1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Peephole optimize the CFG.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/ADT/APInt.h"
14 #include "llvm/ADT/ArrayRef.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/MapVector.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/ScopeExit.h"
20 #include "llvm/ADT/Sequence.h"
21 #include "llvm/ADT/SetOperations.h"
22 #include "llvm/ADT/SetVector.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/Statistic.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/Analysis/AssumptionCache.h"
28 #include "llvm/Analysis/ConstantFolding.h"
29 #include "llvm/Analysis/EHPersonalities.h"
30 #include "llvm/Analysis/GuardUtils.h"
31 #include "llvm/Analysis/InstructionSimplify.h"
32 #include "llvm/Analysis/MemorySSA.h"
33 #include "llvm/Analysis/MemorySSAUpdater.h"
34 #include "llvm/Analysis/TargetTransformInfo.h"
35 #include "llvm/Analysis/ValueTracking.h"
36 #include "llvm/IR/Attributes.h"
37 #include "llvm/IR/BasicBlock.h"
38 #include "llvm/IR/CFG.h"
39 #include "llvm/IR/Constant.h"
40 #include "llvm/IR/ConstantRange.h"
41 #include "llvm/IR/Constants.h"
42 #include "llvm/IR/DataLayout.h"
43 #include "llvm/IR/DerivedTypes.h"
44 #include "llvm/IR/Function.h"
45 #include "llvm/IR/GlobalValue.h"
46 #include "llvm/IR/GlobalVariable.h"
47 #include "llvm/IR/IRBuilder.h"
48 #include "llvm/IR/InstrTypes.h"
49 #include "llvm/IR/Instruction.h"
50 #include "llvm/IR/Instructions.h"
51 #include "llvm/IR/IntrinsicInst.h"
52 #include "llvm/IR/Intrinsics.h"
53 #include "llvm/IR/LLVMContext.h"
54 #include "llvm/IR/MDBuilder.h"
55 #include "llvm/IR/Metadata.h"
56 #include "llvm/IR/Module.h"
57 #include "llvm/IR/NoFolder.h"
58 #include "llvm/IR/Operator.h"
59 #include "llvm/IR/PatternMatch.h"
60 #include "llvm/IR/PseudoProbe.h"
61 #include "llvm/IR/Type.h"
62 #include "llvm/IR/Use.h"
63 #include "llvm/IR/User.h"
64 #include "llvm/IR/Value.h"
65 #include "llvm/IR/ValueHandle.h"
66 #include "llvm/Support/BranchProbability.h"
67 #include "llvm/Support/Casting.h"
68 #include "llvm/Support/CommandLine.h"
69 #include "llvm/Support/Debug.h"
70 #include "llvm/Support/ErrorHandling.h"
71 #include "llvm/Support/KnownBits.h"
72 #include "llvm/Support/MathExtras.h"
73 #include "llvm/Support/raw_ostream.h"
74 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
75 #include "llvm/Transforms/Utils/Local.h"
76 #include "llvm/Transforms/Utils/SSAUpdater.h"
77 #include "llvm/Transforms/Utils/ValueMapper.h"
78 #include <algorithm>
79 #include <cassert>
80 #include <climits>
81 #include <cstddef>
82 #include <cstdint>
83 #include <iterator>
84 #include <map>
85 #include <set>
86 #include <tuple>
87 #include <utility>
88 #include <vector>
89 
90 using namespace llvm;
91 using namespace PatternMatch;
92 
93 #define DEBUG_TYPE "simplifycfg"
94 
95 cl::opt<bool> llvm::RequireAndPreserveDomTree(
96     "simplifycfg-require-and-preserve-domtree", cl::Hidden, cl::ZeroOrMore,
97     cl::init(false),
98     cl::desc("Temorary development switch used to gradually uplift SimplifyCFG "
99              "into preserving DomTree,"));
100 
101 // Chosen as 2 so as to be cheap, but still to have enough power to fold
102 // a select, so the "clamp" idiom (of a min followed by a max) will be caught.
103 // To catch this, we need to fold a compare and a select, hence '2' being the
104 // minimum reasonable default.
105 static cl::opt<unsigned> PHINodeFoldingThreshold(
106     "phi-node-folding-threshold", cl::Hidden, cl::init(2),
107     cl::desc(
108         "Control the amount of phi node folding to perform (default = 2)"));
109 
110 static cl::opt<unsigned> TwoEntryPHINodeFoldingThreshold(
111     "two-entry-phi-node-folding-threshold", cl::Hidden, cl::init(4),
112     cl::desc("Control the maximal total instruction cost that we are willing "
113              "to speculatively execute to fold a 2-entry PHI node into a "
114              "select (default = 4)"));
115 
116 static cl::opt<bool> DupRet(
117     "simplifycfg-dup-ret", cl::Hidden, cl::init(false),
118     cl::desc("Duplicate return instructions into unconditional branches"));
119 
120 static cl::opt<bool>
121     HoistCommon("simplifycfg-hoist-common", cl::Hidden, cl::init(true),
122                 cl::desc("Hoist common instructions up to the parent block"));
123 
124 static cl::opt<bool>
125     SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true),
126                cl::desc("Sink common instructions down to the end block"));
127 
128 static cl::opt<bool> HoistCondStores(
129     "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true),
130     cl::desc("Hoist conditional stores if an unconditional store precedes"));
131 
132 static cl::opt<bool> MergeCondStores(
133     "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true),
134     cl::desc("Hoist conditional stores even if an unconditional store does not "
135              "precede - hoist multiple conditional stores into a single "
136              "predicated store"));
137 
138 static cl::opt<bool> MergeCondStoresAggressively(
139     "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false),
140     cl::desc("When merging conditional stores, do so even if the resultant "
141              "basic blocks are unlikely to be if-converted as a result"));
142 
143 static cl::opt<bool> SpeculateOneExpensiveInst(
144     "speculate-one-expensive-inst", cl::Hidden, cl::init(true),
145     cl::desc("Allow exactly one expensive instruction to be speculatively "
146              "executed"));
147 
148 static cl::opt<unsigned> MaxSpeculationDepth(
149     "max-speculation-depth", cl::Hidden, cl::init(10),
150     cl::desc("Limit maximum recursion depth when calculating costs of "
151              "speculatively executed instructions"));
152 
153 static cl::opt<int>
154 MaxSmallBlockSize("simplifycfg-max-small-block-size", cl::Hidden, cl::init(10),
155                   cl::desc("Max size of a block which is still considered "
156                            "small enough to thread through"));
157 
158 // Two is chosen to allow one negation and a logical combine.
159 static cl::opt<unsigned>
160     BranchFoldThreshold("simplifycfg-branch-fold-threshold", cl::Hidden,
161                         cl::init(2),
162                         cl::desc("Maximum cost of combining conditions when "
163                                  "folding branches"));
164 
165 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps");
166 STATISTIC(NumLinearMaps,
167           "Number of switch instructions turned into linear mapping");
168 STATISTIC(NumLookupTables,
169           "Number of switch instructions turned into lookup tables");
170 STATISTIC(
171     NumLookupTablesHoles,
172     "Number of switch instructions turned into lookup tables (holes checked)");
173 STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares");
174 STATISTIC(NumFoldValueComparisonIntoPredecessors,
175           "Number of value comparisons folded into predecessor basic blocks");
176 STATISTIC(NumFoldBranchToCommonDest,
177           "Number of branches folded into predecessor basic block");
178 STATISTIC(
179     NumHoistCommonCode,
180     "Number of common instruction 'blocks' hoisted up to the begin block");
181 STATISTIC(NumHoistCommonInstrs,
182           "Number of common instructions hoisted up to the begin block");
183 STATISTIC(NumSinkCommonCode,
184           "Number of common instruction 'blocks' sunk down to the end block");
185 STATISTIC(NumSinkCommonInstrs,
186           "Number of common instructions sunk down to the end block");
187 STATISTIC(NumSpeculations, "Number of speculative executed instructions");
188 STATISTIC(NumInvokes,
189           "Number of invokes with empty resume blocks simplified into calls");
190 
191 namespace {
192 
193 // The first field contains the value that the switch produces when a certain
194 // case group is selected, and the second field is a vector containing the
195 // cases composing the case group.
196 using SwitchCaseResultVectorTy =
197     SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2>;
198 
199 // The first field contains the phi node that generates a result of the switch
200 // and the second field contains the value generated for a certain case in the
201 // switch for that PHI.
202 using SwitchCaseResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>;
203 
204 /// ValueEqualityComparisonCase - Represents a case of a switch.
205 struct ValueEqualityComparisonCase {
206   ConstantInt *Value;
207   BasicBlock *Dest;
208 
209   ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest)
210       : Value(Value), Dest(Dest) {}
211 
212   bool operator<(ValueEqualityComparisonCase RHS) const {
213     // Comparing pointers is ok as we only rely on the order for uniquing.
214     return Value < RHS.Value;
215   }
216 
217   bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; }
218 };
219 
220 class SimplifyCFGOpt {
221   const TargetTransformInfo &TTI;
222   DomTreeUpdater *DTU;
223   const DataLayout &DL;
224   ArrayRef<WeakVH> LoopHeaders;
225   const SimplifyCFGOptions &Options;
226   bool Resimplify;
227 
228   Value *isValueEqualityComparison(Instruction *TI);
229   BasicBlock *GetValueEqualityComparisonCases(
230       Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases);
231   bool SimplifyEqualityComparisonWithOnlyPredecessor(Instruction *TI,
232                                                      BasicBlock *Pred,
233                                                      IRBuilder<> &Builder);
234   bool PerformValueComparisonIntoPredecessorFolding(Instruction *TI, Value *&CV,
235                                                     Instruction *PTI,
236                                                     IRBuilder<> &Builder);
237   bool FoldValueComparisonIntoPredecessors(Instruction *TI,
238                                            IRBuilder<> &Builder);
239 
240   bool simplifyReturn(ReturnInst *RI, IRBuilder<> &Builder);
241   bool simplifyResume(ResumeInst *RI, IRBuilder<> &Builder);
242   bool simplifySingleResume(ResumeInst *RI);
243   bool simplifyCommonResume(ResumeInst *RI);
244   bool simplifyCleanupReturn(CleanupReturnInst *RI);
245   bool simplifyUnreachable(UnreachableInst *UI);
246   bool simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder);
247   bool simplifyIndirectBr(IndirectBrInst *IBI);
248   bool simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder);
249   bool simplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder);
250   bool simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder);
251   bool SimplifyCondBranchToTwoReturns(BranchInst *BI, IRBuilder<> &Builder);
252 
253   bool tryToSimplifyUncondBranchWithICmpInIt(ICmpInst *ICI,
254                                              IRBuilder<> &Builder);
255 
256   bool HoistThenElseCodeToIf(BranchInst *BI, const TargetTransformInfo &TTI,
257                              bool EqTermsOnly);
258   bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB,
259                               const TargetTransformInfo &TTI);
260   bool SimplifyTerminatorOnSelect(Instruction *OldTerm, Value *Cond,
261                                   BasicBlock *TrueBB, BasicBlock *FalseBB,
262                                   uint32_t TrueWeight, uint32_t FalseWeight);
263   bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder,
264                                  const DataLayout &DL);
265   bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select);
266   bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI);
267   bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder);
268 
269 public:
270   SimplifyCFGOpt(const TargetTransformInfo &TTI, DomTreeUpdater *DTU,
271                  const DataLayout &DL, ArrayRef<WeakVH> LoopHeaders,
272                  const SimplifyCFGOptions &Opts)
273       : TTI(TTI), DTU(DTU), DL(DL), LoopHeaders(LoopHeaders), Options(Opts) {
274     assert((!DTU || !DTU->hasPostDomTree()) &&
275            "SimplifyCFG is not yet capable of maintaining validity of a "
276            "PostDomTree, so don't ask for it.");
277   }
278 
279   bool simplifyOnce(BasicBlock *BB);
280   bool simplifyOnceImpl(BasicBlock *BB);
281   bool run(BasicBlock *BB);
282 
283   // Helper to set Resimplify and return change indication.
284   bool requestResimplify() {
285     Resimplify = true;
286     return true;
287   }
288 };
289 
290 } // end anonymous namespace
291 
292 /// Return true if it is safe to merge these two
293 /// terminator instructions together.
294 static bool
295 SafeToMergeTerminators(Instruction *SI1, Instruction *SI2,
296                        SmallSetVector<BasicBlock *, 4> *FailBlocks = nullptr) {
297   if (SI1 == SI2)
298     return false; // Can't merge with self!
299 
300   // It is not safe to merge these two switch instructions if they have a common
301   // successor, and if that successor has a PHI node, and if *that* PHI node has
302   // conflicting incoming values from the two switch blocks.
303   BasicBlock *SI1BB = SI1->getParent();
304   BasicBlock *SI2BB = SI2->getParent();
305 
306   SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
307   bool Fail = false;
308   for (BasicBlock *Succ : successors(SI2BB))
309     if (SI1Succs.count(Succ))
310       for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) {
311         PHINode *PN = cast<PHINode>(BBI);
312         if (PN->getIncomingValueForBlock(SI1BB) !=
313             PN->getIncomingValueForBlock(SI2BB)) {
314           if (FailBlocks)
315             FailBlocks->insert(Succ);
316           Fail = true;
317         }
318       }
319 
320   return !Fail;
321 }
322 
323 /// Update PHI nodes in Succ to indicate that there will now be entries in it
324 /// from the 'NewPred' block. The values that will be flowing into the PHI nodes
325 /// will be the same as those coming in from ExistPred, an existing predecessor
326 /// of Succ.
327 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred,
328                                   BasicBlock *ExistPred,
329                                   MemorySSAUpdater *MSSAU = nullptr) {
330   for (PHINode &PN : Succ->phis())
331     PN.addIncoming(PN.getIncomingValueForBlock(ExistPred), NewPred);
332   if (MSSAU)
333     if (auto *MPhi = MSSAU->getMemorySSA()->getMemoryAccess(Succ))
334       MPhi->addIncoming(MPhi->getIncomingValueForBlock(ExistPred), NewPred);
335 }
336 
337 /// Compute an abstract "cost" of speculating the given instruction,
338 /// which is assumed to be safe to speculate. TCC_Free means cheap,
339 /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively
340 /// expensive.
341 static InstructionCost computeSpeculationCost(const User *I,
342                                               const TargetTransformInfo &TTI) {
343   assert(isSafeToSpeculativelyExecute(I) &&
344          "Instruction is not safe to speculatively execute!");
345   return TTI.getUserCost(I, TargetTransformInfo::TCK_SizeAndLatency);
346 }
347 
348 /// If we have a merge point of an "if condition" as accepted above,
349 /// return true if the specified value dominates the block.  We
350 /// don't handle the true generality of domination here, just a special case
351 /// which works well enough for us.
352 ///
353 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to
354 /// see if V (which must be an instruction) and its recursive operands
355 /// that do not dominate BB have a combined cost lower than Budget and
356 /// are non-trapping.  If both are true, the instruction is inserted into the
357 /// set and true is returned.
358 ///
359 /// The cost for most non-trapping instructions is defined as 1 except for
360 /// Select whose cost is 2.
361 ///
362 /// After this function returns, Cost is increased by the cost of
363 /// V plus its non-dominating operands.  If that cost is greater than
364 /// Budget, false is returned and Cost is undefined.
365 static bool dominatesMergePoint(Value *V, BasicBlock *BB,
366                                 SmallPtrSetImpl<Instruction *> &AggressiveInsts,
367                                 InstructionCost &Cost,
368                                 InstructionCost Budget,
369                                 const TargetTransformInfo &TTI,
370                                 unsigned Depth = 0) {
371   // It is possible to hit a zero-cost cycle (phi/gep instructions for example),
372   // so limit the recursion depth.
373   // TODO: While this recursion limit does prevent pathological behavior, it
374   // would be better to track visited instructions to avoid cycles.
375   if (Depth == MaxSpeculationDepth)
376     return false;
377 
378   Instruction *I = dyn_cast<Instruction>(V);
379   if (!I) {
380     // Non-instructions all dominate instructions, but not all constantexprs
381     // can be executed unconditionally.
382     if (ConstantExpr *C = dyn_cast<ConstantExpr>(V))
383       if (C->canTrap())
384         return false;
385     return true;
386   }
387   BasicBlock *PBB = I->getParent();
388 
389   // We don't want to allow weird loops that might have the "if condition" in
390   // the bottom of this block.
391   if (PBB == BB)
392     return false;
393 
394   // If this instruction is defined in a block that contains an unconditional
395   // branch to BB, then it must be in the 'conditional' part of the "if
396   // statement".  If not, it definitely dominates the region.
397   BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator());
398   if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB)
399     return true;
400 
401   // If we have seen this instruction before, don't count it again.
402   if (AggressiveInsts.count(I))
403     return true;
404 
405   // Okay, it looks like the instruction IS in the "condition".  Check to
406   // see if it's a cheap instruction to unconditionally compute, and if it
407   // only uses stuff defined outside of the condition.  If so, hoist it out.
408   if (!isSafeToSpeculativelyExecute(I))
409     return false;
410 
411   Cost += computeSpeculationCost(I, TTI);
412 
413   // Allow exactly one instruction to be speculated regardless of its cost
414   // (as long as it is safe to do so).
415   // This is intended to flatten the CFG even if the instruction is a division
416   // or other expensive operation. The speculation of an expensive instruction
417   // is expected to be undone in CodeGenPrepare if the speculation has not
418   // enabled further IR optimizations.
419   if (Cost > Budget &&
420       (!SpeculateOneExpensiveInst || !AggressiveInsts.empty() || Depth > 0 ||
421        !Cost.isValid()))
422     return false;
423 
424   // Okay, we can only really hoist these out if their operands do
425   // not take us over the cost threshold.
426   for (Use &Op : I->operands())
427     if (!dominatesMergePoint(Op, BB, AggressiveInsts, Cost, Budget, TTI,
428                              Depth + 1))
429       return false;
430   // Okay, it's safe to do this!  Remember this instruction.
431   AggressiveInsts.insert(I);
432   return true;
433 }
434 
435 /// Extract ConstantInt from value, looking through IntToPtr
436 /// and PointerNullValue. Return NULL if value is not a constant int.
437 static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) {
438   // Normal constant int.
439   ConstantInt *CI = dyn_cast<ConstantInt>(V);
440   if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy())
441     return CI;
442 
443   // This is some kind of pointer constant. Turn it into a pointer-sized
444   // ConstantInt if possible.
445   IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType()));
446 
447   // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*).
448   if (isa<ConstantPointerNull>(V))
449     return ConstantInt::get(PtrTy, 0);
450 
451   // IntToPtr const int.
452   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
453     if (CE->getOpcode() == Instruction::IntToPtr)
454       if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) {
455         // The constant is very likely to have the right type already.
456         if (CI->getType() == PtrTy)
457           return CI;
458         else
459           return cast<ConstantInt>(
460               ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false));
461       }
462   return nullptr;
463 }
464 
465 namespace {
466 
467 /// Given a chain of or (||) or and (&&) comparison of a value against a
468 /// constant, this will try to recover the information required for a switch
469 /// structure.
470 /// It will depth-first traverse the chain of comparison, seeking for patterns
471 /// like %a == 12 or %a < 4 and combine them to produce a set of integer
472 /// representing the different cases for the switch.
473 /// Note that if the chain is composed of '||' it will build the set of elements
474 /// that matches the comparisons (i.e. any of this value validate the chain)
475 /// while for a chain of '&&' it will build the set elements that make the test
476 /// fail.
477 struct ConstantComparesGatherer {
478   const DataLayout &DL;
479 
480   /// Value found for the switch comparison
481   Value *CompValue = nullptr;
482 
483   /// Extra clause to be checked before the switch
484   Value *Extra = nullptr;
485 
486   /// Set of integers to match in switch
487   SmallVector<ConstantInt *, 8> Vals;
488 
489   /// Number of comparisons matched in the and/or chain
490   unsigned UsedICmps = 0;
491 
492   /// Construct and compute the result for the comparison instruction Cond
493   ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL) : DL(DL) {
494     gather(Cond);
495   }
496 
497   ConstantComparesGatherer(const ConstantComparesGatherer &) = delete;
498   ConstantComparesGatherer &
499   operator=(const ConstantComparesGatherer &) = delete;
500 
501 private:
502   /// Try to set the current value used for the comparison, it succeeds only if
503   /// it wasn't set before or if the new value is the same as the old one
504   bool setValueOnce(Value *NewVal) {
505     if (CompValue && CompValue != NewVal)
506       return false;
507     CompValue = NewVal;
508     return (CompValue != nullptr);
509   }
510 
511   /// Try to match Instruction "I" as a comparison against a constant and
512   /// populates the array Vals with the set of values that match (or do not
513   /// match depending on isEQ).
514   /// Return false on failure. On success, the Value the comparison matched
515   /// against is placed in CompValue.
516   /// If CompValue is already set, the function is expected to fail if a match
517   /// is found but the value compared to is different.
518   bool matchInstruction(Instruction *I, bool isEQ) {
519     // If this is an icmp against a constant, handle this as one of the cases.
520     ICmpInst *ICI;
521     ConstantInt *C;
522     if (!((ICI = dyn_cast<ICmpInst>(I)) &&
523           (C = GetConstantInt(I->getOperand(1), DL)))) {
524       return false;
525     }
526 
527     Value *RHSVal;
528     const APInt *RHSC;
529 
530     // Pattern match a special case
531     // (x & ~2^z) == y --> x == y || x == y|2^z
532     // This undoes a transformation done by instcombine to fuse 2 compares.
533     if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE)) {
534       // It's a little bit hard to see why the following transformations are
535       // correct. Here is a CVC3 program to verify them for 64-bit values:
536 
537       /*
538          ONE  : BITVECTOR(64) = BVZEROEXTEND(0bin1, 63);
539          x    : BITVECTOR(64);
540          y    : BITVECTOR(64);
541          z    : BITVECTOR(64);
542          mask : BITVECTOR(64) = BVSHL(ONE, z);
543          QUERY( (y & ~mask = y) =>
544                 ((x & ~mask = y) <=> (x = y OR x = (y |  mask)))
545          );
546          QUERY( (y |  mask = y) =>
547                 ((x |  mask = y) <=> (x = y OR x = (y & ~mask)))
548          );
549       */
550 
551       // Please note that each pattern must be a dual implication (<--> or
552       // iff). One directional implication can create spurious matches. If the
553       // implication is only one-way, an unsatisfiable condition on the left
554       // side can imply a satisfiable condition on the right side. Dual
555       // implication ensures that satisfiable conditions are transformed to
556       // other satisfiable conditions and unsatisfiable conditions are
557       // transformed to other unsatisfiable conditions.
558 
559       // Here is a concrete example of a unsatisfiable condition on the left
560       // implying a satisfiable condition on the right:
561       //
562       // mask = (1 << z)
563       // (x & ~mask) == y  --> (x == y || x == (y | mask))
564       //
565       // Substituting y = 3, z = 0 yields:
566       // (x & -2) == 3 --> (x == 3 || x == 2)
567 
568       // Pattern match a special case:
569       /*
570         QUERY( (y & ~mask = y) =>
571                ((x & ~mask = y) <=> (x = y OR x = (y |  mask)))
572         );
573       */
574       if (match(ICI->getOperand(0),
575                 m_And(m_Value(RHSVal), m_APInt(RHSC)))) {
576         APInt Mask = ~*RHSC;
577         if (Mask.isPowerOf2() && (C->getValue() & ~Mask) == C->getValue()) {
578           // If we already have a value for the switch, it has to match!
579           if (!setValueOnce(RHSVal))
580             return false;
581 
582           Vals.push_back(C);
583           Vals.push_back(
584               ConstantInt::get(C->getContext(),
585                                C->getValue() | Mask));
586           UsedICmps++;
587           return true;
588         }
589       }
590 
591       // Pattern match a special case:
592       /*
593         QUERY( (y |  mask = y) =>
594                ((x |  mask = y) <=> (x = y OR x = (y & ~mask)))
595         );
596       */
597       if (match(ICI->getOperand(0),
598                 m_Or(m_Value(RHSVal), m_APInt(RHSC)))) {
599         APInt Mask = *RHSC;
600         if (Mask.isPowerOf2() && (C->getValue() | Mask) == C->getValue()) {
601           // If we already have a value for the switch, it has to match!
602           if (!setValueOnce(RHSVal))
603             return false;
604 
605           Vals.push_back(C);
606           Vals.push_back(ConstantInt::get(C->getContext(),
607                                           C->getValue() & ~Mask));
608           UsedICmps++;
609           return true;
610         }
611       }
612 
613       // If we already have a value for the switch, it has to match!
614       if (!setValueOnce(ICI->getOperand(0)))
615         return false;
616 
617       UsedICmps++;
618       Vals.push_back(C);
619       return ICI->getOperand(0);
620     }
621 
622     // If we have "x ult 3", for example, then we can add 0,1,2 to the set.
623     ConstantRange Span = ConstantRange::makeAllowedICmpRegion(
624         ICI->getPredicate(), C->getValue());
625 
626     // Shift the range if the compare is fed by an add. This is the range
627     // compare idiom as emitted by instcombine.
628     Value *CandidateVal = I->getOperand(0);
629     if (match(I->getOperand(0), m_Add(m_Value(RHSVal), m_APInt(RHSC)))) {
630       Span = Span.subtract(*RHSC);
631       CandidateVal = RHSVal;
632     }
633 
634     // If this is an and/!= check, then we are looking to build the set of
635     // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into
636     // x != 0 && x != 1.
637     if (!isEQ)
638       Span = Span.inverse();
639 
640     // If there are a ton of values, we don't want to make a ginormous switch.
641     if (Span.isSizeLargerThan(8) || Span.isEmptySet()) {
642       return false;
643     }
644 
645     // If we already have a value for the switch, it has to match!
646     if (!setValueOnce(CandidateVal))
647       return false;
648 
649     // Add all values from the range to the set
650     for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp)
651       Vals.push_back(ConstantInt::get(I->getContext(), Tmp));
652 
653     UsedICmps++;
654     return true;
655   }
656 
657   /// Given a potentially 'or'd or 'and'd together collection of icmp
658   /// eq/ne/lt/gt instructions that compare a value against a constant, extract
659   /// the value being compared, and stick the list constants into the Vals
660   /// vector.
661   /// One "Extra" case is allowed to differ from the other.
662   void gather(Value *V) {
663     bool isEQ = match(V, m_LogicalOr(m_Value(), m_Value()));
664 
665     // Keep a stack (SmallVector for efficiency) for depth-first traversal
666     SmallVector<Value *, 8> DFT;
667     SmallPtrSet<Value *, 8> Visited;
668 
669     // Initialize
670     Visited.insert(V);
671     DFT.push_back(V);
672 
673     while (!DFT.empty()) {
674       V = DFT.pop_back_val();
675 
676       if (Instruction *I = dyn_cast<Instruction>(V)) {
677         // If it is a || (or && depending on isEQ), process the operands.
678         Value *Op0, *Op1;
679         if (isEQ ? match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1)))
680                  : match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) {
681           if (Visited.insert(Op1).second)
682             DFT.push_back(Op1);
683           if (Visited.insert(Op0).second)
684             DFT.push_back(Op0);
685 
686           continue;
687         }
688 
689         // Try to match the current instruction
690         if (matchInstruction(I, isEQ))
691           // Match succeed, continue the loop
692           continue;
693       }
694 
695       // One element of the sequence of || (or &&) could not be match as a
696       // comparison against the same value as the others.
697       // We allow only one "Extra" case to be checked before the switch
698       if (!Extra) {
699         Extra = V;
700         continue;
701       }
702       // Failed to parse a proper sequence, abort now
703       CompValue = nullptr;
704       break;
705     }
706   }
707 };
708 
709 } // end anonymous namespace
710 
711 static void EraseTerminatorAndDCECond(Instruction *TI,
712                                       MemorySSAUpdater *MSSAU = nullptr) {
713   Instruction *Cond = nullptr;
714   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
715     Cond = dyn_cast<Instruction>(SI->getCondition());
716   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
717     if (BI->isConditional())
718       Cond = dyn_cast<Instruction>(BI->getCondition());
719   } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) {
720     Cond = dyn_cast<Instruction>(IBI->getAddress());
721   }
722 
723   TI->eraseFromParent();
724   if (Cond)
725     RecursivelyDeleteTriviallyDeadInstructions(Cond, nullptr, MSSAU);
726 }
727 
728 /// Return true if the specified terminator checks
729 /// to see if a value is equal to constant integer value.
730 Value *SimplifyCFGOpt::isValueEqualityComparison(Instruction *TI) {
731   Value *CV = nullptr;
732   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
733     // Do not permit merging of large switch instructions into their
734     // predecessors unless there is only one predecessor.
735     if (!SI->getParent()->hasNPredecessorsOrMore(128 / SI->getNumSuccessors()))
736       CV = SI->getCondition();
737   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI))
738     if (BI->isConditional() && BI->getCondition()->hasOneUse())
739       if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) {
740         if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL))
741           CV = ICI->getOperand(0);
742       }
743 
744   // Unwrap any lossless ptrtoint cast.
745   if (CV) {
746     if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) {
747       Value *Ptr = PTII->getPointerOperand();
748       if (PTII->getType() == DL.getIntPtrType(Ptr->getType()))
749         CV = Ptr;
750     }
751   }
752   return CV;
753 }
754 
755 /// Given a value comparison instruction,
756 /// decode all of the 'cases' that it represents and return the 'default' block.
757 BasicBlock *SimplifyCFGOpt::GetValueEqualityComparisonCases(
758     Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases) {
759   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
760     Cases.reserve(SI->getNumCases());
761     for (auto Case : SI->cases())
762       Cases.push_back(ValueEqualityComparisonCase(Case.getCaseValue(),
763                                                   Case.getCaseSuccessor()));
764     return SI->getDefaultDest();
765   }
766 
767   BranchInst *BI = cast<BranchInst>(TI);
768   ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
769   BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE);
770   Cases.push_back(ValueEqualityComparisonCase(
771       GetConstantInt(ICI->getOperand(1), DL), Succ));
772   return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ);
773 }
774 
775 /// Given a vector of bb/value pairs, remove any entries
776 /// in the list that match the specified block.
777 static void
778 EliminateBlockCases(BasicBlock *BB,
779                     std::vector<ValueEqualityComparisonCase> &Cases) {
780   llvm::erase_value(Cases, BB);
781 }
782 
783 /// Return true if there are any keys in C1 that exist in C2 as well.
784 static bool ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1,
785                           std::vector<ValueEqualityComparisonCase> &C2) {
786   std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2;
787 
788   // Make V1 be smaller than V2.
789   if (V1->size() > V2->size())
790     std::swap(V1, V2);
791 
792   if (V1->empty())
793     return false;
794   if (V1->size() == 1) {
795     // Just scan V2.
796     ConstantInt *TheVal = (*V1)[0].Value;
797     for (unsigned i = 0, e = V2->size(); i != e; ++i)
798       if (TheVal == (*V2)[i].Value)
799         return true;
800   }
801 
802   // Otherwise, just sort both lists and compare element by element.
803   array_pod_sort(V1->begin(), V1->end());
804   array_pod_sort(V2->begin(), V2->end());
805   unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size();
806   while (i1 != e1 && i2 != e2) {
807     if ((*V1)[i1].Value == (*V2)[i2].Value)
808       return true;
809     if ((*V1)[i1].Value < (*V2)[i2].Value)
810       ++i1;
811     else
812       ++i2;
813   }
814   return false;
815 }
816 
817 // Set branch weights on SwitchInst. This sets the metadata if there is at
818 // least one non-zero weight.
819 static void setBranchWeights(SwitchInst *SI, ArrayRef<uint32_t> Weights) {
820   // Check that there is at least one non-zero weight. Otherwise, pass
821   // nullptr to setMetadata which will erase the existing metadata.
822   MDNode *N = nullptr;
823   if (llvm::any_of(Weights, [](uint32_t W) { return W != 0; }))
824     N = MDBuilder(SI->getParent()->getContext()).createBranchWeights(Weights);
825   SI->setMetadata(LLVMContext::MD_prof, N);
826 }
827 
828 // Similar to the above, but for branch and select instructions that take
829 // exactly 2 weights.
830 static void setBranchWeights(Instruction *I, uint32_t TrueWeight,
831                              uint32_t FalseWeight) {
832   assert(isa<BranchInst>(I) || isa<SelectInst>(I));
833   // Check that there is at least one non-zero weight. Otherwise, pass
834   // nullptr to setMetadata which will erase the existing metadata.
835   MDNode *N = nullptr;
836   if (TrueWeight || FalseWeight)
837     N = MDBuilder(I->getParent()->getContext())
838             .createBranchWeights(TrueWeight, FalseWeight);
839   I->setMetadata(LLVMContext::MD_prof, N);
840 }
841 
842 /// If TI is known to be a terminator instruction and its block is known to
843 /// only have a single predecessor block, check to see if that predecessor is
844 /// also a value comparison with the same value, and if that comparison
845 /// determines the outcome of this comparison. If so, simplify TI. This does a
846 /// very limited form of jump threading.
847 bool SimplifyCFGOpt::SimplifyEqualityComparisonWithOnlyPredecessor(
848     Instruction *TI, BasicBlock *Pred, IRBuilder<> &Builder) {
849   Value *PredVal = isValueEqualityComparison(Pred->getTerminator());
850   if (!PredVal)
851     return false; // Not a value comparison in predecessor.
852 
853   Value *ThisVal = isValueEqualityComparison(TI);
854   assert(ThisVal && "This isn't a value comparison!!");
855   if (ThisVal != PredVal)
856     return false; // Different predicates.
857 
858   // TODO: Preserve branch weight metadata, similarly to how
859   // FoldValueComparisonIntoPredecessors preserves it.
860 
861   // Find out information about when control will move from Pred to TI's block.
862   std::vector<ValueEqualityComparisonCase> PredCases;
863   BasicBlock *PredDef =
864       GetValueEqualityComparisonCases(Pred->getTerminator(), PredCases);
865   EliminateBlockCases(PredDef, PredCases); // Remove default from cases.
866 
867   // Find information about how control leaves this block.
868   std::vector<ValueEqualityComparisonCase> ThisCases;
869   BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases);
870   EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases.
871 
872   // If TI's block is the default block from Pred's comparison, potentially
873   // simplify TI based on this knowledge.
874   if (PredDef == TI->getParent()) {
875     // If we are here, we know that the value is none of those cases listed in
876     // PredCases.  If there are any cases in ThisCases that are in PredCases, we
877     // can simplify TI.
878     if (!ValuesOverlap(PredCases, ThisCases))
879       return false;
880 
881     if (isa<BranchInst>(TI)) {
882       // Okay, one of the successors of this condbr is dead.  Convert it to a
883       // uncond br.
884       assert(ThisCases.size() == 1 && "Branch can only have one case!");
885       // Insert the new branch.
886       Instruction *NI = Builder.CreateBr(ThisDef);
887       (void)NI;
888 
889       // Remove PHI node entries for the dead edge.
890       ThisCases[0].Dest->removePredecessor(PredDef);
891 
892       LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
893                         << "Through successor TI: " << *TI << "Leaving: " << *NI
894                         << "\n");
895 
896       EraseTerminatorAndDCECond(TI);
897 
898       if (DTU)
899         DTU->applyUpdates(
900             {{DominatorTree::Delete, PredDef, ThisCases[0].Dest}});
901 
902       return true;
903     }
904 
905     SwitchInstProfUpdateWrapper SI = *cast<SwitchInst>(TI);
906     // Okay, TI has cases that are statically dead, prune them away.
