInBits, DL); 404 if (Offset == -1) 405 return Offset; 406 407 // Don't coerce non-integral pointers to integers or vice versa, and the 408 // memtransfer is implicitly a raw byte code 409 if (DL.isNonIntegralPointerType(LoadTy->getScalarType())) 410 // TODO: Can allow nullptrs from constant zeros 411 return -1; 412 413 unsigned AS = Src->getType()->getPointerAddressSpace(); 414 // Otherwise, see if we can constant fold a load from the constant with the 415 // offset applied as appropriate. 416 Src = 417 ConstantExpr::getBitCast(Src, Type::getInt8PtrTy(Src->getContext(), AS)); 418 Constant *OffsetCst = 419 ConstantInt::get(Type::getInt64Ty(Src->getContext()), (unsigned)Offset); 420 Src = ConstantExpr::getGetElementPtr(Type::getInt8Ty(Src->getContext()), Src, 421 OffsetCst); 422 Src = ConstantExpr::getBitCast(Src, PointerType::get(LoadTy, AS)); 423 if (ConstantFoldLoadFromConstPtr(Src, LoadTy, DL)) 424 return Offset; 425 return -1; 426 } 427 428 template <class T, class HelperClass> 429 static T *getStoreValueForLoadHelper(T *SrcVal, unsigned Offset, Type *LoadTy, 430 HelperClass &Helper, 431 const DataLayout &DL) { 432 LLVMContext &Ctx = SrcVal->getType()->getContext(); 433 434 // If two pointers are in the same address space, they have the same size, 435 // so we don't need to do any truncation, etc. This avoids introducing 436 // ptrtoint instructions for pointers that may be non-integral. 437 if (SrcVal->getType()->isPointerTy() && LoadTy->isPointerTy() && 438 cast<PointerType>(SrcVal->getType())->getAddressSpace() == 439 cast<PointerType>(LoadTy)->getAddressSpace()) { 440 return SrcVal; 441 } 442 443 uint64_t StoreSize = 444 (DL.getTypeSizeInBits(SrcVal->getType()).getFixedSize() + 7) / 8; 445 uint64_t LoadSize = (DL.getTypeSizeInBits(LoadTy).getFixedSize() + 7) / 8; 446 // Compute which bits of the stored value are being used by the load. Convert 447 // to an integer type to start with. 448 if (SrcVal->getType()->isPtrOrPtrVectorTy()) 449 SrcVal = Helper.CreatePtrToInt(SrcVal, DL.getIntPtrType(SrcVal->getType())); 450 if (!SrcVal->getType()->isIntegerTy()) 451 SrcVal = Helper.CreateBitCast(SrcVal, IntegerType::get(Ctx, StoreSize * 8)); 452 453 // Shift the bits to the least significant depending on endianness. 454 unsigned ShiftAmt; 455 if (DL.isLittleEndian()) 456 ShiftAmt = Offset * 8; 457 else 458 ShiftAmt = (StoreSize - LoadSize - Offset) * 8; 459 if (ShiftAmt) 460 SrcVal = Helper.CreateLShr(SrcVal, 461 ConstantInt::get(SrcVal->getType(), ShiftAmt)); 462 463 if (LoadSize != StoreSize) 464 SrcVal = Helper.CreateTruncOrBitCast(SrcVal, 465 IntegerType::get(Ctx, LoadSize * 8)); 466 return SrcVal; 467 } 468 469 /// This function is called when we have a memdep query of a load that ends up 470 /// being a clobbering store. This means that the store provides bits used by 471 /// the load but the pointers don't must-alias. Check this case to see if 472 /// there is anything more we can do before we give up. 473 Value *getStoreValueForLoad(Value *SrcVal, unsigned Offset, Type *LoadTy, 474 Instruction *InsertPt, const DataLayout &DL) { 475 476 IRBuilder<> Builder(InsertPt); 477 SrcVal = getStoreValueForLoadHelper(SrcVal, Offset, LoadTy, Builder, DL); 478 return coerceAvailableValueToLoadTypeHelper(SrcVal, LoadTy, Builder, DL); 