1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Peephole optimize the CFG.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/ADT/APInt.h"
14 #include "llvm/ADT/ArrayRef.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/Optional.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/ScopeExit.h"
19 #include "llvm/ADT/SetOperations.h"
20 #include "llvm/ADT/SetVector.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/ADT/StringRef.h"
25 #include "llvm/Analysis/AssumptionCache.h"
26 #include "llvm/Analysis/ConstantFolding.h"
27 #include "llvm/Analysis/EHPersonalities.h"
28 #include "llvm/Analysis/GuardUtils.h"
29 #include "llvm/Analysis/InstructionSimplify.h"
30 #include "llvm/Analysis/MemorySSA.h"
31 #include "llvm/Analysis/MemorySSAUpdater.h"
32 #include "llvm/Analysis/TargetTransformInfo.h"
33 #include "llvm/Analysis/ValueTracking.h"
34 #include "llvm/IR/Attributes.h"
35 #include "llvm/IR/BasicBlock.h"
36 #include "llvm/IR/CFG.h"
37 #include "llvm/IR/Constant.h"
38 #include "llvm/IR/ConstantRange.h"
39 #include "llvm/IR/Constants.h"
40 #include "llvm/IR/DataLayout.h"
41 #include "llvm/IR/DerivedTypes.h"
42 #include "llvm/IR/Function.h"
43 #include "llvm/IR/GlobalValue.h"
44 #include "llvm/IR/GlobalVariable.h"
45 #include "llvm/IR/IRBuilder.h"
46 #include "llvm/IR/InstrTypes.h"
47 #include "llvm/IR/Instruction.h"
48 #include "llvm/IR/Instructions.h"
49 #include "llvm/IR/IntrinsicInst.h"
50 #include "llvm/IR/Intrinsics.h"
51 #include "llvm/IR/LLVMContext.h"
52 #include "llvm/IR/MDBuilder.h"
53 #include "llvm/IR/Metadata.h"
54 #include "llvm/IR/Module.h"
55 #include "llvm/IR/NoFolder.h"
56 #include "llvm/IR/Operator.h"
57 #include "llvm/IR/PatternMatch.h"
58 #include "llvm/IR/Type.h"
59 #include "llvm/IR/Use.h"
60 #include "llvm/IR/User.h"
61 #include "llvm/IR/Value.h"
62 #include "llvm/Support/Casting.h"
63 #include "llvm/Support/CommandLine.h"
64 #include "llvm/Support/Debug.h"
65 #include "llvm/Support/ErrorHandling.h"
66 #include "llvm/Support/KnownBits.h"
67 #include "llvm/Support/MathExtras.h"
68 #include "llvm/Support/raw_ostream.h"
69 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
70 #include "llvm/Transforms/Utils/Local.h"
71 #include "llvm/Transforms/Utils/ValueMapper.h"
72 #include <algorithm>
73 #include <cassert>
74 #include <climits>
75 #include <cstddef>
76 #include <cstdint>
77 #include <iterator>
78 #include <map>
79 #include <set>
80 #include <tuple>
81 #include <utility>
82 #include <vector>
83 
84 using namespace llvm;
85 using namespace PatternMatch;
86 
87 #define DEBUG_TYPE "simplifycfg"
88 
89 // Chosen as 2 so as to be cheap, but still to have enough power to fold
90 // a select, so the "clamp" idiom (of a min followed by a max) will be caught.
91 // To catch this, we need to fold a compare and a select, hence '2' being the
92 // minimum reasonable default.
93 static cl::opt<unsigned> PHINodeFoldingThreshold(
94     "phi-node-folding-threshold", cl::Hidden, cl::init(2),
95     cl::desc(
96         "Control the amount of phi node folding to perform (default = 2)"));
97 
98 static cl::opt<unsigned> TwoEntryPHINodeFoldingThreshold(
99     "two-entry-phi-node-folding-threshold", cl::Hidden, cl::init(4),
100     cl::desc("Control the maximal total instruction cost that we are willing "
101              "to speculatively execute to fold a 2-entry PHI node into a "
102              "select (default = 4)"));
103 
104 static cl::opt<bool> DupRet(
105     "simplifycfg-dup-ret", cl::Hidden, cl::init(false),
106     cl::desc("Duplicate return instructions into unconditional branches"));
107 
108 static cl::opt<bool>
109     HoistCommon("simplifycfg-hoist-common", cl::Hidden, cl::init(true),
110                 cl::desc("Hoist common instructions up to the parent block"));
111 
112 static cl::opt<bool>
113     SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true),
114                cl::desc("Sink common instructions down to the end block"));
115 
116 static cl::opt<bool> HoistCondStores(
117     "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true),
118     cl::desc("Hoist conditional stores if an unconditional store precedes"));
119 
120 static cl::opt<bool> MergeCondStores(
121     "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true),
122     cl::desc("Hoist conditional stores even if an unconditional store does not "
123              "precede - hoist multiple conditional stores into a single "
124              "predicated store"));
125 
126 static cl::opt<bool> MergeCondStoresAggressively(
127     "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false),
128     cl::desc("When merging conditional stores, do so even if the resultant "
129              "basic blocks are unlikely to be if-converted as a result"));
130 
131 static cl::opt<bool> SpeculateOneExpensiveInst(
132     "speculate-one-expensive-inst", cl::Hidden, cl::init(true),
133     cl::desc("Allow exactly one expensive instruction to be speculatively "
134              "executed"));
135 
136 static cl::opt<unsigned> MaxSpeculationDepth(
137     "max-speculation-depth", cl::Hidden, cl::init(10),
138     cl::desc("Limit maximum recursion depth when calculating costs of "
139              "speculatively executed instructions"));
140 
141 static cl::opt<int>
142 MaxSmallBlockSize("simplifycfg-max-small-block-size", cl::Hidden, cl::init(10),
143                   cl::desc("Max size of a block which is still considered "
144                            "small enough to thread through"));
145 
146 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps");
147 STATISTIC(NumLinearMaps,
148           "Number of switch instructions turned into linear mapping");
149 STATISTIC(NumLookupTables,
150           "Number of switch instructions turned into lookup tables");
151 STATISTIC(
152     NumLookupTablesHoles,
153     "Number of switch instructions turned into lookup tables (holes checked)");
154 STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares");
155 STATISTIC(
156     NumHoistCommonCode,
157     "Number of common instruction 'blocks' hoisted up to the begin block");
158 STATISTIC(NumHoistCommonInstrs,
159           "Number of common instructions hoisted up to the begin block");
160 STATISTIC(NumSinkCommonCode,
161           "Number of common instruction 'blocks' sunk down to the end block");
162 STATISTIC(NumSinkCommonInstrs,
163           "Number of common instructions sunk down to the end block");
164 STATISTIC(NumSpeculations, "Number of speculative executed instructions");
165 
166 namespace {
167 
168 // The first field contains the value that the switch produces when a certain
169 // case group is selected, and the second field is a vector containing the
170 // cases composing the case group.
171 using SwitchCaseResultVectorTy =
172     SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2>;
173 
174 // The first field contains the phi node that generates a result of the switch
175 // and the second field contains the value generated for a certain case in the
176 // switch for that PHI.
177 using SwitchCaseResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>;
178 
179 /// ValueEqualityComparisonCase - Represents a case of a switch.
180 struct ValueEqualityComparisonCase {
181   ConstantInt *Value;
182   BasicBlock *Dest;
183 
184   ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest)
185       : Value(Value), Dest(Dest) {}
186 
187   bool operator<(ValueEqualityComparisonCase RHS) const {
188     // Comparing pointers is ok as we only rely on the order for uniquing.
189     return Value < RHS.Value;
190   }
191 
192   bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; }
193 };
194 
195 class SimplifyCFGOpt {
196   const TargetTransformInfo &TTI;
197   const DataLayout &DL;
198   SmallPtrSetImpl<BasicBlock *> *LoopHeaders;
199   const SimplifyCFGOptions &Options;
200   bool Resimplify;
201 
202   Value *isValueEqualityComparison(Instruction *TI);
203   BasicBlock *GetValueEqualityComparisonCases(
204       Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases);
205   bool SimplifyEqualityComparisonWithOnlyPredecessor(Instruction *TI,
206                                                      BasicBlock *Pred,
207                                                      IRBuilder<> &Builder);
208   bool FoldValueComparisonIntoPredecessors(Instruction *TI,
209                                            IRBuilder<> &Builder);
210 
211   bool simplifyReturn(ReturnInst *RI, IRBuilder<> &Builder);
212   bool simplifyResume(ResumeInst *RI, IRBuilder<> &Builder);
213   bool simplifySingleResume(ResumeInst *RI);
214   bool simplifyCommonResume(ResumeInst *RI);
215   bool simplifyCleanupReturn(CleanupReturnInst *RI);
216   bool simplifyUnreachable(UnreachableInst *UI);
217   bool simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder);
218   bool simplifyIndirectBr(IndirectBrInst *IBI);
219   bool simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder);
220   bool simplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder);
221   bool simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder);
222   bool SimplifyCondBranchToTwoReturns(BranchInst *BI, IRBuilder<> &Builder);
223 
224   bool tryToSimplifyUncondBranchWithICmpInIt(ICmpInst *ICI,
225                                              IRBuilder<> &Builder);
226 
227   bool HoistThenElseCodeToIf(BranchInst *BI, const TargetTransformInfo &TTI);
228   bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB,
229                               const TargetTransformInfo &TTI);
230   bool SimplifyTerminatorOnSelect(Instruction *OldTerm, Value *Cond,
231                                   BasicBlock *TrueBB, BasicBlock *FalseBB,
232                                   uint32_t TrueWeight, uint32_t FalseWeight);
233   bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder,
234                                  const DataLayout &DL);
235   bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select);
236   bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI);
237   bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder);
238 
239 public:
240   SimplifyCFGOpt(const TargetTransformInfo &TTI, const DataLayout &DL,
241                  SmallPtrSetImpl<BasicBlock *> *LoopHeaders,
242                  const SimplifyCFGOptions &Opts)
243       : TTI(TTI), DL(DL), LoopHeaders(LoopHeaders), Options(Opts) {}
244 
245   bool run(BasicBlock *BB);
246   bool simplifyOnce(BasicBlock *BB);
247 
248   // Helper to set Resimplify and return change indication.
249   bool requestResimplify() {
250     Resimplify = true;
251     return true;
252   }
253 };
254 
255 } // end anonymous namespace
256 
257 /// Return true if it is safe to merge these two
258 /// terminator instructions together.
259 static bool
260 SafeToMergeTerminators(Instruction *SI1, Instruction *SI2,
261                        SmallSetVector<BasicBlock *, 4> *FailBlocks = nullptr) {
262   if (SI1 == SI2)
263     return false; // Can't merge with self!
264 
265   // It is not safe to merge these two switch instructions if they have a common
266   // successor, and if that successor has a PHI node, and if *that* PHI node has
267   // conflicting incoming values from the two switch blocks.
268   BasicBlock *SI1BB = SI1->getParent();
269   BasicBlock *SI2BB = SI2->getParent();
270 
271   SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
272   bool Fail = false;
273   for (BasicBlock *Succ : successors(SI2BB))
274     if (SI1Succs.count(Succ))
275       for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) {
276         PHINode *PN = cast<PHINode>(BBI);
277         if (PN->getIncomingValueForBlock(SI1BB) !=
278             PN->getIncomingValueForBlock(SI2BB)) {
279           if (FailBlocks)
280             FailBlocks->insert(Succ);
281           Fail = true;
282         }
283       }
284 
285   return !Fail;
286 }
287 
288 /// Return true if it is safe and profitable to merge these two terminator
289 /// instructions together, where SI1 is an unconditional branch. PhiNodes will
290 /// store all PHI nodes in common successors.
291 static bool
292 isProfitableToFoldUnconditional(BranchInst *SI1, BranchInst *SI2,
293                                 Instruction *Cond,
294                                 SmallVectorImpl<PHINode *> &PhiNodes) {
295   if (SI1 == SI2)
296     return false; // Can't merge with self!
297   assert(SI1->isUnconditional() && SI2->isConditional());
298 
299   // We fold the unconditional branch if we can easily update all PHI nodes in
300   // common successors:
301   // 1> We have a constant incoming value for the conditional branch;
302   // 2> We have "Cond" as the incoming value for the unconditional branch;
303   // 3> SI2->getCondition() and Cond have same operands.
304   CmpInst *Ci2 = dyn_cast<CmpInst>(SI2->getCondition());
305   if (!Ci2)
306     return false;
307   if (!(Cond->getOperand(0) == Ci2->getOperand(0) &&
308         Cond->getOperand(1) == Ci2->getOperand(1)) &&
309       !(Cond->getOperand(0) == Ci2->getOperand(1) &&
310         Cond->getOperand(1) == Ci2->getOperand(0)))
311     return false;
312 
313   BasicBlock *SI1BB = SI1->getParent();
314   BasicBlock *SI2BB = SI2->getParent();
315   SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
316   for (BasicBlock *Succ : successors(SI2BB))
317     if (SI1Succs.count(Succ))
318       for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) {
319         PHINode *PN = cast<PHINode>(BBI);
320         if (PN->getIncomingValueForBlock(SI1BB) != Cond ||
321             !isa<ConstantInt>(PN->getIncomingValueForBlock(SI2BB)))
322           return false;
323         PhiNodes.push_back(PN);
324       }
325   return true;
326 }
327 
328 /// Update PHI nodes in Succ to indicate that there will now be entries in it
329 /// from the 'NewPred' block. The values that will be flowing into the PHI nodes
330 /// will be the same as those coming in from ExistPred, an existing predecessor
331 /// of Succ.
332 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred,
333                                   BasicBlock *ExistPred,
334                                   MemorySSAUpdater *MSSAU = nullptr) {
335   for (PHINode &PN : Succ->phis())
336     PN.addIncoming(PN.getIncomingValueForBlock(ExistPred), NewPred);
337   if (MSSAU)
338     if (auto *MPhi = MSSAU->getMemorySSA()->getMemoryAccess(Succ))
339       MPhi->addIncoming(MPhi->getIncomingValueForBlock(ExistPred), NewPred);
340 }
341 
342 /// Compute an abstract "cost" of speculating the given instruction,
343 /// which is assumed to be safe to speculate. TCC_Free means cheap,
344 /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively
345 /// expensive.
346 static unsigned ComputeSpeculationCost(const User *I,
347                                        const TargetTransformInfo &TTI) {
348   assert(isSafeToSpeculativelyExecute(I) &&
349          "Instruction is not safe to speculatively execute!");
350   return TTI.getUserCost(I, TargetTransformInfo::TCK_SizeAndLatency);
351 }
352 
353 /// If we have a merge point of an "if condition" as accepted above,
354 /// return true if the specified value dominates the block.  We
355 /// don't handle the true generality of domination here, just a special case
356 /// which works well enough for us.
357 ///
358 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to
359 /// see if V (which must be an instruction) and its recursive operands
360 /// that do not dominate BB have a combined cost lower than CostRemaining and
361 /// are non-trapping.  If both are true, the instruction is inserted into the
362 /// set and true is returned.
363 ///
364 /// The cost for most non-trapping instructions is defined as 1 except for
365 /// Select whose cost is 2.
366 ///
367 /// After this function returns, CostRemaining is decreased by the cost of
368 /// V plus its non-dominating operands.  If that cost is greater than
369 /// CostRemaining, false is returned and CostRemaining is undefined.
370 static bool DominatesMergePoint(Value *V, BasicBlock *BB,
371                                 SmallPtrSetImpl<Instruction *> &AggressiveInsts,
372                                 int &BudgetRemaining,
373                                 const TargetTransformInfo &TTI,
374                                 unsigned Depth = 0) {
375   // It is possible to hit a zero-cost cycle (phi/gep instructions for example),
376   // so limit the recursion depth.
377   // TODO: While this recursion limit does prevent pathological behavior, it
378   // would be better to track visited instructions to avoid cycles.
379   if (Depth == MaxSpeculationDepth)
380     return false;
381 
382   Instruction *I = dyn_cast<Instruction>(V);
383   if (!I) {
384     // Non-instructions all dominate instructions, but not all constantexprs
385     // can be executed unconditionally.
386     if (ConstantExpr *C = dyn_cast<ConstantExpr>(V))
387       if (C->canTrap())
388         return false;
389     return true;
390   }
391   BasicBlock *PBB = I->getParent();
392 
393   // We don't want to allow weird loops that might have the "if condition" in
394   // the bottom of this block.
395   if (PBB == BB)
396     return false;
397 
398   // If this instruction is defined in a block that contains an unconditional
399   // branch to BB, then it must be in the 'conditional' part of the "if
400   // statement".  If not, it definitely dominates the region.
401   BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator());
402   if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB)
403     return true;
404 
405   // If we have seen this instruction before, don't count it again.
406   if (AggressiveInsts.count(I))
407     return true;
408 
409   // Okay, it looks like the instruction IS in the "condition".  Check to
410   // see if it's a cheap instruction to unconditionally compute, and if it
411   // only uses stuff defined outside of the condition.  If so, hoist it out.
412   if (!isSafeToSpeculativelyExecute(I))
413     return false;
414 
415   BudgetRemaining -= ComputeSpeculationCost(I, TTI);
416 
417   // Allow exactly one instruction to be speculated regardless of its cost
418   // (as long as it is safe to do so).
419   // This is intended to flatten the CFG even if the instruction is a division
420   // or other expensive operation. The speculation of an expensive instruction
421   // is expected to be undone in CodeGenPrepare if the speculation has not
422   // enabled further IR optimizations.
423   if (BudgetRemaining < 0 &&
424       (!SpeculateOneExpensiveInst || !AggressiveInsts.empty() || Depth > 0))
425     return false;
426 
427   // Okay, we can only really hoist these out if their operands do
428   // not take us over the cost threshold.
429   for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i)
430     if (!DominatesMergePoint(*i, BB, AggressiveInsts, BudgetRemaining, TTI,
431                              Depth + 1))
432       return false;
433   // Okay, it's safe to do this!  Remember this instruction.
434   AggressiveInsts.insert(I);
435   return true;
436 }
437 
438 /// Extract ConstantInt from value, looking through IntToPtr
439 /// and PointerNullValue. Return NULL if value is not a constant int.
440 static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) {
441   // Normal constant int.
442   ConstantInt *CI = dyn_cast<ConstantInt>(V);
443   if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy())
444     return CI;
445 
446   // This is some kind of pointer constant. Turn it into a pointer-sized
447   // ConstantInt if possible.
448   IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType()));
449 
450   // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*).
451   if (isa<ConstantPointerNull>(V))
452     return ConstantInt::get(PtrTy, 0);
453 
454   // IntToPtr const int.
455   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
456     if (CE->getOpcode() == Instruction::IntToPtr)
457       if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) {
458         // The constant is very likely to have the right type already.
459         if (CI->getType() == PtrTy)
460           return CI;
461         else
462           return cast<ConstantInt>(
463               ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false));
464       }
465   return nullptr;
466 }
467 
468 namespace {
469 
470 /// Given a chain of or (||) or and (&&) comparison of a value against a
471 /// constant, this will try to recover the information required for a switch
472 /// structure.
473 /// It will depth-first traverse the chain of comparison, seeking for patterns
474 /// like %a == 12 or %a < 4 and combine them to produce a set of integer
475 /// representing the different cases for the switch.
476 /// Note that if the chain is composed of '||' it will build the set of elements
477 /// that matches the comparisons (i.e. any of this value validate the chain)
478 /// while for a chain of '&&' it will build the set elements that make the test
479 /// fail.
480 struct ConstantComparesGatherer {
481   const DataLayout &DL;
482 
483   /// Value found for the switch comparison
484   Value *CompValue = nullptr;
485 
486   /// Extra clause to be checked before the switch
487   Value *Extra = nullptr;
488 
489   /// Set of integers to match in switch
490   SmallVector<ConstantInt *, 8> Vals;
491 
492   /// Number of comparisons matched in the and/or chain
493   unsigned UsedICmps = 0;
494 
495   /// Construct and compute the result for the comparison instruction Cond
496   ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL) : DL(DL) {
497     gather(Cond);
498   }
499 
500   ConstantComparesGatherer(const ConstantComparesGatherer &) = delete;
501   ConstantComparesGatherer &
502   operator=(const ConstantComparesGatherer &) = delete;
503 
504 private:
505   /// Try to set the current value used for the comparison, it succeeds only if
506   /// it wasn't set before or if the new value is the same as the old one
507   bool setValueOnce(Value *NewVal) {
508     if (CompValue && CompValue != NewVal)
509       return false;
510     CompValue = NewVal;
511     return (CompValue != nullptr);
512   }
513 
514   /// Try to match Instruction "I" as a comparison against a constant and
515   /// populates the array Vals with the set of values that match (or do not
516   /// match depending on isEQ).
517   /// Return false on failure. On success, the Value the comparison matched
518   /// against is placed in CompValue.
519   /// If CompValue is already set, the function is expected to fail if a match
520   /// is found but the value compared to is different.
521   bool matchInstruction(Instruction *I, bool isEQ) {
522     // If this is an icmp against a constant, handle this as one of the cases.
523     ICmpInst *ICI;
524     ConstantInt *C;
525     if (!((ICI = dyn_cast<ICmpInst>(I)) &&
526           (C = GetConstantInt(I->getOperand(1), DL)))) {
527       return false;
528     }
529 
530     Value *RHSVal;
531     const APInt *RHSC;
532 
533     // Pattern match a special case
534     // (x & ~2^z) == y --> x == y || x == y|2^z
535     // This undoes a transformation done by instcombine to fuse 2 compares.
536     if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE)) {
537       // It's a little bit hard to see why the following transformations are
538       // correct. Here is a CVC3 program to verify them for 64-bit values:
539 
540       /*
541          ONE  : BITVECTOR(64) = BVZEROEXTEND(0bin1, 63);
542          x    : BITVECTOR(64);
543          y    : BITVECTOR(64);
544          z    : BITVECTOR(64);
545          mask : BITVECTOR(64) = BVSHL(ONE, z);
546          QUERY( (y & ~mask = y) =>
547                 ((x & ~mask = y) <=> (x = y OR x = (y |  mask)))
548          );
549          QUERY( (y |  mask = y) =>
550                 ((x |  mask = y) <=> (x = y OR x = (y & ~mask)))
551          );
552       */
553 
554       // Please note that each pattern must be a dual implication (<--> or
555       // iff). One directional implication can create spurious matches. If the
556       // implication is only one-way, an unsatisfiable condition on the left
557       // side can imply a satisfiable condition on the right side. Dual
558       // implication ensures that satisfiable conditions are transformed to
559       // other satisfiable conditions and unsatisfiable conditions are
560       // transformed to other unsatisfiable conditions.
561 
562       // Here is a concrete example of a unsatisfiable condition on the left
563       // implying a satisfiable condition on the right:
564       //
565       // mask = (1 << z)
566       // (x & ~mask) == y  --> (x == y || x == (y | mask))
567       //
568       // Substituting y = 3, z = 0 yields:
569       // (x & -2) == 3 --> (x == 3 || x == 2)
570 
571       // Pattern match a special case:
572       /*
573         QUERY( (y & ~mask = y) =>
574                ((x & ~mask = y) <=> (x = y OR x = (y |  mask)))
575         );
576       */
577       if (match(ICI->getOperand(0),
578                 m_And(m_Value(RHSVal), m_APInt(RHSC)))) {
579         APInt Mask = ~*RHSC;
580         if (Mask.isPowerOf2() && (C->getValue() & ~Mask) == C->getValue()) {
581           // If we already have a value for the switch, it has to match!
582           if (!setValueOnce(RHSVal))
583             return false;
584 
585           Vals.push_back(C);
586           Vals.push_back(
587               ConstantInt::get(C->getContext(),
588                                C->getValue() | Mask));
589           UsedICmps++;
590           return true;
591         }
592       }
593 
594       // Pattern match a special case:
595       /*
596         QUERY( (y |  mask = y) =>
597                ((x |  mask = y) <=> (x = y OR x = (y & ~mask)))
598         );
599       */
600       if (match(ICI->getOperand(0),
601                 m_Or(m_Value(RHSVal), m_APInt(RHSC)))) {
602         APInt Mask = *RHSC;
603         if (Mask.isPowerOf2() && (C->getValue() | Mask) == C->getValue()) {
604           // If we already have a value for the switch, it has to match!
605           if (!setValueOnce(RHSVal))
606             return false;
607 
608           Vals.push_back(C);
609           Vals.push_back(ConstantInt::get(C->getContext(),
610                                           C->getValue() & ~Mask));
611           UsedICmps++;
612           return true;
613         }
614       }
615 
616       // If we already have a value for the switch, it has to match!
617       if (!setValueOnce(ICI->getOperand(0)))
618         return false;
619 
620       UsedICmps++;
621       Vals.push_back(C);
622       return ICI->getOperand(0);
623     }
624 
625     // If we have "x ult 3", for example, then we can add 0,1,2 to the set.
626     ConstantRange Span = ConstantRange::makeAllowedICmpRegion(
627         ICI->getPredicate(), C->getValue());
628 
629     // Shift the range if the compare is fed by an add. This is the range
630     // compare idiom as emitted by instcombine.
631     Value *CandidateVal = I->getOperand(0);
632     if (match(I->getOperand(0), m_Add(m_Value(RHSVal), m_APInt(RHSC)))) {
633       Span = Span.subtract(*RHSC);
634       CandidateVal = RHSVal;
635     }
636 
637     // If this is an and/!= check, then we are looking to build the set of
638     // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into
639     // x != 0 && x != 1.
640     if (!isEQ)
641       Span = Span.inverse();
642 
643     // If there are a ton of values, we don't want to make a ginormous switch.
644     if (Span.isSizeLargerThan(8) || Span.isEmptySet()) {
645       return false;
646     }
647 
648     // If we already have a value for the switch, it has to match!
649     if (!setValueOnce(CandidateVal))
650       return false;
651 
652     // Add all values from the range to the set
653     for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp)
654       Vals.push_back(ConstantInt::get(I->getContext(), Tmp));
655 
656     UsedICmps++;
657     return true;
658   }
659 
660   /// Given a potentially 'or'd or 'and'd together collection of icmp
661   /// eq/ne/lt/gt instructions that compare a value against a constant, extract
662   /// the value being compared, and stick the list constants into the Vals
663   /// vector.
664   /// One "Extra" case is allowed to differ from the other.
665   void gather(Value *V) {
666     bool isEQ = (cast<Instruction>(V)->getOpcode() == Instruction::Or);
667 
668     // Keep a stack (SmallVector for efficiency) for depth-first traversal
669     SmallVector<Value *, 8> DFT;
670     SmallPtrSet<Value *, 8> Visited;
671 
672     // Initialize
673     Visited.insert(V);
674     DFT.push_back(V);
675 
676     while (!DFT.empty()) {
677       V = DFT.pop_back_val();
678 
679       if (Instruction *I = dyn_cast<Instruction>(V)) {
680         // If it is a || (or && depending on isEQ), process the operands.
681         if (I->getOpcode() == (isEQ ? Instruction::Or : Instruction::And)) {
682           if (Visited.insert(I->getOperand(1)).second)
683             DFT.push_back(I->getOperand(1));
684           if (Visited.insert(I->getOperand(0)).second)
685             DFT.push_back(I->getOperand(0));
686           continue;
687         }
688 
689         // Try to match the current instruction
690         if (matchInstruction(I, isEQ))
691           // Match succeed, continue the loop
692           continue;
693       }
694 
695       // One element of the sequence of || (or &&) could not be match as a
696       // comparison against the same value as the others.
697       // We allow only one "Extra" case to be checked before the switch
698       if (!Extra) {
699         Extra = V;
700         continue;
701       }
702       // Failed to parse a proper sequence, abort now
703       CompValue = nullptr;
704       break;
705     }
706   }
707 };
708 
709 } // end anonymous namespace
710 
711 static void EraseTerminatorAndDCECond(Instruction *TI,
712                                       MemorySSAUpdater *MSSAU = nullptr) {
713   Instruction *Cond = nullptr;
714   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
715     Cond = dyn_cast<Instruction>(SI->getCondition());
716   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
717     if (BI->isConditional())
718       Cond = dyn_cast<Instruction>(BI->getCondition());
719   } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) {
720     Cond = dyn_cast<Instruction>(IBI->getAddress());
721   }
722 
723   TI->eraseFromParent();
724   if (Cond)
725     RecursivelyDeleteTriviallyDeadInstructions(Cond, nullptr, MSSAU);
726 }
727 
728 /// Return true if the specified terminator checks
729 /// to see if a value is equal to constant integer value.
730 Value *SimplifyCFGOpt::isValueEqualityComparison(Instruction *TI) {
731   Value *CV = nullptr;
732   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
733     // Do not permit merging of large switch instructions into their
734     // predecessors unless there is only one predecessor.
735     if (!SI->getParent()->hasNPredecessorsOrMore(128 / SI->getNumSuccessors()))
736       CV = SI->getCondition();
737   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI))
738     if (BI->isConditional() && BI->getCondition()->hasOneUse())
739       if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) {
740         if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL))
741           CV = ICI->getOperand(0);
742       }
743 
744   // Unwrap any lossless ptrtoint cast.
745   if (CV) {
746     if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) {
747       Value *Ptr = PTII->getPointerOperand();
748       if (PTII->getType() == DL.getIntPtrType(Ptr->getType()))
749         CV = Ptr;
750     }
751   }
752   return CV;
753 }
754 
755 /// Given a value comparison instruction,
756 /// decode all of the 'cases' that it represents and return the 'default' block.
757 BasicBlock *SimplifyCFGOpt::GetValueEqualityComparisonCases(
758     Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases) {
759   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
760     Cases.reserve(SI->getNumCases());
761     for (auto Case : SI->cases())
762       Cases.push_back(ValueEqualityComparisonCase(Case.getCaseValue(),
763                                                   Case.getCaseSuccessor()));
764     return SI->getDefaultDest();
765   }
766 
767   BranchInst *BI = cast<BranchInst>(TI);
768   ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
769   BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE);
770   Cases.push_back(ValueEqualityComparisonCase(
771       GetConstantInt(ICI->getOperand(1), DL), Succ));
772   return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ);
773 }
774 
775 /// Given a vector of bb/value pairs, remove any entries
776 /// in the list that match the specified block.
777 static void
778 EliminateBlockCases(BasicBlock *BB,
779                     std::vector<ValueEqualityComparisonCase> &Cases) {
780   Cases.erase(std::remove(Cases.begin(), Cases.end(), BB), Cases.end());
781 }
782 
783 /// Return true if there are any keys in C1 that exist in C2 as well.
784 static bool ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1,
785                           std::vector<ValueEqualityComparisonCase> &C2) {
786   std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2;
787 
788   // Make V1 be smaller than V2.
789   if (V1->size() > V2->size())
790     std::swap(V1, V2);
791 
792   if (V1->empty())
793     return false;
794   if (V1->size() == 1) {
795     // Just scan V2.
796     ConstantInt *TheVal = (*V1)[0].Value;
797     for (unsigned i = 0, e = V2->size(); i != e; ++i)
798       if (TheVal == (*V2)[i].Value)
799         return true;
800   }
801 
802   // Otherwise, just sort both lists and compare element by element.
803   array_pod_sort(V1->begin(), V1->end());
804   array_pod_sort(V2->begin(), V2->end());
805   unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size();
806   while (i1 != e1 && i2 != e2) {
807     if ((*V1)[i1].Value == (*V2)[i2].Value)
808       return true;
809     if ((*V1)[i1].Value < (*V2)[i2].Value)
810       ++i1;
811     else
812       ++i2;
813   }
814   return false;
815 }
816 
817 // Set branch weights on SwitchInst. This sets the metadata if there is at
818 // least one non-zero weight.
819 static void setBranchWeights(SwitchInst *SI, ArrayRef<uint32_t> Weights) {
820   // Check that there is at least one non-zero weight. Otherwise, pass
821   // nullptr to setMetadata which will erase the existing metadata.
822   MDNode *N = nullptr;
823   if (llvm::any_of(Weights, [](uint32_t W) { return W != 0; }))
824     N = MDBuilder(SI->getParent()->getContext()).createBranchWeights(Weights);
825   SI->setMetadata(LLVMContext::MD_prof, N);
826 }
827 
828 // Similar to the above, but for branch and select instructions that take
829 // exactly 2 weights.
830 static void setBranchWeights(Instruction *I, uint32_t TrueWeight,
831                              uint32_t FalseWeight) {
832   assert(isa<BranchInst>(I) || isa<SelectInst>(I));
833   // Check that there is at least one non-zero weight. Otherwise, pass
834   // nullptr to setMetadata which will erase the existing metadata.
