1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Peephole optimize the CFG.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/ADT/APInt.h"
14 #include "llvm/ADT/ArrayRef.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/MapVector.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/ScopeExit.h"
20 #include "llvm/ADT/Sequence.h"
21 #include "llvm/ADT/SetOperations.h"
22 #include "llvm/ADT/SetVector.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/Statistic.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/Analysis/AssumptionCache.h"
28 #include "llvm/Analysis/ConstantFolding.h"
29 #include "llvm/Analysis/EHPersonalities.h"
30 #include "llvm/Analysis/GuardUtils.h"
31 #include "llvm/Analysis/InstructionSimplify.h"
32 #include "llvm/Analysis/MemorySSA.h"
33 #include "llvm/Analysis/MemorySSAUpdater.h"
34 #include "llvm/Analysis/TargetTransformInfo.h"
35 #include "llvm/Analysis/ValueTracking.h"
36 #include "llvm/IR/Attributes.h"
37 #include "llvm/IR/BasicBlock.h"
38 #include "llvm/IR/CFG.h"
39 #include "llvm/IR/Constant.h"
40 #include "llvm/IR/ConstantRange.h"
41 #include "llvm/IR/Constants.h"
42 #include "llvm/IR/DataLayout.h"
43 #include "llvm/IR/DerivedTypes.h"
44 #include "llvm/IR/Function.h"
45 #include "llvm/IR/GlobalValue.h"
46 #include "llvm/IR/GlobalVariable.h"
47 #include "llvm/IR/IRBuilder.h"
48 #include "llvm/IR/InstrTypes.h"
49 #include "llvm/IR/Instruction.h"
50 #include "llvm/IR/Instructions.h"
51 #include "llvm/IR/IntrinsicInst.h"
52 #include "llvm/IR/Intrinsics.h"
53 #include "llvm/IR/LLVMContext.h"
54 #include "llvm/IR/MDBuilder.h"
55 #include "llvm/IR/Metadata.h"
56 #include "llvm/IR/Module.h"
57 #include "llvm/IR/NoFolder.h"
58 #include "llvm/IR/Operator.h"
59 #include "llvm/IR/PatternMatch.h"
60 #include "llvm/IR/PseudoProbe.h"
61 #include "llvm/IR/Type.h"
62 #include "llvm/IR/Use.h"
63 #include "llvm/IR/User.h"
64 #include "llvm/IR/Value.h"
65 #include "llvm/IR/ValueHandle.h"
66 #include "llvm/Support/BranchProbability.h"
67 #include "llvm/Support/Casting.h"
68 #include "llvm/Support/CommandLine.h"
69 #include "llvm/Support/Debug.h"
70 #include "llvm/Support/ErrorHandling.h"
71 #include "llvm/Support/KnownBits.h"
72 #include "llvm/Support/MathExtras.h"
73 #include "llvm/Support/raw_ostream.h"
74 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
75 #include "llvm/Transforms/Utils/Local.h"
76 #include "llvm/Transforms/Utils/SSAUpdater.h"
77 #include "llvm/Transforms/Utils/ValueMapper.h"
78 #include <algorithm>
79 #include <cassert>
80 #include <climits>
81 #include <cstddef>
82 #include <cstdint>
83 #include <iterator>
84 #include <map>
85 #include <set>
86 #include <tuple>
87 #include <utility>
88 #include <vector>
89 
90 using namespace llvm;
91 using namespace PatternMatch;
92 
93 #define DEBUG_TYPE "simplifycfg"
94 
95 cl::opt<bool> llvm::RequireAndPreserveDomTree(
96     "simplifycfg-require-and-preserve-domtree", cl::Hidden, cl::ZeroOrMore,
97     cl::init(false),
98     cl::desc("Temorary development switch used to gradually uplift SimplifyCFG "
99              "into preserving DomTree,"));
100 
101 // Chosen as 2 so as to be cheap, but still to have enough power to fold
102 // a select, so the "clamp" idiom (of a min followed by a max) will be caught.
103 // To catch this, we need to fold a compare and a select, hence '2' being the
104 // minimum reasonable default.
105 static cl::opt<unsigned> PHINodeFoldingThreshold(
106     "phi-node-folding-threshold", cl::Hidden, cl::init(2),
107     cl::desc(
108         "Control the amount of phi node folding to perform (default = 2)"));
109 
110 static cl::opt<unsigned> TwoEntryPHINodeFoldingThreshold(
111     "two-entry-phi-node-folding-threshold", cl::Hidden, cl::init(4),
112     cl::desc("Control the maximal total instruction cost that we are willing "
113              "to speculatively execute to fold a 2-entry PHI node into a "
114              "select (default = 4)"));
115 
116 static cl::opt<bool>
117     HoistCommon("simplifycfg-hoist-common", cl::Hidden, cl::init(true),
118                 cl::desc("Hoist common instructions up to the parent block"));
119 
120 static cl::opt<bool>
121     SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true),
122                cl::desc("Sink common instructions down to the end block"));
123 
124 static cl::opt<bool> HoistCondStores(
125     "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true),
126     cl::desc("Hoist conditional stores if an unconditional store precedes"));
127 
128 static cl::opt<bool> MergeCondStores(
129     "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true),
130     cl::desc("Hoist conditional stores even if an unconditional store does not "
131              "precede - hoist multiple conditional stores into a single "
132              "predicated store"));
133 
134 static cl::opt<bool> MergeCondStoresAggressively(
135     "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false),
136     cl::desc("When merging conditional stores, do so even if the resultant "
137              "basic blocks are unlikely to be if-converted as a result"));
138 
139 static cl::opt<bool> SpeculateOneExpensiveInst(
140     "speculate-one-expensive-inst", cl::Hidden, cl::init(true),
141     cl::desc("Allow exactly one expensive instruction to be speculatively "
142              "executed"));
143 
144 static cl::opt<unsigned> MaxSpeculationDepth(
145     "max-speculation-depth", cl::Hidden, cl::init(10),
146     cl::desc("Limit maximum recursion depth when calculating costs of "
147              "speculatively executed instructions"));
148 
149 static cl::opt<int>
150     MaxSmallBlockSize("simplifycfg-max-small-block-size", cl::Hidden,
151                       cl::init(10),
152                       cl::desc("Max size of a block which is still considered "
153                                "small enough to thread through"));
154 
155 // Two is chosen to allow one negation and a logical combine.
156 static cl::opt<unsigned>
157     BranchFoldThreshold("simplifycfg-branch-fold-threshold", cl::Hidden,
158                         cl::init(2),
159                         cl::desc("Maximum cost of combining conditions when "
160                                  "folding branches"));
161 
162 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps");
163 STATISTIC(NumLinearMaps,
164           "Number of switch instructions turned into linear mapping");
165 STATISTIC(NumLookupTables,
166           "Number of switch instructions turned into lookup tables");
167 STATISTIC(
168     NumLookupTablesHoles,
169     "Number of switch instructions turned into lookup tables (holes checked)");
170 STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares");
171 STATISTIC(NumFoldValueComparisonIntoPredecessors,
172           "Number of value comparisons folded into predecessor basic blocks");
173 STATISTIC(NumFoldBranchToCommonDest,
174           "Number of branches folded into predecessor basic block");
175 STATISTIC(
176     NumHoistCommonCode,
177     "Number of common instruction 'blocks' hoisted up to the begin block");
178 STATISTIC(NumHoistCommonInstrs,
179           "Number of common instructions hoisted up to the begin block");
180 STATISTIC(NumSinkCommonCode,
181           "Number of common instruction 'blocks' sunk down to the end block");
182 STATISTIC(NumSinkCommonInstrs,
183           "Number of common instructions sunk down to the end block");
184 STATISTIC(NumSpeculations, "Number of speculative executed instructions");
185 STATISTIC(NumInvokes,
186           "Number of invokes with empty resume blocks simplified into calls");
187 
188 namespace {
189 
190 // The first field contains the value that the switch produces when a certain
191 // case group is selected, and the second field is a vector containing the
192 // cases composing the case group.
193 using SwitchCaseResultVectorTy =
194     SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2>;
195 
196 // The first field contains the phi node that generates a result of the switch
197 // and the second field contains the value generated for a certain case in the
198 // switch for that PHI.
199 using SwitchCaseResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>;
200 
201 /// ValueEqualityComparisonCase - Represents a case of a switch.
202 struct ValueEqualityComparisonCase {
203   ConstantInt *Value;
204   BasicBlock *Dest;
205 
206   ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest)
207       : Value(Value), Dest(Dest) {}
208 
209   bool operator<(ValueEqualityComparisonCase RHS) const {
210     // Comparing pointers is ok as we only rely on the order for uniquing.
211     return Value < RHS.Value;
212   }
213 
214   bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; }
215 };
216 
217 class SimplifyCFGOpt {
218   const TargetTransformInfo &TTI;
219   DomTreeUpdater *DTU;
220   const DataLayout &DL;
221   ArrayRef<WeakVH> LoopHeaders;
222   const SimplifyCFGOptions &Options;
223   bool Resimplify;
224 
225   Value *isValueEqualityComparison(Instruction *TI);
226   BasicBlock *GetValueEqualityComparisonCases(
227       Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases);
228   bool SimplifyEqualityComparisonWithOnlyPredecessor(Instruction *TI,
229                                                      BasicBlock *Pred,
230                                                      IRBuilder<> &Builder);
231   bool PerformValueComparisonIntoPredecessorFolding(Instruction *TI, Value *&CV,
232                                                     Instruction *PTI,
233                                                     IRBuilder<> &Builder);
234   bool FoldValueComparisonIntoPredecessors(Instruction *TI,
235                                            IRBuilder<> &Builder);
236 
237   bool simplifyResume(ResumeInst *RI, IRBuilder<> &Builder);
238   bool simplifySingleResume(ResumeInst *RI);
239   bool simplifyCommonResume(ResumeInst *RI);
240   bool simplifyCleanupReturn(CleanupReturnInst *RI);
241   bool simplifyUnreachable(UnreachableInst *UI);
242   bool simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder);
243   bool simplifyIndirectBr(IndirectBrInst *IBI);
244   bool simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder);
245   bool simplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder);
246   bool simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder);
247 
248   bool tryToSimplifyUncondBranchWithICmpInIt(ICmpInst *ICI,
249                                              IRBuilder<> &Builder);
250 
251   bool HoistThenElseCodeToIf(BranchInst *BI, const TargetTransformInfo &TTI,
252                              bool EqTermsOnly);
253   bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB,
254                               const TargetTransformInfo &TTI);
255   bool SimplifyTerminatorOnSelect(Instruction *OldTerm, Value *Cond,
256                                   BasicBlock *TrueBB, BasicBlock *FalseBB,
257                                   uint32_t TrueWeight, uint32_t FalseWeight);
258   bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder,
259                                  const DataLayout &DL);
260   bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select);
261   bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI);
262   bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder);
263 
264 public:
265   SimplifyCFGOpt(const TargetTransformInfo &TTI, DomTreeUpdater *DTU,
266                  const DataLayout &DL, ArrayRef<WeakVH> LoopHeaders,
267                  const SimplifyCFGOptions &Opts)
268       : TTI(TTI), DTU(DTU), DL(DL), LoopHeaders(LoopHeaders), Options(Opts) {
269     assert((!DTU || !DTU->hasPostDomTree()) &&
270            "SimplifyCFG is not yet capable of maintaining validity of a "
271            "PostDomTree, so don't ask for it.");
272   }
273 
274   bool simplifyOnce(BasicBlock *BB);
275   bool simplifyOnceImpl(BasicBlock *BB);
276   bool run(BasicBlock *BB);
277 
278   // Helper to set Resimplify and return change indication.
279   bool requestResimplify() {
280     Resimplify = true;
281     return true;
282   }
283 };
284 
285 } // end anonymous namespace
286 
287 /// Return true if it is safe to merge these two
288 /// terminator instructions together.
289 static bool
290 SafeToMergeTerminators(Instruction *SI1, Instruction *SI2,
291                        SmallSetVector<BasicBlock *, 4> *FailBlocks = nullptr) {
292   if (SI1 == SI2)
293     return false; // Can't merge with self!
294 
295   // It is not safe to merge these two switch instructions if they have a common
296   // successor, and if that successor has a PHI node, and if *that* PHI node has
297   // conflicting incoming values from the two switch blocks.
298   BasicBlock *SI1BB = SI1->getParent();
299   BasicBlock *SI2BB = SI2->getParent();
300 
301   SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
302   bool Fail = false;
303   for (BasicBlock *Succ : successors(SI2BB))
304     if (SI1Succs.count(Succ))
305       for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) {
306         PHINode *PN = cast<PHINode>(BBI);
307         if (PN->getIncomingValueForBlock(SI1BB) !=
308             PN->getIncomingValueForBlock(SI2BB)) {
309           if (FailBlocks)
310             FailBlocks->insert(Succ);
311           Fail = true;
312         }
313       }
314 
315   return !Fail;
316 }
317 
318 /// Update PHI nodes in Succ to indicate that there will now be entries in it
319 /// from the 'NewPred' block. The values that will be flowing into the PHI nodes
320 /// will be the same as those coming in from ExistPred, an existing predecessor
321 /// of Succ.
322 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred,
323                                   BasicBlock *ExistPred,
324                                   MemorySSAUpdater *MSSAU = nullptr) {
325   for (PHINode &PN : Succ->phis())
326     PN.addIncoming(PN.getIncomingValueForBlock(ExistPred), NewPred);
327   if (MSSAU)
328     if (auto *MPhi = MSSAU->getMemorySSA()->getMemoryAccess(Succ))
329       MPhi->addIncoming(MPhi->getIncomingValueForBlock(ExistPred), NewPred);
330 }
331 
332 /// Compute an abstract "cost" of speculating the given instruction,
333 /// which is assumed to be safe to speculate. TCC_Free means cheap,
334 /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively
335 /// expensive.
336 static InstructionCost computeSpeculationCost(const User *I,
337                                               const TargetTransformInfo &TTI) {
338   assert(isSafeToSpeculativelyExecute(I) &&
339          "Instruction is not safe to speculatively execute!");
340   return TTI.getUserCost(I, TargetTransformInfo::TCK_SizeAndLatency);
341 }
342 
343 /// If we have a merge point of an "if condition" as accepted above,
344 /// return true if the specified value dominates the block.  We
345 /// don't handle the true generality of domination here, just a special case
346 /// which works well enough for us.
347 ///
348 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to
349 /// see if V (which must be an instruction) and its recursive operands
350 /// that do not dominate BB have a combined cost lower than Budget and
351 /// are non-trapping.  If both are true, the instruction is inserted into the
352 /// set and true is returned.
353 ///
354 /// The cost for most non-trapping instructions is defined as 1 except for
355 /// Select whose cost is 2.
356 ///
357 /// After this function returns, Cost is increased by the cost of
358 /// V plus its non-dominating operands.  If that cost is greater than
359 /// Budget, false is returned and Cost is undefined.
360 static bool dominatesMergePoint(Value *V, BasicBlock *BB,
361                                 SmallPtrSetImpl<Instruction *> &AggressiveInsts,
362                                 InstructionCost &Cost,
363                                 InstructionCost Budget,
364                                 const TargetTransformInfo &TTI,
365                                 unsigned Depth = 0) {
366   // It is possible to hit a zero-cost cycle (phi/gep instructions for example),
367   // so limit the recursion depth.
368   // TODO: While this recursion limit does prevent pathological behavior, it
369   // would be better to track visited instructions to avoid cycles.
370   if (Depth == MaxSpeculationDepth)
371     return false;
372 
373   Instruction *I = dyn_cast<Instruction>(V);
374   if (!I) {
375     // Non-instructions all dominate instructions, but not all constantexprs
376     // can be executed unconditionally.
377     if (ConstantExpr *C = dyn_cast<ConstantExpr>(V))
378       if (C->canTrap())
379         return false;
380     return true;
381   }
382   BasicBlock *PBB = I->getParent();
383 
384   // We don't want to allow weird loops that might have the "if condition" in
385   // the bottom of this block.
386   if (PBB == BB)
387     return false;
388 
389   // If this instruction is defined in a block that contains an unconditional
390   // branch to BB, then it must be in the 'conditional' part of the "if
391   // statement".  If not, it definitely dominates the region.
392   BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator());
393   if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB)
394     return true;
395 
396   // If we have seen this instruction before, don't count it again.
397   if (AggressiveInsts.count(I))
398     return true;
399 
400   // Okay, it looks like the instruction IS in the "condition".  Check to
401   // see if it's a cheap instruction to unconditionally compute, and if it
402   // only uses stuff defined outside of the condition.  If so, hoist it out.
403   if (!isSafeToSpeculativelyExecute(I))
404     return false;
405 
406   Cost += computeSpeculationCost(I, TTI);
407 
408   // Allow exactly one instruction to be speculated regardless of its cost
409   // (as long as it is safe to do so).
410   // This is intended to flatten the CFG even if the instruction is a division
411   // or other expensive operation. The speculation of an expensive instruction
412   // is expected to be undone in CodeGenPrepare if the speculation has not
413   // enabled further IR optimizations.
414   if (Cost > Budget &&
415       (!SpeculateOneExpensiveInst || !AggressiveInsts.empty() || Depth > 0 ||
416        !Cost.isValid()))
417     return false;
418 
419   // Okay, we can only really hoist these out if their operands do
420   // not take us over the cost threshold.
421   for (Use &Op : I->operands())
422     if (!dominatesMergePoint(Op, BB, AggressiveInsts, Cost, Budget, TTI,
423                              Depth + 1))
424       return false;
425   // Okay, it's safe to do this!  Remember this instruction.
426   AggressiveInsts.insert(I);
427   return true;
428 }
429 
430 /// Extract ConstantInt from value, looking through IntToPtr
431 /// and PointerNullValue. Return NULL if value is not a constant int.
432 static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) {
433   // Normal constant int.
434   ConstantInt *CI = dyn_cast<ConstantInt>(V);
435   if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy())
436     return CI;
437 
438   // This is some kind of pointer constant. Turn it into a pointer-sized
439   // ConstantInt if possible.
440   IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType()));
441 
442   // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*).
443   if (isa<ConstantPointerNull>(V))
444     return ConstantInt::get(PtrTy, 0);
445 
446   // IntToPtr const int.
447   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
448     if (CE->getOpcode() == Instruction::IntToPtr)
449       if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) {
450         // The constant is very likely to have the right type already.
451         if (CI->getType() == PtrTy)
452           return CI;
453         else
454           return cast<ConstantInt>(
455               ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false));
456       }
457   return nullptr;
458 }
459 
460 namespace {
461 
462 /// Given a chain of or (||) or and (&&) comparison of a value against a
463 /// constant, this will try to recover the information required for a switch
464 /// structure.
465 /// It will depth-first traverse the chain of comparison, seeking for patterns
466 /// like %a == 12 or %a < 4 and combine them to produce a set of integer
467 /// representing the different cases for the switch.
468 /// Note that if the chain is composed of '||' it will build the set of elements
469 /// that matches the comparisons (i.e. any of this value validate the chain)
470 /// while for a chain of '&&' it will build the set elements that make the test
471 /// fail.
472 struct ConstantComparesGatherer {
473   const DataLayout &DL;
474 
475   /// Value found for the switch comparison
476   Value *CompValue = nullptr;
477 
478   /// Extra clause to be checked before the switch
479   Value *Extra = nullptr;
480 
481   /// Set of integers to match in switch
482   SmallVector<ConstantInt *, 8> Vals;
483 
484   /// Number of comparisons matched in the and/or chain
485   unsigned UsedICmps = 0;
486 
487   /// Construct and compute the result for the comparison instruction Cond
488   ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL) : DL(DL) {
489     gather(Cond);
490   }
491 
492   ConstantComparesGatherer(const ConstantComparesGatherer &) = delete;
493   ConstantComparesGatherer &
494   operator=(const ConstantComparesGatherer &) = delete;
495 
496 private:
497   /// Try to set the current value used for the comparison, it succeeds only if
498   /// it wasn't set before or if the new value is the same as the old one
499   bool setValueOnce(Value *NewVal) {
500     if (CompValue && CompValue != NewVal)
501       return false;
502     CompValue = NewVal;
503     return (CompValue != nullptr);
504   }
505 
506   /// Try to match Instruction "I" as a comparison against a constant and
507   /// populates the array Vals with the set of values that match (or do not
508   /// match depending on isEQ).
509   /// Return false on failure. On success, the Value the comparison matched
510   /// against is placed in CompValue.
511   /// If CompValue is already set, the function is expected to fail if a match
512   /// is found but the value compared to is different.
513   bool matchInstruction(Instruction *I, bool isEQ) {
514     // If this is an icmp against a constant, handle this as one of the cases.
515     ICmpInst *ICI;
516     ConstantInt *C;
517     if (!((ICI = dyn_cast<ICmpInst>(I)) &&
518           (C = GetConstantInt(I->getOperand(1), DL)))) {
519       return false;
520     }
521 
522     Value *RHSVal;
523     const APInt *RHSC;
524 
525     // Pattern match a special case
526     // (x & ~2^z) == y --> x == y || x == y|2^z
527     // This undoes a transformation done by instcombine to fuse 2 compares.
528     if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE)) {
529       // It's a little bit hard to see why the following transformations are
530       // correct. Here is a CVC3 program to verify them for 64-bit values:
531 
532       /*
533          ONE  : BITVECTOR(64) = BVZEROEXTEND(0bin1, 63);
534          x    : BITVECTOR(64);
535          y    : BITVECTOR(64);
536          z    : BITVECTOR(64);
537          mask : BITVECTOR(64) = BVSHL(ONE, z);
538          QUERY( (y & ~mask = y) =>
539                 ((x & ~mask = y) <=> (x = y OR x = (y |  mask)))
540          );
541          QUERY( (y |  mask = y) =>
542                 ((x |  mask = y) <=> (x = y OR x = (y & ~mask)))
543          );
544       */
545 
546       // Please note that each pattern must be a dual implication (<--> or
547       // iff). One directional implication can create spurious matches. If the
548       // implication is only one-way, an unsatisfiable condition on the left
549       // side can imply a satisfiable condition on the right side. Dual
550       // implication ensures that satisfiable conditions are transformed to
551       // other satisfiable conditions and unsatisfiable conditions are
552       // transformed to other unsatisfiable conditions.
553 
554       // Here is a concrete example of a unsatisfiable condition on the left
555       // implying a satisfiable condition on the right:
556       //
557       // mask = (1 << z)
558       // (x & ~mask) == y  --> (x == y || x == (y | mask))
559       //
560       // Substituting y = 3, z = 0 yields:
561       // (x & -2) == 3 --> (x == 3 || x == 2)
562 
563       // Pattern match a special case:
564       /*
565         QUERY( (y & ~mask = y) =>
566                ((x & ~mask = y) <=> (x = y OR x = (y |  mask)))
567         );
568       */
569       if (match(ICI->getOperand(0),
570                 m_And(m_Value(RHSVal), m_APInt(RHSC)))) {
571         APInt Mask = ~*RHSC;
572         if (Mask.isPowerOf2() && (C->getValue() & ~Mask) == C->getValue()) {
573           // If we already have a value for the switch, it has to match!
574           if (!setValueOnce(RHSVal))
575             return false;
576 
577           Vals.push_back(C);
578           Vals.push_back(
579               ConstantInt::get(C->getContext(),
580                                C->getValue() | Mask));
581           UsedICmps++;
582           return true;
583         }
584       }
585 
586       // Pattern match a special case:
587       /*
588         QUERY( (y |  mask = y) =>
589                ((x |  mask = y) <=> (x = y OR x = (y & ~mask)))
590         );
591       */
592       if (match(ICI->getOperand(0),
593                 m_Or(m_Value(RHSVal), m_APInt(RHSC)))) {
594         APInt Mask = *RHSC;
595         if (Mask.isPowerOf2() && (C->getValue() | Mask) == C->getValue()) {
596           // If we already have a value for the switch, it has to match!
597           if (!setValueOnce(RHSVal))
598             return false;
599 
600           Vals.push_back(C);
601           Vals.push_back(ConstantInt::get(C->getContext(),
602                                           C->getValue() & ~Mask));
603           UsedICmps++;
604           return true;
605         }
606       }
607 
608       // If we already have a value for the switch, it has to match!
609       if (!setValueOnce(ICI->getOperand(0)))
610         return false;
611 
612       UsedICmps++;
613       Vals.push_back(C);
614       return ICI->getOperand(0);
615     }
616 
617     // If we have "x ult 3", for example, then we can add 0,1,2 to the set.
618     ConstantRange Span =
619         ConstantRange::makeExactICmpRegion(ICI->getPredicate(), C->getValue());
620 
621     // Shift the range if the compare is fed by an add. This is the range
622     // compare idiom as emitted by instcombine.
623     Value *CandidateVal = I->getOperand(0);
624     if (match(I->getOperand(0), m_Add(m_Value(RHSVal), m_APInt(RHSC)))) {
625       Span = Span.subtract(*RHSC);
626       CandidateVal = RHSVal;
627     }
628 
629     // If this is an and/!= check, then we are looking to build the set of
630     // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into
631     // x != 0 && x != 1.
632     if (!isEQ)
633       Span = Span.inverse();
634 
635     // If there are a ton of values, we don't want to make a ginormous switch.
636     if (Span.isSizeLargerThan(8) || Span.isEmptySet()) {
637       return false;
638     }
639 
640     // If we already have a value for the switch, it has to match!
641     if (!setValueOnce(CandidateVal))
642       return false;
643 
644     // Add all values from the range to the set
645     for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp)
646       Vals.push_back(ConstantInt::get(I->getContext(), Tmp));
647 
648     UsedICmps++;
649     return true;
650   }
651 
652   /// Given a potentially 'or'd or 'and'd together collection of icmp
653   /// eq/ne/lt/gt instructions that compare a value against a constant, extract
654   /// the value being compared, and stick the list constants into the Vals
655   /// vector.
656   /// One "Extra" case is allowed to differ from the other.
657   void gather(Value *V) {
658     bool isEQ = match(V, m_LogicalOr(m_Value(), m_Value()));
659 
660     // Keep a stack (SmallVector for efficiency) for depth-first traversal
661     SmallVector<Value *, 8> DFT;
662     SmallPtrSet<Value *, 8> Visited;
663 
664     // Initialize
665     Visited.insert(V);
666     DFT.push_back(V);
667 
668     while (!DFT.empty()) {
669       V = DFT.pop_back_val();
670 
671       if (Instruction *I = dyn_cast<Instruction>(V)) {
672         // If it is a || (or && depending on isEQ), process the operands.
673         Value *Op0, *Op1;
674         if (isEQ ? match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1)))
675                  : match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) {
676           if (Visited.insert(Op1).second)
677             DFT.push_back(Op1);
678           if (Visited.insert(Op0).second)
679             DFT.push_back(Op0);
680 
681           continue;
682         }
683 
684         // Try to match the current instruction
685         if (matchInstruction(I, isEQ))
686           // Match succeed, continue the loop
687           continue;
688       }
689 
690       // One element of the sequence of || (or &&) could not be match as a
691       // comparison against the same value as the others.
692       // We allow only one "Extra" case to be checked before the switch
693       if (!Extra) {
694         Extra = V;
695         continue;
696       }
697       // Failed to parse a proper sequence, abort now
698       CompValue = nullptr;
699       break;
700     }
701   }
702 };
703 
704 } // end anonymous namespace
705 
706 static void EraseTerminatorAndDCECond(Instruction *TI,
707                                       MemorySSAUpdater *MSSAU = nullptr) {
708   Instruction *Cond = nullptr;
709   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
710     Cond = dyn_cast<Instruction>(SI->getCondition());
711   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
712     if (BI->isConditional())
713       Cond = dyn_cast<Instruction>(BI->getCondition());
714   } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) {
715     Cond = dyn_cast<Instruction>(IBI->getAddress());
716   }
717 
718   TI->eraseFromParent();
719   if (Cond)
720     RecursivelyDeleteTriviallyDeadInstructions(Cond, nullptr, MSSAU);
721 }
722 
723 /// Return true if the specified terminator checks
724 /// to see if a value is equal to constant integer value.
725 Value *SimplifyCFGOpt::isValueEqualityComparison(Instruction *TI) {
726   Value *CV = nullptr;
727   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
728     // Do not permit merging of large switch instructions into their
729     // predecessors unless there is only one predecessor.
730     if (!SI->getParent()->hasNPredecessorsOrMore(128 / SI->getNumSuccessors()))
731       CV = SI->getCondition();
732   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI))
733     if (BI->isConditional() && BI->getCondition()->hasOneUse())
734       if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) {
735         if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL))
736           CV = ICI->getOperand(0);
737       }
738 
739   // Unwrap any lossless ptrtoint cast.
740   if (CV) {
741     if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) {
742       Value *Ptr = PTII->getPointerOperand();
743       if (PTII->getType() == DL.getIntPtrType(Ptr->getType()))
744         CV = Ptr;
745     }
746   }
747   return CV;
748 }
749 
750 /// Given a value comparison instruction,
751 /// decode all of the 'cases' that it represents and return the 'default' block.
752 BasicBlock *SimplifyCFGOpt::GetValueEqualityComparisonCases(
753     Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases) {
754   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
755     Cases.reserve(SI->getNumCases());
756     for (auto Case : SI->cases())
757       Cases.push_back(ValueEqualityComparisonCase(Case.getCaseValue(),
758                                                   Case.getCaseSuccessor()));
759     return SI->getDefaultDest();
760   }
761 
762   BranchInst *BI = cast<BranchInst>(TI);
763   ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
764   BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE);
765   Cases.push_back(ValueEqualityComparisonCase(
766       GetConstantInt(ICI->getOperand(1), DL), Succ));
767   return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ);
768 }
769 
770 /// Given a vector of bb/value pairs, remove any entries
771 /// in the list that match the specified block.
772 static void
773 EliminateBlockCases(BasicBlock *BB,
774                     std::vector<ValueEqualityComparisonCase> &Cases) {
775   llvm::erase_value(Cases, BB);
776 }
777 
778 /// Return true if there are any keys in C1 that exist in C2 as well.
779 static bool ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1,
780                           std::vector<ValueEqualityComparisonCase> &C2) {
781   std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2;
782 
783   // Make V1 be smaller than V2.
784   if (V1->size() > V2->size())
785     std::swap(V1, V2);
786 
787   if (V1->empty())
788     return false;
789   if (V1->size() == 1) {
790     // Just scan V2.
791     ConstantInt *TheVal = (*V1)[0].Value;
792     for (unsigned i = 0, e = V2->size(); i != e; ++i)
793       if (TheVal == (*V2)[i].Value)
794         return true;
795   }
796 
797   // Otherwise, just sort both lists and compare element by element.
798   array_pod_sort(V1->begin(), V1->end());
799   array_pod_sort(V2->begin(), V2->end());
800   unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size();
801   while (i1 != e1 && i2 != e2) {
802     if ((*V1)[i1].Value == (*V2)[i2].Value)
803       return true;
804     if ((*V1)[i1].Value < (*V2)[i2].Value)
805       ++i1;
806     else
807       ++i2;
808   }
809   return false;
810 }
811 
812 // Set branch weights on SwitchInst. This sets the metadata if there is at
813 // least one non-zero weight.
814 static void setBranchWeights(SwitchInst *SI, ArrayRef<uint32_t> Weights) {
815   // Check that there is at least one non-zero weight. Otherwise, pass
816   // nullptr to setMetadata which will erase the existing metadata.
817   MDNode *N = nullptr;
818   if (llvm::any_of(Weights, [](uint32_t W) { return W != 0; }))
819     N = MDBuilder(SI->getParent()->getContext()).createBranchWeights(Weights);
820   SI->setMetadata(LLVMContext::MD_prof, N);
821 }
822 
823 // Similar to the above, but for branch and select instructions that take
824 // exactly 2 weights.
825 static void setBranchWeights(Instruction *I, uint32_t TrueWeight,
826                              uint32_t FalseWeight) {
827   assert(isa<BranchInst>(I) || isa<SelectInst>(I));
828   // Check that there is at least one non-zero weight. Otherwise, pass
829   // nullptr to setMetadata which will erase the existing metadata.
830   MDNode *N = nullptr;
831   if (TrueWeight || FalseWeight)
832     N = MDBuilder(I->getParent()->getContext())
833             .createBranchWeights(TrueWeight, FalseWeight);
834   I->setMetadata(LLVMContext::MD_prof, N);
835 }
836 
837 /// If TI is known to be a terminator instruction and its block is known to
838 /// only have a single predecessor block, check to see if that predecessor is
839 /// also a value comparison with the same value, and if that comparison
840 /// determines the outcome of this comparison. If so, simplify TI. This does a
841 /// very limited form of jump threading.
842 bool SimplifyCFGOpt::SimplifyEqualityComparisonWithOnlyPredecessor(
843     Instruction *TI, BasicBlock *Pred, IRBuilder<> &Builder) {
844   Value *PredVal = isValueEqualityComparison(Pred->getTerminator());
845   if (!PredVal)
846     return false; // Not a value comparison in predecessor.
847 
848   Value *ThisVal = isValueEqualityComparison(TI);
849   assert(ThisVal && "This isn't a value comparison!!");
850   if (ThisVal != PredVal)
851     return false; // Different predicates.
852 
853   // TODO: Preserve branch weight metadata, similarly to how
854   // FoldValueComparisonIntoPredecessors preserves it.
855 
856   // Find out information about when control will move from Pred to TI's block.
857   std::vector<ValueEqualityComparisonCase> PredCases;
858   BasicBlock *PredDef =
859       GetValueEqualityComparisonCases(Pred->getTerminator(), PredCases);
860   EliminateBlockCases(PredDef, PredCases); // Remove default from cases.
861 
862   // Find information about how control leaves this block.
863   std::vector<ValueEqualityComparisonCase> ThisCases;
864   BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases);
865   EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases.
866 
867   // If TI's block is the default block from Pred's comparison, potentially
868   // simplify TI based on this knowledge.
869   if (PredDef == TI->getParent()) {
870     // If we are here, we know that the value is none of those cases listed in
871     // PredCases.  If there are any cases in ThisCases that are in PredCases, we
872     // can simplify TI.
873     if (!ValuesOverlap(PredCases, ThisCases))
874       return false;
875 
876     if (isa<BranchInst>(TI)) {
877       // Okay, one of the successors of this condbr is dead.  Convert it to a
878       // uncond br.
879       assert(ThisCases.size() == 1 && "Branch can only have one case!");
880       // Insert the new branch.
881       Instruction *NI = Builder.CreateBr(ThisDef);
882       (void)NI;
883 
884       // Remove PHI node entries for the dead edge.
885       ThisCases[0].Dest->removePredecessor(PredDef);
886 
887       LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
888                         << "Through successor TI: " << *TI << "Leaving: " << *NI
889                         << "\n");
890 
891       EraseTerminatorAndDCECond(TI);
892 
893       if (DTU)
894         DTU->applyUpdates(
895             {{DominatorTree::Delete, PredDef, ThisCases[0].Dest}});
896 
897       return true;
898     }
899 
900     SwitchInstProfUpdateWrapper SI = *cast<SwitchInst>(TI);
901     // Okay, TI has cases that are statically dead, prune them away.
