1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Peephole optimize the CFG.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/ADT/APInt.h"
14 #include "llvm/ADT/ArrayRef.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/MapVector.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/ScopeExit.h"
20 #include "llvm/ADT/Sequence.h"
21 #include "llvm/ADT/SetOperations.h"
22 #include "llvm/ADT/SetVector.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/Statistic.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/Analysis/AssumptionCache.h"
28 #include "llvm/Analysis/CaptureTracking.h"
29 #include "llvm/Analysis/ConstantFolding.h"
30 #include "llvm/Analysis/EHPersonalities.h"
31 #include "llvm/Analysis/GuardUtils.h"
32 #include "llvm/Analysis/InstructionSimplify.h"
33 #include "llvm/Analysis/MemorySSA.h"
34 #include "llvm/Analysis/MemorySSAUpdater.h"
35 #include "llvm/Analysis/TargetTransformInfo.h"
36 #include "llvm/Analysis/ValueTracking.h"
37 #include "llvm/IR/Attributes.h"
38 #include "llvm/IR/BasicBlock.h"
39 #include "llvm/IR/CFG.h"
40 #include "llvm/IR/Constant.h"
41 #include "llvm/IR/ConstantRange.h"
42 #include "llvm/IR/Constants.h"
43 #include "llvm/IR/DataLayout.h"
44 #include "llvm/IR/DerivedTypes.h"
45 #include "llvm/IR/Function.h"
46 #include "llvm/IR/GlobalValue.h"
47 #include "llvm/IR/GlobalVariable.h"
48 #include "llvm/IR/IRBuilder.h"
49 #include "llvm/IR/InstrTypes.h"
50 #include "llvm/IR/Instruction.h"
51 #include "llvm/IR/Instructions.h"
52 #include "llvm/IR/IntrinsicInst.h"
53 #include "llvm/IR/Intrinsics.h"
54 #include "llvm/IR/LLVMContext.h"
55 #include "llvm/IR/MDBuilder.h"
56 #include "llvm/IR/Metadata.h"
57 #include "llvm/IR/Module.h"
58 #include "llvm/IR/NoFolder.h"
59 #include "llvm/IR/Operator.h"
60 #include "llvm/IR/PatternMatch.h"
61 #include "llvm/IR/PseudoProbe.h"
62 #include "llvm/IR/Type.h"
63 #include "llvm/IR/Use.h"
64 #include "llvm/IR/User.h"
65 #include "llvm/IR/Value.h"
66 #include "llvm/IR/ValueHandle.h"
67 #include "llvm/Support/BranchProbability.h"
68 #include "llvm/Support/Casting.h"
69 #include "llvm/Support/CommandLine.h"
70 #include "llvm/Support/Debug.h"
71 #include "llvm/Support/ErrorHandling.h"
72 #include "llvm/Support/KnownBits.h"
73 #include "llvm/Support/MathExtras.h"
74 #include "llvm/Support/raw_ostream.h"
75 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
76 #include "llvm/Transforms/Utils/Local.h"
77 #include "llvm/Transforms/Utils/SSAUpdater.h"
78 #include "llvm/Transforms/Utils/ValueMapper.h"
79 #include <algorithm>
80 #include <cassert>
81 #include <climits>
82 #include <cstddef>
83 #include <cstdint>
84 #include <iterator>
85 #include <map>
86 #include <set>
87 #include <tuple>
88 #include <utility>
89 #include <vector>
90 
91 using namespace llvm;
92 using namespace PatternMatch;
93 
94 #define DEBUG_TYPE "simplifycfg"
95 
96 cl::opt<bool> llvm::RequireAndPreserveDomTree(
97     "simplifycfg-require-and-preserve-domtree", cl::Hidden, cl::ZeroOrMore,
98     cl::init(false),
99     cl::desc("Temorary development switch used to gradually uplift SimplifyCFG "
100              "into preserving DomTree,"));
101 
102 // Chosen as 2 so as to be cheap, but still to have enough power to fold
103 // a select, so the "clamp" idiom (of a min followed by a max) will be caught.
104 // To catch this, we need to fold a compare and a select, hence '2' being the
105 // minimum reasonable default.
106 static cl::opt<unsigned> PHINodeFoldingThreshold(
107     "phi-node-folding-threshold", cl::Hidden, cl::init(2),
108     cl::desc(
109         "Control the amount of phi node folding to perform (default = 2)"));
110 
111 static cl::opt<unsigned> TwoEntryPHINodeFoldingThreshold(
112     "two-entry-phi-node-folding-threshold", cl::Hidden, cl::init(4),
113     cl::desc("Control the maximal total instruction cost that we are willing "
114              "to speculatively execute to fold a 2-entry PHI node into a "
115              "select (default = 4)"));
116 
117 static cl::opt<bool>
118     HoistCommon("simplifycfg-hoist-common", cl::Hidden, cl::init(true),
119                 cl::desc("Hoist common instructions up to the parent block"));
120 
121 static cl::opt<bool>
122     SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true),
123                cl::desc("Sink common instructions down to the end block"));
124 
125 static cl::opt<bool> HoistCondStores(
126     "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true),
127     cl::desc("Hoist conditional stores if an unconditional store precedes"));
128 
129 static cl::opt<bool> MergeCondStores(
130     "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true),
131     cl::desc("Hoist conditional stores even if an unconditional store does not "
132              "precede - hoist multiple conditional stores into a single "
133              "predicated store"));
134 
135 static cl::opt<bool> MergeCondStoresAggressively(
136     "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false),
137     cl::desc("When merging conditional stores, do so even if the resultant "
138              "basic blocks are unlikely to be if-converted as a result"));
139 
140 static cl::opt<bool> SpeculateOneExpensiveInst(
141     "speculate-one-expensive-inst", cl::Hidden, cl::init(true),
142     cl::desc("Allow exactly one expensive instruction to be speculatively "
143              "executed"));
144 
145 static cl::opt<unsigned> MaxSpeculationDepth(
146     "max-speculation-depth", cl::Hidden, cl::init(10),
147     cl::desc("Limit maximum recursion depth when calculating costs of "
148              "speculatively executed instructions"));
149 
150 static cl::opt<int>
151     MaxSmallBlockSize("simplifycfg-max-small-block-size", cl::Hidden,
152                       cl::init(10),
153                       cl::desc("Max size of a block which is still considered "
154                                "small enough to thread through"));
155 
156 // Two is chosen to allow one negation and a logical combine.
157 static cl::opt<unsigned>
158     BranchFoldThreshold("simplifycfg-branch-fold-threshold", cl::Hidden,
159                         cl::init(2),
160                         cl::desc("Maximum cost of combining conditions when "
161                                  "folding branches"));
162 
163 static cl::opt<unsigned> BranchFoldToCommonDestVectorMultiplier(
164     "simplifycfg-branch-fold-common-dest-vector-multiplier", cl::Hidden,
165     cl::init(2),
166     cl::desc("Multiplier to apply to threshold when determining whether or not "
167              "to fold branch to common destination when vector operations are "
168              "present"));
169 
170 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps");
171 STATISTIC(NumLinearMaps,
172           "Number of switch instructions turned into linear mapping");
173 STATISTIC(NumLookupTables,
174           "Number of switch instructions turned into lookup tables");
175 STATISTIC(
176     NumLookupTablesHoles,
177     "Number of switch instructions turned into lookup tables (holes checked)");
178 STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares");
179 STATISTIC(NumFoldValueComparisonIntoPredecessors,
180           "Number of value comparisons folded into predecessor basic blocks");
181 STATISTIC(NumFoldBranchToCommonDest,
182           "Number of branches folded into predecessor basic block");
183 STATISTIC(
184     NumHoistCommonCode,
185     "Number of common instruction 'blocks' hoisted up to the begin block");
186 STATISTIC(NumHoistCommonInstrs,
187           "Number of common instructions hoisted up to the begin block");
188 STATISTIC(NumSinkCommonCode,
189           "Number of common instruction 'blocks' sunk down to the end block");
190 STATISTIC(NumSinkCommonInstrs,
191           "Number of common instructions sunk down to the end block");
192 STATISTIC(NumSpeculations, "Number of speculative executed instructions");
193 STATISTIC(NumInvokes,
194           "Number of invokes with empty resume blocks simplified into calls");
195 STATISTIC(NumInvokesMerged, "Number of invokes that were merged together");
196 STATISTIC(NumInvokeSetsFormed, "Number of invoke sets that were formed");
197 
198 namespace {
199 
200 // The first field contains the value that the switch produces when a certain
201 // case group is selected, and the second field is a vector containing the
202 // cases composing the case group.
203 using SwitchCaseResultVectorTy =
204     SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2>;
205 
206 // The first field contains the phi node that generates a result of the switch
207 // and the second field contains the value generated for a certain case in the
208 // switch for that PHI.
209 using SwitchCaseResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>;
210 
211 /// ValueEqualityComparisonCase - Represents a case of a switch.
212 struct ValueEqualityComparisonCase {
213   ConstantInt *Value;
214   BasicBlock *Dest;
215 
216   ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest)
217       : Value(Value), Dest(Dest) {}
218 
219   bool operator<(ValueEqualityComparisonCase RHS) const {
220     // Comparing pointers is ok as we only rely on the order for uniquing.
221     return Value < RHS.Value;
222   }
223 
224   bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; }
225 };
226 
227 class SimplifyCFGOpt {
228   const TargetTransformInfo &TTI;
229   DomTreeUpdater *DTU;
230   const DataLayout &DL;
231   ArrayRef<WeakVH> LoopHeaders;
232   const SimplifyCFGOptions &Options;
233   bool Resimplify;
234 
235   Value *isValueEqualityComparison(Instruction *TI);
236   BasicBlock *GetValueEqualityComparisonCases(
237       Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases);
238   bool SimplifyEqualityComparisonWithOnlyPredecessor(Instruction *TI,
239                                                      BasicBlock *Pred,
240                                                      IRBuilder<> &Builder);
241   bool PerformValueComparisonIntoPredecessorFolding(Instruction *TI, Value *&CV,
242                                                     Instruction *PTI,
243                                                     IRBuilder<> &Builder);
244   bool FoldValueComparisonIntoPredecessors(Instruction *TI,
245                                            IRBuilder<> &Builder);
246 
247   bool simplifyResume(ResumeInst *RI, IRBuilder<> &Builder);
248   bool simplifySingleResume(ResumeInst *RI);
249   bool simplifyCommonResume(ResumeInst *RI);
250   bool simplifyCleanupReturn(CleanupReturnInst *RI);
251   bool simplifyUnreachable(UnreachableInst *UI);
252   bool simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder);
253   bool simplifyIndirectBr(IndirectBrInst *IBI);
254   bool simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder);
255   bool simplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder);
256   bool simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder);
257 
258   bool tryToSimplifyUncondBranchWithICmpInIt(ICmpInst *ICI,
259                                              IRBuilder<> &Builder);
260 
261   bool HoistThenElseCodeToIf(BranchInst *BI, const TargetTransformInfo &TTI,
262                              bool EqTermsOnly);
263   bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB,
264                               const TargetTransformInfo &TTI);
265   bool SimplifyTerminatorOnSelect(Instruction *OldTerm, Value *Cond,
266                                   BasicBlock *TrueBB, BasicBlock *FalseBB,
267                                   uint32_t TrueWeight, uint32_t FalseWeight);
268   bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder,
269                                  const DataLayout &DL);
270   bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select);
271   bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI);
272   bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder);
273 
274 public:
275   SimplifyCFGOpt(const TargetTransformInfo &TTI, DomTreeUpdater *DTU,
276                  const DataLayout &DL, ArrayRef<WeakVH> LoopHeaders,
277                  const SimplifyCFGOptions &Opts)
278       : TTI(TTI), DTU(DTU), DL(DL), LoopHeaders(LoopHeaders), Options(Opts) {
279     assert((!DTU || !DTU->hasPostDomTree()) &&
280            "SimplifyCFG is not yet capable of maintaining validity of a "
281            "PostDomTree, so don't ask for it.");
282   }
283 
284   bool simplifyOnce(BasicBlock *BB);
285   bool run(BasicBlock *BB);
286 
287   // Helper to set Resimplify and return change indication.
288   bool requestResimplify() {
289     Resimplify = true;
290     return true;
291   }
292 };
293 
294 } // end anonymous namespace
295 
296 /// Return true if all the PHI nodes in the basic block \p BB
297 /// receive compatible (identical) incoming values when coming from
298 /// all of the predecessor blocks that are specified in \p IncomingBlocks.
299 static bool IncomingValuesAreCompatible(BasicBlock *BB,
300                                         ArrayRef<BasicBlock *> IncomingBlocks) {
301   assert(IncomingBlocks.size() == 2 &&
302          "Only for a pair of incoming blocks at the time!");
303 
304   // FIXME: it is okay if one of the incoming values is an `undef` value,
305   //        iff the other incoming value is guaranteed to be a non-poison value.
306   // FIXME: it is okay if one of the incoming values is a `poison` value.
307   return all_of(BB->phis(), [IncomingBlocks](PHINode &PN) {
308     return PN.getIncomingValueForBlock(IncomingBlocks[0]) ==
309            PN.getIncomingValueForBlock(IncomingBlocks[1]);
310   });
311 }
312 
313 /// Return true if it is safe to merge these two
314 /// terminator instructions together.
315 static bool
316 SafeToMergeTerminators(Instruction *SI1, Instruction *SI2,
317                        SmallSetVector<BasicBlock *, 4> *FailBlocks = nullptr) {
318   if (SI1 == SI2)
319     return false; // Can't merge with self!
320 
321   // It is not safe to merge these two switch instructions if they have a common
322   // successor, and if that successor has a PHI node, and if *that* PHI node has
323   // conflicting incoming values from the two switch blocks.
324   BasicBlock *SI1BB = SI1->getParent();
325   BasicBlock *SI2BB = SI2->getParent();
326 
327   SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
328   bool Fail = false;
329   for (BasicBlock *Succ : successors(SI2BB)) {
330     if (!SI1Succs.count(Succ))
331       continue;
332     if (IncomingValuesAreCompatible(Succ, {SI1BB, SI2BB}))
333       continue;
334     Fail = true;
335     if (FailBlocks)
336       FailBlocks->insert(Succ);
337     else
338       break;
339   }
340 
341   return !Fail;
342 }
343 
344 /// Update PHI nodes in Succ to indicate that there will now be entries in it
345 /// from the 'NewPred' block. The values that will be flowing into the PHI nodes
346 /// will be the same as those coming in from ExistPred, an existing predecessor
347 /// of Succ.
348 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred,
349                                   BasicBlock *ExistPred,
350                                   MemorySSAUpdater *MSSAU = nullptr) {
351   for (PHINode &PN : Succ->phis())
352     PN.addIncoming(PN.getIncomingValueForBlock(ExistPred), NewPred);
353   if (MSSAU)
354     if (auto *MPhi = MSSAU->getMemorySSA()->getMemoryAccess(Succ))
355       MPhi->addIncoming(MPhi->getIncomingValueForBlock(ExistPred), NewPred);
356 }
357 
358 /// Compute an abstract "cost" of speculating the given instruction,
359 /// which is assumed to be safe to speculate. TCC_Free means cheap,
360 /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively
361 /// expensive.
362 static InstructionCost computeSpeculationCost(const User *I,
363                                               const TargetTransformInfo &TTI) {
364   assert(isSafeToSpeculativelyExecute(I) &&
365          "Instruction is not safe to speculatively execute!");
366   return TTI.getUserCost(I, TargetTransformInfo::TCK_SizeAndLatency);
367 }
368 
369 /// If we have a merge point of an "if condition" as accepted above,
370 /// return true if the specified value dominates the block.  We
371 /// don't handle the true generality of domination here, just a special case
372 /// which works well enough for us.
373 ///
374 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to
375 /// see if V (which must be an instruction) and its recursive operands
376 /// that do not dominate BB have a combined cost lower than Budget and
377 /// are non-trapping.  If both are true, the instruction is inserted into the
378 /// set and true is returned.
379 ///
380 /// The cost for most non-trapping instructions is defined as 1 except for
381 /// Select whose cost is 2.
382 ///
383 /// After this function returns, Cost is increased by the cost of
384 /// V plus its non-dominating operands.  If that cost is greater than
385 /// Budget, false is returned and Cost is undefined.
386 static bool dominatesMergePoint(Value *V, BasicBlock *BB,
387                                 SmallPtrSetImpl<Instruction *> &AggressiveInsts,
388                                 InstructionCost &Cost,
389                                 InstructionCost Budget,
390                                 const TargetTransformInfo &TTI,
391                                 unsigned Depth = 0) {
392   // It is possible to hit a zero-cost cycle (phi/gep instructions for example),
393   // so limit the recursion depth.
394   // TODO: While this recursion limit does prevent pathological behavior, it
395   // would be better to track visited instructions to avoid cycles.
396   if (Depth == MaxSpeculationDepth)
397     return false;
398 
399   Instruction *I = dyn_cast<Instruction>(V);
400   if (!I) {
401     // Non-instructions all dominate instructions, but not all constantexprs
402     // can be executed unconditionally.
403     if (ConstantExpr *C = dyn_cast<ConstantExpr>(V))
404       if (C->canTrap())
405         return false;
406     return true;
407   }
408   BasicBlock *PBB = I->getParent();
409 
410   // We don't want to allow weird loops that might have the "if condition" in
411   // the bottom of this block.
412   if (PBB == BB)
413     return false;
414 
415   // If this instruction is defined in a block that contains an unconditional
416   // branch to BB, then it must be in the 'conditional' part of the "if
417   // statement".  If not, it definitely dominates the region.
418   BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator());
419   if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB)
420     return true;
421 
422   // If we have seen this instruction before, don't count it again.
423   if (AggressiveInsts.count(I))
424     return true;
425 
426   // Okay, it looks like the instruction IS in the "condition".  Check to
427   // see if it's a cheap instruction to unconditionally compute, and if it
428   // only uses stuff defined outside of the condition.  If so, hoist it out.
429   if (!isSafeToSpeculativelyExecute(I))
430     return false;
431 
432   Cost += computeSpeculationCost(I, TTI);
433 
434   // Allow exactly one instruction to be speculated regardless of its cost
435   // (as long as it is safe to do so).
436   // This is intended to flatten the CFG even if the instruction is a division
437   // or other expensive operation. The speculation of an expensive instruction
438   // is expected to be undone in CodeGenPrepare if the speculation has not
439   // enabled further IR optimizations.
440   if (Cost > Budget &&
441       (!SpeculateOneExpensiveInst || !AggressiveInsts.empty() || Depth > 0 ||
442        !Cost.isValid()))
443     return false;
444 
445   // Okay, we can only really hoist these out if their operands do
446   // not take us over the cost threshold.
447   for (Use &Op : I->operands())
448     if (!dominatesMergePoint(Op, BB, AggressiveInsts, Cost, Budget, TTI,
449                              Depth + 1))
450       return false;
451   // Okay, it's safe to do this!  Remember this instruction.
452   AggressiveInsts.insert(I);
453   return true;
454 }
455 
456 /// Extract ConstantInt from value, looking through IntToPtr
457 /// and PointerNullValue. Return NULL if value is not a constant int.
458 static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) {
459   // Normal constant int.
460   ConstantInt *CI = dyn_cast<ConstantInt>(V);
461   if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy())
462     return CI;
463 
464   // This is some kind of pointer constant. Turn it into a pointer-sized
465   // ConstantInt if possible.
466   IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType()));
467 
468   // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*).
469   if (isa<ConstantPointerNull>(V))
470     return ConstantInt::get(PtrTy, 0);
471 
472   // IntToPtr const int.
473   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
474     if (CE->getOpcode() == Instruction::IntToPtr)
475       if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) {
476         // The constant is very likely to have the right type already.
477         if (CI->getType() == PtrTy)
478           return CI;
479         else
480           return cast<ConstantInt>(
481               ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false));
482       }
483   return nullptr;
484 }
485 
486 namespace {
487 
488 /// Given a chain of or (||) or and (&&) comparison of a value against a
489 /// constant, this will try to recover the information required for a switch
490 /// structure.
491 /// It will depth-first traverse the chain of comparison, seeking for patterns
492 /// like %a == 12 or %a < 4 and combine them to produce a set of integer
493 /// representing the different cases for the switch.
494 /// Note that if the chain is composed of '||' it will build the set of elements
495 /// that matches the comparisons (i.e. any of this value validate the chain)
496 /// while for a chain of '&&' it will build the set elements that make the test
497 /// fail.
498 struct ConstantComparesGatherer {
499   const DataLayout &DL;
500 
501   /// Value found for the switch comparison
502   Value *CompValue = nullptr;
503 
504   /// Extra clause to be checked before the switch
505   Value *Extra = nullptr;
506 
507   /// Set of integers to match in switch
508   SmallVector<ConstantInt *, 8> Vals;
509 
510   /// Number of comparisons matched in the and/or chain
511   unsigned UsedICmps = 0;
512 
513   /// Construct and compute the result for the comparison instruction Cond
514   ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL) : DL(DL) {
515     gather(Cond);
516   }
517 
518   ConstantComparesGatherer(const ConstantComparesGatherer &) = delete;
519   ConstantComparesGatherer &
520   operator=(const ConstantComparesGatherer &) = delete;
521 
522 private:
523   /// Try to set the current value used for the comparison, it succeeds only if
524   /// it wasn't set before or if the new value is the same as the old one
525   bool setValueOnce(Value *NewVal) {
526     if (CompValue && CompValue != NewVal)
527       return false;
528     CompValue = NewVal;
529     return (CompValue != nullptr);
530   }
531 
532   /// Try to match Instruction "I" as a comparison against a constant and
533   /// populates the array Vals with the set of values that match (or do not
534   /// match depending on isEQ).
535   /// Return false on failure. On success, the Value the comparison matched
536   /// against is placed in CompValue.
537   /// If CompValue is already set, the function is expected to fail if a match
538   /// is found but the value compared to is different.
539   bool matchInstruction(Instruction *I, bool isEQ) {
540     // If this is an icmp against a constant, handle this as one of the cases.
541     ICmpInst *ICI;
542     ConstantInt *C;
543     if (!((ICI = dyn_cast<ICmpInst>(I)) &&
544           (C = GetConstantInt(I->getOperand(1), DL)))) {
545       return false;
546     }
547 
548     Value *RHSVal;
549     const APInt *RHSC;
550 
551     // Pattern match a special case
552     // (x & ~2^z) == y --> x == y || x == y|2^z
553     // This undoes a transformation done by instcombine to fuse 2 compares.
554     if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE)) {
555       // It's a little bit hard to see why the following transformations are
556       // correct. Here is a CVC3 program to verify them for 64-bit values:
557 
558       /*
559          ONE  : BITVECTOR(64) = BVZEROEXTEND(0bin1, 63);
560          x    : BITVECTOR(64);
561          y    : BITVECTOR(64);
562          z    : BITVECTOR(64);
563          mask : BITVECTOR(64) = BVSHL(ONE, z);
564          QUERY( (y & ~mask = y) =>
565                 ((x & ~mask = y) <=> (x = y OR x = (y |  mask)))
566          );
567          QUERY( (y |  mask = y) =>
568                 ((x |  mask = y) <=> (x = y OR x = (y & ~mask)))
569          );
570       */
571 
572       // Please note that each pattern must be a dual implication (<--> or
573       // iff). One directional implication can create spurious matches. If the
574       // implication is only one-way, an unsatisfiable condition on the left
575       // side can imply a satisfiable condition on the right side. Dual
576       // implication ensures that satisfiable conditions are transformed to
577       // other satisfiable conditions and unsatisfiable conditions are
578       // transformed to other unsatisfiable conditions.
579 
580       // Here is a concrete example of a unsatisfiable condition on the left
581       // implying a satisfiable condition on the right:
582       //
583       // mask = (1 << z)
584       // (x & ~mask) == y  --> (x == y || x == (y | mask))
585       //
586       // Substituting y = 3, z = 0 yields:
587       // (x & -2) == 3 --> (x == 3 || x == 2)
588 
589       // Pattern match a special case:
590       /*
591         QUERY( (y & ~mask = y) =>
592                ((x & ~mask = y) <=> (x = y OR x = (y |  mask)))
593         );
594       */
595       if (match(ICI->getOperand(0),
596                 m_And(m_Value(RHSVal), m_APInt(RHSC)))) {
597         APInt Mask = ~*RHSC;
598         if (Mask.isPowerOf2() && (C->getValue() & ~Mask) == C->getValue()) {
599           // If we already have a value for the switch, it has to match!
600           if (!setValueOnce(RHSVal))
601             return false;
602 
603           Vals.push_back(C);
604           Vals.push_back(
605               ConstantInt::get(C->getContext(),
606                                C->getValue() | Mask));
607           UsedICmps++;
608           return true;
609         }
610       }
611 
612       // Pattern match a special case:
613       /*
614         QUERY( (y |  mask = y) =>
615                ((x |  mask = y) <=> (x = y OR x = (y & ~mask)))
616         );
617       */
618       if (match(ICI->getOperand(0),
619                 m_Or(m_Value(RHSVal), m_APInt(RHSC)))) {
620         APInt Mask = *RHSC;
621         if (Mask.isPowerOf2() && (C->getValue() | Mask) == C->getValue()) {
622           // If we already have a value for the switch, it has to match!
623           if (!setValueOnce(RHSVal))
624             return false;
625 
626           Vals.push_back(C);
627           Vals.push_back(ConstantInt::get(C->getContext(),
628                                           C->getValue() & ~Mask));
629           UsedICmps++;
630           return true;
631         }
632       }
633 
634       // If we already have a value for the switch, it has to match!
635       if (!setValueOnce(ICI->getOperand(0)))
636         return false;
637 
638       UsedICmps++;
639       Vals.push_back(C);
640       return ICI->getOperand(0);
641     }
642 
643     // If we have "x ult 3", for example, then we can add 0,1,2 to the set.
644     ConstantRange Span =
645         ConstantRange::makeExactICmpRegion(ICI->getPredicate(), C->getValue());
646 
647     // Shift the range if the compare is fed by an add. This is the range
648     // compare idiom as emitted by instcombine.
649     Value *CandidateVal = I->getOperand(0);
650     if (match(I->getOperand(0), m_Add(m_Value(RHSVal), m_APInt(RHSC)))) {
651       Span = Span.subtract(*RHSC);
652       CandidateVal = RHSVal;
653     }
654 
655     // If this is an and/!= check, then we are looking to build the set of
656     // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into
657     // x != 0 && x != 1.
658     if (!isEQ)
659       Span = Span.inverse();
660 
661     // If there are a ton of values, we don't want to make a ginormous switch.
662     if (Span.isSizeLargerThan(8) || Span.isEmptySet()) {
663       return false;
664     }
665 
666     // If we already have a value for the switch, it has to match!
667     if (!setValueOnce(CandidateVal))
668       return false;
669 
670     // Add all values from the range to the set
671     for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp)
672       Vals.push_back(ConstantInt::get(I->getContext(), Tmp));
673 
674     UsedICmps++;
675     return true;
676   }
677 
678   /// Given a potentially 'or'd or 'and'd together collection of icmp
679   /// eq/ne/lt/gt instructions that compare a value against a constant, extract
680   /// the value being compared, and stick the list constants into the Vals
681   /// vector.
682   /// One "Extra" case is allowed to differ from the other.
683   void gather(Value *V) {
684     bool isEQ = match(V, m_LogicalOr(m_Value(), m_Value()));
685 
686     // Keep a stack (SmallVector for efficiency) for depth-first traversal
687     SmallVector<Value *, 8> DFT;
688     SmallPtrSet<Value *, 8> Visited;
689 
690     // Initialize
691     Visited.insert(V);
692     DFT.push_back(V);
693 
694     while (!DFT.empty()) {
695       V = DFT.pop_back_val();
696 
697       if (Instruction *I = dyn_cast<Instruction>(V)) {
698         // If it is a || (or && depending on isEQ), process the operands.
699         Value *Op0, *Op1;
700         if (isEQ ? match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1)))
701                  : match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) {
702           if (Visited.insert(Op1).second)
703             DFT.push_back(Op1);
704           if (Visited.insert(Op0).second)
705             DFT.push_back(Op0);
706 
707           continue;
708         }
709 
710         // Try to match the current instruction
711         if (matchInstruction(I, isEQ))
712           // Match succeed, continue the loop
713           continue;
714       }
715 
716       // One element of the sequence of || (or &&) could not be match as a
717       // comparison against the same value as the others.
718       // We allow only one "Extra" case to be checked before the switch
719       if (!Extra) {
720         Extra = V;
721         continue;
722       }
723       // Failed to parse a proper sequence, abort now
724       CompValue = nullptr;
725       break;
726     }
727   }
728 };
729 
730 } // end anonymous namespace
731 
732 static void EraseTerminatorAndDCECond(Instruction *TI,
733                                       MemorySSAUpdater *MSSAU = nullptr) {
734   Instruction *Cond = nullptr;
735   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
736     Cond = dyn_cast<Instruction>(SI->getCondition());
737   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
738     if (BI->isConditional())
739       Cond = dyn_cast<Instruction>(BI->getCondition());
740   } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) {
741     Cond = dyn_cast<Instruction>(IBI->getAddress());
742   }
743 
744   TI->eraseFromParent();
745   if (Cond)
746     RecursivelyDeleteTriviallyDeadInstructions(Cond, nullptr, MSSAU);
747 }
748 
749 /// Return true if the specified terminator checks
750 /// to see if a value is equal to constant integer value.
751 Value *SimplifyCFGOpt::isValueEqualityComparison(Instruction *TI) {
752   Value *CV = nullptr;
753   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
754     // Do not permit merging of large switch instructions into their
755     // predecessors unless there is only one predecessor.
756     if (!SI->getParent()->hasNPredecessorsOrMore(128 / SI->getNumSuccessors()))
757       CV = SI->getCondition();
758   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI))
759     if (BI->isConditional() && BI->getCondition()->hasOneUse())
760       if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) {
761         if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL))
762           CV = ICI->getOperand(0);
763       }
764 
765   // Unwrap any lossless ptrtoint cast.
766   if (CV) {
767     if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) {
768       Value *Ptr = PTII->getPointerOperand();
769       if (PTII->getType() == DL.getIntPtrType(Ptr->getType()))
770         CV = Ptr;
771     }
772   }
773   return CV;
774 }
775 
776 /// Given a value comparison instruction,
777 /// decode all of the 'cases' that it represents and return the 'default' block.
778 BasicBlock *SimplifyCFGOpt::GetValueEqualityComparisonCases(
779     Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases) {
780   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
781     Cases.reserve(SI->getNumCases());
782     for (auto Case : SI->cases())
783       Cases.push_back(ValueEqualityComparisonCase(Case.getCaseValue(),
784                                                   Case.getCaseSuccessor()));
785     return SI->getDefaultDest();
786   }
787 
788   BranchInst *BI = cast<BranchInst>(TI);
789   ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
790   BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE);
791   Cases.push_back(ValueEqualityComparisonCase(
792       GetConstantInt(ICI->getOperand(1), DL), Succ));
793   return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ);
794 }
795 
796 /// Given a vector of bb/value pairs, remove any entries
797 /// in the list that match the specified block.
798 static void
799 EliminateBlockCases(BasicBlock *BB,
800                     std::vector<ValueEqualityComparisonCase> &Cases) {
801   llvm::erase_value(Cases, BB);
802 }
803 
804 /// Return true if there are any keys in C1 that exist in C2 as well.
805 static bool ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1,
806                           std::vector<ValueEqualityComparisonCase> &C2) {
807   std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2;
808 
809   // Make V1 be smaller than V2.
810   if (V1->size() > V2->size())
811     std::swap(V1, V2);
812 
813   if (V1->empty())
814     return false;
815   if (V1->size() == 1) {
816     // Just scan V2.
817     ConstantInt *TheVal = (*V1)[0].Value;
818     for (unsigned i = 0, e = V2->size(); i != e; ++i)
819       if (TheVal == (*V2)[i].Value)
820         return true;
821   }
822 
823   // Otherwise, just sort both lists and compare element by element.
824   array_pod_sort(V1->begin(), V1->end());
825   array_pod_sort(V2->begin(), V2->end());
826   unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size();
827   while (i1 != e1 && i2 != e2) {
828     if ((*V1)[i1].Value == (*V2)[i2].Value)
829       return true;
830     if ((*V1)[i1].Value < (*V2)[i2].Value)
831       ++i1;
832     else
833       ++i2;
834   }
835   return false;
836 }
837 
838 // Set branch weights on SwitchInst. This sets the metadata if there is at
839 // least one non-zero weight.
840 static void setBranchWeights(SwitchInst *SI, ArrayRef<uint32_t> Weights) {
841   // Check that there is at least one non-zero weight. Otherwise, pass
842   // nullptr to setMetadata which will erase the existing metadata.
843   MDNode *N = nullptr;
844   if (llvm::any_of(Weights, [](uint32_t W) { return W != 0; }))
845     N = MDBuilder(SI->getParent()->getContext()).createBranchWeights(Weights);
846   SI->setMetadata(LLVMContext::MD_prof, N);
847 }
848 
849 // Similar to the above, but for branch and select instructions that take
850 // exactly 2 weights.
851 static void setBranchWeights(Instruction *I, uint32_t TrueWeight,
852                              uint32_t FalseWeight) {
853   assert(isa<BranchInst>(I) || isa<SelectInst>(I));
854   // Check that there is at least one non-zero weight. Otherwise, pass
855   // nullptr to setMetadata which will erase the existing metadata.
856   MDNode *N = nullptr;
857   if (TrueWeight || FalseWeight)
858     N = MDBuilder(I->getParent()->getContext())
859             .createBranchWeights(TrueWeight, FalseWeight);
860   I->setMetadata(LLVMContext::MD_prof, N);
861 }
862 
863 /// If TI is known to be a terminator instruction and its block is known to
864 /// only have a single predecessor block, check to see if that predecessor is
865 /// also a value comparison with the same value, and if that comparison
866 /// determines the outcome of this comparison. If so, simplify TI. This does a
867 /// very limited form of jump threading.
868 bool SimplifyCFGOpt::SimplifyEqualityComparisonWithOnlyPredecessor(
869     Instruction *TI, BasicBlock *Pred, IRBuilder<> &Builder) {
870   Value *PredVal = isValueEqualityComparison(Pred->getTerminator());
871   if (!PredVal)
872     return false; // Not a value comparison in predecessor.
873 
874   Value *ThisVal = isValueEqualityComparison(TI);
875   assert(ThisVal && "This isn't a value comparison!!");
876   if (ThisVal != PredVal)
877     return false; // Different predicates.
878 
879   // TODO: Preserve branch weight metadata, similarly to how
880   // FoldValueComparisonIntoPredecessors preserves it.
881 
882   // Find out information about when control will move from Pred to TI's block.
883   std::vector<ValueEqualityComparisonCase> PredCases;
884   BasicBlock *PredDef =
885       GetValueEqualityComparisonCases(Pred->getTerminator(), PredCases);
886   EliminateBlockCases(PredDef, PredCases); // Remove default from cases.
887 
888   // Find information about how control leaves this block.
889   std::vector<ValueEqualityComparisonCase> ThisCases;
890   BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases);
891   EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases.
892 
893   // If TI's block is the default block from Pred's comparison, potentially
894   // simplify TI based on this knowledge.
895   if (PredDef == TI->getParent()) {
896     // If we are here, we know that the value is none of those cases listed in
897     // PredCases.  If there are any cases in ThisCases that are in PredCases, we
898     // can simplify TI.
899     if (!ValuesOverlap(PredCases, ThisCases))
900       return false;
901 
902     if (isa<BranchInst>(TI)) {
903       // Okay, one of the successors of this condbr is dead.  Convert it to a
904       // uncond br.
905       assert(ThisCases.size() == 1 && "Branch can only have one case!");
906       // Insert the new branch.
907       Instruction *NI = Builder.CreateBr(ThisDef);
908       (void)NI;
909 
910       // Remove PHI node entries for the dead edge.
911       ThisCases[0].Dest->removePredecessor(PredDef);
912 
913       LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
914                         << "Through successor TI: " << *TI << "Leaving: " << *NI
915                         << "\n");
916 
917       EraseTerminatorAndDCECond(TI);
918 
919       if (DTU)
920         DTU->applyUpdates(
921             {{DominatorTree::Delete, PredDef, ThisCases[0].Dest}});
922 
923       return true;
924     }
925 
926     SwitchInstProfUpdateWrapper SI = *cast<SwitchInst>(TI);
927     // Okay, TI has cases that are statically dead, prune them away.
928     SmallPtrSet<Constant *, 16> DeadCases;
929     for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
930       DeadCases.insert(PredCases[i].Value);
931 
932     LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
933                       << "Through successor TI: " << *TI);
934 
935     SmallDenseMap<BasicBlock *, int, 8> NumPerSuccessorCases;
936     for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) {
937       --i;
938       auto *Successor = i->getCaseSuccessor();
939       if (DTU)
940         ++NumPerSuccessorCases[Successor];
941       if (DeadCases.count(i->getCaseValue())) {
942         Successor->removePredecessor(PredDef);
943         SI.removeCase(i);
944         if (DTU)
945           --NumPerSuccessorCases[Successor];
946       }
947     }
948 
949     if (DTU) {
950       std::vector<DominatorTree::UpdateType> Updates;
951       for (const std::pair<BasicBlock *, int> &I : NumPerSuccessorCases)
952         if (I.second == 0)
953           Updates.push_back({DominatorTree::Delete, PredDef, I.first});
954       DTU->applyUpdates(Updates);
955     }
956 
957     LLVM_DEBUG(dbgs() << "Leaving: " << *TI << "\n");
958     return true;
959   }
960 
961   // Otherwise, TI's block must correspond to some matched value.  Find out
962   // which value (or set of values) this is.
