1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Peephole optimize the CFG.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Utils/Local.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SetOperations.h"
18 #include "llvm/ADT/SetVector.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/Analysis/ConstantFolding.h"
23 #include "llvm/Analysis/EHPersonalities.h"
24 #include "llvm/Analysis/InstructionSimplify.h"
25 #include "llvm/Analysis/TargetTransformInfo.h"
26 #include "llvm/Analysis/ValueTracking.h"
27 #include "llvm/IR/CFG.h"
28 #include "llvm/IR/ConstantRange.h"
29 #include "llvm/IR/Constants.h"
30 #include "llvm/IR/DataLayout.h"
31 #include "llvm/IR/DerivedTypes.h"
32 #include "llvm/IR/GlobalVariable.h"
33 #include "llvm/IR/IRBuilder.h"
34 #include "llvm/IR/Instructions.h"
35 #include "llvm/IR/IntrinsicInst.h"
36 #include "llvm/IR/LLVMContext.h"
37 #include "llvm/IR/MDBuilder.h"
38 #include "llvm/IR/Metadata.h"
39 #include "llvm/IR/Module.h"
40 #include "llvm/IR/NoFolder.h"
41 #include "llvm/IR/Operator.h"
42 #include "llvm/IR/PatternMatch.h"
43 #include "llvm/IR/Type.h"
44 #include "llvm/Support/CommandLine.h"
45 #include "llvm/Support/Debug.h"
46 #include "llvm/Support/raw_ostream.h"
47 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
48 #include "llvm/Transforms/Utils/ValueMapper.h"
49 #include <algorithm>
50 #include <map>
51 #include <set>
52 using namespace llvm;
53 using namespace PatternMatch;
54 
55 #define DEBUG_TYPE "simplifycfg"
56 
57 // Chosen as 2 so as to be cheap, but still to have enough power to fold
58 // a select, so the "clamp" idiom (of a min followed by a max) will be caught.
59 // To catch this, we need to fold a compare and a select, hence '2' being the
60 // minimum reasonable default.
61 static cl::opt<unsigned>
62 PHINodeFoldingThreshold("phi-node-folding-threshold", cl::Hidden, cl::init(2),
63    cl::desc("Control the amount of phi node folding to perform (default = 2)"));
64 
65 static cl::opt<bool>
66 DupRet("simplifycfg-dup-ret", cl::Hidden, cl::init(false),
67        cl::desc("Duplicate return instructions into unconditional branches"));
68 
69 static cl::opt<bool>
70 SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true),
71        cl::desc("Sink common instructions down to the end block"));
72 
73 static cl::opt<bool> HoistCondStores(
74     "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true),
75     cl::desc("Hoist conditional stores if an unconditional store precedes"));
76 
77 static cl::opt<bool> MergeCondStores(
78     "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true),
79     cl::desc("Hoist conditional stores even if an unconditional store does not "
80              "precede - hoist multiple conditional stores into a single "
81              "predicated store"));
82 
83 static cl::opt<bool> MergeCondStoresAggressively(
84     "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false),
85     cl::desc("When merging conditional stores, do so even if the resultant "
86              "basic blocks are unlikely to be if-converted as a result"));
87 
88 static cl::opt<bool> SpeculateOneExpensiveInst(
89     "speculate-one-expensive-inst", cl::Hidden, cl::init(true),
90     cl::desc("Allow exactly one expensive instruction to be speculatively "
91              "executed"));
92 
93 static cl::opt<unsigned> MaxSpeculationDepth(
94     "max-speculation-depth", cl::Hidden, cl::init(10),
95     cl::desc("Limit maximum recursion depth when calculating costs of "
96              "speculatively executed instructions"));
97 
98 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps");
99 STATISTIC(NumLinearMaps, "Number of switch instructions turned into linear mapping");
100 STATISTIC(NumLookupTables, "Number of switch instructions turned into lookup tables");
101 STATISTIC(NumLookupTablesHoles, "Number of switch instructions turned into lookup tables (holes checked)");
102 STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares");
103 STATISTIC(NumSinkCommons, "Number of common instructions sunk down to the end block");
104 STATISTIC(NumSpeculations, "Number of speculative executed instructions");
105 
106 namespace {
107   // The first field contains the value that the switch produces when a certain
108   // case group is selected, and the second field is a vector containing the
109   // cases composing the case group.
110   typedef SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2>
111     SwitchCaseResultVectorTy;
112   // The first field contains the phi node that generates a result of the switch
113   // and the second field contains the value generated for a certain case in the
114   // switch for that PHI.
115   typedef SmallVector<std::pair<PHINode *, Constant *>, 4> SwitchCaseResultsTy;
116 
117   /// ValueEqualityComparisonCase - Represents a case of a switch.
118   struct ValueEqualityComparisonCase {
119     ConstantInt *Value;
120     BasicBlock *Dest;
121 
122     ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest)
123       : Value(Value), Dest(Dest) {}
124 
125     bool operator<(ValueEqualityComparisonCase RHS) const {
126       // Comparing pointers is ok as we only rely on the order for uniquing.
127       return Value < RHS.Value;
128     }
129 
130     bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; }
131   };
132 
133 class SimplifyCFGOpt {
134   const TargetTransformInfo &TTI;
135   const DataLayout &DL;
136   unsigned BonusInstThreshold;
137   AssumptionCache *AC;
138   SmallPtrSetImpl<BasicBlock *> *LoopHeaders;
139   Value *isValueEqualityComparison(TerminatorInst *TI);
140   BasicBlock *GetValueEqualityComparisonCases(TerminatorInst *TI,
141                                std::vector<ValueEqualityComparisonCase> &Cases);
142   bool SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI,
143                                                      BasicBlock *Pred,
144                                                      IRBuilder<> &Builder);
145   bool FoldValueComparisonIntoPredecessors(TerminatorInst *TI,
146                                            IRBuilder<> &Builder);
147 
148   bool SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder);
149   bool SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder);
150   bool SimplifySingleResume(ResumeInst *RI);
151   bool SimplifyCommonResume(ResumeInst *RI);
152   bool SimplifyCleanupReturn(CleanupReturnInst *RI);
153   bool SimplifyUnreachable(UnreachableInst *UI);
154   bool SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder);
155   bool SimplifyIndirectBr(IndirectBrInst *IBI);
156   bool SimplifyUncondBranch(BranchInst *BI, IRBuilder <> &Builder);
157   bool SimplifyCondBranch(BranchInst *BI, IRBuilder <>&Builder);
158 
159 public:
160   SimplifyCFGOpt(const TargetTransformInfo &TTI, const DataLayout &DL,
161                  unsigned BonusInstThreshold, AssumptionCache *AC,
162                  SmallPtrSetImpl<BasicBlock *> *LoopHeaders)
163       : TTI(TTI), DL(DL), BonusInstThreshold(BonusInstThreshold), AC(AC),
164         LoopHeaders(LoopHeaders) {}
165   bool run(BasicBlock *BB);
166 };
167 }
168 
169 /// Return true if it is safe to merge these two
170 /// terminator instructions together.
171 static bool SafeToMergeTerminators(TerminatorInst *SI1, TerminatorInst *SI2) {
172   if (SI1 == SI2) return false;  // Can't merge with self!
173 
174   // It is not safe to merge these two switch instructions if they have a common
175   // successor, and if that successor has a PHI node, and if *that* PHI node has
176   // conflicting incoming values from the two switch blocks.
177   BasicBlock *SI1BB = SI1->getParent();
178   BasicBlock *SI2BB = SI2->getParent();
179   SmallPtrSet<BasicBlock*, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
180 
181   for (BasicBlock *Succ : successors(SI2BB))
182     if (SI1Succs.count(Succ))
183       for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) {
184         PHINode *PN = cast<PHINode>(BBI);
185         if (PN->getIncomingValueForBlock(SI1BB) !=
186             PN->getIncomingValueForBlock(SI2BB))
187           return false;
188       }
189 
190   return true;
191 }
192 
193 /// Return true if it is safe and profitable to merge these two terminator
194 /// instructions together, where SI1 is an unconditional branch. PhiNodes will
195 /// store all PHI nodes in common successors.
196 static bool isProfitableToFoldUnconditional(BranchInst *SI1,
197                                           BranchInst *SI2,
198                                           Instruction *Cond,
199                                           SmallVectorImpl<PHINode*> &PhiNodes) {
200   if (SI1 == SI2) return false;  // Can't merge with self!
201   assert(SI1->isUnconditional() && SI2->isConditional());
202 
203   // We fold the unconditional branch if we can easily update all PHI nodes in
204   // common successors:
205   // 1> We have a constant incoming value for the conditional branch;
206   // 2> We have "Cond" as the incoming value for the unconditional branch;
207   // 3> SI2->getCondition() and Cond have same operands.
208   CmpInst *Ci2 = dyn_cast<CmpInst>(SI2->getCondition());
209   if (!Ci2) return false;
210   if (!(Cond->getOperand(0) == Ci2->getOperand(0) &&
211         Cond->getOperand(1) == Ci2->getOperand(1)) &&
212       !(Cond->getOperand(0) == Ci2->getOperand(1) &&
213         Cond->getOperand(1) == Ci2->getOperand(0)))
214     return false;
215 
216   BasicBlock *SI1BB = SI1->getParent();
217   BasicBlock *SI2BB = SI2->getParent();
218   SmallPtrSet<BasicBlock*, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
219   for (BasicBlock *Succ : successors(SI2BB))
220     if (SI1Succs.count(Succ))
221       for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) {
222         PHINode *PN = cast<PHINode>(BBI);
223         if (PN->getIncomingValueForBlock(SI1BB) != Cond ||
224             !isa<ConstantInt>(PN->getIncomingValueForBlock(SI2BB)))
225           return false;
226         PhiNodes.push_back(PN);
227       }
228   return true;
229 }
230 
231 /// Update PHI nodes in Succ to indicate that there will now be entries in it
232 /// from the 'NewPred' block. The values that will be flowing into the PHI nodes
233 /// will be the same as those coming in from ExistPred, an existing predecessor
234 /// of Succ.
235 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred,
236                                   BasicBlock *ExistPred) {
237   if (!isa<PHINode>(Succ->begin())) return; // Quick exit if nothing to do
238 
239   PHINode *PN;
240   for (BasicBlock::iterator I = Succ->begin(); (PN = dyn_cast<PHINode>(I)); ++I)
241     PN->addIncoming(PN->getIncomingValueForBlock(ExistPred), NewPred);
242 }
243 
244 /// Compute an abstract "cost" of speculating the given instruction,
245 /// which is assumed to be safe to speculate. TCC_Free means cheap,
246 /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively
247 /// expensive.
248 static unsigned ComputeSpeculationCost(const User *I,
249                                        const TargetTransformInfo &TTI) {
250   assert(isSafeToSpeculativelyExecute(I) &&
251          "Instruction is not safe to speculatively execute!");
252   return TTI.getUserCost(I);
253 }
254 
255 /// If we have a merge point of an "if condition" as accepted above,
256 /// return true if the specified value dominates the block.  We
257 /// don't handle the true generality of domination here, just a special case
258 /// which works well enough for us.
259 ///
260 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to
261 /// see if V (which must be an instruction) and its recursive operands
262 /// that do not dominate BB have a combined cost lower than CostRemaining and
263 /// are non-trapping.  If both are true, the instruction is inserted into the
264 /// set and true is returned.
265 ///
266 /// The cost for most non-trapping instructions is defined as 1 except for
267 /// Select whose cost is 2.
268 ///
269 /// After this function returns, CostRemaining is decreased by the cost of
270 /// V plus its non-dominating operands.  If that cost is greater than
271 /// CostRemaining, false is returned and CostRemaining is undefined.
272 static bool DominatesMergePoint(Value *V, BasicBlock *BB,
273                                 SmallPtrSetImpl<Instruction*> *AggressiveInsts,
274                                 unsigned &CostRemaining,
275                                 const TargetTransformInfo &TTI,
276                                 unsigned Depth = 0) {
277   // It is possible to hit a zero-cost cycle (phi/gep instructions for example),
278   // so limit the recursion depth.
279   // TODO: While this recursion limit does prevent pathological behavior, it
280   // would be better to track visited instructions to avoid cycles.
281   if (Depth == MaxSpeculationDepth)
282     return false;
283 
284   Instruction *I = dyn_cast<Instruction>(V);
285   if (!I) {
286     // Non-instructions all dominate instructions, but not all constantexprs
287     // can be executed unconditionally.
288     if (ConstantExpr *C = dyn_cast<ConstantExpr>(V))
289       if (C->canTrap())
290         return false;
291     return true;
292   }
293   BasicBlock *PBB = I->getParent();
294 
295   // We don't want to allow weird loops that might have the "if condition" in
296   // the bottom of this block.
297   if (PBB == BB) return false;
298 
299   // If this instruction is defined in a block that contains an unconditional
300   // branch to BB, then it must be in the 'conditional' part of the "if
301   // statement".  If not, it definitely dominates the region.
302   BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator());
303   if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB)
304     return true;
305 
306   // If we aren't allowing aggressive promotion anymore, then don't consider
307   // instructions in the 'if region'.
308   if (!AggressiveInsts) return false;
309 
310   // If we have seen this instruction before, don't count it again.
311   if (AggressiveInsts->count(I)) return true;
312 
313   // Okay, it looks like the instruction IS in the "condition".  Check to
314   // see if it's a cheap instruction to unconditionally compute, and if it
315   // only uses stuff defined outside of the condition.  If so, hoist it out.
316   if (!isSafeToSpeculativelyExecute(I))
317     return false;
318 
319   unsigned Cost = ComputeSpeculationCost(I, TTI);
320 
321   // Allow exactly one instruction to be speculated regardless of its cost
322   // (as long as it is safe to do so).
323   // This is intended to flatten the CFG even if the instruction is a division
324   // or other expensive operation. The speculation of an expensive instruction
325   // is expected to be undone in CodeGenPrepare if the speculation has not
326   // enabled further IR optimizations.
327   if (Cost > CostRemaining &&
328       (!SpeculateOneExpensiveInst || !AggressiveInsts->empty() || Depth > 0))
329     return false;
330 
331   // Avoid unsigned wrap.
332   CostRemaining = (Cost > CostRemaining) ? 0 : CostRemaining - Cost;
333 
334   // Okay, we can only really hoist these out if their operands do
335   // not take us over the cost threshold.
336   for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i)
337     if (!DominatesMergePoint(*i, BB, AggressiveInsts, CostRemaining, TTI,
338                              Depth + 1))
339       return false;
340   // Okay, it's safe to do this!  Remember this instruction.
341   AggressiveInsts->insert(I);
342   return true;
343 }
344 
345 /// Extract ConstantInt from value, looking through IntToPtr
346 /// and PointerNullValue. Return NULL if value is not a constant int.
347 static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) {
348   // Normal constant int.
349   ConstantInt *CI = dyn_cast<ConstantInt>(V);
350   if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy())
351     return CI;
352 
353   // This is some kind of pointer constant. Turn it into a pointer-sized
354   // ConstantInt if possible.
355   IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType()));
356 
357   // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*).
358   if (isa<ConstantPointerNull>(V))
359     return ConstantInt::get(PtrTy, 0);
360 
361   // IntToPtr const int.
362   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
363     if (CE->getOpcode() == Instruction::IntToPtr)
364       if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) {
365         // The constant is very likely to have the right type already.
366         if (CI->getType() == PtrTy)
367           return CI;
368         else
369           return cast<ConstantInt>
370             (ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false));
371       }
372   return nullptr;
373 }
374 
375 namespace {
376 
377 /// Given a chain of or (||) or and (&&) comparison of a value against a
378 /// constant, this will try to recover the information required for a switch
379 /// structure.
380 /// It will depth-first traverse the chain of comparison, seeking for patterns
381 /// like %a == 12 or %a < 4 and combine them to produce a set of integer
382 /// representing the different cases for the switch.
383 /// Note that if the chain is composed of '||' it will build the set of elements
384 /// that matches the comparisons (i.e. any of this value validate the chain)
385 /// while for a chain of '&&' it will build the set elements that make the test
386 /// fail.
387 struct ConstantComparesGatherer {
388   const DataLayout &DL;
389   Value *CompValue; /// Value found for the switch comparison
390   Value *Extra;     /// Extra clause to be checked before the switch
391   SmallVector<ConstantInt *, 8> Vals; /// Set of integers to match in switch
392   unsigned UsedICmps; /// Number of comparisons matched in the and/or chain
393 
394   /// Construct and compute the result for the comparison instruction Cond
395   ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL)
396       : DL(DL), CompValue(nullptr), Extra(nullptr), UsedICmps(0) {
397     gather(Cond);
398   }
399 
400   /// Prevent copy
401   ConstantComparesGatherer(const ConstantComparesGatherer &) = delete;
402   ConstantComparesGatherer &
403   operator=(const ConstantComparesGatherer &) = delete;
404 
405 private:
406 
407   /// Try to set the current value used for the comparison, it succeeds only if
408   /// it wasn't set before or if the new value is the same as the old one
409   bool setValueOnce(Value *NewVal) {
410     if (CompValue && CompValue != NewVal) return false;
411     CompValue = NewVal;
412     return (CompValue != nullptr);
413   }
414 
415   /// Try to match Instruction "I" as a comparison against a constant and
416   /// populates the array Vals with the set of values that match (or do not
417   /// match depending on isEQ).
418   /// Return false on failure. On success, the Value the comparison matched
419   /// against is placed in CompValue.
420   /// If CompValue is already set, the function is expected to fail if a match
421   /// is found but the value compared to is different.
422   bool matchInstruction(Instruction *I, bool isEQ) {
423     // If this is an icmp against a constant, handle this as one of the cases.
424     ICmpInst *ICI;
425     ConstantInt *C;
426     if (!((ICI = dyn_cast<ICmpInst>(I)) &&
427              (C = GetConstantInt(I->getOperand(1), DL)))) {
428       return false;
429     }
430 
431     Value *RHSVal;
432     ConstantInt *RHSC;
433 
434     // Pattern match a special case
435     // (x & ~2^z) == y --> x == y || x == y|2^z
436     // This undoes a transformation done by instcombine to fuse 2 compares.
437     if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ:ICmpInst::ICMP_NE)) {
438       if (match(ICI->getOperand(0),
439                 m_And(m_Value(RHSVal), m_ConstantInt(RHSC)))) {
440         APInt Not = ~RHSC->getValue();
441         if (Not.isPowerOf2() && C->getValue().isPowerOf2() &&
442             Not != C->getValue()) {
443           // If we already have a value for the switch, it has to match!
444           if(!setValueOnce(RHSVal))
445             return false;
446 
447           Vals.push_back(C);
448           Vals.push_back(ConstantInt::get(C->getContext(),
449                                           C->getValue() | Not));
450           UsedICmps++;
451           return true;
452         }
453       }
454 
455       // If we already have a value for the switch, it has to match!
456       if(!setValueOnce(ICI->getOperand(0)))
457         return false;
458 
459       UsedICmps++;
460       Vals.push_back(C);
461       return ICI->getOperand(0);
462     }
463 
464     // If we have "x ult 3", for example, then we can add 0,1,2 to the set.
465     ConstantRange Span = ConstantRange::makeAllowedICmpRegion(
466         ICI->getPredicate(), C->getValue());
467 
468     // Shift the range if the compare is fed by an add. This is the range
469     // compare idiom as emitted by instcombine.
470     Value *CandidateVal = I->getOperand(0);
471     if(match(I->getOperand(0), m_Add(m_Value(RHSVal), m_ConstantInt(RHSC)))) {
472       Span = Span.subtract(RHSC->getValue());
473       CandidateVal = RHSVal;
474     }
475 
476     // If this is an and/!= check, then we are looking to build the set of
477     // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into
478     // x != 0 && x != 1.
479     if (!isEQ)
480       Span = Span.inverse();
481 
482     // If there are a ton of values, we don't want to make a ginormous switch.
483     if (Span.getSetSize().ugt(8) || Span.isEmptySet()) {
484       return false;
485     }
486 
487     // If we already have a value for the switch, it has to match!
488     if(!setValueOnce(CandidateVal))
489       return false;
490 
491     // Add all values from the range to the set
492     for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp)
493       Vals.push_back(ConstantInt::get(I->getContext(), Tmp));
494 
495     UsedICmps++;
496     return true;
497 
498   }
499 
500   /// Given a potentially 'or'd or 'and'd together collection of icmp
501   /// eq/ne/lt/gt instructions that compare a value against a constant, extract
502   /// the value being compared, and stick the list constants into the Vals
503   /// vector.
504   /// One "Extra" case is allowed to differ from the other.
505   void gather(Value *V) {
506     Instruction *I = dyn_cast<Instruction>(V);
507     bool isEQ = (I->getOpcode() == Instruction::Or);
508 
509     // Keep a stack (SmallVector for efficiency) for depth-first traversal
510     SmallVector<Value *, 8> DFT;
511     SmallPtrSet<Value *, 8> Visited;
512 
513     // Initialize
514     Visited.insert(V);
515     DFT.push_back(V);
516 
517     while(!DFT.empty()) {
518       V = DFT.pop_back_val();
519 
520       if (Instruction *I = dyn_cast<Instruction>(V)) {
521         // If it is a || (or && depending on isEQ), process the operands.
522         if (I->getOpcode() == (isEQ ? Instruction::Or : Instruction::And)) {
523           if (Visited.insert(I->getOperand(1)).second)
524             DFT.push_back(I->getOperand(1));
525           if (Visited.insert(I->getOperand(0)).second)
526             DFT.push_back(I->getOperand(0));
527           continue;
528         }
529 
530         // Try to match the current instruction
531         if (matchInstruction(I, isEQ))
532           // Match succeed, continue the loop
533           continue;
534       }
535 
536       // One element of the sequence of || (or &&) could not be match as a
537       // comparison against the same value as the others.
538       // We allow only one "Extra" case to be checked before the switch
539       if (!Extra) {
540         Extra = V;
541         continue;
542       }
543       // Failed to parse a proper sequence, abort now
544       CompValue = nullptr;
545       break;
546     }
547   }
548 };
549 
550 }
551 
552 static void EraseTerminatorInstAndDCECond(TerminatorInst *TI) {
553   Instruction *Cond = nullptr;
554   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
555     Cond = dyn_cast<Instruction>(SI->getCondition());
556   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
557     if (BI->isConditional())
558       Cond = dyn_cast<Instruction>(BI->getCondition());
559   } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) {
560     Cond = dyn_cast<Instruction>(IBI->getAddress());
561   }
562 
563   TI->eraseFromParent();
564   if (Cond) RecursivelyDeleteTriviallyDeadInstructions(Cond);
565 }
566 
567 /// Return true if the specified terminator checks
568 /// to see if a value is equal to constant integer value.
569 Value *SimplifyCFGOpt::isValueEqualityComparison(TerminatorInst *TI) {
570   Value *CV = nullptr;
571   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
572     // Do not permit merging of large switch instructions into their
573     // predecessors unless there is only one predecessor.
574     if (SI->getNumSuccessors()*std::distance(pred_begin(SI->getParent()),
575                                              pred_end(SI->getParent())) <= 128)
576       CV = SI->getCondition();
577   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI))
578     if (BI->isConditional() && BI->getCondition()->hasOneUse())
579       if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) {
580         if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL))
581           CV = ICI->getOperand(0);
582       }
583 
584   // Unwrap any lossless ptrtoint cast.
585   if (CV) {
586     if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) {
587       Value *Ptr = PTII->getPointerOperand();
588       if (PTII->getType() == DL.getIntPtrType(Ptr->getType()))
589         CV = Ptr;
590     }
591   }
592   return CV;
593 }
594 
595 /// Given a value comparison instruction,
596 /// decode all of the 'cases' that it represents and return the 'default' block.
597 BasicBlock *SimplifyCFGOpt::
598 GetValueEqualityComparisonCases(TerminatorInst *TI,
599                                 std::vector<ValueEqualityComparisonCase>
600                                                                        &Cases) {
601   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
602     Cases.reserve(SI->getNumCases());
603     for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); i != e; ++i)
604       Cases.push_back(ValueEqualityComparisonCase(i.getCaseValue(),
605                                                   i.getCaseSuccessor()));
606     return SI->getDefaultDest();
607   }
608 
609   BranchInst *BI = cast<BranchInst>(TI);
610   ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
611   BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE);
612   Cases.push_back(ValueEqualityComparisonCase(GetConstantInt(ICI->getOperand(1),
613                                                              DL),
614                                               Succ));
615   return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ);
616 }
617 
618 
619 /// Given a vector of bb/value pairs, remove any entries
620 /// in the list that match the specified block.
