1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Peephole optimize the CFG. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/ADT/DenseMap.h" 15 #include "llvm/ADT/STLExtras.h" 16 #include "llvm/ADT/SetOperations.h" 17 #include "llvm/ADT/SetVector.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/Analysis/ConstantFolding.h" 22 #include "llvm/Analysis/EHPersonalities.h" 23 #include "llvm/Analysis/InstructionSimplify.h" 24 #include "llvm/Analysis/TargetTransformInfo.h" 25 #include "llvm/Analysis/ValueTracking.h" 26 #include "llvm/IR/CFG.h" 27 #include "llvm/IR/ConstantRange.h" 28 #include "llvm/IR/Constants.h" 29 #include "llvm/IR/DataLayout.h" 30 #include "llvm/IR/DerivedTypes.h" 31 #include "llvm/IR/GlobalVariable.h" 32 #include "llvm/IR/IRBuilder.h" 33 #include "llvm/IR/Instructions.h" 34 #include "llvm/IR/IntrinsicInst.h" 35 #include "llvm/IR/LLVMContext.h" 36 #include "llvm/IR/MDBuilder.h" 37 #include "llvm/IR/Metadata.h" 38 #include "llvm/IR/Module.h" 39 #include "llvm/IR/NoFolder.h" 40 #include "llvm/IR/Operator.h" 41 #include "llvm/IR/PatternMatch.h" 42 #include "llvm/IR/Type.h" 43 #include "llvm/Support/CommandLine.h" 44 #include "llvm/Support/Debug.h" 45 #include "llvm/Support/raw_ostream.h" 46 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 47 #include "llvm/Transforms/Utils/Local.h" 48 #include "llvm/Transforms/Utils/ValueMapper.h" 49 #include <algorithm> 50 #include <map> 51 #include <set> 52 using namespace llvm; 53 using namespace PatternMatch; 54 55 #define DEBUG_TYPE "simplifycfg" 56 57 // Chosen as 2 so as to be cheap, but still to have enough power to fold 58 // a select, so the "clamp" idiom (of a min followed by a max) will be caught. 59 // To catch this, we need to fold a compare and a select, hence '2' being the 60 // minimum reasonable default. 61 static cl::opt<unsigned> PHINodeFoldingThreshold( 62 "phi-node-folding-threshold", cl::Hidden, cl::init(2), 63 cl::desc( 64 "Control the amount of phi node folding to perform (default = 2)")); 65 66 static cl::opt<bool> DupRet( 67 "simplifycfg-dup-ret", cl::Hidden, cl::init(false), 68 cl::desc("Duplicate return instructions into unconditional branches")); 69 70 static cl::opt<bool> 71 SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true), 72 cl::desc("Sink common instructions down to the end block")); 73 74 static cl::opt<bool> HoistCondStores( 75 "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true), 76 cl::desc("Hoist conditional stores if an unconditional store precedes")); 77 78 static cl::opt<bool> MergeCondStores( 79 "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true), 80 cl::desc("Hoist conditional stores even if an unconditional store does not " 81 "precede - hoist multiple conditional stores into a single " 82 "predicated store")); 83 84 static cl::opt<bool> MergeCondStoresAggressively( 85 "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false), 86 cl::desc("When merging conditional stores, do so even if the resultant " 87 "basic blocks are unlikely to be if-converted as a result")); 88 89 static cl::opt<bool> SpeculateOneExpensiveInst( 90 "speculate-one-expensive-inst", cl::Hidden, cl::init(true), 91 cl::desc("Allow exactly one expensive instruction to be speculatively " 92 "executed")); 93 94 static cl::opt<unsigned> MaxSpeculationDepth( 95 "max-speculation-depth", cl::Hidden, cl::init(10), 96 cl::desc("Limit maximum recursion depth when calculating costs of " 97 "speculatively executed instructions")); 98 99 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps"); 100 STATISTIC(NumLinearMaps, 101 "Number of switch instructions turned into linear mapping"); 102 STATISTIC(NumLookupTables, 103 "Number of switch instructions turned into lookup tables"); 104 STATISTIC( 105 NumLookupTablesHoles, 106 "Number of switch instructions turned into lookup tables (holes checked)"); 107 STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares"); 108 STATISTIC(NumSinkCommons, 109 "Number of common instructions sunk down to the end block"); 110 STATISTIC(NumSpeculations, "Number of speculative executed instructions"); 111 112 namespace { 113 // The first field contains the value that the switch produces when a certain 114 // case group is selected, and the second field is a vector containing the 115 // cases composing the case group. 116 typedef SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2> 117 SwitchCaseResultVectorTy; 118 // The first field contains the phi node that generates a result of the switch 119 // and the second field contains the value generated for a certain case in the 120 // switch for that PHI. 121 typedef SmallVector<std::pair<PHINode *, Constant *>, 4> SwitchCaseResultsTy; 122 123 /// ValueEqualityComparisonCase - Represents a case of a switch. 124 struct ValueEqualityComparisonCase { 125 ConstantInt *Value; 126 BasicBlock *Dest; 127 128 ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest) 129 : Value(Value), Dest(Dest) {} 130 131 bool operator<(ValueEqualityComparisonCase RHS) const { 132 // Comparing pointers is ok as we only rely on the order for uniquing. 133 return Value < RHS.Value; 134 } 135 136 bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; } 137 }; 138 139 class SimplifyCFGOpt { 140 const TargetTransformInfo &TTI; 141 const DataLayout &DL; 142 unsigned BonusInstThreshold; 143 AssumptionCache *AC; 144 SmallPtrSetImpl<BasicBlock *> *LoopHeaders; 145 Value *isValueEqualityComparison(TerminatorInst *TI); 146 BasicBlock *GetValueEqualityComparisonCases( 147 TerminatorInst *TI, std::vector<ValueEqualityComparisonCase> &Cases); 148 bool SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI, 149 BasicBlock *Pred, 150 IRBuilder<> &Builder); 151 bool FoldValueComparisonIntoPredecessors(TerminatorInst *TI, 152 IRBuilder<> &Builder); 153 154 bool SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder); 155 bool SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder); 156 bool SimplifySingleResume(ResumeInst *RI); 157 bool SimplifyCommonResume(ResumeInst *RI); 158 bool SimplifyCleanupReturn(CleanupReturnInst *RI); 159 bool SimplifyUnreachable(UnreachableInst *UI); 160 bool SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder); 161 bool SimplifyIndirectBr(IndirectBrInst *IBI); 162 bool SimplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder); 163 bool SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder); 164 165 public: 166 SimplifyCFGOpt(const TargetTransformInfo &TTI, const DataLayout &DL, 167 unsigned BonusInstThreshold, AssumptionCache *AC, 168 SmallPtrSetImpl<BasicBlock *> *LoopHeaders) 169 : TTI(TTI), DL(DL), BonusInstThreshold(BonusInstThreshold), AC(AC), 170 LoopHeaders(LoopHeaders) {} 171 bool run(BasicBlock *BB); 172 }; 173 } 174 175 /// Return true if it is safe to merge these two 176 /// terminator instructions together. 177 static bool 178 SafeToMergeTerminators(TerminatorInst *SI1, TerminatorInst *SI2, 179 SmallSetVector<BasicBlock *, 4> *FailBlocks = nullptr) { 180 if (SI1 == SI2) 181 return false; // Can't merge with self! 182 183 // It is not safe to merge these two switch instructions if they have a common 184 // successor, and if that successor has a PHI node, and if *that* PHI node has 185 // conflicting incoming values from the two switch blocks. 186 BasicBlock *SI1BB = SI1->getParent(); 187 BasicBlock *SI2BB = SI2->getParent(); 188 189 SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB)); 190 bool Fail = false; 191 for (BasicBlock *Succ : successors(SI2BB)) 192 if (SI1Succs.count(Succ)) 193 for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) { 194 PHINode *PN = cast<PHINode>(BBI); 195 if (PN->getIncomingValueForBlock(SI1BB) != 196 PN->getIncomingValueForBlock(SI2BB)) { 197 if (FailBlocks) 198 FailBlocks->insert(Succ); 199 Fail = true; 200 } 201 } 202 203 return !Fail; 204 } 205 206 /// Return true if it is safe and profitable to merge these two terminator 207 /// instructions together, where SI1 is an unconditional branch. PhiNodes will 208 /// store all PHI nodes in common successors. 209 static bool 210 isProfitableToFoldUnconditional(BranchInst *SI1, BranchInst *SI2, 211 Instruction *Cond, 212 SmallVectorImpl<PHINode *> &PhiNodes) { 213 if (SI1 == SI2) 214 return false; // Can't merge with self! 215 assert(SI1->isUnconditional() && SI2->isConditional()); 216 217 // We fold the unconditional branch if we can easily update all PHI nodes in 218 // common successors: 219 // 1> We have a constant incoming value for the conditional branch; 220 // 2> We have "Cond" as the incoming value for the unconditional branch; 221 // 3> SI2->getCondition() and Cond have same operands. 222 CmpInst *Ci2 = dyn_cast<CmpInst>(SI2->getCondition()); 223 if (!Ci2) 224 return false; 225 if (!(Cond->getOperand(0) == Ci2->getOperand(0) && 226 Cond->getOperand(1) == Ci2->getOperand(1)) && 227 !(Cond->getOperand(0) == Ci2->getOperand(1) && 228 Cond->getOperand(1) == Ci2->getOperand(0))) 229 return false; 230 231 BasicBlock *SI1BB = SI1->getParent(); 232 BasicBlock *SI2BB = SI2->getParent(); 233 SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB)); 234 for (BasicBlock *Succ : successors(SI2BB)) 235 if (SI1Succs.count(Succ)) 236 for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) { 237 PHINode *PN = cast<PHINode>(BBI); 238 if (PN->getIncomingValueForBlock(SI1BB) != Cond || 239 !isa<ConstantInt>(PN->getIncomingValueForBlock(SI2BB))) 240 return false; 241 PhiNodes.push_back(PN); 242 } 243 return true; 244 } 245 246 /// Update PHI nodes in Succ to indicate that there will now be entries in it 247 /// from the 'NewPred' block. The values that will be flowing into the PHI nodes 248 /// will be the same as those coming in from ExistPred, an existing predecessor 249 /// of Succ. 250 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred, 251 BasicBlock *ExistPred) { 252 if (!isa<PHINode>(Succ->begin())) 253 return; // Quick exit if nothing to do 254 255 PHINode *PN; 256 for (BasicBlock::iterator I = Succ->begin(); (PN = dyn_cast<PHINode>(I)); ++I) 257 PN->addIncoming(PN->getIncomingValueForBlock(ExistPred), NewPred); 258 } 259 260 /// Compute an abstract "cost" of speculating the given instruction, 261 /// which is assumed to be safe to speculate. TCC_Free means cheap, 262 /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively 263 /// expensive. 264 static unsigned ComputeSpeculationCost(const User *I, 265 const TargetTransformInfo &TTI) { 266 assert(isSafeToSpeculativelyExecute(I) && 267 "Instruction is not safe to speculatively execute!"); 268 return TTI.getUserCost(I); 269 } 270 271 /// If we have a merge point of an "if condition" as accepted above, 272 /// return true if the specified value dominates the block. We 273 /// don't handle the true generality of domination here, just a special case 274 /// which works well enough for us. 275 /// 276 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to 277 /// see if V (which must be an instruction) and its recursive operands 278 /// that do not dominate BB have a combined cost lower than CostRemaining and 279 /// are non-trapping. If both are true, the instruction is inserted into the 280 /// set and true is returned. 281 /// 282 /// The cost for most non-trapping instructions is defined as 1 except for 283 /// Select whose cost is 2. 284 /// 285 /// After this function returns, CostRemaining is decreased by the cost of 286 /// V plus its non-dominating operands. If that cost is greater than 287 /// CostRemaining, false is returned and CostRemaining is undefined. 288 static bool DominatesMergePoint(Value *V, BasicBlock *BB, 289 SmallPtrSetImpl<Instruction *> *AggressiveInsts, 290 unsigned &CostRemaining, 291 const TargetTransformInfo &TTI, 292 unsigned Depth = 0) { 293 // It is possible to hit a zero-cost cycle (phi/gep instructions for example), 294 // so limit the recursion depth. 295 // TODO: While this recursion limit does prevent pathological behavior, it 296 // would be better to track visited instructions to avoid cycles. 297 if (Depth == MaxSpeculationDepth) 298 return false; 299 300 Instruction *I = dyn_cast<Instruction>(V); 301 if (!I) { 302 // Non-instructions all dominate instructions, but not all constantexprs 303 // can be executed unconditionally. 304 if (ConstantExpr *C = dyn_cast<ConstantExpr>(V)) 305 if (C->canTrap()) 306 return false; 307 return true; 308 } 309 BasicBlock *PBB = I->getParent(); 310 311 // We don't want to allow weird loops that might have the "if condition" in 312 // the bottom of this block. 313 if (PBB == BB) 314 return false; 315 316 // If this instruction is defined in a block that contains an unconditional 317 // branch to BB, then it must be in the 'conditional' part of the "if 318 // statement". If not, it definitely dominates the region. 319 BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator()); 320 if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB) 321 return true; 322 323 // If we aren't allowing aggressive promotion anymore, then don't consider 324 // instructions in the 'if region'. 325 if (!AggressiveInsts) 326 return false; 327 328 // If we have seen this instruction before, don't count it again. 329 if (AggressiveInsts->count(I)) 330 return true; 331 332 // Okay, it looks like the instruction IS in the "condition". Check to 333 // see if it's a cheap instruction to unconditionally compute, and if it 334 // only uses stuff defined outside of the condition. If so, hoist it out. 335 if (!isSafeToSpeculativelyExecute(I)) 336 return false; 337 338 unsigned Cost = ComputeSpeculationCost(I, TTI); 339 340 // Allow exactly one instruction to be speculated regardless of its cost 341 // (as long as it is safe to do so). 342 // This is intended to flatten the CFG even if the instruction is a division 343 // or other expensive operation. The speculation of an expensive instruction 344 // is expected to be undone in CodeGenPrepare if the speculation has not 345 // enabled further IR optimizations. 346 if (Cost > CostRemaining && 347 (!SpeculateOneExpensiveInst || !AggressiveInsts->empty() || Depth > 0)) 348 return false; 349 350 // Avoid unsigned wrap. 351 CostRemaining = (Cost > CostRemaining) ? 0 : CostRemaining - Cost; 352 353 // Okay, we can only really hoist these out if their operands do 354 // not take us over the cost threshold. 355 for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) 356 if (!DominatesMergePoint(*i, BB, AggressiveInsts, CostRemaining, TTI, 357 Depth + 1)) 358 return false; 359 // Okay, it's safe to do this! Remember this instruction. 360 AggressiveInsts->insert(I); 361 return true; 362 } 363 364 /// Extract ConstantInt from value, looking through IntToPtr 365 /// and PointerNullValue. Return NULL if value is not a constant int. 366 static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) { 367 // Normal constant int. 368 ConstantInt *CI = dyn_cast<ConstantInt>(V); 369 if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy()) 370 return CI; 371 372 // This is some kind of pointer constant. Turn it into a pointer-sized 373 // ConstantInt if possible. 374 IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType())); 375 376 // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*). 377 if (isa<ConstantPointerNull>(V)) 378 return ConstantInt::get(PtrTy, 0); 379 380 // IntToPtr const int. 381 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 382 if (CE->getOpcode() == Instruction::IntToPtr) 383 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) { 384 // The constant is very likely to have the right type already. 385 if (CI->getType() == PtrTy) 386 return CI; 387 else 388 return cast<ConstantInt>( 389 ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false)); 390 } 391 return nullptr; 392 } 393 394 namespace { 395 396 /// Given a chain of or (||) or and (&&) comparison of a value against a 397 /// constant, this will try to recover the information required for a switch 398 /// structure. 399 /// It will depth-first traverse the chain of comparison, seeking for patterns 400 /// like %a == 12 or %a < 4 and combine them to produce a set of integer 401 /// representing the different cases for the switch. 402 /// Note that if the chain is composed of '||' it will build the set of elements 403 /// that matches the comparisons (i.e. any of this value validate the chain) 404 /// while for a chain of '&&' it will build the set elements that make the test 405 /// fail. 406 struct ConstantComparesGatherer { 407 const DataLayout &DL; 408 Value *CompValue; /// Value found for the switch comparison 409 Value *Extra; /// Extra clause to be checked before the switch 410 SmallVector<ConstantInt *, 8> Vals; /// Set of integers to match in switch 411 unsigned UsedICmps; /// Number of comparisons matched in the and/or chain 412 413 /// Construct and compute the result for the comparison instruction Cond 414 ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL) 415 : DL(DL), CompValue(nullptr), Extra(nullptr), UsedICmps(0) { 416 gather(Cond); 417 } 418 419 /// Prevent copy 420 ConstantComparesGatherer(const ConstantComparesGatherer &) = delete; 421 ConstantComparesGatherer & 422 operator=(const ConstantComparesGatherer &) = delete; 423 424 private: 425 /// Try to set the current value used for the comparison, it succeeds only if 426 /// it wasn't set before or if the new value is the same as the old one 427 bool setValueOnce(Value *NewVal) { 428 if (CompValue && CompValue != NewVal) 429 return false; 430 CompValue = NewVal; 431 return (CompValue != nullptr); 432 } 433 434 /// Try to match Instruction "I" as a comparison against a constant and 435 /// populates the array Vals with the set of values that match (or do not 436 /// match depending on isEQ). 437 /// Return false on failure. On success, the Value the comparison matched 438 /// against is placed in CompValue. 439 /// If CompValue is already set, the function is expected to fail if a match 440 /// is found but the value compared to is different. 441 bool matchInstruction(Instruction *I, bool isEQ) { 442 // If this is an icmp against a constant, handle this as one of the cases. 443 ICmpInst *ICI; 444 ConstantInt *C; 445 if (!((ICI = dyn_cast<ICmpInst>(I)) && 446 (C = GetConstantInt(I->getOperand(1), DL)))) { 447 return false; 448 } 449 450 Value *RHSVal; 451 const APInt *RHSC; 452 453 // Pattern match a special case 454 // (x & ~2^z) == y --> x == y || x == y|2^z 455 // This undoes a transformation done by instcombine to fuse 2 compares. 456 if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE)) { 457 458 // It's a little bit hard to see why the following transformations are 459 // correct. Here is a CVC3 program to verify them for 64-bit values: 460 461 /* 462 ONE : BITVECTOR(64) = BVZEROEXTEND(0bin1, 63); 463 x : BITVECTOR(64); 464 y : BITVECTOR(64); 465 z : BITVECTOR(64); 466 mask : BITVECTOR(64) = BVSHL(ONE, z); 467 QUERY( (y & ~mask = y) => 468 ((x & ~mask = y) <=> (x = y OR x = (y | mask))) 469 ); 470 QUERY( (y | mask = y) => 471 ((x | mask = y) <=> (x = y OR x = (y & ~mask))) 472 ); 473 */ 474 475 // Please note that each pattern must be a dual implication (<--> or 476 // iff). One directional implication can create spurious matches. If the 477 // implication is only one-way, an unsatisfiable condition on the left 478 // side can imply a satisfiable condition on the right side. Dual 479 // implication ensures that satisfiable conditions are transformed to 480 // other satisfiable conditions and unsatisfiable conditions are 481 // transformed to other unsatisfiable conditions. 482 483 // Here is a concrete example of a unsatisfiable condition on the left 484 // implying a satisfiable condition on the right: 485 // 486 // mask = (1 << z) 487 // (x & ~mask) == y --> (x == y || x == (y | mask)) 488 // 489 // Substituting y = 3, z = 0 yields: 490 // (x & -2) == 3 --> (x == 3 || x == 2) 491 492 // Pattern match a special case: 493 /* 494 QUERY( (y & ~mask = y) => 495 ((x & ~mask = y) <=> (x = y OR x = (y | mask))) 496 ); 497 */ 498 if (match(ICI->getOperand(0), 499 m_And(m_Value(RHSVal), m_APInt(RHSC)))) { 500 APInt Mask = ~*RHSC; 501 if (Mask.isPowerOf2() && (C->getValue() & ~Mask) == C->getValue()) { 502 // If we already have a value for the switch, it has to match! 503 if (!setValueOnce(RHSVal)) 504 return false; 505 506 Vals.push_back(C); 507 Vals.push_back( 508 ConstantInt::get(C->getContext(), 509 C->getValue() | Mask)); 510 UsedICmps++; 511 return true; 512 } 513 } 514 515 // Pattern match a special case: 516 /* 517 QUERY( (y | mask = y) => 518 ((x | mask = y) <=> (x = y OR x = (y & ~mask))) 519 ); 520 */ 521 if (match(ICI->getOperand(0), 522 m_Or(m_Value(RHSVal), m_APInt(RHSC)))) { 523 APInt Mask = *RHSC; 524 if (Mask.isPowerOf2() && (C->getValue() | Mask) == C->getValue()) { 525 // If we already have a value for the switch, it has to match! 526 if (!setValueOnce(RHSVal)) 527 return false; 528 529 Vals.push_back(C); 530 Vals.push_back(ConstantInt::get(C->getContext(), 531 C->getValue() & ~Mask)); 532 UsedICmps++; 533 return true; 534 } 535 } 536 537 // If we already have a value for the switch, it has to match! 538 if (!setValueOnce(ICI->getOperand(0))) 539 return false; 540 541 UsedICmps++; 542 Vals.push_back(C); 543 return ICI->getOperand(0); 544 } 545 546 // If we have "x ult 3", for example, then we can add 0,1,2 to the set. 547 ConstantRange Span = ConstantRange::makeAllowedICmpRegion( 548 ICI->getPredicate(), C->getValue()); 549 550 // Shift the range if the compare is fed by an add. This is the range 551 // compare idiom as emitted by instcombine. 552 Value *CandidateVal = I->getOperand(0); 553 if (match(I->getOperand(0), m_Add(m_Value(RHSVal), m_APInt(RHSC)))) { 554 Span = Span.subtract(*RHSC); 555 CandidateVal = RHSVal; 556 } 557 558 // If this is an and/!= check, then we are looking to build the set of 559 // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into 560 // x != 0 && x != 1. 561 if (!isEQ) 562 Span = Span.inverse(); 563 564 // If there are a ton of values, we don't want to make a ginormous switch. 565 if (Span.getSetSize().ugt(8) || Span.isEmptySet()) { 566 return false; 567 } 568 569 // If we already have a value for the switch, it has to match! 570 if (!setValueOnce(CandidateVal)) 571 return false; 572 573 // Add all values from the range to the set 574 for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp) 575 Vals.push_back(ConstantInt::get(I->getContext(), Tmp)); 576 577 UsedICmps++; 578 return true; 579 } 580 581 /// Given a potentially 'or'd or 'and'd together collection of icmp 582 /// eq/ne/lt/gt instructions that compare a value against a constant, extract 583 /// the value being compared, and stick the list constants into the Vals 584 /// vector. 585 /// One "Extra" case is allowed to differ from the other. 586 void gather(Value *V) { 587 Instruction *I = dyn_cast<Instruction>(V); 588 bool isEQ = (I->getOpcode() == Instruction::Or); 589 590 // Keep a stack (SmallVector for efficiency) for depth-first traversal 591 SmallVector<Value *, 8> DFT; 592 SmallPtrSet<Value *, 8> Visited; 593 594 // Initialize 595 Visited.insert(V); 596 DFT.push_back(V); 597 598 while (!DFT.empty()) { 599 V = DFT.pop_back_val(); 600 601 if (Instruction *I = dyn_cast<Instruction>(V)) { 602 // If it is a || (or && depending on isEQ), process the operands. 603 if (I->getOpcode() == (isEQ ? Instruction::Or : Instruction::And)) { 604 if (Visited.insert(I->getOperand(1)).second) 605 DFT.push_back(I->getOperand(1)); 606 if (Visited.insert(I->getOperand(0)).second) 607 DFT.push_back(I->getOperand(0)); 608 continue; 609 } 610 611 // Try to match the current instruction 612 if (matchInstruction(I, isEQ)) 613 // Match succeed, continue the loop 614 continue; 615 } 616 617 // One element of the sequence of || (or &&) could not be match as a 618 // comparison against the same value as the others. 619 // We allow only one "Extra" case to be checked before the switch 620 if (!Extra) { 621 Extra = V; 622 continue; 623 } 624 // Failed to parse a proper sequence, abort now 625 CompValue = nullptr; 626 break; 627 } 628 } 629 }; 630 } 631 632 static void EraseTerminatorInstAndDCECond(TerminatorInst *TI) { 633 Instruction *Cond = nullptr; 634 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 635 Cond = dyn_cast<Instruction>(SI->getCondition()); 636 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 637 if (BI->isConditional()) 638 Cond = dyn_cast<Instruction>(BI->getCondition()); 639 } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) { 640 Cond = dyn_cast<Instruction>(IBI->getAddress()); 641 } 642 643 TI->eraseFromParent(); 644 if (Cond) 645 RecursivelyDeleteTriviallyDeadInstructions(Cond); 646 } 647 648 /// Return true if the specified terminator checks 649 /// to see if a value is equal to constant integer value. 650 Value *SimplifyCFGOpt::isValueEqualityComparison(TerminatorInst *TI) { 651 Value *CV = nullptr; 652 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 653 // Do not permit merging of large switch instructions into their 654 // predecessors unless there is only one predecessor. 655 if (SI->getNumSuccessors() * std::distance(pred_begin(SI->getParent()), 656 pred_end(SI->getParent())) <= 657 128) 658 CV = SI->getCondition(); 659 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) 660 if (BI->isConditional() && BI->getCondition()->hasOneUse()) 661 if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) { 662 if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL)) 663 CV = ICI->getOperand(0); 664 } 665 666 // Unwrap any lossless ptrtoint cast. 667 if (CV) { 668 if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) { 669 Value *Ptr = PTII->getPointerOperand(); 670 if (PTII->getType() == DL.getIntPtrType(Ptr->getType())) 671 CV = Ptr; 672 } 673 } 674 return CV; 675 } 676 677 /// Given a value comparison instruction, 678 /// decode all of the 'cases' that it represents and return the 'default' block. 679 BasicBlock *SimplifyCFGOpt::GetValueEqualityComparisonCases( 680 TerminatorInst *TI, std::vector<ValueEqualityComparisonCase> &Cases) { 681 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 682 Cases.reserve(SI->getNumCases()); 683 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); i != e; 684 ++i) 685 Cases.push_back( 686 ValueEqualityComparisonCase(i.getCaseValue(), i.getCaseSuccessor())); 687 return SI->getDefaultDest(); 688 } 689 690 BranchInst *BI = cast<BranchInst>(TI); 691 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 692 BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE); 693 Cases.push_back(ValueEqualityComparisonCase( 694 GetConstantInt(ICI->getOperand(1), DL), Succ)); 695 return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ); 696 } 697 698 /// Given a vector of bb/value pairs, remove any entries 699 /// in the list that match the specified block. 700 static void 701 EliminateBlockCases(BasicBlock *BB, 702 std::vector<ValueEqualityComparisonCase> &Cases) { 703 Cases.erase(std::remove(Cases.begin(), Cases.end(), BB), Cases.end()); 704 } 705 706 /// Return true if there are any keys in C1 that exist in C2 as well. 707 static bool ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1, 708 std::vector<ValueEqualityComparisonCase> &C2) { 709 std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2; 710 711 // Make V1 be smaller than V2. 712 if (V1->size() > V2->size()) 713 std::swap(V1, V2); 714 715 if (V1->size() == 0) 716 return false; 717 if (V1->size() == 1) { 718 // Just scan V2. 719 ConstantInt *TheVal = (*V1)[0].Value; 720 for (unsigned i = 0, e = V2->size(); i != e; ++i) 721 if (TheVal == (*V2)[i].Value) 722 return true; 723 } 724 725 // Otherwise, just sort both lists and compare element by element. 726 array_pod_sort(V1->begin(), V1->end()); 727 array_pod_sort(V2->begin(), V2->end()); 728 unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size(); 729 while (i1 != e1 && i2 != e2) { 730 if ((*V1)[i1].Value == (*V2)[i2].Value) 731 return true; 732 if ((*V1)[i1].Value < (*V2)[i2].Value) 733 ++i1; 734 else 735 ++i2; 736 } 737 return false; 738 } 739 740 /// If TI is known to be a terminator instruction and its block is known to 741 /// only have a single predecessor block, check to see if that predecessor is 742 /// also a value comparison with the same value, and if that comparison 743 /// determines the outcome of this comparison. If so, simplify TI. This does a 744 /// very limited form of jump threading. 