1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Peephole optimize the CFG. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/ADT/APInt.h" 14 #include "llvm/ADT/ArrayRef.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/Optional.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SetOperations.h" 19 #include "llvm/ADT/SetVector.h" 20 #include "llvm/ADT/SmallPtrSet.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/ADT/StringRef.h" 24 #include "llvm/Analysis/AssumptionCache.h" 25 #include "llvm/Analysis/ConstantFolding.h" 26 #include "llvm/Analysis/EHPersonalities.h" 27 #include "llvm/Analysis/GuardUtils.h" 28 #include "llvm/Analysis/InstructionSimplify.h" 29 #include "llvm/Analysis/MemorySSA.h" 30 #include "llvm/Analysis/MemorySSAUpdater.h" 31 #include "llvm/Analysis/TargetTransformInfo.h" 32 #include "llvm/Analysis/ValueTracking.h" 33 #include "llvm/IR/Attributes.h" 34 #include "llvm/IR/BasicBlock.h" 35 #include "llvm/IR/CFG.h" 36 #include "llvm/IR/Constant.h" 37 #include "llvm/IR/ConstantRange.h" 38 #include "llvm/IR/Constants.h" 39 #include "llvm/IR/DataLayout.h" 40 #include "llvm/IR/DerivedTypes.h" 41 #include "llvm/IR/Function.h" 42 #include "llvm/IR/GlobalValue.h" 43 #include "llvm/IR/GlobalVariable.h" 44 #include "llvm/IR/IRBuilder.h" 45 #include "llvm/IR/InstrTypes.h" 46 #include "llvm/IR/Instruction.h" 47 #include "llvm/IR/Instructions.h" 48 #include "llvm/IR/IntrinsicInst.h" 49 #include "llvm/IR/Intrinsics.h" 50 #include "llvm/IR/LLVMContext.h" 51 #include "llvm/IR/MDBuilder.h" 52 #include "llvm/IR/Metadata.h" 53 #include "llvm/IR/Module.h" 54 #include "llvm/IR/NoFolder.h" 55 #include "llvm/IR/Operator.h" 56 #include "llvm/IR/PatternMatch.h" 57 #include "llvm/IR/Type.h" 58 #include "llvm/IR/Use.h" 59 #include "llvm/IR/User.h" 60 #include "llvm/IR/Value.h" 61 #include "llvm/Support/Casting.h" 62 #include "llvm/Support/CommandLine.h" 63 #include "llvm/Support/Debug.h" 64 #include "llvm/Support/ErrorHandling.h" 65 #include "llvm/Support/KnownBits.h" 66 #include "llvm/Support/MathExtras.h" 67 #include "llvm/Support/raw_ostream.h" 68 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 69 #include "llvm/Transforms/Utils/Local.h" 70 #include "llvm/Transforms/Utils/ValueMapper.h" 71 #include <algorithm> 72 #include <cassert> 73 #include <climits> 74 #include <cstddef> 75 #include <cstdint> 76 #include <iterator> 77 #include <map> 78 #include <set> 79 #include <tuple> 80 #include <utility> 81 #include <vector> 82 83 using namespace llvm; 84 using namespace PatternMatch; 85 86 #define DEBUG_TYPE "simplifycfg" 87 88 // Chosen as 2 so as to be cheap, but still to have enough power to fold 89 // a select, so the "clamp" idiom (of a min followed by a max) will be caught. 90 // To catch this, we need to fold a compare and a select, hence '2' being the 91 // minimum reasonable default. 92 static cl::opt<unsigned> PHINodeFoldingThreshold( 93 "phi-node-folding-threshold", cl::Hidden, cl::init(2), 94 cl::desc( 95 "Control the amount of phi node folding to perform (default = 2)")); 96 97 static cl::opt<unsigned> TwoEntryPHINodeFoldingThreshold( 98 "two-entry-phi-node-folding-threshold", cl::Hidden, cl::init(4), 99 cl::desc("Control the maximal total instruction cost that we are willing " 100 "to speculatively execute to fold a 2-entry PHI node into a " 101 "select (default = 4)")); 102 103 static cl::opt<bool> DupRet( 104 "simplifycfg-dup-ret", cl::Hidden, cl::init(false), 105 cl::desc("Duplicate return instructions into unconditional branches")); 106 107 static cl::opt<bool> 108 SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true), 109 cl::desc("Sink common instructions down to the end block")); 110 111 static cl::opt<bool> HoistCondStores( 112 "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true), 113 cl::desc("Hoist conditional stores if an unconditional store precedes")); 114 115 static cl::opt<bool> MergeCondStores( 116 "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true), 117 cl::desc("Hoist conditional stores even if an unconditional store does not " 118 "precede - hoist multiple conditional stores into a single " 119 "predicated store")); 120 121 static cl::opt<bool> MergeCondStoresAggressively( 122 "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false), 123 cl::desc("When merging conditional stores, do so even if the resultant " 124 "basic blocks are unlikely to be if-converted as a result")); 125 126 static cl::opt<bool> SpeculateOneExpensiveInst( 127 "speculate-one-expensive-inst", cl::Hidden, cl::init(true), 128 cl::desc("Allow exactly one expensive instruction to be speculatively " 129 "executed")); 130 131 static cl::opt<unsigned> MaxSpeculationDepth( 132 "max-speculation-depth", cl::Hidden, cl::init(10), 133 cl::desc("Limit maximum recursion depth when calculating costs of " 134 "speculatively executed instructions")); 135 136 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps"); 137 STATISTIC(NumLinearMaps, 138 "Number of switch instructions turned into linear mapping"); 139 STATISTIC(NumLookupTables, 140 "Number of switch instructions turned into lookup tables"); 141 STATISTIC( 142 NumLookupTablesHoles, 143 "Number of switch instructions turned into lookup tables (holes checked)"); 144 STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares"); 145 STATISTIC(NumSinkCommons, 146 "Number of common instructions sunk down to the end block"); 147 STATISTIC(NumSpeculations, "Number of speculative executed instructions"); 148 149 namespace { 150 151 // The first field contains the value that the switch produces when a certain 152 // case group is selected, and the second field is a vector containing the 153 // cases composing the case group. 154 using SwitchCaseResultVectorTy = 155 SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2>; 156 157 // The first field contains the phi node that generates a result of the switch 158 // and the second field contains the value generated for a certain case in the 159 // switch for that PHI. 160 using SwitchCaseResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>; 161 162 /// ValueEqualityComparisonCase - Represents a case of a switch. 163 struct ValueEqualityComparisonCase { 164 ConstantInt *Value; 165 BasicBlock *Dest; 166 167 ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest) 168 : Value(Value), Dest(Dest) {} 169 170 bool operator<(ValueEqualityComparisonCase RHS) const { 171 // Comparing pointers is ok as we only rely on the order for uniquing. 172 return Value < RHS.Value; 173 } 174 175 bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; } 176 }; 177 178 class SimplifyCFGOpt { 179 const TargetTransformInfo &TTI; 180 const DataLayout &DL; 181 SmallPtrSetImpl<BasicBlock *> *LoopHeaders; 182 const SimplifyCFGOptions &Options; 183 bool Resimplify; 184 185 Value *isValueEqualityComparison(Instruction *TI); 186 BasicBlock *GetValueEqualityComparisonCases( 187 Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases); 188 bool SimplifyEqualityComparisonWithOnlyPredecessor(Instruction *TI, 189 BasicBlock *Pred, 190 IRBuilder<> &Builder); 191 bool FoldValueComparisonIntoPredecessors(Instruction *TI, 192 IRBuilder<> &Builder); 193 194 bool simplifyReturn(ReturnInst *RI, IRBuilder<> &Builder); 195 bool simplifyResume(ResumeInst *RI, IRBuilder<> &Builder); 196 bool simplifySingleResume(ResumeInst *RI); 197 bool simplifyCommonResume(ResumeInst *RI); 198 bool simplifyCleanupReturn(CleanupReturnInst *RI); 199 bool simplifyUnreachable(UnreachableInst *UI); 200 bool simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder); 201 bool simplifyIndirectBr(IndirectBrInst *IBI); 202 bool simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder); 203 bool simplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder); 204 bool simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder); 205 bool SimplifyCondBranchToTwoReturns(BranchInst *BI, IRBuilder<> &Builder); 206 207 bool tryToSimplifyUncondBranchWithICmpInIt(ICmpInst *ICI, 208 IRBuilder<> &Builder); 209 210 bool HoistThenElseCodeToIf(BranchInst *BI, const TargetTransformInfo &TTI); 211 bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB, 212 const TargetTransformInfo &TTI); 213 bool SimplifyTerminatorOnSelect(Instruction *OldTerm, Value *Cond, 214 BasicBlock *TrueBB, BasicBlock *FalseBB, 215 uint32_t TrueWeight, uint32_t FalseWeight); 216 bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder, 217 const DataLayout &DL); 218 bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select); 219 bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI); 220 bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder); 221 222 public: 223 SimplifyCFGOpt(const TargetTransformInfo &TTI, const DataLayout &DL, 224 SmallPtrSetImpl<BasicBlock *> *LoopHeaders, 225 const SimplifyCFGOptions &Opts) 226 : TTI(TTI), DL(DL), LoopHeaders(LoopHeaders), Options(Opts) {} 227 228 bool run(BasicBlock *BB); 229 bool simplifyOnce(BasicBlock *BB); 230 231 // Helper to set Resimplify and return change indication. 232 bool requestResimplify() { 233 Resimplify = true; 234 return true; 235 } 236 }; 237 238 } // end anonymous namespace 239 240 /// Return true if it is safe to merge these two 241 /// terminator instructions together. 242 static bool 243 SafeToMergeTerminators(Instruction *SI1, Instruction *SI2, 244 SmallSetVector<BasicBlock *, 4> *FailBlocks = nullptr) { 245 if (SI1 == SI2) 246 return false; // Can't merge with self! 247 248 // It is not safe to merge these two switch instructions if they have a common 249 // successor, and if that successor has a PHI node, and if *that* PHI node has 250 // conflicting incoming values from the two switch blocks. 251 BasicBlock *SI1BB = SI1->getParent(); 252 BasicBlock *SI2BB = SI2->getParent(); 253 254 SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB)); 255 bool Fail = false; 256 for (BasicBlock *Succ : successors(SI2BB)) 257 if (SI1Succs.count(Succ)) 258 for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) { 259 PHINode *PN = cast<PHINode>(BBI); 260 if (PN->getIncomingValueForBlock(SI1BB) != 261 PN->getIncomingValueForBlock(SI2BB)) { 262 if (FailBlocks) 263 FailBlocks->insert(Succ); 264 Fail = true; 265 } 266 } 267 268 return !Fail; 269 } 270 271 /// Return true if it is safe and profitable to merge these two terminator 272 /// instructions together, where SI1 is an unconditional branch. PhiNodes will 273 /// store all PHI nodes in common successors. 274 static bool 275 isProfitableToFoldUnconditional(BranchInst *SI1, BranchInst *SI2, 276 Instruction *Cond, 277 SmallVectorImpl<PHINode *> &PhiNodes) { 278 if (SI1 == SI2) 279 return false; // Can't merge with self! 280 assert(SI1->isUnconditional() && SI2->isConditional()); 281 282 // We fold the unconditional branch if we can easily update all PHI nodes in 283 // common successors: 284 // 1> We have a constant incoming value for the conditional branch; 285 // 2> We have "Cond" as the incoming value for the unconditional branch; 286 // 3> SI2->getCondition() and Cond have same operands. 287 CmpInst *Ci2 = dyn_cast<CmpInst>(SI2->getCondition()); 288 if (!Ci2) 289 return false; 290 if (!(Cond->getOperand(0) == Ci2->getOperand(0) && 291 Cond->getOperand(1) == Ci2->getOperand(1)) && 292 !(Cond->getOperand(0) == Ci2->getOperand(1) && 293 Cond->getOperand(1) == Ci2->getOperand(0))) 294 return false; 295 296 BasicBlock *SI1BB = SI1->getParent(); 297 BasicBlock *SI2BB = SI2->getParent(); 298 SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB)); 299 for (BasicBlock *Succ : successors(SI2BB)) 300 if (SI1Succs.count(Succ)) 301 for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) { 302 PHINode *PN = cast<PHINode>(BBI); 303 if (PN->getIncomingValueForBlock(SI1BB) != Cond || 304 !isa<ConstantInt>(PN->getIncomingValueForBlock(SI2BB))) 305 return false; 306 PhiNodes.push_back(PN); 307 } 308 return true; 309 } 310 311 /// Update PHI nodes in Succ to indicate that there will now be entries in it 312 /// from the 'NewPred' block. The values that will be flowing into the PHI nodes 313 /// will be the same as those coming in from ExistPred, an existing predecessor 314 /// of Succ. 315 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred, 316 BasicBlock *ExistPred, 317 MemorySSAUpdater *MSSAU = nullptr) { 318 for (PHINode &PN : Succ->phis()) 319 PN.addIncoming(PN.getIncomingValueForBlock(ExistPred), NewPred); 320 if (MSSAU) 321 if (auto *MPhi = MSSAU->getMemorySSA()->getMemoryAccess(Succ)) 322 MPhi->addIncoming(MPhi->getIncomingValueForBlock(ExistPred), NewPred); 323 } 324 325 /// Compute an abstract "cost" of speculating the given instruction, 326 /// which is assumed to be safe to speculate. TCC_Free means cheap, 327 /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively 328 /// expensive. 329 static unsigned ComputeSpeculationCost(const User *I, 330 const TargetTransformInfo &TTI) { 331 assert(isSafeToSpeculativelyExecute(I) && 332 "Instruction is not safe to speculatively execute!"); 333 return TTI.getUserCost(I, TargetTransformInfo::TCK_SizeAndLatency); 334 } 335 336 /// If we have a merge point of an "if condition" as accepted above, 337 /// return true if the specified value dominates the block. We 338 /// don't handle the true generality of domination here, just a special case 339 /// which works well enough for us. 340 /// 341 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to 342 /// see if V (which must be an instruction) and its recursive operands 343 /// that do not dominate BB have a combined cost lower than CostRemaining and 344 /// are non-trapping. If both are true, the instruction is inserted into the 345 /// set and true is returned. 346 /// 347 /// The cost for most non-trapping instructions is defined as 1 except for 348 /// Select whose cost is 2. 349 /// 350 /// After this function returns, CostRemaining is decreased by the cost of 351 /// V plus its non-dominating operands. If that cost is greater than 352 /// CostRemaining, false is returned and CostRemaining is undefined. 353 static bool DominatesMergePoint(Value *V, BasicBlock *BB, 354 SmallPtrSetImpl<Instruction *> &AggressiveInsts, 355 int &BudgetRemaining, 356 const TargetTransformInfo &TTI, 357 unsigned Depth = 0) { 358 // It is possible to hit a zero-cost cycle (phi/gep instructions for example), 359 // so limit the recursion depth. 360 // TODO: While this recursion limit does prevent pathological behavior, it 361 // would be better to track visited instructions to avoid cycles. 362 if (Depth == MaxSpeculationDepth) 363 return false; 364 365 Instruction *I = dyn_cast<Instruction>(V); 366 if (!I) { 367 // Non-instructions all dominate instructions, but not all constantexprs 368 // can be executed unconditionally. 369 if (ConstantExpr *C = dyn_cast<ConstantExpr>(V)) 370 if (C->canTrap()) 371 return false; 372 return true; 373 } 374 BasicBlock *PBB = I->getParent(); 375 376 // We don't want to allow weird loops that might have the "if condition" in 377 // the bottom of this block. 378 if (PBB == BB) 379 return false; 380 381 // If this instruction is defined in a block that contains an unconditional 382 // branch to BB, then it must be in the 'conditional' part of the "if 383 // statement". If not, it definitely dominates the region. 384 BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator()); 385 if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB) 386 return true; 387 388 // If we have seen this instruction before, don't count it again. 389 if (AggressiveInsts.count(I)) 390 return true; 391 392 // Okay, it looks like the instruction IS in the "condition". Check to 393 // see if it's a cheap instruction to unconditionally compute, and if it 394 // only uses stuff defined outside of the condition. If so, hoist it out. 395 if (!isSafeToSpeculativelyExecute(I)) 396 return false; 397 398 BudgetRemaining -= ComputeSpeculationCost(I, TTI); 399 400 // Allow exactly one instruction to be speculated regardless of its cost 401 // (as long as it is safe to do so). 402 // This is intended to flatten the CFG even if the instruction is a division 403 // or other expensive operation. The speculation of an expensive instruction 404 // is expected to be undone in CodeGenPrepare if the speculation has not 405 // enabled further IR optimizations. 406 if (BudgetRemaining < 0 && 407 (!SpeculateOneExpensiveInst || !AggressiveInsts.empty() || Depth > 0)) 408 return false; 409 410 // Okay, we can only really hoist these out if their operands do 411 // not take us over the cost threshold. 412 for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) 413 if (!DominatesMergePoint(*i, BB, AggressiveInsts, BudgetRemaining, TTI, 414 Depth + 1)) 415 return false; 416 // Okay, it's safe to do this! Remember this instruction. 417 AggressiveInsts.insert(I); 418 return true; 419 } 420 421 /// Extract ConstantInt from value, looking through IntToPtr 422 /// and PointerNullValue. Return NULL if value is not a constant int. 423 static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) { 424 // Normal constant int. 425 ConstantInt *CI = dyn_cast<ConstantInt>(V); 426 if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy()) 427 return CI; 428 429 // This is some kind of pointer constant. Turn it into a pointer-sized 430 // ConstantInt if possible. 431 IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType())); 432 433 // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*). 434 if (isa<ConstantPointerNull>(V)) 435 return ConstantInt::get(PtrTy, 0); 436 437 // IntToPtr const int. 438 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 439 if (CE->getOpcode() == Instruction::IntToPtr) 440 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) { 441 // The constant is very likely to have the right type already. 442 if (CI->getType() == PtrTy) 443 return CI; 444 else 445 return cast<ConstantInt>( 446 ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false)); 447 } 448 return nullptr; 449 } 450 451 namespace { 452 453 /// Given a chain of or (||) or and (&&) comparison of a value against a 454 /// constant, this will try to recover the information required for a switch 455 /// structure. 456 /// It will depth-first traverse the chain of comparison, seeking for patterns 457 /// like %a == 12 or %a < 4 and combine them to produce a set of integer 458 /// representing the different cases for the switch. 459 /// Note that if the chain is composed of '||' it will build the set of elements 460 /// that matches the comparisons (i.e. any of this value validate the chain) 461 /// while for a chain of '&&' it will build the set elements that make the test 462 /// fail. 463 struct ConstantComparesGatherer { 464 const DataLayout &DL; 465 466 /// Value found for the switch comparison 467 Value *CompValue = nullptr; 468 469 /// Extra clause to be checked before the switch 470 Value *Extra = nullptr; 471 472 /// Set of integers to match in switch 473 SmallVector<ConstantInt *, 8> Vals; 474 475 /// Number of comparisons matched in the and/or chain 476 unsigned UsedICmps = 0; 477 478 /// Construct and compute the result for the comparison instruction Cond 479 ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL) : DL(DL) { 480 gather(Cond); 481 } 482 483 ConstantComparesGatherer(const ConstantComparesGatherer &) = delete; 484 ConstantComparesGatherer & 485 operator=(const ConstantComparesGatherer &) = delete; 486 487 private: 488 /// Try to set the current value used for the comparison, it succeeds only if 489 /// it wasn't set before or if the new value is the same as the old one 490 bool setValueOnce(Value *NewVal) { 491 if (CompValue && CompValue != NewVal) 492 return false; 493 CompValue = NewVal; 494 return (CompValue != nullptr); 495 } 496 497 /// Try to match Instruction "I" as a comparison against a constant and 498 /// populates the array Vals with the set of values that match (or do not 499 /// match depending on isEQ). 500 /// Return false on failure. On success, the Value the comparison matched 501 /// against is placed in CompValue. 502 /// If CompValue is already set, the function is expected to fail if a match 503 /// is found but the value compared to is different. 504 bool matchInstruction(Instruction *I, bool isEQ) { 505 // If this is an icmp against a constant, handle this as one of the cases. 506 ICmpInst *ICI; 507 ConstantInt *C; 508 if (!((ICI = dyn_cast<ICmpInst>(I)) && 509 (C = GetConstantInt(I->getOperand(1), DL)))) { 510 return false; 511 } 512 513 Value *RHSVal; 514 const APInt *RHSC; 515 516 // Pattern match a special case 517 // (x & ~2^z) == y --> x == y || x == y|2^z 518 // This undoes a transformation done by instcombine to fuse 2 compares. 519 if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE)) { 520 // It's a little bit hard to see why the following transformations are 521 // correct. Here is a CVC3 program to verify them for 64-bit values: 522 523 /* 524 ONE : BITVECTOR(64) = BVZEROEXTEND(0bin1, 63); 525 x : BITVECTOR(64); 526 y : BITVECTOR(64); 527 z : BITVECTOR(64); 528 mask : BITVECTOR(64) = BVSHL(ONE, z); 529 QUERY( (y & ~mask = y) => 530 ((x & ~mask = y) <=> (x = y OR x = (y | mask))) 531 ); 532 QUERY( (y | mask = y) => 533 ((x | mask = y) <=> (x = y OR x = (y & ~mask))) 534 ); 535 */ 536 537 // Please note that each pattern must be a dual implication (<--> or 538 // iff). One directional implication can create spurious matches. If the 539 // implication is only one-way, an unsatisfiable condition on the left 540 // side can imply a satisfiable condition on the right side. Dual 541 // implication ensures that satisfiable conditions are transformed to 542 // other satisfiable conditions and unsatisfiable conditions are 543 // transformed to other unsatisfiable conditions. 544 545 // Here is a concrete example of a unsatisfiable condition on the left 546 // implying a satisfiable condition on the right: 547 // 548 // mask = (1 << z) 549 // (x & ~mask) == y --> (x == y || x == (y | mask)) 550 // 551 // Substituting y = 3, z = 0 yields: 552 // (x & -2) == 3 --> (x == 3 || x == 2) 553 554 // Pattern match a special case: 555 /* 556 QUERY( (y & ~mask = y) => 557 ((x & ~mask = y) <=> (x = y OR x = (y | mask))) 558 ); 559 */ 560 if (match(ICI->getOperand(0), 561 m_And(m_Value(RHSVal), m_APInt(RHSC)))) { 562 APInt Mask = ~*RHSC; 563 if (Mask.isPowerOf2() && (C->getValue() & ~Mask) == C->getValue()) { 564 // If we already have a value for the switch, it has to match! 565 if (!setValueOnce(RHSVal)) 566 return false; 567 568 Vals.push_back(C); 569 Vals.push_back( 570 ConstantInt::get(C->getContext(), 571 C->getValue() | Mask)); 572 UsedICmps++; 573 return true; 574 } 575 } 576 577 // Pattern match a special case: 578 /* 579 QUERY( (y | mask = y) => 580 ((x | mask = y) <=> (x = y OR x = (y & ~mask))) 581 ); 582 */ 583 if (match(ICI->getOperand(0), 584 m_Or(m_Value(RHSVal), m_APInt(RHSC)))) { 585 APInt Mask = *RHSC; 586 if (Mask.isPowerOf2() && (C->getValue() | Mask) == C->getValue()) { 587 // If we already have a value for the switch, it has to match! 588 if (!setValueOnce(RHSVal)) 589 return false; 590 591 Vals.push_back(C); 592 Vals.push_back(ConstantInt::get(C->getContext(), 593 C->getValue() & ~Mask)); 594 UsedICmps++; 595 return true; 596 } 597 } 598 599 // If we already have a value for the switch, it has to match! 600 if (!setValueOnce(ICI->getOperand(0))) 601 return false; 602 603 UsedICmps++; 604 Vals.push_back(C); 605 return ICI->getOperand(0); 606 } 607 608 // If we have "x ult 3", for example, then we can add 0,1,2 to the set. 609 ConstantRange Span = ConstantRange::makeAllowedICmpRegion( 610 ICI->getPredicate(), C->getValue()); 611 612 // Shift the range if the compare is fed by an add. This is the range 613 // compare idiom as emitted by instcombine. 614 Value *CandidateVal = I->getOperand(0); 615 if (match(I->getOperand(0), m_Add(m_Value(RHSVal), m_APInt(RHSC)))) { 616 Span = Span.subtract(*RHSC); 617 CandidateVal = RHSVal; 618 } 619 620 // If this is an and/!= check, then we are looking to build the set of 621 // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into 622 // x != 0 && x != 1. 623 if (!isEQ) 624 Span = Span.inverse(); 625 626 // If there are a ton of values, we don't want to make a ginormous switch. 627 if (Span.isSizeLargerThan(8) || Span.isEmptySet()) { 628 return false; 629 } 630 631 // If we already have a value for the switch, it has to match! 632 if (!setValueOnce(CandidateVal)) 633 return false; 634 635 // Add all values from the range to the set 636 for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp) 637 Vals.push_back(ConstantInt::get(I->getContext(), Tmp)); 638 639 UsedICmps++; 640 return true; 641 } 642 643 /// Given a potentially 'or'd or 'and'd together collection of icmp 644 /// eq/ne/lt/gt instructions that compare a value against a constant, extract 645 /// the value being compared, and stick the list constants into the Vals 646 /// vector. 647 /// One "Extra" case is allowed to differ from the other. 648 void gather(Value *V) { 649 bool isEQ = (cast<Instruction>(V)->getOpcode() == Instruction::Or); 650 651 // Keep a stack (SmallVector for efficiency) for depth-first traversal 652 SmallVector<Value *, 8> DFT; 653 SmallPtrSet<Value *, 8> Visited; 654 655 // Initialize 656 Visited.insert(V); 657 DFT.push_back(V); 658 659 while (!DFT.empty()) { 660 V = DFT.pop_back_val(); 661 662 if (Instruction *I = dyn_cast<Instruction>(V)) { 663 // If it is a || (or && depending on isEQ), process the operands. 664 if (I->getOpcode() == (isEQ ? Instruction::Or : Instruction::And)) { 665 if (Visited.insert(I->getOperand(1)).second) 666 DFT.push_back(I->getOperand(1)); 667 if (Visited.insert(I->getOperand(0)).second) 668 DFT.push_back(I->getOperand(0)); 669 continue; 670 } 671 672 // Try to match the current instruction 673 if (matchInstruction(I, isEQ)) 674 // Match succeed, continue the loop 675 continue; 676 } 677 678 // One element of the sequence of || (or &&) could not be match as a 679 // comparison against the same value as the others. 680 // We allow only one "Extra" case to be checked before the switch 681 if (!Extra) { 682 Extra = V; 683 continue; 684 } 685 // Failed to parse a proper sequence, abort now 686 CompValue = nullptr; 687 break; 688 } 689 } 690 }; 691 692 } // end anonymous namespace 693 694 static void EraseTerminatorAndDCECond(Instruction *TI, 695 MemorySSAUpdater *MSSAU = nullptr) { 696 Instruction *Cond = nullptr; 697 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 698 Cond = dyn_cast<Instruction>(SI->getCondition()); 699 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 700 if (BI->isConditional()) 701 Cond = dyn_cast<Instruction>(BI->getCondition()); 702 } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) { 703 Cond = dyn_cast<Instruction>(IBI->getAddress()); 704 } 705 706 TI->eraseFromParent(); 707 if (Cond) 708 RecursivelyDeleteTriviallyDeadInstructions(Cond, nullptr, MSSAU); 709 } 710 711 /// Return true if the specified terminator checks 712 /// to see if a value is equal to constant integer value. 713 Value *SimplifyCFGOpt::isValueEqualityComparison(Instruction *TI) { 714 Value *CV = nullptr; 715 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 716 // Do not permit merging of large switch instructions into their 717 // predecessors unless there is only one predecessor. 718 if (!SI->getParent()->hasNPredecessorsOrMore(128 / SI->getNumSuccessors())) 719 CV = SI->getCondition(); 720 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) 721 if (BI->isConditional() && BI->getCondition()->hasOneUse()) 722 if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) { 723 if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL)) 724 CV = ICI->getOperand(0); 725 } 726 727 // Unwrap any lossless ptrtoint cast. 728 if (CV) { 729 if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) { 730 Value *Ptr = PTII->getPointerOperand(); 731 if (PTII->getType() == DL.getIntPtrType(Ptr->getType())) 732 CV = Ptr; 733 } 734 } 735 return CV; 736 } 737 738 /// Given a value comparison instruction, 739 /// decode all of the 'cases' that it represents and return the 'default' block. 740 BasicBlock *SimplifyCFGOpt::GetValueEqualityComparisonCases( 741 Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases) { 742 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 743 Cases.reserve(SI->getNumCases()); 744 for (auto Case : SI->cases()) 745 Cases.push_back(ValueEqualityComparisonCase(Case.getCaseValue(), 746 Case.getCaseSuccessor())); 747 return SI->getDefaultDest(); 748 } 749 750 BranchInst *BI = cast<BranchInst>(TI); 751 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 752 BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE); 753 Cases.push_back(ValueEqualityComparisonCase( 754 GetConstantInt(ICI->getOperand(1), DL), Succ)); 755 return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ); 756 } 757 758 /// Given a vector of bb/value pairs, remove any entries 759 /// in the list that match the specified block. 760 static void 761 EliminateBlockCases(BasicBlock *BB, 762 std::vector<ValueEqualityComparisonCase> &Cases) { 763 Cases.erase(std::remove(Cases.begin(), Cases.end(), BB), Cases.end()); 764 } 765 766 /// Return true if there are any keys in C1 that exist in C2 as well. 767 static bool ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1, 768 std::vector<ValueEqualityComparisonCase> &C2) { 769 std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2; 770 771 // Make V1 be smaller than V2. 772 if (V1->size() > V2->size()) 773 std::swap(V1, V2); 774 775 if (V1->empty()) 776 return false; 777 if (V1->size() == 1) { 778 // Just scan V2. 779 ConstantInt *TheVal = (*V1)[0].Value; 780 for (unsigned i = 0, e = V2->size(); i != e; ++i) 781 if (TheVal == (*V2)[i].Value) 782 return true; 783 } 784 785 // Otherwise, just sort both lists and compare element by element. 786 array_pod_sort(V1->begin(), V1->end()); 787 array_pod_sort(V2->begin(), V2->end()); 788 unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size(); 789 while (i1 != e1 && i2 != e2) { 790 if ((*V1)[i1].Value == (*V2)[i2].Value) 791 return true; 792 if ((*V1)[i1].Value < (*V2)[i2].Value) 793 ++i1; 794 else 795 ++i2; 796 } 797 return false; 798 } 799 800 // Set branch weights on SwitchInst. This sets the metadata if there is at 801 // least one non-zero weight. 