835   MDNode *N = nullptr;
836   if (TrueWeight || FalseWeight)
837     N = MDBuilder(I->getParent()->getContext())
838             .createBranchWeights(TrueWeight, FalseWeight);
839   I->setMetadata(LLVMContext::MD_prof, N);
840 }
841 
842 /// If TI is known to be a terminator instruction and its block is known to
843 /// only have a single predecessor block, check to see if that predecessor is
844 /// also a value comparison with the same value, and if that comparison
845 /// determines the outcome of this comparison. If so, simplify TI. This does a
846 /// very limited form of jump threading.
847 bool SimplifyCFGOpt::SimplifyEqualityComparisonWithOnlyPredecessor(
848     Instruction *TI, BasicBlock *Pred, IRBuilder<> &Builder) {
849   Value *PredVal = isValueEqualityComparison(Pred->getTerminator());
850   if (!PredVal)
851     return false; // Not a value comparison in predecessor.
852 
853   Value *ThisVal = isValueEqualityComparison(TI);
854   assert(ThisVal && "This isn't a value comparison!!");
855   if (ThisVal != PredVal)
856     return false; // Different predicates.
857 
858   // TODO: Preserve branch weight metadata, similarly to how
859   // FoldValueComparisonIntoPredecessors preserves it.
860 
861   // Find out information about when control will move from Pred to TI's block.
862   std::vector<ValueEqualityComparisonCase> PredCases;
863   BasicBlock *PredDef =
864       GetValueEqualityComparisonCases(Pred->getTerminator(), PredCases);
865   EliminateBlockCases(PredDef, PredCases); // Remove default from cases.
866 
867   // Find information about how control leaves this block.
868   std::vector<ValueEqualityComparisonCase> ThisCases;
869   BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases);
870   EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases.
871 
872   // If TI's block is the default block from Pred's comparison, potentially
873   // simplify TI based on this knowledge.
874   if (PredDef == TI->getParent()) {
875     // If we are here, we know that the value is none of those cases listed in
876     // PredCases.  If there are any cases in ThisCases that are in PredCases, we
877     // can simplify TI.
878     if (!ValuesOverlap(PredCases, ThisCases))
879       return false;
880 
881     if (isa<BranchInst>(TI)) {
882       // Okay, one of the successors of this condbr is dead.  Convert it to a
883       // uncond br.
884       assert(ThisCases.size() == 1 && "Branch can only have one case!");
885       // Insert the new branch.
886       Instruction *NI = Builder.CreateBr(ThisDef);
887       (void)NI;
888 
889       // Remove PHI node entries for the dead edge.
890       ThisCases[0].Dest->removePredecessor(TI->getParent());
891 
892       LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
893                         << "Through successor TI: " << *TI << "Leaving: " << *NI
894                         << "\n");
895 
896       EraseTerminatorAndDCECond(TI);
897       return true;
898     }
899 
900     SwitchInstProfUpdateWrapper SI = *cast<SwitchInst>(TI);
901     // Okay, TI has cases that are statically dead, prune them away.
902     SmallPtrSet<Constant *, 16> DeadCases;
903     for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
904       DeadCases.insert(PredCases[i].Value);
905 
906     LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
907                       << "Through successor TI: " << *TI);
908 
909     for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) {
910       --i;
911       if (DeadCases.count(i->getCaseValue())) {
912         i->getCaseSuccessor()->removePredecessor(TI->getParent());
913         SI.removeCase(i);
914       }
915     }
916     LLVM_DEBUG(dbgs() << "Leaving: " << *TI << "\n");
917     return true;
918   }
919 
920   // Otherwise, TI's block must correspond to some matched value.  Find out
921   // which value (or set of values) this is.
922   ConstantInt *TIV = nullptr;
923   BasicBlock *TIBB = TI->getParent();
924   for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
925     if (PredCases[i].Dest == TIBB) {
926       if (TIV)
927         return false; // Cannot handle multiple values coming to this block.
928       TIV = PredCases[i].Value;
929     }
930   assert(TIV && "No edge from pred to succ?");
931 
932   // Okay, we found the one constant that our value can be if we get into TI's
933   // BB.  Find out which successor will unconditionally be branched to.
934   BasicBlock *TheRealDest = nullptr;
935   for (unsigned i = 0, e = ThisCases.size(); i != e; ++i)
936     if (ThisCases[i].Value == TIV) {
937       TheRealDest = ThisCases[i].Dest;
938       break;
939     }
940 
941   // If not handled by any explicit cases, it is handled by the default case.
942   if (!TheRealDest)
943     TheRealDest = ThisDef;
944 
945   // Remove PHI node entries for dead edges.
946   BasicBlock *CheckEdge = TheRealDest;
947   for (BasicBlock *Succ : successors(TIBB))
948     if (Succ != CheckEdge)
949       Succ->removePredecessor(TIBB);
950     else
951       CheckEdge = nullptr;
952 
953   // Insert the new branch.
954   Instruction *NI = Builder.CreateBr(TheRealDest);
955   (void)NI;
956 
957   LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
958                     << "Through successor TI: " << *TI << "Leaving: " << *NI
959                     << "\n");
960 
961   EraseTerminatorAndDCECond(TI);
962   return true;
963 }
964 
965 namespace {
966 
967 /// This class implements a stable ordering of constant
968 /// integers that does not depend on their address.  This is important for
969 /// applications that sort ConstantInt's to ensure uniqueness.
970 struct ConstantIntOrdering {
971   bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const {
972     return LHS->getValue().ult(RHS->getValue());
973   }
974 };
975 
976 } // end anonymous namespace
977 
978 static int ConstantIntSortPredicate(ConstantInt *const *P1,
979                                     ConstantInt *const *P2) {
980   const ConstantInt *LHS = *P1;
981   const ConstantInt *RHS = *P2;
982   if (LHS == RHS)
983     return 0;
984   return LHS->getValue().ult(RHS->getValue()) ? 1 : -1;
985 }
986 
987 static inline bool HasBranchWeights(const Instruction *I) {
988   MDNode *ProfMD = I->getMetadata(LLVMContext::MD_prof);
989   if (ProfMD && ProfMD->getOperand(0))
990     if (MDString *MDS = dyn_cast<MDString>(ProfMD->getOperand(0)))
991       return MDS->getString().equals("branch_weights");
992 
993   return false;
994 }
995 
996 /// Get Weights of a given terminator, the default weight is at the front
997 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight
998 /// metadata.
999 static void GetBranchWeights(Instruction *TI,
1000                              SmallVectorImpl<uint64_t> &Weights) {
1001   MDNode *MD = TI->getMetadata(LLVMContext::MD_prof);
1002   assert(MD);
1003   for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) {
1004     ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i));
1005     Weights.push_back(CI->getValue().getZExtValue());
1006   }
1007 
1008   // If TI is a conditional eq, the default case is the false case,
1009   // and the corresponding branch-weight data is at index 2. We swap the
1010   // default weight to be the first entry.
1011   if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
1012     assert(Weights.size() == 2);
1013     ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
1014     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
1015       std::swap(Weights.front(), Weights.back());
1016   }
1017 }
1018 
1019 /// Keep halving the weights until all can fit in uint32_t.
1020 static void FitWeights(MutableArrayRef<uint64_t> Weights) {
1021   uint64_t Max = *std::max_element(Weights.begin(), Weights.end());
1022   if (Max > UINT_MAX) {
1023     unsigned Offset = 32 - countLeadingZeros(Max);
1024     for (uint64_t &I : Weights)
1025       I >>= Offset;
1026   }
1027 }
1028 
1029 /// The specified terminator is a value equality comparison instruction
1030 /// (either a switch or a branch on "X == c").
1031 /// See if any of the predecessors of the terminator block are value comparisons
1032 /// on the same value.  If so, and if safe to do so, fold them together.
1033 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(Instruction *TI,
1034                                                          IRBuilder<> &Builder) {
1035   BasicBlock *BB = TI->getParent();
1036   Value *CV = isValueEqualityComparison(TI); // CondVal
1037   assert(CV && "Not a comparison?");
1038   bool Changed = false;
1039 
1040   SmallVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB));
1041   while (!Preds.empty()) {
1042     BasicBlock *Pred = Preds.pop_back_val();
1043 
1044     // See if the predecessor is a comparison with the same value.
1045     Instruction *PTI = Pred->getTerminator();
1046     Value *PCV = isValueEqualityComparison(PTI); // PredCondVal
1047 
1048     if (PCV == CV && TI != PTI) {
1049       SmallSetVector<BasicBlock*, 4> FailBlocks;
1050       if (!SafeToMergeTerminators(TI, PTI, &FailBlocks)) {
1051         for (auto *Succ : FailBlocks) {
1052           if (!SplitBlockPredecessors(Succ, TI->getParent(), ".fold.split"))
1053             return false;
1054         }
1055       }
1056 
1057       // Figure out which 'cases' to copy from SI to PSI.
1058       std::vector<ValueEqualityComparisonCase> BBCases;
1059       BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases);
1060 
1061       std::vector<ValueEqualityComparisonCase> PredCases;
1062       BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases);
1063 
1064       // Based on whether the default edge from PTI goes to BB or not, fill in
1065       // PredCases and PredDefault with the new switch cases we would like to
1066       // build.
1067       SmallVector<BasicBlock *, 8> NewSuccessors;
1068 
1069       // Update the branch weight metadata along the way
1070       SmallVector<uint64_t, 8> Weights;
1071       bool PredHasWeights = HasBranchWeights(PTI);
1072       bool SuccHasWeights = HasBranchWeights(TI);
1073 
1074       if (PredHasWeights) {
1075         GetBranchWeights(PTI, Weights);
1076         // branch-weight metadata is inconsistent here.
1077         if (Weights.size() != 1 + PredCases.size())
1078           PredHasWeights = SuccHasWeights = false;
1079       } else if (SuccHasWeights)
1080         // If there are no predecessor weights but there are successor weights,
1081         // populate Weights with 1, which will later be scaled to the sum of
1082         // successor's weights
1083         Weights.assign(1 + PredCases.size(), 1);
1084 
1085       SmallVector<uint64_t, 8> SuccWeights;
1086       if (SuccHasWeights) {
1087         GetBranchWeights(TI, SuccWeights);
1088         // branch-weight metadata is inconsistent here.
1089         if (SuccWeights.size() != 1 + BBCases.size())
1090           PredHasWeights = SuccHasWeights = false;
1091       } else if (PredHasWeights)
1092         SuccWeights.assign(1 + BBCases.size(), 1);
1093 
1094       if (PredDefault == BB) {
1095         // If this is the default destination from PTI, only the edges in TI
1096         // that don't occur in PTI, or that branch to BB will be activated.
1097         std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
1098         for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
1099           if (PredCases[i].Dest != BB)
1100             PTIHandled.insert(PredCases[i].Value);
1101           else {
1102             // The default destination is BB, we don't need explicit targets.
1103             std::swap(PredCases[i], PredCases.back());
1104 
1105             if (PredHasWeights || SuccHasWeights) {
1106               // Increase weight for the default case.
1107               Weights[0] += Weights[i + 1];
1108               std::swap(Weights[i + 1], Weights.back());
1109               Weights.pop_back();
1110             }
1111 
1112             PredCases.pop_back();
1113             --i;
1114             --e;
1115           }
1116 
1117         // Reconstruct the new switch statement we will be building.
1118         if (PredDefault != BBDefault) {
1119           PredDefault->removePredecessor(Pred);
1120           PredDefault = BBDefault;
1121           NewSuccessors.push_back(BBDefault);
1122         }
1123 
1124         unsigned CasesFromPred = Weights.size();
1125         uint64_t ValidTotalSuccWeight = 0;
1126         for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
1127           if (!PTIHandled.count(BBCases[i].Value) &&
1128               BBCases[i].Dest != BBDefault) {
1129             PredCases.push_back(BBCases[i]);
1130             NewSuccessors.push_back(BBCases[i].Dest);
1131             if (SuccHasWeights || PredHasWeights) {
1132               // The default weight is at index 0, so weight for the ith case
1133               // should be at index i+1. Scale the cases from successor by
1134               // PredDefaultWeight (Weights[0]).
1135               Weights.push_back(Weights[0] * SuccWeights[i + 1]);
1136               ValidTotalSuccWeight += SuccWeights[i + 1];
1137             }
1138           }
1139 
1140         if (SuccHasWeights || PredHasWeights) {
1141           ValidTotalSuccWeight += SuccWeights[0];
1142           // Scale the cases from predecessor by ValidTotalSuccWeight.
1143           for (unsigned i = 1; i < CasesFromPred; ++i)
1144             Weights[i] *= ValidTotalSuccWeight;
1145           // Scale the default weight by SuccDefaultWeight (SuccWeights[0]).
1146           Weights[0] *= SuccWeights[0];
1147         }
1148       } else {
1149         // If this is not the default destination from PSI, only the edges
1150         // in SI that occur in PSI with a destination of BB will be
1151         // activated.
1152         std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
1153         std::map<ConstantInt *, uint64_t> WeightsForHandled;
1154         for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
1155           if (PredCases[i].Dest == BB) {
1156             PTIHandled.insert(PredCases[i].Value);
1157 
1158             if (PredHasWeights || SuccHasWeights) {
1159               WeightsForHandled[PredCases[i].Value] = Weights[i + 1];
1160               std::swap(Weights[i + 1], Weights.back());
1161               Weights.pop_back();
1162             }
1163 
1164             std::swap(PredCases[i], PredCases.back());
1165             PredCases.pop_back();
1166             --i;
1167             --e;
1168           }
1169 
1170         // Okay, now we know which constants were sent to BB from the
1171         // predecessor.  Figure out where they will all go now.
1172         for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
1173           if (PTIHandled.count(BBCases[i].Value)) {
1174             // If this is one we are capable of getting...
1175             if (PredHasWeights || SuccHasWeights)
1176               Weights.push_back(WeightsForHandled[BBCases[i].Value]);
1177             PredCases.push_back(BBCases[i]);
1178             NewSuccessors.push_back(BBCases[i].Dest);
1179             PTIHandled.erase(
1180                 BBCases[i].Value); // This constant is taken care of
1181           }
1182 
1183         // If there are any constants vectored to BB that TI doesn't handle,
1184         // they must go to the default destination of TI.
1185         for (ConstantInt *I : PTIHandled) {
1186           if (PredHasWeights || SuccHasWeights)
1187             Weights.push_back(WeightsForHandled[I]);
1188           PredCases.push_back(ValueEqualityComparisonCase(I, BBDefault));
1189           NewSuccessors.push_back(BBDefault);
1190         }
1191       }
1192 
1193       // Okay, at this point, we know which new successor Pred will get.  Make
1194       // sure we update the number of entries in the PHI nodes for these
1195       // successors.
1196       for (BasicBlock *NewSuccessor : NewSuccessors)
1197         AddPredecessorToBlock(NewSuccessor, Pred, BB);
1198 
1199       Builder.SetInsertPoint(PTI);
1200       // Convert pointer to int before we switch.
1201       if (CV->getType()->isPointerTy()) {
1202         CV = Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()),
1203                                     "magicptr");
1204       }
1205 
1206       // Now that the successors are updated, create the new Switch instruction.
1207       SwitchInst *NewSI =
1208           Builder.CreateSwitch(CV, PredDefault, PredCases.size());
1209       NewSI->setDebugLoc(PTI->getDebugLoc());
1210       for (ValueEqualityComparisonCase &V : PredCases)
1211         NewSI->addCase(V.Value, V.Dest);
1212 
1213       if (PredHasWeights || SuccHasWeights) {
1214         // Halve the weights if any of them cannot fit in an uint32_t
1215         FitWeights(Weights);
1216 
1217         SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
1218 
1219         setBranchWeights(NewSI, MDWeights);
1220       }
1221 
1222       EraseTerminatorAndDCECond(PTI);
1223 
1224       // Okay, last check.  If BB is still a successor of PSI, then we must
1225       // have an infinite loop case.  If so, add an infinitely looping block
1226       // to handle the case to preserve the behavior of the code.
1227       BasicBlock *InfLoopBlock = nullptr;
1228       for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i)
1229         if (NewSI->getSuccessor(i) == BB) {
1230           if (!InfLoopBlock) {
1231             // Insert it at the end of the function, because it's either code,
1232             // or it won't matter if it's hot. :)
1233             InfLoopBlock = BasicBlock::Create(BB->getContext(), "infloop",
1234                                               BB->getParent());
1235             BranchInst::Create(InfLoopBlock, InfLoopBlock);
1236           }
1237           NewSI->setSuccessor(i, InfLoopBlock);
1238         }
1239 
1240       Changed = true;
1241     }
1242   }
1243   return Changed;
1244 }
1245 
1246 // If we would need to insert a select that uses the value of this invoke
1247 // (comments in HoistThenElseCodeToIf explain why we would need to do this), we
1248 // can't hoist the invoke, as there is nowhere to put the select in this case.
1249 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2,
1250                                 Instruction *I1, Instruction *I2) {
1251   for (BasicBlock *Succ : successors(BB1)) {
1252     for (const PHINode &PN : Succ->phis()) {
1253       Value *BB1V = PN.getIncomingValueForBlock(BB1);
1254       Value *BB2V = PN.getIncomingValueForBlock(BB2);
1255       if (BB1V != BB2V && (BB1V == I1 || BB2V == I2)) {
1256         return false;
1257       }
1258     }
1259   }
1260   return true;
1261 }
1262 
1263 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I);
1264 
1265 /// Given a conditional branch that goes to BB1 and BB2, hoist any common code
1266 /// in the two blocks up into the branch block. The caller of this function
1267 /// guarantees that BI's block dominates BB1 and BB2.
1268 bool SimplifyCFGOpt::HoistThenElseCodeToIf(BranchInst *BI,
1269                                            const TargetTransformInfo &TTI) {
1270   // This does very trivial matching, with limited scanning, to find identical
1271   // instructions in the two blocks.  In particular, we don't want to get into
1272   // O(M*N) situations here where M and N are the sizes of BB1 and BB2.  As
1273   // such, we currently just scan for obviously identical instructions in an
1274   // identical order.
1275   BasicBlock *BB1 = BI->getSuccessor(0); // The true destination.
1276   BasicBlock *BB2 = BI->getSuccessor(1); // The false destination
1277 
1278   BasicBlock::iterator BB1_Itr = BB1->begin();
1279   BasicBlock::iterator BB2_Itr = BB2->begin();
1280 
1281   Instruction *I1 = &*BB1_Itr++, *I2 = &*BB2_Itr++;
1282   // Skip debug info if it is not identical.
1283   DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1284   DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1285   if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1286     while (isa<DbgInfoIntrinsic>(I1))
1287       I1 = &*BB1_Itr++;
1288     while (isa<DbgInfoIntrinsic>(I2))
1289       I2 = &*BB2_Itr++;
1290   }
1291   // FIXME: Can we define a safety predicate for CallBr?
1292   if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) ||
1293       (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) ||
1294       isa<CallBrInst>(I1))
1295     return false;
1296 
1297   BasicBlock *BIParent = BI->getParent();
1298 
1299   bool Changed = false;
1300 
1301   auto _ = make_scope_exit([&]() {
1302     if (Changed)
1303       ++NumHoistCommonCode;
1304   });
1305 
1306   do {
1307     // If we are hoisting the terminator instruction, don't move one (making a
1308     // broken BB), instead clone it, and remove BI.
1309     if (I1->isTerminator())
1310       goto HoistTerminator;
1311 
1312     // If we're going to hoist a call, make sure that the two instructions we're
1313     // commoning/hoisting are both marked with musttail, or neither of them is
1314     // marked as such. Otherwise, we might end up in a situation where we hoist
1315     // from a block where the terminator is a `ret` to a block where the terminator
1316     // is a `br`, and `musttail` calls expect to be followed by a return.
1317     auto *C1 = dyn_cast<CallInst>(I1);
1318     auto *C2 = dyn_cast<CallInst>(I2);
1319     if (C1 && C2)
1320       if (C1->isMustTailCall() != C2->isMustTailCall())
1321         return Changed;
1322 
1323     if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2))
1324       return Changed;
1325 
1326     // If any of the two call sites has nomerge attribute, stop hoisting.
1327     if (const auto *CB1 = dyn_cast<CallBase>(I1))
1328       if (CB1->cannotMerge())
1329         return Changed;
1330     if (const auto *CB2 = dyn_cast<CallBase>(I2))
1331       if (CB2->cannotMerge())
1332         return Changed;
1333 
1334     if (isa<DbgInfoIntrinsic>(I1) || isa<DbgInfoIntrinsic>(I2)) {
1335       assert (isa<DbgInfoIntrinsic>(I1) && isa<DbgInfoIntrinsic>(I2));
1336       // The debug location is an integral part of a debug info intrinsic
1337       // and can't be separated from it or replaced.  Instead of attempting
1338       // to merge locations, simply hoist both copies of the intrinsic.
1339       BIParent->getInstList().splice(BI->getIterator(),
1340                                      BB1->getInstList(), I1);
1341       BIParent->getInstList().splice(BI->getIterator(),
1342                                      BB2->getInstList(), I2);
1343       Changed = true;
1344     } else {
1345       // For a normal instruction, we just move one to right before the branch,
1346       // then replace all uses of the other with the first.  Finally, we remove
1347       // the now redundant second instruction.
1348       BIParent->getInstList().splice(BI->getIterator(),
1349                                      BB1->getInstList(), I1);
1350       if (!I2->use_empty())
1351         I2->replaceAllUsesWith(I1);
1352       I1->andIRFlags(I2);
1353       unsigned KnownIDs[] = {LLVMContext::MD_tbaa,
1354                              LLVMContext::MD_range,
1355                              LLVMContext::MD_fpmath,
1356                              LLVMContext::MD_invariant_load,
1357                              LLVMContext::MD_nonnull,
1358                              LLVMContext::MD_invariant_group,
1359                              LLVMContext::MD_align,
1360                              LLVMContext::MD_dereferenceable,
1361                              LLVMContext::MD_dereferenceable_or_null,
1362                              LLVMContext::MD_mem_parallel_loop_access,
1363                              LLVMContext::MD_access_group,
1364                              LLVMContext::MD_preserve_access_index};
1365       combineMetadata(I1, I2, KnownIDs, true);
1366 
1367       // I1 and I2 are being combined into a single instruction.  Its debug
1368       // location is the merged locations of the original instructions.
1369       I1->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc());
1370 
1371       I2->eraseFromParent();
1372       Changed = true;
1373     }
1374     ++NumHoistCommonInstrs;
1375 
1376     I1 = &*BB1_Itr++;
1377     I2 = &*BB2_Itr++;
1378     // Skip debug info if it is not identical.
1379     DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1380     DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1381     if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1382       while (isa<DbgInfoIntrinsic>(I1))
1383         I1 = &*BB1_Itr++;
1384       while (isa<DbgInfoIntrinsic>(I2))
1385         I2 = &*BB2_Itr++;
1386     }
1387   } while (I1->isIdenticalToWhenDefined(I2));
1388 
1389   return true;
1390 
1391 HoistTerminator:
1392   // It may not be possible to hoist an invoke.
1393   // FIXME: Can we define a safety predicate for CallBr?
1394   if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))
1395     return Changed;
1396 
1397   // TODO: callbr hoisting currently disabled pending further study.
1398   if (isa<CallBrInst>(I1))
1399     return Changed;
1400 
1401   for (BasicBlock *Succ : successors(BB1)) {
1402     for (PHINode &PN : Succ->phis()) {
1403       Value *BB1V = PN.getIncomingValueForBlock(BB1);
1404       Value *BB2V = PN.getIncomingValueForBlock(BB2);
1405       if (BB1V == BB2V)
1406         continue;
1407 
1408       // Check for passingValueIsAlwaysUndefined here because we would rather
1409       // eliminate undefined control flow then converting it to a select.
1410       if (passingValueIsAlwaysUndefined(BB1V, &PN) ||
1411           passingValueIsAlwaysUndefined(BB2V, &PN))
1412         return Changed;
1413 
1414       if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V))
1415         return Changed;
1416       if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V))
1417         return Changed;
1418     }
1419   }
1420 
1421   // Okay, it is safe to hoist the terminator.
1422   Instruction *NT = I1->clone();
1423   BIParent->getInstList().insert(BI->getIterator(), NT);
1424   if (!NT->getType()->isVoidTy()) {
1425     I1->replaceAllUsesWith(NT);
1426     I2->replaceAllUsesWith(NT);
1427     NT->takeName(I1);
1428   }
1429   Changed = true;
1430   ++NumHoistCommonInstrs;
1431 
1432   // Ensure terminator gets a debug location, even an unknown one, in case
1433   // it involves inlinable calls.
1434   NT->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc());
1435 
1436   // PHIs created below will adopt NT's merged DebugLoc.
1437   IRBuilder<NoFolder> Builder(NT);
1438 
1439   // Hoisting one of the terminators from our successor is a great thing.
1440   // Unfortunately, the successors of the if/else blocks may have PHI nodes in
1441   // them.  If they do, all PHI entries for BB1/BB2 must agree for all PHI
1442   // nodes, so we insert select instruction to compute the final result.
1443   std::map<std::pair<Value *, Value *>, SelectInst *> InsertedSelects;
1444   for (BasicBlock *Succ : successors(BB1)) {
1445     for (PHINode &PN : Succ->phis()) {
1446       Value *BB1V = PN.getIncomingValueForBlock(BB1);
1447       Value *BB2V = PN.getIncomingValueForBlock(BB2);
1448       if (BB1V == BB2V)
1449         continue;
1450 
1451       // These values do not agree.  Insert a select instruction before NT
1452       // that determines the right value.
1453       SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)];
1454       if (!SI) {
1455         // Propagate fast-math-flags from phi node to its replacement select.
1456         IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
1457         if (isa<FPMathOperator>(PN))
1458           Builder.setFastMathFlags(PN.getFastMathFlags());
1459 
1460         SI = cast<SelectInst>(
1461             Builder.CreateSelect(BI->getCondition(), BB1V, BB2V,
1462                                  BB1V->getName() + "." + BB2V->getName(), BI));
1463       }
1464 
1465       // Make the PHI node use the select for all incoming values for BB1/BB2
1466       for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
1467         if (PN.getIncomingBlock(i) == BB1 || PN.getIncomingBlock(i) == BB2)
1468           PN.setIncomingValue(i, SI);
1469     }
1470   }
1471 
1472   // Update any PHI nodes in our new successors.
1473   for (BasicBlock *Succ : successors(BB1))
1474     AddPredecessorToBlock(Succ, BIParent, BB1);
1475 
1476   EraseTerminatorAndDCECond(BI);
1477   return Changed;
1478 }
1479 
1480 // Check lifetime markers.
1481 static bool isLifeTimeMarker(const Instruction *I) {
1482   if (auto II = dyn_cast<IntrinsicInst>(I)) {
1483     switch (II->getIntrinsicID()) {
1484     default:
1485       break;
1486     case Intrinsic::lifetime_start:
1487     case Intrinsic::lifetime_end:
1488       return true;
1489     }
1490   }
1491   return false;
1492 }
1493 
1494 // TODO: Refine this. This should avoid cases like turning constant memcpy sizes
1495 // into variables.
1496 static bool replacingOperandWithVariableIsCheap(const Instruction *I,
1497                                                 int OpIdx) {
1498   return !isa<IntrinsicInst>(I);
1499 }
1500 
1501 // All instructions in Insts belong to different blocks that all unconditionally
1502 // branch to a common successor. Analyze each instruction and return true if it
1503 // would be possible to sink them into their successor, creating one common
1504 // instruction instead. For every value that would be required to be provided by
1505 // PHI node (because an operand varies in each input block), add to PHIOperands.
1506 static bool canSinkInstructions(
1507     ArrayRef<Instruction *> Insts,
1508     DenseMap<Instruction *, SmallVector<Value *, 4>> &PHIOperands) {
1509   // Prune out obviously bad instructions to move. Each instruction must have
1510   // exactly zero or one use, and we check later that use is by a single, common
1511   // PHI instruction in the successor.
1512   bool HasUse = !Insts.front()->user_empty();
1513   for (auto *I : Insts) {
1514     // These instructions may change or break semantics if moved.
1515     if (isa<PHINode>(I) || I->isEHPad() || isa<AllocaInst>(I) ||
1516         I->getType()->isTokenTy())
1517       return false;
1518 
1519     // Conservatively return false if I is an inline-asm instruction. Sinking
1520     // and merging inline-asm instructions can potentially create arguments
1521     // that cannot satisfy the inline-asm constraints.
1522     // If the instruction has nomerge attribute, return false.
1523     if (const auto *C = dyn_cast<CallBase>(I))
1524       if (C->isInlineAsm() || C->cannotMerge())
1525         return false;
1526 
1527     // Each instruction must have zero or one use.
1528     if (HasUse && !I->hasOneUse())
1529       return false;
1530     if (!HasUse && !I->user_empty())
1531       return false;
1532   }
1533 
1534   const Instruction *I0 = Insts.front();
1535   for (auto *I : Insts)
1536     if (!I->isSameOperationAs(I0))
1537       return false;
1538 
1539   // All instructions in Insts are known to be the same opcode. If they have a
1540   // use, check that the only user is a PHI or in the same block as the
1541   // instruction, because if a user is in the same block as an instruction we're
1542   // contemplating sinking, it must already be determined to be sinkable.
1543   if (HasUse) {
1544     auto *PNUse = dyn_cast<PHINode>(*I0->user_begin());
1545     auto *Succ = I0->getParent()->getTerminator()->getSuccessor(0);
1546     if (!all_of(Insts, [&PNUse,&Succ](const Instruction *I) -> bool {
1547           auto *U = cast<Instruction>(*I->user_begin());
1548           return (PNUse &&
1549                   PNUse->getParent() == Succ &&
1550                   PNUse->getIncomingValueForBlock(I->getParent()) == I) ||
1551                  U->getParent() == I->getParent();
1552         }))
1553       return false;
1554   }
1555 
1556   // Because SROA can't handle speculating stores of selects, try not to sink
1557   // loads, stores or lifetime markers of allocas when we'd have to create a
1558   // PHI for the address operand. Also, because it is likely that loads or
1559   // stores of allocas will disappear when Mem2Reg/SROA is run, don't sink
1560   // them.
1561   // This can cause code churn which can have unintended consequences down
1562   // the line - see https://llvm.org/bugs/show_bug.cgi?id=30244.
1563   // FIXME: This is a workaround for a deficiency in SROA - see
1564   // https://llvm.org/bugs/show_bug.cgi?id=30188
1565   if (isa<StoreInst>(I0) && any_of(Insts, [](const Instruction *I) {
1566         return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts());
1567       }))
1568     return false;
1569   if (isa<LoadInst>(I0) && any_of(Insts, [](const Instruction *I) {
1570         return isa<AllocaInst>(I->getOperand(0)->stripPointerCasts());
1571       }))
1572     return false;
1573   if (isLifeTimeMarker(I0) && any_of(Insts, [](const Instruction *I) {
1574         return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts());
1575       }))
1576     return false;
1577 
1578   for (unsigned OI = 0, OE = I0->getNumOperands(); OI != OE; ++OI) {
1579     Value *Op = I0->getOperand(OI);
1580     if (Op->getType()->isTokenTy())
1581       // Don't touch any operand of token type.
1582       return false;
1583 
1584     auto SameAsI0 = [&I0, OI](const Instruction *I) {
1585       assert(I->getNumOperands() == I0->getNumOperands());
1586       return I->getOperand(OI) == I0->getOperand(OI);
1587     };
1588     if (!all_of(Insts, SameAsI0)) {
1589       if ((isa<Constant>(Op) && !replacingOperandWithVariableIsCheap(I0, OI)) ||
1590           !canReplaceOperandWithVariable(I0, OI))
1591         // We can't create a PHI from this GEP.
1592         return false;
1593       // Don't create indirect calls! The called value is the final operand.
1594       if (isa<CallBase>(I0) && OI == OE - 1) {
1595         // FIXME: if the call was *already* indirect, we should do this.
1596         return false;
1597       }
1598       for (auto *I : Insts)
1599         PHIOperands[I].push_back(I->getOperand(OI));
1600     }
1601   }
1602   return true;
1603 }
1604 
1605 // Assuming canSinkLastInstruction(Blocks) has returned true, sink the last
1606 // instruction of every block in Blocks to their common successor, commoning
1607 // into one instruction.