621 static void EliminateBlockCases(BasicBlock *BB,
622                               std::vector<ValueEqualityComparisonCase> &Cases) {
623   Cases.erase(std::remove(Cases.begin(), Cases.end(), BB), Cases.end());
624 }
625 
626 /// Return true if there are any keys in C1 that exist in C2 as well.
627 static bool
628 ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1,
629               std::vector<ValueEqualityComparisonCase > &C2) {
630   std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2;
631 
632   // Make V1 be smaller than V2.
633   if (V1->size() > V2->size())
634     std::swap(V1, V2);
635 
636   if (V1->size() == 0) return false;
637   if (V1->size() == 1) {
638     // Just scan V2.
639     ConstantInt *TheVal = (*V1)[0].Value;
640     for (unsigned i = 0, e = V2->size(); i != e; ++i)
641       if (TheVal == (*V2)[i].Value)
642         return true;
643   }
644 
645   // Otherwise, just sort both lists and compare element by element.
646   array_pod_sort(V1->begin(), V1->end());
647   array_pod_sort(V2->begin(), V2->end());
648   unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size();
649   while (i1 != e1 && i2 != e2) {
650     if ((*V1)[i1].Value == (*V2)[i2].Value)
651       return true;
652     if ((*V1)[i1].Value < (*V2)[i2].Value)
653       ++i1;
654     else
655       ++i2;
656   }
657   return false;
658 }
659 
660 /// If TI is known to be a terminator instruction and its block is known to
661 /// only have a single predecessor block, check to see if that predecessor is
662 /// also a value comparison with the same value, and if that comparison
663 /// determines the outcome of this comparison. If so, simplify TI. This does a
664 /// very limited form of jump threading.
665 bool SimplifyCFGOpt::
666 SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI,
667                                               BasicBlock *Pred,
668                                               IRBuilder<> &Builder) {
669   Value *PredVal = isValueEqualityComparison(Pred->getTerminator());
670   if (!PredVal) return false;  // Not a value comparison in predecessor.
671 
672   Value *ThisVal = isValueEqualityComparison(TI);
673   assert(ThisVal && "This isn't a value comparison!!");
674   if (ThisVal != PredVal) return false;  // Different predicates.
675 
676   // TODO: Preserve branch weight metadata, similarly to how
677   // FoldValueComparisonIntoPredecessors preserves it.
678 
679   // Find out information about when control will move from Pred to TI's block.
680   std::vector<ValueEqualityComparisonCase> PredCases;
681   BasicBlock *PredDef = GetValueEqualityComparisonCases(Pred->getTerminator(),
682                                                         PredCases);
683   EliminateBlockCases(PredDef, PredCases);  // Remove default from cases.
684 
685   // Find information about how control leaves this block.
686   std::vector<ValueEqualityComparisonCase> ThisCases;
687   BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases);
688   EliminateBlockCases(ThisDef, ThisCases);  // Remove default from cases.
689 
690   // If TI's block is the default block from Pred's comparison, potentially
691   // simplify TI based on this knowledge.
692   if (PredDef == TI->getParent()) {
693     // If we are here, we know that the value is none of those cases listed in
694     // PredCases.  If there are any cases in ThisCases that are in PredCases, we
695     // can simplify TI.
696     if (!ValuesOverlap(PredCases, ThisCases))
697       return false;
698 
699     if (isa<BranchInst>(TI)) {
700       // Okay, one of the successors of this condbr is dead.  Convert it to a
701       // uncond br.
702       assert(ThisCases.size() == 1 && "Branch can only have one case!");
703       // Insert the new branch.
704       Instruction *NI = Builder.CreateBr(ThisDef);
705       (void) NI;
706 
707       // Remove PHI node entries for the dead edge.
708       ThisCases[0].Dest->removePredecessor(TI->getParent());
709 
710       DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
711            << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n");
712 
713       EraseTerminatorInstAndDCECond(TI);
714       return true;
715     }
716 
717     SwitchInst *SI = cast<SwitchInst>(TI);
718     // Okay, TI has cases that are statically dead, prune them away.
719     SmallPtrSet<Constant*, 16> DeadCases;
720     for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
721       DeadCases.insert(PredCases[i].Value);
722 
723     DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
724                  << "Through successor TI: " << *TI);
725 
726     // Collect branch weights into a vector.
727     SmallVector<uint32_t, 8> Weights;
728     MDNode *MD = SI->getMetadata(LLVMContext::MD_prof);
729     bool HasWeight = MD && (MD->getNumOperands() == 2 + SI->getNumCases());
730     if (HasWeight)
731       for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e;
732            ++MD_i) {
733         ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i));
734         Weights.push_back(CI->getValue().getZExtValue());
735       }
736     for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) {
737       --i;
738       if (DeadCases.count(i.getCaseValue())) {
739         if (HasWeight) {
740           std::swap(Weights[i.getCaseIndex()+1], Weights.back());
741           Weights.pop_back();
742         }
743         i.getCaseSuccessor()->removePredecessor(TI->getParent());
744         SI->removeCase(i);
745       }
746     }
747     if (HasWeight && Weights.size() >= 2)
748       SI->setMetadata(LLVMContext::MD_prof,
749                       MDBuilder(SI->getParent()->getContext()).
750                       createBranchWeights(Weights));
751 
752     DEBUG(dbgs() << "Leaving: " << *TI << "\n");
753     return true;
754   }
755 
756   // Otherwise, TI's block must correspond to some matched value.  Find out
757   // which value (or set of values) this is.
758   ConstantInt *TIV = nullptr;
759   BasicBlock *TIBB = TI->getParent();
760   for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
761     if (PredCases[i].Dest == TIBB) {
762       if (TIV)
763         return false;  // Cannot handle multiple values coming to this block.
764       TIV = PredCases[i].Value;
765     }
766   assert(TIV && "No edge from pred to succ?");
767 
768   // Okay, we found the one constant that our value can be if we get into TI's
769   // BB.  Find out which successor will unconditionally be branched to.
770   BasicBlock *TheRealDest = nullptr;
771   for (unsigned i = 0, e = ThisCases.size(); i != e; ++i)
772     if (ThisCases[i].Value == TIV) {
773       TheRealDest = ThisCases[i].Dest;
774       break;
775     }
776 
777   // If not handled by any explicit cases, it is handled by the default case.
778   if (!TheRealDest) TheRealDest = ThisDef;
779 
780   // Remove PHI node entries for dead edges.
781   BasicBlock *CheckEdge = TheRealDest;
782   for (BasicBlock *Succ : successors(TIBB))
783     if (Succ != CheckEdge)
784       Succ->removePredecessor(TIBB);
785     else
786       CheckEdge = nullptr;
787 
788   // Insert the new branch.
789   Instruction *NI = Builder.CreateBr(TheRealDest);
790   (void) NI;
791 
792   DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
793             << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n");
794 
795   EraseTerminatorInstAndDCECond(TI);
796   return true;
797 }
798 
799 namespace {
800   /// This class implements a stable ordering of constant
801   /// integers that does not depend on their address.  This is important for
802   /// applications that sort ConstantInt's to ensure uniqueness.
803   struct ConstantIntOrdering {
804     bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const {
805       return LHS->getValue().ult(RHS->getValue());
806     }
807   };
808 }
809 
810 static int ConstantIntSortPredicate(ConstantInt *const *P1,
811                                     ConstantInt *const *P2) {
812   const ConstantInt *LHS = *P1;
813   const ConstantInt *RHS = *P2;
814   if (LHS == RHS)
815     return 0;
816   return LHS->getValue().ult(RHS->getValue()) ? 1 : -1;
817 }
818 
819 static inline bool HasBranchWeights(const Instruction* I) {
820   MDNode *ProfMD = I->getMetadata(LLVMContext::MD_prof);
821   if (ProfMD && ProfMD->getOperand(0))
822     if (MDString* MDS = dyn_cast<MDString>(ProfMD->getOperand(0)))
823       return MDS->getString().equals("branch_weights");
824 
825   return false;
826 }
827 
828 /// Get Weights of a given TerminatorInst, the default weight is at the front
829 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight
830 /// metadata.
831 static void GetBranchWeights(TerminatorInst *TI,
832                              SmallVectorImpl<uint64_t> &Weights) {
833   MDNode *MD = TI->getMetadata(LLVMContext::MD_prof);
834   assert(MD);
835   for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) {
836     ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i));
837     Weights.push_back(CI->getValue().getZExtValue());
838   }
839 
840   // If TI is a conditional eq, the default case is the false case,
841   // and the corresponding branch-weight data is at index 2. We swap the
842   // default weight to be the first entry.
843   if (BranchInst* BI = dyn_cast<BranchInst>(TI)) {
844     assert(Weights.size() == 2);
845     ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
846     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
847       std::swap(Weights.front(), Weights.back());
848   }
849 }
850 
851 /// Keep halving the weights until all can fit in uint32_t.
852 static void FitWeights(MutableArrayRef<uint64_t> Weights) {
853   uint64_t Max = *std::max_element(Weights.begin(), Weights.end());
854   if (Max > UINT_MAX) {
855     unsigned Offset = 32 - countLeadingZeros(Max);
856     for (uint64_t &I : Weights)
857       I >>= Offset;
858   }
859 }
860 
861 /// The specified terminator is a value equality comparison instruction
862 /// (either a switch or a branch on "X == c").
863 /// See if any of the predecessors of the terminator block are value comparisons
864 /// on the same value.  If so, and if safe to do so, fold them together.
865 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(TerminatorInst *TI,
866                                                          IRBuilder<> &Builder) {
867   BasicBlock *BB = TI->getParent();
868   Value *CV = isValueEqualityComparison(TI);  // CondVal
869   assert(CV && "Not a comparison?");
870   bool Changed = false;
871 
872   SmallVector<BasicBlock*, 16> Preds(pred_begin(BB), pred_end(BB));
873   while (!Preds.empty()) {
874     BasicBlock *Pred = Preds.pop_back_val();
875 
876     // See if the predecessor is a comparison with the same value.
877     TerminatorInst *PTI = Pred->getTerminator();
878     Value *PCV = isValueEqualityComparison(PTI);  // PredCondVal
879 
880     if (PCV == CV && SafeToMergeTerminators(TI, PTI)) {
881       // Figure out which 'cases' to copy from SI to PSI.
882       std::vector<ValueEqualityComparisonCase> BBCases;
883       BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases);
884 
885       std::vector<ValueEqualityComparisonCase> PredCases;
886       BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases);
887 
888       // Based on whether the default edge from PTI goes to BB or not, fill in
889       // PredCases and PredDefault with the new switch cases we would like to
890       // build.
891       SmallVector<BasicBlock*, 8> NewSuccessors;
892 
893       // Update the branch weight metadata along the way
894       SmallVector<uint64_t, 8> Weights;
895       bool PredHasWeights = HasBranchWeights(PTI);
896       bool SuccHasWeights = HasBranchWeights(TI);
897 
898       if (PredHasWeights) {
899         GetBranchWeights(PTI, Weights);
900         // branch-weight metadata is inconsistent here.
901         if (Weights.size() != 1 + PredCases.size())
902           PredHasWeights = SuccHasWeights = false;
903       } else if (SuccHasWeights)
904         // If there are no predecessor weights but there are successor weights,
905         // populate Weights with 1, which will later be scaled to the sum of
906         // successor's weights
907         Weights.assign(1 + PredCases.size(), 1);
908 
909       SmallVector<uint64_t, 8> SuccWeights;
910       if (SuccHasWeights) {
911         GetBranchWeights(TI, SuccWeights);
912         // branch-weight metadata is inconsistent here.
913         if (SuccWeights.size() != 1 + BBCases.size())
914           PredHasWeights = SuccHasWeights = false;
915       } else if (PredHasWeights)
916         SuccWeights.assign(1 + BBCases.size(), 1);
917 
918       if (PredDefault == BB) {
919         // If this is the default destination from PTI, only the edges in TI
920         // that don't occur in PTI, or that branch to BB will be activated.
921         std::set<ConstantInt*, ConstantIntOrdering> PTIHandled;
922         for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
923           if (PredCases[i].Dest != BB)
924             PTIHandled.insert(PredCases[i].Value);
925           else {
926             // The default destination is BB, we don't need explicit targets.
927             std::swap(PredCases[i], PredCases.back());
928 
929             if (PredHasWeights || SuccHasWeights) {
930               // Increase weight for the default case.
931               Weights[0] += Weights[i+1];
932               std::swap(Weights[i+1], Weights.back());
933               Weights.pop_back();
934             }
935 
936             PredCases.pop_back();
937             --i; --e;
938           }
939 
940         // Reconstruct the new switch statement we will be building.
941         if (PredDefault != BBDefault) {
942           PredDefault->removePredecessor(Pred);
943           PredDefault = BBDefault;
944           NewSuccessors.push_back(BBDefault);
945         }
946 
947         unsigned CasesFromPred = Weights.size();
948         uint64_t ValidTotalSuccWeight = 0;
949         for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
950           if (!PTIHandled.count(BBCases[i].Value) &&
951               BBCases[i].Dest != BBDefault) {
952             PredCases.push_back(BBCases[i]);
953             NewSuccessors.push_back(BBCases[i].Dest);
954             if (SuccHasWeights || PredHasWeights) {
955               // The default weight is at index 0, so weight for the ith case
956               // should be at index i+1. Scale the cases from successor by
957               // PredDefaultWeight (Weights[0]).
958               Weights.push_back(Weights[0] * SuccWeights[i+1]);
959               ValidTotalSuccWeight += SuccWeights[i+1];
960             }
961           }
962 
963         if (SuccHasWeights || PredHasWeights) {
964           ValidTotalSuccWeight += SuccWeights[0];
965           // Scale the cases from predecessor by ValidTotalSuccWeight.
966           for (unsigned i = 1; i < CasesFromPred; ++i)
967             Weights[i] *= ValidTotalSuccWeight;
968           // Scale the default weight by SuccDefaultWeight (SuccWeights[0]).
969           Weights[0] *= SuccWeights[0];
970         }
971       } else {
972         // If this is not the default destination from PSI, only the edges
973         // in SI that occur in PSI with a destination of BB will be
974         // activated.
975         std::set<ConstantInt*, ConstantIntOrdering> PTIHandled;
976         std::map<ConstantInt*, uint64_t> WeightsForHandled;
977         for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
978           if (PredCases[i].Dest == BB) {
979             PTIHandled.insert(PredCases[i].Value);
980 
981             if (PredHasWeights || SuccHasWeights) {
982               WeightsForHandled[PredCases[i].Value] = Weights[i+1];
983               std::swap(Weights[i+1], Weights.back());
984               Weights.pop_back();
985             }
986 
987             std::swap(PredCases[i], PredCases.back());
988             PredCases.pop_back();
989             --i; --e;
990           }
991 
992         // Okay, now we know which constants were sent to BB from the
993         // predecessor.  Figure out where they will all go now.
994         for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
995           if (PTIHandled.count(BBCases[i].Value)) {
996             // If this is one we are capable of getting...
997             if (PredHasWeights || SuccHasWeights)
998               Weights.push_back(WeightsForHandled[BBCases[i].Value]);
999             PredCases.push_back(BBCases[i]);
1000             NewSuccessors.push_back(BBCases[i].Dest);
1001             PTIHandled.erase(BBCases[i].Value);// This constant is taken care of
1002           }
1003 
1004         // If there are any constants vectored to BB that TI doesn't handle,
1005         // they must go to the default destination of TI.
1006         for (std::set<ConstantInt*, ConstantIntOrdering>::iterator I =
1007                                     PTIHandled.begin(),
1008                E = PTIHandled.end(); I != E; ++I) {
1009           if (PredHasWeights || SuccHasWeights)
1010             Weights.push_back(WeightsForHandled[*I]);
1011           PredCases.push_back(ValueEqualityComparisonCase(*I, BBDefault));
1012           NewSuccessors.push_back(BBDefault);
1013         }
1014       }
1015 
1016       // Okay, at this point, we know which new successor Pred will get.  Make
1017       // sure we update the number of entries in the PHI nodes for these
1018       // successors.
1019       for (BasicBlock *NewSuccessor : NewSuccessors)
1020         AddPredecessorToBlock(NewSuccessor, Pred, BB);
1021 
1022       Builder.SetInsertPoint(PTI);
1023       // Convert pointer to int before we switch.
1024       if (CV->getType()->isPointerTy()) {
1025         CV = Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()),
1026                                     "magicptr");
1027       }
1028 
1029       // Now that the successors are updated, create the new Switch instruction.
1030       SwitchInst *NewSI = Builder.CreateSwitch(CV, PredDefault,
1031                                                PredCases.size());
1032       NewSI->setDebugLoc(PTI->getDebugLoc());
1033       for (ValueEqualityComparisonCase &V : PredCases)
1034         NewSI->addCase(V.Value, V.Dest);
1035 
1036       if (PredHasWeights || SuccHasWeights) {
1037         // Halve the weights if any of them cannot fit in an uint32_t
1038         FitWeights(Weights);
1039 
1040         SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
1041 
1042         NewSI->setMetadata(LLVMContext::MD_prof,
1043                            MDBuilder(BB->getContext()).
1044                            createBranchWeights(MDWeights));
1045       }
1046 
1047       EraseTerminatorInstAndDCECond(PTI);
1048 
1049       // Okay, last check.  If BB is still a successor of PSI, then we must
1050       // have an infinite loop case.  If so, add an infinitely looping block
1051       // to handle the case to preserve the behavior of the code.
1052       BasicBlock *InfLoopBlock = nullptr;
1053       for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i)
1054         if (NewSI->getSuccessor(i) == BB) {
1055           if (!InfLoopBlock) {
1056             // Insert it at the end of the function, because it's either code,
1057             // or it won't matter if it's hot. :)
1058             InfLoopBlock = BasicBlock::Create(BB->getContext(),
1059                                               "infloop", BB->getParent());
1060             BranchInst::Create(InfLoopBlock, InfLoopBlock);
1061           }
1062           NewSI->setSuccessor(i, InfLoopBlock);
1063         }
1064 
1065       Changed = true;
1066     }
1067   }
1068   return Changed;
1069 }
1070 
1071 // If we would need to insert a select that uses the value of this invoke
1072 // (comments in HoistThenElseCodeToIf explain why we would need to do this), we
1073 // can't hoist the invoke, as there is nowhere to put the select in this case.
1074 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2,
1075                                 Instruction *I1, Instruction *I2) {
1076   for (BasicBlock *Succ : successors(BB1)) {
1077     PHINode *PN;
1078     for (BasicBlock::iterator BBI = Succ->begin();
1079          (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
1080       Value *BB1V = PN->getIncomingValueForBlock(BB1);
1081       Value *BB2V = PN->getIncomingValueForBlock(BB2);
1082       if (BB1V != BB2V && (BB1V==I1 || BB2V==I2)) {
1083         return false;
1084       }
1085     }
1086   }
1087   return true;
1088 }
1089 
1090 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I);
1091 
1092 /// Given a conditional branch that goes to BB1 and BB2, hoist any common code
1093 /// in the two blocks up into the branch block. The caller of this function
1094 /// guarantees that BI's block dominates BB1 and BB2.
1095 static bool HoistThenElseCodeToIf(BranchInst *BI,
1096                                   const TargetTransformInfo &TTI) {
1097   // This does very trivial matching, with limited scanning, to find identical
1098   // instructions in the two blocks.  In particular, we don't want to get into
1099   // O(M*N) situations here where M and N are the sizes of BB1 and BB2.  As
1100   // such, we currently just scan for obviously identical instructions in an
1101   // identical order.
1102   BasicBlock *BB1 = BI->getSuccessor(0);  // The true destination.
1103   BasicBlock *BB2 = BI->getSuccessor(1);  // The false destination
1104 
1105   BasicBlock::iterator BB1_Itr = BB1->begin();
1106   BasicBlock::iterator BB2_Itr = BB2->begin();
1107 
1108   Instruction *I1 = &*BB1_Itr++, *I2 = &*BB2_Itr++;
1109   // Skip debug info if it is not identical.
1110   DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1111   DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1112   if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1113     while (isa<DbgInfoIntrinsic>(I1))
1114       I1 = &*BB1_Itr++;
1115     while (isa<DbgInfoIntrinsic>(I2))
1116       I2 = &*BB2_Itr++;
1117   }
1118   if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) ||
1119       (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)))
1120     return false;
1121 
1122   BasicBlock *BIParent = BI->getParent();
1123 
1124   bool Changed = false;
1125   do {
1126     // If we are hoisting the terminator instruction, don't move one (making a
1127     // broken BB), instead clone it, and remove BI.
1128     if (isa<TerminatorInst>(I1))
1129       goto HoistTerminator;
1130 
1131     if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2))
1132       return Changed;
1133 
1134     // For a normal instruction, we just move one to right before the branch,
1135     // then replace all uses of the other with the first.  Finally, we remove
1136     // the now redundant second instruction.
1137     BIParent->getInstList().splice(BI->getIterator(), BB1->getInstList(), I1);
1138     if (!I2->use_empty())
1139       I2->replaceAllUsesWith(I1);
1140     I1->intersectOptionalDataWith(I2);
1141     unsigned KnownIDs[] = {
1142         LLVMContext::MD_tbaa,    LLVMContext::MD_range,
1143         LLVMContext::MD_fpmath,  LLVMContext::MD_invariant_load,
1144         LLVMContext::MD_nonnull, LLVMContext::MD_invariant_group,
1145         LLVMContext::MD_align,   LLVMContext::MD_dereferenceable,
1146         LLVMContext::MD_dereferenceable_or_null};
1147     combineMetadata(I1, I2, KnownIDs);
1148     I2->eraseFromParent();
1149     Changed = true;
1150 
1151     I1 = &*BB1_Itr++;
1152     I2 = &*BB2_Itr++;
1153     // Skip debug info if it is not identical.
1154     DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1155     DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1156     if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1157       while (isa<DbgInfoIntrinsic>(I1))
1158         I1 = &*BB1_Itr++;
1159       while (isa<DbgInfoIntrinsic>(I2))
1160         I2 = &*BB2_Itr++;
1161     }
1162   } while (I1->isIdenticalToWhenDefined(I2));
1163 
1164   return true;
1165 
1166 HoistTerminator:
1167   // It may not be possible to hoist an invoke.
1168   if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))
1169     return Changed;
1170 
1171   for (BasicBlock *Succ : successors(BB1)) {
1172     PHINode *PN;
1173     for (BasicBlock::iterator BBI = Succ->begin();
1174          (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
1175       Value *BB1V = PN->getIncomingValueForBlock(BB1);
1176       Value *BB2V = PN->getIncomingValueForBlock(BB2);
1177       if (BB1V == BB2V)
1178         continue;
1179 
1180       // Check for passingValueIsAlwaysUndefined here because we would rather
1181       // eliminate undefined control flow then converting it to a select.
1182       if (passingValueIsAlwaysUndefined(BB1V, PN) ||
1183           passingValueIsAlwaysUndefined(BB2V, PN))
1184        return Changed;
1185 
1186       if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V))
1187         return Changed;
1188       if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V))
1189         return Changed;
1190     }
1191   }
1192 
1193   // Okay, it is safe to hoist the terminator.
1194   Instruction *NT = I1->clone();
1195   BIParent->getInstList().insert(BI->getIterator(), NT);
1196   if (!NT->getType()->isVoidTy()) {
1197     I1->replaceAllUsesWith(NT);
1198     I2->replaceAllUsesWith(NT);
1199     NT->takeName(I1);
1200   }
1201 
1202   IRBuilder<NoFolder> Builder(NT);
1203   // Hoisting one of the terminators from our successor is a great thing.
1204   // Unfortunately, the successors of the if/else blocks may have PHI nodes in
1205   // them.  If they do, all PHI entries for BB1/BB2 must agree for all PHI
1206   // nodes, so we insert select instruction to compute the final result.
1207   std::map<std::pair<Value*,Value*>, SelectInst*> InsertedSelects;
1208   for (BasicBlock *Succ : successors(BB1)) {
1209     PHINode *PN;
1210     for (BasicBlock::iterator BBI = Succ->begin();
1211          (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
1212       Value *BB1V = PN->getIncomingValueForBlock(BB1);
1213       Value *BB2V = PN->getIncomingValueForBlock(BB2);
1214       if (BB1V == BB2V) continue;
1215 
1216       // These values do not agree.  Insert a select instruction before NT
1217       // that determines the right value.
1218       SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)];
1219       if (!SI)
1220         SI = cast<SelectInst>
1221           (Builder.CreateSelect(BI->getCondition(), BB1V, BB2V,
1222                                 BB1V->getName() + "." + BB2V->getName()));
1223 
1224       // Make the PHI node use the select for all incoming values for BB1/BB2
1225       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1226         if (PN->getIncomingBlock(i) == BB1 || PN->getIncomingBlock(i) == BB2)
1227           PN->setIncomingValue(i, SI);
1228     }
1229   }
1230 
1231   // Update any PHI nodes in our new successors.