802 static void setBranchWeights(SwitchInst *SI, ArrayRef<uint32_t> Weights) { 803 // Check that there is at least one non-zero weight. Otherwise, pass 804 // nullptr to setMetadata which will erase the existing metadata. 805 MDNode *N = nullptr; 806 if (llvm::any_of(Weights, [](uint32_t W) { return W != 0; })) 807 N = MDBuilder(SI->getParent()->getContext()).createBranchWeights(Weights); 808 SI->setMetadata(LLVMContext::MD_prof, N); 809 } 810 811 // Similar to the above, but for branch and select instructions that take 812 // exactly 2 weights. 813 static void setBranchWeights(Instruction *I, uint32_t TrueWeight, 814 uint32_t FalseWeight) { 815 assert(isa<BranchInst>(I) || isa<SelectInst>(I)); 816 // Check that there is at least one non-zero weight. Otherwise, pass 817 // nullptr to setMetadata which will erase the existing metadata. 818 MDNode *N = nullptr; 819 if (TrueWeight || FalseWeight) 820 N = MDBuilder(I->getParent()->getContext()) 821 .createBranchWeights(TrueWeight, FalseWeight); 822 I->setMetadata(LLVMContext::MD_prof, N); 823 } 824 825 /// If TI is known to be a terminator instruction and its block is known to 826 /// only have a single predecessor block, check to see if that predecessor is 827 /// also a value comparison with the same value, and if that comparison 828 /// determines the outcome of this comparison. If so, simplify TI. This does a 829 /// very limited form of jump threading. 830 bool SimplifyCFGOpt::SimplifyEqualityComparisonWithOnlyPredecessor( 831 Instruction *TI, BasicBlock *Pred, IRBuilder<> &Builder) { 832 Value *PredVal = isValueEqualityComparison(Pred->getTerminator()); 833 if (!PredVal) 834 return false; // Not a value comparison in predecessor. 835 836 Value *ThisVal = isValueEqualityComparison(TI); 837 assert(ThisVal && "This isn't a value comparison!!"); 838 if (ThisVal != PredVal) 839 return false; // Different predicates. 840 841 // TODO: Preserve branch weight metadata, similarly to how 842 // FoldValueComparisonIntoPredecessors preserves it. 843 844 // Find out information about when control will move from Pred to TI's block. 845 std::vector<ValueEqualityComparisonCase> PredCases; 846 BasicBlock *PredDef = 847 GetValueEqualityComparisonCases(Pred->getTerminator(), PredCases); 848 EliminateBlockCases(PredDef, PredCases); // Remove default from cases. 849 850 // Find information about how control leaves this block. 851 std::vector<ValueEqualityComparisonCase> ThisCases; 852 BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases); 853 EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases. 854 855 // If TI's block is the default block from Pred's comparison, potentially 856 // simplify TI based on this knowledge. 857 if (PredDef == TI->getParent()) { 858 // If we are here, we know that the value is none of those cases listed in 859 // PredCases. If there are any cases in ThisCases that are in PredCases, we 860 // can simplify TI. 861 if (!ValuesOverlap(PredCases, ThisCases)) 862 return false; 863 864 if (isa<BranchInst>(TI)) { 865 // Okay, one of the successors of this condbr is dead. Convert it to a 866 // uncond br. 867 assert(ThisCases.size() == 1 && "Branch can only have one case!"); 868 // Insert the new branch. 869 Instruction *NI = Builder.CreateBr(ThisDef); 870 (void)NI; 871 872 // Remove PHI node entries for the dead edge. 873 ThisCases[0].Dest->removePredecessor(TI->getParent()); 874 875 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 876 << "Through successor TI: " << *TI << "Leaving: " << *NI 877 << "\n"); 878 879 EraseTerminatorAndDCECond(TI); 880 return true; 881 } 882 883 SwitchInstProfUpdateWrapper SI = *cast<SwitchInst>(TI); 884 // Okay, TI has cases that are statically dead, prune them away. 885 SmallPtrSet<Constant *, 16> DeadCases; 886 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 887 DeadCases.insert(PredCases[i].Value); 888 889 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 890 << "Through successor TI: " << *TI); 891 892 for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) { 893 --i; 894 if (DeadCases.count(i->getCaseValue())) { 895 i->getCaseSuccessor()->removePredecessor(TI->getParent()); 896 SI.removeCase(i); 897 } 898 } 899 LLVM_DEBUG(dbgs() << "Leaving: " << *TI << "\n"); 900 return true; 901 } 902 903 // Otherwise, TI's block must correspond to some matched value. Find out 904 // which value (or set of values) this is. 905 ConstantInt *TIV = nullptr; 906 BasicBlock *TIBB = TI->getParent(); 907 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 908 if (PredCases[i].Dest == TIBB) { 909 if (TIV) 910 return false; // Cannot handle multiple values coming to this block. 911 TIV = PredCases[i].Value; 912 } 913 assert(TIV && "No edge from pred to succ?"); 914 915 // Okay, we found the one constant that our value can be if we get into TI's 916 // BB. Find out which successor will unconditionally be branched to. 917 BasicBlock *TheRealDest = nullptr; 918 for (unsigned i = 0, e = ThisCases.size(); i != e; ++i) 919 if (ThisCases[i].Value == TIV) { 920 TheRealDest = ThisCases[i].Dest; 921 break; 922 } 923 924 // If not handled by any explicit cases, it is handled by the default case. 925 if (!TheRealDest) 926 TheRealDest = ThisDef; 927 928 // Remove PHI node entries for dead edges. 929 BasicBlock *CheckEdge = TheRealDest; 930 for (BasicBlock *Succ : successors(TIBB)) 931 if (Succ != CheckEdge) 932 Succ->removePredecessor(TIBB); 933 else 934 CheckEdge = nullptr; 935 936 // Insert the new branch. 937 Instruction *NI = Builder.CreateBr(TheRealDest); 938 (void)NI; 939 940 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 941 << "Through successor TI: " << *TI << "Leaving: " << *NI 942 << "\n"); 943 944 EraseTerminatorAndDCECond(TI); 945 return true; 946 } 947 948 namespace { 949 950 /// This class implements a stable ordering of constant 951 /// integers that does not depend on their address. This is important for 952 /// applications that sort ConstantInt's to ensure uniqueness. 953 struct ConstantIntOrdering { 954 bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const { 955 return LHS->getValue().ult(RHS->getValue()); 956 } 957 }; 958 959 } // end anonymous namespace 960 961 static int ConstantIntSortPredicate(ConstantInt *const *P1, 962 ConstantInt *const *P2) { 963 const ConstantInt *LHS = *P1; 964 const ConstantInt *RHS = *P2; 965 if (LHS == RHS) 966 return 0; 967 return LHS->getValue().ult(RHS->getValue()) ? 1 : -1; 968 } 969 970 static inline bool HasBranchWeights(const Instruction *I) { 971 MDNode *ProfMD = I->getMetadata(LLVMContext::MD_prof); 972 if (ProfMD && ProfMD->getOperand(0)) 973 if (MDString *MDS = dyn_cast<MDString>(ProfMD->getOperand(0))) 974 return MDS->getString().equals("branch_weights"); 975 976 return false; 977 } 978 979 /// Get Weights of a given terminator, the default weight is at the front 980 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight 981 /// metadata. 982 static void GetBranchWeights(Instruction *TI, 983 SmallVectorImpl<uint64_t> &Weights) { 984 MDNode *MD = TI->getMetadata(LLVMContext::MD_prof); 985 assert(MD); 986 for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) { 987 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i)); 988 Weights.push_back(CI->getValue().getZExtValue()); 989 } 990 991 // If TI is a conditional eq, the default case is the false case, 992 // and the corresponding branch-weight data is at index 2. We swap the 993 // default weight to be the first entry. 994 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 995 assert(Weights.size() == 2); 996 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 997 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 998 std::swap(Weights.front(), Weights.back()); 999 } 1000 } 1001 1002 /// Keep halving the weights until all can fit in uint32_t. 1003 static void FitWeights(MutableArrayRef<uint64_t> Weights) { 1004 uint64_t Max = *std::max_element(Weights.begin(), Weights.end()); 1005 if (Max > UINT_MAX) { 1006 unsigned Offset = 32 - countLeadingZeros(Max); 1007 for (uint64_t &I : Weights) 1008 I >>= Offset; 1009 } 1010 } 1011 1012 /// The specified terminator is a value equality comparison instruction 1013 /// (either a switch or a branch on "X == c"). 1014 /// See if any of the predecessors of the terminator block are value comparisons 1015 /// on the same value. If so, and if safe to do so, fold them together. 1016 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(Instruction *TI, 1017 IRBuilder<> &Builder) { 1018 BasicBlock *BB = TI->getParent(); 1019 Value *CV = isValueEqualityComparison(TI); // CondVal 1020 assert(CV && "Not a comparison?"); 1021 bool Changed = false; 1022 1023 SmallVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB)); 1024 while (!Preds.empty()) { 1025 BasicBlock *Pred = Preds.pop_back_val(); 1026 1027 // See if the predecessor is a comparison with the same value. 1028 Instruction *PTI = Pred->getTerminator(); 1029 Value *PCV = isValueEqualityComparison(PTI); // PredCondVal 1030 1031 if (PCV == CV && TI != PTI) { 1032 SmallSetVector<BasicBlock*, 4> FailBlocks; 1033 if (!SafeToMergeTerminators(TI, PTI, &FailBlocks)) { 1034 for (auto *Succ : FailBlocks) { 1035 if (!SplitBlockPredecessors(Succ, TI->getParent(), ".fold.split")) 1036 return false; 1037 } 1038 } 1039 1040 // Figure out which 'cases' to copy from SI to PSI. 1041 std::vector<ValueEqualityComparisonCase> BBCases; 1042 BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases); 1043 1044 std::vector<ValueEqualityComparisonCase> PredCases; 1045 BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases); 1046 1047 // Based on whether the default edge from PTI goes to BB or not, fill in 1048 // PredCases and PredDefault with the new switch cases we would like to 1049 // build. 1050 SmallVector<BasicBlock *, 8> NewSuccessors; 1051 1052 // Update the branch weight metadata along the way 1053 SmallVector<uint64_t, 8> Weights; 1054 bool PredHasWeights = HasBranchWeights(PTI); 1055 bool SuccHasWeights = HasBranchWeights(TI); 1056 1057 if (PredHasWeights) { 1058 GetBranchWeights(PTI, Weights); 1059 // branch-weight metadata is inconsistent here. 1060 if (Weights.size() != 1 + PredCases.size()) 1061 PredHasWeights = SuccHasWeights = false; 1062 } else if (SuccHasWeights) 1063 // If there are no predecessor weights but there are successor weights, 1064 // populate Weights with 1, which will later be scaled to the sum of 1065 // successor's weights 1066 Weights.assign(1 + PredCases.size(), 1); 1067 1068 SmallVector<uint64_t, 8> SuccWeights; 1069 if (SuccHasWeights) { 1070 GetBranchWeights(TI, SuccWeights); 1071 // branch-weight metadata is inconsistent here. 1072 if (SuccWeights.size() != 1 + BBCases.size()) 1073 PredHasWeights = SuccHasWeights = false; 1074 } else if (PredHasWeights) 1075 SuccWeights.assign(1 + BBCases.size(), 1); 1076 1077 if (PredDefault == BB) { 1078 // If this is the default destination from PTI, only the edges in TI 1079 // that don't occur in PTI, or that branch to BB will be activated. 1080 std::set<ConstantInt *, ConstantIntOrdering> PTIHandled; 1081 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 1082 if (PredCases[i].Dest != BB) 1083 PTIHandled.insert(PredCases[i].Value); 1084 else { 1085 // The default destination is BB, we don't need explicit targets. 1086 std::swap(PredCases[i], PredCases.back()); 1087 1088 if (PredHasWeights || SuccHasWeights) { 1089 // Increase weight for the default case. 1090 Weights[0] += Weights[i + 1]; 1091 std::swap(Weights[i + 1], Weights.back()); 1092 Weights.pop_back(); 1093 } 1094 1095 PredCases.pop_back(); 1096 --i; 1097 --e; 1098 } 1099 1100 // Reconstruct the new switch statement we will be building. 1101 if (PredDefault != BBDefault) { 1102 PredDefault->removePredecessor(Pred); 1103 PredDefault = BBDefault; 1104 NewSuccessors.push_back(BBDefault); 1105 } 1106 1107 unsigned CasesFromPred = Weights.size(); 1108 uint64_t ValidTotalSuccWeight = 0; 1109 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 1110 if (!PTIHandled.count(BBCases[i].Value) && 1111 BBCases[i].Dest != BBDefault) { 1112 PredCases.push_back(BBCases[i]); 1113 NewSuccessors.push_back(BBCases[i].Dest); 1114 if (SuccHasWeights || PredHasWeights) { 1115 // The default weight is at index 0, so weight for the ith case 1116 // should be at index i+1. Scale the cases from successor by 1117 // PredDefaultWeight (Weights[0]). 1118 Weights.push_back(Weights[0] * SuccWeights[i + 1]); 1119 ValidTotalSuccWeight += SuccWeights[i + 1]; 1120 } 1121 } 1122 1123 if (SuccHasWeights || PredHasWeights) { 1124 ValidTotalSuccWeight += SuccWeights[0]; 1125 // Scale the cases from predecessor by ValidTotalSuccWeight. 1126 for (unsigned i = 1; i < CasesFromPred; ++i) 1127 Weights[i] *= ValidTotalSuccWeight; 1128 // Scale the default weight by SuccDefaultWeight (SuccWeights[0]). 1129 Weights[0] *= SuccWeights[0]; 1130 } 1131 } else { 1132 // If this is not the default destination from PSI, only the edges 1133 // in SI that occur in PSI with a destination of BB will be 1134 // activated. 1135 std::set<ConstantInt *, ConstantIntOrdering> PTIHandled; 1136 std::map<ConstantInt *, uint64_t> WeightsForHandled; 1137 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 1138 if (PredCases[i].Dest == BB) { 1139 PTIHandled.insert(PredCases[i].Value); 1140 1141 if (PredHasWeights || SuccHasWeights) { 1142 WeightsForHandled[PredCases[i].Value] = Weights[i + 1]; 1143 std::swap(Weights[i + 1], Weights.back()); 1144 Weights.pop_back(); 1145 } 1146 1147 std::swap(PredCases[i], PredCases.back()); 1148 PredCases.pop_back(); 1149 --i; 1150 --e; 1151 } 1152 1153 // Okay, now we know which constants were sent to BB from the 1154 // predecessor. Figure out where they will all go now. 1155 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 1156 if (PTIHandled.count(BBCases[i].Value)) { 1157 // If this is one we are capable of getting... 1158 if (PredHasWeights || SuccHasWeights) 1159 Weights.push_back(WeightsForHandled[BBCases[i].Value]); 1160 PredCases.push_back(BBCases[i]); 1161 NewSuccessors.push_back(BBCases[i].Dest); 1162 PTIHandled.erase( 1163 BBCases[i].Value); // This constant is taken care of 1164 } 1165 1166 // If there are any constants vectored to BB that TI doesn't handle, 1167 // they must go to the default destination of TI. 1168 for (ConstantInt *I : PTIHandled) { 1169 if (PredHasWeights || SuccHasWeights) 1170 Weights.push_back(WeightsForHandled[I]); 1171 PredCases.push_back(ValueEqualityComparisonCase(I, BBDefault)); 1172 NewSuccessors.push_back(BBDefault); 1173 } 1174 } 1175 1176 // Okay, at this point, we know which new successor Pred will get. Make 1177 // sure we update the number of entries in the PHI nodes for these 1178 // successors. 1179 for (BasicBlock *NewSuccessor : NewSuccessors) 1180 AddPredecessorToBlock(NewSuccessor, Pred, BB); 1181 1182 Builder.SetInsertPoint(PTI); 1183 // Convert pointer to int before we switch. 1184 if (CV->getType()->isPointerTy()) { 1185 CV = Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()), 1186 "magicptr"); 1187 } 1188 1189 // Now that the successors are updated, create the new Switch instruction. 1190 SwitchInst *NewSI = 1191 Builder.CreateSwitch(CV, PredDefault, PredCases.size()); 1192 NewSI->setDebugLoc(PTI->getDebugLoc()); 1193 for (ValueEqualityComparisonCase &V : PredCases) 1194 NewSI->addCase(V.Value, V.Dest); 1195 1196 if (PredHasWeights || SuccHasWeights) { 1197 // Halve the weights if any of them cannot fit in an uint32_t 1198 FitWeights(Weights); 1199 1200 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 1201 1202 setBranchWeights(NewSI, MDWeights); 1203 } 1204 1205 EraseTerminatorAndDCECond(PTI); 1206 1207 // Okay, last check. If BB is still a successor of PSI, then we must 1208 // have an infinite loop case. If so, add an infinitely looping block 1209 // to handle the case to preserve the behavior of the code. 1210 BasicBlock *InfLoopBlock = nullptr; 1211 for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i) 1212 if (NewSI->getSuccessor(i) == BB) { 1213 if (!InfLoopBlock) { 1214 // Insert it at the end of the function, because it's either code, 1215 // or it won't matter if it's hot. :) 1216 InfLoopBlock = BasicBlock::Create(BB->getContext(), "infloop", 1217 BB->getParent()); 1218 BranchInst::Create(InfLoopBlock, InfLoopBlock); 1219 } 1220 NewSI->setSuccessor(i, InfLoopBlock); 1221 } 1222 1223 Changed = true; 1224 } 1225 } 1226 return Changed; 1227 } 1228 1229 // If we would need to insert a select that uses the value of this invoke 1230 // (comments in HoistThenElseCodeToIf explain why we would need to do this), we 1231 // can't hoist the invoke, as there is nowhere to put the select in this case. 1232 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2, 1233 Instruction *I1, Instruction *I2) { 1234 for (BasicBlock *Succ : successors(BB1)) { 1235 for (const PHINode &PN : Succ->phis()) { 1236 Value *BB1V = PN.getIncomingValueForBlock(BB1); 1237 Value *BB2V = PN.getIncomingValueForBlock(BB2); 1238 if (BB1V != BB2V && (BB1V == I1 || BB2V == I2)) { 1239 return false; 1240 } 1241 } 1242 } 1243 return true; 1244 } 1245 1246 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I); 1247 1248 /// Given a conditional branch that goes to BB1 and BB2, hoist any common code 1249 /// in the two blocks up into the branch block. The caller of this function 1250 /// guarantees that BI's block dominates BB1 and BB2. 1251 bool SimplifyCFGOpt::HoistThenElseCodeToIf(BranchInst *BI, 1252 const TargetTransformInfo &TTI) { 1253 // This does very trivial matching, with limited scanning, to find identical 1254 // instructions in the two blocks. In particular, we don't want to get into 1255 // O(M*N) situations here where M and N are the sizes of BB1 and BB2. As 1256 // such, we currently just scan for obviously identical instructions in an 1257 // identical order. 1258 BasicBlock *BB1 = BI->getSuccessor(0); // The true destination. 1259 BasicBlock *BB2 = BI->getSuccessor(1); // The false destination 1260 1261 BasicBlock::iterator BB1_Itr = BB1->begin(); 1262 BasicBlock::iterator BB2_Itr = BB2->begin(); 1263 1264 Instruction *I1 = &*BB1_Itr++, *I2 = &*BB2_Itr++; 1265 // Skip debug info if it is not identical. 1266 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1267 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1268 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1269 while (isa<DbgInfoIntrinsic>(I1)) 1270 I1 = &*BB1_Itr++; 1271 while (isa<DbgInfoIntrinsic>(I2)) 1272 I2 = &*BB2_Itr++; 1273 } 1274 // FIXME: Can we define a safety predicate for CallBr? 1275 if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) || 1276 (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) || 1277 isa<CallBrInst>(I1)) 1278 return false; 1279 1280 BasicBlock *BIParent = BI->getParent(); 1281 1282 bool Changed = false; 1283 do { 1284 // If we are hoisting the terminator instruction, don't move one (making a 1285 // broken BB), instead clone it, and remove BI. 1286 if (I1->isTerminator()) 1287 goto HoistTerminator; 1288 1289 // If we're going to hoist a call, make sure that the two instructions we're 1290 // commoning/hoisting are both marked with musttail, or neither of them is 1291 // marked as such. Otherwise, we might end up in a situation where we hoist 1292 // from a block where the terminator is a `ret` to a block where the terminator 1293 // is a `br`, and `musttail` calls expect to be followed by a return. 1294 auto *C1 = dyn_cast<CallInst>(I1); 1295 auto *C2 = dyn_cast<CallInst>(I2); 1296 if (C1 && C2) 1297 if (C1->isMustTailCall() != C2->isMustTailCall()) 1298 return Changed; 1299 1300 if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2)) 1301 return Changed; 1302 1303 // If any of the two call sites has nomerge attribute, stop hoisting. 1304 if (const auto *CB1 = dyn_cast<CallBase>(I1)) 1305 if (CB1->cannotMerge()) 1306 return Changed; 1307 if (const auto *CB2 = dyn_cast<CallBase>(I2)) 1308 if (CB2->cannotMerge()) 1309 return Changed; 1310 1311 if (isa<DbgInfoIntrinsic>(I1) || isa<DbgInfoIntrinsic>(I2)) { 1312 assert (isa<DbgInfoIntrinsic>(I1) && isa<DbgInfoIntrinsic>(I2)); 1313 // The debug location is an integral part of a debug info intrinsic 1314 // and can't be separated from it or replaced. Instead of attempting 1315 // to merge locations, simply hoist both copies of the intrinsic. 1316 BIParent->getInstList().splice(BI->getIterator(), 1317 BB1->getInstList(), I1); 1318 BIParent->getInstList().splice(BI->getIterator(), 1319 BB2->getInstList(), I2); 1320 Changed = true; 1321 } else { 1322 // For a normal instruction, we just move one to right before the branch, 1323 // then replace all uses of the other with the first. Finally, we remove 1324 // the now redundant second instruction. 1325 BIParent->getInstList().splice(BI->getIterator(), 1326 BB1->getInstList(), I1); 1327 if (!I2->use_empty()) 1328 I2->replaceAllUsesWith(I1); 1329 I1->andIRFlags(I2); 1330 unsigned KnownIDs[] = {LLVMContext::MD_tbaa, 1331 LLVMContext::MD_range, 1332 LLVMContext::MD_fpmath, 1333 LLVMContext::MD_invariant_load, 1334 LLVMContext::MD_nonnull, 1335 LLVMContext::MD_invariant_group, 1336 LLVMContext::MD_align, 1337 LLVMContext::MD_dereferenceable, 1338 LLVMContext::MD_dereferenceable_or_null, 1339 LLVMContext::MD_mem_parallel_loop_access, 1340 LLVMContext::MD_access_group, 1341 LLVMContext::MD_preserve_access_index}; 1342 combineMetadata(I1, I2, KnownIDs, true); 1343 1344 // I1 and I2 are being combined into a single instruction. Its debug 1345 // location is the merged locations of the original instructions. 1346 I1->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc()); 1347 1348 I2->eraseFromParent(); 1349 Changed = true; 1350 } 1351 1352 I1 = &*BB1_Itr++; 1353 I2 = &*BB2_Itr++; 1354 // Skip debug info if it is not identical. 1355 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1356 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1357 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1358 while (isa<DbgInfoIntrinsic>(I1)) 1359 I1 = &*BB1_Itr++; 1360 while (isa<DbgInfoIntrinsic>(I2)) 1361 I2 = &*BB2_Itr++; 1362 } 1363 } while (I1->isIdenticalToWhenDefined(I2)); 1364 1365 return true; 1366 1367 HoistTerminator: 1368 // It may not be possible to hoist an invoke. 1369 // FIXME: Can we define a safety predicate for CallBr? 1370 if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) 1371 return Changed; 1372 1373 // TODO: callbr hoisting currently disabled pending further study. 1374 if (isa<CallBrInst>(I1)) 1375 return Changed; 1376 1377 for (BasicBlock *Succ : successors(BB1)) { 1378 for (PHINode &PN : Succ->phis()) { 1379 Value *BB1V = PN.getIncomingValueForBlock(BB1); 1380 Value *BB2V = PN.getIncomingValueForBlock(BB2); 1381 if (BB1V == BB2V) 1382 continue; 1383 1384 // Check for passingValueIsAlwaysUndefined here because we would rather 1385 // eliminate undefined control flow then converting it to a select. 1386 if (passingValueIsAlwaysUndefined(BB1V, &PN) || 1387 passingValueIsAlwaysUndefined(BB2V, &PN)) 1388 return Changed; 1389 1390 if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V)) 1391 return Changed; 1392 if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V)) 1393 return Changed; 1394 } 1395 } 1396 1397 // Okay, it is safe to hoist the terminator. 1398 Instruction *NT = I1->clone(); 1399 BIParent->getInstList().insert(BI->getIterator(), NT); 1400 if (!NT->getType()->isVoidTy()) { 1401 I1->replaceAllUsesWith(NT); 1402 I2->replaceAllUsesWith(NT); 1403 NT->takeName(I1); 1404 } 1405 1406 // Ensure terminator gets a debug location, even an unknown one, in case 1407 // it involves inlinable calls. 1408 NT->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc()); 1409 1410 // PHIs created below will adopt NT's merged DebugLoc. 1411 IRBuilder<NoFolder> Builder(NT); 1412 1413 // Hoisting one of the terminators from our successor is a great thing. 1414 // Unfortunately, the successors of the if/else blocks may have PHI nodes in 1415 // them. If they do, all PHI entries for BB1/BB2 must agree for all PHI 1416 // nodes, so we insert select instruction to compute the final result. 1417 std::map<std::pair<Value *, Value *>, SelectInst *> InsertedSelects; 1418 for (BasicBlock *Succ : successors(BB1)) { 1419 for (PHINode &PN : Succ->phis()) { 1420 Value *BB1V = PN.getIncomingValueForBlock(BB1); 1421 Value *BB2V = PN.getIncomingValueForBlock(BB2); 1422 if (BB1V == BB2V) 1423 continue; 1424 1425 // These values do not agree. Insert a select instruction before NT 1426 // that determines the right value. 1427 SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)]; 1428 if (!SI) { 1429 // Propagate fast-math-flags from phi node to its replacement select. 1430 IRBuilder<>::FastMathFlagGuard FMFGuard(Builder); 1431 if (isa<FPMathOperator>(PN)) 1432 Builder.setFastMathFlags(PN.getFastMathFlags()); 1433 1434 SI = cast<SelectInst>( 1435 Builder.CreateSelect(BI->getCondition(), BB1V, BB2V, 1436 BB1V->getName() + "." + BB2V->getName(), BI)); 1437 } 1438 1439 // Make the PHI node use the select for all incoming values for BB1/BB2 1440 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) 1441 if (PN.getIncomingBlock(i) == BB1 || PN.getIncomingBlock(i) == BB2) 1442 PN.setIncomingValue(i, SI); 1443 } 1444 } 1445 1446 // Update any PHI nodes in our new successors. 1447 for (BasicBlock *Succ : successors(BB1)) 1448 AddPredecessorToBlock(Succ, BIParent, BB1); 1449 1450 EraseTerminatorAndDCECond(BI); 1451 return true; 1452 } 1453 1454 // Check lifetime markers. 1455 static bool isLifeTimeMarker(const Instruction *I) { 1456 if (auto II = dyn_cast<IntrinsicInst>(I)) { 1457 switch (II->getIntrinsicID()) { 1458 default: 1459 break; 1460 case Intrinsic::lifetime_start: 1461 case Intrinsic::lifetime_end: 1462 return true; 1463 } 1464 } 1465 return false; 1466 } 1467 1468 // TODO: Refine this. This should avoid cases like turning constant memcpy sizes 1469 // into variables. 1470 static bool replacingOperandWithVariableIsCheap(const Instruction *I, 1471 int OpIdx) { 1472 return !isa<IntrinsicInst>(I); 1473 } 1474 1475 // All instructions in Insts belong to different blocks that all unconditionally 1476 // branch to a common successor. Analyze each instruction and return true if it 1477 // would be possible to sink them into their successor, creating one common 1478 // instruction instead. For every value that would be required to be provided by 1479 // PHI node (because an operand varies in each input block), add to PHIOperands. 1480 static bool canSinkInstructions( 1481 ArrayRef<Instruction *> Insts, 1482 DenseMap<Instruction *, SmallVector<Value *, 4>> &PHIOperands) { 1483 // Prune out obviously bad instructions to move. Each instruction must have 1484 // exactly zero or one use, and we check later that use is by a single, common 1485 // PHI instruction in the successor. 1486 bool HasUse = !Insts.front()->user_empty(); 1487 for (auto *I : Insts) { 1488 // These instructions may change or break semantics if moved. 1489 if (isa<PHINode>(I) || I->isEHPad() || isa<AllocaInst>(I) || 1490 I->getType()->isTokenTy()) 1491 return false; 1492 1493 // Conservatively return false if I is an inline-asm instruction. Sinking 1494 // and merging inline-asm instructions can potentially create arguments 1495 // that cannot satisfy the inline-asm constraints. 1496 // If the instruction has nomerge attribute, return false. 1497 if (const auto *C = dyn_cast<CallBase>(I)) 1498 if (C->isInlineAsm() || C->cannotMerge()) 1499 return false; 1500 1501 // Each instruction must have zero or one use. 1502 if (HasUse && !I->hasOneUse()) 1503 return false; 1504 if (!HasUse && !I->user_empty()) 1505 return false; 1506 } 1507 1508 const Instruction *I0 = Insts.front(); 1509 for (auto *I : Insts) 1510 if (!I->isSameOperationAs(I0)) 1511 return false; 1512 1513 // All instructions in Insts are known to be the same opcode. If they have a 1514 // use, check that the only user is a PHI or in the same block as the 1515 // instruction, because if a user is in the same block as an instruction we're 1516 // contemplating sinking, it must already be determined to be sinkable. 1517 if (HasUse) { 1518 auto *PNUse = dyn_cast<PHINode>(*I0->user_begin()); 1519 auto *Succ = I0->getParent()->getTerminator()->getSuccessor(0); 1520 if (!all_of(Insts, [&PNUse,&Succ](const Instruction *I) -> bool { 1521 auto *U = cast<Instruction>(*I->user_begin()); 1522 return (PNUse && 1523 PNUse->getParent() == Succ && 1524 PNUse->getIncomingValueForBlock(I->getParent()) == I) || 1525 U->getParent() == I->getParent(); 1526 })) 1527 return false; 1528 } 1529 1530 // Because SROA can't handle speculating stores of selects, try not to sink 1531 // loads, stores or lifetime markers of allocas when we'd have to create a 1532 // PHI for the address operand. Also, because it is likely that loads or 1533 // stores of allocas will disappear when Mem2Reg/SROA is run, don't sink 1534 // them. 1535 // This can cause code churn which can have unintended consequences down 1536 // the line - see https://llvm.org/bugs/show_bug.cgi?id=30244. 1537 // FIXME: This is a workaround for a deficiency in SROA - see 1538 // https://llvm.org/bugs/show_bug.cgi?id=30188 1539 if (isa<StoreInst>(I0) && any_of(Insts, [](const Instruction *I) { 1540 return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts()); 1541 })) 1542 return false; 1543 if (isa<LoadInst>(I0) && any_of(Insts, [](const Instruction *I) { 1544 return isa<AllocaInst>(I->getOperand(0)->stripPointerCasts()); 1545 })) 1546 return false; 1547 if (isLifeTimeMarker(I0) && any_of(Insts, [](const Instruction *I) { 1548 return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts()); 1549 })) 1550 return false; 1551 1552 for (unsigned OI = 0, OE = I0->getNumOperands(); OI != OE; ++OI) { 1553 Value *Op = I0->getOperand(OI); 1554 if (Op->getType()->isTokenTy()) 1555 // Don't touch any operand of token type. 1556 return false; 1557 1558 auto SameAsI0 = [&I0, OI](const Instruction *I) { 1559 assert(I->getNumOperands() == I0->getNumOperands()); 1560 return I->getOperand(OI) == I0->getOperand(OI); 1561 }; 1562 if (!all_of(Insts, SameAsI0)) { 1563 if ((isa<Constant>(Op) && !replacingOperandWithVariableIsCheap(I0, OI)) || 1564 !canReplaceOperandWithVariable(I0, OI)) 1565 // We can't create a PHI from this GEP. 1566 return false; 1567 // Don't create indirect calls! The called value is the final operand. 