1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Peephole optimize the CFG.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/ADT/APInt.h"
14 #include "llvm/ADT/ArrayRef.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/Optional.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SetOperations.h"
19 #include "llvm/ADT/SetVector.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/ADT/StringRef.h"
24 #include "llvm/Analysis/AssumptionCache.h"
25 #include "llvm/Analysis/ConstantFolding.h"
26 #include "llvm/Analysis/EHPersonalities.h"
27 #include "llvm/Analysis/GuardUtils.h"
28 #include "llvm/Analysis/InstructionSimplify.h"
29 #include "llvm/Analysis/MemorySSA.h"
30 #include "llvm/Analysis/MemorySSAUpdater.h"
31 #include "llvm/Analysis/TargetTransformInfo.h"
32 #include "llvm/Analysis/ValueTracking.h"
33 #include "llvm/IR/Attributes.h"
34 #include "llvm/IR/BasicBlock.h"
35 #include "llvm/IR/CFG.h"
36 #include "llvm/IR/CallSite.h"
37 #include "llvm/IR/Constant.h"
38 #include "llvm/IR/ConstantRange.h"
39 #include "llvm/IR/Constants.h"
40 #include "llvm/IR/DataLayout.h"
41 #include "llvm/IR/DerivedTypes.h"
42 #include "llvm/IR/Function.h"
43 #include "llvm/IR/GlobalValue.h"
44 #include "llvm/IR/GlobalVariable.h"
45 #include "llvm/IR/IRBuilder.h"
46 #include "llvm/IR/InstrTypes.h"
47 #include "llvm/IR/Instruction.h"
48 #include "llvm/IR/Instructions.h"
49 #include "llvm/IR/IntrinsicInst.h"
50 #include "llvm/IR/Intrinsics.h"
51 #include "llvm/IR/LLVMContext.h"
52 #include "llvm/IR/MDBuilder.h"
53 #include "llvm/IR/Metadata.h"
54 #include "llvm/IR/Module.h"
55 #include "llvm/IR/NoFolder.h"
56 #include "llvm/IR/Operator.h"
57 #include "llvm/IR/PatternMatch.h"
58 #include "llvm/IR/Type.h"
59 #include "llvm/IR/Use.h"
60 #include "llvm/IR/User.h"
61 #include "llvm/IR/Value.h"
62 #include "llvm/Support/Casting.h"
63 #include "llvm/Support/CommandLine.h"
64 #include "llvm/Support/Debug.h"
65 #include "llvm/Support/ErrorHandling.h"
66 #include "llvm/Support/KnownBits.h"
67 #include "llvm/Support/MathExtras.h"
68 #include "llvm/Support/raw_ostream.h"
69 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
70 #include "llvm/Transforms/Utils/Local.h"
71 #include "llvm/Transforms/Utils/ValueMapper.h"
72 #include <algorithm>
73 #include <cassert>
74 #include <climits>
75 #include <cstddef>
76 #include <cstdint>
77 #include <iterator>
78 #include <map>
79 #include <set>
80 #include <tuple>
81 #include <utility>
82 #include <vector>
83 
84 using namespace llvm;
85 using namespace PatternMatch;
86 
87 #define DEBUG_TYPE "simplifycfg"
88 
89 // Chosen as 2 so as to be cheap, but still to have enough power to fold
90 // a select, so the "clamp" idiom (of a min followed by a max) will be caught.
91 // To catch this, we need to fold a compare and a select, hence '2' being the
92 // minimum reasonable default.
93 static cl::opt<unsigned> PHINodeFoldingThreshold(
94     "phi-node-folding-threshold", cl::Hidden, cl::init(2),
95     cl::desc(
96         "Control the amount of phi node folding to perform (default = 2)"));
97 
98 static cl::opt<unsigned> TwoEntryPHINodeFoldingThreshold(
99     "two-entry-phi-node-folding-threshold", cl::Hidden, cl::init(4),
100     cl::desc("Control the maximal total instruction cost that we are willing "
101              "to speculatively execute to fold a 2-entry PHI node into a "
102              "select (default = 4)"));
103 
104 static cl::opt<bool> DupRet(
105     "simplifycfg-dup-ret", cl::Hidden, cl::init(false),
106     cl::desc("Duplicate return instructions into unconditional branches"));
107 
108 static cl::opt<bool>
109     SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true),
110                cl::desc("Sink common instructions down to the end block"));
111 
112 static cl::opt<bool> HoistCondStores(
113     "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true),
114     cl::desc("Hoist conditional stores if an unconditional store precedes"));
115 
116 static cl::opt<bool> MergeCondStores(
117     "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true),
118     cl::desc("Hoist conditional stores even if an unconditional store does not "
119              "precede - hoist multiple conditional stores into a single "
120              "predicated store"));
121 
122 static cl::opt<bool> MergeCondStoresAggressively(
123     "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false),
124     cl::desc("When merging conditional stores, do so even if the resultant "
125              "basic blocks are unlikely to be if-converted as a result"));
126 
127 static cl::opt<bool> SpeculateOneExpensiveInst(
128     "speculate-one-expensive-inst", cl::Hidden, cl::init(true),
129     cl::desc("Allow exactly one expensive instruction to be speculatively "
130              "executed"));
131 
132 static cl::opt<unsigned> MaxSpeculationDepth(
133     "max-speculation-depth", cl::Hidden, cl::init(10),
134     cl::desc("Limit maximum recursion depth when calculating costs of "
135              "speculatively executed instructions"));
136 
137 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps");
138 STATISTIC(NumLinearMaps,
139           "Number of switch instructions turned into linear mapping");
140 STATISTIC(NumLookupTables,
141           "Number of switch instructions turned into lookup tables");
142 STATISTIC(
143     NumLookupTablesHoles,
144     "Number of switch instructions turned into lookup tables (holes checked)");
145 STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares");
146 STATISTIC(NumSinkCommons,
147           "Number of common instructions sunk down to the end block");
148 STATISTIC(NumSpeculations, "Number of speculative executed instructions");
149 
150 namespace {
151 
152 // The first field contains the value that the switch produces when a certain
153 // case group is selected, and the second field is a vector containing the
154 // cases composing the case group.
155 using SwitchCaseResultVectorTy =
156     SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2>;
157 
158 // The first field contains the phi node that generates a result of the switch
159 // and the second field contains the value generated for a certain case in the
160 // switch for that PHI.
161 using SwitchCaseResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>;
162 
163 /// ValueEqualityComparisonCase - Represents a case of a switch.
164 struct ValueEqualityComparisonCase {
165   ConstantInt *Value;
166   BasicBlock *Dest;
167 
168   ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest)
169       : Value(Value), Dest(Dest) {}
170 
171   bool operator<(ValueEqualityComparisonCase RHS) const {
172     // Comparing pointers is ok as we only rely on the order for uniquing.
173     return Value < RHS.Value;
174   }
175 
176   bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; }
177 };
178 
179 class SimplifyCFGOpt {
180   const TargetTransformInfo &TTI;
181   const DataLayout &DL;
182   SmallPtrSetImpl<BasicBlock *> *LoopHeaders;
183   const SimplifyCFGOptions &Options;
184   bool Resimplify;
185 
186   Value *isValueEqualityComparison(Instruction *TI);
187   BasicBlock *GetValueEqualityComparisonCases(
188       Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases);
189   bool SimplifyEqualityComparisonWithOnlyPredecessor(Instruction *TI,
190                                                      BasicBlock *Pred,
191                                                      IRBuilder<> &Builder);
192   bool FoldValueComparisonIntoPredecessors(Instruction *TI,
193                                            IRBuilder<> &Builder);
194 
195   bool SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder);
196   bool SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder);
197   bool SimplifySingleResume(ResumeInst *RI);
198   bool SimplifyCommonResume(ResumeInst *RI);
199   bool SimplifyCleanupReturn(CleanupReturnInst *RI);
200   bool SimplifyUnreachable(UnreachableInst *UI);
201   bool SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder);
202   bool SimplifyIndirectBr(IndirectBrInst *IBI);
203   bool SimplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder);
204   bool SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder);
205 
206   bool tryToSimplifyUncondBranchWithICmpInIt(ICmpInst *ICI,
207                                              IRBuilder<> &Builder);
208 
209 public:
210   SimplifyCFGOpt(const TargetTransformInfo &TTI, const DataLayout &DL,
211                  SmallPtrSetImpl<BasicBlock *> *LoopHeaders,
212                  const SimplifyCFGOptions &Opts)
213       : TTI(TTI), DL(DL), LoopHeaders(LoopHeaders), Options(Opts) {}
214 
215   bool run(BasicBlock *BB);
216   bool simplifyOnce(BasicBlock *BB);
217 
218   // Helper to set Resimplify and return change indication.
219   bool requestResimplify() {
220     Resimplify = true;
221     return true;
222   }
223 };
224 
225 } // end anonymous namespace
226 
227 /// Return true if it is safe to merge these two
228 /// terminator instructions together.
229 static bool
230 SafeToMergeTerminators(Instruction *SI1, Instruction *SI2,
231                        SmallSetVector<BasicBlock *, 4> *FailBlocks = nullptr) {
232   if (SI1 == SI2)
233     return false; // Can't merge with self!
234 
235   // It is not safe to merge these two switch instructions if they have a common
236   // successor, and if that successor has a PHI node, and if *that* PHI node has
237   // conflicting incoming values from the two switch blocks.
238   BasicBlock *SI1BB = SI1->getParent();
239   BasicBlock *SI2BB = SI2->getParent();
240 
241   SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
242   bool Fail = false;
243   for (BasicBlock *Succ : successors(SI2BB))
244     if (SI1Succs.count(Succ))
245       for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) {
246         PHINode *PN = cast<PHINode>(BBI);
247         if (PN->getIncomingValueForBlock(SI1BB) !=
248             PN->getIncomingValueForBlock(SI2BB)) {
249           if (FailBlocks)
250             FailBlocks->insert(Succ);
251           Fail = true;
252         }
253       }
254 
255   return !Fail;
256 }
257 
258 /// Return true if it is safe and profitable to merge these two terminator
259 /// instructions together, where SI1 is an unconditional branch. PhiNodes will
260 /// store all PHI nodes in common successors.
261 static bool
262 isProfitableToFoldUnconditional(BranchInst *SI1, BranchInst *SI2,
263                                 Instruction *Cond,
264                                 SmallVectorImpl<PHINode *> &PhiNodes) {
265   if (SI1 == SI2)
266     return false; // Can't merge with self!
267   assert(SI1->isUnconditional() && SI2->isConditional());
268 
269   // We fold the unconditional branch if we can easily update all PHI nodes in
270   // common successors:
271   // 1> We have a constant incoming value for the conditional branch;
272   // 2> We have "Cond" as the incoming value for the unconditional branch;
273   // 3> SI2->getCondition() and Cond have same operands.
274   CmpInst *Ci2 = dyn_cast<CmpInst>(SI2->getCondition());
275   if (!Ci2)
276     return false;
277   if (!(Cond->getOperand(0) == Ci2->getOperand(0) &&
278         Cond->getOperand(1) == Ci2->getOperand(1)) &&
279       !(Cond->getOperand(0) == Ci2->getOperand(1) &&
280         Cond->getOperand(1) == Ci2->getOperand(0)))
281     return false;
282 
283   BasicBlock *SI1BB = SI1->getParent();
284   BasicBlock *SI2BB = SI2->getParent();
285   SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
286   for (BasicBlock *Succ : successors(SI2BB))
287     if (SI1Succs.count(Succ))
288       for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) {
289         PHINode *PN = cast<PHINode>(BBI);
290         if (PN->getIncomingValueForBlock(SI1BB) != Cond ||
291             !isa<ConstantInt>(PN->getIncomingValueForBlock(SI2BB)))
292           return false;
293         PhiNodes.push_back(PN);
294       }
295   return true;
296 }
297 
298 /// Update PHI nodes in Succ to indicate that there will now be entries in it
299 /// from the 'NewPred' block. The values that will be flowing into the PHI nodes
300 /// will be the same as those coming in from ExistPred, an existing predecessor
301 /// of Succ.
302 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred,
303                                   BasicBlock *ExistPred,
304                                   MemorySSAUpdater *MSSAU = nullptr) {
305   for (PHINode &PN : Succ->phis())
306     PN.addIncoming(PN.getIncomingValueForBlock(ExistPred), NewPred);
307   if (MSSAU)
308     if (auto *MPhi = MSSAU->getMemorySSA()->getMemoryAccess(Succ))
309       MPhi->addIncoming(MPhi->getIncomingValueForBlock(ExistPred), NewPred);
310 }
311 
312 /// Compute an abstract "cost" of speculating the given instruction,
313 /// which is assumed to be safe to speculate. TCC_Free means cheap,
314 /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively
315 /// expensive.
316 static unsigned ComputeSpeculationCost(const User *I,
317                                        const TargetTransformInfo &TTI) {
318   assert(isSafeToSpeculativelyExecute(I) &&
319          "Instruction is not safe to speculatively execute!");
320   return TTI.getUserCost(I);
321 }
322 
323 /// If we have a merge point of an "if condition" as accepted above,
324 /// return true if the specified value dominates the block.  We
325 /// don't handle the true generality of domination here, just a special case
326 /// which works well enough for us.
327 ///
328 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to
329 /// see if V (which must be an instruction) and its recursive operands
330 /// that do not dominate BB have a combined cost lower than CostRemaining and
331 /// are non-trapping.  If both are true, the instruction is inserted into the
332 /// set and true is returned.
333 ///
334 /// The cost for most non-trapping instructions is defined as 1 except for
335 /// Select whose cost is 2.
336 ///
337 /// After this function returns, CostRemaining is decreased by the cost of
338 /// V plus its non-dominating operands.  If that cost is greater than
339 /// CostRemaining, false is returned and CostRemaining is undefined.
340 static bool DominatesMergePoint(Value *V, BasicBlock *BB,
341                                 SmallPtrSetImpl<Instruction *> &AggressiveInsts,
342                                 int &BudgetRemaining,
343                                 const TargetTransformInfo &TTI,
344                                 unsigned Depth = 0) {
345   // It is possible to hit a zero-cost cycle (phi/gep instructions for example),
346   // so limit the recursion depth.
347   // TODO: While this recursion limit does prevent pathological behavior, it
348   // would be better to track visited instructions to avoid cycles.
349   if (Depth == MaxSpeculationDepth)
350     return false;
351 
352   Instruction *I = dyn_cast<Instruction>(V);
353   if (!I) {
354     // Non-instructions all dominate instructions, but not all constantexprs
355     // can be executed unconditionally.
356     if (ConstantExpr *C = dyn_cast<ConstantExpr>(V))
357       if (C->canTrap())
358         return false;
359     return true;
360   }
361   BasicBlock *PBB = I->getParent();
362 
363   // We don't want to allow weird loops that might have the "if condition" in
364   // the bottom of this block.
365   if (PBB == BB)
366     return false;
367 
368   // If this instruction is defined in a block that contains an unconditional
369   // branch to BB, then it must be in the 'conditional' part of the "if
370   // statement".  If not, it definitely dominates the region.
371   BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator());
372   if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB)
373     return true;
374 
375   // If we have seen this instruction before, don't count it again.
376   if (AggressiveInsts.count(I))
377     return true;
378 
379   // Okay, it looks like the instruction IS in the "condition".  Check to
380   // see if it's a cheap instruction to unconditionally compute, and if it
381   // only uses stuff defined outside of the condition.  If so, hoist it out.
382   if (!isSafeToSpeculativelyExecute(I))
383     return false;
384 
385   BudgetRemaining -= ComputeSpeculationCost(I, TTI);
386 
387   // Allow exactly one instruction to be speculated regardless of its cost
388   // (as long as it is safe to do so).
389   // This is intended to flatten the CFG even if the instruction is a division
390   // or other expensive operation. The speculation of an expensive instruction
391   // is expected to be undone in CodeGenPrepare if the speculation has not
392   // enabled further IR optimizations.
393   if (BudgetRemaining < 0 &&
394       (!SpeculateOneExpensiveInst || !AggressiveInsts.empty() || Depth > 0))
395     return false;
396 
397   // Okay, we can only really hoist these out if their operands do
398   // not take us over the cost threshold.
399   for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i)
400     if (!DominatesMergePoint(*i, BB, AggressiveInsts, BudgetRemaining, TTI,
401                              Depth + 1))
402       return false;
403   // Okay, it's safe to do this!  Remember this instruction.
404   AggressiveInsts.insert(I);
405   return true;
406 }
407 
408 /// Extract ConstantInt from value, looking through IntToPtr
409 /// and PointerNullValue. Return NULL if value is not a constant int.
410 static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) {
411   // Normal constant int.
412   ConstantInt *CI = dyn_cast<ConstantInt>(V);
413   if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy())
414     return CI;
415 
416   // This is some kind of pointer constant. Turn it into a pointer-sized
417   // ConstantInt if possible.
418   IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType()));
419 
420   // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*).
421   if (isa<ConstantPointerNull>(V))
422     return ConstantInt::get(PtrTy, 0);
423 
424   // IntToPtr const int.
425   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
426     if (CE->getOpcode() == Instruction::IntToPtr)
427       if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) {
428         // The constant is very likely to have the right type already.
429         if (CI->getType() == PtrTy)
430           return CI;
431         else
432           return cast<ConstantInt>(
433               ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false));
434       }
435   return nullptr;
436 }
437 
438 namespace {
439 
440 /// Given a chain of or (||) or and (&&) comparison of a value against a
441 /// constant, this will try to recover the information required for a switch
442 /// structure.
443 /// It will depth-first traverse the chain of comparison, seeking for patterns
444 /// like %a == 12 or %a < 4 and combine them to produce a set of integer
445 /// representing the different cases for the switch.
446 /// Note that if the chain is composed of '||' it will build the set of elements
447 /// that matches the comparisons (i.e. any of this value validate the chain)
448 /// while for a chain of '&&' it will build the set elements that make the test
449 /// fail.
450 struct ConstantComparesGatherer {
451   const DataLayout &DL;
452 
453   /// Value found for the switch comparison
454   Value *CompValue = nullptr;
455 
456   /// Extra clause to be checked before the switch
457   Value *Extra = nullptr;
458 
459   /// Set of integers to match in switch
460   SmallVector<ConstantInt *, 8> Vals;
461 
462   /// Number of comparisons matched in the and/or chain
463   unsigned UsedICmps = 0;
464 
465   /// Construct and compute the result for the comparison instruction Cond
466   ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL) : DL(DL) {
467     gather(Cond);
468   }
469 
470   ConstantComparesGatherer(const ConstantComparesGatherer &) = delete;
471   ConstantComparesGatherer &
472   operator=(const ConstantComparesGatherer &) = delete;
473 
474 private:
475   /// Try to set the current value used for the comparison, it succeeds only if
476   /// it wasn't set before or if the new value is the same as the old one
477   bool setValueOnce(Value *NewVal) {
478     if (CompValue && CompValue != NewVal)
479       return false;
480     CompValue = NewVal;
481     return (CompValue != nullptr);
482   }
483 
484   /// Try to match Instruction "I" as a comparison against a constant and
485   /// populates the array Vals with the set of values that match (or do not
486   /// match depending on isEQ).
487   /// Return false on failure. On success, the Value the comparison matched
488   /// against is placed in CompValue.
489   /// If CompValue is already set, the function is expected to fail if a match
490   /// is found but the value compared to is different.
491   bool matchInstruction(Instruction *I, bool isEQ) {
492     // If this is an icmp against a constant, handle this as one of the cases.
493     ICmpInst *ICI;
494     ConstantInt *C;
495     if (!((ICI = dyn_cast<ICmpInst>(I)) &&
496           (C = GetConstantInt(I->getOperand(1), DL)))) {
497       return false;
498     }
499 
500     Value *RHSVal;
501     const APInt *RHSC;
502 
503     // Pattern match a special case
504     // (x & ~2^z) == y --> x == y || x == y|2^z
505     // This undoes a transformation done by instcombine to fuse 2 compares.
506     if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE)) {
507       // It's a little bit hard to see why the following transformations are
508       // correct. Here is a CVC3 program to verify them for 64-bit values:
509 
510       /*
511          ONE  : BITVECTOR(64) = BVZEROEXTEND(0bin1, 63);
512          x    : BITVECTOR(64);
513          y    : BITVECTOR(64);
514          z    : BITVECTOR(64);
515          mask : BITVECTOR(64) = BVSHL(ONE, z);
516          QUERY( (y & ~mask = y) =>
517                 ((x & ~mask = y) <=> (x = y OR x = (y |  mask)))
518          );
519          QUERY( (y |  mask = y) =>
520                 ((x |  mask = y) <=> (x = y OR x = (y & ~mask)))
521          );
522       */
523 
524       // Please note that each pattern must be a dual implication (<--> or
525       // iff). One directional implication can create spurious matches. If the
526       // implication is only one-way, an unsatisfiable condition on the left
527       // side can imply a satisfiable condition on the right side. Dual
528       // implication ensures that satisfiable conditions are transformed to
529       // other satisfiable conditions and unsatisfiable conditions are
530       // transformed to other unsatisfiable conditions.
531 
532       // Here is a concrete example of a unsatisfiable condition on the left
533       // implying a satisfiable condition on the right:
534       //
535       // mask = (1 << z)
536       // (x & ~mask) == y  --> (x == y || x == (y | mask))
537       //
538       // Substituting y = 3, z = 0 yields:
539       // (x & -2) == 3 --> (x == 3 || x == 2)
540 
541       // Pattern match a special case:
542       /*
543         QUERY( (y & ~mask = y) =>
544                ((x & ~mask = y) <=> (x = y OR x = (y |  mask)))
545         );
546       */
547       if (match(ICI->getOperand(0),
548                 m_And(m_Value(RHSVal), m_APInt(RHSC)))) {
549         APInt Mask = ~*RHSC;
550         if (Mask.isPowerOf2() && (C->getValue() & ~Mask) == C->getValue()) {
551           // If we already have a value for the switch, it has to match!
552           if (!setValueOnce(RHSVal))
553             return false;
554 
555           Vals.push_back(C);
556           Vals.push_back(
557               ConstantInt::get(C->getContext(),
558                                C->getValue() | Mask));
559           UsedICmps++;
560           return true;
561         }
562       }
563 
564       // Pattern match a special case:
565       /*
566         QUERY( (y |  mask = y) =>
567                ((x |  mask = y) <=> (x = y OR x = (y & ~mask)))
568         );
569       */
570       if (match(ICI->getOperand(0),
571                 m_Or(m_Value(RHSVal), m_APInt(RHSC)))) {
572         APInt Mask = *RHSC;
573         if (Mask.isPowerOf2() && (C->getValue() | Mask) == C->getValue()) {
574           // If we already have a value for the switch, it has to match!
575           if (!setValueOnce(RHSVal))
576             return false;
577 
578           Vals.push_back(C);
579           Vals.push_back(ConstantInt::get(C->getContext(),
580                                           C->getValue() & ~Mask));
581           UsedICmps++;
582           return true;
583         }
584       }
585 
586       // If we already have a value for the switch, it has to match!
587       if (!setValueOnce(ICI->getOperand(0)))
588         return false;
589 
590       UsedICmps++;
591       Vals.push_back(C);
592       return ICI->getOperand(0);
593     }
594 
595     // If we have "x ult 3", for example, then we can add 0,1,2 to the set.
596     ConstantRange Span = ConstantRange::makeAllowedICmpRegion(
597         ICI->getPredicate(), C->getValue());
598 
599     // Shift the range if the compare is fed by an add. This is the range
600     // compare idiom as emitted by instcombine.
601     Value *CandidateVal = I->getOperand(0);
602     if (match(I->getOperand(0), m_Add(m_Value(RHSVal), m_APInt(RHSC)))) {
603       Span = Span.subtract(*RHSC);
604       CandidateVal = RHSVal;
605     }
606 
607     // If this is an and/!= check, then we are looking to build the set of
608     // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into
609     // x != 0 && x != 1.
610     if (!isEQ)
611       Span = Span.inverse();
612 
613     // If there are a ton of values, we don't want to make a ginormous switch.
614     if (Span.isSizeLargerThan(8) || Span.isEmptySet()) {
615       return false;
616     }
617 
618     // If we already have a value for the switch, it has to match!
619     if (!setValueOnce(CandidateVal))
620       return false;
621 
622     // Add all values from the range to the set
623     for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp)
624       Vals.push_back(ConstantInt::get(I->getContext(), Tmp));
625 
626     UsedICmps++;
627     return true;
628   }
629 
630   /// Given a potentially 'or'd or 'and'd together collection of icmp
631   /// eq/ne/lt/gt instructions that compare a value against a constant, extract
632   /// the value being compared, and stick the list constants into the Vals
633   /// vector.
634   /// One "Extra" case is allowed to differ from the other.
635   void gather(Value *V) {
636     bool isEQ = (cast<Instruction>(V)->getOpcode() == Instruction::Or);
637 
638     // Keep a stack (SmallVector for efficiency) for depth-first traversal
639     SmallVector<Value *, 8> DFT;
640     SmallPtrSet<Value *, 8> Visited;
641 
642     // Initialize
643     Visited.insert(V);
644     DFT.push_back(V);
645 
646     while (!DFT.empty()) {
647       V = DFT.pop_back_val();
648 
649       if (Instruction *I = dyn_cast<Instruction>(V)) {
650         // If it is a || (or && depending on isEQ), process the operands.
651         if (I->getOpcode() == (isEQ ? Instruction::Or : Instruction::And)) {
652           if (Visited.insert(I->getOperand(1)).second)
653             DFT.push_back(I->getOperand(1));
654           if (Visited.insert(I->getOperand(0)).second)
655             DFT.push_back(I->getOperand(0));
656           continue;
657         }
658 
659         // Try to match the current instruction
660         if (matchInstruction(I, isEQ))
661           // Match succeed, continue the loop
662           continue;
663       }
664 
665       // One element of the sequence of || (or &&) could not be match as a
666       // comparison against the same value as the others.
667       // We allow only one "Extra" case to be checked before the switch
668       if (!Extra) {
669         Extra = V;
670         continue;
671       }
672       // Failed to parse a proper sequence, abort now
673       CompValue = nullptr;
674       break;
675     }
676   }
677 };
678 
679 } // end anonymous namespace
680 
681 static void EraseTerminatorAndDCECond(Instruction *TI,
682                                       MemorySSAUpdater *MSSAU = nullptr) {
683   Instruction *Cond = nullptr;
684   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
685     Cond = dyn_cast<Instruction>(SI->getCondition());
686   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
687     if (BI->isConditional())
688       Cond = dyn_cast<Instruction>(BI->getCondition());
689   } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) {
690     Cond = dyn_cast<Instruction>(IBI->getAddress());
691   }
692 
693   TI->eraseFromParent();
694   if (Cond)
695     RecursivelyDeleteTriviallyDeadInstructions(Cond, nullptr, MSSAU);
696 }
697 
698 /// Return true if the specified terminator checks
699 /// to see if a value is equal to constant integer value.
700 Value *SimplifyCFGOpt::isValueEqualityComparison(Instruction *TI) {
701   Value *CV = nullptr;
702   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
703     // Do not permit merging of large switch instructions into their
704     // predecessors unless there is only one predecessor.
705     if (!SI->getParent()->hasNPredecessorsOrMore(128 / SI->getNumSuccessors()))
706       CV = SI->getCondition();
707   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI))
708     if (BI->isConditional() && BI->getCondition()->hasOneUse())
709       if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) {
710         if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL))
711           CV = ICI->getOperand(0);
712       }
713 
714   // Unwrap any lossless ptrtoint cast.
715   if (CV) {
716     if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) {
717       Value *Ptr = PTII->getPointerOperand();
718       if (PTII->getType() == DL.getIntPtrType(Ptr->getType()))
719         CV = Ptr;
720     }
721   }
722   return CV;
723 }
724 
725 /// Given a value comparison instruction,
726 /// decode all of the 'cases' that it represents and return the 'default' block.
727 BasicBlock *SimplifyCFGOpt::GetValueEqualityComparisonCases(
728     Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases) {
729   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
730     Cases.reserve(SI->getNumCases());
731     for (auto Case : SI->cases())
732       Cases.push_back(ValueEqualityComparisonCase(Case.getCaseValue(),
733                                                   Case.getCaseSuccessor()));
734     return SI->getDefaultDest();
735   }
736 
737   BranchInst *BI = cast<BranchInst>(TI);
738   ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
739   BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE);
740   Cases.push_back(ValueEqualityComparisonCase(
741       GetConstantInt(ICI->getOperand(1), DL), Succ));
742   return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ);
743 }
744 
745 /// Given a vector of bb/value pairs, remove any entries
746 /// in the list that match the specified block.
747 static void
748 EliminateBlockCases(BasicBlock *BB,
749                     std::vector<ValueEqualityComparisonCase> &Cases) {
750   Cases.erase(std::remove(Cases.begin(), Cases.end(), BB), Cases.end());
751 }
752 
753 /// Return true if there are any keys in C1 that exist in C2 as well.
754 static bool ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1,
755                           std::vector<ValueEqualityComparisonCase> &C2) {
756   std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2;
757 
758   // Make V1 be smaller than V2.
759   if (V1->size() > V2->size())
760     std::swap(V1, V2);
761 
762   if (V1->empty())
763     return false;
764   if (V1->size() == 1) {
765     // Just scan V2.
766     ConstantInt *TheVal = (*V1)[0].Value;
767     for (unsigned i = 0, e = V2->size(); i != e; ++i)
768       if (TheVal == (*V2)[i].Value)
769         return true;
770   }
771 
772   // Otherwise, just sort both lists and compare element by element.
773   array_pod_sort(V1->begin(), V1->end());
774   array_pod_sort(V2->begin(), V2->end());
775   unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size();
776   while (i1 != e1 && i2 != e2) {
777     if ((*V1)[i1].Value == (*V2)[i2].Value)
778       return true;
779     if ((*V1)[i1].Value < (*V2)[i2].Value)
780       ++i1;
781     else
782       ++i2;
783   }
784   return false;
785 }
786 
787 // Set branch weights on SwitchInst. This sets the metadata if there is at
788 // least one non-zero weight.
789 static void setBranchWeights(SwitchInst *SI, ArrayRef<uint32_t> Weights) {
790   // Check that there is at least one non-zero weight. Otherwise, pass
791   // nullptr to setMetadata which will erase the existing metadata.
792   MDNode *N = nullptr;
793   if (llvm::any_of(Weights, [](uint32_t W) { return W != 0; }))
794     N = MDBuilder(SI->getParent()->getContext()).createBranchWeights(Weights);
795   SI->setMetadata(LLVMContext::MD_prof, N);
796 }
797 
798 // Similar to the above, but for branch and select instructions that take
799 // exactly 2 weights.
800 static void setBranchWeights(Instruction *I, uint32_t TrueWeight,
801                              uint32_t FalseWeight) {
802   assert(isa<BranchInst>(I) || isa<SelectInst>(I));
803   // Check that there is at least one non-zero weight. Otherwise, pass
804   // nullptr to setMetadata which will erase the existing metadata.
805   MDNode *N = nullptr;
806   if (TrueWeight || FalseWeight)
807     N = MDBuilder(I->getParent()->getContext())
808             .createBranchWeights(TrueWeight, FalseWeight);
809   I->setMetadata(LLVMContext::MD_prof, N);
810 }
811 
812 /// If TI is known to be a terminator instruction and its block is known to
813 /// only have a single predecessor block, check to see if that predecessor is
814 /// also a value comparison with the same value, and if that comparison
815 /// determines the outcome of this comparison. If so, simplify TI. This does a
816 /// very limited form of jump threading.
817 bool SimplifyCFGOpt::SimplifyEqualityComparisonWithOnlyPredecessor(
818     Instruction *TI, BasicBlock *Pred, IRBuilder<> &Builder) {
819   Value *PredVal = isValueEqualityComparison(Pred->getTerminator());
820   if (!PredVal)
821     return false; // Not a value comparison in predecessor.
