1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Peephole optimize the CFG. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/ADT/APInt.h" 14 #include "llvm/ADT/ArrayRef.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/MapVector.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/ScopeExit.h" 20 #include "llvm/ADT/Sequence.h" 21 #include "llvm/ADT/SetOperations.h" 22 #include "llvm/ADT/SetVector.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/Statistic.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/Analysis/AssumptionCache.h" 28 #include "llvm/Analysis/ConstantFolding.h" 29 #include "llvm/Analysis/EHPersonalities.h" 30 #include "llvm/Analysis/GuardUtils.h" 31 #include "llvm/Analysis/InstructionSimplify.h" 32 #include "llvm/Analysis/MemorySSA.h" 33 #include "llvm/Analysis/MemorySSAUpdater.h" 34 #include "llvm/Analysis/TargetTransformInfo.h" 35 #include "llvm/Analysis/ValueTracking.h" 36 #include "llvm/IR/Attributes.h" 37 #include "llvm/IR/BasicBlock.h" 38 #include "llvm/IR/CFG.h" 39 #include "llvm/IR/Constant.h" 40 #include "llvm/IR/ConstantRange.h" 41 #include "llvm/IR/Constants.h" 42 #include "llvm/IR/DataLayout.h" 43 #include "llvm/IR/DerivedTypes.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/IR/GlobalValue.h" 46 #include "llvm/IR/GlobalVariable.h" 47 #include "llvm/IR/IRBuilder.h" 48 #include "llvm/IR/InstrTypes.h" 49 #include "llvm/IR/Instruction.h" 50 #include "llvm/IR/Instructions.h" 51 #include "llvm/IR/IntrinsicInst.h" 52 #include "llvm/IR/Intrinsics.h" 53 #include "llvm/IR/LLVMContext.h" 54 #include "llvm/IR/MDBuilder.h" 55 #include "llvm/IR/Metadata.h" 56 #include "llvm/IR/Module.h" 57 #include "llvm/IR/NoFolder.h" 58 #include "llvm/IR/Operator.h" 59 #include "llvm/IR/PatternMatch.h" 60 #include "llvm/IR/PseudoProbe.h" 61 #include "llvm/IR/Type.h" 62 #include "llvm/IR/Use.h" 63 #include "llvm/IR/User.h" 64 #include "llvm/IR/Value.h" 65 #include "llvm/IR/ValueHandle.h" 66 #include "llvm/Support/BranchProbability.h" 67 #include "llvm/Support/Casting.h" 68 #include "llvm/Support/CommandLine.h" 69 #include "llvm/Support/Debug.h" 70 #include "llvm/Support/ErrorHandling.h" 71 #include "llvm/Support/KnownBits.h" 72 #include "llvm/Support/MathExtras.h" 73 #include "llvm/Support/raw_ostream.h" 74 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 75 #include "llvm/Transforms/Utils/Local.h" 76 #include "llvm/Transforms/Utils/SSAUpdater.h" 77 #include "llvm/Transforms/Utils/ValueMapper.h" 78 #include <algorithm> 79 #include <cassert> 80 #include <climits> 81 #include <cstddef> 82 #include <cstdint> 83 #include <iterator> 84 #include <map> 85 #include <set> 86 #include <tuple> 87 #include <utility> 88 #include <vector> 89 90 using namespace llvm; 91 using namespace PatternMatch; 92 93 #define DEBUG_TYPE "simplifycfg" 94 95 cl::opt<bool> llvm::RequireAndPreserveDomTree( 96 "simplifycfg-require-and-preserve-domtree", cl::Hidden, cl::ZeroOrMore, 97 cl::init(false), 98 cl::desc("Temorary development switch used to gradually uplift SimplifyCFG " 99 "into preserving DomTree,")); 100 101 // Chosen as 2 so as to be cheap, but still to have enough power to fold 102 // a select, so the "clamp" idiom (of a min followed by a max) will be caught. 103 // To catch this, we need to fold a compare and a select, hence '2' being the 104 // minimum reasonable default. 105 static cl::opt<unsigned> PHINodeFoldingThreshold( 106 "phi-node-folding-threshold", cl::Hidden, cl::init(2), 107 cl::desc( 108 "Control the amount of phi node folding to perform (default = 2)")); 109 110 static cl::opt<unsigned> TwoEntryPHINodeFoldingThreshold( 111 "two-entry-phi-node-folding-threshold", cl::Hidden, cl::init(4), 112 cl::desc("Control the maximal total instruction cost that we are willing " 113 "to speculatively execute to fold a 2-entry PHI node into a " 114 "select (default = 4)")); 115 116 static cl::opt<bool> DupRet( 117 "simplifycfg-dup-ret", cl::Hidden, cl::init(false), 118 cl::desc("Duplicate return instructions into unconditional branches")); 119 120 static cl::opt<bool> 121 HoistCommon("simplifycfg-hoist-common", cl::Hidden, cl::init(true), 122 cl::desc("Hoist common instructions up to the parent block")); 123 124 static cl::opt<bool> 125 SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true), 126 cl::desc("Sink common instructions down to the end block")); 127 128 static cl::opt<bool> HoistCondStores( 129 "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true), 130 cl::desc("Hoist conditional stores if an unconditional store precedes")); 131 132 static cl::opt<bool> MergeCondStores( 133 "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true), 134 cl::desc("Hoist conditional stores even if an unconditional store does not " 135 "precede - hoist multiple conditional stores into a single " 136 "predicated store")); 137 138 static cl::opt<bool> MergeCondStoresAggressively( 139 "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false), 140 cl::desc("When merging conditional stores, do so even if the resultant " 141 "basic blocks are unlikely to be if-converted as a result")); 142 143 static cl::opt<bool> SpeculateOneExpensiveInst( 144 "speculate-one-expensive-inst", cl::Hidden, cl::init(true), 145 cl::desc("Allow exactly one expensive instruction to be speculatively " 146 "executed")); 147 148 static cl::opt<unsigned> MaxSpeculationDepth( 149 "max-speculation-depth", cl::Hidden, cl::init(10), 150 cl::desc("Limit maximum recursion depth when calculating costs of " 151 "speculatively executed instructions")); 152 153 static cl::opt<int> 154 MaxSmallBlockSize("simplifycfg-max-small-block-size", cl::Hidden, cl::init(10), 155 cl::desc("Max size of a block which is still considered " 156 "small enough to thread through")); 157 158 // Two is chosen to allow one negation and a logical combine. 159 static cl::opt<unsigned> 160 BranchFoldThreshold("simplifycfg-branch-fold-threshold", cl::Hidden, 161 cl::init(2), 162 cl::desc("Maximum cost of combining conditions when " 163 "folding branches")); 164 165 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps"); 166 STATISTIC(NumLinearMaps, 167 "Number of switch instructions turned into linear mapping"); 168 STATISTIC(NumLookupTables, 169 "Number of switch instructions turned into lookup tables"); 170 STATISTIC( 171 NumLookupTablesHoles, 172 "Number of switch instructions turned into lookup tables (holes checked)"); 173 STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares"); 174 STATISTIC(NumFoldValueComparisonIntoPredecessors, 175 "Number of value comparisons folded into predecessor basic blocks"); 176 STATISTIC(NumFoldBranchToCommonDest, 177 "Number of branches folded into predecessor basic block"); 178 STATISTIC( 179 NumHoistCommonCode, 180 "Number of common instruction 'blocks' hoisted up to the begin block"); 181 STATISTIC(NumHoistCommonInstrs, 182 "Number of common instructions hoisted up to the begin block"); 183 STATISTIC(NumSinkCommonCode, 184 "Number of common instruction 'blocks' sunk down to the end block"); 185 STATISTIC(NumSinkCommonInstrs, 186 "Number of common instructions sunk down to the end block"); 187 STATISTIC(NumSpeculations, "Number of speculative executed instructions"); 188 STATISTIC(NumInvokes, 189 "Number of invokes with empty resume blocks simplified into calls"); 190 191 namespace { 192 193 // The first field contains the value that the switch produces when a certain 194 // case group is selected, and the second field is a vector containing the 195 // cases composing the case group. 196 using SwitchCaseResultVectorTy = 197 SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2>; 198 199 // The first field contains the phi node that generates a result of the switch 200 // and the second field contains the value generated for a certain case in the 201 // switch for that PHI. 202 using SwitchCaseResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>; 203 204 /// ValueEqualityComparisonCase - Represents a case of a switch. 205 struct ValueEqualityComparisonCase { 206 ConstantInt *Value; 207 BasicBlock *Dest; 208 209 ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest) 210 : Value(Value), Dest(Dest) {} 211 212 bool operator<(ValueEqualityComparisonCase RHS) const { 213 // Comparing pointers is ok as we only rely on the order for uniquing. 214 return Value < RHS.Value; 215 } 216 217 bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; } 218 }; 219 220 class SimplifyCFGOpt { 221 const TargetTransformInfo &TTI; 222 DomTreeUpdater *DTU; 223 const DataLayout &DL; 224 ArrayRef<WeakVH> LoopHeaders; 225 const SimplifyCFGOptions &Options; 226 bool Resimplify; 227 228 Value *isValueEqualityComparison(Instruction *TI); 229 BasicBlock *GetValueEqualityComparisonCases( 230 Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases); 231 bool SimplifyEqualityComparisonWithOnlyPredecessor(Instruction *TI, 232 BasicBlock *Pred, 233 IRBuilder<> &Builder); 234 bool PerformValueComparisonIntoPredecessorFolding(Instruction *TI, Value *&CV, 235 Instruction *PTI, 236 IRBuilder<> &Builder); 237 bool FoldValueComparisonIntoPredecessors(Instruction *TI, 238 IRBuilder<> &Builder); 239 240 bool simplifyReturn(ReturnInst *RI, IRBuilder<> &Builder); 241 bool simplifyResume(ResumeInst *RI, IRBuilder<> &Builder); 242 bool simplifySingleResume(ResumeInst *RI); 243 bool simplifyCommonResume(ResumeInst *RI); 244 bool simplifyCleanupReturn(CleanupReturnInst *RI); 245 bool simplifyUnreachable(UnreachableInst *UI); 246 bool simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder); 247 bool simplifyIndirectBr(IndirectBrInst *IBI); 248 bool simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder); 249 bool simplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder); 250 bool simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder); 251 bool SimplifyCondBranchToTwoReturns(BranchInst *BI, IRBuilder<> &Builder); 252 253 bool tryToSimplifyUncondBranchWithICmpInIt(ICmpInst *ICI, 254 IRBuilder<> &Builder); 255 256 bool HoistThenElseCodeToIf(BranchInst *BI, const TargetTransformInfo &TTI, 257 bool EqTermsOnly); 258 bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB, 259 const TargetTransformInfo &TTI); 260 bool SimplifyTerminatorOnSelect(Instruction *OldTerm, Value *Cond, 261 BasicBlock *TrueBB, BasicBlock *FalseBB, 262 uint32_t TrueWeight, uint32_t FalseWeight); 263 bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder, 264 const DataLayout &DL); 265 bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select); 266 bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI); 267 bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder); 268 269 public: 270 SimplifyCFGOpt(const TargetTransformInfo &TTI, DomTreeUpdater *DTU, 271 const DataLayout &DL, ArrayRef<WeakVH> LoopHeaders, 272 const SimplifyCFGOptions &Opts) 273 : TTI(TTI), DTU(DTU), DL(DL), LoopHeaders(LoopHeaders), Options(Opts) { 274 assert((!DTU || !DTU->hasPostDomTree()) && 275 "SimplifyCFG is not yet capable of maintaining validity of a " 276 "PostDomTree, so don't ask for it."); 277 } 278 279 bool simplifyOnce(BasicBlock *BB); 280 bool simplifyOnceImpl(BasicBlock *BB); 281 bool run(BasicBlock *BB); 282 283 // Helper to set Resimplify and return change indication. 284 bool requestResimplify() { 285 Resimplify = true; 286 return true; 287 } 288 }; 289 290 } // end anonymous namespace 291 292 /// Return true if it is safe to merge these two 293 /// terminator instructions together. 294 static bool 295 SafeToMergeTerminators(Instruction *SI1, Instruction *SI2, 296 SmallSetVector<BasicBlock *, 4> *FailBlocks = nullptr) { 297 if (SI1 == SI2) 298 return false; // Can't merge with self! 299 300 // It is not safe to merge these two switch instructions if they have a common 301 // successor, and if that successor has a PHI node, and if *that* PHI node has 302 // conflicting incoming values from the two switch blocks. 303 BasicBlock *SI1BB = SI1->getParent(); 304 BasicBlock *SI2BB = SI2->getParent(); 305 306 SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB)); 307 bool Fail = false; 308 for (BasicBlock *Succ : successors(SI2BB)) 309 if (SI1Succs.count(Succ)) 310 for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) { 311 PHINode *PN = cast<PHINode>(BBI); 312 if (PN->getIncomingValueForBlock(SI1BB) != 313 PN->getIncomingValueForBlock(SI2BB)) { 314 if (FailBlocks) 315 FailBlocks->insert(Succ); 316 Fail = true; 317 } 318 } 319 320 return !Fail; 321 } 322 323 /// Update PHI nodes in Succ to indicate that there will now be entries in it 324 /// from the 'NewPred' block. The values that will be flowing into the PHI nodes 325 /// will be the same as those coming in from ExistPred, an existing predecessor 326 /// of Succ. 327 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred, 328 BasicBlock *ExistPred, 329 MemorySSAUpdater *MSSAU = nullptr) { 330 for (PHINode &PN : Succ->phis()) 331 PN.addIncoming(PN.getIncomingValueForBlock(ExistPred), NewPred); 332 if (MSSAU) 333 if (auto *MPhi = MSSAU->getMemorySSA()->getMemoryAccess(Succ)) 334 MPhi->addIncoming(MPhi->getIncomingValueForBlock(ExistPred), NewPred); 335 } 336 337 /// Compute an abstract "cost" of speculating the given instruction, 338 /// which is assumed to be safe to speculate. TCC_Free means cheap, 339 /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively 340 /// expensive. 341 static InstructionCost computeSpeculationCost(const User *I, 342 const TargetTransformInfo &TTI) { 343 assert(isSafeToSpeculativelyExecute(I) && 344 "Instruction is not safe to speculatively execute!"); 345 return TTI.getUserCost(I, TargetTransformInfo::TCK_SizeAndLatency); 346 } 347 348 /// If we have a merge point of an "if condition" as accepted above, 349 /// return true if the specified value dominates the block. We 350 /// don't handle the true generality of domination here, just a special case 351 /// which works well enough for us. 352 /// 353 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to 354 /// see if V (which must be an instruction) and its recursive operands 355 /// that do not dominate BB have a combined cost lower than Budget and 356 /// are non-trapping. If both are true, the instruction is inserted into the 357 /// set and true is returned. 358 /// 359 /// The cost for most non-trapping instructions is defined as 1 except for 360 /// Select whose cost is 2. 361 /// 362 /// After this function returns, Cost is increased by the cost of 363 /// V plus its non-dominating operands. If that cost is greater than 364 /// Budget, false is returned and Cost is undefined. 365 static bool dominatesMergePoint(Value *V, BasicBlock *BB, 366 SmallPtrSetImpl<Instruction *> &AggressiveInsts, 367 InstructionCost &Cost, 368 InstructionCost Budget, 369 const TargetTransformInfo &TTI, 370 unsigned Depth = 0) { 371 // It is possible to hit a zero-cost cycle (phi/gep instructions for example), 372 // so limit the recursion depth. 373 // TODO: While this recursion limit does prevent pathological behavior, it 374 // would be better to track visited instructions to avoid cycles. 375 if (Depth == MaxSpeculationDepth) 376 return false; 377 378 Instruction *I = dyn_cast<Instruction>(V); 379 if (!I) { 380 // Non-instructions all dominate instructions, but not all constantexprs 381 // can be executed unconditionally. 382 if (ConstantExpr *C = dyn_cast<ConstantExpr>(V)) 383 if (C->canTrap()) 384 return false; 385 return true; 386 } 387 BasicBlock *PBB = I->getParent(); 388 389 // We don't want to allow weird loops that might have the "if condition" in 390 // the bottom of this block. 391 if (PBB == BB) 392 return false; 393 394 // If this instruction is defined in a block that contains an unconditional 395 // branch to BB, then it must be in the 'conditional' part of the "if 396 // statement". If not, it definitely dominates the region. 397 BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator()); 398 if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB) 399 return true; 400 401 // If we have seen this instruction before, don't count it again. 402 if (AggressiveInsts.count(I)) 403 return true; 404 405 // Okay, it looks like the instruction IS in the "condition". Check to 406 // see if it's a cheap instruction to unconditionally compute, and if it 407 // only uses stuff defined outside of the condition. If so, hoist it out. 408 if (!isSafeToSpeculativelyExecute(I)) 409 return false; 410 411 Cost += computeSpeculationCost(I, TTI); 412 413 // Allow exactly one instruction to be speculated regardless of its cost 414 // (as long as it is safe to do so). 415 // This is intended to flatten the CFG even if the instruction is a division 416 // or other expensive operation. The speculation of an expensive instruction 417 // is expected to be undone in CodeGenPrepare if the speculation has not 418 // enabled further IR optimizations. 419 if (Cost > Budget && 420 (!SpeculateOneExpensiveInst || !AggressiveInsts.empty() || Depth > 0 || 421 !Cost.isValid())) 422 return false; 423 424 // Okay, we can only really hoist these out if their operands do 425 // not take us over the cost threshold. 426 for (Use &Op : I->operands()) 427 if (!dominatesMergePoint(Op, BB, AggressiveInsts, Cost, Budget, TTI, 428 Depth + 1)) 429 return false; 430 // Okay, it's safe to do this! Remember this instruction. 431 AggressiveInsts.insert(I); 432 return true; 433 } 434 435 /// Extract ConstantInt from value, looking through IntToPtr 436 /// and PointerNullValue. Return NULL if value is not a constant int. 437 static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) { 438 // Normal constant int. 439 ConstantInt *CI = dyn_cast<ConstantInt>(V); 440 if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy()) 441 return CI; 442 443 // This is some kind of pointer constant. Turn it into a pointer-sized 444 // ConstantInt if possible. 445 IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType())); 446 447 // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*). 448 if (isa<ConstantPointerNull>(V)) 449 return ConstantInt::get(PtrTy, 0); 450 451 // IntToPtr const int. 452 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 453 if (CE->getOpcode() == Instruction::IntToPtr) 454 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) { 455 // The constant is very likely to have the right type already. 456 if (CI->getType() == PtrTy) 457 return CI; 458 else 459 return cast<ConstantInt>( 460 ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false)); 461 } 462 return nullptr; 463 } 464 465 namespace { 466 467 /// Given a chain of or (||) or and (&&) comparison of a value against a 468 /// constant, this will try to recover the information required for a switch 469 /// structure. 470 /// It will depth-first traverse the chain of comparison, seeking for patterns 471 /// like %a == 12 or %a < 4 and combine them to produce a set of integer 472 /// representing the different cases for the switch. 473 /// Note that if the chain is composed of '||' it will build the set of elements 474 /// that matches the comparisons (i.e. any of this value validate the chain) 475 /// while for a chain of '&&' it will build the set elements that make the test 476 /// fail. 477 struct ConstantComparesGatherer { 478 const DataLayout &DL; 479 480 /// Value found for the switch comparison 481 Value *CompValue = nullptr; 482 483 /// Extra clause to be checked before the switch 484 Value *Extra = nullptr; 485 486 /// Set of integers to match in switch 487 SmallVector<ConstantInt *, 8> Vals; 488 489 /// Number of comparisons matched in the and/or chain 490 unsigned UsedICmps = 0; 491 492 /// Construct and compute the result for the comparison instruction Cond 493 ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL) : DL(DL) { 494 gather(Cond); 495 } 496 497 ConstantComparesGatherer(const ConstantComparesGatherer &) = delete; 498 ConstantComparesGatherer & 499 operator=(const ConstantComparesGatherer &) = delete; 500 501 private: 502 /// Try to set the current value used for the comparison, it succeeds only if 503 /// it wasn't set before or if the new value is the same as the old one 504 bool setValueOnce(Value *NewVal) { 505 if (CompValue && CompValue != NewVal) 506 return false; 507 CompValue = NewVal; 508 return (CompValue != nullptr); 509 } 510 511 /// Try to match Instruction "I" as a comparison against a constant and 512 /// populates the array Vals with the set of values that match (or do not 513 /// match depending on isEQ). 514 /// Return false on failure. On success, the Value the comparison matched 515 /// against is placed in CompValue. 516 /// If CompValue is already set, the function is expected to fail if a match 517 /// is found but the value compared to is different. 518 bool matchInstruction(Instruction *I, bool isEQ) { 519 // If this is an icmp against a constant, handle this as one of the cases. 520 ICmpInst *ICI; 521 ConstantInt *C; 522 if (!((ICI = dyn_cast<ICmpInst>(I)) && 523 (C = GetConstantInt(I->getOperand(1), DL)))) { 524 return false; 525 } 526 527 Value *RHSVal; 528 const APInt *RHSC; 529 530 // Pattern match a special case 531 // (x & ~2^z) == y --> x == y || x == y|2^z 532 // This undoes a transformation done by instcombine to fuse 2 compares. 533 if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE)) { 534 // It's a little bit hard to see why the following transformations are 535 // correct. Here is a CVC3 program to verify them for 64-bit values: 536 537 /* 538 ONE : BITVECTOR(64) = BVZEROEXTEND(0bin1, 63); 539 x : BITVECTOR(64); 540 y : BITVECTOR(64); 541 z : BITVECTOR(64); 542 mask : BITVECTOR(64) = BVSHL(ONE, z); 543 QUERY( (y & ~mask = y) => 544 ((x & ~mask = y) <=> (x = y OR x = (y | mask))) 545 ); 546 QUERY( (y | mask = y) => 547 ((x | mask = y) <=> (x = y OR x = (y & ~mask))) 548 ); 549 */ 550 551 // Please note that each pattern must be a dual implication (<--> or 552 // iff). One directional implication can create spurious matches. If the 553 // implication is only one-way, an unsatisfiable condition on the left 554 // side can imply a satisfiable condition on the right side. Dual 555 // implication ensures that satisfiable conditions are transformed to 556 // other satisfiable conditions and unsatisfiable conditions are 557 // transformed to other unsatisfiable conditions. 558 559 // Here is a concrete example of a unsatisfiable condition on the left 560 // implying a satisfiable condition on the right: 561 // 562 // mask = (1 << z) 563 // (x & ~mask) == y --> (x == y || x == (y | mask)) 564 // 565 // Substituting y = 3, z = 0 yields: 566 // (x & -2) == 3 --> (x == 3 || x == 2) 567 568 // Pattern match a special case: 569 /* 570 QUERY( (y & ~mask = y) => 571 ((x & ~mask = y) <=> (x = y OR x = (y | mask))) 572 ); 573 */ 574 if (match(ICI->getOperand(0), 575 m_And(m_Value(RHSVal), m_APInt(RHSC)))) { 576 APInt Mask = ~*RHSC; 577 if (Mask.isPowerOf2() && (C->getValue() & ~Mask) == C->getValue()) { 578 // If we already have a value for the switch, it has to match! 579 if (!setValueOnce(RHSVal)) 580 return false; 581 582 Vals.push_back(C); 583 Vals.push_back( 584 ConstantInt::get(C->getContext(), 585 C->getValue() | Mask)); 586 UsedICmps++; 587 return true; 588 } 589 } 590 591 // Pattern match a special case: 592 /* 593 QUERY( (y | mask = y) => 594 ((x | mask = y) <=> (x = y OR x = (y & ~mask))) 595 ); 596 */ 597 if (match(ICI->getOperand(0), 598 m_Or(m_Value(RHSVal), m_APInt(RHSC)))) { 599 APInt Mask = *RHSC; 600 if (Mask.isPowerOf2() && (C->getValue() | Mask) == C->getValue()) { 601 // If we already have a value for the switch, it has to match! 602 if (!setValueOnce(RHSVal)) 603 return false; 604 605 Vals.push_back(C); 606 Vals.push_back(ConstantInt::get(C->getContext(), 607 C->getValue() & ~Mask)); 608 UsedICmps++; 609 return true; 610 } 611 } 612 613 // If we already have a value for the switch, it has to match! 614 if (!setValueOnce(ICI->getOperand(0))) 615 return false; 616 617 UsedICmps++; 618 Vals.push_back(C); 619 return ICI->getOperand(0); 620 } 621 622 // If we have "x ult 3", for example, then we can add 0,1,2 to the set. 623 ConstantRange Span = ConstantRange::makeAllowedICmpRegion( 624 ICI->getPredicate(), C->getValue()); 625 626 // Shift the range if the compare is fed by an add. This is the range 627 // compare idiom as emitted by instcombine. 628 Value *CandidateVal = I->getOperand(0); 629 if (match(I->getOperand(0), m_Add(m_Value(RHSVal), m_APInt(RHSC)))) { 630 Span = Span.subtract(*RHSC); 631 CandidateVal = RHSVal; 632 } 633 634 // If this is an and/!= check, then we are looking to build the set of 635 // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into 636 // x != 0 && x != 1. 637 if (!isEQ) 638 Span = Span.inverse(); 639 640 // If there are a ton of values, we don't want to make a ginormous switch. 641 if (Span.isSizeLargerThan(8) || Span.isEmptySet()) { 642 return false; 643 } 644 645 // If we already have a value for the switch, it has to match! 646 if (!setValueOnce(CandidateVal)) 647 return false; 648 649 // Add all values from the range to the set 650 for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp) 651 Vals.push_back(ConstantInt::get(I->getContext(), Tmp)); 652 653 UsedICmps++; 654 return true; 655 } 656 657 /// Given a potentially 'or'd or 'and'd together collection of icmp 658 /// eq/ne/lt/gt instructions that compare a value against a constant, extract 659 /// the value being compared, and stick the list constants into the Vals 660 /// vector. 661 /// One "Extra" case is allowed to differ from the other. 662 void gather(Value *V) { 663 bool isEQ = match(V, m_LogicalOr(m_Value(), m_Value())); 664 665 // Keep a stack (SmallVector for efficiency) for depth-first traversal 666 SmallVector<Value *, 8> DFT; 667 SmallPtrSet<Value *, 8> Visited; 668 669 // Initialize 670 Visited.insert(V); 671 DFT.push_back(V); 672 673 while (!DFT.empty()) { 674 V = DFT.pop_back_val(); 675 676 if (Instruction *I = dyn_cast<Instruction>(V)) { 677 // If it is a || (or && depending on isEQ), process the operands. 678 Value *Op0, *Op1; 679 if (isEQ ? match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))) 680 : match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) { 681 if (Visited.insert(Op1).second) 682 DFT.push_back(Op1); 683 if (Visited.insert(Op0).second) 684 DFT.push_back(Op0); 685 686 continue; 687 } 688 689 // Try to match the current instruction 690 if (matchInstruction(I, isEQ)) 691 // Match succeed, continue the loop 692 continue; 693 } 694 695 // One element of the sequence of || (or &&) could not be match as a 696 // comparison against the same value as the others. 697 // We allow only one "Extra" case to be checked before the switch 698 if (!Extra) { 699 Extra = V; 700 continue; 701 } 702 // Failed to parse a proper sequence, abort now 703 CompValue = nullptr; 704 break; 705 } 706 } 707 }; 708 709 } // end anonymous namespace 710 711 static void EraseTerminatorAndDCECond(Instruction *TI, 712 MemorySSAUpdater *MSSAU = nullptr) { 713 Instruction *Cond = nullptr; 714 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 715 Cond = dyn_cast<Instruction>(SI->getCondition()); 716 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 717 if (BI->isConditional()) 718 Cond = dyn_cast<Instruction>(BI->getCondition()); 719 } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) { 720 Cond = dyn_cast<Instruction>(IBI->getAddress()); 721 } 722 723 TI->eraseFromParent(); 724 if (Cond) 725 RecursivelyDeleteTriviallyDeadInstructions(Cond, nullptr, MSSAU); 726 } 727 728 /// Return true if the specified terminator checks 729 /// to see if a value is equal to constant integer value. 730 Value *SimplifyCFGOpt::isValueEqualityComparison(Instruction *TI) { 731 Value *CV = nullptr; 732 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 733 // Do not permit merging of large switch instructions into their 734 // predecessors unless there is only one predecessor. 735 if (!SI->getParent()->hasNPredecessorsOrMore(128 / SI->getNumSuccessors())) 736 CV = SI->getCondition(); 737 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) 738 if (BI->isConditional() && BI->getCondition()->hasOneUse()) 739 if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) { 740 if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL)) 741 CV = ICI->getOperand(0); 742 } 743 744 // Unwrap any lossless ptrtoint cast. 745 if (CV) { 746 if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) { 747 Value *Ptr = PTII->getPointerOperand(); 748 if (PTII->getType() == DL.getIntPtrType(Ptr->getType())) 749 CV = Ptr; 750 } 751 } 752 return CV; 753 } 754 755 /// Given a value comparison instruction, 756 /// decode all of the 'cases' that it represents and return the 'default' block. 757 BasicBlock *SimplifyCFGOpt::GetValueEqualityComparisonCases( 758 Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases) { 759 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 760 Cases.reserve(SI->getNumCases()); 761 for (auto Case : SI->cases()) 762 Cases.push_back(ValueEqualityComparisonCase(Case.getCaseValue(), 763 Case.getCaseSuccessor())); 764 return SI->getDefaultDest(); 765 } 766 767 BranchInst *BI = cast<BranchInst>(TI); 768 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 769 BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE); 770 Cases.push_back(ValueEqualityComparisonCase( 771 GetConstantInt(ICI->getOperand(1), DL), Succ)); 772 return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ); 773 } 774 775 /// Given a vector of bb/value pairs, remove any entries 776 /// in the list that match the specified block. 777 static void 778 EliminateBlockCases(BasicBlock *BB, 779 std::vector<ValueEqualityComparisonCase> &Cases) { 780 llvm::erase_value(Cases, BB); 781 } 782 783 /// Return true if there are any keys in C1 that exist in C2 as well. 784 static bool ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1, 785 std::vector<ValueEqualityComparisonCase> &C2) { 786 std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2; 787 788 // Make V1 be smaller than V2. 789 if (V1->size() > V2->size()) 790 std::swap(V1, V2); 791 792 if (V1->empty()) 793 return false; 794 if (V1->size() == 1) { 795 // Just scan V2. 796 ConstantInt *TheVal = (*V1)[0].Value; 797 for (unsigned i = 0, e = V2->size(); i != e; ++i) 798 if (TheVal == (*V2)[i].Value) 799 return true; 800 } 801 802 // Otherwise, just sort both lists and compare element by element. 803 array_pod_sort(V1->begin(), V1->end()); 804 array_pod_sort(V2->begin(), V2->end()); 805 unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size(); 806 while (i1 != e1 && i2 != e2) { 807 if ((*V1)[i1].Value == (*V2)[i2].Value) 808 return true; 809 if ((*V1)[i1].Value < (*V2)[i2].Value) 810 ++i1; 811 else 812 ++i2; 813 } 814 return false; 815 } 816 817 // Set branch weights on SwitchInst. This sets the metadata if there is at 818 // least one non-zero weight. 819 static void setBranchWeights(SwitchInst *SI, ArrayRef<uint32_t> Weights) { 820 // Check that there is at least one non-zero weight. Otherwise, pass 821 // nullptr to setMetadata which will erase the existing metadata. 822 MDNode *N = nullptr; 823 if (llvm::any_of(Weights, [](uint32_t W) { return W != 0; })) 824 N = MDBuilder(SI->getParent()->getContext()).createBranchWeights(Weights); 825 SI->setMetadata(LLVMContext::MD_prof, N); 826 } 827 828 // Similar to the above, but for branch and select instructions that take 829 // exactly 2 weights. 830 static void setBranchWeights(Instruction *I, uint32_t TrueWeight, 831 uint32_t FalseWeight) { 832 assert(isa<BranchInst>(I) || isa<SelectInst>(I)); 833 // Check that there is at least one non-zero weight. Otherwise, pass 834 // nullptr to setMetadata which will erase the existing metadata. 835 MDNode *N = nullptr; 836 if (TrueWeight || FalseWeight) 837 N = MDBuilder(I->getParent()->getContext()) 838 .createBranchWeights(TrueWeight, FalseWeight); 839 I->setMetadata(LLVMContext::MD_prof, N); 840 } 841 842 /// If TI is known to be a terminator instruction and its block is known to 843 /// only have a single predecessor block, check to see if that predecessor is 844 /// also a value comparison with the same value, and if that comparison 845 /// determines the outcome of this comparison. If so, simplify TI. This does a 846 /// very limited form of jump threading. 847 bool SimplifyCFGOpt::SimplifyEqualityComparisonWithOnlyPredecessor( 848 Instruction *TI, BasicBlock *Pred, IRBuilder<> &Builder) { 849 Value *PredVal = isValueEqualityComparison(Pred->getTerminator()); 850 if (!PredVal) 851 return false; // Not a value comparison in predecessor. 852 853 Value *ThisVal = isValueEqualityComparison(TI); 854 assert(ThisVal && "This isn't a value comparison!!"); 855 if (ThisVal != PredVal) 856 return false; // Different predicates. 857 858 // TODO: Preserve branch weight metadata, similarly to how 859 // FoldValueComparisonIntoPredecessors preserves it. 860 861 // Find out information about when control will move from Pred to TI's block. 862 std::vector<ValueEqualityComparisonCase> PredCases; 863 BasicBlock *PredDef = 864 GetValueEqualityComparisonCases(Pred->getTerminator(), PredCases); 865 EliminateBlockCases(PredDef, PredCases); // Remove default from cases. 