1568 if (isa<CallBase>(I0) && OI == OE - 1) { 1569 // FIXME: if the call was *already* indirect, we should do this. 1570 return false; 1571 } 1572 for (auto *I : Insts) 1573 PHIOperands[I].push_back(I->getOperand(OI)); 1574 } 1575 } 1576 return true; 1577 } 1578 1579 // Assuming canSinkLastInstruction(Blocks) has returned true, sink the last 1580 // instruction of every block in Blocks to their common successor, commoning 1581 // into one instruction. 1582 static bool sinkLastInstruction(ArrayRef<BasicBlock*> Blocks) { 1583 auto *BBEnd = Blocks[0]->getTerminator()->getSuccessor(0); 1584 1585 // canSinkLastInstruction returning true guarantees that every block has at 1586 // least one non-terminator instruction. 1587 SmallVector<Instruction*,4> Insts; 1588 for (auto *BB : Blocks) { 1589 Instruction *I = BB->getTerminator(); 1590 do { 1591 I = I->getPrevNode(); 1592 } while (isa<DbgInfoIntrinsic>(I) && I != &BB->front()); 1593 if (!isa<DbgInfoIntrinsic>(I)) 1594 Insts.push_back(I); 1595 } 1596 1597 // The only checking we need to do now is that all users of all instructions 1598 // are the same PHI node. canSinkLastInstruction should have checked this but 1599 // it is slightly over-aggressive - it gets confused by commutative instructions 1600 // so double-check it here. 1601 Instruction *I0 = Insts.front(); 1602 if (!I0->user_empty()) { 1603 auto *PNUse = dyn_cast<PHINode>(*I0->user_begin()); 1604 if (!all_of(Insts, [&PNUse](const Instruction *I) -> bool { 1605 auto *U = cast<Instruction>(*I->user_begin()); 1606 return U == PNUse; 1607 })) 1608 return false; 1609 } 1610 1611 // We don't need to do any more checking here; canSinkLastInstruction should 1612 // have done it all for us. 1613 SmallVector<Value*, 4> NewOperands; 1614 for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) { 1615 // This check is different to that in canSinkLastInstruction. There, we 1616 // cared about the global view once simplifycfg (and instcombine) have 1617 // completed - it takes into account PHIs that become trivially 1618 // simplifiable. However here we need a more local view; if an operand 1619 // differs we create a PHI and rely on instcombine to clean up the very 1620 // small mess we may make. 1621 bool NeedPHI = any_of(Insts, [&I0, O](const Instruction *I) { 1622 return I->getOperand(O) != I0->getOperand(O); 1623 }); 1624 if (!NeedPHI) { 1625 NewOperands.push_back(I0->getOperand(O)); 1626 continue; 1627 } 1628 1629 // Create a new PHI in the successor block and populate it. 1630 auto *Op = I0->getOperand(O); 1631 assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!"); 1632 auto *PN = PHINode::Create(Op->getType(), Insts.size(), 1633 Op->getName() + ".sink", &BBEnd->front()); 1634 for (auto *I : Insts) 1635 PN->addIncoming(I->getOperand(O), I->getParent()); 1636 NewOperands.push_back(PN); 1637 } 1638 1639 // Arbitrarily use I0 as the new "common" instruction; remap its operands 1640 // and move it to the start of the successor block. 1641 for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) 1642 I0->getOperandUse(O).set(NewOperands[O]); 1643 I0->moveBefore(&*BBEnd->getFirstInsertionPt()); 1644 1645 // Update metadata and IR flags, and merge debug locations. 1646 for (auto *I : Insts) 1647 if (I != I0) { 1648 // The debug location for the "common" instruction is the merged locations 1649 // of all the commoned instructions. We start with the original location 1650 // of the "common" instruction and iteratively merge each location in the 1651 // loop below. 1652 // This is an N-way merge, which will be inefficient if I0 is a CallInst. 1653 // However, as N-way merge for CallInst is rare, so we use simplified API 1654 // instead of using complex API for N-way merge. 1655 I0->applyMergedLocation(I0->getDebugLoc(), I->getDebugLoc()); 1656 combineMetadataForCSE(I0, I, true); 1657 I0->andIRFlags(I); 1658 } 1659 1660 if (!I0->user_empty()) { 1661 // canSinkLastInstruction checked that all instructions were used by 1662 // one and only one PHI node. Find that now, RAUW it to our common 1663 // instruction and nuke it. 1664 auto *PN = cast<PHINode>(*I0->user_begin()); 1665 PN->replaceAllUsesWith(I0); 1666 PN->eraseFromParent(); 1667 } 1668 1669 // Finally nuke all instructions apart from the common instruction. 1670 for (auto *I : Insts) 1671 if (I != I0) 1672 I->eraseFromParent(); 1673 1674 return true; 1675 } 1676 1677 namespace { 1678 1679 // LockstepReverseIterator - Iterates through instructions 1680 // in a set of blocks in reverse order from the first non-terminator. 1681 // For example (assume all blocks have size n): 1682 // LockstepReverseIterator I([B1, B2, B3]); 1683 // *I-- = [B1[n], B2[n], B3[n]]; 1684 // *I-- = [B1[n-1], B2[n-1], B3[n-1]]; 1685 // *I-- = [B1[n-2], B2[n-2], B3[n-2]]; 1686 // ... 1687 class LockstepReverseIterator { 1688 ArrayRef<BasicBlock*> Blocks; 1689 SmallVector<Instruction*,4> Insts; 1690 bool Fail; 1691 1692 public: 1693 LockstepReverseIterator(ArrayRef<BasicBlock*> Blocks) : Blocks(Blocks) { 1694 reset(); 1695 } 1696 1697 void reset() { 1698 Fail = false; 1699 Insts.clear(); 1700 for (auto *BB : Blocks) { 1701 Instruction *Inst = BB->getTerminator(); 1702 for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);) 1703 Inst = Inst->getPrevNode(); 1704 if (!Inst) { 1705 // Block wasn't big enough. 1706 Fail = true; 1707 return; 1708 } 1709 Insts.push_back(Inst); 1710 } 1711 } 1712 1713 bool isValid() const { 1714 return !Fail; 1715 } 1716 1717 void operator--() { 1718 if (Fail) 1719 return; 1720 for (auto *&Inst : Insts) { 1721 for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);) 1722 Inst = Inst->getPrevNode(); 1723 // Already at beginning of block. 1724 if (!Inst) { 1725 Fail = true; 1726 return; 1727 } 1728 } 1729 } 1730 1731 ArrayRef<Instruction*> operator * () const { 1732 return Insts; 1733 } 1734 }; 1735 1736 } // end anonymous namespace 1737 1738 /// Check whether BB's predecessors end with unconditional branches. If it is 1739 /// true, sink any common code from the predecessors to BB. 1740 /// We also allow one predecessor to end with conditional branch (but no more 1741 /// than one). 1742 static bool SinkCommonCodeFromPredecessors(BasicBlock *BB) { 1743 // We support two situations: 1744 // (1) all incoming arcs are unconditional 1745 // (2) one incoming arc is conditional 1746 // 1747 // (2) is very common in switch defaults and 1748 // else-if patterns; 1749 // 1750 // if (a) f(1); 1751 // else if (b) f(2); 1752 // 1753 // produces: 1754 // 1755 // [if] 1756 // / \ 1757 // [f(1)] [if] 1758 // | | \ 1759 // | | | 1760 // | [f(2)]| 1761 // \ | / 1762 // [ end ] 1763 // 1764 // [end] has two unconditional predecessor arcs and one conditional. The 1765 // conditional refers to the implicit empty 'else' arc. This conditional 1766 // arc can also be caused by an empty default block in a switch. 1767 // 1768 // In this case, we attempt to sink code from all *unconditional* arcs. 1769 // If we can sink instructions from these arcs (determined during the scan 1770 // phase below) we insert a common successor for all unconditional arcs and 1771 // connect that to [end], to enable sinking: 1772 // 1773 // [if] 1774 // / \ 1775 // [x(1)] [if] 1776 // | | \ 1777 // | | \ 1778 // | [x(2)] | 1779 // \ / | 1780 // [sink.split] | 1781 // \ / 1782 // [ end ] 1783 // 1784 SmallVector<BasicBlock*,4> UnconditionalPreds; 1785 Instruction *Cond = nullptr; 1786 for (auto *B : predecessors(BB)) { 1787 auto *T = B->getTerminator(); 1788 if (isa<BranchInst>(T) && cast<BranchInst>(T)->isUnconditional()) 1789 UnconditionalPreds.push_back(B); 1790 else if ((isa<BranchInst>(T) || isa<SwitchInst>(T)) && !Cond) 1791 Cond = T; 1792 else 1793 return false; 1794 } 1795 if (UnconditionalPreds.size() < 2) 1796 return false; 1797 1798 bool Changed = false; 1799 // We take a two-step approach to tail sinking. First we scan from the end of 1800 // each block upwards in lockstep. If the n'th instruction from the end of each 1801 // block can be sunk, those instructions are added to ValuesToSink and we 1802 // carry on. If we can sink an instruction but need to PHI-merge some operands 1803 // (because they're not identical in each instruction) we add these to 1804 // PHIOperands. 1805 unsigned ScanIdx = 0; 1806 SmallPtrSet<Value*,4> InstructionsToSink; 1807 DenseMap<Instruction*, SmallVector<Value*,4>> PHIOperands; 1808 LockstepReverseIterator LRI(UnconditionalPreds); 1809 while (LRI.isValid() && 1810 canSinkInstructions(*LRI, PHIOperands)) { 1811 LLVM_DEBUG(dbgs() << "SINK: instruction can be sunk: " << *(*LRI)[0] 1812 << "\n"); 1813 InstructionsToSink.insert((*LRI).begin(), (*LRI).end()); 1814 ++ScanIdx; 1815 --LRI; 1816 } 1817 1818 auto ProfitableToSinkInstruction = [&](LockstepReverseIterator &LRI) { 1819 unsigned NumPHIdValues = 0; 1820 for (auto *I : *LRI) 1821 for (auto *V : PHIOperands[I]) 1822 if (InstructionsToSink.count(V) == 0) 1823 ++NumPHIdValues; 1824 LLVM_DEBUG(dbgs() << "SINK: #phid values: " << NumPHIdValues << "\n"); 1825 unsigned NumPHIInsts = NumPHIdValues / UnconditionalPreds.size(); 1826 if ((NumPHIdValues % UnconditionalPreds.size()) != 0) 1827 NumPHIInsts++; 1828 1829 return NumPHIInsts <= 1; 1830 }; 1831 1832 if (ScanIdx > 0 && Cond) { 1833 // Check if we would actually sink anything first! This mutates the CFG and 1834 // adds an extra block. The goal in doing this is to allow instructions that 1835 // couldn't be sunk before to be sunk - obviously, speculatable instructions 1836 // (such as trunc, add) can be sunk and predicated already. So we check that 1837 // we're going to sink at least one non-speculatable instruction. 1838 LRI.reset(); 1839 unsigned Idx = 0; 1840 bool Profitable = false; 1841 while (ProfitableToSinkInstruction(LRI) && Idx < ScanIdx) { 1842 if (!isSafeToSpeculativelyExecute((*LRI)[0])) { 1843 Profitable = true; 1844 break; 1845 } 1846 --LRI; 1847 ++Idx; 1848 } 1849 if (!Profitable) 1850 return false; 1851 1852 LLVM_DEBUG(dbgs() << "SINK: Splitting edge\n"); 1853 // We have a conditional edge and we're going to sink some instructions. 1854 // Insert a new block postdominating all blocks we're going to sink from. 1855 if (!SplitBlockPredecessors(BB, UnconditionalPreds, ".sink.split")) 1856 // Edges couldn't be split. 1857 return false; 1858 Changed = true; 1859 } 1860 1861 // Now that we've analyzed all potential sinking candidates, perform the 1862 // actual sink. We iteratively sink the last non-terminator of the source 1863 // blocks into their common successor unless doing so would require too 1864 // many PHI instructions to be generated (currently only one PHI is allowed 1865 // per sunk instruction). 1866 // 1867 // We can use InstructionsToSink to discount values needing PHI-merging that will 1868 // actually be sunk in a later iteration. This allows us to be more 1869 // aggressive in what we sink. This does allow a false positive where we 1870 // sink presuming a later value will also be sunk, but stop half way through 1871 // and never actually sink it which means we produce more PHIs than intended. 1872 // This is unlikely in practice though. 1873 for (unsigned SinkIdx = 0; SinkIdx != ScanIdx; ++SinkIdx) { 1874 LLVM_DEBUG(dbgs() << "SINK: Sink: " 1875 << *UnconditionalPreds[0]->getTerminator()->getPrevNode() 1876 << "\n"); 1877 1878 // Because we've sunk every instruction in turn, the current instruction to 1879 // sink is always at index 0. 1880 LRI.reset(); 1881 if (!ProfitableToSinkInstruction(LRI)) { 1882 // Too many PHIs would be created. 1883 LLVM_DEBUG( 1884 dbgs() << "SINK: stopping here, too many PHIs would be created!\n"); 1885 break; 1886 } 1887 1888 if (!sinkLastInstruction(UnconditionalPreds)) 1889 return Changed; 1890 NumSinkCommons++; 1891 Changed = true; 1892 } 1893 return Changed; 1894 } 1895 1896 /// Determine if we can hoist sink a sole store instruction out of a 1897 /// conditional block. 1898 /// 1899 /// We are looking for code like the following: 1900 /// BrBB: 1901 /// store i32 %add, i32* %arrayidx2 1902 /// ... // No other stores or function calls (we could be calling a memory 1903 /// ... // function). 1904 /// %cmp = icmp ult %x, %y 1905 /// br i1 %cmp, label %EndBB, label %ThenBB 1906 /// ThenBB: 1907 /// store i32 %add5, i32* %arrayidx2 1908 /// br label EndBB 1909 /// EndBB: 1910 /// ... 1911 /// We are going to transform this into: 1912 /// BrBB: 1913 /// store i32 %add, i32* %arrayidx2 1914 /// ... // 1915 /// %cmp = icmp ult %x, %y 1916 /// %add.add5 = select i1 %cmp, i32 %add, %add5 1917 /// store i32 %add.add5, i32* %arrayidx2 1918 /// ... 1919 /// 1920 /// \return The pointer to the value of the previous store if the store can be 1921 /// hoisted into the predecessor block. 0 otherwise. 1922 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB, 1923 BasicBlock *StoreBB, BasicBlock *EndBB) { 1924 StoreInst *StoreToHoist = dyn_cast<StoreInst>(I); 1925 if (!StoreToHoist) 1926 return nullptr; 1927 1928 // Volatile or atomic. 1929 if (!StoreToHoist->isSimple()) 1930 return nullptr; 1931 1932 Value *StorePtr = StoreToHoist->getPointerOperand(); 1933 1934 // Look for a store to the same pointer in BrBB. 1935 unsigned MaxNumInstToLookAt = 9; 1936 for (Instruction &CurI : reverse(BrBB->instructionsWithoutDebug())) { 1937 if (!MaxNumInstToLookAt) 1938 break; 1939 --MaxNumInstToLookAt; 1940 1941 // Could be calling an instruction that affects memory like free(). 1942 if (CurI.mayHaveSideEffects() && !isa<StoreInst>(CurI)) 1943 return nullptr; 1944 1945 if (auto *SI = dyn_cast<StoreInst>(&CurI)) { 1946 // Found the previous store make sure it stores to the same location. 1947 if (SI->getPointerOperand() == StorePtr) 1948 // Found the previous store, return its value operand. 1949 return SI->getValueOperand(); 1950 return nullptr; // Unknown store. 1951 } 1952 } 1953 1954 return nullptr; 1955 } 1956 1957 /// Speculate a conditional basic block flattening the CFG. 1958 /// 1959 /// Note that this is a very risky transform currently. Speculating 1960 /// instructions like this is most often not desirable. Instead, there is an MI 1961 /// pass which can do it with full awareness of the resource constraints. 1962 /// However, some cases are "obvious" and we should do directly. An example of 1963 /// this is speculating a single, reasonably cheap instruction. 1964 /// 1965 /// There is only one distinct advantage to flattening the CFG at the IR level: 1966 /// it makes very common but simplistic optimizations such as are common in 1967 /// instcombine and the DAG combiner more powerful by removing CFG edges and 1968 /// modeling their effects with easier to reason about SSA value graphs. 1969 /// 1970 /// 1971 /// An illustration of this transform is turning this IR: 1972 /// \code 1973 /// BB: 1974 /// %cmp = icmp ult %x, %y 1975 /// br i1 %cmp, label %EndBB, label %ThenBB 1976 /// ThenBB: 1977 /// %sub = sub %x, %y 1978 /// br label BB2 1979 /// EndBB: 1980 /// %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ] 1981 /// ... 1982 /// \endcode 1983 /// 1984 /// Into this IR: 1985 /// \code 1986 /// BB: 1987 /// %cmp = icmp ult %x, %y 1988 /// %sub = sub %x, %y 1989 /// %cond = select i1 %cmp, 0, %sub 1990 /// ... 1991 /// \endcode 1992 /// 1993 /// \returns true if the conditional block is removed. 1994 bool SimplifyCFGOpt::SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB, 1995 const TargetTransformInfo &TTI) { 1996 // Be conservative for now. FP select instruction can often be expensive. 1997 Value *BrCond = BI->getCondition(); 1998 if (isa<FCmpInst>(BrCond)) 1999 return false; 2000 2001 BasicBlock *BB = BI->getParent(); 2002 BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0); 2003 2004 // If ThenBB is actually on the false edge of the conditional branch, remember 2005 // to swap the select operands later. 2006 bool Invert = false; 2007 if (ThenBB != BI->getSuccessor(0)) { 2008 assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?"); 2009 Invert = true; 2010 } 2011 assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block"); 2012 2013 // Keep a count of how many times instructions are used within ThenBB when 2014 // they are candidates for sinking into ThenBB. Specifically: 2015 // - They are defined in BB, and 2016 // - They have no side effects, and 2017 // - All of their uses are in ThenBB. 2018 SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts; 2019 2020 SmallVector<Instruction *, 4> SpeculatedDbgIntrinsics; 2021 2022 unsigned SpeculatedInstructions = 0; 2023 Value *SpeculatedStoreValue = nullptr; 2024 StoreInst *SpeculatedStore = nullptr; 2025 for (BasicBlock::iterator BBI = ThenBB->begin(), 2026 BBE = std::prev(ThenBB->end()); 2027 BBI != BBE; ++BBI) { 2028 Instruction *I = &*BBI; 2029 // Skip debug info. 2030 if (isa<DbgInfoIntrinsic>(I)) { 2031 SpeculatedDbgIntrinsics.push_back(I); 2032 continue; 2033 } 2034 2035 // Only speculatively execute a single instruction (not counting the 2036 // terminator) for now. 2037 ++SpeculatedInstructions; 2038 if (SpeculatedInstructions > 1) 2039 return false; 2040 2041 // Don't hoist the instruction if it's unsafe or expensive. 2042 if (!isSafeToSpeculativelyExecute(I) && 2043 !(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore( 2044 I, BB, ThenBB, EndBB)))) 2045 return false; 2046 if (!SpeculatedStoreValue && 2047 ComputeSpeculationCost(I, TTI) > 2048 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic) 2049 return false; 2050 2051 // Store the store speculation candidate. 2052 if (SpeculatedStoreValue) 2053 SpeculatedStore = cast<StoreInst>(I); 2054 2055 // Do not hoist the instruction if any of its operands are defined but not 2056 // used in BB. The transformation will prevent the operand from 2057 // being sunk into the use block. 2058 for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) { 2059 Instruction *OpI = dyn_cast<Instruction>(*i); 2060 if (!OpI || OpI->getParent() != BB || OpI->mayHaveSideEffects()) 2061 continue; // Not a candidate for sinking. 2062 2063 ++SinkCandidateUseCounts[OpI]; 2064 } 2065 } 2066 2067 // Consider any sink candidates which are only used in ThenBB as costs for 2068 // speculation. Note, while we iterate over a DenseMap here, we are summing 2069 // and so iteration order isn't significant. 2070 for (SmallDenseMap<Instruction *, unsigned, 4>::iterator 2071 I = SinkCandidateUseCounts.begin(), 2072 E = SinkCandidateUseCounts.end(); 2073 I != E; ++I) 2074 if (I->first->hasNUses(I->second)) { 2075 ++SpeculatedInstructions; 2076 if (SpeculatedInstructions > 1) 2077 return false; 2078 } 2079 2080 // Check that the PHI nodes can be converted to selects. 2081 bool HaveRewritablePHIs = false; 2082 for (PHINode &PN : EndBB->phis()) { 2083 Value *OrigV = PN.getIncomingValueForBlock(BB); 2084 Value *ThenV = PN.getIncomingValueForBlock(ThenBB); 2085 2086 // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf. 2087 // Skip PHIs which are trivial. 2088 if (ThenV == OrigV) 2089 continue; 2090 2091 // Don't convert to selects if we could remove undefined behavior instead. 2092 if (passingValueIsAlwaysUndefined(OrigV, &PN) || 2093 passingValueIsAlwaysUndefined(ThenV, &PN)) 2094 return false; 2095 2096 HaveRewritablePHIs = true; 2097 ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV); 2098 ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV); 2099 if (!OrigCE && !ThenCE) 2100 continue; // Known safe and cheap. 2101 2102 if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE)) || 2103 (OrigCE && !isSafeToSpeculativelyExecute(OrigCE))) 2104 return false; 2105 unsigned OrigCost = OrigCE ? ComputeSpeculationCost(OrigCE, TTI) : 0; 2106 unsigned ThenCost = ThenCE ? ComputeSpeculationCost(ThenCE, TTI) : 0; 2107 unsigned MaxCost = 2108 2 * PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 2109 if (OrigCost + ThenCost > MaxCost) 2110 return false; 2111 2112 // Account for the cost of an unfolded ConstantExpr which could end up 2113 // getting expanded into Instructions. 2114 // FIXME: This doesn't account for how many operations are combined in the 2115 // constant expression. 2116 ++SpeculatedInstructions; 2117 if (SpeculatedInstructions > 1) 2118 return false; 2119 } 2120 2121 // If there are no PHIs to process, bail early. This helps ensure idempotence 2122 // as well. 2123 if (!HaveRewritablePHIs && !(HoistCondStores && SpeculatedStoreValue)) 2124 return false; 2125 2126 // If we get here, we can hoist the instruction and if-convert. 2127 LLVM_DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";); 2128 2129 // Insert a select of the value of the speculated store. 2130 if (SpeculatedStoreValue) { 2131 IRBuilder<NoFolder> Builder(BI); 2132 Value *TrueV = SpeculatedStore->getValueOperand(); 2133 Value *FalseV = SpeculatedStoreValue; 2134 if (Invert) 2135 std::swap(TrueV, FalseV); 2136 Value *S = Builder.CreateSelect( 2137 BrCond, TrueV, FalseV, "spec.store.select", BI); 2138 SpeculatedStore->setOperand(0, S); 2139 SpeculatedStore->applyMergedLocation(BI->getDebugLoc(), 2140 SpeculatedStore->getDebugLoc()); 2141 } 2142 2143 // Metadata can be dependent on the condition we are hoisting above. 2144 // Conservatively strip all metadata on the instruction. 2145 for (auto &I : *ThenBB) 2146 I.dropUnknownNonDebugMetadata(); 2147 2148 // Hoist the instructions. 2149 BB->getInstList().splice(BI->getIterator(), ThenBB->getInstList(), 2150 ThenBB->begin(), std::prev(ThenBB->end())); 2151 2152 // Insert selects and rewrite the PHI operands. 2153 IRBuilder<NoFolder> Builder(BI); 2154 for (PHINode &PN : EndBB->phis()) { 2155 unsigned OrigI = PN.getBasicBlockIndex(BB); 2156 unsigned ThenI = PN.getBasicBlockIndex(ThenBB); 2157 Value *OrigV = PN.getIncomingValue(OrigI); 2158 Value *ThenV = PN.getIncomingValue(ThenI); 2159 2160 // Skip PHIs which are trivial. 2161 if (OrigV == ThenV) 2162 continue; 2163 2164 // Create a select whose true value is the speculatively executed value and 2165 // false value is the pre-existing value. Swap them if the branch 2166 // destinations were inverted. 2167 Value *TrueV = ThenV, *FalseV = OrigV; 2168 if (Invert) 2169 std::swap(TrueV, FalseV); 2170 Value *V = Builder.CreateSelect(BrCond, TrueV, FalseV, "spec.select", BI); 2171 PN.setIncomingValue(OrigI, V); 2172 PN.setIncomingValue(ThenI, V); 2173 } 2174 2175 // Remove speculated dbg intrinsics. 2176 // FIXME: Is it possible to do this in a more elegant way? Moving/merging the 2177 // dbg value for the different flows and inserting it after the select. 2178 for (Instruction *I : SpeculatedDbgIntrinsics) 2179 I->eraseFromParent(); 2180 2181 ++NumSpeculations; 2182 return true; 2183 } 2184 2185 /// Return true if we can thread a branch across this block. 2186 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) { 2187 unsigned Size = 0; 2188 2189 for (Instruction &I : BB->instructionsWithoutDebug()) { 2190 if (Size > 10) 2191 return false; // Don't clone large BB's. 2192 ++Size; 2193 2194 // We can only support instructions that do not define values that are 2195 // live outside of the current basic block. 2196 for (User *U : I.users()) { 2197 Instruction *UI = cast<Instruction>(U); 2198 if (UI->getParent() != BB || isa<PHINode>(UI)) 2199 return false; 2200 } 2201 2202 // Looks ok, continue checking. 2203 } 2204 2205 return true; 2206 } 2207 2208 /// If we have a conditional branch on a PHI node value that is defined in the 2209 /// same block as the branch and if any PHI entries are constants, thread edges 2210 /// corresponding to that entry to be branches to their ultimate destination. 2211 static bool FoldCondBranchOnPHI(BranchInst *BI, const DataLayout &DL, 2212 AssumptionCache *AC) { 2213 BasicBlock *BB = BI->getParent(); 2214 PHINode *PN = dyn_cast<PHINode>(BI->getCondition()); 2215 // NOTE: we currently cannot transform this case if the PHI node is used 2216 // outside of the block. 2217 if (!PN || PN->getParent() != BB || !PN->hasOneUse()) 2218 return false; 2219 2220 // Degenerate case of a single entry PHI. 2221 if (PN->getNumIncomingValues() == 1) { 2222 FoldSingleEntryPHINodes(PN->getParent()); 2223 return true; 2224 } 2225 2226 // Now we know that this block has multiple preds and two succs. 2227 if (!BlockIsSimpleEnoughToThreadThrough(BB)) 2228 return false; 2229 2230 // Can't fold blocks that contain noduplicate or convergent calls. 2231 if (any_of(*BB, [](const Instruction &I) { 2232 const CallInst *CI = dyn_cast<CallInst>(&I); 2233 return CI && (CI->cannotDuplicate() || CI->isConvergent()); 2234 })) 2235 return false; 2236 2237 // Okay, this is a simple enough basic block. See if any phi values are 2238 // constants. 2239 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 2240 ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i)); 2241 if (!CB || !CB->getType()->isIntegerTy(1)) 2242 continue; 2243 2244 // Okay, we now know that all edges from PredBB should be revectored to 2245 // branch to RealDest. 2246 BasicBlock *PredBB = PN->getIncomingBlock(i); 2247 BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue()); 2248 2249 if (RealDest == BB) 2250 continue; // Skip self loops. 2251 // Skip if the predecessor's terminator is an indirect branch. 2252 if (isa<IndirectBrInst>(PredBB->getTerminator())) 2253 continue; 2254 2255 // The dest block might have PHI nodes, other predecessors and other 2256 // difficult cases. Instead of being smart about this, just insert a new 2257 // block that jumps to the destination block, effectively splitting 2258 // the edge we are about to create. 2259 BasicBlock *EdgeBB = 2260 BasicBlock::Create(BB->getContext(), RealDest->getName() + ".critedge", 2261 RealDest->getParent(), RealDest); 2262 BranchInst *CritEdgeBranch = BranchInst::Create(RealDest, EdgeBB); 2263 CritEdgeBranch->setDebugLoc(BI->getDebugLoc()); 2264 2265 // Update PHI nodes. 2266 AddPredecessorToBlock(RealDest, EdgeBB, BB); 2267 2268 // BB may have instructions that are being threaded over. Clone these 2269 // instructions into EdgeBB. We know that there will be no uses of the 2270 // cloned instructions outside of EdgeBB. 2271 BasicBlock::iterator InsertPt = EdgeBB->begin(); 2272 DenseMap<Value *, Value *> TranslateMap; // Track translated values. 2273 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) { 2274 if (PHINode *PN = dyn_cast<PHINode>(BBI)) { 2275 TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB); 2276 continue; 2277 } 2278 // Clone the instruction. 2279 Instruction *N = BBI->clone(); 2280 if (BBI->hasName()) 2281 N->setName(BBI->getName() + ".c"); 2282 2283 // Update operands due to translation. 2284 for (User::op_iterator i = N->op_begin(), e = N->op_end(); i != e; ++i) { 2285 DenseMap<Value *, Value *>::iterator PI = TranslateMap.find(*i); 2286 if (PI != TranslateMap.end()) 2287 *i = PI->second; 2288 } 2289 2290 // Check for trivial simplification. 2291 if (Value *V = SimplifyInstruction(N, {DL, nullptr, nullptr, AC})) { 2292 if (!BBI->use_empty()) 2293 TranslateMap[&*BBI] = V; 2294 if (!N->mayHaveSideEffects()) { 2295 N->deleteValue(); // Instruction folded away, don't need actual inst 2296 N = nullptr; 2297 } 2298 } else { 2299 if (!BBI->use_empty()) 2300 TranslateMap[&*BBI] = N; 2301 } 2302 if (N) { 2303 // Insert the new instruction into its new home. 2304 EdgeBB->getInstList().insert(InsertPt, N); 2305 2306 // Register the new instruction with the assumption cache if necessary. 2307 if (AC && match(N, m_Intrinsic<Intrinsic::assume>())) 2308 AC->registerAssumption(cast<IntrinsicInst>(N)); 2309 } 2310 } 2311 2312 // Loop over all of the edges from PredBB to BB, changing them to branch 2313 // to EdgeBB instead. 2314 Instruction *PredBBTI = PredBB->getTerminator(); 2315 for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i) 2316 if (PredBBTI->getSuccessor(i) == BB) { 2317 BB->removePredecessor(PredBB); 2318 PredBBTI->setSuccessor(i, EdgeBB); 2319 } 2320 2321 // Recurse, simplifying any other constants. 2322 return FoldCondBranchOnPHI(BI, DL, AC) || true; 2323 } 2324 2325 return false; 2326 } 2327 2328 /// Given a BB that starts with the specified two-entry PHI node, 2329 /// see if we can eliminate it. 2330 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI, 2331 const DataLayout &DL) { 2332 // Ok, this is a two entry PHI node. Check to see if this is a simple "if 2333 // statement", which has a very simple dominance structure. Basically, we 2334 // are trying to find the condition that is being branched on, which 2335 // subsequently causes this merge to happen. We really want control 2336 // dependence information for this check, but simplifycfg can't keep it up 2337 // to date, and this catches most of the cases we care about anyway. 2338 BasicBlock *BB = PN->getParent(); 2339 2340 BasicBlock *IfTrue, *IfFalse; 2341 Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse); 2342 if (!IfCond || 2343 // Don't bother if the branch will be constant folded trivially. 2344 isa<ConstantInt>(IfCond)) 2345 return false; 2346 2347 // Okay, we found that we can merge this two-entry phi node into a select. 2348 // Doing so would require us to fold *all* two entry phi nodes in this block. 2349 // At some point this becomes non-profitable (particularly if the target 2350 // doesn't support cmov's). Only do this transformation if there are two or 2351 // fewer PHI nodes in this block. 2352 unsigned NumPhis = 0; 2353 for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I) 2354 if (NumPhis > 2) 2355 return false; 2356 2357 // Loop over the PHI's seeing if we can promote them all to select 2358 // instructions. While we are at it, keep track of the instructions 2359 // that need to be moved to the dominating block. 2360 SmallPtrSet<Instruction *, 4> AggressiveInsts; 2361 int BudgetRemaining = 2362 TwoEntryPHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 2363 2364 for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) { 2365 PHINode *PN = cast<PHINode>(II++); 2366 if (Value *V = SimplifyInstruction(PN, {DL, PN})) { 2367 PN->replaceAllUsesWith(V); 2368 PN->eraseFromParent(); 2369 continue; 2370 } 2371 2372 if (!DominatesMergePoint(PN->getIncomingValue(0), BB, AggressiveInsts, 2373 BudgetRemaining, TTI) || 2374 !DominatesMergePoint(PN->getIncomingValue(1), BB, AggressiveInsts, 2375 BudgetRemaining, TTI)) 2376 return false; 2377 } 2378 2379 // If we folded the first phi, PN dangles at this point. Refresh it. If 2380 // we ran out of PHIs then we simplified them all. 2381 PN = dyn_cast<PHINode>(BB->begin()); 2382 if (!PN) 2383 return true; 2384 2385 // Return true if at least one of these is a 'not', and another is either 2386 // a 'not' too, or a constant. 