822 
823   Value *ThisVal = isValueEqualityComparison(TI);
824   assert(ThisVal && "This isn't a value comparison!!");
825   if (ThisVal != PredVal)
826     return false; // Different predicates.
827 
828   // TODO: Preserve branch weight metadata, similarly to how
829   // FoldValueComparisonIntoPredecessors preserves it.
830 
831   // Find out information about when control will move from Pred to TI's block.
832   std::vector<ValueEqualityComparisonCase> PredCases;
833   BasicBlock *PredDef =
834       GetValueEqualityComparisonCases(Pred->getTerminator(), PredCases);
835   EliminateBlockCases(PredDef, PredCases); // Remove default from cases.
836 
837   // Find information about how control leaves this block.
838   std::vector<ValueEqualityComparisonCase> ThisCases;
839   BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases);
840   EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases.
841 
842   // If TI's block is the default block from Pred's comparison, potentially
843   // simplify TI based on this knowledge.
844   if (PredDef == TI->getParent()) {
845     // If we are here, we know that the value is none of those cases listed in
846     // PredCases.  If there are any cases in ThisCases that are in PredCases, we
847     // can simplify TI.
848     if (!ValuesOverlap(PredCases, ThisCases))
849       return false;
850 
851     if (isa<BranchInst>(TI)) {
852       // Okay, one of the successors of this condbr is dead.  Convert it to a
853       // uncond br.
854       assert(ThisCases.size() == 1 && "Branch can only have one case!");
855       // Insert the new branch.
856       Instruction *NI = Builder.CreateBr(ThisDef);
857       (void)NI;
858 
859       // Remove PHI node entries for the dead edge.
860       ThisCases[0].Dest->removePredecessor(TI->getParent());
861 
862       LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
863                         << "Through successor TI: " << *TI << "Leaving: " << *NI
864                         << "\n");
865 
866       EraseTerminatorAndDCECond(TI);
867       return true;
868     }
869 
870     SwitchInstProfUpdateWrapper SI = *cast<SwitchInst>(TI);
871     // Okay, TI has cases that are statically dead, prune them away.
872     SmallPtrSet<Constant *, 16> DeadCases;
873     for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
874       DeadCases.insert(PredCases[i].Value);
875 
876     LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
877                       << "Through successor TI: " << *TI);
878 
879     for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) {
880       --i;
881       if (DeadCases.count(i->getCaseValue())) {
882         i->getCaseSuccessor()->removePredecessor(TI->getParent());
883         SI.removeCase(i);
884       }
885     }
886     LLVM_DEBUG(dbgs() << "Leaving: " << *TI << "\n");
887     return true;
888   }
889 
890   // Otherwise, TI's block must correspond to some matched value.  Find out
891   // which value (or set of values) this is.
892   ConstantInt *TIV = nullptr;
893   BasicBlock *TIBB = TI->getParent();
894   for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
895     if (PredCases[i].Dest == TIBB) {
896       if (TIV)
897         return false; // Cannot handle multiple values coming to this block.
898       TIV = PredCases[i].Value;
899     }
900   assert(TIV && "No edge from pred to succ?");
901 
902   // Okay, we found the one constant that our value can be if we get into TI's
903   // BB.  Find out which successor will unconditionally be branched to.
904   BasicBlock *TheRealDest = nullptr;
905   for (unsigned i = 0, e = ThisCases.size(); i != e; ++i)
906     if (ThisCases[i].Value == TIV) {
907       TheRealDest = ThisCases[i].Dest;
908       break;
909     }
910 
911   // If not handled by any explicit cases, it is handled by the default case.
912   if (!TheRealDest)
913     TheRealDest = ThisDef;
914 
915   // Remove PHI node entries for dead edges.
916   BasicBlock *CheckEdge = TheRealDest;
917   for (BasicBlock *Succ : successors(TIBB))
918     if (Succ != CheckEdge)
919       Succ->removePredecessor(TIBB);
920     else
921       CheckEdge = nullptr;
922 
923   // Insert the new branch.
924   Instruction *NI = Builder.CreateBr(TheRealDest);
925   (void)NI;
926 
927   LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
928                     << "Through successor TI: " << *TI << "Leaving: " << *NI
929                     << "\n");
930 
931   EraseTerminatorAndDCECond(TI);
932   return true;
933 }
934 
935 namespace {
936 
937 /// This class implements a stable ordering of constant
938 /// integers that does not depend on their address.  This is important for
939 /// applications that sort ConstantInt's to ensure uniqueness.
940 struct ConstantIntOrdering {
941   bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const {
942     return LHS->getValue().ult(RHS->getValue());
943   }
944 };
945 
946 } // end anonymous namespace
947 
948 static int ConstantIntSortPredicate(ConstantInt *const *P1,
949                                     ConstantInt *const *P2) {
950   const ConstantInt *LHS = *P1;
951   const ConstantInt *RHS = *P2;
952   if (LHS == RHS)
953     return 0;
954   return LHS->getValue().ult(RHS->getValue()) ? 1 : -1;
955 }
956 
957 static inline bool HasBranchWeights(const Instruction *I) {
958   MDNode *ProfMD = I->getMetadata(LLVMContext::MD_prof);
959   if (ProfMD && ProfMD->getOperand(0))
960     if (MDString *MDS = dyn_cast<MDString>(ProfMD->getOperand(0)))
961       return MDS->getString().equals("branch_weights");
962 
963   return false;
964 }
965 
966 /// Get Weights of a given terminator, the default weight is at the front
967 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight
968 /// metadata.
969 static void GetBranchWeights(Instruction *TI,
970                              SmallVectorImpl<uint64_t> &Weights) {
971   MDNode *MD = TI->getMetadata(LLVMContext::MD_prof);
972   assert(MD);
973   for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) {
974     ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i));
975     Weights.push_back(CI->getValue().getZExtValue());
976   }
977 
978   // If TI is a conditional eq, the default case is the false case,
979   // and the corresponding branch-weight data is at index 2. We swap the
980   // default weight to be the first entry.
981   if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
982     assert(Weights.size() == 2);
983     ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
984     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
985       std::swap(Weights.front(), Weights.back());
986   }
987 }
988 
989 /// Keep halving the weights until all can fit in uint32_t.
990 static void FitWeights(MutableArrayRef<uint64_t> Weights) {
991   uint64_t Max = *std::max_element(Weights.begin(), Weights.end());
992   if (Max > UINT_MAX) {
993     unsigned Offset = 32 - countLeadingZeros(Max);
994     for (uint64_t &I : Weights)
995       I >>= Offset;
996   }
997 }
998 
999 /// The specified terminator is a value equality comparison instruction
1000 /// (either a switch or a branch on "X == c").
1001 /// See if any of the predecessors of the terminator block are value comparisons
1002 /// on the same value.  If so, and if safe to do so, fold them together.
1003 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(Instruction *TI,
1004                                                          IRBuilder<> &Builder) {
1005   BasicBlock *BB = TI->getParent();
1006   Value *CV = isValueEqualityComparison(TI); // CondVal
1007   assert(CV && "Not a comparison?");
1008   bool Changed = false;
1009 
1010   SmallVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB));
1011   while (!Preds.empty()) {
1012     BasicBlock *Pred = Preds.pop_back_val();
1013 
1014     // See if the predecessor is a comparison with the same value.
1015     Instruction *PTI = Pred->getTerminator();
1016     Value *PCV = isValueEqualityComparison(PTI); // PredCondVal
1017 
1018     if (PCV == CV && TI != PTI) {
1019       SmallSetVector<BasicBlock*, 4> FailBlocks;
1020       if (!SafeToMergeTerminators(TI, PTI, &FailBlocks)) {
1021         for (auto *Succ : FailBlocks) {
1022           if (!SplitBlockPredecessors(Succ, TI->getParent(), ".fold.split"))
1023             return false;
1024         }
1025       }
1026 
1027       // Figure out which 'cases' to copy from SI to PSI.
1028       std::vector<ValueEqualityComparisonCase> BBCases;
1029       BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases);
1030 
1031       std::vector<ValueEqualityComparisonCase> PredCases;
1032       BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases);
1033 
1034       // Based on whether the default edge from PTI goes to BB or not, fill in
1035       // PredCases and PredDefault with the new switch cases we would like to
1036       // build.
1037       SmallVector<BasicBlock *, 8> NewSuccessors;
1038 
1039       // Update the branch weight metadata along the way
1040       SmallVector<uint64_t, 8> Weights;
1041       bool PredHasWeights = HasBranchWeights(PTI);
1042       bool SuccHasWeights = HasBranchWeights(TI);
1043 
1044       if (PredHasWeights) {
1045         GetBranchWeights(PTI, Weights);
1046         // branch-weight metadata is inconsistent here.
1047         if (Weights.size() != 1 + PredCases.size())
1048           PredHasWeights = SuccHasWeights = false;
1049       } else if (SuccHasWeights)
1050         // If there are no predecessor weights but there are successor weights,
1051         // populate Weights with 1, which will later be scaled to the sum of
1052         // successor's weights
1053         Weights.assign(1 + PredCases.size(), 1);
1054 
1055       SmallVector<uint64_t, 8> SuccWeights;
1056       if (SuccHasWeights) {
1057         GetBranchWeights(TI, SuccWeights);
1058         // branch-weight metadata is inconsistent here.
1059         if (SuccWeights.size() != 1 + BBCases.size())
1060           PredHasWeights = SuccHasWeights = false;
1061       } else if (PredHasWeights)
1062         SuccWeights.assign(1 + BBCases.size(), 1);
1063 
1064       if (PredDefault == BB) {
1065         // If this is the default destination from PTI, only the edges in TI
1066         // that don't occur in PTI, or that branch to BB will be activated.
1067         std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
1068         for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
1069           if (PredCases[i].Dest != BB)
1070             PTIHandled.insert(PredCases[i].Value);
1071           else {
1072             // The default destination is BB, we don't need explicit targets.
1073             std::swap(PredCases[i], PredCases.back());
1074 
1075             if (PredHasWeights || SuccHasWeights) {
1076               // Increase weight for the default case.
1077               Weights[0] += Weights[i + 1];
1078               std::swap(Weights[i + 1], Weights.back());
1079               Weights.pop_back();
1080             }
1081 
1082             PredCases.pop_back();
1083             --i;
1084             --e;
1085           }
1086 
1087         // Reconstruct the new switch statement we will be building.
1088         if (PredDefault != BBDefault) {
1089           PredDefault->removePredecessor(Pred);
1090           PredDefault = BBDefault;
1091           NewSuccessors.push_back(BBDefault);
1092         }
1093 
1094         unsigned CasesFromPred = Weights.size();
1095         uint64_t ValidTotalSuccWeight = 0;
1096         for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
1097           if (!PTIHandled.count(BBCases[i].Value) &&
1098               BBCases[i].Dest != BBDefault) {
1099             PredCases.push_back(BBCases[i]);
1100             NewSuccessors.push_back(BBCases[i].Dest);
1101             if (SuccHasWeights || PredHasWeights) {
1102               // The default weight is at index 0, so weight for the ith case
1103               // should be at index i+1. Scale the cases from successor by
1104               // PredDefaultWeight (Weights[0]).
1105               Weights.push_back(Weights[0] * SuccWeights[i + 1]);
1106               ValidTotalSuccWeight += SuccWeights[i + 1];
1107             }
1108           }
1109 
1110         if (SuccHasWeights || PredHasWeights) {
1111           ValidTotalSuccWeight += SuccWeights[0];
1112           // Scale the cases from predecessor by ValidTotalSuccWeight.
1113           for (unsigned i = 1; i < CasesFromPred; ++i)
1114             Weights[i] *= ValidTotalSuccWeight;
1115           // Scale the default weight by SuccDefaultWeight (SuccWeights[0]).
1116           Weights[0] *= SuccWeights[0];
1117         }
1118       } else {
1119         // If this is not the default destination from PSI, only the edges
1120         // in SI that occur in PSI with a destination of BB will be
1121         // activated.
1122         std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
1123         std::map<ConstantInt *, uint64_t> WeightsForHandled;
1124         for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
1125           if (PredCases[i].Dest == BB) {
1126             PTIHandled.insert(PredCases[i].Value);
1127 
1128             if (PredHasWeights || SuccHasWeights) {
1129               WeightsForHandled[PredCases[i].Value] = Weights[i + 1];
1130               std::swap(Weights[i + 1], Weights.back());
1131               Weights.pop_back();
1132             }
1133 
1134             std::swap(PredCases[i], PredCases.back());
1135             PredCases.pop_back();
1136             --i;
1137             --e;
1138           }
1139 
1140         // Okay, now we know which constants were sent to BB from the
1141         // predecessor.  Figure out where they will all go now.
1142         for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
1143           if (PTIHandled.count(BBCases[i].Value)) {
1144             // If this is one we are capable of getting...
1145             if (PredHasWeights || SuccHasWeights)
1146               Weights.push_back(WeightsForHandled[BBCases[i].Value]);
1147             PredCases.push_back(BBCases[i]);
1148             NewSuccessors.push_back(BBCases[i].Dest);
1149             PTIHandled.erase(
1150                 BBCases[i].Value); // This constant is taken care of
1151           }
1152 
1153         // If there are any constants vectored to BB that TI doesn't handle,
1154         // they must go to the default destination of TI.
1155         for (ConstantInt *I : PTIHandled) {
1156           if (PredHasWeights || SuccHasWeights)
1157             Weights.push_back(WeightsForHandled[I]);
1158           PredCases.push_back(ValueEqualityComparisonCase(I, BBDefault));
1159           NewSuccessors.push_back(BBDefault);
1160         }
1161       }
1162 
1163       // Okay, at this point, we know which new successor Pred will get.  Make
1164       // sure we update the number of entries in the PHI nodes for these
1165       // successors.
1166       for (BasicBlock *NewSuccessor : NewSuccessors)
1167         AddPredecessorToBlock(NewSuccessor, Pred, BB);
1168 
1169       Builder.SetInsertPoint(PTI);
1170       // Convert pointer to int before we switch.
1171       if (CV->getType()->isPointerTy()) {
1172         CV = Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()),
1173                                     "magicptr");
1174       }
1175 
1176       // Now that the successors are updated, create the new Switch instruction.
1177       SwitchInst *NewSI =
1178           Builder.CreateSwitch(CV, PredDefault, PredCases.size());
1179       NewSI->setDebugLoc(PTI->getDebugLoc());
1180       for (ValueEqualityComparisonCase &V : PredCases)
1181         NewSI->addCase(V.Value, V.Dest);
1182 
1183       if (PredHasWeights || SuccHasWeights) {
1184         // Halve the weights if any of them cannot fit in an uint32_t
1185         FitWeights(Weights);
1186 
1187         SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
1188 
1189         setBranchWeights(NewSI, MDWeights);
1190       }
1191 
1192       EraseTerminatorAndDCECond(PTI);
1193 
1194       // Okay, last check.  If BB is still a successor of PSI, then we must
1195       // have an infinite loop case.  If so, add an infinitely looping block
1196       // to handle the case to preserve the behavior of the code.
1197       BasicBlock *InfLoopBlock = nullptr;
1198       for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i)
1199         if (NewSI->getSuccessor(i) == BB) {
1200           if (!InfLoopBlock) {
1201             // Insert it at the end of the function, because it's either code,
1202             // or it won't matter if it's hot. :)
1203             InfLoopBlock = BasicBlock::Create(BB->getContext(), "infloop",
1204                                               BB->getParent());
1205             BranchInst::Create(InfLoopBlock, InfLoopBlock);
1206           }
1207           NewSI->setSuccessor(i, InfLoopBlock);
1208         }
1209 
1210       Changed = true;
1211     }
1212   }
1213   return Changed;
1214 }
1215 
1216 // If we would need to insert a select that uses the value of this invoke
1217 // (comments in HoistThenElseCodeToIf explain why we would need to do this), we
1218 // can't hoist the invoke, as there is nowhere to put the select in this case.
1219 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2,
1220                                 Instruction *I1, Instruction *I2) {
1221   for (BasicBlock *Succ : successors(BB1)) {
1222     for (const PHINode &PN : Succ->phis()) {
1223       Value *BB1V = PN.getIncomingValueForBlock(BB1);
1224       Value *BB2V = PN.getIncomingValueForBlock(BB2);
1225       if (BB1V != BB2V && (BB1V == I1 || BB2V == I2)) {
1226         return false;
1227       }
1228     }
1229   }
1230   return true;
1231 }
1232 
1233 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I);
1234 
1235 /// Given a conditional branch that goes to BB1 and BB2, hoist any common code
1236 /// in the two blocks up into the branch block. The caller of this function
1237 /// guarantees that BI's block dominates BB1 and BB2.
1238 static bool HoistThenElseCodeToIf(BranchInst *BI,
1239                                   const TargetTransformInfo &TTI) {
1240   // This does very trivial matching, with limited scanning, to find identical
1241   // instructions in the two blocks.  In particular, we don't want to get into
1242   // O(M*N) situations here where M and N are the sizes of BB1 and BB2.  As
1243   // such, we currently just scan for obviously identical instructions in an
1244   // identical order.
1245   BasicBlock *BB1 = BI->getSuccessor(0); // The true destination.
1246   BasicBlock *BB2 = BI->getSuccessor(1); // The false destination
1247 
1248   BasicBlock::iterator BB1_Itr = BB1->begin();
1249   BasicBlock::iterator BB2_Itr = BB2->begin();
1250 
1251   Instruction *I1 = &*BB1_Itr++, *I2 = &*BB2_Itr++;
1252   // Skip debug info if it is not identical.
1253   DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1254   DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1255   if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1256     while (isa<DbgInfoIntrinsic>(I1))
1257       I1 = &*BB1_Itr++;
1258     while (isa<DbgInfoIntrinsic>(I2))
1259       I2 = &*BB2_Itr++;
1260   }
1261   // FIXME: Can we define a safety predicate for CallBr?
1262   if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) ||
1263       (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) ||
1264       isa<CallBrInst>(I1))
1265     return false;
1266 
1267   BasicBlock *BIParent = BI->getParent();
1268 
1269   bool Changed = false;
1270   do {
1271     // If we are hoisting the terminator instruction, don't move one (making a
1272     // broken BB), instead clone it, and remove BI.
1273     if (I1->isTerminator())
1274       goto HoistTerminator;
1275 
1276     // If we're going to hoist a call, make sure that the two instructions we're
1277     // commoning/hoisting are both marked with musttail, or neither of them is
1278     // marked as such. Otherwise, we might end up in a situation where we hoist
1279     // from a block where the terminator is a `ret` to a block where the terminator
1280     // is a `br`, and `musttail` calls expect to be followed by a return.
1281     auto *C1 = dyn_cast<CallInst>(I1);
1282     auto *C2 = dyn_cast<CallInst>(I2);
1283     if (C1 && C2)
1284       if (C1->isMustTailCall() != C2->isMustTailCall())
1285         return Changed;
1286 
1287     if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2))
1288       return Changed;
1289 
1290     if (isa<DbgInfoIntrinsic>(I1) || isa<DbgInfoIntrinsic>(I2)) {
1291       assert (isa<DbgInfoIntrinsic>(I1) && isa<DbgInfoIntrinsic>(I2));
1292       // The debug location is an integral part of a debug info intrinsic
1293       // and can't be separated from it or replaced.  Instead of attempting
1294       // to merge locations, simply hoist both copies of the intrinsic.
1295       BIParent->getInstList().splice(BI->getIterator(),
1296                                      BB1->getInstList(), I1);
1297       BIParent->getInstList().splice(BI->getIterator(),
1298                                      BB2->getInstList(), I2);
1299       Changed = true;
1300     } else {
1301       // For a normal instruction, we just move one to right before the branch,
1302       // then replace all uses of the other with the first.  Finally, we remove
1303       // the now redundant second instruction.
1304       BIParent->getInstList().splice(BI->getIterator(),
1305                                      BB1->getInstList(), I1);
1306       if (!I2->use_empty())
1307         I2->replaceAllUsesWith(I1);
1308       I1->andIRFlags(I2);
1309       unsigned KnownIDs[] = {LLVMContext::MD_tbaa,
1310                              LLVMContext::MD_range,
1311                              LLVMContext::MD_fpmath,
1312                              LLVMContext::MD_invariant_load,
1313                              LLVMContext::MD_nonnull,
1314                              LLVMContext::MD_invariant_group,
1315                              LLVMContext::MD_align,
1316                              LLVMContext::MD_dereferenceable,
1317                              LLVMContext::MD_dereferenceable_or_null,
1318                              LLVMContext::MD_mem_parallel_loop_access,
1319                              LLVMContext::MD_access_group,
1320                              LLVMContext::MD_preserve_access_index};
1321       combineMetadata(I1, I2, KnownIDs, true);
1322 
1323       // I1 and I2 are being combined into a single instruction.  Its debug
1324       // location is the merged locations of the original instructions.
1325       I1->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc());
1326 
1327       I2->eraseFromParent();
1328       Changed = true;
1329     }
1330 
1331     I1 = &*BB1_Itr++;
1332     I2 = &*BB2_Itr++;
1333     // Skip debug info if it is not identical.
1334     DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1335     DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1336     if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1337       while (isa<DbgInfoIntrinsic>(I1))
1338         I1 = &*BB1_Itr++;
1339       while (isa<DbgInfoIntrinsic>(I2))
1340         I2 = &*BB2_Itr++;
1341     }
1342   } while (I1->isIdenticalToWhenDefined(I2));
1343 
1344   return true;
1345 
1346 HoistTerminator:
1347   // It may not be possible to hoist an invoke.
1348   // FIXME: Can we define a safety predicate for CallBr?
1349   if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))
1350     return Changed;
1351 
1352   // TODO: callbr hoisting currently disabled pending further study.
1353   if (isa<CallBrInst>(I1))
1354     return Changed;
1355 
1356   for (BasicBlock *Succ : successors(BB1)) {
1357     for (PHINode &PN : Succ->phis()) {
1358       Value *BB1V = PN.getIncomingValueForBlock(BB1);
1359       Value *BB2V = PN.getIncomingValueForBlock(BB2);
1360       if (BB1V == BB2V)
1361         continue;
1362 
1363       // Check for passingValueIsAlwaysUndefined here because we would rather
1364       // eliminate undefined control flow then converting it to a select.
1365       if (passingValueIsAlwaysUndefined(BB1V, &PN) ||
1366           passingValueIsAlwaysUndefined(BB2V, &PN))
1367         return Changed;
1368 
1369       if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V))
1370         return Changed;
1371       if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V))
1372         return Changed;
1373     }
1374   }
1375 
1376   // Okay, it is safe to hoist the terminator.
1377   Instruction *NT = I1->clone();
1378   BIParent->getInstList().insert(BI->getIterator(), NT);
1379   if (!NT->getType()->isVoidTy()) {
1380     I1->replaceAllUsesWith(NT);
1381     I2->replaceAllUsesWith(NT);
1382     NT->takeName(I1);
1383   }
1384 
1385   // Ensure terminator gets a debug location, even an unknown one, in case
1386   // it involves inlinable calls.
1387   NT->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc());
1388 
1389   // PHIs created below will adopt NT's merged DebugLoc.
1390   IRBuilder<NoFolder> Builder(NT);
1391 
1392   // Hoisting one of the terminators from our successor is a great thing.
1393   // Unfortunately, the successors of the if/else blocks may have PHI nodes in
1394   // them.  If they do, all PHI entries for BB1/BB2 must agree for all PHI
1395   // nodes, so we insert select instruction to compute the final result.
1396   std::map<std::pair<Value *, Value *>, SelectInst *> InsertedSelects;
1397   for (BasicBlock *Succ : successors(BB1)) {
1398     for (PHINode &PN : Succ->phis()) {
1399       Value *BB1V = PN.getIncomingValueForBlock(BB1);
1400       Value *BB2V = PN.getIncomingValueForBlock(BB2);
1401       if (BB1V == BB2V)
1402         continue;
1403 
1404       // These values do not agree.  Insert a select instruction before NT
1405       // that determines the right value.
1406       SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)];
1407       if (!SI)
1408         SI = cast<SelectInst>(
1409             Builder.CreateSelect(BI->getCondition(), BB1V, BB2V,
1410                                  BB1V->getName() + "." + BB2V->getName(), BI));
1411 
1412       // Make the PHI node use the select for all incoming values for BB1/BB2
1413       for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
1414         if (PN.getIncomingBlock(i) == BB1 || PN.getIncomingBlock(i) == BB2)
1415           PN.setIncomingValue(i, SI);
1416     }
1417   }
1418 
1419   // Update any PHI nodes in our new successors.
1420   for (BasicBlock *Succ : successors(BB1))
1421     AddPredecessorToBlock(Succ, BIParent, BB1);
1422 
1423   EraseTerminatorAndDCECond(BI);
1424   return true;
1425 }
1426 
1427 // Check lifetime markers.
1428 static bool isLifeTimeMarker(const Instruction *I) {
1429   if (auto II = dyn_cast<IntrinsicInst>(I)) {
1430     switch (II->getIntrinsicID()) {
1431     default:
1432       break;
1433     case Intrinsic::lifetime_start:
1434     case Intrinsic::lifetime_end:
1435       return true;
1436     }
1437   }
1438   return false;
1439 }
1440 
1441 // All instructions in Insts belong to different blocks that all unconditionally
1442 // branch to a common successor. Analyze each instruction and return true if it
1443 // would be possible to sink them into their successor, creating one common
1444 // instruction instead. For every value that would be required to be provided by
1445 // PHI node (because an operand varies in each input block), add to PHIOperands.
1446 static bool canSinkInstructions(
1447     ArrayRef<Instruction *> Insts,
1448     DenseMap<Instruction *, SmallVector<Value *, 4>> &PHIOperands) {
1449   // Prune out obviously bad instructions to move. Each instruction must have
1450   // exactly zero or one use, and we check later that use is by a single, common
1451   // PHI instruction in the successor.
1452   bool HasUse = !Insts.front()->user_empty();
1453   for (auto *I : Insts) {
1454     // These instructions may change or break semantics if moved.
1455     if (isa<PHINode>(I) || I->isEHPad() || isa<AllocaInst>(I) ||
1456         I->getType()->isTokenTy())
1457       return false;
1458 
1459     // Conservatively return false if I is an inline-asm instruction. Sinking
1460     // and merging inline-asm instructions can potentially create arguments
1461     // that cannot satisfy the inline-asm constraints.
1462     if (const auto *C = dyn_cast<CallBase>(I))
1463       if (C->isInlineAsm())
1464         return false;
1465 
1466     // Each instruction must have zero or one use.
1467     if (HasUse && !I->hasOneUse())
1468       return false;
1469     if (!HasUse && !I->user_empty())
1470       return false;
1471   }
1472 
1473   const Instruction *I0 = Insts.front();
1474   for (auto *I : Insts)
1475     if (!I->isSameOperationAs(I0))
1476       return false;
1477 
1478   // All instructions in Insts are known to be the same opcode. If they have a
1479   // use, check that the only user is a PHI or in the same block as the
1480   // instruction, because if a user is in the same block as an instruction we're
1481   // contemplating sinking, it must already be determined to be sinkable.
1482   if (HasUse) {
1483     auto *PNUse = dyn_cast<PHINode>(*I0->user_begin());
1484     auto *Succ = I0->getParent()->getTerminator()->getSuccessor(0);
1485     if (!all_of(Insts, [&PNUse,&Succ](const Instruction *I) -> bool {
1486           auto *U = cast<Instruction>(*I->user_begin());
1487           return (PNUse &&
1488                   PNUse->getParent() == Succ &&
1489                   PNUse->getIncomingValueForBlock(I->getParent()) == I) ||
1490                  U->getParent() == I->getParent();
1491         }))
1492       return false;
1493   }
1494 
1495   // Because SROA can't handle speculating stores of selects, try not to sink
1496   // loads, stores or lifetime markers of allocas when we'd have to create a
1497   // PHI for the address operand. Also, because it is likely that loads or
1498   // stores of allocas will disappear when Mem2Reg/SROA is run, don't sink
1499   // them.
1500   // This can cause code churn which can have unintended consequences down
1501   // the line - see https://llvm.org/bugs/show_bug.cgi?id=30244.
1502   // FIXME: This is a workaround for a deficiency in SROA - see
1503   // https://llvm.org/bugs/show_bug.cgi?id=30188
1504   if (isa<StoreInst>(I0) && any_of(Insts, [](const Instruction *I) {
1505         return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts());
1506       }))
1507     return false;
1508   if (isa<LoadInst>(I0) && any_of(Insts, [](const Instruction *I) {
1509         return isa<AllocaInst>(I->getOperand(0)->stripPointerCasts());
1510       }))
1511     return false;
1512   if (isLifeTimeMarker(I0) && any_of(Insts, [](const Instruction *I) {
1513         return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts());
1514       }))
1515     return false;
1516 
1517   for (unsigned OI = 0, OE = I0->getNumOperands(); OI != OE; ++OI) {
1518     if (I0->getOperand(OI)->getType()->isTokenTy())
1519       // Don't touch any operand of token type.
1520       return false;
1521 
1522     auto SameAsI0 = [&I0, OI](const Instruction *I) {
1523       assert(I->getNumOperands() == I0->getNumOperands());
1524       return I->getOperand(OI) == I0->getOperand(OI);
1525     };
1526     if (!all_of(Insts, SameAsI0)) {
1527       if (!canReplaceOperandWithVariable(I0, OI))
1528         // We can't create a PHI from this GEP.
1529         return false;
1530       // Don't create indirect calls! The called value is the final operand.
1531       if (isa<CallBase>(I0) && OI == OE - 1) {
1532         // FIXME: if the call was *already* indirect, we should do this.
1533         return false;
1534       }
1535       for (auto *I : Insts)
1536         PHIOperands[I].push_back(I->getOperand(OI));
1537     }
1538   }
1539   return true;
1540 }
1541 
1542 // Assuming canSinkLastInstruction(Blocks) has returned true, sink the last
1543 // instruction of every block in Blocks to their common successor, commoning
1544 // into one instruction.
1545 static bool sinkLastInstruction(ArrayRef<BasicBlock*> Blocks) {
1546   auto *BBEnd = Blocks[0]->getTerminator()->getSuccessor(0);
1547 
1548   // canSinkLastInstruction returning true guarantees that every block has at
1549   // least one non-terminator instruction.
1550   SmallVector<Instruction*,4> Insts;
1551   for (auto *BB : Blocks) {
1552     Instruction *I = BB->getTerminator();
1553     do {
1554       I = I->getPrevNode();
1555     } while (isa<DbgInfoIntrinsic>(I) && I != &BB->front());
1556     if (!isa<DbgInfoIntrinsic>(I))
1557       Insts.push_back(I);
1558   }
1559 
1560   // The only checking we need to do now is that all users of all instructions
1561   // are the same PHI node. canSinkLastInstruction should have checked this but
1562   // it is slightly over-aggressive - it gets confused by commutative instructions
1563   // so double-check it here.
1564   Instruction *I0 = Insts.front();
1565   if (!I0->user_empty()) {
1566     auto *PNUse = dyn_cast<PHINode>(*I0->user_begin());
1567     if (!all_of(Insts, [&PNUse](const Instruction *I) -> bool {
1568           auto *U = cast<Instruction>(*I->user_begin());
1569           return U == PNUse;
1570         }))
1571       return false;
1572   }
1573 
1574   // We don't need to do any more checking here; canSinkLastInstruction should
1575   // have done it all for us.
1576   SmallVector<Value*, 4> NewOperands;
1577   for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) {
1578     // This check is different to that in canSinkLastInstruction. There, we
1579     // cared about the global view once simplifycfg (and instcombine) have
1580     // completed - it takes into account PHIs that become trivially
1581     // simplifiable.  However here we need a more local view; if an operand
1582     // differs we create a PHI and rely on instcombine to clean up the very
1583     // small mess we may make.
