1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Peephole optimize the CFG.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/ADT/DenseMap.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/ADT/SetOperations.h"
17 #include "llvm/ADT/SetVector.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/Analysis/ConstantFolding.h"
22 #include "llvm/Analysis/EHPersonalities.h"
23 #include "llvm/Analysis/InstructionSimplify.h"
24 #include "llvm/Analysis/TargetTransformInfo.h"
25 #include "llvm/Analysis/ValueTracking.h"
26 #include "llvm/IR/CFG.h"
27 #include "llvm/IR/ConstantRange.h"
28 #include "llvm/IR/Constants.h"
29 #include "llvm/IR/DataLayout.h"
30 #include "llvm/IR/DerivedTypes.h"
31 #include "llvm/IR/GlobalVariable.h"
32 #include "llvm/IR/IRBuilder.h"
33 #include "llvm/IR/Instructions.h"
34 #include "llvm/IR/IntrinsicInst.h"
35 #include "llvm/IR/LLVMContext.h"
36 #include "llvm/IR/MDBuilder.h"
37 #include "llvm/IR/Metadata.h"
38 #include "llvm/IR/Module.h"
39 #include "llvm/IR/NoFolder.h"
40 #include "llvm/IR/Operator.h"
41 #include "llvm/IR/PatternMatch.h"
42 #include "llvm/IR/Type.h"
43 #include "llvm/Support/CommandLine.h"
44 #include "llvm/Support/Debug.h"
45 #include "llvm/Support/raw_ostream.h"
46 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
47 #include "llvm/Transforms/Utils/Local.h"
48 #include "llvm/Transforms/Utils/ValueMapper.h"
49 #include <algorithm>
50 #include <map>
51 #include <set>
52 using namespace llvm;
53 using namespace PatternMatch;
54 
55 #define DEBUG_TYPE "simplifycfg"
56 
57 // Chosen as 2 so as to be cheap, but still to have enough power to fold
58 // a select, so the "clamp" idiom (of a min followed by a max) will be caught.
59 // To catch this, we need to fold a compare and a select, hence '2' being the
60 // minimum reasonable default.
61 static cl::opt<unsigned> PHINodeFoldingThreshold(
62     "phi-node-folding-threshold", cl::Hidden, cl::init(2),
63     cl::desc(
64         "Control the amount of phi node folding to perform (default = 2)"));
65 
66 static cl::opt<bool> DupRet(
67     "simplifycfg-dup-ret", cl::Hidden, cl::init(false),
68     cl::desc("Duplicate return instructions into unconditional branches"));
69 
70 static cl::opt<bool>
71     SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true),
72                cl::desc("Sink common instructions down to the end block"));
73 
74 static cl::opt<bool> HoistCondStores(
75     "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true),
76     cl::desc("Hoist conditional stores if an unconditional store precedes"));
77 
78 static cl::opt<bool> MergeCondStores(
79     "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true),
80     cl::desc("Hoist conditional stores even if an unconditional store does not "
81              "precede - hoist multiple conditional stores into a single "
82              "predicated store"));
83 
84 static cl::opt<bool> MergeCondStoresAggressively(
85     "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false),
86     cl::desc("When merging conditional stores, do so even if the resultant "
87              "basic blocks are unlikely to be if-converted as a result"));
88 
89 static cl::opt<bool> SpeculateOneExpensiveInst(
90     "speculate-one-expensive-inst", cl::Hidden, cl::init(true),
91     cl::desc("Allow exactly one expensive instruction to be speculatively "
92              "executed"));
93 
94 static cl::opt<unsigned> MaxSpeculationDepth(
95     "max-speculation-depth", cl::Hidden, cl::init(10),
96     cl::desc("Limit maximum recursion depth when calculating costs of "
97              "speculatively executed instructions"));
98 
99 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps");
100 STATISTIC(NumLinearMaps,
101           "Number of switch instructions turned into linear mapping");
102 STATISTIC(NumLookupTables,
103           "Number of switch instructions turned into lookup tables");
104 STATISTIC(
105     NumLookupTablesHoles,
106     "Number of switch instructions turned into lookup tables (holes checked)");
107 STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares");
108 STATISTIC(NumSinkCommons,
109           "Number of common instructions sunk down to the end block");
110 STATISTIC(NumSpeculations, "Number of speculative executed instructions");
111 
112 namespace {
113 // The first field contains the value that the switch produces when a certain
114 // case group is selected, and the second field is a vector containing the
115 // cases composing the case group.
116 typedef SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2>
117     SwitchCaseResultVectorTy;
118 // The first field contains the phi node that generates a result of the switch
119 // and the second field contains the value generated for a certain case in the
120 // switch for that PHI.
121 typedef SmallVector<std::pair<PHINode *, Constant *>, 4> SwitchCaseResultsTy;
122 
123 /// ValueEqualityComparisonCase - Represents a case of a switch.
124 struct ValueEqualityComparisonCase {
125   ConstantInt *Value;
126   BasicBlock *Dest;
127 
128   ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest)
129       : Value(Value), Dest(Dest) {}
130 
131   bool operator<(ValueEqualityComparisonCase RHS) const {
132     // Comparing pointers is ok as we only rely on the order for uniquing.
133     return Value < RHS.Value;
134   }
135 
136   bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; }
137 };
138 
139 class SimplifyCFGOpt {
140   const TargetTransformInfo &TTI;
141   const DataLayout &DL;
142   unsigned BonusInstThreshold;
143   AssumptionCache *AC;
144   SmallPtrSetImpl<BasicBlock *> *LoopHeaders;
145   Value *isValueEqualityComparison(TerminatorInst *TI);
146   BasicBlock *GetValueEqualityComparisonCases(
147       TerminatorInst *TI, std::vector<ValueEqualityComparisonCase> &Cases);
148   bool SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI,
149                                                      BasicBlock *Pred,
150                                                      IRBuilder<> &Builder);
151   bool FoldValueComparisonIntoPredecessors(TerminatorInst *TI,
152                                            IRBuilder<> &Builder);
153 
154   bool SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder);
155   bool SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder);
156   bool SimplifySingleResume(ResumeInst *RI);
157   bool SimplifyCommonResume(ResumeInst *RI);
158   bool SimplifyCleanupReturn(CleanupReturnInst *RI);
159   bool SimplifyUnreachable(UnreachableInst *UI);
160   bool SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder);
161   bool SimplifyIndirectBr(IndirectBrInst *IBI);
162   bool SimplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder);
163   bool SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder);
164 
165 public:
166   SimplifyCFGOpt(const TargetTransformInfo &TTI, const DataLayout &DL,
167                  unsigned BonusInstThreshold, AssumptionCache *AC,
168                  SmallPtrSetImpl<BasicBlock *> *LoopHeaders)
169       : TTI(TTI), DL(DL), BonusInstThreshold(BonusInstThreshold), AC(AC),
170         LoopHeaders(LoopHeaders) {}
171   bool run(BasicBlock *BB);
172 };
173 }
174 
175 /// Return true if it is safe to merge these two
176 /// terminator instructions together.
177 static bool
178 SafeToMergeTerminators(TerminatorInst *SI1, TerminatorInst *SI2,
179                        SmallSetVector<BasicBlock *, 4> *FailBlocks = nullptr) {
180   if (SI1 == SI2)
181     return false; // Can't merge with self!
182 
183   // It is not safe to merge these two switch instructions if they have a common
184   // successor, and if that successor has a PHI node, and if *that* PHI node has
185   // conflicting incoming values from the two switch blocks.
186   BasicBlock *SI1BB = SI1->getParent();
187   BasicBlock *SI2BB = SI2->getParent();
188 
189   SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
190   bool Fail = false;
191   for (BasicBlock *Succ : successors(SI2BB))
192     if (SI1Succs.count(Succ))
193       for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) {
194         PHINode *PN = cast<PHINode>(BBI);
195         if (PN->getIncomingValueForBlock(SI1BB) !=
196             PN->getIncomingValueForBlock(SI2BB)) {
197           if (FailBlocks)
198             FailBlocks->insert(Succ);
199           Fail = true;
200         }
201       }
202 
203   return !Fail;
204 }
205 
206 /// Return true if it is safe and profitable to merge these two terminator
207 /// instructions together, where SI1 is an unconditional branch. PhiNodes will
208 /// store all PHI nodes in common successors.
209 static bool
210 isProfitableToFoldUnconditional(BranchInst *SI1, BranchInst *SI2,
211                                 Instruction *Cond,
212                                 SmallVectorImpl<PHINode *> &PhiNodes) {
213   if (SI1 == SI2)
214     return false; // Can't merge with self!
215   assert(SI1->isUnconditional() && SI2->isConditional());
216 
217   // We fold the unconditional branch if we can easily update all PHI nodes in
218   // common successors:
219   // 1> We have a constant incoming value for the conditional branch;
220   // 2> We have "Cond" as the incoming value for the unconditional branch;
221   // 3> SI2->getCondition() and Cond have same operands.
222   CmpInst *Ci2 = dyn_cast<CmpInst>(SI2->getCondition());
223   if (!Ci2)
224     return false;
225   if (!(Cond->getOperand(0) == Ci2->getOperand(0) &&
226         Cond->getOperand(1) == Ci2->getOperand(1)) &&
227       !(Cond->getOperand(0) == Ci2->getOperand(1) &&
228         Cond->getOperand(1) == Ci2->getOperand(0)))
229     return false;
230 
231   BasicBlock *SI1BB = SI1->getParent();
232   BasicBlock *SI2BB = SI2->getParent();
233   SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
234   for (BasicBlock *Succ : successors(SI2BB))
235     if (SI1Succs.count(Succ))
236       for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) {
237         PHINode *PN = cast<PHINode>(BBI);
238         if (PN->getIncomingValueForBlock(SI1BB) != Cond ||
239             !isa<ConstantInt>(PN->getIncomingValueForBlock(SI2BB)))
240           return false;
241         PhiNodes.push_back(PN);
242       }
243   return true;
244 }
245 
246 /// Update PHI nodes in Succ to indicate that there will now be entries in it
247 /// from the 'NewPred' block. The values that will be flowing into the PHI nodes
248 /// will be the same as those coming in from ExistPred, an existing predecessor
249 /// of Succ.
250 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred,
251                                   BasicBlock *ExistPred) {
252   if (!isa<PHINode>(Succ->begin()))
253     return; // Quick exit if nothing to do
254 
255   PHINode *PN;
256   for (BasicBlock::iterator I = Succ->begin(); (PN = dyn_cast<PHINode>(I)); ++I)
257     PN->addIncoming(PN->getIncomingValueForBlock(ExistPred), NewPred);
258 }
259 
260 /// Compute an abstract "cost" of speculating the given instruction,
261 /// which is assumed to be safe to speculate. TCC_Free means cheap,
262 /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively
263 /// expensive.
264 static unsigned ComputeSpeculationCost(const User *I,
265                                        const TargetTransformInfo &TTI) {
266   assert(isSafeToSpeculativelyExecute(I) &&
267          "Instruction is not safe to speculatively execute!");
268   return TTI.getUserCost(I);
269 }
270 
271 /// If we have a merge point of an "if condition" as accepted above,
272 /// return true if the specified value dominates the block.  We
273 /// don't handle the true generality of domination here, just a special case
274 /// which works well enough for us.
275 ///
276 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to
277 /// see if V (which must be an instruction) and its recursive operands
278 /// that do not dominate BB have a combined cost lower than CostRemaining and
279 /// are non-trapping.  If both are true, the instruction is inserted into the
280 /// set and true is returned.
281 ///
282 /// The cost for most non-trapping instructions is defined as 1 except for
283 /// Select whose cost is 2.
284 ///
285 /// After this function returns, CostRemaining is decreased by the cost of
286 /// V plus its non-dominating operands.  If that cost is greater than
287 /// CostRemaining, false is returned and CostRemaining is undefined.
288 static bool DominatesMergePoint(Value *V, BasicBlock *BB,
289                                 SmallPtrSetImpl<Instruction *> *AggressiveInsts,
290                                 unsigned &CostRemaining,
291                                 const TargetTransformInfo &TTI,
292                                 unsigned Depth = 0) {
293   // It is possible to hit a zero-cost cycle (phi/gep instructions for example),
294   // so limit the recursion depth.
295   // TODO: While this recursion limit does prevent pathological behavior, it
296   // would be better to track visited instructions to avoid cycles.
297   if (Depth == MaxSpeculationDepth)
298     return false;
299 
300   Instruction *I = dyn_cast<Instruction>(V);
301   if (!I) {
302     // Non-instructions all dominate instructions, but not all constantexprs
303     // can be executed unconditionally.
304     if (ConstantExpr *C = dyn_cast<ConstantExpr>(V))
305       if (C->canTrap())
306         return false;
307     return true;
308   }
309   BasicBlock *PBB = I->getParent();
310 
311   // We don't want to allow weird loops that might have the "if condition" in
312   // the bottom of this block.
313   if (PBB == BB)
314     return false;
315 
316   // If this instruction is defined in a block that contains an unconditional
317   // branch to BB, then it must be in the 'conditional' part of the "if
318   // statement".  If not, it definitely dominates the region.
319   BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator());
320   if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB)
321     return true;
322 
323   // If we aren't allowing aggressive promotion anymore, then don't consider
324   // instructions in the 'if region'.
325   if (!AggressiveInsts)
326     return false;
327 
328   // If we have seen this instruction before, don't count it again.
329   if (AggressiveInsts->count(I))
330     return true;
331 
332   // Okay, it looks like the instruction IS in the "condition".  Check to
333   // see if it's a cheap instruction to unconditionally compute, and if it
334   // only uses stuff defined outside of the condition.  If so, hoist it out.
335   if (!isSafeToSpeculativelyExecute(I))
336     return false;
337 
338   unsigned Cost = ComputeSpeculationCost(I, TTI);
339 
340   // Allow exactly one instruction to be speculated regardless of its cost
341   // (as long as it is safe to do so).
342   // This is intended to flatten the CFG even if the instruction is a division
343   // or other expensive operation. The speculation of an expensive instruction
344   // is expected to be undone in CodeGenPrepare if the speculation has not
345   // enabled further IR optimizations.
346   if (Cost > CostRemaining &&
347       (!SpeculateOneExpensiveInst || !AggressiveInsts->empty() || Depth > 0))
348     return false;
349 
350   // Avoid unsigned wrap.
351   CostRemaining = (Cost > CostRemaining) ? 0 : CostRemaining - Cost;
352 
353   // Okay, we can only really hoist these out if their operands do
354   // not take us over the cost threshold.
355   for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i)
356     if (!DominatesMergePoint(*i, BB, AggressiveInsts, CostRemaining, TTI,
357                              Depth + 1))
358       return false;
359   // Okay, it's safe to do this!  Remember this instruction.
360   AggressiveInsts->insert(I);
361   return true;
362 }
363 
364 /// Extract ConstantInt from value, looking through IntToPtr
365 /// and PointerNullValue. Return NULL if value is not a constant int.
366 static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) {
367   // Normal constant int.
368   ConstantInt *CI = dyn_cast<ConstantInt>(V);
369   if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy())
370     return CI;
371 
372   // This is some kind of pointer constant. Turn it into a pointer-sized
373   // ConstantInt if possible.
374   IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType()));
375 
376   // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*).
377   if (isa<ConstantPointerNull>(V))
378     return ConstantInt::get(PtrTy, 0);
379 
380   // IntToPtr const int.
381   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
382     if (CE->getOpcode() == Instruction::IntToPtr)
383       if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) {
384         // The constant is very likely to have the right type already.
385         if (CI->getType() == PtrTy)
386           return CI;
387         else
388           return cast<ConstantInt>(
389               ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false));
390       }
391   return nullptr;
392 }
393 
394 namespace {
395 
396 /// Given a chain of or (||) or and (&&) comparison of a value against a
397 /// constant, this will try to recover the information required for a switch
398 /// structure.
399 /// It will depth-first traverse the chain of comparison, seeking for patterns
400 /// like %a == 12 or %a < 4 and combine them to produce a set of integer
401 /// representing the different cases for the switch.
402 /// Note that if the chain is composed of '||' it will build the set of elements
403 /// that matches the comparisons (i.e. any of this value validate the chain)
404 /// while for a chain of '&&' it will build the set elements that make the test
405 /// fail.
406 struct ConstantComparesGatherer {
407   const DataLayout &DL;
408   Value *CompValue; /// Value found for the switch comparison
409   Value *Extra;     /// Extra clause to be checked before the switch
410   SmallVector<ConstantInt *, 8> Vals; /// Set of integers to match in switch
411   unsigned UsedICmps; /// Number of comparisons matched in the and/or chain
412 
413   /// Construct and compute the result for the comparison instruction Cond
414   ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL)
415       : DL(DL), CompValue(nullptr), Extra(nullptr), UsedICmps(0) {
416     gather(Cond);
417   }
418 
419   /// Prevent copy
420   ConstantComparesGatherer(const ConstantComparesGatherer &) = delete;
421   ConstantComparesGatherer &
422   operator=(const ConstantComparesGatherer &) = delete;
423 
424 private:
425   /// Try to set the current value used for the comparison, it succeeds only if
426   /// it wasn't set before or if the new value is the same as the old one
427   bool setValueOnce(Value *NewVal) {
428     if (CompValue && CompValue != NewVal)
429       return false;
430     CompValue = NewVal;
431     return (CompValue != nullptr);
432   }
433 
434   /// Try to match Instruction "I" as a comparison against a constant and
435   /// populates the array Vals with the set of values that match (or do not
436   /// match depending on isEQ).
437   /// Return false on failure. On success, the Value the comparison matched
438   /// against is placed in CompValue.
439   /// If CompValue is already set, the function is expected to fail if a match
440   /// is found but the value compared to is different.
441   bool matchInstruction(Instruction *I, bool isEQ) {
442     // If this is an icmp against a constant, handle this as one of the cases.
443     ICmpInst *ICI;
444     ConstantInt *C;
445     if (!((ICI = dyn_cast<ICmpInst>(I)) &&
446           (C = GetConstantInt(I->getOperand(1), DL)))) {
447       return false;
448     }
449 
450     Value *RHSVal;
451     const APInt *RHSC;
452 
453     // Pattern match a special case
454     // (x & ~2^z) == y --> x == y || x == y|2^z
455     // This undoes a transformation done by instcombine to fuse 2 compares.
456     if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE)) {
457 
458       // It's a little bit hard to see why the following transformations are
459       // correct. Here is a CVC3 program to verify them for 64-bit values:
460 
461       /*
462          ONE  : BITVECTOR(64) = BVZEROEXTEND(0bin1, 63);
463          x    : BITVECTOR(64);
464          y    : BITVECTOR(64);
465          z    : BITVECTOR(64);
466          mask : BITVECTOR(64) = BVSHL(ONE, z);
467          QUERY( (y & ~mask = y) =>
468                 ((x & ~mask = y) <=> (x = y OR x = (y |  mask)))
469          );
470          QUERY( (y |  mask = y) =>
471                 ((x |  mask = y) <=> (x = y OR x = (y & ~mask)))
472          );
473       */
474 
475       // Please note that each pattern must be a dual implication (<--> or
476       // iff). One directional implication can create spurious matches. If the
477       // implication is only one-way, an unsatisfiable condition on the left
478       // side can imply a satisfiable condition on the right side. Dual
479       // implication ensures that satisfiable conditions are transformed to
480       // other satisfiable conditions and unsatisfiable conditions are
481       // transformed to other unsatisfiable conditions.
482 
483       // Here is a concrete example of a unsatisfiable condition on the left
484       // implying a satisfiable condition on the right:
485       //
486       // mask = (1 << z)
487       // (x & ~mask) == y  --> (x == y || x == (y | mask))
488       //
489       // Substituting y = 3, z = 0 yields:
490       // (x & -2) == 3 --> (x == 3 || x == 2)
491 
492       // Pattern match a special case:
493       /*
494         QUERY( (y & ~mask = y) =>
495                ((x & ~mask = y) <=> (x = y OR x = (y |  mask)))
496         );
497       */
498       if (match(ICI->getOperand(0),
499                 m_And(m_Value(RHSVal), m_APInt(RHSC)))) {
500         APInt Mask = ~*RHSC;
501         if (Mask.isPowerOf2() && (C->getValue() & ~Mask) == C->getValue()) {
502           // If we already have a value for the switch, it has to match!
503           if (!setValueOnce(RHSVal))
504             return false;
505 
506           Vals.push_back(C);
507           Vals.push_back(
508               ConstantInt::get(C->getContext(),
509                                C->getValue() | Mask));
510           UsedICmps++;
511           return true;
512         }
513       }
514 
515       // Pattern match a special case:
516       /*
517         QUERY( (y |  mask = y) =>
518                ((x |  mask = y) <=> (x = y OR x = (y & ~mask)))
519         );
520       */
521       if (match(ICI->getOperand(0),
522                 m_Or(m_Value(RHSVal), m_APInt(RHSC)))) {
523         APInt Mask = *RHSC;
524         if (Mask.isPowerOf2() && (C->getValue() | Mask) == C->getValue()) {
525           // If we already have a value for the switch, it has to match!
526           if (!setValueOnce(RHSVal))
527             return false;
528 
529           Vals.push_back(C);
530           Vals.push_back(ConstantInt::get(C->getContext(),
531                                           C->getValue() & ~Mask));
532           UsedICmps++;
533           return true;
534         }
535       }
536 
537       // If we already have a value for the switch, it has to match!
538       if (!setValueOnce(ICI->getOperand(0)))
539         return false;
540 
541       UsedICmps++;
542       Vals.push_back(C);
543       return ICI->getOperand(0);
544     }
545 
546     // If we have "x ult 3", for example, then we can add 0,1,2 to the set.
547     ConstantRange Span = ConstantRange::makeAllowedICmpRegion(
548         ICI->getPredicate(), C->getValue());
549 
550     // Shift the range if the compare is fed by an add. This is the range
551     // compare idiom as emitted by instcombine.
552     Value *CandidateVal = I->getOperand(0);
553     if (match(I->getOperand(0), m_Add(m_Value(RHSVal), m_APInt(RHSC)))) {
554       Span = Span.subtract(*RHSC);
555       CandidateVal = RHSVal;
556     }
557 
558     // If this is an and/!= check, then we are looking to build the set of
559     // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into
560     // x != 0 && x != 1.
561     if (!isEQ)
562       Span = Span.inverse();
563 
564     // If there are a ton of values, we don't want to make a ginormous switch.
565     if (Span.getSetSize().ugt(8) || Span.isEmptySet()) {
566       return false;
567     }
568 
569     // If we already have a value for the switch, it has to match!
570     if (!setValueOnce(CandidateVal))
571       return false;
572 
573     // Add all values from the range to the set
574     for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp)
575       Vals.push_back(ConstantInt::get(I->getContext(), Tmp));
576 
577     UsedICmps++;
578     return true;
579   }
580 
581   /// Given a potentially 'or'd or 'and'd together collection of icmp
582   /// eq/ne/lt/gt instructions that compare a value against a constant, extract
583   /// the value being compared, and stick the list constants into the Vals
584   /// vector.
585   /// One "Extra" case is allowed to differ from the other.
586   void gather(Value *V) {
587     Instruction *I = dyn_cast<Instruction>(V);
588     bool isEQ = (I->getOpcode() == Instruction::Or);
589 
590     // Keep a stack (SmallVector for efficiency) for depth-first traversal
591     SmallVector<Value *, 8> DFT;
592     SmallPtrSet<Value *, 8> Visited;
593 
594     // Initialize
595     Visited.insert(V);
596     DFT.push_back(V);
597 
598     while (!DFT.empty()) {
599       V = DFT.pop_back_val();
600 
601       if (Instruction *I = dyn_cast<Instruction>(V)) {
602         // If it is a || (or && depending on isEQ), process the operands.
603         if (I->getOpcode() == (isEQ ? Instruction::Or : Instruction::And)) {
604           if (Visited.insert(I->getOperand(1)).second)
605             DFT.push_back(I->getOperand(1));
606           if (Visited.insert(I->getOperand(0)).second)
607             DFT.push_back(I->getOperand(0));
608           continue;
609         }
610 
611         // Try to match the current instruction
612         if (matchInstruction(I, isEQ))
613           // Match succeed, continue the loop
614           continue;
615       }
616 
617       // One element of the sequence of || (or &&) could not be match as a
618       // comparison against the same value as the others.
619       // We allow only one "Extra" case to be checked before the switch
620       if (!Extra) {
621         Extra = V;
622         continue;
623       }
624       // Failed to parse a proper sequence, abort now
625       CompValue = nullptr;
626       break;
627     }
628   }
629 };
630 }
631 
632 static void EraseTerminatorInstAndDCECond(TerminatorInst *TI) {
633   Instruction *Cond = nullptr;
634   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
635     Cond = dyn_cast<Instruction>(SI->getCondition());
636   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
637     if (BI->isConditional())
638       Cond = dyn_cast<Instruction>(BI->getCondition());
639   } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) {
640     Cond = dyn_cast<Instruction>(IBI->getAddress());
641   }
642 
643   TI->eraseFromParent();
644   if (Cond)
645     RecursivelyDeleteTriviallyDeadInstructions(Cond);
646 }
647 
648 /// Return true if the specified terminator checks
649 /// to see if a value is equal to constant integer value.
650 Value *SimplifyCFGOpt::isValueEqualityComparison(TerminatorInst *TI) {
651   Value *CV = nullptr;
652   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
653     // Do not permit merging of large switch instructions into their
654     // predecessors unless there is only one predecessor.
655     if (SI->getNumSuccessors() * std::distance(pred_begin(SI->getParent()),
656                                                pred_end(SI->getParent())) <=
657         128)
658       CV = SI->getCondition();
659   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI))
660     if (BI->isConditional() && BI->getCondition()->hasOneUse())
661       if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) {
662         if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL))
663           CV = ICI->getOperand(0);
664       }
665 
666   // Unwrap any lossless ptrtoint cast.
667   if (CV) {
668     if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) {
669       Value *Ptr = PTII->getPointerOperand();
670       if (PTII->getType() == DL.getIntPtrType(Ptr->getType()))
671         CV = Ptr;
672     }
673   }
674   return CV;
675 }
676 
677 /// Given a value comparison instruction,
678 /// decode all of the 'cases' that it represents and return the 'default' block.
679 BasicBlock *SimplifyCFGOpt::GetValueEqualityComparisonCases(
680     TerminatorInst *TI, std::vector<ValueEqualityComparisonCase> &Cases) {
681   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
682     Cases.reserve(SI->getNumCases());
683     for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); i != e;
684          ++i)
685       Cases.push_back(
686           ValueEqualityComparisonCase(i.getCaseValue(), i.getCaseSuccessor()));
687     return SI->getDefaultDest();
688   }
689 
690   BranchInst *BI = cast<BranchInst>(TI);
691   ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
692   BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE);
693   Cases.push_back(ValueEqualityComparisonCase(
694       GetConstantInt(ICI->getOperand(1), DL), Succ));
695   return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ);
696 }
697 
698 /// Given a vector of bb/value pairs, remove any entries
699 /// in the list that match the specified block.
700 static void
701 EliminateBlockCases(BasicBlock *BB,
702                     std::vector<ValueEqualityComparisonCase> &Cases) {
703   Cases.erase(std::remove(Cases.begin(), Cases.end(), BB), Cases.end());
704 }
705 
706 /// Return true if there are any keys in C1 that exist in C2 as well.
707 static bool ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1,
708                           std::vector<ValueEqualityComparisonCase> &C2) {
709   std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2;
710 
711   // Make V1 be smaller than V2.
712   if (V1->size() > V2->size())
713     std::swap(V1, V2);
714 
715   if (V1->size() == 0)
716     return false;
717   if (V1->size() == 1) {
718     // Just scan V2.
719     ConstantInt *TheVal = (*V1)[0].Value;
720     for (unsigned i = 0, e = V2->size(); i != e; ++i)
721       if (TheVal == (*V2)[i].Value)
722         return true;
723   }
724 
725   // Otherwise, just sort both lists and compare element by element.
726   array_pod_sort(V1->begin(), V1->end());
727   array_pod_sort(V2->begin(), V2->end());
728   unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size();
729   while (i1 != e1 && i2 != e2) {
730     if ((*V1)[i1].Value == (*V2)[i2].Value)
731       return true;
732     if ((*V1)[i1].Value < (*V2)[i2].Value)
733       ++i1;
734     else
735       ++i2;
736   }
737   return false;
738 }
739 
740 /// If TI is known to be a terminator instruction and its block is known to
741 /// only have a single predecessor block, check to see if that predecessor is
742 /// also a value comparison with the same value, and if that comparison
743 /// determines the outcome of this comparison. If so, simplify TI. This does a
744 /// very limited form of jump threading.
745 bool SimplifyCFGOpt::SimplifyEqualityComparisonWithOnlyPredecessor(
746     TerminatorInst *TI, BasicBlock *Pred, IRBuilder<> &Builder) {
747   Value *PredVal = isValueEqualityComparison(Pred->getTerminator());
748   if (!PredVal)
749     return false; // Not a value comparison in predecessor.
750 
751   Value *ThisVal = isValueEqualityComparison(TI);
752   assert(ThisVal && "This isn't a value comparison!!");
753   if (ThisVal != PredVal)
754     return false; // Different predicates.
755 
756   // TODO: Preserve branch weight metadata, similarly to how
757   // FoldValueComparisonIntoPredecessors preserves it.
758 
759   // Find out information about when control will move from Pred to TI's block.
760   std::vector<ValueEqualityComparisonCase> PredCases;
761   BasicBlock *PredDef =
762       GetValueEqualityComparisonCases(Pred->getTerminator(), PredCases);
763   EliminateBlockCases(PredDef, PredCases); // Remove default from cases.
764 
765   // Find information about how control leaves this block.
766   std::vector<ValueEqualityComparisonCase> ThisCases;
767   BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases);
768   EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases.
769 
770   // If TI's block is the default block from Pred's comparison, potentially
771   // simplify TI based on this knowledge.
772   if (PredDef == TI->getParent()) {
773     // If we are here, we know that the value is none of those cases listed in
774     // PredCases.  If there are any cases in ThisCases that are in PredCases, we
775     // can simplify TI.
