1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Peephole optimize the CFG.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "llvm/ADT/APInt.h"
14 #include "llvm/ADT/ArrayRef.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/MapVector.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/ScopeExit.h"
20 #include "llvm/ADT/Sequence.h"
21 #include "llvm/ADT/SetOperations.h"
22 #include "llvm/ADT/SetVector.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/Statistic.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/Analysis/AssumptionCache.h"
28 #include "llvm/Analysis/CaptureTracking.h"
29 #include "llvm/Analysis/ConstantFolding.h"
30 #include "llvm/Analysis/DomTreeUpdater.h"
31 #include "llvm/Analysis/GuardUtils.h"
32 #include "llvm/Analysis/InstructionSimplify.h"
33 #include "llvm/Analysis/MemorySSA.h"
34 #include "llvm/Analysis/MemorySSAUpdater.h"
35 #include "llvm/Analysis/TargetTransformInfo.h"
36 #include "llvm/Analysis/ValueTracking.h"
37 #include "llvm/IR/Attributes.h"
38 #include "llvm/IR/BasicBlock.h"
39 #include "llvm/IR/CFG.h"
40 #include "llvm/IR/Constant.h"
41 #include "llvm/IR/ConstantRange.h"
42 #include "llvm/IR/Constants.h"
43 #include "llvm/IR/DataLayout.h"
44 #include "llvm/IR/DerivedTypes.h"
45 #include "llvm/IR/Function.h"
46 #include "llvm/IR/GlobalValue.h"
47 #include "llvm/IR/GlobalVariable.h"
48 #include "llvm/IR/IRBuilder.h"
49 #include "llvm/IR/InstrTypes.h"
50 #include "llvm/IR/Instruction.h"
51 #include "llvm/IR/Instructions.h"
52 #include "llvm/IR/IntrinsicInst.h"
53 #include "llvm/IR/LLVMContext.h"
54 #include "llvm/IR/MDBuilder.h"
55 #include "llvm/IR/Metadata.h"
56 #include "llvm/IR/Module.h"
57 #include "llvm/IR/NoFolder.h"
58 #include "llvm/IR/Operator.h"
59 #include "llvm/IR/PatternMatch.h"
60 #include "llvm/IR/Type.h"
61 #include "llvm/IR/Use.h"
62 #include "llvm/IR/User.h"
63 #include "llvm/IR/Value.h"
64 #include "llvm/IR/ValueHandle.h"
65 #include "llvm/Support/BranchProbability.h"
66 #include "llvm/Support/Casting.h"
67 #include "llvm/Support/CommandLine.h"
68 #include "llvm/Support/Debug.h"
69 #include "llvm/Support/ErrorHandling.h"
70 #include "llvm/Support/KnownBits.h"
71 #include "llvm/Support/MathExtras.h"
72 #include "llvm/Support/raw_ostream.h"
73 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
74 #include "llvm/Transforms/Utils/Local.h"
75 #include "llvm/Transforms/Utils/ValueMapper.h"
76 #include <algorithm>
77 #include <cassert>
78 #include <climits>
79 #include <cstddef>
80 #include <cstdint>
81 #include <iterator>
82 #include <map>
83 #include <set>
84 #include <tuple>
85 #include <utility>
86 #include <vector>
87
88 using namespace llvm;
89 using namespace PatternMatch;
90
91 #define DEBUG_TYPE "simplifycfg"
92
93 cl::opt<bool> llvm::RequireAndPreserveDomTree(
94 "simplifycfg-require-and-preserve-domtree", cl::Hidden,
95
96 cl::desc("Temorary development switch used to gradually uplift SimplifyCFG "
97 "into preserving DomTree,"));
98
99 // Chosen as 2 so as to be cheap, but still to have enough power to fold
100 // a select, so the "clamp" idiom (of a min followed by a max) will be caught.
101 // To catch this, we need to fold a compare and a select, hence '2' being the
102 // minimum reasonable default.
103 static cl::opt<unsigned> PHINodeFoldingThreshold(
104 "phi-node-folding-threshold", cl::Hidden, cl::init(2),
105 cl::desc(
106 "Control the amount of phi node folding to perform (default = 2)"));
107
108 static cl::opt<unsigned> TwoEntryPHINodeFoldingThreshold(
109 "two-entry-phi-node-folding-threshold", cl::Hidden, cl::init(4),
110 cl::desc("Control the maximal total instruction cost that we are willing "
111 "to speculatively execute to fold a 2-entry PHI node into a "
112 "select (default = 4)"));
113
114 static cl::opt<bool>
115 HoistCommon("simplifycfg-hoist-common", cl::Hidden, cl::init(true),
116 cl::desc("Hoist common instructions up to the parent block"));
117
118 static cl::opt<bool>
119 SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true),
120 cl::desc("Sink common instructions down to the end block"));
121
122 static cl::opt<bool> HoistCondStores(
123 "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true),
124 cl::desc("Hoist conditional stores if an unconditional store precedes"));
125
126 static cl::opt<bool> MergeCondStores(
127 "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true),
128 cl::desc("Hoist conditional stores even if an unconditional store does not "
129 "precede - hoist multiple conditional stores into a single "
130 "predicated store"));
131
132 static cl::opt<bool> MergeCondStoresAggressively(
133 "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false),
134 cl::desc("When merging conditional stores, do so even if the resultant "
135 "basic blocks are unlikely to be if-converted as a result"));
136
137 static cl::opt<bool> SpeculateOneExpensiveInst(
138 "speculate-one-expensive-inst", cl::Hidden, cl::init(true),
139 cl::desc("Allow exactly one expensive instruction to be speculatively "
140 "executed"));
141
142 static cl::opt<unsigned> MaxSpeculationDepth(
143 "max-speculation-depth", cl::Hidden, cl::init(10),
144 cl::desc("Limit maximum recursion depth when calculating costs of "
145 "speculatively executed instructions"));
146
147 static cl::opt<int>
148 MaxSmallBlockSize("simplifycfg-max-small-block-size", cl::Hidden,
149 cl::init(10),
150 cl::desc("Max size of a block which is still considered "
151 "small enough to thread through"));
152
153 // Two is chosen to allow one negation and a logical combine.
154 static cl::opt<unsigned>
155 BranchFoldThreshold("simplifycfg-branch-fold-threshold", cl::Hidden,
156 cl::init(2),
157 cl::desc("Maximum cost of combining conditions when "
158 "folding branches"));
159
160 static cl::opt<unsigned> BranchFoldToCommonDestVectorMultiplier(
161 "simplifycfg-branch-fold-common-dest-vector-multiplier", cl::Hidden,
162 cl::init(2),
163 cl::desc("Multiplier to apply to threshold when determining whether or not "
164 "to fold branch to common destination when vector operations are "
165 "present"));
166
167 static cl::opt<bool> EnableMergeCompatibleInvokes(
168 "simplifycfg-merge-compatible-invokes", cl::Hidden, cl::init(true),
169 cl::desc("Allow SimplifyCFG to merge invokes together when appropriate"));
170
171 static cl::opt<unsigned> MaxSwitchCasesPerResult(
172 "max-switch-cases-per-result", cl::Hidden, cl::init(16),
173 cl::desc("Limit cases to analyze when converting a switch to select"));
174
175 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps");
176 STATISTIC(NumLinearMaps,
177 "Number of switch instructions turned into linear mapping");
178 STATISTIC(NumLookupTables,
179 "Number of switch instructions turned into lookup tables");
180 STATISTIC(
181 NumLookupTablesHoles,
182 "Number of switch instructions turned into lookup tables (holes checked)");
183 STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares");
184 STATISTIC(NumFoldValueComparisonIntoPredecessors,
185 "Number of value comparisons folded into predecessor basic blocks");
186 STATISTIC(NumFoldBranchToCommonDest,
187 "Number of branches folded into predecessor basic block");
188 STATISTIC(
189 NumHoistCommonCode,
190 "Number of common instruction 'blocks' hoisted up to the begin block");
191 STATISTIC(NumHoistCommonInstrs,
192 "Number of common instructions hoisted up to the begin block");
193 STATISTIC(NumSinkCommonCode,
194 "Number of common instruction 'blocks' sunk down to the end block");
195 STATISTIC(NumSinkCommonInstrs,
196 "Number of common instructions sunk down to the end block");
197 STATISTIC(NumSpeculations, "Number of speculative executed instructions");
198 STATISTIC(NumInvokes,
199 "Number of invokes with empty resume blocks simplified into calls");
200 STATISTIC(NumInvokesMerged, "Number of invokes that were merged together");
201 STATISTIC(NumInvokeSetsFormed, "Number of invoke sets that were formed");
202
203 namespace {
204
205 // The first field contains the value that the switch produces when a certain
206 // case group is selected, and the second field is a vector containing the
207 // cases composing the case group.
208 using SwitchCaseResultVectorTy =
209 SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2>;
210
211 // The first field contains the phi node that generates a result of the switch
212 // and the second field contains the value generated for a certain case in the
213 // switch for that PHI.
214 using SwitchCaseResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>;
215
216 /// ValueEqualityComparisonCase - Represents a case of a switch.
217 struct ValueEqualityComparisonCase {
218 ConstantInt *Value;
219 BasicBlock *Dest;
220
ValueEqualityComparisonCase__anon3677653b0111::ValueEqualityComparisonCase221 ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest)
222 : Value(Value), Dest(Dest) {}
223
operator <__anon3677653b0111::ValueEqualityComparisonCase224 bool operator<(ValueEqualityComparisonCase RHS) const {
225 // Comparing pointers is ok as we only rely on the order for uniquing.
226 return Value < RHS.Value;
227 }
228
operator ==__anon3677653b0111::ValueEqualityComparisonCase229 bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; }
230 };
231
232 class SimplifyCFGOpt {
233 const TargetTransformInfo &TTI;
234 DomTreeUpdater *DTU;
235 const DataLayout &DL;
236 ArrayRef<WeakVH> LoopHeaders;
237 const SimplifyCFGOptions &Options;
238 bool Resimplify;
239
240 Value *isValueEqualityComparison(Instruction *TI);
241 BasicBlock *GetValueEqualityComparisonCases(
242 Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases);
243 bool SimplifyEqualityComparisonWithOnlyPredecessor(Instruction *TI,
244 BasicBlock *Pred,
245 IRBuilder<> &Builder);
246 bool PerformValueComparisonIntoPredecessorFolding(Instruction *TI, Value *&CV,
247 Instruction *PTI,
248 IRBuilder<> &Builder);
249 bool FoldValueComparisonIntoPredecessors(Instruction *TI,
250 IRBuilder<> &Builder);
251
252 bool simplifyResume(ResumeInst *RI, IRBuilder<> &Builder);
253 bool simplifySingleResume(ResumeInst *RI);
254 bool simplifyCommonResume(ResumeInst *RI);
255 bool simplifyCleanupReturn(CleanupReturnInst *RI);
256 bool simplifyUnreachable(UnreachableInst *UI);
257 bool simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder);
258 bool simplifyIndirectBr(IndirectBrInst *IBI);
259 bool simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder);
260 bool simplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder);
261 bool simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder);
262
263 bool tryToSimplifyUncondBranchWithICmpInIt(ICmpInst *ICI,
264 IRBuilder<> &Builder);
265
266 bool HoistThenElseCodeToIf(BranchInst *BI, const TargetTransformInfo &TTI,
267 bool EqTermsOnly);
268 bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB,
269 const TargetTransformInfo &TTI);
270 bool SimplifyTerminatorOnSelect(Instruction *OldTerm, Value *Cond,
271 BasicBlock *TrueBB, BasicBlock *FalseBB,
272 uint32_t TrueWeight, uint32_t FalseWeight);
273 bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder,
274 const DataLayout &DL);
275 bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select);
276 bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI);
277 bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder);
278
279 public:
SimplifyCFGOpt(const TargetTransformInfo & TTI,DomTreeUpdater * DTU,const DataLayout & DL,ArrayRef<WeakVH> LoopHeaders,const SimplifyCFGOptions & Opts)280 SimplifyCFGOpt(const TargetTransformInfo &TTI, DomTreeUpdater *DTU,
281 const DataLayout &DL, ArrayRef<WeakVH> LoopHeaders,
282 const SimplifyCFGOptions &Opts)
283 : TTI(TTI), DTU(DTU), DL(DL), LoopHeaders(LoopHeaders), Options(Opts) {
284 assert((!DTU || !DTU->hasPostDomTree()) &&
285 "SimplifyCFG is not yet capable of maintaining validity of a "
286 "PostDomTree, so don't ask for it.");
287 }
288
289 bool simplifyOnce(BasicBlock *BB);
290 bool run(BasicBlock *BB);
291
292 // Helper to set Resimplify and return change indication.
requestResimplify()293 bool requestResimplify() {
294 Resimplify = true;
295 return true;
296 }
297 };
298
299 } // end anonymous namespace
300
301 /// Return true if all the PHI nodes in the basic block \p BB
302 /// receive compatible (identical) incoming values when coming from
303 /// all of the predecessor blocks that are specified in \p IncomingBlocks.
304 ///
305 /// Note that if the values aren't exactly identical, but \p EquivalenceSet
306 /// is provided, and *both* of the values are present in the set,
307 /// then they are considered equal.
IncomingValuesAreCompatible(BasicBlock * BB,ArrayRef<BasicBlock * > IncomingBlocks,SmallPtrSetImpl<Value * > * EquivalenceSet=nullptr)308 static bool IncomingValuesAreCompatible(
309 BasicBlock *BB, ArrayRef<BasicBlock *> IncomingBlocks,
310 SmallPtrSetImpl<Value *> *EquivalenceSet = nullptr) {
311 assert(IncomingBlocks.size() == 2 &&
312 "Only for a pair of incoming blocks at the time!");
313
314 // FIXME: it is okay if one of the incoming values is an `undef` value,
315 // iff the other incoming value is guaranteed to be a non-poison value.
316 // FIXME: it is okay if one of the incoming values is a `poison` value.
317 return all_of(BB->phis(), [IncomingBlocks, EquivalenceSet](PHINode &PN) {
318 Value *IV0 = PN.getIncomingValueForBlock(IncomingBlocks[0]);
319 Value *IV1 = PN.getIncomingValueForBlock(IncomingBlocks[1]);
320 if (IV0 == IV1)
321 return true;
322 if (EquivalenceSet && EquivalenceSet->contains(IV0) &&
323 EquivalenceSet->contains(IV1))
324 return true;
325 return false;
326 });
327 }
328
329 /// Return true if it is safe to merge these two
330 /// terminator instructions together.
331 static bool
SafeToMergeTerminators(Instruction * SI1,Instruction * SI2,SmallSetVector<BasicBlock *,4> * FailBlocks=nullptr)332 SafeToMergeTerminators(Instruction *SI1, Instruction *SI2,
333 SmallSetVector<BasicBlock *, 4> *FailBlocks = nullptr) {
334 if (SI1 == SI2)
335 return false; // Can't merge with self!
336
337 // It is not safe to merge these two switch instructions if they have a common
338 // successor, and if that successor has a PHI node, and if *that* PHI node has
339 // conflicting incoming values from the two switch blocks.
340 BasicBlock *SI1BB = SI1->getParent();
341 BasicBlock *SI2BB = SI2->getParent();
342
343 SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
344 bool Fail = false;
345 for (BasicBlock *Succ : successors(SI2BB)) {
346 if (!SI1Succs.count(Succ))
347 continue;
348 if (IncomingValuesAreCompatible(Succ, {SI1BB, SI2BB}))
349 continue;
350 Fail = true;
351 if (FailBlocks)
352 FailBlocks->insert(Succ);
353 else
354 break;
355 }
356
357 return !Fail;
358 }
359
360 /// Update PHI nodes in Succ to indicate that there will now be entries in it
361 /// from the 'NewPred' block. The values that will be flowing into the PHI nodes
362 /// will be the same as those coming in from ExistPred, an existing predecessor
363 /// of Succ.
AddPredecessorToBlock(BasicBlock * Succ,BasicBlock * NewPred,BasicBlock * ExistPred,MemorySSAUpdater * MSSAU=nullptr)364 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred,
365 BasicBlock *ExistPred,
366 MemorySSAUpdater *MSSAU = nullptr) {
367 for (PHINode &PN : Succ->phis())
368 PN.addIncoming(PN.getIncomingValueForBlock(ExistPred), NewPred);
369 if (MSSAU)
370 if (auto *MPhi = MSSAU->getMemorySSA()->getMemoryAccess(Succ))
371 MPhi->addIncoming(MPhi->getIncomingValueForBlock(ExistPred), NewPred);
372 }
373
374 /// Compute an abstract "cost" of speculating the given instruction,
375 /// which is assumed to be safe to speculate. TCC_Free means cheap,
376 /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively
377 /// expensive.
computeSpeculationCost(const User * I,const TargetTransformInfo & TTI)378 static InstructionCost computeSpeculationCost(const User *I,
379 const TargetTransformInfo &TTI) {
380 assert((!isa<Instruction>(I) ||
381 isSafeToSpeculativelyExecute(cast<Instruction>(I))) &&
382 "Instruction is not safe to speculatively execute!");
383 return TTI.getUserCost(I, TargetTransformInfo::TCK_SizeAndLatency);
384 }
385
386 /// If we have a merge point of an "if condition" as accepted above,
387 /// return true if the specified value dominates the block. We
388 /// don't handle the true generality of domination here, just a special case
389 /// which works well enough for us.
390 ///
391 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to
392 /// see if V (which must be an instruction) and its recursive operands
393 /// that do not dominate BB have a combined cost lower than Budget and
394 /// are non-trapping. If both are true, the instruction is inserted into the
395 /// set and true is returned.
396 ///
397 /// The cost for most non-trapping instructions is defined as 1 except for
398 /// Select whose cost is 2.
399 ///
400 /// After this function returns, Cost is increased by the cost of
401 /// V plus its non-dominating operands. If that cost is greater than
402 /// Budget, false is returned and Cost is undefined.
dominatesMergePoint(Value * V,BasicBlock * BB,SmallPtrSetImpl<Instruction * > & AggressiveInsts,InstructionCost & Cost,InstructionCost Budget,const TargetTransformInfo & TTI,unsigned Depth=0)403 static bool dominatesMergePoint(Value *V, BasicBlock *BB,
404 SmallPtrSetImpl<Instruction *> &AggressiveInsts,
405 InstructionCost &Cost,
406 InstructionCost Budget,
407 const TargetTransformInfo &TTI,
408 unsigned Depth = 0) {
409 // It is possible to hit a zero-cost cycle (phi/gep instructions for example),
410 // so limit the recursion depth.
411 // TODO: While this recursion limit does prevent pathological behavior, it
412 // would be better to track visited instructions to avoid cycles.
413 if (Depth == MaxSpeculationDepth)
414 return false;
415
416 Instruction *I = dyn_cast<Instruction>(V);
417 if (!I) {
418 // Non-instructions dominate all instructions and can be executed
419 // unconditionally.
420 return true;
421 }
422 BasicBlock *PBB = I->getParent();
423
424 // We don't want to allow weird loops that might have the "if condition" in
425 // the bottom of this block.
426 if (PBB == BB)
427 return false;
428
429 // If this instruction is defined in a block that contains an unconditional
430 // branch to BB, then it must be in the 'conditional' part of the "if
431 // statement". If not, it definitely dominates the region.
432 BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator());
433 if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB)
434 return true;
435
436 // If we have seen this instruction before, don't count it again.
437 if (AggressiveInsts.count(I))
438 return true;
439
440 // Okay, it looks like the instruction IS in the "condition". Check to
441 // see if it's a cheap instruction to unconditionally compute, and if it
442 // only uses stuff defined outside of the condition. If so, hoist it out.
443 if (!isSafeToSpeculativelyExecute(I))
444 return false;
445
446 Cost += computeSpeculationCost(I, TTI);
447
448 // Allow exactly one instruction to be speculated regardless of its cost
449 // (as long as it is safe to do so).
450 // This is intended to flatten the CFG even if the instruction is a division
451 // or other expensive operation. The speculation of an expensive instruction
452 // is expected to be undone in CodeGenPrepare if the speculation has not
453 // enabled further IR optimizations.
454 if (Cost > Budget &&
455 (!SpeculateOneExpensiveInst || !AggressiveInsts.empty() || Depth > 0 ||
456 !Cost.isValid()))
457 return false;
458
459 // Okay, we can only really hoist these out if their operands do
460 // not take us over the cost threshold.
461 for (Use &Op : I->operands())
462 if (!dominatesMergePoint(Op, BB, AggressiveInsts, Cost, Budget, TTI,
463 Depth + 1))
464 return false;
465 // Okay, it's safe to do this! Remember this instruction.
466 AggressiveInsts.insert(I);
467 return true;
468 }
469
470 /// Extract ConstantInt from value, looking through IntToPtr
471 /// and PointerNullValue. Return NULL if value is not a constant int.
GetConstantInt(Value * V,const DataLayout & DL)472 static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) {
473 // Normal constant int.
474 ConstantInt *CI = dyn_cast<ConstantInt>(V);
475 if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy())
476 return CI;
477
478 // This is some kind of pointer constant. Turn it into a pointer-sized
479 // ConstantInt if possible.
480 IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType()));
481
482 // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*).
483 if (isa<ConstantPointerNull>(V))
484 return ConstantInt::get(PtrTy, 0);
485
486 // IntToPtr const int.
487 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
488 if (CE->getOpcode() == Instruction::IntToPtr)
489 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) {
490 // The constant is very likely to have the right type already.
491 if (CI->getType() == PtrTy)
492 return CI;
493 else
494 return cast<ConstantInt>(
495 ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false));
496 }
497 return nullptr;
498 }
499
500 namespace {
501
502 /// Given a chain of or (||) or and (&&) comparison of a value against a
503 /// constant, this will try to recover the information required for a switch
504 /// structure.
505 /// It will depth-first traverse the chain of comparison, seeking for patterns
506 /// like %a == 12 or %a < 4 and combine them to produce a set of integer
507 /// representing the different cases for the switch.
508 /// Note that if the chain is composed of '||' it will build the set of elements
509 /// that matches the comparisons (i.e. any of this value validate the chain)
510 /// while for a chain of '&&' it will build the set elements that make the test
511 /// fail.
512 struct ConstantComparesGatherer {
513 const DataLayout &DL;
514
515 /// Value found for the switch comparison
516 Value *CompValue = nullptr;
517
518 /// Extra clause to be checked before the switch
519 Value *Extra = nullptr;
520
521 /// Set of integers to match in switch
522 SmallVector<ConstantInt *, 8> Vals;
523
524 /// Number of comparisons matched in the and/or chain
525 unsigned UsedICmps = 0;
526
527 /// Construct and compute the result for the comparison instruction Cond
ConstantComparesGatherer__anon3677653b0311::ConstantComparesGatherer528 ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL) : DL(DL) {
529 gather(Cond);
530 }
531
532 ConstantComparesGatherer(const ConstantComparesGatherer &) = delete;
533 ConstantComparesGatherer &
534 operator=(const ConstantComparesGatherer &) = delete;
535
536 private:
537 /// Try to set the current value used for the comparison, it succeeds only if
538 /// it wasn't set before or if the new value is the same as the old one
setValueOnce__anon3677653b0311::ConstantComparesGatherer539 bool setValueOnce(Value *NewVal) {
540 if (CompValue && CompValue != NewVal)
541 return false;
542 CompValue = NewVal;
543 return (CompValue != nullptr);
544 }
545
546 /// Try to match Instruction "I" as a comparison against a constant and
547 /// populates the array Vals with the set of values that match (or do not
548 /// match depending on isEQ).
549 /// Return false on failure. On success, the Value the comparison matched
550 /// against is placed in CompValue.
551 /// If CompValue is already set, the function is expected to fail if a match
552 /// is found but the value compared to is different.
matchInstruction__anon3677653b0311::ConstantComparesGatherer553 bool matchInstruction(Instruction *I, bool isEQ) {
554 // If this is an icmp against a constant, handle this as one of the cases.
555 ICmpInst *ICI;
556 ConstantInt *C;
557 if (!((ICI = dyn_cast<ICmpInst>(I)) &&
558 (C = GetConstantInt(I->getOperand(1), DL)))) {
559 return false;
560 }
561
562 Value *RHSVal;
563 const APInt *RHSC;
564
565 // Pattern match a special case
566 // (x & ~2^z) == y --> x == y || x == y|2^z
567 // This undoes a transformation done by instcombine to fuse 2 compares.
568 if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE)) {
569 // It's a little bit hard to see why the following transformations are
570 // correct. Here is a CVC3 program to verify them for 64-bit values:
571
572 /*
573 ONE : BITVECTOR(64) = BVZEROEXTEND(0bin1, 63);
574 x : BITVECTOR(64);
575 y : BITVECTOR(64);
576 z : BITVECTOR(64);
577 mask : BITVECTOR(64) = BVSHL(ONE, z);
578 QUERY( (y & ~mask = y) =>
579 ((x & ~mask = y) <=> (x = y OR x = (y | mask)))
580 );
581 QUERY( (y | mask = y) =>
582 ((x | mask = y) <=> (x = y OR x = (y & ~mask)))
583 );
584 */
585
586 // Please note that each pattern must be a dual implication (<--> or
587 // iff). One directional implication can create spurious matches. If the
588 // implication is only one-way, an unsatisfiable condition on the left
589 // side can imply a satisfiable condition on the right side. Dual
590 // implication ensures that satisfiable conditions are transformed to
591 // other satisfiable conditions and unsatisfiable conditions are
592 // transformed to other unsatisfiable conditions.
593
594 // Here is a concrete example of a unsatisfiable condition on the left
595 // implying a satisfiable condition on the right:
596 //
597 // mask = (1 << z)
598 // (x & ~mask) == y --> (x == y || x == (y | mask))
599 //
600 // Substituting y = 3, z = 0 yields:
601 // (x & -2) == 3 --> (x == 3 || x == 2)
602
603 // Pattern match a special case:
604 /*
605 QUERY( (y & ~mask = y) =>
606 ((x & ~mask = y) <=> (x = y OR x = (y | mask)))
607 );
608 */
609 if (match(ICI->getOperand(0),
610 m_And(m_Value(RHSVal), m_APInt(RHSC)))) {
611 APInt Mask = ~*RHSC;
612 if (Mask.isPowerOf2() && (C->getValue() & ~Mask) == C->getValue()) {
613 // If we already have a value for the switch, it has to match!
614 if (!setValueOnce(RHSVal))
615 return false;
616
617 Vals.push_back(C);
618 Vals.push_back(
619 ConstantInt::get(C->getContext(),
620 C->getValue() | Mask));
621 UsedICmps++;
622 return true;
623 }
624 }
625
626 // Pattern match a special case:
627 /*
628 QUERY( (y | mask = y) =>
629 ((x | mask = y) <=> (x = y OR x = (y & ~mask)))
630 );
631 */
632 if (match(ICI->getOperand(0),
633 m_Or(m_Value(RHSVal), m_APInt(RHSC)))) {
634 APInt Mask = *RHSC;
635 if (Mask.isPowerOf2() && (C->getValue() | Mask) == C->getValue()) {
636 // If we already have a value for the switch, it has to match!
637 if (!setValueOnce(RHSVal))
638 return false;
639
640 Vals.push_back(C);
641 Vals.push_back(ConstantInt::get(C->getContext(),
642 C->getValue() & ~Mask));
643 UsedICmps++;
644 return true;
645 }
646 }
647
648 // If we already have a value for the switch, it has to match!
649 if (!setValueOnce(ICI->getOperand(0)))
650 return false;
651
652 UsedICmps++;
653 Vals.push_back(C);
654 return ICI->getOperand(0);
655 }
656
657 // If we have "x ult 3", for example, then we can add 0,1,2 to the set.
658 ConstantRange Span =
659 ConstantRange::makeExactICmpRegion(ICI->getPredicate(), C->getValue());
660
661 // Shift the range if the compare is fed by an add. This is the range
662 // compare idiom as emitted by instcombine.
663 Value *CandidateVal = I->getOperand(0);
664 if (match(I->getOperand(0), m_Add(m_Value(RHSVal), m_APInt(RHSC)))) {
665 Span = Span.subtract(*RHSC);
666 CandidateVal = RHSVal;
667 }
668
669 // If this is an and/!= check, then we are looking to build the set of
670 // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into
671 // x != 0 && x != 1.
672 if (!isEQ)
673 Span = Span.inverse();
674
675 // If there are a ton of values, we don't want to make a ginormous switch.
676 if (Span.isSizeLargerThan(8) || Span.isEmptySet()) {
677 return false;
678 }
679
680 // If we already have a value for the switch, it has to match!
681 if (!setValueOnce(CandidateVal))
682 return false;
683
684 // Add all values from the range to the set
685 for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp)
686 Vals.push_back(ConstantInt::get(I->getContext(), Tmp));
687
688 UsedICmps++;
689 return true;
690 }
691
692 /// Given a potentially 'or'd or 'and'd together collection of icmp
693 /// eq/ne/lt/gt instructions that compare a value against a constant, extract
694 /// the value being compared, and stick the list constants into the Vals
695 /// vector.
696 /// One "Extra" case is allowed to differ from the other.
gather__anon3677653b0311::ConstantComparesGatherer697 void gather(Value *V) {
698 bool isEQ = match(V, m_LogicalOr(m_Value(), m_Value()));
699
700 // Keep a stack (SmallVector for efficiency) for depth-first traversal
701 SmallVector<Value *, 8> DFT;
702 SmallPtrSet<Value *, 8> Visited;
703
704 // Initialize
705 Visited.insert(V);
706 DFT.push_back(V);
707
708 while (!DFT.empty()) {
709 V = DFT.pop_back_val();
710
711 if (Instruction *I = dyn_cast<Instruction>(V)) {
712 // If it is a || (or && depending on isEQ), process the operands.
713 Value *Op0, *Op1;
714 if (isEQ ? match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1)))
715 : match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) {
716 if (Visited.insert(Op1).second)
717 DFT.push_back(Op1);
718 if (Visited.insert(Op0).second)
719 DFT.push_back(Op0);
720
721 continue;
722 }
723
724 // Try to match the current instruction
725 if (matchInstruction(I, isEQ))
726 // Match succeed, continue the loop
727 continue;
728 }
729
730 // One element of the sequence of || (or &&) could not be match as a
731 // comparison against the same value as the others.
732 // We allow only one "Extra" case to be checked before the switch
733 if (!Extra) {
734 Extra = V;
735 continue;
736 }
737 // Failed to parse a proper sequence, abort now
738 CompValue = nullptr;
739 break;
740 }
741 }
742 };
743
744 } // end anonymous namespace
745
EraseTerminatorAndDCECond(Instruction * TI,MemorySSAUpdater * MSSAU=nullptr)746 static void EraseTerminatorAndDCECond(Instruction *TI,
747 MemorySSAUpdater *MSSAU = nullptr) {
748 Instruction *Cond = nullptr;
749 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
750 Cond = dyn_cast<Instruction>(SI->getCondition());
751 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
752 if (BI->isConditional())
753 Cond = dyn_cast<Instruction>(BI->getCondition());
754 } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) {
755 Cond = dyn_cast<Instruction>(IBI->getAddress());
756 }
757
758 TI->eraseFromParent();
759 if (Cond)
760 RecursivelyDeleteTriviallyDeadInstructions(Cond, nullptr, MSSAU);
761 }
762
763 /// Return true if the specified terminator checks
764 /// to see if a value is equal to constant integer value.
isValueEqualityComparison(Instruction * TI)765 Value *SimplifyCFGOpt::isValueEqualityComparison(Instruction *TI) {
766 Value *CV = nullptr;
767 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
768 // Do not permit merging of large switch instructions into their
769 // predecessors unless there is only one predecessor.
770 if (!SI->getParent()->hasNPredecessorsOrMore(128 / SI->getNumSuccessors()))
771 CV = SI->getCondition();
772 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI))
773 if (BI->isConditional() && BI->getCondition()->hasOneUse())
774 if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) {
775 if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL))
776 CV = ICI->getOperand(0);
777 }
778
779 // Unwrap any lossless ptrtoint cast.
780 if (CV) {
781 if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) {
782 Value *Ptr = PTII->getPointerOperand();
783 if (PTII->getType() == DL.getIntPtrType(Ptr->getType()))
784 CV = Ptr;
785 }
786 }
787 return CV;
788 }
789
790 /// Given a value comparison instruction,
791 /// decode all of the 'cases' that it represents and return the 'default' block.
GetValueEqualityComparisonCases(Instruction * TI,std::vector<ValueEqualityComparisonCase> & Cases)792 BasicBlock *SimplifyCFGOpt::GetValueEqualityComparisonCases(
793 Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases) {
794 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
795 Cases.reserve(SI->getNumCases());
796 for (auto Case : SI->cases())
797 Cases.push_back(ValueEqualityComparisonCase(Case.getCaseValue(),
798 Case.getCaseSuccessor()));
799 return SI->getDefaultDest();
800 }
801
802 BranchInst *BI = cast<BranchInst>(TI);
803 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
804 BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE);
805 Cases.push_back(ValueEqualityComparisonCase(
806 GetConstantInt(ICI->getOperand(1), DL), Succ));
807 return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ);
808 }
809
810 /// Given a vector of bb/value pairs, remove any entries
811 /// in the list that match the specified block.
812 static void
EliminateBlockCases(BasicBlock * BB,std::vector<ValueEqualityComparisonCase> & Cases)813 EliminateBlockCases(BasicBlock *BB,
814 std::vector<ValueEqualityComparisonCase> &Cases) {
815 llvm::erase_value(Cases, BB);
816 }
817
818 /// Return true if there are any keys in C1 that exist in C2 as well.
ValuesOverlap(std::vector<ValueEqualityComparisonCase> & C1,std::vector<ValueEqualityComparisonCase> & C2)819 static bool ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1,
820 std::vector<ValueEqualityComparisonCase> &C2) {
821 std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2;
822
823 // Make V1 be smaller than V2.
824 if (V1->size() > V2->size())
825 std::swap(V1, V2);
826
827 if (V1->empty())
828 return false;
829 if (V1->size() == 1) {
830 // Just scan V2.
831 ConstantInt *TheVal = (*V1)[0].Value;
832 for (unsigned i = 0, e = V2->size(); i != e; ++i)
833 if (TheVal == (*V2)[i].Value)
834 return true;
835 }
836
837 // Otherwise, just sort both lists and compare element by element.
838 array_pod_sort(V1->begin(), V1->end());
839 array_pod_sort(V2->begin(), V2->end());
840 unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size();
841 while (i1 != e1 && i2 != e2) {
842 if ((*V1)[i1].Value == (*V2)[i2].Value)
843 return true;
844 if ((*V1)[i1].Value < (*V2)[i2].Value)
845 ++i1;
846 else
847 ++i2;
848 }
849 return false;
850 }
851
852 // Set branch weights on SwitchInst. This sets the metadata if there is at
853 // least one non-zero weight.
setBranchWeights(SwitchInst * SI,ArrayRef<uint32_t> Weights)854 static void setBranchWeights(SwitchInst *SI, ArrayRef<uint32_t> Weights) {
855 // Check that there is at least one non-zero weight. Otherwise, pass
856 // nullptr to setMetadata which will erase the existing metadata.
857 MDNode *N = nullptr;
858 if (llvm::any_of(Weights, [](uint32_t W) { return W != 0; }))
859 N = MDBuilder(SI->getParent()->getContext()).createBranchWeights(Weights);
860 SI->setMetadata(LLVMContext::MD_prof, N);
861 }
862
863 // Similar to the above, but for branch and select instructions that take
864 // exactly 2 weights.
setBranchWeights(Instruction * I,uint32_t TrueWeight,uint32_t FalseWeight)865 static void setBranchWeights(Instruction *I, uint32_t TrueWeight,
866 uint32_t FalseWeight) {
867 assert(isa<BranchInst>(I) || isa<SelectInst>(I));
868 // Check that there is at least one non-zero weight. Otherwise, pass
869 // nullptr to setMetadata which will erase the existing metadata.
870 MDNode *N = nullptr;
871 if (TrueWeight || FalseWeight)
872 N = MDBuilder(I->getParent()->getContext())
873 .createBranchWeights(TrueWeight, FalseWeight);
874 I->setMetadata(LLVMContext::MD_prof, N);
875 }
876
877 /// If TI is known to be a terminator instruction and its block is known to
878 /// only have a single predecessor block, check to see if that predecessor is
879 /// also a value comparison with the same value, and if that comparison
880 /// determines the outcome of this comparison. If so, simplify TI. This does a
881 /// very limited form of jump threading.
SimplifyEqualityComparisonWithOnlyPredecessor(Instruction * TI,BasicBlock * Pred,IRBuilder<> & Builder)882 bool SimplifyCFGOpt::SimplifyEqualityComparisonWithOnlyPredecessor(
883 Instruction *TI, BasicBlock *Pred, IRBuilder<> &Builder) {
884 Value *PredVal = isValueEqualityComparison(Pred->getTerminator());
885 if (!PredVal)
886 return false; // Not a value comparison in predecessor.
887
888 Value *ThisVal = isValueEqualityComparison(TI);
889 assert(ThisVal && "This isn't a value comparison!!");
890 if (ThisVal != PredVal)
891 return false; // Different predicates.
892
893 // TODO: Preserve branch weight metadata, similarly to how
894 // FoldValueComparisonIntoPredecessors preserves it.
895
896 // Find out information about when control will move from Pred to TI's block.
897 std::vector<ValueEqualityComparisonCase> PredCases;
898 BasicBlock *PredDef =
899 GetValueEqualityComparisonCases(Pred->getTerminator(), PredCases);
900 EliminateBlockCases(PredDef, PredCases); // Remove default from cases.
901
902 // Find information about how control leaves this block.
903 std::vector<ValueEqualityComparisonCase> ThisCases;
904 BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases);
905 EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases.
906
907 // If TI's block is the default block from Pred's comparison, potentially
908 // simplify TI based on this knowledge.
909 if (PredDef == TI->getParent()) {
910 // If we are here, we know that the value is none of those cases listed in
911 // PredCases. If there are any cases in ThisCases that are in PredCases, we
912 // can simplify TI.
913 if (!ValuesOverlap(PredCases, ThisCases))
914 return false;
915
916 if (isa<BranchInst>(TI)) {
917 // Okay, one of the successors of this condbr is dead. Convert it to a
918 // uncond br.
919 assert(ThisCases.size() == 1 && "Branch can only have one case!");
920 // Insert the new branch.
921 Instruction *NI = Builder.CreateBr(ThisDef);
922 (void)NI;
923
924 // Remove PHI node entries for the dead edge.
925 ThisCases[0].Dest->removePredecessor(PredDef);
926
927 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
928 << "Through successor TI: " << *TI << "Leaving: " << *NI
929 << "\n");
930
931 EraseTerminatorAndDCECond(TI);
932
933 if (DTU)
934 DTU->applyUpdates(
935 {{DominatorTree::Delete, PredDef, ThisCases[0].Dest}});
936
937 return true;
938 }
939
940 SwitchInstProfUpdateWrapper SI = *cast<SwitchInst>(TI);
941 // Okay, TI has cases that are statically dead, prune them away.