479 } 480 481 Constant *getConstantStoreValueForLoad(Constant *SrcVal, unsigned Offset, 482 Type *LoadTy, const DataLayout &DL) { 483 ConstantFolder F; 484 SrcVal = getStoreValueForLoadHelper(SrcVal, Offset, LoadTy, F, DL); 485 return coerceAvailableValueToLoadTypeHelper(SrcVal, LoadTy, F, DL); 486 } 487 488 /// This function is called when we have a memdep query of a load that ends up 489 /// being a clobbering load. This means that the load *may* provide bits used 490 /// by the load but we can't be sure because the pointers don't must-alias. 491 /// Check this case to see if there is anything more we can do before we give 492 /// up. 493 Value *getLoadValueForLoad(LoadInst *SrcVal, unsigned Offset, Type *LoadTy, 494 Instruction *InsertPt, const DataLayout &DL) { 495 // If Offset+LoadTy exceeds the size of SrcVal, then we must be wanting to 496 // widen SrcVal out to a larger load. 497 unsigned SrcValStoreSize = 498 DL.getTypeStoreSize(SrcVal->getType()).getFixedSize(); 499 unsigned LoadSize = DL.getTypeStoreSize(LoadTy).getFixedSize(); 500 if (Offset + LoadSize > SrcValStoreSize) { 501 assert(SrcVal->isSimple() && "Cannot widen volatile/atomic load!"); 502 assert(SrcVal->getType()->isIntegerTy() && "Can't widen non-integer load"); 503 // If we have a load/load clobber an DepLI can be widened to cover this 504 // load, then we should widen it to the next power of 2 size big enough! 505 unsigned NewLoadSize = Offset + LoadSize; 506 if (!isPowerOf2_32(NewLoadSize)) 507 NewLoadSize = NextPowerOf2(NewLoadSize); 508 509 Value *PtrVal = SrcVal->getPointerOperand(); 510 // Insert the new load after the old load. This ensures that subsequent 511 // memdep queries will find the new load. We can't easily remove the old 512 // load completely because it is already in the value numbering table. 513 IRBuilder<> Builder(SrcVal->getParent(), ++BasicBlock::iterator(SrcVal)); 514 Type *DestTy = IntegerType::get(LoadTy->getContext(), NewLoadSize * 8); 515 Type *DestPTy = 516 PointerType::get(DestTy, PtrVal->getType()->getPointerAddressSpace()); 517 Builder.SetCurrentDebugLocation(SrcVal->getDebugLoc()); 518 PtrVal = Builder.CreateBitCast(PtrVal, DestPTy); 519 LoadInst *NewLoad = Builder.CreateLoad(DestTy, PtrVal); 520 NewLoad->takeName(SrcVal); 521 NewLoad->setAlignment(SrcVal->getAlign()); 522 523 LLVM_DEBUG(dbgs() << "GVN WIDENED LOAD: " << *SrcVal << "\n"); 524 LLVM_DEBUG(dbgs() << "TO: " << *NewLoad << "\n"); 525 526 // Replace uses of the original load with the wider load. On a big endian 527 // system, we need to shift down to get the relevant bits. 528 Value *RV = NewLoad; 529 if (DL.isBigEndian()) 530 RV = Builder.CreateLShr(RV, (NewLoadSize - SrcValStoreSize) * 8); 531 RV = Builder.CreateTrunc(RV, SrcVal->getType()); 532 SrcVal->replaceAllUsesWith(RV); 533 534 SrcVal = NewLoad; 535 } 536 537 return getStoreValueForLoad(SrcVal, Offset, LoadTy, InsertPt, DL); 538 } 539 540 Constant *getConstantLoadValueForLoad(Constant *SrcVal, unsigned Offset, 541 Type *LoadTy, const DataLayout &DL) { 542 unsigned SrcValStoreSize = 543 DL.getTypeStoreSize(SrcVal->getType()).getFixedSize(); 544 unsigned LoadSize = DL.getTypeStoreSize(LoadTy).getFixedSize(); 545 if (Offset + LoadSize > SrcValStoreSize) 546 return nullptr; 547 return