776     if (!ValuesOverlap(PredCases, ThisCases))
777       return false;
778 
779     if (isa<BranchInst>(TI)) {
780       // Okay, one of the successors of this condbr is dead.  Convert it to a
781       // uncond br.
782       assert(ThisCases.size() == 1 && "Branch can only have one case!");
783       // Insert the new branch.
784       Instruction *NI = Builder.CreateBr(ThisDef);
785       (void)NI;
786 
787       // Remove PHI node entries for the dead edge.
788       ThisCases[0].Dest->removePredecessor(TI->getParent());
789 
790       DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
791                    << "Through successor TI: " << *TI << "Leaving: " << *NI
792                    << "\n");
793 
794       EraseTerminatorInstAndDCECond(TI);
795       return true;
796     }
797 
798     SwitchInst *SI = cast<SwitchInst>(TI);
799     // Okay, TI has cases that are statically dead, prune them away.
800     SmallPtrSet<Constant *, 16> DeadCases;
801     for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
802       DeadCases.insert(PredCases[i].Value);
803 
804     DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
805                  << "Through successor TI: " << *TI);
806 
807     // Collect branch weights into a vector.
808     SmallVector<uint32_t, 8> Weights;
809     MDNode *MD = SI->getMetadata(LLVMContext::MD_prof);
810     bool HasWeight = MD && (MD->getNumOperands() == 2 + SI->getNumCases());
811     if (HasWeight)
812       for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e;
813            ++MD_i) {
814         ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i));
815         Weights.push_back(CI->getValue().getZExtValue());
816       }
817     for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) {
818       --i;
819       if (DeadCases.count(i.getCaseValue())) {
820         if (HasWeight) {
821           std::swap(Weights[i.getCaseIndex() + 1], Weights.back());
822           Weights.pop_back();
823         }
824         i.getCaseSuccessor()->removePredecessor(TI->getParent());
825         SI->removeCase(i);
826       }
827     }
828     if (HasWeight && Weights.size() >= 2)
829       SI->setMetadata(LLVMContext::MD_prof,
830                       MDBuilder(SI->getParent()->getContext())
831                           .createBranchWeights(Weights));
832 
833     DEBUG(dbgs() << "Leaving: " << *TI << "\n");
834     return true;
835   }
836 
837   // Otherwise, TI's block must correspond to some matched value.  Find out
838   // which value (or set of values) this is.
839   ConstantInt *TIV = nullptr;
840   BasicBlock *TIBB = TI->getParent();
841   for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
842     if (PredCases[i].Dest == TIBB) {
843       if (TIV)
844         return false; // Cannot handle multiple values coming to this block.
845       TIV = PredCases[i].Value;
846     }
847   assert(TIV && "No edge from pred to succ?");
848 
849   // Okay, we found the one constant that our value can be if we get into TI's
850   // BB.  Find out which successor will unconditionally be branched to.
851   BasicBlock *TheRealDest = nullptr;
852   for (unsigned i = 0, e = ThisCases.size(); i != e; ++i)
853     if (ThisCases[i].Value == TIV) {
854       TheRealDest = ThisCases[i].Dest;
855       break;
856     }
857 
858   // If not handled by any explicit cases, it is handled by the default case.
859   if (!TheRealDest)
860     TheRealDest = ThisDef;
861 
862   // Remove PHI node entries for dead edges.
863   BasicBlock *CheckEdge = TheRealDest;
864   for (BasicBlock *Succ : successors(TIBB))
865     if (Succ != CheckEdge)
866       Succ->removePredecessor(TIBB);
867     else
868       CheckEdge = nullptr;
869 
870   // Insert the new branch.
871   Instruction *NI = Builder.CreateBr(TheRealDest);
872   (void)NI;
873 
874   DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
875                << "Through successor TI: " << *TI << "Leaving: " << *NI
876                << "\n");
877 
878   EraseTerminatorInstAndDCECond(TI);
879   return true;
880 }
881 
882 namespace {
883 /// This class implements a stable ordering of constant
884 /// integers that does not depend on their address.  This is important for
885 /// applications that sort ConstantInt's to ensure uniqueness.
886 struct ConstantIntOrdering {
887   bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const {
888     return LHS->getValue().ult(RHS->getValue());
889   }
890 };
891 }
892 
893 static int ConstantIntSortPredicate(ConstantInt *const *P1,
894                                     ConstantInt *const *P2) {
895   const ConstantInt *LHS = *P1;
896   const ConstantInt *RHS = *P2;
897   if (LHS == RHS)
898     return 0;
899   return LHS->getValue().ult(RHS->getValue()) ? 1 : -1;
900 }
901 
902 static inline bool HasBranchWeights(const Instruction *I) {
903   MDNode *ProfMD = I->getMetadata(LLVMContext::MD_prof);
904   if (ProfMD && ProfMD->getOperand(0))
905     if (MDString *MDS = dyn_cast<MDString>(ProfMD->getOperand(0)))
906       return MDS->getString().equals("branch_weights");
907 
908   return false;
909 }
910 
911 /// Get Weights of a given TerminatorInst, the default weight is at the front
912 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight
913 /// metadata.
914 static void GetBranchWeights(TerminatorInst *TI,
915                              SmallVectorImpl<uint64_t> &Weights) {
916   MDNode *MD = TI->getMetadata(LLVMContext::MD_prof);
917   assert(MD);
918   for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) {
919     ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i));
920     Weights.push_back(CI->getValue().getZExtValue());
921   }
922 
923   // If TI is a conditional eq, the default case is the false case,
924   // and the corresponding branch-weight data is at index 2. We swap the
925   // default weight to be the first entry.
926   if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
927     assert(Weights.size() == 2);
928     ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
929     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
930       std::swap(Weights.front(), Weights.back());
931   }
932 }
933 
934 /// Keep halving the weights until all can fit in uint32_t.
935 static void FitWeights(MutableArrayRef<uint64_t> Weights) {
936   uint64_t Max = *std::max_element(Weights.begin(), Weights.end());
937   if (Max > UINT_MAX) {
938     unsigned Offset = 32 - countLeadingZeros(Max);
939     for (uint64_t &I : Weights)
940       I >>= Offset;
941   }
942 }
943 
944 /// The specified terminator is a value equality comparison instruction
945 /// (either a switch or a branch on "X == c").
946 /// See if any of the predecessors of the terminator block are value comparisons
947 /// on the same value.  If so, and if safe to do so, fold them together.
948 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(TerminatorInst *TI,
949                                                          IRBuilder<> &Builder) {
950   BasicBlock *BB = TI->getParent();
951   Value *CV = isValueEqualityComparison(TI); // CondVal
952   assert(CV && "Not a comparison?");
953   bool Changed = false;
954 
955   SmallVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB));
956   while (!Preds.empty()) {
957     BasicBlock *Pred = Preds.pop_back_val();
958 
959     // See if the predecessor is a comparison with the same value.
960     TerminatorInst *PTI = Pred->getTerminator();
961     Value *PCV = isValueEqualityComparison(PTI); // PredCondVal
962 
963     if (PCV == CV && TI != PTI) {
964       SmallSetVector<BasicBlock*, 4> FailBlocks;
965       if (!SafeToMergeTerminators(TI, PTI, &FailBlocks)) {
966         for (auto *Succ : FailBlocks) {
967           std::vector<BasicBlock*> Blocks = { TI->getParent() };
968           if (!SplitBlockPredecessors(Succ, Blocks, ".fold.split"))
969             return false;
970         }
971       }
972 
973       // Figure out which 'cases' to copy from SI to PSI.
974       std::vector<ValueEqualityComparisonCase> BBCases;
975       BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases);
976 
977       std::vector<ValueEqualityComparisonCase> PredCases;
978       BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases);
979 
980       // Based on whether the default edge from PTI goes to BB or not, fill in
981       // PredCases and PredDefault with the new switch cases we would like to
982       // build.
983       SmallVector<BasicBlock *, 8> NewSuccessors;
984 
985       // Update the branch weight metadata along the way
986       SmallVector<uint64_t, 8> Weights;
987       bool PredHasWeights = HasBranchWeights(PTI);
988       bool SuccHasWeights = HasBranchWeights(TI);
989 
990       if (PredHasWeights) {
991         GetBranchWeights(PTI, Weights);
992         // branch-weight metadata is inconsistent here.
993         if (Weights.size() != 1 + PredCases.size())
994           PredHasWeights = SuccHasWeights = false;
995       } else if (SuccHasWeights)
996         // If there are no predecessor weights but there are successor weights,
997         // populate Weights with 1, which will later be scaled to the sum of
998         // successor's weights
999         Weights.assign(1 + PredCases.size(), 1);
1000 
1001       SmallVector<uint64_t, 8> SuccWeights;
1002       if (SuccHasWeights) {
1003         GetBranchWeights(TI, SuccWeights);
1004         // branch-weight metadata is inconsistent here.
1005         if (SuccWeights.size() != 1 + BBCases.size())
1006           PredHasWeights = SuccHasWeights = false;
1007       } else if (PredHasWeights)
1008         SuccWeights.assign(1 + BBCases.size(), 1);
1009 
1010       if (PredDefault == BB) {
1011         // If this is the default destination from PTI, only the edges in TI
1012         // that don't occur in PTI, or that branch to BB will be activated.
1013         std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
1014         for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
1015           if (PredCases[i].Dest != BB)
1016             PTIHandled.insert(PredCases[i].Value);
1017           else {
1018             // The default destination is BB, we don't need explicit targets.
1019             std::swap(PredCases[i], PredCases.back());
1020 
1021             if (PredHasWeights || SuccHasWeights) {
1022               // Increase weight for the default case.
1023               Weights[0] += Weights[i + 1];
1024               std::swap(Weights[i + 1], Weights.back());
1025               Weights.pop_back();
1026             }
1027 
1028             PredCases.pop_back();
1029             --i;
1030             --e;
1031           }
1032 
1033         // Reconstruct the new switch statement we will be building.
1034         if (PredDefault != BBDefault) {
1035           PredDefault->removePredecessor(Pred);
1036           PredDefault = BBDefault;
1037           NewSuccessors.push_back(BBDefault);
1038         }
1039 
1040         unsigned CasesFromPred = Weights.size();
1041         uint64_t ValidTotalSuccWeight = 0;
1042         for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
1043           if (!PTIHandled.count(BBCases[i].Value) &&
1044               BBCases[i].Dest != BBDefault) {
1045             PredCases.push_back(BBCases[i]);
1046             NewSuccessors.push_back(BBCases[i].Dest);
1047             if (SuccHasWeights || PredHasWeights) {
1048               // The default weight is at index 0, so weight for the ith case
1049               // should be at index i+1. Scale the cases from successor by
1050               // PredDefaultWeight (Weights[0]).
1051               Weights.push_back(Weights[0] * SuccWeights[i + 1]);
1052               ValidTotalSuccWeight += SuccWeights[i + 1];
1053             }
1054           }
1055 
1056         if (SuccHasWeights || PredHasWeights) {
1057           ValidTotalSuccWeight += SuccWeights[0];
1058           // Scale the cases from predecessor by ValidTotalSuccWeight.
1059           for (unsigned i = 1; i < CasesFromPred; ++i)
1060             Weights[i] *= ValidTotalSuccWeight;
1061           // Scale the default weight by SuccDefaultWeight (SuccWeights[0]).
1062           Weights[0] *= SuccWeights[0];
1063         }
1064       } else {
1065         // If this is not the default destination from PSI, only the edges
1066         // in SI that occur in PSI with a destination of BB will be
1067         // activated.
1068         std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
1069         std::map<ConstantInt *, uint64_t> WeightsForHandled;
1070         for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
1071           if (PredCases[i].Dest == BB) {
1072             PTIHandled.insert(PredCases[i].Value);
1073 
1074             if (PredHasWeights || SuccHasWeights) {
1075               WeightsForHandled[PredCases[i].Value] = Weights[i + 1];
1076               std::swap(Weights[i + 1], Weights.back());
1077               Weights.pop_back();
1078             }
1079 
1080             std::swap(PredCases[i], PredCases.back());
1081             PredCases.pop_back();
1082             --i;
1083             --e;
1084           }
1085 
1086         // Okay, now we know which constants were sent to BB from the
1087         // predecessor.  Figure out where they will all go now.
1088         for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
1089           if (PTIHandled.count(BBCases[i].Value)) {
1090             // If this is one we are capable of getting...
1091             if (PredHasWeights || SuccHasWeights)
1092               Weights.push_back(WeightsForHandled[BBCases[i].Value]);
1093             PredCases.push_back(BBCases[i]);
1094             NewSuccessors.push_back(BBCases[i].Dest);
1095             PTIHandled.erase(
1096                 BBCases[i].Value); // This constant is taken care of
1097           }
1098 
1099         // If there are any constants vectored to BB that TI doesn't handle,
1100         // they must go to the default destination of TI.
1101         for (ConstantInt *I : PTIHandled) {
1102           if (PredHasWeights || SuccHasWeights)
1103             Weights.push_back(WeightsForHandled[I]);
1104           PredCases.push_back(ValueEqualityComparisonCase(I, BBDefault));
1105           NewSuccessors.push_back(BBDefault);
1106         }
1107       }
1108 
1109       // Okay, at this point, we know which new successor Pred will get.  Make
1110       // sure we update the number of entries in the PHI nodes for these
1111       // successors.
1112       for (BasicBlock *NewSuccessor : NewSuccessors)
1113         AddPredecessorToBlock(NewSuccessor, Pred, BB);
1114 
1115       Builder.SetInsertPoint(PTI);
1116       // Convert pointer to int before we switch.
1117       if (CV->getType()->isPointerTy()) {
1118         CV = Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()),
1119                                     "magicptr");
1120       }
1121 
1122       // Now that the successors are updated, create the new Switch instruction.
1123       SwitchInst *NewSI =
1124           Builder.CreateSwitch(CV, PredDefault, PredCases.size());
1125       NewSI->setDebugLoc(PTI->getDebugLoc());
1126       for (ValueEqualityComparisonCase &V : PredCases)
1127         NewSI->addCase(V.Value, V.Dest);
1128 
1129       if (PredHasWeights || SuccHasWeights) {
1130         // Halve the weights if any of them cannot fit in an uint32_t
1131         FitWeights(Weights);
1132 
1133         SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
1134 
1135         NewSI->setMetadata(
1136             LLVMContext::MD_prof,
1137             MDBuilder(BB->getContext()).createBranchWeights(MDWeights));
1138       }
1139 
1140       EraseTerminatorInstAndDCECond(PTI);
1141 
1142       // Okay, last check.  If BB is still a successor of PSI, then we must
1143       // have an infinite loop case.  If so, add an infinitely looping block
1144       // to handle the case to preserve the behavior of the code.
1145       BasicBlock *InfLoopBlock = nullptr;
1146       for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i)
1147         if (NewSI->getSuccessor(i) == BB) {
1148           if (!InfLoopBlock) {
1149             // Insert it at the end of the function, because it's either code,
1150             // or it won't matter if it's hot. :)
1151             InfLoopBlock = BasicBlock::Create(BB->getContext(), "infloop",
1152                                               BB->getParent());
1153             BranchInst::Create(InfLoopBlock, InfLoopBlock);
1154           }
1155           NewSI->setSuccessor(i, InfLoopBlock);
1156         }
1157 
1158       Changed = true;
1159     }
1160   }
1161   return Changed;
1162 }
1163 
1164 // If we would need to insert a select that uses the value of this invoke
1165 // (comments in HoistThenElseCodeToIf explain why we would need to do this), we
1166 // can't hoist the invoke, as there is nowhere to put the select in this case.
1167 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2,
1168                                 Instruction *I1, Instruction *I2) {
1169   for (BasicBlock *Succ : successors(BB1)) {
1170     PHINode *PN;
1171     for (BasicBlock::iterator BBI = Succ->begin();
1172          (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
1173       Value *BB1V = PN->getIncomingValueForBlock(BB1);
1174       Value *BB2V = PN->getIncomingValueForBlock(BB2);
1175       if (BB1V != BB2V && (BB1V == I1 || BB2V == I2)) {
1176         return false;
1177       }
1178     }
1179   }
1180   return true;
1181 }
1182 
1183 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I);
1184 
1185 /// Given a conditional branch that goes to BB1 and BB2, hoist any common code
1186 /// in the two blocks up into the branch block. The caller of this function
1187 /// guarantees that BI's block dominates BB1 and BB2.
1188 static bool HoistThenElseCodeToIf(BranchInst *BI,
1189                                   const TargetTransformInfo &TTI) {
1190   // This does very trivial matching, with limited scanning, to find identical
1191   // instructions in the two blocks.  In particular, we don't want to get into
1192   // O(M*N) situations here where M and N are the sizes of BB1 and BB2.  As
1193   // such, we currently just scan for obviously identical instructions in an
1194   // identical order.
1195   BasicBlock *BB1 = BI->getSuccessor(0); // The true destination.
1196   BasicBlock *BB2 = BI->getSuccessor(1); // The false destination
1197 
1198   BasicBlock::iterator BB1_Itr = BB1->begin();
1199   BasicBlock::iterator BB2_Itr = BB2->begin();
1200 
1201   Instruction *I1 = &*BB1_Itr++, *I2 = &*BB2_Itr++;
1202   // Skip debug info if it is not identical.
1203   DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1204   DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1205   if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1206     while (isa<DbgInfoIntrinsic>(I1))
1207       I1 = &*BB1_Itr++;
1208     while (isa<DbgInfoIntrinsic>(I2))
1209       I2 = &*BB2_Itr++;
1210   }
1211   if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) ||
1212       (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)))
1213     return false;
1214 
1215   BasicBlock *BIParent = BI->getParent();
1216 
1217   bool Changed = false;
1218   do {
1219     // If we are hoisting the terminator instruction, don't move one (making a
1220     // broken BB), instead clone it, and remove BI.
1221     if (isa<TerminatorInst>(I1))
1222       goto HoistTerminator;
1223 
1224     if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2))
1225       return Changed;
1226 
1227     // For a normal instruction, we just move one to right before the branch,
1228     // then replace all uses of the other with the first.  Finally, we remove
1229     // the now redundant second instruction.
1230     BIParent->getInstList().splice(BI->getIterator(), BB1->getInstList(), I1);
1231     if (!I2->use_empty())
1232       I2->replaceAllUsesWith(I1);
1233     I1->andIRFlags(I2);
1234     unsigned KnownIDs[] = {LLVMContext::MD_tbaa,
1235                            LLVMContext::MD_range,
1236                            LLVMContext::MD_fpmath,
1237                            LLVMContext::MD_invariant_load,
1238                            LLVMContext::MD_nonnull,
1239                            LLVMContext::MD_invariant_group,
1240                            LLVMContext::MD_align,
1241                            LLVMContext::MD_dereferenceable,
1242                            LLVMContext::MD_dereferenceable_or_null,
1243                            LLVMContext::MD_mem_parallel_loop_access};
1244     combineMetadata(I1, I2, KnownIDs);
1245     I2->eraseFromParent();
1246     Changed = true;
1247 
1248     I1 = &*BB1_Itr++;
1249     I2 = &*BB2_Itr++;
1250     // Skip debug info if it is not identical.
1251     DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1252     DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1253     if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1254       while (isa<DbgInfoIntrinsic>(I1))
1255         I1 = &*BB1_Itr++;
1256       while (isa<DbgInfoIntrinsic>(I2))
1257         I2 = &*BB2_Itr++;
1258     }
1259   } while (I1->isIdenticalToWhenDefined(I2));
1260 
1261   return true;
1262 
1263 HoistTerminator:
1264   // It may not be possible to hoist an invoke.
1265   if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))
1266     return Changed;
1267 
1268   for (BasicBlock *Succ : successors(BB1)) {
1269     PHINode *PN;
1270     for (BasicBlock::iterator BBI = Succ->begin();
1271          (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
1272       Value *BB1V = PN->getIncomingValueForBlock(BB1);
1273       Value *BB2V = PN->getIncomingValueForBlock(BB2);
1274       if (BB1V == BB2V)
1275         continue;
1276 
1277       // Check for passingValueIsAlwaysUndefined here because we would rather
1278       // eliminate undefined control flow then converting it to a select.
1279       if (passingValueIsAlwaysUndefined(BB1V, PN) ||
1280           passingValueIsAlwaysUndefined(BB2V, PN))
1281         return Changed;
1282 
1283       if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V))
1284         return Changed;
1285       if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V))
1286         return Changed;
1287     }
1288   }
1289 
1290   // Okay, it is safe to hoist the terminator.
1291   Instruction *NT = I1->clone();
1292   BIParent->getInstList().insert(BI->getIterator(), NT);
1293   if (!NT->getType()->isVoidTy()) {
1294     I1->replaceAllUsesWith(NT);
1295     I2->replaceAllUsesWith(NT);
1296     NT->takeName(I1);
1297   }
1298 
1299   IRBuilder<NoFolder> Builder(NT);
1300   // Hoisting one of the terminators from our successor is a great thing.
1301   // Unfortunately, the successors of the if/else blocks may have PHI nodes in
1302   // them.  If they do, all PHI entries for BB1/BB2 must agree for all PHI
1303   // nodes, so we insert select instruction to compute the final result.
1304   std::map<std::pair<Value *, Value *>, SelectInst *> InsertedSelects;
1305   for (BasicBlock *Succ : successors(BB1)) {
1306     PHINode *PN;
1307     for (BasicBlock::iterator BBI = Succ->begin();
1308          (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
1309       Value *BB1V = PN->getIncomingValueForBlock(BB1);
1310       Value *BB2V = PN->getIncomingValueForBlock(BB2);
1311       if (BB1V == BB2V)
1312         continue;
1313 
1314       // These values do not agree.  Insert a select instruction before NT
1315       // that determines the right value.
1316       SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)];
1317       if (!SI)
1318         SI = cast<SelectInst>(
1319             Builder.CreateSelect(BI->getCondition(), BB1V, BB2V,
1320                                  BB1V->getName() + "." + BB2V->getName(), BI));
1321 
1322       // Make the PHI node use the select for all incoming values for BB1/BB2
1323       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1324         if (PN->getIncomingBlock(i) == BB1 || PN->getIncomingBlock(i) == BB2)
1325           PN->setIncomingValue(i, SI);
1326     }
1327   }
1328 
1329   // Update any PHI nodes in our new successors.
1330   for (BasicBlock *Succ : successors(BB1))
1331     AddPredecessorToBlock(Succ, BIParent, BB1);
1332 
1333   EraseTerminatorInstAndDCECond(BI);
1334   return true;
1335 }
1336 
1337 // Is it legal to place a variable in operand \c OpIdx of \c I?
1338 // FIXME: This should be promoted to Instruction.
1339 static bool canReplaceOperandWithVariable(const Instruction *I,
1340                                           unsigned OpIdx) {
1341   // We can't have a PHI with a metadata type.
1342   if (I->getOperand(OpIdx)->getType()->isMetadataTy())
1343     return false;
1344 
1345   // Early exit.
1346   if (!isa<Constant>(I->getOperand(OpIdx)))
1347     return true;
1348 
1349   switch (I->getOpcode()) {
1350   default:
1351     return true;
1352   case Instruction::Call:
1353   case Instruction::Invoke:
1354     // FIXME: many arithmetic intrinsics have no issue taking a
1355     // variable, however it's hard to distingish these from
1356     // specials such as @llvm.frameaddress that require a constant.
1357     return !isa<IntrinsicInst>(I);
1358   case Instruction::ShuffleVector:
1359     // Shufflevector masks are constant.
1360     return OpIdx != 2;
1361   case Instruction::ExtractValue:
1362   case Instruction::InsertValue:
1363     // All operands apart from the first are constant.
1364     return OpIdx == 0;
1365   case Instruction::Alloca:
1366     return false;
1367   case Instruction::GetElementPtr:
1368     if (OpIdx == 0)
1369       return true;
1370     gep_type_iterator It = std::next(gep_type_begin(I), OpIdx - 1);
1371     return !It->isStructTy();
1372   }
1373 }
1374 
1375 // All instructions in Insts belong to different blocks that all unconditionally
1376 // branch to a common successor. Analyze each instruction and return true if it
1377 // would be possible to sink them into their successor, creating one common
1378 // instruction instead. For every value that would be required to be provided by
1379 // PHI node (because an operand varies in each input block), add to PHIOperands.
1380 static bool canSinkInstructions(
1381     ArrayRef<Instruction *> Insts,
1382     DenseMap<Instruction *, SmallVector<Value *, 4>> &PHIOperands) {
1383   // Prune out obviously bad instructions to move. Any non-store instruction
1384   // must have exactly one use, and we check later that use is by a single,
1385   // common PHI instruction in the successor.
1386   for (auto *I : Insts) {
1387     // These instructions may change or break semantics if moved.
1388     if (isa<PHINode>(I) || I->isEHPad() || isa<AllocaInst>(I) ||
1389         I->getType()->isTokenTy())
1390       return false;
1391     // Everything must have only one use too, apart from stores which
1392     // have no uses.
1393     if (!isa<StoreInst>(I) && !I->hasOneUse())
1394       return false;
1395   }
1396 
1397   const Instruction *I0 = Insts.front();
1398   for (auto *I : Insts)
1399     if (!I->isSameOperationAs(I0))
1400       return false;
1401 
1402   // All instructions in Insts are known to be the same opcode. If they aren't
1403   // stores, check the only user of each is a PHI or in the same block as the
1404   // instruction, because if a user is in the same block as an instruction
1405   // we're contemplating sinking, it must already be determined to be sinkable.
1406   if (!isa<StoreInst>(I0)) {
1407     auto *PNUse = dyn_cast<PHINode>(*I0->user_begin());
1408     auto *Succ = I0->getParent()->getTerminator()->getSuccessor(0);
1409     if (!all_of(Insts, [&PNUse,&Succ](const Instruction *I) -> bool {
1410           auto *U = cast<Instruction>(*I->user_begin());
1411           return (PNUse &&
1412                   PNUse->getParent() == Succ &&
1413                   PNUse->getIncomingValueForBlock(I->getParent()) == I) ||
1414                  U->getParent() == I->getParent();
1415         }))
1416       return false;
1417   }
1418 
1419   for (unsigned OI = 0, OE = I0->getNumOperands(); OI != OE; ++OI) {
1420     if (I0->getOperand(OI)->getType()->isTokenTy())
1421       // Don't touch any operand of token type.
1422       return false;
1423     auto SameAsI0 = [&I0, OI](const Instruction *I) {
1424       assert(I->getNumOperands() == I0->getNumOperands());
1425       return I->getOperand(OI) == I0->getOperand(OI);
1426     };
1427     if (!all_of(Insts, SameAsI0)) {
1428       if (!canReplaceOperandWithVariable(I0, OI))
1429         // We can't create a PHI from this GEP.
1430         return false;
1431       // Don't create indirect calls! The called value is the final operand.
1432       if ((isa<CallInst>(I0) || isa<InvokeInst>(I0)) && OI == OE - 1) {
1433         // FIXME: if the call was *already* indirect, we should do this.
1434         return false;
1435       }
1436       // Because SROA can't handle speculating stores of selects, try not
1437       // to sink loads or stores of allocas when we'd have to create a PHI for
1438       // the address operand.
1439       // FIXME: This is a workaround for a deficiency in SROA - see
1440       // https://llvm.org/bugs/show_bug.cgi?id=30188
1441       if (OI == 1 && isa<StoreInst>(I0) &&
1442           any_of(Insts, [](const Instruction *I) {
1443             return isa<AllocaInst>(I->getOperand(1));
1444           }))
1445         return false;
1446       if (OI == 0 && isa<LoadInst>(I0) &&
1447           any_of(Insts, [](const Instruction *I) {
1448             return isa<AllocaInst>(I->getOperand(0));
1449           }))
1450         return false;
1451       for (auto *I : Insts)
1452         PHIOperands[I].push_back(I->getOperand(OI));
1453     }
1454   }
1455   return true;
1456 }
1457 
1458 // Assuming canSinkLastInstruction(Blocks) has returned true, sink the last
1459 // instruction of every block in Blocks to their common successor, commoning
1460 // into one instruction.
1461 static bool sinkLastInstruction(ArrayRef<BasicBlock*> Blocks) {
1462   auto *BBEnd = Blocks[0]->getTerminator()->getSuccessor(0);
1463 
1464   // canSinkLastInstruction returning true guarantees that every block has at
1465   // least one non-terminator instruction.
1466   SmallVector<Instruction*,4> Insts;
1467   for (auto *BB : Blocks)
1468     Insts.push_back(BB->getTerminator()->getPrevNode());
1469 
1470   // The only checking we need to do now is that all users of all instructions
1471   // are the same PHI node. canSinkLastInstruction should have checked this but
1472   // it is slightly over-aggressive - it gets confused by commutative instructions
1473   // so double-check it here.
1474   Instruction *I0 = Insts.front();
1475   if (!isa<StoreInst>(I0)) {
1476     auto *PNUse = dyn_cast<PHINode>(*I0->user_begin());
1477     if (!all_of(Insts, [&PNUse](const Instruction *I) -> bool {
1478           auto *U = cast<Instruction>(*I->user_begin());
1479           return U == PNUse;
1480         }))
1481       return false;
1482   }
1483 
1484   // We don't need to do any more checking here; canSinkLastInstruction should
1485   // have done it all for us.
1486   SmallVector<Value*, 4> NewOperands;
1487   for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) {
1488     // This check is different to that in canSinkLastInstruction. There, we
1489     // cared about the global view once simplifycfg (and instcombine) have
1490     // completed - it takes into account PHIs that become trivially
1491     // simplifiable.  However here we need a more local view; if an operand
1492     // differs we create a PHI and rely on instcombine to clean up the very
1493     // small mess we may make.
1494     bool NeedPHI = any_of(Insts, [&I0, O](const Instruction *I) {
1495       return I->getOperand(O) != I0->getOperand(O);
1496     });
1497     if (!NeedPHI) {
1498       NewOperands.push_back(I0->getOperand(O));
1499       continue;
1500     }
1501 
1502     // Create a new PHI in the successor block and populate it.
