1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Peephole optimize the CFG. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/ADT/APInt.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/SetOperations.h" 19 #include "llvm/ADT/SetVector.h" 20 #include "llvm/ADT/SmallPtrSet.h" 21 #include "llvm/ADT/SmallSet.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/Analysis/ConstantFolding.h" 26 #include "llvm/Analysis/EHPersonalities.h" 27 #include "llvm/Analysis/InstructionSimplify.h" 28 #include "llvm/Analysis/TargetTransformInfo.h" 29 #include "llvm/Analysis/ValueTracking.h" 30 #include "llvm/IR/BasicBlock.h" 31 #include "llvm/IR/CallSite.h" 32 #include "llvm/IR/CFG.h" 33 #include "llvm/IR/Constant.h" 34 #include "llvm/IR/ConstantRange.h" 35 #include "llvm/IR/Constants.h" 36 #include "llvm/IR/DataLayout.h" 37 #include "llvm/IR/DebugInfo.h" 38 #include "llvm/IR/DerivedTypes.h" 39 #include "llvm/IR/GlobalValue.h" 40 #include "llvm/IR/GlobalVariable.h" 41 #include "llvm/IR/IRBuilder.h" 42 #include "llvm/IR/InstrTypes.h" 43 #include "llvm/IR/Instruction.h" 44 #include "llvm/IR/Instructions.h" 45 #include "llvm/IR/IntrinsicInst.h" 46 #include "llvm/IR/Intrinsics.h" 47 #include "llvm/IR/LLVMContext.h" 48 #include "llvm/IR/MDBuilder.h" 49 #include "llvm/IR/Metadata.h" 50 #include "llvm/IR/Module.h" 51 #include "llvm/IR/NoFolder.h" 52 #include "llvm/IR/Operator.h" 53 #include "llvm/IR/PatternMatch.h" 54 #include "llvm/IR/Type.h" 55 #include "llvm/IR/User.h" 56 #include "llvm/IR/Value.h" 57 #include "llvm/IR/DebugInfo.h" 58 #include "llvm/Support/Casting.h" 59 #include "llvm/Support/CommandLine.h" 60 #include "llvm/Support/Debug.h" 61 #include "llvm/Support/ErrorHandling.h" 62 #include "llvm/Support/MathExtras.h" 63 #include "llvm/Support/raw_ostream.h" 64 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 65 #include "llvm/Transforms/Utils/Local.h" 66 #include "llvm/Transforms/Utils/ValueMapper.h" 67 #include <algorithm> 68 #include <cassert> 69 #include <climits> 70 #include <cstddef> 71 #include <cstdint> 72 #include <iterator> 73 #include <map> 74 #include <set> 75 #include <utility> 76 #include <vector> 77 78 using namespace llvm; 79 using namespace PatternMatch; 80 81 #define DEBUG_TYPE "simplifycfg" 82 83 // Chosen as 2 so as to be cheap, but still to have enough power to fold 84 // a select, so the "clamp" idiom (of a min followed by a max) will be caught. 85 // To catch this, we need to fold a compare and a select, hence '2' being the 86 // minimum reasonable default. 87 static cl::opt<unsigned> PHINodeFoldingThreshold( 88 "phi-node-folding-threshold", cl::Hidden, cl::init(2), 89 cl::desc( 90 "Control the amount of phi node folding to perform (default = 2)")); 91 92 static cl::opt<bool> DupRet( 93 "simplifycfg-dup-ret", cl::Hidden, cl::init(false), 94 cl::desc("Duplicate return instructions into unconditional branches")); 95 96 static cl::opt<bool> 97 SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true), 98 cl::desc("Sink common instructions down to the end block")); 99 100 static cl::opt<bool> HoistCondStores( 101 "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true), 102 cl::desc("Hoist conditional stores if an unconditional store precedes")); 103 104 static cl::opt<bool> MergeCondStores( 105 "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true), 106 cl::desc("Hoist conditional stores even if an unconditional store does not " 107 "precede - hoist multiple conditional stores into a single " 108 "predicated store")); 109 110 static cl::opt<bool> MergeCondStoresAggressively( 111 "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false), 112 cl::desc("When merging conditional stores, do so even if the resultant " 113 "basic blocks are unlikely to be if-converted as a result")); 114 115 static cl::opt<bool> SpeculateOneExpensiveInst( 116 "speculate-one-expensive-inst", cl::Hidden, cl::init(true), 117 cl::desc("Allow exactly one expensive instruction to be speculatively " 118 "executed")); 119 120 static cl::opt<unsigned> MaxSpeculationDepth( 121 "max-speculation-depth", cl::Hidden, cl::init(10), 122 cl::desc("Limit maximum recursion depth when calculating costs of " 123 "speculatively executed instructions")); 124 125 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps"); 126 STATISTIC(NumLinearMaps, 127 "Number of switch instructions turned into linear mapping"); 128 STATISTIC(NumLookupTables, 129 "Number of switch instructions turned into lookup tables"); 130 STATISTIC( 131 NumLookupTablesHoles, 132 "Number of switch instructions turned into lookup tables (holes checked)"); 133 STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares"); 134 STATISTIC(NumSinkCommons, 135 "Number of common instructions sunk down to the end block"); 136 STATISTIC(NumSpeculations, "Number of speculative executed instructions"); 137 138 namespace { 139 140 // The first field contains the value that the switch produces when a certain 141 // case group is selected, and the second field is a vector containing the 142 // cases composing the case group. 143 typedef SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2> 144 SwitchCaseResultVectorTy; 145 // The first field contains the phi node that generates a result of the switch 146 // and the second field contains the value generated for a certain case in the 147 // switch for that PHI. 148 typedef SmallVector<std::pair<PHINode *, Constant *>, 4> SwitchCaseResultsTy; 149 150 /// ValueEqualityComparisonCase - Represents a case of a switch. 151 struct ValueEqualityComparisonCase { 152 ConstantInt *Value; 153 BasicBlock *Dest; 154 155 ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest) 156 : Value(Value), Dest(Dest) {} 157 158 bool operator<(ValueEqualityComparisonCase RHS) const { 159 // Comparing pointers is ok as we only rely on the order for uniquing. 160 return Value < RHS.Value; 161 } 162 163 bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; } 164 }; 165 166 class SimplifyCFGOpt { 167 const TargetTransformInfo &TTI; 168 const DataLayout &DL; 169 unsigned BonusInstThreshold; 170 AssumptionCache *AC; 171 SmallPtrSetImpl<BasicBlock *> *LoopHeaders; 172 Value *isValueEqualityComparison(TerminatorInst *TI); 173 BasicBlock *GetValueEqualityComparisonCases( 174 TerminatorInst *TI, std::vector<ValueEqualityComparisonCase> &Cases); 175 bool SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI, 176 BasicBlock *Pred, 177 IRBuilder<> &Builder); 178 bool FoldValueComparisonIntoPredecessors(TerminatorInst *TI, 179 IRBuilder<> &Builder); 180 181 bool SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder); 182 bool SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder); 183 bool SimplifySingleResume(ResumeInst *RI); 184 bool SimplifyCommonResume(ResumeInst *RI); 185 bool SimplifyCleanupReturn(CleanupReturnInst *RI); 186 bool SimplifyUnreachable(UnreachableInst *UI); 187 bool SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder); 188 bool SimplifyIndirectBr(IndirectBrInst *IBI); 189 bool SimplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder); 190 bool SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder); 191 192 public: 193 SimplifyCFGOpt(const TargetTransformInfo &TTI, const DataLayout &DL, 194 unsigned BonusInstThreshold, AssumptionCache *AC, 195 SmallPtrSetImpl<BasicBlock *> *LoopHeaders) 196 : TTI(TTI), DL(DL), BonusInstThreshold(BonusInstThreshold), AC(AC), 197 LoopHeaders(LoopHeaders) {} 198 199 bool run(BasicBlock *BB); 200 }; 201 202 } // end anonymous namespace 203 204 /// Return true if it is safe to merge these two 205 /// terminator instructions together. 206 static bool 207 SafeToMergeTerminators(TerminatorInst *SI1, TerminatorInst *SI2, 208 SmallSetVector<BasicBlock *, 4> *FailBlocks = nullptr) { 209 if (SI1 == SI2) 210 return false; // Can't merge with self! 211 212 // It is not safe to merge these two switch instructions if they have a common 213 // successor, and if that successor has a PHI node, and if *that* PHI node has 214 // conflicting incoming values from the two switch blocks. 215 BasicBlock *SI1BB = SI1->getParent(); 216 BasicBlock *SI2BB = SI2->getParent(); 217 218 SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB)); 219 bool Fail = false; 220 for (BasicBlock *Succ : successors(SI2BB)) 221 if (SI1Succs.count(Succ)) 222 for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) { 223 PHINode *PN = cast<PHINode>(BBI); 224 if (PN->getIncomingValueForBlock(SI1BB) != 225 PN->getIncomingValueForBlock(SI2BB)) { 226 if (FailBlocks) 227 FailBlocks->insert(Succ); 228 Fail = true; 229 } 230 } 231 232 return !Fail; 233 } 234 235 /// Return true if it is safe and profitable to merge these two terminator 236 /// instructions together, where SI1 is an unconditional branch. PhiNodes will 237 /// store all PHI nodes in common successors. 238 static bool 239 isProfitableToFoldUnconditional(BranchInst *SI1, BranchInst *SI2, 240 Instruction *Cond, 241 SmallVectorImpl<PHINode *> &PhiNodes) { 242 if (SI1 == SI2) 243 return false; // Can't merge with self! 244 assert(SI1->isUnconditional() && SI2->isConditional()); 245 246 // We fold the unconditional branch if we can easily update all PHI nodes in 247 // common successors: 248 // 1> We have a constant incoming value for the conditional branch; 249 // 2> We have "Cond" as the incoming value for the unconditional branch; 250 // 3> SI2->getCondition() and Cond have same operands. 251 CmpInst *Ci2 = dyn_cast<CmpInst>(SI2->getCondition()); 252 if (!Ci2) 253 return false; 254 if (!(Cond->getOperand(0) == Ci2->getOperand(0) && 255 Cond->getOperand(1) == Ci2->getOperand(1)) && 256 !(Cond->getOperand(0) == Ci2->getOperand(1) && 257 Cond->getOperand(1) == Ci2->getOperand(0))) 258 return false; 259 260 BasicBlock *SI1BB = SI1->getParent(); 261 BasicBlock *SI2BB = SI2->getParent(); 262 SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB)); 263 for (BasicBlock *Succ : successors(SI2BB)) 264 if (SI1Succs.count(Succ)) 265 for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) { 266 PHINode *PN = cast<PHINode>(BBI); 267 if (PN->getIncomingValueForBlock(SI1BB) != Cond || 268 !isa<ConstantInt>(PN->getIncomingValueForBlock(SI2BB))) 269 return false; 270 PhiNodes.push_back(PN); 271 } 272 return true; 273 } 274 275 /// Update PHI nodes in Succ to indicate that there will now be entries in it 276 /// from the 'NewPred' block. The values that will be flowing into the PHI nodes 277 /// will be the same as those coming in from ExistPred, an existing predecessor 278 /// of Succ. 279 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred, 280 BasicBlock *ExistPred) { 281 if (!isa<PHINode>(Succ->begin())) 282 return; // Quick exit if nothing to do 283 284 PHINode *PN; 285 for (BasicBlock::iterator I = Succ->begin(); (PN = dyn_cast<PHINode>(I)); ++I) 286 PN->addIncoming(PN->getIncomingValueForBlock(ExistPred), NewPred); 287 } 288 289 /// Compute an abstract "cost" of speculating the given instruction, 290 /// which is assumed to be safe to speculate. TCC_Free means cheap, 291 /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively 292 /// expensive. 293 static unsigned ComputeSpeculationCost(const User *I, 294 const TargetTransformInfo &TTI) { 295 assert(isSafeToSpeculativelyExecute(I) && 296 "Instruction is not safe to speculatively execute!"); 297 return TTI.getUserCost(I); 298 } 299 300 /// If we have a merge point of an "if condition" as accepted above, 301 /// return true if the specified value dominates the block. We 302 /// don't handle the true generality of domination here, just a special case 303 /// which works well enough for us. 304 /// 305 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to 306 /// see if V (which must be an instruction) and its recursive operands 307 /// that do not dominate BB have a combined cost lower than CostRemaining and 308 /// are non-trapping. If both are true, the instruction is inserted into the 309 /// set and true is returned. 310 /// 311 /// The cost for most non-trapping instructions is defined as 1 except for 312 /// Select whose cost is 2. 313 /// 314 /// After this function returns, CostRemaining is decreased by the cost of 315 /// V plus its non-dominating operands. If that cost is greater than 316 /// CostRemaining, false is returned and CostRemaining is undefined. 317 static bool DominatesMergePoint(Value *V, BasicBlock *BB, 318 SmallPtrSetImpl<Instruction *> *AggressiveInsts, 319 unsigned &CostRemaining, 320 const TargetTransformInfo &TTI, 321 unsigned Depth = 0) { 322 // It is possible to hit a zero-cost cycle (phi/gep instructions for example), 323 // so limit the recursion depth. 324 // TODO: While this recursion limit does prevent pathological behavior, it 325 // would be better to track visited instructions to avoid cycles. 326 if (Depth == MaxSpeculationDepth) 327 return false; 328 329 Instruction *I = dyn_cast<Instruction>(V); 330 if (!I) { 331 // Non-instructions all dominate instructions, but not all constantexprs 332 // can be executed unconditionally. 333 if (ConstantExpr *C = dyn_cast<ConstantExpr>(V)) 334 if (C->canTrap()) 335 return false; 336 return true; 337 } 338 BasicBlock *PBB = I->getParent(); 339 340 // We don't want to allow weird loops that might have the "if condition" in 341 // the bottom of this block. 342 if (PBB == BB) 343 return false; 344 345 // If this instruction is defined in a block that contains an unconditional 346 // branch to BB, then it must be in the 'conditional' part of the "if 347 // statement". If not, it definitely dominates the region. 348 BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator()); 349 if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB) 350 return true; 351 352 // If we aren't allowing aggressive promotion anymore, then don't consider 353 // instructions in the 'if region'. 354 if (!AggressiveInsts) 355 return false; 356 357 // If we have seen this instruction before, don't count it again. 358 if (AggressiveInsts->count(I)) 359 return true; 360 361 // Okay, it looks like the instruction IS in the "condition". Check to 362 // see if it's a cheap instruction to unconditionally compute, and if it 363 // only uses stuff defined outside of the condition. If so, hoist it out. 364 if (!isSafeToSpeculativelyExecute(I)) 365 return false; 366 367 unsigned Cost = ComputeSpeculationCost(I, TTI); 368 369 // Allow exactly one instruction to be speculated regardless of its cost 370 // (as long as it is safe to do so). 371 // This is intended to flatten the CFG even if the instruction is a division 372 // or other expensive operation. The speculation of an expensive instruction 373 // is expected to be undone in CodeGenPrepare if the speculation has not 374 // enabled further IR optimizations. 375 if (Cost > CostRemaining && 376 (!SpeculateOneExpensiveInst || !AggressiveInsts->empty() || Depth > 0)) 377 return false; 378 379 // Avoid unsigned wrap. 380 CostRemaining = (Cost > CostRemaining) ? 0 : CostRemaining - Cost; 381 382 // Okay, we can only really hoist these out if their operands do 383 // not take us over the cost threshold. 384 for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) 385 if (!DominatesMergePoint(*i, BB, AggressiveInsts, CostRemaining, TTI, 386 Depth + 1)) 387 return false; 388 // Okay, it's safe to do this! Remember this instruction. 389 AggressiveInsts->insert(I); 390 return true; 391 } 392 393 /// Extract ConstantInt from value, looking through IntToPtr 394 /// and PointerNullValue. Return NULL if value is not a constant int. 395 static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) { 396 // Normal constant int. 397 ConstantInt *CI = dyn_cast<ConstantInt>(V); 398 if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy()) 399 return CI; 400 401 // This is some kind of pointer constant. Turn it into a pointer-sized 402 // ConstantInt if possible. 403 IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType())); 404 405 // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*). 406 if (isa<ConstantPointerNull>(V)) 407 return ConstantInt::get(PtrTy, 0); 408 409 // IntToPtr const int. 410 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 411 if (CE->getOpcode() == Instruction::IntToPtr) 412 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) { 413 // The constant is very likely to have the right type already. 414 if (CI->getType() == PtrTy) 415 return CI; 416 else 417 return cast<ConstantInt>( 418 ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false)); 419 } 420 return nullptr; 421 } 422 423 namespace { 424 425 /// Given a chain of or (||) or and (&&) comparison of a value against a 426 /// constant, this will try to recover the information required for a switch 427 /// structure. 428 /// It will depth-first traverse the chain of comparison, seeking for patterns 429 /// like %a == 12 or %a < 4 and combine them to produce a set of integer 430 /// representing the different cases for the switch. 431 /// Note that if the chain is composed of '||' it will build the set of elements 432 /// that matches the comparisons (i.e. any of this value validate the chain) 433 /// while for a chain of '&&' it will build the set elements that make the test 434 /// fail. 435 struct ConstantComparesGatherer { 436 const DataLayout &DL; 437 Value *CompValue; /// Value found for the switch comparison 438 Value *Extra; /// Extra clause to be checked before the switch 439 SmallVector<ConstantInt *, 8> Vals; /// Set of integers to match in switch 440 unsigned UsedICmps; /// Number of comparisons matched in the and/or chain 441 442 /// Construct and compute the result for the comparison instruction Cond 443 ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL) 444 : DL(DL), CompValue(nullptr), Extra(nullptr), UsedICmps(0) { 445 gather(Cond); 446 } 447 448 /// Prevent copy 449 ConstantComparesGatherer(const ConstantComparesGatherer &) = delete; 450 ConstantComparesGatherer & 451 operator=(const ConstantComparesGatherer &) = delete; 452 453 private: 454 /// Try to set the current value used for the comparison, it succeeds only if 455 /// it wasn't set before or if the new value is the same as the old one 456 bool setValueOnce(Value *NewVal) { 457 if (CompValue && CompValue != NewVal) 458 return false; 459 CompValue = NewVal; 460 return (CompValue != nullptr); 461 } 462 463 /// Try to match Instruction "I" as a comparison against a constant and 464 /// populates the array Vals with the set of values that match (or do not 465 /// match depending on isEQ). 466 /// Return false on failure. On success, the Value the comparison matched 467 /// against is placed in CompValue. 468 /// If CompValue is already set, the function is expected to fail if a match 469 /// is found but the value compared to is different. 470 bool matchInstruction(Instruction *I, bool isEQ) { 471 // If this is an icmp against a constant, handle this as one of the cases. 472 ICmpInst *ICI; 473 ConstantInt *C; 474 if (!((ICI = dyn_cast<ICmpInst>(I)) && 475 (C = GetConstantInt(I->getOperand(1), DL)))) { 476 return false; 477 } 478 479 Value *RHSVal; 480 const APInt *RHSC; 481 482 // Pattern match a special case 483 // (x & ~2^z) == y --> x == y || x == y|2^z 484 // This undoes a transformation done by instcombine to fuse 2 compares. 485 if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE)) { 486 487 // It's a little bit hard to see why the following transformations are 488 // correct. Here is a CVC3 program to verify them for 64-bit values: 489 490 /* 491 ONE : BITVECTOR(64) = BVZEROEXTEND(0bin1, 63); 492 x : BITVECTOR(64); 493 y : BITVECTOR(64); 494 z : BITVECTOR(64); 495 mask : BITVECTOR(64) = BVSHL(ONE, z); 496 QUERY( (y & ~mask = y) => 497 ((x & ~mask = y) <=> (x = y OR x = (y | mask))) 498 ); 499 QUERY( (y | mask = y) => 500 ((x | mask = y) <=> (x = y OR x = (y & ~mask))) 501 ); 502 */ 503 504 // Please note that each pattern must be a dual implication (<--> or 505 // iff). One directional implication can create spurious matches. If the 506 // implication is only one-way, an unsatisfiable condition on the left 507 // side can imply a satisfiable condition on the right side. Dual 508 // implication ensures that satisfiable conditions are transformed to 509 // other satisfiable conditions and unsatisfiable conditions are 510 // transformed to other unsatisfiable conditions. 511 512 // Here is a concrete example of a unsatisfiable condition on the left 513 // implying a satisfiable condition on the right: 514 // 515 // mask = (1 << z) 516 // (x & ~mask) == y --> (x == y || x == (y | mask)) 517 // 518 // Substituting y = 3, z = 0 yields: 519 // (x & -2) == 3 --> (x == 3 || x == 2) 520 521 // Pattern match a special case: 522 /* 523 QUERY( (y & ~mask = y) => 524 ((x & ~mask = y) <=> (x = y OR x = (y | mask))) 525 ); 526 */ 527 if (match(ICI->getOperand(0), 528 m_And(m_Value(RHSVal), m_APInt(RHSC)))) { 529 APInt Mask = ~*RHSC; 530 if (Mask.isPowerOf2() && (C->getValue() & ~Mask) == C->getValue()) { 531 // If we already have a value for the switch, it has to match! 532 if (!setValueOnce(RHSVal)) 533 return false; 534 535 Vals.push_back(C); 536 Vals.push_back( 537 ConstantInt::get(C->getContext(), 538 C->getValue() | Mask)); 539 UsedICmps++; 540 return true; 541 } 542 } 543 544 // Pattern match a special case: 545 /* 546 QUERY( (y | mask = y) => 547 ((x | mask = y) <=> (x = y OR x = (y & ~mask))) 548 ); 549 */ 550 if (match(ICI->getOperand(0), 551 m_Or(m_Value(RHSVal), m_APInt(RHSC)))) { 552 APInt Mask = *RHSC; 553 if (Mask.isPowerOf2() && (C->getValue() | Mask) == C->getValue()) { 554 // If we already have a value for the switch, it has to match! 555 if (!setValueOnce(RHSVal)) 556 return false; 557 558 Vals.push_back(C); 559 Vals.push_back(ConstantInt::get(C->getContext(), 560 C->getValue() & ~Mask)); 561 UsedICmps++; 562 return true; 563 } 564 } 565 566 // If we already have a value for the switch, it has to match! 567 if (!setValueOnce(ICI->getOperand(0))) 568 return false; 569 570 UsedICmps++; 571 Vals.push_back(C); 572 return ICI->getOperand(0); 573 } 574 575 // If we have "x ult 3", for example, then we can add 0,1,2 to the set. 576 ConstantRange Span = ConstantRange::makeAllowedICmpRegion( 577 ICI->getPredicate(), C->getValue()); 578 579 // Shift the range if the compare is fed by an add. This is the range 580 // compare idiom as emitted by instcombine. 581 Value *CandidateVal = I->getOperand(0); 582 if (match(I->getOperand(0), m_Add(m_Value(RHSVal), m_APInt(RHSC)))) { 583 Span = Span.subtract(*RHSC); 584 CandidateVal = RHSVal; 585 } 586 587 // If this is an and/!= check, then we are looking to build the set of 588 // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into 589 // x != 0 && x != 1. 590 if (!isEQ) 591 Span = Span.inverse(); 592 593 // If there are a ton of values, we don't want to make a ginormous switch. 594 if (Span.getSetSize().ugt(8) || Span.isEmptySet()) { 595 return false; 596 } 597 598 // If we already have a value for the switch, it has to match! 599 if (!setValueOnce(CandidateVal)) 600 return false; 601 602 // Add all values from the range to the set 603 for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp) 604 Vals.push_back(ConstantInt::get(I->getContext(), Tmp)); 605 606 UsedICmps++; 607 return true; 608 } 609 610 /// Given a potentially 'or'd or 'and'd together collection of icmp 611 /// eq/ne/lt/gt instructions that compare a value against a constant, extract 612 /// the value being compared, and stick the list constants into the Vals 613 /// vector. 614 /// One "Extra" case is allowed to differ from the other. 615 void gather(Value *V) { 616 Instruction *I = dyn_cast<Instruction>(V); 617 bool isEQ = (I->getOpcode() == Instruction::Or); 618 619 // Keep a stack (SmallVector for efficiency) for depth-first traversal 620 SmallVector<Value *, 8> DFT; 621 SmallPtrSet<Value *, 8> Visited; 622 623 // Initialize 624 Visited.insert(V); 625 DFT.push_back(V); 626 627 while (!DFT.empty()) { 628 V = DFT.pop_back_val(); 629 630 if (Instruction *I = dyn_cast<Instruction>(V)) { 631 // If it is a || (or && depending on isEQ), process the operands. 632 if (I->getOpcode() == (isEQ ? Instruction::Or : Instruction::And)) { 633 if (Visited.insert(I->getOperand(1)).second) 634 DFT.push_back(I->getOperand(1)); 635 if (Visited.insert(I->getOperand(0)).second) 636 DFT.push_back(I->getOperand(0)); 637 continue; 638 } 639 640 // Try to match the current instruction 641 if (matchInstruction(I, isEQ)) 642 // Match succeed, continue the loop 643 continue; 644 } 645 646 // One element of the sequence of || (or &&) could not be match as a 647 // comparison against the same value as the others. 648 // We allow only one "Extra" case to be checked before the switch 649 if (!Extra) { 650 Extra = V; 651 continue; 652 } 653 // Failed to parse a proper sequence, abort now 654 CompValue = nullptr; 655 break; 656 } 657 } 658 }; 659 660 } // end anonymous namespace 661 662 static void EraseTerminatorInstAndDCECond(TerminatorInst *TI) { 663 Instruction *Cond = nullptr; 664 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 665 Cond = dyn_cast<Instruction>(SI->getCondition()); 666 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 667 if (BI->isConditional()) 668 Cond = dyn_cast<Instruction>(BI->getCondition()); 669 } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) { 670 Cond = dyn_cast<Instruction>(IBI->getAddress()); 671 } 672 673 TI->eraseFromParent(); 674 if (Cond) 675 RecursivelyDeleteTriviallyDeadInstructions(Cond); 676 } 677 678 /// Return true if the specified terminator checks 679 /// to see if a value is equal to constant integer value. 680 Value *SimplifyCFGOpt::isValueEqualityComparison(TerminatorInst *TI) { 681 Value *CV = nullptr; 682 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 683 // Do not permit merging of large switch instructions into their 684 // predecessors unless there is only one predecessor. 685 if (SI->getNumSuccessors() * std::distance(pred_begin(SI->getParent()), 686 pred_end(SI->getParent())) <= 687 128) 688 CV = SI->getCondition(); 689 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) 690 if (BI->isConditional() && BI->getCondition()->hasOneUse()) 691 if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) { 692 if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL)) 693 CV = ICI->getOperand(0); 694 } 695 696 // Unwrap any lossless ptrtoint cast. 697 if (CV) { 698 if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) { 699 Value *Ptr = PTII->getPointerOperand(); 700 if (PTII->getType() == DL.getIntPtrType(Ptr->getType())) 701 CV = Ptr; 702 } 703 } 704 return CV; 705 } 706 707 /// Given a value comparison instruction, 708 /// decode all of the 'cases' that it represents and return the 'default' block. 709 BasicBlock *SimplifyCFGOpt::GetValueEqualityComparisonCases( 710 TerminatorInst *TI, std::vector<ValueEqualityComparisonCase> &Cases) { 711 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 712 Cases.reserve(SI->getNumCases()); 713 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); i != e; 714 ++i) 715 Cases.push_back( 716 ValueEqualityComparisonCase(i.getCaseValue(), i.getCaseSuccessor())); 717 return SI->getDefaultDest(); 718 } 719 720 BranchInst *BI = cast<BranchInst>(TI); 721 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 722 BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE); 723 Cases.push_back(ValueEqualityComparisonCase( 724 GetConstantInt(ICI->getOperand(1), DL), Succ)); 725 return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ); 726 } 727 728 /// Given a vector of bb/value pairs, remove any entries 729 /// in the list that match the specified block. 730 static void 731 EliminateBlockCases(BasicBlock *BB, 732 std::vector<ValueEqualityComparisonCase> &Cases) { 733 Cases.erase(std::remove(Cases.begin(), Cases.end(), BB), Cases.end()); 734 } 735 736 /// Return true if there are any keys in C1 that exist in C2 as well. 737 static bool ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1, 738 std::vector<ValueEqualityComparisonCase> &C2) { 739 std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2; 740 741 // Make V1 be smaller than V2. 742 if (V1->size() > V2->size()) 743 std::swap(V1, V2); 744 745 if (V1->empty()) 746 return false; 747 if (V1->size() == 1) { 748 // Just scan V2. 749 ConstantInt *TheVal = (*V1)[0].Value; 750 for (unsigned i = 0, e = V2->size(); i != e; ++i) 751 if (TheVal == (*V2)[i].Value) 752 return true; 753 } 754 755 // Otherwise, just sort both lists and compare element by element. 756 array_pod_sort(V1->begin(), V1->end()); 757 array_pod_sort(V2->begin(), V2->end()); 758 unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size(); 759 while (i1 != e1 && i2 != e2) { 760 if ((*V1)[i1].Value == (*V2)[i2].Value) 761 return true; 762 if ((*V1)[i1].Value < (*V2)[i2].Value) 763 ++i1; 764 else 765 ++i2; 766 } 767 return false; 768 } 769 770 /// If TI is known to be a terminator instruction and its block is known to 771 /// only have a single predecessor block, check to see if that predecessor is 772 /// also a value comparison with the same value, and if that comparison 773 /// determines the outcome of this comparison. If so, simplify TI. This does a 774 /// very limited form of jump threading. 