1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Peephole optimize the CFG. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #define DEBUG_TYPE "simplifycfg" 15 #include "llvm/Transforms/Utils/Local.h" 16 #include "llvm/Constants.h" 17 #include "llvm/Instructions.h" 18 #include "llvm/IntrinsicInst.h" 19 #include "llvm/Type.h" 20 #include "llvm/DerivedTypes.h" 21 #include "llvm/GlobalVariable.h" 22 #include "llvm/Analysis/InstructionSimplify.h" 23 #include "llvm/Analysis/ValueTracking.h" 24 #include "llvm/Target/TargetData.h" 25 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 26 #include "llvm/ADT/DenseMap.h" 27 #include "llvm/ADT/SmallVector.h" 28 #include "llvm/ADT/SmallPtrSet.h" 29 #include "llvm/ADT/Statistic.h" 30 #include "llvm/ADT/STLExtras.h" 31 #include "llvm/Support/CFG.h" 32 #include "llvm/Support/CommandLine.h" 33 #include "llvm/Support/ConstantRange.h" 34 #include "llvm/Support/Debug.h" 35 #include "llvm/Support/IRBuilder.h" 36 #include "llvm/Support/NoFolder.h" 37 #include "llvm/Support/raw_ostream.h" 38 #include <algorithm> 39 #include <set> 40 #include <map> 41 using namespace llvm; 42 43 static cl::opt<unsigned> 44 PHINodeFoldingThreshold("phi-node-folding-threshold", cl::Hidden, cl::init(1), 45 cl::desc("Control the amount of phi node folding to perform (default = 1)")); 46 47 static cl::opt<bool> 48 DupRet("simplifycfg-dup-ret", cl::Hidden, cl::init(false), 49 cl::desc("Duplicate return instructions into unconditional branches")); 50 51 STATISTIC(NumSpeculations, "Number of speculative executed instructions"); 52 53 namespace { 54 class SimplifyCFGOpt { 55 const TargetData *const TD; 56 57 Value *isValueEqualityComparison(TerminatorInst *TI); 58 BasicBlock *GetValueEqualityComparisonCases(TerminatorInst *TI, 59 std::vector<std::pair<ConstantInt*, BasicBlock*> > &Cases); 60 bool SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI, 61 BasicBlock *Pred, 62 IRBuilder<> &Builder); 63 bool FoldValueComparisonIntoPredecessors(TerminatorInst *TI, 64 IRBuilder<> &Builder); 65 66 bool SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder); 67 bool SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder); 68 bool SimplifyUnwind(UnwindInst *UI, IRBuilder<> &Builder); 69 bool SimplifyUnreachable(UnreachableInst *UI); 70 bool SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder); 71 bool SimplifyIndirectBr(IndirectBrInst *IBI); 72 bool SimplifyUncondBranch(BranchInst *BI, IRBuilder <> &Builder); 73 bool SimplifyCondBranch(BranchInst *BI, IRBuilder <>&Builder); 74 75 public: 76 explicit SimplifyCFGOpt(const TargetData *td) : TD(td) {} 77 bool run(BasicBlock *BB); 78 }; 79 } 80 81 /// SafeToMergeTerminators - Return true if it is safe to merge these two 82 /// terminator instructions together. 83 /// 84 static bool SafeToMergeTerminators(TerminatorInst *SI1, TerminatorInst *SI2) { 85 if (SI1 == SI2) return false; // Can't merge with self! 86 87 // It is not safe to merge these two switch instructions if they have a common 88 // successor, and if that successor has a PHI node, and if *that* PHI node has 89 // conflicting incoming values from the two switch blocks. 90 BasicBlock *SI1BB = SI1->getParent(); 91 BasicBlock *SI2BB = SI2->getParent(); 92 SmallPtrSet<BasicBlock*, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB)); 93 94 for (succ_iterator I = succ_begin(SI2BB), E = succ_end(SI2BB); I != E; ++I) 95 if (SI1Succs.count(*I)) 96 for (BasicBlock::iterator BBI = (*I)->begin(); 97 isa<PHINode>(BBI); ++BBI) { 98 PHINode *PN = cast<PHINode>(BBI); 99 if (PN->getIncomingValueForBlock(SI1BB) != 100 PN->getIncomingValueForBlock(SI2BB)) 101 return false; 102 } 103 104 return true; 105 } 106 107 /// AddPredecessorToBlock - Update PHI nodes in Succ to indicate that there will 108 /// now be entries in it from the 'NewPred' block. The values that will be 109 /// flowing into the PHI nodes will be the same as those coming in from 110 /// ExistPred, an existing predecessor of Succ. 111 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred, 112 BasicBlock *ExistPred) { 113 if (!isa<PHINode>(Succ->begin())) return; // Quick exit if nothing to do 114 115 PHINode *PN; 116 for (BasicBlock::iterator I = Succ->begin(); 117 (PN = dyn_cast<PHINode>(I)); ++I) 118 PN->addIncoming(PN->getIncomingValueForBlock(ExistPred), NewPred); 119 } 120 121 122 /// GetIfCondition - Given a basic block (BB) with two predecessors (and at 123 /// least one PHI node in it), check to see if the merge at this block is due 124 /// to an "if condition". If so, return the boolean condition that determines 125 /// which entry into BB will be taken. Also, return by references the block 126 /// that will be entered from if the condition is true, and the block that will 127 /// be entered if the condition is false. 128 /// 129 /// This does no checking to see if the true/false blocks have large or unsavory 130 /// instructions in them. 131 static Value *GetIfCondition(BasicBlock *BB, BasicBlock *&IfTrue, 132 BasicBlock *&IfFalse) { 133 PHINode *SomePHI = cast<PHINode>(BB->begin()); 134 assert(SomePHI->getNumIncomingValues() == 2 && 135 "Function can only handle blocks with 2 predecessors!"); 136 BasicBlock *Pred1 = SomePHI->getIncomingBlock(0); 137 BasicBlock *Pred2 = SomePHI->getIncomingBlock(1); 138 139 // We can only handle branches. Other control flow will be lowered to 140 // branches if possible anyway. 141 BranchInst *Pred1Br = dyn_cast<BranchInst>(Pred1->getTerminator()); 142 BranchInst *Pred2Br = dyn_cast<BranchInst>(Pred2->getTerminator()); 143 if (Pred1Br == 0 || Pred2Br == 0) 144 return 0; 145 146 // Eliminate code duplication by ensuring that Pred1Br is conditional if 147 // either are. 148 if (Pred2Br->isConditional()) { 149 // If both branches are conditional, we don't have an "if statement". In 150 // reality, we could transform this case, but since the condition will be 151 // required anyway, we stand no chance of eliminating it, so the xform is 152 // probably not profitable. 153 if (Pred1Br->isConditional()) 154 return 0; 155 156 std::swap(Pred1, Pred2); 157 std::swap(Pred1Br, Pred2Br); 158 } 159 160 if (Pred1Br->isConditional()) { 161 // The only thing we have to watch out for here is to make sure that Pred2 162 // doesn't have incoming edges from other blocks. If it does, the condition 163 // doesn't dominate BB. 164 if (Pred2->getSinglePredecessor() == 0) 165 return 0; 166 167 // If we found a conditional branch predecessor, make sure that it branches 168 // to BB and Pred2Br. If it doesn't, this isn't an "if statement". 169 if (Pred1Br->getSuccessor(0) == BB && 170 Pred1Br->getSuccessor(1) == Pred2) { 171 IfTrue = Pred1; 172 IfFalse = Pred2; 173 } else if (Pred1Br->getSuccessor(0) == Pred2 && 174 Pred1Br->getSuccessor(1) == BB) { 175 IfTrue = Pred2; 176 IfFalse = Pred1; 177 } else { 178 // We know that one arm of the conditional goes to BB, so the other must 179 // go somewhere unrelated, and this must not be an "if statement". 180 return 0; 181 } 182 183 return Pred1Br->getCondition(); 184 } 185 186 // Ok, if we got here, both predecessors end with an unconditional branch to 187 // BB. Don't panic! If both blocks only have a single (identical) 188 // predecessor, and THAT is a conditional branch, then we're all ok! 189 BasicBlock *CommonPred = Pred1->getSinglePredecessor(); 190 if (CommonPred == 0 || CommonPred != Pred2->getSinglePredecessor()) 191 return 0; 192 193 // Otherwise, if this is a conditional branch, then we can use it! 194 BranchInst *BI = dyn_cast<BranchInst>(CommonPred->getTerminator()); 195 if (BI == 0) return 0; 196 197 assert(BI->isConditional() && "Two successors but not conditional?"); 198 if (BI->getSuccessor(0) == Pred1) { 199 IfTrue = Pred1; 200 IfFalse = Pred2; 201 } else { 202 IfTrue = Pred2; 203 IfFalse = Pred1; 204 } 205 return BI->getCondition(); 206 } 207 208 /// DominatesMergePoint - If we have a merge point of an "if condition" as 209 /// accepted above, return true if the specified value dominates the block. We 210 /// don't handle the true generality of domination here, just a special case 211 /// which works well enough for us. 212 /// 213 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to 214 /// see if V (which must be an instruction) and its recursive operands 215 /// that do not dominate BB have a combined cost lower than CostRemaining and 216 /// are non-trapping. If both are true, the instruction is inserted into the 217 /// set and true is returned. 218 /// 219 /// The cost for most non-trapping instructions is defined as 1 except for 220 /// Select whose cost is 2. 221 /// 222 /// After this function returns, CostRemaining is decreased by the cost of 223 /// V plus its non-dominating operands. If that cost is greater than 224 /// CostRemaining, false is returned and CostRemaining is undefined. 225 static bool DominatesMergePoint(Value *V, BasicBlock *BB, 226 SmallPtrSet<Instruction*, 4> *AggressiveInsts, 227 unsigned &CostRemaining) { 228 Instruction *I = dyn_cast<Instruction>(V); 229 if (!I) { 230 // Non-instructions all dominate instructions, but not all constantexprs 231 // can be executed unconditionally. 232 if (ConstantExpr *C = dyn_cast<ConstantExpr>(V)) 233 if (C->canTrap()) 234 return false; 235 return true; 236 } 237 BasicBlock *PBB = I->getParent(); 238 239 // We don't want to allow weird loops that might have the "if condition" in 240 // the bottom of this block. 241 if (PBB == BB) return false; 242 243 // If this instruction is defined in a block that contains an unconditional 244 // branch to BB, then it must be in the 'conditional' part of the "if 245 // statement". If not, it definitely dominates the region. 246 BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator()); 247 if (BI == 0 || BI->isConditional() || BI->getSuccessor(0) != BB) 248 return true; 249 250 // If we aren't allowing aggressive promotion anymore, then don't consider 251 // instructions in the 'if region'. 252 if (AggressiveInsts == 0) return false; 253 254 // If we have seen this instruction before, don't count it again. 255 if (AggressiveInsts->count(I)) return true; 256 257 // Okay, it looks like the instruction IS in the "condition". Check to 258 // see if it's a cheap instruction to unconditionally compute, and if it 259 // only uses stuff defined outside of the condition. If so, hoist it out. 260 if (!isSafeToSpeculativelyExecute(I)) 261 return false; 262 263 unsigned Cost = 0; 264 265 switch (I->getOpcode()) { 266 default: return false; // Cannot hoist this out safely. 267 case Instruction::Load: 268 // We have to check to make sure there are no instructions before the 269 // load in its basic block, as we are going to hoist the load out to its 270 // predecessor. 271 if (PBB->getFirstNonPHIOrDbg() != I) 272 return false; 273 Cost = 1; 274 break; 275 case Instruction::GetElementPtr: 276 // GEPs are cheap if all indices are constant. 277 if (!cast<GetElementPtrInst>(I)->hasAllConstantIndices()) 278 return false; 279 Cost = 1; 280 break; 281 case Instruction::Add: 282 case Instruction::Sub: 283 case Instruction::And: 284 case Instruction::Or: 285 case Instruction::Xor: 286 case Instruction::Shl: 287 case Instruction::LShr: 288 case Instruction::AShr: 289 case Instruction::ICmp: 290 case Instruction::Trunc: 291 case Instruction::ZExt: 292 case Instruction::SExt: 293 Cost = 1; 294 break; // These are all cheap and non-trapping instructions. 295 296 case Instruction::Call: 297 case Instruction::Select: 298 Cost = 2; 299 break; 300 } 301 302 if (Cost > CostRemaining) 303 return false; 304 305 CostRemaining -= Cost; 306 307 // Okay, we can only really hoist these out if their operands do 308 // not take us over the cost threshold. 309 for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) 310 if (!DominatesMergePoint(*i, BB, AggressiveInsts, CostRemaining)) 311 return false; 312 // Okay, it's safe to do this! Remember this instruction. 313 AggressiveInsts->insert(I); 314 return true; 315 } 316 317 /// GetConstantInt - Extract ConstantInt from value, looking through IntToPtr 318 /// and PointerNullValue. Return NULL if value is not a constant int. 319 static ConstantInt *GetConstantInt(Value *V, const TargetData *TD) { 320 // Normal constant int. 321 ConstantInt *CI = dyn_cast<ConstantInt>(V); 322 if (CI || !TD || !isa<Constant>(V) || !V->getType()->isPointerTy()) 323 return CI; 324 325 // This is some kind of pointer constant. Turn it into a pointer-sized 326 // ConstantInt if possible. 327 IntegerType *PtrTy = TD->getIntPtrType(V->getContext()); 328 329 // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*). 330 if (isa<ConstantPointerNull>(V)) 331 return ConstantInt::get(PtrTy, 0); 332 333 // IntToPtr const int. 334 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 335 if (CE->getOpcode() == Instruction::IntToPtr) 336 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) { 337 // The constant is very likely to have the right type already. 338 if (CI->getType() == PtrTy) 339 return CI; 340 else 341 return cast<ConstantInt> 342 (ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false)); 343 } 344 return 0; 345 } 346 347 /// GatherConstantCompares - Given a potentially 'or'd or 'and'd together 348 /// collection of icmp eq/ne instructions that compare a value against a 349 /// constant, return the value being compared, and stick the constant into the 350 /// Values vector. 351 static Value * 352 GatherConstantCompares(Value *V, std::vector<ConstantInt*> &Vals, Value *&Extra, 353 const TargetData *TD, bool isEQ, unsigned &UsedICmps) { 354 Instruction *I = dyn_cast<Instruction>(V); 355 if (I == 0) return 0; 356 357 // If this is an icmp against a constant, handle this as one of the cases. 358 if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) { 359 if (ConstantInt *C = GetConstantInt(I->getOperand(1), TD)) { 360 if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ:ICmpInst::ICMP_NE)) { 361 UsedICmps++; 362 Vals.push_back(C); 363 return I->getOperand(0); 364 } 365 366 // If we have "x ult 3" comparison, for example, then we can add 0,1,2 to 367 // the set. 368 ConstantRange Span = 369 ConstantRange::makeICmpRegion(ICI->getPredicate(), C->getValue()); 370 371 // If this is an and/!