902     SmallPtrSet<Constant *, 16> DeadCases;
903     for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
904       DeadCases.insert(PredCases[i].Value);
905 
906     LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
907                       << "Through successor TI: " << *TI);
908 
909     SmallDenseMap<BasicBlock *, int, 8> NumPerSuccessorCases;
910     for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) {
911       --i;
912       auto *Successor = i->getCaseSuccessor();
913       if (DTU)
914         ++NumPerSuccessorCases[Successor];
915       if (DeadCases.count(i->getCaseValue())) {
916         Successor->removePredecessor(PredDef);
917         SI.removeCase(i);
918         if (DTU)
919           --NumPerSuccessorCases[Successor];
920       }
921     }
922 
923     if (DTU) {
924       std::vector<DominatorTree::UpdateType> Updates;
925       for (const std::pair<BasicBlock *, int> &I : NumPerSuccessorCases)
926         if (I.second == 0)
927           Updates.push_back({DominatorTree::Delete, PredDef, I.first});
928       DTU->applyUpdates(Updates);
929     }
930 
931     LLVM_DEBUG(dbgs() << "Leaving: " << *TI << "\n");
932     return true;
933   }
934 
935   // Otherwise, TI's block must correspond to some matched value.  Find out
936   // which value (or set of values) this is.
937   ConstantInt *TIV = nullptr;
938   BasicBlock *TIBB = TI->getParent();
939   for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
940     if (PredCases[i].Dest == TIBB) {
941       if (TIV)
942         return false; // Cannot handle multiple values coming to this block.
943       TIV = PredCases[i].Value;
944     }
945   assert(TIV && "No edge from pred to succ?");
946 
947   // Okay, we found the one constant that our value can be if we get into TI's
948   // BB.  Find out which successor will unconditionally be branched to.
949   BasicBlock *TheRealDest = nullptr;
950   for (unsigned i = 0, e = ThisCases.size(); i != e; ++i)
951     if (ThisCases[i].Value == TIV) {
952       TheRealDest = ThisCases[i].Dest;
953       break;
954     }
955 
956   // If not handled by any explicit cases, it is handled by the default case.
957   if (!TheRealDest)
958     TheRealDest = ThisDef;
959 
960   SmallPtrSet<BasicBlock *, 2> RemovedSuccs;
961 
962   // Remove PHI node entries for dead edges.
963   BasicBlock *CheckEdge = TheRealDest;
964   for (BasicBlock *Succ : successors(TIBB))
965     if (Succ != CheckEdge) {
966       if (Succ != TheRealDest)
967         RemovedSuccs.insert(Succ);
968       Succ->removePredecessor(TIBB);
969     } else
970       CheckEdge = nullptr;
971 
972   // Insert the new branch.
973   Instruction *NI = Builder.CreateBr(TheRealDest);
974   (void)NI;
975 
976   LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
977                     << "Through successor TI: " << *TI << "Leaving: " << *NI
978                     << "\n");
979 
980   EraseTerminatorAndDCECond(TI);
981   if (DTU) {
982     SmallVector<DominatorTree::UpdateType, 2> Updates;
983     Updates.reserve(RemovedSuccs.size());
984     for (auto *RemovedSucc : RemovedSuccs)
985       Updates.push_back({DominatorTree::Delete, TIBB, RemovedSucc});
986     DTU->applyUpdates(Updates);
987   }
988   return true;
989 }
990 
991 namespace {
992 
993 /// This class implements a stable ordering of constant
994 /// integers that does not depend on their address.  This is important for
995 /// applications that sort ConstantInt's to ensure uniqueness.
996 struct ConstantIntOrdering {
997   bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const {
998     return LHS->getValue().ult(RHS->getValue());
999   }
1000 };
1001 
1002 } // end anonymous namespace
1003 
1004 static int ConstantIntSortPredicate(ConstantInt *const *P1,
1005                                     ConstantInt *const *P2) {
1006   const ConstantInt *LHS = *P1;
1007   const ConstantInt *RHS = *P2;
1008   if (LHS == RHS)
1009     return 0;
1010   return LHS->getValue().ult(RHS->getValue()) ? 1 : -1;
1011 }
1012 
1013 static inline bool HasBranchWeights(const Instruction *I) {
1014   MDNode *ProfMD = I->getMetadata(LLVMContext::MD_prof);
1015   if (ProfMD && ProfMD->getOperand(0))
1016     if (MDString *MDS = dyn_cast<MDString>(ProfMD->getOperand(0)))
1017       return MDS->getString().equals("branch_weights");
1018 
1019   return false;
1020 }
1021 
1022 /// Get Weights of a given terminator, the default weight is at the front
1023 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight
1024 /// metadata.
1025 static void GetBranchWeights(Instruction *TI,
1026                              SmallVectorImpl<uint64_t> &Weights) {
1027   MDNode *MD = TI->getMetadata(LLVMContext::MD_prof);
1028   assert(MD);
1029   for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) {
1030     ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i));
1031     Weights.push_back(CI->getValue().getZExtValue());
1032   }
1033 
1034   // If TI is a conditional eq, the default case is the false case,
1035   // and the corresponding branch-weight data is at index 2. We swap the
1036   // default weight to be the first entry.
1037   if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
1038     assert(Weights.size() == 2);
1039     ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
1040     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
1041       std::swap(Weights.front(), Weights.back());
1042   }
1043 }
1044 
1045 /// Keep halving the weights until all can fit in uint32_t.
1046 static void FitWeights(MutableArrayRef<uint64_t> Weights) {
1047   uint64_t Max = *std::max_element(Weights.begin(), Weights.end());
1048   if (Max > UINT_MAX) {
1049     unsigned Offset = 32 - countLeadingZeros(Max);
1050     for (uint64_t &I : Weights)
1051       I >>= Offset;
1052   }
1053 }
1054 
1055 static void CloneInstructionsIntoPredecessorBlockAndUpdateSSAUses(
1056     BasicBlock *BB, BasicBlock *PredBlock, ValueToValueMapTy &VMap) {
1057   Instruction *PTI = PredBlock->getTerminator();
1058 
1059   // If we have bonus instructions, clone them into the predecessor block.
1060   // Note that there may be multiple predecessor blocks, so we cannot move
1061   // bonus instructions to a predecessor block.
1062   for (Instruction &BonusInst : *BB) {
1063     if (isa<DbgInfoIntrinsic>(BonusInst) || BonusInst.isTerminator())
1064       continue;
1065 
1066     Instruction *NewBonusInst = BonusInst.clone();
1067 
1068     if (PTI->getDebugLoc() != NewBonusInst->getDebugLoc()) {
1069       // Unless the instruction has the same !dbg location as the original
1070       // branch, drop it. When we fold the bonus instructions we want to make
1071       // sure we reset their debug locations in order to avoid stepping on
1072       // dead code caused by folding dead branches.
1073       NewBonusInst->setDebugLoc(DebugLoc());
1074     }
1075 
1076     RemapInstruction(NewBonusInst, VMap,
1077                      RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
1078     VMap[&BonusInst] = NewBonusInst;
1079 
1080     // If we moved a load, we cannot any longer claim any knowledge about
1081     // its potential value. The previous information might have been valid
1082     // only given the branch precondition.
1083     // For an analogous reason, we must also drop all the metadata whose
1084     // semantics we don't understand. We *can* preserve !annotation, because
1085     // it is tied to the instruction itself, not the value or position.
1086     // Similarly strip attributes on call parameters that may cause UB in
1087     // location the call is moved to.
1088     NewBonusInst->dropUndefImplyingAttrsAndUnknownMetadata(
1089         LLVMContext::MD_annotation);
1090 
1091     PredBlock->getInstList().insert(PTI->getIterator(), NewBonusInst);
1092     NewBonusInst->takeName(&BonusInst);
1093     BonusInst.setName(NewBonusInst->getName() + ".old");
1094 
1095     // Update (liveout) uses of bonus instructions,
1096     // now that the bonus instruction has been cloned into predecessor.
1097     SSAUpdater SSAUpdate;
1098     SSAUpdate.Initialize(BonusInst.getType(),
1099                          (NewBonusInst->getName() + ".merge").str());
1100     SSAUpdate.AddAvailableValue(BB, &BonusInst);
1101     SSAUpdate.AddAvailableValue(PredBlock, NewBonusInst);
1102     for (Use &U : make_early_inc_range(BonusInst.uses())) {
1103       auto *UI = cast<Instruction>(U.getUser());
1104       if (UI->getParent() != PredBlock)
1105         SSAUpdate.RewriteUseAfterInsertions(U);
1106       else // Use is in the same block as, and comes before, NewBonusInst.
1107         SSAUpdate.RewriteUse(U);
1108     }
1109   }
1110 }
1111 
1112 bool SimplifyCFGOpt::PerformValueComparisonIntoPredecessorFolding(
1113     Instruction *TI, Value *&CV, Instruction *PTI, IRBuilder<> &Builder) {
1114   BasicBlock *BB = TI->getParent();
1115   BasicBlock *Pred = PTI->getParent();
1116 
1117   SmallVector<DominatorTree::UpdateType, 32> Updates;
1118 
1119   // Figure out which 'cases' to copy from SI to PSI.
1120   std::vector<ValueEqualityComparisonCase> BBCases;
1121   BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases);
1122 
1123   std::vector<ValueEqualityComparisonCase> PredCases;
1124   BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases);
1125 
1126   // Based on whether the default edge from PTI goes to BB or not, fill in
1127   // PredCases and PredDefault with the new switch cases we would like to
1128   // build.
1129   SmallMapVector<BasicBlock *, int, 8> NewSuccessors;
1130 
1131   // Update the branch weight metadata along the way
1132   SmallVector<uint64_t, 8> Weights;
1133   bool PredHasWeights = HasBranchWeights(PTI);
1134   bool SuccHasWeights = HasBranchWeights(TI);
1135 
1136   if (PredHasWeights) {
1137     GetBranchWeights(PTI, Weights);
1138     // branch-weight metadata is inconsistent here.
1139     if (Weights.size() != 1 + PredCases.size())
1140       PredHasWeights = SuccHasWeights = false;
1141   } else if (SuccHasWeights)
1142     // If there are no predecessor weights but there are successor weights,
1143     // populate Weights with 1, which will later be scaled to the sum of
1144     // successor's weights
1145     Weights.assign(1 + PredCases.size(), 1);
1146 
1147   SmallVector<uint64_t, 8> SuccWeights;
1148   if (SuccHasWeights) {
1149     GetBranchWeights(TI, SuccWeights);
1150     // branch-weight metadata is inconsistent here.
1151     if (SuccWeights.size() != 1 + BBCases.size())
1152       PredHasWeights = SuccHasWeights = false;
1153   } else if (PredHasWeights)
1154     SuccWeights.assign(1 + BBCases.size(), 1);
1155 
1156   if (PredDefault == BB) {
1157     // If this is the default destination from PTI, only the edges in TI
1158     // that don't occur in PTI, or that branch to BB will be activated.
1159     std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
1160     for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
1161       if (PredCases[i].Dest != BB)
1162         PTIHandled.insert(PredCases[i].Value);
1163       else {
1164         // The default destination is BB, we don't need explicit targets.
1165         std::swap(PredCases[i], PredCases.back());
1166 
1167         if (PredHasWeights || SuccHasWeights) {
1168           // Increase weight for the default case.
1169           Weights[0] += Weights[i + 1];
1170           std::swap(Weights[i + 1], Weights.back());
1171           Weights.pop_back();
1172         }
1173 
1174         PredCases.pop_back();
1175         --i;
1176         --e;
1177       }
1178 
1179     // Reconstruct the new switch statement we will be building.
1180     if (PredDefault != BBDefault) {
1181       PredDefault->removePredecessor(Pred);
1182       if (DTU && PredDefault != BB)
1183         Updates.push_back({DominatorTree::Delete, Pred, PredDefault});
1184       PredDefault = BBDefault;
1185       ++NewSuccessors[BBDefault];
1186     }
1187 
1188     unsigned CasesFromPred = Weights.size();
1189     uint64_t ValidTotalSuccWeight = 0;
1190     for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
1191       if (!PTIHandled.count(BBCases[i].Value) && BBCases[i].Dest != BBDefault) {
1192         PredCases.push_back(BBCases[i]);
1193         ++NewSuccessors[BBCases[i].Dest];
1194         if (SuccHasWeights || PredHasWeights) {
1195           // The default weight is at index 0, so weight for the ith case
1196           // should be at index i+1. Scale the cases from successor by
1197           // PredDefaultWeight (Weights[0]).
1198           Weights.push_back(Weights[0] * SuccWeights[i + 1]);
1199           ValidTotalSuccWeight += SuccWeights[i + 1];
1200         }
1201       }
1202 
1203     if (SuccHasWeights || PredHasWeights) {
1204       ValidTotalSuccWeight += SuccWeights[0];
1205       // Scale the cases from predecessor by ValidTotalSuccWeight.
1206       for (unsigned i = 1; i < CasesFromPred; ++i)
1207         Weights[i] *= ValidTotalSuccWeight;
1208       // Scale the default weight by SuccDefaultWeight (SuccWeights[0]).
1209       Weights[0] *= SuccWeights[0];
1210     }
1211   } else {
1212     // If this is not the default destination from PSI, only the edges
1213     // in SI that occur in PSI with a destination of BB will be
1214     // activated.
1215     std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
1216     std::map<ConstantInt *, uint64_t> WeightsForHandled;
1217     for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
1218       if (PredCases[i].Dest == BB) {
1219         PTIHandled.insert(PredCases[i].Value);
1220 
1221         if (PredHasWeights || SuccHasWeights) {
1222           WeightsForHandled[PredCases[i].Value] = Weights[i + 1];
1223           std::swap(Weights[i + 1], Weights.back());
1224           Weights.pop_back();
1225         }
1226 
1227         std::swap(PredCases[i], PredCases.back());
1228         PredCases.pop_back();
1229         --i;
1230         --e;
1231       }
1232 
1233     // Okay, now we know which constants were sent to BB from the
1234     // predecessor.  Figure out where they will all go now.
1235     for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
1236       if (PTIHandled.count(BBCases[i].Value)) {
1237         // If this is one we are capable of getting...
1238         if (PredHasWeights || SuccHasWeights)
1239           Weights.push_back(WeightsForHandled[BBCases[i].Value]);
1240         PredCases.push_back(BBCases[i]);
1241         ++NewSuccessors[BBCases[i].Dest];
1242         PTIHandled.erase(BBCases[i].Value); // This constant is taken care of
1243       }
1244 
1245     // If there are any constants vectored to BB that TI doesn't handle,
1246     // they must go to the default destination of TI.
1247     for (ConstantInt *I : PTIHandled) {
1248       if (PredHasWeights || SuccHasWeights)
1249         Weights.push_back(WeightsForHandled[I]);
1250       PredCases.push_back(ValueEqualityComparisonCase(I, BBDefault));
1251       ++NewSuccessors[BBDefault];
1252     }
1253   }
1254 
1255   // Okay, at this point, we know which new successor Pred will get.  Make
1256   // sure we update the number of entries in the PHI nodes for these
1257   // successors.
1258   SmallPtrSet<BasicBlock *, 2> SuccsOfPred;
1259   if (DTU) {
1260     SuccsOfPred = {succ_begin(Pred), succ_end(Pred)};
1261     Updates.reserve(Updates.size() + NewSuccessors.size());
1262   }
1263   for (const std::pair<BasicBlock *, int /*Num*/> &NewSuccessor :
1264        NewSuccessors) {
1265     for (auto I : seq(0, NewSuccessor.second)) {
1266       (void)I;
1267       AddPredecessorToBlock(NewSuccessor.first, Pred, BB);
1268     }
1269     if (DTU && !SuccsOfPred.contains(NewSuccessor.first))
1270       Updates.push_back({DominatorTree::Insert, Pred, NewSuccessor.first});
1271   }
1272 
1273   Builder.SetInsertPoint(PTI);
1274   // Convert pointer to int before we switch.
1275   if (CV->getType()->isPointerTy()) {
1276     CV =
1277         Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()), "magicptr");
1278   }
1279 
1280   // Now that the successors are updated, create the new Switch instruction.
1281   SwitchInst *NewSI = Builder.CreateSwitch(CV, PredDefault, PredCases.size());
1282   NewSI->setDebugLoc(PTI->getDebugLoc());
1283   for (ValueEqualityComparisonCase &V : PredCases)
1284     NewSI->addCase(V.Value, V.Dest);
1285 
1286   if (PredHasWeights || SuccHasWeights) {
1287     // Halve the weights if any of them cannot fit in an uint32_t
1288     FitWeights(Weights);
1289 
1290     SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
1291 
1292     setBranchWeights(NewSI, MDWeights);
1293   }
1294 
1295   EraseTerminatorAndDCECond(PTI);
1296 
1297   // Okay, last check.  If BB is still a successor of PSI, then we must
1298   // have an infinite loop case.  If so, add an infinitely looping block
1299   // to handle the case to preserve the behavior of the code.
1300   BasicBlock *InfLoopBlock = nullptr;
1301   for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i)
1302     if (NewSI->getSuccessor(i) == BB) {
1303       if (!InfLoopBlock) {
1304         // Insert it at the end of the function, because it's either code,
1305         // or it won't matter if it's hot. :)
1306         InfLoopBlock =
1307             BasicBlock::Create(BB->getContext(), "infloop", BB->getParent());
1308         BranchInst::Create(InfLoopBlock, InfLoopBlock);
1309         if (DTU)
1310           Updates.push_back(
1311               {DominatorTree::Insert, InfLoopBlock, InfLoopBlock});
1312       }
1313       NewSI->setSuccessor(i, InfLoopBlock);
1314     }
1315 
1316   if (DTU) {
1317     if (InfLoopBlock)
1318       Updates.push_back({DominatorTree::Insert, Pred, InfLoopBlock});
1319 
1320     Updates.push_back({DominatorTree::Delete, Pred, BB});
1321 
1322     DTU->applyUpdates(Updates);
1323   }
1324 
1325   ++NumFoldValueComparisonIntoPredecessors;
1326   return true;
1327 }
1328 
1329 /// The specified terminator is a value equality comparison instruction
1330 /// (either a switch or a branch on "X == c").
1331 /// See if any of the predecessors of the terminator block are value comparisons
1332 /// on the same value.  If so, and if safe to do so, fold them together.
1333 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(Instruction *TI,
1334                                                          IRBuilder<> &Builder) {
1335   BasicBlock *BB = TI->getParent();
1336   Value *CV = isValueEqualityComparison(TI); // CondVal
1337   assert(CV && "Not a comparison?");
1338 
1339   bool Changed = false;
1340 
1341   SmallSetVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB));
1342   while (!Preds.empty()) {
1343     BasicBlock *Pred = Preds.pop_back_val();
1344     Instruction *PTI = Pred->getTerminator();
1345 
1346     // Don't try to fold into itself.
1347     if (Pred == BB)
1348       continue;
1349 
1350     // See if the predecessor is a comparison with the same value.
1351     Value *PCV = isValueEqualityComparison(PTI); // PredCondVal
1352     if (PCV != CV)
1353       continue;
1354 
1355     SmallSetVector<BasicBlock *, 4> FailBlocks;
1356     if (!SafeToMergeTerminators(TI, PTI, &FailBlocks)) {
1357       for (auto *Succ : FailBlocks) {
1358         if (!SplitBlockPredecessors(Succ, TI->getParent(), ".fold.split", DTU))
1359           return false;
1360       }
1361     }
1362 
1363     PerformValueComparisonIntoPredecessorFolding(TI, CV, PTI, Builder);
1364     Changed = true;
1365   }
1366   return Changed;
1367 }
1368 
1369 // If we would need to insert a select that uses the value of this invoke
1370 // (comments in HoistThenElseCodeToIf explain why we would need to do this), we
1371 // can't hoist the invoke, as there is nowhere to put the select in this case.
1372 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2,
1373                                 Instruction *I1, Instruction *I2) {
1374   for (BasicBlock *Succ : successors(BB1)) {
1375     for (const PHINode &PN : Succ->phis()) {
1376       Value *BB1V = PN.getIncomingValueForBlock(BB1);
1377       Value *BB2V = PN.getIncomingValueForBlock(BB2);
1378       if (BB1V != BB2V && (BB1V == I1 || BB2V == I2)) {
1379         return false;
1380       }
1381     }
1382   }
1383   return true;
1384 }
1385 
1386 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I, bool PtrValueMayBeModified = false);
1387 
1388 /// Given a conditional branch that goes to BB1 and BB2, hoist any common code
1389 /// in the two blocks up into the branch block. The caller of this function
1390 /// guarantees that BI's block dominates BB1 and BB2. If EqTermsOnly is given,
1391 /// only perform hoisting in case both blocks only contain a terminator. In that
1392 /// case, only the original BI will be replaced and selects for PHIs are added.
1393 bool SimplifyCFGOpt::HoistThenElseCodeToIf(BranchInst *BI,
1394                                            const TargetTransformInfo &TTI,
1395                                            bool EqTermsOnly) {
1396   // This does very trivial matching, with limited scanning, to find identical
1397   // instructions in the two blocks.  In particular, we don't want to get into
1398   // O(M*N) situations here where M and N are the sizes of BB1 and BB2.  As
1399   // such, we currently just scan for obviously identical instructions in an
1400   // identical order.
1401   BasicBlock *BB1 = BI->getSuccessor(0); // The true destination.
1402   BasicBlock *BB2 = BI->getSuccessor(1); // The false destination
1403 
1404   // If either of the blocks has it's address taken, then we can't do this fold,
1405   // because the code we'd hoist would no longer run when we jump into the block
1406   // by it's address.
1407   if (BB1->hasAddressTaken() || BB2->hasAddressTaken())
1408     return false;
1409 
1410   BasicBlock::iterator BB1_Itr = BB1->begin();
1411   BasicBlock::iterator BB2_Itr = BB2->begin();
1412 
1413   Instruction *I1 = &*BB1_Itr++, *I2 = &*BB2_Itr++;
1414   // Skip debug info if it is not identical.
1415   DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1416   DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1417   if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1418     while (isa<DbgInfoIntrinsic>(I1))
1419       I1 = &*BB1_Itr++;
1420     while (isa<DbgInfoIntrinsic>(I2))
1421       I2 = &*BB2_Itr++;
1422   }
1423   // FIXME: Can we define a safety predicate for CallBr?
1424   if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) ||
1425       (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) ||
1426       isa<CallBrInst>(I1))
1427     return false;
1428 
1429   BasicBlock *BIParent = BI->getParent();
1430 
1431   bool Changed = false;
1432 
1433   auto _ = make_scope_exit([&]() {
1434     if (Changed)
1435       ++NumHoistCommonCode;
1436   });
1437 
1438   // Check if only hoisting terminators is allowed. This does not add new
1439   // instructions to the hoist location.
1440   if (EqTermsOnly) {
1441     // Skip any debug intrinsics, as they are free to hoist.
1442     auto *I1NonDbg = &*skipDebugIntrinsics(I1->getIterator());
1443     auto *I2NonDbg = &*skipDebugIntrinsics(I2->getIterator());
1444     if (!I1NonDbg->isIdenticalToWhenDefined(I2NonDbg))
1445       return false;
1446     if (!I1NonDbg->isTerminator())
1447       return false;
1448     // Now we know that we only need to hoist debug instrinsics and the
1449     // terminator. Let the loop below handle those 2 cases.
1450   }
1451 
1452   do {
1453     // If we are hoisting the terminator instruction, don't move one (making a
1454     // broken BB), instead clone it, and remove BI.
1455     if (I1->isTerminator())
1456       goto HoistTerminator;
1457 
1458     // If we're going to hoist a call, make sure that the two instructions we're
1459     // commoning/hoisting are both marked with musttail, or neither of them is
1460     // marked as such. Otherwise, we might end up in a situation where we hoist
1461     // from a block where the terminator is a `ret` to a block where the terminator
1462     // is a `br`, and `musttail` calls expect to be followed by a return.
1463     auto *C1 = dyn_cast<CallInst>(I1);
1464     auto *C2 = dyn_cast<CallInst>(I2);
1465     if (C1 && C2)
1466       if (C1->isMustTailCall() != C2->isMustTailCall())
1467         return Changed;
1468 
1469     if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2))
1470       return Changed;
1471 
1472     // If any of the two call sites has nomerge attribute, stop hoisting.
1473     if (const auto *CB1 = dyn_cast<CallBase>(I1))
1474       if (CB1->cannotMerge())
1475         return Changed;
1476     if (const auto *CB2 = dyn_cast<CallBase>(I2))
1477       if (CB2->cannotMerge())
1478         return Changed;
1479 
1480     if (isa<DbgInfoIntrinsic>(I1) || isa<DbgInfoIntrinsic>(I2)) {
1481       assert (isa<DbgInfoIntrinsic>(I1) && isa<DbgInfoIntrinsic>(I2));
1482       // The debug location is an integral part of a debug info intrinsic
1483       // and can't be separated from it or replaced.  Instead of attempting
1484       // to merge locations, simply hoist both copies of the intrinsic.
1485       BIParent->getInstList().splice(BI->getIterator(),
1486                                      BB1->getInstList(), I1);
1487       BIParent->getInstList().splice(BI->getIterator(),
1488                                      BB2->getInstList(), I2);
1489       Changed = true;
1490     } else {
1491       // For a normal instruction, we just move one to right before the branch,
1492       // then replace all uses of the other with the first.  Finally, we remove
1493       // the now redundant second instruction.
1494       BIParent->getInstList().splice(BI->getIterator(),
1495                                      BB1->getInstList(), I1);
1496       if (!I2->use_empty())
1497         I2->replaceAllUsesWith(I1);
1498       I1->andIRFlags(I2);
1499       unsigned KnownIDs[] = {LLVMContext::MD_tbaa,
1500                              LLVMContext::MD_range,
1501                              LLVMContext::MD_fpmath,
1502                              LLVMContext::MD_invariant_load,
1503                              LLVMContext::MD_nonnull,
1504                              LLVMContext::MD_invariant_group,
1505                              LLVMContext::MD_align,
1506                              LLVMContext::MD_dereferenceable,
1507                              LLVMContext::MD_dereferenceable_or_null,
1508                              LLVMContext::MD_mem_parallel_loop_access,
1509                              LLVMContext::MD_access_group,
1510                              LLVMContext::MD_preserve_access_index};
1511       combineMetadata(I1, I2, KnownIDs, true);
1512 
1513       // I1 and I2 are being combined into a single instruction.  Its debug
1514       // location is the merged locations of the original instructions.
1515       I1->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc());
1516 
1517       I2->eraseFromParent();
1518       Changed = true;
1519     }
1520     ++NumHoistCommonInstrs;
1521 
1522     I1 = &*BB1_Itr++;
1523     I2 = &*BB2_Itr++;
1524     // Skip debug info if it is not identical.
1525     DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1526     DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1527     if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1528       while (isa<DbgInfoIntrinsic>(I1))
1529         I1 = &*BB1_Itr++;
1530       while (isa<DbgInfoIntrinsic>(I2))
1531         I2 = &*BB2_Itr++;
1532     }
1533   } while (I1->isIdenticalToWhenDefined(I2));
1534 
1535   return true;
1536 
1537 HoistTerminator:
1538   // It may not be possible to hoist an invoke.
1539   // FIXME: Can we define a safety predicate for CallBr?
1540   if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))
1541     return Changed;
1542 
1543   // TODO: callbr hoisting currently disabled pending further study.
1544   if (isa<CallBrInst>(I1))
1545     return Changed;
1546 
1547   for (BasicBlock *Succ : successors(BB1)) {
1548     for (PHINode &PN : Succ->phis()) {
1549       Value *BB1V = PN.getIncomingValueForBlock(BB1);
1550       Value *BB2V = PN.getIncomingValueForBlock(BB2);
1551       if (BB1V == BB2V)
1552         continue;
1553 
1554       // Check for passingValueIsAlwaysUndefined here because we would rather
1555       // eliminate undefined control flow then converting it to a select.
1556       if (passingValueIsAlwaysUndefined(BB1V, &PN) ||
1557           passingValueIsAlwaysUndefined(BB2V, &PN))
1558         return Changed;
1559 
1560       if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V))
1561         return Changed;
1562       if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V))
1563         return Changed;
1564     }
1565   }
1566 
1567   // Okay, it is safe to hoist the terminator.
1568   Instruction *NT = I1->clone();
1569   BIParent->getInstList().insert(BI->getIterator(), NT);
1570   if (!NT->getType()->isVoidTy()) {
1571     I1->replaceAllUsesWith(NT);
1572     I2->replaceAllUsesWith(NT);
1573     NT->takeName(I1);
1574   }
1575   Changed = true;
1576   ++NumHoistCommonInstrs;
1577 
1578   // Ensure terminator gets a debug location, even an unknown one, in case
1579   // it involves inlinable calls.
1580   NT->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc());
1581 
1582   // PHIs created below will adopt NT's merged DebugLoc.
1583   IRBuilder<NoFolder> Builder(NT);
1584 
1585   // Hoisting one of the terminators from our successor is a great thing.
1586   // Unfortunately, the successors of the if/else blocks may have PHI nodes in
1587   // them.  If they do, all PHI entries for BB1/BB2 must agree for all PHI
1588   // nodes, so we insert select instruction to compute the final result.
1589   std::map<std::pair<Value *, Value *>, SelectInst *> InsertedSelects;
1590   for (BasicBlock *Succ : successors(BB1)) {
1591     for (PHINode &PN : Succ->phis()) {
1592       Value *BB1V = PN.getIncomingValueForBlock(BB1);
1593       Value *BB2V = PN.getIncomingValueForBlock(BB2);
1594       if (BB1V == BB2V)
1595         continue;
1596 
1597       // These values do not agree.  Insert a select instruction before NT
1598       // that determines the right value.
1599       SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)];
1600       if (!SI) {
1601         // Propagate fast-math-flags from phi node to its replacement select.
1602         IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
1603         if (isa<FPMathOperator>(PN))
1604           Builder.setFastMathFlags(PN.getFastMathFlags());
1605 
1606         SI = cast<SelectInst>(
1607             Builder.CreateSelect(BI->getCondition(), BB1V, BB2V,
1608                                  BB1V->getName() + "." + BB2V->getName(), BI));
1609       }
1610 
1611       // Make the PHI node use the select for all incoming values for BB1/BB2
1612       for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
1613         if (PN.getIncomingBlock(i) == BB1 || PN.getIncomingBlock(i) == BB2)
1614           PN.setIncomingValue(i, SI);
1615     }
1616   }
1617 
1618   SmallVector<DominatorTree::UpdateType, 4> Updates;
1619 
1620   // Update any PHI nodes in our new successors.
1621   for (BasicBlock *Succ : successors(BB1)) {
1622     AddPredecessorToBlock(Succ, BIParent, BB1);
1623     if (DTU)
1624       Updates.push_back({DominatorTree::Insert, BIParent, Succ});
1625   }
1626 
1627   if (DTU)
1628     for (BasicBlock *Succ : successors(BI))
1629       Updates.push_back({DominatorTree::Delete, BIParent, Succ});
1630 
1631   EraseTerminatorAndDCECond(BI);
1632   if (DTU)
1633     DTU->applyUpdates(Updates);
1634   return Changed;
1635 }
1636 
1637 // Check lifetime markers.
1638 static bool isLifeTimeMarker(const Instruction *I) {
1639   if (auto II = dyn_cast<IntrinsicInst>(I)) {
1640     switch (II->getIntrinsicID()) {
1641     default:
1642       break;
1643     case Intrinsic::lifetime_start:
1644     case Intrinsic::lifetime_end:
1645       return true;
1646     }
1647   }
1648   return false;
1649 }
1650 
1651 // TODO: Refine this. This should avoid cases like turning constant memcpy sizes
1652 // into variables.
1653 static bool replacingOperandWithVariableIsCheap(const Instruction *I,
1654                                                 int OpIdx) {
1655   return !isa<IntrinsicInst>(I);
1656 }
1657 
1658 // All instructions in Insts belong to different blocks that all unconditionally
1659 // branch to a common successor. Analyze each instruction and return true if it
1660 // would be possible to sink them into their successor, creating one common
1661 // instruction instead. For every value that would be required to be provided by
1662 // PHI node (because an operand varies in each input block), add to PHIOperands.
1663 static bool canSinkInstructions(
1664     ArrayRef<Instruction *> Insts,
1665     DenseMap<Instruction *, SmallVector<Value *, 4>> &PHIOperands) {
1666   // Prune out obviously bad instructions to move. Each instruction must have
1667   // exactly zero or one use, and we check later that use is by a single, common
1668   // PHI instruction in the successor.
1669   bool HasUse = !Insts.front()->user_empty();
1670   for (auto *I : Insts) {
1671     // These instructions may change or break semantics if moved.
1672     if (isa<PHINode>(I) || I->isEHPad() || isa<AllocaInst>(I) ||
1673         I->getType()->isTokenTy())
1674       return false;
1675 
1676     // Do not try to sink an instruction in an infinite loop - it can cause
1677     // this algorithm to infinite loop.
1678     if (I->getParent()->getSingleSuccessor() == I->getParent())
1679       return false;
1680 
1681     // Conservatively return false if I is an inline-asm instruction. Sinking
1682     // and merging inline-asm instructions can potentially create arguments
1683     // that cannot satisfy the inline-asm constraints.
1684     // If the instruction has nomerge attribute, return false.
1685     if (const auto *C = dyn_cast<CallBase>(I))
1686       if (C->isInlineAsm() || C->cannotMerge())
1687         return false;
1688 
1689     // Each instruction must have zero or one use.
1690     if (HasUse && !I->hasOneUse())
1691       return false;
1692     if (!HasUse && !I->user_empty())
1693       return false;
1694   }
1695 
1696   const Instruction *I0 = Insts.front();
1697   for (auto *I : Insts)
1698     if (!I->isSameOperationAs(I0))
1699       return false;
1700 
1701   // All instructions in Insts are known to be the same opcode. If they have a
1702   // use, check that the only user is a PHI or in the same block as the
1703   // instruction, because if a user is in the same block as an instruction we're
1704   // contemplating sinking, it must already be determined to be sinkable.
1705   if (HasUse) {
1706     auto *PNUse = dyn_cast<PHINode>(*I0->user_begin());
1707     auto *Succ = I0->getParent()->getTerminator()->getSuccessor(0);
1708     if (!all_of(Insts, [&PNUse,&Succ](const Instruction *I) -> bool {
1709           auto *U = cast<Instruction>(*I->user_begin());
1710           return (PNUse &&
1711                   PNUse->getParent() == Succ &&
1712                   PNUse->getIncomingValueForBlock(I->getParent()) == I) ||
1713                  U->getParent() == I->getParent();
1714         }))
1715       return false;
1716   }
1717 
1718   // Because SROA can't handle speculating stores of selects, try not to sink
1719   // loads, stores or lifetime markers of allocas when we'd have to create a
1720   // PHI for the address operand. Also, because it is likely that loads or
1721   // stores of allocas will disappear when Mem2Reg/SROA is run, don't sink
1722   // them.
1723   // This can cause code churn which can have unintended consequences down
1724   // the line - see https://llvm.org/bugs/show_bug.cgi?id=30244.