942 SmallPtrSet<Constant *, 16> DeadCases;
943 for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
944 DeadCases.insert(PredCases[i].Value);
945
946 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
947 << "Through successor TI: " << *TI);
948
949 SmallDenseMap<BasicBlock *, int, 8> NumPerSuccessorCases;
950 for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) {
951 --i;
952 auto *Successor = i->getCaseSuccessor();
953 if (DTU)
954 ++NumPerSuccessorCases[Successor];
955 if (DeadCases.count(i->getCaseValue())) {
956 Successor->removePredecessor(PredDef);
957 SI.removeCase(i);
958 if (DTU)
959 --NumPerSuccessorCases[Successor];
960 }
961 }
962
963 if (DTU) {
964 std::vector<DominatorTree::UpdateType> Updates;
965 for (const std::pair<BasicBlock *, int> &I : NumPerSuccessorCases)
966 if (I.second == 0)
967 Updates.push_back({DominatorTree::Delete, PredDef, I.first});
968 DTU->applyUpdates(Updates);
969 }
970
971 LLVM_DEBUG(dbgs() << "Leaving: " << *TI << "\n");
972 return true;
973 }
974
975 // Otherwise, TI's block must correspond to some matched value. Find out
976 // which value (or set of values) this is.
977 ConstantInt *TIV = nullptr;
978 BasicBlock *TIBB = TI->getParent();
979 for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
980 if (PredCases[i].Dest == TIBB) {
981 if (TIV)
982 return false; // Cannot handle multiple values coming to this block.
983 TIV = PredCases[i].Value;
984 }
985 assert(TIV && "No edge from pred to succ?");
986
987 // Okay, we found the one constant that our value can be if we get into TI's
988 // BB. Find out which successor will unconditionally be branched to.
989 BasicBlock *TheRealDest = nullptr;
990 for (unsigned i = 0, e = ThisCases.size(); i != e; ++i)
991 if (ThisCases[i].Value == TIV) {
992 TheRealDest = ThisCases[i].Dest;
993 break;
994 }
995
996 // If not handled by any explicit cases, it is handled by the default case.
997 if (!TheRealDest)
998 TheRealDest = ThisDef;
999
1000 SmallPtrSet<BasicBlock *, 2> RemovedSuccs;
1001
1002 // Remove PHI node entries for dead edges.
1003 BasicBlock *CheckEdge = TheRealDest;
1004 for (BasicBlock *Succ : successors(TIBB))
1005 if (Succ != CheckEdge) {
1006 if (Succ != TheRealDest)
1007 RemovedSuccs.insert(Succ);
1008 Succ->removePredecessor(TIBB);
1009 } else
1010 CheckEdge = nullptr;
1011
1012 // Insert the new branch.
1013 Instruction *NI = Builder.CreateBr(TheRealDest);
1014 (void)NI;
1015
1016 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
1017 << "Through successor TI: " << *TI << "Leaving: " << *NI
1018 << "\n");
1019
1020 EraseTerminatorAndDCECond(TI);
1021 if (DTU) {
1022 SmallVector<DominatorTree::UpdateType, 2> Updates;
1023 Updates.reserve(RemovedSuccs.size());
1024 for (auto *RemovedSucc : RemovedSuccs)
1025 Updates.push_back({DominatorTree::Delete, TIBB, RemovedSucc});
1026 DTU->applyUpdates(Updates);
1027 }
1028 return true;
1029 }
1030
1031 namespace {
1032
1033 /// This class implements a stable ordering of constant
1034 /// integers that does not depend on their address. This is important for
1035 /// applications that sort ConstantInt's to ensure uniqueness.
1036 struct ConstantIntOrdering {
operator ()__anon3677653b0511::ConstantIntOrdering1037 bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const {
1038 return LHS->getValue().ult(RHS->getValue());
1039 }
1040 };
1041
1042 } // end anonymous namespace
1043
ConstantIntSortPredicate(ConstantInt * const * P1,ConstantInt * const * P2)1044 static int ConstantIntSortPredicate(ConstantInt *const *P1,
1045 ConstantInt *const *P2) {
1046 const ConstantInt *LHS = *P1;
1047 const ConstantInt *RHS = *P2;
1048 if (LHS == RHS)
1049 return 0;
1050 return LHS->getValue().ult(RHS->getValue()) ? 1 : -1;
1051 }
1052
HasBranchWeights(const Instruction * I)1053 static inline bool HasBranchWeights(const Instruction *I) {
1054 MDNode *ProfMD = I->getMetadata(LLVMContext::MD_prof);
1055 if (ProfMD && ProfMD->getOperand(0))
1056 if (MDString *MDS = dyn_cast<MDString>(ProfMD->getOperand(0)))
1057 return MDS->getString().equals("branch_weights");
1058
1059 return false;
1060 }
1061
1062 /// Get Weights of a given terminator, the default weight is at the front
1063 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight
1064 /// metadata.
GetBranchWeights(Instruction * TI,SmallVectorImpl<uint64_t> & Weights)1065 static void GetBranchWeights(Instruction *TI,
1066 SmallVectorImpl<uint64_t> &Weights) {
1067 MDNode *MD = TI->getMetadata(LLVMContext::MD_prof);
1068 assert(MD);
1069 for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) {
1070 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i));
1071 Weights.push_back(CI->getValue().getZExtValue());
1072 }
1073
1074 // If TI is a conditional eq, the default case is the false case,
1075 // and the corresponding branch-weight data is at index 2. We swap the
1076 // default weight to be the first entry.
1077 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
1078 assert(Weights.size() == 2);
1079 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
1080 if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
1081 std::swap(Weights.front(), Weights.back());
1082 }
1083 }
1084
1085 /// Keep halving the weights until all can fit in uint32_t.
FitWeights(MutableArrayRef<uint64_t> Weights)1086 static void FitWeights(MutableArrayRef<uint64_t> Weights) {
1087 uint64_t Max = *std::max_element(Weights.begin(), Weights.end());
1088 if (Max > UINT_MAX) {
1089 unsigned Offset = 32 - countLeadingZeros(Max);
1090 for (uint64_t &I : Weights)
1091 I >>= Offset;
1092 }
1093 }
1094
CloneInstructionsIntoPredecessorBlockAndUpdateSSAUses(BasicBlock * BB,BasicBlock * PredBlock,ValueToValueMapTy & VMap)1095 static void CloneInstructionsIntoPredecessorBlockAndUpdateSSAUses(
1096 BasicBlock *BB, BasicBlock *PredBlock, ValueToValueMapTy &VMap) {
1097 Instruction *PTI = PredBlock->getTerminator();
1098
1099 // If we have bonus instructions, clone them into the predecessor block.
1100 // Note that there may be multiple predecessor blocks, so we cannot move
1101 // bonus instructions to a predecessor block.
1102 for (Instruction &BonusInst : *BB) {
1103 if (isa<DbgInfoIntrinsic>(BonusInst) || BonusInst.isTerminator())
1104 continue;
1105
1106 Instruction *NewBonusInst = BonusInst.clone();
1107
1108 if (PTI->getDebugLoc() != NewBonusInst->getDebugLoc()) {
1109 // Unless the instruction has the same !dbg location as the original
1110 // branch, drop it. When we fold the bonus instructions we want to make
1111 // sure we reset their debug locations in order to avoid stepping on
1112 // dead code caused by folding dead branches.
1113 NewBonusInst->setDebugLoc(DebugLoc());
1114 }
1115
1116 RemapInstruction(NewBonusInst, VMap,
1117 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
1118 VMap[&BonusInst] = NewBonusInst;
1119
1120 // If we moved a load, we cannot any longer claim any knowledge about
1121 // its potential value. The previous information might have been valid
1122 // only given the branch precondition.
1123 // For an analogous reason, we must also drop all the metadata whose
1124 // semantics we don't understand. We *can* preserve !annotation, because
1125 // it is tied to the instruction itself, not the value or position.
1126 // Similarly strip attributes on call parameters that may cause UB in
1127 // location the call is moved to.
1128 NewBonusInst->dropUndefImplyingAttrsAndUnknownMetadata(
1129 LLVMContext::MD_annotation);
1130
1131 PredBlock->getInstList().insert(PTI->getIterator(), NewBonusInst);
1132 NewBonusInst->takeName(&BonusInst);
1133 BonusInst.setName(NewBonusInst->getName() + ".old");
1134
1135 // Update (liveout) uses of bonus instructions,
1136 // now that the bonus instruction has been cloned into predecessor.
1137 // Note that we expect to be in a block-closed SSA form for this to work!
1138 for (Use &U : make_early_inc_range(BonusInst.uses())) {
1139 auto *UI = cast<Instruction>(U.getUser());
1140 auto *PN = dyn_cast<PHINode>(UI);
1141 if (!PN) {
1142 assert(UI->getParent() == BB && BonusInst.comesBefore(UI) &&
1143 "If the user is not a PHI node, then it should be in the same "
1144 "block as, and come after, the original bonus instruction.");
1145 continue; // Keep using the original bonus instruction.
1146 }
1147 // Is this the block-closed SSA form PHI node?
1148 if (PN->getIncomingBlock(U) == BB)
1149 continue; // Great, keep using the original bonus instruction.
1150 // The only other alternative is an "use" when coming from
1151 // the predecessor block - here we should refer to the cloned bonus instr.
1152 assert(PN->getIncomingBlock(U) == PredBlock &&
1153 "Not in block-closed SSA form?");
1154 U.set(NewBonusInst);
1155 }
1156 }
1157 }
1158
PerformValueComparisonIntoPredecessorFolding(Instruction * TI,Value * & CV,Instruction * PTI,IRBuilder<> & Builder)1159 bool SimplifyCFGOpt::PerformValueComparisonIntoPredecessorFolding(
1160 Instruction *TI, Value *&CV, Instruction *PTI, IRBuilder<> &Builder) {
1161 BasicBlock *BB = TI->getParent();
1162 BasicBlock *Pred = PTI->getParent();
1163
1164 SmallVector<DominatorTree::UpdateType, 32> Updates;
1165
1166 // Figure out which 'cases' to copy from SI to PSI.
1167 std::vector<ValueEqualityComparisonCase> BBCases;
1168 BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases);
1169
1170 std::vector<ValueEqualityComparisonCase> PredCases;
1171 BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases);
1172
1173 // Based on whether the default edge from PTI goes to BB or not, fill in
1174 // PredCases and PredDefault with the new switch cases we would like to
1175 // build.
1176 SmallMapVector<BasicBlock *, int, 8> NewSuccessors;
1177
1178 // Update the branch weight metadata along the way
1179 SmallVector<uint64_t, 8> Weights;
1180 bool PredHasWeights = HasBranchWeights(PTI);
1181 bool SuccHasWeights = HasBranchWeights(TI);
1182
1183 if (PredHasWeights) {
1184 GetBranchWeights(PTI, Weights);
1185 // branch-weight metadata is inconsistent here.
1186 if (Weights.size() != 1 + PredCases.size())
1187 PredHasWeights = SuccHasWeights = false;
1188 } else if (SuccHasWeights)
1189 // If there are no predecessor weights but there are successor weights,
1190 // populate Weights with 1, which will later be scaled to the sum of
1191 // successor's weights
1192 Weights.assign(1 + PredCases.size(), 1);
1193
1194 SmallVector<uint64_t, 8> SuccWeights;
1195 if (SuccHasWeights) {
1196 GetBranchWeights(TI, SuccWeights);
1197 // branch-weight metadata is inconsistent here.
1198 if (SuccWeights.size() != 1 + BBCases.size())
1199 PredHasWeights = SuccHasWeights = false;
1200 } else if (PredHasWeights)
1201 SuccWeights.assign(1 + BBCases.size(), 1);
1202
1203 if (PredDefault == BB) {
1204 // If this is the default destination from PTI, only the edges in TI
1205 // that don't occur in PTI, or that branch to BB will be activated.
1206 std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
1207 for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
1208 if (PredCases[i].Dest != BB)
1209 PTIHandled.insert(PredCases[i].Value);
1210 else {
1211 // The default destination is BB, we don't need explicit targets.
1212 std::swap(PredCases[i], PredCases.back());
1213
1214 if (PredHasWeights || SuccHasWeights) {
1215 // Increase weight for the default case.
1216 Weights[0] += Weights[i + 1];
1217 std::swap(Weights[i + 1], Weights.back());
1218 Weights.pop_back();
1219 }
1220
1221 PredCases.pop_back();
1222 --i;
1223 --e;
1224 }
1225
1226 // Reconstruct the new switch statement we will be building.
1227 if (PredDefault != BBDefault) {
1228 PredDefault->removePredecessor(Pred);
1229 if (DTU && PredDefault != BB)
1230 Updates.push_back({DominatorTree::Delete, Pred, PredDefault});
1231 PredDefault = BBDefault;
1232 ++NewSuccessors[BBDefault];
1233 }
1234
1235 unsigned CasesFromPred = Weights.size();
1236 uint64_t ValidTotalSuccWeight = 0;
1237 for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
1238 if (!PTIHandled.count(BBCases[i].Value) && BBCases[i].Dest != BBDefault) {
1239 PredCases.push_back(BBCases[i]);
1240 ++NewSuccessors[BBCases[i].Dest];
1241 if (SuccHasWeights || PredHasWeights) {
1242 // The default weight is at index 0, so weight for the ith case
1243 // should be at index i+1. Scale the cases from successor by
1244 // PredDefaultWeight (Weights[0]).
1245 Weights.push_back(Weights[0] * SuccWeights[i + 1]);
1246 ValidTotalSuccWeight += SuccWeights[i + 1];
1247 }
1248 }
1249
1250 if (SuccHasWeights || PredHasWeights) {
1251 ValidTotalSuccWeight += SuccWeights[0];
1252 // Scale the cases from predecessor by ValidTotalSuccWeight.
1253 for (unsigned i = 1; i < CasesFromPred; ++i)
1254 Weights[i] *= ValidTotalSuccWeight;
1255 // Scale the default weight by SuccDefaultWeight (SuccWeights[0]).
1256 Weights[0] *= SuccWeights[0];
1257 }
1258 } else {
1259 // If this is not the default destination from PSI, only the edges
1260 // in SI that occur in PSI with a destination of BB will be
1261 // activated.
1262 std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
1263 std::map<ConstantInt *, uint64_t> WeightsForHandled;
1264 for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
1265 if (PredCases[i].Dest == BB) {
1266 PTIHandled.insert(PredCases[i].Value);
1267
1268 if (PredHasWeights || SuccHasWeights) {
1269 WeightsForHandled[PredCases[i].Value] = Weights[i + 1];
1270 std::swap(Weights[i + 1], Weights.back());
1271 Weights.pop_back();
1272 }
1273
1274 std::swap(PredCases[i], PredCases.back());
1275 PredCases.pop_back();
1276 --i;
1277 --e;
1278 }
1279
1280 // Okay, now we know which constants were sent to BB from the
1281 // predecessor. Figure out where they will all go now.
1282 for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
1283 if (PTIHandled.count(BBCases[i].Value)) {
1284 // If this is one we are capable of getting...
1285 if (PredHasWeights || SuccHasWeights)
1286 Weights.push_back(WeightsForHandled[BBCases[i].Value]);
1287 PredCases.push_back(BBCases[i]);
1288 ++NewSuccessors[BBCases[i].Dest];
1289 PTIHandled.erase(BBCases[i].Value); // This constant is taken care of
1290 }
1291
1292 // If there are any constants vectored to BB that TI doesn't handle,
1293 // they must go to the default destination of TI.
1294 for (ConstantInt *I : PTIHandled) {
1295 if (PredHasWeights || SuccHasWeights)
1296 Weights.push_back(WeightsForHandled[I]);
1297 PredCases.push_back(ValueEqualityComparisonCase(I, BBDefault));
1298 ++NewSuccessors[BBDefault];
1299 }
1300 }
1301
1302 // Okay, at this point, we know which new successor Pred will get. Make
1303 // sure we update the number of entries in the PHI nodes for these
1304 // successors.
1305 SmallPtrSet<BasicBlock *, 2> SuccsOfPred;
1306 if (DTU) {
1307 SuccsOfPred = {succ_begin(Pred), succ_end(Pred)};
1308 Updates.reserve(Updates.size() + NewSuccessors.size());
1309 }
1310 for (const std::pair<BasicBlock *, int /*Num*/> &NewSuccessor :
1311 NewSuccessors) {
1312 for (auto I : seq(0, NewSuccessor.second)) {
1313 (void)I;
1314 AddPredecessorToBlock(NewSuccessor.first, Pred, BB);
1315 }
1316 if (DTU && !SuccsOfPred.contains(NewSuccessor.first))
1317 Updates.push_back({DominatorTree::Insert, Pred, NewSuccessor.first});
1318 }
1319
1320 Builder.SetInsertPoint(PTI);
1321 // Convert pointer to int before we switch.
1322 if (CV->getType()->isPointerTy()) {
1323 CV =
1324 Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()), "magicptr");
1325 }
1326
1327 // Now that the successors are updated, create the new Switch instruction.
1328 SwitchInst *NewSI = Builder.CreateSwitch(CV, PredDefault, PredCases.size());
1329 NewSI->setDebugLoc(PTI->getDebugLoc());
1330 for (ValueEqualityComparisonCase &V : PredCases)
1331 NewSI->addCase(V.Value, V.Dest);
1332
1333 if (PredHasWeights || SuccHasWeights) {
1334 // Halve the weights if any of them cannot fit in an uint32_t
1335 FitWeights(Weights);
1336
1337 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
1338
1339 setBranchWeights(NewSI, MDWeights);
1340 }
1341
1342 EraseTerminatorAndDCECond(PTI);
1343
1344 // Okay, last check. If BB is still a successor of PSI, then we must
1345 // have an infinite loop case. If so, add an infinitely looping block
1346 // to handle the case to preserve the behavior of the code.
1347 BasicBlock *InfLoopBlock = nullptr;
1348 for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i)
1349 if (NewSI->getSuccessor(i) == BB) {
1350 if (!InfLoopBlock) {
1351 // Insert it at the end of the function, because it's either code,
1352 // or it won't matter if it's hot. :)
1353 InfLoopBlock =
1354 BasicBlock::Create(BB->getContext(), "infloop", BB->getParent());
1355 BranchInst::Create(InfLoopBlock, InfLoopBlock);
1356 if (DTU)
1357 Updates.push_back(
1358 {DominatorTree::Insert, InfLoopBlock, InfLoopBlock});
1359 }
1360 NewSI->setSuccessor(i, InfLoopBlock);
1361 }
1362
1363 if (DTU) {
1364 if (InfLoopBlock)
1365 Updates.push_back({DominatorTree::Insert, Pred, InfLoopBlock});
1366
1367 Updates.push_back({DominatorTree::Delete, Pred, BB});
1368
1369 DTU->applyUpdates(Updates);
1370 }
1371
1372 ++NumFoldValueComparisonIntoPredecessors;
1373 return true;
1374 }
1375
1376 /// The specified terminator is a value equality comparison instruction
1377 /// (either a switch or a branch on "X == c").
1378 /// See if any of the predecessors of the terminator block are value comparisons
1379 /// on the same value. If so, and if safe to do so, fold them together.
FoldValueComparisonIntoPredecessors(Instruction * TI,IRBuilder<> & Builder)1380 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(Instruction *TI,
1381 IRBuilder<> &Builder) {
1382 BasicBlock *BB = TI->getParent();
1383 Value *CV = isValueEqualityComparison(TI); // CondVal
1384 assert(CV && "Not a comparison?");
1385
1386 bool Changed = false;
1387
1388 SmallSetVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB));
1389 while (!Preds.empty()) {
1390 BasicBlock *Pred = Preds.pop_back_val();
1391 Instruction *PTI = Pred->getTerminator();
1392
1393 // Don't try to fold into itself.
1394 if (Pred == BB)
1395 continue;
1396
1397 // See if the predecessor is a comparison with the same value.
1398 Value *PCV = isValueEqualityComparison(PTI); // PredCondVal
1399 if (PCV != CV)
1400 continue;
1401
1402 SmallSetVector<BasicBlock *, 4> FailBlocks;
1403 if (!SafeToMergeTerminators(TI, PTI, &FailBlocks)) {
1404 for (auto *Succ : FailBlocks) {
1405 if (!SplitBlockPredecessors(Succ, TI->getParent(), ".fold.split", DTU))
1406 return false;
1407 }
1408 }
1409
1410 PerformValueComparisonIntoPredecessorFolding(TI, CV, PTI, Builder);
1411 Changed = true;
1412 }
1413 return Changed;
1414 }
1415
1416 // If we would need to insert a select that uses the value of this invoke
1417 // (comments in HoistThenElseCodeToIf explain why we would need to do this), we
1418 // can't hoist the invoke, as there is nowhere to put the select in this case.
isSafeToHoistInvoke(BasicBlock * BB1,BasicBlock * BB2,Instruction * I1,Instruction * I2)1419 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2,
1420 Instruction *I1, Instruction *I2) {
1421 for (BasicBlock *Succ : successors(BB1)) {
1422 for (const PHINode &PN : Succ->phis()) {
1423 Value *BB1V = PN.getIncomingValueForBlock(BB1);
1424 Value *BB2V = PN.getIncomingValueForBlock(BB2);
1425 if (BB1V != BB2V && (BB1V == I1 || BB2V == I2)) {
1426 return false;
1427 }
1428 }
1429 }
1430 return true;
1431 }
1432
1433 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I, bool PtrValueMayBeModified = false);
1434
1435 /// Given a conditional branch that goes to BB1 and BB2, hoist any common code
1436 /// in the two blocks up into the branch block. The caller of this function
1437 /// guarantees that BI's block dominates BB1 and BB2. If EqTermsOnly is given,
1438 /// only perform hoisting in case both blocks only contain a terminator. In that
1439 /// case, only the original BI will be replaced and selects for PHIs are added.
HoistThenElseCodeToIf(BranchInst * BI,const TargetTransformInfo & TTI,bool EqTermsOnly)1440 bool SimplifyCFGOpt::HoistThenElseCodeToIf(BranchInst *BI,
1441 const TargetTransformInfo &TTI,
1442 bool EqTermsOnly) {
1443 // This does very trivial matching, with limited scanning, to find identical
1444 // instructions in the two blocks. In particular, we don't want to get into
1445 // O(M*N) situations here where M and N are the sizes of BB1 and BB2. As
1446 // such, we currently just scan for obviously identical instructions in an
1447 // identical order.
1448 BasicBlock *BB1 = BI->getSuccessor(0); // The true destination.
1449 BasicBlock *BB2 = BI->getSuccessor(1); // The false destination
1450
1451 // If either of the blocks has it's address taken, then we can't do this fold,
1452 // because the code we'd hoist would no longer run when we jump into the block
1453 // by it's address.
1454 if (BB1->hasAddressTaken() || BB2->hasAddressTaken())
1455 return false;
1456
1457 BasicBlock::iterator BB1_Itr = BB1->begin();
1458 BasicBlock::iterator BB2_Itr = BB2->begin();
1459
1460 Instruction *I1 = &*BB1_Itr++, *I2 = &*BB2_Itr++;
1461 // Skip debug info if it is not identical.
1462 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1463 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1464 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1465 while (isa<DbgInfoIntrinsic>(I1))
1466 I1 = &*BB1_Itr++;
1467 while (isa<DbgInfoIntrinsic>(I2))
1468 I2 = &*BB2_Itr++;
1469 }
1470 if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2))
1471 return false;
1472
1473 BasicBlock *BIParent = BI->getParent();
1474
1475 bool Changed = false;
1476
1477 auto _ = make_scope_exit([&]() {
1478 if (Changed)
1479 ++NumHoistCommonCode;
1480 });
1481
1482 // Check if only hoisting terminators is allowed. This does not add new
1483 // instructions to the hoist location.
1484 if (EqTermsOnly) {
1485 // Skip any debug intrinsics, as they are free to hoist.
1486 auto *I1NonDbg = &*skipDebugIntrinsics(I1->getIterator());
1487 auto *I2NonDbg = &*skipDebugIntrinsics(I2->getIterator());
1488 if (!I1NonDbg->isIdenticalToWhenDefined(I2NonDbg))
1489 return false;
1490 if (!I1NonDbg->isTerminator())
1491 return false;
1492 // Now we know that we only need to hoist debug intrinsics and the
1493 // terminator. Let the loop below handle those 2 cases.
1494 }
1495
1496 do {
1497 // If we are hoisting the terminator instruction, don't move one (making a
1498 // broken BB), instead clone it, and remove BI.
1499 if (I1->isTerminator())
1500 goto HoistTerminator;
1501
1502 // If we're going to hoist a call, make sure that the two instructions we're
1503 // commoning/hoisting are both marked with musttail, or neither of them is
1504 // marked as such. Otherwise, we might end up in a situation where we hoist
1505 // from a block where the terminator is a `ret` to a block where the terminator
1506 // is a `br`, and `musttail` calls expect to be followed by a return.
1507 auto *C1 = dyn_cast<CallInst>(I1);
1508 auto *C2 = dyn_cast<CallInst>(I2);
1509 if (C1 && C2)
1510 if (C1->isMustTailCall() != C2->isMustTailCall())
1511 return Changed;
1512
1513 if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2))
1514 return Changed;
1515
1516 // If any of the two call sites has nomerge attribute, stop hoisting.
1517 if (const auto *CB1 = dyn_cast<CallBase>(I1))
1518 if (CB1->cannotMerge())
1519 return Changed;
1520 if (const auto *CB2 = dyn_cast<CallBase>(I2))
1521 if (CB2->cannotMerge())
1522 return Changed;
1523
1524 if (isa<DbgInfoIntrinsic>(I1) || isa<DbgInfoIntrinsic>(I2)) {
1525 assert (isa<DbgInfoIntrinsic>(I1) && isa<DbgInfoIntrinsic>(I2));
1526 // The debug location is an integral part of a debug info intrinsic
1527 // and can't be separated from it or replaced. Instead of attempting
1528 // to merge locations, simply hoist both copies of the intrinsic.
1529 BIParent->getInstList().splice(BI->getIterator(),
1530 BB1->getInstList(), I1);
1531 BIParent->getInstList().splice(BI->getIterator(),
1532 BB2->getInstList(), I2);
1533 Changed = true;
1534 } else {
1535 // For a normal instruction, we just move one to right before the branch,
1536 // then replace all uses of the other with the first. Finally, we remove
1537 // the now redundant second instruction.
1538 BIParent->getInstList().splice(BI->getIterator(),
1539 BB1->getInstList(), I1);
1540 if (!I2->use_empty())
1541 I2->replaceAllUsesWith(I1);
1542 I1->andIRFlags(I2);
1543 unsigned KnownIDs[] = {LLVMContext::MD_tbaa,
1544 LLVMContext::MD_range,
1545 LLVMContext::MD_fpmath,
1546 LLVMContext::MD_invariant_load,
1547 LLVMContext::MD_nonnull,
1548 LLVMContext::MD_invariant_group,
1549 LLVMContext::MD_align,
1550 LLVMContext::MD_dereferenceable,
1551 LLVMContext::MD_dereferenceable_or_null,
1552 LLVMContext::MD_mem_parallel_loop_access,
1553 LLVMContext::MD_access_group,
1554 LLVMContext::MD_preserve_access_index};
1555 combineMetadata(I1, I2, KnownIDs, true);
1556
1557 // I1 and I2 are being combined into a single instruction. Its debug
1558 // location is the merged locations of the original instructions.
1559 I1->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc());
1560
1561 I2->eraseFromParent();
1562 Changed = true;
1563 }
1564 ++NumHoistCommonInstrs;
1565
1566 I1 = &*BB1_Itr++;
1567 I2 = &*BB2_Itr++;
1568 // Skip debug info if it is not identical.
1569 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1570 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1571 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1572 while (isa<DbgInfoIntrinsic>(I1))
1573 I1 = &*BB1_Itr++;
1574 while (isa<DbgInfoIntrinsic>(I2))
1575 I2 = &*BB2_Itr++;
1576 }
1577 } while (I1->isIdenticalToWhenDefined(I2));
1578
1579 return true;
1580
1581 HoistTerminator:
1582 // It may not be possible to hoist an invoke.
1583 // FIXME: Can we define a safety predicate for CallBr?
1584 if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))
1585 return Changed;
1586
1587 // TODO: callbr hoisting currently disabled pending further study.
1588 if (isa<CallBrInst>(I1))
1589 return Changed;
1590
1591 for (BasicBlock *Succ : successors(BB1)) {
1592 for (PHINode &PN : Succ->phis()) {
1593 Value *BB1V = PN.getIncomingValueForBlock(BB1);
1594 Value *BB2V = PN.getIncomingValueForBlock(BB2);
1595 if (BB1V == BB2V)
1596 continue;
1597
1598 // Check for passingValueIsAlwaysUndefined here because we would rather
1599 // eliminate undefined control flow then converting it to a select.
1600 if (passingValueIsAlwaysUndefined(BB1V, &PN) ||
1601 passingValueIsAlwaysUndefined(BB2V, &PN))
1602 return Changed;
1603 }
1604 }
1605
1606 // Okay, it is safe to hoist the terminator.
1607 Instruction *NT = I1->clone();
1608 BIParent->getInstList().insert(BI->getIterator(), NT);
1609 if (!NT->getType()->isVoidTy()) {
1610 I1->replaceAllUsesWith(NT);
1611 I2->replaceAllUsesWith(NT);
1612 NT->takeName(I1);
1613 }
1614 Changed = true;
1615 ++NumHoistCommonInstrs;
1616
1617 // Ensure terminator gets a debug location, even an unknown one, in case
1618 // it involves inlinable calls.
1619 NT->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc());
1620
1621 // PHIs created below will adopt NT's merged DebugLoc.
1622 IRBuilder<NoFolder> Builder(NT);
1623
1624 // Hoisting one of the terminators from our successor is a great thing.
1625 // Unfortunately, the successors of the if/else blocks may have PHI nodes in
1626 // them. If they do, all PHI entries for BB1/BB2 must agree for all PHI
1627 // nodes, so we insert select instruction to compute the final result.
1628 std::map<std::pair<Value *, Value *>, SelectInst *> InsertedSelects;
1629 for (BasicBlock *Succ : successors(BB1)) {
1630 for (PHINode &PN : Succ->phis()) {
1631 Value *BB1V = PN.getIncomingValueForBlock(BB1);
1632 Value *BB2V = PN.getIncomingValueForBlock(BB2);
1633 if (BB1V == BB2V)
1634 continue;
1635
1636 // These values do not agree. Insert a select instruction before NT
1637 // that determines the right value.
1638 SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)];
1639 if (!SI) {
1640 // Propagate fast-math-flags from phi node to its replacement select.
1641 IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
1642 if (isa<FPMathOperator>(PN))
1643 Builder.setFastMathFlags(PN.getFastMathFlags());
1644
1645 SI = cast<SelectInst>(
1646 Builder.CreateSelect(BI->getCondition(), BB1V, BB2V,
1647 BB1V->getName() + "." + BB2V->getName(), BI));
1648 }
1649
1650 // Make the PHI node use the select for all incoming values for BB1/BB2
1651 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
1652 if (PN.getIncomingBlock(i) == BB1 || PN.getIncomingBlock(i) == BB2)
1653 PN.setIncomingValue(i, SI);
1654 }
1655 }
1656
1657 SmallVector<DominatorTree::UpdateType, 4> Updates;
1658
1659 // Update any PHI nodes in our new successors.
1660 for (BasicBlock *Succ : successors(BB1)) {
1661 AddPredecessorToBlock(Succ, BIParent, BB1);
1662 if (DTU)
1663 Updates.push_back({DominatorTree::Insert, BIParent, Succ});
1664 }
1665
1666 if (DTU)
1667 for (BasicBlock *Succ : successors(BI))
1668 Updates.push_back({DominatorTree::Delete, BIParent, Succ});
1669
1670 EraseTerminatorAndDCECond(BI);
1671 if (DTU)
1672 DTU->applyUpdates(Updates);
1673 return Changed;
1674 }
1675
1676 // Check lifetime markers.
isLifeTimeMarker(const Instruction * I)1677 static bool isLifeTimeMarker(const Instruction *I) {
1678 if (auto II = dyn_cast<IntrinsicInst>(I)) {
1679 switch (II->getIntrinsicID()) {
1680 default:
1681 break;
1682 case Intrinsic::lifetime_start:
1683 case Intrinsic::lifetime_end:
1684 return true;
1685 }
1686 }
1687 return false;
1688 }
1689
1690 // TODO: Refine this. This should avoid cases like turning constant memcpy sizes
1691 // into variables.
replacingOperandWithVariableIsCheap(const Instruction * I,int OpIdx)1692 static bool replacingOperandWithVariableIsCheap(const Instruction *I,
1693 int OpIdx) {
1694 return !isa<IntrinsicInst>(I);
1695 }
1696
1697 // All instructions in Insts belong to different blocks that all unconditionally
1698 // branch to a common successor. Analyze each instruction and return true if it
1699 // would be possible to sink them into their successor, creating one common
1700 // instruction instead. For every value that would be required to be provided by
1701 // PHI node (because an operand varies in each input block), add to PHIOperands.
canSinkInstructions(ArrayRef<Instruction * > Insts,DenseMap<Instruction *,SmallVector<Value *,4>> & PHIOperands)1702 static bool canSinkInstructions(
1703 ArrayRef<Instruction *> Insts,
1704 DenseMap<Instruction *, SmallVector<Value *, 4>> &PHIOperands) {
1705 // Prune out obviously bad instructions to move. Each instruction must have
1706 // exactly zero or one use, and we check later that use is by a single, common
1707 // PHI instruction in the successor.
1708 bool HasUse = !Insts.front()->user_empty();
1709 for (auto *I : Insts) {
1710 // These instructions may change or break semantics if moved.
1711 if (isa<PHINode>(I) || I->isEHPad() || isa<AllocaInst>(I) ||
1712 I->getType()->isTokenTy())
1713 return false;
1714
1715 // Do not try to sink an instruction in an infinite loop - it can cause
1716 // this algorithm to infinite loop.
1717 if (I->getParent()->getSingleSuccessor() == I->getParent())
1718 return false;
1719
1720 // Conservatively return false if I is an inline-asm instruction. Sinking
1721 // and merging inline-asm instructions can potentially create arguments
1722 // that cannot satisfy the inline-asm constraints.
1723 // If the instruction has nomerge attribute, return false.
1724 if (const auto *C = dyn_cast<CallBase>(I))
1725 if (C->isInlineAsm() || C->cannotMerge())
1726 return false;
1727
1728 // Each instruction must have zero or one use.
1729 if (HasUse && !I->hasOneUse())
1730 return false;
1731 if (!HasUse && !I->user_empty())
1732 return false;
1733 }
1734
1735 const Instruction *I0 = Insts.front();
1736 for (auto *I : Insts)
1737 if (!I->isSameOperationAs(I0))
1738 return false;
1739
1740 // All instructions in Insts are known to be the same opcode. If they have a
1741 // use, check that the only user is a PHI or in the same block as the
1742 // instruction, because if a user is in the same block as an instruction we're
1743 // contemplating sinking, it must already be determined to be sinkable.
1744 if (HasUse) {
1745 auto *PNUse = dyn_cast<PHINode>(*I0->user_begin());
1746 auto *Succ = I0->getParent()->getTerminator()->getSuccessor(0);
1747 if (!all_of(Insts, [&PNUse,&Succ](const Instruction *I) -> bool {
1748 auto *U = cast<Instruction>(*I->user_begin());
1749 return (PNUse &&
1750 PNUse->getParent() == Succ &&
1751 PNUse->getIncomingValueForBlock(I->getParent()) == I) ||
1752 U->getParent() == I->getParent();
1753 }))
1754 return false;
1755 }
1756
1757 // Because SROA can't handle speculating stores of selects, try not to sink
1758 // loads, stores or lifetime markers of allocas when we'd have to create a
1759 // PHI for the address operand. Also, because it is likely that loads or
1760 // stores of allocas will disappear when Mem2Reg/SROA is run, don't sink
1761 // them.
1762 // This can cause code churn which can have unintended consequences down
1763 // the line - see https://llvm.org/bugs/show_bug.cgi?id=30244.
1764 // FIXME: This is a workaround for a deficiency in SROA - see
1765 // https://llvm.org/bugs/show_bug.cgi?id=30188
1766 if (isa<StoreInst>(I0) && any_of(Insts, [](const Instruction *I) {
1767 return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts());
1768 }))
1769 return false;
1770 if (isa<LoadInst>(I0) && any_of(Insts, [](const Instruction *I) {
1771 return isa<AllocaInst>(I->getOperand(0)->stripPointerCasts());
1772 }))
1773 return false;
1774 if (isLifeTimeMarker(I0) && any_of(Insts, [](const Instruction *I) {
1775 return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts());
1776 }))
1777 return false;
1778
1779 // For calls to be sinkable, they must all be indirect, or have same callee.
1780 // I.e. if we have two direct calls to different callees, we don't want to
1781 // turn that into an indirect call. Likewise, if we have an indirect call,
1782 // and a direct call, we don't actually want to have a single indirect call.
1783 if (isa<CallBase>(I0)) {
1784 auto IsIndirectCall = [](const Instruction *I) {
1785 return cast<CallBase>(I)->isIndirectCall();
1786 };
1787 bool HaveIndirectCalls = any_of(Insts, IsIndirectCall);
1788 bool AllCallsAreIndirect = all_of(Insts, IsIndirectCall);
1789 if (HaveIndirectCalls) {
1790 if (!AllCallsAreIndirect)
1791 return false;
1792 } else {
1793 // All callees must be identical.
1794 Value *Callee = nullptr;
1795 for (const Instruction *I : Insts) {
1796 Value *CurrCallee = cast<CallBase>(I)->getCalledOperand();
1797 if (!Callee)
1798 Callee = CurrCallee;
1799 else if (Callee != CurrCallee)
1800 return false;
1801 }
1802 }
1803 }
1804
1805 for (unsigned OI = 0, OE = I0->getNumOperands(); OI != OE; ++OI) {
1806 Value *Op = I0->getOperand(OI);
1807 if (Op->getType()->isTokenTy())
1808 // Don't touch any operand of token type.
1809 return false;
1810
1811 auto SameAsI0 = [&I0, OI](const Instruction *I) {
1812 assert(I->getNumOperands() == I0->getNumOperands());
1813 return I->getOperand(OI) == I0->getOperand(OI);
1814 };
1815 if (!all_of(Insts, SameAsI0)) {
1816 if ((isa<Constant>(Op) && !replacingOperandWithVariableIsCheap(I0, OI)) ||
1817 !canReplaceOperandWithVariable(I0, OI))
1818 // We can't create a PHI from this GEP.
1819 return false;
1820 for (auto *I : Insts)
1821 PHIOperands[I].push_back(I->getOperand(OI));
1822 }
1823 }
1824 return true;
1825 }
1826
1827 // Assuming canSinkInstructions(Blocks) has returned true, sink the last
1828 // instruction of every block in Blocks to their common successor, commoning
1829 // into one instruction.
sinkLastInstruction(ArrayRef<BasicBlock * > Blocks)1830 static bool sinkLastInstruction(ArrayRef<BasicBlock*> Blocks) {
1831 auto *BBEnd = Blocks[0]->getTerminator()->getSuccessor(0);
1832
1833 // canSinkInstructions returning true guarantees that every block has at
1834 // least one non-terminator instruction.