963   ConstantInt *TIV = nullptr;
964   BasicBlock *TIBB = TI->getParent();
965   for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
966     if (PredCases[i].Dest == TIBB) {
967       if (TIV)
968         return false; // Cannot handle multiple values coming to this block.
969       TIV = PredCases[i].Value;
970     }
971   assert(TIV && "No edge from pred to succ?");
972 
973   // Okay, we found the one constant that our value can be if we get into TI's
974   // BB.  Find out which successor will unconditionally be branched to.
975   BasicBlock *TheRealDest = nullptr;
976   for (unsigned i = 0, e = ThisCases.size(); i != e; ++i)
977     if (ThisCases[i].Value == TIV) {
978       TheRealDest = ThisCases[i].Dest;
979       break;
980     }
981 
982   // If not handled by any explicit cases, it is handled by the default case.
983   if (!TheRealDest)
984     TheRealDest = ThisDef;
985 
986   SmallPtrSet<BasicBlock *, 2> RemovedSuccs;
987 
988   // Remove PHI node entries for dead edges.
989   BasicBlock *CheckEdge = TheRealDest;
990   for (BasicBlock *Succ : successors(TIBB))
991     if (Succ != CheckEdge) {
992       if (Succ != TheRealDest)
993         RemovedSuccs.insert(Succ);
994       Succ->removePredecessor(TIBB);
995     } else
996       CheckEdge = nullptr;
997 
998   // Insert the new branch.
999   Instruction *NI = Builder.CreateBr(TheRealDest);
1000   (void)NI;
1001 
1002   LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
1003                     << "Through successor TI: " << *TI << "Leaving: " << *NI
1004                     << "\n");
1005 
1006   EraseTerminatorAndDCECond(TI);
1007   if (DTU) {
1008     SmallVector<DominatorTree::UpdateType, 2> Updates;
1009     Updates.reserve(RemovedSuccs.size());
1010     for (auto *RemovedSucc : RemovedSuccs)
1011       Updates.push_back({DominatorTree::Delete, TIBB, RemovedSucc});
1012     DTU->applyUpdates(Updates);
1013   }
1014   return true;
1015 }
1016 
1017 namespace {
1018 
1019 /// This class implements a stable ordering of constant
1020 /// integers that does not depend on their address.  This is important for
1021 /// applications that sort ConstantInt's to ensure uniqueness.
1022 struct ConstantIntOrdering {
1023   bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const {
1024     return LHS->getValue().ult(RHS->getValue());
1025   }
1026 };
1027 
1028 } // end anonymous namespace
1029 
1030 static int ConstantIntSortPredicate(ConstantInt *const *P1,
1031                                     ConstantInt *const *P2) {
1032   const ConstantInt *LHS = *P1;
1033   const ConstantInt *RHS = *P2;
1034   if (LHS == RHS)
1035     return 0;
1036   return LHS->getValue().ult(RHS->getValue()) ? 1 : -1;
1037 }
1038 
1039 static inline bool HasBranchWeights(const Instruction *I) {
1040   MDNode *ProfMD = I->getMetadata(LLVMContext::MD_prof);
1041   if (ProfMD && ProfMD->getOperand(0))
1042     if (MDString *MDS = dyn_cast<MDString>(ProfMD->getOperand(0)))
1043       return MDS->getString().equals("branch_weights");
1044 
1045   return false;
1046 }
1047 
1048 /// Get Weights of a given terminator, the default weight is at the front
1049 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight
1050 /// metadata.
1051 static void GetBranchWeights(Instruction *TI,
1052                              SmallVectorImpl<uint64_t> &Weights) {
1053   MDNode *MD = TI->getMetadata(LLVMContext::MD_prof);
1054   assert(MD);
1055   for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) {
1056     ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i));
1057     Weights.push_back(CI->getValue().getZExtValue());
1058   }
1059 
1060   // If TI is a conditional eq, the default case is the false case,
1061   // and the corresponding branch-weight data is at index 2. We swap the
1062   // default weight to be the first entry.
1063   if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
1064     assert(Weights.size() == 2);
1065     ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
1066     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
1067       std::swap(Weights.front(), Weights.back());
1068   }
1069 }
1070 
1071 /// Keep halving the weights until all can fit in uint32_t.
1072 static void FitWeights(MutableArrayRef<uint64_t> Weights) {
1073   uint64_t Max = *std::max_element(Weights.begin(), Weights.end());
1074   if (Max > UINT_MAX) {
1075     unsigned Offset = 32 - countLeadingZeros(Max);
1076     for (uint64_t &I : Weights)
1077       I >>= Offset;
1078   }
1079 }
1080 
1081 static void CloneInstructionsIntoPredecessorBlockAndUpdateSSAUses(
1082     BasicBlock *BB, BasicBlock *PredBlock, ValueToValueMapTy &VMap) {
1083   Instruction *PTI = PredBlock->getTerminator();
1084 
1085   // If we have bonus instructions, clone them into the predecessor block.
1086   // Note that there may be multiple predecessor blocks, so we cannot move
1087   // bonus instructions to a predecessor block.
1088   for (Instruction &BonusInst : *BB) {
1089     if (isa<DbgInfoIntrinsic>(BonusInst) || BonusInst.isTerminator())
1090       continue;
1091 
1092     Instruction *NewBonusInst = BonusInst.clone();
1093 
1094     if (PTI->getDebugLoc() != NewBonusInst->getDebugLoc()) {
1095       // Unless the instruction has the same !dbg location as the original
1096       // branch, drop it. When we fold the bonus instructions we want to make
1097       // sure we reset their debug locations in order to avoid stepping on
1098       // dead code caused by folding dead branches.
1099       NewBonusInst->setDebugLoc(DebugLoc());
1100     }
1101 
1102     RemapInstruction(NewBonusInst, VMap,
1103                      RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
1104     VMap[&BonusInst] = NewBonusInst;
1105 
1106     // If we moved a load, we cannot any longer claim any knowledge about
1107     // its potential value. The previous information might have been valid
1108     // only given the branch precondition.
1109     // For an analogous reason, we must also drop all the metadata whose
1110     // semantics we don't understand. We *can* preserve !annotation, because
1111     // it is tied to the instruction itself, not the value or position.
1112     // Similarly strip attributes on call parameters that may cause UB in
1113     // location the call is moved to.
1114     NewBonusInst->dropUndefImplyingAttrsAndUnknownMetadata(
1115         LLVMContext::MD_annotation);
1116 
1117     PredBlock->getInstList().insert(PTI->getIterator(), NewBonusInst);
1118     NewBonusInst->takeName(&BonusInst);
1119     BonusInst.setName(NewBonusInst->getName() + ".old");
1120 
1121     // Update (liveout) uses of bonus instructions,
1122     // now that the bonus instruction has been cloned into predecessor.
1123     // Note that we expect to be in a block-closed SSA form for this to work!
1124     for (Use &U : make_early_inc_range(BonusInst.uses())) {
1125       auto *UI = cast<Instruction>(U.getUser());
1126       auto *PN = dyn_cast<PHINode>(UI);
1127       if (!PN) {
1128         assert(UI->getParent() == BB && BonusInst.comesBefore(UI) &&
1129                "If the user is not a PHI node, then it should be in the same "
1130                "block as, and come after, the original bonus instruction.");
1131         continue; // Keep using the original bonus instruction.
1132       }
1133       // Is this the block-closed SSA form PHI node?
1134       if (PN->getIncomingBlock(U) == BB)
1135         continue; // Great, keep using the original bonus instruction.
1136       // The only other alternative is an "use" when coming from
1137       // the predecessor block - here we should refer to the cloned bonus instr.
1138       assert(PN->getIncomingBlock(U) == PredBlock &&
1139              "Not in block-closed SSA form?");
1140       U.set(NewBonusInst);
1141     }
1142   }
1143 }
1144 
1145 bool SimplifyCFGOpt::PerformValueComparisonIntoPredecessorFolding(
1146     Instruction *TI, Value *&CV, Instruction *PTI, IRBuilder<> &Builder) {
1147   BasicBlock *BB = TI->getParent();
1148   BasicBlock *Pred = PTI->getParent();
1149 
1150   SmallVector<DominatorTree::UpdateType, 32> Updates;
1151 
1152   // Figure out which 'cases' to copy from SI to PSI.
1153   std::vector<ValueEqualityComparisonCase> BBCases;
1154   BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases);
1155 
1156   std::vector<ValueEqualityComparisonCase> PredCases;
1157   BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases);
1158 
1159   // Based on whether the default edge from PTI goes to BB or not, fill in
1160   // PredCases and PredDefault with the new switch cases we would like to
1161   // build.
1162   SmallMapVector<BasicBlock *, int, 8> NewSuccessors;
1163 
1164   // Update the branch weight metadata along the way
1165   SmallVector<uint64_t, 8> Weights;
1166   bool PredHasWeights = HasBranchWeights(PTI);
1167   bool SuccHasWeights = HasBranchWeights(TI);
1168 
1169   if (PredHasWeights) {
1170     GetBranchWeights(PTI, Weights);
1171     // branch-weight metadata is inconsistent here.
1172     if (Weights.size() != 1 + PredCases.size())
1173       PredHasWeights = SuccHasWeights = false;
1174   } else if (SuccHasWeights)
1175     // If there are no predecessor weights but there are successor weights,
1176     // populate Weights with 1, which will later be scaled to the sum of
1177     // successor's weights
1178     Weights.assign(1 + PredCases.size(), 1);
1179 
1180   SmallVector<uint64_t, 8> SuccWeights;
1181   if (SuccHasWeights) {
1182     GetBranchWeights(TI, SuccWeights);
1183     // branch-weight metadata is inconsistent here.
1184     if (SuccWeights.size() != 1 + BBCases.size())
1185       PredHasWeights = SuccHasWeights = false;
1186   } else if (PredHasWeights)
1187     SuccWeights.assign(1 + BBCases.size(), 1);
1188 
1189   if (PredDefault == BB) {
1190     // If this is the default destination from PTI, only the edges in TI
1191     // that don't occur in PTI, or that branch to BB will be activated.
1192     std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
1193     for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
1194       if (PredCases[i].Dest != BB)
1195         PTIHandled.insert(PredCases[i].Value);
1196       else {
1197         // The default destination is BB, we don't need explicit targets.
1198         std::swap(PredCases[i], PredCases.back());
1199 
1200         if (PredHasWeights || SuccHasWeights) {
1201           // Increase weight for the default case.
1202           Weights[0] += Weights[i + 1];
1203           std::swap(Weights[i + 1], Weights.back());
1204           Weights.pop_back();
1205         }
1206 
1207         PredCases.pop_back();
1208         --i;
1209         --e;
1210       }
1211 
1212     // Reconstruct the new switch statement we will be building.
1213     if (PredDefault != BBDefault) {
1214       PredDefault->removePredecessor(Pred);
1215       if (DTU && PredDefault != BB)
1216         Updates.push_back({DominatorTree::Delete, Pred, PredDefault});
1217       PredDefault = BBDefault;
1218       ++NewSuccessors[BBDefault];
1219     }
1220 
1221     unsigned CasesFromPred = Weights.size();
1222     uint64_t ValidTotalSuccWeight = 0;
1223     for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
1224       if (!PTIHandled.count(BBCases[i].Value) && BBCases[i].Dest != BBDefault) {
1225         PredCases.push_back(BBCases[i]);
1226         ++NewSuccessors[BBCases[i].Dest];
1227         if (SuccHasWeights || PredHasWeights) {
1228           // The default weight is at index 0, so weight for the ith case
1229           // should be at index i+1. Scale the cases from successor by
1230           // PredDefaultWeight (Weights[0]).
1231           Weights.push_back(Weights[0] * SuccWeights[i + 1]);
1232           ValidTotalSuccWeight += SuccWeights[i + 1];
1233         }
1234       }
1235 
1236     if (SuccHasWeights || PredHasWeights) {
1237       ValidTotalSuccWeight += SuccWeights[0];
1238       // Scale the cases from predecessor by ValidTotalSuccWeight.
1239       for (unsigned i = 1; i < CasesFromPred; ++i)
1240         Weights[i] *= ValidTotalSuccWeight;
1241       // Scale the default weight by SuccDefaultWeight (SuccWeights[0]).
1242       Weights[0] *= SuccWeights[0];
1243     }
1244   } else {
1245     // If this is not the default destination from PSI, only the edges
1246     // in SI that occur in PSI with a destination of BB will be
1247     // activated.
1248     std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
1249     std::map<ConstantInt *, uint64_t> WeightsForHandled;
1250     for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
1251       if (PredCases[i].Dest == BB) {
1252         PTIHandled.insert(PredCases[i].Value);
1253 
1254         if (PredHasWeights || SuccHasWeights) {
1255           WeightsForHandled[PredCases[i].Value] = Weights[i + 1];
1256           std::swap(Weights[i + 1], Weights.back());
1257           Weights.pop_back();
1258         }
1259 
1260         std::swap(PredCases[i], PredCases.back());
1261         PredCases.pop_back();
1262         --i;
1263         --e;
1264       }
1265 
1266     // Okay, now we know which constants were sent to BB from the
1267     // predecessor.  Figure out where they will all go now.
1268     for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
1269       if (PTIHandled.count(BBCases[i].Value)) {
1270         // If this is one we are capable of getting...
1271         if (PredHasWeights || SuccHasWeights)
1272           Weights.push_back(WeightsForHandled[BBCases[i].Value]);
1273         PredCases.push_back(BBCases[i]);
1274         ++NewSuccessors[BBCases[i].Dest];
1275         PTIHandled.erase(BBCases[i].Value); // This constant is taken care of
1276       }
1277 
1278     // If there are any constants vectored to BB that TI doesn't handle,
1279     // they must go to the default destination of TI.
1280     for (ConstantInt *I : PTIHandled) {
1281       if (PredHasWeights || SuccHasWeights)
1282         Weights.push_back(WeightsForHandled[I]);
1283       PredCases.push_back(ValueEqualityComparisonCase(I, BBDefault));
1284       ++NewSuccessors[BBDefault];
1285     }
1286   }
1287 
1288   // Okay, at this point, we know which new successor Pred will get.  Make
1289   // sure we update the number of entries in the PHI nodes for these
1290   // successors.
1291   SmallPtrSet<BasicBlock *, 2> SuccsOfPred;
1292   if (DTU) {
1293     SuccsOfPred = {succ_begin(Pred), succ_end(Pred)};
1294     Updates.reserve(Updates.size() + NewSuccessors.size());
1295   }
1296   for (const std::pair<BasicBlock *, int /*Num*/> &NewSuccessor :
1297        NewSuccessors) {
1298     for (auto I : seq(0, NewSuccessor.second)) {
1299       (void)I;
1300       AddPredecessorToBlock(NewSuccessor.first, Pred, BB);
1301     }
1302     if (DTU && !SuccsOfPred.contains(NewSuccessor.first))
1303       Updates.push_back({DominatorTree::Insert, Pred, NewSuccessor.first});
1304   }
1305 
1306   Builder.SetInsertPoint(PTI);
1307   // Convert pointer to int before we switch.
1308   if (CV->getType()->isPointerTy()) {
1309     CV =
1310         Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()), "magicptr");
1311   }
1312 
1313   // Now that the successors are updated, create the new Switch instruction.
1314   SwitchInst *NewSI = Builder.CreateSwitch(CV, PredDefault, PredCases.size());
1315   NewSI->setDebugLoc(PTI->getDebugLoc());
1316   for (ValueEqualityComparisonCase &V : PredCases)
1317     NewSI->addCase(V.Value, V.Dest);
1318 
1319   if (PredHasWeights || SuccHasWeights) {
1320     // Halve the weights if any of them cannot fit in an uint32_t
1321     FitWeights(Weights);
1322 
1323     SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
1324 
1325     setBranchWeights(NewSI, MDWeights);
1326   }
1327 
1328   EraseTerminatorAndDCECond(PTI);
1329 
1330   // Okay, last check.  If BB is still a successor of PSI, then we must
1331   // have an infinite loop case.  If so, add an infinitely looping block
1332   // to handle the case to preserve the behavior of the code.
1333   BasicBlock *InfLoopBlock = nullptr;
1334   for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i)
1335     if (NewSI->getSuccessor(i) == BB) {
1336       if (!InfLoopBlock) {
1337         // Insert it at the end of the function, because it's either code,
1338         // or it won't matter if it's hot. :)
1339         InfLoopBlock =
1340             BasicBlock::Create(BB->getContext(), "infloop", BB->getParent());
1341         BranchInst::Create(InfLoopBlock, InfLoopBlock);
1342         if (DTU)
1343           Updates.push_back(
1344               {DominatorTree::Insert, InfLoopBlock, InfLoopBlock});
1345       }
1346       NewSI->setSuccessor(i, InfLoopBlock);
1347     }
1348 
1349   if (DTU) {
1350     if (InfLoopBlock)
1351       Updates.push_back({DominatorTree::Insert, Pred, InfLoopBlock});
1352 
1353     Updates.push_back({DominatorTree::Delete, Pred, BB});
1354 
1355     DTU->applyUpdates(Updates);
1356   }
1357 
1358   ++NumFoldValueComparisonIntoPredecessors;
1359   return true;
1360 }
1361 
1362 /// The specified terminator is a value equality comparison instruction
1363 /// (either a switch or a branch on "X == c").
1364 /// See if any of the predecessors of the terminator block are value comparisons
1365 /// on the same value.  If so, and if safe to do so, fold them together.
1366 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(Instruction *TI,
1367                                                          IRBuilder<> &Builder) {
1368   BasicBlock *BB = TI->getParent();
1369   Value *CV = isValueEqualityComparison(TI); // CondVal
1370   assert(CV && "Not a comparison?");
1371 
1372   bool Changed = false;
1373 
1374   SmallSetVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB));
1375   while (!Preds.empty()) {
1376     BasicBlock *Pred = Preds.pop_back_val();
1377     Instruction *PTI = Pred->getTerminator();
1378 
1379     // Don't try to fold into itself.
1380     if (Pred == BB)
1381       continue;
1382 
1383     // See if the predecessor is a comparison with the same value.
1384     Value *PCV = isValueEqualityComparison(PTI); // PredCondVal
1385     if (PCV != CV)
1386       continue;
1387 
1388     SmallSetVector<BasicBlock *, 4> FailBlocks;
1389     if (!SafeToMergeTerminators(TI, PTI, &FailBlocks)) {
1390       for (auto *Succ : FailBlocks) {
1391         if (!SplitBlockPredecessors(Succ, TI->getParent(), ".fold.split", DTU))
1392           return false;
1393       }
1394     }
1395 
1396     PerformValueComparisonIntoPredecessorFolding(TI, CV, PTI, Builder);
1397     Changed = true;
1398   }
1399   return Changed;
1400 }
1401 
1402 // If we would need to insert a select that uses the value of this invoke
1403 // (comments in HoistThenElseCodeToIf explain why we would need to do this), we
1404 // can't hoist the invoke, as there is nowhere to put the select in this case.
1405 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2,
1406                                 Instruction *I1, Instruction *I2) {
1407   for (BasicBlock *Succ : successors(BB1)) {
1408     for (const PHINode &PN : Succ->phis()) {
1409       Value *BB1V = PN.getIncomingValueForBlock(BB1);
1410       Value *BB2V = PN.getIncomingValueForBlock(BB2);
1411       if (BB1V != BB2V && (BB1V == I1 || BB2V == I2)) {
1412         return false;
1413       }
1414     }
1415   }
1416   return true;
1417 }
1418 
1419 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I, bool PtrValueMayBeModified = false);
1420 
1421 /// Given a conditional branch that goes to BB1 and BB2, hoist any common code
1422 /// in the two blocks up into the branch block. The caller of this function
1423 /// guarantees that BI's block dominates BB1 and BB2. If EqTermsOnly is given,
1424 /// only perform hoisting in case both blocks only contain a terminator. In that
1425 /// case, only the original BI will be replaced and selects for PHIs are added.
1426 bool SimplifyCFGOpt::HoistThenElseCodeToIf(BranchInst *BI,
1427                                            const TargetTransformInfo &TTI,
1428                                            bool EqTermsOnly) {
1429   // This does very trivial matching, with limited scanning, to find identical
1430   // instructions in the two blocks.  In particular, we don't want to get into
1431   // O(M*N) situations here where M and N are the sizes of BB1 and BB2.  As
1432   // such, we currently just scan for obviously identical instructions in an
1433   // identical order.
1434   BasicBlock *BB1 = BI->getSuccessor(0); // The true destination.
1435   BasicBlock *BB2 = BI->getSuccessor(1); // The false destination
1436 
1437   // If either of the blocks has it's address taken, then we can't do this fold,
1438   // because the code we'd hoist would no longer run when we jump into the block
1439   // by it's address.
1440   if (BB1->hasAddressTaken() || BB2->hasAddressTaken())
1441     return false;
1442 
1443   BasicBlock::iterator BB1_Itr = BB1->begin();
1444   BasicBlock::iterator BB2_Itr = BB2->begin();
1445 
1446   Instruction *I1 = &*BB1_Itr++, *I2 = &*BB2_Itr++;
1447   // Skip debug info if it is not identical.
1448   DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1449   DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1450   if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1451     while (isa<DbgInfoIntrinsic>(I1))
1452       I1 = &*BB1_Itr++;
1453     while (isa<DbgInfoIntrinsic>(I2))
1454       I2 = &*BB2_Itr++;
1455   }
1456   // FIXME: Can we define a safety predicate for CallBr?
1457   if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) ||
1458       (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) ||
1459       isa<CallBrInst>(I1))
1460     return false;
1461 
1462   BasicBlock *BIParent = BI->getParent();
1463 
1464   bool Changed = false;
1465 
1466   auto _ = make_scope_exit([&]() {
1467     if (Changed)
1468       ++NumHoistCommonCode;
1469   });
1470 
1471   // Check if only hoisting terminators is allowed. This does not add new
1472   // instructions to the hoist location.
1473   if (EqTermsOnly) {
1474     // Skip any debug intrinsics, as they are free to hoist.
1475     auto *I1NonDbg = &*skipDebugIntrinsics(I1->getIterator());
1476     auto *I2NonDbg = &*skipDebugIntrinsics(I2->getIterator());
1477     if (!I1NonDbg->isIdenticalToWhenDefined(I2NonDbg))
1478       return false;
1479     if (!I1NonDbg->isTerminator())
1480       return false;
1481     // Now we know that we only need to hoist debug instrinsics and the
1482     // terminator. Let the loop below handle those 2 cases.
1483   }
1484 
1485   do {
1486     // If we are hoisting the terminator instruction, don't move one (making a
1487     // broken BB), instead clone it, and remove BI.
1488     if (I1->isTerminator())
1489       goto HoistTerminator;
1490 
1491     // If we're going to hoist a call, make sure that the two instructions we're
1492     // commoning/hoisting are both marked with musttail, or neither of them is
1493     // marked as such. Otherwise, we might end up in a situation where we hoist
1494     // from a block where the terminator is a `ret` to a block where the terminator
1495     // is a `br`, and `musttail` calls expect to be followed by a return.
1496     auto *C1 = dyn_cast<CallInst>(I1);
1497     auto *C2 = dyn_cast<CallInst>(I2);
1498     if (C1 && C2)
1499       if (C1->isMustTailCall() != C2->isMustTailCall())
1500         return Changed;
1501 
1502     if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2))
1503       return Changed;
1504 
1505     // If any of the two call sites has nomerge attribute, stop hoisting.
1506     if (const auto *CB1 = dyn_cast<CallBase>(I1))
1507       if (CB1->cannotMerge())
1508         return Changed;
1509     if (const auto *CB2 = dyn_cast<CallBase>(I2))
1510       if (CB2->cannotMerge())
1511         return Changed;
1512 
1513     if (isa<DbgInfoIntrinsic>(I1) || isa<DbgInfoIntrinsic>(I2)) {
1514       assert (isa<DbgInfoIntrinsic>(I1) && isa<DbgInfoIntrinsic>(I2));
1515       // The debug location is an integral part of a debug info intrinsic
1516       // and can't be separated from it or replaced.  Instead of attempting
1517       // to merge locations, simply hoist both copies of the intrinsic.
1518       BIParent->getInstList().splice(BI->getIterator(),
1519                                      BB1->getInstList(), I1);
1520       BIParent->getInstList().splice(BI->getIterator(),
1521                                      BB2->getInstList(), I2);
1522       Changed = true;
1523     } else {
1524       // For a normal instruction, we just move one to right before the branch,
1525       // then replace all uses of the other with the first.  Finally, we remove
1526       // the now redundant second instruction.
1527       BIParent->getInstList().splice(BI->getIterator(),
1528                                      BB1->getInstList(), I1);
1529       if (!I2->use_empty())
1530         I2->replaceAllUsesWith(I1);
1531       I1->andIRFlags(I2);
1532       unsigned KnownIDs[] = {LLVMContext::MD_tbaa,
1533                              LLVMContext::MD_range,
1534                              LLVMContext::MD_fpmath,
1535                              LLVMContext::MD_invariant_load,
1536                              LLVMContext::MD_nonnull,
1537                              LLVMContext::MD_invariant_group,
1538                              LLVMContext::MD_align,
1539                              LLVMContext::MD_dereferenceable,
1540                              LLVMContext::MD_dereferenceable_or_null,
1541                              LLVMContext::MD_mem_parallel_loop_access,
1542                              LLVMContext::MD_access_group,
1543                              LLVMContext::MD_preserve_access_index};
1544       combineMetadata(I1, I2, KnownIDs, true);
1545 
1546       // I1 and I2 are being combined into a single instruction.  Its debug
1547       // location is the merged locations of the original instructions.
1548       I1->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc());
1549 
1550       I2->eraseFromParent();
1551       Changed = true;
1552     }
1553     ++NumHoistCommonInstrs;
1554 
1555     I1 = &*BB1_Itr++;
1556     I2 = &*BB2_Itr++;
1557     // Skip debug info if it is not identical.
1558     DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1559     DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1560     if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1561       while (isa<DbgInfoIntrinsic>(I1))
1562         I1 = &*BB1_Itr++;
1563       while (isa<DbgInfoIntrinsic>(I2))
1564         I2 = &*BB2_Itr++;
1565     }
1566   } while (I1->isIdenticalToWhenDefined(I2));
1567 
1568   return true;
1569 
1570 HoistTerminator:
1571   // It may not be possible to hoist an invoke.
1572   // FIXME: Can we define a safety predicate for CallBr?
1573   if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))
1574     return Changed;
1575 
1576   // TODO: callbr hoisting currently disabled pending further study.
1577   if (isa<CallBrInst>(I1))
1578     return Changed;
1579 
1580   for (BasicBlock *Succ : successors(BB1)) {
1581     for (PHINode &PN : Succ->phis()) {
1582       Value *BB1V = PN.getIncomingValueForBlock(BB1);
1583       Value *BB2V = PN.getIncomingValueForBlock(BB2);
1584       if (BB1V == BB2V)
1585         continue;
1586 
1587       // Check for passingValueIsAlwaysUndefined here because we would rather
1588       // eliminate undefined control flow then converting it to a select.
1589       if (passingValueIsAlwaysUndefined(BB1V, &PN) ||
1590           passingValueIsAlwaysUndefined(BB2V, &PN))
1591         return Changed;
1592 
1593       if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V))
1594         return Changed;
1595       if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V))
1596         return Changed;
1597     }
1598   }
1599 
1600   // Okay, it is safe to hoist the terminator.
1601   Instruction *NT = I1->clone();
1602   BIParent->getInstList().insert(BI->getIterator(), NT);
1603   if (!NT->getType()->isVoidTy()) {
1604     I1->replaceAllUsesWith(NT);
1605     I2->replaceAllUsesWith(NT);
1606     NT->takeName(I1);
1607   }
1608   Changed = true;
1609   ++NumHoistCommonInstrs;
1610 
1611   // Ensure terminator gets a debug location, even an unknown one, in case
1612   // it involves inlinable calls.
1613   NT->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc());
1614 
1615   // PHIs created below will adopt NT's merged DebugLoc.
1616   IRBuilder<NoFolder> Builder(NT);
1617 
1618   // Hoisting one of the terminators from our successor is a great thing.
1619   // Unfortunately, the successors of the if/else blocks may have PHI nodes in
1620   // them.  If they do, all PHI entries for BB1/BB2 must agree for all PHI
1621   // nodes, so we insert select instruction to compute the final result.
1622   std::map<std::pair<Value *, Value *>, SelectInst *> InsertedSelects;
1623   for (BasicBlock *Succ : successors(BB1)) {
1624     for (PHINode &PN : Succ->phis()) {
1625       Value *BB1V = PN.getIncomingValueForBlock(BB1);
1626       Value *BB2V = PN.getIncomingValueForBlock(BB2);
1627       if (BB1V == BB2V)
1628         continue;
1629 
1630       // These values do not agree.  Insert a select instruction before NT
1631       // that determines the right value.
1632       SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)];
1633       if (!SI) {
1634         // Propagate fast-math-flags from phi node to its replacement select.
1635         IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
1636         if (isa<FPMathOperator>(PN))
1637           Builder.setFastMathFlags(PN.getFastMathFlags());
1638 
1639         SI = cast<SelectInst>(
1640             Builder.CreateSelect(BI->getCondition(), BB1V, BB2V,
1641                                  BB1V->getName() + "." + BB2V->getName(), BI));
1642       }
1643 
1644       // Make the PHI node use the select for all incoming values for BB1/BB2
1645       for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
1646         if (PN.getIncomingBlock(i) == BB1 || PN.getIncomingBlock(i) == BB2)
1647           PN.setIncomingValue(i, SI);
1648     }
1649   }
1650 
1651   SmallVector<DominatorTree::UpdateType, 4> Updates;
1652 
1653   // Update any PHI nodes in our new successors.
1654   for (BasicBlock *Succ : successors(BB1)) {
1655     AddPredecessorToBlock(Succ, BIParent, BB1);
1656     if (DTU)
1657       Updates.push_back({DominatorTree::Insert, BIParent, Succ});
1658   }
1659 
1660   if (DTU)
1661     for (BasicBlock *Succ : successors(BI))
1662       Updates.push_back({DominatorTree::Delete, BIParent, Succ});
1663 
1664   EraseTerminatorAndDCECond(BI);
1665   if (DTU)
1666     DTU->applyUpdates(Updates);
1667   return Changed;
1668 }
1669 
1670 // Check lifetime markers.
1671 static bool isLifeTimeMarker(const Instruction *I) {
1672   if (auto II = dyn_cast<IntrinsicInst>(I)) {
1673     switch (II->getIntrinsicID()) {
1674     default:
1675       break;
1676     case Intrinsic::lifetime_start:
1677     case Intrinsic::lifetime_end:
1678       return true;
1679     }
1680   }
1681   return false;
1682 }
1683 
1684 // TODO: Refine this. This should avoid cases like turning constant memcpy sizes
1685 // into variables.
1686 static bool replacingOperandWithVariableIsCheap(const Instruction *I,
1687                                                 int OpIdx) {
1688   return !isa<IntrinsicInst>(I);
1689 }
1690 
1691 // All instructions in Insts belong to different blocks that all unconditionally
1692 // branch to a common successor. Analyze each instruction and return true if it
1693 // would be possible to sink them into their successor, creating one common
1694 // instruction instead. For every value that would be required to be provided by
1695 // PHI node (because an operand varies in each input block), add to PHIOperands.
1696 static bool canSinkInstructions(
1697     ArrayRef<Instruction *> Insts,
1698     DenseMap<Instruction *, SmallVector<Value *, 4>> &PHIOperands) {
1699   // Prune out obviously bad instructions to move. Each instruction must have
1700   // exactly zero or one use, and we check later that use is by a single, common
1701   // PHI instruction in the successor.
1702   bool HasUse = !Insts.front()->user_empty();
1703   for (auto *I : Insts) {
1704     // These instructions may change or break semantics if moved.
1705     if (isa<PHINode>(I) || I->isEHPad() || isa<AllocaInst>(I) ||
1706         I->getType()->isTokenTy())
1707       return false;
1708 
1709     // Do not try to sink an instruction in an infinite loop - it can cause
1710     // this algorithm to infinite loop.
1711     if (I->getParent()->getSingleSuccessor() == I->getParent())
1712       return false;
1713 
1714     // Conservatively return false if I is an inline-asm instruction. Sinking
1715     // and merging inline-asm instructions can potentially create arguments
1716     // that cannot satisfy the inline-asm constraints.
1717     // If the instruction has nomerge attribute, return false.
1718     if (const auto *C = dyn_cast<CallBase>(I))
1719       if (C->isInlineAsm() || C->cannotMerge())
1720         return false;
1721 
1722     // Each instruction must have zero or one use.
1723     if (HasUse && !I->hasOneUse())
1724       return false;
1725     if (!HasUse && !I->user_empty())
1726       return false;
1727   }
1728 
1729   const Instruction *I0 = Insts.front();
1730   for (auto *I : Insts)
1731     if (!I->isSameOperationAs(I0))
1732       return false;
1733 
1734   // All instructions in Insts are known to be the same opcode. If they have a
1735   // use, check that the only user is a PHI or in the same block as the
1736   // instruction, because if a user is in the same block as an instruction we're
1737   // contemplating sinking, it must already be determined to be sinkable.
1738   if (HasUse) {
1739     auto *PNUse = dyn_cast<PHINode>(*I0->user_begin());
1740     auto *Succ = I0->getParent()->getTerminator()->getSuccessor(0);
1741     if (!all_of(Insts, [&PNUse,&Succ](const Instruction *I) -> bool {
1742           auto *U = cast<Instruction>(*I->user_begin());
1743           return (PNUse &&
1744                   PNUse->getParent() == Succ &&
1745                   PNUse->getIncomingValueForBlock(I->getParent()) == I) ||
1746                  U->getParent() == I->getParent();
1747         }))
1748       return false;
1749   }
1750 
1751   // Because SROA can't handle speculating stores of selects, try not to sink
1752   // loads, stores or lifetime markers of allocas when we'd have to create a
1753   // PHI for the address operand. Also, because it is likely that loads or
1754   // stores of allocas will disappear when Mem2Reg/SROA is run, don't sink
1755   // them.
1756   // This can cause code churn which can have unintended consequences down
1757   // the line - see https://llvm.org/bugs/show_bug.cgi?id=30244.
1758   // FIXME: This is a workaround for a deficiency in SROA - see
1759   // https://llvm.org/bugs/show_bug.cgi?id=30188
1760   if (isa<StoreInst>(I0) && any_of(Insts, [](const Instruction *I) {
1761         return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts());
1762       }))
1763     return false;
1764   if (isa<LoadInst>(I0) && any_of(Insts, [](const Instruction *I) {
1765         return isa<AllocaInst>(I->getOperand(0)->stripPointerCasts());
1766       }))
1767     return false;
1768   if (isLifeTimeMarker(I0) && any_of(Insts, [](const Instruction *I) {
1769         return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts());
1770       }))
1771     return false;
1772 
1773   // For calls to be sinkable, they must all be indirect, or have same callee.
1774   // I.e. if we have two direct calls to different callees, we don't want to
1775   // turn that into an indirect call. Likewise, if we have an indirect call,
1776   // and a direct call, we don't actually want to have a single indirect call.
1777   if (isa<CallBase>(I0)) {
1778     auto IsIndirectCall = [](const Instruction *I) {
1779       return cast<CallBase>(I)->isIndirectCall();
1780     };
1781     bool HaveIndirectCalls = any_of(Insts, IsIndirectCall);
1782     bool AllCallsAreIndirect = all_of(Insts, IsIndirectCall);
1783     if (HaveIndirectCalls) {
1784       if (!AllCallsAreIndirect)
1785         return false;
1786     } else {
1787       // All callees must be identical.
1788       Value *Callee = nullptr;
1789       for (const Instruction *I : Insts) {
1790         Value *CurrCallee = cast<CallBase>(I)->getCalledOperand();
1791         if (!Callee)
1792           Callee = CurrCallee;
1793         else if (Callee != CurrCallee)
1794           return false;
1795       }
1796     }
1797   }
1798 
1799   for (unsigned OI = 0, OE = I0->getNumOperands(); OI != OE; ++OI) {
1800     Value *Op = I0->getOperand(OI);
1801     if (Op->getType()->isTokenTy())
1802       // Don't touch any operand of token type.
1803       return false;
1804 
1805     auto SameAsI0 = [&I0, OI](const Instruction *I) {
1806       assert(I->getNumOperands() == I0->getNumOperands());
1807       return I->getOperand(OI) == I0->getOperand(OI);
1808     };
1809     if (!all_of(Insts, SameAsI0)) {
1810       if ((isa<Constant>(Op) && !replacingOperandWithVariableIsCheap(I0, OI)) ||
1811           !canReplaceOperandWithVariable(I0, OI))
1812         // We can't create a PHI from this GEP.
1813         return false;
1814       for (auto *I : Insts)
1815         PHIOperands[I].push_back(I->getOperand(OI));
1816     }
1817   }
1818   return true;
1819 }
1820 
1821 // Assuming canSinkInstructions(Blocks) has returned true, sink the last
1822 // instruction of every block in Blocks to their common successor, commoning
1823 // into one instruction.