745 bool SimplifyCFGOpt::SimplifyEqualityComparisonWithOnlyPredecessor( 746 TerminatorInst *TI, BasicBlock *Pred, IRBuilder<> &Builder) { 747 Value *PredVal = isValueEqualityComparison(Pred->getTerminator()); 748 if (!PredVal) 749 return false; // Not a value comparison in predecessor. 750 751 Value *ThisVal = isValueEqualityComparison(TI); 752 assert(ThisVal && "This isn't a value comparison!!"); 753 if (ThisVal != PredVal) 754 return false; // Different predicates. 755 756 // TODO: Preserve branch weight metadata, similarly to how 757 // FoldValueComparisonIntoPredecessors preserves it. 758 759 // Find out information about when control will move from Pred to TI's block. 760 std::vector<ValueEqualityComparisonCase> PredCases; 761 BasicBlock *PredDef = 762 GetValueEqualityComparisonCases(Pred->getTerminator(), PredCases); 763 EliminateBlockCases(PredDef, PredCases); // Remove default from cases. 764 765 // Find information about how control leaves this block. 766 std::vector<ValueEqualityComparisonCase> ThisCases; 767 BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases); 768 EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases. 769 770 // If TI's block is the default block from Pred's comparison, potentially 771 // simplify TI based on this knowledge. 772 if (PredDef == TI->getParent()) { 773 // If we are here, we know that the value is none of those cases listed in 774 // PredCases. If there are any cases in ThisCases that are in PredCases, we 775 // can simplify TI. 776 if (!ValuesOverlap(PredCases, ThisCases)) 777 return false; 778 779 if (isa<BranchInst>(TI)) { 780 // Okay, one of the successors of this condbr is dead. Convert it to a 781 // uncond br. 782 assert(ThisCases.size() == 1 && "Branch can only have one case!"); 783 // Insert the new branch. 784 Instruction *NI = Builder.CreateBr(ThisDef); 785 (void)NI; 786 787 // Remove PHI node entries for the dead edge. 788 ThisCases[0].Dest->removePredecessor(TI->getParent()); 789 790 DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 791 << "Through successor TI: " << *TI << "Leaving: " << *NI 792 << "\n"); 793 794 EraseTerminatorInstAndDCECond(TI); 795 return true; 796 } 797 798 SwitchInst *SI = cast<SwitchInst>(TI); 799 // Okay, TI has cases that are statically dead, prune them away. 800 SmallPtrSet<Constant *, 16> DeadCases; 801 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 802 DeadCases.insert(PredCases[i].Value); 803 804 DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 805 << "Through successor TI: " << *TI); 806 807 // Collect branch weights into a vector. 808 SmallVector<uint32_t, 8> Weights; 809 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof); 810 bool HasWeight = MD && (MD->getNumOperands() == 2 + SI->getNumCases()); 811 if (HasWeight) 812 for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e; 813 ++MD_i) { 814 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i)); 815 Weights.push_back(CI->getValue().getZExtValue()); 816 } 817 for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) { 818 --i; 819 if (DeadCases.count(i.getCaseValue())) { 820 if (HasWeight) { 821 std::swap(Weights[i.getCaseIndex() + 1], Weights.back()); 822 Weights.pop_back(); 823 } 824 i.getCaseSuccessor()->removePredecessor(TI->getParent()); 825 SI->removeCase(i); 826 } 827 } 828 if (HasWeight && Weights.size() >= 2) 829 SI->setMetadata(LLVMContext::MD_prof, 830 MDBuilder(SI->getParent()->getContext()) 831 .createBranchWeights(Weights)); 832 833 DEBUG(dbgs() << "Leaving: " << *TI << "\n"); 834 return true; 835 } 836 837 // Otherwise, TI's block must correspond to some matched value. Find out 838 // which value (or set of values) this is. 839 ConstantInt *TIV = nullptr; 840 BasicBlock *TIBB = TI->getParent(); 841 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 842 if (PredCases[i].Dest == TIBB) { 843 if (TIV) 844 return false; // Cannot handle multiple values coming to this block. 845 TIV = PredCases[i].Value; 846 } 847 assert(TIV && "No edge from pred to succ?"); 848 849 // Okay, we found the one constant that our value can be if we get into TI's 850 // BB. Find out which successor will unconditionally be branched to. 851 BasicBlock *TheRealDest = nullptr; 852 for (unsigned i = 0, e = ThisCases.size(); i != e; ++i) 853 if (ThisCases[i].Value == TIV) { 854 TheRealDest = ThisCases[i].Dest; 855 break; 856 } 857 858 // If not handled by any explicit cases, it is handled by the default case. 859 if (!TheRealDest) 860 TheRealDest = ThisDef; 861 862 // Remove PHI node entries for dead edges. 863 BasicBlock *CheckEdge = TheRealDest; 864 for (BasicBlock *Succ : successors(TIBB)) 865 if (Succ != CheckEdge) 866 Succ->removePredecessor(TIBB); 867 else 868 CheckEdge = nullptr; 869 870 // Insert the new branch. 871 Instruction *NI = Builder.CreateBr(TheRealDest); 872 (void)NI; 873 874 DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 875 << "Through successor TI: " << *TI << "Leaving: " << *NI 876 << "\n"); 877 878 EraseTerminatorInstAndDCECond(TI); 879 return true; 880 } 881 882 namespace { 883 /// This class implements a stable ordering of constant 884 /// integers that does not depend on their address. This is important for 885 /// applications that sort ConstantInt's to ensure uniqueness. 886 struct ConstantIntOrdering { 887 bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const { 888 return LHS->getValue().ult(RHS->getValue()); 889 } 890 }; 891 } 892 893 static int ConstantIntSortPredicate(ConstantInt *const *P1, 894 ConstantInt *const *P2) { 895 const ConstantInt *LHS = *P1; 896 const ConstantInt *RHS = *P2; 897 if (LHS == RHS) 898 return 0; 899 return LHS->getValue().ult(RHS->getValue()) ? 1 : -1; 900 } 901 902 static inline bool HasBranchWeights(const Instruction *I) { 903 MDNode *ProfMD = I->getMetadata(LLVMContext::MD_prof); 904 if (ProfMD && ProfMD->getOperand(0)) 905 if (MDString *MDS = dyn_cast<MDString>(ProfMD->getOperand(0))) 906 return MDS->getString().equals("branch_weights"); 907 908 return false; 909 } 910 911 /// Get Weights of a given TerminatorInst, the default weight is at the front 912 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight 913 /// metadata. 914 static void GetBranchWeights(TerminatorInst *TI, 915 SmallVectorImpl<uint64_t> &Weights) { 916 MDNode *MD = TI->getMetadata(LLVMContext::MD_prof); 917 assert(MD); 918 for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) { 919 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i)); 920 Weights.push_back(CI->getValue().getZExtValue()); 921 } 922 923 // If TI is a conditional eq, the default case is the false case, 924 // and the corresponding branch-weight data is at index 2. We swap the 925 // default weight to be the first entry. 926 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 927 assert(Weights.size() == 2); 928 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 929 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 930 std::swap(Weights.front(), Weights.back()); 931 } 932 } 933 934 /// Keep halving the weights until all can fit in uint32_t. 935 static void FitWeights(MutableArrayRef<uint64_t> Weights) { 936 uint64_t Max = *std::max_element(Weights.begin(), Weights.end()); 937 if (Max > UINT_MAX) { 938 unsigned Offset = 32 - countLeadingZeros(Max); 939 for (uint64_t &I : Weights) 940 I >>= Offset; 941 } 942 } 943 944 /// The specified terminator is a value equality comparison instruction 945 /// (either a switch or a branch on "X == c"). 946 /// See if any of the predecessors of the terminator block are value comparisons 947 /// on the same value. If so, and if safe to do so, fold them together. 948 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(TerminatorInst *TI, 949 IRBuilder<> &Builder) { 950 BasicBlock *BB = TI->getParent(); 951 Value *CV = isValueEqualityComparison(TI); // CondVal 952 assert(CV && "Not a comparison?"); 953 bool Changed = false; 954 955 SmallVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB)); 956 while (!Preds.empty()) { 957 BasicBlock *Pred = Preds.pop_back_val(); 958 959 // See if the predecessor is a comparison with the same value. 960 TerminatorInst *PTI = Pred->getTerminator(); 961 Value *PCV = isValueEqualityComparison(PTI); // PredCondVal 962 963 if (PCV == CV && TI != PTI) { 964 SmallSetVector<BasicBlock*, 4> FailBlocks; 965 if (!SafeToMergeTerminators(TI, PTI, &FailBlocks)) { 966 for (auto *Succ : FailBlocks) { 967 std::vector<BasicBlock*> Blocks = { TI->getParent() }; 968 if (!SplitBlockPredecessors(Succ, Blocks, ".fold.split")) 969 return false; 970 } 971 } 972 973 // Figure out which 'cases' to copy from SI to PSI. 974 std::vector<ValueEqualityComparisonCase> BBCases; 975 BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases); 976 977 std::vector<ValueEqualityComparisonCase> PredCases; 978 BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases); 979 980 // Based on whether the default edge from PTI goes to BB or not, fill in 981 // PredCases and PredDefault with the new switch cases we would like to 982 // build. 983 SmallVector<BasicBlock *, 8> NewSuccessors; 984 985 // Update the branch weight metadata along the way 986 SmallVector<uint64_t, 8> Weights; 987 bool PredHasWeights = HasBranchWeights(PTI); 988 bool SuccHasWeights = HasBranchWeights(TI); 989 990 if (PredHasWeights) { 991 GetBranchWeights(PTI, Weights); 992 // branch-weight metadata is inconsistent here. 993 if (Weights.size() != 1 + PredCases.size()) 994 PredHasWeights = SuccHasWeights = false; 995 } else if (SuccHasWeights) 996 // If there are no predecessor weights but there are successor weights, 997 // populate Weights with 1, which will later be scaled to the sum of 998 // successor's weights 999 Weights.assign(1 + PredCases.size(), 1); 1000 1001 SmallVector<uint64_t, 8> SuccWeights; 1002 if (SuccHasWeights) { 1003 GetBranchWeights(TI, SuccWeights); 1004 // branch-weight metadata is inconsistent here. 1005 if (SuccWeights.size() != 1 + BBCases.size()) 1006 PredHasWeights = SuccHasWeights = false; 1007 } else if (PredHasWeights) 1008 SuccWeights.assign(1 + BBCases.size(), 1); 1009 1010 if (PredDefault == BB) { 1011 // If this is the default destination from PTI, only the edges in TI 1012 // that don't occur in PTI, or that branch to BB will be activated. 1013 std::set<ConstantInt *, ConstantIntOrdering> PTIHandled; 1014 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 1015 if (PredCases[i].Dest != BB) 1016 PTIHandled.insert(PredCases[i].Value); 1017 else { 1018 // The default destination is BB, we don't need explicit targets. 1019 std::swap(PredCases[i], PredCases.back()); 1020 1021 if (PredHasWeights || SuccHasWeights) { 1022 // Increase weight for the default case. 1023 Weights[0] += Weights[i + 1]; 1024 std::swap(Weights[i + 1], Weights.back()); 1025 Weights.pop_back(); 1026 } 1027 1028 PredCases.pop_back(); 1029 --i; 1030 --e; 1031 } 1032 1033 // Reconstruct the new switch statement we will be building. 1034 if (PredDefault != BBDefault) { 1035 PredDefault->removePredecessor(Pred); 1036 PredDefault = BBDefault; 1037 NewSuccessors.push_back(BBDefault); 1038 } 1039 1040 unsigned CasesFromPred = Weights.size(); 1041 uint64_t ValidTotalSuccWeight = 0; 1042 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 1043 if (!PTIHandled.count(BBCases[i].Value) && 1044 BBCases[i].Dest != BBDefault) { 1045 PredCases.push_back(BBCases[i]); 1046 NewSuccessors.push_back(BBCases[i].Dest); 1047 if (SuccHasWeights || PredHasWeights) { 1048 // The default weight is at index 0, so weight for the ith case 1049 // should be at index i+1. Scale the cases from successor by 1050 // PredDefaultWeight (Weights[0]). 1051 Weights.push_back(Weights[0] * SuccWeights[i + 1]); 1052 ValidTotalSuccWeight += SuccWeights[i + 1]; 1053 } 1054 } 1055 1056 if (SuccHasWeights || PredHasWeights) { 1057 ValidTotalSuccWeight += SuccWeights[0]; 1058 // Scale the cases from predecessor by ValidTotalSuccWeight. 1059 for (unsigned i = 1; i < CasesFromPred; ++i) 1060 Weights[i] *= ValidTotalSuccWeight; 1061 // Scale the default weight by SuccDefaultWeight (SuccWeights[0]). 1062 Weights[0] *= SuccWeights[0]; 1063 } 1064 } else { 1065 // If this is not the default destination from PSI, only the edges 1066 // in SI that occur in PSI with a destination of BB will be 1067 // activated. 1068 std::set<ConstantInt *, ConstantIntOrdering> PTIHandled; 1069 std::map<ConstantInt *, uint64_t> WeightsForHandled; 1070 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 1071 if (PredCases[i].Dest == BB) { 1072 PTIHandled.insert(PredCases[i].Value); 1073 1074 if (PredHasWeights || SuccHasWeights) { 1075 WeightsForHandled[PredCases[i].Value] = Weights[i + 1]; 1076 std::swap(Weights[i + 1], Weights.back()); 1077 Weights.pop_back(); 1078 } 1079 1080 std::swap(PredCases[i], PredCases.back()); 1081 PredCases.pop_back(); 1082 --i; 1083 --e; 1084 } 1085 1086 // Okay, now we know which constants were sent to BB from the 1087 // predecessor. Figure out where they will all go now. 1088 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 1089 if (PTIHandled.count(BBCases[i].Value)) { 1090 // If this is one we are capable of getting... 1091 if (PredHasWeights || SuccHasWeights) 1092 Weights.push_back(WeightsForHandled[BBCases[i].Value]); 1093 PredCases.push_back(BBCases[i]); 1094 NewSuccessors.push_back(BBCases[i].Dest); 1095 PTIHandled.erase( 1096 BBCases[i].Value); // This constant is taken care of 1097 } 1098 1099 // If there are any constants vectored to BB that TI doesn't handle, 1100 // they must go to the default destination of TI. 1101 for (ConstantInt *I : PTIHandled) { 1102 if (PredHasWeights || SuccHasWeights) 1103 Weights.push_back(WeightsForHandled[I]); 1104 PredCases.push_back(ValueEqualityComparisonCase(I, BBDefault)); 1105 NewSuccessors.push_back(BBDefault); 1106 } 1107 } 1108 1109 // Okay, at this point, we know which new successor Pred will get. Make 1110 // sure we update the number of entries in the PHI nodes for these 1111 // successors. 1112 for (BasicBlock *NewSuccessor : NewSuccessors) 1113 AddPredecessorToBlock(NewSuccessor, Pred, BB); 1114 1115 Builder.SetInsertPoint(PTI); 1116 // Convert pointer to int before we switch. 1117 if (CV->getType()->isPointerTy()) { 1118 CV = Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()), 1119 "magicptr"); 1120 } 1121 1122 // Now that the successors are updated, create the new Switch instruction. 1123 SwitchInst *NewSI = 1124 Builder.CreateSwitch(CV, PredDefault, PredCases.size()); 1125 NewSI->setDebugLoc(PTI->getDebugLoc()); 1126 for (ValueEqualityComparisonCase &V : PredCases) 1127 NewSI->addCase(V.Value, V.Dest); 1128 1129 if (PredHasWeights || SuccHasWeights) { 1130 // Halve the weights if any of them cannot fit in an uint32_t 1131 FitWeights(Weights); 1132 1133 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 1134 1135 NewSI->setMetadata( 1136 LLVMContext::MD_prof, 1137 MDBuilder(BB->getContext()).createBranchWeights(MDWeights)); 1138 } 1139 1140 EraseTerminatorInstAndDCECond(PTI); 1141 1142 // Okay, last check. If BB is still a successor of PSI, then we must 1143 // have an infinite loop case. If so, add an infinitely looping block 1144 // to handle the case to preserve the behavior of the code. 1145 BasicBlock *InfLoopBlock = nullptr; 1146 for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i) 1147 if (NewSI->getSuccessor(i) == BB) { 1148 if (!InfLoopBlock) { 1149 // Insert it at the end of the function, because it's either code, 1150 // or it won't matter if it's hot. :) 1151 InfLoopBlock = BasicBlock::Create(BB->getContext(), "infloop", 1152 BB->getParent()); 1153 BranchInst::Create(InfLoopBlock, InfLoopBlock); 1154 } 1155 NewSI->setSuccessor(i, InfLoopBlock); 1156 } 1157 1158 Changed = true; 1159 } 1160 } 1161 return Changed; 1162 } 1163 1164 // If we would need to insert a select that uses the value of this invoke 1165 // (comments in HoistThenElseCodeToIf explain why we would need to do this), we 1166 // can't hoist the invoke, as there is nowhere to put the select in this case. 1167 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2, 1168 Instruction *I1, Instruction *I2) { 1169 for (BasicBlock *Succ : successors(BB1)) { 1170 PHINode *PN; 1171 for (BasicBlock::iterator BBI = Succ->begin(); 1172 (PN = dyn_cast<PHINode>(BBI)); ++BBI) { 1173 Value *BB1V = PN->getIncomingValueForBlock(BB1); 1174 Value *BB2V = PN->getIncomingValueForBlock(BB2); 1175 if (BB1V != BB2V && (BB1V == I1 || BB2V == I2)) { 1176 return false; 1177 } 1178 } 1179 } 1180 return true; 1181 } 1182 1183 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I); 1184 1185 /// Given a conditional branch that goes to BB1 and BB2, hoist any common code 1186 /// in the two blocks up into the branch block. The caller of this function 1187 /// guarantees that BI's block dominates BB1 and BB2. 1188 static bool HoistThenElseCodeToIf(BranchInst *BI, 1189 const TargetTransformInfo &TTI) { 1190 // This does very trivial matching, with limited scanning, to find identical 1191 // instructions in the two blocks. In particular, we don't want to get into 1192 // O(M*N) situations here where M and N are the sizes of BB1 and BB2. As 1193 // such, we currently just scan for obviously identical instructions in an 1194 // identical order. 1195 BasicBlock *BB1 = BI->getSuccessor(0); // The true destination. 1196 BasicBlock *BB2 = BI->getSuccessor(1); // The false destination 1197 1198 BasicBlock::iterator BB1_Itr = BB1->begin(); 1199 BasicBlock::iterator BB2_Itr = BB2->begin(); 1200 1201 Instruction *I1 = &*BB1_Itr++, *I2 = &*BB2_Itr++; 1202 // Skip debug info if it is not identical. 1203 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1204 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1205 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1206 while (isa<DbgInfoIntrinsic>(I1)) 1207 I1 = &*BB1_Itr++; 1208 while (isa<DbgInfoIntrinsic>(I2)) 1209 I2 = &*BB2_Itr++; 1210 } 1211 if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) || 1212 (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))) 1213 return false; 1214 1215 BasicBlock *BIParent = BI->getParent(); 1216 1217 bool Changed = false; 1218 do { 1219 // If we are hoisting the terminator instruction, don't move one (making a 1220 // broken BB), instead clone it, and remove BI. 1221 if (isa<TerminatorInst>(I1)) 1222 goto HoistTerminator; 1223 1224 if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2)) 1225 return Changed; 1226 1227 // For a normal instruction, we just move one to right before the branch, 1228 // then replace all uses of the other with the first. Finally, we remove 1229 // the now redundant second instruction. 1230 BIParent->getInstList().splice(BI->getIterator(), BB1->getInstList(), I1); 1231 if (!I2->use_empty()) 1232 I2->replaceAllUsesWith(I1); 1233 I1->andIRFlags(I2); 1234 unsigned KnownIDs[] = {LLVMContext::MD_tbaa, 1235 LLVMContext::MD_range, 1236 LLVMContext::MD_fpmath, 1237 LLVMContext::MD_invariant_load, 1238 LLVMContext::MD_nonnull, 1239 LLVMContext::MD_invariant_group, 1240 LLVMContext::MD_align, 1241 LLVMContext::MD_dereferenceable, 1242 LLVMContext::MD_dereferenceable_or_null, 1243 LLVMContext::MD_mem_parallel_loop_access}; 1244 combineMetadata(I1, I2, KnownIDs); 1245 I2->eraseFromParent(); 1246 Changed = true; 1247 1248 I1 = &*BB1_Itr++; 1249 I2 = &*BB2_Itr++; 1250 // Skip debug info if it is not identical. 1251 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1252 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1253 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1254 while (isa<DbgInfoIntrinsic>(I1)) 1255 I1 = &*BB1_Itr++; 1256 while (isa<DbgInfoIntrinsic>(I2)) 1257 I2 = &*BB2_Itr++; 1258 } 1259 } while (I1->isIdenticalToWhenDefined(I2)); 1260 1261 return true; 1262 1263 HoistTerminator: 1264 // It may not be possible to hoist an invoke. 1265 if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) 1266 return Changed; 1267 1268 for (BasicBlock *Succ : successors(BB1)) { 1269 PHINode *PN; 1270 for (BasicBlock::iterator BBI = Succ->begin(); 1271 (PN = dyn_cast<PHINode>(BBI)); ++BBI) { 1272 Value *BB1V = PN->getIncomingValueForBlock(BB1); 1273 Value *BB2V = PN->getIncomingValueForBlock(BB2); 1274 if (BB1V == BB2V) 1275 continue; 1276 1277 // Check for passingValueIsAlwaysUndefined here because we would rather 1278 // eliminate undefined control flow then converting it to a select. 1279 if (passingValueIsAlwaysUndefined(BB1V, PN) || 1280 passingValueIsAlwaysUndefined(BB2V, PN)) 1281 return Changed; 1282 1283 if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V)) 1284 return Changed; 1285 if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V)) 1286 return Changed; 1287 } 1288 } 1289 1290 // Okay, it is safe to hoist the terminator. 1291 Instruction *NT = I1->clone(); 1292 BIParent->getInstList().insert(BI->getIterator(), NT); 1293 if (!NT->getType()->isVoidTy()) { 1294 I1->replaceAllUsesWith(NT); 1295 I2->replaceAllUsesWith(NT); 1296 NT->takeName(I1); 1297 } 1298 1299 IRBuilder<NoFolder> Builder(NT); 1300 // Hoisting one of the terminators from our successor is a great thing. 1301 // Unfortunately, the successors of the if/else blocks may have PHI nodes in 1302 // them. If they do, all PHI entries for BB1/BB2 must agree for all PHI 1303 // nodes, so we insert select instruction to compute the final result. 1304 std::map<std::pair<Value *, Value *>, SelectInst *> InsertedSelects; 1305 for (BasicBlock *Succ : successors(BB1)) { 1306 PHINode *PN; 1307 for (BasicBlock::iterator BBI = Succ->begin(); 1308 (PN = dyn_cast<PHINode>(BBI)); ++BBI) { 1309 Value *BB1V = PN->getIncomingValueForBlock(BB1); 1310 Value *BB2V = PN->getIncomingValueForBlock(BB2); 1311 if (BB1V == BB2V) 1312 continue; 1313 1314 // These values do not agree. Insert a select instruction before NT 1315 // that determines the right value. 1316 SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)]; 1317 if (!SI) 1318 SI = cast<SelectInst>( 1319 Builder.CreateSelect(BI->getCondition(), BB1V, BB2V, 1320 BB1V->getName() + "." + BB2V->getName(), BI)); 1321 1322 // Make the PHI node use the select for all incoming values for BB1/BB2 1323 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 1324 if (PN->getIncomingBlock(i) == BB1 || PN->getIncomingBlock(i) == BB2) 1325 PN->setIncomingValue(i, SI); 1326 } 1327 } 1328 1329 // Update any PHI nodes in our new successors. 1330 for (BasicBlock *Succ : successors(BB1)) 1331 AddPredecessorToBlock(Succ, BIParent, BB1); 1332 1333 EraseTerminatorInstAndDCECond(BI); 1334 return true; 1335 } 1336 1337 // Is it legal to place a variable in operand \c OpIdx of \c I? 1338 // FIXME: This should be promoted to Instruction. 1339 static bool canReplaceOperandWithVariable(const Instruction *I, 1340 unsigned OpIdx) { 1341 // We can't have a PHI with a metadata type. 1342 if (I->getOperand(OpIdx)->getType()->isMetadataTy()) 1343 return false; 1344 1345 // Early exit. 1346 if (!isa<Constant>(I->getOperand(OpIdx))) 1347 return true; 1348 1349 switch (I->getOpcode()) { 1350 default: 1351 return true; 1352 case Instruction::Call: 1353 case Instruction::Invoke: 1354 // FIXME: many arithmetic intrinsics have no issue taking a 1355 // variable, however it's hard to distingish these from 1356 // specials such as @llvm.frameaddress that require a constant. 1357 return !isa<IntrinsicInst>(I); 1358 case Instruction::ShuffleVector: 1359 // Shufflevector masks are constant. 1360 return OpIdx != 2; 1361 case Instruction::ExtractValue: 1362 case Instruction::InsertValue: 1363 // All operands apart from the first are constant. 1364 return OpIdx == 0; 1365 case Instruction::Alloca: 1366 return false; 1367 case Instruction::GetElementPtr: 1368 if (OpIdx == 0) 1369 return true; 1370 gep_type_iterator It = std::next(gep_type_begin(I), OpIdx - 1); 1371 return !It->isStructTy(); 1372 } 1373 } 1374 1375 // All instructions in Insts belong to different blocks that all unconditionally 1376 // branch to a common successor. Analyze each instruction and return true if it 1377 // would be possible to sink them into their successor, creating one common 1378 // instruction instead. For every value that would be required to be provided by 1379 // PHI node (because an operand varies in each input block), add to PHIOperands. 1380 static bool canSinkInstructions( 1381 ArrayRef<Instruction *> Insts, 1382 DenseMap<Instruction *, SmallVector<Value *, 4>> &PHIOperands) { 1383 // Prune out obviously bad instructions to move. Any non-store instruction 1384 // must have exactly one use, and we check later that use is by a single, 1385 // common PHI instruction in the successor. 1386 for (auto *I : Insts) { 1387 // These instructions may change or break semantics if moved. 1388 if (isa<PHINode>(I) || I->isEHPad() || isa<AllocaInst>(I) || 1389 I->getType()->isTokenTy()) 1390 return false; 1391 // Everything must have only one use too, apart from stores which 1392 // have no uses. 1393 if (!isa<StoreInst>(I) && !I->hasOneUse()) 1394 return false; 1395 } 1396 1397 const Instruction *I0 = Insts.front(); 1398 for (auto *I : Insts) 1399 if (!I->isSameOperationAs(I0)) 1400 return false; 1401 1402 // All instructions in Insts are known to be the same opcode. If they aren't 1403 // stores, check the only user of each is a PHI or in the same block as the 1404 // instruction, because if a user is in the same block as an instruction 1405 // we're contemplating sinking, it must already be determined to be sinkable. 1406 if (!isa<StoreInst>(I0)) { 1407 auto *PNUse = dyn_cast<PHINode>(*I0->user_begin()); 1408 auto *Succ = I0->getParent()->getTerminator()->getSuccessor(0); 1409 if (!all_of(Insts, [&PNUse,&Succ](const Instruction *I) -> bool { 1410 auto *U = cast<Instruction>(*I->user_begin()); 1411 return (PNUse && 1412 PNUse->getParent() == Succ && 1413 PNUse->getIncomingValueForBlock(I->getParent()) == I) || 1414 U->getParent() == I->getParent(); 1415 })) 1416 return false; 1417 } 1418 1419 for (unsigned OI = 0, OE = I0->getNumOperands(); OI != OE; ++OI) { 1420 if (I0->getOperand(OI)->getType()->isTokenTy()) 1421 // Don't touch any operand of token type. 1422 return false; 1423 auto SameAsI0 = [&I0, OI](const Instruction *I) { 1424 assert(I->getNumOperands() == I0->getNumOperands()); 1425 return I->getOperand(OI) == I0->getOperand(OI); 1426 }; 1427 if (!all_of(Insts, SameAsI0)) { 1428 if (!canReplaceOperandWithVariable(I0, OI)) 1429 // We can't create a PHI from this GEP. 1430 return false; 1431 // Don't create indirect calls! The called value is the final operand. 1432 if ((isa<CallInst>(I0) || isa<InvokeInst>(I0)) && OI == OE - 1) { 1433 // FIXME: if the call was *already* indirect, we should do this. 1434 return false; 1435 } 1436 // Because SROA can't handle speculating stores of selects, try not 1437 // to sink loads or stores of allocas when we'd have to create a PHI for 1438 // the address operand. 1439 // FIXME: This is a workaround for a deficiency in SROA - see 1440 // https://llvm.org/bugs/show_bug.cgi?id=30188 1441 if (OI == 1 && isa<StoreInst>(I0) && 1442 any_of(Insts, [](const Instruction *I) { 1443 return isa<AllocaInst>(I->getOperand(1)); 1444 })) 1445 return false; 1446 if (OI == 0 && isa<LoadInst>(I0) && 1447 any_of(Insts, [](const Instruction *I) { 1448 return isa<AllocaInst>(I->getOperand(0)); 1449 })) 1450 return false; 1451 for (auto *I : Insts) 1452 PHIOperands[I].push_back(I->getOperand(OI)); 1453 } 1454 } 1455 return true; 1456 } 1457 1458 // Assuming canSinkLastInstruction(Blocks) has returned true, sink the last 1459 // instruction of every block in Blocks to their common successor, commoning 1460 // into one instruction. 1461 static bool sinkLastInstruction(ArrayRef<BasicBlock*> Blocks) { 1462 auto *BBEnd = Blocks[0]->getTerminator()->getSuccessor(0); 1463 1464 // canSinkLastInstruction returning true guarantees that every block has at 1465 // least one non-terminator instruction. 