775 bool SimplifyCFGOpt::SimplifyEqualityComparisonWithOnlyPredecessor( 776 TerminatorInst *TI, BasicBlock *Pred, IRBuilder<> &Builder) { 777 Value *PredVal = isValueEqualityComparison(Pred->getTerminator()); 778 if (!PredVal) 779 return false; // Not a value comparison in predecessor. 780 781 Value *ThisVal = isValueEqualityComparison(TI); 782 assert(ThisVal && "This isn't a value comparison!!"); 783 if (ThisVal != PredVal) 784 return false; // Different predicates. 785 786 // TODO: Preserve branch weight metadata, similarly to how 787 // FoldValueComparisonIntoPredecessors preserves it. 788 789 // Find out information about when control will move from Pred to TI's block. 790 std::vector<ValueEqualityComparisonCase> PredCases; 791 BasicBlock *PredDef = 792 GetValueEqualityComparisonCases(Pred->getTerminator(), PredCases); 793 EliminateBlockCases(PredDef, PredCases); // Remove default from cases. 794 795 // Find information about how control leaves this block. 796 std::vector<ValueEqualityComparisonCase> ThisCases; 797 BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases); 798 EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases. 799 800 // If TI's block is the default block from Pred's comparison, potentially 801 // simplify TI based on this knowledge. 802 if (PredDef == TI->getParent()) { 803 // If we are here, we know that the value is none of those cases listed in 804 // PredCases. If there are any cases in ThisCases that are in PredCases, we 805 // can simplify TI. 806 if (!ValuesOverlap(PredCases, ThisCases)) 807 return false; 808 809 if (isa<BranchInst>(TI)) { 810 // Okay, one of the successors of this condbr is dead. Convert it to a 811 // uncond br. 812 assert(ThisCases.size() == 1 && "Branch can only have one case!"); 813 // Insert the new branch. 814 Instruction *NI = Builder.CreateBr(ThisDef); 815 (void)NI; 816 817 // Remove PHI node entries for the dead edge. 818 ThisCases[0].Dest->removePredecessor(TI->getParent()); 819 820 DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 821 << "Through successor TI: " << *TI << "Leaving: " << *NI 822 << "\n"); 823 824 EraseTerminatorInstAndDCECond(TI); 825 return true; 826 } 827 828 SwitchInst *SI = cast<SwitchInst>(TI); 829 // Okay, TI has cases that are statically dead, prune them away. 830 SmallPtrSet<Constant *, 16> DeadCases; 831 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 832 DeadCases.insert(PredCases[i].Value); 833 834 DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 835 << "Through successor TI: " << *TI); 836 837 // Collect branch weights into a vector. 838 SmallVector<uint32_t, 8> Weights; 839 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof); 840 bool HasWeight = MD && (MD->getNumOperands() == 2 + SI->getNumCases()); 841 if (HasWeight) 842 for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e; 843 ++MD_i) { 844 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i)); 845 Weights.push_back(CI->getValue().getZExtValue()); 846 } 847 for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) { 848 --i; 849 if (DeadCases.count(i.getCaseValue())) { 850 if (HasWeight) { 851 std::swap(Weights[i.getCaseIndex() + 1], Weights.back()); 852 Weights.pop_back(); 853 } 854 i.getCaseSuccessor()->removePredecessor(TI->getParent()); 855 SI->removeCase(i); 856 } 857 } 858 if (HasWeight && Weights.size() >= 2) 859 SI->setMetadata(LLVMContext::MD_prof, 860 MDBuilder(SI->getParent()->getContext()) 861 .createBranchWeights(Weights)); 862 863 DEBUG(dbgs() << "Leaving: " << *TI << "\n"); 864 return true; 865 } 866 867 // Otherwise, TI's block must correspond to some matched value. Find out 868 // which value (or set of values) this is. 869 ConstantInt *TIV = nullptr; 870 BasicBlock *TIBB = TI->getParent(); 871 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 872 if (PredCases[i].Dest == TIBB) { 873 if (TIV) 874 return false; // Cannot handle multiple values coming to this block. 875 TIV = PredCases[i].Value; 876 } 877 assert(TIV && "No edge from pred to succ?"); 878 879 // Okay, we found the one constant that our value can be if we get into TI's 880 // BB. Find out which successor will unconditionally be branched to. 881 BasicBlock *TheRealDest = nullptr; 882 for (unsigned i = 0, e = ThisCases.size(); i != e; ++i) 883 if (ThisCases[i].Value == TIV) { 884 TheRealDest = ThisCases[i].Dest; 885 break; 886 } 887 888 // If not handled by any explicit cases, it is handled by the default case. 889 if (!TheRealDest) 890 TheRealDest = ThisDef; 891 892 // Remove PHI node entries for dead edges. 893 BasicBlock *CheckEdge = TheRealDest; 894 for (BasicBlock *Succ : successors(TIBB)) 895 if (Succ != CheckEdge) 896 Succ->removePredecessor(TIBB); 897 else 898 CheckEdge = nullptr; 899 900 // Insert the new branch. 901 Instruction *NI = Builder.CreateBr(TheRealDest); 902 (void)NI; 903 904 DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 905 << "Through successor TI: " << *TI << "Leaving: " << *NI 906 << "\n"); 907 908 EraseTerminatorInstAndDCECond(TI); 909 return true; 910 } 911 912 namespace { 913 914 /// This class implements a stable ordering of constant 915 /// integers that does not depend on their address. This is important for 916 /// applications that sort ConstantInt's to ensure uniqueness. 917 struct ConstantIntOrdering { 918 bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const { 919 return LHS->getValue().ult(RHS->getValue()); 920 } 921 }; 922 923 } // end anonymous namespace 924 925 static int ConstantIntSortPredicate(ConstantInt *const *P1, 926 ConstantInt *const *P2) { 927 const ConstantInt *LHS = *P1; 928 const ConstantInt *RHS = *P2; 929 if (LHS == RHS) 930 return 0; 931 return LHS->getValue().ult(RHS->getValue()) ? 1 : -1; 932 } 933 934 static inline bool HasBranchWeights(const Instruction *I) { 935 MDNode *ProfMD = I->getMetadata(LLVMContext::MD_prof); 936 if (ProfMD && ProfMD->getOperand(0)) 937 if (MDString *MDS = dyn_cast<MDString>(ProfMD->getOperand(0))) 938 return MDS->getString().equals("branch_weights"); 939 940 return false; 941 } 942 943 /// Get Weights of a given TerminatorInst, the default weight is at the front 944 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight 945 /// metadata. 946 static void GetBranchWeights(TerminatorInst *TI, 947 SmallVectorImpl<uint64_t> &Weights) { 948 MDNode *MD = TI->getMetadata(LLVMContext::MD_prof); 949 assert(MD); 950 for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) { 951 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i)); 952 Weights.push_back(CI->getValue().getZExtValue()); 953 } 954 955 // If TI is a conditional eq, the default case is the false case, 956 // and the corresponding branch-weight data is at index 2. We swap the 957 // default weight to be the first entry. 958 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 959 assert(Weights.size() == 2); 960 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 961 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 962 std::swap(Weights.front(), Weights.back()); 963 } 964 } 965 966 /// Keep halving the weights until all can fit in uint32_t. 967 static void FitWeights(MutableArrayRef<uint64_t> Weights) { 968 uint64_t Max = *std::max_element(Weights.begin(), Weights.end()); 969 if (Max > UINT_MAX) { 970 unsigned Offset = 32 - countLeadingZeros(Max); 971 for (uint64_t &I : Weights) 972 I >>= Offset; 973 } 974 } 975 976 /// The specified terminator is a value equality comparison instruction 977 /// (either a switch or a branch on "X == c"). 978 /// See if any of the predecessors of the terminator block are value comparisons 979 /// on the same value. If so, and if safe to do so, fold them together. 980 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(TerminatorInst *TI, 981 IRBuilder<> &Builder) { 982 BasicBlock *BB = TI->getParent(); 983 Value *CV = isValueEqualityComparison(TI); // CondVal 984 assert(CV && "Not a comparison?"); 985 bool Changed = false; 986 987 SmallVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB)); 988 while (!Preds.empty()) { 989 BasicBlock *Pred = Preds.pop_back_val(); 990 991 // See if the predecessor is a comparison with the same value. 992 TerminatorInst *PTI = Pred->getTerminator(); 993 Value *PCV = isValueEqualityComparison(PTI); // PredCondVal 994 995 if (PCV == CV && TI != PTI) { 996 SmallSetVector<BasicBlock*, 4> FailBlocks; 997 if (!SafeToMergeTerminators(TI, PTI, &FailBlocks)) { 998 for (auto *Succ : FailBlocks) { 999 std::vector<BasicBlock*> Blocks = { TI->getParent() }; 1000 if (!SplitBlockPredecessors(Succ, Blocks, ".fold.split")) 1001 return false; 1002 } 1003 } 1004 1005 // Figure out which 'cases' to copy from SI to PSI. 1006 std::vector<ValueEqualityComparisonCase> BBCases; 1007 BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases); 1008 1009 std::vector<ValueEqualityComparisonCase> PredCases; 1010 BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases); 1011 1012 // Based on whether the default edge from PTI goes to BB or not, fill in 1013 // PredCases and PredDefault with the new switch cases we would like to 1014 // build. 1015 SmallVector<BasicBlock *, 8> NewSuccessors; 1016 1017 // Update the branch weight metadata along the way 1018 SmallVector<uint64_t, 8> Weights; 1019 bool PredHasWeights = HasBranchWeights(PTI); 1020 bool SuccHasWeights = HasBranchWeights(TI); 1021 1022 if (PredHasWeights) { 1023 GetBranchWeights(PTI, Weights); 1024 // branch-weight metadata is inconsistent here. 1025 if (Weights.size() != 1 + PredCases.size()) 1026 PredHasWeights = SuccHasWeights = false; 1027 } else if (SuccHasWeights) 1028 // If there are no predecessor weights but there are successor weights, 1029 // populate Weights with 1, which will later be scaled to the sum of 1030 // successor's weights 1031 Weights.assign(1 + PredCases.size(), 1); 1032 1033 SmallVector<uint64_t, 8> SuccWeights; 1034 if (SuccHasWeights) { 1035 GetBranchWeights(TI, SuccWeights); 1036 // branch-weight metadata is inconsistent here. 1037 if (SuccWeights.size() != 1 + BBCases.size()) 1038 PredHasWeights = SuccHasWeights = false; 1039 } else if (PredHasWeights) 1040 SuccWeights.assign(1 + BBCases.size(), 1); 1041 1042 if (PredDefault == BB) { 1043 // If this is the default destination from PTI, only the edges in TI 1044 // that don't occur in PTI, or that branch to BB will be activated. 1045 std::set<ConstantInt *, ConstantIntOrdering> PTIHandled; 1046 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 1047 if (PredCases[i].Dest != BB) 1048 PTIHandled.insert(PredCases[i].Value); 1049 else { 1050 // The default destination is BB, we don't need explicit targets. 1051 std::swap(PredCases[i], PredCases.back()); 1052 1053 if (PredHasWeights || SuccHasWeights) { 1054 // Increase weight for the default case. 1055 Weights[0] += Weights[i + 1]; 1056 std::swap(Weights[i + 1], Weights.back()); 1057 Weights.pop_back(); 1058 } 1059 1060 PredCases.pop_back(); 1061 --i; 1062 --e; 1063 } 1064 1065 // Reconstruct the new switch statement we will be building. 1066 if (PredDefault != BBDefault) { 1067 PredDefault->removePredecessor(Pred); 1068 PredDefault = BBDefault; 1069 NewSuccessors.push_back(BBDefault); 1070 } 1071 1072 unsigned CasesFromPred = Weights.size(); 1073 uint64_t ValidTotalSuccWeight = 0; 1074 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 1075 if (!PTIHandled.count(BBCases[i].Value) && 1076 BBCases[i].Dest != BBDefault) { 1077 PredCases.push_back(BBCases[i]); 1078 NewSuccessors.push_back(BBCases[i].Dest); 1079 if (SuccHasWeights || PredHasWeights) { 1080 // The default weight is at index 0, so weight for the ith case 1081 // should be at index i+1. Scale the cases from successor by 1082 // PredDefaultWeight (Weights[0]). 1083 Weights.push_back(Weights[0] * SuccWeights[i + 1]); 1084 ValidTotalSuccWeight += SuccWeights[i + 1]; 1085 } 1086 } 1087 1088 if (SuccHasWeights || PredHasWeights) { 1089 ValidTotalSuccWeight += SuccWeights[0]; 1090 // Scale the cases from predecessor by ValidTotalSuccWeight. 1091 for (unsigned i = 1; i < CasesFromPred; ++i) 1092 Weights[i] *= ValidTotalSuccWeight; 1093 // Scale the default weight by SuccDefaultWeight (SuccWeights[0]). 1094 Weights[0] *= SuccWeights[0]; 1095 } 1096 } else { 1097 // If this is not the default destination from PSI, only the edges 1098 // in SI that occur in PSI with a destination of BB will be 1099 // activated. 1100 std::set<ConstantInt *, ConstantIntOrdering> PTIHandled; 1101 std::map<ConstantInt *, uint64_t> WeightsForHandled; 1102 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 1103 if (PredCases[i].Dest == BB) { 1104 PTIHandled.insert(PredCases[i].Value); 1105 1106 if (PredHasWeights || SuccHasWeights) { 1107 WeightsForHandled[PredCases[i].Value] = Weights[i + 1]; 1108 std::swap(Weights[i + 1], Weights.back()); 1109 Weights.pop_back(); 1110 } 1111 1112 std::swap(PredCases[i], PredCases.back()); 1113 PredCases.pop_back(); 1114 --i; 1115 --e; 1116 } 1117 1118 // Okay, now we know which constants were sent to BB from the 1119 // predecessor. Figure out where they will all go now. 1120 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 1121 if (PTIHandled.count(BBCases[i].Value)) { 1122 // If this is one we are capable of getting... 1123 if (PredHasWeights || SuccHasWeights) 1124 Weights.push_back(WeightsForHandled[BBCases[i].Value]); 1125 PredCases.push_back(BBCases[i]); 1126 NewSuccessors.push_back(BBCases[i].Dest); 1127 PTIHandled.erase( 1128 BBCases[i].Value); // This constant is taken care of 1129 } 1130 1131 // If there are any constants vectored to BB that TI doesn't handle, 1132 // they must go to the default destination of TI. 1133 for (ConstantInt *I : PTIHandled) { 1134 if (PredHasWeights || SuccHasWeights) 1135 Weights.push_back(WeightsForHandled[I]); 1136 PredCases.push_back(ValueEqualityComparisonCase(I, BBDefault)); 1137 NewSuccessors.push_back(BBDefault); 1138 } 1139 } 1140 1141 // Okay, at this point, we know which new successor Pred will get. Make 1142 // sure we update the number of entries in the PHI nodes for these 1143 // successors. 1144 for (BasicBlock *NewSuccessor : NewSuccessors) 1145 AddPredecessorToBlock(NewSuccessor, Pred, BB); 1146 1147 Builder.SetInsertPoint(PTI); 1148 // Convert pointer to int before we switch. 1149 if (CV->getType()->isPointerTy()) { 1150 CV = Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()), 1151 "magicptr"); 1152 } 1153 1154 // Now that the successors are updated, create the new Switch instruction. 1155 SwitchInst *NewSI = 1156 Builder.CreateSwitch(CV, PredDefault, PredCases.size()); 1157 NewSI->setDebugLoc(PTI->getDebugLoc()); 1158 for (ValueEqualityComparisonCase &V : PredCases) 1159 NewSI->addCase(V.Value, V.Dest); 1160 1161 if (PredHasWeights || SuccHasWeights) { 1162 // Halve the weights if any of them cannot fit in an uint32_t 1163 FitWeights(Weights); 1164 1165 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 1166 1167 NewSI->setMetadata( 1168 LLVMContext::MD_prof, 1169 MDBuilder(BB->getContext()).createBranchWeights(MDWeights)); 1170 } 1171 1172 EraseTerminatorInstAndDCECond(PTI); 1173 1174 // Okay, last check. If BB is still a successor of PSI, then we must 1175 // have an infinite loop case. If so, add an infinitely looping block 1176 // to handle the case to preserve the behavior of the code. 1177 BasicBlock *InfLoopBlock = nullptr; 1178 for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i) 1179 if (NewSI->getSuccessor(i) == BB) { 1180 if (!InfLoopBlock) { 1181 // Insert it at the end of the function, because it's either code, 1182 // or it won't matter if it's hot. :) 1183 InfLoopBlock = BasicBlock::Create(BB->getContext(), "infloop", 1184 BB->getParent()); 1185 BranchInst::Create(InfLoopBlock, InfLoopBlock); 1186 } 1187 NewSI->setSuccessor(i, InfLoopBlock); 1188 } 1189 1190 Changed = true; 1191 } 1192 } 1193 return Changed; 1194 } 1195 1196 // If we would need to insert a select that uses the value of this invoke 1197 // (comments in HoistThenElseCodeToIf explain why we would need to do this), we 1198 // can't hoist the invoke, as there is nowhere to put the select in this case. 1199 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2, 1200 Instruction *I1, Instruction *I2) { 1201 for (BasicBlock *Succ : successors(BB1)) { 1202 PHINode *PN; 1203 for (BasicBlock::iterator BBI = Succ->begin(); 1204 (PN = dyn_cast<PHINode>(BBI)); ++BBI) { 1205 Value *BB1V = PN->getIncomingValueForBlock(BB1); 1206 Value *BB2V = PN->getIncomingValueForBlock(BB2); 1207 if (BB1V != BB2V && (BB1V == I1 || BB2V == I2)) { 1208 return false; 1209 } 1210 } 1211 } 1212 return true; 1213 } 1214 1215 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I); 1216 1217 /// Given a conditional branch that goes to BB1 and BB2, hoist any common code 1218 /// in the two blocks up into the branch block. The caller of this function 1219 /// guarantees that BI's block dominates BB1 and BB2. 1220 static bool HoistThenElseCodeToIf(BranchInst *BI, 1221 const TargetTransformInfo &TTI) { 1222 // This does very trivial matching, with limited scanning, to find identical 1223 // instructions in the two blocks. In particular, we don't want to get into 1224 // O(M*N) situations here where M and N are the sizes of BB1 and BB2. As 1225 // such, we currently just scan for obviously identical instructions in an 1226 // identical order. 1227 BasicBlock *BB1 = BI->getSuccessor(0); // The true destination. 1228 BasicBlock *BB2 = BI->getSuccessor(1); // The false destination 1229 1230 BasicBlock::iterator BB1_Itr = BB1->begin(); 1231 BasicBlock::iterator BB2_Itr = BB2->begin(); 1232 1233 Instruction *I1 = &*BB1_Itr++, *I2 = &*BB2_Itr++; 1234 // Skip debug info if it is not identical. 1235 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1236 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1237 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1238 while (isa<DbgInfoIntrinsic>(I1)) 1239 I1 = &*BB1_Itr++; 1240 while (isa<DbgInfoIntrinsic>(I2)) 1241 I2 = &*BB2_Itr++; 1242 } 1243 if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) || 1244 (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))) 1245 return false; 1246 1247 BasicBlock *BIParent = BI->getParent(); 1248 1249 bool Changed = false; 1250 do { 1251 // If we are hoisting the terminator instruction, don't move one (making a 1252 // broken BB), instead clone it, and remove BI. 1253 if (isa<TerminatorInst>(I1)) 1254 goto HoistTerminator; 1255 1256 if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2)) 1257 return Changed; 1258 1259 // For a normal instruction, we just move one to right before the branch, 1260 // then replace all uses of the other with the first. Finally, we remove 1261 // the now redundant second instruction. 1262 BIParent->getInstList().splice(BI->getIterator(), BB1->getInstList(), I1); 1263 if (!I2->use_empty()) 1264 I2->replaceAllUsesWith(I1); 1265 I1->andIRFlags(I2); 1266 unsigned KnownIDs[] = {LLVMContext::MD_tbaa, 1267 LLVMContext::MD_range, 1268 LLVMContext::MD_fpmath, 1269 LLVMContext::MD_invariant_load, 1270 LLVMContext::MD_nonnull, 1271 LLVMContext::MD_invariant_group, 1272 LLVMContext::MD_align, 1273 LLVMContext::MD_dereferenceable, 1274 LLVMContext::MD_dereferenceable_or_null, 1275 LLVMContext::MD_mem_parallel_loop_access}; 1276 combineMetadata(I1, I2, KnownIDs); 1277 1278 // If the debug loc for I1 and I2 are different, as we are combining them 1279 // into one instruction, we do not want to select debug loc randomly from 1280 // I1 or I2. 1281 if (!isa<CallInst>(I1) && I1->getDebugLoc() != I2->getDebugLoc()) 1282 I1->setDebugLoc( 1283 DILocation::getMergedLocation(I1->getDebugLoc(), I2->getDebugLoc())); 1284 1285 I2->eraseFromParent(); 1286 Changed = true; 1287 1288 I1 = &*BB1_Itr++; 1289 I2 = &*BB2_Itr++; 1290 // Skip debug info if it is not identical. 1291 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1292 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1293 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1294 while (isa<DbgInfoIntrinsic>(I1)) 1295 I1 = &*BB1_Itr++; 1296 while (isa<DbgInfoIntrinsic>(I2)) 1297 I2 = &*BB2_Itr++; 1298 } 1299 } while (I1->isIdenticalToWhenDefined(I2)); 1300 1301 return true; 1302 1303 HoistTerminator: 1304 // It may not be possible to hoist an invoke. 1305 if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) 1306 return Changed; 1307 1308 for (BasicBlock *Succ : successors(BB1)) { 1309 PHINode *PN; 1310 for (BasicBlock::iterator BBI = Succ->begin(); 1311 (PN = dyn_cast<PHINode>(BBI)); ++BBI) { 1312 Value *BB1V = PN->getIncomingValueForBlock(BB1); 1313 Value *BB2V = PN->getIncomingValueForBlock(BB2); 1314 if (BB1V == BB2V) 1315 continue; 1316 1317 // Check for passingValueIsAlwaysUndefined here because we would rather 1318 // eliminate undefined control flow then converting it to a select. 1319 if (passingValueIsAlwaysUndefined(BB1V, PN) || 1320 passingValueIsAlwaysUndefined(BB2V, PN)) 1321 return Changed; 1322 1323 if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V)) 1324 return Changed; 1325 if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V)) 1326 return Changed; 1327 } 1328 } 1329 1330 // Okay, it is safe to hoist the terminator. 1331 Instruction *NT = I1->clone(); 1332 BIParent->getInstList().insert(BI->getIterator(), NT); 1333 if (!NT->getType()->isVoidTy()) { 1334 I1->replaceAllUsesWith(NT); 1335 I2->replaceAllUsesWith(NT); 1336 NT->takeName(I1); 1337 } 1338 1339 IRBuilder<NoFolder> Builder(NT); 1340 // Hoisting one of the terminators from our successor is a great thing. 1341 // Unfortunately, the successors of the if/else blocks may have PHI nodes in 1342 // them. If they do, all PHI entries for BB1/BB2 must agree for all PHI 1343 // nodes, so we insert select instruction to compute the final result. 1344 std::map<std::pair<Value *, Value *>, SelectInst *> InsertedSelects; 1345 for (BasicBlock *Succ : successors(BB1)) { 1346 PHINode *PN; 1347 for (BasicBlock::iterator BBI = Succ->begin(); 1348 (PN = dyn_cast<PHINode>(BBI)); ++BBI) { 1349 Value *BB1V = PN->getIncomingValueForBlock(BB1); 1350 Value *BB2V = PN->getIncomingValueForBlock(BB2); 1351 if (BB1V == BB2V) 1352 continue; 1353 1354 // These values do not agree. Insert a select instruction before NT 1355 // that determines the right value. 1356 SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)]; 1357 if (!SI) 1358 SI = cast<SelectInst>( 1359 Builder.CreateSelect(BI->getCondition(), BB1V, BB2V, 1360 BB1V->getName() + "." + BB2V->getName(), BI)); 1361 1362 // Make the PHI node use the select for all incoming values for BB1/BB2 1363 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 1364 if (PN->getIncomingBlock(i) == BB1 || PN->getIncomingBlock(i) == BB2) 1365 PN->setIncomingValue(i, SI); 1366 } 1367 } 1368 1369 // Update any PHI nodes in our new successors. 1370 for (BasicBlock *Succ : successors(BB1)) 1371 AddPredecessorToBlock(Succ, BIParent, BB1); 1372 1373 EraseTerminatorInstAndDCECond(BI); 1374 return true; 1375 } 1376 1377 // Is it legal to place a variable in operand \c OpIdx of \c I? 1378 // FIXME: This should be promoted to Instruction. 1379 static bool canReplaceOperandWithVariable(const Instruction *I, 1380 unsigned OpIdx) { 1381 // We can't have a PHI with a metadata type. 1382 if (I->getOperand(OpIdx)->getType()->isMetadataTy()) 1383 return false; 1384 1385 // Early exit. 1386 if (!isa<Constant>(I->getOperand(OpIdx))) 1387 return true; 1388 1389 switch (I->getOpcode()) { 1390 default: 1391 return true; 1392 case Instruction::Call: 1393 case Instruction::Invoke: 1394 // FIXME: many arithmetic intrinsics have no issue taking a 1395 // variable, however it's hard to distingish these from 1396 // specials such as @llvm.frameaddress that require a constant. 1397 if (isa<IntrinsicInst>(I)) 1398 return false; 1399 1400 // Constant bundle operands may need to retain their constant-ness for 1401 // correctness. 1402 if (ImmutableCallSite(I).isBundleOperand(OpIdx)) 1403 return false; 1404 1405 return true; 1406 1407 case Instruction::ShuffleVector: 1408 // Shufflevector masks are constant. 1409 return OpIdx != 2; 1410 case Instruction::ExtractValue: 1411 case Instruction::InsertValue: 1412 // All operands apart from the first are constant. 1413 return OpIdx == 0; 1414 case Instruction::Alloca: 1415 return false; 1416 case Instruction::GetElementPtr: 1417 if (OpIdx == 0) 1418 return true; 1419 gep_type_iterator It = std::next(gep_type_begin(I), OpIdx - 1); 1420 return It.isSequential(); 1421 } 1422 } 1423 1424 // All instructions in Insts belong to different blocks that all unconditionally 1425 // branch to a common successor. Analyze each instruction and return true if it 1426 // would be possible to sink them into their successor, creating one common 1427 // instruction instead. For every value that would be required to be provided by 1428 // PHI node (because an operand varies in each input block), add to PHIOperands. 1429 static bool canSinkInstructions( 1430 ArrayRef<Instruction *> Insts, 1431 DenseMap<Instruction *, SmallVector<Value *, 4>> &PHIOperands) { 1432 // Prune out obviously bad instructions to move. Any non-store instruction 1433 // must have exactly one use, and we check later that use is by a single, 1434 // common PHI instruction in the successor. 1435 for (auto *I : Insts) { 1436 // These instructions may change or break semantics if moved. 1437 if (isa<PHINode>(I) || I->isEHPad() || isa<AllocaInst>(I) || 1438 I->getType()->isTokenTy()) 1439 return false; 1440 // Everything must have only one use too, apart from stores which 1441 // have no uses. 1442 if (!isa<StoreInst>(I) && !I->hasOneUse()) 1443 return false; 1444 } 1445 1446 const Instruction *I0 = Insts.front(); 1447 for (auto *I : Insts) 1448 if (!I->isSameOperationAs(I0)) 1449 return false; 1450 1451 // All instructions in Insts are known to be the same opcode. If they aren't 1452 // stores, check the only user of each is a PHI or in the same block as the 1453 // instruction, because if a user is in the same block as an instruction 1454 // we're contemplating sinking, it must already be determined to be sinkable. 1455 if (!isa<StoreInst>(I0)) { 1456 auto *PNUse = dyn_cast<PHINode>(*I0->user_begin()); 1457 auto *Succ = I0->getParent()->getTerminator()->getSuccessor(0); 1458 if (!all_of(Insts, [&PNUse,&Succ](const Instruction *I) -> bool { 1459 auto *U = cast<Instruction>(*I->user_begin()); 1460 return (PNUse && 1461 PNUse->getParent() == Succ && 1462 PNUse->getIncomingValueForBlock(I->getParent()) == I) || 1463 U->getParent() == I->getParent(); 1464 })) 1465 return false; 1466 } 1467 1468 for (unsigned OI = 0, OE = I0->getNumOperands(); OI != OE; ++OI) { 1469 if (I0->getOperand(OI)->getType()->isTokenTy()) 1470 // Don't touch any operand of token type. 1471 return false; 1472 1473 // Because SROA can't handle speculating stores of selects, try not 1474 // to sink loads or stores of allocas when we'd have to create a PHI for 1475 // the address operand. Also, because it is likely that loads or stores 1476 // of allocas will disappear when Mem2Reg/SROA is run, don't sink them. 1477 // This can cause code churn which can have unintended consequences down 1478 // the line - see https://llvm.org/bugs/show_bug.cgi?id=30244. 1479 // FIXME: This is a workaround for a deficiency in SROA - see 1480 // https://llvm.org/bugs/show_bug.cgi?id=30188 1481 if (OI == 1 && isa<StoreInst>(I0) && 1482 any_of(Insts, [](const Instruction *I) { 1483 return isa<AllocaInst>(I->getOperand(1)); 1484 })) 1485 return false; 1486 if (OI == 0 && isa<LoadInst>(I0) && any_of(Insts, [](const Instruction *I) { 1487 return isa<AllocaInst>(I->getOperand(0)); 1488 })) 1489 return false; 1490 1491 auto SameAsI0 = [&I0, OI](const Instruction *I) { 1492 assert(I->getNumOperands() == I0->getNumOperands()); 1493 return I->getOperand(OI) == I0->getOperand(OI); 1494 }; 1495 if (!all_of(Insts, SameAsI0)) { 1496 if (!canReplaceOperandWithVariable(I0, OI)) 1497 // We can't create a PHI from this GEP. 1498 return false; 1499 // Don't create indirect calls! The called value is the final operand. 1500 if ((isa<CallInst>(I0) || isa<InvokeInst>(I0)) && OI == OE - 1) { 1501 // FIXME: if the call was *already* indirect, we should do this. 1502 return false; 1503 } 1504 for (auto *I : Insts) 1505 PHIOperands[I].push_back(I->getOperand(OI)); 1506 } 1507 } 1508 return true; 1509 } 1510 1511 // Assuming canSinkLastInstruction(Blocks) has returned true, sink the last 1512 // instruction of every block in Blocks to their common successor, commoning 1513 // into one instruction. 