1725   // FIXME: This is a workaround for a deficiency in SROA - see
1726   // https://llvm.org/bugs/show_bug.cgi?id=30188
1727   if (isa<StoreInst>(I0) && any_of(Insts, [](const Instruction *I) {
1728         return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts());
1729       }))
1730     return false;
1731   if (isa<LoadInst>(I0) && any_of(Insts, [](const Instruction *I) {
1732         return isa<AllocaInst>(I->getOperand(0)->stripPointerCasts());
1733       }))
1734     return false;
1735   if (isLifeTimeMarker(I0) && any_of(Insts, [](const Instruction *I) {
1736         return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts());
1737       }))
1738     return false;
1739 
1740   // For calls to be sinkable, they must all be indirect, or have same callee.
1741   // I.e. if we have two direct calls to different callees, we don't want to
1742   // turn that into an indirect call. Likewise, if we have an indirect call,
1743   // and a direct call, we don't actually want to have a single indirect call.
1744   if (isa<CallBase>(I0)) {
1745     auto IsIndirectCall = [](const Instruction *I) {
1746       return cast<CallBase>(I)->isIndirectCall();
1747     };
1748     bool HaveIndirectCalls = any_of(Insts, IsIndirectCall);
1749     bool AllCallsAreIndirect = all_of(Insts, IsIndirectCall);
1750     if (HaveIndirectCalls) {
1751       if (!AllCallsAreIndirect)
1752         return false;
1753     } else {
1754       // All callees must be identical.
1755       Value *Callee = nullptr;
1756       for (const Instruction *I : Insts) {
1757         Value *CurrCallee = cast<CallBase>(I)->getCalledOperand();
1758         if (!Callee)
1759           Callee = CurrCallee;
1760         else if (Callee != CurrCallee)
1761           return false;
1762       }
1763     }
1764   }
1765 
1766   for (unsigned OI = 0, OE = I0->getNumOperands(); OI != OE; ++OI) {
1767     Value *Op = I0->getOperand(OI);
1768     if (Op->getType()->isTokenTy())
1769       // Don't touch any operand of token type.
1770       return false;
1771 
1772     auto SameAsI0 = [&I0, OI](const Instruction *I) {
1773       assert(I->getNumOperands() == I0->getNumOperands());
1774       return I->getOperand(OI) == I0->getOperand(OI);
1775     };
1776     if (!all_of(Insts, SameAsI0)) {
1777       if ((isa<Constant>(Op) && !replacingOperandWithVariableIsCheap(I0, OI)) ||
1778           !canReplaceOperandWithVariable(I0, OI))
1779         // We can't create a PHI from this GEP.
1780         return false;
1781       for (auto *I : Insts)
1782         PHIOperands[I].push_back(I->getOperand(OI));
1783     }
1784   }
1785   return true;
1786 }
1787 
1788 // Assuming canSinkInstructions(Blocks) has returned true, sink the last
1789 // instruction of every block in Blocks to their common successor, commoning
1790 // into one instruction.
1791 static bool sinkLastInstruction(ArrayRef<BasicBlock*> Blocks) {
1792   auto *BBEnd = Blocks[0]->getTerminator()->getSuccessor(0);
1793 
1794   // canSinkInstructions returning true guarantees that every block has at
1795   // least one non-terminator instruction.
1796   SmallVector<Instruction*,4> Insts;
1797   for (auto *BB : Blocks) {
1798     Instruction *I = BB->getTerminator();
1799     do {
1800       I = I->getPrevNode();
1801     } while (isa<DbgInfoIntrinsic>(I) && I != &BB->front());
1802     if (!isa<DbgInfoIntrinsic>(I))
1803       Insts.push_back(I);
1804   }
1805 
1806   // The only checking we need to do now is that all users of all instructions
1807   // are the same PHI node. canSinkInstructions should have checked this but
1808   // it is slightly over-aggressive - it gets confused by commutative
1809   // instructions so double-check it here.
1810   Instruction *I0 = Insts.front();
1811   if (!I0->user_empty()) {
1812     auto *PNUse = dyn_cast<PHINode>(*I0->user_begin());
1813     if (!all_of(Insts, [&PNUse](const Instruction *I) -> bool {
1814           auto *U = cast<Instruction>(*I->user_begin());
1815           return U == PNUse;
1816         }))
1817       return false;
1818   }
1819 
1820   // We don't need to do any more checking here; canSinkInstructions should
1821   // have done it all for us.
1822   SmallVector<Value*, 4> NewOperands;
1823   for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) {
1824     // This check is different to that in canSinkInstructions. There, we
1825     // cared about the global view once simplifycfg (and instcombine) have
1826     // completed - it takes into account PHIs that become trivially
1827     // simplifiable.  However here we need a more local view; if an operand
1828     // differs we create a PHI and rely on instcombine to clean up the very
1829     // small mess we may make.
1830     bool NeedPHI = any_of(Insts, [&I0, O](const Instruction *I) {
1831       return I->getOperand(O) != I0->getOperand(O);
1832     });
1833     if (!NeedPHI) {
1834       NewOperands.push_back(I0->getOperand(O));
1835       continue;
1836     }
1837 
1838     // Create a new PHI in the successor block and populate it.
1839     auto *Op = I0->getOperand(O);
1840     assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!");
1841     auto *PN = PHINode::Create(Op->getType(), Insts.size(),
1842                                Op->getName() + ".sink", &BBEnd->front());
1843     for (auto *I : Insts)
1844       PN->addIncoming(I->getOperand(O), I->getParent());
1845     NewOperands.push_back(PN);
1846   }
1847 
1848   // Arbitrarily use I0 as the new "common" instruction; remap its operands
1849   // and move it to the start of the successor block.
1850   for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O)
1851     I0->getOperandUse(O).set(NewOperands[O]);
1852   I0->moveBefore(&*BBEnd->getFirstInsertionPt());
1853 
1854   // Update metadata and IR flags, and merge debug locations.
1855   for (auto *I : Insts)
1856     if (I != I0) {
1857       // The debug location for the "common" instruction is the merged locations
1858       // of all the commoned instructions.  We start with the original location
1859       // of the "common" instruction and iteratively merge each location in the
1860       // loop below.
1861       // This is an N-way merge, which will be inefficient if I0 is a CallInst.
1862       // However, as N-way merge for CallInst is rare, so we use simplified API
1863       // instead of using complex API for N-way merge.
1864       I0->applyMergedLocation(I0->getDebugLoc(), I->getDebugLoc());
1865       combineMetadataForCSE(I0, I, true);
1866       I0->andIRFlags(I);
1867     }
1868 
1869   if (!I0->user_empty()) {
1870     // canSinkLastInstruction checked that all instructions were used by
1871     // one and only one PHI node. Find that now, RAUW it to our common
1872     // instruction and nuke it.
1873     auto *PN = cast<PHINode>(*I0->user_begin());
1874     PN->replaceAllUsesWith(I0);
1875     PN->eraseFromParent();
1876   }
1877 
1878   // Finally nuke all instructions apart from the common instruction.
1879   for (auto *I : Insts)
1880     if (I != I0)
1881       I->eraseFromParent();
1882 
1883   return true;
1884 }
1885 
1886 namespace {
1887 
1888   // LockstepReverseIterator - Iterates through instructions
1889   // in a set of blocks in reverse order from the first non-terminator.
1890   // For example (assume all blocks have size n):
1891   //   LockstepReverseIterator I([B1, B2, B3]);
1892   //   *I-- = [B1[n], B2[n], B3[n]];
1893   //   *I-- = [B1[n-1], B2[n-1], B3[n-1]];
1894   //   *I-- = [B1[n-2], B2[n-2], B3[n-2]];
1895   //   ...
1896   class LockstepReverseIterator {
1897     ArrayRef<BasicBlock*> Blocks;
1898     SmallVector<Instruction*,4> Insts;
1899     bool Fail;
1900 
1901   public:
1902     LockstepReverseIterator(ArrayRef<BasicBlock*> Blocks) : Blocks(Blocks) {
1903       reset();
1904     }
1905 
1906     void reset() {
1907       Fail = false;
1908       Insts.clear();
1909       for (auto *BB : Blocks) {
1910         Instruction *Inst = BB->getTerminator();
1911         for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
1912           Inst = Inst->getPrevNode();
1913         if (!Inst) {
1914           // Block wasn't big enough.
1915           Fail = true;
1916           return;
1917         }
1918         Insts.push_back(Inst);
1919       }
1920     }
1921 
1922     bool isValid() const {
1923       return !Fail;
1924     }
1925 
1926     void operator--() {
1927       if (Fail)
1928         return;
1929       for (auto *&Inst : Insts) {
1930         for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
1931           Inst = Inst->getPrevNode();
1932         // Already at beginning of block.
1933         if (!Inst) {
1934           Fail = true;
1935           return;
1936         }
1937       }
1938     }
1939 
1940     void operator++() {
1941       if (Fail)
1942         return;
1943       for (auto *&Inst : Insts) {
1944         for (Inst = Inst->getNextNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
1945           Inst = Inst->getNextNode();
1946         // Already at end of block.
1947         if (!Inst) {
1948           Fail = true;
1949           return;
1950         }
1951       }
1952     }
1953 
1954     ArrayRef<Instruction*> operator * () const {
1955       return Insts;
1956     }
1957   };
1958 
1959 } // end anonymous namespace
1960 
1961 /// Check whether BB's predecessors end with unconditional branches. If it is
1962 /// true, sink any common code from the predecessors to BB.
1963 static bool SinkCommonCodeFromPredecessors(BasicBlock *BB,
1964                                            DomTreeUpdater *DTU) {
1965   // We support two situations:
1966   //   (1) all incoming arcs are unconditional
1967   //   (2) there are non-unconditional incoming arcs
1968   //
1969   // (2) is very common in switch defaults and
1970   // else-if patterns;
1971   //
1972   //   if (a) f(1);
1973   //   else if (b) f(2);
1974   //
1975   // produces:
1976   //
1977   //       [if]
1978   //      /    \
1979   //    [f(1)] [if]
1980   //      |     | \
1981   //      |     |  |
1982   //      |  [f(2)]|
1983   //       \    | /
1984   //        [ end ]
1985   //
1986   // [end] has two unconditional predecessor arcs and one conditional. The
1987   // conditional refers to the implicit empty 'else' arc. This conditional
1988   // arc can also be caused by an empty default block in a switch.
1989   //
1990   // In this case, we attempt to sink code from all *unconditional* arcs.
1991   // If we can sink instructions from these arcs (determined during the scan
1992   // phase below) we insert a common successor for all unconditional arcs and
1993   // connect that to [end], to enable sinking:
1994   //
1995   //       [if]
1996   //      /    \
1997   //    [x(1)] [if]
1998   //      |     | \
1999   //      |     |  \
2000   //      |  [x(2)] |
2001   //       \   /    |
2002   //   [sink.split] |
2003   //         \     /
2004   //         [ end ]
2005   //
2006   SmallVector<BasicBlock*,4> UnconditionalPreds;
2007   bool HaveNonUnconditionalPredecessors = false;
2008   for (auto *PredBB : predecessors(BB)) {
2009     auto *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator());
2010     if (PredBr && PredBr->isUnconditional())
2011       UnconditionalPreds.push_back(PredBB);
2012     else
2013       HaveNonUnconditionalPredecessors = true;
2014   }
2015   if (UnconditionalPreds.size() < 2)
2016     return false;
2017 
2018   // We take a two-step approach to tail sinking. First we scan from the end of
2019   // each block upwards in lockstep. If the n'th instruction from the end of each
2020   // block can be sunk, those instructions are added to ValuesToSink and we
2021   // carry on. If we can sink an instruction but need to PHI-merge some operands
2022   // (because they're not identical in each instruction) we add these to
2023   // PHIOperands.
2024   int ScanIdx = 0;
2025   SmallPtrSet<Value*,4> InstructionsToSink;
2026   DenseMap<Instruction*, SmallVector<Value*,4>> PHIOperands;
2027   LockstepReverseIterator LRI(UnconditionalPreds);
2028   while (LRI.isValid() &&
2029          canSinkInstructions(*LRI, PHIOperands)) {
2030     LLVM_DEBUG(dbgs() << "SINK: instruction can be sunk: " << *(*LRI)[0]
2031                       << "\n");
2032     InstructionsToSink.insert((*LRI).begin(), (*LRI).end());
2033     ++ScanIdx;
2034     --LRI;
2035   }
2036 
2037   // If no instructions can be sunk, early-return.
2038   if (ScanIdx == 0)
2039     return false;
2040 
2041   // Okay, we *could* sink last ScanIdx instructions. But how many can we
2042   // actually sink before encountering instruction that is unprofitable to sink?
2043   auto ProfitableToSinkInstruction = [&](LockstepReverseIterator &LRI) {
2044     unsigned NumPHIdValues = 0;
2045     for (auto *I : *LRI)
2046       for (auto *V : PHIOperands[I]) {
2047         if (InstructionsToSink.count(V) == 0)
2048           ++NumPHIdValues;
2049         // FIXME: this check is overly optimistic. We may end up not sinking
2050         // said instruction, due to the very same profitability check.
2051         // See @creating_too_many_phis in sink-common-code.ll.
2052       }
2053     LLVM_DEBUG(dbgs() << "SINK: #phid values: " << NumPHIdValues << "\n");
2054     unsigned NumPHIInsts = NumPHIdValues / UnconditionalPreds.size();
2055     if ((NumPHIdValues % UnconditionalPreds.size()) != 0)
2056         NumPHIInsts++;
2057 
2058     return NumPHIInsts <= 1;
2059   };
2060 
2061   // We've determined that we are going to sink last ScanIdx instructions,
2062   // and recorded them in InstructionsToSink. Now, some instructions may be
2063   // unprofitable to sink. But that determination depends on the instructions
2064   // that we are going to sink.
2065 
2066   // First, forward scan: find the first instruction unprofitable to sink,
2067   // recording all the ones that are profitable to sink.
2068   // FIXME: would it be better, after we detect that not all are profitable.
2069   // to either record the profitable ones, or erase the unprofitable ones?
2070   // Maybe we need to choose (at runtime) the one that will touch least instrs?
2071   LRI.reset();
2072   int Idx = 0;
2073   SmallPtrSet<Value *, 4> InstructionsProfitableToSink;
2074   while (Idx < ScanIdx) {
2075     if (!ProfitableToSinkInstruction(LRI)) {
2076       // Too many PHIs would be created.
2077       LLVM_DEBUG(
2078           dbgs() << "SINK: stopping here, too many PHIs would be created!\n");
2079       break;
2080     }
2081     InstructionsProfitableToSink.insert((*LRI).begin(), (*LRI).end());
2082     --LRI;
2083     ++Idx;
2084   }
2085 
2086   // If no instructions can be sunk, early-return.
2087   if (Idx == 0)
2088     return false;
2089 
2090   // Did we determine that (only) some instructions are unprofitable to sink?
2091   if (Idx < ScanIdx) {
2092     // Okay, some instructions are unprofitable.
2093     ScanIdx = Idx;
2094     InstructionsToSink = InstructionsProfitableToSink;
2095 
2096     // But, that may make other instructions unprofitable, too.
2097     // So, do a backward scan, do any earlier instructions become unprofitable?
2098     assert(!ProfitableToSinkInstruction(LRI) &&
2099            "We already know that the last instruction is unprofitable to sink");
2100     ++LRI;
2101     --Idx;
2102     while (Idx >= 0) {
2103       // If we detect that an instruction becomes unprofitable to sink,
2104       // all earlier instructions won't be sunk either,
2105       // so preemptively keep InstructionsProfitableToSink in sync.
2106       // FIXME: is this the most performant approach?
2107       for (auto *I : *LRI)
2108         InstructionsProfitableToSink.erase(I);
2109       if (!ProfitableToSinkInstruction(LRI)) {
2110         // Everything starting with this instruction won't be sunk.
2111         ScanIdx = Idx;
2112         InstructionsToSink = InstructionsProfitableToSink;
2113       }
2114       ++LRI;
2115       --Idx;
2116     }
2117   }
2118 
2119   // If no instructions can be sunk, early-return.
2120   if (ScanIdx == 0)
2121     return false;
2122 
2123   bool Changed = false;
2124 
2125   if (HaveNonUnconditionalPredecessors) {
2126     // It is always legal to sink common instructions from unconditional
2127     // predecessors. However, if not all predecessors are unconditional,
2128     // this transformation might be pessimizing. So as a rule of thumb,
2129     // don't do it unless we'd sink at least one non-speculatable instruction.
2130     // See https://bugs.llvm.org/show_bug.cgi?id=30244
2131     LRI.reset();
2132     int Idx = 0;
2133     bool Profitable = false;
2134     while (Idx < ScanIdx) {
2135       if (!isSafeToSpeculativelyExecute((*LRI)[0])) {
2136         Profitable = true;
2137         break;
2138       }
2139       --LRI;
2140       ++Idx;
2141     }
2142     if (!Profitable)
2143       return false;
2144 
2145     LLVM_DEBUG(dbgs() << "SINK: Splitting edge\n");
2146     // We have a conditional edge and we're going to sink some instructions.
2147     // Insert a new block postdominating all blocks we're going to sink from.
2148     if (!SplitBlockPredecessors(BB, UnconditionalPreds, ".sink.split", DTU))
2149       // Edges couldn't be split.
2150       return false;
2151     Changed = true;
2152   }
2153 
2154   // Now that we've analyzed all potential sinking candidates, perform the
2155   // actual sink. We iteratively sink the last non-terminator of the source
2156   // blocks into their common successor unless doing so would require too
2157   // many PHI instructions to be generated (currently only one PHI is allowed
2158   // per sunk instruction).
2159   //
2160   // We can use InstructionsToSink to discount values needing PHI-merging that will
2161   // actually be sunk in a later iteration. This allows us to be more
2162   // aggressive in what we sink. This does allow a false positive where we
2163   // sink presuming a later value will also be sunk, but stop half way through
2164   // and never actually sink it which means we produce more PHIs than intended.
2165   // This is unlikely in practice though.
2166   int SinkIdx = 0;
2167   for (; SinkIdx != ScanIdx; ++SinkIdx) {
2168     LLVM_DEBUG(dbgs() << "SINK: Sink: "
2169                       << *UnconditionalPreds[0]->getTerminator()->getPrevNode()
2170                       << "\n");
2171 
2172     // Because we've sunk every instruction in turn, the current instruction to
2173     // sink is always at index 0.
2174     LRI.reset();
2175 
2176     if (!sinkLastInstruction(UnconditionalPreds)) {
2177       LLVM_DEBUG(
2178           dbgs()
2179           << "SINK: stopping here, failed to actually sink instruction!\n");
2180       break;
2181     }
2182 
2183     NumSinkCommonInstrs++;
2184     Changed = true;
2185   }
2186   if (SinkIdx != 0)
2187     ++NumSinkCommonCode;
2188   return Changed;
2189 }
2190 
2191 /// Determine if we can hoist sink a sole store instruction out of a
2192 /// conditional block.
2193 ///
2194 /// We are looking for code like the following:
2195 ///   BrBB:
2196 ///     store i32 %add, i32* %arrayidx2
2197 ///     ... // No other stores or function calls (we could be calling a memory
2198 ///     ... // function).
2199 ///     %cmp = icmp ult %x, %y
2200 ///     br i1 %cmp, label %EndBB, label %ThenBB
2201 ///   ThenBB:
2202 ///     store i32 %add5, i32* %arrayidx2
2203 ///     br label EndBB
2204 ///   EndBB:
2205 ///     ...
2206 ///   We are going to transform this into:
2207 ///   BrBB:
2208 ///     store i32 %add, i32* %arrayidx2
2209 ///     ... //
2210 ///     %cmp = icmp ult %x, %y
2211 ///     %add.add5 = select i1 %cmp, i32 %add, %add5
2212 ///     store i32 %add.add5, i32* %arrayidx2
2213 ///     ...
2214 ///
2215 /// \return The pointer to the value of the previous store if the store can be
2216 ///         hoisted into the predecessor block. 0 otherwise.
2217 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB,
2218                                      BasicBlock *StoreBB, BasicBlock *EndBB) {
2219   StoreInst *StoreToHoist = dyn_cast<StoreInst>(I);
2220   if (!StoreToHoist)
2221     return nullptr;
2222 
2223   // Volatile or atomic.
2224   if (!StoreToHoist->isSimple())
2225     return nullptr;
2226 
2227   Value *StorePtr = StoreToHoist->getPointerOperand();
2228   Type *StoreTy = StoreToHoist->getValueOperand()->getType();
2229 
2230   // Look for a store to the same pointer in BrBB.
2231   unsigned MaxNumInstToLookAt = 9;
2232   // Skip pseudo probe intrinsic calls which are not really killing any memory
2233   // accesses.
2234   for (Instruction &CurI : reverse(BrBB->instructionsWithoutDebug(true))) {
2235     if (!MaxNumInstToLookAt)
2236       break;
2237     --MaxNumInstToLookAt;
2238 
2239     // Could be calling an instruction that affects memory like free().
2240     if (CurI.mayWriteToMemory() && !isa<StoreInst>(CurI))
2241       return nullptr;
2242 
2243     if (auto *SI = dyn_cast<StoreInst>(&CurI)) {
2244       // Found the previous store to same location and type. Make sure it is
2245       // simple, to avoid introducing a spurious non-atomic write after an
2246       // atomic write.
2247       if (SI->getPointerOperand() == StorePtr &&
2248           SI->getValueOperand()->getType() == StoreTy && SI->isSimple())
2249         // Found the previous store, return its value operand.
2250         return SI->getValueOperand();
2251       return nullptr; // Unknown store.
2252     }
2253   }
2254 
2255   return nullptr;
2256 }
2257 
2258 /// Estimate the cost of the insertion(s) and check that the PHI nodes can be
2259 /// converted to selects.
2260 static bool validateAndCostRequiredSelects(BasicBlock *BB, BasicBlock *ThenBB,
2261                                            BasicBlock *EndBB,
2262                                            unsigned &SpeculatedInstructions,
2263                                            InstructionCost &Cost,
2264                                            const TargetTransformInfo &TTI) {
2265   TargetTransformInfo::TargetCostKind CostKind =
2266     BB->getParent()->hasMinSize()
2267     ? TargetTransformInfo::TCK_CodeSize
2268     : TargetTransformInfo::TCK_SizeAndLatency;
2269 
2270   bool HaveRewritablePHIs = false;
2271   for (PHINode &PN : EndBB->phis()) {
2272     Value *OrigV = PN.getIncomingValueForBlock(BB);
2273     Value *ThenV = PN.getIncomingValueForBlock(ThenBB);
2274 
2275     // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf.
2276     // Skip PHIs which are trivial.
2277     if (ThenV == OrigV)
2278       continue;
2279 
2280     Cost += TTI.getCmpSelInstrCost(Instruction::Select, PN.getType(), nullptr,
2281                                    CmpInst::BAD_ICMP_PREDICATE, CostKind);
2282 
2283     // Don't convert to selects if we could remove undefined behavior instead.
2284     if (passingValueIsAlwaysUndefined(OrigV, &PN) ||
2285         passingValueIsAlwaysUndefined(ThenV, &PN))
2286       return false;
2287 
2288     HaveRewritablePHIs = true;
2289     ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV);
2290     ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV);
2291     if (!OrigCE && !ThenCE)
2292       continue; // Known safe and cheap.
2293 
2294     if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE)) ||
2295         (OrigCE && !isSafeToSpeculativelyExecute(OrigCE)))
2296       return false;
2297     InstructionCost OrigCost = OrigCE ? computeSpeculationCost(OrigCE, TTI) : 0;
2298     InstructionCost ThenCost = ThenCE ? computeSpeculationCost(ThenCE, TTI) : 0;
2299     InstructionCost MaxCost =
2300         2 * PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
2301     if (OrigCost + ThenCost > MaxCost)
2302       return false;
2303 
2304     // Account for the cost of an unfolded ConstantExpr which could end up
2305     // getting expanded into Instructions.
2306     // FIXME: This doesn't account for how many operations are combined in the
2307     // constant expression.
2308     ++SpeculatedInstructions;
2309     if (SpeculatedInstructions > 1)
2310       return false;
2311   }
2312 
2313   return HaveRewritablePHIs;
2314 }
2315 
2316 /// Speculate a conditional basic block flattening the CFG.
2317 ///
2318 /// Note that this is a very risky transform currently. Speculating
2319 /// instructions like this is most often not desirable. Instead, there is an MI
2320 /// pass which can do it with full awareness of the resource constraints.
2321 /// However, some cases are "obvious" and we should do directly. An example of
2322 /// this is speculating a single, reasonably cheap instruction.
2323 ///
2324 /// There is only one distinct advantage to flattening the CFG at the IR level:
2325 /// it makes very common but simplistic optimizations such as are common in
2326 /// instcombine and the DAG combiner more powerful by removing CFG edges and
2327 /// modeling their effects with easier to reason about SSA value graphs.
2328 ///
2329 ///
2330 /// An illustration of this transform is turning this IR:
2331 /// \code
2332 ///   BB:
2333 ///     %cmp = icmp ult %x, %y
2334 ///     br i1 %cmp, label %EndBB, label %ThenBB
2335 ///   ThenBB:
2336 ///     %sub = sub %x, %y
2337 ///     br label BB2
2338 ///   EndBB:
2339 ///     %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ]
2340 ///     ...
2341 /// \endcode
2342 ///
2343 /// Into this IR:
2344 /// \code
2345 ///   BB:
2346 ///     %cmp = icmp ult %x, %y
2347 ///     %sub = sub %x, %y
2348 ///     %cond = select i1 %cmp, 0, %sub
2349 ///     ...
2350 /// \endcode
2351 ///
2352 /// \returns true if the conditional block is removed.
2353 bool SimplifyCFGOpt::SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB,
2354                                             const TargetTransformInfo &TTI) {
2355   // Be conservative for now. FP select instruction can often be expensive.
2356   Value *BrCond = BI->getCondition();
2357   if (isa<FCmpInst>(BrCond))
2358     return false;
2359 
2360   BasicBlock *BB = BI->getParent();
2361   BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0);
2362   InstructionCost Budget =
2363       PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
2364 
2365   // If ThenBB is actually on the false edge of the conditional branch, remember
2366   // to swap the select operands later.
2367   bool Invert = false;
2368   if (ThenBB != BI->getSuccessor(0)) {
2369     assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?");
2370     Invert = true;
2371   }
2372   assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block");
2373 
2374   // If the branch is non-unpredictable, and is predicted to *not* branch to
2375   // the `then` block, then avoid speculating it.
2376   if (!BI->getMetadata(LLVMContext::MD_unpredictable)) {
2377     uint64_t TWeight, FWeight;
2378     if (BI->extractProfMetadata(TWeight, FWeight) && (TWeight + FWeight) != 0) {
2379       uint64_t EndWeight = Invert ? TWeight : FWeight;
2380       BranchProbability BIEndProb =
2381           BranchProbability::getBranchProbability(EndWeight, TWeight + FWeight);
2382       BranchProbability Likely = TTI.getPredictableBranchThreshold();
2383       if (BIEndProb >= Likely)
2384         return false;
2385     }
2386   }
2387 
2388   // Keep a count of how many times instructions are used within ThenBB when
2389   // they are candidates for sinking into ThenBB. Specifically:
2390   // - They are defined in BB, and
2391   // - They have no side effects, and
2392   // - All of their uses are in ThenBB.
2393   SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts;
2394 
2395   SmallVector<Instruction *, 4> SpeculatedDbgIntrinsics;
2396 
2397   unsigned SpeculatedInstructions = 0;
2398   Value *SpeculatedStoreValue = nullptr;
2399   StoreInst *SpeculatedStore = nullptr;
2400   for (BasicBlock::iterator BBI = ThenBB->begin(),
2401                             BBE = std::prev(ThenBB->end());
2402        BBI != BBE; ++BBI) {
2403     Instruction *I = &*BBI;
2404     // Skip debug info.
2405     if (isa<DbgInfoIntrinsic>(I)) {
2406       SpeculatedDbgIntrinsics.push_back(I);
2407       continue;
2408     }
2409 
2410     // Skip pseudo probes. The consequence is we lose track of the branch
2411     // probability for ThenBB, which is fine since the optimization here takes
2412     // place regardless of the branch probability.
2413     if (isa<PseudoProbeInst>(I)) {
2414       // The probe should be deleted so that it will not be over-counted when
2415       // the samples collected on the non-conditional path are counted towards
2416       // the conditional path. We leave it for the counts inference algorithm to
2417       // figure out a proper count for an unknown probe.
2418       SpeculatedDbgIntrinsics.push_back(I);
2419       continue;
2420     }
2421 
2422     // Only speculatively execute a single instruction (not counting the
2423     // terminator) for now.
2424     ++SpeculatedInstructions;
2425     if (SpeculatedInstructions > 1)
2426       return false;
2427 
2428     // Don't hoist the instruction if it's unsafe or expensive.
2429     if (!isSafeToSpeculativelyExecute(I) &&
2430         !(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore(
2431                                   I, BB, ThenBB, EndBB))))
2432       return false;
2433     if (!SpeculatedStoreValue &&
2434         computeSpeculationCost(I, TTI) >
2435             PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic)
2436       return false;
2437 
2438     // Store the store speculation candidate.
2439     if (SpeculatedStoreValue)
2440       SpeculatedStore = cast<StoreInst>(I);
2441 
2442     // Do not hoist the instruction if any of its operands are defined but not
2443     // used in BB. The transformation will prevent the operand from
2444     // being sunk into the use block.
2445     for (Use &Op : I->operands()) {
2446       Instruction *OpI = dyn_cast<Instruction>(Op);
2447       if (!OpI || OpI->getParent() != BB || OpI->mayHaveSideEffects())
2448         continue; // Not a candidate for sinking.
2449 
2450       ++SinkCandidateUseCounts[OpI];
2451     }
2452   }
2453 
2454   // Consider any sink candidates which are only used in ThenBB as costs for
2455   // speculation. Note, while we iterate over a DenseMap here, we are summing
2456   // and so iteration order isn't significant.
2457   for (SmallDenseMap<Instruction *, unsigned, 4>::iterator
2458            I = SinkCandidateUseCounts.begin(),
2459            E = SinkCandidateUseCounts.end();
2460        I != E; ++I)
2461     if (I->first->hasNUses(I->second)) {
2462       ++SpeculatedInstructions;
2463       if (SpeculatedInstructions > 1)
2464         return false;
2465     }
2466 
2467   // Check that we can insert the selects and that it's not too expensive to do
2468   // so.
2469   bool Convert = SpeculatedStore != nullptr;
2470   InstructionCost Cost = 0;
2471   Convert |= validateAndCostRequiredSelects(BB, ThenBB, EndBB,
2472                                             SpeculatedInstructions,
2473                                             Cost, TTI);
2474   if (!Convert || Cost > Budget)
2475     return false;
2476 
2477   // If we get here, we can hoist the instruction and if-convert.
2478   LLVM_DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";);
2479 
2480   // Insert a select of the value of the speculated store.
2481   if (SpeculatedStoreValue) {
2482     IRBuilder<NoFolder> Builder(BI);
2483     Value *TrueV = SpeculatedStore->getValueOperand();
2484     Value *FalseV = SpeculatedStoreValue;
2485     if (Invert)
2486       std::swap(TrueV, FalseV);
2487     Value *S = Builder.CreateSelect(
2488         BrCond, TrueV, FalseV, "spec.store.select", BI);
2489     SpeculatedStore->setOperand(0, S);
2490     SpeculatedStore->applyMergedLocation(BI->getDebugLoc(),
2491                                          SpeculatedStore->getDebugLoc());
2492   }
2493 
2494   // Metadata can be dependent on the condition we are hoisting above.
2495   // Conservatively strip all metadata on the instruction. Drop the debug loc
2496   // to avoid making it appear as if the condition is a constant, which would
2497   // be misleading while debugging.
2498   // Similarly strip attributes that maybe dependent on condition we are
2499   // hoisting above.
2500   for (auto &I : *ThenBB) {
2501     if (!SpeculatedStoreValue || &I != SpeculatedStore)
2502       I.setDebugLoc(DebugLoc());
2503     I.dropUndefImplyingAttrsAndUnknownMetadata();
2504   }
2505 
2506   // Hoist the instructions.
2507   BB->getInstList().splice(BI->getIterator(), ThenBB->getInstList(),
2508                            ThenBB->begin(), std::prev(ThenBB->end()));
2509 
2510   // Insert selects and rewrite the PHI operands.
2511   IRBuilder<NoFolder> Builder(BI);
2512   for (PHINode &PN : EndBB->phis()) {
2513     unsigned OrigI = PN.getBasicBlockIndex(BB);
2514     unsigned ThenI = PN.getBasicBlockIndex(ThenBB);
2515     Value *OrigV = PN.getIncomingValue(OrigI);
2516     Value *ThenV = PN.getIncomingValue(ThenI);
2517 
2518     // Skip PHIs which are trivial.
2519     if (OrigV == ThenV)
2520       continue;
2521 
2522     // Create a select whose true value is the speculatively executed value and
2523     // false value is the pre-existing value. Swap them if the branch
2524     // destinations were inverted.
2525     Value *TrueV = ThenV, *FalseV = OrigV;
2526     if (Invert)
2527       std::swap(TrueV, FalseV);
2528     Value *V = Builder.CreateSelect(BrCond, TrueV, FalseV, "spec.select", BI);
2529     PN.setIncomingValue(OrigI, V);
2530     PN.setIncomingValue(ThenI, V);
2531   }
2532 
2533   // Remove speculated dbg intrinsics.
2534   // FIXME: Is it possible to do this in a more elegant way? Moving/merging the
2535   // dbg value for the different flows and inserting it after the select.
2536   for (Instruction *I : SpeculatedDbgIntrinsics)
2537     I->eraseFromParent();
2538 
2539   ++NumSpeculations;
2540   return true;
2541 }
2542 
2543 /// Return true if we can thread a branch across this block.
2544 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) {
2545   int Size = 0;
2546 
2547   SmallPtrSet<const Value *, 32> EphValues;
2548   auto IsEphemeral = [&](const Value *V) {
2549     if (isa<AssumeInst>(V))
2550       return true;
2551     return isSafeToSpeculativelyExecute(V) &&
2552            all_of(V->users(),
2553                   [&](const User *U) { return EphValues.count(U); });
2554   };
2555 
2556   // Walk the loop in reverse so that we can identify ephemeral values properly
2557   // (values only feeding assumes).
2558   for (Instruction &I : reverse(BB->instructionsWithoutDebug())) {
2559     // Can't fold blocks that contain noduplicate or convergent calls.
2560     if (CallInst *CI = dyn_cast<CallInst>(&I))
2561       if (CI->cannotDuplicate() || CI->isConvergent())
2562         return false;
2563 
2564     // Ignore ephemeral values which are deleted during codegen.
2565     if (IsEphemeral(&I))
2566       EphValues.insert(&I);
2567     // We will delete Phis while threading, so Phis should not be accounted in
2568     // block's size.
2569     else if (!isa<PHINode>(I)) {
2570       if (Size++ > MaxSmallBlockSize)
2571         return false; // Don't clone large BB's.