1584     bool NeedPHI = any_of(Insts, [&I0, O](const Instruction *I) {
1585       return I->getOperand(O) != I0->getOperand(O);
1586     });
1587     if (!NeedPHI) {
1588       NewOperands.push_back(I0->getOperand(O));
1589       continue;
1590     }
1591 
1592     // Create a new PHI in the successor block and populate it.
1593     auto *Op = I0->getOperand(O);
1594     assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!");
1595     auto *PN = PHINode::Create(Op->getType(), Insts.size(),
1596                                Op->getName() + ".sink", &BBEnd->front());
1597     for (auto *I : Insts)
1598       PN->addIncoming(I->getOperand(O), I->getParent());
1599     NewOperands.push_back(PN);
1600   }
1601 
1602   // Arbitrarily use I0 as the new "common" instruction; remap its operands
1603   // and move it to the start of the successor block.
1604   for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O)
1605     I0->getOperandUse(O).set(NewOperands[O]);
1606   I0->moveBefore(&*BBEnd->getFirstInsertionPt());
1607 
1608   // Update metadata and IR flags, and merge debug locations.
1609   for (auto *I : Insts)
1610     if (I != I0) {
1611       // The debug location for the "common" instruction is the merged locations
1612       // of all the commoned instructions.  We start with the original location
1613       // of the "common" instruction and iteratively merge each location in the
1614       // loop below.
1615       // This is an N-way merge, which will be inefficient if I0 is a CallInst.
1616       // However, as N-way merge for CallInst is rare, so we use simplified API
1617       // instead of using complex API for N-way merge.
1618       I0->applyMergedLocation(I0->getDebugLoc(), I->getDebugLoc());
1619       combineMetadataForCSE(I0, I, true);
1620       I0->andIRFlags(I);
1621     }
1622 
1623   if (!I0->user_empty()) {
1624     // canSinkLastInstruction checked that all instructions were used by
1625     // one and only one PHI node. Find that now, RAUW it to our common
1626     // instruction and nuke it.
1627     auto *PN = cast<PHINode>(*I0->user_begin());
1628     PN->replaceAllUsesWith(I0);
1629     PN->eraseFromParent();
1630   }
1631 
1632   // Finally nuke all instructions apart from the common instruction.
1633   for (auto *I : Insts)
1634     if (I != I0)
1635       I->eraseFromParent();
1636 
1637   return true;
1638 }
1639 
1640 namespace {
1641 
1642   // LockstepReverseIterator - Iterates through instructions
1643   // in a set of blocks in reverse order from the first non-terminator.
1644   // For example (assume all blocks have size n):
1645   //   LockstepReverseIterator I([B1, B2, B3]);
1646   //   *I-- = [B1[n], B2[n], B3[n]];
1647   //   *I-- = [B1[n-1], B2[n-1], B3[n-1]];
1648   //   *I-- = [B1[n-2], B2[n-2], B3[n-2]];
1649   //   ...
1650   class LockstepReverseIterator {
1651     ArrayRef<BasicBlock*> Blocks;
1652     SmallVector<Instruction*,4> Insts;
1653     bool Fail;
1654 
1655   public:
1656     LockstepReverseIterator(ArrayRef<BasicBlock*> Blocks) : Blocks(Blocks) {
1657       reset();
1658     }
1659 
1660     void reset() {
1661       Fail = false;
1662       Insts.clear();
1663       for (auto *BB : Blocks) {
1664         Instruction *Inst = BB->getTerminator();
1665         for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
1666           Inst = Inst->getPrevNode();
1667         if (!Inst) {
1668           // Block wasn't big enough.
1669           Fail = true;
1670           return;
1671         }
1672         Insts.push_back(Inst);
1673       }
1674     }
1675 
1676     bool isValid() const {
1677       return !Fail;
1678     }
1679 
1680     void operator--() {
1681       if (Fail)
1682         return;
1683       for (auto *&Inst : Insts) {
1684         for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
1685           Inst = Inst->getPrevNode();
1686         // Already at beginning of block.
1687         if (!Inst) {
1688           Fail = true;
1689           return;
1690         }
1691       }
1692     }
1693 
1694     ArrayRef<Instruction*> operator * () const {
1695       return Insts;
1696     }
1697   };
1698 
1699 } // end anonymous namespace
1700 
1701 /// Check whether BB's predecessors end with unconditional branches. If it is
1702 /// true, sink any common code from the predecessors to BB.
1703 /// We also allow one predecessor to end with conditional branch (but no more
1704 /// than one).
1705 static bool SinkCommonCodeFromPredecessors(BasicBlock *BB) {
1706   // We support two situations:
1707   //   (1) all incoming arcs are unconditional
1708   //   (2) one incoming arc is conditional
1709   //
1710   // (2) is very common in switch defaults and
1711   // else-if patterns;
1712   //
1713   //   if (a) f(1);
1714   //   else if (b) f(2);
1715   //
1716   // produces:
1717   //
1718   //       [if]
1719   //      /    \
1720   //    [f(1)] [if]
1721   //      |     | \
1722   //      |     |  |
1723   //      |  [f(2)]|
1724   //       \    | /
1725   //        [ end ]
1726   //
1727   // [end] has two unconditional predecessor arcs and one conditional. The
1728   // conditional refers to the implicit empty 'else' arc. This conditional
1729   // arc can also be caused by an empty default block in a switch.
1730   //
1731   // In this case, we attempt to sink code from all *unconditional* arcs.
1732   // If we can sink instructions from these arcs (determined during the scan
1733   // phase below) we insert a common successor for all unconditional arcs and
1734   // connect that to [end], to enable sinking:
1735   //
1736   //       [if]
1737   //      /    \
1738   //    [x(1)] [if]
1739   //      |     | \
1740   //      |     |  \
1741   //      |  [x(2)] |
1742   //       \   /    |
1743   //   [sink.split] |
1744   //         \     /
1745   //         [ end ]
1746   //
1747   SmallVector<BasicBlock*,4> UnconditionalPreds;
1748   Instruction *Cond = nullptr;
1749   for (auto *B : predecessors(BB)) {
1750     auto *T = B->getTerminator();
1751     if (isa<BranchInst>(T) && cast<BranchInst>(T)->isUnconditional())
1752       UnconditionalPreds.push_back(B);
1753     else if ((isa<BranchInst>(T) || isa<SwitchInst>(T)) && !Cond)
1754       Cond = T;
1755     else
1756       return false;
1757   }
1758   if (UnconditionalPreds.size() < 2)
1759     return false;
1760 
1761   bool Changed = false;
1762   // We take a two-step approach to tail sinking. First we scan from the end of
1763   // each block upwards in lockstep. If the n'th instruction from the end of each
1764   // block can be sunk, those instructions are added to ValuesToSink and we
1765   // carry on. If we can sink an instruction but need to PHI-merge some operands
1766   // (because they're not identical in each instruction) we add these to
1767   // PHIOperands.
1768   unsigned ScanIdx = 0;
1769   SmallPtrSet<Value*,4> InstructionsToSink;
1770   DenseMap<Instruction*, SmallVector<Value*,4>> PHIOperands;
1771   LockstepReverseIterator LRI(UnconditionalPreds);
1772   while (LRI.isValid() &&
1773          canSinkInstructions(*LRI, PHIOperands)) {
1774     LLVM_DEBUG(dbgs() << "SINK: instruction can be sunk: " << *(*LRI)[0]
1775                       << "\n");
1776     InstructionsToSink.insert((*LRI).begin(), (*LRI).end());
1777     ++ScanIdx;
1778     --LRI;
1779   }
1780 
1781   auto ProfitableToSinkInstruction = [&](LockstepReverseIterator &LRI) {
1782     unsigned NumPHIdValues = 0;
1783     for (auto *I : *LRI)
1784       for (auto *V : PHIOperands[I])
1785         if (InstructionsToSink.count(V) == 0)
1786           ++NumPHIdValues;
1787     LLVM_DEBUG(dbgs() << "SINK: #phid values: " << NumPHIdValues << "\n");
1788     unsigned NumPHIInsts = NumPHIdValues / UnconditionalPreds.size();
1789     if ((NumPHIdValues % UnconditionalPreds.size()) != 0)
1790         NumPHIInsts++;
1791 
1792     return NumPHIInsts <= 1;
1793   };
1794 
1795   if (ScanIdx > 0 && Cond) {
1796     // Check if we would actually sink anything first! This mutates the CFG and
1797     // adds an extra block. The goal in doing this is to allow instructions that
1798     // couldn't be sunk before to be sunk - obviously, speculatable instructions
1799     // (such as trunc, add) can be sunk and predicated already. So we check that
1800     // we're going to sink at least one non-speculatable instruction.
1801     LRI.reset();
1802     unsigned Idx = 0;
1803     bool Profitable = false;
1804     while (ProfitableToSinkInstruction(LRI) && Idx < ScanIdx) {
1805       if (!isSafeToSpeculativelyExecute((*LRI)[0])) {
1806         Profitable = true;
1807         break;
1808       }
1809       --LRI;
1810       ++Idx;
1811     }
1812     if (!Profitable)
1813       return false;
1814 
1815     LLVM_DEBUG(dbgs() << "SINK: Splitting edge\n");
1816     // We have a conditional edge and we're going to sink some instructions.
1817     // Insert a new block postdominating all blocks we're going to sink from.
1818     if (!SplitBlockPredecessors(BB, UnconditionalPreds, ".sink.split"))
1819       // Edges couldn't be split.
1820       return false;
1821     Changed = true;
1822   }
1823 
1824   // Now that we've analyzed all potential sinking candidates, perform the
1825   // actual sink. We iteratively sink the last non-terminator of the source
1826   // blocks into their common successor unless doing so would require too
1827   // many PHI instructions to be generated (currently only one PHI is allowed
1828   // per sunk instruction).
1829   //
1830   // We can use InstructionsToSink to discount values needing PHI-merging that will
1831   // actually be sunk in a later iteration. This allows us to be more
1832   // aggressive in what we sink. This does allow a false positive where we
1833   // sink presuming a later value will also be sunk, but stop half way through
1834   // and never actually sink it which means we produce more PHIs than intended.
1835   // This is unlikely in practice though.
1836   for (unsigned SinkIdx = 0; SinkIdx != ScanIdx; ++SinkIdx) {
1837     LLVM_DEBUG(dbgs() << "SINK: Sink: "
1838                       << *UnconditionalPreds[0]->getTerminator()->getPrevNode()
1839                       << "\n");
1840 
1841     // Because we've sunk every instruction in turn, the current instruction to
1842     // sink is always at index 0.
1843     LRI.reset();
1844     if (!ProfitableToSinkInstruction(LRI)) {
1845       // Too many PHIs would be created.
1846       LLVM_DEBUG(
1847           dbgs() << "SINK: stopping here, too many PHIs would be created!\n");
1848       break;
1849     }
1850 
1851     if (!sinkLastInstruction(UnconditionalPreds))
1852       return Changed;
1853     NumSinkCommons++;
1854     Changed = true;
1855   }
1856   return Changed;
1857 }
1858 
1859 /// Determine if we can hoist sink a sole store instruction out of a
1860 /// conditional block.
1861 ///
1862 /// We are looking for code like the following:
1863 ///   BrBB:
1864 ///     store i32 %add, i32* %arrayidx2
1865 ///     ... // No other stores or function calls (we could be calling a memory
1866 ///     ... // function).
1867 ///     %cmp = icmp ult %x, %y
1868 ///     br i1 %cmp, label %EndBB, label %ThenBB
1869 ///   ThenBB:
1870 ///     store i32 %add5, i32* %arrayidx2
1871 ///     br label EndBB
1872 ///   EndBB:
1873 ///     ...
1874 ///   We are going to transform this into:
1875 ///   BrBB:
1876 ///     store i32 %add, i32* %arrayidx2
1877 ///     ... //
1878 ///     %cmp = icmp ult %x, %y
1879 ///     %add.add5 = select i1 %cmp, i32 %add, %add5
1880 ///     store i32 %add.add5, i32* %arrayidx2
1881 ///     ...
1882 ///
1883 /// \return The pointer to the value of the previous store if the store can be
1884 ///         hoisted into the predecessor block. 0 otherwise.
1885 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB,
1886                                      BasicBlock *StoreBB, BasicBlock *EndBB) {
1887   StoreInst *StoreToHoist = dyn_cast<StoreInst>(I);
1888   if (!StoreToHoist)
1889     return nullptr;
1890 
1891   // Volatile or atomic.
1892   if (!StoreToHoist->isSimple())
1893     return nullptr;
1894 
1895   Value *StorePtr = StoreToHoist->getPointerOperand();
1896 
1897   // Look for a store to the same pointer in BrBB.
1898   unsigned MaxNumInstToLookAt = 9;
1899   for (Instruction &CurI : reverse(BrBB->instructionsWithoutDebug())) {
1900     if (!MaxNumInstToLookAt)
1901       break;
1902     --MaxNumInstToLookAt;
1903 
1904     // Could be calling an instruction that affects memory like free().
1905     if (CurI.mayHaveSideEffects() && !isa<StoreInst>(CurI))
1906       return nullptr;
1907 
1908     if (auto *SI = dyn_cast<StoreInst>(&CurI)) {
1909       // Found the previous store make sure it stores to the same location.
1910       if (SI->getPointerOperand() == StorePtr)
1911         // Found the previous store, return its value operand.
1912         return SI->getValueOperand();
1913       return nullptr; // Unknown store.
1914     }
1915   }
1916 
1917   return nullptr;
1918 }
1919 
1920 /// Speculate a conditional basic block flattening the CFG.
1921 ///
1922 /// Note that this is a very risky transform currently. Speculating
1923 /// instructions like this is most often not desirable. Instead, there is an MI
1924 /// pass which can do it with full awareness of the resource constraints.
1925 /// However, some cases are "obvious" and we should do directly. An example of
1926 /// this is speculating a single, reasonably cheap instruction.
1927 ///
1928 /// There is only one distinct advantage to flattening the CFG at the IR level:
1929 /// it makes very common but simplistic optimizations such as are common in
1930 /// instcombine and the DAG combiner more powerful by removing CFG edges and
1931 /// modeling their effects with easier to reason about SSA value graphs.
1932 ///
1933 ///
1934 /// An illustration of this transform is turning this IR:
1935 /// \code
1936 ///   BB:
1937 ///     %cmp = icmp ult %x, %y
1938 ///     br i1 %cmp, label %EndBB, label %ThenBB
1939 ///   ThenBB:
1940 ///     %sub = sub %x, %y
1941 ///     br label BB2
1942 ///   EndBB:
1943 ///     %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ]
1944 ///     ...
1945 /// \endcode
1946 ///
1947 /// Into this IR:
1948 /// \code
1949 ///   BB:
1950 ///     %cmp = icmp ult %x, %y
1951 ///     %sub = sub %x, %y
1952 ///     %cond = select i1 %cmp, 0, %sub
1953 ///     ...
1954 /// \endcode
1955 ///
1956 /// \returns true if the conditional block is removed.
1957 static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB,
1958                                    const TargetTransformInfo &TTI) {
1959   // Be conservative for now. FP select instruction can often be expensive.
1960   Value *BrCond = BI->getCondition();
1961   if (isa<FCmpInst>(BrCond))
1962     return false;
1963 
1964   BasicBlock *BB = BI->getParent();
1965   BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0);
1966 
1967   // If ThenBB is actually on the false edge of the conditional branch, remember
1968   // to swap the select operands later.
1969   bool Invert = false;
1970   if (ThenBB != BI->getSuccessor(0)) {
1971     assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?");
1972     Invert = true;
1973   }
1974   assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block");
1975 
1976   // Keep a count of how many times instructions are used within ThenBB when
1977   // they are candidates for sinking into ThenBB. Specifically:
1978   // - They are defined in BB, and
1979   // - They have no side effects, and
1980   // - All of their uses are in ThenBB.
1981   SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts;
1982 
1983   SmallVector<Instruction *, 4> SpeculatedDbgIntrinsics;
1984 
1985   unsigned SpeculatedInstructions = 0;
1986   Value *SpeculatedStoreValue = nullptr;
1987   StoreInst *SpeculatedStore = nullptr;
1988   for (BasicBlock::iterator BBI = ThenBB->begin(),
1989                             BBE = std::prev(ThenBB->end());
1990        BBI != BBE; ++BBI) {
1991     Instruction *I = &*BBI;
1992     // Skip debug info.
1993     if (isa<DbgInfoIntrinsic>(I)) {
1994       SpeculatedDbgIntrinsics.push_back(I);
1995       continue;
1996     }
1997 
1998     // Only speculatively execute a single instruction (not counting the
1999     // terminator) for now.
2000     ++SpeculatedInstructions;
2001     if (SpeculatedInstructions > 1)
2002       return false;
2003 
2004     // Don't hoist the instruction if it's unsafe or expensive.
2005     if (!isSafeToSpeculativelyExecute(I) &&
2006         !(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore(
2007                                   I, BB, ThenBB, EndBB))))
2008       return false;
2009     if (!SpeculatedStoreValue &&
2010         ComputeSpeculationCost(I, TTI) >
2011             PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic)
2012       return false;
2013 
2014     // Store the store speculation candidate.
2015     if (SpeculatedStoreValue)
2016       SpeculatedStore = cast<StoreInst>(I);
2017 
2018     // Do not hoist the instruction if any of its operands are defined but not
2019     // used in BB. The transformation will prevent the operand from
2020     // being sunk into the use block.
2021     for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) {
2022       Instruction *OpI = dyn_cast<Instruction>(*i);
2023       if (!OpI || OpI->getParent() != BB || OpI->mayHaveSideEffects())
2024         continue; // Not a candidate for sinking.
2025 
2026       ++SinkCandidateUseCounts[OpI];
2027     }
2028   }
2029 
2030   // Consider any sink candidates which are only used in ThenBB as costs for
2031   // speculation. Note, while we iterate over a DenseMap here, we are summing
2032   // and so iteration order isn't significant.
2033   for (SmallDenseMap<Instruction *, unsigned, 4>::iterator
2034            I = SinkCandidateUseCounts.begin(),
2035            E = SinkCandidateUseCounts.end();
2036        I != E; ++I)
2037     if (I->first->hasNUses(I->second)) {
2038       ++SpeculatedInstructions;
2039       if (SpeculatedInstructions > 1)
2040         return false;
2041     }
2042 
2043   // Check that the PHI nodes can be converted to selects.
2044   bool HaveRewritablePHIs = false;
2045   for (PHINode &PN : EndBB->phis()) {
2046     Value *OrigV = PN.getIncomingValueForBlock(BB);
2047     Value *ThenV = PN.getIncomingValueForBlock(ThenBB);
2048 
2049     // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf.
2050     // Skip PHIs which are trivial.
2051     if (ThenV == OrigV)
2052       continue;
2053 
2054     // Don't convert to selects if we could remove undefined behavior instead.
2055     if (passingValueIsAlwaysUndefined(OrigV, &PN) ||
2056         passingValueIsAlwaysUndefined(ThenV, &PN))
2057       return false;
2058 
2059     HaveRewritablePHIs = true;
2060     ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV);
2061     ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV);
2062     if (!OrigCE && !ThenCE)
2063       continue; // Known safe and cheap.
2064 
2065     if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE)) ||
2066         (OrigCE && !isSafeToSpeculativelyExecute(OrigCE)))
2067       return false;
2068     unsigned OrigCost = OrigCE ? ComputeSpeculationCost(OrigCE, TTI) : 0;
2069     unsigned ThenCost = ThenCE ? ComputeSpeculationCost(ThenCE, TTI) : 0;
2070     unsigned MaxCost =
2071         2 * PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
2072     if (OrigCost + ThenCost > MaxCost)
2073       return false;
2074 
2075     // Account for the cost of an unfolded ConstantExpr which could end up
2076     // getting expanded into Instructions.
2077     // FIXME: This doesn't account for how many operations are combined in the
2078     // constant expression.
2079     ++SpeculatedInstructions;
2080     if (SpeculatedInstructions > 1)
2081       return false;
2082   }
2083 
2084   // If there are no PHIs to process, bail early. This helps ensure idempotence
2085   // as well.
2086   if (!HaveRewritablePHIs && !(HoistCondStores && SpeculatedStoreValue))
2087     return false;
2088 
2089   // If we get here, we can hoist the instruction and if-convert.
2090   LLVM_DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";);
2091 
2092   // Insert a select of the value of the speculated store.
2093   if (SpeculatedStoreValue) {
2094     IRBuilder<NoFolder> Builder(BI);
2095     Value *TrueV = SpeculatedStore->getValueOperand();
2096     Value *FalseV = SpeculatedStoreValue;
2097     if (Invert)
2098       std::swap(TrueV, FalseV);
2099     Value *S = Builder.CreateSelect(
2100         BrCond, TrueV, FalseV, "spec.store.select", BI);
2101     SpeculatedStore->setOperand(0, S);
2102     SpeculatedStore->applyMergedLocation(BI->getDebugLoc(),
2103                                          SpeculatedStore->getDebugLoc());
2104   }
2105 
2106   // Metadata can be dependent on the condition we are hoisting above.
2107   // Conservatively strip all metadata on the instruction.
2108   for (auto &I : *ThenBB)
2109     I.dropUnknownNonDebugMetadata();
2110 
2111   // Hoist the instructions.
2112   BB->getInstList().splice(BI->getIterator(), ThenBB->getInstList(),
2113                            ThenBB->begin(), std::prev(ThenBB->end()));
2114 
2115   // Insert selects and rewrite the PHI operands.
2116   IRBuilder<NoFolder> Builder(BI);
2117   for (PHINode &PN : EndBB->phis()) {
2118     unsigned OrigI = PN.getBasicBlockIndex(BB);
2119     unsigned ThenI = PN.getBasicBlockIndex(ThenBB);
2120     Value *OrigV = PN.getIncomingValue(OrigI);
2121     Value *ThenV = PN.getIncomingValue(ThenI);
2122 
2123     // Skip PHIs which are trivial.
2124     if (OrigV == ThenV)
2125       continue;
2126 
2127     // Create a select whose true value is the speculatively executed value and
2128     // false value is the preexisting value. Swap them if the branch
2129     // destinations were inverted.
2130     Value *TrueV = ThenV, *FalseV = OrigV;
2131     if (Invert)
2132       std::swap(TrueV, FalseV);
2133     Value *V = Builder.CreateSelect(
2134         BrCond, TrueV, FalseV, "spec.select", BI);
2135     PN.setIncomingValue(OrigI, V);
2136     PN.setIncomingValue(ThenI, V);
2137   }
2138 
2139   // Remove speculated dbg intrinsics.
2140   // FIXME: Is it possible to do this in a more elegant way? Moving/merging the
2141   // dbg value for the different flows and inserting it after the select.
2142   for (Instruction *I : SpeculatedDbgIntrinsics)
2143     I->eraseFromParent();
2144 
2145   ++NumSpeculations;
2146   return true;
2147 }
2148 
2149 /// Return true if we can thread a branch across this block.
2150 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) {
2151   unsigned Size = 0;
2152 
2153   for (Instruction &I : BB->instructionsWithoutDebug()) {
2154     if (Size > 10)
2155       return false; // Don't clone large BB's.
2156     ++Size;
2157 
2158     // We can only support instructions that do not define values that are
2159     // live outside of the current basic block.
2160     for (User *U : I.users()) {
2161       Instruction *UI = cast<Instruction>(U);
2162       if (UI->getParent() != BB || isa<PHINode>(UI))
2163         return false;
2164     }
2165 
2166     // Looks ok, continue checking.
2167   }
2168 
2169   return true;
2170 }
2171 
2172 /// If we have a conditional branch on a PHI node value that is defined in the
2173 /// same block as the branch and if any PHI entries are constants, thread edges
2174 /// corresponding to that entry to be branches to their ultimate destination.
2175 static bool FoldCondBranchOnPHI(BranchInst *BI, const DataLayout &DL,
2176                                 AssumptionCache *AC) {
2177   BasicBlock *BB = BI->getParent();
2178   PHINode *PN = dyn_cast<PHINode>(BI->getCondition());
2179   // NOTE: we currently cannot transform this case if the PHI node is used
2180   // outside of the block.
2181   if (!PN || PN->getParent() != BB || !PN->hasOneUse())
2182     return false;
2183 
2184   // Degenerate case of a single entry PHI.
2185   if (PN->getNumIncomingValues() == 1) {
2186     FoldSingleEntryPHINodes(PN->getParent());
2187     return true;
2188   }
2189 
2190   // Now we know that this block has multiple preds and two succs.
2191   if (!BlockIsSimpleEnoughToThreadThrough(BB))
2192     return false;
2193 
2194   // Can't fold blocks that contain noduplicate or convergent calls.
2195   if (any_of(*BB, [](const Instruction &I) {
2196         const CallInst *CI = dyn_cast<CallInst>(&I);
2197         return CI && (CI->cannotDuplicate() || CI->isConvergent());
2198       }))
2199     return false;
2200 
2201   // Okay, this is a simple enough basic block.  See if any phi values are
2202   // constants.
2203   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
2204     ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i));
2205     if (!CB || !CB->getType()->isIntegerTy(1))
2206       continue;
2207 
2208     // Okay, we now know that all edges from PredBB should be revectored to
2209     // branch to RealDest.
2210     BasicBlock *PredBB = PN->getIncomingBlock(i);
2211     BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue());
2212 
2213     if (RealDest == BB)
2214       continue; // Skip self loops.
2215     // Skip if the predecessor's terminator is an indirect branch.
2216     if (isa<IndirectBrInst>(PredBB->getTerminator()))
2217       continue;
2218 
2219     // The dest block might have PHI nodes, other predecessors and other
2220     // difficult cases.  Instead of being smart about this, just insert a new
2221     // block that jumps to the destination block, effectively splitting
2222     // the edge we are about to create.
2223     BasicBlock *EdgeBB =
2224         BasicBlock::Create(BB->getContext(), RealDest->getName() + ".critedge",
2225                            RealDest->getParent(), RealDest);
2226     BranchInst *CritEdgeBranch = BranchInst::Create(RealDest, EdgeBB);
2227     CritEdgeBranch->setDebugLoc(BI->getDebugLoc());
2228 
2229     // Update PHI nodes.
2230     AddPredecessorToBlock(RealDest, EdgeBB, BB);
2231 
2232     // BB may have instructions that are being threaded over.  Clone these
2233     // instructions into EdgeBB.  We know that there will be no uses of the
2234     // cloned instructions outside of EdgeBB.
2235     BasicBlock::iterator InsertPt = EdgeBB->begin();
2236     DenseMap<Value *, Value *> TranslateMap; // Track translated values.
2237     for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
2238       if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
2239         TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB);
2240         continue;
2241       }
2242       // Clone the instruction.
2243       Instruction *N = BBI->clone();
2244       if (BBI->hasName())
2245         N->setName(BBI->getName() + ".c");
2246 
2247       // Update operands due to translation.
2248       for (User::op_iterator i = N->op_begin(), e = N->op_end(); i != e; ++i) {
2249         DenseMap<Value *, Value *>::iterator PI = TranslateMap.find(*i);
2250         if (PI != TranslateMap.end())
2251           *i = PI->second;
2252       }
2253 
2254       // Check for trivial simplification.
2255       if (Value *V = SimplifyInstruction(N, {DL, nullptr, nullptr, AC})) {
2256         if (!BBI->use_empty())
2257           TranslateMap[&*BBI] = V;
2258         if (!N->mayHaveSideEffects()) {
2259           N->deleteValue(); // Instruction folded away, don't need actual inst
2260           N = nullptr;
2261         }
2262       } else {
2263         if (!BBI->use_empty())
2264           TranslateMap[&*BBI] = N;
2265       }
2266       // Insert the new instruction into its new home.
2267       if (N)
2268         EdgeBB->getInstList().insert(InsertPt, N);
2269 
2270       // Register the new instruction with the assumption cache if necessary.
2271       if (auto *II = dyn_cast_or_null<IntrinsicInst>(N))
2272         if (II->getIntrinsicID() == Intrinsic::assume)
2273           AC->registerAssumption(II);
2274     }
2275 
2276     // Loop over all of the edges from PredBB to BB, changing them to branch
2277     // to EdgeBB instead.
2278     Instruction *PredBBTI = PredBB->getTerminator();
2279     for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i)
2280       if (PredBBTI->getSuccessor(i) == BB) {
2281         BB->removePredecessor(PredBB);
2282         PredBBTI->setSuccessor(i, EdgeBB);
2283       }
2284 
2285     // Recurse, simplifying any other constants.
2286     return FoldCondBranchOnPHI(BI, DL, AC) || true;
2287   }
2288 
2289   return false;
2290 }
2291 
2292 /// Given a BB that starts with the specified two-entry PHI node,
2293 /// see if we can eliminate it.
2294 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI,
2295                                 const DataLayout &DL) {
2296   // Ok, this is a two entry PHI node.  Check to see if this is a simple "if
2297   // statement", which has a very simple dominance structure.  Basically, we
2298   // are trying to find the condition that is being branched on, which
2299   // subsequently causes this merge to happen.  We really want control
2300   // dependence information for this check, but simplifycfg can't keep it up
2301   // to date, and this catches most of the cases we care about anyway.
2302   BasicBlock *BB = PN->getParent();
2303   const Function *Fn = BB->getParent();
2304   if (Fn && Fn->hasFnAttribute(Attribute::OptForFuzzing))
2305     return false;
2306 
2307   BasicBlock *IfTrue, *IfFalse;
2308   Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse);
2309   if (!IfCond ||
2310       // Don't bother if the branch will be constant folded trivially.
2311       isa<ConstantInt>(IfCond))
2312     return false;
2313 
2314   // Okay, we found that we can merge this two-entry phi node into a select.
2315   // Doing so would require us to fold *all* two entry phi nodes in this block.
2316   // At some point this becomes non-profitable (particularly if the target
2317   // doesn't support cmov's).  Only do this transformation if there are two or
2318   // fewer PHI nodes in this block.
2319   unsigned NumPhis = 0;
2320   for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I)
2321     if (NumPhis > 2)
2322       return false;
2323 
2324   // Loop over the PHI's seeing if we can promote them all to select
2325   // instructions.  While we are at it, keep track of the instructions
2326   // that need to be moved to the dominating block.
2327   SmallPtrSet<Instruction *, 4> AggressiveInsts;
2328   int BudgetRemaining =
2329       TwoEntryPHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
2330 
2331   for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) {
2332     PHINode *PN = cast<PHINode>(II++);
2333     if (Value *V = SimplifyInstruction(PN, {DL, PN})) {
2334       PN->replaceAllUsesWith(V);
2335       PN->eraseFromParent();
2336       continue;
2337     }
2338 
2339     if (!DominatesMergePoint(PN->getIncomingValue(0), BB, AggressiveInsts,
2340                              BudgetRemaining, TTI) ||
2341         !DominatesMergePoint(PN->getIncomingValue(1), BB, AggressiveInsts,
2342                              BudgetRemaining, TTI))
2343       return false;
2344   }
2345 
2346   // If we folded the first phi, PN dangles at this point.  Refresh it.  If
2347   // we ran out of PHIs then we simplified them all.
2348   PN = dyn_cast<PHINode>(BB->begin());
2349   if (!PN)
2350     return true;
2351 
2352   // Return true if at least one of these is a 'not', and another is either
2353   // a 'not' too, or a constant.
2354   auto CanHoistNotFromBothValues = [](Value *V0, Value *V1) {
2355     if (!match(V0, m_Not(m_Value())))
2356       std::swap(V0, V1);
2357     auto Invertible = m_CombineOr(m_Not(m_Value()), m_AnyIntegralConstant());
2358     return match(V0, m_Not(m_Value())) && match(V1, Invertible);
2359   };
2360 
2361   // Don't fold i1 branches on PHIs which contain binary operators, unless one
2362   // of the incoming values is an 'not' and another one is freely invertible.
2363   // These can often be turned into switches and other things.