1835 SmallVector<Instruction*,4> Insts;
1836 for (auto *BB : Blocks) {
1837 Instruction *I = BB->getTerminator();
1838 do {
1839 I = I->getPrevNode();
1840 } while (isa<DbgInfoIntrinsic>(I) && I != &BB->front());
1841 if (!isa<DbgInfoIntrinsic>(I))
1842 Insts.push_back(I);
1843 }
1844
1845 // The only checking we need to do now is that all users of all instructions
1846 // are the same PHI node. canSinkInstructions should have checked this but
1847 // it is slightly over-aggressive - it gets confused by commutative
1848 // instructions so double-check it here.
1849 Instruction *I0 = Insts.front();
1850 if (!I0->user_empty()) {
1851 auto *PNUse = dyn_cast<PHINode>(*I0->user_begin());
1852 if (!all_of(Insts, [&PNUse](const Instruction *I) -> bool {
1853 auto *U = cast<Instruction>(*I->user_begin());
1854 return U == PNUse;
1855 }))
1856 return false;
1857 }
1858
1859 // We don't need to do any more checking here; canSinkInstructions should
1860 // have done it all for us.
1861 SmallVector<Value*, 4> NewOperands;
1862 for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) {
1863 // This check is different to that in canSinkInstructions. There, we
1864 // cared about the global view once simplifycfg (and instcombine) have
1865 // completed - it takes into account PHIs that become trivially
1866 // simplifiable. However here we need a more local view; if an operand
1867 // differs we create a PHI and rely on instcombine to clean up the very
1868 // small mess we may make.
1869 bool NeedPHI = any_of(Insts, [&I0, O](const Instruction *I) {
1870 return I->getOperand(O) != I0->getOperand(O);
1871 });
1872 if (!NeedPHI) {
1873 NewOperands.push_back(I0->getOperand(O));
1874 continue;
1875 }
1876
1877 // Create a new PHI in the successor block and populate it.
1878 auto *Op = I0->getOperand(O);
1879 assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!");
1880 auto *PN = PHINode::Create(Op->getType(), Insts.size(),
1881 Op->getName() + ".sink", &BBEnd->front());
1882 for (auto *I : Insts)
1883 PN->addIncoming(I->getOperand(O), I->getParent());
1884 NewOperands.push_back(PN);
1885 }
1886
1887 // Arbitrarily use I0 as the new "common" instruction; remap its operands
1888 // and move it to the start of the successor block.
1889 for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O)
1890 I0->getOperandUse(O).set(NewOperands[O]);
1891 I0->moveBefore(&*BBEnd->getFirstInsertionPt());
1892
1893 // Update metadata and IR flags, and merge debug locations.
1894 for (auto *I : Insts)
1895 if (I != I0) {
1896 // The debug location for the "common" instruction is the merged locations
1897 // of all the commoned instructions. We start with the original location
1898 // of the "common" instruction and iteratively merge each location in the
1899 // loop below.
1900 // This is an N-way merge, which will be inefficient if I0 is a CallInst.
1901 // However, as N-way merge for CallInst is rare, so we use simplified API
1902 // instead of using complex API for N-way merge.
1903 I0->applyMergedLocation(I0->getDebugLoc(), I->getDebugLoc());
1904 combineMetadataForCSE(I0, I, true);
1905 I0->andIRFlags(I);
1906 }
1907
1908 if (!I0->user_empty()) {
1909 // canSinkLastInstruction checked that all instructions were used by
1910 // one and only one PHI node. Find that now, RAUW it to our common
1911 // instruction and nuke it.
1912 auto *PN = cast<PHINode>(*I0->user_begin());
1913 PN->replaceAllUsesWith(I0);
1914 PN->eraseFromParent();
1915 }
1916
1917 // Finally nuke all instructions apart from the common instruction.
1918 for (auto *I : Insts)
1919 if (I != I0)
1920 I->eraseFromParent();
1921
1922 return true;
1923 }
1924
1925 namespace {
1926
1927 // LockstepReverseIterator - Iterates through instructions
1928 // in a set of blocks in reverse order from the first non-terminator.
1929 // For example (assume all blocks have size n):
1930 // LockstepReverseIterator I([B1, B2, B3]);
1931 // *I-- = [B1[n], B2[n], B3[n]];
1932 // *I-- = [B1[n-1], B2[n-1], B3[n-1]];
1933 // *I-- = [B1[n-2], B2[n-2], B3[n-2]];
1934 // ...
1935 class LockstepReverseIterator {
1936 ArrayRef<BasicBlock*> Blocks;
1937 SmallVector<Instruction*,4> Insts;
1938 bool Fail;
1939
1940 public:
LockstepReverseIterator(ArrayRef<BasicBlock * > Blocks)1941 LockstepReverseIterator(ArrayRef<BasicBlock*> Blocks) : Blocks(Blocks) {
1942 reset();
1943 }
1944
reset()1945 void reset() {
1946 Fail = false;
1947 Insts.clear();
1948 for (auto *BB : Blocks) {
1949 Instruction *Inst = BB->getTerminator();
1950 for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
1951 Inst = Inst->getPrevNode();
1952 if (!Inst) {
1953 // Block wasn't big enough.
1954 Fail = true;
1955 return;
1956 }
1957 Insts.push_back(Inst);
1958 }
1959 }
1960
isValid() const1961 bool isValid() const {
1962 return !Fail;
1963 }
1964
operator --()1965 void operator--() {
1966 if (Fail)
1967 return;
1968 for (auto *&Inst : Insts) {
1969 for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
1970 Inst = Inst->getPrevNode();
1971 // Already at beginning of block.
1972 if (!Inst) {
1973 Fail = true;
1974 return;
1975 }
1976 }
1977 }
1978
operator ++()1979 void operator++() {
1980 if (Fail)
1981 return;
1982 for (auto *&Inst : Insts) {
1983 for (Inst = Inst->getNextNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
1984 Inst = Inst->getNextNode();
1985 // Already at end of block.
1986 if (!Inst) {
1987 Fail = true;
1988 return;
1989 }
1990 }
1991 }
1992
operator *() const1993 ArrayRef<Instruction*> operator * () const {
1994 return Insts;
1995 }
1996 };
1997
1998 } // end anonymous namespace
1999
2000 /// Check whether BB's predecessors end with unconditional branches. If it is
2001 /// true, sink any common code from the predecessors to BB.
SinkCommonCodeFromPredecessors(BasicBlock * BB,DomTreeUpdater * DTU)2002 static bool SinkCommonCodeFromPredecessors(BasicBlock *BB,
2003 DomTreeUpdater *DTU) {
2004 // We support two situations:
2005 // (1) all incoming arcs are unconditional
2006 // (2) there are non-unconditional incoming arcs
2007 //
2008 // (2) is very common in switch defaults and
2009 // else-if patterns;
2010 //
2011 // if (a) f(1);
2012 // else if (b) f(2);
2013 //
2014 // produces:
2015 //
2016 // [if]
2017 // / \
2018 // [f(1)] [if]
2019 // | | \
2020 // | | |
2021 // | [f(2)]|
2022 // \ | /
2023 // [ end ]
2024 //
2025 // [end] has two unconditional predecessor arcs and one conditional. The
2026 // conditional refers to the implicit empty 'else' arc. This conditional
2027 // arc can also be caused by an empty default block in a switch.
2028 //
2029 // In this case, we attempt to sink code from all *unconditional* arcs.
2030 // If we can sink instructions from these arcs (determined during the scan
2031 // phase below) we insert a common successor for all unconditional arcs and
2032 // connect that to [end], to enable sinking:
2033 //
2034 // [if]
2035 // / \
2036 // [x(1)] [if]
2037 // | | \
2038 // | | \
2039 // | [x(2)] |
2040 // \ / |
2041 // [sink.split] |
2042 // \ /
2043 // [ end ]
2044 //
2045 SmallVector<BasicBlock*,4> UnconditionalPreds;
2046 bool HaveNonUnconditionalPredecessors = false;
2047 for (auto *PredBB : predecessors(BB)) {
2048 auto *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator());
2049 if (PredBr && PredBr->isUnconditional())
2050 UnconditionalPreds.push_back(PredBB);
2051 else
2052 HaveNonUnconditionalPredecessors = true;
2053 }
2054 if (UnconditionalPreds.size() < 2)
2055 return false;
2056
2057 // We take a two-step approach to tail sinking. First we scan from the end of
2058 // each block upwards in lockstep. If the n'th instruction from the end of each
2059 // block can be sunk, those instructions are added to ValuesToSink and we
2060 // carry on. If we can sink an instruction but need to PHI-merge some operands
2061 // (because they're not identical in each instruction) we add these to
2062 // PHIOperands.
2063 int ScanIdx = 0;
2064 SmallPtrSet<Value*,4> InstructionsToSink;
2065 DenseMap<Instruction*, SmallVector<Value*,4>> PHIOperands;
2066 LockstepReverseIterator LRI(UnconditionalPreds);
2067 while (LRI.isValid() &&
2068 canSinkInstructions(*LRI, PHIOperands)) {
2069 LLVM_DEBUG(dbgs() << "SINK: instruction can be sunk: " << *(*LRI)[0]
2070 << "\n");
2071 InstructionsToSink.insert((*LRI).begin(), (*LRI).end());
2072 ++ScanIdx;
2073 --LRI;
2074 }
2075
2076 // If no instructions can be sunk, early-return.
2077 if (ScanIdx == 0)
2078 return false;
2079
2080 bool followedByDeoptOrUnreachable = IsBlockFollowedByDeoptOrUnreachable(BB);
2081
2082 if (!followedByDeoptOrUnreachable) {
2083 // Okay, we *could* sink last ScanIdx instructions. But how many can we
2084 // actually sink before encountering instruction that is unprofitable to
2085 // sink?
2086 auto ProfitableToSinkInstruction = [&](LockstepReverseIterator &LRI) {
2087 unsigned NumPHIdValues = 0;
2088 for (auto *I : *LRI)
2089 for (auto *V : PHIOperands[I]) {
2090 if (!InstructionsToSink.contains(V))
2091 ++NumPHIdValues;
2092 // FIXME: this check is overly optimistic. We may end up not sinking
2093 // said instruction, due to the very same profitability check.
2094 // See @creating_too_many_phis in sink-common-code.ll.
2095 }
2096 LLVM_DEBUG(dbgs() << "SINK: #phid values: " << NumPHIdValues << "\n");
2097 unsigned NumPHIInsts = NumPHIdValues / UnconditionalPreds.size();
2098 if ((NumPHIdValues % UnconditionalPreds.size()) != 0)
2099 NumPHIInsts++;
2100
2101 return NumPHIInsts <= 1;
2102 };
2103
2104 // We've determined that we are going to sink last ScanIdx instructions,
2105 // and recorded them in InstructionsToSink. Now, some instructions may be
2106 // unprofitable to sink. But that determination depends on the instructions
2107 // that we are going to sink.
2108
2109 // First, forward scan: find the first instruction unprofitable to sink,
2110 // recording all the ones that are profitable to sink.
2111 // FIXME: would it be better, after we detect that not all are profitable.
2112 // to either record the profitable ones, or erase the unprofitable ones?
2113 // Maybe we need to choose (at runtime) the one that will touch least
2114 // instrs?
2115 LRI.reset();
2116 int Idx = 0;
2117 SmallPtrSet<Value *, 4> InstructionsProfitableToSink;
2118 while (Idx < ScanIdx) {
2119 if (!ProfitableToSinkInstruction(LRI)) {
2120 // Too many PHIs would be created.
2121 LLVM_DEBUG(
2122 dbgs() << "SINK: stopping here, too many PHIs would be created!\n");
2123 break;
2124 }
2125 InstructionsProfitableToSink.insert((*LRI).begin(), (*LRI).end());
2126 --LRI;
2127 ++Idx;
2128 }
2129
2130 // If no instructions can be sunk, early-return.
2131 if (Idx == 0)
2132 return false;
2133
2134 // Did we determine that (only) some instructions are unprofitable to sink?
2135 if (Idx < ScanIdx) {
2136 // Okay, some instructions are unprofitable.
2137 ScanIdx = Idx;
2138 InstructionsToSink = InstructionsProfitableToSink;
2139
2140 // But, that may make other instructions unprofitable, too.
2141 // So, do a backward scan, do any earlier instructions become
2142 // unprofitable?
2143 assert(
2144 !ProfitableToSinkInstruction(LRI) &&
2145 "We already know that the last instruction is unprofitable to sink");
2146 ++LRI;
2147 --Idx;
2148 while (Idx >= 0) {
2149 // If we detect that an instruction becomes unprofitable to sink,
2150 // all earlier instructions won't be sunk either,
2151 // so preemptively keep InstructionsProfitableToSink in sync.
2152 // FIXME: is this the most performant approach?
2153 for (auto *I : *LRI)
2154 InstructionsProfitableToSink.erase(I);
2155 if (!ProfitableToSinkInstruction(LRI)) {
2156 // Everything starting with this instruction won't be sunk.
2157 ScanIdx = Idx;
2158 InstructionsToSink = InstructionsProfitableToSink;
2159 }
2160 ++LRI;
2161 --Idx;
2162 }
2163 }
2164
2165 // If no instructions can be sunk, early-return.
2166 if (ScanIdx == 0)
2167 return false;
2168 }
2169
2170 bool Changed = false;
2171
2172 if (HaveNonUnconditionalPredecessors) {
2173 if (!followedByDeoptOrUnreachable) {
2174 // It is always legal to sink common instructions from unconditional
2175 // predecessors. However, if not all predecessors are unconditional,
2176 // this transformation might be pessimizing. So as a rule of thumb,
2177 // don't do it unless we'd sink at least one non-speculatable instruction.
2178 // See https://bugs.llvm.org/show_bug.cgi?id=30244
2179 LRI.reset();
2180 int Idx = 0;
2181 bool Profitable = false;
2182 while (Idx < ScanIdx) {
2183 if (!isSafeToSpeculativelyExecute((*LRI)[0])) {
2184 Profitable = true;
2185 break;
2186 }
2187 --LRI;
2188 ++Idx;
2189 }
2190 if (!Profitable)
2191 return false;
2192 }
2193
2194 LLVM_DEBUG(dbgs() << "SINK: Splitting edge\n");
2195 // We have a conditional edge and we're going to sink some instructions.
2196 // Insert a new block postdominating all blocks we're going to sink from.
2197 if (!SplitBlockPredecessors(BB, UnconditionalPreds, ".sink.split", DTU))
2198 // Edges couldn't be split.
2199 return false;
2200 Changed = true;
2201 }
2202
2203 // Now that we've analyzed all potential sinking candidates, perform the
2204 // actual sink. We iteratively sink the last non-terminator of the source
2205 // blocks into their common successor unless doing so would require too
2206 // many PHI instructions to be generated (currently only one PHI is allowed
2207 // per sunk instruction).
2208 //
2209 // We can use InstructionsToSink to discount values needing PHI-merging that will
2210 // actually be sunk in a later iteration. This allows us to be more
2211 // aggressive in what we sink. This does allow a false positive where we
2212 // sink presuming a later value will also be sunk, but stop half way through
2213 // and never actually sink it which means we produce more PHIs than intended.
2214 // This is unlikely in practice though.
2215 int SinkIdx = 0;
2216 for (; SinkIdx != ScanIdx; ++SinkIdx) {
2217 LLVM_DEBUG(dbgs() << "SINK: Sink: "
2218 << *UnconditionalPreds[0]->getTerminator()->getPrevNode()
2219 << "\n");
2220
2221 // Because we've sunk every instruction in turn, the current instruction to
2222 // sink is always at index 0.
2223 LRI.reset();
2224
2225 if (!sinkLastInstruction(UnconditionalPreds)) {
2226 LLVM_DEBUG(
2227 dbgs()
2228 << "SINK: stopping here, failed to actually sink instruction!\n");
2229 break;
2230 }
2231
2232 NumSinkCommonInstrs++;
2233 Changed = true;
2234 }
2235 if (SinkIdx != 0)
2236 ++NumSinkCommonCode;
2237 return Changed;
2238 }
2239
2240 namespace {
2241
2242 struct CompatibleSets {
2243 using SetTy = SmallVector<InvokeInst *, 2>;
2244
2245 SmallVector<SetTy, 1> Sets;
2246
2247 static bool shouldBelongToSameSet(ArrayRef<InvokeInst *> Invokes);
2248
2249 SetTy &getCompatibleSet(InvokeInst *II);
2250
2251 void insert(InvokeInst *II);
2252 };
2253
getCompatibleSet(InvokeInst * II)2254 CompatibleSets::SetTy &CompatibleSets::getCompatibleSet(InvokeInst *II) {
2255 // Perform a linear scan over all the existing sets, see if the new `invoke`
2256 // is compatible with any particular set. Since we know that all the `invokes`
2257 // within a set are compatible, only check the first `invoke` in each set.
2258 // WARNING: at worst, this has quadratic complexity.
2259 for (CompatibleSets::SetTy &Set : Sets) {
2260 if (CompatibleSets::shouldBelongToSameSet({Set.front(), II}))
2261 return Set;
2262 }
2263
2264 // Otherwise, we either had no sets yet, or this invoke forms a new set.
2265 return Sets.emplace_back();
2266 }
2267
insert(InvokeInst * II)2268 void CompatibleSets::insert(InvokeInst *II) {
2269 getCompatibleSet(II).emplace_back(II);
2270 }
2271
shouldBelongToSameSet(ArrayRef<InvokeInst * > Invokes)2272 bool CompatibleSets::shouldBelongToSameSet(ArrayRef<InvokeInst *> Invokes) {
2273 assert(Invokes.size() == 2 && "Always called with exactly two candidates.");
2274
2275 // Can we theoretically merge these `invoke`s?
2276 auto IsIllegalToMerge = [](InvokeInst *II) {
2277 return II->cannotMerge() || II->isInlineAsm();
2278 };
2279 if (any_of(Invokes, IsIllegalToMerge))
2280 return false;
2281
2282 // Either both `invoke`s must be direct,
2283 // or both `invoke`s must be indirect.
2284 auto IsIndirectCall = [](InvokeInst *II) { return II->isIndirectCall(); };
2285 bool HaveIndirectCalls = any_of(Invokes, IsIndirectCall);
2286 bool AllCallsAreIndirect = all_of(Invokes, IsIndirectCall);
2287 if (HaveIndirectCalls) {
2288 if (!AllCallsAreIndirect)
2289 return false;
2290 } else {
2291 // All callees must be identical.
2292 Value *Callee = nullptr;
2293 for (InvokeInst *II : Invokes) {
2294 Value *CurrCallee = II->getCalledOperand();
2295 assert(CurrCallee && "There is always a called operand.");
2296 if (!Callee)
2297 Callee = CurrCallee;
2298 else if (Callee != CurrCallee)
2299 return false;
2300 }
2301 }
2302
2303 // Either both `invoke`s must not have a normal destination,
2304 // or both `invoke`s must have a normal destination,
2305 auto HasNormalDest = [](InvokeInst *II) {
2306 return !isa<UnreachableInst>(II->getNormalDest()->getFirstNonPHIOrDbg());
2307 };
2308 if (any_of(Invokes, HasNormalDest)) {
2309 // Do not merge `invoke` that does not have a normal destination with one
2310 // that does have a normal destination, even though doing so would be legal.
2311 if (!all_of(Invokes, HasNormalDest))
2312 return false;
2313
2314 // All normal destinations must be identical.
2315 BasicBlock *NormalBB = nullptr;
2316 for (InvokeInst *II : Invokes) {
2317 BasicBlock *CurrNormalBB = II->getNormalDest();
2318 assert(CurrNormalBB && "There is always a 'continue to' basic block.");
2319 if (!NormalBB)
2320 NormalBB = CurrNormalBB;
2321 else if (NormalBB != CurrNormalBB)
2322 return false;
2323 }
2324
2325 // In the normal destination, the incoming values for these two `invoke`s
2326 // must be compatible.
2327 SmallPtrSet<Value *, 16> EquivalenceSet(Invokes.begin(), Invokes.end());
2328 if (!IncomingValuesAreCompatible(
2329 NormalBB, {Invokes[0]->getParent(), Invokes[1]->getParent()},
2330 &EquivalenceSet))
2331 return false;
2332 }
2333
2334 #ifndef NDEBUG
2335 // All unwind destinations must be identical.
2336 // We know that because we have started from said unwind destination.
2337 BasicBlock *UnwindBB = nullptr;
2338 for (InvokeInst *II : Invokes) {
2339 BasicBlock *CurrUnwindBB = II->getUnwindDest();
2340 assert(CurrUnwindBB && "There is always an 'unwind to' basic block.");
2341 if (!UnwindBB)
2342 UnwindBB = CurrUnwindBB;
2343 else
2344 assert(UnwindBB == CurrUnwindBB && "Unexpected unwind destination.");
2345 }
2346 #endif
2347
2348 // In the unwind destination, the incoming values for these two `invoke`s
2349 // must be compatible.
2350 if (!IncomingValuesAreCompatible(
2351 Invokes.front()->getUnwindDest(),
2352 {Invokes[0]->getParent(), Invokes[1]->getParent()}))
2353 return false;
2354
2355 // Ignoring arguments, these `invoke`s must be identical,
2356 // including operand bundles.
2357 const InvokeInst *II0 = Invokes.front();
2358 for (auto *II : Invokes.drop_front())
2359 if (!II->isSameOperationAs(II0))
2360 return false;
2361
2362 // Can we theoretically form the data operands for the merged `invoke`?
2363 auto IsIllegalToMergeArguments = [](auto Ops) {
2364 Type *Ty = std::get<0>(Ops)->getType();
2365 assert(Ty == std::get<1>(Ops)->getType() && "Incompatible types?");
2366 return Ty->isTokenTy() && std::get<0>(Ops) != std::get<1>(Ops);
2367 };
2368 assert(Invokes.size() == 2 && "Always called with exactly two candidates.");
2369 if (any_of(zip(Invokes[0]->data_ops(), Invokes[1]->data_ops()),
2370 IsIllegalToMergeArguments))
2371 return false;
2372
2373 return true;
2374 }
2375
2376 } // namespace
2377
2378 // Merge all invokes in the provided set, all of which are compatible
2379 // as per the `CompatibleSets::shouldBelongToSameSet()`.
MergeCompatibleInvokesImpl(ArrayRef<InvokeInst * > Invokes,DomTreeUpdater * DTU)2380 static void MergeCompatibleInvokesImpl(ArrayRef<InvokeInst *> Invokes,
2381 DomTreeUpdater *DTU) {
2382 assert(Invokes.size() >= 2 && "Must have at least two invokes to merge.");
2383
2384 SmallVector<DominatorTree::UpdateType, 8> Updates;
2385 if (DTU)
2386 Updates.reserve(2 + 3 * Invokes.size());
2387
2388 bool HasNormalDest =
2389 !isa<UnreachableInst>(Invokes[0]->getNormalDest()->getFirstNonPHIOrDbg());
2390
2391 // Clone one of the invokes into a new basic block.
2392 // Since they are all compatible, it doesn't matter which invoke is cloned.
2393 InvokeInst *MergedInvoke = [&Invokes, HasNormalDest]() {
2394 InvokeInst *II0 = Invokes.front();
2395 BasicBlock *II0BB = II0->getParent();
2396 BasicBlock *InsertBeforeBlock =
2397 II0->getParent()->getIterator()->getNextNode();
2398 Function *Func = II0BB->getParent();
2399 LLVMContext &Ctx = II0->getContext();
2400
2401 BasicBlock *MergedInvokeBB = BasicBlock::Create(
2402 Ctx, II0BB->getName() + ".invoke", Func, InsertBeforeBlock);
2403
2404 auto *MergedInvoke = cast<InvokeInst>(II0->clone());
2405 // NOTE: all invokes have the same attributes, so no handling needed.
2406 MergedInvokeBB->getInstList().push_back(MergedInvoke);
2407
2408 if (!HasNormalDest) {
2409 // This set does not have a normal destination,
2410 // so just form a new block with unreachable terminator.
2411 BasicBlock *MergedNormalDest = BasicBlock::Create(
2412 Ctx, II0BB->getName() + ".cont", Func, InsertBeforeBlock);
2413 new UnreachableInst(Ctx, MergedNormalDest);
2414 MergedInvoke->setNormalDest(MergedNormalDest);
2415 }
2416
2417 // The unwind destination, however, remainds identical for all invokes here.
2418
2419 return MergedInvoke;
2420 }();
2421
2422 if (DTU) {
2423 // Predecessor blocks that contained these invokes will now branch to
2424 // the new block that contains the merged invoke, ...
2425 for (InvokeInst *II : Invokes)
2426 Updates.push_back(
2427 {DominatorTree::Insert, II->getParent(), MergedInvoke->getParent()});
2428
2429 // ... which has the new `unreachable` block as normal destination,
2430 // or unwinds to the (same for all `invoke`s in this set) `landingpad`,
2431 for (BasicBlock *SuccBBOfMergedInvoke : successors(MergedInvoke))
2432 Updates.push_back({DominatorTree::Insert, MergedInvoke->getParent(),
2433 SuccBBOfMergedInvoke});
2434
2435 // Since predecessor blocks now unconditionally branch to a new block,
2436 // they no longer branch to their original successors.
2437 for (InvokeInst *II : Invokes)
2438 for (BasicBlock *SuccOfPredBB : successors(II->getParent()))
2439 Updates.push_back(
2440 {DominatorTree::Delete, II->getParent(), SuccOfPredBB});
2441 }
2442
2443 bool IsIndirectCall = Invokes[0]->isIndirectCall();
2444
2445 // Form the merged operands for the merged invoke.
2446 for (Use &U : MergedInvoke->operands()) {
2447 // Only PHI together the indirect callees and data operands.
2448 if (MergedInvoke->isCallee(&U)) {
2449 if (!IsIndirectCall)
2450 continue;
2451 } else if (!MergedInvoke->isDataOperand(&U))
2452 continue;
2453
2454 // Don't create trivial PHI's with all-identical incoming values.
2455 bool NeedPHI = any_of(Invokes, [&U](InvokeInst *II) {
2456 return II->getOperand(U.getOperandNo()) != U.get();
2457 });
2458 if (!NeedPHI)
2459 continue;
2460
2461 // Form a PHI out of all the data ops under this index.
2462 PHINode *PN = PHINode::Create(
2463 U->getType(), /*NumReservedValues=*/Invokes.size(), "", MergedInvoke);
2464 for (InvokeInst *II : Invokes)
2465 PN->addIncoming(II->getOperand(U.getOperandNo()), II->getParent());
2466
2467 U.set(PN);
2468 }
2469
2470 // We've ensured that each PHI node has compatible (identical) incoming values
2471 // when coming from each of the `invoke`s in the current merge set,
2472 // so update the PHI nodes accordingly.
2473 for (BasicBlock *Succ : successors(MergedInvoke))
2474 AddPredecessorToBlock(Succ, /*NewPred=*/MergedInvoke->getParent(),
2475 /*ExistPred=*/Invokes.front()->getParent());
2476
2477 // And finally, replace the original `invoke`s with an unconditional branch
2478 // to the block with the merged `invoke`. Also, give that merged `invoke`
2479 // the merged debugloc of all the original `invoke`s.
2480 const DILocation *MergedDebugLoc = nullptr;
2481 for (InvokeInst *II : Invokes) {
2482 // Compute the debug location common to all the original `invoke`s.
2483 if (!MergedDebugLoc)
2484 MergedDebugLoc = II->getDebugLoc();
2485 else
2486 MergedDebugLoc =
2487 DILocation::getMergedLocation(MergedDebugLoc, II->getDebugLoc());
2488
2489 // And replace the old `invoke` with an unconditionally branch
2490 // to the block with the merged `invoke`.
2491 for (BasicBlock *OrigSuccBB : successors(II->getParent()))
2492 OrigSuccBB->removePredecessor(II->getParent());
2493 BranchInst::Create(MergedInvoke->getParent(), II->getParent());
2494 II->replaceAllUsesWith(MergedInvoke);
2495 II->eraseFromParent();
2496 ++NumInvokesMerged;
2497 }
2498 MergedInvoke->setDebugLoc(MergedDebugLoc);
2499 ++NumInvokeSetsFormed;
2500
2501 if (DTU)
2502 DTU->applyUpdates(Updates);
2503 }
2504
2505 /// If this block is a `landingpad` exception handling block, categorize all
2506 /// the predecessor `invoke`s into sets, with all `invoke`s in each set
2507 /// being "mergeable" together, and then merge invokes in each set together.
2508 ///
2509 /// This is a weird mix of hoisting and sinking. Visually, it goes from:
2510 /// [...] [...]
2511 /// | |
2512 /// [invoke0] [invoke1]
2513 /// / \ / \
2514 /// [cont0] [landingpad] [cont1]
2515 /// to:
2516 /// [...] [...]
2517 /// \ /
2518 /// [invoke]
2519 /// / \
2520 /// [cont] [landingpad]
2521 ///
2522 /// But of course we can only do that if the invokes share the `landingpad`,
2523 /// edges invoke0->cont0 and invoke1->cont1 are "compatible",
2524 /// and the invoked functions are "compatible".
MergeCompatibleInvokes(BasicBlock * BB,DomTreeUpdater * DTU)2525 static bool MergeCompatibleInvokes(BasicBlock *BB, DomTreeUpdater *DTU) {
2526 if (!EnableMergeCompatibleInvokes)
2527 return false;
2528
2529 bool Changed = false;
2530
2531 // FIXME: generalize to all exception handling blocks?
2532 if (!BB->isLandingPad())
2533 return Changed;
2534
2535 CompatibleSets Grouper;
2536
2537 // Record all the predecessors of this `landingpad`. As per verifier,
2538 // the only allowed predecessor is the unwind edge of an `invoke`.
2539 // We want to group "compatible" `invokes` into the same set to be merged.
2540 for (BasicBlock *PredBB : predecessors(BB))
2541 Grouper.insert(cast<InvokeInst>(PredBB->getTerminator()));
2542
2543 // And now, merge `invoke`s that were grouped togeter.
2544 for (ArrayRef<InvokeInst *> Invokes : Grouper.Sets) {
2545 if (Invokes.size() < 2)
2546 continue;
2547 Changed = true;
2548 MergeCompatibleInvokesImpl(Invokes, DTU);
2549 }
2550
2551 return Changed;
2552 }
2553
2554 /// Determine if we can hoist sink a sole store instruction out of a
2555 /// conditional block.
2556 ///
2557 /// We are looking for code like the following:
2558 /// BrBB:
2559 /// store i32 %add, i32* %arrayidx2
2560 /// ... // No other stores or function calls (we could be calling a memory
2561 /// ... // function).
2562 /// %cmp = icmp ult %x, %y
2563 /// br i1 %cmp, label %EndBB, label %ThenBB
2564 /// ThenBB:
2565 /// store i32 %add5, i32* %arrayidx2
2566 /// br label EndBB
2567 /// EndBB:
2568 /// ...
2569 /// We are going to transform this into:
2570 /// BrBB:
2571 /// store i32 %add, i32* %arrayidx2
2572 /// ... //
2573 /// %cmp = icmp ult %x, %y
2574 /// %add.add5 = select i1 %cmp, i32 %add, %add5
2575 /// store i32 %add.add5, i32* %arrayidx2
2576 /// ...
2577 ///
2578 /// \return The pointer to the value of the previous store if the store can be
2579 /// hoisted into the predecessor block. 0 otherwise.
isSafeToSpeculateStore(Instruction * I,BasicBlock * BrBB,BasicBlock * StoreBB,BasicBlock * EndBB)2580 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB,
2581 BasicBlock *StoreBB, BasicBlock *EndBB) {
2582 StoreInst *StoreToHoist = dyn_cast<StoreInst>(I);
2583 if (!StoreToHoist)
2584 return nullptr;
2585
2586 // Volatile or atomic.
2587 if (!StoreToHoist->isSimple())
2588 return nullptr;
2589
2590 Value *StorePtr = StoreToHoist->getPointerOperand();
2591 Type *StoreTy = StoreToHoist->getValueOperand()->getType();
2592
2593 // Look for a store to the same pointer in BrBB.
2594 unsigned MaxNumInstToLookAt = 9;
2595 // Skip pseudo probe intrinsic calls which are not really killing any memory
2596 // accesses.
2597 for (Instruction &CurI : reverse(BrBB->instructionsWithoutDebug(true))) {
2598 if (!MaxNumInstToLookAt)
2599 break;
2600 --MaxNumInstToLookAt;
2601
2602 // Could be calling an instruction that affects memory like free().
2603 if (CurI.mayWriteToMemory() && !isa<StoreInst>(CurI))
2604 return nullptr;
2605
2606 if (auto *SI = dyn_cast<StoreInst>(&CurI)) {
2607 // Found the previous store to same location and type. Make sure it is
2608 // simple, to avoid introducing a spurious non-atomic write after an
2609 // atomic write.
2610 if (SI->getPointerOperand() == StorePtr &&
2611 SI->getValueOperand()->getType() == StoreTy && SI->isSimple())
2612 // Found the previous store, return its value operand.
2613 return SI->getValueOperand();
2614 return nullptr; // Unknown store.
2615 }
2616
2617 if (auto *LI = dyn_cast<LoadInst>(&CurI)) {
2618 if (LI->getPointerOperand() == StorePtr && LI->getType() == StoreTy &&
2619 LI->isSimple()) {
2620 // Local objects (created by an `alloca` instruction) are always
2621 // writable, so once we are past a read from a location it is valid to
2622 // also write to that same location.
2623 // If the address of the local object never escapes the function, that
2624 // means it's never concurrently read or written, hence moving the store
2625 // from under the condition will not introduce a data race.
2626 auto *AI = dyn_cast<AllocaInst>(getUnderlyingObject(StorePtr));
2627 if (AI && !PointerMayBeCaptured(AI, false, true))
2628 // Found a previous load, return it.
2629 return LI;
2630 }
2631 // The load didn't work out, but we may still find a store.
2632 }
2633 }
2634
2635 return nullptr;
2636 }
2637
2638 /// Estimate the cost of the insertion(s) and check that the PHI nodes can be
2639 /// converted to selects.
validateAndCostRequiredSelects(BasicBlock * BB,BasicBlock * ThenBB,BasicBlock * EndBB,unsigned & SpeculatedInstructions,InstructionCost & Cost,const TargetTransformInfo & TTI)2640 static bool validateAndCostRequiredSelects(BasicBlock *BB, BasicBlock *ThenBB,
2641 BasicBlock *EndBB,
2642 unsigned &SpeculatedInstructions,
2643 InstructionCost &Cost,
2644 const TargetTransformInfo &TTI) {
2645 TargetTransformInfo::TargetCostKind CostKind =
2646 BB->getParent()->hasMinSize()
2647 ? TargetTransformInfo::TCK_CodeSize
2648 : TargetTransformInfo::TCK_SizeAndLatency;
2649
2650 bool HaveRewritablePHIs = false;
2651 for (PHINode &PN : EndBB->phis()) {
2652 Value *OrigV = PN.getIncomingValueForBlock(BB);
2653 Value *ThenV = PN.getIncomingValueForBlock(ThenBB);
2654
2655 // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf.
2656 // Skip PHIs which are trivial.
2657 if (ThenV == OrigV)
2658 continue;
2659
2660 Cost += TTI.getCmpSelInstrCost(Instruction::Select, PN.getType(), nullptr,
2661 CmpInst::BAD_ICMP_PREDICATE, CostKind);
2662
2663 // Don't convert to selects if we could remove undefined behavior instead.
2664 if (passingValueIsAlwaysUndefined(OrigV, &PN) ||
2665 passingValueIsAlwaysUndefined(ThenV, &PN))
2666 return false;
2667
2668 HaveRewritablePHIs = true;
2669 ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV);
2670 ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV);
2671 if (!OrigCE && !ThenCE)
2672 continue; // Known cheap (FIXME: Maybe not true for aggregates).
2673
2674 InstructionCost OrigCost = OrigCE ? computeSpeculationCost(OrigCE, TTI) : 0;
2675 InstructionCost ThenCost = ThenCE ? computeSpeculationCost(ThenCE, TTI) : 0;
2676 InstructionCost MaxCost =
2677 2 * PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
2678 if (OrigCost + ThenCost > MaxCost)
2679 return false;
2680
2681 // Account for the cost of an unfolded ConstantExpr which could end up
2682 // getting expanded into Instructions.
2683 // FIXME: This doesn't account for how many operations are combined in the
2684 // constant expression.
2685 ++SpeculatedInstructions;
2686 if (SpeculatedInstructions > 1)
2687 return false;
2688 }
2689
2690 return HaveRewritablePHIs;
2691 }
2692
2693 /// Speculate a conditional basic block flattening the CFG.
2694 ///
2695 /// Note that this is a very risky transform currently. Speculating
2696 /// instructions like this is most often not desirable. Instead, there is an MI
2697 /// pass which can do it with full awareness of the resource constraints.
2698 /// However, some cases are "obvious" and we should do directly. An example of
2699 /// this is speculating a single, reasonably cheap instruction.
2700 ///
2701 /// There is only one distinct advantage to flattening the CFG at the IR level:
2702 /// it makes very common but simplistic optimizations such as are common in
2703 /// instcombine and the DAG combiner more powerful by removing CFG edges and
2704 /// modeling their effects with easier to reason about SSA value graphs.
2705 ///
2706 ///
2707 /// An illustration of this transform is turning this IR:
2708 /// \code
2709 /// BB:
2710 /// %cmp = icmp ult %x, %y
2711 /// br i1 %cmp, label %EndBB, label %ThenBB
2712 /// ThenBB:
2713 /// %sub = sub %x, %y
2714 /// br label BB2
2715 /// EndBB:
2716 /// %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ]
2717 /// ...
2718 /// \endcode
2719 ///
2720 /// Into this IR:
2721 /// \code
2722 /// BB:
2723 /// %cmp = icmp ult %x, %y
2724 /// %sub = sub %x, %y
2725 /// %cond = select i1 %cmp, 0, %sub
2726 /// ...
2727 /// \endcode
2728 ///
2729 /// \returns true if the conditional block is removed.
SpeculativelyExecuteBB(BranchInst * BI,BasicBlock * ThenBB,const TargetTransformInfo & TTI)2730 bool SimplifyCFGOpt::SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB,
2731 const TargetTransformInfo &TTI) {
2732 // Be conservative for now. FP select instruction can often be expensive.
2733 Value *BrCond = BI->getCondition();
2734 if (isa<FCmpInst>(BrCond))
2735 return false;
2736
2737 BasicBlock *BB = BI->getParent();
2738 BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0);
2739 InstructionCost Budget =
2740 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
2741
2742 // If ThenBB is actually on the false edge of the conditional branch, remember
2743 // to swap the select operands later.
2744 bool Invert = false;
2745 if (ThenBB != BI->getSuccessor(0)) {
2746 assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?");
2747 Invert = true;
2748 }
2749 assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block");
2750
2751 // If the branch is non-unpredictable, and is predicted to *not* branch to
2752 // the `then` block, then avoid speculating it.
2753 if (!BI->getMetadata(LLVMContext::MD_unpredictable)) {
2754 uint64_t TWeight, FWeight;
2755 if (BI->extractProfMetadata(TWeight, FWeight) && (TWeight + FWeight) != 0) {
2756 uint64_t EndWeight = Invert ? TWeight : FWeight;
2757 BranchProbability BIEndProb =
2758 BranchProbability::getBranchProbability(EndWeight, TWeight + FWeight);
2759 BranchProbability Likely = TTI.getPredictableBranchThreshold();
2760 if (BIEndProb >= Likely)
2761 return false;
2762 }
2763 }
2764
2765 // Keep a count of how many times instructions are used within ThenBB when
2766 // they are candidates for sinking into ThenBB. Specifically:
2767 // - They are defined in BB, and
2768 // - They have no side effects, and
2769 // - All of their uses are in ThenBB.