2387 auto CanHoistNotFromBothValues = [](Value *V0, Value *V1) { 2388 if (!match(V0, m_Not(m_Value()))) 2389 std::swap(V0, V1); 2390 auto Invertible = m_CombineOr(m_Not(m_Value()), m_AnyIntegralConstant()); 2391 return match(V0, m_Not(m_Value())) && match(V1, Invertible); 2392 }; 2393 2394 // Don't fold i1 branches on PHIs which contain binary operators, unless one 2395 // of the incoming values is an 'not' and another one is freely invertible. 2396 // These can often be turned into switches and other things. 2397 if (PN->getType()->isIntegerTy(1) && 2398 (isa<BinaryOperator>(PN->getIncomingValue(0)) || 2399 isa<BinaryOperator>(PN->getIncomingValue(1)) || 2400 isa<BinaryOperator>(IfCond)) && 2401 !CanHoistNotFromBothValues(PN->getIncomingValue(0), 2402 PN->getIncomingValue(1))) 2403 return false; 2404 2405 // If all PHI nodes are promotable, check to make sure that all instructions 2406 // in the predecessor blocks can be promoted as well. If not, we won't be able 2407 // to get rid of the control flow, so it's not worth promoting to select 2408 // instructions. 2409 BasicBlock *DomBlock = nullptr; 2410 BasicBlock *IfBlock1 = PN->getIncomingBlock(0); 2411 BasicBlock *IfBlock2 = PN->getIncomingBlock(1); 2412 if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) { 2413 IfBlock1 = nullptr; 2414 } else { 2415 DomBlock = *pred_begin(IfBlock1); 2416 for (BasicBlock::iterator I = IfBlock1->begin(); !I->isTerminator(); ++I) 2417 if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) { 2418 // This is not an aggressive instruction that we can promote. 2419 // Because of this, we won't be able to get rid of the control flow, so 2420 // the xform is not worth it. 2421 return false; 2422 } 2423 } 2424 2425 if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) { 2426 IfBlock2 = nullptr; 2427 } else { 2428 DomBlock = *pred_begin(IfBlock2); 2429 for (BasicBlock::iterator I = IfBlock2->begin(); !I->isTerminator(); ++I) 2430 if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) { 2431 // This is not an aggressive instruction that we can promote. 2432 // Because of this, we won't be able to get rid of the control flow, so 2433 // the xform is not worth it. 2434 return false; 2435 } 2436 } 2437 assert(DomBlock && "Failed to find root DomBlock"); 2438 2439 LLVM_DEBUG(dbgs() << "FOUND IF CONDITION! " << *IfCond 2440 << " T: " << IfTrue->getName() 2441 << " F: " << IfFalse->getName() << "\n"); 2442 2443 // If we can still promote the PHI nodes after this gauntlet of tests, 2444 // do all of the PHI's now. 2445 Instruction *InsertPt = DomBlock->getTerminator(); 2446 IRBuilder<NoFolder> Builder(InsertPt); 2447 2448 // Move all 'aggressive' instructions, which are defined in the 2449 // conditional parts of the if's up to the dominating block. 2450 if (IfBlock1) 2451 hoistAllInstructionsInto(DomBlock, InsertPt, IfBlock1); 2452 if (IfBlock2) 2453 hoistAllInstructionsInto(DomBlock, InsertPt, IfBlock2); 2454 2455 // Propagate fast-math-flags from phi nodes to replacement selects. 2456 IRBuilder<>::FastMathFlagGuard FMFGuard(Builder); 2457 while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) { 2458 if (isa<FPMathOperator>(PN)) 2459 Builder.setFastMathFlags(PN->getFastMathFlags()); 2460 2461 // Change the PHI node into a select instruction. 2462 Value *TrueVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse); 2463 Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue); 2464 2465 Value *Sel = Builder.CreateSelect(IfCond, TrueVal, FalseVal, "", InsertPt); 2466 PN->replaceAllUsesWith(Sel); 2467 Sel->takeName(PN); 2468 PN->eraseFromParent(); 2469 } 2470 2471 // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement 2472 // has been flattened. Change DomBlock to jump directly to our new block to 2473 // avoid other simplifycfg's kicking in on the diamond. 2474 Instruction *OldTI = DomBlock->getTerminator(); 2475 Builder.SetInsertPoint(OldTI); 2476 Builder.CreateBr(BB); 2477 OldTI->eraseFromParent(); 2478 return true; 2479 } 2480 2481 /// If we found a conditional branch that goes to two returning blocks, 2482 /// try to merge them together into one return, 2483 /// introducing a select if the return values disagree. 2484 bool SimplifyCFGOpt::SimplifyCondBranchToTwoReturns(BranchInst *BI, 2485 IRBuilder<> &Builder) { 2486 assert(BI->isConditional() && "Must be a conditional branch"); 2487 BasicBlock *TrueSucc = BI->getSuccessor(0); 2488 BasicBlock *FalseSucc = BI->getSuccessor(1); 2489 ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator()); 2490 ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator()); 2491 2492 // Check to ensure both blocks are empty (just a return) or optionally empty 2493 // with PHI nodes. If there are other instructions, merging would cause extra 2494 // computation on one path or the other. 2495 if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator()) 2496 return false; 2497 if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator()) 2498 return false; 2499 2500 Builder.SetInsertPoint(BI); 2501 // Okay, we found a branch that is going to two return nodes. If 2502 // there is no return value for this function, just change the 2503 // branch into a return. 2504 if (FalseRet->getNumOperands() == 0) { 2505 TrueSucc->removePredecessor(BI->getParent()); 2506 FalseSucc->removePredecessor(BI->getParent()); 2507 Builder.CreateRetVoid(); 2508 EraseTerminatorAndDCECond(BI); 2509 return true; 2510 } 2511 2512 // Otherwise, figure out what the true and false return values are 2513 // so we can insert a new select instruction. 2514 Value *TrueValue = TrueRet->getReturnValue(); 2515 Value *FalseValue = FalseRet->getReturnValue(); 2516 2517 // Unwrap any PHI nodes in the return blocks. 2518 if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue)) 2519 if (TVPN->getParent() == TrueSucc) 2520 TrueValue = TVPN->getIncomingValueForBlock(BI->getParent()); 2521 if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue)) 2522 if (FVPN->getParent() == FalseSucc) 2523 FalseValue = FVPN->getIncomingValueForBlock(BI->getParent()); 2524 2525 // In order for this transformation to be safe, we must be able to 2526 // unconditionally execute both operands to the return. This is 2527 // normally the case, but we could have a potentially-trapping 2528 // constant expression that prevents this transformation from being 2529 // safe. 2530 if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue)) 2531 if (TCV->canTrap()) 2532 return false; 2533 if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue)) 2534 if (FCV->canTrap()) 2535 return false; 2536 2537 // Okay, we collected all the mapped values and checked them for sanity, and 2538 // defined to really do this transformation. First, update the CFG. 2539 TrueSucc->removePredecessor(BI->getParent()); 2540 FalseSucc->removePredecessor(BI->getParent()); 2541 2542 // Insert select instructions where needed. 2543 Value *BrCond = BI->getCondition(); 2544 if (TrueValue) { 2545 // Insert a select if the results differ. 2546 if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) { 2547 } else if (isa<UndefValue>(TrueValue)) { 2548 TrueValue = FalseValue; 2549 } else { 2550 TrueValue = 2551 Builder.CreateSelect(BrCond, TrueValue, FalseValue, "retval", BI); 2552 } 2553 } 2554 2555 Value *RI = 2556 !TrueValue ? Builder.CreateRetVoid() : Builder.CreateRet(TrueValue); 2557 2558 (void)RI; 2559 2560 LLVM_DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:" 2561 << "\n " << *BI << "\nNewRet = " << *RI << "\nTRUEBLOCK: " 2562 << *TrueSucc << "\nFALSEBLOCK: " << *FalseSucc); 2563 2564 EraseTerminatorAndDCECond(BI); 2565 2566 return true; 2567 } 2568 2569 /// Return true if the given instruction is available 2570 /// in its predecessor block. If yes, the instruction will be removed. 2571 static bool tryCSEWithPredecessor(Instruction *Inst, BasicBlock *PB) { 2572 if (!isa<BinaryOperator>(Inst) && !isa<CmpInst>(Inst)) 2573 return false; 2574 for (Instruction &I : *PB) { 2575 Instruction *PBI = &I; 2576 // Check whether Inst and PBI generate the same value. 2577 if (Inst->isIdenticalTo(PBI)) { 2578 Inst->replaceAllUsesWith(PBI); 2579 Inst->eraseFromParent(); 2580 return true; 2581 } 2582 } 2583 return false; 2584 } 2585 2586 /// Return true if either PBI or BI has branch weight available, and store 2587 /// the weights in {Pred|Succ}{True|False}Weight. If one of PBI and BI does 2588 /// not have branch weight, use 1:1 as its weight. 2589 static bool extractPredSuccWeights(BranchInst *PBI, BranchInst *BI, 2590 uint64_t &PredTrueWeight, 2591 uint64_t &PredFalseWeight, 2592 uint64_t &SuccTrueWeight, 2593 uint64_t &SuccFalseWeight) { 2594 bool PredHasWeights = 2595 PBI->extractProfMetadata(PredTrueWeight, PredFalseWeight); 2596 bool SuccHasWeights = 2597 BI->extractProfMetadata(SuccTrueWeight, SuccFalseWeight); 2598 if (PredHasWeights || SuccHasWeights) { 2599 if (!PredHasWeights) 2600 PredTrueWeight = PredFalseWeight = 1; 2601 if (!SuccHasWeights) 2602 SuccTrueWeight = SuccFalseWeight = 1; 2603 return true; 2604 } else { 2605 return false; 2606 } 2607 } 2608 2609 /// If this basic block is simple enough, and if a predecessor branches to us 2610 /// and one of our successors, fold the block into the predecessor and use 2611 /// logical operations to pick the right destination. 2612 bool llvm::FoldBranchToCommonDest(BranchInst *BI, MemorySSAUpdater *MSSAU, 2613 unsigned BonusInstThreshold) { 2614 BasicBlock *BB = BI->getParent(); 2615 2616 const unsigned PredCount = pred_size(BB); 2617 2618 Instruction *Cond = nullptr; 2619 if (BI->isConditional()) 2620 Cond = dyn_cast<Instruction>(BI->getCondition()); 2621 else { 2622 // For unconditional branch, check for a simple CFG pattern, where 2623 // BB has a single predecessor and BB's successor is also its predecessor's 2624 // successor. If such pattern exists, check for CSE between BB and its 2625 // predecessor. 2626 if (BasicBlock *PB = BB->getSinglePredecessor()) 2627 if (BranchInst *PBI = dyn_cast<BranchInst>(PB->getTerminator())) 2628 if (PBI->isConditional() && 2629 (BI->getSuccessor(0) == PBI->getSuccessor(0) || 2630 BI->getSuccessor(0) == PBI->getSuccessor(1))) { 2631 for (auto I = BB->instructionsWithoutDebug().begin(), 2632 E = BB->instructionsWithoutDebug().end(); 2633 I != E;) { 2634 Instruction *Curr = &*I++; 2635 if (isa<CmpInst>(Curr)) { 2636 Cond = Curr; 2637 break; 2638 } 2639 // Quit if we can't remove this instruction. 2640 if (!tryCSEWithPredecessor(Curr, PB)) 2641 return false; 2642 } 2643 } 2644 2645 if (!Cond) 2646 return false; 2647 } 2648 2649 if (!Cond || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) || 2650 Cond->getParent() != BB || !Cond->hasOneUse()) 2651 return false; 2652 2653 // Make sure the instruction after the condition is the cond branch. 2654 BasicBlock::iterator CondIt = ++Cond->getIterator(); 2655 2656 // Ignore dbg intrinsics. 2657 while (isa<DbgInfoIntrinsic>(CondIt)) 2658 ++CondIt; 2659 2660 if (&*CondIt != BI) 2661 return false; 2662 2663 // Only allow this transformation if computing the condition doesn't involve 2664 // too many instructions and these involved instructions can be executed 2665 // unconditionally. We denote all involved instructions except the condition 2666 // as "bonus instructions", and only allow this transformation when the 2667 // number of the bonus instructions we'll need to create when cloning into 2668 // each predecessor does not exceed a certain threshold. 2669 unsigned NumBonusInsts = 0; 2670 for (auto I = BB->begin(); Cond != &*I; ++I) { 2671 // Ignore dbg intrinsics. 2672 if (isa<DbgInfoIntrinsic>(I)) 2673 continue; 2674 if (!I->hasOneUse() || !isSafeToSpeculativelyExecute(&*I)) 2675 return false; 2676 // I has only one use and can be executed unconditionally. 2677 Instruction *User = dyn_cast<Instruction>(I->user_back()); 2678 if (User == nullptr || User->getParent() != BB) 2679 return false; 2680 // I is used in the same BB. Since BI uses Cond and doesn't have more slots 2681 // to use any other instruction, User must be an instruction between next(I) 2682 // and Cond. 2683 2684 // Account for the cost of duplicating this instruction into each 2685 // predecessor. 2686 NumBonusInsts += PredCount; 2687 // Early exits once we reach the limit. 2688 if (NumBonusInsts > BonusInstThreshold) 2689 return false; 2690 } 2691 2692 // Cond is known to be a compare or binary operator. Check to make sure that 2693 // neither operand is a potentially-trapping constant expression. 2694 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0))) 2695 if (CE->canTrap()) 2696 return false; 2697 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1))) 2698 if (CE->canTrap()) 2699 return false; 2700 2701 // Finally, don't infinitely unroll conditional loops. 2702 BasicBlock *TrueDest = BI->getSuccessor(0); 2703 BasicBlock *FalseDest = (BI->isConditional()) ? BI->getSuccessor(1) : nullptr; 2704 if (TrueDest == BB || FalseDest == BB) 2705 return false; 2706 2707 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 2708 BasicBlock *PredBlock = *PI; 2709 BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator()); 2710 2711 // Check that we have two conditional branches. If there is a PHI node in 2712 // the common successor, verify that the same value flows in from both 2713 // blocks. 2714 SmallVector<PHINode *, 4> PHIs; 2715 if (!PBI || PBI->isUnconditional() || 2716 (BI->isConditional() && !SafeToMergeTerminators(BI, PBI)) || 2717 (!BI->isConditional() && 2718 !isProfitableToFoldUnconditional(BI, PBI, Cond, PHIs))) 2719 continue; 2720 2721 // Determine if the two branches share a common destination. 2722 Instruction::BinaryOps Opc = Instruction::BinaryOpsEnd; 2723 bool InvertPredCond = false; 2724 2725 if (BI->isConditional()) { 2726 if (PBI->getSuccessor(0) == TrueDest) { 2727 Opc = Instruction::Or; 2728 } else if (PBI->getSuccessor(1) == FalseDest) { 2729 Opc = Instruction::And; 2730 } else if (PBI->getSuccessor(0) == FalseDest) { 2731 Opc = Instruction::And; 2732 InvertPredCond = true; 2733 } else if (PBI->getSuccessor(1) == TrueDest) { 2734 Opc = Instruction::Or; 2735 InvertPredCond = true; 2736 } else { 2737 continue; 2738 } 2739 } else { 2740 if (PBI->getSuccessor(0) != TrueDest && PBI->getSuccessor(1) != TrueDest) 2741 continue; 2742 } 2743 2744 LLVM_DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB); 2745 IRBuilder<> Builder(PBI); 2746 2747 // If we need to invert the condition in the pred block to match, do so now. 2748 if (InvertPredCond) { 2749 Value *NewCond = PBI->getCondition(); 2750 2751 if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) { 2752 CmpInst *CI = cast<CmpInst>(NewCond); 2753 CI->setPredicate(CI->getInversePredicate()); 2754 } else { 2755 NewCond = 2756 Builder.CreateNot(NewCond, PBI->getCondition()->getName() + ".not"); 2757 } 2758 2759 PBI->setCondition(NewCond); 2760 PBI->swapSuccessors(); 2761 } 2762 2763 // If we have bonus instructions, clone them into the predecessor block. 2764 // Note that there may be multiple predecessor blocks, so we cannot move 2765 // bonus instructions to a predecessor block. 2766 ValueToValueMapTy VMap; // maps original values to cloned values 2767 // We already make sure Cond is the last instruction before BI. Therefore, 2768 // all instructions before Cond other than DbgInfoIntrinsic are bonus 2769 // instructions. 2770 for (auto BonusInst = BB->begin(); Cond != &*BonusInst; ++BonusInst) { 2771 if (isa<DbgInfoIntrinsic>(BonusInst)) 2772 continue; 2773 Instruction *NewBonusInst = BonusInst->clone(); 2774 RemapInstruction(NewBonusInst, VMap, 2775 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 2776 VMap[&*BonusInst] = NewBonusInst; 2777 2778 // If we moved a load, we cannot any longer claim any knowledge about 2779 // its potential value. The previous information might have been valid 2780 // only given the branch precondition. 2781 // For an analogous reason, we must also drop all the metadata whose 2782 // semantics we don't understand. 2783 NewBonusInst->dropUnknownNonDebugMetadata(); 2784 2785 PredBlock->getInstList().insert(PBI->getIterator(), NewBonusInst); 2786 NewBonusInst->takeName(&*BonusInst); 2787 BonusInst->setName(BonusInst->getName() + ".old"); 2788 } 2789 2790 // Clone Cond into the predecessor basic block, and or/and the 2791 // two conditions together. 2792 Instruction *CondInPred = Cond->clone(); 2793 RemapInstruction(CondInPred, VMap, 2794 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 2795 PredBlock->getInstList().insert(PBI->getIterator(), CondInPred); 2796 CondInPred->takeName(Cond); 2797 Cond->setName(CondInPred->getName() + ".old"); 2798 2799 if (BI->isConditional()) { 2800 Instruction *NewCond = cast<Instruction>( 2801 Builder.CreateBinOp(Opc, PBI->getCondition(), CondInPred, "or.cond")); 2802 PBI->setCondition(NewCond); 2803 2804 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 2805 bool HasWeights = 2806 extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight, 2807 SuccTrueWeight, SuccFalseWeight); 2808 SmallVector<uint64_t, 8> NewWeights; 2809 2810 if (PBI->getSuccessor(0) == BB) { 2811 if (HasWeights) { 2812 // PBI: br i1 %x, BB, FalseDest 2813 // BI: br i1 %y, TrueDest, FalseDest 2814 // TrueWeight is TrueWeight for PBI * TrueWeight for BI. 2815 NewWeights.push_back(PredTrueWeight * SuccTrueWeight); 2816 // FalseWeight is FalseWeight for PBI * TotalWeight for BI + 2817 // TrueWeight for PBI * FalseWeight for BI. 2818 // We assume that total weights of a BranchInst can fit into 32 bits. 2819 // Therefore, we will not have overflow using 64-bit arithmetic. 2820 NewWeights.push_back(PredFalseWeight * 2821 (SuccFalseWeight + SuccTrueWeight) + 2822 PredTrueWeight * SuccFalseWeight); 2823 } 2824 AddPredecessorToBlock(TrueDest, PredBlock, BB, MSSAU); 2825 PBI->setSuccessor(0, TrueDest); 2826 } 2827 if (PBI->getSuccessor(1) == BB) { 2828 if (HasWeights) { 2829 // PBI: br i1 %x, TrueDest, BB 2830 // BI: br i1 %y, TrueDest, FalseDest 2831 // TrueWeight is TrueWeight for PBI * TotalWeight for BI + 2832 // FalseWeight for PBI * TrueWeight for BI. 2833 NewWeights.push_back(PredTrueWeight * 2834 (SuccFalseWeight + SuccTrueWeight) + 2835 PredFalseWeight * SuccTrueWeight); 2836 // FalseWeight is FalseWeight for PBI * FalseWeight for BI. 2837 NewWeights.push_back(PredFalseWeight * SuccFalseWeight); 2838 } 2839 AddPredecessorToBlock(FalseDest, PredBlock, BB, MSSAU); 2840 PBI->setSuccessor(1, FalseDest); 2841 } 2842 if (NewWeights.size() == 2) { 2843 // Halve the weights if any of them cannot fit in an uint32_t 2844 FitWeights(NewWeights); 2845 2846 SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(), 2847 NewWeights.end()); 2848 setBranchWeights(PBI, MDWeights[0], MDWeights[1]); 2849 } else 2850 PBI->setMetadata(LLVMContext::MD_prof, nullptr); 2851 } else { 2852 // Update PHI nodes in the common successors. 2853 for (unsigned i = 0, e = PHIs.size(); i != e; ++i) { 2854 ConstantInt *PBI_C = cast<ConstantInt>( 2855 PHIs[i]->getIncomingValueForBlock(PBI->getParent())); 2856 assert(PBI_C->getType()->isIntegerTy(1)); 2857 Instruction *MergedCond = nullptr; 2858 if (PBI->getSuccessor(0) == TrueDest) { 2859 // Create (PBI_Cond and PBI_C) or (!PBI_Cond and BI_Value) 2860 // PBI_C is true: PBI_Cond or (!PBI_Cond and BI_Value) 2861 // is false: !PBI_Cond and BI_Value 2862 Instruction *NotCond = cast<Instruction>( 2863 Builder.CreateNot(PBI->getCondition(), "not.cond")); 2864 MergedCond = cast<Instruction>( 2865 Builder.CreateBinOp(Instruction::And, NotCond, CondInPred, 2866 "and.cond")); 2867 if (PBI_C->isOne()) 2868 MergedCond = cast<Instruction>(Builder.CreateBinOp( 2869 Instruction::Or, PBI->getCondition(), MergedCond, "or.cond")); 2870 } else { 2871 // Create (PBI_Cond and BI_Value) or (!PBI_Cond and PBI_C) 2872 // PBI_C is true: (PBI_Cond and BI_Value) or (!PBI_Cond) 2873 // is false: PBI_Cond and BI_Value 2874 MergedCond = cast<Instruction>(Builder.CreateBinOp( 2875 Instruction::And, PBI->getCondition(), CondInPred, "and.cond")); 2876 if (PBI_C->isOne()) { 2877 Instruction *NotCond = cast<Instruction>( 2878 Builder.CreateNot(PBI->getCondition(), "not.cond")); 2879 MergedCond = cast<Instruction>(Builder.CreateBinOp( 2880 Instruction::Or, NotCond, MergedCond, "or.cond")); 2881 } 2882 } 2883 // Update PHI Node. 2884 PHIs[i]->setIncomingValueForBlock(PBI->getParent(), MergedCond); 2885 } 2886 2887 // PBI is changed to branch to TrueDest below. Remove itself from 2888 // potential phis from all other successors. 2889 if (MSSAU) 2890 MSSAU->changeCondBranchToUnconditionalTo(PBI, TrueDest); 2891 2892 // Change PBI from Conditional to Unconditional. 2893 BranchInst *New_PBI = BranchInst::Create(TrueDest, PBI); 2894 EraseTerminatorAndDCECond(PBI, MSSAU); 2895 PBI = New_PBI; 2896 } 2897 2898 // If BI was a loop latch, it may have had associated loop metadata. 2899 // We need to copy it to the new latch, that is, PBI. 2900 if (MDNode *LoopMD = BI->getMetadata(LLVMContext::MD_loop)) 2901 PBI->setMetadata(LLVMContext::MD_loop, LoopMD); 2902 2903 // TODO: If BB is reachable from all paths through PredBlock, then we 2904 // could replace PBI's branch probabilities with BI's. 2905 2906 // Copy any debug value intrinsics into the end of PredBlock. 2907 for (Instruction &I : *BB) { 2908 if (isa<DbgInfoIntrinsic>(I)) { 2909 Instruction *NewI = I.clone(); 2910 RemapInstruction(NewI, VMap, 2911 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 2912 NewI->insertBefore(PBI); 2913 } 2914 } 2915 2916 return true; 2917 } 2918 return false; 2919 } 2920 2921 // If there is only one store in BB1 and BB2, return it, otherwise return 2922 // nullptr. 2923 static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) { 2924 StoreInst *S = nullptr; 2925 for (auto *BB : {BB1, BB2}) { 2926 if (!BB) 2927 continue; 2928 for (auto &I : *BB) 2929 if (auto *SI = dyn_cast<StoreInst>(&I)) { 2930 if (S) 2931 // Multiple stores seen. 2932 return nullptr; 2933 else 2934 S = SI; 2935 } 2936 } 2937 return S; 2938 } 2939 2940 static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB, 2941 Value *AlternativeV = nullptr) { 2942 // PHI is going to be a PHI node that allows the value V that is defined in 2943 // BB to be referenced in BB's only successor. 2944 // 2945 // If AlternativeV is nullptr, the only value we care about in PHI is V. It 2946 // doesn't matter to us what the other operand is (it'll never get used). We 2947 // could just create a new PHI with an undef incoming value, but that could 2948 // increase register pressure if EarlyCSE/InstCombine can't fold it with some 2949 // other PHI. So here we directly look for some PHI in BB's successor with V 2950 // as an incoming operand. If we find one, we use it, else we create a new 2951 // one. 2952 // 2953 // If AlternativeV is not nullptr, we care about both incoming values in PHI. 2954 // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV] 2955 // where OtherBB is the single other predecessor of BB's only successor. 2956 PHINode *PHI = nullptr; 2957 BasicBlock *Succ = BB->getSingleSuccessor(); 2958 2959 for (auto I = Succ->begin(); isa<PHINode>(I); ++I) 2960 if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) { 2961 PHI = cast<PHINode>(I); 2962 if (!AlternativeV) 2963 break; 2964 2965 assert(Succ->hasNPredecessors(2)); 2966 auto PredI = pred_begin(Succ); 2967 BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI; 2968 if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV) 2969 break; 2970 PHI = nullptr; 2971 } 2972 if (PHI) 2973 return PHI; 2974 2975 // If V is not an instruction defined in BB, just return it. 2976 if (!AlternativeV && 2977 (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB)) 2978 return V; 2979 2980 PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge", &Succ->front()); 2981 PHI->addIncoming(V, BB); 2982 for (BasicBlock *PredBB : predecessors(Succ)) 2983 if (PredBB != BB) 2984 PHI->addIncoming( 2985 AlternativeV ? AlternativeV : UndefValue::get(V->getType()), PredBB); 2986 return PHI; 2987 } 2988 2989 static bool mergeConditionalStoreToAddress(BasicBlock *PTB, BasicBlock *PFB, 2990 BasicBlock *QTB, BasicBlock *QFB, 2991 BasicBlock *PostBB, Value *Address, 2992 bool InvertPCond, bool InvertQCond, 2993 const DataLayout &DL, 2994 const TargetTransformInfo &TTI) { 2995 // For every pointer, there must be exactly two stores, one coming from 2996 // PTB or PFB, and the other from QTB or QFB. We don't support more than one 2997 // store (to any address) in PTB,PFB or QTB,QFB. 2998 // FIXME: We could relax this restriction with a bit more work and performance 2999 // testing. 3000 StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB); 3001 StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB); 3002 if (!PStore || !QStore) 3003 return false; 3004 3005 // Now check the stores are compatible. 3006 if (!QStore->isUnordered() || !PStore->isUnordered()) 3007 return false; 3008 3009 // Check that sinking the store won't cause program behavior changes. Sinking 3010 // the store out of the Q blocks won't change any behavior as we're sinking 3011 // from a block to its unconditional successor. But we're moving a store from 3012 // the P blocks down through the middle block (QBI) and past both QFB and QTB. 3013 // So we need to check that there are no aliasing loads or stores in 3014 // QBI, QTB and QFB. We also need to check there are no conflicting memory 3015 // operations between PStore and the end of its parent block. 3016 // 3017 // The ideal way to do this is to query AliasAnalysis, but we don't 3018 // preserve AA currently so that is dangerous. Be super safe and just 3019 // check there are no other memory operations at all. 3020 for (auto &I : *QFB->getSinglePredecessor()) 3021 if (I.mayReadOrWriteMemory()) 3022 return false; 3023 for (auto &I : *QFB) 3024 if (&I != QStore && I.mayReadOrWriteMemory()) 3025 return false; 3026 if (QTB) 3027 for (auto &I : *QTB) 3028 if (&I != QStore && I.mayReadOrWriteMemory()) 3029 return false; 3030 for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end(); 3031 I != E; ++I) 3032 if (&*I != PStore && I->mayReadOrWriteMemory()) 3033 return false; 3034 3035 // If we're not in aggressive mode, we only optimize if we have some 3036 // confidence that by optimizing we'll allow P and/or Q to be if-converted. 3037 auto IsWorthwhile = [&](BasicBlock *BB, ArrayRef<StoreInst *> FreeStores) { 3038 if (!BB) 3039 return true; 3040 // Heuristic: if the block can be if-converted/phi-folded and the 3041 // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to 3042 // thread this store. 3043 int BudgetRemaining = 3044 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 3045 for (auto &I : BB->instructionsWithoutDebug()) { 3046 // Consider terminator instruction to be free. 3047 if (I.isTerminator()) 3048 continue; 3049 // If this is one the stores that we want to speculate out of this BB, 3050 // then don't count it's cost, consider it to be free. 3051 if (auto *S = dyn_cast<StoreInst>(&I)) 3052 if (llvm::find(FreeStores, S)) 3053 continue; 3054 // Else, we have a white-list of instructions that we are ak speculating. 3055 if (!isa<BinaryOperator>(I) && !isa<GetElementPtrInst>(I)) 3056 return false; // Not in white-list - not worthwhile folding. 3057 // And finally, if this is a non-free instruction that we are okay 3058 // speculating, ensure that we consider the speculation budget. 3059 BudgetRemaining -= TTI.getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency); 3060 if (BudgetRemaining < 0) 3061 return false; // Eagerly refuse to fold as soon as we're out of budget. 3062 } 3063 assert(BudgetRemaining >= 0 && 3064 "When we run out of budget we will eagerly return from within the " 3065 "per-instruction loop."); 3066 return true; 3067 }; 3068 3069 const SmallVector<StoreInst *, 2> FreeStores = {PStore, QStore}; 3070 if (!MergeCondStoresAggressively && 3071 (!IsWorthwhile(PTB, FreeStores) || !IsWorthwhile(PFB, FreeStores) || 3072 !IsWorthwhile(QTB, FreeStores) || !IsWorthwhile(QFB, FreeStores))) 3073 return false; 3074 3075 // If PostBB has more than two predecessors, we need to split it so we can 3076 // sink the store. 3077 if (std::next(pred_begin(PostBB), 2) != pred_end(PostBB)) { 3078 // We know that QFB's only successor is PostBB. And QFB has a single 3079 // predecessor. If QTB exists, then its only successor is also PostBB. 3080 // If QTB does not exist, then QFB's only predecessor has a conditional 3081 // branch to QFB and PostBB. 3082 BasicBlock *TruePred = QTB ? QTB : QFB->getSinglePredecessor(); 3083 BasicBlock *NewBB = SplitBlockPredecessors(PostBB, { QFB, TruePred}, 3084 "condstore.split"); 3085 if (!NewBB) 3086 return false; 3087 PostBB = NewBB; 3088 } 3089 3090 // OK, we're going to sink the stores to PostBB. The store has to be 3091 // conditional though, so first create the predicate. 3092 Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator()) 3093 ->getCondition(); 3094 Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator()) 3095 ->getCondition(); 3096 3097 Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(), 3098 PStore->getParent()); 3099 Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(), 3100 QStore->getParent(), PPHI); 3101 3102 IRBuilder<> QB(&*PostBB->getFirstInsertionPt()); 3103 3104 Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond); 3105 Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond); 3106 3107 if (InvertPCond) 3108 PPred = QB.CreateNot(PPred); 3109 if (InvertQCond) 3110 QPred = QB.CreateNot(QPred); 3111 Value *CombinedPred = QB.CreateOr(PPred, QPred); 3112 3113 auto *T = 3114 SplitBlockAndInsertIfThen(CombinedPred, &*QB.GetInsertPoint(), false); 3115 QB.SetInsertPoint(T); 3116 StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address)); 3117 AAMDNodes AAMD; 3118 PStore->getAAMetadata(AAMD, /*Merge=*/false); 3119 PStore->getAAMetadata(AAMD, /*Merge=*/true); 3120 SI->setAAMetadata(AAMD); 3121 unsigned PAlignment = PStore->getAlignment(); 3122 unsigned QAlignment = QStore->getAlignment(); 3123 unsigned TypeAlignment = 3124 DL.getABITypeAlignment(SI->getValueOperand()->getType()); 3125 unsigned MinAlignment; 3126 unsigned MaxAlignment; 3127 std::tie(MinAlignment, MaxAlignment) = std::minmax(PAlignment, QAlignment); 3128 // Choose the minimum alignment. If we could prove both stores execute, we 3129 // could use biggest one. In this case, though, we only know that one of the 3130 // stores executes. And we don't know it's safe to take the alignment from a 3131 // store that doesn't execute. 