1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Peephole optimize the CFG.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/ADT/DenseMap.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/ADT/SetOperations.h"
17 #include "llvm/ADT/SetVector.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/Analysis/ConstantFolding.h"
22 #include "llvm/Analysis/EHPersonalities.h"
23 #include "llvm/Analysis/InstructionSimplify.h"
24 #include "llvm/Analysis/TargetTransformInfo.h"
25 #include "llvm/Analysis/ValueTracking.h"
26 #include "llvm/IR/CFG.h"
27 #include "llvm/IR/ConstantRange.h"
28 #include "llvm/IR/Constants.h"
29 #include "llvm/IR/DataLayout.h"
30 #include "llvm/IR/DerivedTypes.h"
31 #include "llvm/IR/GlobalVariable.h"
32 #include "llvm/IR/IRBuilder.h"
33 #include "llvm/IR/Instructions.h"
34 #include "llvm/IR/IntrinsicInst.h"
35 #include "llvm/IR/LLVMContext.h"
36 #include "llvm/IR/MDBuilder.h"
37 #include "llvm/IR/Metadata.h"
38 #include "llvm/IR/Module.h"
39 #include "llvm/IR/NoFolder.h"
40 #include "llvm/IR/Operator.h"
41 #include "llvm/IR/PatternMatch.h"
42 #include "llvm/IR/Type.h"
43 #include "llvm/Support/CommandLine.h"
44 #include "llvm/Support/Debug.h"
45 #include "llvm/Support/raw_ostream.h"
46 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
47 #include "llvm/Transforms/Utils/Local.h"
48 #include "llvm/Transforms/Utils/ValueMapper.h"
49 #include <algorithm>
50 #include <map>
51 #include <set>
52 using namespace llvm;
53 using namespace PatternMatch;
54 
55 #define DEBUG_TYPE "simplifycfg"
56 
57 // Chosen as 2 so as to be cheap, but still to have enough power to fold
58 // a select, so the "clamp" idiom (of a min followed by a max) will be caught.
59 // To catch this, we need to fold a compare and a select, hence '2' being the
60 // minimum reasonable default.
61 static cl::opt<unsigned> PHINodeFoldingThreshold(
62     "phi-node-folding-threshold", cl::Hidden, cl::init(2),
63     cl::desc(
64         "Control the amount of phi node folding to perform (default = 2)"));
65 
66 static cl::opt<bool> DupRet(
67     "simplifycfg-dup-ret", cl::Hidden, cl::init(false),
68     cl::desc("Duplicate return instructions into unconditional branches"));
69 
70 static cl::opt<bool>
71     SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true),
72                cl::desc("Sink common instructions down to the end block"));
73 
74 static cl::opt<bool> HoistCondStores(
75     "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true),
76     cl::desc("Hoist conditional stores if an unconditional store precedes"));
77 
78 static cl::opt<bool> MergeCondStores(
79     "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true),
80     cl::desc("Hoist conditional stores even if an unconditional store does not "
81              "precede - hoist multiple conditional stores into a single "
82              "predicated store"));
83 
84 static cl::opt<bool> MergeCondStoresAggressively(
85     "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false),
86     cl::desc("When merging conditional stores, do so even if the resultant "
87              "basic blocks are unlikely to be if-converted as a result"));
88 
89 static cl::opt<bool> SpeculateOneExpensiveInst(
90     "speculate-one-expensive-inst", cl::Hidden, cl::init(true),
91     cl::desc("Allow exactly one expensive instruction to be speculatively "
92              "executed"));
93 
94 static cl::opt<unsigned> MaxSpeculationDepth(
95     "max-speculation-depth", cl::Hidden, cl::init(10),
96     cl::desc("Limit maximum recursion depth when calculating costs of "
97              "speculatively executed instructions"));
98 
99 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps");
100 STATISTIC(NumLinearMaps,
101           "Number of switch instructions turned into linear mapping");
102 STATISTIC(NumLookupTables,
103           "Number of switch instructions turned into lookup tables");
104 STATISTIC(
105     NumLookupTablesHoles,
106     "Number of switch instructions turned into lookup tables (holes checked)");
107 STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares");
108 STATISTIC(NumSinkCommons,
109           "Number of common instructions sunk down to the end block");
110 STATISTIC(NumSpeculations, "Number of speculative executed instructions");
111 
112 namespace {
113 // The first field contains the value that the switch produces when a certain
114 // case group is selected, and the second field is a vector containing the
115 // cases composing the case group.
116 typedef SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2>
117     SwitchCaseResultVectorTy;
118 // The first field contains the phi node that generates a result of the switch
119 // and the second field contains the value generated for a certain case in the
120 // switch for that PHI.
121 typedef SmallVector<std::pair<PHINode *, Constant *>, 4> SwitchCaseResultsTy;
122 
123 /// ValueEqualityComparisonCase - Represents a case of a switch.
124 struct ValueEqualityComparisonCase {
125   ConstantInt *Value;
126   BasicBlock *Dest;
127 
128   ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest)
129       : Value(Value), Dest(Dest) {}
130 
131   bool operator<(ValueEqualityComparisonCase RHS) const {
132     // Comparing pointers is ok as we only rely on the order for uniquing.
133     return Value < RHS.Value;
134   }
135 
136   bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; }
137 };
138 
139 class SimplifyCFGOpt {
140   const TargetTransformInfo &TTI;
141   const DataLayout &DL;
142   unsigned BonusInstThreshold;
143   AssumptionCache *AC;
144   SmallPtrSetImpl<BasicBlock *> *LoopHeaders;
145   Value *isValueEqualityComparison(TerminatorInst *TI);
146   BasicBlock *GetValueEqualityComparisonCases(
147       TerminatorInst *TI, std::vector<ValueEqualityComparisonCase> &Cases);
148   bool SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI,
149                                                      BasicBlock *Pred,
150                                                      IRBuilder<> &Builder);
151   bool FoldValueComparisonIntoPredecessors(TerminatorInst *TI,
152                                            IRBuilder<> &Builder);
153 
154   bool SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder);
155   bool SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder);
156   bool SimplifySingleResume(ResumeInst *RI);
157   bool SimplifyCommonResume(ResumeInst *RI);
158   bool SimplifyCleanupReturn(CleanupReturnInst *RI);
159   bool SimplifyUnreachable(UnreachableInst *UI);
160   bool SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder);
161   bool SimplifyIndirectBr(IndirectBrInst *IBI);
162   bool SimplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder);
163   bool SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder);
164 
165 public:
166   SimplifyCFGOpt(const TargetTransformInfo &TTI, const DataLayout &DL,
167                  unsigned BonusInstThreshold, AssumptionCache *AC,
168                  SmallPtrSetImpl<BasicBlock *> *LoopHeaders)
169       : TTI(TTI), DL(DL), BonusInstThreshold(BonusInstThreshold), AC(AC),
170         LoopHeaders(LoopHeaders) {}
171   bool run(BasicBlock *BB);
172 };
173 }
174 
175 /// Return true if it is safe to merge these two
176 /// terminator instructions together.
177 static bool
178 SafeToMergeTerminators(TerminatorInst *SI1, TerminatorInst *SI2,
179                        SmallSetVector<BasicBlock *, 4> *FailBlocks = nullptr) {
180   if (SI1 == SI2)
181     return false; // Can't merge with self!
182 
183   // It is not safe to merge these two switch instructions if they have a common
184   // successor, and if that successor has a PHI node, and if *that* PHI node has
185   // conflicting incoming values from the two switch blocks.
186   BasicBlock *SI1BB = SI1->getParent();
187   BasicBlock *SI2BB = SI2->getParent();
188 
189   SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
190   bool Fail = false;
191   for (BasicBlock *Succ : successors(SI2BB))
192     if (SI1Succs.count(Succ))
193       for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) {
194         PHINode *PN = cast<PHINode>(BBI);
195         if (PN->getIncomingValueForBlock(SI1BB) !=
196             PN->getIncomingValueForBlock(SI2BB)) {
197           if (FailBlocks)
198             FailBlocks->insert(Succ);
199           Fail = true;
200         }
201       }
202 
203   return !Fail;
204 }
205 
206 /// Return true if it is safe and profitable to merge these two terminator
207 /// instructions together, where SI1 is an unconditional branch. PhiNodes will
208 /// store all PHI nodes in common successors.
209 static bool
210 isProfitableToFoldUnconditional(BranchInst *SI1, BranchInst *SI2,
211                                 Instruction *Cond,
212                                 SmallVectorImpl<PHINode *> &PhiNodes) {
213   if (SI1 == SI2)
214     return false; // Can't merge with self!
215   assert(SI1->isUnconditional() && SI2->isConditional());
216 
217   // We fold the unconditional branch if we can easily update all PHI nodes in
218   // common successors:
219   // 1> We have a constant incoming value for the conditional branch;
220   // 2> We have "Cond" as the incoming value for the unconditional branch;
221   // 3> SI2->getCondition() and Cond have same operands.
222   CmpInst *Ci2 = dyn_cast<CmpInst>(SI2->getCondition());
223   if (!Ci2)
224     return false;
225   if (!(Cond->getOperand(0) == Ci2->getOperand(0) &&
226         Cond->getOperand(1) == Ci2->getOperand(1)) &&
227       !(Cond->getOperand(0) == Ci2->getOperand(1) &&
228         Cond->getOperand(1) == Ci2->getOperand(0)))
229     return false;
230 
231   BasicBlock *SI1BB = SI1->getParent();
232   BasicBlock *SI2BB = SI2->getParent();
233   SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
234   for (BasicBlock *Succ : successors(SI2BB))
235     if (SI1Succs.count(Succ))
236       for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) {
237         PHINode *PN = cast<PHINode>(BBI);
238         if (PN->getIncomingValueForBlock(SI1BB) != Cond ||
239             !isa<ConstantInt>(PN->getIncomingValueForBlock(SI2BB)))
240           return false;
241         PhiNodes.push_back(PN);
242       }
243   return true;
244 }
245 
246 /// Update PHI nodes in Succ to indicate that there will now be entries in it
247 /// from the 'NewPred' block. The values that will be flowing into the PHI nodes
248 /// will be the same as those coming in from ExistPred, an existing predecessor
249 /// of Succ.
250 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred,
251                                   BasicBlock *ExistPred) {
252   if (!isa<PHINode>(Succ->begin()))
253     return; // Quick exit if nothing to do
254 
255   PHINode *PN;
256   for (BasicBlock::iterator I = Succ->begin(); (PN = dyn_cast<PHINode>(I)); ++I)
257     PN->addIncoming(PN->getIncomingValueForBlock(ExistPred), NewPred);
258 }
259 
260 /// Compute an abstract "cost" of speculating the given instruction,
261 /// which is assumed to be safe to speculate. TCC_Free means cheap,
262 /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively
263 /// expensive.
264 static unsigned ComputeSpeculationCost(const User *I,
265                                        const TargetTransformInfo &TTI) {
266   assert(isSafeToSpeculativelyExecute(I) &&
267          "Instruction is not safe to speculatively execute!");
268   return TTI.getUserCost(I);
269 }
270 
271 /// If we have a merge point of an "if condition" as accepted above,
272 /// return true if the specified value dominates the block.  We
273 /// don't handle the true generality of domination here, just a special case
274 /// which works well enough for us.
275 ///
276 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to
277 /// see if V (which must be an instruction) and its recursive operands
278 /// that do not dominate BB have a combined cost lower than CostRemaining and
279 /// are non-trapping.  If both are true, the instruction is inserted into the
280 /// set and true is returned.
281 ///
282 /// The cost for most non-trapping instructions is defined as 1 except for
283 /// Select whose cost is 2.
284 ///
285 /// After this function returns, CostRemaining is decreased by the cost of
286 /// V plus its non-dominating operands.  If that cost is greater than
287 /// CostRemaining, false is returned and CostRemaining is undefined.
288 static bool DominatesMergePoint(Value *V, BasicBlock *BB,
289                                 SmallPtrSetImpl<Instruction *> *AggressiveInsts,
290                                 unsigned &CostRemaining,
291                                 const TargetTransformInfo &TTI,
292                                 unsigned Depth = 0) {
293   // It is possible to hit a zero-cost cycle (phi/gep instructions for example),
294   // so limit the recursion depth.
295   // TODO: While this recursion limit does prevent pathological behavior, it
296   // would be better to track visited instructions to avoid cycles.
297   if (Depth == MaxSpeculationDepth)
298     return false;
299 
300   Instruction *I = dyn_cast<Instruction>(V);
301   if (!I) {
302     // Non-instructions all dominate instructions, but not all constantexprs
303     // can be executed unconditionally.
304     if (ConstantExpr *C = dyn_cast<ConstantExpr>(V))
305       if (C->canTrap())
306         return false;
307     return true;
308   }
309   BasicBlock *PBB = I->getParent();
310 
311   // We don't want to allow weird loops that might have the "if condition" in
312   // the bottom of this block.
313   if (PBB == BB)
314     return false;
315 
316   // If this instruction is defined in a block that contains an unconditional
317   // branch to BB, then it must be in the 'conditional' part of the "if
318   // statement".  If not, it definitely dominates the region.
319   BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator());
320   if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB)
321     return true;
322 
323   // If we aren't allowing aggressive promotion anymore, then don't consider
324   // instructions in the 'if region'.
325   if (!AggressiveInsts)
326     return false;
327 
328   // If we have seen this instruction before, don't count it again.
329   if (AggressiveInsts->count(I))
330     return true;
331 
332   // Okay, it looks like the instruction IS in the "condition".  Check to
333   // see if it's a cheap instruction to unconditionally compute, and if it
334   // only uses stuff defined outside of the condition.  If so, hoist it out.
335   if (!isSafeToSpeculativelyExecute(I))
336     return false;
337 
338   unsigned Cost = ComputeSpeculationCost(I, TTI);
339 
340   // Allow exactly one instruction to be speculated regardless of its cost
341   // (as long as it is safe to do so).
342   // This is intended to flatten the CFG even if the instruction is a division
343   // or other expensive operation. The speculation of an expensive instruction
344   // is expected to be undone in CodeGenPrepare if the speculation has not
345   // enabled further IR optimizations.
346   if (Cost > CostRemaining &&
347       (!SpeculateOneExpensiveInst || !AggressiveInsts->empty() || Depth > 0))
348     return false;
349 
350   // Avoid unsigned wrap.
351   CostRemaining = (Cost > CostRemaining) ? 0 : CostRemaining - Cost;
352 
353   // Okay, we can only really hoist these out if their operands do
354   // not take us over the cost threshold.
355   for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i)
356     if (!DominatesMergePoint(*i, BB, AggressiveInsts, CostRemaining, TTI,
357                              Depth + 1))
358       return false;
359   // Okay, it's safe to do this!  Remember this instruction.
360   AggressiveInsts->insert(I);
361   return true;
362 }
363 
364 /// Extract ConstantInt from value, looking through IntToPtr
365 /// and PointerNullValue. Return NULL if value is not a constant int.
366 static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) {
367   // Normal constant int.
368   ConstantInt *CI = dyn_cast<ConstantInt>(V);
369   if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy())
370     return CI;
371 
372   // This is some kind of pointer constant. Turn it into a pointer-sized
373   // ConstantInt if possible.
374   IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType()));
375 
376   // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*).
377   if (isa<ConstantPointerNull>(V))
378     return ConstantInt::get(PtrTy, 0);
379 
380   // IntToPtr const int.
381   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
382     if (CE->getOpcode() == Instruction::IntToPtr)
383       if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) {
384         // The constant is very likely to have the right type already.
385         if (CI->getType() == PtrTy)
386           return CI;
387         else
388           return cast<ConstantInt>(
389               ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false));
390       }
391   return nullptr;
392 }
393 
394 namespace {
395 
396 /// Given a chain of or (||) or and (&&) comparison of a value against a
397 /// constant, this will try to recover the information required for a switch
398 /// structure.
399 /// It will depth-first traverse the chain of comparison, seeking for patterns
400 /// like %a == 12 or %a < 4 and combine them to produce a set of integer
401 /// representing the different cases for the switch.
402 /// Note that if the chain is composed of '||' it will build the set of elements
403 /// that matches the comparisons (i.e. any of this value validate the chain)
404 /// while for a chain of '&&' it will build the set elements that make the test
405 /// fail.
406 struct ConstantComparesGatherer {
407   const DataLayout &DL;
408   Value *CompValue; /// Value found for the switch comparison
409   Value *Extra;     /// Extra clause to be checked before the switch
410   SmallVector<ConstantInt *, 8> Vals; /// Set of integers to match in switch
411   unsigned UsedICmps; /// Number of comparisons matched in the and/or chain
412 
413   /// Construct and compute the result for the comparison instruction Cond
414   ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL)
415       : DL(DL), CompValue(nullptr), Extra(nullptr), UsedICmps(0) {
416     gather(Cond);
417   }
418 
419   /// Prevent copy
420   ConstantComparesGatherer(const ConstantComparesGatherer &) = delete;
421   ConstantComparesGatherer &
422   operator=(const ConstantComparesGatherer &) = delete;
423 
424 private:
425   /// Try to set the current value used for the comparison, it succeeds only if
426   /// it wasn't set before or if the new value is the same as the old one
427   bool setValueOnce(Value *NewVal) {
428     if (CompValue && CompValue != NewVal)
429       return false;
430     CompValue = NewVal;
431     return (CompValue != nullptr);
432   }
433 
434   /// Try to match Instruction "I" as a comparison against a constant and
435   /// populates the array Vals with the set of values that match (or do not
436   /// match depending on isEQ).
437   /// Return false on failure. On success, the Value the comparison matched
438   /// against is placed in CompValue.
439   /// If CompValue is already set, the function is expected to fail if a match
440   /// is found but the value compared to is different.
441   bool matchInstruction(Instruction *I, bool isEQ) {
442     // If this is an icmp against a constant, handle this as one of the cases.
443     ICmpInst *ICI;
444     ConstantInt *C;
445     if (!((ICI = dyn_cast<ICmpInst>(I)) &&
446           (C = GetConstantInt(I->getOperand(1), DL)))) {
447       return false;
448     }
449 
450     Value *RHSVal;
451     const APInt *RHSC;
452 
453     // Pattern match a special case
454     // (x & ~2^z) == y --> x == y || x == y|2^z
455     // This undoes a transformation done by instcombine to fuse 2 compares.
456     if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE)) {
457 
458       // It's a little bit hard to see why the following transformations are
459       // correct. Here is a CVC3 program to verify them for 64-bit values:
460 
461       /*
462          ONE  : BITVECTOR(64) = BVZEROEXTEND(0bin1, 63);
463          x    : BITVECTOR(64);
464          y    : BITVECTOR(64);
465          z    : BITVECTOR(64);
466          mask : BITVECTOR(64) = BVSHL(ONE, z);
467          QUERY( (y & ~mask = y) =>
468                 ((x & ~mask = y) <=> (x = y OR x = (y |  mask)))
469          );
470          QUERY( (y |  mask = y) =>
471                 ((x |  mask = y) <=> (x = y OR x = (y & ~mask)))
472          );
473       */
474 
475       // Please note that each pattern must be a dual implication (<--> or
476       // iff). One directional implication can create spurious matches. If the
477       // implication is only one-way, an unsatisfiable condition on the left
478       // side can imply a satisfiable condition on the right side. Dual
479       // implication ensures that satisfiable conditions are transformed to
480       // other satisfiable conditions and unsatisfiable conditions are
481       // transformed to other unsatisfiable conditions.
482 
483       // Here is a concrete example of a unsatisfiable condition on the left
484       // implying a satisfiable condition on the right:
485       //
486       // mask = (1 << z)
487       // (x & ~mask) == y  --> (x == y || x == (y | mask))
488       //
489       // Substituting y = 3, z = 0 yields:
490       // (x & -2) == 3 --> (x == 3 || x == 2)
491 
492       // Pattern match a special case:
493       /*
494         QUERY( (y & ~mask = y) =>
495                ((x & ~mask = y) <=> (x = y OR x = (y |  mask)))
496         );
497       */
498       if (match(ICI->getOperand(0),
499                 m_And(m_Value(RHSVal), m_APInt(RHSC)))) {
500         APInt Mask = ~*RHSC;
501         if (Mask.isPowerOf2() && (C->getValue() & ~Mask) == C->getValue()) {
502           // If we already have a value for the switch, it has to match!
503           if (!setValueOnce(RHSVal))
504             return false;
505 
506           Vals.push_back(C);
507           Vals.push_back(
508               ConstantInt::get(C->getContext(),
509                                C->getValue() | Mask));
510           UsedICmps++;
511           return true;
512         }
513       }
514 
515       // Pattern match a special case:
516       /*
517         QUERY( (y |  mask = y) =>
518                ((x |  mask = y) <=> (x = y OR x = (y & ~mask)))
519         );
520       */
521       if (match(ICI->getOperand(0),
522                 m_Or(m_Value(RHSVal), m_APInt(RHSC)))) {
523         APInt Mask = *RHSC;
524         if (Mask.isPowerOf2() && (C->getValue() | Mask) == C->getValue()) {
525           // If we already have a value for the switch, it has to match!
526           if (!setValueOnce(RHSVal))
527             return false;
528 
529           Vals.push_back(C);
530           Vals.push_back(ConstantInt::get(C->getContext(),
531                                           C->getValue() & ~Mask));
532           UsedICmps++;
533           return true;
534         }
535       }
536 
537       // If we already have a value for the switch, it has to match!
538       if (!setValueOnce(ICI->getOperand(0)))
539         return false;
540 
541       UsedICmps++;
542       Vals.push_back(C);
543       return ICI->getOperand(0);
544     }
545 
546     // If we have "x ult 3", for example, then we can add 0,1,2 to the set.
547     ConstantRange Span = ConstantRange::makeAllowedICmpRegion(
548         ICI->getPredicate(), C->getValue());
549 
550     // Shift the range if the compare is fed by an add. This is the range
551     // compare idiom as emitted by instcombine.
552     Value *CandidateVal = I->getOperand(0);
553     if (match(I->getOperand(0), m_Add(m_Value(RHSVal), m_APInt(RHSC)))) {
554       Span = Span.subtract(*RHSC);
555       CandidateVal = RHSVal;
556     }
557 
558     // If this is an and/!= check, then we are looking to build the set of
559     // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into
560     // x != 0 && x != 1.
561     if (!isEQ)
562       Span = Span.inverse();
563 
564     // If there are a ton of values, we don't want to make a ginormous switch.
565     if (Span.getSetSize().ugt(8) || Span.isEmptySet()) {
566       return false;
567     }
568 
569     // If we already have a value for the switch, it has to match!
570     if (!setValueOnce(CandidateVal))
571       return false;
572 
573     // Add all values from the range to the set
574     for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp)
575       Vals.push_back(ConstantInt::get(I->getContext(), Tmp));
576 
577     UsedICmps++;
578     return true;
579   }
580 
581   /// Given a potentially 'or'd or 'and'd together collection of icmp
582   /// eq/ne/lt/gt instructions that compare a value against a constant, extract
583   /// the value being compared, and stick the list constants into the Vals
584   /// vector.
585   /// One "Extra" case is allowed to differ from the other.
586   void gather(Value *V) {
587     Instruction *I = dyn_cast<Instruction>(V);
588     bool isEQ = (I->getOpcode() == Instruction::Or);
589 
590     // Keep a stack (SmallVector for efficiency) for depth-first traversal
591     SmallVector<Value *, 8> DFT;
592     SmallPtrSet<Value *, 8> Visited;
593 
594     // Initialize
595     Visited.insert(V);
596     DFT.push_back(V);
597 
598     while (!DFT.empty()) {
599       V = DFT.pop_back_val();
600 
601       if (Instruction *I = dyn_cast<Instruction>(V)) {
602         // If it is a || (or && depending on isEQ), process the operands.
603         if (I->getOpcode() == (isEQ ? Instruction::Or : Instruction::And)) {
604           if (Visited.insert(I->getOperand(1)).second)
605             DFT.push_back(I->getOperand(1));
606           if (Visited.insert(I->getOperand(0)).second)
607             DFT.push_back(I->getOperand(0));
608           continue;
609         }
610 
611         // Try to match the current instruction
612         if (matchInstruction(I, isEQ))
613           // Match succeed, continue the loop
614           continue;
615       }
616 
617       // One element of the sequence of || (or &&) could not be match as a
618       // comparison against the same value as the others.
619       // We allow only one "Extra" case to be checked before the switch
620       if (!Extra) {
621         Extra = V;
622         continue;
623       }
624       // Failed to parse a proper sequence, abort now
625       CompValue = nullptr;
626       break;
627     }
628   }
629 };
630 }
631 
632 static void EraseTerminatorInstAndDCECond(TerminatorInst *TI) {
633   Instruction *Cond = nullptr;
634   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
635     Cond = dyn_cast<Instruction>(SI->getCondition());
636   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
637     if (BI->isConditional())
638       Cond = dyn_cast<Instruction>(BI->getCondition());
639   } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) {
640     Cond = dyn_cast<Instruction>(IBI->getAddress());
641   }
642 
643   TI->eraseFromParent();
644   if (Cond)
645     RecursivelyDeleteTriviallyDeadInstructions(Cond);
646 }
647 
648 /// Return true if the specified terminator checks
649 /// to see if a value is equal to constant integer value.
650 Value *SimplifyCFGOpt::isValueEqualityComparison(TerminatorInst *TI) {
651   Value *CV = nullptr;
652   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
653     // Do not permit merging of large switch instructions into their
654     // predecessors unless there is only one predecessor.
655     if (SI->getNumSuccessors() * std::distance(pred_begin(SI->getParent()),
656                                                pred_end(SI->getParent())) <=
657         128)
658       CV = SI->getCondition();
659   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI))
660     if (BI->isConditional() && BI->getCondition()->hasOneUse())
661       if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) {
662         if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL))
663           CV = ICI->getOperand(0);
664       }
665 
666   // Unwrap any lossless ptrtoint cast.
667   if (CV) {
668     if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) {
669       Value *Ptr = PTII->getPointerOperand();
670       if (PTII->getType() == DL.getIntPtrType(Ptr->getType()))
671         CV = Ptr;
672     }
673   }
674   return CV;
675 }
676 
677 /// Given a value comparison instruction,
678 /// decode all of the 'cases' that it represents and return the 'default' block.
679 BasicBlock *SimplifyCFGOpt::GetValueEqualityComparisonCases(
680     TerminatorInst *TI, std::vector<ValueEqualityComparisonCase> &Cases) {
681   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
682     Cases.reserve(SI->getNumCases());
683     for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); i != e;
684          ++i)
685       Cases.push_back(
686           ValueEqualityComparisonCase(i.getCaseValue(), i.getCaseSuccessor()));
687     return SI->getDefaultDest();
688   }
689 
690   BranchInst *BI = cast<BranchInst>(TI);
691   ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
692   BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE);
693   Cases.push_back(ValueEqualityComparisonCase(
694       GetConstantInt(ICI->getOperand(1), DL), Succ));
695   return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ);
696 }
697 
698 /// Given a vector of bb/value pairs, remove any entries
699 /// in the list that match the specified block.
700 static void
701 EliminateBlockCases(BasicBlock *BB,
702                     std::vector<ValueEqualityComparisonCase> &Cases) {
703   Cases.erase(std::remove(Cases.begin(), Cases.end(), BB), Cases.end());
704 }
705 
706 /// Return true if there are any keys in C1 that exist in C2 as well.
707 static bool ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1,
708                           std::vector<ValueEqualityComparisonCase> &C2) {
709   std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2;
710 
711   // Make V1 be smaller than V2.
712   if (V1->size() > V2->size())
713     std::swap(V1, V2);
714 
715   if (V1->size() == 0)
716     return false;
717   if (V1->size() == 1) {
718     // Just scan V2.
719     ConstantInt *TheVal = (*V1)[0].Value;
720     for (unsigned i = 0, e = V2->size(); i != e; ++i)
721       if (TheVal == (*V2)[i].Value)
722         return true;
723   }
724 
725   // Otherwise, just sort both lists and compare element by element.
726   array_pod_sort(V1->begin(), V1->end());
727   array_pod_sort(V2->begin(), V2->end());
728   unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size();
729   while (i1 != e1 && i2 != e2) {
730     if ((*V1)[i1].Value == (*V2)[i2].Value)
731       return true;
732     if ((*V1)[i1].Value < (*V2)[i2].Value)
733       ++i1;
734     else
735       ++i2;
736   }
737   return false;
738 }
739 
740 /// If TI is known to be a terminator instruction and its block is known to
741 /// only have a single predecessor block, check to see if that predecessor is
742 /// also a value comparison with the same value, and if that comparison
743 /// determines the outcome of this comparison. If so, simplify TI. This does a
744 /// very limited form of jump threading.
745 bool SimplifyCFGOpt::SimplifyEqualityComparisonWithOnlyPredecessor(
746     TerminatorInst *TI, BasicBlock *Pred, IRBuilder<> &Builder) {
747   Value *PredVal = isValueEqualityComparison(Pred->getTerminator());
748   if (!PredVal)
749     return false; // Not a value comparison in predecessor.
750 
751   Value *ThisVal = isValueEqualityComparison(TI);
752   assert(ThisVal && "This isn't a value comparison!!");
753   if (ThisVal != PredVal)
754     return false; // Different predicates.
755 
756   // TODO: Preserve branch weight metadata, similarly to how
757   // FoldValueComparisonIntoPredecessors preserves it.
758 
759   // Find out information about when control will move from Pred to TI's block.
760   std::vector<ValueEqualityComparisonCase> PredCases;
761   BasicBlock *PredDef =
762       GetValueEqualityComparisonCases(Pred->getTerminator(), PredCases);
763   EliminateBlockCases(PredDef, PredCases); // Remove default from cases.
764 
765   // Find information about how control leaves this block.
766   std::vector<ValueEqualityComparisonCase> ThisCases;
767   BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases);
768   EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases.
769 
770   // If TI's block is the default block from Pred's comparison, potentially
771   // simplify TI based on this knowledge.
772   if (PredDef == TI->getParent()) {
773     // If we are here, we know that the value is none of those cases listed in
774     // PredCases.  If there are any cases in ThisCases that are in PredCases, we
775     // can simplify TI.
776     if (!ValuesOverlap(PredCases, ThisCases))
777       return false;
778 
779     if (isa<BranchInst>(TI)) {
780       // Okay, one of the successors of this condbr is dead.  Convert it to a
781       // uncond br.