1232   for (BasicBlock *Succ : successors(BB1))
1233     AddPredecessorToBlock(Succ, BIParent, BB1);
1234 
1235   EraseTerminatorInstAndDCECond(BI);
1236   return true;
1237 }
1238 
1239 /// Given an unconditional branch that goes to BBEnd,
1240 /// check whether BBEnd has only two predecessors and the other predecessor
1241 /// ends with an unconditional branch. If it is true, sink any common code
1242 /// in the two predecessors to BBEnd.
1243 static bool SinkThenElseCodeToEnd(BranchInst *BI1) {
1244   assert(BI1->isUnconditional());
1245   BasicBlock *BB1 = BI1->getParent();
1246   BasicBlock *BBEnd = BI1->getSuccessor(0);
1247 
1248   // Check that BBEnd has two predecessors and the other predecessor ends with
1249   // an unconditional branch.
1250   pred_iterator PI = pred_begin(BBEnd), PE = pred_end(BBEnd);
1251   BasicBlock *Pred0 = *PI++;
1252   if (PI == PE) // Only one predecessor.
1253     return false;
1254   BasicBlock *Pred1 = *PI++;
1255   if (PI != PE) // More than two predecessors.
1256     return false;
1257   BasicBlock *BB2 = (Pred0 == BB1) ? Pred1 : Pred0;
1258   BranchInst *BI2 = dyn_cast<BranchInst>(BB2->getTerminator());
1259   if (!BI2 || !BI2->isUnconditional())
1260     return false;
1261 
1262   // Gather the PHI nodes in BBEnd.
1263   SmallDenseMap<std::pair<Value *, Value *>, PHINode *> JointValueMap;
1264   Instruction *FirstNonPhiInBBEnd = nullptr;
1265   for (BasicBlock::iterator I = BBEnd->begin(), E = BBEnd->end(); I != E; ++I) {
1266     if (PHINode *PN = dyn_cast<PHINode>(I)) {
1267       Value *BB1V = PN->getIncomingValueForBlock(BB1);
1268       Value *BB2V = PN->getIncomingValueForBlock(BB2);
1269       JointValueMap[std::make_pair(BB1V, BB2V)] = PN;
1270     } else {
1271       FirstNonPhiInBBEnd = &*I;
1272       break;
1273     }
1274   }
1275   if (!FirstNonPhiInBBEnd)
1276     return false;
1277 
1278   // This does very trivial matching, with limited scanning, to find identical
1279   // instructions in the two blocks.  We scan backward for obviously identical
1280   // instructions in an identical order.
1281   BasicBlock::InstListType::reverse_iterator RI1 = BB1->getInstList().rbegin(),
1282                                              RE1 = BB1->getInstList().rend(),
1283                                              RI2 = BB2->getInstList().rbegin(),
1284                                              RE2 = BB2->getInstList().rend();
1285   // Skip debug info.
1286   while (RI1 != RE1 && isa<DbgInfoIntrinsic>(&*RI1)) ++RI1;
1287   if (RI1 == RE1)
1288     return false;
1289   while (RI2 != RE2 && isa<DbgInfoIntrinsic>(&*RI2)) ++RI2;
1290   if (RI2 == RE2)
1291     return false;
1292   // Skip the unconditional branches.
1293   ++RI1;
1294   ++RI2;
1295 
1296   bool Changed = false;
1297   while (RI1 != RE1 && RI2 != RE2) {
1298     // Skip debug info.
1299     while (RI1 != RE1 && isa<DbgInfoIntrinsic>(&*RI1)) ++RI1;
1300     if (RI1 == RE1)
1301       return Changed;
1302     while (RI2 != RE2 && isa<DbgInfoIntrinsic>(&*RI2)) ++RI2;
1303     if (RI2 == RE2)
1304       return Changed;
1305 
1306     Instruction *I1 = &*RI1, *I2 = &*RI2;
1307     auto InstPair = std::make_pair(I1, I2);
1308     // I1 and I2 should have a single use in the same PHI node, and they
1309     // perform the same operation.
1310     // Cannot move control-flow-involving, volatile loads, vaarg, etc.
1311     if (isa<PHINode>(I1) || isa<PHINode>(I2) ||
1312         isa<TerminatorInst>(I1) || isa<TerminatorInst>(I2) ||
1313         I1->isEHPad() || I2->isEHPad() ||
1314         isa<AllocaInst>(I1) || isa<AllocaInst>(I2) ||
1315         I1->mayHaveSideEffects() || I2->mayHaveSideEffects() ||
1316         I1->mayReadOrWriteMemory() || I2->mayReadOrWriteMemory() ||
1317         !I1->hasOneUse() || !I2->hasOneUse() ||
1318         !JointValueMap.count(InstPair))
1319       return Changed;
1320 
1321     // Check whether we should swap the operands of ICmpInst.
1322     // TODO: Add support of communativity.
1323     ICmpInst *ICmp1 = dyn_cast<ICmpInst>(I1), *ICmp2 = dyn_cast<ICmpInst>(I2);
1324     bool SwapOpnds = false;
1325     if (ICmp1 && ICmp2 &&
1326         ICmp1->getOperand(0) != ICmp2->getOperand(0) &&
1327         ICmp1->getOperand(1) != ICmp2->getOperand(1) &&
1328         (ICmp1->getOperand(0) == ICmp2->getOperand(1) ||
1329          ICmp1->getOperand(1) == ICmp2->getOperand(0))) {
1330       ICmp2->swapOperands();
1331       SwapOpnds = true;
1332     }
1333     if (!I1->isSameOperationAs(I2)) {
1334       if (SwapOpnds)
1335         ICmp2->swapOperands();
1336       return Changed;
1337     }
1338 
1339     // The operands should be either the same or they need to be generated
1340     // with a PHI node after sinking. We only handle the case where there is
1341     // a single pair of different operands.
1342     Value *DifferentOp1 = nullptr, *DifferentOp2 = nullptr;
1343     unsigned Op1Idx = ~0U;
1344     for (unsigned I = 0, E = I1->getNumOperands(); I != E; ++I) {
1345       if (I1->getOperand(I) == I2->getOperand(I))
1346         continue;
1347       // Early exit if we have more-than one pair of different operands or if
1348       // we need a PHI node to replace a constant.
1349       if (Op1Idx != ~0U ||
1350           isa<Constant>(I1->getOperand(I)) ||
1351           isa<Constant>(I2->getOperand(I))) {
1352         // If we can't sink the instructions, undo the swapping.
1353         if (SwapOpnds)
1354           ICmp2->swapOperands();
1355         return Changed;
1356       }
1357       DifferentOp1 = I1->getOperand(I);
1358       Op1Idx = I;
1359       DifferentOp2 = I2->getOperand(I);
1360     }
1361 
1362     DEBUG(dbgs() << "SINK common instructions " << *I1 << "\n");
1363     DEBUG(dbgs() << "                         " << *I2 << "\n");
1364 
1365     // We insert the pair of different operands to JointValueMap and
1366     // remove (I1, I2) from JointValueMap.
1367     if (Op1Idx != ~0U) {
1368       auto &NewPN = JointValueMap[std::make_pair(DifferentOp1, DifferentOp2)];
1369       if (!NewPN) {
1370         NewPN =
1371             PHINode::Create(DifferentOp1->getType(), 2,
1372                             DifferentOp1->getName() + ".sink", &BBEnd->front());
1373         NewPN->addIncoming(DifferentOp1, BB1);
1374         NewPN->addIncoming(DifferentOp2, BB2);
1375         DEBUG(dbgs() << "Create PHI node " << *NewPN << "\n";);
1376       }
1377       // I1 should use NewPN instead of DifferentOp1.
1378       I1->setOperand(Op1Idx, NewPN);
1379     }
1380     PHINode *OldPN = JointValueMap[InstPair];
1381     JointValueMap.erase(InstPair);
1382 
1383     // We need to update RE1 and RE2 if we are going to sink the first
1384     // instruction in the basic block down.
1385     bool UpdateRE1 = (I1 == &BB1->front()), UpdateRE2 = (I2 == &BB2->front());
1386     // Sink the instruction.
1387     BBEnd->getInstList().splice(FirstNonPhiInBBEnd->getIterator(),
1388                                 BB1->getInstList(), I1);
1389     if (!OldPN->use_empty())
1390       OldPN->replaceAllUsesWith(I1);
1391     OldPN->eraseFromParent();
1392 
1393     if (!I2->use_empty())
1394       I2->replaceAllUsesWith(I1);
1395     I1->intersectOptionalDataWith(I2);
1396     // TODO: Use combineMetadata here to preserve what metadata we can
1397     // (analogous to the hoisting case above).
1398     I2->eraseFromParent();
1399 
1400     if (UpdateRE1)
1401       RE1 = BB1->getInstList().rend();
1402     if (UpdateRE2)
1403       RE2 = BB2->getInstList().rend();
1404     FirstNonPhiInBBEnd = &*I1;
1405     NumSinkCommons++;
1406     Changed = true;
1407   }
1408   return Changed;
1409 }
1410 
1411 /// \brief Determine if we can hoist sink a sole store instruction out of a
1412 /// conditional block.
1413 ///
1414 /// We are looking for code like the following:
1415 ///   BrBB:
1416 ///     store i32 %add, i32* %arrayidx2
1417 ///     ... // No other stores or function calls (we could be calling a memory
1418 ///     ... // function).
1419 ///     %cmp = icmp ult %x, %y
1420 ///     br i1 %cmp, label %EndBB, label %ThenBB
1421 ///   ThenBB:
1422 ///     store i32 %add5, i32* %arrayidx2
1423 ///     br label EndBB
1424 ///   EndBB:
1425 ///     ...
1426 ///   We are going to transform this into:
1427 ///   BrBB:
1428 ///     store i32 %add, i32* %arrayidx2
1429 ///     ... //
1430 ///     %cmp = icmp ult %x, %y
1431 ///     %add.add5 = select i1 %cmp, i32 %add, %add5
1432 ///     store i32 %add.add5, i32* %arrayidx2
1433 ///     ...
1434 ///
1435 /// \return The pointer to the value of the previous store if the store can be
1436 ///         hoisted into the predecessor block. 0 otherwise.
1437 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB,
1438                                      BasicBlock *StoreBB, BasicBlock *EndBB) {
1439   StoreInst *StoreToHoist = dyn_cast<StoreInst>(I);
1440   if (!StoreToHoist)
1441     return nullptr;
1442 
1443   // Volatile or atomic.
1444   if (!StoreToHoist->isSimple())
1445     return nullptr;
1446 
1447   Value *StorePtr = StoreToHoist->getPointerOperand();
1448 
1449   // Look for a store to the same pointer in BrBB.
1450   unsigned MaxNumInstToLookAt = 10;
1451   for (BasicBlock::reverse_iterator RI = BrBB->rbegin(),
1452        RE = BrBB->rend(); RI != RE && (--MaxNumInstToLookAt); ++RI) {
1453     Instruction *CurI = &*RI;
1454 
1455     // Could be calling an instruction that effects memory like free().
1456     if (CurI->mayHaveSideEffects() && !isa<StoreInst>(CurI))
1457       return nullptr;
1458 
1459     StoreInst *SI = dyn_cast<StoreInst>(CurI);
1460     // Found the previous store make sure it stores to the same location.
1461     if (SI && SI->getPointerOperand() == StorePtr)
1462       // Found the previous store, return its value operand.
1463       return SI->getValueOperand();
1464     else if (SI)
1465       return nullptr; // Unknown store.
1466   }
1467 
1468   return nullptr;
1469 }
1470 
1471 /// \brief Speculate a conditional basic block flattening the CFG.
1472 ///
1473 /// Note that this is a very risky transform currently. Speculating
1474 /// instructions like this is most often not desirable. Instead, there is an MI
1475 /// pass which can do it with full awareness of the resource constraints.
1476 /// However, some cases are "obvious" and we should do directly. An example of
1477 /// this is speculating a single, reasonably cheap instruction.
1478 ///
1479 /// There is only one distinct advantage to flattening the CFG at the IR level:
1480 /// it makes very common but simplistic optimizations such as are common in
1481 /// instcombine and the DAG combiner more powerful by removing CFG edges and
1482 /// modeling their effects with easier to reason about SSA value graphs.
1483 ///
1484 ///
1485 /// An illustration of this transform is turning this IR:
1486 /// \code
1487 ///   BB:
1488 ///     %cmp = icmp ult %x, %y
1489 ///     br i1 %cmp, label %EndBB, label %ThenBB
1490 ///   ThenBB:
1491 ///     %sub = sub %x, %y
1492 ///     br label BB2
1493 ///   EndBB:
1494 ///     %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ]
1495 ///     ...
1496 /// \endcode
1497 ///
1498 /// Into this IR:
1499 /// \code
1500 ///   BB:
1501 ///     %cmp = icmp ult %x, %y
1502 ///     %sub = sub %x, %y
1503 ///     %cond = select i1 %cmp, 0, %sub
1504 ///     ...
1505 /// \endcode
1506 ///
1507 /// \returns true if the conditional block is removed.
1508 static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB,
1509                                    const TargetTransformInfo &TTI) {
1510   // Be conservative for now. FP select instruction can often be expensive.
1511   Value *BrCond = BI->getCondition();
1512   if (isa<FCmpInst>(BrCond))
1513     return false;
1514 
1515   BasicBlock *BB = BI->getParent();
1516   BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0);
1517 
1518   // If ThenBB is actually on the false edge of the conditional branch, remember
1519   // to swap the select operands later.
1520   bool Invert = false;
1521   if (ThenBB != BI->getSuccessor(0)) {
1522     assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?");
1523     Invert = true;
1524   }
1525   assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block");
1526 
1527   // Keep a count of how many times instructions are used within CondBB when
1528   // they are candidates for sinking into CondBB. Specifically:
1529   // - They are defined in BB, and
1530   // - They have no side effects, and
1531   // - All of their uses are in CondBB.
1532   SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts;
1533 
1534   unsigned SpeculationCost = 0;
1535   Value *SpeculatedStoreValue = nullptr;
1536   StoreInst *SpeculatedStore = nullptr;
1537   for (BasicBlock::iterator BBI = ThenBB->begin(),
1538                             BBE = std::prev(ThenBB->end());
1539        BBI != BBE; ++BBI) {
1540     Instruction *I = &*BBI;
1541     // Skip debug info.
1542     if (isa<DbgInfoIntrinsic>(I))
1543       continue;
1544 
1545     // Only speculatively execute a single instruction (not counting the
1546     // terminator) for now.
1547     ++SpeculationCost;
1548     if (SpeculationCost > 1)
1549       return false;
1550 
1551     // Don't hoist the instruction if it's unsafe or expensive.
1552     if (!isSafeToSpeculativelyExecute(I) &&
1553         !(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore(
1554                                   I, BB, ThenBB, EndBB))))
1555       return false;
1556     if (!SpeculatedStoreValue &&
1557         ComputeSpeculationCost(I, TTI) >
1558             PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic)
1559       return false;
1560 
1561     // Store the store speculation candidate.
1562     if (SpeculatedStoreValue)
1563       SpeculatedStore = cast<StoreInst>(I);
1564 
1565     // Do not hoist the instruction if any of its operands are defined but not
1566     // used in BB. The transformation will prevent the operand from
1567     // being sunk into the use block.
1568     for (User::op_iterator i = I->op_begin(), e = I->op_end();
1569          i != e; ++i) {
1570       Instruction *OpI = dyn_cast<Instruction>(*i);
1571       if (!OpI || OpI->getParent() != BB ||
1572           OpI->mayHaveSideEffects())
1573         continue; // Not a candidate for sinking.
1574 
1575       ++SinkCandidateUseCounts[OpI];
1576     }
1577   }
1578 
1579   // Consider any sink candidates which are only used in CondBB as costs for
1580   // speculation. Note, while we iterate over a DenseMap here, we are summing
1581   // and so iteration order isn't significant.
1582   for (SmallDenseMap<Instruction *, unsigned, 4>::iterator I =
1583            SinkCandidateUseCounts.begin(), E = SinkCandidateUseCounts.end();
1584        I != E; ++I)
1585     if (I->first->getNumUses() == I->second) {
1586       ++SpeculationCost;
1587       if (SpeculationCost > 1)
1588         return false;
1589     }
1590 
1591   // Check that the PHI nodes can be converted to selects.
1592   bool HaveRewritablePHIs = false;
1593   for (BasicBlock::iterator I = EndBB->begin();
1594        PHINode *PN = dyn_cast<PHINode>(I); ++I) {
1595     Value *OrigV = PN->getIncomingValueForBlock(BB);
1596     Value *ThenV = PN->getIncomingValueForBlock(ThenBB);
1597 
1598     // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf.
1599     // Skip PHIs which are trivial.
1600     if (ThenV == OrigV)
1601       continue;
1602 
1603     // Don't convert to selects if we could remove undefined behavior instead.
1604     if (passingValueIsAlwaysUndefined(OrigV, PN) ||
1605         passingValueIsAlwaysUndefined(ThenV, PN))
1606       return false;
1607 
1608     HaveRewritablePHIs = true;
1609     ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV);
1610     ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV);
1611     if (!OrigCE && !ThenCE)
1612       continue; // Known safe and cheap.
1613 
1614     if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE)) ||
1615         (OrigCE && !isSafeToSpeculativelyExecute(OrigCE)))
1616       return false;
1617     unsigned OrigCost = OrigCE ? ComputeSpeculationCost(OrigCE, TTI) : 0;
1618     unsigned ThenCost = ThenCE ? ComputeSpeculationCost(ThenCE, TTI) : 0;
1619     unsigned MaxCost = 2 * PHINodeFoldingThreshold *
1620       TargetTransformInfo::TCC_Basic;
1621     if (OrigCost + ThenCost > MaxCost)
1622       return false;
1623 
1624     // Account for the cost of an unfolded ConstantExpr which could end up
1625     // getting expanded into Instructions.
1626     // FIXME: This doesn't account for how many operations are combined in the
1627     // constant expression.
1628     ++SpeculationCost;
1629     if (SpeculationCost > 1)
1630       return false;
1631   }
1632 
1633   // If there are no PHIs to process, bail early. This helps ensure idempotence
1634   // as well.
1635   if (!HaveRewritablePHIs && !(HoistCondStores && SpeculatedStoreValue))
1636     return false;
1637 
1638   // If we get here, we can hoist the instruction and if-convert.
1639   DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";);
1640 
1641   // Insert a select of the value of the speculated store.
1642   if (SpeculatedStoreValue) {
1643     IRBuilder<NoFolder> Builder(BI);
1644     Value *TrueV = SpeculatedStore->getValueOperand();
1645     Value *FalseV = SpeculatedStoreValue;
1646     if (Invert)
1647       std::swap(TrueV, FalseV);
1648     Value *S = Builder.CreateSelect(
1649         BrCond, TrueV, FalseV, TrueV->getName() + "." + FalseV->getName(), BI);
1650     SpeculatedStore->setOperand(0, S);
1651   }
1652 
1653   // Metadata can be dependent on the condition we are hoisting above.
1654   // Conservatively strip all metadata on the instruction.
1655   for (auto &I: *ThenBB)
1656     I.dropUnknownNonDebugMetadata();
1657 
1658   // Hoist the instructions.
1659   BB->getInstList().splice(BI->getIterator(), ThenBB->getInstList(),
1660                            ThenBB->begin(), std::prev(ThenBB->end()));
1661 
1662   // Insert selects and rewrite the PHI operands.
1663   IRBuilder<NoFolder> Builder(BI);
1664   for (BasicBlock::iterator I = EndBB->begin();
1665        PHINode *PN = dyn_cast<PHINode>(I); ++I) {
1666     unsigned OrigI = PN->getBasicBlockIndex(BB);
1667     unsigned ThenI = PN->getBasicBlockIndex(ThenBB);
1668     Value *OrigV = PN->getIncomingValue(OrigI);
1669     Value *ThenV = PN->getIncomingValue(ThenI);
1670 
1671     // Skip PHIs which are trivial.
1672     if (OrigV == ThenV)
1673       continue;
1674 
1675     // Create a select whose true value is the speculatively executed value and
1676     // false value is the preexisting value. Swap them if the branch
1677     // destinations were inverted.
1678     Value *TrueV = ThenV, *FalseV = OrigV;
1679     if (Invert)
1680       std::swap(TrueV, FalseV);
1681     Value *V = Builder.CreateSelect(
1682         BrCond, TrueV, FalseV, TrueV->getName() + "." + FalseV->getName(), BI);
1683     PN->setIncomingValue(OrigI, V);
1684     PN->setIncomingValue(ThenI, V);
1685   }
1686 
1687   ++NumSpeculations;
1688   return true;
1689 }
1690 
1691 /// Return true if we can thread a branch across this block.
1692 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) {
1693   BranchInst *BI = cast<BranchInst>(BB->getTerminator());
1694   unsigned Size = 0;
1695 
1696   for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
1697     if (isa<DbgInfoIntrinsic>(BBI))
1698       continue;
1699     if (Size > 10) return false;  // Don't clone large BB's.
1700     ++Size;
1701 
1702     // We can only support instructions that do not define values that are
1703     // live outside of the current basic block.
1704     for (User *U : BBI->users()) {
1705       Instruction *UI = cast<Instruction>(U);
1706       if (UI->getParent() != BB || isa<PHINode>(UI)) return false;
1707     }
1708 
1709     // Looks ok, continue checking.
1710   }
1711 
1712   return true;
1713 }
1714 
1715 /// If we have a conditional branch on a PHI node value that is defined in the
1716 /// same block as the branch and if any PHI entries are constants, thread edges
1717 /// corresponding to that entry to be branches to their ultimate destination.
1718 static bool FoldCondBranchOnPHI(BranchInst *BI, const DataLayout &DL) {
1719   BasicBlock *BB = BI->getParent();
1720   PHINode *PN = dyn_cast<PHINode>(BI->getCondition());
1721   // NOTE: we currently cannot transform this case if the PHI node is used
1722   // outside of the block.
1723   if (!PN || PN->getParent() != BB || !PN->hasOneUse())
1724     return false;
1725 
1726   // Degenerate case of a single entry PHI.
1727   if (PN->getNumIncomingValues() == 1) {
1728     FoldSingleEntryPHINodes(PN->getParent());
1729     return true;
1730   }
1731 
1732   // Now we know that this block has multiple preds and two succs.
1733   if (!BlockIsSimpleEnoughToThreadThrough(BB)) return false;
1734 
1735   // Can't fold blocks that contain noduplicate or convergent calls.
1736   if (llvm::any_of(*BB, [](const Instruction &I) {
1737         const CallInst *CI = dyn_cast<CallInst>(&I);
1738         return CI && (CI->cannotDuplicate() || CI->isConvergent());
1739       }))
1740     return false;
1741 
1742   // Okay, this is a simple enough basic block.  See if any phi values are
1743   // constants.
1744   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1745     ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i));
1746     if (!CB || !CB->getType()->isIntegerTy(1)) continue;
1747 
1748     // Okay, we now know that all edges from PredBB should be revectored to
1749     // branch to RealDest.
1750     BasicBlock *PredBB = PN->getIncomingBlock(i);
1751     BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue());
1752 
1753     if (RealDest == BB) continue;  // Skip self loops.
1754     // Skip if the predecessor's terminator is an indirect branch.
1755     if (isa<IndirectBrInst>(PredBB->getTerminator())) continue;
1756 
1757     // The dest block might have PHI nodes, other predecessors and other
1758     // difficult cases.  Instead of being smart about this, just insert a new
1759     // block that jumps to the destination block, effectively splitting
1760     // the edge we are about to create.
1761     BasicBlock *EdgeBB = BasicBlock::Create(BB->getContext(),
1762                                             RealDest->getName()+".critedge",
1763                                             RealDest->getParent(), RealDest);
1764     BranchInst::Create(RealDest, EdgeBB);
1765 
1766     // Update PHI nodes.
1767     AddPredecessorToBlock(RealDest, EdgeBB, BB);
1768 
1769     // BB may have instructions that are being threaded over.  Clone these
1770     // instructions into EdgeBB.  We know that there will be no uses of the
1771     // cloned instructions outside of EdgeBB.
1772     BasicBlock::iterator InsertPt = EdgeBB->begin();
1773     DenseMap<Value*, Value*> TranslateMap;  // Track translated values.
1774     for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
1775       if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
1776         TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB);
1777         continue;
1778       }
1779       // Clone the instruction.
1780       Instruction *N = BBI->clone();
1781       if (BBI->hasName()) N->setName(BBI->getName()+".c");
1782 
1783       // Update operands due to translation.
