1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Peephole optimize the CFG.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/ADT/APInt.h"
14 #include "llvm/ADT/ArrayRef.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/MapVector.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/ScopeExit.h"
20 #include "llvm/ADT/Sequence.h"
21 #include "llvm/ADT/SetOperations.h"
22 #include "llvm/ADT/SetVector.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/Statistic.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/Analysis/AssumptionCache.h"
28 #include "llvm/Analysis/ConstantFolding.h"
29 #include "llvm/Analysis/EHPersonalities.h"
30 #include "llvm/Analysis/GuardUtils.h"
31 #include "llvm/Analysis/InstructionSimplify.h"
32 #include "llvm/Analysis/MemorySSA.h"
33 #include "llvm/Analysis/MemorySSAUpdater.h"
34 #include "llvm/Analysis/TargetTransformInfo.h"
35 #include "llvm/Analysis/ValueTracking.h"
36 #include "llvm/IR/Attributes.h"
37 #include "llvm/IR/BasicBlock.h"
38 #include "llvm/IR/CFG.h"
39 #include "llvm/IR/Constant.h"
40 #include "llvm/IR/ConstantRange.h"
41 #include "llvm/IR/Constants.h"
42 #include "llvm/IR/DataLayout.h"
43 #include "llvm/IR/DerivedTypes.h"
44 #include "llvm/IR/Function.h"
45 #include "llvm/IR/GlobalValue.h"
46 #include "llvm/IR/GlobalVariable.h"
47 #include "llvm/IR/IRBuilder.h"
48 #include "llvm/IR/InstrTypes.h"
49 #include "llvm/IR/Instruction.h"
50 #include "llvm/IR/Instructions.h"
51 #include "llvm/IR/IntrinsicInst.h"
52 #include "llvm/IR/Intrinsics.h"
53 #include "llvm/IR/LLVMContext.h"
54 #include "llvm/IR/MDBuilder.h"
55 #include "llvm/IR/Metadata.h"
56 #include "llvm/IR/Module.h"
57 #include "llvm/IR/NoFolder.h"
58 #include "llvm/IR/Operator.h"
59 #include "llvm/IR/PatternMatch.h"
60 #include "llvm/IR/PseudoProbe.h"
61 #include "llvm/IR/Type.h"
62 #include "llvm/IR/Use.h"
63 #include "llvm/IR/User.h"
64 #include "llvm/IR/Value.h"
65 #include "llvm/IR/ValueHandle.h"
66 #include "llvm/Support/BranchProbability.h"
67 #include "llvm/Support/Casting.h"
68 #include "llvm/Support/CommandLine.h"
69 #include "llvm/Support/Debug.h"
70 #include "llvm/Support/ErrorHandling.h"
71 #include "llvm/Support/KnownBits.h"
72 #include "llvm/Support/MathExtras.h"
73 #include "llvm/Support/raw_ostream.h"
74 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
75 #include "llvm/Transforms/Utils/Local.h"
76 #include "llvm/Transforms/Utils/SSAUpdater.h"
77 #include "llvm/Transforms/Utils/ValueMapper.h"
78 #include <algorithm>
79 #include <cassert>
80 #include <climits>
81 #include <cstddef>
82 #include <cstdint>
83 #include <iterator>
84 #include <map>
85 #include <set>
86 #include <tuple>
87 #include <utility>
88 #include <vector>
89 
90 using namespace llvm;
91 using namespace PatternMatch;
92 
93 #define DEBUG_TYPE "simplifycfg"
94 
95 cl::opt<bool> llvm::RequireAndPreserveDomTree(
96     "simplifycfg-require-and-preserve-domtree", cl::Hidden, cl::ZeroOrMore,
97     cl::init(false),
98     cl::desc("Temorary development switch used to gradually uplift SimplifyCFG "
99              "into preserving DomTree,"));
100 
101 // Chosen as 2 so as to be cheap, but still to have enough power to fold
102 // a select, so the "clamp" idiom (of a min followed by a max) will be caught.
103 // To catch this, we need to fold a compare and a select, hence '2' being the
104 // minimum reasonable default.
105 static cl::opt<unsigned> PHINodeFoldingThreshold(
106     "phi-node-folding-threshold", cl::Hidden, cl::init(2),
107     cl::desc(
108         "Control the amount of phi node folding to perform (default = 2)"));
109 
110 static cl::opt<unsigned> TwoEntryPHINodeFoldingThreshold(
111     "two-entry-phi-node-folding-threshold", cl::Hidden, cl::init(4),
112     cl::desc("Control the maximal total instruction cost that we are willing "
113              "to speculatively execute to fold a 2-entry PHI node into a "
114              "select (default = 4)"));
115 
116 static cl::opt<bool> DupRet(
117     "simplifycfg-dup-ret", cl::Hidden, cl::init(false),
118     cl::desc("Duplicate return instructions into unconditional branches"));
119 
120 static cl::opt<bool>
121     HoistCommon("simplifycfg-hoist-common", cl::Hidden, cl::init(true),
122                 cl::desc("Hoist common instructions up to the parent block"));
123 
124 static cl::opt<bool>
125     SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true),
126                cl::desc("Sink common instructions down to the end block"));
127 
128 static cl::opt<bool> HoistCondStores(
129     "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true),
130     cl::desc("Hoist conditional stores if an unconditional store precedes"));
131 
132 static cl::opt<bool> MergeCondStores(
133     "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true),
134     cl::desc("Hoist conditional stores even if an unconditional store does not "
135              "precede - hoist multiple conditional stores into a single "
136              "predicated store"));
137 
138 static cl::opt<bool> MergeCondStoresAggressively(
139     "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false),
140     cl::desc("When merging conditional stores, do so even if the resultant "
141              "basic blocks are unlikely to be if-converted as a result"));
142 
143 static cl::opt<bool> SpeculateOneExpensiveInst(
144     "speculate-one-expensive-inst", cl::Hidden, cl::init(true),
145     cl::desc("Allow exactly one expensive instruction to be speculatively "
146              "executed"));
147 
148 static cl::opt<unsigned> MaxSpeculationDepth(
149     "max-speculation-depth", cl::Hidden, cl::init(10),
150     cl::desc("Limit maximum recursion depth when calculating costs of "
151              "speculatively executed instructions"));
152 
153 static cl::opt<int>
154     MaxSmallBlockSize("simplifycfg-max-small-block-size", cl::Hidden,
155                       cl::init(10),
156                       cl::desc("Max size of a block which is still considered "
157                                "small enough to thread through"));
158 
159 // Two is chosen to allow one negation and a logical combine.
160 static cl::opt<unsigned>
161     BranchFoldThreshold("simplifycfg-branch-fold-threshold", cl::Hidden,
162                         cl::init(2),
163                         cl::desc("Maximum cost of combining conditions when "
164                                  "folding branches"));
165 
166 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps");
167 STATISTIC(NumLinearMaps,
168           "Number of switch instructions turned into linear mapping");
169 STATISTIC(NumLookupTables,
170           "Number of switch instructions turned into lookup tables");
171 STATISTIC(
172     NumLookupTablesHoles,
173     "Number of switch instructions turned into lookup tables (holes checked)");
174 STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares");
175 STATISTIC(NumFoldValueComparisonIntoPredecessors,
176           "Number of value comparisons folded into predecessor basic blocks");
177 STATISTIC(NumFoldBranchToCommonDest,
178           "Number of branches folded into predecessor basic block");
179 STATISTIC(
180     NumHoistCommonCode,
181     "Number of common instruction 'blocks' hoisted up to the begin block");
182 STATISTIC(NumHoistCommonInstrs,
183           "Number of common instructions hoisted up to the begin block");
184 STATISTIC(NumSinkCommonCode,
185           "Number of common instruction 'blocks' sunk down to the end block");
186 STATISTIC(NumSinkCommonInstrs,
187           "Number of common instructions sunk down to the end block");
188 STATISTIC(NumSpeculations, "Number of speculative executed instructions");
189 STATISTIC(NumInvokes,
190           "Number of invokes with empty resume blocks simplified into calls");
191 
192 namespace {
193 
194 // The first field contains the value that the switch produces when a certain
195 // case group is selected, and the second field is a vector containing the
196 // cases composing the case group.
197 using SwitchCaseResultVectorTy =
198     SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2>;
199 
200 // The first field contains the phi node that generates a result of the switch
201 // and the second field contains the value generated for a certain case in the
202 // switch for that PHI.
203 using SwitchCaseResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>;
204 
205 /// ValueEqualityComparisonCase - Represents a case of a switch.
206 struct ValueEqualityComparisonCase {
207   ConstantInt *Value;
208   BasicBlock *Dest;
209 
210   ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest)
211       : Value(Value), Dest(Dest) {}
212 
213   bool operator<(ValueEqualityComparisonCase RHS) const {
214     // Comparing pointers is ok as we only rely on the order for uniquing.
215     return Value < RHS.Value;
216   }
217 
218   bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; }
219 };
220 
221 class SimplifyCFGOpt {
222   const TargetTransformInfo &TTI;
223   DomTreeUpdater *DTU;
224   const DataLayout &DL;
225   ArrayRef<WeakVH> LoopHeaders;
226   const SimplifyCFGOptions &Options;
227   bool Resimplify;
228 
229   Value *isValueEqualityComparison(Instruction *TI);
230   BasicBlock *GetValueEqualityComparisonCases(
231       Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases);
232   bool SimplifyEqualityComparisonWithOnlyPredecessor(Instruction *TI,
233                                                      BasicBlock *Pred,
234                                                      IRBuilder<> &Builder);
235   bool PerformValueComparisonIntoPredecessorFolding(Instruction *TI, Value *&CV,
236                                                     Instruction *PTI,
237                                                     IRBuilder<> &Builder);
238   bool FoldValueComparisonIntoPredecessors(Instruction *TI,
239                                            IRBuilder<> &Builder);
240 
241   bool simplifyReturn(ReturnInst *RI, IRBuilder<> &Builder);
242   bool simplifyResume(ResumeInst *RI, IRBuilder<> &Builder);
243   bool simplifySingleResume(ResumeInst *RI);
244   bool simplifyCommonResume(ResumeInst *RI);
245   bool simplifyCleanupReturn(CleanupReturnInst *RI);
246   bool simplifyUnreachable(UnreachableInst *UI);
247   bool simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder);
248   bool simplifyIndirectBr(IndirectBrInst *IBI);
249   bool simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder);
250   bool simplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder);
251   bool simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder);
252   bool SimplifyCondBranchToTwoReturns(BranchInst *BI, IRBuilder<> &Builder);
253 
254   bool tryToSimplifyUncondBranchWithICmpInIt(ICmpInst *ICI,
255                                              IRBuilder<> &Builder);
256 
257   bool HoistThenElseCodeToIf(BranchInst *BI, const TargetTransformInfo &TTI,
258                              bool EqTermsOnly);
259   bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB,
260                               const TargetTransformInfo &TTI);
261   bool SimplifyTerminatorOnSelect(Instruction *OldTerm, Value *Cond,
262                                   BasicBlock *TrueBB, BasicBlock *FalseBB,
263                                   uint32_t TrueWeight, uint32_t FalseWeight);
264   bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder,
265                                  const DataLayout &DL);
266   bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select);
267   bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI);
268   bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder);
269 
270 public:
271   SimplifyCFGOpt(const TargetTransformInfo &TTI, DomTreeUpdater *DTU,
272                  const DataLayout &DL, ArrayRef<WeakVH> LoopHeaders,
273                  const SimplifyCFGOptions &Opts)
274       : TTI(TTI), DTU(DTU), DL(DL), LoopHeaders(LoopHeaders), Options(Opts) {
275     assert((!DTU || !DTU->hasPostDomTree()) &&
276            "SimplifyCFG is not yet capable of maintaining validity of a "
277            "PostDomTree, so don't ask for it.");
278   }
279 
280   bool simplifyOnce(BasicBlock *BB);
281   bool simplifyOnceImpl(BasicBlock *BB);
282   bool run(BasicBlock *BB);
283 
284   // Helper to set Resimplify and return change indication.
285   bool requestResimplify() {
286     Resimplify = true;
287     return true;
288   }
289 };
290 
291 } // end anonymous namespace
292 
293 /// Return true if it is safe to merge these two
294 /// terminator instructions together.
295 static bool
296 SafeToMergeTerminators(Instruction *SI1, Instruction *SI2,
297                        SmallSetVector<BasicBlock *, 4> *FailBlocks = nullptr) {
298   if (SI1 == SI2)
299     return false; // Can't merge with self!
300 
301   // It is not safe to merge these two switch instructions if they have a common
302   // successor, and if that successor has a PHI node, and if *that* PHI node has
303   // conflicting incoming values from the two switch blocks.
304   BasicBlock *SI1BB = SI1->getParent();
305   BasicBlock *SI2BB = SI2->getParent();
306 
307   SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
308   bool Fail = false;
309   for (BasicBlock *Succ : successors(SI2BB))
310     if (SI1Succs.count(Succ))
311       for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) {
312         PHINode *PN = cast<PHINode>(BBI);
313         if (PN->getIncomingValueForBlock(SI1BB) !=
314             PN->getIncomingValueForBlock(SI2BB)) {
315           if (FailBlocks)
316             FailBlocks->insert(Succ);
317           Fail = true;
318         }
319       }
320 
321   return !Fail;
322 }
323 
324 /// Update PHI nodes in Succ to indicate that there will now be entries in it
325 /// from the 'NewPred' block. The values that will be flowing into the PHI nodes
326 /// will be the same as those coming in from ExistPred, an existing predecessor
327 /// of Succ.
328 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred,
329                                   BasicBlock *ExistPred,
330                                   MemorySSAUpdater *MSSAU = nullptr) {
331   for (PHINode &PN : Succ->phis())
332     PN.addIncoming(PN.getIncomingValueForBlock(ExistPred), NewPred);
333   if (MSSAU)
334     if (auto *MPhi = MSSAU->getMemorySSA()->getMemoryAccess(Succ))
335       MPhi->addIncoming(MPhi->getIncomingValueForBlock(ExistPred), NewPred);
336 }
337 
338 /// Compute an abstract "cost" of speculating the given instruction,
339 /// which is assumed to be safe to speculate. TCC_Free means cheap,
340 /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively
341 /// expensive.
342 static InstructionCost computeSpeculationCost(const User *I,
343                                               const TargetTransformInfo &TTI) {
344   assert(isSafeToSpeculativelyExecute(I) &&
345          "Instruction is not safe to speculatively execute!");
346   return TTI.getUserCost(I, TargetTransformInfo::TCK_SizeAndLatency);
347 }
348 
349 /// If we have a merge point of an "if condition" as accepted above,
350 /// return true if the specified value dominates the block.  We
351 /// don't handle the true generality of domination here, just a special case
352 /// which works well enough for us.
353 ///
354 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to
355 /// see if V (which must be an instruction) and its recursive operands
356 /// that do not dominate BB have a combined cost lower than Budget and
357 /// are non-trapping.  If both are true, the instruction is inserted into the
358 /// set and true is returned.
359 ///
360 /// The cost for most non-trapping instructions is defined as 1 except for
361 /// Select whose cost is 2.
362 ///
363 /// After this function returns, Cost is increased by the cost of
364 /// V plus its non-dominating operands.  If that cost is greater than
365 /// Budget, false is returned and Cost is undefined.
366 static bool dominatesMergePoint(Value *V, BasicBlock *BB,
367                                 SmallPtrSetImpl<Instruction *> &AggressiveInsts,
368                                 InstructionCost &Cost,
369                                 InstructionCost Budget,
370                                 const TargetTransformInfo &TTI,
371                                 unsigned Depth = 0) {
372   // It is possible to hit a zero-cost cycle (phi/gep instructions for example),
373   // so limit the recursion depth.
374   // TODO: While this recursion limit does prevent pathological behavior, it
375   // would be better to track visited instructions to avoid cycles.
376   if (Depth == MaxSpeculationDepth)
377     return false;
378 
379   Instruction *I = dyn_cast<Instruction>(V);
380   if (!I) {
381     // Non-instructions all dominate instructions, but not all constantexprs
382     // can be executed unconditionally.
383     if (ConstantExpr *C = dyn_cast<ConstantExpr>(V))
384       if (C->canTrap())
385         return false;
386     return true;
387   }
388   BasicBlock *PBB = I->getParent();
389 
390   // We don't want to allow weird loops that might have the "if condition" in
391   // the bottom of this block.
392   if (PBB == BB)
393     return false;
394 
395   // If this instruction is defined in a block that contains an unconditional
396   // branch to BB, then it must be in the 'conditional' part of the "if
397   // statement".  If not, it definitely dominates the region.
398   BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator());
399   if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB)
400     return true;
401 
402   // If we have seen this instruction before, don't count it again.
403   if (AggressiveInsts.count(I))
404     return true;
405 
406   // Okay, it looks like the instruction IS in the "condition".  Check to
407   // see if it's a cheap instruction to unconditionally compute, and if it
408   // only uses stuff defined outside of the condition.  If so, hoist it out.
409   if (!isSafeToSpeculativelyExecute(I))
410     return false;
411 
412   Cost += computeSpeculationCost(I, TTI);
413 
414   // Allow exactly one instruction to be speculated regardless of its cost
415   // (as long as it is safe to do so).
416   // This is intended to flatten the CFG even if the instruction is a division
417   // or other expensive operation. The speculation of an expensive instruction
418   // is expected to be undone in CodeGenPrepare if the speculation has not
419   // enabled further IR optimizations.
420   if (Cost > Budget &&
421       (!SpeculateOneExpensiveInst || !AggressiveInsts.empty() || Depth > 0 ||
422        !Cost.isValid()))
423     return false;
424 
425   // Okay, we can only really hoist these out if their operands do
426   // not take us over the cost threshold.
427   for (Use &Op : I->operands())
428     if (!dominatesMergePoint(Op, BB, AggressiveInsts, Cost, Budget, TTI,
429                              Depth + 1))
430       return false;
431   // Okay, it's safe to do this!  Remember this instruction.
432   AggressiveInsts.insert(I);
433   return true;
434 }
435 
436 /// Extract ConstantInt from value, looking through IntToPtr
437 /// and PointerNullValue. Return NULL if value is not a constant int.
438 static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) {
439   // Normal constant int.
440   ConstantInt *CI = dyn_cast<ConstantInt>(V);
441   if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy())
442     return CI;
443 
444   // This is some kind of pointer constant. Turn it into a pointer-sized
445   // ConstantInt if possible.
446   IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType()));
447 
448   // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*).
449   if (isa<ConstantPointerNull>(V))
450     return ConstantInt::get(PtrTy, 0);
451 
452   // IntToPtr const int.
453   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
454     if (CE->getOpcode() == Instruction::IntToPtr)
455       if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) {
456         // The constant is very likely to have the right type already.
457         if (CI->getType() == PtrTy)
458           return CI;
459         else
460           return cast<ConstantInt>(
461               ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false));
462       }
463   return nullptr;
464 }
465 
466 namespace {
467 
468 /// Given a chain of or (||) or and (&&) comparison of a value against a
469 /// constant, this will try to recover the information required for a switch
470 /// structure.
471 /// It will depth-first traverse the chain of comparison, seeking for patterns
472 /// like %a == 12 or %a < 4 and combine them to produce a set of integer
473 /// representing the different cases for the switch.
474 /// Note that if the chain is composed of '||' it will build the set of elements
475 /// that matches the comparisons (i.e. any of this value validate the chain)
476 /// while for a chain of '&&' it will build the set elements that make the test
477 /// fail.
478 struct ConstantComparesGatherer {
479   const DataLayout &DL;
480 
481   /// Value found for the switch comparison
482   Value *CompValue = nullptr;
483 
484   /// Extra clause to be checked before the switch
485   Value *Extra = nullptr;
486 
487   /// Set of integers to match in switch
488   SmallVector<ConstantInt *, 8> Vals;
489 
490   /// Number of comparisons matched in the and/or chain
491   unsigned UsedICmps = 0;
492 
493   /// Construct and compute the result for the comparison instruction Cond
494   ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL) : DL(DL) {
495     gather(Cond);
496   }
497 
498   ConstantComparesGatherer(const ConstantComparesGatherer &) = delete;
499   ConstantComparesGatherer &
500   operator=(const ConstantComparesGatherer &) = delete;
501 
502 private:
503   /// Try to set the current value used for the comparison, it succeeds only if
504   /// it wasn't set before or if the new value is the same as the old one
505   bool setValueOnce(Value *NewVal) {
506     if (CompValue && CompValue != NewVal)
507       return false;
508     CompValue = NewVal;
509     return (CompValue != nullptr);
510   }
511 
512   /// Try to match Instruction "I" as a comparison against a constant and
513   /// populates the array Vals with the set of values that match (or do not
514   /// match depending on isEQ).
515   /// Return false on failure. On success, the Value the comparison matched
516   /// against is placed in CompValue.
517   /// If CompValue is already set, the function is expected to fail if a match
518   /// is found but the value compared to is different.
519   bool matchInstruction(Instruction *I, bool isEQ) {
520     // If this is an icmp against a constant, handle this as one of the cases.
521     ICmpInst *ICI;
522     ConstantInt *C;
523     if (!((ICI = dyn_cast<ICmpInst>(I)) &&
524           (C = GetConstantInt(I->getOperand(1), DL)))) {
525       return false;
526     }
527 
528     Value *RHSVal;
529     const APInt *RHSC;
530 
531     // Pattern match a special case
532     // (x & ~2^z) == y --> x == y || x == y|2^z
533     // This undoes a transformation done by instcombine to fuse 2 compares.
534     if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE)) {
535       // It's a little bit hard to see why the following transformations are
536       // correct. Here is a CVC3 program to verify them for 64-bit values:
537 
538       /*
539          ONE  : BITVECTOR(64) = BVZEROEXTEND(0bin1, 63);
540          x    : BITVECTOR(64);
541          y    : BITVECTOR(64);
542          z    : BITVECTOR(64);
543          mask : BITVECTOR(64) = BVSHL(ONE, z);
544          QUERY( (y & ~mask = y) =>
545                 ((x & ~mask = y) <=> (x = y OR x = (y |  mask)))
546          );
547          QUERY( (y |  mask = y) =>
548                 ((x |  mask = y) <=> (x = y OR x = (y & ~mask)))
549          );
550       */
551 
552       // Please note that each pattern must be a dual implication (<--> or
553       // iff). One directional implication can create spurious matches. If the
554       // implication is only one-way, an unsatisfiable condition on the left
555       // side can imply a satisfiable condition on the right side. Dual
556       // implication ensures that satisfiable conditions are transformed to
557       // other satisfiable conditions and unsatisfiable conditions are
558       // transformed to other unsatisfiable conditions.
559 
560       // Here is a concrete example of a unsatisfiable condition on the left
561       // implying a satisfiable condition on the right:
562       //
563       // mask = (1 << z)
564       // (x & ~mask) == y  --> (x == y || x == (y | mask))
565       //
566       // Substituting y = 3, z = 0 yields:
567       // (x & -2) == 3 --> (x == 3 || x == 2)
568 
569       // Pattern match a special case:
570       /*
571         QUERY( (y & ~mask = y) =>
572                ((x & ~mask = y) <=> (x = y OR x = (y |  mask)))
573         );
574       */
575       if (match(ICI->getOperand(0),
576                 m_And(m_Value(RHSVal), m_APInt(RHSC)))) {
577         APInt Mask = ~*RHSC;
578         if (Mask.isPowerOf2() && (C->getValue() & ~Mask) == C->getValue()) {
579           // If we already have a value for the switch, it has to match!
580           if (!setValueOnce(RHSVal))
581             return false;
582 
583           Vals.push_back(C);
584           Vals.push_back(
585               ConstantInt::get(C->getContext(),
586                                C->getValue() | Mask));
587           UsedICmps++;
588           return true;
589         }
590       }
591 
592       // Pattern match a special case:
593       /*
594         QUERY( (y |  mask = y) =>
595                ((x |  mask = y) <=> (x = y OR x = (y & ~mask)))
596         );
597       */
598       if (match(ICI->getOperand(0),
599                 m_Or(m_Value(RHSVal), m_APInt(RHSC)))) {
600         APInt Mask = *RHSC;
601         if (Mask.isPowerOf2() && (C->getValue() | Mask) == C->getValue()) {
602           // If we already have a value for the switch, it has to match!
603           if (!setValueOnce(RHSVal))
604             return false;
605 
606           Vals.push_back(C);
607           Vals.push_back(ConstantInt::get(C->getContext(),
608                                           C->getValue() & ~Mask));
609           UsedICmps++;
610           return true;
611         }
612       }
613 
614       // If we already have a value for the switch, it has to match!
615       if (!setValueOnce(ICI->getOperand(0)))
616         return false;
617 
618       UsedICmps++;
619       Vals.push_back(C);
620       return ICI->getOperand(0);
621     }
622 
623     // If we have "x ult 3", for example, then we can add 0,1,2 to the set.
624     ConstantRange Span =
625         ConstantRange::makeExactICmpRegion(ICI->getPredicate(), C->getValue());
626 
627     // Shift the range if the compare is fed by an add. This is the range
628     // compare idiom as emitted by instcombine.
629     Value *CandidateVal = I->getOperand(0);
630     if (match(I->getOperand(0), m_Add(m_Value(RHSVal), m_APInt(RHSC)))) {
631       Span = Span.subtract(*RHSC);
632       CandidateVal = RHSVal;
633     }
634 
635     // If this is an and/!= check, then we are looking to build the set of
636     // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into
637     // x != 0 && x != 1.
638     if (!isEQ)
639       Span = Span.inverse();
640 
641     // If there are a ton of values, we don't want to make a ginormous switch.
642     if (Span.isSizeLargerThan(8) || Span.isEmptySet()) {
643       return false;
644     }
645 
646     // If we already have a value for the switch, it has to match!
647     if (!setValueOnce(CandidateVal))
648       return false;
649 
650     // Add all values from the range to the set
651     for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp)
652       Vals.push_back(ConstantInt::get(I->getContext(), Tmp));
653 
654     UsedICmps++;
655     return true;
656   }
657 
658   /// Given a potentially 'or'd or 'and'd together collection of icmp
659   /// eq/ne/lt/gt instructions that compare a value against a constant, extract
660   /// the value being compared, and stick the list constants into the Vals
661   /// vector.
662   /// One "Extra" case is allowed to differ from the other.
663   void gather(Value *V) {
664     bool isEQ = match(V, m_LogicalOr(m_Value(), m_Value()));
665 
666     // Keep a stack (SmallVector for efficiency) for depth-first traversal
667     SmallVector<Value *, 8> DFT;
668     SmallPtrSet<Value *, 8> Visited;
669 
670     // Initialize
671     Visited.insert(V);
672     DFT.push_back(V);
673 
674     while (!DFT.empty()) {
675       V = DFT.pop_back_val();
676 
677       if (Instruction *I = dyn_cast<Instruction>(V)) {
678         // If it is a || (or && depending on isEQ), process the operands.
679         Value *Op0, *Op1;
680         if (isEQ ? match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1)))
681                  : match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) {
682           if (Visited.insert(Op1).second)
683             DFT.push_back(Op1);
684           if (Visited.insert(Op0).second)
685             DFT.push_back(Op0);
686 
687           continue;
688         }
689 
690         // Try to match the current instruction
691         if (matchInstruction(I, isEQ))
692           // Match succeed, continue the loop
693           continue;
694       }
695 
696       // One element of the sequence of || (or &&) could not be match as a
697       // comparison against the same value as the others.
698       // We allow only one "Extra" case to be checked before the switch
699       if (!Extra) {
700         Extra = V;
701         continue;
702       }
703       // Failed to parse a proper sequence, abort now
704       CompValue = nullptr;
705       break;
706     }
707   }
708 };
709 
710 } // end anonymous namespace
711 
712 static void EraseTerminatorAndDCECond(Instruction *TI,
713                                       MemorySSAUpdater *MSSAU = nullptr) {
714   Instruction *Cond = nullptr;
715   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
716     Cond = dyn_cast<Instruction>(SI->getCondition());
717   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
718     if (BI->isConditional())
719       Cond = dyn_cast<Instruction>(BI->getCondition());
720   } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) {
721     Cond = dyn_cast<Instruction>(IBI->getAddress());
722   }
723 
724   TI->eraseFromParent();
725   if (Cond)
726     RecursivelyDeleteTriviallyDeadInstructions(Cond, nullptr, MSSAU);
727 }
728 
729 /// Return true if the specified terminator checks
730 /// to see if a value is equal to constant integer value.
731 Value *SimplifyCFGOpt::isValueEqualityComparison(Instruction *TI) {
732   Value *CV = nullptr;
733   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
734     // Do not permit merging of large switch instructions into their
735     // predecessors unless there is only one predecessor.
736     if (!SI->getParent()->hasNPredecessorsOrMore(128 / SI->getNumSuccessors()))
737       CV = SI->getCondition();
738   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI))
739     if (BI->isConditional() && BI->getCondition()->hasOneUse())
740       if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) {
741         if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL))
742           CV = ICI->getOperand(0);
743       }
744 
745   // Unwrap any lossless ptrtoint cast.
746   if (CV) {
747     if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) {
748       Value *Ptr = PTII->getPointerOperand();
749       if (PTII->getType() == DL.getIntPtrType(Ptr->getType()))
750         CV = Ptr;
751     }
752   }
753   return CV;
754 }
755 
756 /// Given a value comparison instruction,
757 /// decode all of the 'cases' that it represents and return the 'default' block.
758 BasicBlock *SimplifyCFGOpt::GetValueEqualityComparisonCases(
759     Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases) {
760   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
761     Cases.reserve(SI->getNumCases());
762     for (auto Case : SI->cases())
763       Cases.push_back(ValueEqualityComparisonCase(Case.getCaseValue(),
764                                                   Case.getCaseSuccessor()));
765     return SI->getDefaultDest();
766   }
767 
768   BranchInst *BI = cast<BranchInst>(TI);
769   ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
770   BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE);
771   Cases.push_back(ValueEqualityComparisonCase(
772       GetConstantInt(ICI->getOperand(1), DL), Succ));
773   return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ);
774 }
775 
776 /// Given a vector of bb/value pairs, remove any entries
777 /// in the list that match the specified block.
778 static void
779 EliminateBlockCases(BasicBlock *BB,
780                     std::vector<ValueEqualityComparisonCase> &Cases) {
781   llvm::erase_value(Cases, BB);
782 }
783 
784 /// Return true if there are any keys in C1 that exist in C2 as well.
785 static bool ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1,
786                           std::vector<ValueEqualityComparisonCase> &C2) {
787   std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2;
788 
789   // Make V1 be smaller than V2.
790   if (V1->size() > V2->size())
791     std::swap(V1, V2);
792 
793   if (V1->empty())
794     return false;
795   if (V1->size() == 1) {
796     // Just scan V2.
797     ConstantInt *TheVal = (*V1)[0].Value;
798     for (unsigned i = 0, e = V2->size(); i != e; ++i)
799       if (TheVal == (*V2)[i].Value)
800         return true;
801   }
802 
803   // Otherwise, just sort both lists and compare element by element.
804   array_pod_sort(V1->begin(), V1->end());
805   array_pod_sort(V2->begin(), V2->end());
806   unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size();
807   while (i1 != e1 && i2 != e2) {
808     if ((*V1)[i1].Value == (*V2)[i2].Value)
809       return true;
810     if ((*V1)[i1].Value < (*V2)[i2].Value)
811       ++i1;
812     else
813       ++i2;
814   }
815   return false;
816 }
817 
818 // Set branch weights on SwitchInst. This sets the metadata if there is at
819 // least one non-zero weight.
820 static void setBranchWeights(SwitchInst *SI, ArrayRef<uint32_t> Weights) {
821   // Check that there is at least one non-zero weight. Otherwise, pass
822   // nullptr to setMetadata which will erase the existing metadata.
823   MDNode *N = nullptr;
824   if (llvm::any_of(Weights, [](uint32_t W) { return W != 0; }))
825     N = MDBuilder(SI->getParent()->getContext()).createBranchWeights(Weights);
826   SI->setMetadata(LLVMContext::MD_prof, N);
827 }
828 
829 // Similar to the above, but for branch and select instructions that take
830 // exactly 2 weights.
831 static void setBranchWeights(Instruction *I, uint32_t TrueWeight,
832                              uint32_t FalseWeight) {
833   assert(isa<BranchInst>(I) || isa<SelectInst>(I));
834   // Check that there is at least one non-zero weight. Otherwise, pass
835   // nullptr to setMetadata which will erase the existing metadata.
836   MDNode *N = nullptr;
837   if (TrueWeight || FalseWeight)
838     N = MDBuilder(I->getParent()->getContext())
839             .createBranchWeights(TrueWeight, FalseWeight);
840   I->setMetadata(LLVMContext::MD_prof, N);
841 }
842 
843 /// If TI is known to be a terminator instruction and its block is known to
844 /// only have a single predecessor block, check to see if that predecessor is
845 /// also a value comparison with the same value, and if that comparison
846 /// determines the outcome of this comparison. If so, simplify TI. This does a
847 /// very limited form of jump threading.
848 bool SimplifyCFGOpt::SimplifyEqualityComparisonWithOnlyPredecessor(
849     Instruction *TI, BasicBlock *Pred, IRBuilder<> &Builder) {
850   Value *PredVal = isValueEqualityComparison(Pred->getTerminator());
851   if (!PredVal)
852     return false; // Not a value comparison in predecessor.
853 
854   Value *ThisVal = isValueEqualityComparison(TI);
855   assert(ThisVal && "This isn't a value comparison!!");
856   if (ThisVal != PredVal)
857     return false; // Different predicates.
858 
859   // TODO: Preserve branch weight metadata, similarly to how
860   // FoldValueComparisonIntoPredecessors preserves it.
861 
862   // Find out information about when control will move from Pred to TI's block.
863   std::vector<ValueEqualityComparisonCase> PredCases;
864   BasicBlock *PredDef =
865       GetValueEqualityComparisonCases(Pred->getTerminator(), PredCases);
866   EliminateBlockCases(PredDef, PredCases); // Remove default from cases.
867 
868   // Find information about how control leaves this block.
869   std::vector<ValueEqualityComparisonCase> ThisCases;
870   BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases);
871   EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases.
872 
873   // If TI's block is the default block from Pred's comparison, potentially
874   // simplify TI based on this knowledge.
875   if (PredDef == TI->getParent()) {
876     // If we are here, we know that the value is none of those cases listed in
877     // PredCases.  If there are any cases in ThisCases that are in PredCases, we
878     // can simplify TI.
879     if (!ValuesOverlap(PredCases, ThisCases))
880       return false;
881 
882     if (isa<BranchInst>(TI)) {
883       // Okay, one of the successors of this condbr is dead.  Convert it to a
884       // uncond br.
885       assert(ThisCases.size() == 1 && "Branch can only have one case!");
886       // Insert the new branch.
887       Instruction *NI = Builder.CreateBr(ThisDef);
888       (void)NI;
889 
890       // Remove PHI node entries for the dead edge.
891       ThisCases[0].Dest->removePredecessor(PredDef);
892 
893       LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
894                         << "Through successor TI: " << *TI << "Leaving: " << *NI
895                         << "\n");
896 
897       EraseTerminatorAndDCECond(TI);
898 
899       if (DTU)
900         DTU->applyUpdates(
901             {{DominatorTree::Delete, PredDef, ThisCases[0].Dest}});
902 
903       return true;
904     }
905 
906     SwitchInstProfUpdateWrapper SI = *cast<SwitchInst>(TI);
907     // Okay, TI has cases that are statically dead, prune them away.