3132 if (MinAlignment != 0) { 3133 // Choose the minimum of all non-zero alignments. 3134 SI->setAlignment(Align(MinAlignment)); 3135 } else if (MaxAlignment != 0) { 3136 // Choose the minimal alignment between the non-zero alignment and the ABI 3137 // default alignment for the type of the stored value. 3138 SI->setAlignment(Align(std::min(MaxAlignment, TypeAlignment))); 3139 } else { 3140 // If both alignments are zero, use ABI default alignment for the type of 3141 // the stored value. 3142 SI->setAlignment(Align(TypeAlignment)); 3143 } 3144 3145 QStore->eraseFromParent(); 3146 PStore->eraseFromParent(); 3147 3148 return true; 3149 } 3150 3151 static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI, 3152 const DataLayout &DL, 3153 const TargetTransformInfo &TTI) { 3154 // The intention here is to find diamonds or triangles (see below) where each 3155 // conditional block contains a store to the same address. Both of these 3156 // stores are conditional, so they can't be unconditionally sunk. But it may 3157 // be profitable to speculatively sink the stores into one merged store at the 3158 // end, and predicate the merged store on the union of the two conditions of 3159 // PBI and QBI. 3160 // 3161 // This can reduce the number of stores executed if both of the conditions are 3162 // true, and can allow the blocks to become small enough to be if-converted. 3163 // This optimization will also chain, so that ladders of test-and-set 3164 // sequences can be if-converted away. 3165 // 3166 // We only deal with simple diamonds or triangles: 3167 // 3168 // PBI or PBI or a combination of the two 3169 // / \ | \ 3170 // PTB PFB | PFB 3171 // \ / | / 3172 // QBI QBI 3173 // / \ | \ 3174 // QTB QFB | QFB 3175 // \ / | / 3176 // PostBB PostBB 3177 // 3178 // We model triangles as a type of diamond with a nullptr "true" block. 3179 // Triangles are canonicalized so that the fallthrough edge is represented by 3180 // a true condition, as in the diagram above. 3181 BasicBlock *PTB = PBI->getSuccessor(0); 3182 BasicBlock *PFB = PBI->getSuccessor(1); 3183 BasicBlock *QTB = QBI->getSuccessor(0); 3184 BasicBlock *QFB = QBI->getSuccessor(1); 3185 BasicBlock *PostBB = QFB->getSingleSuccessor(); 3186 3187 // Make sure we have a good guess for PostBB. If QTB's only successor is 3188 // QFB, then QFB is a better PostBB. 3189 if (QTB->getSingleSuccessor() == QFB) 3190 PostBB = QFB; 3191 3192 // If we couldn't find a good PostBB, stop. 3193 if (!PostBB) 3194 return false; 3195 3196 bool InvertPCond = false, InvertQCond = false; 3197 // Canonicalize fallthroughs to the true branches. 3198 if (PFB == QBI->getParent()) { 3199 std::swap(PFB, PTB); 3200 InvertPCond = true; 3201 } 3202 if (QFB == PostBB) { 3203 std::swap(QFB, QTB); 3204 InvertQCond = true; 3205 } 3206 3207 // From this point on we can assume PTB or QTB may be fallthroughs but PFB 3208 // and QFB may not. Model fallthroughs as a nullptr block. 3209 if (PTB == QBI->getParent()) 3210 PTB = nullptr; 3211 if (QTB == PostBB) 3212 QTB = nullptr; 3213 3214 // Legality bailouts. We must have at least the non-fallthrough blocks and 3215 // the post-dominating block, and the non-fallthroughs must only have one 3216 // predecessor. 3217 auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) { 3218 return BB->getSinglePredecessor() == P && BB->getSingleSuccessor() == S; 3219 }; 3220 if (!HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) || 3221 !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB)) 3222 return false; 3223 if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) || 3224 (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB))) 3225 return false; 3226 if (!QBI->getParent()->hasNUses(2)) 3227 return false; 3228 3229 // OK, this is a sequence of two diamonds or triangles. 3230 // Check if there are stores in PTB or PFB that are repeated in QTB or QFB. 3231 SmallPtrSet<Value *, 4> PStoreAddresses, QStoreAddresses; 3232 for (auto *BB : {PTB, PFB}) { 3233 if (!BB) 3234 continue; 3235 for (auto &I : *BB) 3236 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) 3237 PStoreAddresses.insert(SI->getPointerOperand()); 3238 } 3239 for (auto *BB : {QTB, QFB}) { 3240 if (!BB) 3241 continue; 3242 for (auto &I : *BB) 3243 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) 3244 QStoreAddresses.insert(SI->getPointerOperand()); 3245 } 3246 3247 set_intersect(PStoreAddresses, QStoreAddresses); 3248 // set_intersect mutates PStoreAddresses in place. Rename it here to make it 3249 // clear what it contains. 3250 auto &CommonAddresses = PStoreAddresses; 3251 3252 bool Changed = false; 3253 for (auto *Address : CommonAddresses) 3254 Changed |= mergeConditionalStoreToAddress( 3255 PTB, PFB, QTB, QFB, PostBB, Address, InvertPCond, InvertQCond, DL, TTI); 3256 return Changed; 3257 } 3258 3259 3260 /// If the previous block ended with a widenable branch, determine if reusing 3261 /// the target block is profitable and legal. This will have the effect of 3262 /// "widening" PBI, but doesn't require us to reason about hosting safety. 3263 static bool tryWidenCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI) { 3264 // TODO: This can be generalized in two important ways: 3265 // 1) We can allow phi nodes in IfFalseBB and simply reuse all the input 3266 // values from the PBI edge. 3267 // 2) We can sink side effecting instructions into BI's fallthrough 3268 // successor provided they doesn't contribute to computation of 3269 // BI's condition. 3270 Value *CondWB, *WC; 3271 BasicBlock *IfTrueBB, *IfFalseBB; 3272 if (!parseWidenableBranch(PBI, CondWB, WC, IfTrueBB, IfFalseBB) || 3273 IfTrueBB != BI->getParent() || !BI->getParent()->getSinglePredecessor()) 3274 return false; 3275 if (!IfFalseBB->phis().empty()) 3276 return false; // TODO 3277 // Use lambda to lazily compute expensive condition after cheap ones. 3278 auto NoSideEffects = [](BasicBlock &BB) { 3279 return !llvm::any_of(BB, [](const Instruction &I) { 3280 return I.mayWriteToMemory() || I.mayHaveSideEffects(); 3281 }); 3282 }; 3283 if (BI->getSuccessor(1) != IfFalseBB && // no inf looping 3284 BI->getSuccessor(1)->getTerminatingDeoptimizeCall() && // profitability 3285 NoSideEffects(*BI->getParent())) { 3286 BI->getSuccessor(1)->removePredecessor(BI->getParent()); 3287 BI->setSuccessor(1, IfFalseBB); 3288 return true; 3289 } 3290 if (BI->getSuccessor(0) != IfFalseBB && // no inf looping 3291 BI->getSuccessor(0)->getTerminatingDeoptimizeCall() && // profitability 3292 NoSideEffects(*BI->getParent())) { 3293 BI->getSuccessor(0)->removePredecessor(BI->getParent()); 3294 BI->setSuccessor(0, IfFalseBB); 3295 return true; 3296 } 3297 return false; 3298 } 3299 3300 /// If we have a conditional branch as a predecessor of another block, 3301 /// this function tries to simplify it. We know 3302 /// that PBI and BI are both conditional branches, and BI is in one of the 3303 /// successor blocks of PBI - PBI branches to BI. 3304 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI, 3305 const DataLayout &DL, 3306 const TargetTransformInfo &TTI) { 3307 assert(PBI->isConditional() && BI->isConditional()); 3308 BasicBlock *BB = BI->getParent(); 3309 3310 // If this block ends with a branch instruction, and if there is a 3311 // predecessor that ends on a branch of the same condition, make 3312 // this conditional branch redundant. 3313 if (PBI->getCondition() == BI->getCondition() && 3314 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 3315 // Okay, the outcome of this conditional branch is statically 3316 // knowable. If this block had a single pred, handle specially. 3317 if (BB->getSinglePredecessor()) { 3318 // Turn this into a branch on constant. 3319 bool CondIsTrue = PBI->getSuccessor(0) == BB; 3320 BI->setCondition( 3321 ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue)); 3322 return true; // Nuke the branch on constant. 3323 } 3324 3325 // Otherwise, if there are multiple predecessors, insert a PHI that merges 3326 // in the constant and simplify the block result. Subsequent passes of 3327 // simplifycfg will thread the block. 3328 if (BlockIsSimpleEnoughToThreadThrough(BB)) { 3329 pred_iterator PB = pred_begin(BB), PE = pred_end(BB); 3330 PHINode *NewPN = PHINode::Create( 3331 Type::getInt1Ty(BB->getContext()), std::distance(PB, PE), 3332 BI->getCondition()->getName() + ".pr", &BB->front()); 3333 // Okay, we're going to insert the PHI node. Since PBI is not the only 3334 // predecessor, compute the PHI'd conditional value for all of the preds. 3335 // Any predecessor where the condition is not computable we keep symbolic. 3336 for (pred_iterator PI = PB; PI != PE; ++PI) { 3337 BasicBlock *P = *PI; 3338 if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) && PBI != BI && 3339 PBI->isConditional() && PBI->getCondition() == BI->getCondition() && 3340 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 3341 bool CondIsTrue = PBI->getSuccessor(0) == BB; 3342 NewPN->addIncoming( 3343 ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue), 3344 P); 3345 } else { 3346 NewPN->addIncoming(BI->getCondition(), P); 3347 } 3348 } 3349 3350 BI->setCondition(NewPN); 3351 return true; 3352 } 3353 } 3354 3355 // If the previous block ended with a widenable branch, determine if reusing 3356 // the target block is profitable and legal. This will have the effect of 3357 // "widening" PBI, but doesn't require us to reason about hosting safety. 3358 if (tryWidenCondBranchToCondBranch(PBI, BI)) 3359 return true; 3360 3361 if (auto *CE = dyn_cast<ConstantExpr>(BI->getCondition())) 3362 if (CE->canTrap()) 3363 return false; 3364 3365 // If both branches are conditional and both contain stores to the same 3366 // address, remove the stores from the conditionals and create a conditional 3367 // merged store at the end. 3368 if (MergeCondStores && mergeConditionalStores(PBI, BI, DL, TTI)) 3369 return true; 3370 3371 // If this is a conditional branch in an empty block, and if any 3372 // predecessors are a conditional branch to one of our destinations, 3373 // fold the conditions into logical ops and one cond br. 3374 3375 // Ignore dbg intrinsics. 3376 if (&*BB->instructionsWithoutDebug().begin() != BI) 3377 return false; 3378 3379 int PBIOp, BIOp; 3380 if (PBI->getSuccessor(0) == BI->getSuccessor(0)) { 3381 PBIOp = 0; 3382 BIOp = 0; 3383 } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) { 3384 PBIOp = 0; 3385 BIOp = 1; 3386 } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) { 3387 PBIOp = 1; 3388 BIOp = 0; 3389 } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) { 3390 PBIOp = 1; 3391 BIOp = 1; 3392 } else { 3393 return false; 3394 } 3395 3396 // Check to make sure that the other destination of this branch 3397 // isn't BB itself. If so, this is an infinite loop that will 3398 // keep getting unwound. 3399 if (PBI->getSuccessor(PBIOp) == BB) 3400 return false; 3401 3402 // Do not perform this transformation if it would require 3403 // insertion of a large number of select instructions. For targets 3404 // without predication/cmovs, this is a big pessimization. 3405 3406 // Also do not perform this transformation if any phi node in the common 3407 // destination block can trap when reached by BB or PBB (PR17073). In that 3408 // case, it would be unsafe to hoist the operation into a select instruction. 3409 3410 BasicBlock *CommonDest = PBI->getSuccessor(PBIOp); 3411 unsigned NumPhis = 0; 3412 for (BasicBlock::iterator II = CommonDest->begin(); isa<PHINode>(II); 3413 ++II, ++NumPhis) { 3414 if (NumPhis > 2) // Disable this xform. 3415 return false; 3416 3417 PHINode *PN = cast<PHINode>(II); 3418 Value *BIV = PN->getIncomingValueForBlock(BB); 3419 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BIV)) 3420 if (CE->canTrap()) 3421 return false; 3422 3423 unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent()); 3424 Value *PBIV = PN->getIncomingValue(PBBIdx); 3425 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(PBIV)) 3426 if (CE->canTrap()) 3427 return false; 3428 } 3429 3430 // Finally, if everything is ok, fold the branches to logical ops. 3431 BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1); 3432 3433 LLVM_DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent() 3434 << "AND: " << *BI->getParent()); 3435 3436 // If OtherDest *is* BB, then BB is a basic block with a single conditional 3437 // branch in it, where one edge (OtherDest) goes back to itself but the other 3438 // exits. We don't *know* that the program avoids the infinite loop 3439 // (even though that seems likely). If we do this xform naively, we'll end up 3440 // recursively unpeeling the loop. Since we know that (after the xform is 3441 // done) that the block *is* infinite if reached, we just make it an obviously 3442 // infinite loop with no cond branch. 3443 if (OtherDest == BB) { 3444 // Insert it at the end of the function, because it's either code, 3445 // or it won't matter if it's hot. :) 3446 BasicBlock *InfLoopBlock = 3447 BasicBlock::Create(BB->getContext(), "infloop", BB->getParent()); 3448 BranchInst::Create(InfLoopBlock, InfLoopBlock); 3449 OtherDest = InfLoopBlock; 3450 } 3451 3452 LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent()); 3453 3454 // BI may have other predecessors. Because of this, we leave 3455 // it alone, but modify PBI. 3456 3457 // Make sure we get to CommonDest on True&True directions. 3458 Value *PBICond = PBI->getCondition(); 3459 IRBuilder<NoFolder> Builder(PBI); 3460 if (PBIOp) 3461 PBICond = Builder.CreateNot(PBICond, PBICond->getName() + ".not"); 3462 3463 Value *BICond = BI->getCondition(); 3464 if (BIOp) 3465 BICond = Builder.CreateNot(BICond, BICond->getName() + ".not"); 3466 3467 // Merge the conditions. 3468 Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge"); 3469 3470 // Modify PBI to branch on the new condition to the new dests. 3471 PBI->setCondition(Cond); 3472 PBI->setSuccessor(0, CommonDest); 3473 PBI->setSuccessor(1, OtherDest); 3474 3475 // Update branch weight for PBI. 3476 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 3477 uint64_t PredCommon, PredOther, SuccCommon, SuccOther; 3478 bool HasWeights = 3479 extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight, 3480 SuccTrueWeight, SuccFalseWeight); 3481 if (HasWeights) { 3482 PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight; 3483 PredOther = PBIOp ? PredTrueWeight : PredFalseWeight; 3484 SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight; 3485 SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight; 3486 // The weight to CommonDest should be PredCommon * SuccTotal + 3487 // PredOther * SuccCommon. 3488 // The weight to OtherDest should be PredOther * SuccOther. 3489 uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) + 3490 PredOther * SuccCommon, 3491 PredOther * SuccOther}; 3492 // Halve the weights if any of them cannot fit in an uint32_t 3493 FitWeights(NewWeights); 3494 3495 setBranchWeights(PBI, NewWeights[0], NewWeights[1]); 3496 } 3497 3498 // OtherDest may have phi nodes. If so, add an entry from PBI's 3499 // block that are identical to the entries for BI's block. 3500 AddPredecessorToBlock(OtherDest, PBI->getParent(), BB); 3501 3502 // We know that the CommonDest already had an edge from PBI to 3503 // it. If it has PHIs though, the PHIs may have different 3504 // entries for BB and PBI's BB. If so, insert a select to make 3505 // them agree. 3506 for (PHINode &PN : CommonDest->phis()) { 3507 Value *BIV = PN.getIncomingValueForBlock(BB); 3508 unsigned PBBIdx = PN.getBasicBlockIndex(PBI->getParent()); 3509 Value *PBIV = PN.getIncomingValue(PBBIdx); 3510 if (BIV != PBIV) { 3511 // Insert a select in PBI to pick the right value. 3512 SelectInst *NV = cast<SelectInst>( 3513 Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName() + ".mux")); 3514 PN.setIncomingValue(PBBIdx, NV); 3515 // Although the select has the same condition as PBI, the original branch 3516 // weights for PBI do not apply to the new select because the select's 3517 // 'logical' edges are incoming edges of the phi that is eliminated, not 3518 // the outgoing edges of PBI. 3519 if (HasWeights) { 3520 uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight; 3521 uint64_t PredOther = PBIOp ? PredTrueWeight : PredFalseWeight; 3522 uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight; 3523 uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight; 3524 // The weight to PredCommonDest should be PredCommon * SuccTotal. 3525 // The weight to PredOtherDest should be PredOther * SuccCommon. 3526 uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther), 3527 PredOther * SuccCommon}; 3528 3529 FitWeights(NewWeights); 3530 3531 setBranchWeights(NV, NewWeights[0], NewWeights[1]); 3532 } 3533 } 3534 } 3535 3536 LLVM_DEBUG(dbgs() << "INTO: " << *PBI->getParent()); 3537 LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent()); 3538 3539 // This basic block is probably dead. We know it has at least 3540 // one fewer predecessor. 3541 return true; 3542 } 3543 3544 // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is 3545 // true or to FalseBB if Cond is false. 3546 // Takes care of updating the successors and removing the old terminator. 3547 // Also makes sure not to introduce new successors by assuming that edges to 3548 // non-successor TrueBBs and FalseBBs aren't reachable. 3549 bool SimplifyCFGOpt::SimplifyTerminatorOnSelect(Instruction *OldTerm, 3550 Value *Cond, BasicBlock *TrueBB, 3551 BasicBlock *FalseBB, 3552 uint32_t TrueWeight, 3553 uint32_t FalseWeight) { 3554 // Remove any superfluous successor edges from the CFG. 3555 // First, figure out which successors to preserve. 3556 // If TrueBB and FalseBB are equal, only try to preserve one copy of that 3557 // successor. 3558 BasicBlock *KeepEdge1 = TrueBB; 3559 BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr; 3560 3561 // Then remove the rest. 3562 for (BasicBlock *Succ : successors(OldTerm)) { 3563 // Make sure only to keep exactly one copy of each edge. 3564 if (Succ == KeepEdge1) 3565 KeepEdge1 = nullptr; 3566 else if (Succ == KeepEdge2) 3567 KeepEdge2 = nullptr; 3568 else 3569 Succ->removePredecessor(OldTerm->getParent(), 3570 /*KeepOneInputPHIs=*/true); 3571 } 3572 3573 IRBuilder<> Builder(OldTerm); 3574 Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc()); 3575 3576 // Insert an appropriate new terminator. 3577 if (!KeepEdge1 && !KeepEdge2) { 3578 if (TrueBB == FalseBB) 3579 // We were only looking for one successor, and it was present. 3580 // Create an unconditional branch to it. 3581 Builder.CreateBr(TrueBB); 3582 else { 3583 // We found both of the successors we were looking for. 3584 // Create a conditional branch sharing the condition of the select. 3585 BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB); 3586 if (TrueWeight != FalseWeight) 3587 setBranchWeights(NewBI, TrueWeight, FalseWeight); 3588 } 3589 } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) { 3590 // Neither of the selected blocks were successors, so this 3591 // terminator must be unreachable. 3592 new UnreachableInst(OldTerm->getContext(), OldTerm); 3593 } else { 3594 // One of the selected values was a successor, but the other wasn't. 3595 // Insert an unconditional branch to the one that was found; 3596 // the edge to the one that wasn't must be unreachable. 3597 if (!KeepEdge1) 3598 // Only TrueBB was found. 3599 Builder.CreateBr(TrueBB); 3600 else 3601 // Only FalseBB was found. 3602 Builder.CreateBr(FalseBB); 3603 } 3604 3605 EraseTerminatorAndDCECond(OldTerm); 3606 return true; 3607 } 3608 3609 // Replaces 3610 // (switch (select cond, X, Y)) on constant X, Y 3611 // with a branch - conditional if X and Y lead to distinct BBs, 3612 // unconditional otherwise. 3613 bool SimplifyCFGOpt::SimplifySwitchOnSelect(SwitchInst *SI, 3614 SelectInst *Select) { 3615 // Check for constant integer values in the select. 3616 ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue()); 3617 ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue()); 3618 if (!TrueVal || !FalseVal) 3619 return false; 3620 3621 // Find the relevant condition and destinations. 3622 Value *Condition = Select->getCondition(); 3623 BasicBlock *TrueBB = SI->findCaseValue(TrueVal)->getCaseSuccessor(); 3624 BasicBlock *FalseBB = SI->findCaseValue(FalseVal)->getCaseSuccessor(); 3625 3626 // Get weight for TrueBB and FalseBB. 3627 uint32_t TrueWeight = 0, FalseWeight = 0; 3628 SmallVector<uint64_t, 8> Weights; 3629 bool HasWeights = HasBranchWeights(SI); 3630 if (HasWeights) { 3631 GetBranchWeights(SI, Weights); 3632 if (Weights.size() == 1 + SI->getNumCases()) { 3633 TrueWeight = 3634 (uint32_t)Weights[SI->findCaseValue(TrueVal)->getSuccessorIndex()]; 3635 FalseWeight = 3636 (uint32_t)Weights[SI->findCaseValue(FalseVal)->getSuccessorIndex()]; 3637 } 3638 } 3639 3640 // Perform the actual simplification. 3641 return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, TrueWeight, 3642 FalseWeight); 3643 } 3644 3645 // Replaces 3646 // (indirectbr (select cond, blockaddress(@fn, BlockA), 3647 // blockaddress(@fn, BlockB))) 3648 // with 3649 // (br cond, BlockA, BlockB). 3650 bool SimplifyCFGOpt::SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, 3651 SelectInst *SI) { 3652 // Check that both operands of the select are block addresses. 3653 BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue()); 3654 BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue()); 3655 if (!TBA || !FBA) 3656 return false; 3657 3658 // Extract the actual blocks. 3659 BasicBlock *TrueBB = TBA->getBasicBlock(); 3660 BasicBlock *FalseBB = FBA->getBasicBlock(); 3661 3662 // Perform the actual simplification. 3663 return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 0, 3664 0); 3665 } 3666 3667 /// This is called when we find an icmp instruction 3668 /// (a seteq/setne with a constant) as the only instruction in a 3669 /// block that ends with an uncond branch. We are looking for a very specific 3670 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified. In 3671 /// this case, we merge the first two "or's of icmp" into a switch, but then the 3672 /// default value goes to an uncond block with a seteq in it, we get something 3673 /// like: 3674 /// 3675 /// switch i8 %A, label %DEFAULT [ i8 1, label %end i8 2, label %end ] 3676 /// DEFAULT: 3677 /// %tmp = icmp eq i8 %A, 92 3678 /// br label %end 3679 /// end: 3680 /// ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ] 3681 /// 3682 /// We prefer to split the edge to 'end' so that there is a true/false entry to 3683 /// the PHI, merging the third icmp into the switch. 3684 bool SimplifyCFGOpt::tryToSimplifyUncondBranchWithICmpInIt( 3685 ICmpInst *ICI, IRBuilder<> &Builder) { 3686 BasicBlock *BB = ICI->getParent(); 3687 3688 // If the block has any PHIs in it or the icmp has multiple uses, it is too 3689 // complex. 3690 if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse()) 3691 return false; 3692 3693 Value *V = ICI->getOperand(0); 3694 ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1)); 3695 3696 // The pattern we're looking for is where our only predecessor is a switch on 3697 // 'V' and this block is the default case for the switch. In this case we can 3698 // fold the compared value into the switch to simplify things. 3699 BasicBlock *Pred = BB->getSinglePredecessor(); 3700 if (!Pred || !isa<SwitchInst>(Pred->getTerminator())) 3701 return false; 3702 3703 SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator()); 3704 if (SI->getCondition() != V) 3705 return false; 3706 3707 // If BB is reachable on a non-default case, then we simply know the value of 3708 // V in this block. Substitute it and constant fold the icmp instruction 3709 // away. 3710 if (SI->getDefaultDest() != BB) { 3711 ConstantInt *VVal = SI->findCaseDest(BB); 3712 assert(VVal && "Should have a unique destination value"); 3713 ICI->setOperand(0, VVal); 3714 3715 if (Value *V = SimplifyInstruction(ICI, {DL, ICI})) { 3716 ICI->replaceAllUsesWith(V); 3717 ICI->eraseFromParent(); 3718 } 3719 // BB is now empty, so it is likely to simplify away. 3720 return requestResimplify(); 3721 } 3722 3723 // Ok, the block is reachable from the default dest. If the constant we're 3724 // comparing exists in one of the other edges, then we can constant fold ICI 3725 // and zap it. 3726 if (SI->findCaseValue(Cst) != SI->case_default()) { 3727 Value *V; 3728 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 3729 V = ConstantInt::getFalse(BB->getContext()); 3730 else 3731 V = ConstantInt::getTrue(BB->getContext()); 3732 3733 ICI->replaceAllUsesWith(V); 3734 ICI->eraseFromParent(); 3735 // BB is now empty, so it is likely to simplify away. 3736 return requestResimplify(); 3737 } 3738 3739 // The use of the icmp has to be in the 'end' block, by the only PHI node in 3740 // the block. 3741 BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0); 3742 PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back()); 3743 if (PHIUse == nullptr || PHIUse != &SuccBlock->front() || 3744 isa<PHINode>(++BasicBlock::iterator(PHIUse))) 3745 return false; 3746 3747 // If the icmp is a SETEQ, then the default dest gets false, the new edge gets 3748 // true in the PHI. 3749 Constant *DefaultCst = ConstantInt::getTrue(BB->getContext()); 3750 Constant *NewCst = ConstantInt::getFalse(BB->getContext()); 3751 3752 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 3753 std::swap(DefaultCst, NewCst); 3754 3755 // Replace ICI (which is used by the PHI for the default value) with true or 3756 // false depending on if it is EQ or NE. 3757 ICI->replaceAllUsesWith(DefaultCst); 3758 ICI->eraseFromParent(); 3759 3760 // Okay, the switch goes to this block on a default value. Add an edge from 3761 // the switch to the merge point on the compared value. 3762 BasicBlock *NewBB = 3763 BasicBlock::Create(BB->getContext(), "switch.edge", BB->getParent(), BB); 3764 { 3765 SwitchInstProfUpdateWrapper SIW(*SI); 3766 auto W0 = SIW.getSuccessorWeight(0); 3767 SwitchInstProfUpdateWrapper::CaseWeightOpt NewW; 3768 if (W0) { 3769 NewW = ((uint64_t(*W0) + 1) >> 1); 3770 SIW.setSuccessorWeight(0, *NewW); 3771 } 3772 SIW.addCase(Cst, NewBB, NewW); 3773 } 3774 3775 // NewBB branches to the phi block, add the uncond branch and the phi entry. 3776 Builder.SetInsertPoint(NewBB); 3777 Builder.SetCurrentDebugLocation(SI->getDebugLoc()); 3778 Builder.CreateBr(SuccBlock); 3779 PHIUse->addIncoming(NewCst, NewBB); 3780 return true; 3781 } 3782 3783 /// The specified branch is a conditional branch. 3784 /// Check to see if it is branching on an or/and chain of icmp instructions, and 3785 /// fold it into a switch instruction if so. 3786 bool SimplifyCFGOpt::SimplifyBranchOnICmpChain(BranchInst *BI, 3787 IRBuilder<> &Builder, 3788 const DataLayout &DL) { 3789 Instruction *Cond = dyn_cast<Instruction>(BI->getCondition()); 3790 if (!Cond) 3791 return false; 3792 3793 // Change br (X == 0 | X == 1), T, F into a switch instruction. 3794 // If this is a bunch of seteq's or'd together, or if it's a bunch of 3795 // 'setne's and'ed together, collect them. 3796 3797 // Try to gather values from a chain of and/or to be turned into a switch 3798 ConstantComparesGatherer ConstantCompare(Cond, DL); 3799 // Unpack the result 3800 SmallVectorImpl<ConstantInt *> &Values = ConstantCompare.Vals; 3801 Value *CompVal = ConstantCompare.CompValue; 3802 unsigned UsedICmps = ConstantCompare.UsedICmps; 3803 Value *ExtraCase = ConstantCompare.Extra; 3804 3805 // If we didn't have a multiply compared value, fail. 3806 if (!CompVal) 3807 return false; 3808 3809 // Avoid turning single icmps into a switch. 3810 if (UsedICmps <= 1) 3811 return false; 3812 3813 bool TrueWhenEqual = (Cond->getOpcode() == Instruction::Or); 3814 3815 // There might be duplicate constants in the list, which the switch 3816 // instruction can't handle, remove them now. 3817 array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate); 3818 Values.erase(std::unique(Values.begin(), Values.end()), Values.end()); 3819 3820 // If Extra was used, we require at least two switch values to do the 3821 // transformation. A switch with one value is just a conditional branch. 3822 if (ExtraCase && Values.size() < 2) 3823 return false; 3824 3825 // TODO: Preserve branch weight metadata, similarly to how 3826 // FoldValueComparisonIntoPredecessors preserves it. 3827 3828 // Figure out which block is which destination. 3829 BasicBlock *DefaultBB = BI->getSuccessor(1); 3830 BasicBlock *EdgeBB = BI->getSuccessor(0); 3831 if (!TrueWhenEqual) 3832 std::swap(DefaultBB, EdgeBB); 3833 3834 BasicBlock *BB = BI->getParent(); 3835 3836 // MSAN does not like undefs as branch condition which can be introduced 3837 // with "explicit branch". 3838 if (ExtraCase && BB->getParent()->hasFnAttribute(Attribute::SanitizeMemory)) 3839 return false; 3840 3841 LLVM_DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size() 3842 << " cases into SWITCH. BB is:\n" 3843 << *BB); 3844 3845 // If there are any extra values that couldn't be folded into the switch 3846 // then we evaluate them with an explicit branch first. Split the block 3847 // right before the condbr to handle it. 3848 if (ExtraCase) { 3849 BasicBlock *NewBB = 3850 BB->splitBasicBlock(BI->getIterator(), "switch.early.test"); 3851 // Remove the uncond branch added to the old block. 3852 Instruction *OldTI = BB->getTerminator(); 3853 Builder.SetInsertPoint(OldTI); 3854 3855 if (TrueWhenEqual) 3856 Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB); 3857 else 3858 Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB); 3859 3860 OldTI->eraseFromParent(); 3861 3862 // If there are PHI nodes in EdgeBB, then we need to add a new entry to them 3863 // for the edge we just added. 3864 AddPredecessorToBlock(EdgeBB, BB, NewBB); 3865 3866 LLVM_DEBUG(dbgs() << " ** 'icmp' chain unhandled condition: " << *ExtraCase 3867 << "\nEXTRABB = " << *BB); 3868 BB = NewBB; 3869 } 3870 3871 Builder.SetInsertPoint(BI); 3872 // Convert pointer to int before we switch. 3873 if (CompVal->getType()->isPointerTy()) { 3874 CompVal = Builder.CreatePtrToInt( 3875 CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr"); 3876 } 3877 3878 // Create the new switch instruction now. 3879 SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size()); 3880 3881 // Add all of the 'cases' to the switch instruction. 