2572     }
2573 
2574     // We can only support instructions that do not define values that are
2575     // live outside of the current basic block.
2576     for (User *U : I.users()) {
2577       Instruction *UI = cast<Instruction>(U);
2578       if (UI->getParent() != BB || isa<PHINode>(UI))
2579         return false;
2580     }
2581 
2582     // Looks ok, continue checking.
2583   }
2584 
2585   return true;
2586 }
2587 
2588 /// If we have a conditional branch on a PHI node value that is defined in the
2589 /// same block as the branch and if any PHI entries are constants, thread edges
2590 /// corresponding to that entry to be branches to their ultimate destination.
2591 static bool FoldCondBranchOnPHI(BranchInst *BI, DomTreeUpdater *DTU,
2592                                 const DataLayout &DL, AssumptionCache *AC) {
2593   BasicBlock *BB = BI->getParent();
2594   PHINode *PN = dyn_cast<PHINode>(BI->getCondition());
2595   // NOTE: we currently cannot transform this case if the PHI node is used
2596   // outside of the block.
2597   if (!PN || PN->getParent() != BB || !PN->hasOneUse())
2598     return false;
2599 
2600   // Degenerate case of a single entry PHI.
2601   if (PN->getNumIncomingValues() == 1) {
2602     FoldSingleEntryPHINodes(PN->getParent());
2603     return true;
2604   }
2605 
2606   // Now we know that this block has multiple preds and two succs.
2607   if (!BlockIsSimpleEnoughToThreadThrough(BB))
2608     return false;
2609 
2610   // Okay, this is a simple enough basic block.  See if any phi values are
2611   // constants.
2612   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
2613     ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i));
2614     if (!CB || !CB->getType()->isIntegerTy(1))
2615       continue;
2616 
2617     // Okay, we now know that all edges from PredBB should be revectored to
2618     // branch to RealDest.
2619     BasicBlock *PredBB = PN->getIncomingBlock(i);
2620     BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue());
2621 
2622     if (RealDest == BB)
2623       continue; // Skip self loops.
2624     // Skip if the predecessor's terminator is an indirect branch.
2625     if (isa<IndirectBrInst>(PredBB->getTerminator()))
2626       continue;
2627 
2628     SmallVector<DominatorTree::UpdateType, 3> Updates;
2629 
2630     // The dest block might have PHI nodes, other predecessors and other
2631     // difficult cases.  Instead of being smart about this, just insert a new
2632     // block that jumps to the destination block, effectively splitting
2633     // the edge we are about to create.
2634     BasicBlock *EdgeBB =
2635         BasicBlock::Create(BB->getContext(), RealDest->getName() + ".critedge",
2636                            RealDest->getParent(), RealDest);
2637     BranchInst *CritEdgeBranch = BranchInst::Create(RealDest, EdgeBB);
2638     if (DTU)
2639       Updates.push_back({DominatorTree::Insert, EdgeBB, RealDest});
2640     CritEdgeBranch->setDebugLoc(BI->getDebugLoc());
2641 
2642     // Update PHI nodes.
2643     AddPredecessorToBlock(RealDest, EdgeBB, BB);
2644 
2645     // BB may have instructions that are being threaded over.  Clone these
2646     // instructions into EdgeBB.  We know that there will be no uses of the
2647     // cloned instructions outside of EdgeBB.
2648     BasicBlock::iterator InsertPt = EdgeBB->begin();
2649     DenseMap<Value *, Value *> TranslateMap; // Track translated values.
2650     for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
2651       if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
2652         TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB);
2653         continue;
2654       }
2655       // Clone the instruction.
2656       Instruction *N = BBI->clone();
2657       if (BBI->hasName())
2658         N->setName(BBI->getName() + ".c");
2659 
2660       // Update operands due to translation.
2661       for (Use &Op : N->operands()) {
2662         DenseMap<Value *, Value *>::iterator PI = TranslateMap.find(Op);
2663         if (PI != TranslateMap.end())
2664           Op = PI->second;
2665       }
2666 
2667       // Check for trivial simplification.
2668       if (Value *V = SimplifyInstruction(N, {DL, nullptr, nullptr, AC})) {
2669         if (!BBI->use_empty())
2670           TranslateMap[&*BBI] = V;
2671         if (!N->mayHaveSideEffects()) {
2672           N->deleteValue(); // Instruction folded away, don't need actual inst
2673           N = nullptr;
2674         }
2675       } else {
2676         if (!BBI->use_empty())
2677           TranslateMap[&*BBI] = N;
2678       }
2679       if (N) {
2680         // Insert the new instruction into its new home.
2681         EdgeBB->getInstList().insert(InsertPt, N);
2682 
2683         // Register the new instruction with the assumption cache if necessary.
2684         if (auto *Assume = dyn_cast<AssumeInst>(N))
2685           if (AC)
2686             AC->registerAssumption(Assume);
2687       }
2688     }
2689 
2690     // Loop over all of the edges from PredBB to BB, changing them to branch
2691     // to EdgeBB instead.
2692     Instruction *PredBBTI = PredBB->getTerminator();
2693     for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i)
2694       if (PredBBTI->getSuccessor(i) == BB) {
2695         BB->removePredecessor(PredBB);
2696         PredBBTI->setSuccessor(i, EdgeBB);
2697       }
2698 
2699     if (DTU) {
2700       Updates.push_back({DominatorTree::Insert, PredBB, EdgeBB});
2701       Updates.push_back({DominatorTree::Delete, PredBB, BB});
2702 
2703       DTU->applyUpdates(Updates);
2704     }
2705 
2706     // Recurse, simplifying any other constants.
2707     return FoldCondBranchOnPHI(BI, DTU, DL, AC) || true;
2708   }
2709 
2710   return false;
2711 }
2712 
2713 /// Given a BB that starts with the specified two-entry PHI node,
2714 /// see if we can eliminate it.
2715 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI,
2716                                 DomTreeUpdater *DTU, const DataLayout &DL) {
2717   // Ok, this is a two entry PHI node.  Check to see if this is a simple "if
2718   // statement", which has a very simple dominance structure.  Basically, we
2719   // are trying to find the condition that is being branched on, which
2720   // subsequently causes this merge to happen.  We really want control
2721   // dependence information for this check, but simplifycfg can't keep it up
2722   // to date, and this catches most of the cases we care about anyway.
2723   BasicBlock *BB = PN->getParent();
2724 
2725   BasicBlock *IfTrue, *IfFalse;
2726   BranchInst *DomBI = GetIfCondition(BB, IfTrue, IfFalse);
2727   if (!DomBI)
2728     return false;
2729   Value *IfCond = DomBI->getCondition();
2730   // Don't bother if the branch will be constant folded trivially.
2731   if (isa<ConstantInt>(IfCond))
2732     return false;
2733 
2734   BasicBlock *DomBlock = DomBI->getParent();
2735   SmallVector<BasicBlock *, 2> IfBlocks;
2736   llvm::copy_if(
2737       PN->blocks(), std::back_inserter(IfBlocks), [](BasicBlock *IfBlock) {
2738         return cast<BranchInst>(IfBlock->getTerminator())->isUnconditional();
2739       });
2740   assert((IfBlocks.size() == 1 || IfBlocks.size() == 2) &&
2741          "Will have either one or two blocks to speculate.");
2742 
2743   // If the branch is non-unpredictable, see if we either predictably jump to
2744   // the merge bb (if we have only a single 'then' block), or if we predictably
2745   // jump to one specific 'then' block (if we have two of them).
2746   // It isn't beneficial to speculatively execute the code
2747   // from the block that we know is predictably not entered.
2748   if (!DomBI->getMetadata(LLVMContext::MD_unpredictable)) {
2749     uint64_t TWeight, FWeight;
2750     if (DomBI->extractProfMetadata(TWeight, FWeight) &&
2751         (TWeight + FWeight) != 0) {
2752       BranchProbability BITrueProb =
2753           BranchProbability::getBranchProbability(TWeight, TWeight + FWeight);
2754       BranchProbability Likely = TTI.getPredictableBranchThreshold();
2755       BranchProbability BIFalseProb = BITrueProb.getCompl();
2756       if (IfBlocks.size() == 1) {
2757         BranchProbability BIBBProb =
2758             DomBI->getSuccessor(0) == BB ? BITrueProb : BIFalseProb;
2759         if (BIBBProb >= Likely)
2760           return false;
2761       } else {
2762         if (BITrueProb >= Likely || BIFalseProb >= Likely)
2763           return false;
2764       }
2765     }
2766   }
2767 
2768   // Don't try to fold an unreachable block. For example, the phi node itself
2769   // can't be the candidate if-condition for a select that we want to form.
2770   if (auto *IfCondPhiInst = dyn_cast<PHINode>(IfCond))
2771     if (IfCondPhiInst->getParent() == BB)
2772       return false;
2773 
2774   // Okay, we found that we can merge this two-entry phi node into a select.
2775   // Doing so would require us to fold *all* two entry phi nodes in this block.
2776   // At some point this becomes non-profitable (particularly if the target
2777   // doesn't support cmov's).  Only do this transformation if there are two or
2778   // fewer PHI nodes in this block.
2779   unsigned NumPhis = 0;
2780   for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I)
2781     if (NumPhis > 2)
2782       return false;
2783 
2784   // Loop over the PHI's seeing if we can promote them all to select
2785   // instructions.  While we are at it, keep track of the instructions
2786   // that need to be moved to the dominating block.
2787   SmallPtrSet<Instruction *, 4> AggressiveInsts;
2788   InstructionCost Cost = 0;
2789   InstructionCost Budget =
2790       TwoEntryPHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
2791 
2792   bool Changed = false;
2793   for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) {
2794     PHINode *PN = cast<PHINode>(II++);
2795     if (Value *V = SimplifyInstruction(PN, {DL, PN})) {
2796       PN->replaceAllUsesWith(V);
2797       PN->eraseFromParent();
2798       Changed = true;
2799       continue;
2800     }
2801 
2802     if (!dominatesMergePoint(PN->getIncomingValue(0), BB, AggressiveInsts,
2803                              Cost, Budget, TTI) ||
2804         !dominatesMergePoint(PN->getIncomingValue(1), BB, AggressiveInsts,
2805                              Cost, Budget, TTI))
2806       return Changed;
2807   }
2808 
2809   // If we folded the first phi, PN dangles at this point.  Refresh it.  If
2810   // we ran out of PHIs then we simplified them all.
2811   PN = dyn_cast<PHINode>(BB->begin());
2812   if (!PN)
2813     return true;
2814 
2815   // Return true if at least one of these is a 'not', and another is either
2816   // a 'not' too, or a constant.
2817   auto CanHoistNotFromBothValues = [](Value *V0, Value *V1) {
2818     if (!match(V0, m_Not(m_Value())))
2819       std::swap(V0, V1);
2820     auto Invertible = m_CombineOr(m_Not(m_Value()), m_AnyIntegralConstant());
2821     return match(V0, m_Not(m_Value())) && match(V1, Invertible);
2822   };
2823 
2824   // Don't fold i1 branches on PHIs which contain binary operators or
2825   // (possibly inverted) select form of or/ands,  unless one of
2826   // the incoming values is an 'not' and another one is freely invertible.
2827   // These can often be turned into switches and other things.
2828   auto IsBinOpOrAnd = [](Value *V) {
2829     return match(
2830         V, m_CombineOr(
2831                m_BinOp(),
2832                m_CombineOr(m_Select(m_Value(), m_ImmConstant(), m_Value()),
2833                            m_Select(m_Value(), m_Value(), m_ImmConstant()))));
2834   };
2835   if (PN->getType()->isIntegerTy(1) &&
2836       (IsBinOpOrAnd(PN->getIncomingValue(0)) ||
2837        IsBinOpOrAnd(PN->getIncomingValue(1)) || IsBinOpOrAnd(IfCond)) &&
2838       !CanHoistNotFromBothValues(PN->getIncomingValue(0),
2839                                  PN->getIncomingValue(1)))
2840     return Changed;
2841 
2842   // If all PHI nodes are promotable, check to make sure that all instructions
2843   // in the predecessor blocks can be promoted as well. If not, we won't be able
2844   // to get rid of the control flow, so it's not worth promoting to select
2845   // instructions.
2846   for (BasicBlock *IfBlock : IfBlocks)
2847     for (BasicBlock::iterator I = IfBlock->begin(); !I->isTerminator(); ++I)
2848       if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I) &&
2849           !isa<PseudoProbeInst>(I)) {
2850         // This is not an aggressive instruction that we can promote.
2851         // Because of this, we won't be able to get rid of the control flow, so
2852         // the xform is not worth it.
2853         return Changed;
2854       }
2855 
2856   // If either of the blocks has it's address taken, we can't do this fold.
2857   if (any_of(IfBlocks,
2858              [](BasicBlock *IfBlock) { return IfBlock->hasAddressTaken(); }))
2859     return Changed;
2860 
2861   LLVM_DEBUG(dbgs() << "FOUND IF CONDITION!  " << *IfCond
2862                     << "  T: " << IfTrue->getName()
2863                     << "  F: " << IfFalse->getName() << "\n");
2864 
2865   // If we can still promote the PHI nodes after this gauntlet of tests,
2866   // do all of the PHI's now.
2867 
2868   // Move all 'aggressive' instructions, which are defined in the
2869   // conditional parts of the if's up to the dominating block.
2870   for (BasicBlock *IfBlock : IfBlocks)
2871       hoistAllInstructionsInto(DomBlock, DomBI, IfBlock);
2872 
2873   IRBuilder<NoFolder> Builder(DomBI);
2874   // Propagate fast-math-flags from phi nodes to replacement selects.
2875   IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
2876   while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
2877     if (isa<FPMathOperator>(PN))
2878       Builder.setFastMathFlags(PN->getFastMathFlags());
2879 
2880     // Change the PHI node into a select instruction.
2881     Value *TrueVal = PN->getIncomingValueForBlock(IfTrue);
2882     Value *FalseVal = PN->getIncomingValueForBlock(IfFalse);
2883 
2884     Value *Sel = Builder.CreateSelect(IfCond, TrueVal, FalseVal, "", DomBI);
2885     PN->replaceAllUsesWith(Sel);
2886     Sel->takeName(PN);
2887     PN->eraseFromParent();
2888   }
2889 
2890   // At this point, all IfBlocks are empty, so our if statement
2891   // has been flattened.  Change DomBlock to jump directly to our new block to
2892   // avoid other simplifycfg's kicking in on the diamond.
2893   Builder.CreateBr(BB);
2894 
2895   SmallVector<DominatorTree::UpdateType, 3> Updates;
2896   if (DTU) {
2897     Updates.push_back({DominatorTree::Insert, DomBlock, BB});
2898     for (auto *Successor : successors(DomBlock))
2899       Updates.push_back({DominatorTree::Delete, DomBlock, Successor});
2900   }
2901 
2902   DomBI->eraseFromParent();
2903   if (DTU)
2904     DTU->applyUpdates(Updates);
2905 
2906   return true;
2907 }
2908 
2909 static Value *createLogicalOp(IRBuilderBase &Builder,
2910                               Instruction::BinaryOps Opc, Value *LHS,
2911                               Value *RHS, const Twine &Name = "") {
2912   // Try to relax logical op to binary op.
2913   if (impliesPoison(RHS, LHS))
2914     return Builder.CreateBinOp(Opc, LHS, RHS, Name);
2915   if (Opc == Instruction::And)
2916     return Builder.CreateLogicalAnd(LHS, RHS, Name);
2917   if (Opc == Instruction::Or)
2918     return Builder.CreateLogicalOr(LHS, RHS, Name);
2919   llvm_unreachable("Invalid logical opcode");
2920 }
2921 
2922 /// Return true if either PBI or BI has branch weight available, and store
2923 /// the weights in {Pred|Succ}{True|False}Weight. If one of PBI and BI does
2924 /// not have branch weight, use 1:1 as its weight.
2925 static bool extractPredSuccWeights(BranchInst *PBI, BranchInst *BI,
2926                                    uint64_t &PredTrueWeight,
2927                                    uint64_t &PredFalseWeight,
2928                                    uint64_t &SuccTrueWeight,
2929                                    uint64_t &SuccFalseWeight) {
2930   bool PredHasWeights =
2931       PBI->extractProfMetadata(PredTrueWeight, PredFalseWeight);
2932   bool SuccHasWeights =
2933       BI->extractProfMetadata(SuccTrueWeight, SuccFalseWeight);
2934   if (PredHasWeights || SuccHasWeights) {
2935     if (!PredHasWeights)
2936       PredTrueWeight = PredFalseWeight = 1;
2937     if (!SuccHasWeights)
2938       SuccTrueWeight = SuccFalseWeight = 1;
2939     return true;
2940   } else {
2941     return false;
2942   }
2943 }
2944 
2945 /// Determine if the two branches share a common destination and deduce a glue
2946 /// that joins the branches' conditions to arrive at the common destination if
2947 /// that would be profitable.
2948 static Optional<std::pair<Instruction::BinaryOps, bool>>
2949 shouldFoldCondBranchesToCommonDestination(BranchInst *BI, BranchInst *PBI,
2950                                           const TargetTransformInfo *TTI) {
2951   assert(BI && PBI && BI->isConditional() && PBI->isConditional() &&
2952          "Both blocks must end with a conditional branches.");
2953   assert(is_contained(predecessors(BI->getParent()), PBI->getParent()) &&
2954          "PredBB must be a predecessor of BB.");
2955 
2956   // We have the potential to fold the conditions together, but if the
2957   // predecessor branch is predictable, we may not want to merge them.
2958   uint64_t PTWeight, PFWeight;
2959   BranchProbability PBITrueProb, Likely;
2960   if (TTI && !PBI->getMetadata(LLVMContext::MD_unpredictable) &&
2961       PBI->extractProfMetadata(PTWeight, PFWeight) &&
2962       (PTWeight + PFWeight) != 0) {
2963     PBITrueProb =
2964         BranchProbability::getBranchProbability(PTWeight, PTWeight + PFWeight);
2965     Likely = TTI->getPredictableBranchThreshold();
2966   }
2967 
2968   if (PBI->getSuccessor(0) == BI->getSuccessor(0)) {
2969     // Speculate the 2nd condition unless the 1st is probably true.
2970     if (PBITrueProb.isUnknown() || PBITrueProb < Likely)
2971       return {{Instruction::Or, false}};
2972   } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) {
2973     // Speculate the 2nd condition unless the 1st is probably false.
2974     if (PBITrueProb.isUnknown() || PBITrueProb.getCompl() < Likely)
2975       return {{Instruction::And, false}};
2976   } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) {
2977     // Speculate the 2nd condition unless the 1st is probably true.
2978     if (PBITrueProb.isUnknown() || PBITrueProb < Likely)
2979       return {{Instruction::And, true}};
2980   } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) {
2981     // Speculate the 2nd condition unless the 1st is probably false.
2982     if (PBITrueProb.isUnknown() || PBITrueProb.getCompl() < Likely)
2983       return {{Instruction::Or, true}};
2984   }
2985   return None;
2986 }
2987 
2988 static bool performBranchToCommonDestFolding(BranchInst *BI, BranchInst *PBI,
2989                                              DomTreeUpdater *DTU,
2990                                              MemorySSAUpdater *MSSAU,
2991                                              const TargetTransformInfo *TTI) {
2992   BasicBlock *BB = BI->getParent();
2993   BasicBlock *PredBlock = PBI->getParent();
2994 
2995   // Determine if the two branches share a common destination.
2996   Instruction::BinaryOps Opc;
2997   bool InvertPredCond;
2998   std::tie(Opc, InvertPredCond) =
2999       *shouldFoldCondBranchesToCommonDestination(BI, PBI, TTI);
3000 
3001   LLVM_DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB);
3002 
3003   IRBuilder<> Builder(PBI);
3004   // The builder is used to create instructions to eliminate the branch in BB.
3005   // If BB's terminator has !annotation metadata, add it to the new
3006   // instructions.
3007   Builder.CollectMetadataToCopy(BB->getTerminator(),
3008                                 {LLVMContext::MD_annotation});
3009 
3010   // If we need to invert the condition in the pred block to match, do so now.
3011   if (InvertPredCond) {
3012     Value *NewCond = PBI->getCondition();
3013     if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) {
3014       CmpInst *CI = cast<CmpInst>(NewCond);
3015       CI->setPredicate(CI->getInversePredicate());
3016     } else {
3017       NewCond =
3018           Builder.CreateNot(NewCond, PBI->getCondition()->getName() + ".not");
3019     }
3020 
3021     PBI->setCondition(NewCond);
3022     PBI->swapSuccessors();
3023   }
3024 
3025   BasicBlock *UniqueSucc =
3026       PBI->getSuccessor(0) == BB ? BI->getSuccessor(0) : BI->getSuccessor(1);
3027 
3028   // Before cloning instructions, notify the successor basic block that it
3029   // is about to have a new predecessor. This will update PHI nodes,
3030   // which will allow us to update live-out uses of bonus instructions.
3031   AddPredecessorToBlock(UniqueSucc, PredBlock, BB, MSSAU);
3032 
3033   // Try to update branch weights.
3034   uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
3035   if (extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
3036                              SuccTrueWeight, SuccFalseWeight)) {
3037     SmallVector<uint64_t, 8> NewWeights;
3038 
3039     if (PBI->getSuccessor(0) == BB) {
3040       // PBI: br i1 %x, BB, FalseDest
3041       // BI:  br i1 %y, UniqueSucc, FalseDest
3042       // TrueWeight is TrueWeight for PBI * TrueWeight for BI.
3043       NewWeights.push_back(PredTrueWeight * SuccTrueWeight);
3044       // FalseWeight is FalseWeight for PBI * TotalWeight for BI +
3045       //               TrueWeight for PBI * FalseWeight for BI.
3046       // We assume that total weights of a BranchInst can fit into 32 bits.
3047       // Therefore, we will not have overflow using 64-bit arithmetic.
3048       NewWeights.push_back(PredFalseWeight *
3049                                (SuccFalseWeight + SuccTrueWeight) +
3050                            PredTrueWeight * SuccFalseWeight);
3051     } else {
3052       // PBI: br i1 %x, TrueDest, BB
3053       // BI:  br i1 %y, TrueDest, UniqueSucc
3054       // TrueWeight is TrueWeight for PBI * TotalWeight for BI +
3055       //              FalseWeight for PBI * TrueWeight for BI.
3056       NewWeights.push_back(PredTrueWeight * (SuccFalseWeight + SuccTrueWeight) +
3057                            PredFalseWeight * SuccTrueWeight);
3058       // FalseWeight is FalseWeight for PBI * FalseWeight for BI.
3059       NewWeights.push_back(PredFalseWeight * SuccFalseWeight);
3060     }
3061 
3062     // Halve the weights if any of them cannot fit in an uint32_t
3063     FitWeights(NewWeights);
3064 
3065     SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(), NewWeights.end());
3066     setBranchWeights(PBI, MDWeights[0], MDWeights[1]);
3067 
3068     // TODO: If BB is reachable from all paths through PredBlock, then we
3069     // could replace PBI's branch probabilities with BI's.
3070   } else
3071     PBI->setMetadata(LLVMContext::MD_prof, nullptr);
3072 
3073   // Now, update the CFG.
3074   PBI->setSuccessor(PBI->getSuccessor(0) != BB, UniqueSucc);
3075 
3076   if (DTU)
3077     DTU->applyUpdates({{DominatorTree::Insert, PredBlock, UniqueSucc},
3078                        {DominatorTree::Delete, PredBlock, BB}});
3079 
3080   // If BI was a loop latch, it may have had associated loop metadata.
3081   // We need to copy it to the new latch, that is, PBI.
3082   if (MDNode *LoopMD = BI->getMetadata(LLVMContext::MD_loop))
3083     PBI->setMetadata(LLVMContext::MD_loop, LoopMD);
3084 
3085   ValueToValueMapTy VMap; // maps original values to cloned values
3086   CloneInstructionsIntoPredecessorBlockAndUpdateSSAUses(BB, PredBlock, VMap);
3087 
3088   // Now that the Cond was cloned into the predecessor basic block,
3089   // or/and the two conditions together.
3090   Value *BICond = VMap[BI->getCondition()];
3091   PBI->setCondition(
3092       createLogicalOp(Builder, Opc, PBI->getCondition(), BICond, "or.cond"));
3093 
3094   // Copy any debug value intrinsics into the end of PredBlock.
3095   for (Instruction &I : *BB) {
3096     if (isa<DbgInfoIntrinsic>(I)) {
3097       Instruction *NewI = I.clone();
3098       RemapInstruction(NewI, VMap,
3099                        RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
3100       NewI->insertBefore(PBI);
3101     }
3102   }
3103 
3104   ++NumFoldBranchToCommonDest;
3105   return true;
3106 }
3107 
3108 /// If this basic block is simple enough, and if a predecessor branches to us
3109 /// and one of our successors, fold the block into the predecessor and use
3110 /// logical operations to pick the right destination.
3111 bool llvm::FoldBranchToCommonDest(BranchInst *BI, DomTreeUpdater *DTU,
3112                                   MemorySSAUpdater *MSSAU,
3113                                   const TargetTransformInfo *TTI,
3114                                   unsigned BonusInstThreshold) {
3115   // If this block ends with an unconditional branch,
3116   // let SpeculativelyExecuteBB() deal with it.
3117   if (!BI->isConditional())
3118     return false;
3119 
3120   BasicBlock *BB = BI->getParent();
3121   TargetTransformInfo::TargetCostKind CostKind =
3122     BB->getParent()->hasMinSize() ? TargetTransformInfo::TCK_CodeSize
3123                                   : TargetTransformInfo::TCK_SizeAndLatency;
3124 
3125   Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
3126 
3127   if (!Cond || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) ||
3128       Cond->getParent() != BB || !Cond->hasOneUse())
3129     return false;
3130 
3131   // Cond is known to be a compare or binary operator.  Check to make sure that
3132   // neither operand is a potentially-trapping constant expression.
3133   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0)))
3134     if (CE->canTrap())
3135       return false;
3136   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1)))
3137     if (CE->canTrap())
3138       return false;
3139 
3140   // Finally, don't infinitely unroll conditional loops.
3141   if (is_contained(successors(BB), BB))
3142     return false;
3143 
3144   // With which predecessors will we want to deal with?
3145   SmallVector<BasicBlock *, 8> Preds;
3146   for (BasicBlock *PredBlock : predecessors(BB)) {
3147     BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator());
3148 
3149     // Check that we have two conditional branches.  If there is a PHI node in
3150     // the common successor, verify that the same value flows in from both
3151     // blocks.
3152     if (!PBI || PBI->isUnconditional() || !SafeToMergeTerminators(BI, PBI))
3153       continue;
3154 
3155     // Determine if the two branches share a common destination.
3156     Instruction::BinaryOps Opc;
3157     bool InvertPredCond;
3158     if (auto Recipe = shouldFoldCondBranchesToCommonDestination(BI, PBI, TTI))
3159       std::tie(Opc, InvertPredCond) = *Recipe;
3160     else
3161       continue;
3162 
3163     // Check the cost of inserting the necessary logic before performing the
3164     // transformation.
3165     if (TTI) {
3166       Type *Ty = BI->getCondition()->getType();
3167       InstructionCost Cost = TTI->getArithmeticInstrCost(Opc, Ty, CostKind);
3168       if (InvertPredCond && (!PBI->getCondition()->hasOneUse() ||
3169           !isa<CmpInst>(PBI->getCondition())))
3170         Cost += TTI->getArithmeticInstrCost(Instruction::Xor, Ty, CostKind);
3171 
3172       if (Cost > BranchFoldThreshold)
3173         continue;
3174     }
3175 
3176     // Ok, we do want to deal with this predecessor. Record it.
3177     Preds.emplace_back(PredBlock);
3178   }
3179 
3180   // If there aren't any predecessors into which we can fold,
3181   // don't bother checking the cost.
3182   if (Preds.empty())
3183     return false;
3184 
3185   // Only allow this transformation if computing the condition doesn't involve
3186   // too many instructions and these involved instructions can be executed
3187   // unconditionally. We denote all involved instructions except the condition
3188   // as "bonus instructions", and only allow this transformation when the
3189   // number of the bonus instructions we'll need to create when cloning into
3190   // each predecessor does not exceed a certain threshold.
3191   unsigned NumBonusInsts = 0;
3192   const unsigned PredCount = Preds.size();
3193   for (Instruction &I : *BB) {
3194     // Don't check the branch condition comparison itself.
3195     if (&I == Cond)
3196       continue;
3197     // Ignore dbg intrinsics, and the terminator.
3198     if (isa<DbgInfoIntrinsic>(I) || isa<BranchInst>(I))
3199       continue;
3200     // I must be safe to execute unconditionally.
3201     if (!isSafeToSpeculativelyExecute(&I))
3202       return false;
3203 
3204     // Account for the cost of duplicating this instruction into each
3205     // predecessor.
3206     NumBonusInsts += PredCount;
3207     // Early exits once we reach the limit.
3208     if (NumBonusInsts > BonusInstThreshold)
3209       return false;
3210   }
3211 
3212   // Ok, we have the budget. Perform the transformation.
3213   for (BasicBlock *PredBlock : Preds) {
3214     auto *PBI = cast<BranchInst>(PredBlock->getTerminator());
3215     return performBranchToCommonDestFolding(BI, PBI, DTU, MSSAU, TTI);
3216   }
3217   return false;
3218 }
3219 
3220 // If there is only one store in BB1 and BB2, return it, otherwise return
3221 // nullptr.
3222 static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) {
3223   StoreInst *S = nullptr;
3224   for (auto *BB : {BB1, BB2}) {
3225     if (!BB)
3226       continue;
3227     for (auto &I : *BB)
3228       if (auto *SI = dyn_cast<StoreInst>(&I)) {
3229         if (S)
3230           // Multiple stores seen.
3231           return nullptr;
3232         else
3233           S = SI;
3234       }
3235   }
3236   return S;
3237 }
3238 
3239 static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB,
3240                                               Value *AlternativeV = nullptr) {
3241   // PHI is going to be a PHI node that allows the value V that is defined in
3242   // BB to be referenced in BB's only successor.
3243   //
3244   // If AlternativeV is nullptr, the only value we care about in PHI is V. It
3245   // doesn't matter to us what the other operand is (it'll never get used). We
3246   // could just create a new PHI with an undef incoming value, but that could
3247   // increase register pressure if EarlyCSE/InstCombine can't fold it with some
3248   // other PHI. So here we directly look for some PHI in BB's successor with V
3249   // as an incoming operand. If we find one, we use it, else we create a new
3250   // one.
3251   //
3252   // If AlternativeV is not nullptr, we care about both incoming values in PHI.
3253   // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV]
3254   // where OtherBB is the single other predecessor of BB's only successor.
3255   PHINode *PHI = nullptr;
3256   BasicBlock *Succ = BB->getSingleSuccessor();
3257 
3258   for (auto I = Succ->begin(); isa<PHINode>(I); ++I)
3259     if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) {
3260       PHI = cast<PHINode>(I);
3261       if (!AlternativeV)
3262         break;
3263 
3264       assert(Succ->hasNPredecessors(2));
3265       auto PredI = pred_begin(Succ);
3266       BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI;
3267       if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV)
3268         break;
3269       PHI = nullptr;
3270     }
3271   if (PHI)
3272     return PHI;
3273 
3274   // If V is not an instruction defined in BB, just return it.
3275   if (!AlternativeV &&
3276       (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB))
3277     return V;
3278 
3279   PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge", &Succ->front());
3280   PHI->addIncoming(V, BB);
3281   for (BasicBlock *PredBB : predecessors(Succ))
3282     if (PredBB != BB)
3283       PHI->addIncoming(
3284           AlternativeV ? AlternativeV : UndefValue::get(V->getType()), PredBB);
3285   return PHI;
3286 }
3287 
3288 static bool mergeConditionalStoreToAddress(
3289     BasicBlock *PTB, BasicBlock *PFB, BasicBlock *QTB, BasicBlock *QFB,
3290     BasicBlock *PostBB, Value *Address, bool InvertPCond, bool InvertQCond,
3291     DomTreeUpdater *DTU, const DataLayout &DL, const TargetTransformInfo &TTI) {
3292   // For every pointer, there must be exactly two stores, one coming from
3293   // PTB or PFB, and the other from QTB or QFB. We don't support more than one
3294   // store (to any address) in PTB,PFB or QTB,QFB.
3295   // FIXME: We could relax this restriction with a bit more work and performance
3296   // testing.
3297   StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB);
3298   StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB);
3299   if (!PStore || !QStore)
3300     return false;
3301 
3302   // Now check the stores are compatible.
3303   if (!QStore->isUnordered() || !PStore->isUnordered())
3304     return false;
3305 
3306   // Check that sinking the store won't cause program behavior changes. Sinking
3307   // the store out of the Q blocks won't change any behavior as we're sinking
3308   // from a block to its unconditional successor. But we're moving a store from
3309   // the P blocks down through the middle block (QBI) and past both QFB and QTB.
3310   // So we need to check that there are no aliasing loads or stores in
3311   // QBI, QTB and QFB. We also need to check there are no conflicting memory
3312   // operations between PStore and the end of its parent block.
3313   //
3314   // The ideal way to do this is to query AliasAnalysis, but we don't
3315   // preserve AA currently so that is dangerous. Be super safe and just
3316   // check there are no other memory operations at all.
3317   for (auto &I : *QFB->getSinglePredecessor())
3318     if (I.mayReadOrWriteMemory())
3319       return false;
3320   for (auto &I : *QFB)
3321     if (&I != QStore && I.mayReadOrWriteMemory())
3322       return false;
3323   if (QTB)
3324     for (auto &I : *QTB)
3325       if (&I != QStore && I.mayReadOrWriteMemory())
3326         return false;
3327   for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end();
3328        I != E; ++I)
3329     if (&*I != PStore && I->mayReadOrWriteMemory())
3330       return false;
3331 
3332   // If we're not in aggressive mode, we only optimize if we have some
3333   // confidence that by optimizing we'll allow P and/or Q to be if-converted.
3334   auto IsWorthwhile = [&](BasicBlock *BB, ArrayRef<StoreInst *> FreeStores) {
3335     if (!BB)
3336       return true;
3337     // Heuristic: if the block can be if-converted/phi-folded and the
3338     // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to
3339     // thread this store.
3340     InstructionCost Cost = 0;
3341     InstructionCost Budget =
3342         PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
3343     for (auto &I : BB->instructionsWithoutDebug()) {
3344       // Consider terminator instruction to be free.
3345       if (I.isTerminator())
3346         continue;
3347       // If this is one the stores that we want to speculate out of this BB,
3348       // then don't count it's cost, consider it to be free.
3349       if (auto *S = dyn_cast<StoreInst>(&I))
3350         if (llvm::find(FreeStores, S))
3351           continue;
3352       // Else, we have a white-list of instructions that we are ak speculating.
3353       if (!isa<BinaryOperator>(I) && !isa<GetElementPtrInst>(I))
3354         return false; // Not in white-list - not worthwhile folding.
3355       // And finally, if this is a non-free instruction that we are okay
3356       // speculating, ensure that we consider the speculation budget.