1824 static bool sinkLastInstruction(ArrayRef<BasicBlock*> Blocks) {
1825   auto *BBEnd = Blocks[0]->getTerminator()->getSuccessor(0);
1826 
1827   // canSinkInstructions returning true guarantees that every block has at
1828   // least one non-terminator instruction.
1829   SmallVector<Instruction*,4> Insts;
1830   for (auto *BB : Blocks) {
1831     Instruction *I = BB->getTerminator();
1832     do {
1833       I = I->getPrevNode();
1834     } while (isa<DbgInfoIntrinsic>(I) && I != &BB->front());
1835     if (!isa<DbgInfoIntrinsic>(I))
1836       Insts.push_back(I);
1837   }
1838 
1839   // The only checking we need to do now is that all users of all instructions
1840   // are the same PHI node. canSinkInstructions should have checked this but
1841   // it is slightly over-aggressive - it gets confused by commutative
1842   // instructions so double-check it here.
1843   Instruction *I0 = Insts.front();
1844   if (!I0->user_empty()) {
1845     auto *PNUse = dyn_cast<PHINode>(*I0->user_begin());
1846     if (!all_of(Insts, [&PNUse](const Instruction *I) -> bool {
1847           auto *U = cast<Instruction>(*I->user_begin());
1848           return U == PNUse;
1849         }))
1850       return false;
1851   }
1852 
1853   // We don't need to do any more checking here; canSinkInstructions should
1854   // have done it all for us.
1855   SmallVector<Value*, 4> NewOperands;
1856   for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) {
1857     // This check is different to that in canSinkInstructions. There, we
1858     // cared about the global view once simplifycfg (and instcombine) have
1859     // completed - it takes into account PHIs that become trivially
1860     // simplifiable.  However here we need a more local view; if an operand
1861     // differs we create a PHI and rely on instcombine to clean up the very
1862     // small mess we may make.
1863     bool NeedPHI = any_of(Insts, [&I0, O](const Instruction *I) {
1864       return I->getOperand(O) != I0->getOperand(O);
1865     });
1866     if (!NeedPHI) {
1867       NewOperands.push_back(I0->getOperand(O));
1868       continue;
1869     }
1870 
1871     // Create a new PHI in the successor block and populate it.
1872     auto *Op = I0->getOperand(O);
1873     assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!");
1874     auto *PN = PHINode::Create(Op->getType(), Insts.size(),
1875                                Op->getName() + ".sink", &BBEnd->front());
1876     for (auto *I : Insts)
1877       PN->addIncoming(I->getOperand(O), I->getParent());
1878     NewOperands.push_back(PN);
1879   }
1880 
1881   // Arbitrarily use I0 as the new "common" instruction; remap its operands
1882   // and move it to the start of the successor block.
1883   for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O)
1884     I0->getOperandUse(O).set(NewOperands[O]);
1885   I0->moveBefore(&*BBEnd->getFirstInsertionPt());
1886 
1887   // Update metadata and IR flags, and merge debug locations.
1888   for (auto *I : Insts)
1889     if (I != I0) {
1890       // The debug location for the "common" instruction is the merged locations
1891       // of all the commoned instructions.  We start with the original location
1892       // of the "common" instruction and iteratively merge each location in the
1893       // loop below.
1894       // This is an N-way merge, which will be inefficient if I0 is a CallInst.
1895       // However, as N-way merge for CallInst is rare, so we use simplified API
1896       // instead of using complex API for N-way merge.
1897       I0->applyMergedLocation(I0->getDebugLoc(), I->getDebugLoc());
1898       combineMetadataForCSE(I0, I, true);
1899       I0->andIRFlags(I);
1900     }
1901 
1902   if (!I0->user_empty()) {
1903     // canSinkLastInstruction checked that all instructions were used by
1904     // one and only one PHI node. Find that now, RAUW it to our common
1905     // instruction and nuke it.
1906     auto *PN = cast<PHINode>(*I0->user_begin());
1907     PN->replaceAllUsesWith(I0);
1908     PN->eraseFromParent();
1909   }
1910 
1911   // Finally nuke all instructions apart from the common instruction.
1912   for (auto *I : Insts)
1913     if (I != I0)
1914       I->eraseFromParent();
1915 
1916   return true;
1917 }
1918 
1919 namespace {
1920 
1921   // LockstepReverseIterator - Iterates through instructions
1922   // in a set of blocks in reverse order from the first non-terminator.
1923   // For example (assume all blocks have size n):
1924   //   LockstepReverseIterator I([B1, B2, B3]);
1925   //   *I-- = [B1[n], B2[n], B3[n]];
1926   //   *I-- = [B1[n-1], B2[n-1], B3[n-1]];
1927   //   *I-- = [B1[n-2], B2[n-2], B3[n-2]];
1928   //   ...
1929   class LockstepReverseIterator {
1930     ArrayRef<BasicBlock*> Blocks;
1931     SmallVector<Instruction*,4> Insts;
1932     bool Fail;
1933 
1934   public:
1935     LockstepReverseIterator(ArrayRef<BasicBlock*> Blocks) : Blocks(Blocks) {
1936       reset();
1937     }
1938 
1939     void reset() {
1940       Fail = false;
1941       Insts.clear();
1942       for (auto *BB : Blocks) {
1943         Instruction *Inst = BB->getTerminator();
1944         for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
1945           Inst = Inst->getPrevNode();
1946         if (!Inst) {
1947           // Block wasn't big enough.
1948           Fail = true;
1949           return;
1950         }
1951         Insts.push_back(Inst);
1952       }
1953     }
1954 
1955     bool isValid() const {
1956       return !Fail;
1957     }
1958 
1959     void operator--() {
1960       if (Fail)
1961         return;
1962       for (auto *&Inst : Insts) {
1963         for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
1964           Inst = Inst->getPrevNode();
1965         // Already at beginning of block.
1966         if (!Inst) {
1967           Fail = true;
1968           return;
1969         }
1970       }
1971     }
1972 
1973     void operator++() {
1974       if (Fail)
1975         return;
1976       for (auto *&Inst : Insts) {
1977         for (Inst = Inst->getNextNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
1978           Inst = Inst->getNextNode();
1979         // Already at end of block.
1980         if (!Inst) {
1981           Fail = true;
1982           return;
1983         }
1984       }
1985     }
1986 
1987     ArrayRef<Instruction*> operator * () const {
1988       return Insts;
1989     }
1990   };
1991 
1992 } // end anonymous namespace
1993 
1994 /// Check whether BB's predecessors end with unconditional branches. If it is
1995 /// true, sink any common code from the predecessors to BB.
1996 static bool SinkCommonCodeFromPredecessors(BasicBlock *BB,
1997                                            DomTreeUpdater *DTU) {
1998   // We support two situations:
1999   //   (1) all incoming arcs are unconditional
2000   //   (2) there are non-unconditional incoming arcs
2001   //
2002   // (2) is very common in switch defaults and
2003   // else-if patterns;
2004   //
2005   //   if (a) f(1);
2006   //   else if (b) f(2);
2007   //
2008   // produces:
2009   //
2010   //       [if]
2011   //      /    \
2012   //    [f(1)] [if]
2013   //      |     | \
2014   //      |     |  |
2015   //      |  [f(2)]|
2016   //       \    | /
2017   //        [ end ]
2018   //
2019   // [end] has two unconditional predecessor arcs and one conditional. The
2020   // conditional refers to the implicit empty 'else' arc. This conditional
2021   // arc can also be caused by an empty default block in a switch.
2022   //
2023   // In this case, we attempt to sink code from all *unconditional* arcs.
2024   // If we can sink instructions from these arcs (determined during the scan
2025   // phase below) we insert a common successor for all unconditional arcs and
2026   // connect that to [end], to enable sinking:
2027   //
2028   //       [if]
2029   //      /    \
2030   //    [x(1)] [if]
2031   //      |     | \
2032   //      |     |  \
2033   //      |  [x(2)] |
2034   //       \   /    |
2035   //   [sink.split] |
2036   //         \     /
2037   //         [ end ]
2038   //
2039   SmallVector<BasicBlock*,4> UnconditionalPreds;
2040   bool HaveNonUnconditionalPredecessors = false;
2041   for (auto *PredBB : predecessors(BB)) {
2042     auto *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator());
2043     if (PredBr && PredBr->isUnconditional())
2044       UnconditionalPreds.push_back(PredBB);
2045     else
2046       HaveNonUnconditionalPredecessors = true;
2047   }
2048   if (UnconditionalPreds.size() < 2)
2049     return false;
2050 
2051   // We take a two-step approach to tail sinking. First we scan from the end of
2052   // each block upwards in lockstep. If the n'th instruction from the end of each
2053   // block can be sunk, those instructions are added to ValuesToSink and we
2054   // carry on. If we can sink an instruction but need to PHI-merge some operands
2055   // (because they're not identical in each instruction) we add these to
2056   // PHIOperands.
2057   int ScanIdx = 0;
2058   SmallPtrSet<Value*,4> InstructionsToSink;
2059   DenseMap<Instruction*, SmallVector<Value*,4>> PHIOperands;
2060   LockstepReverseIterator LRI(UnconditionalPreds);
2061   while (LRI.isValid() &&
2062          canSinkInstructions(*LRI, PHIOperands)) {
2063     LLVM_DEBUG(dbgs() << "SINK: instruction can be sunk: " << *(*LRI)[0]
2064                       << "\n");
2065     InstructionsToSink.insert((*LRI).begin(), (*LRI).end());
2066     ++ScanIdx;
2067     --LRI;
2068   }
2069 
2070   // If no instructions can be sunk, early-return.
2071   if (ScanIdx == 0)
2072     return false;
2073 
2074   bool followedByDeoptOrUnreachable = IsBlockFollowedByDeoptOrUnreachable(BB);
2075 
2076   if (!followedByDeoptOrUnreachable) {
2077     // Okay, we *could* sink last ScanIdx instructions. But how many can we
2078     // actually sink before encountering instruction that is unprofitable to
2079     // sink?
2080     auto ProfitableToSinkInstruction = [&](LockstepReverseIterator &LRI) {
2081       unsigned NumPHIdValues = 0;
2082       for (auto *I : *LRI)
2083         for (auto *V : PHIOperands[I]) {
2084           if (!InstructionsToSink.contains(V))
2085             ++NumPHIdValues;
2086           // FIXME: this check is overly optimistic. We may end up not sinking
2087           // said instruction, due to the very same profitability check.
2088           // See @creating_too_many_phis in sink-common-code.ll.
2089         }
2090       LLVM_DEBUG(dbgs() << "SINK: #phid values: " << NumPHIdValues << "\n");
2091       unsigned NumPHIInsts = NumPHIdValues / UnconditionalPreds.size();
2092       if ((NumPHIdValues % UnconditionalPreds.size()) != 0)
2093         NumPHIInsts++;
2094 
2095       return NumPHIInsts <= 1;
2096     };
2097 
2098     // We've determined that we are going to sink last ScanIdx instructions,
2099     // and recorded them in InstructionsToSink. Now, some instructions may be
2100     // unprofitable to sink. But that determination depends on the instructions
2101     // that we are going to sink.
2102 
2103     // First, forward scan: find the first instruction unprofitable to sink,
2104     // recording all the ones that are profitable to sink.
2105     // FIXME: would it be better, after we detect that not all are profitable.
2106     // to either record the profitable ones, or erase the unprofitable ones?
2107     // Maybe we need to choose (at runtime) the one that will touch least
2108     // instrs?
2109     LRI.reset();
2110     int Idx = 0;
2111     SmallPtrSet<Value *, 4> InstructionsProfitableToSink;
2112     while (Idx < ScanIdx) {
2113       if (!ProfitableToSinkInstruction(LRI)) {
2114         // Too many PHIs would be created.
2115         LLVM_DEBUG(
2116             dbgs() << "SINK: stopping here, too many PHIs would be created!\n");
2117         break;
2118       }
2119       InstructionsProfitableToSink.insert((*LRI).begin(), (*LRI).end());
2120       --LRI;
2121       ++Idx;
2122     }
2123 
2124     // If no instructions can be sunk, early-return.
2125     if (Idx == 0)
2126       return false;
2127 
2128     // Did we determine that (only) some instructions are unprofitable to sink?
2129     if (Idx < ScanIdx) {
2130       // Okay, some instructions are unprofitable.
2131       ScanIdx = Idx;
2132       InstructionsToSink = InstructionsProfitableToSink;
2133 
2134       // But, that may make other instructions unprofitable, too.
2135       // So, do a backward scan, do any earlier instructions become
2136       // unprofitable?
2137       assert(
2138           !ProfitableToSinkInstruction(LRI) &&
2139           "We already know that the last instruction is unprofitable to sink");
2140       ++LRI;
2141       --Idx;
2142       while (Idx >= 0) {
2143         // If we detect that an instruction becomes unprofitable to sink,
2144         // all earlier instructions won't be sunk either,
2145         // so preemptively keep InstructionsProfitableToSink in sync.
2146         // FIXME: is this the most performant approach?
2147         for (auto *I : *LRI)
2148           InstructionsProfitableToSink.erase(I);
2149         if (!ProfitableToSinkInstruction(LRI)) {
2150           // Everything starting with this instruction won't be sunk.
2151           ScanIdx = Idx;
2152           InstructionsToSink = InstructionsProfitableToSink;
2153         }
2154         ++LRI;
2155         --Idx;
2156       }
2157     }
2158 
2159     // If no instructions can be sunk, early-return.
2160     if (ScanIdx == 0)
2161       return false;
2162   }
2163 
2164   bool Changed = false;
2165 
2166   if (HaveNonUnconditionalPredecessors) {
2167     if (!followedByDeoptOrUnreachable) {
2168       // It is always legal to sink common instructions from unconditional
2169       // predecessors. However, if not all predecessors are unconditional,
2170       // this transformation might be pessimizing. So as a rule of thumb,
2171       // don't do it unless we'd sink at least one non-speculatable instruction.
2172       // See https://bugs.llvm.org/show_bug.cgi?id=30244
2173       LRI.reset();
2174       int Idx = 0;
2175       bool Profitable = false;
2176       while (Idx < ScanIdx) {
2177         if (!isSafeToSpeculativelyExecute((*LRI)[0])) {
2178           Profitable = true;
2179           break;
2180         }
2181         --LRI;
2182         ++Idx;
2183       }
2184       if (!Profitable)
2185         return false;
2186     }
2187 
2188     LLVM_DEBUG(dbgs() << "SINK: Splitting edge\n");
2189     // We have a conditional edge and we're going to sink some instructions.
2190     // Insert a new block postdominating all blocks we're going to sink from.
2191     if (!SplitBlockPredecessors(BB, UnconditionalPreds, ".sink.split", DTU))
2192       // Edges couldn't be split.
2193       return false;
2194     Changed = true;
2195   }
2196 
2197   // Now that we've analyzed all potential sinking candidates, perform the
2198   // actual sink. We iteratively sink the last non-terminator of the source
2199   // blocks into their common successor unless doing so would require too
2200   // many PHI instructions to be generated (currently only one PHI is allowed
2201   // per sunk instruction).
2202   //
2203   // We can use InstructionsToSink to discount values needing PHI-merging that will
2204   // actually be sunk in a later iteration. This allows us to be more
2205   // aggressive in what we sink. This does allow a false positive where we
2206   // sink presuming a later value will also be sunk, but stop half way through
2207   // and never actually sink it which means we produce more PHIs than intended.
2208   // This is unlikely in practice though.
2209   int SinkIdx = 0;
2210   for (; SinkIdx != ScanIdx; ++SinkIdx) {
2211     LLVM_DEBUG(dbgs() << "SINK: Sink: "
2212                       << *UnconditionalPreds[0]->getTerminator()->getPrevNode()
2213                       << "\n");
2214 
2215     // Because we've sunk every instruction in turn, the current instruction to
2216     // sink is always at index 0.
2217     LRI.reset();
2218 
2219     if (!sinkLastInstruction(UnconditionalPreds)) {
2220       LLVM_DEBUG(
2221           dbgs()
2222           << "SINK: stopping here, failed to actually sink instruction!\n");
2223       break;
2224     }
2225 
2226     NumSinkCommonInstrs++;
2227     Changed = true;
2228   }
2229   if (SinkIdx != 0)
2230     ++NumSinkCommonCode;
2231   return Changed;
2232 }
2233 
2234 namespace {
2235 
2236 struct CompatibleSets {
2237   using SetTy = SmallVector<InvokeInst *, 2>;
2238 
2239   SmallVector<SetTy, 1> Sets;
2240 
2241   static bool shouldBelongToSameSet(ArrayRef<InvokeInst *> Invokes);
2242 
2243   SetTy &getCompatibleSet(InvokeInst *II);
2244 
2245   void insert(InvokeInst *II);
2246 };
2247 
2248 CompatibleSets::SetTy &CompatibleSets::getCompatibleSet(InvokeInst *II) {
2249   // Perform a linear scan over all the existing sets, see if the new `invoke`
2250   // is compatible with any particular set. Since we know that all the `invokes`
2251   // within a set are compatible, only check the first `invoke` in each set.
2252   // WARNING: at worst, this has quadratic complexity.
2253   for (CompatibleSets::SetTy &Set : Sets) {
2254     if (CompatibleSets::shouldBelongToSameSet({Set.front(), II}))
2255       return Set;
2256   }
2257 
2258   // Otherwise, we either had no sets yet, or this invoke forms a new set.
2259   return Sets.emplace_back();
2260 }
2261 
2262 void CompatibleSets::insert(InvokeInst *II) {
2263   getCompatibleSet(II).emplace_back(II);
2264 }
2265 
2266 bool CompatibleSets::shouldBelongToSameSet(ArrayRef<InvokeInst *> Invokes) {
2267   assert(Invokes.size() == 2 && "Always called with exactly two candidates.");
2268 
2269   // Can we theoretically merge these `invoke`s?
2270   auto IsIllegalToMerge = [](InvokeInst *II) {
2271     return II->cannotMerge() || II->isInlineAsm();
2272   };
2273   if (any_of(Invokes, IsIllegalToMerge))
2274     return false;
2275 
2276   // All callees must be identical.
2277   // FIXME: support indirect callees?
2278   Value *Callee = nullptr;
2279   for (InvokeInst *II : Invokes) {
2280     Value *CurrCallee = II->getCalledOperand();
2281     assert(CurrCallee && "There is always a called operand.");
2282     if (!Callee)
2283       Callee = CurrCallee;
2284     else if (Callee != CurrCallee)
2285       return false;
2286   }
2287 
2288   // Both `invoke`s must not have a normal destination.
2289   // FIXME: them sharing the normal destination should be fine?
2290   auto HasNormalDest = [](InvokeInst *II) {
2291     return !isa<UnreachableInst>(II->getNormalDest()->getFirstNonPHIOrDbg());
2292   };
2293   if (any_of(Invokes, HasNormalDest))
2294     return false;
2295 
2296 #ifndef NDEBUG
2297   // All unwind destinations must be identical.
2298   // We know that because we have started from said unwind destination.
2299   BasicBlock *UnwindBB = nullptr;
2300   for (InvokeInst *II : Invokes) {
2301     BasicBlock *CurrUnwindBB = II->getUnwindDest();
2302     assert(CurrUnwindBB && "There is always an 'unwind to' basic block.");
2303     if (!UnwindBB)
2304       UnwindBB = CurrUnwindBB;
2305     else
2306       assert(UnwindBB == CurrUnwindBB && "Unexpected unwind destination.");
2307   }
2308 #endif
2309 
2310   // In the unwind destination, the incoming values for these two `invoke`s
2311   // must be compatible .
2312   // We know we don't have the normal destination, so we don't check it.
2313   if (!IncomingValuesAreCompatible(
2314           Invokes.front()->getUnwindDest(),
2315           {Invokes[0]->getParent(), Invokes[1]->getParent()}))
2316     return false;
2317 
2318   // Ignoring arguments, these `invoke`s must be identical,
2319   // including operand bundles.
2320   const InvokeInst *II0 = Invokes.front();
2321   for (auto *II : Invokes.drop_front())
2322     if (!II->isSameOperationAs(II0))
2323       return false;
2324 
2325   // Can we theoretically form the data operands for the merged `invoke`?
2326   auto IsIllegalToMergeArguments = [](auto Ops) {
2327     Type *Ty = std::get<0>(Ops)->getType();
2328     assert(Ty == std::get<1>(Ops)->getType() && "Incompatible types?");
2329     return Ty->isTokenTy() && std::get<0>(Ops) != std::get<1>(Ops);
2330   };
2331   assert(Invokes.size() == 2 && "Always called with exactly two candidates.");
2332   if (any_of(zip(Invokes[0]->data_ops(), Invokes[1]->data_ops()),
2333              IsIllegalToMergeArguments))
2334     return false;
2335 
2336   return true;
2337 }
2338 
2339 } // namespace
2340 
2341 // Merge all invokes in the provided set, all of which are compatible
2342 // as per the `CompatibleSets::shouldBelongToSameSet()`.
2343 static void MergeCompatibleInvokesImpl(ArrayRef<InvokeInst *> Invokes,
2344                                        DomTreeUpdater *DTU) {
2345   assert(Invokes.size() >= 2 && "Must have at least two invokes to merge.");
2346 
2347   SmallVector<DominatorTree::UpdateType, 8> Updates;
2348   if (DTU)
2349     Updates.reserve(2 + 3 * Invokes.size());
2350 
2351   // Clone one of the invokes into a new basic block.
2352   // Since they are all compatible, it doesn't matter which invoke is cloned.
2353   InvokeInst *MergedInvoke = [&Invokes]() {
2354     InvokeInst *II0 = Invokes.front();
2355     BasicBlock *II0BB = II0->getParent();
2356     BasicBlock *InsertBeforeBlock =
2357         II0->getParent()->getIterator()->getNextNode();
2358     Function *Func = II0BB->getParent();
2359     LLVMContext &Ctx = II0->getContext();
2360 
2361     BasicBlock *MergedInvokeBB = BasicBlock::Create(
2362         Ctx, II0BB->getName() + ".invoke", Func, InsertBeforeBlock);
2363 
2364     auto *MergedInvoke = cast<InvokeInst>(II0->clone());
2365     // NOTE: all invokes have the same attributes, so no handling needed.
2366     MergedInvokeBB->getInstList().push_back(MergedInvoke);
2367 
2368     // For now, we've required that the normal destination is unreachable,
2369     // so just form a new block with unreachable terminator.
2370     BasicBlock *MergedNormalDest = BasicBlock::Create(
2371         Ctx, II0BB->getName() + ".cont", Func, InsertBeforeBlock);
2372     new UnreachableInst(Ctx, MergedNormalDest);
2373     MergedInvoke->setNormalDest(MergedNormalDest);
2374 
2375     // The unwind destination, however, remainds identical for all invokes here.
2376 
2377     return MergedInvoke;
2378   }();
2379 
2380   if (DTU) {
2381     // Predecessor blocks that contained these invokes will now branch to
2382     // the new block that contains the merged invoke, ...
2383     for (InvokeInst *II : Invokes)
2384       Updates.push_back(
2385           {DominatorTree::Insert, II->getParent(), MergedInvoke->getParent()});
2386 
2387     // ... which has the new `unreachable` block as normal destination,
2388     // or unwinds to the (same for all `invoke`s in this set) `landingpad`,
2389     for (BasicBlock *SuccBBOfMergedInvoke : successors(MergedInvoke))
2390       Updates.push_back({DominatorTree::Insert, MergedInvoke->getParent(),
2391                          SuccBBOfMergedInvoke});
2392 
2393     // Since predecessor blocks now unconditionally branch to a new block,
2394     // they no longer branch to their original successors.
2395     for (InvokeInst *II : Invokes)
2396       for (BasicBlock *SuccOfPredBB : successors(II->getParent()))
2397         Updates.push_back(
2398             {DominatorTree::Delete, II->getParent(), SuccOfPredBB});
2399   }
2400 
2401   // Form the merged data operands for the merged invoke.
2402   for (Use &U : MergedInvoke->data_ops()) {
2403     Type *Ty = U->getType();
2404     if (Ty->isTokenTy())
2405       continue; // Keep this arg as-is, we've checked that all the invokes
2406                 // recieve the *same* token value.
2407 
2408     // Otherwise, simply form a PHI out of all the data ops under this index.
2409     PHINode *PN = PHINode::Create(Ty, /*NumReservedValues=*/Invokes.size(), "",
2410                                   MergedInvoke);
2411     for (InvokeInst *II : Invokes) {
2412       Use *IVU = II->data_operands_begin() + MergedInvoke->getDataOperandNo(&U);
2413       PN->addIncoming(IVU->get(), II->getParent());
2414     }
2415 
2416     U.set(PN);
2417   }
2418 
2419   // We've ensured that each PHI node in the `landingpad` has compatible
2420   // (identical) incoming values when coming from each of the `invoke`s
2421   // in the current merge set, so update the PHI nodes accordingly.
2422   AddPredecessorToBlock(/*Succ=*/MergedInvoke->getUnwindDest(),
2423                         /*NewPred=*/MergedInvoke->getParent(),
2424                         /*ExistPred=*/Invokes.front()->getParent());
2425 
2426   // And finally, replace the original `invoke`s with an unconditional branch
2427   // to the block with the merged `invoke`. Also, give that merged `invoke`
2428   // the merged debugloc of all the original `invoke`s.
2429   const DILocation *MergedDebugLoc = nullptr;
2430   for (InvokeInst *II : Invokes) {
2431     // Compute the debug location common to all the original `invoke`s.
2432     if (!MergedDebugLoc)
2433       MergedDebugLoc = II->getDebugLoc();
2434     else
2435       MergedDebugLoc =
2436           DILocation::getMergedLocation(MergedDebugLoc, II->getDebugLoc());
2437 
2438     // And replace the old `invoke` with an unconditionally branch
2439     // to the block with the merged `invoke`.
2440     for (BasicBlock *OrigSuccBB : successors(II->getParent()))
2441       OrigSuccBB->removePredecessor(II->getParent());
2442     BranchInst::Create(MergedInvoke->getParent(), II->getParent());
2443     // Since the normal destination was unreachable, there are no live uses.
2444     II->replaceAllUsesWith(UndefValue::get(II->getType()));
2445     II->eraseFromParent();
2446     ++NumInvokesMerged;
2447   }
2448   MergedInvoke->setDebugLoc(MergedDebugLoc);
2449   ++NumInvokeSetsFormed;
2450 
2451   if (DTU)
2452     DTU->applyUpdates(Updates);
2453 }
2454 
2455 /// If this block is a `landingpad` exception handling block, categorize all
2456 /// the predecessor `invoke`s into sets, with all `invoke`s in each set
2457 /// being "mergeable" together, and then merge invokes in each set together.
2458 ///
2459 /// This is a weird mix of hoisting and sinking. Visually, it goes from:
2460 ///          [...]        [...]
2461 ///            |            |
2462 ///        [invoke0]    [invoke1]
2463 ///           / \          / \
2464 ///     [cont0] [landingpad] [cont1]
2465 /// to:
2466 ///      [...] [...]
2467 ///          \ /
2468 ///       [invoke]
2469 ///          / \
2470 ///     [cont] [landingpad]
2471 ///
2472 /// But of course we can only do that if the invokes share the `landingpad`,
2473 /// edges invoke0->cont0 and invoke1->cont1 are "compatible",
2474 /// and the invoked functions are "compatible".
2475 static bool MergeCompatibleInvokes(BasicBlock *BB, DomTreeUpdater *DTU) {
2476   bool Changed = false;
2477 
2478   // FIXME: generalize to all exception handling blocks?
2479   if (!BB->isLandingPad())
2480     return Changed;
2481 
2482   CompatibleSets Grouper;
2483 
2484   // Record all the predecessors of this `landingpad`. As per verifier,
2485   // the only allowed predecessor is the unwind edge of an `invoke`.
2486   // We want to group "compatible" `invokes` into the same set to be merged.
2487   for (BasicBlock *PredBB : predecessors(BB))
2488     Grouper.insert(cast<InvokeInst>(PredBB->getTerminator()));
2489 
2490   // And now, merge `invoke`s that were grouped togeter.
2491   for (ArrayRef<InvokeInst *> Invokes : Grouper.Sets) {
2492     if (Invokes.size() < 2)
2493       continue;
2494     Changed = true;
2495     MergeCompatibleInvokesImpl(Invokes, DTU);
2496   }
2497 
2498   return Changed;
2499 }
2500 
2501 /// Determine if we can hoist sink a sole store instruction out of a
2502 /// conditional block.
2503 ///
2504 /// We are looking for code like the following:
2505 ///   BrBB:
2506 ///     store i32 %add, i32* %arrayidx2
2507 ///     ... // No other stores or function calls (we could be calling a memory
2508 ///     ... // function).
2509 ///     %cmp = icmp ult %x, %y
2510 ///     br i1 %cmp, label %EndBB, label %ThenBB
2511 ///   ThenBB:
2512 ///     store i32 %add5, i32* %arrayidx2
2513 ///     br label EndBB
2514 ///   EndBB:
2515 ///     ...
2516 ///   We are going to transform this into:
2517 ///   BrBB:
2518 ///     store i32 %add, i32* %arrayidx2
2519 ///     ... //
2520 ///     %cmp = icmp ult %x, %y
2521 ///     %add.add5 = select i1 %cmp, i32 %add, %add5
2522 ///     store i32 %add.add5, i32* %arrayidx2
2523 ///     ...
2524 ///
2525 /// \return The pointer to the value of the previous store if the store can be
2526 ///         hoisted into the predecessor block. 0 otherwise.
2527 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB,
2528                                      BasicBlock *StoreBB, BasicBlock *EndBB) {
2529   StoreInst *StoreToHoist = dyn_cast<StoreInst>(I);
2530   if (!StoreToHoist)
2531     return nullptr;
2532 
2533   // Volatile or atomic.
2534   if (!StoreToHoist->isSimple())
2535     return nullptr;
2536 
2537   Value *StorePtr = StoreToHoist->getPointerOperand();
2538   Type *StoreTy = StoreToHoist->getValueOperand()->getType();
2539 
2540   // Look for a store to the same pointer in BrBB.
2541   unsigned MaxNumInstToLookAt = 9;
2542   // Skip pseudo probe intrinsic calls which are not really killing any memory
2543   // accesses.
2544   for (Instruction &CurI : reverse(BrBB->instructionsWithoutDebug(true))) {
2545     if (!MaxNumInstToLookAt)
2546       break;
2547     --MaxNumInstToLookAt;
2548 
2549     // Could be calling an instruction that affects memory like free().
2550     if (CurI.mayWriteToMemory() && !isa<StoreInst>(CurI))
2551       return nullptr;
2552 
2553     if (auto *SI = dyn_cast<StoreInst>(&CurI)) {
2554       // Found the previous store to same location and type. Make sure it is
2555       // simple, to avoid introducing a spurious non-atomic write after an
2556       // atomic write.
2557       if (SI->getPointerOperand() == StorePtr &&
2558           SI->getValueOperand()->getType() == StoreTy && SI->isSimple())
2559         // Found the previous store, return its value operand.
2560         return SI->getValueOperand();
2561       return nullptr; // Unknown store.
2562     }
2563 
2564     if (auto *LI = dyn_cast<LoadInst>(&CurI)) {
2565       if (LI->getPointerOperand() == StorePtr && LI->getType() == StoreTy &&
2566           LI->isSimple()) {
2567         // Local objects (created by an `alloca` instruction) are always
2568         // writable, so once we are past a read from a location it is valid to
2569         // also write to that same location.
2570         // If the address of the local object never escapes the function, that
2571         // means it's never concurrently read or written, hence moving the store
2572         // from under the condition will not introduce a data race.
2573         auto *AI = dyn_cast<AllocaInst>(getUnderlyingObject(StorePtr));
2574         if (AI && !PointerMayBeCaptured(AI, false, true))
2575           // Found a previous load, return it.
2576           return LI;
2577       }
2578       // The load didn't work out, but we may still find a store.
2579     }
2580   }
2581 
2582   return nullptr;
2583 }
2584 
2585 /// Estimate the cost of the insertion(s) and check that the PHI nodes can be
2586 /// converted to selects.
2587 static bool validateAndCostRequiredSelects(BasicBlock *BB, BasicBlock *ThenBB,
2588                                            BasicBlock *EndBB,
2589                                            unsigned &SpeculatedInstructions,
2590                                            InstructionCost &Cost,
2591                                            const TargetTransformInfo &TTI) {
2592   TargetTransformInfo::TargetCostKind CostKind =
2593     BB->getParent()->hasMinSize()
2594     ? TargetTransformInfo::TCK_CodeSize
2595     : TargetTransformInfo::TCK_SizeAndLatency;
2596 
2597   bool HaveRewritablePHIs = false;
2598   for (PHINode &PN : EndBB->phis()) {
2599     Value *OrigV = PN.getIncomingValueForBlock(BB);
2600     Value *ThenV = PN.getIncomingValueForBlock(ThenBB);
2601 
2602     // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf.
2603     // Skip PHIs which are trivial.
2604     if (ThenV == OrigV)
2605       continue;
2606 
2607     Cost += TTI.getCmpSelInstrCost(Instruction::Select, PN.getType(), nullptr,
2608                                    CmpInst::BAD_ICMP_PREDICATE, CostKind);
2609 
2610     // Don't convert to selects if we could remove undefined behavior instead.
2611     if (passingValueIsAlwaysUndefined(OrigV, &PN) ||
2612         passingValueIsAlwaysUndefined(ThenV, &PN))
2613       return false;
2614 
2615     HaveRewritablePHIs = true;
2616     ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV);
2617     ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV);
2618     if (!OrigCE && !ThenCE)
2619       continue; // Known safe and cheap.
2620 
2621     if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE)) ||
2622         (OrigCE && !isSafeToSpeculativelyExecute(OrigCE)))
2623       return false;
2624     InstructionCost OrigCost = OrigCE ? computeSpeculationCost(OrigCE, TTI) : 0;
2625     InstructionCost ThenCost = ThenCE ? computeSpeculationCost(ThenCE, TTI) : 0;
2626     InstructionCost MaxCost =
2627         2 * PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
2628     if (OrigCost + ThenCost > MaxCost)
2629       return false;
2630 
2631     // Account for the cost of an unfolded ConstantExpr which could end up
2632     // getting expanded into Instructions.
2633     // FIXME: This doesn't account for how many operations are combined in the
2634     // constant expression.
2635     ++SpeculatedInstructions;
2636     if (SpeculatedInstructions > 1)
2637       return false;
2638   }
2639 
2640   return HaveRewritablePHIs;
2641 }
2642 
2643 /// Speculate a conditional basic block flattening the CFG.
2644 ///
2645 /// Note that this is a very risky transform currently. Speculating
2646 /// instructions like this is most often not desirable. Instead, there is an MI
2647 /// pass which can do it with full awareness of the resource constraints.
2648 /// However, some cases are "obvious" and we should do directly. An example of
2649 /// this is speculating a single, reasonably cheap instruction.
2650 ///
2651 /// There is only one distinct advantage to flattening the CFG at the IR level:
2652 /// it makes very common but simplistic optimizations such as are common in
2653 /// instcombine and the DAG combiner more powerful by removing CFG edges and
2654 /// modeling their effects with easier to reason about SSA value graphs.
2655 ///
2656 ///
2657 /// An illustration of this transform is turning this IR:
2658 /// \code
2659 ///   BB:
2660 ///     %cmp = icmp ult %x, %y
2661 ///     br i1 %cmp, label %EndBB, label %ThenBB
2662 ///   ThenBB:
2663 ///     %sub = sub %x, %y
2664 ///     br label BB2
2665 ///   EndBB:
2666 ///     %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ]
2667 ///     ...
2668 /// \endcode
2669 ///
2670 /// Into this IR:
2671 /// \code
2672 ///   BB:
2673 ///     %cmp = icmp ult %x, %y
2674 ///     %sub = sub %x, %y
2675 ///     %cond = select i1 %cmp, 0, %sub
2676 ///     ...
2677 /// \endcode
2678 ///
2679 /// \returns true if the conditional block is removed.
2680 bool SimplifyCFGOpt::SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB,
2681                                             const TargetTransformInfo &TTI) {
2682   // Be conservative for now. FP select instruction can often be expensive.
2683   Value *BrCond = BI->getCondition();
2684   if (isa<FCmpInst>(BrCond))
2685     return false;
2686 
2687   BasicBlock *BB = BI->getParent();
2688   BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0);
2689   InstructionCost Budget =
2690       PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
2691 
2692   // If ThenBB is actually on the false edge of the conditional branch, remember
2693   // to swap the select operands later.
2694   bool Invert = false;
2695   if (ThenBB != BI->getSuccessor(0)) {
2696     assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?");
2697     Invert = true;
2698   }
2699   assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block");
2700 
2701   // If the branch is non-unpredictable, and is predicted to *not* branch to
2702   // the `then` block, then avoid speculating it.
2703   if (!BI->getMetadata(LLVMContext::MD_unpredictable)) {
2704     uint64_t TWeight, FWeight;
2705     if (BI->extractProfMetadata(TWeight, FWeight) && (TWeight + FWeight) != 0) {
2706       uint64_t EndWeight = Invert ? TWeight : FWeight;
2707       BranchProbability BIEndProb =
2708           BranchProbability::getBranchProbability(EndWeight, TWeight + FWeight);
2709       BranchProbability Likely = TTI.getPredictableBranchThreshold();
2710       if (BIEndProb >= Likely)
2711         return false;
2712     }
2713   }
2714 
2715   // Keep a count of how many times instructions are used within ThenBB when
2716   // they are candidates for sinking into ThenBB. Specifically:
2717   // - They are defined in BB, and
2718   // - They have no side effects, and
2719   // - All of their uses are in ThenBB.