2364   if (PN->getType()->isIntegerTy(1) &&
2365       (isa<BinaryOperator>(PN->getIncomingValue(0)) ||
2366        isa<BinaryOperator>(PN->getIncomingValue(1)) ||
2367        isa<BinaryOperator>(IfCond)) &&
2368       !CanHoistNotFromBothValues(PN->getIncomingValue(0),
2369                                  PN->getIncomingValue(1)))
2370     return false;
2371 
2372   // If all PHI nodes are promotable, check to make sure that all instructions
2373   // in the predecessor blocks can be promoted as well. If not, we won't be able
2374   // to get rid of the control flow, so it's not worth promoting to select
2375   // instructions.
2376   BasicBlock *DomBlock = nullptr;
2377   BasicBlock *IfBlock1 = PN->getIncomingBlock(0);
2378   BasicBlock *IfBlock2 = PN->getIncomingBlock(1);
2379   if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) {
2380     IfBlock1 = nullptr;
2381   } else {
2382     DomBlock = *pred_begin(IfBlock1);
2383     for (BasicBlock::iterator I = IfBlock1->begin(); !I->isTerminator(); ++I)
2384       if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) {
2385         // This is not an aggressive instruction that we can promote.
2386         // Because of this, we won't be able to get rid of the control flow, so
2387         // the xform is not worth it.
2388         return false;
2389       }
2390   }
2391 
2392   if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) {
2393     IfBlock2 = nullptr;
2394   } else {
2395     DomBlock = *pred_begin(IfBlock2);
2396     for (BasicBlock::iterator I = IfBlock2->begin(); !I->isTerminator(); ++I)
2397       if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) {
2398         // This is not an aggressive instruction that we can promote.
2399         // Because of this, we won't be able to get rid of the control flow, so
2400         // the xform is not worth it.
2401         return false;
2402       }
2403   }
2404   assert(DomBlock && "Failed to find root DomBlock");
2405 
2406   LLVM_DEBUG(dbgs() << "FOUND IF CONDITION!  " << *IfCond
2407                     << "  T: " << IfTrue->getName()
2408                     << "  F: " << IfFalse->getName() << "\n");
2409 
2410   // If we can still promote the PHI nodes after this gauntlet of tests,
2411   // do all of the PHI's now.
2412   Instruction *InsertPt = DomBlock->getTerminator();
2413   IRBuilder<NoFolder> Builder(InsertPt);
2414 
2415   // Move all 'aggressive' instructions, which are defined in the
2416   // conditional parts of the if's up to the dominating block.
2417   if (IfBlock1)
2418     hoistAllInstructionsInto(DomBlock, InsertPt, IfBlock1);
2419   if (IfBlock2)
2420     hoistAllInstructionsInto(DomBlock, InsertPt, IfBlock2);
2421 
2422   while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
2423     // Change the PHI node into a select instruction.
2424     Value *TrueVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse);
2425     Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue);
2426 
2427     Value *Sel = Builder.CreateSelect(IfCond, TrueVal, FalseVal, "", InsertPt);
2428     PN->replaceAllUsesWith(Sel);
2429     Sel->takeName(PN);
2430     PN->eraseFromParent();
2431   }
2432 
2433   // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement
2434   // has been flattened.  Change DomBlock to jump directly to our new block to
2435   // avoid other simplifycfg's kicking in on the diamond.
2436   Instruction *OldTI = DomBlock->getTerminator();
2437   Builder.SetInsertPoint(OldTI);
2438   Builder.CreateBr(BB);
2439   OldTI->eraseFromParent();
2440   return true;
2441 }
2442 
2443 /// If we found a conditional branch that goes to two returning blocks,
2444 /// try to merge them together into one return,
2445 /// introducing a select if the return values disagree.
2446 static bool SimplifyCondBranchToTwoReturns(BranchInst *BI,
2447                                            IRBuilder<> &Builder) {
2448   assert(BI->isConditional() && "Must be a conditional branch");
2449   BasicBlock *TrueSucc = BI->getSuccessor(0);
2450   BasicBlock *FalseSucc = BI->getSuccessor(1);
2451   ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator());
2452   ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator());
2453 
2454   // Check to ensure both blocks are empty (just a return) or optionally empty
2455   // with PHI nodes.  If there are other instructions, merging would cause extra
2456   // computation on one path or the other.
2457   if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator())
2458     return false;
2459   if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator())
2460     return false;
2461 
2462   Builder.SetInsertPoint(BI);
2463   // Okay, we found a branch that is going to two return nodes.  If
2464   // there is no return value for this function, just change the
2465   // branch into a return.
2466   if (FalseRet->getNumOperands() == 0) {
2467     TrueSucc->removePredecessor(BI->getParent());
2468     FalseSucc->removePredecessor(BI->getParent());
2469     Builder.CreateRetVoid();
2470     EraseTerminatorAndDCECond(BI);
2471     return true;
2472   }
2473 
2474   // Otherwise, figure out what the true and false return values are
2475   // so we can insert a new select instruction.
2476   Value *TrueValue = TrueRet->getReturnValue();
2477   Value *FalseValue = FalseRet->getReturnValue();
2478 
2479   // Unwrap any PHI nodes in the return blocks.
2480   if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue))
2481     if (TVPN->getParent() == TrueSucc)
2482       TrueValue = TVPN->getIncomingValueForBlock(BI->getParent());
2483   if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue))
2484     if (FVPN->getParent() == FalseSucc)
2485       FalseValue = FVPN->getIncomingValueForBlock(BI->getParent());
2486 
2487   // In order for this transformation to be safe, we must be able to
2488   // unconditionally execute both operands to the return.  This is
2489   // normally the case, but we could have a potentially-trapping
2490   // constant expression that prevents this transformation from being
2491   // safe.
2492   if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue))
2493     if (TCV->canTrap())
2494       return false;
2495   if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue))
2496     if (FCV->canTrap())
2497       return false;
2498 
2499   // Okay, we collected all the mapped values and checked them for sanity, and
2500   // defined to really do this transformation.  First, update the CFG.
2501   TrueSucc->removePredecessor(BI->getParent());
2502   FalseSucc->removePredecessor(BI->getParent());
2503 
2504   // Insert select instructions where needed.
2505   Value *BrCond = BI->getCondition();
2506   if (TrueValue) {
2507     // Insert a select if the results differ.
2508     if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) {
2509     } else if (isa<UndefValue>(TrueValue)) {
2510       TrueValue = FalseValue;
2511     } else {
2512       TrueValue =
2513           Builder.CreateSelect(BrCond, TrueValue, FalseValue, "retval", BI);
2514     }
2515   }
2516 
2517   Value *RI =
2518       !TrueValue ? Builder.CreateRetVoid() : Builder.CreateRet(TrueValue);
2519 
2520   (void)RI;
2521 
2522   LLVM_DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:"
2523                     << "\n  " << *BI << "NewRet = " << *RI << "TRUEBLOCK: "
2524                     << *TrueSucc << "FALSEBLOCK: " << *FalseSucc);
2525 
2526   EraseTerminatorAndDCECond(BI);
2527 
2528   return true;
2529 }
2530 
2531 /// Return true if the given instruction is available
2532 /// in its predecessor block. If yes, the instruction will be removed.
2533 static bool tryCSEWithPredecessor(Instruction *Inst, BasicBlock *PB) {
2534   if (!isa<BinaryOperator>(Inst) && !isa<CmpInst>(Inst))
2535     return false;
2536   for (Instruction &I : *PB) {
2537     Instruction *PBI = &I;
2538     // Check whether Inst and PBI generate the same value.
2539     if (Inst->isIdenticalTo(PBI)) {
2540       Inst->replaceAllUsesWith(PBI);
2541       Inst->eraseFromParent();
2542       return true;
2543     }
2544   }
2545   return false;
2546 }
2547 
2548 /// Return true if either PBI or BI has branch weight available, and store
2549 /// the weights in {Pred|Succ}{True|False}Weight. If one of PBI and BI does
2550 /// not have branch weight, use 1:1 as its weight.
2551 static bool extractPredSuccWeights(BranchInst *PBI, BranchInst *BI,
2552                                    uint64_t &PredTrueWeight,
2553                                    uint64_t &PredFalseWeight,
2554                                    uint64_t &SuccTrueWeight,
2555                                    uint64_t &SuccFalseWeight) {
2556   bool PredHasWeights =
2557       PBI->extractProfMetadata(PredTrueWeight, PredFalseWeight);
2558   bool SuccHasWeights =
2559       BI->extractProfMetadata(SuccTrueWeight, SuccFalseWeight);
2560   if (PredHasWeights || SuccHasWeights) {
2561     if (!PredHasWeights)
2562       PredTrueWeight = PredFalseWeight = 1;
2563     if (!SuccHasWeights)
2564       SuccTrueWeight = SuccFalseWeight = 1;
2565     return true;
2566   } else {
2567     return false;
2568   }
2569 }
2570 
2571 /// If this basic block is simple enough, and if a predecessor branches to us
2572 /// and one of our successors, fold the block into the predecessor and use
2573 /// logical operations to pick the right destination.
2574 bool llvm::FoldBranchToCommonDest(BranchInst *BI, MemorySSAUpdater *MSSAU,
2575                                   unsigned BonusInstThreshold) {
2576   BasicBlock *BB = BI->getParent();
2577 
2578   const unsigned PredCount = pred_size(BB);
2579 
2580   Instruction *Cond = nullptr;
2581   if (BI->isConditional())
2582     Cond = dyn_cast<Instruction>(BI->getCondition());
2583   else {
2584     // For unconditional branch, check for a simple CFG pattern, where
2585     // BB has a single predecessor and BB's successor is also its predecessor's
2586     // successor. If such pattern exists, check for CSE between BB and its
2587     // predecessor.
2588     if (BasicBlock *PB = BB->getSinglePredecessor())
2589       if (BranchInst *PBI = dyn_cast<BranchInst>(PB->getTerminator()))
2590         if (PBI->isConditional() &&
2591             (BI->getSuccessor(0) == PBI->getSuccessor(0) ||
2592              BI->getSuccessor(0) == PBI->getSuccessor(1))) {
2593           for (auto I = BB->instructionsWithoutDebug().begin(),
2594                     E = BB->instructionsWithoutDebug().end();
2595                I != E;) {
2596             Instruction *Curr = &*I++;
2597             if (isa<CmpInst>(Curr)) {
2598               Cond = Curr;
2599               break;
2600             }
2601             // Quit if we can't remove this instruction.
2602             if (!tryCSEWithPredecessor(Curr, PB))
2603               return false;
2604           }
2605         }
2606 
2607     if (!Cond)
2608       return false;
2609   }
2610 
2611   if (!Cond || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) ||
2612       Cond->getParent() != BB || !Cond->hasOneUse())
2613     return false;
2614 
2615   // Make sure the instruction after the condition is the cond branch.
2616   BasicBlock::iterator CondIt = ++Cond->getIterator();
2617 
2618   // Ignore dbg intrinsics.
2619   while (isa<DbgInfoIntrinsic>(CondIt))
2620     ++CondIt;
2621 
2622   if (&*CondIt != BI)
2623     return false;
2624 
2625   // Only allow this transformation if computing the condition doesn't involve
2626   // too many instructions and these involved instructions can be executed
2627   // unconditionally. We denote all involved instructions except the condition
2628   // as "bonus instructions", and only allow this transformation when the
2629   // number of the bonus instructions we'll need to create when cloning into
2630   // each predecessor does not exceed a certain threshold.
2631   unsigned NumBonusInsts = 0;
2632   for (auto I = BB->begin(); Cond != &*I; ++I) {
2633     // Ignore dbg intrinsics.
2634     if (isa<DbgInfoIntrinsic>(I))
2635       continue;
2636     if (!I->hasOneUse() || !isSafeToSpeculativelyExecute(&*I))
2637       return false;
2638     // I has only one use and can be executed unconditionally.
2639     Instruction *User = dyn_cast<Instruction>(I->user_back());
2640     if (User == nullptr || User->getParent() != BB)
2641       return false;
2642     // I is used in the same BB. Since BI uses Cond and doesn't have more slots
2643     // to use any other instruction, User must be an instruction between next(I)
2644     // and Cond.
2645 
2646     // Account for the cost of duplicating this instruction into each
2647     // predecessor.
2648     NumBonusInsts += PredCount;
2649     // Early exits once we reach the limit.
2650     if (NumBonusInsts > BonusInstThreshold)
2651       return false;
2652   }
2653 
2654   // Cond is known to be a compare or binary operator.  Check to make sure that
2655   // neither operand is a potentially-trapping constant expression.
2656   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0)))
2657     if (CE->canTrap())
2658       return false;
2659   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1)))
2660     if (CE->canTrap())
2661       return false;
2662 
2663   // Finally, don't infinitely unroll conditional loops.
2664   BasicBlock *TrueDest = BI->getSuccessor(0);
2665   BasicBlock *FalseDest = (BI->isConditional()) ? BI->getSuccessor(1) : nullptr;
2666   if (TrueDest == BB || FalseDest == BB)
2667     return false;
2668 
2669   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
2670     BasicBlock *PredBlock = *PI;
2671     BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator());
2672 
2673     // Check that we have two conditional branches.  If there is a PHI node in
2674     // the common successor, verify that the same value flows in from both
2675     // blocks.
2676     SmallVector<PHINode *, 4> PHIs;
2677     if (!PBI || PBI->isUnconditional() ||
2678         (BI->isConditional() && !SafeToMergeTerminators(BI, PBI)) ||
2679         (!BI->isConditional() &&
2680          !isProfitableToFoldUnconditional(BI, PBI, Cond, PHIs)))
2681       continue;
2682 
2683     // Determine if the two branches share a common destination.
2684     Instruction::BinaryOps Opc = Instruction::BinaryOpsEnd;
2685     bool InvertPredCond = false;
2686 
2687     if (BI->isConditional()) {
2688       if (PBI->getSuccessor(0) == TrueDest) {
2689         Opc = Instruction::Or;
2690       } else if (PBI->getSuccessor(1) == FalseDest) {
2691         Opc = Instruction::And;
2692       } else if (PBI->getSuccessor(0) == FalseDest) {
2693         Opc = Instruction::And;
2694         InvertPredCond = true;
2695       } else if (PBI->getSuccessor(1) == TrueDest) {
2696         Opc = Instruction::Or;
2697         InvertPredCond = true;
2698       } else {
2699         continue;
2700       }
2701     } else {
2702       if (PBI->getSuccessor(0) != TrueDest && PBI->getSuccessor(1) != TrueDest)
2703         continue;
2704     }
2705 
2706     LLVM_DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB);
2707     IRBuilder<> Builder(PBI);
2708 
2709     // If we need to invert the condition in the pred block to match, do so now.
2710     if (InvertPredCond) {
2711       Value *NewCond = PBI->getCondition();
2712 
2713       if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) {
2714         CmpInst *CI = cast<CmpInst>(NewCond);
2715         CI->setPredicate(CI->getInversePredicate());
2716       } else {
2717         NewCond =
2718             Builder.CreateNot(NewCond, PBI->getCondition()->getName() + ".not");
2719       }
2720 
2721       PBI->setCondition(NewCond);
2722       PBI->swapSuccessors();
2723     }
2724 
2725     // If we have bonus instructions, clone them into the predecessor block.
2726     // Note that there may be multiple predecessor blocks, so we cannot move
2727     // bonus instructions to a predecessor block.
2728     ValueToValueMapTy VMap; // maps original values to cloned values
2729     // We already make sure Cond is the last instruction before BI. Therefore,
2730     // all instructions before Cond other than DbgInfoIntrinsic are bonus
2731     // instructions.
2732     for (auto BonusInst = BB->begin(); Cond != &*BonusInst; ++BonusInst) {
2733       if (isa<DbgInfoIntrinsic>(BonusInst))
2734         continue;
2735       Instruction *NewBonusInst = BonusInst->clone();
2736       RemapInstruction(NewBonusInst, VMap,
2737                        RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
2738       VMap[&*BonusInst] = NewBonusInst;
2739 
2740       // If we moved a load, we cannot any longer claim any knowledge about
2741       // its potential value. The previous information might have been valid
2742       // only given the branch precondition.
2743       // For an analogous reason, we must also drop all the metadata whose
2744       // semantics we don't understand.
2745       NewBonusInst->dropUnknownNonDebugMetadata();
2746 
2747       PredBlock->getInstList().insert(PBI->getIterator(), NewBonusInst);
2748       NewBonusInst->takeName(&*BonusInst);
2749       BonusInst->setName(BonusInst->getName() + ".old");
2750     }
2751 
2752     // Clone Cond into the predecessor basic block, and or/and the
2753     // two conditions together.
2754     Instruction *CondInPred = Cond->clone();
2755     RemapInstruction(CondInPred, VMap,
2756                      RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
2757     PredBlock->getInstList().insert(PBI->getIterator(), CondInPred);
2758     CondInPred->takeName(Cond);
2759     Cond->setName(CondInPred->getName() + ".old");
2760 
2761     if (BI->isConditional()) {
2762       Instruction *NewCond = cast<Instruction>(
2763           Builder.CreateBinOp(Opc, PBI->getCondition(), CondInPred, "or.cond"));
2764       PBI->setCondition(NewCond);
2765 
2766       uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
2767       bool HasWeights =
2768           extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
2769                                  SuccTrueWeight, SuccFalseWeight);
2770       SmallVector<uint64_t, 8> NewWeights;
2771 
2772       if (PBI->getSuccessor(0) == BB) {
2773         if (HasWeights) {
2774           // PBI: br i1 %x, BB, FalseDest
2775           // BI:  br i1 %y, TrueDest, FalseDest
2776           // TrueWeight is TrueWeight for PBI * TrueWeight for BI.
2777           NewWeights.push_back(PredTrueWeight * SuccTrueWeight);
2778           // FalseWeight is FalseWeight for PBI * TotalWeight for BI +
2779           //               TrueWeight for PBI * FalseWeight for BI.
2780           // We assume that total weights of a BranchInst can fit into 32 bits.
2781           // Therefore, we will not have overflow using 64-bit arithmetic.
2782           NewWeights.push_back(PredFalseWeight *
2783                                    (SuccFalseWeight + SuccTrueWeight) +
2784                                PredTrueWeight * SuccFalseWeight);
2785         }
2786         AddPredecessorToBlock(TrueDest, PredBlock, BB, MSSAU);
2787         PBI->setSuccessor(0, TrueDest);
2788       }
2789       if (PBI->getSuccessor(1) == BB) {
2790         if (HasWeights) {
2791           // PBI: br i1 %x, TrueDest, BB
2792           // BI:  br i1 %y, TrueDest, FalseDest
2793           // TrueWeight is TrueWeight for PBI * TotalWeight for BI +
2794           //              FalseWeight for PBI * TrueWeight for BI.
2795           NewWeights.push_back(PredTrueWeight *
2796                                    (SuccFalseWeight + SuccTrueWeight) +
2797                                PredFalseWeight * SuccTrueWeight);
2798           // FalseWeight is FalseWeight for PBI * FalseWeight for BI.
2799           NewWeights.push_back(PredFalseWeight * SuccFalseWeight);
2800         }
2801         AddPredecessorToBlock(FalseDest, PredBlock, BB, MSSAU);
2802         PBI->setSuccessor(1, FalseDest);
2803       }
2804       if (NewWeights.size() == 2) {
2805         // Halve the weights if any of them cannot fit in an uint32_t
2806         FitWeights(NewWeights);
2807 
2808         SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(),
2809                                            NewWeights.end());
2810         setBranchWeights(PBI, MDWeights[0], MDWeights[1]);
2811       } else
2812         PBI->setMetadata(LLVMContext::MD_prof, nullptr);
2813     } else {
2814       // Update PHI nodes in the common successors.
2815       for (unsigned i = 0, e = PHIs.size(); i != e; ++i) {
2816         ConstantInt *PBI_C = cast<ConstantInt>(
2817             PHIs[i]->getIncomingValueForBlock(PBI->getParent()));
2818         assert(PBI_C->getType()->isIntegerTy(1));
2819         Instruction *MergedCond = nullptr;
2820         if (PBI->getSuccessor(0) == TrueDest) {
2821           // Create (PBI_Cond and PBI_C) or (!PBI_Cond and BI_Value)
2822           // PBI_C is true: PBI_Cond or (!PBI_Cond and BI_Value)
2823           //       is false: !PBI_Cond and BI_Value
2824           Instruction *NotCond = cast<Instruction>(
2825               Builder.CreateNot(PBI->getCondition(), "not.cond"));
2826           MergedCond = cast<Instruction>(
2827                Builder.CreateBinOp(Instruction::And, NotCond, CondInPred,
2828                                    "and.cond"));
2829           if (PBI_C->isOne())
2830             MergedCond = cast<Instruction>(Builder.CreateBinOp(
2831                 Instruction::Or, PBI->getCondition(), MergedCond, "or.cond"));
2832         } else {
2833           // Create (PBI_Cond and BI_Value) or (!PBI_Cond and PBI_C)
2834           // PBI_C is true: (PBI_Cond and BI_Value) or (!PBI_Cond)
2835           //       is false: PBI_Cond and BI_Value
2836           MergedCond = cast<Instruction>(Builder.CreateBinOp(
2837               Instruction::And, PBI->getCondition(), CondInPred, "and.cond"));
2838           if (PBI_C->isOne()) {
2839             Instruction *NotCond = cast<Instruction>(
2840                 Builder.CreateNot(PBI->getCondition(), "not.cond"));
2841             MergedCond = cast<Instruction>(Builder.CreateBinOp(
2842                 Instruction::Or, NotCond, MergedCond, "or.cond"));
2843           }
2844         }
2845         // Update PHI Node.
2846 	PHIs[i]->setIncomingValueForBlock(PBI->getParent(), MergedCond);
2847       }
2848 
2849       // PBI is changed to branch to TrueDest below. Remove itself from
2850       // potential phis from all other successors.
2851       if (MSSAU)
2852         MSSAU->changeCondBranchToUnconditionalTo(PBI, TrueDest);
2853 
2854       // Change PBI from Conditional to Unconditional.
2855       BranchInst *New_PBI = BranchInst::Create(TrueDest, PBI);
2856       EraseTerminatorAndDCECond(PBI, MSSAU);
2857       PBI = New_PBI;
2858     }
2859 
2860     // If BI was a loop latch, it may have had associated loop metadata.
2861     // We need to copy it to the new latch, that is, PBI.
2862     if (MDNode *LoopMD = BI->getMetadata(LLVMContext::MD_loop))
2863       PBI->setMetadata(LLVMContext::MD_loop, LoopMD);
2864 
2865     // TODO: If BB is reachable from all paths through PredBlock, then we
2866     // could replace PBI's branch probabilities with BI's.
2867 
2868     // Copy any debug value intrinsics into the end of PredBlock.
2869     for (Instruction &I : *BB)
2870       if (isa<DbgInfoIntrinsic>(I))
2871         I.clone()->insertBefore(PBI);
2872 
2873     return true;
2874   }
2875   return false;
2876 }
2877 
2878 // If there is only one store in BB1 and BB2, return it, otherwise return
2879 // nullptr.
2880 static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) {
2881   StoreInst *S = nullptr;
2882   for (auto *BB : {BB1, BB2}) {
2883     if (!BB)
2884       continue;
2885     for (auto &I : *BB)
2886       if (auto *SI = dyn_cast<StoreInst>(&I)) {
2887         if (S)
2888           // Multiple stores seen.
2889           return nullptr;
2890         else
2891           S = SI;
2892       }
2893   }
2894   return S;
2895 }
2896 
2897 static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB,
2898                                               Value *AlternativeV = nullptr) {
2899   // PHI is going to be a PHI node that allows the value V that is defined in
2900   // BB to be referenced in BB's only successor.
2901   //
2902   // If AlternativeV is nullptr, the only value we care about in PHI is V. It
2903   // doesn't matter to us what the other operand is (it'll never get used). We
2904   // could just create a new PHI with an undef incoming value, but that could
2905   // increase register pressure if EarlyCSE/InstCombine can't fold it with some
2906   // other PHI. So here we directly look for some PHI in BB's successor with V
2907   // as an incoming operand. If we find one, we use it, else we create a new
2908   // one.
2909   //
2910   // If AlternativeV is not nullptr, we care about both incoming values in PHI.
2911   // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV]
2912   // where OtherBB is the single other predecessor of BB's only successor.
2913   PHINode *PHI = nullptr;
2914   BasicBlock *Succ = BB->getSingleSuccessor();
2915 
2916   for (auto I = Succ->begin(); isa<PHINode>(I); ++I)
2917     if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) {
2918       PHI = cast<PHINode>(I);
2919       if (!AlternativeV)
2920         break;
2921 
2922       assert(Succ->hasNPredecessors(2));
2923       auto PredI = pred_begin(Succ);
2924       BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI;
2925       if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV)
2926         break;
2927       PHI = nullptr;
2928     }
2929   if (PHI)
2930     return PHI;
2931 
2932   // If V is not an instruction defined in BB, just return it.
2933   if (!AlternativeV &&
2934       (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB))
2935     return V;
2936 
2937   PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge", &Succ->front());
2938   PHI->addIncoming(V, BB);
2939   for (BasicBlock *PredBB : predecessors(Succ))
2940     if (PredBB != BB)
2941       PHI->addIncoming(
2942           AlternativeV ? AlternativeV : UndefValue::get(V->getType()), PredBB);
2943   return PHI;
2944 }
2945 
2946 static bool mergeConditionalStoreToAddress(BasicBlock *PTB, BasicBlock *PFB,
2947                                            BasicBlock *QTB, BasicBlock *QFB,
2948                                            BasicBlock *PostBB, Value *Address,
2949                                            bool InvertPCond, bool InvertQCond,
2950                                            const DataLayout &DL,
2951                                            const TargetTransformInfo &TTI) {
2952   // For every pointer, there must be exactly two stores, one coming from
2953   // PTB or PFB, and the other from QTB or QFB. We don't support more than one
2954   // store (to any address) in PTB,PFB or QTB,QFB.
2955   // FIXME: We could relax this restriction with a bit more work and performance
2956   // testing.
2957   StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB);
2958   StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB);
2959   if (!PStore || !QStore)
2960     return false;
2961 
2962   // Now check the stores are compatible.
2963   if (!QStore->isUnordered() || !PStore->isUnordered())
2964     return false;
2965 
2966   // Check that sinking the store won't cause program behavior changes. Sinking
2967   // the store out of the Q blocks won't change any behavior as we're sinking
2968   // from a block to its unconditional successor. But we're moving a store from
2969   // the P blocks down through the middle block (QBI) and past both QFB and QTB.
2970   // So we need to check that there are no aliasing loads or stores in
2971   // QBI, QTB and QFB. We also need to check there are no conflicting memory
2972   // operations between PStore and the end of its parent block.
2973   //
2974   // The ideal way to do this is to query AliasAnalysis, but we don't
2975   // preserve AA currently so that is dangerous. Be super safe and just
2976   // check there are no other memory operations at all.
2977   for (auto &I : *QFB->getSinglePredecessor())
2978     if (I.mayReadOrWriteMemory())
2979       return false;
2980   for (auto &I : *QFB)
2981     if (&I != QStore && I.mayReadOrWriteMemory())
2982       return false;
2983   if (QTB)
2984     for (auto &I : *QTB)
2985       if (&I != QStore && I.mayReadOrWriteMemory())
2986         return false;
2987   for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end();
2988        I != E; ++I)
2989     if (&*I != PStore && I->mayReadOrWriteMemory())
2990       return false;
2991 
2992   // If we're not in aggressive mode, we only optimize if we have some
2993   // confidence that by optimizing we'll allow P and/or Q to be if-converted.
2994   auto IsWorthwhile = [&](BasicBlock *BB, ArrayRef<StoreInst *> FreeStores) {
2995     if (!BB)
2996       return true;
2997     // Heuristic: if the block can be if-converted/phi-folded and the
2998     // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to
2999     // thread this store.
3000     int BudgetRemaining =
3001         PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
3002     for (auto &I : BB->instructionsWithoutDebug()) {
3003       // Consider terminator instruction to be free.
3004       if (I.isTerminator())
3005         continue;
3006       // If this is one the stores that we want to speculate out of this BB,
3007       // then don't count it's cost, consider it to be free.
3008       if (auto *S = dyn_cast<StoreInst>(&I))
3009         if (llvm::find(FreeStores, S))
3010           continue;
3011       // Else, we have a white-list of instructions that we are ak speculating.
3012       if (!isa<BinaryOperator>(I) && !isa<GetElementPtrInst>(I))
3013         return false; // Not in white-list - not worthwhile folding.
3014       // And finally, if this is a non-free instruction that we are okay
3015       // speculating, ensure that we consider the speculation budget.
3016       BudgetRemaining -= TTI.getUserCost(&I);
3017       if (BudgetRemaining < 0)
3018         return false; // Eagerly refuse to fold as soon as we're out of budget.
3019     }
3020     assert(BudgetRemaining >= 0 &&
3021            "When we run out of budget we will eagerly return from within the "
3022            "per-instruction loop.");
3023     return true;
3024   };
3025 
3026   const SmallVector<StoreInst *, 2> FreeStores = {PStore, QStore};
3027   if (!MergeCondStoresAggressively &&
3028       (!IsWorthwhile(PTB, FreeStores) || !IsWorthwhile(PFB, FreeStores) ||
3029        !IsWorthwhile(QTB, FreeStores) || !IsWorthwhile(QFB, FreeStores)))
3030     return false;
3031 
3032   // If PostBB has more than two predecessors, we need to split it so we can
3033   // sink the store.
3034   if (std::next(pred_begin(PostBB), 2) != pred_end(PostBB)) {
3035     // We know that QFB's only successor is PostBB. And QFB has a single
3036     // predecessor. If QTB exists, then its only successor is also PostBB.
3037     // If QTB does not exist, then QFB's only predecessor has a conditional
3038     // branch to QFB and PostBB.
3039     BasicBlock *TruePred = QTB ? QTB : QFB->getSinglePredecessor();
3040     BasicBlock *NewBB = SplitBlockPredecessors(PostBB, { QFB, TruePred},
3041                                                "condstore.split");
3042     if (!NewBB)
3043       return false;
3044     PostBB = NewBB;
3045   }
3046 
3047   // OK, we're going to sink the stores to PostBB. The store has to be
3048   // conditional though, so first create the predicate.
3049   Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator())
3050                      ->getCondition();
3051   Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator())
3052                      ->getCondition();
3053 
3054   Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(),
3055                                                 PStore->getParent());
3056   Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(),
3057                                                 QStore->getParent(), PPHI);
3058 
3059   IRBuilder<> QB(&*PostBB->getFirstInsertionPt());
3060 
3061   Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond);
3062   Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond);
3063 
3064   if (InvertPCond)
3065     PPred = QB.CreateNot(PPred);
3066   if (InvertQCond)
3067     QPred = QB.CreateNot(QPred);
3068   Value *CombinedPred = QB.CreateOr(PPred, QPred);
3069 
3070   auto *T =
3071       SplitBlockAndInsertIfThen(CombinedPred, &*QB.GetInsertPoint(), false);
3072   QB.SetInsertPoint(T);
3073   StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address));
3074   AAMDNodes AAMD;
3075   PStore->getAAMetadata(AAMD, /*Merge=*/false);
3076   PStore->getAAMetadata(AAMD, /*Merge=*/true);
3077   SI->setAAMetadata(AAMD);
3078   unsigned PAlignment = PStore->getAlignment();
3079   unsigned QAlignment = QStore->getAlignment();
3080   unsigned TypeAlignment =
3081       DL.getABITypeAlignment(SI->getValueOperand()->getType());
3082   unsigned MinAlignment;
3083   unsigned MaxAlignment;
3084   std::tie(MinAlignment, MaxAlignment) = std::minmax(PAlignment, QAlignment);
3085   // Choose the minimum alignment. If we could prove both stores execute, we
3086   // could use biggest one.  In this case, though, we only know that one of the
3087   // stores executes.  And we don't know it's safe to take the alignment from a
3088   // store that doesn't execute.