1784       for (User::op_iterator i = N->op_begin(), e = N->op_end();
1785            i != e; ++i) {
1786         DenseMap<Value*, Value*>::iterator PI = TranslateMap.find(*i);
1787         if (PI != TranslateMap.end())
1788           *i = PI->second;
1789       }
1790 
1791       // Check for trivial simplification.
1792       if (Value *V = SimplifyInstruction(N, DL)) {
1793         TranslateMap[&*BBI] = V;
1794         delete N;   // Instruction folded away, don't need actual inst
1795       } else {
1796         // Insert the new instruction into its new home.
1797         EdgeBB->getInstList().insert(InsertPt, N);
1798         if (!BBI->use_empty())
1799           TranslateMap[&*BBI] = N;
1800       }
1801     }
1802 
1803     // Loop over all of the edges from PredBB to BB, changing them to branch
1804     // to EdgeBB instead.
1805     TerminatorInst *PredBBTI = PredBB->getTerminator();
1806     for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i)
1807       if (PredBBTI->getSuccessor(i) == BB) {
1808         BB->removePredecessor(PredBB);
1809         PredBBTI->setSuccessor(i, EdgeBB);
1810       }
1811 
1812     // Recurse, simplifying any other constants.
1813     return FoldCondBranchOnPHI(BI, DL) | true;
1814   }
1815 
1816   return false;
1817 }
1818 
1819 /// Given a BB that starts with the specified two-entry PHI node,
1820 /// see if we can eliminate it.
1821 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI,
1822                                 const DataLayout &DL) {
1823   // Ok, this is a two entry PHI node.  Check to see if this is a simple "if
1824   // statement", which has a very simple dominance structure.  Basically, we
1825   // are trying to find the condition that is being branched on, which
1826   // subsequently causes this merge to happen.  We really want control
1827   // dependence information for this check, but simplifycfg can't keep it up
1828   // to date, and this catches most of the cases we care about anyway.
1829   BasicBlock *BB = PN->getParent();
1830   BasicBlock *IfTrue, *IfFalse;
1831   Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse);
1832   if (!IfCond ||
1833       // Don't bother if the branch will be constant folded trivially.
1834       isa<ConstantInt>(IfCond))
1835     return false;
1836 
1837   // Okay, we found that we can merge this two-entry phi node into a select.
1838   // Doing so would require us to fold *all* two entry phi nodes in this block.
1839   // At some point this becomes non-profitable (particularly if the target
1840   // doesn't support cmov's).  Only do this transformation if there are two or
1841   // fewer PHI nodes in this block.
1842   unsigned NumPhis = 0;
1843   for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I)
1844     if (NumPhis > 2)
1845       return false;
1846 
1847   // Loop over the PHI's seeing if we can promote them all to select
1848   // instructions.  While we are at it, keep track of the instructions
1849   // that need to be moved to the dominating block.
1850   SmallPtrSet<Instruction*, 4> AggressiveInsts;
1851   unsigned MaxCostVal0 = PHINodeFoldingThreshold,
1852            MaxCostVal1 = PHINodeFoldingThreshold;
1853   MaxCostVal0 *= TargetTransformInfo::TCC_Basic;
1854   MaxCostVal1 *= TargetTransformInfo::TCC_Basic;
1855 
1856   for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) {
1857     PHINode *PN = cast<PHINode>(II++);
1858     if (Value *V = SimplifyInstruction(PN, DL)) {
1859       PN->replaceAllUsesWith(V);
1860       PN->eraseFromParent();
1861       continue;
1862     }
1863 
1864     if (!DominatesMergePoint(PN->getIncomingValue(0), BB, &AggressiveInsts,
1865                              MaxCostVal0, TTI) ||
1866         !DominatesMergePoint(PN->getIncomingValue(1), BB, &AggressiveInsts,
1867                              MaxCostVal1, TTI))
1868       return false;
1869   }
1870 
1871   // If we folded the first phi, PN dangles at this point.  Refresh it.  If
1872   // we ran out of PHIs then we simplified them all.
1873   PN = dyn_cast<PHINode>(BB->begin());
1874   if (!PN) return true;
1875 
1876   // Don't fold i1 branches on PHIs which contain binary operators.  These can
1877   // often be turned into switches and other things.
1878   if (PN->getType()->isIntegerTy(1) &&
1879       (isa<BinaryOperator>(PN->getIncomingValue(0)) ||
1880        isa<BinaryOperator>(PN->getIncomingValue(1)) ||
1881        isa<BinaryOperator>(IfCond)))
1882     return false;
1883 
1884   // If all PHI nodes are promotable, check to make sure that all instructions
1885   // in the predecessor blocks can be promoted as well. If not, we won't be able
1886   // to get rid of the control flow, so it's not worth promoting to select
1887   // instructions.
1888   BasicBlock *DomBlock = nullptr;
1889   BasicBlock *IfBlock1 = PN->getIncomingBlock(0);
1890   BasicBlock *IfBlock2 = PN->getIncomingBlock(1);
1891   if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) {
1892     IfBlock1 = nullptr;
1893   } else {
1894     DomBlock = *pred_begin(IfBlock1);
1895     for (BasicBlock::iterator I = IfBlock1->begin();!isa<TerminatorInst>(I);++I)
1896       if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) {
1897         // This is not an aggressive instruction that we can promote.
1898         // Because of this, we won't be able to get rid of the control flow, so
1899         // the xform is not worth it.
1900         return false;
1901       }
1902   }
1903 
1904   if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) {
1905     IfBlock2 = nullptr;
1906   } else {
1907     DomBlock = *pred_begin(IfBlock2);
1908     for (BasicBlock::iterator I = IfBlock2->begin();!isa<TerminatorInst>(I);++I)
1909       if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) {
1910         // This is not an aggressive instruction that we can promote.
1911         // Because of this, we won't be able to get rid of the control flow, so
1912         // the xform is not worth it.
1913         return false;
1914       }
1915   }
1916 
1917   DEBUG(dbgs() << "FOUND IF CONDITION!  " << *IfCond << "  T: "
1918                << IfTrue->getName() << "  F: " << IfFalse->getName() << "\n");
1919 
1920   // If we can still promote the PHI nodes after this gauntlet of tests,
1921   // do all of the PHI's now.
1922   Instruction *InsertPt = DomBlock->getTerminator();
1923   IRBuilder<NoFolder> Builder(InsertPt);
1924 
1925   // Move all 'aggressive' instructions, which are defined in the
1926   // conditional parts of the if's up to the dominating block.
1927   if (IfBlock1)
1928     DomBlock->getInstList().splice(InsertPt->getIterator(),
1929                                    IfBlock1->getInstList(), IfBlock1->begin(),
1930                                    IfBlock1->getTerminator()->getIterator());
1931   if (IfBlock2)
1932     DomBlock->getInstList().splice(InsertPt->getIterator(),
1933                                    IfBlock2->getInstList(), IfBlock2->begin(),
1934                                    IfBlock2->getTerminator()->getIterator());
1935 
1936   while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
1937     // Change the PHI node into a select instruction.
1938     Value *TrueVal  = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse);
1939     Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue);
1940 
1941     Value *Sel = Builder.CreateSelect(IfCond, TrueVal, FalseVal, "", InsertPt);
1942     PN->replaceAllUsesWith(Sel);
1943     Sel->takeName(PN);
1944     PN->eraseFromParent();
1945   }
1946 
1947   // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement
1948   // has been flattened.  Change DomBlock to jump directly to our new block to
1949   // avoid other simplifycfg's kicking in on the diamond.
1950   TerminatorInst *OldTI = DomBlock->getTerminator();
1951   Builder.SetInsertPoint(OldTI);
1952   Builder.CreateBr(BB);
1953   OldTI->eraseFromParent();
1954   return true;
1955 }
1956 
1957 /// If we found a conditional branch that goes to two returning blocks,
1958 /// try to merge them together into one return,
1959 /// introducing a select if the return values disagree.
1960 static bool SimplifyCondBranchToTwoReturns(BranchInst *BI,
1961                                            IRBuilder<> &Builder) {
1962   assert(BI->isConditional() && "Must be a conditional branch");
1963   BasicBlock *TrueSucc = BI->getSuccessor(0);
1964   BasicBlock *FalseSucc = BI->getSuccessor(1);
1965   ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator());
1966   ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator());
1967 
1968   // Check to ensure both blocks are empty (just a return) or optionally empty
1969   // with PHI nodes.  If there are other instructions, merging would cause extra
1970   // computation on one path or the other.
1971   if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator())
1972     return false;
1973   if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator())
1974     return false;
1975 
1976   Builder.SetInsertPoint(BI);
1977   // Okay, we found a branch that is going to two return nodes.  If
1978   // there is no return value for this function, just change the
1979   // branch into a return.
1980   if (FalseRet->getNumOperands() == 0) {
1981     TrueSucc->removePredecessor(BI->getParent());
1982     FalseSucc->removePredecessor(BI->getParent());
1983     Builder.CreateRetVoid();
1984     EraseTerminatorInstAndDCECond(BI);
1985     return true;
1986   }
1987 
1988   // Otherwise, figure out what the true and false return values are
1989   // so we can insert a new select instruction.
1990   Value *TrueValue = TrueRet->getReturnValue();
1991   Value *FalseValue = FalseRet->getReturnValue();
1992 
1993   // Unwrap any PHI nodes in the return blocks.
1994   if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue))
1995     if (TVPN->getParent() == TrueSucc)
1996       TrueValue = TVPN->getIncomingValueForBlock(BI->getParent());
1997   if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue))
1998     if (FVPN->getParent() == FalseSucc)
1999       FalseValue = FVPN->getIncomingValueForBlock(BI->getParent());
2000 
2001   // In order for this transformation to be safe, we must be able to
2002   // unconditionally execute both operands to the return.  This is
2003   // normally the case, but we could have a potentially-trapping
2004   // constant expression that prevents this transformation from being
2005   // safe.
2006   if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue))
2007     if (TCV->canTrap())
2008       return false;
2009   if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue))
2010     if (FCV->canTrap())
2011       return false;
2012 
2013   // Okay, we collected all the mapped values and checked them for sanity, and
2014   // defined to really do this transformation.  First, update the CFG.
2015   TrueSucc->removePredecessor(BI->getParent());
2016   FalseSucc->removePredecessor(BI->getParent());
2017 
2018   // Insert select instructions where needed.
2019   Value *BrCond = BI->getCondition();
2020   if (TrueValue) {
2021     // Insert a select if the results differ.
2022     if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) {
2023     } else if (isa<UndefValue>(TrueValue)) {
2024       TrueValue = FalseValue;
2025     } else {
2026       TrueValue = Builder.CreateSelect(BrCond, TrueValue,
2027                                        FalseValue, "retval");
2028     }
2029   }
2030 
2031   Value *RI = !TrueValue ?
2032     Builder.CreateRetVoid() : Builder.CreateRet(TrueValue);
2033 
2034   (void) RI;
2035 
2036   DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:"
2037                << "\n  " << *BI << "NewRet = " << *RI
2038                << "TRUEBLOCK: " << *TrueSucc << "FALSEBLOCK: "<< *FalseSucc);
2039 
2040   EraseTerminatorInstAndDCECond(BI);
2041 
2042   return true;
2043 }
2044 
2045 /// Given a conditional BranchInstruction, retrieve the probabilities of the
2046 /// branch taking each edge. Fills in the two APInt parameters and returns true,
2047 /// or returns false if no or invalid metadata was found.
2048 static bool ExtractBranchMetadata(BranchInst *BI,
2049                                   uint64_t &ProbTrue, uint64_t &ProbFalse) {
2050   assert(BI->isConditional() &&
2051          "Looking for probabilities on unconditional branch?");
2052   MDNode *ProfileData = BI->getMetadata(LLVMContext::MD_prof);
2053   if (!ProfileData || ProfileData->getNumOperands() != 3) return false;
2054   ConstantInt *CITrue =
2055       mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(1));
2056   ConstantInt *CIFalse =
2057       mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(2));
2058   if (!CITrue || !CIFalse) return false;
2059   ProbTrue = CITrue->getValue().getZExtValue();
2060   ProbFalse = CIFalse->getValue().getZExtValue();
2061   return true;
2062 }
2063 
2064 /// Return true if the given instruction is available
2065 /// in its predecessor block. If yes, the instruction will be removed.
2066 static bool checkCSEInPredecessor(Instruction *Inst, BasicBlock *PB) {
2067   if (!isa<BinaryOperator>(Inst) && !isa<CmpInst>(Inst))
2068     return false;
2069   for (BasicBlock::iterator I = PB->begin(), E = PB->end(); I != E; I++) {
2070     Instruction *PBI = &*I;
2071     // Check whether Inst and PBI generate the same value.
2072     if (Inst->isIdenticalTo(PBI)) {
2073       Inst->replaceAllUsesWith(PBI);
2074       Inst->eraseFromParent();
2075       return true;
2076     }
2077   }
2078   return false;
2079 }
2080 
2081 /// If this basic block is simple enough, and if a predecessor branches to us
2082 /// and one of our successors, fold the block into the predecessor and use
2083 /// logical operations to pick the right destination.
2084 bool llvm::FoldBranchToCommonDest(BranchInst *BI, unsigned BonusInstThreshold) {
2085   BasicBlock *BB = BI->getParent();
2086 
2087   Instruction *Cond = nullptr;
2088   if (BI->isConditional())
2089     Cond = dyn_cast<Instruction>(BI->getCondition());
2090   else {
2091     // For unconditional branch, check for a simple CFG pattern, where
2092     // BB has a single predecessor and BB's successor is also its predecessor's
2093     // successor. If such pattern exisits, check for CSE between BB and its
2094     // predecessor.
2095     if (BasicBlock *PB = BB->getSinglePredecessor())
2096       if (BranchInst *PBI = dyn_cast<BranchInst>(PB->getTerminator()))
2097         if (PBI->isConditional() &&
2098             (BI->getSuccessor(0) == PBI->getSuccessor(0) ||
2099              BI->getSuccessor(0) == PBI->getSuccessor(1))) {
2100           for (BasicBlock::iterator I = BB->begin(), E = BB->end();
2101                I != E; ) {
2102             Instruction *Curr = &*I++;
2103             if (isa<CmpInst>(Curr)) {
2104               Cond = Curr;
2105               break;
2106             }
2107             // Quit if we can't remove this instruction.
2108             if (!checkCSEInPredecessor(Curr, PB))
2109               return false;
2110           }
2111         }
2112 
2113     if (!Cond)
2114       return false;
2115   }
2116 
2117   if (!Cond || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) ||
2118       Cond->getParent() != BB || !Cond->hasOneUse())
2119     return false;
2120 
2121   // Make sure the instruction after the condition is the cond branch.
2122   BasicBlock::iterator CondIt = ++Cond->getIterator();
2123 
2124   // Ignore dbg intrinsics.
2125   while (isa<DbgInfoIntrinsic>(CondIt)) ++CondIt;
2126 
2127   if (&*CondIt != BI)
2128     return false;
2129 
2130   // Only allow this transformation if computing the condition doesn't involve
2131   // too many instructions and these involved instructions can be executed
2132   // unconditionally. We denote all involved instructions except the condition
2133   // as "bonus instructions", and only allow this transformation when the
2134   // number of the bonus instructions does not exceed a certain threshold.
2135   unsigned NumBonusInsts = 0;
2136   for (auto I = BB->begin(); Cond != &*I; ++I) {
2137     // Ignore dbg intrinsics.
2138     if (isa<DbgInfoIntrinsic>(I))
2139       continue;
2140     if (!I->hasOneUse() || !isSafeToSpeculativelyExecute(&*I))
2141       return false;
2142     // I has only one use and can be executed unconditionally.
2143     Instruction *User = dyn_cast<Instruction>(I->user_back());
2144     if (User == nullptr || User->getParent() != BB)
2145       return false;
2146     // I is used in the same BB. Since BI uses Cond and doesn't have more slots
2147     // to use any other instruction, User must be an instruction between next(I)
2148     // and Cond.
2149     ++NumBonusInsts;
2150     // Early exits once we reach the limit.
2151     if (NumBonusInsts > BonusInstThreshold)
2152       return false;
2153   }
2154 
2155   // Cond is known to be a compare or binary operator.  Check to make sure that
2156   // neither operand is a potentially-trapping constant expression.
2157   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0)))
2158     if (CE->canTrap())
2159       return false;
2160   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1)))
2161     if (CE->canTrap())
2162       return false;
2163 
2164   // Finally, don't infinitely unroll conditional loops.
2165   BasicBlock *TrueDest  = BI->getSuccessor(0);
2166   BasicBlock *FalseDest = (BI->isConditional()) ? BI->getSuccessor(1) : nullptr;
2167   if (TrueDest == BB || FalseDest == BB)
2168     return false;
2169 
2170   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
2171     BasicBlock *PredBlock = *PI;
2172     BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator());
2173 
2174     // Check that we have two conditional branches.  If there is a PHI node in
2175     // the common successor, verify that the same value flows in from both
2176     // blocks.
2177     SmallVector<PHINode*, 4> PHIs;
2178     if (!PBI || PBI->isUnconditional() ||
2179         (BI->isConditional() &&
2180          !SafeToMergeTerminators(BI, PBI)) ||
2181         (!BI->isConditional() &&
2182          !isProfitableToFoldUnconditional(BI, PBI, Cond, PHIs)))
2183       continue;
2184 
2185     // Determine if the two branches share a common destination.
2186     Instruction::BinaryOps Opc = Instruction::BinaryOpsEnd;
2187     bool InvertPredCond = false;
2188 
2189     if (BI->isConditional()) {
2190       if (PBI->getSuccessor(0) == TrueDest) {
2191         Opc = Instruction::Or;
2192       } else if (PBI->getSuccessor(1) == FalseDest) {
2193         Opc = Instruction::And;
2194       } else if (PBI->getSuccessor(0) == FalseDest) {
2195         Opc = Instruction::And;
2196         InvertPredCond = true;
2197       } else if (PBI->getSuccessor(1) == TrueDest) {
2198         Opc = Instruction::Or;
2199         InvertPredCond = true;
2200       } else {
2201         continue;
2202       }
2203     } else {
2204       if (PBI->getSuccessor(0) != TrueDest && PBI->getSuccessor(1) != TrueDest)
2205         continue;
2206     }
2207 
2208     DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB);
2209     IRBuilder<> Builder(PBI);
2210 
2211     // If we need to invert the condition in the pred block to match, do so now.
2212     if (InvertPredCond) {
2213       Value *NewCond = PBI->getCondition();
2214 
2215       if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) {
2216         CmpInst *CI = cast<CmpInst>(NewCond);
2217         CI->setPredicate(CI->getInversePredicate());
2218       } else {
2219         NewCond = Builder.CreateNot(NewCond,
2220                                     PBI->getCondition()->getName()+".not");
2221       }
2222 
2223       PBI->setCondition(NewCond);
2224       PBI->swapSuccessors();
2225     }
2226 
2227     // If we have bonus instructions, clone them into the predecessor block.
2228     // Note that there may be multiple predecessor blocks, so we cannot move
2229     // bonus instructions to a predecessor block.
2230     ValueToValueMapTy VMap; // maps original values to cloned values
2231     // We already make sure Cond is the last instruction before BI. Therefore,
2232     // all instructions before Cond other than DbgInfoIntrinsic are bonus
2233     // instructions.
2234     for (auto BonusInst = BB->begin(); Cond != &*BonusInst; ++BonusInst) {
2235       if (isa<DbgInfoIntrinsic>(BonusInst))
2236         continue;
2237       Instruction *NewBonusInst = BonusInst->clone();
2238       RemapInstruction(NewBonusInst, VMap,
2239                        RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
2240       VMap[&*BonusInst] = NewBonusInst;
2241 
2242       // If we moved a load, we cannot any longer claim any knowledge about
2243       // its potential value. The previous information might have been valid
2244       // only given the branch precondition.
2245       // For an analogous reason, we must also drop all the metadata whose
2246       // semantics we don't understand.
2247       NewBonusInst->dropUnknownNonDebugMetadata();
2248 
2249       PredBlock->getInstList().insert(PBI->getIterator(), NewBonusInst);
2250       NewBonusInst->takeName(&*BonusInst);
2251       BonusInst->setName(BonusInst->getName() + ".old");
2252     }
2253 
2254     // Clone Cond into the predecessor basic block, and or/and the
2255     // two conditions together.
2256     Instruction *New = Cond->clone();
2257     RemapInstruction(New, VMap,
2258                      RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
2259     PredBlock->getInstList().insert(PBI->getIterator(), New);
2260     New->takeName(Cond);
2261     Cond->setName(New->getName() + ".old");
2262 
2263     if (BI->isConditional()) {
2264       Instruction *NewCond =
2265         cast<Instruction>(Builder.CreateBinOp(Opc, PBI->getCondition(),
2266                                             New, "or.cond"));
2267       PBI->setCondition(NewCond);
2268 
2269       uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
2270       bool PredHasWeights = ExtractBranchMetadata(PBI, PredTrueWeight,
2271                                                   PredFalseWeight);
2272       bool SuccHasWeights = ExtractBranchMetadata(BI, SuccTrueWeight,
2273                                                   SuccFalseWeight);
2274       SmallVector<uint64_t, 8> NewWeights;
2275 
2276       if (PBI->getSuccessor(0) == BB) {
2277         if (PredHasWeights && SuccHasWeights) {
2278           // PBI: br i1 %x, BB, FalseDest
2279           // BI:  br i1 %y, TrueDest, FalseDest
2280           //TrueWeight is TrueWeight for PBI * TrueWeight for BI.
2281           NewWeights.push_back(PredTrueWeight * SuccTrueWeight);
2282           //FalseWeight is FalseWeight for PBI * TotalWeight for BI +
2283           //               TrueWeight for PBI * FalseWeight for BI.
2284           // We assume that total weights of a BranchInst can fit into 32 bits.
2285           // Therefore, we will not have overflow using 64-bit arithmetic.
2286           NewWeights.push_back(PredFalseWeight * (SuccFalseWeight +
2287                SuccTrueWeight) + PredTrueWeight * SuccFalseWeight);
2288         }
2289         AddPredecessorToBlock(TrueDest, PredBlock, BB);
2290         PBI->setSuccessor(0, TrueDest);
2291       }
2292       if (PBI->getSuccessor(1) == BB) {
2293         if (PredHasWeights && SuccHasWeights) {
2294           // PBI: br i1 %x, TrueDest, BB
2295           // BI:  br i1 %y, TrueDest, FalseDest
2296           //TrueWeight is TrueWeight for PBI * TotalWeight for BI +
2297           //              FalseWeight for PBI * TrueWeight for BI.
2298           NewWeights.push_back(PredTrueWeight * (SuccFalseWeight +
2299               SuccTrueWeight) + PredFalseWeight * SuccTrueWeight);
2300           //FalseWeight is FalseWeight for PBI * FalseWeight for BI.
2301           NewWeights.push_back(PredFalseWeight * SuccFalseWeight);
2302         }
2303         AddPredecessorToBlock(FalseDest, PredBlock, BB);
2304         PBI->setSuccessor(1, FalseDest);
2305       }
2306       if (NewWeights.size() == 2) {
2307         // Halve the weights if any of them cannot fit in an uint32_t
2308         FitWeights(NewWeights);
2309 
2310         SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(),NewWeights.end());
2311         PBI->setMetadata(LLVMContext::MD_prof,
2312                          MDBuilder(BI->getContext()).
2313                          createBranchWeights(MDWeights));
2314       } else
2315         PBI->setMetadata(LLVMContext::MD_prof, nullptr);
2316     } else {
2317       // Update PHI nodes in the common successors.
2318       for (unsigned i = 0, e = PHIs.size(); i != e; ++i) {
2319         ConstantInt *PBI_C = cast<ConstantInt>(
2320           PHIs[i]->getIncomingValueForBlock(PBI->getParent()));
2321         assert(PBI_C->getType()->isIntegerTy(1));
2322         Instruction *MergedCond = nullptr;
2323         if (PBI->getSuccessor(0) == TrueDest) {
2324           // Create (PBI_Cond and PBI_C) or (!PBI_Cond and BI_Value)
2325           // PBI_C is true: PBI_Cond or (!PBI_Cond and BI_Value)
2326           //       is false: !PBI_Cond and BI_Value
2327           Instruction *NotCond =
2328             cast<Instruction>(Builder.CreateNot(PBI->getCondition(),
2329                                 "not.cond"));
2330           MergedCond =
2331             cast<Instruction>(Builder.CreateBinOp(Instruction::And,
2332                                 NotCond, New,
2333                                 "and.cond"));
2334           if (PBI_C->isOne())
2335             MergedCond =
2336               cast<Instruction>(Builder.CreateBinOp(Instruction::Or,
2337                                   PBI->getCondition(), MergedCond,
2338                                   "or.cond"));
2339         } else {
2340           // Create (PBI_Cond and BI_Value) or (!PBI_Cond and PBI_C)
2341           // PBI_C is true: (PBI_Cond and BI_Value) or (!PBI_Cond)
2342           //       is false: PBI_Cond and BI_Value
2343           MergedCond =
2344             cast<Instruction>(Builder.CreateBinOp(Instruction::And,
2345                                 PBI->getCondition(), New,
2346                                 "and.cond"));
2347           if (PBI_C->isOne()) {
2348             Instruction *NotCond =
2349               cast<Instruction>(Builder.CreateNot(PBI->getCondition(),
2350                                   "not.cond"));
2351             MergedCond =
2352               cast<Instruction>(Builder.CreateBinOp(Instruction::Or,
2353                                   NotCond, MergedCond,
2354                                   "or.cond"));
2355           }
2356         }
2357         // Update PHI Node.