= check then we want to optimize "x ugt 2" into 372 // x != 0 && x != 1. 373 if (!isEQ) 374 Span = Span.inverse(); 375 376 // If there are a ton of values, we don't want to make a ginormous switch. 377 if (Span.getSetSize().ugt(8) || Span.isEmptySet() || 378 // We don't handle wrapped sets yet. 379 Span.isWrappedSet()) 380 return 0; 381 382 for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp) 383 Vals.push_back(ConstantInt::get(V->getContext(), Tmp)); 384 UsedICmps++; 385 return I->getOperand(0); 386 } 387 return 0; 388 } 389 390 // Otherwise, we can only handle an | or &, depending on isEQ. 391 if (I->getOpcode() != (isEQ ? Instruction::Or : Instruction::And)) 392 return 0; 393 394 unsigned NumValsBeforeLHS = Vals.size(); 395 unsigned UsedICmpsBeforeLHS = UsedICmps; 396 if (Value *LHS = GatherConstantCompares(I->getOperand(0), Vals, Extra, TD, 397 isEQ, UsedICmps)) { 398 unsigned NumVals = Vals.size(); 399 unsigned UsedICmpsBeforeRHS = UsedICmps; 400 if (Value *RHS = GatherConstantCompares(I->getOperand(1), Vals, Extra, TD, 401 isEQ, UsedICmps)) { 402 if (LHS == RHS) 403 return LHS; 404 Vals.resize(NumVals); 405 UsedICmps = UsedICmpsBeforeRHS; 406 } 407 408 // The RHS of the or/and can't be folded in and we haven't used "Extra" yet, 409 // set it and return success. 410 if (Extra == 0 || Extra == I->getOperand(1)) { 411 Extra = I->getOperand(1); 412 return LHS; 413 } 414 415 Vals.resize(NumValsBeforeLHS); 416 UsedICmps = UsedICmpsBeforeLHS; 417 return 0; 418 } 419 420 // If the LHS can't be folded in, but Extra is available and RHS can, try to 421 // use LHS as Extra. 422 if (Extra == 0 || Extra == I->getOperand(0)) { 423 Value *OldExtra = Extra; 424 Extra = I->getOperand(0); 425 if (Value *RHS = GatherConstantCompares(I->getOperand(1), Vals, Extra, TD, 426 isEQ, UsedICmps)) 427 return RHS; 428 assert(Vals.size() == NumValsBeforeLHS); 429 Extra = OldExtra; 430 } 431 432 return 0; 433 } 434 435 static void EraseTerminatorInstAndDCECond(TerminatorInst *TI) { 436 Instruction* Cond = 0; 437 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 438 Cond = dyn_cast<Instruction>(SI->getCondition()); 439 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 440 if (BI->isConditional()) 441 Cond = dyn_cast<Instruction>(BI->getCondition()); 442 } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) { 443 Cond = dyn_cast<Instruction>(IBI->getAddress()); 444 } 445 446 TI->eraseFromParent(); 447 if (Cond) RecursivelyDeleteTriviallyDeadInstructions(Cond); 448 } 449 450 /// isValueEqualityComparison - Return true if the specified terminator checks 451 /// to see if a value is equal to constant integer value. 452 Value *SimplifyCFGOpt::isValueEqualityComparison(TerminatorInst *TI) { 453 Value *CV = 0; 454 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 455 // Do not permit merging of large switch instructions into their 456 // predecessors unless there is only one predecessor. 457 if (SI->getNumSuccessors()*std::distance(pred_begin(SI->getParent()), 458 pred_end(SI->getParent())) <= 128) 459 CV = SI->getCondition(); 460 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) 461 if (BI->isConditional() && BI->getCondition()->hasOneUse()) 462 if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) 463 if ((ICI->getPredicate() == ICmpInst::ICMP_EQ || 464 ICI->getPredicate() == ICmpInst::ICMP_NE) && 465 GetConstantInt(ICI->getOperand(1), TD)) 466 CV = ICI->getOperand(0); 467 468 // Unwrap any lossless ptrtoint cast. 469 if (TD && CV && CV->getType() == TD->getIntPtrType(CV->getContext())) 470 if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) 471 CV = PTII->getOperand(0); 472 return CV; 473 } 474 475 /// GetValueEqualityComparisonCases - Given a value comparison instruction, 476 /// decode all of the 'cases' that it represents and return the 'default' block. 477 BasicBlock *SimplifyCFGOpt:: 478 GetValueEqualityComparisonCases(TerminatorInst *TI, 479 std::vector<std::pair<ConstantInt*, 480 BasicBlock*> > &Cases) { 481 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 482 Cases.reserve(SI->getNumCases()); 483 for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i) 484 Cases.push_back(std::make_pair(SI->getCaseValue(i), SI->getSuccessor(i))); 485 return SI->getDefaultDest(); 486 } 487 488 BranchInst *BI = cast<BranchInst>(TI); 489 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 490 Cases.push_back(std::make_pair(GetConstantInt(ICI->getOperand(1), TD), 491 BI->getSuccessor(ICI->getPredicate() == 492 ICmpInst::ICMP_NE))); 493 return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ); 494 } 495 496 497 /// EliminateBlockCases - Given a vector of bb/value pairs, remove any entries 498 /// in the list that match the specified block. 499 static void EliminateBlockCases(BasicBlock *BB, 500 std::vector<std::pair<ConstantInt*, BasicBlock*> > &Cases) { 501 for (unsigned i = 0, e = Cases.size(); i != e; ++i) 502 if (Cases[i].second == BB) { 503 Cases.erase(Cases.begin()+i); 504 --i; --e; 505 } 506 } 507 508 /// ValuesOverlap - Return true if there are any keys in C1 that exist in C2 as 509 /// well. 510 static bool 511 ValuesOverlap(std::vector<std::pair<ConstantInt*, BasicBlock*> > &C1, 512 std::vector<std::pair<ConstantInt*, BasicBlock*> > &C2) { 513 std::vector<std::pair<ConstantInt*, BasicBlock*> > *V1 = &C1, *V2 = &C2; 514 515 // Make V1 be smaller than V2. 516 if (V1->size() > V2->size()) 517 std::swap(V1, V2); 518 519 if (V1->size() == 0) return false; 520 if (V1->size() == 1) { 521 // Just scan V2. 522 ConstantInt *TheVal = (*V1)[0].first; 523 for (unsigned i = 0, e = V2->size(); i != e; ++i) 524 if (TheVal == (*V2)[i].first) 525 return true; 526 } 527 528 // Otherwise, just sort both lists and compare element by element. 529 array_pod_sort(V1->begin(), V1->end()); 530 array_pod_sort(V2->begin(), V2->end()); 531 unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size(); 532 while (i1 != e1 && i2 != e2) { 533 if ((*V1)[i1].first == (*V2)[i2].first) 534 return true; 535 if ((*V1)[i1].first < (*V2)[i2].first) 536 ++i1; 537 else 538 ++i2; 539 } 540 return false; 541 } 542 543 /// SimplifyEqualityComparisonWithOnlyPredecessor - If TI is known to be a 544 /// terminator instruction and its block is known to only have a single 545 /// predecessor block, check to see if that predecessor is also a value 546 /// comparison with the same value, and if that comparison determines the 547 /// outcome of this comparison. If so, simplify TI. This does a very limited 548 /// form of jump threading. 549 bool SimplifyCFGOpt:: 550 SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI, 551 BasicBlock *Pred, 552 IRBuilder<> &Builder) { 553 Value *PredVal = isValueEqualityComparison(Pred->getTerminator()); 554 if (!PredVal) return false; // Not a value comparison in predecessor. 555 556 Value *ThisVal = isValueEqualityComparison(TI); 557 assert(ThisVal && "This isn't a value comparison!!"); 558 if (ThisVal != PredVal) return false; // Different predicates. 559 560 // Find out information about when control will move from Pred to TI's block. 561 std::vector<std::pair<ConstantInt*, BasicBlock*> > PredCases; 562 BasicBlock *PredDef = GetValueEqualityComparisonCases(Pred->getTerminator(), 563 PredCases); 564 EliminateBlockCases(PredDef, PredCases); // Remove default from cases. 565 566 // Find information about how control leaves this block. 567 std::vector<std::pair<ConstantInt*, BasicBlock*> > ThisCases; 568 BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases); 569 EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases. 570 571 // If TI's block is the default block from Pred's comparison, potentially 572 // simplify TI based on this knowledge. 573 if (PredDef == TI->getParent()) { 574 // If we are here, we know that the value is none of those cases listed in 575 // PredCases. If there are any cases in ThisCases that are in PredCases, we 576 // can simplify TI. 577 if (!ValuesOverlap(PredCases, ThisCases)) 578 return false; 579 580 if (isa<BranchInst>(TI)) { 581 // Okay, one of the successors of this condbr is dead. Convert it to a 582 // uncond br. 583 assert(ThisCases.size() == 1 && "Branch can only have one case!"); 584 // Insert the new branch. 585 Instruction *NI = Builder.CreateBr(ThisDef); 586 (void) NI; 587 588 // Remove PHI node entries for the dead edge. 589 ThisCases[0].second->removePredecessor(TI->getParent()); 590 591 DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 592 << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n"); 593 594 EraseTerminatorInstAndDCECond(TI); 595 return true; 596 } 597 598 SwitchInst *SI = cast<SwitchInst>(TI); 599 // Okay, TI has cases that are statically dead, prune them away. 600 SmallPtrSet<Constant*, 16> DeadCases; 601 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 602 DeadCases.insert(PredCases[i].first); 603 604 DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 605 << "Through successor TI: " << *TI); 606 607 for (unsigned i = SI->getNumCases()-1; i != 0; --i) 608 if (DeadCases.count(SI->getCaseValue(i))) { 609 SI->getSuccessor(i)->removePredecessor(TI->getParent()); 610 SI->removeCase(i); 611 } 612 613 DEBUG(dbgs() << "Leaving: " << *TI << "\n"); 614 return true; 615 } 616 617 // Otherwise, TI's block must correspond to some matched value. Find out 618 // which value (or set of values) this is. 619 ConstantInt *TIV = 0; 620 BasicBlock *TIBB = TI->getParent(); 621 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 622 if (PredCases[i].second == TIBB) { 623 if (TIV != 0) 624 return false; // Cannot handle multiple values coming to this block. 625 TIV = PredCases[i].first; 626 } 627 assert(TIV && "No edge from pred to succ?"); 628 629 // Okay, we found the one constant that our value can be if we get into TI's 630 // BB. Find out which successor will unconditionally be branched to. 631 BasicBlock *TheRealDest = 0; 632 for (unsigned i = 0, e = ThisCases.size(); i != e; ++i) 633 if (ThisCases[i].first == TIV) { 634 TheRealDest = ThisCases[i].second; 635 break; 636 } 637 638 // If not handled by any explicit cases, it is handled by the default case. 639 if (TheRealDest == 0) TheRealDest = ThisDef; 640 641 // Remove PHI node entries for dead edges. 642 BasicBlock *CheckEdge = TheRealDest; 643 for (succ_iterator SI = succ_begin(TIBB), e = succ_end(TIBB); SI != e; ++SI) 644 if (*SI != CheckEdge) 645 (*SI)->removePredecessor(TIBB); 646 else 647 CheckEdge = 0; 648 649 // Insert the new branch. 650 Instruction *NI = Builder.CreateBr(TheRealDest); 651 (void) NI; 652 653 DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 654 << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n"); 655 656 EraseTerminatorInstAndDCECond(TI); 657 return true; 658 } 659 660 namespace { 661 /// ConstantIntOrdering - This class implements a stable ordering of constant 662 /// integers that does not depend on their address. This is important for 663 /// applications that sort ConstantInt's to ensure uniqueness. 664 struct ConstantIntOrdering { 665 bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const { 666 return LHS->getValue().ult(RHS->getValue()); 667 } 668 }; 669 } 670 671 static int ConstantIntSortPredicate(const void *P1, const void *P2) { 672 const ConstantInt *LHS = *(const ConstantInt**)P1; 673 const ConstantInt *RHS = *(const ConstantInt**)P2; 674 if (LHS->getValue().ult(RHS->getValue())) 675 return 1; 676 if (LHS->getValue() == RHS->getValue()) 677 return 0; 678 return -1; 679 } 680 681 /// FoldValueComparisonIntoPredecessors - The specified terminator is a value 682 /// equality comparison instruction (either a switch or a branch on "X == c"). 683 /// See if any of the predecessors of the terminator block are value comparisons 684 /// on the same value. If so, and if safe to do so, fold them together. 685 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(TerminatorInst *TI, 686 IRBuilder<> &Builder) { 687 BasicBlock *BB = TI->getParent(); 688 Value *CV = isValueEqualityComparison(TI); // CondVal 689 assert(CV && "Not a comparison?"); 690 bool Changed = false; 691 692 SmallVector<BasicBlock*, 16> Preds(pred_begin(BB), pred_end(BB)); 693 while (!Preds.empty()) { 694 BasicBlock *Pred = Preds.pop_back_val(); 695 696 // See if the predecessor is a comparison with the same value. 697 TerminatorInst *PTI = Pred->getTerminator(); 698 Value *PCV = isValueEqualityComparison(PTI); // PredCondVal 699 700 if (PCV == CV && SafeToMergeTerminators(TI, PTI)) { 701 // Figure out which 'cases' to copy from SI to PSI. 702 std::vector<std::pair<ConstantInt*, BasicBlock*> > BBCases; 703 BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases); 704 705 std::vector<std::pair<ConstantInt*, BasicBlock*> > PredCases; 706 BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases); 707 708 // Based on whether the default edge from PTI goes to BB or not, fill in 709 // PredCases and PredDefault with the new switch cases we would like to 710 // build. 711 SmallVector<BasicBlock*, 8> NewSuccessors; 712 713 if (PredDefault == BB) { 714 // If this is the default destination from PTI, only the edges in TI 715 // that don't occur in PTI, or that branch to BB will be activated. 716 std::set<ConstantInt*, ConstantIntOrdering> PTIHandled; 717 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 718 if (PredCases[i].second != BB) 719 PTIHandled.insert(PredCases[i].first); 720 else { 721 // The default destination is BB, we don't need explicit targets. 722 std::swap(PredCases[i], PredCases.back()); 723 PredCases.pop_back(); 724 --i; --e; 725 } 726 727 // Reconstruct the new switch statement we will be building. 728 if (PredDefault != BBDefault) { 729 PredDefault->removePredecessor(Pred); 730 PredDefault = BBDefault; 731 NewSuccessors.push_back(BBDefault); 732 } 733 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 734 if (!PTIHandled.count(BBCases[i].first) && 735 BBCases[i].second != BBDefault) { 736 PredCases.push_back(BBCases[i]); 737 NewSuccessors.push_back(BBCases[i].second); 738 } 739 740 } else { 741 // If this is not the default destination from PSI, only the edges 742 // in SI that occur in PSI with a destination of BB will be 743 // activated. 