3882 for (unsigned i = 0, e = Values.size(); i != e; ++i) 3883 New->addCase(Values[i], EdgeBB); 3884 3885 // We added edges from PI to the EdgeBB. As such, if there were any 3886 // PHI nodes in EdgeBB, they need entries to be added corresponding to 3887 // the number of edges added. 3888 for (BasicBlock::iterator BBI = EdgeBB->begin(); isa<PHINode>(BBI); ++BBI) { 3889 PHINode *PN = cast<PHINode>(BBI); 3890 Value *InVal = PN->getIncomingValueForBlock(BB); 3891 for (unsigned i = 0, e = Values.size() - 1; i != e; ++i) 3892 PN->addIncoming(InVal, BB); 3893 } 3894 3895 // Erase the old branch instruction. 3896 EraseTerminatorAndDCECond(BI); 3897 3898 LLVM_DEBUG(dbgs() << " ** 'icmp' chain result is:\n" << *BB << '\n'); 3899 return true; 3900 } 3901 3902 bool SimplifyCFGOpt::simplifyResume(ResumeInst *RI, IRBuilder<> &Builder) { 3903 if (isa<PHINode>(RI->getValue())) 3904 return simplifyCommonResume(RI); 3905 else if (isa<LandingPadInst>(RI->getParent()->getFirstNonPHI()) && 3906 RI->getValue() == RI->getParent()->getFirstNonPHI()) 3907 // The resume must unwind the exception that caused control to branch here. 3908 return simplifySingleResume(RI); 3909 3910 return false; 3911 } 3912 3913 // Simplify resume that is shared by several landing pads (phi of landing pad). 3914 bool SimplifyCFGOpt::simplifyCommonResume(ResumeInst *RI) { 3915 BasicBlock *BB = RI->getParent(); 3916 3917 // Check that there are no other instructions except for debug intrinsics 3918 // between the phi of landing pads (RI->getValue()) and resume instruction. 3919 BasicBlock::iterator I = cast<Instruction>(RI->getValue())->getIterator(), 3920 E = RI->getIterator(); 3921 while (++I != E) 3922 if (!isa<DbgInfoIntrinsic>(I)) 3923 return false; 3924 3925 SmallSetVector<BasicBlock *, 4> TrivialUnwindBlocks; 3926 auto *PhiLPInst = cast<PHINode>(RI->getValue()); 3927 3928 // Check incoming blocks to see if any of them are trivial. 3929 for (unsigned Idx = 0, End = PhiLPInst->getNumIncomingValues(); Idx != End; 3930 Idx++) { 3931 auto *IncomingBB = PhiLPInst->getIncomingBlock(Idx); 3932 auto *IncomingValue = PhiLPInst->getIncomingValue(Idx); 3933 3934 // If the block has other successors, we can not delete it because 3935 // it has other dependents. 3936 if (IncomingBB->getUniqueSuccessor() != BB) 3937 continue; 3938 3939 auto *LandingPad = dyn_cast<LandingPadInst>(IncomingBB->getFirstNonPHI()); 3940 // Not the landing pad that caused the control to branch here. 3941 if (IncomingValue != LandingPad) 3942 continue; 3943 3944 bool isTrivial = true; 3945 3946 I = IncomingBB->getFirstNonPHI()->getIterator(); 3947 E = IncomingBB->getTerminator()->getIterator(); 3948 while (++I != E) 3949 if (!isa<DbgInfoIntrinsic>(I)) { 3950 isTrivial = false; 3951 break; 3952 } 3953 3954 if (isTrivial) 3955 TrivialUnwindBlocks.insert(IncomingBB); 3956 } 3957 3958 // If no trivial unwind blocks, don't do any simplifications. 3959 if (TrivialUnwindBlocks.empty()) 3960 return false; 3961 3962 // Turn all invokes that unwind here into calls. 3963 for (auto *TrivialBB : TrivialUnwindBlocks) { 3964 // Blocks that will be simplified should be removed from the phi node. 3965 // Note there could be multiple edges to the resume block, and we need 3966 // to remove them all. 3967 while (PhiLPInst->getBasicBlockIndex(TrivialBB) != -1) 3968 BB->removePredecessor(TrivialBB, true); 3969 3970 for (pred_iterator PI = pred_begin(TrivialBB), PE = pred_end(TrivialBB); 3971 PI != PE;) { 3972 BasicBlock *Pred = *PI++; 3973 removeUnwindEdge(Pred); 3974 } 3975 3976 // In each SimplifyCFG run, only the current processed block can be erased. 3977 // Otherwise, it will break the iteration of SimplifyCFG pass. So instead 3978 // of erasing TrivialBB, we only remove the branch to the common resume 3979 // block so that we can later erase the resume block since it has no 3980 // predecessors. 3981 TrivialBB->getTerminator()->eraseFromParent(); 3982 new UnreachableInst(RI->getContext(), TrivialBB); 3983 } 3984 3985 // Delete the resume block if all its predecessors have been removed. 3986 if (pred_empty(BB)) 3987 BB->eraseFromParent(); 3988 3989 return !TrivialUnwindBlocks.empty(); 3990 } 3991 3992 // Check if cleanup block is empty 3993 static bool isCleanupBlockEmpty(Instruction *Inst, Instruction *RI) { 3994 BasicBlock::iterator I = Inst->getIterator(), E = RI->getIterator(); 3995 while (++I != E) { 3996 auto *II = dyn_cast<IntrinsicInst>(I); 3997 if (!II) 3998 return false; 3999 4000 Intrinsic::ID IntrinsicID = II->getIntrinsicID(); 4001 switch (IntrinsicID) { 4002 case Intrinsic::dbg_declare: 4003 case Intrinsic::dbg_value: 4004 case Intrinsic::dbg_label: 4005 case Intrinsic::lifetime_end: 4006 break; 4007 default: 4008 return false; 4009 } 4010 } 4011 return true; 4012 } 4013 4014 // Simplify resume that is only used by a single (non-phi) landing pad. 4015 bool SimplifyCFGOpt::simplifySingleResume(ResumeInst *RI) { 4016 BasicBlock *BB = RI->getParent(); 4017 auto *LPInst = cast<LandingPadInst>(BB->getFirstNonPHI()); 4018 assert(RI->getValue() == LPInst && 4019 "Resume must unwind the exception that caused control to here"); 4020 4021 // Check that there are no other instructions except for debug intrinsics. 4022 if (!isCleanupBlockEmpty(LPInst, RI)) 4023 return false; 4024 4025 // Turn all invokes that unwind here into calls and delete the basic block. 4026 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) { 4027 BasicBlock *Pred = *PI++; 4028 removeUnwindEdge(Pred); 4029 } 4030 4031 // The landingpad is now unreachable. Zap it. 4032 if (LoopHeaders) 4033 LoopHeaders->erase(BB); 4034 BB->eraseFromParent(); 4035 return true; 4036 } 4037 4038 static bool removeEmptyCleanup(CleanupReturnInst *RI) { 4039 // If this is a trivial cleanup pad that executes no instructions, it can be 4040 // eliminated. If the cleanup pad continues to the caller, any predecessor 4041 // that is an EH pad will be updated to continue to the caller and any 4042 // predecessor that terminates with an invoke instruction will have its invoke 4043 // instruction converted to a call instruction. If the cleanup pad being 4044 // simplified does not continue to the caller, each predecessor will be 4045 // updated to continue to the unwind destination of the cleanup pad being 4046 // simplified. 4047 BasicBlock *BB = RI->getParent(); 4048 CleanupPadInst *CPInst = RI->getCleanupPad(); 4049 if (CPInst->getParent() != BB) 4050 // This isn't an empty cleanup. 4051 return false; 4052 4053 // We cannot kill the pad if it has multiple uses. This typically arises 4054 // from unreachable basic blocks. 4055 if (!CPInst->hasOneUse()) 4056 return false; 4057 4058 // Check that there are no other instructions except for benign intrinsics. 4059 if (!isCleanupBlockEmpty(CPInst, RI)) 4060 return false; 4061 4062 // If the cleanup return we are simplifying unwinds to the caller, this will 4063 // set UnwindDest to nullptr. 4064 BasicBlock *UnwindDest = RI->getUnwindDest(); 4065 Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr; 4066 4067 // We're about to remove BB from the control flow. Before we do, sink any 4068 // PHINodes into the unwind destination. Doing this before changing the 4069 // control flow avoids some potentially slow checks, since we can currently 4070 // be certain that UnwindDest and BB have no common predecessors (since they 4071 // are both EH pads). 4072 if (UnwindDest) { 4073 // First, go through the PHI nodes in UnwindDest and update any nodes that 4074 // reference the block we are removing 4075 for (BasicBlock::iterator I = UnwindDest->begin(), 4076 IE = DestEHPad->getIterator(); 4077 I != IE; ++I) { 4078 PHINode *DestPN = cast<PHINode>(I); 4079 4080 int Idx = DestPN->getBasicBlockIndex(BB); 4081 // Since BB unwinds to UnwindDest, it has to be in the PHI node. 4082 assert(Idx != -1); 4083 // This PHI node has an incoming value that corresponds to a control 4084 // path through the cleanup pad we are removing. If the incoming 4085 // value is in the cleanup pad, it must be a PHINode (because we 4086 // verified above that the block is otherwise empty). Otherwise, the 4087 // value is either a constant or a value that dominates the cleanup 4088 // pad being removed. 4089 // 4090 // Because BB and UnwindDest are both EH pads, all of their 4091 // predecessors must unwind to these blocks, and since no instruction 4092 // can have multiple unwind destinations, there will be no overlap in 4093 // incoming blocks between SrcPN and DestPN. 4094 Value *SrcVal = DestPN->getIncomingValue(Idx); 4095 PHINode *SrcPN = dyn_cast<PHINode>(SrcVal); 4096 4097 // Remove the entry for the block we are deleting. 4098 DestPN->removeIncomingValue(Idx, false); 4099 4100 if (SrcPN && SrcPN->getParent() == BB) { 4101 // If the incoming value was a PHI node in the cleanup pad we are 4102 // removing, we need to merge that PHI node's incoming values into 4103 // DestPN. 4104 for (unsigned SrcIdx = 0, SrcE = SrcPN->getNumIncomingValues(); 4105 SrcIdx != SrcE; ++SrcIdx) { 4106 DestPN->addIncoming(SrcPN->getIncomingValue(SrcIdx), 4107 SrcPN->getIncomingBlock(SrcIdx)); 4108 } 4109 } else { 4110 // Otherwise, the incoming value came from above BB and 4111 // so we can just reuse it. We must associate all of BB's 4112 // predecessors with this value. 4113 for (auto *pred : predecessors(BB)) { 4114 DestPN->addIncoming(SrcVal, pred); 4115 } 4116 } 4117 } 4118 4119 // Sink any remaining PHI nodes directly into UnwindDest. 4120 Instruction *InsertPt = DestEHPad; 4121 for (BasicBlock::iterator I = BB->begin(), 4122 IE = BB->getFirstNonPHI()->getIterator(); 4123 I != IE;) { 4124 // The iterator must be incremented here because the instructions are 4125 // being moved to another block. 4126 PHINode *PN = cast<PHINode>(I++); 4127 if (PN->use_empty() || !PN->isUsedOutsideOfBlock(BB)) 4128 // If the PHI node has no uses or all of its uses are in this basic 4129 // block (meaning they are debug or lifetime intrinsics), just leave 4130 // it. It will be erased when we erase BB below. 4131 continue; 4132 4133 // Otherwise, sink this PHI node into UnwindDest. 4134 // Any predecessors to UnwindDest which are not already represented 4135 // must be back edges which inherit the value from the path through 4136 // BB. In this case, the PHI value must reference itself. 4137 for (auto *pred : predecessors(UnwindDest)) 4138 if (pred != BB) 4139 PN->addIncoming(PN, pred); 4140 PN->moveBefore(InsertPt); 4141 } 4142 } 4143 4144 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) { 4145 // The iterator must be updated here because we are removing this pred. 4146 BasicBlock *PredBB = *PI++; 4147 if (UnwindDest == nullptr) { 4148 removeUnwindEdge(PredBB); 4149 } else { 4150 Instruction *TI = PredBB->getTerminator(); 4151 TI->replaceUsesOfWith(BB, UnwindDest); 4152 } 4153 } 4154 4155 // The cleanup pad is now unreachable. Zap it. 4156 BB->eraseFromParent(); 4157 return true; 4158 } 4159 4160 // Try to merge two cleanuppads together. 4161 static bool mergeCleanupPad(CleanupReturnInst *RI) { 4162 // Skip any cleanuprets which unwind to caller, there is nothing to merge 4163 // with. 4164 BasicBlock *UnwindDest = RI->getUnwindDest(); 4165 if (!UnwindDest) 4166 return false; 4167 4168 // This cleanupret isn't the only predecessor of this cleanuppad, it wouldn't 4169 // be safe to merge without code duplication. 4170 if (UnwindDest->getSinglePredecessor() != RI->getParent()) 4171 return false; 4172 4173 // Verify that our cleanuppad's unwind destination is another cleanuppad. 4174 auto *SuccessorCleanupPad = dyn_cast<CleanupPadInst>(&UnwindDest->front()); 4175 if (!SuccessorCleanupPad) 4176 return false; 4177 4178 CleanupPadInst *PredecessorCleanupPad = RI->getCleanupPad(); 4179 // Replace any uses of the successor cleanupad with the predecessor pad 4180 // The only cleanuppad uses should be this cleanupret, it's cleanupret and 4181 // funclet bundle operands. 4182 SuccessorCleanupPad->replaceAllUsesWith(PredecessorCleanupPad); 4183 // Remove the old cleanuppad. 4184 SuccessorCleanupPad->eraseFromParent(); 4185 // Now, we simply replace the cleanupret with a branch to the unwind 4186 // destination. 4187 BranchInst::Create(UnwindDest, RI->getParent()); 4188 RI->eraseFromParent(); 4189 4190 return true; 4191 } 4192 4193 bool SimplifyCFGOpt::simplifyCleanupReturn(CleanupReturnInst *RI) { 4194 // It is possible to transiantly have an undef cleanuppad operand because we 4195 // have deleted some, but not all, dead blocks. 4196 // Eventually, this block will be deleted. 4197 if (isa<UndefValue>(RI->getOperand(0))) 4198 return false; 4199 4200 if (mergeCleanupPad(RI)) 4201 return true; 4202 4203 if (removeEmptyCleanup(RI)) 4204 return true; 4205 4206 return false; 4207 } 4208 4209 bool SimplifyCFGOpt::simplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) { 4210 BasicBlock *BB = RI->getParent(); 4211 if (!BB->getFirstNonPHIOrDbg()->isTerminator()) 4212 return false; 4213 4214 // Find predecessors that end with branches. 4215 SmallVector<BasicBlock *, 8> UncondBranchPreds; 4216 SmallVector<BranchInst *, 8> CondBranchPreds; 4217 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 4218 BasicBlock *P = *PI; 4219 Instruction *PTI = P->getTerminator(); 4220 if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) { 4221 if (BI->isUnconditional()) 4222 UncondBranchPreds.push_back(P); 4223 else 4224 CondBranchPreds.push_back(BI); 4225 } 4226 } 4227 4228 // If we found some, do the transformation! 4229 if (!UncondBranchPreds.empty() && DupRet) { 4230 while (!UncondBranchPreds.empty()) { 4231 BasicBlock *Pred = UncondBranchPreds.pop_back_val(); 4232 LLVM_DEBUG(dbgs() << "FOLDING: " << *BB 4233 << "INTO UNCOND BRANCH PRED: " << *Pred); 4234 (void)FoldReturnIntoUncondBranch(RI, BB, Pred); 4235 } 4236 4237 // If we eliminated all predecessors of the block, delete the block now. 4238 if (pred_empty(BB)) { 4239 // We know there are no successors, so just nuke the block. 4240 if (LoopHeaders) 4241 LoopHeaders->erase(BB); 4242 BB->eraseFromParent(); 4243 } 4244 4245 return true; 4246 } 4247 4248 // Check out all of the conditional branches going to this return 4249 // instruction. If any of them just select between returns, change the 4250 // branch itself into a select/return pair. 4251 while (!CondBranchPreds.empty()) { 4252 BranchInst *BI = CondBranchPreds.pop_back_val(); 4253 4254 // Check to see if the non-BB successor is also a return block. 4255 if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) && 4256 isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) && 4257 SimplifyCondBranchToTwoReturns(BI, Builder)) 4258 return true; 4259 } 4260 return false; 4261 } 4262 4263 bool SimplifyCFGOpt::simplifyUnreachable(UnreachableInst *UI) { 4264 BasicBlock *BB = UI->getParent(); 4265 4266 bool Changed = false; 4267 4268 // If there are any instructions immediately before the unreachable that can 4269 // be removed, do so. 4270 while (UI->getIterator() != BB->begin()) { 4271 BasicBlock::iterator BBI = UI->getIterator(); 4272 --BBI; 4273 // Do not delete instructions that can have side effects which might cause 4274 // the unreachable to not be reachable; specifically, calls and volatile 4275 // operations may have this effect. 4276 if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI)) 4277 break; 4278 4279 if (BBI->mayHaveSideEffects()) { 4280 if (auto *SI = dyn_cast<StoreInst>(BBI)) { 4281 if (SI->isVolatile()) 4282 break; 4283 } else if (auto *LI = dyn_cast<LoadInst>(BBI)) { 4284 if (LI->isVolatile()) 4285 break; 4286 } else if (auto *RMWI = dyn_cast<AtomicRMWInst>(BBI)) { 4287 if (RMWI->isVolatile()) 4288 break; 4289 } else if (auto *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) { 4290 if (CXI->isVolatile()) 4291 break; 4292 } else if (isa<CatchPadInst>(BBI)) { 4293 // A catchpad may invoke exception object constructors and such, which 4294 // in some languages can be arbitrary code, so be conservative by 4295 // default. 4296 // For CoreCLR, it just involves a type test, so can be removed. 4297 if (classifyEHPersonality(BB->getParent()->getPersonalityFn()) != 4298 EHPersonality::CoreCLR) 4299 break; 4300 } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) && 4301 !isa<LandingPadInst>(BBI)) { 4302 break; 4303 } 4304 // Note that deleting LandingPad's here is in fact okay, although it 4305 // involves a bit of subtle reasoning. If this inst is a LandingPad, 4306 // all the predecessors of this block will be the unwind edges of Invokes, 4307 // and we can therefore guarantee this block will be erased. 4308 } 4309 4310 // Delete this instruction (any uses are guaranteed to be dead) 4311 if (!BBI->use_empty()) 4312 BBI->replaceAllUsesWith(UndefValue::get(BBI->getType())); 4313 BBI->eraseFromParent(); 4314 Changed = true; 4315 } 4316 4317 // If the unreachable instruction is the first in the block, take a gander 4318 // at all of the predecessors of this instruction, and simplify them. 4319 if (&BB->front() != UI) 4320 return Changed; 4321 4322 SmallVector<BasicBlock *, 8> Preds(pred_begin(BB), pred_end(BB)); 4323 for (unsigned i = 0, e = Preds.size(); i != e; ++i) { 4324 Instruction *TI = Preds[i]->getTerminator(); 4325 IRBuilder<> Builder(TI); 4326 if (auto *BI = dyn_cast<BranchInst>(TI)) { 4327 if (BI->isUnconditional()) { 4328 assert(BI->getSuccessor(0) == BB && "Incorrect CFG"); 4329 new UnreachableInst(TI->getContext(), TI); 4330 TI->eraseFromParent(); 4331 Changed = true; 4332 } else { 4333 Value* Cond = BI->getCondition(); 4334 if (BI->getSuccessor(0) == BB) { 4335 Builder.CreateAssumption(Builder.CreateNot(Cond)); 4336 Builder.CreateBr(BI->getSuccessor(1)); 4337 } else { 4338 assert(BI->getSuccessor(1) == BB && "Incorrect CFG"); 4339 Builder.CreateAssumption(Cond); 4340 Builder.CreateBr(BI->getSuccessor(0)); 4341 } 4342 EraseTerminatorAndDCECond(BI); 4343 Changed = true; 4344 } 4345 } else if (auto *SI = dyn_cast<SwitchInst>(TI)) { 4346 SwitchInstProfUpdateWrapper SU(*SI); 4347 for (auto i = SU->case_begin(), e = SU->case_end(); i != e;) { 4348 if (i->getCaseSuccessor() != BB) { 4349 ++i; 4350 continue; 4351 } 4352 BB->removePredecessor(SU->getParent()); 4353 i = SU.removeCase(i); 4354 e = SU->case_end(); 4355 Changed = true; 4356 } 4357 } else if (auto *II = dyn_cast<InvokeInst>(TI)) { 4358 if (II->getUnwindDest() == BB) { 4359 removeUnwindEdge(TI->getParent()); 4360 Changed = true; 4361 } 4362 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) { 4363 if (CSI->getUnwindDest() == BB) { 4364 removeUnwindEdge(TI->getParent()); 4365 Changed = true; 4366 continue; 4367 } 4368 4369 for (CatchSwitchInst::handler_iterator I = CSI->handler_begin(), 4370 E = CSI->handler_end(); 4371 I != E; ++I) { 4372 if (*I == BB) { 4373 CSI->removeHandler(I); 4374 --I; 4375 --E; 4376 Changed = true; 4377 } 4378 } 4379 if (CSI->getNumHandlers() == 0) { 4380 BasicBlock *CatchSwitchBB = CSI->getParent(); 4381 if (CSI->hasUnwindDest()) { 4382 // Redirect preds to the unwind dest 4383 CatchSwitchBB->replaceAllUsesWith(CSI->getUnwindDest()); 4384 } else { 4385 // Rewrite all preds to unwind to caller (or from invoke to call). 4386 SmallVector<BasicBlock *, 8> EHPreds(predecessors(CatchSwitchBB)); 4387 for (BasicBlock *EHPred : EHPreds) 4388 removeUnwindEdge(EHPred); 4389 } 4390 // The catchswitch is no longer reachable. 4391 new UnreachableInst(CSI->getContext(), CSI); 4392 CSI->eraseFromParent(); 4393 Changed = true; 4394 } 4395 } else if (isa<CleanupReturnInst>(TI)) { 4396 new UnreachableInst(TI->getContext(), TI); 4397 TI->eraseFromParent(); 4398 Changed = true; 4399 } 4400 } 4401 4402 // If this block is now dead, remove it. 4403 if (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) { 4404 // We know there are no successors, so just nuke the block. 4405 if (LoopHeaders) 4406 LoopHeaders->erase(BB); 4407 BB->eraseFromParent(); 4408 return true; 4409 } 4410 4411 return Changed; 4412 } 4413 4414 static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) { 4415 assert(Cases.size() >= 1); 4416 4417 array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate); 4418 for (size_t I = 1, E = Cases.size(); I != E; ++I) { 4419 if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1) 4420 return false; 4421 } 4422 return true; 4423 } 4424 4425 static void createUnreachableSwitchDefault(SwitchInst *Switch) { 4426 LLVM_DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n"); 4427 BasicBlock *NewDefaultBlock = 4428 SplitBlockPredecessors(Switch->getDefaultDest(), Switch->getParent(), ""); 4429 Switch->setDefaultDest(&*NewDefaultBlock); 4430 SplitBlock(&*NewDefaultBlock, &NewDefaultBlock->front()); 4431 auto *NewTerminator = NewDefaultBlock->getTerminator(); 4432 new UnreachableInst(Switch->getContext(), NewTerminator); 4433 EraseTerminatorAndDCECond(NewTerminator); 4434 } 4435 4436 /// Turn a switch with two reachable destinations into an integer range 4437 /// comparison and branch. 4438 bool SimplifyCFGOpt::TurnSwitchRangeIntoICmp(SwitchInst *SI, 4439 IRBuilder<> &Builder) { 4440 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 4441 4442 bool HasDefault = 4443 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 4444 4445 // Partition the cases into two sets with different destinations. 4446 BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr; 4447 BasicBlock *DestB = nullptr; 4448 SmallVector<ConstantInt *, 16> CasesA; 4449 SmallVector<ConstantInt *, 16> CasesB; 4450 4451 for (auto Case : SI->cases()) { 4452 BasicBlock *Dest = Case.getCaseSuccessor(); 4453 if (!DestA) 4454 DestA = Dest; 4455 if (Dest == DestA) { 4456 CasesA.push_back(Case.getCaseValue()); 4457 continue; 4458 } 4459 if (!DestB) 4460 DestB = Dest; 4461 if (Dest == DestB) { 4462 CasesB.push_back(Case.getCaseValue()); 4463 continue; 4464 } 4465 return false; // More than two destinations. 4466 } 4467 4468 assert(DestA && DestB && 4469 "Single-destination switch should have been folded."); 4470 assert(DestA != DestB); 4471 assert(DestB != SI->getDefaultDest()); 4472 assert(!CasesB.empty() && "There must be non-default cases."); 4473 assert(!CasesA.empty() || HasDefault); 4474 4475 // Figure out if one of the sets of cases form a contiguous range. 4476 SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr; 4477 BasicBlock *ContiguousDest = nullptr; 4478 BasicBlock *OtherDest = nullptr; 4479 if (!CasesA.empty() && CasesAreContiguous(CasesA)) { 4480 ContiguousCases = &CasesA; 4481 ContiguousDest = DestA; 4482 OtherDest = DestB; 4483 } else if (CasesAreContiguous(CasesB)) { 4484 ContiguousCases = &CasesB; 4485 ContiguousDest = DestB; 4486 OtherDest = DestA; 4487 } else 4488 return false; 4489 4490 // Start building the compare and branch. 4491 4492 Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back()); 4493 Constant *NumCases = 4494 ConstantInt::get(Offset->getType(), ContiguousCases->size()); 4495 4496 Value *Sub = SI->getCondition(); 4497 if (!Offset->isNullValue()) 4498 Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off"); 4499 4500 Value *Cmp; 4501 // If NumCases overflowed, then all possible values jump to the successor. 4502 if (NumCases->isNullValue() && !ContiguousCases->empty()) 4503 Cmp = ConstantInt::getTrue(SI->getContext()); 4504 else 4505 Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch"); 4506 BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest); 4507 4508 // Update weight for the newly-created conditional branch. 4509 if (HasBranchWeights(SI)) { 4510 SmallVector<uint64_t, 8> Weights; 4511 GetBranchWeights(SI, Weights); 4512 if (Weights.size() == 1 + SI->getNumCases()) { 4513 uint64_t TrueWeight = 0; 4514 uint64_t FalseWeight = 0; 4515 for (size_t I = 0, E = Weights.size(); I != E; ++I) { 4516 if (SI->getSuccessor(I) == ContiguousDest) 4517 TrueWeight += Weights[I]; 4518 else 4519 FalseWeight += Weights[I]; 4520 } 4521 while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) { 4522 TrueWeight /= 2; 4523 FalseWeight /= 2; 4524 } 4525 setBranchWeights(NewBI, TrueWeight, FalseWeight); 4526 } 4527 } 4528 4529 // Prune obsolete incoming values off the successors' PHI nodes. 4530 for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) { 4531 unsigned PreviousEdges = ContiguousCases->size(); 4532 if (ContiguousDest == SI->getDefaultDest()) 4533 ++PreviousEdges; 4534 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I) 4535 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 4536 } 4537 for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) { 4538 unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size(); 4539 if (OtherDest == SI->getDefaultDest()) 4540 ++PreviousEdges; 4541 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I) 4542 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 4543 } 4544 4545 // Clean up the default block - it may have phis or other instructions before 4546 // the unreachable terminator. 4547 if (!HasDefault) 4548 createUnreachableSwitchDefault(SI); 4549 4550 // Drop the switch. 4551 SI->eraseFromParent(); 4552 4553 return true; 4554 } 4555 4556 /// Compute masked bits for the condition of a switch 4557 /// and use it to remove dead cases. 4558 static bool eliminateDeadSwitchCases(SwitchInst *SI, AssumptionCache *AC, 4559 const DataLayout &DL) { 4560 Value *Cond = SI->getCondition(); 4561 unsigned Bits = Cond->getType()->getIntegerBitWidth(); 4562 KnownBits Known = computeKnownBits(Cond, DL, 0, AC, SI); 4563 4564 // We can also eliminate cases by determining that their values are outside of 4565 // the limited range of the condition based on how many significant (non-sign) 4566 // bits are in the condition value. 4567 unsigned ExtraSignBits = ComputeNumSignBits(Cond, DL, 0, AC, SI) - 1; 4568 unsigned MaxSignificantBitsInCond = Bits - ExtraSignBits; 4569 4570 // Gather dead cases. 4571 SmallVector<ConstantInt *, 8> DeadCases; 4572 for (auto &Case : SI->cases()) { 4573 const APInt &CaseVal = Case.getCaseValue()->getValue(); 4574 if (Known.Zero.intersects(CaseVal) || !Known.One.isSubsetOf(CaseVal) || 4575 (CaseVal.getMinSignedBits() > MaxSignificantBitsInCond)) { 4576 DeadCases.push_back(Case.getCaseValue()); 4577 LLVM_DEBUG(dbgs() << "SimplifyCFG: switch case " << CaseVal 4578 << " is dead.\n"); 4579 } 4580 } 4581 4582 // If we can prove that the cases must cover all possible values, the 4583 // default destination becomes dead and we can remove it. If we know some 4584 // of the bits in the value, we can use that to more precisely compute the 4585 // number of possible unique case values. 4586 bool HasDefault = 4587 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 4588 const unsigned NumUnknownBits = 4589 Bits - (Known.Zero | Known.One).countPopulation(); 4590 assert(NumUnknownBits <= Bits); 4591 if (HasDefault && DeadCases.empty() && 4592 NumUnknownBits < 64 /* avoid overflow */ && 4593 SI->getNumCases() == (1ULL << NumUnknownBits)) { 4594 createUnreachableSwitchDefault(SI); 4595 return true; 4596 } 4597 4598 if (DeadCases.empty()) 4599 return false; 4600 4601 SwitchInstProfUpdateWrapper SIW(*SI); 4602 for (ConstantInt *DeadCase : DeadCases) { 4603 SwitchInst::CaseIt CaseI = SI->findCaseValue(DeadCase); 4604 assert(CaseI != SI->case_default() && 4605 "Case was not found. Probably mistake in DeadCases forming."); 4606 // Prune unused values from PHI nodes. 4607 CaseI->getCaseSuccessor()->removePredecessor(SI->getParent()); 4608 SIW.removeCase(CaseI); 4609 } 4610 4611 return true; 4612 } 4613 4614 /// If BB would be eligible for simplification by 4615 /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated 4616 /// by an unconditional branch), look at the phi node for BB in the successor 4617 /// block and see if the incoming value is equal to CaseValue. If so, return 4618 /// the phi node, and set PhiIndex to BB's index in the phi node. 4619 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue, 4620 BasicBlock *BB, int *PhiIndex) { 4621 if (BB->getFirstNonPHIOrDbg() != BB->getTerminator()) 4622 return nullptr; // BB must be empty to be a candidate for simplification. 4623 if (!BB->getSinglePredecessor()) 4624 return nullptr; // BB must be dominated by the switch. 4625 4626 BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator()); 4627 if (!Branch || !Branch->isUnconditional()) 4628 return nullptr; // Terminator must be unconditional branch. 4629 4630 BasicBlock *Succ = Branch->getSuccessor(0); 4631 4632 for (PHINode &PHI : Succ->phis()) { 4633 int Idx = PHI.getBasicBlockIndex(BB); 4634 assert(Idx >= 0 && "PHI has no entry for predecessor?"); 4635 4636 Value *InValue = PHI.getIncomingValue(Idx); 4637 if (InValue != CaseValue) 4638 continue; 4639 4640 *PhiIndex = Idx; 4641 return &PHI; 4642 } 4643 4644 return nullptr; 4645 } 4646 4647 /// Try to forward the condition of a switch instruction to a phi node 4648 /// dominated by the switch, if that would mean that some of the destination 4649 /// blocks of the switch can be folded away. Return true if a change is made. 4650 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) { 4651 using ForwardingNodesMap = DenseMap<PHINode *, SmallVector<int, 4>>; 4652 4653 ForwardingNodesMap ForwardingNodes; 4654 BasicBlock *SwitchBlock = SI->getParent(); 4655 bool Changed = false; 4656 for (auto &Case : SI->cases()) { 4657 ConstantInt *CaseValue = Case.getCaseValue(); 4658 BasicBlock *CaseDest = Case.getCaseSuccessor(); 4659 4660 // Replace phi operands in successor blocks that are using the constant case 4661 // value rather than the switch condition variable: 4662 // switchbb: 4663 // switch i32 %x, label %default [ 4664 // i32 17, label %succ 4665 // ... 4666 // succ: 4667 // %r = phi i32 ... [ 17, %switchbb ] ... 4668 // --> 4669 // %r = phi i32 ... [ %x, %switchbb ] ... 4670 4671 for (PHINode &Phi : CaseDest->phis()) { 4672 // This only works if there is exactly 1 incoming edge from the switch to 4673 // a phi. If there is >1, that means multiple cases of the switch map to 1 4674 // value in the phi, and that phi value is not the switch condition. Thus, 4675 // this transform would not make sense (the phi would be invalid because 4676 // a phi can't have different incoming values from the same block). 