866 867 // Find information about how control leaves this block. 868 std::vector<ValueEqualityComparisonCase> ThisCases; 869 BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases); 870 EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases. 871 872 // If TI's block is the default block from Pred's comparison, potentially 873 // simplify TI based on this knowledge. 874 if (PredDef == TI->getParent()) { 875 // If we are here, we know that the value is none of those cases listed in 876 // PredCases. If there are any cases in ThisCases that are in PredCases, we 877 // can simplify TI. 878 if (!ValuesOverlap(PredCases, ThisCases)) 879 return false; 880 881 if (isa<BranchInst>(TI)) { 882 // Okay, one of the successors of this condbr is dead. Convert it to a 883 // uncond br. 884 assert(ThisCases.size() == 1 && "Branch can only have one case!"); 885 // Insert the new branch. 886 Instruction *NI = Builder.CreateBr(ThisDef); 887 (void)NI; 888 889 // Remove PHI node entries for the dead edge. 890 ThisCases[0].Dest->removePredecessor(PredDef); 891 892 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 893 << "Through successor TI: " << *TI << "Leaving: " << *NI 894 << "\n"); 895 896 EraseTerminatorAndDCECond(TI); 897 898 if (DTU) 899 DTU->applyUpdates( 900 {{DominatorTree::Delete, PredDef, ThisCases[0].Dest}}); 901 902 return true; 903 } 904 905 SwitchInstProfUpdateWrapper SI = *cast<SwitchInst>(TI); 906 // Okay, TI has cases that are statically dead, prune them away. 907 SmallPtrSet<Constant *, 16> DeadCases; 908 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 909 DeadCases.insert(PredCases[i].Value); 910 911 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 912 << "Through successor TI: " << *TI); 913 914 SmallDenseMap<BasicBlock *, int, 8> NumPerSuccessorCases; 915 for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) { 916 --i; 917 auto *Successor = i->getCaseSuccessor(); 918 if (DTU) 919 ++NumPerSuccessorCases[Successor]; 920 if (DeadCases.count(i->getCaseValue())) { 921 Successor->removePredecessor(PredDef); 922 SI.removeCase(i); 923 if (DTU) 924 --NumPerSuccessorCases[Successor]; 925 } 926 } 927 928 if (DTU) { 929 std::vector<DominatorTree::UpdateType> Updates; 930 for (const std::pair<BasicBlock *, int> &I : NumPerSuccessorCases) 931 if (I.second == 0) 932 Updates.push_back({DominatorTree::Delete, PredDef, I.first}); 933 DTU->applyUpdates(Updates); 934 } 935 936 LLVM_DEBUG(dbgs() << "Leaving: " << *TI << "\n"); 937 return true; 938 } 939 940 // Otherwise, TI's block must correspond to some matched value. Find out 941 // which value (or set of values) this is. 942 ConstantInt *TIV = nullptr; 943 BasicBlock *TIBB = TI->getParent(); 944 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 945 if (PredCases[i].Dest == TIBB) { 946 if (TIV) 947 return false; // Cannot handle multiple values coming to this block. 948 TIV = PredCases[i].Value; 949 } 950 assert(TIV && "No edge from pred to succ?"); 951 952 // Okay, we found the one constant that our value can be if we get into TI's 953 // BB. Find out which successor will unconditionally be branched to. 954 BasicBlock *TheRealDest = nullptr; 955 for (unsigned i = 0, e = ThisCases.size(); i != e; ++i) 956 if (ThisCases[i].Value == TIV) { 957 TheRealDest = ThisCases[i].Dest; 958 break; 959 } 960 961 // If not handled by any explicit cases, it is handled by the default case. 962 if (!TheRealDest) 963 TheRealDest = ThisDef; 964 965 SmallPtrSet<BasicBlock *, 2> RemovedSuccs; 966 967 // Remove PHI node entries for dead edges. 968 BasicBlock *CheckEdge = TheRealDest; 969 for (BasicBlock *Succ : successors(TIBB)) 970 if (Succ != CheckEdge) { 971 if (Succ != TheRealDest) 972 RemovedSuccs.insert(Succ); 973 Succ->removePredecessor(TIBB); 974 } else 975 CheckEdge = nullptr; 976 977 // Insert the new branch. 978 Instruction *NI = Builder.CreateBr(TheRealDest); 979 (void)NI; 980 981 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 982 << "Through successor TI: " << *TI << "Leaving: " << *NI 983 << "\n"); 984 985 EraseTerminatorAndDCECond(TI); 986 if (DTU) { 987 SmallVector<DominatorTree::UpdateType, 2> Updates; 988 Updates.reserve(RemovedSuccs.size()); 989 for (auto *RemovedSucc : RemovedSuccs) 990 Updates.push_back({DominatorTree::Delete, TIBB, RemovedSucc}); 991 DTU->applyUpdates(Updates); 992 } 993 return true; 994 } 995 996 namespace { 997 998 /// This class implements a stable ordering of constant 999 /// integers that does not depend on their address. This is important for 1000 /// applications that sort ConstantInt's to ensure uniqueness. 1001 struct ConstantIntOrdering { 1002 bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const { 1003 return LHS->getValue().ult(RHS->getValue()); 1004 } 1005 }; 1006 1007 } // end anonymous namespace 1008 1009 static int ConstantIntSortPredicate(ConstantInt *const *P1, 1010 ConstantInt *const *P2) { 1011 const ConstantInt *LHS = *P1; 1012 const ConstantInt *RHS = *P2; 1013 if (LHS == RHS) 1014 return 0; 1015 return LHS->getValue().ult(RHS->getValue()) ? 1 : -1; 1016 } 1017 1018 static inline bool HasBranchWeights(const Instruction *I) { 1019 MDNode *ProfMD = I->getMetadata(LLVMContext::MD_prof); 1020 if (ProfMD && ProfMD->getOperand(0)) 1021 if (MDString *MDS = dyn_cast<MDString>(ProfMD->getOperand(0))) 1022 return MDS->getString().equals("branch_weights"); 1023 1024 return false; 1025 } 1026 1027 /// Get Weights of a given terminator, the default weight is at the front 1028 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight 1029 /// metadata. 1030 static void GetBranchWeights(Instruction *TI, 1031 SmallVectorImpl<uint64_t> &Weights) { 1032 MDNode *MD = TI->getMetadata(LLVMContext::MD_prof); 1033 assert(MD); 1034 for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) { 1035 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i)); 1036 Weights.push_back(CI->getValue().getZExtValue()); 1037 } 1038 1039 // If TI is a conditional eq, the default case is the false case, 1040 // and the corresponding branch-weight data is at index 2. We swap the 1041 // default weight to be the first entry. 1042 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 1043 assert(Weights.size() == 2); 1044 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 1045 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 1046 std::swap(Weights.front(), Weights.back()); 1047 } 1048 } 1049 1050 /// Keep halving the weights until all can fit in uint32_t. 1051 static void FitWeights(MutableArrayRef<uint64_t> Weights) { 1052 uint64_t Max = *std::max_element(Weights.begin(), Weights.end()); 1053 if (Max > UINT_MAX) { 1054 unsigned Offset = 32 - countLeadingZeros(Max); 1055 for (uint64_t &I : Weights) 1056 I >>= Offset; 1057 } 1058 } 1059 1060 static void CloneInstructionsIntoPredecessorBlockAndUpdateSSAUses( 1061 BasicBlock *BB, BasicBlock *PredBlock, ValueToValueMapTy &VMap) { 1062 Instruction *PTI = PredBlock->getTerminator(); 1063 1064 // If we have bonus instructions, clone them into the predecessor block. 1065 // Note that there may be multiple predecessor blocks, so we cannot move 1066 // bonus instructions to a predecessor block. 1067 for (Instruction &BonusInst : *BB) { 1068 if (isa<DbgInfoIntrinsic>(BonusInst) || BonusInst.isTerminator()) 1069 continue; 1070 1071 Instruction *NewBonusInst = BonusInst.clone(); 1072 1073 if (PTI->getDebugLoc() != NewBonusInst->getDebugLoc()) { 1074 // Unless the instruction has the same !dbg location as the original 1075 // branch, drop it. When we fold the bonus instructions we want to make 1076 // sure we reset their debug locations in order to avoid stepping on 1077 // dead code caused by folding dead branches. 1078 NewBonusInst->setDebugLoc(DebugLoc()); 1079 } 1080 1081 RemapInstruction(NewBonusInst, VMap, 1082 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 1083 VMap[&BonusInst] = NewBonusInst; 1084 1085 // If we moved a load, we cannot any longer claim any knowledge about 1086 // its potential value. The previous information might have been valid 1087 // only given the branch precondition. 1088 // For an analogous reason, we must also drop all the metadata whose 1089 // semantics we don't understand. We *can* preserve !annotation, because 1090 // it is tied to the instruction itself, not the value or position. 1091 NewBonusInst->dropUnknownNonDebugMetadata(LLVMContext::MD_annotation); 1092 1093 PredBlock->getInstList().insert(PTI->getIterator(), NewBonusInst); 1094 NewBonusInst->takeName(&BonusInst); 1095 BonusInst.setName(NewBonusInst->getName() + ".old"); 1096 1097 // Update (liveout) uses of bonus instructions, 1098 // now that the bonus instruction has been cloned into predecessor. 1099 SSAUpdater SSAUpdate; 1100 SSAUpdate.Initialize(BonusInst.getType(), 1101 (NewBonusInst->getName() + ".merge").str()); 1102 SSAUpdate.AddAvailableValue(BB, &BonusInst); 1103 SSAUpdate.AddAvailableValue(PredBlock, NewBonusInst); 1104 for (Use &U : make_early_inc_range(BonusInst.uses())) { 1105 auto *UI = cast<Instruction>(U.getUser()); 1106 if (UI->getParent() != PredBlock) 1107 SSAUpdate.RewriteUseAfterInsertions(U); 1108 else // Use is in the same block as, and comes before, NewBonusInst. 1109 SSAUpdate.RewriteUse(U); 1110 } 1111 } 1112 } 1113 1114 bool SimplifyCFGOpt::PerformValueComparisonIntoPredecessorFolding( 1115 Instruction *TI, Value *&CV, Instruction *PTI, IRBuilder<> &Builder) { 1116 BasicBlock *BB = TI->getParent(); 1117 BasicBlock *Pred = PTI->getParent(); 1118 1119 SmallVector<DominatorTree::UpdateType, 32> Updates; 1120 1121 // Figure out which 'cases' to copy from SI to PSI. 1122 std::vector<ValueEqualityComparisonCase> BBCases; 1123 BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases); 1124 1125 std::vector<ValueEqualityComparisonCase> PredCases; 1126 BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases); 1127 1128 // Based on whether the default edge from PTI goes to BB or not, fill in 1129 // PredCases and PredDefault with the new switch cases we would like to 1130 // build. 1131 SmallMapVector<BasicBlock *, int, 8> NewSuccessors; 1132 1133 // Update the branch weight metadata along the way 1134 SmallVector<uint64_t, 8> Weights; 1135 bool PredHasWeights = HasBranchWeights(PTI); 1136 bool SuccHasWeights = HasBranchWeights(TI); 1137 1138 if (PredHasWeights) { 1139 GetBranchWeights(PTI, Weights); 1140 // branch-weight metadata is inconsistent here. 1141 if (Weights.size() != 1 + PredCases.size()) 1142 PredHasWeights = SuccHasWeights = false; 1143 } else if (SuccHasWeights) 1144 // If there are no predecessor weights but there are successor weights, 1145 // populate Weights with 1, which will later be scaled to the sum of 1146 // successor's weights 1147 Weights.assign(1 + PredCases.size(), 1); 1148 1149 SmallVector<uint64_t, 8> SuccWeights; 1150 if (SuccHasWeights) { 1151 GetBranchWeights(TI, SuccWeights); 1152 // branch-weight metadata is inconsistent here. 1153 if (SuccWeights.size() != 1 + BBCases.size()) 1154 PredHasWeights = SuccHasWeights = false; 1155 } else if (PredHasWeights) 1156 SuccWeights.assign(1 + BBCases.size(), 1); 1157 1158 if (PredDefault == BB) { 1159 // If this is the default destination from PTI, only the edges in TI 1160 // that don't occur in PTI, or that branch to BB will be activated. 1161 std::set<ConstantInt *, ConstantIntOrdering> PTIHandled; 1162 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 1163 if (PredCases[i].Dest != BB) 1164 PTIHandled.insert(PredCases[i].Value); 1165 else { 1166 // The default destination is BB, we don't need explicit targets. 1167 std::swap(PredCases[i], PredCases.back()); 1168 1169 if (PredHasWeights || SuccHasWeights) { 1170 // Increase weight for the default case. 1171 Weights[0] += Weights[i + 1]; 1172 std::swap(Weights[i + 1], Weights.back()); 1173 Weights.pop_back(); 1174 } 1175 1176 PredCases.pop_back(); 1177 --i; 1178 --e; 1179 } 1180 1181 // Reconstruct the new switch statement we will be building. 1182 if (PredDefault != BBDefault) { 1183 PredDefault->removePredecessor(Pred); 1184 if (DTU && PredDefault != BB) 1185 Updates.push_back({DominatorTree::Delete, Pred, PredDefault}); 1186 PredDefault = BBDefault; 1187 ++NewSuccessors[BBDefault]; 1188 } 1189 1190 unsigned CasesFromPred = Weights.size(); 1191 uint64_t ValidTotalSuccWeight = 0; 1192 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 1193 if (!PTIHandled.count(BBCases[i].Value) && BBCases[i].Dest != BBDefault) { 1194 PredCases.push_back(BBCases[i]); 1195 ++NewSuccessors[BBCases[i].Dest]; 1196 if (SuccHasWeights || PredHasWeights) { 1197 // The default weight is at index 0, so weight for the ith case 1198 // should be at index i+1. Scale the cases from successor by 1199 // PredDefaultWeight (Weights[0]). 1200 Weights.push_back(Weights[0] * SuccWeights[i + 1]); 1201 ValidTotalSuccWeight += SuccWeights[i + 1]; 1202 } 1203 } 1204 1205 if (SuccHasWeights || PredHasWeights) { 1206 ValidTotalSuccWeight += SuccWeights[0]; 1207 // Scale the cases from predecessor by ValidTotalSuccWeight. 1208 for (unsigned i = 1; i < CasesFromPred; ++i) 1209 Weights[i] *= ValidTotalSuccWeight; 1210 // Scale the default weight by SuccDefaultWeight (SuccWeights[0]). 1211 Weights[0] *= SuccWeights[0]; 1212 } 1213 } else { 1214 // If this is not the default destination from PSI, only the edges 1215 // in SI that occur in PSI with a destination of BB will be 1216 // activated. 1217 std::set<ConstantInt *, ConstantIntOrdering> PTIHandled; 1218 std::map<ConstantInt *, uint64_t> WeightsForHandled; 1219 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 1220 if (PredCases[i].Dest == BB) { 1221 PTIHandled.insert(PredCases[i].Value); 1222 1223 if (PredHasWeights || SuccHasWeights) { 1224 WeightsForHandled[PredCases[i].Value] = Weights[i + 1]; 1225 std::swap(Weights[i + 1], Weights.back()); 1226 Weights.pop_back(); 1227 } 1228 1229 std::swap(PredCases[i], PredCases.back()); 1230 PredCases.pop_back(); 1231 --i; 1232 --e; 1233 } 1234 1235 // Okay, now we know which constants were sent to BB from the 1236 // predecessor. Figure out where they will all go now. 1237 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 1238 if (PTIHandled.count(BBCases[i].Value)) { 1239 // If this is one we are capable of getting... 1240 if (PredHasWeights || SuccHasWeights) 1241 Weights.push_back(WeightsForHandled[BBCases[i].Value]); 1242 PredCases.push_back(BBCases[i]); 1243 ++NewSuccessors[BBCases[i].Dest]; 1244 PTIHandled.erase(BBCases[i].Value); // This constant is taken care of 1245 } 1246 1247 // If there are any constants vectored to BB that TI doesn't handle, 1248 // they must go to the default destination of TI. 1249 for (ConstantInt *I : PTIHandled) { 1250 if (PredHasWeights || SuccHasWeights) 1251 Weights.push_back(WeightsForHandled[I]); 1252 PredCases.push_back(ValueEqualityComparisonCase(I, BBDefault)); 1253 ++NewSuccessors[BBDefault]; 1254 } 1255 } 1256 1257 // Okay, at this point, we know which new successor Pred will get. Make 1258 // sure we update the number of entries in the PHI nodes for these 1259 // successors. 1260 SmallPtrSet<BasicBlock *, 2> SuccsOfPred; 1261 if (DTU) { 1262 SuccsOfPred = {succ_begin(Pred), succ_end(Pred)}; 1263 Updates.reserve(Updates.size() + NewSuccessors.size()); 1264 } 1265 for (const std::pair<BasicBlock *, int /*Num*/> &NewSuccessor : 1266 NewSuccessors) { 1267 for (auto I : seq(0, NewSuccessor.second)) { 1268 (void)I; 1269 AddPredecessorToBlock(NewSuccessor.first, Pred, BB); 1270 } 1271 if (DTU && !SuccsOfPred.contains(NewSuccessor.first)) 1272 Updates.push_back({DominatorTree::Insert, Pred, NewSuccessor.first}); 1273 } 1274 1275 Builder.SetInsertPoint(PTI); 1276 // Convert pointer to int before we switch. 1277 if (CV->getType()->isPointerTy()) { 1278 CV = 1279 Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()), "magicptr"); 1280 } 1281 1282 // Now that the successors are updated, create the new Switch instruction. 1283 SwitchInst *NewSI = Builder.CreateSwitch(CV, PredDefault, PredCases.size()); 1284 NewSI->setDebugLoc(PTI->getDebugLoc()); 1285 for (ValueEqualityComparisonCase &V : PredCases) 1286 NewSI->addCase(V.Value, V.Dest); 1287 1288 if (PredHasWeights || SuccHasWeights) { 1289 // Halve the weights if any of them cannot fit in an uint32_t 1290 FitWeights(Weights); 1291 1292 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 1293 1294 setBranchWeights(NewSI, MDWeights); 1295 } 1296 1297 EraseTerminatorAndDCECond(PTI); 1298 1299 // Okay, last check. If BB is still a successor of PSI, then we must 1300 // have an infinite loop case. If so, add an infinitely looping block 1301 // to handle the case to preserve the behavior of the code. 1302 BasicBlock *InfLoopBlock = nullptr; 1303 for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i) 1304 if (NewSI->getSuccessor(i) == BB) { 1305 if (!InfLoopBlock) { 1306 // Insert it at the end of the function, because it's either code, 1307 // or it won't matter if it's hot. :) 1308 InfLoopBlock = 1309 BasicBlock::Create(BB->getContext(), "infloop", BB->getParent()); 1310 BranchInst::Create(InfLoopBlock, InfLoopBlock); 1311 if (DTU) 1312 Updates.push_back( 1313 {DominatorTree::Insert, InfLoopBlock, InfLoopBlock}); 1314 } 1315 NewSI->setSuccessor(i, InfLoopBlock); 1316 } 1317 1318 if (DTU) { 1319 if (InfLoopBlock) 1320 Updates.push_back({DominatorTree::Insert, Pred, InfLoopBlock}); 1321 1322 Updates.push_back({DominatorTree::Delete, Pred, BB}); 1323 1324 DTU->applyUpdates(Updates); 1325 } 1326 1327 ++NumFoldValueComparisonIntoPredecessors; 1328 return true; 1329 } 1330 1331 /// The specified terminator is a value equality comparison instruction 1332 /// (either a switch or a branch on "X == c"). 1333 /// See if any of the predecessors of the terminator block are value comparisons 1334 /// on the same value. If so, and if safe to do so, fold them together. 1335 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(Instruction *TI, 1336 IRBuilder<> &Builder) { 1337 BasicBlock *BB = TI->getParent(); 1338 Value *CV = isValueEqualityComparison(TI); // CondVal 1339 assert(CV && "Not a comparison?"); 1340 1341 bool Changed = false; 1342 1343 SmallSetVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB)); 1344 while (!Preds.empty()) { 1345 BasicBlock *Pred = Preds.pop_back_val(); 1346 Instruction *PTI = Pred->getTerminator(); 1347 1348 // Don't try to fold into itself. 1349 if (Pred == BB) 1350 continue; 1351 1352 // See if the predecessor is a comparison with the same value. 1353 Value *PCV = isValueEqualityComparison(PTI); // PredCondVal 1354 if (PCV != CV) 1355 continue; 1356 1357 SmallSetVector<BasicBlock *, 4> FailBlocks; 1358 if (!SafeToMergeTerminators(TI, PTI, &FailBlocks)) { 1359 for (auto *Succ : FailBlocks) { 1360 if (!SplitBlockPredecessors(Succ, TI->getParent(), ".fold.split", DTU)) 1361 return false; 1362 } 1363 } 1364 1365 PerformValueComparisonIntoPredecessorFolding(TI, CV, PTI, Builder); 1366 Changed = true; 1367 } 1368 return Changed; 1369 } 1370 1371 // If we would need to insert a select that uses the value of this invoke 1372 // (comments in HoistThenElseCodeToIf explain why we would need to do this), we 1373 // can't hoist the invoke, as there is nowhere to put the select in this case. 1374 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2, 1375 Instruction *I1, Instruction *I2) { 1376 for (BasicBlock *Succ : successors(BB1)) { 1377 for (const PHINode &PN : Succ->phis()) { 1378 Value *BB1V = PN.getIncomingValueForBlock(BB1); 1379 Value *BB2V = PN.getIncomingValueForBlock(BB2); 1380 if (BB1V != BB2V && (BB1V == I1 || BB2V == I2)) { 1381 return false; 1382 } 1383 } 1384 } 1385 return true; 1386 } 1387 1388 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I, bool PtrValueMayBeModified = false); 1389 1390 /// Given a conditional branch that goes to BB1 and BB2, hoist any common code 1391 /// in the two blocks up into the branch block. The caller of this function 1392 /// guarantees that BI's block dominates BB1 and BB2. If EqTermsOnly is given, 1393 /// only perform hoisting in case both blocks only contain a terminator. In that 1394 /// case, only the original BI will be replaced and selects for PHIs are added. 1395 bool SimplifyCFGOpt::HoistThenElseCodeToIf(BranchInst *BI, 1396 const TargetTransformInfo &TTI, 1397 bool EqTermsOnly) { 1398 // This does very trivial matching, with limited scanning, to find identical 1399 // instructions in the two blocks. In particular, we don't want to get into 1400 // O(M*N) situations here where M and N are the sizes of BB1 and BB2. As 1401 // such, we currently just scan for obviously identical instructions in an 1402 // identical order. 1403 BasicBlock *BB1 = BI->getSuccessor(0); // The true destination. 1404 BasicBlock *BB2 = BI->getSuccessor(1); // The false destination 1405 1406 BasicBlock::iterator BB1_Itr = BB1->begin(); 1407 BasicBlock::iterator BB2_Itr = BB2->begin(); 1408 1409 Instruction *I1 = &*BB1_Itr++, *I2 = &*BB2_Itr++; 1410 // Skip debug info if it is not identical. 1411 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1412 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1413 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1414 while (isa<DbgInfoIntrinsic>(I1)) 1415 I1 = &*BB1_Itr++; 1416 while (isa<DbgInfoIntrinsic>(I2)) 1417 I2 = &*BB2_Itr++; 1418 } 1419 // FIXME: Can we define a safety predicate for CallBr? 1420 if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) || 1421 (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) || 1422 isa<CallBrInst>(I1)) 1423 return false; 1424 1425 BasicBlock *BIParent = BI->getParent(); 1426 1427 bool Changed = false; 1428 1429 auto _ = make_scope_exit([&]() { 1430 if (Changed) 1431 ++NumHoistCommonCode; 1432 }); 1433 1434 // Check if only hoisting terminators is allowed. This does not add new 1435 // instructions to the hoist location. 1436 if (EqTermsOnly) { 1437 // Skip any debug intrinsics, as they are free to hoist. 1438 auto *I1NonDbg = &*skipDebugIntrinsics(I1->getIterator()); 1439 auto *I2NonDbg = &*skipDebugIntrinsics(I2->getIterator()); 1440 if (!I1NonDbg->isIdenticalToWhenDefined(I2NonDbg)) 1441 return false; 1442 if (!I1NonDbg->isTerminator()) 1443 return false; 1444 // Now we know that we only need to hoist debug instrinsics and the 1445 // terminator. Let the loop below handle those 2 cases. 1446 } 1447 1448 do { 1449 // If we are hoisting the terminator instruction, don't move one (making a 1450 // broken BB), instead clone it, and remove BI. 1451 if (I1->isTerminator()) 1452 goto HoistTerminator; 1453 1454 // If we're going to hoist a call, make sure that the two instructions we're 1455 // commoning/hoisting are both marked with musttail, or neither of them is 1456 // marked as such. Otherwise, we might end up in a situation where we hoist 1457 // from a block where the terminator is a `ret` to a block where the terminator 1458 // is a `br`, and `musttail` calls expect to be followed by a return. 1459 auto *C1 = dyn_cast<CallInst>(I1); 1460 auto *C2 = dyn_cast<CallInst>(I2); 1461 if (C1 && C2) 1462 if (C1->isMustTailCall() != C2->isMustTailCall()) 1463 return Changed; 1464 1465 if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2)) 1466 return Changed; 1467 1468 // If any of the two call sites has nomerge attribute, stop hoisting. 1469 if (const auto *CB1 = dyn_cast<CallBase>(I1)) 1470 if (CB1->cannotMerge()) 1471 return Changed; 1472 if (const auto *CB2 = dyn_cast<CallBase>(I2)) 1473 if (CB2->cannotMerge()) 1474 return Changed; 1475 1476 if (isa<DbgInfoIntrinsic>(I1) || isa<DbgInfoIntrinsic>(I2)) { 1477 assert (isa<DbgInfoIntrinsic>(I1) && isa<DbgInfoIntrinsic>(I2)); 1478 // The debug location is an integral part of a debug info intrinsic 1479 // and can't be separated from it or replaced. Instead of attempting 1480 // to merge locations, simply hoist both copies of the intrinsic. 1481 BIParent->getInstList().splice(BI->getIterator(), 1482 BB1->getInstList(), I1); 1483 BIParent->getInstList().splice(BI->getIterator(), 1484 BB2->getInstList(), I2); 1485 Changed = true; 1486 } else { 1487 // For a normal instruction, we just move one to right before the branch, 1488 // then replace all uses of the other with the first. Finally, we remove 1489 // the now redundant second instruction. 1490 BIParent->getInstList().splice(BI->getIterator(), 1491 BB1->getInstList(), I1); 1492 if (!I2->use_empty()) 1493 I2->replaceAllUsesWith(I1); 1494 I1->andIRFlags(I2); 1495 unsigned KnownIDs[] = {LLVMContext::MD_tbaa, 1496 LLVMContext::MD_range, 1497 LLVMContext::MD_fpmath, 1498 LLVMContext::MD_invariant_load, 1499 LLVMContext::MD_nonnull, 1500 LLVMContext::MD_invariant_group, 1501 LLVMContext::MD_align, 1502 LLVMContext::MD_dereferenceable, 1503 LLVMContext::MD_dereferenceable_or_null, 1504 LLVMContext::MD_mem_parallel_loop_access, 1505 LLVMContext::MD_access_group, 1506 LLVMContext::MD_preserve_access_index}; 1507 combineMetadata(I1, I2, KnownIDs, true); 1508 1509 // I1 and I2 are being combined into a single instruction. Its debug 1510 // location is the merged locations of the original instructions. 1511 I1->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc()); 1512 1513 I2->eraseFromParent(); 1514 Changed = true; 1515 } 1516 ++NumHoistCommonInstrs; 1517 1518 I1 = &*BB1_Itr++; 1519 I2 = &*BB2_Itr++; 1520 // Skip debug info if it is not identical. 1521 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1522 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1523 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1524 while (isa<DbgInfoIntrinsic>(I1)) 1525 I1 = &*BB1_Itr++; 1526 while (isa<DbgInfoIntrinsic>(I2)) 1527 I2 = &*BB2_Itr++; 1528 } 1529 } while (I1->isIdenticalToWhenDefined(I2)); 1530 1531 return true; 1532 1533 HoistTerminator: 1534 // It may not be possible to hoist an invoke. 1535 // FIXME: Can we define a safety predicate for CallBr? 1536 if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) 1537 return Changed; 1538 1539 // TODO: callbr hoisting currently disabled pending further study. 1540 if (isa<CallBrInst>(I1)) 1541 return Changed; 1542 1543 for (BasicBlock *Succ : successors(BB1)) { 1544 for (PHINode &PN : Succ->phis()) { 1545 Value *BB1V = PN.getIncomingValueForBlock(BB1); 1546 Value *BB2V = PN.getIncomingValueForBlock(BB2); 1547 if (BB1V == BB2V) 1548 continue; 1549 1550 // Check for passingValueIsAlwaysUndefined here because we would rather 1551 // eliminate undefined control flow then converting it to a select. 1552 if (passingValueIsAlwaysUndefined(BB1V, &PN) || 1553 passingValueIsAlwaysUndefined(BB2V, &PN)) 1554 return Changed; 1555 1556 if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V)) 1557 return Changed; 1558 if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V)) 1559 return Changed; 1560 } 1561 } 1562 1563 // Okay, it is safe to hoist the terminator. 1564 Instruction *NT = I1->clone(); 1565 BIParent->getInstList().insert(BI->getIterator(), NT); 1566 if (!NT->getType()->isVoidTy()) { 1567 I1->replaceAllUsesWith(NT); 1568 I2->replaceAllUsesWith(NT); 1569 NT->takeName(I1); 1570 } 1571 Changed = true; 1572 ++NumHoistCommonInstrs; 1573 1574 // Ensure terminator gets a debug location, even an unknown one, in case 1575 // it involves inlinable calls. 1576 NT->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc()); 1577 1578 // PHIs created below will adopt NT's merged DebugLoc. 1579 IRBuilder<NoFolder> Builder(NT); 1580 1581 // Hoisting one of the terminators from our successor is a great thing. 1582 // Unfortunately, the successors of the if/else blocks may have PHI nodes in 1583 // them. If they do, all PHI entries for BB1/BB2 must agree for all PHI 1584 // nodes, so we insert select instruction to compute the final result. 1585 std::map<std::pair<Value *, Value *>, SelectInst *> InsertedSelects; 1586 for (BasicBlock *Succ : successors(BB1)) { 1587 for (PHINode &PN : Succ->phis()) { 1588 Value *BB1V = PN.getIncomingValueForBlock(BB1); 1589 Value *BB2V = PN.getIncomingValueForBlock(BB2); 1590 if (BB1V == BB2V) 1591 continue; 1592 1593 // These values do not agree. Insert a select instruction before NT 1594 // that determines the right value. 1595 SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)]; 1596 if (!SI) { 1597 // Propagate fast-math-flags from phi node to its replacement select. 1598 IRBuilder<>::FastMathFlagGuard FMFGuard(Builder); 1599 if (isa<FPMathOperator>(PN)) 1600 Builder.setFastMathFlags(PN.getFastMathFlags()); 1601 1602 SI = cast<SelectInst>( 1603 Builder.CreateSelect(BI->getCondition(), BB1V, BB2V, 1604 BB1V->getName() + "." + BB2V->getName(), BI)); 1605 } 1606 1607 // Make the PHI node use the select for all incoming values for BB1/BB2 1608 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) 1609 if (PN.getIncomingBlock(i) == BB1 || PN.getIncomingBlock(i) == BB2) 1610 PN.setIncomingValue(i, SI); 1611 } 1612 } 1613 1614 SmallVector<DominatorTree::UpdateType, 4> Updates; 1615 1616 // Update any PHI nodes in our new successors. 1617 for (BasicBlock *Succ : successors(BB1)) { 1618 AddPredecessorToBlock(Succ, BIParent, BB1); 1619 if (DTU) 1620 Updates.push_back({DominatorTree::Insert, BIParent, Succ}); 1621 } 1622 1623 if (DTU) 1624 for (BasicBlock *Succ : successors(BI)) 1625 Updates.push_back({DominatorTree::Delete, BIParent, Succ}); 1626 1627 EraseTerminatorAndDCECond(BI); 1628 if (DTU) 1629 DTU->applyUpdates(Updates); 1630 return Changed; 1631 } 1632 1633 // Check lifetime markers. 1634 static bool isLifeTimeMarker(const Instruction *I) { 1635 if (auto II = dyn_cast<IntrinsicInst>(I)) { 1636 switch (II->getIntrinsicID()) { 1637 default: 1638 break; 1639 case Intrinsic::lifetime_start: 1640 case Intrinsic::lifetime_end: 1641 return true; 1642 } 1643 } 1644 return false; 1645 } 1646 1647 // TODO: Refine this. This should avoid cases like turning constant memcpy sizes 1648 // into variables. 1649 static bool replacingOperandWithVariableIsCheap(const Instruction *I, 1650 int OpIdx) { 1651 return !isa<IntrinsicInst>(I); 1652 } 1653 1654 // All instructions in Insts belong to different blocks that all unconditionally 1655 // branch to a common successor. Analyze each instruction and return true if it 1656 // would be possible to sink them into their successor, creating one common 1657 // instruction instead. For every value that would be required to be provided by 1658 // PHI node (because an operand varies in each input block), add to PHIOperands. 1659 static bool canSinkInstructions( 1660 ArrayRef<Instruction *> Insts, 1661 DenseMap<Instruction *, SmallVector<Value *, 4>> &PHIOperands) { 1662 // Prune out obviously bad instructions to move. Each instruction must have 1663 // exactly zero or one use, and we check later that use is by a single, common 1664 // PHI instruction in the successor. 1665 bool HasUse = !Insts.front()->user_empty(); 1666 for (auto *I : Insts) { 1667 // These instructions may change or break semantics if moved. 1668 if (isa<PHINode>(I) || I->isEHPad() || isa<AllocaInst>(I) || 1669 I->getType()->isTokenTy()) 1670 return false; 1671 1672 // Do not try to sink an instruction in an infinite loop - it can cause 1673 // this algorithm to infinite loop. 1674 if (I->getParent()->getSingleSuccessor() == I->getParent()) 1675 return false; 1676 1677 // Conservatively return false if I is an inline-asm instruction. Sinking 1678 // and merging inline-asm instructions can potentially create arguments 1679 // that cannot satisfy the inline-asm constraints. 1680 // If the instruction has nomerge attribute, return false. 1681 if (const auto *C = dyn_cast<CallBase>(I)) 1682 if (C->isInlineAsm() || C->cannotMerge()) 1683 return false; 1684 1685 // Each instruction must have zero or one use. 1686 if (HasUse && !I->hasOneUse()) 1687 return false; 1688 if (!HasUse && !I->user_empty()) 1689 return false; 1690 } 1691 1692 const Instruction *I0 = Insts.front(); 1693 for (auto *I : Insts) 1694 if (!I->isSameOperationAs(I0)) 1695 return false; 1696 1697 // All instructions in Insts are known to be the same opcode. If they have a 1698 // use, check that the only user is a PHI or in the same block as the 1699 // instruction, because if a user is in the same block as an instruction we're 1700 // contemplating sinking, it must already be determined to be sinkable. 1701 if (HasUse) { 1702 auto *PNUse = dyn_cast<PHINode>(*I0->user_begin()); 1703 auto *Succ = I0->getParent()->getTerminator()->getSuccessor(0); 1704 if (!all_of(Insts, [&PNUse,&Succ](const Instruction *I) -> bool { 1705 auto *U = cast<Instruction>(*I->user_begin()); 1706 return (PNUse && 1707 PNUse->getParent() == Succ && 1708 PNUse->getIncomingValueForBlock(I->getParent()) == I) || 1709 U->getParent() == I->getParent(); 1710 })) 1711 return false; 1712 } 1713 1714 // Because SROA can't handle speculating stores of selects, try not to sink 1715 // loads, stores or lifetime markers of allocas when we'd have to create a 1716 // PHI for the address operand. Also, because it is likely that loads or 1717 // stores of allocas will disappear when Mem2Reg/SROA is run, don't sink 1718 // them. 1719 // This can cause code churn which can have unintended consequences down 1720 // the line - see https://llvm.org/bugs/show_bug.cgi?id=30244. 