908     SmallPtrSet<Constant *, 16> DeadCases;
909     for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
910       DeadCases.insert(PredCases[i].Value);
911 
912     LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
913                       << "Through successor TI: " << *TI);
914 
915     SmallDenseMap<BasicBlock *, int, 8> NumPerSuccessorCases;
916     for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) {
917       --i;
918       auto *Successor = i->getCaseSuccessor();
919       if (DTU)
920         ++NumPerSuccessorCases[Successor];
921       if (DeadCases.count(i->getCaseValue())) {
922         Successor->removePredecessor(PredDef);
923         SI.removeCase(i);
924         if (DTU)
925           --NumPerSuccessorCases[Successor];
926       }
927     }
928 
929     if (DTU) {
930       std::vector<DominatorTree::UpdateType> Updates;
931       for (const std::pair<BasicBlock *, int> &I : NumPerSuccessorCases)
932         if (I.second == 0)
933           Updates.push_back({DominatorTree::Delete, PredDef, I.first});
934       DTU->applyUpdates(Updates);
935     }
936 
937     LLVM_DEBUG(dbgs() << "Leaving: " << *TI << "\n");
938     return true;
939   }
940 
941   // Otherwise, TI's block must correspond to some matched value.  Find out
942   // which value (or set of values) this is.
943   ConstantInt *TIV = nullptr;
944   BasicBlock *TIBB = TI->getParent();
945   for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
946     if (PredCases[i].Dest == TIBB) {
947       if (TIV)
948         return false; // Cannot handle multiple values coming to this block.
949       TIV = PredCases[i].Value;
950     }
951   assert(TIV && "No edge from pred to succ?");
952 
953   // Okay, we found the one constant that our value can be if we get into TI's
954   // BB.  Find out which successor will unconditionally be branched to.
955   BasicBlock *TheRealDest = nullptr;
956   for (unsigned i = 0, e = ThisCases.size(); i != e; ++i)
957     if (ThisCases[i].Value == TIV) {
958       TheRealDest = ThisCases[i].Dest;
959       break;
960     }
961 
962   // If not handled by any explicit cases, it is handled by the default case.
963   if (!TheRealDest)
964     TheRealDest = ThisDef;
965 
966   SmallPtrSet<BasicBlock *, 2> RemovedSuccs;
967 
968   // Remove PHI node entries for dead edges.
969   BasicBlock *CheckEdge = TheRealDest;
970   for (BasicBlock *Succ : successors(TIBB))
971     if (Succ != CheckEdge) {
972       if (Succ != TheRealDest)
973         RemovedSuccs.insert(Succ);
974       Succ->removePredecessor(TIBB);
975     } else
976       CheckEdge = nullptr;
977 
978   // Insert the new branch.
979   Instruction *NI = Builder.CreateBr(TheRealDest);
980   (void)NI;
981 
982   LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
983                     << "Through successor TI: " << *TI << "Leaving: " << *NI
984                     << "\n");
985 
986   EraseTerminatorAndDCECond(TI);
987   if (DTU) {
988     SmallVector<DominatorTree::UpdateType, 2> Updates;
989     Updates.reserve(RemovedSuccs.size());
990     for (auto *RemovedSucc : RemovedSuccs)
991       Updates.push_back({DominatorTree::Delete, TIBB, RemovedSucc});
992     DTU->applyUpdates(Updates);
993   }
994   return true;
995 }
996 
997 namespace {
998 
999 /// This class implements a stable ordering of constant
1000 /// integers that does not depend on their address.  This is important for
1001 /// applications that sort ConstantInt's to ensure uniqueness.
1002 struct ConstantIntOrdering {
1003   bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const {
1004     return LHS->getValue().ult(RHS->getValue());
1005   }
1006 };
1007 
1008 } // end anonymous namespace
1009 
1010 static int ConstantIntSortPredicate(ConstantInt *const *P1,
1011                                     ConstantInt *const *P2) {
1012   const ConstantInt *LHS = *P1;
1013   const ConstantInt *RHS = *P2;
1014   if (LHS == RHS)
1015     return 0;
1016   return LHS->getValue().ult(RHS->getValue()) ? 1 : -1;
1017 }
1018 
1019 static inline bool HasBranchWeights(const Instruction *I) {
1020   MDNode *ProfMD = I->getMetadata(LLVMContext::MD_prof);
1021   if (ProfMD && ProfMD->getOperand(0))
1022     if (MDString *MDS = dyn_cast<MDString>(ProfMD->getOperand(0)))
1023       return MDS->getString().equals("branch_weights");
1024 
1025   return false;
1026 }
1027 
1028 /// Get Weights of a given terminator, the default weight is at the front
1029 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight
1030 /// metadata.
1031 static void GetBranchWeights(Instruction *TI,
1032                              SmallVectorImpl<uint64_t> &Weights) {
1033   MDNode *MD = TI->getMetadata(LLVMContext::MD_prof);
1034   assert(MD);
1035   for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) {
1036     ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i));
1037     Weights.push_back(CI->getValue().getZExtValue());
1038   }
1039 
1040   // If TI is a conditional eq, the default case is the false case,
1041   // and the corresponding branch-weight data is at index 2. We swap the
1042   // default weight to be the first entry.
1043   if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
1044     assert(Weights.size() == 2);
1045     ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
1046     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
1047       std::swap(Weights.front(), Weights.back());
1048   }
1049 }
1050 
1051 /// Keep halving the weights until all can fit in uint32_t.
1052 static void FitWeights(MutableArrayRef<uint64_t> Weights) {
1053   uint64_t Max = *std::max_element(Weights.begin(), Weights.end());
1054   if (Max > UINT_MAX) {
1055     unsigned Offset = 32 - countLeadingZeros(Max);
1056     for (uint64_t &I : Weights)
1057       I >>= Offset;
1058   }
1059 }
1060 
1061 static void CloneInstructionsIntoPredecessorBlockAndUpdateSSAUses(
1062     BasicBlock *BB, BasicBlock *PredBlock, ValueToValueMapTy &VMap) {
1063   Instruction *PTI = PredBlock->getTerminator();
1064 
1065   // If we have bonus instructions, clone them into the predecessor block.
1066   // Note that there may be multiple predecessor blocks, so we cannot move
1067   // bonus instructions to a predecessor block.
1068   for (Instruction &BonusInst : *BB) {
1069     if (isa<DbgInfoIntrinsic>(BonusInst) || BonusInst.isTerminator())
1070       continue;
1071 
1072     Instruction *NewBonusInst = BonusInst.clone();
1073 
1074     if (PTI->getDebugLoc() != NewBonusInst->getDebugLoc()) {
1075       // Unless the instruction has the same !dbg location as the original
1076       // branch, drop it. When we fold the bonus instructions we want to make
1077       // sure we reset their debug locations in order to avoid stepping on
1078       // dead code caused by folding dead branches.
1079       NewBonusInst->setDebugLoc(DebugLoc());
1080     }
1081 
1082     RemapInstruction(NewBonusInst, VMap,
1083                      RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
1084     VMap[&BonusInst] = NewBonusInst;
1085 
1086     // If we moved a load, we cannot any longer claim any knowledge about
1087     // its potential value. The previous information might have been valid
1088     // only given the branch precondition.
1089     // For an analogous reason, we must also drop all the metadata whose
1090     // semantics we don't understand. We *can* preserve !annotation, because
1091     // it is tied to the instruction itself, not the value or position.
1092     NewBonusInst->dropUnknownNonDebugMetadata(LLVMContext::MD_annotation);
1093 
1094     PredBlock->getInstList().insert(PTI->getIterator(), NewBonusInst);
1095     NewBonusInst->takeName(&BonusInst);
1096     BonusInst.setName(NewBonusInst->getName() + ".old");
1097 
1098     // Update (liveout) uses of bonus instructions,
1099     // now that the bonus instruction has been cloned into predecessor.
1100     SSAUpdater SSAUpdate;
1101     SSAUpdate.Initialize(BonusInst.getType(),
1102                          (NewBonusInst->getName() + ".merge").str());
1103     SSAUpdate.AddAvailableValue(BB, &BonusInst);
1104     SSAUpdate.AddAvailableValue(PredBlock, NewBonusInst);
1105     for (Use &U : make_early_inc_range(BonusInst.uses())) {
1106       auto *UI = cast<Instruction>(U.getUser());
1107       if (UI->getParent() != PredBlock)
1108         SSAUpdate.RewriteUseAfterInsertions(U);
1109       else // Use is in the same block as, and comes before, NewBonusInst.
1110         SSAUpdate.RewriteUse(U);
1111     }
1112   }
1113 }
1114 
1115 bool SimplifyCFGOpt::PerformValueComparisonIntoPredecessorFolding(
1116     Instruction *TI, Value *&CV, Instruction *PTI, IRBuilder<> &Builder) {
1117   BasicBlock *BB = TI->getParent();
1118   BasicBlock *Pred = PTI->getParent();
1119 
1120   SmallVector<DominatorTree::UpdateType, 32> Updates;
1121 
1122   // Figure out which 'cases' to copy from SI to PSI.
1123   std::vector<ValueEqualityComparisonCase> BBCases;
1124   BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases);
1125 
1126   std::vector<ValueEqualityComparisonCase> PredCases;
1127   BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases);
1128 
1129   // Based on whether the default edge from PTI goes to BB or not, fill in
1130   // PredCases and PredDefault with the new switch cases we would like to
1131   // build.
1132   SmallMapVector<BasicBlock *, int, 8> NewSuccessors;
1133 
1134   // Update the branch weight metadata along the way
1135   SmallVector<uint64_t, 8> Weights;
1136   bool PredHasWeights = HasBranchWeights(PTI);
1137   bool SuccHasWeights = HasBranchWeights(TI);
1138 
1139   if (PredHasWeights) {
1140     GetBranchWeights(PTI, Weights);
1141     // branch-weight metadata is inconsistent here.
1142     if (Weights.size() != 1 + PredCases.size())
1143       PredHasWeights = SuccHasWeights = false;
1144   } else if (SuccHasWeights)
1145     // If there are no predecessor weights but there are successor weights,
1146     // populate Weights with 1, which will later be scaled to the sum of
1147     // successor's weights
1148     Weights.assign(1 + PredCases.size(), 1);
1149 
1150   SmallVector<uint64_t, 8> SuccWeights;
1151   if (SuccHasWeights) {
1152     GetBranchWeights(TI, SuccWeights);
1153     // branch-weight metadata is inconsistent here.
1154     if (SuccWeights.size() != 1 + BBCases.size())
1155       PredHasWeights = SuccHasWeights = false;
1156   } else if (PredHasWeights)
1157     SuccWeights.assign(1 + BBCases.size(), 1);
1158 
1159   if (PredDefault == BB) {
1160     // If this is the default destination from PTI, only the edges in TI
1161     // that don't occur in PTI, or that branch to BB will be activated.
1162     std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
1163     for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
1164       if (PredCases[i].Dest != BB)
1165         PTIHandled.insert(PredCases[i].Value);
1166       else {
1167         // The default destination is BB, we don't need explicit targets.
1168         std::swap(PredCases[i], PredCases.back());
1169 
1170         if (PredHasWeights || SuccHasWeights) {
1171           // Increase weight for the default case.
1172           Weights[0] += Weights[i + 1];
1173           std::swap(Weights[i + 1], Weights.back());
1174           Weights.pop_back();
1175         }
1176 
1177         PredCases.pop_back();
1178         --i;
1179         --e;
1180       }
1181 
1182     // Reconstruct the new switch statement we will be building.
1183     if (PredDefault != BBDefault) {
1184       PredDefault->removePredecessor(Pred);
1185       if (DTU && PredDefault != BB)
1186         Updates.push_back({DominatorTree::Delete, Pred, PredDefault});
1187       PredDefault = BBDefault;
1188       ++NewSuccessors[BBDefault];
1189     }
1190 
1191     unsigned CasesFromPred = Weights.size();
1192     uint64_t ValidTotalSuccWeight = 0;
1193     for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
1194       if (!PTIHandled.count(BBCases[i].Value) && BBCases[i].Dest != BBDefault) {
1195         PredCases.push_back(BBCases[i]);
1196         ++NewSuccessors[BBCases[i].Dest];
1197         if (SuccHasWeights || PredHasWeights) {
1198           // The default weight is at index 0, so weight for the ith case
1199           // should be at index i+1. Scale the cases from successor by
1200           // PredDefaultWeight (Weights[0]).
1201           Weights.push_back(Weights[0] * SuccWeights[i + 1]);
1202           ValidTotalSuccWeight += SuccWeights[i + 1];
1203         }
1204       }
1205 
1206     if (SuccHasWeights || PredHasWeights) {
1207       ValidTotalSuccWeight += SuccWeights[0];
1208       // Scale the cases from predecessor by ValidTotalSuccWeight.
1209       for (unsigned i = 1; i < CasesFromPred; ++i)
1210         Weights[i] *= ValidTotalSuccWeight;
1211       // Scale the default weight by SuccDefaultWeight (SuccWeights[0]).
1212       Weights[0] *= SuccWeights[0];
1213     }
1214   } else {
1215     // If this is not the default destination from PSI, only the edges
1216     // in SI that occur in PSI with a destination of BB will be
1217     // activated.
1218     std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
1219     std::map<ConstantInt *, uint64_t> WeightsForHandled;
1220     for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
1221       if (PredCases[i].Dest == BB) {
1222         PTIHandled.insert(PredCases[i].Value);
1223 
1224         if (PredHasWeights || SuccHasWeights) {
1225           WeightsForHandled[PredCases[i].Value] = Weights[i + 1];
1226           std::swap(Weights[i + 1], Weights.back());
1227           Weights.pop_back();
1228         }
1229 
1230         std::swap(PredCases[i], PredCases.back());
1231         PredCases.pop_back();
1232         --i;
1233         --e;
1234       }
1235 
1236     // Okay, now we know which constants were sent to BB from the
1237     // predecessor.  Figure out where they will all go now.
1238     for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
1239       if (PTIHandled.count(BBCases[i].Value)) {
1240         // If this is one we are capable of getting...
1241         if (PredHasWeights || SuccHasWeights)
1242           Weights.push_back(WeightsForHandled[BBCases[i].Value]);
1243         PredCases.push_back(BBCases[i]);
1244         ++NewSuccessors[BBCases[i].Dest];
1245         PTIHandled.erase(BBCases[i].Value); // This constant is taken care of
1246       }
1247 
1248     // If there are any constants vectored to BB that TI doesn't handle,
1249     // they must go to the default destination of TI.
1250     for (ConstantInt *I : PTIHandled) {
1251       if (PredHasWeights || SuccHasWeights)
1252         Weights.push_back(WeightsForHandled[I]);
1253       PredCases.push_back(ValueEqualityComparisonCase(I, BBDefault));
1254       ++NewSuccessors[BBDefault];
1255     }
1256   }
1257 
1258   // Okay, at this point, we know which new successor Pred will get.  Make
1259   // sure we update the number of entries in the PHI nodes for these
1260   // successors.
1261   SmallPtrSet<BasicBlock *, 2> SuccsOfPred;
1262   if (DTU) {
1263     SuccsOfPred = {succ_begin(Pred), succ_end(Pred)};
1264     Updates.reserve(Updates.size() + NewSuccessors.size());
1265   }
1266   for (const std::pair<BasicBlock *, int /*Num*/> &NewSuccessor :
1267        NewSuccessors) {
1268     for (auto I : seq(0, NewSuccessor.second)) {
1269       (void)I;
1270       AddPredecessorToBlock(NewSuccessor.first, Pred, BB);
1271     }
1272     if (DTU && !SuccsOfPred.contains(NewSuccessor.first))
1273       Updates.push_back({DominatorTree::Insert, Pred, NewSuccessor.first});
1274   }
1275 
1276   Builder.SetInsertPoint(PTI);
1277   // Convert pointer to int before we switch.
1278   if (CV->getType()->isPointerTy()) {
1279     CV =
1280         Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()), "magicptr");
1281   }
1282 
1283   // Now that the successors are updated, create the new Switch instruction.
1284   SwitchInst *NewSI = Builder.CreateSwitch(CV, PredDefault, PredCases.size());
1285   NewSI->setDebugLoc(PTI->getDebugLoc());
1286   for (ValueEqualityComparisonCase &V : PredCases)
1287     NewSI->addCase(V.Value, V.Dest);
1288 
1289   if (PredHasWeights || SuccHasWeights) {
1290     // Halve the weights if any of them cannot fit in an uint32_t
1291     FitWeights(Weights);
1292 
1293     SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
1294 
1295     setBranchWeights(NewSI, MDWeights);
1296   }
1297 
1298   EraseTerminatorAndDCECond(PTI);
1299 
1300   // Okay, last check.  If BB is still a successor of PSI, then we must
1301   // have an infinite loop case.  If so, add an infinitely looping block
1302   // to handle the case to preserve the behavior of the code.
1303   BasicBlock *InfLoopBlock = nullptr;
1304   for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i)
1305     if (NewSI->getSuccessor(i) == BB) {
1306       if (!InfLoopBlock) {
1307         // Insert it at the end of the function, because it's either code,
1308         // or it won't matter if it's hot. :)
1309         InfLoopBlock =
1310             BasicBlock::Create(BB->getContext(), "infloop", BB->getParent());
1311         BranchInst::Create(InfLoopBlock, InfLoopBlock);
1312         if (DTU)
1313           Updates.push_back(
1314               {DominatorTree::Insert, InfLoopBlock, InfLoopBlock});
1315       }
1316       NewSI->setSuccessor(i, InfLoopBlock);
1317     }
1318 
1319   if (DTU) {
1320     if (InfLoopBlock)
1321       Updates.push_back({DominatorTree::Insert, Pred, InfLoopBlock});
1322 
1323     Updates.push_back({DominatorTree::Delete, Pred, BB});
1324 
1325     DTU->applyUpdates(Updates);
1326   }
1327 
1328   ++NumFoldValueComparisonIntoPredecessors;
1329   return true;
1330 }
1331 
1332 /// The specified terminator is a value equality comparison instruction
1333 /// (either a switch or a branch on "X == c").
1334 /// See if any of the predecessors of the terminator block are value comparisons
1335 /// on the same value.  If so, and if safe to do so, fold them together.
1336 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(Instruction *TI,
1337                                                          IRBuilder<> &Builder) {
1338   BasicBlock *BB = TI->getParent();
1339   Value *CV = isValueEqualityComparison(TI); // CondVal
1340   assert(CV && "Not a comparison?");
1341 
1342   bool Changed = false;
1343 
1344   SmallSetVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB));
1345   while (!Preds.empty()) {
1346     BasicBlock *Pred = Preds.pop_back_val();
1347     Instruction *PTI = Pred->getTerminator();
1348 
1349     // Don't try to fold into itself.
1350     if (Pred == BB)
1351       continue;
1352 
1353     // See if the predecessor is a comparison with the same value.
1354     Value *PCV = isValueEqualityComparison(PTI); // PredCondVal
1355     if (PCV != CV)
1356       continue;
1357 
1358     SmallSetVector<BasicBlock *, 4> FailBlocks;
1359     if (!SafeToMergeTerminators(TI, PTI, &FailBlocks)) {
1360       for (auto *Succ : FailBlocks) {
1361         if (!SplitBlockPredecessors(Succ, TI->getParent(), ".fold.split", DTU))
1362           return false;
1363       }
1364     }
1365 
1366     PerformValueComparisonIntoPredecessorFolding(TI, CV, PTI, Builder);
1367     Changed = true;
1368   }
1369   return Changed;
1370 }
1371 
1372 // If we would need to insert a select that uses the value of this invoke
1373 // (comments in HoistThenElseCodeToIf explain why we would need to do this), we
1374 // can't hoist the invoke, as there is nowhere to put the select in this case.
1375 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2,
1376                                 Instruction *I1, Instruction *I2) {
1377   for (BasicBlock *Succ : successors(BB1)) {
1378     for (const PHINode &PN : Succ->phis()) {
1379       Value *BB1V = PN.getIncomingValueForBlock(BB1);
1380       Value *BB2V = PN.getIncomingValueForBlock(BB2);
1381       if (BB1V != BB2V && (BB1V == I1 || BB2V == I2)) {
1382         return false;
1383       }
1384     }
1385   }
1386   return true;
1387 }
1388 
1389 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I, bool PtrValueMayBeModified = false);
1390 
1391 /// Given a conditional branch that goes to BB1 and BB2, hoist any common code
1392 /// in the two blocks up into the branch block. The caller of this function
1393 /// guarantees that BI's block dominates BB1 and BB2. If EqTermsOnly is given,
1394 /// only perform hoisting in case both blocks only contain a terminator. In that
1395 /// case, only the original BI will be replaced and selects for PHIs are added.
1396 bool SimplifyCFGOpt::HoistThenElseCodeToIf(BranchInst *BI,
1397                                            const TargetTransformInfo &TTI,
1398                                            bool EqTermsOnly) {
1399   // This does very trivial matching, with limited scanning, to find identical
1400   // instructions in the two blocks.  In particular, we don't want to get into
1401   // O(M*N) situations here where M and N are the sizes of BB1 and BB2.  As
1402   // such, we currently just scan for obviously identical instructions in an
1403   // identical order.
1404   BasicBlock *BB1 = BI->getSuccessor(0); // The true destination.
1405   BasicBlock *BB2 = BI->getSuccessor(1); // The false destination
1406 
1407   // If either of the blocks has it's address taken, then we can't do this fold,
1408   // because the code we'd hoist would no longer run when we jump into the block
1409   // by it's address.
1410   if (BB1->hasAddressTaken() || BB2->hasAddressTaken())
1411     return false;
1412 
1413   BasicBlock::iterator BB1_Itr = BB1->begin();
1414   BasicBlock::iterator BB2_Itr = BB2->begin();
1415 
1416   Instruction *I1 = &*BB1_Itr++, *I2 = &*BB2_Itr++;
1417   // Skip debug info if it is not identical.
1418   DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1419   DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1420   if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1421     while (isa<DbgInfoIntrinsic>(I1))
1422       I1 = &*BB1_Itr++;
1423     while (isa<DbgInfoIntrinsic>(I2))
1424       I2 = &*BB2_Itr++;
1425   }
1426   // FIXME: Can we define a safety predicate for CallBr?
1427   if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) ||
1428       (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) ||
1429       isa<CallBrInst>(I1))
1430     return false;
1431 
1432   BasicBlock *BIParent = BI->getParent();
1433 
1434   bool Changed = false;
1435 
1436   auto _ = make_scope_exit([&]() {
1437     if (Changed)
1438       ++NumHoistCommonCode;
1439   });
1440 
1441   // Check if only hoisting terminators is allowed. This does not add new
1442   // instructions to the hoist location.
1443   if (EqTermsOnly) {
1444     // Skip any debug intrinsics, as they are free to hoist.
1445     auto *I1NonDbg = &*skipDebugIntrinsics(I1->getIterator());
1446     auto *I2NonDbg = &*skipDebugIntrinsics(I2->getIterator());
1447     if (!I1NonDbg->isIdenticalToWhenDefined(I2NonDbg))
1448       return false;
1449     if (!I1NonDbg->isTerminator())
1450       return false;
1451     // Now we know that we only need to hoist debug instrinsics and the
1452     // terminator. Let the loop below handle those 2 cases.
1453   }
1454 
1455   do {
1456     // If we are hoisting the terminator instruction, don't move one (making a
1457     // broken BB), instead clone it, and remove BI.
1458     if (I1->isTerminator())
1459       goto HoistTerminator;
1460 
1461     // If we're going to hoist a call, make sure that the two instructions we're
1462     // commoning/hoisting are both marked with musttail, or neither of them is
1463     // marked as such. Otherwise, we might end up in a situation where we hoist
1464     // from a block where the terminator is a `ret` to a block where the terminator
1465     // is a `br`, and `musttail` calls expect to be followed by a return.
1466     auto *C1 = dyn_cast<CallInst>(I1);
1467     auto *C2 = dyn_cast<CallInst>(I2);
1468     if (C1 && C2)
1469       if (C1->isMustTailCall() != C2->isMustTailCall())
1470         return Changed;
1471 
1472     if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2))
1473       return Changed;
1474 
1475     // If any of the two call sites has nomerge attribute, stop hoisting.
1476     if (const auto *CB1 = dyn_cast<CallBase>(I1))
1477       if (CB1->cannotMerge())
1478         return Changed;
1479     if (const auto *CB2 = dyn_cast<CallBase>(I2))
1480       if (CB2->cannotMerge())
1481         return Changed;
1482 
1483     if (isa<DbgInfoIntrinsic>(I1) || isa<DbgInfoIntrinsic>(I2)) {
1484       assert (isa<DbgInfoIntrinsic>(I1) && isa<DbgInfoIntrinsic>(I2));
1485       // The debug location is an integral part of a debug info intrinsic
1486       // and can't be separated from it or replaced.  Instead of attempting
1487       // to merge locations, simply hoist both copies of the intrinsic.
1488       BIParent->getInstList().splice(BI->getIterator(),
1489                                      BB1->getInstList(), I1);
1490       BIParent->getInstList().splice(BI->getIterator(),
1491                                      BB2->getInstList(), I2);
1492       Changed = true;
1493     } else {
1494       // For a normal instruction, we just move one to right before the branch,
1495       // then replace all uses of the other with the first.  Finally, we remove
1496       // the now redundant second instruction.
1497       BIParent->getInstList().splice(BI->getIterator(),
1498                                      BB1->getInstList(), I1);
1499       if (!I2->use_empty())
1500         I2->replaceAllUsesWith(I1);
1501       I1->andIRFlags(I2);
1502       unsigned KnownIDs[] = {LLVMContext::MD_tbaa,
1503                              LLVMContext::MD_range,
1504                              LLVMContext::MD_fpmath,
1505                              LLVMContext::MD_invariant_load,
1506                              LLVMContext::MD_nonnull,
1507                              LLVMContext::MD_invariant_group,
1508                              LLVMContext::MD_align,
1509                              LLVMContext::MD_dereferenceable,
1510                              LLVMContext::MD_dereferenceable_or_null,
1511                              LLVMContext::MD_mem_parallel_loop_access,
1512                              LLVMContext::MD_access_group,
1513                              LLVMContext::MD_preserve_access_index};
1514       combineMetadata(I1, I2, KnownIDs, true);
1515 
1516       // I1 and I2 are being combined into a single instruction.  Its debug
1517       // location is the merged locations of the original instructions.
1518       I1->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc());
1519 
1520       I2->eraseFromParent();
1521       Changed = true;
1522     }
1523     ++NumHoistCommonInstrs;
1524 
1525     I1 = &*BB1_Itr++;
1526     I2 = &*BB2_Itr++;
1527     // Skip debug info if it is not identical.
1528     DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1529     DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1530     if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1531       while (isa<DbgInfoIntrinsic>(I1))
1532         I1 = &*BB1_Itr++;
1533       while (isa<DbgInfoIntrinsic>(I2))
1534         I2 = &*BB2_Itr++;
1535     }
1536   } while (I1->isIdenticalToWhenDefined(I2));
1537 
1538   return true;
1539 
1540 HoistTerminator:
1541   // It may not be possible to hoist an invoke.
1542   // FIXME: Can we define a safety predicate for CallBr?
1543   if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))
1544     return Changed;
1545 
1546   // TODO: callbr hoisting currently disabled pending further study.
1547   if (isa<CallBrInst>(I1))
1548     return Changed;
1549 
1550   for (BasicBlock *Succ : successors(BB1)) {
1551     for (PHINode &PN : Succ->phis()) {
1552       Value *BB1V = PN.getIncomingValueForBlock(BB1);
1553       Value *BB2V = PN.getIncomingValueForBlock(BB2);
1554       if (BB1V == BB2V)
1555         continue;
1556 
1557       // Check for passingValueIsAlwaysUndefined here because we would rather
1558       // eliminate undefined control flow then converting it to a select.
1559       if (passingValueIsAlwaysUndefined(BB1V, &PN) ||
1560           passingValueIsAlwaysUndefined(BB2V, &PN))
1561         return Changed;
1562 
1563       if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V))
1564         return Changed;
1565       if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V))
1566         return Changed;
1567     }
1568   }
1569 
1570   // Okay, it is safe to hoist the terminator.
1571   Instruction *NT = I1->clone();
1572   BIParent->getInstList().insert(BI->getIterator(), NT);
1573   if (!NT->getType()->isVoidTy()) {
1574     I1->replaceAllUsesWith(NT);
1575     I2->replaceAllUsesWith(NT);
1576     NT->takeName(I1);
1577   }
1578   Changed = true;
1579   ++NumHoistCommonInstrs;
1580 
1581   // Ensure terminator gets a debug location, even an unknown one, in case
1582   // it involves inlinable calls.
1583   NT->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc());
1584 
1585   // PHIs created below will adopt NT's merged DebugLoc.
1586   IRBuilder<NoFolder> Builder(NT);
1587 
1588   // Hoisting one of the terminators from our successor is a great thing.
1589   // Unfortunately, the successors of the if/else blocks may have PHI nodes in
1590   // them.  If they do, all PHI entries for BB1/BB2 must agree for all PHI
1591   // nodes, so we insert select instruction to compute the final result.
1592   std::map<std::pair<Value *, Value *>, SelectInst *> InsertedSelects;
1593   for (BasicBlock *Succ : successors(BB1)) {
1594     for (PHINode &PN : Succ->phis()) {
1595       Value *BB1V = PN.getIncomingValueForBlock(BB1);
1596       Value *BB2V = PN.getIncomingValueForBlock(BB2);
1597       if (BB1V == BB2V)
1598         continue;
1599 
1600       // These values do not agree.  Insert a select instruction before NT
1601       // that determines the right value.
1602       SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)];
1603       if (!SI) {
1604         // Propagate fast-math-flags from phi node to its replacement select.
1605         IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
1606         if (isa<FPMathOperator>(PN))
1607           Builder.setFastMathFlags(PN.getFastMathFlags());
1608 
1609         SI = cast<SelectInst>(
1610             Builder.CreateSelect(BI->getCondition(), BB1V, BB2V,
1611                                  BB1V->getName() + "." + BB2V->getName(), BI));
1612       }
1613 
1614       // Make the PHI node use the select for all incoming values for BB1/BB2
1615       for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
1616         if (PN.getIncomingBlock(i) == BB1 || PN.getIncomingBlock(i) == BB2)
1617           PN.setIncomingValue(i, SI);
1618     }
1619   }
1620 
1621   SmallVector<DominatorTree::UpdateType, 4> Updates;
1622 
1623   // Update any PHI nodes in our new successors.
1624   for (BasicBlock *Succ : successors(BB1)) {
1625     AddPredecessorToBlock(Succ, BIParent, BB1);
1626     if (DTU)
1627       Updates.push_back({DominatorTree::Insert, BIParent, Succ});
1628   }
1629 
1630   if (DTU)
1631     for (BasicBlock *Succ : successors(BI))
1632       Updates.push_back({DominatorTree::Delete, BIParent, Succ});
1633 
1634   EraseTerminatorAndDCECond(BI);
1635   if (DTU)
1636     DTU->applyUpdates(Updates);
1637   return Changed;
1638 }
1639 
1640 // Check lifetime markers.
1641 static bool isLifeTimeMarker(const Instruction *I) {
1642   if (auto II = dyn_cast<IntrinsicInst>(I)) {
1643     switch (II->getIntrinsicID()) {
1644     default:
1645       break;
1646     case Intrinsic::lifetime_start:
1647     case Intrinsic::lifetime_end:
1648       return true;
1649     }
1650   }
1651   return false;
1652 }
1653 
1654 // TODO: Refine this. This should avoid cases like turning constant memcpy sizes
1655 // into variables.
1656 static bool replacingOperandWithVariableIsCheap(const Instruction *I,
1657                                                 int OpIdx) {
1658   return !isa<IntrinsicInst>(I);
1659 }
1660 
1661 // All instructions in Insts belong to different blocks that all unconditionally
1662 // branch to a common successor. Analyze each instruction and return true if it
1663 // would be possible to sink them into their successor, creating one common
1664 // instruction instead. For every value that would be required to be provided by
1665 // PHI node (because an operand varies in each input block), add to PHIOperands.
1666 static bool canSinkInstructions(
1667     ArrayRef<Instruction *> Insts,
1668     DenseMap<Instruction *, SmallVector<Value *, 4>> &PHIOperands) {
1669   // Prune out obviously bad instructions to move. Each instruction must have
1670   // exactly zero or one use, and we check later that use is by a single, common
1671   // PHI instruction in the successor.
1672   bool HasUse = !Insts.front()->user_empty();
1673   for (auto *I : Insts) {
1674     // These instructions may change or break semantics if moved.
1675     if (isa<PHINode>(I) || I->isEHPad() || isa<AllocaInst>(I) ||
1676         I->getType()->isTokenTy())
1677       return false;
1678 
1679     // Do not try to sink an instruction in an infinite loop - it can cause
1680     // this algorithm to infinite loop.
1681     if (I->getParent()->getSingleSuccessor() == I->getParent())
1682       return false;
1683 
1684     // Conservatively return false if I is an inline-asm instruction. Sinking
1685     // and merging inline-asm instructions can potentially create arguments
1686     // that cannot satisfy the inline-asm constraints.
1687     // If the instruction has nomerge attribute, return false.
1688     if (const auto *C = dyn_cast<CallBase>(I))
1689       if (C->isInlineAsm() || C->cannotMerge())
1690         return false;
1691 
1692     // Each instruction must have zero or one use.
1693     if (HasUse && !I->hasOneUse())
1694       return false;
1695     if (!HasUse && !I->user_empty())
1696       return false;
1697   }
1698 
1699   const Instruction *I0 = Insts.front();
1700   for (auto *I : Insts)
1701     if (!I->isSameOperationAs(I0))
1702       return false;
1703 
1704   // All instructions in Insts are known to be the same opcode. If they have a
1705   // use, check that the only user is a PHI or in the same block as the
1706   // instruction, because if a user is in the same block as an instruction we're
1707   // contemplating sinking, it must already be determined to be sinkable.
1708   if (HasUse) {
1709     auto *PNUse = dyn_cast<PHINode>(*I0->user_begin());
1710     auto *Succ = I0->getParent()->getTerminator()->getSuccessor(0);
1711     if (!all_of(Insts, [&PNUse,&Succ](const Instruction *I) -> bool {
1712           auto *U = cast<Instruction>(*I->user_begin());
1713           return (PNUse &&
1714                   PNUse->getParent() == Succ &&
1715                   PNUse->getIncomingValueForBlock(I->getParent()) == I) ||
1716                  U->getParent() == I->getParent();
1717         }))
1718       return false;
1719   }
1720 
1721   // Because SROA can't handle speculating stores of selects, try not to sink
1722   // loads, stores or lifetime markers of allocas when we'd have to create a
1723   // PHI for the address operand. Also, because it is likely that loads or
1724   // stores of allocas will disappear when Mem2Reg/SROA is run, don't sink
1725   // them.
1726   // This can cause code churn which can have unintended consequences down
1727   // the line - see https://llvm.org/bugs/show_bug.cgi?id=30244.
1728   // FIXME: This is a workaround for a deficiency in SROA - see
1729   // https://llvm.org/bugs/show_bug.cgi?id=30188
1730   if (isa<StoreInst>(I0) && any_of(Insts, [](const Instruction *I) {
1731         return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts());
1732       }))
1733     return false;
1734   if (isa<LoadInst>(I0) && any_of(Insts, [](const Instruction *I) {
1735         return isa<AllocaInst>(I->getOperand(0)->stripPointerCasts());
1736       }))
1737     return false;
1738   if (isLifeTimeMarker(I0) && any_of(Insts, [](const Instruction *I) {
1739         return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts());
1740       }))
1741     return false;
1742 
1743   // For calls to be sinkable, they must all be indirect, or have same callee.