2720   SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts;
2721 
2722   SmallVector<Instruction *, 4> SpeculatedDbgIntrinsics;
2723 
2724   unsigned SpeculatedInstructions = 0;
2725   Value *SpeculatedStoreValue = nullptr;
2726   StoreInst *SpeculatedStore = nullptr;
2727   for (BasicBlock::iterator BBI = ThenBB->begin(),
2728                             BBE = std::prev(ThenBB->end());
2729        BBI != BBE; ++BBI) {
2730     Instruction *I = &*BBI;
2731     // Skip debug info.
2732     if (isa<DbgInfoIntrinsic>(I)) {
2733       SpeculatedDbgIntrinsics.push_back(I);
2734       continue;
2735     }
2736 
2737     // Skip pseudo probes. The consequence is we lose track of the branch
2738     // probability for ThenBB, which is fine since the optimization here takes
2739     // place regardless of the branch probability.
2740     if (isa<PseudoProbeInst>(I)) {
2741       // The probe should be deleted so that it will not be over-counted when
2742       // the samples collected on the non-conditional path are counted towards
2743       // the conditional path. We leave it for the counts inference algorithm to
2744       // figure out a proper count for an unknown probe.
2745       SpeculatedDbgIntrinsics.push_back(I);
2746       continue;
2747     }
2748 
2749     // Only speculatively execute a single instruction (not counting the
2750     // terminator) for now.
2751     ++SpeculatedInstructions;
2752     if (SpeculatedInstructions > 1)
2753       return false;
2754 
2755     // Don't hoist the instruction if it's unsafe or expensive.
2756     if (!isSafeToSpeculativelyExecute(I) &&
2757         !(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore(
2758                                   I, BB, ThenBB, EndBB))))
2759       return false;
2760     if (!SpeculatedStoreValue &&
2761         computeSpeculationCost(I, TTI) >
2762             PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic)
2763       return false;
2764 
2765     // Store the store speculation candidate.
2766     if (SpeculatedStoreValue)
2767       SpeculatedStore = cast<StoreInst>(I);
2768 
2769     // Do not hoist the instruction if any of its operands are defined but not
2770     // used in BB. The transformation will prevent the operand from
2771     // being sunk into the use block.
2772     for (Use &Op : I->operands()) {
2773       Instruction *OpI = dyn_cast<Instruction>(Op);
2774       if (!OpI || OpI->getParent() != BB || OpI->mayHaveSideEffects())
2775         continue; // Not a candidate for sinking.
2776 
2777       ++SinkCandidateUseCounts[OpI];
2778     }
2779   }
2780 
2781   // Consider any sink candidates which are only used in ThenBB as costs for
2782   // speculation. Note, while we iterate over a DenseMap here, we are summing
2783   // and so iteration order isn't significant.
2784   for (SmallDenseMap<Instruction *, unsigned, 4>::iterator
2785            I = SinkCandidateUseCounts.begin(),
2786            E = SinkCandidateUseCounts.end();
2787        I != E; ++I)
2788     if (I->first->hasNUses(I->second)) {
2789       ++SpeculatedInstructions;
2790       if (SpeculatedInstructions > 1)
2791         return false;
2792     }
2793 
2794   // Check that we can insert the selects and that it's not too expensive to do
2795   // so.
2796   bool Convert = SpeculatedStore != nullptr;
2797   InstructionCost Cost = 0;
2798   Convert |= validateAndCostRequiredSelects(BB, ThenBB, EndBB,
2799                                             SpeculatedInstructions,
2800                                             Cost, TTI);
2801   if (!Convert || Cost > Budget)
2802     return false;
2803 
2804   // If we get here, we can hoist the instruction and if-convert.
2805   LLVM_DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";);
2806 
2807   // Insert a select of the value of the speculated store.
2808   if (SpeculatedStoreValue) {
2809     IRBuilder<NoFolder> Builder(BI);
2810     Value *TrueV = SpeculatedStore->getValueOperand();
2811     Value *FalseV = SpeculatedStoreValue;
2812     if (Invert)
2813       std::swap(TrueV, FalseV);
2814     Value *S = Builder.CreateSelect(
2815         BrCond, TrueV, FalseV, "spec.store.select", BI);
2816     SpeculatedStore->setOperand(0, S);
2817     SpeculatedStore->applyMergedLocation(BI->getDebugLoc(),
2818                                          SpeculatedStore->getDebugLoc());
2819   }
2820 
2821   // Metadata can be dependent on the condition we are hoisting above.
2822   // Conservatively strip all metadata on the instruction. Drop the debug loc
2823   // to avoid making it appear as if the condition is a constant, which would
2824   // be misleading while debugging.
2825   // Similarly strip attributes that maybe dependent on condition we are
2826   // hoisting above.
2827   for (auto &I : *ThenBB) {
2828     if (!SpeculatedStoreValue || &I != SpeculatedStore)
2829       I.setDebugLoc(DebugLoc());
2830     I.dropUndefImplyingAttrsAndUnknownMetadata();
2831   }
2832 
2833   // Hoist the instructions.
2834   BB->getInstList().splice(BI->getIterator(), ThenBB->getInstList(),
2835                            ThenBB->begin(), std::prev(ThenBB->end()));
2836 
2837   // Insert selects and rewrite the PHI operands.
2838   IRBuilder<NoFolder> Builder(BI);
2839   for (PHINode &PN : EndBB->phis()) {
2840     unsigned OrigI = PN.getBasicBlockIndex(BB);
2841     unsigned ThenI = PN.getBasicBlockIndex(ThenBB);
2842     Value *OrigV = PN.getIncomingValue(OrigI);
2843     Value *ThenV = PN.getIncomingValue(ThenI);
2844 
2845     // Skip PHIs which are trivial.
2846     if (OrigV == ThenV)
2847       continue;
2848 
2849     // Create a select whose true value is the speculatively executed value and
2850     // false value is the pre-existing value. Swap them if the branch
2851     // destinations were inverted.
2852     Value *TrueV = ThenV, *FalseV = OrigV;
2853     if (Invert)
2854       std::swap(TrueV, FalseV);
2855     Value *V = Builder.CreateSelect(BrCond, TrueV, FalseV, "spec.select", BI);
2856     PN.setIncomingValue(OrigI, V);
2857     PN.setIncomingValue(ThenI, V);
2858   }
2859 
2860   // Remove speculated dbg intrinsics.
2861   // FIXME: Is it possible to do this in a more elegant way? Moving/merging the
2862   // dbg value for the different flows and inserting it after the select.
2863   for (Instruction *I : SpeculatedDbgIntrinsics)
2864     I->eraseFromParent();
2865 
2866   ++NumSpeculations;
2867   return true;
2868 }
2869 
2870 /// Return true if we can thread a branch across this block.
2871 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) {
2872   int Size = 0;
2873 
2874   SmallPtrSet<const Value *, 32> EphValues;
2875   auto IsEphemeral = [&](const Instruction *I) {
2876     if (isa<AssumeInst>(I))
2877       return true;
2878     return !I->mayHaveSideEffects() && !I->isTerminator() &&
2879            all_of(I->users(),
2880                   [&](const User *U) { return EphValues.count(U); });
2881   };
2882 
2883   // Walk the loop in reverse so that we can identify ephemeral values properly
2884   // (values only feeding assumes).
2885   for (Instruction &I : reverse(BB->instructionsWithoutDebug(false))) {
2886     // Can't fold blocks that contain noduplicate or convergent calls.
2887     if (CallInst *CI = dyn_cast<CallInst>(&I))
2888       if (CI->cannotDuplicate() || CI->isConvergent())
2889         return false;
2890 
2891     // Ignore ephemeral values which are deleted during codegen.
2892     if (IsEphemeral(&I))
2893       EphValues.insert(&I);
2894     // We will delete Phis while threading, so Phis should not be accounted in
2895     // block's size.
2896     else if (!isa<PHINode>(I)) {
2897       if (Size++ > MaxSmallBlockSize)
2898         return false; // Don't clone large BB's.
2899     }
2900 
2901     // We can only support instructions that do not define values that are
2902     // live outside of the current basic block.
2903     for (User *U : I.users()) {
2904       Instruction *UI = cast<Instruction>(U);
2905       if (UI->getParent() != BB || isa<PHINode>(UI))
2906         return false;
2907     }
2908 
2909     // Looks ok, continue checking.
2910   }
2911 
2912   return true;
2913 }
2914 
2915 /// If we have a conditional branch on a PHI node value that is defined in the
2916 /// same block as the branch and if any PHI entries are constants, thread edges
2917 /// corresponding to that entry to be branches to their ultimate destination.
2918 static Optional<bool> FoldCondBranchOnPHIImpl(BranchInst *BI,
2919                                               DomTreeUpdater *DTU,
2920                                               const DataLayout &DL,
2921                                               AssumptionCache *AC) {
2922   BasicBlock *BB = BI->getParent();
2923   PHINode *PN = dyn_cast<PHINode>(BI->getCondition());
2924   // NOTE: we currently cannot transform this case if the PHI node is used
2925   // outside of the block.
2926   if (!PN || PN->getParent() != BB || !PN->hasOneUse())
2927     return false;
2928 
2929   // Degenerate case of a single entry PHI.
2930   if (PN->getNumIncomingValues() == 1) {
2931     FoldSingleEntryPHINodes(PN->getParent());
2932     return true;
2933   }
2934 
2935   // Now we know that this block has multiple preds and two succs.
2936   if (!BlockIsSimpleEnoughToThreadThrough(BB))
2937     return false;
2938 
2939   // Okay, this is a simple enough basic block.  See if any phi values are
2940   // constants.
2941   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
2942     ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i));
2943     if (!CB || !CB->getType()->isIntegerTy(1))
2944       continue;
2945 
2946     // Okay, we now know that all edges from PredBB should be revectored to
2947     // branch to RealDest.
2948     BasicBlock *PredBB = PN->getIncomingBlock(i);
2949     BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue());
2950 
2951     if (RealDest == BB)
2952       continue; // Skip self loops.
2953     // Skip if the predecessor's terminator is an indirect branch.
2954     if (isa<IndirectBrInst>(PredBB->getTerminator()))
2955       continue;
2956 
2957     SmallVector<DominatorTree::UpdateType, 3> Updates;
2958 
2959     // The dest block might have PHI nodes, other predecessors and other
2960     // difficult cases.  Instead of being smart about this, just insert a new
2961     // block that jumps to the destination block, effectively splitting
2962     // the edge we are about to create.
2963     BasicBlock *EdgeBB =
2964         BasicBlock::Create(BB->getContext(), RealDest->getName() + ".critedge",
2965                            RealDest->getParent(), RealDest);
2966     BranchInst *CritEdgeBranch = BranchInst::Create(RealDest, EdgeBB);
2967     if (DTU)
2968       Updates.push_back({DominatorTree::Insert, EdgeBB, RealDest});
2969     CritEdgeBranch->setDebugLoc(BI->getDebugLoc());
2970 
2971     // Update PHI nodes.
2972     AddPredecessorToBlock(RealDest, EdgeBB, BB);
2973 
2974     // BB may have instructions that are being threaded over.  Clone these
2975     // instructions into EdgeBB.  We know that there will be no uses of the
2976     // cloned instructions outside of EdgeBB.
2977     BasicBlock::iterator InsertPt = EdgeBB->begin();
2978     DenseMap<Value *, Value *> TranslateMap; // Track translated values.
2979     for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
2980       if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
2981         TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB);
2982         continue;
2983       }
2984       // Clone the instruction.
2985       Instruction *N = BBI->clone();
2986       if (BBI->hasName())
2987         N->setName(BBI->getName() + ".c");
2988 
2989       // Update operands due to translation.
2990       for (Use &Op : N->operands()) {
2991         DenseMap<Value *, Value *>::iterator PI = TranslateMap.find(Op);
2992         if (PI != TranslateMap.end())
2993           Op = PI->second;
2994       }
2995 
2996       // Check for trivial simplification.
2997       if (Value *V = SimplifyInstruction(N, {DL, nullptr, nullptr, AC})) {
2998         if (!BBI->use_empty())
2999           TranslateMap[&*BBI] = V;
3000         if (!N->mayHaveSideEffects()) {
3001           N->deleteValue(); // Instruction folded away, don't need actual inst
3002           N = nullptr;
3003         }
3004       } else {
3005         if (!BBI->use_empty())
3006           TranslateMap[&*BBI] = N;
3007       }
3008       if (N) {
3009         // Insert the new instruction into its new home.
3010         EdgeBB->getInstList().insert(InsertPt, N);
3011 
3012         // Register the new instruction with the assumption cache if necessary.
3013         if (auto *Assume = dyn_cast<AssumeInst>(N))
3014           if (AC)
3015             AC->registerAssumption(Assume);
3016       }
3017     }
3018 
3019     // Loop over all of the edges from PredBB to BB, changing them to branch
3020     // to EdgeBB instead.
3021     Instruction *PredBBTI = PredBB->getTerminator();
3022     for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i)
3023       if (PredBBTI->getSuccessor(i) == BB) {
3024         BB->removePredecessor(PredBB);
3025         PredBBTI->setSuccessor(i, EdgeBB);
3026       }
3027 
3028     if (DTU) {
3029       Updates.push_back({DominatorTree::Insert, PredBB, EdgeBB});
3030       Updates.push_back({DominatorTree::Delete, PredBB, BB});
3031 
3032       DTU->applyUpdates(Updates);
3033     }
3034 
3035     // Signal repeat, simplifying any other constants.
3036     return None;
3037   }
3038 
3039   return false;
3040 }
3041 
3042 static bool FoldCondBranchOnPHI(BranchInst *BI, DomTreeUpdater *DTU,
3043                                 const DataLayout &DL, AssumptionCache *AC) {
3044   Optional<bool> Result;
3045   bool EverChanged = false;
3046   do {
3047     // Note that None means "we changed things, but recurse further."
3048     Result = FoldCondBranchOnPHIImpl(BI, DTU, DL, AC);
3049     EverChanged |= Result == None || *Result;
3050   } while (Result == None);
3051   return EverChanged;
3052 }
3053 
3054 /// Given a BB that starts with the specified two-entry PHI node,
3055 /// see if we can eliminate it.
3056 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI,
3057                                 DomTreeUpdater *DTU, const DataLayout &DL) {
3058   // Ok, this is a two entry PHI node.  Check to see if this is a simple "if
3059   // statement", which has a very simple dominance structure.  Basically, we
3060   // are trying to find the condition that is being branched on, which
3061   // subsequently causes this merge to happen.  We really want control
3062   // dependence information for this check, but simplifycfg can't keep it up
3063   // to date, and this catches most of the cases we care about anyway.
3064   BasicBlock *BB = PN->getParent();
3065 
3066   BasicBlock *IfTrue, *IfFalse;
3067   BranchInst *DomBI = GetIfCondition(BB, IfTrue, IfFalse);
3068   if (!DomBI)
3069     return false;
3070   Value *IfCond = DomBI->getCondition();
3071   // Don't bother if the branch will be constant folded trivially.
3072   if (isa<ConstantInt>(IfCond))
3073     return false;
3074 
3075   BasicBlock *DomBlock = DomBI->getParent();
3076   SmallVector<BasicBlock *, 2> IfBlocks;
3077   llvm::copy_if(
3078       PN->blocks(), std::back_inserter(IfBlocks), [](BasicBlock *IfBlock) {
3079         return cast<BranchInst>(IfBlock->getTerminator())->isUnconditional();
3080       });
3081   assert((IfBlocks.size() == 1 || IfBlocks.size() == 2) &&
3082          "Will have either one or two blocks to speculate.");
3083 
3084   // If the branch is non-unpredictable, see if we either predictably jump to
3085   // the merge bb (if we have only a single 'then' block), or if we predictably
3086   // jump to one specific 'then' block (if we have two of them).
3087   // It isn't beneficial to speculatively execute the code
3088   // from the block that we know is predictably not entered.
3089   if (!DomBI->getMetadata(LLVMContext::MD_unpredictable)) {
3090     uint64_t TWeight, FWeight;
3091     if (DomBI->extractProfMetadata(TWeight, FWeight) &&
3092         (TWeight + FWeight) != 0) {
3093       BranchProbability BITrueProb =
3094           BranchProbability::getBranchProbability(TWeight, TWeight + FWeight);
3095       BranchProbability Likely = TTI.getPredictableBranchThreshold();
3096       BranchProbability BIFalseProb = BITrueProb.getCompl();
3097       if (IfBlocks.size() == 1) {
3098         BranchProbability BIBBProb =
3099             DomBI->getSuccessor(0) == BB ? BITrueProb : BIFalseProb;
3100         if (BIBBProb >= Likely)
3101           return false;
3102       } else {
3103         if (BITrueProb >= Likely || BIFalseProb >= Likely)
3104           return false;
3105       }
3106     }
3107   }
3108 
3109   // Don't try to fold an unreachable block. For example, the phi node itself
3110   // can't be the candidate if-condition for a select that we want to form.
3111   if (auto *IfCondPhiInst = dyn_cast<PHINode>(IfCond))
3112     if (IfCondPhiInst->getParent() == BB)
3113       return false;
3114 
3115   // Okay, we found that we can merge this two-entry phi node into a select.
3116   // Doing so would require us to fold *all* two entry phi nodes in this block.
3117   // At some point this becomes non-profitable (particularly if the target
3118   // doesn't support cmov's).  Only do this transformation if there are two or
3119   // fewer PHI nodes in this block.
3120   unsigned NumPhis = 0;
3121   for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I)
3122     if (NumPhis > 2)
3123       return false;
3124 
3125   // Loop over the PHI's seeing if we can promote them all to select
3126   // instructions.  While we are at it, keep track of the instructions
3127   // that need to be moved to the dominating block.
3128   SmallPtrSet<Instruction *, 4> AggressiveInsts;
3129   InstructionCost Cost = 0;
3130   InstructionCost Budget =
3131       TwoEntryPHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
3132 
3133   bool Changed = false;
3134   for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) {
3135     PHINode *PN = cast<PHINode>(II++);
3136     if (Value *V = SimplifyInstruction(PN, {DL, PN})) {
3137       PN->replaceAllUsesWith(V);
3138       PN->eraseFromParent();
3139       Changed = true;
3140       continue;
3141     }
3142 
3143     if (!dominatesMergePoint(PN->getIncomingValue(0), BB, AggressiveInsts,
3144                              Cost, Budget, TTI) ||
3145         !dominatesMergePoint(PN->getIncomingValue(1), BB, AggressiveInsts,
3146                              Cost, Budget, TTI))
3147       return Changed;
3148   }
3149 
3150   // If we folded the first phi, PN dangles at this point.  Refresh it.  If
3151   // we ran out of PHIs then we simplified them all.
3152   PN = dyn_cast<PHINode>(BB->begin());
3153   if (!PN)
3154     return true;
3155 
3156   // Return true if at least one of these is a 'not', and another is either
3157   // a 'not' too, or a constant.
3158   auto CanHoistNotFromBothValues = [](Value *V0, Value *V1) {
3159     if (!match(V0, m_Not(m_Value())))
3160       std::swap(V0, V1);
3161     auto Invertible = m_CombineOr(m_Not(m_Value()), m_AnyIntegralConstant());
3162     return match(V0, m_Not(m_Value())) && match(V1, Invertible);
3163   };
3164 
3165   // Don't fold i1 branches on PHIs which contain binary operators or
3166   // (possibly inverted) select form of or/ands,  unless one of
3167   // the incoming values is an 'not' and another one is freely invertible.
3168   // These can often be turned into switches and other things.
3169   auto IsBinOpOrAnd = [](Value *V) {
3170     return match(
3171         V, m_CombineOr(
3172                m_BinOp(),
3173                m_CombineOr(m_Select(m_Value(), m_ImmConstant(), m_Value()),
3174                            m_Select(m_Value(), m_Value(), m_ImmConstant()))));
3175   };
3176   if (PN->getType()->isIntegerTy(1) &&
3177       (IsBinOpOrAnd(PN->getIncomingValue(0)) ||
3178        IsBinOpOrAnd(PN->getIncomingValue(1)) || IsBinOpOrAnd(IfCond)) &&
3179       !CanHoistNotFromBothValues(PN->getIncomingValue(0),
3180                                  PN->getIncomingValue(1)))
3181     return Changed;
3182 
3183   // If all PHI nodes are promotable, check to make sure that all instructions
3184   // in the predecessor blocks can be promoted as well. If not, we won't be able
3185   // to get rid of the control flow, so it's not worth promoting to select
3186   // instructions.
3187   for (BasicBlock *IfBlock : IfBlocks)
3188     for (BasicBlock::iterator I = IfBlock->begin(); !I->isTerminator(); ++I)
3189       if (!AggressiveInsts.count(&*I) && !I->isDebugOrPseudoInst()) {
3190         // This is not an aggressive instruction that we can promote.
3191         // Because of this, we won't be able to get rid of the control flow, so
3192         // the xform is not worth it.
3193         return Changed;
3194       }
3195 
3196   // If either of the blocks has it's address taken, we can't do this fold.
3197   if (any_of(IfBlocks,
3198              [](BasicBlock *IfBlock) { return IfBlock->hasAddressTaken(); }))
3199     return Changed;
3200 
3201   LLVM_DEBUG(dbgs() << "FOUND IF CONDITION!  " << *IfCond
3202                     << "  T: " << IfTrue->getName()
3203                     << "  F: " << IfFalse->getName() << "\n");
3204 
3205   // If we can still promote the PHI nodes after this gauntlet of tests,
3206   // do all of the PHI's now.
3207 
3208   // Move all 'aggressive' instructions, which are defined in the
3209   // conditional parts of the if's up to the dominating block.
3210   for (BasicBlock *IfBlock : IfBlocks)
3211       hoistAllInstructionsInto(DomBlock, DomBI, IfBlock);
3212 
3213   IRBuilder<NoFolder> Builder(DomBI);
3214   // Propagate fast-math-flags from phi nodes to replacement selects.
3215   IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
3216   while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
3217     if (isa<FPMathOperator>(PN))
3218       Builder.setFastMathFlags(PN->getFastMathFlags());
3219 
3220     // Change the PHI node into a select instruction.
3221     Value *TrueVal = PN->getIncomingValueForBlock(IfTrue);
3222     Value *FalseVal = PN->getIncomingValueForBlock(IfFalse);
3223 
3224     Value *Sel = Builder.CreateSelect(IfCond, TrueVal, FalseVal, "", DomBI);
3225     PN->replaceAllUsesWith(Sel);
3226     Sel->takeName(PN);
3227     PN->eraseFromParent();
3228   }
3229 
3230   // At this point, all IfBlocks are empty, so our if statement
3231   // has been flattened.  Change DomBlock to jump directly to our new block to
3232   // avoid other simplifycfg's kicking in on the diamond.
3233   Builder.CreateBr(BB);
3234 
3235   SmallVector<DominatorTree::UpdateType, 3> Updates;
3236   if (DTU) {
3237     Updates.push_back({DominatorTree::Insert, DomBlock, BB});
3238     for (auto *Successor : successors(DomBlock))
3239       Updates.push_back({DominatorTree::Delete, DomBlock, Successor});
3240   }
3241 
3242   DomBI->eraseFromParent();
3243   if (DTU)
3244     DTU->applyUpdates(Updates);
3245 
3246   return true;
3247 }
3248 
3249 static Value *createLogicalOp(IRBuilderBase &Builder,
3250                               Instruction::BinaryOps Opc, Value *LHS,
3251                               Value *RHS, const Twine &Name = "") {
3252   // Try to relax logical op to binary op.
3253   if (impliesPoison(RHS, LHS))
3254     return Builder.CreateBinOp(Opc, LHS, RHS, Name);
3255   if (Opc == Instruction::And)
3256     return Builder.CreateLogicalAnd(LHS, RHS, Name);
3257   if (Opc == Instruction::Or)
3258     return Builder.CreateLogicalOr(LHS, RHS, Name);
3259   llvm_unreachable("Invalid logical opcode");
3260 }
3261 
3262 /// Return true if either PBI or BI has branch weight available, and store
3263 /// the weights in {Pred|Succ}{True|False}Weight. If one of PBI and BI does
3264 /// not have branch weight, use 1:1 as its weight.
3265 static bool extractPredSuccWeights(BranchInst *PBI, BranchInst *BI,
3266                                    uint64_t &PredTrueWeight,
3267                                    uint64_t &PredFalseWeight,
3268                                    uint64_t &SuccTrueWeight,
3269                                    uint64_t &SuccFalseWeight) {
3270   bool PredHasWeights =
3271       PBI->extractProfMetadata(PredTrueWeight, PredFalseWeight);
3272   bool SuccHasWeights =
3273       BI->extractProfMetadata(SuccTrueWeight, SuccFalseWeight);
3274   if (PredHasWeights || SuccHasWeights) {
3275     if (!PredHasWeights)
3276       PredTrueWeight = PredFalseWeight = 1;
3277     if (!SuccHasWeights)
3278       SuccTrueWeight = SuccFalseWeight = 1;
3279     return true;
3280   } else {
3281     return false;
3282   }
3283 }
3284 
3285 /// Determine if the two branches share a common destination and deduce a glue
3286 /// that joins the branches' conditions to arrive at the common destination if
3287 /// that would be profitable.
3288 static Optional<std::pair<Instruction::BinaryOps, bool>>
3289 shouldFoldCondBranchesToCommonDestination(BranchInst *BI, BranchInst *PBI,
3290                                           const TargetTransformInfo *TTI) {
3291   assert(BI && PBI && BI->isConditional() && PBI->isConditional() &&
3292          "Both blocks must end with a conditional branches.");
3293   assert(is_contained(predecessors(BI->getParent()), PBI->getParent()) &&
3294          "PredBB must be a predecessor of BB.");
3295 
3296   // We have the potential to fold the conditions together, but if the
3297   // predecessor branch is predictable, we may not want to merge them.
3298   uint64_t PTWeight, PFWeight;
3299   BranchProbability PBITrueProb, Likely;
3300   if (TTI && !PBI->getMetadata(LLVMContext::MD_unpredictable) &&
3301       PBI->extractProfMetadata(PTWeight, PFWeight) &&
3302       (PTWeight + PFWeight) != 0) {
3303     PBITrueProb =
3304         BranchProbability::getBranchProbability(PTWeight, PTWeight + PFWeight);
3305     Likely = TTI->getPredictableBranchThreshold();
3306   }
3307 
3308   if (PBI->getSuccessor(0) == BI->getSuccessor(0)) {
3309     // Speculate the 2nd condition unless the 1st is probably true.
3310     if (PBITrueProb.isUnknown() || PBITrueProb < Likely)
3311       return {{Instruction::Or, false}};
3312   } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) {
3313     // Speculate the 2nd condition unless the 1st is probably false.
3314     if (PBITrueProb.isUnknown() || PBITrueProb.getCompl() < Likely)
3315       return {{Instruction::And, false}};
3316   } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) {
3317     // Speculate the 2nd condition unless the 1st is probably true.
3318     if (PBITrueProb.isUnknown() || PBITrueProb < Likely)
3319       return {{Instruction::And, true}};
3320   } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) {
3321     // Speculate the 2nd condition unless the 1st is probably false.
3322     if (PBITrueProb.isUnknown() || PBITrueProb.getCompl() < Likely)
3323       return {{Instruction::Or, true}};
3324   }
3325   return None;
3326 }
3327 
3328 static bool performBranchToCommonDestFolding(BranchInst *BI, BranchInst *PBI,
3329                                              DomTreeUpdater *DTU,
3330                                              MemorySSAUpdater *MSSAU,
3331                                              const TargetTransformInfo *TTI) {
3332   BasicBlock *BB = BI->getParent();
3333   BasicBlock *PredBlock = PBI->getParent();
3334 
3335   // Determine if the two branches share a common destination.
3336   Instruction::BinaryOps Opc;
3337   bool InvertPredCond;
3338   std::tie(Opc, InvertPredCond) =
3339       *shouldFoldCondBranchesToCommonDestination(BI, PBI, TTI);
3340 
3341   LLVM_DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB);
3342 
3343   IRBuilder<> Builder(PBI);
3344   // The builder is used to create instructions to eliminate the branch in BB.
3345   // If BB's terminator has !annotation metadata, add it to the new
3346   // instructions.
3347   Builder.CollectMetadataToCopy(BB->getTerminator(),
3348                                 {LLVMContext::MD_annotation});
3349 
3350   // If we need to invert the condition in the pred block to match, do so now.
3351   if (InvertPredCond) {
3352     Value *NewCond = PBI->getCondition();
3353     if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) {
3354       CmpInst *CI = cast<CmpInst>(NewCond);
3355       CI->setPredicate(CI->getInversePredicate());
3356     } else {
3357       NewCond =
3358           Builder.CreateNot(NewCond, PBI->getCondition()->getName() + ".not");
3359     }
3360 
3361     PBI->setCondition(NewCond);
3362     PBI->swapSuccessors();
3363   }
3364 
3365   BasicBlock *UniqueSucc =
3366       PBI->getSuccessor(0) == BB ? BI->getSuccessor(0) : BI->getSuccessor(1);
3367 
3368   // Before cloning instructions, notify the successor basic block that it
3369   // is about to have a new predecessor. This will update PHI nodes,
3370   // which will allow us to update live-out uses of bonus instructions.
3371   AddPredecessorToBlock(UniqueSucc, PredBlock, BB, MSSAU);
3372 
3373   // Try to update branch weights.
3374   uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
3375   if (extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
3376                              SuccTrueWeight, SuccFalseWeight)) {
3377     SmallVector<uint64_t, 8> NewWeights;
3378 
3379     if (PBI->getSuccessor(0) == BB) {
3380       // PBI: br i1 %x, BB, FalseDest
3381       // BI:  br i1 %y, UniqueSucc, FalseDest
3382       // TrueWeight is TrueWeight for PBI * TrueWeight for BI.
3383       NewWeights.push_back(PredTrueWeight * SuccTrueWeight);
3384       // FalseWeight is FalseWeight for PBI * TotalWeight for BI +
3385       //               TrueWeight for PBI * FalseWeight for BI.
3386       // We assume that total weights of a BranchInst can fit into 32 bits.
3387       // Therefore, we will not have overflow using 64-bit arithmetic.
3388       NewWeights.push_back(PredFalseWeight *
3389                                (SuccFalseWeight + SuccTrueWeight) +
3390                            PredTrueWeight * SuccFalseWeight);
3391     } else {
3392       // PBI: br i1 %x, TrueDest, BB
3393       // BI:  br i1 %y, TrueDest, UniqueSucc
3394       // TrueWeight is TrueWeight for PBI * TotalWeight for BI +
3395       //              FalseWeight for PBI * TrueWeight for BI.
3396       NewWeights.push_back(PredTrueWeight * (SuccFalseWeight + SuccTrueWeight) +
3397                            PredFalseWeight * SuccTrueWeight);
3398       // FalseWeight is FalseWeight for PBI * FalseWeight for BI.
3399       NewWeights.push_back(PredFalseWeight * SuccFalseWeight);
3400     }
3401 
3402     // Halve the weights if any of them cannot fit in an uint32_t
3403     FitWeights(NewWeights);
3404 
3405     SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(), NewWeights.end());
3406     setBranchWeights(PBI, MDWeights[0], MDWeights[1]);
3407 
3408     // TODO: If BB is reachable from all paths through PredBlock, then we
3409     // could replace PBI's branch probabilities with BI's.
3410   } else
3411     PBI->setMetadata(LLVMContext::MD_prof, nullptr);
3412 
3413   // Now, update the CFG.
3414   PBI->setSuccessor(PBI->getSuccessor(0) != BB, UniqueSucc);
3415 
3416   if (DTU)
3417     DTU->applyUpdates({{DominatorTree::Insert, PredBlock, UniqueSucc},
3418                        {DominatorTree::Delete, PredBlock, BB}});
3419 
3420   // If BI was a loop latch, it may have had associated loop metadata.
3421   // We need to copy it to the new latch, that is, PBI.
3422   if (MDNode *LoopMD = BI->getMetadata(LLVMContext::MD_loop))
3423     PBI->setMetadata(LLVMContext::MD_loop, LoopMD);
3424 
3425   ValueToValueMapTy VMap; // maps original values to cloned values
3426   CloneInstructionsIntoPredecessorBlockAndUpdateSSAUses(BB, PredBlock, VMap);
3427 
3428   // Now that the Cond was cloned into the predecessor basic block,
3429   // or/and the two conditions together.
3430   Value *BICond = VMap[BI->getCondition()];
3431   PBI->setCondition(
3432       createLogicalOp(Builder, Opc, PBI->getCondition(), BICond, "or.cond"));
3433 
3434   // Copy any debug value intrinsics into the end of PredBlock.
3435   for (Instruction &I : *BB) {
3436     if (isa<DbgInfoIntrinsic>(I)) {
3437       Instruction *NewI = I.clone();
3438       RemapInstruction(NewI, VMap,
3439                        RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
3440       NewI->insertBefore(PBI);
3441     }
3442   }
3443 
3444   ++NumFoldBranchToCommonDest;
3445   return true;
3446 }
3447 
3448 /// Return if an instruction's type or any of its operands' types are a vector
3449 /// type.
3450 static bool isVectorOp(Instruction &I) {
3451   return I.getType()->isVectorTy() || any_of(I.operands(), [](Use &U) {
3452            return U->getType()->isVectorTy();
3453          });
3454 }
3455 
3456 /// If this basic block is simple enough, and if a predecessor branches to us
3457 /// and one of our successors, fold the block into the predecessor and use
3458 /// logical operations to pick the right destination.
3459 bool llvm::FoldBranchToCommonDest(BranchInst *BI, DomTreeUpdater *DTU,
3460                                   MemorySSAUpdater *MSSAU,
3461                                   const TargetTransformInfo *TTI,
3462                                   unsigned BonusInstThreshold) {
3463   // If this block ends with an unconditional branch,
3464   // let SpeculativelyExecuteBB() deal with it.
3465   if (!BI->isConditional())
3466     return false;
3467 
3468   BasicBlock *BB = BI->getParent();
3469   TargetTransformInfo::TargetCostKind CostKind =
3470     BB->getParent()->hasMinSize() ? TargetTransformInfo::TCK_CodeSize
3471                                   : TargetTransformInfo::TCK_SizeAndLatency;
3472 
3473   Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
3474 
3475   if (!Cond || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) ||
3476       Cond->getParent() != BB || !Cond->hasOneUse())
3477     return false;
3478 
3479   // Cond is known to be a compare or binary operator.  Check to make sure that
3480   // neither operand is a potentially-trapping constant expression.
3481   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0)))
3482     if (CE->canTrap())
3483       return false;
3484   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1)))
3485     if (CE->canTrap())
3486       return false;
3487 
3488   // Finally, don't infinitely unroll conditional loops.
3489   if (is_contained(successors(BB), BB))
3490     return false;
3491 
3492   // With which predecessors will we want to deal with?
3493   SmallVector<BasicBlock *, 8> Preds;
3494   for (BasicBlock *PredBlock : predecessors(BB)) {
3495     BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator());
3496 
3497     // Check that we have two conditional branches.  If there is a PHI node in
3498     // the common successor, verify that the same value flows in from both
3499     // blocks.
3500     if (!PBI || PBI->isUnconditional() || !SafeToMergeTerminators(BI, PBI))
3501       continue;
3502 
3503     // Determine if the two branches share a common destination.
3504     Instruction::BinaryOps Opc;
3505     bool InvertPredCond;
3506     if (auto Recipe = shouldFoldCondBranchesToCommonDestination(BI, PBI, TTI))
3507       std::tie(Opc, InvertPredCond) = *Recipe;
3508     else
3509       continue;
3510 
3511     // Check the cost of inserting the necessary logic before performing the
3512     // transformation.
3513     if (TTI) {
3514       Type *Ty = BI->getCondition()->getType();
3515       InstructionCost Cost = TTI->getArithmeticInstrCost(Opc, Ty, CostKind);
3516       if (InvertPredCond && (!PBI->getCondition()->hasOneUse() ||
3517           !isa<CmpInst>(PBI->getCondition())))
3518         Cost += TTI->getArithmeticInstrCost(Instruction::Xor, Ty, CostKind);
3519 
3520       if (Cost > BranchFoldThreshold)
3521         continue;
3522     }
3523 
3524     // Ok, we do want to deal with this predecessor. Record it.
3525     Preds.emplace_back(PredBlock);
3526   }
3527 
3528   // If there aren't any predecessors into which we can fold,
3529   // don't bother checking the cost.
3530   if (Preds.empty())
3531     return false;
3532 
3533   // Only allow this transformation if computing the condition doesn't involve
3534   // too many instructions and these involved instructions can be executed
3535   // unconditionally. We denote all involved instructions except the condition
3536   // as "bonus instructions", and only allow this transformation when the
3537   // number of the bonus instructions we'll need to create when cloning into
3538   // each predecessor does not exceed a certain threshold.
3539   unsigned NumBonusInsts = 0;
3540   bool SawVectorOp = false;
3541   const unsigned PredCount = Preds.size();
3542   for (Instruction &I : *BB) {
3543     // Don't check the branch condition comparison itself.