2770 SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts;
2771
2772 SmallVector<Instruction *, 4> SpeculatedDbgIntrinsics;
2773
2774 unsigned SpeculatedInstructions = 0;
2775 Value *SpeculatedStoreValue = nullptr;
2776 StoreInst *SpeculatedStore = nullptr;
2777 for (BasicBlock::iterator BBI = ThenBB->begin(),
2778 BBE = std::prev(ThenBB->end());
2779 BBI != BBE; ++BBI) {
2780 Instruction *I = &*BBI;
2781 // Skip debug info.
2782 if (isa<DbgInfoIntrinsic>(I)) {
2783 SpeculatedDbgIntrinsics.push_back(I);
2784 continue;
2785 }
2786
2787 // Skip pseudo probes. The consequence is we lose track of the branch
2788 // probability for ThenBB, which is fine since the optimization here takes
2789 // place regardless of the branch probability.
2790 if (isa<PseudoProbeInst>(I)) {
2791 // The probe should be deleted so that it will not be over-counted when
2792 // the samples collected on the non-conditional path are counted towards
2793 // the conditional path. We leave it for the counts inference algorithm to
2794 // figure out a proper count for an unknown probe.
2795 SpeculatedDbgIntrinsics.push_back(I);
2796 continue;
2797 }
2798
2799 // Only speculatively execute a single instruction (not counting the
2800 // terminator) for now.
2801 ++SpeculatedInstructions;
2802 if (SpeculatedInstructions > 1)
2803 return false;
2804
2805 // Don't hoist the instruction if it's unsafe or expensive.
2806 if (!isSafeToSpeculativelyExecute(I) &&
2807 !(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore(
2808 I, BB, ThenBB, EndBB))))
2809 return false;
2810 if (!SpeculatedStoreValue &&
2811 computeSpeculationCost(I, TTI) >
2812 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic)
2813 return false;
2814
2815 // Store the store speculation candidate.
2816 if (SpeculatedStoreValue)
2817 SpeculatedStore = cast<StoreInst>(I);
2818
2819 // Do not hoist the instruction if any of its operands are defined but not
2820 // used in BB. The transformation will prevent the operand from
2821 // being sunk into the use block.
2822 for (Use &Op : I->operands()) {
2823 Instruction *OpI = dyn_cast<Instruction>(Op);
2824 if (!OpI || OpI->getParent() != BB || OpI->mayHaveSideEffects())
2825 continue; // Not a candidate for sinking.
2826
2827 ++SinkCandidateUseCounts[OpI];
2828 }
2829 }
2830
2831 // Consider any sink candidates which are only used in ThenBB as costs for
2832 // speculation. Note, while we iterate over a DenseMap here, we are summing
2833 // and so iteration order isn't significant.
2834 for (SmallDenseMap<Instruction *, unsigned, 4>::iterator
2835 I = SinkCandidateUseCounts.begin(),
2836 E = SinkCandidateUseCounts.end();
2837 I != E; ++I)
2838 if (I->first->hasNUses(I->second)) {
2839 ++SpeculatedInstructions;
2840 if (SpeculatedInstructions > 1)
2841 return false;
2842 }
2843
2844 // Check that we can insert the selects and that it's not too expensive to do
2845 // so.
2846 bool Convert = SpeculatedStore != nullptr;
2847 InstructionCost Cost = 0;
2848 Convert |= validateAndCostRequiredSelects(BB, ThenBB, EndBB,
2849 SpeculatedInstructions,
2850 Cost, TTI);
2851 if (!Convert || Cost > Budget)
2852 return false;
2853
2854 // If we get here, we can hoist the instruction and if-convert.
2855 LLVM_DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";);
2856
2857 // Insert a select of the value of the speculated store.
2858 if (SpeculatedStoreValue) {
2859 IRBuilder<NoFolder> Builder(BI);
2860 Value *TrueV = SpeculatedStore->getValueOperand();
2861 Value *FalseV = SpeculatedStoreValue;
2862 if (Invert)
2863 std::swap(TrueV, FalseV);
2864 Value *S = Builder.CreateSelect(
2865 BrCond, TrueV, FalseV, "spec.store.select", BI);
2866 SpeculatedStore->setOperand(0, S);
2867 SpeculatedStore->applyMergedLocation(BI->getDebugLoc(),
2868 SpeculatedStore->getDebugLoc());
2869 }
2870
2871 // Metadata can be dependent on the condition we are hoisting above.
2872 // Conservatively strip all metadata on the instruction. Drop the debug loc
2873 // to avoid making it appear as if the condition is a constant, which would
2874 // be misleading while debugging.
2875 // Similarly strip attributes that maybe dependent on condition we are
2876 // hoisting above.
2877 for (auto &I : *ThenBB) {
2878 if (!SpeculatedStoreValue || &I != SpeculatedStore)
2879 I.setDebugLoc(DebugLoc());
2880 I.dropUndefImplyingAttrsAndUnknownMetadata();
2881 }
2882
2883 // Hoist the instructions.
2884 BB->getInstList().splice(BI->getIterator(), ThenBB->getInstList(),
2885 ThenBB->begin(), std::prev(ThenBB->end()));
2886
2887 // Insert selects and rewrite the PHI operands.
2888 IRBuilder<NoFolder> Builder(BI);
2889 for (PHINode &PN : EndBB->phis()) {
2890 unsigned OrigI = PN.getBasicBlockIndex(BB);
2891 unsigned ThenI = PN.getBasicBlockIndex(ThenBB);
2892 Value *OrigV = PN.getIncomingValue(OrigI);
2893 Value *ThenV = PN.getIncomingValue(ThenI);
2894
2895 // Skip PHIs which are trivial.
2896 if (OrigV == ThenV)
2897 continue;
2898
2899 // Create a select whose true value is the speculatively executed value and
2900 // false value is the pre-existing value. Swap them if the branch
2901 // destinations were inverted.
2902 Value *TrueV = ThenV, *FalseV = OrigV;
2903 if (Invert)
2904 std::swap(TrueV, FalseV);
2905 Value *V = Builder.CreateSelect(BrCond, TrueV, FalseV, "spec.select", BI);
2906 PN.setIncomingValue(OrigI, V);
2907 PN.setIncomingValue(ThenI, V);
2908 }
2909
2910 // Remove speculated dbg intrinsics.
2911 // FIXME: Is it possible to do this in a more elegant way? Moving/merging the
2912 // dbg value for the different flows and inserting it after the select.
2913 for (Instruction *I : SpeculatedDbgIntrinsics)
2914 I->eraseFromParent();
2915
2916 ++NumSpeculations;
2917 return true;
2918 }
2919
2920 /// Return true if we can thread a branch across this block.
BlockIsSimpleEnoughToThreadThrough(BasicBlock * BB)2921 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) {
2922 int Size = 0;
2923
2924 SmallPtrSet<const Value *, 32> EphValues;
2925 auto IsEphemeral = [&](const Instruction *I) {
2926 if (isa<AssumeInst>(I))
2927 return true;
2928 return !I->mayHaveSideEffects() && !I->isTerminator() &&
2929 all_of(I->users(),
2930 [&](const User *U) { return EphValues.count(U); });
2931 };
2932
2933 // Walk the loop in reverse so that we can identify ephemeral values properly
2934 // (values only feeding assumes).
2935 for (Instruction &I : reverse(BB->instructionsWithoutDebug(false))) {
2936 // Can't fold blocks that contain noduplicate or convergent calls.
2937 if (CallInst *CI = dyn_cast<CallInst>(&I))
2938 if (CI->cannotDuplicate() || CI->isConvergent())
2939 return false;
2940
2941 // Ignore ephemeral values which are deleted during codegen.
2942 if (IsEphemeral(&I))
2943 EphValues.insert(&I);
2944 // We will delete Phis while threading, so Phis should not be accounted in
2945 // block's size.
2946 else if (!isa<PHINode>(I)) {
2947 if (Size++ > MaxSmallBlockSize)
2948 return false; // Don't clone large BB's.
2949 }
2950
2951 // We can only support instructions that do not define values that are
2952 // live outside of the current basic block.
2953 for (User *U : I.users()) {
2954 Instruction *UI = cast<Instruction>(U);
2955 if (UI->getParent() != BB || isa<PHINode>(UI))
2956 return false;
2957 }
2958
2959 // Looks ok, continue checking.
2960 }
2961
2962 return true;
2963 }
2964
getKnownValueOnEdge(Value * V,BasicBlock * From,BasicBlock * To)2965 static ConstantInt *getKnownValueOnEdge(Value *V, BasicBlock *From,
2966 BasicBlock *To) {
2967 // Don't look past the block defining the value, we might get the value from
2968 // a previous loop iteration.
2969 auto *I = dyn_cast<Instruction>(V);
2970 if (I && I->getParent() == To)
2971 return nullptr;
2972
2973 // We know the value if the From block branches on it.
2974 auto *BI = dyn_cast<BranchInst>(From->getTerminator());
2975 if (BI && BI->isConditional() && BI->getCondition() == V &&
2976 BI->getSuccessor(0) != BI->getSuccessor(1))
2977 return BI->getSuccessor(0) == To ? ConstantInt::getTrue(BI->getContext())
2978 : ConstantInt::getFalse(BI->getContext());
2979
2980 return nullptr;
2981 }
2982
2983 /// If we have a conditional branch on something for which we know the constant
2984 /// value in predecessors (e.g. a phi node in the current block), thread edges
2985 /// from the predecessor to their ultimate destination.
2986 static Optional<bool>
FoldCondBranchOnValueKnownInPredecessorImpl(BranchInst * BI,DomTreeUpdater * DTU,const DataLayout & DL,AssumptionCache * AC)2987 FoldCondBranchOnValueKnownInPredecessorImpl(BranchInst *BI, DomTreeUpdater *DTU,
2988 const DataLayout &DL,
2989 AssumptionCache *AC) {
2990 SmallMapVector<ConstantInt *, SmallSetVector<BasicBlock *, 2>, 2> KnownValues;
2991 BasicBlock *BB = BI->getParent();
2992 Value *Cond = BI->getCondition();
2993 PHINode *PN = dyn_cast<PHINode>(Cond);
2994 if (PN && PN->getParent() == BB) {
2995 // Degenerate case of a single entry PHI.
2996 if (PN->getNumIncomingValues() == 1) {
2997 FoldSingleEntryPHINodes(PN->getParent());
2998 return true;
2999 }
3000
3001 for (Use &U : PN->incoming_values())
3002 if (auto *CB = dyn_cast<ConstantInt>(U))
3003 KnownValues[CB].insert(PN->getIncomingBlock(U));
3004 } else {
3005 for (BasicBlock *Pred : predecessors(BB)) {
3006 if (ConstantInt *CB = getKnownValueOnEdge(Cond, Pred, BB))
3007 KnownValues[CB].insert(Pred);
3008 }
3009 }
3010
3011 if (KnownValues.empty())
3012 return false;
3013
3014 // Now we know that this block has multiple preds and two succs.
3015 // Check that the block is small enough and values defined in the block are
3016 // not used outside of it.
3017 if (!BlockIsSimpleEnoughToThreadThrough(BB))
3018 return false;
3019
3020 for (const auto &Pair : KnownValues) {
3021 // Okay, we now know that all edges from PredBB should be revectored to
3022 // branch to RealDest.
3023 ConstantInt *CB = Pair.first;
3024 ArrayRef<BasicBlock *> PredBBs = Pair.second.getArrayRef();
3025 BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue());
3026
3027 if (RealDest == BB)
3028 continue; // Skip self loops.
3029
3030 // Skip if the predecessor's terminator is an indirect branch.
3031 if (any_of(PredBBs, [](BasicBlock *PredBB) {
3032 return isa<IndirectBrInst>(PredBB->getTerminator());
3033 }))
3034 continue;
3035
3036 LLVM_DEBUG({
3037 dbgs() << "Condition " << *Cond << " in " << BB->getName()
3038 << " has value " << *Pair.first << " in predecessors:\n";
3039 for (const BasicBlock *PredBB : Pair.second)
3040 dbgs() << " " << PredBB->getName() << "\n";
3041 dbgs() << "Threading to destination " << RealDest->getName() << ".\n";
3042 });
3043
3044 // Split the predecessors we are threading into a new edge block. We'll
3045 // clone the instructions into this block, and then redirect it to RealDest.
3046 BasicBlock *EdgeBB = SplitBlockPredecessors(BB, PredBBs, ".critedge", DTU);
3047
3048 // TODO: These just exist to reduce test diff, we can drop them if we like.
3049 EdgeBB->setName(RealDest->getName() + ".critedge");
3050 EdgeBB->moveBefore(RealDest);
3051
3052 // Update PHI nodes.
3053 AddPredecessorToBlock(RealDest, EdgeBB, BB);
3054
3055 // BB may have instructions that are being threaded over. Clone these
3056 // instructions into EdgeBB. We know that there will be no uses of the
3057 // cloned instructions outside of EdgeBB.
3058 BasicBlock::iterator InsertPt = EdgeBB->getFirstInsertionPt();
3059 DenseMap<Value *, Value *> TranslateMap; // Track translated values.
3060 TranslateMap[Cond] = CB;
3061 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
3062 if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
3063 TranslateMap[PN] = PN->getIncomingValueForBlock(EdgeBB);
3064 continue;
3065 }
3066 // Clone the instruction.
3067 Instruction *N = BBI->clone();
3068 if (BBI->hasName())
3069 N->setName(BBI->getName() + ".c");
3070
3071 // Update operands due to translation.
3072 for (Use &Op : N->operands()) {
3073 DenseMap<Value *, Value *>::iterator PI = TranslateMap.find(Op);
3074 if (PI != TranslateMap.end())
3075 Op = PI->second;
3076 }
3077
3078 // Check for trivial simplification.
3079 if (Value *V = simplifyInstruction(N, {DL, nullptr, nullptr, AC})) {
3080 if (!BBI->use_empty())
3081 TranslateMap[&*BBI] = V;
3082 if (!N->mayHaveSideEffects()) {
3083 N->deleteValue(); // Instruction folded away, don't need actual inst
3084 N = nullptr;
3085 }
3086 } else {
3087 if (!BBI->use_empty())
3088 TranslateMap[&*BBI] = N;
3089 }
3090 if (N) {
3091 // Insert the new instruction into its new home.
3092 EdgeBB->getInstList().insert(InsertPt, N);
3093
3094 // Register the new instruction with the assumption cache if necessary.
3095 if (auto *Assume = dyn_cast<AssumeInst>(N))
3096 if (AC)
3097 AC->registerAssumption(Assume);
3098 }
3099 }
3100
3101 BB->removePredecessor(EdgeBB);
3102 BranchInst *EdgeBI = cast<BranchInst>(EdgeBB->getTerminator());
3103 EdgeBI->setSuccessor(0, RealDest);
3104 EdgeBI->setDebugLoc(BI->getDebugLoc());
3105
3106 if (DTU) {
3107 SmallVector<DominatorTree::UpdateType, 2> Updates;
3108 Updates.push_back({DominatorTree::Delete, EdgeBB, BB});
3109 Updates.push_back({DominatorTree::Insert, EdgeBB, RealDest});
3110 DTU->applyUpdates(Updates);
3111 }
3112
3113 // For simplicity, we created a separate basic block for the edge. Merge
3114 // it back into the predecessor if possible. This not only avoids
3115 // unnecessary SimplifyCFG iterations, but also makes sure that we don't
3116 // bypass the check for trivial cycles above.
3117 MergeBlockIntoPredecessor(EdgeBB, DTU);
3118
3119 // Signal repeat, simplifying any other constants.
3120 return None;
3121 }
3122
3123 return false;
3124 }
3125
FoldCondBranchOnValueKnownInPredecessor(BranchInst * BI,DomTreeUpdater * DTU,const DataLayout & DL,AssumptionCache * AC)3126 static bool FoldCondBranchOnValueKnownInPredecessor(BranchInst *BI,
3127 DomTreeUpdater *DTU,
3128 const DataLayout &DL,
3129 AssumptionCache *AC) {
3130 Optional<bool> Result;
3131 bool EverChanged = false;
3132 do {
3133 // Note that None means "we changed things, but recurse further."
3134 Result = FoldCondBranchOnValueKnownInPredecessorImpl(BI, DTU, DL, AC);
3135 EverChanged |= Result == None || *Result;
3136 } while (Result == None);
3137 return EverChanged;
3138 }
3139
3140 /// Given a BB that starts with the specified two-entry PHI node,
3141 /// see if we can eliminate it.
FoldTwoEntryPHINode(PHINode * PN,const TargetTransformInfo & TTI,DomTreeUpdater * DTU,const DataLayout & DL)3142 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI,
3143 DomTreeUpdater *DTU, const DataLayout &DL) {
3144 // Ok, this is a two entry PHI node. Check to see if this is a simple "if
3145 // statement", which has a very simple dominance structure. Basically, we
3146 // are trying to find the condition that is being branched on, which
3147 // subsequently causes this merge to happen. We really want control
3148 // dependence information for this check, but simplifycfg can't keep it up
3149 // to date, and this catches most of the cases we care about anyway.
3150 BasicBlock *BB = PN->getParent();
3151
3152 BasicBlock *IfTrue, *IfFalse;
3153 BranchInst *DomBI = GetIfCondition(BB, IfTrue, IfFalse);
3154 if (!DomBI)
3155 return false;
3156 Value *IfCond = DomBI->getCondition();
3157 // Don't bother if the branch will be constant folded trivially.
3158 if (isa<ConstantInt>(IfCond))
3159 return false;
3160
3161 BasicBlock *DomBlock = DomBI->getParent();
3162 SmallVector<BasicBlock *, 2> IfBlocks;
3163 llvm::copy_if(
3164 PN->blocks(), std::back_inserter(IfBlocks), [](BasicBlock *IfBlock) {
3165 return cast<BranchInst>(IfBlock->getTerminator())->isUnconditional();
3166 });
3167 assert((IfBlocks.size() == 1 || IfBlocks.size() == 2) &&
3168 "Will have either one or two blocks to speculate.");
3169
3170 // If the branch is non-unpredictable, see if we either predictably jump to
3171 // the merge bb (if we have only a single 'then' block), or if we predictably
3172 // jump to one specific 'then' block (if we have two of them).
3173 // It isn't beneficial to speculatively execute the code
3174 // from the block that we know is predictably not entered.
3175 if (!DomBI->getMetadata(LLVMContext::MD_unpredictable)) {
3176 uint64_t TWeight, FWeight;
3177 if (DomBI->extractProfMetadata(TWeight, FWeight) &&
3178 (TWeight + FWeight) != 0) {
3179 BranchProbability BITrueProb =
3180 BranchProbability::getBranchProbability(TWeight, TWeight + FWeight);
3181 BranchProbability Likely = TTI.getPredictableBranchThreshold();
3182 BranchProbability BIFalseProb = BITrueProb.getCompl();
3183 if (IfBlocks.size() == 1) {
3184 BranchProbability BIBBProb =
3185 DomBI->getSuccessor(0) == BB ? BITrueProb : BIFalseProb;
3186 if (BIBBProb >= Likely)
3187 return false;
3188 } else {
3189 if (BITrueProb >= Likely || BIFalseProb >= Likely)
3190 return false;
3191 }
3192 }
3193 }
3194
3195 // Don't try to fold an unreachable block. For example, the phi node itself
3196 // can't be the candidate if-condition for a select that we want to form.
3197 if (auto *IfCondPhiInst = dyn_cast<PHINode>(IfCond))
3198 if (IfCondPhiInst->getParent() == BB)
3199 return false;
3200
3201 // Okay, we found that we can merge this two-entry phi node into a select.
3202 // Doing so would require us to fold *all* two entry phi nodes in this block.
3203 // At some point this becomes non-profitable (particularly if the target
3204 // doesn't support cmov's). Only do this transformation if there are two or
3205 // fewer PHI nodes in this block.
3206 unsigned NumPhis = 0;
3207 for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I)
3208 if (NumPhis > 2)
3209 return false;
3210
3211 // Loop over the PHI's seeing if we can promote them all to select
3212 // instructions. While we are at it, keep track of the instructions
3213 // that need to be moved to the dominating block.
3214 SmallPtrSet<Instruction *, 4> AggressiveInsts;
3215 InstructionCost Cost = 0;
3216 InstructionCost Budget =
3217 TwoEntryPHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
3218
3219 bool Changed = false;
3220 for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) {
3221 PHINode *PN = cast<PHINode>(II++);
3222 if (Value *V = simplifyInstruction(PN, {DL, PN})) {
3223 PN->replaceAllUsesWith(V);
3224 PN->eraseFromParent();
3225 Changed = true;
3226 continue;
3227 }
3228
3229 if (!dominatesMergePoint(PN->getIncomingValue(0), BB, AggressiveInsts,
3230 Cost, Budget, TTI) ||
3231 !dominatesMergePoint(PN->getIncomingValue(1), BB, AggressiveInsts,
3232 Cost, Budget, TTI))
3233 return Changed;
3234 }
3235
3236 // If we folded the first phi, PN dangles at this point. Refresh it. If
3237 // we ran out of PHIs then we simplified them all.
3238 PN = dyn_cast<PHINode>(BB->begin());
3239 if (!PN)
3240 return true;
3241
3242 // Return true if at least one of these is a 'not', and another is either
3243 // a 'not' too, or a constant.
3244 auto CanHoistNotFromBothValues = [](Value *V0, Value *V1) {
3245 if (!match(V0, m_Not(m_Value())))
3246 std::swap(V0, V1);
3247 auto Invertible = m_CombineOr(m_Not(m_Value()), m_AnyIntegralConstant());
3248 return match(V0, m_Not(m_Value())) && match(V1, Invertible);
3249 };
3250
3251 // Don't fold i1 branches on PHIs which contain binary operators or
3252 // (possibly inverted) select form of or/ands, unless one of
3253 // the incoming values is an 'not' and another one is freely invertible.
3254 // These can often be turned into switches and other things.
3255 auto IsBinOpOrAnd = [](Value *V) {
3256 return match(
3257 V, m_CombineOr(
3258 m_BinOp(),
3259 m_CombineOr(m_Select(m_Value(), m_ImmConstant(), m_Value()),
3260 m_Select(m_Value(), m_Value(), m_ImmConstant()))));
3261 };
3262 if (PN->getType()->isIntegerTy(1) &&
3263 (IsBinOpOrAnd(PN->getIncomingValue(0)) ||
3264 IsBinOpOrAnd(PN->getIncomingValue(1)) || IsBinOpOrAnd(IfCond)) &&
3265 !CanHoistNotFromBothValues(PN->getIncomingValue(0),
3266 PN->getIncomingValue(1)))
3267 return Changed;
3268
3269 // If all PHI nodes are promotable, check to make sure that all instructions
3270 // in the predecessor blocks can be promoted as well. If not, we won't be able
3271 // to get rid of the control flow, so it's not worth promoting to select
3272 // instructions.
3273 for (BasicBlock *IfBlock : IfBlocks)
3274 for (BasicBlock::iterator I = IfBlock->begin(); !I->isTerminator(); ++I)
3275 if (!AggressiveInsts.count(&*I) && !I->isDebugOrPseudoInst()) {
3276 // This is not an aggressive instruction that we can promote.
3277 // Because of this, we won't be able to get rid of the control flow, so
3278 // the xform is not worth it.
3279 return Changed;
3280 }
3281
3282 // If either of the blocks has it's address taken, we can't do this fold.
3283 if (any_of(IfBlocks,
3284 [](BasicBlock *IfBlock) { return IfBlock->hasAddressTaken(); }))
3285 return Changed;
3286
3287 LLVM_DEBUG(dbgs() << "FOUND IF CONDITION! " << *IfCond
3288 << " T: " << IfTrue->getName()
3289 << " F: " << IfFalse->getName() << "\n");
3290
3291 // If we can still promote the PHI nodes after this gauntlet of tests,
3292 // do all of the PHI's now.
3293
3294 // Move all 'aggressive' instructions, which are defined in the
3295 // conditional parts of the if's up to the dominating block.
3296 for (BasicBlock *IfBlock : IfBlocks)
3297 hoistAllInstructionsInto(DomBlock, DomBI, IfBlock);
3298
3299 IRBuilder<NoFolder> Builder(DomBI);
3300 // Propagate fast-math-flags from phi nodes to replacement selects.
3301 IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
3302 while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
3303 if (isa<FPMathOperator>(PN))
3304 Builder.setFastMathFlags(PN->getFastMathFlags());
3305
3306 // Change the PHI node into a select instruction.
3307 Value *TrueVal = PN->getIncomingValueForBlock(IfTrue);
3308 Value *FalseVal = PN->getIncomingValueForBlock(IfFalse);
3309
3310 Value *Sel = Builder.CreateSelect(IfCond, TrueVal, FalseVal, "", DomBI);
3311 PN->replaceAllUsesWith(Sel);
3312 Sel->takeName(PN);
3313 PN->eraseFromParent();
3314 }
3315
3316 // At this point, all IfBlocks are empty, so our if statement
3317 // has been flattened. Change DomBlock to jump directly to our new block to
3318 // avoid other simplifycfg's kicking in on the diamond.
3319 Builder.CreateBr(BB);
3320
3321 SmallVector<DominatorTree::UpdateType, 3> Updates;
3322 if (DTU) {
3323 Updates.push_back({DominatorTree::Insert, DomBlock, BB});
3324 for (auto *Successor : successors(DomBlock))
3325 Updates.push_back({DominatorTree::Delete, DomBlock, Successor});
3326 }
3327
3328 DomBI->eraseFromParent();
3329 if (DTU)
3330 DTU->applyUpdates(Updates);
3331
3332 return true;
3333 }
3334
createLogicalOp(IRBuilderBase & Builder,Instruction::BinaryOps Opc,Value * LHS,Value * RHS,const Twine & Name="")3335 static Value *createLogicalOp(IRBuilderBase &Builder,
3336 Instruction::BinaryOps Opc, Value *LHS,
3337 Value *RHS, const Twine &Name = "") {
3338 // Try to relax logical op to binary op.
3339 if (impliesPoison(RHS, LHS))
3340 return Builder.CreateBinOp(Opc, LHS, RHS, Name);
3341 if (Opc == Instruction::And)
3342 return Builder.CreateLogicalAnd(LHS, RHS, Name);
3343 if (Opc == Instruction::Or)
3344 return Builder.CreateLogicalOr(LHS, RHS, Name);
3345 llvm_unreachable("Invalid logical opcode");
3346 }
3347
3348 /// Return true if either PBI or BI has branch weight available, and store
3349 /// the weights in {Pred|Succ}{True|False}Weight. If one of PBI and BI does
3350 /// not have branch weight, use 1:1 as its weight.
extractPredSuccWeights(BranchInst * PBI,BranchInst * BI,uint64_t & PredTrueWeight,uint64_t & PredFalseWeight,uint64_t & SuccTrueWeight,uint64_t & SuccFalseWeight)3351 static bool extractPredSuccWeights(BranchInst *PBI, BranchInst *BI,
3352 uint64_t &PredTrueWeight,
3353 uint64_t &PredFalseWeight,
3354 uint64_t &SuccTrueWeight,
3355 uint64_t &SuccFalseWeight) {
3356 bool PredHasWeights =
3357 PBI->extractProfMetadata(PredTrueWeight, PredFalseWeight);
3358 bool SuccHasWeights =
3359 BI->extractProfMetadata(SuccTrueWeight, SuccFalseWeight);
3360 if (PredHasWeights || SuccHasWeights) {
3361 if (!PredHasWeights)
3362 PredTrueWeight = PredFalseWeight = 1;
3363 if (!SuccHasWeights)
3364 SuccTrueWeight = SuccFalseWeight = 1;
3365 return true;
3366 } else {
3367 return false;
3368 }
3369 }
3370
3371 /// Determine if the two branches share a common destination and deduce a glue
3372 /// that joins the branches' conditions to arrive at the common destination if
3373 /// that would be profitable.
3374 static Optional<std::pair<Instruction::BinaryOps, bool>>
shouldFoldCondBranchesToCommonDestination(BranchInst * BI,BranchInst * PBI,const TargetTransformInfo * TTI)3375 shouldFoldCondBranchesToCommonDestination(BranchInst *BI, BranchInst *PBI,
3376 const TargetTransformInfo *TTI) {
3377 assert(BI && PBI && BI->isConditional() && PBI->isConditional() &&
3378 "Both blocks must end with a conditional branches.");
3379 assert(is_contained(predecessors(BI->getParent()), PBI->getParent()) &&
3380 "PredBB must be a predecessor of BB.");
3381
3382 // We have the potential to fold the conditions together, but if the
3383 // predecessor branch is predictable, we may not want to merge them.
3384 uint64_t PTWeight, PFWeight;
3385 BranchProbability PBITrueProb, Likely;
3386 if (TTI && !PBI->getMetadata(LLVMContext::MD_unpredictable) &&
3387 PBI->extractProfMetadata(PTWeight, PFWeight) &&
3388 (PTWeight + PFWeight) != 0) {
3389 PBITrueProb =
3390 BranchProbability::getBranchProbability(PTWeight, PTWeight + PFWeight);
3391 Likely = TTI->getPredictableBranchThreshold();
3392 }
3393
3394 if (PBI->getSuccessor(0) == BI->getSuccessor(0)) {
3395 // Speculate the 2nd condition unless the 1st is probably true.
3396 if (PBITrueProb.isUnknown() || PBITrueProb < Likely)
3397 return {{Instruction::Or, false}};
3398 } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) {
3399 // Speculate the 2nd condition unless the 1st is probably false.
3400 if (PBITrueProb.isUnknown() || PBITrueProb.getCompl() < Likely)
3401 return {{Instruction::And, false}};
3402 } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) {
3403 // Speculate the 2nd condition unless the 1st is probably true.
3404 if (PBITrueProb.isUnknown() || PBITrueProb < Likely)
3405 return {{Instruction::And, true}};
3406 } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) {
3407 // Speculate the 2nd condition unless the 1st is probably false.
3408 if (PBITrueProb.isUnknown() || PBITrueProb.getCompl() < Likely)
3409 return {{Instruction::Or, true}};
3410 }
3411 return None;
3412 }
3413
performBranchToCommonDestFolding(BranchInst * BI,BranchInst * PBI,DomTreeUpdater * DTU,MemorySSAUpdater * MSSAU,const TargetTransformInfo * TTI)3414 static bool performBranchToCommonDestFolding(BranchInst *BI, BranchInst *PBI,
3415 DomTreeUpdater *DTU,
3416 MemorySSAUpdater *MSSAU,
3417 const TargetTransformInfo *TTI) {
3418 BasicBlock *BB = BI->getParent();
3419 BasicBlock *PredBlock = PBI->getParent();
3420
3421 // Determine if the two branches share a common destination.
3422 Instruction::BinaryOps Opc;
3423 bool InvertPredCond;
3424 std::tie(Opc, InvertPredCond) =
3425 *shouldFoldCondBranchesToCommonDestination(BI, PBI, TTI);
3426
3427 LLVM_DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB);
3428
3429 IRBuilder<> Builder(PBI);
3430 // The builder is used to create instructions to eliminate the branch in BB.
3431 // If BB's terminator has !annotation metadata, add it to the new
3432 // instructions.
3433 Builder.CollectMetadataToCopy(BB->getTerminator(),
3434 {LLVMContext::MD_annotation});
3435
3436 // If we need to invert the condition in the pred block to match, do so now.
3437 if (InvertPredCond) {
3438 Value *NewCond = PBI->getCondition();
3439 if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) {
3440 CmpInst *CI = cast<CmpInst>(NewCond);
3441 CI->setPredicate(CI->getInversePredicate());
3442 } else {
3443 NewCond =
3444 Builder.CreateNot(NewCond, PBI->getCondition()->getName() + ".not");
3445 }
3446
3447 PBI->setCondition(NewCond);
3448 PBI->swapSuccessors();
3449 }
3450
3451 BasicBlock *UniqueSucc =
3452 PBI->getSuccessor(0) == BB ? BI->getSuccessor(0) : BI->getSuccessor(1);
3453
3454 // Before cloning instructions, notify the successor basic block that it
3455 // is about to have a new predecessor. This will update PHI nodes,
3456 // which will allow us to update live-out uses of bonus instructions.
3457 AddPredecessorToBlock(UniqueSucc, PredBlock, BB, MSSAU);
3458
3459 // Try to update branch weights.
3460 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
3461 if (extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
3462 SuccTrueWeight, SuccFalseWeight)) {
3463 SmallVector<uint64_t, 8> NewWeights;
3464
3465 if (PBI->getSuccessor(0) == BB) {
3466 // PBI: br i1 %x, BB, FalseDest
3467 // BI: br i1 %y, UniqueSucc, FalseDest
3468 // TrueWeight is TrueWeight for PBI * TrueWeight for BI.
3469 NewWeights.push_back(PredTrueWeight * SuccTrueWeight);
3470 // FalseWeight is FalseWeight for PBI * TotalWeight for BI +
3471 // TrueWeight for PBI * FalseWeight for BI.
3472 // We assume that total weights of a BranchInst can fit into 32 bits.
3473 // Therefore, we will not have overflow using 64-bit arithmetic.
3474 NewWeights.push_back(PredFalseWeight *
3475 (SuccFalseWeight + SuccTrueWeight) +
3476 PredTrueWeight * SuccFalseWeight);
3477 } else {
3478 // PBI: br i1 %x, TrueDest, BB
3479 // BI: br i1 %y, TrueDest, UniqueSucc
3480 // TrueWeight is TrueWeight for PBI * TotalWeight for BI +
3481 // FalseWeight for PBI * TrueWeight for BI.
3482 NewWeights.push_back(PredTrueWeight * (SuccFalseWeight + SuccTrueWeight) +
3483 PredFalseWeight * SuccTrueWeight);
3484 // FalseWeight is FalseWeight for PBI * FalseWeight for BI.
3485 NewWeights.push_back(PredFalseWeight * SuccFalseWeight);
3486 }
3487
3488 // Halve the weights if any of them cannot fit in an uint32_t
3489 FitWeights(NewWeights);
3490
3491 SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(), NewWeights.end());
3492 setBranchWeights(PBI, MDWeights[0], MDWeights[1]);
3493
3494 // TODO: If BB is reachable from all paths through PredBlock, then we
3495 // could replace PBI's branch probabilities with BI's.
3496 } else
3497 PBI->setMetadata(LLVMContext::MD_prof, nullptr);
3498
3499 // Now, update the CFG.
3500 PBI->setSuccessor(PBI->getSuccessor(0) != BB, UniqueSucc);
3501
3502 if (DTU)
3503 DTU->applyUpdates({{DominatorTree::Insert, PredBlock, UniqueSucc},
3504 {DominatorTree::Delete, PredBlock, BB}});
3505
3506 // If BI was a loop latch, it may have had associated loop metadata.
3507 // We need to copy it to the new latch, that is, PBI.
3508 if (MDNode *LoopMD = BI->getMetadata(LLVMContext::MD_loop))
3509 PBI->setMetadata(LLVMContext::MD_loop, LoopMD);
3510
3511 ValueToValueMapTy VMap; // maps original values to cloned values
3512 CloneInstructionsIntoPredecessorBlockAndUpdateSSAUses(BB, PredBlock, VMap);
3513
3514 // Now that the Cond was cloned into the predecessor basic block,
3515 // or/and the two conditions together.
3516 Value *BICond = VMap[BI->getCondition()];
3517 PBI->setCondition(
3518 createLogicalOp(Builder, Opc, PBI->getCondition(), BICond, "or.cond"));
3519
3520 // Copy any debug value intrinsics into the end of PredBlock.
3521 for (Instruction &I : *BB) {
3522 if (isa<DbgInfoIntrinsic>(I)) {
3523 Instruction *NewI = I.clone();
3524 RemapInstruction(NewI, VMap,
3525 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
3526 NewI->insertBefore(PBI);
3527 }
3528 }
3529
3530 ++NumFoldBranchToCommonDest;
3531 return true;
3532 }
3533
3534 /// Return if an instruction's type or any of its operands' types are a vector
3535 /// type.
isVectorOp(Instruction & I)3536 static bool isVectorOp(Instruction &I) {
3537 return I.getType()->isVectorTy() || any_of(I.operands(), [](Use &U) {
3538 return U->getType()->isVectorTy();
3539 });
3540 }
3541
3542 /// If this basic block is simple enough, and if a predecessor branches to us
3543 /// and one of our successors, fold the block into the predecessor and use
3544 /// logical operations to pick the right destination.
FoldBranchToCommonDest(BranchInst * BI,DomTreeUpdater * DTU,MemorySSAUpdater * MSSAU,const TargetTransformInfo * TTI,unsigned BonusInstThreshold)3545 bool llvm::FoldBranchToCommonDest(BranchInst *BI, DomTreeUpdater *DTU,
3546 MemorySSAUpdater *MSSAU,
3547 const TargetTransformInfo *TTI,
3548 unsigned BonusInstThreshold) {
3549 // If this block ends with an unconditional branch,
3550 // let SpeculativelyExecuteBB() deal with it.
3551 if (!BI->isConditional())
3552 return false;
3553
3554 BasicBlock *BB = BI->getParent();
3555 TargetTransformInfo::TargetCostKind CostKind =
3556 BB->getParent()->hasMinSize() ? TargetTransformInfo::TCK_CodeSize
3557 : TargetTransformInfo::TCK_SizeAndLatency;
3558
3559 Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
3560
3561 if (!Cond ||
3562 (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond) &&
3563 !isa<SelectInst>(Cond)) ||
3564 Cond->getParent() != BB || !Cond->hasOneUse())
3565 return false;
3566
3567 // Finally, don't infinitely unroll conditional loops.
3568 if (is_contained(successors(BB), BB))
3569 return false;
3570
3571 // With which predecessors will we want to deal with?
3572 SmallVector<BasicBlock *, 8> Preds;
3573 for (BasicBlock *PredBlock : predecessors(BB)) {
3574 BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator());
3575
3576 // Check that we have two conditional branches. If there is a PHI node in
3577 // the common successor, verify that the same value flows in from both
3578 // blocks.
3579 if (!PBI || PBI->isUnconditional() || !SafeToMergeTerminators(BI, PBI))
3580 continue;
3581
3582 // Determine if the two branches share a common destination.
3583 Instruction::BinaryOps Opc;
3584 bool InvertPredCond;
3585 if (auto Recipe = shouldFoldCondBranchesToCommonDestination(BI, PBI, TTI))
3586 std::tie(Opc, InvertPredCond) = *Recipe;
3587 else
3588 continue;
3589
3590 // Check the cost of inserting the necessary logic before performing the
3591 // transformation.
3592 if (TTI) {
3593 Type *Ty = BI->getCondition()->getType();
3594 InstructionCost Cost = TTI->getArithmeticInstrCost(Opc, Ty, CostKind);
3595 if (InvertPredCond && (!PBI->getCondition()->hasOneUse() ||
3596 !isa<CmpInst>(PBI->getCondition())))
3597 Cost += TTI->getArithmeticInstrCost(Instruction::Xor, Ty, CostKind);
3598
3599 if (Cost > BranchFoldThreshold)
3600 continue;
3601 }
3602
3603 // Ok, we do want to deal with this predecessor. Record it.