1503     auto *Op = I0->getOperand(O);
1504     assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!");
1505     auto *PN = PHINode::Create(Op->getType(), Insts.size(),
1506                                Op->getName() + ".sink", &BBEnd->front());
1507     for (auto *I : Insts)
1508       PN->addIncoming(I->getOperand(O), I->getParent());
1509     NewOperands.push_back(PN);
1510   }
1511 
1512   // Arbitrarily use I0 as the new "common" instruction; remap its operands
1513   // and move it to the start of the successor block.
1514   for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O)
1515     I0->getOperandUse(O).set(NewOperands[O]);
1516   I0->moveBefore(&*BBEnd->getFirstInsertionPt());
1517 
1518   // Update metadata.
1519   for (auto *I : Insts)
1520     if (I != I0)
1521       combineMetadataForCSE(I0, I);
1522 
1523   if (!isa<StoreInst>(I0)) {
1524     // canSinkLastInstruction checked that all instructions were used by
1525     // one and only one PHI node. Find that now, RAUW it to our common
1526     // instruction and nuke it.
1527     assert(I0->hasOneUse());
1528     auto *PN = cast<PHINode>(*I0->user_begin());
1529     PN->replaceAllUsesWith(I0);
1530     PN->eraseFromParent();
1531   }
1532 
1533   // Finally nuke all instructions apart from the common instruction.
1534   for (auto *I : Insts)
1535     if (I != I0)
1536       I->eraseFromParent();
1537 
1538   return true;
1539 }
1540 
1541 namespace {
1542   // LockstepReverseIterator - Iterates through instructions
1543   // in a set of blocks in reverse order from the first non-terminator.
1544   // For example (assume all blocks have size n):
1545   //   LockstepReverseIterator I([B1, B2, B3]);
1546   //   *I-- = [B1[n], B2[n], B3[n]];
1547   //   *I-- = [B1[n-1], B2[n-1], B3[n-1]];
1548   //   *I-- = [B1[n-2], B2[n-2], B3[n-2]];
1549   //   ...
1550   class LockstepReverseIterator {
1551     ArrayRef<BasicBlock*> Blocks;
1552     SmallVector<Instruction*,4> Insts;
1553     bool Fail;
1554   public:
1555     LockstepReverseIterator(ArrayRef<BasicBlock*> Blocks) :
1556       Blocks(Blocks) {
1557       reset();
1558     }
1559 
1560     void reset() {
1561       Fail = false;
1562       Insts.clear();
1563       for (auto *BB : Blocks) {
1564         if (BB->size() <= 1) {
1565           // Block wasn't big enough
1566           Fail = true;
1567           return;
1568         }
1569         Insts.push_back(BB->getTerminator()->getPrevNode());
1570       }
1571     }
1572 
1573     bool isValid() const {
1574       return !Fail;
1575     }
1576 
1577     void operator -- () {
1578       if (Fail)
1579         return;
1580       for (auto *&Inst : Insts) {
1581         if (Inst == &Inst->getParent()->front()) {
1582           Fail = true;
1583           return;
1584         }
1585         Inst = Inst->getPrevNode();
1586       }
1587     }
1588 
1589     ArrayRef<Instruction*> operator * () const {
1590       return Insts;
1591     }
1592   };
1593 }
1594 
1595 /// Given an unconditional branch that goes to BBEnd,
1596 /// check whether BBEnd has only two predecessors and the other predecessor
1597 /// ends with an unconditional branch. If it is true, sink any common code
1598 /// in the two predecessors to BBEnd.
1599 static bool SinkThenElseCodeToEnd(BranchInst *BI1) {
1600   assert(BI1->isUnconditional());
1601   BasicBlock *BBEnd = BI1->getSuccessor(0);
1602 
1603   // We support two situations:
1604   //   (1) all incoming arcs are unconditional
1605   //   (2) one incoming arc is conditional
1606   //
1607   // (2) is very common in switch defaults and
1608   // else-if patterns;
1609   //
1610   //   if (a) f(1);
1611   //   else if (b) f(2);
1612   //
1613   // produces:
1614   //
1615   //       [if]
1616   //      /    \
1617   //    [f(1)] [if]
1618   //      |     | \
1619   //      |     |  \
1620   //      |  [f(2)]|
1621   //       \    | /
1622   //        [ end ]
1623   //
1624   // [end] has two unconditional predecessor arcs and one conditional. The
1625   // conditional refers to the implicit empty 'else' arc. This conditional
1626   // arc can also be caused by an empty default block in a switch.
1627   //
1628   // In this case, we attempt to sink code from all *unconditional* arcs.
1629   // If we can sink instructions from these arcs (determined during the scan
1630   // phase below) we insert a common successor for all unconditional arcs and
1631   // connect that to [end], to enable sinking:
1632   //
1633   //       [if]
1634   //      /    \
1635   //    [x(1)] [if]
1636   //      |     | \
1637   //      |     |  \
1638   //      |  [x(2)] |
1639   //       \   /    |
1640   //   [sink.split] |
1641   //         \     /
1642   //         [ end ]
1643   //
1644   SmallVector<BasicBlock*,4> UnconditionalPreds;
1645   Instruction *Cond = nullptr;
1646   for (auto *B : predecessors(BBEnd)) {
1647     auto *T = B->getTerminator();
1648     if (isa<BranchInst>(T) && cast<BranchInst>(T)->isUnconditional())
1649       UnconditionalPreds.push_back(B);
1650     else if ((isa<BranchInst>(T) || isa<SwitchInst>(T)) && !Cond)
1651       Cond = T;
1652     else
1653       return false;
1654   }
1655   if (UnconditionalPreds.size() < 2)
1656     return false;
1657 
1658   bool Changed = false;
1659   // We take a two-step approach to tail sinking. First we scan from the end of
1660   // each block upwards in lockstep. If the n'th instruction from the end of each
1661   // block can be sunk, those instructions are added to ValuesToSink and we
1662   // carry on. If we can sink an instruction but need to PHI-merge some operands
1663   // (because they're not identical in each instruction) we add these to
1664   // PHIOperands.
1665   unsigned ScanIdx = 0;
1666   SmallPtrSet<Value*,4> InstructionsToSink;
1667   DenseMap<Instruction*, SmallVector<Value*,4>> PHIOperands;
1668   LockstepReverseIterator LRI(UnconditionalPreds);
1669   while (LRI.isValid() &&
1670          canSinkInstructions(*LRI, PHIOperands)) {
1671     DEBUG(dbgs() << "SINK: instruction can be sunk: " << *(*LRI)[0] << "\n");
1672     InstructionsToSink.insert((*LRI).begin(), (*LRI).end());
1673     ++ScanIdx;
1674     --LRI;
1675   }
1676 
1677   auto ProfitableToSinkLastInstruction = [&]() {
1678     LRI.reset();
1679     unsigned NumPHIdValues = 0;
1680     for (auto *I : *LRI)
1681       for (auto *V : PHIOperands[I])
1682         if (InstructionsToSink.count(V) == 0)
1683           ++NumPHIdValues;
1684     DEBUG(dbgs() << "SINK: #phid values: " << NumPHIdValues << "\n");
1685     unsigned NumPHIInsts = NumPHIdValues / UnconditionalPreds.size();
1686     if ((NumPHIdValues % UnconditionalPreds.size()) != 0)
1687         NumPHIInsts++;
1688 
1689     return NumPHIInsts <= 1;
1690   };
1691 
1692   if (ScanIdx > 0 && Cond) {
1693     // Check if we would actually sink anything first!
1694     if (!ProfitableToSinkLastInstruction())
1695       return false;
1696 
1697     DEBUG(dbgs() << "SINK: Splitting edge\n");
1698     // We have a conditional edge and we're going to sink some instructions.
1699     // Insert a new block postdominating all blocks we're going to sink from.
1700     if (!SplitBlockPredecessors(BI1->getSuccessor(0), UnconditionalPreds,
1701                                 ".sink.split"))
1702       // Edges couldn't be split.
1703       return false;
1704     Changed = true;
1705   }
1706 
1707   // Now that we've analyzed all potential sinking candidates, perform the
1708   // actual sink. We iteratively sink the last non-terminator of the source
1709   // blocks into their common successor unless doing so would require too
1710   // many PHI instructions to be generated (currently only one PHI is allowed
1711   // per sunk instruction).
1712   //
1713   // We can use InstructionsToSink to discount values needing PHI-merging that will
1714   // actually be sunk in a later iteration. This allows us to be more
1715   // aggressive in what we sink. This does allow a false positive where we
1716   // sink presuming a later value will also be sunk, but stop half way through
1717   // and never actually sink it which means we produce more PHIs than intended.
1718   // This is unlikely in practice though.
1719   for (unsigned SinkIdx = 0; SinkIdx != ScanIdx; ++SinkIdx) {
1720     DEBUG(dbgs() << "SINK: Sink: "
1721                  << *UnconditionalPreds[0]->getTerminator()->getPrevNode()
1722                  << "\n");
1723 
1724     // Because we've sunk every instruction in turn, the current instruction to
1725     // sink is always at index 0.
1726     if (!ProfitableToSinkLastInstruction()) {
1727       // Too many PHIs would be created.
1728       DEBUG(dbgs() << "SINK: stopping here, too many PHIs would be created!\n");
1729       break;
1730     }
1731 
1732     if (!sinkLastInstruction(UnconditionalPreds))
1733       return Changed;
1734     NumSinkCommons++;
1735     Changed = true;
1736   }
1737   return Changed;
1738 }
1739 
1740 /// \brief Determine if we can hoist sink a sole store instruction out of a
1741 /// conditional block.
1742 ///
1743 /// We are looking for code like the following:
1744 ///   BrBB:
1745 ///     store i32 %add, i32* %arrayidx2
1746 ///     ... // No other stores or function calls (we could be calling a memory
1747 ///     ... // function).
1748 ///     %cmp = icmp ult %x, %y
1749 ///     br i1 %cmp, label %EndBB, label %ThenBB
1750 ///   ThenBB:
1751 ///     store i32 %add5, i32* %arrayidx2
1752 ///     br label EndBB
1753 ///   EndBB:
1754 ///     ...
1755 ///   We are going to transform this into:
1756 ///   BrBB:
1757 ///     store i32 %add, i32* %arrayidx2
1758 ///     ... //
1759 ///     %cmp = icmp ult %x, %y
1760 ///     %add.add5 = select i1 %cmp, i32 %add, %add5
1761 ///     store i32 %add.add5, i32* %arrayidx2
1762 ///     ...
1763 ///
1764 /// \return The pointer to the value of the previous store if the store can be
1765 ///         hoisted into the predecessor block. 0 otherwise.
1766 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB,
1767                                      BasicBlock *StoreBB, BasicBlock *EndBB) {
1768   StoreInst *StoreToHoist = dyn_cast<StoreInst>(I);
1769   if (!StoreToHoist)
1770     return nullptr;
1771 
1772   // Volatile or atomic.
1773   if (!StoreToHoist->isSimple())
1774     return nullptr;
1775 
1776   Value *StorePtr = StoreToHoist->getPointerOperand();
1777 
1778   // Look for a store to the same pointer in BrBB.
1779   unsigned MaxNumInstToLookAt = 9;
1780   for (Instruction &CurI : reverse(*BrBB)) {
1781     if (!MaxNumInstToLookAt)
1782       break;
1783     // Skip debug info.
1784     if (isa<DbgInfoIntrinsic>(CurI))
1785       continue;
1786     --MaxNumInstToLookAt;
1787 
1788     // Could be calling an instruction that affects memory like free().
1789     if (CurI.mayHaveSideEffects() && !isa<StoreInst>(CurI))
1790       return nullptr;
1791 
1792     if (auto *SI = dyn_cast<StoreInst>(&CurI)) {
1793       // Found the previous store make sure it stores to the same location.
1794       if (SI->getPointerOperand() == StorePtr)
1795         // Found the previous store, return its value operand.
1796         return SI->getValueOperand();
1797       return nullptr; // Unknown store.
1798     }
1799   }
1800 
1801   return nullptr;
1802 }
1803 
1804 /// \brief Speculate a conditional basic block flattening the CFG.
1805 ///
1806 /// Note that this is a very risky transform currently. Speculating
1807 /// instructions like this is most often not desirable. Instead, there is an MI
1808 /// pass which can do it with full awareness of the resource constraints.
1809 /// However, some cases are "obvious" and we should do directly. An example of
1810 /// this is speculating a single, reasonably cheap instruction.
1811 ///
1812 /// There is only one distinct advantage to flattening the CFG at the IR level:
1813 /// it makes very common but simplistic optimizations such as are common in
1814 /// instcombine and the DAG combiner more powerful by removing CFG edges and
1815 /// modeling their effects with easier to reason about SSA value graphs.
1816 ///
1817 ///
1818 /// An illustration of this transform is turning this IR:
1819 /// \code
1820 ///   BB:
1821 ///     %cmp = icmp ult %x, %y
1822 ///     br i1 %cmp, label %EndBB, label %ThenBB
1823 ///   ThenBB:
1824 ///     %sub = sub %x, %y
1825 ///     br label BB2
1826 ///   EndBB:
1827 ///     %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ]
1828 ///     ...
1829 /// \endcode
1830 ///
1831 /// Into this IR:
1832 /// \code
1833 ///   BB:
1834 ///     %cmp = icmp ult %x, %y
1835 ///     %sub = sub %x, %y
1836 ///     %cond = select i1 %cmp, 0, %sub
1837 ///     ...
1838 /// \endcode
1839 ///
1840 /// \returns true if the conditional block is removed.
1841 static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB,
1842                                    const TargetTransformInfo &TTI) {
1843   // Be conservative for now. FP select instruction can often be expensive.
1844   Value *BrCond = BI->getCondition();
1845   if (isa<FCmpInst>(BrCond))
1846     return false;
1847 
1848   BasicBlock *BB = BI->getParent();
1849   BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0);
1850 
1851   // If ThenBB is actually on the false edge of the conditional branch, remember
1852   // to swap the select operands later.
1853   bool Invert = false;
1854   if (ThenBB != BI->getSuccessor(0)) {
1855     assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?");
1856     Invert = true;
1857   }
1858   assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block");
1859 
1860   // Keep a count of how many times instructions are used within CondBB when
1861   // they are candidates for sinking into CondBB. Specifically:
1862   // - They are defined in BB, and
1863   // - They have no side effects, and
1864   // - All of their uses are in CondBB.
1865   SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts;
1866 
1867   unsigned SpeculationCost = 0;
1868   Value *SpeculatedStoreValue = nullptr;
1869   StoreInst *SpeculatedStore = nullptr;
1870   for (BasicBlock::iterator BBI = ThenBB->begin(),
1871                             BBE = std::prev(ThenBB->end());
1872        BBI != BBE; ++BBI) {
1873     Instruction *I = &*BBI;
1874     // Skip debug info.
1875     if (isa<DbgInfoIntrinsic>(I))
1876       continue;
1877 
1878     // Only speculatively execute a single instruction (not counting the
1879     // terminator) for now.
1880     ++SpeculationCost;
1881     if (SpeculationCost > 1)
1882       return false;
1883 
1884     // Don't hoist the instruction if it's unsafe or expensive.
1885     if (!isSafeToSpeculativelyExecute(I) &&
1886         !(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore(
1887                                   I, BB, ThenBB, EndBB))))
1888       return false;
1889     if (!SpeculatedStoreValue &&
1890         ComputeSpeculationCost(I, TTI) >
1891             PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic)
1892       return false;
1893 
1894     // Store the store speculation candidate.
1895     if (SpeculatedStoreValue)
1896       SpeculatedStore = cast<StoreInst>(I);
1897 
1898     // Do not hoist the instruction if any of its operands are defined but not
1899     // used in BB. The transformation will prevent the operand from
1900     // being sunk into the use block.
1901     for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) {
1902       Instruction *OpI = dyn_cast<Instruction>(*i);
1903       if (!OpI || OpI->getParent() != BB || OpI->mayHaveSideEffects())
1904         continue; // Not a candidate for sinking.
1905 
1906       ++SinkCandidateUseCounts[OpI];
1907     }
1908   }
1909 
1910   // Consider any sink candidates which are only used in CondBB as costs for
1911   // speculation. Note, while we iterate over a DenseMap here, we are summing
1912   // and so iteration order isn't significant.
1913   for (SmallDenseMap<Instruction *, unsigned, 4>::iterator
1914            I = SinkCandidateUseCounts.begin(),
1915            E = SinkCandidateUseCounts.end();
1916        I != E; ++I)
1917     if (I->first->getNumUses() == I->second) {
1918       ++SpeculationCost;
1919       if (SpeculationCost > 1)
1920         return false;
1921     }
1922 
1923   // Check that the PHI nodes can be converted to selects.
1924   bool HaveRewritablePHIs = false;
1925   for (BasicBlock::iterator I = EndBB->begin();
1926        PHINode *PN = dyn_cast<PHINode>(I); ++I) {
1927     Value *OrigV = PN->getIncomingValueForBlock(BB);
1928     Value *ThenV = PN->getIncomingValueForBlock(ThenBB);
1929 
1930     // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf.
1931     // Skip PHIs which are trivial.
1932     if (ThenV == OrigV)
1933       continue;
1934 
1935     // Don't convert to selects if we could remove undefined behavior instead.
1936     if (passingValueIsAlwaysUndefined(OrigV, PN) ||
1937         passingValueIsAlwaysUndefined(ThenV, PN))
1938       return false;
1939 
1940     HaveRewritablePHIs = true;
1941     ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV);
1942     ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV);
1943     if (!OrigCE && !ThenCE)
1944       continue; // Known safe and cheap.
1945 
1946     if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE)) ||
1947         (OrigCE && !isSafeToSpeculativelyExecute(OrigCE)))
1948       return false;
1949     unsigned OrigCost = OrigCE ? ComputeSpeculationCost(OrigCE, TTI) : 0;
1950     unsigned ThenCost = ThenCE ? ComputeSpeculationCost(ThenCE, TTI) : 0;
1951     unsigned MaxCost =
1952         2 * PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
1953     if (OrigCost + ThenCost > MaxCost)
1954       return false;
1955 
1956     // Account for the cost of an unfolded ConstantExpr which could end up
1957     // getting expanded into Instructions.
1958     // FIXME: This doesn't account for how many operations are combined in the
1959     // constant expression.
1960     ++SpeculationCost;
1961     if (SpeculationCost > 1)
1962       return false;
1963   }
1964 
1965   // If there are no PHIs to process, bail early. This helps ensure idempotence
1966   // as well.
1967   if (!HaveRewritablePHIs && !(HoistCondStores && SpeculatedStoreValue))
1968     return false;
1969 
1970   // If we get here, we can hoist the instruction and if-convert.
1971   DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";);
1972 
1973   // Insert a select of the value of the speculated store.
1974   if (SpeculatedStoreValue) {
1975     IRBuilder<NoFolder> Builder(BI);
1976     Value *TrueV = SpeculatedStore->getValueOperand();
1977     Value *FalseV = SpeculatedStoreValue;
1978     if (Invert)
1979       std::swap(TrueV, FalseV);
1980     Value *S = Builder.CreateSelect(
1981         BrCond, TrueV, FalseV, TrueV->getName() + "." + FalseV->getName(), BI);
1982     SpeculatedStore->setOperand(0, S);
1983   }
1984 
1985   // Metadata can be dependent on the condition we are hoisting above.
1986   // Conservatively strip all metadata on the instruction.
1987   for (auto &I : *ThenBB)
1988     I.dropUnknownNonDebugMetadata();
1989 
1990   // Hoist the instructions.
1991   BB->getInstList().splice(BI->getIterator(), ThenBB->getInstList(),
1992                            ThenBB->begin(), std::prev(ThenBB->end()));
1993 
1994   // Insert selects and rewrite the PHI operands.
1995   IRBuilder<NoFolder> Builder(BI);
1996   for (BasicBlock::iterator I = EndBB->begin();
1997        PHINode *PN = dyn_cast<PHINode>(I); ++I) {
1998     unsigned OrigI = PN->getBasicBlockIndex(BB);
1999     unsigned ThenI = PN->getBasicBlockIndex(ThenBB);
2000     Value *OrigV = PN->getIncomingValue(OrigI);
2001     Value *ThenV = PN->getIncomingValue(ThenI);
2002 
2003     // Skip PHIs which are trivial.
2004     if (OrigV == ThenV)
2005       continue;
2006 
2007     // Create a select whose true value is the speculatively executed value and
2008     // false value is the preexisting value. Swap them if the branch
2009     // destinations were inverted.
2010     Value *TrueV = ThenV, *FalseV = OrigV;
2011     if (Invert)
2012       std::swap(TrueV, FalseV);
2013     Value *V = Builder.CreateSelect(
2014         BrCond, TrueV, FalseV, TrueV->getName() + "." + FalseV->getName(), BI);
2015     PN->setIncomingValue(OrigI, V);
2016     PN->setIncomingValue(ThenI, V);
2017   }
2018 
2019   ++NumSpeculations;
2020   return true;
2021 }
2022 
2023 /// Return true if we can thread a branch across this block.
2024 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) {
2025   BranchInst *BI = cast<BranchInst>(BB->getTerminator());
2026   unsigned Size = 0;
2027 
2028   for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
2029     if (isa<DbgInfoIntrinsic>(BBI))
2030       continue;
2031     if (Size > 10)
2032       return false; // Don't clone large BB's.
2033     ++Size;
2034 
2035     // We can only support instructions that do not define values that are
2036     // live outside of the current basic block.
2037     for (User *U : BBI->users()) {
2038       Instruction *UI = cast<Instruction>(U);
2039       if (UI->getParent() != BB || isa<PHINode>(UI))
2040         return false;
2041     }
2042 
2043     // Looks ok, continue checking.
2044   }
2045 
2046   return true;
2047 }
2048 
2049 /// If we have a conditional branch on a PHI node value that is defined in the
2050 /// same block as the branch and if any PHI entries are constants, thread edges
2051 /// corresponding to that entry to be branches to their ultimate destination.
2052 static bool FoldCondBranchOnPHI(BranchInst *BI, const DataLayout &DL) {
2053   BasicBlock *BB = BI->getParent();
2054   PHINode *PN = dyn_cast<PHINode>(BI->getCondition());
2055   // NOTE: we currently cannot transform this case if the PHI node is used
2056   // outside of the block.
2057   if (!PN || PN->getParent() != BB || !PN->hasOneUse())
2058     return false;
2059 
2060   // Degenerate case of a single entry PHI.
2061   if (PN->getNumIncomingValues() == 1) {
2062     FoldSingleEntryPHINodes(PN->getParent());
2063     return true;
2064   }
2065 
2066   // Now we know that this block has multiple preds and two succs.
2067   if (!BlockIsSimpleEnoughToThreadThrough(BB))
2068     return false;
2069 
2070   // Can't fold blocks that contain noduplicate or convergent calls.
2071   if (any_of(*BB, [](const Instruction &I) {
2072         const CallInst *CI = dyn_cast<CallInst>(&I);
2073         return CI && (CI->cannotDuplicate() || CI->isConvergent());
2074       }))
2075     return false;
2076 
2077   // Okay, this is a simple enough basic block.  See if any phi values are
2078   // constants.
2079   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
2080     ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i));
2081     if (!CB || !CB->getType()->isIntegerTy(1))
2082       continue;
2083 
2084     // Okay, we now know that all edges from PredBB should be revectored to
2085     // branch to RealDest.
2086     BasicBlock *PredBB = PN->getIncomingBlock(i);
2087     BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue());
2088 
2089     if (RealDest == BB)
2090       continue; // Skip self loops.
2091     // Skip if the predecessor's terminator is an indirect branch.
2092     if (isa<IndirectBrInst>(PredBB->getTerminator()))
2093       continue;
2094 
2095     // The dest block might have PHI nodes, other predecessors and other
2096     // difficult cases.  Instead of being smart about this, just insert a new
2097     // block that jumps to the destination block, effectively splitting
2098     // the edge we are about to create.
2099     BasicBlock *EdgeBB =
2100         BasicBlock::Create(BB->getContext(), RealDest->getName() + ".critedge",
2101                            RealDest->getParent(), RealDest);
2102     BranchInst::Create(RealDest, EdgeBB);
2103 
2104     // Update PHI nodes.
2105     AddPredecessorToBlock(RealDest, EdgeBB, BB);
2106 
2107     // BB may have instructions that are being threaded over.  Clone these
2108     // instructions into EdgeBB.  We know that there will be no uses of the
2109     // cloned instructions outside of EdgeBB.
2110     BasicBlock::iterator InsertPt = EdgeBB->begin();
2111     DenseMap<Value *, Value *> TranslateMap; // Track translated values.
2112     for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
2113       if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
2114         TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB);
2115         continue;
2116       }
2117       // Clone the instruction.
2118       Instruction *N = BBI->clone();
2119       if (BBI->hasName())
2120         N->setName(BBI->getName() + ".c");
2121 
2122       // Update operands due to translation.
2123       for (User::op_iterator i = N->op_begin(), e = N->op_end(); i != e; ++i) {
2124         DenseMap<Value *, Value *>::iterator PI = TranslateMap.find(*i);
2125         if (PI != TranslateMap.end())
2126           *i = PI->second;
2127       }
2128 
2129       // Check for trivial simplification.
2130       if (Value *V = SimplifyInstruction(N, DL)) {
2131         if (!BBI->use_empty())
2132           TranslateMap[&*BBI] = V;
2133         if (!N->mayHaveSideEffects()) {
2134           delete N; // Instruction folded away, don't need actual inst
2135           N = nullptr;
2136         }
2137       } else {
2138         if (!BBI->use_empty())
2139           TranslateMap[&*BBI] = N;
2140       }
2141       // Insert the new instruction into its new home.
2142       if (N)
2143         EdgeBB->getInstList().insert(InsertPt, N);
2144     }
2145 
2146     // Loop over all of the edges from PredBB to BB, changing them to branch
2147     // to EdgeBB instead.
2148     TerminatorInst *PredBBTI = PredBB->getTerminator();
2149     for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i)
2150       if (PredBBTI->getSuccessor(i) == BB) {
2151         BB->removePredecessor(PredBB);
2152         PredBBTI->setSuccessor(i, EdgeBB);
2153       }
2154 
2155     // Recurse, simplifying any other constants.
2156     return FoldCondBranchOnPHI(BI, DL) | true;
2157   }
2158 
2159   return false;
2160 }
2161 
2162 /// Given a BB that starts with the specified two-entry PHI node,
2163 /// see if we can eliminate it.
2164 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI,
2165                                 const DataLayout &DL) {
2166   // Ok, this is a two entry PHI node.  Check to see if this is a simple "if
2167   // statement", which has a very simple dominance structure.  Basically, we
2168   // are trying to find the condition that is being branched on, which
2169   // subsequently causes this merge to happen.  We really want control
2170   // dependence information for this check, but simplifycfg can't keep it up
2171   // to date, and this catches most of the cases we care about anyway.
2172   BasicBlock *BB = PN->getParent();
2173   BasicBlock *IfTrue, *IfFalse;
2174   Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse);
2175   if (!IfCond ||
2176       // Don't bother if the branch will be constant folded trivially.
2177       isa<ConstantInt>(IfCond))
2178     return false;
2179 
2180   // Okay, we found that we can merge this two-entry phi node into a select.
2181   // Doing so would require us to fold *all* two entry phi nodes in this block.
2182   // At some point this becomes non-profitable (particularly if the target
2183   // doesn't support cmov's).  Only do this transformation if there are two or
2184   // fewer PHI nodes in this block.
2185   unsigned NumPhis = 0;
2186   for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I)
2187     if (NumPhis > 2)
2188       return false;
2189 
2190   // Loop over the PHI's seeing if we can promote them all to select
2191   // instructions.  While we are at it, keep track of the instructions
2192   // that need to be moved to the dominating block.
2193   SmallPtrSet<Instruction *, 4> AggressiveInsts;
2194   unsigned MaxCostVal0 = PHINodeFoldingThreshold,
2195            MaxCostVal1 = PHINodeFoldingThreshold;
2196   MaxCostVal0 *= TargetTransformInfo::TCC_Basic;
2197   MaxCostVal1 *= TargetTransformInfo::TCC_Basic;
2198 
2199   for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) {
2200     PHINode *PN = cast<PHINode>(II++);
2201     if (Value *V = SimplifyInstruction(PN, DL)) {
2202       PN->replaceAllUsesWith(V);
2203       PN->eraseFromParent();
2204       continue;
2205     }
2206 
2207     if (!DominatesMergePoint(PN->getIncomingValue(0), BB, &AggressiveInsts,
2208                              MaxCostVal0, TTI) ||
2209         !DominatesMergePoint(PN->getIncomingValue(1), BB, &AggressiveInsts,
2210                              MaxCostVal1, TTI))
2211       return false;
2212   }
2213 
2214   // If we folded the first phi, PN dangles at this point.  Refresh it.  If
2215   // we ran out of PHIs then we simplified them all.
2216   PN = dyn_cast<PHINode>(BB->begin());
2217   if (!PN)
2218     return true;
2219 
2220   // Don't fold i1 branches on PHIs which contain binary operators.  These can
2221   // often be turned into switches and other things.
2222   if (PN->getType()->isIntegerTy(1) &&
2223       (isa<BinaryOperator>(PN->getIncomingValue(0)) ||
2224        isa<BinaryOperator>(PN->getIncomingValue(1)) ||
2225        isa<BinaryOperator>(IfCond)))
2226     return false;
2227 
2228   // If all PHI nodes are promotable, check to make sure that all instructions
2229   // in the predecessor blocks can be promoted as well. If not, we won't be able
2230   // to get rid of the control flow, so it's not worth promoting to select
2231   // instructions.
2232   BasicBlock *DomBlock = nullptr;
2233   BasicBlock *IfBlock1 = PN->getIncomingBlock(0);
2234   BasicBlock *IfBlock2 = PN->getIncomingBlock(1);
2235   if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) {
2236     IfBlock1 = nullptr;
2237   } else {
2238     DomBlock = *pred_begin(IfBlock1);
2239     for (BasicBlock::iterator I = IfBlock1->begin(); !isa<TerminatorInst>(I);
2240          ++I)
2241       if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) {
2242         // This is not an aggressive instruction that we can promote.