1744   // I.e. if we have two direct calls to different callees, we don't want to
1745   // turn that into an indirect call. Likewise, if we have an indirect call,
1746   // and a direct call, we don't actually want to have a single indirect call.
1747   if (isa<CallBase>(I0)) {
1748     auto IsIndirectCall = [](const Instruction *I) {
1749       return cast<CallBase>(I)->isIndirectCall();
1750     };
1751     bool HaveIndirectCalls = any_of(Insts, IsIndirectCall);
1752     bool AllCallsAreIndirect = all_of(Insts, IsIndirectCall);
1753     if (HaveIndirectCalls) {
1754       if (!AllCallsAreIndirect)
1755         return false;
1756     } else {
1757       // All callees must be identical.
1758       Value *Callee = nullptr;
1759       for (const Instruction *I : Insts) {
1760         Value *CurrCallee = cast<CallBase>(I)->getCalledOperand();
1761         if (!Callee)
1762           Callee = CurrCallee;
1763         else if (Callee != CurrCallee)
1764           return false;
1765       }
1766     }
1767   }
1768 
1769   for (unsigned OI = 0, OE = I0->getNumOperands(); OI != OE; ++OI) {
1770     Value *Op = I0->getOperand(OI);
1771     if (Op->getType()->isTokenTy())
1772       // Don't touch any operand of token type.
1773       return false;
1774 
1775     auto SameAsI0 = [&I0, OI](const Instruction *I) {
1776       assert(I->getNumOperands() == I0->getNumOperands());
1777       return I->getOperand(OI) == I0->getOperand(OI);
1778     };
1779     if (!all_of(Insts, SameAsI0)) {
1780       if ((isa<Constant>(Op) && !replacingOperandWithVariableIsCheap(I0, OI)) ||
1781           !canReplaceOperandWithVariable(I0, OI))
1782         // We can't create a PHI from this GEP.
1783         return false;
1784       for (auto *I : Insts)
1785         PHIOperands[I].push_back(I->getOperand(OI));
1786     }
1787   }
1788   return true;
1789 }
1790 
1791 // Assuming canSinkInstructions(Blocks) has returned true, sink the last
1792 // instruction of every block in Blocks to their common successor, commoning
1793 // into one instruction.
1794 static bool sinkLastInstruction(ArrayRef<BasicBlock*> Blocks) {
1795   auto *BBEnd = Blocks[0]->getTerminator()->getSuccessor(0);
1796 
1797   // canSinkInstructions returning true guarantees that every block has at
1798   // least one non-terminator instruction.
1799   SmallVector<Instruction*,4> Insts;
1800   for (auto *BB : Blocks) {
1801     Instruction *I = BB->getTerminator();
1802     do {
1803       I = I->getPrevNode();
1804     } while (isa<DbgInfoIntrinsic>(I) && I != &BB->front());
1805     if (!isa<DbgInfoIntrinsic>(I))
1806       Insts.push_back(I);
1807   }
1808 
1809   // The only checking we need to do now is that all users of all instructions
1810   // are the same PHI node. canSinkInstructions should have checked this but
1811   // it is slightly over-aggressive - it gets confused by commutative
1812   // instructions so double-check it here.
1813   Instruction *I0 = Insts.front();
1814   if (!I0->user_empty()) {
1815     auto *PNUse = dyn_cast<PHINode>(*I0->user_begin());
1816     if (!all_of(Insts, [&PNUse](const Instruction *I) -> bool {
1817           auto *U = cast<Instruction>(*I->user_begin());
1818           return U == PNUse;
1819         }))
1820       return false;
1821   }
1822 
1823   // We don't need to do any more checking here; canSinkInstructions should
1824   // have done it all for us.
1825   SmallVector<Value*, 4> NewOperands;
1826   for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) {
1827     // This check is different to that in canSinkInstructions. There, we
1828     // cared about the global view once simplifycfg (and instcombine) have
1829     // completed - it takes into account PHIs that become trivially
1830     // simplifiable.  However here we need a more local view; if an operand
1831     // differs we create a PHI and rely on instcombine to clean up the very
1832     // small mess we may make.
1833     bool NeedPHI = any_of(Insts, [&I0, O](const Instruction *I) {
1834       return I->getOperand(O) != I0->getOperand(O);
1835     });
1836     if (!NeedPHI) {
1837       NewOperands.push_back(I0->getOperand(O));
1838       continue;
1839     }
1840 
1841     // Create a new PHI in the successor block and populate it.
1842     auto *Op = I0->getOperand(O);
1843     assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!");
1844     auto *PN = PHINode::Create(Op->getType(), Insts.size(),
1845                                Op->getName() + ".sink", &BBEnd->front());
1846     for (auto *I : Insts)
1847       PN->addIncoming(I->getOperand(O), I->getParent());
1848     NewOperands.push_back(PN);
1849   }
1850 
1851   // Arbitrarily use I0 as the new "common" instruction; remap its operands
1852   // and move it to the start of the successor block.
1853   for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O)
1854     I0->getOperandUse(O).set(NewOperands[O]);
1855   I0->moveBefore(&*BBEnd->getFirstInsertionPt());
1856 
1857   // Update metadata and IR flags, and merge debug locations.
1858   for (auto *I : Insts)
1859     if (I != I0) {
1860       // The debug location for the "common" instruction is the merged locations
1861       // of all the commoned instructions.  We start with the original location
1862       // of the "common" instruction and iteratively merge each location in the
1863       // loop below.
1864       // This is an N-way merge, which will be inefficient if I0 is a CallInst.
1865       // However, as N-way merge for CallInst is rare, so we use simplified API
1866       // instead of using complex API for N-way merge.
1867       I0->applyMergedLocation(I0->getDebugLoc(), I->getDebugLoc());
1868       combineMetadataForCSE(I0, I, true);
1869       I0->andIRFlags(I);
1870     }
1871 
1872   if (!I0->user_empty()) {
1873     // canSinkLastInstruction checked that all instructions were used by
1874     // one and only one PHI node. Find that now, RAUW it to our common
1875     // instruction and nuke it.
1876     auto *PN = cast<PHINode>(*I0->user_begin());
1877     PN->replaceAllUsesWith(I0);
1878     PN->eraseFromParent();
1879   }
1880 
1881   // Finally nuke all instructions apart from the common instruction.
1882   for (auto *I : Insts)
1883     if (I != I0)
1884       I->eraseFromParent();
1885 
1886   return true;
1887 }
1888 
1889 namespace {
1890 
1891   // LockstepReverseIterator - Iterates through instructions
1892   // in a set of blocks in reverse order from the first non-terminator.
1893   // For example (assume all blocks have size n):
1894   //   LockstepReverseIterator I([B1, B2, B3]);
1895   //   *I-- = [B1[n], B2[n], B3[n]];
1896   //   *I-- = [B1[n-1], B2[n-1], B3[n-1]];
1897   //   *I-- = [B1[n-2], B2[n-2], B3[n-2]];
1898   //   ...
1899   class LockstepReverseIterator {
1900     ArrayRef<BasicBlock*> Blocks;
1901     SmallVector<Instruction*,4> Insts;
1902     bool Fail;
1903 
1904   public:
1905     LockstepReverseIterator(ArrayRef<BasicBlock*> Blocks) : Blocks(Blocks) {
1906       reset();
1907     }
1908 
1909     void reset() {
1910       Fail = false;
1911       Insts.clear();
1912       for (auto *BB : Blocks) {
1913         Instruction *Inst = BB->getTerminator();
1914         for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
1915           Inst = Inst->getPrevNode();
1916         if (!Inst) {
1917           // Block wasn't big enough.
1918           Fail = true;
1919           return;
1920         }
1921         Insts.push_back(Inst);
1922       }
1923     }
1924 
1925     bool isValid() const {
1926       return !Fail;
1927     }
1928 
1929     void operator--() {
1930       if (Fail)
1931         return;
1932       for (auto *&Inst : Insts) {
1933         for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
1934           Inst = Inst->getPrevNode();
1935         // Already at beginning of block.
1936         if (!Inst) {
1937           Fail = true;
1938           return;
1939         }
1940       }
1941     }
1942 
1943     void operator++() {
1944       if (Fail)
1945         return;
1946       for (auto *&Inst : Insts) {
1947         for (Inst = Inst->getNextNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
1948           Inst = Inst->getNextNode();
1949         // Already at end of block.
1950         if (!Inst) {
1951           Fail = true;
1952           return;
1953         }
1954       }
1955     }
1956 
1957     ArrayRef<Instruction*> operator * () const {
1958       return Insts;
1959     }
1960   };
1961 
1962 } // end anonymous namespace
1963 
1964 /// Check whether BB's predecessors end with unconditional branches. If it is
1965 /// true, sink any common code from the predecessors to BB.
1966 static bool SinkCommonCodeFromPredecessors(BasicBlock *BB,
1967                                            DomTreeUpdater *DTU) {
1968   // We support two situations:
1969   //   (1) all incoming arcs are unconditional
1970   //   (2) there are non-unconditional incoming arcs
1971   //
1972   // (2) is very common in switch defaults and
1973   // else-if patterns;
1974   //
1975   //   if (a) f(1);
1976   //   else if (b) f(2);
1977   //
1978   // produces:
1979   //
1980   //       [if]
1981   //      /    \
1982   //    [f(1)] [if]
1983   //      |     | \
1984   //      |     |  |
1985   //      |  [f(2)]|
1986   //       \    | /
1987   //        [ end ]
1988   //
1989   // [end] has two unconditional predecessor arcs and one conditional. The
1990   // conditional refers to the implicit empty 'else' arc. This conditional
1991   // arc can also be caused by an empty default block in a switch.
1992   //
1993   // In this case, we attempt to sink code from all *unconditional* arcs.
1994   // If we can sink instructions from these arcs (determined during the scan
1995   // phase below) we insert a common successor for all unconditional arcs and
1996   // connect that to [end], to enable sinking:
1997   //
1998   //       [if]
1999   //      /    \
2000   //    [x(1)] [if]
2001   //      |     | \
2002   //      |     |  \
2003   //      |  [x(2)] |
2004   //       \   /    |
2005   //   [sink.split] |
2006   //         \     /
2007   //         [ end ]
2008   //
2009   SmallVector<BasicBlock*,4> UnconditionalPreds;
2010   bool HaveNonUnconditionalPredecessors = false;
2011   for (auto *PredBB : predecessors(BB)) {
2012     auto *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator());
2013     if (PredBr && PredBr->isUnconditional())
2014       UnconditionalPreds.push_back(PredBB);
2015     else
2016       HaveNonUnconditionalPredecessors = true;
2017   }
2018   if (UnconditionalPreds.size() < 2)
2019     return false;
2020 
2021   // We take a two-step approach to tail sinking. First we scan from the end of
2022   // each block upwards in lockstep. If the n'th instruction from the end of each
2023   // block can be sunk, those instructions are added to ValuesToSink and we
2024   // carry on. If we can sink an instruction but need to PHI-merge some operands
2025   // (because they're not identical in each instruction) we add these to
2026   // PHIOperands.
2027   int ScanIdx = 0;
2028   SmallPtrSet<Value*,4> InstructionsToSink;
2029   DenseMap<Instruction*, SmallVector<Value*,4>> PHIOperands;
2030   LockstepReverseIterator LRI(UnconditionalPreds);
2031   while (LRI.isValid() &&
2032          canSinkInstructions(*LRI, PHIOperands)) {
2033     LLVM_DEBUG(dbgs() << "SINK: instruction can be sunk: " << *(*LRI)[0]
2034                       << "\n");
2035     InstructionsToSink.insert((*LRI).begin(), (*LRI).end());
2036     ++ScanIdx;
2037     --LRI;
2038   }
2039 
2040   // If no instructions can be sunk, early-return.
2041   if (ScanIdx == 0)
2042     return false;
2043 
2044   // Okay, we *could* sink last ScanIdx instructions. But how many can we
2045   // actually sink before encountering instruction that is unprofitable to sink?
2046   auto ProfitableToSinkInstruction = [&](LockstepReverseIterator &LRI) {
2047     unsigned NumPHIdValues = 0;
2048     for (auto *I : *LRI)
2049       for (auto *V : PHIOperands[I]) {
2050         if (InstructionsToSink.count(V) == 0)
2051           ++NumPHIdValues;
2052         // FIXME: this check is overly optimistic. We may end up not sinking
2053         // said instruction, due to the very same profitability check.
2054         // See @creating_too_many_phis in sink-common-code.ll.
2055       }
2056     LLVM_DEBUG(dbgs() << "SINK: #phid values: " << NumPHIdValues << "\n");
2057     unsigned NumPHIInsts = NumPHIdValues / UnconditionalPreds.size();
2058     if ((NumPHIdValues % UnconditionalPreds.size()) != 0)
2059         NumPHIInsts++;
2060 
2061     return NumPHIInsts <= 1;
2062   };
2063 
2064   // We've determined that we are going to sink last ScanIdx instructions,
2065   // and recorded them in InstructionsToSink. Now, some instructions may be
2066   // unprofitable to sink. But that determination depends on the instructions
2067   // that we are going to sink.
2068 
2069   // First, forward scan: find the first instruction unprofitable to sink,
2070   // recording all the ones that are profitable to sink.
2071   // FIXME: would it be better, after we detect that not all are profitable.
2072   // to either record the profitable ones, or erase the unprofitable ones?
2073   // Maybe we need to choose (at runtime) the one that will touch least instrs?
2074   LRI.reset();
2075   int Idx = 0;
2076   SmallPtrSet<Value *, 4> InstructionsProfitableToSink;
2077   while (Idx < ScanIdx) {
2078     if (!ProfitableToSinkInstruction(LRI)) {
2079       // Too many PHIs would be created.
2080       LLVM_DEBUG(
2081           dbgs() << "SINK: stopping here, too many PHIs would be created!\n");
2082       break;
2083     }
2084     InstructionsProfitableToSink.insert((*LRI).begin(), (*LRI).end());
2085     --LRI;
2086     ++Idx;
2087   }
2088 
2089   // If no instructions can be sunk, early-return.
2090   if (Idx == 0)
2091     return false;
2092 
2093   // Did we determine that (only) some instructions are unprofitable to sink?
2094   if (Idx < ScanIdx) {
2095     // Okay, some instructions are unprofitable.
2096     ScanIdx = Idx;
2097     InstructionsToSink = InstructionsProfitableToSink;
2098 
2099     // But, that may make other instructions unprofitable, too.
2100     // So, do a backward scan, do any earlier instructions become unprofitable?
2101     assert(!ProfitableToSinkInstruction(LRI) &&
2102            "We already know that the last instruction is unprofitable to sink");
2103     ++LRI;
2104     --Idx;
2105     while (Idx >= 0) {
2106       // If we detect that an instruction becomes unprofitable to sink,
2107       // all earlier instructions won't be sunk either,
2108       // so preemptively keep InstructionsProfitableToSink in sync.
2109       // FIXME: is this the most performant approach?
2110       for (auto *I : *LRI)
2111         InstructionsProfitableToSink.erase(I);
2112       if (!ProfitableToSinkInstruction(LRI)) {
2113         // Everything starting with this instruction won't be sunk.
2114         ScanIdx = Idx;
2115         InstructionsToSink = InstructionsProfitableToSink;
2116       }
2117       ++LRI;
2118       --Idx;
2119     }
2120   }
2121 
2122   // If no instructions can be sunk, early-return.
2123   if (ScanIdx == 0)
2124     return false;
2125 
2126   bool Changed = false;
2127 
2128   if (HaveNonUnconditionalPredecessors) {
2129     // It is always legal to sink common instructions from unconditional
2130     // predecessors. However, if not all predecessors are unconditional,
2131     // this transformation might be pessimizing. So as a rule of thumb,
2132     // don't do it unless we'd sink at least one non-speculatable instruction.
2133     // See https://bugs.llvm.org/show_bug.cgi?id=30244
2134     LRI.reset();
2135     int Idx = 0;
2136     bool Profitable = false;
2137     while (Idx < ScanIdx) {
2138       if (!isSafeToSpeculativelyExecute((*LRI)[0])) {
2139         Profitable = true;
2140         break;
2141       }
2142       --LRI;
2143       ++Idx;
2144     }
2145     if (!Profitable)
2146       return false;
2147 
2148     LLVM_DEBUG(dbgs() << "SINK: Splitting edge\n");
2149     // We have a conditional edge and we're going to sink some instructions.
2150     // Insert a new block postdominating all blocks we're going to sink from.
2151     if (!SplitBlockPredecessors(BB, UnconditionalPreds, ".sink.split", DTU))
2152       // Edges couldn't be split.
2153       return false;
2154     Changed = true;
2155   }
2156 
2157   // Now that we've analyzed all potential sinking candidates, perform the
2158   // actual sink. We iteratively sink the last non-terminator of the source
2159   // blocks into their common successor unless doing so would require too
2160   // many PHI instructions to be generated (currently only one PHI is allowed
2161   // per sunk instruction).
2162   //
2163   // We can use InstructionsToSink to discount values needing PHI-merging that will
2164   // actually be sunk in a later iteration. This allows us to be more
2165   // aggressive in what we sink. This does allow a false positive where we
2166   // sink presuming a later value will also be sunk, but stop half way through
2167   // and never actually sink it which means we produce more PHIs than intended.
2168   // This is unlikely in practice though.
2169   int SinkIdx = 0;
2170   for (; SinkIdx != ScanIdx; ++SinkIdx) {
2171     LLVM_DEBUG(dbgs() << "SINK: Sink: "
2172                       << *UnconditionalPreds[0]->getTerminator()->getPrevNode()
2173                       << "\n");
2174 
2175     // Because we've sunk every instruction in turn, the current instruction to
2176     // sink is always at index 0.
2177     LRI.reset();
2178 
2179     if (!sinkLastInstruction(UnconditionalPreds)) {
2180       LLVM_DEBUG(
2181           dbgs()
2182           << "SINK: stopping here, failed to actually sink instruction!\n");
2183       break;
2184     }
2185 
2186     NumSinkCommonInstrs++;
2187     Changed = true;
2188   }
2189   if (SinkIdx != 0)
2190     ++NumSinkCommonCode;
2191   return Changed;
2192 }
2193 
2194 /// Determine if we can hoist sink a sole store instruction out of a
2195 /// conditional block.
2196 ///
2197 /// We are looking for code like the following:
2198 ///   BrBB:
2199 ///     store i32 %add, i32* %arrayidx2
2200 ///     ... // No other stores or function calls (we could be calling a memory
2201 ///     ... // function).
2202 ///     %cmp = icmp ult %x, %y
2203 ///     br i1 %cmp, label %EndBB, label %ThenBB
2204 ///   ThenBB:
2205 ///     store i32 %add5, i32* %arrayidx2
2206 ///     br label EndBB
2207 ///   EndBB:
2208 ///     ...
2209 ///   We are going to transform this into:
2210 ///   BrBB:
2211 ///     store i32 %add, i32* %arrayidx2
2212 ///     ... //
2213 ///     %cmp = icmp ult %x, %y
2214 ///     %add.add5 = select i1 %cmp, i32 %add, %add5
2215 ///     store i32 %add.add5, i32* %arrayidx2
2216 ///     ...
2217 ///
2218 /// \return The pointer to the value of the previous store if the store can be
2219 ///         hoisted into the predecessor block. 0 otherwise.
2220 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB,
2221                                      BasicBlock *StoreBB, BasicBlock *EndBB) {
2222   StoreInst *StoreToHoist = dyn_cast<StoreInst>(I);
2223   if (!StoreToHoist)
2224     return nullptr;
2225 
2226   // Volatile or atomic.
2227   if (!StoreToHoist->isSimple())
2228     return nullptr;
2229 
2230   Value *StorePtr = StoreToHoist->getPointerOperand();
2231   Type *StoreTy = StoreToHoist->getValueOperand()->getType();
2232 
2233   // Look for a store to the same pointer in BrBB.
2234   unsigned MaxNumInstToLookAt = 9;
2235   // Skip pseudo probe intrinsic calls which are not really killing any memory
2236   // accesses.
2237   for (Instruction &CurI : reverse(BrBB->instructionsWithoutDebug(true))) {
2238     if (!MaxNumInstToLookAt)
2239       break;
2240     --MaxNumInstToLookAt;
2241 
2242     // Could be calling an instruction that affects memory like free().
2243     if (CurI.mayHaveSideEffects() && !isa<StoreInst>(CurI))
2244       return nullptr;
2245 
2246     if (auto *SI = dyn_cast<StoreInst>(&CurI)) {
2247       // Found the previous store make sure it stores to the same location.
2248       if (SI->getPointerOperand() == StorePtr &&
2249           SI->getValueOperand()->getType() == StoreTy)
2250         // Found the previous store, return its value operand.
2251         return SI->getValueOperand();
2252       return nullptr; // Unknown store.
2253     }
2254   }
2255 
2256   return nullptr;
2257 }
2258 
2259 /// Estimate the cost of the insertion(s) and check that the PHI nodes can be
2260 /// converted to selects.
2261 static bool validateAndCostRequiredSelects(BasicBlock *BB, BasicBlock *ThenBB,
2262                                            BasicBlock *EndBB,
2263                                            unsigned &SpeculatedInstructions,
2264                                            InstructionCost &Cost,
2265                                            const TargetTransformInfo &TTI) {
2266   TargetTransformInfo::TargetCostKind CostKind =
2267     BB->getParent()->hasMinSize()
2268     ? TargetTransformInfo::TCK_CodeSize
2269     : TargetTransformInfo::TCK_SizeAndLatency;
2270 
2271   bool HaveRewritablePHIs = false;
2272   for (PHINode &PN : EndBB->phis()) {
2273     Value *OrigV = PN.getIncomingValueForBlock(BB);
2274     Value *ThenV = PN.getIncomingValueForBlock(ThenBB);
2275 
2276     // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf.
2277     // Skip PHIs which are trivial.
2278     if (ThenV == OrigV)
2279       continue;
2280 
2281     Cost += TTI.getCmpSelInstrCost(Instruction::Select, PN.getType(), nullptr,
2282                                    CmpInst::BAD_ICMP_PREDICATE, CostKind);
2283 
2284     // Don't convert to selects if we could remove undefined behavior instead.
2285     if (passingValueIsAlwaysUndefined(OrigV, &PN) ||
2286         passingValueIsAlwaysUndefined(ThenV, &PN))
2287       return false;
2288 
2289     HaveRewritablePHIs = true;
2290     ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV);
2291     ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV);
2292     if (!OrigCE && !ThenCE)
2293       continue; // Known safe and cheap.
2294 
2295     if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE)) ||
2296         (OrigCE && !isSafeToSpeculativelyExecute(OrigCE)))
2297       return false;
2298     InstructionCost OrigCost = OrigCE ? computeSpeculationCost(OrigCE, TTI) : 0;
2299     InstructionCost ThenCost = ThenCE ? computeSpeculationCost(ThenCE, TTI) : 0;
2300     InstructionCost MaxCost =
2301         2 * PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
2302     if (OrigCost + ThenCost > MaxCost)
2303       return false;
2304 
2305     // Account for the cost of an unfolded ConstantExpr which could end up
2306     // getting expanded into Instructions.
2307     // FIXME: This doesn't account for how many operations are combined in the
2308     // constant expression.
2309     ++SpeculatedInstructions;
2310     if (SpeculatedInstructions > 1)
2311       return false;
2312   }
2313 
2314   return HaveRewritablePHIs;
2315 }
2316 
2317 /// Speculate a conditional basic block flattening the CFG.
2318 ///
2319 /// Note that this is a very risky transform currently. Speculating
2320 /// instructions like this is most often not desirable. Instead, there is an MI
2321 /// pass which can do it with full awareness of the resource constraints.
2322 /// However, some cases are "obvious" and we should do directly. An example of
2323 /// this is speculating a single, reasonably cheap instruction.
2324 ///
2325 /// There is only one distinct advantage to flattening the CFG at the IR level:
2326 /// it makes very common but simplistic optimizations such as are common in
2327 /// instcombine and the DAG combiner more powerful by removing CFG edges and
2328 /// modeling their effects with easier to reason about SSA value graphs.
2329 ///
2330 ///
2331 /// An illustration of this transform is turning this IR:
2332 /// \code
2333 ///   BB:
2334 ///     %cmp = icmp ult %x, %y
2335 ///     br i1 %cmp, label %EndBB, label %ThenBB
2336 ///   ThenBB:
2337 ///     %sub = sub %x, %y
2338 ///     br label BB2
2339 ///   EndBB:
2340 ///     %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ]
2341 ///     ...
2342 /// \endcode
2343 ///
2344 /// Into this IR:
2345 /// \code
2346 ///   BB:
2347 ///     %cmp = icmp ult %x, %y
2348 ///     %sub = sub %x, %y
2349 ///     %cond = select i1 %cmp, 0, %sub
2350 ///     ...
2351 /// \endcode
2352 ///
2353 /// \returns true if the conditional block is removed.
2354 bool SimplifyCFGOpt::SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB,
2355                                             const TargetTransformInfo &TTI) {
2356   // Be conservative for now. FP select instruction can often be expensive.
2357   Value *BrCond = BI->getCondition();
2358   if (isa<FCmpInst>(BrCond))
2359     return false;
2360 
2361   BasicBlock *BB = BI->getParent();
2362   BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0);
2363   InstructionCost Budget =
2364       PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
2365 
2366   // If ThenBB is actually on the false edge of the conditional branch, remember
2367   // to swap the select operands later.
2368   bool Invert = false;
2369   if (ThenBB != BI->getSuccessor(0)) {
2370     assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?");
2371     Invert = true;
2372   }
2373   assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block");
2374 
2375   // Keep a count of how many times instructions are used within ThenBB when
2376   // they are candidates for sinking into ThenBB. Specifically:
2377   // - They are defined in BB, and
2378   // - They have no side effects, and
2379   // - All of their uses are in ThenBB.
2380   SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts;
2381 
2382   SmallVector<Instruction *, 4> SpeculatedDbgIntrinsics;
2383 
2384   unsigned SpeculatedInstructions = 0;
2385   Value *SpeculatedStoreValue = nullptr;
2386   StoreInst *SpeculatedStore = nullptr;
2387   for (BasicBlock::iterator BBI = ThenBB->begin(),
2388                             BBE = std::prev(ThenBB->end());
2389        BBI != BBE; ++BBI) {
2390     Instruction *I = &*BBI;
2391     // Skip debug info.
2392     if (isa<DbgInfoIntrinsic>(I)) {
2393       SpeculatedDbgIntrinsics.push_back(I);
2394       continue;
2395     }
2396 
2397     // Skip pseudo probes. The consequence is we lose track of the branch
2398     // probability for ThenBB, which is fine since the optimization here takes
2399     // place regardless of the branch probability.
2400     if (isa<PseudoProbeInst>(I)) {
2401       // The probe should be deleted so that it will not be over-counted when
2402       // the samples collected on the non-conditional path are counted towards
2403       // the conditional path. We leave it for the counts inference algorithm to
2404       // figure out a proper count for an unknown probe.
2405       SpeculatedDbgIntrinsics.push_back(I);
2406       continue;
2407     }
2408 
2409     // Only speculatively execute a single instruction (not counting the
2410     // terminator) for now.
2411     ++SpeculatedInstructions;
2412     if (SpeculatedInstructions > 1)
2413       return false;
2414 
2415     // Don't hoist the instruction if it's unsafe or expensive.
2416     if (!isSafeToSpeculativelyExecute(I) &&
2417         !(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore(
2418                                   I, BB, ThenBB, EndBB))))
2419       return false;
2420     if (!SpeculatedStoreValue &&
2421         computeSpeculationCost(I, TTI) >
2422             PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic)
2423       return false;
2424 
2425     // Store the store speculation candidate.
2426     if (SpeculatedStoreValue)
2427       SpeculatedStore = cast<StoreInst>(I);
2428 
2429     // Do not hoist the instruction if any of its operands are defined but not
2430     // used in BB. The transformation will prevent the operand from
2431     // being sunk into the use block.
2432     for (Use &Op : I->operands()) {
2433       Instruction *OpI = dyn_cast<Instruction>(Op);
2434       if (!OpI || OpI->getParent() != BB || OpI->mayHaveSideEffects())
2435         continue; // Not a candidate for sinking.
2436 
2437       ++SinkCandidateUseCounts[OpI];
2438     }
2439   }
2440 
2441   // Consider any sink candidates which are only used in ThenBB as costs for
2442   // speculation. Note, while we iterate over a DenseMap here, we are summing
2443   // and so iteration order isn't significant.
2444   for (SmallDenseMap<Instruction *, unsigned, 4>::iterator
2445            I = SinkCandidateUseCounts.begin(),
2446            E = SinkCandidateUseCounts.end();
2447        I != E; ++I)
2448     if (I->first->hasNUses(I->second)) {
2449       ++SpeculatedInstructions;
2450       if (SpeculatedInstructions > 1)
2451         return false;
2452     }
2453 
2454   // Check that we can insert the selects and that it's not too expensive to do
2455   // so.
2456   bool Convert = SpeculatedStore != nullptr;
2457   InstructionCost Cost = 0;
2458   Convert |= validateAndCostRequiredSelects(BB, ThenBB, EndBB,
2459                                             SpeculatedInstructions,
2460                                             Cost, TTI);
2461   if (!Convert || Cost > Budget)
2462     return false;
2463 
2464   // If we get here, we can hoist the instruction and if-convert.
2465   LLVM_DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";);
2466 
2467   // Insert a select of the value of the speculated store.
2468   if (SpeculatedStoreValue) {
2469     IRBuilder<NoFolder> Builder(BI);
2470     Value *TrueV = SpeculatedStore->getValueOperand();
2471     Value *FalseV = SpeculatedStoreValue;
2472     if (Invert)
2473       std::swap(TrueV, FalseV);
2474     Value *S = Builder.CreateSelect(
2475         BrCond, TrueV, FalseV, "spec.store.select", BI);
2476     SpeculatedStore->setOperand(0, S);
2477     SpeculatedStore->applyMergedLocation(BI->getDebugLoc(),
2478                                          SpeculatedStore->getDebugLoc());
2479   }
2480 
2481   // Metadata can be dependent on the condition we are hoisting above.
2482   // Conservatively strip all metadata on the instruction. Drop the debug loc
2483   // to avoid making it appear as if the condition is a constant, which would
2484   // be misleading while debugging.
2485   for (auto &I : *ThenBB) {
2486     if (!SpeculatedStoreValue || &I != SpeculatedStore)
2487       I.setDebugLoc(DebugLoc());
2488     I.dropUnknownNonDebugMetadata();
2489   }
2490 
2491   // Hoist the instructions.
2492   BB->getInstList().splice(BI->getIterator(), ThenBB->getInstList(),
2493                            ThenBB->begin(), std::prev(ThenBB->end()));
2494 
2495   // Insert selects and rewrite the PHI operands.
2496   IRBuilder<NoFolder> Builder(BI);
2497   for (PHINode &PN : EndBB->phis()) {
2498     unsigned OrigI = PN.getBasicBlockIndex(BB);
2499     unsigned ThenI = PN.getBasicBlockIndex(ThenBB);
2500     Value *OrigV = PN.getIncomingValue(OrigI);
2501     Value *ThenV = PN.getIncomingValue(ThenI);
2502 
2503     // Skip PHIs which are trivial.
2504     if (OrigV == ThenV)
2505       continue;
2506 
2507     // Create a select whose true value is the speculatively executed value and
2508     // false value is the pre-existing value. Swap them if the branch
2509     // destinations were inverted.
2510     Value *TrueV = ThenV, *FalseV = OrigV;
2511     if (Invert)
2512       std::swap(TrueV, FalseV);
2513     Value *V = Builder.CreateSelect(BrCond, TrueV, FalseV, "spec.select", BI);
2514     PN.setIncomingValue(OrigI, V);
2515     PN.setIncomingValue(ThenI, V);
2516   }
2517 
2518   // Remove speculated dbg intrinsics.
2519   // FIXME: Is it possible to do this in a more elegant way? Moving/merging the
2520   // dbg value for the different flows and inserting it after the select.
2521   for (Instruction *I : SpeculatedDbgIntrinsics)
2522     I->eraseFromParent();
2523 
2524   ++NumSpeculations;
2525   return true;
2526 }
2527 
2528 /// Return true if we can thread a branch across this block.
2529 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) {
2530   int Size = 0;
2531 
2532   SmallPtrSet<const Value *, 32> EphValues;
2533   auto IsEphemeral = [&](const Value *V) {
2534     if (isa<AssumeInst>(V))
2535       return true;
2536     return isSafeToSpeculativelyExecute(V) &&
2537            all_of(V->users(),
2538                   [&](const User *U) { return EphValues.count(U); });
2539   };
2540 
2541   // Walk the loop in reverse so that we can identify ephemeral values properly
2542   // (values only feeding assumes).
2543   for (Instruction &I : reverse(BB->instructionsWithoutDebug())) {
2544     // Can't fold blocks that contain noduplicate or convergent calls.
2545     if (CallInst *CI = dyn_cast<CallInst>(&I))
2546       if (CI->cannotDuplicate() || CI->isConvergent())
2547         return false;
2548 
2549     // Ignore ephemeral values which are deleted during codegen.
2550     if (IsEphemeral(&I))
2551       EphValues.insert(&I);
2552     // We will delete Phis while threading, so Phis should not be accounted in
2553     // block's size.
2554     else if (!isa<PHINode>(I)) {
2555       if (Size++ > MaxSmallBlockSize)
2556         return false; // Don't clone large BB's.
2557     }
2558 
2559     // We can only support instructions that do not define values that are
2560     // live outside of the current basic block.
2561     for (User *U : I.users()) {
2562       Instruction *UI = cast<Instruction>(U);
2563       if (UI->getParent() != BB || isa<PHINode>(UI))
2564         return false;
2565     }
2566 
2567     // Looks ok, continue checking.
2568   }
2569 
2570   return true;
2571 }
2572 
2573 /// If we have a conditional branch on a PHI node value that is defined in the
2574 /// same block as the branch and if any PHI entries are constants, thread edges
2575 /// corresponding to that entry to be branches to their ultimate destination.
2576 static bool FoldCondBranchOnPHI(BranchInst *BI, DomTreeUpdater *DTU,
2577                                 const DataLayout &DL, AssumptionCache *AC) {
2578   BasicBlock *BB = BI->getParent();
2579   PHINode *PN = dyn_cast<PHINode>(BI->getCondition());
2580   // NOTE: we currently cannot transform this case if the PHI node is used
2581   // outside of the block.
2582   if (!PN || PN->getParent() != BB || !PN->hasOneUse())
2583     return false;
2584 
2585   // Degenerate case of a single entry PHI.
2586   if (PN->getNumIncomingValues() == 1) {
2587     FoldSingleEntryPHINodes(PN->getParent());
2588     return true;
2589   }
2590 
2591   // Now we know that this block has multiple preds and two succs.
2592   if (!BlockIsSimpleEnoughToThreadThrough(BB))
2593     return false;
2594 
2595   // Okay, this is a simple enough basic block.  See if any phi values are
2596   // constants.
2597   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
2598     ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i));
2599     if (!CB || !CB->getType()->isIntegerTy(1))
2600       continue;
2601 
2602     // Okay, we now know that all edges from PredBB should be revectored to
2603     // branch to RealDest.
2604     BasicBlock *PredBB = PN->getIncomingBlock(i);
2605     BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue());
2606 
2607     if (RealDest == BB)
2608       continue; // Skip self loops.
2609     // Skip if the predecessor's terminator is an indirect branch.
2610     if (isa<IndirectBrInst>(PredBB->getTerminator()))
2611       continue;
2612 
2613     SmallVector<DominatorTree::UpdateType, 3> Updates;
2614 
2615     // The dest block might have PHI nodes, other predecessors and other
2616     // difficult cases.  Instead of being smart about this, just insert a new
2617     // block that jumps to the destination block, effectively splitting
2618     // the edge we are about to create.