3357       Cost += TTI.getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency);
3358       if (Cost > Budget)
3359         return false; // Eagerly refuse to fold as soon as we're out of budget.
3360     }
3361     assert(Cost <= Budget &&
3362            "When we run out of budget we will eagerly return from within the "
3363            "per-instruction loop.");
3364     return true;
3365   };
3366 
3367   const std::array<StoreInst *, 2> FreeStores = {PStore, QStore};
3368   if (!MergeCondStoresAggressively &&
3369       (!IsWorthwhile(PTB, FreeStores) || !IsWorthwhile(PFB, FreeStores) ||
3370        !IsWorthwhile(QTB, FreeStores) || !IsWorthwhile(QFB, FreeStores)))
3371     return false;
3372 
3373   // If PostBB has more than two predecessors, we need to split it so we can
3374   // sink the store.
3375   if (std::next(pred_begin(PostBB), 2) != pred_end(PostBB)) {
3376     // We know that QFB's only successor is PostBB. And QFB has a single
3377     // predecessor. If QTB exists, then its only successor is also PostBB.
3378     // If QTB does not exist, then QFB's only predecessor has a conditional
3379     // branch to QFB and PostBB.
3380     BasicBlock *TruePred = QTB ? QTB : QFB->getSinglePredecessor();
3381     BasicBlock *NewBB =
3382         SplitBlockPredecessors(PostBB, {QFB, TruePred}, "condstore.split", DTU);
3383     if (!NewBB)
3384       return false;
3385     PostBB = NewBB;
3386   }
3387 
3388   // OK, we're going to sink the stores to PostBB. The store has to be
3389   // conditional though, so first create the predicate.
3390   Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator())
3391                      ->getCondition();
3392   Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator())
3393                      ->getCondition();
3394 
3395   Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(),
3396                                                 PStore->getParent());
3397   Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(),
3398                                                 QStore->getParent(), PPHI);
3399 
3400   IRBuilder<> QB(&*PostBB->getFirstInsertionPt());
3401 
3402   Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond);
3403   Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond);
3404 
3405   if (InvertPCond)
3406     PPred = QB.CreateNot(PPred);
3407   if (InvertQCond)
3408     QPred = QB.CreateNot(QPred);
3409   Value *CombinedPred = QB.CreateOr(PPred, QPred);
3410 
3411   auto *T = SplitBlockAndInsertIfThen(CombinedPred, &*QB.GetInsertPoint(),
3412                                       /*Unreachable=*/false,
3413                                       /*BranchWeights=*/nullptr, DTU);
3414   QB.SetInsertPoint(T);
3415   StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address));
3416   AAMDNodes AAMD;
3417   PStore->getAAMetadata(AAMD, /*Merge=*/false);
3418   PStore->getAAMetadata(AAMD, /*Merge=*/true);
3419   SI->setAAMetadata(AAMD);
3420   // Choose the minimum alignment. If we could prove both stores execute, we
3421   // could use biggest one.  In this case, though, we only know that one of the
3422   // stores executes.  And we don't know it's safe to take the alignment from a
3423   // store that doesn't execute.
3424   SI->setAlignment(std::min(PStore->getAlign(), QStore->getAlign()));
3425 
3426   QStore->eraseFromParent();
3427   PStore->eraseFromParent();
3428 
3429   return true;
3430 }
3431 
3432 static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI,
3433                                    DomTreeUpdater *DTU, const DataLayout &DL,
3434                                    const TargetTransformInfo &TTI) {
3435   // The intention here is to find diamonds or triangles (see below) where each
3436   // conditional block contains a store to the same address. Both of these
3437   // stores are conditional, so they can't be unconditionally sunk. But it may
3438   // be profitable to speculatively sink the stores into one merged store at the
3439   // end, and predicate the merged store on the union of the two conditions of
3440   // PBI and QBI.
3441   //
3442   // This can reduce the number of stores executed if both of the conditions are
3443   // true, and can allow the blocks to become small enough to be if-converted.
3444   // This optimization will also chain, so that ladders of test-and-set
3445   // sequences can be if-converted away.
3446   //
3447   // We only deal with simple diamonds or triangles:
3448   //
3449   //     PBI       or      PBI        or a combination of the two
3450   //    /   \               | \
3451   //   PTB  PFB             |  PFB
3452   //    \   /               | /
3453   //     QBI                QBI
3454   //    /  \                | \
3455   //   QTB  QFB             |  QFB
3456   //    \  /                | /
3457   //    PostBB            PostBB
3458   //
3459   // We model triangles as a type of diamond with a nullptr "true" block.
3460   // Triangles are canonicalized so that the fallthrough edge is represented by
3461   // a true condition, as in the diagram above.
3462   BasicBlock *PTB = PBI->getSuccessor(0);
3463   BasicBlock *PFB = PBI->getSuccessor(1);
3464   BasicBlock *QTB = QBI->getSuccessor(0);
3465   BasicBlock *QFB = QBI->getSuccessor(1);
3466   BasicBlock *PostBB = QFB->getSingleSuccessor();
3467 
3468   // Make sure we have a good guess for PostBB. If QTB's only successor is
3469   // QFB, then QFB is a better PostBB.
3470   if (QTB->getSingleSuccessor() == QFB)
3471     PostBB = QFB;
3472 
3473   // If we couldn't find a good PostBB, stop.
3474   if (!PostBB)
3475     return false;
3476 
3477   bool InvertPCond = false, InvertQCond = false;
3478   // Canonicalize fallthroughs to the true branches.
3479   if (PFB == QBI->getParent()) {
3480     std::swap(PFB, PTB);
3481     InvertPCond = true;
3482   }
3483   if (QFB == PostBB) {
3484     std::swap(QFB, QTB);
3485     InvertQCond = true;
3486   }
3487 
3488   // From this point on we can assume PTB or QTB may be fallthroughs but PFB
3489   // and QFB may not. Model fallthroughs as a nullptr block.
3490   if (PTB == QBI->getParent())
3491     PTB = nullptr;
3492   if (QTB == PostBB)
3493     QTB = nullptr;
3494 
3495   // Legality bailouts. We must have at least the non-fallthrough blocks and
3496   // the post-dominating block, and the non-fallthroughs must only have one
3497   // predecessor.
3498   auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) {
3499     return BB->getSinglePredecessor() == P && BB->getSingleSuccessor() == S;
3500   };
3501   if (!HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) ||
3502       !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB))
3503     return false;
3504   if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) ||
3505       (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB)))
3506     return false;
3507   if (!QBI->getParent()->hasNUses(2))
3508     return false;
3509 
3510   // OK, this is a sequence of two diamonds or triangles.
3511   // Check if there are stores in PTB or PFB that are repeated in QTB or QFB.
3512   SmallPtrSet<Value *, 4> PStoreAddresses, QStoreAddresses;
3513   for (auto *BB : {PTB, PFB}) {
3514     if (!BB)
3515       continue;
3516     for (auto &I : *BB)
3517       if (StoreInst *SI = dyn_cast<StoreInst>(&I))
3518         PStoreAddresses.insert(SI->getPointerOperand());
3519   }
3520   for (auto *BB : {QTB, QFB}) {
3521     if (!BB)
3522       continue;
3523     for (auto &I : *BB)
3524       if (StoreInst *SI = dyn_cast<StoreInst>(&I))
3525         QStoreAddresses.insert(SI->getPointerOperand());
3526   }
3527 
3528   set_intersect(PStoreAddresses, QStoreAddresses);
3529   // set_intersect mutates PStoreAddresses in place. Rename it here to make it
3530   // clear what it contains.
3531   auto &CommonAddresses = PStoreAddresses;
3532 
3533   bool Changed = false;
3534   for (auto *Address : CommonAddresses)
3535     Changed |=
3536         mergeConditionalStoreToAddress(PTB, PFB, QTB, QFB, PostBB, Address,
3537                                        InvertPCond, InvertQCond, DTU, DL, TTI);
3538   return Changed;
3539 }
3540 
3541 /// If the previous block ended with a widenable branch, determine if reusing
3542 /// the target block is profitable and legal.  This will have the effect of
3543 /// "widening" PBI, but doesn't require us to reason about hosting safety.
3544 static bool tryWidenCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI,
3545                                            DomTreeUpdater *DTU) {
3546   // TODO: This can be generalized in two important ways:
3547   // 1) We can allow phi nodes in IfFalseBB and simply reuse all the input
3548   //    values from the PBI edge.
3549   // 2) We can sink side effecting instructions into BI's fallthrough
3550   //    successor provided they doesn't contribute to computation of
3551   //    BI's condition.
3552   Value *CondWB, *WC;
3553   BasicBlock *IfTrueBB, *IfFalseBB;
3554   if (!parseWidenableBranch(PBI, CondWB, WC, IfTrueBB, IfFalseBB) ||
3555       IfTrueBB != BI->getParent() || !BI->getParent()->getSinglePredecessor())
3556     return false;
3557   if (!IfFalseBB->phis().empty())
3558     return false; // TODO
3559   // Use lambda to lazily compute expensive condition after cheap ones.
3560   auto NoSideEffects = [](BasicBlock &BB) {
3561     return !llvm::any_of(BB, [](const Instruction &I) {
3562         return I.mayWriteToMemory() || I.mayHaveSideEffects();
3563       });
3564   };
3565   if (BI->getSuccessor(1) != IfFalseBB && // no inf looping
3566       BI->getSuccessor(1)->getTerminatingDeoptimizeCall() && // profitability
3567       NoSideEffects(*BI->getParent())) {
3568     auto *OldSuccessor = BI->getSuccessor(1);
3569     OldSuccessor->removePredecessor(BI->getParent());
3570     BI->setSuccessor(1, IfFalseBB);
3571     if (DTU)
3572       DTU->applyUpdates(
3573           {{DominatorTree::Insert, BI->getParent(), IfFalseBB},
3574            {DominatorTree::Delete, BI->getParent(), OldSuccessor}});
3575     return true;
3576   }
3577   if (BI->getSuccessor(0) != IfFalseBB && // no inf looping
3578       BI->getSuccessor(0)->getTerminatingDeoptimizeCall() && // profitability
3579       NoSideEffects(*BI->getParent())) {
3580     auto *OldSuccessor = BI->getSuccessor(0);
3581     OldSuccessor->removePredecessor(BI->getParent());
3582     BI->setSuccessor(0, IfFalseBB);
3583     if (DTU)
3584       DTU->applyUpdates(
3585           {{DominatorTree::Insert, BI->getParent(), IfFalseBB},
3586            {DominatorTree::Delete, BI->getParent(), OldSuccessor}});
3587     return true;
3588   }
3589   return false;
3590 }
3591 
3592 /// If we have a conditional branch as a predecessor of another block,
3593 /// this function tries to simplify it.  We know
3594 /// that PBI and BI are both conditional branches, and BI is in one of the
3595 /// successor blocks of PBI - PBI branches to BI.
3596 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI,
3597                                            DomTreeUpdater *DTU,
3598                                            const DataLayout &DL,
3599                                            const TargetTransformInfo &TTI) {
3600   assert(PBI->isConditional() && BI->isConditional());
3601   BasicBlock *BB = BI->getParent();
3602 
3603   // If this block ends with a branch instruction, and if there is a
3604   // predecessor that ends on a branch of the same condition, make
3605   // this conditional branch redundant.
3606   if (PBI->getCondition() == BI->getCondition() &&
3607       PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
3608     // Okay, the outcome of this conditional branch is statically
3609     // knowable.  If this block had a single pred, handle specially.
3610     if (BB->getSinglePredecessor()) {
3611       // Turn this into a branch on constant.
3612       bool CondIsTrue = PBI->getSuccessor(0) == BB;
3613       BI->setCondition(
3614           ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue));
3615       return true; // Nuke the branch on constant.
3616     }
3617 
3618     // Otherwise, if there are multiple predecessors, insert a PHI that merges
3619     // in the constant and simplify the block result.  Subsequent passes of
3620     // simplifycfg will thread the block.
3621     if (BlockIsSimpleEnoughToThreadThrough(BB)) {
3622       pred_iterator PB = pred_begin(BB), PE = pred_end(BB);
3623       PHINode *NewPN = PHINode::Create(
3624           Type::getInt1Ty(BB->getContext()), std::distance(PB, PE),
3625           BI->getCondition()->getName() + ".pr", &BB->front());
3626       // Okay, we're going to insert the PHI node.  Since PBI is not the only
3627       // predecessor, compute the PHI'd conditional value for all of the preds.
3628       // Any predecessor where the condition is not computable we keep symbolic.
3629       for (pred_iterator PI = PB; PI != PE; ++PI) {
3630         BasicBlock *P = *PI;
3631         if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) && PBI != BI &&
3632             PBI->isConditional() && PBI->getCondition() == BI->getCondition() &&
3633             PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
3634           bool CondIsTrue = PBI->getSuccessor(0) == BB;
3635           NewPN->addIncoming(
3636               ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue),
3637               P);
3638         } else {
3639           NewPN->addIncoming(BI->getCondition(), P);
3640         }
3641       }
3642 
3643       BI->setCondition(NewPN);
3644       return true;
3645     }
3646   }
3647 
3648   // If the previous block ended with a widenable branch, determine if reusing
3649   // the target block is profitable and legal.  This will have the effect of
3650   // "widening" PBI, but doesn't require us to reason about hosting safety.
3651   if (tryWidenCondBranchToCondBranch(PBI, BI, DTU))
3652     return true;
3653 
3654   if (auto *CE = dyn_cast<ConstantExpr>(BI->getCondition()))
3655     if (CE->canTrap())
3656       return false;
3657 
3658   // If both branches are conditional and both contain stores to the same
3659   // address, remove the stores from the conditionals and create a conditional
3660   // merged store at the end.
3661   if (MergeCondStores && mergeConditionalStores(PBI, BI, DTU, DL, TTI))
3662     return true;
3663 
3664   // If this is a conditional branch in an empty block, and if any
3665   // predecessors are a conditional branch to one of our destinations,
3666   // fold the conditions into logical ops and one cond br.
3667 
3668   // Ignore dbg intrinsics.
3669   if (&*BB->instructionsWithoutDebug().begin() != BI)
3670     return false;
3671 
3672   int PBIOp, BIOp;
3673   if (PBI->getSuccessor(0) == BI->getSuccessor(0)) {
3674     PBIOp = 0;
3675     BIOp = 0;
3676   } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) {
3677     PBIOp = 0;
3678     BIOp = 1;
3679   } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) {
3680     PBIOp = 1;
3681     BIOp = 0;
3682   } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) {
3683     PBIOp = 1;
3684     BIOp = 1;
3685   } else {
3686     return false;
3687   }
3688 
3689   // Check to make sure that the other destination of this branch
3690   // isn't BB itself.  If so, this is an infinite loop that will
3691   // keep getting unwound.
3692   if (PBI->getSuccessor(PBIOp) == BB)
3693     return false;
3694 
3695   // Do not perform this transformation if it would require
3696   // insertion of a large number of select instructions. For targets
3697   // without predication/cmovs, this is a big pessimization.
3698 
3699   // Also do not perform this transformation if any phi node in the common
3700   // destination block can trap when reached by BB or PBB (PR17073). In that
3701   // case, it would be unsafe to hoist the operation into a select instruction.
3702 
3703   BasicBlock *CommonDest = PBI->getSuccessor(PBIOp);
3704   BasicBlock *RemovedDest = PBI->getSuccessor(PBIOp ^ 1);
3705   unsigned NumPhis = 0;
3706   for (BasicBlock::iterator II = CommonDest->begin(); isa<PHINode>(II);
3707        ++II, ++NumPhis) {
3708     if (NumPhis > 2) // Disable this xform.
3709       return false;
3710 
3711     PHINode *PN = cast<PHINode>(II);
3712     Value *BIV = PN->getIncomingValueForBlock(BB);
3713     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BIV))
3714       if (CE->canTrap())
3715         return false;
3716 
3717     unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
3718     Value *PBIV = PN->getIncomingValue(PBBIdx);
3719     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(PBIV))
3720       if (CE->canTrap())
3721         return false;
3722   }
3723 
3724   // Finally, if everything is ok, fold the branches to logical ops.
3725   BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1);
3726 
3727   LLVM_DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent()
3728                     << "AND: " << *BI->getParent());
3729 
3730   SmallVector<DominatorTree::UpdateType, 5> Updates;
3731 
3732   // If OtherDest *is* BB, then BB is a basic block with a single conditional
3733   // branch in it, where one edge (OtherDest) goes back to itself but the other
3734   // exits.  We don't *know* that the program avoids the infinite loop
3735   // (even though that seems likely).  If we do this xform naively, we'll end up
3736   // recursively unpeeling the loop.  Since we know that (after the xform is
3737   // done) that the block *is* infinite if reached, we just make it an obviously
3738   // infinite loop with no cond branch.
3739   if (OtherDest == BB) {
3740     // Insert it at the end of the function, because it's either code,
3741     // or it won't matter if it's hot. :)
3742     BasicBlock *InfLoopBlock =
3743         BasicBlock::Create(BB->getContext(), "infloop", BB->getParent());
3744     BranchInst::Create(InfLoopBlock, InfLoopBlock);
3745     if (DTU)
3746       Updates.push_back({DominatorTree::Insert, InfLoopBlock, InfLoopBlock});
3747     OtherDest = InfLoopBlock;
3748   }
3749 
3750   LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent());
3751 
3752   // BI may have other predecessors.  Because of this, we leave
3753   // it alone, but modify PBI.
3754 
3755   // Make sure we get to CommonDest on True&True directions.
3756   Value *PBICond = PBI->getCondition();
3757   IRBuilder<NoFolder> Builder(PBI);
3758   if (PBIOp)
3759     PBICond = Builder.CreateNot(PBICond, PBICond->getName() + ".not");
3760 
3761   Value *BICond = BI->getCondition();
3762   if (BIOp)
3763     BICond = Builder.CreateNot(BICond, BICond->getName() + ".not");
3764 
3765   // Merge the conditions.
3766   Value *Cond =
3767       createLogicalOp(Builder, Instruction::Or, PBICond, BICond, "brmerge");
3768 
3769   // Modify PBI to branch on the new condition to the new dests.
3770   PBI->setCondition(Cond);
3771   PBI->setSuccessor(0, CommonDest);
3772   PBI->setSuccessor(1, OtherDest);
3773 
3774   if (DTU) {
3775     Updates.push_back({DominatorTree::Insert, PBI->getParent(), OtherDest});
3776     Updates.push_back({DominatorTree::Delete, PBI->getParent(), RemovedDest});
3777 
3778     DTU->applyUpdates(Updates);
3779   }
3780 
3781   // Update branch weight for PBI.
3782   uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
3783   uint64_t PredCommon, PredOther, SuccCommon, SuccOther;
3784   bool HasWeights =
3785       extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
3786                              SuccTrueWeight, SuccFalseWeight);
3787   if (HasWeights) {
3788     PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
3789     PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
3790     SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
3791     SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
3792     // The weight to CommonDest should be PredCommon * SuccTotal +
3793     //                                    PredOther * SuccCommon.
3794     // The weight to OtherDest should be PredOther * SuccOther.
3795     uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) +
3796                                   PredOther * SuccCommon,
3797                               PredOther * SuccOther};
3798     // Halve the weights if any of them cannot fit in an uint32_t
3799     FitWeights(NewWeights);
3800 
3801     setBranchWeights(PBI, NewWeights[0], NewWeights[1]);
3802   }
3803 
3804   // OtherDest may have phi nodes.  If so, add an entry from PBI's
3805   // block that are identical to the entries for BI's block.
3806   AddPredecessorToBlock(OtherDest, PBI->getParent(), BB);
3807 
3808   // We know that the CommonDest already had an edge from PBI to
3809   // it.  If it has PHIs though, the PHIs may have different
3810   // entries for BB and PBI's BB.  If so, insert a select to make
3811   // them agree.
3812   for (PHINode &PN : CommonDest->phis()) {
3813     Value *BIV = PN.getIncomingValueForBlock(BB);
3814     unsigned PBBIdx = PN.getBasicBlockIndex(PBI->getParent());
3815     Value *PBIV = PN.getIncomingValue(PBBIdx);
3816     if (BIV != PBIV) {
3817       // Insert a select in PBI to pick the right value.
3818       SelectInst *NV = cast<SelectInst>(
3819           Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName() + ".mux"));
3820       PN.setIncomingValue(PBBIdx, NV);
3821       // Although the select has the same condition as PBI, the original branch
3822       // weights for PBI do not apply to the new select because the select's
3823       // 'logical' edges are incoming edges of the phi that is eliminated, not
3824       // the outgoing edges of PBI.
3825       if (HasWeights) {
3826         uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
3827         uint64_t PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
3828         uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
3829         uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
3830         // The weight to PredCommonDest should be PredCommon * SuccTotal.
3831         // The weight to PredOtherDest should be PredOther * SuccCommon.
3832         uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther),
3833                                   PredOther * SuccCommon};
3834 
3835         FitWeights(NewWeights);
3836 
3837         setBranchWeights(NV, NewWeights[0], NewWeights[1]);
3838       }
3839     }
3840   }
3841 
3842   LLVM_DEBUG(dbgs() << "INTO: " << *PBI->getParent());
3843   LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent());
3844 
3845   // This basic block is probably dead.  We know it has at least
3846   // one fewer predecessor.
3847   return true;
3848 }
3849 
3850 // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is
3851 // true or to FalseBB if Cond is false.
3852 // Takes care of updating the successors and removing the old terminator.
3853 // Also makes sure not to introduce new successors by assuming that edges to
3854 // non-successor TrueBBs and FalseBBs aren't reachable.
3855 bool SimplifyCFGOpt::SimplifyTerminatorOnSelect(Instruction *OldTerm,
3856                                                 Value *Cond, BasicBlock *TrueBB,
3857                                                 BasicBlock *FalseBB,
3858                                                 uint32_t TrueWeight,
3859                                                 uint32_t FalseWeight) {
3860   auto *BB = OldTerm->getParent();
3861   // Remove any superfluous successor edges from the CFG.
3862   // First, figure out which successors to preserve.
3863   // If TrueBB and FalseBB are equal, only try to preserve one copy of that
3864   // successor.
3865   BasicBlock *KeepEdge1 = TrueBB;
3866   BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr;
3867 
3868   SmallPtrSet<BasicBlock *, 2> RemovedSuccessors;
3869 
3870   // Then remove the rest.
3871   for (BasicBlock *Succ : successors(OldTerm)) {
3872     // Make sure only to keep exactly one copy of each edge.
3873     if (Succ == KeepEdge1)
3874       KeepEdge1 = nullptr;
3875     else if (Succ == KeepEdge2)
3876       KeepEdge2 = nullptr;
3877     else {
3878       Succ->removePredecessor(BB,
3879                               /*KeepOneInputPHIs=*/true);
3880 
3881       if (Succ != TrueBB && Succ != FalseBB)
3882         RemovedSuccessors.insert(Succ);
3883     }
3884   }
3885 
3886   IRBuilder<> Builder(OldTerm);
3887   Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc());
3888 
3889   // Insert an appropriate new terminator.
3890   if (!KeepEdge1 && !KeepEdge2) {
3891     if (TrueBB == FalseBB) {
3892       // We were only looking for one successor, and it was present.
3893       // Create an unconditional branch to it.
3894       Builder.CreateBr(TrueBB);
3895     } else {
3896       // We found both of the successors we were looking for.
3897       // Create a conditional branch sharing the condition of the select.
3898       BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB);
3899       if (TrueWeight != FalseWeight)
3900         setBranchWeights(NewBI, TrueWeight, FalseWeight);
3901     }
3902   } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) {
3903     // Neither of the selected blocks were successors, so this
3904     // terminator must be unreachable.
3905     new UnreachableInst(OldTerm->getContext(), OldTerm);
3906   } else {
3907     // One of the selected values was a successor, but the other wasn't.
3908     // Insert an unconditional branch to the one that was found;
3909     // the edge to the one that wasn't must be unreachable.
3910     if (!KeepEdge1) {
3911       // Only TrueBB was found.
3912       Builder.CreateBr(TrueBB);
3913     } else {
3914       // Only FalseBB was found.
3915       Builder.CreateBr(FalseBB);
3916     }
3917   }
3918 
3919   EraseTerminatorAndDCECond(OldTerm);
3920 
3921   if (DTU) {
3922     SmallVector<DominatorTree::UpdateType, 2> Updates;
3923     Updates.reserve(RemovedSuccessors.size());
3924     for (auto *RemovedSuccessor : RemovedSuccessors)
3925       Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor});
3926     DTU->applyUpdates(Updates);
3927   }
3928 
3929   return true;
3930 }
3931 
3932 // Replaces
3933 //   (switch (select cond, X, Y)) on constant X, Y
3934 // with a branch - conditional if X and Y lead to distinct BBs,
3935 // unconditional otherwise.
3936 bool SimplifyCFGOpt::SimplifySwitchOnSelect(SwitchInst *SI,
3937                                             SelectInst *Select) {
3938   // Check for constant integer values in the select.
3939   ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue());
3940   ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue());
3941   if (!TrueVal || !FalseVal)
3942     return false;
3943 
3944   // Find the relevant condition and destinations.
3945   Value *Condition = Select->getCondition();
3946   BasicBlock *TrueBB = SI->findCaseValue(TrueVal)->getCaseSuccessor();
3947   BasicBlock *FalseBB = SI->findCaseValue(FalseVal)->getCaseSuccessor();
3948 
3949   // Get weight for TrueBB and FalseBB.
3950   uint32_t TrueWeight = 0, FalseWeight = 0;
3951   SmallVector<uint64_t, 8> Weights;
3952   bool HasWeights = HasBranchWeights(SI);
3953   if (HasWeights) {
3954     GetBranchWeights(SI, Weights);
3955     if (Weights.size() == 1 + SI->getNumCases()) {
3956       TrueWeight =
3957           (uint32_t)Weights[SI->findCaseValue(TrueVal)->getSuccessorIndex()];
3958       FalseWeight =
3959           (uint32_t)Weights[SI->findCaseValue(FalseVal)->getSuccessorIndex()];
3960     }
3961   }
3962 
3963   // Perform the actual simplification.
3964   return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, TrueWeight,
3965                                     FalseWeight);
3966 }
3967 
3968 // Replaces
3969 //   (indirectbr (select cond, blockaddress(@fn, BlockA),
3970 //                             blockaddress(@fn, BlockB)))
3971 // with
3972 //   (br cond, BlockA, BlockB).
3973 bool SimplifyCFGOpt::SimplifyIndirectBrOnSelect(IndirectBrInst *IBI,
3974                                                 SelectInst *SI) {
3975   // Check that both operands of the select are block addresses.
3976   BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue());
3977   BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue());
3978   if (!TBA || !FBA)
3979     return false;
3980 
3981   // Extract the actual blocks.
3982   BasicBlock *TrueBB = TBA->getBasicBlock();
3983   BasicBlock *FalseBB = FBA->getBasicBlock();
3984 
3985   // Perform the actual simplification.
3986   return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 0,
3987                                     0);
3988 }
3989 
3990 /// This is called when we find an icmp instruction
3991 /// (a seteq/setne with a constant) as the only instruction in a
3992 /// block that ends with an uncond branch.  We are looking for a very specific
3993 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified.  In
3994 /// this case, we merge the first two "or's of icmp" into a switch, but then the
3995 /// default value goes to an uncond block with a seteq in it, we get something
3996 /// like:
3997 ///
3998 ///   switch i8 %A, label %DEFAULT [ i8 1, label %end    i8 2, label %end ]
3999 /// DEFAULT:
4000 ///   %tmp = icmp eq i8 %A, 92
4001 ///   br label %end
4002 /// end:
4003 ///   ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ]
4004 ///
4005 /// We prefer to split the edge to 'end' so that there is a true/false entry to
4006 /// the PHI, merging the third icmp into the switch.
4007 bool SimplifyCFGOpt::tryToSimplifyUncondBranchWithICmpInIt(
4008     ICmpInst *ICI, IRBuilder<> &Builder) {
4009   BasicBlock *BB = ICI->getParent();
4010 
4011   // If the block has any PHIs in it or the icmp has multiple uses, it is too
4012   // complex.
4013   if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse())
4014     return false;
4015 
4016   Value *V = ICI->getOperand(0);
4017   ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1));
4018 
4019   // The pattern we're looking for is where our only predecessor is a switch on
4020   // 'V' and this block is the default case for the switch.  In this case we can
4021   // fold the compared value into the switch to simplify things.
4022   BasicBlock *Pred = BB->getSinglePredecessor();
4023   if (!Pred || !isa<SwitchInst>(Pred->getTerminator()))
4024     return false;
4025 
4026   SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator());
4027   if (SI->getCondition() != V)
4028     return false;
4029 
4030   // If BB is reachable on a non-default case, then we simply know the value of
4031   // V in this block.  Substitute it and constant fold the icmp instruction
4032   // away.
4033   if (SI->getDefaultDest() != BB) {
4034     ConstantInt *VVal = SI->findCaseDest(BB);
4035     assert(VVal && "Should have a unique destination value");
4036     ICI->setOperand(0, VVal);
4037 
4038     if (Value *V = SimplifyInstruction(ICI, {DL, ICI})) {
4039       ICI->replaceAllUsesWith(V);
4040       ICI->eraseFromParent();
4041     }
4042     // BB is now empty, so it is likely to simplify away.
4043     return requestResimplify();
4044   }
4045 
4046   // Ok, the block is reachable from the default dest.  If the constant we're
4047   // comparing exists in one of the other edges, then we can constant fold ICI
4048   // and zap it.
4049   if (SI->findCaseValue(Cst) != SI->case_default()) {
4050     Value *V;
4051     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
4052       V = ConstantInt::getFalse(BB->getContext());
4053     else
4054       V = ConstantInt::getTrue(BB->getContext());
4055 
4056     ICI->replaceAllUsesWith(V);
4057     ICI->eraseFromParent();
4058     // BB is now empty, so it is likely to simplify away.
4059     return requestResimplify();
4060   }
4061 
4062   // The use of the icmp has to be in the 'end' block, by the only PHI node in
4063   // the block.
4064   BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0);
4065   PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back());
4066   if (PHIUse == nullptr || PHIUse != &SuccBlock->front() ||
4067       isa<PHINode>(++BasicBlock::iterator(PHIUse)))
4068     return false;
4069 
4070   // If the icmp is a SETEQ, then the default dest gets false, the new edge gets
4071   // true in the PHI.
4072   Constant *DefaultCst = ConstantInt::getTrue(BB->getContext());
4073   Constant *NewCst = ConstantInt::getFalse(BB->getContext());
4074 
4075   if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
4076     std::swap(DefaultCst, NewCst);
4077 
4078   // Replace ICI (which is used by the PHI for the default value) with true or
4079   // false depending on if it is EQ or NE.
4080   ICI->replaceAllUsesWith(DefaultCst);
4081   ICI->eraseFromParent();
4082 
4083   SmallVector<DominatorTree::UpdateType, 2> Updates;
4084 
4085   // Okay, the switch goes to this block on a default value.  Add an edge from
4086   // the switch to the merge point on the compared value.
4087   BasicBlock *NewBB =
4088       BasicBlock::Create(BB->getContext(), "switch.edge", BB->getParent(), BB);
4089   {
4090     SwitchInstProfUpdateWrapper SIW(*SI);
4091     auto W0 = SIW.getSuccessorWeight(0);
4092     SwitchInstProfUpdateWrapper::CaseWeightOpt NewW;
4093     if (W0) {
4094       NewW = ((uint64_t(*W0) + 1) >> 1);
4095       SIW.setSuccessorWeight(0, *NewW);
4096     }
4097     SIW.addCase(Cst, NewBB, NewW);
4098     if (DTU)
4099       Updates.push_back({DominatorTree::Insert, Pred, NewBB});
4100   }
4101 
4102   // NewBB branches to the phi block, add the uncond branch and the phi entry.
4103   Builder.SetInsertPoint(NewBB);
4104   Builder.SetCurrentDebugLocation(SI->getDebugLoc());
4105   Builder.CreateBr(SuccBlock);
4106   PHIUse->addIncoming(NewCst, NewBB);
4107   if (DTU) {
4108     Updates.push_back({DominatorTree::Insert, NewBB, SuccBlock});
4109     DTU->applyUpdates(Updates);
4110   }
4111   return true;
4112 }
4113 
4114 /// The specified branch is a conditional branch.
4115 /// Check to see if it is branching on an or/and chain of icmp instructions, and
4116 /// fold it into a switch instruction if so.
4117 bool SimplifyCFGOpt::SimplifyBranchOnICmpChain(BranchInst *BI,
4118                                                IRBuilder<> &Builder,
4119                                                const DataLayout &DL) {
4120   Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
4121   if (!Cond)
4122     return false;
4123 
4124   // Change br (X == 0 | X == 1), T, F into a switch instruction.
4125   // If this is a bunch of seteq's or'd together, or if it's a bunch of
4126   // 'setne's and'ed together, collect them.
4127 
4128   // Try to gather values from a chain of and/or to be turned into a switch
4129   ConstantComparesGatherer ConstantCompare(Cond, DL);
4130   // Unpack the result
4131   SmallVectorImpl<ConstantInt *> &Values = ConstantCompare.Vals;
4132   Value *CompVal = ConstantCompare.CompValue;
4133   unsigned UsedICmps = ConstantCompare.UsedICmps;
4134   Value *ExtraCase = ConstantCompare.Extra;
4135 
4136   // If we didn't have a multiply compared value, fail.
4137   if (!CompVal)
4138     return false;
4139 
4140   // Avoid turning single icmps into a switch.
4141   if (UsedICmps <= 1)
4142     return false;
4143 
4144   bool TrueWhenEqual = match(Cond, m_LogicalOr(m_Value(), m_Value()));
4145 
4146   // There might be duplicate constants in the list, which the switch
4147   // instruction can't handle, remove them now.
4148   array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate);
4149   Values.erase(std::unique(Values.begin(), Values.end()), Values.end());
4150 
4151   // If Extra was used, we require at least two switch values to do the
4152   // transformation.  A switch with one value is just a conditional branch.
4153   if (ExtraCase && Values.size() < 2)
4154     return false;
4155 
4156   // TODO: Preserve branch weight metadata, similarly to how
4157   // FoldValueComparisonIntoPredecessors preserves it.
4158 
4159   // Figure out which block is which destination.
4160   BasicBlock *DefaultBB = BI->getSuccessor(1);
4161   BasicBlock *EdgeBB = BI->getSuccessor(0);
4162   if (!TrueWhenEqual)
4163     std::swap(DefaultBB, EdgeBB);
4164 
4165   BasicBlock *BB = BI->getParent();
4166 
4167   LLVM_DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size()
4168                     << " cases into SWITCH.  BB is:\n"
4169                     << *BB);
4170 
4171   SmallVector<DominatorTree::UpdateType, 2> Updates;
4172 
4173   // If there are any extra values that couldn't be folded into the switch
4174   // then we evaluate them with an explicit branch first. Split the block
4175   // right before the condbr to handle it.
4176   if (ExtraCase) {
4177     BasicBlock *NewBB = SplitBlock(BB, BI, DTU, /*LI=*/nullptr,
4178                                    /*MSSAU=*/nullptr, "switch.early.test");
4179 
4180     // Remove the uncond branch added to the old block.