744 std::set<ConstantInt*, ConstantIntOrdering> PTIHandled; 745 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 746 if (PredCases[i].second == BB) { 747 PTIHandled.insert(PredCases[i].first); 748 std::swap(PredCases[i], PredCases.back()); 749 PredCases.pop_back(); 750 --i; --e; 751 } 752 753 // Okay, now we know which constants were sent to BB from the 754 // predecessor. Figure out where they will all go now. 755 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 756 if (PTIHandled.count(BBCases[i].first)) { 757 // If this is one we are capable of getting... 758 PredCases.push_back(BBCases[i]); 759 NewSuccessors.push_back(BBCases[i].second); 760 PTIHandled.erase(BBCases[i].first);// This constant is taken care of 761 } 762 763 // If there are any constants vectored to BB that TI doesn't handle, 764 // they must go to the default destination of TI. 765 for (std::set<ConstantInt*, ConstantIntOrdering>::iterator I = 766 PTIHandled.begin(), 767 E = PTIHandled.end(); I != E; ++I) { 768 PredCases.push_back(std::make_pair(*I, BBDefault)); 769 NewSuccessors.push_back(BBDefault); 770 } 771 } 772 773 // Okay, at this point, we know which new successor Pred will get. Make 774 // sure we update the number of entries in the PHI nodes for these 775 // successors. 776 for (unsigned i = 0, e = NewSuccessors.size(); i != e; ++i) 777 AddPredecessorToBlock(NewSuccessors[i], Pred, BB); 778 779 Builder.SetInsertPoint(PTI); 780 // Convert pointer to int before we switch. 781 if (CV->getType()->isPointerTy()) { 782 assert(TD && "Cannot switch on pointer without TargetData"); 783 CV = Builder.CreatePtrToInt(CV, TD->getIntPtrType(CV->getContext()), 784 "magicptr"); 785 } 786 787 // Now that the successors are updated, create the new Switch instruction. 788 SwitchInst *NewSI = Builder.CreateSwitch(CV, PredDefault, 789 PredCases.size()); 790 NewSI->setDebugLoc(PTI->getDebugLoc()); 791 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 792 NewSI->addCase(PredCases[i].first, PredCases[i].second); 793 794 EraseTerminatorInstAndDCECond(PTI); 795 796 // Okay, last check. If BB is still a successor of PSI, then we must 797 // have an infinite loop case. If so, add an infinitely looping block 798 // to handle the case to preserve the behavior of the code. 799 BasicBlock *InfLoopBlock = 0; 800 for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i) 801 if (NewSI->getSuccessor(i) == BB) { 802 if (InfLoopBlock == 0) { 803 // Insert it at the end of the function, because it's either code, 804 // or it won't matter if it's hot. :) 805 InfLoopBlock = BasicBlock::Create(BB->getContext(), 806 "infloop", BB->getParent()); 807 BranchInst::Create(InfLoopBlock, InfLoopBlock); 808 } 809 NewSI->setSuccessor(i, InfLoopBlock); 810 } 811 812 Changed = true; 813 } 814 } 815 return Changed; 816 } 817 818 // isSafeToHoistInvoke - If we would need to insert a select that uses the 819 // value of this invoke (comments in HoistThenElseCodeToIf explain why we 820 // would need to do this), we can't hoist the invoke, as there is nowhere 821 // to put the select in this case. 822 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2, 823 Instruction *I1, Instruction *I2) { 824 for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) { 825 PHINode *PN; 826 for (BasicBlock::iterator BBI = SI->begin(); 827 (PN = dyn_cast<PHINode>(BBI)); ++BBI) { 828 Value *BB1V = PN->getIncomingValueForBlock(BB1); 829 Value *BB2V = PN->getIncomingValueForBlock(BB2); 830 if (BB1V != BB2V && (BB1V==I1 || BB2V==I2)) { 831 return false; 832 } 833 } 834 } 835 return true; 836 } 837 838 /// HoistThenElseCodeToIf - Given a conditional branch that goes to BB1 and 839 /// BB2, hoist any common code in the two blocks up into the branch block. The 840 /// caller of this function guarantees that BI's block dominates BB1 and BB2. 841 static bool HoistThenElseCodeToIf(BranchInst *BI) { 842 // This does very trivial matching, with limited scanning, to find identical 843 // instructions in the two blocks. In particular, we don't want to get into 844 // O(M*N) situations here where M and N are the sizes of BB1 and BB2. As 845 // such, we currently just scan for obviously identical instructions in an 846 // identical order. 847 BasicBlock *BB1 = BI->getSuccessor(0); // The true destination. 848 BasicBlock *BB2 = BI->getSuccessor(1); // The false destination 849 850 BasicBlock::iterator BB1_Itr = BB1->begin(); 851 BasicBlock::iterator BB2_Itr = BB2->begin(); 852 853 Instruction *I1 = BB1_Itr++, *I2 = BB2_Itr++; 854 // Skip debug info if it is not identical. 855 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 856 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 857 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 858 while (isa<DbgInfoIntrinsic>(I1)) 859 I1 = BB1_Itr++; 860 while (isa<DbgInfoIntrinsic>(I2)) 861 I2 = BB2_Itr++; 862 } 863 if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) || 864 (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))) 865 return false; 866 867 // If we get here, we can hoist at least one instruction. 868 BasicBlock *BIParent = BI->getParent(); 869 870 do { 871 // If we are hoisting the terminator instruction, don't move one (making a 872 // broken BB), instead clone it, and remove BI. 873 if (isa<TerminatorInst>(I1)) 874 goto HoistTerminator; 875 876 // For a normal instruction, we just move one to right before the branch, 877 // then replace all uses of the other with the first. Finally, we remove 878 // the now redundant second instruction. 879 BIParent->getInstList().splice(BI, BB1->getInstList(), I1); 880 if (!I2->use_empty()) 881 I2->replaceAllUsesWith(I1); 882 I1->intersectOptionalDataWith(I2); 883 I2->eraseFromParent(); 884 885 I1 = BB1_Itr++; 886 I2 = BB2_Itr++; 887 // Skip debug info if it is not identical. 888 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 889 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 890 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 891 while (isa<DbgInfoIntrinsic>(I1)) 892 I1 = BB1_Itr++; 893 while (isa<DbgInfoIntrinsic>(I2)) 894 I2 = BB2_Itr++; 895 } 896 } while (I1->isIdenticalToWhenDefined(I2)); 897 898 return true; 899 900 HoistTerminator: 901 // It may not be possible to hoist an invoke. 902 if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) 903 return true; 904 905 // Okay, it is safe to hoist the terminator. 906 Instruction *NT = I1->clone(); 907 BIParent->getInstList().insert(BI, NT); 908 if (!NT->getType()->isVoidTy()) { 909 I1->replaceAllUsesWith(NT); 910 I2->replaceAllUsesWith(NT); 911 NT->takeName(I1); 912 } 913 914 IRBuilder<true, NoFolder> Builder(NT); 915 // Hoisting one of the terminators from our successor is a great thing. 916 // Unfortunately, the successors of the if/else blocks may have PHI nodes in 917 // them. If they do, all PHI entries for BB1/BB2 must agree for all PHI 918 // nodes, so we insert select instruction to compute the final result. 919 std::map<std::pair<Value*,Value*>, SelectInst*> InsertedSelects; 920 for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) { 921 PHINode *PN; 922 for (BasicBlock::iterator BBI = SI->begin(); 923 (PN = dyn_cast<PHINode>(BBI)); ++BBI) { 924 Value *BB1V = PN->getIncomingValueForBlock(BB1); 925 Value *BB2V = PN->getIncomingValueForBlock(BB2); 926 if (BB1V == BB2V) continue; 927 928 // These values do not agree. Insert a select instruction before NT 929 // that determines the right value. 930 SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)]; 931 if (SI == 0) 932 SI = cast<SelectInst> 933 (Builder.CreateSelect(BI->getCondition(), BB1V, BB2V, 934 BB1V->getName()+"."+BB2V->getName())); 935 936 // Make the PHI node use the select for all incoming values for BB1/BB2 937 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 938 if (PN->getIncomingBlock(i) == BB1 || PN->getIncomingBlock(i) == BB2) 939 PN->setIncomingValue(i, SI); 940 } 941 } 942 943 // Update any PHI nodes in our new successors. 944 for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) 945 AddPredecessorToBlock(*SI, BIParent, BB1); 946 947 EraseTerminatorInstAndDCECond(BI); 948 return true; 949 } 950 951 /// SpeculativelyExecuteBB - Given a conditional branch that goes to BB1 952 /// and an BB2 and the only successor of BB1 is BB2, hoist simple code 953 /// (for now, restricted to a single instruction that's side effect free) from 954 /// the BB1 into the branch block to speculatively execute it. 955 static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *BB1) { 956 // Only speculatively execution a single instruction (not counting the 957 // terminator) for now. 958 Instruction *HInst = NULL; 959 Instruction *Term = BB1->getTerminator(); 960 for (BasicBlock::iterator BBI = BB1->begin(), BBE = BB1->end(); 961 BBI != BBE; ++BBI) { 962 Instruction *I = BBI; 963 // Skip debug info. 964 if (isa<DbgInfoIntrinsic>(I)) continue; 965 if (I == Term) break; 966 967 if (HInst) 968 return false; 969 HInst = I; 970 } 971 if (!HInst) 972 return false; 973 974 // Be conservative for now. FP select instruction can often be expensive. 975 Value *BrCond = BI->getCondition(); 976 if (isa<FCmpInst>(BrCond)) 977 return false; 978 979 // If BB1 is actually on the false edge of the conditional branch, remember 980 // to swap the select operands later. 981 bool Invert = false; 982 if (BB1 != BI->getSuccessor(0)) { 983 assert(BB1 == BI->getSuccessor(1) && "No edge from 'if' block?"); 984 Invert = true; 985 } 986 987 // Turn 988 // BB: 989 // %t1 = icmp 990 // br i1 %t1, label %BB1, label %BB2 991 // BB1: 992 // %t3 = add %t2, c 993 // br label BB2 994 // BB2: 995 // => 996 // BB: 997 // %t1 = icmp 998 // %t4 = add %t2, c 999 // %t3 = select i1 %t1, %t2, %t3 1000 switch (HInst->getOpcode()) { 1001 default: return false; // Not safe / profitable to hoist. 1002 case Instruction::Add: 1003 case Instruction::Sub: 1004 // Not worth doing for vector ops. 1005 if (HInst->getType()->isVectorTy()) 1006 return false; 1007 break; 1008 case Instruction::And: 1009 case Instruction::Or: 1010 case Instruction::Xor: 1011 case Instruction::Shl: 1012 case Instruction::LShr: 1013 case Instruction::AShr: 1014 // Don't mess with vector operations. 1015 if (HInst->getType()->isVectorTy()) 1016 return false; 1017 break; // These are all cheap and non-trapping instructions. 1018 } 1019 1020 // If the instruction is obviously dead, don't try to predicate it. 1021 if (HInst->use_empty()) { 1022 HInst->eraseFromParent(); 1023 return true; 1024 } 1025 1026 // Can we speculatively execute the instruction? And what is the value 1027 // if the condition is false? Consider the phi uses, if the incoming value 1028 // from the "if" block are all the same V, then V is the value of the 1029 // select if the condition is false. 1030 BasicBlock *BIParent = BI->getParent(); 1031 SmallVector<PHINode*, 4> PHIUses; 1032 Value *FalseV = NULL; 1033 1034 BasicBlock *BB2 = BB1->getTerminator()->getSuccessor(0); 1035 for (Value::use_iterator UI = HInst->use_begin(), E = HInst->use_end(); 1036 UI != E; ++UI) { 1037 // Ignore any user that is not a PHI node in BB2. These can only occur in 1038 // unreachable blocks, because they would not be dominated by the instr. 1039 PHINode *PN = dyn_cast<PHINode>(*UI); 1040 if (!PN || PN->getParent() != BB2) 1041 return false; 1042 PHIUses.push_back(PN); 1043 1044 Value *PHIV = PN->getIncomingValueForBlock(BIParent); 1045 if (!FalseV) 1046 FalseV = PHIV; 1047 else if (FalseV != PHIV) 1048 return false; // Inconsistent value when condition is false. 1049 } 1050 1051 assert(FalseV && "Must have at least one user, and it must be a PHI"); 1052 1053 // Do not hoist the instruction if any of its operands are defined but not 1054 // used in this BB. The transformation will prevent the operand from 1055 // being sunk into the use block. 1056 for (User::op_iterator i = HInst->op_begin(), e = HInst->op_end(); 1057 i != e; ++i) { 1058 Instruction *OpI = dyn_cast<Instruction>(*i); 1059 if (OpI && OpI->getParent() == BIParent && 1060 !OpI->isUsedInBasicBlock(BIParent)) 1061 return false; 1062 } 1063 1064 // If we get here, we can hoist the instruction. Try to place it 1065 // before the icmp instruction preceding the conditional branch. 1066 BasicBlock::iterator InsertPos = BI; 1067 if (InsertPos != BIParent->begin()) 1068 --InsertPos; 1069 // Skip debug info between condition and branch. 1070 while (InsertPos != BIParent->begin() && isa<DbgInfoIntrinsic>(InsertPos)) 1071 --InsertPos; 1072 if (InsertPos == BrCond && !isa<PHINode>(BrCond)) { 1073 SmallPtrSet<Instruction *, 4> BB1Insns; 1074 for(BasicBlock::iterator BB1I = BB1->begin(), BB1E = BB1->end(); 1075 BB1I != BB1E; ++BB1I) 1076 BB1Insns.insert(BB1I); 1077 for(Value::use_iterator UI = BrCond->use_begin(), UE = BrCond->use_end(); 1078 UI != UE; ++UI) { 1079 Instruction *Use = cast<Instruction>(*UI); 1080 if (!BB1Insns.count(Use)) continue; 1081 1082 // If BrCond uses the instruction that place it just before 1083 // branch instruction. 1084 InsertPos = BI; 1085 break; 1086 } 1087 } else 1088 InsertPos = BI; 1089 BIParent->getInstList().splice(InsertPos, BB1->getInstList(), HInst); 1090 1091 // Create a select whose true value is the speculatively executed value and 1092 // false value is the previously determined FalseV. 1093 IRBuilder<true, NoFolder> Builder(BI); 1094 SelectInst *SI; 1095 if (Invert) 1096 SI = cast<SelectInst> 1097 (Builder.CreateSelect(BrCond, FalseV, HInst, 1098 FalseV->getName() + "." + HInst->getName())); 1099 else 1100 SI = cast<SelectInst> 1101 (Builder.CreateSelect(BrCond, HInst, FalseV, 1102 HInst->getName() + "." + FalseV->getName())); 1103 1104 // Make the PHI node use the select for all incoming values for "then" and 1105 // "if" blocks. 1106 for (unsigned i = 0, e = PHIUses.size(); i != e; ++i) { 1107 PHINode *PN = PHIUses[i]; 1108 for (unsigned j = 0, ee = PN->getNumIncomingValues(); j != ee; ++j) 1109 if (PN->getIncomingBlock(j) == BB1 || PN->getIncomingBlock(j) == BIParent) 1110 PN->setIncomingValue(j, SI); 1111 } 1112 1113 ++NumSpeculations; 1114 return true; 1115 } 1116 1117 /// BlockIsSimpleEnoughToThreadThrough - Return true if we can thread a branch 1118 /// across this block. 