1721 // FIXME: This is a workaround for a deficiency in SROA - see 1722 // https://llvm.org/bugs/show_bug.cgi?id=30188 1723 if (isa<StoreInst>(I0) && any_of(Insts, [](const Instruction *I) { 1724 return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts()); 1725 })) 1726 return false; 1727 if (isa<LoadInst>(I0) && any_of(Insts, [](const Instruction *I) { 1728 return isa<AllocaInst>(I->getOperand(0)->stripPointerCasts()); 1729 })) 1730 return false; 1731 if (isLifeTimeMarker(I0) && any_of(Insts, [](const Instruction *I) { 1732 return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts()); 1733 })) 1734 return false; 1735 1736 // For calls to be sinkable, they must all be indirect, or have same callee. 1737 // I.e. if we have two direct calls to different callees, we don't want to 1738 // turn that into an indirect call. Likewise, if we have an indirect call, 1739 // and a direct call, we don't actually want to have a single indirect call. 1740 if (isa<CallBase>(I0)) { 1741 auto IsIndirectCall = [](const Instruction *I) { 1742 return cast<CallBase>(I)->isIndirectCall(); 1743 }; 1744 bool HaveIndirectCalls = any_of(Insts, IsIndirectCall); 1745 bool AllCallsAreIndirect = all_of(Insts, IsIndirectCall); 1746 if (HaveIndirectCalls) { 1747 if (!AllCallsAreIndirect) 1748 return false; 1749 } else { 1750 // All callees must be identical. 1751 Value *Callee = nullptr; 1752 for (const Instruction *I : Insts) { 1753 Value *CurrCallee = cast<CallBase>(I)->getCalledOperand(); 1754 if (!Callee) 1755 Callee = CurrCallee; 1756 else if (Callee != CurrCallee) 1757 return false; 1758 } 1759 } 1760 } 1761 1762 for (unsigned OI = 0, OE = I0->getNumOperands(); OI != OE; ++OI) { 1763 Value *Op = I0->getOperand(OI); 1764 if (Op->getType()->isTokenTy()) 1765 // Don't touch any operand of token type. 1766 return false; 1767 1768 auto SameAsI0 = [&I0, OI](const Instruction *I) { 1769 assert(I->getNumOperands() == I0->getNumOperands()); 1770 return I->getOperand(OI) == I0->getOperand(OI); 1771 }; 1772 if (!all_of(Insts, SameAsI0)) { 1773 if ((isa<Constant>(Op) && !replacingOperandWithVariableIsCheap(I0, OI)) || 1774 !canReplaceOperandWithVariable(I0, OI)) 1775 // We can't create a PHI from this GEP. 1776 return false; 1777 for (auto *I : Insts) 1778 PHIOperands[I].push_back(I->getOperand(OI)); 1779 } 1780 } 1781 return true; 1782 } 1783 1784 // Assuming canSinkInstructions(Blocks) has returned true, sink the last 1785 // instruction of every block in Blocks to their common successor, commoning 1786 // into one instruction. 1787 static bool sinkLastInstruction(ArrayRef<BasicBlock*> Blocks) { 1788 auto *BBEnd = Blocks[0]->getTerminator()->getSuccessor(0); 1789 1790 // canSinkInstructions returning true guarantees that every block has at 1791 // least one non-terminator instruction. 1792 SmallVector<Instruction*,4> Insts; 1793 for (auto *BB : Blocks) { 1794 Instruction *I = BB->getTerminator(); 1795 do { 1796 I = I->getPrevNode(); 1797 } while (isa<DbgInfoIntrinsic>(I) && I != &BB->front()); 1798 if (!isa<DbgInfoIntrinsic>(I)) 1799 Insts.push_back(I); 1800 } 1801 1802 // The only checking we need to do now is that all users of all instructions 1803 // are the same PHI node. canSinkInstructions should have checked this but 1804 // it is slightly over-aggressive - it gets confused by commutative 1805 // instructions so double-check it here. 1806 Instruction *I0 = Insts.front(); 1807 if (!I0->user_empty()) { 1808 auto *PNUse = dyn_cast<PHINode>(*I0->user_begin()); 1809 if (!all_of(Insts, [&PNUse](const Instruction *I) -> bool { 1810 auto *U = cast<Instruction>(*I->user_begin()); 1811 return U == PNUse; 1812 })) 1813 return false; 1814 } 1815 1816 // We don't need to do any more checking here; canSinkInstructions should 1817 // have done it all for us. 1818 SmallVector<Value*, 4> NewOperands; 1819 for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) { 1820 // This check is different to that in canSinkInstructions. There, we 1821 // cared about the global view once simplifycfg (and instcombine) have 1822 // completed - it takes into account PHIs that become trivially 1823 // simplifiable. However here we need a more local view; if an operand 1824 // differs we create a PHI and rely on instcombine to clean up the very 1825 // small mess we may make. 1826 bool NeedPHI = any_of(Insts, [&I0, O](const Instruction *I) { 1827 return I->getOperand(O) != I0->getOperand(O); 1828 }); 1829 if (!NeedPHI) { 1830 NewOperands.push_back(I0->getOperand(O)); 1831 continue; 1832 } 1833 1834 // Create a new PHI in the successor block and populate it. 1835 auto *Op = I0->getOperand(O); 1836 assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!"); 1837 auto *PN = PHINode::Create(Op->getType(), Insts.size(), 1838 Op->getName() + ".sink", &BBEnd->front()); 1839 for (auto *I : Insts) 1840 PN->addIncoming(I->getOperand(O), I->getParent()); 1841 NewOperands.push_back(PN); 1842 } 1843 1844 // Arbitrarily use I0 as the new "common" instruction; remap its operands 1845 // and move it to the start of the successor block. 1846 for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) 1847 I0->getOperandUse(O).set(NewOperands[O]); 1848 I0->moveBefore(&*BBEnd->getFirstInsertionPt()); 1849 1850 // Update metadata and IR flags, and merge debug locations. 1851 for (auto *I : Insts) 1852 if (I != I0) { 1853 // The debug location for the "common" instruction is the merged locations 1854 // of all the commoned instructions. We start with the original location 1855 // of the "common" instruction and iteratively merge each location in the 1856 // loop below. 1857 // This is an N-way merge, which will be inefficient if I0 is a CallInst. 1858 // However, as N-way merge for CallInst is rare, so we use simplified API 1859 // instead of using complex API for N-way merge. 1860 I0->applyMergedLocation(I0->getDebugLoc(), I->getDebugLoc()); 1861 combineMetadataForCSE(I0, I, true); 1862 I0->andIRFlags(I); 1863 } 1864 1865 if (!I0->user_empty()) { 1866 // canSinkLastInstruction checked that all instructions were used by 1867 // one and only one PHI node. Find that now, RAUW it to our common 1868 // instruction and nuke it. 1869 auto *PN = cast<PHINode>(*I0->user_begin()); 1870 PN->replaceAllUsesWith(I0); 1871 PN->eraseFromParent(); 1872 } 1873 1874 // Finally nuke all instructions apart from the common instruction. 1875 for (auto *I : Insts) 1876 if (I != I0) 1877 I->eraseFromParent(); 1878 1879 return true; 1880 } 1881 1882 namespace { 1883 1884 // LockstepReverseIterator - Iterates through instructions 1885 // in a set of blocks in reverse order from the first non-terminator. 1886 // For example (assume all blocks have size n): 1887 // LockstepReverseIterator I([B1, B2, B3]); 1888 // *I-- = [B1[n], B2[n], B3[n]]; 1889 // *I-- = [B1[n-1], B2[n-1], B3[n-1]]; 1890 // *I-- = [B1[n-2], B2[n-2], B3[n-2]]; 1891 // ... 1892 class LockstepReverseIterator { 1893 ArrayRef<BasicBlock*> Blocks; 1894 SmallVector<Instruction*,4> Insts; 1895 bool Fail; 1896 1897 public: 1898 LockstepReverseIterator(ArrayRef<BasicBlock*> Blocks) : Blocks(Blocks) { 1899 reset(); 1900 } 1901 1902 void reset() { 1903 Fail = false; 1904 Insts.clear(); 1905 for (auto *BB : Blocks) { 1906 Instruction *Inst = BB->getTerminator(); 1907 for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);) 1908 Inst = Inst->getPrevNode(); 1909 if (!Inst) { 1910 // Block wasn't big enough. 1911 Fail = true; 1912 return; 1913 } 1914 Insts.push_back(Inst); 1915 } 1916 } 1917 1918 bool isValid() const { 1919 return !Fail; 1920 } 1921 1922 void operator--() { 1923 if (Fail) 1924 return; 1925 for (auto *&Inst : Insts) { 1926 for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);) 1927 Inst = Inst->getPrevNode(); 1928 // Already at beginning of block. 1929 if (!Inst) { 1930 Fail = true; 1931 return; 1932 } 1933 } 1934 } 1935 1936 void operator++() { 1937 if (Fail) 1938 return; 1939 for (auto *&Inst : Insts) { 1940 for (Inst = Inst->getNextNode(); Inst && isa<DbgInfoIntrinsic>(Inst);) 1941 Inst = Inst->getNextNode(); 1942 // Already at end of block. 1943 if (!Inst) { 1944 Fail = true; 1945 return; 1946 } 1947 } 1948 } 1949 1950 ArrayRef<Instruction*> operator * () const { 1951 return Insts; 1952 } 1953 }; 1954 1955 } // end anonymous namespace 1956 1957 /// Check whether BB's predecessors end with unconditional branches. If it is 1958 /// true, sink any common code from the predecessors to BB. 1959 static bool SinkCommonCodeFromPredecessors(BasicBlock *BB, 1960 DomTreeUpdater *DTU) { 1961 // We support two situations: 1962 // (1) all incoming arcs are unconditional 1963 // (2) there are non-unconditional incoming arcs 1964 // 1965 // (2) is very common in switch defaults and 1966 // else-if patterns; 1967 // 1968 // if (a) f(1); 1969 // else if (b) f(2); 1970 // 1971 // produces: 1972 // 1973 // [if] 1974 // / \ 1975 // [f(1)] [if] 1976 // | | \ 1977 // | | | 1978 // | [f(2)]| 1979 // \ | / 1980 // [ end ] 1981 // 1982 // [end] has two unconditional predecessor arcs and one conditional. The 1983 // conditional refers to the implicit empty 'else' arc. This conditional 1984 // arc can also be caused by an empty default block in a switch. 1985 // 1986 // In this case, we attempt to sink code from all *unconditional* arcs. 1987 // If we can sink instructions from these arcs (determined during the scan 1988 // phase below) we insert a common successor for all unconditional arcs and 1989 // connect that to [end], to enable sinking: 1990 // 1991 // [if] 1992 // / \ 1993 // [x(1)] [if] 1994 // | | \ 1995 // | | \ 1996 // | [x(2)] | 1997 // \ / | 1998 // [sink.split] | 1999 // \ / 2000 // [ end ] 2001 // 2002 SmallVector<BasicBlock*,4> UnconditionalPreds; 2003 bool HaveNonUnconditionalPredecessors = false; 2004 for (auto *PredBB : predecessors(BB)) { 2005 auto *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()); 2006 if (PredBr && PredBr->isUnconditional()) 2007 UnconditionalPreds.push_back(PredBB); 2008 else 2009 HaveNonUnconditionalPredecessors = true; 2010 } 2011 if (UnconditionalPreds.size() < 2) 2012 return false; 2013 2014 // We take a two-step approach to tail sinking. First we scan from the end of 2015 // each block upwards in lockstep. If the n'th instruction from the end of each 2016 // block can be sunk, those instructions are added to ValuesToSink and we 2017 // carry on. If we can sink an instruction but need to PHI-merge some operands 2018 // (because they're not identical in each instruction) we add these to 2019 // PHIOperands. 2020 int ScanIdx = 0; 2021 SmallPtrSet<Value*,4> InstructionsToSink; 2022 DenseMap<Instruction*, SmallVector<Value*,4>> PHIOperands; 2023 LockstepReverseIterator LRI(UnconditionalPreds); 2024 while (LRI.isValid() && 2025 canSinkInstructions(*LRI, PHIOperands)) { 2026 LLVM_DEBUG(dbgs() << "SINK: instruction can be sunk: " << *(*LRI)[0] 2027 << "\n"); 2028 InstructionsToSink.insert((*LRI).begin(), (*LRI).end()); 2029 ++ScanIdx; 2030 --LRI; 2031 } 2032 2033 // If no instructions can be sunk, early-return. 2034 if (ScanIdx == 0) 2035 return false; 2036 2037 // Okay, we *could* sink last ScanIdx instructions. But how many can we 2038 // actually sink before encountering instruction that is unprofitable to sink? 2039 auto ProfitableToSinkInstruction = [&](LockstepReverseIterator &LRI) { 2040 unsigned NumPHIdValues = 0; 2041 for (auto *I : *LRI) 2042 for (auto *V : PHIOperands[I]) { 2043 if (InstructionsToSink.count(V) == 0) 2044 ++NumPHIdValues; 2045 // FIXME: this check is overly optimistic. We may end up not sinking 2046 // said instruction, due to the very same profitability check. 2047 // See @creating_too_many_phis in sink-common-code.ll. 2048 } 2049 LLVM_DEBUG(dbgs() << "SINK: #phid values: " << NumPHIdValues << "\n"); 2050 unsigned NumPHIInsts = NumPHIdValues / UnconditionalPreds.size(); 2051 if ((NumPHIdValues % UnconditionalPreds.size()) != 0) 2052 NumPHIInsts++; 2053 2054 return NumPHIInsts <= 1; 2055 }; 2056 2057 // If no instructions can be sunk, early-return. 2058 if (ScanIdx == 0) 2059 return false; 2060 2061 // We've determined that we are going to sink last ScanIdx instructions, 2062 // and recorded them in InstructionsToSink. Now, some instructions may be 2063 // unprofitable to sink. But that determination depends on the instructions 2064 // that we are going to sink. 2065 2066 // First, forward scan: find the first instruction unprofitable to sink, 2067 // recording all the ones that are profitable to sink. 2068 // FIXME: would it be better, after we detect that not all are profitable. 2069 // to either record the profitable ones, or erase the unprofitable ones? 2070 // Maybe we need to choose (at runtime) the one that will touch least instrs? 2071 LRI.reset(); 2072 int Idx = 0; 2073 SmallPtrSet<Value *, 4> InstructionsProfitableToSink; 2074 while (Idx < ScanIdx) { 2075 if (!ProfitableToSinkInstruction(LRI)) { 2076 // Too many PHIs would be created. 2077 LLVM_DEBUG( 2078 dbgs() << "SINK: stopping here, too many PHIs would be created!\n"); 2079 break; 2080 } 2081 InstructionsProfitableToSink.insert((*LRI).begin(), (*LRI).end()); 2082 --LRI; 2083 ++Idx; 2084 } 2085 2086 // If no instructions can be sunk, early-return. 2087 if (Idx == 0) 2088 return false; 2089 2090 // Did we determine that (only) some instructions are unprofitable to sink? 2091 if (Idx < ScanIdx) { 2092 // Okay, some instructions are unprofitable. 2093 ScanIdx = Idx; 2094 InstructionsToSink = InstructionsProfitableToSink; 2095 2096 // But, that may make other instructions unprofitable, too. 2097 // So, do a backward scan, do any earlier instructions become unprofitable? 2098 assert(!ProfitableToSinkInstruction(LRI) && 2099 "We already know that the last instruction is unprofitable to sink"); 2100 ++LRI; 2101 --Idx; 2102 while (Idx >= 0) { 2103 // If we detect that an instruction becomes unprofitable to sink, 2104 // all earlier instructions won't be sunk either, 2105 // so preemptively keep InstructionsProfitableToSink in sync. 2106 // FIXME: is this the most performant approach? 2107 for (auto *I : *LRI) 2108 InstructionsProfitableToSink.erase(I); 2109 if (!ProfitableToSinkInstruction(LRI)) { 2110 // Everything starting with this instruction won't be sunk. 2111 ScanIdx = Idx; 2112 InstructionsToSink = InstructionsProfitableToSink; 2113 } 2114 ++LRI; 2115 --Idx; 2116 } 2117 } 2118 2119 // If no instructions can be sunk, early-return. 2120 if (ScanIdx == 0) 2121 return false; 2122 2123 bool Changed = false; 2124 2125 if (HaveNonUnconditionalPredecessors) { 2126 // It is always legal to sink common instructions from unconditional 2127 // predecessors. However, if not all predecessors are unconditional, 2128 // this transformation might be pessimizing. So as a rule of thumb, 2129 // don't do it unless we'd sink at least one non-speculatable instruction. 2130 // See https://bugs.llvm.org/show_bug.cgi?id=30244 2131 LRI.reset(); 2132 int Idx = 0; 2133 bool Profitable = false; 2134 while (Idx < ScanIdx) { 2135 if (!isSafeToSpeculativelyExecute((*LRI)[0])) { 2136 Profitable = true; 2137 break; 2138 } 2139 --LRI; 2140 ++Idx; 2141 } 2142 if (!Profitable) 2143 return false; 2144 2145 LLVM_DEBUG(dbgs() << "SINK: Splitting edge\n"); 2146 // We have a conditional edge and we're going to sink some instructions. 2147 // Insert a new block postdominating all blocks we're going to sink from. 2148 if (!SplitBlockPredecessors(BB, UnconditionalPreds, ".sink.split", DTU)) 2149 // Edges couldn't be split. 2150 return false; 2151 Changed = true; 2152 } 2153 2154 // Now that we've analyzed all potential sinking candidates, perform the 2155 // actual sink. We iteratively sink the last non-terminator of the source 2156 // blocks into their common successor unless doing so would require too 2157 // many PHI instructions to be generated (currently only one PHI is allowed 2158 // per sunk instruction). 2159 // 2160 // We can use InstructionsToSink to discount values needing PHI-merging that will 2161 // actually be sunk in a later iteration. This allows us to be more 2162 // aggressive in what we sink. This does allow a false positive where we 2163 // sink presuming a later value will also be sunk, but stop half way through 2164 // and never actually sink it which means we produce more PHIs than intended. 2165 // This is unlikely in practice though. 2166 int SinkIdx = 0; 2167 for (; SinkIdx != ScanIdx; ++SinkIdx) { 2168 LLVM_DEBUG(dbgs() << "SINK: Sink: " 2169 << *UnconditionalPreds[0]->getTerminator()->getPrevNode() 2170 << "\n"); 2171 2172 // Because we've sunk every instruction in turn, the current instruction to 2173 // sink is always at index 0. 2174 LRI.reset(); 2175 2176 if (!sinkLastInstruction(UnconditionalPreds)) { 2177 LLVM_DEBUG( 2178 dbgs() 2179 << "SINK: stopping here, failed to actually sink instruction!\n"); 2180 break; 2181 } 2182 2183 NumSinkCommonInstrs++; 2184 Changed = true; 2185 } 2186 if (SinkIdx != 0) 2187 ++NumSinkCommonCode; 2188 return Changed; 2189 } 2190 2191 /// Determine if we can hoist sink a sole store instruction out of a 2192 /// conditional block. 2193 /// 2194 /// We are looking for code like the following: 2195 /// BrBB: 2196 /// store i32 %add, i32* %arrayidx2 2197 /// ... // No other stores or function calls (we could be calling a memory 2198 /// ... // function). 2199 /// %cmp = icmp ult %x, %y 2200 /// br i1 %cmp, label %EndBB, label %ThenBB 2201 /// ThenBB: 2202 /// store i32 %add5, i32* %arrayidx2 2203 /// br label EndBB 2204 /// EndBB: 2205 /// ... 2206 /// We are going to transform this into: 2207 /// BrBB: 2208 /// store i32 %add, i32* %arrayidx2 2209 /// ... // 2210 /// %cmp = icmp ult %x, %y 2211 /// %add.add5 = select i1 %cmp, i32 %add, %add5 2212 /// store i32 %add.add5, i32* %arrayidx2 2213 /// ... 2214 /// 2215 /// \return The pointer to the value of the previous store if the store can be 2216 /// hoisted into the predecessor block. 0 otherwise. 2217 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB, 2218 BasicBlock *StoreBB, BasicBlock *EndBB) { 2219 StoreInst *StoreToHoist = dyn_cast<StoreInst>(I); 2220 if (!StoreToHoist) 2221 return nullptr; 2222 2223 // Volatile or atomic. 2224 if (!StoreToHoist->isSimple()) 2225 return nullptr; 2226 2227 Value *StorePtr = StoreToHoist->getPointerOperand(); 2228 2229 // Look for a store to the same pointer in BrBB. 2230 unsigned MaxNumInstToLookAt = 9; 2231 // Skip pseudo probe intrinsic calls which are not really killing any memory 2232 // accesses. 2233 for (Instruction &CurI : reverse(BrBB->instructionsWithoutDebug(true))) { 2234 if (!MaxNumInstToLookAt) 2235 break; 2236 --MaxNumInstToLookAt; 2237 2238 // Could be calling an instruction that affects memory like free(). 2239 if (CurI.mayHaveSideEffects() && !isa<StoreInst>(CurI)) 2240 return nullptr; 2241 2242 if (auto *SI = dyn_cast<StoreInst>(&CurI)) { 2243 // Found the previous store make sure it stores to the same location. 2244 if (SI->getPointerOperand() == StorePtr) 2245 // Found the previous store, return its value operand. 2246 return SI->getValueOperand(); 2247 return nullptr; // Unknown store. 2248 } 2249 } 2250 2251 return nullptr; 2252 } 2253 2254 /// Estimate the cost of the insertion(s) and check that the PHI nodes can be 2255 /// converted to selects. 2256 static bool validateAndCostRequiredSelects(BasicBlock *BB, BasicBlock *ThenBB, 2257 BasicBlock *EndBB, 2258 unsigned &SpeculatedInstructions, 2259 InstructionCost &Cost, 2260 const TargetTransformInfo &TTI) { 2261 TargetTransformInfo::TargetCostKind CostKind = 2262 BB->getParent()->hasMinSize() 2263 ? TargetTransformInfo::TCK_CodeSize 2264 : TargetTransformInfo::TCK_SizeAndLatency; 2265 2266 bool HaveRewritablePHIs = false; 2267 for (PHINode &PN : EndBB->phis()) { 2268 Value *OrigV = PN.getIncomingValueForBlock(BB); 2269 Value *ThenV = PN.getIncomingValueForBlock(ThenBB); 2270 2271 // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf. 2272 // Skip PHIs which are trivial. 2273 if (ThenV == OrigV) 2274 continue; 2275 2276 Cost += TTI.getCmpSelInstrCost(Instruction::Select, PN.getType(), nullptr, 2277 CmpInst::BAD_ICMP_PREDICATE, CostKind); 2278 2279 // Don't convert to selects if we could remove undefined behavior instead. 2280 if (passingValueIsAlwaysUndefined(OrigV, &PN) || 2281 passingValueIsAlwaysUndefined(ThenV, &PN)) 2282 return false; 2283 2284 HaveRewritablePHIs = true; 2285 ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV); 2286 ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV); 2287 if (!OrigCE && !ThenCE) 2288 continue; // Known safe and cheap. 2289 2290 if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE)) || 2291 (OrigCE && !isSafeToSpeculativelyExecute(OrigCE))) 2292 return false; 2293 InstructionCost OrigCost = OrigCE ? computeSpeculationCost(OrigCE, TTI) : 0; 2294 InstructionCost ThenCost = ThenCE ? computeSpeculationCost(ThenCE, TTI) : 0; 2295 InstructionCost MaxCost = 2296 2 * PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 2297 if (OrigCost + ThenCost > MaxCost) 2298 return false; 2299 2300 // Account for the cost of an unfolded ConstantExpr which could end up 2301 // getting expanded into Instructions. 2302 // FIXME: This doesn't account for how many operations are combined in the 2303 // constant expression. 2304 ++SpeculatedInstructions; 2305 if (SpeculatedInstructions > 1) 2306 return false; 2307 } 2308 2309 return HaveRewritablePHIs; 2310 } 2311 2312 /// Speculate a conditional basic block flattening the CFG. 2313 /// 2314 /// Note that this is a very risky transform currently. Speculating 2315 /// instructions like this is most often not desirable. Instead, there is an MI 2316 /// pass which can do it with full awareness of the resource constraints. 2317 /// However, some cases are "obvious" and we should do directly. An example of 2318 /// this is speculating a single, reasonably cheap instruction. 2319 /// 2320 /// There is only one distinct advantage to flattening the CFG at the IR level: 2321 /// it makes very common but simplistic optimizations such as are common in 2322 /// instcombine and the DAG combiner more powerful by removing CFG edges and 2323 /// modeling their effects with easier to reason about SSA value graphs. 2324 /// 2325 /// 2326 /// An illustration of this transform is turning this IR: 2327 /// \code 2328 /// BB: 2329 /// %cmp = icmp ult %x, %y 2330 /// br i1 %cmp, label %EndBB, label %ThenBB 2331 /// ThenBB: 2332 /// %sub = sub %x, %y 2333 /// br label BB2 2334 /// EndBB: 2335 /// %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ] 2336 /// ... 2337 /// \endcode 2338 /// 2339 /// Into this IR: 2340 /// \code 2341 /// BB: 2342 /// %cmp = icmp ult %x, %y 2343 /// %sub = sub %x, %y 2344 /// %cond = select i1 %cmp, 0, %sub 2345 /// ... 2346 /// \endcode 2347 /// 2348 /// \returns true if the conditional block is removed. 2349 bool SimplifyCFGOpt::SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB, 2350 const TargetTransformInfo &TTI) { 2351 // Be conservative for now. FP select instruction can often be expensive. 2352 Value *BrCond = BI->getCondition(); 2353 if (isa<FCmpInst>(BrCond)) 2354 return false; 2355 2356 BasicBlock *BB = BI->getParent(); 2357 BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0); 2358 InstructionCost Budget = 2359 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 2360 2361 // If ThenBB is actually on the false edge of the conditional branch, remember 2362 // to swap the select operands later. 2363 bool Invert = false; 2364 if (ThenBB != BI->getSuccessor(0)) { 2365 assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?"); 2366 Invert = true; 2367 } 2368 assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block"); 2369 2370 // Keep a count of how many times instructions are used within ThenBB when 2371 // they are candidates for sinking into ThenBB. Specifically: 2372 // - They are defined in BB, and 2373 // - They have no side effects, and 2374 // - All of their uses are in ThenBB. 2375 SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts; 2376 2377 SmallVector<Instruction *, 4> SpeculatedDbgIntrinsics; 2378 2379 unsigned SpeculatedInstructions = 0; 2380 Value *SpeculatedStoreValue = nullptr; 2381 StoreInst *SpeculatedStore = nullptr; 2382 for (BasicBlock::iterator BBI = ThenBB->begin(), 2383 BBE = std::prev(ThenBB->end()); 2384 BBI != BBE; ++BBI) { 2385 Instruction *I = &*BBI; 2386 // Skip debug info. 2387 if (isa<DbgInfoIntrinsic>(I)) { 2388 SpeculatedDbgIntrinsics.push_back(I); 2389 continue; 2390 } 2391 2392 // Skip pseudo probes. The consequence is we lose track of the branch 2393 // probability for ThenBB, which is fine since the optimization here takes 2394 // place regardless of the branch probability. 2395 if (isa<PseudoProbeInst>(I)) { 2396 continue; 2397 } 2398 2399 // Only speculatively execute a single instruction (not counting the 2400 // terminator) for now. 2401 ++SpeculatedInstructions; 2402 if (SpeculatedInstructions > 1) 2403 return false; 2404 2405 // Don't hoist the instruction if it's unsafe or expensive. 2406 if (!isSafeToSpeculativelyExecute(I) && 2407 !(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore( 2408 I, BB, ThenBB, EndBB)))) 2409 return false; 2410 if (!SpeculatedStoreValue && 2411 computeSpeculationCost(I, TTI) > 2412 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic) 2413 return false; 2414 2415 // Store the store speculation candidate. 2416 if (SpeculatedStoreValue) 2417 SpeculatedStore = cast<StoreInst>(I); 2418 2419 // Do not hoist the instruction if any of its operands are defined but not 2420 // used in BB. The transformation will prevent the operand from 2421 // being sunk into the use block. 2422 for (Use &Op : I->operands()) { 2423 Instruction *OpI = dyn_cast<Instruction>(Op); 2424 if (!OpI || OpI->getParent() != BB || OpI->mayHaveSideEffects()) 2425 continue; // Not a candidate for sinking. 2426 2427 ++SinkCandidateUseCounts[OpI]; 2428 } 2429 } 2430 2431 // Consider any sink candidates which are only used in ThenBB as costs for 2432 // speculation. Note, while we iterate over a DenseMap here, we are summing 2433 // and so iteration order isn't significant. 2434 for (SmallDenseMap<Instruction *, unsigned, 4>::iterator 2435 I = SinkCandidateUseCounts.begin(), 2436 E = SinkCandidateUseCounts.end(); 2437 I != E; ++I) 2438 if (I->first->hasNUses(I->second)) { 2439 ++SpeculatedInstructions; 2440 if (SpeculatedInstructions > 1) 2441 return false; 2442 } 2443 2444 // Check that we can insert the selects and that it's not too expensive to do 2445 // so. 2446 bool Convert = SpeculatedStore != nullptr; 2447 InstructionCost Cost = 0; 2448 Convert |= validateAndCostRequiredSelects(BB, ThenBB, EndBB, 2449 SpeculatedInstructions, 2450 Cost, TTI); 2451 if (!Convert || Cost > Budget) 2452 return false; 2453 2454 // If we get here, we can hoist the instruction and if-convert. 2455 LLVM_DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";); 2456 2457 // Insert a select of the value of the speculated store. 2458 if (SpeculatedStoreValue) { 2459 IRBuilder<NoFolder> Builder(BI); 2460 Value *TrueV = SpeculatedStore->getValueOperand(); 2461 Value *FalseV = SpeculatedStoreValue; 2462 if (Invert) 2463 std::swap(TrueV, FalseV); 2464 Value *S = Builder.CreateSelect( 2465 BrCond, TrueV, FalseV, "spec.store.select", BI); 2466 SpeculatedStore->setOperand(0, S); 2467 SpeculatedStore->applyMergedLocation(BI->getDebugLoc(), 2468 SpeculatedStore->getDebugLoc()); 2469 } 2470 2471 // A hoisted conditional probe should be treated as dangling so that it will 2472 // not be over-counted when the samples collected on the non-conditional path 2473 // are counted towards the conditional path. We leave it for the counts 2474 // inference algorithm to figure out a proper count for a danglng probe. 2475 moveAndDanglePseudoProbes(ThenBB, BI); 2476 2477 // Metadata can be dependent on the condition we are hoisting above. 2478 // Conservatively strip all metadata on the instruction. Drop the debug loc 2479 // to avoid making it appear as if the condition is a constant, which would 2480 // be misleading while debugging. 2481 for (auto &I : *ThenBB) { 2482 assert(!isa<PseudoProbeInst>(I) && 2483 "Should not drop debug info from any pseudo probes."); 2484 if (!SpeculatedStoreValue || &I != SpeculatedStore) 2485 I.setDebugLoc(DebugLoc()); 2486 I.dropUnknownNonDebugMetadata(); 2487 } 2488 2489 // Hoist the instructions. 2490 BB->getInstList().splice(BI->getIterator(), ThenBB->getInstList(), 2491 ThenBB->begin(), std::prev(ThenBB->end())); 2492 2493 // Insert selects and rewrite the PHI operands. 2494 IRBuilder<NoFolder> Builder(BI); 2495 for (PHINode &PN : EndBB->phis()) { 2496 unsigned OrigI = PN.getBasicBlockIndex(BB); 2497 unsigned ThenI = PN.getBasicBlockIndex(ThenBB); 2498 Value *OrigV = PN.getIncomingValue(OrigI); 2499 Value *ThenV = PN.getIncomingValue(ThenI); 2500 2501 // Skip PHIs which are trivial. 2502 if (OrigV == ThenV) 2503 continue; 2504 2505 // Create a select whose true value is the speculatively executed value and 2506 // false value is the pre-existing value. Swap them if the branch 2507 // destinations were inverted. 2508 Value *TrueV = ThenV, *FalseV = OrigV; 2509 if (Invert) 2510 std::swap(TrueV, FalseV); 2511 Value *V = Builder.CreateSelect(BrCond, TrueV, FalseV, "spec.select", BI); 2512 PN.setIncomingValue(OrigI, V); 2513 PN.setIncomingValue(ThenI, V); 2514 } 2515 2516 // Remove speculated dbg intrinsics. 2517 // FIXME: Is it possible to do this in a more elegant way? Moving/merging the 2518 // dbg value for the different flows and inserting it after the select. 2519 for (Instruction *I : SpeculatedDbgIntrinsics) 2520 I->eraseFromParent(); 2521 2522 ++NumSpeculations; 2523 return true; 2524 } 2525 2526 /// Return true if we can thread a branch across this block. 2527 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) { 2528 int Size = 0; 2529 2530 for (Instruction &I : BB->instructionsWithoutDebug()) { 2531 if (Size > MaxSmallBlockSize) 2532 return false; // Don't clone large BB's. 2533 2534 // Can't fold blocks that contain noduplicate or convergent calls. 2535 if (CallInst *CI = dyn_cast<CallInst>(&I)) 2536 if (CI->cannotDuplicate() || CI->isConvergent()) 2537 return false; 2538 2539 // We will delete Phis while threading, so Phis should not be accounted in 2540 // block's size 2541 if (!isa<PHINode>(I)) 2542 ++Size; 2543 2544 // We can only support instructions that do not define values that are 2545 // live outside of the current basic block. 2546 for (User *U : I.users()) { 2547 Instruction *UI = cast<Instruction>(U); 2548 if (UI->getParent() != BB || isa<PHINode>(UI)) 2549 return false; 2550 } 2551 2552 // Looks ok, continue checking. 2553 } 2554 2555 return true; 2556 } 2557 2558 /// If we have a conditional branch on a PHI node value that is defined in the 2559 /// same block as the branch and if any PHI entries are constants, thread edges 2560 /// corresponding to that entry to be branches to their ultimate destination. 2561 static bool FoldCondBranchOnPHI(BranchInst *BI, DomTreeUpdater *DTU, 2562 const DataLayout &DL, AssumptionCache *AC) { 2563 BasicBlock *BB = BI->getParent(); 2564 PHINode *PN = dyn_cast<PHINode>(BI->getCondition()); 2565 // NOTE: we currently cannot transform this case if the PHI node is used 2566 // outside of the block. 2567 if (!PN || PN->getParent() != BB || !PN->hasOneUse()) 2568 return false; 2569 2570 // Degenerate case of a single entry PHI. 2571 if (PN->getNumIncomingValues() == 1) { 2572 FoldSingleEntryPHINodes(PN->getParent()); 2573 return true; 2574 } 2575 2576 // Now we know that this block has multiple preds and two succs. 2577 if (!BlockIsSimpleEnoughToThreadThrough(BB)) 2578 return false; 2579 2580 // Okay, this is a simple enough basic block. See if any phi values are 2581 // constants. 2582 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 2583 ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i)); 2584 if (!CB || !CB->getType()->isIntegerTy(1)) 2585 continue; 2586 2587 // Okay, we now know that all edges from PredBB should be revectored to 2588 // branch to RealDest. 2589 BasicBlock *PredBB = PN->getIncomingBlock(i); 2590 BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue()); 2591 2592 if (RealDest == BB) 2593 continue; // Skip self loops. 2594 // Skip if the predecessor's terminator is an indirect branch. 2595 if (isa<IndirectBrInst>(PredBB->getTerminator())) 2596 continue; 2597 2598 SmallVector<DominatorTree::UpdateType, 3> Updates; 2599 2600 // The dest block might have PHI nodes, other predecessors and other 2601 // difficult cases. Instead of being smart about this, just insert a new 2602 // block that jumps to the destination block, effectively splitting 2603 // the edge we are about to create. 2604 BasicBlock *EdgeBB = 2605 BasicBlock::Create(BB->getContext(), RealDest->getName() + ".critedge", 2606 RealDest->getParent(), RealDest); 2607 BranchInst *CritEdgeBranch = BranchInst::Create(RealDest, EdgeBB); 2608 if (DTU) 2609 Updates.push_back({DominatorTree::Insert, EdgeBB, RealDest}); 2610 CritEdgeBranch->setDebugLoc(BI->getDebugLoc()); 2611 2612 // Update PHI nodes. 