2243         // Because of this, we won't be able to get rid of the control flow, so
2244         // the xform is not worth it.
2245         return false;
2246       }
2247   }
2248 
2249   if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) {
2250     IfBlock2 = nullptr;
2251   } else {
2252     DomBlock = *pred_begin(IfBlock2);
2253     for (BasicBlock::iterator I = IfBlock2->begin(); !isa<TerminatorInst>(I);
2254          ++I)
2255       if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) {
2256         // This is not an aggressive instruction that we can promote.
2257         // Because of this, we won't be able to get rid of the control flow, so
2258         // the xform is not worth it.
2259         return false;
2260       }
2261   }
2262 
2263   DEBUG(dbgs() << "FOUND IF CONDITION!  " << *IfCond << "  T: "
2264                << IfTrue->getName() << "  F: " << IfFalse->getName() << "\n");
2265 
2266   // If we can still promote the PHI nodes after this gauntlet of tests,
2267   // do all of the PHI's now.
2268   Instruction *InsertPt = DomBlock->getTerminator();
2269   IRBuilder<NoFolder> Builder(InsertPt);
2270 
2271   // Move all 'aggressive' instructions, which are defined in the
2272   // conditional parts of the if's up to the dominating block.
2273   if (IfBlock1) {
2274     for (auto &I : *IfBlock1)
2275       I.dropUnknownNonDebugMetadata();
2276     DomBlock->getInstList().splice(InsertPt->getIterator(),
2277                                    IfBlock1->getInstList(), IfBlock1->begin(),
2278                                    IfBlock1->getTerminator()->getIterator());
2279   }
2280   if (IfBlock2) {
2281     for (auto &I : *IfBlock2)
2282       I.dropUnknownNonDebugMetadata();
2283     DomBlock->getInstList().splice(InsertPt->getIterator(),
2284                                    IfBlock2->getInstList(), IfBlock2->begin(),
2285                                    IfBlock2->getTerminator()->getIterator());
2286   }
2287 
2288   while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
2289     // Change the PHI node into a select instruction.
2290     Value *TrueVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse);
2291     Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue);
2292 
2293     Value *Sel = Builder.CreateSelect(IfCond, TrueVal, FalseVal, "", InsertPt);
2294     PN->replaceAllUsesWith(Sel);
2295     Sel->takeName(PN);
2296     PN->eraseFromParent();
2297   }
2298 
2299   // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement
2300   // has been flattened.  Change DomBlock to jump directly to our new block to
2301   // avoid other simplifycfg's kicking in on the diamond.
2302   TerminatorInst *OldTI = DomBlock->getTerminator();
2303   Builder.SetInsertPoint(OldTI);
2304   Builder.CreateBr(BB);
2305   OldTI->eraseFromParent();
2306   return true;
2307 }
2308 
2309 /// If we found a conditional branch that goes to two returning blocks,
2310 /// try to merge them together into one return,
2311 /// introducing a select if the return values disagree.
2312 static bool SimplifyCondBranchToTwoReturns(BranchInst *BI,
2313                                            IRBuilder<> &Builder) {
2314   assert(BI->isConditional() && "Must be a conditional branch");
2315   BasicBlock *TrueSucc = BI->getSuccessor(0);
2316   BasicBlock *FalseSucc = BI->getSuccessor(1);
2317   ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator());
2318   ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator());
2319 
2320   // Check to ensure both blocks are empty (just a return) or optionally empty
2321   // with PHI nodes.  If there are other instructions, merging would cause extra
2322   // computation on one path or the other.
2323   if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator())
2324     return false;
2325   if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator())
2326     return false;
2327 
2328   Builder.SetInsertPoint(BI);
2329   // Okay, we found a branch that is going to two return nodes.  If
2330   // there is no return value for this function, just change the
2331   // branch into a return.
2332   if (FalseRet->getNumOperands() == 0) {
2333     TrueSucc->removePredecessor(BI->getParent());
2334     FalseSucc->removePredecessor(BI->getParent());
2335     Builder.CreateRetVoid();
2336     EraseTerminatorInstAndDCECond(BI);
2337     return true;
2338   }
2339 
2340   // Otherwise, figure out what the true and false return values are
2341   // so we can insert a new select instruction.
2342   Value *TrueValue = TrueRet->getReturnValue();
2343   Value *FalseValue = FalseRet->getReturnValue();
2344 
2345   // Unwrap any PHI nodes in the return blocks.
2346   if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue))
2347     if (TVPN->getParent() == TrueSucc)
2348       TrueValue = TVPN->getIncomingValueForBlock(BI->getParent());
2349   if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue))
2350     if (FVPN->getParent() == FalseSucc)
2351       FalseValue = FVPN->getIncomingValueForBlock(BI->getParent());
2352 
2353   // In order for this transformation to be safe, we must be able to
2354   // unconditionally execute both operands to the return.  This is
2355   // normally the case, but we could have a potentially-trapping
2356   // constant expression that prevents this transformation from being
2357   // safe.
2358   if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue))
2359     if (TCV->canTrap())
2360       return false;
2361   if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue))
2362     if (FCV->canTrap())
2363       return false;
2364 
2365   // Okay, we collected all the mapped values and checked them for sanity, and
2366   // defined to really do this transformation.  First, update the CFG.
2367   TrueSucc->removePredecessor(BI->getParent());
2368   FalseSucc->removePredecessor(BI->getParent());
2369 
2370   // Insert select instructions where needed.
2371   Value *BrCond = BI->getCondition();
2372   if (TrueValue) {
2373     // Insert a select if the results differ.
2374     if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) {
2375     } else if (isa<UndefValue>(TrueValue)) {
2376       TrueValue = FalseValue;
2377     } else {
2378       TrueValue =
2379           Builder.CreateSelect(BrCond, TrueValue, FalseValue, "retval", BI);
2380     }
2381   }
2382 
2383   Value *RI =
2384       !TrueValue ? Builder.CreateRetVoid() : Builder.CreateRet(TrueValue);
2385 
2386   (void)RI;
2387 
2388   DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:"
2389                << "\n  " << *BI << "NewRet = " << *RI
2390                << "TRUEBLOCK: " << *TrueSucc << "FALSEBLOCK: " << *FalseSucc);
2391 
2392   EraseTerminatorInstAndDCECond(BI);
2393 
2394   return true;
2395 }
2396 
2397 /// Return true if the given instruction is available
2398 /// in its predecessor block. If yes, the instruction will be removed.
2399 static bool checkCSEInPredecessor(Instruction *Inst, BasicBlock *PB) {
2400   if (!isa<BinaryOperator>(Inst) && !isa<CmpInst>(Inst))
2401     return false;
2402   for (Instruction &I : *PB) {
2403     Instruction *PBI = &I;
2404     // Check whether Inst and PBI generate the same value.
2405     if (Inst->isIdenticalTo(PBI)) {
2406       Inst->replaceAllUsesWith(PBI);
2407       Inst->eraseFromParent();
2408       return true;
2409     }
2410   }
2411   return false;
2412 }
2413 
2414 /// Return true if either PBI or BI has branch weight available, and store
2415 /// the weights in {Pred|Succ}{True|False}Weight. If one of PBI and BI does
2416 /// not have branch weight, use 1:1 as its weight.
2417 static bool extractPredSuccWeights(BranchInst *PBI, BranchInst *BI,
2418                                    uint64_t &PredTrueWeight,
2419                                    uint64_t &PredFalseWeight,
2420                                    uint64_t &SuccTrueWeight,
2421                                    uint64_t &SuccFalseWeight) {
2422   bool PredHasWeights =
2423       PBI->extractProfMetadata(PredTrueWeight, PredFalseWeight);
2424   bool SuccHasWeights =
2425       BI->extractProfMetadata(SuccTrueWeight, SuccFalseWeight);
2426   if (PredHasWeights || SuccHasWeights) {
2427     if (!PredHasWeights)
2428       PredTrueWeight = PredFalseWeight = 1;
2429     if (!SuccHasWeights)
2430       SuccTrueWeight = SuccFalseWeight = 1;
2431     return true;
2432   } else {
2433     return false;
2434   }
2435 }
2436 
2437 /// If this basic block is simple enough, and if a predecessor branches to us
2438 /// and one of our successors, fold the block into the predecessor and use
2439 /// logical operations to pick the right destination.
2440 bool llvm::FoldBranchToCommonDest(BranchInst *BI, unsigned BonusInstThreshold) {
2441   BasicBlock *BB = BI->getParent();
2442 
2443   Instruction *Cond = nullptr;
2444   if (BI->isConditional())
2445     Cond = dyn_cast<Instruction>(BI->getCondition());
2446   else {
2447     // For unconditional branch, check for a simple CFG pattern, where
2448     // BB has a single predecessor and BB's successor is also its predecessor's
2449     // successor. If such pattern exisits, check for CSE between BB and its
2450     // predecessor.
2451     if (BasicBlock *PB = BB->getSinglePredecessor())
2452       if (BranchInst *PBI = dyn_cast<BranchInst>(PB->getTerminator()))
2453         if (PBI->isConditional() &&
2454             (BI->getSuccessor(0) == PBI->getSuccessor(0) ||
2455              BI->getSuccessor(0) == PBI->getSuccessor(1))) {
2456           for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
2457             Instruction *Curr = &*I++;
2458             if (isa<CmpInst>(Curr)) {
2459               Cond = Curr;
2460               break;
2461             }
2462             // Quit if we can't remove this instruction.
2463             if (!checkCSEInPredecessor(Curr, PB))
2464               return false;
2465           }
2466         }
2467 
2468     if (!Cond)
2469       return false;
2470   }
2471 
2472   if (!Cond || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) ||
2473       Cond->getParent() != BB || !Cond->hasOneUse())
2474     return false;
2475 
2476   // Make sure the instruction after the condition is the cond branch.
2477   BasicBlock::iterator CondIt = ++Cond->getIterator();
2478 
2479   // Ignore dbg intrinsics.
2480   while (isa<DbgInfoIntrinsic>(CondIt))
2481     ++CondIt;
2482 
2483   if (&*CondIt != BI)
2484     return false;
2485 
2486   // Only allow this transformation if computing the condition doesn't involve
2487   // too many instructions and these involved instructions can be executed
2488   // unconditionally. We denote all involved instructions except the condition
2489   // as "bonus instructions", and only allow this transformation when the
2490   // number of the bonus instructions does not exceed a certain threshold.
2491   unsigned NumBonusInsts = 0;
2492   for (auto I = BB->begin(); Cond != &*I; ++I) {
2493     // Ignore dbg intrinsics.
2494     if (isa<DbgInfoIntrinsic>(I))
2495       continue;
2496     if (!I->hasOneUse() || !isSafeToSpeculativelyExecute(&*I))
2497       return false;
2498     // I has only one use and can be executed unconditionally.
2499     Instruction *User = dyn_cast<Instruction>(I->user_back());
2500     if (User == nullptr || User->getParent() != BB)
2501       return false;
2502     // I is used in the same BB. Since BI uses Cond and doesn't have more slots
2503     // to use any other instruction, User must be an instruction between next(I)
2504     // and Cond.
2505     ++NumBonusInsts;
2506     // Early exits once we reach the limit.
2507     if (NumBonusInsts > BonusInstThreshold)
2508       return false;
2509   }
2510 
2511   // Cond is known to be a compare or binary operator.  Check to make sure that
2512   // neither operand is a potentially-trapping constant expression.
2513   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0)))
2514     if (CE->canTrap())
2515       return false;
2516   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1)))
2517     if (CE->canTrap())
2518       return false;
2519 
2520   // Finally, don't infinitely unroll conditional loops.
2521   BasicBlock *TrueDest = BI->getSuccessor(0);
2522   BasicBlock *FalseDest = (BI->isConditional()) ? BI->getSuccessor(1) : nullptr;
2523   if (TrueDest == BB || FalseDest == BB)
2524     return false;
2525 
2526   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
2527     BasicBlock *PredBlock = *PI;
2528     BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator());
2529 
2530     // Check that we have two conditional branches.  If there is a PHI node in
2531     // the common successor, verify that the same value flows in from both
2532     // blocks.
2533     SmallVector<PHINode *, 4> PHIs;
2534     if (!PBI || PBI->isUnconditional() ||
2535         (BI->isConditional() && !SafeToMergeTerminators(BI, PBI)) ||
2536         (!BI->isConditional() &&
2537          !isProfitableToFoldUnconditional(BI, PBI, Cond, PHIs)))
2538       continue;
2539 
2540     // Determine if the two branches share a common destination.
2541     Instruction::BinaryOps Opc = Instruction::BinaryOpsEnd;
2542     bool InvertPredCond = false;
2543 
2544     if (BI->isConditional()) {
2545       if (PBI->getSuccessor(0) == TrueDest) {
2546         Opc = Instruction::Or;
2547       } else if (PBI->getSuccessor(1) == FalseDest) {
2548         Opc = Instruction::And;
2549       } else if (PBI->getSuccessor(0) == FalseDest) {
2550         Opc = Instruction::And;
2551         InvertPredCond = true;
2552       } else if (PBI->getSuccessor(1) == TrueDest) {
2553         Opc = Instruction::Or;
2554         InvertPredCond = true;
2555       } else {
2556         continue;
2557       }
2558     } else {
2559       if (PBI->getSuccessor(0) != TrueDest && PBI->getSuccessor(1) != TrueDest)
2560         continue;
2561     }
2562 
2563     DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB);
2564     IRBuilder<> Builder(PBI);
2565 
2566     // If we need to invert the condition in the pred block to match, do so now.
2567     if (InvertPredCond) {
2568       Value *NewCond = PBI->getCondition();
2569 
2570       if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) {
2571         CmpInst *CI = cast<CmpInst>(NewCond);
2572         CI->setPredicate(CI->getInversePredicate());
2573       } else {
2574         NewCond =
2575             Builder.CreateNot(NewCond, PBI->getCondition()->getName() + ".not");
2576       }
2577 
2578       PBI->setCondition(NewCond);
2579       PBI->swapSuccessors();
2580     }
2581 
2582     // If we have bonus instructions, clone them into the predecessor block.
2583     // Note that there may be multiple predecessor blocks, so we cannot move
2584     // bonus instructions to a predecessor block.
2585     ValueToValueMapTy VMap; // maps original values to cloned values
2586     // We already make sure Cond is the last instruction before BI. Therefore,
2587     // all instructions before Cond other than DbgInfoIntrinsic are bonus
2588     // instructions.
2589     for (auto BonusInst = BB->begin(); Cond != &*BonusInst; ++BonusInst) {
2590       if (isa<DbgInfoIntrinsic>(BonusInst))
2591         continue;
2592       Instruction *NewBonusInst = BonusInst->clone();
2593       RemapInstruction(NewBonusInst, VMap,
2594                        RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
2595       VMap[&*BonusInst] = NewBonusInst;
2596 
2597       // If we moved a load, we cannot any longer claim any knowledge about
2598       // its potential value. The previous information might have been valid
2599       // only given the branch precondition.
2600       // For an analogous reason, we must also drop all the metadata whose
2601       // semantics we don't understand.
2602       NewBonusInst->dropUnknownNonDebugMetadata();
2603 
2604       PredBlock->getInstList().insert(PBI->getIterator(), NewBonusInst);
2605       NewBonusInst->takeName(&*BonusInst);
2606       BonusInst->setName(BonusInst->getName() + ".old");
2607     }
2608 
2609     // Clone Cond into the predecessor basic block, and or/and the
2610     // two conditions together.
2611     Instruction *New = Cond->clone();
2612     RemapInstruction(New, VMap,
2613                      RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
2614     PredBlock->getInstList().insert(PBI->getIterator(), New);
2615     New->takeName(Cond);
2616     Cond->setName(New->getName() + ".old");
2617 
2618     if (BI->isConditional()) {
2619       Instruction *NewCond = cast<Instruction>(
2620           Builder.CreateBinOp(Opc, PBI->getCondition(), New, "or.cond"));
2621       PBI->setCondition(NewCond);
2622 
2623       uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
2624       bool HasWeights =
2625           extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
2626                                  SuccTrueWeight, SuccFalseWeight);
2627       SmallVector<uint64_t, 8> NewWeights;
2628 
2629       if (PBI->getSuccessor(0) == BB) {
2630         if (HasWeights) {
2631           // PBI: br i1 %x, BB, FalseDest
2632           // BI:  br i1 %y, TrueDest, FalseDest
2633           // TrueWeight is TrueWeight for PBI * TrueWeight for BI.
2634           NewWeights.push_back(PredTrueWeight * SuccTrueWeight);
2635           // FalseWeight is FalseWeight for PBI * TotalWeight for BI +
2636           //               TrueWeight for PBI * FalseWeight for BI.
2637           // We assume that total weights of a BranchInst can fit into 32 bits.
2638           // Therefore, we will not have overflow using 64-bit arithmetic.
2639           NewWeights.push_back(PredFalseWeight *
2640                                    (SuccFalseWeight + SuccTrueWeight) +
2641                                PredTrueWeight * SuccFalseWeight);
2642         }
2643         AddPredecessorToBlock(TrueDest, PredBlock, BB);
2644         PBI->setSuccessor(0, TrueDest);
2645       }
2646       if (PBI->getSuccessor(1) == BB) {
2647         if (HasWeights) {
2648           // PBI: br i1 %x, TrueDest, BB
2649           // BI:  br i1 %y, TrueDest, FalseDest
2650           // TrueWeight is TrueWeight for PBI * TotalWeight for BI +
2651           //              FalseWeight for PBI * TrueWeight for BI.
2652           NewWeights.push_back(PredTrueWeight *
2653                                    (SuccFalseWeight + SuccTrueWeight) +
2654                                PredFalseWeight * SuccTrueWeight);
2655           // FalseWeight is FalseWeight for PBI * FalseWeight for BI.
2656           NewWeights.push_back(PredFalseWeight * SuccFalseWeight);
2657         }
2658         AddPredecessorToBlock(FalseDest, PredBlock, BB);
2659         PBI->setSuccessor(1, FalseDest);
2660       }
2661       if (NewWeights.size() == 2) {
2662         // Halve the weights if any of them cannot fit in an uint32_t
2663         FitWeights(NewWeights);
2664 
2665         SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(),
2666                                            NewWeights.end());
2667         PBI->setMetadata(
2668             LLVMContext::MD_prof,
2669             MDBuilder(BI->getContext()).createBranchWeights(MDWeights));
2670       } else
2671         PBI->setMetadata(LLVMContext::MD_prof, nullptr);
2672     } else {
2673       // Update PHI nodes in the common successors.
2674       for (unsigned i = 0, e = PHIs.size(); i != e; ++i) {
2675         ConstantInt *PBI_C = cast<ConstantInt>(
2676             PHIs[i]->getIncomingValueForBlock(PBI->getParent()));
2677         assert(PBI_C->getType()->isIntegerTy(1));
2678         Instruction *MergedCond = nullptr;
2679         if (PBI->getSuccessor(0) == TrueDest) {
2680           // Create (PBI_Cond and PBI_C) or (!PBI_Cond and BI_Value)
2681           // PBI_C is true: PBI_Cond or (!PBI_Cond and BI_Value)
2682           //       is false: !PBI_Cond and BI_Value
2683           Instruction *NotCond = cast<Instruction>(
2684               Builder.CreateNot(PBI->getCondition(), "not.cond"));
2685           MergedCond = cast<Instruction>(
2686               Builder.CreateBinOp(Instruction::And, NotCond, New, "and.cond"));
2687           if (PBI_C->isOne())
2688             MergedCond = cast<Instruction>(Builder.CreateBinOp(
2689                 Instruction::Or, PBI->getCondition(), MergedCond, "or.cond"));
2690         } else {
2691           // Create (PBI_Cond and BI_Value) or (!PBI_Cond and PBI_C)
2692           // PBI_C is true: (PBI_Cond and BI_Value) or (!PBI_Cond)
2693           //       is false: PBI_Cond and BI_Value
2694           MergedCond = cast<Instruction>(Builder.CreateBinOp(
2695               Instruction::And, PBI->getCondition(), New, "and.cond"));
2696           if (PBI_C->isOne()) {
2697             Instruction *NotCond = cast<Instruction>(
2698                 Builder.CreateNot(PBI->getCondition(), "not.cond"));
2699             MergedCond = cast<Instruction>(Builder.CreateBinOp(
2700                 Instruction::Or, NotCond, MergedCond, "or.cond"));
2701           }
2702         }
2703         // Update PHI Node.
2704         PHIs[i]->setIncomingValue(PHIs[i]->getBasicBlockIndex(PBI->getParent()),
2705                                   MergedCond);
2706       }
2707       // Change PBI from Conditional to Unconditional.
2708       BranchInst *New_PBI = BranchInst::Create(TrueDest, PBI);
2709       EraseTerminatorInstAndDCECond(PBI);
2710       PBI = New_PBI;
2711     }
2712 
2713     // TODO: If BB is reachable from all paths through PredBlock, then we
2714     // could replace PBI's branch probabilities with BI's.
2715 
2716     // Copy any debug value intrinsics into the end of PredBlock.
2717     for (Instruction &I : *BB)
2718       if (isa<DbgInfoIntrinsic>(I))
2719         I.clone()->insertBefore(PBI);
2720 
2721     return true;
2722   }
2723   return false;
2724 }
2725 
2726 // If there is only one store in BB1 and BB2, return it, otherwise return
2727 // nullptr.
2728 static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) {
2729   StoreInst *S = nullptr;
2730   for (auto *BB : {BB1, BB2}) {
2731     if (!BB)
2732       continue;
2733     for (auto &I : *BB)
2734       if (auto *SI = dyn_cast<StoreInst>(&I)) {
2735         if (S)
2736           // Multiple stores seen.
2737           return nullptr;
2738         else
2739           S = SI;
2740       }
2741   }
2742   return S;
2743 }
2744 
2745 static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB,
2746                                               Value *AlternativeV = nullptr) {
2747   // PHI is going to be a PHI node that allows the value V that is defined in
2748   // BB to be referenced in BB's only successor.
2749   //
2750   // If AlternativeV is nullptr, the only value we care about in PHI is V. It
2751   // doesn't matter to us what the other operand is (it'll never get used). We
2752   // could just create a new PHI with an undef incoming value, but that could
2753   // increase register pressure if EarlyCSE/InstCombine can't fold it with some
2754   // other PHI. So here we directly look for some PHI in BB's successor with V
2755   // as an incoming operand. If we find one, we use it, else we create a new
2756   // one.
2757   //
2758   // If AlternativeV is not nullptr, we care about both incoming values in PHI.
2759   // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV]
2760   // where OtherBB is the single other predecessor of BB's only successor.
2761   PHINode *PHI = nullptr;
2762   BasicBlock *Succ = BB->getSingleSuccessor();
2763 
2764   for (auto I = Succ->begin(); isa<PHINode>(I); ++I)
2765     if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) {
2766       PHI = cast<PHINode>(I);
2767       if (!AlternativeV)
2768         break;
2769 
2770       assert(std::distance(pred_begin(Succ), pred_end(Succ)) == 2);
2771       auto PredI = pred_begin(Succ);
2772       BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI;
2773       if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV)
2774         break;
2775       PHI = nullptr;
2776     }
2777   if (PHI)
2778     return PHI;
2779 
2780   // If V is not an instruction defined in BB, just return it.
2781   if (!AlternativeV &&
2782       (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB))
2783     return V;
2784 
2785   PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge", &Succ->front());
2786   PHI->addIncoming(V, BB);
2787   for (BasicBlock *PredBB : predecessors(Succ))
2788     if (PredBB != BB)
2789       PHI->addIncoming(
2790           AlternativeV ? AlternativeV : UndefValue::get(V->getType()), PredBB);
2791   return PHI;
2792 }
2793 
2794 static bool mergeConditionalStoreToAddress(BasicBlock *PTB, BasicBlock *PFB,
2795                                            BasicBlock *QTB, BasicBlock *QFB,
2796                                            BasicBlock *PostBB, Value *Address,
2797                                            bool InvertPCond, bool InvertQCond) {
2798   auto IsaBitcastOfPointerType = [](const Instruction &I) {
2799     return Operator::getOpcode(&I) == Instruction::BitCast &&
2800            I.getType()->isPointerTy();
2801   };
2802 
2803   // If we're not in aggressive mode, we only optimize if we have some
2804   // confidence that by optimizing we'll allow P and/or Q to be if-converted.
2805   auto IsWorthwhile = [&](BasicBlock *BB) {
2806     if (!BB)
2807       return true;
2808     // Heuristic: if the block can be if-converted/phi-folded and the
2809     // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to
2810     // thread this store.
2811     unsigned N = 0;
2812     for (auto &I : *BB) {
2813       // Cheap instructions viable for folding.
2814       if (isa<BinaryOperator>(I) || isa<GetElementPtrInst>(I) ||
2815           isa<StoreInst>(I))
2816         ++N;
2817       // Free instructions.
2818       else if (isa<TerminatorInst>(I) || isa<DbgInfoIntrinsic>(I) ||
2819                IsaBitcastOfPointerType(I))
2820         continue;
2821       else
2822         return false;
2823     }
2824     return N <= PHINodeFoldingThreshold;
2825   };
2826 
2827   if (!MergeCondStoresAggressively &&
2828       (!IsWorthwhile(PTB) || !IsWorthwhile(PFB) || !IsWorthwhile(QTB) ||
2829        !IsWorthwhile(QFB)))
2830     return false;
2831 
2832   // For every pointer, there must be exactly two stores, one coming from
2833   // PTB or PFB, and the other from QTB or QFB. We don't support more than one
2834   // store (to any address) in PTB,PFB or QTB,QFB.
2835   // FIXME: We could relax this restriction with a bit more work and performance
2836   // testing.
2837   StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB);
2838   StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB);
2839   if (!PStore || !QStore)
2840     return false;
2841 
2842   // Now check the stores are compatible.
2843   if (!QStore->isUnordered() || !PStore->isUnordered())
2844     return false;
2845 
2846   // Check that sinking the store won't cause program behavior changes. Sinking
2847   // the store out of the Q blocks won't change any behavior as we're sinking
2848   // from a block to its unconditional successor. But we're moving a store from
2849   // the P blocks down through the middle block (QBI) and past both QFB and QTB.
2850   // So we need to check that there are no aliasing loads or stores in
2851   // QBI, QTB and QFB. We also need to check there are no conflicting memory
2852   // operations between PStore and the end of its parent block.
2853   //
2854   // The ideal way to do this is to query AliasAnalysis, but we don't
2855   // preserve AA currently so that is dangerous. Be super safe and just
2856   // check there are no other memory operations at all.
2857   for (auto &I : *QFB->getSinglePredecessor())
2858     if (I.mayReadOrWriteMemory())
2859       return false;
2860   for (auto &I : *QFB)
2861     if (&I != QStore && I.mayReadOrWriteMemory())
2862       return false;
2863   if (QTB)
2864     for (auto &I : *QTB)
2865       if (&I != QStore && I.mayReadOrWriteMemory())
2866         return false;
2867   for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end();
2868        I != E; ++I)
2869     if (&*I != PStore && I->mayReadOrWriteMemory())
2870       return false;
2871 
2872   // OK, we're going to sink the stores to PostBB. The store has to be
2873   // conditional though, so first create the predicate.
2874   Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator())
2875                      ->getCondition();
2876   Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator())
2877                      ->getCondition();
2878 
2879   Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(),
2880                                                 PStore->getParent());
2881   Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(),
2882                                                 QStore->getParent(), PPHI);
2883 
2884   IRBuilder<> QB(&*PostBB->getFirstInsertionPt());
2885 
2886   Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond);
2887   Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond);
2888 
2889   if (InvertPCond)
2890     PPred = QB.CreateNot(PPred);
2891   if (InvertQCond)
2892     QPred = QB.CreateNot(QPred);
2893   Value *CombinedPred = QB.CreateOr(PPred, QPred);
2894 
2895   auto *T =
2896       SplitBlockAndInsertIfThen(CombinedPred, &*QB.GetInsertPoint(), false);
2897   QB.SetInsertPoint(T);
2898   StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address));
2899   AAMDNodes AAMD;
2900   PStore->getAAMetadata(AAMD, /*Merge=*/false);
2901   PStore->getAAMetadata(AAMD, /*Merge=*/true);
2902   SI->setAAMetadata(AAMD);
2903 
2904   QStore->eraseFromParent();
2905   PStore->eraseFromParent();
2906 
2907   return true;
2908 }
2909 
2910 static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI) {
2911   // The intention here is to find diamonds or triangles (see below) where each
2912   // conditional block contains a store to the same address. Both of these
2913   // stores are conditional, so they can't be unconditionally sunk. But it may
2914   // be profitable to speculatively sink the stores into one merged store at the
2915   // end, and predicate the merged store on the union of the two conditions of
2916   // PBI and QBI.
2917   //
2918   // This can reduce the number of stores executed if both of the conditions are
2919   // true, and can allow the blocks to become small enough to be if-converted.
2920   // This optimization will also chain, so that ladders of test-and-set
2921   // sequences can be if-converted away.
2922   //
2923   // We only deal with simple diamonds or triangles:
2924   //
2925   //     PBI       or      PBI        or a combination of the two
2926   //    /   \               | \
2927   //   PTB  PFB             |  PFB
2928   //    \   /               | /
2929   //     QBI                QBI
2930   //    /  \                | \
2931   //   QTB  QFB             |  QFB
2932   //    \  /                | /
2933   //    PostBB            PostBB
2934   //
2935   // We model triangles as a type of diamond with a nullptr "true" block.
2936   // Triangles are canonicalized so that the fallthrough edge is represented by
2937   // a true condition, as in the diagram above.
2938   //
2939   BasicBlock *PTB = PBI->getSuccessor(0);
2940   BasicBlock *PFB = PBI->getSuccessor(1);
2941   BasicBlock *QTB = QBI->getSuccessor(0);
2942   BasicBlock *QFB = QBI->getSuccessor(1);
2943   BasicBlock *PostBB = QFB->getSingleSuccessor();
2944 
2945   bool InvertPCond = false, InvertQCond = false;
2946   // Canonicalize fallthroughs to the true branches.