3604 Preds.emplace_back(PredBlock);
3605 }
3606
3607 // If there aren't any predecessors into which we can fold,
3608 // don't bother checking the cost.
3609 if (Preds.empty())
3610 return false;
3611
3612 // Only allow this transformation if computing the condition doesn't involve
3613 // too many instructions and these involved instructions can be executed
3614 // unconditionally. We denote all involved instructions except the condition
3615 // as "bonus instructions", and only allow this transformation when the
3616 // number of the bonus instructions we'll need to create when cloning into
3617 // each predecessor does not exceed a certain threshold.
3618 unsigned NumBonusInsts = 0;
3619 bool SawVectorOp = false;
3620 const unsigned PredCount = Preds.size();
3621 for (Instruction &I : *BB) {
3622 // Don't check the branch condition comparison itself.
3623 if (&I == Cond)
3624 continue;
3625 // Ignore dbg intrinsics, and the terminator.
3626 if (isa<DbgInfoIntrinsic>(I) || isa<BranchInst>(I))
3627 continue;
3628 // I must be safe to execute unconditionally.
3629 if (!isSafeToSpeculativelyExecute(&I))
3630 return false;
3631 SawVectorOp |= isVectorOp(I);
3632
3633 // Account for the cost of duplicating this instruction into each
3634 // predecessor. Ignore free instructions.
3635 if (!TTI ||
3636 TTI->getUserCost(&I, CostKind) != TargetTransformInfo::TCC_Free) {
3637 NumBonusInsts += PredCount;
3638
3639 // Early exits once we reach the limit.
3640 if (NumBonusInsts >
3641 BonusInstThreshold * BranchFoldToCommonDestVectorMultiplier)
3642 return false;
3643 }
3644
3645 auto IsBCSSAUse = [BB, &I](Use &U) {
3646 auto *UI = cast<Instruction>(U.getUser());
3647 if (auto *PN = dyn_cast<PHINode>(UI))
3648 return PN->getIncomingBlock(U) == BB;
3649 return UI->getParent() == BB && I.comesBefore(UI);
3650 };
3651
3652 // Does this instruction require rewriting of uses?
3653 if (!all_of(I.uses(), IsBCSSAUse))
3654 return false;
3655 }
3656 if (NumBonusInsts >
3657 BonusInstThreshold *
3658 (SawVectorOp ? BranchFoldToCommonDestVectorMultiplier : 1))
3659 return false;
3660
3661 // Ok, we have the budget. Perform the transformation.
3662 for (BasicBlock *PredBlock : Preds) {
3663 auto *PBI = cast<BranchInst>(PredBlock->getTerminator());
3664 return performBranchToCommonDestFolding(BI, PBI, DTU, MSSAU, TTI);
3665 }
3666 return false;
3667 }
3668
3669 // If there is only one store in BB1 and BB2, return it, otherwise return
3670 // nullptr.
findUniqueStoreInBlocks(BasicBlock * BB1,BasicBlock * BB2)3671 static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) {
3672 StoreInst *S = nullptr;
3673 for (auto *BB : {BB1, BB2}) {
3674 if (!BB)
3675 continue;
3676 for (auto &I : *BB)
3677 if (auto *SI = dyn_cast<StoreInst>(&I)) {
3678 if (S)
3679 // Multiple stores seen.
3680 return nullptr;
3681 else
3682 S = SI;
3683 }
3684 }
3685 return S;
3686 }
3687
ensureValueAvailableInSuccessor(Value * V,BasicBlock * BB,Value * AlternativeV=nullptr)3688 static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB,
3689 Value *AlternativeV = nullptr) {
3690 // PHI is going to be a PHI node that allows the value V that is defined in
3691 // BB to be referenced in BB's only successor.
3692 //
3693 // If AlternativeV is nullptr, the only value we care about in PHI is V. It
3694 // doesn't matter to us what the other operand is (it'll never get used). We
3695 // could just create a new PHI with an undef incoming value, but that could
3696 // increase register pressure if EarlyCSE/InstCombine can't fold it with some
3697 // other PHI. So here we directly look for some PHI in BB's successor with V
3698 // as an incoming operand. If we find one, we use it, else we create a new
3699 // one.
3700 //
3701 // If AlternativeV is not nullptr, we care about both incoming values in PHI.
3702 // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV]
3703 // where OtherBB is the single other predecessor of BB's only successor.
3704 PHINode *PHI = nullptr;
3705 BasicBlock *Succ = BB->getSingleSuccessor();
3706
3707 for (auto I = Succ->begin(); isa<PHINode>(I); ++I)
3708 if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) {
3709 PHI = cast<PHINode>(I);
3710 if (!AlternativeV)
3711 break;
3712
3713 assert(Succ->hasNPredecessors(2));
3714 auto PredI = pred_begin(Succ);
3715 BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI;
3716 if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV)
3717 break;
3718 PHI = nullptr;
3719 }
3720 if (PHI)
3721 return PHI;
3722
3723 // If V is not an instruction defined in BB, just return it.
3724 if (!AlternativeV &&
3725 (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB))
3726 return V;
3727
3728 PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge", &Succ->front());
3729 PHI->addIncoming(V, BB);
3730 for (BasicBlock *PredBB : predecessors(Succ))
3731 if (PredBB != BB)
3732 PHI->addIncoming(
3733 AlternativeV ? AlternativeV : UndefValue::get(V->getType()), PredBB);
3734 return PHI;
3735 }
3736
mergeConditionalStoreToAddress(BasicBlock * PTB,BasicBlock * PFB,BasicBlock * QTB,BasicBlock * QFB,BasicBlock * PostBB,Value * Address,bool InvertPCond,bool InvertQCond,DomTreeUpdater * DTU,const DataLayout & DL,const TargetTransformInfo & TTI)3737 static bool mergeConditionalStoreToAddress(
3738 BasicBlock *PTB, BasicBlock *PFB, BasicBlock *QTB, BasicBlock *QFB,
3739 BasicBlock *PostBB, Value *Address, bool InvertPCond, bool InvertQCond,
3740 DomTreeUpdater *DTU, const DataLayout &DL, const TargetTransformInfo &TTI) {
3741 // For every pointer, there must be exactly two stores, one coming from
3742 // PTB or PFB, and the other from QTB or QFB. We don't support more than one
3743 // store (to any address) in PTB,PFB or QTB,QFB.
3744 // FIXME: We could relax this restriction with a bit more work and performance
3745 // testing.
3746 StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB);
3747 StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB);
3748 if (!PStore || !QStore)
3749 return false;
3750
3751 // Now check the stores are compatible.
3752 if (!QStore->isUnordered() || !PStore->isUnordered() ||
3753 PStore->getValueOperand()->getType() !=
3754 QStore->getValueOperand()->getType())
3755 return false;
3756
3757 // Check that sinking the store won't cause program behavior changes. Sinking
3758 // the store out of the Q blocks won't change any behavior as we're sinking
3759 // from a block to its unconditional successor. But we're moving a store from
3760 // the P blocks down through the middle block (QBI) and past both QFB and QTB.
3761 // So we need to check that there are no aliasing loads or stores in
3762 // QBI, QTB and QFB. We also need to check there are no conflicting memory
3763 // operations between PStore and the end of its parent block.
3764 //
3765 // The ideal way to do this is to query AliasAnalysis, but we don't
3766 // preserve AA currently so that is dangerous. Be super safe and just
3767 // check there are no other memory operations at all.
3768 for (auto &I : *QFB->getSinglePredecessor())
3769 if (I.mayReadOrWriteMemory())
3770 return false;
3771 for (auto &I : *QFB)
3772 if (&I != QStore && I.mayReadOrWriteMemory())
3773 return false;
3774 if (QTB)
3775 for (auto &I : *QTB)
3776 if (&I != QStore && I.mayReadOrWriteMemory())
3777 return false;
3778 for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end();
3779 I != E; ++I)
3780 if (&*I != PStore && I->mayReadOrWriteMemory())
3781 return false;
3782
3783 // If we're not in aggressive mode, we only optimize if we have some
3784 // confidence that by optimizing we'll allow P and/or Q to be if-converted.
3785 auto IsWorthwhile = [&](BasicBlock *BB, ArrayRef<StoreInst *> FreeStores) {
3786 if (!BB)
3787 return true;
3788 // Heuristic: if the block can be if-converted/phi-folded and the
3789 // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to
3790 // thread this store.
3791 InstructionCost Cost = 0;
3792 InstructionCost Budget =
3793 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
3794 for (auto &I : BB->instructionsWithoutDebug(false)) {
3795 // Consider terminator instruction to be free.
3796 if (I.isTerminator())
3797 continue;
3798 // If this is one the stores that we want to speculate out of this BB,
3799 // then don't count it's cost, consider it to be free.
3800 if (auto *S = dyn_cast<StoreInst>(&I))
3801 if (llvm::find(FreeStores, S))
3802 continue;
3803 // Else, we have a white-list of instructions that we are ak speculating.
3804 if (!isa<BinaryOperator>(I) && !isa<GetElementPtrInst>(I))
3805 return false; // Not in white-list - not worthwhile folding.
3806 // And finally, if this is a non-free instruction that we are okay
3807 // speculating, ensure that we consider the speculation budget.
3808 Cost += TTI.getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency);
3809 if (Cost > Budget)
3810 return false; // Eagerly refuse to fold as soon as we're out of budget.
3811 }
3812 assert(Cost <= Budget &&
3813 "When we run out of budget we will eagerly return from within the "
3814 "per-instruction loop.");
3815 return true;
3816 };
3817
3818 const std::array<StoreInst *, 2> FreeStores = {PStore, QStore};
3819 if (!MergeCondStoresAggressively &&
3820 (!IsWorthwhile(PTB, FreeStores) || !IsWorthwhile(PFB, FreeStores) ||
3821 !IsWorthwhile(QTB, FreeStores) || !IsWorthwhile(QFB, FreeStores)))
3822 return false;
3823
3824 // If PostBB has more than two predecessors, we need to split it so we can
3825 // sink the store.
3826 if (std::next(pred_begin(PostBB), 2) != pred_end(PostBB)) {
3827 // We know that QFB's only successor is PostBB. And QFB has a single
3828 // predecessor. If QTB exists, then its only successor is also PostBB.
3829 // If QTB does not exist, then QFB's only predecessor has a conditional
3830 // branch to QFB and PostBB.
3831 BasicBlock *TruePred = QTB ? QTB : QFB->getSinglePredecessor();
3832 BasicBlock *NewBB =
3833 SplitBlockPredecessors(PostBB, {QFB, TruePred}, "condstore.split", DTU);
3834 if (!NewBB)
3835 return false;
3836 PostBB = NewBB;
3837 }
3838
3839 // OK, we're going to sink the stores to PostBB. The store has to be
3840 // conditional though, so first create the predicate.
3841 Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator())
3842 ->getCondition();
3843 Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator())
3844 ->getCondition();
3845
3846 Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(),
3847 PStore->getParent());
3848 Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(),
3849 QStore->getParent(), PPHI);
3850
3851 IRBuilder<> QB(&*PostBB->getFirstInsertionPt());
3852
3853 Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond);
3854 Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond);
3855
3856 if (InvertPCond)
3857 PPred = QB.CreateNot(PPred);
3858 if (InvertQCond)
3859 QPred = QB.CreateNot(QPred);
3860 Value *CombinedPred = QB.CreateOr(PPred, QPred);
3861
3862 auto *T = SplitBlockAndInsertIfThen(CombinedPred, &*QB.GetInsertPoint(),
3863 /*Unreachable=*/false,
3864 /*BranchWeights=*/nullptr, DTU);
3865 QB.SetInsertPoint(T);
3866 StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address));
3867 SI->setAAMetadata(PStore->getAAMetadata().merge(QStore->getAAMetadata()));
3868 // Choose the minimum alignment. If we could prove both stores execute, we
3869 // could use biggest one. In this case, though, we only know that one of the
3870 // stores executes. And we don't know it's safe to take the alignment from a
3871 // store that doesn't execute.
3872 SI->setAlignment(std::min(PStore->getAlign(), QStore->getAlign()));
3873
3874 QStore->eraseFromParent();
3875 PStore->eraseFromParent();
3876
3877 return true;
3878 }
3879
mergeConditionalStores(BranchInst * PBI,BranchInst * QBI,DomTreeUpdater * DTU,const DataLayout & DL,const TargetTransformInfo & TTI)3880 static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI,
3881 DomTreeUpdater *DTU, const DataLayout &DL,
3882 const TargetTransformInfo &TTI) {
3883 // The intention here is to find diamonds or triangles (see below) where each
3884 // conditional block contains a store to the same address. Both of these
3885 // stores are conditional, so they can't be unconditionally sunk. But it may
3886 // be profitable to speculatively sink the stores into one merged store at the
3887 // end, and predicate the merged store on the union of the two conditions of
3888 // PBI and QBI.
3889 //
3890 // This can reduce the number of stores executed if both of the conditions are
3891 // true, and can allow the blocks to become small enough to be if-converted.
3892 // This optimization will also chain, so that ladders of test-and-set
3893 // sequences can be if-converted away.
3894 //
3895 // We only deal with simple diamonds or triangles:
3896 //
3897 // PBI or PBI or a combination of the two
3898 // / \ | \
3899 // PTB PFB | PFB
3900 // \ / | /
3901 // QBI QBI
3902 // / \ | \
3903 // QTB QFB | QFB
3904 // \ / | /
3905 // PostBB PostBB
3906 //
3907 // We model triangles as a type of diamond with a nullptr "true" block.
3908 // Triangles are canonicalized so that the fallthrough edge is represented by
3909 // a true condition, as in the diagram above.
3910 BasicBlock *PTB = PBI->getSuccessor(0);
3911 BasicBlock *PFB = PBI->getSuccessor(1);
3912 BasicBlock *QTB = QBI->getSuccessor(0);
3913 BasicBlock *QFB = QBI->getSuccessor(1);
3914 BasicBlock *PostBB = QFB->getSingleSuccessor();
3915
3916 // Make sure we have a good guess for PostBB. If QTB's only successor is
3917 // QFB, then QFB is a better PostBB.
3918 if (QTB->getSingleSuccessor() == QFB)
3919 PostBB = QFB;
3920
3921 // If we couldn't find a good PostBB, stop.
3922 if (!PostBB)
3923 return false;
3924
3925 bool InvertPCond = false, InvertQCond = false;
3926 // Canonicalize fallthroughs to the true branches.
3927 if (PFB == QBI->getParent()) {
3928 std::swap(PFB, PTB);
3929 InvertPCond = true;
3930 }
3931 if (QFB == PostBB) {
3932 std::swap(QFB, QTB);
3933 InvertQCond = true;
3934 }
3935
3936 // From this point on we can assume PTB or QTB may be fallthroughs but PFB
3937 // and QFB may not. Model fallthroughs as a nullptr block.
3938 if (PTB == QBI->getParent())
3939 PTB = nullptr;
3940 if (QTB == PostBB)
3941 QTB = nullptr;
3942
3943 // Legality bailouts. We must have at least the non-fallthrough blocks and
3944 // the post-dominating block, and the non-fallthroughs must only have one
3945 // predecessor.
3946 auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) {
3947 return BB->getSinglePredecessor() == P && BB->getSingleSuccessor() == S;
3948 };
3949 if (!HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) ||
3950 !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB))
3951 return false;
3952 if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) ||
3953 (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB)))
3954 return false;
3955 if (!QBI->getParent()->hasNUses(2))
3956 return false;
3957
3958 // OK, this is a sequence of two diamonds or triangles.
3959 // Check if there are stores in PTB or PFB that are repeated in QTB or QFB.
3960 SmallPtrSet<Value *, 4> PStoreAddresses, QStoreAddresses;
3961 for (auto *BB : {PTB, PFB}) {
3962 if (!BB)
3963 continue;
3964 for (auto &I : *BB)
3965 if (StoreInst *SI = dyn_cast<StoreInst>(&I))
3966 PStoreAddresses.insert(SI->getPointerOperand());
3967 }
3968 for (auto *BB : {QTB, QFB}) {
3969 if (!BB)
3970 continue;
3971 for (auto &I : *BB)
3972 if (StoreInst *SI = dyn_cast<StoreInst>(&I))
3973 QStoreAddresses.insert(SI->getPointerOperand());
3974 }
3975
3976 set_intersect(PStoreAddresses, QStoreAddresses);
3977 // set_intersect mutates PStoreAddresses in place. Rename it here to make it
3978 // clear what it contains.
3979 auto &CommonAddresses = PStoreAddresses;
3980
3981 bool Changed = false;
3982 for (auto *Address : CommonAddresses)
3983 Changed |=
3984 mergeConditionalStoreToAddress(PTB, PFB, QTB, QFB, PostBB, Address,
3985 InvertPCond, InvertQCond, DTU, DL, TTI);
3986 return Changed;
3987 }
3988
3989 /// If the previous block ended with a widenable branch, determine if reusing
3990 /// the target block is profitable and legal. This will have the effect of
3991 /// "widening" PBI, but doesn't require us to reason about hosting safety.
tryWidenCondBranchToCondBranch(BranchInst * PBI,BranchInst * BI,DomTreeUpdater * DTU)3992 static bool tryWidenCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI,
3993 DomTreeUpdater *DTU) {
3994 // TODO: This can be generalized in two important ways:
3995 // 1) We can allow phi nodes in IfFalseBB and simply reuse all the input
3996 // values from the PBI edge.
3997 // 2) We can sink side effecting instructions into BI's fallthrough
3998 // successor provided they doesn't contribute to computation of
3999 // BI's condition.
4000 Value *CondWB, *WC;
4001 BasicBlock *IfTrueBB, *IfFalseBB;
4002 if (!parseWidenableBranch(PBI, CondWB, WC, IfTrueBB, IfFalseBB) ||
4003 IfTrueBB != BI->getParent() || !BI->getParent()->getSinglePredecessor())
4004 return false;
4005 if (!IfFalseBB->phis().empty())
4006 return false; // TODO
4007 // Use lambda to lazily compute expensive condition after cheap ones.
4008 auto NoSideEffects = [](BasicBlock &BB) {
4009 return llvm::none_of(BB, [](const Instruction &I) {
4010 return I.mayWriteToMemory() || I.mayHaveSideEffects();
4011 });
4012 };
4013 if (BI->getSuccessor(1) != IfFalseBB && // no inf looping
4014 BI->getSuccessor(1)->getTerminatingDeoptimizeCall() && // profitability
4015 NoSideEffects(*BI->getParent())) {
4016 auto *OldSuccessor = BI->getSuccessor(1);
4017 OldSuccessor->removePredecessor(BI->getParent());
4018 BI->setSuccessor(1, IfFalseBB);
4019 if (DTU)
4020 DTU->applyUpdates(
4021 {{DominatorTree::Insert, BI->getParent(), IfFalseBB},
4022 {DominatorTree::Delete, BI->getParent(), OldSuccessor}});
4023 return true;
4024 }
4025 if (BI->getSuccessor(0) != IfFalseBB && // no inf looping
4026 BI->getSuccessor(0)->getTerminatingDeoptimizeCall() && // profitability
4027 NoSideEffects(*BI->getParent())) {
4028 auto *OldSuccessor = BI->getSuccessor(0);
4029 OldSuccessor->removePredecessor(BI->getParent());
4030 BI->setSuccessor(0, IfFalseBB);
4031 if (DTU)
4032 DTU->applyUpdates(
4033 {{DominatorTree::Insert, BI->getParent(), IfFalseBB},
4034 {DominatorTree::Delete, BI->getParent(), OldSuccessor}});
4035 return true;
4036 }
4037 return false;
4038 }
4039
4040 /// If we have a conditional branch as a predecessor of another block,
4041 /// this function tries to simplify it. We know
4042 /// that PBI and BI are both conditional branches, and BI is in one of the
4043 /// successor blocks of PBI - PBI branches to BI.
SimplifyCondBranchToCondBranch(BranchInst * PBI,BranchInst * BI,DomTreeUpdater * DTU,const DataLayout & DL,const TargetTransformInfo & TTI)4044 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI,
4045 DomTreeUpdater *DTU,
4046 const DataLayout &DL,
4047 const TargetTransformInfo &TTI) {
4048 assert(PBI->isConditional() && BI->isConditional());
4049 BasicBlock *BB = BI->getParent();
4050
4051 // If this block ends with a branch instruction, and if there is a
4052 // predecessor that ends on a branch of the same condition, make
4053 // this conditional branch redundant.
4054 if (PBI->getCondition() == BI->getCondition() &&
4055 PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
4056 // Okay, the outcome of this conditional branch is statically
4057 // knowable. If this block had a single pred, handle specially, otherwise
4058 // FoldCondBranchOnValueKnownInPredecessor() will handle it.
4059 if (BB->getSinglePredecessor()) {
4060 // Turn this into a branch on constant.
4061 bool CondIsTrue = PBI->getSuccessor(0) == BB;
4062 BI->setCondition(
4063 ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue));
4064 return true; // Nuke the branch on constant.
4065 }
4066 }
4067
4068 // If the previous block ended with a widenable branch, determine if reusing
4069 // the target block is profitable and legal. This will have the effect of
4070 // "widening" PBI, but doesn't require us to reason about hosting safety.
4071 if (tryWidenCondBranchToCondBranch(PBI, BI, DTU))
4072 return true;
4073
4074 // If both branches are conditional and both contain stores to the same
4075 // address, remove the stores from the conditionals and create a conditional
4076 // merged store at the end.
4077 if (MergeCondStores && mergeConditionalStores(PBI, BI, DTU, DL, TTI))
4078 return true;
4079
4080 // If this is a conditional branch in an empty block, and if any
4081 // predecessors are a conditional branch to one of our destinations,
4082 // fold the conditions into logical ops and one cond br.
4083
4084 // Ignore dbg intrinsics.
4085 if (&*BB->instructionsWithoutDebug(false).begin() != BI)
4086 return false;
4087
4088 int PBIOp, BIOp;
4089 if (PBI->getSuccessor(0) == BI->getSuccessor(0)) {
4090 PBIOp = 0;
4091 BIOp = 0;
4092 } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) {
4093 PBIOp = 0;
4094 BIOp = 1;
4095 } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) {
4096 PBIOp = 1;
4097 BIOp = 0;
4098 } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) {
4099 PBIOp = 1;
4100 BIOp = 1;
4101 } else {
4102 return false;
4103 }
4104
4105 // Check to make sure that the other destination of this branch
4106 // isn't BB itself. If so, this is an infinite loop that will
4107 // keep getting unwound.
4108 if (PBI->getSuccessor(PBIOp) == BB)
4109 return false;
4110
4111 // Do not perform this transformation if it would require
4112 // insertion of a large number of select instructions. For targets
4113 // without predication/cmovs, this is a big pessimization.
4114
4115 BasicBlock *CommonDest = PBI->getSuccessor(PBIOp);
4116 BasicBlock *RemovedDest = PBI->getSuccessor(PBIOp ^ 1);
4117 unsigned NumPhis = 0;
4118 for (BasicBlock::iterator II = CommonDest->begin(); isa<PHINode>(II);
4119 ++II, ++NumPhis) {
4120 if (NumPhis > 2) // Disable this xform.
4121 return false;
4122 }
4123
4124 // Finally, if everything is ok, fold the branches to logical ops.
4125 BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1);
4126
4127 LLVM_DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent()
4128 << "AND: " << *BI->getParent());
4129
4130 SmallVector<DominatorTree::UpdateType, 5> Updates;
4131
4132 // If OtherDest *is* BB, then BB is a basic block with a single conditional
4133 // branch in it, where one edge (OtherDest) goes back to itself but the other
4134 // exits. We don't *know* that the program avoids the infinite loop
4135 // (even though that seems likely). If we do this xform naively, we'll end up
4136 // recursively unpeeling the loop. Since we know that (after the xform is
4137 // done) that the block *is* infinite if reached, we just make it an obviously
4138 // infinite loop with no cond branch.
4139 if (OtherDest == BB) {
4140 // Insert it at the end of the function, because it's either code,
4141 // or it won't matter if it's hot. :)
4142 BasicBlock *InfLoopBlock =
4143 BasicBlock::Create(BB->getContext(), "infloop", BB->getParent());
4144 BranchInst::Create(InfLoopBlock, InfLoopBlock);
4145 if (DTU)
4146 Updates.push_back({DominatorTree::Insert, InfLoopBlock, InfLoopBlock});
4147 OtherDest = InfLoopBlock;
4148 }
4149
4150 LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent());
4151
4152 // BI may have other predecessors. Because of this, we leave
4153 // it alone, but modify PBI.
4154
4155 // Make sure we get to CommonDest on True&True directions.
4156 Value *PBICond = PBI->getCondition();
4157 IRBuilder<NoFolder> Builder(PBI);
4158 if (PBIOp)
4159 PBICond = Builder.CreateNot(PBICond, PBICond->getName() + ".not");
4160
4161 Value *BICond = BI->getCondition();
4162 if (BIOp)
4163 BICond = Builder.CreateNot(BICond, BICond->getName() + ".not");
4164
4165 // Merge the conditions.
4166 Value *Cond =
4167 createLogicalOp(Builder, Instruction::Or, PBICond, BICond, "brmerge");
4168
4169 // Modify PBI to branch on the new condition to the new dests.
4170 PBI->setCondition(Cond);
4171 PBI->setSuccessor(0, CommonDest);
4172 PBI->setSuccessor(1, OtherDest);
4173
4174 if (DTU) {
4175 Updates.push_back({DominatorTree::Insert, PBI->getParent(), OtherDest});
4176 Updates.push_back({DominatorTree::Delete, PBI->getParent(), RemovedDest});
4177
4178 DTU->applyUpdates(Updates);
4179 }
4180
4181 // Update branch weight for PBI.
4182 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
4183 uint64_t PredCommon, PredOther, SuccCommon, SuccOther;
4184 bool HasWeights =
4185 extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
4186 SuccTrueWeight, SuccFalseWeight);
4187 if (HasWeights) {
4188 PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
4189 PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
4190 SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
4191 SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
4192 // The weight to CommonDest should be PredCommon * SuccTotal +
4193 // PredOther * SuccCommon.
4194 // The weight to OtherDest should be PredOther * SuccOther.
4195 uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) +
4196 PredOther * SuccCommon,
4197 PredOther * SuccOther};
4198 // Halve the weights if any of them cannot fit in an uint32_t
4199 FitWeights(NewWeights);
4200
4201 setBranchWeights(PBI, NewWeights[0], NewWeights[1]);
4202 }
4203
4204 // OtherDest may have phi nodes. If so, add an entry from PBI's
4205 // block that are identical to the entries for BI's block.
4206 AddPredecessorToBlock(OtherDest, PBI->getParent(), BB);
4207
4208 // We know that the CommonDest already had an edge from PBI to
4209 // it. If it has PHIs though, the PHIs may have different
4210 // entries for BB and PBI's BB. If so, insert a select to make
4211 // them agree.
4212 for (PHINode &PN : CommonDest->phis()) {
4213 Value *BIV = PN.getIncomingValueForBlock(BB);
4214 unsigned PBBIdx = PN.getBasicBlockIndex(PBI->getParent());
4215 Value *PBIV = PN.getIncomingValue(PBBIdx);
4216 if (BIV != PBIV) {
4217 // Insert a select in PBI to pick the right value.
4218 SelectInst *NV = cast<SelectInst>(
4219 Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName() + ".mux"));
4220 PN.setIncomingValue(PBBIdx, NV);
4221 // Although the select has the same condition as PBI, the original branch
4222 // weights for PBI do not apply to the new select because the select's
4223 // 'logical' edges are incoming edges of the phi that is eliminated, not
4224 // the outgoing edges of PBI.
4225 if (HasWeights) {
4226 uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
4227 uint64_t PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
4228 uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
4229 uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
4230 // The weight to PredCommonDest should be PredCommon * SuccTotal.
4231 // The weight to PredOtherDest should be PredOther * SuccCommon.
4232 uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther),
4233 PredOther * SuccCommon};
4234
4235 FitWeights(NewWeights);
4236
4237 setBranchWeights(NV, NewWeights[0], NewWeights[1]);
4238 }
4239 }
4240 }
4241
4242 LLVM_DEBUG(dbgs() << "INTO: " << *PBI->getParent());
4243 LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent());
4244
4245 // This basic block is probably dead. We know it has at least
4246 // one fewer predecessor.
4247 return true;
4248 }
4249
4250 // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is
4251 // true or to FalseBB if Cond is false.
4252 // Takes care of updating the successors and removing the old terminator.
4253 // Also makes sure not to introduce new successors by assuming that edges to
4254 // non-successor TrueBBs and FalseBBs aren't reachable.
SimplifyTerminatorOnSelect(Instruction * OldTerm,Value * Cond,BasicBlock * TrueBB,BasicBlock * FalseBB,uint32_t TrueWeight,uint32_t FalseWeight)4255 bool SimplifyCFGOpt::SimplifyTerminatorOnSelect(Instruction *OldTerm,
4256 Value *Cond, BasicBlock *TrueBB,
4257 BasicBlock *FalseBB,
4258 uint32_t TrueWeight,
4259 uint32_t FalseWeight) {
4260 auto *BB = OldTerm->getParent();
4261 // Remove any superfluous successor edges from the CFG.
4262 // First, figure out which successors to preserve.
4263 // If TrueBB and FalseBB are equal, only try to preserve one copy of that
4264 // successor.
4265 BasicBlock *KeepEdge1 = TrueBB;
4266 BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr;
4267
4268 SmallSetVector<BasicBlock *, 2> RemovedSuccessors;
4269
4270 // Then remove the rest.
4271 for (BasicBlock *Succ : successors(OldTerm)) {
4272 // Make sure only to keep exactly one copy of each edge.
4273 if (Succ == KeepEdge1)
4274 KeepEdge1 = nullptr;
4275 else if (Succ == KeepEdge2)
4276 KeepEdge2 = nullptr;
4277 else {
4278 Succ->removePredecessor(BB,
4279 /*KeepOneInputPHIs=*/true);
4280
4281 if (Succ != TrueBB && Succ != FalseBB)
4282 RemovedSuccessors.insert(Succ);
4283 }
4284 }
4285
4286 IRBuilder<> Builder(OldTerm);
4287 Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc());
4288
4289 // Insert an appropriate new terminator.
4290 if (!KeepEdge1 && !KeepEdge2) {
4291 if (TrueBB == FalseBB) {
4292 // We were only looking for one successor, and it was present.
4293 // Create an unconditional branch to it.
4294 Builder.CreateBr(TrueBB);
4295 } else {
4296 // We found both of the successors we were looking for.
4297 // Create a conditional branch sharing the condition of the select.
4298 BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB);
4299 if (TrueWeight != FalseWeight)
4300 setBranchWeights(NewBI, TrueWeight, FalseWeight);
4301 }
4302 } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) {
4303 // Neither of the selected blocks were successors, so this
4304 // terminator must be unreachable.
4305 new UnreachableInst(OldTerm->getContext(), OldTerm);
4306 } else {
4307 // One of the selected values was a successor, but the other wasn't.
4308 // Insert an unconditional branch to the one that was found;
4309 // the edge to the one that wasn't must be unreachable.
4310 if (!KeepEdge1) {
4311 // Only TrueBB was found.
4312 Builder.CreateBr(TrueBB);
4313 } else {
4314 // Only FalseBB was found.
4315 Builder.CreateBr(FalseBB);
4316 }
4317 }
4318
4319 EraseTerminatorAndDCECond(OldTerm);
4320
4321 if (DTU) {
4322 SmallVector<DominatorTree::UpdateType, 2> Updates;
4323 Updates.reserve(RemovedSuccessors.size());
4324 for (auto *RemovedSuccessor : RemovedSuccessors)
4325 Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor});
4326 DTU->applyUpdates(Updates);
4327 }
4328
4329 return true;
4330 }
4331
4332 // Replaces
4333 // (switch (select cond, X, Y)) on constant X, Y
4334 // with a branch - conditional if X and Y lead to distinct BBs,
4335 // unconditional otherwise.
SimplifySwitchOnSelect(SwitchInst * SI,SelectInst * Select)4336 bool SimplifyCFGOpt::SimplifySwitchOnSelect(SwitchInst *SI,
4337 SelectInst *Select) {
4338 // Check for constant integer values in the select.
4339 ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue());
4340 ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue());
4341 if (!TrueVal || !FalseVal)
4342 return false;
4343
4344 // Find the relevant condition and destinations.
4345 Value *Condition = Select->getCondition();
4346 BasicBlock *TrueBB = SI->findCaseValue(TrueVal)->getCaseSuccessor();
4347 BasicBlock *FalseBB = SI->findCaseValue(FalseVal)->getCaseSuccessor();
4348
4349 // Get weight for TrueBB and FalseBB.
4350 uint32_t TrueWeight = 0, FalseWeight = 0;
4351 SmallVector<uint64_t, 8> Weights;
4352 bool HasWeights = HasBranchWeights(SI);
4353 if (HasWeights) {
4354 GetBranchWeights(SI, Weights);
4355 if (Weights.size() == 1 + SI->getNumCases()) {
4356 TrueWeight =
4357 (uint32_t)Weights[SI->findCaseValue(TrueVal)->getSuccessorIndex()];
4358 FalseWeight =
4359 (uint32_t)Weights[SI->findCaseValue(FalseVal)->getSuccessorIndex()];
4360 }
4361 }
4362
4363 // Perform the actual simplification.
4364 return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, TrueWeight,
4365 FalseWeight);
4366 }
4367
4368 // Replaces
4369 // (indirectbr (select cond, blockaddress(@fn, BlockA),
4370 // blockaddress(@fn, BlockB)))
4371 // with
4372 // (br cond, BlockA, BlockB).
SimplifyIndirectBrOnSelect(IndirectBrInst * IBI,SelectInst * SI)4373 bool SimplifyCFGOpt::SimplifyIndirectBrOnSelect(IndirectBrInst *IBI,
4374 SelectInst *SI) {
4375 // Check that both operands of the select are block addresses.
4376 BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue());
4377 BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue());
4378 if (!TBA || !FBA)
4379 return false;
4380
4381 // Extract the actual blocks.
4382 BasicBlock *TrueBB = TBA->getBasicBlock();
4383 BasicBlock *FalseBB = FBA->getBasicBlock();
4384
4385 // Perform the actual simplification.
4386 return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 0,
4387 0);
4388 }
4389
4390 /// This is called when we find an icmp instruction
4391 /// (a seteq/setne with a constant) as the only instruction in a
4392 /// block that ends with an uncond branch. We are looking for a very specific
4393 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified. In
4394 /// this case, we merge the first two "or's of icmp" into a switch, but then the
4395 /// default value goes to an uncond block with a seteq in it, we get something
4396 /// like:
4397 ///
4398 /// switch i8 %A, label %DEFAULT [ i8 1, label %end i8 2, label %end ]
4399 /// DEFAULT:
4400 /// %tmp = icmp eq i8 %A, 92
4401 /// br label %end
4402 /// end:
4403 /// ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ]
4404 ///
4405 /// We prefer to split the edge to 'end' so that there is a true/false entry to
4406 /// the PHI, merging the third icmp into the switch.
tryToSimplifyUncondBranchWithICmpInIt(ICmpInst * ICI,IRBuilder<> & Builder)4407 bool SimplifyCFGOpt::tryToSimplifyUncondBranchWithICmpInIt(
4408 ICmpInst *ICI, IRBuilder<> &Builder) {
4409 BasicBlock *BB = ICI->getParent();
4410
4411 // If the block has any PHIs in it or the icmp has multiple uses, it is too
4412 // complex.
4413 if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse())
4414 return false;
4415
4416 Value *V = ICI->getOperand(0);
4417 ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1));
4418
4419 // The pattern we're looking for is where our only predecessor is a switch on
4420 // 'V' and this block is the default case for the switch. In this case we can
4421 // fold the compared value into the switch to simplify things.
4422 BasicBlock *Pred = BB->getSinglePredecessor();
4423 if (!Pred || !isa<SwitchInst>(Pred->getTerminator()))
4424 return false;
4425
4426 SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator());
4427 if (SI->getCondition() != V)
4428 return false;
4429
4430 // If BB is reachable on a non-default case, then we simply know the value of
4431 // V in this block. Substitute it and constant fold the icmp instruction
4432 // away.
4433 if (SI->getDefaultDest() != BB) {
4434 ConstantInt *VVal = SI->findCaseDest(BB);
4435 assert(VVal && "Should have a unique destination value");
4436 ICI->setOperand(0, VVal);
4437
4438 if (Value *V = simplifyInstruction(ICI, {DL, ICI})) {
4439 ICI->replaceAllUsesWith(V);
4440 ICI->eraseFromParent();
4441 }
4442 // BB is now empty, so it is likely to simplify away.
4443 return requestResimplify();
4444 }
4445
4446 // Ok, the block is reachable from the default dest. If the constant we're
4447 // comparing exists in one of the other edges, then we can constant fold ICI
4448 // and zap it.
4449 if (SI->findCaseValue(Cst) != SI->case_default()) {
4450 Value *V;
4451 if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
4452 V = ConstantInt::getFalse(BB->getContext());
4453 else
4454 V = ConstantInt::getTrue(BB->getContext());
4455
4456 ICI->replaceAllUsesWith(V);
4457 ICI->eraseFromParent();
4458 // BB is now empty, so it is likely to simplify away.
4459 return requestResimplify();
4460 }
4461
4462 // The use of the icmp has to be in the 'end' block, by the only PHI node in
4463 // the block.
4464 BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0);
4465 PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back());
4466 if (PHIUse == nullptr || PHIUse != &SuccBlock->front() ||
4467 isa<PHINode>(++BasicBlock::iterator(PHIUse)))
4468 return false;
4469
4470 // If the icmp is a SETEQ, then the default dest gets false, the new edge gets
4471 // true in the PHI.
4472 Constant *DefaultCst = ConstantInt::getTrue(BB->getContext());
4473 Constant *NewCst = ConstantInt::getFalse(BB->getContext());
4474
4475 if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
4476 std::swap(DefaultCst, NewCst);
4477
4478 // Replace ICI (which is used by the PHI for the default value) with true or
4479 // false depending on if it is EQ or NE.
4480 ICI->replaceAllUsesWith(DefaultCst);
4481 ICI->eraseFromParent();
4482
4483 SmallVector<DominatorTree::UpdateType, 2> Updates;
4484
4485 // Okay, the switch goes to this block on a default value. Add an edge from
4486 // the switch to the merge point on the compared value.
4487 BasicBlock *NewBB =
4488 BasicBlock::Create(BB->getContext(), "switch.edge", BB->getParent(), BB);
4489 {
4490 SwitchInstProfUpdateWrapper SIW(*SI);
4491 auto W0 = SIW.getSuccessorWeight(0);
4492 SwitchInstProfUpdateWrapper::CaseWeightOpt NewW;
4493 if (W0) {
4494 NewW = ((uint64_t(*W0) + 1) >> 1);
4495 SIW.setSuccessorWeight(0, *NewW);
4496 }
4497 SIW.addCase(Cst, NewBB, NewW);
4498 if (DTU)
4499 Updates.push_back({DominatorTree::Insert, Pred, NewBB});
4500 }
4501
4502 // NewBB branches to the phi block, add the uncond branch and the phi entry.