1119 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) { 1120 BranchInst *BI = cast<BranchInst>(BB->getTerminator()); 1121 unsigned Size = 0; 1122 1123 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) { 1124 if (isa<DbgInfoIntrinsic>(BBI)) 1125 continue; 1126 if (Size > 10) return false; // Don't clone large BB's. 1127 ++Size; 1128 1129 // We can only support instructions that do not define values that are 1130 // live outside of the current basic block. 1131 for (Value::use_iterator UI = BBI->use_begin(), E = BBI->use_end(); 1132 UI != E; ++UI) { 1133 Instruction *U = cast<Instruction>(*UI); 1134 if (U->getParent() != BB || isa<PHINode>(U)) return false; 1135 } 1136 1137 // Looks ok, continue checking. 1138 } 1139 1140 return true; 1141 } 1142 1143 /// FoldCondBranchOnPHI - If we have a conditional branch on a PHI node value 1144 /// that is defined in the same block as the branch and if any PHI entries are 1145 /// constants, thread edges corresponding to that entry to be branches to their 1146 /// ultimate destination. 1147 static bool FoldCondBranchOnPHI(BranchInst *BI, const TargetData *TD) { 1148 BasicBlock *BB = BI->getParent(); 1149 PHINode *PN = dyn_cast<PHINode>(BI->getCondition()); 1150 // NOTE: we currently cannot transform this case if the PHI node is used 1151 // outside of the block. 1152 if (!PN || PN->getParent() != BB || !PN->hasOneUse()) 1153 return false; 1154 1155 // Degenerate case of a single entry PHI. 1156 if (PN->getNumIncomingValues() == 1) { 1157 FoldSingleEntryPHINodes(PN->getParent()); 1158 return true; 1159 } 1160 1161 // Now we know that this block has multiple preds and two succs. 1162 if (!BlockIsSimpleEnoughToThreadThrough(BB)) return false; 1163 1164 // Okay, this is a simple enough basic block. See if any phi values are 1165 // constants. 1166 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1167 ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i)); 1168 if (CB == 0 || !CB->getType()->isIntegerTy(1)) continue; 1169 1170 // Okay, we now know that all edges from PredBB should be revectored to 1171 // branch to RealDest. 1172 BasicBlock *PredBB = PN->getIncomingBlock(i); 1173 BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue()); 1174 1175 if (RealDest == BB) continue; // Skip self loops. 1176 // Skip if the predecessor's terminator is an indirect branch. 1177 if (isa<IndirectBrInst>(PredBB->getTerminator())) continue; 1178 1179 // The dest block might have PHI nodes, other predecessors and other 1180 // difficult cases. Instead of being smart about this, just insert a new 1181 // block that jumps to the destination block, effectively splitting 1182 // the edge we are about to create. 1183 BasicBlock *EdgeBB = BasicBlock::Create(BB->getContext(), 1184 RealDest->getName()+".critedge", 1185 RealDest->getParent(), RealDest); 1186 BranchInst::Create(RealDest, EdgeBB); 1187 1188 // Update PHI nodes. 1189 AddPredecessorToBlock(RealDest, EdgeBB, BB); 1190 1191 // BB may have instructions that are being threaded over. Clone these 1192 // instructions into EdgeBB. We know that there will be no uses of the 1193 // cloned instructions outside of EdgeBB. 1194 BasicBlock::iterator InsertPt = EdgeBB->begin(); 1195 DenseMap<Value*, Value*> TranslateMap; // Track translated values. 1196 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) { 1197 if (PHINode *PN = dyn_cast<PHINode>(BBI)) { 1198 TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB); 1199 continue; 1200 } 1201 // Clone the instruction. 1202 Instruction *N = BBI->clone(); 1203 if (BBI->hasName()) N->setName(BBI->getName()+".c"); 1204 1205 // Update operands due to translation. 1206 for (User::op_iterator i = N->op_begin(), e = N->op_end(); 1207 i != e; ++i) { 1208 DenseMap<Value*, Value*>::iterator PI = TranslateMap.find(*i); 1209 if (PI != TranslateMap.end()) 1210 *i = PI->second; 1211 } 1212 1213 // Check for trivial simplification. 1214 if (Value *V = SimplifyInstruction(N, TD)) { 1215 TranslateMap[BBI] = V; 1216 delete N; // Instruction folded away, don't need actual inst 1217 } else { 1218 // Insert the new instruction into its new home. 1219 EdgeBB->getInstList().insert(InsertPt, N); 1220 if (!BBI->use_empty()) 1221 TranslateMap[BBI] = N; 1222 } 1223 } 1224 1225 // Loop over all of the edges from PredBB to BB, changing them to branch 1226 // to EdgeBB instead. 1227 TerminatorInst *PredBBTI = PredBB->getTerminator(); 1228 for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i) 1229 if (PredBBTI->getSuccessor(i) == BB) { 1230 BB->removePredecessor(PredBB); 1231 PredBBTI->setSuccessor(i, EdgeBB); 1232 } 1233 1234 // Recurse, simplifying any other constants. 1235 return FoldCondBranchOnPHI(BI, TD) | true; 1236 } 1237 1238 return false; 1239 } 1240 1241 /// FoldTwoEntryPHINode - Given a BB that starts with the specified two-entry 1242 /// PHI node, see if we can eliminate it. 1243 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetData *TD) { 1244 // Ok, this is a two entry PHI node. Check to see if this is a simple "if 1245 // statement", which has a very simple dominance structure. Basically, we 1246 // are trying to find the condition that is being branched on, which 1247 // subsequently causes this merge to happen. We really want control 1248 // dependence information for this check, but simplifycfg can't keep it up 1249 // to date, and this catches most of the cases we care about anyway. 1250 BasicBlock *BB = PN->getParent(); 1251 BasicBlock *IfTrue, *IfFalse; 1252 Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse); 1253 if (!IfCond || 1254 // Don't bother if the branch will be constant folded trivially. 1255 isa<ConstantInt>(IfCond)) 1256 return false; 1257 1258 // Okay, we found that we can merge this two-entry phi node into a select. 1259 // Doing so would require us to fold *all* two entry phi nodes in this block. 1260 // At some point this becomes non-profitable (particularly if the target 1261 // doesn't support cmov's). Only do this transformation if there are two or 1262 // fewer PHI nodes in this block. 1263 unsigned NumPhis = 0; 1264 for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I) 1265 if (NumPhis > 2) 1266 return false; 1267 1268 // Loop over the PHI's seeing if we can promote them all to select 1269 // instructions. While we are at it, keep track of the instructions 1270 // that need to be moved to the dominating block. 1271 SmallPtrSet<Instruction*, 4> AggressiveInsts; 1272 unsigned MaxCostVal0 = PHINodeFoldingThreshold, 1273 MaxCostVal1 = PHINodeFoldingThreshold; 1274 1275 for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) { 1276 PHINode *PN = cast<PHINode>(II++); 1277 if (Value *V = SimplifyInstruction(PN, TD)) { 1278 PN->replaceAllUsesWith(V); 1279 PN->eraseFromParent(); 1280 continue; 1281 } 1282 1283 if (!DominatesMergePoint(PN->getIncomingValue(0), BB, &AggressiveInsts, 1284 MaxCostVal0) || 1285 !DominatesMergePoint(PN->getIncomingValue(1), BB, &AggressiveInsts, 1286 MaxCostVal1)) 1287 return false; 1288 } 1289 1290 // If we folded the the first phi, PN dangles at this point. Refresh it. If 1291 // we ran out of PHIs then we simplified them all. 1292 PN = dyn_cast<PHINode>(BB->begin()); 1293 if (PN == 0) return true; 1294 1295 // Don't fold i1 branches on PHIs which contain binary operators. These can 1296 // often be turned into switches and other things. 1297 if (PN->getType()->isIntegerTy(1) && 1298 (isa<BinaryOperator>(PN->getIncomingValue(0)) || 1299 isa<BinaryOperator>(PN->getIncomingValue(1)) || 1300 isa<BinaryOperator>(IfCond))) 1301 return false; 1302 1303 // If we all PHI nodes are promotable, check to make sure that all 1304 // instructions in the predecessor blocks can be promoted as well. If 1305 // not, we won't be able to get rid of the control flow, so it's not 1306 // worth promoting to select instructions. 1307 BasicBlock *DomBlock = 0; 1308 BasicBlock *IfBlock1 = PN->getIncomingBlock(0); 1309 BasicBlock *IfBlock2 = PN->getIncomingBlock(1); 1310 if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) { 1311 IfBlock1 = 0; 1312 } else { 1313 DomBlock = *pred_begin(IfBlock1); 1314 for (BasicBlock::iterator I = IfBlock1->begin();!isa<TerminatorInst>(I);++I) 1315 if (!AggressiveInsts.count(I) && !isa<DbgInfoIntrinsic>(I)) { 1316 // This is not an aggressive instruction that we can promote. 1317 // Because of this, we won't be able to get rid of the control 1318 // flow, so the xform is not worth it. 1319 return false; 1320 } 1321 } 1322 1323 if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) { 1324 IfBlock2 = 0; 1325 } else { 1326 DomBlock = *pred_begin(IfBlock2); 1327 for (BasicBlock::iterator I = IfBlock2->begin();!isa<TerminatorInst>(I);++I) 1328 if (!AggressiveInsts.count(I) && !isa<DbgInfoIntrinsic>(I)) { 1329 // This is not an aggressive instruction that we can promote. 1330 // Because of this, we won't be able to get rid of the control 1331 // flow, so the xform is not worth it. 1332 return false; 1333 } 1334 } 1335 1336 DEBUG(dbgs() << "FOUND IF CONDITION! " << *IfCond << " T: " 1337 << IfTrue->getName() << " F: " << IfFalse->getName() << "\n"); 1338 1339 // If we can still promote the PHI nodes after this gauntlet of tests, 1340 // do all of the PHI's now. 1341 Instruction *InsertPt = DomBlock->getTerminator(); 1342 IRBuilder<true, NoFolder> Builder(InsertPt); 1343 1344 // Move all 'aggressive' instructions, which are defined in the 1345 // conditional parts of the if's up to the dominating block. 1346 if (IfBlock1) 1347 DomBlock->getInstList().splice(InsertPt, 1348 IfBlock1->getInstList(), IfBlock1->begin(), 1349 IfBlock1->getTerminator()); 1350 if (IfBlock2) 1351 DomBlock->getInstList().splice(InsertPt, 1352 IfBlock2->getInstList(), IfBlock2->begin(), 1353 IfBlock2->getTerminator()); 1354 1355 while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) { 1356 // Change the PHI node into a select instruction. 1357 Value *TrueVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse); 1358 Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue); 1359 1360 SelectInst *NV = 1361 cast<SelectInst>(Builder.CreateSelect(IfCond, TrueVal, FalseVal, "")); 1362 PN->replaceAllUsesWith(NV); 1363 NV->takeName(PN); 1364 PN->eraseFromParent(); 1365 } 1366 1367 // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement 1368 // has been flattened. Change DomBlock to jump directly to our new block to 1369 // avoid other simplifycfg's kicking in on the diamond. 1370 TerminatorInst *OldTI = DomBlock->getTerminator(); 1371 Builder.SetInsertPoint(OldTI); 1372 Builder.CreateBr(BB); 1373 OldTI->eraseFromParent(); 1374 return true; 1375 } 1376 1377 /// SimplifyCondBranchToTwoReturns - If we found a conditional branch that goes 1378 /// to two returning blocks, try to merge them together into one return, 1379 /// introducing a select if the return values disagree. 1380 static bool SimplifyCondBranchToTwoReturns(BranchInst *BI, 1381 IRBuilder<> &Builder) { 1382 assert(BI->isConditional() && "Must be a conditional branch"); 1383 BasicBlock *TrueSucc = BI->getSuccessor(0); 1384 BasicBlock *FalseSucc = BI->getSuccessor(1); 1385 ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator()); 1386 ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator()); 1387 1388 // Check to ensure both blocks are empty (just a return) or optionally empty 1389 // with PHI nodes. If there are other instructions, merging would cause extra 1390 // computation on one path or the other. 1391 if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator()) 1392 return false; 1393 if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator()) 1394 return false; 1395 1396 Builder.SetInsertPoint(BI); 1397 // Okay, we found a branch that is going to two return nodes. If 1398 // there is no return value for this function, just change the 1399 // branch into a return. 1400 if (FalseRet->getNumOperands() == 0) { 1401 TrueSucc->removePredecessor(BI->getParent()); 1402 FalseSucc->removePredecessor(BI->getParent()); 1403 Builder.CreateRetVoid(); 1404 EraseTerminatorInstAndDCECond(BI); 1405 return true; 1406 } 1407 1408 // Otherwise, figure out what the true and false return values are 1409 // so we can insert a new select instruction. 1410 Value *TrueValue = TrueRet->getReturnValue(); 1411 Value *FalseValue = FalseRet->getReturnValue(); 1412 1413 // Unwrap any PHI nodes in the return blocks. 1414 if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue)) 1415 if (TVPN->getParent() == TrueSucc) 1416 TrueValue = TVPN->getIncomingValueForBlock(BI->getParent()); 1417 if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue)) 1418 if (FVPN->getParent() == FalseSucc) 1419 FalseValue = FVPN->getIncomingValueForBlock(BI->getParent()); 1420 1421 // In order for this transformation to be safe, we must be able to 1422 // unconditionally execute both operands to the return. This is 1423 // normally the case, but we could have a potentially-trapping 1424 // constant expression that prevents this transformation from being 1425 // safe. 1426 if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue)) 1427 if (TCV->canTrap()) 1428 return false; 1429 if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue)) 1430 if (FCV->canTrap()) 1431 return false; 1432 1433 // Okay, we collected all the mapped values and checked them for sanity, and 1434 // defined to really do this transformation. First, update the CFG. 1435 TrueSucc->removePredecessor(BI->getParent()); 1436 FalseSucc->removePredecessor(BI->getParent()); 1437 1438 // Insert select instructions where needed. 1439 Value *BrCond = BI->getCondition(); 1440 if (TrueValue) { 1441 // Insert a select if the results differ. 1442 if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) { 1443 } else if (isa<UndefValue>(TrueValue)) { 1444 TrueValue = FalseValue; 1445 } else { 1446 TrueValue = Builder.CreateSelect(BrCond, TrueValue, 1447 FalseValue, "retval"); 1448 } 1449 } 1450 1451 Value *RI = !TrueValue ? 1452 Builder.CreateRetVoid() : Builder.CreateRet(TrueValue); 1453 1454 (void) RI; 1455 1456 DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:" 1457 << "\n " << *BI << "NewRet = " << *RI 1458 << "TRUEBLOCK: " << *TrueSucc << "FALSEBLOCK: "<< *FalseSucc); 1459 1460 EraseTerminatorInstAndDCECond(BI); 1461 1462 return true; 1463 } 1464 1465 /// FoldBranchToCommonDest - If this basic block is simple enough, and if a 1466 /// predecessor branches to us and one of our successors, fold the block into 1467 /// the predecessor and use logical operations to pick the right destination. 