782       assert(ThisCases.size() == 1 && "Branch can only have one case!");
783       // Insert the new branch.
784       Instruction *NI = Builder.CreateBr(ThisDef);
785       (void)NI;
786 
787       // Remove PHI node entries for the dead edge.
788       ThisCases[0].Dest->removePredecessor(TI->getParent());
789 
790       DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
791                    << "Through successor TI: " << *TI << "Leaving: " << *NI
792                    << "\n");
793 
794       EraseTerminatorInstAndDCECond(TI);
795       return true;
796     }
797 
798     SwitchInst *SI = cast<SwitchInst>(TI);
799     // Okay, TI has cases that are statically dead, prune them away.
800     SmallPtrSet<Constant *, 16> DeadCases;
801     for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
802       DeadCases.insert(PredCases[i].Value);
803 
804     DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
805                  << "Through successor TI: " << *TI);
806 
807     // Collect branch weights into a vector.
808     SmallVector<uint32_t, 8> Weights;
809     MDNode *MD = SI->getMetadata(LLVMContext::MD_prof);
810     bool HasWeight = MD && (MD->getNumOperands() == 2 + SI->getNumCases());
811     if (HasWeight)
812       for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e;
813            ++MD_i) {
814         ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i));
815         Weights.push_back(CI->getValue().getZExtValue());
816       }
817     for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) {
818       --i;
819       if (DeadCases.count(i.getCaseValue())) {
820         if (HasWeight) {
821           std::swap(Weights[i.getCaseIndex() + 1], Weights.back());
822           Weights.pop_back();
823         }
824         i.getCaseSuccessor()->removePredecessor(TI->getParent());
825         SI->removeCase(i);
826       }
827     }
828     if (HasWeight && Weights.size() >= 2)
829       SI->setMetadata(LLVMContext::MD_prof,
830                       MDBuilder(SI->getParent()->getContext())
831                           .createBranchWeights(Weights));
832 
833     DEBUG(dbgs() << "Leaving: " << *TI << "\n");
834     return true;
835   }
836 
837   // Otherwise, TI's block must correspond to some matched value.  Find out
838   // which value (or set of values) this is.
839   ConstantInt *TIV = nullptr;
840   BasicBlock *TIBB = TI->getParent();
841   for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
842     if (PredCases[i].Dest == TIBB) {
843       if (TIV)
844         return false; // Cannot handle multiple values coming to this block.
845       TIV = PredCases[i].Value;
846     }
847   assert(TIV && "No edge from pred to succ?");
848 
849   // Okay, we found the one constant that our value can be if we get into TI's
850   // BB.  Find out which successor will unconditionally be branched to.
851   BasicBlock *TheRealDest = nullptr;
852   for (unsigned i = 0, e = ThisCases.size(); i != e; ++i)
853     if (ThisCases[i].Value == TIV) {
854       TheRealDest = ThisCases[i].Dest;
855       break;
856     }
857 
858   // If not handled by any explicit cases, it is handled by the default case.
859   if (!TheRealDest)
860     TheRealDest = ThisDef;
861 
862   // Remove PHI node entries for dead edges.
863   BasicBlock *CheckEdge = TheRealDest;
864   for (BasicBlock *Succ : successors(TIBB))
865     if (Succ != CheckEdge)
866       Succ->removePredecessor(TIBB);
867     else
868       CheckEdge = nullptr;
869 
870   // Insert the new branch.
871   Instruction *NI = Builder.CreateBr(TheRealDest);
872   (void)NI;
873 
874   DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
875                << "Through successor TI: " << *TI << "Leaving: " << *NI
876                << "\n");
877 
878   EraseTerminatorInstAndDCECond(TI);
879   return true;
880 }
881 
882 namespace {
883 /// This class implements a stable ordering of constant
884 /// integers that does not depend on their address.  This is important for
885 /// applications that sort ConstantInt's to ensure uniqueness.
886 struct ConstantIntOrdering {
887   bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const {
888     return LHS->getValue().ult(RHS->getValue());
889   }
890 };
891 }
892 
893 static int ConstantIntSortPredicate(ConstantInt *const *P1,
894                                     ConstantInt *const *P2) {
895   const ConstantInt *LHS = *P1;
896   const ConstantInt *RHS = *P2;
897   if (LHS == RHS)
898     return 0;
899   return LHS->getValue().ult(RHS->getValue()) ? 1 : -1;
900 }
901 
902 static inline bool HasBranchWeights(const Instruction *I) {
903   MDNode *ProfMD = I->getMetadata(LLVMContext::MD_prof);
904   if (ProfMD && ProfMD->getOperand(0))
905     if (MDString *MDS = dyn_cast<MDString>(ProfMD->getOperand(0)))
906       return MDS->getString().equals("branch_weights");
907 
908   return false;
909 }
910 
911 /// Get Weights of a given TerminatorInst, the default weight is at the front
912 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight
913 /// metadata.
914 static void GetBranchWeights(TerminatorInst *TI,
915                              SmallVectorImpl<uint64_t> &Weights) {
916   MDNode *MD = TI->getMetadata(LLVMContext::MD_prof);
917   assert(MD);
918   for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) {
919     ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i));
920     Weights.push_back(CI->getValue().getZExtValue());
921   }
922 
923   // If TI is a conditional eq, the default case is the false case,
924   // and the corresponding branch-weight data is at index 2. We swap the
925   // default weight to be the first entry.
926   if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
927     assert(Weights.size() == 2);
928     ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
929     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
930       std::swap(Weights.front(), Weights.back());
931   }
932 }
933 
934 /// Keep halving the weights until all can fit in uint32_t.
935 static void FitWeights(MutableArrayRef<uint64_t> Weights) {
936   uint64_t Max = *std::max_element(Weights.begin(), Weights.end());
937   if (Max > UINT_MAX) {
938     unsigned Offset = 32 - countLeadingZeros(Max);
939     for (uint64_t &I : Weights)
940       I >>= Offset;
941   }
942 }
943 
944 /// The specified terminator is a value equality comparison instruction
945 /// (either a switch or a branch on "X == c").
946 /// See if any of the predecessors of the terminator block are value comparisons
947 /// on the same value.  If so, and if safe to do so, fold them together.
948 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(TerminatorInst *TI,
949                                                          IRBuilder<> &Builder) {
950   BasicBlock *BB = TI->getParent();
951   Value *CV = isValueEqualityComparison(TI); // CondVal
952   assert(CV && "Not a comparison?");
953   bool Changed = false;
954 
955   SmallVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB));
956   while (!Preds.empty()) {
957     BasicBlock *Pred = Preds.pop_back_val();
958 
959     // See if the predecessor is a comparison with the same value.
960     TerminatorInst *PTI = Pred->getTerminator();
961     Value *PCV = isValueEqualityComparison(PTI); // PredCondVal
962 
963     if (PCV == CV && TI != PTI) {
964       SmallSetVector<BasicBlock*, 4> FailBlocks;
965       if (!SafeToMergeTerminators(TI, PTI, &FailBlocks)) {
966         for (auto *Succ : FailBlocks) {
967           std::vector<BasicBlock*> Blocks = { TI->getParent() };
968           if (!SplitBlockPredecessors(Succ, Blocks, ".fold.split"))
969             return false;
970         }
971       }
972 
973       // Figure out which 'cases' to copy from SI to PSI.
974       std::vector<ValueEqualityComparisonCase> BBCases;
975       BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases);
976 
977       std::vector<ValueEqualityComparisonCase> PredCases;
978       BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases);
979 
980       // Based on whether the default edge from PTI goes to BB or not, fill in
981       // PredCases and PredDefault with the new switch cases we would like to
982       // build.
983       SmallVector<BasicBlock *, 8> NewSuccessors;
984 
985       // Update the branch weight metadata along the way
986       SmallVector<uint64_t, 8> Weights;
987       bool PredHasWeights = HasBranchWeights(PTI);
988       bool SuccHasWeights = HasBranchWeights(TI);
989 
990       if (PredHasWeights) {
991         GetBranchWeights(PTI, Weights);
992         // branch-weight metadata is inconsistent here.
993         if (Weights.size() != 1 + PredCases.size())
994           PredHasWeights = SuccHasWeights = false;
995       } else if (SuccHasWeights)
996         // If there are no predecessor weights but there are successor weights,
997         // populate Weights with 1, which will later be scaled to the sum of
998         // successor's weights
999         Weights.assign(1 + PredCases.size(), 1);
1000 
1001       SmallVector<uint64_t, 8> SuccWeights;
1002       if (SuccHasWeights) {
1003         GetBranchWeights(TI, SuccWeights);
1004         // branch-weight metadata is inconsistent here.
1005         if (SuccWeights.size() != 1 + BBCases.size())
1006           PredHasWeights = SuccHasWeights = false;
1007       } else if (PredHasWeights)
1008         SuccWeights.assign(1 + BBCases.size(), 1);
1009 
1010       if (PredDefault == BB) {
1011         // If this is the default destination from PTI, only the edges in TI
1012         // that don't occur in PTI, or that branch to BB will be activated.
1013         std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
1014         for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
1015           if (PredCases[i].Dest != BB)
1016             PTIHandled.insert(PredCases[i].Value);
1017           else {
1018             // The default destination is BB, we don't need explicit targets.
1019             std::swap(PredCases[i], PredCases.back());
1020 
1021             if (PredHasWeights || SuccHasWeights) {
1022               // Increase weight for the default case.
1023               Weights[0] += Weights[i + 1];
1024               std::swap(Weights[i + 1], Weights.back());
1025               Weights.pop_back();
1026             }
1027 
1028             PredCases.pop_back();
1029             --i;
1030             --e;
1031           }
1032 
1033         // Reconstruct the new switch statement we will be building.
1034         if (PredDefault != BBDefault) {
1035           PredDefault->removePredecessor(Pred);
1036           PredDefault = BBDefault;
1037           NewSuccessors.push_back(BBDefault);
1038         }
1039 
1040         unsigned CasesFromPred = Weights.size();
1041         uint64_t ValidTotalSuccWeight = 0;
1042         for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
1043           if (!PTIHandled.count(BBCases[i].Value) &&
1044               BBCases[i].Dest != BBDefault) {
1045             PredCases.push_back(BBCases[i]);
1046             NewSuccessors.push_back(BBCases[i].Dest);
1047             if (SuccHasWeights || PredHasWeights) {
1048               // The default weight is at index 0, so weight for the ith case
1049               // should be at index i+1. Scale the cases from successor by
1050               // PredDefaultWeight (Weights[0]).
1051               Weights.push_back(Weights[0] * SuccWeights[i + 1]);
1052               ValidTotalSuccWeight += SuccWeights[i + 1];
1053             }
1054           }
1055 
1056         if (SuccHasWeights || PredHasWeights) {
1057           ValidTotalSuccWeight += SuccWeights[0];
1058           // Scale the cases from predecessor by ValidTotalSuccWeight.
1059           for (unsigned i = 1; i < CasesFromPred; ++i)
1060             Weights[i] *= ValidTotalSuccWeight;
1061           // Scale the default weight by SuccDefaultWeight (SuccWeights[0]).
1062           Weights[0] *= SuccWeights[0];
1063         }
1064       } else {
1065         // If this is not the default destination from PSI, only the edges
1066         // in SI that occur in PSI with a destination of BB will be
1067         // activated.
1068         std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
1069         std::map<ConstantInt *, uint64_t> WeightsForHandled;
1070         for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
1071           if (PredCases[i].Dest == BB) {
1072             PTIHandled.insert(PredCases[i].Value);
1073 
1074             if (PredHasWeights || SuccHasWeights) {
1075               WeightsForHandled[PredCases[i].Value] = Weights[i + 1];
1076               std::swap(Weights[i + 1], Weights.back());
1077               Weights.pop_back();
1078             }
1079 
1080             std::swap(PredCases[i], PredCases.back());
1081             PredCases.pop_back();
1082             --i;
1083             --e;
1084           }
1085 
1086         // Okay, now we know which constants were sent to BB from the
1087         // predecessor.  Figure out where they will all go now.
1088         for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
1089           if (PTIHandled.count(BBCases[i].Value)) {
1090             // If this is one we are capable of getting...
1091             if (PredHasWeights || SuccHasWeights)
1092               Weights.push_back(WeightsForHandled[BBCases[i].Value]);
1093             PredCases.push_back(BBCases[i]);
1094             NewSuccessors.push_back(BBCases[i].Dest);
1095             PTIHandled.erase(
1096                 BBCases[i].Value); // This constant is taken care of
1097           }
1098 
1099         // If there are any constants vectored to BB that TI doesn't handle,
1100         // they must go to the default destination of TI.
1101         for (ConstantInt *I : PTIHandled) {
1102           if (PredHasWeights || SuccHasWeights)
1103             Weights.push_back(WeightsForHandled[I]);
1104           PredCases.push_back(ValueEqualityComparisonCase(I, BBDefault));
1105           NewSuccessors.push_back(BBDefault);
1106         }
1107       }
1108 
1109       // Okay, at this point, we know which new successor Pred will get.  Make
1110       // sure we update the number of entries in the PHI nodes for these
1111       // successors.
1112       for (BasicBlock *NewSuccessor : NewSuccessors)
1113         AddPredecessorToBlock(NewSuccessor, Pred, BB);
1114 
1115       Builder.SetInsertPoint(PTI);
1116       // Convert pointer to int before we switch.
1117       if (CV->getType()->isPointerTy()) {
1118         CV = Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()),
1119                                     "magicptr");
1120       }
1121 
1122       // Now that the successors are updated, create the new Switch instruction.
1123       SwitchInst *NewSI =
1124           Builder.CreateSwitch(CV, PredDefault, PredCases.size());
1125       NewSI->setDebugLoc(PTI->getDebugLoc());
1126       for (ValueEqualityComparisonCase &V : PredCases)
1127         NewSI->addCase(V.Value, V.Dest);
1128 
1129       if (PredHasWeights || SuccHasWeights) {
1130         // Halve the weights if any of them cannot fit in an uint32_t
1131         FitWeights(Weights);
1132 
1133         SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
1134 
1135         NewSI->setMetadata(
1136             LLVMContext::MD_prof,
1137             MDBuilder(BB->getContext()).createBranchWeights(MDWeights));
1138       }
1139 
1140       EraseTerminatorInstAndDCECond(PTI);
1141 
1142       // Okay, last check.  If BB is still a successor of PSI, then we must
1143       // have an infinite loop case.  If so, add an infinitely looping block
1144       // to handle the case to preserve the behavior of the code.
1145       BasicBlock *InfLoopBlock = nullptr;
1146       for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i)
1147         if (NewSI->getSuccessor(i) == BB) {
1148           if (!InfLoopBlock) {
1149             // Insert it at the end of the function, because it's either code,
1150             // or it won't matter if it's hot. :)
1151             InfLoopBlock = BasicBlock::Create(BB->getContext(), "infloop",
1152                                               BB->getParent());
1153             BranchInst::Create(InfLoopBlock, InfLoopBlock);
1154           }
1155           NewSI->setSuccessor(i, InfLoopBlock);
1156         }
1157 
1158       Changed = true;
1159     }
1160   }
1161   return Changed;
1162 }
1163 
1164 // If we would need to insert a select that uses the value of this invoke
1165 // (comments in HoistThenElseCodeToIf explain why we would need to do this), we
1166 // can't hoist the invoke, as there is nowhere to put the select in this case.
1167 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2,
1168                                 Instruction *I1, Instruction *I2) {
1169   for (BasicBlock *Succ : successors(BB1)) {
1170     PHINode *PN;
1171     for (BasicBlock::iterator BBI = Succ->begin();
1172          (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
1173       Value *BB1V = PN->getIncomingValueForBlock(BB1);
1174       Value *BB2V = PN->getIncomingValueForBlock(BB2);
1175       if (BB1V != BB2V && (BB1V == I1 || BB2V == I2)) {
1176         return false;
1177       }
1178     }
1179   }
1180   return true;
1181 }
1182 
1183 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I);
1184 
1185 /// Given a conditional branch that goes to BB1 and BB2, hoist any common code
1186 /// in the two blocks up into the branch block. The caller of this function
1187 /// guarantees that BI's block dominates BB1 and BB2.
1188 static bool HoistThenElseCodeToIf(BranchInst *BI,
1189                                   const TargetTransformInfo &TTI) {
1190   // This does very trivial matching, with limited scanning, to find identical
1191   // instructions in the two blocks.  In particular, we don't want to get into
1192   // O(M*N) situations here where M and N are the sizes of BB1 and BB2.  As
1193   // such, we currently just scan for obviously identical instructions in an
1194   // identical order.
1195   BasicBlock *BB1 = BI->getSuccessor(0); // The true destination.
1196   BasicBlock *BB2 = BI->getSuccessor(1); // The false destination
1197 
1198   BasicBlock::iterator BB1_Itr = BB1->begin();
1199   BasicBlock::iterator BB2_Itr = BB2->begin();
1200 
1201   Instruction *I1 = &*BB1_Itr++, *I2 = &*BB2_Itr++;
1202   // Skip debug info if it is not identical.
1203   DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1204   DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1205   if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1206     while (isa<DbgInfoIntrinsic>(I1))
1207       I1 = &*BB1_Itr++;
1208     while (isa<DbgInfoIntrinsic>(I2))
1209       I2 = &*BB2_Itr++;
1210   }
1211   if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) ||
1212       (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)))
1213     return false;
1214 
1215   BasicBlock *BIParent = BI->getParent();
1216 
1217   bool Changed = false;
1218   do {
1219     // If we are hoisting the terminator instruction, don't move one (making a
1220     // broken BB), instead clone it, and remove BI.
1221     if (isa<TerminatorInst>(I1))
1222       goto HoistTerminator;
1223 
1224     if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2))
1225       return Changed;
1226 
1227     // For a normal instruction, we just move one to right before the branch,
1228     // then replace all uses of the other with the first.  Finally, we remove
1229     // the now redundant second instruction.
1230     BIParent->getInstList().splice(BI->getIterator(), BB1->getInstList(), I1);
1231     if (!I2->use_empty())
1232       I2->replaceAllUsesWith(I1);
1233     I1->andIRFlags(I2);
1234     unsigned KnownIDs[] = {LLVMContext::MD_tbaa,
1235                            LLVMContext::MD_range,
1236                            LLVMContext::MD_fpmath,
1237                            LLVMContext::MD_invariant_load,
1238                            LLVMContext::MD_nonnull,
1239                            LLVMContext::MD_invariant_group,
1240                            LLVMContext::MD_align,
1241                            LLVMContext::MD_dereferenceable,
1242                            LLVMContext::MD_dereferenceable_or_null,
1243                            LLVMContext::MD_mem_parallel_loop_access};
1244     combineMetadata(I1, I2, KnownIDs);
1245 
1246     // If the debug loc for I1 and I2 are different, as we are combining them
1247     // into one instruction, we do not want to select debug loc randomly from
1248     // I1 or I2. Instead, we set the 0-line DebugLoc to note that we do not
1249     // know the debug loc of the hoisted instruction.
1250     if (!isa<CallInst>(I1) &&  I1->getDebugLoc() != I2->getDebugLoc())
1251       I1->setDebugLoc(DebugLoc());
1252 
1253     I2->eraseFromParent();
1254     Changed = true;
1255 
1256     I1 = &*BB1_Itr++;
1257     I2 = &*BB2_Itr++;
1258     // Skip debug info if it is not identical.
1259     DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1260     DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1261     if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1262       while (isa<DbgInfoIntrinsic>(I1))
1263         I1 = &*BB1_Itr++;
1264       while (isa<DbgInfoIntrinsic>(I2))
1265         I2 = &*BB2_Itr++;
1266     }
1267   } while (I1->isIdenticalToWhenDefined(I2));
1268 
1269   return true;
1270 
1271 HoistTerminator:
1272   // It may not be possible to hoist an invoke.
1273   if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))
1274     return Changed;
1275 
1276   for (BasicBlock *Succ : successors(BB1)) {
1277     PHINode *PN;
1278     for (BasicBlock::iterator BBI = Succ->begin();
1279          (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
1280       Value *BB1V = PN->getIncomingValueForBlock(BB1);
1281       Value *BB2V = PN->getIncomingValueForBlock(BB2);
1282       if (BB1V == BB2V)
1283         continue;
1284 
1285       // Check for passingValueIsAlwaysUndefined here because we would rather
1286       // eliminate undefined control flow then converting it to a select.
1287       if (passingValueIsAlwaysUndefined(BB1V, PN) ||
1288           passingValueIsAlwaysUndefined(BB2V, PN))
1289         return Changed;
1290 
1291       if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V))
1292         return Changed;
1293       if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V))
1294         return Changed;
1295     }
1296   }
1297 
1298   // Okay, it is safe to hoist the terminator.
1299   Instruction *NT = I1->clone();
1300   BIParent->getInstList().insert(BI->getIterator(), NT);
1301   if (!NT->getType()->isVoidTy()) {
1302     I1->replaceAllUsesWith(NT);
1303     I2->replaceAllUsesWith(NT);
1304     NT->takeName(I1);
1305   }
1306 
1307   IRBuilder<NoFolder> Builder(NT);
1308   // Hoisting one of the terminators from our successor is a great thing.
1309   // Unfortunately, the successors of the if/else blocks may have PHI nodes in
1310   // them.  If they do, all PHI entries for BB1/BB2 must agree for all PHI
1311   // nodes, so we insert select instruction to compute the final result.
1312   std::map<std::pair<Value *, Value *>, SelectInst *> InsertedSelects;
1313   for (BasicBlock *Succ : successors(BB1)) {
1314     PHINode *PN;
1315     for (BasicBlock::iterator BBI = Succ->begin();
1316          (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
1317       Value *BB1V = PN->getIncomingValueForBlock(BB1);
1318       Value *BB2V = PN->getIncomingValueForBlock(BB2);
1319       if (BB1V == BB2V)
1320         continue;
1321 
1322       // These values do not agree.  Insert a select instruction before NT
1323       // that determines the right value.
1324       SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)];
1325       if (!SI)
1326         SI = cast<SelectInst>(
1327             Builder.CreateSelect(BI->getCondition(), BB1V, BB2V,
1328                                  BB1V->getName() + "." + BB2V->getName(), BI));
1329 
1330       // Make the PHI node use the select for all incoming values for BB1/BB2
1331       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1332         if (PN->getIncomingBlock(i) == BB1 || PN->getIncomingBlock(i) == BB2)
1333           PN->setIncomingValue(i, SI);
1334     }
1335   }
1336 
1337   // Update any PHI nodes in our new successors.
1338   for (BasicBlock *Succ : successors(BB1))
1339     AddPredecessorToBlock(Succ, BIParent, BB1);
1340 
1341   EraseTerminatorInstAndDCECond(BI);
1342   return true;
1343 }
1344 
1345 // Is it legal to place a variable in operand \c OpIdx of \c I?
1346 // FIXME: This should be promoted to Instruction.
1347 static bool canReplaceOperandWithVariable(const Instruction *I,
1348                                           unsigned OpIdx) {
1349   // We can't have a PHI with a metadata type.
1350   if (I->getOperand(OpIdx)->getType()->isMetadataTy())
1351     return false;
1352 
1353   // Early exit.
1354   if (!isa<Constant>(I->getOperand(OpIdx)))
1355     return true;
1356 
1357   switch (I->getOpcode()) {
1358   default:
1359     return true;
1360   case Instruction::Call:
1361   case Instruction::Invoke:
1362     // FIXME: many arithmetic intrinsics have no issue taking a
1363     // variable, however it's hard to distingish these from
1364     // specials such as @llvm.frameaddress that require a constant.
1365     return !isa<IntrinsicInst>(I);
1366   case Instruction::ShuffleVector:
1367     // Shufflevector masks are constant.
1368     return OpIdx != 2;
1369   case Instruction::ExtractValue:
1370   case Instruction::InsertValue:
1371     // All operands apart from the first are constant.
1372     return OpIdx == 0;
1373   case Instruction::Alloca:
1374     return false;
1375   case Instruction::GetElementPtr:
1376     if (OpIdx == 0)
1377       return true;
1378     gep_type_iterator It = std::next(gep_type_begin(I), OpIdx - 1);
1379     return !It->isStructTy();
1380   }
1381 }
1382 
1383 // All instructions in Insts belong to different blocks that all unconditionally
1384 // branch to a common successor. Analyze each instruction and return true if it
1385 // would be possible to sink them into their successor, creating one common
1386 // instruction instead. For every value that would be required to be provided by
1387 // PHI node (because an operand varies in each input block), add to PHIOperands.
1388 static bool canSinkInstructions(
1389     ArrayRef<Instruction *> Insts,
1390     DenseMap<Instruction *, SmallVector<Value *, 4>> &PHIOperands) {
1391   // Prune out obviously bad instructions to move. Any non-store instruction
1392   // must have exactly one use, and we check later that use is by a single,
1393   // common PHI instruction in the successor.
1394   for (auto *I : Insts) {
1395     // These instructions may change or break semantics if moved.
1396     if (isa<PHINode>(I) || I->isEHPad() || isa<AllocaInst>(I) ||
1397         I->getType()->isTokenTy())
1398       return false;
1399     // Everything must have only one use too, apart from stores which
1400     // have no uses.
1401     if (!isa<StoreInst>(I) && !I->hasOneUse())
1402       return false;
1403   }
1404 
1405   const Instruction *I0 = Insts.front();
1406   for (auto *I : Insts)
1407     if (!I->isSameOperationAs(I0))
1408       return false;
1409 
1410   // All instructions in Insts are known to be the same opcode. If they aren't
1411   // stores, check the only user of each is a PHI or in the same block as the
1412   // instruction, because if a user is in the same block as an instruction
1413   // we're contemplating sinking, it must already be determined to be sinkable.
1414   if (!isa<StoreInst>(I0)) {
1415     auto *PNUse = dyn_cast<PHINode>(*I0->user_begin());
1416     auto *Succ = I0->getParent()->getTerminator()->getSuccessor(0);
1417     if (!all_of(Insts, [&PNUse,&Succ](const Instruction *I) -> bool {
1418           auto *U = cast<Instruction>(*I->user_begin());
1419           return (PNUse &&
1420                   PNUse->getParent() == Succ &&
1421                   PNUse->getIncomingValueForBlock(I->getParent()) == I) ||
1422                  U->getParent() == I->getParent();
1423         }))
1424       return false;
1425   }
1426 
1427   for (unsigned OI = 0, OE = I0->getNumOperands(); OI != OE; ++OI) {
1428     if (I0->getOperand(OI)->getType()->isTokenTy())
1429       // Don't touch any operand of token type.
1430       return false;
1431 
1432     // Because SROA can't handle speculating stores of selects, try not
1433     // to sink loads or stores of allocas when we'd have to create a PHI for
1434     // the address operand. Also, because it is likely that loads or stores
1435     // of allocas will disappear when Mem2Reg/SROA is run, don't sink them.
1436     // This can cause code churn which can have unintended consequences down
1437     // the line - see https://llvm.org/bugs/show_bug.cgi?id=30244.
1438     // FIXME: This is a workaround for a deficiency in SROA - see
1439     // https://llvm.org/bugs/show_bug.cgi?id=30188
1440     if (OI == 1 && isa<StoreInst>(I0) &&
1441         any_of(Insts, [](const Instruction *I) {
1442           return isa<AllocaInst>(I->getOperand(1));
1443         }))
1444       return false;
1445     if (OI == 0 && isa<LoadInst>(I0) && any_of(Insts, [](const Instruction *I) {
1446           return isa<AllocaInst>(I->getOperand(0));
1447         }))
1448       return false;
1449 
1450     auto SameAsI0 = [&I0, OI](const Instruction *I) {
1451       assert(I->getNumOperands() == I0->getNumOperands());
1452       return I->getOperand(OI) == I0->getOperand(OI);
1453     };
1454     if (!all_of(Insts, SameAsI0)) {
1455       if (!canReplaceOperandWithVariable(I0, OI))
1456         // We can't create a PHI from this GEP.
1457         return false;
1458       // Don't create indirect calls! The called value is the final operand.
1459       if ((isa<CallInst>(I0) || isa<InvokeInst>(I0)) && OI == OE - 1) {
1460         // FIXME: if the call was *already* indirect, we should do this.
1461         return false;
1462       }
1463       for (auto *I : Insts)
1464         PHIOperands[I].push_back(I->getOperand(OI));
1465     }
1466   }
1467   return true;
1468 }
1469 
1470 // Assuming canSinkLastInstruction(Blocks) has returned true, sink the last
1471 // instruction of every block in Blocks to their common successor, commoning
1472 // into one instruction.
1473 static bool sinkLastInstruction(ArrayRef<BasicBlock*> Blocks) {
1474   auto *BBEnd = Blocks[0]->getTerminator()->getSuccessor(0);
1475 
1476   // canSinkLastInstruction returning true guarantees that every block has at
1477   // least one non-terminator instruction.
1478   SmallVector<Instruction*,4> Insts;
1479   for (auto *BB : Blocks)
1480     Insts.push_back(BB->getTerminator()->getPrevNode());
1481 
1482   // The only checking we need to do now is that all users of all instructions
1483   // are the same PHI node. canSinkLastInstruction should have checked this but
1484   // it is slightly over-aggressive - it gets confused by commutative instructions
1485   // so double-check it here.
1486   Instruction *I0 = Insts.front();
1487   if (!isa<StoreInst>(I0)) {
1488     auto *PNUse = dyn_cast<PHINode>(*I0->user_begin());
1489     if (!all_of(Insts, [&PNUse](const Instruction *I) -> bool {
1490           auto *U = cast<Instruction>(*I->user_begin());
1491           return U == PNUse;
1492         }))
1493       return false;
1494   }
1495 
1496   // We don't need to do any more checking here; canSinkLastInstruction should
1497   // have done it all for us.
1498   SmallVector<Value*, 4> NewOperands;
1499   for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) {
1500     // This check is different to that in canSinkLastInstruction. There, we
1501     // cared about the global view once simplifycfg (and instcombine) have
1502     // completed - it takes into account PHIs that become trivially
1503     // simplifiable.  However here we need a more local view; if an operand
1504     // differs we create a PHI and rely on instcombine to clean up the very
1505     // small mess we may make.