2619     BasicBlock *EdgeBB =
2620         BasicBlock::Create(BB->getContext(), RealDest->getName() + ".critedge",
2621                            RealDest->getParent(), RealDest);
2622     BranchInst *CritEdgeBranch = BranchInst::Create(RealDest, EdgeBB);
2623     if (DTU)
2624       Updates.push_back({DominatorTree::Insert, EdgeBB, RealDest});
2625     CritEdgeBranch->setDebugLoc(BI->getDebugLoc());
2626 
2627     // Update PHI nodes.
2628     AddPredecessorToBlock(RealDest, EdgeBB, BB);
2629 
2630     // BB may have instructions that are being threaded over.  Clone these
2631     // instructions into EdgeBB.  We know that there will be no uses of the
2632     // cloned instructions outside of EdgeBB.
2633     BasicBlock::iterator InsertPt = EdgeBB->begin();
2634     DenseMap<Value *, Value *> TranslateMap; // Track translated values.
2635     for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
2636       if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
2637         TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB);
2638         continue;
2639       }
2640       // Clone the instruction.
2641       Instruction *N = BBI->clone();
2642       if (BBI->hasName())
2643         N->setName(BBI->getName() + ".c");
2644 
2645       // Update operands due to translation.
2646       for (Use &Op : N->operands()) {
2647         DenseMap<Value *, Value *>::iterator PI = TranslateMap.find(Op);
2648         if (PI != TranslateMap.end())
2649           Op = PI->second;
2650       }
2651 
2652       // Check for trivial simplification.
2653       if (Value *V = SimplifyInstruction(N, {DL, nullptr, nullptr, AC})) {
2654         if (!BBI->use_empty())
2655           TranslateMap[&*BBI] = V;
2656         if (!N->mayHaveSideEffects()) {
2657           N->deleteValue(); // Instruction folded away, don't need actual inst
2658           N = nullptr;
2659         }
2660       } else {
2661         if (!BBI->use_empty())
2662           TranslateMap[&*BBI] = N;
2663       }
2664       if (N) {
2665         // Insert the new instruction into its new home.
2666         EdgeBB->getInstList().insert(InsertPt, N);
2667 
2668         // Register the new instruction with the assumption cache if necessary.
2669         if (auto *Assume = dyn_cast<AssumeInst>(N))
2670           if (AC)
2671             AC->registerAssumption(Assume);
2672       }
2673     }
2674 
2675     // Loop over all of the edges from PredBB to BB, changing them to branch
2676     // to EdgeBB instead.
2677     Instruction *PredBBTI = PredBB->getTerminator();
2678     for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i)
2679       if (PredBBTI->getSuccessor(i) == BB) {
2680         BB->removePredecessor(PredBB);
2681         PredBBTI->setSuccessor(i, EdgeBB);
2682       }
2683 
2684     if (DTU) {
2685       Updates.push_back({DominatorTree::Insert, PredBB, EdgeBB});
2686       Updates.push_back({DominatorTree::Delete, PredBB, BB});
2687 
2688       DTU->applyUpdates(Updates);
2689     }
2690 
2691     // Recurse, simplifying any other constants.
2692     return FoldCondBranchOnPHI(BI, DTU, DL, AC) || true;
2693   }
2694 
2695   return false;
2696 }
2697 
2698 /// Given a BB that starts with the specified two-entry PHI node,
2699 /// see if we can eliminate it.
2700 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI,
2701                                 DomTreeUpdater *DTU, const DataLayout &DL) {
2702   // Ok, this is a two entry PHI node.  Check to see if this is a simple "if
2703   // statement", which has a very simple dominance structure.  Basically, we
2704   // are trying to find the condition that is being branched on, which
2705   // subsequently causes this merge to happen.  We really want control
2706   // dependence information for this check, but simplifycfg can't keep it up
2707   // to date, and this catches most of the cases we care about anyway.
2708   BasicBlock *BB = PN->getParent();
2709 
2710   BasicBlock *IfTrue, *IfFalse;
2711   Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse);
2712   if (!IfCond ||
2713       // Don't bother if the branch will be constant folded trivially.
2714       isa<ConstantInt>(IfCond))
2715     return false;
2716 
2717   // Don't try to fold an unreachable block. For example, the phi node itself
2718   // can't be the candidate if-condition for a select that we want to form.
2719   if (auto *IfCondPhiInst = dyn_cast<PHINode>(IfCond))
2720     if (IfCondPhiInst->getParent() == BB)
2721       return false;
2722 
2723   // Okay, we found that we can merge this two-entry phi node into a select.
2724   // Doing so would require us to fold *all* two entry phi nodes in this block.
2725   // At some point this becomes non-profitable (particularly if the target
2726   // doesn't support cmov's).  Only do this transformation if there are two or
2727   // fewer PHI nodes in this block.
2728   unsigned NumPhis = 0;
2729   for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I)
2730     if (NumPhis > 2)
2731       return false;
2732 
2733   // Loop over the PHI's seeing if we can promote them all to select
2734   // instructions.  While we are at it, keep track of the instructions
2735   // that need to be moved to the dominating block.
2736   SmallPtrSet<Instruction *, 4> AggressiveInsts;
2737   InstructionCost Cost = 0;
2738   InstructionCost Budget =
2739       TwoEntryPHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
2740 
2741   bool Changed = false;
2742   for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) {
2743     PHINode *PN = cast<PHINode>(II++);
2744     if (Value *V = SimplifyInstruction(PN, {DL, PN})) {
2745       PN->replaceAllUsesWith(V);
2746       PN->eraseFromParent();
2747       Changed = true;
2748       continue;
2749     }
2750 
2751     if (!dominatesMergePoint(PN->getIncomingValue(0), BB, AggressiveInsts,
2752                              Cost, Budget, TTI) ||
2753         !dominatesMergePoint(PN->getIncomingValue(1), BB, AggressiveInsts,
2754                              Cost, Budget, TTI))
2755       return Changed;
2756   }
2757 
2758   // If we folded the first phi, PN dangles at this point.  Refresh it.  If
2759   // we ran out of PHIs then we simplified them all.
2760   PN = dyn_cast<PHINode>(BB->begin());
2761   if (!PN)
2762     return true;
2763 
2764   // Return true if at least one of these is a 'not', and another is either
2765   // a 'not' too, or a constant.
2766   auto CanHoistNotFromBothValues = [](Value *V0, Value *V1) {
2767     if (!match(V0, m_Not(m_Value())))
2768       std::swap(V0, V1);
2769     auto Invertible = m_CombineOr(m_Not(m_Value()), m_AnyIntegralConstant());
2770     return match(V0, m_Not(m_Value())) && match(V1, Invertible);
2771   };
2772 
2773   // Don't fold i1 branches on PHIs which contain binary operators or
2774   // (possibly inverted) select form of or/ands,  unless one of
2775   // the incoming values is an 'not' and another one is freely invertible.
2776   // These can often be turned into switches and other things.
2777   auto IsBinOpOrAnd = [](Value *V) {
2778     return match(
2779         V, m_CombineOr(
2780                m_BinOp(),
2781                m_CombineOr(m_Select(m_Value(), m_ImmConstant(), m_Value()),
2782                            m_Select(m_Value(), m_Value(), m_ImmConstant()))));
2783   };
2784   if (PN->getType()->isIntegerTy(1) &&
2785       (IsBinOpOrAnd(PN->getIncomingValue(0)) ||
2786        IsBinOpOrAnd(PN->getIncomingValue(1)) || IsBinOpOrAnd(IfCond)) &&
2787       !CanHoistNotFromBothValues(PN->getIncomingValue(0),
2788                                  PN->getIncomingValue(1)))
2789     return Changed;
2790 
2791   // If all PHI nodes are promotable, check to make sure that all instructions
2792   // in the predecessor blocks can be promoted as well. If not, we won't be able
2793   // to get rid of the control flow, so it's not worth promoting to select
2794   // instructions.
2795   BasicBlock *DomBlock = nullptr;
2796   BasicBlock *IfBlock1 = PN->getIncomingBlock(0);
2797   BasicBlock *IfBlock2 = PN->getIncomingBlock(1);
2798   if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) {
2799     IfBlock1 = nullptr;
2800   } else {
2801     DomBlock = *pred_begin(IfBlock1);
2802     for (BasicBlock::iterator I = IfBlock1->begin(); !I->isTerminator(); ++I)
2803       if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I) &&
2804           !isa<PseudoProbeInst>(I)) {
2805         // This is not an aggressive instruction that we can promote.
2806         // Because of this, we won't be able to get rid of the control flow, so
2807         // the xform is not worth it.
2808         return Changed;
2809       }
2810   }
2811 
2812   if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) {
2813     IfBlock2 = nullptr;
2814   } else {
2815     DomBlock = *pred_begin(IfBlock2);
2816     for (BasicBlock::iterator I = IfBlock2->begin(); !I->isTerminator(); ++I)
2817       if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I) &&
2818           !isa<PseudoProbeInst>(I)) {
2819         // This is not an aggressive instruction that we can promote.
2820         // Because of this, we won't be able to get rid of the control flow, so
2821         // the xform is not worth it.
2822         return Changed;
2823       }
2824   }
2825   assert(DomBlock && "Failed to find root DomBlock");
2826 
2827   // If either of the blocks has it's address taken, we can't do this fold.
2828   if ((IfBlock1 && IfBlock1->hasAddressTaken()) ||
2829       (IfBlock2 && IfBlock2->hasAddressTaken()))
2830     return Changed;
2831 
2832   LLVM_DEBUG(dbgs() << "FOUND IF CONDITION!  " << *IfCond
2833                     << "  T: " << IfTrue->getName()
2834                     << "  F: " << IfFalse->getName() << "\n");
2835 
2836   // If we can still promote the PHI nodes after this gauntlet of tests,
2837   // do all of the PHI's now.
2838   Instruction *InsertPt = DomBlock->getTerminator();
2839   IRBuilder<NoFolder> Builder(InsertPt);
2840 
2841   // Move all 'aggressive' instructions, which are defined in the
2842   // conditional parts of the if's up to the dominating block.
2843   if (IfBlock1)
2844     hoistAllInstructionsInto(DomBlock, InsertPt, IfBlock1);
2845   if (IfBlock2)
2846     hoistAllInstructionsInto(DomBlock, InsertPt, IfBlock2);
2847 
2848   // Propagate fast-math-flags from phi nodes to replacement selects.
2849   IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
2850   while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
2851     if (isa<FPMathOperator>(PN))
2852       Builder.setFastMathFlags(PN->getFastMathFlags());
2853 
2854     // Change the PHI node into a select instruction.
2855     Value *TrueVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse);
2856     Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue);
2857 
2858     Value *Sel = Builder.CreateSelect(IfCond, TrueVal, FalseVal, "", InsertPt);
2859     PN->replaceAllUsesWith(Sel);
2860     Sel->takeName(PN);
2861     PN->eraseFromParent();
2862   }
2863 
2864   // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement
2865   // has been flattened.  Change DomBlock to jump directly to our new block to
2866   // avoid other simplifycfg's kicking in on the diamond.
2867   Instruction *OldTI = DomBlock->getTerminator();
2868   Builder.SetInsertPoint(OldTI);
2869   Builder.CreateBr(BB);
2870 
2871   SmallVector<DominatorTree::UpdateType, 3> Updates;
2872   if (DTU) {
2873     Updates.push_back({DominatorTree::Insert, DomBlock, BB});
2874     for (auto *Successor : successors(DomBlock))
2875       Updates.push_back({DominatorTree::Delete, DomBlock, Successor});
2876   }
2877 
2878   OldTI->eraseFromParent();
2879   if (DTU)
2880     DTU->applyUpdates(Updates);
2881 
2882   return true;
2883 }
2884 
2885 /// If we found a conditional branch that goes to two returning blocks,
2886 /// try to merge them together into one return,
2887 /// introducing a select if the return values disagree.
2888 bool SimplifyCFGOpt::SimplifyCondBranchToTwoReturns(BranchInst *BI,
2889                                                     IRBuilder<> &Builder) {
2890   auto *BB = BI->getParent();
2891   assert(BI->isConditional() && "Must be a conditional branch");
2892   BasicBlock *TrueSucc = BI->getSuccessor(0);
2893   BasicBlock *FalseSucc = BI->getSuccessor(1);
2894   if (TrueSucc == FalseSucc)
2895     return false;
2896   // NOTE: destinations may match, this could be degenerate uncond branch.
2897   ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator());
2898   ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator());
2899 
2900   // Check to ensure both blocks are empty (just a return) or optionally empty
2901   // with PHI nodes.  If there are other instructions, merging would cause extra
2902   // computation on one path or the other.
2903   if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator())
2904     return false;
2905   if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator())
2906     return false;
2907 
2908   Builder.SetInsertPoint(BI);
2909   // Okay, we found a branch that is going to two return nodes.  If
2910   // there is no return value for this function, just change the
2911   // branch into a return.
2912   if (FalseRet->getNumOperands() == 0) {
2913     TrueSucc->removePredecessor(BB);
2914     FalseSucc->removePredecessor(BB);
2915     Builder.CreateRetVoid();
2916     EraseTerminatorAndDCECond(BI);
2917     if (DTU)
2918       DTU->applyUpdates({{DominatorTree::Delete, BB, TrueSucc},
2919                          {DominatorTree::Delete, BB, FalseSucc}});
2920     return true;
2921   }
2922 
2923   // Otherwise, figure out what the true and false return values are
2924   // so we can insert a new select instruction.
2925   Value *TrueValue = TrueRet->getReturnValue();
2926   Value *FalseValue = FalseRet->getReturnValue();
2927 
2928   // Unwrap any PHI nodes in the return blocks.
2929   if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue))
2930     if (TVPN->getParent() == TrueSucc)
2931       TrueValue = TVPN->getIncomingValueForBlock(BB);
2932   if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue))
2933     if (FVPN->getParent() == FalseSucc)
2934       FalseValue = FVPN->getIncomingValueForBlock(BB);
2935 
2936   // In order for this transformation to be safe, we must be able to
2937   // unconditionally execute both operands to the return.  This is
2938   // normally the case, but we could have a potentially-trapping
2939   // constant expression that prevents this transformation from being
2940   // safe.
2941   if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue))
2942     if (TCV->canTrap())
2943       return false;
2944   if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue))
2945     if (FCV->canTrap())
2946       return false;
2947 
2948   // Okay, we collected all the mapped values and checked them for sanity, and
2949   // defined to really do this transformation.  First, update the CFG.
2950   TrueSucc->removePredecessor(BB);
2951   FalseSucc->removePredecessor(BB);
2952 
2953   // Insert select instructions where needed.
2954   Value *BrCond = BI->getCondition();
2955   if (TrueValue) {
2956     // Insert a select if the results differ.
2957     if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) {
2958     } else if (isa<UndefValue>(TrueValue)) {
2959       TrueValue = FalseValue;
2960     } else {
2961       TrueValue =
2962           Builder.CreateSelect(BrCond, TrueValue, FalseValue, "retval", BI);
2963     }
2964   }
2965 
2966   Value *RI =
2967       !TrueValue ? Builder.CreateRetVoid() : Builder.CreateRet(TrueValue);
2968 
2969   (void)RI;
2970 
2971   LLVM_DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:"
2972                     << "\n  " << *BI << "\nNewRet = " << *RI << "\nTRUEBLOCK: "
2973                     << *TrueSucc << "\nFALSEBLOCK: " << *FalseSucc);
2974 
2975   EraseTerminatorAndDCECond(BI);
2976   if (DTU)
2977     DTU->applyUpdates({{DominatorTree::Delete, BB, TrueSucc},
2978                        {DominatorTree::Delete, BB, FalseSucc}});
2979 
2980   return true;
2981 }
2982 
2983 static Value *createLogicalOp(IRBuilderBase &Builder,
2984                               Instruction::BinaryOps Opc, Value *LHS,
2985                               Value *RHS, const Twine &Name = "") {
2986   // Try to relax logical op to binary op.
2987   if (impliesPoison(RHS, LHS))
2988     return Builder.CreateBinOp(Opc, LHS, RHS, Name);
2989   if (Opc == Instruction::And)
2990     return Builder.CreateLogicalAnd(LHS, RHS, Name);
2991   if (Opc == Instruction::Or)
2992     return Builder.CreateLogicalOr(LHS, RHS, Name);
2993   llvm_unreachable("Invalid logical opcode");
2994 }
2995 
2996 /// Return true if either PBI or BI has branch weight available, and store
2997 /// the weights in {Pred|Succ}{True|False}Weight. If one of PBI and BI does
2998 /// not have branch weight, use 1:1 as its weight.
2999 static bool extractPredSuccWeights(BranchInst *PBI, BranchInst *BI,
3000                                    uint64_t &PredTrueWeight,
3001                                    uint64_t &PredFalseWeight,
3002                                    uint64_t &SuccTrueWeight,
3003                                    uint64_t &SuccFalseWeight) {
3004   bool PredHasWeights =
3005       PBI->extractProfMetadata(PredTrueWeight, PredFalseWeight);
3006   bool SuccHasWeights =
3007       BI->extractProfMetadata(SuccTrueWeight, SuccFalseWeight);
3008   if (PredHasWeights || SuccHasWeights) {
3009     if (!PredHasWeights)
3010       PredTrueWeight = PredFalseWeight = 1;
3011     if (!SuccHasWeights)
3012       SuccTrueWeight = SuccFalseWeight = 1;
3013     return true;
3014   } else {
3015     return false;
3016   }
3017 }
3018 
3019 /// Determine if the two branches share a common destination and deduce a glue
3020 /// that joins the branches' conditions to arrive at the common destination if
3021 /// that would be profitable.
3022 static Optional<std::pair<Instruction::BinaryOps, bool>>
3023 shouldFoldCondBranchesToCommonDestination(BranchInst *BI, BranchInst *PBI,
3024                                           const TargetTransformInfo *TTI) {
3025   assert(BI && PBI && BI->isConditional() && PBI->isConditional() &&
3026          "Both blocks must end with a conditional branches.");
3027   assert(is_contained(predecessors(BI->getParent()), PBI->getParent()) &&
3028          "PredBB must be a predecessor of BB.");
3029 
3030   // We have the potential to fold the conditions together, but if the
3031   // predecessor branch is predictable, we may not want to merge them.
3032   uint64_t PTWeight, PFWeight;
3033   BranchProbability PBITrueProb, Likely;
3034   if (TTI && PBI->extractProfMetadata(PTWeight, PFWeight) &&
3035       (PTWeight + PFWeight) != 0) {
3036     PBITrueProb =
3037         BranchProbability::getBranchProbability(PTWeight, PTWeight + PFWeight);
3038     Likely = TTI->getPredictableBranchThreshold();
3039   }
3040 
3041   if (PBI->getSuccessor(0) == BI->getSuccessor(0)) {
3042     // Speculate the 2nd condition unless the 1st is probably true.
3043     if (PBITrueProb.isUnknown() || PBITrueProb < Likely)
3044       return {{Instruction::Or, false}};
3045   } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) {
3046     // Speculate the 2nd condition unless the 1st is probably false.
3047     if (PBITrueProb.isUnknown() || PBITrueProb.getCompl() < Likely)
3048       return {{Instruction::And, false}};
3049   } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) {
3050     // Speculate the 2nd condition unless the 1st is probably true.
3051     if (PBITrueProb.isUnknown() || PBITrueProb < Likely)
3052       return {{Instruction::And, true}};
3053   } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) {
3054     // Speculate the 2nd condition unless the 1st is probably false.
3055     if (PBITrueProb.isUnknown() || PBITrueProb.getCompl() < Likely)
3056       return {{Instruction::Or, true}};
3057   }
3058   return None;
3059 }
3060 
3061 static bool performBranchToCommonDestFolding(BranchInst *BI, BranchInst *PBI,
3062                                              DomTreeUpdater *DTU,
3063                                              MemorySSAUpdater *MSSAU,
3064                                              const TargetTransformInfo *TTI) {
3065   BasicBlock *BB = BI->getParent();
3066   BasicBlock *PredBlock = PBI->getParent();
3067 
3068   // Determine if the two branches share a common destination.
3069   Instruction::BinaryOps Opc;
3070   bool InvertPredCond;
3071   std::tie(Opc, InvertPredCond) =
3072       *shouldFoldCondBranchesToCommonDestination(BI, PBI, TTI);
3073 
3074   LLVM_DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB);
3075 
3076   IRBuilder<> Builder(PBI);
3077   // The builder is used to create instructions to eliminate the branch in BB.
3078   // If BB's terminator has !annotation metadata, add it to the new
3079   // instructions.
3080   Builder.CollectMetadataToCopy(BB->getTerminator(),
3081                                 {LLVMContext::MD_annotation});
3082 
3083   // If we need to invert the condition in the pred block to match, do so now.
3084   if (InvertPredCond) {
3085     Value *NewCond = PBI->getCondition();
3086     if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) {
3087       CmpInst *CI = cast<CmpInst>(NewCond);
3088       CI->setPredicate(CI->getInversePredicate());
3089     } else {
3090       NewCond =
3091           Builder.CreateNot(NewCond, PBI->getCondition()->getName() + ".not");
3092     }
3093 
3094     PBI->setCondition(NewCond);
3095     PBI->swapSuccessors();
3096   }
3097 
3098   BasicBlock *UniqueSucc =
3099       PBI->getSuccessor(0) == BB ? BI->getSuccessor(0) : BI->getSuccessor(1);
3100 
3101   // Before cloning instructions, notify the successor basic block that it
3102   // is about to have a new predecessor. This will update PHI nodes,
3103   // which will allow us to update live-out uses of bonus instructions.
3104   AddPredecessorToBlock(UniqueSucc, PredBlock, BB, MSSAU);
3105 
3106   // Try to update branch weights.
3107   uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
3108   if (extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
3109                              SuccTrueWeight, SuccFalseWeight)) {
3110     SmallVector<uint64_t, 8> NewWeights;
3111 
3112     if (PBI->getSuccessor(0) == BB) {
3113       // PBI: br i1 %x, BB, FalseDest
3114       // BI:  br i1 %y, UniqueSucc, FalseDest
3115       // TrueWeight is TrueWeight for PBI * TrueWeight for BI.
3116       NewWeights.push_back(PredTrueWeight * SuccTrueWeight);
3117       // FalseWeight is FalseWeight for PBI * TotalWeight for BI +
3118       //               TrueWeight for PBI * FalseWeight for BI.
3119       // We assume that total weights of a BranchInst can fit into 32 bits.
3120       // Therefore, we will not have overflow using 64-bit arithmetic.
3121       NewWeights.push_back(PredFalseWeight *
3122                                (SuccFalseWeight + SuccTrueWeight) +
3123                            PredTrueWeight * SuccFalseWeight);
3124     } else {
3125       // PBI: br i1 %x, TrueDest, BB
3126       // BI:  br i1 %y, TrueDest, UniqueSucc
3127       // TrueWeight is TrueWeight for PBI * TotalWeight for BI +
3128       //              FalseWeight for PBI * TrueWeight for BI.
3129       NewWeights.push_back(PredTrueWeight * (SuccFalseWeight + SuccTrueWeight) +
3130                            PredFalseWeight * SuccTrueWeight);
3131       // FalseWeight is FalseWeight for PBI * FalseWeight for BI.
3132       NewWeights.push_back(PredFalseWeight * SuccFalseWeight);
3133     }
3134 
3135     // Halve the weights if any of them cannot fit in an uint32_t
3136     FitWeights(NewWeights);
3137 
3138     SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(), NewWeights.end());
3139     setBranchWeights(PBI, MDWeights[0], MDWeights[1]);
3140 
3141     // TODO: If BB is reachable from all paths through PredBlock, then we
3142     // could replace PBI's branch probabilities with BI's.
3143   } else
3144     PBI->setMetadata(LLVMContext::MD_prof, nullptr);
3145 
3146   // Now, update the CFG.
3147   PBI->setSuccessor(PBI->getSuccessor(0) != BB, UniqueSucc);
3148 
3149   if (DTU)
3150     DTU->applyUpdates({{DominatorTree::Insert, PredBlock, UniqueSucc},
3151                        {DominatorTree::Delete, PredBlock, BB}});
3152 
3153   // If BI was a loop latch, it may have had associated loop metadata.
3154   // We need to copy it to the new latch, that is, PBI.
3155   if (MDNode *LoopMD = BI->getMetadata(LLVMContext::MD_loop))
3156     PBI->setMetadata(LLVMContext::MD_loop, LoopMD);
3157 
3158   ValueToValueMapTy VMap; // maps original values to cloned values
3159   CloneInstructionsIntoPredecessorBlockAndUpdateSSAUses(BB, PredBlock, VMap);
3160 
3161   // Now that the Cond was cloned into the predecessor basic block,
3162   // or/and the two conditions together.
3163   Value *BICond = VMap[BI->getCondition()];
3164   PBI->setCondition(
3165       createLogicalOp(Builder, Opc, PBI->getCondition(), BICond, "or.cond"));
3166 
3167   // Copy any debug value intrinsics into the end of PredBlock.
3168   for (Instruction &I : *BB) {
3169     if (isa<DbgInfoIntrinsic>(I)) {
3170       Instruction *NewI = I.clone();
3171       RemapInstruction(NewI, VMap,
3172                        RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
3173       NewI->insertBefore(PBI);
3174     }
3175   }
3176 
3177   ++NumFoldBranchToCommonDest;
3178   return true;
3179 }
3180 
3181 /// If this basic block is simple enough, and if a predecessor branches to us
3182 /// and one of our successors, fold the block into the predecessor and use
3183 /// logical operations to pick the right destination.
3184 bool llvm::FoldBranchToCommonDest(BranchInst *BI, DomTreeUpdater *DTU,
3185                                   MemorySSAUpdater *MSSAU,
3186                                   const TargetTransformInfo *TTI,
3187                                   unsigned BonusInstThreshold) {
3188   // If this block ends with an unconditional branch,
3189   // let SpeculativelyExecuteBB() deal with it.
3190   if (!BI->isConditional())
3191     return false;
3192 
3193   BasicBlock *BB = BI->getParent();
3194   TargetTransformInfo::TargetCostKind CostKind =
3195     BB->getParent()->hasMinSize() ? TargetTransformInfo::TCK_CodeSize
3196                                   : TargetTransformInfo::TCK_SizeAndLatency;
3197 
3198   Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
3199 
3200   if (!Cond || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) ||
3201       Cond->getParent() != BB || !Cond->hasOneUse())
3202     return false;
3203 
3204   // Cond is known to be a compare or binary operator.  Check to make sure that
3205   // neither operand is a potentially-trapping constant expression.
3206   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0)))
3207     if (CE->canTrap())
3208       return false;
3209   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1)))
3210     if (CE->canTrap())
3211       return false;
3212 
3213   // Finally, don't infinitely unroll conditional loops.
3214   if (is_contained(successors(BB), BB))
3215     return false;
3216 
3217   // With which predecessors will we want to deal with?
3218   SmallVector<BasicBlock *, 8> Preds;
3219   for (BasicBlock *PredBlock : predecessors(BB)) {
3220     BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator());
3221 
3222     // Check that we have two conditional branches.  If there is a PHI node in
3223     // the common successor, verify that the same value flows in from both
3224     // blocks.
3225     if (!PBI || PBI->isUnconditional() || !SafeToMergeTerminators(BI, PBI))
3226       continue;
3227 
3228     // Determine if the two branches share a common destination.
3229     Instruction::BinaryOps Opc;
3230     bool InvertPredCond;
3231     if (auto Recipe = shouldFoldCondBranchesToCommonDestination(BI, PBI, TTI))
3232       std::tie(Opc, InvertPredCond) = *Recipe;
3233     else
3234       continue;
3235 
3236     // Check the cost of inserting the necessary logic before performing the
3237     // transformation.
3238     if (TTI) {
3239       Type *Ty = BI->getCondition()->getType();
3240       InstructionCost Cost = TTI->getArithmeticInstrCost(Opc, Ty, CostKind);
3241       if (InvertPredCond && (!PBI->getCondition()->hasOneUse() ||
3242           !isa<CmpInst>(PBI->getCondition())))
3243         Cost += TTI->getArithmeticInstrCost(Instruction::Xor, Ty, CostKind);
3244 
3245       if (Cost > BranchFoldThreshold)
3246         continue;
3247     }
3248 
3249     // Ok, we do want to deal with this predecessor. Record it.
3250     Preds.emplace_back(PredBlock);
3251   }
3252 
3253   // If there aren't any predecessors into which we can fold,
3254   // don't bother checking the cost.
3255   if (Preds.empty())
3256     return false;
3257 
3258   // Only allow this transformation if computing the condition doesn't involve
3259   // too many instructions and these involved instructions can be executed
3260   // unconditionally. We denote all involved instructions except the condition
3261   // as "bonus instructions", and only allow this transformation when the
3262   // number of the bonus instructions we'll need to create when cloning into
3263   // each predecessor does not exceed a certain threshold.
3264   unsigned NumBonusInsts = 0;
3265   const unsigned PredCount = Preds.size();
3266   for (Instruction &I : *BB) {
3267     // Don't check the branch condition comparison itself.
3268     if (&I == Cond)
3269       continue;
3270     // Ignore dbg intrinsics, and the terminator.
3271     if (isa<DbgInfoIntrinsic>(I) || isa<BranchInst>(I))
3272       continue;
3273     // I must be safe to execute unconditionally.
3274     if (!isSafeToSpeculativelyExecute(&I))
3275       return false;
3276 
3277     // Account for the cost of duplicating this instruction into each
3278     // predecessor.
3279     NumBonusInsts += PredCount;
3280     // Early exits once we reach the limit.
3281     if (NumBonusInsts > BonusInstThreshold)
3282       return false;
3283   }
3284 
3285   // Ok, we have the budget. Perform the transformation.
3286   for (BasicBlock *PredBlock : Preds) {
3287     auto *PBI = cast<BranchInst>(PredBlock->getTerminator());
3288     return performBranchToCommonDestFolding(BI, PBI, DTU, MSSAU, TTI);
3289   }
3290   return false;
3291 }
3292 
3293 // If there is only one store in BB1 and BB2, return it, otherwise return
3294 // nullptr.
3295 static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) {
3296   StoreInst *S = nullptr;
3297   for (auto *BB : {BB1, BB2}) {
3298     if (!BB)
3299       continue;
3300     for (auto &I : *BB)
3301       if (auto *SI = dyn_cast<StoreInst>(&I)) {
3302         if (S)
3303           // Multiple stores seen.
3304           return nullptr;
3305         else
3306           S = SI;
3307       }
3308   }
3309   return S;
3310 }
3311 
3312 static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB,
3313                                               Value *AlternativeV = nullptr) {
3314   // PHI is going to be a PHI node that allows the value V that is defined in
3315   // BB to be referenced in BB's only successor.
3316   //
3317   // If AlternativeV is nullptr, the only value we care about in PHI is V. It
3318   // doesn't matter to us what the other operand is (it'll never get used). We
3319   // could just create a new PHI with an undef incoming value, but that could
3320   // increase register pressure if EarlyCSE/InstCombine can't fold it with some
3321   // other PHI. So here we directly look for some PHI in BB's successor with V
3322   // as an incoming operand. If we find one, we use it, else we create a new
3323   // one.
3324   //
3325   // If AlternativeV is not nullptr, we care about both incoming values in PHI.
3326   // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV]
3327   // where OtherBB is the single other predecessor of BB's only successor.
3328   PHINode *PHI = nullptr;
3329   BasicBlock *Succ = BB->getSingleSuccessor();
3330 
3331   for (auto I = Succ->begin(); isa<PHINode>(I); ++I)
3332     if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) {
3333       PHI = cast<PHINode>(I);
3334       if (!AlternativeV)
3335         break;
3336 
3337       assert(Succ->hasNPredecessors(2));
3338       auto PredI = pred_begin(Succ);
3339       BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI;
3340       if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV)
3341         break;
3342       PHI = nullptr;
3343     }
3344   if (PHI)
3345     return PHI;
3346 
3347   // If V is not an instruction defined in BB, just return it.
3348   if (!AlternativeV &&
3349       (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB))
3350     return V;
3351 
3352   PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge", &Succ->front());
3353   PHI->addIncoming(V, BB);
3354   for (BasicBlock *PredBB : predecessors(Succ))
3355     if (PredBB != BB)
3356       PHI->addIncoming(
3357           AlternativeV ? AlternativeV : UndefValue::get(V->getType()), PredBB);
3358   return PHI;
3359 }
3360 
3361 static bool mergeConditionalStoreToAddress(
3362     BasicBlock *PTB, BasicBlock *PFB, BasicBlock *QTB, BasicBlock *QFB,
3363     BasicBlock *PostBB, Value *Address, bool InvertPCond, bool InvertQCond,
3364     DomTreeUpdater *DTU, const DataLayout &DL, const TargetTransformInfo &TTI) {
3365   // For every pointer, there must be exactly two stores, one coming from
3366   // PTB or PFB, and the other from QTB or QFB. We don't support more than one
3367   // store (to any address) in PTB,PFB or QTB,QFB.
3368   // FIXME: We could relax this restriction with a bit more work and performance
3369   // testing.
3370   StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB);
3371   StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB);
3372   if (!PStore || !QStore)
3373     return false;
3374 
3375   // Now check the stores are compatible.
3376   if (!QStore->isUnordered() || !PStore->isUnordered())
3377     return false;
3378 
3379   // Check that sinking the store won't cause program behavior changes. Sinking
3380   // the store out of the Q blocks won't change any behavior as we're sinking
3381   // from a block to its unconditional successor. But we're moving a store from
3382   // the P blocks down through the middle block (QBI) and past both QFB and QTB.
3383   // So we need to check that there are no aliasing loads or stores in
3384   // QBI, QTB and QFB. We also need to check there are no conflicting memory
3385   // operations between PStore and the end of its parent block.
3386   //
3387   // The ideal way to do this is to query AliasAnalysis, but we don't
3388   // preserve AA currently so that is dangerous. Be super safe and just
3389   // check there are no other memory operations at all.
3390   for (auto &I : *QFB->getSinglePredecessor())
3391     if (I.mayReadOrWriteMemory())
3392       return false;
3393   for (auto &I : *QFB)
3394     if (&I != QStore && I.mayReadOrWriteMemory())
3395       return false;
3396   if (QTB)
3397     for (auto &I : *QTB)
3398       if (&I != QStore && I.mayReadOrWriteMemory())
3399         return false;
3400   for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end();
3401        I != E; ++I)
3402     if (&*I != PStore && I->mayReadOrWriteMemory())
3403       return false;
3404 
3405   // If we're not in aggressive mode, we only optimize if we have some
3406   // confidence that by optimizing we'll allow P and/or Q to be if-converted.
3407   auto IsWorthwhile = [&](BasicBlock *BB, ArrayRef<StoreInst *> FreeStores) {
3408     if (!BB)
3409       return true;
3410     // Heuristic: if the block can be if-converted/phi-folded and the
3411     // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to
3412     // thread this store.
3413     InstructionCost Cost = 0;
3414     InstructionCost Budget =
3415         PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
3416     for (auto &I : BB->instructionsWithoutDebug()) {
3417       // Consider terminator instruction to be free.
3418       if (I.isTerminator())
3419         continue;
3420       // If this is one the stores that we want to speculate out of this BB,
3421       // then don't count it's cost, consider it to be free.
3422       if (auto *S = dyn_cast<StoreInst>(&I))
3423         if (llvm::find(FreeStores, S))
3424           continue;
3425       // Else, we have a white-list of instructions that we are ak speculating.