1468 bool llvm::FoldBranchToCommonDest(BranchInst *BI) { 1469 BasicBlock *BB = BI->getParent(); 1470 1471 Instruction *Cond = dyn_cast<Instruction>(BI->getCondition()); 1472 if (Cond == 0 || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) || 1473 Cond->getParent() != BB || !Cond->hasOneUse()) 1474 return false; 1475 1476 // Only allow this if the condition is a simple instruction that can be 1477 // executed unconditionally. It must be in the same block as the branch, and 1478 // must be at the front of the block. 1479 BasicBlock::iterator FrontIt = BB->front(); 1480 1481 // Ignore dbg intrinsics. 1482 while (isa<DbgInfoIntrinsic>(FrontIt)) ++FrontIt; 1483 1484 // Allow a single instruction to be hoisted in addition to the compare 1485 // that feeds the branch. We later ensure that any values that _it_ uses 1486 // were also live in the predecessor, so that we don't unnecessarily create 1487 // register pressure or inhibit out-of-order execution. 1488 Instruction *BonusInst = 0; 1489 if (&*FrontIt != Cond && 1490 FrontIt->hasOneUse() && *FrontIt->use_begin() == Cond && 1491 isSafeToSpeculativelyExecute(FrontIt)) { 1492 BonusInst = &*FrontIt; 1493 ++FrontIt; 1494 1495 // Ignore dbg intrinsics. 1496 while (isa<DbgInfoIntrinsic>(FrontIt)) ++FrontIt; 1497 } 1498 1499 // Only a single bonus inst is allowed. 1500 if (&*FrontIt != Cond) 1501 return false; 1502 1503 // Make sure the instruction after the condition is the cond branch. 1504 BasicBlock::iterator CondIt = Cond; ++CondIt; 1505 1506 // Ingore dbg intrinsics. 1507 while (isa<DbgInfoIntrinsic>(CondIt)) ++CondIt; 1508 1509 if (&*CondIt != BI) 1510 return false; 1511 1512 // Cond is known to be a compare or binary operator. Check to make sure that 1513 // neither operand is a potentially-trapping constant expression. 1514 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0))) 1515 if (CE->canTrap()) 1516 return false; 1517 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1))) 1518 if (CE->canTrap()) 1519 return false; 1520 1521 // Finally, don't infinitely unroll conditional loops. 1522 BasicBlock *TrueDest = BI->getSuccessor(0); 1523 BasicBlock *FalseDest = BI->getSuccessor(1); 1524 if (TrueDest == BB || FalseDest == BB) 1525 return false; 1526 1527 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 1528 BasicBlock *PredBlock = *PI; 1529 BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator()); 1530 1531 // Check that we have two conditional branches. If there is a PHI node in 1532 // the common successor, verify that the same value flows in from both 1533 // blocks. 1534 if (PBI == 0 || PBI->isUnconditional() || !SafeToMergeTerminators(BI, PBI)) 1535 continue; 1536 1537 // Determine if the two branches share a common destination. 1538 Instruction::BinaryOps Opc; 1539 bool InvertPredCond = false; 1540 1541 if (PBI->getSuccessor(0) == TrueDest) 1542 Opc = Instruction::Or; 1543 else if (PBI->getSuccessor(1) == FalseDest) 1544 Opc = Instruction::And; 1545 else if (PBI->getSuccessor(0) == FalseDest) 1546 Opc = Instruction::And, InvertPredCond = true; 1547 else if (PBI->getSuccessor(1) == TrueDest) 1548 Opc = Instruction::Or, InvertPredCond = true; 1549 else 1550 continue; 1551 1552 // Ensure that any values used in the bonus instruction are also used 1553 // by the terminator of the predecessor. This means that those values 1554 // must already have been resolved, so we won't be inhibiting the 1555 // out-of-order core by speculating them earlier. 1556 if (BonusInst) { 1557 // Collect the values used by the bonus inst 1558 SmallPtrSet<Value*, 4> UsedValues; 1559 for (Instruction::op_iterator OI = BonusInst->op_begin(), 1560 OE = BonusInst->op_end(); OI != OE; ++OI) { 1561 Value* V = *OI; 1562 if (!isa<Constant>(V)) 1563 UsedValues.insert(V); 1564 } 1565 1566 SmallVector<std::pair<Value*, unsigned>, 4> Worklist; 1567 Worklist.push_back(std::make_pair(PBI->getOperand(0), 0)); 1568 1569 // Walk up to four levels back up the use-def chain of the predecessor's 1570 // terminator to see if all those values were used. The choice of four 1571 // levels is arbitrary, to provide a compile-time-cost bound. 1572 while (!Worklist.empty()) { 1573 std::pair<Value*, unsigned> Pair = Worklist.back(); 1574 Worklist.pop_back(); 1575 1576 if (Pair.second >= 4) continue; 1577 UsedValues.erase(Pair.first); 1578 if (UsedValues.empty()) break; 1579 1580 if (Instruction *I = dyn_cast<Instruction>(Pair.first)) { 1581 for (Instruction::op_iterator OI = I->op_begin(), OE = I->op_end(); 1582 OI != OE; ++OI) 1583 Worklist.push_back(std::make_pair(OI->get(), Pair.second+1)); 1584 } 1585 } 1586 1587 if (!UsedValues.empty()) return false; 1588 } 1589 1590 DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB); 1591 IRBuilder<> Builder(PBI); 1592 1593 // If we need to invert the condition in the pred block to match, do so now. 1594 if (InvertPredCond) { 1595 Value *NewCond = PBI->getCondition(); 1596 1597 if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) { 1598 CmpInst *CI = cast<CmpInst>(NewCond); 1599 CI->setPredicate(CI->getInversePredicate()); 1600 } else { 1601 NewCond = Builder.CreateNot(NewCond, 1602 PBI->getCondition()->getName()+".not"); 1603 } 1604 1605 PBI->setCondition(NewCond); 1606 BasicBlock *OldTrue = PBI->getSuccessor(0); 1607 BasicBlock *OldFalse = PBI->getSuccessor(1); 1608 PBI->setSuccessor(0, OldFalse); 1609 PBI->setSuccessor(1, OldTrue); 1610 } 1611 1612 // If we have a bonus inst, clone it into the predecessor block. 1613 Instruction *NewBonus = 0; 1614 if (BonusInst) { 1615 NewBonus = BonusInst->clone(); 1616 PredBlock->getInstList().insert(PBI, NewBonus); 1617 NewBonus->takeName(BonusInst); 1618 BonusInst->setName(BonusInst->getName()+".old"); 1619 } 1620 1621 // Clone Cond into the predecessor basic block, and or/and the 1622 // two conditions together. 1623 Instruction *New = Cond->clone(); 1624 if (BonusInst) New->replaceUsesOfWith(BonusInst, NewBonus); 1625 PredBlock->getInstList().insert(PBI, New); 1626 New->takeName(Cond); 1627 Cond->setName(New->getName()+".old"); 1628 1629 Instruction *NewCond = 1630 cast<Instruction>(Builder.CreateBinOp(Opc, PBI->getCondition(), 1631 New, "or.cond")); 1632 PBI->setCondition(NewCond); 1633 if (PBI->getSuccessor(0) == BB) { 1634 AddPredecessorToBlock(TrueDest, PredBlock, BB); 1635 PBI->setSuccessor(0, TrueDest); 1636 } 1637 if (PBI->getSuccessor(1) == BB) { 1638 AddPredecessorToBlock(FalseDest, PredBlock, BB); 1639 PBI->setSuccessor(1, FalseDest); 1640 } 1641 1642 // Copy any debug value intrinsics into the end of PredBlock. 1643 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) 1644 if (isa<DbgInfoIntrinsic>(*I)) 1645 I->clone()->insertBefore(PBI); 1646 1647 return true; 1648 } 1649 return false; 1650 } 1651 1652 /// SimplifyCondBranchToCondBranch - If we have a conditional branch as a 1653 /// predecessor of another block, this function tries to simplify it. We know 1654 /// that PBI and BI are both conditional branches, and BI is in one of the 1655 /// successor blocks of PBI - PBI branches to BI. 1656 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI) { 1657 assert(PBI->isConditional() && BI->isConditional()); 1658 BasicBlock *BB = BI->getParent(); 1659 1660 // If this block ends with a branch instruction, and if there is a 1661 // predecessor that ends on a branch of the same condition, make 1662 // this conditional branch redundant. 1663 if (PBI->getCondition() == BI->getCondition() && 1664 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 1665 // Okay, the outcome of this conditional branch is statically 1666 // knowable. If this block had a single pred, handle specially. 1667 if (BB->getSinglePredecessor()) { 1668 // Turn this into a branch on constant. 1669 bool CondIsTrue = PBI->getSuccessor(0) == BB; 1670 BI->setCondition(ConstantInt::get(Type::getInt1Ty(BB->getContext()), 1671 CondIsTrue)); 1672 return true; // Nuke the branch on constant. 1673 } 1674 1675 // Otherwise, if there are multiple predecessors, insert a PHI that merges 1676 // in the constant and simplify the block result. Subsequent passes of 1677 // simplifycfg will thread the block. 1678 if (BlockIsSimpleEnoughToThreadThrough(BB)) { 1679 pred_iterator PB = pred_begin(BB), PE = pred_end(BB); 1680 PHINode *NewPN = PHINode::Create(Type::getInt1Ty(BB->getContext()), 1681 std::distance(PB, PE), 1682 BI->getCondition()->getName() + ".pr", 1683 BB->begin()); 1684 // Okay, we're going to insert the PHI node. Since PBI is not the only 1685 // predecessor, compute the PHI'd conditional value for all of the preds. 1686 // Any predecessor where the condition is not computable we keep symbolic. 1687 for (pred_iterator PI = PB; PI != PE; ++PI) { 1688 BasicBlock *P = *PI; 1689 if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) && 1690 PBI != BI && PBI->isConditional() && 1691 PBI->getCondition() == BI->getCondition() && 1692 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 1693 bool CondIsTrue = PBI->getSuccessor(0) == BB; 1694 NewPN->addIncoming(ConstantInt::get(Type::getInt1Ty(BB->getContext()), 1695 CondIsTrue), P); 1696 } else { 1697 NewPN->addIncoming(BI->getCondition(), P); 1698 } 1699 } 1700 1701 BI->setCondition(NewPN); 1702 return true; 1703 } 1704 } 1705 1706 // If this is a conditional branch in an empty block, and if any 1707 // predecessors is a conditional branch to one of our destinations, 1708 // fold the conditions into logical ops and one cond br. 1709 BasicBlock::iterator BBI = BB->begin(); 1710 // Ignore dbg intrinsics. 1711 while (isa<DbgInfoIntrinsic>(BBI)) 1712 ++BBI; 1713 if (&*BBI != BI) 1714 return false; 1715 1716 1717 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BI->getCondition())) 1718 if (CE->canTrap()) 1719 return false; 1720 1721 int PBIOp, BIOp; 1722 if (PBI->getSuccessor(0) == BI->getSuccessor(0)) 1723 PBIOp = BIOp = 0; 1724 else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) 1725 PBIOp = 0, BIOp = 1; 1726 else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) 1727 PBIOp = 1, BIOp = 0; 1728 else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) 1729 PBIOp = BIOp = 1; 1730 else 1731 return false; 1732 1733 // Check to make sure that the other destination of this branch 1734 // isn't BB itself. If so, this is an infinite loop that will 1735 // keep getting unwound. 1736 if (PBI->getSuccessor(PBIOp) == BB) 1737 return false; 1738 1739 // Do not perform this transformation if it would require 1740 // insertion of a large number of select instructions. For targets 1741 // without predication/cmovs, this is a big pessimization. 1742 BasicBlock *CommonDest = PBI->getSuccessor(PBIOp); 1743 1744 unsigned NumPhis = 0; 1745 for (BasicBlock::iterator II = CommonDest->begin(); 1746 isa<PHINode>(II); ++II, ++NumPhis) 1747 if (NumPhis > 2) // Disable this xform. 1748 return false; 1749 1750 // Finally, if everything is ok, fold the branches to logical ops. 1751 BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1); 1752 1753 DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent() 1754 << "AND: " << *BI->getParent()); 1755 1756 1757 // If OtherDest *is* BB, then BB is a basic block with a single conditional 1758 // branch in it, where one edge (OtherDest) goes back to itself but the other 1759 // exits. We don't *know* that the program avoids the infinite loop 1760 // (even though that seems likely). If we do this xform naively, we'll end up 1761 // recursively unpeeling the loop. Since we know that (after the xform is 1762 // done) that the block *is* infinite if reached, we just make it an obviously 1763 // infinite loop with no cond branch. 1764 if (OtherDest == BB) { 1765 // Insert it at the end of the function, because it's either code, 1766 // or it won't matter if it's hot. :) 1767 BasicBlock *InfLoopBlock = BasicBlock::Create(BB->getContext(), 1768 "infloop", BB->getParent()); 1769 BranchInst::Create(InfLoopBlock, InfLoopBlock); 1770 OtherDest = InfLoopBlock; 1771 } 1772 1773 DEBUG(dbgs() << *PBI->getParent()->getParent()); 1774 1775 // BI may have other predecessors. Because of this, we leave 1776 // it alone, but modify PBI. 1777 1778 // Make sure we get to CommonDest on True&True directions. 1779 Value *PBICond = PBI->getCondition(); 1780 IRBuilder<true, NoFolder> Builder(PBI); 1781 if (PBIOp) 1782 PBICond = Builder.CreateNot(PBICond, PBICond->getName()+".not"); 1783 1784 Value *BICond = BI->getCondition(); 1785 if (BIOp) 1786 BICond = Builder.CreateNot(BICond, BICond->getName()+".not"); 1787 1788 // Merge the conditions. 1789 Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge"); 1790 1791 // Modify PBI to branch on the new condition to the new dests. 1792 PBI->setCondition(Cond); 1793 PBI->setSuccessor(0, CommonDest); 1794 PBI->setSuccessor(1, OtherDest); 1795 1796 // OtherDest may have phi nodes. If so, add an entry from PBI's 1797 // block that are identical to the entries for BI's block. 1798 AddPredecessorToBlock(OtherDest, PBI->getParent(), BB); 1799 1800 // We know that the CommonDest already had an edge from PBI to 1801 // it. If it has PHIs though, the PHIs may have different 1802 // entries for BB and PBI's BB. If so, insert a select to make 1803 // them agree. 1804 PHINode *PN; 1805 for (BasicBlock::iterator II = CommonDest->begin(); 1806 (PN = dyn_cast<PHINode>(II)); ++II) { 1807 Value *BIV = PN->getIncomingValueForBlock(BB); 1808 unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent()); 1809 Value *PBIV = PN->getIncomingValue(PBBIdx); 1810 if (BIV != PBIV) { 1811 // Insert a select in PBI to pick the right value. 1812 Value *NV = cast<SelectInst> 1813 (Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName()+".mux")); 1814 PN->setIncomingValue(PBBIdx, NV); 1815 } 1816 } 1817 1818 DEBUG(dbgs() << "INTO: " << *PBI->getParent()); 1819 DEBUG(dbgs() << *PBI->getParent()->getParent()); 1820 1821 // This basic block is probably dead. We know it has at least 1822 // one fewer predecessor. 1823 return true; 1824 } 1825 1826 // SimplifyTerminatorOnSelect - Simplifies a terminator by replacing it with a 1827 // branch to TrueBB if Cond is true or to FalseBB if Cond is false. 