1506     bool NeedPHI = any_of(Insts, [&I0, O](const Instruction *I) {
1507       return I->getOperand(O) != I0->getOperand(O);
1508     });
1509     if (!NeedPHI) {
1510       NewOperands.push_back(I0->getOperand(O));
1511       continue;
1512     }
1513 
1514     // Create a new PHI in the successor block and populate it.
1515     auto *Op = I0->getOperand(O);
1516     assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!");
1517     auto *PN = PHINode::Create(Op->getType(), Insts.size(),
1518                                Op->getName() + ".sink", &BBEnd->front());
1519     for (auto *I : Insts)
1520       PN->addIncoming(I->getOperand(O), I->getParent());
1521     NewOperands.push_back(PN);
1522   }
1523 
1524   // Arbitrarily use I0 as the new "common" instruction; remap its operands
1525   // and move it to the start of the successor block.
1526   for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O)
1527     I0->getOperandUse(O).set(NewOperands[O]);
1528   I0->moveBefore(&*BBEnd->getFirstInsertionPt());
1529 
1530   // Update metadata.
1531   for (auto *I : Insts)
1532     if (I != I0)
1533       combineMetadataForCSE(I0, I);
1534 
1535   if (!isa<StoreInst>(I0)) {
1536     // canSinkLastInstruction checked that all instructions were used by
1537     // one and only one PHI node. Find that now, RAUW it to our common
1538     // instruction and nuke it.
1539     assert(I0->hasOneUse());
1540     auto *PN = cast<PHINode>(*I0->user_begin());
1541     PN->replaceAllUsesWith(I0);
1542     PN->eraseFromParent();
1543   }
1544 
1545   // Finally nuke all instructions apart from the common instruction.
1546   for (auto *I : Insts)
1547     if (I != I0)
1548       I->eraseFromParent();
1549 
1550   return true;
1551 }
1552 
1553 namespace {
1554   // LockstepReverseIterator - Iterates through instructions
1555   // in a set of blocks in reverse order from the first non-terminator.
1556   // For example (assume all blocks have size n):
1557   //   LockstepReverseIterator I([B1, B2, B3]);
1558   //   *I-- = [B1[n], B2[n], B3[n]];
1559   //   *I-- = [B1[n-1], B2[n-1], B3[n-1]];
1560   //   *I-- = [B1[n-2], B2[n-2], B3[n-2]];
1561   //   ...
1562   class LockstepReverseIterator {
1563     ArrayRef<BasicBlock*> Blocks;
1564     SmallVector<Instruction*,4> Insts;
1565     bool Fail;
1566   public:
1567     LockstepReverseIterator(ArrayRef<BasicBlock*> Blocks) :
1568       Blocks(Blocks) {
1569       reset();
1570     }
1571 
1572     void reset() {
1573       Fail = false;
1574       Insts.clear();
1575       for (auto *BB : Blocks) {
1576         if (BB->size() <= 1) {
1577           // Block wasn't big enough
1578           Fail = true;
1579           return;
1580         }
1581         Insts.push_back(BB->getTerminator()->getPrevNode());
1582       }
1583     }
1584 
1585     bool isValid() const {
1586       return !Fail;
1587     }
1588 
1589     void operator -- () {
1590       if (Fail)
1591         return;
1592       for (auto *&Inst : Insts) {
1593         if (Inst == &Inst->getParent()->front()) {
1594           Fail = true;
1595           return;
1596         }
1597         Inst = Inst->getPrevNode();
1598       }
1599     }
1600 
1601     ArrayRef<Instruction*> operator * () const {
1602       return Insts;
1603     }
1604   };
1605 }
1606 
1607 /// Given an unconditional branch that goes to BBEnd,
1608 /// check whether BBEnd has only two predecessors and the other predecessor
1609 /// ends with an unconditional branch. If it is true, sink any common code
1610 /// in the two predecessors to BBEnd.
1611 static bool SinkThenElseCodeToEnd(BranchInst *BI1) {
1612   assert(BI1->isUnconditional());
1613   BasicBlock *BBEnd = BI1->getSuccessor(0);
1614 
1615   // We support two situations:
1616   //   (1) all incoming arcs are unconditional
1617   //   (2) one incoming arc is conditional
1618   //
1619   // (2) is very common in switch defaults and
1620   // else-if patterns;
1621   //
1622   //   if (a) f(1);
1623   //   else if (b) f(2);
1624   //
1625   // produces:
1626   //
1627   //       [if]
1628   //      /    \
1629   //    [f(1)] [if]
1630   //      |     | \
1631   //      |     |  \
1632   //      |  [f(2)]|
1633   //       \    | /
1634   //        [ end ]
1635   //
1636   // [end] has two unconditional predecessor arcs and one conditional. The
1637   // conditional refers to the implicit empty 'else' arc. This conditional
1638   // arc can also be caused by an empty default block in a switch.
1639   //
1640   // In this case, we attempt to sink code from all *unconditional* arcs.
1641   // If we can sink instructions from these arcs (determined during the scan
1642   // phase below) we insert a common successor for all unconditional arcs and
1643   // connect that to [end], to enable sinking:
1644   //
1645   //       [if]
1646   //      /    \
1647   //    [x(1)] [if]
1648   //      |     | \
1649   //      |     |  \
1650   //      |  [x(2)] |
1651   //       \   /    |
1652   //   [sink.split] |
1653   //         \     /
1654   //         [ end ]
1655   //
1656   SmallVector<BasicBlock*,4> UnconditionalPreds;
1657   Instruction *Cond = nullptr;
1658   for (auto *B : predecessors(BBEnd)) {
1659     auto *T = B->getTerminator();
1660     if (isa<BranchInst>(T) && cast<BranchInst>(T)->isUnconditional())
1661       UnconditionalPreds.push_back(B);
1662     else if ((isa<BranchInst>(T) || isa<SwitchInst>(T)) && !Cond)
1663       Cond = T;
1664     else
1665       return false;
1666   }
1667   if (UnconditionalPreds.size() < 2)
1668     return false;
1669 
1670   bool Changed = false;
1671   // We take a two-step approach to tail sinking. First we scan from the end of
1672   // each block upwards in lockstep. If the n'th instruction from the end of each
1673   // block can be sunk, those instructions are added to ValuesToSink and we
1674   // carry on. If we can sink an instruction but need to PHI-merge some operands
1675   // (because they're not identical in each instruction) we add these to
1676   // PHIOperands.
1677   unsigned ScanIdx = 0;
1678   SmallPtrSet<Value*,4> InstructionsToSink;
1679   DenseMap<Instruction*, SmallVector<Value*,4>> PHIOperands;
1680   LockstepReverseIterator LRI(UnconditionalPreds);
1681   while (LRI.isValid() &&
1682          canSinkInstructions(*LRI, PHIOperands)) {
1683     DEBUG(dbgs() << "SINK: instruction can be sunk: " << *(*LRI)[0] << "\n");
1684     InstructionsToSink.insert((*LRI).begin(), (*LRI).end());
1685     ++ScanIdx;
1686     --LRI;
1687   }
1688 
1689   auto ProfitableToSinkInstruction = [&](LockstepReverseIterator &LRI) {
1690     unsigned NumPHIdValues = 0;
1691     for (auto *I : *LRI)
1692       for (auto *V : PHIOperands[I])
1693         if (InstructionsToSink.count(V) == 0)
1694           ++NumPHIdValues;
1695     DEBUG(dbgs() << "SINK: #phid values: " << NumPHIdValues << "\n");
1696     unsigned NumPHIInsts = NumPHIdValues / UnconditionalPreds.size();
1697     if ((NumPHIdValues % UnconditionalPreds.size()) != 0)
1698         NumPHIInsts++;
1699 
1700     return NumPHIInsts <= 1;
1701   };
1702 
1703   if (ScanIdx > 0 && Cond) {
1704     // Check if we would actually sink anything first! This mutates the CFG and
1705     // adds an extra block. The goal in doing this is to allow instructions that
1706     // couldn't be sunk before to be sunk - obviously, speculatable instructions
1707     // (such as trunc, add) can be sunk and predicated already. So we check that
1708     // we're going to sink at least one non-speculatable instruction.
1709     LRI.reset();
1710     unsigned Idx = 0;
1711     bool Profitable = false;
1712     while (ProfitableToSinkInstruction(LRI) && Idx < ScanIdx) {
1713       if (!isSafeToSpeculativelyExecute((*LRI)[0])) {
1714         Profitable = true;
1715         break;
1716       }
1717       --LRI;
1718       ++Idx;
1719     }
1720     if (!Profitable)
1721       return false;
1722 
1723     DEBUG(dbgs() << "SINK: Splitting edge\n");
1724     // We have a conditional edge and we're going to sink some instructions.
1725     // Insert a new block postdominating all blocks we're going to sink from.
1726     if (!SplitBlockPredecessors(BI1->getSuccessor(0), UnconditionalPreds,
1727                                 ".sink.split"))
1728       // Edges couldn't be split.
1729       return false;
1730     Changed = true;
1731   }
1732 
1733   // Now that we've analyzed all potential sinking candidates, perform the
1734   // actual sink. We iteratively sink the last non-terminator of the source
1735   // blocks into their common successor unless doing so would require too
1736   // many PHI instructions to be generated (currently only one PHI is allowed
1737   // per sunk instruction).
1738   //
1739   // We can use InstructionsToSink to discount values needing PHI-merging that will
1740   // actually be sunk in a later iteration. This allows us to be more
1741   // aggressive in what we sink. This does allow a false positive where we
1742   // sink presuming a later value will also be sunk, but stop half way through
1743   // and never actually sink it which means we produce more PHIs than intended.
1744   // This is unlikely in practice though.
1745   for (unsigned SinkIdx = 0; SinkIdx != ScanIdx; ++SinkIdx) {
1746     DEBUG(dbgs() << "SINK: Sink: "
1747                  << *UnconditionalPreds[0]->getTerminator()->getPrevNode()
1748                  << "\n");
1749 
1750     // Because we've sunk every instruction in turn, the current instruction to
1751     // sink is always at index 0.
1752     LRI.reset();
1753     if (!ProfitableToSinkInstruction(LRI)) {
1754       // Too many PHIs would be created.
1755       DEBUG(dbgs() << "SINK: stopping here, too many PHIs would be created!\n");
1756       break;
1757     }
1758 
1759     if (!sinkLastInstruction(UnconditionalPreds))
1760       return Changed;
1761     NumSinkCommons++;
1762     Changed = true;
1763   }
1764   return Changed;
1765 }
1766 
1767 /// \brief Determine if we can hoist sink a sole store instruction out of a
1768 /// conditional block.
1769 ///
1770 /// We are looking for code like the following:
1771 ///   BrBB:
1772 ///     store i32 %add, i32* %arrayidx2
1773 ///     ... // No other stores or function calls (we could be calling a memory
1774 ///     ... // function).
1775 ///     %cmp = icmp ult %x, %y
1776 ///     br i1 %cmp, label %EndBB, label %ThenBB
1777 ///   ThenBB:
1778 ///     store i32 %add5, i32* %arrayidx2
1779 ///     br label EndBB
1780 ///   EndBB:
1781 ///     ...
1782 ///   We are going to transform this into:
1783 ///   BrBB:
1784 ///     store i32 %add, i32* %arrayidx2
1785 ///     ... //
1786 ///     %cmp = icmp ult %x, %y
1787 ///     %add.add5 = select i1 %cmp, i32 %add, %add5
1788 ///     store i32 %add.add5, i32* %arrayidx2
1789 ///     ...
1790 ///
1791 /// \return The pointer to the value of the previous store if the store can be
1792 ///         hoisted into the predecessor block. 0 otherwise.
1793 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB,
1794                                      BasicBlock *StoreBB, BasicBlock *EndBB) {
1795   StoreInst *StoreToHoist = dyn_cast<StoreInst>(I);
1796   if (!StoreToHoist)
1797     return nullptr;
1798 
1799   // Volatile or atomic.
1800   if (!StoreToHoist->isSimple())
1801     return nullptr;
1802 
1803   Value *StorePtr = StoreToHoist->getPointerOperand();
1804 
1805   // Look for a store to the same pointer in BrBB.
1806   unsigned MaxNumInstToLookAt = 9;
1807   for (Instruction &CurI : reverse(*BrBB)) {
1808     if (!MaxNumInstToLookAt)
1809       break;
1810     // Skip debug info.
1811     if (isa<DbgInfoIntrinsic>(CurI))
1812       continue;
1813     --MaxNumInstToLookAt;
1814 
1815     // Could be calling an instruction that affects memory like free().
1816     if (CurI.mayHaveSideEffects() && !isa<StoreInst>(CurI))
1817       return nullptr;
1818 
1819     if (auto *SI = dyn_cast<StoreInst>(&CurI)) {
1820       // Found the previous store make sure it stores to the same location.
1821       if (SI->getPointerOperand() == StorePtr)
1822         // Found the previous store, return its value operand.
1823         return SI->getValueOperand();
1824       return nullptr; // Unknown store.
1825     }
1826   }
1827 
1828   return nullptr;
1829 }
1830 
1831 /// \brief Speculate a conditional basic block flattening the CFG.
1832 ///
1833 /// Note that this is a very risky transform currently. Speculating
1834 /// instructions like this is most often not desirable. Instead, there is an MI
1835 /// pass which can do it with full awareness of the resource constraints.
1836 /// However, some cases are "obvious" and we should do directly. An example of
1837 /// this is speculating a single, reasonably cheap instruction.
1838 ///
1839 /// There is only one distinct advantage to flattening the CFG at the IR level:
1840 /// it makes very common but simplistic optimizations such as are common in
1841 /// instcombine and the DAG combiner more powerful by removing CFG edges and
1842 /// modeling their effects with easier to reason about SSA value graphs.
1843 ///
1844 ///
1845 /// An illustration of this transform is turning this IR:
1846 /// \code
1847 ///   BB:
1848 ///     %cmp = icmp ult %x, %y
1849 ///     br i1 %cmp, label %EndBB, label %ThenBB
1850 ///   ThenBB:
1851 ///     %sub = sub %x, %y
1852 ///     br label BB2
1853 ///   EndBB:
1854 ///     %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ]
1855 ///     ...
1856 /// \endcode
1857 ///
1858 /// Into this IR:
1859 /// \code
1860 ///   BB:
1861 ///     %cmp = icmp ult %x, %y
1862 ///     %sub = sub %x, %y
1863 ///     %cond = select i1 %cmp, 0, %sub
1864 ///     ...
1865 /// \endcode
1866 ///
1867 /// \returns true if the conditional block is removed.
1868 static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB,
1869                                    const TargetTransformInfo &TTI) {
1870   // Be conservative for now. FP select instruction can often be expensive.
1871   Value *BrCond = BI->getCondition();
1872   if (isa<FCmpInst>(BrCond))
1873     return false;
1874 
1875   BasicBlock *BB = BI->getParent();
1876   BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0);
1877 
1878   // If ThenBB is actually on the false edge of the conditional branch, remember
1879   // to swap the select operands later.
1880   bool Invert = false;
1881   if (ThenBB != BI->getSuccessor(0)) {
1882     assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?");
1883     Invert = true;
1884   }
1885   assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block");
1886 
1887   // Keep a count of how many times instructions are used within CondBB when
1888   // they are candidates for sinking into CondBB. Specifically:
1889   // - They are defined in BB, and
1890   // - They have no side effects, and
1891   // - All of their uses are in CondBB.
1892   SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts;
1893 
1894   unsigned SpeculationCost = 0;
1895   Value *SpeculatedStoreValue = nullptr;
1896   StoreInst *SpeculatedStore = nullptr;
1897   for (BasicBlock::iterator BBI = ThenBB->begin(),
1898                             BBE = std::prev(ThenBB->end());
1899        BBI != BBE; ++BBI) {
1900     Instruction *I = &*BBI;
1901     // Skip debug info.
1902     if (isa<DbgInfoIntrinsic>(I))
1903       continue;
1904 
1905     // Only speculatively execute a single instruction (not counting the
1906     // terminator) for now.
1907     ++SpeculationCost;
1908     if (SpeculationCost > 1)
1909       return false;
1910 
1911     // Don't hoist the instruction if it's unsafe or expensive.
1912     if (!isSafeToSpeculativelyExecute(I) &&
1913         !(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore(
1914                                   I, BB, ThenBB, EndBB))))
1915       return false;
1916     if (!SpeculatedStoreValue &&
1917         ComputeSpeculationCost(I, TTI) >
1918             PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic)
1919       return false;
1920 
1921     // Store the store speculation candidate.
1922     if (SpeculatedStoreValue)
1923       SpeculatedStore = cast<StoreInst>(I);
1924 
1925     // Do not hoist the instruction if any of its operands are defined but not
1926     // used in BB. The transformation will prevent the operand from
1927     // being sunk into the use block.
1928     for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) {
1929       Instruction *OpI = dyn_cast<Instruction>(*i);
1930       if (!OpI || OpI->getParent() != BB || OpI->mayHaveSideEffects())
1931         continue; // Not a candidate for sinking.
1932 
1933       ++SinkCandidateUseCounts[OpI];
1934     }
1935   }
1936 
1937   // Consider any sink candidates which are only used in CondBB as costs for
1938   // speculation. Note, while we iterate over a DenseMap here, we are summing
1939   // and so iteration order isn't significant.
1940   for (SmallDenseMap<Instruction *, unsigned, 4>::iterator
1941            I = SinkCandidateUseCounts.begin(),
1942            E = SinkCandidateUseCounts.end();
1943        I != E; ++I)
1944     if (I->first->getNumUses() == I->second) {
1945       ++SpeculationCost;
1946       if (SpeculationCost > 1)
1947         return false;
1948     }
1949 
1950   // Check that the PHI nodes can be converted to selects.
1951   bool HaveRewritablePHIs = false;
1952   for (BasicBlock::iterator I = EndBB->begin();
1953        PHINode *PN = dyn_cast<PHINode>(I); ++I) {
1954     Value *OrigV = PN->getIncomingValueForBlock(BB);
1955     Value *ThenV = PN->getIncomingValueForBlock(ThenBB);
1956 
1957     // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf.
1958     // Skip PHIs which are trivial.
1959     if (ThenV == OrigV)
1960       continue;
1961 
1962     // Don't convert to selects if we could remove undefined behavior instead.
1963     if (passingValueIsAlwaysUndefined(OrigV, PN) ||
1964         passingValueIsAlwaysUndefined(ThenV, PN))
1965       return false;
1966 
1967     HaveRewritablePHIs = true;
1968     ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV);
1969     ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV);
1970     if (!OrigCE && !ThenCE)
1971       continue; // Known safe and cheap.
1972 
1973     if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE)) ||
1974         (OrigCE && !isSafeToSpeculativelyExecute(OrigCE)))
1975       return false;
1976     unsigned OrigCost = OrigCE ? ComputeSpeculationCost(OrigCE, TTI) : 0;
1977     unsigned ThenCost = ThenCE ? ComputeSpeculationCost(ThenCE, TTI) : 0;
1978     unsigned MaxCost =
1979         2 * PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
1980     if (OrigCost + ThenCost > MaxCost)
1981       return false;
1982 
1983     // Account for the cost of an unfolded ConstantExpr which could end up
1984     // getting expanded into Instructions.
1985     // FIXME: This doesn't account for how many operations are combined in the
1986     // constant expression.
1987     ++SpeculationCost;
1988     if (SpeculationCost > 1)
1989       return false;
1990   }
1991 
1992   // If there are no PHIs to process, bail early. This helps ensure idempotence
1993   // as well.
1994   if (!HaveRewritablePHIs && !(HoistCondStores && SpeculatedStoreValue))
1995     return false;
1996 
1997   // If we get here, we can hoist the instruction and if-convert.
1998   DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";);
1999 
2000   // Insert a select of the value of the speculated store.
2001   if (SpeculatedStoreValue) {
2002     IRBuilder<NoFolder> Builder(BI);
2003     Value *TrueV = SpeculatedStore->getValueOperand();
2004     Value *FalseV = SpeculatedStoreValue;
2005     if (Invert)
2006       std::swap(TrueV, FalseV);
2007     Value *S = Builder.CreateSelect(
2008         BrCond, TrueV, FalseV, TrueV->getName() + "." + FalseV->getName(), BI);
2009     SpeculatedStore->setOperand(0, S);
2010   }
2011 
2012   // Metadata can be dependent on the condition we are hoisting above.
2013   // Conservatively strip all metadata on the instruction.
2014   for (auto &I : *ThenBB)
2015     I.dropUnknownNonDebugMetadata();
2016 
2017   // Hoist the instructions.
2018   BB->getInstList().splice(BI->getIterator(), ThenBB->getInstList(),
2019                            ThenBB->begin(), std::prev(ThenBB->end()));
2020 
2021   // Insert selects and rewrite the PHI operands.
2022   IRBuilder<NoFolder> Builder(BI);
2023   for (BasicBlock::iterator I = EndBB->begin();
2024        PHINode *PN = dyn_cast<PHINode>(I); ++I) {
2025     unsigned OrigI = PN->getBasicBlockIndex(BB);
2026     unsigned ThenI = PN->getBasicBlockIndex(ThenBB);
2027     Value *OrigV = PN->getIncomingValue(OrigI);
2028     Value *ThenV = PN->getIncomingValue(ThenI);
2029 
2030     // Skip PHIs which are trivial.
2031     if (OrigV == ThenV)
2032       continue;
2033 
2034     // Create a select whose true value is the speculatively executed value and
2035     // false value is the preexisting value. Swap them if the branch
2036     // destinations were inverted.
2037     Value *TrueV = ThenV, *FalseV = OrigV;
2038     if (Invert)
2039       std::swap(TrueV, FalseV);
2040     Value *V = Builder.CreateSelect(
2041         BrCond, TrueV, FalseV, TrueV->getName() + "." + FalseV->getName(), BI);
2042     PN->setIncomingValue(OrigI, V);
2043     PN->setIncomingValue(ThenI, V);
2044   }
2045 
2046   ++NumSpeculations;
2047   return true;
2048 }
2049 
2050 /// Return true if we can thread a branch across this block.
2051 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) {
2052   BranchInst *BI = cast<BranchInst>(BB->getTerminator());
2053   unsigned Size = 0;
2054 
2055   for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
2056     if (isa<DbgInfoIntrinsic>(BBI))
2057       continue;
2058     if (Size > 10)
2059       return false; // Don't clone large BB's.
2060     ++Size;
2061 
2062     // We can only support instructions that do not define values that are
2063     // live outside of the current basic block.
2064     for (User *U : BBI->users()) {
2065       Instruction *UI = cast<Instruction>(U);
2066       if (UI->getParent() != BB || isa<PHINode>(UI))
2067         return false;
2068     }
2069 
2070     // Looks ok, continue checking.
2071   }
2072 
2073   return true;
2074 }
2075 
2076 /// If we have a conditional branch on a PHI node value that is defined in the
2077 /// same block as the branch and if any PHI entries are constants, thread edges
2078 /// corresponding to that entry to be branches to their ultimate destination.
2079 static bool FoldCondBranchOnPHI(BranchInst *BI, const DataLayout &DL) {
2080   BasicBlock *BB = BI->getParent();
2081   PHINode *PN = dyn_cast<PHINode>(BI->getCondition());
2082   // NOTE: we currently cannot transform this case if the PHI node is used
2083   // outside of the block.
2084   if (!PN || PN->getParent() != BB || !PN->hasOneUse())
2085     return false;
2086 
2087   // Degenerate case of a single entry PHI.
2088   if (PN->getNumIncomingValues() == 1) {
2089     FoldSingleEntryPHINodes(PN->getParent());
2090     return true;
2091   }
2092 
2093   // Now we know that this block has multiple preds and two succs.
2094   if (!BlockIsSimpleEnoughToThreadThrough(BB))
2095     return false;
2096 
2097   // Can't fold blocks that contain noduplicate or convergent calls.
2098   if (any_of(*BB, [](const Instruction &I) {
2099         const CallInst *CI = dyn_cast<CallInst>(&I);
2100         return CI && (CI->cannotDuplicate() || CI->isConvergent());
2101       }))
2102     return false;
2103 
2104   // Okay, this is a simple enough basic block.  See if any phi values are
2105   // constants.
2106   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
2107     ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i));
2108     if (!CB || !CB->getType()->isIntegerTy(1))
2109       continue;
2110 
2111     // Okay, we now know that all edges from PredBB should be revectored to
2112     // branch to RealDest.
2113     BasicBlock *PredBB = PN->getIncomingBlock(i);
2114     BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue());
2115 
2116     if (RealDest == BB)
2117       continue; // Skip self loops.
2118     // Skip if the predecessor's terminator is an indirect branch.
2119     if (isa<IndirectBrInst>(PredBB->getTerminator()))
2120       continue;
2121 
2122     // The dest block might have PHI nodes, other predecessors and other
2123     // difficult cases.  Instead of being smart about this, just insert a new
2124     // block that jumps to the destination block, effectively splitting
2125     // the edge we are about to create.
2126     BasicBlock *EdgeBB =
2127         BasicBlock::Create(BB->getContext(), RealDest->getName() + ".critedge",
2128                            RealDest->getParent(), RealDest);
2129     BranchInst::Create(RealDest, EdgeBB);
2130 
2131     // Update PHI nodes.
2132     AddPredecessorToBlock(RealDest, EdgeBB, BB);
2133 
2134     // BB may have instructions that are being threaded over.  Clone these
2135     // instructions into EdgeBB.  We know that there will be no uses of the
2136     // cloned instructions outside of EdgeBB.
2137     BasicBlock::iterator InsertPt = EdgeBB->begin();
2138     DenseMap<Value *, Value *> TranslateMap; // Track translated values.
2139     for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
2140       if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
2141         TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB);
2142         continue;
2143       }
2144       // Clone the instruction.
2145       Instruction *N = BBI->clone();
2146       if (BBI->hasName())
2147         N->setName(BBI->getName() + ".c");
2148 
2149       // Update operands due to translation.
2150       for (User::op_iterator i = N->op_begin(), e = N->op_end(); i != e; ++i) {
2151         DenseMap<Value *, Value *>::iterator PI = TranslateMap.find(*i);
2152         if (PI != TranslateMap.end())
2153           *i = PI->second;
2154       }
2155 
2156       // Check for trivial simplification.
2157       if (Value *V = SimplifyInstruction(N, DL)) {
2158         if (!BBI->use_empty())
2159           TranslateMap[&*BBI] = V;
2160         if (!N->mayHaveSideEffects()) {
2161           delete N; // Instruction folded away, don't need actual inst
2162           N = nullptr;
2163         }
2164       } else {
2165         if (!BBI->use_empty())
2166           TranslateMap[&*BBI] = N;
2167       }
2168       // Insert the new instruction into its new home.
2169       if (N)
2170         EdgeBB->getInstList().insert(InsertPt, N);
2171     }
2172 
2173     // Loop over all of the edges from PredBB to BB, changing them to branch
2174     // to EdgeBB instead.
2175     TerminatorInst *PredBBTI = PredBB->getTerminator();
2176     for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i)
2177       if (PredBBTI->getSuccessor(i) == BB) {
2178         BB->removePredecessor(PredBB);
2179         PredBBTI->setSuccessor(i, EdgeBB);
2180       }
2181 
2182     // Recurse, simplifying any other constants.
2183     return FoldCondBranchOnPHI(BI, DL) | true;
2184   }
2185 
2186   return false;
2187 }
2188 
2189 /// Given a BB that starts with the specified two-entry PHI node,
2190 /// see if we can eliminate it.
2191 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI,
2192                                 const DataLayout &DL) {
2193   // Ok, this is a two entry PHI node.  Check to see if this is a simple "if
2194   // statement", which has a very simple dominance structure.  Basically, we
2195   // are trying to find the condition that is being branched on, which
2196   // subsequently causes this merge to happen.  We really want control
2197   // dependence information for this check, but simplifycfg can't keep it up
2198   // to date, and this catches most of the cases we care about anyway.
2199   BasicBlock *BB = PN->getParent();
2200   BasicBlock *IfTrue, *IfFalse;
2201   Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse);
2202   if (!IfCond ||
2203       // Don't bother if the branch will be constant folded trivially.
2204       isa<ConstantInt>(IfCond))
2205     return false;
2206 
2207   // Okay, we found that we can merge this two-entry phi node into a select.
2208   // Doing so would require us to fold *all* two entry phi nodes in this block.
2209   // At some point this becomes non-profitable (particularly if the target
2210   // doesn't support cmov's).  Only do this transformation if there are two or
2211   // fewer PHI nodes in this block.
2212   unsigned NumPhis = 0;
2213   for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I)
2214     if (NumPhis > 2)
2215       return false;
2216 
2217   // Loop over the PHI's seeing if we can promote them all to select
2218   // instructions.  While we are at it, keep track of the instructions
2219   // that need to be moved to the dominating block.
2220   SmallPtrSet<Instruction *, 4> AggressiveInsts;
2221   unsigned MaxCostVal0 = PHINodeFoldingThreshold,
2222            MaxCostVal1 = PHINodeFoldingThreshold;
2223   MaxCostVal0 *= TargetTransformInfo::TCC_Basic;
2224   MaxCostVal1 *= TargetTransformInfo::TCC_Basic;
2225 
2226   for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) {
2227     PHINode *PN = cast<PHINode>(II++);
2228     if (Value *V = SimplifyInstruction(PN, DL)) {
2229       PN->replaceAllUsesWith(V);
2230       PN->eraseFromParent();
2231       continue;
2232     }
2233 
2234     if (!DominatesMergePoint(PN->getIncomingValue(0), BB, &AggressiveInsts,
2235                              MaxCostVal0, TTI) ||
2236         !DominatesMergePoint(PN->getIncomingValue(1), BB, &AggressiveInsts,
2237                              MaxCostVal1, TTI))
2238       return false;
2239   }
2240 
2241   // If we folded the first phi, PN dangles at this point.  Refresh it.  If
2242   // we ran out of PHIs then we simplified them all.
2243   PN = dyn_cast<PHINode>(BB->begin());
2244   if (!PN)
2245     return true;
2246 
2247   // Don't fold i1 branches on PHIs which contain binary operators.  These can
2248   // often be turned into switches and other things.