907     SmallPtrSet<Constant *, 16> DeadCases;
908     for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
909       DeadCases.insert(PredCases[i].Value);
910 
911     LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
912                       << "Through successor TI: " << *TI);
913 
914     SmallDenseMap<BasicBlock *, int, 8> NumPerSuccessorCases;
915     for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) {
916       --i;
917       auto *Successor = i->getCaseSuccessor();
918       if (DTU)
919         ++NumPerSuccessorCases[Successor];
920       if (DeadCases.count(i->getCaseValue())) {
921         Successor->removePredecessor(PredDef);
922         SI.removeCase(i);
923         if (DTU)
924           --NumPerSuccessorCases[Successor];
925       }
926     }
927 
928     if (DTU) {
929       std::vector<DominatorTree::UpdateType> Updates;
930       for (const std::pair<BasicBlock *, int> &I : NumPerSuccessorCases)
931         if (I.second == 0)
932           Updates.push_back({DominatorTree::Delete, PredDef, I.first});
933       DTU->applyUpdates(Updates);
934     }
935 
936     LLVM_DEBUG(dbgs() << "Leaving: " << *TI << "\n");
937     return true;
938   }
939 
940   // Otherwise, TI's block must correspond to some matched value.  Find out
941   // which value (or set of values) this is.
942   ConstantInt *TIV = nullptr;
943   BasicBlock *TIBB = TI->getParent();
944   for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
945     if (PredCases[i].Dest == TIBB) {
946       if (TIV)
947         return false; // Cannot handle multiple values coming to this block.
948       TIV = PredCases[i].Value;
949     }
950   assert(TIV && "No edge from pred to succ?");
951 
952   // Okay, we found the one constant that our value can be if we get into TI's
953   // BB.  Find out which successor will unconditionally be branched to.
954   BasicBlock *TheRealDest = nullptr;
955   for (unsigned i = 0, e = ThisCases.size(); i != e; ++i)
956     if (ThisCases[i].Value == TIV) {
957       TheRealDest = ThisCases[i].Dest;
958       break;
959     }
960 
961   // If not handled by any explicit cases, it is handled by the default case.
962   if (!TheRealDest)
963     TheRealDest = ThisDef;
964 
965   SmallPtrSet<BasicBlock *, 2> RemovedSuccs;
966 
967   // Remove PHI node entries for dead edges.
968   BasicBlock *CheckEdge = TheRealDest;
969   for (BasicBlock *Succ : successors(TIBB))
970     if (Succ != CheckEdge) {
971       if (Succ != TheRealDest)
972         RemovedSuccs.insert(Succ);
973       Succ->removePredecessor(TIBB);
974     } else
975       CheckEdge = nullptr;
976 
977   // Insert the new branch.
978   Instruction *NI = Builder.CreateBr(TheRealDest);
979   (void)NI;
980 
981   LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
982                     << "Through successor TI: " << *TI << "Leaving: " << *NI
983                     << "\n");
984 
985   EraseTerminatorAndDCECond(TI);
986   if (DTU) {
987     SmallVector<DominatorTree::UpdateType, 2> Updates;
988     Updates.reserve(RemovedSuccs.size());
989     for (auto *RemovedSucc : RemovedSuccs)
990       Updates.push_back({DominatorTree::Delete, TIBB, RemovedSucc});
991     DTU->applyUpdates(Updates);
992   }
993   return true;
994 }
995 
996 namespace {
997 
998 /// This class implements a stable ordering of constant
999 /// integers that does not depend on their address.  This is important for
1000 /// applications that sort ConstantInt's to ensure uniqueness.
1001 struct ConstantIntOrdering {
1002   bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const {
1003     return LHS->getValue().ult(RHS->getValue());
1004   }
1005 };
1006 
1007 } // end anonymous namespace
1008 
1009 static int ConstantIntSortPredicate(ConstantInt *const *P1,
1010                                     ConstantInt *const *P2) {
1011   const ConstantInt *LHS = *P1;
1012   const ConstantInt *RHS = *P2;
1013   if (LHS == RHS)
1014     return 0;
1015   return LHS->getValue().ult(RHS->getValue()) ? 1 : -1;
1016 }
1017 
1018 static inline bool HasBranchWeights(const Instruction *I) {
1019   MDNode *ProfMD = I->getMetadata(LLVMContext::MD_prof);
1020   if (ProfMD && ProfMD->getOperand(0))
1021     if (MDString *MDS = dyn_cast<MDString>(ProfMD->getOperand(0)))
1022       return MDS->getString().equals("branch_weights");
1023 
1024   return false;
1025 }
1026 
1027 /// Get Weights of a given terminator, the default weight is at the front
1028 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight
1029 /// metadata.
1030 static void GetBranchWeights(Instruction *TI,
1031                              SmallVectorImpl<uint64_t> &Weights) {
1032   MDNode *MD = TI->getMetadata(LLVMContext::MD_prof);
1033   assert(MD);
1034   for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) {
1035     ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i));
1036     Weights.push_back(CI->getValue().getZExtValue());
1037   }
1038 
1039   // If TI is a conditional eq, the default case is the false case,
1040   // and the corresponding branch-weight data is at index 2. We swap the
1041   // default weight to be the first entry.
1042   if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
1043     assert(Weights.size() == 2);
1044     ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
1045     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
1046       std::swap(Weights.front(), Weights.back());
1047   }
1048 }
1049 
1050 /// Keep halving the weights until all can fit in uint32_t.
1051 static void FitWeights(MutableArrayRef<uint64_t> Weights) {
1052   uint64_t Max = *std::max_element(Weights.begin(), Weights.end());
1053   if (Max > UINT_MAX) {
1054     unsigned Offset = 32 - countLeadingZeros(Max);
1055     for (uint64_t &I : Weights)
1056       I >>= Offset;
1057   }
1058 }
1059 
1060 static void CloneInstructionsIntoPredecessorBlockAndUpdateSSAUses(
1061     BasicBlock *BB, BasicBlock *PredBlock, ValueToValueMapTy &VMap) {
1062   Instruction *PTI = PredBlock->getTerminator();
1063 
1064   // If we have bonus instructions, clone them into the predecessor block.
1065   // Note that there may be multiple predecessor blocks, so we cannot move
1066   // bonus instructions to a predecessor block.
1067   for (Instruction &BonusInst : *BB) {
1068     if (isa<DbgInfoIntrinsic>(BonusInst) || BonusInst.isTerminator())
1069       continue;
1070 
1071     Instruction *NewBonusInst = BonusInst.clone();
1072 
1073     if (PTI->getDebugLoc() != NewBonusInst->getDebugLoc()) {
1074       // Unless the instruction has the same !dbg location as the original
1075       // branch, drop it. When we fold the bonus instructions we want to make
1076       // sure we reset their debug locations in order to avoid stepping on
1077       // dead code caused by folding dead branches.
1078       NewBonusInst->setDebugLoc(DebugLoc());
1079     }
1080 
1081     RemapInstruction(NewBonusInst, VMap,
1082                      RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
1083     VMap[&BonusInst] = NewBonusInst;
1084 
1085     // If we moved a load, we cannot any longer claim any knowledge about
1086     // its potential value. The previous information might have been valid
1087     // only given the branch precondition.
1088     // For an analogous reason, we must also drop all the metadata whose
1089     // semantics we don't understand. We *can* preserve !annotation, because
1090     // it is tied to the instruction itself, not the value or position.
1091     NewBonusInst->dropUnknownNonDebugMetadata(LLVMContext::MD_annotation);
1092 
1093     PredBlock->getInstList().insert(PTI->getIterator(), NewBonusInst);
1094     NewBonusInst->takeName(&BonusInst);
1095     BonusInst.setName(NewBonusInst->getName() + ".old");
1096 
1097     // Update (liveout) uses of bonus instructions,
1098     // now that the bonus instruction has been cloned into predecessor.
1099     SSAUpdater SSAUpdate;
1100     SSAUpdate.Initialize(BonusInst.getType(),
1101                          (NewBonusInst->getName() + ".merge").str());
1102     SSAUpdate.AddAvailableValue(BB, &BonusInst);
1103     SSAUpdate.AddAvailableValue(PredBlock, NewBonusInst);
1104     for (Use &U : make_early_inc_range(BonusInst.uses())) {
1105       auto *UI = cast<Instruction>(U.getUser());
1106       if (UI->getParent() != PredBlock)
1107         SSAUpdate.RewriteUseAfterInsertions(U);
1108       else // Use is in the same block as, and comes before, NewBonusInst.
1109         SSAUpdate.RewriteUse(U);
1110     }
1111   }
1112 }
1113 
1114 bool SimplifyCFGOpt::PerformValueComparisonIntoPredecessorFolding(
1115     Instruction *TI, Value *&CV, Instruction *PTI, IRBuilder<> &Builder) {
1116   BasicBlock *BB = TI->getParent();
1117   BasicBlock *Pred = PTI->getParent();
1118 
1119   SmallVector<DominatorTree::UpdateType, 32> Updates;
1120 
1121   // Figure out which 'cases' to copy from SI to PSI.
1122   std::vector<ValueEqualityComparisonCase> BBCases;
1123   BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases);
1124 
1125   std::vector<ValueEqualityComparisonCase> PredCases;
1126   BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases);
1127 
1128   // Based on whether the default edge from PTI goes to BB or not, fill in
1129   // PredCases and PredDefault with the new switch cases we would like to
1130   // build.
1131   SmallMapVector<BasicBlock *, int, 8> NewSuccessors;
1132 
1133   // Update the branch weight metadata along the way
1134   SmallVector<uint64_t, 8> Weights;
1135   bool PredHasWeights = HasBranchWeights(PTI);
1136   bool SuccHasWeights = HasBranchWeights(TI);
1137 
1138   if (PredHasWeights) {
1139     GetBranchWeights(PTI, Weights);
1140     // branch-weight metadata is inconsistent here.
1141     if (Weights.size() != 1 + PredCases.size())
1142       PredHasWeights = SuccHasWeights = false;
1143   } else if (SuccHasWeights)
1144     // If there are no predecessor weights but there are successor weights,
1145     // populate Weights with 1, which will later be scaled to the sum of
1146     // successor's weights
1147     Weights.assign(1 + PredCases.size(), 1);
1148 
1149   SmallVector<uint64_t, 8> SuccWeights;
1150   if (SuccHasWeights) {
1151     GetBranchWeights(TI, SuccWeights);
1152     // branch-weight metadata is inconsistent here.
1153     if (SuccWeights.size() != 1 + BBCases.size())
1154       PredHasWeights = SuccHasWeights = false;
1155   } else if (PredHasWeights)
1156     SuccWeights.assign(1 + BBCases.size(), 1);
1157 
1158   if (PredDefault == BB) {
1159     // If this is the default destination from PTI, only the edges in TI
1160     // that don't occur in PTI, or that branch to BB will be activated.
1161     std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
1162     for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
1163       if (PredCases[i].Dest != BB)
1164         PTIHandled.insert(PredCases[i].Value);
1165       else {
1166         // The default destination is BB, we don't need explicit targets.
1167         std::swap(PredCases[i], PredCases.back());
1168 
1169         if (PredHasWeights || SuccHasWeights) {
1170           // Increase weight for the default case.
1171           Weights[0] += Weights[i + 1];
1172           std::swap(Weights[i + 1], Weights.back());
1173           Weights.pop_back();
1174         }
1175 
1176         PredCases.pop_back();
1177         --i;
1178         --e;
1179       }
1180 
1181     // Reconstruct the new switch statement we will be building.
1182     if (PredDefault != BBDefault) {
1183       PredDefault->removePredecessor(Pred);
1184       if (DTU && PredDefault != BB)
1185         Updates.push_back({DominatorTree::Delete, Pred, PredDefault});
1186       PredDefault = BBDefault;
1187       ++NewSuccessors[BBDefault];
1188     }
1189 
1190     unsigned CasesFromPred = Weights.size();
1191     uint64_t ValidTotalSuccWeight = 0;
1192     for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
1193       if (!PTIHandled.count(BBCases[i].Value) && BBCases[i].Dest != BBDefault) {
1194         PredCases.push_back(BBCases[i]);
1195         ++NewSuccessors[BBCases[i].Dest];
1196         if (SuccHasWeights || PredHasWeights) {
1197           // The default weight is at index 0, so weight for the ith case
1198           // should be at index i+1. Scale the cases from successor by
1199           // PredDefaultWeight (Weights[0]).
1200           Weights.push_back(Weights[0] * SuccWeights[i + 1]);
1201           ValidTotalSuccWeight += SuccWeights[i + 1];
1202         }
1203       }
1204 
1205     if (SuccHasWeights || PredHasWeights) {
1206       ValidTotalSuccWeight += SuccWeights[0];
1207       // Scale the cases from predecessor by ValidTotalSuccWeight.
1208       for (unsigned i = 1; i < CasesFromPred; ++i)
1209         Weights[i] *= ValidTotalSuccWeight;
1210       // Scale the default weight by SuccDefaultWeight (SuccWeights[0]).
1211       Weights[0] *= SuccWeights[0];
1212     }
1213   } else {
1214     // If this is not the default destination from PSI, only the edges
1215     // in SI that occur in PSI with a destination of BB will be
1216     // activated.
1217     std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
1218     std::map<ConstantInt *, uint64_t> WeightsForHandled;
1219     for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
1220       if (PredCases[i].Dest == BB) {
1221         PTIHandled.insert(PredCases[i].Value);
1222 
1223         if (PredHasWeights || SuccHasWeights) {
1224           WeightsForHandled[PredCases[i].Value] = Weights[i + 1];
1225           std::swap(Weights[i + 1], Weights.back());
1226           Weights.pop_back();
1227         }
1228 
1229         std::swap(PredCases[i], PredCases.back());
1230         PredCases.pop_back();
1231         --i;
1232         --e;
1233       }
1234 
1235     // Okay, now we know which constants were sent to BB from the
1236     // predecessor.  Figure out where they will all go now.
1237     for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
1238       if (PTIHandled.count(BBCases[i].Value)) {
1239         // If this is one we are capable of getting...
1240         if (PredHasWeights || SuccHasWeights)
1241           Weights.push_back(WeightsForHandled[BBCases[i].Value]);
1242         PredCases.push_back(BBCases[i]);
1243         ++NewSuccessors[BBCases[i].Dest];
1244         PTIHandled.erase(BBCases[i].Value); // This constant is taken care of
1245       }
1246 
1247     // If there are any constants vectored to BB that TI doesn't handle,
1248     // they must go to the default destination of TI.
1249     for (ConstantInt *I : PTIHandled) {
1250       if (PredHasWeights || SuccHasWeights)
1251         Weights.push_back(WeightsForHandled[I]);
1252       PredCases.push_back(ValueEqualityComparisonCase(I, BBDefault));
1253       ++NewSuccessors[BBDefault];
1254     }
1255   }
1256 
1257   // Okay, at this point, we know which new successor Pred will get.  Make
1258   // sure we update the number of entries in the PHI nodes for these
1259   // successors.
1260   SmallPtrSet<BasicBlock *, 2> SuccsOfPred;
1261   if (DTU) {
1262     SuccsOfPred = {succ_begin(Pred), succ_end(Pred)};
1263     Updates.reserve(Updates.size() + NewSuccessors.size());
1264   }
1265   for (const std::pair<BasicBlock *, int /*Num*/> &NewSuccessor :
1266        NewSuccessors) {
1267     for (auto I : seq(0, NewSuccessor.second)) {
1268       (void)I;
1269       AddPredecessorToBlock(NewSuccessor.first, Pred, BB);
1270     }
1271     if (DTU && !SuccsOfPred.contains(NewSuccessor.first))
1272       Updates.push_back({DominatorTree::Insert, Pred, NewSuccessor.first});
1273   }
1274 
1275   Builder.SetInsertPoint(PTI);
1276   // Convert pointer to int before we switch.
1277   if (CV->getType()->isPointerTy()) {
1278     CV =
1279         Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()), "magicptr");
1280   }
1281 
1282   // Now that the successors are updated, create the new Switch instruction.
1283   SwitchInst *NewSI = Builder.CreateSwitch(CV, PredDefault, PredCases.size());
1284   NewSI->setDebugLoc(PTI->getDebugLoc());
1285   for (ValueEqualityComparisonCase &V : PredCases)
1286     NewSI->addCase(V.Value, V.Dest);
1287 
1288   if (PredHasWeights || SuccHasWeights) {
1289     // Halve the weights if any of them cannot fit in an uint32_t
1290     FitWeights(Weights);
1291 
1292     SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
1293 
1294     setBranchWeights(NewSI, MDWeights);
1295   }
1296 
1297   EraseTerminatorAndDCECond(PTI);
1298 
1299   // Okay, last check.  If BB is still a successor of PSI, then we must
1300   // have an infinite loop case.  If so, add an infinitely looping block
1301   // to handle the case to preserve the behavior of the code.
1302   BasicBlock *InfLoopBlock = nullptr;
1303   for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i)
1304     if (NewSI->getSuccessor(i) == BB) {
1305       if (!InfLoopBlock) {
1306         // Insert it at the end of the function, because it's either code,
1307         // or it won't matter if it's hot. :)
1308         InfLoopBlock =
1309             BasicBlock::Create(BB->getContext(), "infloop", BB->getParent());
1310         BranchInst::Create(InfLoopBlock, InfLoopBlock);
1311         if (DTU)
1312           Updates.push_back(
1313               {DominatorTree::Insert, InfLoopBlock, InfLoopBlock});
1314       }
1315       NewSI->setSuccessor(i, InfLoopBlock);
1316     }
1317 
1318   if (DTU) {
1319     if (InfLoopBlock)
1320       Updates.push_back({DominatorTree::Insert, Pred, InfLoopBlock});
1321 
1322     Updates.push_back({DominatorTree::Delete, Pred, BB});
1323 
1324     DTU->applyUpdates(Updates);
1325   }
1326 
1327   ++NumFoldValueComparisonIntoPredecessors;
1328   return true;
1329 }
1330 
1331 /// The specified terminator is a value equality comparison instruction
1332 /// (either a switch or a branch on "X == c").
1333 /// See if any of the predecessors of the terminator block are value comparisons
1334 /// on the same value.  If so, and if safe to do so, fold them together.
1335 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(Instruction *TI,
1336                                                          IRBuilder<> &Builder) {
1337   BasicBlock *BB = TI->getParent();
1338   Value *CV = isValueEqualityComparison(TI); // CondVal
1339   assert(CV && "Not a comparison?");
1340 
1341   bool Changed = false;
1342 
1343   SmallSetVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB));
1344   while (!Preds.empty()) {
1345     BasicBlock *Pred = Preds.pop_back_val();
1346     Instruction *PTI = Pred->getTerminator();
1347 
1348     // Don't try to fold into itself.
1349     if (Pred == BB)
1350       continue;
1351 
1352     // See if the predecessor is a comparison with the same value.
1353     Value *PCV = isValueEqualityComparison(PTI); // PredCondVal
1354     if (PCV != CV)
1355       continue;
1356 
1357     SmallSetVector<BasicBlock *, 4> FailBlocks;
1358     if (!SafeToMergeTerminators(TI, PTI, &FailBlocks)) {
1359       for (auto *Succ : FailBlocks) {
1360         if (!SplitBlockPredecessors(Succ, TI->getParent(), ".fold.split", DTU))
1361           return false;
1362       }
1363     }
1364 
1365     PerformValueComparisonIntoPredecessorFolding(TI, CV, PTI, Builder);
1366     Changed = true;
1367   }
1368   return Changed;
1369 }
1370 
1371 // If we would need to insert a select that uses the value of this invoke
1372 // (comments in HoistThenElseCodeToIf explain why we would need to do this), we
1373 // can't hoist the invoke, as there is nowhere to put the select in this case.
1374 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2,
1375                                 Instruction *I1, Instruction *I2) {
1376   for (BasicBlock *Succ : successors(BB1)) {
1377     for (const PHINode &PN : Succ->phis()) {
1378       Value *BB1V = PN.getIncomingValueForBlock(BB1);
1379       Value *BB2V = PN.getIncomingValueForBlock(BB2);
1380       if (BB1V != BB2V && (BB1V == I1 || BB2V == I2)) {
1381         return false;
1382       }
1383     }
1384   }
1385   return true;
1386 }
1387 
1388 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I, bool PtrValueMayBeModified = false);
1389 
1390 /// Given a conditional branch that goes to BB1 and BB2, hoist any common code
1391 /// in the two blocks up into the branch block. The caller of this function
1392 /// guarantees that BI's block dominates BB1 and BB2. If EqTermsOnly is given,
1393 /// only perform hoisting in case both blocks only contain a terminator. In that
1394 /// case, only the original BI will be replaced and selects for PHIs are added.
1395 bool SimplifyCFGOpt::HoistThenElseCodeToIf(BranchInst *BI,
1396                                            const TargetTransformInfo &TTI,
1397                                            bool EqTermsOnly) {
1398   // This does very trivial matching, with limited scanning, to find identical
1399   // instructions in the two blocks.  In particular, we don't want to get into
1400   // O(M*N) situations here where M and N are the sizes of BB1 and BB2.  As
1401   // such, we currently just scan for obviously identical instructions in an
1402   // identical order.
1403   BasicBlock *BB1 = BI->getSuccessor(0); // The true destination.
1404   BasicBlock *BB2 = BI->getSuccessor(1); // The false destination
1405 
1406   BasicBlock::iterator BB1_Itr = BB1->begin();
1407   BasicBlock::iterator BB2_Itr = BB2->begin();
1408 
1409   Instruction *I1 = &*BB1_Itr++, *I2 = &*BB2_Itr++;
1410   // Skip debug info if it is not identical.
1411   DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1412   DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1413   if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1414     while (isa<DbgInfoIntrinsic>(I1))
1415       I1 = &*BB1_Itr++;
1416     while (isa<DbgInfoIntrinsic>(I2))
1417       I2 = &*BB2_Itr++;
1418   }
1419   // FIXME: Can we define a safety predicate for CallBr?
1420   if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) ||
1421       (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) ||
1422       isa<CallBrInst>(I1))
1423     return false;
1424 
1425   BasicBlock *BIParent = BI->getParent();
1426 
1427   bool Changed = false;
1428 
1429   auto _ = make_scope_exit([&]() {
1430     if (Changed)
1431       ++NumHoistCommonCode;
1432   });
1433 
1434   // Check if only hoisting terminators is allowed. This does not add new
1435   // instructions to the hoist location.
1436   if (EqTermsOnly) {
1437     // Skip any debug intrinsics, as they are free to hoist.
1438     auto *I1NonDbg = &*skipDebugIntrinsics(I1->getIterator());
1439     auto *I2NonDbg = &*skipDebugIntrinsics(I2->getIterator());
1440     if (!I1NonDbg->isIdenticalToWhenDefined(I2NonDbg))
1441       return false;
1442     if (!I1NonDbg->isTerminator())
1443       return false;
1444     // Now we know that we only need to hoist debug instrinsics and the
1445     // terminator. Let the loop below handle those 2 cases.
1446   }
1447 
1448   do {
1449     // If we are hoisting the terminator instruction, don't move one (making a
1450     // broken BB), instead clone it, and remove BI.
1451     if (I1->isTerminator())
1452       goto HoistTerminator;
1453 
1454     // If we're going to hoist a call, make sure that the two instructions we're
1455     // commoning/hoisting are both marked with musttail, or neither of them is
1456     // marked as such. Otherwise, we might end up in a situation where we hoist
1457     // from a block where the terminator is a `ret` to a block where the terminator
1458     // is a `br`, and `musttail` calls expect to be followed by a return.
1459     auto *C1 = dyn_cast<CallInst>(I1);
1460     auto *C2 = dyn_cast<CallInst>(I2);
1461     if (C1 && C2)
1462       if (C1->isMustTailCall() != C2->isMustTailCall())
1463         return Changed;
1464 
1465     if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2))
1466       return Changed;
1467 
1468     // If any of the two call sites has nomerge attribute, stop hoisting.
1469     if (const auto *CB1 = dyn_cast<CallBase>(I1))
1470       if (CB1->cannotMerge())
1471         return Changed;
1472     if (const auto *CB2 = dyn_cast<CallBase>(I2))
1473       if (CB2->cannotMerge())
1474         return Changed;
1475 
1476     if (isa<DbgInfoIntrinsic>(I1) || isa<DbgInfoIntrinsic>(I2)) {
1477       assert (isa<DbgInfoIntrinsic>(I1) && isa<DbgInfoIntrinsic>(I2));
1478       // The debug location is an integral part of a debug info intrinsic
1479       // and can't be separated from it or replaced.  Instead of attempting
1480       // to merge locations, simply hoist both copies of the intrinsic.
1481       BIParent->getInstList().splice(BI->getIterator(),
1482                                      BB1->getInstList(), I1);
1483       BIParent->getInstList().splice(BI->getIterator(),
1484                                      BB2->getInstList(), I2);
1485       Changed = true;
1486     } else {
1487       // For a normal instruction, we just move one to right before the branch,
1488       // then replace all uses of the other with the first.  Finally, we remove
1489       // the now redundant second instruction.
1490       BIParent->getInstList().splice(BI->getIterator(),
1491                                      BB1->getInstList(), I1);
1492       if (!I2->use_empty())
1493         I2->replaceAllUsesWith(I1);
1494       I1->andIRFlags(I2);
1495       unsigned KnownIDs[] = {LLVMContext::MD_tbaa,
1496                              LLVMContext::MD_range,
1497                              LLVMContext::MD_fpmath,
1498                              LLVMContext::MD_invariant_load,
1499                              LLVMContext::MD_nonnull,
1500                              LLVMContext::MD_invariant_group,
1501                              LLVMContext::MD_align,
1502                              LLVMContext::MD_dereferenceable,
1503                              LLVMContext::MD_dereferenceable_or_null,
1504                              LLVMContext::MD_mem_parallel_loop_access,
1505                              LLVMContext::MD_access_group,
1506                              LLVMContext::MD_preserve_access_index};
1507       combineMetadata(I1, I2, KnownIDs, true);
1508 
1509       // I1 and I2 are being combined into a single instruction.  Its debug
1510       // location is the merged locations of the original instructions.
1511       I1->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc());
1512 
1513       I2->eraseFromParent();
1514       Changed = true;
1515     }
1516     ++NumHoistCommonInstrs;
1517 
1518     I1 = &*BB1_Itr++;
1519     I2 = &*BB2_Itr++;
1520     // Skip debug info if it is not identical.
1521     DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1522     DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1523     if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1524       while (isa<DbgInfoIntrinsic>(I1))
1525         I1 = &*BB1_Itr++;
1526       while (isa<DbgInfoIntrinsic>(I2))
1527         I2 = &*BB2_Itr++;
1528     }
1529   } while (I1->isIdenticalToWhenDefined(I2));
1530 
1531   return true;
1532 
1533 HoistTerminator:
1534   // It may not be possible to hoist an invoke.
1535   // FIXME: Can we define a safety predicate for CallBr?
1536   if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))
1537     return Changed;
1538 
1539   // TODO: callbr hoisting currently disabled pending further study.
1540   if (isa<CallBrInst>(I1))
1541     return Changed;
1542 
1543   for (BasicBlock *Succ : successors(BB1)) {
1544     for (PHINode &PN : Succ->phis()) {
1545       Value *BB1V = PN.getIncomingValueForBlock(BB1);
1546       Value *BB2V = PN.getIncomingValueForBlock(BB2);
1547       if (BB1V == BB2V)
1548         continue;
1549 
1550       // Check for passingValueIsAlwaysUndefined here because we would rather
1551       // eliminate undefined control flow then converting it to a select.
1552       if (passingValueIsAlwaysUndefined(BB1V, &PN) ||
1553           passingValueIsAlwaysUndefined(BB2V, &PN))
1554         return Changed;
1555 
1556       if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V))
1557         return Changed;
1558       if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V))
1559         return Changed;
1560     }
1561   }
1562 
1563   // Okay, it is safe to hoist the terminator.
1564   Instruction *NT = I1->clone();
1565   BIParent->getInstList().insert(BI->getIterator(), NT);
1566   if (!NT->getType()->isVoidTy()) {
1567     I1->replaceAllUsesWith(NT);
1568     I2->replaceAllUsesWith(NT);
1569     NT->takeName(I1);
1570   }
1571   Changed = true;
1572   ++NumHoistCommonInstrs;
1573 
1574   // Ensure terminator gets a debug location, even an unknown one, in case
1575   // it involves inlinable calls.
1576   NT->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc());
1577 
1578   // PHIs created below will adopt NT's merged DebugLoc.
1579   IRBuilder<NoFolder> Builder(NT);
1580 
1581   // Hoisting one of the terminators from our successor is a great thing.
1582   // Unfortunately, the successors of the if/else blocks may have PHI nodes in
1583   // them.  If they do, all PHI entries for BB1/BB2 must agree for all PHI
1584   // nodes, so we insert select instruction to compute the final result.
1585   std::map<std::pair<Value *, Value *>, SelectInst *> InsertedSelects;
1586   for (BasicBlock *Succ : successors(BB1)) {
1587     for (PHINode &PN : Succ->phis()) {
1588       Value *BB1V = PN.getIncomingValueForBlock(BB1);
1589       Value *BB2V = PN.getIncomingValueForBlock(BB2);
1590       if (BB1V == BB2V)
1591         continue;
1592 
1593       // These values do not agree.  Insert a select instruction before NT
1594       // that determines the right value.
1595       SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)];
1596       if (!SI) {
1597         // Propagate fast-math-flags from phi node to its replacement select.
1598         IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
1599         if (isa<FPMathOperator>(PN))
1600           Builder.setFastMathFlags(PN.getFastMathFlags());
1601 
1602         SI = cast<SelectInst>(
1603             Builder.CreateSelect(BI->getCondition(), BB1V, BB2V,
1604                                  BB1V->getName() + "." + BB2V->getName(), BI));
1605       }
1606 
1607       // Make the PHI node use the select for all incoming values for BB1/BB2
1608       for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
1609         if (PN.getIncomingBlock(i) == BB1 || PN.getIncomingBlock(i) == BB2)
1610           PN.setIncomingValue(i, SI);
1611     }
1612   }
1613 
1614   SmallVector<DominatorTree::UpdateType, 4> Updates;
1615 
1616   // Update any PHI nodes in our new successors.
1617   for (BasicBlock *Succ : successors(BB1)) {
1618     AddPredecessorToBlock(Succ, BIParent, BB1);
1619     if (DTU)
1620       Updates.push_back({DominatorTree::Insert, BIParent, Succ});
1621   }
1622 
1623   if (DTU)
1624     for (BasicBlock *Succ : successors(BI))
1625       Updates.push_back({DominatorTree::Delete, BIParent, Succ});
1626 
1627   EraseTerminatorAndDCECond(BI);
1628   if (DTU)
1629     DTU->applyUpdates(Updates);
1630   return Changed;
1631 }
1632 
1633 // Check lifetime markers.
1634 static bool isLifeTimeMarker(const Instruction *I) {
1635   if (auto II = dyn_cast<IntrinsicInst>(I)) {
1636     switch (II->getIntrinsicID()) {
1637     default:
1638       break;
1639     case Intrinsic::lifetime_start:
1640     case Intrinsic::lifetime_end:
1641       return true;
1642     }
1643   }
1644   return false;
1645 }
1646 
1647 // TODO: Refine this. This should avoid cases like turning constant memcpy sizes
1648 // into variables.
1649 static bool replacingOperandWithVariableIsCheap(const Instruction *I,
1650                                                 int OpIdx) {
1651   return !isa<IntrinsicInst>(I);
1652 }
1653 
1654 // All instructions in Insts belong to different blocks that all unconditionally
1655 // branch to a common successor. Analyze each instruction and return true if it
1656 // would be possible to sink them into their successor, creating one common
1657 // instruction instead. For every value that would be required to be provided by
1658 // PHI node (because an operand varies in each input block), add to PHIOperands.
1659 static bool canSinkInstructions(
1660     ArrayRef<Instruction *> Insts,
1661     DenseMap<Instruction *, SmallVector<Value *, 4>> &PHIOperands) {
1662   // Prune out obviously bad instructions to move. Each instruction must have
1663   // exactly zero or one use, and we check later that use is by a single, common
1664   // PHI instruction in the successor.
1665   bool HasUse = !Insts.front()->user_empty();
1666   for (auto *I : Insts) {
1667     // These instructions may change or break semantics if moved.
1668     if (isa<PHINode>(I) || I->isEHPad() || isa<AllocaInst>(I) ||
1669         I->getType()->isTokenTy())
1670       return false;
1671 
1672     // Do not try to sink an instruction in an infinite loop - it can cause
1673     // this algorithm to infinite loop.
1674     if (I->getParent()->getSingleSuccessor() == I->getParent())
1675       return false;
1676 
1677     // Conservatively return false if I is an inline-asm instruction. Sinking
1678     // and merging inline-asm instructions can potentially create arguments
1679     // that cannot satisfy the inline-asm constraints.
1680     // If the instruction has nomerge attribute, return false.
1681     if (const auto *C = dyn_cast<CallBase>(I))
1682       if (C->isInlineAsm() || C->cannotMerge())
1683         return false;
1684 
1685     // Each instruction must have zero or one use.
1686     if (HasUse && !I->hasOneUse())
1687       return false;
1688     if (!HasUse && !I->user_empty())
1689       return false;
1690   }
1691 
1692   const Instruction *I0 = Insts.front();
1693   for (auto *I : Insts)
1694     if (!I->isSameOperationAs(I0))
1695       return false;
1696 
1697   // All instructions in Insts are known to be the same opcode. If they have a
1698   // use, check that the only user is a PHI or in the same block as the
1699   // instruction, because if a user is in the same block as an instruction we're
1700   // contemplating sinking, it must already be determined to be sinkable.
1701   if (HasUse) {
1702     auto *PNUse = dyn_cast<PHINode>(*I0->user_begin());
1703     auto *Succ = I0->getParent()->getTerminator()->getSuccessor(0);
1704     if (!all_of(Insts, [&PNUse,&Succ](const Instruction *I) -> bool {
1705           auto *U = cast<Instruction>(*I->user_begin());
1706           return (PNUse &&
1707                   PNUse->getParent() == Succ &&
1708                   PNUse->getIncomingValueForBlock(I->getParent()) == I) ||
1709                  U->getParent() == I->getParent();
1710         }))
1711       return false;
1712   }
1713 
1714   // Because SROA can't handle speculating stores of selects, try not to sink
1715   // loads, stores or lifetime markers of allocas when we'd have to create a
1716   // PHI for the address operand. Also, because it is likely that loads or
1717   // stores of allocas will disappear when Mem2Reg/SROA is run, don't sink
1718   // them.
1719   // This can cause code churn which can have unintended consequences down
1720   // the line - see https://llvm.org/bugs/show_bug.cgi?id=30244.
1721   // FIXME: This is a workaround for a deficiency in SROA - see
1722   // https://llvm.org/bugs/show_bug.cgi?id=30188
1723   if (isa<StoreInst>(I0) && any_of(Insts, [](const Instruction *I) {
1724         return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts());
1725       }))
1726     return false;
1727   if (isa<LoadInst>(I0) && any_of(Insts, [](const Instruction *I) {
1728         return isa<AllocaInst>(I->getOperand(0)->stripPointerCasts());
1729       }))
1730     return false;
1731   if (isLifeTimeMarker(I0) && any_of(Insts, [](const Instruction *I) {
1732         return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts());
1733       }))
1734     return false;
1735 
1736   // For calls to be sinkable, they must all be indirect, or have same callee.
1737   // I.e. if we have two direct calls to different callees, we don't want to
1738   // turn that into an indirect call. Likewise, if we have an indirect call,
1739   // and a direct call, we don't actually want to have a single indirect call.