1828 // Takes care of updating the successors and removing the old terminator. 1829 // Also makes sure not to introduce new successors by assuming that edges to 1830 // non-successor TrueBBs and FalseBBs aren't reachable. 1831 static bool SimplifyTerminatorOnSelect(TerminatorInst *OldTerm, Value *Cond, 1832 BasicBlock *TrueBB, BasicBlock *FalseBB){ 1833 // Remove any superfluous successor edges from the CFG. 1834 // First, figure out which successors to preserve. 1835 // If TrueBB and FalseBB are equal, only try to preserve one copy of that 1836 // successor. 1837 BasicBlock *KeepEdge1 = TrueBB; 1838 BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : 0; 1839 1840 // Then remove the rest. 1841 for (unsigned I = 0, E = OldTerm->getNumSuccessors(); I != E; ++I) { 1842 BasicBlock *Succ = OldTerm->getSuccessor(I); 1843 // Make sure only to keep exactly one copy of each edge. 1844 if (Succ == KeepEdge1) 1845 KeepEdge1 = 0; 1846 else if (Succ == KeepEdge2) 1847 KeepEdge2 = 0; 1848 else 1849 Succ->removePredecessor(OldTerm->getParent()); 1850 } 1851 1852 IRBuilder<> Builder(OldTerm); 1853 Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc()); 1854 1855 // Insert an appropriate new terminator. 1856 if ((KeepEdge1 == 0) && (KeepEdge2 == 0)) { 1857 if (TrueBB == FalseBB) 1858 // We were only looking for one successor, and it was present. 1859 // Create an unconditional branch to it. 1860 Builder.CreateBr(TrueBB); 1861 else 1862 // We found both of the successors we were looking for. 1863 // Create a conditional branch sharing the condition of the select. 1864 Builder.CreateCondBr(Cond, TrueBB, FalseBB); 1865 } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) { 1866 // Neither of the selected blocks were successors, so this 1867 // terminator must be unreachable. 1868 new UnreachableInst(OldTerm->getContext(), OldTerm); 1869 } else { 1870 // One of the selected values was a successor, but the other wasn't. 1871 // Insert an unconditional branch to the one that was found; 1872 // the edge to the one that wasn't must be unreachable. 1873 if (KeepEdge1 == 0) 1874 // Only TrueBB was found. 1875 Builder.CreateBr(TrueBB); 1876 else 1877 // Only FalseBB was found. 1878 Builder.CreateBr(FalseBB); 1879 } 1880 1881 EraseTerminatorInstAndDCECond(OldTerm); 1882 return true; 1883 } 1884 1885 // SimplifySwitchOnSelect - Replaces 1886 // (switch (select cond, X, Y)) on constant X, Y 1887 // with a branch - conditional if X and Y lead to distinct BBs, 1888 // unconditional otherwise. 1889 static bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select) { 1890 // Check for constant integer values in the select. 1891 ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue()); 1892 ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue()); 1893 if (!TrueVal || !FalseVal) 1894 return false; 1895 1896 // Find the relevant condition and destinations. 1897 Value *Condition = Select->getCondition(); 1898 BasicBlock *TrueBB = SI->getSuccessor(SI->findCaseValue(TrueVal)); 1899 BasicBlock *FalseBB = SI->getSuccessor(SI->findCaseValue(FalseVal)); 1900 1901 // Perform the actual simplification. 1902 return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB); 1903 } 1904 1905 // SimplifyIndirectBrOnSelect - Replaces 1906 // (indirectbr (select cond, blockaddress(@fn, BlockA), 1907 // blockaddress(@fn, BlockB))) 1908 // with 1909 // (br cond, BlockA, BlockB). 1910 static bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI) { 1911 // Check that both operands of the select are block addresses. 1912 BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue()); 1913 BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue()); 1914 if (!TBA || !FBA) 1915 return false; 1916 1917 // Extract the actual blocks. 1918 BasicBlock *TrueBB = TBA->getBasicBlock(); 1919 BasicBlock *FalseBB = FBA->getBasicBlock(); 1920 1921 // Perform the actual simplification. 1922 return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB); 1923 } 1924 1925 /// TryToSimplifyUncondBranchWithICmpInIt - This is called when we find an icmp 1926 /// instruction (a seteq/setne with a constant) as the only instruction in a 1927 /// block that ends with an uncond branch. We are looking for a very specific 1928 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified. In 1929 /// this case, we merge the first two "or's of icmp" into a switch, but then the 1930 /// default value goes to an uncond block with a seteq in it, we get something 1931 /// like: 1932 /// 1933 /// switch i8 %A, label %DEFAULT [ i8 1, label %end i8 2, label %end ] 1934 /// DEFAULT: 1935 /// %tmp = icmp eq i8 %A, 92 1936 /// br label %end 1937 /// end: 1938 /// ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ] 1939 /// 1940 /// We prefer to split the edge to 'end' so that there is a true/false entry to 1941 /// the PHI, merging the third icmp into the switch. 1942 static bool TryToSimplifyUncondBranchWithICmpInIt(ICmpInst *ICI, 1943 const TargetData *TD, 1944 IRBuilder<> &Builder) { 1945 BasicBlock *BB = ICI->getParent(); 1946 1947 // If the block has any PHIs in it or the icmp has multiple uses, it is too 1948 // complex. 1949 if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse()) return false; 1950 1951 Value *V = ICI->getOperand(0); 1952 ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1)); 1953 1954 // The pattern we're looking for is where our only predecessor is a switch on 1955 // 'V' and this block is the default case for the switch. In this case we can 1956 // fold the compared value into the switch to simplify things. 1957 BasicBlock *Pred = BB->getSinglePredecessor(); 1958 if (Pred == 0 || !isa<SwitchInst>(Pred->getTerminator())) return false; 1959 1960 SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator()); 1961 if (SI->getCondition() != V) 1962 return false; 1963 1964 // If BB is reachable on a non-default case, then we simply know the value of 1965 // V in this block. Substitute it and constant fold the icmp instruction 1966 // away. 1967 if (SI->getDefaultDest() != BB) { 1968 ConstantInt *VVal = SI->findCaseDest(BB); 1969 assert(VVal && "Should have a unique destination value"); 1970 ICI->setOperand(0, VVal); 1971 1972 if (Value *V = SimplifyInstruction(ICI, TD)) { 1973 ICI->replaceAllUsesWith(V); 1974 ICI->eraseFromParent(); 1975 } 1976 // BB is now empty, so it is likely to simplify away. 1977 return SimplifyCFG(BB) | true; 1978 } 1979 1980 // Ok, the block is reachable from the default dest. If the constant we're 1981 // comparing exists in one of the other edges, then we can constant fold ICI 1982 // and zap it. 1983 if (SI->findCaseValue(Cst) != 0) { 1984 Value *V; 1985 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 1986 V = ConstantInt::getFalse(BB->getContext()); 1987 else 1988 V = ConstantInt::getTrue(BB->getContext()); 1989 1990 ICI->replaceAllUsesWith(V); 1991 ICI->eraseFromParent(); 1992 // BB is now empty, so it is likely to simplify away. 1993 return SimplifyCFG(BB) | true; 1994 } 1995 1996 // The use of the icmp has to be in the 'end' block, by the only PHI node in 1997 // the block. 1998 BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0); 1999 PHINode *PHIUse = dyn_cast<PHINode>(ICI->use_back()); 2000 if (PHIUse == 0 || PHIUse != &SuccBlock->front() || 2001 isa<PHINode>(++BasicBlock::iterator(PHIUse))) 2002 return false; 2003 2004 // If the icmp is a SETEQ, then the default dest gets false, the new edge gets 2005 // true in the PHI. 2006 Constant *DefaultCst = ConstantInt::getTrue(BB->getContext()); 2007 Constant *NewCst = ConstantInt::getFalse(BB->getContext()); 2008 2009 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 2010 std::swap(DefaultCst, NewCst); 2011 2012 // Replace ICI (which is used by the PHI for the default value) with true or 2013 // false depending on if it is EQ or NE. 2014 ICI->replaceAllUsesWith(DefaultCst); 2015 ICI->eraseFromParent(); 2016 2017 // Okay, the switch goes to this block on a default value. Add an edge from 2018 // the switch to the merge point on the compared value. 2019 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "switch.edge", 2020 BB->getParent(), BB); 2021 SI->addCase(Cst, NewBB); 2022 2023 // NewBB branches to the phi block, add the uncond branch and the phi entry. 2024 Builder.SetInsertPoint(NewBB); 2025 Builder.SetCurrentDebugLocation(SI->getDebugLoc()); 2026 Builder.CreateBr(SuccBlock); 2027 PHIUse->addIncoming(NewCst, NewBB); 2028 return true; 2029 } 2030 2031 /// SimplifyBranchOnICmpChain - The specified branch is a conditional branch. 2032 /// Check to see if it is branching on an or/and chain of icmp instructions, and 2033 /// fold it into a switch instruction if so. 2034 static bool SimplifyBranchOnICmpChain(BranchInst *BI, const TargetData *TD, 2035 IRBuilder<> &Builder) { 2036 Instruction *Cond = dyn_cast<Instruction>(BI->getCondition()); 2037 if (Cond == 0) return false; 2038 2039 2040 // Change br (X == 0 | X == 1), T, F into a switch instruction. 2041 // If this is a bunch of seteq's or'd together, or if it's a bunch of 2042 // 'setne's and'ed together, collect them. 2043 Value *CompVal = 0; 2044 std::vector<ConstantInt*> Values; 2045 bool TrueWhenEqual = true; 2046 Value *ExtraCase = 0; 2047 unsigned UsedICmps = 0; 2048 2049 if (Cond->getOpcode() == Instruction::Or) { 2050 CompVal = GatherConstantCompares(Cond, Values, ExtraCase, TD, true, 2051 UsedICmps); 2052 } else if (Cond->getOpcode() == Instruction::And) { 2053 CompVal = GatherConstantCompares(Cond, Values, ExtraCase, TD, false, 2054 UsedICmps); 2055 TrueWhenEqual = false; 2056 } 2057 2058 // If we didn't have a multiply compared value, fail. 2059 if (CompVal == 0) return false; 2060 2061 // Avoid turning single icmps into a switch. 2062 if (UsedICmps <= 1) 2063 return false; 2064 2065 // There might be duplicate constants in the list, which the switch 2066 // instruction can't handle, remove them now. 2067 array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate); 2068 Values.erase(std::unique(Values.begin(), Values.end()), Values.end()); 2069 2070 // If Extra was used, we require at least two switch values to do the 2071 // transformation. A switch with one value is just an cond branch. 2072 if (ExtraCase && Values.size() < 2) return false; 2073 2074 // Figure out which block is which destination. 2075 BasicBlock *DefaultBB = BI->getSuccessor(1); 2076 BasicBlock *EdgeBB = BI->getSuccessor(0); 2077 if (!TrueWhenEqual) std::swap(DefaultBB, EdgeBB); 2078 2079 BasicBlock *BB = BI->getParent(); 2080 2081 DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size() 2082 << " cases into SWITCH. BB is:\n" << *BB); 2083 2084 // If there are any extra values that couldn't be folded into the switch 2085 // then we evaluate them with an explicit branch first. Split the block 2086 // right before the condbr to handle it. 2087 if (ExtraCase) { 2088 BasicBlock *NewBB = BB->splitBasicBlock(BI, "switch.early.test"); 2089 // Remove the uncond branch added to the old block. 2090 TerminatorInst *OldTI = BB->getTerminator(); 2091 Builder.SetInsertPoint(OldTI); 2092 2093 if (TrueWhenEqual) 2094 Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB); 2095 else 2096 Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB); 2097 2098 OldTI->eraseFromParent(); 2099 2100 // If there are PHI nodes in EdgeBB, then we need to add a new entry to them 2101 // for the edge we just added. 2102 AddPredecessorToBlock(EdgeBB, BB, NewBB); 2103 2104 DEBUG(dbgs() << " ** 'icmp' chain unhandled condition: " << *ExtraCase 2105 << "\nEXTRABB = " << *BB); 2106 BB = NewBB; 2107 } 2108 2109 Builder.SetInsertPoint(BI); 2110 // Convert pointer to int before we switch. 2111 if (CompVal->getType()->isPointerTy()) { 2112 assert(TD && "Cannot switch on pointer without TargetData"); 2113 CompVal = Builder.CreatePtrToInt(CompVal, 2114 TD->getIntPtrType(CompVal->getContext()), 2115 "magicptr"); 2116 } 2117 2118 // Create the new switch instruction now. 2119 SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size()); 2120 2121 // Add all of the 'cases' to the switch instruction. 2122 for (unsigned i = 0, e = Values.size(); i != e; ++i) 2123 New->addCase(Values[i], EdgeBB); 2124 2125 // We added edges from PI to the EdgeBB. As such, if there were any 2126 // PHI nodes in EdgeBB, they need entries to be added corresponding to 2127 // the number of edges added. 2128 for (BasicBlock::iterator BBI = EdgeBB->begin(); 2129 isa<PHINode>(BBI); ++BBI) { 2130 PHINode *PN = cast<PHINode>(BBI); 2131 Value *InVal = PN->getIncomingValueForBlock(BB); 2132 for (unsigned i = 0, e = Values.size()-1; i != e; ++i) 2133 PN->addIncoming(InVal, BB); 2134 } 2135 2136 // Erase the old branch instruction. 2137 EraseTerminatorInstAndDCECond(BI); 2138 2139 DEBUG(dbgs() << " ** 'icmp' chain result is:\n" << *BB << '\n'); 2140 return true; 2141 } 2142 2143 bool SimplifyCFGOpt::SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder) { 2144 // If this is a trivial landing pad that just continues unwinding the caught 2145 // exception then zap the landing pad, turning its invokes into calls. 2146 BasicBlock *BB = RI->getParent(); 2147 LandingPadInst *LPInst = dyn_cast<LandingPadInst>(BB->getFirstNonPHI()); 2148 if (RI->getValue() != LPInst) 2149 // Not a landing pad, or the resume is not unwinding the exception that 2150 // caused control to branch here. 2151 return false; 2152 2153 // Check that there are no other instructions except for debug intrinsics. 2154 BasicBlock::iterator I = LPInst, E = RI; 2155 while (++I != E) 2156 if (!isa<DbgInfoIntrinsic>(I)) 2157 return false; 2158 2159 // Turn all invokes that unwind here into calls and delete the basic block. 2160 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) { 2161 InvokeInst *II = cast<InvokeInst>((*PI++)->getTerminator()); 2162 SmallVector<Value*, 8> Args(II->op_begin(), II->op_end() - 3); 2163 // Insert a call instruction before the invoke. 