2947   if (PFB == QBI->getParent()) {
2948     std::swap(PFB, PTB);
2949     InvertPCond = true;
2950   }
2951   if (QFB == PostBB) {
2952     std::swap(QFB, QTB);
2953     InvertQCond = true;
2954   }
2955 
2956   // From this point on we can assume PTB or QTB may be fallthroughs but PFB
2957   // and QFB may not. Model fallthroughs as a nullptr block.
2958   if (PTB == QBI->getParent())
2959     PTB = nullptr;
2960   if (QTB == PostBB)
2961     QTB = nullptr;
2962 
2963   // Legality bailouts. We must have at least the non-fallthrough blocks and
2964   // the post-dominating block, and the non-fallthroughs must only have one
2965   // predecessor.
2966   auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) {
2967     return BB->getSinglePredecessor() == P && BB->getSingleSuccessor() == S;
2968   };
2969   if (!PostBB ||
2970       !HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) ||
2971       !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB))
2972     return false;
2973   if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) ||
2974       (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB)))
2975     return false;
2976   if (PostBB->getNumUses() != 2 || QBI->getParent()->getNumUses() != 2)
2977     return false;
2978 
2979   // OK, this is a sequence of two diamonds or triangles.
2980   // Check if there are stores in PTB or PFB that are repeated in QTB or QFB.
2981   SmallPtrSet<Value *, 4> PStoreAddresses, QStoreAddresses;
2982   for (auto *BB : {PTB, PFB}) {
2983     if (!BB)
2984       continue;
2985     for (auto &I : *BB)
2986       if (StoreInst *SI = dyn_cast<StoreInst>(&I))
2987         PStoreAddresses.insert(SI->getPointerOperand());
2988   }
2989   for (auto *BB : {QTB, QFB}) {
2990     if (!BB)
2991       continue;
2992     for (auto &I : *BB)
2993       if (StoreInst *SI = dyn_cast<StoreInst>(&I))
2994         QStoreAddresses.insert(SI->getPointerOperand());
2995   }
2996 
2997   set_intersect(PStoreAddresses, QStoreAddresses);
2998   // set_intersect mutates PStoreAddresses in place. Rename it here to make it
2999   // clear what it contains.
3000   auto &CommonAddresses = PStoreAddresses;
3001 
3002   bool Changed = false;
3003   for (auto *Address : CommonAddresses)
3004     Changed |= mergeConditionalStoreToAddress(
3005         PTB, PFB, QTB, QFB, PostBB, Address, InvertPCond, InvertQCond);
3006   return Changed;
3007 }
3008 
3009 /// If we have a conditional branch as a predecessor of another block,
3010 /// this function tries to simplify it.  We know
3011 /// that PBI and BI are both conditional branches, and BI is in one of the
3012 /// successor blocks of PBI - PBI branches to BI.
3013 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI,
3014                                            const DataLayout &DL) {
3015   assert(PBI->isConditional() && BI->isConditional());
3016   BasicBlock *BB = BI->getParent();
3017 
3018   // If this block ends with a branch instruction, and if there is a
3019   // predecessor that ends on a branch of the same condition, make
3020   // this conditional branch redundant.
3021   if (PBI->getCondition() == BI->getCondition() &&
3022       PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
3023     // Okay, the outcome of this conditional branch is statically
3024     // knowable.  If this block had a single pred, handle specially.
3025     if (BB->getSinglePredecessor()) {
3026       // Turn this into a branch on constant.
3027       bool CondIsTrue = PBI->getSuccessor(0) == BB;
3028       BI->setCondition(
3029           ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue));
3030       return true; // Nuke the branch on constant.
3031     }
3032 
3033     // Otherwise, if there are multiple predecessors, insert a PHI that merges
3034     // in the constant and simplify the block result.  Subsequent passes of
3035     // simplifycfg will thread the block.
3036     if (BlockIsSimpleEnoughToThreadThrough(BB)) {
3037       pred_iterator PB = pred_begin(BB), PE = pred_end(BB);
3038       PHINode *NewPN = PHINode::Create(
3039           Type::getInt1Ty(BB->getContext()), std::distance(PB, PE),
3040           BI->getCondition()->getName() + ".pr", &BB->front());
3041       // Okay, we're going to insert the PHI node.  Since PBI is not the only
3042       // predecessor, compute the PHI'd conditional value for all of the preds.
3043       // Any predecessor where the condition is not computable we keep symbolic.
3044       for (pred_iterator PI = PB; PI != PE; ++PI) {
3045         BasicBlock *P = *PI;
3046         if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) && PBI != BI &&
3047             PBI->isConditional() && PBI->getCondition() == BI->getCondition() &&
3048             PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
3049           bool CondIsTrue = PBI->getSuccessor(0) == BB;
3050           NewPN->addIncoming(
3051               ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue),
3052               P);
3053         } else {
3054           NewPN->addIncoming(BI->getCondition(), P);
3055         }
3056       }
3057 
3058       BI->setCondition(NewPN);
3059       return true;
3060     }
3061   }
3062 
3063   if (auto *CE = dyn_cast<ConstantExpr>(BI->getCondition()))
3064     if (CE->canTrap())
3065       return false;
3066 
3067   // If both branches are conditional and both contain stores to the same
3068   // address, remove the stores from the conditionals and create a conditional
3069   // merged store at the end.
3070   if (MergeCondStores && mergeConditionalStores(PBI, BI))
3071     return true;
3072 
3073   // If this is a conditional branch in an empty block, and if any
3074   // predecessors are a conditional branch to one of our destinations,
3075   // fold the conditions into logical ops and one cond br.
3076   BasicBlock::iterator BBI = BB->begin();
3077   // Ignore dbg intrinsics.
3078   while (isa<DbgInfoIntrinsic>(BBI))
3079     ++BBI;
3080   if (&*BBI != BI)
3081     return false;
3082 
3083   int PBIOp, BIOp;
3084   if (PBI->getSuccessor(0) == BI->getSuccessor(0)) {
3085     PBIOp = 0;
3086     BIOp = 0;
3087   } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) {
3088     PBIOp = 0;
3089     BIOp = 1;
3090   } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) {
3091     PBIOp = 1;
3092     BIOp = 0;
3093   } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) {
3094     PBIOp = 1;
3095     BIOp = 1;
3096   } else {
3097     return false;
3098   }
3099 
3100   // Check to make sure that the other destination of this branch
3101   // isn't BB itself.  If so, this is an infinite loop that will
3102   // keep getting unwound.
3103   if (PBI->getSuccessor(PBIOp) == BB)
3104     return false;
3105 
3106   // Do not perform this transformation if it would require
3107   // insertion of a large number of select instructions. For targets
3108   // without predication/cmovs, this is a big pessimization.
3109 
3110   // Also do not perform this transformation if any phi node in the common
3111   // destination block can trap when reached by BB or PBB (PR17073). In that
3112   // case, it would be unsafe to hoist the operation into a select instruction.
3113 
3114   BasicBlock *CommonDest = PBI->getSuccessor(PBIOp);
3115   unsigned NumPhis = 0;
3116   for (BasicBlock::iterator II = CommonDest->begin(); isa<PHINode>(II);
3117        ++II, ++NumPhis) {
3118     if (NumPhis > 2) // Disable this xform.
3119       return false;
3120 
3121     PHINode *PN = cast<PHINode>(II);
3122     Value *BIV = PN->getIncomingValueForBlock(BB);
3123     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BIV))
3124       if (CE->canTrap())
3125         return false;
3126 
3127     unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
3128     Value *PBIV = PN->getIncomingValue(PBBIdx);
3129     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(PBIV))
3130       if (CE->canTrap())
3131         return false;
3132   }
3133 
3134   // Finally, if everything is ok, fold the branches to logical ops.
3135   BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1);
3136 
3137   DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent()
3138                << "AND: " << *BI->getParent());
3139 
3140   // If OtherDest *is* BB, then BB is a basic block with a single conditional
3141   // branch in it, where one edge (OtherDest) goes back to itself but the other
3142   // exits.  We don't *know* that the program avoids the infinite loop
3143   // (even though that seems likely).  If we do this xform naively, we'll end up
3144   // recursively unpeeling the loop.  Since we know that (after the xform is
3145   // done) that the block *is* infinite if reached, we just make it an obviously
3146   // infinite loop with no cond branch.
3147   if (OtherDest == BB) {
3148     // Insert it at the end of the function, because it's either code,
3149     // or it won't matter if it's hot. :)
3150     BasicBlock *InfLoopBlock =
3151         BasicBlock::Create(BB->getContext(), "infloop", BB->getParent());
3152     BranchInst::Create(InfLoopBlock, InfLoopBlock);
3153     OtherDest = InfLoopBlock;
3154   }
3155 
3156   DEBUG(dbgs() << *PBI->getParent()->getParent());
3157 
3158   // BI may have other predecessors.  Because of this, we leave
3159   // it alone, but modify PBI.
3160 
3161   // Make sure we get to CommonDest on True&True directions.
3162   Value *PBICond = PBI->getCondition();
3163   IRBuilder<NoFolder> Builder(PBI);
3164   if (PBIOp)
3165     PBICond = Builder.CreateNot(PBICond, PBICond->getName() + ".not");
3166 
3167   Value *BICond = BI->getCondition();
3168   if (BIOp)
3169     BICond = Builder.CreateNot(BICond, BICond->getName() + ".not");
3170 
3171   // Merge the conditions.
3172   Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge");
3173 
3174   // Modify PBI to branch on the new condition to the new dests.
3175   PBI->setCondition(Cond);
3176   PBI->setSuccessor(0, CommonDest);
3177   PBI->setSuccessor(1, OtherDest);
3178 
3179   // Update branch weight for PBI.
3180   uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
3181   uint64_t PredCommon, PredOther, SuccCommon, SuccOther;
3182   bool HasWeights =
3183       extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
3184                              SuccTrueWeight, SuccFalseWeight);
3185   if (HasWeights) {
3186     PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
3187     PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
3188     SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
3189     SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
3190     // The weight to CommonDest should be PredCommon * SuccTotal +
3191     //                                    PredOther * SuccCommon.
3192     // The weight to OtherDest should be PredOther * SuccOther.
3193     uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) +
3194                                   PredOther * SuccCommon,
3195                               PredOther * SuccOther};
3196     // Halve the weights if any of them cannot fit in an uint32_t
3197     FitWeights(NewWeights);
3198 
3199     PBI->setMetadata(LLVMContext::MD_prof,
3200                      MDBuilder(BI->getContext())
3201                          .createBranchWeights(NewWeights[0], NewWeights[1]));
3202   }
3203 
3204   // OtherDest may have phi nodes.  If so, add an entry from PBI's
3205   // block that are identical to the entries for BI's block.
3206   AddPredecessorToBlock(OtherDest, PBI->getParent(), BB);
3207 
3208   // We know that the CommonDest already had an edge from PBI to
3209   // it.  If it has PHIs though, the PHIs may have different
3210   // entries for BB and PBI's BB.  If so, insert a select to make
3211   // them agree.
3212   PHINode *PN;
3213   for (BasicBlock::iterator II = CommonDest->begin();
3214        (PN = dyn_cast<PHINode>(II)); ++II) {
3215     Value *BIV = PN->getIncomingValueForBlock(BB);
3216     unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
3217     Value *PBIV = PN->getIncomingValue(PBBIdx);
3218     if (BIV != PBIV) {
3219       // Insert a select in PBI to pick the right value.
3220       SelectInst *NV = cast<SelectInst>(
3221           Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName() + ".mux"));
3222       PN->setIncomingValue(PBBIdx, NV);
3223       // Although the select has the same condition as PBI, the original branch
3224       // weights for PBI do not apply to the new select because the select's
3225       // 'logical' edges are incoming edges of the phi that is eliminated, not
3226       // the outgoing edges of PBI.
3227       if (HasWeights) {
3228         uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
3229         uint64_t PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
3230         uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
3231         uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
3232         // The weight to PredCommonDest should be PredCommon * SuccTotal.
3233         // The weight to PredOtherDest should be PredOther * SuccCommon.
3234         uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther),
3235                                   PredOther * SuccCommon};
3236 
3237         FitWeights(NewWeights);
3238 
3239         NV->setMetadata(LLVMContext::MD_prof,
3240                         MDBuilder(BI->getContext())
3241                             .createBranchWeights(NewWeights[0], NewWeights[1]));
3242       }
3243     }
3244   }
3245 
3246   DEBUG(dbgs() << "INTO: " << *PBI->getParent());
3247   DEBUG(dbgs() << *PBI->getParent()->getParent());
3248 
3249   // This basic block is probably dead.  We know it has at least
3250   // one fewer predecessor.
3251   return true;
3252 }
3253 
3254 // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is
3255 // true or to FalseBB if Cond is false.
3256 // Takes care of updating the successors and removing the old terminator.
3257 // Also makes sure not to introduce new successors by assuming that edges to
3258 // non-successor TrueBBs and FalseBBs aren't reachable.
3259 static bool SimplifyTerminatorOnSelect(TerminatorInst *OldTerm, Value *Cond,
3260                                        BasicBlock *TrueBB, BasicBlock *FalseBB,
3261                                        uint32_t TrueWeight,
3262                                        uint32_t FalseWeight) {
3263   // Remove any superfluous successor edges from the CFG.
3264   // First, figure out which successors to preserve.
3265   // If TrueBB and FalseBB are equal, only try to preserve one copy of that
3266   // successor.
3267   BasicBlock *KeepEdge1 = TrueBB;
3268   BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr;
3269 
3270   // Then remove the rest.
3271   for (BasicBlock *Succ : OldTerm->successors()) {
3272     // Make sure only to keep exactly one copy of each edge.
3273     if (Succ == KeepEdge1)
3274       KeepEdge1 = nullptr;
3275     else if (Succ == KeepEdge2)
3276       KeepEdge2 = nullptr;
3277     else
3278       Succ->removePredecessor(OldTerm->getParent(),
3279                               /*DontDeleteUselessPHIs=*/true);
3280   }
3281 
3282   IRBuilder<> Builder(OldTerm);
3283   Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc());
3284 
3285   // Insert an appropriate new terminator.
3286   if (!KeepEdge1 && !KeepEdge2) {
3287     if (TrueBB == FalseBB)
3288       // We were only looking for one successor, and it was present.
3289       // Create an unconditional branch to it.
3290       Builder.CreateBr(TrueBB);
3291     else {
3292       // We found both of the successors we were looking for.
3293       // Create a conditional branch sharing the condition of the select.
3294       BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB);
3295       if (TrueWeight != FalseWeight)
3296         NewBI->setMetadata(LLVMContext::MD_prof,
3297                            MDBuilder(OldTerm->getContext())
3298                                .createBranchWeights(TrueWeight, FalseWeight));
3299     }
3300   } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) {
3301     // Neither of the selected blocks were successors, so this
3302     // terminator must be unreachable.
3303     new UnreachableInst(OldTerm->getContext(), OldTerm);
3304   } else {
3305     // One of the selected values was a successor, but the other wasn't.
3306     // Insert an unconditional branch to the one that was found;
3307     // the edge to the one that wasn't must be unreachable.
3308     if (!KeepEdge1)
3309       // Only TrueBB was found.
3310       Builder.CreateBr(TrueBB);
3311     else
3312       // Only FalseBB was found.
3313       Builder.CreateBr(FalseBB);
3314   }
3315 
3316   EraseTerminatorInstAndDCECond(OldTerm);
3317   return true;
3318 }
3319 
3320 // Replaces
3321 //   (switch (select cond, X, Y)) on constant X, Y
3322 // with a branch - conditional if X and Y lead to distinct BBs,
3323 // unconditional otherwise.
3324 static bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select) {
3325   // Check for constant integer values in the select.
3326   ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue());
3327   ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue());
3328   if (!TrueVal || !FalseVal)
3329     return false;
3330 
3331   // Find the relevant condition and destinations.
3332   Value *Condition = Select->getCondition();
3333   BasicBlock *TrueBB = SI->findCaseValue(TrueVal).getCaseSuccessor();
3334   BasicBlock *FalseBB = SI->findCaseValue(FalseVal).getCaseSuccessor();
3335 
3336   // Get weight for TrueBB and FalseBB.
3337   uint32_t TrueWeight = 0, FalseWeight = 0;
3338   SmallVector<uint64_t, 8> Weights;
3339   bool HasWeights = HasBranchWeights(SI);
3340   if (HasWeights) {
3341     GetBranchWeights(SI, Weights);
3342     if (Weights.size() == 1 + SI->getNumCases()) {
3343       TrueWeight =
3344           (uint32_t)Weights[SI->findCaseValue(TrueVal).getSuccessorIndex()];
3345       FalseWeight =
3346           (uint32_t)Weights[SI->findCaseValue(FalseVal).getSuccessorIndex()];
3347     }
3348   }
3349 
3350   // Perform the actual simplification.
3351   return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, TrueWeight,
3352                                     FalseWeight);
3353 }
3354 
3355 // Replaces
3356 //   (indirectbr (select cond, blockaddress(@fn, BlockA),
3357 //                             blockaddress(@fn, BlockB)))
3358 // with
3359 //   (br cond, BlockA, BlockB).
3360 static bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI) {
3361   // Check that both operands of the select are block addresses.
3362   BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue());
3363   BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue());
3364   if (!TBA || !FBA)
3365     return false;
3366 
3367   // Extract the actual blocks.
3368   BasicBlock *TrueBB = TBA->getBasicBlock();
3369   BasicBlock *FalseBB = FBA->getBasicBlock();
3370 
3371   // Perform the actual simplification.
3372   return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 0,
3373                                     0);
3374 }
3375 
3376 /// This is called when we find an icmp instruction
3377 /// (a seteq/setne with a constant) as the only instruction in a
3378 /// block that ends with an uncond branch.  We are looking for a very specific
3379 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified.  In
3380 /// this case, we merge the first two "or's of icmp" into a switch, but then the
3381 /// default value goes to an uncond block with a seteq in it, we get something
3382 /// like:
3383 ///
3384 ///   switch i8 %A, label %DEFAULT [ i8 1, label %end    i8 2, label %end ]
3385 /// DEFAULT:
3386 ///   %tmp = icmp eq i8 %A, 92
3387 ///   br label %end
3388 /// end:
3389 ///   ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ]
3390 ///
3391 /// We prefer to split the edge to 'end' so that there is a true/false entry to
3392 /// the PHI, merging the third icmp into the switch.
3393 static bool TryToSimplifyUncondBranchWithICmpInIt(
3394     ICmpInst *ICI, IRBuilder<> &Builder, const DataLayout &DL,
3395     const TargetTransformInfo &TTI, unsigned BonusInstThreshold,
3396     AssumptionCache *AC) {
3397   BasicBlock *BB = ICI->getParent();
3398 
3399   // If the block has any PHIs in it or the icmp has multiple uses, it is too
3400   // complex.
3401   if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse())
3402     return false;
3403 
3404   Value *V = ICI->getOperand(0);
3405   ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1));
3406 
3407   // The pattern we're looking for is where our only predecessor is a switch on
3408   // 'V' and this block is the default case for the switch.  In this case we can
3409   // fold the compared value into the switch to simplify things.
3410   BasicBlock *Pred = BB->getSinglePredecessor();
3411   if (!Pred || !isa<SwitchInst>(Pred->getTerminator()))
3412     return false;
3413 
3414   SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator());
3415   if (SI->getCondition() != V)
3416     return false;
3417 
3418   // If BB is reachable on a non-default case, then we simply know the value of
3419   // V in this block.  Substitute it and constant fold the icmp instruction
3420   // away.
3421   if (SI->getDefaultDest() != BB) {
3422     ConstantInt *VVal = SI->findCaseDest(BB);
3423     assert(VVal && "Should have a unique destination value");
3424     ICI->setOperand(0, VVal);
3425 
3426     if (Value *V = SimplifyInstruction(ICI, DL)) {
3427       ICI->replaceAllUsesWith(V);
3428       ICI->eraseFromParent();
3429     }
3430     // BB is now empty, so it is likely to simplify away.
3431     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
3432   }
3433 
3434   // Ok, the block is reachable from the default dest.  If the constant we're
3435   // comparing exists in one of the other edges, then we can constant fold ICI
3436   // and zap it.
3437   if (SI->findCaseValue(Cst) != SI->case_default()) {
3438     Value *V;
3439     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
3440       V = ConstantInt::getFalse(BB->getContext());
3441     else
3442       V = ConstantInt::getTrue(BB->getContext());
3443 
3444     ICI->replaceAllUsesWith(V);
3445     ICI->eraseFromParent();
3446     // BB is now empty, so it is likely to simplify away.
3447     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
3448   }
3449 
3450   // The use of the icmp has to be in the 'end' block, by the only PHI node in
3451   // the block.
3452   BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0);
3453   PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back());
3454   if (PHIUse == nullptr || PHIUse != &SuccBlock->front() ||
3455       isa<PHINode>(++BasicBlock::iterator(PHIUse)))
3456     return false;
3457 
3458   // If the icmp is a SETEQ, then the default dest gets false, the new edge gets
3459   // true in the PHI.
3460   Constant *DefaultCst = ConstantInt::getTrue(BB->getContext());
3461   Constant *NewCst = ConstantInt::getFalse(BB->getContext());
3462 
3463   if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
3464     std::swap(DefaultCst, NewCst);
3465 
3466   // Replace ICI (which is used by the PHI for the default value) with true or
3467   // false depending on if it is EQ or NE.
3468   ICI->replaceAllUsesWith(DefaultCst);
3469   ICI->eraseFromParent();
3470 
3471   // Okay, the switch goes to this block on a default value.  Add an edge from
3472   // the switch to the merge point on the compared value.
3473   BasicBlock *NewBB =
3474       BasicBlock::Create(BB->getContext(), "switch.edge", BB->getParent(), BB);
3475   SmallVector<uint64_t, 8> Weights;
3476   bool HasWeights = HasBranchWeights(SI);
3477   if (HasWeights) {
3478     GetBranchWeights(SI, Weights);
3479     if (Weights.size() == 1 + SI->getNumCases()) {
3480       // Split weight for default case to case for "Cst".
3481       Weights[0] = (Weights[0] + 1) >> 1;
3482       Weights.push_back(Weights[0]);
3483 
3484       SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
3485       SI->setMetadata(
3486           LLVMContext::MD_prof,
3487           MDBuilder(SI->getContext()).createBranchWeights(MDWeights));
3488     }
3489   }
3490   SI->addCase(Cst, NewBB);
3491 
3492   // NewBB branches to the phi block, add the uncond branch and the phi entry.
3493   Builder.SetInsertPoint(NewBB);
3494   Builder.SetCurrentDebugLocation(SI->getDebugLoc());
3495   Builder.CreateBr(SuccBlock);
3496   PHIUse->addIncoming(NewCst, NewBB);
3497   return true;
3498 }
3499 
3500 /// The specified branch is a conditional branch.
3501 /// Check to see if it is branching on an or/and chain of icmp instructions, and
3502 /// fold it into a switch instruction if so.
3503 static bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder,
3504                                       const DataLayout &DL) {
3505   Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
3506   if (!Cond)
3507     return false;
3508 
3509   // Change br (X == 0 | X == 1), T, F into a switch instruction.
3510   // If this is a bunch of seteq's or'd together, or if it's a bunch of
3511   // 'setne's and'ed together, collect them.
3512 
3513   // Try to gather values from a chain of and/or to be turned into a switch
3514   ConstantComparesGatherer ConstantCompare(Cond, DL);
3515   // Unpack the result
3516   SmallVectorImpl<ConstantInt *> &Values = ConstantCompare.Vals;
3517   Value *CompVal = ConstantCompare.CompValue;
3518   unsigned UsedICmps = ConstantCompare.UsedICmps;
3519   Value *ExtraCase = ConstantCompare.Extra;
3520 
3521   // If we didn't have a multiply compared value, fail.
3522   if (!CompVal)
3523     return false;
3524 
3525   // Avoid turning single icmps into a switch.
3526   if (UsedICmps <= 1)
3527     return false;
3528 
3529   bool TrueWhenEqual = (Cond->getOpcode() == Instruction::Or);
3530 
3531   // There might be duplicate constants in the list, which the switch
3532   // instruction can't handle, remove them now.
3533   array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate);
3534   Values.erase(std::unique(Values.begin(), Values.end()), Values.end());
3535 
3536   // If Extra was used, we require at least two switch values to do the
3537   // transformation.  A switch with one value is just a conditional branch.
3538   if (ExtraCase && Values.size() < 2)
3539     return false;
3540 
3541   // TODO: Preserve branch weight metadata, similarly to how
3542   // FoldValueComparisonIntoPredecessors preserves it.
3543 
3544   // Figure out which block is which destination.
3545   BasicBlock *DefaultBB = BI->getSuccessor(1);
3546   BasicBlock *EdgeBB = BI->getSuccessor(0);
3547   if (!TrueWhenEqual)
3548     std::swap(DefaultBB, EdgeBB);
3549 
3550   BasicBlock *BB = BI->getParent();
3551 
3552   DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size()
3553                << " cases into SWITCH.  BB is:\n"
3554                << *BB);
3555 
3556   // If there are any extra values that couldn't be folded into the switch
3557   // then we evaluate them with an explicit branch first.  Split the block
3558   // right before the condbr to handle it.
3559   if (ExtraCase) {
3560     BasicBlock *NewBB =
3561         BB->splitBasicBlock(BI->getIterator(), "switch.early.test");
3562     // Remove the uncond branch added to the old block.
3563     TerminatorInst *OldTI = BB->getTerminator();
3564     Builder.SetInsertPoint(OldTI);
3565 
3566     if (TrueWhenEqual)
3567       Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB);
3568     else
3569       Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB);
3570 
3571     OldTI->eraseFromParent();
3572 
3573     // If there are PHI nodes in EdgeBB, then we need to add a new entry to them
3574     // for the edge we just added.
3575     AddPredecessorToBlock(EdgeBB, BB, NewBB);
3576 
3577     DEBUG(dbgs() << "  ** 'icmp' chain unhandled condition: " << *ExtraCase
3578                  << "\nEXTRABB = " << *BB);
3579     BB = NewBB;
3580   }
3581 
3582   Builder.SetInsertPoint(BI);
3583   // Convert pointer to int before we switch.
3584   if (CompVal->getType()->isPointerTy()) {
3585     CompVal = Builder.CreatePtrToInt(
3586         CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr");
3587   }
3588 
3589   // Create the new switch instruction now.
3590   SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size());
3591 
3592   // Add all of the 'cases' to the switch instruction.
3593   for (unsigned i = 0, e = Values.size(); i != e; ++i)
3594     New->addCase(Values[i], EdgeBB);
3595 
3596   // We added edges from PI to the EdgeBB.  As such, if there were any
3597   // PHI nodes in EdgeBB, they need entries to be added corresponding to
3598   // the number of edges added.
3599   for (BasicBlock::iterator BBI = EdgeBB->begin(); isa<PHINode>(BBI); ++BBI) {
3600     PHINode *PN = cast<PHINode>(BBI);
3601     Value *InVal = PN->getIncomingValueForBlock(BB);
3602     for (unsigned i = 0, e = Values.size() - 1; i != e; ++i)
3603       PN->addIncoming(InVal, BB);
3604   }
3605 
3606   // Erase the old branch instruction.
3607   EraseTerminatorInstAndDCECond(BI);
3608 
3609   DEBUG(dbgs() << "  ** 'icmp' chain result is:\n" << *BB << '\n');
3610   return true;
3611 }
3612 
3613 bool SimplifyCFGOpt::SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder) {
3614   if (isa<PHINode>(RI->getValue()))
3615     return SimplifyCommonResume(RI);
3616   else if (isa<LandingPadInst>(RI->getParent()->getFirstNonPHI()) &&
3617            RI->getValue() == RI->getParent()->getFirstNonPHI())
3618     // The resume must unwind the exception that caused control to branch here.
3619     return SimplifySingleResume(RI);
3620 
3621   return false;
3622 }
3623 
3624 // Simplify resume that is shared by several landing pads (phi of landing pad).
3625 bool SimplifyCFGOpt::SimplifyCommonResume(ResumeInst *RI) {
3626   BasicBlock *BB = RI->getParent();
3627 
3628   // Check that there are no other instructions except for debug intrinsics
3629   // between the phi of landing pads (RI->getValue()) and resume instruction.
3630   BasicBlock::iterator I = cast<Instruction>(RI->getValue())->getIterator(),
3631                        E = RI->getIterator();
3632   while (++I != E)
3633     if (!isa<DbgInfoIntrinsic>(I))
3634       return false;
3635 
3636   SmallSet<BasicBlock *, 4> TrivialUnwindBlocks;
3637   auto *PhiLPInst = cast<PHINode>(RI->getValue());
3638 
3639   // Check incoming blocks to see if any of them are trivial.
3640   for (unsigned Idx = 0, End = PhiLPInst->getNumIncomingValues(); Idx != End;
3641        Idx++) {
3642     auto *IncomingBB = PhiLPInst->getIncomingBlock(Idx);
3643     auto *IncomingValue = PhiLPInst->getIncomingValue(Idx);
3644 
3645     // If the block has other successors, we can not delete it because
3646     // it has other dependents.
3647     if (IncomingBB->getUniqueSuccessor() != BB)
3648       continue;
3649 
3650     auto *LandingPad = dyn_cast<LandingPadInst>(IncomingBB->getFirstNonPHI());
3651     // Not the landing pad that caused the control to branch here.
3652     if (IncomingValue != LandingPad)
3653       continue;
3654 
3655     bool isTrivial = true;
3656 
3657     I = IncomingBB->getFirstNonPHI()->getIterator();
3658     E = IncomingBB->getTerminator()->getIterator();
3659     while (++I != E)
3660       if (!isa<DbgInfoIntrinsic>(I)) {
3661         isTrivial = false;
3662         break;
3663       }
3664 
3665     if (isTrivial)
3666       TrivialUnwindBlocks.insert(IncomingBB);
3667   }
3668 
3669   // If no trivial unwind blocks, don't do any simplifications.
3670   if (TrivialUnwindBlocks.empty())
3671     return false;
3672 
3673   // Turn all invokes that unwind here into calls.