1608 static bool sinkLastInstruction(ArrayRef<BasicBlock*> Blocks) {
1609   auto *BBEnd = Blocks[0]->getTerminator()->getSuccessor(0);
1610 
1611   // canSinkLastInstruction returning true guarantees that every block has at
1612   // least one non-terminator instruction.
1613   SmallVector<Instruction*,4> Insts;
1614   for (auto *BB : Blocks) {
1615     Instruction *I = BB->getTerminator();
1616     do {
1617       I = I->getPrevNode();
1618     } while (isa<DbgInfoIntrinsic>(I) && I != &BB->front());
1619     if (!isa<DbgInfoIntrinsic>(I))
1620       Insts.push_back(I);
1621   }
1622 
1623   // The only checking we need to do now is that all users of all instructions
1624   // are the same PHI node. canSinkLastInstruction should have checked this but
1625   // it is slightly over-aggressive - it gets confused by commutative instructions
1626   // so double-check it here.
1627   Instruction *I0 = Insts.front();
1628   if (!I0->user_empty()) {
1629     auto *PNUse = dyn_cast<PHINode>(*I0->user_begin());
1630     if (!all_of(Insts, [&PNUse](const Instruction *I) -> bool {
1631           auto *U = cast<Instruction>(*I->user_begin());
1632           return U == PNUse;
1633         }))
1634       return false;
1635   }
1636 
1637   // We don't need to do any more checking here; canSinkLastInstruction should
1638   // have done it all for us.
1639   SmallVector<Value*, 4> NewOperands;
1640   for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) {
1641     // This check is different to that in canSinkLastInstruction. There, we
1642     // cared about the global view once simplifycfg (and instcombine) have
1643     // completed - it takes into account PHIs that become trivially
1644     // simplifiable.  However here we need a more local view; if an operand
1645     // differs we create a PHI and rely on instcombine to clean up the very
1646     // small mess we may make.
1647     bool NeedPHI = any_of(Insts, [&I0, O](const Instruction *I) {
1648       return I->getOperand(O) != I0->getOperand(O);
1649     });
1650     if (!NeedPHI) {
1651       NewOperands.push_back(I0->getOperand(O));
1652       continue;
1653     }
1654 
1655     // Create a new PHI in the successor block and populate it.
1656     auto *Op = I0->getOperand(O);
1657     assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!");
1658     auto *PN = PHINode::Create(Op->getType(), Insts.size(),
1659                                Op->getName() + ".sink", &BBEnd->front());
1660     for (auto *I : Insts)
1661       PN->addIncoming(I->getOperand(O), I->getParent());
1662     NewOperands.push_back(PN);
1663   }
1664 
1665   // Arbitrarily use I0 as the new "common" instruction; remap its operands
1666   // and move it to the start of the successor block.
1667   for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O)
1668     I0->getOperandUse(O).set(NewOperands[O]);
1669   I0->moveBefore(&*BBEnd->getFirstInsertionPt());
1670 
1671   // Update metadata and IR flags, and merge debug locations.
1672   for (auto *I : Insts)
1673     if (I != I0) {
1674       // The debug location for the "common" instruction is the merged locations
1675       // of all the commoned instructions.  We start with the original location
1676       // of the "common" instruction and iteratively merge each location in the
1677       // loop below.
1678       // This is an N-way merge, which will be inefficient if I0 is a CallInst.
1679       // However, as N-way merge for CallInst is rare, so we use simplified API
1680       // instead of using complex API for N-way merge.
1681       I0->applyMergedLocation(I0->getDebugLoc(), I->getDebugLoc());
1682       combineMetadataForCSE(I0, I, true);
1683       I0->andIRFlags(I);
1684     }
1685 
1686   if (!I0->user_empty()) {
1687     // canSinkLastInstruction checked that all instructions were used by
1688     // one and only one PHI node. Find that now, RAUW it to our common
1689     // instruction and nuke it.
1690     auto *PN = cast<PHINode>(*I0->user_begin());
1691     PN->replaceAllUsesWith(I0);
1692     PN->eraseFromParent();
1693   }
1694 
1695   // Finally nuke all instructions apart from the common instruction.
1696   for (auto *I : Insts)
1697     if (I != I0)
1698       I->eraseFromParent();
1699 
1700   return true;
1701 }
1702 
1703 namespace {
1704 
1705   // LockstepReverseIterator - Iterates through instructions
1706   // in a set of blocks in reverse order from the first non-terminator.
1707   // For example (assume all blocks have size n):
1708   //   LockstepReverseIterator I([B1, B2, B3]);
1709   //   *I-- = [B1[n], B2[n], B3[n]];
1710   //   *I-- = [B1[n-1], B2[n-1], B3[n-1]];
1711   //   *I-- = [B1[n-2], B2[n-2], B3[n-2]];
1712   //   ...
1713   class LockstepReverseIterator {
1714     ArrayRef<BasicBlock*> Blocks;
1715     SmallVector<Instruction*,4> Insts;
1716     bool Fail;
1717 
1718   public:
1719     LockstepReverseIterator(ArrayRef<BasicBlock*> Blocks) : Blocks(Blocks) {
1720       reset();
1721     }
1722 
1723     void reset() {
1724       Fail = false;
1725       Insts.clear();
1726       for (auto *BB : Blocks) {
1727         Instruction *Inst = BB->getTerminator();
1728         for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
1729           Inst = Inst->getPrevNode();
1730         if (!Inst) {
1731           // Block wasn't big enough.
1732           Fail = true;
1733           return;
1734         }
1735         Insts.push_back(Inst);
1736       }
1737     }
1738 
1739     bool isValid() const {
1740       return !Fail;
1741     }
1742 
1743     void operator--() {
1744       if (Fail)
1745         return;
1746       for (auto *&Inst : Insts) {
1747         for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
1748           Inst = Inst->getPrevNode();
1749         // Already at beginning of block.
1750         if (!Inst) {
1751           Fail = true;
1752           return;
1753         }
1754       }
1755     }
1756 
1757     ArrayRef<Instruction*> operator * () const {
1758       return Insts;
1759     }
1760   };
1761 
1762 } // end anonymous namespace
1763 
1764 /// Check whether BB's predecessors end with unconditional branches. If it is
1765 /// true, sink any common code from the predecessors to BB.
1766 /// We also allow one predecessor to end with conditional branch (but no more
1767 /// than one).
1768 static bool SinkCommonCodeFromPredecessors(BasicBlock *BB) {
1769   // We support two situations:
1770   //   (1) all incoming arcs are unconditional
1771   //   (2) one incoming arc is conditional
1772   //
1773   // (2) is very common in switch defaults and
1774   // else-if patterns;
1775   //
1776   //   if (a) f(1);
1777   //   else if (b) f(2);
1778   //
1779   // produces:
1780   //
1781   //       [if]
1782   //      /    \
1783   //    [f(1)] [if]
1784   //      |     | \
1785   //      |     |  |
1786   //      |  [f(2)]|
1787   //       \    | /
1788   //        [ end ]
1789   //
1790   // [end] has two unconditional predecessor arcs and one conditional. The
1791   // conditional refers to the implicit empty 'else' arc. This conditional
1792   // arc can also be caused by an empty default block in a switch.
1793   //
1794   // In this case, we attempt to sink code from all *unconditional* arcs.
1795   // If we can sink instructions from these arcs (determined during the scan
1796   // phase below) we insert a common successor for all unconditional arcs and
1797   // connect that to [end], to enable sinking:
1798   //
1799   //       [if]
1800   //      /    \
1801   //    [x(1)] [if]
1802   //      |     | \
1803   //      |     |  \
1804   //      |  [x(2)] |
1805   //       \   /    |
1806   //   [sink.split] |
1807   //         \     /
1808   //         [ end ]
1809   //
1810   SmallVector<BasicBlock*,4> UnconditionalPreds;
1811   Instruction *Cond = nullptr;
1812   for (auto *B : predecessors(BB)) {
1813     auto *T = B->getTerminator();
1814     if (isa<BranchInst>(T) && cast<BranchInst>(T)->isUnconditional())
1815       UnconditionalPreds.push_back(B);
1816     else if ((isa<BranchInst>(T) || isa<SwitchInst>(T)) && !Cond)
1817       Cond = T;
1818     else
1819       return false;
1820   }
1821   if (UnconditionalPreds.size() < 2)
1822     return false;
1823 
1824   // We take a two-step approach to tail sinking. First we scan from the end of
1825   // each block upwards in lockstep. If the n'th instruction from the end of each
1826   // block can be sunk, those instructions are added to ValuesToSink and we
1827   // carry on. If we can sink an instruction but need to PHI-merge some operands
1828   // (because they're not identical in each instruction) we add these to
1829   // PHIOperands.
1830   unsigned ScanIdx = 0;
1831   SmallPtrSet<Value*,4> InstructionsToSink;
1832   DenseMap<Instruction*, SmallVector<Value*,4>> PHIOperands;
1833   LockstepReverseIterator LRI(UnconditionalPreds);
1834   while (LRI.isValid() &&
1835          canSinkInstructions(*LRI, PHIOperands)) {
1836     LLVM_DEBUG(dbgs() << "SINK: instruction can be sunk: " << *(*LRI)[0]
1837                       << "\n");
1838     InstructionsToSink.insert((*LRI).begin(), (*LRI).end());
1839     ++ScanIdx;
1840     --LRI;
1841   }
1842 
1843   // If no instructions can be sunk, early-return.
1844   if (ScanIdx == 0)
1845     return false;
1846 
1847   bool Changed = false;
1848 
1849   auto ProfitableToSinkInstruction = [&](LockstepReverseIterator &LRI) {
1850     unsigned NumPHIdValues = 0;
1851     for (auto *I : *LRI)
1852       for (auto *V : PHIOperands[I])
1853         if (InstructionsToSink.count(V) == 0)
1854           ++NumPHIdValues;
1855     LLVM_DEBUG(dbgs() << "SINK: #phid values: " << NumPHIdValues << "\n");
1856     unsigned NumPHIInsts = NumPHIdValues / UnconditionalPreds.size();
1857     if ((NumPHIdValues % UnconditionalPreds.size()) != 0)
1858         NumPHIInsts++;
1859 
1860     return NumPHIInsts <= 1;
1861   };
1862 
1863   if (Cond) {
1864     // Check if we would actually sink anything first! This mutates the CFG and
1865     // adds an extra block. The goal in doing this is to allow instructions that
1866     // couldn't be sunk before to be sunk - obviously, speculatable instructions
1867     // (such as trunc, add) can be sunk and predicated already. So we check that
1868     // we're going to sink at least one non-speculatable instruction.
1869     LRI.reset();
1870     unsigned Idx = 0;
1871     bool Profitable = false;
1872     while (ProfitableToSinkInstruction(LRI) && Idx < ScanIdx) {
1873       if (!isSafeToSpeculativelyExecute((*LRI)[0])) {
1874         Profitable = true;
1875         break;
1876       }
1877       --LRI;
1878       ++Idx;
1879     }
1880     if (!Profitable)
1881       return false;
1882 
1883     LLVM_DEBUG(dbgs() << "SINK: Splitting edge\n");
1884     // We have a conditional edge and we're going to sink some instructions.
1885     // Insert a new block postdominating all blocks we're going to sink from.
1886     if (!SplitBlockPredecessors(BB, UnconditionalPreds, ".sink.split"))
1887       // Edges couldn't be split.
1888       return false;
1889     Changed = true;
1890   }
1891 
1892   // Now that we've analyzed all potential sinking candidates, perform the
1893   // actual sink. We iteratively sink the last non-terminator of the source
1894   // blocks into their common successor unless doing so would require too
1895   // many PHI instructions to be generated (currently only one PHI is allowed
1896   // per sunk instruction).
1897   //
1898   // We can use InstructionsToSink to discount values needing PHI-merging that will
1899   // actually be sunk in a later iteration. This allows us to be more
1900   // aggressive in what we sink. This does allow a false positive where we
1901   // sink presuming a later value will also be sunk, but stop half way through
1902   // and never actually sink it which means we produce more PHIs than intended.
1903   // This is unlikely in practice though.
1904   unsigned SinkIdx = 0;
1905   for (; SinkIdx != ScanIdx; ++SinkIdx) {
1906     LLVM_DEBUG(dbgs() << "SINK: Sink: "
1907                       << *UnconditionalPreds[0]->getTerminator()->getPrevNode()
1908                       << "\n");
1909 
1910     // Because we've sunk every instruction in turn, the current instruction to
1911     // sink is always at index 0.
1912     LRI.reset();
1913     if (!ProfitableToSinkInstruction(LRI)) {
1914       // Too many PHIs would be created.
1915       LLVM_DEBUG(
1916           dbgs() << "SINK: stopping here, too many PHIs would be created!\n");
1917       break;
1918     }
1919 
1920     if (!sinkLastInstruction(UnconditionalPreds)) {
1921       LLVM_DEBUG(
1922           dbgs()
1923           << "SINK: stopping here, failed to actually sink instruction!\n");
1924       break;
1925     }
1926 
1927     NumSinkCommonInstrs++;
1928     Changed = true;
1929   }
1930   if (SinkIdx != 0)
1931     ++NumSinkCommonCode;
1932   return Changed;
1933 }
1934 
1935 /// Determine if we can hoist sink a sole store instruction out of a
1936 /// conditional block.
1937 ///
1938 /// We are looking for code like the following:
1939 ///   BrBB:
1940 ///     store i32 %add, i32* %arrayidx2
1941 ///     ... // No other stores or function calls (we could be calling a memory
1942 ///     ... // function).
1943 ///     %cmp = icmp ult %x, %y
1944 ///     br i1 %cmp, label %EndBB, label %ThenBB
1945 ///   ThenBB:
1946 ///     store i32 %add5, i32* %arrayidx2
1947 ///     br label EndBB
1948 ///   EndBB:
1949 ///     ...
1950 ///   We are going to transform this into:
1951 ///   BrBB:
1952 ///     store i32 %add, i32* %arrayidx2
1953 ///     ... //
1954 ///     %cmp = icmp ult %x, %y
1955 ///     %add.add5 = select i1 %cmp, i32 %add, %add5
1956 ///     store i32 %add.add5, i32* %arrayidx2
1957 ///     ...
1958 ///
1959 /// \return The pointer to the value of the previous store if the store can be
1960 ///         hoisted into the predecessor block. 0 otherwise.
1961 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB,
1962                                      BasicBlock *StoreBB, BasicBlock *EndBB) {
1963   StoreInst *StoreToHoist = dyn_cast<StoreInst>(I);
1964   if (!StoreToHoist)
1965     return nullptr;
1966 
1967   // Volatile or atomic.
1968   if (!StoreToHoist->isSimple())
1969     return nullptr;
1970 
1971   Value *StorePtr = StoreToHoist->getPointerOperand();
1972 
1973   // Look for a store to the same pointer in BrBB.
1974   unsigned MaxNumInstToLookAt = 9;
1975   for (Instruction &CurI : reverse(BrBB->instructionsWithoutDebug())) {
1976     if (!MaxNumInstToLookAt)
1977       break;
1978     --MaxNumInstToLookAt;
1979 
1980     // Could be calling an instruction that affects memory like free().
1981     if (CurI.mayHaveSideEffects() && !isa<StoreInst>(CurI))
1982       return nullptr;
1983 
1984     if (auto *SI = dyn_cast<StoreInst>(&CurI)) {
1985       // Found the previous store make sure it stores to the same location.
1986       if (SI->getPointerOperand() == StorePtr)
1987         // Found the previous store, return its value operand.
1988         return SI->getValueOperand();
1989       return nullptr; // Unknown store.
1990     }
1991   }
1992 
1993   return nullptr;
1994 }
1995 
1996 /// Speculate a conditional basic block flattening the CFG.
1997 ///
1998 /// Note that this is a very risky transform currently. Speculating
1999 /// instructions like this is most often not desirable. Instead, there is an MI
2000 /// pass which can do it with full awareness of the resource constraints.
2001 /// However, some cases are "obvious" and we should do directly. An example of
2002 /// this is speculating a single, reasonably cheap instruction.
2003 ///
2004 /// There is only one distinct advantage to flattening the CFG at the IR level:
2005 /// it makes very common but simplistic optimizations such as are common in
2006 /// instcombine and the DAG combiner more powerful by removing CFG edges and
2007 /// modeling their effects with easier to reason about SSA value graphs.
2008 ///
2009 ///
2010 /// An illustration of this transform is turning this IR:
2011 /// \code
2012 ///   BB:
2013 ///     %cmp = icmp ult %x, %y
2014 ///     br i1 %cmp, label %EndBB, label %ThenBB
2015 ///   ThenBB:
2016 ///     %sub = sub %x, %y
2017 ///     br label BB2
2018 ///   EndBB:
2019 ///     %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ]
2020 ///     ...
2021 /// \endcode
2022 ///
2023 /// Into this IR:
2024 /// \code
2025 ///   BB:
2026 ///     %cmp = icmp ult %x, %y
2027 ///     %sub = sub %x, %y
2028 ///     %cond = select i1 %cmp, 0, %sub
2029 ///     ...
2030 /// \endcode
2031 ///
2032 /// \returns true if the conditional block is removed.
2033 bool SimplifyCFGOpt::SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB,
2034                                             const TargetTransformInfo &TTI) {
2035   // Be conservative for now. FP select instruction can often be expensive.
2036   Value *BrCond = BI->getCondition();
2037   if (isa<FCmpInst>(BrCond))
2038     return false;
2039 
2040   BasicBlock *BB = BI->getParent();
2041   BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0);
2042 
2043   // If ThenBB is actually on the false edge of the conditional branch, remember
2044   // to swap the select operands later.
2045   bool Invert = false;
2046   if (ThenBB != BI->getSuccessor(0)) {
2047     assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?");
2048     Invert = true;
2049   }
2050   assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block");
2051 
2052   // Keep a count of how many times instructions are used within ThenBB when
2053   // they are candidates for sinking into ThenBB. Specifically:
2054   // - They are defined in BB, and
2055   // - They have no side effects, and
2056   // - All of their uses are in ThenBB.
2057   SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts;
2058 
2059   SmallVector<Instruction *, 4> SpeculatedDbgIntrinsics;
2060 
2061   unsigned SpeculatedInstructions = 0;
2062   Value *SpeculatedStoreValue = nullptr;
2063   StoreInst *SpeculatedStore = nullptr;
2064   for (BasicBlock::iterator BBI = ThenBB->begin(),
2065                             BBE = std::prev(ThenBB->end());
2066        BBI != BBE; ++BBI) {
2067     Instruction *I = &*BBI;
2068     // Skip debug info.
2069     if (isa<DbgInfoIntrinsic>(I)) {
2070       SpeculatedDbgIntrinsics.push_back(I);
2071       continue;
2072     }
2073 
2074     // Only speculatively execute a single instruction (not counting the
2075     // terminator) for now.
2076     ++SpeculatedInstructions;
2077     if (SpeculatedInstructions > 1)
2078       return false;
2079 
2080     // Don't hoist the instruction if it's unsafe or expensive.
2081     if (!isSafeToSpeculativelyExecute(I) &&
2082         !(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore(
2083                                   I, BB, ThenBB, EndBB))))
2084       return false;
2085     if (!SpeculatedStoreValue &&
2086         ComputeSpeculationCost(I, TTI) >
2087             PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic)
2088       return false;
2089 
2090     // Store the store speculation candidate.
2091     if (SpeculatedStoreValue)
2092       SpeculatedStore = cast<StoreInst>(I);
2093 
2094     // Do not hoist the instruction if any of its operands are defined but not
2095     // used in BB. The transformation will prevent the operand from
2096     // being sunk into the use block.
2097     for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) {
2098       Instruction *OpI = dyn_cast<Instruction>(*i);
2099       if (!OpI || OpI->getParent() != BB || OpI->mayHaveSideEffects())
2100         continue; // Not a candidate for sinking.
2101 
2102       ++SinkCandidateUseCounts[OpI];
2103     }
2104   }
2105 
2106   // Consider any sink candidates which are only used in ThenBB as costs for
2107   // speculation. Note, while we iterate over a DenseMap here, we are summing
2108   // and so iteration order isn't significant.
2109   for (SmallDenseMap<Instruction *, unsigned, 4>::iterator
2110            I = SinkCandidateUseCounts.begin(),
2111            E = SinkCandidateUseCounts.end();
2112        I != E; ++I)
2113     if (I->first->hasNUses(I->second)) {
2114       ++SpeculatedInstructions;
2115       if (SpeculatedInstructions > 1)
2116         return false;
2117     }
2118 
2119   // Check that the PHI nodes can be converted to selects.
2120   bool HaveRewritablePHIs = false;
2121   for (PHINode &PN : EndBB->phis()) {
2122     Value *OrigV = PN.getIncomingValueForBlock(BB);
2123     Value *ThenV = PN.getIncomingValueForBlock(ThenBB);
2124 
2125     // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf.
2126     // Skip PHIs which are trivial.
2127     if (ThenV == OrigV)
2128       continue;
2129 
2130     // Don't convert to selects if we could remove undefined behavior instead.
2131     if (passingValueIsAlwaysUndefined(OrigV, &PN) ||
2132         passingValueIsAlwaysUndefined(ThenV, &PN))
2133       return false;
2134 
2135     HaveRewritablePHIs = true;
2136     ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV);
2137     ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV);
2138     if (!OrigCE && !ThenCE)
2139       continue; // Known safe and cheap.
2140 
2141     if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE)) ||
2142         (OrigCE && !isSafeToSpeculativelyExecute(OrigCE)))
2143       return false;
2144     unsigned OrigCost = OrigCE ? ComputeSpeculationCost(OrigCE, TTI) : 0;
2145     unsigned ThenCost = ThenCE ? ComputeSpeculationCost(ThenCE, TTI) : 0;
2146     unsigned MaxCost =
2147         2 * PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
2148     if (OrigCost + ThenCost > MaxCost)
2149       return false;
2150 
2151     // Account for the cost of an unfolded ConstantExpr which could end up
2152     // getting expanded into Instructions.
2153     // FIXME: This doesn't account for how many operations are combined in the
2154     // constant expression.
2155     ++SpeculatedInstructions;
2156     if (SpeculatedInstructions > 1)
2157       return false;
2158   }
2159 
2160   // If there are no PHIs to process, bail early. This helps ensure idempotence
2161   // as well.
2162   if (!HaveRewritablePHIs && !(HoistCondStores && SpeculatedStoreValue))
2163     return false;
2164 
2165   // If we get here, we can hoist the instruction and if-convert.
2166   LLVM_DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";);
2167 
2168   // Insert a select of the value of the speculated store.
2169   if (SpeculatedStoreValue) {
2170     IRBuilder<NoFolder> Builder(BI);
2171     Value *TrueV = SpeculatedStore->getValueOperand();
2172     Value *FalseV = SpeculatedStoreValue;
2173     if (Invert)
2174       std::swap(TrueV, FalseV);
2175     Value *S = Builder.CreateSelect(
2176         BrCond, TrueV, FalseV, "spec.store.select", BI);
2177     SpeculatedStore->setOperand(0, S);
2178     SpeculatedStore->applyMergedLocation(BI->getDebugLoc(),
2179                                          SpeculatedStore->getDebugLoc());
2180   }
2181 
2182   // Metadata can be dependent on the condition we are hoisting above.
2183   // Conservatively strip all metadata on the instruction. Drop the debug loc
2184   // to avoid making it appear as if the condition is a constant, which would
2185   // be misleading while debugging.
2186   for (auto &I : *ThenBB) {
2187     if (!SpeculatedStoreValue || &I != SpeculatedStore)
2188       I.setDebugLoc(DebugLoc());
2189     I.dropUnknownNonDebugMetadata();
2190   }
2191 
2192   // Hoist the instructions.
2193   BB->getInstList().splice(BI->getIterator(), ThenBB->getInstList(),
2194                            ThenBB->begin(), std::prev(ThenBB->end()));
2195 
2196   // Insert selects and rewrite the PHI operands.
2197   IRBuilder<NoFolder> Builder(BI);
2198   for (PHINode &PN : EndBB->phis()) {
2199     unsigned OrigI = PN.getBasicBlockIndex(BB);
2200     unsigned ThenI = PN.getBasicBlockIndex(ThenBB);
2201     Value *OrigV = PN.getIncomingValue(OrigI);
2202     Value *ThenV = PN.getIncomingValue(ThenI);
2203 
2204     // Skip PHIs which are trivial.
2205     if (OrigV == ThenV)
2206       continue;
2207 
2208     // Create a select whose true value is the speculatively executed value and
2209     // false value is the pre-existing value. Swap them if the branch
2210     // destinations were inverted.
2211     Value *TrueV = ThenV, *FalseV = OrigV;
2212     if (Invert)
2213       std::swap(TrueV, FalseV);
2214     Value *V = Builder.CreateSelect(BrCond, TrueV, FalseV, "spec.select", BI);
2215     PN.setIncomingValue(OrigI, V);
2216     PN.setIncomingValue(ThenI, V);
2217   }
2218 
2219   // Remove speculated dbg intrinsics.
2220   // FIXME: Is it possible to do this in a more elegant way? Moving/merging the
2221   // dbg value for the different flows and inserting it after the select.
2222   for (Instruction *I : SpeculatedDbgIntrinsics)
2223     I->eraseFromParent();
2224 
2225   ++NumSpeculations;
2226   return true;
2227 }
2228 
2229 /// Return true if we can thread a branch across this block.
2230 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) {
2231   int Size = 0;
2232 
2233   for (Instruction &I : BB->instructionsWithoutDebug()) {
2234     if (Size > MaxSmallBlockSize)
2235       return false; // Don't clone large BB's.
2236     // We will delete Phis while threading, so Phis should not be accounted in
2237     // block's size
2238     if (!isa<PHINode>(I))
2239       ++Size;
2240 
2241     // We can only support instructions that do not define values that are
2242     // live outside of the current basic block.
2243     for (User *U : I.users()) {
2244       Instruction *UI = cast<Instruction>(U);
2245       if (UI->getParent() != BB || isa<PHINode>(UI))
2246         return false;
2247     }
2248 
2249     // Looks ok, continue checking.
2250   }
2251 
2252   return true;
2253 }
2254 
2255 /// If we have a conditional branch on a PHI node value that is defined in the
2256 /// same block as the branch and if any PHI entries are constants, thread edges
2257 /// corresponding to that entry to be branches to their ultimate destination.
2258 static bool FoldCondBranchOnPHI(BranchInst *BI, const DataLayout &DL,
2259                                 AssumptionCache *AC) {
2260   BasicBlock *BB = BI->getParent();
2261   PHINode *PN = dyn_cast<PHINode>(BI->getCondition());
2262   // NOTE: we currently cannot transform this case if the PHI node is used
2263   // outside of the block.
2264   if (!PN || PN->getParent() != BB || !PN->hasOneUse())
2265     return false;
2266 
2267   // Degenerate case of a single entry PHI.
2268   if (PN->getNumIncomingValues() == 1) {
2269     FoldSingleEntryPHINodes(PN->getParent());
2270     return true;
2271   }
2272 
2273   // Now we know that this block has multiple preds and two succs.
2274   if (!BlockIsSimpleEnoughToThreadThrough(BB))
2275     return false;
2276 
2277   // Can't fold blocks that contain noduplicate or convergent calls.
2278   if (any_of(*BB, [](const Instruction &I) {
2279         const CallInst *CI = dyn_cast<CallInst>(&I);
2280         return CI && (CI->cannotDuplicate() || CI->isConvergent());
2281       }))
2282     return false;
2283 
2284   // Okay, this is a simple enough basic block.  See if any phi values are
2285   // constants.
2286   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
2287     ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i));
2288     if (!CB || !CB->getType()->isIntegerTy(1))
2289       continue;
2290 
2291     // Okay, we now know that all edges from PredBB should be revectored to
2292     // branch to RealDest.
2293     BasicBlock *PredBB = PN->getIncomingBlock(i);
2294     BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue());
2295 
2296     if (RealDest == BB)
2297       continue; // Skip self loops.
2298     // Skip if the predecessor's terminator is an indirect branch.
2299     if (isa<IndirectBrInst>(PredBB->getTerminator()))
2300       continue;
2301 
2302     // The dest block might have PHI nodes, other predecessors and other
2303     // difficult cases.  Instead of being smart about this, just insert a new
2304     // block that jumps to the destination block, effectively splitting
2305     // the edge we are about to create.
2306     BasicBlock *EdgeBB =
2307         BasicBlock::Create(BB->getContext(), RealDest->getName() + ".critedge",
2308                            RealDest->getParent(), RealDest);
2309     BranchInst *CritEdgeBranch = BranchInst::Create(RealDest, EdgeBB);
2310     CritEdgeBranch->setDebugLoc(BI->getDebugLoc());
2311 
2312     // Update PHI nodes.
2313     AddPredecessorToBlock(RealDest, EdgeBB, BB);
2314 
2315     // BB may have instructions that are being threaded over.  Clone these
2316     // instructions into EdgeBB.  We know that there will be no uses of the
2317     // cloned instructions outside of EdgeBB.
2318     BasicBlock::iterator InsertPt = EdgeBB->begin();
2319     DenseMap<Value *, Value *> TranslateMap; // Track translated values.
2320     for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
2321       if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
2322         TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB);
2323         continue;
2324       }
2325       // Clone the instruction.
2326       Instruction *N = BBI->clone();
2327       if (BBI->hasName())
2328         N->setName(BBI->getName() + ".c");
2329 
2330       // Update operands due to translation.
2331       for (User::op_iterator i = N->op_begin(), e = N->op_end(); i != e; ++i) {
2332         DenseMap<Value *, Value *>::iterator PI = TranslateMap.find(*i);
2333         if (PI != TranslateMap.end())
2334           *i = PI->second;
2335       }
2336 
2337       // Check for trivial simplification.
2338       if (Value *V = SimplifyInstruction(N, {DL, nullptr, nullptr, AC})) {
2339         if (!BBI->use_empty())
2340           TranslateMap[&*BBI] = V;
2341         if (!N->mayHaveSideEffects()) {
2342           N->deleteValue(); // Instruction folded away, don't need actual inst
2343           N = nullptr;
2344         }
2345       } else {
2346         if (!BBI->use_empty())
2347           TranslateMap[&*BBI] = N;
2348       }
2349       if (N) {
2350         // Insert the new instruction into its new home.
2351         EdgeBB->getInstList().insert(InsertPt, N);
2352 
2353         // Register the new instruction with the assumption cache if necessary.
2354         if (AC && match(N, m_Intrinsic<Intrinsic::assume>()))
2355           AC->registerAssumption(cast<IntrinsicInst>(N));
2356       }
2357     }
2358 
2359     // Loop over all of the edges from PredBB to BB, changing them to branch
2360     // to EdgeBB instead.
2361     Instruction *PredBBTI = PredBB->getTerminator();
2362     for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i)
2363       if (PredBBTI->getSuccessor(i) == BB) {
2364         BB->removePredecessor(PredBB);
2365         PredBBTI->setSuccessor(i, EdgeBB);
2366       }
2367 
2368     // Recurse, simplifying any other constants.
2369     return FoldCondBranchOnPHI(BI, DL, AC) || true;
2370   }
2371 
2372   return false;
2373 }
2374 
2375 /// Given a BB that starts with the specified two-entry PHI node,
2376 /// see if we can eliminate it.
2377 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI,
2378                                 const DataLayout &DL) {
2379   // Ok, this is a two entry PHI node.  Check to see if this is a simple "if
2380   // statement", which has a very simple dominance structure.  Basically, we
2381   // are trying to find the condition that is being branched on, which
2382   // subsequently causes this merge to happen.  We really want control
2383   // dependence information for this check, but simplifycfg can't keep it up
2384   // to date, and this catches most of the cases we care about anyway.
2385   BasicBlock *BB = PN->getParent();
2386 
2387   BasicBlock *IfTrue, *IfFalse;
2388   Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse);
2389   if (!IfCond ||
2390       // Don't bother if the branch will be constant folded trivially.
2391       isa<ConstantInt>(IfCond))
2392     return false;
2393 
2394   // Okay, we found that we can merge this two-entry phi node into a select.
2395   // Doing so would require us to fold *all* two entry phi nodes in this block.
2396   // At some point this becomes non-profitable (particularly if the target
2397   // doesn't support cmov's).  Only do this transformation if there are two or
2398   // fewer PHI nodes in this block.
2399   unsigned NumPhis = 0;
2400   for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I)
2401     if (NumPhis > 2)
2402       return false;
2403 
2404   // Loop over the PHI's seeing if we can promote them all to select
2405   // instructions.  While we are at it, keep track of the instructions
2406   // that need to be moved to the dominating block.