2358         PHIs[i]->setIncomingValue(PHIs[i]->getBasicBlockIndex(PBI->getParent()),
2359                                   MergedCond);
2360       }
2361       // Change PBI from Conditional to Unconditional.
2362       BranchInst *New_PBI = BranchInst::Create(TrueDest, PBI);
2363       EraseTerminatorInstAndDCECond(PBI);
2364       PBI = New_PBI;
2365     }
2366 
2367     // TODO: If BB is reachable from all paths through PredBlock, then we
2368     // could replace PBI's branch probabilities with BI's.
2369 
2370     // Copy any debug value intrinsics into the end of PredBlock.
2371     for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
2372       if (isa<DbgInfoIntrinsic>(*I))
2373         I->clone()->insertBefore(PBI);
2374 
2375     return true;
2376   }
2377   return false;
2378 }
2379 
2380 // If there is only one store in BB1 and BB2, return it, otherwise return
2381 // nullptr.
2382 static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) {
2383   StoreInst *S = nullptr;
2384   for (auto *BB : {BB1, BB2}) {
2385     if (!BB)
2386       continue;
2387     for (auto &I : *BB)
2388       if (auto *SI = dyn_cast<StoreInst>(&I)) {
2389         if (S)
2390           // Multiple stores seen.
2391           return nullptr;
2392         else
2393           S = SI;
2394       }
2395   }
2396   return S;
2397 }
2398 
2399 static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB,
2400                                               Value *AlternativeV = nullptr) {
2401   // PHI is going to be a PHI node that allows the value V that is defined in
2402   // BB to be referenced in BB's only successor.
2403   //
2404   // If AlternativeV is nullptr, the only value we care about in PHI is V. It
2405   // doesn't matter to us what the other operand is (it'll never get used). We
2406   // could just create a new PHI with an undef incoming value, but that could
2407   // increase register pressure if EarlyCSE/InstCombine can't fold it with some
2408   // other PHI. So here we directly look for some PHI in BB's successor with V
2409   // as an incoming operand. If we find one, we use it, else we create a new
2410   // one.
2411   //
2412   // If AlternativeV is not nullptr, we care about both incoming values in PHI.
2413   // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV]
2414   // where OtherBB is the single other predecessor of BB's only successor.
2415   PHINode *PHI = nullptr;
2416   BasicBlock *Succ = BB->getSingleSuccessor();
2417 
2418   for (auto I = Succ->begin(); isa<PHINode>(I); ++I)
2419     if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) {
2420       PHI = cast<PHINode>(I);
2421       if (!AlternativeV)
2422         break;
2423 
2424       assert(std::distance(pred_begin(Succ), pred_end(Succ)) == 2);
2425       auto PredI = pred_begin(Succ);
2426       BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI;
2427       if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV)
2428         break;
2429       PHI = nullptr;
2430     }
2431   if (PHI)
2432     return PHI;
2433 
2434   // If V is not an instruction defined in BB, just return it.
2435   if (!AlternativeV &&
2436       (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB))
2437     return V;
2438 
2439   PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge", &Succ->front());
2440   PHI->addIncoming(V, BB);
2441   for (BasicBlock *PredBB : predecessors(Succ))
2442     if (PredBB != BB)
2443       PHI->addIncoming(AlternativeV ? AlternativeV : UndefValue::get(V->getType()),
2444                        PredBB);
2445   return PHI;
2446 }
2447 
2448 static bool mergeConditionalStoreToAddress(BasicBlock *PTB, BasicBlock *PFB,
2449                                            BasicBlock *QTB, BasicBlock *QFB,
2450                                            BasicBlock *PostBB, Value *Address,
2451                                            bool InvertPCond, bool InvertQCond) {
2452   auto IsaBitcastOfPointerType = [](const Instruction &I) {
2453     return Operator::getOpcode(&I) == Instruction::BitCast &&
2454            I.getType()->isPointerTy();
2455   };
2456 
2457   // If we're not in aggressive mode, we only optimize if we have some
2458   // confidence that by optimizing we'll allow P and/or Q to be if-converted.
2459   auto IsWorthwhile = [&](BasicBlock *BB) {
2460     if (!BB)
2461       return true;
2462     // Heuristic: if the block can be if-converted/phi-folded and the
2463     // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to
2464     // thread this store.
2465     unsigned N = 0;
2466     for (auto &I : *BB) {
2467       // Cheap instructions viable for folding.
2468       if (isa<BinaryOperator>(I) || isa<GetElementPtrInst>(I) ||
2469           isa<StoreInst>(I))
2470         ++N;
2471       // Free instructions.
2472       else if (isa<TerminatorInst>(I) || isa<DbgInfoIntrinsic>(I) ||
2473                IsaBitcastOfPointerType(I))
2474         continue;
2475       else
2476         return false;
2477     }
2478     return N <= PHINodeFoldingThreshold;
2479   };
2480 
2481   if (!MergeCondStoresAggressively && (!IsWorthwhile(PTB) ||
2482                                        !IsWorthwhile(PFB) ||
2483                                        !IsWorthwhile(QTB) ||
2484                                        !IsWorthwhile(QFB)))
2485     return false;
2486 
2487   // For every pointer, there must be exactly two stores, one coming from
2488   // PTB or PFB, and the other from QTB or QFB. We don't support more than one
2489   // store (to any address) in PTB,PFB or QTB,QFB.
2490   // FIXME: We could relax this restriction with a bit more work and performance
2491   // testing.
2492   StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB);
2493   StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB);
2494   if (!PStore || !QStore)
2495     return false;
2496 
2497   // Now check the stores are compatible.
2498   if (!QStore->isUnordered() || !PStore->isUnordered())
2499     return false;
2500 
2501   // Check that sinking the store won't cause program behavior changes. Sinking
2502   // the store out of the Q blocks won't change any behavior as we're sinking
2503   // from a block to its unconditional successor. But we're moving a store from
2504   // the P blocks down through the middle block (QBI) and past both QFB and QTB.
2505   // So we need to check that there are no aliasing loads or stores in
2506   // QBI, QTB and QFB. We also need to check there are no conflicting memory
2507   // operations between PStore and the end of its parent block.
2508   //
2509   // The ideal way to do this is to query AliasAnalysis, but we don't
2510   // preserve AA currently so that is dangerous. Be super safe and just
2511   // check there are no other memory operations at all.
2512   for (auto &I : *QFB->getSinglePredecessor())
2513     if (I.mayReadOrWriteMemory())
2514       return false;
2515   for (auto &I : *QFB)
2516     if (&I != QStore && I.mayReadOrWriteMemory())
2517       return false;
2518   if (QTB)
2519     for (auto &I : *QTB)
2520       if (&I != QStore && I.mayReadOrWriteMemory())
2521         return false;
2522   for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end();
2523        I != E; ++I)
2524     if (&*I != PStore && I->mayReadOrWriteMemory())
2525       return false;
2526 
2527   // OK, we're going to sink the stores to PostBB. The store has to be
2528   // conditional though, so first create the predicate.
2529   Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator())
2530                      ->getCondition();
2531   Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator())
2532                      ->getCondition();
2533 
2534   Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(),
2535                                                 PStore->getParent());
2536   Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(),
2537                                                 QStore->getParent(), PPHI);
2538 
2539   IRBuilder<> QB(&*PostBB->getFirstInsertionPt());
2540 
2541   Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond);
2542   Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond);
2543 
2544   if (InvertPCond)
2545     PPred = QB.CreateNot(PPred);
2546   if (InvertQCond)
2547     QPred = QB.CreateNot(QPred);
2548   Value *CombinedPred = QB.CreateOr(PPred, QPred);
2549 
2550   auto *T =
2551       SplitBlockAndInsertIfThen(CombinedPred, &*QB.GetInsertPoint(), false);
2552   QB.SetInsertPoint(T);
2553   StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address));
2554   AAMDNodes AAMD;
2555   PStore->getAAMetadata(AAMD, /*Merge=*/false);
2556   PStore->getAAMetadata(AAMD, /*Merge=*/true);
2557   SI->setAAMetadata(AAMD);
2558 
2559   QStore->eraseFromParent();
2560   PStore->eraseFromParent();
2561 
2562   return true;
2563 }
2564 
2565 static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI) {
2566   // The intention here is to find diamonds or triangles (see below) where each
2567   // conditional block contains a store to the same address. Both of these
2568   // stores are conditional, so they can't be unconditionally sunk. But it may
2569   // be profitable to speculatively sink the stores into one merged store at the
2570   // end, and predicate the merged store on the union of the two conditions of
2571   // PBI and QBI.
2572   //
2573   // This can reduce the number of stores executed if both of the conditions are
2574   // true, and can allow the blocks to become small enough to be if-converted.
2575   // This optimization will also chain, so that ladders of test-and-set
2576   // sequences can be if-converted away.
2577   //
2578   // We only deal with simple diamonds or triangles:
2579   //
2580   //     PBI       or      PBI        or a combination of the two
2581   //    /   \               | \
2582   //   PTB  PFB             |  PFB
2583   //    \   /               | /
2584   //     QBI                QBI
2585   //    /  \                | \
2586   //   QTB  QFB             |  QFB
2587   //    \  /                | /
2588   //    PostBB            PostBB
2589   //
2590   // We model triangles as a type of diamond with a nullptr "true" block.
2591   // Triangles are canonicalized so that the fallthrough edge is represented by
2592   // a true condition, as in the diagram above.
2593   //
2594   BasicBlock *PTB = PBI->getSuccessor(0);
2595   BasicBlock *PFB = PBI->getSuccessor(1);
2596   BasicBlock *QTB = QBI->getSuccessor(0);
2597   BasicBlock *QFB = QBI->getSuccessor(1);
2598   BasicBlock *PostBB = QFB->getSingleSuccessor();
2599 
2600   bool InvertPCond = false, InvertQCond = false;
2601   // Canonicalize fallthroughs to the true branches.
2602   if (PFB == QBI->getParent()) {
2603     std::swap(PFB, PTB);
2604     InvertPCond = true;
2605   }
2606   if (QFB == PostBB) {
2607     std::swap(QFB, QTB);
2608     InvertQCond = true;
2609   }
2610 
2611   // From this point on we can assume PTB or QTB may be fallthroughs but PFB
2612   // and QFB may not. Model fallthroughs as a nullptr block.
2613   if (PTB == QBI->getParent())
2614     PTB = nullptr;
2615   if (QTB == PostBB)
2616     QTB = nullptr;
2617 
2618   // Legality bailouts. We must have at least the non-fallthrough blocks and
2619   // the post-dominating block, and the non-fallthroughs must only have one
2620   // predecessor.
2621   auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) {
2622     return BB->getSinglePredecessor() == P &&
2623            BB->getSingleSuccessor() == S;
2624   };
2625   if (!PostBB ||
2626       !HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) ||
2627       !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB))
2628     return false;
2629   if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) ||
2630       (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB)))
2631     return false;
2632   if (PostBB->getNumUses() != 2 || QBI->getParent()->getNumUses() != 2)
2633     return false;
2634 
2635   // OK, this is a sequence of two diamonds or triangles.
2636   // Check if there are stores in PTB or PFB that are repeated in QTB or QFB.
2637   SmallPtrSet<Value *,4> PStoreAddresses, QStoreAddresses;
2638   for (auto *BB : {PTB, PFB}) {
2639     if (!BB)
2640       continue;
2641     for (auto &I : *BB)
2642       if (StoreInst *SI = dyn_cast<StoreInst>(&I))
2643         PStoreAddresses.insert(SI->getPointerOperand());
2644   }
2645   for (auto *BB : {QTB, QFB}) {
2646     if (!BB)
2647       continue;
2648     for (auto &I : *BB)
2649       if (StoreInst *SI = dyn_cast<StoreInst>(&I))
2650         QStoreAddresses.insert(SI->getPointerOperand());
2651   }
2652 
2653   set_intersect(PStoreAddresses, QStoreAddresses);
2654   // set_intersect mutates PStoreAddresses in place. Rename it here to make it
2655   // clear what it contains.
2656   auto &CommonAddresses = PStoreAddresses;
2657 
2658   bool Changed = false;
2659   for (auto *Address : CommonAddresses)
2660     Changed |= mergeConditionalStoreToAddress(
2661         PTB, PFB, QTB, QFB, PostBB, Address, InvertPCond, InvertQCond);
2662   return Changed;
2663 }
2664 
2665 /// If we have a conditional branch as a predecessor of another block,
2666 /// this function tries to simplify it.  We know
2667 /// that PBI and BI are both conditional branches, and BI is in one of the
2668 /// successor blocks of PBI - PBI branches to BI.
2669 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI,
2670                                            const DataLayout &DL) {
2671   assert(PBI->isConditional() && BI->isConditional());
2672   BasicBlock *BB = BI->getParent();
2673 
2674   // If this block ends with a branch instruction, and if there is a
2675   // predecessor that ends on a branch of the same condition, make
2676   // this conditional branch redundant.
2677   if (PBI->getCondition() == BI->getCondition() &&
2678       PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
2679     // Okay, the outcome of this conditional branch is statically
2680     // knowable.  If this block had a single pred, handle specially.
2681     if (BB->getSinglePredecessor()) {
2682       // Turn this into a branch on constant.
2683       bool CondIsTrue = PBI->getSuccessor(0) == BB;
2684       BI->setCondition(ConstantInt::get(Type::getInt1Ty(BB->getContext()),
2685                                         CondIsTrue));
2686       return true;  // Nuke the branch on constant.
2687     }
2688 
2689     // Otherwise, if there are multiple predecessors, insert a PHI that merges
2690     // in the constant and simplify the block result.  Subsequent passes of
2691     // simplifycfg will thread the block.
2692     if (BlockIsSimpleEnoughToThreadThrough(BB)) {
2693       pred_iterator PB = pred_begin(BB), PE = pred_end(BB);
2694       PHINode *NewPN = PHINode::Create(
2695           Type::getInt1Ty(BB->getContext()), std::distance(PB, PE),
2696           BI->getCondition()->getName() + ".pr", &BB->front());
2697       // Okay, we're going to insert the PHI node.  Since PBI is not the only
2698       // predecessor, compute the PHI'd conditional value for all of the preds.
2699       // Any predecessor where the condition is not computable we keep symbolic.
2700       for (pred_iterator PI = PB; PI != PE; ++PI) {
2701         BasicBlock *P = *PI;
2702         if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) &&
2703             PBI != BI && PBI->isConditional() &&
2704             PBI->getCondition() == BI->getCondition() &&
2705             PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
2706           bool CondIsTrue = PBI->getSuccessor(0) == BB;
2707           NewPN->addIncoming(ConstantInt::get(Type::getInt1Ty(BB->getContext()),
2708                                               CondIsTrue), P);
2709         } else {
2710           NewPN->addIncoming(BI->getCondition(), P);
2711         }
2712       }
2713 
2714       BI->setCondition(NewPN);
2715       return true;
2716     }
2717   }
2718 
2719   if (auto *CE = dyn_cast<ConstantExpr>(BI->getCondition()))
2720     if (CE->canTrap())
2721       return false;
2722 
2723   // If BI is reached from the true path of PBI and PBI's condition implies
2724   // BI's condition, we know the direction of the BI branch.
2725   if (PBI->getSuccessor(0) == BI->getParent() &&
2726       PBI->getSuccessor(0) != PBI->getSuccessor(1) &&
2727       BB->getSinglePredecessor()) {
2728     Optional<bool> Implication =
2729         isImpliedCondition(PBI->getCondition(), BI->getCondition(), DL);
2730     if (Implication) {
2731       // Turn this into a branch on constant.
2732       auto *OldCond = BI->getCondition();
2733       ConstantInt *CI = *Implication ? ConstantInt::getTrue(BB->getContext())
2734                                      : ConstantInt::getFalse(BB->getContext());
2735       BI->setCondition(CI);
2736       RecursivelyDeleteTriviallyDeadInstructions(OldCond);
2737       return true; // Nuke the branch on constant.
2738     }
2739   }
2740 
2741   // If both branches are conditional and both contain stores to the same
2742   // address, remove the stores from the conditionals and create a conditional
2743   // merged store at the end.
2744   if (MergeCondStores && mergeConditionalStores(PBI, BI))
2745     return true;
2746 
2747   // If this is a conditional branch in an empty block, and if any
2748   // predecessors are a conditional branch to one of our destinations,
2749   // fold the conditions into logical ops and one cond br.
2750   BasicBlock::iterator BBI = BB->begin();
2751   // Ignore dbg intrinsics.
2752   while (isa<DbgInfoIntrinsic>(BBI))
2753     ++BBI;
2754   if (&*BBI != BI)
2755     return false;
2756 
2757   int PBIOp, BIOp;
2758   if (PBI->getSuccessor(0) == BI->getSuccessor(0)) {
2759     PBIOp = 0;
2760     BIOp = 0;
2761   } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) {
2762     PBIOp = 0;
2763     BIOp = 1;
2764   } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) {
2765     PBIOp = 1;
2766     BIOp = 0;
2767   } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) {
2768     PBIOp = 1;
2769     BIOp = 1;
2770   } else {
2771     return false;
2772   }
2773 
2774   // Check to make sure that the other destination of this branch
2775   // isn't BB itself.  If so, this is an infinite loop that will
2776   // keep getting unwound.
2777   if (PBI->getSuccessor(PBIOp) == BB)
2778     return false;
2779 
2780   // Do not perform this transformation if it would require
2781   // insertion of a large number of select instructions. For targets
2782   // without predication/cmovs, this is a big pessimization.
2783 
2784   // Also do not perform this transformation if any phi node in the common
2785   // destination block can trap when reached by BB or PBB (PR17073). In that
2786   // case, it would be unsafe to hoist the operation into a select instruction.
2787 
2788   BasicBlock *CommonDest = PBI->getSuccessor(PBIOp);
2789   unsigned NumPhis = 0;
2790   for (BasicBlock::iterator II = CommonDest->begin();
2791        isa<PHINode>(II); ++II, ++NumPhis) {
2792     if (NumPhis > 2) // Disable this xform.
2793       return false;
2794 
2795     PHINode *PN = cast<PHINode>(II);
2796     Value *BIV = PN->getIncomingValueForBlock(BB);
2797     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BIV))
2798       if (CE->canTrap())
2799         return false;
2800 
2801     unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
2802     Value *PBIV = PN->getIncomingValue(PBBIdx);
2803     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(PBIV))
2804       if (CE->canTrap())
2805         return false;
2806   }
2807 
2808   // Finally, if everything is ok, fold the branches to logical ops.
2809   BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1);
2810 
2811   DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent()
2812                << "AND: " << *BI->getParent());
2813 
2814 
2815   // If OtherDest *is* BB, then BB is a basic block with a single conditional
2816   // branch in it, where one edge (OtherDest) goes back to itself but the other
2817   // exits.  We don't *know* that the program avoids the infinite loop
2818   // (even though that seems likely).  If we do this xform naively, we'll end up
2819   // recursively unpeeling the loop.  Since we know that (after the xform is
2820   // done) that the block *is* infinite if reached, we just make it an obviously
2821   // infinite loop with no cond branch.
2822   if (OtherDest == BB) {
2823     // Insert it at the end of the function, because it's either code,
2824     // or it won't matter if it's hot. :)
2825     BasicBlock *InfLoopBlock = BasicBlock::Create(BB->getContext(),
2826                                                   "infloop", BB->getParent());
2827     BranchInst::Create(InfLoopBlock, InfLoopBlock);
2828     OtherDest = InfLoopBlock;
2829   }
2830 
2831   DEBUG(dbgs() << *PBI->getParent()->getParent());
2832 
2833   // BI may have other predecessors.  Because of this, we leave
2834   // it alone, but modify PBI.
2835 
2836   // Make sure we get to CommonDest on True&True directions.
2837   Value *PBICond = PBI->getCondition();
2838   IRBuilder<NoFolder> Builder(PBI);
2839   if (PBIOp)
2840     PBICond = Builder.CreateNot(PBICond, PBICond->getName()+".not");
2841 
2842   Value *BICond = BI->getCondition();
2843   if (BIOp)
2844     BICond = Builder.CreateNot(BICond, BICond->getName()+".not");
2845 
2846   // Merge the conditions.
2847   Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge");
2848 
2849   // Modify PBI to branch on the new condition to the new dests.
2850   PBI->setCondition(Cond);
2851   PBI->setSuccessor(0, CommonDest);
2852   PBI->setSuccessor(1, OtherDest);
2853 
2854   // Update branch weight for PBI.
2855   uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
2856   bool PredHasWeights = ExtractBranchMetadata(PBI, PredTrueWeight,
2857                                               PredFalseWeight);
2858   bool SuccHasWeights = ExtractBranchMetadata(BI, SuccTrueWeight,
2859                                               SuccFalseWeight);
2860   if (PredHasWeights && SuccHasWeights) {
2861     uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
2862     uint64_t PredOther = PBIOp ?PredTrueWeight : PredFalseWeight;
2863     uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
2864     uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
2865     // The weight to CommonDest should be PredCommon * SuccTotal +
2866     //                                    PredOther * SuccCommon.
2867     // The weight to OtherDest should be PredOther * SuccOther.
2868     uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) +
2869                                   PredOther * SuccCommon,
2870                               PredOther * SuccOther};
2871     // Halve the weights if any of them cannot fit in an uint32_t
2872     FitWeights(NewWeights);
2873 
2874     PBI->setMetadata(LLVMContext::MD_prof,
2875                      MDBuilder(BI->getContext())
2876                          .createBranchWeights(NewWeights[0], NewWeights[1]));
2877   }
2878 
2879   // OtherDest may have phi nodes.  If so, add an entry from PBI's
2880   // block that are identical to the entries for BI's block.
2881   AddPredecessorToBlock(OtherDest, PBI->getParent(), BB);
2882 
2883   // We know that the CommonDest already had an edge from PBI to
2884   // it.  If it has PHIs though, the PHIs may have different
2885   // entries for BB and PBI's BB.  If so, insert a select to make
2886   // them agree.
2887   PHINode *PN;
2888   for (BasicBlock::iterator II = CommonDest->begin();
2889        (PN = dyn_cast<PHINode>(II)); ++II) {
2890     Value *BIV = PN->getIncomingValueForBlock(BB);
2891     unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
2892     Value *PBIV = PN->getIncomingValue(PBBIdx);
2893     if (BIV != PBIV) {
2894       // Insert a select in PBI to pick the right value.
2895       Value *NV = cast<SelectInst>
2896         (Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName() + ".mux"));
2897       PN->setIncomingValue(PBBIdx, NV);
2898     }
2899   }
2900 
2901   DEBUG(dbgs() << "INTO: " << *PBI->getParent());
2902   DEBUG(dbgs() << *PBI->getParent()->getParent());
2903 
2904   // This basic block is probably dead.  We know it has at least
2905   // one fewer predecessor.
2906   return true;
2907 }
2908 
2909 // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is
2910 // true or to FalseBB if Cond is false.
2911 // Takes care of updating the successors and removing the old terminator.
2912 // Also makes sure not to introduce new successors by assuming that edges to
2913 // non-successor TrueBBs and FalseBBs aren't reachable.
2914 static bool SimplifyTerminatorOnSelect(TerminatorInst *OldTerm, Value *Cond,
2915                                        BasicBlock *TrueBB, BasicBlock *FalseBB,
2916                                        uint32_t TrueWeight,
2917                                        uint32_t FalseWeight){
2918   // Remove any superfluous successor edges from the CFG.
2919   // First, figure out which successors to preserve.
2920   // If TrueBB and FalseBB are equal, only try to preserve one copy of that
2921   // successor.
2922   BasicBlock *KeepEdge1 = TrueBB;
2923   BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr;
2924 
2925   // Then remove the rest.
2926   for (BasicBlock *Succ : OldTerm->successors()) {
2927     // Make sure only to keep exactly one copy of each edge.