1514 static bool sinkLastInstruction(ArrayRef<BasicBlock*> Blocks) { 1515 auto *BBEnd = Blocks[0]->getTerminator()->getSuccessor(0); 1516 1517 // canSinkLastInstruction returning true guarantees that every block has at 1518 // least one non-terminator instruction. 1519 SmallVector<Instruction*,4> Insts; 1520 for (auto *BB : Blocks) { 1521 Instruction *I = BB->getTerminator(); 1522 do { 1523 I = I->getPrevNode(); 1524 } while (isa<DbgInfoIntrinsic>(I) && I != &BB->front()); 1525 if (!isa<DbgInfoIntrinsic>(I)) 1526 Insts.push_back(I); 1527 } 1528 1529 // The only checking we need to do now is that all users of all instructions 1530 // are the same PHI node. canSinkLastInstruction should have checked this but 1531 // it is slightly over-aggressive - it gets confused by commutative instructions 1532 // so double-check it here. 1533 Instruction *I0 = Insts.front(); 1534 if (!isa<StoreInst>(I0)) { 1535 auto *PNUse = dyn_cast<PHINode>(*I0->user_begin()); 1536 if (!all_of(Insts, [&PNUse](const Instruction *I) -> bool { 1537 auto *U = cast<Instruction>(*I->user_begin()); 1538 return U == PNUse; 1539 })) 1540 return false; 1541 } 1542 1543 // We don't need to do any more checking here; canSinkLastInstruction should 1544 // have done it all for us. 1545 SmallVector<Value*, 4> NewOperands; 1546 for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) { 1547 // This check is different to that in canSinkLastInstruction. There, we 1548 // cared about the global view once simplifycfg (and instcombine) have 1549 // completed - it takes into account PHIs that become trivially 1550 // simplifiable. However here we need a more local view; if an operand 1551 // differs we create a PHI and rely on instcombine to clean up the very 1552 // small mess we may make. 1553 bool NeedPHI = any_of(Insts, [&I0, O](const Instruction *I) { 1554 return I->getOperand(O) != I0->getOperand(O); 1555 }); 1556 if (!NeedPHI) { 1557 NewOperands.push_back(I0->getOperand(O)); 1558 continue; 1559 } 1560 1561 // Create a new PHI in the successor block and populate it. 1562 auto *Op = I0->getOperand(O); 1563 assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!"); 1564 auto *PN = PHINode::Create(Op->getType(), Insts.size(), 1565 Op->getName() + ".sink", &BBEnd->front()); 1566 for (auto *I : Insts) 1567 PN->addIncoming(I->getOperand(O), I->getParent()); 1568 NewOperands.push_back(PN); 1569 } 1570 1571 // Arbitrarily use I0 as the new "common" instruction; remap its operands 1572 // and move it to the start of the successor block. 1573 for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) 1574 I0->getOperandUse(O).set(NewOperands[O]); 1575 I0->moveBefore(&*BBEnd->getFirstInsertionPt()); 1576 1577 // Update metadata and IR flags. 1578 for (auto *I : Insts) 1579 if (I != I0) { 1580 combineMetadataForCSE(I0, I); 1581 I0->andIRFlags(I); 1582 } 1583 1584 if (!isa<StoreInst>(I0)) { 1585 // canSinkLastInstruction checked that all instructions were used by 1586 // one and only one PHI node. Find that now, RAUW it to our common 1587 // instruction and nuke it. 1588 assert(I0->hasOneUse()); 1589 auto *PN = cast<PHINode>(*I0->user_begin()); 1590 PN->replaceAllUsesWith(I0); 1591 PN->eraseFromParent(); 1592 } 1593 1594 // Finally nuke all instructions apart from the common instruction. 1595 for (auto *I : Insts) 1596 if (I != I0) 1597 I->eraseFromParent(); 1598 1599 return true; 1600 } 1601 1602 namespace { 1603 1604 // LockstepReverseIterator - Iterates through instructions 1605 // in a set of blocks in reverse order from the first non-terminator. 1606 // For example (assume all blocks have size n): 1607 // LockstepReverseIterator I([B1, B2, B3]); 1608 // *I-- = [B1[n], B2[n], B3[n]]; 1609 // *I-- = [B1[n-1], B2[n-1], B3[n-1]]; 1610 // *I-- = [B1[n-2], B2[n-2], B3[n-2]]; 1611 // ... 1612 class LockstepReverseIterator { 1613 ArrayRef<BasicBlock*> Blocks; 1614 SmallVector<Instruction*,4> Insts; 1615 bool Fail; 1616 public: 1617 LockstepReverseIterator(ArrayRef<BasicBlock*> Blocks) : 1618 Blocks(Blocks) { 1619 reset(); 1620 } 1621 1622 void reset() { 1623 Fail = false; 1624 Insts.clear(); 1625 for (auto *BB : Blocks) { 1626 Instruction *Inst = BB->getTerminator(); 1627 for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);) 1628 Inst = Inst->getPrevNode(); 1629 if (!Inst) { 1630 // Block wasn't big enough. 1631 Fail = true; 1632 return; 1633 } 1634 Insts.push_back(Inst); 1635 } 1636 } 1637 1638 bool isValid() const { 1639 return !Fail; 1640 } 1641 1642 void operator -- () { 1643 if (Fail) 1644 return; 1645 for (auto *&Inst : Insts) { 1646 for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);) 1647 Inst = Inst->getPrevNode(); 1648 // Already at beginning of block. 1649 if (!Inst) { 1650 Fail = true; 1651 return; 1652 } 1653 } 1654 } 1655 1656 ArrayRef<Instruction*> operator * () const { 1657 return Insts; 1658 } 1659 }; 1660 1661 } // end anonymous namespace 1662 1663 /// Given an unconditional branch that goes to BBEnd, 1664 /// check whether BBEnd has only two predecessors and the other predecessor 1665 /// ends with an unconditional branch. If it is true, sink any common code 1666 /// in the two predecessors to BBEnd. 1667 static bool SinkThenElseCodeToEnd(BranchInst *BI1) { 1668 assert(BI1->isUnconditional()); 1669 BasicBlock *BBEnd = BI1->getSuccessor(0); 1670 1671 // We support two situations: 1672 // (1) all incoming arcs are unconditional 1673 // (2) one incoming arc is conditional 1674 // 1675 // (2) is very common in switch defaults and 1676 // else-if patterns; 1677 // 1678 // if (a) f(1); 1679 // else if (b) f(2); 1680 // 1681 // produces: 1682 // 1683 // [if] 1684 // / \ 1685 // [f(1)] [if] 1686 // | | \ 1687 // | | \ 1688 // | [f(2)]| 1689 // \ | / 1690 // [ end ] 1691 // 1692 // [end] has two unconditional predecessor arcs and one conditional. The 1693 // conditional refers to the implicit empty 'else' arc. This conditional 1694 // arc can also be caused by an empty default block in a switch. 1695 // 1696 // In this case, we attempt to sink code from all *unconditional* arcs. 1697 // If we can sink instructions from these arcs (determined during the scan 1698 // phase below) we insert a common successor for all unconditional arcs and 1699 // connect that to [end], to enable sinking: 1700 // 1701 // [if] 1702 // / \ 1703 // [x(1)] [if] 1704 // | | \ 1705 // | | \ 1706 // | [x(2)] | 1707 // \ / | 1708 // [sink.split] | 1709 // \ / 1710 // [ end ] 1711 // 1712 SmallVector<BasicBlock*,4> UnconditionalPreds; 1713 Instruction *Cond = nullptr; 1714 for (auto *B : predecessors(BBEnd)) { 1715 auto *T = B->getTerminator(); 1716 if (isa<BranchInst>(T) && cast<BranchInst>(T)->isUnconditional()) 1717 UnconditionalPreds.push_back(B); 1718 else if ((isa<BranchInst>(T) || isa<SwitchInst>(T)) && !Cond) 1719 Cond = T; 1720 else 1721 return false; 1722 } 1723 if (UnconditionalPreds.size() < 2) 1724 return false; 1725 1726 bool Changed = false; 1727 // We take a two-step approach to tail sinking. First we scan from the end of 1728 // each block upwards in lockstep. If the n'th instruction from the end of each 1729 // block can be sunk, those instructions are added to ValuesToSink and we 1730 // carry on. If we can sink an instruction but need to PHI-merge some operands 1731 // (because they're not identical in each instruction) we add these to 1732 // PHIOperands. 1733 unsigned ScanIdx = 0; 1734 SmallPtrSet<Value*,4> InstructionsToSink; 1735 DenseMap<Instruction*, SmallVector<Value*,4>> PHIOperands; 1736 LockstepReverseIterator LRI(UnconditionalPreds); 1737 while (LRI.isValid() && 1738 canSinkInstructions(*LRI, PHIOperands)) { 1739 DEBUG(dbgs() << "SINK: instruction can be sunk: " << *(*LRI)[0] << "\n"); 1740 InstructionsToSink.insert((*LRI).begin(), (*LRI).end()); 1741 ++ScanIdx; 1742 --LRI; 1743 } 1744 1745 auto ProfitableToSinkInstruction = [&](LockstepReverseIterator &LRI) { 1746 unsigned NumPHIdValues = 0; 1747 for (auto *I : *LRI) 1748 for (auto *V : PHIOperands[I]) 1749 if (InstructionsToSink.count(V) == 0) 1750 ++NumPHIdValues; 1751 DEBUG(dbgs() << "SINK: #phid values: " << NumPHIdValues << "\n"); 1752 unsigned NumPHIInsts = NumPHIdValues / UnconditionalPreds.size(); 1753 if ((NumPHIdValues % UnconditionalPreds.size()) != 0) 1754 NumPHIInsts++; 1755 1756 return NumPHIInsts <= 1; 1757 }; 1758 1759 if (ScanIdx > 0 && Cond) { 1760 // Check if we would actually sink anything first! This mutates the CFG and 1761 // adds an extra block. The goal in doing this is to allow instructions that 1762 // couldn't be sunk before to be sunk - obviously, speculatable instructions 1763 // (such as trunc, add) can be sunk and predicated already. So we check that 1764 // we're going to sink at least one non-speculatable instruction. 1765 LRI.reset(); 1766 unsigned Idx = 0; 1767 bool Profitable = false; 1768 while (ProfitableToSinkInstruction(LRI) && Idx < ScanIdx) { 1769 if (!isSafeToSpeculativelyExecute((*LRI)[0])) { 1770 Profitable = true; 1771 break; 1772 } 1773 --LRI; 1774 ++Idx; 1775 } 1776 if (!Profitable) 1777 return false; 1778 1779 DEBUG(dbgs() << "SINK: Splitting edge\n"); 1780 // We have a conditional edge and we're going to sink some instructions. 1781 // Insert a new block postdominating all blocks we're going to sink from. 1782 if (!SplitBlockPredecessors(BI1->getSuccessor(0), UnconditionalPreds, 1783 ".sink.split")) 1784 // Edges couldn't be split. 1785 return false; 1786 Changed = true; 1787 } 1788 1789 // Now that we've analyzed all potential sinking candidates, perform the 1790 // actual sink. We iteratively sink the last non-terminator of the source 1791 // blocks into their common successor unless doing so would require too 1792 // many PHI instructions to be generated (currently only one PHI is allowed 1793 // per sunk instruction). 1794 // 1795 // We can use InstructionsToSink to discount values needing PHI-merging that will 1796 // actually be sunk in a later iteration. This allows us to be more 1797 // aggressive in what we sink. This does allow a false positive where we 1798 // sink presuming a later value will also be sunk, but stop half way through 1799 // and never actually sink it which means we produce more PHIs than intended. 1800 // This is unlikely in practice though. 1801 for (unsigned SinkIdx = 0; SinkIdx != ScanIdx; ++SinkIdx) { 1802 DEBUG(dbgs() << "SINK: Sink: " 1803 << *UnconditionalPreds[0]->getTerminator()->getPrevNode() 1804 << "\n"); 1805 1806 // Because we've sunk every instruction in turn, the current instruction to 1807 // sink is always at index 0. 1808 LRI.reset(); 1809 if (!ProfitableToSinkInstruction(LRI)) { 1810 // Too many PHIs would be created. 1811 DEBUG(dbgs() << "SINK: stopping here, too many PHIs would be created!\n"); 1812 break; 1813 } 1814 1815 if (!sinkLastInstruction(UnconditionalPreds)) 1816 return Changed; 1817 NumSinkCommons++; 1818 Changed = true; 1819 } 1820 return Changed; 1821 } 1822 1823 /// \brief Determine if we can hoist sink a sole store instruction out of a 1824 /// conditional block. 1825 /// 1826 /// We are looking for code like the following: 1827 /// BrBB: 1828 /// store i32 %add, i32* %arrayidx2 1829 /// ... // No other stores or function calls (we could be calling a memory 1830 /// ... // function). 1831 /// %cmp = icmp ult %x, %y 1832 /// br i1 %cmp, label %EndBB, label %ThenBB 1833 /// ThenBB: 1834 /// store i32 %add5, i32* %arrayidx2 1835 /// br label EndBB 1836 /// EndBB: 1837 /// ... 1838 /// We are going to transform this into: 1839 /// BrBB: 1840 /// store i32 %add, i32* %arrayidx2 1841 /// ... // 1842 /// %cmp = icmp ult %x, %y 1843 /// %add.add5 = select i1 %cmp, i32 %add, %add5 1844 /// store i32 %add.add5, i32* %arrayidx2 1845 /// ... 1846 /// 1847 /// \return The pointer to the value of the previous store if the store can be 1848 /// hoisted into the predecessor block. 0 otherwise. 1849 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB, 1850 BasicBlock *StoreBB, BasicBlock *EndBB) { 1851 StoreInst *StoreToHoist = dyn_cast<StoreInst>(I); 1852 if (!StoreToHoist) 1853 return nullptr; 1854 1855 // Volatile or atomic. 1856 if (!StoreToHoist->isSimple()) 1857 return nullptr; 1858 1859 Value *StorePtr = StoreToHoist->getPointerOperand(); 1860 1861 // Look for a store to the same pointer in BrBB. 1862 unsigned MaxNumInstToLookAt = 9; 1863 for (Instruction &CurI : reverse(*BrBB)) { 1864 if (!MaxNumInstToLookAt) 1865 break; 1866 // Skip debug info. 1867 if (isa<DbgInfoIntrinsic>(CurI)) 1868 continue; 1869 --MaxNumInstToLookAt; 1870 1871 // Could be calling an instruction that affects memory like free(). 1872 if (CurI.mayHaveSideEffects() && !isa<StoreInst>(CurI)) 1873 return nullptr; 1874 1875 if (auto *SI = dyn_cast<StoreInst>(&CurI)) { 1876 // Found the previous store make sure it stores to the same location. 1877 if (SI->getPointerOperand() == StorePtr) 1878 // Found the previous store, return its value operand. 1879 return SI->getValueOperand(); 1880 return nullptr; // Unknown store. 1881 } 1882 } 1883 1884 return nullptr; 1885 } 1886 1887 /// \brief Speculate a conditional basic block flattening the CFG. 1888 /// 1889 /// Note that this is a very risky transform currently. Speculating 1890 /// instructions like this is most often not desirable. Instead, there is an MI 1891 /// pass which can do it with full awareness of the resource constraints. 1892 /// However, some cases are "obvious" and we should do directly. An example of 1893 /// this is speculating a single, reasonably cheap instruction. 1894 /// 1895 /// There is only one distinct advantage to flattening the CFG at the IR level: 1896 /// it makes very common but simplistic optimizations such as are common in 1897 /// instcombine and the DAG combiner more powerful by removing CFG edges and 1898 /// modeling their effects with easier to reason about SSA value graphs. 1899 /// 1900 /// 1901 /// An illustration of this transform is turning this IR: 1902 /// \code 1903 /// BB: 1904 /// %cmp = icmp ult %x, %y 1905 /// br i1 %cmp, label %EndBB, label %ThenBB 1906 /// ThenBB: 1907 /// %sub = sub %x, %y 1908 /// br label BB2 1909 /// EndBB: 1910 /// %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ] 1911 /// ... 1912 /// \endcode 1913 /// 1914 /// Into this IR: 1915 /// \code 1916 /// BB: 1917 /// %cmp = icmp ult %x, %y 1918 /// %sub = sub %x, %y 1919 /// %cond = select i1 %cmp, 0, %sub 1920 /// ... 1921 /// \endcode 1922 /// 1923 /// \returns true if the conditional block is removed. 1924 static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB, 1925 const TargetTransformInfo &TTI) { 1926 // Be conservative for now. FP select instruction can often be expensive. 1927 Value *BrCond = BI->getCondition(); 1928 if (isa<FCmpInst>(BrCond)) 1929 return false; 1930 1931 BasicBlock *BB = BI->getParent(); 1932 BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0); 1933 1934 // If ThenBB is actually on the false edge of the conditional branch, remember 1935 // to swap the select operands later. 1936 bool Invert = false; 1937 if (ThenBB != BI->getSuccessor(0)) { 1938 assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?"); 1939 Invert = true; 1940 } 1941 assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block"); 1942 1943 // Keep a count of how many times instructions are used within CondBB when 1944 // they are candidates for sinking into CondBB. Specifically: 1945 // - They are defined in BB, and 1946 // - They have no side effects, and 1947 // - All of their uses are in CondBB. 1948 SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts; 1949 1950 unsigned SpeculationCost = 0; 1951 Value *SpeculatedStoreValue = nullptr; 1952 StoreInst *SpeculatedStore = nullptr; 1953 for (BasicBlock::iterator BBI = ThenBB->begin(), 1954 BBE = std::prev(ThenBB->end()); 1955 BBI != BBE; ++BBI) { 1956 Instruction *I = &*BBI; 1957 // Skip debug info. 1958 if (isa<DbgInfoIntrinsic>(I)) 1959 continue; 1960 1961 // Only speculatively execute a single instruction (not counting the 1962 // terminator) for now. 1963 ++SpeculationCost; 1964 if (SpeculationCost > 1) 1965 return false; 1966 1967 // Don't hoist the instruction if it's unsafe or expensive. 1968 if (!isSafeToSpeculativelyExecute(I) && 1969 !(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore( 1970 I, BB, ThenBB, EndBB)))) 1971 return false; 1972 if (!SpeculatedStoreValue && 1973 ComputeSpeculationCost(I, TTI) > 1974 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic) 1975 return false; 1976 1977 // Store the store speculation candidate. 1978 if (SpeculatedStoreValue) 1979 SpeculatedStore = cast<StoreInst>(I); 1980 1981 // Do not hoist the instruction if any of its operands are defined but not 1982 // used in BB. The transformation will prevent the operand from 1983 // being sunk into the use block. 1984 for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) { 1985 Instruction *OpI = dyn_cast<Instruction>(*i); 1986 if (!OpI || OpI->getParent() != BB || OpI->mayHaveSideEffects()) 1987 continue; // Not a candidate for sinking. 1988 1989 ++SinkCandidateUseCounts[OpI]; 1990 } 1991 } 1992 1993 // Consider any sink candidates which are only used in CondBB as costs for 1994 // speculation. Note, while we iterate over a DenseMap here, we are summing 1995 // and so iteration order isn't significant. 1996 for (SmallDenseMap<Instruction *, unsigned, 4>::iterator 1997 I = SinkCandidateUseCounts.begin(), 1998 E = SinkCandidateUseCounts.end(); 1999 I != E; ++I) 2000 if (I->first->getNumUses() == I->second) { 2001 ++SpeculationCost; 2002 if (SpeculationCost > 1) 2003 return false; 2004 } 2005 2006 // Check that the PHI nodes can be converted to selects. 2007 bool HaveRewritablePHIs = false; 2008 for (BasicBlock::iterator I = EndBB->begin(); 2009 PHINode *PN = dyn_cast<PHINode>(I); ++I) { 2010 Value *OrigV = PN->getIncomingValueForBlock(BB); 2011 Value *ThenV = PN->getIncomingValueForBlock(ThenBB); 2012 2013 // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf. 2014 // Skip PHIs which are trivial. 2015 if (ThenV == OrigV) 2016 continue; 2017 2018 // Don't convert to selects if we could remove undefined behavior instead. 2019 if (passingValueIsAlwaysUndefined(OrigV, PN) || 2020 passingValueIsAlwaysUndefined(ThenV, PN)) 2021 return false; 2022 2023 HaveRewritablePHIs = true; 2024 ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV); 2025 ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV); 2026 if (!OrigCE && !ThenCE) 2027 continue; // Known safe and cheap. 2028 2029 if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE)) || 2030 (OrigCE && !isSafeToSpeculativelyExecute(OrigCE))) 2031 return false; 2032 unsigned OrigCost = OrigCE ? ComputeSpeculationCost(OrigCE, TTI) : 0; 2033 unsigned ThenCost = ThenCE ? ComputeSpeculationCost(ThenCE, TTI) : 0; 2034 unsigned MaxCost = 2035 2 * PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 2036 if (OrigCost + ThenCost > MaxCost) 2037 return false; 2038 2039 // Account for the cost of an unfolded ConstantExpr which could end up 2040 // getting expanded into Instructions. 2041 // FIXME: This doesn't account for how many operations are combined in the 2042 // constant expression. 2043 ++SpeculationCost; 2044 if (SpeculationCost > 1) 2045 return false; 2046 } 2047 2048 // If there are no PHIs to process, bail early. This helps ensure idempotence 2049 // as well. 2050 if (!HaveRewritablePHIs && !(HoistCondStores && SpeculatedStoreValue)) 2051 return false; 2052 2053 // If we get here, we can hoist the instruction and if-convert. 2054 DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";); 2055 2056 // Insert a select of the value of the speculated store. 2057 if (SpeculatedStoreValue) { 2058 IRBuilder<NoFolder> Builder(BI); 2059 Value *TrueV = SpeculatedStore->getValueOperand(); 2060 Value *FalseV = SpeculatedStoreValue; 2061 if (Invert) 2062 std::swap(TrueV, FalseV); 2063 Value *S = Builder.CreateSelect( 2064 BrCond, TrueV, FalseV, TrueV->getName() + "." + FalseV->getName(), BI); 2065 SpeculatedStore->setOperand(0, S); 2066 } 2067 2068 // Metadata can be dependent on the condition we are hoisting above. 2069 // Conservatively strip all metadata on the instruction. 2070 for (auto &I : *ThenBB) 2071 I.dropUnknownNonDebugMetadata(); 2072 2073 // Hoist the instructions. 2074 BB->getInstList().splice(BI->getIterator(), ThenBB->getInstList(), 2075 ThenBB->begin(), std::prev(ThenBB->end())); 2076 2077 // Insert selects and rewrite the PHI operands. 2078 IRBuilder<NoFolder> Builder(BI); 2079 for (BasicBlock::iterator I = EndBB->begin(); 2080 PHINode *PN = dyn_cast<PHINode>(I); ++I) { 2081 unsigned OrigI = PN->getBasicBlockIndex(BB); 2082 unsigned ThenI = PN->getBasicBlockIndex(ThenBB); 2083 Value *OrigV = PN->getIncomingValue(OrigI); 2084 Value *ThenV = PN->getIncomingValue(ThenI); 2085 2086 // Skip PHIs which are trivial. 2087 if (OrigV == ThenV) 2088 continue; 2089 2090 // Create a select whose true value is the speculatively executed value and 2091 // false value is the preexisting value. Swap them if the branch 2092 // destinations were inverted. 2093 Value *TrueV = ThenV, *FalseV = OrigV; 2094 if (Invert) 2095 std::swap(TrueV, FalseV); 2096 Value *V = Builder.CreateSelect( 2097 BrCond, TrueV, FalseV, TrueV->getName() + "." + FalseV->getName(), BI); 2098 PN->setIncomingValue(OrigI, V); 2099 PN->setIncomingValue(ThenI, V); 2100 } 2101 2102 ++NumSpeculations; 2103 return true; 2104 } 2105 2106 /// Return true if we can thread a branch across this block. 2107 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) { 2108 BranchInst *BI = cast<BranchInst>(BB->getTerminator()); 2109 unsigned Size = 0; 2110 2111 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) { 2112 if (isa<DbgInfoIntrinsic>(BBI)) 2113 continue; 2114 if (Size > 10) 2115 return false; // Don't clone large BB's. 2116 ++Size; 2117 2118 // We can only support instructions that do not define values that are 2119 // live outside of the current basic block. 2120 for (User *U : BBI->users()) { 2121 Instruction *UI = cast<Instruction>(U); 2122 if (UI->getParent() != BB || isa<PHINode>(UI)) 2123 return false; 2124 } 2125 2126 // Looks ok, continue checking. 2127 } 2128 2129 return true; 2130 } 2131 2132 /// If we have a conditional branch on a PHI node value that is defined in the 2133 /// same block as the branch and if any PHI entries are constants, thread edges 2134 /// corresponding to that entry to be branches to their ultimate destination. 2135 static bool FoldCondBranchOnPHI(BranchInst *BI, const DataLayout &DL) { 2136 BasicBlock *BB = BI->getParent(); 2137 PHINode *PN = dyn_cast<PHINode>(BI->getCondition()); 2138 // NOTE: we currently cannot transform this case if the PHI node is used 2139 // outside of the block. 2140 if (!PN || PN->getParent() != BB || !PN->hasOneUse()) 2141 return false; 2142 2143 // Degenerate case of a single entry PHI. 2144 if (PN->getNumIncomingValues() == 1) { 2145 FoldSingleEntryPHINodes(PN->getParent()); 2146 return true; 2147 } 2148 2149 // Now we know that this block has multiple preds and two succs. 2150 if (!BlockIsSimpleEnoughToThreadThrough(BB)) 2151 return false; 2152 2153 // Can't fold blocks that contain noduplicate or convergent calls. 2154 if (any_of(*BB, [](const Instruction &I) { 2155 const CallInst *CI = dyn_cast<CallInst>(&I); 2156 return CI && (CI->cannotDuplicate() || CI->isConvergent()); 2157 })) 2158 return false; 2159 2160 // Okay, this is a simple enough basic block. See if any phi values are 2161 // constants. 2162 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 2163 ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i)); 2164 if (!CB || !CB->getType()->isIntegerTy(1)) 2165 continue; 2166 2167 // Okay, we now know that all edges from PredBB should be revectored to 2168 // branch to RealDest. 2169 BasicBlock *PredBB = PN->getIncomingBlock(i); 2170 BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue()); 2171 2172 if (RealDest == BB) 2173 continue; // Skip self loops. 2174 // Skip if the predecessor's terminator is an indirect branch. 2175 if (isa<IndirectBrInst>(PredBB->getTerminator())) 2176 continue; 2177 2178 // The dest block might have PHI nodes, other predecessors and other 2179 // difficult cases. Instead of being smart about this, just insert a new 2180 // block that jumps to the destination block, effectively splitting 2181 // the edge we are about to create. 2182 BasicBlock *EdgeBB = 2183 BasicBlock::Create(BB->getContext(), RealDest->getName() + ".critedge", 2184 RealDest->getParent(), RealDest); 2185 BranchInst::Create(RealDest, EdgeBB); 2186 2187 // Update PHI nodes. 2188 AddPredecessorToBlock(RealDest, EdgeBB, BB); 2189 2190 // BB may have instructions that are being threaded over. Clone these 2191 // instructions into EdgeBB. We know that there will be no uses of the 2192 // cloned instructions outside of EdgeBB. 2193 BasicBlock::iterator InsertPt = EdgeBB->begin(); 2194 DenseMap<Value *, Value *> TranslateMap; // Track translated values. 2195 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) { 2196 if (PHINode *PN = dyn_cast<PHINode>(BBI)) { 2197 TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB); 2198 continue; 2199 } 2200 // Clone the instruction. 2201 Instruction *N = BBI->clone(); 2202 if (BBI->hasName()) 2203 N->setName(BBI->getName() + ".c"); 2204 2205 // Update operands due to translation. 2206 for (User::op_iterator i = N->op_begin(), e = N->op_end(); i != e; ++i) { 2207 DenseMap<Value *, Value *>::iterator PI = TranslateMap.find(*i); 2208 if (PI != TranslateMap.end()) 2209 *i = PI->second; 2210 } 2211 2212 // Check for trivial simplification. 2213 if (Value *V = SimplifyInstruction(N, DL)) { 2214 if (!BBI->use_empty()) 2215 TranslateMap[&*BBI] = V; 2216 if (!N->mayHaveSideEffects()) { 2217 delete N; // Instruction folded away, don't need actual inst 2218 N = nullptr; 2219 } 2220 } else { 2221 if (!BBI->use_empty()) 2222 TranslateMap[&*BBI] = N; 2223 } 2224 // Insert the new instruction into its new home. 2225 if (N) 2226 EdgeBB->getInstList().insert(InsertPt, N); 2227 } 2228 2229 // Loop over all of the edges from PredBB to BB, changing them to branch 2230 // to EdgeBB instead. 2231 TerminatorInst *PredBBTI = PredBB->getTerminator(); 2232 for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i) 2233 if (PredBBTI->getSuccessor(i) == BB) { 2234 BB->removePredecessor(PredBB); 2235 PredBBTI->setSuccessor(i, EdgeBB); 2236 } 2237 2238 // Recurse, simplifying any other constants. 2239 return FoldCondBranchOnPHI(BI, DL) | true; 2240 } 2241 2242 return false; 2243 } 2244 2245 /// Given a BB that starts with the specified two-entry PHI node, 2246 /// see if we can eliminate it. 2247 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI, 2248 const DataLayout &DL) { 2249 // Ok, this is a two entry PHI node. Check to see if this is a simple "if 2250 // statement", which has a very simple dominance structure. Basically, we 2251 // are trying to find the condition that is being branched on, which 2252 // subsequently causes this merge to happen. We really want control 2253 // dependence information for this check, but simplifycfg can't keep it up 2254 // to date, and this catches most of the cases we care about anyway. 2255 BasicBlock *BB = PN->getParent(); 2256 BasicBlock *IfTrue, *IfFalse; 2257 Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse); 2258 if (!IfCond || 2259 // Don't bother if the branch will be constant folded trivially. 2260 isa<ConstantInt>(IfCond)) 2261 return false; 2262 2263 // Okay, we found that we can merge this two-entry phi node into a select. 2264 // Doing so would require us to fold *all* two entry phi nodes in this block. 2265 // At some point this becomes non-profitable (particularly if the target 2266 // doesn't support cmov's). Only do this transformation if there are two or 2267 // fewer PHI nodes in this block. 2268 unsigned NumPhis = 0; 2269 for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I) 2270 if (NumPhis > 2) 2271 return false; 2272 2273 // Loop over the PHI's seeing if we can promote them all to select 2274 // instructions. While we are at it, keep track of the instructions 2275 // that need to be moved to the dominating block. 2276 SmallPtrSet<Instruction *, 4> AggressiveInsts; 2277 unsigned MaxCostVal0 = PHINodeFoldingThreshold, 2278 MaxCostVal1 = PHINodeFoldingThreshold; 2279 MaxCostVal0 *= TargetTransformInfo::TCC_Basic; 2280 MaxCostVal1 *= TargetTransformInfo::TCC_Basic; 2281 2282 for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) { 2283 PHINode *PN = cast<PHINode>(II++); 2284 if (Value *V = SimplifyInstruction(PN, DL)) { 2285 PN->replaceAllUsesWith(V); 2286 PN->eraseFromParent(); 2287 continue; 2288 } 2289 2290 if (!DominatesMergePoint(PN->getIncomingValue(0), BB, &AggressiveInsts, 2291 MaxCostVal0, TTI) || 2292 !DominatesMergePoint(PN->getIncomingValue(1), BB, &AggressiveInsts, 2293 MaxCostVal1, TTI)) 2294 return false; 2295 } 2296 2297 // If we folded the first phi, PN dangles at this point. Refresh it. If 2298 // we ran out of PHIs then we simplified them all. 2299 PN = dyn_cast<PHINode>(BB->begin()); 2300 if (!PN) 2301 return true; 2302 2303 // Don't fold i1 branches on PHIs which contain binary operators. These can 2304 // often be turned into switches and other things. 