3426       if (!isa<BinaryOperator>(I) && !isa<GetElementPtrInst>(I))
3427         return false; // Not in white-list - not worthwhile folding.
3428       // And finally, if this is a non-free instruction that we are okay
3429       // speculating, ensure that we consider the speculation budget.
3430       Cost += TTI.getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency);
3431       if (Cost > Budget)
3432         return false; // Eagerly refuse to fold as soon as we're out of budget.
3433     }
3434     assert(Cost <= Budget &&
3435            "When we run out of budget we will eagerly return from within the "
3436            "per-instruction loop.");
3437     return true;
3438   };
3439 
3440   const std::array<StoreInst *, 2> FreeStores = {PStore, QStore};
3441   if (!MergeCondStoresAggressively &&
3442       (!IsWorthwhile(PTB, FreeStores) || !IsWorthwhile(PFB, FreeStores) ||
3443        !IsWorthwhile(QTB, FreeStores) || !IsWorthwhile(QFB, FreeStores)))
3444     return false;
3445 
3446   // If PostBB has more than two predecessors, we need to split it so we can
3447   // sink the store.
3448   if (std::next(pred_begin(PostBB), 2) != pred_end(PostBB)) {
3449     // We know that QFB's only successor is PostBB. And QFB has a single
3450     // predecessor. If QTB exists, then its only successor is also PostBB.
3451     // If QTB does not exist, then QFB's only predecessor has a conditional
3452     // branch to QFB and PostBB.
3453     BasicBlock *TruePred = QTB ? QTB : QFB->getSinglePredecessor();
3454     BasicBlock *NewBB =
3455         SplitBlockPredecessors(PostBB, {QFB, TruePred}, "condstore.split", DTU);
3456     if (!NewBB)
3457       return false;
3458     PostBB = NewBB;
3459   }
3460 
3461   // OK, we're going to sink the stores to PostBB. The store has to be
3462   // conditional though, so first create the predicate.
3463   Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator())
3464                      ->getCondition();
3465   Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator())
3466                      ->getCondition();
3467 
3468   Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(),
3469                                                 PStore->getParent());
3470   Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(),
3471                                                 QStore->getParent(), PPHI);
3472 
3473   IRBuilder<> QB(&*PostBB->getFirstInsertionPt());
3474 
3475   Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond);
3476   Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond);
3477 
3478   if (InvertPCond)
3479     PPred = QB.CreateNot(PPred);
3480   if (InvertQCond)
3481     QPred = QB.CreateNot(QPred);
3482   Value *CombinedPred = QB.CreateOr(PPred, QPred);
3483 
3484   auto *T = SplitBlockAndInsertIfThen(CombinedPred, &*QB.GetInsertPoint(),
3485                                       /*Unreachable=*/false,
3486                                       /*BranchWeights=*/nullptr, DTU);
3487   QB.SetInsertPoint(T);
3488   StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address));
3489   AAMDNodes AAMD;
3490   PStore->getAAMetadata(AAMD, /*Merge=*/false);
3491   PStore->getAAMetadata(AAMD, /*Merge=*/true);
3492   SI->setAAMetadata(AAMD);
3493   // Choose the minimum alignment. If we could prove both stores execute, we
3494   // could use biggest one.  In this case, though, we only know that one of the
3495   // stores executes.  And we don't know it's safe to take the alignment from a
3496   // store that doesn't execute.
3497   SI->setAlignment(std::min(PStore->getAlign(), QStore->getAlign()));
3498 
3499   QStore->eraseFromParent();
3500   PStore->eraseFromParent();
3501 
3502   return true;
3503 }
3504 
3505 static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI,
3506                                    DomTreeUpdater *DTU, const DataLayout &DL,
3507                                    const TargetTransformInfo &TTI) {
3508   // The intention here is to find diamonds or triangles (see below) where each
3509   // conditional block contains a store to the same address. Both of these
3510   // stores are conditional, so they can't be unconditionally sunk. But it may
3511   // be profitable to speculatively sink the stores into one merged store at the
3512   // end, and predicate the merged store on the union of the two conditions of
3513   // PBI and QBI.
3514   //
3515   // This can reduce the number of stores executed if both of the conditions are
3516   // true, and can allow the blocks to become small enough to be if-converted.
3517   // This optimization will also chain, so that ladders of test-and-set
3518   // sequences can be if-converted away.
3519   //
3520   // We only deal with simple diamonds or triangles:
3521   //
3522   //     PBI       or      PBI        or a combination of the two
3523   //    /   \               | \
3524   //   PTB  PFB             |  PFB
3525   //    \   /               | /
3526   //     QBI                QBI
3527   //    /  \                | \
3528   //   QTB  QFB             |  QFB
3529   //    \  /                | /
3530   //    PostBB            PostBB
3531   //
3532   // We model triangles as a type of diamond with a nullptr "true" block.
3533   // Triangles are canonicalized so that the fallthrough edge is represented by
3534   // a true condition, as in the diagram above.
3535   BasicBlock *PTB = PBI->getSuccessor(0);
3536   BasicBlock *PFB = PBI->getSuccessor(1);
3537   BasicBlock *QTB = QBI->getSuccessor(0);
3538   BasicBlock *QFB = QBI->getSuccessor(1);
3539   BasicBlock *PostBB = QFB->getSingleSuccessor();
3540 
3541   // Make sure we have a good guess for PostBB. If QTB's only successor is
3542   // QFB, then QFB is a better PostBB.
3543   if (QTB->getSingleSuccessor() == QFB)
3544     PostBB = QFB;
3545 
3546   // If we couldn't find a good PostBB, stop.
3547   if (!PostBB)
3548     return false;
3549 
3550   bool InvertPCond = false, InvertQCond = false;
3551   // Canonicalize fallthroughs to the true branches.
3552   if (PFB == QBI->getParent()) {
3553     std::swap(PFB, PTB);
3554     InvertPCond = true;
3555   }
3556   if (QFB == PostBB) {
3557     std::swap(QFB, QTB);
3558     InvertQCond = true;
3559   }
3560 
3561   // From this point on we can assume PTB or QTB may be fallthroughs but PFB
3562   // and QFB may not. Model fallthroughs as a nullptr block.
3563   if (PTB == QBI->getParent())
3564     PTB = nullptr;
3565   if (QTB == PostBB)
3566     QTB = nullptr;
3567 
3568   // Legality bailouts. We must have at least the non-fallthrough blocks and
3569   // the post-dominating block, and the non-fallthroughs must only have one
3570   // predecessor.
3571   auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) {
3572     return BB->getSinglePredecessor() == P && BB->getSingleSuccessor() == S;
3573   };
3574   if (!HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) ||
3575       !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB))
3576     return false;
3577   if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) ||
3578       (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB)))
3579     return false;
3580   if (!QBI->getParent()->hasNUses(2))
3581     return false;
3582 
3583   // OK, this is a sequence of two diamonds or triangles.
3584   // Check if there are stores in PTB or PFB that are repeated in QTB or QFB.
3585   SmallPtrSet<Value *, 4> PStoreAddresses, QStoreAddresses;
3586   for (auto *BB : {PTB, PFB}) {
3587     if (!BB)
3588       continue;
3589     for (auto &I : *BB)
3590       if (StoreInst *SI = dyn_cast<StoreInst>(&I))
3591         PStoreAddresses.insert(SI->getPointerOperand());
3592   }
3593   for (auto *BB : {QTB, QFB}) {
3594     if (!BB)
3595       continue;
3596     for (auto &I : *BB)
3597       if (StoreInst *SI = dyn_cast<StoreInst>(&I))
3598         QStoreAddresses.insert(SI->getPointerOperand());
3599   }
3600 
3601   set_intersect(PStoreAddresses, QStoreAddresses);
3602   // set_intersect mutates PStoreAddresses in place. Rename it here to make it
3603   // clear what it contains.
3604   auto &CommonAddresses = PStoreAddresses;
3605 
3606   bool Changed = false;
3607   for (auto *Address : CommonAddresses)
3608     Changed |=
3609         mergeConditionalStoreToAddress(PTB, PFB, QTB, QFB, PostBB, Address,
3610                                        InvertPCond, InvertQCond, DTU, DL, TTI);
3611   return Changed;
3612 }
3613 
3614 /// If the previous block ended with a widenable branch, determine if reusing
3615 /// the target block is profitable and legal.  This will have the effect of
3616 /// "widening" PBI, but doesn't require us to reason about hosting safety.
3617 static bool tryWidenCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI,
3618                                            DomTreeUpdater *DTU) {
3619   // TODO: This can be generalized in two important ways:
3620   // 1) We can allow phi nodes in IfFalseBB and simply reuse all the input
3621   //    values from the PBI edge.
3622   // 2) We can sink side effecting instructions into BI's fallthrough
3623   //    successor provided they doesn't contribute to computation of
3624   //    BI's condition.
3625   Value *CondWB, *WC;
3626   BasicBlock *IfTrueBB, *IfFalseBB;
3627   if (!parseWidenableBranch(PBI, CondWB, WC, IfTrueBB, IfFalseBB) ||
3628       IfTrueBB != BI->getParent() || !BI->getParent()->getSinglePredecessor())
3629     return false;
3630   if (!IfFalseBB->phis().empty())
3631     return false; // TODO
3632   // Use lambda to lazily compute expensive condition after cheap ones.
3633   auto NoSideEffects = [](BasicBlock &BB) {
3634     return !llvm::any_of(BB, [](const Instruction &I) {
3635         return I.mayWriteToMemory() || I.mayHaveSideEffects();
3636       });
3637   };
3638   if (BI->getSuccessor(1) != IfFalseBB && // no inf looping
3639       BI->getSuccessor(1)->getTerminatingDeoptimizeCall() && // profitability
3640       NoSideEffects(*BI->getParent())) {
3641     auto *OldSuccessor = BI->getSuccessor(1);
3642     OldSuccessor->removePredecessor(BI->getParent());
3643     BI->setSuccessor(1, IfFalseBB);
3644     if (DTU)
3645       DTU->applyUpdates(
3646           {{DominatorTree::Insert, BI->getParent(), IfFalseBB},
3647            {DominatorTree::Delete, BI->getParent(), OldSuccessor}});
3648     return true;
3649   }
3650   if (BI->getSuccessor(0) != IfFalseBB && // no inf looping
3651       BI->getSuccessor(0)->getTerminatingDeoptimizeCall() && // profitability
3652       NoSideEffects(*BI->getParent())) {
3653     auto *OldSuccessor = BI->getSuccessor(0);
3654     OldSuccessor->removePredecessor(BI->getParent());
3655     BI->setSuccessor(0, IfFalseBB);
3656     if (DTU)
3657       DTU->applyUpdates(
3658           {{DominatorTree::Insert, BI->getParent(), IfFalseBB},
3659            {DominatorTree::Delete, BI->getParent(), OldSuccessor}});
3660     return true;
3661   }
3662   return false;
3663 }
3664 
3665 /// If we have a conditional branch as a predecessor of another block,
3666 /// this function tries to simplify it.  We know
3667 /// that PBI and BI are both conditional branches, and BI is in one of the
3668 /// successor blocks of PBI - PBI branches to BI.
3669 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI,
3670                                            DomTreeUpdater *DTU,
3671                                            const DataLayout &DL,
3672                                            const TargetTransformInfo &TTI) {
3673   assert(PBI->isConditional() && BI->isConditional());
3674   BasicBlock *BB = BI->getParent();
3675 
3676   // If this block ends with a branch instruction, and if there is a
3677   // predecessor that ends on a branch of the same condition, make
3678   // this conditional branch redundant.
3679   if (PBI->getCondition() == BI->getCondition() &&
3680       PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
3681     // Okay, the outcome of this conditional branch is statically
3682     // knowable.  If this block had a single pred, handle specially.
3683     if (BB->getSinglePredecessor()) {
3684       // Turn this into a branch on constant.
3685       bool CondIsTrue = PBI->getSuccessor(0) == BB;
3686       BI->setCondition(
3687           ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue));
3688       return true; // Nuke the branch on constant.
3689     }
3690 
3691     // Otherwise, if there are multiple predecessors, insert a PHI that merges
3692     // in the constant and simplify the block result.  Subsequent passes of
3693     // simplifycfg will thread the block.
3694     if (BlockIsSimpleEnoughToThreadThrough(BB)) {
3695       pred_iterator PB = pred_begin(BB), PE = pred_end(BB);
3696       PHINode *NewPN = PHINode::Create(
3697           Type::getInt1Ty(BB->getContext()), std::distance(PB, PE),
3698           BI->getCondition()->getName() + ".pr", &BB->front());
3699       // Okay, we're going to insert the PHI node.  Since PBI is not the only
3700       // predecessor, compute the PHI'd conditional value for all of the preds.
3701       // Any predecessor where the condition is not computable we keep symbolic.
3702       for (pred_iterator PI = PB; PI != PE; ++PI) {
3703         BasicBlock *P = *PI;
3704         if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) && PBI != BI &&
3705             PBI->isConditional() && PBI->getCondition() == BI->getCondition() &&
3706             PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
3707           bool CondIsTrue = PBI->getSuccessor(0) == BB;
3708           NewPN->addIncoming(
3709               ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue),
3710               P);
3711         } else {
3712           NewPN->addIncoming(BI->getCondition(), P);
3713         }
3714       }
3715 
3716       BI->setCondition(NewPN);
3717       return true;
3718     }
3719   }
3720 
3721   // If the previous block ended with a widenable branch, determine if reusing
3722   // the target block is profitable and legal.  This will have the effect of
3723   // "widening" PBI, but doesn't require us to reason about hosting safety.
3724   if (tryWidenCondBranchToCondBranch(PBI, BI, DTU))
3725     return true;
3726 
3727   if (auto *CE = dyn_cast<ConstantExpr>(BI->getCondition()))
3728     if (CE->canTrap())
3729       return false;
3730 
3731   // If both branches are conditional and both contain stores to the same
3732   // address, remove the stores from the conditionals and create a conditional
3733   // merged store at the end.
3734   if (MergeCondStores && mergeConditionalStores(PBI, BI, DTU, DL, TTI))
3735     return true;
3736 
3737   // If this is a conditional branch in an empty block, and if any
3738   // predecessors are a conditional branch to one of our destinations,
3739   // fold the conditions into logical ops and one cond br.
3740 
3741   // Ignore dbg intrinsics.
3742   if (&*BB->instructionsWithoutDebug().begin() != BI)
3743     return false;
3744 
3745   int PBIOp, BIOp;
3746   if (PBI->getSuccessor(0) == BI->getSuccessor(0)) {
3747     PBIOp = 0;
3748     BIOp = 0;
3749   } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) {
3750     PBIOp = 0;
3751     BIOp = 1;
3752   } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) {
3753     PBIOp = 1;
3754     BIOp = 0;
3755   } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) {
3756     PBIOp = 1;
3757     BIOp = 1;
3758   } else {
3759     return false;
3760   }
3761 
3762   // Check to make sure that the other destination of this branch
3763   // isn't BB itself.  If so, this is an infinite loop that will
3764   // keep getting unwound.
3765   if (PBI->getSuccessor(PBIOp) == BB)
3766     return false;
3767 
3768   // Do not perform this transformation if it would require
3769   // insertion of a large number of select instructions. For targets
3770   // without predication/cmovs, this is a big pessimization.
3771 
3772   // Also do not perform this transformation if any phi node in the common
3773   // destination block can trap when reached by BB or PBB (PR17073). In that
3774   // case, it would be unsafe to hoist the operation into a select instruction.
3775 
3776   BasicBlock *CommonDest = PBI->getSuccessor(PBIOp);
3777   BasicBlock *RemovedDest = PBI->getSuccessor(PBIOp ^ 1);
3778   unsigned NumPhis = 0;
3779   for (BasicBlock::iterator II = CommonDest->begin(); isa<PHINode>(II);
3780        ++II, ++NumPhis) {
3781     if (NumPhis > 2) // Disable this xform.
3782       return false;
3783 
3784     PHINode *PN = cast<PHINode>(II);
3785     Value *BIV = PN->getIncomingValueForBlock(BB);
3786     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BIV))
3787       if (CE->canTrap())
3788         return false;
3789 
3790     unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
3791     Value *PBIV = PN->getIncomingValue(PBBIdx);
3792     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(PBIV))
3793       if (CE->canTrap())
3794         return false;
3795   }
3796 
3797   // Finally, if everything is ok, fold the branches to logical ops.
3798   BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1);
3799 
3800   LLVM_DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent()
3801                     << "AND: " << *BI->getParent());
3802 
3803   SmallVector<DominatorTree::UpdateType, 5> Updates;
3804 
3805   // If OtherDest *is* BB, then BB is a basic block with a single conditional
3806   // branch in it, where one edge (OtherDest) goes back to itself but the other
3807   // exits.  We don't *know* that the program avoids the infinite loop
3808   // (even though that seems likely).  If we do this xform naively, we'll end up
3809   // recursively unpeeling the loop.  Since we know that (after the xform is
3810   // done) that the block *is* infinite if reached, we just make it an obviously
3811   // infinite loop with no cond branch.
3812   if (OtherDest == BB) {
3813     // Insert it at the end of the function, because it's either code,
3814     // or it won't matter if it's hot. :)
3815     BasicBlock *InfLoopBlock =
3816         BasicBlock::Create(BB->getContext(), "infloop", BB->getParent());
3817     BranchInst::Create(InfLoopBlock, InfLoopBlock);
3818     if (DTU)
3819       Updates.push_back({DominatorTree::Insert, InfLoopBlock, InfLoopBlock});
3820     OtherDest = InfLoopBlock;
3821   }
3822 
3823   LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent());
3824 
3825   // BI may have other predecessors.  Because of this, we leave
3826   // it alone, but modify PBI.
3827 
3828   // Make sure we get to CommonDest on True&True directions.
3829   Value *PBICond = PBI->getCondition();
3830   IRBuilder<NoFolder> Builder(PBI);
3831   if (PBIOp)
3832     PBICond = Builder.CreateNot(PBICond, PBICond->getName() + ".not");
3833 
3834   Value *BICond = BI->getCondition();
3835   if (BIOp)
3836     BICond = Builder.CreateNot(BICond, BICond->getName() + ".not");
3837 
3838   // Merge the conditions.
3839   Value *Cond =
3840       createLogicalOp(Builder, Instruction::Or, PBICond, BICond, "brmerge");
3841 
3842   // Modify PBI to branch on the new condition to the new dests.
3843   PBI->setCondition(Cond);
3844   PBI->setSuccessor(0, CommonDest);
3845   PBI->setSuccessor(1, OtherDest);
3846 
3847   if (DTU) {
3848     Updates.push_back({DominatorTree::Insert, PBI->getParent(), OtherDest});
3849     Updates.push_back({DominatorTree::Delete, PBI->getParent(), RemovedDest});
3850 
3851     DTU->applyUpdates(Updates);
3852   }
3853 
3854   // Update branch weight for PBI.
3855   uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
3856   uint64_t PredCommon, PredOther, SuccCommon, SuccOther;
3857   bool HasWeights =
3858       extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
3859                              SuccTrueWeight, SuccFalseWeight);
3860   if (HasWeights) {
3861     PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
3862     PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
3863     SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
3864     SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
3865     // The weight to CommonDest should be PredCommon * SuccTotal +
3866     //                                    PredOther * SuccCommon.
3867     // The weight to OtherDest should be PredOther * SuccOther.
3868     uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) +
3869                                   PredOther * SuccCommon,
3870                               PredOther * SuccOther};
3871     // Halve the weights if any of them cannot fit in an uint32_t
3872     FitWeights(NewWeights);
3873 
3874     setBranchWeights(PBI, NewWeights[0], NewWeights[1]);
3875   }
3876 
3877   // OtherDest may have phi nodes.  If so, add an entry from PBI's
3878   // block that are identical to the entries for BI's block.
3879   AddPredecessorToBlock(OtherDest, PBI->getParent(), BB);
3880 
3881   // We know that the CommonDest already had an edge from PBI to
3882   // it.  If it has PHIs though, the PHIs may have different
3883   // entries for BB and PBI's BB.  If so, insert a select to make
3884   // them agree.
3885   for (PHINode &PN : CommonDest->phis()) {
3886     Value *BIV = PN.getIncomingValueForBlock(BB);
3887     unsigned PBBIdx = PN.getBasicBlockIndex(PBI->getParent());
3888     Value *PBIV = PN.getIncomingValue(PBBIdx);
3889     if (BIV != PBIV) {
3890       // Insert a select in PBI to pick the right value.
3891       SelectInst *NV = cast<SelectInst>(
3892           Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName() + ".mux"));
3893       PN.setIncomingValue(PBBIdx, NV);
3894       // Although the select has the same condition as PBI, the original branch
3895       // weights for PBI do not apply to the new select because the select's
3896       // 'logical' edges are incoming edges of the phi that is eliminated, not
3897       // the outgoing edges of PBI.
3898       if (HasWeights) {
3899         uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
3900         uint64_t PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
3901         uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
3902         uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
3903         // The weight to PredCommonDest should be PredCommon * SuccTotal.
3904         // The weight to PredOtherDest should be PredOther * SuccCommon.
3905         uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther),
3906                                   PredOther * SuccCommon};
3907 
3908         FitWeights(NewWeights);
3909 
3910         setBranchWeights(NV, NewWeights[0], NewWeights[1]);
3911       }
3912     }
3913   }
3914 
3915   LLVM_DEBUG(dbgs() << "INTO: " << *PBI->getParent());
3916   LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent());
3917 
3918   // This basic block is probably dead.  We know it has at least
3919   // one fewer predecessor.
3920   return true;
3921 }
3922 
3923 // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is
3924 // true or to FalseBB if Cond is false.
3925 // Takes care of updating the successors and removing the old terminator.
3926 // Also makes sure not to introduce new successors by assuming that edges to
3927 // non-successor TrueBBs and FalseBBs aren't reachable.
3928 bool SimplifyCFGOpt::SimplifyTerminatorOnSelect(Instruction *OldTerm,
3929                                                 Value *Cond, BasicBlock *TrueBB,
3930                                                 BasicBlock *FalseBB,
3931                                                 uint32_t TrueWeight,
3932                                                 uint32_t FalseWeight) {
3933   auto *BB = OldTerm->getParent();
3934   // Remove any superfluous successor edges from the CFG.
3935   // First, figure out which successors to preserve.
3936   // If TrueBB and FalseBB are equal, only try to preserve one copy of that
3937   // successor.
3938   BasicBlock *KeepEdge1 = TrueBB;
3939   BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr;
3940 
3941   SmallPtrSet<BasicBlock *, 2> RemovedSuccessors;
3942 
3943   // Then remove the rest.
3944   for (BasicBlock *Succ : successors(OldTerm)) {
3945     // Make sure only to keep exactly one copy of each edge.
3946     if (Succ == KeepEdge1)
3947       KeepEdge1 = nullptr;
3948     else if (Succ == KeepEdge2)
3949       KeepEdge2 = nullptr;
3950     else {
3951       Succ->removePredecessor(BB,
3952                               /*KeepOneInputPHIs=*/true);
3953 
3954       if (Succ != TrueBB && Succ != FalseBB)
3955         RemovedSuccessors.insert(Succ);
3956     }
3957   }
3958 
3959   IRBuilder<> Builder(OldTerm);
3960   Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc());
3961 
3962   // Insert an appropriate new terminator.
3963   if (!KeepEdge1 && !KeepEdge2) {
3964     if (TrueBB == FalseBB) {
3965       // We were only looking for one successor, and it was present.
3966       // Create an unconditional branch to it.
3967       Builder.CreateBr(TrueBB);
3968     } else {
3969       // We found both of the successors we were looking for.
3970       // Create a conditional branch sharing the condition of the select.
3971       BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB);
3972       if (TrueWeight != FalseWeight)
3973         setBranchWeights(NewBI, TrueWeight, FalseWeight);
3974     }
3975   } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) {
3976     // Neither of the selected blocks were successors, so this
3977     // terminator must be unreachable.
3978     new UnreachableInst(OldTerm->getContext(), OldTerm);
3979   } else {
3980     // One of the selected values was a successor, but the other wasn't.
3981     // Insert an unconditional branch to the one that was found;
3982     // the edge to the one that wasn't must be unreachable.
3983     if (!KeepEdge1) {
3984       // Only TrueBB was found.
3985       Builder.CreateBr(TrueBB);
3986     } else {
3987       // Only FalseBB was found.
3988       Builder.CreateBr(FalseBB);
3989     }
3990   }
3991 
3992   EraseTerminatorAndDCECond(OldTerm);
3993 
3994   if (DTU) {
3995     SmallVector<DominatorTree::UpdateType, 2> Updates;
3996     Updates.reserve(RemovedSuccessors.size());
3997     for (auto *RemovedSuccessor : RemovedSuccessors)
3998       Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor});
3999     DTU->applyUpdates(Updates);
4000   }
4001 
4002   return true;
4003 }
4004 
4005 // Replaces
4006 //   (switch (select cond, X, Y)) on constant X, Y
4007 // with a branch - conditional if X and Y lead to distinct BBs,
4008 // unconditional otherwise.
4009 bool SimplifyCFGOpt::SimplifySwitchOnSelect(SwitchInst *SI,
4010                                             SelectInst *Select) {
4011   // Check for constant integer values in the select.
4012   ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue());
4013   ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue());
4014   if (!TrueVal || !FalseVal)
4015     return false;
4016 
4017   // Find the relevant condition and destinations.
4018   Value *Condition = Select->getCondition();
4019   BasicBlock *TrueBB = SI->findCaseValue(TrueVal)->getCaseSuccessor();
4020   BasicBlock *FalseBB = SI->findCaseValue(FalseVal)->getCaseSuccessor();
4021 
4022   // Get weight for TrueBB and FalseBB.
4023   uint32_t TrueWeight = 0, FalseWeight = 0;
4024   SmallVector<uint64_t, 8> Weights;
4025   bool HasWeights = HasBranchWeights(SI);
4026   if (HasWeights) {
4027     GetBranchWeights(SI, Weights);
4028     if (Weights.size() == 1 + SI->getNumCases()) {
4029       TrueWeight =
4030           (uint32_t)Weights[SI->findCaseValue(TrueVal)->getSuccessorIndex()];
4031       FalseWeight =
4032           (uint32_t)Weights[SI->findCaseValue(FalseVal)->getSuccessorIndex()];
4033     }
4034   }
4035 
4036   // Perform the actual simplification.
4037   return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, TrueWeight,
4038                                     FalseWeight);
4039 }
4040 
4041 // Replaces
4042 //   (indirectbr (select cond, blockaddress(@fn, BlockA),
4043 //                             blockaddress(@fn, BlockB)))
4044 // with
4045 //   (br cond, BlockA, BlockB).
4046 bool SimplifyCFGOpt::SimplifyIndirectBrOnSelect(IndirectBrInst *IBI,
4047                                                 SelectInst *SI) {
4048   // Check that both operands of the select are block addresses.
4049   BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue());
4050   BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue());
4051   if (!TBA || !FBA)
4052     return false;
4053 
4054   // Extract the actual blocks.
4055   BasicBlock *TrueBB = TBA->getBasicBlock();
4056   BasicBlock *FalseBB = FBA->getBasicBlock();
4057 
4058   // Perform the actual simplification.
4059   return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 0,
4060                                     0);
4061 }
4062 
4063 /// This is called when we find an icmp instruction
4064 /// (a seteq/setne with a constant) as the only instruction in a
4065 /// block that ends with an uncond branch.  We are looking for a very specific
4066 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified.  In
4067 /// this case, we merge the first two "or's of icmp" into a switch, but then the
4068 /// default value goes to an uncond block with a seteq in it, we get something
4069 /// like:
4070 ///
4071 ///   switch i8 %A, label %DEFAULT [ i8 1, label %end    i8 2, label %end ]
4072 /// DEFAULT:
4073 ///   %tmp = icmp eq i8 %A, 92
4074 ///   br label %end
4075 /// end:
4076 ///   ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ]
4077 ///
4078 /// We prefer to split the edge to 'end' so that there is a true/false entry to
4079 /// the PHI, merging the third icmp into the switch.
4080 bool SimplifyCFGOpt::tryToSimplifyUncondBranchWithICmpInIt(
4081     ICmpInst *ICI, IRBuilder<> &Builder) {
4082   BasicBlock *BB = ICI->getParent();
4083 
4084   // If the block has any PHIs in it or the icmp has multiple uses, it is too
4085   // complex.
4086   if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse())
4087     return false;
4088 
4089   Value *V = ICI->getOperand(0);
4090   ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1));
4091 
4092   // The pattern we're looking for is where our only predecessor is a switch on
4093   // 'V' and this block is the default case for the switch.  In this case we can
4094   // fold the compared value into the switch to simplify things.
4095   BasicBlock *Pred = BB->getSinglePredecessor();
4096   if (!Pred || !isa<SwitchInst>(Pred->getTerminator()))
4097     return false;
4098 
4099   SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator());
4100   if (SI->getCondition() != V)
4101     return false;
4102 
4103   // If BB is reachable on a non-default case, then we simply know the value of
4104   // V in this block.  Substitute it and constant fold the icmp instruction
4105   // away.
4106   if (SI->getDefaultDest() != BB) {
4107     ConstantInt *VVal = SI->findCaseDest(BB);
4108     assert(VVal && "Should have a unique destination value");
4109     ICI->setOperand(0, VVal);
4110 
4111     if (Value *V = SimplifyInstruction(ICI, {DL, ICI})) {
4112       ICI->replaceAllUsesWith(V);
4113       ICI->eraseFromParent();
4114     }
4115     // BB is now empty, so it is likely to simplify away.
4116     return requestResimplify();
4117   }
4118 
4119   // Ok, the block is reachable from the default dest.  If the constant we're
4120   // comparing exists in one of the other edges, then we can constant fold ICI
4121   // and zap it.
4122   if (SI->findCaseValue(Cst) != SI->case_default()) {
4123     Value *V;
4124     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
4125       V = ConstantInt::getFalse(BB->getContext());
4126     else
4127       V = ConstantInt::getTrue(BB->getContext());
4128 
4129     ICI->replaceAllUsesWith(V);
4130     ICI->eraseFromParent();
4131     // BB is now empty, so it is likely to simplify away.
4132     return requestResimplify();
4133   }
4134 
4135   // The use of the icmp has to be in the 'end' block, by the only PHI node in
4136   // the block.
4137   BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0);
4138   PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back());
4139   if (PHIUse == nullptr || PHIUse != &SuccBlock->front() ||
4140       isa<PHINode>(++BasicBlock::iterator(PHIUse)))
4141     return false;
4142 
4143   // If the icmp is a SETEQ, then the default dest gets false, the new edge gets
4144   // true in the PHI.
4145   Constant *DefaultCst = ConstantInt::getTrue(BB->getContext());
4146   Constant *NewCst = ConstantInt::getFalse(BB->getContext());
4147 
4148   if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
4149     std::swap(DefaultCst, NewCst);
4150 
4151   // Replace ICI (which is used by the PHI for the default value) with true or
4152   // false depending on if it is EQ or NE.
4153   ICI->replaceAllUsesWith(DefaultCst);
4154   ICI->eraseFromParent();
4155 
4156   SmallVector<DominatorTree::UpdateType, 2> Updates;
4157 
4158   // Okay, the switch goes to this block on a default value.  Add an edge from
4159   // the switch to the merge point on the compared value.
4160   BasicBlock *NewBB =
4161       BasicBlock::Create(BB->getContext(), "switch.edge", BB->getParent(), BB);
4162   {
4163     SwitchInstProfUpdateWrapper SIW(*SI);
4164     auto W0 = SIW.getSuccessorWeight(0);
4165     SwitchInstProfUpdateWrapper::CaseWeightOpt NewW;
4166     if (W0) {
4167       NewW = ((uint64_t(*W0) + 1) >> 1);
4168       SIW.setSuccessorWeight(0, *NewW);
4169     }
4170     SIW.addCase(Cst, NewBB, NewW);
4171     if (DTU)
4172       Updates.push_back({DominatorTree::Insert, Pred, NewBB});
4173   }
4174 
4175   // NewBB branches to the phi block, add the uncond branch and the phi entry.
4176   Builder.SetInsertPoint(NewBB);
4177   Builder.SetCurrentDebugLocation(SI->getDebugLoc());
4178   Builder.CreateBr(SuccBlock);
4179   PHIUse->addIncoming(NewCst, NewBB);
4180   if (DTU) {
4181     Updates.push_back({DominatorTree::Insert, NewBB, SuccBlock});
4182     DTU->applyUpdates(Updates);
4183   }
4184   return true;
4185 }
4186 
4187 /// The specified branch is a conditional branch.
4188 /// Check to see if it is branching on an or/and chain of icmp instructions, and
4189 /// fold it into a switch instruction if so.
4190 bool SimplifyCFGOpt::SimplifyBranchOnICmpChain(BranchInst *BI,
4191                                                IRBuilder<> &Builder,
4192                                                const DataLayout &DL) {
4193   Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
4194   if (!Cond)
4195     return false;
4196 
4197   // Change br (X == 0 | X == 1), T, F into a switch instruction.
4198   // If this is a bunch of seteq's or'd together, or if it's a bunch of
4199   // 'setne's and'ed together, collect them.
4200 
4201   // Try to gather values from a chain of and/or to be turned into a switch
4202   ConstantComparesGatherer ConstantCompare(Cond, DL);
4203   // Unpack the result
4204   SmallVectorImpl<ConstantInt *> &Values = ConstantCompare.Vals;
4205   Value *CompVal = ConstantCompare.CompValue;
4206   unsigned UsedICmps = ConstantCompare.UsedICmps;
4207   Value *ExtraCase = ConstantCompare.Extra;
4208 
4209   // If we didn't have a multiply compared value, fail.
4210   if (!CompVal)
4211     return false;
4212 
4213   // Avoid turning single icmps into a switch.
4214   if (UsedICmps <= 1)
4215     return false;
4216 
4217   bool TrueWhenEqual = match(Cond, m_LogicalOr(m_Value(), m_Value()));
4218 
4219   // There might be duplicate constants in the list, which the switch
4220   // instruction can't handle, remove them now.
4221   array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate);
4222   Values.erase(std::unique(Values.begin(), Values.end()), Values.end());
4223 
4224   // If Extra was used, we require at least two switch values to do the
4225   // transformation.  A switch with one value is just a conditional branch.
4226   if (ExtraCase && Values.size() < 2)
4227     return false;
4228 
4229   // TODO: Preserve branch weight metadata, similarly to how
4230   // FoldValueComparisonIntoPredecessors preserves it.
4231 
4232   // Figure out which block is which destination.
4233   BasicBlock *DefaultBB = BI->getSuccessor(1);
4234   BasicBlock *EdgeBB = BI->getSuccessor(0);
4235   if (!TrueWhenEqual)
4236     std::swap(DefaultBB, EdgeBB);
4237 
4238   BasicBlock *BB = BI->getParent();
4239 
4240   LLVM_DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size()
4241                     << " cases into SWITCH.  BB is:\n"
4242                     << *BB);
4243 
4244   SmallVector<DominatorTree::UpdateType, 2> Updates;
4245 
4246   // If there are any extra values that couldn't be folded into the switch
4247   // then we evaluate them with an explicit branch first. Split the block
4248   // right before the condbr to handle it.
4249   if (ExtraCase) {
4250     BasicBlock *NewBB = SplitBlock(BB, BI, DTU, /*LI=*/nullptr,
4251                                    /*MSSAU=*/nullptr, "switch.early.test");
4252 
4253     // Remove the uncond branch added to the old block.