2613 AddPredecessorToBlock(RealDest, EdgeBB, BB); 2614 2615 // BB may have instructions that are being threaded over. Clone these 2616 // instructions into EdgeBB. We know that there will be no uses of the 2617 // cloned instructions outside of EdgeBB. 2618 BasicBlock::iterator InsertPt = EdgeBB->begin(); 2619 DenseMap<Value *, Value *> TranslateMap; // Track translated values. 2620 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) { 2621 if (PHINode *PN = dyn_cast<PHINode>(BBI)) { 2622 TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB); 2623 continue; 2624 } 2625 // Clone the instruction. 2626 Instruction *N = BBI->clone(); 2627 if (BBI->hasName()) 2628 N->setName(BBI->getName() + ".c"); 2629 2630 // Update operands due to translation. 2631 for (Use &Op : N->operands()) { 2632 DenseMap<Value *, Value *>::iterator PI = TranslateMap.find(Op); 2633 if (PI != TranslateMap.end()) 2634 Op = PI->second; 2635 } 2636 2637 // Check for trivial simplification. 2638 if (Value *V = SimplifyInstruction(N, {DL, nullptr, nullptr, AC})) { 2639 if (!BBI->use_empty()) 2640 TranslateMap[&*BBI] = V; 2641 if (!N->mayHaveSideEffects()) { 2642 N->deleteValue(); // Instruction folded away, don't need actual inst 2643 N = nullptr; 2644 } 2645 } else { 2646 if (!BBI->use_empty()) 2647 TranslateMap[&*BBI] = N; 2648 } 2649 if (N) { 2650 // Insert the new instruction into its new home. 2651 EdgeBB->getInstList().insert(InsertPt, N); 2652 2653 // Register the new instruction with the assumption cache if necessary. 2654 if (auto *Assume = dyn_cast<AssumeInst>(N)) 2655 if (AC) 2656 AC->registerAssumption(Assume); 2657 } 2658 } 2659 2660 // Loop over all of the edges from PredBB to BB, changing them to branch 2661 // to EdgeBB instead. 2662 Instruction *PredBBTI = PredBB->getTerminator(); 2663 for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i) 2664 if (PredBBTI->getSuccessor(i) == BB) { 2665 BB->removePredecessor(PredBB); 2666 PredBBTI->setSuccessor(i, EdgeBB); 2667 } 2668 2669 if (DTU) { 2670 Updates.push_back({DominatorTree::Insert, PredBB, EdgeBB}); 2671 Updates.push_back({DominatorTree::Delete, PredBB, BB}); 2672 2673 DTU->applyUpdates(Updates); 2674 } 2675 2676 // Recurse, simplifying any other constants. 2677 return FoldCondBranchOnPHI(BI, DTU, DL, AC) || true; 2678 } 2679 2680 return false; 2681 } 2682 2683 /// Given a BB that starts with the specified two-entry PHI node, 2684 /// see if we can eliminate it. 2685 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI, 2686 DomTreeUpdater *DTU, const DataLayout &DL) { 2687 // Ok, this is a two entry PHI node. Check to see if this is a simple "if 2688 // statement", which has a very simple dominance structure. Basically, we 2689 // are trying to find the condition that is being branched on, which 2690 // subsequently causes this merge to happen. We really want control 2691 // dependence information for this check, but simplifycfg can't keep it up 2692 // to date, and this catches most of the cases we care about anyway. 2693 BasicBlock *BB = PN->getParent(); 2694 2695 BasicBlock *IfTrue, *IfFalse; 2696 Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse); 2697 if (!IfCond || 2698 // Don't bother if the branch will be constant folded trivially. 2699 isa<ConstantInt>(IfCond)) 2700 return false; 2701 2702 // Okay, we found that we can merge this two-entry phi node into a select. 2703 // Doing so would require us to fold *all* two entry phi nodes in this block. 2704 // At some point this becomes non-profitable (particularly if the target 2705 // doesn't support cmov's). Only do this transformation if there are two or 2706 // fewer PHI nodes in this block. 2707 unsigned NumPhis = 0; 2708 for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I) 2709 if (NumPhis > 2) 2710 return false; 2711 2712 // Loop over the PHI's seeing if we can promote them all to select 2713 // instructions. While we are at it, keep track of the instructions 2714 // that need to be moved to the dominating block. 2715 SmallPtrSet<Instruction *, 4> AggressiveInsts; 2716 InstructionCost Cost = 0; 2717 InstructionCost Budget = 2718 TwoEntryPHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 2719 2720 bool Changed = false; 2721 for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) { 2722 PHINode *PN = cast<PHINode>(II++); 2723 if (Value *V = SimplifyInstruction(PN, {DL, PN})) { 2724 PN->replaceAllUsesWith(V); 2725 PN->eraseFromParent(); 2726 Changed = true; 2727 continue; 2728 } 2729 2730 if (!dominatesMergePoint(PN->getIncomingValue(0), BB, AggressiveInsts, 2731 Cost, Budget, TTI) || 2732 !dominatesMergePoint(PN->getIncomingValue(1), BB, AggressiveInsts, 2733 Cost, Budget, TTI)) 2734 return Changed; 2735 } 2736 2737 // If we folded the first phi, PN dangles at this point. Refresh it. If 2738 // we ran out of PHIs then we simplified them all. 2739 PN = dyn_cast<PHINode>(BB->begin()); 2740 if (!PN) 2741 return true; 2742 2743 // Return true if at least one of these is a 'not', and another is either 2744 // a 'not' too, or a constant. 2745 auto CanHoistNotFromBothValues = [](Value *V0, Value *V1) { 2746 if (!match(V0, m_Not(m_Value()))) 2747 std::swap(V0, V1); 2748 auto Invertible = m_CombineOr(m_Not(m_Value()), m_AnyIntegralConstant()); 2749 return match(V0, m_Not(m_Value())) && match(V1, Invertible); 2750 }; 2751 2752 // Don't fold i1 branches on PHIs which contain binary operators or 2753 // select form of or/ands, unless one of the incoming values is an 'not' and 2754 // another one is freely invertible. 2755 // These can often be turned into switches and other things. 2756 auto IsBinOpOrAnd = [](Value *V) { 2757 return match( 2758 V, m_CombineOr(m_BinOp(), m_CombineOr(m_LogicalAnd(), m_LogicalOr()))); 2759 }; 2760 if (PN->getType()->isIntegerTy(1) && 2761 (IsBinOpOrAnd(PN->getIncomingValue(0)) || 2762 IsBinOpOrAnd(PN->getIncomingValue(1)) || IsBinOpOrAnd(IfCond)) && 2763 !CanHoistNotFromBothValues(PN->getIncomingValue(0), 2764 PN->getIncomingValue(1))) 2765 return Changed; 2766 2767 // If all PHI nodes are promotable, check to make sure that all instructions 2768 // in the predecessor blocks can be promoted as well. If not, we won't be able 2769 // to get rid of the control flow, so it's not worth promoting to select 2770 // instructions. 2771 BasicBlock *DomBlock = nullptr; 2772 BasicBlock *IfBlock1 = PN->getIncomingBlock(0); 2773 BasicBlock *IfBlock2 = PN->getIncomingBlock(1); 2774 if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) { 2775 IfBlock1 = nullptr; 2776 } else { 2777 DomBlock = *pred_begin(IfBlock1); 2778 for (BasicBlock::iterator I = IfBlock1->begin(); !I->isTerminator(); ++I) 2779 if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I) && 2780 !isa<PseudoProbeInst>(I)) { 2781 // This is not an aggressive instruction that we can promote. 2782 // Because of this, we won't be able to get rid of the control flow, so 2783 // the xform is not worth it. 2784 return Changed; 2785 } 2786 } 2787 2788 if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) { 2789 IfBlock2 = nullptr; 2790 } else { 2791 DomBlock = *pred_begin(IfBlock2); 2792 for (BasicBlock::iterator I = IfBlock2->begin(); !I->isTerminator(); ++I) 2793 if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I) && 2794 !isa<PseudoProbeInst>(I)) { 2795 // This is not an aggressive instruction that we can promote. 2796 // Because of this, we won't be able to get rid of the control flow, so 2797 // the xform is not worth it. 2798 return Changed; 2799 } 2800 } 2801 assert(DomBlock && "Failed to find root DomBlock"); 2802 2803 LLVM_DEBUG(dbgs() << "FOUND IF CONDITION! " << *IfCond 2804 << " T: " << IfTrue->getName() 2805 << " F: " << IfFalse->getName() << "\n"); 2806 2807 // If we can still promote the PHI nodes after this gauntlet of tests, 2808 // do all of the PHI's now. 2809 Instruction *InsertPt = DomBlock->getTerminator(); 2810 IRBuilder<NoFolder> Builder(InsertPt); 2811 2812 // Move all 'aggressive' instructions, which are defined in the 2813 // conditional parts of the if's up to the dominating block. 2814 if (IfBlock1) 2815 hoistAllInstructionsInto(DomBlock, InsertPt, IfBlock1); 2816 if (IfBlock2) 2817 hoistAllInstructionsInto(DomBlock, InsertPt, IfBlock2); 2818 2819 // Propagate fast-math-flags from phi nodes to replacement selects. 2820 IRBuilder<>::FastMathFlagGuard FMFGuard(Builder); 2821 while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) { 2822 if (isa<FPMathOperator>(PN)) 2823 Builder.setFastMathFlags(PN->getFastMathFlags()); 2824 2825 // Change the PHI node into a select instruction. 2826 Value *TrueVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse); 2827 Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue); 2828 2829 Value *Sel = Builder.CreateSelect(IfCond, TrueVal, FalseVal, "", InsertPt); 2830 PN->replaceAllUsesWith(Sel); 2831 Sel->takeName(PN); 2832 PN->eraseFromParent(); 2833 } 2834 2835 // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement 2836 // has been flattened. Change DomBlock to jump directly to our new block to 2837 // avoid other simplifycfg's kicking in on the diamond. 2838 Instruction *OldTI = DomBlock->getTerminator(); 2839 Builder.SetInsertPoint(OldTI); 2840 Builder.CreateBr(BB); 2841 2842 SmallVector<DominatorTree::UpdateType, 3> Updates; 2843 if (DTU) { 2844 Updates.push_back({DominatorTree::Insert, DomBlock, BB}); 2845 for (auto *Successor : successors(DomBlock)) 2846 Updates.push_back({DominatorTree::Delete, DomBlock, Successor}); 2847 } 2848 2849 OldTI->eraseFromParent(); 2850 if (DTU) 2851 DTU->applyUpdates(Updates); 2852 2853 return true; 2854 } 2855 2856 /// If we found a conditional branch that goes to two returning blocks, 2857 /// try to merge them together into one return, 2858 /// introducing a select if the return values disagree. 2859 bool SimplifyCFGOpt::SimplifyCondBranchToTwoReturns(BranchInst *BI, 2860 IRBuilder<> &Builder) { 2861 auto *BB = BI->getParent(); 2862 assert(BI->isConditional() && "Must be a conditional branch"); 2863 BasicBlock *TrueSucc = BI->getSuccessor(0); 2864 BasicBlock *FalseSucc = BI->getSuccessor(1); 2865 // NOTE: destinations may match, this could be degenerate uncond branch. 2866 ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator()); 2867 ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator()); 2868 2869 // Check to ensure both blocks are empty (just a return) or optionally empty 2870 // with PHI nodes. If there are other instructions, merging would cause extra 2871 // computation on one path or the other. 2872 if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator()) 2873 return false; 2874 if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator()) 2875 return false; 2876 2877 Builder.SetInsertPoint(BI); 2878 // Okay, we found a branch that is going to two return nodes. If 2879 // there is no return value for this function, just change the 2880 // branch into a return. 2881 if (FalseRet->getNumOperands() == 0) { 2882 TrueSucc->removePredecessor(BB); 2883 FalseSucc->removePredecessor(BB); 2884 Builder.CreateRetVoid(); 2885 EraseTerminatorAndDCECond(BI); 2886 if (DTU) { 2887 SmallVector<DominatorTree::UpdateType, 2> Updates; 2888 Updates.push_back({DominatorTree::Delete, BB, TrueSucc}); 2889 if (TrueSucc != FalseSucc) 2890 Updates.push_back({DominatorTree::Delete, BB, FalseSucc}); 2891 DTU->applyUpdates(Updates); 2892 } 2893 return true; 2894 } 2895 2896 // Otherwise, figure out what the true and false return values are 2897 // so we can insert a new select instruction. 2898 Value *TrueValue = TrueRet->getReturnValue(); 2899 Value *FalseValue = FalseRet->getReturnValue(); 2900 2901 // Unwrap any PHI nodes in the return blocks. 2902 if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue)) 2903 if (TVPN->getParent() == TrueSucc) 2904 TrueValue = TVPN->getIncomingValueForBlock(BB); 2905 if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue)) 2906 if (FVPN->getParent() == FalseSucc) 2907 FalseValue = FVPN->getIncomingValueForBlock(BB); 2908 2909 // In order for this transformation to be safe, we must be able to 2910 // unconditionally execute both operands to the return. This is 2911 // normally the case, but we could have a potentially-trapping 2912 // constant expression that prevents this transformation from being 2913 // safe. 2914 if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue)) 2915 if (TCV->canTrap()) 2916 return false; 2917 if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue)) 2918 if (FCV->canTrap()) 2919 return false; 2920 2921 // Okay, we collected all the mapped values and checked them for sanity, and 2922 // defined to really do this transformation. First, update the CFG. 2923 TrueSucc->removePredecessor(BB); 2924 FalseSucc->removePredecessor(BB); 2925 2926 // Insert select instructions where needed. 2927 Value *BrCond = BI->getCondition(); 2928 if (TrueValue) { 2929 // Insert a select if the results differ. 2930 if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) { 2931 } else if (isa<UndefValue>(TrueValue)) { 2932 TrueValue = FalseValue; 2933 } else { 2934 TrueValue = 2935 Builder.CreateSelect(BrCond, TrueValue, FalseValue, "retval", BI); 2936 } 2937 } 2938 2939 Value *RI = 2940 !TrueValue ? Builder.CreateRetVoid() : Builder.CreateRet(TrueValue); 2941 2942 (void)RI; 2943 2944 LLVM_DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:" 2945 << "\n " << *BI << "\nNewRet = " << *RI << "\nTRUEBLOCK: " 2946 << *TrueSucc << "\nFALSEBLOCK: " << *FalseSucc); 2947 2948 EraseTerminatorAndDCECond(BI); 2949 if (DTU) { 2950 SmallVector<DominatorTree::UpdateType, 2> Updates; 2951 Updates.push_back({DominatorTree::Delete, BB, TrueSucc}); 2952 if (TrueSucc != FalseSucc) 2953 Updates.push_back({DominatorTree::Delete, BB, FalseSucc}); 2954 DTU->applyUpdates(Updates); 2955 } 2956 2957 return true; 2958 } 2959 2960 static Value *createLogicalOp(IRBuilderBase &Builder, 2961 Instruction::BinaryOps Opc, Value *LHS, 2962 Value *RHS, const Twine &Name = "") { 2963 // Try to relax logical op to binary op. 2964 if (impliesPoison(RHS, LHS)) 2965 return Builder.CreateBinOp(Opc, LHS, RHS, Name); 2966 if (Opc == Instruction::And) 2967 return Builder.CreateLogicalAnd(LHS, RHS, Name); 2968 if (Opc == Instruction::Or) 2969 return Builder.CreateLogicalOr(LHS, RHS, Name); 2970 llvm_unreachable("Invalid logical opcode"); 2971 } 2972 2973 /// Return true if either PBI or BI has branch weight available, and store 2974 /// the weights in {Pred|Succ}{True|False}Weight. If one of PBI and BI does 2975 /// not have branch weight, use 1:1 as its weight. 2976 static bool extractPredSuccWeights(BranchInst *PBI, BranchInst *BI, 2977 uint64_t &PredTrueWeight, 2978 uint64_t &PredFalseWeight, 2979 uint64_t &SuccTrueWeight, 2980 uint64_t &SuccFalseWeight) { 2981 bool PredHasWeights = 2982 PBI->extractProfMetadata(PredTrueWeight, PredFalseWeight); 2983 bool SuccHasWeights = 2984 BI->extractProfMetadata(SuccTrueWeight, SuccFalseWeight); 2985 if (PredHasWeights || SuccHasWeights) { 2986 if (!PredHasWeights) 2987 PredTrueWeight = PredFalseWeight = 1; 2988 if (!SuccHasWeights) 2989 SuccTrueWeight = SuccFalseWeight = 1; 2990 return true; 2991 } else { 2992 return false; 2993 } 2994 } 2995 2996 /// Determine if the two branches share a common destination and deduce a glue 2997 /// that joins the branches' conditions to arrive at the common destination if 2998 /// that would be profitable. 2999 static Optional<std::pair<Instruction::BinaryOps, bool>> 3000 shouldFoldCondBranchesToCommonDestination(BranchInst *BI, BranchInst *PBI, 3001 const TargetTransformInfo *TTI) { 3002 assert(BI && PBI && BI->isConditional() && PBI->isConditional() && 3003 "Both blocks must end with a conditional branches."); 3004 assert(is_contained(predecessors(BI->getParent()), PBI->getParent()) && 3005 "PredBB must be a predecessor of BB."); 3006 3007 // We have the potential to fold the conditions together, but if the 3008 // predecessor branch is predictable, we may not want to merge them. 3009 uint64_t PTWeight, PFWeight; 3010 BranchProbability PBITrueProb, Likely; 3011 if (TTI && PBI->extractProfMetadata(PTWeight, PFWeight) && 3012 (PTWeight + PFWeight) != 0) { 3013 PBITrueProb = 3014 BranchProbability::getBranchProbability(PTWeight, PTWeight + PFWeight); 3015 Likely = TTI->getPredictableBranchThreshold(); 3016 } 3017 3018 if (PBI->getSuccessor(0) == BI->getSuccessor(0)) { 3019 // Speculate the 2nd condition unless the 1st is probably true. 3020 if (PBITrueProb.isUnknown() || PBITrueProb < Likely) 3021 return {{Instruction::Or, false}}; 3022 } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) { 3023 // Speculate the 2nd condition unless the 1st is probably false. 3024 if (PBITrueProb.isUnknown() || PBITrueProb.getCompl() < Likely) 3025 return {{Instruction::And, false}}; 3026 } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) { 3027 // Speculate the 2nd condition unless the 1st is probably true. 3028 if (PBITrueProb.isUnknown() || PBITrueProb < Likely) 3029 return {{Instruction::And, true}}; 3030 } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) { 3031 // Speculate the 2nd condition unless the 1st is probably false. 3032 if (PBITrueProb.isUnknown() || PBITrueProb.getCompl() < Likely) 3033 return {{Instruction::Or, true}}; 3034 } 3035 return None; 3036 } 3037 3038 static bool performBranchToCommonDestFolding(BranchInst *BI, BranchInst *PBI, 3039 DomTreeUpdater *DTU, 3040 MemorySSAUpdater *MSSAU, 3041 const TargetTransformInfo *TTI) { 3042 BasicBlock *BB = BI->getParent(); 3043 BasicBlock *PredBlock = PBI->getParent(); 3044 3045 // Determine if the two branches share a common destination. 3046 Instruction::BinaryOps Opc; 3047 bool InvertPredCond; 3048 std::tie(Opc, InvertPredCond) = 3049 *shouldFoldCondBranchesToCommonDestination(BI, PBI, TTI); 3050 3051 LLVM_DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB); 3052 3053 IRBuilder<> Builder(PBI); 3054 // The builder is used to create instructions to eliminate the branch in BB. 3055 // If BB's terminator has !annotation metadata, add it to the new 3056 // instructions. 3057 Builder.CollectMetadataToCopy(BB->getTerminator(), 3058 {LLVMContext::MD_annotation}); 3059 3060 // If we need to invert the condition in the pred block to match, do so now. 3061 if (InvertPredCond) { 3062 Value *NewCond = PBI->getCondition(); 3063 if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) { 3064 CmpInst *CI = cast<CmpInst>(NewCond); 3065 CI->setPredicate(CI->getInversePredicate()); 3066 } else { 3067 NewCond = 3068 Builder.CreateNot(NewCond, PBI->getCondition()->getName() + ".not"); 3069 } 3070 3071 PBI->setCondition(NewCond); 3072 PBI->swapSuccessors(); 3073 } 3074 3075 BasicBlock *UniqueSucc = 3076 PBI->getSuccessor(0) == BB ? BI->getSuccessor(0) : BI->getSuccessor(1); 3077 3078 // Before cloning instructions, notify the successor basic block that it 3079 // is about to have a new predecessor. This will update PHI nodes, 3080 // which will allow us to update live-out uses of bonus instructions. 3081 AddPredecessorToBlock(UniqueSucc, PredBlock, BB, MSSAU); 3082 3083 // Try to update branch weights. 3084 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 3085 if (extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight, 3086 SuccTrueWeight, SuccFalseWeight)) { 3087 SmallVector<uint64_t, 8> NewWeights; 3088 3089 if (PBI->getSuccessor(0) == BB) { 3090 // PBI: br i1 %x, BB, FalseDest 3091 // BI: br i1 %y, UniqueSucc, FalseDest 3092 // TrueWeight is TrueWeight for PBI * TrueWeight for BI. 3093 NewWeights.push_back(PredTrueWeight * SuccTrueWeight); 3094 // FalseWeight is FalseWeight for PBI * TotalWeight for BI + 3095 // TrueWeight for PBI * FalseWeight for BI. 3096 // We assume that total weights of a BranchInst can fit into 32 bits. 3097 // Therefore, we will not have overflow using 64-bit arithmetic. 3098 NewWeights.push_back(PredFalseWeight * 3099 (SuccFalseWeight + SuccTrueWeight) + 3100 PredTrueWeight * SuccFalseWeight); 3101 } else { 3102 // PBI: br i1 %x, TrueDest, BB 3103 // BI: br i1 %y, TrueDest, UniqueSucc 3104 // TrueWeight is TrueWeight for PBI * TotalWeight for BI + 3105 // FalseWeight for PBI * TrueWeight for BI. 3106 NewWeights.push_back(PredTrueWeight * (SuccFalseWeight + SuccTrueWeight) + 3107 PredFalseWeight * SuccTrueWeight); 3108 // FalseWeight is FalseWeight for PBI * FalseWeight for BI. 3109 NewWeights.push_back(PredFalseWeight * SuccFalseWeight); 3110 } 3111 3112 // Halve the weights if any of them cannot fit in an uint32_t 3113 FitWeights(NewWeights); 3114 3115 SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(), NewWeights.end()); 3116 setBranchWeights(PBI, MDWeights[0], MDWeights[1]); 3117 3118 // TODO: If BB is reachable from all paths through PredBlock, then we 3119 // could replace PBI's branch probabilities with BI's. 3120 } else 3121 PBI->setMetadata(LLVMContext::MD_prof, nullptr); 3122 3123 // Now, update the CFG. 3124 PBI->setSuccessor(PBI->getSuccessor(0) != BB, UniqueSucc); 3125 3126 if (DTU) 3127 DTU->applyUpdates({{DominatorTree::Insert, PredBlock, UniqueSucc}, 3128 {DominatorTree::Delete, PredBlock, BB}}); 3129 3130 // If BI was a loop latch, it may have had associated loop metadata. 3131 // We need to copy it to the new latch, that is, PBI. 3132 if (MDNode *LoopMD = BI->getMetadata(LLVMContext::MD_loop)) 3133 PBI->setMetadata(LLVMContext::MD_loop, LoopMD); 3134 3135 ValueToValueMapTy VMap; // maps original values to cloned values 3136 CloneInstructionsIntoPredecessorBlockAndUpdateSSAUses(BB, PredBlock, VMap); 3137 3138 // Now that the Cond was cloned into the predecessor basic block, 3139 // or/and the two conditions together. 3140 Value *BICond = VMap[BI->getCondition()]; 3141 PBI->setCondition( 3142 createLogicalOp(Builder, Opc, PBI->getCondition(), BICond, "or.cond")); 3143 3144 // Copy any debug value intrinsics into the end of PredBlock. 3145 for (Instruction &I : *BB) { 3146 if (isa<DbgInfoIntrinsic>(I)) { 3147 Instruction *NewI = I.clone(); 3148 RemapInstruction(NewI, VMap, 3149 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 3150 NewI->insertBefore(PBI); 3151 } 3152 } 3153 3154 ++NumFoldBranchToCommonDest; 3155 return true; 3156 } 3157 3158 /// If this basic block is simple enough, and if a predecessor branches to us 3159 /// and one of our successors, fold the block into the predecessor and use 3160 /// logical operations to pick the right destination. 3161 bool llvm::FoldBranchToCommonDest(BranchInst *BI, DomTreeUpdater *DTU, 3162 MemorySSAUpdater *MSSAU, 3163 const TargetTransformInfo *TTI, 3164 unsigned BonusInstThreshold) { 3165 // If this block ends with an unconditional branch, 3166 // let SpeculativelyExecuteBB() deal with it. 3167 if (!BI->isConditional()) 3168 return false; 3169 3170 BasicBlock *BB = BI->getParent(); 3171 3172 bool Changed = false; 3173 3174 TargetTransformInfo::TargetCostKind CostKind = 3175 BB->getParent()->hasMinSize() ? TargetTransformInfo::TCK_CodeSize 3176 : TargetTransformInfo::TCK_SizeAndLatency; 3177 3178 Instruction *Cond = dyn_cast<Instruction>(BI->getCondition()); 3179 3180 if (!Cond || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) || 3181 Cond->getParent() != BB || !Cond->hasOneUse()) 3182 return Changed; 3183 3184 // Cond is known to be a compare or binary operator. Check to make sure that 3185 // neither operand is a potentially-trapping constant expression. 3186 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0))) 3187 if (CE->canTrap()) 3188 return Changed; 3189 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1))) 3190 if (CE->canTrap()) 3191 return Changed; 3192 3193 // Finally, don't infinitely unroll conditional loops. 3194 if (is_contained(successors(BB), BB)) 3195 return Changed; 3196 3197 // With which predecessors will we want to deal with? 3198 SmallVector<BasicBlock *, 8> Preds; 3199 for (BasicBlock *PredBlock : predecessors(BB)) { 3200 BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator()); 3201 3202 // Check that we have two conditional branches. If there is a PHI node in 3203 // the common successor, verify that the same value flows in from both 3204 // blocks. 3205 if (!PBI || PBI->isUnconditional() || !SafeToMergeTerminators(BI, PBI)) 3206 continue; 3207 3208 // Determine if the two branches share a common destination. 3209 Instruction::BinaryOps Opc; 3210 bool InvertPredCond; 3211 if (auto Recipe = shouldFoldCondBranchesToCommonDestination(BI, PBI, TTI)) 3212 std::tie(Opc, InvertPredCond) = *Recipe; 3213 else 3214 continue; 3215 3216 // Check the cost of inserting the necessary logic before performing the 3217 // transformation. 3218 if (TTI) { 3219 Type *Ty = BI->getCondition()->getType(); 3220 InstructionCost Cost = TTI->getArithmeticInstrCost(Opc, Ty, CostKind); 3221 if (InvertPredCond && (!PBI->getCondition()->hasOneUse() || 3222 !isa<CmpInst>(PBI->getCondition()))) 3223 Cost += TTI->getArithmeticInstrCost(Instruction::Xor, Ty, CostKind); 3224 3225 if (Cost > BranchFoldThreshold) 3226 continue; 3227 } 3228 3229 // Ok, we do want to deal with this predecessor. Record it. 3230 Preds.emplace_back(PredBlock); 3231 } 3232 3233 // If there aren't any predecessors into which we can fold, 3234 // don't bother checking the cost. 3235 if (Preds.empty()) 3236 return Changed; 3237 3238 // Only allow this transformation if computing the condition doesn't involve 3239 // too many instructions and these involved instructions can be executed 3240 // unconditionally. We denote all involved instructions except the condition 3241 // as "bonus instructions", and only allow this transformation when the 3242 // number of the bonus instructions we'll need to create when cloning into 3243 // each predecessor does not exceed a certain threshold. 3244 unsigned NumBonusInsts = 0; 3245 const unsigned PredCount = Preds.size(); 3246 for (Instruction &I : *BB) { 3247 // Don't check the branch condition comparison itself. 3248 if (&I == Cond) 3249 continue; 3250 // Ignore dbg intrinsics, and the terminator. 3251 if (isa<DbgInfoIntrinsic>(I) || isa<BranchInst>(I)) 3252 continue; 3253 // I must be safe to execute unconditionally. 3254 if (!isSafeToSpeculativelyExecute(&I)) 3255 return Changed; 3256 3257 // Account for the cost of duplicating this instruction into each 3258 // predecessor. 3259 NumBonusInsts += PredCount; 3260 // Early exits once we reach the limit. 3261 if (NumBonusInsts > BonusInstThreshold) 3262 return Changed; 3263 } 3264 3265 // Ok, we have the budget. Perform the transformation. 3266 for (BasicBlock *PredBlock : Preds) { 3267 auto *PBI = cast<BranchInst>(PredBlock->getTerminator()); 3268 return performBranchToCommonDestFolding(BI, PBI, DTU, MSSAU, TTI); 3269 } 3270 return Changed; 3271 } 3272 3273 // If there is only one store in BB1 and BB2, return it, otherwise return 3274 // nullptr. 3275 static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) { 3276 StoreInst *S = nullptr; 3277 for (auto *BB : {BB1, BB2}) { 3278 if (!BB) 3279 continue; 3280 for (auto &I : *BB) 3281 if (auto *SI = dyn_cast<StoreInst>(&I)) { 3282 if (S) 3283 // Multiple stores seen. 3284 return nullptr; 3285 else 3286 S = SI; 3287 } 3288 } 3289 return S; 3290 } 3291 3292 static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB, 3293 Value *AlternativeV = nullptr) { 3294 // PHI is going to be a PHI node that allows the value V that is defined in 3295 // BB to be referenced in BB's only successor. 3296 // 3297 // If AlternativeV is nullptr, the only value we care about in PHI is V. It 3298 // doesn't matter to us what the other operand is (it'll never get used). We 3299 // could just create a new PHI with an undef incoming value, but that could 3300 // increase register pressure if EarlyCSE/InstCombine can't fold it with some 3301 // other PHI. So here we directly look for some PHI in BB's successor with V 3302 // as an incoming operand. If we find one, we use it, else we create a new 3303 // one. 3304 // 3305 // If AlternativeV is not nullptr, we care about both incoming values in PHI. 3306 // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV] 3307 // where OtherBB is the single other predecessor of BB's only successor. 3308 PHINode *PHI = nullptr; 3309 BasicBlock *Succ = BB->getSingleSuccessor(); 3310 3311 for (auto I = Succ->begin(); isa<PHINode>(I); ++I) 3312 if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) { 3313 PHI = cast<PHINode>(I); 3314 if (!AlternativeV) 3315 break; 3316 3317 assert(Succ->hasNPredecessors(2)); 3318 auto PredI = pred_begin(Succ); 3319 BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI; 3320 if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV) 3321 break; 3322 PHI = nullptr; 3323 } 3324 if (PHI) 3325 return PHI; 3326 3327 // If V is not an instruction defined in BB, just return it. 3328 if (!AlternativeV && 3329 (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB)) 3330 return V; 3331 3332 PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge", &Succ->front()); 3333 PHI->addIncoming(V, BB); 3334 for (BasicBlock *PredBB : predecessors(Succ)) 3335 if (PredBB != BB) 3336 PHI->addIncoming( 3337 AlternativeV ? AlternativeV : UndefValue::get(V->getType()), PredBB); 3338 return PHI; 3339 } 3340 3341 static bool mergeConditionalStoreToAddress( 3342 BasicBlock *PTB, BasicBlock *PFB, BasicBlock *QTB, BasicBlock *QFB, 3343 BasicBlock *PostBB, Value *Address, bool InvertPCond, bool InvertQCond, 3344 DomTreeUpdater *DTU, const DataLayout &DL, const TargetTransformInfo &TTI) { 3345 // For every pointer, there must be exactly two stores, one coming from 3346 // PTB or PFB, and the other from QTB or QFB. We don't support more than one 3347 // store (to any address) in PTB,PFB or QTB,QFB. 3348 // FIXME: We could relax this restriction with a bit more work and performance 3349 // testing. 3350 StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB); 3351 StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB); 3352 if (!PStore || !QStore) 3353 return false; 3354 3355 // Now check the stores are compatible. 3356 if (!QStore->isUnordered() || !PStore->isUnordered()) 3357 return false; 3358 3359 // Check that sinking the store won't cause program behavior changes. Sinking 3360 // the store out of the Q blocks won't change any behavior as we're sinking 3361 // from a block to its unconditional successor. But we're moving a store from 3362 // the P blocks down through the middle block (QBI) and past both QFB and QTB. 3363 // So we need to check that there are no aliasing loads or stores in 3364 // QBI, QTB and QFB. We also need to check there are no conflicting memory 3365 // operations between PStore and the end of its parent block. 3366 // 3367 // The ideal way to do this is to query AliasAnalysis, but we don't 3368 // preserve AA currently so that is dangerous. Be super safe and just 3369 // check there are no other memory operations at all. 3370 for (auto &I : *QFB->getSinglePredecessor()) 3371 if (I.mayReadOrWriteMemory()) 3372 return false; 3373 for (auto &I : *QFB) 3374 if (&I != QStore && I.mayReadOrWriteMemory()) 3375 return false; 3376 if (QTB) 3377 for (auto &I : *QTB) 3378 if (&I != QStore && I.mayReadOrWriteMemory()) 3379 return false; 3380 for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end(); 3381 I != E; ++I) 3382 if (&*I != PStore && I->mayReadOrWriteMemory()) 3383 return false; 3384 3385 // If we're not in aggressive mode, we only optimize if we have some 3386 // confidence that by optimizing we'll allow P and/or Q to be if-converted. 3387 auto IsWorthwhile = [&](BasicBlock *BB, ArrayRef<StoreInst *> FreeStores) { 3388 if (!BB) 3389 return true; 3390 // Heuristic: if the block can be if-converted/phi-folded and the 3391 // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to 3392 // thread this store. 3393 InstructionCost Cost = 0; 3394 InstructionCost Budget = 3395 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 3396 for (auto &I : BB->instructionsWithoutDebug()) { 3397 // Consider terminator instruction to be free. 3398 if (I.isTerminator()) 3399 continue; 3400 // If this is one the stores that we want to speculate out of this BB, 3401 // then don't count it's cost, consider it to be free. 3402 if (auto *S = dyn_cast<StoreInst>(&I)) 3403 if (llvm::find(FreeStores, S)) 3404 continue; 3405 // Else, we have a white-list of instructions that we are ak speculating. 3406 if (!isa<BinaryOperator>(I) && !isa<GetElementPtrInst>(I)) 3407 return false; // Not in white-list - not worthwhile folding. 3408 // And finally, if this is a non-free instruction that we are okay 3409 // speculating, ensure that we consider the speculation budget. 3410 Cost += TTI.getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency); 3411 if (Cost > Budget) 3412 return false; // Eagerly refuse to fold as soon as we're out of budget. 