3544     if (&I == Cond)
3545       continue;
3546     // Ignore dbg intrinsics, and the terminator.
3547     if (isa<DbgInfoIntrinsic>(I) || isa<BranchInst>(I))
3548       continue;
3549     // I must be safe to execute unconditionally.
3550     if (!isSafeToSpeculativelyExecute(&I))
3551       return false;
3552     SawVectorOp |= isVectorOp(I);
3553 
3554     // Account for the cost of duplicating this instruction into each
3555     // predecessor. Ignore free instructions.
3556     if (!TTI ||
3557         TTI->getUserCost(&I, CostKind) != TargetTransformInfo::TCC_Free) {
3558       NumBonusInsts += PredCount;
3559 
3560       // Early exits once we reach the limit.
3561       if (NumBonusInsts >
3562           BonusInstThreshold * BranchFoldToCommonDestVectorMultiplier)
3563         return false;
3564     }
3565 
3566     auto IsBCSSAUse = [BB, &I](Use &U) {
3567       auto *UI = cast<Instruction>(U.getUser());
3568       if (auto *PN = dyn_cast<PHINode>(UI))
3569         return PN->getIncomingBlock(U) == BB;
3570       return UI->getParent() == BB && I.comesBefore(UI);
3571     };
3572 
3573     // Does this instruction require rewriting of uses?
3574     if (!all_of(I.uses(), IsBCSSAUse))
3575       return false;
3576   }
3577   if (NumBonusInsts >
3578       BonusInstThreshold *
3579           (SawVectorOp ? BranchFoldToCommonDestVectorMultiplier : 1))
3580     return false;
3581 
3582   // Ok, we have the budget. Perform the transformation.
3583   for (BasicBlock *PredBlock : Preds) {
3584     auto *PBI = cast<BranchInst>(PredBlock->getTerminator());
3585     return performBranchToCommonDestFolding(BI, PBI, DTU, MSSAU, TTI);
3586   }
3587   return false;
3588 }
3589 
3590 // If there is only one store in BB1 and BB2, return it, otherwise return
3591 // nullptr.
3592 static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) {
3593   StoreInst *S = nullptr;
3594   for (auto *BB : {BB1, BB2}) {
3595     if (!BB)
3596       continue;
3597     for (auto &I : *BB)
3598       if (auto *SI = dyn_cast<StoreInst>(&I)) {
3599         if (S)
3600           // Multiple stores seen.
3601           return nullptr;
3602         else
3603           S = SI;
3604       }
3605   }
3606   return S;
3607 }
3608 
3609 static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB,
3610                                               Value *AlternativeV = nullptr) {
3611   // PHI is going to be a PHI node that allows the value V that is defined in
3612   // BB to be referenced in BB's only successor.
3613   //
3614   // If AlternativeV is nullptr, the only value we care about in PHI is V. It
3615   // doesn't matter to us what the other operand is (it'll never get used). We
3616   // could just create a new PHI with an undef incoming value, but that could
3617   // increase register pressure if EarlyCSE/InstCombine can't fold it with some
3618   // other PHI. So here we directly look for some PHI in BB's successor with V
3619   // as an incoming operand. If we find one, we use it, else we create a new
3620   // one.
3621   //
3622   // If AlternativeV is not nullptr, we care about both incoming values in PHI.
3623   // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV]
3624   // where OtherBB is the single other predecessor of BB's only successor.
3625   PHINode *PHI = nullptr;
3626   BasicBlock *Succ = BB->getSingleSuccessor();
3627 
3628   for (auto I = Succ->begin(); isa<PHINode>(I); ++I)
3629     if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) {
3630       PHI = cast<PHINode>(I);
3631       if (!AlternativeV)
3632         break;
3633 
3634       assert(Succ->hasNPredecessors(2));
3635       auto PredI = pred_begin(Succ);
3636       BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI;
3637       if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV)
3638         break;
3639       PHI = nullptr;
3640     }
3641   if (PHI)
3642     return PHI;
3643 
3644   // If V is not an instruction defined in BB, just return it.
3645   if (!AlternativeV &&
3646       (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB))
3647     return V;
3648 
3649   PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge", &Succ->front());
3650   PHI->addIncoming(V, BB);
3651   for (BasicBlock *PredBB : predecessors(Succ))
3652     if (PredBB != BB)
3653       PHI->addIncoming(
3654           AlternativeV ? AlternativeV : UndefValue::get(V->getType()), PredBB);
3655   return PHI;
3656 }
3657 
3658 static bool mergeConditionalStoreToAddress(
3659     BasicBlock *PTB, BasicBlock *PFB, BasicBlock *QTB, BasicBlock *QFB,
3660     BasicBlock *PostBB, Value *Address, bool InvertPCond, bool InvertQCond,
3661     DomTreeUpdater *DTU, const DataLayout &DL, const TargetTransformInfo &TTI) {
3662   // For every pointer, there must be exactly two stores, one coming from
3663   // PTB or PFB, and the other from QTB or QFB. We don't support more than one
3664   // store (to any address) in PTB,PFB or QTB,QFB.
3665   // FIXME: We could relax this restriction with a bit more work and performance
3666   // testing.
3667   StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB);
3668   StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB);
3669   if (!PStore || !QStore)
3670     return false;
3671 
3672   // Now check the stores are compatible.
3673   if (!QStore->isUnordered() || !PStore->isUnordered())
3674     return false;
3675 
3676   // Check that sinking the store won't cause program behavior changes. Sinking
3677   // the store out of the Q blocks won't change any behavior as we're sinking
3678   // from a block to its unconditional successor. But we're moving a store from
3679   // the P blocks down through the middle block (QBI) and past both QFB and QTB.
3680   // So we need to check that there are no aliasing loads or stores in
3681   // QBI, QTB and QFB. We also need to check there are no conflicting memory
3682   // operations between PStore and the end of its parent block.
3683   //
3684   // The ideal way to do this is to query AliasAnalysis, but we don't
3685   // preserve AA currently so that is dangerous. Be super safe and just
3686   // check there are no other memory operations at all.
3687   for (auto &I : *QFB->getSinglePredecessor())
3688     if (I.mayReadOrWriteMemory())
3689       return false;
3690   for (auto &I : *QFB)
3691     if (&I != QStore && I.mayReadOrWriteMemory())
3692       return false;
3693   if (QTB)
3694     for (auto &I : *QTB)
3695       if (&I != QStore && I.mayReadOrWriteMemory())
3696         return false;
3697   for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end();
3698        I != E; ++I)
3699     if (&*I != PStore && I->mayReadOrWriteMemory())
3700       return false;
3701 
3702   // If we're not in aggressive mode, we only optimize if we have some
3703   // confidence that by optimizing we'll allow P and/or Q to be if-converted.
3704   auto IsWorthwhile = [&](BasicBlock *BB, ArrayRef<StoreInst *> FreeStores) {
3705     if (!BB)
3706       return true;
3707     // Heuristic: if the block can be if-converted/phi-folded and the
3708     // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to
3709     // thread this store.
3710     InstructionCost Cost = 0;
3711     InstructionCost Budget =
3712         PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
3713     for (auto &I : BB->instructionsWithoutDebug(false)) {
3714       // Consider terminator instruction to be free.
3715       if (I.isTerminator())
3716         continue;
3717       // If this is one the stores that we want to speculate out of this BB,
3718       // then don't count it's cost, consider it to be free.
3719       if (auto *S = dyn_cast<StoreInst>(&I))
3720         if (llvm::find(FreeStores, S))
3721           continue;
3722       // Else, we have a white-list of instructions that we are ak speculating.
3723       if (!isa<BinaryOperator>(I) && !isa<GetElementPtrInst>(I))
3724         return false; // Not in white-list - not worthwhile folding.
3725       // And finally, if this is a non-free instruction that we are okay
3726       // speculating, ensure that we consider the speculation budget.
3727       Cost += TTI.getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency);
3728       if (Cost > Budget)
3729         return false; // Eagerly refuse to fold as soon as we're out of budget.
3730     }
3731     assert(Cost <= Budget &&
3732            "When we run out of budget we will eagerly return from within the "
3733            "per-instruction loop.");
3734     return true;
3735   };
3736 
3737   const std::array<StoreInst *, 2> FreeStores = {PStore, QStore};
3738   if (!MergeCondStoresAggressively &&
3739       (!IsWorthwhile(PTB, FreeStores) || !IsWorthwhile(PFB, FreeStores) ||
3740        !IsWorthwhile(QTB, FreeStores) || !IsWorthwhile(QFB, FreeStores)))
3741     return false;
3742 
3743   // If PostBB has more than two predecessors, we need to split it so we can
3744   // sink the store.
3745   if (std::next(pred_begin(PostBB), 2) != pred_end(PostBB)) {
3746     // We know that QFB's only successor is PostBB. And QFB has a single
3747     // predecessor. If QTB exists, then its only successor is also PostBB.
3748     // If QTB does not exist, then QFB's only predecessor has a conditional
3749     // branch to QFB and PostBB.
3750     BasicBlock *TruePred = QTB ? QTB : QFB->getSinglePredecessor();
3751     BasicBlock *NewBB =
3752         SplitBlockPredecessors(PostBB, {QFB, TruePred}, "condstore.split", DTU);
3753     if (!NewBB)
3754       return false;
3755     PostBB = NewBB;
3756   }
3757 
3758   // OK, we're going to sink the stores to PostBB. The store has to be
3759   // conditional though, so first create the predicate.
3760   Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator())
3761                      ->getCondition();
3762   Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator())
3763                      ->getCondition();
3764 
3765   Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(),
3766                                                 PStore->getParent());
3767   Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(),
3768                                                 QStore->getParent(), PPHI);
3769 
3770   IRBuilder<> QB(&*PostBB->getFirstInsertionPt());
3771 
3772   Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond);
3773   Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond);
3774 
3775   if (InvertPCond)
3776     PPred = QB.CreateNot(PPred);
3777   if (InvertQCond)
3778     QPred = QB.CreateNot(QPred);
3779   Value *CombinedPred = QB.CreateOr(PPred, QPred);
3780 
3781   auto *T = SplitBlockAndInsertIfThen(CombinedPred, &*QB.GetInsertPoint(),
3782                                       /*Unreachable=*/false,
3783                                       /*BranchWeights=*/nullptr, DTU);
3784   QB.SetInsertPoint(T);
3785   StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address));
3786   SI->setAAMetadata(PStore->getAAMetadata().merge(QStore->getAAMetadata()));
3787   // Choose the minimum alignment. If we could prove both stores execute, we
3788   // could use biggest one.  In this case, though, we only know that one of the
3789   // stores executes.  And we don't know it's safe to take the alignment from a
3790   // store that doesn't execute.
3791   SI->setAlignment(std::min(PStore->getAlign(), QStore->getAlign()));
3792 
3793   QStore->eraseFromParent();
3794   PStore->eraseFromParent();
3795 
3796   return true;
3797 }
3798 
3799 static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI,
3800                                    DomTreeUpdater *DTU, const DataLayout &DL,
3801                                    const TargetTransformInfo &TTI) {
3802   // The intention here is to find diamonds or triangles (see below) where each
3803   // conditional block contains a store to the same address. Both of these
3804   // stores are conditional, so they can't be unconditionally sunk. But it may
3805   // be profitable to speculatively sink the stores into one merged store at the
3806   // end, and predicate the merged store on the union of the two conditions of
3807   // PBI and QBI.
3808   //
3809   // This can reduce the number of stores executed if both of the conditions are
3810   // true, and can allow the blocks to become small enough to be if-converted.
3811   // This optimization will also chain, so that ladders of test-and-set
3812   // sequences can be if-converted away.
3813   //
3814   // We only deal with simple diamonds or triangles:
3815   //
3816   //     PBI       or      PBI        or a combination of the two
3817   //    /   \               | \
3818   //   PTB  PFB             |  PFB
3819   //    \   /               | /
3820   //     QBI                QBI
3821   //    /  \                | \
3822   //   QTB  QFB             |  QFB
3823   //    \  /                | /
3824   //    PostBB            PostBB
3825   //
3826   // We model triangles as a type of diamond with a nullptr "true" block.
3827   // Triangles are canonicalized so that the fallthrough edge is represented by
3828   // a true condition, as in the diagram above.
3829   BasicBlock *PTB = PBI->getSuccessor(0);
3830   BasicBlock *PFB = PBI->getSuccessor(1);
3831   BasicBlock *QTB = QBI->getSuccessor(0);
3832   BasicBlock *QFB = QBI->getSuccessor(1);
3833   BasicBlock *PostBB = QFB->getSingleSuccessor();
3834 
3835   // Make sure we have a good guess for PostBB. If QTB's only successor is
3836   // QFB, then QFB is a better PostBB.
3837   if (QTB->getSingleSuccessor() == QFB)
3838     PostBB = QFB;
3839 
3840   // If we couldn't find a good PostBB, stop.
3841   if (!PostBB)
3842     return false;
3843 
3844   bool InvertPCond = false, InvertQCond = false;
3845   // Canonicalize fallthroughs to the true branches.
3846   if (PFB == QBI->getParent()) {
3847     std::swap(PFB, PTB);
3848     InvertPCond = true;
3849   }
3850   if (QFB == PostBB) {
3851     std::swap(QFB, QTB);
3852     InvertQCond = true;
3853   }
3854 
3855   // From this point on we can assume PTB or QTB may be fallthroughs but PFB
3856   // and QFB may not. Model fallthroughs as a nullptr block.
3857   if (PTB == QBI->getParent())
3858     PTB = nullptr;
3859   if (QTB == PostBB)
3860     QTB = nullptr;
3861 
3862   // Legality bailouts. We must have at least the non-fallthrough blocks and
3863   // the post-dominating block, and the non-fallthroughs must only have one
3864   // predecessor.
3865   auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) {
3866     return BB->getSinglePredecessor() == P && BB->getSingleSuccessor() == S;
3867   };
3868   if (!HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) ||
3869       !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB))
3870     return false;
3871   if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) ||
3872       (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB)))
3873     return false;
3874   if (!QBI->getParent()->hasNUses(2))
3875     return false;
3876 
3877   // OK, this is a sequence of two diamonds or triangles.
3878   // Check if there are stores in PTB or PFB that are repeated in QTB or QFB.
3879   SmallPtrSet<Value *, 4> PStoreAddresses, QStoreAddresses;
3880   for (auto *BB : {PTB, PFB}) {
3881     if (!BB)
3882       continue;
3883     for (auto &I : *BB)
3884       if (StoreInst *SI = dyn_cast<StoreInst>(&I))
3885         PStoreAddresses.insert(SI->getPointerOperand());
3886   }
3887   for (auto *BB : {QTB, QFB}) {
3888     if (!BB)
3889       continue;
3890     for (auto &I : *BB)
3891       if (StoreInst *SI = dyn_cast<StoreInst>(&I))
3892         QStoreAddresses.insert(SI->getPointerOperand());
3893   }
3894 
3895   set_intersect(PStoreAddresses, QStoreAddresses);
3896   // set_intersect mutates PStoreAddresses in place. Rename it here to make it
3897   // clear what it contains.
3898   auto &CommonAddresses = PStoreAddresses;
3899 
3900   bool Changed = false;
3901   for (auto *Address : CommonAddresses)
3902     Changed |=
3903         mergeConditionalStoreToAddress(PTB, PFB, QTB, QFB, PostBB, Address,
3904                                        InvertPCond, InvertQCond, DTU, DL, TTI);
3905   return Changed;
3906 }
3907 
3908 /// If the previous block ended with a widenable branch, determine if reusing
3909 /// the target block is profitable and legal.  This will have the effect of
3910 /// "widening" PBI, but doesn't require us to reason about hosting safety.
3911 static bool tryWidenCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI,
3912                                            DomTreeUpdater *DTU) {
3913   // TODO: This can be generalized in two important ways:
3914   // 1) We can allow phi nodes in IfFalseBB and simply reuse all the input
3915   //    values from the PBI edge.
3916   // 2) We can sink side effecting instructions into BI's fallthrough
3917   //    successor provided they doesn't contribute to computation of
3918   //    BI's condition.
3919   Value *CondWB, *WC;
3920   BasicBlock *IfTrueBB, *IfFalseBB;
3921   if (!parseWidenableBranch(PBI, CondWB, WC, IfTrueBB, IfFalseBB) ||
3922       IfTrueBB != BI->getParent() || !BI->getParent()->getSinglePredecessor())
3923     return false;
3924   if (!IfFalseBB->phis().empty())
3925     return false; // TODO
3926   // Use lambda to lazily compute expensive condition after cheap ones.
3927   auto NoSideEffects = [](BasicBlock &BB) {
3928     return llvm::none_of(BB, [](const Instruction &I) {
3929         return I.mayWriteToMemory() || I.mayHaveSideEffects();
3930       });
3931   };
3932   if (BI->getSuccessor(1) != IfFalseBB && // no inf looping
3933       BI->getSuccessor(1)->getTerminatingDeoptimizeCall() && // profitability
3934       NoSideEffects(*BI->getParent())) {
3935     auto *OldSuccessor = BI->getSuccessor(1);
3936     OldSuccessor->removePredecessor(BI->getParent());
3937     BI->setSuccessor(1, IfFalseBB);
3938     if (DTU)
3939       DTU->applyUpdates(
3940           {{DominatorTree::Insert, BI->getParent(), IfFalseBB},
3941            {DominatorTree::Delete, BI->getParent(), OldSuccessor}});
3942     return true;
3943   }
3944   if (BI->getSuccessor(0) != IfFalseBB && // no inf looping
3945       BI->getSuccessor(0)->getTerminatingDeoptimizeCall() && // profitability
3946       NoSideEffects(*BI->getParent())) {
3947     auto *OldSuccessor = BI->getSuccessor(0);
3948     OldSuccessor->removePredecessor(BI->getParent());
3949     BI->setSuccessor(0, IfFalseBB);
3950     if (DTU)
3951       DTU->applyUpdates(
3952           {{DominatorTree::Insert, BI->getParent(), IfFalseBB},
3953            {DominatorTree::Delete, BI->getParent(), OldSuccessor}});
3954     return true;
3955   }
3956   return false;
3957 }
3958 
3959 /// If we have a conditional branch as a predecessor of another block,
3960 /// this function tries to simplify it.  We know
3961 /// that PBI and BI are both conditional branches, and BI is in one of the
3962 /// successor blocks of PBI - PBI branches to BI.
3963 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI,
3964                                            DomTreeUpdater *DTU,
3965                                            const DataLayout &DL,
3966                                            const TargetTransformInfo &TTI) {
3967   assert(PBI->isConditional() && BI->isConditional());
3968   BasicBlock *BB = BI->getParent();
3969 
3970   // If this block ends with a branch instruction, and if there is a
3971   // predecessor that ends on a branch of the same condition, make
3972   // this conditional branch redundant.
3973   if (PBI->getCondition() == BI->getCondition() &&
3974       PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
3975     // Okay, the outcome of this conditional branch is statically
3976     // knowable.  If this block had a single pred, handle specially.
3977     if (BB->getSinglePredecessor()) {
3978       // Turn this into a branch on constant.
3979       bool CondIsTrue = PBI->getSuccessor(0) == BB;
3980       BI->setCondition(
3981           ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue));
3982       return true; // Nuke the branch on constant.
3983     }
3984 
3985     // Otherwise, if there are multiple predecessors, insert a PHI that merges
3986     // in the constant and simplify the block result.  Subsequent passes of
3987     // simplifycfg will thread the block.
3988     if (BlockIsSimpleEnoughToThreadThrough(BB)) {
3989       pred_iterator PB = pred_begin(BB), PE = pred_end(BB);
3990       PHINode *NewPN = PHINode::Create(
3991           Type::getInt1Ty(BB->getContext()), std::distance(PB, PE),
3992           BI->getCondition()->getName() + ".pr", &BB->front());
3993       // Okay, we're going to insert the PHI node.  Since PBI is not the only
3994       // predecessor, compute the PHI'd conditional value for all of the preds.
3995       // Any predecessor where the condition is not computable we keep symbolic.
3996       for (pred_iterator PI = PB; PI != PE; ++PI) {
3997         BasicBlock *P = *PI;
3998         if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) && PBI != BI &&
3999             PBI->isConditional() && PBI->getCondition() == BI->getCondition() &&
4000             PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
4001           bool CondIsTrue = PBI->getSuccessor(0) == BB;
4002           NewPN->addIncoming(
4003               ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue),
4004               P);
4005         } else {
4006           NewPN->addIncoming(BI->getCondition(), P);
4007         }
4008       }
4009 
4010       BI->setCondition(NewPN);
4011       return true;
4012     }
4013   }
4014 
4015   // If the previous block ended with a widenable branch, determine if reusing
4016   // the target block is profitable and legal.  This will have the effect of
4017   // "widening" PBI, but doesn't require us to reason about hosting safety.
4018   if (tryWidenCondBranchToCondBranch(PBI, BI, DTU))
4019     return true;
4020 
4021   if (auto *CE = dyn_cast<ConstantExpr>(BI->getCondition()))
4022     if (CE->canTrap())
4023       return false;
4024 
4025   // If both branches are conditional and both contain stores to the same
4026   // address, remove the stores from the conditionals and create a conditional
4027   // merged store at the end.
4028   if (MergeCondStores && mergeConditionalStores(PBI, BI, DTU, DL, TTI))
4029     return true;
4030 
4031   // If this is a conditional branch in an empty block, and if any
4032   // predecessors are a conditional branch to one of our destinations,
4033   // fold the conditions into logical ops and one cond br.
4034 
4035   // Ignore dbg intrinsics.
4036   if (&*BB->instructionsWithoutDebug(false).begin() != BI)
4037     return false;
4038 
4039   int PBIOp, BIOp;
4040   if (PBI->getSuccessor(0) == BI->getSuccessor(0)) {
4041     PBIOp = 0;
4042     BIOp = 0;
4043   } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) {
4044     PBIOp = 0;
4045     BIOp = 1;
4046   } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) {
4047     PBIOp = 1;
4048     BIOp = 0;
4049   } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) {
4050     PBIOp = 1;
4051     BIOp = 1;
4052   } else {
4053     return false;
4054   }
4055 
4056   // Check to make sure that the other destination of this branch
4057   // isn't BB itself.  If so, this is an infinite loop that will
4058   // keep getting unwound.
4059   if (PBI->getSuccessor(PBIOp) == BB)
4060     return false;
4061 
4062   // Do not perform this transformation if it would require
4063   // insertion of a large number of select instructions. For targets
4064   // without predication/cmovs, this is a big pessimization.
4065 
4066   // Also do not perform this transformation if any phi node in the common
4067   // destination block can trap when reached by BB or PBB (PR17073). In that
4068   // case, it would be unsafe to hoist the operation into a select instruction.
4069 
4070   BasicBlock *CommonDest = PBI->getSuccessor(PBIOp);
4071   BasicBlock *RemovedDest = PBI->getSuccessor(PBIOp ^ 1);
4072   unsigned NumPhis = 0;
4073   for (BasicBlock::iterator II = CommonDest->begin(); isa<PHINode>(II);
4074        ++II, ++NumPhis) {
4075     if (NumPhis > 2) // Disable this xform.
4076       return false;
4077 
4078     PHINode *PN = cast<PHINode>(II);
4079     Value *BIV = PN->getIncomingValueForBlock(BB);
4080     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BIV))
4081       if (CE->canTrap())
4082         return false;
4083 
4084     unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
4085     Value *PBIV = PN->getIncomingValue(PBBIdx);
4086     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(PBIV))
4087       if (CE->canTrap())
4088         return false;
4089   }
4090 
4091   // Finally, if everything is ok, fold the branches to logical ops.
4092   BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1);
4093 
4094   LLVM_DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent()
4095                     << "AND: " << *BI->getParent());
4096 
4097   SmallVector<DominatorTree::UpdateType, 5> Updates;
4098 
4099   // If OtherDest *is* BB, then BB is a basic block with a single conditional
4100   // branch in it, where one edge (OtherDest) goes back to itself but the other
4101   // exits.  We don't *know* that the program avoids the infinite loop
4102   // (even though that seems likely).  If we do this xform naively, we'll end up
4103   // recursively unpeeling the loop.  Since we know that (after the xform is
4104   // done) that the block *is* infinite if reached, we just make it an obviously
4105   // infinite loop with no cond branch.
4106   if (OtherDest == BB) {
4107     // Insert it at the end of the function, because it's either code,
4108     // or it won't matter if it's hot. :)
4109     BasicBlock *InfLoopBlock =
4110         BasicBlock::Create(BB->getContext(), "infloop", BB->getParent());
4111     BranchInst::Create(InfLoopBlock, InfLoopBlock);
4112     if (DTU)
4113       Updates.push_back({DominatorTree::Insert, InfLoopBlock, InfLoopBlock});
4114     OtherDest = InfLoopBlock;
4115   }
4116 
4117   LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent());
4118 
4119   // BI may have other predecessors.  Because of this, we leave
4120   // it alone, but modify PBI.
4121 
4122   // Make sure we get to CommonDest on True&True directions.
4123   Value *PBICond = PBI->getCondition();
4124   IRBuilder<NoFolder> Builder(PBI);
4125   if (PBIOp)
4126     PBICond = Builder.CreateNot(PBICond, PBICond->getName() + ".not");
4127 
4128   Value *BICond = BI->getCondition();
4129   if (BIOp)
4130     BICond = Builder.CreateNot(BICond, BICond->getName() + ".not");
4131 
4132   // Merge the conditions.
4133   Value *Cond =
4134       createLogicalOp(Builder, Instruction::Or, PBICond, BICond, "brmerge");
4135 
4136   // Modify PBI to branch on the new condition to the new dests.
4137   PBI->setCondition(Cond);
4138   PBI->setSuccessor(0, CommonDest);
4139   PBI->setSuccessor(1, OtherDest);
4140 
4141   if (DTU) {
4142     Updates.push_back({DominatorTree::Insert, PBI->getParent(), OtherDest});
4143     Updates.push_back({DominatorTree::Delete, PBI->getParent(), RemovedDest});
4144 
4145     DTU->applyUpdates(Updates);
4146   }
4147 
4148   // Update branch weight for PBI.
4149   uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
4150   uint64_t PredCommon, PredOther, SuccCommon, SuccOther;
4151   bool HasWeights =
4152       extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
4153                              SuccTrueWeight, SuccFalseWeight);
4154   if (HasWeights) {
4155     PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
4156     PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
4157     SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
4158     SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
4159     // The weight to CommonDest should be PredCommon * SuccTotal +
4160     //                                    PredOther * SuccCommon.
4161     // The weight to OtherDest should be PredOther * SuccOther.
4162     uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) +
4163                                   PredOther * SuccCommon,
4164                               PredOther * SuccOther};
4165     // Halve the weights if any of them cannot fit in an uint32_t
4166     FitWeights(NewWeights);
4167 
4168     setBranchWeights(PBI, NewWeights[0], NewWeights[1]);
4169   }
4170 
4171   // OtherDest may have phi nodes.  If so, add an entry from PBI's
4172   // block that are identical to the entries for BI's block.
4173   AddPredecessorToBlock(OtherDest, PBI->getParent(), BB);
4174 
4175   // We know that the CommonDest already had an edge from PBI to
4176   // it.  If it has PHIs though, the PHIs may have different
4177   // entries for BB and PBI's BB.  If so, insert a select to make
4178   // them agree.
4179   for (PHINode &PN : CommonDest->phis()) {
4180     Value *BIV = PN.getIncomingValueForBlock(BB);
4181     unsigned PBBIdx = PN.getBasicBlockIndex(PBI->getParent());
4182     Value *PBIV = PN.getIncomingValue(PBBIdx);
4183     if (BIV != PBIV) {
4184       // Insert a select in PBI to pick the right value.
4185       SelectInst *NV = cast<SelectInst>(
4186           Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName() + ".mux"));
4187       PN.setIncomingValue(PBBIdx, NV);
4188       // Although the select has the same condition as PBI, the original branch
4189       // weights for PBI do not apply to the new select because the select's
4190       // 'logical' edges are incoming edges of the phi that is eliminated, not
4191       // the outgoing edges of PBI.
4192       if (HasWeights) {
4193         uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
4194         uint64_t PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
4195         uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
4196         uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
4197         // The weight to PredCommonDest should be PredCommon * SuccTotal.
4198         // The weight to PredOtherDest should be PredOther * SuccCommon.
4199         uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther),
4200                                   PredOther * SuccCommon};
4201 
4202         FitWeights(NewWeights);
4203 
4204         setBranchWeights(NV, NewWeights[0], NewWeights[1]);
4205       }
4206     }
4207   }
4208 
4209   LLVM_DEBUG(dbgs() << "INTO: " << *PBI->getParent());
4210   LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent());
4211 
4212   // This basic block is probably dead.  We know it has at least
4213   // one fewer predecessor.
4214   return true;
4215 }
4216 
4217 // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is
4218 // true or to FalseBB if Cond is false.
4219 // Takes care of updating the successors and removing the old terminator.
4220 // Also makes sure not to introduce new successors by assuming that edges to
4221 // non-successor TrueBBs and FalseBBs aren't reachable.
4222 bool SimplifyCFGOpt::SimplifyTerminatorOnSelect(Instruction *OldTerm,
4223                                                 Value *Cond, BasicBlock *TrueBB,
4224                                                 BasicBlock *FalseBB,
4225                                                 uint32_t TrueWeight,
4226                                                 uint32_t FalseWeight) {
4227   auto *BB = OldTerm->getParent();
4228   // Remove any superfluous successor edges from the CFG.
4229   // First, figure out which successors to preserve.
4230   // If TrueBB and FalseBB are equal, only try to preserve one copy of that
4231   // successor.
4232   BasicBlock *KeepEdge1 = TrueBB;
4233   BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr;
4234 
4235   SmallSetVector<BasicBlock *, 2> RemovedSuccessors;
4236 
4237   // Then remove the rest.
4238   for (BasicBlock *Succ : successors(OldTerm)) {
4239     // Make sure only to keep exactly one copy of each edge.
4240     if (Succ == KeepEdge1)
4241       KeepEdge1 = nullptr;
4242     else if (Succ == KeepEdge2)
4243       KeepEdge2 = nullptr;
4244     else {
4245       Succ->removePredecessor(BB,
4246                               /*KeepOneInputPHIs=*/true);
4247 
4248       if (Succ != TrueBB && Succ != FalseBB)
4249         RemovedSuccessors.insert(Succ);
4250     }
4251   }
4252 
4253   IRBuilder<> Builder(OldTerm);
4254   Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc());
4255 
4256   // Insert an appropriate new terminator.
4257   if (!KeepEdge1 && !KeepEdge2) {
4258     if (TrueBB == FalseBB) {
4259       // We were only looking for one successor, and it was present.
4260       // Create an unconditional branch to it.
4261       Builder.CreateBr(TrueBB);
4262     } else {
4263       // We found both of the successors we were looking for.
4264       // Create a conditional branch sharing the condition of the select.
4265       BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB);
4266       if (TrueWeight != FalseWeight)
4267         setBranchWeights(NewBI, TrueWeight, FalseWeight);
4268     }
4269   } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) {
4270     // Neither of the selected blocks were successors, so this
4271     // terminator must be unreachable.
4272     new UnreachableInst(OldTerm->getContext(), OldTerm);
4273   } else {
4274     // One of the selected values was a successor, but the other wasn't.
4275     // Insert an unconditional branch to the one that was found;
4276     // the edge to the one that wasn't must be unreachable.
4277     if (!KeepEdge1) {
4278       // Only TrueBB was found.
4279       Builder.CreateBr(TrueBB);
4280     } else {
4281       // Only FalseBB was found.
4282       Builder.CreateBr(FalseBB);
4283     }
4284   }
4285 
4286   EraseTerminatorAndDCECond(OldTerm);
4287 
4288   if (DTU) {
4289     SmallVector<DominatorTree::UpdateType, 2> Updates;
4290     Updates.reserve(RemovedSuccessors.size());
4291     for (auto *RemovedSuccessor : RemovedSuccessors)
4292       Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor});
4293     DTU->applyUpdates(Updates);
4294   }
4295 
4296   return true;
4297 }
4298 
4299 // Replaces
4300 //   (switch (select cond, X, Y)) on constant X, Y
4301 // with a branch - conditional if X and Y lead to distinct BBs,
4302 // unconditional otherwise.
4303 bool SimplifyCFGOpt::SimplifySwitchOnSelect(SwitchInst *SI,
4304                                             SelectInst *Select) {
4305   // Check for constant integer values in the select.
4306   ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue());
4307   ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue());
4308   if (!TrueVal || !FalseVal)
4309     return false;
4310 
4311   // Find the relevant condition and destinations.
4312   Value *Condition = Select->getCondition();
4313   BasicBlock *TrueBB = SI->findCaseValue(TrueVal)->getCaseSuccessor();
4314   BasicBlock *FalseBB = SI->findCaseValue(FalseVal)->getCaseSuccessor();
4315 
4316   // Get weight for TrueBB and FalseBB.
4317   uint32_t TrueWeight = 0, FalseWeight = 0;
4318   SmallVector<uint64_t, 8> Weights;
4319   bool HasWeights = HasBranchWeights(SI);
4320   if (HasWeights) {
4321     GetBranchWeights(SI, Weights);
4322     if (Weights.size() == 1 + SI->getNumCases()) {
4323       TrueWeight =
4324           (uint32_t)Weights[SI->findCaseValue(TrueVal)->getSuccessorIndex()];
4325       FalseWeight =
4326           (uint32_t)Weights[SI->findCaseValue(FalseVal)->getSuccessorIndex()];
4327     }
4328   }
4329 
4330   // Perform the actual simplification.
4331   return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, TrueWeight,
4332                                     FalseWeight);
4333 }
4334 
4335 // Replaces
4336 //   (indirectbr (select cond, blockaddress(@fn, BlockA),
4337 //                             blockaddress(@fn, BlockB)))
4338 // with
4339 //   (br cond, BlockA, BlockB).
4340 bool SimplifyCFGOpt::SimplifyIndirectBrOnSelect(IndirectBrInst *IBI,
4341                                                 SelectInst *SI) {
4342   // Check that both operands of the select are block addresses.
4343   BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue());
4344   BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue());
4345   if (!TBA || !FBA)
4346     return false;
4347 
4348   // Extract the actual blocks.
4349   BasicBlock *TrueBB = TBA->getBasicBlock();
4350   BasicBlock *FalseBB = FBA->getBasicBlock();
4351 
4352   // Perform the actual simplification.
4353   return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 0,
4354                                     0);
4355 }
4356 
4357 /// This is called when we find an icmp instruction
4358 /// (a seteq/setne with a constant) as the only instruction in a
4359 /// block that ends with an uncond branch.  We are looking for a very specific
4360 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified.  In
4361 /// this case, we merge the first two "or's of icmp" into a switch, but then the
4362 /// default value goes to an uncond block with a seteq in it, we get something
4363 /// like:
4364 ///
4365 ///   switch i8 %A, label %DEFAULT [ i8 1, label %end    i8 2, label %end ]
4366 /// DEFAULT:
4367 ///   %tmp = icmp eq i8 %A, 92
4368 ///   br label %end
4369 /// end:
4370 ///   ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ]
4371 ///
4372 /// We prefer to split the edge to 'end' so that there is a true/false entry to
4373 /// the PHI, merging the third icmp into the switch.
4374 bool SimplifyCFGOpt::tryToSimplifyUncondBranchWithICmpInIt(
4375     ICmpInst *ICI, IRBuilder<> &Builder) {
4376   BasicBlock *BB = ICI->getParent();
4377 
4378   // If the block has any PHIs in it or the icmp has multiple uses, it is too
4379   // complex.
4380   if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse())
4381     return false;
4382 
4383   Value *V = ICI->getOperand(0);
4384   ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1));
4385 
4386   // The pattern we're looking for is where our only predecessor is a switch on
4387   // 'V' and this block is the default case for the switch.  In this case we can
4388   // fold the compared value into the switch to simplify things.
4389   BasicBlock *Pred = BB->getSinglePredecessor();
4390   if (!Pred || !isa<SwitchInst>(Pred->getTerminator()))
4391     return false;
4392 
4393   SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator());
4394   if (SI->getCondition() != V)
4395     return false;
4396 
4397   // If BB is reachable on a non-default case, then we simply know the value of
4398   // V in this block.  Substitute it and constant fold the icmp instruction
4399   // away.
4400   if (SI->getDefaultDest() != BB) {
4401     ConstantInt *VVal = SI->findCaseDest(BB);
4402     assert(VVal && "Should have a unique destination value");
4403     ICI->setOperand(0, VVal);
4404 
4405     if (Value *V = SimplifyInstruction(ICI, {DL, ICI})) {
4406       ICI->replaceAllUsesWith(V);
4407       ICI->eraseFromParent();
4408     }
4409     // BB is now empty, so it is likely to simplify away.
4410     return requestResimplify();
4411   }
4412 
4413   // Ok, the block is reachable from the default dest.  If the constant we're
4414   // comparing exists in one of the other edges, then we can constant fold ICI
4415   // and zap it.
4416   if (SI->findCaseValue(Cst) != SI->case_default()) {
4417     Value *V;
4418     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
4419       V = ConstantInt::getFalse(BB->getContext());
4420     else
4421       V = ConstantInt::getTrue(BB->getContext());
4422 
4423     ICI->replaceAllUsesWith(V);
4424     ICI->eraseFromParent();
4425     // BB is now empty, so it is likely to simplify away.