1740   if (isa<CallBase>(I0)) {
1741     auto IsIndirectCall = [](const Instruction *I) {
1742       return cast<CallBase>(I)->isIndirectCall();
1743     };
1744     bool HaveIndirectCalls = any_of(Insts, IsIndirectCall);
1745     bool AllCallsAreIndirect = all_of(Insts, IsIndirectCall);
1746     if (HaveIndirectCalls) {
1747       if (!AllCallsAreIndirect)
1748         return false;
1749     } else {
1750       // All callees must be identical.
1751       Value *Callee = nullptr;
1752       for (const Instruction *I : Insts) {
1753         Value *CurrCallee = cast<CallBase>(I)->getCalledOperand();
1754         if (!Callee)
1755           Callee = CurrCallee;
1756         else if (Callee != CurrCallee)
1757           return false;
1758       }
1759     }
1760   }
1761 
1762   for (unsigned OI = 0, OE = I0->getNumOperands(); OI != OE; ++OI) {
1763     Value *Op = I0->getOperand(OI);
1764     if (Op->getType()->isTokenTy())
1765       // Don't touch any operand of token type.
1766       return false;
1767 
1768     auto SameAsI0 = [&I0, OI](const Instruction *I) {
1769       assert(I->getNumOperands() == I0->getNumOperands());
1770       return I->getOperand(OI) == I0->getOperand(OI);
1771     };
1772     if (!all_of(Insts, SameAsI0)) {
1773       if ((isa<Constant>(Op) && !replacingOperandWithVariableIsCheap(I0, OI)) ||
1774           !canReplaceOperandWithVariable(I0, OI))
1775         // We can't create a PHI from this GEP.
1776         return false;
1777       for (auto *I : Insts)
1778         PHIOperands[I].push_back(I->getOperand(OI));
1779     }
1780   }
1781   return true;
1782 }
1783 
1784 // Assuming canSinkInstructions(Blocks) has returned true, sink the last
1785 // instruction of every block in Blocks to their common successor, commoning
1786 // into one instruction.
1787 static bool sinkLastInstruction(ArrayRef<BasicBlock*> Blocks) {
1788   auto *BBEnd = Blocks[0]->getTerminator()->getSuccessor(0);
1789 
1790   // canSinkInstructions returning true guarantees that every block has at
1791   // least one non-terminator instruction.
1792   SmallVector<Instruction*,4> Insts;
1793   for (auto *BB : Blocks) {
1794     Instruction *I = BB->getTerminator();
1795     do {
1796       I = I->getPrevNode();
1797     } while (isa<DbgInfoIntrinsic>(I) && I != &BB->front());
1798     if (!isa<DbgInfoIntrinsic>(I))
1799       Insts.push_back(I);
1800   }
1801 
1802   // The only checking we need to do now is that all users of all instructions
1803   // are the same PHI node. canSinkInstructions should have checked this but
1804   // it is slightly over-aggressive - it gets confused by commutative
1805   // instructions so double-check it here.
1806   Instruction *I0 = Insts.front();
1807   if (!I0->user_empty()) {
1808     auto *PNUse = dyn_cast<PHINode>(*I0->user_begin());
1809     if (!all_of(Insts, [&PNUse](const Instruction *I) -> bool {
1810           auto *U = cast<Instruction>(*I->user_begin());
1811           return U == PNUse;
1812         }))
1813       return false;
1814   }
1815 
1816   // We don't need to do any more checking here; canSinkInstructions should
1817   // have done it all for us.
1818   SmallVector<Value*, 4> NewOperands;
1819   for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) {
1820     // This check is different to that in canSinkInstructions. There, we
1821     // cared about the global view once simplifycfg (and instcombine) have
1822     // completed - it takes into account PHIs that become trivially
1823     // simplifiable.  However here we need a more local view; if an operand
1824     // differs we create a PHI and rely on instcombine to clean up the very
1825     // small mess we may make.
1826     bool NeedPHI = any_of(Insts, [&I0, O](const Instruction *I) {
1827       return I->getOperand(O) != I0->getOperand(O);
1828     });
1829     if (!NeedPHI) {
1830       NewOperands.push_back(I0->getOperand(O));
1831       continue;
1832     }
1833 
1834     // Create a new PHI in the successor block and populate it.
1835     auto *Op = I0->getOperand(O);
1836     assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!");
1837     auto *PN = PHINode::Create(Op->getType(), Insts.size(),
1838                                Op->getName() + ".sink", &BBEnd->front());
1839     for (auto *I : Insts)
1840       PN->addIncoming(I->getOperand(O), I->getParent());
1841     NewOperands.push_back(PN);
1842   }
1843 
1844   // Arbitrarily use I0 as the new "common" instruction; remap its operands
1845   // and move it to the start of the successor block.
1846   for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O)
1847     I0->getOperandUse(O).set(NewOperands[O]);
1848   I0->moveBefore(&*BBEnd->getFirstInsertionPt());
1849 
1850   // Update metadata and IR flags, and merge debug locations.
1851   for (auto *I : Insts)
1852     if (I != I0) {
1853       // The debug location for the "common" instruction is the merged locations
1854       // of all the commoned instructions.  We start with the original location
1855       // of the "common" instruction and iteratively merge each location in the
1856       // loop below.
1857       // This is an N-way merge, which will be inefficient if I0 is a CallInst.
1858       // However, as N-way merge for CallInst is rare, so we use simplified API
1859       // instead of using complex API for N-way merge.
1860       I0->applyMergedLocation(I0->getDebugLoc(), I->getDebugLoc());
1861       combineMetadataForCSE(I0, I, true);
1862       I0->andIRFlags(I);
1863     }
1864 
1865   if (!I0->user_empty()) {
1866     // canSinkLastInstruction checked that all instructions were used by
1867     // one and only one PHI node. Find that now, RAUW it to our common
1868     // instruction and nuke it.
1869     auto *PN = cast<PHINode>(*I0->user_begin());
1870     PN->replaceAllUsesWith(I0);
1871     PN->eraseFromParent();
1872   }
1873 
1874   // Finally nuke all instructions apart from the common instruction.
1875   for (auto *I : Insts)
1876     if (I != I0)
1877       I->eraseFromParent();
1878 
1879   return true;
1880 }
1881 
1882 namespace {
1883 
1884   // LockstepReverseIterator - Iterates through instructions
1885   // in a set of blocks in reverse order from the first non-terminator.
1886   // For example (assume all blocks have size n):
1887   //   LockstepReverseIterator I([B1, B2, B3]);
1888   //   *I-- = [B1[n], B2[n], B3[n]];
1889   //   *I-- = [B1[n-1], B2[n-1], B3[n-1]];
1890   //   *I-- = [B1[n-2], B2[n-2], B3[n-2]];
1891   //   ...
1892   class LockstepReverseIterator {
1893     ArrayRef<BasicBlock*> Blocks;
1894     SmallVector<Instruction*,4> Insts;
1895     bool Fail;
1896 
1897   public:
1898     LockstepReverseIterator(ArrayRef<BasicBlock*> Blocks) : Blocks(Blocks) {
1899       reset();
1900     }
1901 
1902     void reset() {
1903       Fail = false;
1904       Insts.clear();
1905       for (auto *BB : Blocks) {
1906         Instruction *Inst = BB->getTerminator();
1907         for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
1908           Inst = Inst->getPrevNode();
1909         if (!Inst) {
1910           // Block wasn't big enough.
1911           Fail = true;
1912           return;
1913         }
1914         Insts.push_back(Inst);
1915       }
1916     }
1917 
1918     bool isValid() const {
1919       return !Fail;
1920     }
1921 
1922     void operator--() {
1923       if (Fail)
1924         return;
1925       for (auto *&Inst : Insts) {
1926         for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
1927           Inst = Inst->getPrevNode();
1928         // Already at beginning of block.
1929         if (!Inst) {
1930           Fail = true;
1931           return;
1932         }
1933       }
1934     }
1935 
1936     void operator++() {
1937       if (Fail)
1938         return;
1939       for (auto *&Inst : Insts) {
1940         for (Inst = Inst->getNextNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
1941           Inst = Inst->getNextNode();
1942         // Already at end of block.
1943         if (!Inst) {
1944           Fail = true;
1945           return;
1946         }
1947       }
1948     }
1949 
1950     ArrayRef<Instruction*> operator * () const {
1951       return Insts;
1952     }
1953   };
1954 
1955 } // end anonymous namespace
1956 
1957 /// Check whether BB's predecessors end with unconditional branches. If it is
1958 /// true, sink any common code from the predecessors to BB.
1959 static bool SinkCommonCodeFromPredecessors(BasicBlock *BB,
1960                                            DomTreeUpdater *DTU) {
1961   // We support two situations:
1962   //   (1) all incoming arcs are unconditional
1963   //   (2) there are non-unconditional incoming arcs
1964   //
1965   // (2) is very common in switch defaults and
1966   // else-if patterns;
1967   //
1968   //   if (a) f(1);
1969   //   else if (b) f(2);
1970   //
1971   // produces:
1972   //
1973   //       [if]
1974   //      /    \
1975   //    [f(1)] [if]
1976   //      |     | \
1977   //      |     |  |
1978   //      |  [f(2)]|
1979   //       \    | /
1980   //        [ end ]
1981   //
1982   // [end] has two unconditional predecessor arcs and one conditional. The
1983   // conditional refers to the implicit empty 'else' arc. This conditional
1984   // arc can also be caused by an empty default block in a switch.
1985   //
1986   // In this case, we attempt to sink code from all *unconditional* arcs.
1987   // If we can sink instructions from these arcs (determined during the scan
1988   // phase below) we insert a common successor for all unconditional arcs and
1989   // connect that to [end], to enable sinking:
1990   //
1991   //       [if]
1992   //      /    \
1993   //    [x(1)] [if]
1994   //      |     | \
1995   //      |     |  \
1996   //      |  [x(2)] |
1997   //       \   /    |
1998   //   [sink.split] |
1999   //         \     /
2000   //         [ end ]
2001   //
2002   SmallVector<BasicBlock*,4> UnconditionalPreds;
2003   bool HaveNonUnconditionalPredecessors = false;
2004   for (auto *PredBB : predecessors(BB)) {
2005     auto *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator());
2006     if (PredBr && PredBr->isUnconditional())
2007       UnconditionalPreds.push_back(PredBB);
2008     else
2009       HaveNonUnconditionalPredecessors = true;
2010   }
2011   if (UnconditionalPreds.size() < 2)
2012     return false;
2013 
2014   // We take a two-step approach to tail sinking. First we scan from the end of
2015   // each block upwards in lockstep. If the n'th instruction from the end of each
2016   // block can be sunk, those instructions are added to ValuesToSink and we
2017   // carry on. If we can sink an instruction but need to PHI-merge some operands
2018   // (because they're not identical in each instruction) we add these to
2019   // PHIOperands.
2020   int ScanIdx = 0;
2021   SmallPtrSet<Value*,4> InstructionsToSink;
2022   DenseMap<Instruction*, SmallVector<Value*,4>> PHIOperands;
2023   LockstepReverseIterator LRI(UnconditionalPreds);
2024   while (LRI.isValid() &&
2025          canSinkInstructions(*LRI, PHIOperands)) {
2026     LLVM_DEBUG(dbgs() << "SINK: instruction can be sunk: " << *(*LRI)[0]
2027                       << "\n");
2028     InstructionsToSink.insert((*LRI).begin(), (*LRI).end());
2029     ++ScanIdx;
2030     --LRI;
2031   }
2032 
2033   // If no instructions can be sunk, early-return.
2034   if (ScanIdx == 0)
2035     return false;
2036 
2037   // Okay, we *could* sink last ScanIdx instructions. But how many can we
2038   // actually sink before encountering instruction that is unprofitable to sink?
2039   auto ProfitableToSinkInstruction = [&](LockstepReverseIterator &LRI) {
2040     unsigned NumPHIdValues = 0;
2041     for (auto *I : *LRI)
2042       for (auto *V : PHIOperands[I]) {
2043         if (InstructionsToSink.count(V) == 0)
2044           ++NumPHIdValues;
2045         // FIXME: this check is overly optimistic. We may end up not sinking
2046         // said instruction, due to the very same profitability check.
2047         // See @creating_too_many_phis in sink-common-code.ll.
2048       }
2049     LLVM_DEBUG(dbgs() << "SINK: #phid values: " << NumPHIdValues << "\n");
2050     unsigned NumPHIInsts = NumPHIdValues / UnconditionalPreds.size();
2051     if ((NumPHIdValues % UnconditionalPreds.size()) != 0)
2052         NumPHIInsts++;
2053 
2054     return NumPHIInsts <= 1;
2055   };
2056 
2057   // If no instructions can be sunk, early-return.
2058   if (ScanIdx == 0)
2059     return false;
2060 
2061   // We've determined that we are going to sink last ScanIdx instructions,
2062   // and recorded them in InstructionsToSink. Now, some instructions may be
2063   // unprofitable to sink. But that determination depends on the instructions
2064   // that we are going to sink.
2065 
2066   // First, forward scan: find the first instruction unprofitable to sink,
2067   // recording all the ones that are profitable to sink.
2068   // FIXME: would it be better, after we detect that not all are profitable.
2069   // to either record the profitable ones, or erase the unprofitable ones?
2070   // Maybe we need to choose (at runtime) the one that will touch least instrs?
2071   LRI.reset();
2072   int Idx = 0;
2073   SmallPtrSet<Value *, 4> InstructionsProfitableToSink;
2074   while (Idx < ScanIdx) {
2075     if (!ProfitableToSinkInstruction(LRI)) {
2076       // Too many PHIs would be created.
2077       LLVM_DEBUG(
2078           dbgs() << "SINK: stopping here, too many PHIs would be created!\n");
2079       break;
2080     }
2081     InstructionsProfitableToSink.insert((*LRI).begin(), (*LRI).end());
2082     --LRI;
2083     ++Idx;
2084   }
2085 
2086   // If no instructions can be sunk, early-return.
2087   if (Idx == 0)
2088     return false;
2089 
2090   // Did we determine that (only) some instructions are unprofitable to sink?
2091   if (Idx < ScanIdx) {
2092     // Okay, some instructions are unprofitable.
2093     ScanIdx = Idx;
2094     InstructionsToSink = InstructionsProfitableToSink;
2095 
2096     // But, that may make other instructions unprofitable, too.
2097     // So, do a backward scan, do any earlier instructions become unprofitable?
2098     assert(!ProfitableToSinkInstruction(LRI) &&
2099            "We already know that the last instruction is unprofitable to sink");
2100     ++LRI;
2101     --Idx;
2102     while (Idx >= 0) {
2103       // If we detect that an instruction becomes unprofitable to sink,
2104       // all earlier instructions won't be sunk either,
2105       // so preemptively keep InstructionsProfitableToSink in sync.
2106       // FIXME: is this the most performant approach?
2107       for (auto *I : *LRI)
2108         InstructionsProfitableToSink.erase(I);
2109       if (!ProfitableToSinkInstruction(LRI)) {
2110         // Everything starting with this instruction won't be sunk.
2111         ScanIdx = Idx;
2112         InstructionsToSink = InstructionsProfitableToSink;
2113       }
2114       ++LRI;
2115       --Idx;
2116     }
2117   }
2118 
2119   // If no instructions can be sunk, early-return.
2120   if (ScanIdx == 0)
2121     return false;
2122 
2123   bool Changed = false;
2124 
2125   if (HaveNonUnconditionalPredecessors) {
2126     // It is always legal to sink common instructions from unconditional
2127     // predecessors. However, if not all predecessors are unconditional,
2128     // this transformation might be pessimizing. So as a rule of thumb,
2129     // don't do it unless we'd sink at least one non-speculatable instruction.
2130     // See https://bugs.llvm.org/show_bug.cgi?id=30244
2131     LRI.reset();
2132     int Idx = 0;
2133     bool Profitable = false;
2134     while (Idx < ScanIdx) {
2135       if (!isSafeToSpeculativelyExecute((*LRI)[0])) {
2136         Profitable = true;
2137         break;
2138       }
2139       --LRI;
2140       ++Idx;
2141     }
2142     if (!Profitable)
2143       return false;
2144 
2145     LLVM_DEBUG(dbgs() << "SINK: Splitting edge\n");
2146     // We have a conditional edge and we're going to sink some instructions.
2147     // Insert a new block postdominating all blocks we're going to sink from.
2148     if (!SplitBlockPredecessors(BB, UnconditionalPreds, ".sink.split", DTU))
2149       // Edges couldn't be split.
2150       return false;
2151     Changed = true;
2152   }
2153 
2154   // Now that we've analyzed all potential sinking candidates, perform the
2155   // actual sink. We iteratively sink the last non-terminator of the source
2156   // blocks into their common successor unless doing so would require too
2157   // many PHI instructions to be generated (currently only one PHI is allowed
2158   // per sunk instruction).
2159   //
2160   // We can use InstructionsToSink to discount values needing PHI-merging that will
2161   // actually be sunk in a later iteration. This allows us to be more
2162   // aggressive in what we sink. This does allow a false positive where we
2163   // sink presuming a later value will also be sunk, but stop half way through
2164   // and never actually sink it which means we produce more PHIs than intended.
2165   // This is unlikely in practice though.
2166   int SinkIdx = 0;
2167   for (; SinkIdx != ScanIdx; ++SinkIdx) {
2168     LLVM_DEBUG(dbgs() << "SINK: Sink: "
2169                       << *UnconditionalPreds[0]->getTerminator()->getPrevNode()
2170                       << "\n");
2171 
2172     // Because we've sunk every instruction in turn, the current instruction to
2173     // sink is always at index 0.
2174     LRI.reset();
2175 
2176     if (!sinkLastInstruction(UnconditionalPreds)) {
2177       LLVM_DEBUG(
2178           dbgs()
2179           << "SINK: stopping here, failed to actually sink instruction!\n");
2180       break;
2181     }
2182 
2183     NumSinkCommonInstrs++;
2184     Changed = true;
2185   }
2186   if (SinkIdx != 0)
2187     ++NumSinkCommonCode;
2188   return Changed;
2189 }
2190 
2191 /// Determine if we can hoist sink a sole store instruction out of a
2192 /// conditional block.
2193 ///
2194 /// We are looking for code like the following:
2195 ///   BrBB:
2196 ///     store i32 %add, i32* %arrayidx2
2197 ///     ... // No other stores or function calls (we could be calling a memory
2198 ///     ... // function).
2199 ///     %cmp = icmp ult %x, %y
2200 ///     br i1 %cmp, label %EndBB, label %ThenBB
2201 ///   ThenBB:
2202 ///     store i32 %add5, i32* %arrayidx2
2203 ///     br label EndBB
2204 ///   EndBB:
2205 ///     ...
2206 ///   We are going to transform this into:
2207 ///   BrBB:
2208 ///     store i32 %add, i32* %arrayidx2
2209 ///     ... //
2210 ///     %cmp = icmp ult %x, %y
2211 ///     %add.add5 = select i1 %cmp, i32 %add, %add5
2212 ///     store i32 %add.add5, i32* %arrayidx2
2213 ///     ...
2214 ///
2215 /// \return The pointer to the value of the previous store if the store can be
2216 ///         hoisted into the predecessor block. 0 otherwise.
2217 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB,
2218                                      BasicBlock *StoreBB, BasicBlock *EndBB) {
2219   StoreInst *StoreToHoist = dyn_cast<StoreInst>(I);
2220   if (!StoreToHoist)
2221     return nullptr;
2222 
2223   // Volatile or atomic.
2224   if (!StoreToHoist->isSimple())
2225     return nullptr;
2226 
2227   Value *StorePtr = StoreToHoist->getPointerOperand();
2228 
2229   // Look for a store to the same pointer in BrBB.
2230   unsigned MaxNumInstToLookAt = 9;
2231   // Skip pseudo probe intrinsic calls which are not really killing any memory
2232   // accesses.
2233   for (Instruction &CurI : reverse(BrBB->instructionsWithoutDebug(true))) {
2234     if (!MaxNumInstToLookAt)
2235       break;
2236     --MaxNumInstToLookAt;
2237 
2238     // Could be calling an instruction that affects memory like free().
2239     if (CurI.mayHaveSideEffects() && !isa<StoreInst>(CurI))
2240       return nullptr;
2241 
2242     if (auto *SI = dyn_cast<StoreInst>(&CurI)) {
2243       // Found the previous store make sure it stores to the same location.
2244       if (SI->getPointerOperand() == StorePtr)
2245         // Found the previous store, return its value operand.
2246         return SI->getValueOperand();
2247       return nullptr; // Unknown store.
2248     }
2249   }
2250 
2251   return nullptr;
2252 }
2253 
2254 /// Estimate the cost of the insertion(s) and check that the PHI nodes can be
2255 /// converted to selects.
2256 static bool validateAndCostRequiredSelects(BasicBlock *BB, BasicBlock *ThenBB,
2257                                            BasicBlock *EndBB,
2258                                            unsigned &SpeculatedInstructions,
2259                                            InstructionCost &Cost,
2260                                            const TargetTransformInfo &TTI) {
2261   TargetTransformInfo::TargetCostKind CostKind =
2262     BB->getParent()->hasMinSize()
2263     ? TargetTransformInfo::TCK_CodeSize
2264     : TargetTransformInfo::TCK_SizeAndLatency;
2265 
2266   bool HaveRewritablePHIs = false;
2267   for (PHINode &PN : EndBB->phis()) {
2268     Value *OrigV = PN.getIncomingValueForBlock(BB);
2269     Value *ThenV = PN.getIncomingValueForBlock(ThenBB);
2270 
2271     // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf.
2272     // Skip PHIs which are trivial.
2273     if (ThenV == OrigV)
2274       continue;
2275 
2276     Cost += TTI.getCmpSelInstrCost(Instruction::Select, PN.getType(), nullptr,
2277                                    CmpInst::BAD_ICMP_PREDICATE, CostKind);
2278 
2279     // Don't convert to selects if we could remove undefined behavior instead.
2280     if (passingValueIsAlwaysUndefined(OrigV, &PN) ||
2281         passingValueIsAlwaysUndefined(ThenV, &PN))
2282       return false;
2283 
2284     HaveRewritablePHIs = true;
2285     ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV);
2286     ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV);
2287     if (!OrigCE && !ThenCE)
2288       continue; // Known safe and cheap.
2289 
2290     if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE)) ||
2291         (OrigCE && !isSafeToSpeculativelyExecute(OrigCE)))
2292       return false;
2293     InstructionCost OrigCost = OrigCE ? computeSpeculationCost(OrigCE, TTI) : 0;
2294     InstructionCost ThenCost = ThenCE ? computeSpeculationCost(ThenCE, TTI) : 0;
2295     InstructionCost MaxCost =
2296         2 * PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
2297     if (OrigCost + ThenCost > MaxCost)
2298       return false;
2299 
2300     // Account for the cost of an unfolded ConstantExpr which could end up
2301     // getting expanded into Instructions.
2302     // FIXME: This doesn't account for how many operations are combined in the
2303     // constant expression.
2304     ++SpeculatedInstructions;
2305     if (SpeculatedInstructions > 1)
2306       return false;
2307   }
2308 
2309   return HaveRewritablePHIs;
2310 }
2311 
2312 /// Speculate a conditional basic block flattening the CFG.
2313 ///
2314 /// Note that this is a very risky transform currently. Speculating
2315 /// instructions like this is most often not desirable. Instead, there is an MI
2316 /// pass which can do it with full awareness of the resource constraints.
2317 /// However, some cases are "obvious" and we should do directly. An example of
2318 /// this is speculating a single, reasonably cheap instruction.
2319 ///
2320 /// There is only one distinct advantage to flattening the CFG at the IR level:
2321 /// it makes very common but simplistic optimizations such as are common in
2322 /// instcombine and the DAG combiner more powerful by removing CFG edges and
2323 /// modeling their effects with easier to reason about SSA value graphs.
2324 ///
2325 ///
2326 /// An illustration of this transform is turning this IR:
2327 /// \code
2328 ///   BB:
2329 ///     %cmp = icmp ult %x, %y
2330 ///     br i1 %cmp, label %EndBB, label %ThenBB
2331 ///   ThenBB:
2332 ///     %sub = sub %x, %y
2333 ///     br label BB2
2334 ///   EndBB:
2335 ///     %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ]
2336 ///     ...
2337 /// \endcode
2338 ///
2339 /// Into this IR:
2340 /// \code
2341 ///   BB:
2342 ///     %cmp = icmp ult %x, %y
2343 ///     %sub = sub %x, %y
2344 ///     %cond = select i1 %cmp, 0, %sub
2345 ///     ...
2346 /// \endcode
2347 ///
2348 /// \returns true if the conditional block is removed.
2349 bool SimplifyCFGOpt::SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB,
2350                                             const TargetTransformInfo &TTI) {
2351   // Be conservative for now. FP select instruction can often be expensive.
2352   Value *BrCond = BI->getCondition();
2353   if (isa<FCmpInst>(BrCond))
2354     return false;
2355 
2356   BasicBlock *BB = BI->getParent();
2357   BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0);
2358   InstructionCost Budget =
2359       PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
2360 
2361   // If ThenBB is actually on the false edge of the conditional branch, remember
2362   // to swap the select operands later.
2363   bool Invert = false;
2364   if (ThenBB != BI->getSuccessor(0)) {
2365     assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?");
2366     Invert = true;
2367   }
2368   assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block");
2369 
2370   // Keep a count of how many times instructions are used within ThenBB when
2371   // they are candidates for sinking into ThenBB. Specifically:
2372   // - They are defined in BB, and
2373   // - They have no side effects, and
2374   // - All of their uses are in ThenBB.
2375   SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts;
2376 
2377   SmallVector<Instruction *, 4> SpeculatedDbgIntrinsics;
2378 
2379   unsigned SpeculatedInstructions = 0;
2380   Value *SpeculatedStoreValue = nullptr;
2381   StoreInst *SpeculatedStore = nullptr;
2382   for (BasicBlock::iterator BBI = ThenBB->begin(),
2383                             BBE = std::prev(ThenBB->end());
2384        BBI != BBE; ++BBI) {
2385     Instruction *I = &*BBI;
2386     // Skip debug info.
2387     if (isa<DbgInfoIntrinsic>(I)) {
2388       SpeculatedDbgIntrinsics.push_back(I);
2389       continue;
2390     }
2391 
2392     // Skip pseudo probes. The consequence is we lose track of the branch
2393     // probability for ThenBB, which is fine since the optimization here takes
2394     // place regardless of the branch probability.
2395     if (isa<PseudoProbeInst>(I)) {
2396       continue;
2397     }
2398 
2399     // Only speculatively execute a single instruction (not counting the
2400     // terminator) for now.
2401     ++SpeculatedInstructions;
2402     if (SpeculatedInstructions > 1)
2403       return false;
2404 
2405     // Don't hoist the instruction if it's unsafe or expensive.
2406     if (!isSafeToSpeculativelyExecute(I) &&
2407         !(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore(
2408                                   I, BB, ThenBB, EndBB))))
2409       return false;
2410     if (!SpeculatedStoreValue &&
2411         computeSpeculationCost(I, TTI) >
2412             PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic)
2413       return false;
2414 
2415     // Store the store speculation candidate.
2416     if (SpeculatedStoreValue)
2417       SpeculatedStore = cast<StoreInst>(I);
2418 
2419     // Do not hoist the instruction if any of its operands are defined but not
2420     // used in BB. The transformation will prevent the operand from
2421     // being sunk into the use block.
2422     for (Use &Op : I->operands()) {
2423       Instruction *OpI = dyn_cast<Instruction>(Op);
2424       if (!OpI || OpI->getParent() != BB || OpI->mayHaveSideEffects())
2425         continue; // Not a candidate for sinking.
2426 
2427       ++SinkCandidateUseCounts[OpI];
2428     }
2429   }
2430 
2431   // Consider any sink candidates which are only used in ThenBB as costs for
2432   // speculation. Note, while we iterate over a DenseMap here, we are summing
2433   // and so iteration order isn't significant.
2434   for (SmallDenseMap<Instruction *, unsigned, 4>::iterator
2435            I = SinkCandidateUseCounts.begin(),
2436            E = SinkCandidateUseCounts.end();
2437        I != E; ++I)
2438     if (I->first->hasNUses(I->second)) {
2439       ++SpeculatedInstructions;
2440       if (SpeculatedInstructions > 1)
2441         return false;
2442     }
2443 
2444   // Check that we can insert the selects and that it's not too expensive to do
2445   // so.
2446   bool Convert = SpeculatedStore != nullptr;
2447   InstructionCost Cost = 0;
2448   Convert |= validateAndCostRequiredSelects(BB, ThenBB, EndBB,
2449                                             SpeculatedInstructions,
2450                                             Cost, TTI);
2451   if (!Convert || Cost > Budget)
2452     return false;
2453 
2454   // If we get here, we can hoist the instruction and if-convert.
2455   LLVM_DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";);
2456 
2457   // Insert a select of the value of the speculated store.
2458   if (SpeculatedStoreValue) {
2459     IRBuilder<NoFolder> Builder(BI);
2460     Value *TrueV = SpeculatedStore->getValueOperand();
2461     Value *FalseV = SpeculatedStoreValue;
2462     if (Invert)
2463       std::swap(TrueV, FalseV);
2464     Value *S = Builder.CreateSelect(
2465         BrCond, TrueV, FalseV, "spec.store.select", BI);
2466     SpeculatedStore->setOperand(0, S);
2467     SpeculatedStore->applyMergedLocation(BI->getDebugLoc(),
2468                                          SpeculatedStore->getDebugLoc());
2469   }
2470 
2471   // A hoisted conditional probe should be treated as dangling so that it will
2472   // not be over-counted when the samples collected on the non-conditional path
2473   // are counted towards the conditional path. We leave it for the counts
2474   // inference algorithm to figure out a proper count for a danglng probe.
2475   moveAndDanglePseudoProbes(ThenBB, BI);
2476 
2477   // Metadata can be dependent on the condition we are hoisting above.
2478   // Conservatively strip all metadata on the instruction. Drop the debug loc
2479   // to avoid making it appear as if the condition is a constant, which would
2480   // be misleading while debugging.
2481   for (auto &I : *ThenBB) {
2482     assert(!isa<PseudoProbeInst>(I) &&
2483            "Should not drop debug info from any pseudo probes.");
2484     if (!SpeculatedStoreValue || &I != SpeculatedStore)
2485       I.setDebugLoc(DebugLoc());
2486     I.dropUnknownNonDebugMetadata();
2487   }
2488 
2489   // Hoist the instructions.
2490   BB->getInstList().splice(BI->getIterator(), ThenBB->getInstList(),
2491                            ThenBB->begin(), std::prev(ThenBB->end()));
2492 
2493   // Insert selects and rewrite the PHI operands.
2494   IRBuilder<NoFolder> Builder(BI);
2495   for (PHINode &PN : EndBB->phis()) {
2496     unsigned OrigI = PN.getBasicBlockIndex(BB);
2497     unsigned ThenI = PN.getBasicBlockIndex(ThenBB);
2498     Value *OrigV = PN.getIncomingValue(OrigI);
2499     Value *ThenV = PN.getIncomingValue(ThenI);
2500 
2501     // Skip PHIs which are trivial.
2502     if (OrigV == ThenV)
2503       continue;
2504 
2505     // Create a select whose true value is the speculatively executed value and
2506     // false value is the pre-existing value. Swap them if the branch
2507     // destinations were inverted.
2508     Value *TrueV = ThenV, *FalseV = OrigV;
2509     if (Invert)
2510       std::swap(TrueV, FalseV);
2511     Value *V = Builder.CreateSelect(BrCond, TrueV, FalseV, "spec.select", BI);
2512     PN.setIncomingValue(OrigI, V);
2513     PN.setIncomingValue(ThenI, V);
2514   }
2515 
2516   // Remove speculated dbg intrinsics.
2517   // FIXME: Is it possible to do this in a more elegant way? Moving/merging the
2518   // dbg value for the different flows and inserting it after the select.
2519   for (Instruction *I : SpeculatedDbgIntrinsics)
2520     I->eraseFromParent();
2521 
2522   ++NumSpeculations;
2523   return true;
2524 }
2525 
2526 /// Return true if we can thread a branch across this block.
2527 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) {
2528   int Size = 0;
2529 
2530   for (Instruction &I : BB->instructionsWithoutDebug()) {
2531     if (Size > MaxSmallBlockSize)
2532       return false; // Don't clone large BB's.
2533 
2534     // Can't fold blocks that contain noduplicate or convergent calls.
2535     if (CallInst *CI = dyn_cast<CallInst>(&I))
2536       if (CI->cannotDuplicate() || CI->isConvergent())
2537         return false;
2538 
2539     // We will delete Phis while threading, so Phis should not be accounted in
2540     // block's size
2541     if (!isa<PHINode>(I))
2542       ++Size;
2543 
2544     // We can only support instructions that do not define values that are
2545     // live outside of the current basic block.
2546     for (User *U : I.users()) {
2547       Instruction *UI = cast<Instruction>(U);
2548       if (UI->getParent() != BB || isa<PHINode>(UI))
2549         return false;
2550     }
2551 
2552     // Looks ok, continue checking.
2553   }
2554 
2555   return true;
2556 }
2557 
2558 /// If we have a conditional branch on a PHI node value that is defined in the
2559 /// same block as the branch and if any PHI entries are constants, thread edges
2560 /// corresponding to that entry to be branches to their ultimate destination.
2561 static bool FoldCondBranchOnPHI(BranchInst *BI, DomTreeUpdater *DTU,
2562                                 const DataLayout &DL, AssumptionCache *AC) {
2563   BasicBlock *BB = BI->getParent();
2564   PHINode *PN = dyn_cast<PHINode>(BI->getCondition());
2565   // NOTE: we currently cannot transform this case if the PHI node is used
2566   // outside of the block.
2567   if (!PN || PN->getParent() != BB || !PN->hasOneUse())
2568     return false;
2569 
2570   // Degenerate case of a single entry PHI.
2571   if (PN->getNumIncomingValues() == 1) {
2572     FoldSingleEntryPHINodes(PN->getParent());
2573     return true;
2574   }
2575 
2576   // Now we know that this block has multiple preds and two succs.
2577   if (!BlockIsSimpleEnoughToThreadThrough(BB))
2578     return false;
2579 
2580   // Okay, this is a simple enough basic block.  See if any phi values are
2581   // constants.
2582   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
2583     ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i));
2584     if (!CB || !CB->getType()->isIntegerTy(1))
2585       continue;
2586 
2587     // Okay, we now know that all edges from PredBB should be revectored to
2588     // branch to RealDest.
2589     BasicBlock *PredBB = PN->getIncomingBlock(i);
2590     BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue());
2591 
2592     if (RealDest == BB)
2593       continue; // Skip self loops.
2594     // Skip if the predecessor's terminator is an indirect branch.
2595     if (isa<IndirectBrInst>(PredBB->getTerminator()))
2596       continue;
2597 
2598     SmallVector<DominatorTree::UpdateType, 3> Updates;
2599 
2600     // The dest block might have PHI nodes, other predecessors and other
2601     // difficult cases.  Instead of being smart about this, just insert a new
2602     // block that jumps to the destination block, effectively splitting
2603     // the edge we are about to create.
2604     BasicBlock *EdgeBB =
2605         BasicBlock::Create(BB->getContext(), RealDest->getName() + ".critedge",
2606                            RealDest->getParent(), RealDest);
2607     BranchInst *CritEdgeBranch = BranchInst::Create(RealDest, EdgeBB);
2608     if (DTU)
2609       Updates.push_back({DominatorTree::Insert, EdgeBB, RealDest});
2610     CritEdgeBranch->setDebugLoc(BI->getDebugLoc());
2611 
2612     // Update PHI nodes.