2249   if (PN->getType()->isIntegerTy(1) &&
2250       (isa<BinaryOperator>(PN->getIncomingValue(0)) ||
2251        isa<BinaryOperator>(PN->getIncomingValue(1)) ||
2252        isa<BinaryOperator>(IfCond)))
2253     return false;
2254 
2255   // If all PHI nodes are promotable, check to make sure that all instructions
2256   // in the predecessor blocks can be promoted as well. If not, we won't be able
2257   // to get rid of the control flow, so it's not worth promoting to select
2258   // instructions.
2259   BasicBlock *DomBlock = nullptr;
2260   BasicBlock *IfBlock1 = PN->getIncomingBlock(0);
2261   BasicBlock *IfBlock2 = PN->getIncomingBlock(1);
2262   if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) {
2263     IfBlock1 = nullptr;
2264   } else {
2265     DomBlock = *pred_begin(IfBlock1);
2266     for (BasicBlock::iterator I = IfBlock1->begin(); !isa<TerminatorInst>(I);
2267          ++I)
2268       if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) {
2269         // This is not an aggressive instruction that we can promote.
2270         // Because of this, we won't be able to get rid of the control flow, so
2271         // the xform is not worth it.
2272         return false;
2273       }
2274   }
2275 
2276   if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) {
2277     IfBlock2 = nullptr;
2278   } else {
2279     DomBlock = *pred_begin(IfBlock2);
2280     for (BasicBlock::iterator I = IfBlock2->begin(); !isa<TerminatorInst>(I);
2281          ++I)
2282       if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) {
2283         // This is not an aggressive instruction that we can promote.
2284         // Because of this, we won't be able to get rid of the control flow, so
2285         // the xform is not worth it.
2286         return false;
2287       }
2288   }
2289 
2290   DEBUG(dbgs() << "FOUND IF CONDITION!  " << *IfCond << "  T: "
2291                << IfTrue->getName() << "  F: " << IfFalse->getName() << "\n");
2292 
2293   // If we can still promote the PHI nodes after this gauntlet of tests,
2294   // do all of the PHI's now.
2295   Instruction *InsertPt = DomBlock->getTerminator();
2296   IRBuilder<NoFolder> Builder(InsertPt);
2297 
2298   // Move all 'aggressive' instructions, which are defined in the
2299   // conditional parts of the if's up to the dominating block.
2300   if (IfBlock1) {
2301     for (auto &I : *IfBlock1)
2302       I.dropUnknownNonDebugMetadata();
2303     DomBlock->getInstList().splice(InsertPt->getIterator(),
2304                                    IfBlock1->getInstList(), IfBlock1->begin(),
2305                                    IfBlock1->getTerminator()->getIterator());
2306   }
2307   if (IfBlock2) {
2308     for (auto &I : *IfBlock2)
2309       I.dropUnknownNonDebugMetadata();
2310     DomBlock->getInstList().splice(InsertPt->getIterator(),
2311                                    IfBlock2->getInstList(), IfBlock2->begin(),
2312                                    IfBlock2->getTerminator()->getIterator());
2313   }
2314 
2315   while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
2316     // Change the PHI node into a select instruction.
2317     Value *TrueVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse);
2318     Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue);
2319 
2320     Value *Sel = Builder.CreateSelect(IfCond, TrueVal, FalseVal, "", InsertPt);
2321     PN->replaceAllUsesWith(Sel);
2322     Sel->takeName(PN);
2323     PN->eraseFromParent();
2324   }
2325 
2326   // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement
2327   // has been flattened.  Change DomBlock to jump directly to our new block to
2328   // avoid other simplifycfg's kicking in on the diamond.
2329   TerminatorInst *OldTI = DomBlock->getTerminator();
2330   Builder.SetInsertPoint(OldTI);
2331   Builder.CreateBr(BB);
2332   OldTI->eraseFromParent();
2333   return true;
2334 }
2335 
2336 /// If we found a conditional branch that goes to two returning blocks,
2337 /// try to merge them together into one return,
2338 /// introducing a select if the return values disagree.
2339 static bool SimplifyCondBranchToTwoReturns(BranchInst *BI,
2340                                            IRBuilder<> &Builder) {
2341   assert(BI->isConditional() && "Must be a conditional branch");
2342   BasicBlock *TrueSucc = BI->getSuccessor(0);
2343   BasicBlock *FalseSucc = BI->getSuccessor(1);
2344   ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator());
2345   ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator());
2346 
2347   // Check to ensure both blocks are empty (just a return) or optionally empty
2348   // with PHI nodes.  If there are other instructions, merging would cause extra
2349   // computation on one path or the other.
2350   if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator())
2351     return false;
2352   if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator())
2353     return false;
2354 
2355   Builder.SetInsertPoint(BI);
2356   // Okay, we found a branch that is going to two return nodes.  If
2357   // there is no return value for this function, just change the
2358   // branch into a return.
2359   if (FalseRet->getNumOperands() == 0) {
2360     TrueSucc->removePredecessor(BI->getParent());
2361     FalseSucc->removePredecessor(BI->getParent());
2362     Builder.CreateRetVoid();
2363     EraseTerminatorInstAndDCECond(BI);
2364     return true;
2365   }
2366 
2367   // Otherwise, figure out what the true and false return values are
2368   // so we can insert a new select instruction.
2369   Value *TrueValue = TrueRet->getReturnValue();
2370   Value *FalseValue = FalseRet->getReturnValue();
2371 
2372   // Unwrap any PHI nodes in the return blocks.
2373   if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue))
2374     if (TVPN->getParent() == TrueSucc)
2375       TrueValue = TVPN->getIncomingValueForBlock(BI->getParent());
2376   if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue))
2377     if (FVPN->getParent() == FalseSucc)
2378       FalseValue = FVPN->getIncomingValueForBlock(BI->getParent());
2379 
2380   // In order for this transformation to be safe, we must be able to
2381   // unconditionally execute both operands to the return.  This is
2382   // normally the case, but we could have a potentially-trapping
2383   // constant expression that prevents this transformation from being
2384   // safe.
2385   if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue))
2386     if (TCV->canTrap())
2387       return false;
2388   if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue))
2389     if (FCV->canTrap())
2390       return false;
2391 
2392   // Okay, we collected all the mapped values and checked them for sanity, and
2393   // defined to really do this transformation.  First, update the CFG.
2394   TrueSucc->removePredecessor(BI->getParent());
2395   FalseSucc->removePredecessor(BI->getParent());
2396 
2397   // Insert select instructions where needed.
2398   Value *BrCond = BI->getCondition();
2399   if (TrueValue) {
2400     // Insert a select if the results differ.
2401     if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) {
2402     } else if (isa<UndefValue>(TrueValue)) {
2403       TrueValue = FalseValue;
2404     } else {
2405       TrueValue =
2406           Builder.CreateSelect(BrCond, TrueValue, FalseValue, "retval", BI);
2407     }
2408   }
2409 
2410   Value *RI =
2411       !TrueValue ? Builder.CreateRetVoid() : Builder.CreateRet(TrueValue);
2412 
2413   (void)RI;
2414 
2415   DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:"
2416                << "\n  " << *BI << "NewRet = " << *RI
2417                << "TRUEBLOCK: " << *TrueSucc << "FALSEBLOCK: " << *FalseSucc);
2418 
2419   EraseTerminatorInstAndDCECond(BI);
2420 
2421   return true;
2422 }
2423 
2424 /// Return true if the given instruction is available
2425 /// in its predecessor block. If yes, the instruction will be removed.
2426 static bool checkCSEInPredecessor(Instruction *Inst, BasicBlock *PB) {
2427   if (!isa<BinaryOperator>(Inst) && !isa<CmpInst>(Inst))
2428     return false;
2429   for (Instruction &I : *PB) {
2430     Instruction *PBI = &I;
2431     // Check whether Inst and PBI generate the same value.
2432     if (Inst->isIdenticalTo(PBI)) {
2433       Inst->replaceAllUsesWith(PBI);
2434       Inst->eraseFromParent();
2435       return true;
2436     }
2437   }
2438   return false;
2439 }
2440 
2441 /// Return true if either PBI or BI has branch weight available, and store
2442 /// the weights in {Pred|Succ}{True|False}Weight. If one of PBI and BI does
2443 /// not have branch weight, use 1:1 as its weight.
2444 static bool extractPredSuccWeights(BranchInst *PBI, BranchInst *BI,
2445                                    uint64_t &PredTrueWeight,
2446                                    uint64_t &PredFalseWeight,
2447                                    uint64_t &SuccTrueWeight,
2448                                    uint64_t &SuccFalseWeight) {
2449   bool PredHasWeights =
2450       PBI->extractProfMetadata(PredTrueWeight, PredFalseWeight);
2451   bool SuccHasWeights =
2452       BI->extractProfMetadata(SuccTrueWeight, SuccFalseWeight);
2453   if (PredHasWeights || SuccHasWeights) {
2454     if (!PredHasWeights)
2455       PredTrueWeight = PredFalseWeight = 1;
2456     if (!SuccHasWeights)
2457       SuccTrueWeight = SuccFalseWeight = 1;
2458     return true;
2459   } else {
2460     return false;
2461   }
2462 }
2463 
2464 /// If this basic block is simple enough, and if a predecessor branches to us
2465 /// and one of our successors, fold the block into the predecessor and use
2466 /// logical operations to pick the right destination.
2467 bool llvm::FoldBranchToCommonDest(BranchInst *BI, unsigned BonusInstThreshold) {
2468   BasicBlock *BB = BI->getParent();
2469 
2470   Instruction *Cond = nullptr;
2471   if (BI->isConditional())
2472     Cond = dyn_cast<Instruction>(BI->getCondition());
2473   else {
2474     // For unconditional branch, check for a simple CFG pattern, where
2475     // BB has a single predecessor and BB's successor is also its predecessor's
2476     // successor. If such pattern exisits, check for CSE between BB and its
2477     // predecessor.
2478     if (BasicBlock *PB = BB->getSinglePredecessor())
2479       if (BranchInst *PBI = dyn_cast<BranchInst>(PB->getTerminator()))
2480         if (PBI->isConditional() &&
2481             (BI->getSuccessor(0) == PBI->getSuccessor(0) ||
2482              BI->getSuccessor(0) == PBI->getSuccessor(1))) {
2483           for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
2484             Instruction *Curr = &*I++;
2485             if (isa<CmpInst>(Curr)) {
2486               Cond = Curr;
2487               break;
2488             }
2489             // Quit if we can't remove this instruction.
2490             if (!checkCSEInPredecessor(Curr, PB))
2491               return false;
2492           }
2493         }
2494 
2495     if (!Cond)
2496       return false;
2497   }
2498 
2499   if (!Cond || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) ||
2500       Cond->getParent() != BB || !Cond->hasOneUse())
2501     return false;
2502 
2503   // Make sure the instruction after the condition is the cond branch.
2504   BasicBlock::iterator CondIt = ++Cond->getIterator();
2505 
2506   // Ignore dbg intrinsics.
2507   while (isa<DbgInfoIntrinsic>(CondIt))
2508     ++CondIt;
2509 
2510   if (&*CondIt != BI)
2511     return false;
2512 
2513   // Only allow this transformation if computing the condition doesn't involve
2514   // too many instructions and these involved instructions can be executed
2515   // unconditionally. We denote all involved instructions except the condition
2516   // as "bonus instructions", and only allow this transformation when the
2517   // number of the bonus instructions does not exceed a certain threshold.
2518   unsigned NumBonusInsts = 0;
2519   for (auto I = BB->begin(); Cond != &*I; ++I) {
2520     // Ignore dbg intrinsics.
2521     if (isa<DbgInfoIntrinsic>(I))
2522       continue;
2523     if (!I->hasOneUse() || !isSafeToSpeculativelyExecute(&*I))
2524       return false;
2525     // I has only one use and can be executed unconditionally.
2526     Instruction *User = dyn_cast<Instruction>(I->user_back());
2527     if (User == nullptr || User->getParent() != BB)
2528       return false;
2529     // I is used in the same BB. Since BI uses Cond and doesn't have more slots
2530     // to use any other instruction, User must be an instruction between next(I)
2531     // and Cond.
2532     ++NumBonusInsts;
2533     // Early exits once we reach the limit.
2534     if (NumBonusInsts > BonusInstThreshold)
2535       return false;
2536   }
2537 
2538   // Cond is known to be a compare or binary operator.  Check to make sure that
2539   // neither operand is a potentially-trapping constant expression.
2540   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0)))
2541     if (CE->canTrap())
2542       return false;
2543   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1)))
2544     if (CE->canTrap())
2545       return false;
2546 
2547   // Finally, don't infinitely unroll conditional loops.
2548   BasicBlock *TrueDest = BI->getSuccessor(0);
2549   BasicBlock *FalseDest = (BI->isConditional()) ? BI->getSuccessor(1) : nullptr;
2550   if (TrueDest == BB || FalseDest == BB)
2551     return false;
2552 
2553   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
2554     BasicBlock *PredBlock = *PI;
2555     BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator());
2556 
2557     // Check that we have two conditional branches.  If there is a PHI node in
2558     // the common successor, verify that the same value flows in from both
2559     // blocks.
2560     SmallVector<PHINode *, 4> PHIs;
2561     if (!PBI || PBI->isUnconditional() ||
2562         (BI->isConditional() && !SafeToMergeTerminators(BI, PBI)) ||
2563         (!BI->isConditional() &&
2564          !isProfitableToFoldUnconditional(BI, PBI, Cond, PHIs)))
2565       continue;
2566 
2567     // Determine if the two branches share a common destination.
2568     Instruction::BinaryOps Opc = Instruction::BinaryOpsEnd;
2569     bool InvertPredCond = false;
2570 
2571     if (BI->isConditional()) {
2572       if (PBI->getSuccessor(0) == TrueDest) {
2573         Opc = Instruction::Or;
2574       } else if (PBI->getSuccessor(1) == FalseDest) {
2575         Opc = Instruction::And;
2576       } else if (PBI->getSuccessor(0) == FalseDest) {
2577         Opc = Instruction::And;
2578         InvertPredCond = true;
2579       } else if (PBI->getSuccessor(1) == TrueDest) {
2580         Opc = Instruction::Or;
2581         InvertPredCond = true;
2582       } else {
2583         continue;
2584       }
2585     } else {
2586       if (PBI->getSuccessor(0) != TrueDest && PBI->getSuccessor(1) != TrueDest)
2587         continue;
2588     }
2589 
2590     DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB);
2591     IRBuilder<> Builder(PBI);
2592 
2593     // If we need to invert the condition in the pred block to match, do so now.
2594     if (InvertPredCond) {
2595       Value *NewCond = PBI->getCondition();
2596 
2597       if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) {
2598         CmpInst *CI = cast<CmpInst>(NewCond);
2599         CI->setPredicate(CI->getInversePredicate());
2600       } else {
2601         NewCond =
2602             Builder.CreateNot(NewCond, PBI->getCondition()->getName() + ".not");
2603       }
2604 
2605       PBI->setCondition(NewCond);
2606       PBI->swapSuccessors();
2607     }
2608 
2609     // If we have bonus instructions, clone them into the predecessor block.
2610     // Note that there may be multiple predecessor blocks, so we cannot move
2611     // bonus instructions to a predecessor block.
2612     ValueToValueMapTy VMap; // maps original values to cloned values
2613     // We already make sure Cond is the last instruction before BI. Therefore,
2614     // all instructions before Cond other than DbgInfoIntrinsic are bonus
2615     // instructions.
2616     for (auto BonusInst = BB->begin(); Cond != &*BonusInst; ++BonusInst) {
2617       if (isa<DbgInfoIntrinsic>(BonusInst))
2618         continue;
2619       Instruction *NewBonusInst = BonusInst->clone();
2620       RemapInstruction(NewBonusInst, VMap,
2621                        RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
2622       VMap[&*BonusInst] = NewBonusInst;
2623 
2624       // If we moved a load, we cannot any longer claim any knowledge about
2625       // its potential value. The previous information might have been valid
2626       // only given the branch precondition.
2627       // For an analogous reason, we must also drop all the metadata whose
2628       // semantics we don't understand.
2629       NewBonusInst->dropUnknownNonDebugMetadata();
2630 
2631       PredBlock->getInstList().insert(PBI->getIterator(), NewBonusInst);
2632       NewBonusInst->takeName(&*BonusInst);
2633       BonusInst->setName(BonusInst->getName() + ".old");
2634     }
2635 
2636     // Clone Cond into the predecessor basic block, and or/and the
2637     // two conditions together.
2638     Instruction *New = Cond->clone();
2639     RemapInstruction(New, VMap,
2640                      RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
2641     PredBlock->getInstList().insert(PBI->getIterator(), New);
2642     New->takeName(Cond);
2643     Cond->setName(New->getName() + ".old");
2644 
2645     if (BI->isConditional()) {
2646       Instruction *NewCond = cast<Instruction>(
2647           Builder.CreateBinOp(Opc, PBI->getCondition(), New, "or.cond"));
2648       PBI->setCondition(NewCond);
2649 
2650       uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
2651       bool HasWeights =
2652           extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
2653                                  SuccTrueWeight, SuccFalseWeight);
2654       SmallVector<uint64_t, 8> NewWeights;
2655 
2656       if (PBI->getSuccessor(0) == BB) {
2657         if (HasWeights) {
2658           // PBI: br i1 %x, BB, FalseDest
2659           // BI:  br i1 %y, TrueDest, FalseDest
2660           // TrueWeight is TrueWeight for PBI * TrueWeight for BI.
2661           NewWeights.push_back(PredTrueWeight * SuccTrueWeight);
2662           // FalseWeight is FalseWeight for PBI * TotalWeight for BI +
2663           //               TrueWeight for PBI * FalseWeight for BI.
2664           // We assume that total weights of a BranchInst can fit into 32 bits.
2665           // Therefore, we will not have overflow using 64-bit arithmetic.
2666           NewWeights.push_back(PredFalseWeight *
2667                                    (SuccFalseWeight + SuccTrueWeight) +
2668                                PredTrueWeight * SuccFalseWeight);
2669         }
2670         AddPredecessorToBlock(TrueDest, PredBlock, BB);
2671         PBI->setSuccessor(0, TrueDest);
2672       }
2673       if (PBI->getSuccessor(1) == BB) {
2674         if (HasWeights) {
2675           // PBI: br i1 %x, TrueDest, BB
2676           // BI:  br i1 %y, TrueDest, FalseDest
2677           // TrueWeight is TrueWeight for PBI * TotalWeight for BI +
2678           //              FalseWeight for PBI * TrueWeight for BI.
2679           NewWeights.push_back(PredTrueWeight *
2680                                    (SuccFalseWeight + SuccTrueWeight) +
2681                                PredFalseWeight * SuccTrueWeight);
2682           // FalseWeight is FalseWeight for PBI * FalseWeight for BI.
2683           NewWeights.push_back(PredFalseWeight * SuccFalseWeight);
2684         }
2685         AddPredecessorToBlock(FalseDest, PredBlock, BB);
2686         PBI->setSuccessor(1, FalseDest);
2687       }
2688       if (NewWeights.size() == 2) {
2689         // Halve the weights if any of them cannot fit in an uint32_t
2690         FitWeights(NewWeights);
2691 
2692         SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(),
2693                                            NewWeights.end());
2694         PBI->setMetadata(
2695             LLVMContext::MD_prof,
2696             MDBuilder(BI->getContext()).createBranchWeights(MDWeights));
2697       } else
2698         PBI->setMetadata(LLVMContext::MD_prof, nullptr);
2699     } else {
2700       // Update PHI nodes in the common successors.
2701       for (unsigned i = 0, e = PHIs.size(); i != e; ++i) {
2702         ConstantInt *PBI_C = cast<ConstantInt>(
2703             PHIs[i]->getIncomingValueForBlock(PBI->getParent()));
2704         assert(PBI_C->getType()->isIntegerTy(1));
2705         Instruction *MergedCond = nullptr;
2706         if (PBI->getSuccessor(0) == TrueDest) {
2707           // Create (PBI_Cond and PBI_C) or (!PBI_Cond and BI_Value)
2708           // PBI_C is true: PBI_Cond or (!PBI_Cond and BI_Value)
2709           //       is false: !PBI_Cond and BI_Value
2710           Instruction *NotCond = cast<Instruction>(
2711               Builder.CreateNot(PBI->getCondition(), "not.cond"));
2712           MergedCond = cast<Instruction>(
2713               Builder.CreateBinOp(Instruction::And, NotCond, New, "and.cond"));
2714           if (PBI_C->isOne())
2715             MergedCond = cast<Instruction>(Builder.CreateBinOp(
2716                 Instruction::Or, PBI->getCondition(), MergedCond, "or.cond"));
2717         } else {
2718           // Create (PBI_Cond and BI_Value) or (!PBI_Cond and PBI_C)
2719           // PBI_C is true: (PBI_Cond and BI_Value) or (!PBI_Cond)
2720           //       is false: PBI_Cond and BI_Value
2721           MergedCond = cast<Instruction>(Builder.CreateBinOp(
2722               Instruction::And, PBI->getCondition(), New, "and.cond"));
2723           if (PBI_C->isOne()) {
2724             Instruction *NotCond = cast<Instruction>(
2725                 Builder.CreateNot(PBI->getCondition(), "not.cond"));
2726             MergedCond = cast<Instruction>(Builder.CreateBinOp(
2727                 Instruction::Or, NotCond, MergedCond, "or.cond"));
2728           }
2729         }
2730         // Update PHI Node.
2731         PHIs[i]->setIncomingValue(PHIs[i]->getBasicBlockIndex(PBI->getParent()),
2732                                   MergedCond);
2733       }
2734       // Change PBI from Conditional to Unconditional.
2735       BranchInst *New_PBI = BranchInst::Create(TrueDest, PBI);
2736       EraseTerminatorInstAndDCECond(PBI);
2737       PBI = New_PBI;
2738     }
2739 
2740     // TODO: If BB is reachable from all paths through PredBlock, then we
2741     // could replace PBI's branch probabilities with BI's.
2742 
2743     // Copy any debug value intrinsics into the end of PredBlock.
2744     for (Instruction &I : *BB)
2745       if (isa<DbgInfoIntrinsic>(I))
2746         I.clone()->insertBefore(PBI);
2747 
2748     return true;
2749   }
2750   return false;
2751 }
2752 
2753 // If there is only one store in BB1 and BB2, return it, otherwise return
2754 // nullptr.
2755 static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) {
2756   StoreInst *S = nullptr;
2757   for (auto *BB : {BB1, BB2}) {
2758     if (!BB)
2759       continue;
2760     for (auto &I : *BB)
2761       if (auto *SI = dyn_cast<StoreInst>(&I)) {
2762         if (S)
2763           // Multiple stores seen.
2764           return nullptr;
2765         else
2766           S = SI;
2767       }
2768   }
2769   return S;
2770 }
2771 
2772 static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB,
2773                                               Value *AlternativeV = nullptr) {
2774   // PHI is going to be a PHI node that allows the value V that is defined in
2775   // BB to be referenced in BB's only successor.
2776   //
2777   // If AlternativeV is nullptr, the only value we care about in PHI is V. It
2778   // doesn't matter to us what the other operand is (it'll never get used). We
2779   // could just create a new PHI with an undef incoming value, but that could
2780   // increase register pressure if EarlyCSE/InstCombine can't fold it with some
2781   // other PHI. So here we directly look for some PHI in BB's successor with V
2782   // as an incoming operand. If we find one, we use it, else we create a new
2783   // one.
2784   //
2785   // If AlternativeV is not nullptr, we care about both incoming values in PHI.
2786   // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV]
2787   // where OtherBB is the single other predecessor of BB's only successor.
2788   PHINode *PHI = nullptr;
2789   BasicBlock *Succ = BB->getSingleSuccessor();
2790 
2791   for (auto I = Succ->begin(); isa<PHINode>(I); ++I)
2792     if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) {
2793       PHI = cast<PHINode>(I);
2794       if (!AlternativeV)
2795         break;
2796 
2797       assert(std::distance(pred_begin(Succ), pred_end(Succ)) == 2);
2798       auto PredI = pred_begin(Succ);
2799       BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI;
2800       if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV)
2801         break;
2802       PHI = nullptr;
2803     }
2804   if (PHI)
2805     return PHI;
2806 
2807   // If V is not an instruction defined in BB, just return it.
2808   if (!AlternativeV &&
2809       (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB))
2810     return V;
2811 
2812   PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge", &Succ->front());
2813   PHI->addIncoming(V, BB);
2814   for (BasicBlock *PredBB : predecessors(Succ))
2815     if (PredBB != BB)
2816       PHI->addIncoming(
2817           AlternativeV ? AlternativeV : UndefValue::get(V->getType()), PredBB);
2818   return PHI;
2819 }
2820 
2821 static bool mergeConditionalStoreToAddress(BasicBlock *PTB, BasicBlock *PFB,
2822                                            BasicBlock *QTB, BasicBlock *QFB,
2823                                            BasicBlock *PostBB, Value *Address,
2824                                            bool InvertPCond, bool InvertQCond) {
2825   auto IsaBitcastOfPointerType = [](const Instruction &I) {
2826     return Operator::getOpcode(&I) == Instruction::BitCast &&
2827            I.getType()->isPointerTy();
2828   };
2829 
2830   // If we're not in aggressive mode, we only optimize if we have some
2831   // confidence that by optimizing we'll allow P and/or Q to be if-converted.
2832   auto IsWorthwhile = [&](BasicBlock *BB) {
2833     if (!BB)
2834       return true;
2835     // Heuristic: if the block can be if-converted/phi-folded and the
2836     // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to
2837     // thread this store.
2838     unsigned N = 0;
2839     for (auto &I : *BB) {
2840       // Cheap instructions viable for folding.
2841       if (isa<BinaryOperator>(I) || isa<GetElementPtrInst>(I) ||
2842           isa<StoreInst>(I))
2843         ++N;
2844       // Free instructions.
2845       else if (isa<TerminatorInst>(I) || isa<DbgInfoIntrinsic>(I) ||
2846                IsaBitcastOfPointerType(I))
2847         continue;
2848       else
2849         return false;
2850     }
2851     return N <= PHINodeFoldingThreshold;
2852   };
2853 
2854   if (!MergeCondStoresAggressively &&
2855       (!IsWorthwhile(PTB) || !IsWorthwhile(PFB) || !IsWorthwhile(QTB) ||
2856        !IsWorthwhile(QFB)))
2857     return false;
2858 
2859   // For every pointer, there must be exactly two stores, one coming from
2860   // PTB or PFB, and the other from QTB or QFB. We don't support more than one
2861   // store (to any address) in PTB,PFB or QTB,QFB.
2862   // FIXME: We could relax this restriction with a bit more work and performance
2863   // testing.
2864   StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB);
2865   StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB);
2866   if (!PStore || !QStore)
2867     return false;
2868 
2869   // Now check the stores are compatible.
2870   if (!QStore->isUnordered() || !PStore->isUnordered())
2871     return false;
2872 
2873   // Check that sinking the store won't cause program behavior changes. Sinking
2874   // the store out of the Q blocks won't change any behavior as we're sinking
2875   // from a block to its unconditional successor. But we're moving a store from
2876   // the P blocks down through the middle block (QBI) and past both QFB and QTB.
2877   // So we need to check that there are no aliasing loads or stores in
2878   // QBI, QTB and QFB. We also need to check there are no conflicting memory
2879   // operations between PStore and the end of its parent block.
2880   //
2881   // The ideal way to do this is to query AliasAnalysis, but we don't
2882   // preserve AA currently so that is dangerous. Be super safe and just
2883   // check there are no other memory operations at all.
2884   for (auto &I : *QFB->getSinglePredecessor())
2885     if (I.mayReadOrWriteMemory())
2886       return false;
2887   for (auto &I : *QFB)
2888     if (&I != QStore && I.mayReadOrWriteMemory())
2889       return false;
2890   if (QTB)
2891     for (auto &I : *QTB)
2892       if (&I != QStore && I.mayReadOrWriteMemory())
2893         return false;
2894   for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end();
2895        I != E; ++I)
2896     if (&*I != PStore && I->mayReadOrWriteMemory())
2897       return false;
2898 
2899   // OK, we're going to sink the stores to PostBB. The store has to be
2900   // conditional though, so first create the predicate.
2901   Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator())
2902                      ->getCondition();
2903   Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator())
2904                      ->getCondition();
2905 
2906   Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(),
2907                                                 PStore->getParent());
2908   Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(),
2909                                                 QStore->getParent(), PPHI);
2910 
2911   IRBuilder<> QB(&*PostBB->getFirstInsertionPt());
2912 
2913   Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond);
2914   Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond);
2915 
2916   if (InvertPCond)
2917     PPred = QB.CreateNot(PPred);
2918   if (InvertQCond)
2919     QPred = QB.CreateNot(QPred);
2920   Value *CombinedPred = QB.CreateOr(PPred, QPred);
2921 
2922   auto *T =
2923       SplitBlockAndInsertIfThen(CombinedPred, &*QB.GetInsertPoint(), false);
2924   QB.SetInsertPoint(T);
2925   StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address));
2926   AAMDNodes AAMD;
2927   PStore->getAAMetadata(AAMD, /*Merge=*/false);
2928   PStore->getAAMetadata(AAMD, /*Merge=*/true);
2929   SI->setAAMetadata(AAMD);
2930 
2931   QStore->eraseFromParent();
2932   PStore->eraseFromParent();
2933 
2934   return true;
2935 }
2936 
2937 static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI) {
2938   // The intention here is to find diamonds or triangles (see below) where each
2939   // conditional block contains a store to the same address. Both of these
2940   // stores are conditional, so they can't be unconditionally sunk. But it may
2941   // be profitable to speculatively sink the stores into one merged store at the
2942   // end, and predicate the merged store on the union of the two conditions of
2943   // PBI and QBI.
2944   //
2945   // This can reduce the number of stores executed if both of the conditions are
2946   // true, and can allow the blocks to become small enough to be if-converted.
2947   // This optimization will also chain, so that ladders of test-and-set
2948   // sequences can be if-converted away.
2949   //
2950   // We only deal with simple diamonds or triangles:
2951   //
2952   //     PBI       or      PBI        or a combination of the two
2953   //    /   \               | \
2954   //   PTB  PFB             |  PFB
2955   //    \   /               | /
2956   //     QBI                QBI
2957   //    /  \                | \
2958   //   QTB  QFB             |  QFB
2959   //    \  /                | /
2960   //    PostBB            PostBB
2961   //
2962   // We model triangles as a type of diamond with a nullptr "true" block.