2164 CallInst *Call = CallInst::Create(II->getCalledValue(), Args, "", II); 2165 Call->takeName(II); 2166 Call->setCallingConv(II->getCallingConv()); 2167 Call->setAttributes(II->getAttributes()); 2168 Call->setDebugLoc(II->getDebugLoc()); 2169 2170 // Anything that used the value produced by the invoke instruction now uses 2171 // the value produced by the call instruction. Note that we do this even 2172 // for void functions and calls with no uses so that the callgraph edge is 2173 // updated. 2174 II->replaceAllUsesWith(Call); 2175 BB->removePredecessor(II->getParent()); 2176 2177 // Insert a branch to the normal destination right before the invoke. 2178 BranchInst::Create(II->getNormalDest(), II); 2179 2180 // Finally, delete the invoke instruction! 2181 II->eraseFromParent(); 2182 } 2183 2184 // The landingpad is now unreachable. Zap it. 2185 BB->eraseFromParent(); 2186 return true; 2187 } 2188 2189 bool SimplifyCFGOpt::SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) { 2190 BasicBlock *BB = RI->getParent(); 2191 if (!BB->getFirstNonPHIOrDbg()->isTerminator()) return false; 2192 2193 // Find predecessors that end with branches. 2194 SmallVector<BasicBlock*, 8> UncondBranchPreds; 2195 SmallVector<BranchInst*, 8> CondBranchPreds; 2196 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 2197 BasicBlock *P = *PI; 2198 TerminatorInst *PTI = P->getTerminator(); 2199 if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) { 2200 if (BI->isUnconditional()) 2201 UncondBranchPreds.push_back(P); 2202 else 2203 CondBranchPreds.push_back(BI); 2204 } 2205 } 2206 2207 // If we found some, do the transformation! 2208 if (!UncondBranchPreds.empty() && DupRet) { 2209 while (!UncondBranchPreds.empty()) { 2210 BasicBlock *Pred = UncondBranchPreds.pop_back_val(); 2211 DEBUG(dbgs() << "FOLDING: " << *BB 2212 << "INTO UNCOND BRANCH PRED: " << *Pred); 2213 (void)FoldReturnIntoUncondBranch(RI, BB, Pred); 2214 } 2215 2216 // If we eliminated all predecessors of the block, delete the block now. 2217 if (pred_begin(BB) == pred_end(BB)) 2218 // We know there are no successors, so just nuke the block. 2219 BB->eraseFromParent(); 2220 2221 return true; 2222 } 2223 2224 // Check out all of the conditional branches going to this return 2225 // instruction. If any of them just select between returns, change the 2226 // branch itself into a select/return pair. 2227 while (!CondBranchPreds.empty()) { 2228 BranchInst *BI = CondBranchPreds.pop_back_val(); 2229 2230 // Check to see if the non-BB successor is also a return block. 2231 if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) && 2232 isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) && 2233 SimplifyCondBranchToTwoReturns(BI, Builder)) 2234 return true; 2235 } 2236 return false; 2237 } 2238 2239 bool SimplifyCFGOpt::SimplifyUnwind(UnwindInst *UI, IRBuilder<> &Builder) { 2240 // Check to see if the first instruction in this block is just an unwind. 2241 // If so, replace any invoke instructions which use this as an exception 2242 // destination with call instructions. 2243 BasicBlock *BB = UI->getParent(); 2244 if (!BB->getFirstNonPHIOrDbg()->isTerminator()) return false; 2245 2246 bool Changed = false; 2247 SmallVector<BasicBlock*, 8> Preds(pred_begin(BB), pred_end(BB)); 2248 while (!Preds.empty()) { 2249 BasicBlock *Pred = Preds.back(); 2250 InvokeInst *II = dyn_cast<InvokeInst>(Pred->getTerminator()); 2251 if (II && II->getUnwindDest() == BB) { 2252 // Insert a new branch instruction before the invoke, because this 2253 // is now a fall through. 2254 Builder.SetInsertPoint(II); 2255 BranchInst *BI = Builder.CreateBr(II->getNormalDest()); 2256 Pred->getInstList().remove(II); // Take out of symbol table 2257 2258 // Insert the call now. 2259 SmallVector<Value*,8> Args(II->op_begin(), II->op_end()-3); 2260 Builder.SetInsertPoint(BI); 2261 CallInst *CI = Builder.CreateCall(II->getCalledValue(), 2262 Args, II->getName()); 2263 CI->setCallingConv(II->getCallingConv()); 2264 CI->setAttributes(II->getAttributes()); 2265 // If the invoke produced a value, the Call now does instead. 2266 II->replaceAllUsesWith(CI); 2267 delete II; 2268 Changed = true; 2269 } 2270 2271 Preds.pop_back(); 2272 } 2273 2274 // If this block is now dead (and isn't the entry block), remove it. 2275 if (pred_begin(BB) == pred_end(BB) && 2276 BB != &BB->getParent()->getEntryBlock()) { 2277 // We know there are no successors, so just nuke the block. 2278 BB->eraseFromParent(); 2279 return true; 2280 } 2281 2282 return Changed; 2283 } 2284 2285 bool SimplifyCFGOpt::SimplifyUnreachable(UnreachableInst *UI) { 2286 BasicBlock *BB = UI->getParent(); 2287 2288 bool Changed = false; 2289 2290 // If there are any instructions immediately before the unreachable that can 2291 // be removed, do so. 2292 while (UI != BB->begin()) { 2293 BasicBlock::iterator BBI = UI; 2294 --BBI; 2295 // Do not delete instructions that can have side effects which might cause 2296 // the unreachable to not be reachable; specifically, calls and volatile 2297 // operations may have this effect. 2298 if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI)) break; 2299 2300 if (BBI->mayHaveSideEffects()) { 2301 if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) { 2302 if (SI->isVolatile()) 2303 break; 2304 } else if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) { 2305 if (LI->isVolatile()) 2306 break; 2307 } else if (AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(BBI)) { 2308 if (RMWI->isVolatile()) 2309 break; 2310 } else if (AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) { 2311 if (CXI->isVolatile()) 2312 break; 2313 } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) && 2314 !isa<LandingPadInst>(BBI)) { 2315 break; 2316 } 2317 // Note that deleting LandingPad's here is in fact okay, although it 2318 // involves a bit of subtle reasoning. If this inst is a LandingPad, 2319 // all the predecessors of this block will be the unwind edges of Invokes, 2320 // and we can therefore guarantee this block will be erased. 2321 } 2322 2323 // Delete this instruction (any uses are guaranteed to be dead) 2324 if (!BBI->use_empty()) 2325 BBI->replaceAllUsesWith(UndefValue::get(BBI->getType())); 2326 BBI->eraseFromParent(); 2327 Changed = true; 2328 } 2329 2330 // If the unreachable instruction is the first in the block, take a gander 2331 // at all of the predecessors of this instruction, and simplify them. 2332 if (&BB->front() != UI) return Changed; 2333 2334 SmallVector<BasicBlock*, 8> Preds(pred_begin(BB), pred_end(BB)); 2335 for (unsigned i = 0, e = Preds.size(); i != e; ++i) { 2336 TerminatorInst *TI = Preds[i]->getTerminator(); 2337 IRBuilder<> Builder(TI); 2338 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 2339 if (BI->isUnconditional()) { 2340 if (BI->getSuccessor(0) == BB) { 2341 new UnreachableInst(TI->getContext(), TI); 2342 TI->eraseFromParent(); 2343 Changed = true; 2344 } 2345 } else { 2346 if (BI->getSuccessor(0) == BB) { 2347 Builder.CreateBr(BI->getSuccessor(1)); 2348 EraseTerminatorInstAndDCECond(BI); 2349 } else if (BI->getSuccessor(1) == BB) { 2350 Builder.CreateBr(BI->getSuccessor(0)); 2351 EraseTerminatorInstAndDCECond(BI); 2352 Changed = true; 2353 } 2354 } 2355 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 2356 for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i) 2357 if (SI->getSuccessor(i) == BB) { 2358 BB->removePredecessor(SI->getParent()); 2359 SI->removeCase(i); 2360 --i; --e; 2361 Changed = true; 2362 } 2363 // If the default value is unreachable, figure out the most popular 2364 // destination and make it the default. 2365 if (SI->getSuccessor(0) == BB) { 2366 std::map<BasicBlock*, std::pair<unsigned, unsigned> > Popularity; 2367 for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i) { 2368 std::pair<unsigned, unsigned>& entry = 2369 Popularity[SI->getSuccessor(i)]; 2370 if (entry.first == 0) { 2371 entry.first = 1; 2372 entry.second = i; 2373 } else { 2374 entry.first++; 2375 } 2376 } 2377 2378 // Find the most popular block. 2379 unsigned MaxPop = 0; 2380 unsigned MaxIndex = 0; 2381 BasicBlock *MaxBlock = 0; 2382 for (std::map<BasicBlock*, std::pair<unsigned, unsigned> >::iterator 2383 I = Popularity.begin(), E = Popularity.end(); I != E; ++I) { 2384 if (I->second.first > MaxPop || 2385 (I->second.first == MaxPop && MaxIndex > I->second.second)) { 2386 MaxPop = I->second.first; 2387 MaxIndex = I->second.second; 2388 MaxBlock = I->first; 2389 } 2390 } 2391 if (MaxBlock) { 2392 // Make this the new default, allowing us to delete any explicit 2393 // edges to it. 2394 SI->setSuccessor(0, MaxBlock); 2395 Changed = true; 2396 2397 // If MaxBlock has phinodes in it, remove MaxPop-1 entries from 2398 // it. 2399 if (isa<PHINode>(MaxBlock->begin())) 2400 for (unsigned i = 0; i != MaxPop-1; ++i) 2401 MaxBlock->removePredecessor(SI->getParent()); 2402 2403 for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i) 2404 if (SI->getSuccessor(i) == MaxBlock) { 2405 SI->removeCase(i); 2406 --i; --e; 2407 } 2408 } 2409 } 2410 } else if (InvokeInst *II = dyn_cast<InvokeInst>(TI)) { 2411 if (II->getUnwindDest() == BB) { 2412 // Convert the invoke to a call instruction. This would be a good 2413 // place to note that the call does not throw though. 2414 BranchInst *BI = Builder.CreateBr(II->getNormalDest()); 2415 II->removeFromParent(); // Take out of symbol table 2416 2417 // Insert the call now... 2418 SmallVector<Value*, 8> Args(II->op_begin(), II->op_end()-3); 2419 Builder.SetInsertPoint(BI); 2420 CallInst *CI = Builder.CreateCall(II->getCalledValue(), 2421 Args, II->getName()); 2422 CI->setCallingConv(II->getCallingConv()); 2423 CI->setAttributes(II->getAttributes()); 2424 // If the invoke produced a value, the call does now instead. 2425 II->replaceAllUsesWith(CI); 2426 delete II; 2427 Changed = true; 2428 } 2429 } 2430 } 2431 2432 // If this block is now dead, remove it. 2433 if (pred_begin(BB) == pred_end(BB) && 2434 BB != &BB->getParent()->getEntryBlock()) { 2435 // We know there are no successors, so just nuke the block. 2436 BB->eraseFromParent(); 2437 return true; 2438 } 2439 2440 return Changed; 2441 } 2442 2443 /// TurnSwitchRangeIntoICmp - Turns a switch with that contains only a 2444 /// integer range comparison into a sub, an icmp and a branch. 2445 static bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder) { 2446 assert(SI->getNumCases() > 2 && "Degenerate switch?"); 2447 2448 // Make sure all cases point to the same destination and gather the values. 2449 SmallVector<ConstantInt *, 16> Cases; 2450 Cases.push_back(SI->getCaseValue(1)); 2451 for (unsigned I = 2, E = SI->getNumCases(); I != E; ++I) { 2452 if (SI->getSuccessor(I-1) != SI->getSuccessor(I)) 2453 return false; 2454 Cases.push_back(SI->getCaseValue(I)); 2455 } 2456 assert(Cases.size() == SI->getNumCases()-1 && "Not all cases gathered"); 2457 2458 // Sort the case values, then check if they form a range we can transform. 2459 array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate); 2460 for (unsigned I = 1, E = Cases.size(); I != E; ++I) { 2461 if (Cases[I-1]->getValue() != Cases[I]->getValue()+1) 2462 return false; 2463 } 2464 2465 Constant *Offset = ConstantExpr::getNeg(Cases.back()); 2466 Constant *NumCases = ConstantInt::get(Offset->getType(), SI->getNumCases()-1); 2467 2468 Value *Sub = SI->getCondition(); 2469 if (!Offset->isNullValue()) 2470 Sub = Builder.CreateAdd(Sub, Offset, Sub->getName()+".off"); 2471 Value *Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch"); 2472 Builder.CreateCondBr(Cmp, SI->getSuccessor(1), SI->getDefaultDest()); 2473 2474 // Prune obsolete incoming values off the successor's PHI nodes. 2475 for (BasicBlock::iterator BBI = SI->getSuccessor(1)->begin(); 2476 isa<PHINode>(BBI); ++BBI) { 2477 for (unsigned I = 0, E = SI->getNumCases()-2; I != E; ++I) 2478 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 2479 } 2480 SI->eraseFromParent(); 2481 2482 return true; 2483 } 2484 2485 /// EliminateDeadSwitchCases - Compute masked bits for the condition of a switch 2486 /// and use it to remove dead cases. 2487 static bool EliminateDeadSwitchCases(SwitchInst *SI) { 2488 Value *Cond = SI->getCondition(); 2489 unsigned Bits = cast<IntegerType>(Cond->getType())->getBitWidth(); 2490 APInt KnownZero(Bits, 0), KnownOne(Bits, 0); 2491 ComputeMaskedBits(Cond, APInt::getAllOnesValue(Bits), KnownZero, KnownOne); 2492 2493 // Gather dead cases. 2494 SmallVector<ConstantInt*, 8> DeadCases; 2495 for (unsigned I = 1, E = SI->getNumCases(); I != E; ++I) { 2496 if ((SI->getCaseValue(I)->getValue() & KnownZero) != 0 || 2497 (SI->getCaseValue(I)->getValue() & KnownOne) != KnownOne) { 2498 DeadCases.push_back(SI->getCaseValue(I)); 2499 DEBUG(dbgs() << "SimplifyCFG: switch case '" 2500 << SI->getCaseValue(I)->getValue() << "' is dead.\n"); 2501 } 2502 } 2503 2504 // Remove dead cases from the switch. 2505 for (unsigned I = 0, E = DeadCases.size(); I != E; ++I) { 2506 unsigned Case = SI->findCaseValue(DeadCases[I]); 2507 // Prune unused values from PHI nodes. 2508 SI->getSuccessor(Case)->removePredecessor(SI->getParent()); 2509 SI->removeCase(Case); 2510 } 2511 2512 return !DeadCases.empty(); 2513 } 2514 2515 /// FindPHIForConditionForwarding - If BB would be eligible for simplification 2516 /// by TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated 2517 /// by an unconditional branch), look at the phi node for BB in the successor 2518 /// block and see if the incoming value is equal to CaseValue. If so, return 2519 /// the phi node, and set PhiIndex to BB's index in the phi node. 2520 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue, 2521 BasicBlock *BB, 2522 int *PhiIndex) { 2523 if (BB->getFirstNonPHIOrDbg() != BB->getTerminator()) 2524 return NULL; // BB must be empty to be a candidate for simplification. 2525 if (!BB->getSinglePredecessor()) 2526 return NULL; // BB must be dominated by the switch. 2527 2528 BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator()); 2529 if (!Branch || !Branch->isUnconditional()) 2530 return NULL; // Terminator must be unconditional branch. 