2613     AddPredecessorToBlock(RealDest, EdgeBB, BB);
2614 
2615     // BB may have instructions that are being threaded over.  Clone these
2616     // instructions into EdgeBB.  We know that there will be no uses of the
2617     // cloned instructions outside of EdgeBB.
2618     BasicBlock::iterator InsertPt = EdgeBB->begin();
2619     DenseMap<Value *, Value *> TranslateMap; // Track translated values.
2620     for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
2621       if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
2622         TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB);
2623         continue;
2624       }
2625       // Clone the instruction.
2626       Instruction *N = BBI->clone();
2627       if (BBI->hasName())
2628         N->setName(BBI->getName() + ".c");
2629 
2630       // Update operands due to translation.
2631       for (Use &Op : N->operands()) {
2632         DenseMap<Value *, Value *>::iterator PI = TranslateMap.find(Op);
2633         if (PI != TranslateMap.end())
2634           Op = PI->second;
2635       }
2636 
2637       // Check for trivial simplification.
2638       if (Value *V = SimplifyInstruction(N, {DL, nullptr, nullptr, AC})) {
2639         if (!BBI->use_empty())
2640           TranslateMap[&*BBI] = V;
2641         if (!N->mayHaveSideEffects()) {
2642           N->deleteValue(); // Instruction folded away, don't need actual inst
2643           N = nullptr;
2644         }
2645       } else {
2646         if (!BBI->use_empty())
2647           TranslateMap[&*BBI] = N;
2648       }
2649       if (N) {
2650         // Insert the new instruction into its new home.
2651         EdgeBB->getInstList().insert(InsertPt, N);
2652 
2653         // Register the new instruction with the assumption cache if necessary.
2654         if (auto *Assume = dyn_cast<AssumeInst>(N))
2655           if (AC)
2656             AC->registerAssumption(Assume);
2657       }
2658     }
2659 
2660     // Loop over all of the edges from PredBB to BB, changing them to branch
2661     // to EdgeBB instead.
2662     Instruction *PredBBTI = PredBB->getTerminator();
2663     for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i)
2664       if (PredBBTI->getSuccessor(i) == BB) {
2665         BB->removePredecessor(PredBB);
2666         PredBBTI->setSuccessor(i, EdgeBB);
2667       }
2668 
2669     if (DTU) {
2670       Updates.push_back({DominatorTree::Insert, PredBB, EdgeBB});
2671       Updates.push_back({DominatorTree::Delete, PredBB, BB});
2672 
2673       DTU->applyUpdates(Updates);
2674     }
2675 
2676     // Recurse, simplifying any other constants.
2677     return FoldCondBranchOnPHI(BI, DTU, DL, AC) || true;
2678   }
2679 
2680   return false;
2681 }
2682 
2683 /// Given a BB that starts with the specified two-entry PHI node,
2684 /// see if we can eliminate it.
2685 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI,
2686                                 DomTreeUpdater *DTU, const DataLayout &DL) {
2687   // Ok, this is a two entry PHI node.  Check to see if this is a simple "if
2688   // statement", which has a very simple dominance structure.  Basically, we
2689   // are trying to find the condition that is being branched on, which
2690   // subsequently causes this merge to happen.  We really want control
2691   // dependence information for this check, but simplifycfg can't keep it up
2692   // to date, and this catches most of the cases we care about anyway.
2693   BasicBlock *BB = PN->getParent();
2694 
2695   BasicBlock *IfTrue, *IfFalse;
2696   Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse);
2697   if (!IfCond ||
2698       // Don't bother if the branch will be constant folded trivially.
2699       isa<ConstantInt>(IfCond))
2700     return false;
2701 
2702   // Okay, we found that we can merge this two-entry phi node into a select.
2703   // Doing so would require us to fold *all* two entry phi nodes in this block.
2704   // At some point this becomes non-profitable (particularly if the target
2705   // doesn't support cmov's).  Only do this transformation if there are two or
2706   // fewer PHI nodes in this block.
2707   unsigned NumPhis = 0;
2708   for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I)
2709     if (NumPhis > 2)
2710       return false;
2711 
2712   // Loop over the PHI's seeing if we can promote them all to select
2713   // instructions.  While we are at it, keep track of the instructions
2714   // that need to be moved to the dominating block.
2715   SmallPtrSet<Instruction *, 4> AggressiveInsts;
2716   InstructionCost Cost = 0;
2717   InstructionCost Budget =
2718       TwoEntryPHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
2719 
2720   bool Changed = false;
2721   for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) {
2722     PHINode *PN = cast<PHINode>(II++);
2723     if (Value *V = SimplifyInstruction(PN, {DL, PN})) {
2724       PN->replaceAllUsesWith(V);
2725       PN->eraseFromParent();
2726       Changed = true;
2727       continue;
2728     }
2729 
2730     if (!dominatesMergePoint(PN->getIncomingValue(0), BB, AggressiveInsts,
2731                              Cost, Budget, TTI) ||
2732         !dominatesMergePoint(PN->getIncomingValue(1), BB, AggressiveInsts,
2733                              Cost, Budget, TTI))
2734       return Changed;
2735   }
2736 
2737   // If we folded the first phi, PN dangles at this point.  Refresh it.  If
2738   // we ran out of PHIs then we simplified them all.
2739   PN = dyn_cast<PHINode>(BB->begin());
2740   if (!PN)
2741     return true;
2742 
2743   // Return true if at least one of these is a 'not', and another is either
2744   // a 'not' too, or a constant.
2745   auto CanHoistNotFromBothValues = [](Value *V0, Value *V1) {
2746     if (!match(V0, m_Not(m_Value())))
2747       std::swap(V0, V1);
2748     auto Invertible = m_CombineOr(m_Not(m_Value()), m_AnyIntegralConstant());
2749     return match(V0, m_Not(m_Value())) && match(V1, Invertible);
2750   };
2751 
2752   // Don't fold i1 branches on PHIs which contain binary operators or
2753   // select form of or/ands, unless one of the incoming values is an 'not' and
2754   // another one is freely invertible.
2755   // These can often be turned into switches and other things.
2756   auto IsBinOpOrAnd = [](Value *V) {
2757     return match(
2758         V, m_CombineOr(m_BinOp(), m_CombineOr(m_LogicalAnd(), m_LogicalOr())));
2759   };
2760   if (PN->getType()->isIntegerTy(1) &&
2761       (IsBinOpOrAnd(PN->getIncomingValue(0)) ||
2762        IsBinOpOrAnd(PN->getIncomingValue(1)) || IsBinOpOrAnd(IfCond)) &&
2763       !CanHoistNotFromBothValues(PN->getIncomingValue(0),
2764                                  PN->getIncomingValue(1)))
2765     return Changed;
2766 
2767   // If all PHI nodes are promotable, check to make sure that all instructions
2768   // in the predecessor blocks can be promoted as well. If not, we won't be able
2769   // to get rid of the control flow, so it's not worth promoting to select
2770   // instructions.
2771   BasicBlock *DomBlock = nullptr;
2772   BasicBlock *IfBlock1 = PN->getIncomingBlock(0);
2773   BasicBlock *IfBlock2 = PN->getIncomingBlock(1);
2774   if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) {
2775     IfBlock1 = nullptr;
2776   } else {
2777     DomBlock = *pred_begin(IfBlock1);
2778     for (BasicBlock::iterator I = IfBlock1->begin(); !I->isTerminator(); ++I)
2779       if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I) &&
2780           !isa<PseudoProbeInst>(I)) {
2781         // This is not an aggressive instruction that we can promote.
2782         // Because of this, we won't be able to get rid of the control flow, so
2783         // the xform is not worth it.
2784         return Changed;
2785       }
2786   }
2787 
2788   if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) {
2789     IfBlock2 = nullptr;
2790   } else {
2791     DomBlock = *pred_begin(IfBlock2);
2792     for (BasicBlock::iterator I = IfBlock2->begin(); !I->isTerminator(); ++I)
2793       if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I) &&
2794           !isa<PseudoProbeInst>(I)) {
2795         // This is not an aggressive instruction that we can promote.
2796         // Because of this, we won't be able to get rid of the control flow, so
2797         // the xform is not worth it.
2798         return Changed;
2799       }
2800   }
2801   assert(DomBlock && "Failed to find root DomBlock");
2802 
2803   LLVM_DEBUG(dbgs() << "FOUND IF CONDITION!  " << *IfCond
2804                     << "  T: " << IfTrue->getName()
2805                     << "  F: " << IfFalse->getName() << "\n");
2806 
2807   // If we can still promote the PHI nodes after this gauntlet of tests,
2808   // do all of the PHI's now.
2809   Instruction *InsertPt = DomBlock->getTerminator();
2810   IRBuilder<NoFolder> Builder(InsertPt);
2811 
2812   // Move all 'aggressive' instructions, which are defined in the
2813   // conditional parts of the if's up to the dominating block.
2814   if (IfBlock1)
2815     hoistAllInstructionsInto(DomBlock, InsertPt, IfBlock1);
2816   if (IfBlock2)
2817     hoistAllInstructionsInto(DomBlock, InsertPt, IfBlock2);
2818 
2819   // Propagate fast-math-flags from phi nodes to replacement selects.
2820   IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
2821   while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
2822     if (isa<FPMathOperator>(PN))
2823       Builder.setFastMathFlags(PN->getFastMathFlags());
2824 
2825     // Change the PHI node into a select instruction.
2826     Value *TrueVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse);
2827     Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue);
2828 
2829     Value *Sel = Builder.CreateSelect(IfCond, TrueVal, FalseVal, "", InsertPt);
2830     PN->replaceAllUsesWith(Sel);
2831     Sel->takeName(PN);
2832     PN->eraseFromParent();
2833   }
2834 
2835   // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement
2836   // has been flattened.  Change DomBlock to jump directly to our new block to
2837   // avoid other simplifycfg's kicking in on the diamond.
2838   Instruction *OldTI = DomBlock->getTerminator();
2839   Builder.SetInsertPoint(OldTI);
2840   Builder.CreateBr(BB);
2841 
2842   SmallVector<DominatorTree::UpdateType, 3> Updates;
2843   if (DTU) {
2844     Updates.push_back({DominatorTree::Insert, DomBlock, BB});
2845     for (auto *Successor : successors(DomBlock))
2846       Updates.push_back({DominatorTree::Delete, DomBlock, Successor});
2847   }
2848 
2849   OldTI->eraseFromParent();
2850   if (DTU)
2851     DTU->applyUpdates(Updates);
2852 
2853   return true;
2854 }
2855 
2856 /// If we found a conditional branch that goes to two returning blocks,
2857 /// try to merge them together into one return,
2858 /// introducing a select if the return values disagree.
2859 bool SimplifyCFGOpt::SimplifyCondBranchToTwoReturns(BranchInst *BI,
2860                                                     IRBuilder<> &Builder) {
2861   auto *BB = BI->getParent();
2862   assert(BI->isConditional() && "Must be a conditional branch");
2863   BasicBlock *TrueSucc = BI->getSuccessor(0);
2864   BasicBlock *FalseSucc = BI->getSuccessor(1);
2865   // NOTE: destinations may match, this could be degenerate uncond branch.
2866   ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator());
2867   ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator());
2868 
2869   // Check to ensure both blocks are empty (just a return) or optionally empty
2870   // with PHI nodes.  If there are other instructions, merging would cause extra
2871   // computation on one path or the other.
2872   if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator())
2873     return false;
2874   if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator())
2875     return false;
2876 
2877   Builder.SetInsertPoint(BI);
2878   // Okay, we found a branch that is going to two return nodes.  If
2879   // there is no return value for this function, just change the
2880   // branch into a return.
2881   if (FalseRet->getNumOperands() == 0) {
2882     TrueSucc->removePredecessor(BB);
2883     FalseSucc->removePredecessor(BB);
2884     Builder.CreateRetVoid();
2885     EraseTerminatorAndDCECond(BI);
2886     if (DTU) {
2887       SmallVector<DominatorTree::UpdateType, 2> Updates;
2888       Updates.push_back({DominatorTree::Delete, BB, TrueSucc});
2889       if (TrueSucc != FalseSucc)
2890         Updates.push_back({DominatorTree::Delete, BB, FalseSucc});
2891       DTU->applyUpdates(Updates);
2892     }
2893     return true;
2894   }
2895 
2896   // Otherwise, figure out what the true and false return values are
2897   // so we can insert a new select instruction.
2898   Value *TrueValue = TrueRet->getReturnValue();
2899   Value *FalseValue = FalseRet->getReturnValue();
2900 
2901   // Unwrap any PHI nodes in the return blocks.
2902   if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue))
2903     if (TVPN->getParent() == TrueSucc)
2904       TrueValue = TVPN->getIncomingValueForBlock(BB);
2905   if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue))
2906     if (FVPN->getParent() == FalseSucc)
2907       FalseValue = FVPN->getIncomingValueForBlock(BB);
2908 
2909   // In order for this transformation to be safe, we must be able to
2910   // unconditionally execute both operands to the return.  This is
2911   // normally the case, but we could have a potentially-trapping
2912   // constant expression that prevents this transformation from being
2913   // safe.
2914   if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue))
2915     if (TCV->canTrap())
2916       return false;
2917   if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue))
2918     if (FCV->canTrap())
2919       return false;
2920 
2921   // Okay, we collected all the mapped values and checked them for sanity, and
2922   // defined to really do this transformation.  First, update the CFG.
2923   TrueSucc->removePredecessor(BB);
2924   FalseSucc->removePredecessor(BB);
2925 
2926   // Insert select instructions where needed.
2927   Value *BrCond = BI->getCondition();
2928   if (TrueValue) {
2929     // Insert a select if the results differ.
2930     if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) {
2931     } else if (isa<UndefValue>(TrueValue)) {
2932       TrueValue = FalseValue;
2933     } else {
2934       TrueValue =
2935           Builder.CreateSelect(BrCond, TrueValue, FalseValue, "retval", BI);
2936     }
2937   }
2938 
2939   Value *RI =
2940       !TrueValue ? Builder.CreateRetVoid() : Builder.CreateRet(TrueValue);
2941 
2942   (void)RI;
2943 
2944   LLVM_DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:"
2945                     << "\n  " << *BI << "\nNewRet = " << *RI << "\nTRUEBLOCK: "
2946                     << *TrueSucc << "\nFALSEBLOCK: " << *FalseSucc);
2947 
2948   EraseTerminatorAndDCECond(BI);
2949   if (DTU) {
2950     SmallVector<DominatorTree::UpdateType, 2> Updates;
2951     Updates.push_back({DominatorTree::Delete, BB, TrueSucc});
2952     if (TrueSucc != FalseSucc)
2953       Updates.push_back({DominatorTree::Delete, BB, FalseSucc});
2954     DTU->applyUpdates(Updates);
2955   }
2956 
2957   return true;
2958 }
2959 
2960 static Value *createLogicalOp(IRBuilderBase &Builder,
2961                               Instruction::BinaryOps Opc, Value *LHS,
2962                               Value *RHS, const Twine &Name = "") {
2963   // Try to relax logical op to binary op.
2964   if (impliesPoison(RHS, LHS))
2965     return Builder.CreateBinOp(Opc, LHS, RHS, Name);
2966   if (Opc == Instruction::And)
2967     return Builder.CreateLogicalAnd(LHS, RHS, Name);
2968   if (Opc == Instruction::Or)
2969     return Builder.CreateLogicalOr(LHS, RHS, Name);
2970   llvm_unreachable("Invalid logical opcode");
2971 }
2972 
2973 /// Return true if either PBI or BI has branch weight available, and store
2974 /// the weights in {Pred|Succ}{True|False}Weight. If one of PBI and BI does
2975 /// not have branch weight, use 1:1 as its weight.
2976 static bool extractPredSuccWeights(BranchInst *PBI, BranchInst *BI,
2977                                    uint64_t &PredTrueWeight,
2978                                    uint64_t &PredFalseWeight,
2979                                    uint64_t &SuccTrueWeight,
2980                                    uint64_t &SuccFalseWeight) {
2981   bool PredHasWeights =
2982       PBI->extractProfMetadata(PredTrueWeight, PredFalseWeight);
2983   bool SuccHasWeights =
2984       BI->extractProfMetadata(SuccTrueWeight, SuccFalseWeight);
2985   if (PredHasWeights || SuccHasWeights) {
2986     if (!PredHasWeights)
2987       PredTrueWeight = PredFalseWeight = 1;
2988     if (!SuccHasWeights)
2989       SuccTrueWeight = SuccFalseWeight = 1;
2990     return true;
2991   } else {
2992     return false;
2993   }
2994 }
2995 
2996 /// Determine if the two branches share a common destination and deduce a glue
2997 /// that joins the branches' conditions to arrive at the common destination if
2998 /// that would be profitable.
2999 static Optional<std::pair<Instruction::BinaryOps, bool>>
3000 shouldFoldCondBranchesToCommonDestination(BranchInst *BI, BranchInst *PBI,
3001                                           const TargetTransformInfo *TTI) {
3002   assert(BI && PBI && BI->isConditional() && PBI->isConditional() &&
3003          "Both blocks must end with a conditional branches.");
3004   assert(is_contained(predecessors(BI->getParent()), PBI->getParent()) &&
3005          "PredBB must be a predecessor of BB.");
3006 
3007   // We have the potential to fold the conditions together, but if the
3008   // predecessor branch is predictable, we may not want to merge them.
3009   uint64_t PTWeight, PFWeight;
3010   BranchProbability PBITrueProb, Likely;
3011   if (TTI && PBI->extractProfMetadata(PTWeight, PFWeight) &&
3012       (PTWeight + PFWeight) != 0) {
3013     PBITrueProb =
3014         BranchProbability::getBranchProbability(PTWeight, PTWeight + PFWeight);
3015     Likely = TTI->getPredictableBranchThreshold();
3016   }
3017 
3018   if (PBI->getSuccessor(0) == BI->getSuccessor(0)) {
3019     // Speculate the 2nd condition unless the 1st is probably true.
3020     if (PBITrueProb.isUnknown() || PBITrueProb < Likely)
3021       return {{Instruction::Or, false}};
3022   } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) {
3023     // Speculate the 2nd condition unless the 1st is probably false.
3024     if (PBITrueProb.isUnknown() || PBITrueProb.getCompl() < Likely)
3025       return {{Instruction::And, false}};
3026   } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) {
3027     // Speculate the 2nd condition unless the 1st is probably true.
3028     if (PBITrueProb.isUnknown() || PBITrueProb < Likely)
3029       return {{Instruction::And, true}};
3030   } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) {
3031     // Speculate the 2nd condition unless the 1st is probably false.
3032     if (PBITrueProb.isUnknown() || PBITrueProb.getCompl() < Likely)
3033       return {{Instruction::Or, true}};
3034   }
3035   return None;
3036 }
3037 
3038 static bool performBranchToCommonDestFolding(BranchInst *BI, BranchInst *PBI,
3039                                              DomTreeUpdater *DTU,
3040                                              MemorySSAUpdater *MSSAU,
3041                                              const TargetTransformInfo *TTI) {
3042   BasicBlock *BB = BI->getParent();
3043   BasicBlock *PredBlock = PBI->getParent();
3044 
3045   // Determine if the two branches share a common destination.
3046   Instruction::BinaryOps Opc;
3047   bool InvertPredCond;
3048   std::tie(Opc, InvertPredCond) =
3049       *shouldFoldCondBranchesToCommonDestination(BI, PBI, TTI);
3050 
3051   LLVM_DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB);
3052 
3053   IRBuilder<> Builder(PBI);
3054   // The builder is used to create instructions to eliminate the branch in BB.
3055   // If BB's terminator has !annotation metadata, add it to the new
3056   // instructions.
3057   Builder.CollectMetadataToCopy(BB->getTerminator(),
3058                                 {LLVMContext::MD_annotation});
3059 
3060   // If we need to invert the condition in the pred block to match, do so now.
3061   if (InvertPredCond) {
3062     Value *NewCond = PBI->getCondition();
3063     if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) {
3064       CmpInst *CI = cast<CmpInst>(NewCond);
3065       CI->setPredicate(CI->getInversePredicate());
3066     } else {
3067       NewCond =
3068           Builder.CreateNot(NewCond, PBI->getCondition()->getName() + ".not");
3069     }
3070 
3071     PBI->setCondition(NewCond);
3072     PBI->swapSuccessors();
3073   }
3074 
3075   BasicBlock *UniqueSucc =
3076       PBI->getSuccessor(0) == BB ? BI->getSuccessor(0) : BI->getSuccessor(1);
3077 
3078   // Before cloning instructions, notify the successor basic block that it
3079   // is about to have a new predecessor. This will update PHI nodes,
3080   // which will allow us to update live-out uses of bonus instructions.
3081   AddPredecessorToBlock(UniqueSucc, PredBlock, BB, MSSAU);
3082 
3083   // Try to update branch weights.
3084   uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
3085   if (extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
3086                              SuccTrueWeight, SuccFalseWeight)) {
3087     SmallVector<uint64_t, 8> NewWeights;
3088 
3089     if (PBI->getSuccessor(0) == BB) {
3090       // PBI: br i1 %x, BB, FalseDest
3091       // BI:  br i1 %y, UniqueSucc, FalseDest
3092       // TrueWeight is TrueWeight for PBI * TrueWeight for BI.
3093       NewWeights.push_back(PredTrueWeight * SuccTrueWeight);
3094       // FalseWeight is FalseWeight for PBI * TotalWeight for BI +
3095       //               TrueWeight for PBI * FalseWeight for BI.
3096       // We assume that total weights of a BranchInst can fit into 32 bits.
3097       // Therefore, we will not have overflow using 64-bit arithmetic.
3098       NewWeights.push_back(PredFalseWeight *
3099                                (SuccFalseWeight + SuccTrueWeight) +
3100                            PredTrueWeight * SuccFalseWeight);
3101     } else {
3102       // PBI: br i1 %x, TrueDest, BB
3103       // BI:  br i1 %y, TrueDest, UniqueSucc
3104       // TrueWeight is TrueWeight for PBI * TotalWeight for BI +
3105       //              FalseWeight for PBI * TrueWeight for BI.
3106       NewWeights.push_back(PredTrueWeight * (SuccFalseWeight + SuccTrueWeight) +
3107                            PredFalseWeight * SuccTrueWeight);
3108       // FalseWeight is FalseWeight for PBI * FalseWeight for BI.
3109       NewWeights.push_back(PredFalseWeight * SuccFalseWeight);
3110     }
3111 
3112     // Halve the weights if any of them cannot fit in an uint32_t
3113     FitWeights(NewWeights);
3114 
3115     SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(), NewWeights.end());
3116     setBranchWeights(PBI, MDWeights[0], MDWeights[1]);
3117 
3118     // TODO: If BB is reachable from all paths through PredBlock, then we
3119     // could replace PBI's branch probabilities with BI's.
3120   } else
3121     PBI->setMetadata(LLVMContext::MD_prof, nullptr);
3122 
3123   // Now, update the CFG.
3124   PBI->setSuccessor(PBI->getSuccessor(0) != BB, UniqueSucc);
3125 
3126   if (DTU)
3127     DTU->applyUpdates({{DominatorTree::Insert, PredBlock, UniqueSucc},
3128                        {DominatorTree::Delete, PredBlock, BB}});
3129 
3130   // If BI was a loop latch, it may have had associated loop metadata.
3131   // We need to copy it to the new latch, that is, PBI.
3132   if (MDNode *LoopMD = BI->getMetadata(LLVMContext::MD_loop))
3133     PBI->setMetadata(LLVMContext::MD_loop, LoopMD);
3134 
3135   ValueToValueMapTy VMap; // maps original values to cloned values
3136   CloneInstructionsIntoPredecessorBlockAndUpdateSSAUses(BB, PredBlock, VMap);
3137 
3138   // Now that the Cond was cloned into the predecessor basic block,
3139   // or/and the two conditions together.
3140   Value *BICond = VMap[BI->getCondition()];
3141   PBI->setCondition(
3142       createLogicalOp(Builder, Opc, PBI->getCondition(), BICond, "or.cond"));
3143 
3144   // Copy any debug value intrinsics into the end of PredBlock.
3145   for (Instruction &I : *BB) {
3146     if (isa<DbgInfoIntrinsic>(I)) {
3147       Instruction *NewI = I.clone();
3148       RemapInstruction(NewI, VMap,
3149                        RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
3150       NewI->insertBefore(PBI);
3151     }
3152   }
3153 
3154   ++NumFoldBranchToCommonDest;
3155   return true;
3156 }
3157 
3158 /// If this basic block is simple enough, and if a predecessor branches to us
3159 /// and one of our successors, fold the block into the predecessor and use
3160 /// logical operations to pick the right destination.
3161 bool llvm::FoldBranchToCommonDest(BranchInst *BI, DomTreeUpdater *DTU,
3162                                   MemorySSAUpdater *MSSAU,
3163                                   const TargetTransformInfo *TTI,
3164                                   unsigned BonusInstThreshold) {
3165   // If this block ends with an unconditional branch,
3166   // let SpeculativelyExecuteBB() deal with it.
3167   if (!BI->isConditional())
3168     return false;
3169 
3170   BasicBlock *BB = BI->getParent();
3171 
3172   bool Changed = false;
3173 
3174   TargetTransformInfo::TargetCostKind CostKind =
3175     BB->getParent()->hasMinSize() ? TargetTransformInfo::TCK_CodeSize
3176                                   : TargetTransformInfo::TCK_SizeAndLatency;
3177 
3178   Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
3179 
3180   if (!Cond || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) ||
3181       Cond->getParent() != BB || !Cond->hasOneUse())
3182     return Changed;
3183 
3184   // Cond is known to be a compare or binary operator.  Check to make sure that
3185   // neither operand is a potentially-trapping constant expression.
3186   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0)))
3187     if (CE->canTrap())
3188       return Changed;
3189   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1)))
3190     if (CE->canTrap())
3191       return Changed;
3192 
3193   // Finally, don't infinitely unroll conditional loops.
3194   if (is_contained(successors(BB), BB))
3195     return Changed;
3196 
3197   // With which predecessors will we want to deal with?
3198   SmallVector<BasicBlock *, 8> Preds;
3199   for (BasicBlock *PredBlock : predecessors(BB)) {
3200     BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator());
3201 
3202     // Check that we have two conditional branches.  If there is a PHI node in
3203     // the common successor, verify that the same value flows in from both
3204     // blocks.
3205     if (!PBI || PBI->isUnconditional() || !SafeToMergeTerminators(BI, PBI))
3206       continue;
3207 
3208     // Determine if the two branches share a common destination.
3209     Instruction::BinaryOps Opc;
3210     bool InvertPredCond;
3211     if (auto Recipe = shouldFoldCondBranchesToCommonDestination(BI, PBI, TTI))
3212       std::tie(Opc, InvertPredCond) = *Recipe;
3213     else
3214       continue;
3215 
3216     // Check the cost of inserting the necessary logic before performing the
3217     // transformation.
3218     if (TTI) {
3219       Type *Ty = BI->getCondition()->getType();
3220       InstructionCost Cost = TTI->getArithmeticInstrCost(Opc, Ty, CostKind);
3221       if (InvertPredCond && (!PBI->getCondition()->hasOneUse() ||
3222           !isa<CmpInst>(PBI->getCondition())))
3223         Cost += TTI->getArithmeticInstrCost(Instruction::Xor, Ty, CostKind);
3224 
3225       if (Cost > BranchFoldThreshold)
3226         continue;
3227     }
3228 
3229     // Ok, we do want to deal with this predecessor. Record it.
3230     Preds.emplace_back(PredBlock);
3231   }
3232 
3233   // If there aren't any predecessors into which we can fold,
3234   // don't bother checking the cost.
3235   if (Preds.empty())
3236     return Changed;
3237 
3238   // Only allow this transformation if computing the condition doesn't involve
3239   // too many instructions and these involved instructions can be executed
3240   // unconditionally. We denote all involved instructions except the condition
3241   // as "bonus instructions", and only allow this transformation when the
3242   // number of the bonus instructions we'll need to create when cloning into
3243   // each predecessor does not exceed a certain threshold.
3244   unsigned NumBonusInsts = 0;
3245   const unsigned PredCount = Preds.size();
3246   for (Instruction &I : *BB) {
3247     // Don't check the branch condition comparison itself.
3248     if (&I == Cond)
3249       continue;
3250     // Ignore dbg intrinsics, and the terminator.
3251     if (isa<DbgInfoIntrinsic>(I) || isa<BranchInst>(I))
3252       continue;
3253     // I must be safe to execute unconditionally.
3254     if (!isSafeToSpeculativelyExecute(&I))
3255       return Changed;
3256 
3257     // Account for the cost of duplicating this instruction into each
3258     // predecessor.
3259     NumBonusInsts += PredCount;
3260     // Early exits once we reach the limit.
3261     if (NumBonusInsts > BonusInstThreshold)
3262       return Changed;
3263   }
3264 
3265   // Ok, we have the budget. Perform the transformation.
3266   for (BasicBlock *PredBlock : Preds) {
3267     auto *PBI = cast<BranchInst>(PredBlock->getTerminator());
3268     return performBranchToCommonDestFolding(BI, PBI, DTU, MSSAU, TTI);
3269   }
3270   return Changed;
3271 }
3272 
3273 // If there is only one store in BB1 and BB2, return it, otherwise return
3274 // nullptr.
3275 static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) {
3276   StoreInst *S = nullptr;
3277   for (auto *BB : {BB1, BB2}) {
3278     if (!BB)
3279       continue;
3280     for (auto &I : *BB)
3281       if (auto *SI = dyn_cast<StoreInst>(&I)) {
3282         if (S)
3283           // Multiple stores seen.
3284           return nullptr;
3285         else
3286           S = SI;
3287       }
3288   }
3289   return S;
3290 }
3291 
3292 static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB,
3293                                               Value *AlternativeV = nullptr) {
3294   // PHI is going to be a PHI node that allows the value V that is defined in
3295   // BB to be referenced in BB's only successor.
3296   //
3297   // If AlternativeV is nullptr, the only value we care about in PHI is V. It
3298   // doesn't matter to us what the other operand is (it'll never get used). We
3299   // could just create a new PHI with an undef incoming value, but that could
3300   // increase register pressure if EarlyCSE/InstCombine can't fold it with some
3301   // other PHI. So here we directly look for some PHI in BB's successor with V
3302   // as an incoming operand. If we find one, we use it, else we create a new
3303   // one.
3304   //
3305   // If AlternativeV is not nullptr, we care about both incoming values in PHI.
3306   // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV]
3307   // where OtherBB is the single other predecessor of BB's only successor.
3308   PHINode *PHI = nullptr;
3309   BasicBlock *Succ = BB->getSingleSuccessor();
3310 
3311   for (auto I = Succ->begin(); isa<PHINode>(I); ++I)
3312     if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) {
3313       PHI = cast<PHINode>(I);
3314       if (!AlternativeV)
3315         break;
3316 
3317       assert(Succ->hasNPredecessors(2));
3318       auto PredI = pred_begin(Succ);
3319       BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI;
3320       if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV)
3321         break;
3322       PHI = nullptr;
3323     }
3324   if (PHI)
3325     return PHI;
3326 
3327   // If V is not an instruction defined in BB, just return it.
3328   if (!AlternativeV &&
3329       (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB))
3330     return V;
3331 
3332   PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge", &Succ->front());
3333   PHI->addIncoming(V, BB);
3334   for (BasicBlock *PredBB : predecessors(Succ))
3335     if (PredBB != BB)
3336       PHI->addIncoming(
3337           AlternativeV ? AlternativeV : UndefValue::get(V->getType()), PredBB);
3338   return PHI;
3339 }
3340 
3341 static bool mergeConditionalStoreToAddress(
3342     BasicBlock *PTB, BasicBlock *PFB, BasicBlock *QTB, BasicBlock *QFB,
3343     BasicBlock *PostBB, Value *Address, bool InvertPCond, bool InvertQCond,
3344     DomTreeUpdater *DTU, const DataLayout &DL, const TargetTransformInfo &TTI) {
3345   // For every pointer, there must be exactly two stores, one coming from
3346   // PTB or PFB, and the other from QTB or QFB. We don't support more than one
3347   // store (to any address) in PTB,PFB or QTB,QFB.
3348   // FIXME: We could relax this restriction with a bit more work and performance
3349   // testing.
3350   StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB);
3351   StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB);
3352   if (!PStore || !QStore)
3353     return false;
3354 
3355   // Now check the stores are compatible.
3356   if (!QStore->isUnordered() || !PStore->isUnordered())
3357     return false;
3358 
3359   // Check that sinking the store won't cause program behavior changes. Sinking
3360   // the store out of the Q blocks won't change any behavior as we're sinking
3361   // from a block to its unconditional successor. But we're moving a store from
3362   // the P blocks down through the middle block (QBI) and past both QFB and QTB.
3363   // So we need to check that there are no aliasing loads or stores in
3364   // QBI, QTB and QFB. We also need to check there are no conflicting memory
3365   // operations between PStore and the end of its parent block.
3366   //
3367   // The ideal way to do this is to query AliasAnalysis, but we don't
3368   // preserve AA currently so that is dangerous. Be super safe and just
3369   // check there are no other memory operations at all.
3370   for (auto &I : *QFB->getSinglePredecessor())
3371     if (I.mayReadOrWriteMemory())
3372       return false;
3373   for (auto &I : *QFB)
3374     if (&I != QStore && I.mayReadOrWriteMemory())
3375       return false;
3376   if (QTB)
3377     for (auto &I : *QTB)
3378       if (&I != QStore && I.mayReadOrWriteMemory())
3379         return false;
3380   for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end();
3381        I != E; ++I)
3382     if (&*I != PStore && I->mayReadOrWriteMemory())
3383       return false;
3384 
3385   // If we're not in aggressive mode, we only optimize if we have some
3386   // confidence that by optimizing we'll allow P and/or Q to be if-converted.
3387   auto IsWorthwhile = [&](BasicBlock *BB, ArrayRef<StoreInst *> FreeStores) {
3388     if (!BB)
3389       return true;
3390     // Heuristic: if the block can be if-converted/phi-folded and the
3391     // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to
3392     // thread this store.
3393     InstructionCost Cost = 0;
3394     InstructionCost Budget =
3395         PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
3396     for (auto &I : BB->instructionsWithoutDebug()) {
3397       // Consider terminator instruction to be free.
3398       if (I.isTerminator())
3399         continue;
3400       // If this is one the stores that we want to speculate out of this BB,
3401       // then don't count it's cost, consider it to be free.
3402       if (auto *S = dyn_cast<StoreInst>(&I))
3403         if (llvm::find(FreeStores, S))
3404           continue;
3405       // Else, we have a white-list of instructions that we are ak speculating.
3406       if (!isa<BinaryOperator>(I) && !isa<GetElementPtrInst>(I))
3407         return false; // Not in white-list - not worthwhile folding.
3408       // And finally, if this is a non-free instruction that we are okay
3409       // speculating, ensure that we consider the speculation budget.
3410       Cost += TTI.getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency);
3411       if (Cost > Budget)
3412         return false; // Eagerly refuse to fold as soon as we're out of budget.
3413     }
3414     assert(Cost <= Budget &&
3415            "When we run out of budget we will eagerly return from within the "
3416            "per-instruction loop.");
3417     return true;
3418   };
3419 
3420   const std::array<StoreInst *, 2> FreeStores = {PStore, QStore};
3421   if (!MergeCondStoresAggressively &&
3422       (!IsWorthwhile(PTB, FreeStores) || !IsWorthwhile(PFB, FreeStores) ||
3423        !IsWorthwhile(QTB, FreeStores) || !IsWorthwhile(QFB, FreeStores)))
3424     return false;
3425 
3426   // If PostBB has more than two predecessors, we need to split it so we can
3427   // sink the store.