2963   // Triangles are canonicalized so that the fallthrough edge is represented by
2964   // a true condition, as in the diagram above.
2965   //
2966   BasicBlock *PTB = PBI->getSuccessor(0);
2967   BasicBlock *PFB = PBI->getSuccessor(1);
2968   BasicBlock *QTB = QBI->getSuccessor(0);
2969   BasicBlock *QFB = QBI->getSuccessor(1);
2970   BasicBlock *PostBB = QFB->getSingleSuccessor();
2971 
2972   bool InvertPCond = false, InvertQCond = false;
2973   // Canonicalize fallthroughs to the true branches.
2974   if (PFB == QBI->getParent()) {
2975     std::swap(PFB, PTB);
2976     InvertPCond = true;
2977   }
2978   if (QFB == PostBB) {
2979     std::swap(QFB, QTB);
2980     InvertQCond = true;
2981   }
2982 
2983   // From this point on we can assume PTB or QTB may be fallthroughs but PFB
2984   // and QFB may not. Model fallthroughs as a nullptr block.
2985   if (PTB == QBI->getParent())
2986     PTB = nullptr;
2987   if (QTB == PostBB)
2988     QTB = nullptr;
2989 
2990   // Legality bailouts. We must have at least the non-fallthrough blocks and
2991   // the post-dominating block, and the non-fallthroughs must only have one
2992   // predecessor.
2993   auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) {
2994     return BB->getSinglePredecessor() == P && BB->getSingleSuccessor() == S;
2995   };
2996   if (!PostBB ||
2997       !HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) ||
2998       !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB))
2999     return false;
3000   if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) ||
3001       (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB)))
3002     return false;
3003   if (PostBB->getNumUses() != 2 || QBI->getParent()->getNumUses() != 2)
3004     return false;
3005 
3006   // OK, this is a sequence of two diamonds or triangles.
3007   // Check if there are stores in PTB or PFB that are repeated in QTB or QFB.
3008   SmallPtrSet<Value *, 4> PStoreAddresses, QStoreAddresses;
3009   for (auto *BB : {PTB, PFB}) {
3010     if (!BB)
3011       continue;
3012     for (auto &I : *BB)
3013       if (StoreInst *SI = dyn_cast<StoreInst>(&I))
3014         PStoreAddresses.insert(SI->getPointerOperand());
3015   }
3016   for (auto *BB : {QTB, QFB}) {
3017     if (!BB)
3018       continue;
3019     for (auto &I : *BB)
3020       if (StoreInst *SI = dyn_cast<StoreInst>(&I))
3021         QStoreAddresses.insert(SI->getPointerOperand());
3022   }
3023 
3024   set_intersect(PStoreAddresses, QStoreAddresses);
3025   // set_intersect mutates PStoreAddresses in place. Rename it here to make it
3026   // clear what it contains.
3027   auto &CommonAddresses = PStoreAddresses;
3028 
3029   bool Changed = false;
3030   for (auto *Address : CommonAddresses)
3031     Changed |= mergeConditionalStoreToAddress(
3032         PTB, PFB, QTB, QFB, PostBB, Address, InvertPCond, InvertQCond);
3033   return Changed;
3034 }
3035 
3036 /// If we have a conditional branch as a predecessor of another block,
3037 /// this function tries to simplify it.  We know
3038 /// that PBI and BI are both conditional branches, and BI is in one of the
3039 /// successor blocks of PBI - PBI branches to BI.
3040 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI,
3041                                            const DataLayout &DL) {
3042   assert(PBI->isConditional() && BI->isConditional());
3043   BasicBlock *BB = BI->getParent();
3044 
3045   // If this block ends with a branch instruction, and if there is a
3046   // predecessor that ends on a branch of the same condition, make
3047   // this conditional branch redundant.
3048   if (PBI->getCondition() == BI->getCondition() &&
3049       PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
3050     // Okay, the outcome of this conditional branch is statically
3051     // knowable.  If this block had a single pred, handle specially.
3052     if (BB->getSinglePredecessor()) {
3053       // Turn this into a branch on constant.
3054       bool CondIsTrue = PBI->getSuccessor(0) == BB;
3055       BI->setCondition(
3056           ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue));
3057       return true; // Nuke the branch on constant.
3058     }
3059 
3060     // Otherwise, if there are multiple predecessors, insert a PHI that merges
3061     // in the constant and simplify the block result.  Subsequent passes of
3062     // simplifycfg will thread the block.
3063     if (BlockIsSimpleEnoughToThreadThrough(BB)) {
3064       pred_iterator PB = pred_begin(BB), PE = pred_end(BB);
3065       PHINode *NewPN = PHINode::Create(
3066           Type::getInt1Ty(BB->getContext()), std::distance(PB, PE),
3067           BI->getCondition()->getName() + ".pr", &BB->front());
3068       // Okay, we're going to insert the PHI node.  Since PBI is not the only
3069       // predecessor, compute the PHI'd conditional value for all of the preds.
3070       // Any predecessor where the condition is not computable we keep symbolic.
3071       for (pred_iterator PI = PB; PI != PE; ++PI) {
3072         BasicBlock *P = *PI;
3073         if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) && PBI != BI &&
3074             PBI->isConditional() && PBI->getCondition() == BI->getCondition() &&
3075             PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
3076           bool CondIsTrue = PBI->getSuccessor(0) == BB;
3077           NewPN->addIncoming(
3078               ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue),
3079               P);
3080         } else {
3081           NewPN->addIncoming(BI->getCondition(), P);
3082         }
3083       }
3084 
3085       BI->setCondition(NewPN);
3086       return true;
3087     }
3088   }
3089 
3090   if (auto *CE = dyn_cast<ConstantExpr>(BI->getCondition()))
3091     if (CE->canTrap())
3092       return false;
3093 
3094   // If both branches are conditional and both contain stores to the same
3095   // address, remove the stores from the conditionals and create a conditional
3096   // merged store at the end.
3097   if (MergeCondStores && mergeConditionalStores(PBI, BI))
3098     return true;
3099 
3100   // If this is a conditional branch in an empty block, and if any
3101   // predecessors are a conditional branch to one of our destinations,
3102   // fold the conditions into logical ops and one cond br.
3103   BasicBlock::iterator BBI = BB->begin();
3104   // Ignore dbg intrinsics.
3105   while (isa<DbgInfoIntrinsic>(BBI))
3106     ++BBI;
3107   if (&*BBI != BI)
3108     return false;
3109 
3110   int PBIOp, BIOp;
3111   if (PBI->getSuccessor(0) == BI->getSuccessor(0)) {
3112     PBIOp = 0;
3113     BIOp = 0;
3114   } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) {
3115     PBIOp = 0;
3116     BIOp = 1;
3117   } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) {
3118     PBIOp = 1;
3119     BIOp = 0;
3120   } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) {
3121     PBIOp = 1;
3122     BIOp = 1;
3123   } else {
3124     return false;
3125   }
3126 
3127   // Check to make sure that the other destination of this branch
3128   // isn't BB itself.  If so, this is an infinite loop that will
3129   // keep getting unwound.
3130   if (PBI->getSuccessor(PBIOp) == BB)
3131     return false;
3132 
3133   // Do not perform this transformation if it would require
3134   // insertion of a large number of select instructions. For targets
3135   // without predication/cmovs, this is a big pessimization.
3136 
3137   // Also do not perform this transformation if any phi node in the common
3138   // destination block can trap when reached by BB or PBB (PR17073). In that
3139   // case, it would be unsafe to hoist the operation into a select instruction.
3140 
3141   BasicBlock *CommonDest = PBI->getSuccessor(PBIOp);
3142   unsigned NumPhis = 0;
3143   for (BasicBlock::iterator II = CommonDest->begin(); isa<PHINode>(II);
3144        ++II, ++NumPhis) {
3145     if (NumPhis > 2) // Disable this xform.
3146       return false;
3147 
3148     PHINode *PN = cast<PHINode>(II);
3149     Value *BIV = PN->getIncomingValueForBlock(BB);
3150     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BIV))
3151       if (CE->canTrap())
3152         return false;
3153 
3154     unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
3155     Value *PBIV = PN->getIncomingValue(PBBIdx);
3156     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(PBIV))
3157       if (CE->canTrap())
3158         return false;
3159   }
3160 
3161   // Finally, if everything is ok, fold the branches to logical ops.
3162   BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1);
3163 
3164   DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent()
3165                << "AND: " << *BI->getParent());
3166 
3167   // If OtherDest *is* BB, then BB is a basic block with a single conditional
3168   // branch in it, where one edge (OtherDest) goes back to itself but the other
3169   // exits.  We don't *know* that the program avoids the infinite loop
3170   // (even though that seems likely).  If we do this xform naively, we'll end up
3171   // recursively unpeeling the loop.  Since we know that (after the xform is
3172   // done) that the block *is* infinite if reached, we just make it an obviously
3173   // infinite loop with no cond branch.
3174   if (OtherDest == BB) {
3175     // Insert it at the end of the function, because it's either code,
3176     // or it won't matter if it's hot. :)
3177     BasicBlock *InfLoopBlock =
3178         BasicBlock::Create(BB->getContext(), "infloop", BB->getParent());
3179     BranchInst::Create(InfLoopBlock, InfLoopBlock);
3180     OtherDest = InfLoopBlock;
3181   }
3182 
3183   DEBUG(dbgs() << *PBI->getParent()->getParent());
3184 
3185   // BI may have other predecessors.  Because of this, we leave
3186   // it alone, but modify PBI.
3187 
3188   // Make sure we get to CommonDest on True&True directions.
3189   Value *PBICond = PBI->getCondition();
3190   IRBuilder<NoFolder> Builder(PBI);
3191   if (PBIOp)
3192     PBICond = Builder.CreateNot(PBICond, PBICond->getName() + ".not");
3193 
3194   Value *BICond = BI->getCondition();
3195   if (BIOp)
3196     BICond = Builder.CreateNot(BICond, BICond->getName() + ".not");
3197 
3198   // Merge the conditions.
3199   Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge");
3200 
3201   // Modify PBI to branch on the new condition to the new dests.
3202   PBI->setCondition(Cond);
3203   PBI->setSuccessor(0, CommonDest);
3204   PBI->setSuccessor(1, OtherDest);
3205 
3206   // Update branch weight for PBI.
3207   uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
3208   uint64_t PredCommon, PredOther, SuccCommon, SuccOther;
3209   bool HasWeights =
3210       extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
3211                              SuccTrueWeight, SuccFalseWeight);
3212   if (HasWeights) {
3213     PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
3214     PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
3215     SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
3216     SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
3217     // The weight to CommonDest should be PredCommon * SuccTotal +
3218     //                                    PredOther * SuccCommon.
3219     // The weight to OtherDest should be PredOther * SuccOther.
3220     uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) +
3221                                   PredOther * SuccCommon,
3222                               PredOther * SuccOther};
3223     // Halve the weights if any of them cannot fit in an uint32_t
3224     FitWeights(NewWeights);
3225 
3226     PBI->setMetadata(LLVMContext::MD_prof,
3227                      MDBuilder(BI->getContext())
3228                          .createBranchWeights(NewWeights[0], NewWeights[1]));
3229   }
3230 
3231   // OtherDest may have phi nodes.  If so, add an entry from PBI's
3232   // block that are identical to the entries for BI's block.
3233   AddPredecessorToBlock(OtherDest, PBI->getParent(), BB);
3234 
3235   // We know that the CommonDest already had an edge from PBI to
3236   // it.  If it has PHIs though, the PHIs may have different
3237   // entries for BB and PBI's BB.  If so, insert a select to make
3238   // them agree.
3239   PHINode *PN;
3240   for (BasicBlock::iterator II = CommonDest->begin();
3241        (PN = dyn_cast<PHINode>(II)); ++II) {
3242     Value *BIV = PN->getIncomingValueForBlock(BB);
3243     unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
3244     Value *PBIV = PN->getIncomingValue(PBBIdx);
3245     if (BIV != PBIV) {
3246       // Insert a select in PBI to pick the right value.
3247       SelectInst *NV = cast<SelectInst>(
3248           Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName() + ".mux"));
3249       PN->setIncomingValue(PBBIdx, NV);
3250       // Although the select has the same condition as PBI, the original branch
3251       // weights for PBI do not apply to the new select because the select's
3252       // 'logical' edges are incoming edges of the phi that is eliminated, not
3253       // the outgoing edges of PBI.
3254       if (HasWeights) {
3255         uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
3256         uint64_t PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
3257         uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
3258         uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
3259         // The weight to PredCommonDest should be PredCommon * SuccTotal.
3260         // The weight to PredOtherDest should be PredOther * SuccCommon.
3261         uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther),
3262                                   PredOther * SuccCommon};
3263 
3264         FitWeights(NewWeights);
3265 
3266         NV->setMetadata(LLVMContext::MD_prof,
3267                         MDBuilder(BI->getContext())
3268                             .createBranchWeights(NewWeights[0], NewWeights[1]));
3269       }
3270     }
3271   }
3272 
3273   DEBUG(dbgs() << "INTO: " << *PBI->getParent());
3274   DEBUG(dbgs() << *PBI->getParent()->getParent());
3275 
3276   // This basic block is probably dead.  We know it has at least
3277   // one fewer predecessor.
3278   return true;
3279 }
3280 
3281 // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is
3282 // true or to FalseBB if Cond is false.
3283 // Takes care of updating the successors and removing the old terminator.
3284 // Also makes sure not to introduce new successors by assuming that edges to
3285 // non-successor TrueBBs and FalseBBs aren't reachable.
3286 static bool SimplifyTerminatorOnSelect(TerminatorInst *OldTerm, Value *Cond,
3287                                        BasicBlock *TrueBB, BasicBlock *FalseBB,
3288                                        uint32_t TrueWeight,
3289                                        uint32_t FalseWeight) {
3290   // Remove any superfluous successor edges from the CFG.
3291   // First, figure out which successors to preserve.
3292   // If TrueBB and FalseBB are equal, only try to preserve one copy of that
3293   // successor.
3294   BasicBlock *KeepEdge1 = TrueBB;
3295   BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr;
3296 
3297   // Then remove the rest.
3298   for (BasicBlock *Succ : OldTerm->successors()) {
3299     // Make sure only to keep exactly one copy of each edge.
3300     if (Succ == KeepEdge1)
3301       KeepEdge1 = nullptr;
3302     else if (Succ == KeepEdge2)
3303       KeepEdge2 = nullptr;
3304     else
3305       Succ->removePredecessor(OldTerm->getParent(),
3306                               /*DontDeleteUselessPHIs=*/true);
3307   }
3308 
3309   IRBuilder<> Builder(OldTerm);
3310   Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc());
3311 
3312   // Insert an appropriate new terminator.
3313   if (!KeepEdge1 && !KeepEdge2) {
3314     if (TrueBB == FalseBB)
3315       // We were only looking for one successor, and it was present.
3316       // Create an unconditional branch to it.
3317       Builder.CreateBr(TrueBB);
3318     else {
3319       // We found both of the successors we were looking for.
3320       // Create a conditional branch sharing the condition of the select.
3321       BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB);
3322       if (TrueWeight != FalseWeight)
3323         NewBI->setMetadata(LLVMContext::MD_prof,
3324                            MDBuilder(OldTerm->getContext())
3325                                .createBranchWeights(TrueWeight, FalseWeight));
3326     }
3327   } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) {
3328     // Neither of the selected blocks were successors, so this
3329     // terminator must be unreachable.
3330     new UnreachableInst(OldTerm->getContext(), OldTerm);
3331   } else {
3332     // One of the selected values was a successor, but the other wasn't.
3333     // Insert an unconditional branch to the one that was found;
3334     // the edge to the one that wasn't must be unreachable.
3335     if (!KeepEdge1)
3336       // Only TrueBB was found.
3337       Builder.CreateBr(TrueBB);
3338     else
3339       // Only FalseBB was found.
3340       Builder.CreateBr(FalseBB);
3341   }
3342 
3343   EraseTerminatorInstAndDCECond(OldTerm);
3344   return true;
3345 }
3346 
3347 // Replaces
3348 //   (switch (select cond, X, Y)) on constant X, Y
3349 // with a branch - conditional if X and Y lead to distinct BBs,
3350 // unconditional otherwise.
3351 static bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select) {
3352   // Check for constant integer values in the select.
3353   ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue());
3354   ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue());
3355   if (!TrueVal || !FalseVal)
3356     return false;
3357 
3358   // Find the relevant condition and destinations.
3359   Value *Condition = Select->getCondition();
3360   BasicBlock *TrueBB = SI->findCaseValue(TrueVal).getCaseSuccessor();
3361   BasicBlock *FalseBB = SI->findCaseValue(FalseVal).getCaseSuccessor();
3362 
3363   // Get weight for TrueBB and FalseBB.
3364   uint32_t TrueWeight = 0, FalseWeight = 0;
3365   SmallVector<uint64_t, 8> Weights;
3366   bool HasWeights = HasBranchWeights(SI);
3367   if (HasWeights) {
3368     GetBranchWeights(SI, Weights);
3369     if (Weights.size() == 1 + SI->getNumCases()) {
3370       TrueWeight =
3371           (uint32_t)Weights[SI->findCaseValue(TrueVal).getSuccessorIndex()];
3372       FalseWeight =
3373           (uint32_t)Weights[SI->findCaseValue(FalseVal).getSuccessorIndex()];
3374     }
3375   }
3376 
3377   // Perform the actual simplification.
3378   return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, TrueWeight,
3379                                     FalseWeight);
3380 }
3381 
3382 // Replaces
3383 //   (indirectbr (select cond, blockaddress(@fn, BlockA),
3384 //                             blockaddress(@fn, BlockB)))
3385 // with
3386 //   (br cond, BlockA, BlockB).
3387 static bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI) {
3388   // Check that both operands of the select are block addresses.
3389   BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue());
3390   BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue());
3391   if (!TBA || !FBA)
3392     return false;
3393 
3394   // Extract the actual blocks.
3395   BasicBlock *TrueBB = TBA->getBasicBlock();
3396   BasicBlock *FalseBB = FBA->getBasicBlock();
3397 
3398   // Perform the actual simplification.
3399   return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 0,
3400                                     0);
3401 }
3402 
3403 /// This is called when we find an icmp instruction
3404 /// (a seteq/setne with a constant) as the only instruction in a
3405 /// block that ends with an uncond branch.  We are looking for a very specific
3406 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified.  In
3407 /// this case, we merge the first two "or's of icmp" into a switch, but then the
3408 /// default value goes to an uncond block with a seteq in it, we get something
3409 /// like:
3410 ///
3411 ///   switch i8 %A, label %DEFAULT [ i8 1, label %end    i8 2, label %end ]
3412 /// DEFAULT:
3413 ///   %tmp = icmp eq i8 %A, 92
3414 ///   br label %end
3415 /// end:
3416 ///   ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ]
3417 ///
3418 /// We prefer to split the edge to 'end' so that there is a true/false entry to
3419 /// the PHI, merging the third icmp into the switch.
3420 static bool TryToSimplifyUncondBranchWithICmpInIt(
3421     ICmpInst *ICI, IRBuilder<> &Builder, const DataLayout &DL,
3422     const TargetTransformInfo &TTI, unsigned BonusInstThreshold,
3423     AssumptionCache *AC) {
3424   BasicBlock *BB = ICI->getParent();
3425 
3426   // If the block has any PHIs in it or the icmp has multiple uses, it is too
3427   // complex.
3428   if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse())
3429     return false;
3430 
3431   Value *V = ICI->getOperand(0);
3432   ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1));
3433 
3434   // The pattern we're looking for is where our only predecessor is a switch on
3435   // 'V' and this block is the default case for the switch.  In this case we can
3436   // fold the compared value into the switch to simplify things.
3437   BasicBlock *Pred = BB->getSinglePredecessor();
3438   if (!Pred || !isa<SwitchInst>(Pred->getTerminator()))
3439     return false;
3440 
3441   SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator());
3442   if (SI->getCondition() != V)
3443     return false;
3444 
3445   // If BB is reachable on a non-default case, then we simply know the value of
3446   // V in this block.  Substitute it and constant fold the icmp instruction
3447   // away.
3448   if (SI->getDefaultDest() != BB) {
3449     ConstantInt *VVal = SI->findCaseDest(BB);
3450     assert(VVal && "Should have a unique destination value");
3451     ICI->setOperand(0, VVal);
3452 
3453     if (Value *V = SimplifyInstruction(ICI, DL)) {
3454       ICI->replaceAllUsesWith(V);
3455       ICI->eraseFromParent();
3456     }
3457     // BB is now empty, so it is likely to simplify away.
3458     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
3459   }
3460 
3461   // Ok, the block is reachable from the default dest.  If the constant we're
3462   // comparing exists in one of the other edges, then we can constant fold ICI
3463   // and zap it.
3464   if (SI->findCaseValue(Cst) != SI->case_default()) {
3465     Value *V;
3466     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
3467       V = ConstantInt::getFalse(BB->getContext());
3468     else
3469       V = ConstantInt::getTrue(BB->getContext());
3470 
3471     ICI->replaceAllUsesWith(V);
3472     ICI->eraseFromParent();
3473     // BB is now empty, so it is likely to simplify away.
3474     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
3475   }
3476 
3477   // The use of the icmp has to be in the 'end' block, by the only PHI node in
3478   // the block.
3479   BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0);
3480   PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back());
3481   if (PHIUse == nullptr || PHIUse != &SuccBlock->front() ||
3482       isa<PHINode>(++BasicBlock::iterator(PHIUse)))
3483     return false;
3484 
3485   // If the icmp is a SETEQ, then the default dest gets false, the new edge gets
3486   // true in the PHI.
3487   Constant *DefaultCst = ConstantInt::getTrue(BB->getContext());
3488   Constant *NewCst = ConstantInt::getFalse(BB->getContext());
3489 
3490   if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
3491     std::swap(DefaultCst, NewCst);
3492 
3493   // Replace ICI (which is used by the PHI for the default value) with true or
3494   // false depending on if it is EQ or NE.
3495   ICI->replaceAllUsesWith(DefaultCst);
3496   ICI->eraseFromParent();
3497 
3498   // Okay, the switch goes to this block on a default value.  Add an edge from
3499   // the switch to the merge point on the compared value.
3500   BasicBlock *NewBB =
3501       BasicBlock::Create(BB->getContext(), "switch.edge", BB->getParent(), BB);
3502   SmallVector<uint64_t, 8> Weights;
3503   bool HasWeights = HasBranchWeights(SI);
3504   if (HasWeights) {
3505     GetBranchWeights(SI, Weights);
3506     if (Weights.size() == 1 + SI->getNumCases()) {
3507       // Split weight for default case to case for "Cst".
3508       Weights[0] = (Weights[0] + 1) >> 1;
3509       Weights.push_back(Weights[0]);
3510 
3511       SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
3512       SI->setMetadata(
3513           LLVMContext::MD_prof,
3514           MDBuilder(SI->getContext()).createBranchWeights(MDWeights));
3515     }
3516   }
3517   SI->addCase(Cst, NewBB);
3518 
3519   // NewBB branches to the phi block, add the uncond branch and the phi entry.
3520   Builder.SetInsertPoint(NewBB);
3521   Builder.SetCurrentDebugLocation(SI->getDebugLoc());
3522   Builder.CreateBr(SuccBlock);
3523   PHIUse->addIncoming(NewCst, NewBB);
3524   return true;
3525 }
3526 
3527 /// The specified branch is a conditional branch.
3528 /// Check to see if it is branching on an or/and chain of icmp instructions, and
3529 /// fold it into a switch instruction if so.
3530 static bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder,
3531                                       const DataLayout &DL) {
3532   Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
3533   if (!Cond)
3534     return false;
3535 
3536   // Change br (X == 0 | X == 1), T, F into a switch instruction.
3537   // If this is a bunch of seteq's or'd together, or if it's a bunch of
3538   // 'setne's and'ed together, collect them.
3539 
3540   // Try to gather values from a chain of and/or to be turned into a switch
3541   ConstantComparesGatherer ConstantCompare(Cond, DL);
3542   // Unpack the result
3543   SmallVectorImpl<ConstantInt *> &Values = ConstantCompare.Vals;
3544   Value *CompVal = ConstantCompare.CompValue;
3545   unsigned UsedICmps = ConstantCompare.UsedICmps;
3546   Value *ExtraCase = ConstantCompare.Extra;
3547 
3548   // If we didn't have a multiply compared value, fail.
3549   if (!CompVal)
3550     return false;
3551 
3552   // Avoid turning single icmps into a switch.
3553   if (UsedICmps <= 1)
3554     return false;
3555 
3556   bool TrueWhenEqual = (Cond->getOpcode() == Instruction::Or);
3557 
3558   // There might be duplicate constants in the list, which the switch
3559   // instruction can't handle, remove them now.
3560   array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate);
3561   Values.erase(std::unique(Values.begin(), Values.end()), Values.end());
3562 
3563   // If Extra was used, we require at least two switch values to do the
3564   // transformation.  A switch with one value is just a conditional branch.
3565   if (ExtraCase && Values.size() < 2)
3566     return false;
3567 
3568   // TODO: Preserve branch weight metadata, similarly to how
3569   // FoldValueComparisonIntoPredecessors preserves it.
3570 
3571   // Figure out which block is which destination.
3572   BasicBlock *DefaultBB = BI->getSuccessor(1);
3573   BasicBlock *EdgeBB = BI->getSuccessor(0);
3574   if (!TrueWhenEqual)
3575     std::swap(DefaultBB, EdgeBB);
3576 
3577   BasicBlock *BB = BI->getParent();
3578 
3579   DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size()
3580                << " cases into SWITCH.  BB is:\n"
3581                << *BB);
3582 
3583   // If there are any extra values that couldn't be folded into the switch
3584   // then we evaluate them with an explicit branch first.  Split the block
3585   // right before the condbr to handle it.
3586   if (ExtraCase) {
3587     BasicBlock *NewBB =
3588         BB->splitBasicBlock(BI->getIterator(), "switch.early.test");
3589     // Remove the uncond branch added to the old block.
3590     TerminatorInst *OldTI = BB->getTerminator();
3591     Builder.SetInsertPoint(OldTI);
3592 
3593     if (TrueWhenEqual)
3594       Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB);
3595     else
3596       Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB);
3597 
3598     OldTI->eraseFromParent();
3599 
3600     // If there are PHI nodes in EdgeBB, then we need to add a new entry to them
3601     // for the edge we just added.
3602     AddPredecessorToBlock(EdgeBB, BB, NewBB);
3603 
3604     DEBUG(dbgs() << "  ** 'icmp' chain unhandled condition: " << *ExtraCase
3605                  << "\nEXTRABB = " << *BB);
3606     BB = NewBB;
3607   }
3608 
3609   Builder.SetInsertPoint(BI);
3610   // Convert pointer to int before we switch.
3611   if (CompVal->getType()->isPointerTy()) {
3612     CompVal = Builder.CreatePtrToInt(
3613         CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr");
3614   }
3615 
3616   // Create the new switch instruction now.
3617   SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size());
3618 
3619   // Add all of the 'cases' to the switch instruction.
3620   for (unsigned i = 0, e = Values.size(); i != e; ++i)
3621     New->addCase(Values[i], EdgeBB);
3622 
3623   // We added edges from PI to the EdgeBB.  As such, if there were any
3624   // PHI nodes in EdgeBB, they need entries to be added corresponding to
3625   // the number of edges added.
3626   for (BasicBlock::iterator BBI = EdgeBB->begin(); isa<PHINode>(BBI); ++BBI) {
3627     PHINode *PN = cast<PHINode>(BBI);
3628     Value *InVal = PN->getIncomingValueForBlock(BB);
3629     for (unsigned i = 0, e = Values.size() - 1; i != e; ++i)
3630       PN->addIncoming(InVal, BB);
3631   }
3632 
3633   // Erase the old branch instruction.
3634   EraseTerminatorInstAndDCECond(BI);
3635 
3636   DEBUG(dbgs() << "  ** 'icmp' chain result is:\n" << *BB << '\n');
3637   return true;
3638 }
3639 
3640 bool SimplifyCFGOpt::SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder) {
3641   if (isa<PHINode>(RI->getValue()))
3642     return SimplifyCommonResume(RI);
3643   else if (isa<LandingPadInst>(RI->getParent()->getFirstNonPHI()) &&
3644            RI->getValue() == RI->getParent()->getFirstNonPHI())
3645     // The resume must unwind the exception that caused control to branch here.
3646     return SimplifySingleResume(RI);
3647 
3648   return false;
3649 }
3650 
3651 // Simplify resume that is shared by several landing pads (phi of landing pad).
3652 bool SimplifyCFGOpt::SimplifyCommonResume(ResumeInst *RI) {
3653   BasicBlock *BB = RI->getParent();
3654 
3655   // Check that there are no other instructions except for debug intrinsics
3656   // between the phi of landing pads (RI->getValue()) and resume instruction.
3657   BasicBlock::iterator I = cast<Instruction>(RI->getValue())->getIterator(),
3658                        E = RI->getIterator();
3659   while (++I != E)
3660     if (!isa<DbgInfoIntrinsic>(I))
3661       return false;
3662 
3663   SmallSet<BasicBlock *, 4> TrivialUnwindBlocks;
3664   auto *PhiLPInst = cast<PHINode>(RI->getValue());
3665 
3666   // Check incoming blocks to see if any of them are trivial.
3667   for (unsigned Idx = 0, End = PhiLPInst->getNumIncomingValues(); Idx != End;
3668        Idx++) {
3669     auto *IncomingBB = PhiLPInst->getIncomingBlock(Idx);
3670     auto *IncomingValue = PhiLPInst->getIncomingValue(Idx);
3671 
3672     // If the block has other successors, we can not delete it because
3673     // it has other dependents.
3674     if (IncomingBB->getUniqueSuccessor() != BB)
3675       continue;
3676 
3677     auto *LandingPad = dyn_cast<LandingPadInst>(IncomingBB->getFirstNonPHI());
3678     // Not the landing pad that caused the control to branch here.