2305 if (PN->getType()->isIntegerTy(1) && 2306 (isa<BinaryOperator>(PN->getIncomingValue(0)) || 2307 isa<BinaryOperator>(PN->getIncomingValue(1)) || 2308 isa<BinaryOperator>(IfCond))) 2309 return false; 2310 2311 // If all PHI nodes are promotable, check to make sure that all instructions 2312 // in the predecessor blocks can be promoted as well. If not, we won't be able 2313 // to get rid of the control flow, so it's not worth promoting to select 2314 // instructions. 2315 BasicBlock *DomBlock = nullptr; 2316 BasicBlock *IfBlock1 = PN->getIncomingBlock(0); 2317 BasicBlock *IfBlock2 = PN->getIncomingBlock(1); 2318 if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) { 2319 IfBlock1 = nullptr; 2320 } else { 2321 DomBlock = *pred_begin(IfBlock1); 2322 for (BasicBlock::iterator I = IfBlock1->begin(); !isa<TerminatorInst>(I); 2323 ++I) 2324 if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) { 2325 // This is not an aggressive instruction that we can promote. 2326 // Because of this, we won't be able to get rid of the control flow, so 2327 // the xform is not worth it. 2328 return false; 2329 } 2330 } 2331 2332 if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) { 2333 IfBlock2 = nullptr; 2334 } else { 2335 DomBlock = *pred_begin(IfBlock2); 2336 for (BasicBlock::iterator I = IfBlock2->begin(); !isa<TerminatorInst>(I); 2337 ++I) 2338 if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) { 2339 // This is not an aggressive instruction that we can promote. 2340 // Because of this, we won't be able to get rid of the control flow, so 2341 // the xform is not worth it. 2342 return false; 2343 } 2344 } 2345 2346 DEBUG(dbgs() << "FOUND IF CONDITION! " << *IfCond << " T: " 2347 << IfTrue->getName() << " F: " << IfFalse->getName() << "\n"); 2348 2349 // If we can still promote the PHI nodes after this gauntlet of tests, 2350 // do all of the PHI's now. 2351 Instruction *InsertPt = DomBlock->getTerminator(); 2352 IRBuilder<NoFolder> Builder(InsertPt); 2353 2354 // Move all 'aggressive' instructions, which are defined in the 2355 // conditional parts of the if's up to the dominating block. 2356 if (IfBlock1) { 2357 for (auto &I : *IfBlock1) 2358 I.dropUnknownNonDebugMetadata(); 2359 DomBlock->getInstList().splice(InsertPt->getIterator(), 2360 IfBlock1->getInstList(), IfBlock1->begin(), 2361 IfBlock1->getTerminator()->getIterator()); 2362 } 2363 if (IfBlock2) { 2364 for (auto &I : *IfBlock2) 2365 I.dropUnknownNonDebugMetadata(); 2366 DomBlock->getInstList().splice(InsertPt->getIterator(), 2367 IfBlock2->getInstList(), IfBlock2->begin(), 2368 IfBlock2->getTerminator()->getIterator()); 2369 } 2370 2371 while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) { 2372 // Change the PHI node into a select instruction. 2373 Value *TrueVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse); 2374 Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue); 2375 2376 Value *Sel = Builder.CreateSelect(IfCond, TrueVal, FalseVal, "", InsertPt); 2377 PN->replaceAllUsesWith(Sel); 2378 Sel->takeName(PN); 2379 PN->eraseFromParent(); 2380 } 2381 2382 // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement 2383 // has been flattened. Change DomBlock to jump directly to our new block to 2384 // avoid other simplifycfg's kicking in on the diamond. 2385 TerminatorInst *OldTI = DomBlock->getTerminator(); 2386 Builder.SetInsertPoint(OldTI); 2387 Builder.CreateBr(BB); 2388 OldTI->eraseFromParent(); 2389 return true; 2390 } 2391 2392 /// If we found a conditional branch that goes to two returning blocks, 2393 /// try to merge them together into one return, 2394 /// introducing a select if the return values disagree. 2395 static bool SimplifyCondBranchToTwoReturns(BranchInst *BI, 2396 IRBuilder<> &Builder) { 2397 assert(BI->isConditional() && "Must be a conditional branch"); 2398 BasicBlock *TrueSucc = BI->getSuccessor(0); 2399 BasicBlock *FalseSucc = BI->getSuccessor(1); 2400 ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator()); 2401 ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator()); 2402 2403 // Check to ensure both blocks are empty (just a return) or optionally empty 2404 // with PHI nodes. If there are other instructions, merging would cause extra 2405 // computation on one path or the other. 2406 if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator()) 2407 return false; 2408 if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator()) 2409 return false; 2410 2411 Builder.SetInsertPoint(BI); 2412 // Okay, we found a branch that is going to two return nodes. If 2413 // there is no return value for this function, just change the 2414 // branch into a return. 2415 if (FalseRet->getNumOperands() == 0) { 2416 TrueSucc->removePredecessor(BI->getParent()); 2417 FalseSucc->removePredecessor(BI->getParent()); 2418 Builder.CreateRetVoid(); 2419 EraseTerminatorInstAndDCECond(BI); 2420 return true; 2421 } 2422 2423 // Otherwise, figure out what the true and false return values are 2424 // so we can insert a new select instruction. 2425 Value *TrueValue = TrueRet->getReturnValue(); 2426 Value *FalseValue = FalseRet->getReturnValue(); 2427 2428 // Unwrap any PHI nodes in the return blocks. 2429 if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue)) 2430 if (TVPN->getParent() == TrueSucc) 2431 TrueValue = TVPN->getIncomingValueForBlock(BI->getParent()); 2432 if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue)) 2433 if (FVPN->getParent() == FalseSucc) 2434 FalseValue = FVPN->getIncomingValueForBlock(BI->getParent()); 2435 2436 // In order for this transformation to be safe, we must be able to 2437 // unconditionally execute both operands to the return. This is 2438 // normally the case, but we could have a potentially-trapping 2439 // constant expression that prevents this transformation from being 2440 // safe. 2441 if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue)) 2442 if (TCV->canTrap()) 2443 return false; 2444 if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue)) 2445 if (FCV->canTrap()) 2446 return false; 2447 2448 // Okay, we collected all the mapped values and checked them for sanity, and 2449 // defined to really do this transformation. First, update the CFG. 2450 TrueSucc->removePredecessor(BI->getParent()); 2451 FalseSucc->removePredecessor(BI->getParent()); 2452 2453 // Insert select instructions where needed. 2454 Value *BrCond = BI->getCondition(); 2455 if (TrueValue) { 2456 // Insert a select if the results differ. 2457 if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) { 2458 } else if (isa<UndefValue>(TrueValue)) { 2459 TrueValue = FalseValue; 2460 } else { 2461 TrueValue = 2462 Builder.CreateSelect(BrCond, TrueValue, FalseValue, "retval", BI); 2463 } 2464 } 2465 2466 Value *RI = 2467 !TrueValue ? Builder.CreateRetVoid() : Builder.CreateRet(TrueValue); 2468 2469 (void)RI; 2470 2471 DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:" 2472 << "\n " << *BI << "NewRet = " << *RI 2473 << "TRUEBLOCK: " << *TrueSucc << "FALSEBLOCK: " << *FalseSucc); 2474 2475 EraseTerminatorInstAndDCECond(BI); 2476 2477 return true; 2478 } 2479 2480 /// Return true if the given instruction is available 2481 /// in its predecessor block. If yes, the instruction will be removed. 2482 static bool checkCSEInPredecessor(Instruction *Inst, BasicBlock *PB) { 2483 if (!isa<BinaryOperator>(Inst) && !isa<CmpInst>(Inst)) 2484 return false; 2485 for (Instruction &I : *PB) { 2486 Instruction *PBI = &I; 2487 // Check whether Inst and PBI generate the same value. 2488 if (Inst->isIdenticalTo(PBI)) { 2489 Inst->replaceAllUsesWith(PBI); 2490 Inst->eraseFromParent(); 2491 return true; 2492 } 2493 } 2494 return false; 2495 } 2496 2497 /// Return true if either PBI or BI has branch weight available, and store 2498 /// the weights in {Pred|Succ}{True|False}Weight. If one of PBI and BI does 2499 /// not have branch weight, use 1:1 as its weight. 2500 static bool extractPredSuccWeights(BranchInst *PBI, BranchInst *BI, 2501 uint64_t &PredTrueWeight, 2502 uint64_t &PredFalseWeight, 2503 uint64_t &SuccTrueWeight, 2504 uint64_t &SuccFalseWeight) { 2505 bool PredHasWeights = 2506 PBI->extractProfMetadata(PredTrueWeight, PredFalseWeight); 2507 bool SuccHasWeights = 2508 BI->extractProfMetadata(SuccTrueWeight, SuccFalseWeight); 2509 if (PredHasWeights || SuccHasWeights) { 2510 if (!PredHasWeights) 2511 PredTrueWeight = PredFalseWeight = 1; 2512 if (!SuccHasWeights) 2513 SuccTrueWeight = SuccFalseWeight = 1; 2514 return true; 2515 } else { 2516 return false; 2517 } 2518 } 2519 2520 /// If this basic block is simple enough, and if a predecessor branches to us 2521 /// and one of our successors, fold the block into the predecessor and use 2522 /// logical operations to pick the right destination. 2523 bool llvm::FoldBranchToCommonDest(BranchInst *BI, unsigned BonusInstThreshold) { 2524 BasicBlock *BB = BI->getParent(); 2525 2526 Instruction *Cond = nullptr; 2527 if (BI->isConditional()) 2528 Cond = dyn_cast<Instruction>(BI->getCondition()); 2529 else { 2530 // For unconditional branch, check for a simple CFG pattern, where 2531 // BB has a single predecessor and BB's successor is also its predecessor's 2532 // successor. If such pattern exisits, check for CSE between BB and its 2533 // predecessor. 2534 if (BasicBlock *PB = BB->getSinglePredecessor()) 2535 if (BranchInst *PBI = dyn_cast<BranchInst>(PB->getTerminator())) 2536 if (PBI->isConditional() && 2537 (BI->getSuccessor(0) == PBI->getSuccessor(0) || 2538 BI->getSuccessor(0) == PBI->getSuccessor(1))) { 2539 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 2540 Instruction *Curr = &*I++; 2541 if (isa<CmpInst>(Curr)) { 2542 Cond = Curr; 2543 break; 2544 } 2545 // Quit if we can't remove this instruction. 2546 if (!checkCSEInPredecessor(Curr, PB)) 2547 return false; 2548 } 2549 } 2550 2551 if (!Cond) 2552 return false; 2553 } 2554 2555 if (!Cond || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) || 2556 Cond->getParent() != BB || !Cond->hasOneUse()) 2557 return false; 2558 2559 // Make sure the instruction after the condition is the cond branch. 2560 BasicBlock::iterator CondIt = ++Cond->getIterator(); 2561 2562 // Ignore dbg intrinsics. 2563 while (isa<DbgInfoIntrinsic>(CondIt)) 2564 ++CondIt; 2565 2566 if (&*CondIt != BI) 2567 return false; 2568 2569 // Only allow this transformation if computing the condition doesn't involve 2570 // too many instructions and these involved instructions can be executed 2571 // unconditionally. We denote all involved instructions except the condition 2572 // as "bonus instructions", and only allow this transformation when the 2573 // number of the bonus instructions does not exceed a certain threshold. 2574 unsigned NumBonusInsts = 0; 2575 for (auto I = BB->begin(); Cond != &*I; ++I) { 2576 // Ignore dbg intrinsics. 2577 if (isa<DbgInfoIntrinsic>(I)) 2578 continue; 2579 if (!I->hasOneUse() || !isSafeToSpeculativelyExecute(&*I)) 2580 return false; 2581 // I has only one use and can be executed unconditionally. 2582 Instruction *User = dyn_cast<Instruction>(I->user_back()); 2583 if (User == nullptr || User->getParent() != BB) 2584 return false; 2585 // I is used in the same BB. Since BI uses Cond and doesn't have more slots 2586 // to use any other instruction, User must be an instruction between next(I) 2587 // and Cond. 2588 ++NumBonusInsts; 2589 // Early exits once we reach the limit. 2590 if (NumBonusInsts > BonusInstThreshold) 2591 return false; 2592 } 2593 2594 // Cond is known to be a compare or binary operator. Check to make sure that 2595 // neither operand is a potentially-trapping constant expression. 2596 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0))) 2597 if (CE->canTrap()) 2598 return false; 2599 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1))) 2600 if (CE->canTrap()) 2601 return false; 2602 2603 // Finally, don't infinitely unroll conditional loops. 2604 BasicBlock *TrueDest = BI->getSuccessor(0); 2605 BasicBlock *FalseDest = (BI->isConditional()) ? BI->getSuccessor(1) : nullptr; 2606 if (TrueDest == BB || FalseDest == BB) 2607 return false; 2608 2609 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 2610 BasicBlock *PredBlock = *PI; 2611 BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator()); 2612 2613 // Check that we have two conditional branches. If there is a PHI node in 2614 // the common successor, verify that the same value flows in from both 2615 // blocks. 2616 SmallVector<PHINode *, 4> PHIs; 2617 if (!PBI || PBI->isUnconditional() || 2618 (BI->isConditional() && !SafeToMergeTerminators(BI, PBI)) || 2619 (!BI->isConditional() && 2620 !isProfitableToFoldUnconditional(BI, PBI, Cond, PHIs))) 2621 continue; 2622 2623 // Determine if the two branches share a common destination. 2624 Instruction::BinaryOps Opc = Instruction::BinaryOpsEnd; 2625 bool InvertPredCond = false; 2626 2627 if (BI->isConditional()) { 2628 if (PBI->getSuccessor(0) == TrueDest) { 2629 Opc = Instruction::Or; 2630 } else if (PBI->getSuccessor(1) == FalseDest) { 2631 Opc = Instruction::And; 2632 } else if (PBI->getSuccessor(0) == FalseDest) { 2633 Opc = Instruction::And; 2634 InvertPredCond = true; 2635 } else if (PBI->getSuccessor(1) == TrueDest) { 2636 Opc = Instruction::Or; 2637 InvertPredCond = true; 2638 } else { 2639 continue; 2640 } 2641 } else { 2642 if (PBI->getSuccessor(0) != TrueDest && PBI->getSuccessor(1) != TrueDest) 2643 continue; 2644 } 2645 2646 DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB); 2647 IRBuilder<> Builder(PBI); 2648 2649 // If we need to invert the condition in the pred block to match, do so now. 2650 if (InvertPredCond) { 2651 Value *NewCond = PBI->getCondition(); 2652 2653 if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) { 2654 CmpInst *CI = cast<CmpInst>(NewCond); 2655 CI->setPredicate(CI->getInversePredicate()); 2656 } else { 2657 NewCond = 2658 Builder.CreateNot(NewCond, PBI->getCondition()->getName() + ".not"); 2659 } 2660 2661 PBI->setCondition(NewCond); 2662 PBI->swapSuccessors(); 2663 } 2664 2665 // If we have bonus instructions, clone them into the predecessor block. 2666 // Note that there may be multiple predecessor blocks, so we cannot move 2667 // bonus instructions to a predecessor block. 2668 ValueToValueMapTy VMap; // maps original values to cloned values 2669 // We already make sure Cond is the last instruction before BI. Therefore, 2670 // all instructions before Cond other than DbgInfoIntrinsic are bonus 2671 // instructions. 2672 for (auto BonusInst = BB->begin(); Cond != &*BonusInst; ++BonusInst) { 2673 if (isa<DbgInfoIntrinsic>(BonusInst)) 2674 continue; 2675 Instruction *NewBonusInst = BonusInst->clone(); 2676 RemapInstruction(NewBonusInst, VMap, 2677 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 2678 VMap[&*BonusInst] = NewBonusInst; 2679 2680 // If we moved a load, we cannot any longer claim any knowledge about 2681 // its potential value. The previous information might have been valid 2682 // only given the branch precondition. 2683 // For an analogous reason, we must also drop all the metadata whose 2684 // semantics we don't understand. 2685 NewBonusInst->dropUnknownNonDebugMetadata(); 2686 2687 PredBlock->getInstList().insert(PBI->getIterator(), NewBonusInst); 2688 NewBonusInst->takeName(&*BonusInst); 2689 BonusInst->setName(BonusInst->getName() + ".old"); 2690 } 2691 2692 // Clone Cond into the predecessor basic block, and or/and the 2693 // two conditions together. 2694 Instruction *New = Cond->clone(); 2695 RemapInstruction(New, VMap, 2696 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 2697 PredBlock->getInstList().insert(PBI->getIterator(), New); 2698 New->takeName(Cond); 2699 Cond->setName(New->getName() + ".old"); 2700 2701 if (BI->isConditional()) { 2702 Instruction *NewCond = cast<Instruction>( 2703 Builder.CreateBinOp(Opc, PBI->getCondition(), New, "or.cond")); 2704 PBI->setCondition(NewCond); 2705 2706 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 2707 bool HasWeights = 2708 extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight, 2709 SuccTrueWeight, SuccFalseWeight); 2710 SmallVector<uint64_t, 8> NewWeights; 2711 2712 if (PBI->getSuccessor(0) == BB) { 2713 if (HasWeights) { 2714 // PBI: br i1 %x, BB, FalseDest 2715 // BI: br i1 %y, TrueDest, FalseDest 2716 // TrueWeight is TrueWeight for PBI * TrueWeight for BI. 2717 NewWeights.push_back(PredTrueWeight * SuccTrueWeight); 2718 // FalseWeight is FalseWeight for PBI * TotalWeight for BI + 2719 // TrueWeight for PBI * FalseWeight for BI. 2720 // We assume that total weights of a BranchInst can fit into 32 bits. 2721 // Therefore, we will not have overflow using 64-bit arithmetic. 2722 NewWeights.push_back(PredFalseWeight * 2723 (SuccFalseWeight + SuccTrueWeight) + 2724 PredTrueWeight * SuccFalseWeight); 2725 } 2726 AddPredecessorToBlock(TrueDest, PredBlock, BB); 2727 PBI->setSuccessor(0, TrueDest); 2728 } 2729 if (PBI->getSuccessor(1) == BB) { 2730 if (HasWeights) { 2731 // PBI: br i1 %x, TrueDest, BB 2732 // BI: br i1 %y, TrueDest, FalseDest 2733 // TrueWeight is TrueWeight for PBI * TotalWeight for BI + 2734 // FalseWeight for PBI * TrueWeight for BI. 2735 NewWeights.push_back(PredTrueWeight * 2736 (SuccFalseWeight + SuccTrueWeight) + 2737 PredFalseWeight * SuccTrueWeight); 2738 // FalseWeight is FalseWeight for PBI * FalseWeight for BI. 2739 NewWeights.push_back(PredFalseWeight * SuccFalseWeight); 2740 } 2741 AddPredecessorToBlock(FalseDest, PredBlock, BB); 2742 PBI->setSuccessor(1, FalseDest); 2743 } 2744 if (NewWeights.size() == 2) { 2745 // Halve the weights if any of them cannot fit in an uint32_t 2746 FitWeights(NewWeights); 2747 2748 SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(), 2749 NewWeights.end()); 2750 PBI->setMetadata( 2751 LLVMContext::MD_prof, 2752 MDBuilder(BI->getContext()).createBranchWeights(MDWeights)); 2753 } else 2754 PBI->setMetadata(LLVMContext::MD_prof, nullptr); 2755 } else { 2756 // Update PHI nodes in the common successors. 2757 for (unsigned i = 0, e = PHIs.size(); i != e; ++i) { 2758 ConstantInt *PBI_C = cast<ConstantInt>( 2759 PHIs[i]->getIncomingValueForBlock(PBI->getParent())); 2760 assert(PBI_C->getType()->isIntegerTy(1)); 2761 Instruction *MergedCond = nullptr; 2762 if (PBI->getSuccessor(0) == TrueDest) { 2763 // Create (PBI_Cond and PBI_C) or (!PBI_Cond and BI_Value) 2764 // PBI_C is true: PBI_Cond or (!PBI_Cond and BI_Value) 2765 // is false: !PBI_Cond and BI_Value 2766 Instruction *NotCond = cast<Instruction>( 2767 Builder.CreateNot(PBI->getCondition(), "not.cond")); 2768 MergedCond = cast<Instruction>( 2769 Builder.CreateBinOp(Instruction::And, NotCond, New, "and.cond")); 2770 if (PBI_C->isOne()) 2771 MergedCond = cast<Instruction>(Builder.CreateBinOp( 2772 Instruction::Or, PBI->getCondition(), MergedCond, "or.cond")); 2773 } else { 2774 // Create (PBI_Cond and BI_Value) or (!PBI_Cond and PBI_C) 2775 // PBI_C is true: (PBI_Cond and BI_Value) or (!PBI_Cond) 2776 // is false: PBI_Cond and BI_Value 2777 MergedCond = cast<Instruction>(Builder.CreateBinOp( 2778 Instruction::And, PBI->getCondition(), New, "and.cond")); 2779 if (PBI_C->isOne()) { 2780 Instruction *NotCond = cast<Instruction>( 2781 Builder.CreateNot(PBI->getCondition(), "not.cond")); 2782 MergedCond = cast<Instruction>(Builder.CreateBinOp( 2783 Instruction::Or, NotCond, MergedCond, "or.cond")); 2784 } 2785 } 2786 // Update PHI Node. 2787 PHIs[i]->setIncomingValue(PHIs[i]->getBasicBlockIndex(PBI->getParent()), 2788 MergedCond); 2789 } 2790 // Change PBI from Conditional to Unconditional. 2791 BranchInst *New_PBI = BranchInst::Create(TrueDest, PBI); 2792 EraseTerminatorInstAndDCECond(PBI); 2793 PBI = New_PBI; 2794 } 2795 2796 // If BI was a loop latch, it may have had associated loop metadata. 2797 // We need to copy it to the new latch, that is, PBI. 2798 if (MDNode *LoopMD = BI->getMetadata(LLVMContext::MD_loop)) 2799 PBI->setMetadata(LLVMContext::MD_loop, LoopMD); 2800 2801 // TODO: If BB is reachable from all paths through PredBlock, then we 2802 // could replace PBI's branch probabilities with BI's. 2803 2804 // Copy any debug value intrinsics into the end of PredBlock. 2805 for (Instruction &I : *BB) 2806 if (isa<DbgInfoIntrinsic>(I)) 2807 I.clone()->insertBefore(PBI); 2808 2809 return true; 2810 } 2811 return false; 2812 } 2813 2814 // If there is only one store in BB1 and BB2, return it, otherwise return 2815 // nullptr. 2816 static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) { 2817 StoreInst *S = nullptr; 2818 for (auto *BB : {BB1, BB2}) { 2819 if (!BB) 2820 continue; 2821 for (auto &I : *BB) 2822 if (auto *SI = dyn_cast<StoreInst>(&I)) { 2823 if (S) 2824 // Multiple stores seen. 2825 return nullptr; 2826 else 2827 S = SI; 2828 } 2829 } 2830 return S; 2831 } 2832 2833 static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB, 2834 Value *AlternativeV = nullptr) { 2835 // PHI is going to be a PHI node that allows the value V that is defined in 2836 // BB to be referenced in BB's only successor. 2837 // 2838 // If AlternativeV is nullptr, the only value we care about in PHI is V. It 2839 // doesn't matter to us what the other operand is (it'll never get used). We 2840 // could just create a new PHI with an undef incoming value, but that could 2841 // increase register pressure if EarlyCSE/InstCombine can't fold it with some 2842 // other PHI. So here we directly look for some PHI in BB's successor with V 2843 // as an incoming operand. If we find one, we use it, else we create a new 2844 // one. 2845 // 2846 // If AlternativeV is not nullptr, we care about both incoming values in PHI. 2847 // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV] 2848 // where OtherBB is the single other predecessor of BB's only successor. 2849 PHINode *PHI = nullptr; 2850 BasicBlock *Succ = BB->getSingleSuccessor(); 2851 2852 for (auto I = Succ->begin(); isa<PHINode>(I); ++I) 2853 if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) { 2854 PHI = cast<PHINode>(I); 2855 if (!AlternativeV) 2856 break; 2857 2858 assert(std::distance(pred_begin(Succ), pred_end(Succ)) == 2); 2859 auto PredI = pred_begin(Succ); 2860 BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI; 2861 if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV) 2862 break; 2863 PHI = nullptr; 2864 } 2865 if (PHI) 2866 return PHI; 2867 2868 // If V is not an instruction defined in BB, just return it. 2869 if (!AlternativeV && 2870 (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB)) 2871 return V; 2872 2873 PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge", &Succ->front()); 2874 PHI->addIncoming(V, BB); 2875 for (BasicBlock *PredBB : predecessors(Succ)) 2876 if (PredBB != BB) 2877 PHI->addIncoming( 2878 AlternativeV ? AlternativeV : UndefValue::get(V->getType()), PredBB); 2879 return PHI; 2880 } 2881 2882 static bool mergeConditionalStoreToAddress(BasicBlock *PTB, BasicBlock *PFB, 2883 BasicBlock *QTB, BasicBlock *QFB, 2884 BasicBlock *PostBB, Value *Address, 2885 bool InvertPCond, bool InvertQCond) { 2886 auto IsaBitcastOfPointerType = [](const Instruction &I) { 2887 return Operator::getOpcode(&I) == Instruction::BitCast && 2888 I.getType()->isPointerTy(); 2889 }; 2890 2891 // If we're not in aggressive mode, we only optimize if we have some 2892 // confidence that by optimizing we'll allow P and/or Q to be if-converted. 2893 auto IsWorthwhile = [&](BasicBlock *BB) { 2894 if (!BB) 2895 return true; 2896 // Heuristic: if the block can be if-converted/phi-folded and the 2897 // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to 2898 // thread this store. 2899 unsigned N = 0; 2900 for (auto &I : *BB) { 2901 // Cheap instructions viable for folding. 2902 if (isa<BinaryOperator>(I) || isa<GetElementPtrInst>(I) || 2903 isa<StoreInst>(I)) 2904 ++N; 2905 // Free instructions. 2906 else if (isa<TerminatorInst>(I) || isa<DbgInfoIntrinsic>(I) || 2907 IsaBitcastOfPointerType(I)) 2908 continue; 2909 else 2910 return false; 2911 } 2912 return N <= PHINodeFoldingThreshold; 2913 }; 2914 2915 if (!MergeCondStoresAggressively && 2916 (!IsWorthwhile(PTB) || !IsWorthwhile(PFB) || !IsWorthwhile(QTB) || 2917 !IsWorthwhile(QFB))) 2918 return false; 2919 2920 // For every pointer, there must be exactly two stores, one coming from 2921 // PTB or PFB, and the other from QTB or QFB. We don't support more than one 2922 // store (to any address) in PTB,PFB or QTB,QFB. 2923 // FIXME: We could relax this restriction with a bit more work and performance 2924 // testing. 2925 StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB); 2926 StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB); 2927 if (!PStore || !QStore) 2928 return false; 2929 2930 // Now check the stores are compatible. 2931 if (!QStore->isUnordered() || !PStore->isUnordered()) 2932 return false; 2933 2934 // Check that sinking the store won't cause program behavior changes. Sinking 2935 // the store out of the Q blocks won't change any behavior as we're sinking 2936 // from a block to its unconditional successor. But we're moving a store from 2937 // the P blocks down through the middle block (QBI) and past both QFB and QTB. 2938 // So we need to check that there are no aliasing loads or stores in 2939 // QBI, QTB and QFB. We also need to check there are no conflicting memory 2940 // operations between PStore and the end of its parent block. 2941 // 2942 // The ideal way to do this is to query AliasAnalysis, but we don't 2943 // preserve AA currently so that is dangerous. Be super safe and just 2944 // check there are no other memory operations at all. 2945 for (auto &I : *QFB->getSinglePredecessor()) 2946 if (I.mayReadOrWriteMemory()) 2947 return false; 2948 for (auto &I : *QFB) 2949 if (&I != QStore && I.mayReadOrWriteMemory()) 2950 return false; 2951 if (QTB) 2952 for (auto &I : *QTB) 2953 if (&I != QStore && I.mayReadOrWriteMemory()) 2954 return false; 2955 for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end(); 2956 I != E; ++I) 2957 if (&*I != PStore && I->mayReadOrWriteMemory()) 2958 return false; 2959 2960 // OK, we're going to sink the stores to PostBB. The store has to be 2961 // conditional though, so first create the predicate. 2962 Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator()) 2963 ->getCondition(); 2964 Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator()) 2965 ->getCondition(); 2966 2967 Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(), 2968 PStore->getParent()); 2969 Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(), 2970 QStore->getParent(), PPHI); 2971 2972 IRBuilder<> QB(&*PostBB->getFirstInsertionPt()); 2973 2974 Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond); 2975 Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond); 2976 2977 if (InvertPCond) 2978 PPred = QB.CreateNot(PPred); 2979 if (InvertQCond) 2980 QPred = QB.CreateNot(QPred); 2981 Value *CombinedPred = QB.CreateOr(PPred, QPred); 2982 2983 auto *T = 2984 SplitBlockAndInsertIfThen(CombinedPred, &*QB.GetInsertPoint(), false); 2985 QB.SetInsertPoint(T); 2986 StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address)); 2987 AAMDNodes AAMD; 2988 PStore->getAAMetadata(AAMD, /*Merge=*/false); 2989 PStore->getAAMetadata(AAMD, /*Merge=*/true); 2990 SI->setAAMetadata(AAMD); 2991 2992 QStore->eraseFromParent(); 2993 PStore->eraseFromParent(); 2994 2995 return true; 2996 } 2997 2998 static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI) { 2999 // The intention here is to find diamonds or triangles (see below) where each 3000 // conditional block contains a store to the same address. Both of these 3001 // stores are conditional, so they can't be unconditionally sunk. But it may 3002 // be profitable to speculatively sink the stores into one merged store at the 3003 // end, and predicate the merged store on the union of the two conditions of 3004 // PBI and QBI. 3005 // 3006 // This can reduce the number of stores executed if both of the conditions are 3007 // true, and can allow the blocks to become small enough to be if-converted. 3008 // This optimization will also chain, so that ladders of test-and-set 3009 // sequences can be if-converted away. 3010 // 3011 // We only deal with simple diamonds or triangles: 3012 // 3013 // PBI or PBI or a combination of the two 3014 // / \ | \ 3015 // PTB PFB | PFB 3016 // \ / | / 3017 // QBI QBI 3018 // / \ | \ 3019 // QTB QFB | QFB 3020 // \ / | / 3021 // PostBB PostBB 3022 // 3023 // We model triangles as a type of diamond with a nullptr "true" block. 3024 // Triangles are canonicalized so that the fallthrough edge is represented by 3025 // a true condition, as in the diagram above. 