2531 2532 BasicBlock *Succ = Branch->getSuccessor(0); 2533 2534 BasicBlock::iterator I = Succ->begin(); 2535 while (PHINode *PHI = dyn_cast<PHINode>(I++)) { 2536 int Idx = PHI->getBasicBlockIndex(BB); 2537 assert(Idx >= 0 && "PHI has no entry for predecessor?"); 2538 2539 Value *InValue = PHI->getIncomingValue(Idx); 2540 if (InValue != CaseValue) continue; 2541 2542 *PhiIndex = Idx; 2543 return PHI; 2544 } 2545 2546 return NULL; 2547 } 2548 2549 /// ForwardSwitchConditionToPHI - Try to forward the condition of a switch 2550 /// instruction to a phi node dominated by the switch, if that would mean that 2551 /// some of the destination blocks of the switch can be folded away. 2552 /// Returns true if a change is made. 2553 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) { 2554 typedef DenseMap<PHINode*, SmallVector<int,4> > ForwardingNodesMap; 2555 ForwardingNodesMap ForwardingNodes; 2556 2557 for (unsigned I = 1; I < SI->getNumCases(); ++I) { // 0 is the default case. 2558 ConstantInt *CaseValue = SI->getCaseValue(I); 2559 BasicBlock *CaseDest = SI->getSuccessor(I); 2560 2561 int PhiIndex; 2562 PHINode *PHI = FindPHIForConditionForwarding(CaseValue, CaseDest, 2563 &PhiIndex); 2564 if (!PHI) continue; 2565 2566 ForwardingNodes[PHI].push_back(PhiIndex); 2567 } 2568 2569 bool Changed = false; 2570 2571 for (ForwardingNodesMap::iterator I = ForwardingNodes.begin(), 2572 E = ForwardingNodes.end(); I != E; ++I) { 2573 PHINode *Phi = I->first; 2574 SmallVector<int,4> &Indexes = I->second; 2575 2576 if (Indexes.size() < 2) continue; 2577 2578 for (size_t I = 0, E = Indexes.size(); I != E; ++I) 2579 Phi->setIncomingValue(Indexes[I], SI->getCondition()); 2580 Changed = true; 2581 } 2582 2583 return Changed; 2584 } 2585 2586 bool SimplifyCFGOpt::SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) { 2587 // If this switch is too complex to want to look at, ignore it. 2588 if (!isValueEqualityComparison(SI)) 2589 return false; 2590 2591 BasicBlock *BB = SI->getParent(); 2592 2593 // If we only have one predecessor, and if it is a branch on this value, 2594 // see if that predecessor totally determines the outcome of this switch. 2595 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 2596 if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder)) 2597 return SimplifyCFG(BB) | true; 2598 2599 Value *Cond = SI->getCondition(); 2600 if (SelectInst *Select = dyn_cast<SelectInst>(Cond)) 2601 if (SimplifySwitchOnSelect(SI, Select)) 2602 return SimplifyCFG(BB) | true; 2603 2604 // If the block only contains the switch, see if we can fold the block 2605 // away into any preds. 2606 BasicBlock::iterator BBI = BB->begin(); 2607 // Ignore dbg intrinsics. 2608 while (isa<DbgInfoIntrinsic>(BBI)) 2609 ++BBI; 2610 if (SI == &*BBI) 2611 if (FoldValueComparisonIntoPredecessors(SI, Builder)) 2612 return SimplifyCFG(BB) | true; 2613 2614 // Try to transform the switch into an icmp and a branch. 2615 if (TurnSwitchRangeIntoICmp(SI, Builder)) 2616 return SimplifyCFG(BB) | true; 2617 2618 // Remove unreachable cases. 2619 if (EliminateDeadSwitchCases(SI)) 2620 return SimplifyCFG(BB) | true; 2621 2622 if (ForwardSwitchConditionToPHI(SI)) 2623 return SimplifyCFG(BB) | true; 2624 2625 return false; 2626 } 2627 2628 bool SimplifyCFGOpt::SimplifyIndirectBr(IndirectBrInst *IBI) { 2629 BasicBlock *BB = IBI->getParent(); 2630 bool Changed = false; 2631 2632 // Eliminate redundant destinations. 2633 SmallPtrSet<Value *, 8> Succs; 2634 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 2635 BasicBlock *Dest = IBI->getDestination(i); 2636 if (!Dest->hasAddressTaken() || !Succs.insert(Dest)) { 2637 Dest->removePredecessor(BB); 2638 IBI->removeDestination(i); 2639 --i; --e; 2640 Changed = true; 2641 } 2642 } 2643 2644 if (IBI->getNumDestinations() == 0) { 2645 // If the indirectbr has no successors, change it to unreachable. 2646 new UnreachableInst(IBI->getContext(), IBI); 2647 EraseTerminatorInstAndDCECond(IBI); 2648 return true; 2649 } 2650 2651 if (IBI->getNumDestinations() == 1) { 2652 // If the indirectbr has one successor, change it to a direct branch. 2653 BranchInst::Create(IBI->getDestination(0), IBI); 2654 EraseTerminatorInstAndDCECond(IBI); 2655 return true; 2656 } 2657 2658 if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) { 2659 if (SimplifyIndirectBrOnSelect(IBI, SI)) 2660 return SimplifyCFG(BB) | true; 2661 } 2662 return Changed; 2663 } 2664 2665 bool SimplifyCFGOpt::SimplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder){ 2666 BasicBlock *BB = BI->getParent(); 2667 2668 // If the Terminator is the only non-phi instruction, simplify the block. 2669 BasicBlock::iterator I = BB->getFirstNonPHIOrDbgOrLifetime(); 2670 if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() && 2671 TryToSimplifyUncondBranchFromEmptyBlock(BB)) 2672 return true; 2673 2674 // If the only instruction in the block is a seteq/setne comparison 2675 // against a constant, try to simplify the block. 2676 if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) 2677 if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) { 2678 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 2679 ; 2680 if (I->isTerminator() 2681 && TryToSimplifyUncondBranchWithICmpInIt(ICI, TD, Builder)) 2682 return true; 2683 } 2684 2685 return false; 2686 } 2687 2688 2689 bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) { 2690 BasicBlock *BB = BI->getParent(); 2691 2692 // Conditional branch 2693 if (isValueEqualityComparison(BI)) { 2694 // If we only have one predecessor, and if it is a branch on this value, 2695 // see if that predecessor totally determines the outcome of this 2696 // switch. 2697 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 2698 if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder)) 2699 return SimplifyCFG(BB) | true; 2700 2701 // This block must be empty, except for the setcond inst, if it exists. 2702 // Ignore dbg intrinsics. 2703 BasicBlock::iterator I = BB->begin(); 2704 // Ignore dbg intrinsics. 2705 while (isa<DbgInfoIntrinsic>(I)) 2706 ++I; 2707 if (&*I == BI) { 2708 if (FoldValueComparisonIntoPredecessors(BI, Builder)) 2709 return SimplifyCFG(BB) | true; 2710 } else if (&*I == cast<Instruction>(BI->getCondition())){ 2711 ++I; 2712 // Ignore dbg intrinsics. 2713 while (isa<DbgInfoIntrinsic>(I)) 2714 ++I; 2715 if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder)) 2716 return SimplifyCFG(BB) | true; 2717 } 2718 } 2719 2720 // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction. 2721 if (SimplifyBranchOnICmpChain(BI, TD, Builder)) 2722 return true; 2723 2724 // We have a conditional branch to two blocks that are only reachable 2725 // from BI. We know that the condbr dominates the two blocks, so see if 2726 // there is any identical code in the "then" and "else" blocks. If so, we 2727 // can hoist it up to the branching block. 2728 if (BI->getSuccessor(0)->getSinglePredecessor() != 0) { 2729 if (BI->getSuccessor(1)->getSinglePredecessor() != 0) { 2730 if (HoistThenElseCodeToIf(BI)) 2731 return SimplifyCFG(BB) | true; 2732 } else { 2733 // If Successor #1 has multiple preds, we may be able to conditionally 2734 // execute Successor #0 if it branches to successor #1. 2735 TerminatorInst *Succ0TI = BI->getSuccessor(0)->getTerminator(); 2736 if (Succ0TI->getNumSuccessors() == 1 && 2737 Succ0TI->getSuccessor(0) == BI->getSuccessor(1)) 2738 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0))) 2739 return SimplifyCFG(BB) | true; 2740 } 2741 } else if (BI->getSuccessor(1)->getSinglePredecessor() != 0) { 2742 // If Successor #0 has multiple preds, we may be able to conditionally 2743 // execute Successor #1 if it branches to successor #0. 2744 TerminatorInst *Succ1TI = BI->getSuccessor(1)->getTerminator(); 2745 if (Succ1TI->getNumSuccessors() == 1 && 2746 Succ1TI->getSuccessor(0) == BI->getSuccessor(0)) 2747 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1))) 2748 return SimplifyCFG(BB) | true; 2749 } 2750 2751 // If this is a branch on a phi node in the current block, thread control 2752 // through this block if any PHI node entries are constants. 2753 if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition())) 2754 if (PN->getParent() == BI->getParent()) 2755 if (FoldCondBranchOnPHI(BI, TD)) 2756 return SimplifyCFG(BB) | true; 2757 2758 // If this basic block is ONLY a setcc and a branch, and if a predecessor 2759 // branches to us and one of our successors, fold the setcc into the 2760 // predecessor and use logical operations to pick the right destination. 2761 if (FoldBranchToCommonDest(BI)) 2762 return SimplifyCFG(BB) | true; 2763 2764 // Scan predecessor blocks for conditional branches. 2765 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 2766 if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator())) 2767 if (PBI != BI && PBI->isConditional()) 2768 if (SimplifyCondBranchToCondBranch(PBI, BI)) 2769 return SimplifyCFG(BB) | true; 2770 2771 return false; 2772 } 2773 2774 /// Check if passing a value to an instruction will cause undefined behavior. 2775 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I) { 2776 Constant *C = dyn_cast<Constant>(V); 2777 if (!C) 2778 return false; 2779 2780 if (!I->hasOneUse()) // Only look at single-use instructions, for compile time 2781 return false; 2782 2783 if (C->isNullValue()) { 2784 Instruction *Use = I->use_back(); 2785 2786 // Now make sure that there are no instructions in between that can alter 2787 // control flow (eg. calls) 2788 for (BasicBlock::iterator i = ++BasicBlock::iterator(I); &*i != Use; ++i) 2789 if (i == I->getParent()->end() || i->mayHaveSideEffects()) 2790 return false; 2791 2792 // Look through GEPs. A load from a GEP derived from NULL is still undefined 2793 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use)) 2794 if (GEP->getPointerOperand() == I) 2795 return passingValueIsAlwaysUndefined(V, GEP); 2796 2797 // Look through bitcasts. 2798 if (BitCastInst *BC = dyn_cast<BitCastInst>(Use)) 2799 return passingValueIsAlwaysUndefined(V, BC); 2800 2801 // Load from null is undefined. 2802 if (LoadInst *LI = dyn_cast<LoadInst>(Use)) 2803 return LI->getPointerAddressSpace() == 0; 2804 2805 // Store to null is undefined. 2806 if (StoreInst *SI = dyn_cast<StoreInst>(Use)) 2807 return SI->getPointerAddressSpace() == 0 && SI->getPointerOperand() == I; 2808 } 2809 return false; 2810 } 2811 2812 /// If BB has an incoming value that will always trigger undefined behavior 2813 /// (eg. null pointer derefence), remove the branch leading here. 2814 static bool removeUndefIntroducingPredecessor(BasicBlock *BB) { 2815 for (BasicBlock::iterator i = BB->begin(); 2816 PHINode *PHI = dyn_cast<PHINode>(i); ++i) 2817 for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) 2818 if (passingValueIsAlwaysUndefined(PHI->getIncomingValue(i), PHI)) { 2819 TerminatorInst *T = PHI->getIncomingBlock(i)->getTerminator(); 2820 IRBuilder<> Builder(T); 2821 if (BranchInst *BI = dyn_cast<BranchInst>(T)) { 2822 BB->removePredecessor(PHI->getIncomingBlock(i)); 2823 // Turn uncoditional branches into unreachables and remove the dead 2824 // destination from conditional branches. 2825 if (BI->isUnconditional()) 2826 Builder.CreateUnreachable(); 2827 else 2828 Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1) : 2829 BI->getSuccessor(0)); 2830 BI->eraseFromParent(); 2831 return true; 2832 } 2833 // TODO: SwitchInst. 2834 } 2835 2836 return false; 2837 } 2838 2839 bool SimplifyCFGOpt::run(BasicBlock *BB) { 2840 bool Changed = false; 2841 2842 assert(BB && BB->getParent() && "Block not embedded in function!"); 2843 assert(BB->getTerminator() && "Degenerate basic block encountered!"); 2844 2845 // Remove basic blocks that have no predecessors (except the entry block)... 2846 // or that just have themself as a predecessor. These are unreachable. 2847 if ((pred_begin(BB) == pred_end(BB) && 2848 BB != &BB->getParent()->getEntryBlock()) || 2849 BB->getSinglePredecessor() == BB) { 2850 DEBUG(dbgs() << "Removing BB: \n" << *BB); 2851 DeleteDeadBlock(BB); 2852 return true; 2853 } 2854 2855 // Check to see if we can constant propagate this terminator instruction 2856 // away... 2857 Changed |= ConstantFoldTerminator(BB, true); 2858 2859 // Check for and eliminate duplicate PHI nodes in this block. 2860 Changed |= EliminateDuplicatePHINodes(BB); 2861 2862 // Check for and remove branches that will always cause undefined behavior. 2863 Changed |= removeUndefIntroducingPredecessor(BB); 2864 2865 // Merge basic blocks into their predecessor if there is only one distinct 2866 // pred, and if there is only one distinct successor of the predecessor, and 2867 // if there are no PHI nodes. 2868 // 2869 if (MergeBlockIntoPredecessor(BB)) 2870 return true; 2871 2872 IRBuilder<> Builder(BB); 2873 2874 // If there is a trivial two-entry PHI node in this basic block, and we can 2875 // eliminate it, do so now. 2876 if (PHINode *PN = dyn_cast<PHINode>(BB->begin())) 2877 if (PN->getNumIncomingValues() == 2) 2878 Changed |= FoldTwoEntryPHINode(PN, TD); 2879 2880 Builder.SetInsertPoint(BB->getTerminator()); 2881 if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) { 2882 if (BI->isUnconditional()) { 2883 if (SimplifyUncondBranch(BI, Builder)) return true; 2884 } else { 2885 if (SimplifyCondBranch(BI, Builder)) return true; 2886 } 2887 } else if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator())) { 2888 if (SimplifyResume(RI, Builder)) return true; 2889 } else if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) { 2890 if (SimplifyReturn(RI, Builder)) return true; 2891 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) { 2892 if (SimplifySwitch(SI, Builder)) return true; 2893 } else if (UnreachableInst *UI = 2894 dyn_cast<UnreachableInst>(BB->getTerminator())) { 2895 if (SimplifyUnreachable(UI)) return true; 2896 } else if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) { 2897 if (SimplifyUnwind(UI, Builder)) return true; 2898 } else if (IndirectBrInst *IBI = 2899 dyn_cast<IndirectBrInst>(BB->getTerminator())) { 2900 if (SimplifyIndirectBr(IBI)) return true; 2901 } 2902 2903 return Changed; 2904 } 2905 2906 /// SimplifyCFG - This function is used to do simplification of a CFG. For 2907 /// example, it adjusts branches to branches to eliminate the extra hop, it 2908 /// eliminates unreachable basic blocks, and does other "peephole" optimization 2909 /// of the CFG. It returns true if a modification was made. 2910 /// 2911 bool llvm::SimplifyCFG(BasicBlock *BB, const TargetData *TD) { 2912 return SimplifyCFGOpt(TD).run(BB); 2913 } 2914