3428   if (std::next(pred_begin(PostBB), 2) != pred_end(PostBB)) {
3429     // We know that QFB's only successor is PostBB. And QFB has a single
3430     // predecessor. If QTB exists, then its only successor is also PostBB.
3431     // If QTB does not exist, then QFB's only predecessor has a conditional
3432     // branch to QFB and PostBB.
3433     BasicBlock *TruePred = QTB ? QTB : QFB->getSinglePredecessor();
3434     BasicBlock *NewBB =
3435         SplitBlockPredecessors(PostBB, {QFB, TruePred}, "condstore.split", DTU);
3436     if (!NewBB)
3437       return false;
3438     PostBB = NewBB;
3439   }
3440 
3441   // OK, we're going to sink the stores to PostBB. The store has to be
3442   // conditional though, so first create the predicate.
3443   Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator())
3444                      ->getCondition();
3445   Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator())
3446                      ->getCondition();
3447 
3448   Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(),
3449                                                 PStore->getParent());
3450   Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(),
3451                                                 QStore->getParent(), PPHI);
3452 
3453   IRBuilder<> QB(&*PostBB->getFirstInsertionPt());
3454 
3455   Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond);
3456   Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond);
3457 
3458   if (InvertPCond)
3459     PPred = QB.CreateNot(PPred);
3460   if (InvertQCond)
3461     QPred = QB.CreateNot(QPred);
3462   Value *CombinedPred = QB.CreateOr(PPred, QPred);
3463 
3464   auto *T = SplitBlockAndInsertIfThen(CombinedPred, &*QB.GetInsertPoint(),
3465                                       /*Unreachable=*/false,
3466                                       /*BranchWeights=*/nullptr, DTU);
3467   QB.SetInsertPoint(T);
3468   StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address));
3469   AAMDNodes AAMD;
3470   PStore->getAAMetadata(AAMD, /*Merge=*/false);
3471   PStore->getAAMetadata(AAMD, /*Merge=*/true);
3472   SI->setAAMetadata(AAMD);
3473   // Choose the minimum alignment. If we could prove both stores execute, we
3474   // could use biggest one.  In this case, though, we only know that one of the
3475   // stores executes.  And we don't know it's safe to take the alignment from a
3476   // store that doesn't execute.
3477   SI->setAlignment(std::min(PStore->getAlign(), QStore->getAlign()));
3478 
3479   QStore->eraseFromParent();
3480   PStore->eraseFromParent();
3481 
3482   return true;
3483 }
3484 
3485 static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI,
3486                                    DomTreeUpdater *DTU, const DataLayout &DL,
3487                                    const TargetTransformInfo &TTI) {
3488   // The intention here is to find diamonds or triangles (see below) where each
3489   // conditional block contains a store to the same address. Both of these
3490   // stores are conditional, so they can't be unconditionally sunk. But it may
3491   // be profitable to speculatively sink the stores into one merged store at the
3492   // end, and predicate the merged store on the union of the two conditions of
3493   // PBI and QBI.
3494   //
3495   // This can reduce the number of stores executed if both of the conditions are
3496   // true, and can allow the blocks to become small enough to be if-converted.
3497   // This optimization will also chain, so that ladders of test-and-set
3498   // sequences can be if-converted away.
3499   //
3500   // We only deal with simple diamonds or triangles:
3501   //
3502   //     PBI       or      PBI        or a combination of the two
3503   //    /   \               | \
3504   //   PTB  PFB             |  PFB
3505   //    \   /               | /
3506   //     QBI                QBI
3507   //    /  \                | \
3508   //   QTB  QFB             |  QFB
3509   //    \  /                | /
3510   //    PostBB            PostBB
3511   //
3512   // We model triangles as a type of diamond with a nullptr "true" block.
3513   // Triangles are canonicalized so that the fallthrough edge is represented by
3514   // a true condition, as in the diagram above.
3515   BasicBlock *PTB = PBI->getSuccessor(0);
3516   BasicBlock *PFB = PBI->getSuccessor(1);
3517   BasicBlock *QTB = QBI->getSuccessor(0);
3518   BasicBlock *QFB = QBI->getSuccessor(1);
3519   BasicBlock *PostBB = QFB->getSingleSuccessor();
3520 
3521   // Make sure we have a good guess for PostBB. If QTB's only successor is
3522   // QFB, then QFB is a better PostBB.
3523   if (QTB->getSingleSuccessor() == QFB)
3524     PostBB = QFB;
3525 
3526   // If we couldn't find a good PostBB, stop.
3527   if (!PostBB)
3528     return false;
3529 
3530   bool InvertPCond = false, InvertQCond = false;
3531   // Canonicalize fallthroughs to the true branches.
3532   if (PFB == QBI->getParent()) {
3533     std::swap(PFB, PTB);
3534     InvertPCond = true;
3535   }
3536   if (QFB == PostBB) {
3537     std::swap(QFB, QTB);
3538     InvertQCond = true;
3539   }
3540 
3541   // From this point on we can assume PTB or QTB may be fallthroughs but PFB
3542   // and QFB may not. Model fallthroughs as a nullptr block.
3543   if (PTB == QBI->getParent())
3544     PTB = nullptr;
3545   if (QTB == PostBB)
3546     QTB = nullptr;
3547 
3548   // Legality bailouts. We must have at least the non-fallthrough blocks and
3549   // the post-dominating block, and the non-fallthroughs must only have one
3550   // predecessor.
3551   auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) {
3552     return BB->getSinglePredecessor() == P && BB->getSingleSuccessor() == S;
3553   };
3554   if (!HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) ||
3555       !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB))
3556     return false;
3557   if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) ||
3558       (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB)))
3559     return false;
3560   if (!QBI->getParent()->hasNUses(2))
3561     return false;
3562 
3563   // OK, this is a sequence of two diamonds or triangles.
3564   // Check if there are stores in PTB or PFB that are repeated in QTB or QFB.
3565   SmallPtrSet<Value *, 4> PStoreAddresses, QStoreAddresses;
3566   for (auto *BB : {PTB, PFB}) {
3567     if (!BB)
3568       continue;
3569     for (auto &I : *BB)
3570       if (StoreInst *SI = dyn_cast<StoreInst>(&I))
3571         PStoreAddresses.insert(SI->getPointerOperand());
3572   }
3573   for (auto *BB : {QTB, QFB}) {
3574     if (!BB)
3575       continue;
3576     for (auto &I : *BB)
3577       if (StoreInst *SI = dyn_cast<StoreInst>(&I))
3578         QStoreAddresses.insert(SI->getPointerOperand());
3579   }
3580 
3581   set_intersect(PStoreAddresses, QStoreAddresses);
3582   // set_intersect mutates PStoreAddresses in place. Rename it here to make it
3583   // clear what it contains.
3584   auto &CommonAddresses = PStoreAddresses;
3585 
3586   bool Changed = false;
3587   for (auto *Address : CommonAddresses)
3588     Changed |=
3589         mergeConditionalStoreToAddress(PTB, PFB, QTB, QFB, PostBB, Address,
3590                                        InvertPCond, InvertQCond, DTU, DL, TTI);
3591   return Changed;
3592 }
3593 
3594 /// If the previous block ended with a widenable branch, determine if reusing
3595 /// the target block is profitable and legal.  This will have the effect of
3596 /// "widening" PBI, but doesn't require us to reason about hosting safety.
3597 static bool tryWidenCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI,
3598                                            DomTreeUpdater *DTU) {
3599   // TODO: This can be generalized in two important ways:
3600   // 1) We can allow phi nodes in IfFalseBB and simply reuse all the input
3601   //    values from the PBI edge.
3602   // 2) We can sink side effecting instructions into BI's fallthrough
3603   //    successor provided they doesn't contribute to computation of
3604   //    BI's condition.
3605   Value *CondWB, *WC;
3606   BasicBlock *IfTrueBB, *IfFalseBB;
3607   if (!parseWidenableBranch(PBI, CondWB, WC, IfTrueBB, IfFalseBB) ||
3608       IfTrueBB != BI->getParent() || !BI->getParent()->getSinglePredecessor())
3609     return false;
3610   if (!IfFalseBB->phis().empty())
3611     return false; // TODO
3612   // Use lambda to lazily compute expensive condition after cheap ones.
3613   auto NoSideEffects = [](BasicBlock &BB) {
3614     return !llvm::any_of(BB, [](const Instruction &I) {
3615         return I.mayWriteToMemory() || I.mayHaveSideEffects();
3616       });
3617   };
3618   if (BI->getSuccessor(1) != IfFalseBB && // no inf looping
3619       BI->getSuccessor(1)->getTerminatingDeoptimizeCall() && // profitability
3620       NoSideEffects(*BI->getParent())) {
3621     auto *OldSuccessor = BI->getSuccessor(1);
3622     OldSuccessor->removePredecessor(BI->getParent());
3623     BI->setSuccessor(1, IfFalseBB);
3624     if (DTU)
3625       DTU->applyUpdates(
3626           {{DominatorTree::Insert, BI->getParent(), IfFalseBB},
3627            {DominatorTree::Delete, BI->getParent(), OldSuccessor}});
3628     return true;
3629   }
3630   if (BI->getSuccessor(0) != IfFalseBB && // no inf looping
3631       BI->getSuccessor(0)->getTerminatingDeoptimizeCall() && // profitability
3632       NoSideEffects(*BI->getParent())) {
3633     auto *OldSuccessor = BI->getSuccessor(0);
3634     OldSuccessor->removePredecessor(BI->getParent());
3635     BI->setSuccessor(0, IfFalseBB);
3636     if (DTU)
3637       DTU->applyUpdates(
3638           {{DominatorTree::Insert, BI->getParent(), IfFalseBB},
3639            {DominatorTree::Delete, BI->getParent(), OldSuccessor}});
3640     return true;
3641   }
3642   return false;
3643 }
3644 
3645 /// If we have a conditional branch as a predecessor of another block,
3646 /// this function tries to simplify it.  We know
3647 /// that PBI and BI are both conditional branches, and BI is in one of the
3648 /// successor blocks of PBI - PBI branches to BI.
3649 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI,
3650                                            DomTreeUpdater *DTU,
3651                                            const DataLayout &DL,
3652                                            const TargetTransformInfo &TTI) {
3653   assert(PBI->isConditional() && BI->isConditional());
3654   BasicBlock *BB = BI->getParent();
3655 
3656   // If this block ends with a branch instruction, and if there is a
3657   // predecessor that ends on a branch of the same condition, make
3658   // this conditional branch redundant.
3659   if (PBI->getCondition() == BI->getCondition() &&
3660       PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
3661     // Okay, the outcome of this conditional branch is statically
3662     // knowable.  If this block had a single pred, handle specially.
3663     if (BB->getSinglePredecessor()) {
3664       // Turn this into a branch on constant.
3665       bool CondIsTrue = PBI->getSuccessor(0) == BB;
3666       BI->setCondition(
3667           ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue));
3668       return true; // Nuke the branch on constant.
3669     }
3670 
3671     // Otherwise, if there are multiple predecessors, insert a PHI that merges
3672     // in the constant and simplify the block result.  Subsequent passes of
3673     // simplifycfg will thread the block.
3674     if (BlockIsSimpleEnoughToThreadThrough(BB)) {
3675       pred_iterator PB = pred_begin(BB), PE = pred_end(BB);
3676       PHINode *NewPN = PHINode::Create(
3677           Type::getInt1Ty(BB->getContext()), std::distance(PB, PE),
3678           BI->getCondition()->getName() + ".pr", &BB->front());
3679       // Okay, we're going to insert the PHI node.  Since PBI is not the only
3680       // predecessor, compute the PHI'd conditional value for all of the preds.
3681       // Any predecessor where the condition is not computable we keep symbolic.
3682       for (pred_iterator PI = PB; PI != PE; ++PI) {
3683         BasicBlock *P = *PI;
3684         if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) && PBI != BI &&
3685             PBI->isConditional() && PBI->getCondition() == BI->getCondition() &&
3686             PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
3687           bool CondIsTrue = PBI->getSuccessor(0) == BB;
3688           NewPN->addIncoming(
3689               ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue),
3690               P);
3691         } else {
3692           NewPN->addIncoming(BI->getCondition(), P);
3693         }
3694       }
3695 
3696       BI->setCondition(NewPN);
3697       return true;
3698     }
3699   }
3700 
3701   // If the previous block ended with a widenable branch, determine if reusing
3702   // the target block is profitable and legal.  This will have the effect of
3703   // "widening" PBI, but doesn't require us to reason about hosting safety.
3704   if (tryWidenCondBranchToCondBranch(PBI, BI, DTU))
3705     return true;
3706 
3707   if (auto *CE = dyn_cast<ConstantExpr>(BI->getCondition()))
3708     if (CE->canTrap())
3709       return false;
3710 
3711   // If both branches are conditional and both contain stores to the same
3712   // address, remove the stores from the conditionals and create a conditional
3713   // merged store at the end.
3714   if (MergeCondStores && mergeConditionalStores(PBI, BI, DTU, DL, TTI))
3715     return true;
3716 
3717   // If this is a conditional branch in an empty block, and if any
3718   // predecessors are a conditional branch to one of our destinations,
3719   // fold the conditions into logical ops and one cond br.
3720 
3721   // Ignore dbg intrinsics.
3722   if (&*BB->instructionsWithoutDebug().begin() != BI)
3723     return false;
3724 
3725   int PBIOp, BIOp;
3726   if (PBI->getSuccessor(0) == BI->getSuccessor(0)) {
3727     PBIOp = 0;
3728     BIOp = 0;
3729   } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) {
3730     PBIOp = 0;
3731     BIOp = 1;
3732   } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) {
3733     PBIOp = 1;
3734     BIOp = 0;
3735   } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) {
3736     PBIOp = 1;
3737     BIOp = 1;
3738   } else {
3739     return false;
3740   }
3741 
3742   // Check to make sure that the other destination of this branch
3743   // isn't BB itself.  If so, this is an infinite loop that will
3744   // keep getting unwound.
3745   if (PBI->getSuccessor(PBIOp) == BB)
3746     return false;
3747 
3748   // Do not perform this transformation if it would require
3749   // insertion of a large number of select instructions. For targets
3750   // without predication/cmovs, this is a big pessimization.
3751 
3752   // Also do not perform this transformation if any phi node in the common
3753   // destination block can trap when reached by BB or PBB (PR17073). In that
3754   // case, it would be unsafe to hoist the operation into a select instruction.
3755 
3756   BasicBlock *CommonDest = PBI->getSuccessor(PBIOp);
3757   BasicBlock *RemovedDest = PBI->getSuccessor(PBIOp ^ 1);
3758   unsigned NumPhis = 0;
3759   for (BasicBlock::iterator II = CommonDest->begin(); isa<PHINode>(II);
3760        ++II, ++NumPhis) {
3761     if (NumPhis > 2) // Disable this xform.
3762       return false;
3763 
3764     PHINode *PN = cast<PHINode>(II);
3765     Value *BIV = PN->getIncomingValueForBlock(BB);
3766     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BIV))
3767       if (CE->canTrap())
3768         return false;
3769 
3770     unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
3771     Value *PBIV = PN->getIncomingValue(PBBIdx);
3772     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(PBIV))
3773       if (CE->canTrap())
3774         return false;
3775   }
3776 
3777   // Finally, if everything is ok, fold the branches to logical ops.
3778   BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1);
3779 
3780   LLVM_DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent()
3781                     << "AND: " << *BI->getParent());
3782 
3783   SmallVector<DominatorTree::UpdateType, 5> Updates;
3784 
3785   // If OtherDest *is* BB, then BB is a basic block with a single conditional
3786   // branch in it, where one edge (OtherDest) goes back to itself but the other
3787   // exits.  We don't *know* that the program avoids the infinite loop
3788   // (even though that seems likely).  If we do this xform naively, we'll end up
3789   // recursively unpeeling the loop.  Since we know that (after the xform is
3790   // done) that the block *is* infinite if reached, we just make it an obviously
3791   // infinite loop with no cond branch.
3792   if (OtherDest == BB) {
3793     // Insert it at the end of the function, because it's either code,
3794     // or it won't matter if it's hot. :)
3795     BasicBlock *InfLoopBlock =
3796         BasicBlock::Create(BB->getContext(), "infloop", BB->getParent());
3797     BranchInst::Create(InfLoopBlock, InfLoopBlock);
3798     if (DTU)
3799       Updates.push_back({DominatorTree::Insert, InfLoopBlock, InfLoopBlock});
3800     OtherDest = InfLoopBlock;
3801   }
3802 
3803   LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent());
3804 
3805   // BI may have other predecessors.  Because of this, we leave
3806   // it alone, but modify PBI.
3807 
3808   // Make sure we get to CommonDest on True&True directions.
3809   Value *PBICond = PBI->getCondition();
3810   IRBuilder<NoFolder> Builder(PBI);
3811   if (PBIOp)
3812     PBICond = Builder.CreateNot(PBICond, PBICond->getName() + ".not");
3813 
3814   Value *BICond = BI->getCondition();
3815   if (BIOp)
3816     BICond = Builder.CreateNot(BICond, BICond->getName() + ".not");
3817 
3818   // Merge the conditions.
3819   Value *Cond =
3820       createLogicalOp(Builder, Instruction::Or, PBICond, BICond, "brmerge");
3821 
3822   // Modify PBI to branch on the new condition to the new dests.
3823   PBI->setCondition(Cond);
3824   PBI->setSuccessor(0, CommonDest);
3825   PBI->setSuccessor(1, OtherDest);
3826 
3827   if (DTU) {
3828     Updates.push_back({DominatorTree::Insert, PBI->getParent(), OtherDest});
3829     Updates.push_back({DominatorTree::Delete, PBI->getParent(), RemovedDest});
3830 
3831     DTU->applyUpdates(Updates);
3832   }
3833 
3834   // Update branch weight for PBI.
3835   uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
3836   uint64_t PredCommon, PredOther, SuccCommon, SuccOther;
3837   bool HasWeights =
3838       extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
3839                              SuccTrueWeight, SuccFalseWeight);
3840   if (HasWeights) {
3841     PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
3842     PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
3843     SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
3844     SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
3845     // The weight to CommonDest should be PredCommon * SuccTotal +
3846     //                                    PredOther * SuccCommon.
3847     // The weight to OtherDest should be PredOther * SuccOther.
3848     uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) +
3849                                   PredOther * SuccCommon,
3850                               PredOther * SuccOther};
3851     // Halve the weights if any of them cannot fit in an uint32_t
3852     FitWeights(NewWeights);
3853 
3854     setBranchWeights(PBI, NewWeights[0], NewWeights[1]);
3855   }
3856 
3857   // OtherDest may have phi nodes.  If so, add an entry from PBI's
3858   // block that are identical to the entries for BI's block.
3859   AddPredecessorToBlock(OtherDest, PBI->getParent(), BB);
3860 
3861   // We know that the CommonDest already had an edge from PBI to
3862   // it.  If it has PHIs though, the PHIs may have different
3863   // entries for BB and PBI's BB.  If so, insert a select to make
3864   // them agree.
3865   for (PHINode &PN : CommonDest->phis()) {
3866     Value *BIV = PN.getIncomingValueForBlock(BB);
3867     unsigned PBBIdx = PN.getBasicBlockIndex(PBI->getParent());
3868     Value *PBIV = PN.getIncomingValue(PBBIdx);
3869     if (BIV != PBIV) {
3870       // Insert a select in PBI to pick the right value.
3871       SelectInst *NV = cast<SelectInst>(
3872           Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName() + ".mux"));
3873       PN.setIncomingValue(PBBIdx, NV);
3874       // Although the select has the same condition as PBI, the original branch
3875       // weights for PBI do not apply to the new select because the select's
3876       // 'logical' edges are incoming edges of the phi that is eliminated, not
3877       // the outgoing edges of PBI.
3878       if (HasWeights) {
3879         uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
3880         uint64_t PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
3881         uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
3882         uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
3883         // The weight to PredCommonDest should be PredCommon * SuccTotal.
3884         // The weight to PredOtherDest should be PredOther * SuccCommon.
3885         uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther),
3886                                   PredOther * SuccCommon};
3887 
3888         FitWeights(NewWeights);
3889 
3890         setBranchWeights(NV, NewWeights[0], NewWeights[1]);
3891       }
3892     }
3893   }
3894 
3895   LLVM_DEBUG(dbgs() << "INTO: " << *PBI->getParent());
3896   LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent());
3897 
3898   // This basic block is probably dead.  We know it has at least
3899   // one fewer predecessor.
3900   return true;
3901 }
3902 
3903 // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is
3904 // true or to FalseBB if Cond is false.
3905 // Takes care of updating the successors and removing the old terminator.
3906 // Also makes sure not to introduce new successors by assuming that edges to
3907 // non-successor TrueBBs and FalseBBs aren't reachable.
3908 bool SimplifyCFGOpt::SimplifyTerminatorOnSelect(Instruction *OldTerm,
3909                                                 Value *Cond, BasicBlock *TrueBB,
3910                                                 BasicBlock *FalseBB,
3911                                                 uint32_t TrueWeight,
3912                                                 uint32_t FalseWeight) {
3913   auto *BB = OldTerm->getParent();
3914   // Remove any superfluous successor edges from the CFG.
3915   // First, figure out which successors to preserve.
3916   // If TrueBB and FalseBB are equal, only try to preserve one copy of that
3917   // successor.
3918   BasicBlock *KeepEdge1 = TrueBB;
3919   BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr;
3920 
3921   SmallPtrSet<BasicBlock *, 2> RemovedSuccessors;
3922 
3923   // Then remove the rest.
3924   for (BasicBlock *Succ : successors(OldTerm)) {
3925     // Make sure only to keep exactly one copy of each edge.
3926     if (Succ == KeepEdge1)
3927       KeepEdge1 = nullptr;
3928     else if (Succ == KeepEdge2)
3929       KeepEdge2 = nullptr;
3930     else {
3931       Succ->removePredecessor(BB,
3932                               /*KeepOneInputPHIs=*/true);
3933 
3934       if (Succ != TrueBB && Succ != FalseBB)
3935         RemovedSuccessors.insert(Succ);
3936     }
3937   }
3938 
3939   IRBuilder<> Builder(OldTerm);
3940   Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc());
3941 
3942   // Insert an appropriate new terminator.
3943   if (!KeepEdge1 && !KeepEdge2) {
3944     if (TrueBB == FalseBB) {
3945       // We were only looking for one successor, and it was present.
3946       // Create an unconditional branch to it.
3947       Builder.CreateBr(TrueBB);
3948     } else {
3949       // We found both of the successors we were looking for.
3950       // Create a conditional branch sharing the condition of the select.
3951       BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB);
3952       if (TrueWeight != FalseWeight)
3953         setBranchWeights(NewBI, TrueWeight, FalseWeight);
3954     }
3955   } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) {
3956     // Neither of the selected blocks were successors, so this
3957     // terminator must be unreachable.
3958     new UnreachableInst(OldTerm->getContext(), OldTerm);
3959   } else {
3960     // One of the selected values was a successor, but the other wasn't.
3961     // Insert an unconditional branch to the one that was found;
3962     // the edge to the one that wasn't must be unreachable.
3963     if (!KeepEdge1) {
3964       // Only TrueBB was found.
3965       Builder.CreateBr(TrueBB);
3966     } else {
3967       // Only FalseBB was found.
3968       Builder.CreateBr(FalseBB);
3969     }
3970   }
3971 
3972   EraseTerminatorAndDCECond(OldTerm);
3973 
3974   if (DTU) {
3975     SmallVector<DominatorTree::UpdateType, 2> Updates;
3976     Updates.reserve(RemovedSuccessors.size());
3977     for (auto *RemovedSuccessor : RemovedSuccessors)
3978       Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor});
3979     DTU->applyUpdates(Updates);
3980   }
3981 
3982   return true;
3983 }
3984 
3985 // Replaces
3986 //   (switch (select cond, X, Y)) on constant X, Y
3987 // with a branch - conditional if X and Y lead to distinct BBs,
3988 // unconditional otherwise.
3989 bool SimplifyCFGOpt::SimplifySwitchOnSelect(SwitchInst *SI,
3990                                             SelectInst *Select) {
3991   // Check for constant integer values in the select.
3992   ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue());
3993   ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue());
3994   if (!TrueVal || !FalseVal)
3995     return false;
3996 
3997   // Find the relevant condition and destinations.
3998   Value *Condition = Select->getCondition();
3999   BasicBlock *TrueBB = SI->findCaseValue(TrueVal)->getCaseSuccessor();
4000   BasicBlock *FalseBB = SI->findCaseValue(FalseVal)->getCaseSuccessor();
4001 
4002   // Get weight for TrueBB and FalseBB.
4003   uint32_t TrueWeight = 0, FalseWeight = 0;
4004   SmallVector<uint64_t, 8> Weights;
4005   bool HasWeights = HasBranchWeights(SI);
4006   if (HasWeights) {
4007     GetBranchWeights(SI, Weights);
4008     if (Weights.size() == 1 + SI->getNumCases()) {
4009       TrueWeight =
4010           (uint32_t)Weights[SI->findCaseValue(TrueVal)->getSuccessorIndex()];
4011       FalseWeight =
4012           (uint32_t)Weights[SI->findCaseValue(FalseVal)->getSuccessorIndex()];
4013     }
4014   }
4015 
4016   // Perform the actual simplification.
4017   return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, TrueWeight,
4018                                     FalseWeight);
4019 }
4020 
4021 // Replaces
4022 //   (indirectbr (select cond, blockaddress(@fn, BlockA),
4023 //                             blockaddress(@fn, BlockB)))
4024 // with
4025 //   (br cond, BlockA, BlockB).
4026 bool SimplifyCFGOpt::SimplifyIndirectBrOnSelect(IndirectBrInst *IBI,
4027                                                 SelectInst *SI) {
4028   // Check that both operands of the select are block addresses.
4029   BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue());
4030   BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue());
4031   if (!TBA || !FBA)
4032     return false;
4033 
4034   // Extract the actual blocks.
4035   BasicBlock *TrueBB = TBA->getBasicBlock();
4036   BasicBlock *FalseBB = FBA->getBasicBlock();
4037 
4038   // Perform the actual simplification.
4039   return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 0,
4040                                     0);
4041 }
4042 
4043 /// This is called when we find an icmp instruction
4044 /// (a seteq/setne with a constant) as the only instruction in a
4045 /// block that ends with an uncond branch.  We are looking for a very specific
4046 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified.  In
4047 /// this case, we merge the first two "or's of icmp" into a switch, but then the
4048 /// default value goes to an uncond block with a seteq in it, we get something
4049 /// like:
4050 ///
4051 ///   switch i8 %A, label %DEFAULT [ i8 1, label %end    i8 2, label %end ]
4052 /// DEFAULT:
4053 ///   %tmp = icmp eq i8 %A, 92
4054 ///   br label %end
4055 /// end:
4056 ///   ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ]
4057 ///
4058 /// We prefer to split the edge to 'end' so that there is a true/false entry to
4059 /// the PHI, merging the third icmp into the switch.
4060 bool SimplifyCFGOpt::tryToSimplifyUncondBranchWithICmpInIt(
4061     ICmpInst *ICI, IRBuilder<> &Builder) {
4062   BasicBlock *BB = ICI->getParent();
4063 
4064   // If the block has any PHIs in it or the icmp has multiple uses, it is too
4065   // complex.
4066   if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse())
4067     return false;
4068 
4069   Value *V = ICI->getOperand(0);
4070   ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1));
4071 
4072   // The pattern we're looking for is where our only predecessor is a switch on
4073   // 'V' and this block is the default case for the switch.  In this case we can
4074   // fold the compared value into the switch to simplify things.
4075   BasicBlock *Pred = BB->getSinglePredecessor();
4076   if (!Pred || !isa<SwitchInst>(Pred->getTerminator()))
4077     return false;
4078 
4079   SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator());
4080   if (SI->getCondition() != V)
4081     return false;
4082 
4083   // If BB is reachable on a non-default case, then we simply know the value of
4084   // V in this block.  Substitute it and constant fold the icmp instruction
4085   // away.
4086   if (SI->getDefaultDest() != BB) {
4087     ConstantInt *VVal = SI->findCaseDest(BB);
4088     assert(VVal && "Should have a unique destination value");
4089     ICI->setOperand(0, VVal);
4090 
4091     if (Value *V = SimplifyInstruction(ICI, {DL, ICI})) {
4092       ICI->replaceAllUsesWith(V);
4093       ICI->eraseFromParent();
4094     }
4095     // BB is now empty, so it is likely to simplify away.
4096     return requestResimplify();
4097   }
4098 
4099   // Ok, the block is reachable from the default dest.  If the constant we're
4100   // comparing exists in one of the other edges, then we can constant fold ICI
4101   // and zap it.
4102   if (SI->findCaseValue(Cst) != SI->case_default()) {
4103     Value *V;
4104     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
4105       V = ConstantInt::getFalse(BB->getContext());
4106     else
4107       V = ConstantInt::getTrue(BB->getContext());
4108 
4109     ICI->replaceAllUsesWith(V);
4110     ICI->eraseFromParent();
4111     // BB is now empty, so it is likely to simplify away.
4112     return requestResimplify();
4113   }
4114 
4115   // The use of the icmp has to be in the 'end' block, by the only PHI node in
4116   // the block.
4117   BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0);
4118   PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back());
4119   if (PHIUse == nullptr || PHIUse != &SuccBlock->front() ||
4120       isa<PHINode>(++BasicBlock::iterator(PHIUse)))
4121     return false;
4122 
4123   // If the icmp is a SETEQ, then the default dest gets false, the new edge gets
4124   // true in the PHI.
4125   Constant *DefaultCst = ConstantInt::getTrue(BB->getContext());
4126   Constant *NewCst = ConstantInt::getFalse(BB->getContext());
4127 
4128   if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
4129     std::swap(DefaultCst, NewCst);
4130 
4131   // Replace ICI (which is used by the PHI for the default value) with true or
4132   // false depending on if it is EQ or NE.
4133   ICI->replaceAllUsesWith(DefaultCst);
4134   ICI->eraseFromParent();
4135 
4136   SmallVector<DominatorTree::UpdateType, 2> Updates;
4137 
4138   // Okay, the switch goes to this block on a default value.  Add an edge from
4139   // the switch to the merge point on the compared value.
4140   BasicBlock *NewBB =
4141       BasicBlock::Create(BB->getContext(), "switch.edge", BB->getParent(), BB);
4142   {
4143     SwitchInstProfUpdateWrapper SIW(*SI);
4144     auto W0 = SIW.getSuccessorWeight(0);
4145     SwitchInstProfUpdateWrapper::CaseWeightOpt NewW;
4146     if (W0) {
4147       NewW = ((uint64_t(*W0) + 1) >> 1);
4148       SIW.setSuccessorWeight(0, *NewW);
4149     }
4150     SIW.addCase(Cst, NewBB, NewW);
4151     if (DTU)
4152       Updates.push_back({DominatorTree::Insert, Pred, NewBB});
4153   }
4154 
4155   // NewBB branches to the phi block, add the uncond branch and the phi entry.
4156   Builder.SetInsertPoint(NewBB);
4157   Builder.SetCurrentDebugLocation(SI->getDebugLoc());
4158   Builder.CreateBr(SuccBlock);
4159   PHIUse->addIncoming(NewCst, NewBB);
4160   if (DTU) {
4161     Updates.push_back({DominatorTree::Insert, NewBB, SuccBlock});
4162     DTU->applyUpdates(Updates);
4163   }
4164   return true;
4165 }
4166 
4167 /// The specified branch is a conditional branch.
4168 /// Check to see if it is branching on an or/and chain of icmp instructions, and
4169 /// fold it into a switch instruction if so.
4170 bool SimplifyCFGOpt::SimplifyBranchOnICmpChain(BranchInst *BI,
4171                                                IRBuilder<> &Builder,
4172                                                const DataLayout &DL) {
4173   Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
4174   if (!Cond)
4175     return false;
4176 
4177   // Change br (X == 0 | X == 1), T, F into a switch instruction.
4178   // If this is a bunch of seteq's or'd together, or if it's a bunch of
4179   // 'setne's and'ed together, collect them.
4180 
4181   // Try to gather values from a chain of and/or to be turned into a switch
4182   ConstantComparesGatherer ConstantCompare(Cond, DL);
4183   // Unpack the result
4184   SmallVectorImpl<ConstantInt *> &Values = ConstantCompare.Vals;
4185   Value *CompVal = ConstantCompare.CompValue;
4186   unsigned UsedICmps = ConstantCompare.UsedICmps;
4187   Value *ExtraCase = ConstantCompare.Extra;
4188 
4189   // If we didn't have a multiply compared value, fail.
4190   if (!CompVal)
4191     return false;
4192 
4193   // Avoid turning single icmps into a switch.
4194   if (UsedICmps <= 1)
4195     return false;
4196 
4197   bool TrueWhenEqual = match(Cond, m_LogicalOr(m_Value(), m_Value()));
4198 
4199   // There might be duplicate constants in the list, which the switch
4200   // instruction can't handle, remove them now.
4201   array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate);
4202   Values.erase(std::unique(Values.begin(), Values.end()), Values.end());
4203 
4204   // If Extra was used, we require at least two switch values to do the
4205   // transformation.  A switch with one value is just a conditional branch.
4206   if (ExtraCase && Values.size() < 2)
4207     return false;
4208 
4209   // TODO: Preserve branch weight metadata, similarly to how
4210   // FoldValueComparisonIntoPredecessors preserves it.
4211 
4212   // Figure out which block is which destination.
4213   BasicBlock *DefaultBB = BI->getSuccessor(1);
4214   BasicBlock *EdgeBB = BI->getSuccessor(0);
4215   if (!TrueWhenEqual)
4216     std::swap(DefaultBB, EdgeBB);
4217 
4218   BasicBlock *BB = BI->getParent();
4219 
4220   // MSAN does not like undefs as branch condition which can be introduced
4221   // with "explicit branch".
4222   if (ExtraCase && BB->getParent()->hasFnAttribute(Attribute::SanitizeMemory))
4223     return false;
4224 
4225   LLVM_DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size()
4226                     << " cases into SWITCH.  BB is:\n"
4227                     << *BB);
4228 
4229   SmallVector<DominatorTree::UpdateType, 2> Updates;
4230 
4231   // If there are any extra values that couldn't be folded into the switch
4232   // then we evaluate them with an explicit branch first. Split the block
4233   // right before the condbr to handle it.
4234   if (ExtraCase) {
4235     BasicBlock *NewBB = SplitBlock(BB, BI, DTU, /*LI=*/nullptr,
4236                                    /*MSSAU=*/nullptr, "switch.early.test");
4237 
4238     // Remove the uncond branch added to the old block.
4239     Instruction *OldTI = BB->getTerminator();
4240     Builder.SetInsertPoint(OldTI);
4241 
4242     if (TrueWhenEqual)
4243       Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB);
4244     else
4245       Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB);
4246 
4247     OldTI->eraseFromParent();
4248 
4249     if (DTU)
4250       Updates.push_back({DominatorTree::Insert, BB, EdgeBB});
4251 
4252     // If there are PHI nodes in EdgeBB, then we need to add a new entry to them
4253     // for the edge we just added.
4254     AddPredecessorToBlock(EdgeBB, BB, NewBB);
4255 
4256     LLVM_DEBUG(dbgs() << "  ** 'icmp' chain unhandled condition: " << *ExtraCase
4257                       << "\nEXTRABB = " << *BB);
4258     BB = NewBB;
4259   }
4260 
4261   Builder.SetInsertPoint(BI);
4262   // Convert pointer to int before we switch.