3089   if (MinAlignment != 0) {
3090     // Choose the minimum of all non-zero alignments.
3091     SI->setAlignment(Align(MinAlignment));
3092   } else if (MaxAlignment != 0) {
3093     // Choose the minimal alignment between the non-zero alignment and the ABI
3094     // default alignment for the type of the stored value.
3095     SI->setAlignment(Align(std::min(MaxAlignment, TypeAlignment)));
3096   } else {
3097     // If both alignments are zero, use ABI default alignment for the type of
3098     // the stored value.
3099     SI->setAlignment(Align(TypeAlignment));
3100   }
3101 
3102   QStore->eraseFromParent();
3103   PStore->eraseFromParent();
3104 
3105   return true;
3106 }
3107 
3108 static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI,
3109                                    const DataLayout &DL,
3110                                    const TargetTransformInfo &TTI) {
3111   // The intention here is to find diamonds or triangles (see below) where each
3112   // conditional block contains a store to the same address. Both of these
3113   // stores are conditional, so they can't be unconditionally sunk. But it may
3114   // be profitable to speculatively sink the stores into one merged store at the
3115   // end, and predicate the merged store on the union of the two conditions of
3116   // PBI and QBI.
3117   //
3118   // This can reduce the number of stores executed if both of the conditions are
3119   // true, and can allow the blocks to become small enough to be if-converted.
3120   // This optimization will also chain, so that ladders of test-and-set
3121   // sequences can be if-converted away.
3122   //
3123   // We only deal with simple diamonds or triangles:
3124   //
3125   //     PBI       or      PBI        or a combination of the two
3126   //    /   \               | \
3127   //   PTB  PFB             |  PFB
3128   //    \   /               | /
3129   //     QBI                QBI
3130   //    /  \                | \
3131   //   QTB  QFB             |  QFB
3132   //    \  /                | /
3133   //    PostBB            PostBB
3134   //
3135   // We model triangles as a type of diamond with a nullptr "true" block.
3136   // Triangles are canonicalized so that the fallthrough edge is represented by
3137   // a true condition, as in the diagram above.
3138   BasicBlock *PTB = PBI->getSuccessor(0);
3139   BasicBlock *PFB = PBI->getSuccessor(1);
3140   BasicBlock *QTB = QBI->getSuccessor(0);
3141   BasicBlock *QFB = QBI->getSuccessor(1);
3142   BasicBlock *PostBB = QFB->getSingleSuccessor();
3143 
3144   // Make sure we have a good guess for PostBB. If QTB's only successor is
3145   // QFB, then QFB is a better PostBB.
3146   if (QTB->getSingleSuccessor() == QFB)
3147     PostBB = QFB;
3148 
3149   // If we couldn't find a good PostBB, stop.
3150   if (!PostBB)
3151     return false;
3152 
3153   bool InvertPCond = false, InvertQCond = false;
3154   // Canonicalize fallthroughs to the true branches.
3155   if (PFB == QBI->getParent()) {
3156     std::swap(PFB, PTB);
3157     InvertPCond = true;
3158   }
3159   if (QFB == PostBB) {
3160     std::swap(QFB, QTB);
3161     InvertQCond = true;
3162   }
3163 
3164   // From this point on we can assume PTB or QTB may be fallthroughs but PFB
3165   // and QFB may not. Model fallthroughs as a nullptr block.
3166   if (PTB == QBI->getParent())
3167     PTB = nullptr;
3168   if (QTB == PostBB)
3169     QTB = nullptr;
3170 
3171   // Legality bailouts. We must have at least the non-fallthrough blocks and
3172   // the post-dominating block, and the non-fallthroughs must only have one
3173   // predecessor.
3174   auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) {
3175     return BB->getSinglePredecessor() == P && BB->getSingleSuccessor() == S;
3176   };
3177   if (!HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) ||
3178       !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB))
3179     return false;
3180   if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) ||
3181       (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB)))
3182     return false;
3183   if (!QBI->getParent()->hasNUses(2))
3184     return false;
3185 
3186   // OK, this is a sequence of two diamonds or triangles.
3187   // Check if there are stores in PTB or PFB that are repeated in QTB or QFB.
3188   SmallPtrSet<Value *, 4> PStoreAddresses, QStoreAddresses;
3189   for (auto *BB : {PTB, PFB}) {
3190     if (!BB)
3191       continue;
3192     for (auto &I : *BB)
3193       if (StoreInst *SI = dyn_cast<StoreInst>(&I))
3194         PStoreAddresses.insert(SI->getPointerOperand());
3195   }
3196   for (auto *BB : {QTB, QFB}) {
3197     if (!BB)
3198       continue;
3199     for (auto &I : *BB)
3200       if (StoreInst *SI = dyn_cast<StoreInst>(&I))
3201         QStoreAddresses.insert(SI->getPointerOperand());
3202   }
3203 
3204   set_intersect(PStoreAddresses, QStoreAddresses);
3205   // set_intersect mutates PStoreAddresses in place. Rename it here to make it
3206   // clear what it contains.
3207   auto &CommonAddresses = PStoreAddresses;
3208 
3209   bool Changed = false;
3210   for (auto *Address : CommonAddresses)
3211     Changed |= mergeConditionalStoreToAddress(
3212         PTB, PFB, QTB, QFB, PostBB, Address, InvertPCond, InvertQCond, DL, TTI);
3213   return Changed;
3214 }
3215 
3216 
3217 /// If the previous block ended with a widenable branch, determine if reusing
3218 /// the target block is profitable and legal.  This will have the effect of
3219 /// "widening" PBI, but doesn't require us to reason about hosting safety.
3220 static bool tryWidenCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI) {
3221   // TODO: This can be generalized in two important ways:
3222   // 1) We can allow phi nodes in IfFalseBB and simply reuse all the input
3223   //    values from the PBI edge.
3224   // 2) We can sink side effecting instructions into BI's fallthrough
3225   //    successor provided they doesn't contribute to computation of
3226   //    BI's condition.
3227   Value *CondWB, *WC;
3228   BasicBlock *IfTrueBB, *IfFalseBB;
3229   if (!parseWidenableBranch(PBI, CondWB, WC, IfTrueBB, IfFalseBB) ||
3230       IfTrueBB != BI->getParent() || !BI->getParent()->getSinglePredecessor())
3231     return false;
3232   if (!IfFalseBB->phis().empty())
3233     return false; // TODO
3234   // Use lambda to lazily compute expensive condition after cheap ones.
3235   auto NoSideEffects = [](BasicBlock &BB) {
3236     return !llvm::any_of(BB, [](const Instruction &I) {
3237         return I.mayWriteToMemory() || I.mayHaveSideEffects();
3238       });
3239   };
3240   if (BI->getSuccessor(1) != IfFalseBB && // no inf looping
3241       BI->getSuccessor(1)->getTerminatingDeoptimizeCall() && // profitability
3242       NoSideEffects(*BI->getParent())) {
3243     BI->getSuccessor(1)->removePredecessor(BI->getParent());
3244     BI->setSuccessor(1, IfFalseBB);
3245     return true;
3246   }
3247   if (BI->getSuccessor(0) != IfFalseBB && // no inf looping
3248       BI->getSuccessor(0)->getTerminatingDeoptimizeCall() && // profitability
3249       NoSideEffects(*BI->getParent())) {
3250     BI->getSuccessor(0)->removePredecessor(BI->getParent());
3251     BI->setSuccessor(0, IfFalseBB);
3252     return true;
3253   }
3254   return false;
3255 }
3256 
3257 /// If we have a conditional branch as a predecessor of another block,
3258 /// this function tries to simplify it.  We know
3259 /// that PBI and BI are both conditional branches, and BI is in one of the
3260 /// successor blocks of PBI - PBI branches to BI.
3261 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI,
3262                                            const DataLayout &DL,
3263                                            const TargetTransformInfo &TTI) {
3264   assert(PBI->isConditional() && BI->isConditional());
3265   BasicBlock *BB = BI->getParent();
3266 
3267   // If this block ends with a branch instruction, and if there is a
3268   // predecessor that ends on a branch of the same condition, make
3269   // this conditional branch redundant.
3270   if (PBI->getCondition() == BI->getCondition() &&
3271       PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
3272     // Okay, the outcome of this conditional branch is statically
3273     // knowable.  If this block had a single pred, handle specially.
3274     if (BB->getSinglePredecessor()) {
3275       // Turn this into a branch on constant.
3276       bool CondIsTrue = PBI->getSuccessor(0) == BB;
3277       BI->setCondition(
3278           ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue));
3279       return true; // Nuke the branch on constant.
3280     }
3281 
3282     // Otherwise, if there are multiple predecessors, insert a PHI that merges
3283     // in the constant and simplify the block result.  Subsequent passes of
3284     // simplifycfg will thread the block.
3285     if (BlockIsSimpleEnoughToThreadThrough(BB)) {
3286       pred_iterator PB = pred_begin(BB), PE = pred_end(BB);
3287       PHINode *NewPN = PHINode::Create(
3288           Type::getInt1Ty(BB->getContext()), std::distance(PB, PE),
3289           BI->getCondition()->getName() + ".pr", &BB->front());
3290       // Okay, we're going to insert the PHI node.  Since PBI is not the only
3291       // predecessor, compute the PHI'd conditional value for all of the preds.
3292       // Any predecessor where the condition is not computable we keep symbolic.
3293       for (pred_iterator PI = PB; PI != PE; ++PI) {
3294         BasicBlock *P = *PI;
3295         if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) && PBI != BI &&
3296             PBI->isConditional() && PBI->getCondition() == BI->getCondition() &&
3297             PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
3298           bool CondIsTrue = PBI->getSuccessor(0) == BB;
3299           NewPN->addIncoming(
3300               ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue),
3301               P);
3302         } else {
3303           NewPN->addIncoming(BI->getCondition(), P);
3304         }
3305       }
3306 
3307       BI->setCondition(NewPN);
3308       return true;
3309     }
3310   }
3311 
3312   // If the previous block ended with a widenable branch, determine if reusing
3313   // the target block is profitable and legal.  This will have the effect of
3314   // "widening" PBI, but doesn't require us to reason about hosting safety.
3315   if (tryWidenCondBranchToCondBranch(PBI, BI))
3316     return true;
3317 
3318   if (auto *CE = dyn_cast<ConstantExpr>(BI->getCondition()))
3319     if (CE->canTrap())
3320       return false;
3321 
3322   // If both branches are conditional and both contain stores to the same
3323   // address, remove the stores from the conditionals and create a conditional
3324   // merged store at the end.
3325   if (MergeCondStores && mergeConditionalStores(PBI, BI, DL, TTI))
3326     return true;
3327 
3328   // If this is a conditional branch in an empty block, and if any
3329   // predecessors are a conditional branch to one of our destinations,
3330   // fold the conditions into logical ops and one cond br.
3331 
3332   // Ignore dbg intrinsics.
3333   if (&*BB->instructionsWithoutDebug().begin() != BI)
3334     return false;
3335 
3336   int PBIOp, BIOp;
3337   if (PBI->getSuccessor(0) == BI->getSuccessor(0)) {
3338     PBIOp = 0;
3339     BIOp = 0;
3340   } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) {
3341     PBIOp = 0;
3342     BIOp = 1;
3343   } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) {
3344     PBIOp = 1;
3345     BIOp = 0;
3346   } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) {
3347     PBIOp = 1;
3348     BIOp = 1;
3349   } else {
3350     return false;
3351   }
3352 
3353   // Check to make sure that the other destination of this branch
3354   // isn't BB itself.  If so, this is an infinite loop that will
3355   // keep getting unwound.
3356   if (PBI->getSuccessor(PBIOp) == BB)
3357     return false;
3358 
3359   // Do not perform this transformation if it would require
3360   // insertion of a large number of select instructions. For targets
3361   // without predication/cmovs, this is a big pessimization.
3362 
3363   // Also do not perform this transformation if any phi node in the common
3364   // destination block can trap when reached by BB or PBB (PR17073). In that
3365   // case, it would be unsafe to hoist the operation into a select instruction.
3366 
3367   BasicBlock *CommonDest = PBI->getSuccessor(PBIOp);
3368   unsigned NumPhis = 0;
3369   for (BasicBlock::iterator II = CommonDest->begin(); isa<PHINode>(II);
3370        ++II, ++NumPhis) {
3371     if (NumPhis > 2) // Disable this xform.
3372       return false;
3373 
3374     PHINode *PN = cast<PHINode>(II);
3375     Value *BIV = PN->getIncomingValueForBlock(BB);
3376     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BIV))
3377       if (CE->canTrap())
3378         return false;
3379 
3380     unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
3381     Value *PBIV = PN->getIncomingValue(PBBIdx);
3382     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(PBIV))
3383       if (CE->canTrap())
3384         return false;
3385   }
3386 
3387   // Finally, if everything is ok, fold the branches to logical ops.
3388   BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1);
3389 
3390   LLVM_DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent()
3391                     << "AND: " << *BI->getParent());
3392 
3393   // If OtherDest *is* BB, then BB is a basic block with a single conditional
3394   // branch in it, where one edge (OtherDest) goes back to itself but the other
3395   // exits.  We don't *know* that the program avoids the infinite loop
3396   // (even though that seems likely).  If we do this xform naively, we'll end up
3397   // recursively unpeeling the loop.  Since we know that (after the xform is
3398   // done) that the block *is* infinite if reached, we just make it an obviously
3399   // infinite loop with no cond branch.
3400   if (OtherDest == BB) {
3401     // Insert it at the end of the function, because it's either code,
3402     // or it won't matter if it's hot. :)
3403     BasicBlock *InfLoopBlock =
3404         BasicBlock::Create(BB->getContext(), "infloop", BB->getParent());
3405     BranchInst::Create(InfLoopBlock, InfLoopBlock);
3406     OtherDest = InfLoopBlock;
3407   }
3408 
3409   LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent());
3410 
3411   // BI may have other predecessors.  Because of this, we leave
3412   // it alone, but modify PBI.
3413 
3414   // Make sure we get to CommonDest on True&True directions.
3415   Value *PBICond = PBI->getCondition();
3416   IRBuilder<NoFolder> Builder(PBI);
3417   if (PBIOp)
3418     PBICond = Builder.CreateNot(PBICond, PBICond->getName() + ".not");
3419 
3420   Value *BICond = BI->getCondition();
3421   if (BIOp)
3422     BICond = Builder.CreateNot(BICond, BICond->getName() + ".not");
3423 
3424   // Merge the conditions.
3425   Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge");
3426 
3427   // Modify PBI to branch on the new condition to the new dests.
3428   PBI->setCondition(Cond);
3429   PBI->setSuccessor(0, CommonDest);
3430   PBI->setSuccessor(1, OtherDest);
3431 
3432   // Update branch weight for PBI.
3433   uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
3434   uint64_t PredCommon, PredOther, SuccCommon, SuccOther;
3435   bool HasWeights =
3436       extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
3437                              SuccTrueWeight, SuccFalseWeight);
3438   if (HasWeights) {
3439     PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
3440     PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
3441     SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
3442     SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
3443     // The weight to CommonDest should be PredCommon * SuccTotal +
3444     //                                    PredOther * SuccCommon.
3445     // The weight to OtherDest should be PredOther * SuccOther.
3446     uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) +
3447                                   PredOther * SuccCommon,
3448                               PredOther * SuccOther};
3449     // Halve the weights if any of them cannot fit in an uint32_t
3450     FitWeights(NewWeights);
3451 
3452     setBranchWeights(PBI, NewWeights[0], NewWeights[1]);
3453   }
3454 
3455   // OtherDest may have phi nodes.  If so, add an entry from PBI's
3456   // block that are identical to the entries for BI's block.
3457   AddPredecessorToBlock(OtherDest, PBI->getParent(), BB);
3458 
3459   // We know that the CommonDest already had an edge from PBI to
3460   // it.  If it has PHIs though, the PHIs may have different
3461   // entries for BB and PBI's BB.  If so, insert a select to make
3462   // them agree.
3463   for (PHINode &PN : CommonDest->phis()) {
3464     Value *BIV = PN.getIncomingValueForBlock(BB);
3465     unsigned PBBIdx = PN.getBasicBlockIndex(PBI->getParent());
3466     Value *PBIV = PN.getIncomingValue(PBBIdx);
3467     if (BIV != PBIV) {
3468       // Insert a select in PBI to pick the right value.
3469       SelectInst *NV = cast<SelectInst>(
3470           Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName() + ".mux"));
3471       PN.setIncomingValue(PBBIdx, NV);
3472       // Although the select has the same condition as PBI, the original branch
3473       // weights for PBI do not apply to the new select because the select's
3474       // 'logical' edges are incoming edges of the phi that is eliminated, not
3475       // the outgoing edges of PBI.
3476       if (HasWeights) {
3477         uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
3478         uint64_t PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
3479         uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
3480         uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
3481         // The weight to PredCommonDest should be PredCommon * SuccTotal.
3482         // The weight to PredOtherDest should be PredOther * SuccCommon.
3483         uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther),
3484                                   PredOther * SuccCommon};
3485 
3486         FitWeights(NewWeights);
3487 
3488         setBranchWeights(NV, NewWeights[0], NewWeights[1]);
3489       }
3490     }
3491   }
3492 
3493   LLVM_DEBUG(dbgs() << "INTO: " << *PBI->getParent());
3494   LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent());
3495 
3496   // This basic block is probably dead.  We know it has at least
3497   // one fewer predecessor.
3498   return true;
3499 }
3500 
3501 // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is
3502 // true or to FalseBB if Cond is false.
3503 // Takes care of updating the successors and removing the old terminator.
3504 // Also makes sure not to introduce new successors by assuming that edges to
3505 // non-successor TrueBBs and FalseBBs aren't reachable.
3506 static bool SimplifyTerminatorOnSelect(Instruction *OldTerm, Value *Cond,
3507                                        BasicBlock *TrueBB, BasicBlock *FalseBB,
3508                                        uint32_t TrueWeight,
3509                                        uint32_t FalseWeight) {
3510   // Remove any superfluous successor edges from the CFG.
3511   // First, figure out which successors to preserve.
3512   // If TrueBB and FalseBB are equal, only try to preserve one copy of that
3513   // successor.
3514   BasicBlock *KeepEdge1 = TrueBB;
3515   BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr;
3516 
3517   // Then remove the rest.
3518   for (BasicBlock *Succ : successors(OldTerm)) {
3519     // Make sure only to keep exactly one copy of each edge.
3520     if (Succ == KeepEdge1)
3521       KeepEdge1 = nullptr;
3522     else if (Succ == KeepEdge2)
3523       KeepEdge2 = nullptr;
3524     else
3525       Succ->removePredecessor(OldTerm->getParent(),
3526                               /*KeepOneInputPHIs=*/true);
3527   }
3528 
3529   IRBuilder<> Builder(OldTerm);
3530   Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc());
3531 
3532   // Insert an appropriate new terminator.
3533   if (!KeepEdge1 && !KeepEdge2) {
3534     if (TrueBB == FalseBB)
3535       // We were only looking for one successor, and it was present.
3536       // Create an unconditional branch to it.
3537       Builder.CreateBr(TrueBB);
3538     else {
3539       // We found both of the successors we were looking for.
3540       // Create a conditional branch sharing the condition of the select.
3541       BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB);
3542       if (TrueWeight != FalseWeight)
3543         setBranchWeights(NewBI, TrueWeight, FalseWeight);
3544     }
3545   } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) {
3546     // Neither of the selected blocks were successors, so this
3547     // terminator must be unreachable.
3548     new UnreachableInst(OldTerm->getContext(), OldTerm);
3549   } else {
3550     // One of the selected values was a successor, but the other wasn't.
3551     // Insert an unconditional branch to the one that was found;
3552     // the edge to the one that wasn't must be unreachable.
3553     if (!KeepEdge1)
3554       // Only TrueBB was found.
3555       Builder.CreateBr(TrueBB);
3556     else
3557       // Only FalseBB was found.
3558       Builder.CreateBr(FalseBB);
3559   }
3560 
3561   EraseTerminatorAndDCECond(OldTerm);
3562   return true;
3563 }
3564 
3565 // Replaces
3566 //   (switch (select cond, X, Y)) on constant X, Y
3567 // with a branch - conditional if X and Y lead to distinct BBs,
3568 // unconditional otherwise.
3569 static bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select) {
3570   // Check for constant integer values in the select.
3571   ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue());
3572   ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue());
3573   if (!TrueVal || !FalseVal)
3574     return false;
3575 
3576   // Find the relevant condition and destinations.
3577   Value *Condition = Select->getCondition();
3578   BasicBlock *TrueBB = SI->findCaseValue(TrueVal)->getCaseSuccessor();
3579   BasicBlock *FalseBB = SI->findCaseValue(FalseVal)->getCaseSuccessor();
3580 
3581   // Get weight for TrueBB and FalseBB.
3582   uint32_t TrueWeight = 0, FalseWeight = 0;
3583   SmallVector<uint64_t, 8> Weights;
3584   bool HasWeights = HasBranchWeights(SI);
3585   if (HasWeights) {
3586     GetBranchWeights(SI, Weights);
3587     if (Weights.size() == 1 + SI->getNumCases()) {
3588       TrueWeight =
3589           (uint32_t)Weights[SI->findCaseValue(TrueVal)->getSuccessorIndex()];
3590       FalseWeight =
3591           (uint32_t)Weights[SI->findCaseValue(FalseVal)->getSuccessorIndex()];
3592     }
3593   }
3594 
3595   // Perform the actual simplification.
3596   return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, TrueWeight,
3597                                     FalseWeight);
3598 }
3599 
3600 // Replaces
3601 //   (indirectbr (select cond, blockaddress(@fn, BlockA),
3602 //                             blockaddress(@fn, BlockB)))
3603 // with
3604 //   (br cond, BlockA, BlockB).
3605 static bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI) {
3606   // Check that both operands of the select are block addresses.
3607   BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue());
3608   BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue());
3609   if (!TBA || !FBA)
3610     return false;
3611 
3612   // Extract the actual blocks.
3613   BasicBlock *TrueBB = TBA->getBasicBlock();
3614   BasicBlock *FalseBB = FBA->getBasicBlock();
3615 
3616   // Perform the actual simplification.
3617   return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 0,
3618                                     0);
3619 }
3620 
3621 /// This is called when we find an icmp instruction
3622 /// (a seteq/setne with a constant) as the only instruction in a
3623 /// block that ends with an uncond branch.  We are looking for a very specific
3624 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified.  In
3625 /// this case, we merge the first two "or's of icmp" into a switch, but then the
3626 /// default value goes to an uncond block with a seteq in it, we get something
3627 /// like:
3628 ///
3629 ///   switch i8 %A, label %DEFAULT [ i8 1, label %end    i8 2, label %end ]
3630 /// DEFAULT:
3631 ///   %tmp = icmp eq i8 %A, 92
3632 ///   br label %end
3633 /// end:
3634 ///   ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ]
3635 ///
3636 /// We prefer to split the edge to 'end' so that there is a true/false entry to
3637 /// the PHI, merging the third icmp into the switch.
3638 bool SimplifyCFGOpt::tryToSimplifyUncondBranchWithICmpInIt(
3639     ICmpInst *ICI, IRBuilder<> &Builder) {
3640   BasicBlock *BB = ICI->getParent();
3641 
3642   // If the block has any PHIs in it or the icmp has multiple uses, it is too
3643   // complex.
3644   if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse())
3645     return false;
3646 
3647   Value *V = ICI->getOperand(0);
3648   ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1));
3649 
3650   // The pattern we're looking for is where our only predecessor is a switch on
3651   // 'V' and this block is the default case for the switch.  In this case we can
3652   // fold the compared value into the switch to simplify things.
3653   BasicBlock *Pred = BB->getSinglePredecessor();
3654   if (!Pred || !isa<SwitchInst>(Pred->getTerminator()))
3655     return false;
3656 
3657   SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator());
3658   if (SI->getCondition() != V)
3659     return false;
3660 
3661   // If BB is reachable on a non-default case, then we simply know the value of
3662   // V in this block.  Substitute it and constant fold the icmp instruction
3663   // away.
3664   if (SI->getDefaultDest() != BB) {
3665     ConstantInt *VVal = SI->findCaseDest(BB);
3666     assert(VVal && "Should have a unique destination value");
3667     ICI->setOperand(0, VVal);
3668 
3669     if (Value *V = SimplifyInstruction(ICI, {DL, ICI})) {
3670       ICI->replaceAllUsesWith(V);
3671       ICI->eraseFromParent();
3672     }
3673     // BB is now empty, so it is likely to simplify away.
3674     return requestResimplify();
3675   }
3676 
3677   // Ok, the block is reachable from the default dest.  If the constant we're
3678   // comparing exists in one of the other edges, then we can constant fold ICI
3679   // and zap it.
3680   if (SI->findCaseValue(Cst) != SI->case_default()) {
3681     Value *V;
3682     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
3683       V = ConstantInt::getFalse(BB->getContext());
3684     else
3685       V = ConstantInt::getTrue(BB->getContext());
3686 
3687     ICI->replaceAllUsesWith(V);
3688     ICI->eraseFromParent();
3689     // BB is now empty, so it is likely to simplify away.
3690     return requestResimplify();
3691   }
3692 
3693   // The use of the icmp has to be in the 'end' block, by the only PHI node in
3694   // the block.
3695   BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0);
3696   PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back());
3697   if (PHIUse == nullptr || PHIUse != &SuccBlock->front() ||
3698       isa<PHINode>(++BasicBlock::iterator(PHIUse)))
3699     return false;
3700 
3701   // If the icmp is a SETEQ, then the default dest gets false, the new edge gets
3702   // true in the PHI.
3703   Constant *DefaultCst = ConstantInt::getTrue(BB->getContext());
3704   Constant *NewCst = ConstantInt::getFalse(BB->getContext());
3705 
3706   if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
3707     std::swap(DefaultCst, NewCst);
3708 
3709   // Replace ICI (which is used by the PHI for the default value) with true or
3710   // false depending on if it is EQ or NE.
3711   ICI->replaceAllUsesWith(DefaultCst);
3712   ICI->eraseFromParent();
3713 
3714   // Okay, the switch goes to this block on a default value.  Add an edge from
3715   // the switch to the merge point on the compared value.
3716   BasicBlock *NewBB =
3717       BasicBlock::Create(BB->getContext(), "switch.edge", BB->getParent(), BB);
3718   {
3719     SwitchInstProfUpdateWrapper SIW(*SI);
3720     auto W0 = SIW.getSuccessorWeight(0);
3721     SwitchInstProfUpdateWrapper::CaseWeightOpt NewW;
3722     if (W0) {
3723       NewW = ((uint64_t(*W0) + 1) >> 1);
3724       SIW.setSuccessorWeight(0, *NewW);
3725     }
3726     SIW.addCase(Cst, NewBB, NewW);
3727   }
3728 
3729   // NewBB branches to the phi block, add the uncond branch and the phi entry.
3730   Builder.SetInsertPoint(NewBB);
3731   Builder.SetCurrentDebugLocation(SI->getDebugLoc());
3732   Builder.CreateBr(SuccBlock);
3733   PHIUse->addIncoming(NewCst, NewBB);
3734   return true;
3735 }
3736 
3737 /// The specified branch is a conditional branch.
3738 /// Check to see if it is branching on an or/and chain of icmp instructions, and
3739 /// fold it into a switch instruction if so.
3740 static bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder,
3741                                       const DataLayout &DL) {
3742   Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
3743   if (!Cond)
3744     return false;
3745 
3746   // Change br (X == 0 | X == 1), T, F into a switch instruction.
3747   // If this is a bunch of seteq's or'd together, or if it's a bunch of
3748   // 'setne's and'ed together, collect them.
3749 
3750   // Try to gather values from a chain of and/or to be turned into a switch
3751   ConstantComparesGatherer ConstantCompare(Cond, DL);
3752   // Unpack the result
3753   SmallVectorImpl<ConstantInt *> &Values = ConstantCompare.Vals;
3754   Value *CompVal = ConstantCompare.CompValue;
3755   unsigned UsedICmps = ConstantCompare.UsedICmps;
3756   Value *ExtraCase = ConstantCompare.Extra;
3757 
3758   // If we didn't have a multiply compared value, fail.
3759   if (!CompVal)
3760     return false;
3761 
3762   // Avoid turning single icmps into a switch.
3763   if (UsedICmps <= 1)
3764     return false;
3765 
3766   bool TrueWhenEqual = (Cond->getOpcode() == Instruction::Or);
3767 
3768   // There might be duplicate constants in the list, which the switch
3769   // instruction can't handle, remove them now.
3770   array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate);
3771   Values.erase(std::unique(Values.begin(), Values.end()), Values.end());
3772 
3773   // If Extra was used, we require at least two switch values to do the
3774   // transformation.  A switch with one value is just a conditional branch.
3775   if (ExtraCase && Values.size() < 2)
3776     return false;
3777 
3778   // TODO: Preserve branch weight metadata, similarly to how
3779   // FoldValueComparisonIntoPredecessors preserves it.
3780 
3781   // Figure out which block is which destination.
3782   BasicBlock *DefaultBB = BI->getSuccessor(1);
3783   BasicBlock *EdgeBB = BI->getSuccessor(0);
3784   if (!TrueWhenEqual)
3785     std::swap(DefaultBB, EdgeBB);
3786 
3787   BasicBlock *BB = BI->getParent();
3788 
3789   // MSAN does not like undefs as branch condition which can be introduced
3790   // with "explicit branch".
3791   if (ExtraCase && BB->getParent()->hasFnAttribute(Attribute::SanitizeMemory))
3792     return false;
3793 
3794   LLVM_DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size()
3795                     << " cases into SWITCH.  BB is:\n"
3796                     << *BB);
3797 
3798   // If there are any extra values that couldn't be folded into the switch
3799   // then we evaluate them with an explicit branch first. Split the block
3800   // right before the condbr to handle it.
3801   if (ExtraCase) {
3802     BasicBlock *NewBB =
3803         BB->splitBasicBlock(BI->getIterator(), "switch.early.test");
3804     // Remove the uncond branch added to the old block.
3805     Instruction *OldTI = BB->getTerminator();
3806     Builder.SetInsertPoint(OldTI);
3807 
3808     if (TrueWhenEqual)
3809       Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB);
3810     else
3811       Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB);
3812 
3813     OldTI->eraseFromParent();
3814 
3815     // If there are PHI nodes in EdgeBB, then we need to add a new entry to them
3816     // for the edge we just added.
3817     AddPredecessorToBlock(EdgeBB, BB, NewBB);
3818 
3819     LLVM_DEBUG(dbgs() << "  ** 'icmp' chain unhandled condition: " << *ExtraCase
3820                       << "\nEXTRABB = " << *BB);
3821     BB = NewBB;
3822   }
3823 
3824   Builder.SetInsertPoint(BI);
3825   // Convert pointer to int before we switch.
3826   if (CompVal->getType()->isPointerTy()) {
3827     CompVal = Builder.CreatePtrToInt(
3828         CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr");
3829   }
3830 
3831   // Create the new switch instruction now.
3832   SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size());
3833 
3834   // Add all of the 'cases' to the switch instruction.
3835   for (unsigned i = 0, e = Values.size(); i != e; ++i)
3836     New->addCase(Values[i], EdgeBB);
3837 
3838   // We added edges from PI to the EdgeBB.  As such, if there were any
3839   // PHI nodes in EdgeBB, they need entries to be added corresponding to
3840   // the number of edges added.
3841   for (BasicBlock::iterator BBI = EdgeBB->begin(); isa<PHINode>(BBI); ++BBI) {
3842     PHINode *PN = cast<PHINode>(BBI);
3843     Value *InVal = PN->getIncomingValueForBlock(BB);
3844     for (unsigned i = 0, e = Values.size() - 1; i != e; ++i)
3845       PN->addIncoming(InVal, BB);
3846   }
3847 
3848   // Erase the old branch instruction.