4181     Instruction *OldTI = BB->getTerminator();
4182     Builder.SetInsertPoint(OldTI);
4183 
4184     // There can be an unintended UB if extra values are Poison. Before the
4185     // transformation, extra values may not be evaluated according to the
4186     // condition, and it will not raise UB. But after transformation, we are
4187     // evaluating extra values before checking the condition, and it will raise
4188     // UB. It can be solved by adding freeze instruction to extra values.
4189     AssumptionCache *AC = Options.AC;
4190 
4191     if (!isGuaranteedNotToBeUndefOrPoison(ExtraCase, AC, BI, nullptr))
4192       ExtraCase = Builder.CreateFreeze(ExtraCase);
4193 
4194     if (TrueWhenEqual)
4195       Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB);
4196     else
4197       Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB);
4198 
4199     OldTI->eraseFromParent();
4200 
4201     if (DTU)
4202       Updates.push_back({DominatorTree::Insert, BB, EdgeBB});
4203 
4204     // If there are PHI nodes in EdgeBB, then we need to add a new entry to them
4205     // for the edge we just added.
4206     AddPredecessorToBlock(EdgeBB, BB, NewBB);
4207 
4208     LLVM_DEBUG(dbgs() << "  ** 'icmp' chain unhandled condition: " << *ExtraCase
4209                       << "\nEXTRABB = " << *BB);
4210     BB = NewBB;
4211   }
4212 
4213   Builder.SetInsertPoint(BI);
4214   // Convert pointer to int before we switch.
4215   if (CompVal->getType()->isPointerTy()) {
4216     CompVal = Builder.CreatePtrToInt(
4217         CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr");
4218   }
4219 
4220   // Create the new switch instruction now.
4221   SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size());
4222 
4223   // Add all of the 'cases' to the switch instruction.
4224   for (unsigned i = 0, e = Values.size(); i != e; ++i)
4225     New->addCase(Values[i], EdgeBB);
4226 
4227   // We added edges from PI to the EdgeBB.  As such, if there were any
4228   // PHI nodes in EdgeBB, they need entries to be added corresponding to
4229   // the number of edges added.
4230   for (BasicBlock::iterator BBI = EdgeBB->begin(); isa<PHINode>(BBI); ++BBI) {
4231     PHINode *PN = cast<PHINode>(BBI);
4232     Value *InVal = PN->getIncomingValueForBlock(BB);
4233     for (unsigned i = 0, e = Values.size() - 1; i != e; ++i)
4234       PN->addIncoming(InVal, BB);
4235   }
4236 
4237   // Erase the old branch instruction.
4238   EraseTerminatorAndDCECond(BI);
4239   if (DTU)
4240     DTU->applyUpdates(Updates);
4241 
4242   LLVM_DEBUG(dbgs() << "  ** 'icmp' chain result is:\n" << *BB << '\n');
4243   return true;
4244 }
4245 
4246 bool SimplifyCFGOpt::simplifyResume(ResumeInst *RI, IRBuilder<> &Builder) {
4247   if (isa<PHINode>(RI->getValue()))
4248     return simplifyCommonResume(RI);
4249   else if (isa<LandingPadInst>(RI->getParent()->getFirstNonPHI()) &&
4250            RI->getValue() == RI->getParent()->getFirstNonPHI())
4251     // The resume must unwind the exception that caused control to branch here.
4252     return simplifySingleResume(RI);
4253 
4254   return false;
4255 }
4256 
4257 // Check if cleanup block is empty
4258 static bool isCleanupBlockEmpty(iterator_range<BasicBlock::iterator> R) {
4259   for (Instruction &I : R) {
4260     auto *II = dyn_cast<IntrinsicInst>(&I);
4261     if (!II)
4262       return false;
4263 
4264     Intrinsic::ID IntrinsicID = II->getIntrinsicID();
4265     switch (IntrinsicID) {
4266     case Intrinsic::dbg_declare:
4267     case Intrinsic::dbg_value:
4268     case Intrinsic::dbg_label:
4269     case Intrinsic::lifetime_end:
4270       break;
4271     default:
4272       return false;
4273     }
4274   }
4275   return true;
4276 }
4277 
4278 // Simplify resume that is shared by several landing pads (phi of landing pad).
4279 bool SimplifyCFGOpt::simplifyCommonResume(ResumeInst *RI) {
4280   BasicBlock *BB = RI->getParent();
4281 
4282   // Check that there are no other instructions except for debug and lifetime
4283   // intrinsics between the phi's and resume instruction.
4284   if (!isCleanupBlockEmpty(
4285           make_range(RI->getParent()->getFirstNonPHI(), BB->getTerminator())))
4286     return false;
4287 
4288   SmallSetVector<BasicBlock *, 4> TrivialUnwindBlocks;
4289   auto *PhiLPInst = cast<PHINode>(RI->getValue());
4290 
4291   // Check incoming blocks to see if any of them are trivial.
4292   for (unsigned Idx = 0, End = PhiLPInst->getNumIncomingValues(); Idx != End;
4293        Idx++) {
4294     auto *IncomingBB = PhiLPInst->getIncomingBlock(Idx);
4295     auto *IncomingValue = PhiLPInst->getIncomingValue(Idx);
4296 
4297     // If the block has other successors, we can not delete it because
4298     // it has other dependents.
4299     if (IncomingBB->getUniqueSuccessor() != BB)
4300       continue;
4301 
4302     auto *LandingPad = dyn_cast<LandingPadInst>(IncomingBB->getFirstNonPHI());
4303     // Not the landing pad that caused the control to branch here.
4304     if (IncomingValue != LandingPad)
4305       continue;
4306 
4307     if (isCleanupBlockEmpty(
4308             make_range(LandingPad->getNextNode(), IncomingBB->getTerminator())))
4309       TrivialUnwindBlocks.insert(IncomingBB);
4310   }
4311 
4312   // If no trivial unwind blocks, don't do any simplifications.
4313   if (TrivialUnwindBlocks.empty())
4314     return false;
4315 
4316   // Turn all invokes that unwind here into calls.
4317   for (auto *TrivialBB : TrivialUnwindBlocks) {
4318     // Blocks that will be simplified should be removed from the phi node.
4319     // Note there could be multiple edges to the resume block, and we need
4320     // to remove them all.
4321     while (PhiLPInst->getBasicBlockIndex(TrivialBB) != -1)
4322       BB->removePredecessor(TrivialBB, true);
4323 
4324     for (BasicBlock *Pred :
4325          llvm::make_early_inc_range(predecessors(TrivialBB))) {
4326       removeUnwindEdge(Pred, DTU);
4327       ++NumInvokes;
4328     }
4329 
4330     // In each SimplifyCFG run, only the current processed block can be erased.
4331     // Otherwise, it will break the iteration of SimplifyCFG pass. So instead
4332     // of erasing TrivialBB, we only remove the branch to the common resume
4333     // block so that we can later erase the resume block since it has no
4334     // predecessors.
4335     TrivialBB->getTerminator()->eraseFromParent();
4336     new UnreachableInst(RI->getContext(), TrivialBB);
4337     if (DTU)
4338       DTU->applyUpdates({{DominatorTree::Delete, TrivialBB, BB}});
4339   }
4340 
4341   // Delete the resume block if all its predecessors have been removed.
4342   if (pred_empty(BB))
4343     DeleteDeadBlock(BB, DTU);
4344 
4345   return !TrivialUnwindBlocks.empty();
4346 }
4347 
4348 // Simplify resume that is only used by a single (non-phi) landing pad.
4349 bool SimplifyCFGOpt::simplifySingleResume(ResumeInst *RI) {
4350   BasicBlock *BB = RI->getParent();
4351   auto *LPInst = cast<LandingPadInst>(BB->getFirstNonPHI());
4352   assert(RI->getValue() == LPInst &&
4353          "Resume must unwind the exception that caused control to here");
4354 
4355   // Check that there are no other instructions except for debug intrinsics.
4356   if (!isCleanupBlockEmpty(
4357           make_range<Instruction *>(LPInst->getNextNode(), RI)))
4358     return false;
4359 
4360   // Turn all invokes that unwind here into calls and delete the basic block.
4361   for (BasicBlock *Pred : llvm::make_early_inc_range(predecessors(BB))) {
4362     removeUnwindEdge(Pred, DTU);
4363     ++NumInvokes;
4364   }
4365 
4366   // The landingpad is now unreachable.  Zap it.
4367   DeleteDeadBlock(BB, DTU);
4368   return true;
4369 }
4370 
4371 static bool removeEmptyCleanup(CleanupReturnInst *RI, DomTreeUpdater *DTU) {
4372   // If this is a trivial cleanup pad that executes no instructions, it can be
4373   // eliminated.  If the cleanup pad continues to the caller, any predecessor
4374   // that is an EH pad will be updated to continue to the caller and any
4375   // predecessor that terminates with an invoke instruction will have its invoke
4376   // instruction converted to a call instruction.  If the cleanup pad being
4377   // simplified does not continue to the caller, each predecessor will be
4378   // updated to continue to the unwind destination of the cleanup pad being
4379   // simplified.
4380   BasicBlock *BB = RI->getParent();
4381   CleanupPadInst *CPInst = RI->getCleanupPad();
4382   if (CPInst->getParent() != BB)
4383     // This isn't an empty cleanup.
4384     return false;
4385 
4386   // We cannot kill the pad if it has multiple uses.  This typically arises
4387   // from unreachable basic blocks.
4388   if (!CPInst->hasOneUse())
4389     return false;
4390 
4391   // Check that there are no other instructions except for benign intrinsics.
4392   if (!isCleanupBlockEmpty(
4393           make_range<Instruction *>(CPInst->getNextNode(), RI)))
4394     return false;
4395 
4396   // If the cleanup return we are simplifying unwinds to the caller, this will
4397   // set UnwindDest to nullptr.
4398   BasicBlock *UnwindDest = RI->getUnwindDest();
4399   Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr;
4400 
4401   // We're about to remove BB from the control flow.  Before we do, sink any
4402   // PHINodes into the unwind destination.  Doing this before changing the
4403   // control flow avoids some potentially slow checks, since we can currently
4404   // be certain that UnwindDest and BB have no common predecessors (since they
4405   // are both EH pads).
4406   if (UnwindDest) {
4407     // First, go through the PHI nodes in UnwindDest and update any nodes that
4408     // reference the block we are removing
4409     for (PHINode &DestPN : UnwindDest->phis()) {
4410       int Idx = DestPN.getBasicBlockIndex(BB);
4411       // Since BB unwinds to UnwindDest, it has to be in the PHI node.
4412       assert(Idx != -1);
4413       // This PHI node has an incoming value that corresponds to a control
4414       // path through the cleanup pad we are removing.  If the incoming
4415       // value is in the cleanup pad, it must be a PHINode (because we
4416       // verified above that the block is otherwise empty).  Otherwise, the
4417       // value is either a constant or a value that dominates the cleanup
4418       // pad being removed.
4419       //
4420       // Because BB and UnwindDest are both EH pads, all of their
4421       // predecessors must unwind to these blocks, and since no instruction
4422       // can have multiple unwind destinations, there will be no overlap in
4423       // incoming blocks between SrcPN and DestPN.
4424       Value *SrcVal = DestPN.getIncomingValue(Idx);
4425       PHINode *SrcPN = dyn_cast<PHINode>(SrcVal);
4426 
4427       bool NeedPHITranslation = SrcPN && SrcPN->getParent() == BB;
4428       for (auto *Pred : predecessors(BB)) {
4429         Value *Incoming =
4430             NeedPHITranslation ? SrcPN->getIncomingValueForBlock(Pred) : SrcVal;
4431         DestPN.addIncoming(Incoming, Pred);
4432       }
4433     }
4434 
4435     // Sink any remaining PHI nodes directly into UnwindDest.
4436     Instruction *InsertPt = DestEHPad;
4437     for (PHINode &PN : make_early_inc_range(BB->phis())) {
4438       if (PN.use_empty() || !PN.isUsedOutsideOfBlock(BB))
4439         // If the PHI node has no uses or all of its uses are in this basic
4440         // block (meaning they are debug or lifetime intrinsics), just leave
4441         // it.  It will be erased when we erase BB below.
4442         continue;
4443 
4444       // Otherwise, sink this PHI node into UnwindDest.
4445       // Any predecessors to UnwindDest which are not already represented
4446       // must be back edges which inherit the value from the path through
4447       // BB.  In this case, the PHI value must reference itself.
4448       for (auto *pred : predecessors(UnwindDest))
4449         if (pred != BB)
4450           PN.addIncoming(&PN, pred);
4451       PN.moveBefore(InsertPt);
4452       // Also, add a dummy incoming value for the original BB itself,
4453       // so that the PHI is well-formed until we drop said predecessor.
4454       PN.addIncoming(UndefValue::get(PN.getType()), BB);
4455     }
4456   }
4457 
4458   std::vector<DominatorTree::UpdateType> Updates;
4459 
4460   // We use make_early_inc_range here because we will remove all predecessors.
4461   for (BasicBlock *PredBB : llvm::make_early_inc_range(predecessors(BB))) {
4462     if (UnwindDest == nullptr) {
4463       if (DTU) {
4464         DTU->applyUpdates(Updates);
4465         Updates.clear();
4466       }
4467       removeUnwindEdge(PredBB, DTU);
4468       ++NumInvokes;
4469     } else {
4470       BB->removePredecessor(PredBB);
4471       Instruction *TI = PredBB->getTerminator();
4472       TI->replaceUsesOfWith(BB, UnwindDest);
4473       if (DTU) {
4474         Updates.push_back({DominatorTree::Insert, PredBB, UnwindDest});
4475         Updates.push_back({DominatorTree::Delete, PredBB, BB});
4476       }
4477     }
4478   }
4479 
4480   if (DTU)
4481     DTU->applyUpdates(Updates);
4482 
4483   DeleteDeadBlock(BB, DTU);
4484 
4485   return true;
4486 }
4487 
4488 // Try to merge two cleanuppads together.
4489 static bool mergeCleanupPad(CleanupReturnInst *RI) {
4490   // Skip any cleanuprets which unwind to caller, there is nothing to merge
4491   // with.
4492   BasicBlock *UnwindDest = RI->getUnwindDest();
4493   if (!UnwindDest)
4494     return false;
4495 
4496   // This cleanupret isn't the only predecessor of this cleanuppad, it wouldn't
4497   // be safe to merge without code duplication.
4498   if (UnwindDest->getSinglePredecessor() != RI->getParent())
4499     return false;
4500 
4501   // Verify that our cleanuppad's unwind destination is another cleanuppad.
4502   auto *SuccessorCleanupPad = dyn_cast<CleanupPadInst>(&UnwindDest->front());
4503   if (!SuccessorCleanupPad)
4504     return false;
4505 
4506   CleanupPadInst *PredecessorCleanupPad = RI->getCleanupPad();
4507   // Replace any uses of the successor cleanupad with the predecessor pad
4508   // The only cleanuppad uses should be this cleanupret, it's cleanupret and
4509   // funclet bundle operands.
4510   SuccessorCleanupPad->replaceAllUsesWith(PredecessorCleanupPad);
4511   // Remove the old cleanuppad.
4512   SuccessorCleanupPad->eraseFromParent();
4513   // Now, we simply replace the cleanupret with a branch to the unwind
4514   // destination.
4515   BranchInst::Create(UnwindDest, RI->getParent());
4516   RI->eraseFromParent();
4517 
4518   return true;
4519 }
4520 
4521 bool SimplifyCFGOpt::simplifyCleanupReturn(CleanupReturnInst *RI) {
4522   // It is possible to transiantly have an undef cleanuppad operand because we
4523   // have deleted some, but not all, dead blocks.
4524   // Eventually, this block will be deleted.
4525   if (isa<UndefValue>(RI->getOperand(0)))
4526     return false;
4527 
4528   if (mergeCleanupPad(RI))
4529     return true;
4530 
4531   if (removeEmptyCleanup(RI, DTU))
4532     return true;
4533 
4534   return false;
4535 }
4536 
4537 // WARNING: keep in sync with InstCombinerImpl::visitUnreachableInst()!
4538 bool SimplifyCFGOpt::simplifyUnreachable(UnreachableInst *UI) {
4539   BasicBlock *BB = UI->getParent();
4540 
4541   bool Changed = false;
4542 
4543   // If there are any instructions immediately before the unreachable that can
4544   // be removed, do so.
4545   while (UI->getIterator() != BB->begin()) {
4546     BasicBlock::iterator BBI = UI->getIterator();
4547     --BBI;
4548 
4549     if (!isGuaranteedToTransferExecutionToSuccessor(&*BBI))
4550       break; // Can not drop any more instructions. We're done here.
4551     // Otherwise, this instruction can be freely erased,
4552     // even if it is not side-effect free.
4553 
4554     // Note that deleting EH's here is in fact okay, although it involves a bit
4555     // of subtle reasoning. If this inst is an EH, all the predecessors of this
4556     // block will be the unwind edges of Invoke/CatchSwitch/CleanupReturn,
4557     // and we can therefore guarantee this block will be erased.
4558 
4559     // Delete this instruction (any uses are guaranteed to be dead)
4560     BBI->replaceAllUsesWith(PoisonValue::get(BBI->getType()));
4561     BBI->eraseFromParent();
4562     Changed = true;
4563   }
4564 
4565   // If the unreachable instruction is the first in the block, take a gander
4566   // at all of the predecessors of this instruction, and simplify them.
4567   if (&BB->front() != UI)
4568     return Changed;
4569 
4570   std::vector<DominatorTree::UpdateType> Updates;
4571 
4572   SmallSetVector<BasicBlock *, 8> Preds(pred_begin(BB), pred_end(BB));
4573   for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
4574     auto *Predecessor = Preds[i];
4575     Instruction *TI = Predecessor->getTerminator();
4576     IRBuilder<> Builder(TI);
4577     if (auto *BI = dyn_cast<BranchInst>(TI)) {
4578       // We could either have a proper unconditional branch,
4579       // or a degenerate conditional branch with matching destinations.
4580       if (all_of(BI->successors(),
4581                  [BB](auto *Successor) { return Successor == BB; })) {
4582         new UnreachableInst(TI->getContext(), TI);
4583         TI->eraseFromParent();
4584         Changed = true;
4585       } else {
4586         assert(BI->isConditional() && "Can't get here with an uncond branch.");
4587         Value* Cond = BI->getCondition();
4588         assert(BI->getSuccessor(0) != BI->getSuccessor(1) &&
4589                "The destinations are guaranteed to be different here.");
4590         if (BI->getSuccessor(0) == BB) {
4591           Builder.CreateAssumption(Builder.CreateNot(Cond));
4592           Builder.CreateBr(BI->getSuccessor(1));
4593         } else {
4594           assert(BI->getSuccessor(1) == BB && "Incorrect CFG");
4595           Builder.CreateAssumption(Cond);
4596           Builder.CreateBr(BI->getSuccessor(0));
4597         }
4598         EraseTerminatorAndDCECond(BI);
4599         Changed = true;
4600       }
4601       if (DTU)
4602         Updates.push_back({DominatorTree::Delete, Predecessor, BB});
4603     } else if (auto *SI = dyn_cast<SwitchInst>(TI)) {
4604       SwitchInstProfUpdateWrapper SU(*SI);
4605       for (auto i = SU->case_begin(), e = SU->case_end(); i != e;) {
4606         if (i->getCaseSuccessor() != BB) {
4607           ++i;
4608           continue;
4609         }
4610         BB->removePredecessor(SU->getParent());
4611         i = SU.removeCase(i);
4612         e = SU->case_end();
4613         Changed = true;
4614       }
4615       // Note that the default destination can't be removed!
4616       if (DTU && SI->getDefaultDest() != BB)
4617         Updates.push_back({DominatorTree::Delete, Predecessor, BB});
4618     } else if (auto *II = dyn_cast<InvokeInst>(TI)) {
4619       if (II->getUnwindDest() == BB) {
4620         if (DTU) {
4621           DTU->applyUpdates(Updates);
4622           Updates.clear();
4623         }
4624         removeUnwindEdge(TI->getParent(), DTU);
4625         Changed = true;
4626       }
4627     } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) {
4628       if (CSI->getUnwindDest() == BB) {
4629         if (DTU) {
4630           DTU->applyUpdates(Updates);
4631           Updates.clear();
4632         }
4633         removeUnwindEdge(TI->getParent(), DTU);
4634         Changed = true;
4635         continue;
4636       }
4637 
4638       for (CatchSwitchInst::handler_iterator I = CSI->handler_begin(),
4639                                              E = CSI->handler_end();
4640            I != E; ++I) {
4641         if (*I == BB) {
4642           CSI->removeHandler(I);
4643           --I;
4644           --E;
4645           Changed = true;
4646         }
4647       }
4648       if (DTU)
4649         Updates.push_back({DominatorTree::Delete, Predecessor, BB});
4650       if (CSI->getNumHandlers() == 0) {
4651         if (CSI->hasUnwindDest()) {
4652           // Redirect all predecessors of the block containing CatchSwitchInst
4653           // to instead branch to the CatchSwitchInst's unwind destination.
4654           if (DTU) {
4655             for (auto *PredecessorOfPredecessor : predecessors(Predecessor)) {
4656               Updates.push_back({DominatorTree::Insert,
4657                                  PredecessorOfPredecessor,
4658                                  CSI->getUnwindDest()});
4659               Updates.push_back({DominatorTree::Delete,
4660                                  PredecessorOfPredecessor, Predecessor});
4661             }
4662           }
4663           Predecessor->replaceAllUsesWith(CSI->getUnwindDest());
4664         } else {
4665           // Rewrite all preds to unwind to caller (or from invoke to call).
4666           if (DTU) {
4667             DTU->applyUpdates(Updates);
4668             Updates.clear();
4669           }
4670           SmallVector<BasicBlock *, 8> EHPreds(predecessors(Predecessor));
4671           for (BasicBlock *EHPred : EHPreds)
4672             removeUnwindEdge(EHPred, DTU);
4673         }
4674         // The catchswitch is no longer reachable.
4675         new UnreachableInst(CSI->getContext(), CSI);
4676         CSI->eraseFromParent();
4677         Changed = true;
4678       }
4679     } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
4680       (void)CRI;
4681       assert(CRI->hasUnwindDest() && CRI->getUnwindDest() == BB &&
4682              "Expected to always have an unwind to BB.");
4683       if (DTU)
4684         Updates.push_back({DominatorTree::Delete, Predecessor, BB});
4685       new UnreachableInst(TI->getContext(), TI);
4686       TI->eraseFromParent();
4687       Changed = true;
4688     }
4689   }
4690 
4691   if (DTU)
4692     DTU->applyUpdates(Updates);
4693 
4694   // If this block is now dead, remove it.
4695   if (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) {
4696     DeleteDeadBlock(BB, DTU);
4697     return true;
4698   }
4699 
4700   return Changed;
4701 }
4702 
4703 static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) {
4704   assert(Cases.size() >= 1);
4705 
4706   array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate);
4707   for (size_t I = 1, E = Cases.size(); I != E; ++I) {
4708     if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1)
4709       return false;
4710   }
4711   return true;
4712 }
4713 
4714 static void createUnreachableSwitchDefault(SwitchInst *Switch,
4715                                            DomTreeUpdater *DTU) {
4716   LLVM_DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n");
4717   auto *BB = Switch->getParent();
4718   BasicBlock *NewDefaultBlock = SplitBlockPredecessors(
4719       Switch->getDefaultDest(), Switch->getParent(), "", DTU);
4720   auto *OrigDefaultBlock = Switch->getDefaultDest();
4721   Switch->setDefaultDest(&*NewDefaultBlock);
4722   if (DTU)
4723     DTU->applyUpdates({{DominatorTree::Insert, BB, &*NewDefaultBlock},
4724                        {DominatorTree::Delete, BB, OrigDefaultBlock}});
4725   SplitBlock(&*NewDefaultBlock, &NewDefaultBlock->front(), DTU);
4726   SmallVector<DominatorTree::UpdateType, 2> Updates;
4727   if (DTU)
4728     for (auto *Successor : successors(NewDefaultBlock))
4729       Updates.push_back({DominatorTree::Delete, NewDefaultBlock, Successor});
4730   auto *NewTerminator = NewDefaultBlock->getTerminator();
4731   new UnreachableInst(Switch->getContext(), NewTerminator);
4732   EraseTerminatorAndDCECond(NewTerminator);
4733   if (DTU)
4734     DTU->applyUpdates(Updates);
4735 }
4736 
4737 /// Turn a switch with two reachable destinations into an integer range
4738 /// comparison and branch.
4739 bool SimplifyCFGOpt::TurnSwitchRangeIntoICmp(SwitchInst *SI,
4740                                              IRBuilder<> &Builder) {
4741   assert(SI->getNumCases() > 1 && "Degenerate switch?");
4742 
4743   bool HasDefault =
4744       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
4745 
4746   auto *BB = SI->getParent();
4747 
4748   // Partition the cases into two sets with different destinations.
4749   BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr;
4750   BasicBlock *DestB = nullptr;
4751   SmallVector<ConstantInt *, 16> CasesA;
4752   SmallVector<ConstantInt *, 16> CasesB;
4753 
4754   for (auto Case : SI->cases()) {
4755     BasicBlock *Dest = Case.getCaseSuccessor();
4756     if (!DestA)
4757       DestA = Dest;
4758     if (Dest == DestA) {
4759       CasesA.push_back(Case.getCaseValue());
4760       continue;
4761     }
4762     if (!DestB)
4763       DestB = Dest;
4764     if (Dest == DestB) {
4765       CasesB.push_back(Case.getCaseValue());
4766       continue;
4767     }
4768     return false; // More than two destinations.
4769   }
4770 
4771   assert(DestA && DestB &&
4772          "Single-destination switch should have been folded.");
4773   assert(DestA != DestB);
4774   assert(DestB != SI->getDefaultDest());
4775   assert(!CasesB.empty() && "There must be non-default cases.");
4776   assert(!CasesA.empty() || HasDefault);
4777 
4778   // Figure out if one of the sets of cases form a contiguous range.
4779   SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr;
4780   BasicBlock *ContiguousDest = nullptr;
4781   BasicBlock *OtherDest = nullptr;
4782   if (!CasesA.empty() && CasesAreContiguous(CasesA)) {
4783     ContiguousCases = &CasesA;
4784     ContiguousDest = DestA;
4785     OtherDest = DestB;
4786   } else if (CasesAreContiguous(CasesB)) {
4787     ContiguousCases = &CasesB;
4788     ContiguousDest = DestB;
4789     OtherDest = DestA;
4790   } else
4791     return false;
4792 
4793   // Start building the compare and branch.
4794 
4795   Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back());
4796   Constant *NumCases =
4797       ConstantInt::get(Offset->getType(), ContiguousCases->size());
4798 
4799   Value *Sub = SI->getCondition();
4800   if (!Offset->isNullValue())
4801     Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off");
4802 
4803   Value *Cmp;
4804   // If NumCases overflowed, then all possible values jump to the successor.
4805   if (NumCases->isNullValue() && !ContiguousCases->empty())
4806     Cmp = ConstantInt::getTrue(SI->getContext());
4807   else
4808     Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch");
4809   BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest);
4810 
4811   // Update weight for the newly-created conditional branch.
4812   if (HasBranchWeights(SI)) {
4813     SmallVector<uint64_t, 8> Weights;
4814     GetBranchWeights(SI, Weights);
4815     if (Weights.size() == 1 + SI->getNumCases()) {
4816       uint64_t TrueWeight = 0;
4817       uint64_t FalseWeight = 0;
4818       for (size_t I = 0, E = Weights.size(); I != E; ++I) {
4819         if (SI->getSuccessor(I) == ContiguousDest)
4820           TrueWeight += Weights[I];
4821         else
4822           FalseWeight += Weights[I];
4823       }
4824       while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) {
4825         TrueWeight /= 2;
4826         FalseWeight /= 2;
4827       }
4828       setBranchWeights(NewBI, TrueWeight, FalseWeight);
4829     }
4830   }
4831 
4832   // Prune obsolete incoming values off the successors' PHI nodes.
4833   for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) {
4834     unsigned PreviousEdges = ContiguousCases->size();
4835     if (ContiguousDest == SI->getDefaultDest())
4836       ++PreviousEdges;
4837     for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
4838       cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
4839   }
4840   for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) {
4841     unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size();
4842     if (OtherDest == SI->getDefaultDest())
4843       ++PreviousEdges;
4844     for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
4845       cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
4846   }
4847 
4848   // Clean up the default block - it may have phis or other instructions before
4849   // the unreachable terminator.
4850   if (!HasDefault)
4851     createUnreachableSwitchDefault(SI, DTU);
4852 
4853   auto *UnreachableDefault = SI->getDefaultDest();
4854 
4855   // Drop the switch.
4856   SI->eraseFromParent();
4857 
4858   if (!HasDefault && DTU)
4859     DTU->applyUpdates({{DominatorTree::Delete, BB, UnreachableDefault}});
4860 
4861   return true;
4862 }
4863 
4864 /// Compute masked bits for the condition of a switch
4865 /// and use it to remove dead cases.
4866 static bool eliminateDeadSwitchCases(SwitchInst *SI, DomTreeUpdater *DTU,
4867                                      AssumptionCache *AC,
4868                                      const DataLayout &DL) {
4869   Value *Cond = SI->getCondition();
4870   unsigned Bits = Cond->getType()->getIntegerBitWidth();
4871   KnownBits Known = computeKnownBits(Cond, DL, 0, AC, SI);
4872 
4873   // We can also eliminate cases by determining that their values are outside of
4874   // the limited range of the condition based on how many significant (non-sign)
4875   // bits are in the condition value.
4876   unsigned ExtraSignBits = ComputeNumSignBits(Cond, DL, 0, AC, SI) - 1;
4877   unsigned MaxSignificantBitsInCond = Bits - ExtraSignBits;
4878 
4879   // Gather dead cases.
4880   SmallVector<ConstantInt *, 8> DeadCases;
4881   SmallDenseMap<BasicBlock *, int, 8> NumPerSuccessorCases;
4882   for (auto &Case : SI->cases()) {
4883     auto *Successor = Case.getCaseSuccessor();
4884     if (DTU)
4885       ++NumPerSuccessorCases[Successor];
4886     const APInt &CaseVal = Case.getCaseValue()->getValue();
4887     if (Known.Zero.intersects(CaseVal) || !Known.One.isSubsetOf(CaseVal) ||
4888         (CaseVal.getMinSignedBits() > MaxSignificantBitsInCond)) {
4889       DeadCases.push_back(Case.getCaseValue());
4890       if (DTU)
4891         --NumPerSuccessorCases[Successor];
4892       LLVM_DEBUG(dbgs() << "SimplifyCFG: switch case " << CaseVal
4893                         << " is dead.\n");
4894     }
4895   }
4896 
4897   // If we can prove that the cases must cover all possible values, the
4898   // default destination becomes dead and we can remove it.  If we know some
4899   // of the bits in the value, we can use that to more precisely compute the
4900   // number of possible unique case values.
4901   bool HasDefault =
4902       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
4903   const unsigned NumUnknownBits =
4904       Bits - (Known.Zero | Known.One).countPopulation();
4905   assert(NumUnknownBits <= Bits);
4906   if (HasDefault && DeadCases.empty() &&
4907       NumUnknownBits < 64 /* avoid overflow */ &&
4908       SI->getNumCases() == (1ULL << NumUnknownBits)) {
4909     createUnreachableSwitchDefault(SI, DTU);
4910     return true;
4911   }
4912 
4913   if (DeadCases.empty())
4914     return false;
4915 
4916   SwitchInstProfUpdateWrapper SIW(*SI);
4917   for (ConstantInt *DeadCase : DeadCases) {
4918     SwitchInst::CaseIt CaseI = SI->findCaseValue(DeadCase);
4919     assert(CaseI != SI->case_default() &&
4920            "Case was not found. Probably mistake in DeadCases forming.");
4921     // Prune unused values from PHI nodes.
4922     CaseI->getCaseSuccessor()->removePredecessor(SI->getParent());
4923     SIW.removeCase(CaseI);
4924   }
4925 
4926   if (DTU) {
4927     std::vector<DominatorTree::UpdateType> Updates;
4928     for (const std::pair<BasicBlock *, int> &I : NumPerSuccessorCases)
4929       if (I.second == 0)
4930         Updates.push_back({DominatorTree::Delete, SI->getParent(), I.first});
4931     DTU->applyUpdates(Updates);
4932   }
4933 
4934   return true;
4935 }
4936 
4937 /// If BB would be eligible for simplification by
4938 /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated
4939 /// by an unconditional branch), look at the phi node for BB in the successor
4940 /// block and see if the incoming value is equal to CaseValue. If so, return
4941 /// the phi node, and set PhiIndex to BB's index in the phi node.
4942 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue,
4943                                               BasicBlock *BB, int *PhiIndex) {
4944   if (BB->getFirstNonPHIOrDbg() != BB->getTerminator())
4945     return nullptr; // BB must be empty to be a candidate for simplification.
4946   if (!BB->getSinglePredecessor())
4947     return nullptr; // BB must be dominated by the switch.
4948 
4949   BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator());
4950   if (!Branch || !Branch->isUnconditional())
4951     return nullptr; // Terminator must be unconditional branch.
4952 
4953   BasicBlock *Succ = Branch->getSuccessor(0);
4954 
4955   for (PHINode &PHI : Succ->phis()) {
4956     int Idx = PHI.getBasicBlockIndex(BB);
4957     assert(Idx >= 0 && "PHI has no entry for predecessor?");
4958 
4959     Value *InValue = PHI.getIncomingValue(Idx);
4960     if (InValue != CaseValue)
4961       continue;
4962 
4963     *PhiIndex = Idx;
4964     return &PHI;
4965   }
4966 
4967   return nullptr;
4968 }
4969 
4970 /// Try to forward the condition of a switch instruction to a phi node
4971 /// dominated by the switch, if that would mean that some of the destination
4972 /// blocks of the switch can be folded away. Return true if a change is made.
4973 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) {
4974   using ForwardingNodesMap = DenseMap<PHINode *, SmallVector<int, 4>>;
4975 
4976   ForwardingNodesMap ForwardingNodes;
4977   BasicBlock *SwitchBlock = SI->getParent();
4978   bool Changed = false;
4979   for (auto &Case : SI->cases()) {
4980     ConstantInt *CaseValue = Case.getCaseValue();
4981     BasicBlock *CaseDest = Case.getCaseSuccessor();
4982 
4983     // Replace phi operands in successor blocks that are using the constant case
4984     // value rather than the switch condition variable:
4985     //   switchbb:
4986     //   switch i32 %x, label %default [
4987     //     i32 17, label %succ
4988     //   ...
4989     //   succ:
4990     //     %r = phi i32 ... [ 17, %switchbb ] ...
4991     // -->
4992     //     %r = phi i32 ... [ %x, %switchbb ] ...
4993 
4994     for (PHINode &Phi : CaseDest->phis()) {
4995       // This only works if there is exactly 1 incoming edge from the switch to
4996       // a phi. If there is >1, that means multiple cases of the switch map to 1
4997       // value in the phi, and that phi value is not the switch condition. Thus,
4998       // this transform would not make sense (the phi would be invalid because
4999       // a phi can't have different incoming values from the same block).