1466 SmallVector<Instruction*,4> Insts; 1467 for (auto *BB : Blocks) 1468 Insts.push_back(BB->getTerminator()->getPrevNode()); 1469 1470 // The only checking we need to do now is that all users of all instructions 1471 // are the same PHI node. canSinkLastInstruction should have checked this but 1472 // it is slightly over-aggressive - it gets confused by commutative instructions 1473 // so double-check it here. 1474 Instruction *I0 = Insts.front(); 1475 if (!isa<StoreInst>(I0)) { 1476 auto *PNUse = dyn_cast<PHINode>(*I0->user_begin()); 1477 if (!all_of(Insts, [&PNUse](const Instruction *I) -> bool { 1478 auto *U = cast<Instruction>(*I->user_begin()); 1479 return U == PNUse; 1480 })) 1481 return false; 1482 } 1483 1484 // We don't need to do any more checking here; canSinkLastInstruction should 1485 // have done it all for us. 1486 SmallVector<Value*, 4> NewOperands; 1487 for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) { 1488 // This check is different to that in canSinkLastInstruction. There, we 1489 // cared about the global view once simplifycfg (and instcombine) have 1490 // completed - it takes into account PHIs that become trivially 1491 // simplifiable. However here we need a more local view; if an operand 1492 // differs we create a PHI and rely on instcombine to clean up the very 1493 // small mess we may make. 1494 bool NeedPHI = any_of(Insts, [&I0, O](const Instruction *I) { 1495 return I->getOperand(O) != I0->getOperand(O); 1496 }); 1497 if (!NeedPHI) { 1498 NewOperands.push_back(I0->getOperand(O)); 1499 continue; 1500 } 1501 1502 // Create a new PHI in the successor block and populate it. 1503 auto *Op = I0->getOperand(O); 1504 assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!"); 1505 auto *PN = PHINode::Create(Op->getType(), Insts.size(), 1506 Op->getName() + ".sink", &BBEnd->front()); 1507 for (auto *I : Insts) 1508 PN->addIncoming(I->getOperand(O), I->getParent()); 1509 NewOperands.push_back(PN); 1510 } 1511 1512 // Arbitrarily use I0 as the new "common" instruction; remap its operands 1513 // and move it to the start of the successor block. 1514 for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) 1515 I0->getOperandUse(O).set(NewOperands[O]); 1516 I0->moveBefore(&*BBEnd->getFirstInsertionPt()); 1517 1518 // Update metadata. 1519 for (auto *I : Insts) 1520 if (I != I0) 1521 combineMetadataForCSE(I0, I); 1522 1523 if (!isa<StoreInst>(I0)) { 1524 // canSinkLastInstruction checked that all instructions were used by 1525 // one and only one PHI node. Find that now, RAUW it to our common 1526 // instruction and nuke it. 1527 assert(I0->hasOneUse()); 1528 auto *PN = cast<PHINode>(*I0->user_begin()); 1529 PN->replaceAllUsesWith(I0); 1530 PN->eraseFromParent(); 1531 } 1532 1533 // Finally nuke all instructions apart from the common instruction. 1534 for (auto *I : Insts) 1535 if (I != I0) 1536 I->eraseFromParent(); 1537 1538 return true; 1539 } 1540 1541 namespace { 1542 // LockstepReverseIterator - Iterates through instructions 1543 // in a set of blocks in reverse order from the first non-terminator. 1544 // For example (assume all blocks have size n): 1545 // LockstepReverseIterator I([B1, B2, B3]); 1546 // *I-- = [B1[n], B2[n], B3[n]]; 1547 // *I-- = [B1[n-1], B2[n-1], B3[n-1]]; 1548 // *I-- = [B1[n-2], B2[n-2], B3[n-2]]; 1549 // ... 1550 class LockstepReverseIterator { 1551 ArrayRef<BasicBlock*> Blocks; 1552 SmallVector<Instruction*,4> Insts; 1553 bool Fail; 1554 public: 1555 LockstepReverseIterator(ArrayRef<BasicBlock*> Blocks) : 1556 Blocks(Blocks) { 1557 reset(); 1558 } 1559 1560 void reset() { 1561 Fail = false; 1562 Insts.clear(); 1563 for (auto *BB : Blocks) { 1564 if (BB->size() <= 1) { 1565 // Block wasn't big enough 1566 Fail = true; 1567 return; 1568 } 1569 Insts.push_back(BB->getTerminator()->getPrevNode()); 1570 } 1571 } 1572 1573 bool isValid() const { 1574 return !Fail; 1575 } 1576 1577 void operator -- () { 1578 if (Fail) 1579 return; 1580 for (auto *&Inst : Insts) { 1581 if (Inst == &Inst->getParent()->front()) { 1582 Fail = true; 1583 return; 1584 } 1585 Inst = Inst->getPrevNode(); 1586 } 1587 } 1588 1589 ArrayRef<Instruction*> operator * () const { 1590 return Insts; 1591 } 1592 }; 1593 } 1594 1595 /// Given an unconditional branch that goes to BBEnd, 1596 /// check whether BBEnd has only two predecessors and the other predecessor 1597 /// ends with an unconditional branch. If it is true, sink any common code 1598 /// in the two predecessors to BBEnd. 1599 static bool SinkThenElseCodeToEnd(BranchInst *BI1) { 1600 assert(BI1->isUnconditional()); 1601 BasicBlock *BBEnd = BI1->getSuccessor(0); 1602 1603 // We support two situations: 1604 // (1) all incoming arcs are unconditional 1605 // (2) one incoming arc is conditional 1606 // 1607 // (2) is very common in switch defaults and 1608 // else-if patterns; 1609 // 1610 // if (a) f(1); 1611 // else if (b) f(2); 1612 // 1613 // produces: 1614 // 1615 // [if] 1616 // / \ 1617 // [f(1)] [if] 1618 // | | \ 1619 // | | \ 1620 // | [f(2)]| 1621 // \ | / 1622 // [ end ] 1623 // 1624 // [end] has two unconditional predecessor arcs and one conditional. The 1625 // conditional refers to the implicit empty 'else' arc. This conditional 1626 // arc can also be caused by an empty default block in a switch. 1627 // 1628 // In this case, we attempt to sink code from all *unconditional* arcs. 1629 // If we can sink instructions from these arcs (determined during the scan 1630 // phase below) we insert a common successor for all unconditional arcs and 1631 // connect that to [end], to enable sinking: 1632 // 1633 // [if] 1634 // / \ 1635 // [x(1)] [if] 1636 // | | \ 1637 // | | \ 1638 // | [x(2)] | 1639 // \ / | 1640 // [sink.split] | 1641 // \ / 1642 // [ end ] 1643 // 1644 SmallVector<BasicBlock*,4> UnconditionalPreds; 1645 Instruction *Cond = nullptr; 1646 for (auto *B : predecessors(BBEnd)) { 1647 auto *T = B->getTerminator(); 1648 if (isa<BranchInst>(T) && cast<BranchInst>(T)->isUnconditional()) 1649 UnconditionalPreds.push_back(B); 1650 else if ((isa<BranchInst>(T) || isa<SwitchInst>(T)) && !Cond) 1651 Cond = T; 1652 else 1653 return false; 1654 } 1655 if (UnconditionalPreds.size() < 2) 1656 return false; 1657 1658 bool Changed = false; 1659 // We take a two-step approach to tail sinking. First we scan from the end of 1660 // each block upwards in lockstep. If the n'th instruction from the end of each 1661 // block can be sunk, those instructions are added to ValuesToSink and we 1662 // carry on. If we can sink an instruction but need to PHI-merge some operands 1663 // (because they're not identical in each instruction) we add these to 1664 // PHIOperands. 1665 unsigned ScanIdx = 0; 1666 SmallPtrSet<Value*,4> InstructionsToSink; 1667 DenseMap<Instruction*, SmallVector<Value*,4>> PHIOperands; 1668 LockstepReverseIterator LRI(UnconditionalPreds); 1669 while (LRI.isValid() && 1670 canSinkInstructions(*LRI, PHIOperands)) { 1671 DEBUG(dbgs() << "SINK: instruction can be sunk: " << *(*LRI)[0] << "\n"); 1672 InstructionsToSink.insert((*LRI).begin(), (*LRI).end()); 1673 ++ScanIdx; 1674 --LRI; 1675 } 1676 1677 auto ProfitableToSinkLastInstruction = [&]() { 1678 LRI.reset(); 1679 unsigned NumPHIdValues = 0; 1680 for (auto *I : *LRI) 1681 for (auto *V : PHIOperands[I]) 1682 if (InstructionsToSink.count(V) == 0) 1683 ++NumPHIdValues; 1684 DEBUG(dbgs() << "SINK: #phid values: " << NumPHIdValues << "\n"); 1685 unsigned NumPHIInsts = NumPHIdValues / UnconditionalPreds.size(); 1686 if ((NumPHIdValues % UnconditionalPreds.size()) != 0) 1687 NumPHIInsts++; 1688 1689 return NumPHIInsts <= 1; 1690 }; 1691 1692 if (ScanIdx > 0 && Cond) { 1693 // Check if we would actually sink anything first! 1694 if (!ProfitableToSinkLastInstruction()) 1695 return false; 1696 1697 DEBUG(dbgs() << "SINK: Splitting edge\n"); 1698 // We have a conditional edge and we're going to sink some instructions. 1699 // Insert a new block postdominating all blocks we're going to sink from. 1700 if (!SplitBlockPredecessors(BI1->getSuccessor(0), UnconditionalPreds, 1701 ".sink.split")) 1702 // Edges couldn't be split. 1703 return false; 1704 Changed = true; 1705 } 1706 1707 // Now that we've analyzed all potential sinking candidates, perform the 1708 // actual sink. We iteratively sink the last non-terminator of the source 1709 // blocks into their common successor unless doing so would require too 1710 // many PHI instructions to be generated (currently only one PHI is allowed 1711 // per sunk instruction). 1712 // 1713 // We can use InstructionsToSink to discount values needing PHI-merging that will 1714 // actually be sunk in a later iteration. This allows us to be more 1715 // aggressive in what we sink. This does allow a false positive where we 1716 // sink presuming a later value will also be sunk, but stop half way through 1717 // and never actually sink it which means we produce more PHIs than intended. 1718 // This is unlikely in practice though. 1719 for (unsigned SinkIdx = 0; SinkIdx != ScanIdx; ++SinkIdx) { 1720 DEBUG(dbgs() << "SINK: Sink: " 1721 << *UnconditionalPreds[0]->getTerminator()->getPrevNode() 1722 << "\n"); 1723 1724 // Because we've sunk every instruction in turn, the current instruction to 1725 // sink is always at index 0. 1726 if (!ProfitableToSinkLastInstruction()) { 1727 // Too many PHIs would be created. 1728 DEBUG(dbgs() << "SINK: stopping here, too many PHIs would be created!\n"); 1729 break; 1730 } 1731 1732 if (!sinkLastInstruction(UnconditionalPreds)) 1733 return Changed; 1734 NumSinkCommons++; 1735 Changed = true; 1736 } 1737 return Changed; 1738 } 1739 1740 /// \brief Determine if we can hoist sink a sole store instruction out of a 1741 /// conditional block. 1742 /// 1743 /// We are looking for code like the following: 1744 /// BrBB: 1745 /// store i32 %add, i32* %arrayidx2 1746 /// ... // No other stores or function calls (we could be calling a memory 1747 /// ... // function). 1748 /// %cmp = icmp ult %x, %y 1749 /// br i1 %cmp, label %EndBB, label %ThenBB 1750 /// ThenBB: 1751 /// store i32 %add5, i32* %arrayidx2 1752 /// br label EndBB 1753 /// EndBB: 1754 /// ... 1755 /// We are going to transform this into: 1756 /// BrBB: 1757 /// store i32 %add, i32* %arrayidx2 1758 /// ... // 1759 /// %cmp = icmp ult %x, %y 1760 /// %add.add5 = select i1 %cmp, i32 %add, %add5 1761 /// store i32 %add.add5, i32* %arrayidx2 1762 /// ... 1763 /// 1764 /// \return The pointer to the value of the previous store if the store can be 1765 /// hoisted into the predecessor block. 0 otherwise. 1766 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB, 1767 BasicBlock *StoreBB, BasicBlock *EndBB) { 1768 StoreInst *StoreToHoist = dyn_cast<StoreInst>(I); 1769 if (!StoreToHoist) 1770 return nullptr; 1771 1772 // Volatile or atomic. 1773 if (!StoreToHoist->isSimple()) 1774 return nullptr; 1775 1776 Value *StorePtr = StoreToHoist->getPointerOperand(); 1777 1778 // Look for a store to the same pointer in BrBB. 1779 unsigned MaxNumInstToLookAt = 9; 1780 for (Instruction &CurI : reverse(*BrBB)) { 1781 if (!MaxNumInstToLookAt) 1782 break; 1783 // Skip debug info. 1784 if (isa<DbgInfoIntrinsic>(CurI)) 1785 continue; 1786 --MaxNumInstToLookAt; 1787 1788 // Could be calling an instruction that affects memory like free(). 1789 if (CurI.mayHaveSideEffects() && !isa<StoreInst>(CurI)) 1790 return nullptr; 1791 1792 if (auto *SI = dyn_cast<StoreInst>(&CurI)) { 1793 // Found the previous store make sure it stores to the same location. 1794 if (SI->getPointerOperand() == StorePtr) 1795 // Found the previous store, return its value operand. 1796 return SI->getValueOperand(); 1797 return nullptr; // Unknown store. 1798 } 1799 } 1800 1801 return nullptr; 1802 } 1803 1804 /// \brief Speculate a conditional basic block flattening the CFG. 1805 /// 1806 /// Note that this is a very risky transform currently. Speculating 1807 /// instructions like this is most often not desirable. Instead, there is an MI 1808 /// pass which can do it with full awareness of the resource constraints. 1809 /// However, some cases are "obvious" and we should do directly. An example of 1810 /// this is speculating a single, reasonably cheap instruction. 1811 /// 1812 /// There is only one distinct advantage to flattening the CFG at the IR level: 1813 /// it makes very common but simplistic optimizations such as are common in 1814 /// instcombine and the DAG combiner more powerful by removing CFG edges and 1815 /// modeling their effects with easier to reason about SSA value graphs. 1816 /// 1817 /// 1818 /// An illustration of this transform is turning this IR: 1819 /// \code 1820 /// BB: 1821 /// %cmp = icmp ult %x, %y 1822 /// br i1 %cmp, label %EndBB, label %ThenBB 1823 /// ThenBB: 1824 /// %sub = sub %x, %y 1825 /// br label BB2 1826 /// EndBB: 1827 /// %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ] 1828 /// ... 1829 /// \endcode 1830 /// 1831 /// Into this IR: 1832 /// \code 1833 /// BB: 1834 /// %cmp = icmp ult %x, %y 1835 /// %sub = sub %x, %y 1836 /// %cond = select i1 %cmp, 0, %sub 1837 /// ... 1838 /// \endcode 1839 /// 1840 /// \returns true if the conditional block is removed. 1841 static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB, 1842 const TargetTransformInfo &TTI) { 1843 // Be conservative for now. FP select instruction can often be expensive. 1844 Value *BrCond = BI->getCondition(); 1845 if (isa<FCmpInst>(BrCond)) 1846 return false; 1847 1848 BasicBlock *BB = BI->getParent(); 1849 BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0); 1850 1851 // If ThenBB is actually on the false edge of the conditional branch, remember 1852 // to swap the select operands later. 1853 bool Invert = false; 1854 if (ThenBB != BI->getSuccessor(0)) { 1855 assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?"); 1856 Invert = true; 1857 } 1858 assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block"); 1859 1860 // Keep a count of how many times instructions are used within CondBB when 1861 // they are candidates for sinking into CondBB. Specifically: 1862 // - They are defined in BB, and 1863 // - They have no side effects, and 1864 // - All of their uses are in CondBB. 1865 SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts; 1866 1867 unsigned SpeculationCost = 0; 1868 Value *SpeculatedStoreValue = nullptr; 1869 StoreInst *SpeculatedStore = nullptr; 1870 for (BasicBlock::iterator BBI = ThenBB->begin(), 1871 BBE = std::prev(ThenBB->end()); 1872 BBI != BBE; ++BBI) { 1873 Instruction *I = &*BBI; 1874 // Skip debug info. 1875 if (isa<DbgInfoIntrinsic>(I)) 1876 continue; 1877 1878 // Only speculatively execute a single instruction (not counting the 1879 // terminator) for now. 1880 ++SpeculationCost; 1881 if (SpeculationCost > 1) 1882 return false; 1883 1884 // Don't hoist the instruction if it's unsafe or expensive. 1885 if (!isSafeToSpeculativelyExecute(I) && 1886 !(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore( 1887 I, BB, ThenBB, EndBB)))) 1888 return false; 1889 if (!SpeculatedStoreValue && 1890 ComputeSpeculationCost(I, TTI) > 1891 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic) 1892 return false; 1893 1894 // Store the store speculation candidate. 1895 if (SpeculatedStoreValue) 1896 SpeculatedStore = cast<StoreInst>(I); 1897 1898 // Do not hoist the instruction if any of its operands are defined but not 1899 // used in BB. The transformation will prevent the operand from 1900 // being sunk into the use block. 1901 for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) { 1902 Instruction *OpI = dyn_cast<Instruction>(*i); 1903 if (!OpI || OpI->getParent() != BB || OpI->mayHaveSideEffects()) 1904 continue; // Not a candidate for sinking. 1905 1906 ++SinkCandidateUseCounts[OpI]; 1907 } 1908 } 1909 1910 // Consider any sink candidates which are only used in CondBB as costs for 1911 // speculation. Note, while we iterate over a DenseMap here, we are summing 1912 // and so iteration order isn't significant. 1913 for (SmallDenseMap<Instruction *, unsigned, 4>::iterator 1914 I = SinkCandidateUseCounts.begin(), 1915 E = SinkCandidateUseCounts.end(); 1916 I != E; ++I) 1917 if (I->first->getNumUses() == I->second) { 1918 ++SpeculationCost; 1919 if (SpeculationCost > 1) 1920 return false; 1921 } 1922 1923 // Check that the PHI nodes can be converted to selects. 1924 bool HaveRewritablePHIs = false; 1925 for (BasicBlock::iterator I = EndBB->begin(); 1926 PHINode *PN = dyn_cast<PHINode>(I); ++I) { 1927 Value *OrigV = PN->getIncomingValueForBlock(BB); 1928 Value *ThenV = PN->getIncomingValueForBlock(ThenBB); 1929 1930 // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf. 1931 // Skip PHIs which are trivial. 1932 if (ThenV == OrigV) 1933 continue; 1934 1935 // Don't convert to selects if we could remove undefined behavior instead. 1936 if (passingValueIsAlwaysUndefined(OrigV, PN) || 1937 passingValueIsAlwaysUndefined(ThenV, PN)) 1938 return false; 1939 1940 HaveRewritablePHIs = true; 1941 ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV); 1942 ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV); 1943 if (!OrigCE && !ThenCE) 1944 continue; // Known safe and cheap. 1945 1946 if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE)) || 1947 (OrigCE && !isSafeToSpeculativelyExecute(OrigCE))) 1948 return false; 1949 unsigned OrigCost = OrigCE ? ComputeSpeculationCost(OrigCE, TTI) : 0; 1950 unsigned ThenCost = ThenCE ? ComputeSpeculationCost(ThenCE, TTI) : 0; 1951 unsigned MaxCost = 1952 2 * PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 1953 if (OrigCost + ThenCost > MaxCost) 1954 return false; 1955 1956 // Account for the cost of an unfolded ConstantExpr which could end up 1957 // getting expanded into Instructions. 1958 // FIXME: This doesn't account for how many operations are combined in the 1959 // constant expression. 1960 ++SpeculationCost; 1961 if (SpeculationCost > 1) 1962 return false; 1963 } 1964 1965 // If there are no PHIs to process, bail early. This helps ensure idempotence 1966 // as well. 1967 if (!HaveRewritablePHIs && !(HoistCondStores && SpeculatedStoreValue)) 1968 return false; 1969 1970 // If we get here, we can hoist the instruction and if-convert. 1971 DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";); 1972 1973 // Insert a select of the value of the speculated store. 1974 if (SpeculatedStoreValue) { 1975 IRBuilder<NoFolder> Builder(BI); 1976 Value *TrueV = SpeculatedStore->getValueOperand(); 1977 Value *FalseV = SpeculatedStoreValue; 1978 if (Invert) 1979 std::swap(TrueV, FalseV); 1980 Value *S = Builder.CreateSelect( 1981 BrCond, TrueV, FalseV, TrueV->getName() + "." + FalseV->getName(), BI); 1982 SpeculatedStore->setOperand(0, S); 1983 } 1984 1985 // Metadata can be dependent on the condition we are hoisting above. 1986 // Conservatively strip all metadata on the instruction. 1987 for (auto &I : *ThenBB) 1988 I.dropUnknownNonDebugMetadata(); 1989 1990 // Hoist the instructions. 1991 BB->getInstList().splice(BI->getIterator(), ThenBB->getInstList(), 1992 ThenBB->begin(), std::prev(ThenBB->end())); 1993 1994 // Insert selects and rewrite the PHI operands. 1995 IRBuilder<NoFolder> Builder(BI); 1996 for (BasicBlock::iterator I = EndBB->begin(); 1997 PHINode *PN = dyn_cast<PHINode>(I); ++I) { 1998 unsigned OrigI = PN->getBasicBlockIndex(BB); 1999 unsigned ThenI = PN->getBasicBlockIndex(ThenBB); 2000 Value *OrigV = PN->getIncomingValue(OrigI); 2001 Value *ThenV = PN->getIncomingValue(ThenI); 2002 2003 // Skip PHIs which are trivial. 2004 if (OrigV == ThenV) 2005 continue; 2006 2007 // Create a select whose true value is the speculatively executed value and 2008 // false value is the preexisting value. Swap them if the branch 2009 // destinations were inverted. 2010 Value *TrueV = ThenV, *FalseV = OrigV; 2011 if (Invert) 2012 std::swap(TrueV, FalseV); 2013 Value *V = Builder.CreateSelect( 2014 BrCond, TrueV, FalseV, TrueV->getName() + "." + FalseV->getName(), BI); 2015 PN->setIncomingValue(OrigI, V); 2016 PN->setIncomingValue(ThenI, V); 2017 } 2018 2019 ++NumSpeculations; 2020 return true; 2021 } 2022 2023 /// Return true if we can thread a branch across this block. 2024 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) { 2025 BranchInst *BI = cast<BranchInst>(BB->getTerminator()); 2026 unsigned Size = 0; 2027 2028 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) { 2029 if (isa<DbgInfoIntrinsic>(BBI)) 2030 continue; 2031 if (Size > 10) 2032 return false; // Don't clone large BB's. 2033 ++Size; 2034 2035 // We can only support instructions that do not define values that are 2036 // live outside of the current basic block. 2037 for (User *U : BBI->users()) { 2038 Instruction *UI = cast<Instruction>(U); 2039 if (UI->getParent() != BB || isa<PHINode>(UI)) 2040 return false; 2041 } 2042 2043 // Looks ok, continue checking. 2044 } 2045 2046 return true; 2047 } 2048 2049 /// If we have a conditional branch on a PHI node value that is defined in the 2050 /// same block as the branch and if any PHI entries are constants, thread edges 2051 /// corresponding to that entry to be branches to their ultimate destination. 2052 static bool FoldCondBranchOnPHI(BranchInst *BI, const DataLayout &DL) { 2053 BasicBlock *BB = BI->getParent(); 2054 PHINode *PN = dyn_cast<PHINode>(BI->getCondition()); 2055 // NOTE: we currently cannot transform this case if the PHI node is used 2056 // outside of the block. 2057 if (!PN || PN->getParent() != BB || !PN->hasOneUse()) 2058 return false; 2059 2060 // Degenerate case of a single entry PHI. 2061 if (PN->getNumIncomingValues() == 1) { 2062 FoldSingleEntryPHINodes(PN->getParent()); 2063 return true; 2064 } 2065 2066 // Now we know that this block has multiple preds and two succs. 2067 if (!BlockIsSimpleEnoughToThreadThrough(BB)) 2068 return false; 2069 2070 // Can't fold blocks that contain noduplicate or convergent calls. 2071 if (any_of(*BB, [](const Instruction &I) { 2072 const CallInst *CI = dyn_cast<CallInst>(&I); 2073 return CI && (CI->cannotDuplicate() || CI->isConvergent()); 2074 })) 2075 return false; 2076 2077 // Okay, this is a simple enough basic block. See if any phi values are 2078 // constants. 2079 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 2080 ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i)); 2081 if (!CB || !CB->getType()->isIntegerTy(1)) 2082 continue; 2083 2084 // Okay, we now know that all edges from PredBB should be revectored to 2085 // branch to RealDest. 2086 BasicBlock *PredBB = PN->getIncomingBlock(i); 2087 BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue()); 2088 2089 if (RealDest == BB) 2090 continue; // Skip self loops. 2091 // Skip if the predecessor's terminator is an indirect branch. 2092 if (isa<IndirectBrInst>(PredBB->getTerminator())) 2093 continue; 2094 2095 // The dest block might have PHI nodes, other predecessors and other 2096 // difficult cases. Instead of being smart about this, just insert a new 2097 // block that jumps to the destination block, effectively splitting 2098 // the edge we are about to create. 2099 BasicBlock *EdgeBB = 2100 BasicBlock::Create(BB->getContext(), RealDest->getName() + ".critedge", 2101 RealDest->getParent(), RealDest); 2102 BranchInst::Create(RealDest, EdgeBB); 2103 2104 // Update PHI nodes. 2105 AddPredecessorToBlock(RealDest, EdgeBB, BB); 2106 2107 // BB may have instructions that are being threaded over. Clone these 2108 // instructions into EdgeBB. We know that there will be no uses of the 2109 // cloned instructions outside of EdgeBB. 2110 BasicBlock::iterator InsertPt = EdgeBB->begin(); 2111 DenseMap<Value *, Value *> TranslateMap; // Track translated values. 2112 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) { 2113 if (PHINode *PN = dyn_cast<PHINode>(BBI)) { 2114 TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB); 2115 continue; 2116 } 2117 // Clone the instruction. 2118 Instruction *N = BBI->clone(); 2119 if (BBI->hasName()) 2120 N->setName(BBI->getName() + ".c"); 2121 2122 // Update operands due to translation. 2123 for (User::op_iterator i = N->op_begin(), e = N->op_end(); i != e; ++i) { 2124 DenseMap<Value *, Value *>::iterator PI = TranslateMap.find(*i); 2125 if (PI != TranslateMap.end()) 2126 *i = PI->second; 2127 } 2128 2129 // Check for trivial simplification. 2130 if (Value *V = SimplifyInstruction(N, DL)) { 2131 if (!BBI->use_empty()) 2132 TranslateMap[&*BBI] = V; 2133 if (!N->mayHaveSideEffects()) { 2134 delete N; // Instruction folded away, don't need actual inst 2135 N = nullptr; 2136 } 2137 } else { 2138 if (!BBI->use_empty()) 2139 TranslateMap[&*BBI] = N; 2140 } 2141 // Insert the new instruction into its new home. 2142 if (N) 2143 EdgeBB->getInstList().insert(InsertPt, N); 2144 } 2145 2146 // Loop over all of the edges from PredBB to BB, changing them to branch 2147 // to EdgeBB instead. 2148 TerminatorInst *PredBBTI = PredBB->getTerminator(); 2149 for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i) 2150 if (PredBBTI->getSuccessor(i) == BB) { 2151 BB->removePredecessor(PredBB); 2152 PredBBTI->setSuccessor(i, EdgeBB); 2153 } 2154 2155 // Recurse, simplifying any other constants. 2156 return FoldCondBranchOnPHI(BI, DL) | true; 2157 } 2158 2159 return false; 2160 } 2161 2162 /// Given a BB that starts with the specified two-entry PHI node, 2163 /// see if we can eliminate it. 2164 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI, 2165 const DataLayout &DL) { 2166 // Ok, this is a two entry PHI node. Check to see if this is a simple "if 2167 // statement", which has a very simple dominance structure. Basically, we 2168 // are trying to find the condition that is being branched on, which 2169 // subsequently causes this merge to happen. We really want control 2170 // dependence information for this check, but simplifycfg can't keep it up 2171 // to date, and this catches most of the cases we care about anyway. 2172 BasicBlock *BB = PN->getParent(); 2173 BasicBlock *IfTrue, *IfFalse; 2174 Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse); 2175 if (!IfCond || 2176 // Don't bother if the branch will be constant folded trivially. 2177 isa<ConstantInt>(IfCond)) 2178 return false; 2179 2180 // Okay, we found that we can merge this two-entry phi node into a select. 2181 // Doing so would require us to fold *all* two entry phi nodes in this block. 2182 // At some point this becomes non-profitable (particularly if the target 2183 // doesn't support cmov's). Only do this transformation if there are two or 2184 // fewer PHI nodes in this block. 2185 unsigned NumPhis = 0; 2186 for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I) 2187 if (NumPhis > 2) 2188 return false; 2189 2190 // Loop over the PHI's seeing if we can promote them all to select 2191 // instructions. While we are at it, keep track of the instructions 2192 // that need to be moved to the dominating block. 2193 SmallPtrSet<Instruction *, 4> AggressiveInsts; 2194 unsigned MaxCostVal0 = PHINodeFoldingThreshold, 2195 MaxCostVal1 = PHINodeFoldingThreshold; 2196 MaxCostVal0 *= TargetTransformInfo::TCC_Basic; 2197 MaxCostVal1 *= TargetTransformInfo::TCC_Basic; 2198 2199 for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) { 2200 PHINode *PN = cast<PHINode>(II++); 2201 if (Value *V = SimplifyInstruction(PN, DL)) { 2202 PN->replaceAllUsesWith(V); 2203 PN->eraseFromParent(); 2204 continue; 2205 } 2206 2207 if (!DominatesMergePoint(PN->getIncomingValue(0), BB, &AggressiveInsts, 2208 MaxCostVal0, TTI) || 2209 !DominatesMergePoint(PN->getIncomingValue(1), BB, &AggressiveInsts, 2210 MaxCostVal1, TTI)) 2211 return false; 2212 } 2213 2214 // If we folded the first phi, PN dangles at this point. Refresh it. If 2215 // we ran out of PHIs then we simplified them all. 2216 PN = dyn_cast<PHINode>(BB->begin()); 2217 if (!PN) 2218 return true; 2219 2220 // Don't fold i1 branches on PHIs which contain binary operators. These can 2221 // often be turned into switches and other things. 2222 if (PN->getType()->isIntegerTy(1) && 2223 (isa<BinaryOperator>(PN->getIncomingValue(0)) || 2224 isa<BinaryOperator>(PN->getIncomingValue(1)) || 2225 isa<BinaryOperator>(IfCond))) 2226 return false; 2227 2228 // If all PHI nodes are promotable, check to make sure that all instructions 2229 // in the predecessor blocks can be promoted as well. If not, we won't be able 2230 // to get rid of the control flow, so it's not worth promoting to select 2231 // instructions. 2232 BasicBlock *DomBlock = nullptr; 2233 BasicBlock *IfBlock1 = PN->getIncomingBlock(0); 2234 BasicBlock *IfBlock2 = PN->getIncomingBlock(1); 2235 if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) { 2236 IfBlock1 = nullptr; 2237 } else { 2238 DomBlock = *pred_begin(IfBlock1); 2239 for (BasicBlock::iterator I = IfBlock1->begin(); !isa<TerminatorInst>(I); 2240 ++I) 2241 if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) { 2242 // This is not an aggressive instruction that we can promote. 