3674   for (auto *TrivialBB : TrivialUnwindBlocks) {
3675     // Blocks that will be simplified should be removed from the phi node.
3676     // Note there could be multiple edges to the resume block, and we need
3677     // to remove them all.
3678     while (PhiLPInst->getBasicBlockIndex(TrivialBB) != -1)
3679       BB->removePredecessor(TrivialBB, true);
3680 
3681     for (pred_iterator PI = pred_begin(TrivialBB), PE = pred_end(TrivialBB);
3682          PI != PE;) {
3683       BasicBlock *Pred = *PI++;
3684       removeUnwindEdge(Pred);
3685     }
3686 
3687     // In each SimplifyCFG run, only the current processed block can be erased.
3688     // Otherwise, it will break the iteration of SimplifyCFG pass. So instead
3689     // of erasing TrivialBB, we only remove the branch to the common resume
3690     // block so that we can later erase the resume block since it has no
3691     // predecessors.
3692     TrivialBB->getTerminator()->eraseFromParent();
3693     new UnreachableInst(RI->getContext(), TrivialBB);
3694   }
3695 
3696   // Delete the resume block if all its predecessors have been removed.
3697   if (pred_empty(BB))
3698     BB->eraseFromParent();
3699 
3700   return !TrivialUnwindBlocks.empty();
3701 }
3702 
3703 // Simplify resume that is only used by a single (non-phi) landing pad.
3704 bool SimplifyCFGOpt::SimplifySingleResume(ResumeInst *RI) {
3705   BasicBlock *BB = RI->getParent();
3706   LandingPadInst *LPInst = dyn_cast<LandingPadInst>(BB->getFirstNonPHI());
3707   assert(RI->getValue() == LPInst &&
3708          "Resume must unwind the exception that caused control to here");
3709 
3710   // Check that there are no other instructions except for debug intrinsics.
3711   BasicBlock::iterator I = LPInst->getIterator(), E = RI->getIterator();
3712   while (++I != E)
3713     if (!isa<DbgInfoIntrinsic>(I))
3714       return false;
3715 
3716   // Turn all invokes that unwind here into calls and delete the basic block.
3717   for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) {
3718     BasicBlock *Pred = *PI++;
3719     removeUnwindEdge(Pred);
3720   }
3721 
3722   // The landingpad is now unreachable.  Zap it.
3723   BB->eraseFromParent();
3724   if (LoopHeaders)
3725     LoopHeaders->erase(BB);
3726   return true;
3727 }
3728 
3729 static bool removeEmptyCleanup(CleanupReturnInst *RI) {
3730   // If this is a trivial cleanup pad that executes no instructions, it can be
3731   // eliminated.  If the cleanup pad continues to the caller, any predecessor
3732   // that is an EH pad will be updated to continue to the caller and any
3733   // predecessor that terminates with an invoke instruction will have its invoke
3734   // instruction converted to a call instruction.  If the cleanup pad being
3735   // simplified does not continue to the caller, each predecessor will be
3736   // updated to continue to the unwind destination of the cleanup pad being
3737   // simplified.
3738   BasicBlock *BB = RI->getParent();
3739   CleanupPadInst *CPInst = RI->getCleanupPad();
3740   if (CPInst->getParent() != BB)
3741     // This isn't an empty cleanup.
3742     return false;
3743 
3744   // We cannot kill the pad if it has multiple uses.  This typically arises
3745   // from unreachable basic blocks.
3746   if (!CPInst->hasOneUse())
3747     return false;
3748 
3749   // Check that there are no other instructions except for benign intrinsics.
3750   BasicBlock::iterator I = CPInst->getIterator(), E = RI->getIterator();
3751   while (++I != E) {
3752     auto *II = dyn_cast<IntrinsicInst>(I);
3753     if (!II)
3754       return false;
3755 
3756     Intrinsic::ID IntrinsicID = II->getIntrinsicID();
3757     switch (IntrinsicID) {
3758     case Intrinsic::dbg_declare:
3759     case Intrinsic::dbg_value:
3760     case Intrinsic::lifetime_end:
3761       break;
3762     default:
3763       return false;
3764     }
3765   }
3766 
3767   // If the cleanup return we are simplifying unwinds to the caller, this will
3768   // set UnwindDest to nullptr.
3769   BasicBlock *UnwindDest = RI->getUnwindDest();
3770   Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr;
3771 
3772   // We're about to remove BB from the control flow.  Before we do, sink any
3773   // PHINodes into the unwind destination.  Doing this before changing the
3774   // control flow avoids some potentially slow checks, since we can currently
3775   // be certain that UnwindDest and BB have no common predecessors (since they
3776   // are both EH pads).
3777   if (UnwindDest) {
3778     // First, go through the PHI nodes in UnwindDest and update any nodes that
3779     // reference the block we are removing
3780     for (BasicBlock::iterator I = UnwindDest->begin(),
3781                               IE = DestEHPad->getIterator();
3782          I != IE; ++I) {
3783       PHINode *DestPN = cast<PHINode>(I);
3784 
3785       int Idx = DestPN->getBasicBlockIndex(BB);
3786       // Since BB unwinds to UnwindDest, it has to be in the PHI node.
3787       assert(Idx != -1);
3788       // This PHI node has an incoming value that corresponds to a control
3789       // path through the cleanup pad we are removing.  If the incoming
3790       // value is in the cleanup pad, it must be a PHINode (because we
3791       // verified above that the block is otherwise empty).  Otherwise, the
3792       // value is either a constant or a value that dominates the cleanup
3793       // pad being removed.
3794       //
3795       // Because BB and UnwindDest are both EH pads, all of their
3796       // predecessors must unwind to these blocks, and since no instruction
3797       // can have multiple unwind destinations, there will be no overlap in
3798       // incoming blocks between SrcPN and DestPN.
3799       Value *SrcVal = DestPN->getIncomingValue(Idx);
3800       PHINode *SrcPN = dyn_cast<PHINode>(SrcVal);
3801 
3802       // Remove the entry for the block we are deleting.
3803       DestPN->removeIncomingValue(Idx, false);
3804 
3805       if (SrcPN && SrcPN->getParent() == BB) {
3806         // If the incoming value was a PHI node in the cleanup pad we are
3807         // removing, we need to merge that PHI node's incoming values into
3808         // DestPN.
3809         for (unsigned SrcIdx = 0, SrcE = SrcPN->getNumIncomingValues();
3810              SrcIdx != SrcE; ++SrcIdx) {
3811           DestPN->addIncoming(SrcPN->getIncomingValue(SrcIdx),
3812                               SrcPN->getIncomingBlock(SrcIdx));
3813         }
3814       } else {
3815         // Otherwise, the incoming value came from above BB and
3816         // so we can just reuse it.  We must associate all of BB's
3817         // predecessors with this value.
3818         for (auto *pred : predecessors(BB)) {
3819           DestPN->addIncoming(SrcVal, pred);
3820         }
3821       }
3822     }
3823 
3824     // Sink any remaining PHI nodes directly into UnwindDest.
3825     Instruction *InsertPt = DestEHPad;
3826     for (BasicBlock::iterator I = BB->begin(),
3827                               IE = BB->getFirstNonPHI()->getIterator();
3828          I != IE;) {
3829       // The iterator must be incremented here because the instructions are
3830       // being moved to another block.
3831       PHINode *PN = cast<PHINode>(I++);
3832       if (PN->use_empty())
3833         // If the PHI node has no uses, just leave it.  It will be erased
3834         // when we erase BB below.
3835         continue;
3836 
3837       // Otherwise, sink this PHI node into UnwindDest.
3838       // Any predecessors to UnwindDest which are not already represented
3839       // must be back edges which inherit the value from the path through
3840       // BB.  In this case, the PHI value must reference itself.
3841       for (auto *pred : predecessors(UnwindDest))
3842         if (pred != BB)
3843           PN->addIncoming(PN, pred);
3844       PN->moveBefore(InsertPt);
3845     }
3846   }
3847 
3848   for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) {
3849     // The iterator must be updated here because we are removing this pred.
3850     BasicBlock *PredBB = *PI++;
3851     if (UnwindDest == nullptr) {
3852       removeUnwindEdge(PredBB);
3853     } else {
3854       TerminatorInst *TI = PredBB->getTerminator();
3855       TI->replaceUsesOfWith(BB, UnwindDest);
3856     }
3857   }
3858 
3859   // The cleanup pad is now unreachable.  Zap it.
3860   BB->eraseFromParent();
3861   return true;
3862 }
3863 
3864 // Try to merge two cleanuppads together.
3865 static bool mergeCleanupPad(CleanupReturnInst *RI) {
3866   // Skip any cleanuprets which unwind to caller, there is nothing to merge
3867   // with.
3868   BasicBlock *UnwindDest = RI->getUnwindDest();
3869   if (!UnwindDest)
3870     return false;
3871 
3872   // This cleanupret isn't the only predecessor of this cleanuppad, it wouldn't
3873   // be safe to merge without code duplication.
3874   if (UnwindDest->getSinglePredecessor() != RI->getParent())
3875     return false;
3876 
3877   // Verify that our cleanuppad's unwind destination is another cleanuppad.
3878   auto *SuccessorCleanupPad = dyn_cast<CleanupPadInst>(&UnwindDest->front());
3879   if (!SuccessorCleanupPad)
3880     return false;
3881 
3882   CleanupPadInst *PredecessorCleanupPad = RI->getCleanupPad();
3883   // Replace any uses of the successor cleanupad with the predecessor pad
3884   // The only cleanuppad uses should be this cleanupret, it's cleanupret and
3885   // funclet bundle operands.
3886   SuccessorCleanupPad->replaceAllUsesWith(PredecessorCleanupPad);
3887   // Remove the old cleanuppad.
3888   SuccessorCleanupPad->eraseFromParent();
3889   // Now, we simply replace the cleanupret with a branch to the unwind
3890   // destination.
3891   BranchInst::Create(UnwindDest, RI->getParent());
3892   RI->eraseFromParent();
3893 
3894   return true;
3895 }
3896 
3897 bool SimplifyCFGOpt::SimplifyCleanupReturn(CleanupReturnInst *RI) {
3898   // It is possible to transiantly have an undef cleanuppad operand because we
3899   // have deleted some, but not all, dead blocks.
3900   // Eventually, this block will be deleted.
3901   if (isa<UndefValue>(RI->getOperand(0)))
3902     return false;
3903 
3904   if (mergeCleanupPad(RI))
3905     return true;
3906 
3907   if (removeEmptyCleanup(RI))
3908     return true;
3909 
3910   return false;
3911 }
3912 
3913 bool SimplifyCFGOpt::SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) {
3914   BasicBlock *BB = RI->getParent();
3915   if (!BB->getFirstNonPHIOrDbg()->isTerminator())
3916     return false;
3917 
3918   // Find predecessors that end with branches.
3919   SmallVector<BasicBlock *, 8> UncondBranchPreds;
3920   SmallVector<BranchInst *, 8> CondBranchPreds;
3921   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
3922     BasicBlock *P = *PI;
3923     TerminatorInst *PTI = P->getTerminator();
3924     if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) {
3925       if (BI->isUnconditional())
3926         UncondBranchPreds.push_back(P);
3927       else
3928         CondBranchPreds.push_back(BI);
3929     }
3930   }
3931 
3932   // If we found some, do the transformation!
3933   if (!UncondBranchPreds.empty() && DupRet) {
3934     while (!UncondBranchPreds.empty()) {
3935       BasicBlock *Pred = UncondBranchPreds.pop_back_val();
3936       DEBUG(dbgs() << "FOLDING: " << *BB
3937                    << "INTO UNCOND BRANCH PRED: " << *Pred);
3938       (void)FoldReturnIntoUncondBranch(RI, BB, Pred);
3939     }
3940 
3941     // If we eliminated all predecessors of the block, delete the block now.
3942     if (pred_empty(BB)) {
3943       // We know there are no successors, so just nuke the block.
3944       BB->eraseFromParent();
3945       if (LoopHeaders)
3946         LoopHeaders->erase(BB);
3947     }
3948 
3949     return true;
3950   }
3951 
3952   // Check out all of the conditional branches going to this return
3953   // instruction.  If any of them just select between returns, change the
3954   // branch itself into a select/return pair.
3955   while (!CondBranchPreds.empty()) {
3956     BranchInst *BI = CondBranchPreds.pop_back_val();
3957 
3958     // Check to see if the non-BB successor is also a return block.
3959     if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) &&
3960         isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) &&
3961         SimplifyCondBranchToTwoReturns(BI, Builder))
3962       return true;
3963   }
3964   return false;
3965 }
3966 
3967 bool SimplifyCFGOpt::SimplifyUnreachable(UnreachableInst *UI) {
3968   BasicBlock *BB = UI->getParent();
3969 
3970   bool Changed = false;
3971 
3972   // If there are any instructions immediately before the unreachable that can
3973   // be removed, do so.
3974   while (UI->getIterator() != BB->begin()) {
3975     BasicBlock::iterator BBI = UI->getIterator();
3976     --BBI;
3977     // Do not delete instructions that can have side effects which might cause
3978     // the unreachable to not be reachable; specifically, calls and volatile
3979     // operations may have this effect.
3980     if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI))
3981       break;
3982 
3983     if (BBI->mayHaveSideEffects()) {
3984       if (auto *SI = dyn_cast<StoreInst>(BBI)) {
3985         if (SI->isVolatile())
3986           break;
3987       } else if (auto *LI = dyn_cast<LoadInst>(BBI)) {
3988         if (LI->isVolatile())
3989           break;
3990       } else if (auto *RMWI = dyn_cast<AtomicRMWInst>(BBI)) {
3991         if (RMWI->isVolatile())
3992           break;
3993       } else if (auto *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) {
3994         if (CXI->isVolatile())
3995           break;
3996       } else if (isa<CatchPadInst>(BBI)) {
3997         // A catchpad may invoke exception object constructors and such, which
3998         // in some languages can be arbitrary code, so be conservative by
3999         // default.
4000         // For CoreCLR, it just involves a type test, so can be removed.
4001         if (classifyEHPersonality(BB->getParent()->getPersonalityFn()) !=
4002             EHPersonality::CoreCLR)
4003           break;
4004       } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) &&
4005                  !isa<LandingPadInst>(BBI)) {
4006         break;
4007       }
4008       // Note that deleting LandingPad's here is in fact okay, although it
4009       // involves a bit of subtle reasoning. If this inst is a LandingPad,
4010       // all the predecessors of this block will be the unwind edges of Invokes,
4011       // and we can therefore guarantee this block will be erased.
4012     }
4013 
4014     // Delete this instruction (any uses are guaranteed to be dead)
4015     if (!BBI->use_empty())
4016       BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
4017     BBI->eraseFromParent();
4018     Changed = true;
4019   }
4020 
4021   // If the unreachable instruction is the first in the block, take a gander
4022   // at all of the predecessors of this instruction, and simplify them.
4023   if (&BB->front() != UI)
4024     return Changed;
4025 
4026   SmallVector<BasicBlock *, 8> Preds(pred_begin(BB), pred_end(BB));
4027   for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
4028     TerminatorInst *TI = Preds[i]->getTerminator();
4029     IRBuilder<> Builder(TI);
4030     if (auto *BI = dyn_cast<BranchInst>(TI)) {
4031       if (BI->isUnconditional()) {
4032         if (BI->getSuccessor(0) == BB) {
4033           new UnreachableInst(TI->getContext(), TI);
4034           TI->eraseFromParent();
4035           Changed = true;
4036         }
4037       } else {
4038         if (BI->getSuccessor(0) == BB) {
4039           Builder.CreateBr(BI->getSuccessor(1));
4040           EraseTerminatorInstAndDCECond(BI);
4041         } else if (BI->getSuccessor(1) == BB) {
4042           Builder.CreateBr(BI->getSuccessor(0));
4043           EraseTerminatorInstAndDCECond(BI);
4044           Changed = true;
4045         }
4046       }
4047     } else if (auto *SI = dyn_cast<SwitchInst>(TI)) {
4048       for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); i != e;
4049            ++i)
4050         if (i.getCaseSuccessor() == BB) {
4051           BB->removePredecessor(SI->getParent());
4052           SI->removeCase(i);
4053           --i;
4054           --e;
4055           Changed = true;
4056         }
4057     } else if (auto *II = dyn_cast<InvokeInst>(TI)) {
4058       if (II->getUnwindDest() == BB) {
4059         removeUnwindEdge(TI->getParent());
4060         Changed = true;
4061       }
4062     } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) {
4063       if (CSI->getUnwindDest() == BB) {
4064         removeUnwindEdge(TI->getParent());
4065         Changed = true;
4066         continue;
4067       }
4068 
4069       for (CatchSwitchInst::handler_iterator I = CSI->handler_begin(),
4070                                              E = CSI->handler_end();
4071            I != E; ++I) {
4072         if (*I == BB) {
4073           CSI->removeHandler(I);
4074           --I;
4075           --E;
4076           Changed = true;
4077         }
4078       }
4079       if (CSI->getNumHandlers() == 0) {
4080         BasicBlock *CatchSwitchBB = CSI->getParent();
4081         if (CSI->hasUnwindDest()) {
4082           // Redirect preds to the unwind dest
4083           CatchSwitchBB->replaceAllUsesWith(CSI->getUnwindDest());
4084         } else {
4085           // Rewrite all preds to unwind to caller (or from invoke to call).
4086           SmallVector<BasicBlock *, 8> EHPreds(predecessors(CatchSwitchBB));
4087           for (BasicBlock *EHPred : EHPreds)
4088             removeUnwindEdge(EHPred);
4089         }
4090         // The catchswitch is no longer reachable.
4091         new UnreachableInst(CSI->getContext(), CSI);
4092         CSI->eraseFromParent();
4093         Changed = true;
4094       }
4095     } else if (isa<CleanupReturnInst>(TI)) {
4096       new UnreachableInst(TI->getContext(), TI);
4097       TI->eraseFromParent();
4098       Changed = true;
4099     }
4100   }
4101 
4102   // If this block is now dead, remove it.
4103   if (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) {
4104     // We know there are no successors, so just nuke the block.
4105     BB->eraseFromParent();
4106     if (LoopHeaders)
4107       LoopHeaders->erase(BB);
4108     return true;
4109   }
4110 
4111   return Changed;
4112 }
4113 
4114 static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) {
4115   assert(Cases.size() >= 1);
4116 
4117   array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate);
4118   for (size_t I = 1, E = Cases.size(); I != E; ++I) {
4119     if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1)
4120       return false;
4121   }
4122   return true;
4123 }
4124 
4125 /// Turn a switch with two reachable destinations into an integer range
4126 /// comparison and branch.
4127 static bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder) {
4128   assert(SI->getNumCases() > 1 && "Degenerate switch?");
4129 
4130   bool HasDefault =
4131       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
4132 
4133   // Partition the cases into two sets with different destinations.
4134   BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr;
4135   BasicBlock *DestB = nullptr;
4136   SmallVector<ConstantInt *, 16> CasesA;
4137   SmallVector<ConstantInt *, 16> CasesB;
4138 
4139   for (SwitchInst::CaseIt I : SI->cases()) {
4140     BasicBlock *Dest = I.getCaseSuccessor();
4141     if (!DestA)
4142       DestA = Dest;
4143     if (Dest == DestA) {
4144       CasesA.push_back(I.getCaseValue());
4145       continue;
4146     }
4147     if (!DestB)
4148       DestB = Dest;
4149     if (Dest == DestB) {
4150       CasesB.push_back(I.getCaseValue());
4151       continue;
4152     }
4153     return false; // More than two destinations.
4154   }
4155 
4156   assert(DestA && DestB &&
4157          "Single-destination switch should have been folded.");
4158   assert(DestA != DestB);
4159   assert(DestB != SI->getDefaultDest());
4160   assert(!CasesB.empty() && "There must be non-default cases.");
4161   assert(!CasesA.empty() || HasDefault);
4162 
4163   // Figure out if one of the sets of cases form a contiguous range.
4164   SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr;
4165   BasicBlock *ContiguousDest = nullptr;
4166   BasicBlock *OtherDest = nullptr;
4167   if (!CasesA.empty() && CasesAreContiguous(CasesA)) {
4168     ContiguousCases = &CasesA;
4169     ContiguousDest = DestA;
4170     OtherDest = DestB;
4171   } else if (CasesAreContiguous(CasesB)) {
4172     ContiguousCases = &CasesB;
4173     ContiguousDest = DestB;
4174     OtherDest = DestA;
4175   } else
4176     return false;
4177 
4178   // Start building the compare and branch.
4179 
4180   Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back());
4181   Constant *NumCases =
4182       ConstantInt::get(Offset->getType(), ContiguousCases->size());
4183 
4184   Value *Sub = SI->getCondition();
4185   if (!Offset->isNullValue())
4186     Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off");
4187 
4188   Value *Cmp;
4189   // If NumCases overflowed, then all possible values jump to the successor.
4190   if (NumCases->isNullValue() && !ContiguousCases->empty())
4191     Cmp = ConstantInt::getTrue(SI->getContext());
4192   else
4193     Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch");
4194   BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest);
4195 
4196   // Update weight for the newly-created conditional branch.
4197   if (HasBranchWeights(SI)) {
4198     SmallVector<uint64_t, 8> Weights;
4199     GetBranchWeights(SI, Weights);
4200     if (Weights.size() == 1 + SI->getNumCases()) {
4201       uint64_t TrueWeight = 0;
4202       uint64_t FalseWeight = 0;
4203       for (size_t I = 0, E = Weights.size(); I != E; ++I) {
4204         if (SI->getSuccessor(I) == ContiguousDest)
4205           TrueWeight += Weights[I];
4206         else
4207           FalseWeight += Weights[I];
4208       }
4209       while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) {
4210         TrueWeight /= 2;
4211         FalseWeight /= 2;
4212       }
4213       NewBI->setMetadata(LLVMContext::MD_prof,
4214                          MDBuilder(SI->getContext())
4215                              .createBranchWeights((uint32_t)TrueWeight,
4216                                                   (uint32_t)FalseWeight));
4217     }
4218   }
4219 
4220   // Prune obsolete incoming values off the successors' PHI nodes.
4221   for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) {
4222     unsigned PreviousEdges = ContiguousCases->size();
4223     if (ContiguousDest == SI->getDefaultDest())
4224       ++PreviousEdges;
4225     for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
4226       cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
4227   }
4228   for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) {
4229     unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size();
4230     if (OtherDest == SI->getDefaultDest())
4231       ++PreviousEdges;
4232     for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
4233       cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
4234   }
4235 
4236   // Drop the switch.
4237   SI->eraseFromParent();
4238 
4239   return true;
4240 }
4241 
4242 /// Compute masked bits for the condition of a switch
4243 /// and use it to remove dead cases.
4244 static bool EliminateDeadSwitchCases(SwitchInst *SI, AssumptionCache *AC,
4245                                      const DataLayout &DL) {
4246   Value *Cond = SI->getCondition();
4247   unsigned Bits = Cond->getType()->getIntegerBitWidth();
4248   APInt KnownZero(Bits, 0), KnownOne(Bits, 0);
4249   computeKnownBits(Cond, KnownZero, KnownOne, DL, 0, AC, SI);
4250 
4251   // We can also eliminate cases by determining that their values are outside of
4252   // the limited range of the condition based on how many significant (non-sign)
4253   // bits are in the condition value.
4254   unsigned ExtraSignBits = ComputeNumSignBits(Cond, DL, 0, AC, SI) - 1;
4255   unsigned MaxSignificantBitsInCond = Bits - ExtraSignBits;
4256 
4257   // Gather dead cases.
4258   SmallVector<ConstantInt *, 8> DeadCases;
4259   for (auto &Case : SI->cases()) {
4260     APInt CaseVal = Case.getCaseValue()->getValue();
4261     if ((CaseVal & KnownZero) != 0 || (CaseVal & KnownOne) != KnownOne ||
4262         (CaseVal.getMinSignedBits() > MaxSignificantBitsInCond)) {
4263       DeadCases.push_back(Case.getCaseValue());
4264       DEBUG(dbgs() << "SimplifyCFG: switch case " << CaseVal << " is dead.\n");
4265     }
4266   }
4267 
4268   // If we can prove that the cases must cover all possible values, the
4269   // default destination becomes dead and we can remove it.  If we know some
4270   // of the bits in the value, we can use that to more precisely compute the
4271   // number of possible unique case values.
4272   bool HasDefault =
4273       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
4274   const unsigned NumUnknownBits =
4275       Bits - (KnownZero.Or(KnownOne)).countPopulation();
4276   assert(NumUnknownBits <= Bits);
4277   if (HasDefault && DeadCases.empty() &&
4278       NumUnknownBits < 64 /* avoid overflow */ &&
4279       SI->getNumCases() == (1ULL << NumUnknownBits)) {
4280     DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n");
4281     BasicBlock *NewDefault =
4282         SplitBlockPredecessors(SI->getDefaultDest(), SI->getParent(), "");
4283     SI->setDefaultDest(&*NewDefault);
4284     SplitBlock(&*NewDefault, &NewDefault->front());
4285     auto *OldTI = NewDefault->getTerminator();
4286     new UnreachableInst(SI->getContext(), OldTI);
4287     EraseTerminatorInstAndDCECond(OldTI);
4288     return true;
4289   }
4290 
4291   SmallVector<uint64_t, 8> Weights;
4292   bool HasWeight = HasBranchWeights(SI);
4293   if (HasWeight) {
4294     GetBranchWeights(SI, Weights);
4295     HasWeight = (Weights.size() == 1 + SI->getNumCases());
4296   }
4297 
4298   // Remove dead cases from the switch.
4299   for (ConstantInt *DeadCase : DeadCases) {
4300     SwitchInst::CaseIt Case = SI->findCaseValue(DeadCase);
4301     assert(Case != SI->case_default() &&
4302            "Case was not found. Probably mistake in DeadCases forming.");
4303     if (HasWeight) {
4304       std::swap(Weights[Case.getCaseIndex() + 1], Weights.back());
4305       Weights.pop_back();
4306     }
4307 
4308     // Prune unused values from PHI nodes.
4309     Case.getCaseSuccessor()->removePredecessor(SI->getParent());
4310     SI->removeCase(Case);
4311   }
4312   if (HasWeight && Weights.size() >= 2) {
4313     SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
4314     SI->setMetadata(LLVMContext::MD_prof,
4315                     MDBuilder(SI->getParent()->getContext())
4316                         .createBranchWeights(MDWeights));
4317   }
4318 
4319   return !DeadCases.empty();
4320 }
4321 
4322 /// If BB would be eligible for simplification by
4323 /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated
4324 /// by an unconditional branch), look at the phi node for BB in the successor
4325 /// block and see if the incoming value is equal to CaseValue. If so, return
4326 /// the phi node, and set PhiIndex to BB's index in the phi node.
4327 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue,
4328                                               BasicBlock *BB, int *PhiIndex) {
4329   if (BB->getFirstNonPHIOrDbg() != BB->getTerminator())
4330     return nullptr; // BB must be empty to be a candidate for simplification.
4331   if (!BB->getSinglePredecessor())
4332     return nullptr; // BB must be dominated by the switch.
4333 
4334   BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator());
4335   if (!Branch || !Branch->isUnconditional())
4336     return nullptr; // Terminator must be unconditional branch.
4337 
4338   BasicBlock *Succ = Branch->getSuccessor(0);
4339 
4340   BasicBlock::iterator I = Succ->begin();
4341   while (PHINode *PHI = dyn_cast<PHINode>(I++)) {
4342     int Idx = PHI->getBasicBlockIndex(BB);
4343     assert(Idx >= 0 && "PHI has no entry for predecessor?");
4344 
4345     Value *InValue = PHI->getIncomingValue(Idx);
4346     if (InValue != CaseValue)
4347       continue;
4348 
4349     *PhiIndex = Idx;
4350     return PHI;
4351   }
4352 
4353   return nullptr;
4354 }
4355 
4356 /// Try to forward the condition of a switch instruction to a phi node
4357 /// dominated by the switch, if that would mean that some of the destination
4358 /// blocks of the switch can be folded away.
4359 /// Returns true if a change is made.
4360 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) {
4361   typedef DenseMap<PHINode *, SmallVector<int, 4>> ForwardingNodesMap;
4362   ForwardingNodesMap ForwardingNodes;
4363 
4364   for (SwitchInst::CaseIt I = SI->case_begin(), E = SI->case_end(); I != E;
4365        ++I) {
4366     ConstantInt *CaseValue = I.getCaseValue();
4367     BasicBlock *CaseDest = I.getCaseSuccessor();
4368 
4369     int PhiIndex;
4370     PHINode *PHI =
4371         FindPHIForConditionForwarding(CaseValue, CaseDest, &PhiIndex);
4372     if (!PHI)
4373       continue;
4374 
4375     ForwardingNodes[PHI].push_back(PhiIndex);
4376   }
4377 
4378   bool Changed = false;
4379 
4380   for (ForwardingNodesMap::iterator I = ForwardingNodes.begin(),
4381                                     E = ForwardingNodes.end();
4382        I != E; ++I) {
4383     PHINode *Phi = I->first;
4384     SmallVectorImpl<int> &Indexes = I->second;
4385 
4386     if (Indexes.size() < 2)
4387       continue;
4388 
4389     for (size_t I = 0, E = Indexes.size(); I != E; ++I)
4390       Phi->setIncomingValue(Indexes[I], SI->getCondition());
4391     Changed = true;
4392   }
4393 
4394   return Changed;
4395 }
4396 
4397 /// Return true if the backend will be able to handle
4398 /// initializing an array of constants like C.
4399 static bool ValidLookupTableConstant(Constant *C) {
4400   if (C->isThreadDependent())
4401     return false;
4402   if (C->isDLLImportDependent())
4403     return false;
4404 
4405   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
4406     return CE->isGEPWithNoNotionalOverIndexing();
4407 
4408   return isa<ConstantFP>(C) || isa<ConstantInt>(C) ||
4409          isa<ConstantPointerNull>(C) || isa<GlobalValue>(C) ||
4410          isa<UndefValue>(C);
4411 }
4412 
4413 /// If V is a Constant, return it. Otherwise, try to look up
4414 /// its constant value in ConstantPool, returning 0 if it's not there.