3413 } 3414 assert(Cost <= Budget && 3415 "When we run out of budget we will eagerly return from within the " 3416 "per-instruction loop."); 3417 return true; 3418 }; 3419 3420 const std::array<StoreInst *, 2> FreeStores = {PStore, QStore}; 3421 if (!MergeCondStoresAggressively && 3422 (!IsWorthwhile(PTB, FreeStores) || !IsWorthwhile(PFB, FreeStores) || 3423 !IsWorthwhile(QTB, FreeStores) || !IsWorthwhile(QFB, FreeStores))) 3424 return false; 3425 3426 // If PostBB has more than two predecessors, we need to split it so we can 3427 // sink the store. 3428 if (std::next(pred_begin(PostBB), 2) != pred_end(PostBB)) { 3429 // We know that QFB's only successor is PostBB. And QFB has a single 3430 // predecessor. If QTB exists, then its only successor is also PostBB. 3431 // If QTB does not exist, then QFB's only predecessor has a conditional 3432 // branch to QFB and PostBB. 3433 BasicBlock *TruePred = QTB ? QTB : QFB->getSinglePredecessor(); 3434 BasicBlock *NewBB = 3435 SplitBlockPredecessors(PostBB, {QFB, TruePred}, "condstore.split", DTU); 3436 if (!NewBB) 3437 return false; 3438 PostBB = NewBB; 3439 } 3440 3441 // OK, we're going to sink the stores to PostBB. The store has to be 3442 // conditional though, so first create the predicate. 3443 Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator()) 3444 ->getCondition(); 3445 Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator()) 3446 ->getCondition(); 3447 3448 Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(), 3449 PStore->getParent()); 3450 Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(), 3451 QStore->getParent(), PPHI); 3452 3453 IRBuilder<> QB(&*PostBB->getFirstInsertionPt()); 3454 3455 Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond); 3456 Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond); 3457 3458 if (InvertPCond) 3459 PPred = QB.CreateNot(PPred); 3460 if (InvertQCond) 3461 QPred = QB.CreateNot(QPred); 3462 Value *CombinedPred = QB.CreateOr(PPred, QPred); 3463 3464 auto *T = SplitBlockAndInsertIfThen(CombinedPred, &*QB.GetInsertPoint(), 3465 /*Unreachable=*/false, 3466 /*BranchWeights=*/nullptr, DTU); 3467 QB.SetInsertPoint(T); 3468 StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address)); 3469 AAMDNodes AAMD; 3470 PStore->getAAMetadata(AAMD, /*Merge=*/false); 3471 PStore->getAAMetadata(AAMD, /*Merge=*/true); 3472 SI->setAAMetadata(AAMD); 3473 // Choose the minimum alignment. If we could prove both stores execute, we 3474 // could use biggest one. In this case, though, we only know that one of the 3475 // stores executes. And we don't know it's safe to take the alignment from a 3476 // store that doesn't execute. 3477 SI->setAlignment(std::min(PStore->getAlign(), QStore->getAlign())); 3478 3479 QStore->eraseFromParent(); 3480 PStore->eraseFromParent(); 3481 3482 return true; 3483 } 3484 3485 static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI, 3486 DomTreeUpdater *DTU, const DataLayout &DL, 3487 const TargetTransformInfo &TTI) { 3488 // The intention here is to find diamonds or triangles (see below) where each 3489 // conditional block contains a store to the same address. Both of these 3490 // stores are conditional, so they can't be unconditionally sunk. But it may 3491 // be profitable to speculatively sink the stores into one merged store at the 3492 // end, and predicate the merged store on the union of the two conditions of 3493 // PBI and QBI. 3494 // 3495 // This can reduce the number of stores executed if both of the conditions are 3496 // true, and can allow the blocks to become small enough to be if-converted. 3497 // This optimization will also chain, so that ladders of test-and-set 3498 // sequences can be if-converted away. 3499 // 3500 // We only deal with simple diamonds or triangles: 3501 // 3502 // PBI or PBI or a combination of the two 3503 // / \ | \ 3504 // PTB PFB | PFB 3505 // \ / | / 3506 // QBI QBI 3507 // / \ | \ 3508 // QTB QFB | QFB 3509 // \ / | / 3510 // PostBB PostBB 3511 // 3512 // We model triangles as a type of diamond with a nullptr "true" block. 3513 // Triangles are canonicalized so that the fallthrough edge is represented by 3514 // a true condition, as in the diagram above. 3515 BasicBlock *PTB = PBI->getSuccessor(0); 3516 BasicBlock *PFB = PBI->getSuccessor(1); 3517 BasicBlock *QTB = QBI->getSuccessor(0); 3518 BasicBlock *QFB = QBI->getSuccessor(1); 3519 BasicBlock *PostBB = QFB->getSingleSuccessor(); 3520 3521 // Make sure we have a good guess for PostBB. If QTB's only successor is 3522 // QFB, then QFB is a better PostBB. 3523 if (QTB->getSingleSuccessor() == QFB) 3524 PostBB = QFB; 3525 3526 // If we couldn't find a good PostBB, stop. 3527 if (!PostBB) 3528 return false; 3529 3530 bool InvertPCond = false, InvertQCond = false; 3531 // Canonicalize fallthroughs to the true branches. 3532 if (PFB == QBI->getParent()) { 3533 std::swap(PFB, PTB); 3534 InvertPCond = true; 3535 } 3536 if (QFB == PostBB) { 3537 std::swap(QFB, QTB); 3538 InvertQCond = true; 3539 } 3540 3541 // From this point on we can assume PTB or QTB may be fallthroughs but PFB 3542 // and QFB may not. Model fallthroughs as a nullptr block. 3543 if (PTB == QBI->getParent()) 3544 PTB = nullptr; 3545 if (QTB == PostBB) 3546 QTB = nullptr; 3547 3548 // Legality bailouts. We must have at least the non-fallthrough blocks and 3549 // the post-dominating block, and the non-fallthroughs must only have one 3550 // predecessor. 3551 auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) { 3552 return BB->getSinglePredecessor() == P && BB->getSingleSuccessor() == S; 3553 }; 3554 if (!HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) || 3555 !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB)) 3556 return false; 3557 if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) || 3558 (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB))) 3559 return false; 3560 if (!QBI->getParent()->hasNUses(2)) 3561 return false; 3562 3563 // OK, this is a sequence of two diamonds or triangles. 3564 // Check if there are stores in PTB or PFB that are repeated in QTB or QFB. 3565 SmallPtrSet<Value *, 4> PStoreAddresses, QStoreAddresses; 3566 for (auto *BB : {PTB, PFB}) { 3567 if (!BB) 3568 continue; 3569 for (auto &I : *BB) 3570 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) 3571 PStoreAddresses.insert(SI->getPointerOperand()); 3572 } 3573 for (auto *BB : {QTB, QFB}) { 3574 if (!BB) 3575 continue; 3576 for (auto &I : *BB) 3577 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) 3578 QStoreAddresses.insert(SI->getPointerOperand()); 3579 } 3580 3581 set_intersect(PStoreAddresses, QStoreAddresses); 3582 // set_intersect mutates PStoreAddresses in place. Rename it here to make it 3583 // clear what it contains. 3584 auto &CommonAddresses = PStoreAddresses; 3585 3586 bool Changed = false; 3587 for (auto *Address : CommonAddresses) 3588 Changed |= 3589 mergeConditionalStoreToAddress(PTB, PFB, QTB, QFB, PostBB, Address, 3590 InvertPCond, InvertQCond, DTU, DL, TTI); 3591 return Changed; 3592 } 3593 3594 /// If the previous block ended with a widenable branch, determine if reusing 3595 /// the target block is profitable and legal. This will have the effect of 3596 /// "widening" PBI, but doesn't require us to reason about hosting safety. 3597 static bool tryWidenCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI, 3598 DomTreeUpdater *DTU) { 3599 // TODO: This can be generalized in two important ways: 3600 // 1) We can allow phi nodes in IfFalseBB and simply reuse all the input 3601 // values from the PBI edge. 3602 // 2) We can sink side effecting instructions into BI's fallthrough 3603 // successor provided they doesn't contribute to computation of 3604 // BI's condition. 3605 Value *CondWB, *WC; 3606 BasicBlock *IfTrueBB, *IfFalseBB; 3607 if (!parseWidenableBranch(PBI, CondWB, WC, IfTrueBB, IfFalseBB) || 3608 IfTrueBB != BI->getParent() || !BI->getParent()->getSinglePredecessor()) 3609 return false; 3610 if (!IfFalseBB->phis().empty()) 3611 return false; // TODO 3612 // Use lambda to lazily compute expensive condition after cheap ones. 3613 auto NoSideEffects = [](BasicBlock &BB) { 3614 return !llvm::any_of(BB, [](const Instruction &I) { 3615 return I.mayWriteToMemory() || I.mayHaveSideEffects(); 3616 }); 3617 }; 3618 if (BI->getSuccessor(1) != IfFalseBB && // no inf looping 3619 BI->getSuccessor(1)->getTerminatingDeoptimizeCall() && // profitability 3620 NoSideEffects(*BI->getParent())) { 3621 auto *OldSuccessor = BI->getSuccessor(1); 3622 OldSuccessor->removePredecessor(BI->getParent()); 3623 BI->setSuccessor(1, IfFalseBB); 3624 if (DTU) 3625 DTU->applyUpdates( 3626 {{DominatorTree::Insert, BI->getParent(), IfFalseBB}, 3627 {DominatorTree::Delete, BI->getParent(), OldSuccessor}}); 3628 return true; 3629 } 3630 if (BI->getSuccessor(0) != IfFalseBB && // no inf looping 3631 BI->getSuccessor(0)->getTerminatingDeoptimizeCall() && // profitability 3632 NoSideEffects(*BI->getParent())) { 3633 auto *OldSuccessor = BI->getSuccessor(0); 3634 OldSuccessor->removePredecessor(BI->getParent()); 3635 BI->setSuccessor(0, IfFalseBB); 3636 if (DTU) 3637 DTU->applyUpdates( 3638 {{DominatorTree::Insert, BI->getParent(), IfFalseBB}, 3639 {DominatorTree::Delete, BI->getParent(), OldSuccessor}}); 3640 return true; 3641 } 3642 return false; 3643 } 3644 3645 /// If we have a conditional branch as a predecessor of another block, 3646 /// this function tries to simplify it. We know 3647 /// that PBI and BI are both conditional branches, and BI is in one of the 3648 /// successor blocks of PBI - PBI branches to BI. 3649 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI, 3650 DomTreeUpdater *DTU, 3651 const DataLayout &DL, 3652 const TargetTransformInfo &TTI) { 3653 assert(PBI->isConditional() && BI->isConditional()); 3654 BasicBlock *BB = BI->getParent(); 3655 3656 // If this block ends with a branch instruction, and if there is a 3657 // predecessor that ends on a branch of the same condition, make 3658 // this conditional branch redundant. 3659 if (PBI->getCondition() == BI->getCondition() && 3660 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 3661 // Okay, the outcome of this conditional branch is statically 3662 // knowable. If this block had a single pred, handle specially. 3663 if (BB->getSinglePredecessor()) { 3664 // Turn this into a branch on constant. 3665 bool CondIsTrue = PBI->getSuccessor(0) == BB; 3666 BI->setCondition( 3667 ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue)); 3668 return true; // Nuke the branch on constant. 3669 } 3670 3671 // Otherwise, if there are multiple predecessors, insert a PHI that merges 3672 // in the constant and simplify the block result. Subsequent passes of 3673 // simplifycfg will thread the block. 3674 if (BlockIsSimpleEnoughToThreadThrough(BB)) { 3675 pred_iterator PB = pred_begin(BB), PE = pred_end(BB); 3676 PHINode *NewPN = PHINode::Create( 3677 Type::getInt1Ty(BB->getContext()), std::distance(PB, PE), 3678 BI->getCondition()->getName() + ".pr", &BB->front()); 3679 // Okay, we're going to insert the PHI node. Since PBI is not the only 3680 // predecessor, compute the PHI'd conditional value for all of the preds. 3681 // Any predecessor where the condition is not computable we keep symbolic. 3682 for (pred_iterator PI = PB; PI != PE; ++PI) { 3683 BasicBlock *P = *PI; 3684 if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) && PBI != BI && 3685 PBI->isConditional() && PBI->getCondition() == BI->getCondition() && 3686 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 3687 bool CondIsTrue = PBI->getSuccessor(0) == BB; 3688 NewPN->addIncoming( 3689 ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue), 3690 P); 3691 } else { 3692 NewPN->addIncoming(BI->getCondition(), P); 3693 } 3694 } 3695 3696 BI->setCondition(NewPN); 3697 return true; 3698 } 3699 } 3700 3701 // If the previous block ended with a widenable branch, determine if reusing 3702 // the target block is profitable and legal. This will have the effect of 3703 // "widening" PBI, but doesn't require us to reason about hosting safety. 3704 if (tryWidenCondBranchToCondBranch(PBI, BI, DTU)) 3705 return true; 3706 3707 if (auto *CE = dyn_cast<ConstantExpr>(BI->getCondition())) 3708 if (CE->canTrap()) 3709 return false; 3710 3711 // If both branches are conditional and both contain stores to the same 3712 // address, remove the stores from the conditionals and create a conditional 3713 // merged store at the end. 3714 if (MergeCondStores && mergeConditionalStores(PBI, BI, DTU, DL, TTI)) 3715 return true; 3716 3717 // If this is a conditional branch in an empty block, and if any 3718 // predecessors are a conditional branch to one of our destinations, 3719 // fold the conditions into logical ops and one cond br. 3720 3721 // Ignore dbg intrinsics. 3722 if (&*BB->instructionsWithoutDebug().begin() != BI) 3723 return false; 3724 3725 int PBIOp, BIOp; 3726 if (PBI->getSuccessor(0) == BI->getSuccessor(0)) { 3727 PBIOp = 0; 3728 BIOp = 0; 3729 } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) { 3730 PBIOp = 0; 3731 BIOp = 1; 3732 } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) { 3733 PBIOp = 1; 3734 BIOp = 0; 3735 } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) { 3736 PBIOp = 1; 3737 BIOp = 1; 3738 } else { 3739 return false; 3740 } 3741 3742 // Check to make sure that the other destination of this branch 3743 // isn't BB itself. If so, this is an infinite loop that will 3744 // keep getting unwound. 3745 if (PBI->getSuccessor(PBIOp) == BB) 3746 return false; 3747 3748 // Do not perform this transformation if it would require 3749 // insertion of a large number of select instructions. For targets 3750 // without predication/cmovs, this is a big pessimization. 3751 3752 // Also do not perform this transformation if any phi node in the common 3753 // destination block can trap when reached by BB or PBB (PR17073). In that 3754 // case, it would be unsafe to hoist the operation into a select instruction. 3755 3756 BasicBlock *CommonDest = PBI->getSuccessor(PBIOp); 3757 BasicBlock *RemovedDest = PBI->getSuccessor(PBIOp ^ 1); 3758 unsigned NumPhis = 0; 3759 for (BasicBlock::iterator II = CommonDest->begin(); isa<PHINode>(II); 3760 ++II, ++NumPhis) { 3761 if (NumPhis > 2) // Disable this xform. 3762 return false; 3763 3764 PHINode *PN = cast<PHINode>(II); 3765 Value *BIV = PN->getIncomingValueForBlock(BB); 3766 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BIV)) 3767 if (CE->canTrap()) 3768 return false; 3769 3770 unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent()); 3771 Value *PBIV = PN->getIncomingValue(PBBIdx); 3772 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(PBIV)) 3773 if (CE->canTrap()) 3774 return false; 3775 } 3776 3777 // Finally, if everything is ok, fold the branches to logical ops. 3778 BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1); 3779 3780 LLVM_DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent() 3781 << "AND: " << *BI->getParent()); 3782 3783 SmallVector<DominatorTree::UpdateType, 5> Updates; 3784 3785 // If OtherDest *is* BB, then BB is a basic block with a single conditional 3786 // branch in it, where one edge (OtherDest) goes back to itself but the other 3787 // exits. We don't *know* that the program avoids the infinite loop 3788 // (even though that seems likely). If we do this xform naively, we'll end up 3789 // recursively unpeeling the loop. Since we know that (after the xform is 3790 // done) that the block *is* infinite if reached, we just make it an obviously 3791 // infinite loop with no cond branch. 3792 if (OtherDest == BB) { 3793 // Insert it at the end of the function, because it's either code, 3794 // or it won't matter if it's hot. :) 3795 BasicBlock *InfLoopBlock = 3796 BasicBlock::Create(BB->getContext(), "infloop", BB->getParent()); 3797 BranchInst::Create(InfLoopBlock, InfLoopBlock); 3798 if (DTU) 3799 Updates.push_back({DominatorTree::Insert, InfLoopBlock, InfLoopBlock}); 3800 OtherDest = InfLoopBlock; 3801 } 3802 3803 LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent()); 3804 3805 // BI may have other predecessors. Because of this, we leave 3806 // it alone, but modify PBI. 3807 3808 // Make sure we get to CommonDest on True&True directions. 3809 Value *PBICond = PBI->getCondition(); 3810 IRBuilder<NoFolder> Builder(PBI); 3811 if (PBIOp) 3812 PBICond = Builder.CreateNot(PBICond, PBICond->getName() + ".not"); 3813 3814 Value *BICond = BI->getCondition(); 3815 if (BIOp) 3816 BICond = Builder.CreateNot(BICond, BICond->getName() + ".not"); 3817 3818 // Merge the conditions. 3819 Value *Cond = 3820 createLogicalOp(Builder, Instruction::Or, PBICond, BICond, "brmerge"); 3821 3822 // Modify PBI to branch on the new condition to the new dests. 3823 PBI->setCondition(Cond); 3824 PBI->setSuccessor(0, CommonDest); 3825 PBI->setSuccessor(1, OtherDest); 3826 3827 if (DTU) { 3828 Updates.push_back({DominatorTree::Insert, PBI->getParent(), OtherDest}); 3829 Updates.push_back({DominatorTree::Delete, PBI->getParent(), RemovedDest}); 3830 3831 DTU->applyUpdates(Updates); 3832 } 3833 3834 // Update branch weight for PBI. 3835 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 3836 uint64_t PredCommon, PredOther, SuccCommon, SuccOther; 3837 bool HasWeights = 3838 extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight, 3839 SuccTrueWeight, SuccFalseWeight); 3840 if (HasWeights) { 3841 PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight; 3842 PredOther = PBIOp ? PredTrueWeight : PredFalseWeight; 3843 SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight; 3844 SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight; 3845 // The weight to CommonDest should be PredCommon * SuccTotal + 3846 // PredOther * SuccCommon. 3847 // The weight to OtherDest should be PredOther * SuccOther. 3848 uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) + 3849 PredOther * SuccCommon, 3850 PredOther * SuccOther}; 3851 // Halve the weights if any of them cannot fit in an uint32_t 3852 FitWeights(NewWeights); 3853 3854 setBranchWeights(PBI, NewWeights[0], NewWeights[1]); 3855 } 3856 3857 // OtherDest may have phi nodes. If so, add an entry from PBI's 3858 // block that are identical to the entries for BI's block. 3859 AddPredecessorToBlock(OtherDest, PBI->getParent(), BB); 3860 3861 // We know that the CommonDest already had an edge from PBI to 3862 // it. If it has PHIs though, the PHIs may have different 3863 // entries for BB and PBI's BB. If so, insert a select to make 3864 // them agree. 3865 for (PHINode &PN : CommonDest->phis()) { 3866 Value *BIV = PN.getIncomingValueForBlock(BB); 3867 unsigned PBBIdx = PN.getBasicBlockIndex(PBI->getParent()); 3868 Value *PBIV = PN.getIncomingValue(PBBIdx); 3869 if (BIV != PBIV) { 3870 // Insert a select in PBI to pick the right value. 3871 SelectInst *NV = cast<SelectInst>( 3872 Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName() + ".mux")); 3873 PN.setIncomingValue(PBBIdx, NV); 3874 // Although the select has the same condition as PBI, the original branch 3875 // weights for PBI do not apply to the new select because the select's 3876 // 'logical' edges are incoming edges of the phi that is eliminated, not 3877 // the outgoing edges of PBI. 3878 if (HasWeights) { 3879 uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight; 3880 uint64_t PredOther = PBIOp ? PredTrueWeight : PredFalseWeight; 3881 uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight; 3882 uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight; 3883 // The weight to PredCommonDest should be PredCommon * SuccTotal. 3884 // The weight to PredOtherDest should be PredOther * SuccCommon. 3885 uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther), 3886 PredOther * SuccCommon}; 3887 3888 FitWeights(NewWeights); 3889 3890 setBranchWeights(NV, NewWeights[0], NewWeights[1]); 3891 } 3892 } 3893 } 3894 3895 LLVM_DEBUG(dbgs() << "INTO: " << *PBI->getParent()); 3896 LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent()); 3897 3898 // This basic block is probably dead. We know it has at least 3899 // one fewer predecessor. 3900 return true; 3901 } 3902 3903 // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is 3904 // true or to FalseBB if Cond is false. 3905 // Takes care of updating the successors and removing the old terminator. 3906 // Also makes sure not to introduce new successors by assuming that edges to 3907 // non-successor TrueBBs and FalseBBs aren't reachable. 3908 bool SimplifyCFGOpt::SimplifyTerminatorOnSelect(Instruction *OldTerm, 3909 Value *Cond, BasicBlock *TrueBB, 3910 BasicBlock *FalseBB, 3911 uint32_t TrueWeight, 3912 uint32_t FalseWeight) { 3913 auto *BB = OldTerm->getParent(); 3914 // Remove any superfluous successor edges from the CFG. 3915 // First, figure out which successors to preserve. 3916 // If TrueBB and FalseBB are equal, only try to preserve one copy of that 3917 // successor. 3918 BasicBlock *KeepEdge1 = TrueBB; 3919 BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr; 3920 3921 SmallPtrSet<BasicBlock *, 2> RemovedSuccessors; 3922 3923 // Then remove the rest. 3924 for (BasicBlock *Succ : successors(OldTerm)) { 3925 // Make sure only to keep exactly one copy of each edge. 3926 if (Succ == KeepEdge1) 3927 KeepEdge1 = nullptr; 3928 else if (Succ == KeepEdge2) 3929 KeepEdge2 = nullptr; 3930 else { 3931 Succ->removePredecessor(BB, 3932 /*KeepOneInputPHIs=*/true); 3933 3934 if (Succ != TrueBB && Succ != FalseBB) 3935 RemovedSuccessors.insert(Succ); 3936 } 3937 } 3938 3939 IRBuilder<> Builder(OldTerm); 3940 Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc()); 3941 3942 // Insert an appropriate new terminator. 3943 if (!KeepEdge1 && !KeepEdge2) { 3944 if (TrueBB == FalseBB) { 3945 // We were only looking for one successor, and it was present. 3946 // Create an unconditional branch to it. 3947 Builder.CreateBr(TrueBB); 3948 } else { 3949 // We found both of the successors we were looking for. 3950 // Create a conditional branch sharing the condition of the select. 3951 BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB); 3952 if (TrueWeight != FalseWeight) 3953 setBranchWeights(NewBI, TrueWeight, FalseWeight); 3954 } 3955 } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) { 3956 // Neither of the selected blocks were successors, so this 3957 // terminator must be unreachable. 3958 new UnreachableInst(OldTerm->getContext(), OldTerm); 3959 } else { 3960 // One of the selected values was a successor, but the other wasn't. 3961 // Insert an unconditional branch to the one that was found; 3962 // the edge to the one that wasn't must be unreachable. 3963 if (!KeepEdge1) { 3964 // Only TrueBB was found. 3965 Builder.CreateBr(TrueBB); 3966 } else { 3967 // Only FalseBB was found. 3968 Builder.CreateBr(FalseBB); 3969 } 3970 } 3971 3972 EraseTerminatorAndDCECond(OldTerm); 3973 3974 if (DTU) { 3975 SmallVector<DominatorTree::UpdateType, 2> Updates; 3976 Updates.reserve(RemovedSuccessors.size()); 3977 for (auto *RemovedSuccessor : RemovedSuccessors) 3978 Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor}); 3979 DTU->applyUpdates(Updates); 3980 } 3981 3982 return true; 3983 } 3984 3985 // Replaces 3986 // (switch (select cond, X, Y)) on constant X, Y 3987 // with a branch - conditional if X and Y lead to distinct BBs, 3988 // unconditional otherwise. 3989 bool SimplifyCFGOpt::SimplifySwitchOnSelect(SwitchInst *SI, 3990 SelectInst *Select) { 3991 // Check for constant integer values in the select. 3992 ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue()); 3993 ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue()); 3994 if (!TrueVal || !FalseVal) 3995 return false; 3996 3997 // Find the relevant condition and destinations. 3998 Value *Condition = Select->getCondition(); 3999 BasicBlock *TrueBB = SI->findCaseValue(TrueVal)->getCaseSuccessor(); 4000 BasicBlock *FalseBB = SI->findCaseValue(FalseVal)->getCaseSuccessor(); 4001 4002 // Get weight for TrueBB and FalseBB. 4003 uint32_t TrueWeight = 0, FalseWeight = 0; 4004 SmallVector<uint64_t, 8> Weights; 4005 bool HasWeights = HasBranchWeights(SI); 4006 if (HasWeights) { 4007 GetBranchWeights(SI, Weights); 4008 if (Weights.size() == 1 + SI->getNumCases()) { 4009 TrueWeight = 4010 (uint32_t)Weights[SI->findCaseValue(TrueVal)->getSuccessorIndex()]; 4011 FalseWeight = 4012 (uint32_t)Weights[SI->findCaseValue(FalseVal)->getSuccessorIndex()]; 4013 } 4014 } 4015 4016 // Perform the actual simplification. 4017 return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, TrueWeight, 4018 FalseWeight); 4019 } 4020 4021 // Replaces 4022 // (indirectbr (select cond, blockaddress(@fn, BlockA), 4023 // blockaddress(@fn, BlockB))) 4024 // with 4025 // (br cond, BlockA, BlockB). 4026 bool SimplifyCFGOpt::SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, 4027 SelectInst *SI) { 4028 // Check that both operands of the select are block addresses. 4029 BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue()); 4030 BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue()); 4031 if (!TBA || !FBA) 4032 return false; 4033 4034 // Extract the actual blocks. 4035 BasicBlock *TrueBB = TBA->getBasicBlock(); 4036 BasicBlock *FalseBB = FBA->getBasicBlock(); 4037 4038 // Perform the actual simplification. 4039 return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 0, 4040 0); 4041 } 4042 4043 /// This is called when we find an icmp instruction 4044 /// (a seteq/setne with a constant) as the only instruction in a 4045 /// block that ends with an uncond branch. We are looking for a very specific 4046 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified. In 4047 /// this case, we merge the first two "or's of icmp" into a switch, but then the 4048 /// default value goes to an uncond block with a seteq in it, we get something 4049 /// like: 4050 /// 4051 /// switch i8 %A, label %DEFAULT [ i8 1, label %end i8 2, label %end ] 4052 /// DEFAULT: 4053 /// %tmp = icmp eq i8 %A, 92 4054 /// br label %end 4055 /// end: 4056 /// ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ] 4057 /// 4058 /// We prefer to split the edge to 'end' so that there is a true/false entry to 4059 /// the PHI, merging the third icmp into the switch. 4060 bool SimplifyCFGOpt::tryToSimplifyUncondBranchWithICmpInIt( 4061 ICmpInst *ICI, IRBuilder<> &Builder) { 4062 BasicBlock *BB = ICI->getParent(); 4063 4064 // If the block has any PHIs in it or the icmp has multiple uses, it is too 4065 // complex. 4066 if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse()) 4067 return false; 4068 4069 Value *V = ICI->getOperand(0); 4070 ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1)); 4071 4072 // The pattern we're looking for is where our only predecessor is a switch on 4073 // 'V' and this block is the default case for the switch. In this case we can 4074 // fold the compared value into the switch to simplify things. 4075 BasicBlock *Pred = BB->getSinglePredecessor(); 4076 if (!Pred || !isa<SwitchInst>(Pred->getTerminator())) 4077 return false; 4078 4079 SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator()); 4080 if (SI->getCondition() != V) 4081 return false; 4082 4083 // If BB is reachable on a non-default case, then we simply know the value of 4084 // V in this block. Substitute it and constant fold the icmp instruction 4085 // away. 4086 if (SI->getDefaultDest() != BB) { 4087 ConstantInt *VVal = SI->findCaseDest(BB); 4088 assert(VVal && "Should have a unique destination value"); 4089 ICI->setOperand(0, VVal); 4090 4091 if (Value *V = SimplifyInstruction(ICI, {DL, ICI})) { 4092 ICI->replaceAllUsesWith(V); 4093 ICI->eraseFromParent(); 4094 } 4095 // BB is now empty, so it is likely to simplify away. 4096 return requestResimplify(); 4097 } 4098 4099 // Ok, the block is reachable from the default dest. If the constant we're 4100 // comparing exists in one of the other edges, then we can constant fold ICI 4101 // and zap it. 4102 if (SI->findCaseValue(Cst) != SI->case_default()) { 4103 Value *V; 4104 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 4105 V = ConstantInt::getFalse(BB->getContext()); 4106 else 4107 V = ConstantInt::getTrue(BB->getContext()); 4108 4109 ICI->replaceAllUsesWith(V); 4110 ICI->eraseFromParent(); 4111 // BB is now empty, so it is likely to simplify away. 4112 return requestResimplify(); 4113 } 4114 4115 // The use of the icmp has to be in the 'end' block, by the only PHI node in 4116 // the block. 4117 BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0); 4118 PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back()); 4119 if (PHIUse == nullptr || PHIUse != &SuccBlock->front() || 4120 isa<PHINode>(++BasicBlock::iterator(PHIUse))) 4121 return false; 4122 4123 // If the icmp is a SETEQ, then the default dest gets false, the new edge gets 4124 // true in the PHI. 4125 Constant *DefaultCst = ConstantInt::getTrue(BB->getContext()); 4126 Constant *NewCst = ConstantInt::getFalse(BB->getContext()); 4127 4128 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 4129 std::swap(DefaultCst, NewCst); 4130 4131 // Replace ICI (which is used by the PHI for the default value) with true or 4132 // false depending on if it is EQ or NE. 4133 ICI->replaceAllUsesWith(DefaultCst); 4134 ICI->eraseFromParent(); 4135 4136 SmallVector<DominatorTree::UpdateType, 2> Updates; 4137 4138 // Okay, the switch goes to this block on a default value. Add an edge from 4139 // the switch to the merge point on the compared value. 4140 BasicBlock *NewBB = 4141 BasicBlock::Create(BB->getContext(), "switch.edge", BB->getParent(), BB); 4142 { 4143 SwitchInstProfUpdateWrapper SIW(*SI); 4144 auto W0 = SIW.getSuccessorWeight(0); 4145 SwitchInstProfUpdateWrapper::CaseWeightOpt NewW; 4146 if (W0) { 4147 NewW = ((uint64_t(*W0) + 1) >> 1); 4148 SIW.setSuccessorWeight(0, *NewW); 4149 } 4150 SIW.addCase(Cst, NewBB, NewW); 4151 if (DTU) 4152 Updates.push_back({DominatorTree::Insert, Pred, NewBB}); 4153 } 4154 4155 // NewBB branches to the phi block, add the uncond branch and the phi entry. 4156 Builder.SetInsertPoint(NewBB); 4157 Builder.SetCurrentDebugLocation(SI->getDebugLoc()); 4158 Builder.CreateBr(SuccBlock); 4159 PHIUse->addIncoming(NewCst, NewBB); 4160 if (DTU) { 4161 Updates.push_back({DominatorTree::Insert, NewBB, SuccBlock}); 4162 DTU->applyUpdates(Updates); 4163 } 4164 return true; 4165 } 4166 4167 /// The specified branch is a conditional branch. 4168 /// Check to see if it is branching on an or/and chain of icmp instructions, and 4169 /// fold it into a switch instruction if so. 4170 bool SimplifyCFGOpt::SimplifyBranchOnICmpChain(BranchInst *BI, 4171 IRBuilder<> &Builder, 4172 const DataLayout &DL) { 4173 Instruction *Cond = dyn_cast<Instruction>(BI->getCondition()); 4174 if (!Cond) 4175 return false; 4176 4177 // Change br (X == 0 | X == 1), T, F into a switch instruction. 4178 // If this is a bunch of seteq's or'd together, or if it's a bunch of 4179 // 'setne's and'ed together, collect them. 4180 4181 // Try to gather values from a chain of and/or to be turned into a switch 4182 ConstantComparesGatherer ConstantCompare(Cond, DL); 4183 // Unpack the result 4184 SmallVectorImpl<ConstantInt *> &Values = ConstantCompare.Vals; 4185 Value *CompVal = ConstantCompare.CompValue; 4186 unsigned UsedICmps = ConstantCompare.UsedICmps; 4187 Value *ExtraCase = ConstantCompare.Extra; 4188 4189 // If we didn't have a multiply compared value, fail. 4190 if (!CompVal) 4191 return false; 4192 4193 // Avoid turning single icmps into a switch. 4194 if (UsedICmps <= 1) 4195 return false; 4196 4197 bool TrueWhenEqual = match(Cond, m_LogicalOr(m_Value(), m_Value())); 4198 4199 // There might be duplicate constants in the list, which the switch 4200 // instruction can't handle, remove them now. 4201 array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate); 4202 Values.erase(std::unique(Values.begin(), Values.end()), Values.end()); 4203 4204 // If Extra was used, we require at least two switch values to do the 4205 // transformation. A switch with one value is just a conditional branch. 4206 if (ExtraCase && Values.size() < 2) 4207 return false; 4208 4209 // TODO: Preserve branch weight metadata, similarly to how 4210 // FoldValueComparisonIntoPredecessors preserves it. 4211 4212 // Figure out which block is which destination. 4213 BasicBlock *DefaultBB = BI->getSuccessor(1); 4214 BasicBlock *EdgeBB = BI->getSuccessor(0); 4215 if (!TrueWhenEqual) 4216 std::swap(DefaultBB, EdgeBB); 4217 4218 BasicBlock *BB = BI->getParent(); 4219 4220 // MSAN does not like undefs as branch condition which can be introduced 4221 // with "explicit branch". 4222 if (ExtraCase && BB->getParent()->hasFnAttribute(Attribute::SanitizeMemory)) 4223 return false; 4224 4225 LLVM_DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size() 4226 << " cases into SWITCH. BB is:\n" 4227 << *BB); 4228 4229 SmallVector<DominatorTree::UpdateType, 2> Updates; 4230 4231 // If there are any extra values that couldn't be folded into the switch 4232 // then we evaluate them with an explicit branch first. Split the block 4233 // right before the condbr to handle it. 4234 if (ExtraCase) { 4235 BasicBlock *NewBB = SplitBlock(BB, BI, DTU, /*LI=*/nullptr, 4236 /*MSSAU=*/nullptr, "switch.early.test"); 4237 4238 // Remove the uncond branch added to the old block. 