4254     Instruction *OldTI = BB->getTerminator();
4255     Builder.SetInsertPoint(OldTI);
4256 
4257     // There can be an unintended UB if extra values are Poison. Before the
4258     // transformation, extra values may not be evaluated according to the
4259     // condition, and it will not raise UB. But after transformation, we are
4260     // evaluating extra values before checking the condition, and it will raise
4261     // UB. It can be solved by adding freeze instruction to extra values.
4262     AssumptionCache *AC = Options.AC;
4263 
4264     if (!isGuaranteedNotToBeUndefOrPoison(ExtraCase, AC, BI, nullptr))
4265       ExtraCase = Builder.CreateFreeze(ExtraCase);
4266 
4267     if (TrueWhenEqual)
4268       Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB);
4269     else
4270       Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB);
4271 
4272     OldTI->eraseFromParent();
4273 
4274     if (DTU)
4275       Updates.push_back({DominatorTree::Insert, BB, EdgeBB});
4276 
4277     // If there are PHI nodes in EdgeBB, then we need to add a new entry to them
4278     // for the edge we just added.
4279     AddPredecessorToBlock(EdgeBB, BB, NewBB);
4280 
4281     LLVM_DEBUG(dbgs() << "  ** 'icmp' chain unhandled condition: " << *ExtraCase
4282                       << "\nEXTRABB = " << *BB);
4283     BB = NewBB;
4284   }
4285 
4286   Builder.SetInsertPoint(BI);
4287   // Convert pointer to int before we switch.
4288   if (CompVal->getType()->isPointerTy()) {
4289     CompVal = Builder.CreatePtrToInt(
4290         CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr");
4291   }
4292 
4293   // Create the new switch instruction now.
4294   SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size());
4295 
4296   // Add all of the 'cases' to the switch instruction.
4297   for (unsigned i = 0, e = Values.size(); i != e; ++i)
4298     New->addCase(Values[i], EdgeBB);
4299 
4300   // We added edges from PI to the EdgeBB.  As such, if there were any
4301   // PHI nodes in EdgeBB, they need entries to be added corresponding to
4302   // the number of edges added.
4303   for (BasicBlock::iterator BBI = EdgeBB->begin(); isa<PHINode>(BBI); ++BBI) {
4304     PHINode *PN = cast<PHINode>(BBI);
4305     Value *InVal = PN->getIncomingValueForBlock(BB);
4306     for (unsigned i = 0, e = Values.size() - 1; i != e; ++i)
4307       PN->addIncoming(InVal, BB);
4308   }
4309 
4310   // Erase the old branch instruction.
4311   EraseTerminatorAndDCECond(BI);
4312   if (DTU)
4313     DTU->applyUpdates(Updates);
4314 
4315   LLVM_DEBUG(dbgs() << "  ** 'icmp' chain result is:\n" << *BB << '\n');
4316   return true;
4317 }
4318 
4319 bool SimplifyCFGOpt::simplifyResume(ResumeInst *RI, IRBuilder<> &Builder) {
4320   if (isa<PHINode>(RI->getValue()))
4321     return simplifyCommonResume(RI);
4322   else if (isa<LandingPadInst>(RI->getParent()->getFirstNonPHI()) &&
4323            RI->getValue() == RI->getParent()->getFirstNonPHI())
4324     // The resume must unwind the exception that caused control to branch here.
4325     return simplifySingleResume(RI);
4326 
4327   return false;
4328 }
4329 
4330 // Check if cleanup block is empty
4331 static bool isCleanupBlockEmpty(iterator_range<BasicBlock::iterator> R) {
4332   for (Instruction &I : R) {
4333     auto *II = dyn_cast<IntrinsicInst>(&I);
4334     if (!II)
4335       return false;
4336 
4337     Intrinsic::ID IntrinsicID = II->getIntrinsicID();
4338     switch (IntrinsicID) {
4339     case Intrinsic::dbg_declare:
4340     case Intrinsic::dbg_value:
4341     case Intrinsic::dbg_label:
4342     case Intrinsic::lifetime_end:
4343       break;
4344     default:
4345       return false;
4346     }
4347   }
4348   return true;
4349 }
4350 
4351 // Simplify resume that is shared by several landing pads (phi of landing pad).
4352 bool SimplifyCFGOpt::simplifyCommonResume(ResumeInst *RI) {
4353   BasicBlock *BB = RI->getParent();
4354 
4355   // Check that there are no other instructions except for debug and lifetime
4356   // intrinsics between the phi's and resume instruction.
4357   if (!isCleanupBlockEmpty(
4358           make_range(RI->getParent()->getFirstNonPHI(), BB->getTerminator())))
4359     return false;
4360 
4361   SmallSetVector<BasicBlock *, 4> TrivialUnwindBlocks;
4362   auto *PhiLPInst = cast<PHINode>(RI->getValue());
4363 
4364   // Check incoming blocks to see if any of them are trivial.
4365   for (unsigned Idx = 0, End = PhiLPInst->getNumIncomingValues(); Idx != End;
4366        Idx++) {
4367     auto *IncomingBB = PhiLPInst->getIncomingBlock(Idx);
4368     auto *IncomingValue = PhiLPInst->getIncomingValue(Idx);
4369 
4370     // If the block has other successors, we can not delete it because
4371     // it has other dependents.
4372     if (IncomingBB->getUniqueSuccessor() != BB)
4373       continue;
4374 
4375     auto *LandingPad = dyn_cast<LandingPadInst>(IncomingBB->getFirstNonPHI());
4376     // Not the landing pad that caused the control to branch here.
4377     if (IncomingValue != LandingPad)
4378       continue;
4379 
4380     if (isCleanupBlockEmpty(
4381             make_range(LandingPad->getNextNode(), IncomingBB->getTerminator())))
4382       TrivialUnwindBlocks.insert(IncomingBB);
4383   }
4384 
4385   // If no trivial unwind blocks, don't do any simplifications.
4386   if (TrivialUnwindBlocks.empty())
4387     return false;
4388 
4389   // Turn all invokes that unwind here into calls.
4390   for (auto *TrivialBB : TrivialUnwindBlocks) {
4391     // Blocks that will be simplified should be removed from the phi node.
4392     // Note there could be multiple edges to the resume block, and we need
4393     // to remove them all.
4394     while (PhiLPInst->getBasicBlockIndex(TrivialBB) != -1)
4395       BB->removePredecessor(TrivialBB, true);
4396 
4397     for (BasicBlock *Pred :
4398          llvm::make_early_inc_range(predecessors(TrivialBB))) {
4399       removeUnwindEdge(Pred, DTU);
4400       ++NumInvokes;
4401     }
4402 
4403     // In each SimplifyCFG run, only the current processed block can be erased.
4404     // Otherwise, it will break the iteration of SimplifyCFG pass. So instead
4405     // of erasing TrivialBB, we only remove the branch to the common resume
4406     // block so that we can later erase the resume block since it has no
4407     // predecessors.
4408     TrivialBB->getTerminator()->eraseFromParent();
4409     new UnreachableInst(RI->getContext(), TrivialBB);
4410     if (DTU)
4411       DTU->applyUpdates({{DominatorTree::Delete, TrivialBB, BB}});
4412   }
4413 
4414   // Delete the resume block if all its predecessors have been removed.
4415   if (pred_empty(BB))
4416     DeleteDeadBlock(BB, DTU);
4417 
4418   return !TrivialUnwindBlocks.empty();
4419 }
4420 
4421 // Simplify resume that is only used by a single (non-phi) landing pad.
4422 bool SimplifyCFGOpt::simplifySingleResume(ResumeInst *RI) {
4423   BasicBlock *BB = RI->getParent();
4424   auto *LPInst = cast<LandingPadInst>(BB->getFirstNonPHI());
4425   assert(RI->getValue() == LPInst &&
4426          "Resume must unwind the exception that caused control to here");
4427 
4428   // Check that there are no other instructions except for debug intrinsics.
4429   if (!isCleanupBlockEmpty(
4430           make_range<Instruction *>(LPInst->getNextNode(), RI)))
4431     return false;
4432 
4433   // Turn all invokes that unwind here into calls and delete the basic block.
4434   for (BasicBlock *Pred : llvm::make_early_inc_range(predecessors(BB))) {
4435     removeUnwindEdge(Pred, DTU);
4436     ++NumInvokes;
4437   }
4438 
4439   // The landingpad is now unreachable.  Zap it.
4440   DeleteDeadBlock(BB, DTU);
4441   return true;
4442 }
4443 
4444 static bool removeEmptyCleanup(CleanupReturnInst *RI, DomTreeUpdater *DTU) {
4445   // If this is a trivial cleanup pad that executes no instructions, it can be
4446   // eliminated.  If the cleanup pad continues to the caller, any predecessor
4447   // that is an EH pad will be updated to continue to the caller and any
4448   // predecessor that terminates with an invoke instruction will have its invoke
4449   // instruction converted to a call instruction.  If the cleanup pad being
4450   // simplified does not continue to the caller, each predecessor will be
4451   // updated to continue to the unwind destination of the cleanup pad being
4452   // simplified.
4453   BasicBlock *BB = RI->getParent();
4454   CleanupPadInst *CPInst = RI->getCleanupPad();
4455   if (CPInst->getParent() != BB)
4456     // This isn't an empty cleanup.
4457     return false;
4458 
4459   // We cannot kill the pad if it has multiple uses.  This typically arises
4460   // from unreachable basic blocks.
4461   if (!CPInst->hasOneUse())
4462     return false;
4463 
4464   // Check that there are no other instructions except for benign intrinsics.
4465   if (!isCleanupBlockEmpty(
4466           make_range<Instruction *>(CPInst->getNextNode(), RI)))
4467     return false;
4468 
4469   // If the cleanup return we are simplifying unwinds to the caller, this will
4470   // set UnwindDest to nullptr.
4471   BasicBlock *UnwindDest = RI->getUnwindDest();
4472   Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr;
4473 
4474   // We're about to remove BB from the control flow.  Before we do, sink any
4475   // PHINodes into the unwind destination.  Doing this before changing the
4476   // control flow avoids some potentially slow checks, since we can currently
4477   // be certain that UnwindDest and BB have no common predecessors (since they
4478   // are both EH pads).
4479   if (UnwindDest) {
4480     // First, go through the PHI nodes in UnwindDest and update any nodes that
4481     // reference the block we are removing
4482     for (PHINode &DestPN : UnwindDest->phis()) {
4483       int Idx = DestPN.getBasicBlockIndex(BB);
4484       // Since BB unwinds to UnwindDest, it has to be in the PHI node.
4485       assert(Idx != -1);
4486       // This PHI node has an incoming value that corresponds to a control
4487       // path through the cleanup pad we are removing.  If the incoming
4488       // value is in the cleanup pad, it must be a PHINode (because we
4489       // verified above that the block is otherwise empty).  Otherwise, the
4490       // value is either a constant or a value that dominates the cleanup
4491       // pad being removed.
4492       //
4493       // Because BB and UnwindDest are both EH pads, all of their
4494       // predecessors must unwind to these blocks, and since no instruction
4495       // can have multiple unwind destinations, there will be no overlap in
4496       // incoming blocks between SrcPN and DestPN.
4497       Value *SrcVal = DestPN.getIncomingValue(Idx);
4498       PHINode *SrcPN = dyn_cast<PHINode>(SrcVal);
4499 
4500       bool NeedPHITranslation = SrcPN && SrcPN->getParent() == BB;
4501       for (auto *Pred : predecessors(BB)) {
4502         Value *Incoming =
4503             NeedPHITranslation ? SrcPN->getIncomingValueForBlock(Pred) : SrcVal;
4504         DestPN.addIncoming(Incoming, Pred);
4505       }
4506     }
4507 
4508     // Sink any remaining PHI nodes directly into UnwindDest.
4509     Instruction *InsertPt = DestEHPad;
4510     for (PHINode &PN : make_early_inc_range(BB->phis())) {
4511       if (PN.use_empty() || !PN.isUsedOutsideOfBlock(BB))
4512         // If the PHI node has no uses or all of its uses are in this basic
4513         // block (meaning they are debug or lifetime intrinsics), just leave
4514         // it.  It will be erased when we erase BB below.
4515         continue;
4516 
4517       // Otherwise, sink this PHI node into UnwindDest.
4518       // Any predecessors to UnwindDest which are not already represented
4519       // must be back edges which inherit the value from the path through
4520       // BB.  In this case, the PHI value must reference itself.
4521       for (auto *pred : predecessors(UnwindDest))
4522         if (pred != BB)
4523           PN.addIncoming(&PN, pred);
4524       PN.moveBefore(InsertPt);
4525       // Also, add a dummy incoming value for the original BB itself,
4526       // so that the PHI is well-formed until we drop said predecessor.
4527       PN.addIncoming(UndefValue::get(PN.getType()), BB);
4528     }
4529   }
4530 
4531   std::vector<DominatorTree::UpdateType> Updates;
4532 
4533   // We use make_early_inc_range here because we will remove all predecessors.
4534   for (BasicBlock *PredBB : llvm::make_early_inc_range(predecessors(BB))) {
4535     if (UnwindDest == nullptr) {
4536       if (DTU) {
4537         DTU->applyUpdates(Updates);
4538         Updates.clear();
4539       }
4540       removeUnwindEdge(PredBB, DTU);
4541       ++NumInvokes;
4542     } else {
4543       BB->removePredecessor(PredBB);
4544       Instruction *TI = PredBB->getTerminator();
4545       TI->replaceUsesOfWith(BB, UnwindDest);
4546       if (DTU) {
4547         Updates.push_back({DominatorTree::Insert, PredBB, UnwindDest});
4548         Updates.push_back({DominatorTree::Delete, PredBB, BB});
4549       }
4550     }
4551   }
4552 
4553   if (DTU)
4554     DTU->applyUpdates(Updates);
4555 
4556   DeleteDeadBlock(BB, DTU);
4557 
4558   return true;
4559 }
4560 
4561 // Try to merge two cleanuppads together.
4562 static bool mergeCleanupPad(CleanupReturnInst *RI) {
4563   // Skip any cleanuprets which unwind to caller, there is nothing to merge
4564   // with.
4565   BasicBlock *UnwindDest = RI->getUnwindDest();
4566   if (!UnwindDest)
4567     return false;
4568 
4569   // This cleanupret isn't the only predecessor of this cleanuppad, it wouldn't
4570   // be safe to merge without code duplication.
4571   if (UnwindDest->getSinglePredecessor() != RI->getParent())
4572     return false;
4573 
4574   // Verify that our cleanuppad's unwind destination is another cleanuppad.
4575   auto *SuccessorCleanupPad = dyn_cast<CleanupPadInst>(&UnwindDest->front());
4576   if (!SuccessorCleanupPad)
4577     return false;
4578 
4579   CleanupPadInst *PredecessorCleanupPad = RI->getCleanupPad();
4580   // Replace any uses of the successor cleanupad with the predecessor pad
4581   // The only cleanuppad uses should be this cleanupret, it's cleanupret and
4582   // funclet bundle operands.
4583   SuccessorCleanupPad->replaceAllUsesWith(PredecessorCleanupPad);
4584   // Remove the old cleanuppad.
4585   SuccessorCleanupPad->eraseFromParent();
4586   // Now, we simply replace the cleanupret with a branch to the unwind
4587   // destination.
4588   BranchInst::Create(UnwindDest, RI->getParent());
4589   RI->eraseFromParent();
4590 
4591   return true;
4592 }
4593 
4594 bool SimplifyCFGOpt::simplifyCleanupReturn(CleanupReturnInst *RI) {
4595   // It is possible to transiantly have an undef cleanuppad operand because we
4596   // have deleted some, but not all, dead blocks.
4597   // Eventually, this block will be deleted.
4598   if (isa<UndefValue>(RI->getOperand(0)))
4599     return false;
4600 
4601   if (mergeCleanupPad(RI))
4602     return true;
4603 
4604   if (removeEmptyCleanup(RI, DTU))
4605     return true;
4606 
4607   return false;
4608 }
4609 
4610 bool SimplifyCFGOpt::simplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) {
4611   BasicBlock *BB = RI->getParent();
4612   if (!BB->getFirstNonPHIOrDbg()->isTerminator())
4613     return false;
4614 
4615   // Find predecessors that end with branches.
4616   SmallVector<BasicBlock *, 8> UncondBranchPreds;
4617   SmallVector<BranchInst *, 8> CondBranchPreds;
4618   for (BasicBlock *P : predecessors(BB)) {
4619     Instruction *PTI = P->getTerminator();
4620     if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) {
4621       if (BI->isUnconditional())
4622         UncondBranchPreds.push_back(P);
4623       else
4624         CondBranchPreds.push_back(BI);
4625     }
4626   }
4627 
4628   // If we found some, do the transformation!
4629   if (!UncondBranchPreds.empty() && DupRet) {
4630     while (!UncondBranchPreds.empty()) {
4631       BasicBlock *Pred = UncondBranchPreds.pop_back_val();
4632       LLVM_DEBUG(dbgs() << "FOLDING: " << *BB
4633                         << "INTO UNCOND BRANCH PRED: " << *Pred);
4634       (void)FoldReturnIntoUncondBranch(RI, BB, Pred, DTU);
4635     }
4636 
4637     // If we eliminated all predecessors of the block, delete the block now.
4638     if (pred_empty(BB))
4639       DeleteDeadBlock(BB, DTU);
4640 
4641     return true;
4642   }
4643 
4644   // Check out all of the conditional branches going to this return
4645   // instruction.  If any of them just select between returns, change the
4646   // branch itself into a select/return pair.
4647   while (!CondBranchPreds.empty()) {
4648     BranchInst *BI = CondBranchPreds.pop_back_val();
4649 
4650     // Check to see if the non-BB successor is also a return block.
4651     if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) &&
4652         isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) &&
4653         SimplifyCondBranchToTwoReturns(BI, Builder))
4654       return true;
4655   }
4656   return false;
4657 }
4658 
4659 // WARNING: keep in sync with InstCombinerImpl::visitUnreachableInst()!
4660 bool SimplifyCFGOpt::simplifyUnreachable(UnreachableInst *UI) {
4661   BasicBlock *BB = UI->getParent();
4662 
4663   bool Changed = false;
4664 
4665   // If there are any instructions immediately before the unreachable that can
4666   // be removed, do so.
4667   while (UI->getIterator() != BB->begin()) {
4668     BasicBlock::iterator BBI = UI->getIterator();
4669     --BBI;
4670 
4671     if (!isGuaranteedToTransferExecutionToSuccessor(&*BBI))
4672       break; // Can not drop any more instructions. We're done here.
4673     // Otherwise, this instruction can be freely erased,
4674     // even if it is not side-effect free.
4675 
4676     // Temporarily disable removal of volatile stores preceding unreachable,
4677     // pending a potential LangRef change permitting volatile stores to trap.
4678     // TODO: Either remove this code, or properly integrate the check into
4679     // isGuaranteedToTransferExecutionToSuccessor().
4680     if (auto *SI = dyn_cast<StoreInst>(&*BBI))
4681       if (SI->isVolatile())
4682         break; // Can not drop this instruction. We're done here.
4683 
4684     // Note that deleting EH's here is in fact okay, although it involves a bit
4685     // of subtle reasoning. If this inst is an EH, all the predecessors of this
4686     // block will be the unwind edges of Invoke/CatchSwitch/CleanupReturn,
4687     // and we can therefore guarantee this block will be erased.
4688 
4689     // Delete this instruction (any uses are guaranteed to be dead)
4690     BBI->replaceAllUsesWith(PoisonValue::get(BBI->getType()));
4691     BBI->eraseFromParent();
4692     Changed = true;
4693   }
4694 
4695   // If the unreachable instruction is the first in the block, take a gander
4696   // at all of the predecessors of this instruction, and simplify them.
4697   if (&BB->front() != UI)
4698     return Changed;
4699 
4700   std::vector<DominatorTree::UpdateType> Updates;
4701 
4702   SmallSetVector<BasicBlock *, 8> Preds(pred_begin(BB), pred_end(BB));
4703   for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
4704     auto *Predecessor = Preds[i];
4705     Instruction *TI = Predecessor->getTerminator();
4706     IRBuilder<> Builder(TI);
4707     if (auto *BI = dyn_cast<BranchInst>(TI)) {
4708       // We could either have a proper unconditional branch,
4709       // or a degenerate conditional branch with matching destinations.
4710       if (all_of(BI->successors(),
4711                  [BB](auto *Successor) { return Successor == BB; })) {
4712         new UnreachableInst(TI->getContext(), TI);
4713         TI->eraseFromParent();
4714         Changed = true;
4715       } else {
4716         assert(BI->isConditional() && "Can't get here with an uncond branch.");
4717         Value* Cond = BI->getCondition();
4718         assert(BI->getSuccessor(0) != BI->getSuccessor(1) &&
4719                "The destinations are guaranteed to be different here.");
4720         if (BI->getSuccessor(0) == BB) {
4721           Builder.CreateAssumption(Builder.CreateNot(Cond));
4722           Builder.CreateBr(BI->getSuccessor(1));
4723         } else {
4724           assert(BI->getSuccessor(1) == BB && "Incorrect CFG");
4725           Builder.CreateAssumption(Cond);
4726           Builder.CreateBr(BI->getSuccessor(0));
4727         }
4728         EraseTerminatorAndDCECond(BI);
4729         Changed = true;
4730       }
4731       if (DTU)
4732         Updates.push_back({DominatorTree::Delete, Predecessor, BB});
4733     } else if (auto *SI = dyn_cast<SwitchInst>(TI)) {
4734       SwitchInstProfUpdateWrapper SU(*SI);
4735       for (auto i = SU->case_begin(), e = SU->case_end(); i != e;) {
4736         if (i->getCaseSuccessor() != BB) {
4737           ++i;
4738           continue;
4739         }
4740         BB->removePredecessor(SU->getParent());
4741         i = SU.removeCase(i);
4742         e = SU->case_end();
4743         Changed = true;
4744       }
4745       // Note that the default destination can't be removed!
4746       if (DTU && SI->getDefaultDest() != BB)
4747         Updates.push_back({DominatorTree::Delete, Predecessor, BB});
4748     } else if (auto *II = dyn_cast<InvokeInst>(TI)) {
4749       if (II->getUnwindDest() == BB) {
4750         if (DTU) {
4751           DTU->applyUpdates(Updates);
4752           Updates.clear();
4753         }
4754         removeUnwindEdge(TI->getParent(), DTU);
4755         Changed = true;
4756       }
4757     } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) {
4758       if (CSI->getUnwindDest() == BB) {
4759         if (DTU) {
4760           DTU->applyUpdates(Updates);
4761           Updates.clear();
4762         }
4763         removeUnwindEdge(TI->getParent(), DTU);
4764         Changed = true;
4765         continue;
4766       }
4767 
4768       for (CatchSwitchInst::handler_iterator I = CSI->handler_begin(),
4769                                              E = CSI->handler_end();
4770            I != E; ++I) {
4771         if (*I == BB) {
4772           CSI->removeHandler(I);
4773           --I;
4774           --E;
4775           Changed = true;
4776         }
4777       }
4778       if (DTU)
4779         Updates.push_back({DominatorTree::Delete, Predecessor, BB});
4780       if (CSI->getNumHandlers() == 0) {
4781         if (CSI->hasUnwindDest()) {
4782           // Redirect all predecessors of the block containing CatchSwitchInst
4783           // to instead branch to the CatchSwitchInst's unwind destination.
4784           if (DTU) {
4785             for (auto *PredecessorOfPredecessor : predecessors(Predecessor)) {
4786               Updates.push_back({DominatorTree::Insert,
4787                                  PredecessorOfPredecessor,
4788                                  CSI->getUnwindDest()});
4789               Updates.push_back({DominatorTree::Delete,
4790                                  PredecessorOfPredecessor, Predecessor});
4791             }
4792           }
4793           Predecessor->replaceAllUsesWith(CSI->getUnwindDest());
4794         } else {
4795           // Rewrite all preds to unwind to caller (or from invoke to call).
4796           if (DTU) {
4797             DTU->applyUpdates(Updates);
4798             Updates.clear();
4799           }
4800           SmallVector<BasicBlock *, 8> EHPreds(predecessors(Predecessor));
4801           for (BasicBlock *EHPred : EHPreds)
4802             removeUnwindEdge(EHPred, DTU);
4803         }
4804         // The catchswitch is no longer reachable.
4805         new UnreachableInst(CSI->getContext(), CSI);
4806         CSI->eraseFromParent();
4807         Changed = true;
4808       }
4809     } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
4810       (void)CRI;
4811       assert(CRI->hasUnwindDest() && CRI->getUnwindDest() == BB &&
4812              "Expected to always have an unwind to BB.");
4813       if (DTU)
4814         Updates.push_back({DominatorTree::Delete, Predecessor, BB});
4815       new UnreachableInst(TI->getContext(), TI);
4816       TI->eraseFromParent();
4817       Changed = true;
4818     }
4819   }
4820 
4821   if (DTU)
4822     DTU->applyUpdates(Updates);
4823 
4824   // If this block is now dead, remove it.
4825   if (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) {
4826     DeleteDeadBlock(BB, DTU);
4827     return true;
4828   }
4829 
4830   return Changed;
4831 }
4832 
4833 static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) {
4834   assert(Cases.size() >= 1);
4835 
4836   array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate);
4837   for (size_t I = 1, E = Cases.size(); I != E; ++I) {
4838     if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1)
4839       return false;
4840   }
4841   return true;
4842 }
4843 
4844 static void createUnreachableSwitchDefault(SwitchInst *Switch,
4845                                            DomTreeUpdater *DTU) {
4846   LLVM_DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n");
4847   auto *BB = Switch->getParent();
4848   BasicBlock *NewDefaultBlock = SplitBlockPredecessors(
4849       Switch->getDefaultDest(), Switch->getParent(), "", DTU);
4850   auto *OrigDefaultBlock = Switch->getDefaultDest();
4851   Switch->setDefaultDest(&*NewDefaultBlock);
4852   if (DTU)
4853     DTU->applyUpdates({{DominatorTree::Insert, BB, &*NewDefaultBlock},
4854                        {DominatorTree::Delete, BB, OrigDefaultBlock}});
4855   SplitBlock(&*NewDefaultBlock, &NewDefaultBlock->front(), DTU);
4856   SmallVector<DominatorTree::UpdateType, 2> Updates;
4857   if (DTU)
4858     for (auto *Successor : successors(NewDefaultBlock))
4859       Updates.push_back({DominatorTree::Delete, NewDefaultBlock, Successor});
4860   auto *NewTerminator = NewDefaultBlock->getTerminator();
4861   new UnreachableInst(Switch->getContext(), NewTerminator);
4862   EraseTerminatorAndDCECond(NewTerminator);
4863   if (DTU)
4864     DTU->applyUpdates(Updates);
4865 }
4866 
4867 /// Turn a switch with two reachable destinations into an integer range
4868 /// comparison and branch.
4869 bool SimplifyCFGOpt::TurnSwitchRangeIntoICmp(SwitchInst *SI,
4870                                              IRBuilder<> &Builder) {
4871   assert(SI->getNumCases() > 1 && "Degenerate switch?");
4872 
4873   bool HasDefault =
4874       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
4875 
4876   auto *BB = SI->getParent();
4877 
4878   // Partition the cases into two sets with different destinations.
4879   BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr;
4880   BasicBlock *DestB = nullptr;
4881   SmallVector<ConstantInt *, 16> CasesA;
4882   SmallVector<ConstantInt *, 16> CasesB;
4883 
4884   for (auto Case : SI->cases()) {
4885     BasicBlock *Dest = Case.getCaseSuccessor();
4886     if (!DestA)
4887       DestA = Dest;
4888     if (Dest == DestA) {
4889       CasesA.push_back(Case.getCaseValue());
4890       continue;
4891     }
4892     if (!DestB)
4893       DestB = Dest;
4894     if (Dest == DestB) {
4895       CasesB.push_back(Case.getCaseValue());
4896       continue;
4897     }
4898     return false; // More than two destinations.
4899   }
4900 
4901   assert(DestA && DestB &&
4902          "Single-destination switch should have been folded.");
4903   assert(DestA != DestB);
4904   assert(DestB != SI->getDefaultDest());
4905   assert(!CasesB.empty() && "There must be non-default cases.");
4906   assert(!CasesA.empty() || HasDefault);
4907 
4908   // Figure out if one of the sets of cases form a contiguous range.
4909   SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr;
4910   BasicBlock *ContiguousDest = nullptr;
4911   BasicBlock *OtherDest = nullptr;
4912   if (!CasesA.empty() && CasesAreContiguous(CasesA)) {
4913     ContiguousCases = &CasesA;
4914     ContiguousDest = DestA;
4915     OtherDest = DestB;
4916   } else if (CasesAreContiguous(CasesB)) {
4917     ContiguousCases = &CasesB;
4918     ContiguousDest = DestB;
4919     OtherDest = DestA;
4920   } else
4921     return false;
4922 
4923   // Start building the compare and branch.
4924 
4925   Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back());
4926   Constant *NumCases =
4927       ConstantInt::get(Offset->getType(), ContiguousCases->size());
4928 
4929   Value *Sub = SI->getCondition();
4930   if (!Offset->isNullValue())
4931     Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off");
4932 
4933   Value *Cmp;
4934   // If NumCases overflowed, then all possible values jump to the successor.
4935   if (NumCases->isNullValue() && !ContiguousCases->empty())
4936     Cmp = ConstantInt::getTrue(SI->getContext());
4937   else
4938     Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch");
4939   BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest);
4940 
4941   // Update weight for the newly-created conditional branch.
4942   if (HasBranchWeights(SI)) {
4943     SmallVector<uint64_t, 8> Weights;
4944     GetBranchWeights(SI, Weights);
4945     if (Weights.size() == 1 + SI->getNumCases()) {
4946       uint64_t TrueWeight = 0;
4947       uint64_t FalseWeight = 0;
4948       for (size_t I = 0, E = Weights.size(); I != E; ++I) {
4949         if (SI->getSuccessor(I) == ContiguousDest)
4950           TrueWeight += Weights[I];
4951         else
4952           FalseWeight += Weights[I];
4953       }
4954       while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) {
4955         TrueWeight /= 2;
4956         FalseWeight /= 2;
4957       }
4958       setBranchWeights(NewBI, TrueWeight, FalseWeight);
4959     }
4960   }
4961 
4962   // Prune obsolete incoming values off the successors' PHI nodes.
4963   for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) {
4964     unsigned PreviousEdges = ContiguousCases->size();
4965     if (ContiguousDest == SI->getDefaultDest())
4966       ++PreviousEdges;
4967     for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
4968       cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
4969   }
4970   for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) {
4971     unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size();
4972     if (OtherDest == SI->getDefaultDest())
4973       ++PreviousEdges;
4974     for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
4975       cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
4976   }
4977 
4978   // Clean up the default block - it may have phis or other instructions before
4979   // the unreachable terminator.
4980   if (!HasDefault)
4981     createUnreachableSwitchDefault(SI, DTU);
4982 
4983   auto *UnreachableDefault = SI->getDefaultDest();
4984 
4985   // Drop the switch.
4986   SI->eraseFromParent();
4987 
4988   if (!HasDefault && DTU)
4989     DTU->applyUpdates({{DominatorTree::Delete, BB, UnreachableDefault}});
4990 
4991   return true;
4992 }
4993 
4994 /// Compute masked bits for the condition of a switch
4995 /// and use it to remove dead cases.
4996 static bool eliminateDeadSwitchCases(SwitchInst *SI, DomTreeUpdater *DTU,
4997                                      AssumptionCache *AC,
4998                                      const DataLayout &DL) {
4999   Value *Cond = SI->getCondition();
5000   unsigned Bits = Cond->getType()->getIntegerBitWidth();
5001   KnownBits Known = computeKnownBits(Cond, DL, 0, AC, SI);
5002 
5003   // We can also eliminate cases by determining that their values are outside of
5004   // the limited range of the condition based on how many significant (non-sign)
5005   // bits are in the condition value.
5006   unsigned ExtraSignBits = ComputeNumSignBits(Cond, DL, 0, AC, SI) - 1;
5007   unsigned MaxSignificantBitsInCond = Bits - ExtraSignBits;
5008 
5009   // Gather dead cases.
5010   SmallVector<ConstantInt *, 8> DeadCases;
5011   SmallDenseMap<BasicBlock *, int, 8> NumPerSuccessorCases;
5012   for (auto &Case : SI->cases()) {
5013     auto *Successor = Case.getCaseSuccessor();
5014     if (DTU)
5015       ++NumPerSuccessorCases[Successor];
5016     const APInt &CaseVal = Case.getCaseValue()->getValue();
5017     if (Known.Zero.intersects(CaseVal) || !Known.One.isSubsetOf(CaseVal) ||
5018         (CaseVal.getMinSignedBits() > MaxSignificantBitsInCond)) {
5019       DeadCases.push_back(Case.getCaseValue());
5020       if (DTU)
5021         --NumPerSuccessorCases[Successor];
5022       LLVM_DEBUG(dbgs() << "SimplifyCFG: switch case " << CaseVal
5023                         << " is dead.\n");
5024     }
5025   }
5026 
5027   // If we can prove that the cases must cover all possible values, the
5028   // default destination becomes dead and we can remove it.  If we know some
5029   // of the bits in the value, we can use that to more precisely compute the
5030   // number of possible unique case values.
5031   bool HasDefault =
5032       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
5033   const unsigned NumUnknownBits =
5034       Bits - (Known.Zero | Known.One).countPopulation();
5035   assert(NumUnknownBits <= Bits);
5036   if (HasDefault && DeadCases.empty() &&
5037       NumUnknownBits < 64 /* avoid overflow */ &&
5038       SI->getNumCases() == (1ULL << NumUnknownBits)) {
5039     createUnreachableSwitchDefault(SI, DTU);
5040     return true;
5041   }
5042 
5043   if (DeadCases.empty())
5044     return false;
5045 
5046   SwitchInstProfUpdateWrapper SIW(*SI);
5047   for (ConstantInt *DeadCase : DeadCases) {
5048     SwitchInst::CaseIt CaseI = SI->findCaseValue(DeadCase);
5049     assert(CaseI != SI->case_default() &&
5050            "Case was not found. Probably mistake in DeadCases forming.");
5051     // Prune unused values from PHI nodes.
5052     CaseI->getCaseSuccessor()->removePredecessor(SI->getParent());
5053     SIW.removeCase(CaseI);
5054   }
5055 
5056   if (DTU) {
5057     std::vector<DominatorTree::UpdateType> Updates;
5058     for (const std::pair<BasicBlock *, int> &I : NumPerSuccessorCases)
5059       if (I.second == 0)
5060         Updates.push_back({DominatorTree::Delete, SI->getParent(), I.first});
5061     DTU->applyUpdates(Updates);
5062   }
5063 
5064   return true;
5065 }
5066 
5067 /// If BB would be eligible for simplification by
5068 /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated
5069 /// by an unconditional branch), look at the phi node for BB in the successor
5070 /// block and see if the incoming value is equal to CaseValue. If so, return
5071 /// the phi node, and set PhiIndex to BB's index in the phi node.
5072 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue,
5073                                               BasicBlock *BB, int *PhiIndex) {
5074   if (BB->getFirstNonPHIOrDbg() != BB->getTerminator())
5075     return nullptr; // BB must be empty to be a candidate for simplification.
5076   if (!BB->getSinglePredecessor())
5077     return nullptr; // BB must be dominated by the switch.
5078 
5079   BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator());
5080   if (!Branch || !Branch->isUnconditional())
5081     return nullptr; // Terminator must be unconditional branch.