2243 // Because of this, we won't be able to get rid of the control flow, so 2244 // the xform is not worth it. 2245 return false; 2246 } 2247 } 2248 2249 if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) { 2250 IfBlock2 = nullptr; 2251 } else { 2252 DomBlock = *pred_begin(IfBlock2); 2253 for (BasicBlock::iterator I = IfBlock2->begin(); !isa<TerminatorInst>(I); 2254 ++I) 2255 if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) { 2256 // This is not an aggressive instruction that we can promote. 2257 // Because of this, we won't be able to get rid of the control flow, so 2258 // the xform is not worth it. 2259 return false; 2260 } 2261 } 2262 2263 DEBUG(dbgs() << "FOUND IF CONDITION! " << *IfCond << " T: " 2264 << IfTrue->getName() << " F: " << IfFalse->getName() << "\n"); 2265 2266 // If we can still promote the PHI nodes after this gauntlet of tests, 2267 // do all of the PHI's now. 2268 Instruction *InsertPt = DomBlock->getTerminator(); 2269 IRBuilder<NoFolder> Builder(InsertPt); 2270 2271 // Move all 'aggressive' instructions, which are defined in the 2272 // conditional parts of the if's up to the dominating block. 2273 if (IfBlock1) { 2274 for (auto &I : *IfBlock1) 2275 I.dropUnknownNonDebugMetadata(); 2276 DomBlock->getInstList().splice(InsertPt->getIterator(), 2277 IfBlock1->getInstList(), IfBlock1->begin(), 2278 IfBlock1->getTerminator()->getIterator()); 2279 } 2280 if (IfBlock2) { 2281 for (auto &I : *IfBlock2) 2282 I.dropUnknownNonDebugMetadata(); 2283 DomBlock->getInstList().splice(InsertPt->getIterator(), 2284 IfBlock2->getInstList(), IfBlock2->begin(), 2285 IfBlock2->getTerminator()->getIterator()); 2286 } 2287 2288 while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) { 2289 // Change the PHI node into a select instruction. 2290 Value *TrueVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse); 2291 Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue); 2292 2293 Value *Sel = Builder.CreateSelect(IfCond, TrueVal, FalseVal, "", InsertPt); 2294 PN->replaceAllUsesWith(Sel); 2295 Sel->takeName(PN); 2296 PN->eraseFromParent(); 2297 } 2298 2299 // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement 2300 // has been flattened. Change DomBlock to jump directly to our new block to 2301 // avoid other simplifycfg's kicking in on the diamond. 2302 TerminatorInst *OldTI = DomBlock->getTerminator(); 2303 Builder.SetInsertPoint(OldTI); 2304 Builder.CreateBr(BB); 2305 OldTI->eraseFromParent(); 2306 return true; 2307 } 2308 2309 /// If we found a conditional branch that goes to two returning blocks, 2310 /// try to merge them together into one return, 2311 /// introducing a select if the return values disagree. 2312 static bool SimplifyCondBranchToTwoReturns(BranchInst *BI, 2313 IRBuilder<> &Builder) { 2314 assert(BI->isConditional() && "Must be a conditional branch"); 2315 BasicBlock *TrueSucc = BI->getSuccessor(0); 2316 BasicBlock *FalseSucc = BI->getSuccessor(1); 2317 ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator()); 2318 ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator()); 2319 2320 // Check to ensure both blocks are empty (just a return) or optionally empty 2321 // with PHI nodes. If there are other instructions, merging would cause extra 2322 // computation on one path or the other. 2323 if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator()) 2324 return false; 2325 if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator()) 2326 return false; 2327 2328 Builder.SetInsertPoint(BI); 2329 // Okay, we found a branch that is going to two return nodes. If 2330 // there is no return value for this function, just change the 2331 // branch into a return. 2332 if (FalseRet->getNumOperands() == 0) { 2333 TrueSucc->removePredecessor(BI->getParent()); 2334 FalseSucc->removePredecessor(BI->getParent()); 2335 Builder.CreateRetVoid(); 2336 EraseTerminatorInstAndDCECond(BI); 2337 return true; 2338 } 2339 2340 // Otherwise, figure out what the true and false return values are 2341 // so we can insert a new select instruction. 2342 Value *TrueValue = TrueRet->getReturnValue(); 2343 Value *FalseValue = FalseRet->getReturnValue(); 2344 2345 // Unwrap any PHI nodes in the return blocks. 2346 if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue)) 2347 if (TVPN->getParent() == TrueSucc) 2348 TrueValue = TVPN->getIncomingValueForBlock(BI->getParent()); 2349 if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue)) 2350 if (FVPN->getParent() == FalseSucc) 2351 FalseValue = FVPN->getIncomingValueForBlock(BI->getParent()); 2352 2353 // In order for this transformation to be safe, we must be able to 2354 // unconditionally execute both operands to the return. This is 2355 // normally the case, but we could have a potentially-trapping 2356 // constant expression that prevents this transformation from being 2357 // safe. 2358 if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue)) 2359 if (TCV->canTrap()) 2360 return false; 2361 if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue)) 2362 if (FCV->canTrap()) 2363 return false; 2364 2365 // Okay, we collected all the mapped values and checked them for sanity, and 2366 // defined to really do this transformation. First, update the CFG. 2367 TrueSucc->removePredecessor(BI->getParent()); 2368 FalseSucc->removePredecessor(BI->getParent()); 2369 2370 // Insert select instructions where needed. 2371 Value *BrCond = BI->getCondition(); 2372 if (TrueValue) { 2373 // Insert a select if the results differ. 2374 if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) { 2375 } else if (isa<UndefValue>(TrueValue)) { 2376 TrueValue = FalseValue; 2377 } else { 2378 TrueValue = 2379 Builder.CreateSelect(BrCond, TrueValue, FalseValue, "retval", BI); 2380 } 2381 } 2382 2383 Value *RI = 2384 !TrueValue ? Builder.CreateRetVoid() : Builder.CreateRet(TrueValue); 2385 2386 (void)RI; 2387 2388 DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:" 2389 << "\n " << *BI << "NewRet = " << *RI 2390 << "TRUEBLOCK: " << *TrueSucc << "FALSEBLOCK: " << *FalseSucc); 2391 2392 EraseTerminatorInstAndDCECond(BI); 2393 2394 return true; 2395 } 2396 2397 /// Return true if the given instruction is available 2398 /// in its predecessor block. If yes, the instruction will be removed. 2399 static bool checkCSEInPredecessor(Instruction *Inst, BasicBlock *PB) { 2400 if (!isa<BinaryOperator>(Inst) && !isa<CmpInst>(Inst)) 2401 return false; 2402 for (Instruction &I : *PB) { 2403 Instruction *PBI = &I; 2404 // Check whether Inst and PBI generate the same value. 2405 if (Inst->isIdenticalTo(PBI)) { 2406 Inst->replaceAllUsesWith(PBI); 2407 Inst->eraseFromParent(); 2408 return true; 2409 } 2410 } 2411 return false; 2412 } 2413 2414 /// Return true if either PBI or BI has branch weight available, and store 2415 /// the weights in {Pred|Succ}{True|False}Weight. If one of PBI and BI does 2416 /// not have branch weight, use 1:1 as its weight. 2417 static bool extractPredSuccWeights(BranchInst *PBI, BranchInst *BI, 2418 uint64_t &PredTrueWeight, 2419 uint64_t &PredFalseWeight, 2420 uint64_t &SuccTrueWeight, 2421 uint64_t &SuccFalseWeight) { 2422 bool PredHasWeights = 2423 PBI->extractProfMetadata(PredTrueWeight, PredFalseWeight); 2424 bool SuccHasWeights = 2425 BI->extractProfMetadata(SuccTrueWeight, SuccFalseWeight); 2426 if (PredHasWeights || SuccHasWeights) { 2427 if (!PredHasWeights) 2428 PredTrueWeight = PredFalseWeight = 1; 2429 if (!SuccHasWeights) 2430 SuccTrueWeight = SuccFalseWeight = 1; 2431 return true; 2432 } else { 2433 return false; 2434 } 2435 } 2436 2437 /// If this basic block is simple enough, and if a predecessor branches to us 2438 /// and one of our successors, fold the block into the predecessor and use 2439 /// logical operations to pick the right destination. 2440 bool llvm::FoldBranchToCommonDest(BranchInst *BI, unsigned BonusInstThreshold) { 2441 BasicBlock *BB = BI->getParent(); 2442 2443 Instruction *Cond = nullptr; 2444 if (BI->isConditional()) 2445 Cond = dyn_cast<Instruction>(BI->getCondition()); 2446 else { 2447 // For unconditional branch, check for a simple CFG pattern, where 2448 // BB has a single predecessor and BB's successor is also its predecessor's 2449 // successor. If such pattern exisits, check for CSE between BB and its 2450 // predecessor. 2451 if (BasicBlock *PB = BB->getSinglePredecessor()) 2452 if (BranchInst *PBI = dyn_cast<BranchInst>(PB->getTerminator())) 2453 if (PBI->isConditional() && 2454 (BI->getSuccessor(0) == PBI->getSuccessor(0) || 2455 BI->getSuccessor(0) == PBI->getSuccessor(1))) { 2456 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 2457 Instruction *Curr = &*I++; 2458 if (isa<CmpInst>(Curr)) { 2459 Cond = Curr; 2460 break; 2461 } 2462 // Quit if we can't remove this instruction. 2463 if (!checkCSEInPredecessor(Curr, PB)) 2464 return false; 2465 } 2466 } 2467 2468 if (!Cond) 2469 return false; 2470 } 2471 2472 if (!Cond || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) || 2473 Cond->getParent() != BB || !Cond->hasOneUse()) 2474 return false; 2475 2476 // Make sure the instruction after the condition is the cond branch. 2477 BasicBlock::iterator CondIt = ++Cond->getIterator(); 2478 2479 // Ignore dbg intrinsics. 2480 while (isa<DbgInfoIntrinsic>(CondIt)) 2481 ++CondIt; 2482 2483 if (&*CondIt != BI) 2484 return false; 2485 2486 // Only allow this transformation if computing the condition doesn't involve 2487 // too many instructions and these involved instructions can be executed 2488 // unconditionally. We denote all involved instructions except the condition 2489 // as "bonus instructions", and only allow this transformation when the 2490 // number of the bonus instructions does not exceed a certain threshold. 2491 unsigned NumBonusInsts = 0; 2492 for (auto I = BB->begin(); Cond != &*I; ++I) { 2493 // Ignore dbg intrinsics. 2494 if (isa<DbgInfoIntrinsic>(I)) 2495 continue; 2496 if (!I->hasOneUse() || !isSafeToSpeculativelyExecute(&*I)) 2497 return false; 2498 // I has only one use and can be executed unconditionally. 2499 Instruction *User = dyn_cast<Instruction>(I->user_back()); 2500 if (User == nullptr || User->getParent() != BB) 2501 return false; 2502 // I is used in the same BB. Since BI uses Cond and doesn't have more slots 2503 // to use any other instruction, User must be an instruction between next(I) 2504 // and Cond. 2505 ++NumBonusInsts; 2506 // Early exits once we reach the limit. 2507 if (NumBonusInsts > BonusInstThreshold) 2508 return false; 2509 } 2510 2511 // Cond is known to be a compare or binary operator. Check to make sure that 2512 // neither operand is a potentially-trapping constant expression. 2513 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0))) 2514 if (CE->canTrap()) 2515 return false; 2516 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1))) 2517 if (CE->canTrap()) 2518 return false; 2519 2520 // Finally, don't infinitely unroll conditional loops. 2521 BasicBlock *TrueDest = BI->getSuccessor(0); 2522 BasicBlock *FalseDest = (BI->isConditional()) ? BI->getSuccessor(1) : nullptr; 2523 if (TrueDest == BB || FalseDest == BB) 2524 return false; 2525 2526 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 2527 BasicBlock *PredBlock = *PI; 2528 BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator()); 2529 2530 // Check that we have two conditional branches. If there is a PHI node in 2531 // the common successor, verify that the same value flows in from both 2532 // blocks. 2533 SmallVector<PHINode *, 4> PHIs; 2534 if (!PBI || PBI->isUnconditional() || 2535 (BI->isConditional() && !SafeToMergeTerminators(BI, PBI)) || 2536 (!BI->isConditional() && 2537 !isProfitableToFoldUnconditional(BI, PBI, Cond, PHIs))) 2538 continue; 2539 2540 // Determine if the two branches share a common destination. 2541 Instruction::BinaryOps Opc = Instruction::BinaryOpsEnd; 2542 bool InvertPredCond = false; 2543 2544 if (BI->isConditional()) { 2545 if (PBI->getSuccessor(0) == TrueDest) { 2546 Opc = Instruction::Or; 2547 } else if (PBI->getSuccessor(1) == FalseDest) { 2548 Opc = Instruction::And; 2549 } else if (PBI->getSuccessor(0) == FalseDest) { 2550 Opc = Instruction::And; 2551 InvertPredCond = true; 2552 } else if (PBI->getSuccessor(1) == TrueDest) { 2553 Opc = Instruction::Or; 2554 InvertPredCond = true; 2555 } else { 2556 continue; 2557 } 2558 } else { 2559 if (PBI->getSuccessor(0) != TrueDest && PBI->getSuccessor(1) != TrueDest) 2560 continue; 2561 } 2562 2563 DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB); 2564 IRBuilder<> Builder(PBI); 2565 2566 // If we need to invert the condition in the pred block to match, do so now. 2567 if (InvertPredCond) { 2568 Value *NewCond = PBI->getCondition(); 2569 2570 if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) { 2571 CmpInst *CI = cast<CmpInst>(NewCond); 2572 CI->setPredicate(CI->getInversePredicate()); 2573 } else { 2574 NewCond = 2575 Builder.CreateNot(NewCond, PBI->getCondition()->getName() + ".not"); 2576 } 2577 2578 PBI->setCondition(NewCond); 2579 PBI->swapSuccessors(); 2580 } 2581 2582 // If we have bonus instructions, clone them into the predecessor block. 2583 // Note that there may be multiple predecessor blocks, so we cannot move 2584 // bonus instructions to a predecessor block. 2585 ValueToValueMapTy VMap; // maps original values to cloned values 2586 // We already make sure Cond is the last instruction before BI. Therefore, 2587 // all instructions before Cond other than DbgInfoIntrinsic are bonus 2588 // instructions. 2589 for (auto BonusInst = BB->begin(); Cond != &*BonusInst; ++BonusInst) { 2590 if (isa<DbgInfoIntrinsic>(BonusInst)) 2591 continue; 2592 Instruction *NewBonusInst = BonusInst->clone(); 2593 RemapInstruction(NewBonusInst, VMap, 2594 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 2595 VMap[&*BonusInst] = NewBonusInst; 2596 2597 // If we moved a load, we cannot any longer claim any knowledge about 2598 // its potential value. The previous information might have been valid 2599 // only given the branch precondition. 2600 // For an analogous reason, we must also drop all the metadata whose 2601 // semantics we don't understand. 2602 NewBonusInst->dropUnknownNonDebugMetadata(); 2603 2604 PredBlock->getInstList().insert(PBI->getIterator(), NewBonusInst); 2605 NewBonusInst->takeName(&*BonusInst); 2606 BonusInst->setName(BonusInst->getName() + ".old"); 2607 } 2608 2609 // Clone Cond into the predecessor basic block, and or/and the 2610 // two conditions together. 2611 Instruction *New = Cond->clone(); 2612 RemapInstruction(New, VMap, 2613 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 2614 PredBlock->getInstList().insert(PBI->getIterator(), New); 2615 New->takeName(Cond); 2616 Cond->setName(New->getName() + ".old"); 2617 2618 if (BI->isConditional()) { 2619 Instruction *NewCond = cast<Instruction>( 2620 Builder.CreateBinOp(Opc, PBI->getCondition(), New, "or.cond")); 2621 PBI->setCondition(NewCond); 2622 2623 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 2624 bool HasWeights = 2625 extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight, 2626 SuccTrueWeight, SuccFalseWeight); 2627 SmallVector<uint64_t, 8> NewWeights; 2628 2629 if (PBI->getSuccessor(0) == BB) { 2630 if (HasWeights) { 2631 // PBI: br i1 %x, BB, FalseDest 2632 // BI: br i1 %y, TrueDest, FalseDest 2633 // TrueWeight is TrueWeight for PBI * TrueWeight for BI. 2634 NewWeights.push_back(PredTrueWeight * SuccTrueWeight); 2635 // FalseWeight is FalseWeight for PBI * TotalWeight for BI + 2636 // TrueWeight for PBI * FalseWeight for BI. 2637 // We assume that total weights of a BranchInst can fit into 32 bits. 2638 // Therefore, we will not have overflow using 64-bit arithmetic. 2639 NewWeights.push_back(PredFalseWeight * 2640 (SuccFalseWeight + SuccTrueWeight) + 2641 PredTrueWeight * SuccFalseWeight); 2642 } 2643 AddPredecessorToBlock(TrueDest, PredBlock, BB); 2644 PBI->setSuccessor(0, TrueDest); 2645 } 2646 if (PBI->getSuccessor(1) == BB) { 2647 if (HasWeights) { 2648 // PBI: br i1 %x, TrueDest, BB 2649 // BI: br i1 %y, TrueDest, FalseDest 2650 // TrueWeight is TrueWeight for PBI * TotalWeight for BI + 2651 // FalseWeight for PBI * TrueWeight for BI. 2652 NewWeights.push_back(PredTrueWeight * 2653 (SuccFalseWeight + SuccTrueWeight) + 2654 PredFalseWeight * SuccTrueWeight); 2655 // FalseWeight is FalseWeight for PBI * FalseWeight for BI. 2656 NewWeights.push_back(PredFalseWeight * SuccFalseWeight); 2657 } 2658 AddPredecessorToBlock(FalseDest, PredBlock, BB); 2659 PBI->setSuccessor(1, FalseDest); 2660 } 2661 if (NewWeights.size() == 2) { 2662 // Halve the weights if any of them cannot fit in an uint32_t 2663 FitWeights(NewWeights); 2664 2665 SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(), 2666 NewWeights.end()); 2667 PBI->setMetadata( 2668 LLVMContext::MD_prof, 2669 MDBuilder(BI->getContext()).createBranchWeights(MDWeights)); 2670 } else 2671 PBI->setMetadata(LLVMContext::MD_prof, nullptr); 2672 } else { 2673 // Update PHI nodes in the common successors. 2674 for (unsigned i = 0, e = PHIs.size(); i != e; ++i) { 2675 ConstantInt *PBI_C = cast<ConstantInt>( 2676 PHIs[i]->getIncomingValueForBlock(PBI->getParent())); 2677 assert(PBI_C->getType()->isIntegerTy(1)); 2678 Instruction *MergedCond = nullptr; 2679 if (PBI->getSuccessor(0) == TrueDest) { 2680 // Create (PBI_Cond and PBI_C) or (!PBI_Cond and BI_Value) 2681 // PBI_C is true: PBI_Cond or (!PBI_Cond and BI_Value) 2682 // is false: !PBI_Cond and BI_Value 2683 Instruction *NotCond = cast<Instruction>( 2684 Builder.CreateNot(PBI->getCondition(), "not.cond")); 2685 MergedCond = cast<Instruction>( 2686 Builder.CreateBinOp(Instruction::And, NotCond, New, "and.cond")); 2687 if (PBI_C->isOne()) 2688 MergedCond = cast<Instruction>(Builder.CreateBinOp( 2689 Instruction::Or, PBI->getCondition(), MergedCond, "or.cond")); 2690 } else { 2691 // Create (PBI_Cond and BI_Value) or (!PBI_Cond and PBI_C) 2692 // PBI_C is true: (PBI_Cond and BI_Value) or (!PBI_Cond) 2693 // is false: PBI_Cond and BI_Value 2694 MergedCond = cast<Instruction>(Builder.CreateBinOp( 2695 Instruction::And, PBI->getCondition(), New, "and.cond")); 2696 if (PBI_C->isOne()) { 2697 Instruction *NotCond = cast<Instruction>( 2698 Builder.CreateNot(PBI->getCondition(), "not.cond")); 2699 MergedCond = cast<Instruction>(Builder.CreateBinOp( 2700 Instruction::Or, NotCond, MergedCond, "or.cond")); 2701 } 2702 } 2703 // Update PHI Node. 2704 PHIs[i]->setIncomingValue(PHIs[i]->getBasicBlockIndex(PBI->getParent()), 2705 MergedCond); 2706 } 2707 // Change PBI from Conditional to Unconditional. 2708 BranchInst *New_PBI = BranchInst::Create(TrueDest, PBI); 2709 EraseTerminatorInstAndDCECond(PBI); 2710 PBI = New_PBI; 2711 } 2712 2713 // TODO: If BB is reachable from all paths through PredBlock, then we 2714 // could replace PBI's branch probabilities with BI's. 2715 2716 // Copy any debug value intrinsics into the end of PredBlock. 2717 for (Instruction &I : *BB) 2718 if (isa<DbgInfoIntrinsic>(I)) 2719 I.clone()->insertBefore(PBI); 2720 2721 return true; 2722 } 2723 return false; 2724 } 2725 2726 // If there is only one store in BB1 and BB2, return it, otherwise return 2727 // nullptr. 2728 static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) { 2729 StoreInst *S = nullptr; 2730 for (auto *BB : {BB1, BB2}) { 2731 if (!BB) 2732 continue; 2733 for (auto &I : *BB) 2734 if (auto *SI = dyn_cast<StoreInst>(&I)) { 2735 if (S) 2736 // Multiple stores seen. 2737 return nullptr; 2738 else 2739 S = SI; 2740 } 2741 } 2742 return S; 2743 } 2744 2745 static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB, 2746 Value *AlternativeV = nullptr) { 2747 // PHI is going to be a PHI node that allows the value V that is defined in 2748 // BB to be referenced in BB's only successor. 2749 // 2750 // If AlternativeV is nullptr, the only value we care about in PHI is V. It 2751 // doesn't matter to us what the other operand is (it'll never get used). We 2752 // could just create a new PHI with an undef incoming value, but that could 2753 // increase register pressure if EarlyCSE/InstCombine can't fold it with some 2754 // other PHI. So here we directly look for some PHI in BB's successor with V 2755 // as an incoming operand. If we find one, we use it, else we create a new 2756 // one. 2757 // 2758 // If AlternativeV is not nullptr, we care about both incoming values in PHI. 2759 // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV] 2760 // where OtherBB is the single other predecessor of BB's only successor. 2761 PHINode *PHI = nullptr; 2762 BasicBlock *Succ = BB->getSingleSuccessor(); 2763 2764 for (auto I = Succ->begin(); isa<PHINode>(I); ++I) 2765 if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) { 2766 PHI = cast<PHINode>(I); 2767 if (!AlternativeV) 2768 break; 2769 2770 assert(std::distance(pred_begin(Succ), pred_end(Succ)) == 2); 2771 auto PredI = pred_begin(Succ); 2772 BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI; 2773 if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV) 2774 break; 2775 PHI = nullptr; 2776 } 2777 if (PHI) 2778 return PHI; 2779 2780 // If V is not an instruction defined in BB, just return it. 2781 if (!AlternativeV && 2782 (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB)) 2783 return V; 2784 2785 PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge", &Succ->front()); 2786 PHI->addIncoming(V, BB); 2787 for (BasicBlock *PredBB : predecessors(Succ)) 2788 if (PredBB != BB) 2789 PHI->addIncoming( 2790 AlternativeV ? AlternativeV : UndefValue::get(V->getType()), PredBB); 2791 return PHI; 2792 } 2793 2794 static bool mergeConditionalStoreToAddress(BasicBlock *PTB, BasicBlock *PFB, 2795 BasicBlock *QTB, BasicBlock *QFB, 2796 BasicBlock *PostBB, Value *Address, 2797 bool InvertPCond, bool InvertQCond) { 2798 auto IsaBitcastOfPointerType = [](const Instruction &I) { 2799 return Operator::getOpcode(&I) == Instruction::BitCast && 2800 I.getType()->isPointerTy(); 2801 }; 2802 2803 // If we're not in aggressive mode, we only optimize if we have some 2804 // confidence that by optimizing we'll allow P and/or Q to be if-converted. 2805 auto IsWorthwhile = [&](BasicBlock *BB) { 2806 if (!BB) 2807 return true; 2808 // Heuristic: if the block can be if-converted/phi-folded and the 2809 // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to 2810 // thread this store. 2811 unsigned N = 0; 2812 for (auto &I : *BB) { 2813 // Cheap instructions viable for folding. 2814 if (isa<BinaryOperator>(I) || isa<GetElementPtrInst>(I) || 2815 isa<StoreInst>(I)) 2816 ++N; 2817 // Free instructions. 2818 else if (isa<TerminatorInst>(I) || isa<DbgInfoIntrinsic>(I) || 2819 IsaBitcastOfPointerType(I)) 2820 continue; 2821 else 2822 return false; 2823 } 2824 return N <= PHINodeFoldingThreshold; 2825 }; 2826 2827 if (!MergeCondStoresAggressively && 2828 (!IsWorthwhile(PTB) || !IsWorthwhile(PFB) || !IsWorthwhile(QTB) || 2829 !IsWorthwhile(QFB))) 2830 return false; 2831 2832 // For every pointer, there must be exactly two stores, one coming from 2833 // PTB or PFB, and the other from QTB or QFB. We don't support more than one 2834 // store (to any address) in PTB,PFB or QTB,QFB. 2835 // FIXME: We could relax this restriction with a bit more work and performance 2836 // testing. 2837 StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB); 2838 StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB); 2839 if (!PStore || !QStore) 2840 return false; 2841 2842 // Now check the stores are compatible. 2843 if (!QStore->isUnordered() || !PStore->isUnordered()) 2844 return false; 2845 2846 // Check that sinking the store won't cause program behavior changes. Sinking 2847 // the store out of the Q blocks won't change any behavior as we're sinking 2848 // from a block to its unconditional successor. But we're moving a store from 2849 // the P blocks down through the middle block (QBI) and past both QFB and QTB. 2850 // So we need to check that there are no aliasing loads or stores in 2851 // QBI, QTB and QFB. We also need to check there are no conflicting memory 2852 // operations between PStore and the end of its parent block. 2853 // 2854 // The ideal way to do this is to query AliasAnalysis, but we don't 2855 // preserve AA currently so that is dangerous. Be super safe and just 2856 // check there are no other memory operations at all. 2857 for (auto &I : *QFB->getSinglePredecessor()) 2858 if (I.mayReadOrWriteMemory()) 2859 return false; 2860 for (auto &I : *QFB) 2861 if (&I != QStore && I.mayReadOrWriteMemory()) 2862 return false; 2863 if (QTB) 2864 for (auto &I : *QTB) 2865 if (&I != QStore && I.mayReadOrWriteMemory()) 2866 return false; 2867 for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end(); 2868 I != E; ++I) 2869 if (&*I != PStore && I->mayReadOrWriteMemory()) 2870 return false; 2871 2872 // OK, we're going to sink the stores to PostBB. The store has to be 2873 // conditional though, so first create the predicate. 2874 Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator()) 2875 ->getCondition(); 2876 Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator()) 2877 ->getCondition(); 2878 2879 Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(), 2880 PStore->getParent()); 2881 Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(), 2882 QStore->getParent(), PPHI); 2883 2884 IRBuilder<> QB(&*PostBB->getFirstInsertionPt()); 2885 2886 Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond); 2887 Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond); 2888 2889 if (InvertPCond) 2890 PPred = QB.CreateNot(PPred); 2891 if (InvertQCond) 2892 QPred = QB.CreateNot(QPred); 2893 Value *CombinedPred = QB.CreateOr(PPred, QPred); 2894 2895 auto *T = 2896 SplitBlockAndInsertIfThen(CombinedPred, &*QB.GetInsertPoint(), false); 2897 QB.SetInsertPoint(T); 2898 StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address)); 2899 AAMDNodes AAMD; 2900 PStore->getAAMetadata(AAMD, /*Merge=*/false); 2901 PStore->getAAMetadata(AAMD, /*Merge=*/true); 2902 SI->setAAMetadata(AAMD); 2903 2904 QStore->eraseFromParent(); 2905 PStore->eraseFromParent(); 2906 2907 return true; 2908 } 2909 2910 static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI) { 2911 // The intention here is to find diamonds or triangles (see below) where each 2912 // conditional block contains a store to the same address. Both of these 2913 // stores are conditional, so they can't be unconditionally sunk. But it may 2914 // be profitable to speculatively sink the stores into one merged store at the 2915 // end, and predicate the merged store on the union of the two conditions of 2916 // PBI and QBI. 2917 // 2918 // This can reduce the number of stores executed if both of the conditions are 2919 // true, and can allow the blocks to become small enough to be if-converted. 2920 // This optimization will also chain, so that ladders of test-and-set 2921 // sequences can be if-converted away. 2922 // 2923 // We only deal with simple diamonds or triangles: 2924 // 2925 // PBI or PBI or a combination of the two 2926 // / \ | \ 2927 // PTB PFB | PFB 2928 // \ / | / 2929 // QBI QBI 2930 // / \ | \ 2931 // QTB QFB | QFB 2932 // \ / | / 2933 // PostBB PostBB 2934 // 2935 // We model triangles as a type of diamond with a nullptr "true" block. 2936 // Triangles are canonicalized so that the fallthrough edge is represented by 2937 // a true condition, as in the diagram above. 2938 // 2939 BasicBlock *PTB = PBI->getSuccessor(0); 2940 BasicBlock *PFB = PBI->getSuccessor(1); 2941 BasicBlock *QTB = QBI->getSuccessor(0); 2942 BasicBlock *QFB = QBI->getSuccessor(1); 2943 BasicBlock *PostBB = QFB->getSingleSuccessor(); 2944 2945 bool InvertPCond = false, InvertQCond = false; 2946 // Canonicalize fallthroughs to the true branches. 2947 if (PFB == QBI->getParent()) { 2948 std::swap(PFB, PTB); 2949 InvertPCond = true; 2950 } 2951 if (QFB == PostBB) { 2952 std::swap(QFB, QTB); 2953 InvertQCond = true; 2954 } 2955 2956 // From this point on we can assume PTB or QTB may be fallthroughs but PFB 2957 // and QFB may not. Model fallthroughs as a nullptr block. 2958 if (PTB == QBI->getParent()) 2959 PTB = nullptr; 2960 if (QTB == PostBB) 2961 QTB = nullptr; 2962 2963 // Legality bailouts. We must have at least the non-fallthrough blocks and 2964 // the post-dominating block, and the non-fallthroughs must only have one 2965 // predecessor. 2966 auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) { 2967 return BB->getSinglePredecessor() == P && BB->getSingleSuccessor() == S; 2968 }; 2969 if (!PostBB || 2970 !HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) || 2971 !