3679     if (IncomingValue != LandingPad)
3680       continue;
3681 
3682     bool isTrivial = true;
3683 
3684     I = IncomingBB->getFirstNonPHI()->getIterator();
3685     E = IncomingBB->getTerminator()->getIterator();
3686     while (++I != E)
3687       if (!isa<DbgInfoIntrinsic>(I)) {
3688         isTrivial = false;
3689         break;
3690       }
3691 
3692     if (isTrivial)
3693       TrivialUnwindBlocks.insert(IncomingBB);
3694   }
3695 
3696   // If no trivial unwind blocks, don't do any simplifications.
3697   if (TrivialUnwindBlocks.empty())
3698     return false;
3699 
3700   // Turn all invokes that unwind here into calls.
3701   for (auto *TrivialBB : TrivialUnwindBlocks) {
3702     // Blocks that will be simplified should be removed from the phi node.
3703     // Note there could be multiple edges to the resume block, and we need
3704     // to remove them all.
3705     while (PhiLPInst->getBasicBlockIndex(TrivialBB) != -1)
3706       BB->removePredecessor(TrivialBB, true);
3707 
3708     for (pred_iterator PI = pred_begin(TrivialBB), PE = pred_end(TrivialBB);
3709          PI != PE;) {
3710       BasicBlock *Pred = *PI++;
3711       removeUnwindEdge(Pred);
3712     }
3713 
3714     // In each SimplifyCFG run, only the current processed block can be erased.
3715     // Otherwise, it will break the iteration of SimplifyCFG pass. So instead
3716     // of erasing TrivialBB, we only remove the branch to the common resume
3717     // block so that we can later erase the resume block since it has no
3718     // predecessors.
3719     TrivialBB->getTerminator()->eraseFromParent();
3720     new UnreachableInst(RI->getContext(), TrivialBB);
3721   }
3722 
3723   // Delete the resume block if all its predecessors have been removed.
3724   if (pred_empty(BB))
3725     BB->eraseFromParent();
3726 
3727   return !TrivialUnwindBlocks.empty();
3728 }
3729 
3730 // Simplify resume that is only used by a single (non-phi) landing pad.
3731 bool SimplifyCFGOpt::SimplifySingleResume(ResumeInst *RI) {
3732   BasicBlock *BB = RI->getParent();
3733   LandingPadInst *LPInst = dyn_cast<LandingPadInst>(BB->getFirstNonPHI());
3734   assert(RI->getValue() == LPInst &&
3735          "Resume must unwind the exception that caused control to here");
3736 
3737   // Check that there are no other instructions except for debug intrinsics.
3738   BasicBlock::iterator I = LPInst->getIterator(), E = RI->getIterator();
3739   while (++I != E)
3740     if (!isa<DbgInfoIntrinsic>(I))
3741       return false;
3742 
3743   // Turn all invokes that unwind here into calls and delete the basic block.
3744   for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) {
3745     BasicBlock *Pred = *PI++;
3746     removeUnwindEdge(Pred);
3747   }
3748 
3749   // The landingpad is now unreachable.  Zap it.
3750   BB->eraseFromParent();
3751   if (LoopHeaders)
3752     LoopHeaders->erase(BB);
3753   return true;
3754 }
3755 
3756 static bool removeEmptyCleanup(CleanupReturnInst *RI) {
3757   // If this is a trivial cleanup pad that executes no instructions, it can be
3758   // eliminated.  If the cleanup pad continues to the caller, any predecessor
3759   // that is an EH pad will be updated to continue to the caller and any
3760   // predecessor that terminates with an invoke instruction will have its invoke
3761   // instruction converted to a call instruction.  If the cleanup pad being
3762   // simplified does not continue to the caller, each predecessor will be
3763   // updated to continue to the unwind destination of the cleanup pad being
3764   // simplified.
3765   BasicBlock *BB = RI->getParent();
3766   CleanupPadInst *CPInst = RI->getCleanupPad();
3767   if (CPInst->getParent() != BB)
3768     // This isn't an empty cleanup.
3769     return false;
3770 
3771   // We cannot kill the pad if it has multiple uses.  This typically arises
3772   // from unreachable basic blocks.
3773   if (!CPInst->hasOneUse())
3774     return false;
3775 
3776   // Check that there are no other instructions except for benign intrinsics.
3777   BasicBlock::iterator I = CPInst->getIterator(), E = RI->getIterator();
3778   while (++I != E) {
3779     auto *II = dyn_cast<IntrinsicInst>(I);
3780     if (!II)
3781       return false;
3782 
3783     Intrinsic::ID IntrinsicID = II->getIntrinsicID();
3784     switch (IntrinsicID) {
3785     case Intrinsic::dbg_declare:
3786     case Intrinsic::dbg_value:
3787     case Intrinsic::lifetime_end:
3788       break;
3789     default:
3790       return false;
3791     }
3792   }
3793 
3794   // If the cleanup return we are simplifying unwinds to the caller, this will
3795   // set UnwindDest to nullptr.
3796   BasicBlock *UnwindDest = RI->getUnwindDest();
3797   Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr;
3798 
3799   // We're about to remove BB from the control flow.  Before we do, sink any
3800   // PHINodes into the unwind destination.  Doing this before changing the
3801   // control flow avoids some potentially slow checks, since we can currently
3802   // be certain that UnwindDest and BB have no common predecessors (since they
3803   // are both EH pads).
3804   if (UnwindDest) {
3805     // First, go through the PHI nodes in UnwindDest and update any nodes that
3806     // reference the block we are removing
3807     for (BasicBlock::iterator I = UnwindDest->begin(),
3808                               IE = DestEHPad->getIterator();
3809          I != IE; ++I) {
3810       PHINode *DestPN = cast<PHINode>(I);
3811 
3812       int Idx = DestPN->getBasicBlockIndex(BB);
3813       // Since BB unwinds to UnwindDest, it has to be in the PHI node.
3814       assert(Idx != -1);
3815       // This PHI node has an incoming value that corresponds to a control
3816       // path through the cleanup pad we are removing.  If the incoming
3817       // value is in the cleanup pad, it must be a PHINode (because we
3818       // verified above that the block is otherwise empty).  Otherwise, the
3819       // value is either a constant or a value that dominates the cleanup
3820       // pad being removed.
3821       //
3822       // Because BB and UnwindDest are both EH pads, all of their
3823       // predecessors must unwind to these blocks, and since no instruction
3824       // can have multiple unwind destinations, there will be no overlap in
3825       // incoming blocks between SrcPN and DestPN.
3826       Value *SrcVal = DestPN->getIncomingValue(Idx);
3827       PHINode *SrcPN = dyn_cast<PHINode>(SrcVal);
3828 
3829       // Remove the entry for the block we are deleting.
3830       DestPN->removeIncomingValue(Idx, false);
3831 
3832       if (SrcPN && SrcPN->getParent() == BB) {
3833         // If the incoming value was a PHI node in the cleanup pad we are
3834         // removing, we need to merge that PHI node's incoming values into
3835         // DestPN.
3836         for (unsigned SrcIdx = 0, SrcE = SrcPN->getNumIncomingValues();
3837              SrcIdx != SrcE; ++SrcIdx) {
3838           DestPN->addIncoming(SrcPN->getIncomingValue(SrcIdx),
3839                               SrcPN->getIncomingBlock(SrcIdx));
3840         }
3841       } else {
3842         // Otherwise, the incoming value came from above BB and
3843         // so we can just reuse it.  We must associate all of BB's
3844         // predecessors with this value.
3845         for (auto *pred : predecessors(BB)) {
3846           DestPN->addIncoming(SrcVal, pred);
3847         }
3848       }
3849     }
3850 
3851     // Sink any remaining PHI nodes directly into UnwindDest.
3852     Instruction *InsertPt = DestEHPad;
3853     for (BasicBlock::iterator I = BB->begin(),
3854                               IE = BB->getFirstNonPHI()->getIterator();
3855          I != IE;) {
3856       // The iterator must be incremented here because the instructions are
3857       // being moved to another block.
3858       PHINode *PN = cast<PHINode>(I++);
3859       if (PN->use_empty())
3860         // If the PHI node has no uses, just leave it.  It will be erased
3861         // when we erase BB below.
3862         continue;
3863 
3864       // Otherwise, sink this PHI node into UnwindDest.
3865       // Any predecessors to UnwindDest which are not already represented
3866       // must be back edges which inherit the value from the path through
3867       // BB.  In this case, the PHI value must reference itself.
3868       for (auto *pred : predecessors(UnwindDest))
3869         if (pred != BB)
3870           PN->addIncoming(PN, pred);
3871       PN->moveBefore(InsertPt);
3872     }
3873   }
3874 
3875   for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) {
3876     // The iterator must be updated here because we are removing this pred.
3877     BasicBlock *PredBB = *PI++;
3878     if (UnwindDest == nullptr) {
3879       removeUnwindEdge(PredBB);
3880     } else {
3881       TerminatorInst *TI = PredBB->getTerminator();
3882       TI->replaceUsesOfWith(BB, UnwindDest);
3883     }
3884   }
3885 
3886   // The cleanup pad is now unreachable.  Zap it.
3887   BB->eraseFromParent();
3888   return true;
3889 }
3890 
3891 // Try to merge two cleanuppads together.
3892 static bool mergeCleanupPad(CleanupReturnInst *RI) {
3893   // Skip any cleanuprets which unwind to caller, there is nothing to merge
3894   // with.
3895   BasicBlock *UnwindDest = RI->getUnwindDest();
3896   if (!UnwindDest)
3897     return false;
3898 
3899   // This cleanupret isn't the only predecessor of this cleanuppad, it wouldn't
3900   // be safe to merge without code duplication.
3901   if (UnwindDest->getSinglePredecessor() != RI->getParent())
3902     return false;
3903 
3904   // Verify that our cleanuppad's unwind destination is another cleanuppad.
3905   auto *SuccessorCleanupPad = dyn_cast<CleanupPadInst>(&UnwindDest->front());
3906   if (!SuccessorCleanupPad)
3907     return false;
3908 
3909   CleanupPadInst *PredecessorCleanupPad = RI->getCleanupPad();
3910   // Replace any uses of the successor cleanupad with the predecessor pad
3911   // The only cleanuppad uses should be this cleanupret, it's cleanupret and
3912   // funclet bundle operands.
3913   SuccessorCleanupPad->replaceAllUsesWith(PredecessorCleanupPad);
3914   // Remove the old cleanuppad.
3915   SuccessorCleanupPad->eraseFromParent();
3916   // Now, we simply replace the cleanupret with a branch to the unwind
3917   // destination.
3918   BranchInst::Create(UnwindDest, RI->getParent());
3919   RI->eraseFromParent();
3920 
3921   return true;
3922 }
3923 
3924 bool SimplifyCFGOpt::SimplifyCleanupReturn(CleanupReturnInst *RI) {
3925   // It is possible to transiantly have an undef cleanuppad operand because we
3926   // have deleted some, but not all, dead blocks.
3927   // Eventually, this block will be deleted.
3928   if (isa<UndefValue>(RI->getOperand(0)))
3929     return false;
3930 
3931   if (mergeCleanupPad(RI))
3932     return true;
3933 
3934   if (removeEmptyCleanup(RI))
3935     return true;
3936 
3937   return false;
3938 }
3939 
3940 bool SimplifyCFGOpt::SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) {
3941   BasicBlock *BB = RI->getParent();
3942   if (!BB->getFirstNonPHIOrDbg()->isTerminator())
3943     return false;
3944 
3945   // Find predecessors that end with branches.
3946   SmallVector<BasicBlock *, 8> UncondBranchPreds;
3947   SmallVector<BranchInst *, 8> CondBranchPreds;
3948   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
3949     BasicBlock *P = *PI;
3950     TerminatorInst *PTI = P->getTerminator();
3951     if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) {
3952       if (BI->isUnconditional())
3953         UncondBranchPreds.push_back(P);
3954       else
3955         CondBranchPreds.push_back(BI);
3956     }
3957   }
3958 
3959   // If we found some, do the transformation!
3960   if (!UncondBranchPreds.empty() && DupRet) {
3961     while (!UncondBranchPreds.empty()) {
3962       BasicBlock *Pred = UncondBranchPreds.pop_back_val();
3963       DEBUG(dbgs() << "FOLDING: " << *BB
3964                    << "INTO UNCOND BRANCH PRED: " << *Pred);
3965       (void)FoldReturnIntoUncondBranch(RI, BB, Pred);
3966     }
3967 
3968     // If we eliminated all predecessors of the block, delete the block now.
3969     if (pred_empty(BB)) {
3970       // We know there are no successors, so just nuke the block.
3971       BB->eraseFromParent();
3972       if (LoopHeaders)
3973         LoopHeaders->erase(BB);
3974     }
3975 
3976     return true;
3977   }
3978 
3979   // Check out all of the conditional branches going to this return
3980   // instruction.  If any of them just select between returns, change the
3981   // branch itself into a select/return pair.
3982   while (!CondBranchPreds.empty()) {
3983     BranchInst *BI = CondBranchPreds.pop_back_val();
3984 
3985     // Check to see if the non-BB successor is also a return block.
3986     if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) &&
3987         isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) &&
3988         SimplifyCondBranchToTwoReturns(BI, Builder))
3989       return true;
3990   }
3991   return false;
3992 }
3993 
3994 bool SimplifyCFGOpt::SimplifyUnreachable(UnreachableInst *UI) {
3995   BasicBlock *BB = UI->getParent();
3996 
3997   bool Changed = false;
3998 
3999   // If there are any instructions immediately before the unreachable that can
4000   // be removed, do so.
4001   while (UI->getIterator() != BB->begin()) {
4002     BasicBlock::iterator BBI = UI->getIterator();
4003     --BBI;
4004     // Do not delete instructions that can have side effects which might cause
4005     // the unreachable to not be reachable; specifically, calls and volatile
4006     // operations may have this effect.
4007     if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI))
4008       break;
4009 
4010     if (BBI->mayHaveSideEffects()) {
4011       if (auto *SI = dyn_cast<StoreInst>(BBI)) {
4012         if (SI->isVolatile())
4013           break;
4014       } else if (auto *LI = dyn_cast<LoadInst>(BBI)) {
4015         if (LI->isVolatile())
4016           break;
4017       } else if (auto *RMWI = dyn_cast<AtomicRMWInst>(BBI)) {
4018         if (RMWI->isVolatile())
4019           break;
4020       } else if (auto *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) {
4021         if (CXI->isVolatile())
4022           break;
4023       } else if (isa<CatchPadInst>(BBI)) {
4024         // A catchpad may invoke exception object constructors and such, which
4025         // in some languages can be arbitrary code, so be conservative by
4026         // default.
4027         // For CoreCLR, it just involves a type test, so can be removed.
4028         if (classifyEHPersonality(BB->getParent()->getPersonalityFn()) !=
4029             EHPersonality::CoreCLR)
4030           break;
4031       } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) &&
4032                  !isa<LandingPadInst>(BBI)) {
4033         break;
4034       }
4035       // Note that deleting LandingPad's here is in fact okay, although it
4036       // involves a bit of subtle reasoning. If this inst is a LandingPad,
4037       // all the predecessors of this block will be the unwind edges of Invokes,
4038       // and we can therefore guarantee this block will be erased.
4039     }
4040 
4041     // Delete this instruction (any uses are guaranteed to be dead)
4042     if (!BBI->use_empty())
4043       BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
4044     BBI->eraseFromParent();
4045     Changed = true;
4046   }
4047 
4048   // If the unreachable instruction is the first in the block, take a gander
4049   // at all of the predecessors of this instruction, and simplify them.
4050   if (&BB->front() != UI)
4051     return Changed;
4052 
4053   SmallVector<BasicBlock *, 8> Preds(pred_begin(BB), pred_end(BB));
4054   for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
4055     TerminatorInst *TI = Preds[i]->getTerminator();
4056     IRBuilder<> Builder(TI);
4057     if (auto *BI = dyn_cast<BranchInst>(TI)) {
4058       if (BI->isUnconditional()) {
4059         if (BI->getSuccessor(0) == BB) {
4060           new UnreachableInst(TI->getContext(), TI);
4061           TI->eraseFromParent();
4062           Changed = true;
4063         }
4064       } else {
4065         if (BI->getSuccessor(0) == BB) {
4066           Builder.CreateBr(BI->getSuccessor(1));
4067           EraseTerminatorInstAndDCECond(BI);
4068         } else if (BI->getSuccessor(1) == BB) {
4069           Builder.CreateBr(BI->getSuccessor(0));
4070           EraseTerminatorInstAndDCECond(BI);
4071           Changed = true;
4072         }
4073       }
4074     } else if (auto *SI = dyn_cast<SwitchInst>(TI)) {
4075       for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); i != e;
4076            ++i)
4077         if (i.getCaseSuccessor() == BB) {
4078           BB->removePredecessor(SI->getParent());
4079           SI->removeCase(i);
4080           --i;
4081           --e;
4082           Changed = true;
4083         }
4084     } else if (auto *II = dyn_cast<InvokeInst>(TI)) {
4085       if (II->getUnwindDest() == BB) {
4086         removeUnwindEdge(TI->getParent());
4087         Changed = true;
4088       }
4089     } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) {
4090       if (CSI->getUnwindDest() == BB) {
4091         removeUnwindEdge(TI->getParent());
4092         Changed = true;
4093         continue;
4094       }
4095 
4096       for (CatchSwitchInst::handler_iterator I = CSI->handler_begin(),
4097                                              E = CSI->handler_end();
4098            I != E; ++I) {
4099         if (*I == BB) {
4100           CSI->removeHandler(I);
4101           --I;
4102           --E;
4103           Changed = true;
4104         }
4105       }
4106       if (CSI->getNumHandlers() == 0) {
4107         BasicBlock *CatchSwitchBB = CSI->getParent();
4108         if (CSI->hasUnwindDest()) {
4109           // Redirect preds to the unwind dest
4110           CatchSwitchBB->replaceAllUsesWith(CSI->getUnwindDest());
4111         } else {
4112           // Rewrite all preds to unwind to caller (or from invoke to call).
4113           SmallVector<BasicBlock *, 8> EHPreds(predecessors(CatchSwitchBB));
4114           for (BasicBlock *EHPred : EHPreds)
4115             removeUnwindEdge(EHPred);
4116         }
4117         // The catchswitch is no longer reachable.
4118         new UnreachableInst(CSI->getContext(), CSI);
4119         CSI->eraseFromParent();
4120         Changed = true;
4121       }
4122     } else if (isa<CleanupReturnInst>(TI)) {
4123       new UnreachableInst(TI->getContext(), TI);
4124       TI->eraseFromParent();
4125       Changed = true;
4126     }
4127   }
4128 
4129   // If this block is now dead, remove it.
4130   if (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) {
4131     // We know there are no successors, so just nuke the block.
4132     BB->eraseFromParent();
4133     if (LoopHeaders)
4134       LoopHeaders->erase(BB);
4135     return true;
4136   }
4137 
4138   return Changed;
4139 }
4140 
4141 static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) {
4142   assert(Cases.size() >= 1);
4143 
4144   array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate);
4145   for (size_t I = 1, E = Cases.size(); I != E; ++I) {
4146     if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1)
4147       return false;
4148   }
4149   return true;
4150 }
4151 
4152 /// Turn a switch with two reachable destinations into an integer range
4153 /// comparison and branch.
4154 static bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder) {
4155   assert(SI->getNumCases() > 1 && "Degenerate switch?");
4156 
4157   bool HasDefault =
4158       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
4159 
4160   // Partition the cases into two sets with different destinations.
4161   BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr;
4162   BasicBlock *DestB = nullptr;
4163   SmallVector<ConstantInt *, 16> CasesA;
4164   SmallVector<ConstantInt *, 16> CasesB;
4165 
4166   for (SwitchInst::CaseIt I : SI->cases()) {
4167     BasicBlock *Dest = I.getCaseSuccessor();
4168     if (!DestA)
4169       DestA = Dest;
4170     if (Dest == DestA) {
4171       CasesA.push_back(I.getCaseValue());
4172       continue;
4173     }
4174     if (!DestB)
4175       DestB = Dest;
4176     if (Dest == DestB) {
4177       CasesB.push_back(I.getCaseValue());
4178       continue;
4179     }
4180     return false; // More than two destinations.
4181   }
4182 
4183   assert(DestA && DestB &&
4184          "Single-destination switch should have been folded.");
4185   assert(DestA != DestB);
4186   assert(DestB != SI->getDefaultDest());
4187   assert(!CasesB.empty() && "There must be non-default cases.");
4188   assert(!CasesA.empty() || HasDefault);
4189 
4190   // Figure out if one of the sets of cases form a contiguous range.
4191   SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr;
4192   BasicBlock *ContiguousDest = nullptr;
4193   BasicBlock *OtherDest = nullptr;
4194   if (!CasesA.empty() && CasesAreContiguous(CasesA)) {
4195     ContiguousCases = &CasesA;
4196     ContiguousDest = DestA;
4197     OtherDest = DestB;
4198   } else if (CasesAreContiguous(CasesB)) {
4199     ContiguousCases = &CasesB;
4200     ContiguousDest = DestB;
4201     OtherDest = DestA;
4202   } else
4203     return false;
4204 
4205   // Start building the compare and branch.
4206 
4207   Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back());
4208   Constant *NumCases =
4209       ConstantInt::get(Offset->getType(), ContiguousCases->size());
4210 
4211   Value *Sub = SI->getCondition();
4212   if (!Offset->isNullValue())
4213     Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off");
4214 
4215   Value *Cmp;
4216   // If NumCases overflowed, then all possible values jump to the successor.
4217   if (NumCases->isNullValue() && !ContiguousCases->empty())
4218     Cmp = ConstantInt::getTrue(SI->getContext());
4219   else
4220     Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch");
4221   BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest);
4222 
4223   // Update weight for the newly-created conditional branch.
4224   if (HasBranchWeights(SI)) {
4225     SmallVector<uint64_t, 8> Weights;
4226     GetBranchWeights(SI, Weights);
4227     if (Weights.size() == 1 + SI->getNumCases()) {
4228       uint64_t TrueWeight = 0;
4229       uint64_t FalseWeight = 0;
4230       for (size_t I = 0, E = Weights.size(); I != E; ++I) {
4231         if (SI->getSuccessor(I) == ContiguousDest)
4232           TrueWeight += Weights[I];
4233         else
4234           FalseWeight += Weights[I];
4235       }
4236       while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) {
4237         TrueWeight /= 2;
4238         FalseWeight /= 2;
4239       }
4240       NewBI->setMetadata(LLVMContext::MD_prof,
4241                          MDBuilder(SI->getContext())
4242                              .createBranchWeights((uint32_t)TrueWeight,
4243                                                   (uint32_t)FalseWeight));
4244     }
4245   }
4246 
4247   // Prune obsolete incoming values off the successors' PHI nodes.
4248   for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) {
4249     unsigned PreviousEdges = ContiguousCases->size();
4250     if (ContiguousDest == SI->getDefaultDest())
4251       ++PreviousEdges;
4252     for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
4253       cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
4254   }
4255   for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) {
4256     unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size();
4257     if (OtherDest == SI->getDefaultDest())
4258       ++PreviousEdges;
4259     for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
4260       cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
4261   }
4262 
4263   // Drop the switch.
4264   SI->eraseFromParent();
4265 
4266   return true;
4267 }
4268 
4269 /// Compute masked bits for the condition of a switch
4270 /// and use it to remove dead cases.
4271 static bool EliminateDeadSwitchCases(SwitchInst *SI, AssumptionCache *AC,
4272                                      const DataLayout &DL) {
4273   Value *Cond = SI->getCondition();
4274   unsigned Bits = Cond->getType()->getIntegerBitWidth();
4275   APInt KnownZero(Bits, 0), KnownOne(Bits, 0);
4276   computeKnownBits(Cond, KnownZero, KnownOne, DL, 0, AC, SI);
4277 
4278   // We can also eliminate cases by determining that their values are outside of
4279   // the limited range of the condition based on how many significant (non-sign)
4280   // bits are in the condition value.
4281   unsigned ExtraSignBits = ComputeNumSignBits(Cond, DL, 0, AC, SI) - 1;
4282   unsigned MaxSignificantBitsInCond = Bits - ExtraSignBits;
4283 
4284   // Gather dead cases.
4285   SmallVector<ConstantInt *, 8> DeadCases;
4286   for (auto &Case : SI->cases()) {
4287     APInt CaseVal = Case.getCaseValue()->getValue();
4288     if ((CaseVal & KnownZero) != 0 || (CaseVal & KnownOne) != KnownOne ||
4289         (CaseVal.getMinSignedBits() > MaxSignificantBitsInCond)) {
4290       DeadCases.push_back(Case.getCaseValue());
4291       DEBUG(dbgs() << "SimplifyCFG: switch case " << CaseVal << " is dead.\n");
4292     }
4293   }
4294 
4295   // If we can prove that the cases must cover all possible values, the
4296   // default destination becomes dead and we can remove it.  If we know some
4297   // of the bits in the value, we can use that to more precisely compute the
4298   // number of possible unique case values.
4299   bool HasDefault =
4300       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
4301   const unsigned NumUnknownBits =
4302       Bits - (KnownZero.Or(KnownOne)).countPopulation();
4303   assert(NumUnknownBits <= Bits);
4304   if (HasDefault && DeadCases.empty() &&
4305       NumUnknownBits < 64 /* avoid overflow */ &&
4306       SI->getNumCases() == (1ULL << NumUnknownBits)) {
4307     DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n");
4308     BasicBlock *NewDefault =
4309         SplitBlockPredecessors(SI->getDefaultDest(), SI->getParent(), "");
4310     SI->setDefaultDest(&*NewDefault);
4311     SplitBlock(&*NewDefault, &NewDefault->front());
4312     auto *OldTI = NewDefault->getTerminator();
4313     new UnreachableInst(SI->getContext(), OldTI);
4314     EraseTerminatorInstAndDCECond(OldTI);
4315     return true;
4316   }
4317 
4318   SmallVector<uint64_t, 8> Weights;
4319   bool HasWeight = HasBranchWeights(SI);
4320   if (HasWeight) {
4321     GetBranchWeights(SI, Weights);
4322     HasWeight = (Weights.size() == 1 + SI->getNumCases());
4323   }
4324 
4325   // Remove dead cases from the switch.
4326   for (ConstantInt *DeadCase : DeadCases) {
4327     SwitchInst::CaseIt Case = SI->findCaseValue(DeadCase);
4328     assert(Case != SI->case_default() &&
4329            "Case was not found. Probably mistake in DeadCases forming.");
4330     if (HasWeight) {
4331       std::swap(Weights[Case.getCaseIndex() + 1], Weights.back());
4332       Weights.pop_back();
4333     }
4334 
4335     // Prune unused values from PHI nodes.
4336     Case.getCaseSuccessor()->removePredecessor(SI->getParent());
4337     SI->removeCase(Case);
4338   }
4339   if (HasWeight && Weights.size() >= 2) {
4340     SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
4341     SI->setMetadata(LLVMContext::MD_prof,
4342                     MDBuilder(SI->getParent()->getContext())
4343                         .createBranchWeights(MDWeights));
4344   }
4345 
4346   return !DeadCases.empty();
4347 }
4348 
4349 /// If BB would be eligible for simplification by
4350 /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated
4351 /// by an unconditional branch), look at the phi node for BB in the successor
4352 /// block and see if the incoming value is equal to CaseValue. If so, return
4353 /// the phi node, and set PhiIndex to BB's index in the phi node.
4354 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue,
4355                                               BasicBlock *BB, int *PhiIndex) {
4356   if (BB->getFirstNonPHIOrDbg() != BB->getTerminator())
4357     return nullptr; // BB must be empty to be a candidate for simplification.
4358   if (!BB->getSinglePredecessor())
4359     return nullptr; // BB must be dominated by the switch.
4360 
4361   BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator());
4362   if (!Branch || !Branch->isUnconditional())
4363     return nullptr; // Terminator must be unconditional branch.
4364 
4365   BasicBlock *Succ = Branch->getSuccessor(0);
4366 
4367   BasicBlock::iterator I = Succ->begin();
4368   while (PHINode *PHI = dyn_cast<PHINode>(I++)) {
4369     int Idx = PHI->getBasicBlockIndex(BB);
4370     assert(Idx >= 0 && "PHI has no entry for predecessor?");
4371 
4372     Value *InValue = PHI->getIncomingValue(Idx);
4373     if (InValue != CaseValue)
4374       continue;
4375 
4376     *PhiIndex = Idx;
4377     return PHI;
4378   }
4379 
4380   return nullptr;
4381 }
4382 
4383 /// Try to forward the condition of a switch instruction to a phi node
4384 /// dominated by the switch, if that would mean that some of the destination
4385 /// blocks of the switch can be folded away.
4386 /// Returns true if a change is made.
4387 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) {
4388   typedef DenseMap<PHINode *, SmallVector<int, 4>> ForwardingNodesMap;
4389   ForwardingNodesMap ForwardingNodes;
4390 
4391   for (SwitchInst::CaseIt I = SI->case_begin(), E = SI->case_end(); I != E;
4392        ++I) {
4393     ConstantInt *CaseValue = I.getCaseValue();
4394     BasicBlock *CaseDest = I.getCaseSuccessor();
4395 
4396     int PhiIndex;
4397     PHINode *PHI =
4398         FindPHIForConditionForwarding(CaseValue, CaseDest, &PhiIndex);
4399     if (!PHI)
4400       continue;
4401 
4402     ForwardingNodes[PHI].push_back(PhiIndex);
4403   }
4404 
4405   bool Changed = false;
4406 
4407   for (ForwardingNodesMap::iterator I = ForwardingNodes.begin(),
4408                                     E = ForwardingNodes.end();
4409        I != E; ++I) {
4410     PHINode *Phi = I->first;
4411     SmallVectorImpl<int> &Indexes = I->second;
4412 
4413     if (Indexes.size() < 2)
4414       continue;
4415 
4416     for (size_t I = 0, E = Indexes.size(); I != E; ++I)
4417       Phi->setIncomingValue(Indexes[I], SI->getCondition());
4418     Changed = true;
4419   }
4420 
4421   return Changed;
4422 }
4423 
4424 /// Return true if the backend will be able to handle
4425 /// initializing an array of constants like C.