4415 static Constant *
4416 LookupConstant(Value *V,
4417                const SmallDenseMap<Value *, Constant *> &ConstantPool) {
4418   if (Constant *C = dyn_cast<Constant>(V))
4419     return C;
4420   return ConstantPool.lookup(V);
4421 }
4422 
4423 /// Try to fold instruction I into a constant. This works for
4424 /// simple instructions such as binary operations where both operands are
4425 /// constant or can be replaced by constants from the ConstantPool. Returns the
4426 /// resulting constant on success, 0 otherwise.
4427 static Constant *
4428 ConstantFold(Instruction *I, const DataLayout &DL,
4429              const SmallDenseMap<Value *, Constant *> &ConstantPool) {
4430   if (SelectInst *Select = dyn_cast<SelectInst>(I)) {
4431     Constant *A = LookupConstant(Select->getCondition(), ConstantPool);
4432     if (!A)
4433       return nullptr;
4434     if (A->isAllOnesValue())
4435       return LookupConstant(Select->getTrueValue(), ConstantPool);
4436     if (A->isNullValue())
4437       return LookupConstant(Select->getFalseValue(), ConstantPool);
4438     return nullptr;
4439   }
4440 
4441   SmallVector<Constant *, 4> COps;
4442   for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) {
4443     if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool))
4444       COps.push_back(A);
4445     else
4446       return nullptr;
4447   }
4448 
4449   if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
4450     return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0],
4451                                            COps[1], DL);
4452   }
4453 
4454   return ConstantFoldInstOperands(I, COps, DL);
4455 }
4456 
4457 /// Try to determine the resulting constant values in phi nodes
4458 /// at the common destination basic block, *CommonDest, for one of the case
4459 /// destionations CaseDest corresponding to value CaseVal (0 for the default
4460 /// case), of a switch instruction SI.
4461 static bool
4462 GetCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest,
4463                BasicBlock **CommonDest,
4464                SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res,
4465                const DataLayout &DL) {
4466   // The block from which we enter the common destination.
4467   BasicBlock *Pred = SI->getParent();
4468 
4469   // If CaseDest is empty except for some side-effect free instructions through
4470   // which we can constant-propagate the CaseVal, continue to its successor.
4471   SmallDenseMap<Value *, Constant *> ConstantPool;
4472   ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal));
4473   for (BasicBlock::iterator I = CaseDest->begin(), E = CaseDest->end(); I != E;
4474        ++I) {
4475     if (TerminatorInst *T = dyn_cast<TerminatorInst>(I)) {
4476       // If the terminator is a simple branch, continue to the next block.
4477       if (T->getNumSuccessors() != 1)
4478         return false;
4479       Pred = CaseDest;
4480       CaseDest = T->getSuccessor(0);
4481     } else if (isa<DbgInfoIntrinsic>(I)) {
4482       // Skip debug intrinsic.
4483       continue;
4484     } else if (Constant *C = ConstantFold(&*I, DL, ConstantPool)) {
4485       // Instruction is side-effect free and constant.
4486 
4487       // If the instruction has uses outside this block or a phi node slot for
4488       // the block, it is not safe to bypass the instruction since it would then
4489       // no longer dominate all its uses.
4490       for (auto &Use : I->uses()) {
4491         User *User = Use.getUser();
4492         if (Instruction *I = dyn_cast<Instruction>(User))
4493           if (I->getParent() == CaseDest)
4494             continue;
4495         if (PHINode *Phi = dyn_cast<PHINode>(User))
4496           if (Phi->getIncomingBlock(Use) == CaseDest)
4497             continue;
4498         return false;
4499       }
4500 
4501       ConstantPool.insert(std::make_pair(&*I, C));
4502     } else {
4503       break;
4504     }
4505   }
4506 
4507   // If we did not have a CommonDest before, use the current one.
4508   if (!*CommonDest)
4509     *CommonDest = CaseDest;
4510   // If the destination isn't the common one, abort.
4511   if (CaseDest != *CommonDest)
4512     return false;
4513 
4514   // Get the values for this case from phi nodes in the destination block.
4515   BasicBlock::iterator I = (*CommonDest)->begin();
4516   while (PHINode *PHI = dyn_cast<PHINode>(I++)) {
4517     int Idx = PHI->getBasicBlockIndex(Pred);
4518     if (Idx == -1)
4519       continue;
4520 
4521     Constant *ConstVal =
4522         LookupConstant(PHI->getIncomingValue(Idx), ConstantPool);
4523     if (!ConstVal)
4524       return false;
4525 
4526     // Be conservative about which kinds of constants we support.
4527     if (!ValidLookupTableConstant(ConstVal))
4528       return false;
4529 
4530     Res.push_back(std::make_pair(PHI, ConstVal));
4531   }
4532 
4533   return Res.size() > 0;
4534 }
4535 
4536 // Helper function used to add CaseVal to the list of cases that generate
4537 // Result.
4538 static void MapCaseToResult(ConstantInt *CaseVal,
4539                             SwitchCaseResultVectorTy &UniqueResults,
4540                             Constant *Result) {
4541   for (auto &I : UniqueResults) {
4542     if (I.first == Result) {
4543       I.second.push_back(CaseVal);
4544       return;
4545     }
4546   }
4547   UniqueResults.push_back(
4548       std::make_pair(Result, SmallVector<ConstantInt *, 4>(1, CaseVal)));
4549 }
4550 
4551 // Helper function that initializes a map containing
4552 // results for the PHI node of the common destination block for a switch
4553 // instruction. Returns false if multiple PHI nodes have been found or if
4554 // there is not a common destination block for the switch.
4555 static bool InitializeUniqueCases(SwitchInst *SI, PHINode *&PHI,
4556                                   BasicBlock *&CommonDest,
4557                                   SwitchCaseResultVectorTy &UniqueResults,
4558                                   Constant *&DefaultResult,
4559                                   const DataLayout &DL) {
4560   for (auto &I : SI->cases()) {
4561     ConstantInt *CaseVal = I.getCaseValue();
4562 
4563     // Resulting value at phi nodes for this case value.
4564     SwitchCaseResultsTy Results;
4565     if (!GetCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results,
4566                         DL))
4567       return false;
4568 
4569     // Only one value per case is permitted
4570     if (Results.size() > 1)
4571       return false;
4572     MapCaseToResult(CaseVal, UniqueResults, Results.begin()->second);
4573 
4574     // Check the PHI consistency.
4575     if (!PHI)
4576       PHI = Results[0].first;
4577     else if (PHI != Results[0].first)
4578       return false;
4579   }
4580   // Find the default result value.
4581   SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults;
4582   BasicBlock *DefaultDest = SI->getDefaultDest();
4583   GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults,
4584                  DL);
4585   // If the default value is not found abort unless the default destination
4586   // is unreachable.
4587   DefaultResult =
4588       DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr;
4589   if ((!DefaultResult &&
4590        !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg())))
4591     return false;
4592 
4593   return true;
4594 }
4595 
4596 // Helper function that checks if it is possible to transform a switch with only
4597 // two cases (or two cases + default) that produces a result into a select.
4598 // Example:
4599 // switch (a) {
4600 //   case 10:                %0 = icmp eq i32 %a, 10
4601 //     return 10;            %1 = select i1 %0, i32 10, i32 4
4602 //   case 20:        ---->   %2 = icmp eq i32 %a, 20
4603 //     return 2;             %3 = select i1 %2, i32 2, i32 %1
4604 //   default:
4605 //     return 4;
4606 // }
4607 static Value *ConvertTwoCaseSwitch(const SwitchCaseResultVectorTy &ResultVector,
4608                                    Constant *DefaultResult, Value *Condition,
4609                                    IRBuilder<> &Builder) {
4610   assert(ResultVector.size() == 2 &&
4611          "We should have exactly two unique results at this point");
4612   // If we are selecting between only two cases transform into a simple
4613   // select or a two-way select if default is possible.
4614   if (ResultVector[0].second.size() == 1 &&
4615       ResultVector[1].second.size() == 1) {
4616     ConstantInt *const FirstCase = ResultVector[0].second[0];
4617     ConstantInt *const SecondCase = ResultVector[1].second[0];
4618 
4619     bool DefaultCanTrigger = DefaultResult;
4620     Value *SelectValue = ResultVector[1].first;
4621     if (DefaultCanTrigger) {
4622       Value *const ValueCompare =
4623           Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp");
4624       SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first,
4625                                          DefaultResult, "switch.select");
4626     }
4627     Value *const ValueCompare =
4628         Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp");
4629     return Builder.CreateSelect(ValueCompare, ResultVector[0].first,
4630                                 SelectValue, "switch.select");
4631   }
4632 
4633   return nullptr;
4634 }
4635 
4636 // Helper function to cleanup a switch instruction that has been converted into
4637 // a select, fixing up PHI nodes and basic blocks.
4638 static void RemoveSwitchAfterSelectConversion(SwitchInst *SI, PHINode *PHI,
4639                                               Value *SelectValue,
4640                                               IRBuilder<> &Builder) {
4641   BasicBlock *SelectBB = SI->getParent();
4642   while (PHI->getBasicBlockIndex(SelectBB) >= 0)
4643     PHI->removeIncomingValue(SelectBB);
4644   PHI->addIncoming(SelectValue, SelectBB);
4645 
4646   Builder.CreateBr(PHI->getParent());
4647 
4648   // Remove the switch.
4649   for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
4650     BasicBlock *Succ = SI->getSuccessor(i);
4651 
4652     if (Succ == PHI->getParent())
4653       continue;
4654     Succ->removePredecessor(SelectBB);
4655   }
4656   SI->eraseFromParent();
4657 }
4658 
4659 /// If the switch is only used to initialize one or more
4660 /// phi nodes in a common successor block with only two different
4661 /// constant values, replace the switch with select.
4662 static bool SwitchToSelect(SwitchInst *SI, IRBuilder<> &Builder,
4663                            AssumptionCache *AC, const DataLayout &DL) {
4664   Value *const Cond = SI->getCondition();
4665   PHINode *PHI = nullptr;
4666   BasicBlock *CommonDest = nullptr;
4667   Constant *DefaultResult;
4668   SwitchCaseResultVectorTy UniqueResults;
4669   // Collect all the cases that will deliver the same value from the switch.
4670   if (!InitializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult,
4671                              DL))
4672     return false;
4673   // Selects choose between maximum two values.
4674   if (UniqueResults.size() != 2)
4675     return false;
4676   assert(PHI != nullptr && "PHI for value select not found");
4677 
4678   Builder.SetInsertPoint(SI);
4679   Value *SelectValue =
4680       ConvertTwoCaseSwitch(UniqueResults, DefaultResult, Cond, Builder);
4681   if (SelectValue) {
4682     RemoveSwitchAfterSelectConversion(SI, PHI, SelectValue, Builder);
4683     return true;
4684   }
4685   // The switch couldn't be converted into a select.
4686   return false;
4687 }
4688 
4689 namespace {
4690 /// This class represents a lookup table that can be used to replace a switch.
4691 class SwitchLookupTable {
4692 public:
4693   /// Create a lookup table to use as a switch replacement with the contents
4694   /// of Values, using DefaultValue to fill any holes in the table.
4695   SwitchLookupTable(
4696       Module &M, uint64_t TableSize, ConstantInt *Offset,
4697       const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
4698       Constant *DefaultValue, const DataLayout &DL);
4699 
4700   /// Build instructions with Builder to retrieve the value at
4701   /// the position given by Index in the lookup table.
4702   Value *BuildLookup(Value *Index, IRBuilder<> &Builder);
4703 
4704   /// Return true if a table with TableSize elements of
4705   /// type ElementType would fit in a target-legal register.
4706   static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize,
4707                                  Type *ElementType);
4708 
4709 private:
4710   // Depending on the contents of the table, it can be represented in
4711   // different ways.
4712   enum {
4713     // For tables where each element contains the same value, we just have to
4714     // store that single value and return it for each lookup.
4715     SingleValueKind,
4716 
4717     // For tables where there is a linear relationship between table index
4718     // and values. We calculate the result with a simple multiplication
4719     // and addition instead of a table lookup.
4720     LinearMapKind,
4721 
4722     // For small tables with integer elements, we can pack them into a bitmap
4723     // that fits into a target-legal register. Values are retrieved by
4724     // shift and mask operations.
4725     BitMapKind,
4726 
4727     // The table is stored as an array of values. Values are retrieved by load
4728     // instructions from the table.
4729     ArrayKind
4730   } Kind;
4731 
4732   // For SingleValueKind, this is the single value.
4733   Constant *SingleValue;
4734 
4735   // For BitMapKind, this is the bitmap.
4736   ConstantInt *BitMap;
4737   IntegerType *BitMapElementTy;
4738 
4739   // For LinearMapKind, these are the constants used to derive the value.
4740   ConstantInt *LinearOffset;
4741   ConstantInt *LinearMultiplier;
4742 
4743   // For ArrayKind, this is the array.
4744   GlobalVariable *Array;
4745 };
4746 }
4747 
4748 SwitchLookupTable::SwitchLookupTable(
4749     Module &M, uint64_t TableSize, ConstantInt *Offset,
4750     const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
4751     Constant *DefaultValue, const DataLayout &DL)
4752     : SingleValue(nullptr), BitMap(nullptr), BitMapElementTy(nullptr),
4753       LinearOffset(nullptr), LinearMultiplier(nullptr), Array(nullptr) {
4754   assert(Values.size() && "Can't build lookup table without values!");
4755   assert(TableSize >= Values.size() && "Can't fit values in table!");
4756 
4757   // If all values in the table are equal, this is that value.
4758   SingleValue = Values.begin()->second;
4759 
4760   Type *ValueType = Values.begin()->second->getType();
4761 
4762   // Build up the table contents.
4763   SmallVector<Constant *, 64> TableContents(TableSize);
4764   for (size_t I = 0, E = Values.size(); I != E; ++I) {
4765     ConstantInt *CaseVal = Values[I].first;
4766     Constant *CaseRes = Values[I].second;
4767     assert(CaseRes->getType() == ValueType);
4768 
4769     uint64_t Idx = (CaseVal->getValue() - Offset->getValue()).getLimitedValue();
4770     TableContents[Idx] = CaseRes;
4771 
4772     if (CaseRes != SingleValue)
4773       SingleValue = nullptr;
4774   }
4775 
4776   // Fill in any holes in the table with the default result.
4777   if (Values.size() < TableSize) {
4778     assert(DefaultValue &&
4779            "Need a default value to fill the lookup table holes.");
4780     assert(DefaultValue->getType() == ValueType);
4781     for (uint64_t I = 0; I < TableSize; ++I) {
4782       if (!TableContents[I])
4783         TableContents[I] = DefaultValue;
4784     }
4785 
4786     if (DefaultValue != SingleValue)
4787       SingleValue = nullptr;
4788   }
4789 
4790   // If each element in the table contains the same value, we only need to store
4791   // that single value.
4792   if (SingleValue) {
4793     Kind = SingleValueKind;
4794     return;
4795   }
4796 
4797   // Check if we can derive the value with a linear transformation from the
4798   // table index.
4799   if (isa<IntegerType>(ValueType)) {
4800     bool LinearMappingPossible = true;
4801     APInt PrevVal;
4802     APInt DistToPrev;
4803     assert(TableSize >= 2 && "Should be a SingleValue table.");
4804     // Check if there is the same distance between two consecutive values.
4805     for (uint64_t I = 0; I < TableSize; ++I) {
4806       ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]);
4807       if (!ConstVal) {
4808         // This is an undef. We could deal with it, but undefs in lookup tables
4809         // are very seldom. It's probably not worth the additional complexity.
4810         LinearMappingPossible = false;
4811         break;
4812       }
4813       APInt Val = ConstVal->getValue();
4814       if (I != 0) {
4815         APInt Dist = Val - PrevVal;
4816         if (I == 1) {
4817           DistToPrev = Dist;
4818         } else if (Dist != DistToPrev) {
4819           LinearMappingPossible = false;
4820           break;
4821         }
4822       }
4823       PrevVal = Val;
4824     }
4825     if (LinearMappingPossible) {
4826       LinearOffset = cast<ConstantInt>(TableContents[0]);
4827       LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev);
4828       Kind = LinearMapKind;
4829       ++NumLinearMaps;
4830       return;
4831     }
4832   }
4833 
4834   // If the type is integer and the table fits in a register, build a bitmap.
4835   if (WouldFitInRegister(DL, TableSize, ValueType)) {
4836     IntegerType *IT = cast<IntegerType>(ValueType);
4837     APInt TableInt(TableSize * IT->getBitWidth(), 0);
4838     for (uint64_t I = TableSize; I > 0; --I) {
4839       TableInt <<= IT->getBitWidth();
4840       // Insert values into the bitmap. Undef values are set to zero.
4841       if (!isa<UndefValue>(TableContents[I - 1])) {
4842         ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]);
4843         TableInt |= Val->getValue().zext(TableInt.getBitWidth());
4844       }
4845     }
4846     BitMap = ConstantInt::get(M.getContext(), TableInt);
4847     BitMapElementTy = IT;
4848     Kind = BitMapKind;
4849     ++NumBitMaps;
4850     return;
4851   }
4852 
4853   // Store the table in an array.
4854   ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize);
4855   Constant *Initializer = ConstantArray::get(ArrayTy, TableContents);
4856 
4857   Array = new GlobalVariable(M, ArrayTy, /*constant=*/true,
4858                              GlobalVariable::PrivateLinkage, Initializer,
4859                              "switch.table");
4860   Array->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
4861   Kind = ArrayKind;
4862 }
4863 
4864 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) {
4865   switch (Kind) {
4866   case SingleValueKind:
4867     return SingleValue;
4868   case LinearMapKind: {
4869     // Derive the result value from the input value.
4870     Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(),
4871                                           false, "switch.idx.cast");
4872     if (!LinearMultiplier->isOne())
4873       Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult");
4874     if (!LinearOffset->isZero())
4875       Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset");
4876     return Result;
4877   }
4878   case BitMapKind: {
4879     // Type of the bitmap (e.g. i59).
4880     IntegerType *MapTy = BitMap->getType();
4881 
4882     // Cast Index to the same type as the bitmap.
4883     // Note: The Index is <= the number of elements in the table, so
4884     // truncating it to the width of the bitmask is safe.
4885     Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast");
4886 
4887     // Multiply the shift amount by the element width.
4888     ShiftAmt = Builder.CreateMul(
4889         ShiftAmt, ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()),
4890         "switch.shiftamt");
4891 
4892     // Shift down.
4893     Value *DownShifted =
4894         Builder.CreateLShr(BitMap, ShiftAmt, "switch.downshift");
4895     // Mask off.
4896     return Builder.CreateTrunc(DownShifted, BitMapElementTy, "switch.masked");
4897   }
4898   case ArrayKind: {
4899     // Make sure the table index will not overflow when treated as signed.
4900     IntegerType *IT = cast<IntegerType>(Index->getType());
4901     uint64_t TableSize =
4902         Array->getInitializer()->getType()->getArrayNumElements();
4903     if (TableSize > (1ULL << (IT->getBitWidth() - 1)))
4904       Index = Builder.CreateZExt(
4905           Index, IntegerType::get(IT->getContext(), IT->getBitWidth() + 1),
4906           "switch.tableidx.zext");
4907 
4908     Value *GEPIndices[] = {Builder.getInt32(0), Index};
4909     Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array,
4910                                            GEPIndices, "switch.gep");
4911     return Builder.CreateLoad(GEP, "switch.load");
4912   }
4913   }
4914   llvm_unreachable("Unknown lookup table kind!");
4915 }
4916 
4917 bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL,
4918                                            uint64_t TableSize,
4919                                            Type *ElementType) {
4920   auto *IT = dyn_cast<IntegerType>(ElementType);
4921   if (!IT)
4922     return false;
4923   // FIXME: If the type is wider than it needs to be, e.g. i8 but all values
4924   // are <= 15, we could try to narrow the type.
4925 
4926   // Avoid overflow, fitsInLegalInteger uses unsigned int for the width.
4927   if (TableSize >= UINT_MAX / IT->getBitWidth())
4928     return false;
4929   return DL.fitsInLegalInteger(TableSize * IT->getBitWidth());
4930 }
4931 
4932 /// Determine whether a lookup table should be built for this switch, based on
4933 /// the number of cases, size of the table, and the types of the results.
4934 static bool
4935 ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize,
4936                        const TargetTransformInfo &TTI, const DataLayout &DL,
4937                        const SmallDenseMap<PHINode *, Type *> &ResultTypes) {
4938   if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10)
4939     return false; // TableSize overflowed, or mul below might overflow.
4940 
4941   bool AllTablesFitInRegister = true;
4942   bool HasIllegalType = false;
4943   for (const auto &I : ResultTypes) {
4944     Type *Ty = I.second;
4945 
4946     // Saturate this flag to true.
4947     HasIllegalType = HasIllegalType || !TTI.isTypeLegal(Ty);
4948 
4949     // Saturate this flag to false.
4950     AllTablesFitInRegister =
4951         AllTablesFitInRegister &&
4952         SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty);
4953 
4954     // If both flags saturate, we're done. NOTE: This *only* works with
4955     // saturating flags, and all flags have to saturate first due to the
4956     // non-deterministic behavior of iterating over a dense map.
4957     if (HasIllegalType && !AllTablesFitInRegister)
4958       break;
4959   }
4960 
4961   // If each table would fit in a register, we should build it anyway.
4962   if (AllTablesFitInRegister)
4963     return true;
4964 
4965   // Don't build a table that doesn't fit in-register if it has illegal types.
4966   if (HasIllegalType)
4967     return false;
4968 
4969   // The table density should be at least 40%. This is the same criterion as for
4970   // jump tables, see SelectionDAGBuilder::handleJTSwitchCase.
4971   // FIXME: Find the best cut-off.
4972   return SI->getNumCases() * 10 >= TableSize * 4;
4973 }
4974 
4975 /// Try to reuse the switch table index compare. Following pattern:
4976 /// \code
4977 ///     if (idx < tablesize)
4978 ///        r = table[idx]; // table does not contain default_value
4979 ///     else
4980 ///        r = default_value;
4981 ///     if (r != default_value)
4982 ///        ...
4983 /// \endcode
4984 /// Is optimized to:
4985 /// \code
4986 ///     cond = idx < tablesize;
4987 ///     if (cond)
4988 ///        r = table[idx];
4989 ///     else
4990 ///        r = default_value;
4991 ///     if (cond)
4992 ///        ...
4993 /// \endcode
4994 /// Jump threading will then eliminate the second if(cond).
4995 static void reuseTableCompare(
4996     User *PhiUser, BasicBlock *PhiBlock, BranchInst *RangeCheckBranch,
4997     Constant *DefaultValue,
4998     const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values) {
4999 
5000   ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser);
5001   if (!CmpInst)
5002     return;
5003 
5004   // We require that the compare is in the same block as the phi so that jump
5005   // threading can do its work afterwards.
5006   if (CmpInst->getParent() != PhiBlock)
5007     return;
5008 
5009   Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1));
5010   if (!CmpOp1)
5011     return;
5012 
5013   Value *RangeCmp = RangeCheckBranch->getCondition();
5014   Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType());
5015   Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType());
5016 
5017   // Check if the compare with the default value is constant true or false.
5018   Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
5019                                                  DefaultValue, CmpOp1, true);
5020   if (DefaultConst != TrueConst && DefaultConst != FalseConst)
5021     return;
5022 
5023   // Check if the compare with the case values is distinct from the default
5024   // compare result.
5025   for (auto ValuePair : Values) {
5026     Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
5027                                                 ValuePair.second, CmpOp1, true);
5028     if (!CaseConst || CaseConst == DefaultConst)
5029       return;
5030     assert((CaseConst == TrueConst || CaseConst == FalseConst) &&
5031            "Expect true or false as compare result.");
5032   }
5033 
5034   // Check if the branch instruction dominates the phi node. It's a simple
5035   // dominance check, but sufficient for our needs.
5036   // Although this check is invariant in the calling loops, it's better to do it
5037   // at this late stage. Practically we do it at most once for a switch.
5038   BasicBlock *BranchBlock = RangeCheckBranch->getParent();
5039   for (auto PI = pred_begin(PhiBlock), E = pred_end(PhiBlock); PI != E; ++PI) {
5040     BasicBlock *Pred = *PI;
5041     if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock)
5042       return;
5043   }
5044 
5045   if (DefaultConst == FalseConst) {
5046     // The compare yields the same result. We can replace it.
5047     CmpInst->replaceAllUsesWith(RangeCmp);
5048     ++NumTableCmpReuses;
5049   } else {
5050     // The compare yields the same result, just inverted. We can replace it.
5051     Value *InvertedTableCmp = BinaryOperator::CreateXor(
5052         RangeCmp, ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp",
5053         RangeCheckBranch);
5054     CmpInst->replaceAllUsesWith(InvertedTableCmp);
5055     ++NumTableCmpReuses;
5056   }
5057 }
5058 
5059 /// If the switch is only used to initialize one or more phi nodes in a common
5060 /// successor block with different constant values, replace the switch with
5061 /// lookup tables.
5062 static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder,
5063                                 const DataLayout &DL,
5064                                 const TargetTransformInfo &TTI) {
5065   assert(SI->getNumCases() > 1 && "Degenerate switch?");
5066 
5067   // Only build lookup table when we have a target that supports it.
5068   if (!TTI.shouldBuildLookupTables())
5069     return false;
5070 
5071   // FIXME: If the switch is too sparse for a lookup table, perhaps we could
5072   // split off a dense part and build a lookup table for that.
5073 
5074   // FIXME: This creates arrays of GEPs to constant strings, which means each
5075   // GEP needs a runtime relocation in PIC code. We should just build one big
5076   // string and lookup indices into that.
5077 
5078   // Ignore switches with less than three cases. Lookup tables will not make
5079   // them
5080   // faster, so we don't analyze them.
5081   if (SI->getNumCases() < 3)
5082     return false;
5083 
5084   // Figure out the corresponding result for each case value and phi node in the
5085   // common destination, as well as the min and max case values.
5086   assert(SI->case_begin() != SI->case_end());
5087   SwitchInst::CaseIt CI = SI->case_begin();
5088   ConstantInt *MinCaseVal = CI.getCaseValue();
5089   ConstantInt *MaxCaseVal = CI.getCaseValue();
5090 
5091   BasicBlock *CommonDest = nullptr;
5092   typedef SmallVector<std::pair<ConstantInt *, Constant *>, 4> ResultListTy;
5093   SmallDenseMap<PHINode *, ResultListTy> ResultLists;
5094   SmallDenseMap<PHINode *, Constant *> DefaultResults;
5095   SmallDenseMap<PHINode *, Type *> ResultTypes;
5096   SmallVector<PHINode *, 4> PHIs;
5097 
5098   for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) {
5099     ConstantInt *CaseVal = CI.getCaseValue();
5100     if (CaseVal->getValue().slt(MinCaseVal->getValue()))
5101       MinCaseVal = CaseVal;
5102     if (CaseVal->getValue().sgt(MaxCaseVal->getValue()))
5103       MaxCaseVal = CaseVal;
5104 
5105     // Resulting value at phi nodes for this case value.
5106     typedef SmallVector<std::pair<PHINode *, Constant *>, 4> ResultsTy;
5107     ResultsTy Results;
5108     if (!GetCaseResults(SI, CaseVal, CI.getCaseSuccessor(), &CommonDest,
5109                         Results, DL))
5110       return false;
5111 
5112     // Append the result from this case to the list for each phi.
5113     for (const auto &I : Results) {
5114       PHINode *PHI = I.first;
5115       Constant *Value = I.second;
5116       if (!ResultLists.count(PHI))
5117         PHIs.push_back(PHI);
5118       ResultLists[PHI].push_back(std::make_pair(CaseVal, Value));
5119     }
5120   }
5121 
5122   // Keep track of the result types.
5123   for (PHINode *PHI : PHIs) {
5124     ResultTypes[PHI] = ResultLists[PHI][0].second->getType();
5125   }
5126 
5127   uint64_t NumResults = ResultLists[PHIs[0]].size();
5128   APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue();
5129   uint64_t TableSize = RangeSpread.getLimitedValue() + 1;
5130   bool TableHasHoles = (NumResults < TableSize);
5131 
5132   // If the table has holes, we need a constant result for the default case
5133   // or a bitmask that fits in a register.
5134   SmallVector<std::pair<PHINode *, Constant *>, 4> DefaultResultsList;
5135   bool HasDefaultResults = GetCaseResults(SI, nullptr, SI->getDefaultDest(),
5136                                           &CommonDest, DefaultResultsList, DL);
5137 
5138   bool NeedMask = (TableHasHoles && !HasDefaultResults);
5139   if (NeedMask) {
5140     // As an extra penalty for the validity test we require more cases.
5141     if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark).
5142       return false;
5143     if (!DL.fitsInLegalInteger(TableSize))
5144       return false;
5145   }
5146 
5147   for (const auto &I : DefaultResultsList) {
5148     PHINode *PHI = I.first;
5149     Constant *Result = I.second;
5150     DefaultResults[PHI] = Result;
5151   }
5152 
5153   if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes))
5154     return false;
5155 
5156   // Create the BB that does the lookups.
5157   Module &Mod = *CommonDest->getParent()->getParent();
5158   BasicBlock *LookupBB = BasicBlock::Create(
5159       Mod.getContext(), "switch.lookup", CommonDest->getParent(), CommonDest);
5160 
5161   // Compute the table index value.
5162   Builder.SetInsertPoint(SI);
5163   Value *TableIndex =
5164       Builder.CreateSub(SI->getCondition(), MinCaseVal, "switch.tableidx");
5165 
5166   // Compute the maximum table size representable by the integer type we are
5167   // switching upon.
5168   unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits();
5169   uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize;
5170   assert(MaxTableSize >= TableSize &&
5171          "It is impossible for a switch to have more entries than the max "
5172          "representable value of its input integer type's size.");
5173 
5174   // If the default destination is unreachable, or if the lookup table covers
5175   // all values of the conditional variable, branch directly to the lookup table
5176   // BB. Otherwise, check that the condition is within the case range.