4239 Instruction *OldTI = BB->getTerminator(); 4240 Builder.SetInsertPoint(OldTI); 4241 4242 if (TrueWhenEqual) 4243 Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB); 4244 else 4245 Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB); 4246 4247 OldTI->eraseFromParent(); 4248 4249 if (DTU) 4250 Updates.push_back({DominatorTree::Insert, BB, EdgeBB}); 4251 4252 // If there are PHI nodes in EdgeBB, then we need to add a new entry to them 4253 // for the edge we just added. 4254 AddPredecessorToBlock(EdgeBB, BB, NewBB); 4255 4256 LLVM_DEBUG(dbgs() << " ** 'icmp' chain unhandled condition: " << *ExtraCase 4257 << "\nEXTRABB = " << *BB); 4258 BB = NewBB; 4259 } 4260 4261 Builder.SetInsertPoint(BI); 4262 // Convert pointer to int before we switch. 4263 if (CompVal->getType()->isPointerTy()) { 4264 CompVal = Builder.CreatePtrToInt( 4265 CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr"); 4266 } 4267 4268 // Create the new switch instruction now. 4269 SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size()); 4270 4271 // Add all of the 'cases' to the switch instruction. 4272 for (unsigned i = 0, e = Values.size(); i != e; ++i) 4273 New->addCase(Values[i], EdgeBB); 4274 4275 // We added edges from PI to the EdgeBB. As such, if there were any 4276 // PHI nodes in EdgeBB, they need entries to be added corresponding to 4277 // the number of edges added. 4278 for (BasicBlock::iterator BBI = EdgeBB->begin(); isa<PHINode>(BBI); ++BBI) { 4279 PHINode *PN = cast<PHINode>(BBI); 4280 Value *InVal = PN->getIncomingValueForBlock(BB); 4281 for (unsigned i = 0, e = Values.size() - 1; i != e; ++i) 4282 PN->addIncoming(InVal, BB); 4283 } 4284 4285 // Erase the old branch instruction. 4286 EraseTerminatorAndDCECond(BI); 4287 if (DTU) 4288 DTU->applyUpdates(Updates); 4289 4290 LLVM_DEBUG(dbgs() << " ** 'icmp' chain result is:\n" << *BB << '\n'); 4291 return true; 4292 } 4293 4294 bool SimplifyCFGOpt::simplifyResume(ResumeInst *RI, IRBuilder<> &Builder) { 4295 if (isa<PHINode>(RI->getValue())) 4296 return simplifyCommonResume(RI); 4297 else if (isa<LandingPadInst>(RI->getParent()->getFirstNonPHI()) && 4298 RI->getValue() == RI->getParent()->getFirstNonPHI()) 4299 // The resume must unwind the exception that caused control to branch here. 4300 return simplifySingleResume(RI); 4301 4302 return false; 4303 } 4304 4305 // Check if cleanup block is empty 4306 static bool isCleanupBlockEmpty(iterator_range<BasicBlock::iterator> R) { 4307 for (Instruction &I : R) { 4308 auto *II = dyn_cast<IntrinsicInst>(&I); 4309 if (!II) 4310 return false; 4311 4312 Intrinsic::ID IntrinsicID = II->getIntrinsicID(); 4313 switch (IntrinsicID) { 4314 case Intrinsic::dbg_declare: 4315 case Intrinsic::dbg_value: 4316 case Intrinsic::dbg_label: 4317 case Intrinsic::lifetime_end: 4318 break; 4319 default: 4320 return false; 4321 } 4322 } 4323 return true; 4324 } 4325 4326 // Simplify resume that is shared by several landing pads (phi of landing pad). 4327 bool SimplifyCFGOpt::simplifyCommonResume(ResumeInst *RI) { 4328 BasicBlock *BB = RI->getParent(); 4329 4330 // Check that there are no other instructions except for debug and lifetime 4331 // intrinsics between the phi's and resume instruction. 4332 if (!isCleanupBlockEmpty( 4333 make_range(RI->getParent()->getFirstNonPHI(), BB->getTerminator()))) 4334 return false; 4335 4336 SmallSetVector<BasicBlock *, 4> TrivialUnwindBlocks; 4337 auto *PhiLPInst = cast<PHINode>(RI->getValue()); 4338 4339 // Check incoming blocks to see if any of them are trivial. 4340 for (unsigned Idx = 0, End = PhiLPInst->getNumIncomingValues(); Idx != End; 4341 Idx++) { 4342 auto *IncomingBB = PhiLPInst->getIncomingBlock(Idx); 4343 auto *IncomingValue = PhiLPInst->getIncomingValue(Idx); 4344 4345 // If the block has other successors, we can not delete it because 4346 // it has other dependents. 4347 if (IncomingBB->getUniqueSuccessor() != BB) 4348 continue; 4349 4350 auto *LandingPad = dyn_cast<LandingPadInst>(IncomingBB->getFirstNonPHI()); 4351 // Not the landing pad that caused the control to branch here. 4352 if (IncomingValue != LandingPad) 4353 continue; 4354 4355 if (isCleanupBlockEmpty( 4356 make_range(LandingPad->getNextNode(), IncomingBB->getTerminator()))) 4357 TrivialUnwindBlocks.insert(IncomingBB); 4358 } 4359 4360 // If no trivial unwind blocks, don't do any simplifications. 4361 if (TrivialUnwindBlocks.empty()) 4362 return false; 4363 4364 // Turn all invokes that unwind here into calls. 4365 for (auto *TrivialBB : TrivialUnwindBlocks) { 4366 // Blocks that will be simplified should be removed from the phi node. 4367 // Note there could be multiple edges to the resume block, and we need 4368 // to remove them all. 4369 while (PhiLPInst->getBasicBlockIndex(TrivialBB) != -1) 4370 BB->removePredecessor(TrivialBB, true); 4371 4372 for (BasicBlock *Pred : 4373 llvm::make_early_inc_range(predecessors(TrivialBB))) { 4374 removeUnwindEdge(Pred, DTU); 4375 ++NumInvokes; 4376 } 4377 4378 // In each SimplifyCFG run, only the current processed block can be erased. 4379 // Otherwise, it will break the iteration of SimplifyCFG pass. So instead 4380 // of erasing TrivialBB, we only remove the branch to the common resume 4381 // block so that we can later erase the resume block since it has no 4382 // predecessors. 4383 TrivialBB->getTerminator()->eraseFromParent(); 4384 new UnreachableInst(RI->getContext(), TrivialBB); 4385 if (DTU) 4386 DTU->applyUpdates({{DominatorTree::Delete, TrivialBB, BB}}); 4387 } 4388 4389 // Delete the resume block if all its predecessors have been removed. 4390 if (pred_empty(BB)) { 4391 if (DTU) 4392 DTU->deleteBB(BB); 4393 else 4394 BB->eraseFromParent(); 4395 } 4396 4397 return !TrivialUnwindBlocks.empty(); 4398 } 4399 4400 // Simplify resume that is only used by a single (non-phi) landing pad. 4401 bool SimplifyCFGOpt::simplifySingleResume(ResumeInst *RI) { 4402 BasicBlock *BB = RI->getParent(); 4403 auto *LPInst = cast<LandingPadInst>(BB->getFirstNonPHI()); 4404 assert(RI->getValue() == LPInst && 4405 "Resume must unwind the exception that caused control to here"); 4406 4407 // Check that there are no other instructions except for debug intrinsics. 4408 if (!isCleanupBlockEmpty( 4409 make_range<Instruction *>(LPInst->getNextNode(), RI))) 4410 return false; 4411 4412 // Turn all invokes that unwind here into calls and delete the basic block. 4413 for (BasicBlock *Pred : llvm::make_early_inc_range(predecessors(BB))) { 4414 removeUnwindEdge(Pred, DTU); 4415 ++NumInvokes; 4416 } 4417 4418 // The landingpad is now unreachable. Zap it. 4419 if (DTU) 4420 DTU->deleteBB(BB); 4421 else 4422 BB->eraseFromParent(); 4423 return true; 4424 } 4425 4426 static bool removeEmptyCleanup(CleanupReturnInst *RI, DomTreeUpdater *DTU) { 4427 // If this is a trivial cleanup pad that executes no instructions, it can be 4428 // eliminated. If the cleanup pad continues to the caller, any predecessor 4429 // that is an EH pad will be updated to continue to the caller and any 4430 // predecessor that terminates with an invoke instruction will have its invoke 4431 // instruction converted to a call instruction. If the cleanup pad being 4432 // simplified does not continue to the caller, each predecessor will be 4433 // updated to continue to the unwind destination of the cleanup pad being 4434 // simplified. 4435 BasicBlock *BB = RI->getParent(); 4436 CleanupPadInst *CPInst = RI->getCleanupPad(); 4437 if (CPInst->getParent() != BB) 4438 // This isn't an empty cleanup. 4439 return false; 4440 4441 // We cannot kill the pad if it has multiple uses. This typically arises 4442 // from unreachable basic blocks. 4443 if (!CPInst->hasOneUse()) 4444 return false; 4445 4446 // Check that there are no other instructions except for benign intrinsics. 4447 if (!isCleanupBlockEmpty( 4448 make_range<Instruction *>(CPInst->getNextNode(), RI))) 4449 return false; 4450 4451 // If the cleanup return we are simplifying unwinds to the caller, this will 4452 // set UnwindDest to nullptr. 4453 BasicBlock *UnwindDest = RI->getUnwindDest(); 4454 Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr; 4455 4456 // We're about to remove BB from the control flow. Before we do, sink any 4457 // PHINodes into the unwind destination. Doing this before changing the 4458 // control flow avoids some potentially slow checks, since we can currently 4459 // be certain that UnwindDest and BB have no common predecessors (since they 4460 // are both EH pads). 4461 if (UnwindDest) { 4462 // First, go through the PHI nodes in UnwindDest and update any nodes that 4463 // reference the block we are removing 4464 for (BasicBlock::iterator I = UnwindDest->begin(), 4465 IE = DestEHPad->getIterator(); 4466 I != IE; ++I) { 4467 PHINode *DestPN = cast<PHINode>(I); 4468 4469 int Idx = DestPN->getBasicBlockIndex(BB); 4470 // Since BB unwinds to UnwindDest, it has to be in the PHI node. 4471 assert(Idx != -1); 4472 // This PHI node has an incoming value that corresponds to a control 4473 // path through the cleanup pad we are removing. If the incoming 4474 // value is in the cleanup pad, it must be a PHINode (because we 4475 // verified above that the block is otherwise empty). Otherwise, the 4476 // value is either a constant or a value that dominates the cleanup 4477 // pad being removed. 4478 // 4479 // Because BB and UnwindDest are both EH pads, all of their 4480 // predecessors must unwind to these blocks, and since no instruction 4481 // can have multiple unwind destinations, there will be no overlap in 4482 // incoming blocks between SrcPN and DestPN. 4483 Value *SrcVal = DestPN->getIncomingValue(Idx); 4484 PHINode *SrcPN = dyn_cast<PHINode>(SrcVal); 4485 4486 // Remove the entry for the block we are deleting. 4487 DestPN->removeIncomingValue(Idx, false); 4488 4489 if (SrcPN && SrcPN->getParent() == BB) { 4490 // If the incoming value was a PHI node in the cleanup pad we are 4491 // removing, we need to merge that PHI node's incoming values into 4492 // DestPN. 4493 for (unsigned SrcIdx = 0, SrcE = SrcPN->getNumIncomingValues(); 4494 SrcIdx != SrcE; ++SrcIdx) { 4495 DestPN->addIncoming(SrcPN->getIncomingValue(SrcIdx), 4496 SrcPN->getIncomingBlock(SrcIdx)); 4497 } 4498 } else { 4499 // Otherwise, the incoming value came from above BB and 4500 // so we can just reuse it. We must associate all of BB's 4501 // predecessors with this value. 4502 for (auto *pred : predecessors(BB)) { 4503 DestPN->addIncoming(SrcVal, pred); 4504 } 4505 } 4506 } 4507 4508 // Sink any remaining PHI nodes directly into UnwindDest. 4509 Instruction *InsertPt = DestEHPad; 4510 for (BasicBlock::iterator I = BB->begin(), 4511 IE = BB->getFirstNonPHI()->getIterator(); 4512 I != IE;) { 4513 // The iterator must be incremented here because the instructions are 4514 // being moved to another block. 4515 PHINode *PN = cast<PHINode>(I++); 4516 if (PN->use_empty() || !PN->isUsedOutsideOfBlock(BB)) 4517 // If the PHI node has no uses or all of its uses are in this basic 4518 // block (meaning they are debug or lifetime intrinsics), just leave 4519 // it. It will be erased when we erase BB below. 4520 continue; 4521 4522 // Otherwise, sink this PHI node into UnwindDest. 4523 // Any predecessors to UnwindDest which are not already represented 4524 // must be back edges which inherit the value from the path through 4525 // BB. In this case, the PHI value must reference itself. 4526 for (auto *pred : predecessors(UnwindDest)) 4527 if (pred != BB) 4528 PN->addIncoming(PN, pred); 4529 PN->moveBefore(InsertPt); 4530 } 4531 } 4532 4533 std::vector<DominatorTree::UpdateType> Updates; 4534 4535 // We use make_early_inc_range here because we may remove some predecessors. 4536 for (BasicBlock *PredBB : llvm::make_early_inc_range(predecessors(BB))) { 4537 if (UnwindDest == nullptr) { 4538 if (DTU) { 4539 DTU->applyUpdates(Updates); 4540 Updates.clear(); 4541 } 4542 removeUnwindEdge(PredBB, DTU); 4543 ++NumInvokes; 4544 } else { 4545 Instruction *TI = PredBB->getTerminator(); 4546 TI->replaceUsesOfWith(BB, UnwindDest); 4547 if (DTU) { 4548 Updates.push_back({DominatorTree::Insert, PredBB, UnwindDest}); 4549 Updates.push_back({DominatorTree::Delete, PredBB, BB}); 4550 } 4551 } 4552 } 4553 4554 if (DTU) { 4555 DTU->applyUpdates(Updates); 4556 DTU->deleteBB(BB); 4557 } else 4558 // The cleanup pad is now unreachable. Zap it. 4559 BB->eraseFromParent(); 4560 4561 return true; 4562 } 4563 4564 // Try to merge two cleanuppads together. 4565 static bool mergeCleanupPad(CleanupReturnInst *RI) { 4566 // Skip any cleanuprets which unwind to caller, there is nothing to merge 4567 // with. 4568 BasicBlock *UnwindDest = RI->getUnwindDest(); 4569 if (!UnwindDest) 4570 return false; 4571 4572 // This cleanupret isn't the only predecessor of this cleanuppad, it wouldn't 4573 // be safe to merge without code duplication. 4574 if (UnwindDest->getSinglePredecessor() != RI->getParent()) 4575 return false; 4576 4577 // Verify that our cleanuppad's unwind destination is another cleanuppad. 4578 auto *SuccessorCleanupPad = dyn_cast<CleanupPadInst>(&UnwindDest->front()); 4579 if (!SuccessorCleanupPad) 4580 return false; 4581 4582 CleanupPadInst *PredecessorCleanupPad = RI->getCleanupPad(); 4583 // Replace any uses of the successor cleanupad with the predecessor pad 4584 // The only cleanuppad uses should be this cleanupret, it's cleanupret and 4585 // funclet bundle operands. 4586 SuccessorCleanupPad->replaceAllUsesWith(PredecessorCleanupPad); 4587 // Remove the old cleanuppad. 4588 SuccessorCleanupPad->eraseFromParent(); 4589 // Now, we simply replace the cleanupret with a branch to the unwind 4590 // destination. 4591 BranchInst::Create(UnwindDest, RI->getParent()); 4592 RI->eraseFromParent(); 4593 4594 return true; 4595 } 4596 4597 bool SimplifyCFGOpt::simplifyCleanupReturn(CleanupReturnInst *RI) { 4598 // It is possible to transiantly have an undef cleanuppad operand because we 4599 // have deleted some, but not all, dead blocks. 4600 // Eventually, this block will be deleted. 4601 if (isa<UndefValue>(RI->getOperand(0))) 4602 return false; 4603 4604 if (mergeCleanupPad(RI)) 4605 return true; 4606 4607 if (removeEmptyCleanup(RI, DTU)) 4608 return true; 4609 4610 return false; 4611 } 4612 4613 bool SimplifyCFGOpt::simplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) { 4614 BasicBlock *BB = RI->getParent(); 4615 if (!BB->getFirstNonPHIOrDbg()->isTerminator()) 4616 return false; 4617 4618 // Find predecessors that end with branches. 4619 SmallVector<BasicBlock *, 8> UncondBranchPreds; 4620 SmallVector<BranchInst *, 8> CondBranchPreds; 4621 for (BasicBlock *P : predecessors(BB)) { 4622 Instruction *PTI = P->getTerminator(); 4623 if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) { 4624 if (BI->isUnconditional()) 4625 UncondBranchPreds.push_back(P); 4626 else 4627 CondBranchPreds.push_back(BI); 4628 } 4629 } 4630 4631 // If we found some, do the transformation! 4632 if (!UncondBranchPreds.empty() && DupRet) { 4633 while (!UncondBranchPreds.empty()) { 4634 BasicBlock *Pred = UncondBranchPreds.pop_back_val(); 4635 LLVM_DEBUG(dbgs() << "FOLDING: " << *BB 4636 << "INTO UNCOND BRANCH PRED: " << *Pred); 4637 (void)FoldReturnIntoUncondBranch(RI, BB, Pred, DTU); 4638 } 4639 4640 // If we eliminated all predecessors of the block, delete the block now. 4641 if (pred_empty(BB)) { 4642 // We know there are no successors, so just nuke the block. 4643 if (DTU) 4644 DTU->deleteBB(BB); 4645 else 4646 BB->eraseFromParent(); 4647 } 4648 4649 return true; 4650 } 4651 4652 // Check out all of the conditional branches going to this return 4653 // instruction. If any of them just select between returns, change the 4654 // branch itself into a select/return pair. 4655 while (!CondBranchPreds.empty()) { 4656 BranchInst *BI = CondBranchPreds.pop_back_val(); 4657 4658 // Check to see if the non-BB successor is also a return block. 4659 if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) && 4660 isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) && 4661 SimplifyCondBranchToTwoReturns(BI, Builder)) 4662 return true; 4663 } 4664 return false; 4665 } 4666 4667 bool SimplifyCFGOpt::simplifyUnreachable(UnreachableInst *UI) { 4668 BasicBlock *BB = UI->getParent(); 4669 4670 bool Changed = false; 4671 4672 // If there are any instructions immediately before the unreachable that can 4673 // be removed, do so. 4674 while (UI->getIterator() != BB->begin()) { 4675 BasicBlock::iterator BBI = UI->getIterator(); 4676 --BBI; 4677 // Do not delete instructions that can have side effects which might cause 4678 // the unreachable to not be reachable; specifically, calls and volatile 4679 // operations may have this effect. 4680 if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI)) 4681 break; 4682 4683 if (BBI->mayHaveSideEffects()) { 4684 if (auto *SI = dyn_cast<StoreInst>(BBI)) { 4685 if (SI->isVolatile()) 4686 break; 4687 } else if (auto *LI = dyn_cast<LoadInst>(BBI)) { 4688 if (LI->isVolatile()) 4689 break; 4690 } else if (auto *RMWI = dyn_cast<AtomicRMWInst>(BBI)) { 4691 if (RMWI->isVolatile()) 4692 break; 4693 } else if (auto *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) { 4694 if (CXI->isVolatile()) 4695 break; 4696 } else if (isa<CatchPadInst>(BBI)) { 4697 // A catchpad may invoke exception object constructors and such, which 4698 // in some languages can be arbitrary code, so be conservative by 4699 // default. 4700 // For CoreCLR, it just involves a type test, so can be removed. 4701 if (classifyEHPersonality(BB->getParent()->getPersonalityFn()) != 4702 EHPersonality::CoreCLR) 4703 break; 4704 } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) && 4705 !isa<LandingPadInst>(BBI)) { 4706 break; 4707 } 4708 // Note that deleting LandingPad's here is in fact okay, although it 4709 // involves a bit of subtle reasoning. If this inst is a LandingPad, 4710 // all the predecessors of this block will be the unwind edges of Invokes, 4711 // and we can therefore guarantee this block will be erased. 4712 } 4713 4714 // Delete this instruction (any uses are guaranteed to be dead) 4715 if (!BBI->use_empty()) 4716 BBI->replaceAllUsesWith(UndefValue::get(BBI->getType())); 4717 BBI->eraseFromParent(); 4718 Changed = true; 4719 } 4720 4721 // If the unreachable instruction is the first in the block, take a gander 4722 // at all of the predecessors of this instruction, and simplify them. 4723 if (&BB->front() != UI) 4724 return Changed; 4725 4726 std::vector<DominatorTree::UpdateType> Updates; 4727 4728 SmallSetVector<BasicBlock *, 8> Preds(pred_begin(BB), pred_end(BB)); 4729 for (unsigned i = 0, e = Preds.size(); i != e; ++i) { 4730 auto *Predecessor = Preds[i]; 4731 Instruction *TI = Predecessor->getTerminator(); 4732 IRBuilder<> Builder(TI); 4733 if (auto *BI = dyn_cast<BranchInst>(TI)) { 4734 // We could either have a proper unconditional branch, 4735 // or a degenerate conditional branch with matching destinations. 4736 if (all_of(BI->successors(), 4737 [BB](auto *Successor) { return Successor == BB; })) { 4738 new UnreachableInst(TI->getContext(), TI); 4739 TI->eraseFromParent(); 4740 Changed = true; 4741 } else { 4742 assert(BI->isConditional() && "Can't get here with an uncond branch."); 4743 Value* Cond = BI->getCondition(); 4744 assert(BI->getSuccessor(0) != BI->getSuccessor(1) && 4745 "The destinations are guaranteed to be different here."); 4746 if (BI->getSuccessor(0) == BB) { 4747 Builder.CreateAssumption(Builder.CreateNot(Cond)); 4748 Builder.CreateBr(BI->getSuccessor(1)); 4749 } else { 4750 assert(BI->getSuccessor(1) == BB && "Incorrect CFG"); 4751 Builder.CreateAssumption(Cond); 4752 Builder.CreateBr(BI->getSuccessor(0)); 4753 } 4754 EraseTerminatorAndDCECond(BI); 4755 Changed = true; 4756 } 4757 if (DTU) 4758 Updates.push_back({DominatorTree::Delete, Predecessor, BB}); 4759 } else if (auto *SI = dyn_cast<SwitchInst>(TI)) { 4760 SwitchInstProfUpdateWrapper SU(*SI); 4761 for (auto i = SU->case_begin(), e = SU->case_end(); i != e;) { 4762 if (i->getCaseSuccessor() != BB) { 4763 ++i; 4764 continue; 4765 } 4766 BB->removePredecessor(SU->getParent()); 4767 i = SU.removeCase(i); 4768 e = SU->case_end(); 4769 Changed = true; 4770 } 4771 // Note that the default destination can't be removed! 4772 if (DTU && SI->getDefaultDest() != BB) 4773 Updates.push_back({DominatorTree::Delete, Predecessor, BB}); 4774 } else if (auto *II = dyn_cast<InvokeInst>(TI)) { 4775 if (II->getUnwindDest() == BB) { 4776 if (DTU) { 4777 DTU->applyUpdates(Updates); 4778 Updates.clear(); 4779 } 4780 removeUnwindEdge(TI->getParent(), DTU); 4781 Changed = true; 4782 } 4783 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) { 4784 if (CSI->getUnwindDest() == BB) { 4785 if (DTU) { 4786 DTU->applyUpdates(Updates); 4787 Updates.clear(); 4788 } 4789 removeUnwindEdge(TI->getParent(), DTU); 4790 Changed = true; 4791 continue; 4792 } 4793 4794 for (CatchSwitchInst::handler_iterator I = CSI->handler_begin(), 4795 E = CSI->handler_end(); 4796 I != E; ++I) { 4797 if (*I == BB) { 4798 CSI->removeHandler(I); 4799 --I; 4800 --E; 4801 Changed = true; 4802 } 4803 } 4804 if (DTU) 4805 Updates.push_back({DominatorTree::Delete, Predecessor, BB}); 4806 if (CSI->getNumHandlers() == 0) { 4807 if (CSI->hasUnwindDest()) { 4808 // Redirect all predecessors of the block containing CatchSwitchInst 4809 // to instead branch to the CatchSwitchInst's unwind destination. 4810 if (DTU) { 4811 for (auto *PredecessorOfPredecessor : predecessors(Predecessor)) { 4812 Updates.push_back({DominatorTree::Insert, 4813 PredecessorOfPredecessor, 4814 CSI->getUnwindDest()}); 4815 Updates.push_back({DominatorTree::Delete, 4816 PredecessorOfPredecessor, Predecessor}); 4817 } 4818 } 4819 Predecessor->replaceAllUsesWith(CSI->getUnwindDest()); 4820 } else { 4821 // Rewrite all preds to unwind to caller (or from invoke to call). 4822 if (DTU) { 4823 DTU->applyUpdates(Updates); 4824 Updates.clear(); 4825 } 4826 SmallVector<BasicBlock *, 8> EHPreds(predecessors(Predecessor)); 4827 for (BasicBlock *EHPred : EHPreds) 4828 removeUnwindEdge(EHPred, DTU); 4829 } 4830 // The catchswitch is no longer reachable. 4831 new UnreachableInst(CSI->getContext(), CSI); 4832 CSI->eraseFromParent(); 4833 Changed = true; 4834 } 4835 } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) { 4836 (void)CRI; 4837 assert(CRI->hasUnwindDest() && CRI->getUnwindDest() == BB && 4838 "Expected to always have an unwind to BB."); 4839 if (DTU) 4840 Updates.push_back({DominatorTree::Delete, Predecessor, BB}); 4841 new UnreachableInst(TI->getContext(), TI); 4842 TI->eraseFromParent(); 4843 Changed = true; 4844 } 4845 } 4846 4847 if (DTU) 4848 DTU->applyUpdates(Updates); 4849 4850 // If this block is now dead, remove it. 4851 if (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) { 4852 // We know there are no successors, so just nuke the block. 4853 if (DTU) 4854 DTU->deleteBB(BB); 4855 else 4856 BB->eraseFromParent(); 4857 return true; 4858 } 4859 4860 return Changed; 4861 } 4862 4863 static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) { 4864 assert(Cases.size() >= 1); 4865 4866 array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate); 4867 for (size_t I = 1, E = Cases.size(); I != E; ++I) { 4868 if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1) 4869 return false; 4870 } 4871 return true; 4872 } 4873 4874 static void createUnreachableSwitchDefault(SwitchInst *Switch, 4875 DomTreeUpdater *DTU) { 4876 LLVM_DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n"); 4877 auto *BB = Switch->getParent(); 4878 BasicBlock *NewDefaultBlock = SplitBlockPredecessors( 4879 Switch->getDefaultDest(), Switch->getParent(), "", DTU); 4880 auto *OrigDefaultBlock = Switch->getDefaultDest(); 4881 Switch->setDefaultDest(&*NewDefaultBlock); 4882 if (DTU) 4883 DTU->applyUpdates({{DominatorTree::Insert, BB, &*NewDefaultBlock}, 4884 {DominatorTree::Delete, BB, OrigDefaultBlock}}); 4885 SplitBlock(&*NewDefaultBlock, &NewDefaultBlock->front(), DTU); 4886 SmallVector<DominatorTree::UpdateType, 2> Updates; 4887 if (DTU) 4888 for (auto *Successor : successors(NewDefaultBlock)) 4889 Updates.push_back({DominatorTree::Delete, NewDefaultBlock, Successor}); 4890 auto *NewTerminator = NewDefaultBlock->getTerminator(); 4891 new UnreachableInst(Switch->getContext(), NewTerminator); 4892 EraseTerminatorAndDCECond(NewTerminator); 4893 if (DTU) 4894 DTU->applyUpdates(Updates); 4895 } 4896 4897 /// Turn a switch with two reachable destinations into an integer range 4898 /// comparison and branch. 4899 bool SimplifyCFGOpt::TurnSwitchRangeIntoICmp(SwitchInst *SI, 4900 IRBuilder<> &Builder) { 4901 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 4902 4903 bool HasDefault = 4904 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 4905 4906 auto *BB = SI->getParent(); 4907 4908 // Partition the cases into two sets with different destinations. 4909 BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr; 4910 BasicBlock *DestB = nullptr; 4911 SmallVector<ConstantInt *, 16> CasesA; 4912 SmallVector<ConstantInt *, 16> CasesB; 4913 4914 for (auto Case : SI->cases()) { 4915 BasicBlock *Dest = Case.getCaseSuccessor(); 4916 if (!DestA) 4917 DestA = Dest; 4918 if (Dest == DestA) { 4919 CasesA.push_back(Case.getCaseValue()); 4920 continue; 4921 } 4922 if (!DestB) 4923 DestB = Dest; 4924 if (Dest == DestB) { 4925 CasesB.push_back(Case.getCaseValue()); 4926 continue; 4927 } 4928 return false; // More than two destinations. 4929 } 4930 4931 assert(DestA && DestB && 4932 "Single-destination switch should have been folded."); 4933 assert(DestA != DestB); 4934 assert(DestB != SI->getDefaultDest()); 4935 assert(!CasesB.empty() && "There must be non-default cases."); 4936 assert(!CasesA.empty() || HasDefault); 4937 4938 // Figure out if one of the sets of cases form a contiguous range. 4939 SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr; 4940 BasicBlock *ContiguousDest = nullptr; 4941 BasicBlock *OtherDest = nullptr; 4942 if (!CasesA.empty() && CasesAreContiguous(CasesA)) { 4943 ContiguousCases = &CasesA; 4944 ContiguousDest = DestA; 4945 OtherDest = DestB; 4946 } else if (CasesAreContiguous(CasesB)) { 4947 ContiguousCases = &CasesB; 4948 ContiguousDest = DestB; 4949 OtherDest = DestA; 4950 } else 4951 return false; 4952 4953 // Start building the compare and branch. 4954 4955 Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back()); 4956 Constant *NumCases = 4957 ConstantInt::get(Offset->getType(), ContiguousCases->size()); 4958 4959 Value *Sub = SI->getCondition(); 4960 if (!Offset->isNullValue()) 4961 Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off"); 4962 4963 Value *Cmp; 4964 // If NumCases overflowed, then all possible values jump to the successor. 4965 if (NumCases->isNullValue() && !ContiguousCases->empty()) 4966 Cmp = ConstantInt::getTrue(SI->getContext()); 4967 else 4968 Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch"); 4969 BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest); 4970 4971 // Update weight for the newly-created conditional branch. 4972 if (HasBranchWeights(SI)) { 4973 SmallVector<uint64_t, 8> Weights; 4974 GetBranchWeights(SI, Weights); 4975 if (Weights.size() == 1 + SI->getNumCases()) { 4976 uint64_t TrueWeight = 0; 4977 uint64_t FalseWeight = 0; 4978 for (size_t I = 0, E = Weights.size(); I != E; ++I) { 4979 if (SI->getSuccessor(I) == ContiguousDest) 4980 TrueWeight += Weights[I]; 4981 else 4982 FalseWeight += Weights[I]; 4983 } 4984 while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) { 4985 TrueWeight /= 2; 4986 FalseWeight /= 2; 4987 } 4988 setBranchWeights(NewBI, TrueWeight, FalseWeight); 4989 } 4990 } 4991 4992 // Prune obsolete incoming values off the successors' PHI nodes. 4993 for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) { 4994 unsigned PreviousEdges = ContiguousCases->size(); 4995 if (ContiguousDest == SI->getDefaultDest()) 4996 ++PreviousEdges; 4997 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I) 4998 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 4999 } 5000 for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) { 5001 unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size(); 5002 if (OtherDest == SI->getDefaultDest()) 5003 ++PreviousEdges; 5004 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I) 5005 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 5006 } 5007 5008 // Clean up the default block - it may have phis or other instructions before 5009 // the unreachable terminator. 5010 if (!HasDefault) 5011 createUnreachableSwitchDefault(SI, DTU); 5012 5013 auto *UnreachableDefault = SI->getDefaultDest(); 5014 5015 // Drop the switch. 5016 SI->eraseFromParent(); 5017 5018 if (!HasDefault && DTU) 5019 DTU->applyUpdates({{DominatorTree::Delete, BB, UnreachableDefault}}); 5020 5021 return true; 5022 } 5023 5024 /// Compute masked bits for the condition of a switch 5025 /// and use it to remove dead cases. 5026 static bool eliminateDeadSwitchCases(SwitchInst *SI, DomTreeUpdater *DTU, 5027 AssumptionCache *AC, 5028 const DataLayout &DL) { 5029 Value *Cond = SI->getCondition(); 5030 unsigned Bits = Cond->getType()->getIntegerBitWidth(); 5031 KnownBits Known = computeKnownBits(Cond, DL, 0, AC, SI); 5032 5033 // We can also eliminate cases by determining that their values are outside of 5034 // the limited range of the condition based on how many significant (non-sign) 5035 // bits are in the condition value. 5036 unsigned ExtraSignBits = ComputeNumSignBits(Cond, DL, 0, AC, SI) - 1; 5037 unsigned MaxSignificantBitsInCond = Bits - ExtraSignBits; 5038 5039 // Gather dead cases. 5040 SmallVector<ConstantInt *, 8> DeadCases; 5041 SmallDenseMap<BasicBlock *, int, 8> NumPerSuccessorCases; 5042 for (auto &Case : SI->cases()) { 5043 auto *Successor = Case.getCaseSuccessor(); 5044 if (DTU) 5045 ++NumPerSuccessorCases[Successor]; 5046 const APInt &CaseVal = Case.getCaseValue()->getValue(); 5047 if (Known.Zero.intersects(CaseVal) || !Known.One.isSubsetOf(CaseVal) || 5048 (CaseVal.getMinSignedBits() > MaxSignificantBitsInCond)) { 5049 DeadCases.push_back(Case.getCaseValue()); 5050 if (DTU) 5051 --NumPerSuccessorCases[Successor]; 5052 LLVM_DEBUG(dbgs() << "SimplifyCFG: switch case " << CaseVal 5053 << " is dead.\n"); 5054 } 5055 } 5056 5057 // If we can prove that the cases must cover all possible values, the 5058 // default destination becomes dead and we can remove it. If we know some 5059 // of the bits in the value, we can use that to more precisely compute the 5060 // number of possible unique case values. 5061 bool HasDefault = 5062 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 5063 const unsigned NumUnknownBits = 5064 Bits - (Known.Zero | Known.One).countPopulation(); 5065 assert(NumUnknownBits <= Bits); 5066 if (HasDefault && DeadCases.empty() && 5067 NumUnknownBits < 64 /* avoid overflow */ && 5068 SI->getNumCases() == (1ULL << NumUnknownBits)) { 5069 createUnreachableSwitchDefault(SI, DTU); 5070 return true; 5071 } 5072 5073 if (DeadCases.empty()) 5074 return false; 5075 5076 SwitchInstProfUpdateWrapper SIW(*SI); 5077 for (ConstantInt *DeadCase : DeadCases) { 5078 SwitchInst::CaseIt CaseI = SI->findCaseValue(DeadCase); 5079 assert(CaseI != SI->case_default() && 5080 "Case was not found. Probably mistake in DeadCases forming."); 5081 // Prune unused values from PHI nodes. 5082 CaseI->getCaseSuccessor()->removePredecessor(SI->getParent()); 5083 SIW.removeCase(CaseI); 5084 } 5085 5086 if (DTU) { 5087 std::vector<DominatorTree::UpdateType> Updates; 5088 for (const std::pair<BasicBlock *, int> &I : NumPerSuccessorCases) 5089 if (I.second == 0) 5090 Updates.push_back({DominatorTree::Delete, SI->getParent(), I.first}); 5091 DTU->applyUpdates(Updates); 5092 } 5093 5094 return true; 5095 } 5096 5097 /// If BB would be eligible for simplification by 5098 /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated 5099 /// by an unconditional branch), look at the phi node for BB in the successor 5100 /// block and see if the incoming value is equal to CaseValue. If so, return 5101 /// the phi node, and set PhiIndex to BB's index in the phi node. 5102 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue, 5103 BasicBlock *BB, int *PhiIndex) { 5104 if (BB->getFirstNonPHIOrDbg() != BB->getTerminator()) 5105 return nullptr; // BB must be empty to be a candidate for simplification. 5106 if (!BB->getSinglePredecessor()) 5107 return nullptr; // BB must be dominated by the switch. 5108 5109 BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator()); 5110 if (!Branch || !Branch->isUnconditional()) 5111 return nullptr; // Terminator must be unconditional branch. 