4426     return requestResimplify();
4427   }
4428 
4429   // The use of the icmp has to be in the 'end' block, by the only PHI node in
4430   // the block.
4431   BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0);
4432   PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back());
4433   if (PHIUse == nullptr || PHIUse != &SuccBlock->front() ||
4434       isa<PHINode>(++BasicBlock::iterator(PHIUse)))
4435     return false;
4436 
4437   // If the icmp is a SETEQ, then the default dest gets false, the new edge gets
4438   // true in the PHI.
4439   Constant *DefaultCst = ConstantInt::getTrue(BB->getContext());
4440   Constant *NewCst = ConstantInt::getFalse(BB->getContext());
4441 
4442   if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
4443     std::swap(DefaultCst, NewCst);
4444 
4445   // Replace ICI (which is used by the PHI for the default value) with true or
4446   // false depending on if it is EQ or NE.
4447   ICI->replaceAllUsesWith(DefaultCst);
4448   ICI->eraseFromParent();
4449 
4450   SmallVector<DominatorTree::UpdateType, 2> Updates;
4451 
4452   // Okay, the switch goes to this block on a default value.  Add an edge from
4453   // the switch to the merge point on the compared value.
4454   BasicBlock *NewBB =
4455       BasicBlock::Create(BB->getContext(), "switch.edge", BB->getParent(), BB);
4456   {
4457     SwitchInstProfUpdateWrapper SIW(*SI);
4458     auto W0 = SIW.getSuccessorWeight(0);
4459     SwitchInstProfUpdateWrapper::CaseWeightOpt NewW;
4460     if (W0) {
4461       NewW = ((uint64_t(*W0) + 1) >> 1);
4462       SIW.setSuccessorWeight(0, *NewW);
4463     }
4464     SIW.addCase(Cst, NewBB, NewW);
4465     if (DTU)
4466       Updates.push_back({DominatorTree::Insert, Pred, NewBB});
4467   }
4468 
4469   // NewBB branches to the phi block, add the uncond branch and the phi entry.
4470   Builder.SetInsertPoint(NewBB);
4471   Builder.SetCurrentDebugLocation(SI->getDebugLoc());
4472   Builder.CreateBr(SuccBlock);
4473   PHIUse->addIncoming(NewCst, NewBB);
4474   if (DTU) {
4475     Updates.push_back({DominatorTree::Insert, NewBB, SuccBlock});
4476     DTU->applyUpdates(Updates);
4477   }
4478   return true;
4479 }
4480 
4481 /// The specified branch is a conditional branch.
4482 /// Check to see if it is branching on an or/and chain of icmp instructions, and
4483 /// fold it into a switch instruction if so.
4484 bool SimplifyCFGOpt::SimplifyBranchOnICmpChain(BranchInst *BI,
4485                                                IRBuilder<> &Builder,
4486                                                const DataLayout &DL) {
4487   Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
4488   if (!Cond)
4489     return false;
4490 
4491   // Change br (X == 0 | X == 1), T, F into a switch instruction.
4492   // If this is a bunch of seteq's or'd together, or if it's a bunch of
4493   // 'setne's and'ed together, collect them.
4494 
4495   // Try to gather values from a chain of and/or to be turned into a switch
4496   ConstantComparesGatherer ConstantCompare(Cond, DL);
4497   // Unpack the result
4498   SmallVectorImpl<ConstantInt *> &Values = ConstantCompare.Vals;
4499   Value *CompVal = ConstantCompare.CompValue;
4500   unsigned UsedICmps = ConstantCompare.UsedICmps;
4501   Value *ExtraCase = ConstantCompare.Extra;
4502 
4503   // If we didn't have a multiply compared value, fail.
4504   if (!CompVal)
4505     return false;
4506 
4507   // Avoid turning single icmps into a switch.
4508   if (UsedICmps <= 1)
4509     return false;
4510 
4511   bool TrueWhenEqual = match(Cond, m_LogicalOr(m_Value(), m_Value()));
4512 
4513   // There might be duplicate constants in the list, which the switch
4514   // instruction can't handle, remove them now.
4515   array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate);
4516   Values.erase(std::unique(Values.begin(), Values.end()), Values.end());
4517 
4518   // If Extra was used, we require at least two switch values to do the
4519   // transformation.  A switch with one value is just a conditional branch.
4520   if (ExtraCase && Values.size() < 2)
4521     return false;
4522 
4523   // TODO: Preserve branch weight metadata, similarly to how
4524   // FoldValueComparisonIntoPredecessors preserves it.
4525 
4526   // Figure out which block is which destination.
4527   BasicBlock *DefaultBB = BI->getSuccessor(1);
4528   BasicBlock *EdgeBB = BI->getSuccessor(0);
4529   if (!TrueWhenEqual)
4530     std::swap(DefaultBB, EdgeBB);
4531 
4532   BasicBlock *BB = BI->getParent();
4533 
4534   LLVM_DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size()
4535                     << " cases into SWITCH.  BB is:\n"
4536                     << *BB);
4537 
4538   SmallVector<DominatorTree::UpdateType, 2> Updates;
4539 
4540   // If there are any extra values that couldn't be folded into the switch
4541   // then we evaluate them with an explicit branch first. Split the block
4542   // right before the condbr to handle it.
4543   if (ExtraCase) {
4544     BasicBlock *NewBB = SplitBlock(BB, BI, DTU, /*LI=*/nullptr,
4545                                    /*MSSAU=*/nullptr, "switch.early.test");
4546 
4547     // Remove the uncond branch added to the old block.
4548     Instruction *OldTI = BB->getTerminator();
4549     Builder.SetInsertPoint(OldTI);
4550 
4551     // There can be an unintended UB if extra values are Poison. Before the
4552     // transformation, extra values may not be evaluated according to the
4553     // condition, and it will not raise UB. But after transformation, we are
4554     // evaluating extra values before checking the condition, and it will raise
4555     // UB. It can be solved by adding freeze instruction to extra values.
4556     AssumptionCache *AC = Options.AC;
4557 
4558     if (!isGuaranteedNotToBeUndefOrPoison(ExtraCase, AC, BI, nullptr))
4559       ExtraCase = Builder.CreateFreeze(ExtraCase);
4560 
4561     if (TrueWhenEqual)
4562       Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB);
4563     else
4564       Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB);
4565 
4566     OldTI->eraseFromParent();
4567 
4568     if (DTU)
4569       Updates.push_back({DominatorTree::Insert, BB, EdgeBB});
4570 
4571     // If there are PHI nodes in EdgeBB, then we need to add a new entry to them
4572     // for the edge we just added.
4573     AddPredecessorToBlock(EdgeBB, BB, NewBB);
4574 
4575     LLVM_DEBUG(dbgs() << "  ** 'icmp' chain unhandled condition: " << *ExtraCase
4576                       << "\nEXTRABB = " << *BB);
4577     BB = NewBB;
4578   }
4579 
4580   Builder.SetInsertPoint(BI);
4581   // Convert pointer to int before we switch.
4582   if (CompVal->getType()->isPointerTy()) {
4583     CompVal = Builder.CreatePtrToInt(
4584         CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr");
4585   }
4586 
4587   // Create the new switch instruction now.
4588   SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size());
4589 
4590   // Add all of the 'cases' to the switch instruction.
4591   for (unsigned i = 0, e = Values.size(); i != e; ++i)
4592     New->addCase(Values[i], EdgeBB);
4593 
4594   // We added edges from PI to the EdgeBB.  As such, if there were any
4595   // PHI nodes in EdgeBB, they need entries to be added corresponding to
4596   // the number of edges added.
4597   for (BasicBlock::iterator BBI = EdgeBB->begin(); isa<PHINode>(BBI); ++BBI) {
4598     PHINode *PN = cast<PHINode>(BBI);
4599     Value *InVal = PN->getIncomingValueForBlock(BB);
4600     for (unsigned i = 0, e = Values.size() - 1; i != e; ++i)
4601       PN->addIncoming(InVal, BB);
4602   }
4603 
4604   // Erase the old branch instruction.
4605   EraseTerminatorAndDCECond(BI);
4606   if (DTU)
4607     DTU->applyUpdates(Updates);
4608 
4609   LLVM_DEBUG(dbgs() << "  ** 'icmp' chain result is:\n" << *BB << '\n');
4610   return true;
4611 }
4612 
4613 bool SimplifyCFGOpt::simplifyResume(ResumeInst *RI, IRBuilder<> &Builder) {
4614   if (isa<PHINode>(RI->getValue()))
4615     return simplifyCommonResume(RI);
4616   else if (isa<LandingPadInst>(RI->getParent()->getFirstNonPHI()) &&
4617            RI->getValue() == RI->getParent()->getFirstNonPHI())
4618     // The resume must unwind the exception that caused control to branch here.
4619     return simplifySingleResume(RI);
4620 
4621   return false;
4622 }
4623 
4624 // Check if cleanup block is empty
4625 static bool isCleanupBlockEmpty(iterator_range<BasicBlock::iterator> R) {
4626   for (Instruction &I : R) {
4627     auto *II = dyn_cast<IntrinsicInst>(&I);
4628     if (!II)
4629       return false;
4630 
4631     Intrinsic::ID IntrinsicID = II->getIntrinsicID();
4632     switch (IntrinsicID) {
4633     case Intrinsic::dbg_declare:
4634     case Intrinsic::dbg_value:
4635     case Intrinsic::dbg_label:
4636     case Intrinsic::lifetime_end:
4637       break;
4638     default:
4639       return false;
4640     }
4641   }
4642   return true;
4643 }
4644 
4645 // Simplify resume that is shared by several landing pads (phi of landing pad).
4646 bool SimplifyCFGOpt::simplifyCommonResume(ResumeInst *RI) {
4647   BasicBlock *BB = RI->getParent();
4648 
4649   // Check that there are no other instructions except for debug and lifetime
4650   // intrinsics between the phi's and resume instruction.
4651   if (!isCleanupBlockEmpty(
4652           make_range(RI->getParent()->getFirstNonPHI(), BB->getTerminator())))
4653     return false;
4654 
4655   SmallSetVector<BasicBlock *, 4> TrivialUnwindBlocks;
4656   auto *PhiLPInst = cast<PHINode>(RI->getValue());
4657 
4658   // Check incoming blocks to see if any of them are trivial.
4659   for (unsigned Idx = 0, End = PhiLPInst->getNumIncomingValues(); Idx != End;
4660        Idx++) {
4661     auto *IncomingBB = PhiLPInst->getIncomingBlock(Idx);
4662     auto *IncomingValue = PhiLPInst->getIncomingValue(Idx);
4663 
4664     // If the block has other successors, we can not delete it because
4665     // it has other dependents.
4666     if (IncomingBB->getUniqueSuccessor() != BB)
4667       continue;
4668 
4669     auto *LandingPad = dyn_cast<LandingPadInst>(IncomingBB->getFirstNonPHI());
4670     // Not the landing pad that caused the control to branch here.
4671     if (IncomingValue != LandingPad)
4672       continue;
4673 
4674     if (isCleanupBlockEmpty(
4675             make_range(LandingPad->getNextNode(), IncomingBB->getTerminator())))
4676       TrivialUnwindBlocks.insert(IncomingBB);
4677   }
4678 
4679   // If no trivial unwind blocks, don't do any simplifications.
4680   if (TrivialUnwindBlocks.empty())
4681     return false;
4682 
4683   // Turn all invokes that unwind here into calls.
4684   for (auto *TrivialBB : TrivialUnwindBlocks) {
4685     // Blocks that will be simplified should be removed from the phi node.
4686     // Note there could be multiple edges to the resume block, and we need
4687     // to remove them all.
4688     while (PhiLPInst->getBasicBlockIndex(TrivialBB) != -1)
4689       BB->removePredecessor(TrivialBB, true);
4690 
4691     for (BasicBlock *Pred :
4692          llvm::make_early_inc_range(predecessors(TrivialBB))) {
4693       removeUnwindEdge(Pred, DTU);
4694       ++NumInvokes;
4695     }
4696 
4697     // In each SimplifyCFG run, only the current processed block can be erased.
4698     // Otherwise, it will break the iteration of SimplifyCFG pass. So instead
4699     // of erasing TrivialBB, we only remove the branch to the common resume
4700     // block so that we can later erase the resume block since it has no
4701     // predecessors.
4702     TrivialBB->getTerminator()->eraseFromParent();
4703     new UnreachableInst(RI->getContext(), TrivialBB);
4704     if (DTU)
4705       DTU->applyUpdates({{DominatorTree::Delete, TrivialBB, BB}});
4706   }
4707 
4708   // Delete the resume block if all its predecessors have been removed.
4709   if (pred_empty(BB))
4710     DeleteDeadBlock(BB, DTU);
4711 
4712   return !TrivialUnwindBlocks.empty();
4713 }
4714 
4715 // Simplify resume that is only used by a single (non-phi) landing pad.
4716 bool SimplifyCFGOpt::simplifySingleResume(ResumeInst *RI) {
4717   BasicBlock *BB = RI->getParent();
4718   auto *LPInst = cast<LandingPadInst>(BB->getFirstNonPHI());
4719   assert(RI->getValue() == LPInst &&
4720          "Resume must unwind the exception that caused control to here");
4721 
4722   // Check that there are no other instructions except for debug intrinsics.
4723   if (!isCleanupBlockEmpty(
4724           make_range<Instruction *>(LPInst->getNextNode(), RI)))
4725     return false;
4726 
4727   // Turn all invokes that unwind here into calls and delete the basic block.
4728   for (BasicBlock *Pred : llvm::make_early_inc_range(predecessors(BB))) {
4729     removeUnwindEdge(Pred, DTU);
4730     ++NumInvokes;
4731   }
4732 
4733   // The landingpad is now unreachable.  Zap it.
4734   DeleteDeadBlock(BB, DTU);
4735   return true;
4736 }
4737 
4738 static bool removeEmptyCleanup(CleanupReturnInst *RI, DomTreeUpdater *DTU) {
4739   // If this is a trivial cleanup pad that executes no instructions, it can be
4740   // eliminated.  If the cleanup pad continues to the caller, any predecessor
4741   // that is an EH pad will be updated to continue to the caller and any
4742   // predecessor that terminates with an invoke instruction will have its invoke
4743   // instruction converted to a call instruction.  If the cleanup pad being
4744   // simplified does not continue to the caller, each predecessor will be
4745   // updated to continue to the unwind destination of the cleanup pad being
4746   // simplified.
4747   BasicBlock *BB = RI->getParent();
4748   CleanupPadInst *CPInst = RI->getCleanupPad();
4749   if (CPInst->getParent() != BB)
4750     // This isn't an empty cleanup.
4751     return false;
4752 
4753   // We cannot kill the pad if it has multiple uses.  This typically arises
4754   // from unreachable basic blocks.
4755   if (!CPInst->hasOneUse())
4756     return false;
4757 
4758   // Check that there are no other instructions except for benign intrinsics.
4759   if (!isCleanupBlockEmpty(
4760           make_range<Instruction *>(CPInst->getNextNode(), RI)))
4761     return false;
4762 
4763   // If the cleanup return we are simplifying unwinds to the caller, this will
4764   // set UnwindDest to nullptr.
4765   BasicBlock *UnwindDest = RI->getUnwindDest();
4766   Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr;
4767 
4768   // We're about to remove BB from the control flow.  Before we do, sink any
4769   // PHINodes into the unwind destination.  Doing this before changing the
4770   // control flow avoids some potentially slow checks, since we can currently
4771   // be certain that UnwindDest and BB have no common predecessors (since they
4772   // are both EH pads).
4773   if (UnwindDest) {
4774     // First, go through the PHI nodes in UnwindDest and update any nodes that
4775     // reference the block we are removing
4776     for (PHINode &DestPN : UnwindDest->phis()) {
4777       int Idx = DestPN.getBasicBlockIndex(BB);
4778       // Since BB unwinds to UnwindDest, it has to be in the PHI node.
4779       assert(Idx != -1);
4780       // This PHI node has an incoming value that corresponds to a control
4781       // path through the cleanup pad we are removing.  If the incoming
4782       // value is in the cleanup pad, it must be a PHINode (because we
4783       // verified above that the block is otherwise empty).  Otherwise, the
4784       // value is either a constant or a value that dominates the cleanup
4785       // pad being removed.
4786       //
4787       // Because BB and UnwindDest are both EH pads, all of their
4788       // predecessors must unwind to these blocks, and since no instruction
4789       // can have multiple unwind destinations, there will be no overlap in
4790       // incoming blocks between SrcPN and DestPN.
4791       Value *SrcVal = DestPN.getIncomingValue(Idx);
4792       PHINode *SrcPN = dyn_cast<PHINode>(SrcVal);
4793 
4794       bool NeedPHITranslation = SrcPN && SrcPN->getParent() == BB;
4795       for (auto *Pred : predecessors(BB)) {
4796         Value *Incoming =
4797             NeedPHITranslation ? SrcPN->getIncomingValueForBlock(Pred) : SrcVal;
4798         DestPN.addIncoming(Incoming, Pred);
4799       }
4800     }
4801 
4802     // Sink any remaining PHI nodes directly into UnwindDest.
4803     Instruction *InsertPt = DestEHPad;
4804     for (PHINode &PN : make_early_inc_range(BB->phis())) {
4805       if (PN.use_empty() || !PN.isUsedOutsideOfBlock(BB))
4806         // If the PHI node has no uses or all of its uses are in this basic
4807         // block (meaning they are debug or lifetime intrinsics), just leave
4808         // it.  It will be erased when we erase BB below.
4809         continue;
4810 
4811       // Otherwise, sink this PHI node into UnwindDest.
4812       // Any predecessors to UnwindDest which are not already represented
4813       // must be back edges which inherit the value from the path through
4814       // BB.  In this case, the PHI value must reference itself.
4815       for (auto *pred : predecessors(UnwindDest))
4816         if (pred != BB)
4817           PN.addIncoming(&PN, pred);
4818       PN.moveBefore(InsertPt);
4819       // Also, add a dummy incoming value for the original BB itself,
4820       // so that the PHI is well-formed until we drop said predecessor.
4821       PN.addIncoming(UndefValue::get(PN.getType()), BB);
4822     }
4823   }
4824 
4825   std::vector<DominatorTree::UpdateType> Updates;
4826 
4827   // We use make_early_inc_range here because we will remove all predecessors.
4828   for (BasicBlock *PredBB : llvm::make_early_inc_range(predecessors(BB))) {
4829     if (UnwindDest == nullptr) {
4830       if (DTU) {
4831         DTU->applyUpdates(Updates);
4832         Updates.clear();
4833       }
4834       removeUnwindEdge(PredBB, DTU);
4835       ++NumInvokes;
4836     } else {
4837       BB->removePredecessor(PredBB);
4838       Instruction *TI = PredBB->getTerminator();
4839       TI->replaceUsesOfWith(BB, UnwindDest);
4840       if (DTU) {
4841         Updates.push_back({DominatorTree::Insert, PredBB, UnwindDest});
4842         Updates.push_back({DominatorTree::Delete, PredBB, BB});
4843       }
4844     }
4845   }
4846 
4847   if (DTU)
4848     DTU->applyUpdates(Updates);
4849 
4850   DeleteDeadBlock(BB, DTU);
4851 
4852   return true;
4853 }
4854 
4855 // Try to merge two cleanuppads together.
4856 static bool mergeCleanupPad(CleanupReturnInst *RI) {
4857   // Skip any cleanuprets which unwind to caller, there is nothing to merge
4858   // with.
4859   BasicBlock *UnwindDest = RI->getUnwindDest();
4860   if (!UnwindDest)
4861     return false;
4862 
4863   // This cleanupret isn't the only predecessor of this cleanuppad, it wouldn't
4864   // be safe to merge without code duplication.
4865   if (UnwindDest->getSinglePredecessor() != RI->getParent())
4866     return false;
4867 
4868   // Verify that our cleanuppad's unwind destination is another cleanuppad.
4869   auto *SuccessorCleanupPad = dyn_cast<CleanupPadInst>(&UnwindDest->front());
4870   if (!SuccessorCleanupPad)
4871     return false;
4872 
4873   CleanupPadInst *PredecessorCleanupPad = RI->getCleanupPad();
4874   // Replace any uses of the successor cleanupad with the predecessor pad
4875   // The only cleanuppad uses should be this cleanupret, it's cleanupret and
4876   // funclet bundle operands.
4877   SuccessorCleanupPad->replaceAllUsesWith(PredecessorCleanupPad);
4878   // Remove the old cleanuppad.
4879   SuccessorCleanupPad->eraseFromParent();
4880   // Now, we simply replace the cleanupret with a branch to the unwind
4881   // destination.
4882   BranchInst::Create(UnwindDest, RI->getParent());
4883   RI->eraseFromParent();
4884 
4885   return true;
4886 }
4887 
4888 bool SimplifyCFGOpt::simplifyCleanupReturn(CleanupReturnInst *RI) {
4889   // It is possible to transiantly have an undef cleanuppad operand because we
4890   // have deleted some, but not all, dead blocks.
4891   // Eventually, this block will be deleted.
4892   if (isa<UndefValue>(RI->getOperand(0)))
4893     return false;
4894 
4895   if (mergeCleanupPad(RI))
4896     return true;
4897 
4898   if (removeEmptyCleanup(RI, DTU))
4899     return true;
4900 
4901   return false;
4902 }
4903 
4904 // WARNING: keep in sync with InstCombinerImpl::visitUnreachableInst()!
4905 bool SimplifyCFGOpt::simplifyUnreachable(UnreachableInst *UI) {
4906   BasicBlock *BB = UI->getParent();
4907 
4908   bool Changed = false;
4909 
4910   // If there are any instructions immediately before the unreachable that can
4911   // be removed, do so.
4912   while (UI->getIterator() != BB->begin()) {
4913     BasicBlock::iterator BBI = UI->getIterator();
4914     --BBI;
4915 
4916     if (!isGuaranteedToTransferExecutionToSuccessor(&*BBI))
4917       break; // Can not drop any more instructions. We're done here.
4918     // Otherwise, this instruction can be freely erased,
4919     // even if it is not side-effect free.
4920 
4921     // Note that deleting EH's here is in fact okay, although it involves a bit
4922     // of subtle reasoning. If this inst is an EH, all the predecessors of this
4923     // block will be the unwind edges of Invoke/CatchSwitch/CleanupReturn,
4924     // and we can therefore guarantee this block will be erased.
4925 
4926     // Delete this instruction (any uses are guaranteed to be dead)
4927     BBI->replaceAllUsesWith(PoisonValue::get(BBI->getType()));
4928     BBI->eraseFromParent();
4929     Changed = true;
4930   }
4931 
4932   // If the unreachable instruction is the first in the block, take a gander
4933   // at all of the predecessors of this instruction, and simplify them.
4934   if (&BB->front() != UI)
4935     return Changed;
4936 
4937   std::vector<DominatorTree::UpdateType> Updates;
4938 
4939   SmallSetVector<BasicBlock *, 8> Preds(pred_begin(BB), pred_end(BB));
4940   for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
4941     auto *Predecessor = Preds[i];
4942     Instruction *TI = Predecessor->getTerminator();
4943     IRBuilder<> Builder(TI);
4944     if (auto *BI = dyn_cast<BranchInst>(TI)) {
4945       // We could either have a proper unconditional branch,
4946       // or a degenerate conditional branch with matching destinations.
4947       if (all_of(BI->successors(),
4948                  [BB](auto *Successor) { return Successor == BB; })) {
4949         new UnreachableInst(TI->getContext(), TI);
4950         TI->eraseFromParent();
4951         Changed = true;
4952       } else {
4953         assert(BI->isConditional() && "Can't get here with an uncond branch.");
4954         Value* Cond = BI->getCondition();
4955         assert(BI->getSuccessor(0) != BI->getSuccessor(1) &&
4956                "The destinations are guaranteed to be different here.");
4957         if (BI->getSuccessor(0) == BB) {
4958           Builder.CreateAssumption(Builder.CreateNot(Cond));
4959           Builder.CreateBr(BI->getSuccessor(1));
4960         } else {
4961           assert(BI->getSuccessor(1) == BB && "Incorrect CFG");
4962           Builder.CreateAssumption(Cond);
4963           Builder.CreateBr(BI->getSuccessor(0));
4964         }
4965         EraseTerminatorAndDCECond(BI);
4966         Changed = true;
4967       }
4968       if (DTU)
4969         Updates.push_back({DominatorTree::Delete, Predecessor, BB});
4970     } else if (auto *SI = dyn_cast<SwitchInst>(TI)) {
4971       SwitchInstProfUpdateWrapper SU(*SI);
4972       for (auto i = SU->case_begin(), e = SU->case_end(); i != e;) {
4973         if (i->getCaseSuccessor() != BB) {
4974           ++i;
4975           continue;
4976         }
4977         BB->removePredecessor(SU->getParent());
4978         i = SU.removeCase(i);
4979         e = SU->case_end();
4980         Changed = true;
4981       }
4982       // Note that the default destination can't be removed!
4983       if (DTU && SI->getDefaultDest() != BB)
4984         Updates.push_back({DominatorTree::Delete, Predecessor, BB});
4985     } else if (auto *II = dyn_cast<InvokeInst>(TI)) {
4986       if (II->getUnwindDest() == BB) {
4987         if (DTU) {
4988           DTU->applyUpdates(Updates);
4989           Updates.clear();
4990         }
4991         removeUnwindEdge(TI->getParent(), DTU);
4992         Changed = true;
4993       }
4994     } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) {
4995       if (CSI->getUnwindDest() == BB) {
4996         if (DTU) {
4997           DTU->applyUpdates(Updates);
4998           Updates.clear();
4999         }
5000         removeUnwindEdge(TI->getParent(), DTU);
5001         Changed = true;
5002         continue;
5003       }
5004 
5005       for (CatchSwitchInst::handler_iterator I = CSI->handler_begin(),
5006                                              E = CSI->handler_end();
5007            I != E; ++I) {
5008         if (*I == BB) {
5009           CSI->removeHandler(I);
5010           --I;
5011           --E;
5012           Changed = true;
5013         }
5014       }
5015       if (DTU)
5016         Updates.push_back({DominatorTree::Delete, Predecessor, BB});
5017       if (CSI->getNumHandlers() == 0) {
5018         if (CSI->hasUnwindDest()) {
5019           // Redirect all predecessors of the block containing CatchSwitchInst
5020           // to instead branch to the CatchSwitchInst's unwind destination.
5021           if (DTU) {
5022             for (auto *PredecessorOfPredecessor : predecessors(Predecessor)) {
5023               Updates.push_back({DominatorTree::Insert,
5024                                  PredecessorOfPredecessor,
5025                                  CSI->getUnwindDest()});
5026               Updates.push_back({DominatorTree::Delete,
5027                                  PredecessorOfPredecessor, Predecessor});
5028             }
5029           }
5030           Predecessor->replaceAllUsesWith(CSI->getUnwindDest());
5031         } else {
5032           // Rewrite all preds to unwind to caller (or from invoke to call).
5033           if (DTU) {
5034             DTU->applyUpdates(Updates);
5035             Updates.clear();
5036           }
5037           SmallVector<BasicBlock *, 8> EHPreds(predecessors(Predecessor));
5038           for (BasicBlock *EHPred : EHPreds)
5039             removeUnwindEdge(EHPred, DTU);
5040         }
5041         // The catchswitch is no longer reachable.
5042         new UnreachableInst(CSI->getContext(), CSI);
5043         CSI->eraseFromParent();
5044         Changed = true;
5045       }
5046     } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
5047       (void)CRI;
5048       assert(CRI->hasUnwindDest() && CRI->getUnwindDest() == BB &&
5049              "Expected to always have an unwind to BB.");
5050       if (DTU)
5051         Updates.push_back({DominatorTree::Delete, Predecessor, BB});
5052       new UnreachableInst(TI->getContext(), TI);
5053       TI->eraseFromParent();
5054       Changed = true;
5055     }
5056   }
5057 
5058   if (DTU)
5059     DTU->applyUpdates(Updates);
5060 
5061   // If this block is now dead, remove it.
5062   if (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) {
5063     DeleteDeadBlock(BB, DTU);
5064     return true;
5065   }
5066 
5067   return Changed;
5068 }
5069 
5070 static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) {
5071   assert(Cases.size() >= 1);
5072 
5073   array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate);
5074   for (size_t I = 1, E = Cases.size(); I != E; ++I) {
5075     if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1)
5076       return false;
5077   }
5078   return true;
5079 }
5080 
5081 static void createUnreachableSwitchDefault(SwitchInst *Switch,
5082                                            DomTreeUpdater *DTU) {
5083   LLVM_DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n");
5084   auto *BB = Switch->getParent();
5085   auto *OrigDefaultBlock = Switch->getDefaultDest();
5086   OrigDefaultBlock->removePredecessor(BB);
5087   BasicBlock *NewDefaultBlock = BasicBlock::Create(
5088       BB->getContext(), BB->getName() + ".unreachabledefault", BB->getParent(),
5089       OrigDefaultBlock);
5090   new UnreachableInst(Switch->getContext(), NewDefaultBlock);
5091   Switch->setDefaultDest(&*NewDefaultBlock);
5092   if (DTU) {
5093     SmallVector<DominatorTree::UpdateType, 2> Updates;
5094     Updates.push_back({DominatorTree::Insert, BB, &*NewDefaultBlock});
5095     if (!is_contained(successors(BB), OrigDefaultBlock))
5096       Updates.push_back({DominatorTree::Delete, BB, &*OrigDefaultBlock});
5097     DTU->applyUpdates(Updates);
5098   }
5099 }
5100 
5101 /// Turn a switch with two reachable destinations into an integer range
5102 /// comparison and branch.
5103 bool SimplifyCFGOpt::TurnSwitchRangeIntoICmp(SwitchInst *SI,
5104                                              IRBuilder<> &Builder) {
5105   assert(SI->getNumCases() > 1 && "Degenerate switch?");
5106 
5107   bool HasDefault =
5108       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
5109 
5110   auto *BB = SI->getParent();
5111 
5112   // Partition the cases into two sets with different destinations.
5113   BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr;
5114   BasicBlock *DestB = nullptr;
5115   SmallVector<ConstantInt *, 16> CasesA;
5116   SmallVector<ConstantInt *, 16> CasesB;
5117 
5118   for (auto Case : SI->cases()) {
5119     BasicBlock *Dest = Case.getCaseSuccessor();
5120     if (!DestA)
5121       DestA = Dest;
5122     if (Dest == DestA) {
5123       CasesA.push_back(Case.getCaseValue());
5124       continue;
5125     }
5126     if (!DestB)
5127       DestB = Dest;
5128     if (Dest == DestB) {
5129       CasesB.push_back(Case.getCaseValue());
5130       continue;
5131     }
5132     return false; // More than two destinations.
5133   }
5134 
5135   assert(DestA && DestB &&
5136          "Single-destination switch should have been folded.");
5137   assert(DestA != DestB);
5138   assert(DestB != SI->getDefaultDest());
5139   assert(!CasesB.empty() && "There must be non-default cases.");
5140   assert(!CasesA.empty() || HasDefault);
5141 
5142   // Figure out if one of the sets of cases form a contiguous range.
5143   SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr;
5144   BasicBlock *ContiguousDest = nullptr;
5145   BasicBlock *OtherDest = nullptr;
5146   if (!CasesA.empty() && CasesAreContiguous(CasesA)) {
5147     ContiguousCases = &CasesA;
5148     ContiguousDest = DestA;
5149     OtherDest = DestB;
5150   } else if (CasesAreContiguous(CasesB)) {
5151     ContiguousCases = &CasesB;
5152     ContiguousDest = DestB;
5153     OtherDest = DestA;
5154   } else
5155     return false;
5156 
5157   // Start building the compare and branch.
5158 
5159   Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back());
5160   Constant *NumCases =
5161       ConstantInt::get(Offset->getType(), ContiguousCases->size());
5162 
5163   Value *Sub = SI->getCondition();
5164   if (!Offset->isNullValue())
5165     Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off");
5166 
5167   Value *Cmp;
5168   // If NumCases overflowed, then all possible values jump to the successor.
5169   if (NumCases->isNullValue() && !ContiguousCases->empty())
5170     Cmp = ConstantInt::getTrue(SI->getContext());
5171   else
5172     Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch");
5173   BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest);
5174 
5175   // Update weight for the newly-created conditional branch.
5176   if (HasBranchWeights(SI)) {
5177     SmallVector<uint64_t, 8> Weights;
5178     GetBranchWeights(SI, Weights);
5179     if (Weights.size() == 1 + SI->getNumCases()) {
5180       uint64_t TrueWeight = 0;
5181       uint64_t FalseWeight = 0;
5182       for (size_t I = 0, E = Weights.size(); I != E; ++I) {
5183         if (SI->getSuccessor(I) == ContiguousDest)
5184           TrueWeight += Weights[I];
5185         else
5186           FalseWeight += Weights[I];
5187       }
5188       while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) {
5189         TrueWeight /= 2;
5190         FalseWeight /= 2;
5191       }
5192       setBranchWeights(NewBI, TrueWeight, FalseWeight);
5193     }
5194   }
5195 
5196   // Prune obsolete incoming values off the successors' PHI nodes.
5197   for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) {
5198     unsigned PreviousEdges = ContiguousCases->size();
5199     if (ContiguousDest == SI->getDefaultDest())
5200       ++PreviousEdges;
5201     for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
5202       cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
5203   }
5204   for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) {
5205     unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size();
5206     if (OtherDest == SI->getDefaultDest())
5207       ++PreviousEdges;
5208     for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
5209       cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
5210   }
5211 
5212   // Clean up the default block - it may have phis or other instructions before
5213   // the unreachable terminator.
5214   if (!HasDefault)
5215     createUnreachableSwitchDefault(SI, DTU);
5216 
5217   auto *UnreachableDefault = SI->getDefaultDest();
5218 
5219   // Drop the switch.
5220   SI->eraseFromParent();
5221 
5222   if (!HasDefault && DTU)
5223     DTU->applyUpdates({{DominatorTree::Delete, BB, UnreachableDefault}});
5224 
5225   return true;
5226 }
5227 
5228 /// Compute masked bits for the condition of a switch
5229 /// and use it to remove dead cases.
5230 static bool eliminateDeadSwitchCases(SwitchInst *SI, DomTreeUpdater *DTU,
5231                                      AssumptionCache *AC,
5232                                      const DataLayout &DL) {
5233   Value *Cond = SI->getCondition();
5234   KnownBits Known = computeKnownBits(Cond, DL, 0, AC, SI);
5235 
5236   // We can also eliminate cases by determining that their values are outside of
5237   // the limited range of the condition based on how many significant (non-sign)
5238   // bits are in the condition value.
5239   unsigned MaxSignificantBitsInCond =
5240       ComputeMaxSignificantBits(Cond, DL, 0, AC, SI);
5241 
5242   // Gather dead cases.
5243   SmallVector<ConstantInt *, 8> DeadCases;
5244   SmallDenseMap<BasicBlock *, int, 8> NumPerSuccessorCases;
5245   SmallVector<BasicBlock *, 8> UniqueSuccessors;
5246   for (auto &Case : SI->cases()) {
5247     auto *Successor = Case.getCaseSuccessor();
5248     if (DTU) {
5249       if (!NumPerSuccessorCases.count(Successor))
5250         UniqueSuccessors.push_back(Successor);
5251       ++NumPerSuccessorCases[Successor];
5252     }
5253     const APInt &CaseVal = Case.getCaseValue()->getValue();
5254     if (Known.Zero.intersects(CaseVal) || !Known.One.isSubsetOf(CaseVal) ||
5255         (CaseVal.getMinSignedBits() > MaxSignificantBitsInCond)) {
5256       DeadCases.push_back(Case.getCaseValue());
5257       if (DTU)
5258         --NumPerSuccessorCases[Successor];
5259       LLVM_DEBUG(dbgs() << "SimplifyCFG: switch case " << CaseVal
5260                         << " is dead.\n");
5261     }
5262   }
5263 
5264   // If we can prove that the cases must cover all possible values, the
5265   // default destination becomes dead and we can remove it.  If we know some
5266   // of the bits in the value, we can use that to more precisely compute the
5267   // number of possible unique case values.
5268   bool HasDefault =
5269       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
5270   const unsigned NumUnknownBits =
5271       Known.getBitWidth() - (Known.Zero | Known.One).countPopulation();
5272   assert(NumUnknownBits <= Known.getBitWidth());
5273   if (HasDefault && DeadCases.empty() &&
5274       NumUnknownBits < 64 /* avoid overflow */ &&
5275       SI->getNumCases() == (1ULL << NumUnknownBits)) {
5276     createUnreachableSwitchDefault(SI, DTU);
5277     return true;
5278   }
5279 
5280   if (DeadCases.empty())
5281     return false;
5282 
5283   SwitchInstProfUpdateWrapper SIW(*SI);
5284   for (ConstantInt *DeadCase : DeadCases) {
5285     SwitchInst::CaseIt CaseI = SI->findCaseValue(DeadCase);
5286     assert(CaseI != SI->case_default() &&
5287            "Case was not found. Probably mistake in DeadCases forming.");
5288     // Prune unused values from PHI nodes.