2407   SmallPtrSet<Instruction *, 4> AggressiveInsts;
2408   int BudgetRemaining =
2409       TwoEntryPHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
2410 
2411   bool Changed = false;
2412   for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) {
2413     PHINode *PN = cast<PHINode>(II++);
2414     if (Value *V = SimplifyInstruction(PN, {DL, PN})) {
2415       PN->replaceAllUsesWith(V);
2416       PN->eraseFromParent();
2417       Changed = true;
2418       continue;
2419     }
2420 
2421     if (!DominatesMergePoint(PN->getIncomingValue(0), BB, AggressiveInsts,
2422                              BudgetRemaining, TTI) ||
2423         !DominatesMergePoint(PN->getIncomingValue(1), BB, AggressiveInsts,
2424                              BudgetRemaining, TTI))
2425       return Changed;
2426   }
2427 
2428   // If we folded the first phi, PN dangles at this point.  Refresh it.  If
2429   // we ran out of PHIs then we simplified them all.
2430   PN = dyn_cast<PHINode>(BB->begin());
2431   if (!PN)
2432     return true;
2433 
2434   // Return true if at least one of these is a 'not', and another is either
2435   // a 'not' too, or a constant.
2436   auto CanHoistNotFromBothValues = [](Value *V0, Value *V1) {
2437     if (!match(V0, m_Not(m_Value())))
2438       std::swap(V0, V1);
2439     auto Invertible = m_CombineOr(m_Not(m_Value()), m_AnyIntegralConstant());
2440     return match(V0, m_Not(m_Value())) && match(V1, Invertible);
2441   };
2442 
2443   // Don't fold i1 branches on PHIs which contain binary operators, unless one
2444   // of the incoming values is an 'not' and another one is freely invertible.
2445   // These can often be turned into switches and other things.
2446   if (PN->getType()->isIntegerTy(1) &&
2447       (isa<BinaryOperator>(PN->getIncomingValue(0)) ||
2448        isa<BinaryOperator>(PN->getIncomingValue(1)) ||
2449        isa<BinaryOperator>(IfCond)) &&
2450       !CanHoistNotFromBothValues(PN->getIncomingValue(0),
2451                                  PN->getIncomingValue(1)))
2452     return Changed;
2453 
2454   // If all PHI nodes are promotable, check to make sure that all instructions
2455   // in the predecessor blocks can be promoted as well. If not, we won't be able
2456   // to get rid of the control flow, so it's not worth promoting to select
2457   // instructions.
2458   BasicBlock *DomBlock = nullptr;
2459   BasicBlock *IfBlock1 = PN->getIncomingBlock(0);
2460   BasicBlock *IfBlock2 = PN->getIncomingBlock(1);
2461   if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) {
2462     IfBlock1 = nullptr;
2463   } else {
2464     DomBlock = *pred_begin(IfBlock1);
2465     for (BasicBlock::iterator I = IfBlock1->begin(); !I->isTerminator(); ++I)
2466       if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) {
2467         // This is not an aggressive instruction that we can promote.
2468         // Because of this, we won't be able to get rid of the control flow, so
2469         // the xform is not worth it.
2470         return Changed;
2471       }
2472   }
2473 
2474   if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) {
2475     IfBlock2 = nullptr;
2476   } else {
2477     DomBlock = *pred_begin(IfBlock2);
2478     for (BasicBlock::iterator I = IfBlock2->begin(); !I->isTerminator(); ++I)
2479       if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) {
2480         // This is not an aggressive instruction that we can promote.
2481         // Because of this, we won't be able to get rid of the control flow, so
2482         // the xform is not worth it.
2483         return Changed;
2484       }
2485   }
2486   assert(DomBlock && "Failed to find root DomBlock");
2487 
2488   LLVM_DEBUG(dbgs() << "FOUND IF CONDITION!  " << *IfCond
2489                     << "  T: " << IfTrue->getName()
2490                     << "  F: " << IfFalse->getName() << "\n");
2491 
2492   // If we can still promote the PHI nodes after this gauntlet of tests,
2493   // do all of the PHI's now.
2494   Instruction *InsertPt = DomBlock->getTerminator();
2495   IRBuilder<NoFolder> Builder(InsertPt);
2496 
2497   // Move all 'aggressive' instructions, which are defined in the
2498   // conditional parts of the if's up to the dominating block.
2499   if (IfBlock1)
2500     hoistAllInstructionsInto(DomBlock, InsertPt, IfBlock1);
2501   if (IfBlock2)
2502     hoistAllInstructionsInto(DomBlock, InsertPt, IfBlock2);
2503 
2504   // Propagate fast-math-flags from phi nodes to replacement selects.
2505   IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
2506   while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
2507     if (isa<FPMathOperator>(PN))
2508       Builder.setFastMathFlags(PN->getFastMathFlags());
2509 
2510     // Change the PHI node into a select instruction.
2511     Value *TrueVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse);
2512     Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue);
2513 
2514     Value *Sel = Builder.CreateSelect(IfCond, TrueVal, FalseVal, "", InsertPt);
2515     PN->replaceAllUsesWith(Sel);
2516     Sel->takeName(PN);
2517     PN->eraseFromParent();
2518   }
2519 
2520   // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement
2521   // has been flattened.  Change DomBlock to jump directly to our new block to
2522   // avoid other simplifycfg's kicking in on the diamond.
2523   Instruction *OldTI = DomBlock->getTerminator();
2524   Builder.SetInsertPoint(OldTI);
2525   Builder.CreateBr(BB);
2526   OldTI->eraseFromParent();
2527   return true;
2528 }
2529 
2530 /// If we found a conditional branch that goes to two returning blocks,
2531 /// try to merge them together into one return,
2532 /// introducing a select if the return values disagree.
2533 bool SimplifyCFGOpt::SimplifyCondBranchToTwoReturns(BranchInst *BI,
2534                                                     IRBuilder<> &Builder) {
2535   assert(BI->isConditional() && "Must be a conditional branch");
2536   BasicBlock *TrueSucc = BI->getSuccessor(0);
2537   BasicBlock *FalseSucc = BI->getSuccessor(1);
2538   ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator());
2539   ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator());
2540 
2541   // Check to ensure both blocks are empty (just a return) or optionally empty
2542   // with PHI nodes.  If there are other instructions, merging would cause extra
2543   // computation on one path or the other.
2544   if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator())
2545     return false;
2546   if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator())
2547     return false;
2548 
2549   Builder.SetInsertPoint(BI);
2550   // Okay, we found a branch that is going to two return nodes.  If
2551   // there is no return value for this function, just change the
2552   // branch into a return.
2553   if (FalseRet->getNumOperands() == 0) {
2554     TrueSucc->removePredecessor(BI->getParent());
2555     FalseSucc->removePredecessor(BI->getParent());
2556     Builder.CreateRetVoid();
2557     EraseTerminatorAndDCECond(BI);
2558     return true;
2559   }
2560 
2561   // Otherwise, figure out what the true and false return values are
2562   // so we can insert a new select instruction.
2563   Value *TrueValue = TrueRet->getReturnValue();
2564   Value *FalseValue = FalseRet->getReturnValue();
2565 
2566   // Unwrap any PHI nodes in the return blocks.
2567   if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue))
2568     if (TVPN->getParent() == TrueSucc)
2569       TrueValue = TVPN->getIncomingValueForBlock(BI->getParent());
2570   if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue))
2571     if (FVPN->getParent() == FalseSucc)
2572       FalseValue = FVPN->getIncomingValueForBlock(BI->getParent());
2573 
2574   // In order for this transformation to be safe, we must be able to
2575   // unconditionally execute both operands to the return.  This is
2576   // normally the case, but we could have a potentially-trapping
2577   // constant expression that prevents this transformation from being
2578   // safe.
2579   if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue))
2580     if (TCV->canTrap())
2581       return false;
2582   if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue))
2583     if (FCV->canTrap())
2584       return false;
2585 
2586   // Okay, we collected all the mapped values and checked them for sanity, and
2587   // defined to really do this transformation.  First, update the CFG.
2588   TrueSucc->removePredecessor(BI->getParent());
2589   FalseSucc->removePredecessor(BI->getParent());
2590 
2591   // Insert select instructions where needed.
2592   Value *BrCond = BI->getCondition();
2593   if (TrueValue) {
2594     // Insert a select if the results differ.
2595     if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) {
2596     } else if (isa<UndefValue>(TrueValue)) {
2597       TrueValue = FalseValue;
2598     } else {
2599       TrueValue =
2600           Builder.CreateSelect(BrCond, TrueValue, FalseValue, "retval", BI);
2601     }
2602   }
2603 
2604   Value *RI =
2605       !TrueValue ? Builder.CreateRetVoid() : Builder.CreateRet(TrueValue);
2606 
2607   (void)RI;
2608 
2609   LLVM_DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:"
2610                     << "\n  " << *BI << "\nNewRet = " << *RI << "\nTRUEBLOCK: "
2611                     << *TrueSucc << "\nFALSEBLOCK: " << *FalseSucc);
2612 
2613   EraseTerminatorAndDCECond(BI);
2614 
2615   return true;
2616 }
2617 
2618 /// Return true if the given instruction is available
2619 /// in its predecessor block. If yes, the instruction will be removed.
2620 static bool tryCSEWithPredecessor(Instruction *Inst, BasicBlock *PB) {
2621   if (!isa<BinaryOperator>(Inst) && !isa<CmpInst>(Inst))
2622     return false;
2623   for (Instruction &I : *PB) {
2624     Instruction *PBI = &I;
2625     // Check whether Inst and PBI generate the same value.
2626     if (Inst->isIdenticalTo(PBI)) {
2627       Inst->replaceAllUsesWith(PBI);
2628       Inst->eraseFromParent();
2629       return true;
2630     }
2631   }
2632   return false;
2633 }
2634 
2635 /// Return true if either PBI or BI has branch weight available, and store
2636 /// the weights in {Pred|Succ}{True|False}Weight. If one of PBI and BI does
2637 /// not have branch weight, use 1:1 as its weight.
2638 static bool extractPredSuccWeights(BranchInst *PBI, BranchInst *BI,
2639                                    uint64_t &PredTrueWeight,
2640                                    uint64_t &PredFalseWeight,
2641                                    uint64_t &SuccTrueWeight,
2642                                    uint64_t &SuccFalseWeight) {
2643   bool PredHasWeights =
2644       PBI->extractProfMetadata(PredTrueWeight, PredFalseWeight);
2645   bool SuccHasWeights =
2646       BI->extractProfMetadata(SuccTrueWeight, SuccFalseWeight);
2647   if (PredHasWeights || SuccHasWeights) {
2648     if (!PredHasWeights)
2649       PredTrueWeight = PredFalseWeight = 1;
2650     if (!SuccHasWeights)
2651       SuccTrueWeight = SuccFalseWeight = 1;
2652     return true;
2653   } else {
2654     return false;
2655   }
2656 }
2657 
2658 /// If this basic block is simple enough, and if a predecessor branches to us
2659 /// and one of our successors, fold the block into the predecessor and use
2660 /// logical operations to pick the right destination.
2661 bool llvm::FoldBranchToCommonDest(BranchInst *BI, MemorySSAUpdater *MSSAU,
2662                                   unsigned BonusInstThreshold) {
2663   BasicBlock *BB = BI->getParent();
2664 
2665   const unsigned PredCount = pred_size(BB);
2666 
2667   bool Changed = false;
2668 
2669   Instruction *Cond = nullptr;
2670   if (BI->isConditional())
2671     Cond = dyn_cast<Instruction>(BI->getCondition());
2672   else {
2673     // For unconditional branch, check for a simple CFG pattern, where
2674     // BB has a single predecessor and BB's successor is also its predecessor's
2675     // successor. If such pattern exists, check for CSE between BB and its
2676     // predecessor.
2677     if (BasicBlock *PB = BB->getSinglePredecessor())
2678       if (BranchInst *PBI = dyn_cast<BranchInst>(PB->getTerminator()))
2679         if (PBI->isConditional() &&
2680             (BI->getSuccessor(0) == PBI->getSuccessor(0) ||
2681              BI->getSuccessor(0) == PBI->getSuccessor(1))) {
2682           for (auto I = BB->instructionsWithoutDebug().begin(),
2683                     E = BB->instructionsWithoutDebug().end();
2684                I != E;) {
2685             Instruction *Curr = &*I++;
2686             if (isa<CmpInst>(Curr)) {
2687               Cond = Curr;
2688               break;
2689             }
2690             // Quit if we can't remove this instruction.
2691             if (!tryCSEWithPredecessor(Curr, PB))
2692               return Changed;
2693             Changed = true;
2694           }
2695         }
2696 
2697     if (!Cond)
2698       return Changed;
2699   }
2700 
2701   if (!Cond || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) ||
2702       Cond->getParent() != BB || !Cond->hasOneUse())
2703     return Changed;
2704 
2705   // Make sure the instruction after the condition is the cond branch.
2706   BasicBlock::iterator CondIt = ++Cond->getIterator();
2707 
2708   // Ignore dbg intrinsics.
2709   while (isa<DbgInfoIntrinsic>(CondIt))
2710     ++CondIt;
2711 
2712   if (&*CondIt != BI)
2713     return Changed;
2714 
2715   // Only allow this transformation if computing the condition doesn't involve
2716   // too many instructions and these involved instructions can be executed
2717   // unconditionally. We denote all involved instructions except the condition
2718   // as "bonus instructions", and only allow this transformation when the
2719   // number of the bonus instructions we'll need to create when cloning into
2720   // each predecessor does not exceed a certain threshold.
2721   unsigned NumBonusInsts = 0;
2722   for (auto I = BB->begin(); Cond != &*I; ++I) {
2723     // Ignore dbg intrinsics.
2724     if (isa<DbgInfoIntrinsic>(I))
2725       continue;
2726     if (!I->hasOneUse() || !isSafeToSpeculativelyExecute(&*I))
2727       return Changed;
2728     // I has only one use and can be executed unconditionally.
2729     Instruction *User = dyn_cast<Instruction>(I->user_back());
2730     if (User == nullptr || User->getParent() != BB)
2731       return Changed;
2732     // I is used in the same BB. Since BI uses Cond and doesn't have more slots
2733     // to use any other instruction, User must be an instruction between next(I)
2734     // and Cond.
2735 
2736     // Account for the cost of duplicating this instruction into each
2737     // predecessor.
2738     NumBonusInsts += PredCount;
2739     // Early exits once we reach the limit.
2740     if (NumBonusInsts > BonusInstThreshold)
2741       return Changed;
2742   }
2743 
2744   // Cond is known to be a compare or binary operator.  Check to make sure that
2745   // neither operand is a potentially-trapping constant expression.
2746   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0)))
2747     if (CE->canTrap())
2748       return Changed;
2749   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1)))
2750     if (CE->canTrap())
2751       return Changed;
2752 
2753   // Finally, don't infinitely unroll conditional loops.
2754   BasicBlock *TrueDest = BI->getSuccessor(0);
2755   BasicBlock *FalseDest = (BI->isConditional()) ? BI->getSuccessor(1) : nullptr;
2756   if (TrueDest == BB || FalseDest == BB)
2757     return Changed;
2758 
2759   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
2760     BasicBlock *PredBlock = *PI;
2761     BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator());
2762 
2763     // Check that we have two conditional branches.  If there is a PHI node in
2764     // the common successor, verify that the same value flows in from both
2765     // blocks.
2766     SmallVector<PHINode *, 4> PHIs;
2767     if (!PBI || PBI->isUnconditional() ||
2768         (BI->isConditional() && !SafeToMergeTerminators(BI, PBI)) ||
2769         (!BI->isConditional() &&
2770          !isProfitableToFoldUnconditional(BI, PBI, Cond, PHIs)))
2771       continue;
2772 
2773     // Determine if the two branches share a common destination.
2774     Instruction::BinaryOps Opc = Instruction::BinaryOpsEnd;
2775     bool InvertPredCond = false;
2776 
2777     if (BI->isConditional()) {
2778       if (PBI->getSuccessor(0) == TrueDest) {
2779         Opc = Instruction::Or;
2780       } else if (PBI->getSuccessor(1) == FalseDest) {
2781         Opc = Instruction::And;
2782       } else if (PBI->getSuccessor(0) == FalseDest) {
2783         Opc = Instruction::And;
2784         InvertPredCond = true;
2785       } else if (PBI->getSuccessor(1) == TrueDest) {
2786         Opc = Instruction::Or;
2787         InvertPredCond = true;
2788       } else {
2789         continue;
2790       }
2791     } else {
2792       if (PBI->getSuccessor(0) != TrueDest && PBI->getSuccessor(1) != TrueDest)
2793         continue;
2794     }
2795 
2796     LLVM_DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB);
2797     Changed = true;
2798 
2799     IRBuilder<> Builder(PBI);
2800 
2801     // If we need to invert the condition in the pred block to match, do so now.
2802     if (InvertPredCond) {
2803       Value *NewCond = PBI->getCondition();
2804 
2805       if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) {
2806         CmpInst *CI = cast<CmpInst>(NewCond);
2807         CI->setPredicate(CI->getInversePredicate());
2808       } else {
2809         NewCond =
2810             Builder.CreateNot(NewCond, PBI->getCondition()->getName() + ".not");
2811       }
2812 
2813       PBI->setCondition(NewCond);
2814       PBI->swapSuccessors();
2815     }
2816 
2817     // If we have bonus instructions, clone them into the predecessor block.
2818     // Note that there may be multiple predecessor blocks, so we cannot move
2819     // bonus instructions to a predecessor block.
2820     ValueToValueMapTy VMap; // maps original values to cloned values
2821     // We already make sure Cond is the last instruction before BI. Therefore,
2822     // all instructions before Cond other than DbgInfoIntrinsic are bonus
2823     // instructions.
2824     for (auto BonusInst = BB->begin(); Cond != &*BonusInst; ++BonusInst) {
2825       if (isa<DbgInfoIntrinsic>(BonusInst))
2826         continue;
2827       Instruction *NewBonusInst = BonusInst->clone();
2828 
2829       // When we fold the bonus instructions we want to make sure we
2830       // reset their debug locations in order to avoid stepping on dead
2831       // code caused by folding dead branches.
2832       NewBonusInst->setDebugLoc(DebugLoc());
2833 
2834       RemapInstruction(NewBonusInst, VMap,
2835                        RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
2836       VMap[&*BonusInst] = NewBonusInst;
2837 
2838       // If we moved a load, we cannot any longer claim any knowledge about
2839       // its potential value. The previous information might have been valid
2840       // only given the branch precondition.
2841       // For an analogous reason, we must also drop all the metadata whose
2842       // semantics we don't understand.
2843       NewBonusInst->dropUnknownNonDebugMetadata();
2844 
2845       PredBlock->getInstList().insert(PBI->getIterator(), NewBonusInst);
2846       NewBonusInst->takeName(&*BonusInst);
2847       BonusInst->setName(BonusInst->getName() + ".old");
2848     }
2849 
2850     // Clone Cond into the predecessor basic block, and or/and the
2851     // two conditions together.
2852     Instruction *CondInPred = Cond->clone();
2853 
2854     // Reset the condition debug location to avoid jumping on dead code
2855     // as the result of folding dead branches.
2856     CondInPred->setDebugLoc(DebugLoc());
2857 
2858     RemapInstruction(CondInPred, VMap,
2859                      RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
2860     PredBlock->getInstList().insert(PBI->getIterator(), CondInPred);
2861     CondInPred->takeName(Cond);
2862     Cond->setName(CondInPred->getName() + ".old");
2863 
2864     if (BI->isConditional()) {
2865       Instruction *NewCond = cast<Instruction>(
2866           Builder.CreateBinOp(Opc, PBI->getCondition(), CondInPred, "or.cond"));
2867       PBI->setCondition(NewCond);
2868 
2869       uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
2870       bool HasWeights =
2871           extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
2872                                  SuccTrueWeight, SuccFalseWeight);
2873       SmallVector<uint64_t, 8> NewWeights;
2874 
2875       if (PBI->getSuccessor(0) == BB) {
2876         if (HasWeights) {
2877           // PBI: br i1 %x, BB, FalseDest
2878           // BI:  br i1 %y, TrueDest, FalseDest
2879           // TrueWeight is TrueWeight for PBI * TrueWeight for BI.
2880           NewWeights.push_back(PredTrueWeight * SuccTrueWeight);
2881           // FalseWeight is FalseWeight for PBI * TotalWeight for BI +
2882           //               TrueWeight for PBI * FalseWeight for BI.
2883           // We assume that total weights of a BranchInst can fit into 32 bits.
2884           // Therefore, we will not have overflow using 64-bit arithmetic.
2885           NewWeights.push_back(PredFalseWeight *
2886                                    (SuccFalseWeight + SuccTrueWeight) +
2887                                PredTrueWeight * SuccFalseWeight);
2888         }
2889         AddPredecessorToBlock(TrueDest, PredBlock, BB, MSSAU);
2890         PBI->setSuccessor(0, TrueDest);
2891       }
2892       if (PBI->getSuccessor(1) == BB) {
2893         if (HasWeights) {
2894           // PBI: br i1 %x, TrueDest, BB
2895           // BI:  br i1 %y, TrueDest, FalseDest
2896           // TrueWeight is TrueWeight for PBI * TotalWeight for BI +
2897           //              FalseWeight for PBI * TrueWeight for BI.
2898           NewWeights.push_back(PredTrueWeight *
2899                                    (SuccFalseWeight + SuccTrueWeight) +
2900                                PredFalseWeight * SuccTrueWeight);
2901           // FalseWeight is FalseWeight for PBI * FalseWeight for BI.
2902           NewWeights.push_back(PredFalseWeight * SuccFalseWeight);
2903         }
2904         AddPredecessorToBlock(FalseDest, PredBlock, BB, MSSAU);
2905         PBI->setSuccessor(1, FalseDest);
2906       }
2907       if (NewWeights.size() == 2) {
2908         // Halve the weights if any of them cannot fit in an uint32_t
2909         FitWeights(NewWeights);
2910 
2911         SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(),
2912                                            NewWeights.end());
2913         setBranchWeights(PBI, MDWeights[0], MDWeights[1]);
2914       } else
2915         PBI->setMetadata(LLVMContext::MD_prof, nullptr);
2916     } else {
2917       // Update PHI nodes in the common successors.
2918       for (unsigned i = 0, e = PHIs.size(); i != e; ++i) {
2919         ConstantInt *PBI_C = cast<ConstantInt>(
2920             PHIs[i]->getIncomingValueForBlock(PBI->getParent()));
2921         assert(PBI_C->getType()->isIntegerTy(1));
2922         Instruction *MergedCond = nullptr;
2923         if (PBI->getSuccessor(0) == TrueDest) {
2924           // Create (PBI_Cond and PBI_C) or (!PBI_Cond and BI_Value)
2925           // PBI_C is true: PBI_Cond or (!PBI_Cond and BI_Value)
2926           //       is false: !PBI_Cond and BI_Value
2927           Instruction *NotCond = cast<Instruction>(
2928               Builder.CreateNot(PBI->getCondition(), "not.cond"));
2929           MergedCond = cast<Instruction>(
2930                Builder.CreateBinOp(Instruction::And, NotCond, CondInPred,
2931                                    "and.cond"));
2932           if (PBI_C->isOne())
2933             MergedCond = cast<Instruction>(Builder.CreateBinOp(
2934                 Instruction::Or, PBI->getCondition(), MergedCond, "or.cond"));
2935         } else {
2936           // Create (PBI_Cond and BI_Value) or (!PBI_Cond and PBI_C)
2937           // PBI_C is true: (PBI_Cond and BI_Value) or (!PBI_Cond)
2938           //       is false: PBI_Cond and BI_Value
2939           MergedCond = cast<Instruction>(Builder.CreateBinOp(
2940               Instruction::And, PBI->getCondition(), CondInPred, "and.cond"));
2941           if (PBI_C->isOne()) {
2942             Instruction *NotCond = cast<Instruction>(
2943                 Builder.CreateNot(PBI->getCondition(), "not.cond"));
2944             MergedCond = cast<Instruction>(Builder.CreateBinOp(
2945                 Instruction::Or, NotCond, MergedCond, "or.cond"));
2946           }
2947         }
2948         // Update PHI Node.
2949 	PHIs[i]->setIncomingValueForBlock(PBI->getParent(), MergedCond);
2950       }
2951 
2952       // PBI is changed to branch to TrueDest below. Remove itself from
2953       // potential phis from all other successors.
2954       if (MSSAU)
2955         MSSAU->changeCondBranchToUnconditionalTo(PBI, TrueDest);
2956 
2957       // Change PBI from Conditional to Unconditional.
2958       BranchInst *New_PBI = BranchInst::Create(TrueDest, PBI);
2959       EraseTerminatorAndDCECond(PBI, MSSAU);
2960       PBI = New_PBI;
2961     }
2962 
2963     // If BI was a loop latch, it may have had associated loop metadata.
2964     // We need to copy it to the new latch, that is, PBI.
2965     if (MDNode *LoopMD = BI->getMetadata(LLVMContext::MD_loop))
2966       PBI->setMetadata(LLVMContext::MD_loop, LoopMD);
2967 
2968     // TODO: If BB is reachable from all paths through PredBlock, then we
2969     // could replace PBI's branch probabilities with BI's.
2970 
2971     // Copy any debug value intrinsics into the end of PredBlock.
2972     for (Instruction &I : *BB) {
2973       if (isa<DbgInfoIntrinsic>(I)) {
2974         Instruction *NewI = I.clone();
2975         RemapInstruction(NewI, VMap,
2976                          RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
2977         NewI->insertBefore(PBI);
2978       }
2979     }
2980 
2981     return Changed;
2982   }
2983   return Changed;
2984 }
2985 
2986 // If there is only one store in BB1 and BB2, return it, otherwise return
2987 // nullptr.
2988 static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) {
2989   StoreInst *S = nullptr;
2990   for (auto *BB : {BB1, BB2}) {
2991     if (!BB)
2992       continue;
2993     for (auto &I : *BB)
2994       if (auto *SI = dyn_cast<StoreInst>(&I)) {
2995         if (S)
2996           // Multiple stores seen.
2997           return nullptr;
2998         else
2999           S = SI;
3000       }
3001   }
3002   return S;
3003 }
3004 
3005 static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB,
3006                                               Value *AlternativeV = nullptr) {
3007   // PHI is going to be a PHI node that allows the value V that is defined in
3008   // BB to be referenced in BB's only successor.
3009   //
3010   // If AlternativeV is nullptr, the only value we care about in PHI is V. It
3011   // doesn't matter to us what the other operand is (it'll never get used). We
3012   // could just create a new PHI with an undef incoming value, but that could
3013   // increase register pressure if EarlyCSE/InstCombine can't fold it with some
3014   // other PHI. So here we directly look for some PHI in BB's successor with V
3015   // as an incoming operand. If we find one, we use it, else we create a new
3016   // one.
3017   //
3018   // If AlternativeV is not nullptr, we care about both incoming values in PHI.
3019   // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV]
3020   // where OtherBB is the single other predecessor of BB's only successor.
3021   PHINode *PHI = nullptr;
3022   BasicBlock *Succ = BB->getSingleSuccessor();
3023 
3024   for (auto I = Succ->begin(); isa<PHINode>(I); ++I)
3025     if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) {
3026       PHI = cast<PHINode>(I);
3027       if (!AlternativeV)
3028         break;
3029 
3030       assert(Succ->hasNPredecessors(2));
3031       auto PredI = pred_begin(Succ);
3032       BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI;
3033       if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV)
3034         break;
3035       PHI = nullptr;
3036     }
3037   if (PHI)
3038     return PHI;
3039 
3040   // If V is not an instruction defined in BB, just return it.
3041   if (!AlternativeV &&
3042       (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB))
3043     return V;
3044 
3045   PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge", &Succ->front());
3046   PHI->addIncoming(V, BB);
3047   for (BasicBlock *PredBB : predecessors(Succ))
3048     if (PredBB != BB)
3049       PHI->addIncoming(
3050           AlternativeV ? AlternativeV : UndefValue::get(V->getType()), PredBB);
3051   return PHI;
3052 }
3053 
3054 static bool mergeConditionalStoreToAddress(BasicBlock *PTB, BasicBlock *PFB,
3055                                            BasicBlock *QTB, BasicBlock *QFB,
3056                                            BasicBlock *PostBB, Value *Address,
3057                                            bool InvertPCond, bool InvertQCond,
3058                                            const DataLayout &DL,
3059                                            const TargetTransformInfo &TTI) {
3060   // For every pointer, there must be exactly two stores, one coming from
3061   // PTB or PFB, and the other from QTB or QFB. We don't support more than one
3062   // store (to any address) in PTB,PFB or QTB,QFB.
3063   // FIXME: We could relax this restriction with a bit more work and performance
3064   // testing.
3065   StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB);
3066   StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB);
3067   if (!PStore || !QStore)
3068     return false;
3069 
3070   // Now check the stores are compatible.
3071   if (!QStore->isUnordered() || !PStore->isUnordered())
3072     return false;
3073 
3074   // Check that sinking the store won't cause program behavior changes. Sinking
3075   // the store out of the Q blocks won't change any behavior as we're sinking
3076   // from a block to its unconditional successor. But we're moving a store from
3077   // the P blocks down through the middle block (QBI) and past both QFB and QTB.
3078   // So we need to check that there are no aliasing loads or stores in
3079   // QBI, QTB and QFB. We also need to check there are no conflicting memory
3080   // operations between PStore and the end of its parent block.
3081   //
3082   // The ideal way to do this is to query AliasAnalysis, but we don't
3083   // preserve AA currently so that is dangerous. Be super safe and just
3084   // check there are no other memory operations at all.
3085   for (auto &I : *QFB->getSinglePredecessor())
3086     if (I.mayReadOrWriteMemory())
3087       return false;
3088   for (auto &I : *QFB)
3089     if (&I != QStore && I.mayReadOrWriteMemory())
3090       return false;
3091   if (QTB)
3092     for (auto &I : *QTB)
3093       if (&I != QStore && I.mayReadOrWriteMemory())
3094         return false;
3095   for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end();
3096        I != E; ++I)
3097     if (&*I != PStore && I->mayReadOrWriteMemory())
3098       return false;
3099 
3100   // If we're not in aggressive mode, we only optimize if we have some
3101   // confidence that by optimizing we'll allow P and/or Q to be if-converted.
3102   auto IsWorthwhile = [&](BasicBlock *BB, ArrayRef<StoreInst *> FreeStores) {
3103     if (!BB)
3104       return true;
3105     // Heuristic: if the block can be if-converted/phi-folded and the
3106     // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to
3107     // thread this store.
3108     int BudgetRemaining =
3109         PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
3110     for (auto &I : BB->instructionsWithoutDebug()) {
3111       // Consider terminator instruction to be free.
3112       if (I.isTerminator())
3113         continue;
3114       // If this is one the stores that we want to speculate out of this BB,
3115       // then don't count it's cost, consider it to be free.
3116       if (auto *S = dyn_cast<StoreInst>(&I))
3117         if (llvm::find(FreeStores, S))
3118           continue;
3119       // Else, we have a white-list of instructions that we are ak speculating.
3120       if (!isa<BinaryOperator>(I) && !isa<GetElementPtrInst>(I))
3121         return false; // Not in white-list - not worthwhile folding.
3122       // And finally, if this is a non-free instruction that we are okay
3123       // speculating, ensure that we consider the speculation budget.
3124       BudgetRemaining -= TTI.getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency);
3125       if (BudgetRemaining < 0)
3126         return false; // Eagerly refuse to fold as soon as we're out of budget.
3127     }
3128     assert(BudgetRemaining >= 0 &&
3129            "When we run out of budget we will eagerly return from within the "
3130            "per-instruction loop.");
3131     return true;
3132   };
3133 
3134   const SmallVector<StoreInst *, 2> FreeStores = {PStore, QStore};
3135   if (!MergeCondStoresAggressively &&
3136       (!IsWorthwhile(PTB, FreeStores) || !IsWorthwhile(PFB, FreeStores) ||
3137        !IsWorthwhile(QTB, FreeStores) || !IsWorthwhile(QFB, FreeStores)))
3138     return false;
3139 
3140   // If PostBB has more than two predecessors, we need to split it so we can
3141   // sink the store.
3142   if (std::next(pred_begin(PostBB), 2) != pred_end(PostBB)) {
3143     // We know that QFB's only successor is PostBB. And QFB has a single
3144     // predecessor. If QTB exists, then its only successor is also PostBB.