5112 5113 BasicBlock *Succ = Branch->getSuccessor(0); 5114 5115 for (PHINode &PHI : Succ->phis()) { 5116 int Idx = PHI.getBasicBlockIndex(BB); 5117 assert(Idx >= 0 && "PHI has no entry for predecessor?"); 5118 5119 Value *InValue = PHI.getIncomingValue(Idx); 5120 if (InValue != CaseValue) 5121 continue; 5122 5123 *PhiIndex = Idx; 5124 return &PHI; 5125 } 5126 5127 return nullptr; 5128 } 5129 5130 /// Try to forward the condition of a switch instruction to a phi node 5131 /// dominated by the switch, if that would mean that some of the destination 5132 /// blocks of the switch can be folded away. Return true if a change is made. 5133 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) { 5134 using ForwardingNodesMap = DenseMap<PHINode *, SmallVector<int, 4>>; 5135 5136 ForwardingNodesMap ForwardingNodes; 5137 BasicBlock *SwitchBlock = SI->getParent(); 5138 bool Changed = false; 5139 for (auto &Case : SI->cases()) { 5140 ConstantInt *CaseValue = Case.getCaseValue(); 5141 BasicBlock *CaseDest = Case.getCaseSuccessor(); 5142 5143 // Replace phi operands in successor blocks that are using the constant case 5144 // value rather than the switch condition variable: 5145 // switchbb: 5146 // switch i32 %x, label %default [ 5147 // i32 17, label %succ 5148 // ... 5149 // succ: 5150 // %r = phi i32 ... [ 17, %switchbb ] ... 5151 // --> 5152 // %r = phi i32 ... [ %x, %switchbb ] ... 5153 5154 for (PHINode &Phi : CaseDest->phis()) { 5155 // This only works if there is exactly 1 incoming edge from the switch to 5156 // a phi. If there is >1, that means multiple cases of the switch map to 1 5157 // value in the phi, and that phi value is not the switch condition. Thus, 5158 // this transform would not make sense (the phi would be invalid because 5159 // a phi can't have different incoming values from the same block). 5160 int SwitchBBIdx = Phi.getBasicBlockIndex(SwitchBlock); 5161 if (Phi.getIncomingValue(SwitchBBIdx) == CaseValue && 5162 count(Phi.blocks(), SwitchBlock) == 1) { 5163 Phi.setIncomingValue(SwitchBBIdx, SI->getCondition()); 5164 Changed = true; 5165 } 5166 } 5167 5168 // Collect phi nodes that are indirectly using this switch's case constants. 5169 int PhiIdx; 5170 if (auto *Phi = FindPHIForConditionForwarding(CaseValue, CaseDest, &PhiIdx)) 5171 ForwardingNodes[Phi].push_back(PhiIdx); 5172 } 5173 5174 for (auto &ForwardingNode : ForwardingNodes) { 5175 PHINode *Phi = ForwardingNode.first; 5176 SmallVectorImpl<int> &Indexes = ForwardingNode.second; 5177 if (Indexes.size() < 2) 5178 continue; 5179 5180 for (int Index : Indexes) 5181 Phi->setIncomingValue(Index, SI->getCondition()); 5182 Changed = true; 5183 } 5184 5185 return Changed; 5186 } 5187 5188 /// Return true if the backend will be able to handle 5189 /// initializing an array of constants like C. 5190 static bool ValidLookupTableConstant(Constant *C, const TargetTransformInfo &TTI) { 5191 if (C->isThreadDependent()) 5192 return false; 5193 if (C->isDLLImportDependent()) 5194 return false; 5195 5196 if (!isa<ConstantFP>(C) && !isa<ConstantInt>(C) && 5197 !isa<ConstantPointerNull>(C) && !isa<GlobalValue>(C) && 5198 !isa<UndefValue>(C) && !isa<ConstantExpr>(C)) 5199 return false; 5200 5201 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 5202 if (!CE->isGEPWithNoNotionalOverIndexing()) 5203 return false; 5204 if (!ValidLookupTableConstant(CE->getOperand(0), TTI)) 5205 return false; 5206 } 5207 5208 if (!TTI.shouldBuildLookupTablesForConstant(C)) 5209 return false; 5210 5211 return true; 5212 } 5213 5214 /// If V is a Constant, return it. Otherwise, try to look up 5215 /// its constant value in ConstantPool, returning 0 if it's not there. 5216 static Constant * 5217 LookupConstant(Value *V, 5218 const SmallDenseMap<Value *, Constant *> &ConstantPool) { 5219 if (Constant *C = dyn_cast<Constant>(V)) 5220 return C; 5221 return ConstantPool.lookup(V); 5222 } 5223 5224 /// Try to fold instruction I into a constant. This works for 5225 /// simple instructions such as binary operations where both operands are 5226 /// constant or can be replaced by constants from the ConstantPool. Returns the 5227 /// resulting constant on success, 0 otherwise. 5228 static Constant * 5229 ConstantFold(Instruction *I, const DataLayout &DL, 5230 const SmallDenseMap<Value *, Constant *> &ConstantPool) { 5231 if (SelectInst *Select = dyn_cast<SelectInst>(I)) { 5232 Constant *A = LookupConstant(Select->getCondition(), ConstantPool); 5233 if (!A) 5234 return nullptr; 5235 if (A->isAllOnesValue()) 5236 return LookupConstant(Select->getTrueValue(), ConstantPool); 5237 if (A->isNullValue()) 5238 return LookupConstant(Select->getFalseValue(), ConstantPool); 5239 return nullptr; 5240 } 5241 5242 SmallVector<Constant *, 4> COps; 5243 for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) { 5244 if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool)) 5245 COps.push_back(A); 5246 else 5247 return nullptr; 5248 } 5249 5250 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) { 5251 return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0], 5252 COps[1], DL); 5253 } 5254 5255 return ConstantFoldInstOperands(I, COps, DL); 5256 } 5257 5258 /// Try to determine the resulting constant values in phi nodes 5259 /// at the common destination basic block, *CommonDest, for one of the case 5260 /// destionations CaseDest corresponding to value CaseVal (0 for the default 5261 /// case), of a switch instruction SI. 5262 static bool 5263 GetCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest, 5264 BasicBlock **CommonDest, 5265 SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res, 5266 const DataLayout &DL, const TargetTransformInfo &TTI) { 5267 // The block from which we enter the common destination. 5268 BasicBlock *Pred = SI->getParent(); 5269 5270 // If CaseDest is empty except for some side-effect free instructions through 5271 // which we can constant-propagate the CaseVal, continue to its successor. 5272 SmallDenseMap<Value *, Constant *> ConstantPool; 5273 ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal)); 5274 for (Instruction &I :CaseDest->instructionsWithoutDebug()) { 5275 if (I.isTerminator()) { 5276 // If the terminator is a simple branch, continue to the next block. 5277 if (I.getNumSuccessors() != 1 || I.isExceptionalTerminator()) 5278 return false; 5279 Pred = CaseDest; 5280 CaseDest = I.getSuccessor(0); 5281 } else if (Constant *C = ConstantFold(&I, DL, ConstantPool)) { 5282 // Instruction is side-effect free and constant. 5283 5284 // If the instruction has uses outside this block or a phi node slot for 5285 // the block, it is not safe to bypass the instruction since it would then 5286 // no longer dominate all its uses. 5287 for (auto &Use : I.uses()) { 5288 User *User = Use.getUser(); 5289 if (Instruction *I = dyn_cast<Instruction>(User)) 5290 if (I->getParent() == CaseDest) 5291 continue; 5292 if (PHINode *Phi = dyn_cast<PHINode>(User)) 5293 if (Phi->getIncomingBlock(Use) == CaseDest) 5294 continue; 5295 return false; 5296 } 5297 5298 ConstantPool.insert(std::make_pair(&I, C)); 5299 } else { 5300 break; 5301 } 5302 } 5303 5304 // If we did not have a CommonDest before, use the current one. 5305 if (!*CommonDest) 5306 *CommonDest = CaseDest; 5307 // If the destination isn't the common one, abort. 5308 if (CaseDest != *CommonDest) 5309 return false; 5310 5311 // Get the values for this case from phi nodes in the destination block. 5312 for (PHINode &PHI : (*CommonDest)->phis()) { 5313 int Idx = PHI.getBasicBlockIndex(Pred); 5314 if (Idx == -1) 5315 continue; 5316 5317 Constant *ConstVal = 5318 LookupConstant(PHI.getIncomingValue(Idx), ConstantPool); 5319 if (!ConstVal) 5320 return false; 5321 5322 // Be conservative about which kinds of constants we support. 5323 if (!ValidLookupTableConstant(ConstVal, TTI)) 5324 return false; 5325 5326 Res.push_back(std::make_pair(&PHI, ConstVal)); 5327 } 5328 5329 return Res.size() > 0; 5330 } 5331 5332 // Helper function used to add CaseVal to the list of cases that generate 5333 // Result. Returns the updated number of cases that generate this result. 5334 static uintptr_t MapCaseToResult(ConstantInt *CaseVal, 5335 SwitchCaseResultVectorTy &UniqueResults, 5336 Constant *Result) { 5337 for (auto &I : UniqueResults) { 5338 if (I.first == Result) { 5339 I.second.push_back(CaseVal); 5340 return I.second.size(); 5341 } 5342 } 5343 UniqueResults.push_back( 5344 std::make_pair(Result, SmallVector<ConstantInt *, 4>(1, CaseVal))); 5345 return 1; 5346 } 5347 5348 // Helper function that initializes a map containing 5349 // results for the PHI node of the common destination block for a switch 5350 // instruction. Returns false if multiple PHI nodes have been found or if 5351 // there is not a common destination block for the switch. 5352 static bool 5353 InitializeUniqueCases(SwitchInst *SI, PHINode *&PHI, BasicBlock *&CommonDest, 5354 SwitchCaseResultVectorTy &UniqueResults, 5355 Constant *&DefaultResult, const DataLayout &DL, 5356 const TargetTransformInfo &TTI, 5357 uintptr_t MaxUniqueResults, uintptr_t MaxCasesPerResult) { 5358 for (auto &I : SI->cases()) { 5359 ConstantInt *CaseVal = I.getCaseValue(); 5360 5361 // Resulting value at phi nodes for this case value. 5362 SwitchCaseResultsTy Results; 5363 if (!GetCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results, 5364 DL, TTI)) 5365 return false; 5366 5367 // Only one value per case is permitted. 5368 if (Results.size() > 1) 5369 return false; 5370 5371 // Add the case->result mapping to UniqueResults. 5372 const uintptr_t NumCasesForResult = 5373 MapCaseToResult(CaseVal, UniqueResults, Results.begin()->second); 5374 5375 // Early out if there are too many cases for this result. 5376 if (NumCasesForResult > MaxCasesPerResult) 5377 return false; 5378 5379 // Early out if there are too many unique results. 5380 if (UniqueResults.size() > MaxUniqueResults) 5381 return false; 5382 5383 // Check the PHI consistency. 5384 if (!PHI) 5385 PHI = Results[0].first; 5386 else if (PHI != Results[0].first) 5387 return false; 5388 } 5389 // Find the default result value. 5390 SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults; 5391 BasicBlock *DefaultDest = SI->getDefaultDest(); 5392 GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults, 5393 DL, TTI); 5394 // If the default value is not found abort unless the default destination 5395 // is unreachable. 5396 DefaultResult = 5397 DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr; 5398 if ((!DefaultResult && 5399 !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()))) 5400 return false; 5401 5402 return true; 5403 } 5404 5405 // Helper function that checks if it is possible to transform a switch with only 5406 // two cases (or two cases + default) that produces a result into a select. 5407 // Example: 5408 // switch (a) { 5409 // case 10: %0 = icmp eq i32 %a, 10 5410 // return 10; %1 = select i1 %0, i32 10, i32 4 5411 // case 20: ----> %2 = icmp eq i32 %a, 20 5412 // return 2; %3 = select i1 %2, i32 2, i32 %1 5413 // default: 5414 // return 4; 5415 // } 5416 static Value *ConvertTwoCaseSwitch(const SwitchCaseResultVectorTy &ResultVector, 5417 Constant *DefaultResult, Value *Condition, 5418 IRBuilder<> &Builder) { 5419 // If we are selecting between only two cases transform into a simple 5420 // select or a two-way select if default is possible. 5421 if (ResultVector.size() == 2 && ResultVector[0].second.size() == 1 && 5422 ResultVector[1].second.size() == 1) { 5423 ConstantInt *const FirstCase = ResultVector[0].second[0]; 5424 ConstantInt *const SecondCase = ResultVector[1].second[0]; 5425 5426 bool DefaultCanTrigger = DefaultResult; 5427 Value *SelectValue = ResultVector[1].first; 5428 if (DefaultCanTrigger) { 5429 Value *const ValueCompare = 5430 Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp"); 5431 SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first, 5432 DefaultResult, "switch.select"); 5433 } 5434 Value *const ValueCompare = 5435 Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp"); 5436 return Builder.CreateSelect(ValueCompare, ResultVector[0].first, 5437 SelectValue, "switch.select"); 5438 } 5439 5440 // Handle the degenerate case where two cases have the same value. 5441 if (ResultVector.size() == 1 && ResultVector[0].second.size() == 2 && 5442 DefaultResult) { 5443 Value *Cmp1 = Builder.CreateICmpEQ( 5444 Condition, ResultVector[0].second[0], "switch.selectcmp.case1"); 5445 Value *Cmp2 = Builder.CreateICmpEQ( 5446 Condition, ResultVector[0].second[1], "switch.selectcmp.case2"); 5447 Value *Cmp = Builder.CreateOr(Cmp1, Cmp2, "switch.selectcmp"); 5448 return Builder.CreateSelect(Cmp, ResultVector[0].first, DefaultResult); 5449 } 5450 5451 return nullptr; 5452 } 5453 5454 // Helper function to cleanup a switch instruction that has been converted into 5455 // a select, fixing up PHI nodes and basic blocks. 5456 static void RemoveSwitchAfterSelectConversion(SwitchInst *SI, PHINode *PHI, 5457 Value *SelectValue, 5458 IRBuilder<> &Builder, 5459 DomTreeUpdater *DTU) { 5460 std::vector<DominatorTree::UpdateType> Updates; 5461 5462 BasicBlock *SelectBB = SI->getParent(); 5463 BasicBlock *DestBB = PHI->getParent(); 5464 5465 if (DTU && !is_contained(predecessors(DestBB), SelectBB)) 5466 Updates.push_back({DominatorTree::Insert, SelectBB, DestBB}); 5467 Builder.CreateBr(DestBB); 5468 5469 // Remove the switch. 5470 5471 while (PHI->getBasicBlockIndex(SelectBB) >= 0) 5472 PHI->removeIncomingValue(SelectBB); 5473 PHI->addIncoming(SelectValue, SelectBB); 5474 5475 SmallPtrSet<BasicBlock *, 4> RemovedSuccessors; 5476 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { 5477 BasicBlock *Succ = SI->getSuccessor(i); 5478 5479 if (Succ == DestBB) 5480 continue; 5481 Succ->removePredecessor(SelectBB); 5482 if (DTU && RemovedSuccessors.insert(Succ).second) 5483 Updates.push_back({DominatorTree::Delete, SelectBB, Succ}); 5484 } 5485 SI->eraseFromParent(); 5486 if (DTU) 5487 DTU->applyUpdates(Updates); 5488 } 5489 5490 /// If the switch is only used to initialize one or more 5491 /// phi nodes in a common successor block with only two different 5492 /// constant values, replace the switch with select. 5493 static bool switchToSelect(SwitchInst *SI, IRBuilder<> &Builder, 5494 DomTreeUpdater *DTU, const DataLayout &DL, 5495 const TargetTransformInfo &TTI) { 5496 Value *const Cond = SI->getCondition(); 5497 PHINode *PHI = nullptr; 5498 BasicBlock *CommonDest = nullptr; 5499 Constant *DefaultResult; 5500 SwitchCaseResultVectorTy UniqueResults; 5501 // Collect all the cases that will deliver the same value from the switch. 5502 if (!InitializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult, 5503 DL, TTI, /*MaxUniqueResults*/2, 5504 /*MaxCasesPerResult*/2)) 5505 return false; 5506 assert(PHI != nullptr && "PHI for value select not found"); 5507 5508 Builder.SetInsertPoint(SI); 5509 Value *SelectValue = 5510 ConvertTwoCaseSwitch(UniqueResults, DefaultResult, Cond, Builder); 5511 if (SelectValue) { 5512 RemoveSwitchAfterSelectConversion(SI, PHI, SelectValue, Builder, DTU); 5513 return true; 5514 } 5515 // The switch couldn't be converted into a select. 5516 return false; 5517 } 5518 5519 namespace { 5520 5521 /// This class represents a lookup table that can be used to replace a switch. 5522 class SwitchLookupTable { 5523 public: 5524 /// Create a lookup table to use as a switch replacement with the contents 5525 /// of Values, using DefaultValue to fill any holes in the table. 5526 SwitchLookupTable( 5527 Module &M, uint64_t TableSize, ConstantInt *Offset, 5528 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values, 5529 Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName); 5530 5531 /// Build instructions with Builder to retrieve the value at 5532 /// the position given by Index in the lookup table. 5533 Value *BuildLookup(Value *Index, IRBuilder<> &Builder); 5534 5535 /// Return true if a table with TableSize elements of 5536 /// type ElementType would fit in a target-legal register. 5537 static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize, 5538 Type *ElementType); 5539 5540 private: 5541 // Depending on the contents of the table, it can be represented in 5542 // different ways. 5543 enum { 5544 // For tables where each element contains the same value, we just have to 5545 // store that single value and return it for each lookup. 5546 SingleValueKind, 5547 5548 // For tables where there is a linear relationship between table index 5549 // and values. We calculate the result with a simple multiplication 5550 // and addition instead of a table lookup. 5551 LinearMapKind, 5552 5553 // For small tables with integer elements, we can pack them into a bitmap 5554 // that fits into a target-legal register. Values are retrieved by 5555 // shift and mask operations. 5556 BitMapKind, 5557 5558 // The table is stored as an array of values. Values are retrieved by load 5559 // instructions from the table. 5560 ArrayKind 5561 } Kind; 5562 5563 // For SingleValueKind, this is the single value. 5564 Constant *SingleValue = nullptr; 5565 5566 // For BitMapKind, this is the bitmap. 5567 ConstantInt *BitMap = nullptr; 5568 IntegerType *BitMapElementTy = nullptr; 5569 5570 // For LinearMapKind, these are the constants used to derive the value. 5571 ConstantInt *LinearOffset = nullptr; 5572 ConstantInt *LinearMultiplier = nullptr; 5573 5574 // For ArrayKind, this is the array. 5575 GlobalVariable *Array = nullptr; 5576 }; 5577 5578 } // end anonymous namespace 5579 5580 SwitchLookupTable::SwitchLookupTable( 5581 Module &M, uint64_t TableSize, ConstantInt *Offset, 5582 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values, 5583 Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName) { 5584 assert(Values.size() && "Can't build lookup table without values!"); 5585 assert(TableSize >= Values.size() && "Can't fit values in table!"); 5586 5587 // If all values in the table are equal, this is that value. 5588 SingleValue = Values.begin()->second; 5589 5590 Type *ValueType = Values.begin()->second->getType(); 5591 5592 // Build up the table contents. 5593 SmallVector<Constant *, 64> TableContents(TableSize); 5594 for (size_t I = 0, E = Values.size(); I != E; ++I) { 5595 ConstantInt *CaseVal = Values[I].first; 5596 Constant *CaseRes = Values[I].second; 5597 assert(CaseRes->getType() == ValueType); 5598 5599 uint64_t Idx = (CaseVal->getValue() - Offset->getValue()).getLimitedValue(); 5600 TableContents[Idx] = CaseRes; 5601 5602 if (CaseRes != SingleValue) 5603 SingleValue = nullptr; 5604 } 5605 5606 // Fill in any holes in the table with the default result. 5607 if (Values.size() < TableSize) { 5608 assert(DefaultValue && 5609 "Need a default value to fill the lookup table holes."); 5610 assert(DefaultValue->getType() == ValueType); 5611 for (uint64_t I = 0; I < TableSize; ++I) { 5612 if (!TableContents[I]) 5613 TableContents[I] = DefaultValue; 5614 } 5615 5616 if (DefaultValue != SingleValue) 5617 SingleValue = nullptr; 5618 } 5619 5620 // If each element in the table contains the same value, we only need to store 5621 // that single value. 5622 if (SingleValue) { 5623 Kind = SingleValueKind; 5624 return; 5625 } 5626 5627 // Check if we can derive the value with a linear transformation from the 5628 // table index. 5629 if (isa<IntegerType>(ValueType)) { 5630 bool LinearMappingPossible = true; 5631 APInt PrevVal; 5632 APInt DistToPrev; 5633 assert(TableSize >= 2 && "Should be a SingleValue table."); 5634 // Check if there is the same distance between two consecutive values. 5635 for (uint64_t I = 0; I < TableSize; ++I) { 5636 ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]); 5637 if (!ConstVal) { 5638 // This is an undef. We could deal with it, but undefs in lookup tables 5639 // are very seldom. It's probably not worth the additional complexity. 5640 LinearMappingPossible = false; 5641 break; 5642 } 5643 const APInt &Val = ConstVal->getValue(); 5644 if (I != 0) { 5645 APInt Dist = Val - PrevVal; 5646 if (I == 1) { 5647 DistToPrev = Dist; 5648 } else if (Dist != DistToPrev) { 5649 LinearMappingPossible = false; 5650 break; 5651 } 5652 } 5653 PrevVal = Val; 5654 } 5655 if (LinearMappingPossible) { 5656 LinearOffset = cast<ConstantInt>(TableContents[0]); 5657 LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev); 5658 Kind = LinearMapKind; 5659 ++NumLinearMaps; 5660 return; 5661 } 5662 } 5663 5664 // If the type is integer and the table fits in a register, build a bitmap. 5665 if (WouldFitInRegister(DL, TableSize, ValueType)) { 5666 IntegerType *IT = cast<IntegerType>(ValueType); 5667 APInt TableInt(TableSize * IT->getBitWidth(), 0); 5668 for (uint64_t I = TableSize; I > 0; --I) { 5669 TableInt <<= IT->getBitWidth(); 5670 // Insert values into the bitmap. Undef values are set to zero. 5671 if (!isa<UndefValue>(TableContents[I - 1])) { 5672 ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]); 5673 TableInt |= Val->getValue().zext(TableInt.getBitWidth()); 5674 } 5675 } 5676 BitMap = ConstantInt::get(M.getContext(), TableInt); 5677 BitMapElementTy = IT; 5678 Kind = BitMapKind; 5679 ++NumBitMaps; 5680 return; 5681 } 5682 5683 // Store the table in an array. 5684 ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize); 5685 Constant *Initializer = ConstantArray::get(ArrayTy, TableContents); 5686 5687 Array = new GlobalVariable(M, ArrayTy, /*isConstant=*/true, 5688 GlobalVariable::PrivateLinkage, Initializer, 5689 "switch.table." + FuncName); 5690 Array->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); 5691 // Set the alignment to that of an array items. We will be only loading one 5692 // value out of it. 5693 Array->setAlignment(Align(DL.getPrefTypeAlignment(ValueType))); 5694 Kind = ArrayKind; 5695 } 5696 5697 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) { 5698 switch (Kind) { 5699 case SingleValueKind: 5700 return SingleValue; 5701 case LinearMapKind: { 5702 // Derive the result value from the input value. 5703 Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(), 5704 false, "switch.idx.cast"); 5705 if (!LinearMultiplier->isOne()) 5706 Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult"); 5707 if (!LinearOffset->isZero()) 5708 Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset"); 5709 return Result; 5710 } 5711 case BitMapKind: { 5712 // Type of the bitmap (e.g. i59). 5713 IntegerType *MapTy = BitMap->getType(); 5714 5715 // Cast Index to the same type as the bitmap. 5716 // Note: The Index is <= the number of elements in the table, so 5717 // truncating it to the width of the bitmask is safe. 5718 Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast"); 5719 5720 // Multiply the shift amount by the element width. 5721 ShiftAmt = Builder.CreateMul( 5722 ShiftAmt, ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()), 5723 "switch.shiftamt"); 5724 5725 // Shift down. 5726 Value *DownShifted = 5727 Builder.CreateLShr(BitMap, ShiftAmt, "switch.downshift"); 5728 // Mask off. 5729 return Builder.CreateTrunc(DownShifted, BitMapElementTy, "switch.masked"); 5730 } 5731 case ArrayKind: { 5732 // Make sure the table index will not overflow when treated as signed. 5733 IntegerType *IT = cast<IntegerType>(Index->getType()); 5734 uint64_t TableSize = 5735 Array->getInitializer()->getType()->getArrayNumElements(); 5736 if (TableSize > (1ULL << (IT->getBitWidth() - 1))) 5737 Index = Builder.CreateZExt( 5738 Index, IntegerType::get(IT->getContext(), IT->getBitWidth() + 1), 5739 "switch.tableidx.zext"); 5740 5741 Value *GEPIndices[] = {Builder.getInt32(0), Index}; 5742 Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array, 5743 GEPIndices, "switch.gep"); 5744 return Builder.CreateLoad( 5745 cast<ArrayType>(Array->getValueType())->getElementType(), GEP, 5746 "switch.load"); 5747 } 5748 } 5749 llvm_unreachable("Unknown lookup table kind!"); 5750 } 5751 5752 bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL, 5753 uint64_t TableSize, 5754 Type *ElementType) { 5755 auto *IT = dyn_cast<IntegerType>(ElementType); 5756 if (!IT) 5757 return false; 5758 // FIXME: If the type is wider than it needs to be, e.g. i8 but all values 5759 // are <= 15, we could try to narrow the type. 5760 5761 // Avoid overflow, fitsInLegalInteger uses unsigned int for the width. 5762 if (TableSize >= UINT_MAX / IT->getBitWidth()) 5763 return false; 5764 return DL.fitsInLegalInteger(TableSize * IT->getBitWidth()); 5765 } 5766 5767 /// Determine whether a lookup table should be built for this switch, based on 5768 /// the number of cases, size of the table, and the types of the results. 5769 static bool 5770 ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize, 5771 const TargetTransformInfo &TTI, const DataLayout &DL, 5772 const SmallDenseMap<PHINode *, Type *> &ResultTypes) { 5773 if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10) 5774 return false; // TableSize overflowed, or mul below might overflow. 5775 5776 bool AllTablesFitInRegister = true; 5777 bool HasIllegalType = false; 5778 for (const auto &I : ResultTypes) { 5779 Type *Ty = I.second; 5780 5781 // Saturate this flag to true. 5782 HasIllegalType = HasIllegalType || !TTI.isTypeLegal(Ty); 5783 5784 // Saturate this flag to false. 5785 AllTablesFitInRegister = 5786 AllTablesFitInRegister && 5787 SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty); 5788 5789 // If both flags saturate, we're done. NOTE: This *only* works with 5790 // saturating flags, and all flags have to saturate first due to the 5791 // non-deterministic behavior of iterating over a dense map. 5792 if (HasIllegalType && !AllTablesFitInRegister) 5793 break; 5794 } 5795 5796 // If each table would fit in a register, we should build it anyway. 5797 if (AllTablesFitInRegister) 5798 return true; 5799 5800 // Don't build a table that doesn't fit in-register if it has illegal types. 5801 if (HasIllegalType) 5802 return false; 5803 5804 // The table density should be at least 40%. This is the same criterion as for 5805 // jump tables, see SelectionDAGBuilder::handleJTSwitchCase. 5806 // FIXME: Find the best cut-off. 5807 return SI->getNumCases() * 10 >= TableSize * 4; 5808 } 5809 5810 /// Try to reuse the switch table index compare. Following pattern: 5811 /// \code 5812 /// if (idx < tablesize) 5813 /// r = table[idx]; // table does not contain default_value 5814 /// else 5815 /// r = default_value; 5816 /// if (r != default_value) 5817 /// ... 5818 /// \endcode 5819 /// Is optimized to: 5820 /// \code 5821 /// cond = idx < tablesize; 5822 /// if (cond) 5823 /// r = table[idx]; 5824 /// else 5825 /// r = default_value; 5826 /// if (cond) 5827 /// ... 5828 /// \endcode 5829 /// Jump threading will then eliminate the second if(cond). 5830 static void reuseTableCompare( 5831 User *PhiUser, BasicBlock *PhiBlock, BranchInst *RangeCheckBranch, 5832 Constant *DefaultValue, 5833 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values) { 5834 ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser); 5835 if (!CmpInst) 5836 return; 5837 5838 // We require that the compare is in the same block as the phi so that jump 5839 // threading can do its work afterwards. 5840 if (CmpInst->getParent() != PhiBlock) 5841 return; 5842 5843 Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1)); 5844 if (!CmpOp1) 5845 return; 5846 5847 Value *RangeCmp = RangeCheckBranch->getCondition(); 5848 Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType()); 5849 Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType()); 5850 5851 // Check if the compare with the default value is constant true or false. 5852 Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(), 5853 DefaultValue, CmpOp1, true); 5854 if (DefaultConst != TrueConst && DefaultConst != FalseConst) 5855 return; 5856 5857 // Check if the compare with the case values is distinct from the default 5858 // compare result. 5859 for (auto ValuePair : Values) { 5860 Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(), 5861 ValuePair.second, CmpOp1, true); 5862 if (!CaseConst || CaseConst == DefaultConst || isa<UndefValue>(CaseConst)) 5863 return; 5864 assert((CaseConst == TrueConst || CaseConst == FalseConst) && 5865 "Expect true or false as compare result."); 5866 } 5867 5868 // Check if the branch instruction dominates the phi node. It's a simple 5869 // dominance check, but sufficient for our needs. 5870 // Although this check is invariant in the calling loops, it's better to do it 5871 // at this late stage. Practically we do it at most once for a switch. 5872 BasicBlock *BranchBlock = RangeCheckBranch->getParent(); 5873 for (BasicBlock *Pred : predecessors(PhiBlock)) { 5874 if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock) 5875 return; 5876 } 5877 5878 if (DefaultConst == FalseConst) { 5879 // The compare yields the same result. We can replace it. 5880 CmpInst->replaceAllUsesWith(RangeCmp); 5881 ++NumTableCmpReuses; 5882 } else { 5883 // The compare yields the same result, just inverted. We can replace it. 5884 Value *InvertedTableCmp = BinaryOperator::CreateXor( 5885 RangeCmp, ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp", 5886 RangeCheckBranch); 5887 CmpInst->replaceAllUsesWith(InvertedTableCmp); 5888 ++NumTableCmpReuses; 5889 } 5890 } 5891 5892 /// If the switch is only used to initialize one or more phi nodes in a common 5893 /// successor block with different constant values, replace the switch with 5894 /// lookup tables. 5895 static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder, 5896 DomTreeUpdater *DTU, const DataLayout &DL, 5897 const TargetTransformInfo &TTI) { 5898 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 5899 5900 BasicBlock *BB = SI->getParent(); 5901 Function *Fn = BB->getParent(); 5902 // Only build lookup table when we have a target that supports it or the 5903 // attribute is not set. 5904 if (!TTI.shouldBuildLookupTables() || 5905 (Fn->getFnAttribute("no-jump-tables").getValueAsBool())) 5906 return false; 5907 5908 // FIXME: If the switch is too sparse for a lookup table, perhaps we could 5909 // split off a dense part and build a lookup table for that. 5910 5911 // FIXME: This creates arrays of GEPs to constant strings, which means each 5912 // GEP needs a runtime relocation in PIC code. We should just build one big 5913 // string and lookup indices into that. 5914 5915 // Ignore switches with less than three cases. Lookup tables will not make 5916 // them faster, so we don't analyze them. 5917 if (SI->getNumCases() < 3) 5918 return false; 5919 5920 // Figure out the corresponding result for each case value and phi node in the 5921 // common destination, as well as the min and max case values. 5922 assert(!SI->cases().empty()); 5923 SwitchInst::CaseIt CI = SI->case_begin(); 5924 ConstantInt *MinCaseVal = CI->getCaseValue(); 5925 ConstantInt *MaxCaseVal = CI->getCaseValue(); 5926 5927 BasicBlock *CommonDest = nullptr; 5928 5929 using ResultListTy = SmallVector<std::pair<ConstantInt *, Constant *>, 4>; 5930 SmallDenseMap<PHINode *, ResultListTy> ResultLists; 5931 5932 SmallDenseMap<PHINode *, Constant *> DefaultResults; 5933 SmallDenseMap<PHINode *, Type *> ResultTypes; 5934 SmallVector<PHINode *, 4> PHIs; 5935 5936 for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) { 5937 ConstantInt *CaseVal = CI->getCaseValue(); 5938 if (CaseVal->getValue().slt(MinCaseVal->getValue())) 5939 MinCaseVal = CaseVal; 5940 if (CaseVal->getValue().sgt(MaxCaseVal->getValue())) 5941 MaxCaseVal = CaseVal; 5942 5943 // Resulting value at phi nodes for this case value. 5944 using ResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>; 5945 ResultsTy Results; 5946 if (!GetCaseResults(SI, CaseVal, CI->getCaseSuccessor(), &CommonDest, 5947 Results, DL, TTI)) 5948 return false; 5949 5950 // Append the result from this case to the list for each phi. 5951 for (const auto &I : Results) { 5952 PHINode *PHI = I.first; 5953 Constant *Value = I.second; 5954 if (!ResultLists.count(PHI)) 5955 PHIs.push_back(PHI); 5956 ResultLists[PHI].push_back(std::make_pair(CaseVal, Value)); 5957 } 5958 } 5959 5960 // Keep track of the result types. 5961 for (PHINode *PHI : PHIs) { 5962 ResultTypes[PHI] = ResultLists[PHI][0].second->getType(); 5963 } 5964 5965 uint64_t NumResults = ResultLists[PHIs[0]].size(); 5966 APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue(); 5967 uint64_t TableSize = RangeSpread.getLimitedValue() + 1; 5968 bool TableHasHoles = (NumResults < TableSize); 5969 5970 // If the table has holes, we need a constant result for the default case 5971 // or a bitmask that fits in a register. 5972 SmallVector<std::pair<PHINode *, Constant *>, 4> DefaultResultsList; 5973 bool HasDefaultResults = 5974 GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, 5975 DefaultResultsList, DL, TTI); 5976 5977 bool NeedMask = (TableHasHoles && !HasDefaultResults); 5978 if (NeedMask) { 5979 // As an extra penalty for the validity test we require more cases. 5980 if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark). 5981 return false; 5982 if (!DL.fitsInLegalInteger(TableSize)) 5983 return false; 5984 } 5985 5986 for (const auto &I : DefaultResultsList) { 5987 PHINode *PHI = I.first; 5988 Constant *Result = I.second; 5989 DefaultResults[PHI] = Result; 5990 } 5991 5992 if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes)) 5993 return false; 5994 5995 std::vector<DominatorTree::UpdateType> Updates; 5996 5997 // Create the BB that does the lookups. 5998 Module &Mod = *CommonDest->getParent()->getParent(); 5999 BasicBlock *LookupBB = BasicBlock::Create( 6000 Mod.getContext(), "switch.lookup", CommonDest->getParent(), CommonDest); 6001 6002 // Compute the table index value. 