5289     CaseI->getCaseSuccessor()->removePredecessor(SI->getParent());
5290     SIW.removeCase(CaseI);
5291   }
5292 
5293   if (DTU) {
5294     std::vector<DominatorTree::UpdateType> Updates;
5295     for (auto *Successor : UniqueSuccessors)
5296       if (NumPerSuccessorCases[Successor] == 0)
5297         Updates.push_back({DominatorTree::Delete, SI->getParent(), Successor});
5298     DTU->applyUpdates(Updates);
5299   }
5300 
5301   return true;
5302 }
5303 
5304 /// If BB would be eligible for simplification by
5305 /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated
5306 /// by an unconditional branch), look at the phi node for BB in the successor
5307 /// block and see if the incoming value is equal to CaseValue. If so, return
5308 /// the phi node, and set PhiIndex to BB's index in the phi node.
5309 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue,
5310                                               BasicBlock *BB, int *PhiIndex) {
5311   if (BB->getFirstNonPHIOrDbg() != BB->getTerminator())
5312     return nullptr; // BB must be empty to be a candidate for simplification.
5313   if (!BB->getSinglePredecessor())
5314     return nullptr; // BB must be dominated by the switch.
5315 
5316   BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator());
5317   if (!Branch || !Branch->isUnconditional())
5318     return nullptr; // Terminator must be unconditional branch.
5319 
5320   BasicBlock *Succ = Branch->getSuccessor(0);
5321 
5322   for (PHINode &PHI : Succ->phis()) {
5323     int Idx = PHI.getBasicBlockIndex(BB);
5324     assert(Idx >= 0 && "PHI has no entry for predecessor?");
5325 
5326     Value *InValue = PHI.getIncomingValue(Idx);
5327     if (InValue != CaseValue)
5328       continue;
5329 
5330     *PhiIndex = Idx;
5331     return &PHI;
5332   }
5333 
5334   return nullptr;
5335 }
5336 
5337 /// Try to forward the condition of a switch instruction to a phi node
5338 /// dominated by the switch, if that would mean that some of the destination
5339 /// blocks of the switch can be folded away. Return true if a change is made.
5340 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) {
5341   using ForwardingNodesMap = DenseMap<PHINode *, SmallVector<int, 4>>;
5342 
5343   ForwardingNodesMap ForwardingNodes;
5344   BasicBlock *SwitchBlock = SI->getParent();
5345   bool Changed = false;
5346   for (auto &Case : SI->cases()) {
5347     ConstantInt *CaseValue = Case.getCaseValue();
5348     BasicBlock *CaseDest = Case.getCaseSuccessor();
5349 
5350     // Replace phi operands in successor blocks that are using the constant case
5351     // value rather than the switch condition variable:
5352     //   switchbb:
5353     //   switch i32 %x, label %default [
5354     //     i32 17, label %succ
5355     //   ...
5356     //   succ:
5357     //     %r = phi i32 ... [ 17, %switchbb ] ...
5358     // -->
5359     //     %r = phi i32 ... [ %x, %switchbb ] ...
5360 
5361     for (PHINode &Phi : CaseDest->phis()) {
5362       // This only works if there is exactly 1 incoming edge from the switch to
5363       // a phi. If there is >1, that means multiple cases of the switch map to 1
5364       // value in the phi, and that phi value is not the switch condition. Thus,
5365       // this transform would not make sense (the phi would be invalid because
5366       // a phi can't have different incoming values from the same block).
5367       int SwitchBBIdx = Phi.getBasicBlockIndex(SwitchBlock);
5368       if (Phi.getIncomingValue(SwitchBBIdx) == CaseValue &&
5369           count(Phi.blocks(), SwitchBlock) == 1) {
5370         Phi.setIncomingValue(SwitchBBIdx, SI->getCondition());
5371         Changed = true;
5372       }
5373     }
5374 
5375     // Collect phi nodes that are indirectly using this switch's case constants.
5376     int PhiIdx;
5377     if (auto *Phi = FindPHIForConditionForwarding(CaseValue, CaseDest, &PhiIdx))
5378       ForwardingNodes[Phi].push_back(PhiIdx);
5379   }
5380 
5381   for (auto &ForwardingNode : ForwardingNodes) {
5382     PHINode *Phi = ForwardingNode.first;
5383     SmallVectorImpl<int> &Indexes = ForwardingNode.second;
5384     if (Indexes.size() < 2)
5385       continue;
5386 
5387     for (int Index : Indexes)
5388       Phi->setIncomingValue(Index, SI->getCondition());
5389     Changed = true;
5390   }
5391 
5392   return Changed;
5393 }
5394 
5395 /// Return true if the backend will be able to handle
5396 /// initializing an array of constants like C.
5397 static bool ValidLookupTableConstant(Constant *C, const TargetTransformInfo &TTI) {
5398   if (C->isThreadDependent())
5399     return false;
5400   if (C->isDLLImportDependent())
5401     return false;
5402 
5403   if (!isa<ConstantFP>(C) && !isa<ConstantInt>(C) &&
5404       !isa<ConstantPointerNull>(C) && !isa<GlobalValue>(C) &&
5405       !isa<UndefValue>(C) && !isa<ConstantExpr>(C))
5406     return false;
5407 
5408   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
5409     // Pointer casts and in-bounds GEPs will not prohibit the backend from
5410     // materializing the array of constants.
5411     Constant *StrippedC = cast<Constant>(CE->stripInBoundsConstantOffsets());
5412     if (StrippedC == C || !ValidLookupTableConstant(StrippedC, TTI))
5413       return false;
5414   }
5415 
5416   if (!TTI.shouldBuildLookupTablesForConstant(C))
5417     return false;
5418 
5419   return true;
5420 }
5421 
5422 /// If V is a Constant, return it. Otherwise, try to look up
5423 /// its constant value in ConstantPool, returning 0 if it's not there.
5424 static Constant *
5425 LookupConstant(Value *V,
5426                const SmallDenseMap<Value *, Constant *> &ConstantPool) {
5427   if (Constant *C = dyn_cast<Constant>(V))
5428     return C;
5429   return ConstantPool.lookup(V);
5430 }
5431 
5432 /// Try to fold instruction I into a constant. This works for
5433 /// simple instructions such as binary operations where both operands are
5434 /// constant or can be replaced by constants from the ConstantPool. Returns the
5435 /// resulting constant on success, 0 otherwise.
5436 static Constant *
5437 ConstantFold(Instruction *I, const DataLayout &DL,
5438              const SmallDenseMap<Value *, Constant *> &ConstantPool) {
5439   if (SelectInst *Select = dyn_cast<SelectInst>(I)) {
5440     Constant *A = LookupConstant(Select->getCondition(), ConstantPool);
5441     if (!A)
5442       return nullptr;
5443     if (A->isAllOnesValue())
5444       return LookupConstant(Select->getTrueValue(), ConstantPool);
5445     if (A->isNullValue())
5446       return LookupConstant(Select->getFalseValue(), ConstantPool);
5447     return nullptr;
5448   }
5449 
5450   SmallVector<Constant *, 4> COps;
5451   for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) {
5452     if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool))
5453       COps.push_back(A);
5454     else
5455       return nullptr;
5456   }
5457 
5458   if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
5459     return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0],
5460                                            COps[1], DL);
5461   }
5462 
5463   return ConstantFoldInstOperands(I, COps, DL);
5464 }
5465 
5466 /// Try to determine the resulting constant values in phi nodes
5467 /// at the common destination basic block, *CommonDest, for one of the case
5468 /// destionations CaseDest corresponding to value CaseVal (0 for the default
5469 /// case), of a switch instruction SI.
5470 static bool
5471 GetCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest,
5472                BasicBlock **CommonDest,
5473                SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res,
5474                const DataLayout &DL, const TargetTransformInfo &TTI) {
5475   // The block from which we enter the common destination.
5476   BasicBlock *Pred = SI->getParent();
5477 
5478   // If CaseDest is empty except for some side-effect free instructions through
5479   // which we can constant-propagate the CaseVal, continue to its successor.
5480   SmallDenseMap<Value *, Constant *> ConstantPool;
5481   ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal));
5482   for (Instruction &I : CaseDest->instructionsWithoutDebug(false)) {
5483     if (I.isTerminator()) {
5484       // If the terminator is a simple branch, continue to the next block.
5485       if (I.getNumSuccessors() != 1 || I.isExceptionalTerminator())
5486         return false;
5487       Pred = CaseDest;
5488       CaseDest = I.getSuccessor(0);
5489     } else if (Constant *C = ConstantFold(&I, DL, ConstantPool)) {
5490       // Instruction is side-effect free and constant.
5491 
5492       // If the instruction has uses outside this block or a phi node slot for
5493       // the block, it is not safe to bypass the instruction since it would then
5494       // no longer dominate all its uses.
5495       for (auto &Use : I.uses()) {
5496         User *User = Use.getUser();
5497         if (Instruction *I = dyn_cast<Instruction>(User))
5498           if (I->getParent() == CaseDest)
5499             continue;
5500         if (PHINode *Phi = dyn_cast<PHINode>(User))
5501           if (Phi->getIncomingBlock(Use) == CaseDest)
5502             continue;
5503         return false;
5504       }
5505 
5506       ConstantPool.insert(std::make_pair(&I, C));
5507     } else {
5508       break;
5509     }
5510   }
5511 
5512   // If we did not have a CommonDest before, use the current one.
5513   if (!*CommonDest)
5514     *CommonDest = CaseDest;
5515   // If the destination isn't the common one, abort.
5516   if (CaseDest != *CommonDest)
5517     return false;
5518 
5519   // Get the values for this case from phi nodes in the destination block.
5520   for (PHINode &PHI : (*CommonDest)->phis()) {
5521     int Idx = PHI.getBasicBlockIndex(Pred);
5522     if (Idx == -1)
5523       continue;
5524 
5525     Constant *ConstVal =
5526         LookupConstant(PHI.getIncomingValue(Idx), ConstantPool);
5527     if (!ConstVal)
5528       return false;
5529 
5530     // Be conservative about which kinds of constants we support.
5531     if (!ValidLookupTableConstant(ConstVal, TTI))
5532       return false;
5533 
5534     Res.push_back(std::make_pair(&PHI, ConstVal));
5535   }
5536 
5537   return Res.size() > 0;
5538 }
5539 
5540 // Helper function used to add CaseVal to the list of cases that generate
5541 // Result. Returns the updated number of cases that generate this result.
5542 static uintptr_t MapCaseToResult(ConstantInt *CaseVal,
5543                                  SwitchCaseResultVectorTy &UniqueResults,
5544                                  Constant *Result) {
5545   for (auto &I : UniqueResults) {
5546     if (I.first == Result) {
5547       I.second.push_back(CaseVal);
5548       return I.second.size();
5549     }
5550   }
5551   UniqueResults.push_back(
5552       std::make_pair(Result, SmallVector<ConstantInt *, 4>(1, CaseVal)));
5553   return 1;
5554 }
5555 
5556 // Helper function that initializes a map containing
5557 // results for the PHI node of the common destination block for a switch
5558 // instruction. Returns false if multiple PHI nodes have been found or if
5559 // there is not a common destination block for the switch.
5560 static bool
5561 InitializeUniqueCases(SwitchInst *SI, PHINode *&PHI, BasicBlock *&CommonDest,
5562                       SwitchCaseResultVectorTy &UniqueResults,
5563                       Constant *&DefaultResult, const DataLayout &DL,
5564                       const TargetTransformInfo &TTI,
5565                       uintptr_t MaxUniqueResults, uintptr_t MaxCasesPerResult) {
5566   for (auto &I : SI->cases()) {
5567     ConstantInt *CaseVal = I.getCaseValue();
5568 
5569     // Resulting value at phi nodes for this case value.
5570     SwitchCaseResultsTy Results;
5571     if (!GetCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results,
5572                         DL, TTI))
5573       return false;
5574 
5575     // Only one value per case is permitted.
5576     if (Results.size() > 1)
5577       return false;
5578 
5579     // Add the case->result mapping to UniqueResults.
5580     const uintptr_t NumCasesForResult =
5581         MapCaseToResult(CaseVal, UniqueResults, Results.begin()->second);
5582 
5583     // Early out if there are too many cases for this result.
5584     if (NumCasesForResult > MaxCasesPerResult)
5585       return false;
5586 
5587     // Early out if there are too many unique results.
5588     if (UniqueResults.size() > MaxUniqueResults)
5589       return false;
5590 
5591     // Check the PHI consistency.
5592     if (!PHI)
5593       PHI = Results[0].first;
5594     else if (PHI != Results[0].first)
5595       return false;
5596   }
5597   // Find the default result value.
5598   SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults;
5599   BasicBlock *DefaultDest = SI->getDefaultDest();
5600   GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults,
5601                  DL, TTI);
5602   // If the default value is not found abort unless the default destination
5603   // is unreachable.
5604   DefaultResult =
5605       DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr;
5606   if ((!DefaultResult &&
5607        !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg())))
5608     return false;
5609 
5610   return true;
5611 }
5612 
5613 // Helper function that checks if it is possible to transform a switch with only
5614 // two cases (or two cases + default) that produces a result into a select.
5615 // Example:
5616 // switch (a) {
5617 //   case 10:                %0 = icmp eq i32 %a, 10
5618 //     return 10;            %1 = select i1 %0, i32 10, i32 4
5619 //   case 20:        ---->   %2 = icmp eq i32 %a, 20
5620 //     return 2;             %3 = select i1 %2, i32 2, i32 %1
5621 //   default:
5622 //     return 4;
5623 // }
5624 static Value *ConvertTwoCaseSwitch(const SwitchCaseResultVectorTy &ResultVector,
5625                                    Constant *DefaultResult, Value *Condition,
5626                                    IRBuilder<> &Builder) {
5627   // If we are selecting between only two cases transform into a simple
5628   // select or a two-way select if default is possible.
5629   if (ResultVector.size() == 2 && ResultVector[0].second.size() == 1 &&
5630       ResultVector[1].second.size() == 1) {
5631     ConstantInt *const FirstCase = ResultVector[0].second[0];
5632     ConstantInt *const SecondCase = ResultVector[1].second[0];
5633 
5634     bool DefaultCanTrigger = DefaultResult;
5635     Value *SelectValue = ResultVector[1].first;
5636     if (DefaultCanTrigger) {
5637       Value *const ValueCompare =
5638           Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp");
5639       SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first,
5640                                          DefaultResult, "switch.select");
5641     }
5642     Value *const ValueCompare =
5643         Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp");
5644     return Builder.CreateSelect(ValueCompare, ResultVector[0].first,
5645                                 SelectValue, "switch.select");
5646   }
5647 
5648   // Handle the degenerate case where two cases have the same value.
5649   if (ResultVector.size() == 1 && ResultVector[0].second.size() == 2 &&
5650       DefaultResult) {
5651     Value *Cmp1 = Builder.CreateICmpEQ(
5652         Condition, ResultVector[0].second[0], "switch.selectcmp.case1");
5653     Value *Cmp2 = Builder.CreateICmpEQ(
5654         Condition, ResultVector[0].second[1], "switch.selectcmp.case2");
5655     Value *Cmp = Builder.CreateOr(Cmp1, Cmp2, "switch.selectcmp");
5656     return Builder.CreateSelect(Cmp, ResultVector[0].first, DefaultResult);
5657   }
5658 
5659   return nullptr;
5660 }
5661 
5662 // Helper function to cleanup a switch instruction that has been converted into
5663 // a select, fixing up PHI nodes and basic blocks.
5664 static void RemoveSwitchAfterSelectConversion(SwitchInst *SI, PHINode *PHI,
5665                                               Value *SelectValue,
5666                                               IRBuilder<> &Builder,
5667                                               DomTreeUpdater *DTU) {
5668   std::vector<DominatorTree::UpdateType> Updates;
5669 
5670   BasicBlock *SelectBB = SI->getParent();
5671   BasicBlock *DestBB = PHI->getParent();
5672 
5673   if (DTU && !is_contained(predecessors(DestBB), SelectBB))
5674     Updates.push_back({DominatorTree::Insert, SelectBB, DestBB});
5675   Builder.CreateBr(DestBB);
5676 
5677   // Remove the switch.
5678 
5679   while (PHI->getBasicBlockIndex(SelectBB) >= 0)
5680     PHI->removeIncomingValue(SelectBB);
5681   PHI->addIncoming(SelectValue, SelectBB);
5682 
5683   SmallPtrSet<BasicBlock *, 4> RemovedSuccessors;
5684   for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
5685     BasicBlock *Succ = SI->getSuccessor(i);
5686 
5687     if (Succ == DestBB)
5688       continue;
5689     Succ->removePredecessor(SelectBB);
5690     if (DTU && RemovedSuccessors.insert(Succ).second)
5691       Updates.push_back({DominatorTree::Delete, SelectBB, Succ});
5692   }
5693   SI->eraseFromParent();
5694   if (DTU)
5695     DTU->applyUpdates(Updates);
5696 }
5697 
5698 /// If the switch is only used to initialize one or more
5699 /// phi nodes in a common successor block with only two different
5700 /// constant values, replace the switch with select.
5701 static bool switchToSelect(SwitchInst *SI, IRBuilder<> &Builder,
5702                            DomTreeUpdater *DTU, const DataLayout &DL,
5703                            const TargetTransformInfo &TTI) {
5704   Value *const Cond = SI->getCondition();
5705   PHINode *PHI = nullptr;
5706   BasicBlock *CommonDest = nullptr;
5707   Constant *DefaultResult;
5708   SwitchCaseResultVectorTy UniqueResults;
5709   // Collect all the cases that will deliver the same value from the switch.
5710   if (!InitializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult,
5711                              DL, TTI, /*MaxUniqueResults*/2,
5712                              /*MaxCasesPerResult*/2))
5713     return false;
5714   assert(PHI != nullptr && "PHI for value select not found");
5715 
5716   Builder.SetInsertPoint(SI);
5717   Value *SelectValue =
5718       ConvertTwoCaseSwitch(UniqueResults, DefaultResult, Cond, Builder);
5719   if (SelectValue) {
5720     RemoveSwitchAfterSelectConversion(SI, PHI, SelectValue, Builder, DTU);
5721     return true;
5722   }
5723   // The switch couldn't be converted into a select.
5724   return false;
5725 }
5726 
5727 namespace {
5728 
5729 /// This class represents a lookup table that can be used to replace a switch.
5730 class SwitchLookupTable {
5731 public:
5732   /// Create a lookup table to use as a switch replacement with the contents
5733   /// of Values, using DefaultValue to fill any holes in the table.
5734   SwitchLookupTable(
5735       Module &M, uint64_t TableSize, ConstantInt *Offset,
5736       const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
5737       Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName);
5738 
5739   /// Build instructions with Builder to retrieve the value at
5740   /// the position given by Index in the lookup table.
5741   Value *BuildLookup(Value *Index, IRBuilder<> &Builder);
5742 
5743   /// Return true if a table with TableSize elements of
5744   /// type ElementType would fit in a target-legal register.
5745   static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize,
5746                                  Type *ElementType);
5747 
5748 private:
5749   // Depending on the contents of the table, it can be represented in
5750   // different ways.
5751   enum {
5752     // For tables where each element contains the same value, we just have to
5753     // store that single value and return it for each lookup.
5754     SingleValueKind,
5755 
5756     // For tables where there is a linear relationship between table index
5757     // and values. We calculate the result with a simple multiplication
5758     // and addition instead of a table lookup.
5759     LinearMapKind,
5760 
5761     // For small tables with integer elements, we can pack them into a bitmap
5762     // that fits into a target-legal register. Values are retrieved by
5763     // shift and mask operations.
5764     BitMapKind,
5765 
5766     // The table is stored as an array of values. Values are retrieved by load
5767     // instructions from the table.
5768     ArrayKind
5769   } Kind;
5770 
5771   // For SingleValueKind, this is the single value.
5772   Constant *SingleValue = nullptr;
5773 
5774   // For BitMapKind, this is the bitmap.
5775   ConstantInt *BitMap = nullptr;
5776   IntegerType *BitMapElementTy = nullptr;
5777 
5778   // For LinearMapKind, these are the constants used to derive the value.
5779   ConstantInt *LinearOffset = nullptr;
5780   ConstantInt *LinearMultiplier = nullptr;
5781 
5782   // For ArrayKind, this is the array.
5783   GlobalVariable *Array = nullptr;
5784 };
5785 
5786 } // end anonymous namespace
5787 
5788 SwitchLookupTable::SwitchLookupTable(
5789     Module &M, uint64_t TableSize, ConstantInt *Offset,
5790     const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
5791     Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName) {
5792   assert(Values.size() && "Can't build lookup table without values!");
5793   assert(TableSize >= Values.size() && "Can't fit values in table!");
5794 
5795   // If all values in the table are equal, this is that value.
5796   SingleValue = Values.begin()->second;
5797 
5798   Type *ValueType = Values.begin()->second->getType();
5799 
5800   // Build up the table contents.
5801   SmallVector<Constant *, 64> TableContents(TableSize);
5802   for (size_t I = 0, E = Values.size(); I != E; ++I) {
5803     ConstantInt *CaseVal = Values[I].first;
5804     Constant *CaseRes = Values[I].second;
5805     assert(CaseRes->getType() == ValueType);
5806 
5807     uint64_t Idx = (CaseVal->getValue() - Offset->getValue()).getLimitedValue();
5808     TableContents[Idx] = CaseRes;
5809 
5810     if (CaseRes != SingleValue)
5811       SingleValue = nullptr;
5812   }
5813 
5814   // Fill in any holes in the table with the default result.
5815   if (Values.size() < TableSize) {
5816     assert(DefaultValue &&
5817            "Need a default value to fill the lookup table holes.");
5818     assert(DefaultValue->getType() == ValueType);
5819     for (uint64_t I = 0; I < TableSize; ++I) {
5820       if (!TableContents[I])
5821         TableContents[I] = DefaultValue;
5822     }
5823 
5824     if (DefaultValue != SingleValue)
5825       SingleValue = nullptr;
5826   }
5827 
5828   // If each element in the table contains the same value, we only need to store
5829   // that single value.
5830   if (SingleValue) {
5831     Kind = SingleValueKind;
5832     return;
5833   }
5834 
5835   // Check if we can derive the value with a linear transformation from the
5836   // table index.
5837   if (isa<IntegerType>(ValueType)) {
5838     bool LinearMappingPossible = true;
5839     APInt PrevVal;
5840     APInt DistToPrev;
5841     assert(TableSize >= 2 && "Should be a SingleValue table.");
5842     // Check if there is the same distance between two consecutive values.
5843     for (uint64_t I = 0; I < TableSize; ++I) {
5844       ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]);
5845       if (!ConstVal) {
5846         // This is an undef. We could deal with it, but undefs in lookup tables
5847         // are very seldom. It's probably not worth the additional complexity.
5848         LinearMappingPossible = false;
5849         break;
5850       }
5851       const APInt &Val = ConstVal->getValue();
5852       if (I != 0) {
5853         APInt Dist = Val - PrevVal;
5854         if (I == 1) {
5855           DistToPrev = Dist;
5856         } else if (Dist != DistToPrev) {
5857           LinearMappingPossible = false;
5858           break;
5859         }
5860       }
5861       PrevVal = Val;
5862     }
5863     if (LinearMappingPossible) {
5864       LinearOffset = cast<ConstantInt>(TableContents[0]);
5865       LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev);
5866       Kind = LinearMapKind;
5867       ++NumLinearMaps;
5868       return;
5869     }
5870   }
5871 
5872   // If the type is integer and the table fits in a register, build a bitmap.
5873   if (WouldFitInRegister(DL, TableSize, ValueType)) {
5874     IntegerType *IT = cast<IntegerType>(ValueType);
5875     APInt TableInt(TableSize * IT->getBitWidth(), 0);
5876     for (uint64_t I = TableSize; I > 0; --I) {
5877       TableInt <<= IT->getBitWidth();
5878       // Insert values into the bitmap. Undef values are set to zero.
5879       if (!isa<UndefValue>(TableContents[I - 1])) {
5880         ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]);
5881         TableInt |= Val->getValue().zext(TableInt.getBitWidth());
5882       }
5883     }
5884     BitMap = ConstantInt::get(M.getContext(), TableInt);
5885     BitMapElementTy = IT;
5886     Kind = BitMapKind;
5887     ++NumBitMaps;
5888     return;
5889   }
5890 
5891   // Store the table in an array.
5892   ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize);
5893   Constant *Initializer = ConstantArray::get(ArrayTy, TableContents);
5894 
5895   Array = new GlobalVariable(M, ArrayTy, /*isConstant=*/true,
5896                              GlobalVariable::PrivateLinkage, Initializer,
5897                              "switch.table." + FuncName);
5898   Array->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
5899   // Set the alignment to that of an array items. We will be only loading one
5900   // value out of it.
5901   Array->setAlignment(Align(DL.getPrefTypeAlignment(ValueType)));
5902   Kind = ArrayKind;
5903 }
5904 
5905 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) {
5906   switch (Kind) {
5907   case SingleValueKind:
5908     return SingleValue;
5909   case LinearMapKind: {
5910     // Derive the result value from the input value.
5911     Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(),
5912                                           false, "switch.idx.cast");
5913     if (!LinearMultiplier->isOne())
5914       Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult");
5915     if (!LinearOffset->isZero())
5916       Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset");
5917     return Result;
5918   }
5919   case BitMapKind: {
5920     // Type of the bitmap (e.g. i59).
5921     IntegerType *MapTy = BitMap->getType();
5922 
5923     // Cast Index to the same type as the bitmap.
5924     // Note: The Index is <= the number of elements in the table, so
5925     // truncating it to the width of the bitmask is safe.
5926     Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast");
5927 
5928     // Multiply the shift amount by the element width.
5929     ShiftAmt = Builder.CreateMul(
5930         ShiftAmt, ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()),
5931         "switch.shiftamt");
5932 
5933     // Shift down.
5934     Value *DownShifted =
5935         Builder.CreateLShr(BitMap, ShiftAmt, "switch.downshift");
5936     // Mask off.
5937     return Builder.CreateTrunc(DownShifted, BitMapElementTy, "switch.masked");
5938   }
5939   case ArrayKind: {
5940     // Make sure the table index will not overflow when treated as signed.
5941     IntegerType *IT = cast<IntegerType>(Index->getType());
5942     uint64_t TableSize =
5943         Array->getInitializer()->getType()->getArrayNumElements();
5944     if (TableSize > (1ULL << (IT->getBitWidth() - 1)))
5945       Index = Builder.CreateZExt(
5946           Index, IntegerType::get(IT->getContext(), IT->getBitWidth() + 1),
5947           "switch.tableidx.zext");
5948 
5949     Value *GEPIndices[] = {Builder.getInt32(0), Index};
5950     Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array,
5951                                            GEPIndices, "switch.gep");
5952     return Builder.CreateLoad(
5953         cast<ArrayType>(Array->getValueType())->getElementType(), GEP,
5954         "switch.load");
5955   }
5956   }
5957   llvm_unreachable("Unknown lookup table kind!");
5958 }
5959 
5960 bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL,
5961                                            uint64_t TableSize,
5962                                            Type *ElementType) {
5963   auto *IT = dyn_cast<IntegerType>(ElementType);
5964   if (!IT)
5965     return false;
5966   // FIXME: If the type is wider than it needs to be, e.g. i8 but all values
5967   // are <= 15, we could try to narrow the type.
5968 
5969   // Avoid overflow, fitsInLegalInteger uses unsigned int for the width.
5970   if (TableSize >= UINT_MAX / IT->getBitWidth())
5971     return false;
5972   return DL.fitsInLegalInteger(TableSize * IT->getBitWidth());
5973 }
5974 
5975 static bool isTypeLegalForLookupTable(Type *Ty, const TargetTransformInfo &TTI,
5976                                       const DataLayout &DL) {
5977   // Allow any legal type.
5978   if (TTI.isTypeLegal(Ty))
5979     return true;
5980 
5981   auto *IT = dyn_cast<IntegerType>(Ty);
5982   if (!IT)
5983     return false;
5984 
5985   // Also allow power of 2 integer types that have at least 8 bits and fit in
5986   // a register. These types are common in frontend languages and targets
5987   // usually support loads of these types.
5988   // TODO: We could relax this to any integer that fits in a register and rely
5989   // on ABI alignment and padding in the table to allow the load to be widened.
5990   // Or we could widen the constants and truncate the load.
5991   unsigned BitWidth = IT->getBitWidth();
5992   return BitWidth >= 8 && isPowerOf2_32(BitWidth) &&
5993          DL.fitsInLegalInteger(IT->getBitWidth());
5994 }
5995 
5996 /// Determine whether a lookup table should be built for this switch, based on
5997 /// the number of cases, size of the table, and the types of the results.
5998 // TODO: We could support larger than legal types by limiting based on the
5999 // number of loads required and/or table size. If the constants are small we
6000 // could use smaller table entries and extend after the load.
6001 static bool
6002 ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize,
6003                        const TargetTransformInfo &TTI, const DataLayout &DL,
6004                        const SmallDenseMap<PHINode *, Type *> &ResultTypes) {
6005   if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10)
6006     return false; // TableSize overflowed, or mul below might overflow.
6007 
6008   bool AllTablesFitInRegister = true;
6009   bool HasIllegalType = false;
6010   for (const auto &I : ResultTypes) {
6011     Type *Ty = I.second;
6012 
6013     // Saturate this flag to true.
6014     HasIllegalType = HasIllegalType || !isTypeLegalForLookupTable(Ty, TTI, DL);
6015 
6016     // Saturate this flag to false.
6017     AllTablesFitInRegister =
6018         AllTablesFitInRegister &&
6019         SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty);
6020 
6021     // If both flags saturate, we're done. NOTE: This *only* works with
6022     // saturating flags, and all flags have to saturate first due to the
6023     // non-deterministic behavior of iterating over a dense map.
6024     if (HasIllegalType && !AllTablesFitInRegister)
6025       break;
6026   }
6027 
6028   // If each table would fit in a register, we should build it anyway.
6029   if (AllTablesFitInRegister)
6030     return true;
6031 
6032   // Don't build a table that doesn't fit in-register if it has illegal types.
6033   if (HasIllegalType)
6034     return false;
6035 
6036   // The table density should be at least 40%. This is the same criterion as for
6037   // jump tables, see SelectionDAGBuilder::handleJTSwitchCase.
6038   // FIXME: Find the best cut-off.
6039   return SI->getNumCases() * 10 >= TableSize * 4;
6040 }
6041 
6042 /// Try to reuse the switch table index compare. Following pattern:
6043 /// \code
6044 ///     if (idx < tablesize)
6045 ///        r = table[idx]; // table does not contain default_value
6046 ///     else
6047 ///        r = default_value;
6048 ///     if (r != default_value)
6049 ///        ...
6050 /// \endcode
6051 /// Is optimized to:
6052 /// \code
6053 ///     cond = idx < tablesize;
6054 ///     if (cond)
6055 ///        r = table[idx];
6056 ///     else
6057 ///        r = default_value;
6058 ///     if (cond)
6059 ///        ...
6060 /// \endcode
6061 /// Jump threading will then eliminate the second if(cond).
6062 static void reuseTableCompare(
6063     User *PhiUser, BasicBlock *PhiBlock, BranchInst *RangeCheckBranch,
6064     Constant *DefaultValue,
6065     const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values) {
6066   ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser);
6067   if (!CmpInst)
6068     return;
6069 
6070   // We require that the compare is in the same block as the phi so that jump
6071   // threading can do its work afterwards.
6072   if (CmpInst->getParent() != PhiBlock)
6073     return;
6074 
6075   Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1));
6076   if (!CmpOp1)
6077     return;
6078 
6079   Value *RangeCmp = RangeCheckBranch->getCondition();
6080   Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType());
6081   Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType());
6082 
6083   // Check if the compare with the default value is constant true or false.
6084   Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
6085                                                  DefaultValue, CmpOp1, true);
6086   if (DefaultConst != TrueConst && DefaultConst != FalseConst)
6087     return;
6088 
6089   // Check if the compare with the case values is distinct from the default
6090   // compare result.
6091   for (auto ValuePair : Values) {
6092     Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
6093                                                 ValuePair.second, CmpOp1, true);
6094     if (!CaseConst || CaseConst == DefaultConst ||
6095         (CaseConst != TrueConst && CaseConst != FalseConst))
6096       return;
6097   }
6098 
6099   // Check if the branch instruction dominates the phi node. It's a simple
6100   // dominance check, but sufficient for our needs.
6101   // Although this check is invariant in the calling loops, it's better to do it
6102   // at this late stage. Practically we do it at most once for a switch.
6103   BasicBlock *BranchBlock = RangeCheckBranch->getParent();
6104   for (BasicBlock *Pred : predecessors(PhiBlock)) {
6105     if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock)
6106       return;
6107   }
6108 
6109   if (DefaultConst == FalseConst) {
6110     // The compare yields the same result. We can replace it.
6111     CmpInst->replaceAllUsesWith(RangeCmp);
6112     ++NumTableCmpReuses;
6113   } else {
6114     // The compare yields the same result, just inverted. We can replace it.
6115     Value *InvertedTableCmp = BinaryOperator::CreateXor(
6116         RangeCmp, ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp",
6117         RangeCheckBranch);
6118     CmpInst->replaceAllUsesWith(InvertedTableCmp);
6119     ++NumTableCmpReuses;
6120   }
6121 }
6122 
6123 /// If the switch is only used to initialize one or more phi nodes in a common
6124 /// successor block with different constant values, replace the switch with
6125 /// lookup tables.
6126 static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder,
6127                                 DomTreeUpdater *DTU, const DataLayout &DL,
6128                                 const TargetTransformInfo &TTI) {
6129   assert(SI->getNumCases() > 1 && "Degenerate switch?");
6130 
6131   BasicBlock *BB = SI->getParent();
6132   Function *Fn = BB->getParent();
6133   // Only build lookup table when we have a target that supports it or the
6134   // attribute is not set.
6135   if (!TTI.shouldBuildLookupTables() ||
6136       (Fn->getFnAttribute("no-jump-tables").getValueAsBool()))
6137     return false;
6138 
6139   // FIXME: If the switch is too sparse for a lookup table, perhaps we could
6140   // split off a dense part and build a lookup table for that.
6141 
6142   // FIXME: This creates arrays of GEPs to constant strings, which means each
6143   // GEP needs a runtime relocation in PIC code. We should just build one big
6144   // string and lookup indices into that.
6145 
6146   // Ignore switches with less than three cases. Lookup tables will not make
6147   // them faster, so we don't analyze them.
6148   if (SI->getNumCases() < 3)
6149     return false;
6150 
6151   // Figure out the corresponding result for each case value and phi node in the
6152   // common destination, as well as the min and max case values.
6153   assert(!SI->cases().empty());
6154   SwitchInst::CaseIt CI = SI->case_begin();
6155   ConstantInt *MinCaseVal = CI->getCaseValue();
6156   ConstantInt *MaxCaseVal = CI->getCaseValue();
6157 
6158   BasicBlock *CommonDest = nullptr;
6159 
6160   using ResultListTy = SmallVector<std::pair<ConstantInt *, Constant *>, 4>;
6161   SmallDenseMap<PHINode *, ResultListTy> ResultLists;
6162 
6163   SmallDenseMap<PHINode *, Constant *> DefaultResults;
6164   SmallDenseMap<PHINode *, Type *> ResultTypes;
6165   SmallVector<PHINode *, 4> PHIs;
6166 
6167   for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) {
6168     ConstantInt *CaseVal = CI->getCaseValue();
6169     if (CaseVal->getValue().slt(MinCaseVal->getValue()))
6170       MinCaseVal = CaseVal;
6171     if (CaseVal->getValue().sgt(MaxCaseVal->getValue()))
6172       MaxCaseVal = CaseVal;
6173 
6174     // Resulting value at phi nodes for this case value.
6175     using ResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>;
6176     ResultsTy Results;
6177     if (!GetCaseResults(SI, CaseVal, CI->getCaseSuccessor(), &CommonDest,
6178                         Results, DL, TTI))
6179       return false;
6180 
6181     // Append the result from this case to the list for each phi.
6182     for (const auto &I : Results) {
6183       PHINode *PHI = I.first;
6184       Constant *Value = I.second;
6185       if (!ResultLists.count(PHI))
6186         PHIs.push_back(PHI);
6187       ResultLists[PHI].push_back(std::make_pair(CaseVal, Value));
6188     }
6189   }
6190 
6191   // Keep track of the result types.
6192   for (PHINode *PHI : PHIs) {
6193     ResultTypes[PHI] = ResultLists[PHI][0].second->getType();
6194   }
6195 
6196   uint64_t NumResults = ResultLists[PHIs[0]].size();
6197   APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue();
6198   uint64_t TableSize = RangeSpread.getLimitedValue() + 1;
6199   bool TableHasHoles = (NumResults < TableSize);
6200 
6201   // If the table has holes, we need a constant result for the default case
6202   // or a bitmask that fits in a register.
6203   SmallVector<std::pair<PHINode *, Constant *>, 4> DefaultResultsList;
6204   bool HasDefaultResults =
6205       GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest,
6206                      DefaultResultsList, DL, TTI);
6207 
6208   bool NeedMask = (TableHasHoles && !HasDefaultResults);
6209   if (NeedMask) {
6210     // As an extra penalty for the validity test we require more cases.
6211     if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark).
6212       return false;
6213     if (!DL.fitsInLegalInteger(TableSize))
6214       return false;
6215   }
6216 
6217   for (const auto &I : DefaultResultsList) {
6218     PHINode *PHI = I.first;
6219     Constant *Result = I.second;
6220     DefaultResults[PHI] = Result;
6221   }
6222 
6223   if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes))
6224     return false;
6225 
6226   std::vector<DominatorTree::UpdateType> Updates;
6227 
6228   // Create the BB that does the lookups.