3145     // If QTB does not exist, then QFB's only predecessor has a conditional
3146     // branch to QFB and PostBB.
3147     BasicBlock *TruePred = QTB ? QTB : QFB->getSinglePredecessor();
3148     BasicBlock *NewBB = SplitBlockPredecessors(PostBB, { QFB, TruePred},
3149                                                "condstore.split");
3150     if (!NewBB)
3151       return false;
3152     PostBB = NewBB;
3153   }
3154 
3155   // OK, we're going to sink the stores to PostBB. The store has to be
3156   // conditional though, so first create the predicate.
3157   Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator())
3158                      ->getCondition();
3159   Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator())
3160                      ->getCondition();
3161 
3162   Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(),
3163                                                 PStore->getParent());
3164   Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(),
3165                                                 QStore->getParent(), PPHI);
3166 
3167   IRBuilder<> QB(&*PostBB->getFirstInsertionPt());
3168 
3169   Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond);
3170   Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond);
3171 
3172   if (InvertPCond)
3173     PPred = QB.CreateNot(PPred);
3174   if (InvertQCond)
3175     QPred = QB.CreateNot(QPred);
3176   Value *CombinedPred = QB.CreateOr(PPred, QPred);
3177 
3178   auto *T =
3179       SplitBlockAndInsertIfThen(CombinedPred, &*QB.GetInsertPoint(), false);
3180   QB.SetInsertPoint(T);
3181   StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address));
3182   AAMDNodes AAMD;
3183   PStore->getAAMetadata(AAMD, /*Merge=*/false);
3184   PStore->getAAMetadata(AAMD, /*Merge=*/true);
3185   SI->setAAMetadata(AAMD);
3186   // Choose the minimum alignment. If we could prove both stores execute, we
3187   // could use biggest one.  In this case, though, we only know that one of the
3188   // stores executes.  And we don't know it's safe to take the alignment from a
3189   // store that doesn't execute.
3190   SI->setAlignment(std::min(PStore->getAlign(), QStore->getAlign()));
3191 
3192   QStore->eraseFromParent();
3193   PStore->eraseFromParent();
3194 
3195   return true;
3196 }
3197 
3198 static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI,
3199                                    const DataLayout &DL,
3200                                    const TargetTransformInfo &TTI) {
3201   // The intention here is to find diamonds or triangles (see below) where each
3202   // conditional block contains a store to the same address. Both of these
3203   // stores are conditional, so they can't be unconditionally sunk. But it may
3204   // be profitable to speculatively sink the stores into one merged store at the
3205   // end, and predicate the merged store on the union of the two conditions of
3206   // PBI and QBI.
3207   //
3208   // This can reduce the number of stores executed if both of the conditions are
3209   // true, and can allow the blocks to become small enough to be if-converted.
3210   // This optimization will also chain, so that ladders of test-and-set
3211   // sequences can be if-converted away.
3212   //
3213   // We only deal with simple diamonds or triangles:
3214   //
3215   //     PBI       or      PBI        or a combination of the two
3216   //    /   \               | \
3217   //   PTB  PFB             |  PFB
3218   //    \   /               | /
3219   //     QBI                QBI
3220   //    /  \                | \
3221   //   QTB  QFB             |  QFB
3222   //    \  /                | /
3223   //    PostBB            PostBB
3224   //
3225   // We model triangles as a type of diamond with a nullptr "true" block.
3226   // Triangles are canonicalized so that the fallthrough edge is represented by
3227   // a true condition, as in the diagram above.
3228   BasicBlock *PTB = PBI->getSuccessor(0);
3229   BasicBlock *PFB = PBI->getSuccessor(1);
3230   BasicBlock *QTB = QBI->getSuccessor(0);
3231   BasicBlock *QFB = QBI->getSuccessor(1);
3232   BasicBlock *PostBB = QFB->getSingleSuccessor();
3233 
3234   // Make sure we have a good guess for PostBB. If QTB's only successor is
3235   // QFB, then QFB is a better PostBB.
3236   if (QTB->getSingleSuccessor() == QFB)
3237     PostBB = QFB;
3238 
3239   // If we couldn't find a good PostBB, stop.
3240   if (!PostBB)
3241     return false;
3242 
3243   bool InvertPCond = false, InvertQCond = false;
3244   // Canonicalize fallthroughs to the true branches.
3245   if (PFB == QBI->getParent()) {
3246     std::swap(PFB, PTB);
3247     InvertPCond = true;
3248   }
3249   if (QFB == PostBB) {
3250     std::swap(QFB, QTB);
3251     InvertQCond = true;
3252   }
3253 
3254   // From this point on we can assume PTB or QTB may be fallthroughs but PFB
3255   // and QFB may not. Model fallthroughs as a nullptr block.
3256   if (PTB == QBI->getParent())
3257     PTB = nullptr;
3258   if (QTB == PostBB)
3259     QTB = nullptr;
3260 
3261   // Legality bailouts. We must have at least the non-fallthrough blocks and
3262   // the post-dominating block, and the non-fallthroughs must only have one
3263   // predecessor.
3264   auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) {
3265     return BB->getSinglePredecessor() == P && BB->getSingleSuccessor() == S;
3266   };
3267   if (!HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) ||
3268       !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB))
3269     return false;
3270   if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) ||
3271       (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB)))
3272     return false;
3273   if (!QBI->getParent()->hasNUses(2))
3274     return false;
3275 
3276   // OK, this is a sequence of two diamonds or triangles.
3277   // Check if there are stores in PTB or PFB that are repeated in QTB or QFB.
3278   SmallPtrSet<Value *, 4> PStoreAddresses, QStoreAddresses;
3279   for (auto *BB : {PTB, PFB}) {
3280     if (!BB)
3281       continue;
3282     for (auto &I : *BB)
3283       if (StoreInst *SI = dyn_cast<StoreInst>(&I))
3284         PStoreAddresses.insert(SI->getPointerOperand());
3285   }
3286   for (auto *BB : {QTB, QFB}) {
3287     if (!BB)
3288       continue;
3289     for (auto &I : *BB)
3290       if (StoreInst *SI = dyn_cast<StoreInst>(&I))
3291         QStoreAddresses.insert(SI->getPointerOperand());
3292   }
3293 
3294   set_intersect(PStoreAddresses, QStoreAddresses);
3295   // set_intersect mutates PStoreAddresses in place. Rename it here to make it
3296   // clear what it contains.
3297   auto &CommonAddresses = PStoreAddresses;
3298 
3299   bool Changed = false;
3300   for (auto *Address : CommonAddresses)
3301     Changed |= mergeConditionalStoreToAddress(
3302         PTB, PFB, QTB, QFB, PostBB, Address, InvertPCond, InvertQCond, DL, TTI);
3303   return Changed;
3304 }
3305 
3306 
3307 /// If the previous block ended with a widenable branch, determine if reusing
3308 /// the target block is profitable and legal.  This will have the effect of
3309 /// "widening" PBI, but doesn't require us to reason about hosting safety.
3310 static bool tryWidenCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI) {
3311   // TODO: This can be generalized in two important ways:
3312   // 1) We can allow phi nodes in IfFalseBB and simply reuse all the input
3313   //    values from the PBI edge.
3314   // 2) We can sink side effecting instructions into BI's fallthrough
3315   //    successor provided they doesn't contribute to computation of
3316   //    BI's condition.
3317   Value *CondWB, *WC;
3318   BasicBlock *IfTrueBB, *IfFalseBB;
3319   if (!parseWidenableBranch(PBI, CondWB, WC, IfTrueBB, IfFalseBB) ||
3320       IfTrueBB != BI->getParent() || !BI->getParent()->getSinglePredecessor())
3321     return false;
3322   if (!IfFalseBB->phis().empty())
3323     return false; // TODO
3324   // Use lambda to lazily compute expensive condition after cheap ones.
3325   auto NoSideEffects = [](BasicBlock &BB) {
3326     return !llvm::any_of(BB, [](const Instruction &I) {
3327         return I.mayWriteToMemory() || I.mayHaveSideEffects();
3328       });
3329   };
3330   if (BI->getSuccessor(1) != IfFalseBB && // no inf looping
3331       BI->getSuccessor(1)->getTerminatingDeoptimizeCall() && // profitability
3332       NoSideEffects(*BI->getParent())) {
3333     BI->getSuccessor(1)->removePredecessor(BI->getParent());
3334     BI->setSuccessor(1, IfFalseBB);
3335     return true;
3336   }
3337   if (BI->getSuccessor(0) != IfFalseBB && // no inf looping
3338       BI->getSuccessor(0)->getTerminatingDeoptimizeCall() && // profitability
3339       NoSideEffects(*BI->getParent())) {
3340     BI->getSuccessor(0)->removePredecessor(BI->getParent());
3341     BI->setSuccessor(0, IfFalseBB);
3342     return true;
3343   }
3344   return false;
3345 }
3346 
3347 /// If we have a conditional branch as a predecessor of another block,
3348 /// this function tries to simplify it.  We know
3349 /// that PBI and BI are both conditional branches, and BI is in one of the
3350 /// successor blocks of PBI - PBI branches to BI.
3351 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI,
3352                                            const DataLayout &DL,
3353                                            const TargetTransformInfo &TTI) {
3354   assert(PBI->isConditional() && BI->isConditional());
3355   BasicBlock *BB = BI->getParent();
3356 
3357   // If this block ends with a branch instruction, and if there is a
3358   // predecessor that ends on a branch of the same condition, make
3359   // this conditional branch redundant.
3360   if (PBI->getCondition() == BI->getCondition() &&
3361       PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
3362     // Okay, the outcome of this conditional branch is statically
3363     // knowable.  If this block had a single pred, handle specially.
3364     if (BB->getSinglePredecessor()) {
3365       // Turn this into a branch on constant.
3366       bool CondIsTrue = PBI->getSuccessor(0) == BB;
3367       BI->setCondition(
3368           ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue));
3369       return true; // Nuke the branch on constant.
3370     }
3371 
3372     // Otherwise, if there are multiple predecessors, insert a PHI that merges
3373     // in the constant and simplify the block result.  Subsequent passes of
3374     // simplifycfg will thread the block.
3375     if (BlockIsSimpleEnoughToThreadThrough(BB)) {
3376       pred_iterator PB = pred_begin(BB), PE = pred_end(BB);
3377       PHINode *NewPN = PHINode::Create(
3378           Type::getInt1Ty(BB->getContext()), std::distance(PB, PE),
3379           BI->getCondition()->getName() + ".pr", &BB->front());
3380       // Okay, we're going to insert the PHI node.  Since PBI is not the only
3381       // predecessor, compute the PHI'd conditional value for all of the preds.
3382       // Any predecessor where the condition is not computable we keep symbolic.
3383       for (pred_iterator PI = PB; PI != PE; ++PI) {
3384         BasicBlock *P = *PI;
3385         if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) && PBI != BI &&
3386             PBI->isConditional() && PBI->getCondition() == BI->getCondition() &&
3387             PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
3388           bool CondIsTrue = PBI->getSuccessor(0) == BB;
3389           NewPN->addIncoming(
3390               ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue),
3391               P);
3392         } else {
3393           NewPN->addIncoming(BI->getCondition(), P);
3394         }
3395       }
3396 
3397       BI->setCondition(NewPN);
3398       return true;
3399     }
3400   }
3401 
3402   // If the previous block ended with a widenable branch, determine if reusing
3403   // the target block is profitable and legal.  This will have the effect of
3404   // "widening" PBI, but doesn't require us to reason about hosting safety.
3405   if (tryWidenCondBranchToCondBranch(PBI, BI))
3406     return true;
3407 
3408   if (auto *CE = dyn_cast<ConstantExpr>(BI->getCondition()))
3409     if (CE->canTrap())
3410       return false;
3411 
3412   // If both branches are conditional and both contain stores to the same
3413   // address, remove the stores from the conditionals and create a conditional
3414   // merged store at the end.
3415   if (MergeCondStores && mergeConditionalStores(PBI, BI, DL, TTI))
3416     return true;
3417 
3418   // If this is a conditional branch in an empty block, and if any
3419   // predecessors are a conditional branch to one of our destinations,
3420   // fold the conditions into logical ops and one cond br.
3421 
3422   // Ignore dbg intrinsics.
3423   if (&*BB->instructionsWithoutDebug().begin() != BI)
3424     return false;
3425 
3426   int PBIOp, BIOp;
3427   if (PBI->getSuccessor(0) == BI->getSuccessor(0)) {
3428     PBIOp = 0;
3429     BIOp = 0;
3430   } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) {
3431     PBIOp = 0;
3432     BIOp = 1;
3433   } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) {
3434     PBIOp = 1;
3435     BIOp = 0;
3436   } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) {
3437     PBIOp = 1;
3438     BIOp = 1;
3439   } else {
3440     return false;
3441   }
3442 
3443   // Check to make sure that the other destination of this branch
3444   // isn't BB itself.  If so, this is an infinite loop that will
3445   // keep getting unwound.
3446   if (PBI->getSuccessor(PBIOp) == BB)
3447     return false;
3448 
3449   // Do not perform this transformation if it would require
3450   // insertion of a large number of select instructions. For targets
3451   // without predication/cmovs, this is a big pessimization.
3452 
3453   // Also do not perform this transformation if any phi node in the common
3454   // destination block can trap when reached by BB or PBB (PR17073). In that
3455   // case, it would be unsafe to hoist the operation into a select instruction.
3456 
3457   BasicBlock *CommonDest = PBI->getSuccessor(PBIOp);
3458   unsigned NumPhis = 0;
3459   for (BasicBlock::iterator II = CommonDest->begin(); isa<PHINode>(II);
3460        ++II, ++NumPhis) {
3461     if (NumPhis > 2) // Disable this xform.
3462       return false;
3463 
3464     PHINode *PN = cast<PHINode>(II);
3465     Value *BIV = PN->getIncomingValueForBlock(BB);
3466     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BIV))
3467       if (CE->canTrap())
3468         return false;
3469 
3470     unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
3471     Value *PBIV = PN->getIncomingValue(PBBIdx);
3472     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(PBIV))
3473       if (CE->canTrap())
3474         return false;
3475   }
3476 
3477   // Finally, if everything is ok, fold the branches to logical ops.
3478   BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1);
3479 
3480   LLVM_DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent()
3481                     << "AND: " << *BI->getParent());
3482 
3483   // If OtherDest *is* BB, then BB is a basic block with a single conditional
3484   // branch in it, where one edge (OtherDest) goes back to itself but the other
3485   // exits.  We don't *know* that the program avoids the infinite loop
3486   // (even though that seems likely).  If we do this xform naively, we'll end up
3487   // recursively unpeeling the loop.  Since we know that (after the xform is
3488   // done) that the block *is* infinite if reached, we just make it an obviously
3489   // infinite loop with no cond branch.
3490   if (OtherDest == BB) {
3491     // Insert it at the end of the function, because it's either code,
3492     // or it won't matter if it's hot. :)
3493     BasicBlock *InfLoopBlock =
3494         BasicBlock::Create(BB->getContext(), "infloop", BB->getParent());
3495     BranchInst::Create(InfLoopBlock, InfLoopBlock);
3496     OtherDest = InfLoopBlock;
3497   }
3498 
3499   LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent());
3500 
3501   // BI may have other predecessors.  Because of this, we leave
3502   // it alone, but modify PBI.
3503 
3504   // Make sure we get to CommonDest on True&True directions.
3505   Value *PBICond = PBI->getCondition();
3506   IRBuilder<NoFolder> Builder(PBI);
3507   if (PBIOp)
3508     PBICond = Builder.CreateNot(PBICond, PBICond->getName() + ".not");
3509 
3510   Value *BICond = BI->getCondition();
3511   if (BIOp)
3512     BICond = Builder.CreateNot(BICond, BICond->getName() + ".not");
3513 
3514   // Merge the conditions.
3515   Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge");
3516 
3517   // Modify PBI to branch on the new condition to the new dests.
3518   PBI->setCondition(Cond);
3519   PBI->setSuccessor(0, CommonDest);
3520   PBI->setSuccessor(1, OtherDest);
3521 
3522   // Update branch weight for PBI.
3523   uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
3524   uint64_t PredCommon, PredOther, SuccCommon, SuccOther;
3525   bool HasWeights =
3526       extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
3527                              SuccTrueWeight, SuccFalseWeight);
3528   if (HasWeights) {
3529     PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
3530     PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
3531     SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
3532     SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
3533     // The weight to CommonDest should be PredCommon * SuccTotal +
3534     //                                    PredOther * SuccCommon.
3535     // The weight to OtherDest should be PredOther * SuccOther.
3536     uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) +
3537                                   PredOther * SuccCommon,
3538                               PredOther * SuccOther};
3539     // Halve the weights if any of them cannot fit in an uint32_t
3540     FitWeights(NewWeights);
3541 
3542     setBranchWeights(PBI, NewWeights[0], NewWeights[1]);
3543   }
3544 
3545   // OtherDest may have phi nodes.  If so, add an entry from PBI's
3546   // block that are identical to the entries for BI's block.
3547   AddPredecessorToBlock(OtherDest, PBI->getParent(), BB);
3548 
3549   // We know that the CommonDest already had an edge from PBI to
3550   // it.  If it has PHIs though, the PHIs may have different
3551   // entries for BB and PBI's BB.  If so, insert a select to make
3552   // them agree.
3553   for (PHINode &PN : CommonDest->phis()) {
3554     Value *BIV = PN.getIncomingValueForBlock(BB);
3555     unsigned PBBIdx = PN.getBasicBlockIndex(PBI->getParent());
3556     Value *PBIV = PN.getIncomingValue(PBBIdx);
3557     if (BIV != PBIV) {
3558       // Insert a select in PBI to pick the right value.
3559       SelectInst *NV = cast<SelectInst>(
3560           Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName() + ".mux"));
3561       PN.setIncomingValue(PBBIdx, NV);
3562       // Although the select has the same condition as PBI, the original branch
3563       // weights for PBI do not apply to the new select because the select's
3564       // 'logical' edges are incoming edges of the phi that is eliminated, not
3565       // the outgoing edges of PBI.
3566       if (HasWeights) {
3567         uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
3568         uint64_t PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
3569         uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
3570         uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
3571         // The weight to PredCommonDest should be PredCommon * SuccTotal.
3572         // The weight to PredOtherDest should be PredOther * SuccCommon.
3573         uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther),
3574                                   PredOther * SuccCommon};
3575 
3576         FitWeights(NewWeights);
3577 
3578         setBranchWeights(NV, NewWeights[0], NewWeights[1]);
3579       }
3580     }
3581   }
3582 
3583   LLVM_DEBUG(dbgs() << "INTO: " << *PBI->getParent());
3584   LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent());
3585 
3586   // This basic block is probably dead.  We know it has at least
3587   // one fewer predecessor.
3588   return true;
3589 }
3590 
3591 // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is
3592 // true or to FalseBB if Cond is false.
3593 // Takes care of updating the successors and removing the old terminator.
3594 // Also makes sure not to introduce new successors by assuming that edges to
3595 // non-successor TrueBBs and FalseBBs aren't reachable.
3596 bool SimplifyCFGOpt::SimplifyTerminatorOnSelect(Instruction *OldTerm,
3597                                                 Value *Cond, BasicBlock *TrueBB,
3598                                                 BasicBlock *FalseBB,
3599                                                 uint32_t TrueWeight,
3600                                                 uint32_t FalseWeight) {
3601   // Remove any superfluous successor edges from the CFG.
3602   // First, figure out which successors to preserve.
3603   // If TrueBB and FalseBB are equal, only try to preserve one copy of that
3604   // successor.
3605   BasicBlock *KeepEdge1 = TrueBB;
3606   BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr;
3607 
3608   // Then remove the rest.
3609   for (BasicBlock *Succ : successors(OldTerm)) {
3610     // Make sure only to keep exactly one copy of each edge.
3611     if (Succ == KeepEdge1)
3612       KeepEdge1 = nullptr;
3613     else if (Succ == KeepEdge2)
3614       KeepEdge2 = nullptr;
3615     else
3616       Succ->removePredecessor(OldTerm->getParent(),
3617                               /*KeepOneInputPHIs=*/true);
3618   }
3619 
3620   IRBuilder<> Builder(OldTerm);
3621   Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc());
3622 
3623   // Insert an appropriate new terminator.
3624   if (!KeepEdge1 && !KeepEdge2) {
3625     if (TrueBB == FalseBB)
3626       // We were only looking for one successor, and it was present.
3627       // Create an unconditional branch to it.
3628       Builder.CreateBr(TrueBB);
3629     else {
3630       // We found both of the successors we were looking for.
3631       // Create a conditional branch sharing the condition of the select.
3632       BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB);
3633       if (TrueWeight != FalseWeight)
3634         setBranchWeights(NewBI, TrueWeight, FalseWeight);
3635     }
3636   } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) {
3637     // Neither of the selected blocks were successors, so this
3638     // terminator must be unreachable.
3639     new UnreachableInst(OldTerm->getContext(), OldTerm);
3640   } else {
3641     // One of the selected values was a successor, but the other wasn't.
3642     // Insert an unconditional branch to the one that was found;
3643     // the edge to the one that wasn't must be unreachable.
3644     if (!KeepEdge1)
3645       // Only TrueBB was found.
3646       Builder.CreateBr(TrueBB);
3647     else
3648       // Only FalseBB was found.
3649       Builder.CreateBr(FalseBB);
3650   }
3651 
3652   EraseTerminatorAndDCECond(OldTerm);
3653   return true;
3654 }
3655 
3656 // Replaces
3657 //   (switch (select cond, X, Y)) on constant X, Y
3658 // with a branch - conditional if X and Y lead to distinct BBs,
3659 // unconditional otherwise.
3660 bool SimplifyCFGOpt::SimplifySwitchOnSelect(SwitchInst *SI,
3661                                             SelectInst *Select) {
3662   // Check for constant integer values in the select.
3663   ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue());
3664   ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue());
3665   if (!TrueVal || !FalseVal)
3666     return false;
3667 
3668   // Find the relevant condition and destinations.
3669   Value *Condition = Select->getCondition();
3670   BasicBlock *TrueBB = SI->findCaseValue(TrueVal)->getCaseSuccessor();
3671   BasicBlock *FalseBB = SI->findCaseValue(FalseVal)->getCaseSuccessor();
3672 
3673   // Get weight for TrueBB and FalseBB.
3674   uint32_t TrueWeight = 0, FalseWeight = 0;
3675   SmallVector<uint64_t, 8> Weights;
3676   bool HasWeights = HasBranchWeights(SI);
3677   if (HasWeights) {
3678     GetBranchWeights(SI, Weights);
3679     if (Weights.size() == 1 + SI->getNumCases()) {
3680       TrueWeight =
3681           (uint32_t)Weights[SI->findCaseValue(TrueVal)->getSuccessorIndex()];
3682       FalseWeight =
3683           (uint32_t)Weights[SI->findCaseValue(FalseVal)->getSuccessorIndex()];
3684     }
3685   }
3686 
3687   // Perform the actual simplification.
3688   return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, TrueWeight,
3689                                     FalseWeight);
3690 }
3691 
3692 // Replaces
3693 //   (indirectbr (select cond, blockaddress(@fn, BlockA),
3694 //                             blockaddress(@fn, BlockB)))
3695 // with
3696 //   (br cond, BlockA, BlockB).
3697 bool SimplifyCFGOpt::SimplifyIndirectBrOnSelect(IndirectBrInst *IBI,
3698                                                 SelectInst *SI) {
3699   // Check that both operands of the select are block addresses.
3700   BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue());
3701   BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue());
3702   if (!TBA || !FBA)
3703     return false;
3704 
3705   // Extract the actual blocks.
3706   BasicBlock *TrueBB = TBA->getBasicBlock();
3707   BasicBlock *FalseBB = FBA->getBasicBlock();
3708 
3709   // Perform the actual simplification.
3710   return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 0,
3711                                     0);
3712 }
3713 
3714 /// This is called when we find an icmp instruction
3715 /// (a seteq/setne with a constant) as the only instruction in a
3716 /// block that ends with an uncond branch.  We are looking for a very specific
3717 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified.  In
3718 /// this case, we merge the first two "or's of icmp" into a switch, but then the
3719 /// default value goes to an uncond block with a seteq in it, we get something
3720 /// like:
3721 ///
3722 ///   switch i8 %A, label %DEFAULT [ i8 1, label %end    i8 2, label %end ]
3723 /// DEFAULT:
3724 ///   %tmp = icmp eq i8 %A, 92
3725 ///   br label %end
3726 /// end:
3727 ///   ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ]
3728 ///
3729 /// We prefer to split the edge to 'end' so that there is a true/false entry to
3730 /// the PHI, merging the third icmp into the switch.
3731 bool SimplifyCFGOpt::tryToSimplifyUncondBranchWithICmpInIt(
3732     ICmpInst *ICI, IRBuilder<> &Builder) {
3733   BasicBlock *BB = ICI->getParent();
3734 
3735   // If the block has any PHIs in it or the icmp has multiple uses, it is too
3736   // complex.
3737   if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse())
3738     return false;
3739 
3740   Value *V = ICI->getOperand(0);
3741   ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1));
3742 
3743   // The pattern we're looking for is where our only predecessor is a switch on
3744   // 'V' and this block is the default case for the switch.  In this case we can
3745   // fold the compared value into the switch to simplify things.
3746   BasicBlock *Pred = BB->getSinglePredecessor();
3747   if (!Pred || !isa<SwitchInst>(Pred->getTerminator()))
3748     return false;
3749 
3750   SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator());
3751   if (SI->getCondition() != V)
3752     return false;
3753 
3754   // If BB is reachable on a non-default case, then we simply know the value of
3755   // V in this block.  Substitute it and constant fold the icmp instruction
3756   // away.
3757   if (SI->getDefaultDest() != BB) {
3758     ConstantInt *VVal = SI->findCaseDest(BB);
3759     assert(VVal && "Should have a unique destination value");
3760     ICI->setOperand(0, VVal);
3761 
3762     if (Value *V = SimplifyInstruction(ICI, {DL, ICI})) {
3763       ICI->replaceAllUsesWith(V);
3764       ICI->eraseFromParent();
3765     }
3766     // BB is now empty, so it is likely to simplify away.
3767     return requestResimplify();
3768   }
3769 
3770   // Ok, the block is reachable from the default dest.  If the constant we're
3771   // comparing exists in one of the other edges, then we can constant fold ICI
3772   // and zap it.
3773   if (SI->findCaseValue(Cst) != SI->case_default()) {
3774     Value *V;
3775     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
3776       V = ConstantInt::getFalse(BB->getContext());
3777     else
3778       V = ConstantInt::getTrue(BB->getContext());
3779 
3780     ICI->replaceAllUsesWith(V);
3781     ICI->eraseFromParent();
3782     // BB is now empty, so it is likely to simplify away.
3783     return requestResimplify();
3784   }
3785 
3786   // The use of the icmp has to be in the 'end' block, by the only PHI node in
3787   // the block.
3788   BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0);
3789   PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back());
3790   if (PHIUse == nullptr || PHIUse != &SuccBlock->front() ||
3791       isa<PHINode>(++BasicBlock::iterator(PHIUse)))
3792     return false;
3793 
3794   // If the icmp is a SETEQ, then the default dest gets false, the new edge gets
3795   // true in the PHI.
3796   Constant *DefaultCst = ConstantInt::getTrue(BB->getContext());
3797   Constant *NewCst = ConstantInt::getFalse(BB->getContext());
3798 
3799   if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
3800     std::swap(DefaultCst, NewCst);
3801 
3802   // Replace ICI (which is used by the PHI for the default value) with true or
3803   // false depending on if it is EQ or NE.
3804   ICI->replaceAllUsesWith(DefaultCst);
3805   ICI->eraseFromParent();
3806 
3807   // Okay, the switch goes to this block on a default value.  Add an edge from
3808   // the switch to the merge point on the compared value.
3809   BasicBlock *NewBB =
3810       BasicBlock::Create(BB->getContext(), "switch.edge", BB->getParent(), BB);
3811   {
3812     SwitchInstProfUpdateWrapper SIW(*SI);
3813     auto W0 = SIW.getSuccessorWeight(0);
3814     SwitchInstProfUpdateWrapper::CaseWeightOpt NewW;
3815     if (W0) {
3816       NewW = ((uint64_t(*W0) + 1) >> 1);
3817       SIW.setSuccessorWeight(0, *NewW);
3818     }
3819     SIW.addCase(Cst, NewBB, NewW);
3820   }
3821 
3822   // NewBB branches to the phi block, add the uncond branch and the phi entry.
3823   Builder.SetInsertPoint(NewBB);
3824   Builder.SetCurrentDebugLocation(SI->getDebugLoc());
3825   Builder.CreateBr(SuccBlock);
3826   PHIUse->addIncoming(NewCst, NewBB);
3827   return true;
3828 }
3829 
3830 /// The specified branch is a conditional branch.
3831 /// Check to see if it is branching on an or/and chain of icmp instructions, and
3832 /// fold it into a switch instruction if so.
3833 bool SimplifyCFGOpt::SimplifyBranchOnICmpChain(BranchInst *BI,
3834                                                IRBuilder<> &Builder,
3835                                                const DataLayout &DL) {
3836   Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
3837   if (!Cond)
3838     return false;
3839 
3840   // Change br (X == 0 | X == 1), T, F into a switch instruction.
3841   // If this is a bunch of seteq's or'd together, or if it's a bunch of
3842   // 'setne's and'ed together, collect them.
3843 
3844   // Try to gather values from a chain of and/or to be turned into a switch
3845   ConstantComparesGatherer ConstantCompare(Cond, DL);
3846   // Unpack the result
3847   SmallVectorImpl<ConstantInt *> &Values = ConstantCompare.Vals;
3848   Value *CompVal = ConstantCompare.CompValue;
3849   unsigned UsedICmps = ConstantCompare.UsedICmps;
3850   Value *ExtraCase = ConstantCompare.Extra;
3851 
3852   // If we didn't have a multiply compared value, fail.
3853   if (!CompVal)
3854     return false;
3855 
3856   // Avoid turning single icmps into a switch.
3857   if (UsedICmps <= 1)
3858     return false;
3859 
3860   bool TrueWhenEqual = (Cond->getOpcode() == Instruction::Or);
3861 
3862   // There might be duplicate constants in the list, which the switch
3863   // instruction can't handle, remove them now.
3864   array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate);
3865   Values.erase(std::unique(Values.begin(), Values.end()), Values.end());
3866 
3867   // If Extra was used, we require at least two switch values to do the
3868   // transformation.  A switch with one value is just a conditional branch.
3869   if (ExtraCase && Values.size() < 2)
3870     return false;
3871 
3872   // TODO: Preserve branch weight metadata, similarly to how
3873   // FoldValueComparisonIntoPredecessors preserves it.
3874 
3875   // Figure out which block is which destination.
3876   BasicBlock *DefaultBB = BI->getSuccessor(1);
3877   BasicBlock *EdgeBB = BI->getSuccessor(0);
3878   if (!TrueWhenEqual)
3879     std::swap(DefaultBB, EdgeBB);
3880 
3881   BasicBlock *BB = BI->getParent();
3882 
3883   // MSAN does not like undefs as branch condition which can be introduced
3884   // with "explicit branch".
3885   if (ExtraCase && BB->getParent()->hasFnAttribute(Attribute::SanitizeMemory))
3886     return false;
3887 
3888   LLVM_DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size()
3889                     << " cases into SWITCH.  BB is:\n"
3890                     << *BB);
3891 
3892   // If there are any extra values that couldn't be folded into the switch
3893   // then we evaluate them with an explicit branch first. Split the block
3894   // right before the condbr to handle it.
3895   if (ExtraCase) {
3896     BasicBlock *NewBB =
3897         BB->splitBasicBlock(BI->getIterator(), "switch.early.test");
3898     // Remove the uncond branch added to the old block.
3899     Instruction *OldTI = BB->getTerminator();
3900     Builder.SetInsertPoint(OldTI);
3901 
3902     if (TrueWhenEqual)
3903       Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB);
3904     else
3905       Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB);
3906 
3907     OldTI->eraseFromParent();
3908 
3909     // If there are PHI nodes in EdgeBB, then we need to add a new entry to them
3910     // for the edge we just added.
3911     AddPredecessorToBlock(EdgeBB, BB, NewBB);
3912 
3913     LLVM_DEBUG(dbgs() << "  ** 'icmp' chain unhandled condition: " << *ExtraCase
3914                       << "\nEXTRABB = " << *BB);
3915     BB = NewBB;
3916   }
3917 
3918   Builder.SetInsertPoint(BI);
3919   // Convert pointer to int before we switch.