4503 Builder.SetInsertPoint(NewBB);
4504 Builder.SetCurrentDebugLocation(SI->getDebugLoc());
4505 Builder.CreateBr(SuccBlock);
4506 PHIUse->addIncoming(NewCst, NewBB);
4507 if (DTU) {
4508 Updates.push_back({DominatorTree::Insert, NewBB, SuccBlock});
4509 DTU->applyUpdates(Updates);
4510 }
4511 return true;
4512 }
4513
4514 /// The specified branch is a conditional branch.
4515 /// Check to see if it is branching on an or/and chain of icmp instructions, and
4516 /// fold it into a switch instruction if so.
SimplifyBranchOnICmpChain(BranchInst * BI,IRBuilder<> & Builder,const DataLayout & DL)4517 bool SimplifyCFGOpt::SimplifyBranchOnICmpChain(BranchInst *BI,
4518 IRBuilder<> &Builder,
4519 const DataLayout &DL) {
4520 Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
4521 if (!Cond)
4522 return false;
4523
4524 // Change br (X == 0 | X == 1), T, F into a switch instruction.
4525 // If this is a bunch of seteq's or'd together, or if it's a bunch of
4526 // 'setne's and'ed together, collect them.
4527
4528 // Try to gather values from a chain of and/or to be turned into a switch
4529 ConstantComparesGatherer ConstantCompare(Cond, DL);
4530 // Unpack the result
4531 SmallVectorImpl<ConstantInt *> &Values = ConstantCompare.Vals;
4532 Value *CompVal = ConstantCompare.CompValue;
4533 unsigned UsedICmps = ConstantCompare.UsedICmps;
4534 Value *ExtraCase = ConstantCompare.Extra;
4535
4536 // If we didn't have a multiply compared value, fail.
4537 if (!CompVal)
4538 return false;
4539
4540 // Avoid turning single icmps into a switch.
4541 if (UsedICmps <= 1)
4542 return false;
4543
4544 bool TrueWhenEqual = match(Cond, m_LogicalOr(m_Value(), m_Value()));
4545
4546 // There might be duplicate constants in the list, which the switch
4547 // instruction can't handle, remove them now.
4548 array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate);
4549 Values.erase(std::unique(Values.begin(), Values.end()), Values.end());
4550
4551 // If Extra was used, we require at least two switch values to do the
4552 // transformation. A switch with one value is just a conditional branch.
4553 if (ExtraCase && Values.size() < 2)
4554 return false;
4555
4556 // TODO: Preserve branch weight metadata, similarly to how
4557 // FoldValueComparisonIntoPredecessors preserves it.
4558
4559 // Figure out which block is which destination.
4560 BasicBlock *DefaultBB = BI->getSuccessor(1);
4561 BasicBlock *EdgeBB = BI->getSuccessor(0);
4562 if (!TrueWhenEqual)
4563 std::swap(DefaultBB, EdgeBB);
4564
4565 BasicBlock *BB = BI->getParent();
4566
4567 LLVM_DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size()
4568 << " cases into SWITCH. BB is:\n"
4569 << *BB);
4570
4571 SmallVector<DominatorTree::UpdateType, 2> Updates;
4572
4573 // If there are any extra values that couldn't be folded into the switch
4574 // then we evaluate them with an explicit branch first. Split the block
4575 // right before the condbr to handle it.
4576 if (ExtraCase) {
4577 BasicBlock *NewBB = SplitBlock(BB, BI, DTU, /*LI=*/nullptr,
4578 /*MSSAU=*/nullptr, "switch.early.test");
4579
4580 // Remove the uncond branch added to the old block.
4581 Instruction *OldTI = BB->getTerminator();
4582 Builder.SetInsertPoint(OldTI);
4583
4584 // There can be an unintended UB if extra values are Poison. Before the
4585 // transformation, extra values may not be evaluated according to the
4586 // condition, and it will not raise UB. But after transformation, we are
4587 // evaluating extra values before checking the condition, and it will raise
4588 // UB. It can be solved by adding freeze instruction to extra values.
4589 AssumptionCache *AC = Options.AC;
4590
4591 if (!isGuaranteedNotToBeUndefOrPoison(ExtraCase, AC, BI, nullptr))
4592 ExtraCase = Builder.CreateFreeze(ExtraCase);
4593
4594 if (TrueWhenEqual)
4595 Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB);
4596 else
4597 Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB);
4598
4599 OldTI->eraseFromParent();
4600
4601 if (DTU)
4602 Updates.push_back({DominatorTree::Insert, BB, EdgeBB});
4603
4604 // If there are PHI nodes in EdgeBB, then we need to add a new entry to them
4605 // for the edge we just added.
4606 AddPredecessorToBlock(EdgeBB, BB, NewBB);
4607
4608 LLVM_DEBUG(dbgs() << " ** 'icmp' chain unhandled condition: " << *ExtraCase
4609 << "\nEXTRABB = " << *BB);
4610 BB = NewBB;
4611 }
4612
4613 Builder.SetInsertPoint(BI);
4614 // Convert pointer to int before we switch.
4615 if (CompVal->getType()->isPointerTy()) {
4616 CompVal = Builder.CreatePtrToInt(
4617 CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr");
4618 }
4619
4620 // Create the new switch instruction now.
4621 SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size());
4622
4623 // Add all of the 'cases' to the switch instruction.
4624 for (unsigned i = 0, e = Values.size(); i != e; ++i)
4625 New->addCase(Values[i], EdgeBB);
4626
4627 // We added edges from PI to the EdgeBB. As such, if there were any
4628 // PHI nodes in EdgeBB, they need entries to be added corresponding to
4629 // the number of edges added.
4630 for (BasicBlock::iterator BBI = EdgeBB->begin(); isa<PHINode>(BBI); ++BBI) {
4631 PHINode *PN = cast<PHINode>(BBI);
4632 Value *InVal = PN->getIncomingValueForBlock(BB);
4633 for (unsigned i = 0, e = Values.size() - 1; i != e; ++i)
4634 PN->addIncoming(InVal, BB);
4635 }
4636
4637 // Erase the old branch instruction.
4638 EraseTerminatorAndDCECond(BI);
4639 if (DTU)
4640 DTU->applyUpdates(Updates);
4641
4642 LLVM_DEBUG(dbgs() << " ** 'icmp' chain result is:\n" << *BB << '\n');
4643 return true;
4644 }
4645
simplifyResume(ResumeInst * RI,IRBuilder<> & Builder)4646 bool SimplifyCFGOpt::simplifyResume(ResumeInst *RI, IRBuilder<> &Builder) {
4647 if (isa<PHINode>(RI->getValue()))
4648 return simplifyCommonResume(RI);
4649 else if (isa<LandingPadInst>(RI->getParent()->getFirstNonPHI()) &&
4650 RI->getValue() == RI->getParent()->getFirstNonPHI())
4651 // The resume must unwind the exception that caused control to branch here.
4652 return simplifySingleResume(RI);
4653
4654 return false;
4655 }
4656
4657 // Check if cleanup block is empty
isCleanupBlockEmpty(iterator_range<BasicBlock::iterator> R)4658 static bool isCleanupBlockEmpty(iterator_range<BasicBlock::iterator> R) {
4659 for (Instruction &I : R) {
4660 auto *II = dyn_cast<IntrinsicInst>(&I);
4661 if (!II)
4662 return false;
4663
4664 Intrinsic::ID IntrinsicID = II->getIntrinsicID();
4665 switch (IntrinsicID) {
4666 case Intrinsic::dbg_declare:
4667 case Intrinsic::dbg_value:
4668 case Intrinsic::dbg_label:
4669 case Intrinsic::lifetime_end:
4670 break;
4671 default:
4672 return false;
4673 }
4674 }
4675 return true;
4676 }
4677
4678 // Simplify resume that is shared by several landing pads (phi of landing pad).
simplifyCommonResume(ResumeInst * RI)4679 bool SimplifyCFGOpt::simplifyCommonResume(ResumeInst *RI) {
4680 BasicBlock *BB = RI->getParent();
4681
4682 // Check that there are no other instructions except for debug and lifetime
4683 // intrinsics between the phi's and resume instruction.
4684 if (!isCleanupBlockEmpty(
4685 make_range(RI->getParent()->getFirstNonPHI(), BB->getTerminator())))
4686 return false;
4687
4688 SmallSetVector<BasicBlock *, 4> TrivialUnwindBlocks;
4689 auto *PhiLPInst = cast<PHINode>(RI->getValue());
4690
4691 // Check incoming blocks to see if any of them are trivial.
4692 for (unsigned Idx = 0, End = PhiLPInst->getNumIncomingValues(); Idx != End;
4693 Idx++) {
4694 auto *IncomingBB = PhiLPInst->getIncomingBlock(Idx);
4695 auto *IncomingValue = PhiLPInst->getIncomingValue(Idx);
4696
4697 // If the block has other successors, we can not delete it because
4698 // it has other dependents.
4699 if (IncomingBB->getUniqueSuccessor() != BB)
4700 continue;
4701
4702 auto *LandingPad = dyn_cast<LandingPadInst>(IncomingBB->getFirstNonPHI());
4703 // Not the landing pad that caused the control to branch here.
4704 if (IncomingValue != LandingPad)
4705 continue;
4706
4707 if (isCleanupBlockEmpty(
4708 make_range(LandingPad->getNextNode(), IncomingBB->getTerminator())))
4709 TrivialUnwindBlocks.insert(IncomingBB);
4710 }
4711
4712 // If no trivial unwind blocks, don't do any simplifications.
4713 if (TrivialUnwindBlocks.empty())
4714 return false;
4715
4716 // Turn all invokes that unwind here into calls.
4717 for (auto *TrivialBB : TrivialUnwindBlocks) {
4718 // Blocks that will be simplified should be removed from the phi node.
4719 // Note there could be multiple edges to the resume block, and we need
4720 // to remove them all.
4721 while (PhiLPInst->getBasicBlockIndex(TrivialBB) != -1)
4722 BB->removePredecessor(TrivialBB, true);
4723
4724 for (BasicBlock *Pred :
4725 llvm::make_early_inc_range(predecessors(TrivialBB))) {
4726 removeUnwindEdge(Pred, DTU);
4727 ++NumInvokes;
4728 }
4729
4730 // In each SimplifyCFG run, only the current processed block can be erased.
4731 // Otherwise, it will break the iteration of SimplifyCFG pass. So instead
4732 // of erasing TrivialBB, we only remove the branch to the common resume
4733 // block so that we can later erase the resume block since it has no
4734 // predecessors.
4735 TrivialBB->getTerminator()->eraseFromParent();
4736 new UnreachableInst(RI->getContext(), TrivialBB);
4737 if (DTU)
4738 DTU->applyUpdates({{DominatorTree::Delete, TrivialBB, BB}});
4739 }
4740
4741 // Delete the resume block if all its predecessors have been removed.
4742 if (pred_empty(BB))
4743 DeleteDeadBlock(BB, DTU);
4744
4745 return !TrivialUnwindBlocks.empty();
4746 }
4747
4748 // Simplify resume that is only used by a single (non-phi) landing pad.
simplifySingleResume(ResumeInst * RI)4749 bool SimplifyCFGOpt::simplifySingleResume(ResumeInst *RI) {
4750 BasicBlock *BB = RI->getParent();
4751 auto *LPInst = cast<LandingPadInst>(BB->getFirstNonPHI());
4752 assert(RI->getValue() == LPInst &&
4753 "Resume must unwind the exception that caused control to here");
4754
4755 // Check that there are no other instructions except for debug intrinsics.
4756 if (!isCleanupBlockEmpty(
4757 make_range<Instruction *>(LPInst->getNextNode(), RI)))
4758 return false;
4759
4760 // Turn all invokes that unwind here into calls and delete the basic block.
4761 for (BasicBlock *Pred : llvm::make_early_inc_range(predecessors(BB))) {
4762 removeUnwindEdge(Pred, DTU);
4763 ++NumInvokes;
4764 }
4765
4766 // The landingpad is now unreachable. Zap it.
4767 DeleteDeadBlock(BB, DTU);
4768 return true;
4769 }
4770
removeEmptyCleanup(CleanupReturnInst * RI,DomTreeUpdater * DTU)4771 static bool removeEmptyCleanup(CleanupReturnInst *RI, DomTreeUpdater *DTU) {
4772 // If this is a trivial cleanup pad that executes no instructions, it can be
4773 // eliminated. If the cleanup pad continues to the caller, any predecessor
4774 // that is an EH pad will be updated to continue to the caller and any
4775 // predecessor that terminates with an invoke instruction will have its invoke
4776 // instruction converted to a call instruction. If the cleanup pad being
4777 // simplified does not continue to the caller, each predecessor will be
4778 // updated to continue to the unwind destination of the cleanup pad being
4779 // simplified.
4780 BasicBlock *BB = RI->getParent();
4781 CleanupPadInst *CPInst = RI->getCleanupPad();
4782 if (CPInst->getParent() != BB)
4783 // This isn't an empty cleanup.
4784 return false;
4785
4786 // We cannot kill the pad if it has multiple uses. This typically arises
4787 // from unreachable basic blocks.
4788 if (!CPInst->hasOneUse())
4789 return false;
4790
4791 // Check that there are no other instructions except for benign intrinsics.
4792 if (!isCleanupBlockEmpty(
4793 make_range<Instruction *>(CPInst->getNextNode(), RI)))
4794 return false;
4795
4796 // If the cleanup return we are simplifying unwinds to the caller, this will
4797 // set UnwindDest to nullptr.
4798 BasicBlock *UnwindDest = RI->getUnwindDest();
4799 Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr;
4800
4801 // We're about to remove BB from the control flow. Before we do, sink any
4802 // PHINodes into the unwind destination. Doing this before changing the
4803 // control flow avoids some potentially slow checks, since we can currently
4804 // be certain that UnwindDest and BB have no common predecessors (since they
4805 // are both EH pads).
4806 if (UnwindDest) {
4807 // First, go through the PHI nodes in UnwindDest and update any nodes that
4808 // reference the block we are removing
4809 for (PHINode &DestPN : UnwindDest->phis()) {
4810 int Idx = DestPN.getBasicBlockIndex(BB);
4811 // Since BB unwinds to UnwindDest, it has to be in the PHI node.
4812 assert(Idx != -1);
4813 // This PHI node has an incoming value that corresponds to a control
4814 // path through the cleanup pad we are removing. If the incoming
4815 // value is in the cleanup pad, it must be a PHINode (because we
4816 // verified above that the block is otherwise empty). Otherwise, the
4817 // value is either a constant or a value that dominates the cleanup
4818 // pad being removed.
4819 //
4820 // Because BB and UnwindDest are both EH pads, all of their
4821 // predecessors must unwind to these blocks, and since no instruction
4822 // can have multiple unwind destinations, there will be no overlap in
4823 // incoming blocks between SrcPN and DestPN.
4824 Value *SrcVal = DestPN.getIncomingValue(Idx);
4825 PHINode *SrcPN = dyn_cast<PHINode>(SrcVal);
4826
4827 bool NeedPHITranslation = SrcPN && SrcPN->getParent() == BB;
4828 for (auto *Pred : predecessors(BB)) {
4829 Value *Incoming =
4830 NeedPHITranslation ? SrcPN->getIncomingValueForBlock(Pred) : SrcVal;
4831 DestPN.addIncoming(Incoming, Pred);
4832 }
4833 }
4834
4835 // Sink any remaining PHI nodes directly into UnwindDest.
4836 Instruction *InsertPt = DestEHPad;
4837 for (PHINode &PN : make_early_inc_range(BB->phis())) {
4838 if (PN.use_empty() || !PN.isUsedOutsideOfBlock(BB))
4839 // If the PHI node has no uses or all of its uses are in this basic
4840 // block (meaning they are debug or lifetime intrinsics), just leave
4841 // it. It will be erased when we erase BB below.
4842 continue;
4843
4844 // Otherwise, sink this PHI node into UnwindDest.
4845 // Any predecessors to UnwindDest which are not already represented
4846 // must be back edges which inherit the value from the path through
4847 // BB. In this case, the PHI value must reference itself.
4848 for (auto *pred : predecessors(UnwindDest))
4849 if (pred != BB)
4850 PN.addIncoming(&PN, pred);
4851 PN.moveBefore(InsertPt);
4852 // Also, add a dummy incoming value for the original BB itself,
4853 // so that the PHI is well-formed until we drop said predecessor.
4854 PN.addIncoming(PoisonValue::get(PN.getType()), BB);
4855 }
4856 }
4857
4858 std::vector<DominatorTree::UpdateType> Updates;
4859
4860 // We use make_early_inc_range here because we will remove all predecessors.
4861 for (BasicBlock *PredBB : llvm::make_early_inc_range(predecessors(BB))) {
4862 if (UnwindDest == nullptr) {
4863 if (DTU) {
4864 DTU->applyUpdates(Updates);
4865 Updates.clear();
4866 }
4867 removeUnwindEdge(PredBB, DTU);
4868 ++NumInvokes;
4869 } else {
4870 BB->removePredecessor(PredBB);
4871 Instruction *TI = PredBB->getTerminator();
4872 TI->replaceUsesOfWith(BB, UnwindDest);
4873 if (DTU) {
4874 Updates.push_back({DominatorTree::Insert, PredBB, UnwindDest});
4875 Updates.push_back({DominatorTree::Delete, PredBB, BB});
4876 }
4877 }
4878 }
4879
4880 if (DTU)
4881 DTU->applyUpdates(Updates);
4882
4883 DeleteDeadBlock(BB, DTU);
4884
4885 return true;
4886 }
4887
4888 // Try to merge two cleanuppads together.
mergeCleanupPad(CleanupReturnInst * RI)4889 static bool mergeCleanupPad(CleanupReturnInst *RI) {
4890 // Skip any cleanuprets which unwind to caller, there is nothing to merge
4891 // with.
4892 BasicBlock *UnwindDest = RI->getUnwindDest();
4893 if (!UnwindDest)
4894 return false;
4895
4896 // This cleanupret isn't the only predecessor of this cleanuppad, it wouldn't
4897 // be safe to merge without code duplication.
4898 if (UnwindDest->getSinglePredecessor() != RI->getParent())
4899 return false;
4900
4901 // Verify that our cleanuppad's unwind destination is another cleanuppad.
4902 auto *SuccessorCleanupPad = dyn_cast<CleanupPadInst>(&UnwindDest->front());
4903 if (!SuccessorCleanupPad)
4904 return false;
4905
4906 CleanupPadInst *PredecessorCleanupPad = RI->getCleanupPad();
4907 // Replace any uses of the successor cleanupad with the predecessor pad
4908 // The only cleanuppad uses should be this cleanupret, it's cleanupret and
4909 // funclet bundle operands.
4910 SuccessorCleanupPad->replaceAllUsesWith(PredecessorCleanupPad);
4911 // Remove the old cleanuppad.
4912 SuccessorCleanupPad->eraseFromParent();
4913 // Now, we simply replace the cleanupret with a branch to the unwind
4914 // destination.
4915 BranchInst::Create(UnwindDest, RI->getParent());
4916 RI->eraseFromParent();
4917
4918 return true;
4919 }
4920
simplifyCleanupReturn(CleanupReturnInst * RI)4921 bool SimplifyCFGOpt::simplifyCleanupReturn(CleanupReturnInst *RI) {
4922 // It is possible to transiantly have an undef cleanuppad operand because we
4923 // have deleted some, but not all, dead blocks.
4924 // Eventually, this block will be deleted.
4925 if (isa<UndefValue>(RI->getOperand(0)))
4926 return false;
4927
4928 if (mergeCleanupPad(RI))
4929 return true;
4930
4931 if (removeEmptyCleanup(RI, DTU))
4932 return true;
4933
4934 return false;
4935 }
4936
4937 // WARNING: keep in sync with InstCombinerImpl::visitUnreachableInst()!
simplifyUnreachable(UnreachableInst * UI)4938 bool SimplifyCFGOpt::simplifyUnreachable(UnreachableInst *UI) {
4939 BasicBlock *BB = UI->getParent();
4940
4941 bool Changed = false;
4942
4943 // If there are any instructions immediately before the unreachable that can
4944 // be removed, do so.
4945 while (UI->getIterator() != BB->begin()) {
4946 BasicBlock::iterator BBI = UI->getIterator();
4947 --BBI;
4948
4949 if (!isGuaranteedToTransferExecutionToSuccessor(&*BBI))
4950 break; // Can not drop any more instructions. We're done here.
4951 // Otherwise, this instruction can be freely erased,
4952 // even if it is not side-effect free.
4953
4954 // Note that deleting EH's here is in fact okay, although it involves a bit
4955 // of subtle reasoning. If this inst is an EH, all the predecessors of this
4956 // block will be the unwind edges of Invoke/CatchSwitch/CleanupReturn,
4957 // and we can therefore guarantee this block will be erased.
4958
4959 // Delete this instruction (any uses are guaranteed to be dead)
4960 BBI->replaceAllUsesWith(PoisonValue::get(BBI->getType()));
4961 BBI->eraseFromParent();
4962 Changed = true;
4963 }
4964
4965 // If the unreachable instruction is the first in the block, take a gander
4966 // at all of the predecessors of this instruction, and simplify them.
4967 if (&BB->front() != UI)
4968 return Changed;
4969
4970 std::vector<DominatorTree::UpdateType> Updates;
4971
4972 SmallSetVector<BasicBlock *, 8> Preds(pred_begin(BB), pred_end(BB));
4973 for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
4974 auto *Predecessor = Preds[i];
4975 Instruction *TI = Predecessor->getTerminator();
4976 IRBuilder<> Builder(TI);
4977 if (auto *BI = dyn_cast<BranchInst>(TI)) {
4978 // We could either have a proper unconditional branch,
4979 // or a degenerate conditional branch with matching destinations.
4980 if (all_of(BI->successors(),
4981 [BB](auto *Successor) { return Successor == BB; })) {
4982 new UnreachableInst(TI->getContext(), TI);
4983 TI->eraseFromParent();
4984 Changed = true;
4985 } else {
4986 assert(BI->isConditional() && "Can't get here with an uncond branch.");
4987 Value* Cond = BI->getCondition();
4988 assert(BI->getSuccessor(0) != BI->getSuccessor(1) &&
4989 "The destinations are guaranteed to be different here.");
4990 if (BI->getSuccessor(0) == BB) {
4991 Builder.CreateAssumption(Builder.CreateNot(Cond));
4992 Builder.CreateBr(BI->getSuccessor(1));
4993 } else {
4994 assert(BI->getSuccessor(1) == BB && "Incorrect CFG");
4995 Builder.CreateAssumption(Cond);
4996 Builder.CreateBr(BI->getSuccessor(0));
4997 }
4998 EraseTerminatorAndDCECond(BI);
4999 Changed = true;
5000 }
5001 if (DTU)
5002 Updates.push_back({DominatorTree::Delete, Predecessor, BB});
5003 } else if (auto *SI = dyn_cast<SwitchInst>(TI)) {
5004 SwitchInstProfUpdateWrapper SU(*SI);
5005 for (auto i = SU->case_begin(), e = SU->case_end(); i != e;) {
5006 if (i->getCaseSuccessor() != BB) {
5007 ++i;
5008 continue;
5009 }
5010 BB->removePredecessor(SU->getParent());
5011 i = SU.removeCase(i);
5012 e = SU->case_end();
5013 Changed = true;
5014 }
5015 // Note that the default destination can't be removed!
5016 if (DTU && SI->getDefaultDest() != BB)
5017 Updates.push_back({DominatorTree::Delete, Predecessor, BB});
5018 } else if (auto *II = dyn_cast<InvokeInst>(TI)) {
5019 if (II->getUnwindDest() == BB) {
5020 if (DTU) {
5021 DTU->applyUpdates(Updates);
5022 Updates.clear();
5023 }
5024 removeUnwindEdge(TI->getParent(), DTU);
5025 Changed = true;
5026 }
5027 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) {
5028 if (CSI->getUnwindDest() == BB) {
5029 if (DTU) {
5030 DTU->applyUpdates(Updates);
5031 Updates.clear();
5032 }
5033 removeUnwindEdge(TI->getParent(), DTU);
5034 Changed = true;
5035 continue;
5036 }
5037
5038 for (CatchSwitchInst::handler_iterator I = CSI->handler_begin(),
5039 E = CSI->handler_end();
5040 I != E; ++I) {
5041 if (*I == BB) {
5042 CSI->removeHandler(I);
5043 --I;
5044 --E;
5045 Changed = true;
5046 }
5047 }
5048 if (DTU)
5049 Updates.push_back({DominatorTree::Delete, Predecessor, BB});
5050 if (CSI->getNumHandlers() == 0) {
5051 if (CSI->hasUnwindDest()) {
5052 // Redirect all predecessors of the block containing CatchSwitchInst
5053 // to instead branch to the CatchSwitchInst's unwind destination.
5054 if (DTU) {
5055 for (auto *PredecessorOfPredecessor : predecessors(Predecessor)) {
5056 Updates.push_back({DominatorTree::Insert,
5057 PredecessorOfPredecessor,
5058 CSI->getUnwindDest()});
5059 Updates.push_back({DominatorTree::Delete,
5060 PredecessorOfPredecessor, Predecessor});
5061 }
5062 }
5063 Predecessor->replaceAllUsesWith(CSI->getUnwindDest());
5064 } else {
5065 // Rewrite all preds to unwind to caller (or from invoke to call).
5066 if (DTU) {
5067 DTU->applyUpdates(Updates);
5068 Updates.clear();
5069 }
5070 SmallVector<BasicBlock *, 8> EHPreds(predecessors(Predecessor));
5071 for (BasicBlock *EHPred : EHPreds)
5072 removeUnwindEdge(EHPred, DTU);
5073 }
5074 // The catchswitch is no longer reachable.
5075 new UnreachableInst(CSI->getContext(), CSI);
5076 CSI->eraseFromParent();
5077 Changed = true;
5078 }
5079 } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
5080 (void)CRI;
5081 assert(CRI->hasUnwindDest() && CRI->getUnwindDest() == BB &&
5082 "Expected to always have an unwind to BB.");
5083 if (DTU)
5084 Updates.push_back({DominatorTree::Delete, Predecessor, BB});
5085 new UnreachableInst(TI->getContext(), TI);
5086 TI->eraseFromParent();
5087 Changed = true;
5088 }
5089 }
5090
5091 if (DTU)
5092 DTU->applyUpdates(Updates);
5093
5094 // If this block is now dead, remove it.
5095 if (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) {
5096 DeleteDeadBlock(BB, DTU);
5097 return true;
5098 }
5099
5100 return Changed;
5101 }
5102
CasesAreContiguous(SmallVectorImpl<ConstantInt * > & Cases)5103 static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) {
5104 assert(Cases.size() >= 1);
5105
5106 array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate);
5107 for (size_t I = 1, E = Cases.size(); I != E; ++I) {
5108 if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1)
5109 return false;
5110 }
5111 return true;
5112 }
5113
createUnreachableSwitchDefault(SwitchInst * Switch,DomTreeUpdater * DTU)5114 static void createUnreachableSwitchDefault(SwitchInst *Switch,
5115 DomTreeUpdater *DTU) {
5116 LLVM_DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n");
5117 auto *BB = Switch->getParent();
5118 auto *OrigDefaultBlock = Switch->getDefaultDest();
5119 OrigDefaultBlock->removePredecessor(BB);
5120 BasicBlock *NewDefaultBlock = BasicBlock::Create(
5121 BB->getContext(), BB->getName() + ".unreachabledefault", BB->getParent(),
5122 OrigDefaultBlock);
5123 new UnreachableInst(Switch->getContext(), NewDefaultBlock);
5124 Switch->setDefaultDest(&*NewDefaultBlock);
5125 if (DTU) {
5126 SmallVector<DominatorTree::UpdateType, 2> Updates;
5127 Updates.push_back({DominatorTree::Insert, BB, &*NewDefaultBlock});
5128 if (!is_contained(successors(BB), OrigDefaultBlock))
5129 Updates.push_back({DominatorTree::Delete, BB, &*OrigDefaultBlock});
5130 DTU->applyUpdates(Updates);
5131 }
5132 }
5133
5134 /// Turn a switch into an integer range comparison and branch.
5135 /// Switches with more than 2 destinations are ignored.
5136 /// Switches with 1 destination are also ignored.
TurnSwitchRangeIntoICmp(SwitchInst * SI,IRBuilder<> & Builder)5137 bool SimplifyCFGOpt::TurnSwitchRangeIntoICmp(SwitchInst *SI,
5138 IRBuilder<> &Builder) {
5139 assert(SI->getNumCases() > 1 && "Degenerate switch?");
5140
5141 bool HasDefault =
5142 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
5143
5144 auto *BB = SI->getParent();
5145
5146 // Partition the cases into two sets with different destinations.
5147 BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr;
5148 BasicBlock *DestB = nullptr;
5149 SmallVector<ConstantInt *, 16> CasesA;
5150 SmallVector<ConstantInt *, 16> CasesB;
5151
5152 for (auto Case : SI->cases()) {
5153 BasicBlock *Dest = Case.getCaseSuccessor();
5154 if (!DestA)
5155 DestA = Dest;
5156 if (Dest == DestA) {
5157 CasesA.push_back(Case.getCaseValue());
5158 continue;
5159 }
5160 if (!DestB)
5161 DestB = Dest;
5162 if (Dest == DestB) {
5163 CasesB.push_back(Case.getCaseValue());
5164 continue;
5165 }
5166 return false; // More than two destinations.
5167 }
5168 if (!DestB)
5169 return false; // All destinations are the same and the default is unreachable
5170
5171 assert(DestA && DestB &&
5172 "Single-destination switch should have been folded.");
5173 assert(DestA != DestB);
5174 assert(DestB != SI->getDefaultDest());
5175 assert(!CasesB.empty() && "There must be non-default cases.");
5176 assert(!CasesA.empty() || HasDefault);
5177
5178 // Figure out if one of the sets of cases form a contiguous range.
5179 SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr;
5180 BasicBlock *ContiguousDest = nullptr;
5181 BasicBlock *OtherDest = nullptr;
5182 if (!CasesA.empty() && CasesAreContiguous(CasesA)) {
5183 ContiguousCases = &CasesA;
5184 ContiguousDest = DestA;
5185 OtherDest = DestB;
5186 } else if (CasesAreContiguous(CasesB)) {
5187 ContiguousCases = &CasesB;
5188 ContiguousDest = DestB;
5189 OtherDest = DestA;
5190 } else
5191 return false;
5192
5193 // Start building the compare and branch.
5194
5195 Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back());
5196 Constant *NumCases =
5197 ConstantInt::get(Offset->getType(), ContiguousCases->size());
5198
5199 Value *Sub = SI->getCondition();
5200 if (!Offset->isNullValue())
5201 Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off");
5202
5203 Value *Cmp;
5204 // If NumCases overflowed, then all possible values jump to the successor.
5205 if (NumCases->isNullValue() && !ContiguousCases->empty())
5206 Cmp = ConstantInt::getTrue(SI->getContext());
5207 else
5208 Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch");
5209 BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest);
5210
5211 // Update weight for the newly-created conditional branch.
5212 if (HasBranchWeights(SI)) {
5213 SmallVector<uint64_t, 8> Weights;
5214 GetBranchWeights(SI, Weights);
5215 if (Weights.size() == 1 + SI->getNumCases()) {
5216 uint64_t TrueWeight = 0;
5217 uint64_t FalseWeight = 0;
5218 for (size_t I = 0, E = Weights.size(); I != E; ++I) {
5219 if (SI->getSuccessor(I) == ContiguousDest)
5220 TrueWeight += Weights[I];
5221 else
5222 FalseWeight += Weights[I];
5223 }
5224 while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) {
5225 TrueWeight /= 2;
5226 FalseWeight /= 2;
5227 }
5228 setBranchWeights(NewBI, TrueWeight, FalseWeight);
5229 }
5230 }
5231
5232 // Prune obsolete incoming values off the successors' PHI nodes.
5233 for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) {
5234 unsigned PreviousEdges = ContiguousCases->size();
5235 if (ContiguousDest == SI->getDefaultDest())
5236 ++PreviousEdges;
5237 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
5238 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
5239 }
5240 for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) {
5241 unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size();
5242 if (OtherDest == SI->getDefaultDest())
5243 ++PreviousEdges;
5244 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
5245 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
5246 }
5247
5248 // Clean up the default block - it may have phis or other instructions before
5249 // the unreachable terminator.
5250 if (!HasDefault)
5251 createUnreachableSwitchDefault(SI, DTU);
5252
5253 auto *UnreachableDefault = SI->getDefaultDest();
5254
5255 // Drop the switch.
5256 SI->eraseFromParent();
5257
5258 if (!HasDefault && DTU)
5259 DTU->applyUpdates({{DominatorTree::Delete, BB, UnreachableDefault}});
5260
5261 return true;
5262 }
5263
5264 /// Compute masked bits for the condition of a switch
5265 /// and use it to remove dead cases.
eliminateDeadSwitchCases(SwitchInst * SI,DomTreeUpdater * DTU,AssumptionCache * AC,const DataLayout & DL)5266 static bool eliminateDeadSwitchCases(SwitchInst *SI, DomTreeUpdater *DTU,
5267 AssumptionCache *AC,
5268 const DataLayout &DL) {
5269 Value *Cond = SI->getCondition();
5270 KnownBits Known = computeKnownBits(Cond, DL, 0, AC, SI);
5271
5272 // We can also eliminate cases by determining that their values are outside of
5273 // the limited range of the condition based on how many significant (non-sign)
5274 // bits are in the condition value.
5275 unsigned MaxSignificantBitsInCond =
5276 ComputeMaxSignificantBits(Cond, DL, 0, AC, SI);
5277
5278 // Gather dead cases.
5279 SmallVector<ConstantInt *, 8> DeadCases;
5280 SmallDenseMap<BasicBlock *, int, 8> NumPerSuccessorCases;
5281 SmallVector<BasicBlock *, 8> UniqueSuccessors;
5282 for (auto &Case : SI->cases()) {
5283 auto *Successor = Case.getCaseSuccessor();
5284 if (DTU) {
5285 if (!NumPerSuccessorCases.count(Successor))
5286 UniqueSuccessors.push_back(Successor);
5287 ++NumPerSuccessorCases[Successor];
5288 }
5289 const APInt &CaseVal = Case.getCaseValue()->getValue();
5290 if (Known.Zero.intersects(CaseVal) || !Known.One.isSubsetOf(CaseVal) ||
5291 (CaseVal.getMinSignedBits() > MaxSignificantBitsInCond)) {
5292 DeadCases.push_back(Case.getCaseValue());
5293 if (DTU)
5294 --NumPerSuccessorCases[Successor];
5295 LLVM_DEBUG(dbgs() << "SimplifyCFG: switch case " << CaseVal
5296 << " is dead.\n");
5297 }
5298 }
5299
5300 // If we can prove that the cases must cover all possible values, the
5301 // default destination becomes dead and we can remove it. If we know some
5302 // of the bits in the value, we can use that to more precisely compute the
5303 // number of possible unique case values.
5304 bool HasDefault =
5305 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
5306 const unsigned NumUnknownBits =
5307 Known.getBitWidth() - (Known.Zero | Known.One).countPopulation();
5308 assert(NumUnknownBits <= Known.getBitWidth());
5309 if (HasDefault && DeadCases.empty() &&
5310 NumUnknownBits < 64 /* avoid overflow */ &&
5311 SI->getNumCases() == (1ULL << NumUnknownBits)) {
5312 createUnreachableSwitchDefault(SI, DTU);
5313 return true;
5314 }
5315
5316 if (DeadCases.empty())
5317 return false;
5318
5319 SwitchInstProfUpdateWrapper SIW(*SI);
5320 for (ConstantInt *DeadCase : DeadCases) {
5321 SwitchInst::CaseIt CaseI = SI->findCaseValue(DeadCase);
5322 assert(CaseI != SI->case_default() &&
5323 "Case was not found. Probably mistake in DeadCases forming.");
5324 // Prune unused values from PHI nodes.
5325 CaseI->getCaseSuccessor()->removePredecessor(SI->getParent());
5326 SIW.removeCase(CaseI);
5327 }
5328
5329 if (DTU) {
5330 std::vector<DominatorTree::UpdateType> Updates;
5331 for (auto *Successor : UniqueSuccessors)
5332 if (NumPerSuccessorCases[Successor] == 0)
5333 Updates.push_back({DominatorTree::Delete, SI->getParent(), Successor});
5334 DTU->applyUpdates(Updates);
5335 }
5336
5337 return true;
5338 }
5339
5340 /// If BB would be eligible for simplification by
5341 /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated
5342 /// by an unconditional branch), look at the phi node for BB in the successor
5343 /// block and see if the incoming value is equal to CaseValue. If so, return
5344 /// the phi node, and set PhiIndex to BB's index in the phi node.
FindPHIForConditionForwarding(ConstantInt * CaseValue,BasicBlock * BB,int * PhiIndex)5345 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue,
5346 BasicBlock *BB, int *PhiIndex) {
5347 if (BB->getFirstNonPHIOrDbg() != BB->getTerminator())
5348 return nullptr; // BB must be empty to be a candidate for simplification.
5349 if (!BB->getSinglePredecessor())
5350 return nullptr; // BB must be dominated by the switch.
5351
5352 BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator());
5353 if (!Branch || !Branch->isUnconditional())
5354 return nullptr; // Terminator must be unconditional branch.
5355
5356 BasicBlock *Succ = Branch->getSuccessor(0);
5357
5358 for (PHINode &PHI : Succ->phis()) {
5359 int Idx = PHI.getBasicBlockIndex(BB);
5360 assert(Idx >= 0 && "PHI has no entry for predecessor?");
5361
5362 Value *InValue = PHI.getIncomingValue(Idx);
5363 if (InValue != CaseValue)
5364 continue;
5365
5366 *PhiIndex = Idx;
5367 return &PHI;
5368 }
5369
5370 return nullptr;
5371 }
5372
5373 /// Try to forward the condition of a switch instruction to a phi node
5374 /// dominated by the switch, if that would mean that some of the destination
5375 /// blocks of the switch can be folded away. Return true if a change is made.
ForwardSwitchConditionToPHI(SwitchInst * SI)5376 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) {
5377 using ForwardingNodesMap = DenseMap<PHINode *, SmallVector<int, 4>>;
5378
5379 ForwardingNodesMap ForwardingNodes;
5380 BasicBlock *SwitchBlock = SI->getParent();
5381 bool Changed = false;
5382 for (auto &Case : SI->cases()) {
5383 ConstantInt *CaseValue = Case.getCaseValue();
5384 BasicBlock *CaseDest = Case.getCaseSuccessor();
5385
5386 // Replace phi operands in successor blocks that are using the constant case
5387 // value rather than the switch condition variable:
5388 // switchbb:
5389 // switch i32 %x, label %default [
5390 // i32 17, label %succ
5391 // ...
5392 // succ:
5393 // %r = phi i32 ... [ 17, %switchbb ] ...
5394 // -->
5395 // %r = phi i32 ... [ %x, %switchbb ] ...
5396
5397 for (PHINode &Phi : CaseDest->phis()) {
5398 // This only works if there is exactly 1 incoming edge from the switch to
5399 // a phi. If there is >1, that means multiple cases of the switch map to 1
5400 // value in the phi, and that phi value is not the switch condition. Thus,
5401 // this transform would not make sense (the phi would be invalid because
5402 // a phi can't have different incoming values from the same block).