6003 Builder.SetInsertPoint(SI); 6004 Value *TableIndex; 6005 if (MinCaseVal->isNullValue()) 6006 TableIndex = SI->getCondition(); 6007 else 6008 TableIndex = Builder.CreateSub(SI->getCondition(), MinCaseVal, 6009 "switch.tableidx"); 6010 6011 // Compute the maximum table size representable by the integer type we are 6012 // switching upon. 6013 unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits(); 6014 uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize; 6015 assert(MaxTableSize >= TableSize && 6016 "It is impossible for a switch to have more entries than the max " 6017 "representable value of its input integer type's size."); 6018 6019 // If the default destination is unreachable, or if the lookup table covers 6020 // all values of the conditional variable, branch directly to the lookup table 6021 // BB. Otherwise, check that the condition is within the case range. 6022 const bool DefaultIsReachable = 6023 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 6024 const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize); 6025 BranchInst *RangeCheckBranch = nullptr; 6026 6027 if (!DefaultIsReachable || GeneratingCoveredLookupTable) { 6028 Builder.CreateBr(LookupBB); 6029 if (DTU) 6030 Updates.push_back({DominatorTree::Insert, BB, LookupBB}); 6031 // Note: We call removeProdecessor later since we need to be able to get the 6032 // PHI value for the default case in case we're using a bit mask. 6033 } else { 6034 Value *Cmp = Builder.CreateICmpULT( 6035 TableIndex, ConstantInt::get(MinCaseVal->getType(), TableSize)); 6036 RangeCheckBranch = 6037 Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest()); 6038 if (DTU) 6039 Updates.push_back({DominatorTree::Insert, BB, LookupBB}); 6040 } 6041 6042 // Populate the BB that does the lookups. 6043 Builder.SetInsertPoint(LookupBB); 6044 6045 if (NeedMask) { 6046 // Before doing the lookup, we do the hole check. The LookupBB is therefore 6047 // re-purposed to do the hole check, and we create a new LookupBB. 6048 BasicBlock *MaskBB = LookupBB; 6049 MaskBB->setName("switch.hole_check"); 6050 LookupBB = BasicBlock::Create(Mod.getContext(), "switch.lookup", 6051 CommonDest->getParent(), CommonDest); 6052 6053 // Make the mask's bitwidth at least 8-bit and a power-of-2 to avoid 6054 // unnecessary illegal types. 6055 uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL)); 6056 APInt MaskInt(TableSizePowOf2, 0); 6057 APInt One(TableSizePowOf2, 1); 6058 // Build bitmask; fill in a 1 bit for every case. 6059 const ResultListTy &ResultList = ResultLists[PHIs[0]]; 6060 for (size_t I = 0, E = ResultList.size(); I != E; ++I) { 6061 uint64_t Idx = (ResultList[I].first->getValue() - MinCaseVal->getValue()) 6062 .getLimitedValue(); 6063 MaskInt |= One << Idx; 6064 } 6065 ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt); 6066 6067 // Get the TableIndex'th bit of the bitmask. 6068 // If this bit is 0 (meaning hole) jump to the default destination, 6069 // else continue with table lookup. 6070 IntegerType *MapTy = TableMask->getType(); 6071 Value *MaskIndex = 6072 Builder.CreateZExtOrTrunc(TableIndex, MapTy, "switch.maskindex"); 6073 Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, "switch.shifted"); 6074 Value *LoBit = Builder.CreateTrunc( 6075 Shifted, Type::getInt1Ty(Mod.getContext()), "switch.lobit"); 6076 Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest()); 6077 if (DTU) { 6078 Updates.push_back({DominatorTree::Insert, MaskBB, LookupBB}); 6079 Updates.push_back({DominatorTree::Insert, MaskBB, SI->getDefaultDest()}); 6080 } 6081 Builder.SetInsertPoint(LookupBB); 6082 AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, BB); 6083 } 6084 6085 if (!DefaultIsReachable || GeneratingCoveredLookupTable) { 6086 // We cached PHINodes in PHIs. To avoid accessing deleted PHINodes later, 6087 // do not delete PHINodes here. 6088 SI->getDefaultDest()->removePredecessor(BB, 6089 /*KeepOneInputPHIs=*/true); 6090 if (DTU) 6091 Updates.push_back({DominatorTree::Delete, BB, SI->getDefaultDest()}); 6092 } 6093 6094 bool ReturnedEarly = false; 6095 for (PHINode *PHI : PHIs) { 6096 const ResultListTy &ResultList = ResultLists[PHI]; 6097 6098 // If using a bitmask, use any value to fill the lookup table holes. 6099 Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI]; 6100 StringRef FuncName = Fn->getName(); 6101 SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultList, DV, DL, 6102 FuncName); 6103 6104 Value *Result = Table.BuildLookup(TableIndex, Builder); 6105 6106 // If the result is used to return immediately from the function, we want to 6107 // do that right here. 6108 if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->user_begin()) && 6109 PHI->user_back() == CommonDest->getFirstNonPHIOrDbg()) { 6110 Builder.CreateRet(Result); 6111 ReturnedEarly = true; 6112 break; 6113 } 6114 6115 // Do a small peephole optimization: re-use the switch table compare if 6116 // possible. 6117 if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) { 6118 BasicBlock *PhiBlock = PHI->getParent(); 6119 // Search for compare instructions which use the phi. 6120 for (auto *User : PHI->users()) { 6121 reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList); 6122 } 6123 } 6124 6125 PHI->addIncoming(Result, LookupBB); 6126 } 6127 6128 if (!ReturnedEarly) { 6129 Builder.CreateBr(CommonDest); 6130 if (DTU) 6131 Updates.push_back({DominatorTree::Insert, LookupBB, CommonDest}); 6132 } 6133 6134 // Remove the switch. 6135 SmallPtrSet<BasicBlock *, 8> RemovedSuccessors; 6136 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { 6137 BasicBlock *Succ = SI->getSuccessor(i); 6138 6139 if (Succ == SI->getDefaultDest()) 6140 continue; 6141 Succ->removePredecessor(BB); 6142 RemovedSuccessors.insert(Succ); 6143 } 6144 SI->eraseFromParent(); 6145 6146 if (DTU) { 6147 for (BasicBlock *RemovedSuccessor : RemovedSuccessors) 6148 Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor}); 6149 DTU->applyUpdates(Updates); 6150 } 6151 6152 ++NumLookupTables; 6153 if (NeedMask) 6154 ++NumLookupTablesHoles; 6155 return true; 6156 } 6157 6158 static bool isSwitchDense(ArrayRef<int64_t> Values) { 6159 // See also SelectionDAGBuilder::isDense(), which this function was based on. 6160 uint64_t Diff = (uint64_t)Values.back() - (uint64_t)Values.front(); 6161 uint64_t Range = Diff + 1; 6162 uint64_t NumCases = Values.size(); 6163 // 40% is the default density for building a jump table in optsize/minsize mode. 6164 uint64_t MinDensity = 40; 6165 6166 return NumCases * 100 >= Range * MinDensity; 6167 } 6168 6169 /// Try to transform a switch that has "holes" in it to a contiguous sequence 6170 /// of cases. 6171 /// 6172 /// A switch such as: switch(i) {case 5: case 9: case 13: case 17:} can be 6173 /// range-reduced to: switch ((i-5) / 4) {case 0: case 1: case 2: case 3:}. 6174 /// 6175 /// This converts a sparse switch into a dense switch which allows better 6176 /// lowering and could also allow transforming into a lookup table. 6177 static bool ReduceSwitchRange(SwitchInst *SI, IRBuilder<> &Builder, 6178 const DataLayout &DL, 6179 const TargetTransformInfo &TTI) { 6180 auto *CondTy = cast<IntegerType>(SI->getCondition()->getType()); 6181 if (CondTy->getIntegerBitWidth() > 64 || 6182 !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth())) 6183 return false; 6184 // Only bother with this optimization if there are more than 3 switch cases; 6185 // SDAG will only bother creating jump tables for 4 or more cases. 6186 if (SI->getNumCases() < 4) 6187 return false; 6188 6189 // This transform is agnostic to the signedness of the input or case values. We 6190 // can treat the case values as signed or unsigned. We can optimize more common 6191 // cases such as a sequence crossing zero {-4,0,4,8} if we interpret case values 6192 // as signed. 6193 SmallVector<int64_t,4> Values; 6194 for (auto &C : SI->cases()) 6195 Values.push_back(C.getCaseValue()->getValue().getSExtValue()); 6196 llvm::sort(Values); 6197 6198 // If the switch is already dense, there's nothing useful to do here. 6199 if (isSwitchDense(Values)) 6200 return false; 6201 6202 // First, transform the values such that they start at zero and ascend. 6203 int64_t Base = Values[0]; 6204 for (auto &V : Values) 6205 V -= (uint64_t)(Base); 6206 6207 // Now we have signed numbers that have been shifted so that, given enough 6208 // precision, there are no negative values. Since the rest of the transform 6209 // is bitwise only, we switch now to an unsigned representation. 6210 6211 // This transform can be done speculatively because it is so cheap - it 6212 // results in a single rotate operation being inserted. 6213 // FIXME: It's possible that optimizing a switch on powers of two might also 6214 // be beneficial - flag values are often powers of two and we could use a CLZ 6215 // as the key function. 6216 6217 // countTrailingZeros(0) returns 64. As Values is guaranteed to have more than 6218 // one element and LLVM disallows duplicate cases, Shift is guaranteed to be 6219 // less than 64. 6220 unsigned Shift = 64; 6221 for (auto &V : Values) 6222 Shift = std::min(Shift, countTrailingZeros((uint64_t)V)); 6223 assert(Shift < 64); 6224 if (Shift > 0) 6225 for (auto &V : Values) 6226 V = (int64_t)((uint64_t)V >> Shift); 6227 6228 if (!isSwitchDense(Values)) 6229 // Transform didn't create a dense switch. 6230 return false; 6231 6232 // The obvious transform is to shift the switch condition right and emit a 6233 // check that the condition actually cleanly divided by GCD, i.e. 6234 // C & (1 << Shift - 1) == 0 6235 // inserting a new CFG edge to handle the case where it didn't divide cleanly. 6236 // 6237 // A cheaper way of doing this is a simple ROTR(C, Shift). This performs the 6238 // shift and puts the shifted-off bits in the uppermost bits. If any of these 6239 // are nonzero then the switch condition will be very large and will hit the 6240 // default case. 6241 6242 auto *Ty = cast<IntegerType>(SI->getCondition()->getType()); 6243 Builder.SetInsertPoint(SI); 6244 auto *ShiftC = ConstantInt::get(Ty, Shift); 6245 auto *Sub = Builder.CreateSub(SI->getCondition(), ConstantInt::get(Ty, Base)); 6246 auto *LShr = Builder.CreateLShr(Sub, ShiftC); 6247 auto *Shl = Builder.CreateShl(Sub, Ty->getBitWidth() - Shift); 6248 auto *Rot = Builder.CreateOr(LShr, Shl); 6249 SI->replaceUsesOfWith(SI->getCondition(), Rot); 6250 6251 for (auto Case : SI->cases()) { 6252 auto *Orig = Case.getCaseValue(); 6253 auto Sub = Orig->getValue() - APInt(Ty->getBitWidth(), Base); 6254 Case.setValue( 6255 cast<ConstantInt>(ConstantInt::get(Ty, Sub.lshr(ShiftC->getValue())))); 6256 } 6257 return true; 6258 } 6259 6260 bool SimplifyCFGOpt::simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) { 6261 BasicBlock *BB = SI->getParent(); 6262 6263 if (isValueEqualityComparison(SI)) { 6264 // If we only have one predecessor, and if it is a branch on this value, 6265 // see if that predecessor totally determines the outcome of this switch. 6266 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 6267 if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder)) 6268 return requestResimplify(); 6269 6270 Value *Cond = SI->getCondition(); 6271 if (SelectInst *Select = dyn_cast<SelectInst>(Cond)) 6272 if (SimplifySwitchOnSelect(SI, Select)) 6273 return requestResimplify(); 6274 6275 // If the block only contains the switch, see if we can fold the block 6276 // away into any preds. 6277 if (SI == &*BB->instructionsWithoutDebug().begin()) 6278 if (FoldValueComparisonIntoPredecessors(SI, Builder)) 6279 return requestResimplify(); 6280 } 6281 6282 // Try to transform the switch into an icmp and a branch. 6283 if (TurnSwitchRangeIntoICmp(SI, Builder)) 6284 return requestResimplify(); 6285 6286 // Remove unreachable cases. 6287 if (eliminateDeadSwitchCases(SI, DTU, Options.AC, DL)) 6288 return requestResimplify(); 6289 6290 if (switchToSelect(SI, Builder, DTU, DL, TTI)) 6291 return requestResimplify(); 6292 6293 if (Options.ForwardSwitchCondToPhi && ForwardSwitchConditionToPHI(SI)) 6294 return requestResimplify(); 6295 6296 // The conversion from switch to lookup tables results in difficult-to-analyze 6297 // code and makes pruning branches much harder. This is a problem if the 6298 // switch expression itself can still be restricted as a result of inlining or 6299 // CVP. Therefore, only apply this transformation during late stages of the 6300 // optimisation pipeline. 6301 if (Options.ConvertSwitchToLookupTable && 6302 SwitchToLookupTable(SI, Builder, DTU, DL, TTI)) 6303 return requestResimplify(); 6304 6305 if (ReduceSwitchRange(SI, Builder, DL, TTI)) 6306 return requestResimplify(); 6307 6308 return false; 6309 } 6310 6311 bool SimplifyCFGOpt::simplifyIndirectBr(IndirectBrInst *IBI) { 6312 BasicBlock *BB = IBI->getParent(); 6313 bool Changed = false; 6314 6315 // Eliminate redundant destinations. 6316 SmallPtrSet<Value *, 8> Succs; 6317 SmallPtrSet<BasicBlock *, 8> RemovedSuccs; 6318 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 6319 BasicBlock *Dest = IBI->getDestination(i); 6320 if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) { 6321 if (!Dest->hasAddressTaken()) 6322 RemovedSuccs.insert(Dest); 6323 Dest->removePredecessor(BB); 6324 IBI->removeDestination(i); 6325 --i; 6326 --e; 6327 Changed = true; 6328 } 6329 } 6330 6331 if (DTU) { 6332 std::vector<DominatorTree::UpdateType> Updates; 6333 Updates.reserve(RemovedSuccs.size()); 6334 for (auto *RemovedSucc : RemovedSuccs) 6335 Updates.push_back({DominatorTree::Delete, BB, RemovedSucc}); 6336 DTU->applyUpdates(Updates); 6337 } 6338 6339 if (IBI->getNumDestinations() == 0) { 6340 // If the indirectbr has no successors, change it to unreachable. 6341 new UnreachableInst(IBI->getContext(), IBI); 6342 EraseTerminatorAndDCECond(IBI); 6343 return true; 6344 } 6345 6346 if (IBI->getNumDestinations() == 1) { 6347 // If the indirectbr has one successor, change it to a direct branch. 6348 BranchInst::Create(IBI->getDestination(0), IBI); 6349 EraseTerminatorAndDCECond(IBI); 6350 return true; 6351 } 6352 6353 if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) { 6354 if (SimplifyIndirectBrOnSelect(IBI, SI)) 6355 return requestResimplify(); 6356 } 6357 return Changed; 6358 } 6359 6360 /// Given an block with only a single landing pad and a unconditional branch 6361 /// try to find another basic block which this one can be merged with. This 6362 /// handles cases where we have multiple invokes with unique landing pads, but 6363 /// a shared handler. 6364 /// 6365 /// We specifically choose to not worry about merging non-empty blocks 6366 /// here. That is a PRE/scheduling problem and is best solved elsewhere. In 6367 /// practice, the optimizer produces empty landing pad blocks quite frequently 6368 /// when dealing with exception dense code. (see: instcombine, gvn, if-else 6369 /// sinking in this file) 6370 /// 6371 /// This is primarily a code size optimization. We need to avoid performing 6372 /// any transform which might inhibit optimization (such as our ability to 6373 /// specialize a particular handler via tail commoning). We do this by not 6374 /// merging any blocks which require us to introduce a phi. Since the same 6375 /// values are flowing through both blocks, we don't lose any ability to 6376 /// specialize. If anything, we make such specialization more likely. 6377 /// 6378 /// TODO - This transformation could remove entries from a phi in the target 6379 /// block when the inputs in the phi are the same for the two blocks being 6380 /// merged. In some cases, this could result in removal of the PHI entirely. 6381 static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI, 6382 BasicBlock *BB, DomTreeUpdater *DTU) { 6383 auto Succ = BB->getUniqueSuccessor(); 6384 assert(Succ); 6385 // If there's a phi in the successor block, we'd likely have to introduce 6386 // a phi into the merged landing pad block. 6387 if (isa<PHINode>(*Succ->begin())) 6388 return false; 6389 6390 for (BasicBlock *OtherPred : predecessors(Succ)) { 6391 if (BB == OtherPred) 6392 continue; 6393 BasicBlock::iterator I = OtherPred->begin(); 6394 LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I); 6395 if (!LPad2 || !LPad2->isIdenticalTo(LPad)) 6396 continue; 6397 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 6398 ; 6399 BranchInst *BI2 = dyn_cast<BranchInst>(I); 6400 if (!BI2 || !BI2->isIdenticalTo(BI)) 6401 continue; 6402 6403 std::vector<DominatorTree::UpdateType> Updates; 6404 6405 // We've found an identical block. Update our predecessors to take that 6406 // path instead and make ourselves dead. 6407 SmallPtrSet<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB)); 6408 for (BasicBlock *Pred : Preds) { 6409 InvokeInst *II = cast<InvokeInst>(Pred->getTerminator()); 6410 assert(II->getNormalDest() != BB && II->getUnwindDest() == BB && 6411 "unexpected successor"); 6412 II->setUnwindDest(OtherPred); 6413 if (DTU) { 6414 Updates.push_back({DominatorTree::Insert, Pred, OtherPred}); 6415 Updates.push_back({DominatorTree::Delete, Pred, BB}); 6416 } 6417 } 6418 6419 // The debug info in OtherPred doesn't cover the merged control flow that 6420 // used to go through BB. We need to delete it or update it. 6421 for (auto I = OtherPred->begin(), E = OtherPred->end(); I != E;) { 6422 Instruction &Inst = *I; 6423 I++; 6424 if (isa<DbgInfoIntrinsic>(Inst)) 6425 Inst.eraseFromParent(); 6426 } 6427 6428 SmallPtrSet<BasicBlock *, 16> Succs(succ_begin(BB), succ_end(BB)); 6429 for (BasicBlock *Succ : Succs) { 6430 Succ->removePredecessor(BB); 6431 if (DTU) 6432 Updates.push_back({DominatorTree::Delete, BB, Succ}); 6433 } 6434 6435 IRBuilder<> Builder(BI); 6436 Builder.CreateUnreachable(); 6437 BI->eraseFromParent(); 6438 if (DTU) 6439 DTU->applyUpdates(Updates); 6440 return true; 6441 } 6442 return false; 6443 } 6444 6445 bool SimplifyCFGOpt::simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder) { 6446 return Branch->isUnconditional() ? simplifyUncondBranch(Branch, Builder) 6447 : simplifyCondBranch(Branch, Builder); 6448 } 6449 6450 bool SimplifyCFGOpt::simplifyUncondBranch(BranchInst *BI, 6451 IRBuilder<> &Builder) { 6452 BasicBlock *BB = BI->getParent(); 6453 BasicBlock *Succ = BI->getSuccessor(0); 6454 6455 // If the Terminator is the only non-phi instruction, simplify the block. 6456 // If LoopHeader is provided, check if the block or its successor is a loop 6457 // header. (This is for early invocations before loop simplify and 6458 // vectorization to keep canonical loop forms for nested loops. These blocks 6459 // can be eliminated when the pass is invoked later in the back-end.) 6460 // Note that if BB has only one predecessor then we do not introduce new 6461 // backedge, so we can eliminate BB. 6462 bool NeedCanonicalLoop = 6463 Options.NeedCanonicalLoop && 6464 (!LoopHeaders.empty() && BB->hasNPredecessorsOrMore(2) && 6465 (is_contained(LoopHeaders, BB) || is_contained(LoopHeaders, Succ))); 6466 BasicBlock::iterator I = BB->getFirstNonPHIOrDbg(true)->getIterator(); 6467 if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() && 6468 !NeedCanonicalLoop && TryToSimplifyUncondBranchFromEmptyBlock(BB, DTU)) 6469 return true; 6470 6471 // If the only instruction in the block is a seteq/setne comparison against a 6472 // constant, try to simplify the block. 6473 if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) 6474 if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) { 6475 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 6476 ; 6477 if (I->isTerminator() && 6478 tryToSimplifyUncondBranchWithICmpInIt(ICI, Builder)) 6479 return true; 6480 } 6481 6482 // See if we can merge an empty landing pad block with another which is 6483 // equivalent. 6484 if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) { 6485 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 6486 ; 6487 if (I->isTerminator() && TryToMergeLandingPad(LPad, BI, BB, DTU)) 6488 return true; 6489 } 6490 6491 // If this basic block is ONLY a compare and a branch, and if a predecessor 6492 // branches to us and our successor, fold the comparison into the 6493 // predecessor and use logical operations to update the incoming value 6494 // for PHI nodes in common successor. 6495 if (FoldBranchToCommonDest(BI, DTU, /*MSSAU=*/nullptr, &TTI, 6496 Options.BonusInstThreshold)) 6497 return requestResimplify(); 6498 return false; 6499 } 6500 6501 static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) { 6502 BasicBlock *PredPred = nullptr; 6503 for (auto *P : predecessors(BB)) { 6504 BasicBlock *PPred = P->getSinglePredecessor(); 6505 if (!PPred || (PredPred && PredPred != PPred)) 6506 return nullptr; 6507 PredPred = PPred; 6508 } 6509 return PredPred; 6510 } 6511 6512 bool SimplifyCFGOpt::simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) { 6513 BasicBlock *BB = BI->getParent(); 6514 if (!Options.SimplifyCondBranch) 6515 return false; 6516 6517 // Conditional branch 6518 if (isValueEqualityComparison(BI)) { 6519 // If we only have one predecessor, and if it is a branch on this value, 6520 // see if that predecessor totally determines the outcome of this 6521 // switch. 6522 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 6523 if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder)) 6524 return requestResimplify(); 6525 6526 // This block must be empty, except for the setcond inst, if it exists. 6527 // Ignore dbg and pseudo intrinsics. 6528 auto I = BB->instructionsWithoutDebug(true).begin(); 6529 if (&*I == BI) { 6530 if (FoldValueComparisonIntoPredecessors(BI, Builder)) 6531 return requestResimplify(); 6532 } else if (&*I == cast<Instruction>(BI->getCondition())) { 6533 ++I; 6534 if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder)) 6535 return requestResimplify(); 6536 } 6537 } 6538 6539 // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction. 6540 if (SimplifyBranchOnICmpChain(BI, Builder, DL)) 6541 return true; 6542 6543 // If this basic block has dominating predecessor blocks and the dominating 6544 // blocks' conditions imply BI's condition, we know the direction of BI. 6545 Optional<bool> Imp = isImpliedByDomCondition(BI->getCondition(), BI, DL); 6546 if (Imp) { 6547 // Turn this into a branch on constant. 6548 auto *OldCond = BI->getCondition(); 6549 ConstantInt *TorF = *Imp ? ConstantInt::getTrue(BB->getContext()) 6550 : ConstantInt::getFalse(BB->getContext()); 6551 BI->setCondition(TorF); 6552 RecursivelyDeleteTriviallyDeadInstructions(OldCond); 6553 return requestResimplify(); 6554 } 6555 6556 // If this basic block is ONLY a compare and a branch, and if a predecessor 6557 // branches to us and one of our successors, fold the comparison into the 6558 // predecessor and use logical operations to pick the right destination. 6559 if (FoldBranchToCommonDest(BI, DTU, /*MSSAU=*/nullptr, &TTI, 6560 Options.BonusInstThreshold)) 6561 return requestResimplify(); 6562 6563 // We have a conditional branch to two blocks that are only reachable 6564 // from BI. We know that the condbr dominates the two blocks, so see if 6565 // there is any identical code in the "then" and "else" blocks. If so, we 6566 // can hoist it up to the branching block. 6567 if (BI->getSuccessor(0)->getSinglePredecessor()) { 6568 if (BI->getSuccessor(1)->getSinglePredecessor()) { 6569 if (HoistCommon && 6570 HoistThenElseCodeToIf(BI, TTI, !Options.HoistCommonInsts)) 6571 return requestResimplify(); 6572 } else { 6573 // If Successor #1 has multiple preds, we may be able to conditionally 6574 // execute Successor #0 if it branches to Successor #1. 6575 Instruction *Succ0TI = BI->getSuccessor(0)->getTerminator(); 6576 if (Succ0TI->getNumSuccessors() == 1 && 6577 Succ0TI->getSuccessor(0) == BI->getSuccessor(1)) 6578 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), TTI)) 6579 return requestResimplify(); 6580 } 6581 } else if (BI->getSuccessor(1)->getSinglePredecessor()) { 6582 // If Successor #0 has multiple preds, we may be able to conditionally 6583 // execute Successor #1 if it branches to Successor #0. 6584 Instruction *Succ1TI = BI->getSuccessor(1)->getTerminator(); 6585 if (Succ1TI->getNumSuccessors() == 1 && 6586 Succ1TI->getSuccessor(0) == BI->getSuccessor(0)) 6587 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), TTI)) 6588 return requestResimplify(); 6589 } 6590 6591 // If this is a branch on a phi node in the current block, thread control 6592 // through this block if any PHI node entries are constants. 6593 if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition())) 6594 if (PN->getParent() == BI->getParent()) 6595 if (FoldCondBranchOnPHI(BI, DTU, DL, Options.AC)) 6596 return requestResimplify(); 6597 6598 // Scan predecessor blocks for conditional branches. 6599 for (BasicBlock *Pred : predecessors(BB)) 6600 if (BranchInst *PBI = dyn_cast<BranchInst>(Pred->getTerminator())) 6601 if (PBI != BI && PBI->isConditional()) 6602 if (SimplifyCondBranchToCondBranch(PBI, BI, DTU, DL, TTI)) 6603 return requestResimplify(); 6604 6605 // Look for diamond patterns. 6606 if (MergeCondStores) 6607 if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB)) 6608 if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator())) 6609 if (PBI != BI && PBI->isConditional()) 6610 if (mergeConditionalStores(PBI, BI, DTU, DL, TTI)) 6611 return requestResimplify(); 6612 6613 return false; 6614 } 6615 6616 /// Check if passing a value to an instruction will cause undefined behavior. 6617 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I, bool PtrValueMayBeModified) { 6618 Constant *C = dyn_cast<Constant>(V); 6619 if (!C) 6620 return false; 6621 6622 if (I->use_empty()) 6623 return false; 6624 6625 if (C->isNullValue() || isa<UndefValue>(C)) { 6626 // Only look at the first use, avoid hurting compile time with long uselists 6627 User *Use = *I->user_begin(); 6628 6629 // Now make sure that there are no instructions in between that can alter 6630 // control flow (eg. calls) 6631 for (BasicBlock::iterator 6632 i = ++BasicBlock::iterator(I), 6633 UI = BasicBlock::iterator(dyn_cast<Instruction>(Use)); 6634 i != UI; ++i) { 6635 if (i == I->getParent()->end()) 6636 return false; 6637 if (!isGuaranteedToTransferExecutionToSuccessor(&*i)) 6638 return false; 6639 } 6640 6641 // Look through GEPs. A load from a GEP derived from NULL is still undefined 6642 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use)) 6643 if (GEP->getPointerOperand() == I) { 6644 if (!GEP->isInBounds() || !GEP->hasAllZeroIndices()) 6645 PtrValueMayBeModified = true; 6646 return passingValueIsAlwaysUndefined(V, GEP, PtrValueMayBeModified); 6647 } 6648 6649 // Look through bitcasts. 6650 if (BitCastInst *BC = dyn_cast<BitCastInst>(Use)) 6651 return passingValueIsAlwaysUndefined(V, BC, PtrValueMayBeModified); 6652 6653 // Load from null is undefined. 6654 if (LoadInst *LI = dyn_cast<LoadInst>(Use)) 6655 if (!LI->isVolatile()) 6656 return !NullPointerIsDefined(LI->getFunction(), 6657 LI->getPointerAddressSpace()); 6658 6659 // Store to null is undefined. 6660 if (StoreInst *SI = dyn_cast<StoreInst>(Use)) 6661 if (!SI->isVolatile()) 6662 return (!NullPointerIsDefined(SI->getFunction(), 6663 SI->getPointerAddressSpace())) && 6664 SI->getPointerOperand() == I; 6665 6666 if (auto *CB = dyn_cast<CallBase>(Use)) { 6667 if (C->isNullValue() && NullPointerIsDefined(CB->getFunction())) 6668 return false; 6669 // A call to null is undefined. 6670 if (CB->getCalledOperand() == I) 6671 return true; 6672 6673 if (C->isNullValue()) { 6674 for (const llvm::Use &Arg : CB->args()) 6675 if (Arg == I) { 6676 unsigned ArgIdx = CB->getArgOperandNo(&Arg); 6677 if (CB->isPassingUndefUB(ArgIdx) && 6678 CB->paramHasAttr(ArgIdx, Attribute::NonNull)) { 6679 // Passing null to a nonnnull+noundef argument is undefined. 6680 return !PtrValueMayBeModified; 6681 } 6682 } 6683 } else if (isa<UndefValue>(C)) { 6684 // Passing undef to a noundef argument is undefined. 6685 for (const llvm::Use &Arg : CB->args()) 6686 if (Arg == I) { 6687 unsigned ArgIdx = CB->getArgOperandNo(&Arg); 6688 if (CB->isPassingUndefUB(ArgIdx)) { 6689 // Passing undef to a noundef argument is undefined. 6690 return true; 6691 } 6692 } 6693 } 6694 } 6695 } 6696 return false; 6697 } 6698 6699 /// If BB has an incoming value that will always trigger undefined behavior 6700 /// (eg. null pointer dereference), remove the branch leading here. 6701 static bool removeUndefIntroducingPredecessor(BasicBlock *BB, 6702 DomTreeUpdater *DTU) { 6703 for (PHINode &PHI : BB->phis()) 6704 for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i) 6705 if (passingValueIsAlwaysUndefined(PHI.getIncomingValue(i), &PHI)) { 6706 BasicBlock *Predecessor = PHI.getIncomingBlock(i); 6707 Instruction *T = Predecessor->getTerminator(); 6708 IRBuilder<> Builder(T); 6709 if (BranchInst *BI = dyn_cast<BranchInst>(T)) { 6710 BB->removePredecessor(Predecessor); 6711 // Turn uncoditional branches into unreachables and remove the dead 6712 // destination from conditional branches. 6713 if (BI->isUnconditional()) 6714 Builder.CreateUnreachable(); 6715 else 6716 Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1) 6717 : BI->getSuccessor(0)); 6718 BI->eraseFromParent(); 6719 if (DTU) 6720 DTU->applyUpdates({{DominatorTree::Delete, Predecessor, BB}}); 6721 return true; 6722 } 6723 // TODO: SwitchInst. 6724 } 6725 6726 return false; 6727 } 6728 6729 bool SimplifyCFGOpt::simplifyOnceImpl(BasicBlock *BB) { 6730 bool Changed = false; 6731 6732 assert(BB && BB->getParent() && "Block not embedded in function!"); 6733 assert(BB->getTerminator() && "Degenerate basic block encountered!"); 6734 6735 // Remove basic blocks that have no predecessors (except the entry block)... 6736 // or that just have themself as a predecessor. These are unreachable. 6737 if ((pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) || 6738 BB->getSinglePredecessor() == BB) { 6739 LLVM_DEBUG(dbgs() << "Removing BB: \n" << *BB); 6740 DeleteDeadBlock(BB, DTU); 6741 return true; 6742 } 6743 6744 // Check to see if we can constant propagate this terminator instruction 6745 // away... 6746 Changed |= ConstantFoldTerminator(BB, /*DeleteDeadConditions=*/true, 6747 /*TLI=*/nullptr, DTU); 6748 6749 // Check for and eliminate duplicate PHI nodes in this block. 6750 Changed |= EliminateDuplicatePHINodes(BB); 6751 6752 // Check for and remove branches that will always cause undefined behavior. 6753 Changed |= removeUndefIntroducingPredecessor(BB, DTU); 6754 6755 // Merge basic blocks into their predecessor if there is only one distinct 6756 // pred, and if there is only one distinct successor of the predecessor, and 6757 // if there are no PHI nodes. 6758 if (MergeBlockIntoPredecessor(BB, DTU)) 6759 return true; 6760 6761 if (SinkCommon && Options.SinkCommonInsts) 6762 Changed |= SinkCommonCodeFromPredecessors(BB, DTU); 6763 6764 IRBuilder<> Builder(BB); 6765 6766 if (Options.FoldTwoEntryPHINode) { 6767 // If there is a trivial two-entry PHI node in this basic block, and we can 6768 // eliminate it, do so now. 6769 if (auto *PN = dyn_cast<PHINode>(BB->begin())) 6770 if (PN->getNumIncomingValues() == 2) 6771 Changed |= FoldTwoEntryPHINode(PN, TTI, DTU, DL); 6772 } 6773 6774 Instruction *Terminator = BB->getTerminator(); 6775 Builder.SetInsertPoint(Terminator); 6776 switch (Terminator->getOpcode()) { 6777 case Instruction::Br: 6778 Changed |= simplifyBranch(cast<BranchInst>(Terminator), Builder); 6779 break; 6780 case Instruction::Ret: 6781 Changed |= simplifyReturn(cast<ReturnInst>(Terminator), Builder); 6782 break; 6783 case Instruction::Resume: 6784 Changed |= simplifyResume(cast<ResumeInst>(Terminator), Builder); 6785 break; 6786 case Instruction::CleanupRet: 6787 Changed |= simplifyCleanupReturn(cast<CleanupReturnInst>(Terminator)); 6788 break; 6789 case Instruction::Switch: 6790 Changed |= simplifySwitch(cast<SwitchInst>(Terminator), Builder); 6791 break; 6792 case Instruction::Unreachable: 6793 Changed |= simplifyUnreachable(cast<UnreachableInst>(Terminator)); 6794 break; 6795 case Instruction::IndirectBr: 6796 Changed |= simplifyIndirectBr(cast<IndirectBrInst>(Terminator)); 6797 break; 6798 } 6799 6800 return Changed; 6801 } 6802 6803 bool SimplifyCFGOpt::simplifyOnce(BasicBlock *BB) { 6804 bool Changed = simplifyOnceImpl(BB); 6805 6806 return Changed; 6807 } 6808 6809 bool SimplifyCFGOpt::run(BasicBlock *BB) { 6810 bool Changed = false; 6811 6812 // Repeated simplify BB as long as resimplification is requested. 6813 do { 6814 Resimplify = false; 6815 6816 // Perform one round of simplifcation. Resimplify flag will be set if 6817 // another iteration is requested. 6818 Changed |= simplifyOnce(BB); 6819 } while (Resimplify); 6820 6821 return Changed; 6822 } 6823 6824 bool llvm::simplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI, 6825 DomTreeUpdater *DTU, const SimplifyCFGOptions &Options, 6826 ArrayRef<WeakVH> LoopHeaders) { 6827 return SimplifyCFGOpt(TTI, DTU, BB->getModule()->getDataLayout(), LoopHeaders, 6828 Options) 6829 .run(BB); 6830 } 6831