3920   if (CompVal->getType()->isPointerTy()) {
3921     CompVal = Builder.CreatePtrToInt(
3922         CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr");
3923   }
3924 
3925   // Create the new switch instruction now.
3926   SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size());
3927 
3928   // Add all of the 'cases' to the switch instruction.
3929   for (unsigned i = 0, e = Values.size(); i != e; ++i)
3930     New->addCase(Values[i], EdgeBB);
3931 
3932   // We added edges from PI to the EdgeBB.  As such, if there were any
3933   // PHI nodes in EdgeBB, they need entries to be added corresponding to
3934   // the number of edges added.
3935   for (BasicBlock::iterator BBI = EdgeBB->begin(); isa<PHINode>(BBI); ++BBI) {
3936     PHINode *PN = cast<PHINode>(BBI);
3937     Value *InVal = PN->getIncomingValueForBlock(BB);
3938     for (unsigned i = 0, e = Values.size() - 1; i != e; ++i)
3939       PN->addIncoming(InVal, BB);
3940   }
3941 
3942   // Erase the old branch instruction.
3943   EraseTerminatorAndDCECond(BI);
3944 
3945   LLVM_DEBUG(dbgs() << "  ** 'icmp' chain result is:\n" << *BB << '\n');
3946   return true;
3947 }
3948 
3949 bool SimplifyCFGOpt::simplifyResume(ResumeInst *RI, IRBuilder<> &Builder) {
3950   if (isa<PHINode>(RI->getValue()))
3951     return simplifyCommonResume(RI);
3952   else if (isa<LandingPadInst>(RI->getParent()->getFirstNonPHI()) &&
3953            RI->getValue() == RI->getParent()->getFirstNonPHI())
3954     // The resume must unwind the exception that caused control to branch here.
3955     return simplifySingleResume(RI);
3956 
3957   return false;
3958 }
3959 
3960 // Simplify resume that is shared by several landing pads (phi of landing pad).
3961 bool SimplifyCFGOpt::simplifyCommonResume(ResumeInst *RI) {
3962   BasicBlock *BB = RI->getParent();
3963 
3964   // Check that there are no other instructions except for debug intrinsics
3965   // between the phi of landing pads (RI->getValue()) and resume instruction.
3966   BasicBlock::iterator I = cast<Instruction>(RI->getValue())->getIterator(),
3967                        E = RI->getIterator();
3968   while (++I != E)
3969     if (!isa<DbgInfoIntrinsic>(I))
3970       return false;
3971 
3972   SmallSetVector<BasicBlock *, 4> TrivialUnwindBlocks;
3973   auto *PhiLPInst = cast<PHINode>(RI->getValue());
3974 
3975   // Check incoming blocks to see if any of them are trivial.
3976   for (unsigned Idx = 0, End = PhiLPInst->getNumIncomingValues(); Idx != End;
3977        Idx++) {
3978     auto *IncomingBB = PhiLPInst->getIncomingBlock(Idx);
3979     auto *IncomingValue = PhiLPInst->getIncomingValue(Idx);
3980 
3981     // If the block has other successors, we can not delete it because
3982     // it has other dependents.
3983     if (IncomingBB->getUniqueSuccessor() != BB)
3984       continue;
3985 
3986     auto *LandingPad = dyn_cast<LandingPadInst>(IncomingBB->getFirstNonPHI());
3987     // Not the landing pad that caused the control to branch here.
3988     if (IncomingValue != LandingPad)
3989       continue;
3990 
3991     bool isTrivial = true;
3992 
3993     I = IncomingBB->getFirstNonPHI()->getIterator();
3994     E = IncomingBB->getTerminator()->getIterator();
3995     while (++I != E)
3996       if (!isa<DbgInfoIntrinsic>(I)) {
3997         isTrivial = false;
3998         break;
3999       }
4000 
4001     if (isTrivial)
4002       TrivialUnwindBlocks.insert(IncomingBB);
4003   }
4004 
4005   // If no trivial unwind blocks, don't do any simplifications.
4006   if (TrivialUnwindBlocks.empty())
4007     return false;
4008 
4009   // Turn all invokes that unwind here into calls.
4010   for (auto *TrivialBB : TrivialUnwindBlocks) {
4011     // Blocks that will be simplified should be removed from the phi node.
4012     // Note there could be multiple edges to the resume block, and we need
4013     // to remove them all.
4014     while (PhiLPInst->getBasicBlockIndex(TrivialBB) != -1)
4015       BB->removePredecessor(TrivialBB, true);
4016 
4017     for (pred_iterator PI = pred_begin(TrivialBB), PE = pred_end(TrivialBB);
4018          PI != PE;) {
4019       BasicBlock *Pred = *PI++;
4020       removeUnwindEdge(Pred);
4021     }
4022 
4023     // In each SimplifyCFG run, only the current processed block can be erased.
4024     // Otherwise, it will break the iteration of SimplifyCFG pass. So instead
4025     // of erasing TrivialBB, we only remove the branch to the common resume
4026     // block so that we can later erase the resume block since it has no
4027     // predecessors.
4028     TrivialBB->getTerminator()->eraseFromParent();
4029     new UnreachableInst(RI->getContext(), TrivialBB);
4030   }
4031 
4032   // Delete the resume block if all its predecessors have been removed.
4033   if (pred_empty(BB))
4034     BB->eraseFromParent();
4035 
4036   return !TrivialUnwindBlocks.empty();
4037 }
4038 
4039 // Check if cleanup block is empty
4040 static bool isCleanupBlockEmpty(Instruction *Inst, Instruction *RI) {
4041   BasicBlock::iterator I = Inst->getIterator(), E = RI->getIterator();
4042   while (++I != E) {
4043     auto *II = dyn_cast<IntrinsicInst>(I);
4044     if (!II)
4045       return false;
4046 
4047     Intrinsic::ID IntrinsicID = II->getIntrinsicID();
4048     switch (IntrinsicID) {
4049     case Intrinsic::dbg_declare:
4050     case Intrinsic::dbg_value:
4051     case Intrinsic::dbg_label:
4052     case Intrinsic::lifetime_end:
4053       break;
4054     default:
4055       return false;
4056     }
4057   }
4058   return true;
4059 }
4060 
4061 // Simplify resume that is only used by a single (non-phi) landing pad.
4062 bool SimplifyCFGOpt::simplifySingleResume(ResumeInst *RI) {
4063   BasicBlock *BB = RI->getParent();
4064   auto *LPInst = cast<LandingPadInst>(BB->getFirstNonPHI());
4065   assert(RI->getValue() == LPInst &&
4066          "Resume must unwind the exception that caused control to here");
4067 
4068   // Check that there are no other instructions except for debug intrinsics.
4069   if (!isCleanupBlockEmpty(LPInst, RI))
4070     return false;
4071 
4072   // Turn all invokes that unwind here into calls and delete the basic block.
4073   for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) {
4074     BasicBlock *Pred = *PI++;
4075     removeUnwindEdge(Pred);
4076   }
4077 
4078   // The landingpad is now unreachable.  Zap it.
4079   if (LoopHeaders)
4080     LoopHeaders->erase(BB);
4081   BB->eraseFromParent();
4082   return true;
4083 }
4084 
4085 static bool removeEmptyCleanup(CleanupReturnInst *RI) {
4086   // If this is a trivial cleanup pad that executes no instructions, it can be
4087   // eliminated.  If the cleanup pad continues to the caller, any predecessor
4088   // that is an EH pad will be updated to continue to the caller and any
4089   // predecessor that terminates with an invoke instruction will have its invoke
4090   // instruction converted to a call instruction.  If the cleanup pad being
4091   // simplified does not continue to the caller, each predecessor will be
4092   // updated to continue to the unwind destination of the cleanup pad being
4093   // simplified.
4094   BasicBlock *BB = RI->getParent();
4095   CleanupPadInst *CPInst = RI->getCleanupPad();
4096   if (CPInst->getParent() != BB)
4097     // This isn't an empty cleanup.
4098     return false;
4099 
4100   // We cannot kill the pad if it has multiple uses.  This typically arises
4101   // from unreachable basic blocks.
4102   if (!CPInst->hasOneUse())
4103     return false;
4104 
4105   // Check that there are no other instructions except for benign intrinsics.
4106   if (!isCleanupBlockEmpty(CPInst, RI))
4107     return false;
4108 
4109   // If the cleanup return we are simplifying unwinds to the caller, this will
4110   // set UnwindDest to nullptr.
4111   BasicBlock *UnwindDest = RI->getUnwindDest();
4112   Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr;
4113 
4114   // We're about to remove BB from the control flow.  Before we do, sink any
4115   // PHINodes into the unwind destination.  Doing this before changing the
4116   // control flow avoids some potentially slow checks, since we can currently
4117   // be certain that UnwindDest and BB have no common predecessors (since they
4118   // are both EH pads).
4119   if (UnwindDest) {
4120     // First, go through the PHI nodes in UnwindDest and update any nodes that
4121     // reference the block we are removing
4122     for (BasicBlock::iterator I = UnwindDest->begin(),
4123                               IE = DestEHPad->getIterator();
4124          I != IE; ++I) {
4125       PHINode *DestPN = cast<PHINode>(I);
4126 
4127       int Idx = DestPN->getBasicBlockIndex(BB);
4128       // Since BB unwinds to UnwindDest, it has to be in the PHI node.
4129       assert(Idx != -1);
4130       // This PHI node has an incoming value that corresponds to a control
4131       // path through the cleanup pad we are removing.  If the incoming
4132       // value is in the cleanup pad, it must be a PHINode (because we
4133       // verified above that the block is otherwise empty).  Otherwise, the
4134       // value is either a constant or a value that dominates the cleanup
4135       // pad being removed.
4136       //
4137       // Because BB and UnwindDest are both EH pads, all of their
4138       // predecessors must unwind to these blocks, and since no instruction
4139       // can have multiple unwind destinations, there will be no overlap in
4140       // incoming blocks between SrcPN and DestPN.
4141       Value *SrcVal = DestPN->getIncomingValue(Idx);
4142       PHINode *SrcPN = dyn_cast<PHINode>(SrcVal);
4143 
4144       // Remove the entry for the block we are deleting.
4145       DestPN->removeIncomingValue(Idx, false);
4146 
4147       if (SrcPN && SrcPN->getParent() == BB) {
4148         // If the incoming value was a PHI node in the cleanup pad we are
4149         // removing, we need to merge that PHI node's incoming values into
4150         // DestPN.
4151         for (unsigned SrcIdx = 0, SrcE = SrcPN->getNumIncomingValues();
4152              SrcIdx != SrcE; ++SrcIdx) {
4153           DestPN->addIncoming(SrcPN->getIncomingValue(SrcIdx),
4154                               SrcPN->getIncomingBlock(SrcIdx));
4155         }
4156       } else {
4157         // Otherwise, the incoming value came from above BB and
4158         // so we can just reuse it.  We must associate all of BB's
4159         // predecessors with this value.
4160         for (auto *pred : predecessors(BB)) {
4161           DestPN->addIncoming(SrcVal, pred);
4162         }
4163       }
4164     }
4165 
4166     // Sink any remaining PHI nodes directly into UnwindDest.
4167     Instruction *InsertPt = DestEHPad;
4168     for (BasicBlock::iterator I = BB->begin(),
4169                               IE = BB->getFirstNonPHI()->getIterator();
4170          I != IE;) {
4171       // The iterator must be incremented here because the instructions are
4172       // being moved to another block.
4173       PHINode *PN = cast<PHINode>(I++);
4174       if (PN->use_empty() || !PN->isUsedOutsideOfBlock(BB))
4175         // If the PHI node has no uses or all of its uses are in this basic
4176         // block (meaning they are debug or lifetime intrinsics), just leave
4177         // it.  It will be erased when we erase BB below.
4178         continue;
4179 
4180       // Otherwise, sink this PHI node into UnwindDest.
4181       // Any predecessors to UnwindDest which are not already represented
4182       // must be back edges which inherit the value from the path through
4183       // BB.  In this case, the PHI value must reference itself.
4184       for (auto *pred : predecessors(UnwindDest))
4185         if (pred != BB)
4186           PN->addIncoming(PN, pred);
4187       PN->moveBefore(InsertPt);
4188     }
4189   }
4190 
4191   for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) {
4192     // The iterator must be updated here because we are removing this pred.
4193     BasicBlock *PredBB = *PI++;
4194     if (UnwindDest == nullptr) {
4195       removeUnwindEdge(PredBB);
4196     } else {
4197       Instruction *TI = PredBB->getTerminator();
4198       TI->replaceUsesOfWith(BB, UnwindDest);
4199     }
4200   }
4201 
4202   // The cleanup pad is now unreachable.  Zap it.
4203   BB->eraseFromParent();
4204   return true;
4205 }
4206 
4207 // Try to merge two cleanuppads together.
4208 static bool mergeCleanupPad(CleanupReturnInst *RI) {
4209   // Skip any cleanuprets which unwind to caller, there is nothing to merge
4210   // with.
4211   BasicBlock *UnwindDest = RI->getUnwindDest();
4212   if (!UnwindDest)
4213     return false;
4214 
4215   // This cleanupret isn't the only predecessor of this cleanuppad, it wouldn't
4216   // be safe to merge without code duplication.
4217   if (UnwindDest->getSinglePredecessor() != RI->getParent())
4218     return false;
4219 
4220   // Verify that our cleanuppad's unwind destination is another cleanuppad.
4221   auto *SuccessorCleanupPad = dyn_cast<CleanupPadInst>(&UnwindDest->front());
4222   if (!SuccessorCleanupPad)
4223     return false;
4224 
4225   CleanupPadInst *PredecessorCleanupPad = RI->getCleanupPad();
4226   // Replace any uses of the successor cleanupad with the predecessor pad
4227   // The only cleanuppad uses should be this cleanupret, it's cleanupret and
4228   // funclet bundle operands.
4229   SuccessorCleanupPad->replaceAllUsesWith(PredecessorCleanupPad);
4230   // Remove the old cleanuppad.
4231   SuccessorCleanupPad->eraseFromParent();
4232   // Now, we simply replace the cleanupret with a branch to the unwind
4233   // destination.
4234   BranchInst::Create(UnwindDest, RI->getParent());
4235   RI->eraseFromParent();
4236 
4237   return true;
4238 }
4239 
4240 bool SimplifyCFGOpt::simplifyCleanupReturn(CleanupReturnInst *RI) {
4241   // It is possible to transiantly have an undef cleanuppad operand because we
4242   // have deleted some, but not all, dead blocks.
4243   // Eventually, this block will be deleted.
4244   if (isa<UndefValue>(RI->getOperand(0)))
4245     return false;
4246 
4247   if (mergeCleanupPad(RI))
4248     return true;
4249 
4250   if (removeEmptyCleanup(RI))
4251     return true;
4252 
4253   return false;
4254 }
4255 
4256 bool SimplifyCFGOpt::simplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) {
4257   BasicBlock *BB = RI->getParent();
4258   if (!BB->getFirstNonPHIOrDbg()->isTerminator())
4259     return false;
4260 
4261   // Find predecessors that end with branches.
4262   SmallVector<BasicBlock *, 8> UncondBranchPreds;
4263   SmallVector<BranchInst *, 8> CondBranchPreds;
4264   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
4265     BasicBlock *P = *PI;
4266     Instruction *PTI = P->getTerminator();
4267     if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) {
4268       if (BI->isUnconditional())
4269         UncondBranchPreds.push_back(P);
4270       else
4271         CondBranchPreds.push_back(BI);
4272     }
4273   }
4274 
4275   // If we found some, do the transformation!
4276   if (!UncondBranchPreds.empty() && DupRet) {
4277     while (!UncondBranchPreds.empty()) {
4278       BasicBlock *Pred = UncondBranchPreds.pop_back_val();
4279       LLVM_DEBUG(dbgs() << "FOLDING: " << *BB
4280                         << "INTO UNCOND BRANCH PRED: " << *Pred);
4281       (void)FoldReturnIntoUncondBranch(RI, BB, Pred);
4282     }
4283 
4284     // If we eliminated all predecessors of the block, delete the block now.
4285     if (pred_empty(BB)) {
4286       // We know there are no successors, so just nuke the block.
4287       if (LoopHeaders)
4288         LoopHeaders->erase(BB);
4289       BB->eraseFromParent();
4290     }
4291 
4292     return true;
4293   }
4294 
4295   // Check out all of the conditional branches going to this return
4296   // instruction.  If any of them just select between returns, change the
4297   // branch itself into a select/return pair.
4298   while (!CondBranchPreds.empty()) {
4299     BranchInst *BI = CondBranchPreds.pop_back_val();
4300 
4301     // Check to see if the non-BB successor is also a return block.
4302     if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) &&
4303         isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) &&
4304         SimplifyCondBranchToTwoReturns(BI, Builder))
4305       return true;
4306   }
4307   return false;
4308 }
4309 
4310 bool SimplifyCFGOpt::simplifyUnreachable(UnreachableInst *UI) {
4311   BasicBlock *BB = UI->getParent();
4312 
4313   bool Changed = false;
4314 
4315   // If there are any instructions immediately before the unreachable that can
4316   // be removed, do so.
4317   while (UI->getIterator() != BB->begin()) {
4318     BasicBlock::iterator BBI = UI->getIterator();
4319     --BBI;
4320     // Do not delete instructions that can have side effects which might cause
4321     // the unreachable to not be reachable; specifically, calls and volatile
4322     // operations may have this effect.
4323     if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI))
4324       break;
4325 
4326     if (BBI->mayHaveSideEffects()) {
4327       if (auto *SI = dyn_cast<StoreInst>(BBI)) {
4328         if (SI->isVolatile())
4329           break;
4330       } else if (auto *LI = dyn_cast<LoadInst>(BBI)) {
4331         if (LI->isVolatile())
4332           break;
4333       } else if (auto *RMWI = dyn_cast<AtomicRMWInst>(BBI)) {
4334         if (RMWI->isVolatile())
4335           break;
4336       } else if (auto *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) {
4337         if (CXI->isVolatile())
4338           break;
4339       } else if (isa<CatchPadInst>(BBI)) {
4340         // A catchpad may invoke exception object constructors and such, which
4341         // in some languages can be arbitrary code, so be conservative by
4342         // default.
4343         // For CoreCLR, it just involves a type test, so can be removed.
4344         if (classifyEHPersonality(BB->getParent()->getPersonalityFn()) !=
4345             EHPersonality::CoreCLR)
4346           break;
4347       } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) &&
4348                  !isa<LandingPadInst>(BBI)) {
4349         break;
4350       }
4351       // Note that deleting LandingPad's here is in fact okay, although it
4352       // involves a bit of subtle reasoning. If this inst is a LandingPad,
4353       // all the predecessors of this block will be the unwind edges of Invokes,
4354       // and we can therefore guarantee this block will be erased.
4355     }
4356 
4357     // Delete this instruction (any uses are guaranteed to be dead)
4358     if (!BBI->use_empty())
4359       BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
4360     BBI->eraseFromParent();
4361     Changed = true;
4362   }
4363 
4364   // If the unreachable instruction is the first in the block, take a gander
4365   // at all of the predecessors of this instruction, and simplify them.
4366   if (&BB->front() != UI)
4367     return Changed;
4368 
4369   SmallVector<BasicBlock *, 8> Preds(pred_begin(BB), pred_end(BB));
4370   for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
4371     Instruction *TI = Preds[i]->getTerminator();
4372     IRBuilder<> Builder(TI);
4373     if (auto *BI = dyn_cast<BranchInst>(TI)) {
4374       if (BI->isUnconditional()) {
4375         assert(BI->getSuccessor(0) == BB && "Incorrect CFG");
4376         new UnreachableInst(TI->getContext(), TI);
4377         TI->eraseFromParent();
4378         Changed = true;
4379       } else {
4380         Value* Cond = BI->getCondition();
4381         if (BI->getSuccessor(0) == BB) {
4382           Builder.CreateAssumption(Builder.CreateNot(Cond));
4383           Builder.CreateBr(BI->getSuccessor(1));
4384         } else {
4385           assert(BI->getSuccessor(1) == BB && "Incorrect CFG");
4386           Builder.CreateAssumption(Cond);
4387           Builder.CreateBr(BI->getSuccessor(0));
4388         }
4389         EraseTerminatorAndDCECond(BI);
4390         Changed = true;
4391       }
4392     } else if (auto *SI = dyn_cast<SwitchInst>(TI)) {
4393       SwitchInstProfUpdateWrapper SU(*SI);
4394       for (auto i = SU->case_begin(), e = SU->case_end(); i != e;) {
4395         if (i->getCaseSuccessor() != BB) {
4396           ++i;
4397           continue;
4398         }
4399         BB->removePredecessor(SU->getParent());
4400         i = SU.removeCase(i);
4401         e = SU->case_end();
4402         Changed = true;
4403       }
4404     } else if (auto *II = dyn_cast<InvokeInst>(TI)) {
4405       if (II->getUnwindDest() == BB) {
4406         removeUnwindEdge(TI->getParent());
4407         Changed = true;
4408       }
4409     } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) {
4410       if (CSI->getUnwindDest() == BB) {
4411         removeUnwindEdge(TI->getParent());
4412         Changed = true;
4413         continue;
4414       }
4415 
4416       for (CatchSwitchInst::handler_iterator I = CSI->handler_begin(),
4417                                              E = CSI->handler_end();
4418            I != E; ++I) {
4419         if (*I == BB) {
4420           CSI->removeHandler(I);
4421           --I;
4422           --E;
4423           Changed = true;
4424         }
4425       }
4426       if (CSI->getNumHandlers() == 0) {
4427         BasicBlock *CatchSwitchBB = CSI->getParent();
4428         if (CSI->hasUnwindDest()) {
4429           // Redirect preds to the unwind dest
4430           CatchSwitchBB->replaceAllUsesWith(CSI->getUnwindDest());
4431         } else {
4432           // Rewrite all preds to unwind to caller (or from invoke to call).
4433           SmallVector<BasicBlock *, 8> EHPreds(predecessors(CatchSwitchBB));
4434           for (BasicBlock *EHPred : EHPreds)
4435             removeUnwindEdge(EHPred);
4436         }
4437         // The catchswitch is no longer reachable.
4438         new UnreachableInst(CSI->getContext(), CSI);
4439         CSI->eraseFromParent();
4440         Changed = true;
4441       }
4442     } else if (isa<CleanupReturnInst>(TI)) {
4443       new UnreachableInst(TI->getContext(), TI);
4444       TI->eraseFromParent();
4445       Changed = true;
4446     }
4447   }
4448 
4449   // If this block is now dead, remove it.
4450   if (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) {
4451     // We know there are no successors, so just nuke the block.
4452     if (LoopHeaders)
4453       LoopHeaders->erase(BB);
4454     BB->eraseFromParent();
4455     return true;
4456   }
4457 
4458   return Changed;
4459 }
4460 
4461 static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) {
4462   assert(Cases.size() >= 1);
4463 
4464   array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate);
4465   for (size_t I = 1, E = Cases.size(); I != E; ++I) {
4466     if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1)
4467       return false;
4468   }
4469   return true;
4470 }
4471 
4472 static void createUnreachableSwitchDefault(SwitchInst *Switch) {
4473   LLVM_DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n");
4474   BasicBlock *NewDefaultBlock =
4475      SplitBlockPredecessors(Switch->getDefaultDest(), Switch->getParent(), "");
4476   Switch->setDefaultDest(&*NewDefaultBlock);
4477   SplitBlock(&*NewDefaultBlock, &NewDefaultBlock->front());
4478   auto *NewTerminator = NewDefaultBlock->getTerminator();
4479   new UnreachableInst(Switch->getContext(), NewTerminator);
4480   EraseTerminatorAndDCECond(NewTerminator);
4481 }
4482 
4483 /// Turn a switch with two reachable destinations into an integer range
4484 /// comparison and branch.
4485 bool SimplifyCFGOpt::TurnSwitchRangeIntoICmp(SwitchInst *SI,
4486                                              IRBuilder<> &Builder) {
4487   assert(SI->getNumCases() > 1 && "Degenerate switch?");
4488 
4489   bool HasDefault =
4490       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
4491 
4492   // Partition the cases into two sets with different destinations.
4493   BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr;
4494   BasicBlock *DestB = nullptr;
4495   SmallVector<ConstantInt *, 16> CasesA;
4496   SmallVector<ConstantInt *, 16> CasesB;
4497 
4498   for (auto Case : SI->cases()) {
4499     BasicBlock *Dest = Case.getCaseSuccessor();
4500     if (!DestA)
4501       DestA = Dest;
4502     if (Dest == DestA) {
4503       CasesA.push_back(Case.getCaseValue());
4504       continue;
4505     }
4506     if (!DestB)
4507       DestB = Dest;
4508     if (Dest == DestB) {
4509       CasesB.push_back(Case.getCaseValue());
4510       continue;
4511     }
4512     return false; // More than two destinations.
4513   }
4514 
4515   assert(DestA && DestB &&
4516          "Single-destination switch should have been folded.");
4517   assert(DestA != DestB);
4518   assert(DestB != SI->getDefaultDest());
4519   assert(!CasesB.empty() && "There must be non-default cases.");
4520   assert(!CasesA.empty() || HasDefault);
4521 
4522   // Figure out if one of the sets of cases form a contiguous range.
4523   SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr;
4524   BasicBlock *ContiguousDest = nullptr;
4525   BasicBlock *OtherDest = nullptr;
4526   if (!CasesA.empty() && CasesAreContiguous(CasesA)) {
4527     ContiguousCases = &CasesA;
4528     ContiguousDest = DestA;
4529     OtherDest = DestB;
4530   } else if (CasesAreContiguous(CasesB)) {
4531     ContiguousCases = &CasesB;
4532     ContiguousDest = DestB;
4533     OtherDest = DestA;
4534   } else
4535     return false;
4536 
4537   // Start building the compare and branch.
4538 
4539   Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back());
4540   Constant *NumCases =
4541       ConstantInt::get(Offset->getType(), ContiguousCases->size());
4542 
4543   Value *Sub = SI->getCondition();
4544   if (!Offset->isNullValue())
4545     Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off");
4546 
4547   Value *Cmp;
4548   // If NumCases overflowed, then all possible values jump to the successor.
4549   if (NumCases->isNullValue() && !ContiguousCases->empty())
4550     Cmp = ConstantInt::getTrue(SI->getContext());
4551   else
4552     Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch");
4553   BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest);
4554 
4555   // Update weight for the newly-created conditional branch.
4556   if (HasBranchWeights(SI)) {
4557     SmallVector<uint64_t, 8> Weights;
4558     GetBranchWeights(SI, Weights);
4559     if (Weights.size() == 1 + SI->getNumCases()) {
4560       uint64_t TrueWeight = 0;
4561       uint64_t FalseWeight = 0;
4562       for (size_t I = 0, E = Weights.size(); I != E; ++I) {
4563         if (SI->getSuccessor(I) == ContiguousDest)
4564           TrueWeight += Weights[I];
4565         else
4566           FalseWeight += Weights[I];
4567       }
4568       while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) {
4569         TrueWeight /= 2;
4570         FalseWeight /= 2;
4571       }
4572       setBranchWeights(NewBI, TrueWeight, FalseWeight);
4573     }
4574   }
4575 
4576   // Prune obsolete incoming values off the successors' PHI nodes.
4577   for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) {
4578     unsigned PreviousEdges = ContiguousCases->size();
4579     if (ContiguousDest == SI->getDefaultDest())
4580       ++PreviousEdges;
4581     for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
4582       cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
4583   }
4584   for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) {
4585     unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size();
4586     if (OtherDest == SI->getDefaultDest())
4587       ++PreviousEdges;
4588     for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
4589       cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
4590   }
4591 
4592   // Clean up the default block - it may have phis or other instructions before
4593   // the unreachable terminator.
4594   if (!HasDefault)
4595     createUnreachableSwitchDefault(SI);
4596 
4597   // Drop the switch.
4598   SI->eraseFromParent();
4599 
4600   return true;
4601 }
4602 
4603 /// Compute masked bits for the condition of a switch
4604 /// and use it to remove dead cases.
4605 static bool eliminateDeadSwitchCases(SwitchInst *SI, AssumptionCache *AC,
4606                                      const DataLayout &DL) {
4607   Value *Cond = SI->getCondition();
4608   unsigned Bits = Cond->getType()->getIntegerBitWidth();
4609   KnownBits Known = computeKnownBits(Cond, DL, 0, AC, SI);
4610 
4611   // We can also eliminate cases by determining that their values are outside of
4612   // the limited range of the condition based on how many significant (non-sign)
4613   // bits are in the condition value.
4614   unsigned ExtraSignBits = ComputeNumSignBits(Cond, DL, 0, AC, SI) - 1;
4615   unsigned MaxSignificantBitsInCond = Bits - ExtraSignBits;
4616 
4617   // Gather dead cases.
4618   SmallVector<ConstantInt *, 8> DeadCases;
4619   for (auto &Case : SI->cases()) {
4620     const APInt &CaseVal = Case.getCaseValue()->getValue();
4621     if (Known.Zero.intersects(CaseVal) || !Known.One.isSubsetOf(CaseVal) ||
4622         (CaseVal.getMinSignedBits() > MaxSignificantBitsInCond)) {
4623       DeadCases.push_back(Case.getCaseValue());
4624       LLVM_DEBUG(dbgs() << "SimplifyCFG: switch case " << CaseVal
4625                         << " is dead.\n");
4626     }
4627   }
4628 
4629   // If we can prove that the cases must cover all possible values, the
4630   // default destination becomes dead and we can remove it.  If we know some
4631   // of the bits in the value, we can use that to more precisely compute the
4632   // number of possible unique case values.
4633   bool HasDefault =
4634       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
4635   const unsigned NumUnknownBits =
4636       Bits - (Known.Zero | Known.One).countPopulation();
4637   assert(NumUnknownBits <= Bits);
4638   if (HasDefault && DeadCases.empty() &&
4639       NumUnknownBits < 64 /* avoid overflow */ &&
4640       SI->getNumCases() == (1ULL << NumUnknownBits)) {
4641     createUnreachableSwitchDefault(SI);
4642     return true;
4643   }
4644 
4645   if (DeadCases.empty())
4646     return false;
4647 
4648   SwitchInstProfUpdateWrapper SIW(*SI);
4649   for (ConstantInt *DeadCase : DeadCases) {
4650     SwitchInst::CaseIt CaseI = SI->findCaseValue(DeadCase);
4651     assert(CaseI != SI->case_default() &&
4652            "Case was not found. Probably mistake in DeadCases forming.");
4653     // Prune unused values from PHI nodes.
4654     CaseI->getCaseSuccessor()->removePredecessor(SI->getParent());
4655     SIW.removeCase(CaseI);
4656   }
4657 
4658   return true;
4659 }
4660 
4661 /// If BB would be eligible for simplification by
4662 /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated
4663 /// by an unconditional branch), look at the phi node for BB in the successor
4664 /// block and see if the incoming value is equal to CaseValue. If so, return
4665 /// the phi node, and set PhiIndex to BB's index in the phi node.
4666 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue,
4667                                               BasicBlock *BB, int *PhiIndex) {
4668   if (BB->getFirstNonPHIOrDbg() != BB->getTerminator())
4669     return nullptr; // BB must be empty to be a candidate for simplification.
4670   if (!BB->getSinglePredecessor())
4671     return nullptr; // BB must be dominated by the switch.
4672 
4673   BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator());
4674   if (!Branch || !Branch->isUnconditional())
4675     return nullptr; // Terminator must be unconditional branch.
4676 
4677   BasicBlock *Succ = Branch->getSuccessor(0);
4678 
4679   for (PHINode &PHI : Succ->phis()) {
4680     int Idx = PHI.getBasicBlockIndex(BB);
4681     assert(Idx >= 0 && "PHI has no entry for predecessor?");
4682 
4683     Value *InValue = PHI.getIncomingValue(Idx);
4684     if (InValue != CaseValue)
4685       continue;
4686 
4687     *PhiIndex = Idx;
4688     return &PHI;
4689   }
4690 
4691   return nullptr;
4692 }
4693 
4694 /// Try to forward the condition of a switch instruction to a phi node
4695 /// dominated by the switch, if that would mean that some of the destination
4696 /// blocks of the switch can be folded away. Return true if a change is made.