3849   EraseTerminatorAndDCECond(BI);
3850 
3851   LLVM_DEBUG(dbgs() << "  ** 'icmp' chain result is:\n" << *BB << '\n');
3852   return true;
3853 }
3854 
3855 bool SimplifyCFGOpt::SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder) {
3856   if (isa<PHINode>(RI->getValue()))
3857     return SimplifyCommonResume(RI);
3858   else if (isa<LandingPadInst>(RI->getParent()->getFirstNonPHI()) &&
3859            RI->getValue() == RI->getParent()->getFirstNonPHI())
3860     // The resume must unwind the exception that caused control to branch here.
3861     return SimplifySingleResume(RI);
3862 
3863   return false;
3864 }
3865 
3866 // Simplify resume that is shared by several landing pads (phi of landing pad).
3867 bool SimplifyCFGOpt::SimplifyCommonResume(ResumeInst *RI) {
3868   BasicBlock *BB = RI->getParent();
3869 
3870   // Check that there are no other instructions except for debug intrinsics
3871   // between the phi of landing pads (RI->getValue()) and resume instruction.
3872   BasicBlock::iterator I = cast<Instruction>(RI->getValue())->getIterator(),
3873                        E = RI->getIterator();
3874   while (++I != E)
3875     if (!isa<DbgInfoIntrinsic>(I))
3876       return false;
3877 
3878   SmallSetVector<BasicBlock *, 4> TrivialUnwindBlocks;
3879   auto *PhiLPInst = cast<PHINode>(RI->getValue());
3880 
3881   // Check incoming blocks to see if any of them are trivial.
3882   for (unsigned Idx = 0, End = PhiLPInst->getNumIncomingValues(); Idx != End;
3883        Idx++) {
3884     auto *IncomingBB = PhiLPInst->getIncomingBlock(Idx);
3885     auto *IncomingValue = PhiLPInst->getIncomingValue(Idx);
3886 
3887     // If the block has other successors, we can not delete it because
3888     // it has other dependents.
3889     if (IncomingBB->getUniqueSuccessor() != BB)
3890       continue;
3891 
3892     auto *LandingPad = dyn_cast<LandingPadInst>(IncomingBB->getFirstNonPHI());
3893     // Not the landing pad that caused the control to branch here.
3894     if (IncomingValue != LandingPad)
3895       continue;
3896 
3897     bool isTrivial = true;
3898 
3899     I = IncomingBB->getFirstNonPHI()->getIterator();
3900     E = IncomingBB->getTerminator()->getIterator();
3901     while (++I != E)
3902       if (!isa<DbgInfoIntrinsic>(I)) {
3903         isTrivial = false;
3904         break;
3905       }
3906 
3907     if (isTrivial)
3908       TrivialUnwindBlocks.insert(IncomingBB);
3909   }
3910 
3911   // If no trivial unwind blocks, don't do any simplifications.
3912   if (TrivialUnwindBlocks.empty())
3913     return false;
3914 
3915   // Turn all invokes that unwind here into calls.
3916   for (auto *TrivialBB : TrivialUnwindBlocks) {
3917     // Blocks that will be simplified should be removed from the phi node.
3918     // Note there could be multiple edges to the resume block, and we need
3919     // to remove them all.
3920     while (PhiLPInst->getBasicBlockIndex(TrivialBB) != -1)
3921       BB->removePredecessor(TrivialBB, true);
3922 
3923     for (pred_iterator PI = pred_begin(TrivialBB), PE = pred_end(TrivialBB);
3924          PI != PE;) {
3925       BasicBlock *Pred = *PI++;
3926       removeUnwindEdge(Pred);
3927     }
3928 
3929     // In each SimplifyCFG run, only the current processed block can be erased.
3930     // Otherwise, it will break the iteration of SimplifyCFG pass. So instead
3931     // of erasing TrivialBB, we only remove the branch to the common resume
3932     // block so that we can later erase the resume block since it has no
3933     // predecessors.
3934     TrivialBB->getTerminator()->eraseFromParent();
3935     new UnreachableInst(RI->getContext(), TrivialBB);
3936   }
3937 
3938   // Delete the resume block if all its predecessors have been removed.
3939   if (pred_empty(BB))
3940     BB->eraseFromParent();
3941 
3942   return !TrivialUnwindBlocks.empty();
3943 }
3944 
3945 // Simplify resume that is only used by a single (non-phi) landing pad.
3946 bool SimplifyCFGOpt::SimplifySingleResume(ResumeInst *RI) {
3947   BasicBlock *BB = RI->getParent();
3948   auto *LPInst = cast<LandingPadInst>(BB->getFirstNonPHI());
3949   assert(RI->getValue() == LPInst &&
3950          "Resume must unwind the exception that caused control to here");
3951 
3952   // Check that there are no other instructions except for debug intrinsics.
3953   BasicBlock::iterator I = LPInst->getIterator(), E = RI->getIterator();
3954   while (++I != E)
3955     if (!isa<DbgInfoIntrinsic>(I))
3956       return false;
3957 
3958   // Turn all invokes that unwind here into calls and delete the basic block.
3959   for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) {
3960     BasicBlock *Pred = *PI++;
3961     removeUnwindEdge(Pred);
3962   }
3963 
3964   // The landingpad is now unreachable.  Zap it.
3965   if (LoopHeaders)
3966     LoopHeaders->erase(BB);
3967   BB->eraseFromParent();
3968   return true;
3969 }
3970 
3971 static bool removeEmptyCleanup(CleanupReturnInst *RI) {
3972   // If this is a trivial cleanup pad that executes no instructions, it can be
3973   // eliminated.  If the cleanup pad continues to the caller, any predecessor
3974   // that is an EH pad will be updated to continue to the caller and any
3975   // predecessor that terminates with an invoke instruction will have its invoke
3976   // instruction converted to a call instruction.  If the cleanup pad being
3977   // simplified does not continue to the caller, each predecessor will be
3978   // updated to continue to the unwind destination of the cleanup pad being
3979   // simplified.
3980   BasicBlock *BB = RI->getParent();
3981   CleanupPadInst *CPInst = RI->getCleanupPad();
3982   if (CPInst->getParent() != BB)
3983     // This isn't an empty cleanup.
3984     return false;
3985 
3986   // We cannot kill the pad if it has multiple uses.  This typically arises
3987   // from unreachable basic blocks.
3988   if (!CPInst->hasOneUse())
3989     return false;
3990 
3991   // Check that there are no other instructions except for benign intrinsics.
3992   BasicBlock::iterator I = CPInst->getIterator(), E = RI->getIterator();
3993   while (++I != E) {
3994     auto *II = dyn_cast<IntrinsicInst>(I);
3995     if (!II)
3996       return false;
3997 
3998     Intrinsic::ID IntrinsicID = II->getIntrinsicID();
3999     switch (IntrinsicID) {
4000     case Intrinsic::dbg_declare:
4001     case Intrinsic::dbg_value:
4002     case Intrinsic::dbg_label:
4003     case Intrinsic::lifetime_end:
4004       break;
4005     default:
4006       return false;
4007     }
4008   }
4009 
4010   // If the cleanup return we are simplifying unwinds to the caller, this will
4011   // set UnwindDest to nullptr.
4012   BasicBlock *UnwindDest = RI->getUnwindDest();
4013   Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr;
4014 
4015   // We're about to remove BB from the control flow.  Before we do, sink any
4016   // PHINodes into the unwind destination.  Doing this before changing the
4017   // control flow avoids some potentially slow checks, since we can currently
4018   // be certain that UnwindDest and BB have no common predecessors (since they
4019   // are both EH pads).
4020   if (UnwindDest) {
4021     // First, go through the PHI nodes in UnwindDest and update any nodes that
4022     // reference the block we are removing
4023     for (BasicBlock::iterator I = UnwindDest->begin(),
4024                               IE = DestEHPad->getIterator();
4025          I != IE; ++I) {
4026       PHINode *DestPN = cast<PHINode>(I);
4027 
4028       int Idx = DestPN->getBasicBlockIndex(BB);
4029       // Since BB unwinds to UnwindDest, it has to be in the PHI node.
4030       assert(Idx != -1);
4031       // This PHI node has an incoming value that corresponds to a control
4032       // path through the cleanup pad we are removing.  If the incoming
4033       // value is in the cleanup pad, it must be a PHINode (because we
4034       // verified above that the block is otherwise empty).  Otherwise, the
4035       // value is either a constant or a value that dominates the cleanup
4036       // pad being removed.
4037       //
4038       // Because BB and UnwindDest are both EH pads, all of their
4039       // predecessors must unwind to these blocks, and since no instruction
4040       // can have multiple unwind destinations, there will be no overlap in
4041       // incoming blocks between SrcPN and DestPN.
4042       Value *SrcVal = DestPN->getIncomingValue(Idx);
4043       PHINode *SrcPN = dyn_cast<PHINode>(SrcVal);
4044 
4045       // Remove the entry for the block we are deleting.
4046       DestPN->removeIncomingValue(Idx, false);
4047 
4048       if (SrcPN && SrcPN->getParent() == BB) {
4049         // If the incoming value was a PHI node in the cleanup pad we are
4050         // removing, we need to merge that PHI node's incoming values into
4051         // DestPN.
4052         for (unsigned SrcIdx = 0, SrcE = SrcPN->getNumIncomingValues();
4053              SrcIdx != SrcE; ++SrcIdx) {
4054           DestPN->addIncoming(SrcPN->getIncomingValue(SrcIdx),
4055                               SrcPN->getIncomingBlock(SrcIdx));
4056         }
4057       } else {
4058         // Otherwise, the incoming value came from above BB and
4059         // so we can just reuse it.  We must associate all of BB's
4060         // predecessors with this value.
4061         for (auto *pred : predecessors(BB)) {
4062           DestPN->addIncoming(SrcVal, pred);
4063         }
4064       }
4065     }
4066 
4067     // Sink any remaining PHI nodes directly into UnwindDest.
4068     Instruction *InsertPt = DestEHPad;
4069     for (BasicBlock::iterator I = BB->begin(),
4070                               IE = BB->getFirstNonPHI()->getIterator();
4071          I != IE;) {
4072       // The iterator must be incremented here because the instructions are
4073       // being moved to another block.
4074       PHINode *PN = cast<PHINode>(I++);
4075       if (PN->use_empty())
4076         // If the PHI node has no uses, just leave it.  It will be erased
4077         // when we erase BB below.
4078         continue;
4079 
4080       // Otherwise, sink this PHI node into UnwindDest.
4081       // Any predecessors to UnwindDest which are not already represented
4082       // must be back edges which inherit the value from the path through
4083       // BB.  In this case, the PHI value must reference itself.
4084       for (auto *pred : predecessors(UnwindDest))
4085         if (pred != BB)
4086           PN->addIncoming(PN, pred);
4087       PN->moveBefore(InsertPt);
4088     }
4089   }
4090 
4091   for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) {
4092     // The iterator must be updated here because we are removing this pred.
4093     BasicBlock *PredBB = *PI++;
4094     if (UnwindDest == nullptr) {
4095       removeUnwindEdge(PredBB);
4096     } else {
4097       Instruction *TI = PredBB->getTerminator();
4098       TI->replaceUsesOfWith(BB, UnwindDest);
4099     }
4100   }
4101 
4102   // The cleanup pad is now unreachable.  Zap it.
4103   BB->eraseFromParent();
4104   return true;
4105 }
4106 
4107 // Try to merge two cleanuppads together.
4108 static bool mergeCleanupPad(CleanupReturnInst *RI) {
4109   // Skip any cleanuprets which unwind to caller, there is nothing to merge
4110   // with.
4111   BasicBlock *UnwindDest = RI->getUnwindDest();
4112   if (!UnwindDest)
4113     return false;
4114 
4115   // This cleanupret isn't the only predecessor of this cleanuppad, it wouldn't
4116   // be safe to merge without code duplication.
4117   if (UnwindDest->getSinglePredecessor() != RI->getParent())
4118     return false;
4119 
4120   // Verify that our cleanuppad's unwind destination is another cleanuppad.
4121   auto *SuccessorCleanupPad = dyn_cast<CleanupPadInst>(&UnwindDest->front());
4122   if (!SuccessorCleanupPad)
4123     return false;
4124 
4125   CleanupPadInst *PredecessorCleanupPad = RI->getCleanupPad();
4126   // Replace any uses of the successor cleanupad with the predecessor pad
4127   // The only cleanuppad uses should be this cleanupret, it's cleanupret and
4128   // funclet bundle operands.
4129   SuccessorCleanupPad->replaceAllUsesWith(PredecessorCleanupPad);
4130   // Remove the old cleanuppad.
4131   SuccessorCleanupPad->eraseFromParent();
4132   // Now, we simply replace the cleanupret with a branch to the unwind
4133   // destination.
4134   BranchInst::Create(UnwindDest, RI->getParent());
4135   RI->eraseFromParent();
4136 
4137   return true;
4138 }
4139 
4140 bool SimplifyCFGOpt::SimplifyCleanupReturn(CleanupReturnInst *RI) {
4141   // It is possible to transiantly have an undef cleanuppad operand because we
4142   // have deleted some, but not all, dead blocks.
4143   // Eventually, this block will be deleted.
4144   if (isa<UndefValue>(RI->getOperand(0)))
4145     return false;
4146 
4147   if (mergeCleanupPad(RI))
4148     return true;
4149 
4150   if (removeEmptyCleanup(RI))
4151     return true;
4152 
4153   return false;
4154 }
4155 
4156 bool SimplifyCFGOpt::SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) {
4157   BasicBlock *BB = RI->getParent();
4158   if (!BB->getFirstNonPHIOrDbg()->isTerminator())
4159     return false;
4160 
4161   // Find predecessors that end with branches.
4162   SmallVector<BasicBlock *, 8> UncondBranchPreds;
4163   SmallVector<BranchInst *, 8> CondBranchPreds;
4164   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
4165     BasicBlock *P = *PI;
4166     Instruction *PTI = P->getTerminator();
4167     if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) {
4168       if (BI->isUnconditional())
4169         UncondBranchPreds.push_back(P);
4170       else
4171         CondBranchPreds.push_back(BI);
4172     }
4173   }
4174 
4175   // If we found some, do the transformation!
4176   if (!UncondBranchPreds.empty() && DupRet) {
4177     while (!UncondBranchPreds.empty()) {
4178       BasicBlock *Pred = UncondBranchPreds.pop_back_val();
4179       LLVM_DEBUG(dbgs() << "FOLDING: " << *BB
4180                         << "INTO UNCOND BRANCH PRED: " << *Pred);
4181       (void)FoldReturnIntoUncondBranch(RI, BB, Pred);
4182     }
4183 
4184     // If we eliminated all predecessors of the block, delete the block now.
4185     if (pred_empty(BB)) {
4186       // We know there are no successors, so just nuke the block.
4187       if (LoopHeaders)
4188         LoopHeaders->erase(BB);
4189       BB->eraseFromParent();
4190     }
4191 
4192     return true;
4193   }
4194 
4195   // Check out all of the conditional branches going to this return
4196   // instruction.  If any of them just select between returns, change the
4197   // branch itself into a select/return pair.
4198   while (!CondBranchPreds.empty()) {
4199     BranchInst *BI = CondBranchPreds.pop_back_val();
4200 
4201     // Check to see if the non-BB successor is also a return block.
4202     if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) &&
4203         isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) &&
4204         SimplifyCondBranchToTwoReturns(BI, Builder))
4205       return true;
4206   }
4207   return false;
4208 }
4209 
4210 bool SimplifyCFGOpt::SimplifyUnreachable(UnreachableInst *UI) {
4211   BasicBlock *BB = UI->getParent();
4212 
4213   bool Changed = false;
4214 
4215   // If there are any instructions immediately before the unreachable that can
4216   // be removed, do so.
4217   while (UI->getIterator() != BB->begin()) {
4218     BasicBlock::iterator BBI = UI->getIterator();
4219     --BBI;
4220     // Do not delete instructions that can have side effects which might cause
4221     // the unreachable to not be reachable; specifically, calls and volatile
4222     // operations may have this effect.
4223     if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI))
4224       break;
4225 
4226     if (BBI->mayHaveSideEffects()) {
4227       if (auto *SI = dyn_cast<StoreInst>(BBI)) {
4228         if (SI->isVolatile())
4229           break;
4230       } else if (auto *LI = dyn_cast<LoadInst>(BBI)) {
4231         if (LI->isVolatile())
4232           break;
4233       } else if (auto *RMWI = dyn_cast<AtomicRMWInst>(BBI)) {
4234         if (RMWI->isVolatile())
4235           break;
4236       } else if (auto *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) {
4237         if (CXI->isVolatile())
4238           break;
4239       } else if (isa<CatchPadInst>(BBI)) {
4240         // A catchpad may invoke exception object constructors and such, which
4241         // in some languages can be arbitrary code, so be conservative by
4242         // default.
4243         // For CoreCLR, it just involves a type test, so can be removed.
4244         if (classifyEHPersonality(BB->getParent()->getPersonalityFn()) !=
4245             EHPersonality::CoreCLR)
4246           break;
4247       } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) &&
4248                  !isa<LandingPadInst>(BBI)) {
4249         break;
4250       }
4251       // Note that deleting LandingPad's here is in fact okay, although it
4252       // involves a bit of subtle reasoning. If this inst is a LandingPad,
4253       // all the predecessors of this block will be the unwind edges of Invokes,
4254       // and we can therefore guarantee this block will be erased.
4255     }
4256 
4257     // Delete this instruction (any uses are guaranteed to be dead)
4258     if (!BBI->use_empty())
4259       BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
4260     BBI->eraseFromParent();
4261     Changed = true;
4262   }
4263 
4264   // If the unreachable instruction is the first in the block, take a gander
4265   // at all of the predecessors of this instruction, and simplify them.
4266   if (&BB->front() != UI)
4267     return Changed;
4268 
4269   SmallVector<BasicBlock *, 8> Preds(pred_begin(BB), pred_end(BB));
4270   for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
4271     Instruction *TI = Preds[i]->getTerminator();
4272     IRBuilder<> Builder(TI);
4273     if (auto *BI = dyn_cast<BranchInst>(TI)) {
4274       if (BI->isUnconditional()) {
4275         assert(BI->getSuccessor(0) == BB && "Incorrect CFG");
4276         new UnreachableInst(TI->getContext(), TI);
4277         TI->eraseFromParent();
4278         Changed = true;
4279       } else {
4280         Value* Cond = BI->getCondition();
4281         if (BI->getSuccessor(0) == BB) {
4282           Builder.CreateAssumption(Builder.CreateNot(Cond));
4283           Builder.CreateBr(BI->getSuccessor(1));
4284         } else {
4285           assert(BI->getSuccessor(1) == BB && "Incorrect CFG");
4286           Builder.CreateAssumption(Cond);
4287           Builder.CreateBr(BI->getSuccessor(0));
4288         }
4289         EraseTerminatorAndDCECond(BI);
4290         Changed = true;
4291       }
4292     } else if (auto *SI = dyn_cast<SwitchInst>(TI)) {
4293       SwitchInstProfUpdateWrapper SU(*SI);
4294       for (auto i = SU->case_begin(), e = SU->case_end(); i != e;) {
4295         if (i->getCaseSuccessor() != BB) {
4296           ++i;
4297           continue;
4298         }
4299         BB->removePredecessor(SU->getParent());
4300         i = SU.removeCase(i);
4301         e = SU->case_end();
4302         Changed = true;
4303       }
4304     } else if (auto *II = dyn_cast<InvokeInst>(TI)) {
4305       if (II->getUnwindDest() == BB) {
4306         removeUnwindEdge(TI->getParent());
4307         Changed = true;
4308       }
4309     } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) {
4310       if (CSI->getUnwindDest() == BB) {
4311         removeUnwindEdge(TI->getParent());
4312         Changed = true;
4313         continue;
4314       }
4315 
4316       for (CatchSwitchInst::handler_iterator I = CSI->handler_begin(),
4317                                              E = CSI->handler_end();
4318            I != E; ++I) {
4319         if (*I == BB) {
4320           CSI->removeHandler(I);
4321           --I;
4322           --E;
4323           Changed = true;
4324         }
4325       }
4326       if (CSI->getNumHandlers() == 0) {
4327         BasicBlock *CatchSwitchBB = CSI->getParent();
4328         if (CSI->hasUnwindDest()) {
4329           // Redirect preds to the unwind dest
4330           CatchSwitchBB->replaceAllUsesWith(CSI->getUnwindDest());
4331         } else {
4332           // Rewrite all preds to unwind to caller (or from invoke to call).
4333           SmallVector<BasicBlock *, 8> EHPreds(predecessors(CatchSwitchBB));
4334           for (BasicBlock *EHPred : EHPreds)
4335             removeUnwindEdge(EHPred);
4336         }
4337         // The catchswitch is no longer reachable.
4338         new UnreachableInst(CSI->getContext(), CSI);
4339         CSI->eraseFromParent();
4340         Changed = true;
4341       }
4342     } else if (isa<CleanupReturnInst>(TI)) {
4343       new UnreachableInst(TI->getContext(), TI);
4344       TI->eraseFromParent();
4345       Changed = true;
4346     }
4347   }
4348 
4349   // If this block is now dead, remove it.
4350   if (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) {
4351     // We know there are no successors, so just nuke the block.
4352     if (LoopHeaders)
4353       LoopHeaders->erase(BB);
4354     BB->eraseFromParent();
4355     return true;
4356   }
4357 
4358   return Changed;
4359 }
4360 
4361 static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) {
4362   assert(Cases.size() >= 1);
4363 
4364   array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate);
4365   for (size_t I = 1, E = Cases.size(); I != E; ++I) {
4366     if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1)
4367       return false;
4368   }
4369   return true;
4370 }
4371 
4372 static void createUnreachableSwitchDefault(SwitchInst *Switch) {
4373   LLVM_DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n");
4374   BasicBlock *NewDefaultBlock =
4375      SplitBlockPredecessors(Switch->getDefaultDest(), Switch->getParent(), "");
4376   Switch->setDefaultDest(&*NewDefaultBlock);
4377   SplitBlock(&*NewDefaultBlock, &NewDefaultBlock->front());
4378   auto *NewTerminator = NewDefaultBlock->getTerminator();
4379   new UnreachableInst(Switch->getContext(), NewTerminator);
4380   EraseTerminatorAndDCECond(NewTerminator);
4381 }
4382 
4383 /// Turn a switch with two reachable destinations into an integer range
4384 /// comparison and branch.
4385 static bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder) {
4386   assert(SI->getNumCases() > 1 && "Degenerate switch?");
4387 
4388   bool HasDefault =
4389       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
4390 
4391   // Partition the cases into two sets with different destinations.
4392   BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr;
4393   BasicBlock *DestB = nullptr;
4394   SmallVector<ConstantInt *, 16> CasesA;
4395   SmallVector<ConstantInt *, 16> CasesB;
4396 
4397   for (auto Case : SI->cases()) {
4398     BasicBlock *Dest = Case.getCaseSuccessor();
4399     if (!DestA)
4400       DestA = Dest;
4401     if (Dest == DestA) {
4402       CasesA.push_back(Case.getCaseValue());
4403       continue;
4404     }
4405     if (!DestB)
4406       DestB = Dest;
4407     if (Dest == DestB) {
4408       CasesB.push_back(Case.getCaseValue());
4409       continue;
4410     }
4411     return false; // More than two destinations.
4412   }
4413 
4414   assert(DestA && DestB &&
4415          "Single-destination switch should have been folded.");
4416   assert(DestA != DestB);
4417   assert(DestB != SI->getDefaultDest());
4418   assert(!CasesB.empty() && "There must be non-default cases.");
4419   assert(!CasesA.empty() || HasDefault);
4420 
4421   // Figure out if one of the sets of cases form a contiguous range.
4422   SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr;
4423   BasicBlock *ContiguousDest = nullptr;
4424   BasicBlock *OtherDest = nullptr;
4425   if (!CasesA.empty() && CasesAreContiguous(CasesA)) {
4426     ContiguousCases = &CasesA;
4427     ContiguousDest = DestA;
4428     OtherDest = DestB;
4429   } else if (CasesAreContiguous(CasesB)) {
4430     ContiguousCases = &CasesB;
4431     ContiguousDest = DestB;
4432     OtherDest = DestA;
4433   } else
4434     return false;
4435 
4436   // Start building the compare and branch.
4437 
4438   Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back());
4439   Constant *NumCases =
4440       ConstantInt::get(Offset->getType(), ContiguousCases->size());
4441 
4442   Value *Sub = SI->getCondition();
4443   if (!Offset->isNullValue())
4444     Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off");
4445 
4446   Value *Cmp;
4447   // If NumCases overflowed, then all possible values jump to the successor.
4448   if (NumCases->isNullValue() && !ContiguousCases->empty())
4449     Cmp = ConstantInt::getTrue(SI->getContext());
4450   else
4451     Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch");
4452   BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest);
4453 
4454   // Update weight for the newly-created conditional branch.
4455   if (HasBranchWeights(SI)) {
4456     SmallVector<uint64_t, 8> Weights;
4457     GetBranchWeights(SI, Weights);
4458     if (Weights.size() == 1 + SI->getNumCases()) {
4459       uint64_t TrueWeight = 0;
4460       uint64_t FalseWeight = 0;
4461       for (size_t I = 0, E = Weights.size(); I != E; ++I) {
4462         if (SI->getSuccessor(I) == ContiguousDest)
4463           TrueWeight += Weights[I];
4464         else
4465           FalseWeight += Weights[I];
4466       }
4467       while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) {
4468         TrueWeight /= 2;
4469         FalseWeight /= 2;
4470       }
4471       setBranchWeights(NewBI, TrueWeight, FalseWeight);
4472     }
4473   }
4474 
4475   // Prune obsolete incoming values off the successors' PHI nodes.
4476   for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) {
4477     unsigned PreviousEdges = ContiguousCases->size();
4478     if (ContiguousDest == SI->getDefaultDest())
4479       ++PreviousEdges;
4480     for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
4481       cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
4482   }
4483   for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) {
4484     unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size();
4485     if (OtherDest == SI->getDefaultDest())
4486       ++PreviousEdges;
4487     for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
4488       cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
4489   }
4490 
4491   // Clean up the default block - it may have phis or other instructions before
4492   // the unreachable terminator.
4493   if (!HasDefault)
4494     createUnreachableSwitchDefault(SI);
4495 
4496   // Drop the switch.
4497   SI->eraseFromParent();
4498 
4499   return true;
4500 }
4501 
4502 /// Compute masked bits for the condition of a switch
4503 /// and use it to remove dead cases.
4504 static bool eliminateDeadSwitchCases(SwitchInst *SI, AssumptionCache *AC,
4505                                      const DataLayout &DL) {
4506   Value *Cond = SI->getCondition();
4507   unsigned Bits = Cond->getType()->getIntegerBitWidth();
4508   KnownBits Known = computeKnownBits(Cond, DL, 0, AC, SI);
4509 
4510   // We can also eliminate cases by determining that their values are outside of
4511   // the limited range of the condition based on how many significant (non-sign)
4512   // bits are in the condition value.
4513   unsigned ExtraSignBits = ComputeNumSignBits(Cond, DL, 0, AC, SI) - 1;
4514   unsigned MaxSignificantBitsInCond = Bits - ExtraSignBits;
4515 
4516   // Gather dead cases.
4517   SmallVector<ConstantInt *, 8> DeadCases;
4518   for (auto &Case : SI->cases()) {
4519     const APInt &CaseVal = Case.getCaseValue()->getValue();
4520     if (Known.Zero.intersects(CaseVal) || !Known.One.isSubsetOf(CaseVal) ||
4521         (CaseVal.getMinSignedBits() > MaxSignificantBitsInCond)) {
4522       DeadCases.push_back(Case.getCaseValue());
4523       LLVM_DEBUG(dbgs() << "SimplifyCFG: switch case " << CaseVal
4524                         << " is dead.\n");
4525     }
4526   }
4527 
4528   // If we can prove that the cases must cover all possible values, the
4529   // default destination becomes dead and we can remove it.  If we know some
4530   // of the bits in the value, we can use that to more precisely compute the
4531   // number of possible unique case values.
4532   bool HasDefault =
4533       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
4534   const unsigned NumUnknownBits =
4535       Bits - (Known.Zero | Known.One).countPopulation();
4536   assert(NumUnknownBits <= Bits);
4537   if (HasDefault && DeadCases.empty() &&
4538       NumUnknownBits < 64 /* avoid overflow */ &&
4539       SI->getNumCases() == (1ULL << NumUnknownBits)) {
4540     createUnreachableSwitchDefault(SI);
4541     return true;
4542   }
4543 
4544   if (DeadCases.empty())
4545     return false;
4546 
4547   SwitchInstProfUpdateWrapper SIW(*SI);
4548   for (ConstantInt *DeadCase : DeadCases) {
4549     SwitchInst::CaseIt CaseI = SI->findCaseValue(DeadCase);
4550     assert(CaseI != SI->case_default() &&
4551            "Case was not found. Probably mistake in DeadCases forming.");
4552     // Prune unused values from PHI nodes.
4553     CaseI->getCaseSuccessor()->removePredecessor(SI->getParent());
4554     SIW.removeCase(CaseI);
4555   }
4556 
4557   return true;
4558 }
4559 
4560 /// If BB would be eligible for simplification by
4561 /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated
4562 /// by an unconditional branch), look at the phi node for BB in the successor
4563 /// block and see if the incoming value is equal to CaseValue. If so, return
4564 /// the phi node, and set PhiIndex to BB's index in the phi node.
4565 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue,
4566                                               BasicBlock *BB, int *PhiIndex) {
4567   if (BB->getFirstNonPHIOrDbg() != BB->getTerminator())
4568     return nullptr; // BB must be empty to be a candidate for simplification.
4569   if (!BB->getSinglePredecessor())
4570     return nullptr; // BB must be dominated by the switch.
4571 
4572   BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator());
4573   if (!Branch || !Branch->isUnconditional())
4574     return nullptr; // Terminator must be unconditional branch.
4575 
4576   BasicBlock *Succ = Branch->getSuccessor(0);
4577 
4578   for (PHINode &PHI : Succ->phis()) {
4579     int Idx = PHI.getBasicBlockIndex(BB);
4580     assert(Idx >= 0 && "PHI has no entry for predecessor?");
4581 
4582     Value *InValue = PHI.getIncomingValue(Idx);
4583     if (InValue != CaseValue)
4584       continue;
4585 
4586     *PhiIndex = Idx;
4587     return &PHI;
4588   }
4589 
4590   return nullptr;
4591 }
4592 
4593 /// Try to forward the condition of a switch instruction to a phi node
4594 /// dominated by the switch, if that would mean that some of the destination
4595 /// blocks of the switch can be folded away. Return true if a change is made.
4596 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) {
4597   using ForwardingNodesMap = DenseMap<PHINode *, SmallVector<int, 4>>;
4598 
4599   ForwardingNodesMap ForwardingNodes;
4600   BasicBlock *SwitchBlock = SI->getParent();
4601   bool Changed = false;
4602   for (auto &Case : SI->cases()) {
4603     ConstantInt *CaseValue = Case.getCaseValue();
4604     BasicBlock *CaseDest = Case.getCaseSuccessor();
4605 
4606     // Replace phi operands in successor blocks that are using the constant case
4607     // value rather than the switch condition variable:
4608     //   switchbb:
4609     //   switch i32 %x, label %default [
4610     //     i32 17, label %succ
4611     //   ...
4612     //   succ:
4613     //     %r = phi i32 ... [ 17, %switchbb ] ...
4614     // -->
4615     //     %r = phi i32 ... [ %x, %switchbb ] ...