4263   if (CompVal->getType()->isPointerTy()) {
4264     CompVal = Builder.CreatePtrToInt(
4265         CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr");
4266   }
4267 
4268   // Create the new switch instruction now.
4269   SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size());
4270 
4271   // Add all of the 'cases' to the switch instruction.
4272   for (unsigned i = 0, e = Values.size(); i != e; ++i)
4273     New->addCase(Values[i], EdgeBB);
4274 
4275   // We added edges from PI to the EdgeBB.  As such, if there were any
4276   // PHI nodes in EdgeBB, they need entries to be added corresponding to
4277   // the number of edges added.
4278   for (BasicBlock::iterator BBI = EdgeBB->begin(); isa<PHINode>(BBI); ++BBI) {
4279     PHINode *PN = cast<PHINode>(BBI);
4280     Value *InVal = PN->getIncomingValueForBlock(BB);
4281     for (unsigned i = 0, e = Values.size() - 1; i != e; ++i)
4282       PN->addIncoming(InVal, BB);
4283   }
4284 
4285   // Erase the old branch instruction.
4286   EraseTerminatorAndDCECond(BI);
4287   if (DTU)
4288     DTU->applyUpdates(Updates);
4289 
4290   LLVM_DEBUG(dbgs() << "  ** 'icmp' chain result is:\n" << *BB << '\n');
4291   return true;
4292 }
4293 
4294 bool SimplifyCFGOpt::simplifyResume(ResumeInst *RI, IRBuilder<> &Builder) {
4295   if (isa<PHINode>(RI->getValue()))
4296     return simplifyCommonResume(RI);
4297   else if (isa<LandingPadInst>(RI->getParent()->getFirstNonPHI()) &&
4298            RI->getValue() == RI->getParent()->getFirstNonPHI())
4299     // The resume must unwind the exception that caused control to branch here.
4300     return simplifySingleResume(RI);
4301 
4302   return false;
4303 }
4304 
4305 // Check if cleanup block is empty
4306 static bool isCleanupBlockEmpty(iterator_range<BasicBlock::iterator> R) {
4307   for (Instruction &I : R) {
4308     auto *II = dyn_cast<IntrinsicInst>(&I);
4309     if (!II)
4310       return false;
4311 
4312     Intrinsic::ID IntrinsicID = II->getIntrinsicID();
4313     switch (IntrinsicID) {
4314     case Intrinsic::dbg_declare:
4315     case Intrinsic::dbg_value:
4316     case Intrinsic::dbg_label:
4317     case Intrinsic::lifetime_end:
4318       break;
4319     default:
4320       return false;
4321     }
4322   }
4323   return true;
4324 }
4325 
4326 // Simplify resume that is shared by several landing pads (phi of landing pad).
4327 bool SimplifyCFGOpt::simplifyCommonResume(ResumeInst *RI) {
4328   BasicBlock *BB = RI->getParent();
4329 
4330   // Check that there are no other instructions except for debug and lifetime
4331   // intrinsics between the phi's and resume instruction.
4332   if (!isCleanupBlockEmpty(
4333           make_range(RI->getParent()->getFirstNonPHI(), BB->getTerminator())))
4334     return false;
4335 
4336   SmallSetVector<BasicBlock *, 4> TrivialUnwindBlocks;
4337   auto *PhiLPInst = cast<PHINode>(RI->getValue());
4338 
4339   // Check incoming blocks to see if any of them are trivial.
4340   for (unsigned Idx = 0, End = PhiLPInst->getNumIncomingValues(); Idx != End;
4341        Idx++) {
4342     auto *IncomingBB = PhiLPInst->getIncomingBlock(Idx);
4343     auto *IncomingValue = PhiLPInst->getIncomingValue(Idx);
4344 
4345     // If the block has other successors, we can not delete it because
4346     // it has other dependents.
4347     if (IncomingBB->getUniqueSuccessor() != BB)
4348       continue;
4349 
4350     auto *LandingPad = dyn_cast<LandingPadInst>(IncomingBB->getFirstNonPHI());
4351     // Not the landing pad that caused the control to branch here.
4352     if (IncomingValue != LandingPad)
4353       continue;
4354 
4355     if (isCleanupBlockEmpty(
4356             make_range(LandingPad->getNextNode(), IncomingBB->getTerminator())))
4357       TrivialUnwindBlocks.insert(IncomingBB);
4358   }
4359 
4360   // If no trivial unwind blocks, don't do any simplifications.
4361   if (TrivialUnwindBlocks.empty())
4362     return false;
4363 
4364   // Turn all invokes that unwind here into calls.
4365   for (auto *TrivialBB : TrivialUnwindBlocks) {
4366     // Blocks that will be simplified should be removed from the phi node.
4367     // Note there could be multiple edges to the resume block, and we need
4368     // to remove them all.
4369     while (PhiLPInst->getBasicBlockIndex(TrivialBB) != -1)
4370       BB->removePredecessor(TrivialBB, true);
4371 
4372     for (BasicBlock *Pred :
4373          llvm::make_early_inc_range(predecessors(TrivialBB))) {
4374       removeUnwindEdge(Pred, DTU);
4375       ++NumInvokes;
4376     }
4377 
4378     // In each SimplifyCFG run, only the current processed block can be erased.
4379     // Otherwise, it will break the iteration of SimplifyCFG pass. So instead
4380     // of erasing TrivialBB, we only remove the branch to the common resume
4381     // block so that we can later erase the resume block since it has no
4382     // predecessors.
4383     TrivialBB->getTerminator()->eraseFromParent();
4384     new UnreachableInst(RI->getContext(), TrivialBB);
4385     if (DTU)
4386       DTU->applyUpdates({{DominatorTree::Delete, TrivialBB, BB}});
4387   }
4388 
4389   // Delete the resume block if all its predecessors have been removed.
4390   if (pred_empty(BB)) {
4391     if (DTU)
4392       DTU->deleteBB(BB);
4393     else
4394       BB->eraseFromParent();
4395   }
4396 
4397   return !TrivialUnwindBlocks.empty();
4398 }
4399 
4400 // Simplify resume that is only used by a single (non-phi) landing pad.
4401 bool SimplifyCFGOpt::simplifySingleResume(ResumeInst *RI) {
4402   BasicBlock *BB = RI->getParent();
4403   auto *LPInst = cast<LandingPadInst>(BB->getFirstNonPHI());
4404   assert(RI->getValue() == LPInst &&
4405          "Resume must unwind the exception that caused control to here");
4406 
4407   // Check that there are no other instructions except for debug intrinsics.
4408   if (!isCleanupBlockEmpty(
4409           make_range<Instruction *>(LPInst->getNextNode(), RI)))
4410     return false;
4411 
4412   // Turn all invokes that unwind here into calls and delete the basic block.
4413   for (BasicBlock *Pred : llvm::make_early_inc_range(predecessors(BB))) {
4414     removeUnwindEdge(Pred, DTU);
4415     ++NumInvokes;
4416   }
4417 
4418   // The landingpad is now unreachable.  Zap it.
4419   if (DTU)
4420     DTU->deleteBB(BB);
4421   else
4422     BB->eraseFromParent();
4423   return true;
4424 }
4425 
4426 static bool removeEmptyCleanup(CleanupReturnInst *RI, DomTreeUpdater *DTU) {
4427   // If this is a trivial cleanup pad that executes no instructions, it can be
4428   // eliminated.  If the cleanup pad continues to the caller, any predecessor
4429   // that is an EH pad will be updated to continue to the caller and any
4430   // predecessor that terminates with an invoke instruction will have its invoke
4431   // instruction converted to a call instruction.  If the cleanup pad being
4432   // simplified does not continue to the caller, each predecessor will be
4433   // updated to continue to the unwind destination of the cleanup pad being
4434   // simplified.
4435   BasicBlock *BB = RI->getParent();
4436   CleanupPadInst *CPInst = RI->getCleanupPad();
4437   if (CPInst->getParent() != BB)
4438     // This isn't an empty cleanup.
4439     return false;
4440 
4441   // We cannot kill the pad if it has multiple uses.  This typically arises
4442   // from unreachable basic blocks.
4443   if (!CPInst->hasOneUse())
4444     return false;
4445 
4446   // Check that there are no other instructions except for benign intrinsics.
4447   if (!isCleanupBlockEmpty(
4448           make_range<Instruction *>(CPInst->getNextNode(), RI)))
4449     return false;
4450 
4451   // If the cleanup return we are simplifying unwinds to the caller, this will
4452   // set UnwindDest to nullptr.
4453   BasicBlock *UnwindDest = RI->getUnwindDest();
4454   Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr;
4455 
4456   // We're about to remove BB from the control flow.  Before we do, sink any
4457   // PHINodes into the unwind destination.  Doing this before changing the
4458   // control flow avoids some potentially slow checks, since we can currently
4459   // be certain that UnwindDest and BB have no common predecessors (since they
4460   // are both EH pads).
4461   if (UnwindDest) {
4462     // First, go through the PHI nodes in UnwindDest and update any nodes that
4463     // reference the block we are removing
4464     for (BasicBlock::iterator I = UnwindDest->begin(),
4465                               IE = DestEHPad->getIterator();
4466          I != IE; ++I) {
4467       PHINode *DestPN = cast<PHINode>(I);
4468 
4469       int Idx = DestPN->getBasicBlockIndex(BB);
4470       // Since BB unwinds to UnwindDest, it has to be in the PHI node.
4471       assert(Idx != -1);
4472       // This PHI node has an incoming value that corresponds to a control
4473       // path through the cleanup pad we are removing.  If the incoming
4474       // value is in the cleanup pad, it must be a PHINode (because we
4475       // verified above that the block is otherwise empty).  Otherwise, the
4476       // value is either a constant or a value that dominates the cleanup
4477       // pad being removed.
4478       //
4479       // Because BB and UnwindDest are both EH pads, all of their
4480       // predecessors must unwind to these blocks, and since no instruction
4481       // can have multiple unwind destinations, there will be no overlap in
4482       // incoming blocks between SrcPN and DestPN.
4483       Value *SrcVal = DestPN->getIncomingValue(Idx);
4484       PHINode *SrcPN = dyn_cast<PHINode>(SrcVal);
4485 
4486       // Remove the entry for the block we are deleting.
4487       DestPN->removeIncomingValue(Idx, false);
4488 
4489       if (SrcPN && SrcPN->getParent() == BB) {
4490         // If the incoming value was a PHI node in the cleanup pad we are
4491         // removing, we need to merge that PHI node's incoming values into
4492         // DestPN.
4493         for (unsigned SrcIdx = 0, SrcE = SrcPN->getNumIncomingValues();
4494              SrcIdx != SrcE; ++SrcIdx) {
4495           DestPN->addIncoming(SrcPN->getIncomingValue(SrcIdx),
4496                               SrcPN->getIncomingBlock(SrcIdx));
4497         }
4498       } else {
4499         // Otherwise, the incoming value came from above BB and
4500         // so we can just reuse it.  We must associate all of BB's
4501         // predecessors with this value.
4502         for (auto *pred : predecessors(BB)) {
4503           DestPN->addIncoming(SrcVal, pred);
4504         }
4505       }
4506     }
4507 
4508     // Sink any remaining PHI nodes directly into UnwindDest.
4509     Instruction *InsertPt = DestEHPad;
4510     for (BasicBlock::iterator I = BB->begin(),
4511                               IE = BB->getFirstNonPHI()->getIterator();
4512          I != IE;) {
4513       // The iterator must be incremented here because the instructions are
4514       // being moved to another block.
4515       PHINode *PN = cast<PHINode>(I++);
4516       if (PN->use_empty() || !PN->isUsedOutsideOfBlock(BB))
4517         // If the PHI node has no uses or all of its uses are in this basic
4518         // block (meaning they are debug or lifetime intrinsics), just leave
4519         // it.  It will be erased when we erase BB below.
4520         continue;
4521 
4522       // Otherwise, sink this PHI node into UnwindDest.
4523       // Any predecessors to UnwindDest which are not already represented
4524       // must be back edges which inherit the value from the path through
4525       // BB.  In this case, the PHI value must reference itself.
4526       for (auto *pred : predecessors(UnwindDest))
4527         if (pred != BB)
4528           PN->addIncoming(PN, pred);
4529       PN->moveBefore(InsertPt);
4530     }
4531   }
4532 
4533   std::vector<DominatorTree::UpdateType> Updates;
4534 
4535   // We use make_early_inc_range here because we may remove some predecessors.
4536   for (BasicBlock *PredBB : llvm::make_early_inc_range(predecessors(BB))) {
4537     if (UnwindDest == nullptr) {
4538       if (DTU) {
4539         DTU->applyUpdates(Updates);
4540         Updates.clear();
4541       }
4542       removeUnwindEdge(PredBB, DTU);
4543       ++NumInvokes;
4544     } else {
4545       Instruction *TI = PredBB->getTerminator();
4546       TI->replaceUsesOfWith(BB, UnwindDest);
4547       if (DTU) {
4548         Updates.push_back({DominatorTree::Insert, PredBB, UnwindDest});
4549         Updates.push_back({DominatorTree::Delete, PredBB, BB});
4550       }
4551     }
4552   }
4553 
4554   if (DTU) {
4555     DTU->applyUpdates(Updates);
4556     DTU->deleteBB(BB);
4557   } else
4558     // The cleanup pad is now unreachable.  Zap it.
4559     BB->eraseFromParent();
4560 
4561   return true;
4562 }
4563 
4564 // Try to merge two cleanuppads together.
4565 static bool mergeCleanupPad(CleanupReturnInst *RI) {
4566   // Skip any cleanuprets which unwind to caller, there is nothing to merge
4567   // with.
4568   BasicBlock *UnwindDest = RI->getUnwindDest();
4569   if (!UnwindDest)
4570     return false;
4571 
4572   // This cleanupret isn't the only predecessor of this cleanuppad, it wouldn't
4573   // be safe to merge without code duplication.
4574   if (UnwindDest->getSinglePredecessor() != RI->getParent())
4575     return false;
4576 
4577   // Verify that our cleanuppad's unwind destination is another cleanuppad.
4578   auto *SuccessorCleanupPad = dyn_cast<CleanupPadInst>(&UnwindDest->front());
4579   if (!SuccessorCleanupPad)
4580     return false;
4581 
4582   CleanupPadInst *PredecessorCleanupPad = RI->getCleanupPad();
4583   // Replace any uses of the successor cleanupad with the predecessor pad
4584   // The only cleanuppad uses should be this cleanupret, it's cleanupret and
4585   // funclet bundle operands.
4586   SuccessorCleanupPad->replaceAllUsesWith(PredecessorCleanupPad);
4587   // Remove the old cleanuppad.
4588   SuccessorCleanupPad->eraseFromParent();
4589   // Now, we simply replace the cleanupret with a branch to the unwind
4590   // destination.
4591   BranchInst::Create(UnwindDest, RI->getParent());
4592   RI->eraseFromParent();
4593 
4594   return true;
4595 }
4596 
4597 bool SimplifyCFGOpt::simplifyCleanupReturn(CleanupReturnInst *RI) {
4598   // It is possible to transiantly have an undef cleanuppad operand because we
4599   // have deleted some, but not all, dead blocks.
4600   // Eventually, this block will be deleted.
4601   if (isa<UndefValue>(RI->getOperand(0)))
4602     return false;
4603 
4604   if (mergeCleanupPad(RI))
4605     return true;
4606 
4607   if (removeEmptyCleanup(RI, DTU))
4608     return true;
4609 
4610   return false;
4611 }
4612 
4613 bool SimplifyCFGOpt::simplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) {
4614   BasicBlock *BB = RI->getParent();
4615   if (!BB->getFirstNonPHIOrDbg()->isTerminator())
4616     return false;
4617 
4618   // Find predecessors that end with branches.
4619   SmallVector<BasicBlock *, 8> UncondBranchPreds;
4620   SmallVector<BranchInst *, 8> CondBranchPreds;
4621   for (BasicBlock *P : predecessors(BB)) {
4622     Instruction *PTI = P->getTerminator();
4623     if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) {
4624       if (BI->isUnconditional())
4625         UncondBranchPreds.push_back(P);
4626       else
4627         CondBranchPreds.push_back(BI);
4628     }
4629   }
4630 
4631   // If we found some, do the transformation!
4632   if (!UncondBranchPreds.empty() && DupRet) {
4633     while (!UncondBranchPreds.empty()) {
4634       BasicBlock *Pred = UncondBranchPreds.pop_back_val();
4635       LLVM_DEBUG(dbgs() << "FOLDING: " << *BB
4636                         << "INTO UNCOND BRANCH PRED: " << *Pred);
4637       (void)FoldReturnIntoUncondBranch(RI, BB, Pred, DTU);
4638     }
4639 
4640     // If we eliminated all predecessors of the block, delete the block now.
4641     if (pred_empty(BB)) {
4642       // We know there are no successors, so just nuke the block.
4643       if (DTU)
4644         DTU->deleteBB(BB);
4645       else
4646         BB->eraseFromParent();
4647     }
4648 
4649     return true;
4650   }
4651 
4652   // Check out all of the conditional branches going to this return
4653   // instruction.  If any of them just select between returns, change the
4654   // branch itself into a select/return pair.
4655   while (!CondBranchPreds.empty()) {
4656     BranchInst *BI = CondBranchPreds.pop_back_val();
4657 
4658     // Check to see if the non-BB successor is also a return block.
4659     if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) &&
4660         isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) &&
4661         SimplifyCondBranchToTwoReturns(BI, Builder))
4662       return true;
4663   }
4664   return false;
4665 }
4666 
4667 bool SimplifyCFGOpt::simplifyUnreachable(UnreachableInst *UI) {
4668   BasicBlock *BB = UI->getParent();
4669 
4670   bool Changed = false;
4671 
4672   // If there are any instructions immediately before the unreachable that can
4673   // be removed, do so.
4674   while (UI->getIterator() != BB->begin()) {
4675     BasicBlock::iterator BBI = UI->getIterator();
4676     --BBI;
4677     // Do not delete instructions that can have side effects which might cause
4678     // the unreachable to not be reachable; specifically, calls and volatile
4679     // operations may have this effect.
4680     if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI))
4681       break;
4682 
4683     if (BBI->mayHaveSideEffects()) {
4684       if (auto *SI = dyn_cast<StoreInst>(BBI)) {
4685         if (SI->isVolatile())
4686           break;
4687       } else if (auto *LI = dyn_cast<LoadInst>(BBI)) {
4688         if (LI->isVolatile())
4689           break;
4690       } else if (auto *RMWI = dyn_cast<AtomicRMWInst>(BBI)) {
4691         if (RMWI->isVolatile())
4692           break;
4693       } else if (auto *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) {
4694         if (CXI->isVolatile())
4695           break;
4696       } else if (isa<CatchPadInst>(BBI)) {
4697         // A catchpad may invoke exception object constructors and such, which
4698         // in some languages can be arbitrary code, so be conservative by
4699         // default.
4700         // For CoreCLR, it just involves a type test, so can be removed.
4701         if (classifyEHPersonality(BB->getParent()->getPersonalityFn()) !=
4702             EHPersonality::CoreCLR)
4703           break;
4704       } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) &&
4705                  !isa<LandingPadInst>(BBI)) {
4706         break;
4707       }
4708       // Note that deleting LandingPad's here is in fact okay, although it
4709       // involves a bit of subtle reasoning. If this inst is a LandingPad,
4710       // all the predecessors of this block will be the unwind edges of Invokes,
4711       // and we can therefore guarantee this block will be erased.
4712     }
4713 
4714     // Delete this instruction (any uses are guaranteed to be dead)
4715     if (!BBI->use_empty())
4716       BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
4717     BBI->eraseFromParent();
4718     Changed = true;
4719   }
4720 
4721   // If the unreachable instruction is the first in the block, take a gander
4722   // at all of the predecessors of this instruction, and simplify them.
4723   if (&BB->front() != UI)
4724     return Changed;
4725 
4726   std::vector<DominatorTree::UpdateType> Updates;
4727 
4728   SmallSetVector<BasicBlock *, 8> Preds(pred_begin(BB), pred_end(BB));
4729   for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
4730     auto *Predecessor = Preds[i];
4731     Instruction *TI = Predecessor->getTerminator();
4732     IRBuilder<> Builder(TI);
4733     if (auto *BI = dyn_cast<BranchInst>(TI)) {
4734       // We could either have a proper unconditional branch,
4735       // or a degenerate conditional branch with matching destinations.
4736       if (all_of(BI->successors(),
4737                  [BB](auto *Successor) { return Successor == BB; })) {
4738         new UnreachableInst(TI->getContext(), TI);
4739         TI->eraseFromParent();
4740         Changed = true;
4741       } else {
4742         assert(BI->isConditional() && "Can't get here with an uncond branch.");
4743         Value* Cond = BI->getCondition();
4744         assert(BI->getSuccessor(0) != BI->getSuccessor(1) &&
4745                "The destinations are guaranteed to be different here.");
4746         if (BI->getSuccessor(0) == BB) {
4747           Builder.CreateAssumption(Builder.CreateNot(Cond));
4748           Builder.CreateBr(BI->getSuccessor(1));
4749         } else {
4750           assert(BI->getSuccessor(1) == BB && "Incorrect CFG");
4751           Builder.CreateAssumption(Cond);
4752           Builder.CreateBr(BI->getSuccessor(0));
4753         }
4754         EraseTerminatorAndDCECond(BI);
4755         Changed = true;
4756       }
4757       if (DTU)
4758         Updates.push_back({DominatorTree::Delete, Predecessor, BB});
4759     } else if (auto *SI = dyn_cast<SwitchInst>(TI)) {
4760       SwitchInstProfUpdateWrapper SU(*SI);
4761       for (auto i = SU->case_begin(), e = SU->case_end(); i != e;) {
4762         if (i->getCaseSuccessor() != BB) {
4763           ++i;
4764           continue;
4765         }
4766         BB->removePredecessor(SU->getParent());
4767         i = SU.removeCase(i);
4768         e = SU->case_end();
4769         Changed = true;
4770       }
4771       // Note that the default destination can't be removed!
4772       if (DTU && SI->getDefaultDest() != BB)
4773         Updates.push_back({DominatorTree::Delete, Predecessor, BB});
4774     } else if (auto *II = dyn_cast<InvokeInst>(TI)) {
4775       if (II->getUnwindDest() == BB) {
4776         if (DTU) {
4777           DTU->applyUpdates(Updates);
4778           Updates.clear();
4779         }
4780         removeUnwindEdge(TI->getParent(), DTU);
4781         Changed = true;
4782       }
4783     } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) {
4784       if (CSI->getUnwindDest() == BB) {
4785         if (DTU) {
4786           DTU->applyUpdates(Updates);
4787           Updates.clear();
4788         }
4789         removeUnwindEdge(TI->getParent(), DTU);
4790         Changed = true;
4791         continue;
4792       }
4793 
4794       for (CatchSwitchInst::handler_iterator I = CSI->handler_begin(),
4795                                              E = CSI->handler_end();
4796            I != E; ++I) {
4797         if (*I == BB) {
4798           CSI->removeHandler(I);
4799           --I;
4800           --E;
4801           Changed = true;
4802         }
4803       }
4804       if (DTU)
4805         Updates.push_back({DominatorTree::Delete, Predecessor, BB});
4806       if (CSI->getNumHandlers() == 0) {
4807         if (CSI->hasUnwindDest()) {
4808           // Redirect all predecessors of the block containing CatchSwitchInst
4809           // to instead branch to the CatchSwitchInst's unwind destination.
4810           if (DTU) {
4811             for (auto *PredecessorOfPredecessor : predecessors(Predecessor)) {
4812               Updates.push_back({DominatorTree::Insert,
4813                                  PredecessorOfPredecessor,
4814                                  CSI->getUnwindDest()});
4815               Updates.push_back({DominatorTree::Delete,
4816                                  PredecessorOfPredecessor, Predecessor});
4817             }
4818           }
4819           Predecessor->replaceAllUsesWith(CSI->getUnwindDest());
4820         } else {
4821           // Rewrite all preds to unwind to caller (or from invoke to call).
4822           if (DTU) {
4823             DTU->applyUpdates(Updates);
4824             Updates.clear();
4825           }
4826           SmallVector<BasicBlock *, 8> EHPreds(predecessors(Predecessor));
4827           for (BasicBlock *EHPred : EHPreds)
4828             removeUnwindEdge(EHPred, DTU);
4829         }
4830         // The catchswitch is no longer reachable.
4831         new UnreachableInst(CSI->getContext(), CSI);
4832         CSI->eraseFromParent();
4833         Changed = true;
4834       }
4835     } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
4836       (void)CRI;
4837       assert(CRI->hasUnwindDest() && CRI->getUnwindDest() == BB &&
4838              "Expected to always have an unwind to BB.");
4839       if (DTU)
4840         Updates.push_back({DominatorTree::Delete, Predecessor, BB});
4841       new UnreachableInst(TI->getContext(), TI);
4842       TI->eraseFromParent();
4843       Changed = true;
4844     }
4845   }
4846 
4847   if (DTU)
4848     DTU->applyUpdates(Updates);
4849 
4850   // If this block is now dead, remove it.
4851   if (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) {
4852     // We know there are no successors, so just nuke the block.
4853     if (DTU)
4854       DTU->deleteBB(BB);
4855     else
4856       BB->eraseFromParent();
4857     return true;
4858   }
4859 
4860   return Changed;
4861 }
4862 
4863 static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) {
4864   assert(Cases.size() >= 1);
4865 
4866   array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate);
4867   for (size_t I = 1, E = Cases.size(); I != E; ++I) {
4868     if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1)
4869       return false;
4870   }
4871   return true;
4872 }
4873 
4874 static void createUnreachableSwitchDefault(SwitchInst *Switch,
4875                                            DomTreeUpdater *DTU) {
4876   LLVM_DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n");
4877   auto *BB = Switch->getParent();
4878   BasicBlock *NewDefaultBlock = SplitBlockPredecessors(
4879       Switch->getDefaultDest(), Switch->getParent(), "", DTU);
4880   auto *OrigDefaultBlock = Switch->getDefaultDest();
4881   Switch->setDefaultDest(&*NewDefaultBlock);
4882   if (DTU)
4883     DTU->applyUpdates({{DominatorTree::Insert, BB, &*NewDefaultBlock},
4884                        {DominatorTree::Delete, BB, OrigDefaultBlock}});
4885   SplitBlock(&*NewDefaultBlock, &NewDefaultBlock->front(), DTU);
4886   SmallVector<DominatorTree::UpdateType, 2> Updates;
4887   if (DTU)
4888     for (auto *Successor : successors(NewDefaultBlock))
4889       Updates.push_back({DominatorTree::Delete, NewDefaultBlock, Successor});
4890   auto *NewTerminator = NewDefaultBlock->getTerminator();
4891   new UnreachableInst(Switch->getContext(), NewTerminator);
4892   EraseTerminatorAndDCECond(NewTerminator);
4893   if (DTU)
4894     DTU->applyUpdates(Updates);
4895 }
4896 
4897 /// Turn a switch with two reachable destinations into an integer range
4898 /// comparison and branch.
4899 bool SimplifyCFGOpt::TurnSwitchRangeIntoICmp(SwitchInst *SI,
4900                                              IRBuilder<> &Builder) {
4901   assert(SI->getNumCases() > 1 && "Degenerate switch?");
4902 
4903   bool HasDefault =
4904       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
4905 
4906   auto *BB = SI->getParent();
4907 
4908   // Partition the cases into two sets with different destinations.
4909   BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr;
4910   BasicBlock *DestB = nullptr;
4911   SmallVector<ConstantInt *, 16> CasesA;
4912   SmallVector<ConstantInt *, 16> CasesB;
4913 
4914   for (auto Case : SI->cases()) {
4915     BasicBlock *Dest = Case.getCaseSuccessor();
4916     if (!DestA)
4917       DestA = Dest;
4918     if (Dest == DestA) {
4919       CasesA.push_back(Case.getCaseValue());
4920       continue;
4921     }
4922     if (!DestB)
4923       DestB = Dest;
4924     if (Dest == DestB) {
4925       CasesB.push_back(Case.getCaseValue());
4926       continue;
4927     }
4928     return false; // More than two destinations.
4929   }
4930 
4931   assert(DestA && DestB &&
4932          "Single-destination switch should have been folded.");
4933   assert(DestA != DestB);
4934   assert(DestB != SI->getDefaultDest());
4935   assert(!CasesB.empty() && "There must be non-default cases.");
4936   assert(!CasesA.empty() || HasDefault);
4937 
4938   // Figure out if one of the sets of cases form a contiguous range.
4939   SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr;
4940   BasicBlock *ContiguousDest = nullptr;
4941   BasicBlock *OtherDest = nullptr;
4942   if (!CasesA.empty() && CasesAreContiguous(CasesA)) {
4943     ContiguousCases = &CasesA;
4944     ContiguousDest = DestA;
4945     OtherDest = DestB;
4946   } else if (CasesAreContiguous(CasesB)) {
4947     ContiguousCases = &CasesB;
4948     ContiguousDest = DestB;
4949     OtherDest = DestA;
4950   } else
4951     return false;
4952 
4953   // Start building the compare and branch.
4954 
4955   Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back());
4956   Constant *NumCases =
4957       ConstantInt::get(Offset->getType(), ContiguousCases->size());
4958 
4959   Value *Sub = SI->getCondition();
4960   if (!Offset->isNullValue())
4961     Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off");
4962 
4963   Value *Cmp;
4964   // If NumCases overflowed, then all possible values jump to the successor.
4965   if (NumCases->isNullValue() && !ContiguousCases->empty())
4966     Cmp = ConstantInt::getTrue(SI->getContext());
4967   else
4968     Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch");
4969   BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest);
4970 
4971   // Update weight for the newly-created conditional branch.
4972   if (HasBranchWeights(SI)) {
4973     SmallVector<uint64_t, 8> Weights;
4974     GetBranchWeights(SI, Weights);
4975     if (Weights.size() == 1 + SI->getNumCases()) {
4976       uint64_t TrueWeight = 0;
4977       uint64_t FalseWeight = 0;
4978       for (size_t I = 0, E = Weights.size(); I != E; ++I) {
4979         if (SI->getSuccessor(I) == ContiguousDest)
4980           TrueWeight += Weights[I];
4981         else
4982           FalseWeight += Weights[I];
4983       }
4984       while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) {
4985         TrueWeight /= 2;
4986         FalseWeight /= 2;
4987       }
4988       setBranchWeights(NewBI, TrueWeight, FalseWeight);
4989     }
4990   }
4991 
4992   // Prune obsolete incoming values off the successors' PHI nodes.
4993   for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) {
4994     unsigned PreviousEdges = ContiguousCases->size();
4995     if (ContiguousDest == SI->getDefaultDest())
4996       ++PreviousEdges;
4997     for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
4998       cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
4999   }
5000   for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) {
5001     unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size();
5002     if (OtherDest == SI->getDefaultDest())
5003       ++PreviousEdges;
5004     for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
5005       cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
5006   }
5007 
5008   // Clean up the default block - it may have phis or other instructions before
5009   // the unreachable terminator.
5010   if (!HasDefault)
5011     createUnreachableSwitchDefault(SI, DTU);
5012 
5013   auto *UnreachableDefault = SI->getDefaultDest();
5014 
5015   // Drop the switch.
5016   SI->eraseFromParent();
5017 
5018   if (!HasDefault && DTU)
5019     DTU->applyUpdates({{DominatorTree::Delete, BB, UnreachableDefault}});
5020 
5021   return true;
5022 }
5023 
5024 /// Compute masked bits for the condition of a switch
5025 /// and use it to remove dead cases.
5026 static bool eliminateDeadSwitchCases(SwitchInst *SI, DomTreeUpdater *DTU,
5027                                      AssumptionCache *AC,
5028                                      const DataLayout &DL) {
5029   Value *Cond = SI->getCondition();
5030   unsigned Bits = Cond->getType()->getIntegerBitWidth();
5031   KnownBits Known = computeKnownBits(Cond, DL, 0, AC, SI);
5032 
5033   // We can also eliminate cases by determining that their values are outside of
5034   // the limited range of the condition based on how many significant (non-sign)
5035   // bits are in the condition value.
5036   unsigned ExtraSignBits = ComputeNumSignBits(Cond, DL, 0, AC, SI) - 1;
5037   unsigned MaxSignificantBitsInCond = Bits - ExtraSignBits;
5038 
5039   // Gather dead cases.
5040   SmallVector<ConstantInt *, 8> DeadCases;
5041   SmallDenseMap<BasicBlock *, int, 8> NumPerSuccessorCases;
5042   for (auto &Case : SI->cases()) {
5043     auto *Successor = Case.getCaseSuccessor();
5044     if (DTU)
5045       ++NumPerSuccessorCases[Successor];
5046     const APInt &CaseVal = Case.getCaseValue()->getValue();
5047     if (Known.Zero.intersects(CaseVal) || !Known.One.isSubsetOf(CaseVal) ||
5048         (CaseVal.getMinSignedBits() > MaxSignificantBitsInCond)) {
5049       DeadCases.push_back(Case.getCaseValue());
5050       if (DTU)
5051         --NumPerSuccessorCases[Successor];
5052       LLVM_DEBUG(dbgs() << "SimplifyCFG: switch case " << CaseVal
5053                         << " is dead.\n");
5054     }
5055   }
5056 
5057   // If we can prove that the cases must cover all possible values, the
5058   // default destination becomes dead and we can remove it.  If we know some
5059   // of the bits in the value, we can use that to more precisely compute the
5060   // number of possible unique case values.
5061   bool HasDefault =
5062       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
5063   const unsigned NumUnknownBits =
5064       Bits - (Known.Zero | Known.One).countPopulation();
5065   assert(NumUnknownBits <= Bits);
5066   if (HasDefault && DeadCases.empty() &&
5067       NumUnknownBits < 64 /* avoid overflow */ &&
5068       SI->getNumCases() == (1ULL << NumUnknownBits)) {
5069     createUnreachableSwitchDefault(SI, DTU);
5070     return true;
5071   }
5072 
5073   if (DeadCases.empty())
5074     return false;
5075 
5076   SwitchInstProfUpdateWrapper SIW(*SI);
5077   for (ConstantInt *DeadCase : DeadCases) {
5078     SwitchInst::CaseIt CaseI = SI->findCaseValue(DeadCase);
5079     assert(CaseI != SI->case_default() &&
5080            "Case was not found. Probably mistake in DeadCases forming.");
5081     // Prune unused values from PHI nodes.
5082     CaseI->getCaseSuccessor()->removePredecessor(SI->getParent());
5083     SIW.removeCase(CaseI);
5084   }
5085 
5086   if (DTU) {
5087     std::vector<DominatorTree::UpdateType> Updates;
5088     for (const std::pair<BasicBlock *, int> &I : NumPerSuccessorCases)
5089       if (I.second == 0)
5090         Updates.push_back({DominatorTree::Delete, SI->getParent(), I.first});
5091     DTU->applyUpdates(Updates);
5092   }
5093 
5094   return true;
5095 }
5096 
5097 /// If BB would be eligible for simplification by
5098 /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated
5099 /// by an unconditional branch), look at the phi node for BB in the successor
5100 /// block and see if the incoming value is equal to CaseValue. If so, return
5101 /// the phi node, and set PhiIndex to BB's index in the phi node.
5102 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue,
5103                                               BasicBlock *BB, int *PhiIndex) {
5104   if (BB->getFirstNonPHIOrDbg() != BB->getTerminator())
5105     return nullptr; // BB must be empty to be a candidate for simplification.
5106   if (!BB->getSinglePredecessor())
5107     return nullptr; // BB must be dominated by the switch.
5108 
5109   BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator());
5110   if (!Branch || !Branch->isUnconditional())
5111     return nullptr; // Terminator must be unconditional branch.