5000       int SwitchBBIdx = Phi.getBasicBlockIndex(SwitchBlock);
5001       if (Phi.getIncomingValue(SwitchBBIdx) == CaseValue &&
5002           count(Phi.blocks(), SwitchBlock) == 1) {
5003         Phi.setIncomingValue(SwitchBBIdx, SI->getCondition());
5004         Changed = true;
5005       }
5006     }
5007 
5008     // Collect phi nodes that are indirectly using this switch's case constants.
5009     int PhiIdx;
5010     if (auto *Phi = FindPHIForConditionForwarding(CaseValue, CaseDest, &PhiIdx))
5011       ForwardingNodes[Phi].push_back(PhiIdx);
5012   }
5013 
5014   for (auto &ForwardingNode : ForwardingNodes) {
5015     PHINode *Phi = ForwardingNode.first;
5016     SmallVectorImpl<int> &Indexes = ForwardingNode.second;
5017     if (Indexes.size() < 2)
5018       continue;
5019 
5020     for (int Index : Indexes)
5021       Phi->setIncomingValue(Index, SI->getCondition());
5022     Changed = true;
5023   }
5024 
5025   return Changed;
5026 }
5027 
5028 /// Return true if the backend will be able to handle
5029 /// initializing an array of constants like C.
5030 static bool ValidLookupTableConstant(Constant *C, const TargetTransformInfo &TTI) {
5031   if (C->isThreadDependent())
5032     return false;
5033   if (C->isDLLImportDependent())
5034     return false;
5035 
5036   if (!isa<ConstantFP>(C) && !isa<ConstantInt>(C) &&
5037       !isa<ConstantPointerNull>(C) && !isa<GlobalValue>(C) &&
5038       !isa<UndefValue>(C) && !isa<ConstantExpr>(C))
5039     return false;
5040 
5041   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
5042     if (!CE->isGEPWithNoNotionalOverIndexing())
5043       return false;
5044     if (!ValidLookupTableConstant(CE->getOperand(0), TTI))
5045       return false;
5046   }
5047 
5048   if (!TTI.shouldBuildLookupTablesForConstant(C))
5049     return false;
5050 
5051   return true;
5052 }
5053 
5054 /// If V is a Constant, return it. Otherwise, try to look up
5055 /// its constant value in ConstantPool, returning 0 if it's not there.
5056 static Constant *
5057 LookupConstant(Value *V,
5058                const SmallDenseMap<Value *, Constant *> &ConstantPool) {
5059   if (Constant *C = dyn_cast<Constant>(V))
5060     return C;
5061   return ConstantPool.lookup(V);
5062 }
5063 
5064 /// Try to fold instruction I into a constant. This works for
5065 /// simple instructions such as binary operations where both operands are
5066 /// constant or can be replaced by constants from the ConstantPool. Returns the
5067 /// resulting constant on success, 0 otherwise.
5068 static Constant *
5069 ConstantFold(Instruction *I, const DataLayout &DL,
5070              const SmallDenseMap<Value *, Constant *> &ConstantPool) {
5071   if (SelectInst *Select = dyn_cast<SelectInst>(I)) {
5072     Constant *A = LookupConstant(Select->getCondition(), ConstantPool);
5073     if (!A)
5074       return nullptr;
5075     if (A->isAllOnesValue())
5076       return LookupConstant(Select->getTrueValue(), ConstantPool);
5077     if (A->isNullValue())
5078       return LookupConstant(Select->getFalseValue(), ConstantPool);
5079     return nullptr;
5080   }
5081 
5082   SmallVector<Constant *, 4> COps;
5083   for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) {
5084     if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool))
5085       COps.push_back(A);
5086     else
5087       return nullptr;
5088   }
5089 
5090   if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
5091     return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0],
5092                                            COps[1], DL);
5093   }
5094 
5095   return ConstantFoldInstOperands(I, COps, DL);
5096 }
5097 
5098 /// Try to determine the resulting constant values in phi nodes
5099 /// at the common destination basic block, *CommonDest, for one of the case
5100 /// destionations CaseDest corresponding to value CaseVal (0 for the default
5101 /// case), of a switch instruction SI.
5102 static bool
5103 GetCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest,
5104                BasicBlock **CommonDest,
5105                SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res,
5106                const DataLayout &DL, const TargetTransformInfo &TTI) {
5107   // The block from which we enter the common destination.
5108   BasicBlock *Pred = SI->getParent();
5109 
5110   // If CaseDest is empty except for some side-effect free instructions through
5111   // which we can constant-propagate the CaseVal, continue to its successor.
5112   SmallDenseMap<Value *, Constant *> ConstantPool;
5113   ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal));
5114   for (Instruction &I :CaseDest->instructionsWithoutDebug()) {
5115     if (I.isTerminator()) {
5116       // If the terminator is a simple branch, continue to the next block.
5117       if (I.getNumSuccessors() != 1 || I.isExceptionalTerminator())
5118         return false;
5119       Pred = CaseDest;
5120       CaseDest = I.getSuccessor(0);
5121     } else if (Constant *C = ConstantFold(&I, DL, ConstantPool)) {
5122       // Instruction is side-effect free and constant.
5123 
5124       // If the instruction has uses outside this block or a phi node slot for
5125       // the block, it is not safe to bypass the instruction since it would then
5126       // no longer dominate all its uses.
5127       for (auto &Use : I.uses()) {
5128         User *User = Use.getUser();
5129         if (Instruction *I = dyn_cast<Instruction>(User))
5130           if (I->getParent() == CaseDest)
5131             continue;
5132         if (PHINode *Phi = dyn_cast<PHINode>(User))
5133           if (Phi->getIncomingBlock(Use) == CaseDest)
5134             continue;
5135         return false;
5136       }
5137 
5138       ConstantPool.insert(std::make_pair(&I, C));
5139     } else {
5140       break;
5141     }
5142   }
5143 
5144   // If we did not have a CommonDest before, use the current one.
5145   if (!*CommonDest)
5146     *CommonDest = CaseDest;
5147   // If the destination isn't the common one, abort.
5148   if (CaseDest != *CommonDest)
5149     return false;
5150 
5151   // Get the values for this case from phi nodes in the destination block.
5152   for (PHINode &PHI : (*CommonDest)->phis()) {
5153     int Idx = PHI.getBasicBlockIndex(Pred);
5154     if (Idx == -1)
5155       continue;
5156 
5157     Constant *ConstVal =
5158         LookupConstant(PHI.getIncomingValue(Idx), ConstantPool);
5159     if (!ConstVal)
5160       return false;
5161 
5162     // Be conservative about which kinds of constants we support.
5163     if (!ValidLookupTableConstant(ConstVal, TTI))
5164       return false;
5165 
5166     Res.push_back(std::make_pair(&PHI, ConstVal));
5167   }
5168 
5169   return Res.size() > 0;
5170 }
5171 
5172 // Helper function used to add CaseVal to the list of cases that generate
5173 // Result. Returns the updated number of cases that generate this result.
5174 static uintptr_t MapCaseToResult(ConstantInt *CaseVal,
5175                                  SwitchCaseResultVectorTy &UniqueResults,
5176                                  Constant *Result) {
5177   for (auto &I : UniqueResults) {
5178     if (I.first == Result) {
5179       I.second.push_back(CaseVal);
5180       return I.second.size();
5181     }
5182   }
5183   UniqueResults.push_back(
5184       std::make_pair(Result, SmallVector<ConstantInt *, 4>(1, CaseVal)));
5185   return 1;
5186 }
5187 
5188 // Helper function that initializes a map containing
5189 // results for the PHI node of the common destination block for a switch
5190 // instruction. Returns false if multiple PHI nodes have been found or if
5191 // there is not a common destination block for the switch.
5192 static bool
5193 InitializeUniqueCases(SwitchInst *SI, PHINode *&PHI, BasicBlock *&CommonDest,
5194                       SwitchCaseResultVectorTy &UniqueResults,
5195                       Constant *&DefaultResult, const DataLayout &DL,
5196                       const TargetTransformInfo &TTI,
5197                       uintptr_t MaxUniqueResults, uintptr_t MaxCasesPerResult) {
5198   for (auto &I : SI->cases()) {
5199     ConstantInt *CaseVal = I.getCaseValue();
5200 
5201     // Resulting value at phi nodes for this case value.
5202     SwitchCaseResultsTy Results;
5203     if (!GetCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results,
5204                         DL, TTI))
5205       return false;
5206 
5207     // Only one value per case is permitted.
5208     if (Results.size() > 1)
5209       return false;
5210 
5211     // Add the case->result mapping to UniqueResults.
5212     const uintptr_t NumCasesForResult =
5213         MapCaseToResult(CaseVal, UniqueResults, Results.begin()->second);
5214 
5215     // Early out if there are too many cases for this result.
5216     if (NumCasesForResult > MaxCasesPerResult)
5217       return false;
5218 
5219     // Early out if there are too many unique results.
5220     if (UniqueResults.size() > MaxUniqueResults)
5221       return false;
5222 
5223     // Check the PHI consistency.
5224     if (!PHI)
5225       PHI = Results[0].first;
5226     else if (PHI != Results[0].first)
5227       return false;
5228   }
5229   // Find the default result value.
5230   SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults;
5231   BasicBlock *DefaultDest = SI->getDefaultDest();
5232   GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults,
5233                  DL, TTI);
5234   // If the default value is not found abort unless the default destination
5235   // is unreachable.
5236   DefaultResult =
5237       DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr;
5238   if ((!DefaultResult &&
5239        !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg())))
5240     return false;
5241 
5242   return true;
5243 }
5244 
5245 // Helper function that checks if it is possible to transform a switch with only
5246 // two cases (or two cases + default) that produces a result into a select.
5247 // Example:
5248 // switch (a) {
5249 //   case 10:                %0 = icmp eq i32 %a, 10
5250 //     return 10;            %1 = select i1 %0, i32 10, i32 4
5251 //   case 20:        ---->   %2 = icmp eq i32 %a, 20
5252 //     return 2;             %3 = select i1 %2, i32 2, i32 %1
5253 //   default:
5254 //     return 4;
5255 // }
5256 static Value *ConvertTwoCaseSwitch(const SwitchCaseResultVectorTy &ResultVector,
5257                                    Constant *DefaultResult, Value *Condition,
5258                                    IRBuilder<> &Builder) {
5259   // If we are selecting between only two cases transform into a simple
5260   // select or a two-way select if default is possible.
5261   if (ResultVector.size() == 2 && ResultVector[0].second.size() == 1 &&
5262       ResultVector[1].second.size() == 1) {
5263     ConstantInt *const FirstCase = ResultVector[0].second[0];
5264     ConstantInt *const SecondCase = ResultVector[1].second[0];
5265 
5266     bool DefaultCanTrigger = DefaultResult;
5267     Value *SelectValue = ResultVector[1].first;
5268     if (DefaultCanTrigger) {
5269       Value *const ValueCompare =
5270           Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp");
5271       SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first,
5272                                          DefaultResult, "switch.select");
5273     }
5274     Value *const ValueCompare =
5275         Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp");
5276     return Builder.CreateSelect(ValueCompare, ResultVector[0].first,
5277                                 SelectValue, "switch.select");
5278   }
5279 
5280   // Handle the degenerate case where two cases have the same value.
5281   if (ResultVector.size() == 1 && ResultVector[0].second.size() == 2 &&
5282       DefaultResult) {
5283     Value *Cmp1 = Builder.CreateICmpEQ(
5284         Condition, ResultVector[0].second[0], "switch.selectcmp.case1");
5285     Value *Cmp2 = Builder.CreateICmpEQ(
5286         Condition, ResultVector[0].second[1], "switch.selectcmp.case2");
5287     Value *Cmp = Builder.CreateOr(Cmp1, Cmp2, "switch.selectcmp");
5288     return Builder.CreateSelect(Cmp, ResultVector[0].first, DefaultResult);
5289   }
5290 
5291   return nullptr;
5292 }
5293 
5294 // Helper function to cleanup a switch instruction that has been converted into
5295 // a select, fixing up PHI nodes and basic blocks.
5296 static void RemoveSwitchAfterSelectConversion(SwitchInst *SI, PHINode *PHI,
5297                                               Value *SelectValue,
5298                                               IRBuilder<> &Builder,
5299                                               DomTreeUpdater *DTU) {
5300   std::vector<DominatorTree::UpdateType> Updates;
5301 
5302   BasicBlock *SelectBB = SI->getParent();
5303   BasicBlock *DestBB = PHI->getParent();
5304 
5305   if (DTU && !is_contained(predecessors(DestBB), SelectBB))
5306     Updates.push_back({DominatorTree::Insert, SelectBB, DestBB});
5307   Builder.CreateBr(DestBB);
5308 
5309   // Remove the switch.
5310 
5311   while (PHI->getBasicBlockIndex(SelectBB) >= 0)
5312     PHI->removeIncomingValue(SelectBB);
5313   PHI->addIncoming(SelectValue, SelectBB);
5314 
5315   SmallPtrSet<BasicBlock *, 4> RemovedSuccessors;
5316   for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
5317     BasicBlock *Succ = SI->getSuccessor(i);
5318 
5319     if (Succ == DestBB)
5320       continue;
5321     Succ->removePredecessor(SelectBB);
5322     if (DTU && RemovedSuccessors.insert(Succ).second)
5323       Updates.push_back({DominatorTree::Delete, SelectBB, Succ});
5324   }
5325   SI->eraseFromParent();
5326   if (DTU)
5327     DTU->applyUpdates(Updates);
5328 }
5329 
5330 /// If the switch is only used to initialize one or more
5331 /// phi nodes in a common successor block with only two different
5332 /// constant values, replace the switch with select.
5333 static bool switchToSelect(SwitchInst *SI, IRBuilder<> &Builder,
5334                            DomTreeUpdater *DTU, const DataLayout &DL,
5335                            const TargetTransformInfo &TTI) {
5336   Value *const Cond = SI->getCondition();
5337   PHINode *PHI = nullptr;
5338   BasicBlock *CommonDest = nullptr;
5339   Constant *DefaultResult;
5340   SwitchCaseResultVectorTy UniqueResults;
5341   // Collect all the cases that will deliver the same value from the switch.
5342   if (!InitializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult,
5343                              DL, TTI, /*MaxUniqueResults*/2,
5344                              /*MaxCasesPerResult*/2))
5345     return false;
5346   assert(PHI != nullptr && "PHI for value select not found");
5347 
5348   Builder.SetInsertPoint(SI);
5349   Value *SelectValue =
5350       ConvertTwoCaseSwitch(UniqueResults, DefaultResult, Cond, Builder);
5351   if (SelectValue) {
5352     RemoveSwitchAfterSelectConversion(SI, PHI, SelectValue, Builder, DTU);
5353     return true;
5354   }
5355   // The switch couldn't be converted into a select.
5356   return false;
5357 }
5358 
5359 namespace {
5360 
5361 /// This class represents a lookup table that can be used to replace a switch.
5362 class SwitchLookupTable {
5363 public:
5364   /// Create a lookup table to use as a switch replacement with the contents
5365   /// of Values, using DefaultValue to fill any holes in the table.
5366   SwitchLookupTable(
5367       Module &M, uint64_t TableSize, ConstantInt *Offset,
5368       const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
5369       Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName);
5370 
5371   /// Build instructions with Builder to retrieve the value at
5372   /// the position given by Index in the lookup table.
5373   Value *BuildLookup(Value *Index, IRBuilder<> &Builder);
5374 
5375   /// Return true if a table with TableSize elements of
5376   /// type ElementType would fit in a target-legal register.
5377   static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize,
5378                                  Type *ElementType);
5379 
5380 private:
5381   // Depending on the contents of the table, it can be represented in
5382   // different ways.
5383   enum {
5384     // For tables where each element contains the same value, we just have to
5385     // store that single value and return it for each lookup.
5386     SingleValueKind,
5387 
5388     // For tables where there is a linear relationship between table index
5389     // and values. We calculate the result with a simple multiplication
5390     // and addition instead of a table lookup.
5391     LinearMapKind,
5392 
5393     // For small tables with integer elements, we can pack them into a bitmap
5394     // that fits into a target-legal register. Values are retrieved by
5395     // shift and mask operations.
5396     BitMapKind,
5397 
5398     // The table is stored as an array of values. Values are retrieved by load
5399     // instructions from the table.
5400     ArrayKind
5401   } Kind;
5402 
5403   // For SingleValueKind, this is the single value.
5404   Constant *SingleValue = nullptr;
5405 
5406   // For BitMapKind, this is the bitmap.
5407   ConstantInt *BitMap = nullptr;
5408   IntegerType *BitMapElementTy = nullptr;
5409 
5410   // For LinearMapKind, these are the constants used to derive the value.
5411   ConstantInt *LinearOffset = nullptr;
5412   ConstantInt *LinearMultiplier = nullptr;
5413 
5414   // For ArrayKind, this is the array.
5415   GlobalVariable *Array = nullptr;
5416 };
5417 
5418 } // end anonymous namespace
5419 
5420 SwitchLookupTable::SwitchLookupTable(
5421     Module &M, uint64_t TableSize, ConstantInt *Offset,
5422     const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
5423     Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName) {
5424   assert(Values.size() && "Can't build lookup table without values!");
5425   assert(TableSize >= Values.size() && "Can't fit values in table!");
5426 
5427   // If all values in the table are equal, this is that value.
5428   SingleValue = Values.begin()->second;
5429 
5430   Type *ValueType = Values.begin()->second->getType();
5431 
5432   // Build up the table contents.
5433   SmallVector<Constant *, 64> TableContents(TableSize);
5434   for (size_t I = 0, E = Values.size(); I != E; ++I) {
5435     ConstantInt *CaseVal = Values[I].first;
5436     Constant *CaseRes = Values[I].second;
5437     assert(CaseRes->getType() == ValueType);
5438 
5439     uint64_t Idx = (CaseVal->getValue() - Offset->getValue()).getLimitedValue();
5440     TableContents[Idx] = CaseRes;
5441 
5442     if (CaseRes != SingleValue)
5443       SingleValue = nullptr;
5444   }
5445 
5446   // Fill in any holes in the table with the default result.
5447   if (Values.size() < TableSize) {
5448     assert(DefaultValue &&
5449            "Need a default value to fill the lookup table holes.");
5450     assert(DefaultValue->getType() == ValueType);
5451     for (uint64_t I = 0; I < TableSize; ++I) {
5452       if (!TableContents[I])
5453         TableContents[I] = DefaultValue;
5454     }
5455 
5456     if (DefaultValue != SingleValue)
5457       SingleValue = nullptr;
5458   }
5459 
5460   // If each element in the table contains the same value, we only need to store
5461   // that single value.
5462   if (SingleValue) {
5463     Kind = SingleValueKind;
5464     return;
5465   }
5466 
5467   // Check if we can derive the value with a linear transformation from the
5468   // table index.
5469   if (isa<IntegerType>(ValueType)) {
5470     bool LinearMappingPossible = true;
5471     APInt PrevVal;
5472     APInt DistToPrev;
5473     assert(TableSize >= 2 && "Should be a SingleValue table.");
5474     // Check if there is the same distance between two consecutive values.
5475     for (uint64_t I = 0; I < TableSize; ++I) {
5476       ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]);
5477       if (!ConstVal) {
5478         // This is an undef. We could deal with it, but undefs in lookup tables
5479         // are very seldom. It's probably not worth the additional complexity.
5480         LinearMappingPossible = false;
5481         break;
5482       }
5483       const APInt &Val = ConstVal->getValue();
5484       if (I != 0) {
5485         APInt Dist = Val - PrevVal;
5486         if (I == 1) {
5487           DistToPrev = Dist;
5488         } else if (Dist != DistToPrev) {
5489           LinearMappingPossible = false;
5490           break;
5491         }
5492       }
5493       PrevVal = Val;
5494     }
5495     if (LinearMappingPossible) {
5496       LinearOffset = cast<ConstantInt>(TableContents[0]);
5497       LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev);
5498       Kind = LinearMapKind;
5499       ++NumLinearMaps;
5500       return;
5501     }
5502   }
5503 
5504   // If the type is integer and the table fits in a register, build a bitmap.
5505   if (WouldFitInRegister(DL, TableSize, ValueType)) {
5506     IntegerType *IT = cast<IntegerType>(ValueType);
5507     APInt TableInt(TableSize * IT->getBitWidth(), 0);
5508     for (uint64_t I = TableSize; I > 0; --I) {
5509       TableInt <<= IT->getBitWidth();
5510       // Insert values into the bitmap. Undef values are set to zero.
5511       if (!isa<UndefValue>(TableContents[I - 1])) {
5512         ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]);
5513         TableInt |= Val->getValue().zext(TableInt.getBitWidth());
5514       }
5515     }
5516     BitMap = ConstantInt::get(M.getContext(), TableInt);
5517     BitMapElementTy = IT;
5518     Kind = BitMapKind;
5519     ++NumBitMaps;
5520     return;
5521   }
5522 
5523   // Store the table in an array.
5524   ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize);
5525   Constant *Initializer = ConstantArray::get(ArrayTy, TableContents);
5526 
5527   Array = new GlobalVariable(M, ArrayTy, /*isConstant=*/true,
5528                              GlobalVariable::PrivateLinkage, Initializer,
5529                              "switch.table." + FuncName);
5530   Array->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
5531   // Set the alignment to that of an array items. We will be only loading one
5532   // value out of it.
5533   Array->setAlignment(Align(DL.getPrefTypeAlignment(ValueType)));
5534   Kind = ArrayKind;
5535 }
5536 
5537 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) {
5538   switch (Kind) {
5539   case SingleValueKind:
5540     return SingleValue;
5541   case LinearMapKind: {
5542     // Derive the result value from the input value.
5543     Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(),
5544                                           false, "switch.idx.cast");
5545     if (!LinearMultiplier->isOne())
5546       Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult");
5547     if (!LinearOffset->isZero())
5548       Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset");
5549     return Result;
5550   }
5551   case BitMapKind: {
5552     // Type of the bitmap (e.g. i59).
5553     IntegerType *MapTy = BitMap->getType();
5554 
5555     // Cast Index to the same type as the bitmap.
5556     // Note: The Index is <= the number of elements in the table, so
5557     // truncating it to the width of the bitmask is safe.
5558     Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast");
5559 
5560     // Multiply the shift amount by the element width.
5561     ShiftAmt = Builder.CreateMul(
5562         ShiftAmt, ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()),
5563         "switch.shiftamt");
5564 
5565     // Shift down.
5566     Value *DownShifted =
5567         Builder.CreateLShr(BitMap, ShiftAmt, "switch.downshift");
5568     // Mask off.
5569     return Builder.CreateTrunc(DownShifted, BitMapElementTy, "switch.masked");
5570   }
5571   case ArrayKind: {
5572     // Make sure the table index will not overflow when treated as signed.
5573     IntegerType *IT = cast<IntegerType>(Index->getType());
5574     uint64_t TableSize =
5575         Array->getInitializer()->getType()->getArrayNumElements();
5576     if (TableSize > (1ULL << (IT->getBitWidth() - 1)))
5577       Index = Builder.CreateZExt(
5578           Index, IntegerType::get(IT->getContext(), IT->getBitWidth() + 1),
5579           "switch.tableidx.zext");
5580 
5581     Value *GEPIndices[] = {Builder.getInt32(0), Index};
5582     Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array,
5583                                            GEPIndices, "switch.gep");
5584     return Builder.CreateLoad(
5585         cast<ArrayType>(Array->getValueType())->getElementType(), GEP,
5586         "switch.load");
5587   }
5588   }
5589   llvm_unreachable("Unknown lookup table kind!");
5590 }
5591 
5592 bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL,
5593                                            uint64_t TableSize,
5594                                            Type *ElementType) {
5595   auto *IT = dyn_cast<IntegerType>(ElementType);
5596   if (!IT)
5597     return false;
5598   // FIXME: If the type is wider than it needs to be, e.g. i8 but all values
5599   // are <= 15, we could try to narrow the type.
5600 
5601   // Avoid overflow, fitsInLegalInteger uses unsigned int for the width.
5602   if (TableSize >= UINT_MAX / IT->getBitWidth())
5603     return false;
5604   return DL.fitsInLegalInteger(TableSize * IT->getBitWidth());
5605 }
5606 
5607 static bool isTypeLegalForLookupTable(Type *Ty, const TargetTransformInfo &TTI,
5608                                       const DataLayout &DL) {
5609   // Allow any legal type.
5610   if (TTI.isTypeLegal(Ty))
5611     return true;
5612 
5613   auto *IT = dyn_cast<IntegerType>(Ty);
5614   if (!IT)
5615     return false;
5616 
5617   // Also allow power of 2 integer types that have at least 8 bits and fit in
5618   // a register. These types are common in frontend languages and targets
5619   // usually support loads of these types.
5620   // TODO: We could relax this to any integer that fits in a register and rely
5621   // on ABI alignment and padding in the table to allow the load to be widened.
5622   // Or we could widen the constants and truncate the load.
5623   unsigned BitWidth = IT->getBitWidth();
5624   return BitWidth >= 8 && isPowerOf2_32(BitWidth) &&
5625          DL.fitsInLegalInteger(IT->getBitWidth());
5626 }
5627 
5628 /// Determine whether a lookup table should be built for this switch, based on
5629 /// the number of cases, size of the table, and the types of the results.
5630 // TODO: We could support larger than legal types by limiting based on the
5631 // number of loads required and/or table size. If the constants are small we
5632 // could use smaller table entries and extend after the load.
5633 static bool
5634 ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize,
5635                        const TargetTransformInfo &TTI, const DataLayout &DL,
5636                        const SmallDenseMap<PHINode *, Type *> &ResultTypes) {
5637   if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10)
5638     return false; // TableSize overflowed, or mul below might overflow.
5639 
5640   bool AllTablesFitInRegister = true;
5641   bool HasIllegalType = false;
5642   for (const auto &I : ResultTypes) {
5643     Type *Ty = I.second;
5644 
5645     // Saturate this flag to true.
5646     HasIllegalType = HasIllegalType || !isTypeLegalForLookupTable(Ty, TTI, DL);
5647 
5648     // Saturate this flag to false.
5649     AllTablesFitInRegister =
5650         AllTablesFitInRegister &&
5651         SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty);
5652 
5653     // If both flags saturate, we're done. NOTE: This *only* works with
5654     // saturating flags, and all flags have to saturate first due to the
5655     // non-deterministic behavior of iterating over a dense map.
5656     if (HasIllegalType && !AllTablesFitInRegister)
5657       break;
5658   }
5659 
5660   // If each table would fit in a register, we should build it anyway.
5661   if (AllTablesFitInRegister)
5662     return true;
5663 
5664   // Don't build a table that doesn't fit in-register if it has illegal types.
5665   if (HasIllegalType)
5666     return false;
5667 
5668   // The table density should be at least 40%. This is the same criterion as for
5669   // jump tables, see SelectionDAGBuilder::handleJTSwitchCase.
5670   // FIXME: Find the best cut-off.
5671   return SI->getNumCases() * 10 >= TableSize * 4;
5672 }
5673 
5674 /// Try to reuse the switch table index compare. Following pattern:
5675 /// \code
5676 ///     if (idx < tablesize)
5677 ///        r = table[idx]; // table does not contain default_value
5678 ///     else
5679 ///        r = default_value;
5680 ///     if (r != default_value)
5681 ///        ...
5682 /// \endcode
5683 /// Is optimized to:
5684 /// \code
5685 ///     cond = idx < tablesize;
5686 ///     if (cond)
5687 ///        r = table[idx];
5688 ///     else
5689 ///        r = default_value;
5690 ///     if (cond)
5691 ///        ...
5692 /// \endcode
5693 /// Jump threading will then eliminate the second if(cond).
5694 static void reuseTableCompare(
5695     User *PhiUser, BasicBlock *PhiBlock, BranchInst *RangeCheckBranch,
5696     Constant *DefaultValue,
5697     const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values) {
5698   ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser);
5699   if (!CmpInst)
5700     return;
5701 
5702   // We require that the compare is in the same block as the phi so that jump
5703   // threading can do its work afterwards.
5704   if (CmpInst->getParent() != PhiBlock)
5705     return;
5706 
5707   Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1));
5708   if (!CmpOp1)
5709     return;
5710 
5711   Value *RangeCmp = RangeCheckBranch->getCondition();
5712   Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType());
5713   Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType());
5714 
5715   // Check if the compare with the default value is constant true or false.
5716   Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
5717                                                  DefaultValue, CmpOp1, true);
5718   if (DefaultConst != TrueConst && DefaultConst != FalseConst)
5719     return;
5720 
5721   // Check if the compare with the case values is distinct from the default
5722   // compare result.
5723   for (auto ValuePair : Values) {
5724     Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
5725                                                 ValuePair.second, CmpOp1, true);
5726     if (!CaseConst || CaseConst == DefaultConst || isa<UndefValue>(CaseConst))
5727       return;
5728     assert((CaseConst == TrueConst || CaseConst == FalseConst) &&
5729            "Expect true or false as compare result.");
5730   }
5731 
5732   // Check if the branch instruction dominates the phi node. It's a simple
5733   // dominance check, but sufficient for our needs.
5734   // Although this check is invariant in the calling loops, it's better to do it
5735   // at this late stage. Practically we do it at most once for a switch.
5736   BasicBlock *BranchBlock = RangeCheckBranch->getParent();
5737   for (BasicBlock *Pred : predecessors(PhiBlock)) {
5738     if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock)
5739       return;
5740   }
5741 
5742   if (DefaultConst == FalseConst) {
5743     // The compare yields the same result. We can replace it.
5744     CmpInst->replaceAllUsesWith(RangeCmp);
5745     ++NumTableCmpReuses;
5746   } else {
5747     // The compare yields the same result, just inverted. We can replace it.
5748     Value *InvertedTableCmp = BinaryOperator::CreateXor(
5749         RangeCmp, ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp",
5750         RangeCheckBranch);
5751     CmpInst->replaceAllUsesWith(InvertedTableCmp);
5752     ++NumTableCmpReuses;
5753   }
5754 }
5755 
5756 /// If the switch is only used to initialize one or more phi nodes in a common
5757 /// successor block with different constant values, replace the switch with
5758 /// lookup tables.
5759 static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder,
5760                                 DomTreeUpdater *DTU, const DataLayout &DL,
5761                                 const TargetTransformInfo &TTI) {
5762   assert(SI->getNumCases() > 1 && "Degenerate switch?");
5763 
5764   BasicBlock *BB = SI->getParent();
5765   Function *Fn = BB->getParent();
5766   // Only build lookup table when we have a target that supports it or the
5767   // attribute is not set.
5768   if (!TTI.shouldBuildLookupTables() ||
5769       (Fn->getFnAttribute("no-jump-tables").getValueAsBool()))
5770     return false;
5771 
5772   // FIXME: If the switch is too sparse for a lookup table, perhaps we could
5773   // split off a dense part and build a lookup table for that.
5774 
5775   // FIXME: This creates arrays of GEPs to constant strings, which means each
5776   // GEP needs a runtime relocation in PIC code. We should just build one big
5777   // string and lookup indices into that.
5778 
5779   // Ignore switches with less than three cases. Lookup tables will not make
5780   // them faster, so we don't analyze them.
5781   if (SI->getNumCases() < 3)
5782     return false;
5783 
5784   // Figure out the corresponding result for each case value and phi node in the
5785   // common destination, as well as the min and max case values.
5786   assert(!SI->cases().empty());
5787   SwitchInst::CaseIt CI = SI->case_begin();
5788   ConstantInt *MinCaseVal = CI->getCaseValue();
5789   ConstantInt *MaxCaseVal = CI->getCaseValue();
5790 
5791   BasicBlock *CommonDest = nullptr;
5792 
5793   using ResultListTy = SmallVector<std::pair<ConstantInt *, Constant *>, 4>;
5794   SmallDenseMap<PHINode *, ResultListTy> ResultLists;
5795 
5796   SmallDenseMap<PHINode *, Constant *> DefaultResults;
5797   SmallDenseMap<PHINode *, Type *> ResultTypes;
5798   SmallVector<PHINode *, 4> PHIs;
5799 
5800   for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) {
5801     ConstantInt *CaseVal = CI->getCaseValue();
5802     if (CaseVal->getValue().slt(MinCaseVal->getValue()))
5803       MinCaseVal = CaseVal;
5804     if (CaseVal->getValue().sgt(MaxCaseVal->getValue()))
5805       MaxCaseVal = CaseVal;
5806 
5807     // Resulting value at phi nodes for this case value.
5808     using ResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>;
5809     ResultsTy Results;
5810     if (!GetCaseResults(SI, CaseVal, CI->getCaseSuccessor(), &CommonDest,
5811                         Results, DL, TTI))
5812       return false;
5813 
5814     // Append the result from this case to the list for each phi.
5815     for (const auto &I : Results) {
5816       PHINode *PHI = I.first;
5817       Constant *Value = I.second;
5818       if (!ResultLists.count(PHI))
5819         PHIs.push_back(PHI);
5820       ResultLists[PHI].push_back(std::make_pair(CaseVal, Value));
5821     }
5822   }
5823 
5824   // Keep track of the result types.
5825   for (PHINode *PHI : PHIs) {
5826     ResultTypes[PHI] = ResultLists[PHI][0].second->getType();
5827   }
5828 
5829   uint64_t NumResults = ResultLists[PHIs[0]].size();
5830   APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue();
5831   uint64_t TableSize = RangeSpread.getLimitedValue() + 1;
5832   bool TableHasHoles = (NumResults < TableSize);
5833 
5834   // If the table has holes, we need a constant result for the default case
5835   // or a bitmask that fits in a register.
5836   SmallVector<std::pair<PHINode *, Constant *>, 4> DefaultResultsList;
5837   bool HasDefaultResults =
5838       GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest,
5839                      DefaultResultsList, DL, TTI);
5840 
5841   bool NeedMask = (TableHasHoles && !HasDefaultResults);
5842   if (NeedMask) {
5843     // As an extra penalty for the validity test we require more cases.
5844     if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark).
5845       return false;
5846     if (!DL.fitsInLegalInteger(TableSize))
5847       return false;
5848   }
5849 
5850   for (const auto &I : DefaultResultsList) {
5851     PHINode *PHI = I.first;
5852     Constant *Result = I.second;
5853     DefaultResults[PHI] = Result;
5854   }
5855 
5856   if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes))
5857     return false;
5858 
5859   std::vector<DominatorTree::UpdateType> Updates;
5860 
5861   // Create the BB that does the lookups.
5862   Module &Mod = *CommonDest->getParent()->getParent();
5863   BasicBlock *LookupBB = BasicBlock::Create(
5864       Mod.getContext(), "switch.lookup", CommonDest->getParent(), CommonDest);
5865 
5866   // Compute the table index value.
5867   Builder.SetInsertPoint(SI);
5868   Value *TableIndex;
5869   if (MinCaseVal->isNullValue())
5870     TableIndex = SI->getCondition();
5871   else
5872     TableIndex = Builder.CreateSub(SI->getCondition(), MinCaseVal,
5873                                    "switch.tableidx");
5874 
5875   // Compute the maximum table size representable by the integer type we are
5876   // switching upon.