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB)) 2972 return false; 2973 if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) || 2974 (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB))) 2975 return false; 2976 if (PostBB->getNumUses() != 2 || QBI->getParent()->getNumUses() != 2) 2977 return false; 2978 2979 // OK, this is a sequence of two diamonds or triangles. 2980 // Check if there are stores in PTB or PFB that are repeated in QTB or QFB. 2981 SmallPtrSet<Value *, 4> PStoreAddresses, QStoreAddresses; 2982 for (auto *BB : {PTB, PFB}) { 2983 if (!BB) 2984 continue; 2985 for (auto &I : *BB) 2986 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) 2987 PStoreAddresses.insert(SI->getPointerOperand()); 2988 } 2989 for (auto *BB : {QTB, QFB}) { 2990 if (!BB) 2991 continue; 2992 for (auto &I : *BB) 2993 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) 2994 QStoreAddresses.insert(SI->getPointerOperand()); 2995 } 2996 2997 set_intersect(PStoreAddresses, QStoreAddresses); 2998 // set_intersect mutates PStoreAddresses in place. Rename it here to make it 2999 // clear what it contains. 3000 auto &CommonAddresses = PStoreAddresses; 3001 3002 bool Changed = false; 3003 for (auto *Address : CommonAddresses) 3004 Changed |= mergeConditionalStoreToAddress( 3005 PTB, PFB, QTB, QFB, PostBB, Address, InvertPCond, InvertQCond); 3006 return Changed; 3007 } 3008 3009 /// If we have a conditional branch as a predecessor of another block, 3010 /// this function tries to simplify it. We know 3011 /// that PBI and BI are both conditional branches, and BI is in one of the 3012 /// successor blocks of PBI - PBI branches to BI. 3013 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI, 3014 const DataLayout &DL) { 3015 assert(PBI->isConditional() && BI->isConditional()); 3016 BasicBlock *BB = BI->getParent(); 3017 3018 // If this block ends with a branch instruction, and if there is a 3019 // predecessor that ends on a branch of the same condition, make 3020 // this conditional branch redundant. 3021 if (PBI->getCondition() == BI->getCondition() && 3022 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 3023 // Okay, the outcome of this conditional branch is statically 3024 // knowable. If this block had a single pred, handle specially. 3025 if (BB->getSinglePredecessor()) { 3026 // Turn this into a branch on constant. 3027 bool CondIsTrue = PBI->getSuccessor(0) == BB; 3028 BI->setCondition( 3029 ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue)); 3030 return true; // Nuke the branch on constant. 3031 } 3032 3033 // Otherwise, if there are multiple predecessors, insert a PHI that merges 3034 // in the constant and simplify the block result. Subsequent passes of 3035 // simplifycfg will thread the block. 3036 if (BlockIsSimpleEnoughToThreadThrough(BB)) { 3037 pred_iterator PB = pred_begin(BB), PE = pred_end(BB); 3038 PHINode *NewPN = PHINode::Create( 3039 Type::getInt1Ty(BB->getContext()), std::distance(PB, PE), 3040 BI->getCondition()->getName() + ".pr", &BB->front()); 3041 // Okay, we're going to insert the PHI node. Since PBI is not the only 3042 // predecessor, compute the PHI'd conditional value for all of the preds. 3043 // Any predecessor where the condition is not computable we keep symbolic. 3044 for (pred_iterator PI = PB; PI != PE; ++PI) { 3045 BasicBlock *P = *PI; 3046 if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) && PBI != BI && 3047 PBI->isConditional() && PBI->getCondition() == BI->getCondition() && 3048 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 3049 bool CondIsTrue = PBI->getSuccessor(0) == BB; 3050 NewPN->addIncoming( 3051 ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue), 3052 P); 3053 } else { 3054 NewPN->addIncoming(BI->getCondition(), P); 3055 } 3056 } 3057 3058 BI->setCondition(NewPN); 3059 return true; 3060 } 3061 } 3062 3063 if (auto *CE = dyn_cast<ConstantExpr>(BI->getCondition())) 3064 if (CE->canTrap()) 3065 return false; 3066 3067 // If both branches are conditional and both contain stores to the same 3068 // address, remove the stores from the conditionals and create a conditional 3069 // merged store at the end. 3070 if (MergeCondStores && mergeConditionalStores(PBI, BI)) 3071 return true; 3072 3073 // If this is a conditional branch in an empty block, and if any 3074 // predecessors are a conditional branch to one of our destinations, 3075 // fold the conditions into logical ops and one cond br. 3076 BasicBlock::iterator BBI = BB->begin(); 3077 // Ignore dbg intrinsics. 3078 while (isa<DbgInfoIntrinsic>(BBI)) 3079 ++BBI; 3080 if (&*BBI != BI) 3081 return false; 3082 3083 int PBIOp, BIOp; 3084 if (PBI->getSuccessor(0) == BI->getSuccessor(0)) { 3085 PBIOp = 0; 3086 BIOp = 0; 3087 } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) { 3088 PBIOp = 0; 3089 BIOp = 1; 3090 } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) { 3091 PBIOp = 1; 3092 BIOp = 0; 3093 } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) { 3094 PBIOp = 1; 3095 BIOp = 1; 3096 } else { 3097 return false; 3098 } 3099 3100 // Check to make sure that the other destination of this branch 3101 // isn't BB itself. If so, this is an infinite loop that will 3102 // keep getting unwound. 3103 if (PBI->getSuccessor(PBIOp) == BB) 3104 return false; 3105 3106 // Do not perform this transformation if it would require 3107 // insertion of a large number of select instructions. For targets 3108 // without predication/cmovs, this is a big pessimization. 3109 3110 // Also do not perform this transformation if any phi node in the common 3111 // destination block can trap when reached by BB or PBB (PR17073). In that 3112 // case, it would be unsafe to hoist the operation into a select instruction. 3113 3114 BasicBlock *CommonDest = PBI->getSuccessor(PBIOp); 3115 unsigned NumPhis = 0; 3116 for (BasicBlock::iterator II = CommonDest->begin(); isa<PHINode>(II); 3117 ++II, ++NumPhis) { 3118 if (NumPhis > 2) // Disable this xform. 3119 return false; 3120 3121 PHINode *PN = cast<PHINode>(II); 3122 Value *BIV = PN->getIncomingValueForBlock(BB); 3123 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BIV)) 3124 if (CE->canTrap()) 3125 return false; 3126 3127 unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent()); 3128 Value *PBIV = PN->getIncomingValue(PBBIdx); 3129 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(PBIV)) 3130 if (CE->canTrap()) 3131 return false; 3132 } 3133 3134 // Finally, if everything is ok, fold the branches to logical ops. 3135 BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1); 3136 3137 DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent() 3138 << "AND: " << *BI->getParent()); 3139 3140 // If OtherDest *is* BB, then BB is a basic block with a single conditional 3141 // branch in it, where one edge (OtherDest) goes back to itself but the other 3142 // exits. We don't *know* that the program avoids the infinite loop 3143 // (even though that seems likely). If we do this xform naively, we'll end up 3144 // recursively unpeeling the loop. Since we know that (after the xform is 3145 // done) that the block *is* infinite if reached, we just make it an obviously 3146 // infinite loop with no cond branch. 3147 if (OtherDest == BB) { 3148 // Insert it at the end of the function, because it's either code, 3149 // or it won't matter if it's hot. :) 3150 BasicBlock *InfLoopBlock = 3151 BasicBlock::Create(BB->getContext(), "infloop", BB->getParent()); 3152 BranchInst::Create(InfLoopBlock, InfLoopBlock); 3153 OtherDest = InfLoopBlock; 3154 } 3155 3156 DEBUG(dbgs() << *PBI->getParent()->getParent()); 3157 3158 // BI may have other predecessors. Because of this, we leave 3159 // it alone, but modify PBI. 3160 3161 // Make sure we get to CommonDest on True&True directions. 3162 Value *PBICond = PBI->getCondition(); 3163 IRBuilder<NoFolder> Builder(PBI); 3164 if (PBIOp) 3165 PBICond = Builder.CreateNot(PBICond, PBICond->getName() + ".not"); 3166 3167 Value *BICond = BI->getCondition(); 3168 if (BIOp) 3169 BICond = Builder.CreateNot(BICond, BICond->getName() + ".not"); 3170 3171 // Merge the conditions. 3172 Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge"); 3173 3174 // Modify PBI to branch on the new condition to the new dests. 3175 PBI->setCondition(Cond); 3176 PBI->setSuccessor(0, CommonDest); 3177 PBI->setSuccessor(1, OtherDest); 3178 3179 // Update branch weight for PBI. 3180 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 3181 uint64_t PredCommon, PredOther, SuccCommon, SuccOther; 3182 bool HasWeights = 3183 extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight, 3184 SuccTrueWeight, SuccFalseWeight); 3185 if (HasWeights) { 3186 PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight; 3187 PredOther = PBIOp ? PredTrueWeight : PredFalseWeight; 3188 SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight; 3189 SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight; 3190 // The weight to CommonDest should be PredCommon * SuccTotal + 3191 // PredOther * SuccCommon. 3192 // The weight to OtherDest should be PredOther * SuccOther. 3193 uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) + 3194 PredOther * SuccCommon, 3195 PredOther * SuccOther}; 3196 // Halve the weights if any of them cannot fit in an uint32_t 3197 FitWeights(NewWeights); 3198 3199 PBI->setMetadata(LLVMContext::MD_prof, 3200 MDBuilder(BI->getContext()) 3201 .createBranchWeights(NewWeights[0], NewWeights[1])); 3202 } 3203 3204 // OtherDest may have phi nodes. If so, add an entry from PBI's 3205 // block that are identical to the entries for BI's block. 3206 AddPredecessorToBlock(OtherDest, PBI->getParent(), BB); 3207 3208 // We know that the CommonDest already had an edge from PBI to 3209 // it. If it has PHIs though, the PHIs may have different 3210 // entries for BB and PBI's BB. If so, insert a select to make 3211 // them agree. 3212 PHINode *PN; 3213 for (BasicBlock::iterator II = CommonDest->begin(); 3214 (PN = dyn_cast<PHINode>(II)); ++II) { 3215 Value *BIV = PN->getIncomingValueForBlock(BB); 3216 unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent()); 3217 Value *PBIV = PN->getIncomingValue(PBBIdx); 3218 if (BIV != PBIV) { 3219 // Insert a select in PBI to pick the right value. 3220 SelectInst *NV = cast<SelectInst>( 3221 Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName() + ".mux")); 3222 PN->setIncomingValue(PBBIdx, NV); 3223 // Although the select has the same condition as PBI, the original branch 3224 // weights for PBI do not apply to the new select because the select's 3225 // 'logical' edges are incoming edges of the phi that is eliminated, not 3226 // the outgoing edges of PBI. 3227 if (HasWeights) { 3228 uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight; 3229 uint64_t PredOther = PBIOp ? PredTrueWeight : PredFalseWeight; 3230 uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight; 3231 uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight; 3232 // The weight to PredCommonDest should be PredCommon * SuccTotal. 3233 // The weight to PredOtherDest should be PredOther * SuccCommon. 3234 uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther), 3235 PredOther * SuccCommon}; 3236 3237 FitWeights(NewWeights); 3238 3239 NV->setMetadata(LLVMContext::MD_prof, 3240 MDBuilder(BI->getContext()) 3241 .createBranchWeights(NewWeights[0], NewWeights[1])); 3242 } 3243 } 3244 } 3245 3246 DEBUG(dbgs() << "INTO: " << *PBI->getParent()); 3247 DEBUG(dbgs() << *PBI->getParent()->getParent()); 3248 3249 // This basic block is probably dead. We know it has at least 3250 // one fewer predecessor. 3251 return true; 3252 } 3253 3254 // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is 3255 // true or to FalseBB if Cond is false. 3256 // Takes care of updating the successors and removing the old terminator. 3257 // Also makes sure not to introduce new successors by assuming that edges to 3258 // non-successor TrueBBs and FalseBBs aren't reachable. 3259 static bool SimplifyTerminatorOnSelect(TerminatorInst *OldTerm, Value *Cond, 3260 BasicBlock *TrueBB, BasicBlock *FalseBB, 3261 uint32_t TrueWeight, 3262 uint32_t FalseWeight) { 3263 // Remove any superfluous successor edges from the CFG. 3264 // First, figure out which successors to preserve. 3265 // If TrueBB and FalseBB are equal, only try to preserve one copy of that 3266 // successor. 3267 BasicBlock *KeepEdge1 = TrueBB; 3268 BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr; 3269 3270 // Then remove the rest. 3271 for (BasicBlock *Succ : OldTerm->successors()) { 3272 // Make sure only to keep exactly one copy of each edge. 3273 if (Succ == KeepEdge1) 3274 KeepEdge1 = nullptr; 3275 else if (Succ == KeepEdge2) 3276 KeepEdge2 = nullptr; 3277 else 3278 Succ->removePredecessor(OldTerm->getParent(), 3279 /*DontDeleteUselessPHIs=*/true); 3280 } 3281 3282 IRBuilder<> Builder(OldTerm); 3283 Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc()); 3284 3285 // Insert an appropriate new terminator. 3286 if (!KeepEdge1 && !KeepEdge2) { 3287 if (TrueBB == FalseBB) 3288 // We were only looking for one successor, and it was present. 3289 // Create an unconditional branch to it. 3290 Builder.CreateBr(TrueBB); 3291 else { 3292 // We found both of the successors we were looking for. 3293 // Create a conditional branch sharing the condition of the select. 3294 BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB); 3295 if (TrueWeight != FalseWeight) 3296 NewBI->setMetadata(LLVMContext::MD_prof, 3297 MDBuilder(OldTerm->getContext()) 3298 .createBranchWeights(TrueWeight, FalseWeight)); 3299 } 3300 } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) { 3301 // Neither of the selected blocks were successors, so this 3302 // terminator must be unreachable. 3303 new UnreachableInst(OldTerm->getContext(), OldTerm); 3304 } else { 3305 // One of the selected values was a successor, but the other wasn't. 3306 // Insert an unconditional branch to the one that was found; 3307 // the edge to the one that wasn't must be unreachable. 3308 if (!KeepEdge1) 3309 // Only TrueBB was found. 3310 Builder.CreateBr(TrueBB); 3311 else 3312 // Only FalseBB was found. 3313 Builder.CreateBr(FalseBB); 3314 } 3315 3316 EraseTerminatorInstAndDCECond(OldTerm); 3317 return true; 3318 } 3319 3320 // Replaces 3321 // (switch (select cond, X, Y)) on constant X, Y 3322 // with a branch - conditional if X and Y lead to distinct BBs, 3323 // unconditional otherwise. 3324 static bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select) { 3325 // Check for constant integer values in the select. 3326 ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue()); 3327 ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue()); 3328 if (!TrueVal || !FalseVal) 3329 return false; 3330 3331 // Find the relevant condition and destinations. 3332 Value *Condition = Select->getCondition(); 3333 BasicBlock *TrueBB = SI->findCaseValue(TrueVal).getCaseSuccessor(); 3334 BasicBlock *FalseBB = SI->findCaseValue(FalseVal).getCaseSuccessor(); 3335 3336 // Get weight for TrueBB and FalseBB. 3337 uint32_t TrueWeight = 0, FalseWeight = 0; 3338 SmallVector<uint64_t, 8> Weights; 3339 bool HasWeights = HasBranchWeights(SI); 3340 if (HasWeights) { 3341 GetBranchWeights(SI, Weights); 3342 if (Weights.size() == 1 + SI->getNumCases()) { 3343 TrueWeight = 3344 (uint32_t)Weights[SI->findCaseValue(TrueVal).getSuccessorIndex()]; 3345 FalseWeight = 3346 (uint32_t)Weights[SI->findCaseValue(FalseVal).getSuccessorIndex()]; 3347 } 3348 } 3349 3350 // Perform the actual simplification. 3351 return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, TrueWeight, 3352 FalseWeight); 3353 } 3354 3355 // Replaces 3356 // (indirectbr (select cond, blockaddress(@fn, BlockA), 3357 // blockaddress(@fn, BlockB))) 3358 // with 3359 // (br cond, BlockA, BlockB). 3360 static bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI) { 3361 // Check that both operands of the select are block addresses. 3362 BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue()); 3363 BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue()); 3364 if (!TBA || !FBA) 3365 return false; 3366 3367 // Extract the actual blocks. 3368 BasicBlock *TrueBB = TBA->getBasicBlock(); 3369 BasicBlock *FalseBB = FBA->getBasicBlock(); 3370 3371 // Perform the actual simplification. 3372 return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 0, 3373 0); 3374 } 3375 3376 /// This is called when we find an icmp instruction 3377 /// (a seteq/setne with a constant) as the only instruction in a 3378 /// block that ends with an uncond branch. We are looking for a very specific 3379 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified. In 3380 /// this case, we merge the first two "or's of icmp" into a switch, but then the 3381 /// default value goes to an uncond block with a seteq in it, we get something 3382 /// like: 3383 /// 3384 /// switch i8 %A, label %DEFAULT [ i8 1, label %end i8 2, label %end ] 3385 /// DEFAULT: 3386 /// %tmp = icmp eq i8 %A, 92 3387 /// br label %end 3388 /// end: 3389 /// ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ] 3390 /// 3391 /// We prefer to split the edge to 'end' so that there is a true/false entry to 3392 /// the PHI, merging the third icmp into the switch. 3393 static bool TryToSimplifyUncondBranchWithICmpInIt( 3394 ICmpInst *ICI, IRBuilder<> &Builder, const DataLayout &DL, 3395 const TargetTransformInfo &TTI, unsigned BonusInstThreshold, 3396 AssumptionCache *AC) { 3397 BasicBlock *BB = ICI->getParent(); 3398 3399 // If the block has any PHIs in it or the icmp has multiple uses, it is too 3400 // complex. 3401 if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse()) 3402 return false; 3403 3404 Value *V = ICI->getOperand(0); 3405 ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1)); 3406 3407 // The pattern we're looking for is where our only predecessor is a switch on 3408 // 'V' and this block is the default case for the switch. In this case we can 3409 // fold the compared value into the switch to simplify things. 3410 BasicBlock *Pred = BB->getSinglePredecessor(); 3411 if (!Pred || !isa<SwitchInst>(Pred->getTerminator())) 3412 return false; 3413 3414 SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator()); 3415 if (SI->getCondition() != V) 3416 return false; 3417 3418 // If BB is reachable on a non-default case, then we simply know the value of 3419 // V in this block. Substitute it and constant fold the icmp instruction 3420 // away. 3421 if (SI->getDefaultDest() != BB) { 3422 ConstantInt *VVal = SI->findCaseDest(BB); 3423 assert(VVal && "Should have a unique destination value"); 3424 ICI->setOperand(0, VVal); 3425 3426 if (Value *V = SimplifyInstruction(ICI, DL)) { 3427 ICI->replaceAllUsesWith(V); 3428 ICI->eraseFromParent(); 3429 } 3430 // BB is now empty, so it is likely to simplify away. 3431 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 3432 } 3433 3434 // Ok, the block is reachable from the default dest. If the constant we're 3435 // comparing exists in one of the other edges, then we can constant fold ICI 3436 // and zap it. 3437 if (SI->findCaseValue(Cst) != SI->case_default()) { 3438 Value *V; 3439 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 3440 V = ConstantInt::getFalse(BB->getContext()); 3441 else 3442 V = ConstantInt::getTrue(BB->getContext()); 3443 3444 ICI->replaceAllUsesWith(V); 3445 ICI->eraseFromParent(); 3446 // BB is now empty, so it is likely to simplify away. 3447 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 3448 } 3449 3450 // The use of the icmp has to be in the 'end' block, by the only PHI node in 3451 // the block. 3452 BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0); 3453 PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back()); 3454 if (PHIUse == nullptr || PHIUse != &SuccBlock->front() || 3455 isa<PHINode>(++BasicBlock::iterator(PHIUse))) 3456 return false; 3457 3458 // If the icmp is a SETEQ, then the default dest gets false, the new edge gets 3459 // true in the PHI. 3460 Constant *DefaultCst = ConstantInt::getTrue(BB->getContext()); 3461 Constant *NewCst = ConstantInt::getFalse(BB->getContext()); 3462 3463 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 3464 std::swap(DefaultCst, NewCst); 3465 3466 // Replace ICI (which is used by the PHI for the default value) with true or 3467 // false depending on if it is EQ or NE. 3468 ICI->replaceAllUsesWith(DefaultCst); 3469 ICI->eraseFromParent(); 3470 3471 // Okay, the switch goes to this block on a default value. Add an edge from 3472 // the switch to the merge point on the compared value. 3473 BasicBlock *NewBB = 3474 BasicBlock::Create(BB->getContext(), "switch.edge", BB->getParent(), BB); 3475 SmallVector<uint64_t, 8> Weights; 3476 bool HasWeights = HasBranchWeights(SI); 3477 if (HasWeights) { 3478 GetBranchWeights(SI, Weights); 3479 if (Weights.size() == 1 + SI->getNumCases()) { 3480 // Split weight for default case to case for "Cst". 3481 Weights[0] = (Weights[0] + 1) >> 1; 3482 Weights.push_back(Weights[0]); 3483 3484 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 3485 SI->setMetadata( 3486 LLVMContext::MD_prof, 3487 MDBuilder(SI->getContext()).createBranchWeights(MDWeights)); 3488 } 3489 } 3490 SI->addCase(Cst, NewBB); 3491 3492 // NewBB branches to the phi block, add the uncond branch and the phi entry. 3493 Builder.SetInsertPoint(NewBB); 3494 Builder.SetCurrentDebugLocation(SI->getDebugLoc()); 3495 Builder.CreateBr(SuccBlock); 3496 PHIUse->addIncoming(NewCst, NewBB); 3497 return true; 3498 } 3499 3500 /// The specified branch is a conditional branch. 3501 /// Check to see if it is branching on an or/and chain of icmp instructions, and 3502 /// fold it into a switch instruction if so. 3503 static bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder, 3504 const DataLayout &DL) { 3505 Instruction *Cond = dyn_cast<Instruction>(BI->getCondition()); 3506 if (!Cond) 3507 return false; 3508 3509 // Change br (X == 0 | X == 1), T, F into a switch instruction. 3510 // If this is a bunch of seteq's or'd together, or if it's a bunch of 3511 // 'setne's and'ed together, collect them. 3512 3513 // Try to gather values from a chain of and/or to be turned into a switch 3514 ConstantComparesGatherer ConstantCompare(Cond, DL); 3515 // Unpack the result 3516 SmallVectorImpl<ConstantInt *> &Values = ConstantCompare.Vals; 3517 Value *CompVal = ConstantCompare.CompValue; 3518 unsigned UsedICmps = ConstantCompare.UsedICmps; 3519 Value *ExtraCase = ConstantCompare.Extra; 3520 3521 // If we didn't have a multiply compared value, fail. 3522 if (!CompVal) 3523 return false; 3524 3525 // Avoid turning single icmps into a switch. 3526 if (UsedICmps <= 1) 3527 return false; 3528 3529 bool TrueWhenEqual = (Cond->getOpcode() == Instruction::Or); 3530 3531 // There might be duplicate constants in the list, which the switch 3532 // instruction can't handle, remove them now. 3533 array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate); 3534 Values.erase(std::unique(Values.begin(), Values.end()), Values.end()); 3535 3536 // If Extra was used, we require at least two switch values to do the 3537 // transformation. A switch with one value is just a conditional branch. 3538 if (ExtraCase && Values.size() < 2) 3539 return false; 3540 3541 // TODO: Preserve branch weight metadata, similarly to how 3542 // FoldValueComparisonIntoPredecessors preserves it. 3543 3544 // Figure out which block is which destination. 3545 BasicBlock *DefaultBB = BI->getSuccessor(1); 3546 BasicBlock *EdgeBB = BI->getSuccessor(0); 3547 if (!TrueWhenEqual) 3548 std::swap(DefaultBB, EdgeBB); 3549 3550 BasicBlock *BB = BI->getParent(); 3551 3552 DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size() 3553 << " cases into SWITCH. BB is:\n" 3554 << *BB); 3555 3556 // If there are any extra values that couldn't be folded into the switch 3557 // then we evaluate them with an explicit branch first. Split the block 3558 // right before the condbr to handle it. 3559 if (ExtraCase) { 3560 BasicBlock *NewBB = 3561 BB->splitBasicBlock(BI->getIterator(), "switch.early.test"); 3562 // Remove the uncond branch added to the old block. 3563 TerminatorInst *OldTI = BB->getTerminator(); 3564 Builder.SetInsertPoint(OldTI); 3565 3566 if (TrueWhenEqual) 3567 Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB); 3568 else 3569 Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB); 3570 3571 OldTI->eraseFromParent(); 3572 3573 // If there are PHI nodes in EdgeBB, then we need to add a new entry to them 3574 // for the edge we just added. 3575 AddPredecessorToBlock(EdgeBB, BB, NewBB); 3576 3577 DEBUG(dbgs() << " ** 'icmp' chain unhandled condition: " << *ExtraCase 3578 << "\nEXTRABB = " << *BB); 3579 BB = NewBB; 3580 } 3581 3582 Builder.SetInsertPoint(BI); 3583 // Convert pointer to int before we switch. 3584 if (CompVal->getType()->isPointerTy()) { 3585 CompVal = Builder.CreatePtrToInt( 3586 CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr"); 3587 } 3588 3589 // Create the new switch instruction now. 3590 SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size()); 3591 3592 // Add all of the 'cases' to the switch instruction. 3593 for (unsigned i = 0, e = Values.size(); i != e; ++i) 3594 New->addCase(Values[i], EdgeBB); 3595 3596 // We added edges from PI to the EdgeBB. As such, if there were any 3597 // PHI nodes in EdgeBB, they need entries to be added corresponding to 3598 // the number of edges added. 3599 for (BasicBlock::iterator BBI = EdgeBB->begin(); isa<PHINode>(BBI); ++BBI) { 3600 PHINode *PN = cast<PHINode>(BBI); 3601 Value *InVal = PN->getIncomingValueForBlock(BB); 3602 for (unsigned i = 0, e = Values.size() - 1; i != e; ++i) 3603 PN->addIncoming(InVal, BB); 3604 } 3605 3606 // Erase the old branch instruction. 3607 EraseTerminatorInstAndDCECond(BI); 3608 3609 DEBUG(dbgs() << " ** 'icmp' chain result is:\n" << *BB << '\n'); 3610 return true; 3611 } 3612 3613 bool SimplifyCFGOpt::SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder) { 3614 if (isa<PHINode>(RI->getValue())) 3615 return SimplifyCommonResume(RI); 3616 else if (isa<LandingPadInst>(RI->getParent()->getFirstNonPHI()) && 3617 RI->getValue() == RI->getParent()->getFirstNonPHI()) 3618 // The resume must unwind the exception that caused control to branch here. 3619 return SimplifySingleResume(RI); 3620 3621 return false; 3622 } 3623 3624 // Simplify resume that is shared by several landing pads (phi of landing pad). 3625 bool SimplifyCFGOpt::SimplifyCommonResume(ResumeInst *RI) { 3626 BasicBlock *BB = RI->getParent(); 3627 3628 // Check that there are no other instructions except for debug intrinsics 3629 // between the phi of landing pads (RI->getValue()) and resume instruction. 3630 BasicBlock::iterator I = cast<Instruction>(RI->getValue())->getIterator(), 3631 E = RI->getIterator(); 3632 while (++I != E) 3633 if (!isa<DbgInfoIntrinsic>(I)) 3634 return false; 3635 3636 SmallSet<BasicBlock *, 4> TrivialUnwindBlocks; 3637 auto *PhiLPInst = cast<PHINode>(RI->getValue()); 3638 3639 // Check incoming blocks to see if any of them are trivial. 3640 for (unsigned Idx = 0, End = PhiLPInst->getNumIncomingValues(); Idx != End; 3641 Idx++) { 3642 auto *IncomingBB = PhiLPInst->getIncomingBlock(Idx); 3643 auto *IncomingValue = PhiLPInst->getIncomingValue(Idx); 3644 3645 // If the block has other successors, we can not delete it because 3646 // it has other dependents. 3647 if (IncomingBB->getUniqueSuccessor() != BB) 3648 continue; 3649 3650 auto *LandingPad = dyn_cast<LandingPadInst>(IncomingBB->getFirstNonPHI()); 3651 // Not the landing pad that caused the control to branch here. 3652 if (IncomingValue != LandingPad) 3653 continue; 3654 3655 bool isTrivial = true; 3656 3657 I = IncomingBB->getFirstNonPHI()->getIterator(); 3658 E = IncomingBB->getTerminator()->getIterator(); 3659 while (++I != E) 3660 if (!isa<DbgInfoIntrinsic>(I)) { 3661 isTrivial = false; 3662 break; 3663 } 3664 3665 if (isTrivial) 3666 TrivialUnwindBlocks.insert(IncomingBB); 3667 } 3668 3669 // If no trivial unwind blocks, don't do any simplifications. 3670 if (TrivialUnwindBlocks.empty()) 3671 return false; 3672 3673 // Turn all invokes that unwind here into calls. 3674 for (auto *TrivialBB : TrivialUnwindBlocks) { 3675 // Blocks that will be simplified should be removed from the phi node. 3676 // Note there could be multiple edges to the resume block, and we need 3677 // to remove them all. 3678 while (PhiLPInst->getBasicBlockIndex(TrivialBB) != -1) 3679 BB->removePredecessor(TrivialBB, true); 3680 3681 for (pred_iterator PI = pred_begin(TrivialBB), PE = pred_end(TrivialBB); 3682 PI != PE;) { 3683 BasicBlock *Pred = *PI++; 3684 removeUnwindEdge(Pred); 3685 } 3686 3687 // In each SimplifyCFG run, only the current processed block can be erased. 