5177   const bool DefaultIsReachable =
5178       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
5179   const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize);
5180   BranchInst *RangeCheckBranch = nullptr;
5181 
5182   if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
5183     Builder.CreateBr(LookupBB);
5184     // Note: We call removeProdecessor later since we need to be able to get the
5185     // PHI value for the default case in case we're using a bit mask.
5186   } else {
5187     Value *Cmp = Builder.CreateICmpULT(
5188         TableIndex, ConstantInt::get(MinCaseVal->getType(), TableSize));
5189     RangeCheckBranch =
5190         Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest());
5191   }
5192 
5193   // Populate the BB that does the lookups.
5194   Builder.SetInsertPoint(LookupBB);
5195 
5196   if (NeedMask) {
5197     // Before doing the lookup we do the hole check.
5198     // The LookupBB is therefore re-purposed to do the hole check
5199     // and we create a new LookupBB.
5200     BasicBlock *MaskBB = LookupBB;
5201     MaskBB->setName("switch.hole_check");
5202     LookupBB = BasicBlock::Create(Mod.getContext(), "switch.lookup",
5203                                   CommonDest->getParent(), CommonDest);
5204 
5205     // Make the mask's bitwidth at least 8bit and a power-of-2 to avoid
5206     // unnecessary illegal types.
5207     uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL));
5208     APInt MaskInt(TableSizePowOf2, 0);
5209     APInt One(TableSizePowOf2, 1);
5210     // Build bitmask; fill in a 1 bit for every case.
5211     const ResultListTy &ResultList = ResultLists[PHIs[0]];
5212     for (size_t I = 0, E = ResultList.size(); I != E; ++I) {
5213       uint64_t Idx = (ResultList[I].first->getValue() - MinCaseVal->getValue())
5214                          .getLimitedValue();
5215       MaskInt |= One << Idx;
5216     }
5217     ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt);
5218 
5219     // Get the TableIndex'th bit of the bitmask.
5220     // If this bit is 0 (meaning hole) jump to the default destination,
5221     // else continue with table lookup.
5222     IntegerType *MapTy = TableMask->getType();
5223     Value *MaskIndex =
5224         Builder.CreateZExtOrTrunc(TableIndex, MapTy, "switch.maskindex");
5225     Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, "switch.shifted");
5226     Value *LoBit = Builder.CreateTrunc(
5227         Shifted, Type::getInt1Ty(Mod.getContext()), "switch.lobit");
5228     Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest());
5229 
5230     Builder.SetInsertPoint(LookupBB);
5231     AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, SI->getParent());
5232   }
5233 
5234   if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
5235     // We cached PHINodes in PHIs, to avoid accessing deleted PHINodes later,
5236     // do not delete PHINodes here.
5237     SI->getDefaultDest()->removePredecessor(SI->getParent(),
5238                                             /*DontDeleteUselessPHIs=*/true);
5239   }
5240 
5241   bool ReturnedEarly = false;
5242   for (size_t I = 0, E = PHIs.size(); I != E; ++I) {
5243     PHINode *PHI = PHIs[I];
5244     const ResultListTy &ResultList = ResultLists[PHI];
5245 
5246     // If using a bitmask, use any value to fill the lookup table holes.
5247     Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI];
5248     SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultList, DV, DL);
5249 
5250     Value *Result = Table.BuildLookup(TableIndex, Builder);
5251 
5252     // If the result is used to return immediately from the function, we want to
5253     // do that right here.
5254     if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->user_begin()) &&
5255         PHI->user_back() == CommonDest->getFirstNonPHIOrDbg()) {
5256       Builder.CreateRet(Result);
5257       ReturnedEarly = true;
5258       break;
5259     }
5260 
5261     // Do a small peephole optimization: re-use the switch table compare if
5262     // possible.
5263     if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) {
5264       BasicBlock *PhiBlock = PHI->getParent();
5265       // Search for compare instructions which use the phi.
5266       for (auto *User : PHI->users()) {
5267         reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList);
5268       }
5269     }
5270 
5271     PHI->addIncoming(Result, LookupBB);
5272   }
5273 
5274   if (!ReturnedEarly)
5275     Builder.CreateBr(CommonDest);
5276 
5277   // Remove the switch.
5278   for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
5279     BasicBlock *Succ = SI->getSuccessor(i);
5280 
5281     if (Succ == SI->getDefaultDest())
5282       continue;
5283     Succ->removePredecessor(SI->getParent());
5284   }
5285   SI->eraseFromParent();
5286 
5287   ++NumLookupTables;
5288   if (NeedMask)
5289     ++NumLookupTablesHoles;
5290   return true;
5291 }
5292 
5293 static bool isSwitchDense(ArrayRef<int64_t> Values) {
5294   // See also SelectionDAGBuilder::isDense(), which this function was based on.
5295   uint64_t Diff = (uint64_t)Values.back() - (uint64_t)Values.front();
5296   uint64_t Range = Diff + 1;
5297   uint64_t NumCases = Values.size();
5298   // 40% is the default density for building a jump table in optsize/minsize mode.
5299   uint64_t MinDensity = 40;
5300 
5301   return NumCases * 100 >= Range * MinDensity;
5302 }
5303 
5304 // Try and transform a switch that has "holes" in it to a contiguous sequence
5305 // of cases.
5306 //
5307 // A switch such as: switch(i) {case 5: case 9: case 13: case 17:} can be
5308 // range-reduced to: switch ((i-5) / 4) {case 0: case 1: case 2: case 3:}.
5309 //
5310 // This converts a sparse switch into a dense switch which allows better
5311 // lowering and could also allow transforming into a lookup table.
5312 static bool ReduceSwitchRange(SwitchInst *SI, IRBuilder<> &Builder,
5313                               const DataLayout &DL,
5314                               const TargetTransformInfo &TTI) {
5315   auto *CondTy = cast<IntegerType>(SI->getCondition()->getType());
5316   if (CondTy->getIntegerBitWidth() > 64 ||
5317       !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth()))
5318     return false;
5319   // Only bother with this optimization if there are more than 3 switch cases;
5320   // SDAG will only bother creating jump tables for 4 or more cases.
5321   if (SI->getNumCases() < 4)
5322     return false;
5323 
5324   // This transform is agnostic to the signedness of the input or case values. We
5325   // can treat the case values as signed or unsigned. We can optimize more common
5326   // cases such as a sequence crossing zero {-4,0,4,8} if we interpret case values
5327   // as signed.
5328   SmallVector<int64_t,4> Values;
5329   for (auto &C : SI->cases())
5330     Values.push_back(C.getCaseValue()->getValue().getSExtValue());
5331   std::sort(Values.begin(), Values.end());
5332 
5333   // If the switch is already dense, there's nothing useful to do here.
5334   if (isSwitchDense(Values))
5335     return false;
5336 
5337   // First, transform the values such that they start at zero and ascend.
5338   int64_t Base = Values[0];
5339   for (auto &V : Values)
5340     V -= Base;
5341 
5342   // Now we have signed numbers that have been shifted so that, given enough
5343   // precision, there are no negative values. Since the rest of the transform
5344   // is bitwise only, we switch now to an unsigned representation.
5345   uint64_t GCD = 0;
5346   for (auto &V : Values)
5347     GCD = llvm::GreatestCommonDivisor64(GCD, (uint64_t)V);
5348 
5349   // This transform can be done speculatively because it is so cheap - it results
5350   // in a single rotate operation being inserted. This can only happen if the
5351   // factor extracted is a power of 2.
5352   // FIXME: If the GCD is an odd number we can multiply by the multiplicative
5353   // inverse of GCD and then perform this transform.
5354   // FIXME: It's possible that optimizing a switch on powers of two might also
5355   // be beneficial - flag values are often powers of two and we could use a CLZ
5356   // as the key function.
5357   if (GCD <= 1 || !llvm::isPowerOf2_64(GCD))
5358     // No common divisor found or too expensive to compute key function.
5359     return false;
5360 
5361   unsigned Shift = llvm::Log2_64(GCD);
5362   for (auto &V : Values)
5363     V = (int64_t)((uint64_t)V >> Shift);
5364 
5365   if (!isSwitchDense(Values))
5366     // Transform didn't create a dense switch.
5367     return false;
5368 
5369   // The obvious transform is to shift the switch condition right and emit a
5370   // check that the condition actually cleanly divided by GCD, i.e.
5371   //   C & (1 << Shift - 1) == 0
5372   // inserting a new CFG edge to handle the case where it didn't divide cleanly.
5373   //
5374   // A cheaper way of doing this is a simple ROTR(C, Shift). This performs the
5375   // shift and puts the shifted-off bits in the uppermost bits. If any of these
5376   // are nonzero then the switch condition will be very large and will hit the
5377   // default case.
5378 
5379   auto *Ty = cast<IntegerType>(SI->getCondition()->getType());
5380   Builder.SetInsertPoint(SI);
5381   auto *ShiftC = ConstantInt::get(Ty, Shift);
5382   auto *Sub = Builder.CreateSub(SI->getCondition(), ConstantInt::get(Ty, Base));
5383   auto *LShr = Builder.CreateLShr(Sub, ShiftC);
5384   auto *Shl = Builder.CreateShl(Sub, Ty->getBitWidth() - Shift);
5385   auto *Rot = Builder.CreateOr(LShr, Shl);
5386   SI->replaceUsesOfWith(SI->getCondition(), Rot);
5387 
5388   for (SwitchInst::CaseIt C = SI->case_begin(), E = SI->case_end(); C != E;
5389        ++C) {
5390     auto *Orig = C.getCaseValue();
5391     auto Sub = Orig->getValue() - APInt(Ty->getBitWidth(), Base);
5392     C.setValue(
5393         cast<ConstantInt>(ConstantInt::get(Ty, Sub.lshr(ShiftC->getValue()))));
5394   }
5395   return true;
5396 }
5397 
5398 bool SimplifyCFGOpt::SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) {
5399   BasicBlock *BB = SI->getParent();
5400 
5401   if (isValueEqualityComparison(SI)) {
5402     // If we only have one predecessor, and if it is a branch on this value,
5403     // see if that predecessor totally determines the outcome of this switch.
5404     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
5405       if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder))
5406         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5407 
5408     Value *Cond = SI->getCondition();
5409     if (SelectInst *Select = dyn_cast<SelectInst>(Cond))
5410       if (SimplifySwitchOnSelect(SI, Select))
5411         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5412 
5413     // If the block only contains the switch, see if we can fold the block
5414     // away into any preds.
5415     BasicBlock::iterator BBI = BB->begin();
5416     // Ignore dbg intrinsics.
5417     while (isa<DbgInfoIntrinsic>(BBI))
5418       ++BBI;
5419     if (SI == &*BBI)
5420       if (FoldValueComparisonIntoPredecessors(SI, Builder))
5421         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5422   }
5423 
5424   // Try to transform the switch into an icmp and a branch.
5425   if (TurnSwitchRangeIntoICmp(SI, Builder))
5426     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5427 
5428   // Remove unreachable cases.
5429   if (EliminateDeadSwitchCases(SI, AC, DL))
5430     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5431 
5432   if (SwitchToSelect(SI, Builder, AC, DL))
5433     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5434 
5435   if (ForwardSwitchConditionToPHI(SI))
5436     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5437 
5438   if (SwitchToLookupTable(SI, Builder, DL, TTI))
5439     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5440 
5441   if (ReduceSwitchRange(SI, Builder, DL, TTI))
5442     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5443 
5444   return false;
5445 }
5446 
5447 bool SimplifyCFGOpt::SimplifyIndirectBr(IndirectBrInst *IBI) {
5448   BasicBlock *BB = IBI->getParent();
5449   bool Changed = false;
5450 
5451   // Eliminate redundant destinations.
5452   SmallPtrSet<Value *, 8> Succs;
5453   for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
5454     BasicBlock *Dest = IBI->getDestination(i);
5455     if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) {
5456       Dest->removePredecessor(BB);
5457       IBI->removeDestination(i);
5458       --i;
5459       --e;
5460       Changed = true;
5461     }
5462   }
5463 
5464   if (IBI->getNumDestinations() == 0) {
5465     // If the indirectbr has no successors, change it to unreachable.
5466     new UnreachableInst(IBI->getContext(), IBI);
5467     EraseTerminatorInstAndDCECond(IBI);
5468     return true;
5469   }
5470 
5471   if (IBI->getNumDestinations() == 1) {
5472     // If the indirectbr has one successor, change it to a direct branch.
5473     BranchInst::Create(IBI->getDestination(0), IBI);
5474     EraseTerminatorInstAndDCECond(IBI);
5475     return true;
5476   }
5477 
5478   if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) {
5479     if (SimplifyIndirectBrOnSelect(IBI, SI))
5480       return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5481   }
5482   return Changed;
5483 }
5484 
5485 /// Given an block with only a single landing pad and a unconditional branch
5486 /// try to find another basic block which this one can be merged with.  This
5487 /// handles cases where we have multiple invokes with unique landing pads, but
5488 /// a shared handler.
5489 ///
5490 /// We specifically choose to not worry about merging non-empty blocks
5491 /// here.  That is a PRE/scheduling problem and is best solved elsewhere.  In
5492 /// practice, the optimizer produces empty landing pad blocks quite frequently
5493 /// when dealing with exception dense code.  (see: instcombine, gvn, if-else
5494 /// sinking in this file)
5495 ///
5496 /// This is primarily a code size optimization.  We need to avoid performing
5497 /// any transform which might inhibit optimization (such as our ability to
5498 /// specialize a particular handler via tail commoning).  We do this by not
5499 /// merging any blocks which require us to introduce a phi.  Since the same
5500 /// values are flowing through both blocks, we don't loose any ability to
5501 /// specialize.  If anything, we make such specialization more likely.
5502 ///
5503 /// TODO - This transformation could remove entries from a phi in the target
5504 /// block when the inputs in the phi are the same for the two blocks being
5505 /// merged.  In some cases, this could result in removal of the PHI entirely.
5506 static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI,
5507                                  BasicBlock *BB) {
5508   auto Succ = BB->getUniqueSuccessor();
5509   assert(Succ);
5510   // If there's a phi in the successor block, we'd likely have to introduce
5511   // a phi into the merged landing pad block.
5512   if (isa<PHINode>(*Succ->begin()))
5513     return false;
5514 
5515   for (BasicBlock *OtherPred : predecessors(Succ)) {
5516     if (BB == OtherPred)
5517       continue;
5518     BasicBlock::iterator I = OtherPred->begin();
5519     LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I);
5520     if (!LPad2 || !LPad2->isIdenticalTo(LPad))
5521       continue;
5522     for (++I; isa<DbgInfoIntrinsic>(I); ++I) {
5523     }
5524     BranchInst *BI2 = dyn_cast<BranchInst>(I);
5525     if (!BI2 || !BI2->isIdenticalTo(BI))
5526       continue;
5527 
5528     // We've found an identical block.  Update our predecessors to take that
5529     // path instead and make ourselves dead.
5530     SmallSet<BasicBlock *, 16> Preds;
5531     Preds.insert(pred_begin(BB), pred_end(BB));
5532     for (BasicBlock *Pred : Preds) {
5533       InvokeInst *II = cast<InvokeInst>(Pred->getTerminator());
5534       assert(II->getNormalDest() != BB && II->getUnwindDest() == BB &&
5535              "unexpected successor");
5536       II->setUnwindDest(OtherPred);
5537     }
5538 
5539     // The debug info in OtherPred doesn't cover the merged control flow that
5540     // used to go through BB.  We need to delete it or update it.
5541     for (auto I = OtherPred->begin(), E = OtherPred->end(); I != E;) {
5542       Instruction &Inst = *I;
5543       I++;
5544       if (isa<DbgInfoIntrinsic>(Inst))
5545         Inst.eraseFromParent();
5546     }
5547 
5548     SmallSet<BasicBlock *, 16> Succs;
5549     Succs.insert(succ_begin(BB), succ_end(BB));
5550     for (BasicBlock *Succ : Succs) {
5551       Succ->removePredecessor(BB);
5552     }
5553 
5554     IRBuilder<> Builder(BI);
5555     Builder.CreateUnreachable();
5556     BI->eraseFromParent();
5557     return true;
5558   }
5559   return false;
5560 }
5561 
5562 bool SimplifyCFGOpt::SimplifyUncondBranch(BranchInst *BI,
5563                                           IRBuilder<> &Builder) {
5564   BasicBlock *BB = BI->getParent();
5565 
5566   if (SinkCommon && SinkThenElseCodeToEnd(BI))
5567     return true;
5568 
5569   // If the Terminator is the only non-phi instruction, simplify the block.
5570   // if LoopHeader is provided, check if the block is a loop header
5571   // (This is for early invocations before loop simplify and vectorization
5572   // to keep canonical loop forms for nested loops.
5573   // These blocks can be eliminated when the pass is invoked later
5574   // in the back-end.)
5575   BasicBlock::iterator I = BB->getFirstNonPHIOrDbg()->getIterator();
5576   if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() &&
5577       (!LoopHeaders || !LoopHeaders->count(BB)) &&
5578       TryToSimplifyUncondBranchFromEmptyBlock(BB))
5579     return true;
5580 
5581   // If the only instruction in the block is a seteq/setne comparison
5582   // against a constant, try to simplify the block.
5583   if (ICmpInst *ICI = dyn_cast<ICmpInst>(I))
5584     if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) {
5585       for (++I; isa<DbgInfoIntrinsic>(I); ++I)
5586         ;
5587       if (I->isTerminator() &&
5588           TryToSimplifyUncondBranchWithICmpInIt(ICI, Builder, DL, TTI,
5589                                                 BonusInstThreshold, AC))
5590         return true;
5591     }
5592 
5593   // See if we can merge an empty landing pad block with another which is
5594   // equivalent.
5595   if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) {
5596     for (++I; isa<DbgInfoIntrinsic>(I); ++I) {
5597     }
5598     if (I->isTerminator() && TryToMergeLandingPad(LPad, BI, BB))
5599       return true;
5600   }
5601 
5602   // If this basic block is ONLY a compare and a branch, and if a predecessor
5603   // branches to us and our successor, fold the comparison into the
5604   // predecessor and use logical operations to update the incoming value
5605   // for PHI nodes in common successor.
5606   if (FoldBranchToCommonDest(BI, BonusInstThreshold))
5607     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5608   return false;
5609 }
5610 
5611 static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) {
5612   BasicBlock *PredPred = nullptr;
5613   for (auto *P : predecessors(BB)) {
5614     BasicBlock *PPred = P->getSinglePredecessor();
5615     if (!PPred || (PredPred && PredPred != PPred))
5616       return nullptr;
5617     PredPred = PPred;
5618   }
5619   return PredPred;
5620 }
5621 
5622 bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) {
5623   BasicBlock *BB = BI->getParent();
5624 
5625   // Conditional branch
5626   if (isValueEqualityComparison(BI)) {
5627     // If we only have one predecessor, and if it is a branch on this value,
5628     // see if that predecessor totally determines the outcome of this
5629     // switch.
5630     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
5631       if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder))
5632         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5633 
5634     // This block must be empty, except for the setcond inst, if it exists.
5635     // Ignore dbg intrinsics.
5636     BasicBlock::iterator I = BB->begin();
5637     // Ignore dbg intrinsics.
5638     while (isa<DbgInfoIntrinsic>(I))
5639       ++I;
5640     if (&*I == BI) {
5641       if (FoldValueComparisonIntoPredecessors(BI, Builder))
5642         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5643     } else if (&*I == cast<Instruction>(BI->getCondition())) {
5644       ++I;
5645       // Ignore dbg intrinsics.
5646       while (isa<DbgInfoIntrinsic>(I))
5647         ++I;
5648       if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder))
5649         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5650     }
5651   }
5652 
5653   // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction.
5654   if (SimplifyBranchOnICmpChain(BI, Builder, DL))
5655     return true;
5656 
5657   // If this basic block has a single dominating predecessor block and the
5658   // dominating block's condition implies BI's condition, we know the direction
5659   // of the BI branch.
5660   if (BasicBlock *Dom = BB->getSinglePredecessor()) {
5661     auto *PBI = dyn_cast_or_null<BranchInst>(Dom->getTerminator());
5662     if (PBI && PBI->isConditional() &&
5663         PBI->getSuccessor(0) != PBI->getSuccessor(1) &&
5664         (PBI->getSuccessor(0) == BB || PBI->getSuccessor(1) == BB)) {
5665       bool CondIsFalse = PBI->getSuccessor(1) == BB;
5666       Optional<bool> Implication = isImpliedCondition(
5667           PBI->getCondition(), BI->getCondition(), DL, CondIsFalse);
5668       if (Implication) {
5669         // Turn this into a branch on constant.
5670         auto *OldCond = BI->getCondition();
5671         ConstantInt *CI = *Implication
5672                               ? ConstantInt::getTrue(BB->getContext())
5673                               : ConstantInt::getFalse(BB->getContext());
5674         BI->setCondition(CI);
5675         RecursivelyDeleteTriviallyDeadInstructions(OldCond);
5676         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5677       }
5678     }
5679   }
5680 
5681   // If this basic block is ONLY a compare and a branch, and if a predecessor
5682   // branches to us and one of our successors, fold the comparison into the
5683   // predecessor and use logical operations to pick the right destination.
5684   if (FoldBranchToCommonDest(BI, BonusInstThreshold))
5685     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5686 
5687   // We have a conditional branch to two blocks that are only reachable
5688   // from BI.  We know that the condbr dominates the two blocks, so see if
5689   // there is any identical code in the "then" and "else" blocks.  If so, we
5690   // can hoist it up to the branching block.
5691   if (BI->getSuccessor(0)->getSinglePredecessor()) {
5692     if (BI->getSuccessor(1)->getSinglePredecessor()) {
5693       if (HoistThenElseCodeToIf(BI, TTI))
5694         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5695     } else {
5696       // If Successor #1 has multiple preds, we may be able to conditionally
5697       // execute Successor #0 if it branches to Successor #1.
5698       TerminatorInst *Succ0TI = BI->getSuccessor(0)->getTerminator();
5699       if (Succ0TI->getNumSuccessors() == 1 &&
5700           Succ0TI->getSuccessor(0) == BI->getSuccessor(1))
5701         if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), TTI))
5702           return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5703     }
5704   } else if (BI->getSuccessor(1)->getSinglePredecessor()) {
5705     // If Successor #0 has multiple preds, we may be able to conditionally
5706     // execute Successor #1 if it branches to Successor #0.
5707     TerminatorInst *Succ1TI = BI->getSuccessor(1)->getTerminator();
5708     if (Succ1TI->getNumSuccessors() == 1 &&
5709         Succ1TI->getSuccessor(0) == BI->getSuccessor(0))
5710       if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), TTI))
5711         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5712   }
5713 
5714   // If this is a branch on a phi node in the current block, thread control
5715   // through this block if any PHI node entries are constants.
5716   if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition()))
5717     if (PN->getParent() == BI->getParent())
5718       if (FoldCondBranchOnPHI(BI, DL))
5719         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5720 
5721   // Scan predecessor blocks for conditional branches.
5722   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
5723     if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
5724       if (PBI != BI && PBI->isConditional())
5725         if (SimplifyCondBranchToCondBranch(PBI, BI, DL))
5726           return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5727 
5728   // Look for diamond patterns.
5729   if (MergeCondStores)
5730     if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB))
5731       if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator()))
5732         if (PBI != BI && PBI->isConditional())
5733           if (mergeConditionalStores(PBI, BI))
5734             return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5735 
5736   return false;
5737 }
5738 
5739 /// Check if passing a value to an instruction will cause undefined behavior.
5740 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I) {
5741   Constant *C = dyn_cast<Constant>(V);
5742   if (!C)
5743     return false;
5744 
5745   if (I->use_empty())
5746     return false;
5747 
5748   if (C->isNullValue() || isa<UndefValue>(C)) {
5749     // Only look at the first use, avoid hurting compile time with long uselists
5750     User *Use = *I->user_begin();
5751 
5752     // Now make sure that there are no instructions in between that can alter
5753     // control flow (eg. calls)
5754     for (BasicBlock::iterator
5755              i = ++BasicBlock::iterator(I),
5756              UI = BasicBlock::iterator(dyn_cast<Instruction>(Use));
5757          i != UI; ++i)
5758       if (i == I->getParent()->end() || i->mayHaveSideEffects())
5759         return false;
5760 
5761     // Look through GEPs. A load from a GEP derived from NULL is still undefined
5762     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use))
5763       if (GEP->getPointerOperand() == I)
5764         return passingValueIsAlwaysUndefined(V, GEP);
5765 
5766     // Look through bitcasts.
5767     if (BitCastInst *BC = dyn_cast<BitCastInst>(Use))
5768       return passingValueIsAlwaysUndefined(V, BC);
5769 
5770     // Load from null is undefined.
5771     if (LoadInst *LI = dyn_cast<LoadInst>(Use))
5772       if (!LI->isVolatile())
5773         return LI->getPointerAddressSpace() == 0;
5774 
5775     // Store to null is undefined.
5776     if (StoreInst *SI = dyn_cast<StoreInst>(Use))
5777       if (!SI->isVolatile())
5778         return SI->getPointerAddressSpace() == 0 &&
5779                SI->getPointerOperand() == I;
5780 
5781     // A call to null is undefined.
5782     if (auto CS = CallSite(Use))
5783       return CS.getCalledValue() == I;
5784   }
5785   return false;
5786 }
5787 
5788 /// If BB has an incoming value that will always trigger undefined behavior
5789 /// (eg. null pointer dereference), remove the branch leading here.
5790 static bool removeUndefIntroducingPredecessor(BasicBlock *BB) {
5791   for (BasicBlock::iterator i = BB->begin();
5792        PHINode *PHI = dyn_cast<PHINode>(i); ++i)
5793     for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i)
5794       if (passingValueIsAlwaysUndefined(PHI->getIncomingValue(i), PHI)) {
5795         TerminatorInst *T = PHI->getIncomingBlock(i)->getTerminator();
5796         IRBuilder<> Builder(T);
5797         if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
5798           BB->removePredecessor(PHI->getIncomingBlock(i));
5799           // Turn uncoditional branches into unreachables and remove the dead
5800           // destination from conditional branches.
5801           if (BI->isUnconditional())
5802             Builder.CreateUnreachable();
5803           else
5804             Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1)
5805                                                        : BI->getSuccessor(0));
5806           BI->eraseFromParent();
5807           return true;
5808         }
5809         // TODO: SwitchInst.
5810       }
5811 
5812   return false;
5813 }
5814 
5815 bool SimplifyCFGOpt::run(BasicBlock *BB) {
5816   bool Changed = false;
5817 
5818   assert(BB && BB->getParent() && "Block not embedded in function!");
5819   assert(BB->getTerminator() && "Degenerate basic block encountered!");
5820 
5821   // Remove basic blocks that have no predecessors (except the entry block)...
5822   // or that just have themself as a predecessor.  These are unreachable.
5823   if ((pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) ||
5824       BB->getSinglePredecessor() == BB) {
5825     DEBUG(dbgs() << "Removing BB: \n" << *BB);
5826     DeleteDeadBlock(BB);
5827     return true;
5828   }
5829 
5830   // Check to see if we can constant propagate this terminator instruction
5831   // away...
5832   Changed |= ConstantFoldTerminator(BB, true);
5833 
5834   // Check for and eliminate duplicate PHI nodes in this block.
5835   Changed |= EliminateDuplicatePHINodes(BB);
5836 
5837   // Check for and remove branches that will always cause undefined behavior.
5838   Changed |= removeUndefIntroducingPredecessor(BB);
5839 
5840   // Merge basic blocks into their predecessor if there is only one distinct
5841   // pred, and if there is only one distinct successor of the predecessor, and
5842   // if there are no PHI nodes.
5843   //
5844   if (MergeBlockIntoPredecessor(BB))
5845     return true;
5846 
5847   IRBuilder<> Builder(BB);
5848 
5849   // If there is a trivial two-entry PHI node in this basic block, and we can
5850   // eliminate it, do so now.
5851   if (PHINode *PN = dyn_cast<PHINode>(BB->begin()))
5852     if (PN->getNumIncomingValues() == 2)
5853       Changed |= FoldTwoEntryPHINode(PN, TTI, DL);
5854 
5855   Builder.SetInsertPoint(BB->getTerminator());
5856   if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
5857     if (BI->isUnconditional()) {
5858       if (SimplifyUncondBranch(BI, Builder))
5859         return true;
5860     } else {
5861       if (SimplifyCondBranch(BI, Builder))
5862         return true;
5863     }
5864   } else if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
5865     if (SimplifyReturn(RI, Builder))
5866       return true;
5867   } else if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator())) {
5868     if (SimplifyResume(RI, Builder))
5869       return true;
5870   } else if (CleanupReturnInst *RI =
5871                  dyn_cast<CleanupReturnInst>(BB->getTerminator())) {
5872     if (SimplifyCleanupReturn(RI))
5873       return true;
5874   } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
5875     if (SimplifySwitch(SI, Builder))
5876       return true;
5877   } else if (UnreachableInst *UI =
5878                  dyn_cast<UnreachableInst>(BB->getTerminator())) {
5879     if (SimplifyUnreachable(UI))
5880       return true;
5881   } else if (IndirectBrInst *IBI =
5882                  dyn_cast<IndirectBrInst>(BB->getTerminator())) {
5883     if (SimplifyIndirectBr(IBI))
5884       return true;
5885   }
5886 
5887   return Changed;
5888 }
5889 
5890 /// This function is used to do simplification of a CFG.
5891 /// For example, it adjusts branches to branches to eliminate the extra hop,
5892 /// eliminates unreachable basic blocks, and does other "peephole" optimization
5893 /// of the CFG.  It returns true if a modification was made.
5894 ///
5895 bool llvm::SimplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI,
5896                        unsigned BonusInstThreshold, AssumptionCache *AC,
5897                        SmallPtrSetImpl<BasicBlock *> *LoopHeaders) {
5898   return SimplifyCFGOpt(TTI, BB->getModule()->getDataLayout(),
5899                         BonusInstThreshold, AC, LoopHeaders)
5900       .run(BB);
5901 }
5902