3026 // 3027 BasicBlock *PTB = PBI->getSuccessor(0); 3028 BasicBlock *PFB = PBI->getSuccessor(1); 3029 BasicBlock *QTB = QBI->getSuccessor(0); 3030 BasicBlock *QFB = QBI->getSuccessor(1); 3031 BasicBlock *PostBB = QFB->getSingleSuccessor(); 3032 3033 bool InvertPCond = false, InvertQCond = false; 3034 // Canonicalize fallthroughs to the true branches. 3035 if (PFB == QBI->getParent()) { 3036 std::swap(PFB, PTB); 3037 InvertPCond = true; 3038 } 3039 if (QFB == PostBB) { 3040 std::swap(QFB, QTB); 3041 InvertQCond = true; 3042 } 3043 3044 // From this point on we can assume PTB or QTB may be fallthroughs but PFB 3045 // and QFB may not. Model fallthroughs as a nullptr block. 3046 if (PTB == QBI->getParent()) 3047 PTB = nullptr; 3048 if (QTB == PostBB) 3049 QTB = nullptr; 3050 3051 // Legality bailouts. We must have at least the non-fallthrough blocks and 3052 // the post-dominating block, and the non-fallthroughs must only have one 3053 // predecessor. 3054 auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) { 3055 return BB->getSinglePredecessor() == P && BB->getSingleSuccessor() == S; 3056 }; 3057 if (!PostBB || 3058 !HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) || 3059 !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB)) 3060 return false; 3061 if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) || 3062 (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB))) 3063 return false; 3064 if (PostBB->getNumUses() != 2 || QBI->getParent()->getNumUses() != 2) 3065 return false; 3066 3067 // OK, this is a sequence of two diamonds or triangles. 3068 // Check if there are stores in PTB or PFB that are repeated in QTB or QFB. 3069 SmallPtrSet<Value *, 4> PStoreAddresses, QStoreAddresses; 3070 for (auto *BB : {PTB, PFB}) { 3071 if (!BB) 3072 continue; 3073 for (auto &I : *BB) 3074 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) 3075 PStoreAddresses.insert(SI->getPointerOperand()); 3076 } 3077 for (auto *BB : {QTB, QFB}) { 3078 if (!BB) 3079 continue; 3080 for (auto &I : *BB) 3081 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) 3082 QStoreAddresses.insert(SI->getPointerOperand()); 3083 } 3084 3085 set_intersect(PStoreAddresses, QStoreAddresses); 3086 // set_intersect mutates PStoreAddresses in place. Rename it here to make it 3087 // clear what it contains. 3088 auto &CommonAddresses = PStoreAddresses; 3089 3090 bool Changed = false; 3091 for (auto *Address : CommonAddresses) 3092 Changed |= mergeConditionalStoreToAddress( 3093 PTB, PFB, QTB, QFB, PostBB, Address, InvertPCond, InvertQCond); 3094 return Changed; 3095 } 3096 3097 /// If we have a conditional branch as a predecessor of another block, 3098 /// this function tries to simplify it. We know 3099 /// that PBI and BI are both conditional branches, and BI is in one of the 3100 /// successor blocks of PBI - PBI branches to BI. 3101 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI, 3102 const DataLayout &DL) { 3103 assert(PBI->isConditional() && BI->isConditional()); 3104 BasicBlock *BB = BI->getParent(); 3105 3106 // If this block ends with a branch instruction, and if there is a 3107 // predecessor that ends on a branch of the same condition, make 3108 // this conditional branch redundant. 3109 if (PBI->getCondition() == BI->getCondition() && 3110 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 3111 // Okay, the outcome of this conditional branch is statically 3112 // knowable. If this block had a single pred, handle specially. 3113 if (BB->getSinglePredecessor()) { 3114 // Turn this into a branch on constant. 3115 bool CondIsTrue = PBI->getSuccessor(0) == BB; 3116 BI->setCondition( 3117 ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue)); 3118 return true; // Nuke the branch on constant. 3119 } 3120 3121 // Otherwise, if there are multiple predecessors, insert a PHI that merges 3122 // in the constant and simplify the block result. Subsequent passes of 3123 // simplifycfg will thread the block. 3124 if (BlockIsSimpleEnoughToThreadThrough(BB)) { 3125 pred_iterator PB = pred_begin(BB), PE = pred_end(BB); 3126 PHINode *NewPN = PHINode::Create( 3127 Type::getInt1Ty(BB->getContext()), std::distance(PB, PE), 3128 BI->getCondition()->getName() + ".pr", &BB->front()); 3129 // Okay, we're going to insert the PHI node. Since PBI is not the only 3130 // predecessor, compute the PHI'd conditional value for all of the preds. 3131 // Any predecessor where the condition is not computable we keep symbolic. 3132 for (pred_iterator PI = PB; PI != PE; ++PI) { 3133 BasicBlock *P = *PI; 3134 if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) && PBI != BI && 3135 PBI->isConditional() && PBI->getCondition() == BI->getCondition() && 3136 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 3137 bool CondIsTrue = PBI->getSuccessor(0) == BB; 3138 NewPN->addIncoming( 3139 ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue), 3140 P); 3141 } else { 3142 NewPN->addIncoming(BI->getCondition(), P); 3143 } 3144 } 3145 3146 BI->setCondition(NewPN); 3147 return true; 3148 } 3149 } 3150 3151 if (auto *CE = dyn_cast<ConstantExpr>(BI->getCondition())) 3152 if (CE->canTrap()) 3153 return false; 3154 3155 // If both branches are conditional and both contain stores to the same 3156 // address, remove the stores from the conditionals and create a conditional 3157 // merged store at the end. 3158 if (MergeCondStores && mergeConditionalStores(PBI, BI)) 3159 return true; 3160 3161 // If this is a conditional branch in an empty block, and if any 3162 // predecessors are a conditional branch to one of our destinations, 3163 // fold the conditions into logical ops and one cond br. 3164 BasicBlock::iterator BBI = BB->begin(); 3165 // Ignore dbg intrinsics. 3166 while (isa<DbgInfoIntrinsic>(BBI)) 3167 ++BBI; 3168 if (&*BBI != BI) 3169 return false; 3170 3171 int PBIOp, BIOp; 3172 if (PBI->getSuccessor(0) == BI->getSuccessor(0)) { 3173 PBIOp = 0; 3174 BIOp = 0; 3175 } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) { 3176 PBIOp = 0; 3177 BIOp = 1; 3178 } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) { 3179 PBIOp = 1; 3180 BIOp = 0; 3181 } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) { 3182 PBIOp = 1; 3183 BIOp = 1; 3184 } else { 3185 return false; 3186 } 3187 3188 // Check to make sure that the other destination of this branch 3189 // isn't BB itself. If so, this is an infinite loop that will 3190 // keep getting unwound. 3191 if (PBI->getSuccessor(PBIOp) == BB) 3192 return false; 3193 3194 // Do not perform this transformation if it would require 3195 // insertion of a large number of select instructions. For targets 3196 // without predication/cmovs, this is a big pessimization. 3197 3198 // Also do not perform this transformation if any phi node in the common 3199 // destination block can trap when reached by BB or PBB (PR17073). In that 3200 // case, it would be unsafe to hoist the operation into a select instruction. 3201 3202 BasicBlock *CommonDest = PBI->getSuccessor(PBIOp); 3203 unsigned NumPhis = 0; 3204 for (BasicBlock::iterator II = CommonDest->begin(); isa<PHINode>(II); 3205 ++II, ++NumPhis) { 3206 if (NumPhis > 2) // Disable this xform. 3207 return false; 3208 3209 PHINode *PN = cast<PHINode>(II); 3210 Value *BIV = PN->getIncomingValueForBlock(BB); 3211 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BIV)) 3212 if (CE->canTrap()) 3213 return false; 3214 3215 unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent()); 3216 Value *PBIV = PN->getIncomingValue(PBBIdx); 3217 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(PBIV)) 3218 if (CE->canTrap()) 3219 return false; 3220 } 3221 3222 // Finally, if everything is ok, fold the branches to logical ops. 3223 BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1); 3224 3225 DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent() 3226 << "AND: " << *BI->getParent()); 3227 3228 // If OtherDest *is* BB, then BB is a basic block with a single conditional 3229 // branch in it, where one edge (OtherDest) goes back to itself but the other 3230 // exits. We don't *know* that the program avoids the infinite loop 3231 // (even though that seems likely). If we do this xform naively, we'll end up 3232 // recursively unpeeling the loop. Since we know that (after the xform is 3233 // done) that the block *is* infinite if reached, we just make it an obviously 3234 // infinite loop with no cond branch. 3235 if (OtherDest == BB) { 3236 // Insert it at the end of the function, because it's either code, 3237 // or it won't matter if it's hot. :) 3238 BasicBlock *InfLoopBlock = 3239 BasicBlock::Create(BB->getContext(), "infloop", BB->getParent()); 3240 BranchInst::Create(InfLoopBlock, InfLoopBlock); 3241 OtherDest = InfLoopBlock; 3242 } 3243 3244 DEBUG(dbgs() << *PBI->getParent()->getParent()); 3245 3246 // BI may have other predecessors. Because of this, we leave 3247 // it alone, but modify PBI. 3248 3249 // Make sure we get to CommonDest on True&True directions. 3250 Value *PBICond = PBI->getCondition(); 3251 IRBuilder<NoFolder> Builder(PBI); 3252 if (PBIOp) 3253 PBICond = Builder.CreateNot(PBICond, PBICond->getName() + ".not"); 3254 3255 Value *BICond = BI->getCondition(); 3256 if (BIOp) 3257 BICond = Builder.CreateNot(BICond, BICond->getName() + ".not"); 3258 3259 // Merge the conditions. 3260 Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge"); 3261 3262 // Modify PBI to branch on the new condition to the new dests. 3263 PBI->setCondition(Cond); 3264 PBI->setSuccessor(0, CommonDest); 3265 PBI->setSuccessor(1, OtherDest); 3266 3267 // Update branch weight for PBI. 3268 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 3269 uint64_t PredCommon, PredOther, SuccCommon, SuccOther; 3270 bool HasWeights = 3271 extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight, 3272 SuccTrueWeight, SuccFalseWeight); 3273 if (HasWeights) { 3274 PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight; 3275 PredOther = PBIOp ? PredTrueWeight : PredFalseWeight; 3276 SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight; 3277 SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight; 3278 // The weight to CommonDest should be PredCommon * SuccTotal + 3279 // PredOther * SuccCommon. 3280 // The weight to OtherDest should be PredOther * SuccOther. 3281 uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) + 3282 PredOther * SuccCommon, 3283 PredOther * SuccOther}; 3284 // Halve the weights if any of them cannot fit in an uint32_t 3285 FitWeights(NewWeights); 3286 3287 PBI->setMetadata(LLVMContext::MD_prof, 3288 MDBuilder(BI->getContext()) 3289 .createBranchWeights(NewWeights[0], NewWeights[1])); 3290 } 3291 3292 // OtherDest may have phi nodes. If so, add an entry from PBI's 3293 // block that are identical to the entries for BI's block. 3294 AddPredecessorToBlock(OtherDest, PBI->getParent(), BB); 3295 3296 // We know that the CommonDest already had an edge from PBI to 3297 // it. If it has PHIs though, the PHIs may have different 3298 // entries for BB and PBI's BB. If so, insert a select to make 3299 // them agree. 3300 PHINode *PN; 3301 for (BasicBlock::iterator II = CommonDest->begin(); 3302 (PN = dyn_cast<PHINode>(II)); ++II) { 3303 Value *BIV = PN->getIncomingValueForBlock(BB); 3304 unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent()); 3305 Value *PBIV = PN->getIncomingValue(PBBIdx); 3306 if (BIV != PBIV) { 3307 // Insert a select in PBI to pick the right value. 3308 SelectInst *NV = cast<SelectInst>( 3309 Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName() + ".mux")); 3310 PN->setIncomingValue(PBBIdx, NV); 3311 // Although the select has the same condition as PBI, the original branch 3312 // weights for PBI do not apply to the new select because the select's 3313 // 'logical' edges are incoming edges of the phi that is eliminated, not 3314 // the outgoing edges of PBI. 3315 if (HasWeights) { 3316 uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight; 3317 uint64_t PredOther = PBIOp ? PredTrueWeight : PredFalseWeight; 3318 uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight; 3319 uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight; 3320 // The weight to PredCommonDest should be PredCommon * SuccTotal. 3321 // The weight to PredOtherDest should be PredOther * SuccCommon. 3322 uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther), 3323 PredOther * SuccCommon}; 3324 3325 FitWeights(NewWeights); 3326 3327 NV->setMetadata(LLVMContext::MD_prof, 3328 MDBuilder(BI->getContext()) 3329 .createBranchWeights(NewWeights[0], NewWeights[1])); 3330 } 3331 } 3332 } 3333 3334 DEBUG(dbgs() << "INTO: " << *PBI->getParent()); 3335 DEBUG(dbgs() << *PBI->getParent()->getParent()); 3336 3337 // This basic block is probably dead. We know it has at least 3338 // one fewer predecessor. 3339 return true; 3340 } 3341 3342 // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is 3343 // true or to FalseBB if Cond is false. 3344 // Takes care of updating the successors and removing the old terminator. 3345 // Also makes sure not to introduce new successors by assuming that edges to 3346 // non-successor TrueBBs and FalseBBs aren't reachable. 3347 static bool SimplifyTerminatorOnSelect(TerminatorInst *OldTerm, Value *Cond, 3348 BasicBlock *TrueBB, BasicBlock *FalseBB, 3349 uint32_t TrueWeight, 3350 uint32_t FalseWeight) { 3351 // Remove any superfluous successor edges from the CFG. 3352 // First, figure out which successors to preserve. 3353 // If TrueBB and FalseBB are equal, only try to preserve one copy of that 3354 // successor. 3355 BasicBlock *KeepEdge1 = TrueBB; 3356 BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr; 3357 3358 // Then remove the rest. 3359 for (BasicBlock *Succ : OldTerm->successors()) { 3360 // Make sure only to keep exactly one copy of each edge. 3361 if (Succ == KeepEdge1) 3362 KeepEdge1 = nullptr; 3363 else if (Succ == KeepEdge2) 3364 KeepEdge2 = nullptr; 3365 else 3366 Succ->removePredecessor(OldTerm->getParent(), 3367 /*DontDeleteUselessPHIs=*/true); 3368 } 3369 3370 IRBuilder<> Builder(OldTerm); 3371 Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc()); 3372 3373 // Insert an appropriate new terminator. 3374 if (!KeepEdge1 && !KeepEdge2) { 3375 if (TrueBB == FalseBB) 3376 // We were only looking for one successor, and it was present. 3377 // Create an unconditional branch to it. 3378 Builder.CreateBr(TrueBB); 3379 else { 3380 // We found both of the successors we were looking for. 3381 // Create a conditional branch sharing the condition of the select. 3382 BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB); 3383 if (TrueWeight != FalseWeight) 3384 NewBI->setMetadata(LLVMContext::MD_prof, 3385 MDBuilder(OldTerm->getContext()) 3386 .createBranchWeights(TrueWeight, FalseWeight)); 3387 } 3388 } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) { 3389 // Neither of the selected blocks were successors, so this 3390 // terminator must be unreachable. 3391 new UnreachableInst(OldTerm->getContext(), OldTerm); 3392 } else { 3393 // One of the selected values was a successor, but the other wasn't. 3394 // Insert an unconditional branch to the one that was found; 3395 // the edge to the one that wasn't must be unreachable. 3396 if (!KeepEdge1) 3397 // Only TrueBB was found. 3398 Builder.CreateBr(TrueBB); 3399 else 3400 // Only FalseBB was found. 3401 Builder.CreateBr(FalseBB); 3402 } 3403 3404 EraseTerminatorInstAndDCECond(OldTerm); 3405 return true; 3406 } 3407 3408 // Replaces 3409 // (switch (select cond, X, Y)) on constant X, Y 3410 // with a branch - conditional if X and Y lead to distinct BBs, 3411 // unconditional otherwise. 3412 static bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select) { 3413 // Check for constant integer values in the select. 3414 ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue()); 3415 ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue()); 3416 if (!TrueVal || !FalseVal) 3417 return false; 3418 3419 // Find the relevant condition and destinations. 3420 Value *Condition = Select->getCondition(); 3421 BasicBlock *TrueBB = SI->findCaseValue(TrueVal).getCaseSuccessor(); 3422 BasicBlock *FalseBB = SI->findCaseValue(FalseVal).getCaseSuccessor(); 3423 3424 // Get weight for TrueBB and FalseBB. 3425 uint32_t TrueWeight = 0, FalseWeight = 0; 3426 SmallVector<uint64_t, 8> Weights; 3427 bool HasWeights = HasBranchWeights(SI); 3428 if (HasWeights) { 3429 GetBranchWeights(SI, Weights); 3430 if (Weights.size() == 1 + SI->getNumCases()) { 3431 TrueWeight = 3432 (uint32_t)Weights[SI->findCaseValue(TrueVal).getSuccessorIndex()]; 3433 FalseWeight = 3434 (uint32_t)Weights[SI->findCaseValue(FalseVal).getSuccessorIndex()]; 3435 } 3436 } 3437 3438 // Perform the actual simplification. 3439 return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, TrueWeight, 3440 FalseWeight); 3441 } 3442 3443 // Replaces 3444 // (indirectbr (select cond, blockaddress(@fn, BlockA), 3445 // blockaddress(@fn, BlockB))) 3446 // with 3447 // (br cond, BlockA, BlockB). 3448 static bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI) { 3449 // Check that both operands of the select are block addresses. 3450 BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue()); 3451 BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue()); 3452 if (!TBA || !FBA) 3453 return false; 3454 3455 // Extract the actual blocks. 3456 BasicBlock *TrueBB = TBA->getBasicBlock(); 3457 BasicBlock *FalseBB = FBA->getBasicBlock(); 3458 3459 // Perform the actual simplification. 3460 return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 0, 3461 0); 3462 } 3463 3464 /// This is called when we find an icmp instruction 3465 /// (a seteq/setne with a constant) as the only instruction in a 3466 /// block that ends with an uncond branch. We are looking for a very specific 3467 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified. In 3468 /// this case, we merge the first two "or's of icmp" into a switch, but then the 3469 /// default value goes to an uncond block with a seteq in it, we get something 3470 /// like: 3471 /// 3472 /// switch i8 %A, label %DEFAULT [ i8 1, label %end i8 2, label %end ] 3473 /// DEFAULT: 3474 /// %tmp = icmp eq i8 %A, 92 3475 /// br label %end 3476 /// end: 3477 /// ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ] 3478 /// 3479 /// We prefer to split the edge to 'end' so that there is a true/false entry to 3480 /// the PHI, merging the third icmp into the switch. 3481 static bool TryToSimplifyUncondBranchWithICmpInIt( 3482 ICmpInst *ICI, IRBuilder<> &Builder, const DataLayout &DL, 3483 const TargetTransformInfo &TTI, unsigned BonusInstThreshold, 3484 AssumptionCache *AC) { 3485 BasicBlock *BB = ICI->getParent(); 3486 3487 // If the block has any PHIs in it or the icmp has multiple uses, it is too 3488 // complex. 3489 if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse()) 3490 return false; 3491 3492 Value *V = ICI->getOperand(0); 3493 ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1)); 3494 3495 // The pattern we're looking for is where our only predecessor is a switch on 3496 // 'V' and this block is the default case for the switch. In this case we can 3497 // fold the compared value into the switch to simplify things. 3498 BasicBlock *Pred = BB->getSinglePredecessor(); 3499 if (!Pred || !isa<SwitchInst>(Pred->getTerminator())) 3500 return false; 3501 3502 SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator()); 3503 if (SI->getCondition() != V) 3504 return false; 3505 3506 // If BB is reachable on a non-default case, then we simply know the value of 3507 // V in this block. Substitute it and constant fold the icmp instruction 3508 // away. 3509 if (SI->getDefaultDest() != BB) { 3510 ConstantInt *VVal = SI->findCaseDest(BB); 3511 assert(VVal && "Should have a unique destination value"); 3512 ICI->setOperand(0, VVal); 3513 3514 if (Value *V = SimplifyInstruction(ICI, DL)) { 3515 ICI->replaceAllUsesWith(V); 3516 ICI->eraseFromParent(); 3517 } 3518 // BB is now empty, so it is likely to simplify away. 3519 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 3520 } 3521 3522 // Ok, the block is reachable from the default dest. If the constant we're 3523 // comparing exists in one of the other edges, then we can constant fold ICI 3524 // and zap it. 3525 if (SI->findCaseValue(Cst) != SI->case_default()) { 3526 Value *V; 3527 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 3528 V = ConstantInt::getFalse(BB->getContext()); 3529 else 3530 V = ConstantInt::getTrue(BB->getContext()); 3531 3532 ICI->replaceAllUsesWith(V); 3533 ICI->eraseFromParent(); 3534 // BB is now empty, so it is likely to simplify away. 3535 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 3536 } 3537 3538 // The use of the icmp has to be in the 'end' block, by the only PHI node in 3539 // the block. 3540 BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0); 3541 PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back()); 3542 if (PHIUse == nullptr || PHIUse != &SuccBlock->front() || 3543 isa<PHINode>(++BasicBlock::iterator(PHIUse))) 3544 return false; 3545 3546 // If the icmp is a SETEQ, then the default dest gets false, the new edge gets 3547 // true in the PHI. 3548 Constant *DefaultCst = ConstantInt::getTrue(BB->getContext()); 3549 Constant *NewCst = ConstantInt::getFalse(BB->getContext()); 3550 3551 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 3552 std::swap(DefaultCst, NewCst); 3553 3554 // Replace ICI (which is used by the PHI for the default value) with true or 3555 // false depending on if it is EQ or NE. 3556 ICI->replaceAllUsesWith(DefaultCst); 3557 ICI->eraseFromParent(); 3558 3559 // Okay, the switch goes to this block on a default value. Add an edge from 3560 // the switch to the merge point on the compared value. 3561 BasicBlock *NewBB = 3562 BasicBlock::Create(BB->getContext(), "switch.edge", BB->getParent(), BB); 3563 SmallVector<uint64_t, 8> Weights; 3564 bool HasWeights = HasBranchWeights(SI); 3565 if (HasWeights) { 3566 GetBranchWeights(SI, Weights); 3567 if (Weights.size() == 1 + SI->getNumCases()) { 3568 // Split weight for default case to case for "Cst". 3569 Weights[0] = (Weights[0] + 1) >> 1; 3570 Weights.push_back(Weights[0]); 3571 3572 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 3573 SI->setMetadata( 3574 LLVMContext::MD_prof, 3575 MDBuilder(SI->getContext()).createBranchWeights(MDWeights)); 3576 } 3577 } 3578 SI->addCase(Cst, NewBB); 3579 3580 // NewBB branches to the phi block, add the uncond branch and the phi entry. 3581 Builder.SetInsertPoint(NewBB); 3582 Builder.SetCurrentDebugLocation(SI->getDebugLoc()); 3583 Builder.CreateBr(SuccBlock); 3584 PHIUse->addIncoming(NewCst, NewBB); 3585 return true; 3586 } 3587 3588 /// The specified branch is a conditional branch. 3589 /// Check to see if it is branching on an or/and chain of icmp instructions, and 3590 /// fold it into a switch instruction if so. 3591 static bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder, 3592 const DataLayout &DL) { 3593 Instruction *Cond = dyn_cast<Instruction>(BI->getCondition()); 3594 if (!Cond) 3595 return false; 3596 3597 // Change br (X == 0 | X == 1), T, F into a switch instruction. 3598 // If this is a bunch of seteq's or'd together, or if it's a bunch of 3599 // 'setne's and'ed together, collect them. 3600 3601 // Try to gather values from a chain of and/or to be turned into a switch 3602 ConstantComparesGatherer ConstantCompare(Cond, DL); 3603 // Unpack the result 3604 SmallVectorImpl<ConstantInt *> &Values = ConstantCompare.Vals; 3605 Value *CompVal = ConstantCompare.CompValue; 3606 unsigned UsedICmps = ConstantCompare.UsedICmps; 3607 Value *ExtraCase = ConstantCompare.Extra; 3608 3609 // If we didn't have a multiply compared value, fail. 3610 if (!CompVal) 3611 return false; 3612 3613 // Avoid turning single icmps into a switch. 3614 if (UsedICmps <= 1) 3615 return false; 3616 3617 bool TrueWhenEqual = (Cond->getOpcode() == Instruction::Or); 3618 3619 // There might be duplicate constants in the list, which the switch 3620 // instruction can't handle, remove them now. 3621 array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate); 3622 Values.erase(std::unique(Values.begin(), Values.end()), Values.end()); 3623 3624 // If Extra was used, we require at least two switch values to do the 3625 // transformation. A switch with one value is just a conditional branch. 3626 if (ExtraCase && Values.size() < 2) 3627 return false; 3628 3629 // TODO: Preserve branch weight metadata, similarly to how 3630 // FoldValueComparisonIntoPredecessors preserves it. 3631 3632 // Figure out which block is which destination. 3633 BasicBlock *DefaultBB = BI->getSuccessor(1); 3634 BasicBlock *EdgeBB = BI->getSuccessor(0); 3635 if (!TrueWhenEqual) 3636 std::swap(DefaultBB, EdgeBB); 3637 3638 BasicBlock *BB = BI->getParent(); 3639 3640 DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size() 3641 << " cases into SWITCH. BB is:\n" 3642 << *BB); 3643 3644 // If there are any extra values that couldn't be folded into the switch 3645 // then we evaluate them with an explicit branch first. Split the block 3646 // right before the condbr to handle it. 3647 if (ExtraCase) { 3648 BasicBlock *NewBB = 3649 BB->splitBasicBlock(BI->getIterator(), "switch.early.test"); 3650 // Remove the uncond branch added to the old block. 3651 TerminatorInst *OldTI = BB->getTerminator(); 3652 Builder.SetInsertPoint(OldTI); 3653 3654 if (TrueWhenEqual) 3655 Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB); 3656 else 3657 Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB); 3658 3659 OldTI->eraseFromParent(); 3660 3661 // If there are PHI nodes in EdgeBB, then we need to add a new entry to them 3662 // for the edge we just added. 3663 AddPredecessorToBlock(EdgeBB, BB, NewBB); 3664 3665 DEBUG(dbgs() << " ** 'icmp' chain unhandled condition: " << *ExtraCase 3666 << "\nEXTRABB = " << *BB); 3667 BB = NewBB; 3668 } 3669 3670 Builder.SetInsertPoint(BI); 3671 // Convert pointer to int before we switch. 3672 if (CompVal->getType()->isPointerTy()) { 3673 CompVal = Builder.CreatePtrToInt( 3674 CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr"); 3675 } 3676 3677 // Create the new switch instruction now. 3678 SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size()); 3679 3680 // Add all of the 'cases' to the switch instruction. 3681 for (unsigned i = 0, e = Values.size(); i != e; ++i) 3682 New->addCase(Values[i], EdgeBB); 3683 3684 // We added edges from PI to the EdgeBB. As such, if there were any 3685 // PHI nodes in EdgeBB, they need entries to be added corresponding to 3686 // the number of edges added. 3687 for (BasicBlock::iterator BBI = EdgeBB->begin(); isa<PHINode>(BBI); ++BBI) { 3688 PHINode *PN = cast<PHINode>(BBI); 3689 Value *InVal = PN->getIncomingValueForBlock(BB); 3690 for (unsigned i = 0, e = Values.size() - 1; i != e; ++i) 3691 PN->addIncoming(InVal, BB); 3692 } 3693 3694 // Erase the old branch instruction. 3695 EraseTerminatorInstAndDCECond(BI); 3696 3697 DEBUG(dbgs() << " ** 'icmp' chain result is:\n" << *BB << '\n'); 3698 return true; 3699 } 3700 3701 bool SimplifyCFGOpt::SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder) { 3702 if (isa<PHINode>(RI->getValue())) 3703 return SimplifyCommonResume(RI); 3704 else if (isa<LandingPadInst>(RI->getParent()->getFirstNonPHI()) && 3705 RI->getValue() == RI->getParent()->getFirstNonPHI()) 3706 // The resume must unwind the exception that caused control to branch here. 3707 return SimplifySingleResume(RI); 3708 3709 return false; 3710 } 3711 3712 // Simplify resume that is shared by several landing pads (phi of landing pad). 3713 bool SimplifyCFGOpt::SimplifyCommonResume(ResumeInst *RI) { 3714 BasicBlock *BB = RI->getParent(); 3715 3716 // Check that there are no other instructions except for debug intrinsics 3717 // between the phi of landing pads (RI->getValue()) and resume instruction. 3718 BasicBlock::iterator I = cast<Instruction>(RI->getValue())->getIterator(), 3719 E = RI->getIterator(); 3720 while (++I != E) 3721 if (!isa<DbgInfoIntrinsic>(I)) 3722 return false; 3723 3724 SmallSet<BasicBlock *, 4> TrivialUnwindBlocks; 3725 auto *PhiLPInst = cast<PHINode>(RI->getValue()); 3726 3727 // Check incoming blocks to see if any of them are trivial. 3728 for (unsigned Idx = 0, End = PhiLPInst->getNumIncomingValues(); Idx != End; 3729 Idx++) { 3730 auto *IncomingBB = PhiLPInst->getIncomingBlock(Idx); 3731 auto *IncomingValue = PhiLPInst->getIncomingValue(Idx); 3732 3733 // If the block has other successors, we can not delete it because 3734 // it has other dependents. 3735 if (IncomingBB->getUniqueSuccessor() != BB) 3736 continue; 3737 3738 auto *LandingPad = dyn_cast<LandingPadInst>(IncomingBB->getFirstNonPHI()); 3739 // Not the landing pad that caused the control to branch here. 3740 if (IncomingValue != LandingPad) 3741 continue; 3742 3743 bool isTrivial = true; 3744 3745 I = IncomingBB->getFirstNonPHI()->getIterator(); 3746 E = IncomingBB->getTerminator()->getIterator(); 3747 while (++I != E) 3748 if (!isa<DbgInfoIntrinsic>(I)) { 3749 isTrivial = false; 3750 break; 3751 } 3752 3753 if (isTrivial) 3754 TrivialUnwindBlocks.insert(IncomingBB); 3755 } 3756 3757 // If no trivial unwind blocks, don't do any simplifications. 