2928     if (Succ == KeepEdge1)
2929       KeepEdge1 = nullptr;
2930     else if (Succ == KeepEdge2)
2931       KeepEdge2 = nullptr;
2932     else
2933       Succ->removePredecessor(OldTerm->getParent(),
2934                               /*DontDeleteUselessPHIs=*/true);
2935   }
2936 
2937   IRBuilder<> Builder(OldTerm);
2938   Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc());
2939 
2940   // Insert an appropriate new terminator.
2941   if (!KeepEdge1 && !KeepEdge2) {
2942     if (TrueBB == FalseBB)
2943       // We were only looking for one successor, and it was present.
2944       // Create an unconditional branch to it.
2945       Builder.CreateBr(TrueBB);
2946     else {
2947       // We found both of the successors we were looking for.
2948       // Create a conditional branch sharing the condition of the select.
2949       BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB);
2950       if (TrueWeight != FalseWeight)
2951         NewBI->setMetadata(LLVMContext::MD_prof,
2952                            MDBuilder(OldTerm->getContext()).
2953                            createBranchWeights(TrueWeight, FalseWeight));
2954     }
2955   } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) {
2956     // Neither of the selected blocks were successors, so this
2957     // terminator must be unreachable.
2958     new UnreachableInst(OldTerm->getContext(), OldTerm);
2959   } else {
2960     // One of the selected values was a successor, but the other wasn't.
2961     // Insert an unconditional branch to the one that was found;
2962     // the edge to the one that wasn't must be unreachable.
2963     if (!KeepEdge1)
2964       // Only TrueBB was found.
2965       Builder.CreateBr(TrueBB);
2966     else
2967       // Only FalseBB was found.
2968       Builder.CreateBr(FalseBB);
2969   }
2970 
2971   EraseTerminatorInstAndDCECond(OldTerm);
2972   return true;
2973 }
2974 
2975 // Replaces
2976 //   (switch (select cond, X, Y)) on constant X, Y
2977 // with a branch - conditional if X and Y lead to distinct BBs,
2978 // unconditional otherwise.
2979 static bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select) {
2980   // Check for constant integer values in the select.
2981   ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue());
2982   ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue());
2983   if (!TrueVal || !FalseVal)
2984     return false;
2985 
2986   // Find the relevant condition and destinations.
2987   Value *Condition = Select->getCondition();
2988   BasicBlock *TrueBB = SI->findCaseValue(TrueVal).getCaseSuccessor();
2989   BasicBlock *FalseBB = SI->findCaseValue(FalseVal).getCaseSuccessor();
2990 
2991   // Get weight for TrueBB and FalseBB.
2992   uint32_t TrueWeight = 0, FalseWeight = 0;
2993   SmallVector<uint64_t, 8> Weights;
2994   bool HasWeights = HasBranchWeights(SI);
2995   if (HasWeights) {
2996     GetBranchWeights(SI, Weights);
2997     if (Weights.size() == 1 + SI->getNumCases()) {
2998       TrueWeight = (uint32_t)Weights[SI->findCaseValue(TrueVal).
2999                                      getSuccessorIndex()];
3000       FalseWeight = (uint32_t)Weights[SI->findCaseValue(FalseVal).
3001                                       getSuccessorIndex()];
3002     }
3003   }
3004 
3005   // Perform the actual simplification.
3006   return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB,
3007                                     TrueWeight, FalseWeight);
3008 }
3009 
3010 // Replaces
3011 //   (indirectbr (select cond, blockaddress(@fn, BlockA),
3012 //                             blockaddress(@fn, BlockB)))
3013 // with
3014 //   (br cond, BlockA, BlockB).
3015 static bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI) {
3016   // Check that both operands of the select are block addresses.
3017   BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue());
3018   BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue());
3019   if (!TBA || !FBA)
3020     return false;
3021 
3022   // Extract the actual blocks.
3023   BasicBlock *TrueBB = TBA->getBasicBlock();
3024   BasicBlock *FalseBB = FBA->getBasicBlock();
3025 
3026   // Perform the actual simplification.
3027   return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB,
3028                                     0, 0);
3029 }
3030 
3031 /// This is called when we find an icmp instruction
3032 /// (a seteq/setne with a constant) as the only instruction in a
3033 /// block that ends with an uncond branch.  We are looking for a very specific
3034 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified.  In
3035 /// this case, we merge the first two "or's of icmp" into a switch, but then the
3036 /// default value goes to an uncond block with a seteq in it, we get something
3037 /// like:
3038 ///
3039 ///   switch i8 %A, label %DEFAULT [ i8 1, label %end    i8 2, label %end ]
3040 /// DEFAULT:
3041 ///   %tmp = icmp eq i8 %A, 92
3042 ///   br label %end
3043 /// end:
3044 ///   ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ]
3045 ///
3046 /// We prefer to split the edge to 'end' so that there is a true/false entry to
3047 /// the PHI, merging the third icmp into the switch.
3048 static bool TryToSimplifyUncondBranchWithICmpInIt(
3049     ICmpInst *ICI, IRBuilder<> &Builder, const DataLayout &DL,
3050     const TargetTransformInfo &TTI, unsigned BonusInstThreshold,
3051     AssumptionCache *AC) {
3052   BasicBlock *BB = ICI->getParent();
3053 
3054   // If the block has any PHIs in it or the icmp has multiple uses, it is too
3055   // complex.
3056   if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse()) return false;
3057 
3058   Value *V = ICI->getOperand(0);
3059   ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1));
3060 
3061   // The pattern we're looking for is where our only predecessor is a switch on
3062   // 'V' and this block is the default case for the switch.  In this case we can
3063   // fold the compared value into the switch to simplify things.
3064   BasicBlock *Pred = BB->getSinglePredecessor();
3065   if (!Pred || !isa<SwitchInst>(Pred->getTerminator())) return false;
3066 
3067   SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator());
3068   if (SI->getCondition() != V)
3069     return false;
3070 
3071   // If BB is reachable on a non-default case, then we simply know the value of
3072   // V in this block.  Substitute it and constant fold the icmp instruction
3073   // away.
3074   if (SI->getDefaultDest() != BB) {
3075     ConstantInt *VVal = SI->findCaseDest(BB);
3076     assert(VVal && "Should have a unique destination value");
3077     ICI->setOperand(0, VVal);
3078 
3079     if (Value *V = SimplifyInstruction(ICI, DL)) {
3080       ICI->replaceAllUsesWith(V);
3081       ICI->eraseFromParent();
3082     }
3083     // BB is now empty, so it is likely to simplify away.
3084     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
3085   }
3086 
3087   // Ok, the block is reachable from the default dest.  If the constant we're
3088   // comparing exists in one of the other edges, then we can constant fold ICI
3089   // and zap it.
3090   if (SI->findCaseValue(Cst) != SI->case_default()) {
3091     Value *V;
3092     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
3093       V = ConstantInt::getFalse(BB->getContext());
3094     else
3095       V = ConstantInt::getTrue(BB->getContext());
3096 
3097     ICI->replaceAllUsesWith(V);
3098     ICI->eraseFromParent();
3099     // BB is now empty, so it is likely to simplify away.
3100     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
3101   }
3102 
3103   // The use of the icmp has to be in the 'end' block, by the only PHI node in
3104   // the block.
3105   BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0);
3106   PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back());
3107   if (PHIUse == nullptr || PHIUse != &SuccBlock->front() ||
3108       isa<PHINode>(++BasicBlock::iterator(PHIUse)))
3109     return false;
3110 
3111   // If the icmp is a SETEQ, then the default dest gets false, the new edge gets
3112   // true in the PHI.
3113   Constant *DefaultCst = ConstantInt::getTrue(BB->getContext());
3114   Constant *NewCst     = ConstantInt::getFalse(BB->getContext());
3115 
3116   if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
3117     std::swap(DefaultCst, NewCst);
3118 
3119   // Replace ICI (which is used by the PHI for the default value) with true or
3120   // false depending on if it is EQ or NE.
3121   ICI->replaceAllUsesWith(DefaultCst);
3122   ICI->eraseFromParent();
3123 
3124   // Okay, the switch goes to this block on a default value.  Add an edge from
3125   // the switch to the merge point on the compared value.
3126   BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "switch.edge",
3127                                          BB->getParent(), BB);
3128   SmallVector<uint64_t, 8> Weights;
3129   bool HasWeights = HasBranchWeights(SI);
3130   if (HasWeights) {
3131     GetBranchWeights(SI, Weights);
3132     if (Weights.size() == 1 + SI->getNumCases()) {
3133       // Split weight for default case to case for "Cst".
3134       Weights[0] = (Weights[0]+1) >> 1;
3135       Weights.push_back(Weights[0]);
3136 
3137       SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
3138       SI->setMetadata(LLVMContext::MD_prof,
3139                       MDBuilder(SI->getContext()).
3140                       createBranchWeights(MDWeights));
3141     }
3142   }
3143   SI->addCase(Cst, NewBB);
3144 
3145   // NewBB branches to the phi block, add the uncond branch and the phi entry.
3146   Builder.SetInsertPoint(NewBB);
3147   Builder.SetCurrentDebugLocation(SI->getDebugLoc());
3148   Builder.CreateBr(SuccBlock);
3149   PHIUse->addIncoming(NewCst, NewBB);
3150   return true;
3151 }
3152 
3153 /// The specified branch is a conditional branch.
3154 /// Check to see if it is branching on an or/and chain of icmp instructions, and
3155 /// fold it into a switch instruction if so.
3156 static bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder,
3157                                       const DataLayout &DL) {
3158   Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
3159   if (!Cond) return false;
3160 
3161   // Change br (X == 0 | X == 1), T, F into a switch instruction.
3162   // If this is a bunch of seteq's or'd together, or if it's a bunch of
3163   // 'setne's and'ed together, collect them.
3164 
3165   // Try to gather values from a chain of and/or to be turned into a switch
3166   ConstantComparesGatherer ConstantCompare(Cond, DL);
3167   // Unpack the result
3168   SmallVectorImpl<ConstantInt*> &Values = ConstantCompare.Vals;
3169   Value *CompVal = ConstantCompare.CompValue;
3170   unsigned UsedICmps = ConstantCompare.UsedICmps;
3171   Value *ExtraCase = ConstantCompare.Extra;
3172 
3173   // If we didn't have a multiply compared value, fail.
3174   if (!CompVal) return false;
3175 
3176   // Avoid turning single icmps into a switch.
3177   if (UsedICmps <= 1)
3178     return false;
3179 
3180   bool TrueWhenEqual = (Cond->getOpcode() == Instruction::Or);
3181 
3182   // There might be duplicate constants in the list, which the switch
3183   // instruction can't handle, remove them now.
3184   array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate);
3185   Values.erase(std::unique(Values.begin(), Values.end()), Values.end());
3186 
3187   // If Extra was used, we require at least two switch values to do the
3188   // transformation.  A switch with one value is just a conditional branch.
3189   if (ExtraCase && Values.size() < 2) return false;
3190 
3191   // TODO: Preserve branch weight metadata, similarly to how
3192   // FoldValueComparisonIntoPredecessors preserves it.
3193 
3194   // Figure out which block is which destination.
3195   BasicBlock *DefaultBB = BI->getSuccessor(1);
3196   BasicBlock *EdgeBB    = BI->getSuccessor(0);
3197   if (!TrueWhenEqual) std::swap(DefaultBB, EdgeBB);
3198 
3199   BasicBlock *BB = BI->getParent();
3200 
3201   DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size()
3202                << " cases into SWITCH.  BB is:\n" << *BB);
3203 
3204   // If there are any extra values that couldn't be folded into the switch
3205   // then we evaluate them with an explicit branch first.  Split the block
3206   // right before the condbr to handle it.
3207   if (ExtraCase) {
3208     BasicBlock *NewBB =
3209         BB->splitBasicBlock(BI->getIterator(), "switch.early.test");
3210     // Remove the uncond branch added to the old block.
3211     TerminatorInst *OldTI = BB->getTerminator();
3212     Builder.SetInsertPoint(OldTI);
3213 
3214     if (TrueWhenEqual)
3215       Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB);
3216     else
3217       Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB);
3218 
3219     OldTI->eraseFromParent();
3220 
3221     // If there are PHI nodes in EdgeBB, then we need to add a new entry to them
3222     // for the edge we just added.
3223     AddPredecessorToBlock(EdgeBB, BB, NewBB);
3224 
3225     DEBUG(dbgs() << "  ** 'icmp' chain unhandled condition: " << *ExtraCase
3226           << "\nEXTRABB = " << *BB);
3227     BB = NewBB;
3228   }
3229 
3230   Builder.SetInsertPoint(BI);
3231   // Convert pointer to int before we switch.
3232   if (CompVal->getType()->isPointerTy()) {
3233     CompVal = Builder.CreatePtrToInt(
3234         CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr");
3235   }
3236 
3237   // Create the new switch instruction now.
3238   SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size());
3239 
3240   // Add all of the 'cases' to the switch instruction.
3241   for (unsigned i = 0, e = Values.size(); i != e; ++i)
3242     New->addCase(Values[i], EdgeBB);
3243 
3244   // We added edges from PI to the EdgeBB.  As such, if there were any
3245   // PHI nodes in EdgeBB, they need entries to be added corresponding to
3246   // the number of edges added.
3247   for (BasicBlock::iterator BBI = EdgeBB->begin();
3248        isa<PHINode>(BBI); ++BBI) {
3249     PHINode *PN = cast<PHINode>(BBI);
3250     Value *InVal = PN->getIncomingValueForBlock(BB);
3251     for (unsigned i = 0, e = Values.size()-1; i != e; ++i)
3252       PN->addIncoming(InVal, BB);
3253   }
3254 
3255   // Erase the old branch instruction.
3256   EraseTerminatorInstAndDCECond(BI);
3257 
3258   DEBUG(dbgs() << "  ** 'icmp' chain result is:\n" << *BB << '\n');
3259   return true;
3260 }
3261 
3262 bool SimplifyCFGOpt::SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder) {
3263   if (isa<PHINode>(RI->getValue()))
3264     return SimplifyCommonResume(RI);
3265   else if (isa<LandingPadInst>(RI->getParent()->getFirstNonPHI()) &&
3266            RI->getValue() == RI->getParent()->getFirstNonPHI())
3267     // The resume must unwind the exception that caused control to branch here.
3268     return SimplifySingleResume(RI);
3269 
3270   return false;
3271 }
3272 
3273 // Simplify resume that is shared by several landing pads (phi of landing pad).
3274 bool SimplifyCFGOpt::SimplifyCommonResume(ResumeInst *RI) {
3275   BasicBlock *BB = RI->getParent();
3276 
3277   // Check that there are no other instructions except for debug intrinsics
3278   // between the phi of landing pads (RI->getValue()) and resume instruction.
3279   BasicBlock::iterator I = cast<Instruction>(RI->getValue())->getIterator(),
3280 		  	  	  	   E = RI->getIterator();
3281   while (++I != E)
3282     if (!isa<DbgInfoIntrinsic>(I))
3283       return false;
3284 
3285   SmallSet<BasicBlock *, 4> TrivialUnwindBlocks;
3286   auto *PhiLPInst = cast<PHINode>(RI->getValue());
3287 
3288   // Check incoming blocks to see if any of them are trivial.
3289   for (unsigned Idx = 0, End = PhiLPInst->getNumIncomingValues();
3290        Idx != End; Idx++) {
3291     auto *IncomingBB = PhiLPInst->getIncomingBlock(Idx);
3292     auto *IncomingValue = PhiLPInst->getIncomingValue(Idx);
3293 
3294     // If the block has other successors, we can not delete it because
3295     // it has other dependents.
3296     if (IncomingBB->getUniqueSuccessor() != BB)
3297       continue;
3298 
3299     auto *LandingPad =
3300         dyn_cast<LandingPadInst>(IncomingBB->getFirstNonPHI());
3301     // Not the landing pad that caused the control to branch here.
3302     if (IncomingValue != LandingPad)
3303       continue;
3304 
3305     bool isTrivial = true;
3306 
3307     I = IncomingBB->getFirstNonPHI()->getIterator();
3308     E = IncomingBB->getTerminator()->getIterator();
3309     while (++I != E)
3310       if (!isa<DbgInfoIntrinsic>(I)) {
3311         isTrivial = false;
3312         break;
3313       }
3314 
3315     if (isTrivial)
3316       TrivialUnwindBlocks.insert(IncomingBB);
3317   }
3318 
3319   // If no trivial unwind blocks, don't do any simplifications.
3320   if (TrivialUnwindBlocks.empty()) return false;
3321 
3322   // Turn all invokes that unwind here into calls.
3323   for (auto *TrivialBB : TrivialUnwindBlocks) {
3324     // Blocks that will be simplified should be removed from the phi node.
3325     // Note there could be multiple edges to the resume block, and we need
3326     // to remove them all.
3327     while (PhiLPInst->getBasicBlockIndex(TrivialBB) != -1)
3328       BB->removePredecessor(TrivialBB, true);
3329 
3330     for (pred_iterator PI = pred_begin(TrivialBB), PE = pred_end(TrivialBB);
3331          PI != PE;) {
3332       BasicBlock *Pred = *PI++;
3333       removeUnwindEdge(Pred);
3334     }
3335 
3336     // In each SimplifyCFG run, only the current processed block can be erased.
3337     // Otherwise, it will break the iteration of SimplifyCFG pass. So instead
3338     // of erasing TrivialBB, we only remove the branch to the common resume
3339     // block so that we can later erase the resume block since it has no
3340     // predecessors.
3341     TrivialBB->getTerminator()->eraseFromParent();
3342     new UnreachableInst(RI->getContext(), TrivialBB);
3343   }
3344 
3345   // Delete the resume block if all its predecessors have been removed.
3346   if (pred_empty(BB))
3347     BB->eraseFromParent();
3348 
3349   return !TrivialUnwindBlocks.empty();
3350 }
3351 
3352 // Simplify resume that is only used by a single (non-phi) landing pad.
3353 bool SimplifyCFGOpt::SimplifySingleResume(ResumeInst *RI) {
3354   BasicBlock *BB = RI->getParent();
3355   LandingPadInst *LPInst = dyn_cast<LandingPadInst>(BB->getFirstNonPHI());
3356   assert (RI->getValue() == LPInst &&
3357           "Resume must unwind the exception that caused control to here");
3358 
3359   // Check that there are no other instructions except for debug intrinsics.
3360   BasicBlock::iterator I = LPInst->getIterator(), E = RI->getIterator();
3361   while (++I != E)
3362     if (!isa<DbgInfoIntrinsic>(I))
3363       return false;
3364 
3365   // Turn all invokes that unwind here into calls and delete the basic block.
3366   for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) {
3367     BasicBlock *Pred = *PI++;
3368     removeUnwindEdge(Pred);
3369   }
3370 
3371   // The landingpad is now unreachable.  Zap it.
3372   BB->eraseFromParent();
3373   if (LoopHeaders) LoopHeaders->erase(BB);
3374   return true;
3375 }
3376 
3377 static bool removeEmptyCleanup(CleanupReturnInst *RI) {
3378   // If this is a trivial cleanup pad that executes no instructions, it can be
3379   // eliminated.  If the cleanup pad continues to the caller, any predecessor
3380   // that is an EH pad will be updated to continue to the caller and any
3381   // predecessor that terminates with an invoke instruction will have its invoke
3382   // instruction converted to a call instruction.  If the cleanup pad being
3383   // simplified does not continue to the caller, each predecessor will be
3384   // updated to continue to the unwind destination of the cleanup pad being
3385   // simplified.
3386   BasicBlock *BB = RI->getParent();
3387   CleanupPadInst *CPInst = RI->getCleanupPad();
3388   if (CPInst->getParent() != BB)
3389     // This isn't an empty cleanup.
3390     return false;
3391 
3392   // Check that there are no other instructions except for debug intrinsics.
3393   BasicBlock::iterator I = CPInst->getIterator(), E = RI->getIterator();
3394   while (++I != E)
3395     if (!isa<DbgInfoIntrinsic>(I))
3396       return false;
3397 
3398   // If the cleanup return we are simplifying unwinds to the caller, this will
3399   // set UnwindDest to nullptr.
3400   BasicBlock *UnwindDest = RI->getUnwindDest();
3401   Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr;
3402 
3403   // We're about to remove BB from the control flow.  Before we do, sink any
3404   // PHINodes into the unwind destination.  Doing this before changing the
3405   // control flow avoids some potentially slow checks, since we can currently
3406   // be certain that UnwindDest and BB have no common predecessors (since they
3407   // are both EH pads).
3408   if (UnwindDest) {
3409     // First, go through the PHI nodes in UnwindDest and update any nodes that
3410     // reference the block we are removing
3411     for (BasicBlock::iterator I = UnwindDest->begin(),
3412                               IE = DestEHPad->getIterator();
3413          I != IE; ++I) {
3414       PHINode *DestPN = cast<PHINode>(I);
3415 
3416       int Idx = DestPN->getBasicBlockIndex(BB);
3417       // Since BB unwinds to UnwindDest, it has to be in the PHI node.
3418       assert(Idx != -1);
3419       // This PHI node has an incoming value that corresponds to a control
3420       // path through the cleanup pad we are removing.  If the incoming
3421       // value is in the cleanup pad, it must be a PHINode (because we
3422       // verified above that the block is otherwise empty).  Otherwise, the
3423       // value is either a constant or a value that dominates the cleanup
3424       // pad being removed.
3425       //
3426       // Because BB and UnwindDest are both EH pads, all of their
3427       // predecessors must unwind to these blocks, and since no instruction
3428       // can have multiple unwind destinations, there will be no overlap in
3429       // incoming blocks between SrcPN and DestPN.
3430       Value *SrcVal = DestPN->getIncomingValue(Idx);
3431       PHINode *SrcPN = dyn_cast<PHINode>(SrcVal);
3432 
3433       // Remove the entry for the block we are deleting.
3434       DestPN->removeIncomingValue(Idx, false);
3435 
3436       if (SrcPN && SrcPN->getParent() == BB) {
3437         // If the incoming value was a PHI node in the cleanup pad we are
3438         // removing, we need to merge that PHI node's incoming values into
3439         // DestPN.
3440         for (unsigned SrcIdx = 0, SrcE = SrcPN->getNumIncomingValues();
3441               SrcIdx != SrcE; ++SrcIdx) {
3442           DestPN->addIncoming(SrcPN->getIncomingValue(SrcIdx),
3443                               SrcPN->getIncomingBlock(SrcIdx));
3444         }
3445       } else {
3446         // Otherwise, the incoming value came from above BB and
3447         // so we can just reuse it.  We must associate all of BB's
3448         // predecessors with this value.
3449         for (auto *pred : predecessors(BB)) {
3450           DestPN->addIncoming(SrcVal, pred);
3451         }
3452       }
3453     }
3454 
3455     // Sink any remaining PHI nodes directly into UnwindDest.
3456     Instruction *InsertPt = DestEHPad;
3457     for (BasicBlock::iterator I = BB->begin(),
3458                               IE = BB->getFirstNonPHI()->getIterator();
3459          I != IE;) {
3460       // The iterator must be incremented here because the instructions are
3461       // being moved to another block.
3462       PHINode *PN = cast<PHINode>(I++);
3463       if (PN->use_empty())
3464         // If the PHI node has no uses, just leave it.  It will be erased
3465         // when we erase BB below.
3466         continue;
3467 
3468       // Otherwise, sink this PHI node into UnwindDest.
3469       // Any predecessors to UnwindDest which are not already represented
3470       // must be back edges which inherit the value from the path through
3471       // BB.  In this case, the PHI value must reference itself.
3472       for (auto *pred : predecessors(UnwindDest))
3473         if (pred != BB)
3474           PN->addIncoming(PN, pred);
3475       PN->moveBefore(InsertPt);
3476     }
3477   }
3478 
3479   for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) {
3480     // The iterator must be updated here because we are removing this pred.
3481     BasicBlock *PredBB = *PI++;
3482     if (UnwindDest == nullptr) {
3483       removeUnwindEdge(PredBB);
3484     } else {
3485       TerminatorInst *TI = PredBB->getTerminator();
3486       TI->replaceUsesOfWith(BB, UnwindDest);
3487     }
3488   }
3489 
3490   // The cleanup pad is now unreachable.  Zap it.
3491   BB->eraseFromParent();
3492   return true;
3493 }
3494 
3495 // Try to merge two cleanuppads together.
3496 static bool mergeCleanupPad(CleanupReturnInst *RI) {
3497   // Skip any cleanuprets which unwind to caller, there is nothing to merge
3498   // with.
3499   BasicBlock *UnwindDest = RI->getUnwindDest();
3500   if (!UnwindDest)
3501     return false;
3502 
3503   // This cleanupret isn't the only predecessor of this cleanuppad, it wouldn't
3504   // be safe to merge without code duplication.