4616 
4617     for (PHINode &Phi : CaseDest->phis()) {
4618       // This only works if there is exactly 1 incoming edge from the switch to
4619       // a phi. If there is >1, that means multiple cases of the switch map to 1
4620       // value in the phi, and that phi value is not the switch condition. Thus,
4621       // this transform would not make sense (the phi would be invalid because
4622       // a phi can't have different incoming values from the same block).
4623       int SwitchBBIdx = Phi.getBasicBlockIndex(SwitchBlock);
4624       if (Phi.getIncomingValue(SwitchBBIdx) == CaseValue &&
4625           count(Phi.blocks(), SwitchBlock) == 1) {
4626         Phi.setIncomingValue(SwitchBBIdx, SI->getCondition());
4627         Changed = true;
4628       }
4629     }
4630 
4631     // Collect phi nodes that are indirectly using this switch's case constants.
4632     int PhiIdx;
4633     if (auto *Phi = FindPHIForConditionForwarding(CaseValue, CaseDest, &PhiIdx))
4634       ForwardingNodes[Phi].push_back(PhiIdx);
4635   }
4636 
4637   for (auto &ForwardingNode : ForwardingNodes) {
4638     PHINode *Phi = ForwardingNode.first;
4639     SmallVectorImpl<int> &Indexes = ForwardingNode.second;
4640     if (Indexes.size() < 2)
4641       continue;
4642 
4643     for (int Index : Indexes)
4644       Phi->setIncomingValue(Index, SI->getCondition());
4645     Changed = true;
4646   }
4647 
4648   return Changed;
4649 }
4650 
4651 /// Return true if the backend will be able to handle
4652 /// initializing an array of constants like C.
4653 static bool ValidLookupTableConstant(Constant *C, const TargetTransformInfo &TTI) {
4654   if (C->isThreadDependent())
4655     return false;
4656   if (C->isDLLImportDependent())
4657     return false;
4658 
4659   if (!isa<ConstantFP>(C) && !isa<ConstantInt>(C) &&
4660       !isa<ConstantPointerNull>(C) && !isa<GlobalValue>(C) &&
4661       !isa<UndefValue>(C) && !isa<ConstantExpr>(C))
4662     return false;
4663 
4664   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
4665     if (!CE->isGEPWithNoNotionalOverIndexing())
4666       return false;
4667     if (!ValidLookupTableConstant(CE->getOperand(0), TTI))
4668       return false;
4669   }
4670 
4671   if (!TTI.shouldBuildLookupTablesForConstant(C))
4672     return false;
4673 
4674   return true;
4675 }
4676 
4677 /// If V is a Constant, return it. Otherwise, try to look up
4678 /// its constant value in ConstantPool, returning 0 if it's not there.
4679 static Constant *
4680 LookupConstant(Value *V,
4681                const SmallDenseMap<Value *, Constant *> &ConstantPool) {
4682   if (Constant *C = dyn_cast<Constant>(V))
4683     return C;
4684   return ConstantPool.lookup(V);
4685 }
4686 
4687 /// Try to fold instruction I into a constant. This works for
4688 /// simple instructions such as binary operations where both operands are
4689 /// constant or can be replaced by constants from the ConstantPool. Returns the
4690 /// resulting constant on success, 0 otherwise.
4691 static Constant *
4692 ConstantFold(Instruction *I, const DataLayout &DL,
4693              const SmallDenseMap<Value *, Constant *> &ConstantPool) {
4694   if (SelectInst *Select = dyn_cast<SelectInst>(I)) {
4695     Constant *A = LookupConstant(Select->getCondition(), ConstantPool);
4696     if (!A)
4697       return nullptr;
4698     if (A->isAllOnesValue())
4699       return LookupConstant(Select->getTrueValue(), ConstantPool);
4700     if (A->isNullValue())
4701       return LookupConstant(Select->getFalseValue(), ConstantPool);
4702     return nullptr;
4703   }
4704 
4705   SmallVector<Constant *, 4> COps;
4706   for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) {
4707     if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool))
4708       COps.push_back(A);
4709     else
4710       return nullptr;
4711   }
4712 
4713   if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
4714     return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0],
4715                                            COps[1], DL);
4716   }
4717 
4718   return ConstantFoldInstOperands(I, COps, DL);
4719 }
4720 
4721 /// Try to determine the resulting constant values in phi nodes
4722 /// at the common destination basic block, *CommonDest, for one of the case
4723 /// destionations CaseDest corresponding to value CaseVal (0 for the default
4724 /// case), of a switch instruction SI.
4725 static bool
4726 GetCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest,
4727                BasicBlock **CommonDest,
4728                SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res,
4729                const DataLayout &DL, const TargetTransformInfo &TTI) {
4730   // The block from which we enter the common destination.
4731   BasicBlock *Pred = SI->getParent();
4732 
4733   // If CaseDest is empty except for some side-effect free instructions through
4734   // which we can constant-propagate the CaseVal, continue to its successor.
4735   SmallDenseMap<Value *, Constant *> ConstantPool;
4736   ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal));
4737   for (Instruction &I :CaseDest->instructionsWithoutDebug()) {
4738     if (I.isTerminator()) {
4739       // If the terminator is a simple branch, continue to the next block.
4740       if (I.getNumSuccessors() != 1 || I.isExceptionalTerminator())
4741         return false;
4742       Pred = CaseDest;
4743       CaseDest = I.getSuccessor(0);
4744     } else if (Constant *C = ConstantFold(&I, DL, ConstantPool)) {
4745       // Instruction is side-effect free and constant.
4746 
4747       // If the instruction has uses outside this block or a phi node slot for
4748       // the block, it is not safe to bypass the instruction since it would then
4749       // no longer dominate all its uses.
4750       for (auto &Use : I.uses()) {
4751         User *User = Use.getUser();
4752         if (Instruction *I = dyn_cast<Instruction>(User))
4753           if (I->getParent() == CaseDest)
4754             continue;
4755         if (PHINode *Phi = dyn_cast<PHINode>(User))
4756           if (Phi->getIncomingBlock(Use) == CaseDest)
4757             continue;
4758         return false;
4759       }
4760 
4761       ConstantPool.insert(std::make_pair(&I, C));
4762     } else {
4763       break;
4764     }
4765   }
4766 
4767   // If we did not have a CommonDest before, use the current one.
4768   if (!*CommonDest)
4769     *CommonDest = CaseDest;
4770   // If the destination isn't the common one, abort.
4771   if (CaseDest != *CommonDest)
4772     return false;
4773 
4774   // Get the values for this case from phi nodes in the destination block.
4775   for (PHINode &PHI : (*CommonDest)->phis()) {
4776     int Idx = PHI.getBasicBlockIndex(Pred);
4777     if (Idx == -1)
4778       continue;
4779 
4780     Constant *ConstVal =
4781         LookupConstant(PHI.getIncomingValue(Idx), ConstantPool);
4782     if (!ConstVal)
4783       return false;
4784 
4785     // Be conservative about which kinds of constants we support.
4786     if (!ValidLookupTableConstant(ConstVal, TTI))
4787       return false;
4788 
4789     Res.push_back(std::make_pair(&PHI, ConstVal));
4790   }
4791 
4792   return Res.size() > 0;
4793 }
4794 
4795 // Helper function used to add CaseVal to the list of cases that generate
4796 // Result. Returns the updated number of cases that generate this result.
4797 static uintptr_t MapCaseToResult(ConstantInt *CaseVal,
4798                                  SwitchCaseResultVectorTy &UniqueResults,
4799                                  Constant *Result) {
4800   for (auto &I : UniqueResults) {
4801     if (I.first == Result) {
4802       I.second.push_back(CaseVal);
4803       return I.second.size();
4804     }
4805   }
4806   UniqueResults.push_back(
4807       std::make_pair(Result, SmallVector<ConstantInt *, 4>(1, CaseVal)));
4808   return 1;
4809 }
4810 
4811 // Helper function that initializes a map containing
4812 // results for the PHI node of the common destination block for a switch
4813 // instruction. Returns false if multiple PHI nodes have been found or if
4814 // there is not a common destination block for the switch.
4815 static bool
4816 InitializeUniqueCases(SwitchInst *SI, PHINode *&PHI, BasicBlock *&CommonDest,
4817                       SwitchCaseResultVectorTy &UniqueResults,
4818                       Constant *&DefaultResult, const DataLayout &DL,
4819                       const TargetTransformInfo &TTI,
4820                       uintptr_t MaxUniqueResults, uintptr_t MaxCasesPerResult) {
4821   for (auto &I : SI->cases()) {
4822     ConstantInt *CaseVal = I.getCaseValue();
4823 
4824     // Resulting value at phi nodes for this case value.
4825     SwitchCaseResultsTy Results;
4826     if (!GetCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results,
4827                         DL, TTI))
4828       return false;
4829 
4830     // Only one value per case is permitted.
4831     if (Results.size() > 1)
4832       return false;
4833 
4834     // Add the case->result mapping to UniqueResults.
4835     const uintptr_t NumCasesForResult =
4836         MapCaseToResult(CaseVal, UniqueResults, Results.begin()->second);
4837 
4838     // Early out if there are too many cases for this result.
4839     if (NumCasesForResult > MaxCasesPerResult)
4840       return false;
4841 
4842     // Early out if there are too many unique results.
4843     if (UniqueResults.size() > MaxUniqueResults)
4844       return false;
4845 
4846     // Check the PHI consistency.
4847     if (!PHI)
4848       PHI = Results[0].first;
4849     else if (PHI != Results[0].first)
4850       return false;
4851   }
4852   // Find the default result value.
4853   SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults;
4854   BasicBlock *DefaultDest = SI->getDefaultDest();
4855   GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults,
4856                  DL, TTI);
4857   // If the default value is not found abort unless the default destination
4858   // is unreachable.
4859   DefaultResult =
4860       DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr;
4861   if ((!DefaultResult &&
4862        !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg())))
4863     return false;
4864 
4865   return true;
4866 }
4867 
4868 // Helper function that checks if it is possible to transform a switch with only
4869 // two cases (or two cases + default) that produces a result into a select.
4870 // Example:
4871 // switch (a) {
4872 //   case 10:                %0 = icmp eq i32 %a, 10
4873 //     return 10;            %1 = select i1 %0, i32 10, i32 4
4874 //   case 20:        ---->   %2 = icmp eq i32 %a, 20
4875 //     return 2;             %3 = select i1 %2, i32 2, i32 %1
4876 //   default:
4877 //     return 4;
4878 // }
4879 static Value *ConvertTwoCaseSwitch(const SwitchCaseResultVectorTy &ResultVector,
4880                                    Constant *DefaultResult, Value *Condition,
4881                                    IRBuilder<> &Builder) {
4882   assert(ResultVector.size() == 2 &&
4883          "We should have exactly two unique results at this point");
4884   // If we are selecting between only two cases transform into a simple
4885   // select or a two-way select if default is possible.
4886   if (ResultVector[0].second.size() == 1 &&
4887       ResultVector[1].second.size() == 1) {
4888     ConstantInt *const FirstCase = ResultVector[0].second[0];
4889     ConstantInt *const SecondCase = ResultVector[1].second[0];
4890 
4891     bool DefaultCanTrigger = DefaultResult;
4892     Value *SelectValue = ResultVector[1].first;
4893     if (DefaultCanTrigger) {
4894       Value *const ValueCompare =
4895           Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp");
4896       SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first,
4897                                          DefaultResult, "switch.select");
4898     }
4899     Value *const ValueCompare =
4900         Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp");
4901     return Builder.CreateSelect(ValueCompare, ResultVector[0].first,
4902                                 SelectValue, "switch.select");
4903   }
4904 
4905   return nullptr;
4906 }
4907 
4908 // Helper function to cleanup a switch instruction that has been converted into
4909 // a select, fixing up PHI nodes and basic blocks.
4910 static void RemoveSwitchAfterSelectConversion(SwitchInst *SI, PHINode *PHI,
4911                                               Value *SelectValue,
4912                                               IRBuilder<> &Builder) {
4913   BasicBlock *SelectBB = SI->getParent();
4914   while (PHI->getBasicBlockIndex(SelectBB) >= 0)
4915     PHI->removeIncomingValue(SelectBB);
4916   PHI->addIncoming(SelectValue, SelectBB);
4917 
4918   Builder.CreateBr(PHI->getParent());
4919 
4920   // Remove the switch.
4921   for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
4922     BasicBlock *Succ = SI->getSuccessor(i);
4923 
4924     if (Succ == PHI->getParent())
4925       continue;
4926     Succ->removePredecessor(SelectBB);
4927   }
4928   SI->eraseFromParent();
4929 }
4930 
4931 /// If the switch is only used to initialize one or more
4932 /// phi nodes in a common successor block with only two different
4933 /// constant values, replace the switch with select.
4934 static bool switchToSelect(SwitchInst *SI, IRBuilder<> &Builder,
4935                            const DataLayout &DL,
4936                            const TargetTransformInfo &TTI) {
4937   Value *const Cond = SI->getCondition();
4938   PHINode *PHI = nullptr;
4939   BasicBlock *CommonDest = nullptr;
4940   Constant *DefaultResult;
4941   SwitchCaseResultVectorTy UniqueResults;
4942   // Collect all the cases that will deliver the same value from the switch.
4943   if (!InitializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult,
4944                              DL, TTI, 2, 1))
4945     return false;
4946   // Selects choose between maximum two values.
4947   if (UniqueResults.size() != 2)
4948     return false;
4949   assert(PHI != nullptr && "PHI for value select not found");
4950 
4951   Builder.SetInsertPoint(SI);
4952   Value *SelectValue =
4953       ConvertTwoCaseSwitch(UniqueResults, DefaultResult, Cond, Builder);
4954   if (SelectValue) {
4955     RemoveSwitchAfterSelectConversion(SI, PHI, SelectValue, Builder);
4956     return true;
4957   }
4958   // The switch couldn't be converted into a select.
4959   return false;
4960 }
4961 
4962 namespace {
4963 
4964 /// This class represents a lookup table that can be used to replace a switch.
4965 class SwitchLookupTable {
4966 public:
4967   /// Create a lookup table to use as a switch replacement with the contents
4968   /// of Values, using DefaultValue to fill any holes in the table.
4969   SwitchLookupTable(
4970       Module &M, uint64_t TableSize, ConstantInt *Offset,
4971       const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
4972       Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName);
4973 
4974   /// Build instructions with Builder to retrieve the value at
4975   /// the position given by Index in the lookup table.
4976   Value *BuildLookup(Value *Index, IRBuilder<> &Builder);
4977 
4978   /// Return true if a table with TableSize elements of
4979   /// type ElementType would fit in a target-legal register.
4980   static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize,
4981                                  Type *ElementType);
4982 
4983 private:
4984   // Depending on the contents of the table, it can be represented in
4985   // different ways.
4986   enum {
4987     // For tables where each element contains the same value, we just have to
4988     // store that single value and return it for each lookup.
4989     SingleValueKind,
4990 
4991     // For tables where there is a linear relationship between table index
4992     // and values. We calculate the result with a simple multiplication
4993     // and addition instead of a table lookup.
4994     LinearMapKind,
4995 
4996     // For small tables with integer elements, we can pack them into a bitmap
4997     // that fits into a target-legal register. Values are retrieved by
4998     // shift and mask operations.
4999     BitMapKind,
5000 
5001     // The table is stored as an array of values. Values are retrieved by load
5002     // instructions from the table.
5003     ArrayKind
5004   } Kind;
5005 
5006   // For SingleValueKind, this is the single value.
5007   Constant *SingleValue = nullptr;
5008 
5009   // For BitMapKind, this is the bitmap.
5010   ConstantInt *BitMap = nullptr;
5011   IntegerType *BitMapElementTy = nullptr;
5012 
5013   // For LinearMapKind, these are the constants used to derive the value.
5014   ConstantInt *LinearOffset = nullptr;
5015   ConstantInt *LinearMultiplier = nullptr;
5016 
5017   // For ArrayKind, this is the array.
5018   GlobalVariable *Array = nullptr;
5019 };
5020 
5021 } // end anonymous namespace
5022 
5023 SwitchLookupTable::SwitchLookupTable(
5024     Module &M, uint64_t TableSize, ConstantInt *Offset,
5025     const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
5026     Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName) {
5027   assert(Values.size() && "Can't build lookup table without values!");
5028   assert(TableSize >= Values.size() && "Can't fit values in table!");
5029 
5030   // If all values in the table are equal, this is that value.
5031   SingleValue = Values.begin()->second;
5032 
5033   Type *ValueType = Values.begin()->second->getType();
5034 
5035   // Build up the table contents.
5036   SmallVector<Constant *, 64> TableContents(TableSize);
5037   for (size_t I = 0, E = Values.size(); I != E; ++I) {
5038     ConstantInt *CaseVal = Values[I].first;
5039     Constant *CaseRes = Values[I].second;
5040     assert(CaseRes->getType() == ValueType);
5041 
5042     uint64_t Idx = (CaseVal->getValue() - Offset->getValue()).getLimitedValue();
5043     TableContents[Idx] = CaseRes;
5044 
5045     if (CaseRes != SingleValue)
5046       SingleValue = nullptr;
5047   }
5048 
5049   // Fill in any holes in the table with the default result.
5050   if (Values.size() < TableSize) {
5051     assert(DefaultValue &&
5052            "Need a default value to fill the lookup table holes.");
5053     assert(DefaultValue->getType() == ValueType);
5054     for (uint64_t I = 0; I < TableSize; ++I) {
5055       if (!TableContents[I])
5056         TableContents[I] = DefaultValue;
5057     }
5058 
5059     if (DefaultValue != SingleValue)
5060       SingleValue = nullptr;
5061   }
5062 
5063   // If each element in the table contains the same value, we only need to store
5064   // that single value.
5065   if (SingleValue) {
5066     Kind = SingleValueKind;
5067     return;
5068   }
5069 
5070   // Check if we can derive the value with a linear transformation from the
5071   // table index.
5072   if (isa<IntegerType>(ValueType)) {
5073     bool LinearMappingPossible = true;
5074     APInt PrevVal;
5075     APInt DistToPrev;
5076     assert(TableSize >= 2 && "Should be a SingleValue table.");
5077     // Check if there is the same distance between two consecutive values.
5078     for (uint64_t I = 0; I < TableSize; ++I) {
5079       ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]);
5080       if (!ConstVal) {
5081         // This is an undef. We could deal with it, but undefs in lookup tables
5082         // are very seldom. It's probably not worth the additional complexity.
5083         LinearMappingPossible = false;
5084         break;
5085       }
5086       const APInt &Val = ConstVal->getValue();
5087       if (I != 0) {
5088         APInt Dist = Val - PrevVal;
5089         if (I == 1) {
5090           DistToPrev = Dist;
5091         } else if (Dist != DistToPrev) {
5092           LinearMappingPossible = false;
5093           break;
5094         }
5095       }
5096       PrevVal = Val;
5097     }
5098     if (LinearMappingPossible) {
5099       LinearOffset = cast<ConstantInt>(TableContents[0]);
5100       LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev);
5101       Kind = LinearMapKind;
5102       ++NumLinearMaps;
5103       return;
5104     }
5105   }
5106 
5107   // If the type is integer and the table fits in a register, build a bitmap.
5108   if (WouldFitInRegister(DL, TableSize, ValueType)) {
5109     IntegerType *IT = cast<IntegerType>(ValueType);
5110     APInt TableInt(TableSize * IT->getBitWidth(), 0);
5111     for (uint64_t I = TableSize; I > 0; --I) {
5112       TableInt <<= IT->getBitWidth();
5113       // Insert values into the bitmap. Undef values are set to zero.
5114       if (!isa<UndefValue>(TableContents[I - 1])) {
5115         ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]);
5116         TableInt |= Val->getValue().zext(TableInt.getBitWidth());
5117       }
5118     }
5119     BitMap = ConstantInt::get(M.getContext(), TableInt);
5120     BitMapElementTy = IT;
5121     Kind = BitMapKind;
5122     ++NumBitMaps;
5123     return;
5124   }
5125 
5126   // Store the table in an array.
5127   ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize);
5128   Constant *Initializer = ConstantArray::get(ArrayTy, TableContents);
5129 
5130   Array = new GlobalVariable(M, ArrayTy, /*isConstant=*/true,
5131                              GlobalVariable::PrivateLinkage, Initializer,
5132                              "switch.table." + FuncName);
5133   Array->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
5134   // Set the alignment to that of an array items. We will be only loading one
5135   // value out of it.
5136   Array->setAlignment(Align(DL.getPrefTypeAlignment(ValueType)));
5137   Kind = ArrayKind;
5138 }
5139 
5140 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) {
5141   switch (Kind) {
5142   case SingleValueKind:
5143     return SingleValue;
5144   case LinearMapKind: {
5145     // Derive the result value from the input value.
5146     Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(),
5147                                           false, "switch.idx.cast");
5148     if (!LinearMultiplier->isOne())
5149       Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult");
5150     if (!LinearOffset->isZero())
5151       Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset");
5152     return Result;
5153   }
5154   case BitMapKind: {
5155     // Type of the bitmap (e.g. i59).
5156     IntegerType *MapTy = BitMap->getType();
5157 
5158     // Cast Index to the same type as the bitmap.
5159     // Note: The Index is <= the number of elements in the table, so
5160     // truncating it to the width of the bitmask is safe.
5161     Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast");
5162 
5163     // Multiply the shift amount by the element width.
5164     ShiftAmt = Builder.CreateMul(
5165         ShiftAmt, ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()),
5166         "switch.shiftamt");
5167 
5168     // Shift down.
5169     Value *DownShifted =
5170         Builder.CreateLShr(BitMap, ShiftAmt, "switch.downshift");
5171     // Mask off.
5172     return Builder.CreateTrunc(DownShifted, BitMapElementTy, "switch.masked");
5173   }
5174   case ArrayKind: {
5175     // Make sure the table index will not overflow when treated as signed.
5176     IntegerType *IT = cast<IntegerType>(Index->getType());
5177     uint64_t TableSize =
5178         Array->getInitializer()->getType()->getArrayNumElements();
5179     if (TableSize > (1ULL << (IT->getBitWidth() - 1)))
5180       Index = Builder.CreateZExt(
5181           Index, IntegerType::get(IT->getContext(), IT->getBitWidth() + 1),
5182           "switch.tableidx.zext");
5183 
5184     Value *GEPIndices[] = {Builder.getInt32(0), Index};
5185     Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array,
5186                                            GEPIndices, "switch.gep");
5187     return Builder.CreateLoad(
5188         cast<ArrayType>(Array->getValueType())->getElementType(), GEP,
5189         "switch.load");
5190   }
5191   }
5192   llvm_unreachable("Unknown lookup table kind!");
5193 }
5194 
5195 bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL,
5196                                            uint64_t TableSize,
5197                                            Type *ElementType) {
5198   auto *IT = dyn_cast<IntegerType>(ElementType);
5199   if (!IT)
5200     return false;
5201   // FIXME: If the type is wider than it needs to be, e.g. i8 but all values
5202   // are <= 15, we could try to narrow the type.
5203 
5204   // Avoid overflow, fitsInLegalInteger uses unsigned int for the width.
5205   if (TableSize >= UINT_MAX / IT->getBitWidth())
5206     return false;
5207   return DL.fitsInLegalInteger(TableSize * IT->getBitWidth());
5208 }
5209 
5210 /// Determine whether a lookup table should be built for this switch, based on
5211 /// the number of cases, size of the table, and the types of the results.
5212 static bool
5213 ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize,
5214                        const TargetTransformInfo &TTI, const DataLayout &DL,
5215                        const SmallDenseMap<PHINode *, Type *> &ResultTypes) {
5216   if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10)
5217     return false; // TableSize overflowed, or mul below might overflow.
5218 
5219   bool AllTablesFitInRegister = true;
5220   bool HasIllegalType = false;
5221   for (const auto &I : ResultTypes) {
5222     Type *Ty = I.second;
5223 
5224     // Saturate this flag to true.
5225     HasIllegalType = HasIllegalType || !TTI.isTypeLegal(Ty);
5226 
5227     // Saturate this flag to false.
5228     AllTablesFitInRegister =
5229         AllTablesFitInRegister &&
5230         SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty);
5231 
5232     // If both flags saturate, we're done. NOTE: This *only* works with
5233     // saturating flags, and all flags have to saturate first due to the
5234     // non-deterministic behavior of iterating over a dense map.
5235     if (HasIllegalType && !AllTablesFitInRegister)
5236       break;
5237   }
5238 
5239   // If each table would fit in a register, we should build it anyway.
5240   if (AllTablesFitInRegister)
5241     return true;
5242 
5243   // Don't build a table that doesn't fit in-register if it has illegal types.
5244   if (HasIllegalType)
5245     return false;
5246 
5247   // The table density should be at least 40%. This is the same criterion as for
5248   // jump tables, see SelectionDAGBuilder::handleJTSwitchCase.
5249   // FIXME: Find the best cut-off.
5250   return SI->getNumCases() * 10 >= TableSize * 4;
5251 }
5252 
5253 /// Try to reuse the switch table index compare. Following pattern:
5254 /// \code
5255 ///     if (idx < tablesize)
5256 ///        r = table[idx]; // table does not contain default_value
5257 ///     else
5258 ///        r = default_value;
5259 ///     if (r != default_value)
5260 ///        ...
5261 /// \endcode
5262 /// Is optimized to:
5263 /// \code
5264 ///     cond = idx < tablesize;
5265 ///     if (cond)
5266 ///        r = table[idx];
5267 ///     else
5268 ///        r = default_value;
5269 ///     if (cond)
5270 ///        ...
5271 /// \endcode
5272 /// Jump threading will then eliminate the second if(cond).
5273 static void reuseTableCompare(
5274     User *PhiUser, BasicBlock *PhiBlock, BranchInst *RangeCheckBranch,
5275     Constant *DefaultValue,
5276     const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values) {
5277   ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser);
5278   if (!CmpInst)
5279     return;
5280 
5281   // We require that the compare is in the same block as the phi so that jump
5282   // threading can do its work afterwards.
5283   if (CmpInst->getParent() != PhiBlock)
5284     return;
5285 
5286   Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1));
5287   if (!CmpOp1)
5288     return;
5289 
5290   Value *RangeCmp = RangeCheckBranch->getCondition();
5291   Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType());
5292   Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType());
5293 
5294   // Check if the compare with the default value is constant true or false.
5295   Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
5296                                                  DefaultValue, CmpOp1, true);
5297   if (DefaultConst != TrueConst && DefaultConst != FalseConst)
5298     return;
5299 
5300   // Check if the compare with the case values is distinct from the default
5301   // compare result.
5302   for (auto ValuePair : Values) {
5303     Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
5304                                                 ValuePair.second, CmpOp1, true);
5305     if (!CaseConst || CaseConst == DefaultConst || isa<UndefValue>(CaseConst))
5306       return;
5307     assert((CaseConst == TrueConst || CaseConst == FalseConst) &&
5308            "Expect true or false as compare result.");
5309   }
5310 
5311   // Check if the branch instruction dominates the phi node. It's a simple
5312   // dominance check, but sufficient for our needs.
5313   // Although this check is invariant in the calling loops, it's better to do it
5314   // at this late stage. Practically we do it at most once for a switch.
5315   BasicBlock *BranchBlock = RangeCheckBranch->getParent();
5316   for (auto PI = pred_begin(PhiBlock), E = pred_end(PhiBlock); PI != E; ++PI) {
5317     BasicBlock *Pred = *PI;
5318     if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock)
5319       return;
5320   }
5321 
5322   if (DefaultConst == FalseConst) {
5323     // The compare yields the same result. We can replace it.
5324     CmpInst->replaceAllUsesWith(RangeCmp);
5325     ++NumTableCmpReuses;
5326   } else {
5327     // The compare yields the same result, just inverted. We can replace it.
5328     Value *InvertedTableCmp = BinaryOperator::CreateXor(
5329         RangeCmp, ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp",
5330         RangeCheckBranch);
5331     CmpInst->replaceAllUsesWith(InvertedTableCmp);
5332     ++NumTableCmpReuses;
5333   }
5334 }
5335 
5336 /// If the switch is only used to initialize one or more phi nodes in a common
5337 /// successor block with different constant values, replace the switch with
5338 /// lookup tables.
5339 static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder,
5340                                 const DataLayout &DL,
5341                                 const TargetTransformInfo &TTI) {
5342   assert(SI->getNumCases() > 1 && "Degenerate switch?");
5343 
5344   Function *Fn = SI->getParent()->getParent();
5345   // Only build lookup table when we have a target that supports it or the
5346   // attribute is not set.
5347   if (!TTI.shouldBuildLookupTables() ||
5348       (Fn->getFnAttribute("no-jump-tables").getValueAsString() == "true"))
5349     return false;
5350 
5351   // FIXME: If the switch is too sparse for a lookup table, perhaps we could
5352   // split off a dense part and build a lookup table for that.
5353 
5354   // FIXME: This creates arrays of GEPs to constant strings, which means each
5355   // GEP needs a runtime relocation in PIC code. We should just build one big
5356   // string and lookup indices into that.
5357 
5358   // Ignore switches with less than three cases. Lookup tables will not make
5359   // them faster, so we don't analyze them.
5360   if (SI->getNumCases() < 3)
5361     return false;
5362 
5363   // Figure out the corresponding result for each case value and phi node in the
5364   // common destination, as well as the min and max case values.
5365   assert(!SI->cases().empty());
5366   SwitchInst::CaseIt CI = SI->case_begin();
5367   ConstantInt *MinCaseVal = CI->getCaseValue();
5368   ConstantInt *MaxCaseVal = CI->getCaseValue();
5369 
5370   BasicBlock *CommonDest = nullptr;
5371 
5372   using ResultListTy = SmallVector<std::pair<ConstantInt *, Constant *>, 4>;
5373   SmallDenseMap<PHINode *, ResultListTy> ResultLists;
5374 
5375   SmallDenseMap<PHINode *, Constant *> DefaultResults;
5376   SmallDenseMap<PHINode *, Type *> ResultTypes;
5377   SmallVector<PHINode *, 4> PHIs;
5378 
5379   for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) {
5380     ConstantInt *CaseVal = CI->getCaseValue();
5381     if (CaseVal->getValue().slt(MinCaseVal->getValue()))
5382       MinCaseVal = CaseVal;
5383     if (CaseVal->getValue().sgt(MaxCaseVal->getValue()))
5384       MaxCaseVal = CaseVal;
5385 
5386     // Resulting value at phi nodes for this case value.
5387     using ResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>;
5388     ResultsTy Results;
5389     if (!GetCaseResults(SI, CaseVal, CI->getCaseSuccessor(), &CommonDest,
5390                         Results, DL, TTI))
5391       return false;
5392 
5393     // Append the result from this case to the list for each phi.
5394     for (const auto &I : Results) {
5395       PHINode *PHI = I.first;
5396       Constant *Value = I.second;
5397       if (!ResultLists.count(PHI))
5398         PHIs.push_back(PHI);
5399       ResultLists[PHI].push_back(std::make_pair(CaseVal, Value));
5400     }
5401   }
5402 
5403   // Keep track of the result types.
5404   for (PHINode *PHI : PHIs) {
5405     ResultTypes[PHI] = ResultLists[PHI][0].second->getType();
5406   }
5407 
5408   uint64_t NumResults = ResultLists[PHIs[0]].size();
5409   APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue();
5410   uint64_t TableSize = RangeSpread.getLimitedValue() + 1;
5411   bool TableHasHoles = (NumResults < TableSize);
5412 
5413   // If the table has holes, we need a constant result for the default case
5414   // or a bitmask that fits in a register.
5415   SmallVector<std::pair<PHINode *, Constant *>, 4> DefaultResultsList;
5416   bool HasDefaultResults =
5417       GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest,
5418                      DefaultResultsList, DL, TTI);
5419 
5420   bool NeedMask = (TableHasHoles && !HasDefaultResults);
5421   if (NeedMask) {
5422     // As an extra penalty for the validity test we require more cases.
5423     if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark).