4697 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) {
4698   using ForwardingNodesMap = DenseMap<PHINode *, SmallVector<int, 4>>;
4699 
4700   ForwardingNodesMap ForwardingNodes;
4701   BasicBlock *SwitchBlock = SI->getParent();
4702   bool Changed = false;
4703   for (auto &Case : SI->cases()) {
4704     ConstantInt *CaseValue = Case.getCaseValue();
4705     BasicBlock *CaseDest = Case.getCaseSuccessor();
4706 
4707     // Replace phi operands in successor blocks that are using the constant case
4708     // value rather than the switch condition variable:
4709     //   switchbb:
4710     //   switch i32 %x, label %default [
4711     //     i32 17, label %succ
4712     //   ...
4713     //   succ:
4714     //     %r = phi i32 ... [ 17, %switchbb ] ...
4715     // -->
4716     //     %r = phi i32 ... [ %x, %switchbb ] ...
4717 
4718     for (PHINode &Phi : CaseDest->phis()) {
4719       // This only works if there is exactly 1 incoming edge from the switch to
4720       // a phi. If there is >1, that means multiple cases of the switch map to 1
4721       // value in the phi, and that phi value is not the switch condition. Thus,
4722       // this transform would not make sense (the phi would be invalid because
4723       // a phi can't have different incoming values from the same block).
4724       int SwitchBBIdx = Phi.getBasicBlockIndex(SwitchBlock);
4725       if (Phi.getIncomingValue(SwitchBBIdx) == CaseValue &&
4726           count(Phi.blocks(), SwitchBlock) == 1) {
4727         Phi.setIncomingValue(SwitchBBIdx, SI->getCondition());
4728         Changed = true;
4729       }
4730     }
4731 
4732     // Collect phi nodes that are indirectly using this switch's case constants.
4733     int PhiIdx;
4734     if (auto *Phi = FindPHIForConditionForwarding(CaseValue, CaseDest, &PhiIdx))
4735       ForwardingNodes[Phi].push_back(PhiIdx);
4736   }
4737 
4738   for (auto &ForwardingNode : ForwardingNodes) {
4739     PHINode *Phi = ForwardingNode.first;
4740     SmallVectorImpl<int> &Indexes = ForwardingNode.second;
4741     if (Indexes.size() < 2)
4742       continue;
4743 
4744     for (int Index : Indexes)
4745       Phi->setIncomingValue(Index, SI->getCondition());
4746     Changed = true;
4747   }
4748 
4749   return Changed;
4750 }
4751 
4752 /// Return true if the backend will be able to handle
4753 /// initializing an array of constants like C.
4754 static bool ValidLookupTableConstant(Constant *C, const TargetTransformInfo &TTI) {
4755   if (C->isThreadDependent())
4756     return false;
4757   if (C->isDLLImportDependent())
4758     return false;
4759 
4760   if (!isa<ConstantFP>(C) && !isa<ConstantInt>(C) &&
4761       !isa<ConstantPointerNull>(C) && !isa<GlobalValue>(C) &&
4762       !isa<UndefValue>(C) && !isa<ConstantExpr>(C))
4763     return false;
4764 
4765   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
4766     if (!CE->isGEPWithNoNotionalOverIndexing())
4767       return false;
4768     if (!ValidLookupTableConstant(CE->getOperand(0), TTI))
4769       return false;
4770   }
4771 
4772   if (!TTI.shouldBuildLookupTablesForConstant(C))
4773     return false;
4774 
4775   return true;
4776 }
4777 
4778 /// If V is a Constant, return it. Otherwise, try to look up
4779 /// its constant value in ConstantPool, returning 0 if it's not there.
4780 static Constant *
4781 LookupConstant(Value *V,
4782                const SmallDenseMap<Value *, Constant *> &ConstantPool) {
4783   if (Constant *C = dyn_cast<Constant>(V))
4784     return C;
4785   return ConstantPool.lookup(V);
4786 }
4787 
4788 /// Try to fold instruction I into a constant. This works for
4789 /// simple instructions such as binary operations where both operands are
4790 /// constant or can be replaced by constants from the ConstantPool. Returns the
4791 /// resulting constant on success, 0 otherwise.
4792 static Constant *
4793 ConstantFold(Instruction *I, const DataLayout &DL,
4794              const SmallDenseMap<Value *, Constant *> &ConstantPool) {
4795   if (SelectInst *Select = dyn_cast<SelectInst>(I)) {
4796     Constant *A = LookupConstant(Select->getCondition(), ConstantPool);
4797     if (!A)
4798       return nullptr;
4799     if (A->isAllOnesValue())
4800       return LookupConstant(Select->getTrueValue(), ConstantPool);
4801     if (A->isNullValue())
4802       return LookupConstant(Select->getFalseValue(), ConstantPool);
4803     return nullptr;
4804   }
4805 
4806   SmallVector<Constant *, 4> COps;
4807   for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) {
4808     if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool))
4809       COps.push_back(A);
4810     else
4811       return nullptr;
4812   }
4813 
4814   if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
4815     return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0],
4816                                            COps[1], DL);
4817   }
4818 
4819   return ConstantFoldInstOperands(I, COps, DL);
4820 }
4821 
4822 /// Try to determine the resulting constant values in phi nodes
4823 /// at the common destination basic block, *CommonDest, for one of the case
4824 /// destionations CaseDest corresponding to value CaseVal (0 for the default
4825 /// case), of a switch instruction SI.
4826 static bool
4827 GetCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest,
4828                BasicBlock **CommonDest,
4829                SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res,
4830                const DataLayout &DL, const TargetTransformInfo &TTI) {
4831   // The block from which we enter the common destination.
4832   BasicBlock *Pred = SI->getParent();
4833 
4834   // If CaseDest is empty except for some side-effect free instructions through
4835   // which we can constant-propagate the CaseVal, continue to its successor.
4836   SmallDenseMap<Value *, Constant *> ConstantPool;
4837   ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal));
4838   for (Instruction &I :CaseDest->instructionsWithoutDebug()) {
4839     if (I.isTerminator()) {
4840       // If the terminator is a simple branch, continue to the next block.
4841       if (I.getNumSuccessors() != 1 || I.isExceptionalTerminator())
4842         return false;
4843       Pred = CaseDest;
4844       CaseDest = I.getSuccessor(0);
4845     } else if (Constant *C = ConstantFold(&I, DL, ConstantPool)) {
4846       // Instruction is side-effect free and constant.
4847 
4848       // If the instruction has uses outside this block or a phi node slot for
4849       // the block, it is not safe to bypass the instruction since it would then
4850       // no longer dominate all its uses.
4851       for (auto &Use : I.uses()) {
4852         User *User = Use.getUser();
4853         if (Instruction *I = dyn_cast<Instruction>(User))
4854           if (I->getParent() == CaseDest)
4855             continue;
4856         if (PHINode *Phi = dyn_cast<PHINode>(User))
4857           if (Phi->getIncomingBlock(Use) == CaseDest)
4858             continue;
4859         return false;
4860       }
4861 
4862       ConstantPool.insert(std::make_pair(&I, C));
4863     } else {
4864       break;
4865     }
4866   }
4867 
4868   // If we did not have a CommonDest before, use the current one.
4869   if (!*CommonDest)
4870     *CommonDest = CaseDest;
4871   // If the destination isn't the common one, abort.
4872   if (CaseDest != *CommonDest)
4873     return false;
4874 
4875   // Get the values for this case from phi nodes in the destination block.
4876   for (PHINode &PHI : (*CommonDest)->phis()) {
4877     int Idx = PHI.getBasicBlockIndex(Pred);
4878     if (Idx == -1)
4879       continue;
4880 
4881     Constant *ConstVal =
4882         LookupConstant(PHI.getIncomingValue(Idx), ConstantPool);
4883     if (!ConstVal)
4884       return false;
4885 
4886     // Be conservative about which kinds of constants we support.
4887     if (!ValidLookupTableConstant(ConstVal, TTI))
4888       return false;
4889 
4890     Res.push_back(std::make_pair(&PHI, ConstVal));
4891   }
4892 
4893   return Res.size() > 0;
4894 }
4895 
4896 // Helper function used to add CaseVal to the list of cases that generate
4897 // Result. Returns the updated number of cases that generate this result.
4898 static uintptr_t MapCaseToResult(ConstantInt *CaseVal,
4899                                  SwitchCaseResultVectorTy &UniqueResults,
4900                                  Constant *Result) {
4901   for (auto &I : UniqueResults) {
4902     if (I.first == Result) {
4903       I.second.push_back(CaseVal);
4904       return I.second.size();
4905     }
4906   }
4907   UniqueResults.push_back(
4908       std::make_pair(Result, SmallVector<ConstantInt *, 4>(1, CaseVal)));
4909   return 1;
4910 }
4911 
4912 // Helper function that initializes a map containing
4913 // results for the PHI node of the common destination block for a switch
4914 // instruction. Returns false if multiple PHI nodes have been found or if
4915 // there is not a common destination block for the switch.
4916 static bool
4917 InitializeUniqueCases(SwitchInst *SI, PHINode *&PHI, BasicBlock *&CommonDest,
4918                       SwitchCaseResultVectorTy &UniqueResults,
4919                       Constant *&DefaultResult, const DataLayout &DL,
4920                       const TargetTransformInfo &TTI,
4921                       uintptr_t MaxUniqueResults, uintptr_t MaxCasesPerResult) {
4922   for (auto &I : SI->cases()) {
4923     ConstantInt *CaseVal = I.getCaseValue();
4924 
4925     // Resulting value at phi nodes for this case value.
4926     SwitchCaseResultsTy Results;
4927     if (!GetCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results,
4928                         DL, TTI))
4929       return false;
4930 
4931     // Only one value per case is permitted.
4932     if (Results.size() > 1)
4933       return false;
4934 
4935     // Add the case->result mapping to UniqueResults.
4936     const uintptr_t NumCasesForResult =
4937         MapCaseToResult(CaseVal, UniqueResults, Results.begin()->second);
4938 
4939     // Early out if there are too many cases for this result.
4940     if (NumCasesForResult > MaxCasesPerResult)
4941       return false;
4942 
4943     // Early out if there are too many unique results.
4944     if (UniqueResults.size() > MaxUniqueResults)
4945       return false;
4946 
4947     // Check the PHI consistency.
4948     if (!PHI)
4949       PHI = Results[0].first;
4950     else if (PHI != Results[0].first)
4951       return false;
4952   }
4953   // Find the default result value.
4954   SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults;
4955   BasicBlock *DefaultDest = SI->getDefaultDest();
4956   GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults,
4957                  DL, TTI);
4958   // If the default value is not found abort unless the default destination
4959   // is unreachable.
4960   DefaultResult =
4961       DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr;
4962   if ((!DefaultResult &&
4963        !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg())))
4964     return false;
4965 
4966   return true;
4967 }
4968 
4969 // Helper function that checks if it is possible to transform a switch with only
4970 // two cases (or two cases + default) that produces a result into a select.
4971 // Example:
4972 // switch (a) {
4973 //   case 10:                %0 = icmp eq i32 %a, 10
4974 //     return 10;            %1 = select i1 %0, i32 10, i32 4
4975 //   case 20:        ---->   %2 = icmp eq i32 %a, 20
4976 //     return 2;             %3 = select i1 %2, i32 2, i32 %1
4977 //   default:
4978 //     return 4;
4979 // }
4980 static Value *ConvertTwoCaseSwitch(const SwitchCaseResultVectorTy &ResultVector,
4981                                    Constant *DefaultResult, Value *Condition,
4982                                    IRBuilder<> &Builder) {
4983   assert(ResultVector.size() == 2 &&
4984          "We should have exactly two unique results at this point");
4985   // If we are selecting between only two cases transform into a simple
4986   // select or a two-way select if default is possible.
4987   if (ResultVector[0].second.size() == 1 &&
4988       ResultVector[1].second.size() == 1) {
4989     ConstantInt *const FirstCase = ResultVector[0].second[0];
4990     ConstantInt *const SecondCase = ResultVector[1].second[0];
4991 
4992     bool DefaultCanTrigger = DefaultResult;
4993     Value *SelectValue = ResultVector[1].first;
4994     if (DefaultCanTrigger) {
4995       Value *const ValueCompare =
4996           Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp");
4997       SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first,
4998                                          DefaultResult, "switch.select");
4999     }
5000     Value *const ValueCompare =
5001         Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp");
5002     return Builder.CreateSelect(ValueCompare, ResultVector[0].first,
5003                                 SelectValue, "switch.select");
5004   }
5005 
5006   return nullptr;
5007 }
5008 
5009 // Helper function to cleanup a switch instruction that has been converted into
5010 // a select, fixing up PHI nodes and basic blocks.
5011 static void RemoveSwitchAfterSelectConversion(SwitchInst *SI, PHINode *PHI,
5012                                               Value *SelectValue,
5013                                               IRBuilder<> &Builder) {
5014   BasicBlock *SelectBB = SI->getParent();
5015   while (PHI->getBasicBlockIndex(SelectBB) >= 0)
5016     PHI->removeIncomingValue(SelectBB);
5017   PHI->addIncoming(SelectValue, SelectBB);
5018 
5019   Builder.CreateBr(PHI->getParent());
5020 
5021   // Remove the switch.
5022   for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
5023     BasicBlock *Succ = SI->getSuccessor(i);
5024 
5025     if (Succ == PHI->getParent())
5026       continue;
5027     Succ->removePredecessor(SelectBB);
5028   }
5029   SI->eraseFromParent();
5030 }
5031 
5032 /// If the switch is only used to initialize one or more
5033 /// phi nodes in a common successor block with only two different
5034 /// constant values, replace the switch with select.
5035 static bool switchToSelect(SwitchInst *SI, IRBuilder<> &Builder,
5036                            const DataLayout &DL,
5037                            const TargetTransformInfo &TTI) {
5038   Value *const Cond = SI->getCondition();
5039   PHINode *PHI = nullptr;
5040   BasicBlock *CommonDest = nullptr;
5041   Constant *DefaultResult;
5042   SwitchCaseResultVectorTy UniqueResults;
5043   // Collect all the cases that will deliver the same value from the switch.
5044   if (!InitializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult,
5045                              DL, TTI, 2, 1))
5046     return false;
5047   // Selects choose between maximum two values.
5048   if (UniqueResults.size() != 2)
5049     return false;
5050   assert(PHI != nullptr && "PHI for value select not found");
5051 
5052   Builder.SetInsertPoint(SI);
5053   Value *SelectValue =
5054       ConvertTwoCaseSwitch(UniqueResults, DefaultResult, Cond, Builder);
5055   if (SelectValue) {
5056     RemoveSwitchAfterSelectConversion(SI, PHI, SelectValue, Builder);
5057     return true;
5058   }
5059   // The switch couldn't be converted into a select.
5060   return false;
5061 }
5062 
5063 namespace {
5064 
5065 /// This class represents a lookup table that can be used to replace a switch.
5066 class SwitchLookupTable {
5067 public:
5068   /// Create a lookup table to use as a switch replacement with the contents
5069   /// of Values, using DefaultValue to fill any holes in the table.
5070   SwitchLookupTable(
5071       Module &M, uint64_t TableSize, ConstantInt *Offset,
5072       const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
5073       Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName);
5074 
5075   /// Build instructions with Builder to retrieve the value at
5076   /// the position given by Index in the lookup table.
5077   Value *BuildLookup(Value *Index, IRBuilder<> &Builder);
5078 
5079   /// Return true if a table with TableSize elements of
5080   /// type ElementType would fit in a target-legal register.
5081   static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize,
5082                                  Type *ElementType);
5083 
5084 private:
5085   // Depending on the contents of the table, it can be represented in
5086   // different ways.
5087   enum {
5088     // For tables where each element contains the same value, we just have to
5089     // store that single value and return it for each lookup.
5090     SingleValueKind,
5091 
5092     // For tables where there is a linear relationship between table index
5093     // and values. We calculate the result with a simple multiplication
5094     // and addition instead of a table lookup.
5095     LinearMapKind,
5096 
5097     // For small tables with integer elements, we can pack them into a bitmap
5098     // that fits into a target-legal register. Values are retrieved by
5099     // shift and mask operations.
5100     BitMapKind,
5101 
5102     // The table is stored as an array of values. Values are retrieved by load
5103     // instructions from the table.
5104     ArrayKind
5105   } Kind;
5106 
5107   // For SingleValueKind, this is the single value.
5108   Constant *SingleValue = nullptr;
5109 
5110   // For BitMapKind, this is the bitmap.
5111   ConstantInt *BitMap = nullptr;
5112   IntegerType *BitMapElementTy = nullptr;
5113 
5114   // For LinearMapKind, these are the constants used to derive the value.
5115   ConstantInt *LinearOffset = nullptr;
5116   ConstantInt *LinearMultiplier = nullptr;
5117 
5118   // For ArrayKind, this is the array.
5119   GlobalVariable *Array = nullptr;
5120 };
5121 
5122 } // end anonymous namespace
5123 
5124 SwitchLookupTable::SwitchLookupTable(
5125     Module &M, uint64_t TableSize, ConstantInt *Offset,
5126     const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
5127     Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName) {
5128   assert(Values.size() && "Can't build lookup table without values!");
5129   assert(TableSize >= Values.size() && "Can't fit values in table!");
5130 
5131   // If all values in the table are equal, this is that value.
5132   SingleValue = Values.begin()->second;
5133 
5134   Type *ValueType = Values.begin()->second->getType();
5135 
5136   // Build up the table contents.
5137   SmallVector<Constant *, 64> TableContents(TableSize);
5138   for (size_t I = 0, E = Values.size(); I != E; ++I) {
5139     ConstantInt *CaseVal = Values[I].first;
5140     Constant *CaseRes = Values[I].second;
5141     assert(CaseRes->getType() == ValueType);
5142 
5143     uint64_t Idx = (CaseVal->getValue() - Offset->getValue()).getLimitedValue();
5144     TableContents[Idx] = CaseRes;
5145 
5146     if (CaseRes != SingleValue)
5147       SingleValue = nullptr;
5148   }
5149 
5150   // Fill in any holes in the table with the default result.
5151   if (Values.size() < TableSize) {
5152     assert(DefaultValue &&
5153            "Need a default value to fill the lookup table holes.");
5154     assert(DefaultValue->getType() == ValueType);
5155     for (uint64_t I = 0; I < TableSize; ++I) {
5156       if (!TableContents[I])
5157         TableContents[I] = DefaultValue;
5158     }
5159 
5160     if (DefaultValue != SingleValue)
5161       SingleValue = nullptr;
5162   }
5163 
5164   // If each element in the table contains the same value, we only need to store
5165   // that single value.
5166   if (SingleValue) {
5167     Kind = SingleValueKind;
5168     return;
5169   }
5170 
5171   // Check if we can derive the value with a linear transformation from the
5172   // table index.
5173   if (isa<IntegerType>(ValueType)) {
5174     bool LinearMappingPossible = true;
5175     APInt PrevVal;
5176     APInt DistToPrev;
5177     assert(TableSize >= 2 && "Should be a SingleValue table.");
5178     // Check if there is the same distance between two consecutive values.
5179     for (uint64_t I = 0; I < TableSize; ++I) {
5180       ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]);
5181       if (!ConstVal) {
5182         // This is an undef. We could deal with it, but undefs in lookup tables
5183         // are very seldom. It's probably not worth the additional complexity.
5184         LinearMappingPossible = false;
5185         break;
5186       }
5187       const APInt &Val = ConstVal->getValue();
5188       if (I != 0) {
5189         APInt Dist = Val - PrevVal;
5190         if (I == 1) {
5191           DistToPrev = Dist;
5192         } else if (Dist != DistToPrev) {
5193           LinearMappingPossible = false;
5194           break;
5195         }
5196       }
5197       PrevVal = Val;
5198     }
5199     if (LinearMappingPossible) {
5200       LinearOffset = cast<ConstantInt>(TableContents[0]);
5201       LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev);
5202       Kind = LinearMapKind;
5203       ++NumLinearMaps;
5204       return;
5205     }
5206   }
5207 
5208   // If the type is integer and the table fits in a register, build a bitmap.
5209   if (WouldFitInRegister(DL, TableSize, ValueType)) {
5210     IntegerType *IT = cast<IntegerType>(ValueType);
5211     APInt TableInt(TableSize * IT->getBitWidth(), 0);
5212     for (uint64_t I = TableSize; I > 0; --I) {
5213       TableInt <<= IT->getBitWidth();
5214       // Insert values into the bitmap. Undef values are set to zero.
5215       if (!isa<UndefValue>(TableContents[I - 1])) {
5216         ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]);
5217         TableInt |= Val->getValue().zext(TableInt.getBitWidth());
5218       }
5219     }
5220     BitMap = ConstantInt::get(M.getContext(), TableInt);
5221     BitMapElementTy = IT;
5222     Kind = BitMapKind;
5223     ++NumBitMaps;
5224     return;
5225   }
5226 
5227   // Store the table in an array.
5228   ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize);
5229   Constant *Initializer = ConstantArray::get(ArrayTy, TableContents);
5230 
5231   Array = new GlobalVariable(M, ArrayTy, /*isConstant=*/true,
5232                              GlobalVariable::PrivateLinkage, Initializer,
5233                              "switch.table." + FuncName);
5234   Array->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
5235   // Set the alignment to that of an array items. We will be only loading one
5236   // value out of it.
5237   Array->setAlignment(Align(DL.getPrefTypeAlignment(ValueType)));
5238   Kind = ArrayKind;
5239 }
5240 
5241 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) {
5242   switch (Kind) {
5243   case SingleValueKind:
5244     return SingleValue;
5245   case LinearMapKind: {
5246     // Derive the result value from the input value.
5247     Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(),
5248                                           false, "switch.idx.cast");
5249     if (!LinearMultiplier->isOne())
5250       Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult");
5251     if (!LinearOffset->isZero())
5252       Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset");
5253     return Result;
5254   }
5255   case BitMapKind: {
5256     // Type of the bitmap (e.g. i59).
5257     IntegerType *MapTy = BitMap->getType();
5258 
5259     // Cast Index to the same type as the bitmap.
5260     // Note: The Index is <= the number of elements in the table, so
5261     // truncating it to the width of the bitmask is safe.
5262     Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast");
5263 
5264     // Multiply the shift amount by the element width.
5265     ShiftAmt = Builder.CreateMul(
5266         ShiftAmt, ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()),
5267         "switch.shiftamt");
5268 
5269     // Shift down.
5270     Value *DownShifted =
5271         Builder.CreateLShr(BitMap, ShiftAmt, "switch.downshift");
5272     // Mask off.
5273     return Builder.CreateTrunc(DownShifted, BitMapElementTy, "switch.masked");
5274   }
5275   case ArrayKind: {
5276     // Make sure the table index will not overflow when treated as signed.
5277     IntegerType *IT = cast<IntegerType>(Index->getType());
5278     uint64_t TableSize =
5279         Array->getInitializer()->getType()->getArrayNumElements();
5280     if (TableSize > (1ULL << (IT->getBitWidth() - 1)))
5281       Index = Builder.CreateZExt(
5282           Index, IntegerType::get(IT->getContext(), IT->getBitWidth() + 1),
5283           "switch.tableidx.zext");
5284 
5285     Value *GEPIndices[] = {Builder.getInt32(0), Index};
5286     Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array,
5287                                            GEPIndices, "switch.gep");
5288     return Builder.CreateLoad(
5289         cast<ArrayType>(Array->getValueType())->getElementType(), GEP,
5290         "switch.load");
5291   }
5292   }
5293   llvm_unreachable("Unknown lookup table kind!");
5294 }
5295 
5296 bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL,
5297                                            uint64_t TableSize,
5298                                            Type *ElementType) {
5299   auto *IT = dyn_cast<IntegerType>(ElementType);
5300   if (!IT)
5301     return false;
5302   // FIXME: If the type is wider than it needs to be, e.g. i8 but all values
5303   // are <= 15, we could try to narrow the type.
5304 
5305   // Avoid overflow, fitsInLegalInteger uses unsigned int for the width.
5306   if (TableSize >= UINT_MAX / IT->getBitWidth())
5307     return false;
5308   return DL.fitsInLegalInteger(TableSize * IT->getBitWidth());
5309 }
5310 
5311 /// Determine whether a lookup table should be built for this switch, based on
5312 /// the number of cases, size of the table, and the types of the results.
5313 static bool
5314 ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize,
5315                        const TargetTransformInfo &TTI, const DataLayout &DL,
5316                        const SmallDenseMap<PHINode *, Type *> &ResultTypes) {
5317   if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10)
5318     return false; // TableSize overflowed, or mul below might overflow.
5319 
5320   bool AllTablesFitInRegister = true;
5321   bool HasIllegalType = false;
5322   for (const auto &I : ResultTypes) {
5323     Type *Ty = I.second;
5324 
5325     // Saturate this flag to true.
5326     HasIllegalType = HasIllegalType || !TTI.isTypeLegal(Ty);
5327 
5328     // Saturate this flag to false.
5329     AllTablesFitInRegister =
5330         AllTablesFitInRegister &&
5331         SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty);
5332 
5333     // If both flags saturate, we're done. NOTE: This *only* works with
5334     // saturating flags, and all flags have to saturate first due to the
5335     // non-deterministic behavior of iterating over a dense map.
5336     if (HasIllegalType && !AllTablesFitInRegister)
5337       break;
5338   }
5339 
5340   // If each table would fit in a register, we should build it anyway.
5341   if (AllTablesFitInRegister)
5342     return true;
5343 
5344   // Don't build a table that doesn't fit in-register if it has illegal types.
5345   if (HasIllegalType)
5346     return false;
5347 
5348   // The table density should be at least 40%. This is the same criterion as for
5349   // jump tables, see SelectionDAGBuilder::handleJTSwitchCase.
5350   // FIXME: Find the best cut-off.
5351   return SI->getNumCases() * 10 >= TableSize * 4;
5352 }
5353 
5354 /// Try to reuse the switch table index compare. Following pattern:
5355 /// \code
5356 ///     if (idx < tablesize)
5357 ///        r = table[idx]; // table does not contain default_value
5358 ///     else
5359 ///        r = default_value;
5360 ///     if (r != default_value)
5361 ///        ...
5362 /// \endcode
5363 /// Is optimized to:
5364 /// \code
5365 ///     cond = idx < tablesize;
5366 ///     if (cond)
5367 ///        r = table[idx];
5368 ///     else
5369 ///        r = default_value;
5370 ///     if (cond)
5371 ///        ...
5372 /// \endcode
5373 /// Jump threading will then eliminate the second if(cond).
5374 static void reuseTableCompare(
5375     User *PhiUser, BasicBlock *PhiBlock, BranchInst *RangeCheckBranch,
5376     Constant *DefaultValue,
5377     const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values) {
5378   ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser);
5379   if (!CmpInst)
5380     return;
5381 
5382   // We require that the compare is in the same block as the phi so that jump
5383   // threading can do its work afterwards.
5384   if (CmpInst->getParent() != PhiBlock)
5385     return;
5386 
5387   Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1));
5388   if (!CmpOp1)
5389     return;
5390 
5391   Value *RangeCmp = RangeCheckBranch->getCondition();
5392   Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType());
5393   Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType());
5394 
5395   // Check if the compare with the default value is constant true or false.
5396   Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
5397                                                  DefaultValue, CmpOp1, true);
5398   if (DefaultConst != TrueConst && DefaultConst != FalseConst)
5399     return;
5400 
5401   // Check if the compare with the case values is distinct from the default
5402   // compare result.
5403   for (auto ValuePair : Values) {
5404     Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
5405                                                 ValuePair.second, CmpOp1, true);
5406     if (!CaseConst || CaseConst == DefaultConst || isa<UndefValue>(CaseConst))
5407       return;
5408     assert((CaseConst == TrueConst || CaseConst == FalseConst) &&
5409            "Expect true or false as compare result.");
5410   }
5411 
5412   // Check if the branch instruction dominates the phi node. It's a simple
5413   // dominance check, but sufficient for our needs.
5414   // Although this check is invariant in the calling loops, it's better to do it
5415   // at this late stage. Practically we do it at most once for a switch.
5416   BasicBlock *BranchBlock = RangeCheckBranch->getParent();
5417   for (auto PI = pred_begin(PhiBlock), E = pred_end(PhiBlock); PI != E; ++PI) {
5418     BasicBlock *Pred = *PI;
5419     if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock)
5420       return;
5421   }
5422 
5423   if (DefaultConst == FalseConst) {
5424     // The compare yields the same result. We can replace it.
5425     CmpInst->replaceAllUsesWith(RangeCmp);
5426     ++NumTableCmpReuses;
5427   } else {
5428     // The compare yields the same result, just inverted. We can replace it.
5429     Value *InvertedTableCmp = BinaryOperator::CreateXor(
5430         RangeCmp, ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp",
5431         RangeCheckBranch);
5432     CmpInst->replaceAllUsesWith(InvertedTableCmp);
5433     ++NumTableCmpReuses;
5434   }
5435 }
5436 
5437 /// If the switch is only used to initialize one or more phi nodes in a common
5438 /// successor block with different constant values, replace the switch with
5439 /// lookup tables.
5440 static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder,
5441                                 const DataLayout &DL,
5442                                 const TargetTransformInfo &TTI) {
5443   assert(SI->getNumCases() > 1 && "Degenerate switch?");
5444 
5445   Function *Fn = SI->getParent()->getParent();
5446   // Only build lookup table when we have a target that supports it or the
5447   // attribute is not set.
5448   if (!TTI.shouldBuildLookupTables() ||
5449       (Fn->getFnAttribute("no-jump-tables").getValueAsString() == "true"))
5450     return false;
5451 
5452   // FIXME: If the switch is too sparse for a lookup table, perhaps we could
5453   // split off a dense part and build a lookup table for that.
5454 
5455   // FIXME: This creates arrays of GEPs to constant strings, which means each
5456   // GEP needs a runtime relocation in PIC code. We should just build one big
5457   // string and lookup indices into that.
5458 
5459   // Ignore switches with less than three cases. Lookup tables will not make
5460   // them faster, so we don't analyze them.
5461   if (SI->getNumCases() < 3)
5462     return false;
5463 
5464   // Figure out the corresponding result for each case value and phi node in the
5465   // common destination, as well as the min and max case values.
5466   assert(!SI->cases().empty());
5467   SwitchInst::CaseIt CI = SI->case_begin();
5468   ConstantInt *MinCaseVal = CI->getCaseValue();
5469   ConstantInt *MaxCaseVal = CI->getCaseValue();
5470 
5471   BasicBlock *CommonDest = nullptr;
5472 
5473   using ResultListTy = SmallVector<std::pair<ConstantInt *, Constant *>, 4>;
5474   SmallDenseMap<PHINode *, ResultListTy> ResultLists;
5475 
5476   SmallDenseMap<PHINode *, Constant *> DefaultResults;
5477   SmallDenseMap<PHINode *, Type *> ResultTypes;
5478   SmallVector<PHINode *, 4> PHIs;
5479 
5480   for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) {
5481     ConstantInt *CaseVal = CI->getCaseValue();
5482     if (CaseVal->getValue().slt(MinCaseVal->getValue()))
5483       MinCaseVal = CaseVal;
5484     if (CaseVal->getValue().sgt(MaxCaseVal->getValue()))
5485       MaxCaseVal = CaseVal;
5486 
5487     // Resulting value at phi nodes for this case value.
5488     using ResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>;
5489     ResultsTy Results;
5490     if (!GetCaseResults(SI, CaseVal, CI->getCaseSuccessor(), &CommonDest,
5491                         Results, DL, TTI))
5492       return false;
5493 
5494     // Append the result from this case to the list for each phi.
5495     for (const auto &I : Results) {
5496       PHINode *PHI = I.first;
5497       Constant *Value = I.second;
5498       if (!ResultLists.count(PHI))
5499         PHIs.push_back(PHI);
5500       ResultLists[PHI].push_back(std::make_pair(CaseVal, Value));
5501     }
5502   }
5503 
5504   // Keep track of the result types.
5505   for (PHINode *PHI : PHIs) {
5506     ResultTypes[PHI] = ResultLists[PHI][0].second->getType();
5507   }
5508 
5509   uint64_t NumResults = ResultLists[PHIs[0]].size();
5510   APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue();
5511   uint64_t TableSize = RangeSpread.getLimitedValue() + 1;
5512   bool TableHasHoles = (NumResults < TableSize);
5513 
5514   // If the table has holes, we need a constant result for the default case
5515   // or a bitmask that fits in a register.