5112 
5113   BasicBlock *Succ = Branch->getSuccessor(0);
5114 
5115   for (PHINode &PHI : Succ->phis()) {
5116     int Idx = PHI.getBasicBlockIndex(BB);
5117     assert(Idx >= 0 && "PHI has no entry for predecessor?");
5118 
5119     Value *InValue = PHI.getIncomingValue(Idx);
5120     if (InValue != CaseValue)
5121       continue;
5122 
5123     *PhiIndex = Idx;
5124     return &PHI;
5125   }
5126 
5127   return nullptr;
5128 }
5129 
5130 /// Try to forward the condition of a switch instruction to a phi node
5131 /// dominated by the switch, if that would mean that some of the destination
5132 /// blocks of the switch can be folded away. Return true if a change is made.
5133 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) {
5134   using ForwardingNodesMap = DenseMap<PHINode *, SmallVector<int, 4>>;
5135 
5136   ForwardingNodesMap ForwardingNodes;
5137   BasicBlock *SwitchBlock = SI->getParent();
5138   bool Changed = false;
5139   for (auto &Case : SI->cases()) {
5140     ConstantInt *CaseValue = Case.getCaseValue();
5141     BasicBlock *CaseDest = Case.getCaseSuccessor();
5142 
5143     // Replace phi operands in successor blocks that are using the constant case
5144     // value rather than the switch condition variable:
5145     //   switchbb:
5146     //   switch i32 %x, label %default [
5147     //     i32 17, label %succ
5148     //   ...
5149     //   succ:
5150     //     %r = phi i32 ... [ 17, %switchbb ] ...
5151     // -->
5152     //     %r = phi i32 ... [ %x, %switchbb ] ...
5153 
5154     for (PHINode &Phi : CaseDest->phis()) {
5155       // This only works if there is exactly 1 incoming edge from the switch to
5156       // a phi. If there is >1, that means multiple cases of the switch map to 1
5157       // value in the phi, and that phi value is not the switch condition. Thus,
5158       // this transform would not make sense (the phi would be invalid because
5159       // a phi can't have different incoming values from the same block).
5160       int SwitchBBIdx = Phi.getBasicBlockIndex(SwitchBlock);
5161       if (Phi.getIncomingValue(SwitchBBIdx) == CaseValue &&
5162           count(Phi.blocks(), SwitchBlock) == 1) {
5163         Phi.setIncomingValue(SwitchBBIdx, SI->getCondition());
5164         Changed = true;
5165       }
5166     }
5167 
5168     // Collect phi nodes that are indirectly using this switch's case constants.
5169     int PhiIdx;
5170     if (auto *Phi = FindPHIForConditionForwarding(CaseValue, CaseDest, &PhiIdx))
5171       ForwardingNodes[Phi].push_back(PhiIdx);
5172   }
5173 
5174   for (auto &ForwardingNode : ForwardingNodes) {
5175     PHINode *Phi = ForwardingNode.first;
5176     SmallVectorImpl<int> &Indexes = ForwardingNode.second;
5177     if (Indexes.size() < 2)
5178       continue;
5179 
5180     for (int Index : Indexes)
5181       Phi->setIncomingValue(Index, SI->getCondition());
5182     Changed = true;
5183   }
5184 
5185   return Changed;
5186 }
5187 
5188 /// Return true if the backend will be able to handle
5189 /// initializing an array of constants like C.
5190 static bool ValidLookupTableConstant(Constant *C, const TargetTransformInfo &TTI) {
5191   if (C->isThreadDependent())
5192     return false;
5193   if (C->isDLLImportDependent())
5194     return false;
5195 
5196   if (!isa<ConstantFP>(C) && !isa<ConstantInt>(C) &&
5197       !isa<ConstantPointerNull>(C) && !isa<GlobalValue>(C) &&
5198       !isa<UndefValue>(C) && !isa<ConstantExpr>(C))
5199     return false;
5200 
5201   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
5202     if (!CE->isGEPWithNoNotionalOverIndexing())
5203       return false;
5204     if (!ValidLookupTableConstant(CE->getOperand(0), TTI))
5205       return false;
5206   }
5207 
5208   if (!TTI.shouldBuildLookupTablesForConstant(C))
5209     return false;
5210 
5211   return true;
5212 }
5213 
5214 /// If V is a Constant, return it. Otherwise, try to look up
5215 /// its constant value in ConstantPool, returning 0 if it's not there.
5216 static Constant *
5217 LookupConstant(Value *V,
5218                const SmallDenseMap<Value *, Constant *> &ConstantPool) {
5219   if (Constant *C = dyn_cast<Constant>(V))
5220     return C;
5221   return ConstantPool.lookup(V);
5222 }
5223 
5224 /// Try to fold instruction I into a constant. This works for
5225 /// simple instructions such as binary operations where both operands are
5226 /// constant or can be replaced by constants from the ConstantPool. Returns the
5227 /// resulting constant on success, 0 otherwise.
5228 static Constant *
5229 ConstantFold(Instruction *I, const DataLayout &DL,
5230              const SmallDenseMap<Value *, Constant *> &ConstantPool) {
5231   if (SelectInst *Select = dyn_cast<SelectInst>(I)) {
5232     Constant *A = LookupConstant(Select->getCondition(), ConstantPool);
5233     if (!A)
5234       return nullptr;
5235     if (A->isAllOnesValue())
5236       return LookupConstant(Select->getTrueValue(), ConstantPool);
5237     if (A->isNullValue())
5238       return LookupConstant(Select->getFalseValue(), ConstantPool);
5239     return nullptr;
5240   }
5241 
5242   SmallVector<Constant *, 4> COps;
5243   for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) {
5244     if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool))
5245       COps.push_back(A);
5246     else
5247       return nullptr;
5248   }
5249 
5250   if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
5251     return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0],
5252                                            COps[1], DL);
5253   }
5254 
5255   return ConstantFoldInstOperands(I, COps, DL);
5256 }
5257 
5258 /// Try to determine the resulting constant values in phi nodes
5259 /// at the common destination basic block, *CommonDest, for one of the case
5260 /// destionations CaseDest corresponding to value CaseVal (0 for the default
5261 /// case), of a switch instruction SI.
5262 static bool
5263 GetCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest,
5264                BasicBlock **CommonDest,
5265                SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res,
5266                const DataLayout &DL, const TargetTransformInfo &TTI) {
5267   // The block from which we enter the common destination.
5268   BasicBlock *Pred = SI->getParent();
5269 
5270   // If CaseDest is empty except for some side-effect free instructions through
5271   // which we can constant-propagate the CaseVal, continue to its successor.
5272   SmallDenseMap<Value *, Constant *> ConstantPool;
5273   ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal));
5274   for (Instruction &I :CaseDest->instructionsWithoutDebug()) {
5275     if (I.isTerminator()) {
5276       // If the terminator is a simple branch, continue to the next block.
5277       if (I.getNumSuccessors() != 1 || I.isExceptionalTerminator())
5278         return false;
5279       Pred = CaseDest;
5280       CaseDest = I.getSuccessor(0);
5281     } else if (Constant *C = ConstantFold(&I, DL, ConstantPool)) {
5282       // Instruction is side-effect free and constant.
5283 
5284       // If the instruction has uses outside this block or a phi node slot for
5285       // the block, it is not safe to bypass the instruction since it would then
5286       // no longer dominate all its uses.
5287       for (auto &Use : I.uses()) {
5288         User *User = Use.getUser();
5289         if (Instruction *I = dyn_cast<Instruction>(User))
5290           if (I->getParent() == CaseDest)
5291             continue;
5292         if (PHINode *Phi = dyn_cast<PHINode>(User))
5293           if (Phi->getIncomingBlock(Use) == CaseDest)
5294             continue;
5295         return false;
5296       }
5297 
5298       ConstantPool.insert(std::make_pair(&I, C));
5299     } else {
5300       break;
5301     }
5302   }
5303 
5304   // If we did not have a CommonDest before, use the current one.
5305   if (!*CommonDest)
5306     *CommonDest = CaseDest;
5307   // If the destination isn't the common one, abort.
5308   if (CaseDest != *CommonDest)
5309     return false;
5310 
5311   // Get the values for this case from phi nodes in the destination block.
5312   for (PHINode &PHI : (*CommonDest)->phis()) {
5313     int Idx = PHI.getBasicBlockIndex(Pred);
5314     if (Idx == -1)
5315       continue;
5316 
5317     Constant *ConstVal =
5318         LookupConstant(PHI.getIncomingValue(Idx), ConstantPool);
5319     if (!ConstVal)
5320       return false;
5321 
5322     // Be conservative about which kinds of constants we support.
5323     if (!ValidLookupTableConstant(ConstVal, TTI))
5324       return false;
5325 
5326     Res.push_back(std::make_pair(&PHI, ConstVal));
5327   }
5328 
5329   return Res.size() > 0;
5330 }
5331 
5332 // Helper function used to add CaseVal to the list of cases that generate
5333 // Result. Returns the updated number of cases that generate this result.
5334 static uintptr_t MapCaseToResult(ConstantInt *CaseVal,
5335                                  SwitchCaseResultVectorTy &UniqueResults,
5336                                  Constant *Result) {
5337   for (auto &I : UniqueResults) {
5338     if (I.first == Result) {
5339       I.second.push_back(CaseVal);
5340       return I.second.size();
5341     }
5342   }
5343   UniqueResults.push_back(
5344       std::make_pair(Result, SmallVector<ConstantInt *, 4>(1, CaseVal)));
5345   return 1;
5346 }
5347 
5348 // Helper function that initializes a map containing
5349 // results for the PHI node of the common destination block for a switch
5350 // instruction. Returns false if multiple PHI nodes have been found or if
5351 // there is not a common destination block for the switch.
5352 static bool
5353 InitializeUniqueCases(SwitchInst *SI, PHINode *&PHI, BasicBlock *&CommonDest,
5354                       SwitchCaseResultVectorTy &UniqueResults,
5355                       Constant *&DefaultResult, const DataLayout &DL,
5356                       const TargetTransformInfo &TTI,
5357                       uintptr_t MaxUniqueResults, uintptr_t MaxCasesPerResult) {
5358   for (auto &I : SI->cases()) {
5359     ConstantInt *CaseVal = I.getCaseValue();
5360 
5361     // Resulting value at phi nodes for this case value.
5362     SwitchCaseResultsTy Results;
5363     if (!GetCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results,
5364                         DL, TTI))
5365       return false;
5366 
5367     // Only one value per case is permitted.
5368     if (Results.size() > 1)
5369       return false;
5370 
5371     // Add the case->result mapping to UniqueResults.
5372     const uintptr_t NumCasesForResult =
5373         MapCaseToResult(CaseVal, UniqueResults, Results.begin()->second);
5374 
5375     // Early out if there are too many cases for this result.
5376     if (NumCasesForResult > MaxCasesPerResult)
5377       return false;
5378 
5379     // Early out if there are too many unique results.
5380     if (UniqueResults.size() > MaxUniqueResults)
5381       return false;
5382 
5383     // Check the PHI consistency.
5384     if (!PHI)
5385       PHI = Results[0].first;
5386     else if (PHI != Results[0].first)
5387       return false;
5388   }
5389   // Find the default result value.
5390   SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults;
5391   BasicBlock *DefaultDest = SI->getDefaultDest();
5392   GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults,
5393                  DL, TTI);
5394   // If the default value is not found abort unless the default destination
5395   // is unreachable.
5396   DefaultResult =
5397       DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr;
5398   if ((!DefaultResult &&
5399        !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg())))
5400     return false;
5401 
5402   return true;
5403 }
5404 
5405 // Helper function that checks if it is possible to transform a switch with only
5406 // two cases (or two cases + default) that produces a result into a select.
5407 // Example:
5408 // switch (a) {
5409 //   case 10:                %0 = icmp eq i32 %a, 10
5410 //     return 10;            %1 = select i1 %0, i32 10, i32 4
5411 //   case 20:        ---->   %2 = icmp eq i32 %a, 20
5412 //     return 2;             %3 = select i1 %2, i32 2, i32 %1
5413 //   default:
5414 //     return 4;
5415 // }
5416 static Value *ConvertTwoCaseSwitch(const SwitchCaseResultVectorTy &ResultVector,
5417                                    Constant *DefaultResult, Value *Condition,
5418                                    IRBuilder<> &Builder) {
5419   // If we are selecting between only two cases transform into a simple
5420   // select or a two-way select if default is possible.
5421   if (ResultVector.size() == 2 && ResultVector[0].second.size() == 1 &&
5422       ResultVector[1].second.size() == 1) {
5423     ConstantInt *const FirstCase = ResultVector[0].second[0];
5424     ConstantInt *const SecondCase = ResultVector[1].second[0];
5425 
5426     bool DefaultCanTrigger = DefaultResult;
5427     Value *SelectValue = ResultVector[1].first;
5428     if (DefaultCanTrigger) {
5429       Value *const ValueCompare =
5430           Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp");
5431       SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first,
5432                                          DefaultResult, "switch.select");
5433     }
5434     Value *const ValueCompare =
5435         Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp");
5436     return Builder.CreateSelect(ValueCompare, ResultVector[0].first,
5437                                 SelectValue, "switch.select");
5438   }
5439 
5440   // Handle the degenerate case where two cases have the same value.
5441   if (ResultVector.size() == 1 && ResultVector[0].second.size() == 2 &&
5442       DefaultResult) {
5443     Value *Cmp1 = Builder.CreateICmpEQ(
5444         Condition, ResultVector[0].second[0], "switch.selectcmp.case1");
5445     Value *Cmp2 = Builder.CreateICmpEQ(
5446         Condition, ResultVector[0].second[1], "switch.selectcmp.case2");
5447     Value *Cmp = Builder.CreateOr(Cmp1, Cmp2, "switch.selectcmp");
5448     return Builder.CreateSelect(Cmp, ResultVector[0].first, DefaultResult);
5449   }
5450 
5451   return nullptr;
5452 }
5453 
5454 // Helper function to cleanup a switch instruction that has been converted into
5455 // a select, fixing up PHI nodes and basic blocks.
5456 static void RemoveSwitchAfterSelectConversion(SwitchInst *SI, PHINode *PHI,
5457                                               Value *SelectValue,
5458                                               IRBuilder<> &Builder,
5459                                               DomTreeUpdater *DTU) {
5460   std::vector<DominatorTree::UpdateType> Updates;
5461 
5462   BasicBlock *SelectBB = SI->getParent();
5463   BasicBlock *DestBB = PHI->getParent();
5464 
5465   if (DTU && !is_contained(predecessors(DestBB), SelectBB))
5466     Updates.push_back({DominatorTree::Insert, SelectBB, DestBB});
5467   Builder.CreateBr(DestBB);
5468 
5469   // Remove the switch.
5470 
5471   while (PHI->getBasicBlockIndex(SelectBB) >= 0)
5472     PHI->removeIncomingValue(SelectBB);
5473   PHI->addIncoming(SelectValue, SelectBB);
5474 
5475   SmallPtrSet<BasicBlock *, 4> RemovedSuccessors;
5476   for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
5477     BasicBlock *Succ = SI->getSuccessor(i);
5478 
5479     if (Succ == DestBB)
5480       continue;
5481     Succ->removePredecessor(SelectBB);
5482     if (DTU && RemovedSuccessors.insert(Succ).second)
5483       Updates.push_back({DominatorTree::Delete, SelectBB, Succ});
5484   }
5485   SI->eraseFromParent();
5486   if (DTU)
5487     DTU->applyUpdates(Updates);
5488 }
5489 
5490 /// If the switch is only used to initialize one or more
5491 /// phi nodes in a common successor block with only two different
5492 /// constant values, replace the switch with select.
5493 static bool switchToSelect(SwitchInst *SI, IRBuilder<> &Builder,
5494                            DomTreeUpdater *DTU, const DataLayout &DL,
5495                            const TargetTransformInfo &TTI) {
5496   Value *const Cond = SI->getCondition();
5497   PHINode *PHI = nullptr;
5498   BasicBlock *CommonDest = nullptr;
5499   Constant *DefaultResult;
5500   SwitchCaseResultVectorTy UniqueResults;
5501   // Collect all the cases that will deliver the same value from the switch.
5502   if (!InitializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult,
5503                              DL, TTI, /*MaxUniqueResults*/2,
5504                              /*MaxCasesPerResult*/2))
5505     return false;
5506   assert(PHI != nullptr && "PHI for value select not found");
5507 
5508   Builder.SetInsertPoint(SI);
5509   Value *SelectValue =
5510       ConvertTwoCaseSwitch(UniqueResults, DefaultResult, Cond, Builder);
5511   if (SelectValue) {
5512     RemoveSwitchAfterSelectConversion(SI, PHI, SelectValue, Builder, DTU);
5513     return true;
5514   }
5515   // The switch couldn't be converted into a select.
5516   return false;
5517 }
5518 
5519 namespace {
5520 
5521 /// This class represents a lookup table that can be used to replace a switch.
5522 class SwitchLookupTable {
5523 public:
5524   /// Create a lookup table to use as a switch replacement with the contents
5525   /// of Values, using DefaultValue to fill any holes in the table.
5526   SwitchLookupTable(
5527       Module &M, uint64_t TableSize, ConstantInt *Offset,
5528       const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
5529       Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName);
5530 
5531   /// Build instructions with Builder to retrieve the value at
5532   /// the position given by Index in the lookup table.
5533   Value *BuildLookup(Value *Index, IRBuilder<> &Builder);
5534 
5535   /// Return true if a table with TableSize elements of
5536   /// type ElementType would fit in a target-legal register.
5537   static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize,
5538                                  Type *ElementType);
5539 
5540 private:
5541   // Depending on the contents of the table, it can be represented in
5542   // different ways.
5543   enum {
5544     // For tables where each element contains the same value, we just have to
5545     // store that single value and return it for each lookup.
5546     SingleValueKind,
5547 
5548     // For tables where there is a linear relationship between table index
5549     // and values. We calculate the result with a simple multiplication
5550     // and addition instead of a table lookup.
5551     LinearMapKind,
5552 
5553     // For small tables with integer elements, we can pack them into a bitmap
5554     // that fits into a target-legal register. Values are retrieved by
5555     // shift and mask operations.
5556     BitMapKind,
5557 
5558     // The table is stored as an array of values. Values are retrieved by load
5559     // instructions from the table.
5560     ArrayKind
5561   } Kind;
5562 
5563   // For SingleValueKind, this is the single value.
5564   Constant *SingleValue = nullptr;
5565 
5566   // For BitMapKind, this is the bitmap.
5567   ConstantInt *BitMap = nullptr;
5568   IntegerType *BitMapElementTy = nullptr;
5569 
5570   // For LinearMapKind, these are the constants used to derive the value.
5571   ConstantInt *LinearOffset = nullptr;
5572   ConstantInt *LinearMultiplier = nullptr;
5573 
5574   // For ArrayKind, this is the array.
5575   GlobalVariable *Array = nullptr;
5576 };
5577 
5578 } // end anonymous namespace
5579 
5580 SwitchLookupTable::SwitchLookupTable(
5581     Module &M, uint64_t TableSize, ConstantInt *Offset,
5582     const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
5583     Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName) {
5584   assert(Values.size() && "Can't build lookup table without values!");
5585   assert(TableSize >= Values.size() && "Can't fit values in table!");
5586 
5587   // If all values in the table are equal, this is that value.
5588   SingleValue = Values.begin()->second;
5589 
5590   Type *ValueType = Values.begin()->second->getType();
5591 
5592   // Build up the table contents.
5593   SmallVector<Constant *, 64> TableContents(TableSize);
5594   for (size_t I = 0, E = Values.size(); I != E; ++I) {
5595     ConstantInt *CaseVal = Values[I].first;
5596     Constant *CaseRes = Values[I].second;
5597     assert(CaseRes->getType() == ValueType);
5598 
5599     uint64_t Idx = (CaseVal->getValue() - Offset->getValue()).getLimitedValue();
5600     TableContents[Idx] = CaseRes;
5601 
5602     if (CaseRes != SingleValue)
5603       SingleValue = nullptr;
5604   }
5605 
5606   // Fill in any holes in the table with the default result.
5607   if (Values.size() < TableSize) {
5608     assert(DefaultValue &&
5609            "Need a default value to fill the lookup table holes.");
5610     assert(DefaultValue->getType() == ValueType);
5611     for (uint64_t I = 0; I < TableSize; ++I) {
5612       if (!TableContents[I])
5613         TableContents[I] = DefaultValue;
5614     }
5615 
5616     if (DefaultValue != SingleValue)
5617       SingleValue = nullptr;
5618   }
5619 
5620   // If each element in the table contains the same value, we only need to store
5621   // that single value.
5622   if (SingleValue) {
5623     Kind = SingleValueKind;
5624     return;
5625   }
5626 
5627   // Check if we can derive the value with a linear transformation from the
5628   // table index.
5629   if (isa<IntegerType>(ValueType)) {
5630     bool LinearMappingPossible = true;
5631     APInt PrevVal;
5632     APInt DistToPrev;
5633     assert(TableSize >= 2 && "Should be a SingleValue table.");
5634     // Check if there is the same distance between two consecutive values.
5635     for (uint64_t I = 0; I < TableSize; ++I) {
5636       ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]);
5637       if (!ConstVal) {
5638         // This is an undef. We could deal with it, but undefs in lookup tables
5639         // are very seldom. It's probably not worth the additional complexity.
5640         LinearMappingPossible = false;
5641         break;
5642       }
5643       const APInt &Val = ConstVal->getValue();
5644       if (I != 0) {
5645         APInt Dist = Val - PrevVal;
5646         if (I == 1) {
5647           DistToPrev = Dist;
5648         } else if (Dist != DistToPrev) {
5649           LinearMappingPossible = false;
5650           break;
5651         }
5652       }
5653       PrevVal = Val;
5654     }
5655     if (LinearMappingPossible) {
5656       LinearOffset = cast<ConstantInt>(TableContents[0]);
5657       LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev);
5658       Kind = LinearMapKind;
5659       ++NumLinearMaps;
5660       return;
5661     }
5662   }
5663 
5664   // If the type is integer and the table fits in a register, build a bitmap.
5665   if (WouldFitInRegister(DL, TableSize, ValueType)) {
5666     IntegerType *IT = cast<IntegerType>(ValueType);
5667     APInt TableInt(TableSize * IT->getBitWidth(), 0);
5668     for (uint64_t I = TableSize; I > 0; --I) {
5669       TableInt <<= IT->getBitWidth();
5670       // Insert values into the bitmap. Undef values are set to zero.
5671       if (!isa<UndefValue>(TableContents[I - 1])) {
5672         ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]);
5673         TableInt |= Val->getValue().zext(TableInt.getBitWidth());
5674       }
5675     }
5676     BitMap = ConstantInt::get(M.getContext(), TableInt);
5677     BitMapElementTy = IT;
5678     Kind = BitMapKind;
5679     ++NumBitMaps;
5680     return;
5681   }
5682 
5683   // Store the table in an array.
5684   ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize);
5685   Constant *Initializer = ConstantArray::get(ArrayTy, TableContents);
5686 
5687   Array = new GlobalVariable(M, ArrayTy, /*isConstant=*/true,
5688                              GlobalVariable::PrivateLinkage, Initializer,
5689                              "switch.table." + FuncName);
5690   Array->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
5691   // Set the alignment to that of an array items. We will be only loading one
5692   // value out of it.
5693   Array->setAlignment(Align(DL.getPrefTypeAlignment(ValueType)));
5694   Kind = ArrayKind;
5695 }
5696 
5697 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) {
5698   switch (Kind) {
5699   case SingleValueKind:
5700     return SingleValue;
5701   case LinearMapKind: {
5702     // Derive the result value from the input value.
5703     Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(),
5704                                           false, "switch.idx.cast");
5705     if (!LinearMultiplier->isOne())
5706       Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult");
5707     if (!LinearOffset->isZero())
5708       Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset");
5709     return Result;
5710   }
5711   case BitMapKind: {
5712     // Type of the bitmap (e.g. i59).
5713     IntegerType *MapTy = BitMap->getType();
5714 
5715     // Cast Index to the same type as the bitmap.
5716     // Note: The Index is <= the number of elements in the table, so
5717     // truncating it to the width of the bitmask is safe.
5718     Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast");
5719 
5720     // Multiply the shift amount by the element width.
5721     ShiftAmt = Builder.CreateMul(
5722         ShiftAmt, ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()),
5723         "switch.shiftamt");
5724 
5725     // Shift down.
5726     Value *DownShifted =
5727         Builder.CreateLShr(BitMap, ShiftAmt, "switch.downshift");
5728     // Mask off.
5729     return Builder.CreateTrunc(DownShifted, BitMapElementTy, "switch.masked");
5730   }
5731   case ArrayKind: {
5732     // Make sure the table index will not overflow when treated as signed.
5733     IntegerType *IT = cast<IntegerType>(Index->getType());
5734     uint64_t TableSize =
5735         Array->getInitializer()->getType()->getArrayNumElements();
5736     if (TableSize > (1ULL << (IT->getBitWidth() - 1)))
5737       Index = Builder.CreateZExt(
5738           Index, IntegerType::get(IT->getContext(), IT->getBitWidth() + 1),
5739           "switch.tableidx.zext");
5740 
5741     Value *GEPIndices[] = {Builder.getInt32(0), Index};
5742     Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array,
5743                                            GEPIndices, "switch.gep");
5744     return Builder.CreateLoad(
5745         cast<ArrayType>(Array->getValueType())->getElementType(), GEP,
5746         "switch.load");
5747   }
5748   }
5749   llvm_unreachable("Unknown lookup table kind!");
5750 }
5751 
5752 bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL,
5753                                            uint64_t TableSize,
5754                                            Type *ElementType) {
5755   auto *IT = dyn_cast<IntegerType>(ElementType);
5756   if (!IT)
5757     return false;
5758   // FIXME: If the type is wider than it needs to be, e.g. i8 but all values
5759   // are <= 15, we could try to narrow the type.
5760 
5761   // Avoid overflow, fitsInLegalInteger uses unsigned int for the width.
5762   if (TableSize >= UINT_MAX / IT->getBitWidth())
5763     return false;
5764   return DL.fitsInLegalInteger(TableSize * IT->getBitWidth());
5765 }
5766 
5767 /// Determine whether a lookup table should be built for this switch, based on
5768 /// the number of cases, size of the table, and the types of the results.
5769 static bool
5770 ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize,
5771                        const TargetTransformInfo &TTI, const DataLayout &DL,
5772                        const SmallDenseMap<PHINode *, Type *> &ResultTypes) {
5773   if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10)
5774     return false; // TableSize overflowed, or mul below might overflow.
5775 
5776   bool AllTablesFitInRegister = true;
5777   bool HasIllegalType = false;
5778   for (const auto &I : ResultTypes) {
5779     Type *Ty = I.second;
5780 
5781     // Saturate this flag to true.
5782     HasIllegalType = HasIllegalType || !TTI.isTypeLegal(Ty);
5783 
5784     // Saturate this flag to false.
5785     AllTablesFitInRegister =
5786         AllTablesFitInRegister &&
5787         SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty);
5788 
5789     // If both flags saturate, we're done. NOTE: This *only* works with
5790     // saturating flags, and all flags have to saturate first due to the
5791     // non-deterministic behavior of iterating over a dense map.
5792     if (HasIllegalType && !AllTablesFitInRegister)
5793       break;
5794   }
5795 
5796   // If each table would fit in a register, we should build it anyway.
5797   if (AllTablesFitInRegister)
5798     return true;
5799 
5800   // Don't build a table that doesn't fit in-register if it has illegal types.
5801   if (HasIllegalType)
5802     return false;
5803 
5804   // The table density should be at least 40%. This is the same criterion as for
5805   // jump tables, see SelectionDAGBuilder::handleJTSwitchCase.
5806   // FIXME: Find the best cut-off.
5807   return SI->getNumCases() * 10 >= TableSize * 4;
5808 }
5809 
5810 /// Try to reuse the switch table index compare. Following pattern:
5811 /// \code
5812 ///     if (idx < tablesize)
5813 ///        r = table[idx]; // table does not contain default_value
5814 ///     else
5815 ///        r = default_value;
5816 ///     if (r != default_value)
5817 ///        ...
5818 /// \endcode
5819 /// Is optimized to:
5820 /// \code
5821 ///     cond = idx < tablesize;
5822 ///     if (cond)
5823 ///        r = table[idx];
5824 ///     else
5825 ///        r = default_value;
5826 ///     if (cond)
5827 ///        ...
5828 /// \endcode
5829 /// Jump threading will then eliminate the second if(cond).
5830 static void reuseTableCompare(
5831     User *PhiUser, BasicBlock *PhiBlock, BranchInst *RangeCheckBranch,
5832     Constant *DefaultValue,
5833     const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values) {
5834   ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser);
5835   if (!CmpInst)
5836     return;
5837 
5838   // We require that the compare is in the same block as the phi so that jump
5839   // threading can do its work afterwards.
5840   if (CmpInst->getParent() != PhiBlock)
5841     return;
5842 
5843   Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1));
5844   if (!CmpOp1)
5845     return;
5846 
5847   Value *RangeCmp = RangeCheckBranch->getCondition();
5848   Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType());
5849   Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType());
5850 
5851   // Check if the compare with the default value is constant true or false.
5852   Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
5853                                                  DefaultValue, CmpOp1, true);
5854   if (DefaultConst != TrueConst && DefaultConst != FalseConst)
5855     return;
5856 
5857   // Check if the compare with the case values is distinct from the default
5858   // compare result.
5859   for (auto ValuePair : Values) {
5860     Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
5861                                                 ValuePair.second, CmpOp1, true);
5862     if (!CaseConst || CaseConst == DefaultConst || isa<UndefValue>(CaseConst))
5863       return;
5864     assert((CaseConst == TrueConst || CaseConst == FalseConst) &&
5865            "Expect true or false as compare result.");
5866   }
5867 
5868   // Check if the branch instruction dominates the phi node. It's a simple
5869   // dominance check, but sufficient for our needs.
5870   // Although this check is invariant in the calling loops, it's better to do it
5871   // at this late stage. Practically we do it at most once for a switch.
5872   BasicBlock *BranchBlock = RangeCheckBranch->getParent();
5873   for (BasicBlock *Pred : predecessors(PhiBlock)) {
5874     if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock)
5875       return;
5876   }
5877 
5878   if (DefaultConst == FalseConst) {
5879     // The compare yields the same result. We can replace it.
5880     CmpInst->replaceAllUsesWith(RangeCmp);
5881     ++NumTableCmpReuses;
5882   } else {
5883     // The compare yields the same result, just inverted. We can replace it.
5884     Value *InvertedTableCmp = BinaryOperator::CreateXor(
5885         RangeCmp, ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp",
5886         RangeCheckBranch);
5887     CmpInst->replaceAllUsesWith(InvertedTableCmp);
5888     ++NumTableCmpReuses;
5889   }
5890 }
5891 
5892 /// If the switch is only used to initialize one or more phi nodes in a common
5893 /// successor block with different constant values, replace the switch with
5894 /// lookup tables.
5895 static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder,
5896                                 DomTreeUpdater *DTU, const DataLayout &DL,
5897                                 const TargetTransformInfo &TTI) {
5898   assert(SI->getNumCases() > 1 && "Degenerate switch?");
5899 
5900   BasicBlock *BB = SI->getParent();
5901   Function *Fn = BB->getParent();
5902   // Only build lookup table when we have a target that supports it or the
5903   // attribute is not set.
5904   if (!TTI.shouldBuildLookupTables() ||
5905       (Fn->getFnAttribute("no-jump-tables").getValueAsBool()))
5906     return false;
5907 
5908   // FIXME: If the switch is too sparse for a lookup table, perhaps we could
5909   // split off a dense part and build a lookup table for that.
5910 
5911   // FIXME: This creates arrays of GEPs to constant strings, which means each
5912   // GEP needs a runtime relocation in PIC code. We should just build one big
5913   // string and lookup indices into that.
5914 
5915   // Ignore switches with less than three cases. Lookup tables will not make
5916   // them faster, so we don't analyze them.
5917   if (SI->getNumCases() < 3)
5918     return false;
5919 
5920   // Figure out the corresponding result for each case value and phi node in the
5921   // common destination, as well as the min and max case values.
5922   assert(!SI->cases().empty());
5923   SwitchInst::CaseIt CI = SI->case_begin();
5924   ConstantInt *MinCaseVal = CI->getCaseValue();
5925   ConstantInt *MaxCaseVal = CI->getCaseValue();
5926 
5927   BasicBlock *CommonDest = nullptr;
5928 
5929   using ResultListTy = SmallVector<std::pair<ConstantInt *, Constant *>, 4>;
5930   SmallDenseMap<PHINode *, ResultListTy> ResultLists;
5931 
5932   SmallDenseMap<PHINode *, Constant *> DefaultResults;
5933   SmallDenseMap<PHINode *, Type *> ResultTypes;
5934   SmallVector<PHINode *, 4> PHIs;
5935 
5936   for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) {
5937     ConstantInt *CaseVal = CI->getCaseValue();
5938     if (CaseVal->getValue().slt(MinCaseVal->getValue()))
5939       MinCaseVal = CaseVal;
5940     if (CaseVal->getValue().sgt(MaxCaseVal->getValue()))
5941       MaxCaseVal = CaseVal;
5942 
5943     // Resulting value at phi nodes for this case value.
5944     using ResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>;
5945     ResultsTy Results;
5946     if (!GetCaseResults(SI, CaseVal, CI->getCaseSuccessor(), &CommonDest,
5947                         Results, DL, TTI))
5948       return false;
5949 
5950     // Append the result from this case to the list for each phi.
5951     for (const auto &I : Results) {
5952       PHINode *PHI = I.first;
5953       Constant *Value = I.second;
5954       if (!ResultLists.count(PHI))
5955         PHIs.push_back(PHI);
5956       ResultLists[PHI].push_back(std::make_pair(CaseVal, Value));
5957     }
5958   }
5959 
5960   // Keep track of the result types.
5961   for (PHINode *PHI : PHIs) {
5962     ResultTypes[PHI] = ResultLists[PHI][0].second->getType();
5963   }
5964 
5965   uint64_t NumResults = ResultLists[PHIs[0]].size();
5966   APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue();
5967   uint64_t TableSize = RangeSpread.getLimitedValue() + 1;
5968   bool TableHasHoles = (NumResults < TableSize);
5969 
5970   // If the table has holes, we need a constant result for the default case
5971   // or a bitmask that fits in a register.
5972   SmallVector<std::pair<PHINode *, Constant *>, 4> DefaultResultsList;
5973   bool HasDefaultResults =
5974       GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest,
5975                      DefaultResultsList, DL, TTI);
5976 
5977   bool NeedMask = (TableHasHoles && !HasDefaultResults);
5978   if (NeedMask) {
5979     // As an extra penalty for the validity test we require more cases.
5980     if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark).
5981       return false;
5982     if (!DL.fitsInLegalInteger(TableSize))
5983       return false;
5984   }
5985 
5986   for (const auto &I : DefaultResultsList) {
5987     PHINode *PHI = I.first;
5988     Constant *Result = I.second;
5989     DefaultResults[PHI] = Result;
5990   }
5991 
5992   if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes))
5993     return false;
5994 
5995   std::vector<DominatorTree::UpdateType> Updates;
5996 
5997   // Create the BB that does the lookups.
5998   Module &Mod = *CommonDest->getParent()->getParent();
5999   BasicBlock *LookupBB = BasicBlock::Create(
6000       Mod.getContext(), "switch.lookup", CommonDest->getParent(), CommonDest);
6001 
6002   // Compute the table index value.