4677 int SwitchBBIdx = Phi.getBasicBlockIndex(SwitchBlock); 4678 if (Phi.getIncomingValue(SwitchBBIdx) == CaseValue && 4679 count(Phi.blocks(), SwitchBlock) == 1) { 4680 Phi.setIncomingValue(SwitchBBIdx, SI->getCondition()); 4681 Changed = true; 4682 } 4683 } 4684 4685 // Collect phi nodes that are indirectly using this switch's case constants. 4686 int PhiIdx; 4687 if (auto *Phi = FindPHIForConditionForwarding(CaseValue, CaseDest, &PhiIdx)) 4688 ForwardingNodes[Phi].push_back(PhiIdx); 4689 } 4690 4691 for (auto &ForwardingNode : ForwardingNodes) { 4692 PHINode *Phi = ForwardingNode.first; 4693 SmallVectorImpl<int> &Indexes = ForwardingNode.second; 4694 if (Indexes.size() < 2) 4695 continue; 4696 4697 for (int Index : Indexes) 4698 Phi->setIncomingValue(Index, SI->getCondition()); 4699 Changed = true; 4700 } 4701 4702 return Changed; 4703 } 4704 4705 /// Return true if the backend will be able to handle 4706 /// initializing an array of constants like C. 4707 static bool ValidLookupTableConstant(Constant *C, const TargetTransformInfo &TTI) { 4708 if (C->isThreadDependent()) 4709 return false; 4710 if (C->isDLLImportDependent()) 4711 return false; 4712 4713 if (!isa<ConstantFP>(C) && !isa<ConstantInt>(C) && 4714 !isa<ConstantPointerNull>(C) && !isa<GlobalValue>(C) && 4715 !isa<UndefValue>(C) && !isa<ConstantExpr>(C)) 4716 return false; 4717 4718 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 4719 if (!CE->isGEPWithNoNotionalOverIndexing()) 4720 return false; 4721 if (!ValidLookupTableConstant(CE->getOperand(0), TTI)) 4722 return false; 4723 } 4724 4725 if (!TTI.shouldBuildLookupTablesForConstant(C)) 4726 return false; 4727 4728 return true; 4729 } 4730 4731 /// If V is a Constant, return it. Otherwise, try to look up 4732 /// its constant value in ConstantPool, returning 0 if it's not there. 4733 static Constant * 4734 LookupConstant(Value *V, 4735 const SmallDenseMap<Value *, Constant *> &ConstantPool) { 4736 if (Constant *C = dyn_cast<Constant>(V)) 4737 return C; 4738 return ConstantPool.lookup(V); 4739 } 4740 4741 /// Try to fold instruction I into a constant. This works for 4742 /// simple instructions such as binary operations where both operands are 4743 /// constant or can be replaced by constants from the ConstantPool. Returns the 4744 /// resulting constant on success, 0 otherwise. 4745 static Constant * 4746 ConstantFold(Instruction *I, const DataLayout &DL, 4747 const SmallDenseMap<Value *, Constant *> &ConstantPool) { 4748 if (SelectInst *Select = dyn_cast<SelectInst>(I)) { 4749 Constant *A = LookupConstant(Select->getCondition(), ConstantPool); 4750 if (!A) 4751 return nullptr; 4752 if (A->isAllOnesValue()) 4753 return LookupConstant(Select->getTrueValue(), ConstantPool); 4754 if (A->isNullValue()) 4755 return LookupConstant(Select->getFalseValue(), ConstantPool); 4756 return nullptr; 4757 } 4758 4759 SmallVector<Constant *, 4> COps; 4760 for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) { 4761 if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool)) 4762 COps.push_back(A); 4763 else 4764 return nullptr; 4765 } 4766 4767 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) { 4768 return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0], 4769 COps[1], DL); 4770 } 4771 4772 return ConstantFoldInstOperands(I, COps, DL); 4773 } 4774 4775 /// Try to determine the resulting constant values in phi nodes 4776 /// at the common destination basic block, *CommonDest, for one of the case 4777 /// destionations CaseDest corresponding to value CaseVal (0 for the default 4778 /// case), of a switch instruction SI. 4779 static bool 4780 GetCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest, 4781 BasicBlock **CommonDest, 4782 SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res, 4783 const DataLayout &DL, const TargetTransformInfo &TTI) { 4784 // The block from which we enter the common destination. 4785 BasicBlock *Pred = SI->getParent(); 4786 4787 // If CaseDest is empty except for some side-effect free instructions through 4788 // which we can constant-propagate the CaseVal, continue to its successor. 4789 SmallDenseMap<Value *, Constant *> ConstantPool; 4790 ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal)); 4791 for (Instruction &I :CaseDest->instructionsWithoutDebug()) { 4792 if (I.isTerminator()) { 4793 // If the terminator is a simple branch, continue to the next block. 4794 if (I.getNumSuccessors() != 1 || I.isExceptionalTerminator()) 4795 return false; 4796 Pred = CaseDest; 4797 CaseDest = I.getSuccessor(0); 4798 } else if (Constant *C = ConstantFold(&I, DL, ConstantPool)) { 4799 // Instruction is side-effect free and constant. 4800 4801 // If the instruction has uses outside this block or a phi node slot for 4802 // the block, it is not safe to bypass the instruction since it would then 4803 // no longer dominate all its uses. 4804 for (auto &Use : I.uses()) { 4805 User *User = Use.getUser(); 4806 if (Instruction *I = dyn_cast<Instruction>(User)) 4807 if (I->getParent() == CaseDest) 4808 continue; 4809 if (PHINode *Phi = dyn_cast<PHINode>(User)) 4810 if (Phi->getIncomingBlock(Use) == CaseDest) 4811 continue; 4812 return false; 4813 } 4814 4815 ConstantPool.insert(std::make_pair(&I, C)); 4816 } else { 4817 break; 4818 } 4819 } 4820 4821 // If we did not have a CommonDest before, use the current one. 4822 if (!*CommonDest) 4823 *CommonDest = CaseDest; 4824 // If the destination isn't the common one, abort. 4825 if (CaseDest != *CommonDest) 4826 return false; 4827 4828 // Get the values for this case from phi nodes in the destination block. 4829 for (PHINode &PHI : (*CommonDest)->phis()) { 4830 int Idx = PHI.getBasicBlockIndex(Pred); 4831 if (Idx == -1) 4832 continue; 4833 4834 Constant *ConstVal = 4835 LookupConstant(PHI.getIncomingValue(Idx), ConstantPool); 4836 if (!ConstVal) 4837 return false; 4838 4839 // Be conservative about which kinds of constants we support. 4840 if (!ValidLookupTableConstant(ConstVal, TTI)) 4841 return false; 4842 4843 Res.push_back(std::make_pair(&PHI, ConstVal)); 4844 } 4845 4846 return Res.size() > 0; 4847 } 4848 4849 // Helper function used to add CaseVal to the list of cases that generate 4850 // Result. Returns the updated number of cases that generate this result. 4851 static uintptr_t MapCaseToResult(ConstantInt *CaseVal, 4852 SwitchCaseResultVectorTy &UniqueResults, 4853 Constant *Result) { 4854 for (auto &I : UniqueResults) { 4855 if (I.first == Result) { 4856 I.second.push_back(CaseVal); 4857 return I.second.size(); 4858 } 4859 } 4860 UniqueResults.push_back( 4861 std::make_pair(Result, SmallVector<ConstantInt *, 4>(1, CaseVal))); 4862 return 1; 4863 } 4864 4865 // Helper function that initializes a map containing 4866 // results for the PHI node of the common destination block for a switch 4867 // instruction. Returns false if multiple PHI nodes have been found or if 4868 // there is not a common destination block for the switch. 4869 static bool 4870 InitializeUniqueCases(SwitchInst *SI, PHINode *&PHI, BasicBlock *&CommonDest, 4871 SwitchCaseResultVectorTy &UniqueResults, 4872 Constant *&DefaultResult, const DataLayout &DL, 4873 const TargetTransformInfo &TTI, 4874 uintptr_t MaxUniqueResults, uintptr_t MaxCasesPerResult) { 4875 for (auto &I : SI->cases()) { 4876 ConstantInt *CaseVal = I.getCaseValue(); 4877 4878 // Resulting value at phi nodes for this case value. 4879 SwitchCaseResultsTy Results; 4880 if (!GetCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results, 4881 DL, TTI)) 4882 return false; 4883 4884 // Only one value per case is permitted. 4885 if (Results.size() > 1) 4886 return false; 4887 4888 // Add the case->result mapping to UniqueResults. 4889 const uintptr_t NumCasesForResult = 4890 MapCaseToResult(CaseVal, UniqueResults, Results.begin()->second); 4891 4892 // Early out if there are too many cases for this result. 4893 if (NumCasesForResult > MaxCasesPerResult) 4894 return false; 4895 4896 // Early out if there are too many unique results. 4897 if (UniqueResults.size() > MaxUniqueResults) 4898 return false; 4899 4900 // Check the PHI consistency. 4901 if (!PHI) 4902 PHI = Results[0].first; 4903 else if (PHI != Results[0].first) 4904 return false; 4905 } 4906 // Find the default result value. 4907 SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults; 4908 BasicBlock *DefaultDest = SI->getDefaultDest(); 4909 GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults, 4910 DL, TTI); 4911 // If the default value is not found abort unless the default destination 4912 // is unreachable. 4913 DefaultResult = 4914 DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr; 4915 if ((!DefaultResult && 4916 !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()))) 4917 return false; 4918 4919 return true; 4920 } 4921 4922 // Helper function that checks if it is possible to transform a switch with only 4923 // two cases (or two cases + default) that produces a result into a select. 4924 // Example: 4925 // switch (a) { 4926 // case 10: %0 = icmp eq i32 %a, 10 4927 // return 10; %1 = select i1 %0, i32 10, i32 4 4928 // case 20: ----> %2 = icmp eq i32 %a, 20 4929 // return 2; %3 = select i1 %2, i32 2, i32 %1 4930 // default: 4931 // return 4; 4932 // } 4933 static Value *ConvertTwoCaseSwitch(const SwitchCaseResultVectorTy &ResultVector, 4934 Constant *DefaultResult, Value *Condition, 4935 IRBuilder<> &Builder) { 4936 assert(ResultVector.size() == 2 && 4937 "We should have exactly two unique results at this point"); 4938 // If we are selecting between only two cases transform into a simple 4939 // select or a two-way select if default is possible. 4940 if (ResultVector[0].second.size() == 1 && 4941 ResultVector[1].second.size() == 1) { 4942 ConstantInt *const FirstCase = ResultVector[0].second[0]; 4943 ConstantInt *const SecondCase = ResultVector[1].second[0]; 4944 4945 bool DefaultCanTrigger = DefaultResult; 4946 Value *SelectValue = ResultVector[1].first; 4947 if (DefaultCanTrigger) { 4948 Value *const ValueCompare = 4949 Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp"); 4950 SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first, 4951 DefaultResult, "switch.select"); 4952 } 4953 Value *const ValueCompare = 4954 Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp"); 4955 return Builder.CreateSelect(ValueCompare, ResultVector[0].first, 4956 SelectValue, "switch.select"); 4957 } 4958 4959 return nullptr; 4960 } 4961 4962 // Helper function to cleanup a switch instruction that has been converted into 4963 // a select, fixing up PHI nodes and basic blocks. 4964 static void RemoveSwitchAfterSelectConversion(SwitchInst *SI, PHINode *PHI, 4965 Value *SelectValue, 4966 IRBuilder<> &Builder) { 4967 BasicBlock *SelectBB = SI->getParent(); 4968 while (PHI->getBasicBlockIndex(SelectBB) >= 0) 4969 PHI->removeIncomingValue(SelectBB); 4970 PHI->addIncoming(SelectValue, SelectBB); 4971 4972 Builder.CreateBr(PHI->getParent()); 4973 4974 // Remove the switch. 4975 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { 4976 BasicBlock *Succ = SI->getSuccessor(i); 4977 4978 if (Succ == PHI->getParent()) 4979 continue; 4980 Succ->removePredecessor(SelectBB); 4981 } 4982 SI->eraseFromParent(); 4983 } 4984 4985 /// If the switch is only used to initialize one or more 4986 /// phi nodes in a common successor block with only two different 4987 /// constant values, replace the switch with select. 4988 static bool switchToSelect(SwitchInst *SI, IRBuilder<> &Builder, 4989 const DataLayout &DL, 4990 const TargetTransformInfo &TTI) { 4991 Value *const Cond = SI->getCondition(); 4992 PHINode *PHI = nullptr; 4993 BasicBlock *CommonDest = nullptr; 4994 Constant *DefaultResult; 4995 SwitchCaseResultVectorTy UniqueResults; 4996 // Collect all the cases that will deliver the same value from the switch. 4997 if (!InitializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult, 4998 DL, TTI, 2, 1)) 4999 return false; 5000 // Selects choose between maximum two values. 5001 if (UniqueResults.size() != 2) 5002 return false; 5003 assert(PHI != nullptr && "PHI for value select not found"); 5004 5005 Builder.SetInsertPoint(SI); 5006 Value *SelectValue = 5007 ConvertTwoCaseSwitch(UniqueResults, DefaultResult, Cond, Builder); 5008 if (SelectValue) { 5009 RemoveSwitchAfterSelectConversion(SI, PHI, SelectValue, Builder); 5010 return true; 5011 } 5012 // The switch couldn't be converted into a select. 5013 return false; 5014 } 5015 5016 namespace { 5017 5018 /// This class represents a lookup table that can be used to replace a switch. 5019 class SwitchLookupTable { 5020 public: 5021 /// Create a lookup table to use as a switch replacement with the contents 5022 /// of Values, using DefaultValue to fill any holes in the table. 5023 SwitchLookupTable( 5024 Module &M, uint64_t TableSize, ConstantInt *Offset, 5025 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values, 5026 Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName); 5027 5028 /// Build instructions with Builder to retrieve the value at 5029 /// the position given by Index in the lookup table. 5030 Value *BuildLookup(Value *Index, IRBuilder<> &Builder); 5031 5032 /// Return true if a table with TableSize elements of 5033 /// type ElementType would fit in a target-legal register. 5034 static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize, 5035 Type *ElementType); 5036 5037 private: 5038 // Depending on the contents of the table, it can be represented in 5039 // different ways. 5040 enum { 5041 // For tables where each element contains the same value, we just have to 5042 // store that single value and return it for each lookup. 5043 SingleValueKind, 5044 5045 // For tables where there is a linear relationship between table index 5046 // and values. We calculate the result with a simple multiplication 5047 // and addition instead of a table lookup. 5048 LinearMapKind, 5049 5050 // For small tables with integer elements, we can pack them into a bitmap 5051 // that fits into a target-legal register. Values are retrieved by 5052 // shift and mask operations. 5053 BitMapKind, 5054 5055 // The table is stored as an array of values. Values are retrieved by load 5056 // instructions from the table. 5057 ArrayKind 5058 } Kind; 5059 5060 // For SingleValueKind, this is the single value. 5061 Constant *SingleValue = nullptr; 5062 5063 // For BitMapKind, this is the bitmap. 5064 ConstantInt *BitMap = nullptr; 5065 IntegerType *BitMapElementTy = nullptr; 5066 5067 // For LinearMapKind, these are the constants used to derive the value. 5068 ConstantInt *LinearOffset = nullptr; 5069 ConstantInt *LinearMultiplier = nullptr; 5070 5071 // For ArrayKind, this is the array. 5072 GlobalVariable *Array = nullptr; 5073 }; 5074 5075 } // end anonymous namespace 5076 5077 SwitchLookupTable::SwitchLookupTable( 5078 Module &M, uint64_t TableSize, ConstantInt *Offset, 5079 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values, 5080 Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName) { 5081 assert(Values.size() && "Can't build lookup table without values!"); 5082 assert(TableSize >= Values.size() && "Can't fit values in table!"); 5083 5084 // If all values in the table are equal, this is that value. 5085 SingleValue = Values.begin()->second; 5086 5087 Type *ValueType = Values.begin()->second->getType(); 5088 5089 // Build up the table contents. 5090 SmallVector<Constant *, 64> TableContents(TableSize); 5091 for (size_t I = 0, E = Values.size(); I != E; ++I) { 5092 ConstantInt *CaseVal = Values[I].first; 5093 Constant *CaseRes = Values[I].second; 5094 assert(CaseRes->getType() == ValueType); 5095 5096 uint64_t Idx = (CaseVal->getValue() - Offset->getValue()).getLimitedValue(); 5097 TableContents[Idx] = CaseRes; 5098 5099 if (CaseRes != SingleValue) 5100 SingleValue = nullptr; 5101 } 5102 5103 // Fill in any holes in the table with the default result. 5104 if (Values.size() < TableSize) { 5105 assert(DefaultValue && 5106 "Need a default value to fill the lookup table holes."); 5107 assert(DefaultValue->getType() == ValueType); 5108 for (uint64_t I = 0; I < TableSize; ++I) { 5109 if (!TableContents[I]) 5110 TableContents[I] = DefaultValue; 5111 } 5112 5113 if (DefaultValue != SingleValue) 5114 SingleValue = nullptr; 5115 } 5116 5117 // If each element in the table contains the same value, we only need to store 5118 // that single value. 5119 if (SingleValue) { 5120 Kind = SingleValueKind; 5121 return; 5122 } 5123 5124 // Check if we can derive the value with a linear transformation from the 5125 // table index. 5126 if (isa<IntegerType>(ValueType)) { 5127 bool LinearMappingPossible = true; 5128 APInt PrevVal; 5129 APInt DistToPrev; 5130 assert(TableSize >= 2 && "Should be a SingleValue table."); 5131 // Check if there is the same distance between two consecutive values. 5132 for (uint64_t I = 0; I < TableSize; ++I) { 5133 ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]); 5134 if (!ConstVal) { 5135 // This is an undef. We could deal with it, but undefs in lookup tables 5136 // are very seldom. It's probably not worth the additional complexity. 5137 LinearMappingPossible = false; 5138 break; 5139 } 5140 const APInt &Val = ConstVal->getValue(); 5141 if (I != 0) { 5142 APInt Dist = Val - PrevVal; 5143 if (I == 1) { 5144 DistToPrev = Dist; 5145 } else if (Dist != DistToPrev) { 5146 LinearMappingPossible = false; 5147 break; 5148 } 5149 } 5150 PrevVal = Val; 5151 } 5152 if (LinearMappingPossible) { 5153 LinearOffset = cast<ConstantInt>(TableContents[0]); 5154 LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev); 5155 Kind = LinearMapKind; 5156 ++NumLinearMaps; 5157 return; 5158 } 5159 } 5160 5161 // If the type is integer and the table fits in a register, build a bitmap. 5162 if (WouldFitInRegister(DL, TableSize, ValueType)) { 5163 IntegerType *IT = cast<IntegerType>(ValueType); 5164 APInt TableInt(TableSize * IT->getBitWidth(), 0); 5165 for (uint64_t I = TableSize; I > 0; --I) { 5166 TableInt <<= IT->getBitWidth(); 5167 // Insert values into the bitmap. Undef values are set to zero. 5168 if (!isa<UndefValue>(TableContents[I - 1])) { 5169 ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]); 5170 TableInt |= Val->getValue().zext(TableInt.getBitWidth()); 5171 } 5172 } 5173 BitMap = ConstantInt::get(M.getContext(), TableInt); 5174 BitMapElementTy = IT; 5175 Kind = BitMapKind; 5176 ++NumBitMaps; 5177 return; 5178 } 5179 5180 // Store the table in an array. 5181 ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize); 5182 Constant *Initializer = ConstantArray::get(ArrayTy, TableContents); 5183 5184 Array = new GlobalVariable(M, ArrayTy, /*isConstant=*/true, 5185 GlobalVariable::PrivateLinkage, Initializer, 5186 "switch.table." + FuncName); 5187 Array->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); 5188 // Set the alignment to that of an array items. We will be only loading one 5189 // value out of it. 5190 Array->setAlignment(Align(DL.getPrefTypeAlignment(ValueType))); 5191 Kind = ArrayKind; 5192 } 5193 5194 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) { 5195 switch (Kind) { 5196 case SingleValueKind: 5197 return SingleValue; 5198 case LinearMapKind: { 5199 // Derive the result value from the input value. 5200 Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(), 5201 false, "switch.idx.cast"); 5202 if (!LinearMultiplier->isOne()) 5203 Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult"); 5204 if (!LinearOffset->isZero()) 5205 Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset"); 5206 return Result; 5207 } 5208 case BitMapKind: { 5209 // Type of the bitmap (e.g. i59). 5210 IntegerType *MapTy = BitMap->getType(); 5211 5212 // Cast Index to the same type as the bitmap. 5213 // Note: The Index is <= the number of elements in the table, so 5214 // truncating it to the width of the bitmask is safe. 5215 Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast"); 5216 5217 // Multiply the shift amount by the element width. 5218 ShiftAmt = Builder.CreateMul( 5219 ShiftAmt, ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()), 5220 "switch.shiftamt"); 5221 5222 // Shift down. 5223 Value *DownShifted = 5224 Builder.CreateLShr(BitMap, ShiftAmt, "switch.downshift"); 5225 // Mask off. 5226 return Builder.CreateTrunc(DownShifted, BitMapElementTy, "switch.masked"); 5227 } 5228 case ArrayKind: { 5229 // Make sure the table index will not overflow when treated as signed. 5230 IntegerType *IT = cast<IntegerType>(Index->getType()); 5231 uint64_t TableSize = 5232 Array->getInitializer()->getType()->getArrayNumElements(); 5233 if (TableSize > (1ULL << (IT->getBitWidth() - 1))) 5234 Index = Builder.CreateZExt( 5235 Index, IntegerType::get(IT->getContext(), IT->getBitWidth() + 1), 5236 "switch.tableidx.zext"); 5237 5238 Value *GEPIndices[] = {Builder.getInt32(0), Index}; 5239 Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array, 5240 GEPIndices, "switch.gep"); 5241 return Builder.CreateLoad( 5242 cast<ArrayType>(Array->getValueType())->getElementType(), GEP, 5243 "switch.load"); 5244 } 5245 } 5246 llvm_unreachable("Unknown lookup table kind!"); 5247 } 5248 5249 bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL, 5250 uint64_t TableSize, 5251 Type *ElementType) { 5252 auto *IT = dyn_cast<IntegerType>(ElementType); 5253 if (!IT) 5254 return false; 5255 // FIXME: If the type is wider than it needs to be, e.g. i8 but all values 5256 // are <= 15, we could try to narrow the type. 5257 5258 // Avoid overflow, fitsInLegalInteger uses unsigned int for the width. 5259 if (TableSize >= UINT_MAX / IT->getBitWidth()) 5260 return false; 5261 return DL.fitsInLegalInteger(TableSize * IT->getBitWidth()); 5262 } 5263 5264 /// Determine whether a lookup table should be built for this switch, based on 5265 /// the number of cases, size of the table, and the types of the results. 5266 static bool 5267 ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize, 5268 const TargetTransformInfo &TTI, const DataLayout &DL, 5269 const SmallDenseMap<PHINode *, Type *> &ResultTypes) { 5270 if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10) 5271 return false; // TableSize overflowed, or mul below might overflow. 5272 5273 bool AllTablesFitInRegister = true; 5274 bool HasIllegalType = false; 5275 for (const auto &I : ResultTypes) { 5276 Type *Ty = I.second; 5277 5278 // Saturate this flag to true. 5279 HasIllegalType = HasIllegalType || !TTI.isTypeLegal(Ty); 5280 5281 // Saturate this flag to false. 5282 AllTablesFitInRegister = 5283 AllTablesFitInRegister && 5284 SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty); 5285 5286 // If both flags saturate, we're done. NOTE: This *only* works with 5287 // saturating flags, and all flags have to saturate first due to the 5288 // non-deterministic behavior of iterating over a dense map. 5289 if (HasIllegalType && !AllTablesFitInRegister) 5290 break; 5291 } 5292 5293 // If each table would fit in a register, we should build it anyway. 5294 if (AllTablesFitInRegister) 5295 return true; 5296 5297 // Don't build a table that doesn't fit in-register if it has illegal types. 5298 if (HasIllegalType) 5299 return false; 5300 5301 // The table density should be at least 40%. This is the same criterion as for 5302 // jump tables, see SelectionDAGBuilder::handleJTSwitchCase. 5303 // FIXME: Find the best cut-off. 5304 return SI->getNumCases() * 10 >= TableSize * 4; 5305 } 5306 5307 /// Try to reuse the switch table index compare. Following pattern: 5308 /// \code 5309 /// if (idx < tablesize) 5310 /// r = table[idx]; // table does not contain default_value 5311 /// else 5312 /// r = default_value; 5313 /// if (r != default_value) 5314 /// ... 5315 /// \endcode 5316 /// Is optimized to: 5317 /// \code 5318 /// cond = idx < tablesize; 5319 /// if (cond) 5320 /// r = table[idx]; 5321 /// else 5322 /// r = default_value; 5323 /// if (cond) 5324 /// ... 5325 /// \endcode 5326 /// Jump threading will then eliminate the second if(cond). 5327 static void reuseTableCompare( 5328 User *PhiUser, BasicBlock *PhiBlock, BranchInst *RangeCheckBranch, 5329 Constant *DefaultValue, 5330 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values) { 5331 ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser); 5332 if (!CmpInst) 5333 return; 5334 5335 // We require that the compare is in the same block as the phi so that jump 5336 // threading can do its work afterwards. 5337 if (CmpInst->getParent() != PhiBlock) 5338 return; 5339 5340 Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1)); 5341 if (!CmpOp1) 5342 return; 5343 5344 Value *RangeCmp = RangeCheckBranch->getCondition(); 5345 Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType()); 5346 Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType()); 5347 5348 // Check if the compare with the default value is constant true or false. 5349 Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(), 5350 DefaultValue, CmpOp1, true); 5351 if (DefaultConst != TrueConst && DefaultConst != FalseConst) 5352 return; 5353 5354 // Check if the compare with the case values is distinct from the default 5355 // compare result. 5356 for (auto ValuePair : Values) { 5357 Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(), 5358 ValuePair.second, CmpOp1, true); 5359 if (!CaseConst || CaseConst == DefaultConst || isa<UndefValue>(CaseConst)) 5360 return; 5361 assert((CaseConst == TrueConst || CaseConst == FalseConst) && 5362 "Expect true or false as compare result."); 5363 } 5364 5365 // Check if the branch instruction dominates the phi node. It's a simple 5366 // dominance check, but sufficient for our needs. 5367 // Although this check is invariant in the calling loops, it's better to do it 5368 // at this late stage. Practically we do it at most once for a switch. 5369 BasicBlock *BranchBlock = RangeCheckBranch->getParent(); 5370 for (auto PI = pred_begin(PhiBlock), E = pred_end(PhiBlock); PI != E; ++PI) { 5371 BasicBlock *Pred = *PI; 5372 if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock) 5373 return; 5374 } 5375 5376 if (DefaultConst == FalseConst) { 5377 // The compare yields the same result. We can replace it. 5378 CmpInst->replaceAllUsesWith(RangeCmp); 5379 ++NumTableCmpReuses; 5380 } else { 5381 // The compare yields the same result, just inverted. We can replace it. 5382 Value *InvertedTableCmp = BinaryOperator::CreateXor( 5383 RangeCmp, ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp", 5384 RangeCheckBranch); 5385 CmpInst->replaceAllUsesWith(InvertedTableCmp); 5386 ++NumTableCmpReuses; 5387 } 5388 } 5389 5390 /// If the switch is only used to initialize one or more phi nodes in a common 5391 /// successor block with different constant values, replace the switch with 5392 /// lookup tables. 5393 static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder, 5394 const DataLayout &DL, 5395 const TargetTransformInfo &TTI) { 5396 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 5397 5398 Function *Fn = SI->getParent()->getParent(); 5399 // Only build lookup table when we have a target that supports it or the 5400 // attribute is not set. 5401 if (!TTI.shouldBuildLookupTables() || 5402 (Fn->getFnAttribute("no-jump-tables").getValueAsString() == "true")) 5403 return false; 5404 5405 // FIXME: If the switch is too sparse for a lookup table, perhaps we could 5406 // split off a dense part and build a lookup table for that. 5407 5408 // FIXME: This creates arrays of GEPs to constant strings, which means each 5409 // GEP needs a runtime relocation in PIC code. We should just build one big 5410 // string and lookup indices into that. 5411 5412 // Ignore switches with less than three cases. Lookup tables will not make 5413 // them faster, so we don't analyze them. 5414 if (SI->getNumCases() < 3) 5415 return false; 5416 5417 // Figure out the corresponding result for each case value and phi node in the 5418 // common destination, as well as the min and max case values. 5419 assert(!SI->cases().empty()); 5420 SwitchInst::CaseIt CI = SI->case_begin(); 5421 ConstantInt *MinCaseVal = CI->getCaseValue(); 5422 ConstantInt *MaxCaseVal = CI->getCaseValue(); 5423 5424 BasicBlock *CommonDest = nullptr; 5425 5426 using ResultListTy = SmallVector<std::pair<ConstantInt *, Constant *>, 4>; 5427 SmallDenseMap<PHINode *, ResultListTy> ResultLists; 5428 5429 SmallDenseMap<PHINode *, Constant *> DefaultResults; 5430 SmallDenseMap<PHINode *, Type *> ResultTypes; 5431 SmallVector<PHINode *, 4> PHIs; 5432 5433 for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) { 5434 ConstantInt *CaseVal = CI->getCaseValue(); 5435 if (CaseVal->getValue().slt(MinCaseVal->getValue())) 5436 MinCaseVal = CaseVal; 5437 if (CaseVal->getValue().sgt(MaxCaseVal->getValue())) 5438 MaxCaseVal = CaseVal; 5439 5440 // Resulting value at phi nodes for this case value. 5441 using ResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>; 5442 ResultsTy Results; 5443 if (!GetCaseResults(SI, CaseVal, CI->getCaseSuccessor(), &CommonDest, 5444 Results, DL, TTI)) 5445 return false; 5446 5447 // Append the result from this case to the list for each phi. 5448 for (const auto &I : Results) { 5449 PHINode *PHI = I.first; 5450 Constant *Value = I.second; 5451 if (!ResultLists.count(PHI)) 5452 PHIs.push_back(PHI); 5453 ResultLists[PHI].push_back(std::make_pair(CaseVal, Value)); 5454 } 5455 } 5456 5457 // Keep track of the result types. 5458 for (PHINode *PHI : PHIs) { 5459 ResultTypes[PHI] = ResultLists[PHI][0].second->getType(); 5460 } 5461 5462 uint64_t NumResults = ResultLists[PHIs[0]].size(); 5463 APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue(); 5464 uint64_t TableSize = RangeSpread.getLimitedValue() + 1; 5465 bool TableHasHoles = (NumResults < TableSize); 5466 5467 // If the table has holes, we need a constant result for the default case 5468 // or a bitmask that fits in a register. 5469 SmallVector<std::pair<PHINode *, Constant *>, 4> DefaultResultsList; 5470 bool HasDefaultResults = 5471 GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, 5472 DefaultResultsList, DL, TTI); 5473 5474 bool NeedMask = (TableHasHoles && !HasDefaultResults); 5475 if (NeedMask) { 5476 // As an extra penalty for the validity test we require more cases. 5477 if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark). 5478 return false; 5479 if (!DL.fitsInLegalInteger(TableSize)) 5480 return false; 5481 } 5482 5483 for (const auto &I : DefaultResultsList) { 5484 PHINode *PHI = I.first; 5485 Constant *Result = I.second; 5486 DefaultResults[PHI] = Result; 5487 } 5488 5489 if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes)) 5490 return false; 5491 5492 // Create the BB that does the lookups. 