5516   SmallVector<std::pair<PHINode *, Constant *>, 4> DefaultResultsList;
5517   bool HasDefaultResults =
5518       GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest,
5519                      DefaultResultsList, DL, TTI);
5520 
5521   bool NeedMask = (TableHasHoles && !HasDefaultResults);
5522   if (NeedMask) {
5523     // As an extra penalty for the validity test we require more cases.
5524     if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark).
5525       return false;
5526     if (!DL.fitsInLegalInteger(TableSize))
5527       return false;
5528   }
5529 
5530   for (const auto &I : DefaultResultsList) {
5531     PHINode *PHI = I.first;
5532     Constant *Result = I.second;
5533     DefaultResults[PHI] = Result;
5534   }
5535 
5536   if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes))
5537     return false;
5538 
5539   // Create the BB that does the lookups.
5540   Module &Mod = *CommonDest->getParent()->getParent();
5541   BasicBlock *LookupBB = BasicBlock::Create(
5542       Mod.getContext(), "switch.lookup", CommonDest->getParent(), CommonDest);
5543 
5544   // Compute the table index value.
5545   Builder.SetInsertPoint(SI);
5546   Value *TableIndex;
5547   if (MinCaseVal->isNullValue())
5548     TableIndex = SI->getCondition();
5549   else
5550     TableIndex = Builder.CreateSub(SI->getCondition(), MinCaseVal,
5551                                    "switch.tableidx");
5552 
5553   // Compute the maximum table size representable by the integer type we are
5554   // switching upon.
5555   unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits();
5556   uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize;
5557   assert(MaxTableSize >= TableSize &&
5558          "It is impossible for a switch to have more entries than the max "
5559          "representable value of its input integer type's size.");
5560 
5561   // If the default destination is unreachable, or if the lookup table covers
5562   // all values of the conditional variable, branch directly to the lookup table
5563   // BB. Otherwise, check that the condition is within the case range.
5564   const bool DefaultIsReachable =
5565       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
5566   const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize);
5567   BranchInst *RangeCheckBranch = nullptr;
5568 
5569   if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
5570     Builder.CreateBr(LookupBB);
5571     // Note: We call removeProdecessor later since we need to be able to get the
5572     // PHI value for the default case in case we're using a bit mask.
5573   } else {
5574     Value *Cmp = Builder.CreateICmpULT(
5575         TableIndex, ConstantInt::get(MinCaseVal->getType(), TableSize));
5576     RangeCheckBranch =
5577         Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest());
5578   }
5579 
5580   // Populate the BB that does the lookups.
5581   Builder.SetInsertPoint(LookupBB);
5582 
5583   if (NeedMask) {
5584     // Before doing the lookup, we do the hole check. The LookupBB is therefore
5585     // re-purposed to do the hole check, and we create a new LookupBB.
5586     BasicBlock *MaskBB = LookupBB;
5587     MaskBB->setName("switch.hole_check");
5588     LookupBB = BasicBlock::Create(Mod.getContext(), "switch.lookup",
5589                                   CommonDest->getParent(), CommonDest);
5590 
5591     // Make the mask's bitwidth at least 8-bit and a power-of-2 to avoid
5592     // unnecessary illegal types.
5593     uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL));
5594     APInt MaskInt(TableSizePowOf2, 0);
5595     APInt One(TableSizePowOf2, 1);
5596     // Build bitmask; fill in a 1 bit for every case.
5597     const ResultListTy &ResultList = ResultLists[PHIs[0]];
5598     for (size_t I = 0, E = ResultList.size(); I != E; ++I) {
5599       uint64_t Idx = (ResultList[I].first->getValue() - MinCaseVal->getValue())
5600                          .getLimitedValue();
5601       MaskInt |= One << Idx;
5602     }
5603     ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt);
5604 
5605     // Get the TableIndex'th bit of the bitmask.
5606     // If this bit is 0 (meaning hole) jump to the default destination,
5607     // else continue with table lookup.
5608     IntegerType *MapTy = TableMask->getType();
5609     Value *MaskIndex =
5610         Builder.CreateZExtOrTrunc(TableIndex, MapTy, "switch.maskindex");
5611     Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, "switch.shifted");
5612     Value *LoBit = Builder.CreateTrunc(
5613         Shifted, Type::getInt1Ty(Mod.getContext()), "switch.lobit");
5614     Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest());
5615 
5616     Builder.SetInsertPoint(LookupBB);
5617     AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, SI->getParent());
5618   }
5619 
5620   if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
5621     // We cached PHINodes in PHIs. To avoid accessing deleted PHINodes later,
5622     // do not delete PHINodes here.
5623     SI->getDefaultDest()->removePredecessor(SI->getParent(),
5624                                             /*KeepOneInputPHIs=*/true);
5625   }
5626 
5627   bool ReturnedEarly = false;
5628   for (PHINode *PHI : PHIs) {
5629     const ResultListTy &ResultList = ResultLists[PHI];
5630 
5631     // If using a bitmask, use any value to fill the lookup table holes.
5632     Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI];
5633     StringRef FuncName = Fn->getName();
5634     SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultList, DV, DL,
5635                             FuncName);
5636 
5637     Value *Result = Table.BuildLookup(TableIndex, Builder);
5638 
5639     // If the result is used to return immediately from the function, we want to
5640     // do that right here.
5641     if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->user_begin()) &&
5642         PHI->user_back() == CommonDest->getFirstNonPHIOrDbg()) {
5643       Builder.CreateRet(Result);
5644       ReturnedEarly = true;
5645       break;
5646     }
5647 
5648     // Do a small peephole optimization: re-use the switch table compare if
5649     // possible.
5650     if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) {
5651       BasicBlock *PhiBlock = PHI->getParent();
5652       // Search for compare instructions which use the phi.
5653       for (auto *User : PHI->users()) {
5654         reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList);
5655       }
5656     }
5657 
5658     PHI->addIncoming(Result, LookupBB);
5659   }
5660 
5661   if (!ReturnedEarly)
5662     Builder.CreateBr(CommonDest);
5663 
5664   // Remove the switch.
5665   for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
5666     BasicBlock *Succ = SI->getSuccessor(i);
5667 
5668     if (Succ == SI->getDefaultDest())
5669       continue;
5670     Succ->removePredecessor(SI->getParent());
5671   }
5672   SI->eraseFromParent();
5673 
5674   ++NumLookupTables;
5675   if (NeedMask)
5676     ++NumLookupTablesHoles;
5677   return true;
5678 }
5679 
5680 static bool isSwitchDense(ArrayRef<int64_t> Values) {
5681   // See also SelectionDAGBuilder::isDense(), which this function was based on.
5682   uint64_t Diff = (uint64_t)Values.back() - (uint64_t)Values.front();
5683   uint64_t Range = Diff + 1;
5684   uint64_t NumCases = Values.size();
5685   // 40% is the default density for building a jump table in optsize/minsize mode.
5686   uint64_t MinDensity = 40;
5687 
5688   return NumCases * 100 >= Range * MinDensity;
5689 }
5690 
5691 /// Try to transform a switch that has "holes" in it to a contiguous sequence
5692 /// of cases.
5693 ///
5694 /// A switch such as: switch(i) {case 5: case 9: case 13: case 17:} can be
5695 /// range-reduced to: switch ((i-5) / 4) {case 0: case 1: case 2: case 3:}.
5696 ///
5697 /// This converts a sparse switch into a dense switch which allows better
5698 /// lowering and could also allow transforming into a lookup table.
5699 static bool ReduceSwitchRange(SwitchInst *SI, IRBuilder<> &Builder,
5700                               const DataLayout &DL,
5701                               const TargetTransformInfo &TTI) {
5702   auto *CondTy = cast<IntegerType>(SI->getCondition()->getType());
5703   if (CondTy->getIntegerBitWidth() > 64 ||
5704       !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth()))
5705     return false;
5706   // Only bother with this optimization if there are more than 3 switch cases;
5707   // SDAG will only bother creating jump tables for 4 or more cases.
5708   if (SI->getNumCases() < 4)
5709     return false;
5710 
5711   // This transform is agnostic to the signedness of the input or case values. We
5712   // can treat the case values as signed or unsigned. We can optimize more common
5713   // cases such as a sequence crossing zero {-4,0,4,8} if we interpret case values
5714   // as signed.
5715   SmallVector<int64_t,4> Values;
5716   for (auto &C : SI->cases())
5717     Values.push_back(C.getCaseValue()->getValue().getSExtValue());
5718   llvm::sort(Values);
5719 
5720   // If the switch is already dense, there's nothing useful to do here.
5721   if (isSwitchDense(Values))
5722     return false;
5723 
5724   // First, transform the values such that they start at zero and ascend.
5725   int64_t Base = Values[0];
5726   for (auto &V : Values)
5727     V -= (uint64_t)(Base);
5728 
5729   // Now we have signed numbers that have been shifted so that, given enough
5730   // precision, there are no negative values. Since the rest of the transform
5731   // is bitwise only, we switch now to an unsigned representation.
5732 
5733   // This transform can be done speculatively because it is so cheap - it
5734   // results in a single rotate operation being inserted.
5735   // FIXME: It's possible that optimizing a switch on powers of two might also
5736   // be beneficial - flag values are often powers of two and we could use a CLZ
5737   // as the key function.
5738 
5739   // countTrailingZeros(0) returns 64. As Values is guaranteed to have more than
5740   // one element and LLVM disallows duplicate cases, Shift is guaranteed to be
5741   // less than 64.
5742   unsigned Shift = 64;
5743   for (auto &V : Values)
5744     Shift = std::min(Shift, countTrailingZeros((uint64_t)V));
5745   assert(Shift < 64);
5746   if (Shift > 0)
5747     for (auto &V : Values)
5748       V = (int64_t)((uint64_t)V >> Shift);
5749 
5750   if (!isSwitchDense(Values))
5751     // Transform didn't create a dense switch.
5752     return false;
5753 
5754   // The obvious transform is to shift the switch condition right and emit a
5755   // check that the condition actually cleanly divided by GCD, i.e.
5756   //   C & (1 << Shift - 1) == 0
5757   // inserting a new CFG edge to handle the case where it didn't divide cleanly.
5758   //
5759   // A cheaper way of doing this is a simple ROTR(C, Shift). This performs the
5760   // shift and puts the shifted-off bits in the uppermost bits. If any of these
5761   // are nonzero then the switch condition will be very large and will hit the
5762   // default case.
5763 
5764   auto *Ty = cast<IntegerType>(SI->getCondition()->getType());
5765   Builder.SetInsertPoint(SI);
5766   auto *ShiftC = ConstantInt::get(Ty, Shift);
5767   auto *Sub = Builder.CreateSub(SI->getCondition(), ConstantInt::get(Ty, Base));
5768   auto *LShr = Builder.CreateLShr(Sub, ShiftC);
5769   auto *Shl = Builder.CreateShl(Sub, Ty->getBitWidth() - Shift);
5770   auto *Rot = Builder.CreateOr(LShr, Shl);
5771   SI->replaceUsesOfWith(SI->getCondition(), Rot);
5772 
5773   for (auto Case : SI->cases()) {
5774     auto *Orig = Case.getCaseValue();
5775     auto Sub = Orig->getValue() - APInt(Ty->getBitWidth(), Base);
5776     Case.setValue(
5777         cast<ConstantInt>(ConstantInt::get(Ty, Sub.lshr(ShiftC->getValue()))));
5778   }
5779   return true;
5780 }
5781 
5782 bool SimplifyCFGOpt::simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) {
5783   BasicBlock *BB = SI->getParent();
5784 
5785   if (isValueEqualityComparison(SI)) {
5786     // If we only have one predecessor, and if it is a branch on this value,
5787     // see if that predecessor totally determines the outcome of this switch.
5788     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
5789       if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder))
5790         return requestResimplify();
5791 
5792     Value *Cond = SI->getCondition();
5793     if (SelectInst *Select = dyn_cast<SelectInst>(Cond))
5794       if (SimplifySwitchOnSelect(SI, Select))
5795         return requestResimplify();
5796 
5797     // If the block only contains the switch, see if we can fold the block
5798     // away into any preds.
5799     if (SI == &*BB->instructionsWithoutDebug().begin())
5800       if (FoldValueComparisonIntoPredecessors(SI, Builder))
5801         return requestResimplify();
5802   }
5803 
5804   // Try to transform the switch into an icmp and a branch.
5805   if (TurnSwitchRangeIntoICmp(SI, Builder))
5806     return requestResimplify();
5807 
5808   // Remove unreachable cases.
5809   if (eliminateDeadSwitchCases(SI, Options.AC, DL))
5810     return requestResimplify();
5811 
5812   if (switchToSelect(SI, Builder, DL, TTI))
5813     return requestResimplify();
5814 
5815   if (Options.ForwardSwitchCondToPhi && ForwardSwitchConditionToPHI(SI))
5816     return requestResimplify();
5817 
5818   // The conversion from switch to lookup tables results in difficult-to-analyze
5819   // code and makes pruning branches much harder. This is a problem if the
5820   // switch expression itself can still be restricted as a result of inlining or
5821   // CVP. Therefore, only apply this transformation during late stages of the
5822   // optimisation pipeline.
5823   if (Options.ConvertSwitchToLookupTable &&
5824       SwitchToLookupTable(SI, Builder, DL, TTI))
5825     return requestResimplify();
5826 
5827   if (ReduceSwitchRange(SI, Builder, DL, TTI))
5828     return requestResimplify();
5829 
5830   return false;
5831 }
5832 
5833 bool SimplifyCFGOpt::simplifyIndirectBr(IndirectBrInst *IBI) {
5834   BasicBlock *BB = IBI->getParent();
5835   bool Changed = false;
5836 
5837   // Eliminate redundant destinations.
5838   SmallPtrSet<Value *, 8> Succs;
5839   for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
5840     BasicBlock *Dest = IBI->getDestination(i);
5841     if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) {
5842       Dest->removePredecessor(BB);
5843       IBI->removeDestination(i);
5844       --i;
5845       --e;
5846       Changed = true;
5847     }
5848   }
5849 
5850   if (IBI->getNumDestinations() == 0) {
5851     // If the indirectbr has no successors, change it to unreachable.
5852     new UnreachableInst(IBI->getContext(), IBI);
5853     EraseTerminatorAndDCECond(IBI);
5854     return true;
5855   }
5856 
5857   if (IBI->getNumDestinations() == 1) {
5858     // If the indirectbr has one successor, change it to a direct branch.
5859     BranchInst::Create(IBI->getDestination(0), IBI);
5860     EraseTerminatorAndDCECond(IBI);
5861     return true;
5862   }
5863 
5864   if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) {
5865     if (SimplifyIndirectBrOnSelect(IBI, SI))
5866       return requestResimplify();
5867   }
5868   return Changed;
5869 }
5870 
5871 /// Given an block with only a single landing pad and a unconditional branch
5872 /// try to find another basic block which this one can be merged with.  This
5873 /// handles cases where we have multiple invokes with unique landing pads, but
5874 /// a shared handler.
5875 ///
5876 /// We specifically choose to not worry about merging non-empty blocks
5877 /// here.  That is a PRE/scheduling problem and is best solved elsewhere.  In
5878 /// practice, the optimizer produces empty landing pad blocks quite frequently
5879 /// when dealing with exception dense code.  (see: instcombine, gvn, if-else
5880 /// sinking in this file)
5881 ///
5882 /// This is primarily a code size optimization.  We need to avoid performing
5883 /// any transform which might inhibit optimization (such as our ability to
5884 /// specialize a particular handler via tail commoning).  We do this by not
5885 /// merging any blocks which require us to introduce a phi.  Since the same
5886 /// values are flowing through both blocks, we don't lose any ability to
5887 /// specialize.  If anything, we make such specialization more likely.
5888 ///
5889 /// TODO - This transformation could remove entries from a phi in the target
5890 /// block when the inputs in the phi are the same for the two blocks being
5891 /// merged.  In some cases, this could result in removal of the PHI entirely.
5892 static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI,
5893                                  BasicBlock *BB) {
5894   auto Succ = BB->getUniqueSuccessor();
5895   assert(Succ);
5896   // If there's a phi in the successor block, we'd likely have to introduce
5897   // a phi into the merged landing pad block.
5898   if (isa<PHINode>(*Succ->begin()))
5899     return false;
5900 
5901   for (BasicBlock *OtherPred : predecessors(Succ)) {
5902     if (BB == OtherPred)
5903       continue;
5904     BasicBlock::iterator I = OtherPred->begin();
5905     LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I);
5906     if (!LPad2 || !LPad2->isIdenticalTo(LPad))
5907       continue;
5908     for (++I; isa<DbgInfoIntrinsic>(I); ++I)
5909       ;
5910     BranchInst *BI2 = dyn_cast<BranchInst>(I);
5911     if (!BI2 || !BI2->isIdenticalTo(BI))
5912       continue;
5913 
5914     // We've found an identical block.  Update our predecessors to take that
5915     // path instead and make ourselves dead.
5916     SmallPtrSet<BasicBlock *, 16> Preds;
5917     Preds.insert(pred_begin(BB), pred_end(BB));
5918     for (BasicBlock *Pred : Preds) {
5919       InvokeInst *II = cast<InvokeInst>(Pred->getTerminator());
5920       assert(II->getNormalDest() != BB && II->getUnwindDest() == BB &&
5921              "unexpected successor");
5922       II->setUnwindDest(OtherPred);
5923     }
5924 
5925     // The debug info in OtherPred doesn't cover the merged control flow that
5926     // used to go through BB.  We need to delete it or update it.
5927     for (auto I = OtherPred->begin(), E = OtherPred->end(); I != E;) {
5928       Instruction &Inst = *I;
5929       I++;
5930       if (isa<DbgInfoIntrinsic>(Inst))
5931         Inst.eraseFromParent();
5932     }
5933 
5934     SmallPtrSet<BasicBlock *, 16> Succs;
5935     Succs.insert(succ_begin(BB), succ_end(BB));
5936     for (BasicBlock *Succ : Succs) {
5937       Succ->removePredecessor(BB);
5938     }
5939 
5940     IRBuilder<> Builder(BI);
5941     Builder.CreateUnreachable();
5942     BI->eraseFromParent();
5943     return true;
5944   }
5945   return false;
5946 }
5947 
5948 bool SimplifyCFGOpt::simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder) {
5949   return Branch->isUnconditional() ? simplifyUncondBranch(Branch, Builder)
5950                                    : simplifyCondBranch(Branch, Builder);
5951 }
5952 
5953 bool SimplifyCFGOpt::simplifyUncondBranch(BranchInst *BI,
5954                                           IRBuilder<> &Builder) {
5955   BasicBlock *BB = BI->getParent();
5956   BasicBlock *Succ = BI->getSuccessor(0);
5957 
5958   // If the Terminator is the only non-phi instruction, simplify the block.
5959   // If LoopHeader is provided, check if the block or its successor is a loop
5960   // header. (This is for early invocations before loop simplify and
5961   // vectorization to keep canonical loop forms for nested loops. These blocks
5962   // can be eliminated when the pass is invoked later in the back-end.)
5963   // Note that if BB has only one predecessor then we do not introduce new
5964   // backedge, so we can eliminate BB.
5965   bool NeedCanonicalLoop =
5966       Options.NeedCanonicalLoop &&
5967       (LoopHeaders && BB->hasNPredecessorsOrMore(2) &&
5968        (LoopHeaders->count(BB) || LoopHeaders->count(Succ)));
5969   BasicBlock::iterator I = BB->getFirstNonPHIOrDbg()->getIterator();
5970   if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() &&
5971       !NeedCanonicalLoop && TryToSimplifyUncondBranchFromEmptyBlock(BB))
5972     return true;
5973 
5974   // If the only instruction in the block is a seteq/setne comparison against a
5975   // constant, try to simplify the block.
5976   if (ICmpInst *ICI = dyn_cast<ICmpInst>(I))
5977     if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) {
5978       for (++I; isa<DbgInfoIntrinsic>(I); ++I)
5979         ;
5980       if (I->isTerminator() &&
5981           tryToSimplifyUncondBranchWithICmpInIt(ICI, Builder))
5982         return true;
5983     }
5984 
5985   // See if we can merge an empty landing pad block with another which is
5986   // equivalent.
5987   if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) {
5988     for (++I; isa<DbgInfoIntrinsic>(I); ++I)
5989       ;
5990     if (I->isTerminator() && TryToMergeLandingPad(LPad, BI, BB))
5991       return true;
5992   }
5993 
5994   // If this basic block is ONLY a compare and a branch, and if a predecessor
5995   // branches to us and our successor, fold the comparison into the
5996   // predecessor and use logical operations to update the incoming value
5997   // for PHI nodes in common successor.
5998   if (FoldBranchToCommonDest(BI, nullptr, Options.BonusInstThreshold))
5999     return requestResimplify();
6000   return false;
6001 }
6002 
6003 static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) {
6004   BasicBlock *PredPred = nullptr;
6005   for (auto *P : predecessors(BB)) {
6006     BasicBlock *PPred = P->getSinglePredecessor();
6007     if (!PPred || (PredPred && PredPred != PPred))
6008       return nullptr;
6009     PredPred = PPred;
6010   }
6011   return PredPred;
6012 }
6013 
6014 bool SimplifyCFGOpt::simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) {
6015   BasicBlock *BB = BI->getParent();
6016   if (!Options.SimplifyCondBranch)
6017     return false;
6018 
6019   // Conditional branch
6020   if (isValueEqualityComparison(BI)) {
6021     // If we only have one predecessor, and if it is a branch on this value,
6022     // see if that predecessor totally determines the outcome of this
6023     // switch.
6024     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
6025       if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder))
6026         return requestResimplify();
6027 
6028     // This block must be empty, except for the setcond inst, if it exists.
6029     // Ignore dbg intrinsics.
6030     auto I = BB->instructionsWithoutDebug().begin();
6031     if (&*I == BI) {
6032       if (FoldValueComparisonIntoPredecessors(BI, Builder))
6033         return requestResimplify();
6034     } else if (&*I == cast<Instruction>(BI->getCondition())) {
6035       ++I;
6036       if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder))
6037         return requestResimplify();
6038     }
6039   }
6040 
6041   // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction.
6042   if (SimplifyBranchOnICmpChain(BI, Builder, DL))
6043     return true;
6044 
6045   // If this basic block has dominating predecessor blocks and the dominating
6046   // blocks' conditions imply BI's condition, we know the direction of BI.
6047   Optional<bool> Imp = isImpliedByDomCondition(BI->getCondition(), BI, DL);
6048   if (Imp) {
6049     // Turn this into a branch on constant.
6050     auto *OldCond = BI->getCondition();
6051     ConstantInt *TorF = *Imp ? ConstantInt::getTrue(BB->getContext())
6052                              : ConstantInt::getFalse(BB->getContext());
6053     BI->setCondition(TorF);
6054     RecursivelyDeleteTriviallyDeadInstructions(OldCond);
6055     return requestResimplify();
6056   }
6057 
6058   // If this basic block is ONLY a compare and a branch, and if a predecessor
6059   // branches to us and one of our successors, fold the comparison into the
6060   // predecessor and use logical operations to pick the right destination.
6061   if (FoldBranchToCommonDest(BI, nullptr, Options.BonusInstThreshold))
6062     return requestResimplify();
6063 
6064   // We have a conditional branch to two blocks that are only reachable
6065   // from BI.  We know that the condbr dominates the two blocks, so see if
6066   // there is any identical code in the "then" and "else" blocks.  If so, we
6067   // can hoist it up to the branching block.
6068   if (BI->getSuccessor(0)->getSinglePredecessor()) {
6069     if (BI->getSuccessor(1)->getSinglePredecessor()) {
6070       if (HoistCommon && Options.HoistCommonInsts)
6071         if (HoistThenElseCodeToIf(BI, TTI))
6072           return requestResimplify();
6073     } else {
6074       // If Successor #1 has multiple preds, we may be able to conditionally
6075       // execute Successor #0 if it branches to Successor #1.
6076       Instruction *Succ0TI = BI->getSuccessor(0)->getTerminator();
6077       if (Succ0TI->getNumSuccessors() == 1 &&
6078           Succ0TI->getSuccessor(0) == BI->getSuccessor(1))
6079         if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), TTI))
6080           return requestResimplify();
6081     }
6082   } else if (BI->getSuccessor(1)->getSinglePredecessor()) {
6083     // If Successor #0 has multiple preds, we may be able to conditionally
6084     // execute Successor #1 if it branches to Successor #0.
6085     Instruction *Succ1TI = BI->getSuccessor(1)->getTerminator();
6086     if (Succ1TI->getNumSuccessors() == 1 &&
6087         Succ1TI->getSuccessor(0) == BI->getSuccessor(0))
6088       if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), TTI))
6089         return requestResimplify();
6090   }
6091 
6092   // If this is a branch on a phi node in the current block, thread control
6093   // through this block if any PHI node entries are constants.
6094   if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition()))
6095     if (PN->getParent() == BI->getParent())
6096       if (FoldCondBranchOnPHI(BI, DL, Options.AC))
6097         return requestResimplify();
6098 
6099   // Scan predecessor blocks for conditional branches.
6100   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
6101     if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
6102       if (PBI != BI && PBI->isConditional())
6103         if (SimplifyCondBranchToCondBranch(PBI, BI, DL, TTI))
6104           return requestResimplify();
6105 
6106   // Look for diamond patterns.
6107   if (MergeCondStores)
6108     if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB))
6109       if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator()))
6110         if (PBI != BI && PBI->isConditional())
6111           if (mergeConditionalStores(PBI, BI, DL, TTI))
6112             return requestResimplify();
6113 
6114   return false;
6115 }
6116 
6117 /// Check if passing a value to an instruction will cause undefined behavior.
6118 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I) {
6119   Constant *C = dyn_cast<Constant>(V);
6120   if (!C)
6121     return false;
6122 
6123   if (I->use_empty())
6124     return false;
6125 
6126   if (C->isNullValue() || isa<UndefValue>(C)) {
6127     // Only look at the first use, avoid hurting compile time with long uselists
6128     User *Use = *I->user_begin();
6129 
6130     // Now make sure that there are no instructions in between that can alter
6131     // control flow (eg. calls)
6132     for (BasicBlock::iterator
6133              i = ++BasicBlock::iterator(I),
6134              UI = BasicBlock::iterator(dyn_cast<Instruction>(Use));
6135          i != UI; ++i)
6136       if (i == I->getParent()->end() || i->mayHaveSideEffects())
6137         return false;
6138 
6139     // Look through GEPs. A load from a GEP derived from NULL is still undefined
6140     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use))
6141       if (GEP->getPointerOperand() == I)
6142         return passingValueIsAlwaysUndefined(V, GEP);
6143 
6144     // Look through bitcasts.
6145     if (BitCastInst *BC = dyn_cast<BitCastInst>(Use))
6146       return passingValueIsAlwaysUndefined(V, BC);
6147 
6148     // Load from null is undefined.
6149     if (LoadInst *LI = dyn_cast<LoadInst>(Use))
6150       if (!LI->isVolatile())
6151         return !NullPointerIsDefined(LI->getFunction(),
6152                                      LI->getPointerAddressSpace());
6153 
6154     // Store to null is undefined.
6155     if (StoreInst *SI = dyn_cast<StoreInst>(Use))
6156       if (!SI->isVolatile())
6157         return (!NullPointerIsDefined(SI->getFunction(),
6158                                       SI->getPointerAddressSpace())) &&
6159                SI->getPointerOperand() == I;
6160 
6161     // A call to null is undefined.
6162     if (auto *CB = dyn_cast<CallBase>(Use))
6163       return !NullPointerIsDefined(CB->getFunction()) &&
6164              CB->getCalledOperand() == I;
6165   }
6166   return false;
6167 }
6168 
6169 /// If BB has an incoming value that will always trigger undefined behavior
6170 /// (eg. null pointer dereference), remove the branch leading here.
6171 static bool removeUndefIntroducingPredecessor(BasicBlock *BB) {
6172   for (PHINode &PHI : BB->phis())
6173     for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i)
6174       if (passingValueIsAlwaysUndefined(PHI.getIncomingValue(i), &PHI)) {
6175         Instruction *T = PHI.getIncomingBlock(i)->getTerminator();
6176         IRBuilder<> Builder(T);
6177         if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
6178           BB->removePredecessor(PHI.getIncomingBlock(i));
6179           // Turn uncoditional branches into unreachables and remove the dead
6180           // destination from conditional branches.
6181           if (BI->isUnconditional())
6182             Builder.CreateUnreachable();
6183           else
6184             Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1)
6185                                                        : BI->getSuccessor(0));
6186           BI->eraseFromParent();
6187           return true;
6188         }
6189         // TODO: SwitchInst.
6190       }
6191 
6192   return false;
6193 }
6194 
6195 bool SimplifyCFGOpt::simplifyOnce(BasicBlock *BB) {
6196   bool Changed = false;
6197 
6198   assert(BB && BB->getParent() && "Block not embedded in function!");
6199   assert(BB->getTerminator() && "Degenerate basic block encountered!");
6200 
6201   // Remove basic blocks that have no predecessors (except the entry block)...
6202   // or that just have themself as a predecessor.  These are unreachable.
6203   if ((pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) ||
6204       BB->getSinglePredecessor() == BB) {
6205     LLVM_DEBUG(dbgs() << "Removing BB: \n" << *BB);
6206     DeleteDeadBlock(BB);
6207     return true;
6208   }
6209 
6210   // Check to see if we can constant propagate this terminator instruction
6211   // away...
6212   Changed |= ConstantFoldTerminator(BB, true);
6213 
6214   // Check for and eliminate duplicate PHI nodes in this block.
6215   Changed |= EliminateDuplicatePHINodes(BB);
6216 
6217   // Check for and remove branches that will always cause undefined behavior.
6218   Changed |= removeUndefIntroducingPredecessor(BB);
6219 
6220   // Merge basic blocks into their predecessor if there is only one distinct
6221   // pred, and if there is only one distinct successor of the predecessor, and
6222   // if there are no PHI nodes.
6223   if (MergeBlockIntoPredecessor(BB))
6224     return true;
6225 
6226   if (SinkCommon && Options.SinkCommonInsts)
6227     Changed |= SinkCommonCodeFromPredecessors(BB);
6228 
6229   IRBuilder<> Builder(BB);
6230 
6231   if (Options.FoldTwoEntryPHINode) {
6232     // If there is a trivial two-entry PHI node in this basic block, and we can
6233     // eliminate it, do so now.
6234     if (auto *PN = dyn_cast<PHINode>(BB->begin()))
6235       if (PN->getNumIncomingValues() == 2)
6236         Changed |= FoldTwoEntryPHINode(PN, TTI, DL);
6237   }
6238 
6239   Instruction *Terminator = BB->getTerminator();
6240   Builder.SetInsertPoint(Terminator);
6241   switch (Terminator->getOpcode()) {
6242   case Instruction::Br:
6243     Changed |= simplifyBranch(cast<BranchInst>(Terminator), Builder);
6244     break;
6245   case Instruction::Ret:
6246     Changed |= simplifyReturn(cast<ReturnInst>(Terminator), Builder);
6247     break;
6248   case Instruction::Resume:
6249     Changed |= simplifyResume(cast<ResumeInst>(Terminator), Builder);
6250     break;
6251   case Instruction::CleanupRet:
6252     Changed |= simplifyCleanupReturn(cast<CleanupReturnInst>(Terminator));
6253     break;
6254   case Instruction::Switch:
6255     Changed |= simplifySwitch(cast<SwitchInst>(Terminator), Builder);
6256     break;
6257   case Instruction::Unreachable:
6258     Changed |= simplifyUnreachable(cast<UnreachableInst>(Terminator));
6259     break;
6260   case Instruction::IndirectBr:
6261     Changed |= simplifyIndirectBr(cast<IndirectBrInst>(Terminator));
6262     break;
6263   }
6264 
6265   return Changed;
6266 }
6267 
6268 bool SimplifyCFGOpt::run(BasicBlock *BB) {
6269   bool Changed = false;
6270 
6271   // Repeated simplify BB as long as resimplification is requested.
6272   do {
6273     Resimplify = false;
6274 
6275     // Perform one round of simplifcation. Resimplify flag will be set if
6276     // another iteration is requested.
6277     Changed |= simplifyOnce(BB);
6278   } while (Resimplify);
6279 
6280   return Changed;
6281 }
6282 
6283 bool llvm::simplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI,
6284                        const SimplifyCFGOptions &Options,
6285                        SmallPtrSetImpl<BasicBlock *> *LoopHeaders) {
6286   return SimplifyCFGOpt(TTI, BB->getModule()->getDataLayout(), LoopHeaders,
6287                         Options)
6288       .run(BB);
6289 }
6290