5424       return false;
5425     if (!DL.fitsInLegalInteger(TableSize))
5426       return false;
5427   }
5428 
5429   for (const auto &I : DefaultResultsList) {
5430     PHINode *PHI = I.first;
5431     Constant *Result = I.second;
5432     DefaultResults[PHI] = Result;
5433   }
5434 
5435   if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes))
5436     return false;
5437 
5438   // Create the BB that does the lookups.
5439   Module &Mod = *CommonDest->getParent()->getParent();
5440   BasicBlock *LookupBB = BasicBlock::Create(
5441       Mod.getContext(), "switch.lookup", CommonDest->getParent(), CommonDest);
5442 
5443   // Compute the table index value.
5444   Builder.SetInsertPoint(SI);
5445   Value *TableIndex;
5446   if (MinCaseVal->isNullValue())
5447     TableIndex = SI->getCondition();
5448   else
5449     TableIndex = Builder.CreateSub(SI->getCondition(), MinCaseVal,
5450                                    "switch.tableidx");
5451 
5452   // Compute the maximum table size representable by the integer type we are
5453   // switching upon.
5454   unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits();
5455   uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize;
5456   assert(MaxTableSize >= TableSize &&
5457          "It is impossible for a switch to have more entries than the max "
5458          "representable value of its input integer type's size.");
5459 
5460   // If the default destination is unreachable, or if the lookup table covers
5461   // all values of the conditional variable, branch directly to the lookup table
5462   // BB. Otherwise, check that the condition is within the case range.
5463   const bool DefaultIsReachable =
5464       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
5465   const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize);
5466   BranchInst *RangeCheckBranch = nullptr;
5467 
5468   if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
5469     Builder.CreateBr(LookupBB);
5470     // Note: We call removeProdecessor later since we need to be able to get the
5471     // PHI value for the default case in case we're using a bit mask.
5472   } else {
5473     Value *Cmp = Builder.CreateICmpULT(
5474         TableIndex, ConstantInt::get(MinCaseVal->getType(), TableSize));
5475     RangeCheckBranch =
5476         Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest());
5477   }
5478 
5479   // Populate the BB that does the lookups.
5480   Builder.SetInsertPoint(LookupBB);
5481 
5482   if (NeedMask) {
5483     // Before doing the lookup, we do the hole check. The LookupBB is therefore
5484     // re-purposed to do the hole check, and we create a new LookupBB.
5485     BasicBlock *MaskBB = LookupBB;
5486     MaskBB->setName("switch.hole_check");
5487     LookupBB = BasicBlock::Create(Mod.getContext(), "switch.lookup",
5488                                   CommonDest->getParent(), CommonDest);
5489 
5490     // Make the mask's bitwidth at least 8-bit and a power-of-2 to avoid
5491     // unnecessary illegal types.
5492     uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL));
5493     APInt MaskInt(TableSizePowOf2, 0);
5494     APInt One(TableSizePowOf2, 1);
5495     // Build bitmask; fill in a 1 bit for every case.
5496     const ResultListTy &ResultList = ResultLists[PHIs[0]];
5497     for (size_t I = 0, E = ResultList.size(); I != E; ++I) {
5498       uint64_t Idx = (ResultList[I].first->getValue() - MinCaseVal->getValue())
5499                          .getLimitedValue();
5500       MaskInt |= One << Idx;
5501     }
5502     ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt);
5503 
5504     // Get the TableIndex'th bit of the bitmask.
5505     // If this bit is 0 (meaning hole) jump to the default destination,
5506     // else continue with table lookup.
5507     IntegerType *MapTy = TableMask->getType();
5508     Value *MaskIndex =
5509         Builder.CreateZExtOrTrunc(TableIndex, MapTy, "switch.maskindex");
5510     Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, "switch.shifted");
5511     Value *LoBit = Builder.CreateTrunc(
5512         Shifted, Type::getInt1Ty(Mod.getContext()), "switch.lobit");
5513     Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest());
5514 
5515     Builder.SetInsertPoint(LookupBB);
5516     AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, SI->getParent());
5517   }
5518 
5519   if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
5520     // We cached PHINodes in PHIs. To avoid accessing deleted PHINodes later,
5521     // do not delete PHINodes here.
5522     SI->getDefaultDest()->removePredecessor(SI->getParent(),
5523                                             /*KeepOneInputPHIs=*/true);
5524   }
5525 
5526   bool ReturnedEarly = false;
5527   for (PHINode *PHI : PHIs) {
5528     const ResultListTy &ResultList = ResultLists[PHI];
5529 
5530     // If using a bitmask, use any value to fill the lookup table holes.
5531     Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI];
5532     StringRef FuncName = Fn->getName();
5533     SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultList, DV, DL,
5534                             FuncName);
5535 
5536     Value *Result = Table.BuildLookup(TableIndex, Builder);
5537 
5538     // If the result is used to return immediately from the function, we want to
5539     // do that right here.
5540     if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->user_begin()) &&
5541         PHI->user_back() == CommonDest->getFirstNonPHIOrDbg()) {
5542       Builder.CreateRet(Result);
5543       ReturnedEarly = true;
5544       break;
5545     }
5546 
5547     // Do a small peephole optimization: re-use the switch table compare if
5548     // possible.
5549     if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) {
5550       BasicBlock *PhiBlock = PHI->getParent();
5551       // Search for compare instructions which use the phi.
5552       for (auto *User : PHI->users()) {
5553         reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList);
5554       }
5555     }
5556 
5557     PHI->addIncoming(Result, LookupBB);
5558   }
5559 
5560   if (!ReturnedEarly)
5561     Builder.CreateBr(CommonDest);
5562 
5563   // Remove the switch.
5564   for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
5565     BasicBlock *Succ = SI->getSuccessor(i);
5566 
5567     if (Succ == SI->getDefaultDest())
5568       continue;
5569     Succ->removePredecessor(SI->getParent());
5570   }
5571   SI->eraseFromParent();
5572 
5573   ++NumLookupTables;
5574   if (NeedMask)
5575     ++NumLookupTablesHoles;
5576   return true;
5577 }
5578 
5579 static bool isSwitchDense(ArrayRef<int64_t> Values) {
5580   // See also SelectionDAGBuilder::isDense(), which this function was based on.
5581   uint64_t Diff = (uint64_t)Values.back() - (uint64_t)Values.front();
5582   uint64_t Range = Diff + 1;
5583   uint64_t NumCases = Values.size();
5584   // 40% is the default density for building a jump table in optsize/minsize mode.
5585   uint64_t MinDensity = 40;
5586 
5587   return NumCases * 100 >= Range * MinDensity;
5588 }
5589 
5590 /// Try to transform a switch that has "holes" in it to a contiguous sequence
5591 /// of cases.
5592 ///
5593 /// A switch such as: switch(i) {case 5: case 9: case 13: case 17:} can be
5594 /// range-reduced to: switch ((i-5) / 4) {case 0: case 1: case 2: case 3:}.
5595 ///
5596 /// This converts a sparse switch into a dense switch which allows better
5597 /// lowering and could also allow transforming into a lookup table.
5598 static bool ReduceSwitchRange(SwitchInst *SI, IRBuilder<> &Builder,
5599                               const DataLayout &DL,
5600                               const TargetTransformInfo &TTI) {
5601   auto *CondTy = cast<IntegerType>(SI->getCondition()->getType());
5602   if (CondTy->getIntegerBitWidth() > 64 ||
5603       !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth()))
5604     return false;
5605   // Only bother with this optimization if there are more than 3 switch cases;
5606   // SDAG will only bother creating jump tables for 4 or more cases.
5607   if (SI->getNumCases() < 4)
5608     return false;
5609 
5610   // This transform is agnostic to the signedness of the input or case values. We
5611   // can treat the case values as signed or unsigned. We can optimize more common
5612   // cases such as a sequence crossing zero {-4,0,4,8} if we interpret case values
5613   // as signed.
5614   SmallVector<int64_t,4> Values;
5615   for (auto &C : SI->cases())
5616     Values.push_back(C.getCaseValue()->getValue().getSExtValue());
5617   llvm::sort(Values);
5618 
5619   // If the switch is already dense, there's nothing useful to do here.
5620   if (isSwitchDense(Values))
5621     return false;
5622 
5623   // First, transform the values such that they start at zero and ascend.
5624   int64_t Base = Values[0];
5625   for (auto &V : Values)
5626     V -= (uint64_t)(Base);
5627 
5628   // Now we have signed numbers that have been shifted so that, given enough
5629   // precision, there are no negative values. Since the rest of the transform
5630   // is bitwise only, we switch now to an unsigned representation.
5631 
5632   // This transform can be done speculatively because it is so cheap - it
5633   // results in a single rotate operation being inserted.
5634   // FIXME: It's possible that optimizing a switch on powers of two might also
5635   // be beneficial - flag values are often powers of two and we could use a CLZ
5636   // as the key function.
5637 
5638   // countTrailingZeros(0) returns 64. As Values is guaranteed to have more than
5639   // one element and LLVM disallows duplicate cases, Shift is guaranteed to be
5640   // less than 64.
5641   unsigned Shift = 64;
5642   for (auto &V : Values)
5643     Shift = std::min(Shift, countTrailingZeros((uint64_t)V));
5644   assert(Shift < 64);
5645   if (Shift > 0)
5646     for (auto &V : Values)
5647       V = (int64_t)((uint64_t)V >> Shift);
5648 
5649   if (!isSwitchDense(Values))
5650     // Transform didn't create a dense switch.
5651     return false;
5652 
5653   // The obvious transform is to shift the switch condition right and emit a
5654   // check that the condition actually cleanly divided by GCD, i.e.
5655   //   C & (1 << Shift - 1) == 0
5656   // inserting a new CFG edge to handle the case where it didn't divide cleanly.
5657   //
5658   // A cheaper way of doing this is a simple ROTR(C, Shift). This performs the
5659   // shift and puts the shifted-off bits in the uppermost bits. If any of these
5660   // are nonzero then the switch condition will be very large and will hit the
5661   // default case.
5662 
5663   auto *Ty = cast<IntegerType>(SI->getCondition()->getType());
5664   Builder.SetInsertPoint(SI);
5665   auto *ShiftC = ConstantInt::get(Ty, Shift);
5666   auto *Sub = Builder.CreateSub(SI->getCondition(), ConstantInt::get(Ty, Base));
5667   auto *LShr = Builder.CreateLShr(Sub, ShiftC);
5668   auto *Shl = Builder.CreateShl(Sub, Ty->getBitWidth() - Shift);
5669   auto *Rot = Builder.CreateOr(LShr, Shl);
5670   SI->replaceUsesOfWith(SI->getCondition(), Rot);
5671 
5672   for (auto Case : SI->cases()) {
5673     auto *Orig = Case.getCaseValue();
5674     auto Sub = Orig->getValue() - APInt(Ty->getBitWidth(), Base);
5675     Case.setValue(
5676         cast<ConstantInt>(ConstantInt::get(Ty, Sub.lshr(ShiftC->getValue()))));
5677   }
5678   return true;
5679 }
5680 
5681 bool SimplifyCFGOpt::SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) {
5682   BasicBlock *BB = SI->getParent();
5683 
5684   if (isValueEqualityComparison(SI)) {
5685     // If we only have one predecessor, and if it is a branch on this value,
5686     // see if that predecessor totally determines the outcome of this switch.
5687     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
5688       if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder))
5689         return requestResimplify();
5690 
5691     Value *Cond = SI->getCondition();
5692     if (SelectInst *Select = dyn_cast<SelectInst>(Cond))
5693       if (SimplifySwitchOnSelect(SI, Select))
5694         return requestResimplify();
5695 
5696     // If the block only contains the switch, see if we can fold the block
5697     // away into any preds.
5698     if (SI == &*BB->instructionsWithoutDebug().begin())
5699       if (FoldValueComparisonIntoPredecessors(SI, Builder))
5700         return requestResimplify();
5701   }
5702 
5703   // Try to transform the switch into an icmp and a branch.
5704   if (TurnSwitchRangeIntoICmp(SI, Builder))
5705     return requestResimplify();
5706 
5707   // Remove unreachable cases.
5708   if (eliminateDeadSwitchCases(SI, Options.AC, DL))
5709     return requestResimplify();
5710 
5711   if (switchToSelect(SI, Builder, DL, TTI))
5712     return requestResimplify();
5713 
5714   if (Options.ForwardSwitchCondToPhi && ForwardSwitchConditionToPHI(SI))
5715     return requestResimplify();
5716 
5717   // The conversion from switch to lookup tables results in difficult-to-analyze
5718   // code and makes pruning branches much harder. This is a problem if the
5719   // switch expression itself can still be restricted as a result of inlining or
5720   // CVP. Therefore, only apply this transformation during late stages of the
5721   // optimisation pipeline.
5722   if (Options.ConvertSwitchToLookupTable &&
5723       SwitchToLookupTable(SI, Builder, DL, TTI))
5724     return requestResimplify();
5725 
5726   if (ReduceSwitchRange(SI, Builder, DL, TTI))
5727     return requestResimplify();
5728 
5729   return false;
5730 }
5731 
5732 bool SimplifyCFGOpt::SimplifyIndirectBr(IndirectBrInst *IBI) {
5733   BasicBlock *BB = IBI->getParent();
5734   bool Changed = false;
5735 
5736   // Eliminate redundant destinations.
5737   SmallPtrSet<Value *, 8> Succs;
5738   for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
5739     BasicBlock *Dest = IBI->getDestination(i);
5740     if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) {
5741       Dest->removePredecessor(BB);
5742       IBI->removeDestination(i);
5743       --i;
5744       --e;
5745       Changed = true;
5746     }
5747   }
5748 
5749   if (IBI->getNumDestinations() == 0) {
5750     // If the indirectbr has no successors, change it to unreachable.
5751     new UnreachableInst(IBI->getContext(), IBI);
5752     EraseTerminatorAndDCECond(IBI);
5753     return true;
5754   }
5755 
5756   if (IBI->getNumDestinations() == 1) {
5757     // If the indirectbr has one successor, change it to a direct branch.
5758     BranchInst::Create(IBI->getDestination(0), IBI);
5759     EraseTerminatorAndDCECond(IBI);
5760     return true;
5761   }
5762 
5763   if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) {
5764     if (SimplifyIndirectBrOnSelect(IBI, SI))
5765       return requestResimplify();
5766   }
5767   return Changed;
5768 }
5769 
5770 /// Given an block with only a single landing pad and a unconditional branch
5771 /// try to find another basic block which this one can be merged with.  This
5772 /// handles cases where we have multiple invokes with unique landing pads, but
5773 /// a shared handler.
5774 ///
5775 /// We specifically choose to not worry about merging non-empty blocks
5776 /// here.  That is a PRE/scheduling problem and is best solved elsewhere.  In
5777 /// practice, the optimizer produces empty landing pad blocks quite frequently
5778 /// when dealing with exception dense code.  (see: instcombine, gvn, if-else
5779 /// sinking in this file)
5780 ///
5781 /// This is primarily a code size optimization.  We need to avoid performing
5782 /// any transform which might inhibit optimization (such as our ability to
5783 /// specialize a particular handler via tail commoning).  We do this by not
5784 /// merging any blocks which require us to introduce a phi.  Since the same
5785 /// values are flowing through both blocks, we don't lose any ability to
5786 /// specialize.  If anything, we make such specialization more likely.
5787 ///
5788 /// TODO - This transformation could remove entries from a phi in the target
5789 /// block when the inputs in the phi are the same for the two blocks being
5790 /// merged.  In some cases, this could result in removal of the PHI entirely.
5791 static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI,
5792                                  BasicBlock *BB) {
5793   auto Succ = BB->getUniqueSuccessor();
5794   assert(Succ);
5795   // If there's a phi in the successor block, we'd likely have to introduce
5796   // a phi into the merged landing pad block.
5797   if (isa<PHINode>(*Succ->begin()))
5798     return false;
5799 
5800   for (BasicBlock *OtherPred : predecessors(Succ)) {
5801     if (BB == OtherPred)
5802       continue;
5803     BasicBlock::iterator I = OtherPred->begin();
5804     LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I);
5805     if (!LPad2 || !LPad2->isIdenticalTo(LPad))
5806       continue;
5807     for (++I; isa<DbgInfoIntrinsic>(I); ++I)
5808       ;
5809     BranchInst *BI2 = dyn_cast<BranchInst>(I);
5810     if (!BI2 || !BI2->isIdenticalTo(BI))
5811       continue;
5812 
5813     // We've found an identical block.  Update our predecessors to take that
5814     // path instead and make ourselves dead.
5815     SmallPtrSet<BasicBlock *, 16> Preds;
5816     Preds.insert(pred_begin(BB), pred_end(BB));
5817     for (BasicBlock *Pred : Preds) {
5818       InvokeInst *II = cast<InvokeInst>(Pred->getTerminator());
5819       assert(II->getNormalDest() != BB && II->getUnwindDest() == BB &&
5820              "unexpected successor");
5821       II->setUnwindDest(OtherPred);
5822     }
5823 
5824     // The debug info in OtherPred doesn't cover the merged control flow that
5825     // used to go through BB.  We need to delete it or update it.
5826     for (auto I = OtherPred->begin(), E = OtherPred->end(); I != E;) {
5827       Instruction &Inst = *I;
5828       I++;
5829       if (isa<DbgInfoIntrinsic>(Inst))
5830         Inst.eraseFromParent();
5831     }
5832 
5833     SmallPtrSet<BasicBlock *, 16> Succs;
5834     Succs.insert(succ_begin(BB), succ_end(BB));
5835     for (BasicBlock *Succ : Succs) {
5836       Succ->removePredecessor(BB);
5837     }
5838 
5839     IRBuilder<> Builder(BI);
5840     Builder.CreateUnreachable();
5841     BI->eraseFromParent();
5842     return true;
5843   }
5844   return false;
5845 }
5846 
5847 bool SimplifyCFGOpt::SimplifyUncondBranch(BranchInst *BI,
5848                                           IRBuilder<> &Builder) {
5849   BasicBlock *BB = BI->getParent();
5850   BasicBlock *Succ = BI->getSuccessor(0);
5851 
5852   // If the Terminator is the only non-phi instruction, simplify the block.
5853   // If LoopHeader is provided, check if the block or its successor is a loop
5854   // header. (This is for early invocations before loop simplify and
5855   // vectorization to keep canonical loop forms for nested loops. These blocks
5856   // can be eliminated when the pass is invoked later in the back-end.)
5857   // Note that if BB has only one predecessor then we do not introduce new
5858   // backedge, so we can eliminate BB.
5859   bool NeedCanonicalLoop =
5860       Options.NeedCanonicalLoop &&
5861       (LoopHeaders && BB->hasNPredecessorsOrMore(2) &&
5862        (LoopHeaders->count(BB) || LoopHeaders->count(Succ)));
5863   BasicBlock::iterator I = BB->getFirstNonPHIOrDbg()->getIterator();
5864   if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() &&
5865       !NeedCanonicalLoop && TryToSimplifyUncondBranchFromEmptyBlock(BB))
5866     return true;
5867 
5868   // If the only instruction in the block is a seteq/setne comparison against a
5869   // constant, try to simplify the block.
5870   if (ICmpInst *ICI = dyn_cast<ICmpInst>(I))
5871     if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) {
5872       for (++I; isa<DbgInfoIntrinsic>(I); ++I)
5873         ;
5874       if (I->isTerminator() &&
5875           tryToSimplifyUncondBranchWithICmpInIt(ICI, Builder))
5876         return true;
5877     }
5878 
5879   // See if we can merge an empty landing pad block with another which is
5880   // equivalent.
5881   if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) {
5882     for (++I; isa<DbgInfoIntrinsic>(I); ++I)
5883       ;
5884     if (I->isTerminator() && TryToMergeLandingPad(LPad, BI, BB))
5885       return true;
5886   }
5887 
5888   // If this basic block is ONLY a compare and a branch, and if a predecessor
5889   // branches to us and our successor, fold the comparison into the
5890   // predecessor and use logical operations to update the incoming value
5891   // for PHI nodes in common successor.
5892   if (FoldBranchToCommonDest(BI, nullptr, Options.BonusInstThreshold))
5893     return requestResimplify();
5894   return false;
5895 }
5896 
5897 static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) {
5898   BasicBlock *PredPred = nullptr;
5899   for (auto *P : predecessors(BB)) {
5900     BasicBlock *PPred = P->getSinglePredecessor();
5901     if (!PPred || (PredPred && PredPred != PPred))
5902       return nullptr;
5903     PredPred = PPred;
5904   }
5905   return PredPred;
5906 }
5907 
5908 bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) {
5909   BasicBlock *BB = BI->getParent();
5910   const Function *Fn = BB->getParent();
5911   if (Fn && Fn->hasFnAttribute(Attribute::OptForFuzzing))
5912     return false;
5913 
5914   // Conditional branch
5915   if (isValueEqualityComparison(BI)) {
5916     // If we only have one predecessor, and if it is a branch on this value,
5917     // see if that predecessor totally determines the outcome of this
5918     // switch.
5919     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
5920       if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder))
5921         return requestResimplify();
5922 
5923     // This block must be empty, except for the setcond inst, if it exists.
5924     // Ignore dbg intrinsics.
5925     auto I = BB->instructionsWithoutDebug().begin();
5926     if (&*I == BI) {
5927       if (FoldValueComparisonIntoPredecessors(BI, Builder))
5928         return requestResimplify();
5929     } else if (&*I == cast<Instruction>(BI->getCondition())) {
5930       ++I;
5931       if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder))
5932         return requestResimplify();
5933     }
5934   }
5935 
5936   // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction.
5937   if (SimplifyBranchOnICmpChain(BI, Builder, DL))
5938     return true;
5939 
5940   // If this basic block has dominating predecessor blocks and the dominating
5941   // blocks' conditions imply BI's condition, we know the direction of BI.
5942   Optional<bool> Imp = isImpliedByDomCondition(BI->getCondition(), BI, DL);
5943   if (Imp) {
5944     // Turn this into a branch on constant.
5945     auto *OldCond = BI->getCondition();
5946     ConstantInt *TorF = *Imp ? ConstantInt::getTrue(BB->getContext())
5947                              : ConstantInt::getFalse(BB->getContext());
5948     BI->setCondition(TorF);
5949     RecursivelyDeleteTriviallyDeadInstructions(OldCond);
5950     return requestResimplify();
5951   }
5952 
5953   // If this basic block is ONLY a compare and a branch, and if a predecessor
5954   // branches to us and one of our successors, fold the comparison into the
5955   // predecessor and use logical operations to pick the right destination.
5956   if (FoldBranchToCommonDest(BI, nullptr, Options.BonusInstThreshold))
5957     return requestResimplify();
5958 
5959   // We have a conditional branch to two blocks that are only reachable
5960   // from BI.  We know that the condbr dominates the two blocks, so see if
5961   // there is any identical code in the "then" and "else" blocks.  If so, we
5962   // can hoist it up to the branching block.
5963   if (BI->getSuccessor(0)->getSinglePredecessor()) {
5964     if (BI->getSuccessor(1)->getSinglePredecessor()) {
5965       if (HoistThenElseCodeToIf(BI, TTI))
5966         return requestResimplify();
5967     } else {
5968       // If Successor #1 has multiple preds, we may be able to conditionally
5969       // execute Successor #0 if it branches to Successor #1.
5970       Instruction *Succ0TI = BI->getSuccessor(0)->getTerminator();
5971       if (Succ0TI->getNumSuccessors() == 1 &&
5972           Succ0TI->getSuccessor(0) == BI->getSuccessor(1))
5973         if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), TTI))
5974           return requestResimplify();
5975     }
5976   } else if (BI->getSuccessor(1)->getSinglePredecessor()) {
5977     // If Successor #0 has multiple preds, we may be able to conditionally
5978     // execute Successor #1 if it branches to Successor #0.
5979     Instruction *Succ1TI = BI->getSuccessor(1)->getTerminator();
5980     if (Succ1TI->getNumSuccessors() == 1 &&
5981         Succ1TI->getSuccessor(0) == BI->getSuccessor(0))
5982       if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), TTI))
5983         return requestResimplify();
5984   }
5985 
5986   // If this is a branch on a phi node in the current block, thread control
5987   // through this block if any PHI node entries are constants.
5988   if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition()))
5989     if (PN->getParent() == BI->getParent())
5990       if (FoldCondBranchOnPHI(BI, DL, Options.AC))
5991         return requestResimplify();
5992 
5993   // Scan predecessor blocks for conditional branches.
5994   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
5995     if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
5996       if (PBI != BI && PBI->isConditional())
5997         if (SimplifyCondBranchToCondBranch(PBI, BI, DL, TTI))
5998           return requestResimplify();
5999 
6000   // Look for diamond patterns.
6001   if (MergeCondStores)
6002     if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB))
6003       if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator()))
6004         if (PBI != BI && PBI->isConditional())
6005           if (mergeConditionalStores(PBI, BI, DL, TTI))
6006             return requestResimplify();
6007 
6008   return false;
6009 }
6010 
6011 /// Check if passing a value to an instruction will cause undefined behavior.
6012 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I) {
6013   Constant *C = dyn_cast<Constant>(V);
6014   if (!C)
6015     return false;
6016 
6017   if (I->use_empty())
6018     return false;
6019 
6020   if (C->isNullValue() || isa<UndefValue>(C)) {
6021     // Only look at the first use, avoid hurting compile time with long uselists
6022     User *Use = *I->user_begin();
6023 
6024     // Now make sure that there are no instructions in between that can alter
6025     // control flow (eg. calls)
6026     for (BasicBlock::iterator
6027              i = ++BasicBlock::iterator(I),
6028              UI = BasicBlock::iterator(dyn_cast<Instruction>(Use));
6029          i != UI; ++i)
6030       if (i == I->getParent()->end() || i->mayHaveSideEffects())
6031         return false;
6032 
6033     // Look through GEPs. A load from a GEP derived from NULL is still undefined
6034     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use))
6035       if (GEP->getPointerOperand() == I)
6036         return passingValueIsAlwaysUndefined(V, GEP);
6037 
6038     // Look through bitcasts.
6039     if (BitCastInst *BC = dyn_cast<BitCastInst>(Use))
6040       return passingValueIsAlwaysUndefined(V, BC);
6041 
6042     // Load from null is undefined.
6043     if (LoadInst *LI = dyn_cast<LoadInst>(Use))
6044       if (!LI->isVolatile())
6045         return !NullPointerIsDefined(LI->getFunction(),
6046                                      LI->getPointerAddressSpace());
6047 
6048     // Store to null is undefined.
6049     if (StoreInst *SI = dyn_cast<StoreInst>(Use))
6050       if (!SI->isVolatile())
6051         return (!NullPointerIsDefined(SI->getFunction(),
6052                                       SI->getPointerAddressSpace())) &&
6053                SI->getPointerOperand() == I;
6054 
6055     // A call to null is undefined.
6056     if (auto CS = CallSite(Use))
6057       return !NullPointerIsDefined(CS->getFunction()) &&
6058              CS.getCalledValue() == I;
6059   }
6060   return false;
6061 }
6062 
6063 /// If BB has an incoming value that will always trigger undefined behavior
6064 /// (eg. null pointer dereference), remove the branch leading here.
6065 static bool removeUndefIntroducingPredecessor(BasicBlock *BB) {
6066   for (PHINode &PHI : BB->phis())
6067     for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i)
6068       if (passingValueIsAlwaysUndefined(PHI.getIncomingValue(i), &PHI)) {
6069         Instruction *T = PHI.getIncomingBlock(i)->getTerminator();
6070         IRBuilder<> Builder(T);
6071         if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
6072           BB->removePredecessor(PHI.getIncomingBlock(i));
6073           // Turn uncoditional branches into unreachables and remove the dead
6074           // destination from conditional branches.
6075           if (BI->isUnconditional())
6076             Builder.CreateUnreachable();
6077           else
6078             Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1)
6079                                                        : BI->getSuccessor(0));
6080           BI->eraseFromParent();
6081           return true;
6082         }
6083         // TODO: SwitchInst.
6084       }
6085 
6086   return false;
6087 }
6088 
6089 bool SimplifyCFGOpt::simplifyOnce(BasicBlock *BB) {
6090   bool Changed = false;
6091 
6092   assert(BB && BB->getParent() && "Block not embedded in function!");
6093   assert(BB->getTerminator() && "Degenerate basic block encountered!");
6094 
6095   // Remove basic blocks that have no predecessors (except the entry block)...
6096   // or that just have themself as a predecessor.  These are unreachable.
6097   if ((pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) ||
6098       BB->getSinglePredecessor() == BB) {
6099     LLVM_DEBUG(dbgs() << "Removing BB: \n" << *BB);
6100     DeleteDeadBlock(BB);
6101     return true;
6102   }
6103 
6104   // Check to see if we can constant propagate this terminator instruction
6105   // away...
6106   Changed |= ConstantFoldTerminator(BB, true);
6107 
6108   // Check for and eliminate duplicate PHI nodes in this block.
6109   Changed |= EliminateDuplicatePHINodes(BB);
6110 
6111   // Check for and remove branches that will always cause undefined behavior.
6112   Changed |= removeUndefIntroducingPredecessor(BB);
6113 
6114   // Merge basic blocks into their predecessor if there is only one distinct
6115   // pred, and if there is only one distinct successor of the predecessor, and
6116   // if there are no PHI nodes.
6117   if (MergeBlockIntoPredecessor(BB))
6118     return true;
6119 
6120   if (SinkCommon && Options.SinkCommonInsts)
6121     Changed |= SinkCommonCodeFromPredecessors(BB);
6122 
6123   IRBuilder<> Builder(BB);
6124 
6125   // If there is a trivial two-entry PHI node in this basic block, and we can
6126   // eliminate it, do so now.
6127   if (auto *PN = dyn_cast<PHINode>(BB->begin()))
6128     if (PN->getNumIncomingValues() == 2)
6129       Changed |= FoldTwoEntryPHINode(PN, TTI, DL);
6130 
6131   Builder.SetInsertPoint(BB->getTerminator());
6132   if (auto *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
6133     if (BI->isUnconditional()) {
6134       if (SimplifyUncondBranch(BI, Builder))
6135         return true;
6136     } else {
6137       if (SimplifyCondBranch(BI, Builder))
6138         return true;
6139     }
6140   } else if (auto *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
6141     if (SimplifyReturn(RI, Builder))
6142       return true;
6143   } else if (auto *RI = dyn_cast<ResumeInst>(BB->getTerminator())) {
6144     if (SimplifyResume(RI, Builder))
6145       return true;
6146   } else if (auto *RI = dyn_cast<CleanupReturnInst>(BB->getTerminator())) {
6147     if (SimplifyCleanupReturn(RI))
6148       return true;
6149   } else if (auto *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
6150     if (SimplifySwitch(SI, Builder))
6151       return true;
6152   } else if (auto *UI = dyn_cast<UnreachableInst>(BB->getTerminator())) {
6153     if (SimplifyUnreachable(UI))
6154       return true;
6155   } else if (auto *IBI = dyn_cast<IndirectBrInst>(BB->getTerminator())) {
6156     if (SimplifyIndirectBr(IBI))
6157       return true;
6158   }
6159 
6160   return Changed;
6161 }
6162 
6163 bool SimplifyCFGOpt::run(BasicBlock *BB) {
6164   bool Changed = false;
6165 
6166   // Repeated simplify BB as long as resimplification is requested.
6167   do {
6168     Resimplify = false;
6169 
6170     // Perform one round of simplifcation. Resimplify flag will be set if
6171     // another iteration is requested.
6172     Changed |= simplifyOnce(BB);
6173   } while (Resimplify);
6174 
6175   return Changed;
6176 }
6177 
6178 bool llvm::simplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI,
6179                        const SimplifyCFGOptions &Options,
6180                        SmallPtrSetImpl<BasicBlock *> *LoopHeaders) {
6181   return SimplifyCFGOpt(TTI, BB->getModule()->getDataLayout(), LoopHeaders,
6182                         Options)
6183       .run(BB);
6184 }
6185