3688 // Otherwise, it will break the iteration of SimplifyCFG pass. So instead 3689 // of erasing TrivialBB, we only remove the branch to the common resume 3690 // block so that we can later erase the resume block since it has no 3691 // predecessors. 3692 TrivialBB->getTerminator()->eraseFromParent(); 3693 new UnreachableInst(RI->getContext(), TrivialBB); 3694 } 3695 3696 // Delete the resume block if all its predecessors have been removed. 3697 if (pred_empty(BB)) 3698 BB->eraseFromParent(); 3699 3700 return !TrivialUnwindBlocks.empty(); 3701 } 3702 3703 // Simplify resume that is only used by a single (non-phi) landing pad. 3704 bool SimplifyCFGOpt::SimplifySingleResume(ResumeInst *RI) { 3705 BasicBlock *BB = RI->getParent(); 3706 LandingPadInst *LPInst = dyn_cast<LandingPadInst>(BB->getFirstNonPHI()); 3707 assert(RI->getValue() == LPInst && 3708 "Resume must unwind the exception that caused control to here"); 3709 3710 // Check that there are no other instructions except for debug intrinsics. 3711 BasicBlock::iterator I = LPInst->getIterator(), E = RI->getIterator(); 3712 while (++I != E) 3713 if (!isa<DbgInfoIntrinsic>(I)) 3714 return false; 3715 3716 // Turn all invokes that unwind here into calls and delete the basic block. 3717 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) { 3718 BasicBlock *Pred = *PI++; 3719 removeUnwindEdge(Pred); 3720 } 3721 3722 // The landingpad is now unreachable. Zap it. 3723 BB->eraseFromParent(); 3724 if (LoopHeaders) 3725 LoopHeaders->erase(BB); 3726 return true; 3727 } 3728 3729 static bool removeEmptyCleanup(CleanupReturnInst *RI) { 3730 // If this is a trivial cleanup pad that executes no instructions, it can be 3731 // eliminated. If the cleanup pad continues to the caller, any predecessor 3732 // that is an EH pad will be updated to continue to the caller and any 3733 // predecessor that terminates with an invoke instruction will have its invoke 3734 // instruction converted to a call instruction. If the cleanup pad being 3735 // simplified does not continue to the caller, each predecessor will be 3736 // updated to continue to the unwind destination of the cleanup pad being 3737 // simplified. 3738 BasicBlock *BB = RI->getParent(); 3739 CleanupPadInst *CPInst = RI->getCleanupPad(); 3740 if (CPInst->getParent() != BB) 3741 // This isn't an empty cleanup. 3742 return false; 3743 3744 // We cannot kill the pad if it has multiple uses. This typically arises 3745 // from unreachable basic blocks. 3746 if (!CPInst->hasOneUse()) 3747 return false; 3748 3749 // Check that there are no other instructions except for benign intrinsics. 3750 BasicBlock::iterator I = CPInst->getIterator(), E = RI->getIterator(); 3751 while (++I != E) { 3752 auto *II = dyn_cast<IntrinsicInst>(I); 3753 if (!II) 3754 return false; 3755 3756 Intrinsic::ID IntrinsicID = II->getIntrinsicID(); 3757 switch (IntrinsicID) { 3758 case Intrinsic::dbg_declare: 3759 case Intrinsic::dbg_value: 3760 case Intrinsic::lifetime_end: 3761 break; 3762 default: 3763 return false; 3764 } 3765 } 3766 3767 // If the cleanup return we are simplifying unwinds to the caller, this will 3768 // set UnwindDest to nullptr. 3769 BasicBlock *UnwindDest = RI->getUnwindDest(); 3770 Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr; 3771 3772 // We're about to remove BB from the control flow. Before we do, sink any 3773 // PHINodes into the unwind destination. Doing this before changing the 3774 // control flow avoids some potentially slow checks, since we can currently 3775 // be certain that UnwindDest and BB have no common predecessors (since they 3776 // are both EH pads). 3777 if (UnwindDest) { 3778 // First, go through the PHI nodes in UnwindDest and update any nodes that 3779 // reference the block we are removing 3780 for (BasicBlock::iterator I = UnwindDest->begin(), 3781 IE = DestEHPad->getIterator(); 3782 I != IE; ++I) { 3783 PHINode *DestPN = cast<PHINode>(I); 3784 3785 int Idx = DestPN->getBasicBlockIndex(BB); 3786 // Since BB unwinds to UnwindDest, it has to be in the PHI node. 3787 assert(Idx != -1); 3788 // This PHI node has an incoming value that corresponds to a control 3789 // path through the cleanup pad we are removing. If the incoming 3790 // value is in the cleanup pad, it must be a PHINode (because we 3791 // verified above that the block is otherwise empty). Otherwise, the 3792 // value is either a constant or a value that dominates the cleanup 3793 // pad being removed. 3794 // 3795 // Because BB and UnwindDest are both EH pads, all of their 3796 // predecessors must unwind to these blocks, and since no instruction 3797 // can have multiple unwind destinations, there will be no overlap in 3798 // incoming blocks between SrcPN and DestPN. 3799 Value *SrcVal = DestPN->getIncomingValue(Idx); 3800 PHINode *SrcPN = dyn_cast<PHINode>(SrcVal); 3801 3802 // Remove the entry for the block we are deleting. 3803 DestPN->removeIncomingValue(Idx, false); 3804 3805 if (SrcPN && SrcPN->getParent() == BB) { 3806 // If the incoming value was a PHI node in the cleanup pad we are 3807 // removing, we need to merge that PHI node's incoming values into 3808 // DestPN. 3809 for (unsigned SrcIdx = 0, SrcE = SrcPN->getNumIncomingValues(); 3810 SrcIdx != SrcE; ++SrcIdx) { 3811 DestPN->addIncoming(SrcPN->getIncomingValue(SrcIdx), 3812 SrcPN->getIncomingBlock(SrcIdx)); 3813 } 3814 } else { 3815 // Otherwise, the incoming value came from above BB and 3816 // so we can just reuse it. We must associate all of BB's 3817 // predecessors with this value. 3818 for (auto *pred : predecessors(BB)) { 3819 DestPN->addIncoming(SrcVal, pred); 3820 } 3821 } 3822 } 3823 3824 // Sink any remaining PHI nodes directly into UnwindDest. 3825 Instruction *InsertPt = DestEHPad; 3826 for (BasicBlock::iterator I = BB->begin(), 3827 IE = BB->getFirstNonPHI()->getIterator(); 3828 I != IE;) { 3829 // The iterator must be incremented here because the instructions are 3830 // being moved to another block. 3831 PHINode *PN = cast<PHINode>(I++); 3832 if (PN->use_empty()) 3833 // If the PHI node has no uses, just leave it. It will be erased 3834 // when we erase BB below. 3835 continue; 3836 3837 // Otherwise, sink this PHI node into UnwindDest. 3838 // Any predecessors to UnwindDest which are not already represented 3839 // must be back edges which inherit the value from the path through 3840 // BB. In this case, the PHI value must reference itself. 3841 for (auto *pred : predecessors(UnwindDest)) 3842 if (pred != BB) 3843 PN->addIncoming(PN, pred); 3844 PN->moveBefore(InsertPt); 3845 } 3846 } 3847 3848 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) { 3849 // The iterator must be updated here because we are removing this pred. 3850 BasicBlock *PredBB = *PI++; 3851 if (UnwindDest == nullptr) { 3852 removeUnwindEdge(PredBB); 3853 } else { 3854 TerminatorInst *TI = PredBB->getTerminator(); 3855 TI->replaceUsesOfWith(BB, UnwindDest); 3856 } 3857 } 3858 3859 // The cleanup pad is now unreachable. Zap it. 3860 BB->eraseFromParent(); 3861 return true; 3862 } 3863 3864 // Try to merge two cleanuppads together. 3865 static bool mergeCleanupPad(CleanupReturnInst *RI) { 3866 // Skip any cleanuprets which unwind to caller, there is nothing to merge 3867 // with. 3868 BasicBlock *UnwindDest = RI->getUnwindDest(); 3869 if (!UnwindDest) 3870 return false; 3871 3872 // This cleanupret isn't the only predecessor of this cleanuppad, it wouldn't 3873 // be safe to merge without code duplication. 3874 if (UnwindDest->getSinglePredecessor() != RI->getParent()) 3875 return false; 3876 3877 // Verify that our cleanuppad's unwind destination is another cleanuppad. 3878 auto *SuccessorCleanupPad = dyn_cast<CleanupPadInst>(&UnwindDest->front()); 3879 if (!SuccessorCleanupPad) 3880 return false; 3881 3882 CleanupPadInst *PredecessorCleanupPad = RI->getCleanupPad(); 3883 // Replace any uses of the successor cleanupad with the predecessor pad 3884 // The only cleanuppad uses should be this cleanupret, it's cleanupret and 3885 // funclet bundle operands. 3886 SuccessorCleanupPad->replaceAllUsesWith(PredecessorCleanupPad); 3887 // Remove the old cleanuppad. 3888 SuccessorCleanupPad->eraseFromParent(); 3889 // Now, we simply replace the cleanupret with a branch to the unwind 3890 // destination. 3891 BranchInst::Create(UnwindDest, RI->getParent()); 3892 RI->eraseFromParent(); 3893 3894 return true; 3895 } 3896 3897 bool SimplifyCFGOpt::SimplifyCleanupReturn(CleanupReturnInst *RI) { 3898 // It is possible to transiantly have an undef cleanuppad operand because we 3899 // have deleted some, but not all, dead blocks. 3900 // Eventually, this block will be deleted. 3901 if (isa<UndefValue>(RI->getOperand(0))) 3902 return false; 3903 3904 if (mergeCleanupPad(RI)) 3905 return true; 3906 3907 if (removeEmptyCleanup(RI)) 3908 return true; 3909 3910 return false; 3911 } 3912 3913 bool SimplifyCFGOpt::SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) { 3914 BasicBlock *BB = RI->getParent(); 3915 if (!BB->getFirstNonPHIOrDbg()->isTerminator()) 3916 return false; 3917 3918 // Find predecessors that end with branches. 3919 SmallVector<BasicBlock *, 8> UncondBranchPreds; 3920 SmallVector<BranchInst *, 8> CondBranchPreds; 3921 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 3922 BasicBlock *P = *PI; 3923 TerminatorInst *PTI = P->getTerminator(); 3924 if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) { 3925 if (BI->isUnconditional()) 3926 UncondBranchPreds.push_back(P); 3927 else 3928 CondBranchPreds.push_back(BI); 3929 } 3930 } 3931 3932 // If we found some, do the transformation! 3933 if (!UncondBranchPreds.empty() && DupRet) { 3934 while (!UncondBranchPreds.empty()) { 3935 BasicBlock *Pred = UncondBranchPreds.pop_back_val(); 3936 DEBUG(dbgs() << "FOLDING: " << *BB 3937 << "INTO UNCOND BRANCH PRED: " << *Pred); 3938 (void)FoldReturnIntoUncondBranch(RI, BB, Pred); 3939 } 3940 3941 // If we eliminated all predecessors of the block, delete the block now. 3942 if (pred_empty(BB)) { 3943 // We know there are no successors, so just nuke the block. 3944 BB->eraseFromParent(); 3945 if (LoopHeaders) 3946 LoopHeaders->erase(BB); 3947 } 3948 3949 return true; 3950 } 3951 3952 // Check out all of the conditional branches going to this return 3953 // instruction. If any of them just select between returns, change the 3954 // branch itself into a select/return pair. 3955 while (!CondBranchPreds.empty()) { 3956 BranchInst *BI = CondBranchPreds.pop_back_val(); 3957 3958 // Check to see if the non-BB successor is also a return block. 3959 if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) && 3960 isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) && 3961 SimplifyCondBranchToTwoReturns(BI, Builder)) 3962 return true; 3963 } 3964 return false; 3965 } 3966 3967 bool SimplifyCFGOpt::SimplifyUnreachable(UnreachableInst *UI) { 3968 BasicBlock *BB = UI->getParent(); 3969 3970 bool Changed = false; 3971 3972 // If there are any instructions immediately before the unreachable that can 3973 // be removed, do so. 3974 while (UI->getIterator() != BB->begin()) { 3975 BasicBlock::iterator BBI = UI->getIterator(); 3976 --BBI; 3977 // Do not delete instructions that can have side effects which might cause 3978 // the unreachable to not be reachable; specifically, calls and volatile 3979 // operations may have this effect. 3980 if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI)) 3981 break; 3982 3983 if (BBI->mayHaveSideEffects()) { 3984 if (auto *SI = dyn_cast<StoreInst>(BBI)) { 3985 if (SI->isVolatile()) 3986 break; 3987 } else if (auto *LI = dyn_cast<LoadInst>(BBI)) { 3988 if (LI->isVolatile()) 3989 break; 3990 } else if (auto *RMWI = dyn_cast<AtomicRMWInst>(BBI)) { 3991 if (RMWI->isVolatile()) 3992 break; 3993 } else if (auto *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) { 3994 if (CXI->isVolatile()) 3995 break; 3996 } else if (isa<CatchPadInst>(BBI)) { 3997 // A catchpad may invoke exception object constructors and such, which 3998 // in some languages can be arbitrary code, so be conservative by 3999 // default. 4000 // For CoreCLR, it just involves a type test, so can be removed. 4001 if (classifyEHPersonality(BB->getParent()->getPersonalityFn()) != 4002 EHPersonality::CoreCLR) 4003 break; 4004 } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) && 4005 !isa<LandingPadInst>(BBI)) { 4006 break; 4007 } 4008 // Note that deleting LandingPad's here is in fact okay, although it 4009 // involves a bit of subtle reasoning. If this inst is a LandingPad, 4010 // all the predecessors of this block will be the unwind edges of Invokes, 4011 // and we can therefore guarantee this block will be erased. 4012 } 4013 4014 // Delete this instruction (any uses are guaranteed to be dead) 4015 if (!BBI->use_empty()) 4016 BBI->replaceAllUsesWith(UndefValue::get(BBI->getType())); 4017 BBI->eraseFromParent(); 4018 Changed = true; 4019 } 4020 4021 // If the unreachable instruction is the first in the block, take a gander 4022 // at all of the predecessors of this instruction, and simplify them. 4023 if (&BB->front() != UI) 4024 return Changed; 4025 4026 SmallVector<BasicBlock *, 8> Preds(pred_begin(BB), pred_end(BB)); 4027 for (unsigned i = 0, e = Preds.size(); i != e; ++i) { 4028 TerminatorInst *TI = Preds[i]->getTerminator(); 4029 IRBuilder<> Builder(TI); 4030 if (auto *BI = dyn_cast<BranchInst>(TI)) { 4031 if (BI->isUnconditional()) { 4032 if (BI->getSuccessor(0) == BB) { 4033 new UnreachableInst(TI->getContext(), TI); 4034 TI->eraseFromParent(); 4035 Changed = true; 4036 } 4037 } else { 4038 if (BI->getSuccessor(0) == BB) { 4039 Builder.CreateBr(BI->getSuccessor(1)); 4040 EraseTerminatorInstAndDCECond(BI); 4041 } else if (BI->getSuccessor(1) == BB) { 4042 Builder.CreateBr(BI->getSuccessor(0)); 4043 EraseTerminatorInstAndDCECond(BI); 4044 Changed = true; 4045 } 4046 } 4047 } else if (auto *SI = dyn_cast<SwitchInst>(TI)) { 4048 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); i != e; 4049 ++i) 4050 if (i.getCaseSuccessor() == BB) { 4051 BB->removePredecessor(SI->getParent()); 4052 SI->removeCase(i); 4053 --i; 4054 --e; 4055 Changed = true; 4056 } 4057 } else if (auto *II = dyn_cast<InvokeInst>(TI)) { 4058 if (II->getUnwindDest() == BB) { 4059 removeUnwindEdge(TI->getParent()); 4060 Changed = true; 4061 } 4062 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) { 4063 if (CSI->getUnwindDest() == BB) { 4064 removeUnwindEdge(TI->getParent()); 4065 Changed = true; 4066 continue; 4067 } 4068 4069 for (CatchSwitchInst::handler_iterator I = CSI->handler_begin(), 4070 E = CSI->handler_end(); 4071 I != E; ++I) { 4072 if (*I == BB) { 4073 CSI->removeHandler(I); 4074 --I; 4075 --E; 4076 Changed = true; 4077 } 4078 } 4079 if (CSI->getNumHandlers() == 0) { 4080 BasicBlock *CatchSwitchBB = CSI->getParent(); 4081 if (CSI->hasUnwindDest()) { 4082 // Redirect preds to the unwind dest 4083 CatchSwitchBB->replaceAllUsesWith(CSI->getUnwindDest()); 4084 } else { 4085 // Rewrite all preds to unwind to caller (or from invoke to call). 4086 SmallVector<BasicBlock *, 8> EHPreds(predecessors(CatchSwitchBB)); 4087 for (BasicBlock *EHPred : EHPreds) 4088 removeUnwindEdge(EHPred); 4089 } 4090 // The catchswitch is no longer reachable. 4091 new UnreachableInst(CSI->getContext(), CSI); 4092 CSI->eraseFromParent(); 4093 Changed = true; 4094 } 4095 } else if (isa<CleanupReturnInst>(TI)) { 4096 new UnreachableInst(TI->getContext(), TI); 4097 TI->eraseFromParent(); 4098 Changed = true; 4099 } 4100 } 4101 4102 // If this block is now dead, remove it. 4103 if (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) { 4104 // We know there are no successors, so just nuke the block. 4105 BB->eraseFromParent(); 4106 if (LoopHeaders) 4107 LoopHeaders->erase(BB); 4108 return true; 4109 } 4110 4111 return Changed; 4112 } 4113 4114 static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) { 4115 assert(Cases.size() >= 1); 4116 4117 array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate); 4118 for (size_t I = 1, E = Cases.size(); I != E; ++I) { 4119 if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1) 4120 return false; 4121 } 4122 return true; 4123 } 4124 4125 /// Turn a switch with two reachable destinations into an integer range 4126 /// comparison and branch. 4127 static bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder) { 4128 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 4129 4130 bool HasDefault = 4131 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 4132 4133 // Partition the cases into two sets with different destinations. 4134 BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr; 4135 BasicBlock *DestB = nullptr; 4136 SmallVector<ConstantInt *, 16> CasesA; 4137 SmallVector<ConstantInt *, 16> CasesB; 4138 4139 for (SwitchInst::CaseIt I : SI->cases()) { 4140 BasicBlock *Dest = I.getCaseSuccessor(); 4141 if (!DestA) 4142 DestA = Dest; 4143 if (Dest == DestA) { 4144 CasesA.push_back(I.getCaseValue()); 4145 continue; 4146 } 4147 if (!DestB) 4148 DestB = Dest; 4149 if (Dest == DestB) { 4150 CasesB.push_back(I.getCaseValue()); 4151 continue; 4152 } 4153 return false; // More than two destinations. 4154 } 4155 4156 assert(DestA && DestB && 4157 "Single-destination switch should have been folded."); 4158 assert(DestA != DestB); 4159 assert(DestB != SI->getDefaultDest()); 4160 assert(!CasesB.empty() && "There must be non-default cases."); 4161 assert(!CasesA.empty() || HasDefault); 4162 4163 // Figure out if one of the sets of cases form a contiguous range. 4164 SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr; 4165 BasicBlock *ContiguousDest = nullptr; 4166 BasicBlock *OtherDest = nullptr; 4167 if (!CasesA.empty() && CasesAreContiguous(CasesA)) { 4168 ContiguousCases = &CasesA; 4169 ContiguousDest = DestA; 4170 OtherDest = DestB; 4171 } else if (CasesAreContiguous(CasesB)) { 4172 ContiguousCases = &CasesB; 4173 ContiguousDest = DestB; 4174 OtherDest = DestA; 4175 } else 4176 return false; 4177 4178 // Start building the compare and branch. 4179 4180 Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back()); 4181 Constant *NumCases = 4182 ConstantInt::get(Offset->getType(), ContiguousCases->size()); 4183 4184 Value *Sub = SI->getCondition(); 4185 if (!Offset->isNullValue()) 4186 Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off"); 4187 4188 Value *Cmp; 4189 // If NumCases overflowed, then all possible values jump to the successor. 4190 if (NumCases->isNullValue() && !ContiguousCases->empty()) 4191 Cmp = ConstantInt::getTrue(SI->getContext()); 4192 else 4193 Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch"); 4194 BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest); 4195 4196 // Update weight for the newly-created conditional branch. 4197 if (HasBranchWeights(SI)) { 4198 SmallVector<uint64_t, 8> Weights; 4199 GetBranchWeights(SI, Weights); 4200 if (Weights.size() == 1 + SI->getNumCases()) { 4201 uint64_t TrueWeight = 0; 4202 uint64_t FalseWeight = 0; 4203 for (size_t I = 0, E = Weights.size(); I != E; ++I) { 4204 if (SI->getSuccessor(I) == ContiguousDest) 4205 TrueWeight += Weights[I]; 4206 else 4207 FalseWeight += Weights[I]; 4208 } 4209 while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) { 4210 TrueWeight /= 2; 4211 FalseWeight /= 2; 4212 } 4213 NewBI->setMetadata(LLVMContext::MD_prof, 4214 MDBuilder(SI->getContext()) 4215 .createBranchWeights((uint32_t)TrueWeight, 4216 (uint32_t)FalseWeight)); 4217 } 4218 } 4219 4220 // Prune obsolete incoming values off the successors' PHI nodes. 4221 for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) { 4222 unsigned PreviousEdges = ContiguousCases->size(); 4223 if (ContiguousDest == SI->getDefaultDest()) 4224 ++PreviousEdges; 4225 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I) 4226 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 4227 } 4228 for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) { 4229 unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size(); 4230 if (OtherDest == SI->getDefaultDest()) 4231 ++PreviousEdges; 4232 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I) 4233 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 4234 } 4235 4236 // Drop the switch. 4237 SI->eraseFromParent(); 4238 4239 return true; 4240 } 4241 4242 /// Compute masked bits for the condition of a switch 4243 /// and use it to remove dead cases. 4244 static bool EliminateDeadSwitchCases(SwitchInst *SI, AssumptionCache *AC, 4245 const DataLayout &DL) { 4246 Value *Cond = SI->getCondition(); 4247 unsigned Bits = Cond->getType()->getIntegerBitWidth(); 4248 APInt KnownZero(Bits, 0), KnownOne(Bits, 0); 4249 computeKnownBits(Cond, KnownZero, KnownOne, DL, 0, AC, SI); 4250 4251 // We can also eliminate cases by determining that their values are outside of 4252 // the limited range of the condition based on how many significant (non-sign) 4253 // bits are in the condition value. 4254 unsigned ExtraSignBits = ComputeNumSignBits(Cond, DL, 0, AC, SI) - 1; 4255 unsigned MaxSignificantBitsInCond = Bits - ExtraSignBits; 4256 4257 // Gather dead cases. 4258 SmallVector<ConstantInt *, 8> DeadCases; 4259 for (auto &Case : SI->cases()) { 4260 APInt CaseVal = Case.getCaseValue()->getValue(); 4261 if ((CaseVal & KnownZero) != 0 || (CaseVal & KnownOne) != KnownOne || 4262 (CaseVal.getMinSignedBits() > MaxSignificantBitsInCond)) { 4263 DeadCases.push_back(Case.getCaseValue()); 4264 DEBUG(dbgs() << "SimplifyCFG: switch case " << CaseVal << " is dead.\n"); 4265 } 4266 } 4267 4268 // If we can prove that the cases must cover all possible values, the 4269 // default destination becomes dead and we can remove it. If we know some 4270 // of the bits in the value, we can use that to more precisely compute the 4271 // number of possible unique case values. 4272 bool HasDefault = 4273 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 4274 const unsigned NumUnknownBits = 4275 Bits - (KnownZero.Or(KnownOne)).countPopulation(); 4276 assert(NumUnknownBits <= Bits); 4277 if (HasDefault && DeadCases.empty() && 4278 NumUnknownBits < 64 /* avoid overflow */ && 4279 SI->getNumCases() == (1ULL << NumUnknownBits)) { 4280 DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n"); 4281 BasicBlock *NewDefault = 4282 SplitBlockPredecessors(SI->getDefaultDest(), SI->getParent(), ""); 4283 SI->setDefaultDest(&*NewDefault); 4284 SplitBlock(&*NewDefault, &NewDefault->front()); 4285 auto *OldTI = NewDefault->getTerminator(); 4286 new UnreachableInst(SI->getContext(), OldTI); 4287 EraseTerminatorInstAndDCECond(OldTI); 4288 return true; 4289 } 4290 4291 SmallVector<uint64_t, 8> Weights; 4292 bool HasWeight = HasBranchWeights(SI); 4293 if (HasWeight) { 4294 GetBranchWeights(SI, Weights); 4295 HasWeight = (Weights.size() == 1 + SI->getNumCases()); 4296 } 4297 4298 // Remove dead cases from the switch. 4299 for (ConstantInt *DeadCase : DeadCases) { 4300 SwitchInst::CaseIt Case = SI->findCaseValue(DeadCase); 4301 assert(Case != SI->case_default() && 4302 "Case was not found. Probably mistake in DeadCases forming."); 4303 if (HasWeight) { 4304 std::swap(Weights[Case.getCaseIndex() + 1], Weights.back()); 4305 Weights.pop_back(); 4306 } 4307 4308 // Prune unused values from PHI nodes. 4309 Case.getCaseSuccessor()->removePredecessor(SI->getParent()); 4310 SI->removeCase(Case); 4311 } 4312 if (HasWeight && Weights.size() >= 2) { 4313 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 4314 SI->setMetadata(LLVMContext::MD_prof, 4315 MDBuilder(SI->getParent()->getContext()) 4316 .createBranchWeights(MDWeights)); 4317 } 4318 4319 return !DeadCases.empty(); 4320 } 4321 4322 /// If BB would be eligible for simplification by 4323 /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated 4324 /// by an unconditional branch), look at the phi node for BB in the successor 4325 /// block and see if the incoming value is equal to CaseValue. If so, return 4326 /// the phi node, and set PhiIndex to BB's index in the phi node. 4327 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue, 4328 BasicBlock *BB, int *PhiIndex) { 4329 if (BB->getFirstNonPHIOrDbg() != BB->getTerminator()) 4330 return nullptr; // BB must be empty to be a candidate for simplification. 4331 if (!BB->getSinglePredecessor()) 4332 return nullptr; // BB must be dominated by the switch. 4333 4334 BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator()); 4335 if (!Branch || !Branch->isUnconditional()) 4336 return nullptr; // Terminator must be unconditional branch. 4337 4338 BasicBlock *Succ = Branch->getSuccessor(0); 4339 4340 BasicBlock::iterator I = Succ->begin(); 4341 while (PHINode *PHI = dyn_cast<PHINode>(I++)) { 4342 int Idx = PHI->getBasicBlockIndex(BB); 4343 assert(Idx >= 0 && "PHI has no entry for predecessor?"); 4344 4345 Value *InValue = PHI->getIncomingValue(Idx); 4346 if (InValue != CaseValue) 4347 continue; 4348 4349 *PhiIndex = Idx; 4350 return PHI; 4351 } 4352 4353 return nullptr; 4354 } 4355 4356 /// Try to forward the condition of a switch instruction to a phi node 4357 /// dominated by the switch, if that would mean that some of the destination 4358 /// blocks of the switch can be folded away. 4359 /// Returns true if a change is made. 4360 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) { 4361 typedef DenseMap<PHINode *, SmallVector<int, 4>> ForwardingNodesMap; 4362 ForwardingNodesMap ForwardingNodes; 4363 4364 for (SwitchInst::CaseIt I = SI->case_begin(), E = SI->case_end(); I != E; 4365 ++I) { 4366 ConstantInt *CaseValue = I.getCaseValue(); 4367 BasicBlock *CaseDest = I.getCaseSuccessor(); 4368 4369 int PhiIndex; 4370 PHINode *PHI = 4371 FindPHIForConditionForwarding(CaseValue, CaseDest, &PhiIndex); 4372 if (!PHI) 4373 continue; 4374 4375 ForwardingNodes[PHI].push_back(PhiIndex); 4376 } 4377 4378 bool Changed = false; 4379 4380 for (ForwardingNodesMap::iterator I = ForwardingNodes.begin(), 4381 E = ForwardingNodes.end(); 4382 I != E; ++I) { 4383 PHINode *Phi = I->first; 4384 SmallVectorImpl<int> &Indexes = I->second; 4385 4386 if (Indexes.size() < 2) 4387 continue; 4388 4389 for (size_t I = 0, E = Indexes.size(); I != E; ++I) 4390 Phi->setIncomingValue(Indexes[I], SI->getCondition()); 4391 Changed = true; 4392 } 4393 4394 return Changed; 4395 } 4396 4397 /// Return true if the backend will be able to handle 4398 /// initializing an array of constants like C. 4399 static bool ValidLookupTableConstant(Constant *C) { 4400 if (C->isThreadDependent()) 4401 return false; 4402 if (C->isDLLImportDependent()) 4403 return false; 4404 4405 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) 4406 return CE->isGEPWithNoNotionalOverIndexing(); 4407 4408 return isa<ConstantFP>(C) || isa<ConstantInt>(C) || 4409 isa<ConstantPointerNull>(C) || isa<GlobalValue>(C) || 4410 isa<UndefValue>(C); 4411 } 4412 4413 /// If V is a Constant, return it. Otherwise, try to look up 4414 /// its constant value in ConstantPool, returning 0 if it's not there. 4415 static Constant * 4416 LookupConstant(Value *V, 4417 const SmallDenseMap<Value *, Constant *> &ConstantPool) { 4418 if (Constant *C = dyn_cast<Constant>(V)) 4419 return C; 4420 return ConstantPool.lookup(V); 4421 } 4422 4423 /// Try to fold instruction I into a constant. This works for 4424 /// simple instructions such as binary operations where both operands are 4425 /// constant or can be replaced by constants from the ConstantPool. Returns the 4426 /// resulting constant on success, 0 otherwise. 4427 static Constant * 4428 ConstantFold(Instruction *I, const DataLayout &DL, 4429 const SmallDenseMap<Value *, Constant *> &ConstantPool) { 4430 if (SelectInst *Select = dyn_cast<SelectInst>(I)) { 4431 Constant *A = LookupConstant(Select->getCondition(), ConstantPool); 4432 if (!A) 4433 return nullptr; 4434 if (A->isAllOnesValue()) 4435 return LookupConstant(Select->getTrueValue(), ConstantPool); 4436 if (A->isNullValue()) 4437 return LookupConstant(Select->getFalseValue(), ConstantPool); 4438 return nullptr; 4439 } 4440 4441 SmallVector<Constant *, 4> COps; 4442 for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) { 4443 if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool)) 4444 COps.push_back(A); 4445 else 4446 return nullptr; 4447 } 4448 4449 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) { 4450 return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0], 4451 COps[1], DL); 4452 } 4453 4454 return ConstantFoldInstOperands(I, COps, DL); 4455 } 4456 4457 /// Try to determine the resulting constant values in phi nodes 4458 /// at the common destination basic block, *CommonDest, for one of the case 4459 /// destionations CaseDest corresponding to value CaseVal (0 for the default 4460 /// case), of a switch instruction SI. 4461 static bool 4462 GetCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest, 4463 BasicBlock **CommonDest, 4464 SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res, 4465 const DataLayout &DL) { 4466 // The block from which we enter the common destination. 