3758 if (TrivialUnwindBlocks.empty()) 3759 return false; 3760 3761 // Turn all invokes that unwind here into calls. 3762 for (auto *TrivialBB : TrivialUnwindBlocks) { 3763 // Blocks that will be simplified should be removed from the phi node. 3764 // Note there could be multiple edges to the resume block, and we need 3765 // to remove them all. 3766 while (PhiLPInst->getBasicBlockIndex(TrivialBB) != -1) 3767 BB->removePredecessor(TrivialBB, true); 3768 3769 for (pred_iterator PI = pred_begin(TrivialBB), PE = pred_end(TrivialBB); 3770 PI != PE;) { 3771 BasicBlock *Pred = *PI++; 3772 removeUnwindEdge(Pred); 3773 } 3774 3775 // In each SimplifyCFG run, only the current processed block can be erased. 3776 // Otherwise, it will break the iteration of SimplifyCFG pass. So instead 3777 // of erasing TrivialBB, we only remove the branch to the common resume 3778 // block so that we can later erase the resume block since it has no 3779 // predecessors. 3780 TrivialBB->getTerminator()->eraseFromParent(); 3781 new UnreachableInst(RI->getContext(), TrivialBB); 3782 } 3783 3784 // Delete the resume block if all its predecessors have been removed. 3785 if (pred_empty(BB)) 3786 BB->eraseFromParent(); 3787 3788 return !TrivialUnwindBlocks.empty(); 3789 } 3790 3791 // Simplify resume that is only used by a single (non-phi) landing pad. 3792 bool SimplifyCFGOpt::SimplifySingleResume(ResumeInst *RI) { 3793 BasicBlock *BB = RI->getParent(); 3794 LandingPadInst *LPInst = dyn_cast<LandingPadInst>(BB->getFirstNonPHI()); 3795 assert(RI->getValue() == LPInst && 3796 "Resume must unwind the exception that caused control to here"); 3797 3798 // Check that there are no other instructions except for debug intrinsics. 3799 BasicBlock::iterator I = LPInst->getIterator(), E = RI->getIterator(); 3800 while (++I != E) 3801 if (!isa<DbgInfoIntrinsic>(I)) 3802 return false; 3803 3804 // Turn all invokes that unwind here into calls and delete the basic block. 3805 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) { 3806 BasicBlock *Pred = *PI++; 3807 removeUnwindEdge(Pred); 3808 } 3809 3810 // The landingpad is now unreachable. Zap it. 3811 BB->eraseFromParent(); 3812 if (LoopHeaders) 3813 LoopHeaders->erase(BB); 3814 return true; 3815 } 3816 3817 static bool removeEmptyCleanup(CleanupReturnInst *RI) { 3818 // If this is a trivial cleanup pad that executes no instructions, it can be 3819 // eliminated. If the cleanup pad continues to the caller, any predecessor 3820 // that is an EH pad will be updated to continue to the caller and any 3821 // predecessor that terminates with an invoke instruction will have its invoke 3822 // instruction converted to a call instruction. If the cleanup pad being 3823 // simplified does not continue to the caller, each predecessor will be 3824 // updated to continue to the unwind destination of the cleanup pad being 3825 // simplified. 3826 BasicBlock *BB = RI->getParent(); 3827 CleanupPadInst *CPInst = RI->getCleanupPad(); 3828 if (CPInst->getParent() != BB) 3829 // This isn't an empty cleanup. 3830 return false; 3831 3832 // We cannot kill the pad if it has multiple uses. This typically arises 3833 // from unreachable basic blocks. 3834 if (!CPInst->hasOneUse()) 3835 return false; 3836 3837 // Check that there are no other instructions except for benign intrinsics. 3838 BasicBlock::iterator I = CPInst->getIterator(), E = RI->getIterator(); 3839 while (++I != E) { 3840 auto *II = dyn_cast<IntrinsicInst>(I); 3841 if (!II) 3842 return false; 3843 3844 Intrinsic::ID IntrinsicID = II->getIntrinsicID(); 3845 switch (IntrinsicID) { 3846 case Intrinsic::dbg_declare: 3847 case Intrinsic::dbg_value: 3848 case Intrinsic::lifetime_end: 3849 break; 3850 default: 3851 return false; 3852 } 3853 } 3854 3855 // If the cleanup return we are simplifying unwinds to the caller, this will 3856 // set UnwindDest to nullptr. 3857 BasicBlock *UnwindDest = RI->getUnwindDest(); 3858 Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr; 3859 3860 // We're about to remove BB from the control flow. Before we do, sink any 3861 // PHINodes into the unwind destination. Doing this before changing the 3862 // control flow avoids some potentially slow checks, since we can currently 3863 // be certain that UnwindDest and BB have no common predecessors (since they 3864 // are both EH pads). 3865 if (UnwindDest) { 3866 // First, go through the PHI nodes in UnwindDest and update any nodes that 3867 // reference the block we are removing 3868 for (BasicBlock::iterator I = UnwindDest->begin(), 3869 IE = DestEHPad->getIterator(); 3870 I != IE; ++I) { 3871 PHINode *DestPN = cast<PHINode>(I); 3872 3873 int Idx = DestPN->getBasicBlockIndex(BB); 3874 // Since BB unwinds to UnwindDest, it has to be in the PHI node. 3875 assert(Idx != -1); 3876 // This PHI node has an incoming value that corresponds to a control 3877 // path through the cleanup pad we are removing. If the incoming 3878 // value is in the cleanup pad, it must be a PHINode (because we 3879 // verified above that the block is otherwise empty). Otherwise, the 3880 // value is either a constant or a value that dominates the cleanup 3881 // pad being removed. 3882 // 3883 // Because BB and UnwindDest are both EH pads, all of their 3884 // predecessors must unwind to these blocks, and since no instruction 3885 // can have multiple unwind destinations, there will be no overlap in 3886 // incoming blocks between SrcPN and DestPN. 3887 Value *SrcVal = DestPN->getIncomingValue(Idx); 3888 PHINode *SrcPN = dyn_cast<PHINode>(SrcVal); 3889 3890 // Remove the entry for the block we are deleting. 3891 DestPN->removeIncomingValue(Idx, false); 3892 3893 if (SrcPN && SrcPN->getParent() == BB) { 3894 // If the incoming value was a PHI node in the cleanup pad we are 3895 // removing, we need to merge that PHI node's incoming values into 3896 // DestPN. 3897 for (unsigned SrcIdx = 0, SrcE = SrcPN->getNumIncomingValues(); 3898 SrcIdx != SrcE; ++SrcIdx) { 3899 DestPN->addIncoming(SrcPN->getIncomingValue(SrcIdx), 3900 SrcPN->getIncomingBlock(SrcIdx)); 3901 } 3902 } else { 3903 // Otherwise, the incoming value came from above BB and 3904 // so we can just reuse it. We must associate all of BB's 3905 // predecessors with this value. 3906 for (auto *pred : predecessors(BB)) { 3907 DestPN->addIncoming(SrcVal, pred); 3908 } 3909 } 3910 } 3911 3912 // Sink any remaining PHI nodes directly into UnwindDest. 3913 Instruction *InsertPt = DestEHPad; 3914 for (BasicBlock::iterator I = BB->begin(), 3915 IE = BB->getFirstNonPHI()->getIterator(); 3916 I != IE;) { 3917 // The iterator must be incremented here because the instructions are 3918 // being moved to another block. 3919 PHINode *PN = cast<PHINode>(I++); 3920 if (PN->use_empty()) 3921 // If the PHI node has no uses, just leave it. It will be erased 3922 // when we erase BB below. 3923 continue; 3924 3925 // Otherwise, sink this PHI node into UnwindDest. 3926 // Any predecessors to UnwindDest which are not already represented 3927 // must be back edges which inherit the value from the path through 3928 // BB. In this case, the PHI value must reference itself. 3929 for (auto *pred : predecessors(UnwindDest)) 3930 if (pred != BB) 3931 PN->addIncoming(PN, pred); 3932 PN->moveBefore(InsertPt); 3933 } 3934 } 3935 3936 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) { 3937 // The iterator must be updated here because we are removing this pred. 3938 BasicBlock *PredBB = *PI++; 3939 if (UnwindDest == nullptr) { 3940 removeUnwindEdge(PredBB); 3941 } else { 3942 TerminatorInst *TI = PredBB->getTerminator(); 3943 TI->replaceUsesOfWith(BB, UnwindDest); 3944 } 3945 } 3946 3947 // The cleanup pad is now unreachable. Zap it. 3948 BB->eraseFromParent(); 3949 return true; 3950 } 3951 3952 // Try to merge two cleanuppads together. 3953 static bool mergeCleanupPad(CleanupReturnInst *RI) { 3954 // Skip any cleanuprets which unwind to caller, there is nothing to merge 3955 // with. 3956 BasicBlock *UnwindDest = RI->getUnwindDest(); 3957 if (!UnwindDest) 3958 return false; 3959 3960 // This cleanupret isn't the only predecessor of this cleanuppad, it wouldn't 3961 // be safe to merge without code duplication. 3962 if (UnwindDest->getSinglePredecessor() != RI->getParent()) 3963 return false; 3964 3965 // Verify that our cleanuppad's unwind destination is another cleanuppad. 3966 auto *SuccessorCleanupPad = dyn_cast<CleanupPadInst>(&UnwindDest->front()); 3967 if (!SuccessorCleanupPad) 3968 return false; 3969 3970 CleanupPadInst *PredecessorCleanupPad = RI->getCleanupPad(); 3971 // Replace any uses of the successor cleanupad with the predecessor pad 3972 // The only cleanuppad uses should be this cleanupret, it's cleanupret and 3973 // funclet bundle operands. 3974 SuccessorCleanupPad->replaceAllUsesWith(PredecessorCleanupPad); 3975 // Remove the old cleanuppad. 3976 SuccessorCleanupPad->eraseFromParent(); 3977 // Now, we simply replace the cleanupret with a branch to the unwind 3978 // destination. 3979 BranchInst::Create(UnwindDest, RI->getParent()); 3980 RI->eraseFromParent(); 3981 3982 return true; 3983 } 3984 3985 bool SimplifyCFGOpt::SimplifyCleanupReturn(CleanupReturnInst *RI) { 3986 // It is possible to transiantly have an undef cleanuppad operand because we 3987 // have deleted some, but not all, dead blocks. 3988 // Eventually, this block will be deleted. 3989 if (isa<UndefValue>(RI->getOperand(0))) 3990 return false; 3991 3992 if (mergeCleanupPad(RI)) 3993 return true; 3994 3995 if (removeEmptyCleanup(RI)) 3996 return true; 3997 3998 return false; 3999 } 4000 4001 bool SimplifyCFGOpt::SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) { 4002 BasicBlock *BB = RI->getParent(); 4003 if (!BB->getFirstNonPHIOrDbg()->isTerminator()) 4004 return false; 4005 4006 // Find predecessors that end with branches. 4007 SmallVector<BasicBlock *, 8> UncondBranchPreds; 4008 SmallVector<BranchInst *, 8> CondBranchPreds; 4009 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 4010 BasicBlock *P = *PI; 4011 TerminatorInst *PTI = P->getTerminator(); 4012 if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) { 4013 if (BI->isUnconditional()) 4014 UncondBranchPreds.push_back(P); 4015 else 4016 CondBranchPreds.push_back(BI); 4017 } 4018 } 4019 4020 // If we found some, do the transformation! 4021 if (!UncondBranchPreds.empty() && DupRet) { 4022 while (!UncondBranchPreds.empty()) { 4023 BasicBlock *Pred = UncondBranchPreds.pop_back_val(); 4024 DEBUG(dbgs() << "FOLDING: " << *BB 4025 << "INTO UNCOND BRANCH PRED: " << *Pred); 4026 (void)FoldReturnIntoUncondBranch(RI, BB, Pred); 4027 } 4028 4029 // If we eliminated all predecessors of the block, delete the block now. 4030 if (pred_empty(BB)) { 4031 // We know there are no successors, so just nuke the block. 4032 BB->eraseFromParent(); 4033 if (LoopHeaders) 4034 LoopHeaders->erase(BB); 4035 } 4036 4037 return true; 4038 } 4039 4040 // Check out all of the conditional branches going to this return 4041 // instruction. If any of them just select between returns, change the 4042 // branch itself into a select/return pair. 4043 while (!CondBranchPreds.empty()) { 4044 BranchInst *BI = CondBranchPreds.pop_back_val(); 4045 4046 // Check to see if the non-BB successor is also a return block. 4047 if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) && 4048 isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) && 4049 SimplifyCondBranchToTwoReturns(BI, Builder)) 4050 return true; 4051 } 4052 return false; 4053 } 4054 4055 bool SimplifyCFGOpt::SimplifyUnreachable(UnreachableInst *UI) { 4056 BasicBlock *BB = UI->getParent(); 4057 4058 bool Changed = false; 4059 4060 // If there are any instructions immediately before the unreachable that can 4061 // be removed, do so. 4062 while (UI->getIterator() != BB->begin()) { 4063 BasicBlock::iterator BBI = UI->getIterator(); 4064 --BBI; 4065 // Do not delete instructions that can have side effects which might cause 4066 // the unreachable to not be reachable; specifically, calls and volatile 4067 // operations may have this effect. 4068 if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI)) 4069 break; 4070 4071 if (BBI->mayHaveSideEffects()) { 4072 if (auto *SI = dyn_cast<StoreInst>(BBI)) { 4073 if (SI->isVolatile()) 4074 break; 4075 } else if (auto *LI = dyn_cast<LoadInst>(BBI)) { 4076 if (LI->isVolatile()) 4077 break; 4078 } else if (auto *RMWI = dyn_cast<AtomicRMWInst>(BBI)) { 4079 if (RMWI->isVolatile()) 4080 break; 4081 } else if (auto *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) { 4082 if (CXI->isVolatile()) 4083 break; 4084 } else if (isa<CatchPadInst>(BBI)) { 4085 // A catchpad may invoke exception object constructors and such, which 4086 // in some languages can be arbitrary code, so be conservative by 4087 // default. 4088 // For CoreCLR, it just involves a type test, so can be removed. 4089 if (classifyEHPersonality(BB->getParent()->getPersonalityFn()) != 4090 EHPersonality::CoreCLR) 4091 break; 4092 } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) && 4093 !isa<LandingPadInst>(BBI)) { 4094 break; 4095 } 4096 // Note that deleting LandingPad's here is in fact okay, although it 4097 // involves a bit of subtle reasoning. If this inst is a LandingPad, 4098 // all the predecessors of this block will be the unwind edges of Invokes, 4099 // and we can therefore guarantee this block will be erased. 4100 } 4101 4102 // Delete this instruction (any uses are guaranteed to be dead) 4103 if (!BBI->use_empty()) 4104 BBI->replaceAllUsesWith(UndefValue::get(BBI->getType())); 4105 BBI->eraseFromParent(); 4106 Changed = true; 4107 } 4108 4109 // If the unreachable instruction is the first in the block, take a gander 4110 // at all of the predecessors of this instruction, and simplify them. 4111 if (&BB->front() != UI) 4112 return Changed; 4113 4114 SmallVector<BasicBlock *, 8> Preds(pred_begin(BB), pred_end(BB)); 4115 for (unsigned i = 0, e = Preds.size(); i != e; ++i) { 4116 TerminatorInst *TI = Preds[i]->getTerminator(); 4117 IRBuilder<> Builder(TI); 4118 if (auto *BI = dyn_cast<BranchInst>(TI)) { 4119 if (BI->isUnconditional()) { 4120 if (BI->getSuccessor(0) == BB) { 4121 new UnreachableInst(TI->getContext(), TI); 4122 TI->eraseFromParent(); 4123 Changed = true; 4124 } 4125 } else { 4126 if (BI->getSuccessor(0) == BB) { 4127 Builder.CreateBr(BI->getSuccessor(1)); 4128 EraseTerminatorInstAndDCECond(BI); 4129 } else if (BI->getSuccessor(1) == BB) { 4130 Builder.CreateBr(BI->getSuccessor(0)); 4131 EraseTerminatorInstAndDCECond(BI); 4132 Changed = true; 4133 } 4134 } 4135 } else if (auto *SI = dyn_cast<SwitchInst>(TI)) { 4136 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); i != e; 4137 ++i) 4138 if (i.getCaseSuccessor() == BB) { 4139 BB->removePredecessor(SI->getParent()); 4140 SI->removeCase(i); 4141 --i; 4142 --e; 4143 Changed = true; 4144 } 4145 } else if (auto *II = dyn_cast<InvokeInst>(TI)) { 4146 if (II->getUnwindDest() == BB) { 4147 removeUnwindEdge(TI->getParent()); 4148 Changed = true; 4149 } 4150 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) { 4151 if (CSI->getUnwindDest() == BB) { 4152 removeUnwindEdge(TI->getParent()); 4153 Changed = true; 4154 continue; 4155 } 4156 4157 for (CatchSwitchInst::handler_iterator I = CSI->handler_begin(), 4158 E = CSI->handler_end(); 4159 I != E; ++I) { 4160 if (*I == BB) { 4161 CSI->removeHandler(I); 4162 --I; 4163 --E; 4164 Changed = true; 4165 } 4166 } 4167 if (CSI->getNumHandlers() == 0) { 4168 BasicBlock *CatchSwitchBB = CSI->getParent(); 4169 if (CSI->hasUnwindDest()) { 4170 // Redirect preds to the unwind dest 4171 CatchSwitchBB->replaceAllUsesWith(CSI->getUnwindDest()); 4172 } else { 4173 // Rewrite all preds to unwind to caller (or from invoke to call). 4174 SmallVector<BasicBlock *, 8> EHPreds(predecessors(CatchSwitchBB)); 4175 for (BasicBlock *EHPred : EHPreds) 4176 removeUnwindEdge(EHPred); 4177 } 4178 // The catchswitch is no longer reachable. 4179 new UnreachableInst(CSI->getContext(), CSI); 4180 CSI->eraseFromParent(); 4181 Changed = true; 4182 } 4183 } else if (isa<CleanupReturnInst>(TI)) { 4184 new UnreachableInst(TI->getContext(), TI); 4185 TI->eraseFromParent(); 4186 Changed = true; 4187 } 4188 } 4189 4190 // If this block is now dead, remove it. 4191 if (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) { 4192 // We know there are no successors, so just nuke the block. 4193 BB->eraseFromParent(); 4194 if (LoopHeaders) 4195 LoopHeaders->erase(BB); 4196 return true; 4197 } 4198 4199 return Changed; 4200 } 4201 4202 static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) { 4203 assert(Cases.size() >= 1); 4204 4205 array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate); 4206 for (size_t I = 1, E = Cases.size(); I != E; ++I) { 4207 if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1) 4208 return false; 4209 } 4210 return true; 4211 } 4212 4213 /// Turn a switch with two reachable destinations into an integer range 4214 /// comparison and branch. 4215 static bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder) { 4216 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 4217 4218 bool HasDefault = 4219 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 4220 4221 // Partition the cases into two sets with different destinations. 4222 BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr; 4223 BasicBlock *DestB = nullptr; 4224 SmallVector<ConstantInt *, 16> CasesA; 4225 SmallVector<ConstantInt *, 16> CasesB; 4226 4227 for (SwitchInst::CaseIt I : SI->cases()) { 4228 BasicBlock *Dest = I.getCaseSuccessor(); 4229 if (!DestA) 4230 DestA = Dest; 4231 if (Dest == DestA) { 4232 CasesA.push_back(I.getCaseValue()); 4233 continue; 4234 } 4235 if (!DestB) 4236 DestB = Dest; 4237 if (Dest == DestB) { 4238 CasesB.push_back(I.getCaseValue()); 4239 continue; 4240 } 4241 return false; // More than two destinations. 4242 } 4243 4244 assert(DestA && DestB && 4245 "Single-destination switch should have been folded."); 4246 assert(DestA != DestB); 4247 assert(DestB != SI->getDefaultDest()); 4248 assert(!CasesB.empty() && "There must be non-default cases."); 4249 assert(!CasesA.empty() || HasDefault); 4250 4251 // Figure out if one of the sets of cases form a contiguous range. 4252 SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr; 4253 BasicBlock *ContiguousDest = nullptr; 4254 BasicBlock *OtherDest = nullptr; 4255 if (!CasesA.empty() && CasesAreContiguous(CasesA)) { 4256 ContiguousCases = &CasesA; 4257 ContiguousDest = DestA; 4258 OtherDest = DestB; 4259 } else if (CasesAreContiguous(CasesB)) { 4260 ContiguousCases = &CasesB; 4261 ContiguousDest = DestB; 4262 OtherDest = DestA; 4263 } else 4264 return false; 4265 4266 // Start building the compare and branch. 4267 4268 Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back()); 4269 Constant *NumCases = 4270 ConstantInt::get(Offset->getType(), ContiguousCases->size()); 4271 4272 Value *Sub = SI->getCondition(); 4273 if (!Offset->isNullValue()) 4274 Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off"); 4275 4276 Value *Cmp; 4277 // If NumCases overflowed, then all possible values jump to the successor. 4278 if (NumCases->isNullValue() && !ContiguousCases->empty()) 4279 Cmp = ConstantInt::getTrue(SI->getContext()); 4280 else 4281 Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch"); 4282 BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest); 4283 4284 // Update weight for the newly-created conditional branch. 4285 if (HasBranchWeights(SI)) { 4286 SmallVector<uint64_t, 8> Weights; 4287 GetBranchWeights(SI, Weights); 4288 if (Weights.size() == 1 + SI->getNumCases()) { 4289 uint64_t TrueWeight = 0; 4290 uint64_t FalseWeight = 0; 4291 for (size_t I = 0, E = Weights.size(); I != E; ++I) { 4292 if (SI->getSuccessor(I) == ContiguousDest) 4293 TrueWeight += Weights[I]; 4294 else 4295 FalseWeight += Weights[I]; 4296 } 4297 while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) { 4298 TrueWeight /= 2; 4299 FalseWeight /= 2; 4300 } 4301 NewBI->setMetadata(LLVMContext::MD_prof, 4302 MDBuilder(SI->getContext()) 4303 .createBranchWeights((uint32_t)TrueWeight, 4304 (uint32_t)FalseWeight)); 4305 } 4306 } 4307 4308 // Prune obsolete incoming values off the successors' PHI nodes. 4309 for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) { 4310 unsigned PreviousEdges = ContiguousCases->size(); 4311 if (ContiguousDest == SI->getDefaultDest()) 4312 ++PreviousEdges; 4313 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I) 4314 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 4315 } 4316 for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) { 4317 unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size(); 4318 if (OtherDest == SI->getDefaultDest()) 4319 ++PreviousEdges; 4320 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I) 4321 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 4322 } 4323 4324 // Drop the switch. 4325 SI->eraseFromParent(); 4326 4327 return true; 4328 } 4329 4330 /// Compute masked bits for the condition of a switch 4331 /// and use it to remove dead cases. 4332 static bool EliminateDeadSwitchCases(SwitchInst *SI, AssumptionCache *AC, 4333 const DataLayout &DL) { 4334 Value *Cond = SI->getCondition(); 4335 unsigned Bits = Cond->getType()->getIntegerBitWidth(); 4336 APInt KnownZero(Bits, 0), KnownOne(Bits, 0); 4337 computeKnownBits(Cond, KnownZero, KnownOne, DL, 0, AC, SI); 4338 4339 // We can also eliminate cases by determining that their values are outside of 4340 // the limited range of the condition based on how many significant (non-sign) 4341 // bits are in the condition value. 4342 unsigned ExtraSignBits = ComputeNumSignBits(Cond, DL, 0, AC, SI) - 1; 4343 unsigned MaxSignificantBitsInCond = Bits - ExtraSignBits; 4344 4345 // Gather dead cases. 4346 SmallVector<ConstantInt *, 8> DeadCases; 4347 for (auto &Case : SI->cases()) { 4348 APInt CaseVal = Case.getCaseValue()->getValue(); 4349 if ((CaseVal & KnownZero) != 0 || (CaseVal & KnownOne) != KnownOne || 4350 (CaseVal.getMinSignedBits() > MaxSignificantBitsInCond)) { 4351 DeadCases.push_back(Case.getCaseValue()); 4352 DEBUG(dbgs() << "SimplifyCFG: switch case " << CaseVal << " is dead.\n"); 4353 } 4354 } 4355 4356 // If we can prove that the cases must cover all possible values, the 4357 // default destination becomes dead and we can remove it. If we know some 4358 // of the bits in the value, we can use that to more precisely compute the 4359 // number of possible unique case values. 4360 bool HasDefault = 4361 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 4362 const unsigned NumUnknownBits = 4363 Bits - (KnownZero.Or(KnownOne)).countPopulation(); 4364 assert(NumUnknownBits <= Bits); 4365 if (HasDefault && DeadCases.empty() && 4366 NumUnknownBits < 64 /* avoid overflow */ && 4367 SI->getNumCases() == (1ULL << NumUnknownBits)) { 4368 DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n"); 4369 BasicBlock *NewDefault = 4370 SplitBlockPredecessors(SI->getDefaultDest(), SI->getParent(), ""); 4371 SI->setDefaultDest(&*NewDefault); 4372 SplitBlock(&*NewDefault, &NewDefault->front()); 4373 auto *OldTI = NewDefault->getTerminator(); 4374 new UnreachableInst(SI->getContext(), OldTI); 4375 EraseTerminatorInstAndDCECond(OldTI); 4376 return true; 4377 } 4378 4379 SmallVector<uint64_t, 8> Weights; 4380 bool HasWeight = HasBranchWeights(SI); 4381 if (HasWeight) { 4382 GetBranchWeights(SI, Weights); 4383 HasWeight = (Weights.size() == 1 + SI->getNumCases()); 4384 } 4385 4386 // Remove dead cases from the switch. 4387 for (ConstantInt *DeadCase : DeadCases) { 4388 SwitchInst::CaseIt Case = SI->findCaseValue(DeadCase); 4389 assert(Case != SI->case_default() && 4390 "Case was not found. Probably mistake in DeadCases forming."); 4391 if (HasWeight) { 4392 std::swap(Weights[Case.getCaseIndex() + 1], Weights.back()); 4393 Weights.pop_back(); 4394 } 4395 4396 // Prune unused values from PHI nodes. 4397 Case.getCaseSuccessor()->removePredecessor(SI->getParent()); 4398 SI->removeCase(Case); 4399 } 4400 if (HasWeight && Weights.size() >= 2) { 4401 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 4402 SI->setMetadata(LLVMContext::MD_prof, 4403 MDBuilder(SI->getParent()->getContext()) 4404 .createBranchWeights(MDWeights)); 4405 } 4406 4407 return !DeadCases.empty(); 4408 } 4409 4410 /// If BB would be eligible for simplification by 4411 /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated 4412 /// by an unconditional branch), look at the phi node for BB in the successor 4413 /// block and see if the incoming value is equal to CaseValue. If so, return 4414 /// the phi node, and set PhiIndex to BB's index in the phi node. 4415 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue, 4416 BasicBlock *BB, int *PhiIndex) { 4417 if (BB->getFirstNonPHIOrDbg() != BB->getTerminator()) 4418 return nullptr; // BB must be empty to be a candidate for simplification. 4419 if (!BB->getSinglePredecessor()) 4420 return nullptr; // BB must be dominated by the switch. 4421 4422 BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator()); 4423 if (!Branch || !Branch->isUnconditional()) 4424 return nullptr; // Terminator must be unconditional branch. 4425 4426 BasicBlock *Succ = Branch->getSuccessor(0); 4427 4428 BasicBlock::iterator I = Succ->begin(); 4429 while (PHINode *PHI = dyn_cast<PHINode>(I++)) { 4430 int Idx = PHI->getBasicBlockIndex(BB); 4431 assert(Idx >= 0 && "PHI has no entry for predecessor?"); 4432 4433 Value *InValue = PHI->getIncomingValue(Idx); 4434 if (InValue != CaseValue) 4435 continue; 4436 4437 *PhiIndex = Idx; 4438 return PHI; 4439 } 4440 4441 return nullptr; 4442 } 4443 4444 /// Try to forward the condition of a switch instruction to a phi node 4445 /// dominated by the switch, if that would mean that some of the destination 4446 /// blocks of the switch can be folded away. 4447 /// Returns true if a change is made. 4448 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) { 4449 typedef DenseMap<PHINode *, SmallVector<int, 4>> ForwardingNodesMap; 4450 ForwardingNodesMap ForwardingNodes; 4451 4452 for (SwitchInst::CaseIt I = SI->case_begin(), E = SI->case_end(); I != E; 4453 ++I) { 4454 ConstantInt *CaseValue = I.getCaseValue(); 4455 BasicBlock *CaseDest = I.getCaseSuccessor(); 4456 4457 int PhiIndex; 4458 PHINode *PHI = 4459 FindPHIForConditionForwarding(CaseValue, CaseDest, &PhiIndex); 4460 if (!PHI) 4461 continue; 4462 4463 ForwardingNodes[PHI].push_back(PhiIndex); 4464 } 4465 4466 bool Changed = false; 4467 4468 for (ForwardingNodesMap::iterator I = ForwardingNodes.begin(), 4469 E = ForwardingNodes.end(); 4470 I != E; ++I) { 4471 PHINode *Phi = I->first; 4472 SmallVectorImpl<int> &Indexes = I->second; 4473 4474 if (Indexes.size() < 2) 4475 continue; 4476 4477 for (size_t I = 0, E = Indexes.size(); I != E; ++I) 4478 Phi->setIncomingValue(Indexes[I], SI->getCondition()); 4479 Changed = true; 4480 } 4481 4482 return Changed; 4483 } 4484 4485 /// Return true if the backend will be able to handle 4486 /// initializing an array of constants like C. 4487 static bool ValidLookupTableConstant(Constant *C, const TargetTransformInfo &TTI) { 4488 if (C->isThreadDependent()) 4489 return false; 4490 if (C->isDLLImportDependent()) 4491 return false; 4492 4493 if (!isa<ConstantFP>(C) && !isa<ConstantInt>(C) && 4494 !isa<ConstantPointerNull>(C) && !isa<GlobalValue>(C) && 4495 !isa<UndefValue>(C) && !isa<ConstantExpr>(C)) 4496 return false; 4497 4498 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 4499 if (!CE->isGEPWithNoNotionalOverIndexing()) 4500 return false; 4501 if (!ValidLookupTableConstant(CE->getOperand(0), TTI)) 4502 return false; 4503 } 4504 4505 if (!TTI.shouldBuildLookupTablesForConstant(C)) 4506 return false; 4507 4508 return true; 4509 } 4510 4511 /// If V is a Constant, return it. Otherwise, try to look up 4512 /// its constant value in ConstantPool, returning 0 if it's not there. 4513 static Constant * 4514 LookupConstant(Value *V, 4515 const SmallDenseMap<Value *, Constant *> &ConstantPool) { 4516 if (Constant *C = dyn_cast<Constant>(V)) 4517 return C; 4518 return ConstantPool.lookup(V); 4519 } 4520 4521 /// Try to fold instruction I into a constant. This works for 4522 /// simple instructions such as binary operations where both operands are 4523 /// constant or can be replaced by constants from the ConstantPool. Returns the 4524 /// resulting constant on success, 0 otherwise. 