4426 static bool ValidLookupTableConstant(Constant *C) {
4427   if (C->isThreadDependent())
4428     return false;
4429   if (C->isDLLImportDependent())
4430     return false;
4431 
4432   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
4433     return CE->isGEPWithNoNotionalOverIndexing();
4434 
4435   return isa<ConstantFP>(C) || isa<ConstantInt>(C) ||
4436          isa<ConstantPointerNull>(C) || isa<GlobalValue>(C) ||
4437          isa<UndefValue>(C);
4438 }
4439 
4440 /// If V is a Constant, return it. Otherwise, try to look up
4441 /// its constant value in ConstantPool, returning 0 if it's not there.
4442 static Constant *
4443 LookupConstant(Value *V,
4444                const SmallDenseMap<Value *, Constant *> &ConstantPool) {
4445   if (Constant *C = dyn_cast<Constant>(V))
4446     return C;
4447   return ConstantPool.lookup(V);
4448 }
4449 
4450 /// Try to fold instruction I into a constant. This works for
4451 /// simple instructions such as binary operations where both operands are
4452 /// constant or can be replaced by constants from the ConstantPool. Returns the
4453 /// resulting constant on success, 0 otherwise.
4454 static Constant *
4455 ConstantFold(Instruction *I, const DataLayout &DL,
4456              const SmallDenseMap<Value *, Constant *> &ConstantPool) {
4457   if (SelectInst *Select = dyn_cast<SelectInst>(I)) {
4458     Constant *A = LookupConstant(Select->getCondition(), ConstantPool);
4459     if (!A)
4460       return nullptr;
4461     if (A->isAllOnesValue())
4462       return LookupConstant(Select->getTrueValue(), ConstantPool);
4463     if (A->isNullValue())
4464       return LookupConstant(Select->getFalseValue(), ConstantPool);
4465     return nullptr;
4466   }
4467 
4468   SmallVector<Constant *, 4> COps;
4469   for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) {
4470     if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool))
4471       COps.push_back(A);
4472     else
4473       return nullptr;
4474   }
4475 
4476   if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
4477     return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0],
4478                                            COps[1], DL);
4479   }
4480 
4481   return ConstantFoldInstOperands(I, COps, DL);
4482 }
4483 
4484 /// Try to determine the resulting constant values in phi nodes
4485 /// at the common destination basic block, *CommonDest, for one of the case
4486 /// destionations CaseDest corresponding to value CaseVal (0 for the default
4487 /// case), of a switch instruction SI.
4488 static bool
4489 GetCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest,
4490                BasicBlock **CommonDest,
4491                SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res,
4492                const DataLayout &DL) {
4493   // The block from which we enter the common destination.
4494   BasicBlock *Pred = SI->getParent();
4495 
4496   // If CaseDest is empty except for some side-effect free instructions through
4497   // which we can constant-propagate the CaseVal, continue to its successor.
4498   SmallDenseMap<Value *, Constant *> ConstantPool;
4499   ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal));
4500   for (BasicBlock::iterator I = CaseDest->begin(), E = CaseDest->end(); I != E;
4501        ++I) {
4502     if (TerminatorInst *T = dyn_cast<TerminatorInst>(I)) {
4503       // If the terminator is a simple branch, continue to the next block.
4504       if (T->getNumSuccessors() != 1)
4505         return false;
4506       Pred = CaseDest;
4507       CaseDest = T->getSuccessor(0);
4508     } else if (isa<DbgInfoIntrinsic>(I)) {
4509       // Skip debug intrinsic.
4510       continue;
4511     } else if (Constant *C = ConstantFold(&*I, DL, ConstantPool)) {
4512       // Instruction is side-effect free and constant.
4513 
4514       // If the instruction has uses outside this block or a phi node slot for
4515       // the block, it is not safe to bypass the instruction since it would then
4516       // no longer dominate all its uses.
4517       for (auto &Use : I->uses()) {
4518         User *User = Use.getUser();
4519         if (Instruction *I = dyn_cast<Instruction>(User))
4520           if (I->getParent() == CaseDest)
4521             continue;
4522         if (PHINode *Phi = dyn_cast<PHINode>(User))
4523           if (Phi->getIncomingBlock(Use) == CaseDest)
4524             continue;
4525         return false;
4526       }
4527 
4528       ConstantPool.insert(std::make_pair(&*I, C));
4529     } else {
4530       break;
4531     }
4532   }
4533 
4534   // If we did not have a CommonDest before, use the current one.
4535   if (!*CommonDest)
4536     *CommonDest = CaseDest;
4537   // If the destination isn't the common one, abort.
4538   if (CaseDest != *CommonDest)
4539     return false;
4540 
4541   // Get the values for this case from phi nodes in the destination block.
4542   BasicBlock::iterator I = (*CommonDest)->begin();
4543   while (PHINode *PHI = dyn_cast<PHINode>(I++)) {
4544     int Idx = PHI->getBasicBlockIndex(Pred);
4545     if (Idx == -1)
4546       continue;
4547 
4548     Constant *ConstVal =
4549         LookupConstant(PHI->getIncomingValue(Idx), ConstantPool);
4550     if (!ConstVal)
4551       return false;
4552 
4553     // Be conservative about which kinds of constants we support.
4554     if (!ValidLookupTableConstant(ConstVal))
4555       return false;
4556 
4557     Res.push_back(std::make_pair(PHI, ConstVal));
4558   }
4559 
4560   return Res.size() > 0;
4561 }
4562 
4563 // Helper function used to add CaseVal to the list of cases that generate
4564 // Result.
4565 static void MapCaseToResult(ConstantInt *CaseVal,
4566                             SwitchCaseResultVectorTy &UniqueResults,
4567                             Constant *Result) {
4568   for (auto &I : UniqueResults) {
4569     if (I.first == Result) {
4570       I.second.push_back(CaseVal);
4571       return;
4572     }
4573   }
4574   UniqueResults.push_back(
4575       std::make_pair(Result, SmallVector<ConstantInt *, 4>(1, CaseVal)));
4576 }
4577 
4578 // Helper function that initializes a map containing
4579 // results for the PHI node of the common destination block for a switch
4580 // instruction. Returns false if multiple PHI nodes have been found or if
4581 // there is not a common destination block for the switch.
4582 static bool InitializeUniqueCases(SwitchInst *SI, PHINode *&PHI,
4583                                   BasicBlock *&CommonDest,
4584                                   SwitchCaseResultVectorTy &UniqueResults,
4585                                   Constant *&DefaultResult,
4586                                   const DataLayout &DL) {
4587   for (auto &I : SI->cases()) {
4588     ConstantInt *CaseVal = I.getCaseValue();
4589 
4590     // Resulting value at phi nodes for this case value.
4591     SwitchCaseResultsTy Results;
4592     if (!GetCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results,
4593                         DL))
4594       return false;
4595 
4596     // Only one value per case is permitted
4597     if (Results.size() > 1)
4598       return false;
4599     MapCaseToResult(CaseVal, UniqueResults, Results.begin()->second);
4600 
4601     // Check the PHI consistency.
4602     if (!PHI)
4603       PHI = Results[0].first;
4604     else if (PHI != Results[0].first)
4605       return false;
4606   }
4607   // Find the default result value.
4608   SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults;
4609   BasicBlock *DefaultDest = SI->getDefaultDest();
4610   GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults,
4611                  DL);
4612   // If the default value is not found abort unless the default destination
4613   // is unreachable.
4614   DefaultResult =
4615       DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr;
4616   if ((!DefaultResult &&
4617        !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg())))
4618     return false;
4619 
4620   return true;
4621 }
4622 
4623 // Helper function that checks if it is possible to transform a switch with only
4624 // two cases (or two cases + default) that produces a result into a select.
4625 // Example:
4626 // switch (a) {
4627 //   case 10:                %0 = icmp eq i32 %a, 10
4628 //     return 10;            %1 = select i1 %0, i32 10, i32 4
4629 //   case 20:        ---->   %2 = icmp eq i32 %a, 20
4630 //     return 2;             %3 = select i1 %2, i32 2, i32 %1
4631 //   default:
4632 //     return 4;
4633 // }
4634 static Value *ConvertTwoCaseSwitch(const SwitchCaseResultVectorTy &ResultVector,
4635                                    Constant *DefaultResult, Value *Condition,
4636                                    IRBuilder<> &Builder) {
4637   assert(ResultVector.size() == 2 &&
4638          "We should have exactly two unique results at this point");
4639   // If we are selecting between only two cases transform into a simple
4640   // select or a two-way select if default is possible.
4641   if (ResultVector[0].second.size() == 1 &&
4642       ResultVector[1].second.size() == 1) {
4643     ConstantInt *const FirstCase = ResultVector[0].second[0];
4644     ConstantInt *const SecondCase = ResultVector[1].second[0];
4645 
4646     bool DefaultCanTrigger = DefaultResult;
4647     Value *SelectValue = ResultVector[1].first;
4648     if (DefaultCanTrigger) {
4649       Value *const ValueCompare =
4650           Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp");
4651       SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first,
4652                                          DefaultResult, "switch.select");
4653     }
4654     Value *const ValueCompare =
4655         Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp");
4656     return Builder.CreateSelect(ValueCompare, ResultVector[0].first,
4657                                 SelectValue, "switch.select");
4658   }
4659 
4660   return nullptr;
4661 }
4662 
4663 // Helper function to cleanup a switch instruction that has been converted into
4664 // a select, fixing up PHI nodes and basic blocks.
4665 static void RemoveSwitchAfterSelectConversion(SwitchInst *SI, PHINode *PHI,
4666                                               Value *SelectValue,
4667                                               IRBuilder<> &Builder) {
4668   BasicBlock *SelectBB = SI->getParent();
4669   while (PHI->getBasicBlockIndex(SelectBB) >= 0)
4670     PHI->removeIncomingValue(SelectBB);
4671   PHI->addIncoming(SelectValue, SelectBB);
4672 
4673   Builder.CreateBr(PHI->getParent());
4674 
4675   // Remove the switch.
4676   for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
4677     BasicBlock *Succ = SI->getSuccessor(i);
4678 
4679     if (Succ == PHI->getParent())
4680       continue;
4681     Succ->removePredecessor(SelectBB);
4682   }
4683   SI->eraseFromParent();
4684 }
4685 
4686 /// If the switch is only used to initialize one or more
4687 /// phi nodes in a common successor block with only two different
4688 /// constant values, replace the switch with select.
4689 static bool SwitchToSelect(SwitchInst *SI, IRBuilder<> &Builder,
4690                            AssumptionCache *AC, const DataLayout &DL) {
4691   Value *const Cond = SI->getCondition();
4692   PHINode *PHI = nullptr;
4693   BasicBlock *CommonDest = nullptr;
4694   Constant *DefaultResult;
4695   SwitchCaseResultVectorTy UniqueResults;
4696   // Collect all the cases that will deliver the same value from the switch.
4697   if (!InitializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult,
4698                              DL))
4699     return false;
4700   // Selects choose between maximum two values.
4701   if (UniqueResults.size() != 2)
4702     return false;
4703   assert(PHI != nullptr && "PHI for value select not found");
4704 
4705   Builder.SetInsertPoint(SI);
4706   Value *SelectValue =
4707       ConvertTwoCaseSwitch(UniqueResults, DefaultResult, Cond, Builder);
4708   if (SelectValue) {
4709     RemoveSwitchAfterSelectConversion(SI, PHI, SelectValue, Builder);
4710     return true;
4711   }
4712   // The switch couldn't be converted into a select.
4713   return false;
4714 }
4715 
4716 namespace {
4717 /// This class represents a lookup table that can be used to replace a switch.
4718 class SwitchLookupTable {
4719 public:
4720   /// Create a lookup table to use as a switch replacement with the contents
4721   /// of Values, using DefaultValue to fill any holes in the table.
4722   SwitchLookupTable(
4723       Module &M, uint64_t TableSize, ConstantInt *Offset,
4724       const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
4725       Constant *DefaultValue, const DataLayout &DL);
4726 
4727   /// Build instructions with Builder to retrieve the value at
4728   /// the position given by Index in the lookup table.
4729   Value *BuildLookup(Value *Index, IRBuilder<> &Builder);
4730 
4731   /// Return true if a table with TableSize elements of
4732   /// type ElementType would fit in a target-legal register.
4733   static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize,
4734                                  Type *ElementType);
4735 
4736 private:
4737   // Depending on the contents of the table, it can be represented in
4738   // different ways.
4739   enum {
4740     // For tables where each element contains the same value, we just have to
4741     // store that single value and return it for each lookup.
4742     SingleValueKind,
4743 
4744     // For tables where there is a linear relationship between table index
4745     // and values. We calculate the result with a simple multiplication
4746     // and addition instead of a table lookup.
4747     LinearMapKind,
4748 
4749     // For small tables with integer elements, we can pack them into a bitmap
4750     // that fits into a target-legal register. Values are retrieved by
4751     // shift and mask operations.
4752     BitMapKind,
4753 
4754     // The table is stored as an array of values. Values are retrieved by load
4755     // instructions from the table.
4756     ArrayKind
4757   } Kind;
4758 
4759   // For SingleValueKind, this is the single value.
4760   Constant *SingleValue;
4761 
4762   // For BitMapKind, this is the bitmap.
4763   ConstantInt *BitMap;
4764   IntegerType *BitMapElementTy;
4765 
4766   // For LinearMapKind, these are the constants used to derive the value.
4767   ConstantInt *LinearOffset;
4768   ConstantInt *LinearMultiplier;
4769 
4770   // For ArrayKind, this is the array.
4771   GlobalVariable *Array;
4772 };
4773 }
4774 
4775 SwitchLookupTable::SwitchLookupTable(
4776     Module &M, uint64_t TableSize, ConstantInt *Offset,
4777     const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
4778     Constant *DefaultValue, const DataLayout &DL)
4779     : SingleValue(nullptr), BitMap(nullptr), BitMapElementTy(nullptr),
4780       LinearOffset(nullptr), LinearMultiplier(nullptr), Array(nullptr) {
4781   assert(Values.size() && "Can't build lookup table without values!");
4782   assert(TableSize >= Values.size() && "Can't fit values in table!");
4783 
4784   // If all values in the table are equal, this is that value.
4785   SingleValue = Values.begin()->second;
4786 
4787   Type *ValueType = Values.begin()->second->getType();
4788 
4789   // Build up the table contents.
4790   SmallVector<Constant *, 64> TableContents(TableSize);
4791   for (size_t I = 0, E = Values.size(); I != E; ++I) {
4792     ConstantInt *CaseVal = Values[I].first;
4793     Constant *CaseRes = Values[I].second;
4794     assert(CaseRes->getType() == ValueType);
4795 
4796     uint64_t Idx = (CaseVal->getValue() - Offset->getValue()).getLimitedValue();
4797     TableContents[Idx] = CaseRes;
4798 
4799     if (CaseRes != SingleValue)
4800       SingleValue = nullptr;
4801   }
4802 
4803   // Fill in any holes in the table with the default result.
4804   if (Values.size() < TableSize) {
4805     assert(DefaultValue &&
4806            "Need a default value to fill the lookup table holes.");
4807     assert(DefaultValue->getType() == ValueType);
4808     for (uint64_t I = 0; I < TableSize; ++I) {
4809       if (!TableContents[I])
4810         TableContents[I] = DefaultValue;
4811     }
4812 
4813     if (DefaultValue != SingleValue)
4814       SingleValue = nullptr;
4815   }
4816 
4817   // If each element in the table contains the same value, we only need to store
4818   // that single value.
4819   if (SingleValue) {
4820     Kind = SingleValueKind;
4821     return;
4822   }
4823 
4824   // Check if we can derive the value with a linear transformation from the
4825   // table index.
4826   if (isa<IntegerType>(ValueType)) {
4827     bool LinearMappingPossible = true;
4828     APInt PrevVal;
4829     APInt DistToPrev;
4830     assert(TableSize >= 2 && "Should be a SingleValue table.");
4831     // Check if there is the same distance between two consecutive values.
4832     for (uint64_t I = 0; I < TableSize; ++I) {
4833       ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]);
4834       if (!ConstVal) {
4835         // This is an undef. We could deal with it, but undefs in lookup tables
4836         // are very seldom. It's probably not worth the additional complexity.
4837         LinearMappingPossible = false;
4838         break;
4839       }
4840       APInt Val = ConstVal->getValue();
4841       if (I != 0) {
4842         APInt Dist = Val - PrevVal;
4843         if (I == 1) {
4844           DistToPrev = Dist;
4845         } else if (Dist != DistToPrev) {
4846           LinearMappingPossible = false;
4847           break;
4848         }
4849       }
4850       PrevVal = Val;
4851     }
4852     if (LinearMappingPossible) {
4853       LinearOffset = cast<ConstantInt>(TableContents[0]);
4854       LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev);
4855       Kind = LinearMapKind;
4856       ++NumLinearMaps;
4857       return;
4858     }
4859   }
4860 
4861   // If the type is integer and the table fits in a register, build a bitmap.
4862   if (WouldFitInRegister(DL, TableSize, ValueType)) {
4863     IntegerType *IT = cast<IntegerType>(ValueType);
4864     APInt TableInt(TableSize * IT->getBitWidth(), 0);
4865     for (uint64_t I = TableSize; I > 0; --I) {
4866       TableInt <<= IT->getBitWidth();
4867       // Insert values into the bitmap. Undef values are set to zero.
4868       if (!isa<UndefValue>(TableContents[I - 1])) {
4869         ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]);
4870         TableInt |= Val->getValue().zext(TableInt.getBitWidth());
4871       }
4872     }
4873     BitMap = ConstantInt::get(M.getContext(), TableInt);
4874     BitMapElementTy = IT;
4875     Kind = BitMapKind;
4876     ++NumBitMaps;
4877     return;
4878   }
4879 
4880   // Store the table in an array.
4881   ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize);
4882   Constant *Initializer = ConstantArray::get(ArrayTy, TableContents);
4883 
4884   Array = new GlobalVariable(M, ArrayTy, /*constant=*/true,
4885                              GlobalVariable::PrivateLinkage, Initializer,
4886                              "switch.table");
4887   Array->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
4888   Kind = ArrayKind;
4889 }
4890 
4891 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) {
4892   switch (Kind) {
4893   case SingleValueKind:
4894     return SingleValue;
4895   case LinearMapKind: {
4896     // Derive the result value from the input value.
4897     Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(),
4898                                           false, "switch.idx.cast");
4899     if (!LinearMultiplier->isOne())
4900       Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult");
4901     if (!LinearOffset->isZero())
4902       Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset");
4903     return Result;
4904   }
4905   case BitMapKind: {
4906     // Type of the bitmap (e.g. i59).
4907     IntegerType *MapTy = BitMap->getType();
4908 
4909     // Cast Index to the same type as the bitmap.
4910     // Note: The Index is <= the number of elements in the table, so
4911     // truncating it to the width of the bitmask is safe.
4912     Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast");
4913 
4914     // Multiply the shift amount by the element width.
4915     ShiftAmt = Builder.CreateMul(
4916         ShiftAmt, ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()),
4917         "switch.shiftamt");
4918 
4919     // Shift down.
4920     Value *DownShifted =
4921         Builder.CreateLShr(BitMap, ShiftAmt, "switch.downshift");
4922     // Mask off.
4923     return Builder.CreateTrunc(DownShifted, BitMapElementTy, "switch.masked");
4924   }
4925   case ArrayKind: {
4926     // Make sure the table index will not overflow when treated as signed.
4927     IntegerType *IT = cast<IntegerType>(Index->getType());
4928     uint64_t TableSize =
4929         Array->getInitializer()->getType()->getArrayNumElements();
4930     if (TableSize > (1ULL << (IT->getBitWidth() - 1)))
4931       Index = Builder.CreateZExt(
4932           Index, IntegerType::get(IT->getContext(), IT->getBitWidth() + 1),
4933           "switch.tableidx.zext");
4934 
4935     Value *GEPIndices[] = {Builder.getInt32(0), Index};
4936     Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array,
4937                                            GEPIndices, "switch.gep");
4938     return Builder.CreateLoad(GEP, "switch.load");
4939   }
4940   }
4941   llvm_unreachable("Unknown lookup table kind!");
4942 }
4943 
4944 bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL,
4945                                            uint64_t TableSize,
4946                                            Type *ElementType) {
4947   auto *IT = dyn_cast<IntegerType>(ElementType);
4948   if (!IT)
4949     return false;
4950   // FIXME: If the type is wider than it needs to be, e.g. i8 but all values
4951   // are <= 15, we could try to narrow the type.
4952 
4953   // Avoid overflow, fitsInLegalInteger uses unsigned int for the width.
4954   if (TableSize >= UINT_MAX / IT->getBitWidth())
4955     return false;
4956   return DL.fitsInLegalInteger(TableSize * IT->getBitWidth());
4957 }
4958 
4959 /// Determine whether a lookup table should be built for this switch, based on
4960 /// the number of cases, size of the table, and the types of the results.
4961 static bool
4962 ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize,
4963                        const TargetTransformInfo &TTI, const DataLayout &DL,
4964                        const SmallDenseMap<PHINode *, Type *> &ResultTypes) {
4965   if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10)
4966     return false; // TableSize overflowed, or mul below might overflow.
4967 
4968   bool AllTablesFitInRegister = true;
4969   bool HasIllegalType = false;
4970   for (const auto &I : ResultTypes) {
4971     Type *Ty = I.second;
4972 
4973     // Saturate this flag to true.
4974     HasIllegalType = HasIllegalType || !TTI.isTypeLegal(Ty);
4975 
4976     // Saturate this flag to false.
4977     AllTablesFitInRegister =
4978         AllTablesFitInRegister &&
4979         SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty);
4980 
4981     // If both flags saturate, we're done. NOTE: This *only* works with
4982     // saturating flags, and all flags have to saturate first due to the
4983     // non-deterministic behavior of iterating over a dense map.
4984     if (HasIllegalType && !AllTablesFitInRegister)
4985       break;
4986   }
4987 
4988   // If each table would fit in a register, we should build it anyway.
4989   if (AllTablesFitInRegister)
4990     return true;
4991 
4992   // Don't build a table that doesn't fit in-register if it has illegal types.
4993   if (HasIllegalType)
4994     return false;
4995 
4996   // The table density should be at least 40%. This is the same criterion as for
4997   // jump tables, see SelectionDAGBuilder::handleJTSwitchCase.
4998   // FIXME: Find the best cut-off.
4999   return SI->getNumCases() * 10 >= TableSize * 4;
5000 }
5001 
5002 /// Try to reuse the switch table index compare. Following pattern:
5003 /// \code
5004 ///     if (idx < tablesize)
5005 ///        r = table[idx]; // table does not contain default_value
5006 ///     else
5007 ///        r = default_value;
5008 ///     if (r != default_value)
5009 ///        ...
5010 /// \endcode
5011 /// Is optimized to:
5012 /// \code
5013 ///     cond = idx < tablesize;
5014 ///     if (cond)
5015 ///        r = table[idx];
5016 ///     else
5017 ///        r = default_value;
5018 ///     if (cond)
5019 ///        ...
5020 /// \endcode
5021 /// Jump threading will then eliminate the second if(cond).
5022 static void reuseTableCompare(
5023     User *PhiUser, BasicBlock *PhiBlock, BranchInst *RangeCheckBranch,
5024     Constant *DefaultValue,
5025     const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values) {
5026 
5027   ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser);
5028   if (!CmpInst)
5029     return;
5030 
5031   // We require that the compare is in the same block as the phi so that jump
5032   // threading can do its work afterwards.
5033   if (CmpInst->getParent() != PhiBlock)
5034     return;
5035 
5036   Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1));
5037   if (!CmpOp1)
5038     return;
5039 
5040   Value *RangeCmp = RangeCheckBranch->getCondition();
5041   Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType());
5042   Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType());
5043 
5044   // Check if the compare with the default value is constant true or false.
5045   Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
5046                                                  DefaultValue, CmpOp1, true);
5047   if (DefaultConst != TrueConst && DefaultConst != FalseConst)
5048     return;
5049 
5050   // Check if the compare with the case values is distinct from the default
5051   // compare result.
5052   for (auto ValuePair : Values) {
5053     Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
5054                                                 ValuePair.second, CmpOp1, true);
5055     if (!CaseConst || CaseConst == DefaultConst)
5056       return;
5057     assert((CaseConst == TrueConst || CaseConst == FalseConst) &&
5058            "Expect true or false as compare result.");
5059   }
5060 
5061   // Check if the branch instruction dominates the phi node. It's a simple
5062   // dominance check, but sufficient for our needs.
5063   // Although this check is invariant in the calling loops, it's better to do it
5064   // at this late stage. Practically we do it at most once for a switch.
5065   BasicBlock *BranchBlock = RangeCheckBranch->getParent();
5066   for (auto PI = pred_begin(PhiBlock), E = pred_end(PhiBlock); PI != E; ++PI) {
5067     BasicBlock *Pred = *PI;
5068     if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock)
5069       return;
5070   }
5071 
5072   if (DefaultConst == FalseConst) {
5073     // The compare yields the same result. We can replace it.
5074     CmpInst->replaceAllUsesWith(RangeCmp);
5075     ++NumTableCmpReuses;
5076   } else {
5077     // The compare yields the same result, just inverted. We can replace it.
5078     Value *InvertedTableCmp = BinaryOperator::CreateXor(
5079         RangeCmp, ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp",
5080         RangeCheckBranch);
5081     CmpInst->replaceAllUsesWith(InvertedTableCmp);
5082     ++NumTableCmpReuses;
5083   }
5084 }
5085 
5086 /// If the switch is only used to initialize one or more phi nodes in a common
5087 /// successor block with different constant values, replace the switch with
5088 /// lookup tables.
5089 static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder,
5090                                 const DataLayout &DL,
5091                                 const TargetTransformInfo &TTI) {
5092   assert(SI->getNumCases() > 1 && "Degenerate switch?");
5093 
5094   // Only build lookup table when we have a target that supports it.
5095   if (!TTI.shouldBuildLookupTables())
5096     return false;
5097 
5098   // FIXME: If the switch is too sparse for a lookup table, perhaps we could
5099   // split off a dense part and build a lookup table for that.
5100 
5101   // FIXME: This creates arrays of GEPs to constant strings, which means each
5102   // GEP needs a runtime relocation in PIC code. We should just build one big
5103   // string and lookup indices into that.
5104 
5105   // Ignore switches with less than three cases. Lookup tables will not make
5106   // them
5107   // faster, so we don't analyze them.
5108   if (SI->getNumCases() < 3)
5109     return false;
5110 
5111   // Figure out the corresponding result for each case value and phi node in the
5112   // common destination, as well as the min and max case values.
5113   assert(SI->case_begin() != SI->case_end());
5114   SwitchInst::CaseIt CI = SI->case_begin();
5115   ConstantInt *MinCaseVal = CI.getCaseValue();
5116   ConstantInt *MaxCaseVal = CI.getCaseValue();
5117 
5118   BasicBlock *CommonDest = nullptr;
5119   typedef SmallVector<std::pair<ConstantInt *, Constant *>, 4> ResultListTy;
5120   SmallDenseMap<PHINode *, ResultListTy> ResultLists;
5121   SmallDenseMap<PHINode *, Constant *> DefaultResults;
5122   SmallDenseMap<PHINode *, Type *> ResultTypes;
5123   SmallVector<PHINode *, 4> PHIs;
5124 
5125   for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) {
5126     ConstantInt *CaseVal = CI.getCaseValue();
5127     if (CaseVal->getValue().slt(MinCaseVal->getValue()))
5128       MinCaseVal = CaseVal;
5129     if (CaseVal->getValue().sgt(MaxCaseVal->getValue()))
5130       MaxCaseVal = CaseVal;
5131 
5132     // Resulting value at phi nodes for this case value.
5133     typedef SmallVector<std::pair<PHINode *, Constant *>, 4> ResultsTy;
5134     ResultsTy Results;
5135     if (!GetCaseResults(SI, CaseVal, CI.getCaseSuccessor(), &CommonDest,
5136                         Results, DL))
5137       return false;
5138 
5139     // Append the result from this case to the list for each phi.
5140     for (const auto &I : Results) {
5141       PHINode *PHI = I.first;
5142       Constant *Value = I.second;
5143       if (!ResultLists.count(PHI))
5144         PHIs.push_back(PHI);
5145       ResultLists[PHI].push_back(std::make_pair(CaseVal, Value));
5146     }
5147   }
5148 
5149   // Keep track of the result types.
5150   for (PHINode *PHI : PHIs) {
5151     ResultTypes[PHI] = ResultLists[PHI][0].second->getType();
5152   }
5153 
5154   uint64_t NumResults = ResultLists[PHIs[0]].size();
5155   APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue();
5156   uint64_t TableSize = RangeSpread.getLimitedValue() + 1;
5157   bool TableHasHoles = (NumResults < TableSize);
5158 
5159   // If the table has holes, we need a constant result for the default case
5160   // or a bitmask that fits in a register.
5161   SmallVector<std::pair<PHINode *, Constant *>, 4> DefaultResultsList;
5162   bool HasDefaultResults = GetCaseResults(SI, nullptr, SI->getDefaultDest(),
5163                                           &CommonDest, DefaultResultsList, DL);
5164 
5165   bool NeedMask = (TableHasHoles && !HasDefaultResults);
5166   if (NeedMask) {
5167     // As an extra penalty for the validity test we require more cases.
5168     if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark).
5169       return false;
5170     if (!DL.fitsInLegalInteger(TableSize))
5171       return false;
5172   }
5173 
5174   for (const auto &I : DefaultResultsList) {
5175     PHINode *PHI = I.first;
5176     Constant *Result = I.second;
5177     DefaultResults[PHI] = Result;
5178   }
5179 
5180   if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes))
5181     return false;
5182 
5183   // Create the BB that does the lookups.
5184   Module &Mod = *CommonDest->getParent()->getParent();
5185   BasicBlock *LookupBB = BasicBlock::Create(
5186       Mod.getContext(), "switch.lookup", CommonDest->getParent(), CommonDest);
5187 
5188   // Compute the table index value.
5189   Builder.SetInsertPoint(SI);
5190   Value *TableIndex =
5191       Builder.CreateSub(SI->getCondition(), MinCaseVal, "switch.tableidx");
5192 
5193   // Compute the maximum table size representable by the integer type we are
5194   // switching upon.