6229   Module &Mod = *CommonDest->getParent()->getParent();
6230   BasicBlock *LookupBB = BasicBlock::Create(
6231       Mod.getContext(), "switch.lookup", CommonDest->getParent(), CommonDest);
6232 
6233   // Compute the table index value.
6234   Builder.SetInsertPoint(SI);
6235   Value *TableIndex;
6236   if (MinCaseVal->isNullValue())
6237     TableIndex = SI->getCondition();
6238   else
6239     TableIndex = Builder.CreateSub(SI->getCondition(), MinCaseVal,
6240                                    "switch.tableidx");
6241 
6242   // Compute the maximum table size representable by the integer type we are
6243   // switching upon.
6244   unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits();
6245   uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize;
6246   assert(MaxTableSize >= TableSize &&
6247          "It is impossible for a switch to have more entries than the max "
6248          "representable value of its input integer type's size.");
6249 
6250   // If the default destination is unreachable, or if the lookup table covers
6251   // all values of the conditional variable, branch directly to the lookup table
6252   // BB. Otherwise, check that the condition is within the case range.
6253   const bool DefaultIsReachable =
6254       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
6255   const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize);
6256   BranchInst *RangeCheckBranch = nullptr;
6257 
6258   if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
6259     Builder.CreateBr(LookupBB);
6260     if (DTU)
6261       Updates.push_back({DominatorTree::Insert, BB, LookupBB});
6262     // Note: We call removeProdecessor later since we need to be able to get the
6263     // PHI value for the default case in case we're using a bit mask.
6264   } else {
6265     Value *Cmp = Builder.CreateICmpULT(
6266         TableIndex, ConstantInt::get(MinCaseVal->getType(), TableSize));
6267     RangeCheckBranch =
6268         Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest());
6269     if (DTU)
6270       Updates.push_back({DominatorTree::Insert, BB, LookupBB});
6271   }
6272 
6273   // Populate the BB that does the lookups.
6274   Builder.SetInsertPoint(LookupBB);
6275 
6276   if (NeedMask) {
6277     // Before doing the lookup, we do the hole check. The LookupBB is therefore
6278     // re-purposed to do the hole check, and we create a new LookupBB.
6279     BasicBlock *MaskBB = LookupBB;
6280     MaskBB->setName("switch.hole_check");
6281     LookupBB = BasicBlock::Create(Mod.getContext(), "switch.lookup",
6282                                   CommonDest->getParent(), CommonDest);
6283 
6284     // Make the mask's bitwidth at least 8-bit and a power-of-2 to avoid
6285     // unnecessary illegal types.
6286     uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL));
6287     APInt MaskInt(TableSizePowOf2, 0);
6288     APInt One(TableSizePowOf2, 1);
6289     // Build bitmask; fill in a 1 bit for every case.
6290     const ResultListTy &ResultList = ResultLists[PHIs[0]];
6291     for (size_t I = 0, E = ResultList.size(); I != E; ++I) {
6292       uint64_t Idx = (ResultList[I].first->getValue() - MinCaseVal->getValue())
6293                          .getLimitedValue();
6294       MaskInt |= One << Idx;
6295     }
6296     ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt);
6297 
6298     // Get the TableIndex'th bit of the bitmask.
6299     // If this bit is 0 (meaning hole) jump to the default destination,
6300     // else continue with table lookup.
6301     IntegerType *MapTy = TableMask->getType();
6302     Value *MaskIndex =
6303         Builder.CreateZExtOrTrunc(TableIndex, MapTy, "switch.maskindex");
6304     Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, "switch.shifted");
6305     Value *LoBit = Builder.CreateTrunc(
6306         Shifted, Type::getInt1Ty(Mod.getContext()), "switch.lobit");
6307     Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest());
6308     if (DTU) {
6309       Updates.push_back({DominatorTree::Insert, MaskBB, LookupBB});
6310       Updates.push_back({DominatorTree::Insert, MaskBB, SI->getDefaultDest()});
6311     }
6312     Builder.SetInsertPoint(LookupBB);
6313     AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, BB);
6314   }
6315 
6316   if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
6317     // We cached PHINodes in PHIs. To avoid accessing deleted PHINodes later,
6318     // do not delete PHINodes here.
6319     SI->getDefaultDest()->removePredecessor(BB,
6320                                             /*KeepOneInputPHIs=*/true);
6321     if (DTU)
6322       Updates.push_back({DominatorTree::Delete, BB, SI->getDefaultDest()});
6323   }
6324 
6325   for (PHINode *PHI : PHIs) {
6326     const ResultListTy &ResultList = ResultLists[PHI];
6327 
6328     // If using a bitmask, use any value to fill the lookup table holes.
6329     Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI];
6330     StringRef FuncName = Fn->getName();
6331     SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultList, DV, DL,
6332                             FuncName);
6333 
6334     Value *Result = Table.BuildLookup(TableIndex, Builder);
6335 
6336     // Do a small peephole optimization: re-use the switch table compare if
6337     // possible.
6338     if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) {
6339       BasicBlock *PhiBlock = PHI->getParent();
6340       // Search for compare instructions which use the phi.
6341       for (auto *User : PHI->users()) {
6342         reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList);
6343       }
6344     }
6345 
6346     PHI->addIncoming(Result, LookupBB);
6347   }
6348 
6349   Builder.CreateBr(CommonDest);
6350   if (DTU)
6351     Updates.push_back({DominatorTree::Insert, LookupBB, CommonDest});
6352 
6353   // Remove the switch.
6354   SmallPtrSet<BasicBlock *, 8> RemovedSuccessors;
6355   for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
6356     BasicBlock *Succ = SI->getSuccessor(i);
6357 
6358     if (Succ == SI->getDefaultDest())
6359       continue;
6360     Succ->removePredecessor(BB);
6361     if (DTU && RemovedSuccessors.insert(Succ).second)
6362       Updates.push_back({DominatorTree::Delete, BB, Succ});
6363   }
6364   SI->eraseFromParent();
6365 
6366   if (DTU)
6367     DTU->applyUpdates(Updates);
6368 
6369   ++NumLookupTables;
6370   if (NeedMask)
6371     ++NumLookupTablesHoles;
6372   return true;
6373 }
6374 
6375 static bool isSwitchDense(ArrayRef<int64_t> Values) {
6376   // See also SelectionDAGBuilder::isDense(), which this function was based on.
6377   uint64_t Diff = (uint64_t)Values.back() - (uint64_t)Values.front();
6378   uint64_t Range = Diff + 1;
6379   uint64_t NumCases = Values.size();
6380   // 40% is the default density for building a jump table in optsize/minsize mode.
6381   uint64_t MinDensity = 40;
6382 
6383   return NumCases * 100 >= Range * MinDensity;
6384 }
6385 
6386 /// Try to transform a switch that has "holes" in it to a contiguous sequence
6387 /// of cases.
6388 ///
6389 /// A switch such as: switch(i) {case 5: case 9: case 13: case 17:} can be
6390 /// range-reduced to: switch ((i-5) / 4) {case 0: case 1: case 2: case 3:}.
6391 ///
6392 /// This converts a sparse switch into a dense switch which allows better
6393 /// lowering and could also allow transforming into a lookup table.
6394 static bool ReduceSwitchRange(SwitchInst *SI, IRBuilder<> &Builder,
6395                               const DataLayout &DL,
6396                               const TargetTransformInfo &TTI) {
6397   auto *CondTy = cast<IntegerType>(SI->getCondition()->getType());
6398   if (CondTy->getIntegerBitWidth() > 64 ||
6399       !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth()))
6400     return false;
6401   // Only bother with this optimization if there are more than 3 switch cases;
6402   // SDAG will only bother creating jump tables for 4 or more cases.
6403   if (SI->getNumCases() < 4)
6404     return false;
6405 
6406   // This transform is agnostic to the signedness of the input or case values. We
6407   // can treat the case values as signed or unsigned. We can optimize more common
6408   // cases such as a sequence crossing zero {-4,0,4,8} if we interpret case values
6409   // as signed.
6410   SmallVector<int64_t,4> Values;
6411   for (auto &C : SI->cases())
6412     Values.push_back(C.getCaseValue()->getValue().getSExtValue());
6413   llvm::sort(Values);
6414 
6415   // If the switch is already dense, there's nothing useful to do here.
6416   if (isSwitchDense(Values))
6417     return false;
6418 
6419   // First, transform the values such that they start at zero and ascend.
6420   int64_t Base = Values[0];
6421   for (auto &V : Values)
6422     V -= (uint64_t)(Base);
6423 
6424   // Now we have signed numbers that have been shifted so that, given enough
6425   // precision, there are no negative values. Since the rest of the transform
6426   // is bitwise only, we switch now to an unsigned representation.
6427 
6428   // This transform can be done speculatively because it is so cheap - it
6429   // results in a single rotate operation being inserted.
6430   // FIXME: It's possible that optimizing a switch on powers of two might also
6431   // be beneficial - flag values are often powers of two and we could use a CLZ
6432   // as the key function.
6433 
6434   // countTrailingZeros(0) returns 64. As Values is guaranteed to have more than
6435   // one element and LLVM disallows duplicate cases, Shift is guaranteed to be
6436   // less than 64.
6437   unsigned Shift = 64;
6438   for (auto &V : Values)
6439     Shift = std::min(Shift, countTrailingZeros((uint64_t)V));
6440   assert(Shift < 64);
6441   if (Shift > 0)
6442     for (auto &V : Values)
6443       V = (int64_t)((uint64_t)V >> Shift);
6444 
6445   if (!isSwitchDense(Values))
6446     // Transform didn't create a dense switch.
6447     return false;
6448 
6449   // The obvious transform is to shift the switch condition right and emit a
6450   // check that the condition actually cleanly divided by GCD, i.e.
6451   //   C & (1 << Shift - 1) == 0
6452   // inserting a new CFG edge to handle the case where it didn't divide cleanly.
6453   //
6454   // A cheaper way of doing this is a simple ROTR(C, Shift). This performs the
6455   // shift and puts the shifted-off bits in the uppermost bits. If any of these
6456   // are nonzero then the switch condition will be very large and will hit the
6457   // default case.
6458 
6459   auto *Ty = cast<IntegerType>(SI->getCondition()->getType());
6460   Builder.SetInsertPoint(SI);
6461   auto *ShiftC = ConstantInt::get(Ty, Shift);
6462   auto *Sub = Builder.CreateSub(SI->getCondition(), ConstantInt::get(Ty, Base));
6463   auto *LShr = Builder.CreateLShr(Sub, ShiftC);
6464   auto *Shl = Builder.CreateShl(Sub, Ty->getBitWidth() - Shift);
6465   auto *Rot = Builder.CreateOr(LShr, Shl);
6466   SI->replaceUsesOfWith(SI->getCondition(), Rot);
6467 
6468   for (auto Case : SI->cases()) {
6469     auto *Orig = Case.getCaseValue();
6470     auto Sub = Orig->getValue() - APInt(Ty->getBitWidth(), Base);
6471     Case.setValue(
6472         cast<ConstantInt>(ConstantInt::get(Ty, Sub.lshr(ShiftC->getValue()))));
6473   }
6474   return true;
6475 }
6476 
6477 bool SimplifyCFGOpt::simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) {
6478   BasicBlock *BB = SI->getParent();
6479 
6480   if (isValueEqualityComparison(SI)) {
6481     // If we only have one predecessor, and if it is a branch on this value,
6482     // see if that predecessor totally determines the outcome of this switch.
6483     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
6484       if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder))
6485         return requestResimplify();
6486 
6487     Value *Cond = SI->getCondition();
6488     if (SelectInst *Select = dyn_cast<SelectInst>(Cond))
6489       if (SimplifySwitchOnSelect(SI, Select))
6490         return requestResimplify();
6491 
6492     // If the block only contains the switch, see if we can fold the block
6493     // away into any preds.
6494     if (SI == &*BB->instructionsWithoutDebug(false).begin())
6495       if (FoldValueComparisonIntoPredecessors(SI, Builder))
6496         return requestResimplify();
6497   }
6498 
6499   // Try to transform the switch into an icmp and a branch.
6500   if (TurnSwitchRangeIntoICmp(SI, Builder))
6501     return requestResimplify();
6502 
6503   // Remove unreachable cases.
6504   if (eliminateDeadSwitchCases(SI, DTU, Options.AC, DL))
6505     return requestResimplify();
6506 
6507   if (switchToSelect(SI, Builder, DTU, DL, TTI))
6508     return requestResimplify();
6509 
6510   if (Options.ForwardSwitchCondToPhi && ForwardSwitchConditionToPHI(SI))
6511     return requestResimplify();
6512 
6513   // The conversion from switch to lookup tables results in difficult-to-analyze
6514   // code and makes pruning branches much harder. This is a problem if the
6515   // switch expression itself can still be restricted as a result of inlining or
6516   // CVP. Therefore, only apply this transformation during late stages of the
6517   // optimisation pipeline.
6518   if (Options.ConvertSwitchToLookupTable &&
6519       SwitchToLookupTable(SI, Builder, DTU, DL, TTI))
6520     return requestResimplify();
6521 
6522   if (ReduceSwitchRange(SI, Builder, DL, TTI))
6523     return requestResimplify();
6524 
6525   return false;
6526 }
6527 
6528 bool SimplifyCFGOpt::simplifyIndirectBr(IndirectBrInst *IBI) {
6529   BasicBlock *BB = IBI->getParent();
6530   bool Changed = false;
6531 
6532   // Eliminate redundant destinations.
6533   SmallPtrSet<Value *, 8> Succs;
6534   SmallSetVector<BasicBlock *, 8> RemovedSuccs;
6535   for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
6536     BasicBlock *Dest = IBI->getDestination(i);
6537     if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) {
6538       if (!Dest->hasAddressTaken())
6539         RemovedSuccs.insert(Dest);
6540       Dest->removePredecessor(BB);
6541       IBI->removeDestination(i);
6542       --i;
6543       --e;
6544       Changed = true;
6545     }
6546   }
6547 
6548   if (DTU) {
6549     std::vector<DominatorTree::UpdateType> Updates;
6550     Updates.reserve(RemovedSuccs.size());
6551     for (auto *RemovedSucc : RemovedSuccs)
6552       Updates.push_back({DominatorTree::Delete, BB, RemovedSucc});
6553     DTU->applyUpdates(Updates);
6554   }
6555 
6556   if (IBI->getNumDestinations() == 0) {
6557     // If the indirectbr has no successors, change it to unreachable.
6558     new UnreachableInst(IBI->getContext(), IBI);
6559     EraseTerminatorAndDCECond(IBI);
6560     return true;
6561   }
6562 
6563   if (IBI->getNumDestinations() == 1) {
6564     // If the indirectbr has one successor, change it to a direct branch.
6565     BranchInst::Create(IBI->getDestination(0), IBI);
6566     EraseTerminatorAndDCECond(IBI);
6567     return true;
6568   }
6569 
6570   if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) {
6571     if (SimplifyIndirectBrOnSelect(IBI, SI))
6572       return requestResimplify();
6573   }
6574   return Changed;
6575 }
6576 
6577 /// Given an block with only a single landing pad and a unconditional branch
6578 /// try to find another basic block which this one can be merged with.  This
6579 /// handles cases where we have multiple invokes with unique landing pads, but
6580 /// a shared handler.
6581 ///
6582 /// We specifically choose to not worry about merging non-empty blocks
6583 /// here.  That is a PRE/scheduling problem and is best solved elsewhere.  In
6584 /// practice, the optimizer produces empty landing pad blocks quite frequently
6585 /// when dealing with exception dense code.  (see: instcombine, gvn, if-else
6586 /// sinking in this file)
6587 ///
6588 /// This is primarily a code size optimization.  We need to avoid performing
6589 /// any transform which might inhibit optimization (such as our ability to
6590 /// specialize a particular handler via tail commoning).  We do this by not
6591 /// merging any blocks which require us to introduce a phi.  Since the same
6592 /// values are flowing through both blocks, we don't lose any ability to
6593 /// specialize.  If anything, we make such specialization more likely.
6594 ///
6595 /// TODO - This transformation could remove entries from a phi in the target
6596 /// block when the inputs in the phi are the same for the two blocks being
6597 /// merged.  In some cases, this could result in removal of the PHI entirely.
6598 static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI,
6599                                  BasicBlock *BB, DomTreeUpdater *DTU) {
6600   auto Succ = BB->getUniqueSuccessor();
6601   assert(Succ);
6602   // If there's a phi in the successor block, we'd likely have to introduce
6603   // a phi into the merged landing pad block.
6604   if (isa<PHINode>(*Succ->begin()))
6605     return false;
6606 
6607   for (BasicBlock *OtherPred : predecessors(Succ)) {
6608     if (BB == OtherPred)
6609       continue;
6610     BasicBlock::iterator I = OtherPred->begin();
6611     LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I);
6612     if (!LPad2 || !LPad2->isIdenticalTo(LPad))
6613       continue;
6614     for (++I; isa<DbgInfoIntrinsic>(I); ++I)
6615       ;
6616     BranchInst *BI2 = dyn_cast<BranchInst>(I);
6617     if (!BI2 || !BI2->isIdenticalTo(BI))
6618       continue;
6619 
6620     std::vector<DominatorTree::UpdateType> Updates;
6621 
6622     // We've found an identical block.  Update our predecessors to take that
6623     // path instead and make ourselves dead.
6624     SmallSetVector<BasicBlock *, 16> UniquePreds(pred_begin(BB), pred_end(BB));
6625     for (BasicBlock *Pred : UniquePreds) {
6626       InvokeInst *II = cast<InvokeInst>(Pred->getTerminator());
6627       assert(II->getNormalDest() != BB && II->getUnwindDest() == BB &&
6628              "unexpected successor");
6629       II->setUnwindDest(OtherPred);
6630       if (DTU) {
6631         Updates.push_back({DominatorTree::Insert, Pred, OtherPred});
6632         Updates.push_back({DominatorTree::Delete, Pred, BB});
6633       }
6634     }
6635 
6636     // The debug info in OtherPred doesn't cover the merged control flow that
6637     // used to go through BB.  We need to delete it or update it.
6638     for (Instruction &Inst : llvm::make_early_inc_range(*OtherPred))
6639       if (isa<DbgInfoIntrinsic>(Inst))
6640         Inst.eraseFromParent();
6641 
6642     SmallSetVector<BasicBlock *, 16> UniqueSuccs(succ_begin(BB), succ_end(BB));
6643     for (BasicBlock *Succ : UniqueSuccs) {
6644       Succ->removePredecessor(BB);
6645       if (DTU)
6646         Updates.push_back({DominatorTree::Delete, BB, Succ});
6647     }
6648 
6649     IRBuilder<> Builder(BI);
6650     Builder.CreateUnreachable();
6651     BI->eraseFromParent();
6652     if (DTU)
6653       DTU->applyUpdates(Updates);
6654     return true;
6655   }
6656   return false;
6657 }
6658 
6659 bool SimplifyCFGOpt::simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder) {
6660   return Branch->isUnconditional() ? simplifyUncondBranch(Branch, Builder)
6661                                    : simplifyCondBranch(Branch, Builder);
6662 }
6663 
6664 bool SimplifyCFGOpt::simplifyUncondBranch(BranchInst *BI,
6665                                           IRBuilder<> &Builder) {
6666   BasicBlock *BB = BI->getParent();
6667   BasicBlock *Succ = BI->getSuccessor(0);
6668 
6669   // If the Terminator is the only non-phi instruction, simplify the block.
6670   // If LoopHeader is provided, check if the block or its successor is a loop
6671   // header. (This is for early invocations before loop simplify and
6672   // vectorization to keep canonical loop forms for nested loops. These blocks
6673   // can be eliminated when the pass is invoked later in the back-end.)
6674   // Note that if BB has only one predecessor then we do not introduce new
6675   // backedge, so we can eliminate BB.
6676   bool NeedCanonicalLoop =
6677       Options.NeedCanonicalLoop &&
6678       (!LoopHeaders.empty() && BB->hasNPredecessorsOrMore(2) &&
6679        (is_contained(LoopHeaders, BB) || is_contained(LoopHeaders, Succ)));
6680   BasicBlock::iterator I = BB->getFirstNonPHIOrDbg(true)->getIterator();
6681   if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() &&
6682       !NeedCanonicalLoop && TryToSimplifyUncondBranchFromEmptyBlock(BB, DTU))
6683     return true;
6684 
6685   // If the only instruction in the block is a seteq/setne comparison against a
6686   // constant, try to simplify the block.
6687   if (ICmpInst *ICI = dyn_cast<ICmpInst>(I))
6688     if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) {
6689       for (++I; isa<DbgInfoIntrinsic>(I); ++I)
6690         ;
6691       if (I->isTerminator() &&
6692           tryToSimplifyUncondBranchWithICmpInIt(ICI, Builder))
6693         return true;
6694     }
6695 
6696   // See if we can merge an empty landing pad block with another which is
6697   // equivalent.
6698   if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) {
6699     for (++I; isa<DbgInfoIntrinsic>(I); ++I)
6700       ;
6701     if (I->isTerminator() && TryToMergeLandingPad(LPad, BI, BB, DTU))
6702       return true;
6703   }
6704 
6705   // If this basic block is ONLY a compare and a branch, and if a predecessor
6706   // branches to us and our successor, fold the comparison into the
6707   // predecessor and use logical operations to update the incoming value
6708   // for PHI nodes in common successor.
6709   if (FoldBranchToCommonDest(BI, DTU, /*MSSAU=*/nullptr, &TTI,
6710                              Options.BonusInstThreshold))
6711     return requestResimplify();
6712   return false;
6713 }
6714 
6715 static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) {
6716   BasicBlock *PredPred = nullptr;
6717   for (auto *P : predecessors(BB)) {
6718     BasicBlock *PPred = P->getSinglePredecessor();
6719     if (!PPred || (PredPred && PredPred != PPred))
6720       return nullptr;
6721     PredPred = PPred;
6722   }
6723   return PredPred;
6724 }
6725 
6726 bool SimplifyCFGOpt::simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) {
6727   assert(
6728       !isa<ConstantInt>(BI->getCondition()) &&
6729       BI->getSuccessor(0) != BI->getSuccessor(1) &&
6730       "Tautological conditional branch should have been eliminated already.");
6731 
6732   BasicBlock *BB = BI->getParent();
6733   if (!Options.SimplifyCondBranch)
6734     return false;
6735 
6736   // Conditional branch
6737   if (isValueEqualityComparison(BI)) {
6738     // If we only have one predecessor, and if it is a branch on this value,
6739     // see if that predecessor totally determines the outcome of this
6740     // switch.
6741     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
6742       if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder))
6743         return requestResimplify();
6744 
6745     // This block must be empty, except for the setcond inst, if it exists.
6746     // Ignore dbg and pseudo intrinsics.
6747     auto I = BB->instructionsWithoutDebug(true).begin();
6748     if (&*I == BI) {
6749       if (FoldValueComparisonIntoPredecessors(BI, Builder))
6750         return requestResimplify();
6751     } else if (&*I == cast<Instruction>(BI->getCondition())) {
6752       ++I;
6753       if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder))
6754         return requestResimplify();
6755     }
6756   }
6757 
6758   // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction.
6759   if (SimplifyBranchOnICmpChain(BI, Builder, DL))
6760     return true;
6761 
6762   // If this basic block has dominating predecessor blocks and the dominating
6763   // blocks' conditions imply BI's condition, we know the direction of BI.
6764   Optional<bool> Imp = isImpliedByDomCondition(BI->getCondition(), BI, DL);
6765   if (Imp) {
6766     // Turn this into a branch on constant.
6767     auto *OldCond = BI->getCondition();
6768     ConstantInt *TorF = *Imp ? ConstantInt::getTrue(BB->getContext())
6769                              : ConstantInt::getFalse(BB->getContext());
6770     BI->setCondition(TorF);
6771     RecursivelyDeleteTriviallyDeadInstructions(OldCond);
6772     return requestResimplify();
6773   }
6774 
6775   // If this basic block is ONLY a compare and a branch, and if a predecessor
6776   // branches to us and one of our successors, fold the comparison into the
6777   // predecessor and use logical operations to pick the right destination.
6778   if (FoldBranchToCommonDest(BI, DTU, /*MSSAU=*/nullptr, &TTI,
6779                              Options.BonusInstThreshold))
6780     return requestResimplify();
6781 
6782   // We have a conditional branch to two blocks that are only reachable
6783   // from BI.  We know that the condbr dominates the two blocks, so see if
6784   // there is any identical code in the "then" and "else" blocks.  If so, we
6785   // can hoist it up to the branching block.
6786   if (BI->getSuccessor(0)->getSinglePredecessor()) {
6787     if (BI->getSuccessor(1)->getSinglePredecessor()) {
6788       if (HoistCommon &&
6789           HoistThenElseCodeToIf(BI, TTI, !Options.HoistCommonInsts))
6790         return requestResimplify();
6791     } else {
6792       // If Successor #1 has multiple preds, we may be able to conditionally
6793       // execute Successor #0 if it branches to Successor #1.
6794       Instruction *Succ0TI = BI->getSuccessor(0)->getTerminator();
6795       if (Succ0TI->getNumSuccessors() == 1 &&
6796           Succ0TI->getSuccessor(0) == BI->getSuccessor(1))
6797         if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), TTI))
6798           return requestResimplify();
6799     }
6800   } else if (BI->getSuccessor(1)->getSinglePredecessor()) {
6801     // If Successor #0 has multiple preds, we may be able to conditionally
6802     // execute Successor #1 if it branches to Successor #0.
6803     Instruction *Succ1TI = BI->getSuccessor(1)->getTerminator();
6804     if (Succ1TI->getNumSuccessors() == 1 &&
6805         Succ1TI->getSuccessor(0) == BI->getSuccessor(0))
6806       if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), TTI))
6807         return requestResimplify();
6808   }
6809 
6810   // If this is a branch on a phi node in the current block, thread control
6811   // through this block if any PHI node entries are constants.
6812   if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition()))
6813     if (PN->getParent() == BI->getParent())
6814       if (FoldCondBranchOnPHI(BI, DTU, DL, Options.AC))
6815         return requestResimplify();
6816 
6817   // Scan predecessor blocks for conditional branches.
6818   for (BasicBlock *Pred : predecessors(BB))
6819     if (BranchInst *PBI = dyn_cast<BranchInst>(Pred->getTerminator()))
6820       if (PBI != BI && PBI->isConditional())
6821         if (SimplifyCondBranchToCondBranch(PBI, BI, DTU, DL, TTI))
6822           return requestResimplify();
6823 
6824   // Look for diamond patterns.
6825   if (MergeCondStores)
6826     if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB))
6827       if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator()))
6828         if (PBI != BI && PBI->isConditional())
6829           if (mergeConditionalStores(PBI, BI, DTU, DL, TTI))
6830             return requestResimplify();
6831 
6832   return false;
6833 }
6834 
6835 /// Check if passing a value to an instruction will cause undefined behavior.
6836 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I, bool PtrValueMayBeModified) {
6837   Constant *C = dyn_cast<Constant>(V);
6838   if (!C)
6839     return false;
6840 
6841   if (I->use_empty())
6842     return false;
6843 
6844   if (C->isNullValue() || isa<UndefValue>(C)) {
6845     // Only look at the first use, avoid hurting compile time with long uselists
6846     auto *Use = cast<Instruction>(*I->user_begin());
6847     // Bail out if Use is not in the same BB as I or Use == I or Use comes
6848     // before I in the block. The latter two can be the case if Use is a PHI
6849     // node.
6850     if (Use->getParent() != I->getParent() || Use == I || Use->comesBefore(I))
6851       return false;
6852 
6853     // Now make sure that there are no instructions in between that can alter
6854     // control flow (eg. calls)
6855     auto InstrRange =
6856         make_range(std::next(I->getIterator()), Use->getIterator());
6857     if (any_of(InstrRange, [](Instruction &I) {
6858           return !isGuaranteedToTransferExecutionToSuccessor(&I);
6859         }))
6860       return false;
6861 
6862     // Look through GEPs. A load from a GEP derived from NULL is still undefined
6863     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use))
6864       if (GEP->getPointerOperand() == I) {
6865         if (!GEP->isInBounds() || !GEP->hasAllZeroIndices())
6866           PtrValueMayBeModified = true;
6867         return passingValueIsAlwaysUndefined(V, GEP, PtrValueMayBeModified);
6868       }
6869 
6870     // Look through bitcasts.
6871     if (BitCastInst *BC = dyn_cast<BitCastInst>(Use))
6872       return passingValueIsAlwaysUndefined(V, BC, PtrValueMayBeModified);
6873 
6874     // Load from null is undefined.
6875     if (LoadInst *LI = dyn_cast<LoadInst>(Use))
6876       if (!LI->isVolatile())
6877         return !NullPointerIsDefined(LI->getFunction(),
6878                                      LI->getPointerAddressSpace());
6879 
6880     // Store to null is undefined.
6881     if (StoreInst *SI = dyn_cast<StoreInst>(Use))
6882       if (!SI->isVolatile())
6883         return (!NullPointerIsDefined(SI->getFunction(),
6884                                       SI->getPointerAddressSpace())) &&
6885                SI->getPointerOperand() == I;
6886 
6887     if (auto *CB = dyn_cast<CallBase>(Use)) {
6888       if (C->isNullValue() && NullPointerIsDefined(CB->getFunction()))
6889         return false;
6890       // A call to null is undefined.
6891       if (CB->getCalledOperand() == I)
6892         return true;
6893 
6894       if (C->isNullValue()) {
6895         for (const llvm::Use &Arg : CB->args())
6896           if (Arg == I) {
6897             unsigned ArgIdx = CB->getArgOperandNo(&Arg);
6898             if (CB->isPassingUndefUB(ArgIdx) &&
6899                 CB->paramHasAttr(ArgIdx, Attribute::NonNull)) {
6900               // Passing null to a nonnnull+noundef argument is undefined.
6901               return !PtrValueMayBeModified;
6902             }
6903           }
6904       } else if (isa<UndefValue>(C)) {
6905         // Passing undef to a noundef argument is undefined.
6906         for (const llvm::Use &Arg : CB->args())
6907           if (Arg == I) {
6908             unsigned ArgIdx = CB->getArgOperandNo(&Arg);
6909             if (CB->isPassingUndefUB(ArgIdx)) {
6910               // Passing undef to a noundef argument is undefined.
6911               return true;
6912             }
6913           }
6914       }
6915     }
6916   }
6917   return false;
6918 }
6919 
6920 /// If BB has an incoming value that will always trigger undefined behavior
6921 /// (eg. null pointer dereference), remove the branch leading here.
6922 static bool removeUndefIntroducingPredecessor(BasicBlock *BB,
6923                                               DomTreeUpdater *DTU) {
6924   for (PHINode &PHI : BB->phis())
6925     for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i)
6926       if (passingValueIsAlwaysUndefined(PHI.getIncomingValue(i), &PHI)) {
6927         BasicBlock *Predecessor = PHI.getIncomingBlock(i);
6928         Instruction *T = Predecessor->getTerminator();
6929         IRBuilder<> Builder(T);
6930         if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
6931           BB->removePredecessor(Predecessor);
6932           // Turn uncoditional branches into unreachables and remove the dead
6933           // destination from conditional branches.
6934           if (BI->isUnconditional())
6935             Builder.CreateUnreachable();
6936           else {
6937             // Preserve guarding condition in assume, because it might not be
6938             // inferrable from any dominating condition.
6939             Value *Cond = BI->getCondition();
6940             if (BI->getSuccessor(0) == BB)
6941               Builder.CreateAssumption(Builder.CreateNot(Cond));
6942             else
6943               Builder.CreateAssumption(Cond);
6944             Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1)
6945                                                        : BI->getSuccessor(0));
6946           }
6947           BI->eraseFromParent();
6948           if (DTU)
6949             DTU->applyUpdates({{DominatorTree::Delete, Predecessor, BB}});
6950           return true;
6951         } else if (SwitchInst *SI = dyn_cast<SwitchInst>(T)) {
6952           // Redirect all branches leading to UB into
6953           // a newly created unreachable block.
6954           BasicBlock *Unreachable = BasicBlock::Create(
6955               Predecessor->getContext(), "unreachable", BB->getParent(), BB);
6956           Builder.SetInsertPoint(Unreachable);
6957           // The new block contains only one instruction: Unreachable
6958           Builder.CreateUnreachable();
6959           for (auto &Case : SI->cases())
6960             if (Case.getCaseSuccessor() == BB) {
6961               BB->removePredecessor(Predecessor);
6962               Case.setSuccessor(Unreachable);
6963             }
6964           if (SI->getDefaultDest() == BB) {
6965             BB->removePredecessor(Predecessor);
6966             SI->setDefaultDest(Unreachable);
6967           }
6968 
6969           if (DTU)
6970             DTU->applyUpdates(
6971                 { { DominatorTree::Insert, Predecessor, Unreachable },
6972                   { DominatorTree::Delete, Predecessor, BB } });
6973           return true;
6974         }
6975       }
6976 
6977   return false;
6978 }
6979 
6980 bool SimplifyCFGOpt::simplifyOnce(BasicBlock *BB) {
6981   bool Changed = false;
6982 
6983   assert(BB && BB->getParent() && "Block not embedded in function!");
6984   assert(BB->getTerminator() && "Degenerate basic block encountered!");
6985 
6986   // Remove basic blocks that have no predecessors (except the entry block)...
6987   // or that just have themself as a predecessor.  These are unreachable.
6988   if ((pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) ||
6989       BB->getSinglePredecessor() == BB) {
6990     LLVM_DEBUG(dbgs() << "Removing BB: \n" << *BB);
6991     DeleteDeadBlock(BB, DTU);
6992     return true;
6993   }
6994 
6995   // Check to see if we can constant propagate this terminator instruction
6996   // away...
6997   Changed |= ConstantFoldTerminator(BB, /*DeleteDeadConditions=*/true,
6998                                     /*TLI=*/nullptr, DTU);
6999 
7000   // Check for and eliminate duplicate PHI nodes in this block.
7001   Changed |= EliminateDuplicatePHINodes(BB);
7002 
7003   // Check for and remove branches that will always cause undefined behavior.
7004   if (removeUndefIntroducingPredecessor(BB, DTU))
7005     return requestResimplify();
7006 
7007   // Merge basic blocks into their predecessor if there is only one distinct
7008   // pred, and if there is only one distinct successor of the predecessor, and
7009   // if there are no PHI nodes.
7010   if (MergeBlockIntoPredecessor(BB, DTU))
7011     return true;
7012 
7013   if (SinkCommon && Options.SinkCommonInsts)
7014     if (SinkCommonCodeFromPredecessors(BB, DTU) ||
7015         MergeCompatibleInvokes(BB, DTU)) {
7016       // SinkCommonCodeFromPredecessors() does not automatically CSE PHI's,
7017       // so we may now how duplicate PHI's.
7018       // Let's rerun EliminateDuplicatePHINodes() first,
7019       // before FoldTwoEntryPHINode() potentially converts them into select's,
7020       // after which we'd need a whole EarlyCSE pass run to cleanup them.
7021       return true;
7022     }
7023 
7024   IRBuilder<> Builder(BB);
7025 
7026   if (Options.FoldTwoEntryPHINode) {
7027     // If there is a trivial two-entry PHI node in this basic block, and we can
7028     // eliminate it, do so now.
7029     if (auto *PN = dyn_cast<PHINode>(BB->begin()))
7030       if (PN->getNumIncomingValues() == 2)
7031         if (FoldTwoEntryPHINode(PN, TTI, DTU, DL))
7032           return true;
7033   }
7034 
7035   Instruction *Terminator = BB->getTerminator();
7036   Builder.SetInsertPoint(Terminator);
7037   switch (Terminator->getOpcode()) {
7038   case Instruction::Br:
7039     Changed |= simplifyBranch(cast<BranchInst>(Terminator), Builder);
7040     break;
7041   case Instruction::Resume:
7042     Changed |= simplifyResume(cast<ResumeInst>(Terminator), Builder);
7043     break;
7044   case Instruction::CleanupRet:
7045     Changed |= simplifyCleanupReturn(cast<CleanupReturnInst>(Terminator));
7046     break;
7047   case Instruction::Switch:
7048     Changed |= simplifySwitch(cast<SwitchInst>(Terminator), Builder);
7049     break;
7050   case Instruction::Unreachable:
7051     Changed |= simplifyUnreachable(cast<UnreachableInst>(Terminator));
7052     break;
7053   case Instruction::IndirectBr:
7054     Changed |= simplifyIndirectBr(cast<IndirectBrInst>(Terminator));
7055     break;
7056   }
7057 
7058   return Changed;
7059 }
7060 
7061 bool SimplifyCFGOpt::run(BasicBlock *BB) {
7062   bool Changed = false;
7063 
7064   // Repeated simplify BB as long as resimplification is requested.
7065   do {
7066     Resimplify = false;
7067 
7068     // Perform one round of simplifcation. Resimplify flag will be set if
7069     // another iteration is requested.
7070     Changed |= simplifyOnce(BB);
7071   } while (Resimplify);
7072 
7073   return Changed;
7074 }
7075 
7076 bool llvm::simplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI,
7077                        DomTreeUpdater *DTU, const SimplifyCFGOptions &Options,
7078                        ArrayRef<WeakVH> LoopHeaders) {
7079   return SimplifyCFGOpt(TTI, DTU, BB->getModule()->getDataLayout(), LoopHeaders,
7080                         Options)
7081       .run(BB);
7082 }
7083