4467 BasicBlock *Pred = SI->getParent(); 4468 4469 // If CaseDest is empty except for some side-effect free instructions through 4470 // which we can constant-propagate the CaseVal, continue to its successor. 4471 SmallDenseMap<Value *, Constant *> ConstantPool; 4472 ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal)); 4473 for (BasicBlock::iterator I = CaseDest->begin(), E = CaseDest->end(); I != E; 4474 ++I) { 4475 if (TerminatorInst *T = dyn_cast<TerminatorInst>(I)) { 4476 // If the terminator is a simple branch, continue to the next block. 4477 if (T->getNumSuccessors() != 1) 4478 return false; 4479 Pred = CaseDest; 4480 CaseDest = T->getSuccessor(0); 4481 } else if (isa<DbgInfoIntrinsic>(I)) { 4482 // Skip debug intrinsic. 4483 continue; 4484 } else if (Constant *C = ConstantFold(&*I, DL, ConstantPool)) { 4485 // Instruction is side-effect free and constant. 4486 4487 // If the instruction has uses outside this block or a phi node slot for 4488 // the block, it is not safe to bypass the instruction since it would then 4489 // no longer dominate all its uses. 4490 for (auto &Use : I->uses()) { 4491 User *User = Use.getUser(); 4492 if (Instruction *I = dyn_cast<Instruction>(User)) 4493 if (I->getParent() == CaseDest) 4494 continue; 4495 if (PHINode *Phi = dyn_cast<PHINode>(User)) 4496 if (Phi->getIncomingBlock(Use) == CaseDest) 4497 continue; 4498 return false; 4499 } 4500 4501 ConstantPool.insert(std::make_pair(&*I, C)); 4502 } else { 4503 break; 4504 } 4505 } 4506 4507 // If we did not have a CommonDest before, use the current one. 4508 if (!*CommonDest) 4509 *CommonDest = CaseDest; 4510 // If the destination isn't the common one, abort. 4511 if (CaseDest != *CommonDest) 4512 return false; 4513 4514 // Get the values for this case from phi nodes in the destination block. 4515 BasicBlock::iterator I = (*CommonDest)->begin(); 4516 while (PHINode *PHI = dyn_cast<PHINode>(I++)) { 4517 int Idx = PHI->getBasicBlockIndex(Pred); 4518 if (Idx == -1) 4519 continue; 4520 4521 Constant *ConstVal = 4522 LookupConstant(PHI->getIncomingValue(Idx), ConstantPool); 4523 if (!ConstVal) 4524 return false; 4525 4526 // Be conservative about which kinds of constants we support. 4527 if (!ValidLookupTableConstant(ConstVal)) 4528 return false; 4529 4530 Res.push_back(std::make_pair(PHI, ConstVal)); 4531 } 4532 4533 return Res.size() > 0; 4534 } 4535 4536 // Helper function used to add CaseVal to the list of cases that generate 4537 // Result. 4538 static void MapCaseToResult(ConstantInt *CaseVal, 4539 SwitchCaseResultVectorTy &UniqueResults, 4540 Constant *Result) { 4541 for (auto &I : UniqueResults) { 4542 if (I.first == Result) { 4543 I.second.push_back(CaseVal); 4544 return; 4545 } 4546 } 4547 UniqueResults.push_back( 4548 std::make_pair(Result, SmallVector<ConstantInt *, 4>(1, CaseVal))); 4549 } 4550 4551 // Helper function that initializes a map containing 4552 // results for the PHI node of the common destination block for a switch 4553 // instruction. Returns false if multiple PHI nodes have been found or if 4554 // there is not a common destination block for the switch. 4555 static bool InitializeUniqueCases(SwitchInst *SI, PHINode *&PHI, 4556 BasicBlock *&CommonDest, 4557 SwitchCaseResultVectorTy &UniqueResults, 4558 Constant *&DefaultResult, 4559 const DataLayout &DL) { 4560 for (auto &I : SI->cases()) { 4561 ConstantInt *CaseVal = I.getCaseValue(); 4562 4563 // Resulting value at phi nodes for this case value. 4564 SwitchCaseResultsTy Results; 4565 if (!GetCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results, 4566 DL)) 4567 return false; 4568 4569 // Only one value per case is permitted 4570 if (Results.size() > 1) 4571 return false; 4572 MapCaseToResult(CaseVal, UniqueResults, Results.begin()->second); 4573 4574 // Check the PHI consistency. 4575 if (!PHI) 4576 PHI = Results[0].first; 4577 else if (PHI != Results[0].first) 4578 return false; 4579 } 4580 // Find the default result value. 4581 SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults; 4582 BasicBlock *DefaultDest = SI->getDefaultDest(); 4583 GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults, 4584 DL); 4585 // If the default value is not found abort unless the default destination 4586 // is unreachable. 4587 DefaultResult = 4588 DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr; 4589 if ((!DefaultResult && 4590 !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()))) 4591 return false; 4592 4593 return true; 4594 } 4595 4596 // Helper function that checks if it is possible to transform a switch with only 4597 // two cases (or two cases + default) that produces a result into a select. 4598 // Example: 4599 // switch (a) { 4600 // case 10: %0 = icmp eq i32 %a, 10 4601 // return 10; %1 = select i1 %0, i32 10, i32 4 4602 // case 20: ----> %2 = icmp eq i32 %a, 20 4603 // return 2; %3 = select i1 %2, i32 2, i32 %1 4604 // default: 4605 // return 4; 4606 // } 4607 static Value *ConvertTwoCaseSwitch(const SwitchCaseResultVectorTy &ResultVector, 4608 Constant *DefaultResult, Value *Condition, 4609 IRBuilder<> &Builder) { 4610 assert(ResultVector.size() == 2 && 4611 "We should have exactly two unique results at this point"); 4612 // If we are selecting between only two cases transform into a simple 4613 // select or a two-way select if default is possible. 4614 if (ResultVector[0].second.size() == 1 && 4615 ResultVector[1].second.size() == 1) { 4616 ConstantInt *const FirstCase = ResultVector[0].second[0]; 4617 ConstantInt *const SecondCase = ResultVector[1].second[0]; 4618 4619 bool DefaultCanTrigger = DefaultResult; 4620 Value *SelectValue = ResultVector[1].first; 4621 if (DefaultCanTrigger) { 4622 Value *const ValueCompare = 4623 Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp"); 4624 SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first, 4625 DefaultResult, "switch.select"); 4626 } 4627 Value *const ValueCompare = 4628 Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp"); 4629 return Builder.CreateSelect(ValueCompare, ResultVector[0].first, 4630 SelectValue, "switch.select"); 4631 } 4632 4633 return nullptr; 4634 } 4635 4636 // Helper function to cleanup a switch instruction that has been converted into 4637 // a select, fixing up PHI nodes and basic blocks. 4638 static void RemoveSwitchAfterSelectConversion(SwitchInst *SI, PHINode *PHI, 4639 Value *SelectValue, 4640 IRBuilder<> &Builder) { 4641 BasicBlock *SelectBB = SI->getParent(); 4642 while (PHI->getBasicBlockIndex(SelectBB) >= 0) 4643 PHI->removeIncomingValue(SelectBB); 4644 PHI->addIncoming(SelectValue, SelectBB); 4645 4646 Builder.CreateBr(PHI->getParent()); 4647 4648 // Remove the switch. 4649 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { 4650 BasicBlock *Succ = SI->getSuccessor(i); 4651 4652 if (Succ == PHI->getParent()) 4653 continue; 4654 Succ->removePredecessor(SelectBB); 4655 } 4656 SI->eraseFromParent(); 4657 } 4658 4659 /// If the switch is only used to initialize one or more 4660 /// phi nodes in a common successor block with only two different 4661 /// constant values, replace the switch with select. 4662 static bool SwitchToSelect(SwitchInst *SI, IRBuilder<> &Builder, 4663 AssumptionCache *AC, const DataLayout &DL) { 4664 Value *const Cond = SI->getCondition(); 4665 PHINode *PHI = nullptr; 4666 BasicBlock *CommonDest = nullptr; 4667 Constant *DefaultResult; 4668 SwitchCaseResultVectorTy UniqueResults; 4669 // Collect all the cases that will deliver the same value from the switch. 4670 if (!InitializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult, 4671 DL)) 4672 return false; 4673 // Selects choose between maximum two values. 4674 if (UniqueResults.size() != 2) 4675 return false; 4676 assert(PHI != nullptr && "PHI for value select not found"); 4677 4678 Builder.SetInsertPoint(SI); 4679 Value *SelectValue = 4680 ConvertTwoCaseSwitch(UniqueResults, DefaultResult, Cond, Builder); 4681 if (SelectValue) { 4682 RemoveSwitchAfterSelectConversion(SI, PHI, SelectValue, Builder); 4683 return true; 4684 } 4685 // The switch couldn't be converted into a select. 4686 return false; 4687 } 4688 4689 namespace { 4690 /// This class represents a lookup table that can be used to replace a switch. 4691 class SwitchLookupTable { 4692 public: 4693 /// Create a lookup table to use as a switch replacement with the contents 4694 /// of Values, using DefaultValue to fill any holes in the table. 4695 SwitchLookupTable( 4696 Module &M, uint64_t TableSize, ConstantInt *Offset, 4697 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values, 4698 Constant *DefaultValue, const DataLayout &DL); 4699 4700 /// Build instructions with Builder to retrieve the value at 4701 /// the position given by Index in the lookup table. 4702 Value *BuildLookup(Value *Index, IRBuilder<> &Builder); 4703 4704 /// Return true if a table with TableSize elements of 4705 /// type ElementType would fit in a target-legal register. 4706 static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize, 4707 Type *ElementType); 4708 4709 private: 4710 // Depending on the contents of the table, it can be represented in 4711 // different ways. 4712 enum { 4713 // For tables where each element contains the same value, we just have to 4714 // store that single value and return it for each lookup. 4715 SingleValueKind, 4716 4717 // For tables where there is a linear relationship between table index 4718 // and values. We calculate the result with a simple multiplication 4719 // and addition instead of a table lookup. 4720 LinearMapKind, 4721 4722 // For small tables with integer elements, we can pack them into a bitmap 4723 // that fits into a target-legal register. Values are retrieved by 4724 // shift and mask operations. 4725 BitMapKind, 4726 4727 // The table is stored as an array of values. Values are retrieved by load 4728 // instructions from the table. 4729 ArrayKind 4730 } Kind; 4731 4732 // For SingleValueKind, this is the single value. 4733 Constant *SingleValue; 4734 4735 // For BitMapKind, this is the bitmap. 4736 ConstantInt *BitMap; 4737 IntegerType *BitMapElementTy; 4738 4739 // For LinearMapKind, these are the constants used to derive the value. 4740 ConstantInt *LinearOffset; 4741 ConstantInt *LinearMultiplier; 4742 4743 // For ArrayKind, this is the array. 4744 GlobalVariable *Array; 4745 }; 4746 } 4747 4748 SwitchLookupTable::SwitchLookupTable( 4749 Module &M, uint64_t TableSize, ConstantInt *Offset, 4750 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values, 4751 Constant *DefaultValue, const DataLayout &DL) 4752 : SingleValue(nullptr), BitMap(nullptr), BitMapElementTy(nullptr), 4753 LinearOffset(nullptr), LinearMultiplier(nullptr), Array(nullptr) { 4754 assert(Values.size() && "Can't build lookup table without values!"); 4755 assert(TableSize >= Values.size() && "Can't fit values in table!"); 4756 4757 // If all values in the table are equal, this is that value. 4758 SingleValue = Values.begin()->second; 4759 4760 Type *ValueType = Values.begin()->second->getType(); 4761 4762 // Build up the table contents. 4763 SmallVector<Constant *, 64> TableContents(TableSize); 4764 for (size_t I = 0, E = Values.size(); I != E; ++I) { 4765 ConstantInt *CaseVal = Values[I].first; 4766 Constant *CaseRes = Values[I].second; 4767 assert(CaseRes->getType() == ValueType); 4768 4769 uint64_t Idx = (CaseVal->getValue() - Offset->getValue()).getLimitedValue(); 4770 TableContents[Idx] = CaseRes; 4771 4772 if (CaseRes != SingleValue) 4773 SingleValue = nullptr; 4774 } 4775 4776 // Fill in any holes in the table with the default result. 4777 if (Values.size() < TableSize) { 4778 assert(DefaultValue && 4779 "Need a default value to fill the lookup table holes."); 4780 assert(DefaultValue->getType() == ValueType); 4781 for (uint64_t I = 0; I < TableSize; ++I) { 4782 if (!TableContents[I]) 4783 TableContents[I] = DefaultValue; 4784 } 4785 4786 if (DefaultValue != SingleValue) 4787 SingleValue = nullptr; 4788 } 4789 4790 // If each element in the table contains the same value, we only need to store 4791 // that single value. 4792 if (SingleValue) { 4793 Kind = SingleValueKind; 4794 return; 4795 } 4796 4797 // Check if we can derive the value with a linear transformation from the 4798 // table index. 4799 if (isa<IntegerType>(ValueType)) { 4800 bool LinearMappingPossible = true; 4801 APInt PrevVal; 4802 APInt DistToPrev; 4803 assert(TableSize >= 2 && "Should be a SingleValue table."); 4804 // Check if there is the same distance between two consecutive values. 4805 for (uint64_t I = 0; I < TableSize; ++I) { 4806 ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]); 4807 if (!ConstVal) { 4808 // This is an undef. We could deal with it, but undefs in lookup tables 4809 // are very seldom. It's probably not worth the additional complexity. 4810 LinearMappingPossible = false; 4811 break; 4812 } 4813 APInt Val = ConstVal->getValue(); 4814 if (I != 0) { 4815 APInt Dist = Val - PrevVal; 4816 if (I == 1) { 4817 DistToPrev = Dist; 4818 } else if (Dist != DistToPrev) { 4819 LinearMappingPossible = false; 4820 break; 4821 } 4822 } 4823 PrevVal = Val; 4824 } 4825 if (LinearMappingPossible) { 4826 LinearOffset = cast<ConstantInt>(TableContents[0]); 4827 LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev); 4828 Kind = LinearMapKind; 4829 ++NumLinearMaps; 4830 return; 4831 } 4832 } 4833 4834 // If the type is integer and the table fits in a register, build a bitmap. 4835 if (WouldFitInRegister(DL, TableSize, ValueType)) { 4836 IntegerType *IT = cast<IntegerType>(ValueType); 4837 APInt TableInt(TableSize * IT->getBitWidth(), 0); 4838 for (uint64_t I = TableSize; I > 0; --I) { 4839 TableInt <<= IT->getBitWidth(); 4840 // Insert values into the bitmap. Undef values are set to zero. 4841 if (!isa<UndefValue>(TableContents[I - 1])) { 4842 ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]); 4843 TableInt |= Val->getValue().zext(TableInt.getBitWidth()); 4844 } 4845 } 4846 BitMap = ConstantInt::get(M.getContext(), TableInt); 4847 BitMapElementTy = IT; 4848 Kind = BitMapKind; 4849 ++NumBitMaps; 4850 return; 4851 } 4852 4853 // Store the table in an array. 4854 ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize); 4855 Constant *Initializer = ConstantArray::get(ArrayTy, TableContents); 4856 4857 Array = new GlobalVariable(M, ArrayTy, /*constant=*/true, 4858 GlobalVariable::PrivateLinkage, Initializer, 4859 "switch.table"); 4860 Array->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); 4861 Kind = ArrayKind; 4862 } 4863 4864 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) { 4865 switch (Kind) { 4866 case SingleValueKind: 4867 return SingleValue; 4868 case LinearMapKind: { 4869 // Derive the result value from the input value. 4870 Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(), 4871 false, "switch.idx.cast"); 4872 if (!LinearMultiplier->isOne()) 4873 Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult"); 4874 if (!LinearOffset->isZero()) 4875 Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset"); 4876 return Result; 4877 } 4878 case BitMapKind: { 4879 // Type of the bitmap (e.g. i59). 4880 IntegerType *MapTy = BitMap->getType(); 4881 4882 // Cast Index to the same type as the bitmap. 4883 // Note: The Index is <= the number of elements in the table, so 4884 // truncating it to the width of the bitmask is safe. 4885 Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast"); 4886 4887 // Multiply the shift amount by the element width. 4888 ShiftAmt = Builder.CreateMul( 4889 ShiftAmt, ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()), 4890 "switch.shiftamt"); 4891 4892 // Shift down. 4893 Value *DownShifted = 4894 Builder.CreateLShr(BitMap, ShiftAmt, "switch.downshift"); 4895 // Mask off. 4896 return Builder.CreateTrunc(DownShifted, BitMapElementTy, "switch.masked"); 4897 } 4898 case ArrayKind: { 4899 // Make sure the table index will not overflow when treated as signed. 4900 IntegerType *IT = cast<IntegerType>(Index->getType()); 4901 uint64_t TableSize = 4902 Array->getInitializer()->getType()->getArrayNumElements(); 4903 if (TableSize > (1ULL << (IT->getBitWidth() - 1))) 4904 Index = Builder.CreateZExt( 4905 Index, IntegerType::get(IT->getContext(), IT->getBitWidth() + 1), 4906 "switch.tableidx.zext"); 4907 4908 Value *GEPIndices[] = {Builder.getInt32(0), Index}; 4909 Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array, 4910 GEPIndices, "switch.gep"); 4911 return Builder.CreateLoad(GEP, "switch.load"); 4912 } 4913 } 4914 llvm_unreachable("Unknown lookup table kind!"); 4915 } 4916 4917 bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL, 4918 uint64_t TableSize, 4919 Type *ElementType) { 4920 auto *IT = dyn_cast<IntegerType>(ElementType); 4921 if (!IT) 4922 return false; 4923 // FIXME: If the type is wider than it needs to be, e.g. i8 but all values 4924 // are <= 15, we could try to narrow the type. 4925 4926 // Avoid overflow, fitsInLegalInteger uses unsigned int for the width. 4927 if (TableSize >= UINT_MAX / IT->getBitWidth()) 4928 return false; 4929 return DL.fitsInLegalInteger(TableSize * IT->getBitWidth()); 4930 } 4931 4932 /// Determine whether a lookup table should be built for this switch, based on 4933 /// the number of cases, size of the table, and the types of the results. 4934 static bool 4935 ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize, 4936 const TargetTransformInfo &TTI, const DataLayout &DL, 4937 const SmallDenseMap<PHINode *, Type *> &ResultTypes) { 4938 if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10) 4939 return false; // TableSize overflowed, or mul below might overflow. 4940 4941 bool AllTablesFitInRegister = true; 4942 bool HasIllegalType = false; 4943 for (const auto &I : ResultTypes) { 4944 Type *Ty = I.second; 4945 4946 // Saturate this flag to true. 4947 HasIllegalType = HasIllegalType || !TTI.isTypeLegal(Ty); 4948 4949 // Saturate this flag to false. 4950 AllTablesFitInRegister = 4951 AllTablesFitInRegister && 4952 SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty); 4953 4954 // If both flags saturate, we're done. NOTE: This *only* works with 4955 // saturating flags, and all flags have to saturate first due to the 4956 // non-deterministic behavior of iterating over a dense map. 4957 if (HasIllegalType && !AllTablesFitInRegister) 4958 break; 4959 } 4960 4961 // If each table would fit in a register, we should build it anyway. 4962 if (AllTablesFitInRegister) 4963 return true; 4964 4965 // Don't build a table that doesn't fit in-register if it has illegal types. 4966 if (HasIllegalType) 4967 return false; 4968 4969 // The table density should be at least 40%. This is the same criterion as for 4970 // jump tables, see SelectionDAGBuilder::handleJTSwitchCase. 4971 // FIXME: Find the best cut-off. 4972 return SI->getNumCases() * 10 >= TableSize * 4; 4973 } 4974 4975 /// Try to reuse the switch table index compare. Following pattern: 4976 /// \code 4977 /// if (idx < tablesize) 4978 /// r = table[idx]; // table does not contain default_value 4979 /// else 4980 /// r = default_value; 4981 /// if (r != default_value) 4982 /// ... 4983 /// \endcode 4984 /// Is optimized to: 4985 /// \code 4986 /// cond = idx < tablesize; 4987 /// if (cond) 4988 /// r = table[idx]; 4989 /// else 4990 /// r = default_value; 4991 /// if (cond) 4992 /// ... 4993 /// \endcode 4994 /// Jump threading will then eliminate the second if(cond). 4995 static void reuseTableCompare( 4996 User *PhiUser, BasicBlock *PhiBlock, BranchInst *RangeCheckBranch, 4997 Constant *DefaultValue, 4998 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values) { 4999 5000 ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser); 5001 if (!CmpInst) 5002 return; 5003 5004 // We require that the compare is in the same block as the phi so that jump 5005 // threading can do its work afterwards. 5006 if (CmpInst->getParent() != PhiBlock) 5007 return; 5008 5009 Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1)); 5010 if (!CmpOp1) 5011 return; 5012 5013 Value *RangeCmp = RangeCheckBranch->getCondition(); 5014 Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType()); 5015 Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType()); 5016 5017 // Check if the compare with the default value is constant true or false. 5018 Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(), 5019 DefaultValue, CmpOp1, true); 5020 if (DefaultConst != TrueConst && DefaultConst != FalseConst) 5021 return; 5022 5023 // Check if the compare with the case values is distinct from the default 5024 // compare result. 5025 for (auto ValuePair : Values) { 5026 Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(), 5027 ValuePair.second, CmpOp1, true); 5028 if (!CaseConst || CaseConst == DefaultConst) 5029 return; 5030 assert((CaseConst == TrueConst || CaseConst == FalseConst) && 5031 "Expect true or false as compare result."); 5032 } 5033 5034 // Check if the branch instruction dominates the phi node. It's a simple 5035 // dominance check, but sufficient for our needs. 5036 // Although this check is invariant in the calling loops, it's better to do it 5037 // at this late stage. Practically we do it at most once for a switch. 5038 BasicBlock *BranchBlock = RangeCheckBranch->getParent(); 5039 for (auto PI = pred_begin(PhiBlock), E = pred_end(PhiBlock); PI != E; ++PI) { 5040 BasicBlock *Pred = *PI; 5041 if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock) 5042 return; 5043 } 5044 5045 if (DefaultConst == FalseConst) { 5046 // The compare yields the same result. We can replace it. 5047 CmpInst->replaceAllUsesWith(RangeCmp); 5048 ++NumTableCmpReuses; 5049 } else { 5050 // The compare yields the same result, just inverted. We can replace it. 5051 Value *InvertedTableCmp = BinaryOperator::CreateXor( 5052 RangeCmp, ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp", 5053 RangeCheckBranch); 5054 CmpInst->replaceAllUsesWith(InvertedTableCmp); 5055 ++NumTableCmpReuses; 5056 } 5057 } 5058 5059 /// If the switch is only used to initialize one or more phi nodes in a common 5060 /// successor block with different constant values, replace the switch with 5061 /// lookup tables. 5062 static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder, 5063 const DataLayout &DL, 5064 const TargetTransformInfo &TTI) { 5065 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 5066 5067 // Only build lookup table when we have a target that supports it. 5068 if (!TTI.shouldBuildLookupTables()) 5069 return false; 5070 5071 // FIXME: If the switch is too sparse for a lookup table, perhaps we could 5072 // split off a dense part and build a lookup table for that. 5073 5074 // FIXME: This creates arrays of GEPs to constant strings, which means each 5075 // GEP needs a runtime relocation in PIC code. We should just build one big 5076 // string and lookup indices into that. 5077 5078 // Ignore switches with less than three cases. Lookup tables will not make 5079 // them 5080 // faster, so we don't analyze them. 5081 if (SI->getNumCases() < 3) 5082 return false; 5083 5084 // Figure out the corresponding result for each case value and phi node in the 5085 // common destination, as well as the min and max case values. 5086 assert(SI->case_begin() != SI->case_end()); 5087 SwitchInst::CaseIt CI = SI->case_begin(); 5088 ConstantInt *MinCaseVal = CI.getCaseValue(); 5089 ConstantInt *MaxCaseVal = CI.getCaseValue(); 5090 5091 BasicBlock *CommonDest = nullptr; 5092 typedef SmallVector<std::pair<ConstantInt *, Constant *>, 4> ResultListTy; 5093 SmallDenseMap<PHINode *, ResultListTy> ResultLists; 5094 SmallDenseMap<PHINode *, Constant *> DefaultResults; 5095 SmallDenseMap<PHINode *, Type *> ResultTypes; 5096 SmallVector<PHINode *, 4> PHIs; 5097 5098 for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) { 5099 ConstantInt *CaseVal = CI.getCaseValue(); 5100 if (CaseVal->getValue().slt(MinCaseVal->getValue())) 5101 MinCaseVal = CaseVal; 5102 if (CaseVal->getValue().sgt(MaxCaseVal->getValue())) 5103 MaxCaseVal = CaseVal; 5104 5105 // Resulting value at phi nodes for this case value. 5106 typedef SmallVector<std::pair<PHINode *, Constant *>, 4> ResultsTy; 5107 ResultsTy Results; 5108 if (!GetCaseResults(SI, CaseVal, CI.getCaseSuccessor(), &CommonDest, 5109 Results, DL)) 5110 return false; 5111 5112 // Append the result from this case to the list for each phi. 5113 for (const auto &I : Results) { 5114 PHINode *PHI = I.first; 5115 Constant *Value = I.second; 5116 if (!ResultLists.count(PHI)) 5117 PHIs.push_back(PHI); 5118 ResultLists[PHI].push_back(std::make_pair(CaseVal, Value)); 5119 } 5120 } 5121 5122 // Keep track of the result types. 5123 for (PHINode *PHI : PHIs) { 5124 ResultTypes[PHI] = ResultLists[PHI][0].second->getType(); 5125 } 5126 5127 uint64_t NumResults = ResultLists[PHIs[0]].size(); 5128 APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue(); 5129 uint64_t TableSize = RangeSpread.getLimitedValue() + 1; 5130 bool TableHasHoles = (NumResults < TableSize); 5131 5132 // If the table has holes, we need a constant result for the default case 5133 // or a bitmask that fits in a register. 5134 SmallVector<std::pair<PHINode *, Constant *>, 4> DefaultResultsList; 5135 bool HasDefaultResults = GetCaseResults(SI, nullptr, SI->getDefaultDest(), 5136 &CommonDest, DefaultResultsList, DL); 5137 5138 bool NeedMask = (TableHasHoles && !HasDefaultResults); 5139 if (NeedMask) { 5140 // As an extra penalty for the validity test we require more cases. 5141 if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark). 5142 return false; 5143 if (!DL.fitsInLegalInteger(TableSize)) 5144 return false; 5145 } 5146 5147 for (const auto &I : DefaultResultsList) { 5148 PHINode *PHI = I.first; 5149 Constant *Result = I.second; 5150 DefaultResults[PHI] = Result; 5151 } 5152 5153 if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes)) 5154 return false; 5155 5156 // Create the BB that does the lookups. 5157 Module &Mod = *CommonDest->getParent()->getParent(); 5158 BasicBlock *LookupBB = BasicBlock::Create( 5159 Mod.getContext(), "switch.lookup", CommonDest->getParent(), CommonDest); 5160 5161 // Compute the table index value. 5162 Builder.SetInsertPoint(SI); 5163 Value *TableIndex = 5164 Builder.CreateSub(SI->getCondition(), MinCaseVal, "switch.tableidx"); 5165 5166 // Compute the maximum table size representable by the integer type we are 5167 // switching upon. 5168 unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits(); 5169 uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize; 5170 assert(MaxTableSize >= TableSize && 5171 "It is impossible for a switch to have more entries than the max " 5172 "representable value of its input integer type's size."); 5173 5174 // If the default destination is unreachable, or if the lookup table covers 5175 // all values of the conditional variable, branch directly to the lookup table 5176 // BB. Otherwise, check that the condition is within the case range. 5177 const bool DefaultIsReachable = 5178 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 5179 const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize); 5180 BranchInst *RangeCheckBranch = nullptr; 5181 5182 if (!DefaultIsReachable || GeneratingCoveredLookupTable) { 5183 Builder.CreateBr(LookupBB); 5184 // Note: We call removeProdecessor later since we need to be able to get the 5185 // PHI value for the default case in case we're using a bit mask. 5186 } else { 5187 Value *Cmp = Builder.CreateICmpULT( 5188 TableIndex, ConstantInt::get(MinCaseVal->getType(), TableSize)); 5189 RangeCheckBranch = 5190 Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest()); 5191 } 5192 5193 // Populate the BB that does the lookups. 5194 Builder.SetInsertPoint(LookupBB); 5195 5196 if (NeedMask) { 5197 // Before doing the lookup we do the hole check. 