5082 
5083   BasicBlock *Succ = Branch->getSuccessor(0);
5084 
5085   for (PHINode &PHI : Succ->phis()) {
5086     int Idx = PHI.getBasicBlockIndex(BB);
5087     assert(Idx >= 0 && "PHI has no entry for predecessor?");
5088 
5089     Value *InValue = PHI.getIncomingValue(Idx);
5090     if (InValue != CaseValue)
5091       continue;
5092 
5093     *PhiIndex = Idx;
5094     return &PHI;
5095   }
5096 
5097   return nullptr;
5098 }
5099 
5100 /// Try to forward the condition of a switch instruction to a phi node
5101 /// dominated by the switch, if that would mean that some of the destination
5102 /// blocks of the switch can be folded away. Return true if a change is made.
5103 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) {
5104   using ForwardingNodesMap = DenseMap<PHINode *, SmallVector<int, 4>>;
5105 
5106   ForwardingNodesMap ForwardingNodes;
5107   BasicBlock *SwitchBlock = SI->getParent();
5108   bool Changed = false;
5109   for (auto &Case : SI->cases()) {
5110     ConstantInt *CaseValue = Case.getCaseValue();
5111     BasicBlock *CaseDest = Case.getCaseSuccessor();
5112 
5113     // Replace phi operands in successor blocks that are using the constant case
5114     // value rather than the switch condition variable:
5115     //   switchbb:
5116     //   switch i32 %x, label %default [
5117     //     i32 17, label %succ
5118     //   ...
5119     //   succ:
5120     //     %r = phi i32 ... [ 17, %switchbb ] ...
5121     // -->
5122     //     %r = phi i32 ... [ %x, %switchbb ] ...
5123 
5124     for (PHINode &Phi : CaseDest->phis()) {
5125       // This only works if there is exactly 1 incoming edge from the switch to
5126       // a phi. If there is >1, that means multiple cases of the switch map to 1
5127       // value in the phi, and that phi value is not the switch condition. Thus,
5128       // this transform would not make sense (the phi would be invalid because
5129       // a phi can't have different incoming values from the same block).
5130       int SwitchBBIdx = Phi.getBasicBlockIndex(SwitchBlock);
5131       if (Phi.getIncomingValue(SwitchBBIdx) == CaseValue &&
5132           count(Phi.blocks(), SwitchBlock) == 1) {
5133         Phi.setIncomingValue(SwitchBBIdx, SI->getCondition());
5134         Changed = true;
5135       }
5136     }
5137 
5138     // Collect phi nodes that are indirectly using this switch's case constants.
5139     int PhiIdx;
5140     if (auto *Phi = FindPHIForConditionForwarding(CaseValue, CaseDest, &PhiIdx))
5141       ForwardingNodes[Phi].push_back(PhiIdx);
5142   }
5143 
5144   for (auto &ForwardingNode : ForwardingNodes) {
5145     PHINode *Phi = ForwardingNode.first;
5146     SmallVectorImpl<int> &Indexes = ForwardingNode.second;
5147     if (Indexes.size() < 2)
5148       continue;
5149 
5150     for (int Index : Indexes)
5151       Phi->setIncomingValue(Index, SI->getCondition());
5152     Changed = true;
5153   }
5154 
5155   return Changed;
5156 }
5157 
5158 /// Return true if the backend will be able to handle
5159 /// initializing an array of constants like C.
5160 static bool ValidLookupTableConstant(Constant *C, const TargetTransformInfo &TTI) {
5161   if (C->isThreadDependent())
5162     return false;
5163   if (C->isDLLImportDependent())
5164     return false;
5165 
5166   if (!isa<ConstantFP>(C) && !isa<ConstantInt>(C) &&
5167       !isa<ConstantPointerNull>(C) && !isa<GlobalValue>(C) &&
5168       !isa<UndefValue>(C) && !isa<ConstantExpr>(C))
5169     return false;
5170 
5171   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
5172     if (!CE->isGEPWithNoNotionalOverIndexing())
5173       return false;
5174     if (!ValidLookupTableConstant(CE->getOperand(0), TTI))
5175       return false;
5176   }
5177 
5178   if (!TTI.shouldBuildLookupTablesForConstant(C))
5179     return false;
5180 
5181   return true;
5182 }
5183 
5184 /// If V is a Constant, return it. Otherwise, try to look up
5185 /// its constant value in ConstantPool, returning 0 if it's not there.
5186 static Constant *
5187 LookupConstant(Value *V,
5188                const SmallDenseMap<Value *, Constant *> &ConstantPool) {
5189   if (Constant *C = dyn_cast<Constant>(V))
5190     return C;
5191   return ConstantPool.lookup(V);
5192 }
5193 
5194 /// Try to fold instruction I into a constant. This works for
5195 /// simple instructions such as binary operations where both operands are
5196 /// constant or can be replaced by constants from the ConstantPool. Returns the
5197 /// resulting constant on success, 0 otherwise.
5198 static Constant *
5199 ConstantFold(Instruction *I, const DataLayout &DL,
5200              const SmallDenseMap<Value *, Constant *> &ConstantPool) {
5201   if (SelectInst *Select = dyn_cast<SelectInst>(I)) {
5202     Constant *A = LookupConstant(Select->getCondition(), ConstantPool);
5203     if (!A)
5204       return nullptr;
5205     if (A->isAllOnesValue())
5206       return LookupConstant(Select->getTrueValue(), ConstantPool);
5207     if (A->isNullValue())
5208       return LookupConstant(Select->getFalseValue(), ConstantPool);
5209     return nullptr;
5210   }
5211 
5212   SmallVector<Constant *, 4> COps;
5213   for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) {
5214     if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool))
5215       COps.push_back(A);
5216     else
5217       return nullptr;
5218   }
5219 
5220   if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
5221     return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0],
5222                                            COps[1], DL);
5223   }
5224 
5225   return ConstantFoldInstOperands(I, COps, DL);
5226 }
5227 
5228 /// Try to determine the resulting constant values in phi nodes
5229 /// at the common destination basic block, *CommonDest, for one of the case
5230 /// destionations CaseDest corresponding to value CaseVal (0 for the default
5231 /// case), of a switch instruction SI.
5232 static bool
5233 GetCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest,
5234                BasicBlock **CommonDest,
5235                SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res,
5236                const DataLayout &DL, const TargetTransformInfo &TTI) {
5237   // The block from which we enter the common destination.
5238   BasicBlock *Pred = SI->getParent();
5239 
5240   // If CaseDest is empty except for some side-effect free instructions through
5241   // which we can constant-propagate the CaseVal, continue to its successor.
5242   SmallDenseMap<Value *, Constant *> ConstantPool;
5243   ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal));
5244   for (Instruction &I :CaseDest->instructionsWithoutDebug()) {
5245     if (I.isTerminator()) {
5246       // If the terminator is a simple branch, continue to the next block.
5247       if (I.getNumSuccessors() != 1 || I.isExceptionalTerminator())
5248         return false;
5249       Pred = CaseDest;
5250       CaseDest = I.getSuccessor(0);
5251     } else if (Constant *C = ConstantFold(&I, DL, ConstantPool)) {
5252       // Instruction is side-effect free and constant.
5253 
5254       // If the instruction has uses outside this block or a phi node slot for
5255       // the block, it is not safe to bypass the instruction since it would then
5256       // no longer dominate all its uses.
5257       for (auto &Use : I.uses()) {
5258         User *User = Use.getUser();
5259         if (Instruction *I = dyn_cast<Instruction>(User))
5260           if (I->getParent() == CaseDest)
5261             continue;
5262         if (PHINode *Phi = dyn_cast<PHINode>(User))
5263           if (Phi->getIncomingBlock(Use) == CaseDest)
5264             continue;
5265         return false;
5266       }
5267 
5268       ConstantPool.insert(std::make_pair(&I, C));
5269     } else {
5270       break;
5271     }
5272   }
5273 
5274   // If we did not have a CommonDest before, use the current one.
5275   if (!*CommonDest)
5276     *CommonDest = CaseDest;
5277   // If the destination isn't the common one, abort.
5278   if (CaseDest != *CommonDest)
5279     return false;
5280 
5281   // Get the values for this case from phi nodes in the destination block.
5282   for (PHINode &PHI : (*CommonDest)->phis()) {
5283     int Idx = PHI.getBasicBlockIndex(Pred);
5284     if (Idx == -1)
5285       continue;
5286 
5287     Constant *ConstVal =
5288         LookupConstant(PHI.getIncomingValue(Idx), ConstantPool);
5289     if (!ConstVal)
5290       return false;
5291 
5292     // Be conservative about which kinds of constants we support.
5293     if (!ValidLookupTableConstant(ConstVal, TTI))
5294       return false;
5295 
5296     Res.push_back(std::make_pair(&PHI, ConstVal));
5297   }
5298 
5299   return Res.size() > 0;
5300 }
5301 
5302 // Helper function used to add CaseVal to the list of cases that generate
5303 // Result. Returns the updated number of cases that generate this result.
5304 static uintptr_t MapCaseToResult(ConstantInt *CaseVal,
5305                                  SwitchCaseResultVectorTy &UniqueResults,
5306                                  Constant *Result) {
5307   for (auto &I : UniqueResults) {
5308     if (I.first == Result) {
5309       I.second.push_back(CaseVal);
5310       return I.second.size();
5311     }
5312   }
5313   UniqueResults.push_back(
5314       std::make_pair(Result, SmallVector<ConstantInt *, 4>(1, CaseVal)));
5315   return 1;
5316 }
5317 
5318 // Helper function that initializes a map containing
5319 // results for the PHI node of the common destination block for a switch
5320 // instruction. Returns false if multiple PHI nodes have been found or if
5321 // there is not a common destination block for the switch.
5322 static bool
5323 InitializeUniqueCases(SwitchInst *SI, PHINode *&PHI, BasicBlock *&CommonDest,
5324                       SwitchCaseResultVectorTy &UniqueResults,
5325                       Constant *&DefaultResult, const DataLayout &DL,
5326                       const TargetTransformInfo &TTI,
5327                       uintptr_t MaxUniqueResults, uintptr_t MaxCasesPerResult) {
5328   for (auto &I : SI->cases()) {
5329     ConstantInt *CaseVal = I.getCaseValue();
5330 
5331     // Resulting value at phi nodes for this case value.
5332     SwitchCaseResultsTy Results;
5333     if (!GetCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results,
5334                         DL, TTI))
5335       return false;
5336 
5337     // Only one value per case is permitted.
5338     if (Results.size() > 1)
5339       return false;
5340 
5341     // Add the case->result mapping to UniqueResults.
5342     const uintptr_t NumCasesForResult =
5343         MapCaseToResult(CaseVal, UniqueResults, Results.begin()->second);
5344 
5345     // Early out if there are too many cases for this result.
5346     if (NumCasesForResult > MaxCasesPerResult)
5347       return false;
5348 
5349     // Early out if there are too many unique results.
5350     if (UniqueResults.size() > MaxUniqueResults)
5351       return false;
5352 
5353     // Check the PHI consistency.
5354     if (!PHI)
5355       PHI = Results[0].first;
5356     else if (PHI != Results[0].first)
5357       return false;
5358   }
5359   // Find the default result value.
5360   SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults;
5361   BasicBlock *DefaultDest = SI->getDefaultDest();
5362   GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults,
5363                  DL, TTI);
5364   // If the default value is not found abort unless the default destination
5365   // is unreachable.
5366   DefaultResult =
5367       DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr;
5368   if ((!DefaultResult &&
5369        !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg())))
5370     return false;
5371 
5372   return true;
5373 }
5374 
5375 // Helper function that checks if it is possible to transform a switch with only
5376 // two cases (or two cases + default) that produces a result into a select.
5377 // Example:
5378 // switch (a) {
5379 //   case 10:                %0 = icmp eq i32 %a, 10
5380 //     return 10;            %1 = select i1 %0, i32 10, i32 4
5381 //   case 20:        ---->   %2 = icmp eq i32 %a, 20
5382 //     return 2;             %3 = select i1 %2, i32 2, i32 %1
5383 //   default:
5384 //     return 4;
5385 // }
5386 static Value *ConvertTwoCaseSwitch(const SwitchCaseResultVectorTy &ResultVector,
5387                                    Constant *DefaultResult, Value *Condition,
5388                                    IRBuilder<> &Builder) {
5389   // If we are selecting between only two cases transform into a simple
5390   // select or a two-way select if default is possible.
5391   if (ResultVector.size() == 2 && ResultVector[0].second.size() == 1 &&
5392       ResultVector[1].second.size() == 1) {
5393     ConstantInt *const FirstCase = ResultVector[0].second[0];
5394     ConstantInt *const SecondCase = ResultVector[1].second[0];
5395 
5396     bool DefaultCanTrigger = DefaultResult;
5397     Value *SelectValue = ResultVector[1].first;
5398     if (DefaultCanTrigger) {
5399       Value *const ValueCompare =
5400           Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp");
5401       SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first,
5402                                          DefaultResult, "switch.select");
5403     }
5404     Value *const ValueCompare =
5405         Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp");
5406     return Builder.CreateSelect(ValueCompare, ResultVector[0].first,
5407                                 SelectValue, "switch.select");
5408   }
5409 
5410   // Handle the degenerate case where two cases have the same value.
5411   if (ResultVector.size() == 1 && ResultVector[0].second.size() == 2 &&
5412       DefaultResult) {
5413     Value *Cmp1 = Builder.CreateICmpEQ(
5414         Condition, ResultVector[0].second[0], "switch.selectcmp.case1");
5415     Value *Cmp2 = Builder.CreateICmpEQ(
5416         Condition, ResultVector[0].second[1], "switch.selectcmp.case2");
5417     Value *Cmp = Builder.CreateOr(Cmp1, Cmp2, "switch.selectcmp");
5418     return Builder.CreateSelect(Cmp, ResultVector[0].first, DefaultResult);
5419   }
5420 
5421   return nullptr;
5422 }
5423 
5424 // Helper function to cleanup a switch instruction that has been converted into
5425 // a select, fixing up PHI nodes and basic blocks.
5426 static void RemoveSwitchAfterSelectConversion(SwitchInst *SI, PHINode *PHI,
5427                                               Value *SelectValue,
5428                                               IRBuilder<> &Builder,
5429                                               DomTreeUpdater *DTU) {
5430   std::vector<DominatorTree::UpdateType> Updates;
5431 
5432   BasicBlock *SelectBB = SI->getParent();
5433   BasicBlock *DestBB = PHI->getParent();
5434 
5435   if (DTU && !is_contained(predecessors(DestBB), SelectBB))
5436     Updates.push_back({DominatorTree::Insert, SelectBB, DestBB});
5437   Builder.CreateBr(DestBB);
5438 
5439   // Remove the switch.
5440 
5441   while (PHI->getBasicBlockIndex(SelectBB) >= 0)
5442     PHI->removeIncomingValue(SelectBB);
5443   PHI->addIncoming(SelectValue, SelectBB);
5444 
5445   SmallPtrSet<BasicBlock *, 4> RemovedSuccessors;
5446   for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
5447     BasicBlock *Succ = SI->getSuccessor(i);
5448 
5449     if (Succ == DestBB)
5450       continue;
5451     Succ->removePredecessor(SelectBB);
5452     if (DTU && RemovedSuccessors.insert(Succ).second)
5453       Updates.push_back({DominatorTree::Delete, SelectBB, Succ});
5454   }
5455   SI->eraseFromParent();
5456   if (DTU)
5457     DTU->applyUpdates(Updates);
5458 }
5459 
5460 /// If the switch is only used to initialize one or more
5461 /// phi nodes in a common successor block with only two different
5462 /// constant values, replace the switch with select.
5463 static bool switchToSelect(SwitchInst *SI, IRBuilder<> &Builder,
5464                            DomTreeUpdater *DTU, const DataLayout &DL,
5465                            const TargetTransformInfo &TTI) {
5466   Value *const Cond = SI->getCondition();
5467   PHINode *PHI = nullptr;
5468   BasicBlock *CommonDest = nullptr;
5469   Constant *DefaultResult;
5470   SwitchCaseResultVectorTy UniqueResults;
5471   // Collect all the cases that will deliver the same value from the switch.
5472   if (!InitializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult,
5473                              DL, TTI, /*MaxUniqueResults*/2,
5474                              /*MaxCasesPerResult*/2))
5475     return false;
5476   assert(PHI != nullptr && "PHI for value select not found");
5477 
5478   Builder.SetInsertPoint(SI);
5479   Value *SelectValue =
5480       ConvertTwoCaseSwitch(UniqueResults, DefaultResult, Cond, Builder);
5481   if (SelectValue) {
5482     RemoveSwitchAfterSelectConversion(SI, PHI, SelectValue, Builder, DTU);
5483     return true;
5484   }
5485   // The switch couldn't be converted into a select.
5486   return false;
5487 }
5488 
5489 namespace {
5490 
5491 /// This class represents a lookup table that can be used to replace a switch.
5492 class SwitchLookupTable {
5493 public:
5494   /// Create a lookup table to use as a switch replacement with the contents
5495   /// of Values, using DefaultValue to fill any holes in the table.
5496   SwitchLookupTable(
5497       Module &M, uint64_t TableSize, ConstantInt *Offset,
5498       const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
5499       Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName);
5500 
5501   /// Build instructions with Builder to retrieve the value at
5502   /// the position given by Index in the lookup table.
5503   Value *BuildLookup(Value *Index, IRBuilder<> &Builder);
5504 
5505   /// Return true if a table with TableSize elements of
5506   /// type ElementType would fit in a target-legal register.
5507   static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize,
5508                                  Type *ElementType);
5509 
5510 private:
5511   // Depending on the contents of the table, it can be represented in
5512   // different ways.
5513   enum {
5514     // For tables where each element contains the same value, we just have to
5515     // store that single value and return it for each lookup.
5516     SingleValueKind,
5517 
5518     // For tables where there is a linear relationship between table index
5519     // and values. We calculate the result with a simple multiplication
5520     // and addition instead of a table lookup.
5521     LinearMapKind,
5522 
5523     // For small tables with integer elements, we can pack them into a bitmap
5524     // that fits into a target-legal register. Values are retrieved by
5525     // shift and mask operations.
5526     BitMapKind,
5527 
5528     // The table is stored as an array of values. Values are retrieved by load
5529     // instructions from the table.
5530     ArrayKind
5531   } Kind;
5532 
5533   // For SingleValueKind, this is the single value.
5534   Constant *SingleValue = nullptr;
5535 
5536   // For BitMapKind, this is the bitmap.
5537   ConstantInt *BitMap = nullptr;
5538   IntegerType *BitMapElementTy = nullptr;
5539 
5540   // For LinearMapKind, these are the constants used to derive the value.
5541   ConstantInt *LinearOffset = nullptr;
5542   ConstantInt *LinearMultiplier = nullptr;
5543 
5544   // For ArrayKind, this is the array.
5545   GlobalVariable *Array = nullptr;
5546 };
5547 
5548 } // end anonymous namespace
5549 
5550 SwitchLookupTable::SwitchLookupTable(
5551     Module &M, uint64_t TableSize, ConstantInt *Offset,
5552     const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
5553     Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName) {
5554   assert(Values.size() && "Can't build lookup table without values!");
5555   assert(TableSize >= Values.size() && "Can't fit values in table!");
5556 
5557   // If all values in the table are equal, this is that value.
5558   SingleValue = Values.begin()->second;
5559 
5560   Type *ValueType = Values.begin()->second->getType();
5561 
5562   // Build up the table contents.
5563   SmallVector<Constant *, 64> TableContents(TableSize);
5564   for (size_t I = 0, E = Values.size(); I != E; ++I) {
5565     ConstantInt *CaseVal = Values[I].first;
5566     Constant *CaseRes = Values[I].second;
5567     assert(CaseRes->getType() == ValueType);
5568 
5569     uint64_t Idx = (CaseVal->getValue() - Offset->getValue()).getLimitedValue();
5570     TableContents[Idx] = CaseRes;
5571 
5572     if (CaseRes != SingleValue)
5573       SingleValue = nullptr;
5574   }
5575 
5576   // Fill in any holes in the table with the default result.
5577   if (Values.size() < TableSize) {
5578     assert(DefaultValue &&
5579            "Need a default value to fill the lookup table holes.");
5580     assert(DefaultValue->getType() == ValueType);
5581     for (uint64_t I = 0; I < TableSize; ++I) {
5582       if (!TableContents[I])
5583         TableContents[I] = DefaultValue;
5584     }
5585 
5586     if (DefaultValue != SingleValue)
5587       SingleValue = nullptr;
5588   }
5589 
5590   // If each element in the table contains the same value, we only need to store
5591   // that single value.
5592   if (SingleValue) {
5593     Kind = SingleValueKind;
5594     return;
5595   }
5596 
5597   // Check if we can derive the value with a linear transformation from the
5598   // table index.
5599   if (isa<IntegerType>(ValueType)) {
5600     bool LinearMappingPossible = true;
5601     APInt PrevVal;
5602     APInt DistToPrev;
5603     assert(TableSize >= 2 && "Should be a SingleValue table.");
5604     // Check if there is the same distance between two consecutive values.
5605     for (uint64_t I = 0; I < TableSize; ++I) {
5606       ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]);
5607       if (!ConstVal) {
5608         // This is an undef. We could deal with it, but undefs in lookup tables
5609         // are very seldom. It's probably not worth the additional complexity.
5610         LinearMappingPossible = false;
5611         break;
5612       }
5613       const APInt &Val = ConstVal->getValue();
5614       if (I != 0) {
5615         APInt Dist = Val - PrevVal;
5616         if (I == 1) {
5617           DistToPrev = Dist;
5618         } else if (Dist != DistToPrev) {
5619           LinearMappingPossible = false;
5620           break;
5621         }
5622       }
5623       PrevVal = Val;
5624     }
5625     if (LinearMappingPossible) {
5626       LinearOffset = cast<ConstantInt>(TableContents[0]);
5627       LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev);
5628       Kind = LinearMapKind;
5629       ++NumLinearMaps;
5630       return;
5631     }
5632   }
5633 
5634   // If the type is integer and the table fits in a register, build a bitmap.
5635   if (WouldFitInRegister(DL, TableSize, ValueType)) {
5636     IntegerType *IT = cast<IntegerType>(ValueType);
5637     APInt TableInt(TableSize * IT->getBitWidth(), 0);
5638     for (uint64_t I = TableSize; I > 0; --I) {
5639       TableInt <<= IT->getBitWidth();
5640       // Insert values into the bitmap. Undef values are set to zero.
5641       if (!isa<UndefValue>(TableContents[I - 1])) {
5642         ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]);
5643         TableInt |= Val->getValue().zext(TableInt.getBitWidth());
5644       }
5645     }
5646     BitMap = ConstantInt::get(M.getContext(), TableInt);
5647     BitMapElementTy = IT;
5648     Kind = BitMapKind;
5649     ++NumBitMaps;
5650     return;
5651   }
5652 
5653   // Store the table in an array.
5654   ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize);
5655   Constant *Initializer = ConstantArray::get(ArrayTy, TableContents);
5656 
5657   Array = new GlobalVariable(M, ArrayTy, /*isConstant=*/true,
5658                              GlobalVariable::PrivateLinkage, Initializer,
5659                              "switch.table." + FuncName);
5660   Array->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
5661   // Set the alignment to that of an array items. We will be only loading one
5662   // value out of it.
5663   Array->setAlignment(Align(DL.getPrefTypeAlignment(ValueType)));
5664   Kind = ArrayKind;
5665 }
5666 
5667 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) {
5668   switch (Kind) {
5669   case SingleValueKind:
5670     return SingleValue;
5671   case LinearMapKind: {
5672     // Derive the result value from the input value.
5673     Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(),
5674                                           false, "switch.idx.cast");
5675     if (!LinearMultiplier->isOne())
5676       Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult");
5677     if (!LinearOffset->isZero())
5678       Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset");
5679     return Result;
5680   }
5681   case BitMapKind: {
5682     // Type of the bitmap (e.g. i59).
5683     IntegerType *MapTy = BitMap->getType();
5684 
5685     // Cast Index to the same type as the bitmap.
5686     // Note: The Index is <= the number of elements in the table, so
5687     // truncating it to the width of the bitmask is safe.
5688     Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast");
5689 
5690     // Multiply the shift amount by the element width.
5691     ShiftAmt = Builder.CreateMul(
5692         ShiftAmt, ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()),
5693         "switch.shiftamt");
5694 
5695     // Shift down.
5696     Value *DownShifted =
5697         Builder.CreateLShr(BitMap, ShiftAmt, "switch.downshift");
5698     // Mask off.
5699     return Builder.CreateTrunc(DownShifted, BitMapElementTy, "switch.masked");
5700   }
5701   case ArrayKind: {
5702     // Make sure the table index will not overflow when treated as signed.
5703     IntegerType *IT = cast<IntegerType>(Index->getType());
5704     uint64_t TableSize =
5705         Array->getInitializer()->getType()->getArrayNumElements();
5706     if (TableSize > (1ULL << (IT->getBitWidth() - 1)))
5707       Index = Builder.CreateZExt(
5708           Index, IntegerType::get(IT->getContext(), IT->getBitWidth() + 1),
5709           "switch.tableidx.zext");
5710 
5711     Value *GEPIndices[] = {Builder.getInt32(0), Index};
5712     Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array,
5713                                            GEPIndices, "switch.gep");
5714     return Builder.CreateLoad(
5715         cast<ArrayType>(Array->getValueType())->getElementType(), GEP,
5716         "switch.load");
5717   }
5718   }
5719   llvm_unreachable("Unknown lookup table kind!");
5720 }
5721 
5722 bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL,
5723                                            uint64_t TableSize,
5724                                            Type *ElementType) {
5725   auto *IT = dyn_cast<IntegerType>(ElementType);
5726   if (!IT)
5727     return false;
5728   // FIXME: If the type is wider than it needs to be, e.g. i8 but all values
5729   // are <= 15, we could try to narrow the type.
5730 
5731   // Avoid overflow, fitsInLegalInteger uses unsigned int for the width.
5732   if (TableSize >= UINT_MAX / IT->getBitWidth())
5733     return false;
5734   return DL.fitsInLegalInteger(TableSize * IT->getBitWidth());
5735 }
5736 
5737 /// Determine whether a lookup table should be built for this switch, based on
5738 /// the number of cases, size of the table, and the types of the results.
5739 static bool
5740 ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize,
5741                        const TargetTransformInfo &TTI, const DataLayout &DL,
5742                        const SmallDenseMap<PHINode *, Type *> &ResultTypes) {
5743   if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10)
5744     return false; // TableSize overflowed, or mul below might overflow.
5745 
5746   bool AllTablesFitInRegister = true;
5747   bool HasIllegalType = false;
5748   for (const auto &I : ResultTypes) {
5749     Type *Ty = I.second;
5750 
5751     // Saturate this flag to true.
5752     HasIllegalType = HasIllegalType || !TTI.isTypeLegal(Ty);
5753 
5754     // Saturate this flag to false.
5755     AllTablesFitInRegister =
5756         AllTablesFitInRegister &&
5757         SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty);
5758 
5759     // If both flags saturate, we're done. NOTE: This *only* works with
5760     // saturating flags, and all flags have to saturate first due to the
5761     // non-deterministic behavior of iterating over a dense map.
5762     if (HasIllegalType && !AllTablesFitInRegister)
5763       break;
5764   }
5765 
5766   // If each table would fit in a register, we should build it anyway.
5767   if (AllTablesFitInRegister)
5768     return true;
5769 
5770   // Don't build a table that doesn't fit in-register if it has illegal types.
5771   if (HasIllegalType)
5772     return false;
5773 
5774   // The table density should be at least 40%. This is the same criterion as for
5775   // jump tables, see SelectionDAGBuilder::handleJTSwitchCase.
5776   // FIXME: Find the best cut-off.
5777   return SI->getNumCases() * 10 >= TableSize * 4;
5778 }
5779 
5780 /// Try to reuse the switch table index compare. Following pattern:
5781 /// \code
5782 ///     if (idx < tablesize)
5783 ///        r = table[idx]; // table does not contain default_value
5784 ///     else
5785 ///        r = default_value;
5786 ///     if (r != default_value)
5787 ///        ...
5788 /// \endcode
5789 /// Is optimized to:
5790 /// \code
5791 ///     cond = idx < tablesize;
5792 ///     if (cond)
5793 ///        r = table[idx];
5794 ///     else
5795 ///        r = default_value;
5796 ///     if (cond)
5797 ///        ...
5798 /// \endcode
5799 /// Jump threading will then eliminate the second if(cond).
5800 static void reuseTableCompare(
5801     User *PhiUser, BasicBlock *PhiBlock, BranchInst *RangeCheckBranch,
5802     Constant *DefaultValue,
5803     const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values) {
5804   ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser);
5805   if (!CmpInst)
5806     return;
5807 
5808   // We require that the compare is in the same block as the phi so that jump
5809   // threading can do its work afterwards.
5810   if (CmpInst->getParent() != PhiBlock)
5811     return;
5812 
5813   Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1));
5814   if (!CmpOp1)
5815     return;
5816 
5817   Value *RangeCmp = RangeCheckBranch->getCondition();
5818   Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType());
5819   Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType());
5820 
5821   // Check if the compare with the default value is constant true or false.
5822   Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
5823                                                  DefaultValue, CmpOp1, true);
5824   if (DefaultConst != TrueConst && DefaultConst != FalseConst)
5825     return;
5826 
5827   // Check if the compare with the case values is distinct from the default
5828   // compare result.
5829   for (auto ValuePair : Values) {
5830     Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
5831                                                 ValuePair.second, CmpOp1, true);
5832     if (!CaseConst || CaseConst == DefaultConst || isa<UndefValue>(CaseConst))
5833       return;
5834     assert((CaseConst == TrueConst || CaseConst == FalseConst) &&
5835            "Expect true or false as compare result.");
5836   }
5837 
5838   // Check if the branch instruction dominates the phi node. It's a simple
5839   // dominance check, but sufficient for our needs.
5840   // Although this check is invariant in the calling loops, it's better to do it
5841   // at this late stage. Practically we do it at most once for a switch.
5842   BasicBlock *BranchBlock = RangeCheckBranch->getParent();
5843   for (BasicBlock *Pred : predecessors(PhiBlock)) {
5844     if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock)
5845       return;
5846   }
5847 
5848   if (DefaultConst == FalseConst) {
5849     // The compare yields the same result. We can replace it.
5850     CmpInst->replaceAllUsesWith(RangeCmp);
5851     ++NumTableCmpReuses;
5852   } else {
5853     // The compare yields the same result, just inverted. We can replace it.
5854     Value *InvertedTableCmp = BinaryOperator::CreateXor(
5855         RangeCmp, ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp",
5856         RangeCheckBranch);
5857     CmpInst->replaceAllUsesWith(InvertedTableCmp);
5858     ++NumTableCmpReuses;
5859   }
5860 }
5861 
5862 /// If the switch is only used to initialize one or more phi nodes in a common
5863 /// successor block with different constant values, replace the switch with
5864 /// lookup tables.
5865 static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder,
5866                                 DomTreeUpdater *DTU, const DataLayout &DL,
5867                                 const TargetTransformInfo &TTI) {
5868   assert(SI->getNumCases() > 1 && "Degenerate switch?");
5869 
5870   BasicBlock *BB = SI->getParent();
5871   Function *Fn = BB->getParent();
5872   // Only build lookup table when we have a target that supports it or the
5873   // attribute is not set.
5874   if (!TTI.shouldBuildLookupTables() ||
5875       (Fn->getFnAttribute("no-jump-tables").getValueAsBool()))
5876     return false;
5877 
5878   // FIXME: If the switch is too sparse for a lookup table, perhaps we could
5879   // split off a dense part and build a lookup table for that.
5880 
5881   // FIXME: This creates arrays of GEPs to constant strings, which means each
5882   // GEP needs a runtime relocation in PIC code. We should just build one big
5883   // string and lookup indices into that.
5884 
5885   // Ignore switches with less than three cases. Lookup tables will not make
5886   // them faster, so we don't analyze them.
5887   if (SI->getNumCases() < 3)
5888     return false;
5889 
5890   // Figure out the corresponding result for each case value and phi node in the
5891   // common destination, as well as the min and max case values.
5892   assert(!SI->cases().empty());
5893   SwitchInst::CaseIt CI = SI->case_begin();
5894   ConstantInt *MinCaseVal = CI->getCaseValue();
5895   ConstantInt *MaxCaseVal = CI->getCaseValue();
5896 
5897   BasicBlock *CommonDest = nullptr;
5898 
5899   using ResultListTy = SmallVector<std::pair<ConstantInt *, Constant *>, 4>;
5900   SmallDenseMap<PHINode *, ResultListTy> ResultLists;
5901 
5902   SmallDenseMap<PHINode *, Constant *> DefaultResults;
5903   SmallDenseMap<PHINode *, Type *> ResultTypes;
5904   SmallVector<PHINode *, 4> PHIs;
5905 
5906   for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) {
5907     ConstantInt *CaseVal = CI->getCaseValue();
5908     if (CaseVal->getValue().slt(MinCaseVal->getValue()))
5909       MinCaseVal = CaseVal;
5910     if (CaseVal->getValue().sgt(MaxCaseVal->getValue()))
5911       MaxCaseVal = CaseVal;
5912 
5913     // Resulting value at phi nodes for this case value.
5914     using ResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>;
5915     ResultsTy Results;
5916     if (!GetCaseResults(SI, CaseVal, CI->getCaseSuccessor(), &CommonDest,
5917                         Results, DL, TTI))
5918       return false;
5919 
5920     // Append the result from this case to the list for each phi.
5921     for (const auto &I : Results) {
5922       PHINode *PHI = I.first;
5923       Constant *Value = I.second;
5924       if (!ResultLists.count(PHI))
5925         PHIs.push_back(PHI);
5926       ResultLists[PHI].push_back(std::make_pair(CaseVal, Value));
5927     }
5928   }
5929 
5930   // Keep track of the result types.
5931   for (PHINode *PHI : PHIs) {
5932     ResultTypes[PHI] = ResultLists[PHI][0].second->getType();
5933   }
5934 
5935   uint64_t NumResults = ResultLists[PHIs[0]].size();
5936   APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue();
5937   uint64_t TableSize = RangeSpread.getLimitedValue() + 1;
5938   bool TableHasHoles = (NumResults < TableSize);
5939 
5940   // If the table has holes, we need a constant result for the default case
5941   // or a bitmask that fits in a register.
5942   SmallVector<std::pair<PHINode *, Constant *>, 4> DefaultResultsList;
5943   bool HasDefaultResults =
5944       GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest,
5945                      DefaultResultsList, DL, TTI);
5946 
5947   bool NeedMask = (TableHasHoles && !HasDefaultResults);
5948   if (NeedMask) {
5949     // As an extra penalty for the validity test we require more cases.
5950     if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark).
5951       return false;
5952     if (!DL.fitsInLegalInteger(TableSize))
5953       return false;
5954   }
5955 
5956   for (const auto &I : DefaultResultsList) {
5957     PHINode *PHI = I.first;
5958     Constant *Result = I.second;
5959     DefaultResults[PHI] = Result;
5960   }
5961 
5962   if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes))
5963     return false;
5964 
5965   std::vector<DominatorTree::UpdateType> Updates;
5966 
5967   // Create the BB that does the lookups.
5968   Module &Mod = *CommonDest->getParent()->getParent();
5969   BasicBlock *LookupBB = BasicBlock::Create(
5970       Mod.getContext(), "switch.lookup", CommonDest->getParent(), CommonDest);
5971 
5972   // Compute the table index value.
5973   Builder.SetInsertPoint(SI);
5974   Value *TableIndex;
5975   if (MinCaseVal->isNullValue())
5976     TableIndex = SI->getCondition();
5977   else
5978     TableIndex = Builder.CreateSub(SI->getCondition(), MinCaseVal,
5979                                    "switch.tableidx");
5980 
5981   // Compute the maximum table size representable by the integer type we are
5982   // switching upon.