6003   Builder.SetInsertPoint(SI);
6004   Value *TableIndex;
6005   if (MinCaseVal->isNullValue())
6006     TableIndex = SI->getCondition();
6007   else
6008     TableIndex = Builder.CreateSub(SI->getCondition(), MinCaseVal,
6009                                    "switch.tableidx");
6010 
6011   // Compute the maximum table size representable by the integer type we are
6012   // switching upon.
6013   unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits();
6014   uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize;
6015   assert(MaxTableSize >= TableSize &&
6016          "It is impossible for a switch to have more entries than the max "
6017          "representable value of its input integer type's size.");
6018 
6019   // If the default destination is unreachable, or if the lookup table covers
6020   // all values of the conditional variable, branch directly to the lookup table
6021   // BB. Otherwise, check that the condition is within the case range.
6022   const bool DefaultIsReachable =
6023       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
6024   const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize);
6025   BranchInst *RangeCheckBranch = nullptr;
6026 
6027   if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
6028     Builder.CreateBr(LookupBB);
6029     if (DTU)
6030       Updates.push_back({DominatorTree::Insert, BB, LookupBB});
6031     // Note: We call removeProdecessor later since we need to be able to get the
6032     // PHI value for the default case in case we're using a bit mask.
6033   } else {
6034     Value *Cmp = Builder.CreateICmpULT(
6035         TableIndex, ConstantInt::get(MinCaseVal->getType(), TableSize));
6036     RangeCheckBranch =
6037         Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest());
6038     if (DTU)
6039       Updates.push_back({DominatorTree::Insert, BB, LookupBB});
6040   }
6041 
6042   // Populate the BB that does the lookups.
6043   Builder.SetInsertPoint(LookupBB);
6044 
6045   if (NeedMask) {
6046     // Before doing the lookup, we do the hole check. The LookupBB is therefore
6047     // re-purposed to do the hole check, and we create a new LookupBB.
6048     BasicBlock *MaskBB = LookupBB;
6049     MaskBB->setName("switch.hole_check");
6050     LookupBB = BasicBlock::Create(Mod.getContext(), "switch.lookup",
6051                                   CommonDest->getParent(), CommonDest);
6052 
6053     // Make the mask's bitwidth at least 8-bit and a power-of-2 to avoid
6054     // unnecessary illegal types.
6055     uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL));
6056     APInt MaskInt(TableSizePowOf2, 0);
6057     APInt One(TableSizePowOf2, 1);
6058     // Build bitmask; fill in a 1 bit for every case.
6059     const ResultListTy &ResultList = ResultLists[PHIs[0]];
6060     for (size_t I = 0, E = ResultList.size(); I != E; ++I) {
6061       uint64_t Idx = (ResultList[I].first->getValue() - MinCaseVal->getValue())
6062                          .getLimitedValue();
6063       MaskInt |= One << Idx;
6064     }
6065     ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt);
6066 
6067     // Get the TableIndex'th bit of the bitmask.
6068     // If this bit is 0 (meaning hole) jump to the default destination,
6069     // else continue with table lookup.
6070     IntegerType *MapTy = TableMask->getType();
6071     Value *MaskIndex =
6072         Builder.CreateZExtOrTrunc(TableIndex, MapTy, "switch.maskindex");
6073     Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, "switch.shifted");
6074     Value *LoBit = Builder.CreateTrunc(
6075         Shifted, Type::getInt1Ty(Mod.getContext()), "switch.lobit");
6076     Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest());
6077     if (DTU) {
6078       Updates.push_back({DominatorTree::Insert, MaskBB, LookupBB});
6079       Updates.push_back({DominatorTree::Insert, MaskBB, SI->getDefaultDest()});
6080     }
6081     Builder.SetInsertPoint(LookupBB);
6082     AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, BB);
6083   }
6084 
6085   if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
6086     // We cached PHINodes in PHIs. To avoid accessing deleted PHINodes later,
6087     // do not delete PHINodes here.
6088     SI->getDefaultDest()->removePredecessor(BB,
6089                                             /*KeepOneInputPHIs=*/true);
6090     if (DTU)
6091       Updates.push_back({DominatorTree::Delete, BB, SI->getDefaultDest()});
6092   }
6093 
6094   bool ReturnedEarly = false;
6095   for (PHINode *PHI : PHIs) {
6096     const ResultListTy &ResultList = ResultLists[PHI];
6097 
6098     // If using a bitmask, use any value to fill the lookup table holes.
6099     Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI];
6100     StringRef FuncName = Fn->getName();
6101     SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultList, DV, DL,
6102                             FuncName);
6103 
6104     Value *Result = Table.BuildLookup(TableIndex, Builder);
6105 
6106     // If the result is used to return immediately from the function, we want to
6107     // do that right here.
6108     if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->user_begin()) &&
6109         PHI->user_back() == CommonDest->getFirstNonPHIOrDbg()) {
6110       Builder.CreateRet(Result);
6111       ReturnedEarly = true;
6112       break;
6113     }
6114 
6115     // Do a small peephole optimization: re-use the switch table compare if
6116     // possible.
6117     if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) {
6118       BasicBlock *PhiBlock = PHI->getParent();
6119       // Search for compare instructions which use the phi.
6120       for (auto *User : PHI->users()) {
6121         reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList);
6122       }
6123     }
6124 
6125     PHI->addIncoming(Result, LookupBB);
6126   }
6127 
6128   if (!ReturnedEarly) {
6129     Builder.CreateBr(CommonDest);
6130     if (DTU)
6131       Updates.push_back({DominatorTree::Insert, LookupBB, CommonDest});
6132   }
6133 
6134   // Remove the switch.
6135   SmallPtrSet<BasicBlock *, 8> RemovedSuccessors;
6136   for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
6137     BasicBlock *Succ = SI->getSuccessor(i);
6138 
6139     if (Succ == SI->getDefaultDest())
6140       continue;
6141     Succ->removePredecessor(BB);
6142     RemovedSuccessors.insert(Succ);
6143   }
6144   SI->eraseFromParent();
6145 
6146   if (DTU) {
6147     for (BasicBlock *RemovedSuccessor : RemovedSuccessors)
6148       Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor});
6149     DTU->applyUpdates(Updates);
6150   }
6151 
6152   ++NumLookupTables;
6153   if (NeedMask)
6154     ++NumLookupTablesHoles;
6155   return true;
6156 }
6157 
6158 static bool isSwitchDense(ArrayRef<int64_t> Values) {
6159   // See also SelectionDAGBuilder::isDense(), which this function was based on.
6160   uint64_t Diff = (uint64_t)Values.back() - (uint64_t)Values.front();
6161   uint64_t Range = Diff + 1;
6162   uint64_t NumCases = Values.size();
6163   // 40% is the default density for building a jump table in optsize/minsize mode.
6164   uint64_t MinDensity = 40;
6165 
6166   return NumCases * 100 >= Range * MinDensity;
6167 }
6168 
6169 /// Try to transform a switch that has "holes" in it to a contiguous sequence
6170 /// of cases.
6171 ///
6172 /// A switch such as: switch(i) {case 5: case 9: case 13: case 17:} can be
6173 /// range-reduced to: switch ((i-5) / 4) {case 0: case 1: case 2: case 3:}.
6174 ///
6175 /// This converts a sparse switch into a dense switch which allows better
6176 /// lowering and could also allow transforming into a lookup table.
6177 static bool ReduceSwitchRange(SwitchInst *SI, IRBuilder<> &Builder,
6178                               const DataLayout &DL,
6179                               const TargetTransformInfo &TTI) {
6180   auto *CondTy = cast<IntegerType>(SI->getCondition()->getType());
6181   if (CondTy->getIntegerBitWidth() > 64 ||
6182       !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth()))
6183     return false;
6184   // Only bother with this optimization if there are more than 3 switch cases;
6185   // SDAG will only bother creating jump tables for 4 or more cases.
6186   if (SI->getNumCases() < 4)
6187     return false;
6188 
6189   // This transform is agnostic to the signedness of the input or case values. We
6190   // can treat the case values as signed or unsigned. We can optimize more common
6191   // cases such as a sequence crossing zero {-4,0,4,8} if we interpret case values
6192   // as signed.
6193   SmallVector<int64_t,4> Values;
6194   for (auto &C : SI->cases())
6195     Values.push_back(C.getCaseValue()->getValue().getSExtValue());
6196   llvm::sort(Values);
6197 
6198   // If the switch is already dense, there's nothing useful to do here.
6199   if (isSwitchDense(Values))
6200     return false;
6201 
6202   // First, transform the values such that they start at zero and ascend.
6203   int64_t Base = Values[0];
6204   for (auto &V : Values)
6205     V -= (uint64_t)(Base);
6206 
6207   // Now we have signed numbers that have been shifted so that, given enough
6208   // precision, there are no negative values. Since the rest of the transform
6209   // is bitwise only, we switch now to an unsigned representation.
6210 
6211   // This transform can be done speculatively because it is so cheap - it
6212   // results in a single rotate operation being inserted.
6213   // FIXME: It's possible that optimizing a switch on powers of two might also
6214   // be beneficial - flag values are often powers of two and we could use a CLZ
6215   // as the key function.
6216 
6217   // countTrailingZeros(0) returns 64. As Values is guaranteed to have more than
6218   // one element and LLVM disallows duplicate cases, Shift is guaranteed to be
6219   // less than 64.
6220   unsigned Shift = 64;
6221   for (auto &V : Values)
6222     Shift = std::min(Shift, countTrailingZeros((uint64_t)V));
6223   assert(Shift < 64);
6224   if (Shift > 0)
6225     for (auto &V : Values)
6226       V = (int64_t)((uint64_t)V >> Shift);
6227 
6228   if (!isSwitchDense(Values))
6229     // Transform didn't create a dense switch.
6230     return false;
6231 
6232   // The obvious transform is to shift the switch condition right and emit a
6233   // check that the condition actually cleanly divided by GCD, i.e.
6234   //   C & (1 << Shift - 1) == 0
6235   // inserting a new CFG edge to handle the case where it didn't divide cleanly.
6236   //
6237   // A cheaper way of doing this is a simple ROTR(C, Shift). This performs the
6238   // shift and puts the shifted-off bits in the uppermost bits. If any of these
6239   // are nonzero then the switch condition will be very large and will hit the
6240   // default case.
6241 
6242   auto *Ty = cast<IntegerType>(SI->getCondition()->getType());
6243   Builder.SetInsertPoint(SI);
6244   auto *ShiftC = ConstantInt::get(Ty, Shift);
6245   auto *Sub = Builder.CreateSub(SI->getCondition(), ConstantInt::get(Ty, Base));
6246   auto *LShr = Builder.CreateLShr(Sub, ShiftC);
6247   auto *Shl = Builder.CreateShl(Sub, Ty->getBitWidth() - Shift);
6248   auto *Rot = Builder.CreateOr(LShr, Shl);
6249   SI->replaceUsesOfWith(SI->getCondition(), Rot);
6250 
6251   for (auto Case : SI->cases()) {
6252     auto *Orig = Case.getCaseValue();
6253     auto Sub = Orig->getValue() - APInt(Ty->getBitWidth(), Base);
6254     Case.setValue(
6255         cast<ConstantInt>(ConstantInt::get(Ty, Sub.lshr(ShiftC->getValue()))));
6256   }
6257   return true;
6258 }
6259 
6260 bool SimplifyCFGOpt::simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) {
6261   BasicBlock *BB = SI->getParent();
6262 
6263   if (isValueEqualityComparison(SI)) {
6264     // If we only have one predecessor, and if it is a branch on this value,
6265     // see if that predecessor totally determines the outcome of this switch.
6266     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
6267       if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder))
6268         return requestResimplify();
6269 
6270     Value *Cond = SI->getCondition();
6271     if (SelectInst *Select = dyn_cast<SelectInst>(Cond))
6272       if (SimplifySwitchOnSelect(SI, Select))
6273         return requestResimplify();
6274 
6275     // If the block only contains the switch, see if we can fold the block
6276     // away into any preds.
6277     if (SI == &*BB->instructionsWithoutDebug().begin())
6278       if (FoldValueComparisonIntoPredecessors(SI, Builder))
6279         return requestResimplify();
6280   }
6281 
6282   // Try to transform the switch into an icmp and a branch.
6283   if (TurnSwitchRangeIntoICmp(SI, Builder))
6284     return requestResimplify();
6285 
6286   // Remove unreachable cases.
6287   if (eliminateDeadSwitchCases(SI, DTU, Options.AC, DL))
6288     return requestResimplify();
6289 
6290   if (switchToSelect(SI, Builder, DTU, DL, TTI))
6291     return requestResimplify();
6292 
6293   if (Options.ForwardSwitchCondToPhi && ForwardSwitchConditionToPHI(SI))
6294     return requestResimplify();
6295 
6296   // The conversion from switch to lookup tables results in difficult-to-analyze
6297   // code and makes pruning branches much harder. This is a problem if the
6298   // switch expression itself can still be restricted as a result of inlining or
6299   // CVP. Therefore, only apply this transformation during late stages of the
6300   // optimisation pipeline.
6301   if (Options.ConvertSwitchToLookupTable &&
6302       SwitchToLookupTable(SI, Builder, DTU, DL, TTI))
6303     return requestResimplify();
6304 
6305   if (ReduceSwitchRange(SI, Builder, DL, TTI))
6306     return requestResimplify();
6307 
6308   return false;
6309 }
6310 
6311 bool SimplifyCFGOpt::simplifyIndirectBr(IndirectBrInst *IBI) {
6312   BasicBlock *BB = IBI->getParent();
6313   bool Changed = false;
6314 
6315   // Eliminate redundant destinations.
6316   SmallPtrSet<Value *, 8> Succs;
6317   SmallPtrSet<BasicBlock *, 8> RemovedSuccs;
6318   for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
6319     BasicBlock *Dest = IBI->getDestination(i);
6320     if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) {
6321       if (!Dest->hasAddressTaken())
6322         RemovedSuccs.insert(Dest);
6323       Dest->removePredecessor(BB);
6324       IBI->removeDestination(i);
6325       --i;
6326       --e;
6327       Changed = true;
6328     }
6329   }
6330 
6331   if (DTU) {
6332     std::vector<DominatorTree::UpdateType> Updates;
6333     Updates.reserve(RemovedSuccs.size());
6334     for (auto *RemovedSucc : RemovedSuccs)
6335       Updates.push_back({DominatorTree::Delete, BB, RemovedSucc});
6336     DTU->applyUpdates(Updates);
6337   }
6338 
6339   if (IBI->getNumDestinations() == 0) {
6340     // If the indirectbr has no successors, change it to unreachable.
6341     new UnreachableInst(IBI->getContext(), IBI);
6342     EraseTerminatorAndDCECond(IBI);
6343     return true;
6344   }
6345 
6346   if (IBI->getNumDestinations() == 1) {
6347     // If the indirectbr has one successor, change it to a direct branch.
6348     BranchInst::Create(IBI->getDestination(0), IBI);
6349     EraseTerminatorAndDCECond(IBI);
6350     return true;
6351   }
6352 
6353   if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) {
6354     if (SimplifyIndirectBrOnSelect(IBI, SI))
6355       return requestResimplify();
6356   }
6357   return Changed;
6358 }
6359 
6360 /// Given an block with only a single landing pad and a unconditional branch
6361 /// try to find another basic block which this one can be merged with.  This
6362 /// handles cases where we have multiple invokes with unique landing pads, but
6363 /// a shared handler.
6364 ///
6365 /// We specifically choose to not worry about merging non-empty blocks
6366 /// here.  That is a PRE/scheduling problem and is best solved elsewhere.  In
6367 /// practice, the optimizer produces empty landing pad blocks quite frequently
6368 /// when dealing with exception dense code.  (see: instcombine, gvn, if-else
6369 /// sinking in this file)
6370 ///
6371 /// This is primarily a code size optimization.  We need to avoid performing
6372 /// any transform which might inhibit optimization (such as our ability to
6373 /// specialize a particular handler via tail commoning).  We do this by not
6374 /// merging any blocks which require us to introduce a phi.  Since the same
6375 /// values are flowing through both blocks, we don't lose any ability to
6376 /// specialize.  If anything, we make such specialization more likely.
6377 ///
6378 /// TODO - This transformation could remove entries from a phi in the target
6379 /// block when the inputs in the phi are the same for the two blocks being
6380 /// merged.  In some cases, this could result in removal of the PHI entirely.
6381 static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI,
6382                                  BasicBlock *BB, DomTreeUpdater *DTU) {
6383   auto Succ = BB->getUniqueSuccessor();
6384   assert(Succ);
6385   // If there's a phi in the successor block, we'd likely have to introduce
6386   // a phi into the merged landing pad block.
6387   if (isa<PHINode>(*Succ->begin()))
6388     return false;
6389 
6390   for (BasicBlock *OtherPred : predecessors(Succ)) {
6391     if (BB == OtherPred)
6392       continue;
6393     BasicBlock::iterator I = OtherPred->begin();
6394     LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I);
6395     if (!LPad2 || !LPad2->isIdenticalTo(LPad))
6396       continue;
6397     for (++I; isa<DbgInfoIntrinsic>(I); ++I)
6398       ;
6399     BranchInst *BI2 = dyn_cast<BranchInst>(I);
6400     if (!BI2 || !BI2->isIdenticalTo(BI))
6401       continue;
6402 
6403     std::vector<DominatorTree::UpdateType> Updates;
6404 
6405     // We've found an identical block.  Update our predecessors to take that
6406     // path instead and make ourselves dead.
6407     SmallPtrSet<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB));
6408     for (BasicBlock *Pred : Preds) {
6409       InvokeInst *II = cast<InvokeInst>(Pred->getTerminator());
6410       assert(II->getNormalDest() != BB && II->getUnwindDest() == BB &&
6411              "unexpected successor");
6412       II->setUnwindDest(OtherPred);
6413       if (DTU) {
6414         Updates.push_back({DominatorTree::Insert, Pred, OtherPred});
6415         Updates.push_back({DominatorTree::Delete, Pred, BB});
6416       }
6417     }
6418 
6419     // The debug info in OtherPred doesn't cover the merged control flow that
6420     // used to go through BB.  We need to delete it or update it.
6421     for (auto I = OtherPred->begin(), E = OtherPred->end(); I != E;) {
6422       Instruction &Inst = *I;
6423       I++;
6424       if (isa<DbgInfoIntrinsic>(Inst))
6425         Inst.eraseFromParent();
6426     }
6427 
6428     SmallPtrSet<BasicBlock *, 16> Succs(succ_begin(BB), succ_end(BB));
6429     for (BasicBlock *Succ : Succs) {
6430       Succ->removePredecessor(BB);
6431       if (DTU)
6432         Updates.push_back({DominatorTree::Delete, BB, Succ});
6433     }
6434 
6435     IRBuilder<> Builder(BI);
6436     Builder.CreateUnreachable();
6437     BI->eraseFromParent();
6438     if (DTU)
6439       DTU->applyUpdates(Updates);
6440     return true;
6441   }
6442   return false;
6443 }
6444 
6445 bool SimplifyCFGOpt::simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder) {
6446   return Branch->isUnconditional() ? simplifyUncondBranch(Branch, Builder)
6447                                    : simplifyCondBranch(Branch, Builder);
6448 }
6449 
6450 bool SimplifyCFGOpt::simplifyUncondBranch(BranchInst *BI,
6451                                           IRBuilder<> &Builder) {
6452   BasicBlock *BB = BI->getParent();
6453   BasicBlock *Succ = BI->getSuccessor(0);
6454 
6455   // If the Terminator is the only non-phi instruction, simplify the block.
6456   // If LoopHeader is provided, check if the block or its successor is a loop
6457   // header. (This is for early invocations before loop simplify and
6458   // vectorization to keep canonical loop forms for nested loops. These blocks
6459   // can be eliminated when the pass is invoked later in the back-end.)
6460   // Note that if BB has only one predecessor then we do not introduce new
6461   // backedge, so we can eliminate BB.
6462   bool NeedCanonicalLoop =
6463       Options.NeedCanonicalLoop &&
6464       (!LoopHeaders.empty() && BB->hasNPredecessorsOrMore(2) &&
6465        (is_contained(LoopHeaders, BB) || is_contained(LoopHeaders, Succ)));
6466   BasicBlock::iterator I = BB->getFirstNonPHIOrDbg(true)->getIterator();
6467   if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() &&
6468       !NeedCanonicalLoop && TryToSimplifyUncondBranchFromEmptyBlock(BB, DTU))
6469     return true;
6470 
6471   // If the only instruction in the block is a seteq/setne comparison against a
6472   // constant, try to simplify the block.
6473   if (ICmpInst *ICI = dyn_cast<ICmpInst>(I))
6474     if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) {
6475       for (++I; isa<DbgInfoIntrinsic>(I); ++I)
6476         ;
6477       if (I->isTerminator() &&
6478           tryToSimplifyUncondBranchWithICmpInIt(ICI, Builder))
6479         return true;
6480     }
6481 
6482   // See if we can merge an empty landing pad block with another which is
6483   // equivalent.
6484   if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) {
6485     for (++I; isa<DbgInfoIntrinsic>(I); ++I)
6486       ;
6487     if (I->isTerminator() && TryToMergeLandingPad(LPad, BI, BB, DTU))
6488       return true;
6489   }
6490 
6491   // If this basic block is ONLY a compare and a branch, and if a predecessor
6492   // branches to us and our successor, fold the comparison into the
6493   // predecessor and use logical operations to update the incoming value
6494   // for PHI nodes in common successor.
6495   if (FoldBranchToCommonDest(BI, DTU, /*MSSAU=*/nullptr, &TTI,
6496                              Options.BonusInstThreshold))
6497     return requestResimplify();
6498   return false;
6499 }
6500 
6501 static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) {
6502   BasicBlock *PredPred = nullptr;
6503   for (auto *P : predecessors(BB)) {
6504     BasicBlock *PPred = P->getSinglePredecessor();
6505     if (!PPred || (PredPred && PredPred != PPred))
6506       return nullptr;
6507     PredPred = PPred;
6508   }
6509   return PredPred;
6510 }
6511 
6512 bool SimplifyCFGOpt::simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) {
6513   BasicBlock *BB = BI->getParent();
6514   if (!Options.SimplifyCondBranch)
6515     return false;
6516 
6517   // Conditional branch
6518   if (isValueEqualityComparison(BI)) {
6519     // If we only have one predecessor, and if it is a branch on this value,
6520     // see if that predecessor totally determines the outcome of this
6521     // switch.
6522     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
6523       if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder))
6524         return requestResimplify();
6525 
6526     // This block must be empty, except for the setcond inst, if it exists.
6527     // Ignore dbg and pseudo intrinsics.
6528     auto I = BB->instructionsWithoutDebug(true).begin();
6529     if (&*I == BI) {
6530       if (FoldValueComparisonIntoPredecessors(BI, Builder))
6531         return requestResimplify();
6532     } else if (&*I == cast<Instruction>(BI->getCondition())) {
6533       ++I;
6534       if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder))
6535         return requestResimplify();
6536     }
6537   }
6538 
6539   // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction.
6540   if (SimplifyBranchOnICmpChain(BI, Builder, DL))
6541     return true;
6542 
6543   // If this basic block has dominating predecessor blocks and the dominating
6544   // blocks' conditions imply BI's condition, we know the direction of BI.
6545   Optional<bool> Imp = isImpliedByDomCondition(BI->getCondition(), BI, DL);
6546   if (Imp) {
6547     // Turn this into a branch on constant.
6548     auto *OldCond = BI->getCondition();
6549     ConstantInt *TorF = *Imp ? ConstantInt::getTrue(BB->getContext())
6550                              : ConstantInt::getFalse(BB->getContext());
6551     BI->setCondition(TorF);
6552     RecursivelyDeleteTriviallyDeadInstructions(OldCond);
6553     return requestResimplify();
6554   }
6555 
6556   // If this basic block is ONLY a compare and a branch, and if a predecessor
6557   // branches to us and one of our successors, fold the comparison into the
6558   // predecessor and use logical operations to pick the right destination.
6559   if (FoldBranchToCommonDest(BI, DTU, /*MSSAU=*/nullptr, &TTI,
6560                              Options.BonusInstThreshold))
6561     return requestResimplify();
6562 
6563   // We have a conditional branch to two blocks that are only reachable
6564   // from BI.  We know that the condbr dominates the two blocks, so see if
6565   // there is any identical code in the "then" and "else" blocks.  If so, we
6566   // can hoist it up to the branching block.
6567   if (BI->getSuccessor(0)->getSinglePredecessor()) {
6568     if (BI->getSuccessor(1)->getSinglePredecessor()) {
6569       if (HoistCommon &&
6570           HoistThenElseCodeToIf(BI, TTI, !Options.HoistCommonInsts))
6571         return requestResimplify();
6572     } else {
6573       // If Successor #1 has multiple preds, we may be able to conditionally
6574       // execute Successor #0 if it branches to Successor #1.
6575       Instruction *Succ0TI = BI->getSuccessor(0)->getTerminator();
6576       if (Succ0TI->getNumSuccessors() == 1 &&
6577           Succ0TI->getSuccessor(0) == BI->getSuccessor(1))
6578         if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), TTI))
6579           return requestResimplify();
6580     }
6581   } else if (BI->getSuccessor(1)->getSinglePredecessor()) {
6582     // If Successor #0 has multiple preds, we may be able to conditionally
6583     // execute Successor #1 if it branches to Successor #0.
6584     Instruction *Succ1TI = BI->getSuccessor(1)->getTerminator();
6585     if (Succ1TI->getNumSuccessors() == 1 &&
6586         Succ1TI->getSuccessor(0) == BI->getSuccessor(0))
6587       if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), TTI))
6588         return requestResimplify();
6589   }
6590 
6591   // If this is a branch on a phi node in the current block, thread control
6592   // through this block if any PHI node entries are constants.
6593   if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition()))
6594     if (PN->getParent() == BI->getParent())
6595       if (FoldCondBranchOnPHI(BI, DTU, DL, Options.AC))
6596         return requestResimplify();
6597 
6598   // Scan predecessor blocks for conditional branches.
6599   for (BasicBlock *Pred : predecessors(BB))
6600     if (BranchInst *PBI = dyn_cast<BranchInst>(Pred->getTerminator()))
6601       if (PBI != BI && PBI->isConditional())
6602         if (SimplifyCondBranchToCondBranch(PBI, BI, DTU, DL, TTI))
6603           return requestResimplify();
6604 
6605   // Look for diamond patterns.
6606   if (MergeCondStores)
6607     if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB))
6608       if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator()))
6609         if (PBI != BI && PBI->isConditional())
6610           if (mergeConditionalStores(PBI, BI, DTU, DL, TTI))
6611             return requestResimplify();
6612 
6613   return false;
6614 }
6615 
6616 /// Check if passing a value to an instruction will cause undefined behavior.
6617 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I, bool PtrValueMayBeModified) {
6618   Constant *C = dyn_cast<Constant>(V);
6619   if (!C)
6620     return false;
6621 
6622   if (I->use_empty())
6623     return false;
6624 
6625   if (C->isNullValue() || isa<UndefValue>(C)) {
6626     // Only look at the first use, avoid hurting compile time with long uselists
6627     User *Use = *I->user_begin();
6628 
6629     // Now make sure that there are no instructions in between that can alter
6630     // control flow (eg. calls)
6631     for (BasicBlock::iterator
6632              i = ++BasicBlock::iterator(I),
6633              UI = BasicBlock::iterator(dyn_cast<Instruction>(Use));
6634          i != UI; ++i) {
6635       if (i == I->getParent()->end())
6636         return false;
6637       if (!isGuaranteedToTransferExecutionToSuccessor(&*i))
6638         return false;
6639     }
6640 
6641     // Look through GEPs. A load from a GEP derived from NULL is still undefined
6642     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use))
6643       if (GEP->getPointerOperand() == I) {
6644         if (!GEP->isInBounds() || !GEP->hasAllZeroIndices())
6645           PtrValueMayBeModified = true;
6646         return passingValueIsAlwaysUndefined(V, GEP, PtrValueMayBeModified);
6647       }
6648 
6649     // Look through bitcasts.
6650     if (BitCastInst *BC = dyn_cast<BitCastInst>(Use))
6651       return passingValueIsAlwaysUndefined(V, BC, PtrValueMayBeModified);
6652 
6653     // Load from null is undefined.
6654     if (LoadInst *LI = dyn_cast<LoadInst>(Use))
6655       if (!LI->isVolatile())
6656         return !NullPointerIsDefined(LI->getFunction(),
6657                                      LI->getPointerAddressSpace());
6658 
6659     // Store to null is undefined.
6660     if (StoreInst *SI = dyn_cast<StoreInst>(Use))
6661       if (!SI->isVolatile())
6662         return (!NullPointerIsDefined(SI->getFunction(),
6663                                       SI->getPointerAddressSpace())) &&
6664                SI->getPointerOperand() == I;
6665 
6666     if (auto *CB = dyn_cast<CallBase>(Use)) {
6667       if (C->isNullValue() && NullPointerIsDefined(CB->getFunction()))
6668         return false;
6669       // A call to null is undefined.
6670       if (CB->getCalledOperand() == I)
6671         return true;
6672 
6673       if (C->isNullValue()) {
6674         for (const llvm::Use &Arg : CB->args())
6675           if (Arg == I) {
6676             unsigned ArgIdx = CB->getArgOperandNo(&Arg);
6677             if (CB->isPassingUndefUB(ArgIdx) &&
6678                 CB->paramHasAttr(ArgIdx, Attribute::NonNull)) {
6679               // Passing null to a nonnnull+noundef argument is undefined.
6680               return !PtrValueMayBeModified;
6681             }
6682           }
6683       } else if (isa<UndefValue>(C)) {
6684         // Passing undef to a noundef argument is undefined.
6685         for (const llvm::Use &Arg : CB->args())
6686           if (Arg == I) {
6687             unsigned ArgIdx = CB->getArgOperandNo(&Arg);
6688             if (CB->isPassingUndefUB(ArgIdx)) {
6689               // Passing undef to a noundef argument is undefined.
6690               return true;
6691             }
6692           }
6693       }
6694     }
6695   }
6696   return false;
6697 }
6698 
6699 /// If BB has an incoming value that will always trigger undefined behavior
6700 /// (eg. null pointer dereference), remove the branch leading here.
6701 static bool removeUndefIntroducingPredecessor(BasicBlock *BB,
6702                                               DomTreeUpdater *DTU) {
6703   for (PHINode &PHI : BB->phis())
6704     for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i)
6705       if (passingValueIsAlwaysUndefined(PHI.getIncomingValue(i), &PHI)) {
6706         BasicBlock *Predecessor = PHI.getIncomingBlock(i);
6707         Instruction *T = Predecessor->getTerminator();
6708         IRBuilder<> Builder(T);
6709         if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
6710           BB->removePredecessor(Predecessor);
6711           // Turn uncoditional branches into unreachables and remove the dead
6712           // destination from conditional branches.
6713           if (BI->isUnconditional())
6714             Builder.CreateUnreachable();
6715           else
6716             Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1)
6717                                                        : BI->getSuccessor(0));
6718           BI->eraseFromParent();
6719           if (DTU)
6720             DTU->applyUpdates({{DominatorTree::Delete, Predecessor, BB}});
6721           return true;
6722         }
6723         // TODO: SwitchInst.
6724       }
6725 
6726   return false;
6727 }
6728 
6729 bool SimplifyCFGOpt::simplifyOnceImpl(BasicBlock *BB) {
6730   bool Changed = false;
6731 
6732   assert(BB && BB->getParent() && "Block not embedded in function!");
6733   assert(BB->getTerminator() && "Degenerate basic block encountered!");
6734 
6735   // Remove basic blocks that have no predecessors (except the entry block)...
6736   // or that just have themself as a predecessor.  These are unreachable.
6737   if ((pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) ||
6738       BB->getSinglePredecessor() == BB) {
6739     LLVM_DEBUG(dbgs() << "Removing BB: \n" << *BB);
6740     DeleteDeadBlock(BB, DTU);
6741     return true;
6742   }
6743 
6744   // Check to see if we can constant propagate this terminator instruction
6745   // away...
6746   Changed |= ConstantFoldTerminator(BB, /*DeleteDeadConditions=*/true,
6747                                     /*TLI=*/nullptr, DTU);
6748 
6749   // Check for and eliminate duplicate PHI nodes in this block.
6750   Changed |= EliminateDuplicatePHINodes(BB);
6751 
6752   // Check for and remove branches that will always cause undefined behavior.
6753   Changed |= removeUndefIntroducingPredecessor(BB, DTU);
6754 
6755   // Merge basic blocks into their predecessor if there is only one distinct
6756   // pred, and if there is only one distinct successor of the predecessor, and
6757   // if there are no PHI nodes.
6758   if (MergeBlockIntoPredecessor(BB, DTU))
6759     return true;
6760 
6761   if (SinkCommon && Options.SinkCommonInsts)
6762     Changed |= SinkCommonCodeFromPredecessors(BB, DTU);
6763 
6764   IRBuilder<> Builder(BB);
6765 
6766   if (Options.FoldTwoEntryPHINode) {
6767     // If there is a trivial two-entry PHI node in this basic block, and we can
6768     // eliminate it, do so now.
6769     if (auto *PN = dyn_cast<PHINode>(BB->begin()))
6770       if (PN->getNumIncomingValues() == 2)
6771         Changed |= FoldTwoEntryPHINode(PN, TTI, DTU, DL);
6772   }
6773 
6774   Instruction *Terminator = BB->getTerminator();
6775   Builder.SetInsertPoint(Terminator);
6776   switch (Terminator->getOpcode()) {
6777   case Instruction::Br:
6778     Changed |= simplifyBranch(cast<BranchInst>(Terminator), Builder);
6779     break;
6780   case Instruction::Ret:
6781     Changed |= simplifyReturn(cast<ReturnInst>(Terminator), Builder);
6782     break;
6783   case Instruction::Resume:
6784     Changed |= simplifyResume(cast<ResumeInst>(Terminator), Builder);
6785     break;
6786   case Instruction::CleanupRet:
6787     Changed |= simplifyCleanupReturn(cast<CleanupReturnInst>(Terminator));
6788     break;
6789   case Instruction::Switch:
6790     Changed |= simplifySwitch(cast<SwitchInst>(Terminator), Builder);
6791     break;
6792   case Instruction::Unreachable:
6793     Changed |= simplifyUnreachable(cast<UnreachableInst>(Terminator));
6794     break;
6795   case Instruction::IndirectBr:
6796     Changed |= simplifyIndirectBr(cast<IndirectBrInst>(Terminator));
6797     break;
6798   }
6799 
6800   return Changed;
6801 }
6802 
6803 bool SimplifyCFGOpt::simplifyOnce(BasicBlock *BB) {
6804   bool Changed = simplifyOnceImpl(BB);
6805 
6806   return Changed;
6807 }
6808 
6809 bool SimplifyCFGOpt::run(BasicBlock *BB) {
6810   bool Changed = false;
6811 
6812   // Repeated simplify BB as long as resimplification is requested.
6813   do {
6814     Resimplify = false;
6815 
6816     // Perform one round of simplifcation. Resimplify flag will be set if
6817     // another iteration is requested.
6818     Changed |= simplifyOnce(BB);
6819   } while (Resimplify);
6820 
6821   return Changed;
6822 }
6823 
6824 bool llvm::simplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI,
6825                        DomTreeUpdater *DTU, const SimplifyCFGOptions &Options,
6826                        ArrayRef<WeakVH> LoopHeaders) {
6827   return SimplifyCFGOpt(TTI, DTU, BB->getModule()->getDataLayout(), LoopHeaders,
6828                         Options)
6829       .run(BB);
6830 }
6831