5493 Module &Mod = *CommonDest->getParent()->getParent(); 5494 BasicBlock *LookupBB = BasicBlock::Create( 5495 Mod.getContext(), "switch.lookup", CommonDest->getParent(), CommonDest); 5496 5497 // Compute the table index value. 5498 Builder.SetInsertPoint(SI); 5499 Value *TableIndex; 5500 if (MinCaseVal->isNullValue()) 5501 TableIndex = SI->getCondition(); 5502 else 5503 TableIndex = Builder.CreateSub(SI->getCondition(), MinCaseVal, 5504 "switch.tableidx"); 5505 5506 // Compute the maximum table size representable by the integer type we are 5507 // switching upon. 5508 unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits(); 5509 uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize; 5510 assert(MaxTableSize >= TableSize && 5511 "It is impossible for a switch to have more entries than the max " 5512 "representable value of its input integer type's size."); 5513 5514 // If the default destination is unreachable, or if the lookup table covers 5515 // all values of the conditional variable, branch directly to the lookup table 5516 // BB. Otherwise, check that the condition is within the case range. 5517 const bool DefaultIsReachable = 5518 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 5519 const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize); 5520 BranchInst *RangeCheckBranch = nullptr; 5521 5522 if (!DefaultIsReachable || GeneratingCoveredLookupTable) { 5523 Builder.CreateBr(LookupBB); 5524 // Note: We call removeProdecessor later since we need to be able to get the 5525 // PHI value for the default case in case we're using a bit mask. 5526 } else { 5527 Value *Cmp = Builder.CreateICmpULT( 5528 TableIndex, ConstantInt::get(MinCaseVal->getType(), TableSize)); 5529 RangeCheckBranch = 5530 Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest()); 5531 } 5532 5533 // Populate the BB that does the lookups. 5534 Builder.SetInsertPoint(LookupBB); 5535 5536 if (NeedMask) { 5537 // Before doing the lookup, we do the hole check. The LookupBB is therefore 5538 // re-purposed to do the hole check, and we create a new LookupBB. 5539 BasicBlock *MaskBB = LookupBB; 5540 MaskBB->setName("switch.hole_check"); 5541 LookupBB = BasicBlock::Create(Mod.getContext(), "switch.lookup", 5542 CommonDest->getParent(), CommonDest); 5543 5544 // Make the mask's bitwidth at least 8-bit and a power-of-2 to avoid 5545 // unnecessary illegal types. 5546 uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL)); 5547 APInt MaskInt(TableSizePowOf2, 0); 5548 APInt One(TableSizePowOf2, 1); 5549 // Build bitmask; fill in a 1 bit for every case. 5550 const ResultListTy &ResultList = ResultLists[PHIs[0]]; 5551 for (size_t I = 0, E = ResultList.size(); I != E; ++I) { 5552 uint64_t Idx = (ResultList[I].first->getValue() - MinCaseVal->getValue()) 5553 .getLimitedValue(); 5554 MaskInt |= One << Idx; 5555 } 5556 ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt); 5557 5558 // Get the TableIndex'th bit of the bitmask. 5559 // If this bit is 0 (meaning hole) jump to the default destination, 5560 // else continue with table lookup. 5561 IntegerType *MapTy = TableMask->getType(); 5562 Value *MaskIndex = 5563 Builder.CreateZExtOrTrunc(TableIndex, MapTy, "switch.maskindex"); 5564 Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, "switch.shifted"); 5565 Value *LoBit = Builder.CreateTrunc( 5566 Shifted, Type::getInt1Ty(Mod.getContext()), "switch.lobit"); 5567 Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest()); 5568 5569 Builder.SetInsertPoint(LookupBB); 5570 AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, SI->getParent()); 5571 } 5572 5573 if (!DefaultIsReachable || GeneratingCoveredLookupTable) { 5574 // We cached PHINodes in PHIs. To avoid accessing deleted PHINodes later, 5575 // do not delete PHINodes here. 5576 SI->getDefaultDest()->removePredecessor(SI->getParent(), 5577 /*KeepOneInputPHIs=*/true); 5578 } 5579 5580 bool ReturnedEarly = false; 5581 for (PHINode *PHI : PHIs) { 5582 const ResultListTy &ResultList = ResultLists[PHI]; 5583 5584 // If using a bitmask, use any value to fill the lookup table holes. 5585 Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI]; 5586 StringRef FuncName = Fn->getName(); 5587 SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultList, DV, DL, 5588 FuncName); 5589 5590 Value *Result = Table.BuildLookup(TableIndex, Builder); 5591 5592 // If the result is used to return immediately from the function, we want to 5593 // do that right here. 5594 if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->user_begin()) && 5595 PHI->user_back() == CommonDest->getFirstNonPHIOrDbg()) { 5596 Builder.CreateRet(Result); 5597 ReturnedEarly = true; 5598 break; 5599 } 5600 5601 // Do a small peephole optimization: re-use the switch table compare if 5602 // possible. 5603 if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) { 5604 BasicBlock *PhiBlock = PHI->getParent(); 5605 // Search for compare instructions which use the phi. 5606 for (auto *User : PHI->users()) { 5607 reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList); 5608 } 5609 } 5610 5611 PHI->addIncoming(Result, LookupBB); 5612 } 5613 5614 if (!ReturnedEarly) 5615 Builder.CreateBr(CommonDest); 5616 5617 // Remove the switch. 5618 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { 5619 BasicBlock *Succ = SI->getSuccessor(i); 5620 5621 if (Succ == SI->getDefaultDest()) 5622 continue; 5623 Succ->removePredecessor(SI->getParent()); 5624 } 5625 SI->eraseFromParent(); 5626 5627 ++NumLookupTables; 5628 if (NeedMask) 5629 ++NumLookupTablesHoles; 5630 return true; 5631 } 5632 5633 static bool isSwitchDense(ArrayRef<int64_t> Values) { 5634 // See also SelectionDAGBuilder::isDense(), which this function was based on. 5635 uint64_t Diff = (uint64_t)Values.back() - (uint64_t)Values.front(); 5636 uint64_t Range = Diff + 1; 5637 uint64_t NumCases = Values.size(); 5638 // 40% is the default density for building a jump table in optsize/minsize mode. 5639 uint64_t MinDensity = 40; 5640 5641 return NumCases * 100 >= Range * MinDensity; 5642 } 5643 5644 /// Try to transform a switch that has "holes" in it to a contiguous sequence 5645 /// of cases. 5646 /// 5647 /// A switch such as: switch(i) {case 5: case 9: case 13: case 17:} can be 5648 /// range-reduced to: switch ((i-5) / 4) {case 0: case 1: case 2: case 3:}. 5649 /// 5650 /// This converts a sparse switch into a dense switch which allows better 5651 /// lowering and could also allow transforming into a lookup table. 5652 static bool ReduceSwitchRange(SwitchInst *SI, IRBuilder<> &Builder, 5653 const DataLayout &DL, 5654 const TargetTransformInfo &TTI) { 5655 auto *CondTy = cast<IntegerType>(SI->getCondition()->getType()); 5656 if (CondTy->getIntegerBitWidth() > 64 || 5657 !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth())) 5658 return false; 5659 // Only bother with this optimization if there are more than 3 switch cases; 5660 // SDAG will only bother creating jump tables for 4 or more cases. 5661 if (SI->getNumCases() < 4) 5662 return false; 5663 5664 // This transform is agnostic to the signedness of the input or case values. We 5665 // can treat the case values as signed or unsigned. We can optimize more common 5666 // cases such as a sequence crossing zero {-4,0,4,8} if we interpret case values 5667 // as signed. 5668 SmallVector<int64_t,4> Values; 5669 for (auto &C : SI->cases()) 5670 Values.push_back(C.getCaseValue()->getValue().getSExtValue()); 5671 llvm::sort(Values); 5672 5673 // If the switch is already dense, there's nothing useful to do here. 5674 if (isSwitchDense(Values)) 5675 return false; 5676 5677 // First, transform the values such that they start at zero and ascend. 5678 int64_t Base = Values[0]; 5679 for (auto &V : Values) 5680 V -= (uint64_t)(Base); 5681 5682 // Now we have signed numbers that have been shifted so that, given enough 5683 // precision, there are no negative values. Since the rest of the transform 5684 // is bitwise only, we switch now to an unsigned representation. 5685 5686 // This transform can be done speculatively because it is so cheap - it 5687 // results in a single rotate operation being inserted. 5688 // FIXME: It's possible that optimizing a switch on powers of two might also 5689 // be beneficial - flag values are often powers of two and we could use a CLZ 5690 // as the key function. 5691 5692 // countTrailingZeros(0) returns 64. As Values is guaranteed to have more than 5693 // one element and LLVM disallows duplicate cases, Shift is guaranteed to be 5694 // less than 64. 5695 unsigned Shift = 64; 5696 for (auto &V : Values) 5697 Shift = std::min(Shift, countTrailingZeros((uint64_t)V)); 5698 assert(Shift < 64); 5699 if (Shift > 0) 5700 for (auto &V : Values) 5701 V = (int64_t)((uint64_t)V >> Shift); 5702 5703 if (!isSwitchDense(Values)) 5704 // Transform didn't create a dense switch. 5705 return false; 5706 5707 // The obvious transform is to shift the switch condition right and emit a 5708 // check that the condition actually cleanly divided by GCD, i.e. 5709 // C & (1 << Shift - 1) == 0 5710 // inserting a new CFG edge to handle the case where it didn't divide cleanly. 5711 // 5712 // A cheaper way of doing this is a simple ROTR(C, Shift). This performs the 5713 // shift and puts the shifted-off bits in the uppermost bits. If any of these 5714 // are nonzero then the switch condition will be very large and will hit the 5715 // default case. 5716 5717 auto *Ty = cast<IntegerType>(SI->getCondition()->getType()); 5718 Builder.SetInsertPoint(SI); 5719 auto *ShiftC = ConstantInt::get(Ty, Shift); 5720 auto *Sub = Builder.CreateSub(SI->getCondition(), ConstantInt::get(Ty, Base)); 5721 auto *LShr = Builder.CreateLShr(Sub, ShiftC); 5722 auto *Shl = Builder.CreateShl(Sub, Ty->getBitWidth() - Shift); 5723 auto *Rot = Builder.CreateOr(LShr, Shl); 5724 SI->replaceUsesOfWith(SI->getCondition(), Rot); 5725 5726 for (auto Case : SI->cases()) { 5727 auto *Orig = Case.getCaseValue(); 5728 auto Sub = Orig->getValue() - APInt(Ty->getBitWidth(), Base); 5729 Case.setValue( 5730 cast<ConstantInt>(ConstantInt::get(Ty, Sub.lshr(ShiftC->getValue())))); 5731 } 5732 return true; 5733 } 5734 5735 bool SimplifyCFGOpt::simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) { 5736 BasicBlock *BB = SI->getParent(); 5737 5738 if (isValueEqualityComparison(SI)) { 5739 // If we only have one predecessor, and if it is a branch on this value, 5740 // see if that predecessor totally determines the outcome of this switch. 5741 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 5742 if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder)) 5743 return requestResimplify(); 5744 5745 Value *Cond = SI->getCondition(); 5746 if (SelectInst *Select = dyn_cast<SelectInst>(Cond)) 5747 if (SimplifySwitchOnSelect(SI, Select)) 5748 return requestResimplify(); 5749 5750 // If the block only contains the switch, see if we can fold the block 5751 // away into any preds. 5752 if (SI == &*BB->instructionsWithoutDebug().begin()) 5753 if (FoldValueComparisonIntoPredecessors(SI, Builder)) 5754 return requestResimplify(); 5755 } 5756 5757 // Try to transform the switch into an icmp and a branch. 5758 if (TurnSwitchRangeIntoICmp(SI, Builder)) 5759 return requestResimplify(); 5760 5761 // Remove unreachable cases. 5762 if (eliminateDeadSwitchCases(SI, Options.AC, DL)) 5763 return requestResimplify(); 5764 5765 if (switchToSelect(SI, Builder, DL, TTI)) 5766 return requestResimplify(); 5767 5768 if (Options.ForwardSwitchCondToPhi && ForwardSwitchConditionToPHI(SI)) 5769 return requestResimplify(); 5770 5771 // The conversion from switch to lookup tables results in difficult-to-analyze 5772 // code and makes pruning branches much harder. This is a problem if the 5773 // switch expression itself can still be restricted as a result of inlining or 5774 // CVP. Therefore, only apply this transformation during late stages of the 5775 // optimisation pipeline. 5776 if (Options.ConvertSwitchToLookupTable && 5777 SwitchToLookupTable(SI, Builder, DL, TTI)) 5778 return requestResimplify(); 5779 5780 if (ReduceSwitchRange(SI, Builder, DL, TTI)) 5781 return requestResimplify(); 5782 5783 return false; 5784 } 5785 5786 bool SimplifyCFGOpt::simplifyIndirectBr(IndirectBrInst *IBI) { 5787 BasicBlock *BB = IBI->getParent(); 5788 bool Changed = false; 5789 5790 // Eliminate redundant destinations. 5791 SmallPtrSet<Value *, 8> Succs; 5792 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 5793 BasicBlock *Dest = IBI->getDestination(i); 5794 if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) { 5795 Dest->removePredecessor(BB); 5796 IBI->removeDestination(i); 5797 --i; 5798 --e; 5799 Changed = true; 5800 } 5801 } 5802 5803 if (IBI->getNumDestinations() == 0) { 5804 // If the indirectbr has no successors, change it to unreachable. 5805 new UnreachableInst(IBI->getContext(), IBI); 5806 EraseTerminatorAndDCECond(IBI); 5807 return true; 5808 } 5809 5810 if (IBI->getNumDestinations() == 1) { 5811 // If the indirectbr has one successor, change it to a direct branch. 5812 BranchInst::Create(IBI->getDestination(0), IBI); 5813 EraseTerminatorAndDCECond(IBI); 5814 return true; 5815 } 5816 5817 if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) { 5818 if (SimplifyIndirectBrOnSelect(IBI, SI)) 5819 return requestResimplify(); 5820 } 5821 return Changed; 5822 } 5823 5824 /// Given an block with only a single landing pad and a unconditional branch 5825 /// try to find another basic block which this one can be merged with. This 5826 /// handles cases where we have multiple invokes with unique landing pads, but 5827 /// a shared handler. 5828 /// 5829 /// We specifically choose to not worry about merging non-empty blocks 5830 /// here. That is a PRE/scheduling problem and is best solved elsewhere. In 5831 /// practice, the optimizer produces empty landing pad blocks quite frequently 5832 /// when dealing with exception dense code. (see: instcombine, gvn, if-else 5833 /// sinking in this file) 5834 /// 5835 /// This is primarily a code size optimization. We need to avoid performing 5836 /// any transform which might inhibit optimization (such as our ability to 5837 /// specialize a particular handler via tail commoning). We do this by not 5838 /// merging any blocks which require us to introduce a phi. Since the same 5839 /// values are flowing through both blocks, we don't lose any ability to 5840 /// specialize. If anything, we make such specialization more likely. 5841 /// 5842 /// TODO - This transformation could remove entries from a phi in the target 5843 /// block when the inputs in the phi are the same for the two blocks being 5844 /// merged. In some cases, this could result in removal of the PHI entirely. 5845 static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI, 5846 BasicBlock *BB) { 5847 auto Succ = BB->getUniqueSuccessor(); 5848 assert(Succ); 5849 // If there's a phi in the successor block, we'd likely have to introduce 5850 // a phi into the merged landing pad block. 5851 if (isa<PHINode>(*Succ->begin())) 5852 return false; 5853 5854 for (BasicBlock *OtherPred : predecessors(Succ)) { 5855 if (BB == OtherPred) 5856 continue; 5857 BasicBlock::iterator I = OtherPred->begin(); 5858 LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I); 5859 if (!LPad2 || !LPad2->isIdenticalTo(LPad)) 5860 continue; 5861 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 5862 ; 5863 BranchInst *BI2 = dyn_cast<BranchInst>(I); 5864 if (!BI2 || !BI2->isIdenticalTo(BI)) 5865 continue; 5866 5867 // We've found an identical block. Update our predecessors to take that 5868 // path instead and make ourselves dead. 5869 SmallPtrSet<BasicBlock *, 16> Preds; 5870 Preds.insert(pred_begin(BB), pred_end(BB)); 5871 for (BasicBlock *Pred : Preds) { 5872 InvokeInst *II = cast<InvokeInst>(Pred->getTerminator()); 5873 assert(II->getNormalDest() != BB && II->getUnwindDest() == BB && 5874 "unexpected successor"); 5875 II->setUnwindDest(OtherPred); 5876 } 5877 5878 // The debug info in OtherPred doesn't cover the merged control flow that 5879 // used to go through BB. We need to delete it or update it. 5880 for (auto I = OtherPred->begin(), E = OtherPred->end(); I != E;) { 5881 Instruction &Inst = *I; 5882 I++; 5883 if (isa<DbgInfoIntrinsic>(Inst)) 5884 Inst.eraseFromParent(); 5885 } 5886 5887 SmallPtrSet<BasicBlock *, 16> Succs; 5888 Succs.insert(succ_begin(BB), succ_end(BB)); 5889 for (BasicBlock *Succ : Succs) { 5890 Succ->removePredecessor(BB); 5891 } 5892 5893 IRBuilder<> Builder(BI); 5894 Builder.CreateUnreachable(); 5895 BI->eraseFromParent(); 5896 return true; 5897 } 5898 return false; 5899 } 5900 5901 bool SimplifyCFGOpt::simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder) { 5902 return Branch->isUnconditional() ? simplifyUncondBranch(Branch, Builder) 5903 : simplifyCondBranch(Branch, Builder); 5904 } 5905 5906 bool SimplifyCFGOpt::simplifyUncondBranch(BranchInst *BI, 5907 IRBuilder<> &Builder) { 5908 BasicBlock *BB = BI->getParent(); 5909 BasicBlock *Succ = BI->getSuccessor(0); 5910 5911 // If the Terminator is the only non-phi instruction, simplify the block. 5912 // If LoopHeader is provided, check if the block or its successor is a loop 5913 // header. (This is for early invocations before loop simplify and 5914 // vectorization to keep canonical loop forms for nested loops. These blocks 5915 // can be eliminated when the pass is invoked later in the back-end.) 5916 // Note that if BB has only one predecessor then we do not introduce new 5917 // backedge, so we can eliminate BB. 5918 bool NeedCanonicalLoop = 5919 Options.NeedCanonicalLoop && 5920 (LoopHeaders && BB->hasNPredecessorsOrMore(2) && 5921 (LoopHeaders->count(BB) || LoopHeaders->count(Succ))); 5922 BasicBlock::iterator I = BB->getFirstNonPHIOrDbg()->getIterator(); 5923 if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() && 5924 !NeedCanonicalLoop && TryToSimplifyUncondBranchFromEmptyBlock(BB)) 5925 return true; 5926 5927 // If the only instruction in the block is a seteq/setne comparison against a 5928 // constant, try to simplify the block. 5929 if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) 5930 if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) { 5931 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 5932 ; 5933 if (I->isTerminator() && 5934 tryToSimplifyUncondBranchWithICmpInIt(ICI, Builder)) 5935 return true; 5936 } 5937 5938 // See if we can merge an empty landing pad block with another which is 5939 // equivalent. 5940 if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) { 5941 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 5942 ; 5943 if (I->isTerminator() && TryToMergeLandingPad(LPad, BI, BB)) 5944 return true; 5945 } 5946 5947 // If this basic block is ONLY a compare and a branch, and if a predecessor 5948 // branches to us and our successor, fold the comparison into the 5949 // predecessor and use logical operations to update the incoming value 5950 // for PHI nodes in common successor. 5951 if (FoldBranchToCommonDest(BI, nullptr, Options.BonusInstThreshold)) 5952 return requestResimplify(); 5953 return false; 5954 } 5955 5956 static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) { 5957 BasicBlock *PredPred = nullptr; 5958 for (auto *P : predecessors(BB)) { 5959 BasicBlock *PPred = P->getSinglePredecessor(); 5960 if (!PPred || (PredPred && PredPred != PPred)) 5961 return nullptr; 5962 PredPred = PPred; 5963 } 5964 return PredPred; 5965 } 5966 5967 bool SimplifyCFGOpt::simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) { 5968 BasicBlock *BB = BI->getParent(); 5969 if (!Options.SimplifyCondBranch) 5970 return false; 5971 5972 // Conditional branch 5973 if (isValueEqualityComparison(BI)) { 5974 // If we only have one predecessor, and if it is a branch on this value, 5975 // see if that predecessor totally determines the outcome of this 5976 // switch. 5977 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 5978 if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder)) 5979 return requestResimplify(); 5980 5981 // This block must be empty, except for the setcond inst, if it exists. 5982 // Ignore dbg intrinsics. 5983 auto I = BB->instructionsWithoutDebug().begin(); 5984 if (&*I == BI) { 5985 if (FoldValueComparisonIntoPredecessors(BI, Builder)) 5986 return requestResimplify(); 5987 } else if (&*I == cast<Instruction>(BI->getCondition())) { 5988 ++I; 5989 if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder)) 5990 return requestResimplify(); 5991 } 5992 } 5993 5994 // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction. 5995 if (SimplifyBranchOnICmpChain(BI, Builder, DL)) 5996 return true; 5997 5998 // If this basic block has dominating predecessor blocks and the dominating 5999 // blocks' conditions imply BI's condition, we know the direction of BI. 6000 Optional<bool> Imp = isImpliedByDomCondition(BI->getCondition(), BI, DL); 6001 if (Imp) { 6002 // Turn this into a branch on constant. 6003 auto *OldCond = BI->getCondition(); 6004 ConstantInt *TorF = *Imp ? ConstantInt::getTrue(BB->getContext()) 6005 : ConstantInt::getFalse(BB->getContext()); 6006 BI->setCondition(TorF); 6007 RecursivelyDeleteTriviallyDeadInstructions(OldCond); 6008 return requestResimplify(); 6009 } 6010 6011 // If this basic block is ONLY a compare and a branch, and if a predecessor 6012 // branches to us and one of our successors, fold the comparison into the 6013 // predecessor and use logical operations to pick the right destination. 6014 if (FoldBranchToCommonDest(BI, nullptr, Options.BonusInstThreshold)) 6015 return requestResimplify(); 6016 6017 // We have a conditional branch to two blocks that are only reachable 6018 // from BI. We know that the condbr dominates the two blocks, so see if 6019 // there is any identical code in the "then" and "else" blocks. If so, we 6020 // can hoist it up to the branching block. 6021 if (BI->getSuccessor(0)->getSinglePredecessor()) { 6022 if (BI->getSuccessor(1)->getSinglePredecessor()) { 6023 if (HoistThenElseCodeToIf(BI, TTI)) 6024 return requestResimplify(); 6025 } else { 6026 // If Successor #1 has multiple preds, we may be able to conditionally 6027 // execute Successor #0 if it branches to Successor #1. 6028 Instruction *Succ0TI = BI->getSuccessor(0)->getTerminator(); 6029 if (Succ0TI->getNumSuccessors() == 1 && 6030 Succ0TI->getSuccessor(0) == BI->getSuccessor(1)) 6031 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), TTI)) 6032 return requestResimplify(); 6033 } 6034 } else if (BI->getSuccessor(1)->getSinglePredecessor()) { 6035 // If Successor #0 has multiple preds, we may be able to conditionally 6036 // execute Successor #1 if it branches to Successor #0. 6037 Instruction *Succ1TI = BI->getSuccessor(1)->getTerminator(); 6038 if (Succ1TI->getNumSuccessors() == 1 && 6039 Succ1TI->getSuccessor(0) == BI->getSuccessor(0)) 6040 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), TTI)) 6041 return requestResimplify(); 6042 } 6043 6044 // If this is a branch on a phi node in the current block, thread control 6045 // through this block if any PHI node entries are constants. 6046 if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition())) 6047 if (PN->getParent() == BI->getParent()) 6048 if (FoldCondBranchOnPHI(BI, DL, Options.AC)) 6049 return requestResimplify(); 6050 6051 // Scan predecessor blocks for conditional branches. 6052 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 6053 if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator())) 6054 if (PBI != BI && PBI->isConditional()) 6055 if (SimplifyCondBranchToCondBranch(PBI, BI, DL, TTI)) 6056 return requestResimplify(); 6057 6058 // Look for diamond patterns. 6059 if (MergeCondStores) 6060 if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB)) 6061 if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator())) 6062 if (PBI != BI && PBI->isConditional()) 6063 if (mergeConditionalStores(PBI, BI, DL, TTI)) 6064 return requestResimplify(); 6065 6066 return false; 6067 } 6068 6069 /// Check if passing a value to an instruction will cause undefined behavior. 6070 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I) { 6071 Constant *C = dyn_cast<Constant>(V); 6072 if (!C) 6073 return false; 6074 6075 if (I->use_empty()) 6076 return false; 6077 6078 if (C->isNullValue() || isa<UndefValue>(C)) { 6079 // Only look at the first use, avoid hurting compile time with long uselists 6080 User *Use = *I->user_begin(); 6081 6082 // Now make sure that there are no instructions in between that can alter 6083 // control flow (eg. calls) 6084 for (BasicBlock::iterator 6085 i = ++BasicBlock::iterator(I), 6086 UI = BasicBlock::iterator(dyn_cast<Instruction>(Use)); 6087 i != UI; ++i) 6088 if (i == I->getParent()->end() || i->mayHaveSideEffects()) 6089 return false; 6090 6091 // Look through GEPs. A load from a GEP derived from NULL is still undefined 6092 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use)) 6093 if (GEP->getPointerOperand() == I) 6094 return passingValueIsAlwaysUndefined(V, GEP); 6095 6096 // Look through bitcasts. 6097 if (BitCastInst *BC = dyn_cast<BitCastInst>(Use)) 6098 return passingValueIsAlwaysUndefined(V, BC); 6099 6100 // Load from null is undefined. 6101 if (LoadInst *LI = dyn_cast<LoadInst>(Use)) 6102 if (!LI->isVolatile()) 6103 return !NullPointerIsDefined(LI->getFunction(), 6104 LI->getPointerAddressSpace()); 6105 6106 // Store to null is undefined. 6107 if (StoreInst *SI = dyn_cast<StoreInst>(Use)) 6108 if (!SI->isVolatile()) 6109 return (!NullPointerIsDefined(SI->getFunction(), 6110 SI->getPointerAddressSpace())) && 6111 SI->getPointerOperand() == I; 6112 6113 // A call to null is undefined. 6114 if (auto *CB = dyn_cast<CallBase>(Use)) 6115 return !NullPointerIsDefined(CB->getFunction()) && 6116 CB->getCalledOperand() == I; 6117 } 6118 return false; 6119 } 6120 6121 /// If BB has an incoming value that will always trigger undefined behavior 6122 /// (eg. null pointer dereference), remove the branch leading here. 6123 static bool removeUndefIntroducingPredecessor(BasicBlock *BB) { 6124 for (PHINode &PHI : BB->phis()) 6125 for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i) 6126 if (passingValueIsAlwaysUndefined(PHI.getIncomingValue(i), &PHI)) { 6127 Instruction *T = PHI.getIncomingBlock(i)->getTerminator(); 6128 IRBuilder<> Builder(T); 6129 if (BranchInst *BI = dyn_cast<BranchInst>(T)) { 6130 BB->removePredecessor(PHI.getIncomingBlock(i)); 6131 // Turn uncoditional branches into unreachables and remove the dead 6132 // destination from conditional branches. 6133 if (BI->isUnconditional()) 6134 Builder.CreateUnreachable(); 6135 else 6136 Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1) 6137 : BI->getSuccessor(0)); 6138 BI->eraseFromParent(); 6139 return true; 6140 } 6141 // TODO: SwitchInst. 6142 } 6143 6144 return false; 6145 } 6146 6147 bool SimplifyCFGOpt::simplifyOnce(BasicBlock *BB) { 6148 bool Changed = false; 6149 6150 assert(BB && BB->getParent() && "Block not embedded in function!"); 6151 assert(BB->getTerminator() && "Degenerate basic block encountered!"); 6152 6153 // Remove basic blocks that have no predecessors (except the entry block)... 6154 // or that just have themself as a predecessor. These are unreachable. 6155 if ((pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) || 6156 BB->getSinglePredecessor() == BB) { 6157 LLVM_DEBUG(dbgs() << "Removing BB: \n" << *BB); 6158 DeleteDeadBlock(BB); 6159 return true; 6160 } 6161 6162 // Check to see if we can constant propagate this terminator instruction 6163 // away... 6164 Changed |= ConstantFoldTerminator(BB, true); 6165 6166 // Check for and eliminate duplicate PHI nodes in this block. 6167 Changed |= EliminateDuplicatePHINodes(BB); 6168 6169 // Check for and remove branches that will always cause undefined behavior. 6170 Changed |= removeUndefIntroducingPredecessor(BB); 6171 6172 // Merge basic blocks into their predecessor if there is only one distinct 6173 // pred, and if there is only one distinct successor of the predecessor, and 6174 // if there are no PHI nodes. 6175 if (MergeBlockIntoPredecessor(BB)) 6176 return true; 6177 6178 if (SinkCommon && Options.SinkCommonInsts) 6179 Changed |= SinkCommonCodeFromPredecessors(BB); 6180 6181 IRBuilder<> Builder(BB); 6182 6183 if (Options.FoldTwoEntryPHINode) { 6184 // If there is a trivial two-entry PHI node in this basic block, and we can 6185 // eliminate it, do so now. 6186 if (auto *PN = dyn_cast<PHINode>(BB->begin())) 6187 if (PN->getNumIncomingValues() == 2) 6188 Changed |= FoldTwoEntryPHINode(PN, TTI, DL); 6189 } 6190 6191 Instruction *Terminator = BB->getTerminator(); 6192 Builder.SetInsertPoint(Terminator); 6193 switch (Terminator->getOpcode()) { 6194 case Instruction::Br: 6195 Changed |= simplifyBranch(cast<BranchInst>(Terminator), Builder); 6196 break; 6197 case Instruction::Ret: 6198 Changed |= simplifyReturn(cast<ReturnInst>(Terminator), Builder); 6199 break; 6200 case Instruction::Resume: 6201 Changed |= simplifyResume(cast<ResumeInst>(Terminator), Builder); 6202 break; 6203 case Instruction::CleanupRet: 6204 Changed |= simplifyCleanupReturn(cast<CleanupReturnInst>(Terminator)); 6205 break; 6206 case Instruction::Switch: 6207 Changed |= simplifySwitch(cast<SwitchInst>(Terminator), Builder); 6208 break; 6209 case Instruction::Unreachable: 6210 Changed |= simplifyUnreachable(cast<UnreachableInst>(Terminator)); 6211 break; 6212 case Instruction::IndirectBr: 6213 Changed |= simplifyIndirectBr(cast<IndirectBrInst>(Terminator)); 6214 break; 6215 } 6216 6217 return Changed; 6218 } 6219 6220 bool SimplifyCFGOpt::run(BasicBlock *BB) { 6221 bool Changed = false; 6222 6223 // Repeated simplify BB as long as resimplification is requested. 6224 do { 6225 Resimplify = false; 6226 6227 // Perform one round of simplifcation. Resimplify flag will be set if 6228 // another iteration is requested. 6229 Changed |= simplifyOnce(BB); 6230 } while (Resimplify); 6231 6232 return Changed; 6233 } 6234 6235 bool llvm::simplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI, 6236 const SimplifyCFGOptions &Options, 6237 SmallPtrSetImpl<BasicBlock *> *LoopHeaders) { 6238 return SimplifyCFGOpt(TTI, BB->getModule()->getDataLayout(), LoopHeaders, 6239 Options) 6240 .run(BB); 6241 } 6242