5983   unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits();
5984   uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize;
5985   assert(MaxTableSize >= TableSize &&
5986          "It is impossible for a switch to have more entries than the max "
5987          "representable value of its input integer type's size.");
5988 
5989   // If the default destination is unreachable, or if the lookup table covers
5990   // all values of the conditional variable, branch directly to the lookup table
5991   // BB. Otherwise, check that the condition is within the case range.
5992   const bool DefaultIsReachable =
5993       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
5994   const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize);
5995   BranchInst *RangeCheckBranch = nullptr;
5996 
5997   if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
5998     Builder.CreateBr(LookupBB);
5999     if (DTU)
6000       Updates.push_back({DominatorTree::Insert, BB, LookupBB});
6001     // Note: We call removeProdecessor later since we need to be able to get the
6002     // PHI value for the default case in case we're using a bit mask.
6003   } else {
6004     Value *Cmp = Builder.CreateICmpULT(
6005         TableIndex, ConstantInt::get(MinCaseVal->getType(), TableSize));
6006     RangeCheckBranch =
6007         Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest());
6008     if (DTU)
6009       Updates.push_back({DominatorTree::Insert, BB, LookupBB});
6010   }
6011 
6012   // Populate the BB that does the lookups.
6013   Builder.SetInsertPoint(LookupBB);
6014 
6015   if (NeedMask) {
6016     // Before doing the lookup, we do the hole check. The LookupBB is therefore
6017     // re-purposed to do the hole check, and we create a new LookupBB.
6018     BasicBlock *MaskBB = LookupBB;
6019     MaskBB->setName("switch.hole_check");
6020     LookupBB = BasicBlock::Create(Mod.getContext(), "switch.lookup",
6021                                   CommonDest->getParent(), CommonDest);
6022 
6023     // Make the mask's bitwidth at least 8-bit and a power-of-2 to avoid
6024     // unnecessary illegal types.
6025     uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL));
6026     APInt MaskInt(TableSizePowOf2, 0);
6027     APInt One(TableSizePowOf2, 1);
6028     // Build bitmask; fill in a 1 bit for every case.
6029     const ResultListTy &ResultList = ResultLists[PHIs[0]];
6030     for (size_t I = 0, E = ResultList.size(); I != E; ++I) {
6031       uint64_t Idx = (ResultList[I].first->getValue() - MinCaseVal->getValue())
6032                          .getLimitedValue();
6033       MaskInt |= One << Idx;
6034     }
6035     ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt);
6036 
6037     // Get the TableIndex'th bit of the bitmask.
6038     // If this bit is 0 (meaning hole) jump to the default destination,
6039     // else continue with table lookup.
6040     IntegerType *MapTy = TableMask->getType();
6041     Value *MaskIndex =
6042         Builder.CreateZExtOrTrunc(TableIndex, MapTy, "switch.maskindex");
6043     Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, "switch.shifted");
6044     Value *LoBit = Builder.CreateTrunc(
6045         Shifted, Type::getInt1Ty(Mod.getContext()), "switch.lobit");
6046     Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest());
6047     if (DTU) {
6048       Updates.push_back({DominatorTree::Insert, MaskBB, LookupBB});
6049       Updates.push_back({DominatorTree::Insert, MaskBB, SI->getDefaultDest()});
6050     }
6051     Builder.SetInsertPoint(LookupBB);
6052     AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, BB);
6053   }
6054 
6055   if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
6056     // We cached PHINodes in PHIs. To avoid accessing deleted PHINodes later,
6057     // do not delete PHINodes here.
6058     SI->getDefaultDest()->removePredecessor(BB,
6059                                             /*KeepOneInputPHIs=*/true);
6060     if (DTU)
6061       Updates.push_back({DominatorTree::Delete, BB, SI->getDefaultDest()});
6062   }
6063 
6064   bool ReturnedEarly = false;
6065   for (PHINode *PHI : PHIs) {
6066     const ResultListTy &ResultList = ResultLists[PHI];
6067 
6068     // If using a bitmask, use any value to fill the lookup table holes.
6069     Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI];
6070     StringRef FuncName = Fn->getName();
6071     SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultList, DV, DL,
6072                             FuncName);
6073 
6074     Value *Result = Table.BuildLookup(TableIndex, Builder);
6075 
6076     // If the result is used to return immediately from the function, we want to
6077     // do that right here.
6078     if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->user_begin()) &&
6079         PHI->user_back() == CommonDest->getFirstNonPHIOrDbg()) {
6080       Builder.CreateRet(Result);
6081       ReturnedEarly = true;
6082       break;
6083     }
6084 
6085     // Do a small peephole optimization: re-use the switch table compare if
6086     // possible.
6087     if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) {
6088       BasicBlock *PhiBlock = PHI->getParent();
6089       // Search for compare instructions which use the phi.
6090       for (auto *User : PHI->users()) {
6091         reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList);
6092       }
6093     }
6094 
6095     PHI->addIncoming(Result, LookupBB);
6096   }
6097 
6098   if (!ReturnedEarly) {
6099     Builder.CreateBr(CommonDest);
6100     if (DTU)
6101       Updates.push_back({DominatorTree::Insert, LookupBB, CommonDest});
6102   }
6103 
6104   // Remove the switch.
6105   SmallPtrSet<BasicBlock *, 8> RemovedSuccessors;
6106   for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
6107     BasicBlock *Succ = SI->getSuccessor(i);
6108 
6109     if (Succ == SI->getDefaultDest())
6110       continue;
6111     Succ->removePredecessor(BB);
6112     RemovedSuccessors.insert(Succ);
6113   }
6114   SI->eraseFromParent();
6115 
6116   if (DTU) {
6117     for (BasicBlock *RemovedSuccessor : RemovedSuccessors)
6118       Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor});
6119     DTU->applyUpdates(Updates);
6120   }
6121 
6122   ++NumLookupTables;
6123   if (NeedMask)
6124     ++NumLookupTablesHoles;
6125   return true;
6126 }
6127 
6128 static bool isSwitchDense(ArrayRef<int64_t> Values) {
6129   // See also SelectionDAGBuilder::isDense(), which this function was based on.
6130   uint64_t Diff = (uint64_t)Values.back() - (uint64_t)Values.front();
6131   uint64_t Range = Diff + 1;
6132   uint64_t NumCases = Values.size();
6133   // 40% is the default density for building a jump table in optsize/minsize mode.
6134   uint64_t MinDensity = 40;
6135 
6136   return NumCases * 100 >= Range * MinDensity;
6137 }
6138 
6139 /// Try to transform a switch that has "holes" in it to a contiguous sequence
6140 /// of cases.
6141 ///
6142 /// A switch such as: switch(i) {case 5: case 9: case 13: case 17:} can be
6143 /// range-reduced to: switch ((i-5) / 4) {case 0: case 1: case 2: case 3:}.
6144 ///
6145 /// This converts a sparse switch into a dense switch which allows better
6146 /// lowering and could also allow transforming into a lookup table.
6147 static bool ReduceSwitchRange(SwitchInst *SI, IRBuilder<> &Builder,
6148                               const DataLayout &DL,
6149                               const TargetTransformInfo &TTI) {
6150   auto *CondTy = cast<IntegerType>(SI->getCondition()->getType());
6151   if (CondTy->getIntegerBitWidth() > 64 ||
6152       !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth()))
6153     return false;
6154   // Only bother with this optimization if there are more than 3 switch cases;
6155   // SDAG will only bother creating jump tables for 4 or more cases.
6156   if (SI->getNumCases() < 4)
6157     return false;
6158 
6159   // This transform is agnostic to the signedness of the input or case values. We
6160   // can treat the case values as signed or unsigned. We can optimize more common
6161   // cases such as a sequence crossing zero {-4,0,4,8} if we interpret case values
6162   // as signed.
6163   SmallVector<int64_t,4> Values;
6164   for (auto &C : SI->cases())
6165     Values.push_back(C.getCaseValue()->getValue().getSExtValue());
6166   llvm::sort(Values);
6167 
6168   // If the switch is already dense, there's nothing useful to do here.
6169   if (isSwitchDense(Values))
6170     return false;
6171 
6172   // First, transform the values such that they start at zero and ascend.
6173   int64_t Base = Values[0];
6174   for (auto &V : Values)
6175     V -= (uint64_t)(Base);
6176 
6177   // Now we have signed numbers that have been shifted so that, given enough
6178   // precision, there are no negative values. Since the rest of the transform
6179   // is bitwise only, we switch now to an unsigned representation.
6180 
6181   // This transform can be done speculatively because it is so cheap - it
6182   // results in a single rotate operation being inserted.
6183   // FIXME: It's possible that optimizing a switch on powers of two might also
6184   // be beneficial - flag values are often powers of two and we could use a CLZ
6185   // as the key function.
6186 
6187   // countTrailingZeros(0) returns 64. As Values is guaranteed to have more than
6188   // one element and LLVM disallows duplicate cases, Shift is guaranteed to be
6189   // less than 64.
6190   unsigned Shift = 64;
6191   for (auto &V : Values)
6192     Shift = std::min(Shift, countTrailingZeros((uint64_t)V));
6193   assert(Shift < 64);
6194   if (Shift > 0)
6195     for (auto &V : Values)
6196       V = (int64_t)((uint64_t)V >> Shift);
6197 
6198   if (!isSwitchDense(Values))
6199     // Transform didn't create a dense switch.
6200     return false;
6201 
6202   // The obvious transform is to shift the switch condition right and emit a
6203   // check that the condition actually cleanly divided by GCD, i.e.
6204   //   C & (1 << Shift - 1) == 0
6205   // inserting a new CFG edge to handle the case where it didn't divide cleanly.
6206   //
6207   // A cheaper way of doing this is a simple ROTR(C, Shift). This performs the
6208   // shift and puts the shifted-off bits in the uppermost bits. If any of these
6209   // are nonzero then the switch condition will be very large and will hit the
6210   // default case.
6211 
6212   auto *Ty = cast<IntegerType>(SI->getCondition()->getType());
6213   Builder.SetInsertPoint(SI);
6214   auto *ShiftC = ConstantInt::get(Ty, Shift);
6215   auto *Sub = Builder.CreateSub(SI->getCondition(), ConstantInt::get(Ty, Base));
6216   auto *LShr = Builder.CreateLShr(Sub, ShiftC);
6217   auto *Shl = Builder.CreateShl(Sub, Ty->getBitWidth() - Shift);
6218   auto *Rot = Builder.CreateOr(LShr, Shl);
6219   SI->replaceUsesOfWith(SI->getCondition(), Rot);
6220 
6221   for (auto Case : SI->cases()) {
6222     auto *Orig = Case.getCaseValue();
6223     auto Sub = Orig->getValue() - APInt(Ty->getBitWidth(), Base);
6224     Case.setValue(
6225         cast<ConstantInt>(ConstantInt::get(Ty, Sub.lshr(ShiftC->getValue()))));
6226   }
6227   return true;
6228 }
6229 
6230 bool SimplifyCFGOpt::simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) {
6231   BasicBlock *BB = SI->getParent();
6232 
6233   if (isValueEqualityComparison(SI)) {
6234     // If we only have one predecessor, and if it is a branch on this value,
6235     // see if that predecessor totally determines the outcome of this switch.
6236     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
6237       if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder))
6238         return requestResimplify();
6239 
6240     Value *Cond = SI->getCondition();
6241     if (SelectInst *Select = dyn_cast<SelectInst>(Cond))
6242       if (SimplifySwitchOnSelect(SI, Select))
6243         return requestResimplify();
6244 
6245     // If the block only contains the switch, see if we can fold the block
6246     // away into any preds.
6247     if (SI == &*BB->instructionsWithoutDebug().begin())
6248       if (FoldValueComparisonIntoPredecessors(SI, Builder))
6249         return requestResimplify();
6250   }
6251 
6252   // Try to transform the switch into an icmp and a branch.
6253   if (TurnSwitchRangeIntoICmp(SI, Builder))
6254     return requestResimplify();
6255 
6256   // Remove unreachable cases.
6257   if (eliminateDeadSwitchCases(SI, DTU, Options.AC, DL))
6258     return requestResimplify();
6259 
6260   if (switchToSelect(SI, Builder, DTU, DL, TTI))
6261     return requestResimplify();
6262 
6263   if (Options.ForwardSwitchCondToPhi && ForwardSwitchConditionToPHI(SI))
6264     return requestResimplify();
6265 
6266   // The conversion from switch to lookup tables results in difficult-to-analyze
6267   // code and makes pruning branches much harder. This is a problem if the
6268   // switch expression itself can still be restricted as a result of inlining or
6269   // CVP. Therefore, only apply this transformation during late stages of the
6270   // optimisation pipeline.
6271   if (Options.ConvertSwitchToLookupTable &&
6272       SwitchToLookupTable(SI, Builder, DTU, DL, TTI))
6273     return requestResimplify();
6274 
6275   if (ReduceSwitchRange(SI, Builder, DL, TTI))
6276     return requestResimplify();
6277 
6278   return false;
6279 }
6280 
6281 bool SimplifyCFGOpt::simplifyIndirectBr(IndirectBrInst *IBI) {
6282   BasicBlock *BB = IBI->getParent();
6283   bool Changed = false;
6284 
6285   // Eliminate redundant destinations.
6286   SmallPtrSet<Value *, 8> Succs;
6287   SmallPtrSet<BasicBlock *, 8> RemovedSuccs;
6288   for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
6289     BasicBlock *Dest = IBI->getDestination(i);
6290     if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) {
6291       if (!Dest->hasAddressTaken())
6292         RemovedSuccs.insert(Dest);
6293       Dest->removePredecessor(BB);
6294       IBI->removeDestination(i);
6295       --i;
6296       --e;
6297       Changed = true;
6298     }
6299   }
6300 
6301   if (DTU) {
6302     std::vector<DominatorTree::UpdateType> Updates;
6303     Updates.reserve(RemovedSuccs.size());
6304     for (auto *RemovedSucc : RemovedSuccs)
6305       Updates.push_back({DominatorTree::Delete, BB, RemovedSucc});
6306     DTU->applyUpdates(Updates);
6307   }
6308 
6309   if (IBI->getNumDestinations() == 0) {
6310     // If the indirectbr has no successors, change it to unreachable.
6311     new UnreachableInst(IBI->getContext(), IBI);
6312     EraseTerminatorAndDCECond(IBI);
6313     return true;
6314   }
6315 
6316   if (IBI->getNumDestinations() == 1) {
6317     // If the indirectbr has one successor, change it to a direct branch.
6318     BranchInst::Create(IBI->getDestination(0), IBI);
6319     EraseTerminatorAndDCECond(IBI);
6320     return true;
6321   }
6322 
6323   if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) {
6324     if (SimplifyIndirectBrOnSelect(IBI, SI))
6325       return requestResimplify();
6326   }
6327   return Changed;
6328 }
6329 
6330 /// Given an block with only a single landing pad and a unconditional branch
6331 /// try to find another basic block which this one can be merged with.  This
6332 /// handles cases where we have multiple invokes with unique landing pads, but
6333 /// a shared handler.
6334 ///
6335 /// We specifically choose to not worry about merging non-empty blocks
6336 /// here.  That is a PRE/scheduling problem and is best solved elsewhere.  In
6337 /// practice, the optimizer produces empty landing pad blocks quite frequently
6338 /// when dealing with exception dense code.  (see: instcombine, gvn, if-else
6339 /// sinking in this file)
6340 ///
6341 /// This is primarily a code size optimization.  We need to avoid performing
6342 /// any transform which might inhibit optimization (such as our ability to
6343 /// specialize a particular handler via tail commoning).  We do this by not
6344 /// merging any blocks which require us to introduce a phi.  Since the same
6345 /// values are flowing through both blocks, we don't lose any ability to
6346 /// specialize.  If anything, we make such specialization more likely.
6347 ///
6348 /// TODO - This transformation could remove entries from a phi in the target
6349 /// block when the inputs in the phi are the same for the two blocks being
6350 /// merged.  In some cases, this could result in removal of the PHI entirely.
6351 static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI,
6352                                  BasicBlock *BB, DomTreeUpdater *DTU) {
6353   auto Succ = BB->getUniqueSuccessor();
6354   assert(Succ);
6355   // If there's a phi in the successor block, we'd likely have to introduce
6356   // a phi into the merged landing pad block.
6357   if (isa<PHINode>(*Succ->begin()))
6358     return false;
6359 
6360   for (BasicBlock *OtherPred : predecessors(Succ)) {
6361     if (BB == OtherPred)
6362       continue;
6363     BasicBlock::iterator I = OtherPred->begin();
6364     LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I);
6365     if (!LPad2 || !LPad2->isIdenticalTo(LPad))
6366       continue;
6367     for (++I; isa<DbgInfoIntrinsic>(I); ++I)
6368       ;
6369     BranchInst *BI2 = dyn_cast<BranchInst>(I);
6370     if (!BI2 || !BI2->isIdenticalTo(BI))
6371       continue;
6372 
6373     std::vector<DominatorTree::UpdateType> Updates;
6374 
6375     // We've found an identical block.  Update our predecessors to take that
6376     // path instead and make ourselves dead.
6377     SmallPtrSet<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB));
6378     for (BasicBlock *Pred : Preds) {
6379       InvokeInst *II = cast<InvokeInst>(Pred->getTerminator());
6380       assert(II->getNormalDest() != BB && II->getUnwindDest() == BB &&
6381              "unexpected successor");
6382       II->setUnwindDest(OtherPred);
6383       if (DTU) {
6384         Updates.push_back({DominatorTree::Insert, Pred, OtherPred});
6385         Updates.push_back({DominatorTree::Delete, Pred, BB});
6386       }
6387     }
6388 
6389     // The debug info in OtherPred doesn't cover the merged control flow that
6390     // used to go through BB.  We need to delete it or update it.
6391     for (auto I = OtherPred->begin(), E = OtherPred->end(); I != E;) {
6392       Instruction &Inst = *I;
6393       I++;
6394       if (isa<DbgInfoIntrinsic>(Inst))
6395         Inst.eraseFromParent();
6396     }
6397 
6398     SmallPtrSet<BasicBlock *, 16> Succs(succ_begin(BB), succ_end(BB));
6399     for (BasicBlock *Succ : Succs) {
6400       Succ->removePredecessor(BB);
6401       if (DTU)
6402         Updates.push_back({DominatorTree::Delete, BB, Succ});
6403     }
6404 
6405     IRBuilder<> Builder(BI);
6406     Builder.CreateUnreachable();
6407     BI->eraseFromParent();
6408     if (DTU)
6409       DTU->applyUpdates(Updates);
6410     return true;
6411   }
6412   return false;
6413 }
6414 
6415 bool SimplifyCFGOpt::simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder) {
6416   return Branch->isUnconditional() ? simplifyUncondBranch(Branch, Builder)
6417                                    : simplifyCondBranch(Branch, Builder);
6418 }
6419 
6420 bool SimplifyCFGOpt::simplifyUncondBranch(BranchInst *BI,
6421                                           IRBuilder<> &Builder) {
6422   BasicBlock *BB = BI->getParent();
6423   BasicBlock *Succ = BI->getSuccessor(0);
6424 
6425   // If the Terminator is the only non-phi instruction, simplify the block.
6426   // If LoopHeader is provided, check if the block or its successor is a loop
6427   // header. (This is for early invocations before loop simplify and
6428   // vectorization to keep canonical loop forms for nested loops. These blocks
6429   // can be eliminated when the pass is invoked later in the back-end.)
6430   // Note that if BB has only one predecessor then we do not introduce new
6431   // backedge, so we can eliminate BB.
6432   bool NeedCanonicalLoop =
6433       Options.NeedCanonicalLoop &&
6434       (!LoopHeaders.empty() && BB->hasNPredecessorsOrMore(2) &&
6435        (is_contained(LoopHeaders, BB) || is_contained(LoopHeaders, Succ)));
6436   BasicBlock::iterator I = BB->getFirstNonPHIOrDbg(true)->getIterator();
6437   if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() &&
6438       !NeedCanonicalLoop && TryToSimplifyUncondBranchFromEmptyBlock(BB, DTU))
6439     return true;
6440 
6441   // If the only instruction in the block is a seteq/setne comparison against a
6442   // constant, try to simplify the block.
6443   if (ICmpInst *ICI = dyn_cast<ICmpInst>(I))
6444     if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) {
6445       for (++I; isa<DbgInfoIntrinsic>(I); ++I)
6446         ;
6447       if (I->isTerminator() &&
6448           tryToSimplifyUncondBranchWithICmpInIt(ICI, Builder))
6449         return true;
6450     }
6451 
6452   // See if we can merge an empty landing pad block with another which is
6453   // equivalent.
6454   if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) {
6455     for (++I; isa<DbgInfoIntrinsic>(I); ++I)
6456       ;
6457     if (I->isTerminator() && TryToMergeLandingPad(LPad, BI, BB, DTU))
6458       return true;
6459   }
6460 
6461   // If this basic block is ONLY a compare and a branch, and if a predecessor
6462   // branches to us and our successor, fold the comparison into the
6463   // predecessor and use logical operations to update the incoming value
6464   // for PHI nodes in common successor.
6465   if (FoldBranchToCommonDest(BI, DTU, /*MSSAU=*/nullptr, &TTI,
6466                              Options.BonusInstThreshold))
6467     return requestResimplify();
6468   return false;
6469 }
6470 
6471 static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) {
6472   BasicBlock *PredPred = nullptr;
6473   for (auto *P : predecessors(BB)) {
6474     BasicBlock *PPred = P->getSinglePredecessor();
6475     if (!PPred || (PredPred && PredPred != PPred))
6476       return nullptr;
6477     PredPred = PPred;
6478   }
6479   return PredPred;
6480 }
6481 
6482 bool SimplifyCFGOpt::simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) {
6483   BasicBlock *BB = BI->getParent();
6484   if (!Options.SimplifyCondBranch)
6485     return false;
6486 
6487   // Conditional branch
6488   if (isValueEqualityComparison(BI)) {
6489     // If we only have one predecessor, and if it is a branch on this value,
6490     // see if that predecessor totally determines the outcome of this
6491     // switch.
6492     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
6493       if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder))
6494         return requestResimplify();
6495 
6496     // This block must be empty, except for the setcond inst, if it exists.
6497     // Ignore dbg and pseudo intrinsics.
6498     auto I = BB->instructionsWithoutDebug(true).begin();
6499     if (&*I == BI) {
6500       if (FoldValueComparisonIntoPredecessors(BI, Builder))
6501         return requestResimplify();
6502     } else if (&*I == cast<Instruction>(BI->getCondition())) {
6503       ++I;
6504       if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder))
6505         return requestResimplify();
6506     }
6507   }
6508 
6509   // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction.
6510   if (SimplifyBranchOnICmpChain(BI, Builder, DL))
6511     return true;
6512 
6513   // If this basic block has dominating predecessor blocks and the dominating
6514   // blocks' conditions imply BI's condition, we know the direction of BI.
6515   Optional<bool> Imp = isImpliedByDomCondition(BI->getCondition(), BI, DL);
6516   if (Imp) {
6517     // Turn this into a branch on constant.
6518     auto *OldCond = BI->getCondition();
6519     ConstantInt *TorF = *Imp ? ConstantInt::getTrue(BB->getContext())
6520                              : ConstantInt::getFalse(BB->getContext());
6521     BI->setCondition(TorF);
6522     RecursivelyDeleteTriviallyDeadInstructions(OldCond);
6523     return requestResimplify();
6524   }
6525 
6526   // If this basic block is ONLY a compare and a branch, and if a predecessor
6527   // branches to us and one of our successors, fold the comparison into the
6528   // predecessor and use logical operations to pick the right destination.
6529   if (FoldBranchToCommonDest(BI, DTU, /*MSSAU=*/nullptr, &TTI,
6530                              Options.BonusInstThreshold))
6531     return requestResimplify();
6532 
6533   // We have a conditional branch to two blocks that are only reachable
6534   // from BI.  We know that the condbr dominates the two blocks, so see if
6535   // there is any identical code in the "then" and "else" blocks.  If so, we
6536   // can hoist it up to the branching block.
6537   if (BI->getSuccessor(0)->getSinglePredecessor()) {
6538     if (BI->getSuccessor(1)->getSinglePredecessor()) {
6539       if (HoistCommon &&
6540           HoistThenElseCodeToIf(BI, TTI, !Options.HoistCommonInsts))
6541         return requestResimplify();
6542     } else {
6543       // If Successor #1 has multiple preds, we may be able to conditionally
6544       // execute Successor #0 if it branches to Successor #1.
6545       Instruction *Succ0TI = BI->getSuccessor(0)->getTerminator();
6546       if (Succ0TI->getNumSuccessors() == 1 &&
6547           Succ0TI->getSuccessor(0) == BI->getSuccessor(1))
6548         if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), TTI))
6549           return requestResimplify();
6550     }
6551   } else if (BI->getSuccessor(1)->getSinglePredecessor()) {
6552     // If Successor #0 has multiple preds, we may be able to conditionally
6553     // execute Successor #1 if it branches to Successor #0.
6554     Instruction *Succ1TI = BI->getSuccessor(1)->getTerminator();
6555     if (Succ1TI->getNumSuccessors() == 1 &&
6556         Succ1TI->getSuccessor(0) == BI->getSuccessor(0))
6557       if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), TTI))
6558         return requestResimplify();
6559   }
6560 
6561   // If this is a branch on a phi node in the current block, thread control
6562   // through this block if any PHI node entries are constants.
6563   if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition()))
6564     if (PN->getParent() == BI->getParent())
6565       if (FoldCondBranchOnPHI(BI, DTU, DL, Options.AC))
6566         return requestResimplify();
6567 
6568   // Scan predecessor blocks for conditional branches.
6569   for (BasicBlock *Pred : predecessors(BB))
6570     if (BranchInst *PBI = dyn_cast<BranchInst>(Pred->getTerminator()))
6571       if (PBI != BI && PBI->isConditional())
6572         if (SimplifyCondBranchToCondBranch(PBI, BI, DTU, DL, TTI))
6573           return requestResimplify();
6574 
6575   // Look for diamond patterns.
6576   if (MergeCondStores)
6577     if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB))
6578       if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator()))
6579         if (PBI != BI && PBI->isConditional())
6580           if (mergeConditionalStores(PBI, BI, DTU, DL, TTI))
6581             return requestResimplify();
6582 
6583   return false;
6584 }
6585 
6586 /// Check if passing a value to an instruction will cause undefined behavior.
6587 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I, bool PtrValueMayBeModified) {
6588   Constant *C = dyn_cast<Constant>(V);
6589   if (!C)
6590     return false;
6591 
6592   if (I->use_empty())
6593     return false;
6594 
6595   if (C->isNullValue() || isa<UndefValue>(C)) {
6596     // Only look at the first use, avoid hurting compile time with long uselists
6597     User *Use = *I->user_begin();
6598 
6599     // Now make sure that there are no instructions in between that can alter
6600     // control flow (eg. calls)
6601     for (BasicBlock::iterator
6602              i = ++BasicBlock::iterator(I),
6603              UI = BasicBlock::iterator(dyn_cast<Instruction>(Use));
6604          i != UI; ++i) {
6605       if (i == I->getParent()->end())
6606         return false;
6607       if (!isGuaranteedToTransferExecutionToSuccessor(&*i))
6608         return false;
6609     }
6610 
6611     // Look through GEPs. A load from a GEP derived from NULL is still undefined
6612     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use))
6613       if (GEP->getPointerOperand() == I) {
6614         if (!GEP->isInBounds() || !GEP->hasAllZeroIndices())
6615           PtrValueMayBeModified = true;
6616         return passingValueIsAlwaysUndefined(V, GEP, PtrValueMayBeModified);
6617       }
6618 
6619     // Look through bitcasts.
6620     if (BitCastInst *BC = dyn_cast<BitCastInst>(Use))
6621       return passingValueIsAlwaysUndefined(V, BC, PtrValueMayBeModified);
6622 
6623     // Load from null is undefined.
6624     if (LoadInst *LI = dyn_cast<LoadInst>(Use))
6625       if (!LI->isVolatile())
6626         return !NullPointerIsDefined(LI->getFunction(),
6627                                      LI->getPointerAddressSpace());
6628 
6629     // Store to null is undefined.
6630     if (StoreInst *SI = dyn_cast<StoreInst>(Use))
6631       if (!SI->isVolatile())
6632         return (!NullPointerIsDefined(SI->getFunction(),
6633                                       SI->getPointerAddressSpace())) &&
6634                SI->getPointerOperand() == I;
6635 
6636     if (auto *CB = dyn_cast<CallBase>(Use)) {
6637       if (C->isNullValue() && NullPointerIsDefined(CB->getFunction()))
6638         return false;
6639       // A call to null is undefined.
6640       if (CB->getCalledOperand() == I)
6641         return true;
6642 
6643       if (C->isNullValue()) {
6644         for (const llvm::Use &Arg : CB->args())
6645           if (Arg == I) {
6646             unsigned ArgIdx = CB->getArgOperandNo(&Arg);
6647             if (CB->isPassingUndefUB(ArgIdx) &&
6648                 CB->paramHasAttr(ArgIdx, Attribute::NonNull)) {
6649               // Passing null to a nonnnull+noundef argument is undefined.
6650               return !PtrValueMayBeModified;
6651             }
6652           }
6653       } else if (isa<UndefValue>(C)) {
6654         // Passing undef to a noundef argument is undefined.
6655         for (const llvm::Use &Arg : CB->args())
6656           if (Arg == I) {
6657             unsigned ArgIdx = CB->getArgOperandNo(&Arg);
6658             if (CB->isPassingUndefUB(ArgIdx)) {
6659               // Passing undef to a noundef argument is undefined.
6660               return true;
6661             }
6662           }
6663       }
6664     }
6665   }
6666   return false;
6667 }
6668 
6669 /// If BB has an incoming value that will always trigger undefined behavior
6670 /// (eg. null pointer dereference), remove the branch leading here.
6671 static bool removeUndefIntroducingPredecessor(BasicBlock *BB,
6672                                               DomTreeUpdater *DTU) {
6673   for (PHINode &PHI : BB->phis())
6674     for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i)
6675       if (passingValueIsAlwaysUndefined(PHI.getIncomingValue(i), &PHI)) {
6676         BasicBlock *Predecessor = PHI.getIncomingBlock(i);
6677         Instruction *T = Predecessor->getTerminator();
6678         IRBuilder<> Builder(T);
6679         if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
6680           BB->removePredecessor(Predecessor);
6681           // Turn uncoditional branches into unreachables and remove the dead
6682           // destination from conditional branches.
6683           if (BI->isUnconditional())
6684             Builder.CreateUnreachable();
6685           else
6686             Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1)
6687                                                        : BI->getSuccessor(0));
6688           BI->eraseFromParent();
6689           if (DTU)
6690             DTU->applyUpdates({{DominatorTree::Delete, Predecessor, BB}});
6691           return true;
6692         }
6693         // TODO: SwitchInst.
6694       }
6695 
6696   return false;
6697 }
6698 
6699 bool SimplifyCFGOpt::simplifyOnceImpl(BasicBlock *BB) {
6700   bool Changed = false;
6701 
6702   assert(BB && BB->getParent() && "Block not embedded in function!");
6703   assert(BB->getTerminator() && "Degenerate basic block encountered!");
6704 
6705   // Remove basic blocks that have no predecessors (except the entry block)...
6706   // or that just have themself as a predecessor.  These are unreachable.
6707   if ((pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) ||
6708       BB->getSinglePredecessor() == BB) {
6709     LLVM_DEBUG(dbgs() << "Removing BB: \n" << *BB);
6710     DeleteDeadBlock(BB, DTU);
6711     return true;
6712   }
6713 
6714   // Check to see if we can constant propagate this terminator instruction
6715   // away...
6716   Changed |= ConstantFoldTerminator(BB, /*DeleteDeadConditions=*/true,
6717                                     /*TLI=*/nullptr, DTU);
6718 
6719   // Check for and eliminate duplicate PHI nodes in this block.
6720   Changed |= EliminateDuplicatePHINodes(BB);
6721 
6722   // Check for and remove branches that will always cause undefined behavior.
6723   Changed |= removeUndefIntroducingPredecessor(BB, DTU);
6724 
6725   // Merge basic blocks into their predecessor if there is only one distinct
6726   // pred, and if there is only one distinct successor of the predecessor, and
6727   // if there are no PHI nodes.
6728   if (MergeBlockIntoPredecessor(BB, DTU))
6729     return true;
6730 
6731   if (SinkCommon && Options.SinkCommonInsts)
6732     if (SinkCommonCodeFromPredecessors(BB, DTU)) {
6733       // SinkCommonCodeFromPredecessors() does not automatically CSE PHI's,
6734       // so we may now how duplicate PHI's.
6735       // Let's rerun EliminateDuplicatePHINodes() first,
6736       // before FoldTwoEntryPHINode() potentially converts them into select's,
6737       // after which we'd need a whole EarlyCSE pass run to cleanup them.
6738       return true;
6739     }
6740 
6741   IRBuilder<> Builder(BB);
6742 
6743   if (Options.FoldTwoEntryPHINode) {
6744     // If there is a trivial two-entry PHI node in this basic block, and we can
6745     // eliminate it, do so now.
6746     if (auto *PN = dyn_cast<PHINode>(BB->begin()))
6747       if (PN->getNumIncomingValues() == 2)
6748         Changed |= FoldTwoEntryPHINode(PN, TTI, DTU, DL);
6749   }
6750 
6751   Instruction *Terminator = BB->getTerminator();
6752   Builder.SetInsertPoint(Terminator);
6753   switch (Terminator->getOpcode()) {
6754   case Instruction::Br:
6755     Changed |= simplifyBranch(cast<BranchInst>(Terminator), Builder);
6756     break;
6757   case Instruction::Ret:
6758     Changed |= simplifyReturn(cast<ReturnInst>(Terminator), Builder);
6759     break;
6760   case Instruction::Resume:
6761     Changed |= simplifyResume(cast<ResumeInst>(Terminator), Builder);
6762     break;
6763   case Instruction::CleanupRet:
6764     Changed |= simplifyCleanupReturn(cast<CleanupReturnInst>(Terminator));
6765     break;
6766   case Instruction::Switch:
6767     Changed |= simplifySwitch(cast<SwitchInst>(Terminator), Builder);
6768     break;
6769   case Instruction::Unreachable:
6770     Changed |= simplifyUnreachable(cast<UnreachableInst>(Terminator));
6771     break;
6772   case Instruction::IndirectBr:
6773     Changed |= simplifyIndirectBr(cast<IndirectBrInst>(Terminator));
6774     break;
6775   }
6776 
6777   return Changed;
6778 }
6779 
6780 bool SimplifyCFGOpt::simplifyOnce(BasicBlock *BB) {
6781   bool Changed = simplifyOnceImpl(BB);
6782 
6783   return Changed;
6784 }
6785 
6786 bool SimplifyCFGOpt::run(BasicBlock *BB) {
6787   bool Changed = false;
6788 
6789   // Repeated simplify BB as long as resimplification is requested.
6790   do {
6791     Resimplify = false;
6792 
6793     // Perform one round of simplifcation. Resimplify flag will be set if
6794     // another iteration is requested.
6795     Changed |= simplifyOnce(BB);
6796   } while (Resimplify);
6797 
6798   return Changed;
6799 }
6800 
6801 bool llvm::simplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI,
6802                        DomTreeUpdater *DTU, const SimplifyCFGOptions &Options,
6803                        ArrayRef<WeakVH> LoopHeaders) {
6804   return SimplifyCFGOpt(TTI, DTU, BB->getModule()->getDataLayout(), LoopHeaders,
6805                         Options)
6806       .run(BB);
6807 }
6808