getConstantStoreValueForLoad(SrcVal, Offset, LoadTy, DL); 548 } 549 550 template <class T, class HelperClass> 551 T *getMemInstValueForLoadHelper(MemIntrinsic *SrcInst, unsigned Offset, 552 Type *LoadTy, HelperClass &Helper, 553 const DataLayout &DL) { 554 LLVMContext &Ctx = LoadTy->getContext(); 555 uint64_t LoadSize = DL.getTypeSizeInBits(LoadTy).getFixedSize() / 8; 556 557 // We know that this method is only called when the mem transfer fully 558 // provides the bits for the load. 559 if (MemSetInst *MSI = dyn_cast<MemSetInst>(SrcInst)) { 560 // memset(P, 'x', 1234) -> splat('x'), even if x is a variable, and 561 // independently of what the offset is. 562 T *Val = cast<T>(MSI->getValue()); 563 if (LoadSize != 1) 564 Val = 565 Helper.CreateZExtOrBitCast(Val, IntegerType::get(Ctx, LoadSize * 8)); 566 T *OneElt = Val; 567 568 // Splat the value out to the right number of bits. 569 for (unsigned NumBytesSet = 1; NumBytesSet != LoadSize;) { 570 // If we can double the number of bytes set, do it. 571 if (NumBytesSet * 2 <= LoadSize) { 572 T *ShVal = Helper.CreateShl( 573 Val, ConstantInt::get(Val->getType(), NumBytesSet * 8)); 574 Val = Helper.CreateOr(Val, ShVal); 575 NumBytesSet <<= 1; 576 continue; 577 } 578 579 // Otherwise insert one byte at a time. 580 T *ShVal = Helper.CreateShl(Val, ConstantInt::get(Val->getType(), 1 * 8)); 581 Val = Helper.CreateOr(OneElt, ShVal); 582 ++NumBytesSet; 583 } 584 585 return coerceAvailableValueToLoadTypeHelper(Val, LoadTy, Helper, DL); 586 } 587 588 // Otherwise, this is a memcpy/memmove from a constant global. 589 MemTransferInst *MTI = cast<MemTransferInst>(SrcInst); 590 Constant *Src = cast<Constant>(MTI->getSource()); 591 unsigned AS = Src->getType()->getPointerAddressSpace(); 592 593 // Otherwise, see if we can constant fold a load from the constant with the 594 // offset applied as appropriate. 595 Src = 596 ConstantExpr::getBitCast(Src, Type::getInt8PtrTy(Src->getContext(), AS)); 597 Constant *OffsetCst = 598 ConstantInt::get(Type::getInt64Ty(Src->getContext()), (unsigned)Offset); 599 Src = ConstantExpr::getGetElementPtr(Type::getInt8Ty(Src->getContext()), Src, 600 OffsetCst); 601 Src = ConstantExpr::getBitCast(Src, PointerType::get(LoadTy, AS)); 602 return ConstantFoldLoadFromConstPtr(Src, LoadTy, DL); 603 } 604 605 /// This function is called when we have a 606 /// memdep query of a load that ends up being a clobbering mem intrinsic. 607 Value *getMemInstValueForLoad(MemIntrinsic *SrcInst, unsigned Offset, 608 Type *LoadTy, Instruction *InsertPt, 609 const DataLayout &DL) { 610 IRBuilder<> Builder(InsertPt); 611 return getMemInstValueForLoadHelper<Value, IRBuilder<>>(SrcInst, Offset, 612 LoadTy, Builder, DL); 613 } 614 615 Constant *getConstantMemInstValueForLoad(MemIntrinsic *SrcInst, unsigned Offset, 616 Type *LoadTy, const DataLayout &DL) { 617 // The only case analyzeLoadFromClobberingMemInst cannot be converted to a 618 // constant is when it's a memset of a non-constant. 619 if (auto *MSI = dyn_cast<MemSetInst>(SrcInst)) 620 if (!isa<Constant>(MSI->getValue())) 621 return nullptr; 622 ConstantFolder F; 623 return getMemInstValueForLoadHelper<Constant, ConstantFolder>(SrcInst, Offset, 624 LoadTy, F, DL); 625 } 626 } // namespace VNCoercion 627 } // namespace llvm 628