3505   if (UnwindDest->getSinglePredecessor() != RI->getParent())
3506     return false;
3507 
3508   // Verify that our cleanuppad's unwind destination is another cleanuppad.
3509   auto *SuccessorCleanupPad = dyn_cast<CleanupPadInst>(&UnwindDest->front());
3510   if (!SuccessorCleanupPad)
3511     return false;
3512 
3513   CleanupPadInst *PredecessorCleanupPad = RI->getCleanupPad();
3514   // Replace any uses of the successor cleanupad with the predecessor pad
3515   // The only cleanuppad uses should be this cleanupret, it's cleanupret and
3516   // funclet bundle operands.
3517   SuccessorCleanupPad->replaceAllUsesWith(PredecessorCleanupPad);
3518   // Remove the old cleanuppad.
3519   SuccessorCleanupPad->eraseFromParent();
3520   // Now, we simply replace the cleanupret with a branch to the unwind
3521   // destination.
3522   BranchInst::Create(UnwindDest, RI->getParent());
3523   RI->eraseFromParent();
3524 
3525   return true;
3526 }
3527 
3528 bool SimplifyCFGOpt::SimplifyCleanupReturn(CleanupReturnInst *RI) {
3529   // It is possible to transiantly have an undef cleanuppad operand because we
3530   // have deleted some, but not all, dead blocks.
3531   // Eventually, this block will be deleted.
3532   if (isa<UndefValue>(RI->getOperand(0)))
3533     return false;
3534 
3535   if (removeEmptyCleanup(RI))
3536     return true;
3537 
3538   if (mergeCleanupPad(RI))
3539     return true;
3540 
3541   return false;
3542 }
3543 
3544 bool SimplifyCFGOpt::SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) {
3545   BasicBlock *BB = RI->getParent();
3546   if (!BB->getFirstNonPHIOrDbg()->isTerminator()) return false;
3547 
3548   // Find predecessors that end with branches.
3549   SmallVector<BasicBlock*, 8> UncondBranchPreds;
3550   SmallVector<BranchInst*, 8> CondBranchPreds;
3551   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
3552     BasicBlock *P = *PI;
3553     TerminatorInst *PTI = P->getTerminator();
3554     if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) {
3555       if (BI->isUnconditional())
3556         UncondBranchPreds.push_back(P);
3557       else
3558         CondBranchPreds.push_back(BI);
3559     }
3560   }
3561 
3562   // If we found some, do the transformation!
3563   if (!UncondBranchPreds.empty() && DupRet) {
3564     while (!UncondBranchPreds.empty()) {
3565       BasicBlock *Pred = UncondBranchPreds.pop_back_val();
3566       DEBUG(dbgs() << "FOLDING: " << *BB
3567             << "INTO UNCOND BRANCH PRED: " << *Pred);
3568       (void)FoldReturnIntoUncondBranch(RI, BB, Pred);
3569     }
3570 
3571     // If we eliminated all predecessors of the block, delete the block now.
3572     if (pred_empty(BB)) {
3573       // We know there are no successors, so just nuke the block.
3574       BB->eraseFromParent();
3575       if (LoopHeaders) LoopHeaders->erase(BB);
3576     }
3577 
3578     return true;
3579   }
3580 
3581   // Check out all of the conditional branches going to this return
3582   // instruction.  If any of them just select between returns, change the
3583   // branch itself into a select/return pair.
3584   while (!CondBranchPreds.empty()) {
3585     BranchInst *BI = CondBranchPreds.pop_back_val();
3586 
3587     // Check to see if the non-BB successor is also a return block.
3588     if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) &&
3589         isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) &&
3590         SimplifyCondBranchToTwoReturns(BI, Builder))
3591       return true;
3592   }
3593   return false;
3594 }
3595 
3596 bool SimplifyCFGOpt::SimplifyUnreachable(UnreachableInst *UI) {
3597   BasicBlock *BB = UI->getParent();
3598 
3599   bool Changed = false;
3600 
3601   // If there are any instructions immediately before the unreachable that can
3602   // be removed, do so.
3603   while (UI->getIterator() != BB->begin()) {
3604     BasicBlock::iterator BBI = UI->getIterator();
3605     --BBI;
3606     // Do not delete instructions that can have side effects which might cause
3607     // the unreachable to not be reachable; specifically, calls and volatile
3608     // operations may have this effect.
3609     if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI)) break;
3610 
3611     if (BBI->mayHaveSideEffects()) {
3612       if (auto *SI = dyn_cast<StoreInst>(BBI)) {
3613         if (SI->isVolatile())
3614           break;
3615       } else if (auto *LI = dyn_cast<LoadInst>(BBI)) {
3616         if (LI->isVolatile())
3617           break;
3618       } else if (auto *RMWI = dyn_cast<AtomicRMWInst>(BBI)) {
3619         if (RMWI->isVolatile())
3620           break;
3621       } else if (auto *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) {
3622         if (CXI->isVolatile())
3623           break;
3624       } else if (isa<CatchPadInst>(BBI)) {
3625         // A catchpad may invoke exception object constructors and such, which
3626         // in some languages can be arbitrary code, so be conservative by
3627         // default.
3628         // For CoreCLR, it just involves a type test, so can be removed.
3629         if (classifyEHPersonality(BB->getParent()->getPersonalityFn()) !=
3630             EHPersonality::CoreCLR)
3631           break;
3632       } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) &&
3633                  !isa<LandingPadInst>(BBI)) {
3634         break;
3635       }
3636       // Note that deleting LandingPad's here is in fact okay, although it
3637       // involves a bit of subtle reasoning. If this inst is a LandingPad,
3638       // all the predecessors of this block will be the unwind edges of Invokes,
3639       // and we can therefore guarantee this block will be erased.
3640     }
3641 
3642     // Delete this instruction (any uses are guaranteed to be dead)
3643     if (!BBI->use_empty())
3644       BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
3645     BBI->eraseFromParent();
3646     Changed = true;
3647   }
3648 
3649   // If the unreachable instruction is the first in the block, take a gander
3650   // at all of the predecessors of this instruction, and simplify them.
3651   if (&BB->front() != UI) return Changed;
3652 
3653   SmallVector<BasicBlock*, 8> Preds(pred_begin(BB), pred_end(BB));
3654   for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
3655     TerminatorInst *TI = Preds[i]->getTerminator();
3656     IRBuilder<> Builder(TI);
3657     if (auto *BI = dyn_cast<BranchInst>(TI)) {
3658       if (BI->isUnconditional()) {
3659         if (BI->getSuccessor(0) == BB) {
3660           new UnreachableInst(TI->getContext(), TI);
3661           TI->eraseFromParent();
3662           Changed = true;
3663         }
3664       } else {
3665         if (BI->getSuccessor(0) == BB) {
3666           Builder.CreateBr(BI->getSuccessor(1));
3667           EraseTerminatorInstAndDCECond(BI);
3668         } else if (BI->getSuccessor(1) == BB) {
3669           Builder.CreateBr(BI->getSuccessor(0));
3670           EraseTerminatorInstAndDCECond(BI);
3671           Changed = true;
3672         }
3673       }
3674     } else if (auto *SI = dyn_cast<SwitchInst>(TI)) {
3675       for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
3676            i != e; ++i)
3677         if (i.getCaseSuccessor() == BB) {
3678           BB->removePredecessor(SI->getParent());
3679           SI->removeCase(i);
3680           --i; --e;
3681           Changed = true;
3682         }
3683     } else if (auto *II = dyn_cast<InvokeInst>(TI)) {
3684       if (II->getUnwindDest() == BB) {
3685         removeUnwindEdge(TI->getParent());
3686         Changed = true;
3687       }
3688     } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) {
3689       if (CSI->getUnwindDest() == BB) {
3690         removeUnwindEdge(TI->getParent());
3691         Changed = true;
3692         continue;
3693       }
3694 
3695       for (CatchSwitchInst::handler_iterator I = CSI->handler_begin(),
3696                                              E = CSI->handler_end();
3697            I != E; ++I) {
3698         if (*I == BB) {
3699           CSI->removeHandler(I);
3700           --I;
3701           --E;
3702           Changed = true;
3703         }
3704       }
3705       if (CSI->getNumHandlers() == 0) {
3706         BasicBlock *CatchSwitchBB = CSI->getParent();
3707         if (CSI->hasUnwindDest()) {
3708           // Redirect preds to the unwind dest
3709           CatchSwitchBB->replaceAllUsesWith(CSI->getUnwindDest());
3710         } else {
3711           // Rewrite all preds to unwind to caller (or from invoke to call).
3712           SmallVector<BasicBlock *, 8> EHPreds(predecessors(CatchSwitchBB));
3713           for (BasicBlock *EHPred : EHPreds)
3714             removeUnwindEdge(EHPred);
3715         }
3716         // The catchswitch is no longer reachable.
3717         new UnreachableInst(CSI->getContext(), CSI);
3718         CSI->eraseFromParent();
3719         Changed = true;
3720       }
3721     } else if (isa<CleanupReturnInst>(TI)) {
3722       new UnreachableInst(TI->getContext(), TI);
3723       TI->eraseFromParent();
3724       Changed = true;
3725     }
3726   }
3727 
3728   // If this block is now dead, remove it.
3729   if (pred_empty(BB) &&
3730       BB != &BB->getParent()->getEntryBlock()) {
3731     // We know there are no successors, so just nuke the block.
3732     BB->eraseFromParent();
3733     if (LoopHeaders) LoopHeaders->erase(BB);
3734     return true;
3735   }
3736 
3737   return Changed;
3738 }
3739 
3740 static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) {
3741   assert(Cases.size() >= 1);
3742 
3743   array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate);
3744   for (size_t I = 1, E = Cases.size(); I != E; ++I) {
3745     if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1)
3746       return false;
3747   }
3748   return true;
3749 }
3750 
3751 /// Turn a switch with two reachable destinations into an integer range
3752 /// comparison and branch.
3753 static bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder) {
3754   assert(SI->getNumCases() > 1 && "Degenerate switch?");
3755 
3756   bool HasDefault =
3757       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
3758 
3759   // Partition the cases into two sets with different destinations.
3760   BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr;
3761   BasicBlock *DestB = nullptr;
3762   SmallVector <ConstantInt *, 16> CasesA;
3763   SmallVector <ConstantInt *, 16> CasesB;
3764 
3765   for (SwitchInst::CaseIt I : SI->cases()) {
3766     BasicBlock *Dest = I.getCaseSuccessor();
3767     if (!DestA) DestA = Dest;
3768     if (Dest == DestA) {
3769       CasesA.push_back(I.getCaseValue());
3770       continue;
3771     }
3772     if (!DestB) DestB = Dest;
3773     if (Dest == DestB) {
3774       CasesB.push_back(I.getCaseValue());
3775       continue;
3776     }
3777     return false;  // More than two destinations.
3778   }
3779 
3780   assert(DestA && DestB && "Single-destination switch should have been folded.");
3781   assert(DestA != DestB);
3782   assert(DestB != SI->getDefaultDest());
3783   assert(!CasesB.empty() && "There must be non-default cases.");
3784   assert(!CasesA.empty() || HasDefault);
3785 
3786   // Figure out if one of the sets of cases form a contiguous range.
3787   SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr;
3788   BasicBlock *ContiguousDest = nullptr;
3789   BasicBlock *OtherDest = nullptr;
3790   if (!CasesA.empty() && CasesAreContiguous(CasesA)) {
3791     ContiguousCases = &CasesA;
3792     ContiguousDest = DestA;
3793     OtherDest = DestB;
3794   } else if (CasesAreContiguous(CasesB)) {
3795     ContiguousCases = &CasesB;
3796     ContiguousDest = DestB;
3797     OtherDest = DestA;
3798   } else
3799     return false;
3800 
3801   // Start building the compare and branch.
3802 
3803   Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back());
3804   Constant *NumCases = ConstantInt::get(Offset->getType(), ContiguousCases->size());
3805 
3806   Value *Sub = SI->getCondition();
3807   if (!Offset->isNullValue())
3808     Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off");
3809 
3810   Value *Cmp;
3811   // If NumCases overflowed, then all possible values jump to the successor.
3812   if (NumCases->isNullValue() && !ContiguousCases->empty())
3813     Cmp = ConstantInt::getTrue(SI->getContext());
3814   else
3815     Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch");
3816   BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest);
3817 
3818   // Update weight for the newly-created conditional branch.
3819   if (HasBranchWeights(SI)) {
3820     SmallVector<uint64_t, 8> Weights;
3821     GetBranchWeights(SI, Weights);
3822     if (Weights.size() == 1 + SI->getNumCases()) {
3823       uint64_t TrueWeight = 0;
3824       uint64_t FalseWeight = 0;
3825       for (size_t I = 0, E = Weights.size(); I != E; ++I) {
3826         if (SI->getSuccessor(I) == ContiguousDest)
3827           TrueWeight += Weights[I];
3828         else
3829           FalseWeight += Weights[I];
3830       }
3831       while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) {
3832         TrueWeight /= 2;
3833         FalseWeight /= 2;
3834       }
3835       NewBI->setMetadata(LLVMContext::MD_prof,
3836                          MDBuilder(SI->getContext()).createBranchWeights(
3837                              (uint32_t)TrueWeight, (uint32_t)FalseWeight));
3838     }
3839   }
3840 
3841   // Prune obsolete incoming values off the successors' PHI nodes.
3842   for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) {
3843     unsigned PreviousEdges = ContiguousCases->size();
3844     if (ContiguousDest == SI->getDefaultDest()) ++PreviousEdges;
3845     for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
3846       cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
3847   }
3848   for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) {
3849     unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size();
3850     if (OtherDest == SI->getDefaultDest()) ++PreviousEdges;
3851     for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
3852       cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
3853   }
3854 
3855   // Drop the switch.
3856   SI->eraseFromParent();
3857 
3858   return true;
3859 }
3860 
3861 /// Compute masked bits for the condition of a switch
3862 /// and use it to remove dead cases.
3863 static bool EliminateDeadSwitchCases(SwitchInst *SI, AssumptionCache *AC,
3864                                      const DataLayout &DL) {
3865   Value *Cond = SI->getCondition();
3866   unsigned Bits = Cond->getType()->getIntegerBitWidth();
3867   APInt KnownZero(Bits, 0), KnownOne(Bits, 0);
3868   computeKnownBits(Cond, KnownZero, KnownOne, DL, 0, AC, SI);
3869 
3870   // Gather dead cases.
3871   SmallVector<ConstantInt*, 8> DeadCases;
3872   for (SwitchInst::CaseIt I = SI->case_begin(), E = SI->case_end(); I != E; ++I) {
3873     if ((I.getCaseValue()->getValue() & KnownZero) != 0 ||
3874         (I.getCaseValue()->getValue() & KnownOne) != KnownOne) {
3875       DeadCases.push_back(I.getCaseValue());
3876       DEBUG(dbgs() << "SimplifyCFG: switch case '"
3877                    << I.getCaseValue() << "' is dead.\n");
3878     }
3879   }
3880 
3881   // If we can prove that the cases must cover all possible values, the
3882   // default destination becomes dead and we can remove it.  If we know some
3883   // of the bits in the value, we can use that to more precisely compute the
3884   // number of possible unique case values.
3885   bool HasDefault =
3886     !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
3887   const unsigned NumUnknownBits = Bits -
3888     (KnownZero.Or(KnownOne)).countPopulation();
3889   assert(NumUnknownBits <= Bits);
3890   if (HasDefault && DeadCases.empty() &&
3891       NumUnknownBits < 64 /* avoid overflow */ &&
3892       SI->getNumCases() == (1ULL << NumUnknownBits)) {
3893     DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n");
3894     BasicBlock *NewDefault = SplitBlockPredecessors(SI->getDefaultDest(),
3895                                                     SI->getParent(), "");
3896     SI->setDefaultDest(&*NewDefault);
3897     SplitBlock(&*NewDefault, &NewDefault->front());
3898     auto *OldTI = NewDefault->getTerminator();
3899     new UnreachableInst(SI->getContext(), OldTI);
3900     EraseTerminatorInstAndDCECond(OldTI);
3901     return true;
3902   }
3903 
3904   SmallVector<uint64_t, 8> Weights;
3905   bool HasWeight = HasBranchWeights(SI);
3906   if (HasWeight) {
3907     GetBranchWeights(SI, Weights);
3908     HasWeight = (Weights.size() == 1 + SI->getNumCases());
3909   }
3910 
3911   // Remove dead cases from the switch.
3912   for (unsigned I = 0, E = DeadCases.size(); I != E; ++I) {
3913     SwitchInst::CaseIt Case = SI->findCaseValue(DeadCases[I]);
3914     assert(Case != SI->case_default() &&
3915            "Case was not found. Probably mistake in DeadCases forming.");
3916     if (HasWeight) {
3917       std::swap(Weights[Case.getCaseIndex()+1], Weights.back());
3918       Weights.pop_back();
3919     }
3920 
3921     // Prune unused values from PHI nodes.
3922     Case.getCaseSuccessor()->removePredecessor(SI->getParent());
3923     SI->removeCase(Case);
3924   }
3925   if (HasWeight && Weights.size() >= 2) {
3926     SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
3927     SI->setMetadata(LLVMContext::MD_prof,
3928                     MDBuilder(SI->getParent()->getContext()).
3929                     createBranchWeights(MDWeights));
3930   }
3931 
3932   return !DeadCases.empty();
3933 }
3934 
3935 /// If BB would be eligible for simplification by
3936 /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated
3937 /// by an unconditional branch), look at the phi node for BB in the successor
3938 /// block and see if the incoming value is equal to CaseValue. If so, return
3939 /// the phi node, and set PhiIndex to BB's index in the phi node.
3940 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue,
3941                                               BasicBlock *BB,
3942                                               int *PhiIndex) {
3943   if (BB->getFirstNonPHIOrDbg() != BB->getTerminator())
3944     return nullptr; // BB must be empty to be a candidate for simplification.
3945   if (!BB->getSinglePredecessor())
3946     return nullptr; // BB must be dominated by the switch.
3947 
3948   BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator());
3949   if (!Branch || !Branch->isUnconditional())
3950     return nullptr; // Terminator must be unconditional branch.
3951 
3952   BasicBlock *Succ = Branch->getSuccessor(0);
3953 
3954   BasicBlock::iterator I = Succ->begin();
3955   while (PHINode *PHI = dyn_cast<PHINode>(I++)) {
3956     int Idx = PHI->getBasicBlockIndex(BB);
3957     assert(Idx >= 0 && "PHI has no entry for predecessor?");
3958 
3959     Value *InValue = PHI->getIncomingValue(Idx);
3960     if (InValue != CaseValue) continue;
3961 
3962     *PhiIndex = Idx;
3963     return PHI;
3964   }
3965 
3966   return nullptr;
3967 }
3968 
3969 /// Try to forward the condition of a switch instruction to a phi node
3970 /// dominated by the switch, if that would mean that some of the destination
3971 /// blocks of the switch can be folded away.
3972 /// Returns true if a change is made.
3973 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) {
3974   typedef DenseMap<PHINode*, SmallVector<int,4> > ForwardingNodesMap;
3975   ForwardingNodesMap ForwardingNodes;
3976 
3977   for (SwitchInst::CaseIt I = SI->case_begin(), E = SI->case_end(); I != E; ++I) {
3978     ConstantInt *CaseValue = I.getCaseValue();
3979     BasicBlock *CaseDest = I.getCaseSuccessor();
3980 
3981     int PhiIndex;
3982     PHINode *PHI = FindPHIForConditionForwarding(CaseValue, CaseDest,
3983                                                  &PhiIndex);
3984     if (!PHI) continue;
3985 
3986     ForwardingNodes[PHI].push_back(PhiIndex);
3987   }
3988 
3989   bool Changed = false;
3990 
3991   for (ForwardingNodesMap::iterator I = ForwardingNodes.begin(),
3992        E = ForwardingNodes.end(); I != E; ++I) {
3993     PHINode *Phi = I->first;
3994     SmallVectorImpl<int> &Indexes = I->second;
3995 
3996     if (Indexes.size() < 2) continue;
3997 
3998     for (size_t I = 0, E = Indexes.size(); I != E; ++I)
3999       Phi->setIncomingValue(Indexes[I], SI->getCondition());
4000     Changed = true;
4001   }
4002 
4003   return Changed;
4004 }
4005 
4006 /// Return true if the backend will be able to handle
4007 /// initializing an array of constants like C.
4008 static bool ValidLookupTableConstant(Constant *C) {
4009   if (C->isThreadDependent())
4010     return false;
4011   if (C->isDLLImportDependent())
4012     return false;
4013 
4014   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
4015     return CE->isGEPWithNoNotionalOverIndexing();
4016 
4017   return isa<ConstantFP>(C) ||
4018       isa<ConstantInt>(C) ||
4019       isa<ConstantPointerNull>(C) ||
4020       isa<GlobalValue>(C) ||
4021       isa<UndefValue>(C);
4022 }
4023 
4024 /// If V is a Constant, return it. Otherwise, try to look up
4025 /// its constant value in ConstantPool, returning 0 if it's not there.
4026 static Constant *LookupConstant(Value *V,
4027                          const SmallDenseMap<Value*, Constant*>& ConstantPool) {
4028   if (Constant *C = dyn_cast<Constant>(V))
4029     return C;
4030   return ConstantPool.lookup(V);
4031 }
4032 
4033 /// Try to fold instruction I into a constant. This works for
4034 /// simple instructions such as binary operations where both operands are
4035 /// constant or can be replaced by constants from the ConstantPool. Returns the
4036 /// resulting constant on success, 0 otherwise.
4037 static Constant *
4038 ConstantFold(Instruction *I, const DataLayout &DL,
4039              const SmallDenseMap<Value *, Constant *> &ConstantPool) {
4040   if (SelectInst *Select = dyn_cast<SelectInst>(I)) {
4041     Constant *A = LookupConstant(Select->getCondition(), ConstantPool);
4042     if (!A)
4043       return nullptr;
4044     if (A->isAllOnesValue())
4045       return LookupConstant(Select->getTrueValue(), ConstantPool);
4046     if (A->isNullValue())
4047       return LookupConstant(Select->getFalseValue(), ConstantPool);
4048     return nullptr;
4049   }
4050 
4051   SmallVector<Constant *, 4> COps;
4052   for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) {
4053     if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool))
4054       COps.push_back(A);
4055     else
4056       return nullptr;
4057   }
4058 
4059   if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
4060     return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0],
4061                                            COps[1], DL);
4062   }
4063 
4064   return ConstantFoldInstOperands(I, COps, DL);
4065 }
4066 
4067 /// Try to determine the resulting constant values in phi nodes
4068 /// at the common destination basic block, *CommonDest, for one of the case
4069 /// destionations CaseDest corresponding to value CaseVal (0 for the default
4070 /// case), of a switch instruction SI.
4071 static bool
4072 GetCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest,
4073                BasicBlock **CommonDest,
4074                SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res,
4075                const DataLayout &DL) {
4076   // The block from which we enter the common destination.
4077   BasicBlock *Pred = SI->getParent();
4078 
4079   // If CaseDest is empty except for some side-effect free instructions through
4080   // which we can constant-propagate the CaseVal, continue to its successor.
4081   SmallDenseMap<Value*, Constant*> ConstantPool;
4082   ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal));
4083   for (BasicBlock::iterator I = CaseDest->begin(), E = CaseDest->end(); I != E;
4084        ++I) {
4085     if (TerminatorInst *T = dyn_cast<TerminatorInst>(I)) {
4086       // If the terminator is a simple branch, continue to the next block.
4087       if (T->getNumSuccessors() != 1)
4088         return false;
4089       Pred = CaseDest;
4090       CaseDest = T->getSuccessor(0);
4091     } else if (isa<DbgInfoIntrinsic>(I)) {
4092       // Skip debug intrinsic.
4093       continue;
4094     } else if (Constant *C = ConstantFold(&*I, DL, ConstantPool)) {
4095       // Instruction is side-effect free and constant.
4096 
4097       // If the instruction has uses outside this block or a phi node slot for
4098       // the block, it is not safe to bypass the instruction since it would then
4099       // no longer dominate all its uses.
4100       for (auto &Use : I->uses()) {
4101         User *User = Use.getUser();
4102         if (Instruction *I = dyn_cast<Instruction>(User))
4103           if (I->getParent() == CaseDest)
4104             continue;
4105         if (PHINode *Phi = dyn_cast<PHINode>(User))
4106           if (Phi->getIncomingBlock(Use) == CaseDest)
4107             continue;
4108         return false;
4109       }
4110 
4111       ConstantPool.insert(std::make_pair(&*I, C));
4112     } else {
4113       break;
4114     }
4115   }
4116 
4117   // If we did not have a CommonDest before, use the current one.