5195   unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits();
5196   uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize;
5197   assert(MaxTableSize >= TableSize &&
5198          "It is impossible for a switch to have more entries than the max "
5199          "representable value of its input integer type's size.");
5200 
5201   // If the default destination is unreachable, or if the lookup table covers
5202   // all values of the conditional variable, branch directly to the lookup table
5203   // BB. Otherwise, check that the condition is within the case range.
5204   const bool DefaultIsReachable =
5205       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
5206   const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize);
5207   BranchInst *RangeCheckBranch = nullptr;
5208 
5209   if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
5210     Builder.CreateBr(LookupBB);
5211     // Note: We call removeProdecessor later since we need to be able to get the
5212     // PHI value for the default case in case we're using a bit mask.
5213   } else {
5214     Value *Cmp = Builder.CreateICmpULT(
5215         TableIndex, ConstantInt::get(MinCaseVal->getType(), TableSize));
5216     RangeCheckBranch =
5217         Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest());
5218   }
5219 
5220   // Populate the BB that does the lookups.
5221   Builder.SetInsertPoint(LookupBB);
5222 
5223   if (NeedMask) {
5224     // Before doing the lookup we do the hole check.
5225     // The LookupBB is therefore re-purposed to do the hole check
5226     // and we create a new LookupBB.
5227     BasicBlock *MaskBB = LookupBB;
5228     MaskBB->setName("switch.hole_check");
5229     LookupBB = BasicBlock::Create(Mod.getContext(), "switch.lookup",
5230                                   CommonDest->getParent(), CommonDest);
5231 
5232     // Make the mask's bitwidth at least 8bit and a power-of-2 to avoid
5233     // unnecessary illegal types.
5234     uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL));
5235     APInt MaskInt(TableSizePowOf2, 0);
5236     APInt One(TableSizePowOf2, 1);
5237     // Build bitmask; fill in a 1 bit for every case.
5238     const ResultListTy &ResultList = ResultLists[PHIs[0]];
5239     for (size_t I = 0, E = ResultList.size(); I != E; ++I) {
5240       uint64_t Idx = (ResultList[I].first->getValue() - MinCaseVal->getValue())
5241                          .getLimitedValue();
5242       MaskInt |= One << Idx;
5243     }
5244     ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt);
5245 
5246     // Get the TableIndex'th bit of the bitmask.
5247     // If this bit is 0 (meaning hole) jump to the default destination,
5248     // else continue with table lookup.
5249     IntegerType *MapTy = TableMask->getType();
5250     Value *MaskIndex =
5251         Builder.CreateZExtOrTrunc(TableIndex, MapTy, "switch.maskindex");
5252     Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, "switch.shifted");
5253     Value *LoBit = Builder.CreateTrunc(
5254         Shifted, Type::getInt1Ty(Mod.getContext()), "switch.lobit");
5255     Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest());
5256 
5257     Builder.SetInsertPoint(LookupBB);
5258     AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, SI->getParent());
5259   }
5260 
5261   if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
5262     // We cached PHINodes in PHIs, to avoid accessing deleted PHINodes later,
5263     // do not delete PHINodes here.
5264     SI->getDefaultDest()->removePredecessor(SI->getParent(),
5265                                             /*DontDeleteUselessPHIs=*/true);
5266   }
5267 
5268   bool ReturnedEarly = false;
5269   for (size_t I = 0, E = PHIs.size(); I != E; ++I) {
5270     PHINode *PHI = PHIs[I];
5271     const ResultListTy &ResultList = ResultLists[PHI];
5272 
5273     // If using a bitmask, use any value to fill the lookup table holes.
5274     Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI];
5275     SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultList, DV, DL);
5276 
5277     Value *Result = Table.BuildLookup(TableIndex, Builder);
5278 
5279     // If the result is used to return immediately from the function, we want to
5280     // do that right here.
5281     if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->user_begin()) &&
5282         PHI->user_back() == CommonDest->getFirstNonPHIOrDbg()) {
5283       Builder.CreateRet(Result);
5284       ReturnedEarly = true;
5285       break;
5286     }
5287 
5288     // Do a small peephole optimization: re-use the switch table compare if
5289     // possible.
5290     if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) {
5291       BasicBlock *PhiBlock = PHI->getParent();
5292       // Search for compare instructions which use the phi.
5293       for (auto *User : PHI->users()) {
5294         reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList);
5295       }
5296     }
5297 
5298     PHI->addIncoming(Result, LookupBB);
5299   }
5300 
5301   if (!ReturnedEarly)
5302     Builder.CreateBr(CommonDest);
5303 
5304   // Remove the switch.
5305   for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
5306     BasicBlock *Succ = SI->getSuccessor(i);
5307 
5308     if (Succ == SI->getDefaultDest())
5309       continue;
5310     Succ->removePredecessor(SI->getParent());
5311   }
5312   SI->eraseFromParent();
5313 
5314   ++NumLookupTables;
5315   if (NeedMask)
5316     ++NumLookupTablesHoles;
5317   return true;
5318 }
5319 
5320 static bool isSwitchDense(ArrayRef<int64_t> Values) {
5321   // See also SelectionDAGBuilder::isDense(), which this function was based on.
5322   uint64_t Diff = (uint64_t)Values.back() - (uint64_t)Values.front();
5323   uint64_t Range = Diff + 1;
5324   uint64_t NumCases = Values.size();
5325   // 40% is the default density for building a jump table in optsize/minsize mode.
5326   uint64_t MinDensity = 40;
5327 
5328   return NumCases * 100 >= Range * MinDensity;
5329 }
5330 
5331 // Try and transform a switch that has "holes" in it to a contiguous sequence
5332 // of cases.
5333 //
5334 // A switch such as: switch(i) {case 5: case 9: case 13: case 17:} can be
5335 // range-reduced to: switch ((i-5) / 4) {case 0: case 1: case 2: case 3:}.
5336 //
5337 // This converts a sparse switch into a dense switch which allows better
5338 // lowering and could also allow transforming into a lookup table.
5339 static bool ReduceSwitchRange(SwitchInst *SI, IRBuilder<> &Builder,
5340                               const DataLayout &DL,
5341                               const TargetTransformInfo &TTI) {
5342   auto *CondTy = cast<IntegerType>(SI->getCondition()->getType());
5343   if (CondTy->getIntegerBitWidth() > 64 ||
5344       !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth()))
5345     return false;
5346   // Only bother with this optimization if there are more than 3 switch cases;
5347   // SDAG will only bother creating jump tables for 4 or more cases.
5348   if (SI->getNumCases() < 4)
5349     return false;
5350 
5351   // This transform is agnostic to the signedness of the input or case values. We
5352   // can treat the case values as signed or unsigned. We can optimize more common
5353   // cases such as a sequence crossing zero {-4,0,4,8} if we interpret case values
5354   // as signed.
5355   SmallVector<int64_t,4> Values;
5356   for (auto &C : SI->cases())
5357     Values.push_back(C.getCaseValue()->getValue().getSExtValue());
5358   std::sort(Values.begin(), Values.end());
5359 
5360   // If the switch is already dense, there's nothing useful to do here.
5361   if (isSwitchDense(Values))
5362     return false;
5363 
5364   // First, transform the values such that they start at zero and ascend.
5365   int64_t Base = Values[0];
5366   for (auto &V : Values)
5367     V -= Base;
5368 
5369   // Now we have signed numbers that have been shifted so that, given enough
5370   // precision, there are no negative values. Since the rest of the transform
5371   // is bitwise only, we switch now to an unsigned representation.
5372   uint64_t GCD = 0;
5373   for (auto &V : Values)
5374     GCD = llvm::GreatestCommonDivisor64(GCD, (uint64_t)V);
5375 
5376   // This transform can be done speculatively because it is so cheap - it results
5377   // in a single rotate operation being inserted. This can only happen if the
5378   // factor extracted is a power of 2.
5379   // FIXME: If the GCD is an odd number we can multiply by the multiplicative
5380   // inverse of GCD and then perform this transform.
5381   // FIXME: It's possible that optimizing a switch on powers of two might also
5382   // be beneficial - flag values are often powers of two and we could use a CLZ
5383   // as the key function.
5384   if (GCD <= 1 || !llvm::isPowerOf2_64(GCD))
5385     // No common divisor found or too expensive to compute key function.
5386     return false;
5387 
5388   unsigned Shift = llvm::Log2_64(GCD);
5389   for (auto &V : Values)
5390     V = (int64_t)((uint64_t)V >> Shift);
5391 
5392   if (!isSwitchDense(Values))
5393     // Transform didn't create a dense switch.
5394     return false;
5395 
5396   // The obvious transform is to shift the switch condition right and emit a
5397   // check that the condition actually cleanly divided by GCD, i.e.
5398   //   C & (1 << Shift - 1) == 0
5399   // inserting a new CFG edge to handle the case where it didn't divide cleanly.
5400   //
5401   // A cheaper way of doing this is a simple ROTR(C, Shift). This performs the
5402   // shift and puts the shifted-off bits in the uppermost bits. If any of these
5403   // are nonzero then the switch condition will be very large and will hit the
5404   // default case.
5405 
5406   auto *Ty = cast<IntegerType>(SI->getCondition()->getType());
5407   Builder.SetInsertPoint(SI);
5408   auto *ShiftC = ConstantInt::get(Ty, Shift);
5409   auto *Sub = Builder.CreateSub(SI->getCondition(), ConstantInt::get(Ty, Base));
5410   auto *LShr = Builder.CreateLShr(Sub, ShiftC);
5411   auto *Shl = Builder.CreateShl(Sub, Ty->getBitWidth() - Shift);
5412   auto *Rot = Builder.CreateOr(LShr, Shl);
5413   SI->replaceUsesOfWith(SI->getCondition(), Rot);
5414 
5415   for (SwitchInst::CaseIt C = SI->case_begin(), E = SI->case_end(); C != E;
5416        ++C) {
5417     auto *Orig = C.getCaseValue();
5418     auto Sub = Orig->getValue() - APInt(Ty->getBitWidth(), Base);
5419     C.setValue(
5420         cast<ConstantInt>(ConstantInt::get(Ty, Sub.lshr(ShiftC->getValue()))));
5421   }
5422   return true;
5423 }
5424 
5425 bool SimplifyCFGOpt::SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) {
5426   BasicBlock *BB = SI->getParent();
5427 
5428   if (isValueEqualityComparison(SI)) {
5429     // If we only have one predecessor, and if it is a branch on this value,
5430     // see if that predecessor totally determines the outcome of this switch.
5431     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
5432       if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder))
5433         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5434 
5435     Value *Cond = SI->getCondition();
5436     if (SelectInst *Select = dyn_cast<SelectInst>(Cond))
5437       if (SimplifySwitchOnSelect(SI, Select))
5438         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5439 
5440     // If the block only contains the switch, see if we can fold the block
5441     // away into any preds.
5442     BasicBlock::iterator BBI = BB->begin();
5443     // Ignore dbg intrinsics.
5444     while (isa<DbgInfoIntrinsic>(BBI))
5445       ++BBI;
5446     if (SI == &*BBI)
5447       if (FoldValueComparisonIntoPredecessors(SI, Builder))
5448         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5449   }
5450 
5451   // Try to transform the switch into an icmp and a branch.
5452   if (TurnSwitchRangeIntoICmp(SI, Builder))
5453     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5454 
5455   // Remove unreachable cases.
5456   if (EliminateDeadSwitchCases(SI, AC, DL))
5457     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5458 
5459   if (SwitchToSelect(SI, Builder, AC, DL))
5460     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5461 
5462   if (ForwardSwitchConditionToPHI(SI))
5463     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5464 
5465   if (SwitchToLookupTable(SI, Builder, DL, TTI))
5466     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5467 
5468   if (ReduceSwitchRange(SI, Builder, DL, TTI))
5469     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5470 
5471   return false;
5472 }
5473 
5474 bool SimplifyCFGOpt::SimplifyIndirectBr(IndirectBrInst *IBI) {
5475   BasicBlock *BB = IBI->getParent();
5476   bool Changed = false;
5477 
5478   // Eliminate redundant destinations.
5479   SmallPtrSet<Value *, 8> Succs;
5480   for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
5481     BasicBlock *Dest = IBI->getDestination(i);
5482     if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) {
5483       Dest->removePredecessor(BB);
5484       IBI->removeDestination(i);
5485       --i;
5486       --e;
5487       Changed = true;
5488     }
5489   }
5490 
5491   if (IBI->getNumDestinations() == 0) {
5492     // If the indirectbr has no successors, change it to unreachable.
5493     new UnreachableInst(IBI->getContext(), IBI);
5494     EraseTerminatorInstAndDCECond(IBI);
5495     return true;
5496   }
5497 
5498   if (IBI->getNumDestinations() == 1) {
5499     // If the indirectbr has one successor, change it to a direct branch.
5500     BranchInst::Create(IBI->getDestination(0), IBI);
5501     EraseTerminatorInstAndDCECond(IBI);
5502     return true;
5503   }
5504 
5505   if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) {
5506     if (SimplifyIndirectBrOnSelect(IBI, SI))
5507       return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5508   }
5509   return Changed;
5510 }
5511 
5512 /// Given an block with only a single landing pad and a unconditional branch
5513 /// try to find another basic block which this one can be merged with.  This
5514 /// handles cases where we have multiple invokes with unique landing pads, but
5515 /// a shared handler.
5516 ///
5517 /// We specifically choose to not worry about merging non-empty blocks
5518 /// here.  That is a PRE/scheduling problem and is best solved elsewhere.  In
5519 /// practice, the optimizer produces empty landing pad blocks quite frequently
5520 /// when dealing with exception dense code.  (see: instcombine, gvn, if-else
5521 /// sinking in this file)
5522 ///
5523 /// This is primarily a code size optimization.  We need to avoid performing
5524 /// any transform which might inhibit optimization (such as our ability to
5525 /// specialize a particular handler via tail commoning).  We do this by not
5526 /// merging any blocks which require us to introduce a phi.  Since the same
5527 /// values are flowing through both blocks, we don't loose any ability to
5528 /// specialize.  If anything, we make such specialization more likely.
5529 ///
5530 /// TODO - This transformation could remove entries from a phi in the target
5531 /// block when the inputs in the phi are the same for the two blocks being
5532 /// merged.  In some cases, this could result in removal of the PHI entirely.
5533 static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI,
5534                                  BasicBlock *BB) {
5535   auto Succ = BB->getUniqueSuccessor();
5536   assert(Succ);
5537   // If there's a phi in the successor block, we'd likely have to introduce
5538   // a phi into the merged landing pad block.
5539   if (isa<PHINode>(*Succ->begin()))
5540     return false;
5541 
5542   for (BasicBlock *OtherPred : predecessors(Succ)) {
5543     if (BB == OtherPred)
5544       continue;
5545     BasicBlock::iterator I = OtherPred->begin();
5546     LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I);
5547     if (!LPad2 || !LPad2->isIdenticalTo(LPad))
5548       continue;
5549     for (++I; isa<DbgInfoIntrinsic>(I); ++I) {
5550     }
5551     BranchInst *BI2 = dyn_cast<BranchInst>(I);
5552     if (!BI2 || !BI2->isIdenticalTo(BI))
5553       continue;
5554 
5555     // We've found an identical block.  Update our predecessors to take that
5556     // path instead and make ourselves dead.
5557     SmallSet<BasicBlock *, 16> Preds;
5558     Preds.insert(pred_begin(BB), pred_end(BB));
5559     for (BasicBlock *Pred : Preds) {
5560       InvokeInst *II = cast<InvokeInst>(Pred->getTerminator());
5561       assert(II->getNormalDest() != BB && II->getUnwindDest() == BB &&
5562              "unexpected successor");
5563       II->setUnwindDest(OtherPred);
5564     }
5565 
5566     // The debug info in OtherPred doesn't cover the merged control flow that
5567     // used to go through BB.  We need to delete it or update it.
5568     for (auto I = OtherPred->begin(), E = OtherPred->end(); I != E;) {
5569       Instruction &Inst = *I;
5570       I++;
5571       if (isa<DbgInfoIntrinsic>(Inst))
5572         Inst.eraseFromParent();
5573     }
5574 
5575     SmallSet<BasicBlock *, 16> Succs;
5576     Succs.insert(succ_begin(BB), succ_end(BB));
5577     for (BasicBlock *Succ : Succs) {
5578       Succ->removePredecessor(BB);
5579     }
5580 
5581     IRBuilder<> Builder(BI);
5582     Builder.CreateUnreachable();
5583     BI->eraseFromParent();
5584     return true;
5585   }
5586   return false;
5587 }
5588 
5589 bool SimplifyCFGOpt::SimplifyUncondBranch(BranchInst *BI,
5590                                           IRBuilder<> &Builder) {
5591   BasicBlock *BB = BI->getParent();
5592 
5593   if (SinkCommon && SinkThenElseCodeToEnd(BI))
5594     return true;
5595 
5596   // If the Terminator is the only non-phi instruction, simplify the block.
5597   // if LoopHeader is provided, check if the block is a loop header
5598   // (This is for early invocations before loop simplify and vectorization
5599   // to keep canonical loop forms for nested loops.
5600   // These blocks can be eliminated when the pass is invoked later
5601   // in the back-end.)
5602   BasicBlock::iterator I = BB->getFirstNonPHIOrDbg()->getIterator();
5603   if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() &&
5604       (!LoopHeaders || !LoopHeaders->count(BB)) &&
5605       TryToSimplifyUncondBranchFromEmptyBlock(BB))
5606     return true;
5607 
5608   // If the only instruction in the block is a seteq/setne comparison
5609   // against a constant, try to simplify the block.
5610   if (ICmpInst *ICI = dyn_cast<ICmpInst>(I))
5611     if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) {
5612       for (++I; isa<DbgInfoIntrinsic>(I); ++I)
5613         ;
5614       if (I->isTerminator() &&
5615           TryToSimplifyUncondBranchWithICmpInIt(ICI, Builder, DL, TTI,
5616                                                 BonusInstThreshold, AC))
5617         return true;
5618     }
5619 
5620   // See if we can merge an empty landing pad block with another which is
5621   // equivalent.
5622   if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) {
5623     for (++I; isa<DbgInfoIntrinsic>(I); ++I) {
5624     }
5625     if (I->isTerminator() && TryToMergeLandingPad(LPad, BI, BB))
5626       return true;
5627   }
5628 
5629   // If this basic block is ONLY a compare and a branch, and if a predecessor
5630   // branches to us and our successor, fold the comparison into the
5631   // predecessor and use logical operations to update the incoming value
5632   // for PHI nodes in common successor.
5633   if (FoldBranchToCommonDest(BI, BonusInstThreshold))
5634     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5635   return false;
5636 }
5637 
5638 static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) {
5639   BasicBlock *PredPred = nullptr;
5640   for (auto *P : predecessors(BB)) {
5641     BasicBlock *PPred = P->getSinglePredecessor();
5642     if (!PPred || (PredPred && PredPred != PPred))
5643       return nullptr;
5644     PredPred = PPred;
5645   }
5646   return PredPred;
5647 }
5648 
5649 bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) {
5650   BasicBlock *BB = BI->getParent();
5651 
5652   // Conditional branch
5653   if (isValueEqualityComparison(BI)) {
5654     // If we only have one predecessor, and if it is a branch on this value,
5655     // see if that predecessor totally determines the outcome of this
5656     // switch.
5657     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
5658       if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder))
5659         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5660 
5661     // This block must be empty, except for the setcond inst, if it exists.
5662     // Ignore dbg intrinsics.
5663     BasicBlock::iterator I = BB->begin();
5664     // Ignore dbg intrinsics.
5665     while (isa<DbgInfoIntrinsic>(I))
5666       ++I;
5667     if (&*I == BI) {
5668       if (FoldValueComparisonIntoPredecessors(BI, Builder))
5669         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5670     } else if (&*I == cast<Instruction>(BI->getCondition())) {
5671       ++I;
5672       // Ignore dbg intrinsics.
5673       while (isa<DbgInfoIntrinsic>(I))
5674         ++I;
5675       if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder))
5676         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5677     }
5678   }
5679 
5680   // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction.
5681   if (SimplifyBranchOnICmpChain(BI, Builder, DL))
5682     return true;
5683 
5684   // If this basic block has a single dominating predecessor block and the
5685   // dominating block's condition implies BI's condition, we know the direction
5686   // of the BI branch.
5687   if (BasicBlock *Dom = BB->getSinglePredecessor()) {
5688     auto *PBI = dyn_cast_or_null<BranchInst>(Dom->getTerminator());
5689     if (PBI && PBI->isConditional() &&
5690         PBI->getSuccessor(0) != PBI->getSuccessor(1) &&
5691         (PBI->getSuccessor(0) == BB || PBI->getSuccessor(1) == BB)) {
5692       bool CondIsFalse = PBI->getSuccessor(1) == BB;
5693       Optional<bool> Implication = isImpliedCondition(
5694           PBI->getCondition(), BI->getCondition(), DL, CondIsFalse);
5695       if (Implication) {
5696         // Turn this into a branch on constant.
5697         auto *OldCond = BI->getCondition();
5698         ConstantInt *CI = *Implication
5699                               ? ConstantInt::getTrue(BB->getContext())
5700                               : ConstantInt::getFalse(BB->getContext());
5701         BI->setCondition(CI);
5702         RecursivelyDeleteTriviallyDeadInstructions(OldCond);
5703         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5704       }
5705     }
5706   }
5707 
5708   // If this basic block is ONLY a compare and a branch, and if a predecessor
5709   // branches to us and one of our successors, fold the comparison into the
5710   // predecessor and use logical operations to pick the right destination.
5711   if (FoldBranchToCommonDest(BI, BonusInstThreshold))
5712     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5713 
5714   // We have a conditional branch to two blocks that are only reachable
5715   // from BI.  We know that the condbr dominates the two blocks, so see if
5716   // there is any identical code in the "then" and "else" blocks.  If so, we
5717   // can hoist it up to the branching block.
5718   if (BI->getSuccessor(0)->getSinglePredecessor()) {
5719     if (BI->getSuccessor(1)->getSinglePredecessor()) {
5720       if (HoistThenElseCodeToIf(BI, TTI))
5721         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5722     } else {
5723       // If Successor #1 has multiple preds, we may be able to conditionally
5724       // execute Successor #0 if it branches to Successor #1.
5725       TerminatorInst *Succ0TI = BI->getSuccessor(0)->getTerminator();
5726       if (Succ0TI->getNumSuccessors() == 1 &&
5727           Succ0TI->getSuccessor(0) == BI->getSuccessor(1))
5728         if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), TTI))
5729           return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5730     }
5731   } else if (BI->getSuccessor(1)->getSinglePredecessor()) {
5732     // If Successor #0 has multiple preds, we may be able to conditionally
5733     // execute Successor #1 if it branches to Successor #0.
5734     TerminatorInst *Succ1TI = BI->getSuccessor(1)->getTerminator();
5735     if (Succ1TI->getNumSuccessors() == 1 &&
5736         Succ1TI->getSuccessor(0) == BI->getSuccessor(0))
5737       if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), TTI))
5738         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5739   }
5740 
5741   // If this is a branch on a phi node in the current block, thread control
5742   // through this block if any PHI node entries are constants.
5743   if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition()))
5744     if (PN->getParent() == BI->getParent())
5745       if (FoldCondBranchOnPHI(BI, DL))
5746         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5747 
5748   // Scan predecessor blocks for conditional branches.
5749   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
5750     if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
5751       if (PBI != BI && PBI->isConditional())
5752         if (SimplifyCondBranchToCondBranch(PBI, BI, DL))
5753           return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5754 
5755   // Look for diamond patterns.
5756   if (MergeCondStores)
5757     if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB))
5758       if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator()))
5759         if (PBI != BI && PBI->isConditional())
5760           if (mergeConditionalStores(PBI, BI))
5761             return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5762 
5763   return false;
5764 }
5765 
5766 /// Check if passing a value to an instruction will cause undefined behavior.
5767 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I) {
5768   Constant *C = dyn_cast<Constant>(V);
5769   if (!C)
5770     return false;
5771 
5772   if (I->use_empty())
5773     return false;
5774 
5775   if (C->isNullValue() || isa<UndefValue>(C)) {
5776     // Only look at the first use, avoid hurting compile time with long uselists
5777     User *Use = *I->user_begin();
5778 
5779     // Now make sure that there are no instructions in between that can alter
5780     // control flow (eg. calls)
5781     for (BasicBlock::iterator
5782              i = ++BasicBlock::iterator(I),
5783              UI = BasicBlock::iterator(dyn_cast<Instruction>(Use));
5784          i != UI; ++i)
5785       if (i == I->getParent()->end() || i->mayHaveSideEffects())
5786         return false;
5787 
5788     // Look through GEPs. A load from a GEP derived from NULL is still undefined
5789     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use))
5790       if (GEP->getPointerOperand() == I)
5791         return passingValueIsAlwaysUndefined(V, GEP);
5792 
5793     // Look through bitcasts.
5794     if (BitCastInst *BC = dyn_cast<BitCastInst>(Use))
5795       return passingValueIsAlwaysUndefined(V, BC);
5796 
5797     // Load from null is undefined.
5798     if (LoadInst *LI = dyn_cast<LoadInst>(Use))
5799       if (!LI->isVolatile())
5800         return LI->getPointerAddressSpace() == 0;
5801 
5802     // Store to null is undefined.
5803     if (StoreInst *SI = dyn_cast<StoreInst>(Use))
5804       if (!SI->isVolatile())
5805         return SI->getPointerAddressSpace() == 0 &&
5806                SI->getPointerOperand() == I;
5807 
5808     // A call to null is undefined.
5809     if (auto CS = CallSite(Use))
5810       return CS.getCalledValue() == I;
5811   }
5812   return false;
5813 }
5814 
5815 /// If BB has an incoming value that will always trigger undefined behavior
5816 /// (eg. null pointer dereference), remove the branch leading here.
5817 static bool removeUndefIntroducingPredecessor(BasicBlock *BB) {
5818   for (BasicBlock::iterator i = BB->begin();
5819        PHINode *PHI = dyn_cast<PHINode>(i); ++i)
5820     for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i)
5821       if (passingValueIsAlwaysUndefined(PHI->getIncomingValue(i), PHI)) {
5822         TerminatorInst *T = PHI->getIncomingBlock(i)->getTerminator();
5823         IRBuilder<> Builder(T);
5824         if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
5825           BB->removePredecessor(PHI->getIncomingBlock(i));
5826           // Turn uncoditional branches into unreachables and remove the dead
5827           // destination from conditional branches.
5828           if (BI->isUnconditional())
5829             Builder.CreateUnreachable();
5830           else
5831             Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1)
5832                                                        : BI->getSuccessor(0));
5833           BI->eraseFromParent();
5834           return true;
5835         }
5836         // TODO: SwitchInst.
5837       }
5838 
5839   return false;
5840 }
5841 
5842 bool SimplifyCFGOpt::run(BasicBlock *BB) {
5843   bool Changed = false;
5844 
5845   assert(BB && BB->getParent() && "Block not embedded in function!");
5846   assert(BB->getTerminator() && "Degenerate basic block encountered!");
5847 
5848   // Remove basic blocks that have no predecessors (except the entry block)...
5849   // or that just have themself as a predecessor.  These are unreachable.
5850   if ((pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) ||
5851       BB->getSinglePredecessor() == BB) {
5852     DEBUG(dbgs() << "Removing BB: \n" << *BB);
5853     DeleteDeadBlock(BB);
5854     return true;
5855   }
5856 
5857   // Check to see if we can constant propagate this terminator instruction
5858   // away...
5859   Changed |= ConstantFoldTerminator(BB, true);
5860 
5861   // Check for and eliminate duplicate PHI nodes in this block.
5862   Changed |= EliminateDuplicatePHINodes(BB);
5863 
5864   // Check for and remove branches that will always cause undefined behavior.
5865   Changed |= removeUndefIntroducingPredecessor(BB);
5866 
5867   // Merge basic blocks into their predecessor if there is only one distinct
5868   // pred, and if there is only one distinct successor of the predecessor, and
5869   // if there are no PHI nodes.
5870   //
5871   if (MergeBlockIntoPredecessor(BB))
5872     return true;
5873 
5874   IRBuilder<> Builder(BB);
5875 
5876   // If there is a trivial two-entry PHI node in this basic block, and we can
5877   // eliminate it, do so now.
5878   if (PHINode *PN = dyn_cast<PHINode>(BB->begin()))
5879     if (PN->getNumIncomingValues() == 2)
5880       Changed |= FoldTwoEntryPHINode(PN, TTI, DL);
5881 
5882   Builder.SetInsertPoint(BB->getTerminator());
5883   if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
5884     if (BI->isUnconditional()) {
5885       if (SimplifyUncondBranch(BI, Builder))
5886         return true;
5887     } else {
5888       if (SimplifyCondBranch(BI, Builder))
5889         return true;
5890     }
5891   } else if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
5892     if (SimplifyReturn(RI, Builder))
5893       return true;
5894   } else if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator())) {
5895     if (SimplifyResume(RI, Builder))
5896       return true;
5897   } else if (CleanupReturnInst *RI =
5898                  dyn_cast<CleanupReturnInst>(BB->getTerminator())) {
5899     if (SimplifyCleanupReturn(RI))
5900       return true;
5901   } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
5902     if (SimplifySwitch(SI, Builder))
5903       return true;
5904   } else if (UnreachableInst *UI =
5905                  dyn_cast<UnreachableInst>(BB->getTerminator())) {
5906     if (SimplifyUnreachable(UI))
5907       return true;
5908   } else if (IndirectBrInst *IBI =
5909                  dyn_cast<IndirectBrInst>(BB->getTerminator())) {
5910     if (SimplifyIndirectBr(IBI))
5911       return true;
5912   }
5913 
5914   return Changed;
5915 }
5916 
5917 /// This function is used to do simplification of a CFG.
5918 /// For example, it adjusts branches to branches to eliminate the extra hop,
5919 /// eliminates unreachable basic blocks, and does other "peephole" optimization
5920 /// of the CFG.  It returns true if a modification was made.
5921 ///
5922 bool llvm::SimplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI,
5923                        unsigned BonusInstThreshold, AssumptionCache *AC,
5924                        SmallPtrSetImpl<BasicBlock *> *LoopHeaders) {
5925   return SimplifyCFGOpt(TTI, BB->getModule()->getDataLayout(),
5926                         BonusInstThreshold, AC, LoopHeaders)
5927       .run(BB);
5928 }
5929