5403 int SwitchBBIdx = Phi.getBasicBlockIndex(SwitchBlock);
5404 if (Phi.getIncomingValue(SwitchBBIdx) == CaseValue &&
5405 count(Phi.blocks(), SwitchBlock) == 1) {
5406 Phi.setIncomingValue(SwitchBBIdx, SI->getCondition());
5407 Changed = true;
5408 }
5409 }
5410
5411 // Collect phi nodes that are indirectly using this switch's case constants.
5412 int PhiIdx;
5413 if (auto *Phi = FindPHIForConditionForwarding(CaseValue, CaseDest, &PhiIdx))
5414 ForwardingNodes[Phi].push_back(PhiIdx);
5415 }
5416
5417 for (auto &ForwardingNode : ForwardingNodes) {
5418 PHINode *Phi = ForwardingNode.first;
5419 SmallVectorImpl<int> &Indexes = ForwardingNode.second;
5420 if (Indexes.size() < 2)
5421 continue;
5422
5423 for (int Index : Indexes)
5424 Phi->setIncomingValue(Index, SI->getCondition());
5425 Changed = true;
5426 }
5427
5428 return Changed;
5429 }
5430
5431 /// Return true if the backend will be able to handle
5432 /// initializing an array of constants like C.
ValidLookupTableConstant(Constant * C,const TargetTransformInfo & TTI)5433 static bool ValidLookupTableConstant(Constant *C, const TargetTransformInfo &TTI) {
5434 if (C->isThreadDependent())
5435 return false;
5436 if (C->isDLLImportDependent())
5437 return false;
5438
5439 if (!isa<ConstantFP>(C) && !isa<ConstantInt>(C) &&
5440 !isa<ConstantPointerNull>(C) && !isa<GlobalValue>(C) &&
5441 !isa<UndefValue>(C) && !isa<ConstantExpr>(C))
5442 return false;
5443
5444 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
5445 // Pointer casts and in-bounds GEPs will not prohibit the backend from
5446 // materializing the array of constants.
5447 Constant *StrippedC = cast<Constant>(CE->stripInBoundsConstantOffsets());
5448 if (StrippedC == C || !ValidLookupTableConstant(StrippedC, TTI))
5449 return false;
5450 }
5451
5452 if (!TTI.shouldBuildLookupTablesForConstant(C))
5453 return false;
5454
5455 return true;
5456 }
5457
5458 /// If V is a Constant, return it. Otherwise, try to look up
5459 /// its constant value in ConstantPool, returning 0 if it's not there.
5460 static Constant *
LookupConstant(Value * V,const SmallDenseMap<Value *,Constant * > & ConstantPool)5461 LookupConstant(Value *V,
5462 const SmallDenseMap<Value *, Constant *> &ConstantPool) {
5463 if (Constant *C = dyn_cast<Constant>(V))
5464 return C;
5465 return ConstantPool.lookup(V);
5466 }
5467
5468 /// Try to fold instruction I into a constant. This works for
5469 /// simple instructions such as binary operations where both operands are
5470 /// constant or can be replaced by constants from the ConstantPool. Returns the
5471 /// resulting constant on success, 0 otherwise.
5472 static Constant *
ConstantFold(Instruction * I,const DataLayout & DL,const SmallDenseMap<Value *,Constant * > & ConstantPool)5473 ConstantFold(Instruction *I, const DataLayout &DL,
5474 const SmallDenseMap<Value *, Constant *> &ConstantPool) {
5475 if (SelectInst *Select = dyn_cast<SelectInst>(I)) {
5476 Constant *A = LookupConstant(Select->getCondition(), ConstantPool);
5477 if (!A)
5478 return nullptr;
5479 if (A->isAllOnesValue())
5480 return LookupConstant(Select->getTrueValue(), ConstantPool);
5481 if (A->isNullValue())
5482 return LookupConstant(Select->getFalseValue(), ConstantPool);
5483 return nullptr;
5484 }
5485
5486 SmallVector<Constant *, 4> COps;
5487 for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) {
5488 if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool))
5489 COps.push_back(A);
5490 else
5491 return nullptr;
5492 }
5493
5494 return ConstantFoldInstOperands(I, COps, DL);
5495 }
5496
5497 /// Try to determine the resulting constant values in phi nodes
5498 /// at the common destination basic block, *CommonDest, for one of the case
5499 /// destionations CaseDest corresponding to value CaseVal (0 for the default
5500 /// case), of a switch instruction SI.
5501 static bool
getCaseResults(SwitchInst * SI,ConstantInt * CaseVal,BasicBlock * CaseDest,BasicBlock ** CommonDest,SmallVectorImpl<std::pair<PHINode *,Constant * >> & Res,const DataLayout & DL,const TargetTransformInfo & TTI)5502 getCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest,
5503 BasicBlock **CommonDest,
5504 SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res,
5505 const DataLayout &DL, const TargetTransformInfo &TTI) {
5506 // The block from which we enter the common destination.
5507 BasicBlock *Pred = SI->getParent();
5508
5509 // If CaseDest is empty except for some side-effect free instructions through
5510 // which we can constant-propagate the CaseVal, continue to its successor.
5511 SmallDenseMap<Value *, Constant *> ConstantPool;
5512 ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal));
5513 for (Instruction &I : CaseDest->instructionsWithoutDebug(false)) {
5514 if (I.isTerminator()) {
5515 // If the terminator is a simple branch, continue to the next block.
5516 if (I.getNumSuccessors() != 1 || I.isExceptionalTerminator())
5517 return false;
5518 Pred = CaseDest;
5519 CaseDest = I.getSuccessor(0);
5520 } else if (Constant *C = ConstantFold(&I, DL, ConstantPool)) {
5521 // Instruction is side-effect free and constant.
5522
5523 // If the instruction has uses outside this block or a phi node slot for
5524 // the block, it is not safe to bypass the instruction since it would then
5525 // no longer dominate all its uses.
5526 for (auto &Use : I.uses()) {
5527 User *User = Use.getUser();
5528 if (Instruction *I = dyn_cast<Instruction>(User))
5529 if (I->getParent() == CaseDest)
5530 continue;
5531 if (PHINode *Phi = dyn_cast<PHINode>(User))
5532 if (Phi->getIncomingBlock(Use) == CaseDest)
5533 continue;
5534 return false;
5535 }
5536
5537 ConstantPool.insert(std::make_pair(&I, C));
5538 } else {
5539 break;
5540 }
5541 }
5542
5543 // If we did not have a CommonDest before, use the current one.
5544 if (!*CommonDest)
5545 *CommonDest = CaseDest;
5546 // If the destination isn't the common one, abort.
5547 if (CaseDest != *CommonDest)
5548 return false;
5549
5550 // Get the values for this case from phi nodes in the destination block.
5551 for (PHINode &PHI : (*CommonDest)->phis()) {
5552 int Idx = PHI.getBasicBlockIndex(Pred);
5553 if (Idx == -1)
5554 continue;
5555
5556 Constant *ConstVal =
5557 LookupConstant(PHI.getIncomingValue(Idx), ConstantPool);
5558 if (!ConstVal)
5559 return false;
5560
5561 // Be conservative about which kinds of constants we support.
5562 if (!ValidLookupTableConstant(ConstVal, TTI))
5563 return false;
5564
5565 Res.push_back(std::make_pair(&PHI, ConstVal));
5566 }
5567
5568 return Res.size() > 0;
5569 }
5570
5571 // Helper function used to add CaseVal to the list of cases that generate
5572 // Result. Returns the updated number of cases that generate this result.
mapCaseToResult(ConstantInt * CaseVal,SwitchCaseResultVectorTy & UniqueResults,Constant * Result)5573 static size_t mapCaseToResult(ConstantInt *CaseVal,
5574 SwitchCaseResultVectorTy &UniqueResults,
5575 Constant *Result) {
5576 for (auto &I : UniqueResults) {
5577 if (I.first == Result) {
5578 I.second.push_back(CaseVal);
5579 return I.second.size();
5580 }
5581 }
5582 UniqueResults.push_back(
5583 std::make_pair(Result, SmallVector<ConstantInt *, 4>(1, CaseVal)));
5584 return 1;
5585 }
5586
5587 // Helper function that initializes a map containing
5588 // results for the PHI node of the common destination block for a switch
5589 // instruction. Returns false if multiple PHI nodes have been found or if
5590 // there is not a common destination block for the switch.
initializeUniqueCases(SwitchInst * SI,PHINode * & PHI,BasicBlock * & CommonDest,SwitchCaseResultVectorTy & UniqueResults,Constant * & DefaultResult,const DataLayout & DL,const TargetTransformInfo & TTI,uintptr_t MaxUniqueResults)5591 static bool initializeUniqueCases(SwitchInst *SI, PHINode *&PHI,
5592 BasicBlock *&CommonDest,
5593 SwitchCaseResultVectorTy &UniqueResults,
5594 Constant *&DefaultResult,
5595 const DataLayout &DL,
5596 const TargetTransformInfo &TTI,
5597 uintptr_t MaxUniqueResults) {
5598 for (auto &I : SI->cases()) {
5599 ConstantInt *CaseVal = I.getCaseValue();
5600
5601 // Resulting value at phi nodes for this case value.
5602 SwitchCaseResultsTy Results;
5603 if (!getCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results,
5604 DL, TTI))
5605 return false;
5606
5607 // Only one value per case is permitted.
5608 if (Results.size() > 1)
5609 return false;
5610
5611 // Add the case->result mapping to UniqueResults.
5612 const size_t NumCasesForResult =
5613 mapCaseToResult(CaseVal, UniqueResults, Results.begin()->second);
5614
5615 // Early out if there are too many cases for this result.
5616 if (NumCasesForResult > MaxSwitchCasesPerResult)
5617 return false;
5618
5619 // Early out if there are too many unique results.
5620 if (UniqueResults.size() > MaxUniqueResults)
5621 return false;
5622
5623 // Check the PHI consistency.
5624 if (!PHI)
5625 PHI = Results[0].first;
5626 else if (PHI != Results[0].first)
5627 return false;
5628 }
5629 // Find the default result value.
5630 SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults;
5631 BasicBlock *DefaultDest = SI->getDefaultDest();
5632 getCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults,
5633 DL, TTI);
5634 // If the default value is not found abort unless the default destination
5635 // is unreachable.
5636 DefaultResult =
5637 DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr;
5638 if ((!DefaultResult &&
5639 !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg())))
5640 return false;
5641
5642 return true;
5643 }
5644
5645 // Helper function that checks if it is possible to transform a switch with only
5646 // two cases (or two cases + default) that produces a result into a select.
5647 // TODO: Handle switches with more than 2 cases that map to the same result.
foldSwitchToSelect(const SwitchCaseResultVectorTy & ResultVector,Constant * DefaultResult,Value * Condition,IRBuilder<> & Builder)5648 static Value *foldSwitchToSelect(const SwitchCaseResultVectorTy &ResultVector,
5649 Constant *DefaultResult, Value *Condition,
5650 IRBuilder<> &Builder) {
5651 // If we are selecting between only two cases transform into a simple
5652 // select or a two-way select if default is possible.
5653 // Example:
5654 // switch (a) { %0 = icmp eq i32 %a, 10
5655 // case 10: return 42; %1 = select i1 %0, i32 42, i32 4
5656 // case 20: return 2; ----> %2 = icmp eq i32 %a, 20
5657 // default: return 4; %3 = select i1 %2, i32 2, i32 %1
5658 // }
5659 if (ResultVector.size() == 2 && ResultVector[0].second.size() == 1 &&
5660 ResultVector[1].second.size() == 1) {
5661 ConstantInt *FirstCase = ResultVector[0].second[0];
5662 ConstantInt *SecondCase = ResultVector[1].second[0];
5663 Value *SelectValue = ResultVector[1].first;
5664 if (DefaultResult) {
5665 Value *ValueCompare =
5666 Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp");
5667 SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first,
5668 DefaultResult, "switch.select");
5669 }
5670 Value *ValueCompare =
5671 Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp");
5672 return Builder.CreateSelect(ValueCompare, ResultVector[0].first,
5673 SelectValue, "switch.select");
5674 }
5675
5676 // Handle the degenerate case where two cases have the same result value.
5677 if (ResultVector.size() == 1 && DefaultResult) {
5678 ArrayRef<ConstantInt *> CaseValues = ResultVector[0].second;
5679 unsigned CaseCount = CaseValues.size();
5680 // n bits group cases map to the same result:
5681 // case 0,4 -> Cond & 0b1..1011 == 0 ? result : default
5682 // case 0,2,4,6 -> Cond & 0b1..1001 == 0 ? result : default
5683 // case 0,2,8,10 -> Cond & 0b1..0101 == 0 ? result : default
5684 if (isPowerOf2_32(CaseCount)) {
5685 ConstantInt *MinCaseVal = CaseValues[0];
5686 // Find mininal value.
5687 for (auto Case : CaseValues)
5688 if (Case->getValue().slt(MinCaseVal->getValue()))
5689 MinCaseVal = Case;
5690
5691 // Mark the bits case number touched.
5692 APInt BitMask = APInt::getZero(MinCaseVal->getBitWidth());
5693 for (auto Case : CaseValues)
5694 BitMask |= (Case->getValue() - MinCaseVal->getValue());
5695
5696 // Check if cases with the same result can cover all number
5697 // in touched bits.
5698 if (BitMask.countPopulation() == Log2_32(CaseCount)) {
5699 if (!MinCaseVal->isNullValue())
5700 Condition = Builder.CreateSub(Condition, MinCaseVal);
5701 Value *And = Builder.CreateAnd(Condition, ~BitMask, "switch.and");
5702 Value *Cmp = Builder.CreateICmpEQ(
5703 And, Constant::getNullValue(And->getType()), "switch.selectcmp");
5704 return Builder.CreateSelect(Cmp, ResultVector[0].first, DefaultResult);
5705 }
5706 }
5707
5708 // Handle the degenerate case where two cases have the same value.
5709 if (CaseValues.size() == 2) {
5710 Value *Cmp1 = Builder.CreateICmpEQ(Condition, CaseValues[0],
5711 "switch.selectcmp.case1");
5712 Value *Cmp2 = Builder.CreateICmpEQ(Condition, CaseValues[1],
5713 "switch.selectcmp.case2");
5714 Value *Cmp = Builder.CreateOr(Cmp1, Cmp2, "switch.selectcmp");
5715 return Builder.CreateSelect(Cmp, ResultVector[0].first, DefaultResult);
5716 }
5717 }
5718
5719 return nullptr;
5720 }
5721
5722 // Helper function to cleanup a switch instruction that has been converted into
5723 // a select, fixing up PHI nodes and basic blocks.
removeSwitchAfterSelectFold(SwitchInst * SI,PHINode * PHI,Value * SelectValue,IRBuilder<> & Builder,DomTreeUpdater * DTU)5724 static void removeSwitchAfterSelectFold(SwitchInst *SI, PHINode *PHI,
5725 Value *SelectValue,
5726 IRBuilder<> &Builder,
5727 DomTreeUpdater *DTU) {
5728 std::vector<DominatorTree::UpdateType> Updates;
5729
5730 BasicBlock *SelectBB = SI->getParent();
5731 BasicBlock *DestBB = PHI->getParent();
5732
5733 if (DTU && !is_contained(predecessors(DestBB), SelectBB))
5734 Updates.push_back({DominatorTree::Insert, SelectBB, DestBB});
5735 Builder.CreateBr(DestBB);
5736
5737 // Remove the switch.
5738
5739 while (PHI->getBasicBlockIndex(SelectBB) >= 0)
5740 PHI->removeIncomingValue(SelectBB);
5741 PHI->addIncoming(SelectValue, SelectBB);
5742
5743 SmallPtrSet<BasicBlock *, 4> RemovedSuccessors;
5744 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
5745 BasicBlock *Succ = SI->getSuccessor(i);
5746
5747 if (Succ == DestBB)
5748 continue;
5749 Succ->removePredecessor(SelectBB);
5750 if (DTU && RemovedSuccessors.insert(Succ).second)
5751 Updates.push_back({DominatorTree::Delete, SelectBB, Succ});
5752 }
5753 SI->eraseFromParent();
5754 if (DTU)
5755 DTU->applyUpdates(Updates);
5756 }
5757
5758 /// If a switch is only used to initialize one or more phi nodes in a common
5759 /// successor block with only two different constant values, try to replace the
5760 /// switch with a select. Returns true if the fold was made.
trySwitchToSelect(SwitchInst * SI,IRBuilder<> & Builder,DomTreeUpdater * DTU,const DataLayout & DL,const TargetTransformInfo & TTI)5761 static bool trySwitchToSelect(SwitchInst *SI, IRBuilder<> &Builder,
5762 DomTreeUpdater *DTU, const DataLayout &DL,
5763 const TargetTransformInfo &TTI) {
5764 Value *const Cond = SI->getCondition();
5765 PHINode *PHI = nullptr;
5766 BasicBlock *CommonDest = nullptr;
5767 Constant *DefaultResult;
5768 SwitchCaseResultVectorTy UniqueResults;
5769 // Collect all the cases that will deliver the same value from the switch.
5770 if (!initializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult,
5771 DL, TTI, /*MaxUniqueResults*/ 2))
5772 return false;
5773
5774 assert(PHI != nullptr && "PHI for value select not found");
5775 Builder.SetInsertPoint(SI);
5776 Value *SelectValue =
5777 foldSwitchToSelect(UniqueResults, DefaultResult, Cond, Builder);
5778 if (!SelectValue)
5779 return false;
5780
5781 removeSwitchAfterSelectFold(SI, PHI, SelectValue, Builder, DTU);
5782 return true;
5783 }
5784
5785 namespace {
5786
5787 /// This class represents a lookup table that can be used to replace a switch.
5788 class SwitchLookupTable {
5789 public:
5790 /// Create a lookup table to use as a switch replacement with the contents
5791 /// of Values, using DefaultValue to fill any holes in the table.
5792 SwitchLookupTable(
5793 Module &M, uint64_t TableSize, ConstantInt *Offset,
5794 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
5795 Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName);
5796
5797 /// Build instructions with Builder to retrieve the value at
5798 /// the position given by Index in the lookup table.
5799 Value *BuildLookup(Value *Index, IRBuilder<> &Builder);
5800
5801 /// Return true if a table with TableSize elements of
5802 /// type ElementType would fit in a target-legal register.
5803 static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize,
5804 Type *ElementType);
5805
5806 private:
5807 // Depending on the contents of the table, it can be represented in
5808 // different ways.
5809 enum {
5810 // For tables where each element contains the same value, we just have to
5811 // store that single value and return it for each lookup.
5812 SingleValueKind,
5813
5814 // For tables where there is a linear relationship between table index
5815 // and values. We calculate the result with a simple multiplication
5816 // and addition instead of a table lookup.
5817 LinearMapKind,
5818
5819 // For small tables with integer elements, we can pack them into a bitmap
5820 // that fits into a target-legal register. Values are retrieved by
5821 // shift and mask operations.
5822 BitMapKind,
5823
5824 // The table is stored as an array of values. Values are retrieved by load
5825 // instructions from the table.
5826 ArrayKind
5827 } Kind;
5828
5829 // For SingleValueKind, this is the single value.
5830 Constant *SingleValue = nullptr;
5831
5832 // For BitMapKind, this is the bitmap.
5833 ConstantInt *BitMap = nullptr;
5834 IntegerType *BitMapElementTy = nullptr;
5835
5836 // For LinearMapKind, these are the constants used to derive the value.
5837 ConstantInt *LinearOffset = nullptr;
5838 ConstantInt *LinearMultiplier = nullptr;
5839
5840 // For ArrayKind, this is the array.
5841 GlobalVariable *Array = nullptr;
5842 };
5843
5844 } // end anonymous namespace
5845
SwitchLookupTable(Module & M,uint64_t TableSize,ConstantInt * Offset,const SmallVectorImpl<std::pair<ConstantInt *,Constant * >> & Values,Constant * DefaultValue,const DataLayout & DL,const StringRef & FuncName)5846 SwitchLookupTable::SwitchLookupTable(
5847 Module &M, uint64_t TableSize, ConstantInt *Offset,
5848 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
5849 Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName) {
5850 assert(Values.size() && "Can't build lookup table without values!");
5851 assert(TableSize >= Values.size() && "Can't fit values in table!");
5852
5853 // If all values in the table are equal, this is that value.
5854 SingleValue = Values.begin()->second;
5855
5856 Type *ValueType = Values.begin()->second->getType();
5857
5858 // Build up the table contents.
5859 SmallVector<Constant *, 64> TableContents(TableSize);
5860 for (size_t I = 0, E = Values.size(); I != E; ++I) {
5861 ConstantInt *CaseVal = Values[I].first;
5862 Constant *CaseRes = Values[I].second;
5863 assert(CaseRes->getType() == ValueType);
5864
5865 uint64_t Idx = (CaseVal->getValue() - Offset->getValue()).getLimitedValue();
5866 TableContents[Idx] = CaseRes;
5867
5868 if (CaseRes != SingleValue)
5869 SingleValue = nullptr;
5870 }
5871
5872 // Fill in any holes in the table with the default result.
5873 if (Values.size() < TableSize) {
5874 assert(DefaultValue &&
5875 "Need a default value to fill the lookup table holes.");
5876 assert(DefaultValue->getType() == ValueType);
5877 for (uint64_t I = 0; I < TableSize; ++I) {
5878 if (!TableContents[I])
5879 TableContents[I] = DefaultValue;
5880 }
5881
5882 if (DefaultValue != SingleValue)
5883 SingleValue = nullptr;
5884 }
5885
5886 // If each element in the table contains the same value, we only need to store
5887 // that single value.
5888 if (SingleValue) {
5889 Kind = SingleValueKind;
5890 return;
5891 }
5892
5893 // Check if we can derive the value with a linear transformation from the
5894 // table index.
5895 if (isa<IntegerType>(ValueType)) {
5896 bool LinearMappingPossible = true;
5897 APInt PrevVal;
5898 APInt DistToPrev;
5899 assert(TableSize >= 2 && "Should be a SingleValue table.");
5900 // Check if there is the same distance between two consecutive values.
5901 for (uint64_t I = 0; I < TableSize; ++I) {
5902 ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]);
5903 if (!ConstVal) {
5904 // This is an undef. We could deal with it, but undefs in lookup tables
5905 // are very seldom. It's probably not worth the additional complexity.
5906 LinearMappingPossible = false;
5907 break;
5908 }
5909 const APInt &Val = ConstVal->getValue();
5910 if (I != 0) {
5911 APInt Dist = Val - PrevVal;
5912 if (I == 1) {
5913 DistToPrev = Dist;
5914 } else if (Dist != DistToPrev) {
5915 LinearMappingPossible = false;
5916 break;
5917 }
5918 }
5919 PrevVal = Val;
5920 }
5921 if (LinearMappingPossible) {
5922 LinearOffset = cast<ConstantInt>(TableContents[0]);
5923 LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev);
5924 Kind = LinearMapKind;
5925 ++NumLinearMaps;
5926 return;
5927 }
5928 }
5929
5930 // If the type is integer and the table fits in a register, build a bitmap.
5931 if (WouldFitInRegister(DL, TableSize, ValueType)) {
5932 IntegerType *IT = cast<IntegerType>(ValueType);
5933 APInt TableInt(TableSize * IT->getBitWidth(), 0);
5934 for (uint64_t I = TableSize; I > 0; --I) {
5935 TableInt <<= IT->getBitWidth();
5936 // Insert values into the bitmap. Undef values are set to zero.
5937 if (!isa<UndefValue>(TableContents[I - 1])) {
5938 ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]);
5939 TableInt |= Val->getValue().zext(TableInt.getBitWidth());
5940 }
5941 }
5942 BitMap = ConstantInt::get(M.getContext(), TableInt);
5943 BitMapElementTy = IT;
5944 Kind = BitMapKind;
5945 ++NumBitMaps;
5946 return;
5947 }
5948
5949 // Store the table in an array.
5950 ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize);
5951 Constant *Initializer = ConstantArray::get(ArrayTy, TableContents);
5952
5953 Array = new GlobalVariable(M, ArrayTy, /*isConstant=*/true,
5954 GlobalVariable::PrivateLinkage, Initializer,
5955 "switch.table." + FuncName);
5956 Array->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
5957 // Set the alignment to that of an array items. We will be only loading one
5958 // value out of it.
5959 Array->setAlignment(Align(DL.getPrefTypeAlignment(ValueType)));
5960 Kind = ArrayKind;
5961 }
5962
BuildLookup(Value * Index,IRBuilder<> & Builder)5963 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) {
5964 switch (Kind) {
5965 case SingleValueKind:
5966 return SingleValue;
5967 case LinearMapKind: {
5968 // Derive the result value from the input value.
5969 Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(),
5970 false, "switch.idx.cast");
5971 if (!LinearMultiplier->isOne())
5972 Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult");
5973 if (!LinearOffset->isZero())
5974 Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset");
5975 return Result;
5976 }
5977 case BitMapKind: {
5978 // Type of the bitmap (e.g. i59).
5979 IntegerType *MapTy = BitMap->getType();
5980
5981 // Cast Index to the same type as the bitmap.
5982 // Note: The Index is <= the number of elements in the table, so
5983 // truncating it to the width of the bitmask is safe.
5984 Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast");
5985
5986 // Multiply the shift amount by the element width.
5987 ShiftAmt = Builder.CreateMul(
5988 ShiftAmt, ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()),
5989 "switch.shiftamt");
5990
5991 // Shift down.
5992 Value *DownShifted =
5993 Builder.CreateLShr(BitMap, ShiftAmt, "switch.downshift");
5994 // Mask off.
5995 return Builder.CreateTrunc(DownShifted, BitMapElementTy, "switch.masked");
5996 }
5997 case ArrayKind: {
5998 // Make sure the table index will not overflow when treated as signed.
5999 IntegerType *IT = cast<IntegerType>(Index->getType());
6000 uint64_t TableSize =
6001 Array->getInitializer()->getType()->getArrayNumElements();
6002 if (TableSize > (1ULL << std::min(IT->getBitWidth() - 1, 63u)))
6003 Index = Builder.CreateZExt(
6004 Index, IntegerType::get(IT->getContext(), IT->getBitWidth() + 1),
6005 "switch.tableidx.zext");
6006
6007 Value *GEPIndices[] = {Builder.getInt32(0), Index};
6008 Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array,
6009 GEPIndices, "switch.gep");
6010 return Builder.CreateLoad(
6011 cast<ArrayType>(Array->getValueType())->getElementType(), GEP,
6012 "switch.load");
6013 }
6014 }
6015 llvm_unreachable("Unknown lookup table kind!");
6016 }
6017
WouldFitInRegister(const DataLayout & DL,uint64_t TableSize,Type * ElementType)6018 bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL,
6019 uint64_t TableSize,
6020 Type *ElementType) {
6021 auto *IT = dyn_cast<IntegerType>(ElementType);
6022 if (!IT)
6023 return false;
6024 // FIXME: If the type is wider than it needs to be, e.g. i8 but all values
6025 // are <= 15, we could try to narrow the type.
6026
6027 // Avoid overflow, fitsInLegalInteger uses unsigned int for the width.
6028 if (TableSize >= UINT_MAX / IT->getBitWidth())
6029 return false;
6030 return DL.fitsInLegalInteger(TableSize * IT->getBitWidth());
6031 }
6032
isTypeLegalForLookupTable(Type * Ty,const TargetTransformInfo & TTI,const DataLayout & DL)6033 static bool isTypeLegalForLookupTable(Type *Ty, const TargetTransformInfo &TTI,
6034 const DataLayout &DL) {
6035 // Allow any legal type.
6036 if (TTI.isTypeLegal(Ty))
6037 return true;
6038
6039 auto *IT = dyn_cast<IntegerType>(Ty);
6040 if (!IT)
6041 return false;
6042
6043 // Also allow power of 2 integer types that have at least 8 bits and fit in
6044 // a register. These types are common in frontend languages and targets
6045 // usually support loads of these types.
6046 // TODO: We could relax this to any integer that fits in a register and rely
6047 // on ABI alignment and padding in the table to allow the load to be widened.
6048 // Or we could widen the constants and truncate the load.
6049 unsigned BitWidth = IT->getBitWidth();
6050 return BitWidth >= 8 && isPowerOf2_32(BitWidth) &&
6051 DL.fitsInLegalInteger(IT->getBitWidth());
6052 }
6053
isSwitchDense(uint64_t NumCases,uint64_t CaseRange)6054 static bool isSwitchDense(uint64_t NumCases, uint64_t CaseRange) {
6055 // 40% is the default density for building a jump table in optsize/minsize
6056 // mode. See also TargetLoweringBase::isSuitableForJumpTable(), which this
6057 // function was based on.
6058 const uint64_t MinDensity = 40;
6059
6060 if (CaseRange >= UINT64_MAX / 100)
6061 return false; // Avoid multiplication overflows below.
6062
6063 return NumCases * 100 >= CaseRange * MinDensity;
6064 }
6065
isSwitchDense(ArrayRef<int64_t> Values)6066 static bool isSwitchDense(ArrayRef<int64_t> Values) {
6067 uint64_t Diff = (uint64_t)Values.back() - (uint64_t)Values.front();
6068 uint64_t Range = Diff + 1;
6069 if (Range < Diff)
6070 return false; // Overflow.
6071
6072 return isSwitchDense(Values.size(), Range);
6073 }
6074
6075 /// Determine whether a lookup table should be built for this switch, based on
6076 /// the number of cases, size of the table, and the types of the results.
6077 // TODO: We could support larger than legal types by limiting based on the
6078 // number of loads required and/or table size. If the constants are small we
6079 // could use smaller table entries and extend after the load.
6080 static bool
ShouldBuildLookupTable(SwitchInst * SI,uint64_t TableSize,const TargetTransformInfo & TTI,const DataLayout & DL,const SmallDenseMap<PHINode *,Type * > & ResultTypes)6081 ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize,
6082 const TargetTransformInfo &TTI, const DataLayout &DL,
6083 const SmallDenseMap<PHINode *, Type *> &ResultTypes) {
6084 if (SI->getNumCases() > TableSize)
6085 return false; // TableSize overflowed.
6086
6087 bool AllTablesFitInRegister = true;
6088 bool HasIllegalType = false;
6089 for (const auto &I : ResultTypes) {
6090 Type *Ty = I.second;
6091
6092 // Saturate this flag to true.
6093 HasIllegalType = HasIllegalType || !isTypeLegalForLookupTable(Ty, TTI, DL);
6094
6095 // Saturate this flag to false.
6096 AllTablesFitInRegister =
6097 AllTablesFitInRegister &&
6098 SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty);
6099
6100 // If both flags saturate, we're done. NOTE: This *only* works with
6101 // saturating flags, and all flags have to saturate first due to the
6102 // non-deterministic behavior of iterating over a dense map.
6103 if (HasIllegalType && !AllTablesFitInRegister)
6104 break;
6105 }
6106
6107 // If each table would fit in a register, we should build it anyway.
6108 if (AllTablesFitInRegister)
6109 return true;
6110
6111 // Don't build a table that doesn't fit in-register if it has illegal types.
6112 if (HasIllegalType)
6113 return false;
6114
6115 return isSwitchDense(SI->getNumCases(), TableSize);
6116 }
6117
ShouldUseSwitchConditionAsTableIndex(ConstantInt & MinCaseVal,const ConstantInt & MaxCaseVal,bool HasDefaultResults,const SmallDenseMap<PHINode *,Type * > & ResultTypes,const DataLayout & DL,const TargetTransformInfo & TTI)6118 static bool ShouldUseSwitchConditionAsTableIndex(
6119 ConstantInt &MinCaseVal, const ConstantInt &MaxCaseVal,
6120 bool HasDefaultResults, const SmallDenseMap<PHINode *, Type *> &ResultTypes,
6121 const DataLayout &DL, const TargetTransformInfo &TTI) {
6122 if (MinCaseVal.isNullValue())
6123 return true;
6124 if (MinCaseVal.isNegative() ||
6125 MaxCaseVal.getLimitedValue() == std::numeric_limits<uint64_t>::max() ||
6126 !HasDefaultResults)
6127 return false;
6128 return all_of(ResultTypes, [&](const auto &KV) {
6129 return SwitchLookupTable::WouldFitInRegister(
6130 DL, MaxCaseVal.getLimitedValue() + 1 /* TableSize */,
6131 KV.second /* ResultType */);
6132 });
6133 }
6134
6135 /// Try to reuse the switch table index compare. Following pattern:
6136 /// \code
6137 /// if (idx < tablesize)
6138 /// r = table[idx]; // table does not contain default_value
6139 /// else
6140 /// r = default_value;
6141 /// if (r != default_value)
6142 /// ...
6143 /// \endcode
6144 /// Is optimized to:
6145 /// \code
6146 /// cond = idx < tablesize;
6147 /// if (cond)
6148 /// r = table[idx];
6149 /// else
6150 /// r = default_value;
6151 /// if (cond)
6152 /// ...
6153 /// \endcode
6154 /// Jump threading will then eliminate the second if(cond).
reuseTableCompare(User * PhiUser,BasicBlock * PhiBlock,BranchInst * RangeCheckBranch,Constant * DefaultValue,const SmallVectorImpl<std::pair<ConstantInt *,Constant * >> & Values)6155 static void reuseTableCompare(
6156 User *PhiUser, BasicBlock *PhiBlock, BranchInst *RangeCheckBranch,
6157 Constant *DefaultValue,
6158 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values) {
6159 ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser);
6160 if (!CmpInst)
6161 return;
6162
6163 // We require that the compare is in the same block as the phi so that jump
6164 // threading can do its work afterwards.
6165 if (CmpInst->getParent() != PhiBlock)
6166 return;
6167
6168 Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1));
6169 if (!CmpOp1)
6170 return;
6171
6172 Value *RangeCmp = RangeCheckBranch->getCondition();
6173 Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType());
6174 Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType());
6175
6176 // Check if the compare with the default value is constant true or false.
6177 Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
6178 DefaultValue, CmpOp1, true);
6179 if (DefaultConst != TrueConst && DefaultConst != FalseConst)
6180 return;
6181
6182 // Check if the compare with the case values is distinct from the default
6183 // compare result.
6184 for (auto ValuePair : Values) {
6185 Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
6186 ValuePair.second, CmpOp1, true);
6187 if (!CaseConst || CaseConst == DefaultConst ||
6188 (CaseConst != TrueConst && CaseConst != FalseConst))
6189 return;
6190 }
6191
6192 // Check if the branch instruction dominates the phi node. It's a simple
6193 // dominance check, but sufficient for our needs.
6194 // Although this check is invariant in the calling loops, it's better to do it
6195 // at this late stage. Practically we do it at most once for a switch.
6196 BasicBlock *BranchBlock = RangeCheckBranch->getParent();
6197 for (BasicBlock *Pred : predecessors(PhiBlock)) {
6198 if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock)
6199 return;
6200 }
6201
6202 if (DefaultConst == FalseConst) {
6203 // The compare yields the same result. We can replace it.
6204 CmpInst->replaceAllUsesWith(RangeCmp);
6205 ++NumTableCmpReuses;
6206 } else {
6207 // The compare yields the same result, just inverted. We can replace it.
6208 Value *InvertedTableCmp = BinaryOperator::CreateXor(
6209 RangeCmp, ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp",
6210 RangeCheckBranch);
6211 CmpInst->replaceAllUsesWith(InvertedTableCmp);
6212 ++NumTableCmpReuses;
6213 }
6214 }
6215
6216 /// If the switch is only used to initialize one or more phi nodes in a common
6217 /// successor block with different constant values, replace the switch with
6218 /// lookup tables.
SwitchToLookupTable(SwitchInst * SI,IRBuilder<> & Builder,DomTreeUpdater * DTU,const DataLayout & DL,const TargetTransformInfo & TTI)6219 static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder,
6220 DomTreeUpdater *DTU, const DataLayout &DL,
6221 const TargetTransformInfo &TTI) {
6222 assert(SI->getNumCases() > 1 && "Degenerate switch?");
6223
6224 BasicBlock *BB = SI->getParent();
6225 Function *Fn = BB->getParent();
6226 // Only build lookup table when we have a target that supports it or the
6227 // attribute is not set.
6228 if (!TTI.shouldBuildLookupTables() ||
6229 (Fn->getFnAttribute("no-jump-tables").getValueAsBool()))
6230 return false;
6231
6232 // FIXME: If the switch is too sparse for a lookup table, perhaps we could
6233 // split off a dense part and build a lookup table for that.
6234
6235 // FIXME: This creates arrays of GEPs to constant strings, which means each
6236 // GEP needs a runtime relocation in PIC code. We should just build one big
6237 // string and lookup indices into that.
6238
6239 // Ignore switches with less than three cases. Lookup tables will not make
6240 // them faster, so we don't analyze them.
6241 if (SI->getNumCases() < 3)
6242 return false;
6243
6244 // Figure out the corresponding result for each case value and phi node in the
6245 // common destination, as well as the min and max case values.
6246 assert(!SI->cases().empty());
6247 SwitchInst::CaseIt CI = SI->case_begin();
6248 ConstantInt *MinCaseVal = CI->getCaseValue();
6249 ConstantInt *MaxCaseVal = CI->getCaseValue();
6250
6251 BasicBlock *CommonDest = nullptr;
6252
6253 using ResultListTy = SmallVector<std::pair<ConstantInt *, Constant *>, 4>;
6254 SmallDenseMap<PHINode *, ResultListTy> ResultLists;
6255
6256 SmallDenseMap<PHINode *, Constant *> DefaultResults;
6257 SmallDenseMap<PHINode *, Type *> ResultTypes;
6258 SmallVector<PHINode *, 4> PHIs;
6259
6260 for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) {
6261 ConstantInt *CaseVal = CI->getCaseValue();
6262 if (CaseVal->getValue().slt(MinCaseVal->getValue()))
6263 MinCaseVal = CaseVal;
6264 if (CaseVal->getValue().sgt(MaxCaseVal->getValue()))
6265 MaxCaseVal = CaseVal;
6266
6267 // Resulting value at phi nodes for this case value.
6268 using ResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>;
6269 ResultsTy Results;
6270 if (!getCaseResults(SI, CaseVal, CI->getCaseSuccessor(), &CommonDest,
6271 Results, DL, TTI))
6272 return false;
6273
6274 // Append the result from this case to the list for each phi.
6275 for (const auto &I : Results) {
6276 PHINode *PHI = I.first;
6277 Constant *Value = I.second;
6278 if (!ResultLists.count(PHI))
6279 PHIs.push_back(PHI);
6280 ResultLists[PHI].push_back(std::make_pair(CaseVal, Value));
6281 }
6282 }
6283
6284 // Keep track of the result types.
6285 for (PHINode *PHI : PHIs) {
6286 ResultTypes[PHI] = ResultLists[PHI][0].second->getType();
6287 }
6288
6289 uint64_t NumResults = ResultLists[PHIs[0]].size();
6290
6291 // If the table has holes, we need a constant result for the default case
6292 // or a bitmask that fits in a register.