4525 static Constant * 4526 ConstantFold(Instruction *I, const DataLayout &DL, 4527 const SmallDenseMap<Value *, Constant *> &ConstantPool) { 4528 if (SelectInst *Select = dyn_cast<SelectInst>(I)) { 4529 Constant *A = LookupConstant(Select->getCondition(), ConstantPool); 4530 if (!A) 4531 return nullptr; 4532 if (A->isAllOnesValue()) 4533 return LookupConstant(Select->getTrueValue(), ConstantPool); 4534 if (A->isNullValue()) 4535 return LookupConstant(Select->getFalseValue(), ConstantPool); 4536 return nullptr; 4537 } 4538 4539 SmallVector<Constant *, 4> COps; 4540 for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) { 4541 if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool)) 4542 COps.push_back(A); 4543 else 4544 return nullptr; 4545 } 4546 4547 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) { 4548 return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0], 4549 COps[1], DL); 4550 } 4551 4552 return ConstantFoldInstOperands(I, COps, DL); 4553 } 4554 4555 /// Try to determine the resulting constant values in phi nodes 4556 /// at the common destination basic block, *CommonDest, for one of the case 4557 /// destionations CaseDest corresponding to value CaseVal (0 for the default 4558 /// case), of a switch instruction SI. 4559 static bool 4560 GetCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest, 4561 BasicBlock **CommonDest, 4562 SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res, 4563 const DataLayout &DL, const TargetTransformInfo &TTI) { 4564 // The block from which we enter the common destination. 4565 BasicBlock *Pred = SI->getParent(); 4566 4567 // If CaseDest is empty except for some side-effect free instructions through 4568 // which we can constant-propagate the CaseVal, continue to its successor. 4569 SmallDenseMap<Value *, Constant *> ConstantPool; 4570 ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal)); 4571 for (BasicBlock::iterator I = CaseDest->begin(), E = CaseDest->end(); I != E; 4572 ++I) { 4573 if (TerminatorInst *T = dyn_cast<TerminatorInst>(I)) { 4574 // If the terminator is a simple branch, continue to the next block. 4575 if (T->getNumSuccessors() != 1 || T->isExceptional()) 4576 return false; 4577 Pred = CaseDest; 4578 CaseDest = T->getSuccessor(0); 4579 } else if (isa<DbgInfoIntrinsic>(I)) { 4580 // Skip debug intrinsic. 4581 continue; 4582 } else if (Constant *C = ConstantFold(&*I, DL, ConstantPool)) { 4583 // Instruction is side-effect free and constant. 4584 4585 // If the instruction has uses outside this block or a phi node slot for 4586 // the block, it is not safe to bypass the instruction since it would then 4587 // no longer dominate all its uses. 4588 for (auto &Use : I->uses()) { 4589 User *User = Use.getUser(); 4590 if (Instruction *I = dyn_cast<Instruction>(User)) 4591 if (I->getParent() == CaseDest) 4592 continue; 4593 if (PHINode *Phi = dyn_cast<PHINode>(User)) 4594 if (Phi->getIncomingBlock(Use) == CaseDest) 4595 continue; 4596 return false; 4597 } 4598 4599 ConstantPool.insert(std::make_pair(&*I, C)); 4600 } else { 4601 break; 4602 } 4603 } 4604 4605 // If we did not have a CommonDest before, use the current one. 4606 if (!*CommonDest) 4607 *CommonDest = CaseDest; 4608 // If the destination isn't the common one, abort. 4609 if (CaseDest != *CommonDest) 4610 return false; 4611 4612 // Get the values for this case from phi nodes in the destination block. 4613 BasicBlock::iterator I = (*CommonDest)->begin(); 4614 while (PHINode *PHI = dyn_cast<PHINode>(I++)) { 4615 int Idx = PHI->getBasicBlockIndex(Pred); 4616 if (Idx == -1) 4617 continue; 4618 4619 Constant *ConstVal = 4620 LookupConstant(PHI->getIncomingValue(Idx), ConstantPool); 4621 if (!ConstVal) 4622 return false; 4623 4624 // Be conservative about which kinds of constants we support. 4625 if (!ValidLookupTableConstant(ConstVal, TTI)) 4626 return false; 4627 4628 Res.push_back(std::make_pair(PHI, ConstVal)); 4629 } 4630 4631 return Res.size() > 0; 4632 } 4633 4634 // Helper function used to add CaseVal to the list of cases that generate 4635 // Result. 4636 static void MapCaseToResult(ConstantInt *CaseVal, 4637 SwitchCaseResultVectorTy &UniqueResults, 4638 Constant *Result) { 4639 for (auto &I : UniqueResults) { 4640 if (I.first == Result) { 4641 I.second.push_back(CaseVal); 4642 return; 4643 } 4644 } 4645 UniqueResults.push_back( 4646 std::make_pair(Result, SmallVector<ConstantInt *, 4>(1, CaseVal))); 4647 } 4648 4649 // Helper function that initializes a map containing 4650 // results for the PHI node of the common destination block for a switch 4651 // instruction. Returns false if multiple PHI nodes have been found or if 4652 // there is not a common destination block for the switch. 4653 static bool InitializeUniqueCases(SwitchInst *SI, PHINode *&PHI, 4654 BasicBlock *&CommonDest, 4655 SwitchCaseResultVectorTy &UniqueResults, 4656 Constant *&DefaultResult, 4657 const DataLayout &DL, 4658 const TargetTransformInfo &TTI) { 4659 for (auto &I : SI->cases()) { 4660 ConstantInt *CaseVal = I.getCaseValue(); 4661 4662 // Resulting value at phi nodes for this case value. 4663 SwitchCaseResultsTy Results; 4664 if (!GetCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results, 4665 DL, TTI)) 4666 return false; 4667 4668 // Only one value per case is permitted 4669 if (Results.size() > 1) 4670 return false; 4671 MapCaseToResult(CaseVal, UniqueResults, Results.begin()->second); 4672 4673 // Check the PHI consistency. 4674 if (!PHI) 4675 PHI = Results[0].first; 4676 else if (PHI != Results[0].first) 4677 return false; 4678 } 4679 // Find the default result value. 4680 SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults; 4681 BasicBlock *DefaultDest = SI->getDefaultDest(); 4682 GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults, 4683 DL, TTI); 4684 // If the default value is not found abort unless the default destination 4685 // is unreachable. 4686 DefaultResult = 4687 DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr; 4688 if ((!DefaultResult && 4689 !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()))) 4690 return false; 4691 4692 return true; 4693 } 4694 4695 // Helper function that checks if it is possible to transform a switch with only 4696 // two cases (or two cases + default) that produces a result into a select. 4697 // Example: 4698 // switch (a) { 4699 // case 10: %0 = icmp eq i32 %a, 10 4700 // return 10; %1 = select i1 %0, i32 10, i32 4 4701 // case 20: ----> %2 = icmp eq i32 %a, 20 4702 // return 2; %3 = select i1 %2, i32 2, i32 %1 4703 // default: 4704 // return 4; 4705 // } 4706 static Value *ConvertTwoCaseSwitch(const SwitchCaseResultVectorTy &ResultVector, 4707 Constant *DefaultResult, Value *Condition, 4708 IRBuilder<> &Builder) { 4709 assert(ResultVector.size() == 2 && 4710 "We should have exactly two unique results at this point"); 4711 // If we are selecting between only two cases transform into a simple 4712 // select or a two-way select if default is possible. 4713 if (ResultVector[0].second.size() == 1 && 4714 ResultVector[1].second.size() == 1) { 4715 ConstantInt *const FirstCase = ResultVector[0].second[0]; 4716 ConstantInt *const SecondCase = ResultVector[1].second[0]; 4717 4718 bool DefaultCanTrigger = DefaultResult; 4719 Value *SelectValue = ResultVector[1].first; 4720 if (DefaultCanTrigger) { 4721 Value *const ValueCompare = 4722 Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp"); 4723 SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first, 4724 DefaultResult, "switch.select"); 4725 } 4726 Value *const ValueCompare = 4727 Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp"); 4728 return Builder.CreateSelect(ValueCompare, ResultVector[0].first, 4729 SelectValue, "switch.select"); 4730 } 4731 4732 return nullptr; 4733 } 4734 4735 // Helper function to cleanup a switch instruction that has been converted into 4736 // a select, fixing up PHI nodes and basic blocks. 4737 static void RemoveSwitchAfterSelectConversion(SwitchInst *SI, PHINode *PHI, 4738 Value *SelectValue, 4739 IRBuilder<> &Builder) { 4740 BasicBlock *SelectBB = SI->getParent(); 4741 while (PHI->getBasicBlockIndex(SelectBB) >= 0) 4742 PHI->removeIncomingValue(SelectBB); 4743 PHI->addIncoming(SelectValue, SelectBB); 4744 4745 Builder.CreateBr(PHI->getParent()); 4746 4747 // Remove the switch. 4748 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { 4749 BasicBlock *Succ = SI->getSuccessor(i); 4750 4751 if (Succ == PHI->getParent()) 4752 continue; 4753 Succ->removePredecessor(SelectBB); 4754 } 4755 SI->eraseFromParent(); 4756 } 4757 4758 /// If the switch is only used to initialize one or more 4759 /// phi nodes in a common successor block with only two different 4760 /// constant values, replace the switch with select. 4761 static bool SwitchToSelect(SwitchInst *SI, IRBuilder<> &Builder, 4762 AssumptionCache *AC, const DataLayout &DL, 4763 const TargetTransformInfo &TTI) { 4764 Value *const Cond = SI->getCondition(); 4765 PHINode *PHI = nullptr; 4766 BasicBlock *CommonDest = nullptr; 4767 Constant *DefaultResult; 4768 SwitchCaseResultVectorTy UniqueResults; 4769 // Collect all the cases that will deliver the same value from the switch. 4770 if (!InitializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult, 4771 DL, TTI)) 4772 return false; 4773 // Selects choose between maximum two values. 4774 if (UniqueResults.size() != 2) 4775 return false; 4776 assert(PHI != nullptr && "PHI for value select not found"); 4777 4778 Builder.SetInsertPoint(SI); 4779 Value *SelectValue = 4780 ConvertTwoCaseSwitch(UniqueResults, DefaultResult, Cond, Builder); 4781 if (SelectValue) { 4782 RemoveSwitchAfterSelectConversion(SI, PHI, SelectValue, Builder); 4783 return true; 4784 } 4785 // The switch couldn't be converted into a select. 4786 return false; 4787 } 4788 4789 namespace { 4790 4791 /// This class represents a lookup table that can be used to replace a switch. 4792 class SwitchLookupTable { 4793 public: 4794 /// Create a lookup table to use as a switch replacement with the contents 4795 /// of Values, using DefaultValue to fill any holes in the table. 4796 SwitchLookupTable( 4797 Module &M, uint64_t TableSize, ConstantInt *Offset, 4798 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values, 4799 Constant *DefaultValue, const DataLayout &DL); 4800 4801 /// Build instructions with Builder to retrieve the value at 4802 /// the position given by Index in the lookup table. 4803 Value *BuildLookup(Value *Index, IRBuilder<> &Builder); 4804 4805 /// Return true if a table with TableSize elements of 4806 /// type ElementType would fit in a target-legal register. 4807 static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize, 4808 Type *ElementType); 4809 4810 private: 4811 // Depending on the contents of the table, it can be represented in 4812 // different ways. 4813 enum { 4814 // For tables where each element contains the same value, we just have to 4815 // store that single value and return it for each lookup. 4816 SingleValueKind, 4817 4818 // For tables where there is a linear relationship between table index 4819 // and values. We calculate the result with a simple multiplication 4820 // and addition instead of a table lookup. 4821 LinearMapKind, 4822 4823 // For small tables with integer elements, we can pack them into a bitmap 4824 // that fits into a target-legal register. Values are retrieved by 4825 // shift and mask operations. 4826 BitMapKind, 4827 4828 // The table is stored as an array of values. Values are retrieved by load 4829 // instructions from the table. 4830 ArrayKind 4831 } Kind; 4832 4833 // For SingleValueKind, this is the single value. 4834 Constant *SingleValue; 4835 4836 // For BitMapKind, this is the bitmap. 4837 ConstantInt *BitMap; 4838 IntegerType *BitMapElementTy; 4839 4840 // For LinearMapKind, these are the constants used to derive the value. 4841 ConstantInt *LinearOffset; 4842 ConstantInt *LinearMultiplier; 4843 4844 // For ArrayKind, this is the array. 4845 GlobalVariable *Array; 4846 }; 4847 4848 } // end anonymous namespace 4849 4850 SwitchLookupTable::SwitchLookupTable( 4851 Module &M, uint64_t TableSize, ConstantInt *Offset, 4852 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values, 4853 Constant *DefaultValue, const DataLayout &DL) 4854 : SingleValue(nullptr), BitMap(nullptr), BitMapElementTy(nullptr), 4855 LinearOffset(nullptr), LinearMultiplier(nullptr), Array(nullptr) { 4856 assert(Values.size() && "Can't build lookup table without values!"); 4857 assert(TableSize >= Values.size() && "Can't fit values in table!"); 4858 4859 // If all values in the table are equal, this is that value. 4860 SingleValue = Values.begin()->second; 4861 4862 Type *ValueType = Values.begin()->second->getType(); 4863 4864 // Build up the table contents. 4865 SmallVector<Constant *, 64> TableContents(TableSize); 4866 for (size_t I = 0, E = Values.size(); I != E; ++I) { 4867 ConstantInt *CaseVal = Values[I].first; 4868 Constant *CaseRes = Values[I].second; 4869 assert(CaseRes->getType() == ValueType); 4870 4871 uint64_t Idx = (CaseVal->getValue() - Offset->getValue()).getLimitedValue(); 4872 TableContents[Idx] = CaseRes; 4873 4874 if (CaseRes != SingleValue) 4875 SingleValue = nullptr; 4876 } 4877 4878 // Fill in any holes in the table with the default result. 4879 if (Values.size() < TableSize) { 4880 assert(DefaultValue && 4881 "Need a default value to fill the lookup table holes."); 4882 assert(DefaultValue->getType() == ValueType); 4883 for (uint64_t I = 0; I < TableSize; ++I) { 4884 if (!TableContents[I]) 4885 TableContents[I] = DefaultValue; 4886 } 4887 4888 if (DefaultValue != SingleValue) 4889 SingleValue = nullptr; 4890 } 4891 4892 // If each element in the table contains the same value, we only need to store 4893 // that single value. 4894 if (SingleValue) { 4895 Kind = SingleValueKind; 4896 return; 4897 } 4898 4899 // Check if we can derive the value with a linear transformation from the 4900 // table index. 4901 if (isa<IntegerType>(ValueType)) { 4902 bool LinearMappingPossible = true; 4903 APInt PrevVal; 4904 APInt DistToPrev; 4905 assert(TableSize >= 2 && "Should be a SingleValue table."); 4906 // Check if there is the same distance between two consecutive values. 4907 for (uint64_t I = 0; I < TableSize; ++I) { 4908 ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]); 4909 if (!ConstVal) { 4910 // This is an undef. We could deal with it, but undefs in lookup tables 4911 // are very seldom. It's probably not worth the additional complexity. 4912 LinearMappingPossible = false; 4913 break; 4914 } 4915 APInt Val = ConstVal->getValue(); 4916 if (I != 0) { 4917 APInt Dist = Val - PrevVal; 4918 if (I == 1) { 4919 DistToPrev = Dist; 4920 } else if (Dist != DistToPrev) { 4921 LinearMappingPossible = false; 4922 break; 4923 } 4924 } 4925 PrevVal = Val; 4926 } 4927 if (LinearMappingPossible) { 4928 LinearOffset = cast<ConstantInt>(TableContents[0]); 4929 LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev); 4930 Kind = LinearMapKind; 4931 ++NumLinearMaps; 4932 return; 4933 } 4934 } 4935 4936 // If the type is integer and the table fits in a register, build a bitmap. 4937 if (WouldFitInRegister(DL, TableSize, ValueType)) { 4938 IntegerType *IT = cast<IntegerType>(ValueType); 4939 APInt TableInt(TableSize * IT->getBitWidth(), 0); 4940 for (uint64_t I = TableSize; I > 0; --I) { 4941 TableInt <<= IT->getBitWidth(); 4942 // Insert values into the bitmap. Undef values are set to zero. 4943 if (!isa<UndefValue>(TableContents[I - 1])) { 4944 ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]); 4945 TableInt |= Val->getValue().zext(TableInt.getBitWidth()); 4946 } 4947 } 4948 BitMap = ConstantInt::get(M.getContext(), TableInt); 4949 BitMapElementTy = IT; 4950 Kind = BitMapKind; 4951 ++NumBitMaps; 4952 return; 4953 } 4954 4955 // Store the table in an array. 4956 ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize); 4957 Constant *Initializer = ConstantArray::get(ArrayTy, TableContents); 4958 4959 Array = new GlobalVariable(M, ArrayTy, /*constant=*/true, 4960 GlobalVariable::PrivateLinkage, Initializer, 4961 "switch.table"); 4962 Array->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); 4963 Kind = ArrayKind; 4964 } 4965 4966 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) { 4967 switch (Kind) { 4968 case SingleValueKind: 4969 return SingleValue; 4970 case LinearMapKind: { 4971 // Derive the result value from the input value. 4972 Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(), 4973 false, "switch.idx.cast"); 4974 if (!LinearMultiplier->isOne()) 4975 Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult"); 4976 if (!LinearOffset->isZero()) 4977 Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset"); 4978 return Result; 4979 } 4980 case BitMapKind: { 4981 // Type of the bitmap (e.g. i59). 4982 IntegerType *MapTy = BitMap->getType(); 4983 4984 // Cast Index to the same type as the bitmap. 4985 // Note: The Index is <= the number of elements in the table, so 4986 // truncating it to the width of the bitmask is safe. 4987 Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast"); 4988 4989 // Multiply the shift amount by the element width. 4990 ShiftAmt = Builder.CreateMul( 4991 ShiftAmt, ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()), 4992 "switch.shiftamt"); 4993 4994 // Shift down. 4995 Value *DownShifted = 4996 Builder.CreateLShr(BitMap, ShiftAmt, "switch.downshift"); 4997 // Mask off. 4998 return Builder.CreateTrunc(DownShifted, BitMapElementTy, "switch.masked"); 4999 } 5000 case ArrayKind: { 5001 // Make sure the table index will not overflow when treated as signed. 5002 IntegerType *IT = cast<IntegerType>(Index->getType()); 5003 uint64_t TableSize = 5004 Array->getInitializer()->getType()->getArrayNumElements(); 5005 if (TableSize > (1ULL << (IT->getBitWidth() - 1))) 5006 Index = Builder.CreateZExt( 5007 Index, IntegerType::get(IT->getContext(), IT->getBitWidth() + 1), 5008 "switch.tableidx.zext"); 5009 5010 Value *GEPIndices[] = {Builder.getInt32(0), Index}; 5011 Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array, 5012 GEPIndices, "switch.gep"); 5013 return Builder.CreateLoad(GEP, "switch.load"); 5014 } 5015 } 5016 llvm_unreachable("Unknown lookup table kind!"); 5017 } 5018 5019 bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL, 5020 uint64_t TableSize, 5021 Type *ElementType) { 5022 auto *IT = dyn_cast<IntegerType>(ElementType); 5023 if (!IT) 5024 return false; 5025 // FIXME: If the type is wider than it needs to be, e.g. i8 but all values 5026 // are <= 15, we could try to narrow the type. 5027 5028 // Avoid overflow, fitsInLegalInteger uses unsigned int for the width. 5029 if (TableSize >= UINT_MAX / IT->getBitWidth()) 5030 return false; 5031 return DL.fitsInLegalInteger(TableSize * IT->getBitWidth()); 5032 } 5033 5034 /// Determine whether a lookup table should be built for this switch, based on 5035 /// the number of cases, size of the table, and the types of the results. 5036 static bool 5037 ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize, 5038 const TargetTransformInfo &TTI, const DataLayout &DL, 5039 const SmallDenseMap<PHINode *, Type *> &ResultTypes) { 5040 if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10) 5041 return false; // TableSize overflowed, or mul below might overflow. 5042 5043 bool AllTablesFitInRegister = true; 5044 bool HasIllegalType = false; 5045 for (const auto &I : ResultTypes) { 5046 Type *Ty = I.second; 5047 5048 // Saturate this flag to true. 5049 HasIllegalType = HasIllegalType || !TTI.isTypeLegal(Ty); 5050 5051 // Saturate this flag to false. 5052 AllTablesFitInRegister = 5053 AllTablesFitInRegister && 5054 SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty); 5055 5056 // If both flags saturate, we're done. NOTE: This *only* works with 5057 // saturating flags, and all flags have to saturate first due to the 5058 // non-deterministic behavior of iterating over a dense map. 5059 if (HasIllegalType && !AllTablesFitInRegister) 5060 break; 5061 } 5062 5063 // If each table would fit in a register, we should build it anyway. 5064 if (AllTablesFitInRegister) 5065 return true; 5066 5067 // Don't build a table that doesn't fit in-register if it has illegal types. 5068 if (HasIllegalType) 5069 return false; 5070 5071 // The table density should be at least 40%. This is the same criterion as for 5072 // jump tables, see SelectionDAGBuilder::handleJTSwitchCase. 5073 // FIXME: Find the best cut-off. 5074 return SI->getNumCases() * 10 >= TableSize * 4; 5075 } 5076 5077 /// Try to reuse the switch table index compare. Following pattern: 5078 /// \code 5079 /// if (idx < tablesize) 5080 /// r = table[idx]; // table does not contain default_value 5081 /// else 5082 /// r = default_value; 5083 /// if (r != default_value) 5084 /// ... 5085 /// \endcode 5086 /// Is optimized to: 5087 /// \code 5088 /// cond = idx < tablesize; 5089 /// if (cond) 5090 /// r = table[idx]; 5091 /// else 5092 /// r = default_value; 5093 /// if (cond) 5094 /// ... 5095 /// \endcode 5096 /// Jump threading will then eliminate the second if(cond). 5097 static void reuseTableCompare( 5098 User *PhiUser, BasicBlock *PhiBlock, BranchInst *RangeCheckBranch, 5099 Constant *DefaultValue, 5100 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values) { 5101 5102 ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser); 5103 if (!CmpInst) 5104 return; 5105 5106 // We require that the compare is in the same block as the phi so that jump 5107 // threading can do its work afterwards. 5108 if (CmpInst->getParent() != PhiBlock) 5109 return; 5110 5111 Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1)); 5112 if (!CmpOp1) 5113 return; 5114 5115 Value *RangeCmp = RangeCheckBranch->getCondition(); 5116 Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType()); 5117 Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType()); 5118 5119 // Check if the compare with the default value is constant true or false. 5120 Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(), 5121 DefaultValue, CmpOp1, true); 5122 if (DefaultConst != TrueConst && DefaultConst != FalseConst) 5123 return; 5124 5125 // Check if the compare with the case values is distinct from the default 5126 // compare result. 5127 for (auto ValuePair : Values) { 5128 Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(), 5129 ValuePair.second, CmpOp1, true); 5130 if (!CaseConst || CaseConst == DefaultConst) 5131 return; 5132 assert((CaseConst == TrueConst || CaseConst == FalseConst) && 5133 "Expect true or false as compare result."); 5134 } 5135 5136 // Check if the branch instruction dominates the phi node. It's a simple 5137 // dominance check, but sufficient for our needs. 5138 // Although this check is invariant in the calling loops, it's better to do it 5139 // at this late stage. Practically we do it at most once for a switch. 5140 BasicBlock *BranchBlock = RangeCheckBranch->getParent(); 5141 for (auto PI = pred_begin(PhiBlock), E = pred_end(PhiBlock); PI != E; ++PI) { 5142 BasicBlock *Pred = *PI; 5143 if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock) 5144 return; 5145 } 5146 5147 if (DefaultConst == FalseConst) { 5148 // The compare yields the same result. We can replace it. 5149 CmpInst->replaceAllUsesWith(RangeCmp); 5150 ++NumTableCmpReuses; 5151 } else { 5152 // The compare yields the same result, just inverted. We can replace it. 5153 Value *InvertedTableCmp = BinaryOperator::CreateXor( 5154 RangeCmp, ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp", 5155 RangeCheckBranch); 5156 CmpInst->replaceAllUsesWith(InvertedTableCmp); 5157 ++NumTableCmpReuses; 5158 } 5159 } 5160 5161 /// If the switch is only used to initialize one or more phi nodes in a common 5162 /// successor block with different constant values, replace the switch with 5163 /// lookup tables. 5164 static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder, 5165 const DataLayout &DL, 5166 const TargetTransformInfo &TTI) { 5167 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 5168 5169 // Only build lookup table when we have a target that supports it. 5170 if (!TTI.shouldBuildLookupTables()) 5171 return false; 5172 5173 // FIXME: If the switch is too sparse for a lookup table, perhaps we could 5174 // split off a dense part and build a lookup table for that. 5175 5176 // FIXME: This creates arrays of GEPs to constant strings, which means each 5177 // GEP needs a runtime relocation in PIC code. We should just build one big 5178 // string and lookup indices into that. 5179 5180 // Ignore switches with less than three cases. Lookup tables will not make 5181 // them 5182 // faster, so we don't analyze them. 5183 if (SI->getNumCases() < 3) 5184 return false; 5185 5186 // Figure out the corresponding result for each case value and phi node in the 5187 // common destination, as well as the min and max case values. 5188 assert(SI->case_begin() != SI->case_end()); 5189 SwitchInst::CaseIt CI = SI->case_begin(); 5190 ConstantInt *MinCaseVal = CI.getCaseValue(); 5191 ConstantInt *MaxCaseVal = CI.getCaseValue(); 5192 5193 BasicBlock *CommonDest = nullptr; 5194 typedef SmallVector<std::pair<ConstantInt *, Constant *>, 4> ResultListTy; 5195 SmallDenseMap<PHINode *, ResultListTy> ResultLists; 5196 SmallDenseMap<PHINode *, Constant *> DefaultResults; 5197 SmallDenseMap<PHINode *, Type *> ResultTypes; 5198 SmallVector<PHINode *, 4> PHIs; 5199 5200 for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) { 5201 ConstantInt *CaseVal = CI.getCaseValue(); 5202 if (CaseVal->getValue().slt(MinCaseVal->getValue())) 5203 MinCaseVal = CaseVal; 5204 if (CaseVal->getValue().sgt(MaxCaseVal->getValue())) 5205 MaxCaseVal = CaseVal; 5206 5207 // Resulting value at phi nodes for this case value. 5208 typedef SmallVector<std::pair<PHINode *, Constant *>, 4> ResultsTy; 5209 ResultsTy Results; 5210 if (!GetCaseResults(SI, CaseVal, CI.getCaseSuccessor(), &CommonDest, 5211 Results, DL, TTI)) 5212 return false; 5213 5214 // Append the result from this case to the list for each phi. 5215 for (const auto &I : Results) { 5216 PHINode *PHI = I.first; 5217 Constant *Value = I.second; 5218 if (!ResultLists.count(PHI)) 5219 PHIs.push_back(PHI); 5220 ResultLists[PHI].push_back(std::make_pair(CaseVal, Value)); 5221 } 5222 } 5223 5224 // Keep track of the result types. 5225 for (PHINode *PHI : PHIs) { 5226 ResultTypes[PHI] = ResultLists[PHI][0].second->getType(); 5227 } 5228 5229 uint64_t NumResults = ResultLists[PHIs[0]].size(); 5230 APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue(); 5231 uint64_t TableSize = RangeSpread.getLimitedValue() + 1; 5232 bool TableHasHoles = (NumResults < TableSize); 5233 5234 // If the table has holes, we need a constant result for the default case 5235 // or a bitmask that fits in a register. 5236 SmallVector<std::pair<PHINode *, Constant *>, 4> DefaultResultsList; 5237 bool HasDefaultResults = 5238 GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, 5239 DefaultResultsList, DL, TTI); 5240 5241 bool NeedMask = (TableHasHoles && !HasDefaultResults); 5242 if (NeedMask) { 5243 // As an extra penalty for the validity test we require more cases. 5244 if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark). 5245 return false; 5246 if (!DL.fitsInLegalInteger(TableSize)) 5247 return false; 5248 } 5249 5250 for (const auto &I : DefaultResultsList) { 5251 PHINode *PHI = I.first; 5252 Constant *Result = I.second; 5253 DefaultResults[PHI] = Result; 5254 } 5255 5256 if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes)) 5257 return false; 5258 5259 // Create the BB that does the lookups. 5260 Module &Mod = *CommonDest->getParent()->getParent(); 5261 BasicBlock *LookupBB = BasicBlock::Create( 5262 Mod.getContext(), "switch.lookup", CommonDest->getParent(), CommonDest); 5263 5264 // Compute the table index value. 5265 Builder.SetInsertPoint(SI); 5266 Value *TableIndex = 5267 Builder.CreateSub(SI->getCondition(), MinCaseVal, "switch.tableidx"); 5268 5269 // Compute the maximum table size representable by the integer type we are 5270 // switching upon. 5271 unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits(); 5272 uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize; 5273 assert(MaxTableSize >= TableSize && 5274 "It is impossible for a switch to have more entries than the max " 5275 "representable value of its input integer type's size."); 5276 5277 // If the default destination is unreachable, or if the lookup table covers 5278 // all values of the conditional variable, branch directly to the lookup table 5279 // BB. Otherwise, check that the condition is within the case range. 5280 const bool DefaultIsReachable = 5281 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 5282 const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize); 5283 BranchInst *RangeCheckBranch = nullptr; 5284 5285 if (!DefaultIsReachable || GeneratingCoveredLookupTable) { 5286 Builder.CreateBr(LookupBB); 5287 // Note: We call removeProdecessor later since we need to be able to get the 5288 // PHI value for the default case in case we're using a bit mask. 5289 } else { 5290 Value *Cmp = Builder.CreateICmpULT( 5291 TableIndex, ConstantInt::get(MinCaseVal->getType(), TableSize)); 5292 RangeCheckBranch = 5293 Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest()); 5294 } 5295 5296 // Populate the BB that does the lookups. 