5198 // The LookupBB is therefore re-purposed to do the hole check 5199 // and we create a new LookupBB. 5200 BasicBlock *MaskBB = LookupBB; 5201 MaskBB->setName("switch.hole_check"); 5202 LookupBB = BasicBlock::Create(Mod.getContext(), "switch.lookup", 5203 CommonDest->getParent(), CommonDest); 5204 5205 // Make the mask's bitwidth at least 8bit and a power-of-2 to avoid 5206 // unnecessary illegal types. 5207 uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL)); 5208 APInt MaskInt(TableSizePowOf2, 0); 5209 APInt One(TableSizePowOf2, 1); 5210 // Build bitmask; fill in a 1 bit for every case. 5211 const ResultListTy &ResultList = ResultLists[PHIs[0]]; 5212 for (size_t I = 0, E = ResultList.size(); I != E; ++I) { 5213 uint64_t Idx = (ResultList[I].first->getValue() - MinCaseVal->getValue()) 5214 .getLimitedValue(); 5215 MaskInt |= One << Idx; 5216 } 5217 ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt); 5218 5219 // Get the TableIndex'th bit of the bitmask. 5220 // If this bit is 0 (meaning hole) jump to the default destination, 5221 // else continue with table lookup. 5222 IntegerType *MapTy = TableMask->getType(); 5223 Value *MaskIndex = 5224 Builder.CreateZExtOrTrunc(TableIndex, MapTy, "switch.maskindex"); 5225 Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, "switch.shifted"); 5226 Value *LoBit = Builder.CreateTrunc( 5227 Shifted, Type::getInt1Ty(Mod.getContext()), "switch.lobit"); 5228 Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest()); 5229 5230 Builder.SetInsertPoint(LookupBB); 5231 AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, SI->getParent()); 5232 } 5233 5234 if (!DefaultIsReachable || GeneratingCoveredLookupTable) { 5235 // We cached PHINodes in PHIs, to avoid accessing deleted PHINodes later, 5236 // do not delete PHINodes here. 5237 SI->getDefaultDest()->removePredecessor(SI->getParent(), 5238 /*DontDeleteUselessPHIs=*/true); 5239 } 5240 5241 bool ReturnedEarly = false; 5242 for (size_t I = 0, E = PHIs.size(); I != E; ++I) { 5243 PHINode *PHI = PHIs[I]; 5244 const ResultListTy &ResultList = ResultLists[PHI]; 5245 5246 // If using a bitmask, use any value to fill the lookup table holes. 5247 Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI]; 5248 SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultList, DV, DL); 5249 5250 Value *Result = Table.BuildLookup(TableIndex, Builder); 5251 5252 // If the result is used to return immediately from the function, we want to 5253 // do that right here. 5254 if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->user_begin()) && 5255 PHI->user_back() == CommonDest->getFirstNonPHIOrDbg()) { 5256 Builder.CreateRet(Result); 5257 ReturnedEarly = true; 5258 break; 5259 } 5260 5261 // Do a small peephole optimization: re-use the switch table compare if 5262 // possible. 5263 if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) { 5264 BasicBlock *PhiBlock = PHI->getParent(); 5265 // Search for compare instructions which use the phi. 5266 for (auto *User : PHI->users()) { 5267 reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList); 5268 } 5269 } 5270 5271 PHI->addIncoming(Result, LookupBB); 5272 } 5273 5274 if (!ReturnedEarly) 5275 Builder.CreateBr(CommonDest); 5276 5277 // Remove the switch. 5278 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { 5279 BasicBlock *Succ = SI->getSuccessor(i); 5280 5281 if (Succ == SI->getDefaultDest()) 5282 continue; 5283 Succ->removePredecessor(SI->getParent()); 5284 } 5285 SI->eraseFromParent(); 5286 5287 ++NumLookupTables; 5288 if (NeedMask) 5289 ++NumLookupTablesHoles; 5290 return true; 5291 } 5292 5293 static bool isSwitchDense(ArrayRef<int64_t> Values) { 5294 // See also SelectionDAGBuilder::isDense(), which this function was based on. 5295 uint64_t Diff = (uint64_t)Values.back() - (uint64_t)Values.front(); 5296 uint64_t Range = Diff + 1; 5297 uint64_t NumCases = Values.size(); 5298 // 40% is the default density for building a jump table in optsize/minsize mode. 5299 uint64_t MinDensity = 40; 5300 5301 return NumCases * 100 >= Range * MinDensity; 5302 } 5303 5304 // Try and transform a switch that has "holes" in it to a contiguous sequence 5305 // of cases. 5306 // 5307 // A switch such as: switch(i) {case 5: case 9: case 13: case 17:} can be 5308 // range-reduced to: switch ((i-5) / 4) {case 0: case 1: case 2: case 3:}. 5309 // 5310 // This converts a sparse switch into a dense switch which allows better 5311 // lowering and could also allow transforming into a lookup table. 5312 static bool ReduceSwitchRange(SwitchInst *SI, IRBuilder<> &Builder, 5313 const DataLayout &DL, 5314 const TargetTransformInfo &TTI) { 5315 auto *CondTy = cast<IntegerType>(SI->getCondition()->getType()); 5316 if (CondTy->getIntegerBitWidth() > 64 || 5317 !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth())) 5318 return false; 5319 // Only bother with this optimization if there are more than 3 switch cases; 5320 // SDAG will only bother creating jump tables for 4 or more cases. 5321 if (SI->getNumCases() < 4) 5322 return false; 5323 5324 // This transform is agnostic to the signedness of the input or case values. We 5325 // can treat the case values as signed or unsigned. We can optimize more common 5326 // cases such as a sequence crossing zero {-4,0,4,8} if we interpret case values 5327 // as signed. 5328 SmallVector<int64_t,4> Values; 5329 for (auto &C : SI->cases()) 5330 Values.push_back(C.getCaseValue()->getValue().getSExtValue()); 5331 std::sort(Values.begin(), Values.end()); 5332 5333 // If the switch is already dense, there's nothing useful to do here. 5334 if (isSwitchDense(Values)) 5335 return false; 5336 5337 // First, transform the values such that they start at zero and ascend. 5338 int64_t Base = Values[0]; 5339 for (auto &V : Values) 5340 V -= Base; 5341 5342 // Now we have signed numbers that have been shifted so that, given enough 5343 // precision, there are no negative values. Since the rest of the transform 5344 // is bitwise only, we switch now to an unsigned representation. 5345 uint64_t GCD = 0; 5346 for (auto &V : Values) 5347 GCD = llvm::GreatestCommonDivisor64(GCD, (uint64_t)V); 5348 5349 // This transform can be done speculatively because it is so cheap - it results 5350 // in a single rotate operation being inserted. This can only happen if the 5351 // factor extracted is a power of 2. 5352 // FIXME: If the GCD is an odd number we can multiply by the multiplicative 5353 // inverse of GCD and then perform this transform. 5354 // FIXME: It's possible that optimizing a switch on powers of two might also 5355 // be beneficial - flag values are often powers of two and we could use a CLZ 5356 // as the key function. 5357 if (GCD <= 1 || !llvm::isPowerOf2_64(GCD)) 5358 // No common divisor found or too expensive to compute key function. 5359 return false; 5360 5361 unsigned Shift = llvm::Log2_64(GCD); 5362 for (auto &V : Values) 5363 V = (int64_t)((uint64_t)V >> Shift); 5364 5365 if (!isSwitchDense(Values)) 5366 // Transform didn't create a dense switch. 5367 return false; 5368 5369 // The obvious transform is to shift the switch condition right and emit a 5370 // check that the condition actually cleanly divided by GCD, i.e. 5371 // C & (1 << Shift - 1) == 0 5372 // inserting a new CFG edge to handle the case where it didn't divide cleanly. 5373 // 5374 // A cheaper way of doing this is a simple ROTR(C, Shift). This performs the 5375 // shift and puts the shifted-off bits in the uppermost bits. If any of these 5376 // are nonzero then the switch condition will be very large and will hit the 5377 // default case. 5378 5379 auto *Ty = cast<IntegerType>(SI->getCondition()->getType()); 5380 Builder.SetInsertPoint(SI); 5381 auto *ShiftC = ConstantInt::get(Ty, Shift); 5382 auto *Sub = Builder.CreateSub(SI->getCondition(), ConstantInt::get(Ty, Base)); 5383 auto *LShr = Builder.CreateLShr(Sub, ShiftC); 5384 auto *Shl = Builder.CreateShl(Sub, Ty->getBitWidth() - Shift); 5385 auto *Rot = Builder.CreateOr(LShr, Shl); 5386 SI->replaceUsesOfWith(SI->getCondition(), Rot); 5387 5388 for (SwitchInst::CaseIt C = SI->case_begin(), E = SI->case_end(); C != E; 5389 ++C) { 5390 auto *Orig = C.getCaseValue(); 5391 auto Sub = Orig->getValue() - APInt(Ty->getBitWidth(), Base); 5392 C.setValue( 5393 cast<ConstantInt>(ConstantInt::get(Ty, Sub.lshr(ShiftC->getValue())))); 5394 } 5395 return true; 5396 } 5397 5398 bool SimplifyCFGOpt::SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) { 5399 BasicBlock *BB = SI->getParent(); 5400 5401 if (isValueEqualityComparison(SI)) { 5402 // If we only have one predecessor, and if it is a branch on this value, 5403 // see if that predecessor totally determines the outcome of this switch. 5404 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 5405 if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder)) 5406 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5407 5408 Value *Cond = SI->getCondition(); 5409 if (SelectInst *Select = dyn_cast<SelectInst>(Cond)) 5410 if (SimplifySwitchOnSelect(SI, Select)) 5411 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5412 5413 // If the block only contains the switch, see if we can fold the block 5414 // away into any preds. 5415 BasicBlock::iterator BBI = BB->begin(); 5416 // Ignore dbg intrinsics. 5417 while (isa<DbgInfoIntrinsic>(BBI)) 5418 ++BBI; 5419 if (SI == &*BBI) 5420 if (FoldValueComparisonIntoPredecessors(SI, Builder)) 5421 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5422 } 5423 5424 // Try to transform the switch into an icmp and a branch. 5425 if (TurnSwitchRangeIntoICmp(SI, Builder)) 5426 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5427 5428 // Remove unreachable cases. 5429 if (EliminateDeadSwitchCases(SI, AC, DL)) 5430 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5431 5432 if (SwitchToSelect(SI, Builder, AC, DL)) 5433 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5434 5435 if (ForwardSwitchConditionToPHI(SI)) 5436 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5437 5438 if (SwitchToLookupTable(SI, Builder, DL, TTI)) 5439 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5440 5441 if (ReduceSwitchRange(SI, Builder, DL, TTI)) 5442 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5443 5444 return false; 5445 } 5446 5447 bool SimplifyCFGOpt::SimplifyIndirectBr(IndirectBrInst *IBI) { 5448 BasicBlock *BB = IBI->getParent(); 5449 bool Changed = false; 5450 5451 // Eliminate redundant destinations. 5452 SmallPtrSet<Value *, 8> Succs; 5453 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 5454 BasicBlock *Dest = IBI->getDestination(i); 5455 if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) { 5456 Dest->removePredecessor(BB); 5457 IBI->removeDestination(i); 5458 --i; 5459 --e; 5460 Changed = true; 5461 } 5462 } 5463 5464 if (IBI->getNumDestinations() == 0) { 5465 // If the indirectbr has no successors, change it to unreachable. 5466 new UnreachableInst(IBI->getContext(), IBI); 5467 EraseTerminatorInstAndDCECond(IBI); 5468 return true; 5469 } 5470 5471 if (IBI->getNumDestinations() == 1) { 5472 // If the indirectbr has one successor, change it to a direct branch. 5473 BranchInst::Create(IBI->getDestination(0), IBI); 5474 EraseTerminatorInstAndDCECond(IBI); 5475 return true; 5476 } 5477 5478 if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) { 5479 if (SimplifyIndirectBrOnSelect(IBI, SI)) 5480 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5481 } 5482 return Changed; 5483 } 5484 5485 /// Given an block with only a single landing pad and a unconditional branch 5486 /// try to find another basic block which this one can be merged with. This 5487 /// handles cases where we have multiple invokes with unique landing pads, but 5488 /// a shared handler. 5489 /// 5490 /// We specifically choose to not worry about merging non-empty blocks 5491 /// here. That is a PRE/scheduling problem and is best solved elsewhere. In 5492 /// practice, the optimizer produces empty landing pad blocks quite frequently 5493 /// when dealing with exception dense code. (see: instcombine, gvn, if-else 5494 /// sinking in this file) 5495 /// 5496 /// This is primarily a code size optimization. We need to avoid performing 5497 /// any transform which might inhibit optimization (such as our ability to 5498 /// specialize a particular handler via tail commoning). We do this by not 5499 /// merging any blocks which require us to introduce a phi. Since the same 5500 /// values are flowing through both blocks, we don't loose any ability to 5501 /// specialize. If anything, we make such specialization more likely. 5502 /// 5503 /// TODO - This transformation could remove entries from a phi in the target 5504 /// block when the inputs in the phi are the same for the two blocks being 5505 /// merged. In some cases, this could result in removal of the PHI entirely. 5506 static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI, 5507 BasicBlock *BB) { 5508 auto Succ = BB->getUniqueSuccessor(); 5509 assert(Succ); 5510 // If there's a phi in the successor block, we'd likely have to introduce 5511 // a phi into the merged landing pad block. 5512 if (isa<PHINode>(*Succ->begin())) 5513 return false; 5514 5515 for (BasicBlock *OtherPred : predecessors(Succ)) { 5516 if (BB == OtherPred) 5517 continue; 5518 BasicBlock::iterator I = OtherPred->begin(); 5519 LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I); 5520 if (!LPad2 || !LPad2->isIdenticalTo(LPad)) 5521 continue; 5522 for (++I; isa<DbgInfoIntrinsic>(I); ++I) { 5523 } 5524 BranchInst *BI2 = dyn_cast<BranchInst>(I); 5525 if (!BI2 || !BI2->isIdenticalTo(BI)) 5526 continue; 5527 5528 // We've found an identical block. Update our predecessors to take that 5529 // path instead and make ourselves dead. 5530 SmallSet<BasicBlock *, 16> Preds; 5531 Preds.insert(pred_begin(BB), pred_end(BB)); 5532 for (BasicBlock *Pred : Preds) { 5533 InvokeInst *II = cast<InvokeInst>(Pred->getTerminator()); 5534 assert(II->getNormalDest() != BB && II->getUnwindDest() == BB && 5535 "unexpected successor"); 5536 II->setUnwindDest(OtherPred); 5537 } 5538 5539 // The debug info in OtherPred doesn't cover the merged control flow that 5540 // used to go through BB. We need to delete it or update it. 5541 for (auto I = OtherPred->begin(), E = OtherPred->end(); I != E;) { 5542 Instruction &Inst = *I; 5543 I++; 5544 if (isa<DbgInfoIntrinsic>(Inst)) 5545 Inst.eraseFromParent(); 5546 } 5547 5548 SmallSet<BasicBlock *, 16> Succs; 5549 Succs.insert(succ_begin(BB), succ_end(BB)); 5550 for (BasicBlock *Succ : Succs) { 5551 Succ->removePredecessor(BB); 5552 } 5553 5554 IRBuilder<> Builder(BI); 5555 Builder.CreateUnreachable(); 5556 BI->eraseFromParent(); 5557 return true; 5558 } 5559 return false; 5560 } 5561 5562 bool SimplifyCFGOpt::SimplifyUncondBranch(BranchInst *BI, 5563 IRBuilder<> &Builder) { 5564 BasicBlock *BB = BI->getParent(); 5565 5566 if (SinkCommon && SinkThenElseCodeToEnd(BI)) 5567 return true; 5568 5569 // If the Terminator is the only non-phi instruction, simplify the block. 5570 // if LoopHeader is provided, check if the block is a loop header 5571 // (This is for early invocations before loop simplify and vectorization 5572 // to keep canonical loop forms for nested loops. 5573 // These blocks can be eliminated when the pass is invoked later 5574 // in the back-end.) 5575 BasicBlock::iterator I = BB->getFirstNonPHIOrDbg()->getIterator(); 5576 if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() && 5577 (!LoopHeaders || !LoopHeaders->count(BB)) && 5578 TryToSimplifyUncondBranchFromEmptyBlock(BB)) 5579 return true; 5580 5581 // If the only instruction in the block is a seteq/setne comparison 5582 // against a constant, try to simplify the block. 5583 if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) 5584 if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) { 5585 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 5586 ; 5587 if (I->isTerminator() && 5588 TryToSimplifyUncondBranchWithICmpInIt(ICI, Builder, DL, TTI, 5589 BonusInstThreshold, AC)) 5590 return true; 5591 } 5592 5593 // See if we can merge an empty landing pad block with another which is 5594 // equivalent. 5595 if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) { 5596 for (++I; isa<DbgInfoIntrinsic>(I); ++I) { 5597 } 5598 if (I->isTerminator() && TryToMergeLandingPad(LPad, BI, BB)) 5599 return true; 5600 } 5601 5602 // If this basic block is ONLY a compare and a branch, and if a predecessor 5603 // branches to us and our successor, fold the comparison into the 5604 // predecessor and use logical operations to update the incoming value 5605 // for PHI nodes in common successor. 5606 if (FoldBranchToCommonDest(BI, BonusInstThreshold)) 5607 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5608 return false; 5609 } 5610 5611 static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) { 5612 BasicBlock *PredPred = nullptr; 5613 for (auto *P : predecessors(BB)) { 5614 BasicBlock *PPred = P->getSinglePredecessor(); 5615 if (!PPred || (PredPred && PredPred != PPred)) 5616 return nullptr; 5617 PredPred = PPred; 5618 } 5619 return PredPred; 5620 } 5621 5622 bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) { 5623 BasicBlock *BB = BI->getParent(); 5624 5625 // Conditional branch 5626 if (isValueEqualityComparison(BI)) { 5627 // If we only have one predecessor, and if it is a branch on this value, 5628 // see if that predecessor totally determines the outcome of this 5629 // switch. 5630 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 5631 if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder)) 5632 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5633 5634 // This block must be empty, except for the setcond inst, if it exists. 5635 // Ignore dbg intrinsics. 5636 BasicBlock::iterator I = BB->begin(); 5637 // Ignore dbg intrinsics. 5638 while (isa<DbgInfoIntrinsic>(I)) 5639 ++I; 5640 if (&*I == BI) { 5641 if (FoldValueComparisonIntoPredecessors(BI, Builder)) 5642 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5643 } else if (&*I == cast<Instruction>(BI->getCondition())) { 5644 ++I; 5645 // Ignore dbg intrinsics. 5646 while (isa<DbgInfoIntrinsic>(I)) 5647 ++I; 5648 if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder)) 5649 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5650 } 5651 } 5652 5653 // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction. 5654 if (SimplifyBranchOnICmpChain(BI, Builder, DL)) 5655 return true; 5656 5657 // If this basic block has a single dominating predecessor block and the 5658 // dominating block's condition implies BI's condition, we know the direction 5659 // of the BI branch. 5660 if (BasicBlock *Dom = BB->getSinglePredecessor()) { 5661 auto *PBI = dyn_cast_or_null<BranchInst>(Dom->getTerminator()); 5662 if (PBI && PBI->isConditional() && 5663 PBI->getSuccessor(0) != PBI->getSuccessor(1) && 5664 (PBI->getSuccessor(0) == BB || PBI->getSuccessor(1) == BB)) { 5665 bool CondIsFalse = PBI->getSuccessor(1) == BB; 5666 Optional<bool> Implication = isImpliedCondition( 5667 PBI->getCondition(), BI->getCondition(), DL, CondIsFalse); 5668 if (Implication) { 5669 // Turn this into a branch on constant. 5670 auto *OldCond = BI->getCondition(); 5671 ConstantInt *CI = *Implication 5672 ? ConstantInt::getTrue(BB->getContext()) 5673 : ConstantInt::getFalse(BB->getContext()); 5674 BI->setCondition(CI); 5675 RecursivelyDeleteTriviallyDeadInstructions(OldCond); 5676 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5677 } 5678 } 5679 } 5680 5681 // If this basic block is ONLY a compare and a branch, and if a predecessor 5682 // branches to us and one of our successors, fold the comparison into the 5683 // predecessor and use logical operations to pick the right destination. 5684 if (FoldBranchToCommonDest(BI, BonusInstThreshold)) 5685 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5686 5687 // We have a conditional branch to two blocks that are only reachable 5688 // from BI. We know that the condbr dominates the two blocks, so see if 5689 // there is any identical code in the "then" and "else" blocks. If so, we 5690 // can hoist it up to the branching block. 5691 if (BI->getSuccessor(0)->getSinglePredecessor()) { 5692 if (BI->getSuccessor(1)->getSinglePredecessor()) { 5693 if (HoistThenElseCodeToIf(BI, TTI)) 5694 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5695 } else { 5696 // If Successor #1 has multiple preds, we may be able to conditionally 5697 // execute Successor #0 if it branches to Successor #1. 5698 TerminatorInst *Succ0TI = BI->getSuccessor(0)->getTerminator(); 5699 if (Succ0TI->getNumSuccessors() == 1 && 5700 Succ0TI->getSuccessor(0) == BI->getSuccessor(1)) 5701 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), TTI)) 5702 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5703 } 5704 } else if (BI->getSuccessor(1)->getSinglePredecessor()) { 5705 // If Successor #0 has multiple preds, we may be able to conditionally 5706 // execute Successor #1 if it branches to Successor #0. 5707 TerminatorInst *Succ1TI = BI->getSuccessor(1)->getTerminator(); 5708 if (Succ1TI->getNumSuccessors() == 1 && 5709 Succ1TI->getSuccessor(0) == BI->getSuccessor(0)) 5710 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), TTI)) 5711 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5712 } 5713 5714 // If this is a branch on a phi node in the current block, thread control 5715 // through this block if any PHI node entries are constants. 5716 if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition())) 5717 if (PN->getParent() == BI->getParent()) 5718 if (FoldCondBranchOnPHI(BI, DL)) 5719 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5720 5721 // Scan predecessor blocks for conditional branches. 5722 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 5723 if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator())) 5724 if (PBI != BI && PBI->isConditional()) 5725 if (SimplifyCondBranchToCondBranch(PBI, BI, DL)) 5726 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5727 5728 // Look for diamond patterns. 5729 if (MergeCondStores) 5730 if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB)) 5731 if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator())) 5732 if (PBI != BI && PBI->isConditional()) 5733 if (mergeConditionalStores(PBI, BI)) 5734 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5735 5736 return false; 5737 } 5738 5739 /// Check if passing a value to an instruction will cause undefined behavior. 5740 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I) { 5741 Constant *C = dyn_cast<Constant>(V); 5742 if (!C) 5743 return false; 5744 5745 if (I->use_empty()) 5746 return false; 5747 5748 if (C->isNullValue() || isa<UndefValue>(C)) { 5749 // Only look at the first use, avoid hurting compile time with long uselists 5750 User *Use = *I->user_begin(); 5751 5752 // Now make sure that there are no instructions in between that can alter 5753 // control flow (eg. calls) 5754 for (BasicBlock::iterator 5755 i = ++BasicBlock::iterator(I), 5756 UI = BasicBlock::iterator(dyn_cast<Instruction>(Use)); 5757 i != UI; ++i) 5758 if (i == I->getParent()->end() || i->mayHaveSideEffects()) 5759 return false; 5760 5761 // Look through GEPs. A load from a GEP derived from NULL is still undefined 5762 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use)) 5763 if (GEP->getPointerOperand() == I) 5764 return passingValueIsAlwaysUndefined(V, GEP); 5765 5766 // Look through bitcasts. 5767 if (BitCastInst *BC = dyn_cast<BitCastInst>(Use)) 5768 return passingValueIsAlwaysUndefined(V, BC); 5769 5770 // Load from null is undefined. 5771 if (LoadInst *LI = dyn_cast<LoadInst>(Use)) 5772 if (!LI->isVolatile()) 5773 return LI->getPointerAddressSpace() == 0; 5774 5775 // Store to null is undefined. 5776 if (StoreInst *SI = dyn_cast<StoreInst>(Use)) 5777 if (!SI->isVolatile()) 5778 return SI->getPointerAddressSpace() == 0 && 5779 SI->getPointerOperand() == I; 5780 5781 // A call to null is undefined. 5782 if (auto CS = CallSite(Use)) 5783 return CS.getCalledValue() == I; 5784 } 5785 return false; 5786 } 5787 5788 /// If BB has an incoming value that will always trigger undefined behavior 5789 /// (eg. null pointer dereference), remove the branch leading here. 5790 static bool removeUndefIntroducingPredecessor(BasicBlock *BB) { 5791 for (BasicBlock::iterator i = BB->begin(); 5792 PHINode *PHI = dyn_cast<PHINode>(i); ++i) 5793 for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) 5794 if (passingValueIsAlwaysUndefined(PHI->getIncomingValue(i), PHI)) { 5795 TerminatorInst *T = PHI->getIncomingBlock(i)->getTerminator(); 5796 IRBuilder<> Builder(T); 5797 if (BranchInst *BI = dyn_cast<BranchInst>(T)) { 5798 BB->removePredecessor(PHI->getIncomingBlock(i)); 5799 // Turn uncoditional branches into unreachables and remove the dead 5800 // destination from conditional branches. 5801 if (BI->isUnconditional()) 5802 Builder.CreateUnreachable(); 5803 else 5804 Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1) 5805 : BI->getSuccessor(0)); 5806 BI->eraseFromParent(); 5807 return true; 5808 } 5809 // TODO: SwitchInst. 5810 } 5811 5812 return false; 5813 } 5814 5815 bool SimplifyCFGOpt::run(BasicBlock *BB) { 5816 bool Changed = false; 5817 5818 assert(BB && BB->getParent() && "Block not embedded in function!"); 5819 assert(BB->getTerminator() && "Degenerate basic block encountered!"); 5820 5821 // Remove basic blocks that have no predecessors (except the entry block)... 5822 // or that just have themself as a predecessor. These are unreachable. 5823 if ((pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) || 5824 BB->getSinglePredecessor() == BB) { 5825 DEBUG(dbgs() << "Removing BB: \n" << *BB); 5826 DeleteDeadBlock(BB); 5827 return true; 5828 } 5829 5830 // Check to see if we can constant propagate this terminator instruction 5831 // away... 5832 Changed |= ConstantFoldTerminator(BB, true); 5833 5834 // Check for and eliminate duplicate PHI nodes in this block. 5835 Changed |= EliminateDuplicatePHINodes(BB); 5836 5837 // Check for and remove branches that will always cause undefined behavior. 5838 Changed |= removeUndefIntroducingPredecessor(BB); 5839 5840 // Merge basic blocks into their predecessor if there is only one distinct 5841 // pred, and if there is only one distinct successor of the predecessor, and 5842 // if there are no PHI nodes. 5843 // 5844 if (MergeBlockIntoPredecessor(BB)) 5845 return true; 5846 5847 IRBuilder<> Builder(BB); 5848 5849 // If there is a trivial two-entry PHI node in this basic block, and we can 5850 // eliminate it, do so now. 5851 if (PHINode *PN = dyn_cast<PHINode>(BB->begin())) 5852 if (PN->getNumIncomingValues() == 2) 5853 Changed |= FoldTwoEntryPHINode(PN, TTI, DL); 5854 5855 Builder.SetInsertPoint(BB->getTerminator()); 5856 if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) { 5857 if (BI->isUnconditional()) { 5858 if (SimplifyUncondBranch(BI, Builder)) 5859 return true; 5860 } else { 5861 if (SimplifyCondBranch(BI, Builder)) 5862 return true; 5863 } 5864 } else if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) { 5865 if (SimplifyReturn(RI, Builder)) 5866 return true; 5867 } else if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator())) { 5868 if (SimplifyResume(RI, Builder)) 5869 return true; 5870 } else if (CleanupReturnInst *RI = 5871 dyn_cast<CleanupReturnInst>(BB->getTerminator())) { 5872 if (SimplifyCleanupReturn(RI)) 5873 return true; 5874 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) { 5875 if (SimplifySwitch(SI, Builder)) 5876 return true; 5877 } else if (UnreachableInst *UI = 5878 dyn_cast<UnreachableInst>(BB->getTerminator())) { 5879 if (SimplifyUnreachable(UI)) 5880 return true; 5881 } else if (IndirectBrInst *IBI = 5882 dyn_cast<IndirectBrInst>(BB->getTerminator())) { 5883 if (SimplifyIndirectBr(IBI)) 5884 return true; 5885 } 5886 5887 return Changed; 5888 } 5889 5890 /// This function is used to do simplification of a CFG. 5891 /// For example, it adjusts branches to branches to eliminate the extra hop, 5892 /// eliminates unreachable basic blocks, and does other "peephole" optimization 5893 /// of the CFG. It returns true if a modification was made. 5894 /// 5895 bool llvm::SimplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI, 5896 unsigned BonusInstThreshold, AssumptionCache *AC, 5897 SmallPtrSetImpl<BasicBlock *> *LoopHeaders) { 5898 return SimplifyCFGOpt(TTI, BB->getModule()->getDataLayout(), 5899 BonusInstThreshold, AC, LoopHeaders) 5900 .run(BB); 5901 } 5902