5877   unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits();
5878   uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize;
5879   assert(MaxTableSize >= TableSize &&
5880          "It is impossible for a switch to have more entries than the max "
5881          "representable value of its input integer type's size.");
5882 
5883   // If the default destination is unreachable, or if the lookup table covers
5884   // all values of the conditional variable, branch directly to the lookup table
5885   // BB. Otherwise, check that the condition is within the case range.
5886   const bool DefaultIsReachable =
5887       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
5888   const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize);
5889   BranchInst *RangeCheckBranch = nullptr;
5890 
5891   if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
5892     Builder.CreateBr(LookupBB);
5893     if (DTU)
5894       Updates.push_back({DominatorTree::Insert, BB, LookupBB});
5895     // Note: We call removeProdecessor later since we need to be able to get the
5896     // PHI value for the default case in case we're using a bit mask.
5897   } else {
5898     Value *Cmp = Builder.CreateICmpULT(
5899         TableIndex, ConstantInt::get(MinCaseVal->getType(), TableSize));
5900     RangeCheckBranch =
5901         Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest());
5902     if (DTU)
5903       Updates.push_back({DominatorTree::Insert, BB, LookupBB});
5904   }
5905 
5906   // Populate the BB that does the lookups.
5907   Builder.SetInsertPoint(LookupBB);
5908 
5909   if (NeedMask) {
5910     // Before doing the lookup, we do the hole check. The LookupBB is therefore
5911     // re-purposed to do the hole check, and we create a new LookupBB.
5912     BasicBlock *MaskBB = LookupBB;
5913     MaskBB->setName("switch.hole_check");
5914     LookupBB = BasicBlock::Create(Mod.getContext(), "switch.lookup",
5915                                   CommonDest->getParent(), CommonDest);
5916 
5917     // Make the mask's bitwidth at least 8-bit and a power-of-2 to avoid
5918     // unnecessary illegal types.
5919     uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL));
5920     APInt MaskInt(TableSizePowOf2, 0);
5921     APInt One(TableSizePowOf2, 1);
5922     // Build bitmask; fill in a 1 bit for every case.
5923     const ResultListTy &ResultList = ResultLists[PHIs[0]];
5924     for (size_t I = 0, E = ResultList.size(); I != E; ++I) {
5925       uint64_t Idx = (ResultList[I].first->getValue() - MinCaseVal->getValue())
5926                          .getLimitedValue();
5927       MaskInt |= One << Idx;
5928     }
5929     ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt);
5930 
5931     // Get the TableIndex'th bit of the bitmask.
5932     // If this bit is 0 (meaning hole) jump to the default destination,
5933     // else continue with table lookup.
5934     IntegerType *MapTy = TableMask->getType();
5935     Value *MaskIndex =
5936         Builder.CreateZExtOrTrunc(TableIndex, MapTy, "switch.maskindex");
5937     Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, "switch.shifted");
5938     Value *LoBit = Builder.CreateTrunc(
5939         Shifted, Type::getInt1Ty(Mod.getContext()), "switch.lobit");
5940     Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest());
5941     if (DTU) {
5942       Updates.push_back({DominatorTree::Insert, MaskBB, LookupBB});
5943       Updates.push_back({DominatorTree::Insert, MaskBB, SI->getDefaultDest()});
5944     }
5945     Builder.SetInsertPoint(LookupBB);
5946     AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, BB);
5947   }
5948 
5949   if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
5950     // We cached PHINodes in PHIs. To avoid accessing deleted PHINodes later,
5951     // do not delete PHINodes here.
5952     SI->getDefaultDest()->removePredecessor(BB,
5953                                             /*KeepOneInputPHIs=*/true);
5954     if (DTU)
5955       Updates.push_back({DominatorTree::Delete, BB, SI->getDefaultDest()});
5956   }
5957 
5958   for (PHINode *PHI : PHIs) {
5959     const ResultListTy &ResultList = ResultLists[PHI];
5960 
5961     // If using a bitmask, use any value to fill the lookup table holes.
5962     Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI];
5963     StringRef FuncName = Fn->getName();
5964     SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultList, DV, DL,
5965                             FuncName);
5966 
5967     Value *Result = Table.BuildLookup(TableIndex, Builder);
5968 
5969     // Do a small peephole optimization: re-use the switch table compare if
5970     // possible.
5971     if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) {
5972       BasicBlock *PhiBlock = PHI->getParent();
5973       // Search for compare instructions which use the phi.
5974       for (auto *User : PHI->users()) {
5975         reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList);
5976       }
5977     }
5978 
5979     PHI->addIncoming(Result, LookupBB);
5980   }
5981 
5982   Builder.CreateBr(CommonDest);
5983   if (DTU)
5984     Updates.push_back({DominatorTree::Insert, LookupBB, CommonDest});
5985 
5986   // Remove the switch.
5987   SmallPtrSet<BasicBlock *, 8> RemovedSuccessors;
5988   for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
5989     BasicBlock *Succ = SI->getSuccessor(i);
5990 
5991     if (Succ == SI->getDefaultDest())
5992       continue;
5993     Succ->removePredecessor(BB);
5994     RemovedSuccessors.insert(Succ);
5995   }
5996   SI->eraseFromParent();
5997 
5998   if (DTU) {
5999     for (BasicBlock *RemovedSuccessor : RemovedSuccessors)
6000       Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor});
6001     DTU->applyUpdates(Updates);
6002   }
6003 
6004   ++NumLookupTables;
6005   if (NeedMask)
6006     ++NumLookupTablesHoles;
6007   return true;
6008 }
6009 
6010 static bool isSwitchDense(ArrayRef<int64_t> Values) {
6011   // See also SelectionDAGBuilder::isDense(), which this function was based on.
6012   uint64_t Diff = (uint64_t)Values.back() - (uint64_t)Values.front();
6013   uint64_t Range = Diff + 1;
6014   uint64_t NumCases = Values.size();
6015   // 40% is the default density for building a jump table in optsize/minsize mode.
6016   uint64_t MinDensity = 40;
6017 
6018   return NumCases * 100 >= Range * MinDensity;
6019 }
6020 
6021 /// Try to transform a switch that has "holes" in it to a contiguous sequence
6022 /// of cases.
6023 ///
6024 /// A switch such as: switch(i) {case 5: case 9: case 13: case 17:} can be
6025 /// range-reduced to: switch ((i-5) / 4) {case 0: case 1: case 2: case 3:}.
6026 ///
6027 /// This converts a sparse switch into a dense switch which allows better
6028 /// lowering and could also allow transforming into a lookup table.
6029 static bool ReduceSwitchRange(SwitchInst *SI, IRBuilder<> &Builder,
6030                               const DataLayout &DL,
6031                               const TargetTransformInfo &TTI) {
6032   auto *CondTy = cast<IntegerType>(SI->getCondition()->getType());
6033   if (CondTy->getIntegerBitWidth() > 64 ||
6034       !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth()))
6035     return false;
6036   // Only bother with this optimization if there are more than 3 switch cases;
6037   // SDAG will only bother creating jump tables for 4 or more cases.
6038   if (SI->getNumCases() < 4)
6039     return false;
6040 
6041   // This transform is agnostic to the signedness of the input or case values. We
6042   // can treat the case values as signed or unsigned. We can optimize more common
6043   // cases such as a sequence crossing zero {-4,0,4,8} if we interpret case values
6044   // as signed.
6045   SmallVector<int64_t,4> Values;
6046   for (auto &C : SI->cases())
6047     Values.push_back(C.getCaseValue()->getValue().getSExtValue());
6048   llvm::sort(Values);
6049 
6050   // If the switch is already dense, there's nothing useful to do here.
6051   if (isSwitchDense(Values))
6052     return false;
6053 
6054   // First, transform the values such that they start at zero and ascend.
6055   int64_t Base = Values[0];
6056   for (auto &V : Values)
6057     V -= (uint64_t)(Base);
6058 
6059   // Now we have signed numbers that have been shifted so that, given enough
6060   // precision, there are no negative values. Since the rest of the transform
6061   // is bitwise only, we switch now to an unsigned representation.
6062 
6063   // This transform can be done speculatively because it is so cheap - it
6064   // results in a single rotate operation being inserted.
6065   // FIXME: It's possible that optimizing a switch on powers of two might also
6066   // be beneficial - flag values are often powers of two and we could use a CLZ
6067   // as the key function.
6068 
6069   // countTrailingZeros(0) returns 64. As Values is guaranteed to have more than
6070   // one element and LLVM disallows duplicate cases, Shift is guaranteed to be
6071   // less than 64.
6072   unsigned Shift = 64;
6073   for (auto &V : Values)
6074     Shift = std::min(Shift, countTrailingZeros((uint64_t)V));
6075   assert(Shift < 64);
6076   if (Shift > 0)
6077     for (auto &V : Values)
6078       V = (int64_t)((uint64_t)V >> Shift);
6079 
6080   if (!isSwitchDense(Values))
6081     // Transform didn't create a dense switch.
6082     return false;
6083 
6084   // The obvious transform is to shift the switch condition right and emit a
6085   // check that the condition actually cleanly divided by GCD, i.e.
6086   //   C & (1 << Shift - 1) == 0
6087   // inserting a new CFG edge to handle the case where it didn't divide cleanly.
6088   //
6089   // A cheaper way of doing this is a simple ROTR(C, Shift). This performs the
6090   // shift and puts the shifted-off bits in the uppermost bits. If any of these
6091   // are nonzero then the switch condition will be very large and will hit the
6092   // default case.
6093 
6094   auto *Ty = cast<IntegerType>(SI->getCondition()->getType());
6095   Builder.SetInsertPoint(SI);
6096   auto *ShiftC = ConstantInt::get(Ty, Shift);
6097   auto *Sub = Builder.CreateSub(SI->getCondition(), ConstantInt::get(Ty, Base));
6098   auto *LShr = Builder.CreateLShr(Sub, ShiftC);
6099   auto *Shl = Builder.CreateShl(Sub, Ty->getBitWidth() - Shift);
6100   auto *Rot = Builder.CreateOr(LShr, Shl);
6101   SI->replaceUsesOfWith(SI->getCondition(), Rot);
6102 
6103   for (auto Case : SI->cases()) {
6104     auto *Orig = Case.getCaseValue();
6105     auto Sub = Orig->getValue() - APInt(Ty->getBitWidth(), Base);
6106     Case.setValue(
6107         cast<ConstantInt>(ConstantInt::get(Ty, Sub.lshr(ShiftC->getValue()))));
6108   }
6109   return true;
6110 }
6111 
6112 bool SimplifyCFGOpt::simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) {
6113   BasicBlock *BB = SI->getParent();
6114 
6115   if (isValueEqualityComparison(SI)) {
6116     // If we only have one predecessor, and if it is a branch on this value,
6117     // see if that predecessor totally determines the outcome of this switch.
6118     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
6119       if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder))
6120         return requestResimplify();
6121 
6122     Value *Cond = SI->getCondition();
6123     if (SelectInst *Select = dyn_cast<SelectInst>(Cond))
6124       if (SimplifySwitchOnSelect(SI, Select))
6125         return requestResimplify();
6126 
6127     // If the block only contains the switch, see if we can fold the block
6128     // away into any preds.
6129     if (SI == &*BB->instructionsWithoutDebug().begin())
6130       if (FoldValueComparisonIntoPredecessors(SI, Builder))
6131         return requestResimplify();
6132   }
6133 
6134   // Try to transform the switch into an icmp and a branch.
6135   if (TurnSwitchRangeIntoICmp(SI, Builder))
6136     return requestResimplify();
6137 
6138   // Remove unreachable cases.
6139   if (eliminateDeadSwitchCases(SI, DTU, Options.AC, DL))
6140     return requestResimplify();
6141 
6142   if (switchToSelect(SI, Builder, DTU, DL, TTI))
6143     return requestResimplify();
6144 
6145   if (Options.ForwardSwitchCondToPhi && ForwardSwitchConditionToPHI(SI))
6146     return requestResimplify();
6147 
6148   // The conversion from switch to lookup tables results in difficult-to-analyze
6149   // code and makes pruning branches much harder. This is a problem if the
6150   // switch expression itself can still be restricted as a result of inlining or
6151   // CVP. Therefore, only apply this transformation during late stages of the
6152   // optimisation pipeline.
6153   if (Options.ConvertSwitchToLookupTable &&
6154       SwitchToLookupTable(SI, Builder, DTU, DL, TTI))
6155     return requestResimplify();
6156 
6157   if (ReduceSwitchRange(SI, Builder, DL, TTI))
6158     return requestResimplify();
6159 
6160   return false;
6161 }
6162 
6163 bool SimplifyCFGOpt::simplifyIndirectBr(IndirectBrInst *IBI) {
6164   BasicBlock *BB = IBI->getParent();
6165   bool Changed = false;
6166 
6167   // Eliminate redundant destinations.
6168   SmallPtrSet<Value *, 8> Succs;
6169   SmallPtrSet<BasicBlock *, 8> RemovedSuccs;
6170   for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
6171     BasicBlock *Dest = IBI->getDestination(i);
6172     if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) {
6173       if (!Dest->hasAddressTaken())
6174         RemovedSuccs.insert(Dest);
6175       Dest->removePredecessor(BB);
6176       IBI->removeDestination(i);
6177       --i;
6178       --e;
6179       Changed = true;
6180     }
6181   }
6182 
6183   if (DTU) {
6184     std::vector<DominatorTree::UpdateType> Updates;
6185     Updates.reserve(RemovedSuccs.size());
6186     for (auto *RemovedSucc : RemovedSuccs)
6187       Updates.push_back({DominatorTree::Delete, BB, RemovedSucc});
6188     DTU->applyUpdates(Updates);
6189   }
6190 
6191   if (IBI->getNumDestinations() == 0) {
6192     // If the indirectbr has no successors, change it to unreachable.
6193     new UnreachableInst(IBI->getContext(), IBI);
6194     EraseTerminatorAndDCECond(IBI);
6195     return true;
6196   }
6197 
6198   if (IBI->getNumDestinations() == 1) {
6199     // If the indirectbr has one successor, change it to a direct branch.
6200     BranchInst::Create(IBI->getDestination(0), IBI);
6201     EraseTerminatorAndDCECond(IBI);
6202     return true;
6203   }
6204 
6205   if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) {
6206     if (SimplifyIndirectBrOnSelect(IBI, SI))
6207       return requestResimplify();
6208   }
6209   return Changed;
6210 }
6211 
6212 /// Given an block with only a single landing pad and a unconditional branch
6213 /// try to find another basic block which this one can be merged with.  This
6214 /// handles cases where we have multiple invokes with unique landing pads, but
6215 /// a shared handler.
6216 ///
6217 /// We specifically choose to not worry about merging non-empty blocks
6218 /// here.  That is a PRE/scheduling problem and is best solved elsewhere.  In
6219 /// practice, the optimizer produces empty landing pad blocks quite frequently
6220 /// when dealing with exception dense code.  (see: instcombine, gvn, if-else
6221 /// sinking in this file)
6222 ///
6223 /// This is primarily a code size optimization.  We need to avoid performing
6224 /// any transform which might inhibit optimization (such as our ability to
6225 /// specialize a particular handler via tail commoning).  We do this by not
6226 /// merging any blocks which require us to introduce a phi.  Since the same
6227 /// values are flowing through both blocks, we don't lose any ability to
6228 /// specialize.  If anything, we make such specialization more likely.
6229 ///
6230 /// TODO - This transformation could remove entries from a phi in the target
6231 /// block when the inputs in the phi are the same for the two blocks being
6232 /// merged.  In some cases, this could result in removal of the PHI entirely.
6233 static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI,
6234                                  BasicBlock *BB, DomTreeUpdater *DTU) {
6235   auto Succ = BB->getUniqueSuccessor();
6236   assert(Succ);
6237   // If there's a phi in the successor block, we'd likely have to introduce
6238   // a phi into the merged landing pad block.
6239   if (isa<PHINode>(*Succ->begin()))
6240     return false;
6241 
6242   for (BasicBlock *OtherPred : predecessors(Succ)) {
6243     if (BB == OtherPred)
6244       continue;
6245     BasicBlock::iterator I = OtherPred->begin();
6246     LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I);
6247     if (!LPad2 || !LPad2->isIdenticalTo(LPad))
6248       continue;
6249     for (++I; isa<DbgInfoIntrinsic>(I); ++I)
6250       ;
6251     BranchInst *BI2 = dyn_cast<BranchInst>(I);
6252     if (!BI2 || !BI2->isIdenticalTo(BI))
6253       continue;
6254 
6255     std::vector<DominatorTree::UpdateType> Updates;
6256 
6257     // We've found an identical block.  Update our predecessors to take that
6258     // path instead and make ourselves dead.
6259     SmallPtrSet<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB));
6260     for (BasicBlock *Pred : Preds) {
6261       InvokeInst *II = cast<InvokeInst>(Pred->getTerminator());
6262       assert(II->getNormalDest() != BB && II->getUnwindDest() == BB &&
6263              "unexpected successor");
6264       II->setUnwindDest(OtherPred);
6265       if (DTU) {
6266         Updates.push_back({DominatorTree::Insert, Pred, OtherPred});
6267         Updates.push_back({DominatorTree::Delete, Pred, BB});
6268       }
6269     }
6270 
6271     // The debug info in OtherPred doesn't cover the merged control flow that
6272     // used to go through BB.  We need to delete it or update it.
6273     for (auto I = OtherPred->begin(), E = OtherPred->end(); I != E;) {
6274       Instruction &Inst = *I;
6275       I++;
6276       if (isa<DbgInfoIntrinsic>(Inst))
6277         Inst.eraseFromParent();
6278     }
6279 
6280     SmallPtrSet<BasicBlock *, 16> Succs(succ_begin(BB), succ_end(BB));
6281     for (BasicBlock *Succ : Succs) {
6282       Succ->removePredecessor(BB);
6283       if (DTU)
6284         Updates.push_back({DominatorTree::Delete, BB, Succ});
6285     }
6286 
6287     IRBuilder<> Builder(BI);
6288     Builder.CreateUnreachable();
6289     BI->eraseFromParent();
6290     if (DTU)
6291       DTU->applyUpdates(Updates);
6292     return true;
6293   }
6294   return false;
6295 }
6296 
6297 bool SimplifyCFGOpt::simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder) {
6298   return Branch->isUnconditional() ? simplifyUncondBranch(Branch, Builder)
6299                                    : simplifyCondBranch(Branch, Builder);
6300 }
6301 
6302 bool SimplifyCFGOpt::simplifyUncondBranch(BranchInst *BI,
6303                                           IRBuilder<> &Builder) {
6304   BasicBlock *BB = BI->getParent();
6305   BasicBlock *Succ = BI->getSuccessor(0);
6306 
6307   // If the Terminator is the only non-phi instruction, simplify the block.
6308   // If LoopHeader is provided, check if the block or its successor is a loop
6309   // header. (This is for early invocations before loop simplify and
6310   // vectorization to keep canonical loop forms for nested loops. These blocks
6311   // can be eliminated when the pass is invoked later in the back-end.)
6312   // Note that if BB has only one predecessor then we do not introduce new
6313   // backedge, so we can eliminate BB.
6314   bool NeedCanonicalLoop =
6315       Options.NeedCanonicalLoop &&
6316       (!LoopHeaders.empty() && BB->hasNPredecessorsOrMore(2) &&
6317        (is_contained(LoopHeaders, BB) || is_contained(LoopHeaders, Succ)));
6318   BasicBlock::iterator I = BB->getFirstNonPHIOrDbg(true)->getIterator();
6319   if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() &&
6320       !NeedCanonicalLoop && TryToSimplifyUncondBranchFromEmptyBlock(BB, DTU))
6321     return true;
6322 
6323   // If the only instruction in the block is a seteq/setne comparison against a
6324   // constant, try to simplify the block.
6325   if (ICmpInst *ICI = dyn_cast<ICmpInst>(I))
6326     if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) {
6327       for (++I; isa<DbgInfoIntrinsic>(I); ++I)
6328         ;
6329       if (I->isTerminator() &&
6330           tryToSimplifyUncondBranchWithICmpInIt(ICI, Builder))
6331         return true;
6332     }
6333 
6334   // See if we can merge an empty landing pad block with another which is
6335   // equivalent.
6336   if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) {
6337     for (++I; isa<DbgInfoIntrinsic>(I); ++I)
6338       ;
6339     if (I->isTerminator() && TryToMergeLandingPad(LPad, BI, BB, DTU))
6340       return true;
6341   }
6342 
6343   // If this basic block is ONLY a compare and a branch, and if a predecessor
6344   // branches to us and our successor, fold the comparison into the
6345   // predecessor and use logical operations to update the incoming value
6346   // for PHI nodes in common successor.
6347   if (FoldBranchToCommonDest(BI, DTU, /*MSSAU=*/nullptr, &TTI,
6348                              Options.BonusInstThreshold))
6349     return requestResimplify();
6350   return false;
6351 }
6352 
6353 static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) {
6354   BasicBlock *PredPred = nullptr;
6355   for (auto *P : predecessors(BB)) {
6356     BasicBlock *PPred = P->getSinglePredecessor();
6357     if (!PPred || (PredPred && PredPred != PPred))
6358       return nullptr;
6359     PredPred = PPred;
6360   }
6361   return PredPred;
6362 }
6363 
6364 bool SimplifyCFGOpt::simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) {
6365   BasicBlock *BB = BI->getParent();
6366   if (!Options.SimplifyCondBranch)
6367     return false;
6368 
6369   // Conditional branch
6370   if (isValueEqualityComparison(BI)) {
6371     // If we only have one predecessor, and if it is a branch on this value,
6372     // see if that predecessor totally determines the outcome of this
6373     // switch.
6374     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
6375       if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder))
6376         return requestResimplify();
6377 
6378     // This block must be empty, except for the setcond inst, if it exists.
6379     // Ignore dbg and pseudo intrinsics.
6380     auto I = BB->instructionsWithoutDebug(true).begin();
6381     if (&*I == BI) {
6382       if (FoldValueComparisonIntoPredecessors(BI, Builder))
6383         return requestResimplify();
6384     } else if (&*I == cast<Instruction>(BI->getCondition())) {
6385       ++I;
6386       if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder))
6387         return requestResimplify();
6388     }
6389   }
6390 
6391   // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction.
6392   if (SimplifyBranchOnICmpChain(BI, Builder, DL))
6393     return true;
6394 
6395   // If this basic block has dominating predecessor blocks and the dominating
6396   // blocks' conditions imply BI's condition, we know the direction of BI.
6397   Optional<bool> Imp = isImpliedByDomCondition(BI->getCondition(), BI, DL);
6398   if (Imp) {
6399     // Turn this into a branch on constant.
6400     auto *OldCond = BI->getCondition();
6401     ConstantInt *TorF = *Imp ? ConstantInt::getTrue(BB->getContext())
6402                              : ConstantInt::getFalse(BB->getContext());
6403     BI->setCondition(TorF);
6404     RecursivelyDeleteTriviallyDeadInstructions(OldCond);
6405     return requestResimplify();
6406   }
6407 
6408   // If this basic block is ONLY a compare and a branch, and if a predecessor
6409   // branches to us and one of our successors, fold the comparison into the
6410   // predecessor and use logical operations to pick the right destination.
6411   if (FoldBranchToCommonDest(BI, DTU, /*MSSAU=*/nullptr, &TTI,
6412                              Options.BonusInstThreshold))
6413     return requestResimplify();
6414 
6415   // We have a conditional branch to two blocks that are only reachable
6416   // from BI.  We know that the condbr dominates the two blocks, so see if
6417   // there is any identical code in the "then" and "else" blocks.  If so, we
6418   // can hoist it up to the branching block.
6419   if (BI->getSuccessor(0)->getSinglePredecessor()) {
6420     if (BI->getSuccessor(1)->getSinglePredecessor()) {
6421       if (HoistCommon &&
6422           HoistThenElseCodeToIf(BI, TTI, !Options.HoistCommonInsts))
6423         return requestResimplify();
6424     } else {
6425       // If Successor #1 has multiple preds, we may be able to conditionally
6426       // execute Successor #0 if it branches to Successor #1.
6427       Instruction *Succ0TI = BI->getSuccessor(0)->getTerminator();
6428       if (Succ0TI->getNumSuccessors() == 1 &&
6429           Succ0TI->getSuccessor(0) == BI->getSuccessor(1))
6430         if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), TTI))
6431           return requestResimplify();
6432     }
6433   } else if (BI->getSuccessor(1)->getSinglePredecessor()) {
6434     // If Successor #0 has multiple preds, we may be able to conditionally
6435     // execute Successor #1 if it branches to Successor #0.
6436     Instruction *Succ1TI = BI->getSuccessor(1)->getTerminator();
6437     if (Succ1TI->getNumSuccessors() == 1 &&
6438         Succ1TI->getSuccessor(0) == BI->getSuccessor(0))
6439       if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), TTI))
6440         return requestResimplify();
6441   }
6442 
6443   // If this is a branch on a phi node in the current block, thread control
6444   // through this block if any PHI node entries are constants.
6445   if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition()))
6446     if (PN->getParent() == BI->getParent())
6447       if (FoldCondBranchOnPHI(BI, DTU, DL, Options.AC))
6448         return requestResimplify();
6449 
6450   // Scan predecessor blocks for conditional branches.
6451   for (BasicBlock *Pred : predecessors(BB))
6452     if (BranchInst *PBI = dyn_cast<BranchInst>(Pred->getTerminator()))
6453       if (PBI != BI && PBI->isConditional())
6454         if (SimplifyCondBranchToCondBranch(PBI, BI, DTU, DL, TTI))
6455           return requestResimplify();
6456 
6457   // Look for diamond patterns.
6458   if (MergeCondStores)
6459     if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB))
6460       if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator()))
6461         if (PBI != BI && PBI->isConditional())
6462           if (mergeConditionalStores(PBI, BI, DTU, DL, TTI))
6463             return requestResimplify();
6464 
6465   return false;
6466 }
6467 
6468 /// Check if passing a value to an instruction will cause undefined behavior.
6469 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I, bool PtrValueMayBeModified) {
6470   Constant *C = dyn_cast<Constant>(V);
6471   if (!C)
6472     return false;
6473 
6474   if (I->use_empty())
6475     return false;
6476 
6477   if (C->isNullValue() || isa<UndefValue>(C)) {
6478     // Only look at the first use, avoid hurting compile time with long uselists
6479     User *Use = *I->user_begin();
6480 
6481     // Now make sure that there are no instructions in between that can alter
6482     // control flow (eg. calls)
6483     for (BasicBlock::iterator
6484              i = ++BasicBlock::iterator(I),
6485              UI = BasicBlock::iterator(dyn_cast<Instruction>(Use));
6486          i != UI; ++i) {
6487       if (i == I->getParent()->end())
6488         return false;
6489       if (!isGuaranteedToTransferExecutionToSuccessor(&*i))
6490         return false;
6491     }
6492 
6493     // Look through GEPs. A load from a GEP derived from NULL is still undefined
6494     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use))
6495       if (GEP->getPointerOperand() == I) {
6496         if (!GEP->isInBounds() || !GEP->hasAllZeroIndices())
6497           PtrValueMayBeModified = true;
6498         return passingValueIsAlwaysUndefined(V, GEP, PtrValueMayBeModified);
6499       }
6500 
6501     // Look through bitcasts.
6502     if (BitCastInst *BC = dyn_cast<BitCastInst>(Use))
6503       return passingValueIsAlwaysUndefined(V, BC, PtrValueMayBeModified);
6504 
6505     // Load from null is undefined.
6506     if (LoadInst *LI = dyn_cast<LoadInst>(Use))
6507       if (!LI->isVolatile())
6508         return !NullPointerIsDefined(LI->getFunction(),
6509                                      LI->getPointerAddressSpace());
6510 
6511     // Store to null is undefined.
6512     if (StoreInst *SI = dyn_cast<StoreInst>(Use))
6513       if (!SI->isVolatile())
6514         return (!NullPointerIsDefined(SI->getFunction(),
6515                                       SI->getPointerAddressSpace())) &&
6516                SI->getPointerOperand() == I;
6517 
6518     if (auto *CB = dyn_cast<CallBase>(Use)) {
6519       if (C->isNullValue() && NullPointerIsDefined(CB->getFunction()))
6520         return false;
6521       // A call to null is undefined.
6522       if (CB->getCalledOperand() == I)
6523         return true;
6524 
6525       if (C->isNullValue()) {
6526         for (const llvm::Use &Arg : CB->args())
6527           if (Arg == I) {
6528             unsigned ArgIdx = CB->getArgOperandNo(&Arg);
6529             if (CB->isPassingUndefUB(ArgIdx) &&
6530                 CB->paramHasAttr(ArgIdx, Attribute::NonNull)) {
6531               // Passing null to a nonnnull+noundef argument is undefined.
6532               return !PtrValueMayBeModified;
6533             }
6534           }
6535       } else if (isa<UndefValue>(C)) {
6536         // Passing undef to a noundef argument is undefined.
6537         for (const llvm::Use &Arg : CB->args())
6538           if (Arg == I) {
6539             unsigned ArgIdx = CB->getArgOperandNo(&Arg);
6540             if (CB->isPassingUndefUB(ArgIdx)) {
6541               // Passing undef to a noundef argument is undefined.
6542               return true;
6543             }
6544           }
6545       }
6546     }
6547   }
6548   return false;
6549 }
6550 
6551 /// If BB has an incoming value that will always trigger undefined behavior
6552 /// (eg. null pointer dereference), remove the branch leading here.
6553 static bool removeUndefIntroducingPredecessor(BasicBlock *BB,
6554                                               DomTreeUpdater *DTU) {
6555   for (PHINode &PHI : BB->phis())
6556     for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i)
6557       if (passingValueIsAlwaysUndefined(PHI.getIncomingValue(i), &PHI)) {
6558         BasicBlock *Predecessor = PHI.getIncomingBlock(i);
6559         Instruction *T = Predecessor->getTerminator();
6560         IRBuilder<> Builder(T);
6561         if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
6562           BB->removePredecessor(Predecessor);
6563           // Turn uncoditional branches into unreachables and remove the dead
6564           // destination from conditional branches.
6565           if (BI->isUnconditional())
6566             Builder.CreateUnreachable();
6567           else
6568             Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1)
6569                                                        : BI->getSuccessor(0));
6570           BI->eraseFromParent();
6571           if (DTU)
6572             DTU->applyUpdates({{DominatorTree::Delete, Predecessor, BB}});
6573           return true;
6574         }
6575         // TODO: SwitchInst.
6576       }
6577 
6578   return false;
6579 }
6580 
6581 bool SimplifyCFGOpt::simplifyOnceImpl(BasicBlock *BB) {
6582   bool Changed = false;
6583 
6584   assert(BB && BB->getParent() && "Block not embedded in function!");
6585   assert(BB->getTerminator() && "Degenerate basic block encountered!");
6586 
6587   // Remove basic blocks that have no predecessors (except the entry block)...
6588   // or that just have themself as a predecessor.  These are unreachable.
6589   if ((pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) ||
6590       BB->getSinglePredecessor() == BB) {
6591     LLVM_DEBUG(dbgs() << "Removing BB: \n" << *BB);
6592     DeleteDeadBlock(BB, DTU);
6593     return true;
6594   }
6595 
6596   // Check to see if we can constant propagate this terminator instruction
6597   // away...
6598   Changed |= ConstantFoldTerminator(BB, /*DeleteDeadConditions=*/true,
6599                                     /*TLI=*/nullptr, DTU);
6600 
6601   // Check for and eliminate duplicate PHI nodes in this block.
6602   Changed |= EliminateDuplicatePHINodes(BB);
6603 
6604   // Check for and remove branches that will always cause undefined behavior.
6605   Changed |= removeUndefIntroducingPredecessor(BB, DTU);
6606 
6607   // Merge basic blocks into their predecessor if there is only one distinct
6608   // pred, and if there is only one distinct successor of the predecessor, and
6609   // if there are no PHI nodes.
6610   if (MergeBlockIntoPredecessor(BB, DTU))
6611     return true;
6612 
6613   if (SinkCommon && Options.SinkCommonInsts)
6614     if (SinkCommonCodeFromPredecessors(BB, DTU)) {
6615       // SinkCommonCodeFromPredecessors() does not automatically CSE PHI's,
6616       // so we may now how duplicate PHI's.
6617       // Let's rerun EliminateDuplicatePHINodes() first,
6618       // before FoldTwoEntryPHINode() potentially converts them into select's,
6619       // after which we'd need a whole EarlyCSE pass run to cleanup them.
6620       return true;
6621     }
6622 
6623   IRBuilder<> Builder(BB);
6624 
6625   if (Options.FoldTwoEntryPHINode) {
6626     // If there is a trivial two-entry PHI node in this basic block, and we can
6627     // eliminate it, do so now.
6628     if (auto *PN = dyn_cast<PHINode>(BB->begin()))
6629       if (PN->getNumIncomingValues() == 2)
6630         Changed |= FoldTwoEntryPHINode(PN, TTI, DTU, DL);
6631   }
6632 
6633   Instruction *Terminator = BB->getTerminator();
6634   Builder.SetInsertPoint(Terminator);
6635   switch (Terminator->getOpcode()) {
6636   case Instruction::Br:
6637     Changed |= simplifyBranch(cast<BranchInst>(Terminator), Builder);
6638     break;
6639   case Instruction::Resume:
6640     Changed |= simplifyResume(cast<ResumeInst>(Terminator), Builder);
6641     break;
6642   case Instruction::CleanupRet:
6643     Changed |= simplifyCleanupReturn(cast<CleanupReturnInst>(Terminator));
6644     break;
6645   case Instruction::Switch:
6646     Changed |= simplifySwitch(cast<SwitchInst>(Terminator), Builder);
6647     break;
6648   case Instruction::Unreachable:
6649     Changed |= simplifyUnreachable(cast<UnreachableInst>(Terminator));
6650     break;
6651   case Instruction::IndirectBr:
6652     Changed |= simplifyIndirectBr(cast<IndirectBrInst>(Terminator));
6653     break;
6654   }
6655 
6656   return Changed;
6657 }
6658 
6659 bool SimplifyCFGOpt::simplifyOnce(BasicBlock *BB) {
6660   bool Changed = simplifyOnceImpl(BB);
6661 
6662   return Changed;
6663 }
6664 
6665 bool SimplifyCFGOpt::run(BasicBlock *BB) {
6666   bool Changed = false;
6667 
6668   // Repeated simplify BB as long as resimplification is requested.
6669   do {
6670     Resimplify = false;
6671 
6672     // Perform one round of simplifcation. Resimplify flag will be set if
6673     // another iteration is requested.
6674     Changed |= simplifyOnce(BB);
6675   } while (Resimplify);
6676 
6677   return Changed;
6678 }
6679 
6680 bool llvm::simplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI,
6681                        DomTreeUpdater *DTU, const SimplifyCFGOptions &Options,
6682                        ArrayRef<WeakVH> LoopHeaders) {
6683   return SimplifyCFGOpt(TTI, DTU, BB->getModule()->getDataLayout(), LoopHeaders,
6684                         Options)
6685       .run(BB);
6686 }
6687