6293 SmallVector<std::pair<PHINode *, Constant *>, 4> DefaultResultsList;
6294 bool HasDefaultResults =
6295 getCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest,
6296 DefaultResultsList, DL, TTI);
6297
6298 for (const auto &I : DefaultResultsList) {
6299 PHINode *PHI = I.first;
6300 Constant *Result = I.second;
6301 DefaultResults[PHI] = Result;
6302 }
6303
6304 bool UseSwitchConditionAsTableIndex = ShouldUseSwitchConditionAsTableIndex(
6305 *MinCaseVal, *MaxCaseVal, HasDefaultResults, ResultTypes, DL, TTI);
6306 uint64_t TableSize;
6307 if (UseSwitchConditionAsTableIndex)
6308 TableSize = MaxCaseVal->getLimitedValue() + 1;
6309 else
6310 TableSize =
6311 (MaxCaseVal->getValue() - MinCaseVal->getValue()).getLimitedValue() + 1;
6312
6313 bool TableHasHoles = (NumResults < TableSize);
6314 bool NeedMask = (TableHasHoles && !HasDefaultResults);
6315 if (NeedMask) {
6316 // As an extra penalty for the validity test we require more cases.
6317 if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark).
6318 return false;
6319 if (!DL.fitsInLegalInteger(TableSize))
6320 return false;
6321 }
6322
6323 if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes))
6324 return false;
6325
6326 std::vector<DominatorTree::UpdateType> Updates;
6327
6328 // Create the BB that does the lookups.
6329 Module &Mod = *CommonDest->getParent()->getParent();
6330 BasicBlock *LookupBB = BasicBlock::Create(
6331 Mod.getContext(), "switch.lookup", CommonDest->getParent(), CommonDest);
6332
6333 // Compute the table index value.
6334 Builder.SetInsertPoint(SI);
6335 Value *TableIndex;
6336 ConstantInt *TableIndexOffset;
6337 if (UseSwitchConditionAsTableIndex) {
6338 TableIndexOffset = ConstantInt::get(MaxCaseVal->getType(), 0);
6339 TableIndex = SI->getCondition();
6340 } else {
6341 TableIndexOffset = MinCaseVal;
6342 TableIndex =
6343 Builder.CreateSub(SI->getCondition(), TableIndexOffset, "switch.tableidx");
6344 }
6345
6346 // Compute the maximum table size representable by the integer type we are
6347 // switching upon.
6348 unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits();
6349 uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize;
6350 assert(MaxTableSize >= TableSize &&
6351 "It is impossible for a switch to have more entries than the max "
6352 "representable value of its input integer type's size.");
6353
6354 // If the default destination is unreachable, or if the lookup table covers
6355 // all values of the conditional variable, branch directly to the lookup table
6356 // BB. Otherwise, check that the condition is within the case range.
6357 const bool DefaultIsReachable =
6358 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
6359 const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize);
6360 BranchInst *RangeCheckBranch = nullptr;
6361
6362 if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
6363 Builder.CreateBr(LookupBB);
6364 if (DTU)
6365 Updates.push_back({DominatorTree::Insert, BB, LookupBB});
6366 // Note: We call removeProdecessor later since we need to be able to get the
6367 // PHI value for the default case in case we're using a bit mask.
6368 } else {
6369 Value *Cmp = Builder.CreateICmpULT(
6370 TableIndex, ConstantInt::get(MinCaseVal->getType(), TableSize));
6371 RangeCheckBranch =
6372 Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest());
6373 if (DTU)
6374 Updates.push_back({DominatorTree::Insert, BB, LookupBB});
6375 }
6376
6377 // Populate the BB that does the lookups.
6378 Builder.SetInsertPoint(LookupBB);
6379
6380 if (NeedMask) {
6381 // Before doing the lookup, we do the hole check. The LookupBB is therefore
6382 // re-purposed to do the hole check, and we create a new LookupBB.
6383 BasicBlock *MaskBB = LookupBB;
6384 MaskBB->setName("switch.hole_check");
6385 LookupBB = BasicBlock::Create(Mod.getContext(), "switch.lookup",
6386 CommonDest->getParent(), CommonDest);
6387
6388 // Make the mask's bitwidth at least 8-bit and a power-of-2 to avoid
6389 // unnecessary illegal types.
6390 uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL));
6391 APInt MaskInt(TableSizePowOf2, 0);
6392 APInt One(TableSizePowOf2, 1);
6393 // Build bitmask; fill in a 1 bit for every case.
6394 const ResultListTy &ResultList = ResultLists[PHIs[0]];
6395 for (size_t I = 0, E = ResultList.size(); I != E; ++I) {
6396 uint64_t Idx = (ResultList[I].first->getValue() - TableIndexOffset->getValue())
6397 .getLimitedValue();
6398 MaskInt |= One << Idx;
6399 }
6400 ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt);
6401
6402 // Get the TableIndex'th bit of the bitmask.
6403 // If this bit is 0 (meaning hole) jump to the default destination,
6404 // else continue with table lookup.
6405 IntegerType *MapTy = TableMask->getType();
6406 Value *MaskIndex =
6407 Builder.CreateZExtOrTrunc(TableIndex, MapTy, "switch.maskindex");
6408 Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, "switch.shifted");
6409 Value *LoBit = Builder.CreateTrunc(
6410 Shifted, Type::getInt1Ty(Mod.getContext()), "switch.lobit");
6411 Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest());
6412 if (DTU) {
6413 Updates.push_back({DominatorTree::Insert, MaskBB, LookupBB});
6414 Updates.push_back({DominatorTree::Insert, MaskBB, SI->getDefaultDest()});
6415 }
6416 Builder.SetInsertPoint(LookupBB);
6417 AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, BB);
6418 }
6419
6420 if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
6421 // We cached PHINodes in PHIs. To avoid accessing deleted PHINodes later,
6422 // do not delete PHINodes here.
6423 SI->getDefaultDest()->removePredecessor(BB,
6424 /*KeepOneInputPHIs=*/true);
6425 if (DTU)
6426 Updates.push_back({DominatorTree::Delete, BB, SI->getDefaultDest()});
6427 }
6428
6429 for (PHINode *PHI : PHIs) {
6430 const ResultListTy &ResultList = ResultLists[PHI];
6431
6432 // If using a bitmask, use any value to fill the lookup table holes.
6433 Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI];
6434 StringRef FuncName = Fn->getName();
6435 SwitchLookupTable Table(Mod, TableSize, TableIndexOffset, ResultList, DV,
6436 DL, FuncName);
6437
6438 Value *Result = Table.BuildLookup(TableIndex, Builder);
6439
6440 // Do a small peephole optimization: re-use the switch table compare if
6441 // possible.
6442 if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) {
6443 BasicBlock *PhiBlock = PHI->getParent();
6444 // Search for compare instructions which use the phi.
6445 for (auto *User : PHI->users()) {
6446 reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList);
6447 }
6448 }
6449
6450 PHI->addIncoming(Result, LookupBB);
6451 }
6452
6453 Builder.CreateBr(CommonDest);
6454 if (DTU)
6455 Updates.push_back({DominatorTree::Insert, LookupBB, CommonDest});
6456
6457 // Remove the switch.
6458 SmallPtrSet<BasicBlock *, 8> RemovedSuccessors;
6459 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
6460 BasicBlock *Succ = SI->getSuccessor(i);
6461
6462 if (Succ == SI->getDefaultDest())
6463 continue;
6464 Succ->removePredecessor(BB);
6465 if (DTU && RemovedSuccessors.insert(Succ).second)
6466 Updates.push_back({DominatorTree::Delete, BB, Succ});
6467 }
6468 SI->eraseFromParent();
6469
6470 if (DTU)
6471 DTU->applyUpdates(Updates);
6472
6473 ++NumLookupTables;
6474 if (NeedMask)
6475 ++NumLookupTablesHoles;
6476 return true;
6477 }
6478
6479 /// Try to transform a switch that has "holes" in it to a contiguous sequence
6480 /// of cases.
6481 ///
6482 /// A switch such as: switch(i) {case 5: case 9: case 13: case 17:} can be
6483 /// range-reduced to: switch ((i-5) / 4) {case 0: case 1: case 2: case 3:}.
6484 ///
6485 /// This converts a sparse switch into a dense switch which allows better
6486 /// lowering and could also allow transforming into a lookup table.
ReduceSwitchRange(SwitchInst * SI,IRBuilder<> & Builder,const DataLayout & DL,const TargetTransformInfo & TTI)6487 static bool ReduceSwitchRange(SwitchInst *SI, IRBuilder<> &Builder,
6488 const DataLayout &DL,
6489 const TargetTransformInfo &TTI) {
6490 auto *CondTy = cast<IntegerType>(SI->getCondition()->getType());
6491 if (CondTy->getIntegerBitWidth() > 64 ||
6492 !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth()))
6493 return false;
6494 // Only bother with this optimization if there are more than 3 switch cases;
6495 // SDAG will only bother creating jump tables for 4 or more cases.
6496 if (SI->getNumCases() < 4)
6497 return false;
6498
6499 // This transform is agnostic to the signedness of the input or case values. We
6500 // can treat the case values as signed or unsigned. We can optimize more common
6501 // cases such as a sequence crossing zero {-4,0,4,8} if we interpret case values
6502 // as signed.
6503 SmallVector<int64_t,4> Values;
6504 for (auto &C : SI->cases())
6505 Values.push_back(C.getCaseValue()->getValue().getSExtValue());
6506 llvm::sort(Values);
6507
6508 // If the switch is already dense, there's nothing useful to do here.
6509 if (isSwitchDense(Values))
6510 return false;
6511
6512 // First, transform the values such that they start at zero and ascend.
6513 int64_t Base = Values[0];
6514 for (auto &V : Values)
6515 V -= (uint64_t)(Base);
6516
6517 // Now we have signed numbers that have been shifted so that, given enough
6518 // precision, there are no negative values. Since the rest of the transform
6519 // is bitwise only, we switch now to an unsigned representation.
6520
6521 // This transform can be done speculatively because it is so cheap - it
6522 // results in a single rotate operation being inserted.
6523 // FIXME: It's possible that optimizing a switch on powers of two might also
6524 // be beneficial - flag values are often powers of two and we could use a CLZ
6525 // as the key function.
6526
6527 // countTrailingZeros(0) returns 64. As Values is guaranteed to have more than
6528 // one element and LLVM disallows duplicate cases, Shift is guaranteed to be
6529 // less than 64.
6530 unsigned Shift = 64;
6531 for (auto &V : Values)
6532 Shift = std::min(Shift, countTrailingZeros((uint64_t)V));
6533 assert(Shift < 64);
6534 if (Shift > 0)
6535 for (auto &V : Values)
6536 V = (int64_t)((uint64_t)V >> Shift);
6537
6538 if (!isSwitchDense(Values))
6539 // Transform didn't create a dense switch.
6540 return false;
6541
6542 // The obvious transform is to shift the switch condition right and emit a
6543 // check that the condition actually cleanly divided by GCD, i.e.
6544 // C & (1 << Shift - 1) == 0
6545 // inserting a new CFG edge to handle the case where it didn't divide cleanly.
6546 //
6547 // A cheaper way of doing this is a simple ROTR(C, Shift). This performs the
6548 // shift and puts the shifted-off bits in the uppermost bits. If any of these
6549 // are nonzero then the switch condition will be very large and will hit the
6550 // default case.
6551
6552 auto *Ty = cast<IntegerType>(SI->getCondition()->getType());
6553 Builder.SetInsertPoint(SI);
6554 auto *ShiftC = ConstantInt::get(Ty, Shift);
6555 auto *Sub = Builder.CreateSub(SI->getCondition(), ConstantInt::get(Ty, Base));
6556 auto *LShr = Builder.CreateLShr(Sub, ShiftC);
6557 auto *Shl = Builder.CreateShl(Sub, Ty->getBitWidth() - Shift);
6558 auto *Rot = Builder.CreateOr(LShr, Shl);
6559 SI->replaceUsesOfWith(SI->getCondition(), Rot);
6560
6561 for (auto Case : SI->cases()) {
6562 auto *Orig = Case.getCaseValue();
6563 auto Sub = Orig->getValue() - APInt(Ty->getBitWidth(), Base);
6564 Case.setValue(
6565 cast<ConstantInt>(ConstantInt::get(Ty, Sub.lshr(ShiftC->getValue()))));
6566 }
6567 return true;
6568 }
6569
simplifySwitch(SwitchInst * SI,IRBuilder<> & Builder)6570 bool SimplifyCFGOpt::simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) {
6571 BasicBlock *BB = SI->getParent();
6572
6573 if (isValueEqualityComparison(SI)) {
6574 // If we only have one predecessor, and if it is a branch on this value,
6575 // see if that predecessor totally determines the outcome of this switch.
6576 if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
6577 if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder))
6578 return requestResimplify();
6579
6580 Value *Cond = SI->getCondition();
6581 if (SelectInst *Select = dyn_cast<SelectInst>(Cond))
6582 if (SimplifySwitchOnSelect(SI, Select))
6583 return requestResimplify();
6584
6585 // If the block only contains the switch, see if we can fold the block
6586 // away into any preds.
6587 if (SI == &*BB->instructionsWithoutDebug(false).begin())
6588 if (FoldValueComparisonIntoPredecessors(SI, Builder))
6589 return requestResimplify();
6590 }
6591
6592 // Try to transform the switch into an icmp and a branch.
6593 // The conversion from switch to comparison may lose information on
6594 // impossible switch values, so disable it early in the pipeline.
6595 if (Options.ConvertSwitchRangeToICmp && TurnSwitchRangeIntoICmp(SI, Builder))
6596 return requestResimplify();
6597
6598 // Remove unreachable cases.
6599 if (eliminateDeadSwitchCases(SI, DTU, Options.AC, DL))
6600 return requestResimplify();
6601
6602 if (trySwitchToSelect(SI, Builder, DTU, DL, TTI))
6603 return requestResimplify();
6604
6605 if (Options.ForwardSwitchCondToPhi && ForwardSwitchConditionToPHI(SI))
6606 return requestResimplify();
6607
6608 // The conversion from switch to lookup tables results in difficult-to-analyze
6609 // code and makes pruning branches much harder. This is a problem if the
6610 // switch expression itself can still be restricted as a result of inlining or
6611 // CVP. Therefore, only apply this transformation during late stages of the
6612 // optimisation pipeline.
6613 if (Options.ConvertSwitchToLookupTable &&
6614 SwitchToLookupTable(SI, Builder, DTU, DL, TTI))
6615 return requestResimplify();
6616
6617 if (ReduceSwitchRange(SI, Builder, DL, TTI))
6618 return requestResimplify();
6619
6620 return false;
6621 }
6622
simplifyIndirectBr(IndirectBrInst * IBI)6623 bool SimplifyCFGOpt::simplifyIndirectBr(IndirectBrInst *IBI) {
6624 BasicBlock *BB = IBI->getParent();
6625 bool Changed = false;
6626
6627 // Eliminate redundant destinations.
6628 SmallPtrSet<Value *, 8> Succs;
6629 SmallSetVector<BasicBlock *, 8> RemovedSuccs;
6630 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
6631 BasicBlock *Dest = IBI->getDestination(i);
6632 if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) {
6633 if (!Dest->hasAddressTaken())
6634 RemovedSuccs.insert(Dest);
6635 Dest->removePredecessor(BB);
6636 IBI->removeDestination(i);
6637 --i;
6638 --e;
6639 Changed = true;
6640 }
6641 }
6642
6643 if (DTU) {
6644 std::vector<DominatorTree::UpdateType> Updates;
6645 Updates.reserve(RemovedSuccs.size());
6646 for (auto *RemovedSucc : RemovedSuccs)
6647 Updates.push_back({DominatorTree::Delete, BB, RemovedSucc});
6648 DTU->applyUpdates(Updates);
6649 }
6650
6651 if (IBI->getNumDestinations() == 0) {
6652 // If the indirectbr has no successors, change it to unreachable.
6653 new UnreachableInst(IBI->getContext(), IBI);
6654 EraseTerminatorAndDCECond(IBI);
6655 return true;
6656 }
6657
6658 if (IBI->getNumDestinations() == 1) {
6659 // If the indirectbr has one successor, change it to a direct branch.
6660 BranchInst::Create(IBI->getDestination(0), IBI);
6661 EraseTerminatorAndDCECond(IBI);
6662 return true;
6663 }
6664
6665 if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) {
6666 if (SimplifyIndirectBrOnSelect(IBI, SI))
6667 return requestResimplify();
6668 }
6669 return Changed;
6670 }
6671
6672 /// Given an block with only a single landing pad and a unconditional branch
6673 /// try to find another basic block which this one can be merged with. This
6674 /// handles cases where we have multiple invokes with unique landing pads, but
6675 /// a shared handler.
6676 ///
6677 /// We specifically choose to not worry about merging non-empty blocks
6678 /// here. That is a PRE/scheduling problem and is best solved elsewhere. In
6679 /// practice, the optimizer produces empty landing pad blocks quite frequently
6680 /// when dealing with exception dense code. (see: instcombine, gvn, if-else
6681 /// sinking in this file)
6682 ///
6683 /// This is primarily a code size optimization. We need to avoid performing
6684 /// any transform which might inhibit optimization (such as our ability to
6685 /// specialize a particular handler via tail commoning). We do this by not
6686 /// merging any blocks which require us to introduce a phi. Since the same
6687 /// values are flowing through both blocks, we don't lose any ability to
6688 /// specialize. If anything, we make such specialization more likely.
6689 ///
6690 /// TODO - This transformation could remove entries from a phi in the target
6691 /// block when the inputs in the phi are the same for the two blocks being
6692 /// merged. In some cases, this could result in removal of the PHI entirely.
TryToMergeLandingPad(LandingPadInst * LPad,BranchInst * BI,BasicBlock * BB,DomTreeUpdater * DTU)6693 static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI,
6694 BasicBlock *BB, DomTreeUpdater *DTU) {
6695 auto Succ = BB->getUniqueSuccessor();
6696 assert(Succ);
6697 // If there's a phi in the successor block, we'd likely have to introduce
6698 // a phi into the merged landing pad block.
6699 if (isa<PHINode>(*Succ->begin()))
6700 return false;
6701
6702 for (BasicBlock *OtherPred : predecessors(Succ)) {
6703 if (BB == OtherPred)
6704 continue;
6705 BasicBlock::iterator I = OtherPred->begin();
6706 LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I);
6707 if (!LPad2 || !LPad2->isIdenticalTo(LPad))
6708 continue;
6709 for (++I; isa<DbgInfoIntrinsic>(I); ++I)
6710 ;
6711 BranchInst *BI2 = dyn_cast<BranchInst>(I);
6712 if (!BI2 || !BI2->isIdenticalTo(BI))
6713 continue;
6714
6715 std::vector<DominatorTree::UpdateType> Updates;
6716
6717 // We've found an identical block. Update our predecessors to take that
6718 // path instead and make ourselves dead.
6719 SmallSetVector<BasicBlock *, 16> UniquePreds(pred_begin(BB), pred_end(BB));
6720 for (BasicBlock *Pred : UniquePreds) {
6721 InvokeInst *II = cast<InvokeInst>(Pred->getTerminator());
6722 assert(II->getNormalDest() != BB && II->getUnwindDest() == BB &&
6723 "unexpected successor");
6724 II->setUnwindDest(OtherPred);
6725 if (DTU) {
6726 Updates.push_back({DominatorTree::Insert, Pred, OtherPred});
6727 Updates.push_back({DominatorTree::Delete, Pred, BB});
6728 }
6729 }
6730
6731 // The debug info in OtherPred doesn't cover the merged control flow that
6732 // used to go through BB. We need to delete it or update it.
6733 for (Instruction &Inst : llvm::make_early_inc_range(*OtherPred))
6734 if (isa<DbgInfoIntrinsic>(Inst))
6735 Inst.eraseFromParent();
6736
6737 SmallSetVector<BasicBlock *, 16> UniqueSuccs(succ_begin(BB), succ_end(BB));
6738 for (BasicBlock *Succ : UniqueSuccs) {
6739 Succ->removePredecessor(BB);
6740 if (DTU)
6741 Updates.push_back({DominatorTree::Delete, BB, Succ});
6742 }
6743
6744 IRBuilder<> Builder(BI);
6745 Builder.CreateUnreachable();
6746 BI->eraseFromParent();
6747 if (DTU)
6748 DTU->applyUpdates(Updates);
6749 return true;
6750 }
6751 return false;
6752 }
6753
simplifyBranch(BranchInst * Branch,IRBuilder<> & Builder)6754 bool SimplifyCFGOpt::simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder) {
6755 return Branch->isUnconditional() ? simplifyUncondBranch(Branch, Builder)
6756 : simplifyCondBranch(Branch, Builder);
6757 }
6758
simplifyUncondBranch(BranchInst * BI,IRBuilder<> & Builder)6759 bool SimplifyCFGOpt::simplifyUncondBranch(BranchInst *BI,
6760 IRBuilder<> &Builder) {
6761 BasicBlock *BB = BI->getParent();
6762 BasicBlock *Succ = BI->getSuccessor(0);
6763
6764 // If the Terminator is the only non-phi instruction, simplify the block.
6765 // If LoopHeader is provided, check if the block or its successor is a loop
6766 // header. (This is for early invocations before loop simplify and
6767 // vectorization to keep canonical loop forms for nested loops. These blocks
6768 // can be eliminated when the pass is invoked later in the back-end.)
6769 // Note that if BB has only one predecessor then we do not introduce new
6770 // backedge, so we can eliminate BB.
6771 bool NeedCanonicalLoop =
6772 Options.NeedCanonicalLoop &&
6773 (!LoopHeaders.empty() && BB->hasNPredecessorsOrMore(2) &&
6774 (is_contained(LoopHeaders, BB) || is_contained(LoopHeaders, Succ)));
6775 BasicBlock::iterator I = BB->getFirstNonPHIOrDbg(true)->getIterator();
6776 if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() &&
6777 !NeedCanonicalLoop && TryToSimplifyUncondBranchFromEmptyBlock(BB, DTU))
6778 return true;
6779
6780 // If the only instruction in the block is a seteq/setne comparison against a
6781 // constant, try to simplify the block.
6782 if (ICmpInst *ICI = dyn_cast<ICmpInst>(I))
6783 if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) {
6784 for (++I; isa<DbgInfoIntrinsic>(I); ++I)
6785 ;
6786 if (I->isTerminator() &&
6787 tryToSimplifyUncondBranchWithICmpInIt(ICI, Builder))
6788 return true;
6789 }
6790
6791 // See if we can merge an empty landing pad block with another which is
6792 // equivalent.
6793 if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) {
6794 for (++I; isa<DbgInfoIntrinsic>(I); ++I)
6795 ;
6796 if (I->isTerminator() && TryToMergeLandingPad(LPad, BI, BB, DTU))
6797 return true;
6798 }
6799
6800 // If this basic block is ONLY a compare and a branch, and if a predecessor
6801 // branches to us and our successor, fold the comparison into the
6802 // predecessor and use logical operations to update the incoming value
6803 // for PHI nodes in common successor.
6804 if (FoldBranchToCommonDest(BI, DTU, /*MSSAU=*/nullptr, &TTI,
6805 Options.BonusInstThreshold))
6806 return requestResimplify();
6807 return false;
6808 }
6809
allPredecessorsComeFromSameSource(BasicBlock * BB)6810 static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) {
6811 BasicBlock *PredPred = nullptr;
6812 for (auto *P : predecessors(BB)) {
6813 BasicBlock *PPred = P->getSinglePredecessor();
6814 if (!PPred || (PredPred && PredPred != PPred))
6815 return nullptr;
6816 PredPred = PPred;
6817 }
6818 return PredPred;
6819 }
6820
simplifyCondBranch(BranchInst * BI,IRBuilder<> & Builder)6821 bool SimplifyCFGOpt::simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) {
6822 assert(
6823 !isa<ConstantInt>(BI->getCondition()) &&
6824 BI->getSuccessor(0) != BI->getSuccessor(1) &&
6825 "Tautological conditional branch should have been eliminated already.");
6826
6827 BasicBlock *BB = BI->getParent();
6828 if (!Options.SimplifyCondBranch)
6829 return false;
6830
6831 // Conditional branch
6832 if (isValueEqualityComparison(BI)) {
6833 // If we only have one predecessor, and if it is a branch on this value,
6834 // see if that predecessor totally determines the outcome of this
6835 // switch.
6836 if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
6837 if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder))
6838 return requestResimplify();
6839
6840 // This block must be empty, except for the setcond inst, if it exists.
6841 // Ignore dbg and pseudo intrinsics.
6842 auto I = BB->instructionsWithoutDebug(true).begin();
6843 if (&*I == BI) {
6844 if (FoldValueComparisonIntoPredecessors(BI, Builder))
6845 return requestResimplify();
6846 } else if (&*I == cast<Instruction>(BI->getCondition())) {
6847 ++I;
6848 if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder))
6849 return requestResimplify();
6850 }
6851 }
6852
6853 // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction.
6854 if (SimplifyBranchOnICmpChain(BI, Builder, DL))
6855 return true;
6856
6857 // If this basic block has dominating predecessor blocks and the dominating
6858 // blocks' conditions imply BI's condition, we know the direction of BI.
6859 Optional<bool> Imp = isImpliedByDomCondition(BI->getCondition(), BI, DL);
6860 if (Imp) {
6861 // Turn this into a branch on constant.
6862 auto *OldCond = BI->getCondition();
6863 ConstantInt *TorF = *Imp ? ConstantInt::getTrue(BB->getContext())
6864 : ConstantInt::getFalse(BB->getContext());
6865 BI->setCondition(TorF);
6866 RecursivelyDeleteTriviallyDeadInstructions(OldCond);
6867 return requestResimplify();
6868 }
6869
6870 // If this basic block is ONLY a compare and a branch, and if a predecessor
6871 // branches to us and one of our successors, fold the comparison into the
6872 // predecessor and use logical operations to pick the right destination.
6873 if (FoldBranchToCommonDest(BI, DTU, /*MSSAU=*/nullptr, &TTI,
6874 Options.BonusInstThreshold))
6875 return requestResimplify();
6876
6877 // We have a conditional branch to two blocks that are only reachable
6878 // from BI. We know that the condbr dominates the two blocks, so see if
6879 // there is any identical code in the "then" and "else" blocks. If so, we
6880 // can hoist it up to the branching block.
6881 if (BI->getSuccessor(0)->getSinglePredecessor()) {
6882 if (BI->getSuccessor(1)->getSinglePredecessor()) {
6883 if (HoistCommon &&
6884 HoistThenElseCodeToIf(BI, TTI, !Options.HoistCommonInsts))
6885 return requestResimplify();
6886 } else {
6887 // If Successor #1 has multiple preds, we may be able to conditionally
6888 // execute Successor #0 if it branches to Successor #1.
6889 Instruction *Succ0TI = BI->getSuccessor(0)->getTerminator();
6890 if (Succ0TI->getNumSuccessors() == 1 &&
6891 Succ0TI->getSuccessor(0) == BI->getSuccessor(1))
6892 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), TTI))
6893 return requestResimplify();
6894 }
6895 } else if (BI->getSuccessor(1)->getSinglePredecessor()) {
6896 // If Successor #0 has multiple preds, we may be able to conditionally
6897 // execute Successor #1 if it branches to Successor #0.
6898 Instruction *Succ1TI = BI->getSuccessor(1)->getTerminator();
6899 if (Succ1TI->getNumSuccessors() == 1 &&
6900 Succ1TI->getSuccessor(0) == BI->getSuccessor(0))
6901 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), TTI))
6902 return requestResimplify();
6903 }
6904
6905 // If this is a branch on something for which we know the constant value in
6906 // predecessors (e.g. a phi node in the current block), thread control
6907 // through this block.
6908 if (FoldCondBranchOnValueKnownInPredecessor(BI, DTU, DL, Options.AC))
6909 return requestResimplify();
6910
6911 // Scan predecessor blocks for conditional branches.
6912 for (BasicBlock *Pred : predecessors(BB))
6913 if (BranchInst *PBI = dyn_cast<BranchInst>(Pred->getTerminator()))
6914 if (PBI != BI && PBI->isConditional())
6915 if (SimplifyCondBranchToCondBranch(PBI, BI, DTU, DL, TTI))
6916 return requestResimplify();
6917
6918 // Look for diamond patterns.
6919 if (MergeCondStores)
6920 if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB))
6921 if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator()))
6922 if (PBI != BI && PBI->isConditional())
6923 if (mergeConditionalStores(PBI, BI, DTU, DL, TTI))
6924 return requestResimplify();
6925
6926 return false;
6927 }
6928
6929 /// Check if passing a value to an instruction will cause undefined behavior.
passingValueIsAlwaysUndefined(Value * V,Instruction * I,bool PtrValueMayBeModified)6930 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I, bool PtrValueMayBeModified) {
6931 Constant *C = dyn_cast<Constant>(V);
6932 if (!C)
6933 return false;
6934
6935 if (I->use_empty())
6936 return false;
6937
6938 if (C->isNullValue() || isa<UndefValue>(C)) {
6939 // Only look at the first use, avoid hurting compile time with long uselists
6940 auto *Use = cast<Instruction>(*I->user_begin());
6941 // Bail out if Use is not in the same BB as I or Use == I or Use comes
6942 // before I in the block. The latter two can be the case if Use is a PHI
6943 // node.
6944 if (Use->getParent() != I->getParent() || Use == I || Use->comesBefore(I))
6945 return false;
6946
6947 // Now make sure that there are no instructions in between that can alter
6948 // control flow (eg. calls)
6949 auto InstrRange =
6950 make_range(std::next(I->getIterator()), Use->getIterator());
6951 if (any_of(InstrRange, [](Instruction &I) {
6952 return !isGuaranteedToTransferExecutionToSuccessor(&I);
6953 }))
6954 return false;
6955
6956 // Look through GEPs. A load from a GEP derived from NULL is still undefined
6957 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use))
6958 if (GEP->getPointerOperand() == I) {
6959 if (!GEP->isInBounds() || !GEP->hasAllZeroIndices())
6960 PtrValueMayBeModified = true;
6961 return passingValueIsAlwaysUndefined(V, GEP, PtrValueMayBeModified);
6962 }
6963
6964 // Look through bitcasts.
6965 if (BitCastInst *BC = dyn_cast<BitCastInst>(Use))
6966 return passingValueIsAlwaysUndefined(V, BC, PtrValueMayBeModified);
6967
6968 // Load from null is undefined.
6969 if (LoadInst *LI = dyn_cast<LoadInst>(Use))
6970 if (!LI->isVolatile())
6971 return !NullPointerIsDefined(LI->getFunction(),
6972 LI->getPointerAddressSpace());
6973
6974 // Store to null is undefined.
6975 if (StoreInst *SI = dyn_cast<StoreInst>(Use))
6976 if (!SI->isVolatile())
6977 return (!NullPointerIsDefined(SI->getFunction(),
6978 SI->getPointerAddressSpace())) &&
6979 SI->getPointerOperand() == I;
6980
6981 if (auto *CB = dyn_cast<CallBase>(Use)) {
6982 if (C->isNullValue() && NullPointerIsDefined(CB->getFunction()))
6983 return false;
6984 // A call to null is undefined.
6985 if (CB->getCalledOperand() == I)
6986 return true;
6987
6988 if (C->isNullValue()) {
6989 for (const llvm::Use &Arg : CB->args())
6990 if (Arg == I) {
6991 unsigned ArgIdx = CB->getArgOperandNo(&Arg);
6992 if (CB->isPassingUndefUB(ArgIdx) &&
6993 CB->paramHasAttr(ArgIdx, Attribute::NonNull)) {
6994 // Passing null to a nonnnull+noundef argument is undefined.
6995 return !PtrValueMayBeModified;
6996 }
6997 }
6998 } else if (isa<UndefValue>(C)) {
6999 // Passing undef to a noundef argument is undefined.
7000 for (const llvm::Use &Arg : CB->args())
7001 if (Arg == I) {
7002 unsigned ArgIdx = CB->getArgOperandNo(&Arg);
7003 if (CB->isPassingUndefUB(ArgIdx)) {
7004 // Passing undef to a noundef argument is undefined.
7005 return true;
7006 }
7007 }
7008 }
7009 }
7010 }
7011 return false;
7012 }
7013
7014 /// If BB has an incoming value that will always trigger undefined behavior
7015 /// (eg. null pointer dereference), remove the branch leading here.
removeUndefIntroducingPredecessor(BasicBlock * BB,DomTreeUpdater * DTU)7016 static bool removeUndefIntroducingPredecessor(BasicBlock *BB,
7017 DomTreeUpdater *DTU) {
7018 for (PHINode &PHI : BB->phis())
7019 for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i)
7020 if (passingValueIsAlwaysUndefined(PHI.getIncomingValue(i), &PHI)) {
7021 BasicBlock *Predecessor = PHI.getIncomingBlock(i);
7022 Instruction *T = Predecessor->getTerminator();
7023 IRBuilder<> Builder(T);
7024 if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
7025 BB->removePredecessor(Predecessor);
7026 // Turn uncoditional branches into unreachables and remove the dead
7027 // destination from conditional branches.
7028 if (BI->isUnconditional())
7029 Builder.CreateUnreachable();
7030 else {
7031 // Preserve guarding condition in assume, because it might not be
7032 // inferrable from any dominating condition.
7033 Value *Cond = BI->getCondition();
7034 if (BI->getSuccessor(0) == BB)
7035 Builder.CreateAssumption(Builder.CreateNot(Cond));
7036 else
7037 Builder.CreateAssumption(Cond);
7038 Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1)
7039 : BI->getSuccessor(0));
7040 }
7041 BI->eraseFromParent();
7042 if (DTU)
7043 DTU->applyUpdates({{DominatorTree::Delete, Predecessor, BB}});
7044 return true;
7045 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(T)) {
7046 // Redirect all branches leading to UB into
7047 // a newly created unreachable block.
7048 BasicBlock *Unreachable = BasicBlock::Create(
7049 Predecessor->getContext(), "unreachable", BB->getParent(), BB);
7050 Builder.SetInsertPoint(Unreachable);
7051 // The new block contains only one instruction: Unreachable
7052 Builder.CreateUnreachable();
7053 for (auto &Case : SI->cases())
7054 if (Case.getCaseSuccessor() == BB) {
7055 BB->removePredecessor(Predecessor);
7056 Case.setSuccessor(Unreachable);
7057 }
7058 if (SI->getDefaultDest() == BB) {
7059 BB->removePredecessor(Predecessor);
7060 SI->setDefaultDest(Unreachable);
7061 }
7062
7063 if (DTU)
7064 DTU->applyUpdates(
7065 { { DominatorTree::Insert, Predecessor, Unreachable },
7066 { DominatorTree::Delete, Predecessor, BB } });
7067 return true;
7068 }
7069 }
7070
7071 return false;
7072 }
7073
simplifyOnce(BasicBlock * BB)7074 bool SimplifyCFGOpt::simplifyOnce(BasicBlock *BB) {
7075 bool Changed = false;
7076
7077 assert(BB && BB->getParent() && "Block not embedded in function!");
7078 assert(BB->getTerminator() && "Degenerate basic block encountered!");
7079
7080 // Remove basic blocks that have no predecessors (except the entry block)...
7081 // or that just have themself as a predecessor. These are unreachable.
7082 if ((pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) ||
7083 BB->getSinglePredecessor() == BB) {
7084 LLVM_DEBUG(dbgs() << "Removing BB: \n" << *BB);
7085 DeleteDeadBlock(BB, DTU);
7086 return true;
7087 }
7088
7089 // Check to see if we can constant propagate this terminator instruction
7090 // away...
7091 Changed |= ConstantFoldTerminator(BB, /*DeleteDeadConditions=*/true,
7092 /*TLI=*/nullptr, DTU);
7093
7094 // Check for and eliminate duplicate PHI nodes in this block.
7095 Changed |= EliminateDuplicatePHINodes(BB);
7096
7097 // Check for and remove branches that will always cause undefined behavior.
7098 if (removeUndefIntroducingPredecessor(BB, DTU))
7099 return requestResimplify();
7100
7101 // Merge basic blocks into their predecessor if there is only one distinct
7102 // pred, and if there is only one distinct successor of the predecessor, and
7103 // if there are no PHI nodes.
7104 if (MergeBlockIntoPredecessor(BB, DTU))
7105 return true;
7106
7107 if (SinkCommon && Options.SinkCommonInsts)
7108 if (SinkCommonCodeFromPredecessors(BB, DTU) ||
7109 MergeCompatibleInvokes(BB, DTU)) {
7110 // SinkCommonCodeFromPredecessors() does not automatically CSE PHI's,
7111 // so we may now how duplicate PHI's.
7112 // Let's rerun EliminateDuplicatePHINodes() first,
7113 // before FoldTwoEntryPHINode() potentially converts them into select's,
7114 // after which we'd need a whole EarlyCSE pass run to cleanup them.
7115 return true;
7116 }
7117
7118 IRBuilder<> Builder(BB);
7119
7120 if (Options.FoldTwoEntryPHINode) {
7121 // If there is a trivial two-entry PHI node in this basic block, and we can
7122 // eliminate it, do so now.
7123 if (auto *PN = dyn_cast<PHINode>(BB->begin()))
7124 if (PN->getNumIncomingValues() == 2)
7125 if (FoldTwoEntryPHINode(PN, TTI, DTU, DL))
7126 return true;
7127 }
7128
7129 Instruction *Terminator = BB->getTerminator();
7130 Builder.SetInsertPoint(Terminator);
7131 switch (Terminator->getOpcode()) {
7132 case Instruction::Br:
7133 Changed |= simplifyBranch(cast<BranchInst>(Terminator), Builder);
7134 break;
7135 case Instruction::Resume:
7136 Changed |= simplifyResume(cast<ResumeInst>(Terminator), Builder);
7137 break;
7138 case Instruction::CleanupRet:
7139 Changed |= simplifyCleanupReturn(cast<CleanupReturnInst>(Terminator));
7140 break;
7141 case Instruction::Switch:
7142 Changed |= simplifySwitch(cast<SwitchInst>(Terminator), Builder);
7143 break;
7144 case Instruction::Unreachable:
7145 Changed |= simplifyUnreachable(cast<UnreachableInst>(Terminator));
7146 break;
7147 case Instruction::IndirectBr:
7148 Changed |= simplifyIndirectBr(cast<IndirectBrInst>(Terminator));
7149 break;
7150 }
7151
7152 return Changed;
7153 }
7154
run(BasicBlock * BB)7155 bool SimplifyCFGOpt::run(BasicBlock *BB) {
7156 bool Changed = false;
7157
7158 // Repeated simplify BB as long as resimplification is requested.
7159 do {
7160 Resimplify = false;
7161
7162 // Perform one round of simplifcation. Resimplify flag will be set if
7163 // another iteration is requested.
7164 Changed |= simplifyOnce(BB);
7165 } while (Resimplify);
7166
7167 return Changed;
7168 }
7169
simplifyCFG(BasicBlock * BB,const TargetTransformInfo & TTI,DomTreeUpdater * DTU,const SimplifyCFGOptions & Options,ArrayRef<WeakVH> LoopHeaders)7170 bool llvm::simplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI,
7171 DomTreeUpdater *DTU, const SimplifyCFGOptions &Options,
7172 ArrayRef<WeakVH> LoopHeaders) {
7173 return SimplifyCFGOpt(TTI, DTU, BB->getModule()->getDataLayout(), LoopHeaders,
7174 Options)
7175 .run(BB);
7176 }
7177