5297 Builder.SetInsertPoint(LookupBB); 5298 5299 if (NeedMask) { 5300 // Before doing the lookup we do the hole check. 5301 // The LookupBB is therefore re-purposed to do the hole check 5302 // and we create a new LookupBB. 5303 BasicBlock *MaskBB = LookupBB; 5304 MaskBB->setName("switch.hole_check"); 5305 LookupBB = BasicBlock::Create(Mod.getContext(), "switch.lookup", 5306 CommonDest->getParent(), CommonDest); 5307 5308 // Make the mask's bitwidth at least 8bit and a power-of-2 to avoid 5309 // unnecessary illegal types. 5310 uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL)); 5311 APInt MaskInt(TableSizePowOf2, 0); 5312 APInt One(TableSizePowOf2, 1); 5313 // Build bitmask; fill in a 1 bit for every case. 5314 const ResultListTy &ResultList = ResultLists[PHIs[0]]; 5315 for (size_t I = 0, E = ResultList.size(); I != E; ++I) { 5316 uint64_t Idx = (ResultList[I].first->getValue() - MinCaseVal->getValue()) 5317 .getLimitedValue(); 5318 MaskInt |= One << Idx; 5319 } 5320 ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt); 5321 5322 // Get the TableIndex'th bit of the bitmask. 5323 // If this bit is 0 (meaning hole) jump to the default destination, 5324 // else continue with table lookup. 5325 IntegerType *MapTy = TableMask->getType(); 5326 Value *MaskIndex = 5327 Builder.CreateZExtOrTrunc(TableIndex, MapTy, "switch.maskindex"); 5328 Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, "switch.shifted"); 5329 Value *LoBit = Builder.CreateTrunc( 5330 Shifted, Type::getInt1Ty(Mod.getContext()), "switch.lobit"); 5331 Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest()); 5332 5333 Builder.SetInsertPoint(LookupBB); 5334 AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, SI->getParent()); 5335 } 5336 5337 if (!DefaultIsReachable || GeneratingCoveredLookupTable) { 5338 // We cached PHINodes in PHIs, to avoid accessing deleted PHINodes later, 5339 // do not delete PHINodes here. 5340 SI->getDefaultDest()->removePredecessor(SI->getParent(), 5341 /*DontDeleteUselessPHIs=*/true); 5342 } 5343 5344 bool ReturnedEarly = false; 5345 for (size_t I = 0, E = PHIs.size(); I != E; ++I) { 5346 PHINode *PHI = PHIs[I]; 5347 const ResultListTy &ResultList = ResultLists[PHI]; 5348 5349 // If using a bitmask, use any value to fill the lookup table holes. 5350 Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI]; 5351 SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultList, DV, DL); 5352 5353 Value *Result = Table.BuildLookup(TableIndex, Builder); 5354 5355 // If the result is used to return immediately from the function, we want to 5356 // do that right here. 5357 if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->user_begin()) && 5358 PHI->user_back() == CommonDest->getFirstNonPHIOrDbg()) { 5359 Builder.CreateRet(Result); 5360 ReturnedEarly = true; 5361 break; 5362 } 5363 5364 // Do a small peephole optimization: re-use the switch table compare if 5365 // possible. 5366 if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) { 5367 BasicBlock *PhiBlock = PHI->getParent(); 5368 // Search for compare instructions which use the phi. 5369 for (auto *User : PHI->users()) { 5370 reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList); 5371 } 5372 } 5373 5374 PHI->addIncoming(Result, LookupBB); 5375 } 5376 5377 if (!ReturnedEarly) 5378 Builder.CreateBr(CommonDest); 5379 5380 // Remove the switch. 5381 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { 5382 BasicBlock *Succ = SI->getSuccessor(i); 5383 5384 if (Succ == SI->getDefaultDest()) 5385 continue; 5386 Succ->removePredecessor(SI->getParent()); 5387 } 5388 SI->eraseFromParent(); 5389 5390 ++NumLookupTables; 5391 if (NeedMask) 5392 ++NumLookupTablesHoles; 5393 return true; 5394 } 5395 5396 static bool isSwitchDense(ArrayRef<int64_t> Values) { 5397 // See also SelectionDAGBuilder::isDense(), which this function was based on. 5398 uint64_t Diff = (uint64_t)Values.back() - (uint64_t)Values.front(); 5399 uint64_t Range = Diff + 1; 5400 uint64_t NumCases = Values.size(); 5401 // 40% is the default density for building a jump table in optsize/minsize mode. 5402 uint64_t MinDensity = 40; 5403 5404 return NumCases * 100 >= Range * MinDensity; 5405 } 5406 5407 // Try and transform a switch that has "holes" in it to a contiguous sequence 5408 // of cases. 5409 // 5410 // A switch such as: switch(i) {case 5: case 9: case 13: case 17:} can be 5411 // range-reduced to: switch ((i-5) / 4) {case 0: case 1: case 2: case 3:}. 5412 // 5413 // This converts a sparse switch into a dense switch which allows better 5414 // lowering and could also allow transforming into a lookup table. 5415 static bool ReduceSwitchRange(SwitchInst *SI, IRBuilder<> &Builder, 5416 const DataLayout &DL, 5417 const TargetTransformInfo &TTI) { 5418 auto *CondTy = cast<IntegerType>(SI->getCondition()->getType()); 5419 if (CondTy->getIntegerBitWidth() > 64 || 5420 !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth())) 5421 return false; 5422 // Only bother with this optimization if there are more than 3 switch cases; 5423 // SDAG will only bother creating jump tables for 4 or more cases. 5424 if (SI->getNumCases() < 4) 5425 return false; 5426 5427 // This transform is agnostic to the signedness of the input or case values. We 5428 // can treat the case values as signed or unsigned. We can optimize more common 5429 // cases such as a sequence crossing zero {-4,0,4,8} if we interpret case values 5430 // as signed. 5431 SmallVector<int64_t,4> Values; 5432 for (auto &C : SI->cases()) 5433 Values.push_back(C.getCaseValue()->getValue().getSExtValue()); 5434 std::sort(Values.begin(), Values.end()); 5435 5436 // If the switch is already dense, there's nothing useful to do here. 5437 if (isSwitchDense(Values)) 5438 return false; 5439 5440 // First, transform the values such that they start at zero and ascend. 5441 int64_t Base = Values[0]; 5442 for (auto &V : Values) 5443 V -= Base; 5444 5445 // Now we have signed numbers that have been shifted so that, given enough 5446 // precision, there are no negative values. Since the rest of the transform 5447 // is bitwise only, we switch now to an unsigned representation. 5448 uint64_t GCD = 0; 5449 for (auto &V : Values) 5450 GCD = GreatestCommonDivisor64(GCD, (uint64_t)V); 5451 5452 // This transform can be done speculatively because it is so cheap - it results 5453 // in a single rotate operation being inserted. This can only happen if the 5454 // factor extracted is a power of 2. 5455 // FIXME: If the GCD is an odd number we can multiply by the multiplicative 5456 // inverse of GCD and then perform this transform. 5457 // FIXME: It's possible that optimizing a switch on powers of two might also 5458 // be beneficial - flag values are often powers of two and we could use a CLZ 5459 // as the key function. 5460 if (GCD <= 1 || !isPowerOf2_64(GCD)) 5461 // No common divisor found or too expensive to compute key function. 5462 return false; 5463 5464 unsigned Shift = Log2_64(GCD); 5465 for (auto &V : Values) 5466 V = (int64_t)((uint64_t)V >> Shift); 5467 5468 if (!isSwitchDense(Values)) 5469 // Transform didn't create a dense switch. 5470 return false; 5471 5472 // The obvious transform is to shift the switch condition right and emit a 5473 // check that the condition actually cleanly divided by GCD, i.e. 5474 // C & (1 << Shift - 1) == 0 5475 // inserting a new CFG edge to handle the case where it didn't divide cleanly. 5476 // 5477 // A cheaper way of doing this is a simple ROTR(C, Shift). This performs the 5478 // shift and puts the shifted-off bits in the uppermost bits. If any of these 5479 // are nonzero then the switch condition will be very large and will hit the 5480 // default case. 5481 5482 auto *Ty = cast<IntegerType>(SI->getCondition()->getType()); 5483 Builder.SetInsertPoint(SI); 5484 auto *ShiftC = ConstantInt::get(Ty, Shift); 5485 auto *Sub = Builder.CreateSub(SI->getCondition(), ConstantInt::get(Ty, Base)); 5486 auto *LShr = Builder.CreateLShr(Sub, ShiftC); 5487 auto *Shl = Builder.CreateShl(Sub, Ty->getBitWidth() - Shift); 5488 auto *Rot = Builder.CreateOr(LShr, Shl); 5489 SI->replaceUsesOfWith(SI->getCondition(), Rot); 5490 5491 for (SwitchInst::CaseIt C = SI->case_begin(), E = SI->case_end(); C != E; 5492 ++C) { 5493 auto *Orig = C.getCaseValue(); 5494 auto Sub = Orig->getValue() - APInt(Ty->getBitWidth(), Base); 5495 C.setValue( 5496 cast<ConstantInt>(ConstantInt::get(Ty, Sub.lshr(ShiftC->getValue())))); 5497 } 5498 return true; 5499 } 5500 5501 bool SimplifyCFGOpt::SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) { 5502 BasicBlock *BB = SI->getParent(); 5503 5504 if (isValueEqualityComparison(SI)) { 5505 // If we only have one predecessor, and if it is a branch on this value, 5506 // see if that predecessor totally determines the outcome of this switch. 5507 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 5508 if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder)) 5509 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5510 5511 Value *Cond = SI->getCondition(); 5512 if (SelectInst *Select = dyn_cast<SelectInst>(Cond)) 5513 if (SimplifySwitchOnSelect(SI, Select)) 5514 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5515 5516 // If the block only contains the switch, see if we can fold the block 5517 // away into any preds. 5518 BasicBlock::iterator BBI = BB->begin(); 5519 // Ignore dbg intrinsics. 5520 while (isa<DbgInfoIntrinsic>(BBI)) 5521 ++BBI; 5522 if (SI == &*BBI) 5523 if (FoldValueComparisonIntoPredecessors(SI, Builder)) 5524 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5525 } 5526 5527 // Try to transform the switch into an icmp and a branch. 5528 if (TurnSwitchRangeIntoICmp(SI, Builder)) 5529 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5530 5531 // Remove unreachable cases. 5532 if (EliminateDeadSwitchCases(SI, AC, DL)) 5533 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5534 5535 if (SwitchToSelect(SI, Builder, AC, DL, TTI)) 5536 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5537 5538 if (ForwardSwitchConditionToPHI(SI)) 5539 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5540 5541 if (SwitchToLookupTable(SI, Builder, DL, TTI)) 5542 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5543 5544 if (ReduceSwitchRange(SI, Builder, DL, TTI)) 5545 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5546 5547 return false; 5548 } 5549 5550 bool SimplifyCFGOpt::SimplifyIndirectBr(IndirectBrInst *IBI) { 5551 BasicBlock *BB = IBI->getParent(); 5552 bool Changed = false; 5553 5554 // Eliminate redundant destinations. 5555 SmallPtrSet<Value *, 8> Succs; 5556 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 5557 BasicBlock *Dest = IBI->getDestination(i); 5558 if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) { 5559 Dest->removePredecessor(BB); 5560 IBI->removeDestination(i); 5561 --i; 5562 --e; 5563 Changed = true; 5564 } 5565 } 5566 5567 if (IBI->getNumDestinations() == 0) { 5568 // If the indirectbr has no successors, change it to unreachable. 5569 new UnreachableInst(IBI->getContext(), IBI); 5570 EraseTerminatorInstAndDCECond(IBI); 5571 return true; 5572 } 5573 5574 if (IBI->getNumDestinations() == 1) { 5575 // If the indirectbr has one successor, change it to a direct branch. 5576 BranchInst::Create(IBI->getDestination(0), IBI); 5577 EraseTerminatorInstAndDCECond(IBI); 5578 return true; 5579 } 5580 5581 if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) { 5582 if (SimplifyIndirectBrOnSelect(IBI, SI)) 5583 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5584 } 5585 return Changed; 5586 } 5587 5588 /// Given an block with only a single landing pad and a unconditional branch 5589 /// try to find another basic block which this one can be merged with. This 5590 /// handles cases where we have multiple invokes with unique landing pads, but 5591 /// a shared handler. 5592 /// 5593 /// We specifically choose to not worry about merging non-empty blocks 5594 /// here. That is a PRE/scheduling problem and is best solved elsewhere. In 5595 /// practice, the optimizer produces empty landing pad blocks quite frequently 5596 /// when dealing with exception dense code. (see: instcombine, gvn, if-else 5597 /// sinking in this file) 5598 /// 5599 /// This is primarily a code size optimization. We need to avoid performing 5600 /// any transform which might inhibit optimization (such as our ability to 5601 /// specialize a particular handler via tail commoning). We do this by not 5602 /// merging any blocks which require us to introduce a phi. Since the same 5603 /// values are flowing through both blocks, we don't loose any ability to 5604 /// specialize. If anything, we make such specialization more likely. 5605 /// 5606 /// TODO - This transformation could remove entries from a phi in the target 5607 /// block when the inputs in the phi are the same for the two blocks being 5608 /// merged. In some cases, this could result in removal of the PHI entirely. 5609 static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI, 5610 BasicBlock *BB) { 5611 auto Succ = BB->getUniqueSuccessor(); 5612 assert(Succ); 5613 // If there's a phi in the successor block, we'd likely have to introduce 5614 // a phi into the merged landing pad block. 5615 if (isa<PHINode>(*Succ->begin())) 5616 return false; 5617 5618 for (BasicBlock *OtherPred : predecessors(Succ)) { 5619 if (BB == OtherPred) 5620 continue; 5621 BasicBlock::iterator I = OtherPred->begin(); 5622 LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I); 5623 if (!LPad2 || !LPad2->isIdenticalTo(LPad)) 5624 continue; 5625 for (++I; isa<DbgInfoIntrinsic>(I); ++I) { 5626 } 5627 BranchInst *BI2 = dyn_cast<BranchInst>(I); 5628 if (!BI2 || !BI2->isIdenticalTo(BI)) 5629 continue; 5630 5631 // We've found an identical block. Update our predecessors to take that 5632 // path instead and make ourselves dead. 5633 SmallSet<BasicBlock *, 16> Preds; 5634 Preds.insert(pred_begin(BB), pred_end(BB)); 5635 for (BasicBlock *Pred : Preds) { 5636 InvokeInst *II = cast<InvokeInst>(Pred->getTerminator()); 5637 assert(II->getNormalDest() != BB && II->getUnwindDest() == BB && 5638 "unexpected successor"); 5639 II->setUnwindDest(OtherPred); 5640 } 5641 5642 // The debug info in OtherPred doesn't cover the merged control flow that 5643 // used to go through BB. We need to delete it or update it. 5644 for (auto I = OtherPred->begin(), E = OtherPred->end(); I != E;) { 5645 Instruction &Inst = *I; 5646 I++; 5647 if (isa<DbgInfoIntrinsic>(Inst)) 5648 Inst.eraseFromParent(); 5649 } 5650 5651 SmallSet<BasicBlock *, 16> Succs; 5652 Succs.insert(succ_begin(BB), succ_end(BB)); 5653 for (BasicBlock *Succ : Succs) { 5654 Succ->removePredecessor(BB); 5655 } 5656 5657 IRBuilder<> Builder(BI); 5658 Builder.CreateUnreachable(); 5659 BI->eraseFromParent(); 5660 return true; 5661 } 5662 return false; 5663 } 5664 5665 bool SimplifyCFGOpt::SimplifyUncondBranch(BranchInst *BI, 5666 IRBuilder<> &Builder) { 5667 BasicBlock *BB = BI->getParent(); 5668 5669 if (SinkCommon && SinkThenElseCodeToEnd(BI)) 5670 return true; 5671 5672 // If the Terminator is the only non-phi instruction, simplify the block. 5673 // if LoopHeader is provided, check if the block is a loop header 5674 // (This is for early invocations before loop simplify and vectorization 5675 // to keep canonical loop forms for nested loops. 5676 // These blocks can be eliminated when the pass is invoked later 5677 // in the back-end.) 5678 BasicBlock::iterator I = BB->getFirstNonPHIOrDbg()->getIterator(); 5679 if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() && 5680 (!LoopHeaders || !LoopHeaders->count(BB)) && 5681 TryToSimplifyUncondBranchFromEmptyBlock(BB)) 5682 return true; 5683 5684 // If the only instruction in the block is a seteq/setne comparison 5685 // against a constant, try to simplify the block. 5686 if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) 5687 if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) { 5688 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 5689 ; 5690 if (I->isTerminator() && 5691 TryToSimplifyUncondBranchWithICmpInIt(ICI, Builder, DL, TTI, 5692 BonusInstThreshold, AC)) 5693 return true; 5694 } 5695 5696 // See if we can merge an empty landing pad block with another which is 5697 // equivalent. 5698 if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) { 5699 for (++I; isa<DbgInfoIntrinsic>(I); ++I) { 5700 } 5701 if (I->isTerminator() && TryToMergeLandingPad(LPad, BI, BB)) 5702 return true; 5703 } 5704 5705 // If this basic block is ONLY a compare and a branch, and if a predecessor 5706 // branches to us and our successor, fold the comparison into the 5707 // predecessor and use logical operations to update the incoming value 5708 // for PHI nodes in common successor. 5709 if (FoldBranchToCommonDest(BI, BonusInstThreshold)) 5710 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5711 return false; 5712 } 5713 5714 static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) { 5715 BasicBlock *PredPred = nullptr; 5716 for (auto *P : predecessors(BB)) { 5717 BasicBlock *PPred = P->getSinglePredecessor(); 5718 if (!PPred || (PredPred && PredPred != PPred)) 5719 return nullptr; 5720 PredPred = PPred; 5721 } 5722 return PredPred; 5723 } 5724 5725 bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) { 5726 BasicBlock *BB = BI->getParent(); 5727 5728 // Conditional branch 5729 if (isValueEqualityComparison(BI)) { 5730 // If we only have one predecessor, and if it is a branch on this value, 5731 // see if that predecessor totally determines the outcome of this 5732 // switch. 5733 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 5734 if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder)) 5735 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5736 5737 // This block must be empty, except for the setcond inst, if it exists. 5738 // Ignore dbg intrinsics. 5739 BasicBlock::iterator I = BB->begin(); 5740 // Ignore dbg intrinsics. 5741 while (isa<DbgInfoIntrinsic>(I)) 5742 ++I; 5743 if (&*I == BI) { 5744 if (FoldValueComparisonIntoPredecessors(BI, Builder)) 5745 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5746 } else if (&*I == cast<Instruction>(BI->getCondition())) { 5747 ++I; 5748 // Ignore dbg intrinsics. 5749 while (isa<DbgInfoIntrinsic>(I)) 5750 ++I; 5751 if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder)) 5752 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5753 } 5754 } 5755 5756 // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction. 5757 if (SimplifyBranchOnICmpChain(BI, Builder, DL)) 5758 return true; 5759 5760 // If this basic block has a single dominating predecessor block and the 5761 // dominating block's condition implies BI's condition, we know the direction 5762 // of the BI branch. 5763 if (BasicBlock *Dom = BB->getSinglePredecessor()) { 5764 auto *PBI = dyn_cast_or_null<BranchInst>(Dom->getTerminator()); 5765 if (PBI && PBI->isConditional() && 5766 PBI->getSuccessor(0) != PBI->getSuccessor(1) && 5767 (PBI->getSuccessor(0) == BB || PBI->getSuccessor(1) == BB)) { 5768 bool CondIsFalse = PBI->getSuccessor(1) == BB; 5769 Optional<bool> Implication = isImpliedCondition( 5770 PBI->getCondition(), BI->getCondition(), DL, CondIsFalse); 5771 if (Implication) { 5772 // Turn this into a branch on constant. 5773 auto *OldCond = BI->getCondition(); 5774 ConstantInt *CI = *Implication 5775 ? ConstantInt::getTrue(BB->getContext()) 5776 : ConstantInt::getFalse(BB->getContext()); 5777 BI->setCondition(CI); 5778 RecursivelyDeleteTriviallyDeadInstructions(OldCond); 5779 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5780 } 5781 } 5782 } 5783 5784 // If this basic block is ONLY a compare and a branch, and if a predecessor 5785 // branches to us and one of our successors, fold the comparison into the 5786 // predecessor and use logical operations to pick the right destination. 5787 if (FoldBranchToCommonDest(BI, BonusInstThreshold)) 5788 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5789 5790 // We have a conditional branch to two blocks that are only reachable 5791 // from BI. We know that the condbr dominates the two blocks, so see if 5792 // there is any identical code in the "then" and "else" blocks. If so, we 5793 // can hoist it up to the branching block. 5794 if (BI->getSuccessor(0)->getSinglePredecessor()) { 5795 if (BI->getSuccessor(1)->getSinglePredecessor()) { 5796 if (HoistThenElseCodeToIf(BI, TTI)) 5797 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5798 } else { 5799 // If Successor #1 has multiple preds, we may be able to conditionally 5800 // execute Successor #0 if it branches to Successor #1. 5801 TerminatorInst *Succ0TI = BI->getSuccessor(0)->getTerminator(); 5802 if (Succ0TI->getNumSuccessors() == 1 && 5803 Succ0TI->getSuccessor(0) == BI->getSuccessor(1)) 5804 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), TTI)) 5805 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5806 } 5807 } else if (BI->getSuccessor(1)->getSinglePredecessor()) { 5808 // If Successor #0 has multiple preds, we may be able to conditionally 5809 // execute Successor #1 if it branches to Successor #0. 5810 TerminatorInst *Succ1TI = BI->getSuccessor(1)->getTerminator(); 5811 if (Succ1TI->getNumSuccessors() == 1 && 5812 Succ1TI->getSuccessor(0) == BI->getSuccessor(0)) 5813 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), TTI)) 5814 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5815 } 5816 5817 // If this is a branch on a phi node in the current block, thread control 5818 // through this block if any PHI node entries are constants. 5819 if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition())) 5820 if (PN->getParent() == BI->getParent()) 5821 if (FoldCondBranchOnPHI(BI, DL)) 5822 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5823 5824 // Scan predecessor blocks for conditional branches. 5825 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 5826 if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator())) 5827 if (PBI != BI && PBI->isConditional()) 5828 if (SimplifyCondBranchToCondBranch(PBI, BI, DL)) 5829 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5830 5831 // Look for diamond patterns. 5832 if (MergeCondStores) 5833 if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB)) 5834 if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator())) 5835 if (PBI != BI && PBI->isConditional()) 5836 if (mergeConditionalStores(PBI, BI)) 5837 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5838 5839 return false; 5840 } 5841 5842 /// Check if passing a value to an instruction will cause undefined behavior. 5843 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I) { 5844 Constant *C = dyn_cast<Constant>(V); 5845 if (!C) 5846 return false; 5847 5848 if (I->use_empty()) 5849 return false; 5850 5851 if (C->isNullValue() || isa<UndefValue>(C)) { 5852 // Only look at the first use, avoid hurting compile time with long uselists 5853 User *Use = *I->user_begin(); 5854 5855 // Now make sure that there are no instructions in between that can alter 5856 // control flow (eg. calls) 5857 for (BasicBlock::iterator 5858 i = ++BasicBlock::iterator(I), 5859 UI = BasicBlock::iterator(dyn_cast<Instruction>(Use)); 5860 i != UI; ++i) 5861 if (i == I->getParent()->end() || i->mayHaveSideEffects()) 5862 return false; 5863 5864 // Look through GEPs. A load from a GEP derived from NULL is still undefined 5865 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use)) 5866 if (GEP->getPointerOperand() == I) 5867 return passingValueIsAlwaysUndefined(V, GEP); 5868 5869 // Look through bitcasts. 5870 if (BitCastInst *BC = dyn_cast<BitCastInst>(Use)) 5871 return passingValueIsAlwaysUndefined(V, BC); 5872 5873 // Load from null is undefined. 5874 if (LoadInst *LI = dyn_cast<LoadInst>(Use)) 5875 if (!LI->isVolatile()) 5876 return LI->getPointerAddressSpace() == 0; 5877 5878 // Store to null is undefined. 5879 if (StoreInst *SI = dyn_cast<StoreInst>(Use)) 5880 if (!SI->isVolatile()) 5881 return SI->getPointerAddressSpace() == 0 && 5882 SI->getPointerOperand() == I; 5883 5884 // A call to null is undefined. 5885 if (auto CS = CallSite(Use)) 5886 return CS.getCalledValue() == I; 5887 } 5888 return false; 5889 } 5890 5891 /// If BB has an incoming value that will always trigger undefined behavior 5892 /// (eg. null pointer dereference), remove the branch leading here. 5893 static bool removeUndefIntroducingPredecessor(BasicBlock *BB) { 5894 for (BasicBlock::iterator i = BB->begin(); 5895 PHINode *PHI = dyn_cast<PHINode>(i); ++i) 5896 for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) 5897 if (passingValueIsAlwaysUndefined(PHI->getIncomingValue(i), PHI)) { 5898 TerminatorInst *T = PHI->getIncomingBlock(i)->getTerminator(); 5899 IRBuilder<> Builder(T); 5900 if (BranchInst *BI = dyn_cast<BranchInst>(T)) { 5901 BB->removePredecessor(PHI->getIncomingBlock(i)); 5902 // Turn uncoditional branches into unreachables and remove the dead 5903 // destination from conditional branches. 5904 if (BI->isUnconditional()) 5905 Builder.CreateUnreachable(); 5906 else 5907 Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1) 5908 : BI->getSuccessor(0)); 5909 BI->eraseFromParent(); 5910 return true; 5911 } 5912 // TODO: SwitchInst. 5913 } 5914 5915 return false; 5916 } 5917 5918 bool SimplifyCFGOpt::run(BasicBlock *BB) { 5919 bool Changed = false; 5920 5921 assert(BB && BB->getParent() && "Block not embedded in function!"); 5922 assert(BB->getTerminator() && "Degenerate basic block encountered!"); 5923 5924 // Remove basic blocks that have no predecessors (except the entry block)... 5925 // or that just have themself as a predecessor. These are unreachable. 5926 if ((pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) || 5927 BB->getSinglePredecessor() == BB) { 5928 DEBUG(dbgs() << "Removing BB: \n" << *BB); 5929 DeleteDeadBlock(BB); 5930 return true; 5931 } 5932 5933 // Check to see if we can constant propagate this terminator instruction 5934 // away... 5935 Changed |= ConstantFoldTerminator(BB, true); 5936 5937 // Check for and eliminate duplicate PHI nodes in this block. 5938 Changed |= EliminateDuplicatePHINodes(BB); 5939 5940 // Check for and remove branches that will always cause undefined behavior. 5941 Changed |= removeUndefIntroducingPredecessor(BB); 5942 5943 // Merge basic blocks into their predecessor if there is only one distinct 5944 // pred, and if there is only one distinct successor of the predecessor, and 5945 // if there are no PHI nodes. 5946 // 5947 if (MergeBlockIntoPredecessor(BB)) 5948 return true; 5949 5950 IRBuilder<> Builder(BB); 5951 5952 // If there is a trivial two-entry PHI node in this basic block, and we can 5953 // eliminate it, do so now. 5954 if (PHINode *PN = dyn_cast<PHINode>(BB->begin())) 5955 if (PN->getNumIncomingValues() == 2) 5956 Changed |= FoldTwoEntryPHINode(PN, TTI, DL); 5957 5958 Builder.SetInsertPoint(BB->getTerminator()); 5959 if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) { 5960 if (BI->isUnconditional()) { 5961 if (SimplifyUncondBranch(BI, Builder)) 5962 return true; 5963 } else { 5964 if (SimplifyCondBranch(BI, Builder)) 5965 return true; 5966 } 5967 } else if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) { 5968 if (SimplifyReturn(RI, Builder)) 5969 return true; 5970 } else if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator())) { 5971 if (SimplifyResume(RI, Builder)) 5972 return true; 5973 } else if (CleanupReturnInst *RI = 5974 dyn_cast<CleanupReturnInst>(BB->getTerminator())) { 5975 if (SimplifyCleanupReturn(RI)) 5976 return true; 5977 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) { 5978 if (SimplifySwitch(SI, Builder)) 5979 return true; 5980 } else if (UnreachableInst *UI = 5981 dyn_cast<UnreachableInst>(BB->getTerminator())) { 5982 if (SimplifyUnreachable(UI)) 5983 return true; 5984 } else if (IndirectBrInst *IBI = 5985 dyn_cast<IndirectBrInst>(BB->getTerminator())) { 5986 if (SimplifyIndirectBr(IBI)) 5987 return true; 5988 } 5989 5990 return Changed; 5991 } 5992 5993 /// This function is used to do simplification of a CFG. 5994 /// For example, it adjusts branches to branches to eliminate the extra hop, 5995 /// eliminates unreachable basic blocks, and does other "peephole" optimization 5996 /// of the CFG. It returns true if a modification was made. 5997 /// 5998 bool llvm::SimplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI, 5999 unsigned BonusInstThreshold, AssumptionCache *AC, 6000 SmallPtrSetImpl<BasicBlock *> *LoopHeaders) { 6001 return SimplifyCFGOpt(TTI, BB->getModule()->getDataLayout(), 6002 BonusInstThreshold, AC, LoopHeaders) 6003 .run(BB); 6004 } 6005