4118   if (!*CommonDest)
4119     *CommonDest = CaseDest;
4120   // If the destination isn't the common one, abort.
4121   if (CaseDest != *CommonDest)
4122     return false;
4123 
4124   // Get the values for this case from phi nodes in the destination block.
4125   BasicBlock::iterator I = (*CommonDest)->begin();
4126   while (PHINode *PHI = dyn_cast<PHINode>(I++)) {
4127     int Idx = PHI->getBasicBlockIndex(Pred);
4128     if (Idx == -1)
4129       continue;
4130 
4131     Constant *ConstVal = LookupConstant(PHI->getIncomingValue(Idx),
4132                                         ConstantPool);
4133     if (!ConstVal)
4134       return false;
4135 
4136     // Be conservative about which kinds of constants we support.
4137     if (!ValidLookupTableConstant(ConstVal))
4138       return false;
4139 
4140     Res.push_back(std::make_pair(PHI, ConstVal));
4141   }
4142 
4143   return Res.size() > 0;
4144 }
4145 
4146 // Helper function used to add CaseVal to the list of cases that generate
4147 // Result.
4148 static void MapCaseToResult(ConstantInt *CaseVal,
4149     SwitchCaseResultVectorTy &UniqueResults,
4150     Constant *Result) {
4151   for (auto &I : UniqueResults) {
4152     if (I.first == Result) {
4153       I.second.push_back(CaseVal);
4154       return;
4155     }
4156   }
4157   UniqueResults.push_back(std::make_pair(Result,
4158         SmallVector<ConstantInt*, 4>(1, CaseVal)));
4159 }
4160 
4161 // Helper function that initializes a map containing
4162 // results for the PHI node of the common destination block for a switch
4163 // instruction. Returns false if multiple PHI nodes have been found or if
4164 // there is not a common destination block for the switch.
4165 static bool InitializeUniqueCases(SwitchInst *SI, PHINode *&PHI,
4166                                   BasicBlock *&CommonDest,
4167                                   SwitchCaseResultVectorTy &UniqueResults,
4168                                   Constant *&DefaultResult,
4169                                   const DataLayout &DL) {
4170   for (auto &I : SI->cases()) {
4171     ConstantInt *CaseVal = I.getCaseValue();
4172 
4173     // Resulting value at phi nodes for this case value.
4174     SwitchCaseResultsTy Results;
4175     if (!GetCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results,
4176                         DL))
4177       return false;
4178 
4179     // Only one value per case is permitted
4180     if (Results.size() > 1)
4181       return false;
4182     MapCaseToResult(CaseVal, UniqueResults, Results.begin()->second);
4183 
4184     // Check the PHI consistency.
4185     if (!PHI)
4186       PHI = Results[0].first;
4187     else if (PHI != Results[0].first)
4188       return false;
4189   }
4190   // Find the default result value.
4191   SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults;
4192   BasicBlock *DefaultDest = SI->getDefaultDest();
4193   GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults,
4194                  DL);
4195   // If the default value is not found abort unless the default destination
4196   // is unreachable.
4197   DefaultResult =
4198       DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr;
4199   if ((!DefaultResult &&
4200         !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg())))
4201     return false;
4202 
4203   return true;
4204 }
4205 
4206 // Helper function that checks if it is possible to transform a switch with only
4207 // two cases (or two cases + default) that produces a result into a select.
4208 // Example:
4209 // switch (a) {
4210 //   case 10:                %0 = icmp eq i32 %a, 10
4211 //     return 10;            %1 = select i1 %0, i32 10, i32 4
4212 //   case 20:        ---->   %2 = icmp eq i32 %a, 20
4213 //     return 2;             %3 = select i1 %2, i32 2, i32 %1
4214 //   default:
4215 //     return 4;
4216 // }
4217 static Value *
4218 ConvertTwoCaseSwitch(const SwitchCaseResultVectorTy &ResultVector,
4219                      Constant *DefaultResult, Value *Condition,
4220                      IRBuilder<> &Builder) {
4221   assert(ResultVector.size() == 2 &&
4222       "We should have exactly two unique results at this point");
4223   // If we are selecting between only two cases transform into a simple
4224   // select or a two-way select if default is possible.
4225   if (ResultVector[0].second.size() == 1 &&
4226       ResultVector[1].second.size() == 1) {
4227     ConstantInt *const FirstCase = ResultVector[0].second[0];
4228     ConstantInt *const SecondCase = ResultVector[1].second[0];
4229 
4230     bool DefaultCanTrigger = DefaultResult;
4231     Value *SelectValue = ResultVector[1].first;
4232     if (DefaultCanTrigger) {
4233       Value *const ValueCompare =
4234           Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp");
4235       SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first,
4236                                          DefaultResult, "switch.select");
4237     }
4238     Value *const ValueCompare =
4239         Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp");
4240     return Builder.CreateSelect(ValueCompare, ResultVector[0].first, SelectValue,
4241                                 "switch.select");
4242   }
4243 
4244   return nullptr;
4245 }
4246 
4247 // Helper function to cleanup a switch instruction that has been converted into
4248 // a select, fixing up PHI nodes and basic blocks.
4249 static void RemoveSwitchAfterSelectConversion(SwitchInst *SI, PHINode *PHI,
4250                                               Value *SelectValue,
4251                                               IRBuilder<> &Builder) {
4252   BasicBlock *SelectBB = SI->getParent();
4253   while (PHI->getBasicBlockIndex(SelectBB) >= 0)
4254     PHI->removeIncomingValue(SelectBB);
4255   PHI->addIncoming(SelectValue, SelectBB);
4256 
4257   Builder.CreateBr(PHI->getParent());
4258 
4259   // Remove the switch.
4260   for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
4261     BasicBlock *Succ = SI->getSuccessor(i);
4262 
4263     if (Succ == PHI->getParent())
4264       continue;
4265     Succ->removePredecessor(SelectBB);
4266   }
4267   SI->eraseFromParent();
4268 }
4269 
4270 /// If the switch is only used to initialize one or more
4271 /// phi nodes in a common successor block with only two different
4272 /// constant values, replace the switch with select.
4273 static bool SwitchToSelect(SwitchInst *SI, IRBuilder<> &Builder,
4274                            AssumptionCache *AC, const DataLayout &DL) {
4275   Value *const Cond = SI->getCondition();
4276   PHINode *PHI = nullptr;
4277   BasicBlock *CommonDest = nullptr;
4278   Constant *DefaultResult;
4279   SwitchCaseResultVectorTy UniqueResults;
4280   // Collect all the cases that will deliver the same value from the switch.
4281   if (!InitializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult,
4282                              DL))
4283     return false;
4284   // Selects choose between maximum two values.
4285   if (UniqueResults.size() != 2)
4286     return false;
4287   assert(PHI != nullptr && "PHI for value select not found");
4288 
4289   Builder.SetInsertPoint(SI);
4290   Value *SelectValue = ConvertTwoCaseSwitch(
4291       UniqueResults,
4292       DefaultResult, Cond, Builder);
4293   if (SelectValue) {
4294     RemoveSwitchAfterSelectConversion(SI, PHI, SelectValue, Builder);
4295     return true;
4296   }
4297   // The switch couldn't be converted into a select.
4298   return false;
4299 }
4300 
4301 namespace {
4302   /// This class represents a lookup table that can be used to replace a switch.
4303   class SwitchLookupTable {
4304   public:
4305     /// Create a lookup table to use as a switch replacement with the contents
4306     /// of Values, using DefaultValue to fill any holes in the table.
4307     SwitchLookupTable(
4308         Module &M, uint64_t TableSize, ConstantInt *Offset,
4309         const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
4310         Constant *DefaultValue, const DataLayout &DL);
4311 
4312     /// Build instructions with Builder to retrieve the value at
4313     /// the position given by Index in the lookup table.
4314     Value *BuildLookup(Value *Index, IRBuilder<> &Builder);
4315 
4316     /// Return true if a table with TableSize elements of
4317     /// type ElementType would fit in a target-legal register.
4318     static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize,
4319                                    Type *ElementType);
4320 
4321   private:
4322     // Depending on the contents of the table, it can be represented in
4323     // different ways.
4324     enum {
4325       // For tables where each element contains the same value, we just have to
4326       // store that single value and return it for each lookup.
4327       SingleValueKind,
4328 
4329       // For tables where there is a linear relationship between table index
4330       // and values. We calculate the result with a simple multiplication
4331       // and addition instead of a table lookup.
4332       LinearMapKind,
4333 
4334       // For small tables with integer elements, we can pack them into a bitmap
4335       // that fits into a target-legal register. Values are retrieved by
4336       // shift and mask operations.
4337       BitMapKind,
4338 
4339       // The table is stored as an array of values. Values are retrieved by load
4340       // instructions from the table.
4341       ArrayKind
4342     } Kind;
4343 
4344     // For SingleValueKind, this is the single value.
4345     Constant *SingleValue;
4346 
4347     // For BitMapKind, this is the bitmap.
4348     ConstantInt *BitMap;
4349     IntegerType *BitMapElementTy;
4350 
4351     // For LinearMapKind, these are the constants used to derive the value.
4352     ConstantInt *LinearOffset;
4353     ConstantInt *LinearMultiplier;
4354 
4355     // For ArrayKind, this is the array.
4356     GlobalVariable *Array;
4357   };
4358 }
4359 
4360 SwitchLookupTable::SwitchLookupTable(
4361     Module &M, uint64_t TableSize, ConstantInt *Offset,
4362     const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
4363     Constant *DefaultValue, const DataLayout &DL)
4364     : SingleValue(nullptr), BitMap(nullptr), BitMapElementTy(nullptr),
4365       LinearOffset(nullptr), LinearMultiplier(nullptr), Array(nullptr) {
4366   assert(Values.size() && "Can't build lookup table without values!");
4367   assert(TableSize >= Values.size() && "Can't fit values in table!");
4368 
4369   // If all values in the table are equal, this is that value.
4370   SingleValue = Values.begin()->second;
4371 
4372   Type *ValueType = Values.begin()->second->getType();
4373 
4374   // Build up the table contents.
4375   SmallVector<Constant*, 64> TableContents(TableSize);
4376   for (size_t I = 0, E = Values.size(); I != E; ++I) {
4377     ConstantInt *CaseVal = Values[I].first;
4378     Constant *CaseRes = Values[I].second;
4379     assert(CaseRes->getType() == ValueType);
4380 
4381     uint64_t Idx = (CaseVal->getValue() - Offset->getValue())
4382                    .getLimitedValue();
4383     TableContents[Idx] = CaseRes;
4384 
4385     if (CaseRes != SingleValue)
4386       SingleValue = nullptr;
4387   }
4388 
4389   // Fill in any holes in the table with the default result.
4390   if (Values.size() < TableSize) {
4391     assert(DefaultValue &&
4392            "Need a default value to fill the lookup table holes.");
4393     assert(DefaultValue->getType() == ValueType);
4394     for (uint64_t I = 0; I < TableSize; ++I) {
4395       if (!TableContents[I])
4396         TableContents[I] = DefaultValue;
4397     }
4398 
4399     if (DefaultValue != SingleValue)
4400       SingleValue = nullptr;
4401   }
4402 
4403   // If each element in the table contains the same value, we only need to store
4404   // that single value.
4405   if (SingleValue) {
4406     Kind = SingleValueKind;
4407     return;
4408   }
4409 
4410   // Check if we can derive the value with a linear transformation from the
4411   // table index.
4412   if (isa<IntegerType>(ValueType)) {
4413     bool LinearMappingPossible = true;
4414     APInt PrevVal;
4415     APInt DistToPrev;
4416     assert(TableSize >= 2 && "Should be a SingleValue table.");
4417     // Check if there is the same distance between two consecutive values.
4418     for (uint64_t I = 0; I < TableSize; ++I) {
4419       ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]);
4420       if (!ConstVal) {
4421         // This is an undef. We could deal with it, but undefs in lookup tables
4422         // are very seldom. It's probably not worth the additional complexity.
4423         LinearMappingPossible = false;
4424         break;
4425       }
4426       APInt Val = ConstVal->getValue();
4427       if (I != 0) {
4428         APInt Dist = Val - PrevVal;
4429         if (I == 1) {
4430           DistToPrev = Dist;
4431         } else if (Dist != DistToPrev) {
4432           LinearMappingPossible = false;
4433           break;
4434         }
4435       }
4436       PrevVal = Val;
4437     }
4438     if (LinearMappingPossible) {
4439       LinearOffset = cast<ConstantInt>(TableContents[0]);
4440       LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev);
4441       Kind = LinearMapKind;
4442       ++NumLinearMaps;
4443       return;
4444     }
4445   }
4446 
4447   // If the type is integer and the table fits in a register, build a bitmap.
4448   if (WouldFitInRegister(DL, TableSize, ValueType)) {
4449     IntegerType *IT = cast<IntegerType>(ValueType);
4450     APInt TableInt(TableSize * IT->getBitWidth(), 0);
4451     for (uint64_t I = TableSize; I > 0; --I) {
4452       TableInt <<= IT->getBitWidth();
4453       // Insert values into the bitmap. Undef values are set to zero.
4454       if (!isa<UndefValue>(TableContents[I - 1])) {
4455         ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]);
4456         TableInt |= Val->getValue().zext(TableInt.getBitWidth());
4457       }
4458     }
4459     BitMap = ConstantInt::get(M.getContext(), TableInt);
4460     BitMapElementTy = IT;
4461     Kind = BitMapKind;
4462     ++NumBitMaps;
4463     return;
4464   }
4465 
4466   // Store the table in an array.
4467   ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize);
4468   Constant *Initializer = ConstantArray::get(ArrayTy, TableContents);
4469 
4470   Array = new GlobalVariable(M, ArrayTy, /*constant=*/ true,
4471                              GlobalVariable::PrivateLinkage,
4472                              Initializer,
4473                              "switch.table");
4474   Array->setUnnamedAddr(true);
4475   Kind = ArrayKind;
4476 }
4477 
4478 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) {
4479   switch (Kind) {
4480     case SingleValueKind:
4481       return SingleValue;
4482     case LinearMapKind: {
4483       // Derive the result value from the input value.
4484       Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(),
4485                                             false, "switch.idx.cast");
4486       if (!LinearMultiplier->isOne())
4487         Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult");
4488       if (!LinearOffset->isZero())
4489         Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset");
4490       return Result;
4491     }
4492     case BitMapKind: {
4493       // Type of the bitmap (e.g. i59).
4494       IntegerType *MapTy = BitMap->getType();
4495 
4496       // Cast Index to the same type as the bitmap.
4497       // Note: The Index is <= the number of elements in the table, so
4498       // truncating it to the width of the bitmask is safe.
4499       Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast");
4500 
4501       // Multiply the shift amount by the element width.
4502       ShiftAmt = Builder.CreateMul(ShiftAmt,
4503                       ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()),
4504                                    "switch.shiftamt");
4505 
4506       // Shift down.
4507       Value *DownShifted = Builder.CreateLShr(BitMap, ShiftAmt,
4508                                               "switch.downshift");
4509       // Mask off.
4510       return Builder.CreateTrunc(DownShifted, BitMapElementTy,
4511                                  "switch.masked");
4512     }
4513     case ArrayKind: {
4514       // Make sure the table index will not overflow when treated as signed.
4515       IntegerType *IT = cast<IntegerType>(Index->getType());
4516       uint64_t TableSize = Array->getInitializer()->getType()
4517                                 ->getArrayNumElements();
4518       if (TableSize > (1ULL << (IT->getBitWidth() - 1)))
4519         Index = Builder.CreateZExt(Index,
4520                                    IntegerType::get(IT->getContext(),
4521                                                     IT->getBitWidth() + 1),
4522                                    "switch.tableidx.zext");
4523 
4524       Value *GEPIndices[] = { Builder.getInt32(0), Index };
4525       Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array,
4526                                              GEPIndices, "switch.gep");
4527       return Builder.CreateLoad(GEP, "switch.load");
4528     }
4529   }
4530   llvm_unreachable("Unknown lookup table kind!");
4531 }
4532 
4533 bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL,
4534                                            uint64_t TableSize,
4535                                            Type *ElementType) {
4536   auto *IT = dyn_cast<IntegerType>(ElementType);
4537   if (!IT)
4538     return false;
4539   // FIXME: If the type is wider than it needs to be, e.g. i8 but all values
4540   // are <= 15, we could try to narrow the type.
4541 
4542   // Avoid overflow, fitsInLegalInteger uses unsigned int for the width.
4543   if (TableSize >= UINT_MAX/IT->getBitWidth())
4544     return false;
4545   return DL.fitsInLegalInteger(TableSize * IT->getBitWidth());
4546 }
4547 
4548 /// Determine whether a lookup table should be built for this switch, based on
4549 /// the number of cases, size of the table, and the types of the results.
4550 static bool
4551 ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize,
4552                        const TargetTransformInfo &TTI, const DataLayout &DL,
4553                        const SmallDenseMap<PHINode *, Type *> &ResultTypes) {
4554   if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10)
4555     return false; // TableSize overflowed, or mul below might overflow.
4556 
4557   bool AllTablesFitInRegister = true;
4558   bool HasIllegalType = false;
4559   for (const auto &I : ResultTypes) {
4560     Type *Ty = I.second;
4561 
4562     // Saturate this flag to true.
4563     HasIllegalType = HasIllegalType || !TTI.isTypeLegal(Ty);
4564 
4565     // Saturate this flag to false.
4566     AllTablesFitInRegister = AllTablesFitInRegister &&
4567       SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty);
4568 
4569     // If both flags saturate, we're done. NOTE: This *only* works with
4570     // saturating flags, and all flags have to saturate first due to the
4571     // non-deterministic behavior of iterating over a dense map.
4572     if (HasIllegalType && !AllTablesFitInRegister)
4573       break;
4574   }
4575 
4576   // If each table would fit in a register, we should build it anyway.
4577   if (AllTablesFitInRegister)
4578     return true;
4579 
4580   // Don't build a table that doesn't fit in-register if it has illegal types.
4581   if (HasIllegalType)
4582     return false;
4583 
4584   // The table density should be at least 40%. This is the same criterion as for
4585   // jump tables, see SelectionDAGBuilder::handleJTSwitchCase.
4586   // FIXME: Find the best cut-off.
4587   return SI->getNumCases() * 10 >= TableSize * 4;
4588 }
4589 
4590 /// Try to reuse the switch table index compare. Following pattern:
4591 /// \code
4592 ///     if (idx < tablesize)
4593 ///        r = table[idx]; // table does not contain default_value
4594 ///     else
4595 ///        r = default_value;
4596 ///     if (r != default_value)
4597 ///        ...
4598 /// \endcode
4599 /// Is optimized to:
4600 /// \code
4601 ///     cond = idx < tablesize;
4602 ///     if (cond)
4603 ///        r = table[idx];
4604 ///     else
4605 ///        r = default_value;
4606 ///     if (cond)
4607 ///        ...
4608 /// \endcode
4609 /// Jump threading will then eliminate the second if(cond).
4610 static void reuseTableCompare(User *PhiUser, BasicBlock *PhiBlock,
4611           BranchInst *RangeCheckBranch, Constant *DefaultValue,
4612           const SmallVectorImpl<std::pair<ConstantInt*, Constant*> >& Values) {
4613 
4614   ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser);
4615   if (!CmpInst)
4616     return;
4617 
4618   // We require that the compare is in the same block as the phi so that jump
4619   // threading can do its work afterwards.
4620   if (CmpInst->getParent() != PhiBlock)
4621     return;
4622 
4623   Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1));
4624   if (!CmpOp1)
4625     return;
4626 
4627   Value *RangeCmp = RangeCheckBranch->getCondition();
4628   Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType());
4629   Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType());
4630 
4631   // Check if the compare with the default value is constant true or false.
4632   Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
4633                                                  DefaultValue, CmpOp1, true);
4634   if (DefaultConst != TrueConst && DefaultConst != FalseConst)
4635     return;
4636 
4637   // Check if the compare with the case values is distinct from the default
4638   // compare result.
4639   for (auto ValuePair : Values) {
4640     Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
4641                               ValuePair.second, CmpOp1, true);
4642     if (!CaseConst || CaseConst == DefaultConst)
4643       return;
4644     assert((CaseConst == TrueConst || CaseConst == FalseConst) &&
4645            "Expect true or false as compare result.");
4646   }
4647 
4648   // Check if the branch instruction dominates the phi node. It's a simple
4649   // dominance check, but sufficient for our needs.
4650   // Although this check is invariant in the calling loops, it's better to do it
4651   // at this late stage. Practically we do it at most once for a switch.
4652   BasicBlock *BranchBlock = RangeCheckBranch->getParent();
4653   for (auto PI = pred_begin(PhiBlock), E = pred_end(PhiBlock); PI != E; ++PI) {
4654     BasicBlock *Pred = *PI;
4655     if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock)
4656       return;
4657   }
4658 
4659   if (DefaultConst == FalseConst) {
4660     // The compare yields the same result. We can replace it.
4661     CmpInst->replaceAllUsesWith(RangeCmp);
4662     ++NumTableCmpReuses;
4663   } else {
4664     // The compare yields the same result, just inverted. We can replace it.
4665     Value *InvertedTableCmp = BinaryOperator::CreateXor(RangeCmp,
4666                 ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp",
4667                 RangeCheckBranch);
4668     CmpInst->replaceAllUsesWith(InvertedTableCmp);
4669     ++NumTableCmpReuses;
4670   }
4671 }
4672 
4673 /// If the switch is only used to initialize one or more phi nodes in a common
4674 /// successor block with different constant values, replace the switch with
4675 /// lookup tables.
4676 static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder,
4677                                 const DataLayout &DL,
4678                                 const TargetTransformInfo &TTI) {
4679   assert(SI->getNumCases() > 1 && "Degenerate switch?");
4680 
4681   // Only build lookup table when we have a target that supports it.
4682   if (!TTI.shouldBuildLookupTables())
4683     return false;
4684 
4685   // FIXME: If the switch is too sparse for a lookup table, perhaps we could
4686   // split off a dense part and build a lookup table for that.
4687 
4688   // FIXME: This creates arrays of GEPs to constant strings, which means each
4689   // GEP needs a runtime relocation in PIC code. We should just build one big
4690   // string and lookup indices into that.
4691 
4692   // Ignore switches with less than three cases. Lookup tables will not make them
4693   // faster, so we don't analyze them.
4694   if (SI->getNumCases() < 3)
4695     return false;
4696 
4697   // Figure out the corresponding result for each case value and phi node in the
4698   // common destination, as well as the min and max case values.
4699   assert(SI->case_begin() != SI->case_end());
4700   SwitchInst::CaseIt CI = SI->case_begin();
4701   ConstantInt *MinCaseVal = CI.getCaseValue();
4702   ConstantInt *MaxCaseVal = CI.getCaseValue();
4703 
4704   BasicBlock *CommonDest = nullptr;
4705   typedef SmallVector<std::pair<ConstantInt*, Constant*>, 4> ResultListTy;
4706   SmallDenseMap<PHINode*, ResultListTy> ResultLists;
4707   SmallDenseMap<PHINode*, Constant*> DefaultResults;
4708   SmallDenseMap<PHINode*, Type*> ResultTypes;
4709   SmallVector<PHINode*, 4> PHIs;
4710 
4711   for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) {
4712     ConstantInt *CaseVal = CI.getCaseValue();
4713     if (CaseVal->getValue().slt(MinCaseVal->getValue()))
4714       MinCaseVal = CaseVal;
4715     if (CaseVal->getValue().sgt(MaxCaseVal->getValue()))
4716       MaxCaseVal = CaseVal;
4717 
4718     // Resulting value at phi nodes for this case value.
4719     typedef SmallVector<std::pair<PHINode*, Constant*>, 4> ResultsTy;
4720     ResultsTy Results;
4721     if (!GetCaseResults(SI, CaseVal, CI.getCaseSuccessor(), &CommonDest,
4722                         Results, DL))
4723       return false;
4724 
4725     // Append the result from this case to the list for each phi.
4726     for (const auto &I : Results) {
4727       PHINode *PHI = I.first;
4728       Constant *Value = I.second;
4729       if (!ResultLists.count(PHI))
4730         PHIs.push_back(PHI);
4731       ResultLists[PHI].push_back(std::make_pair(CaseVal, Value));
4732     }
4733   }
4734 
4735   // Keep track of the result types.
4736   for (PHINode *PHI : PHIs) {
4737     ResultTypes[PHI] = ResultLists[PHI][0].second->getType();
4738   }
4739 
4740   uint64_t NumResults = ResultLists[PHIs[0]].size();
4741   APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue();
4742   uint64_t TableSize = RangeSpread.getLimitedValue() + 1;
4743   bool TableHasHoles = (NumResults < TableSize);
4744 
4745   // If the table has holes, we need a constant result for the default case
4746   // or a bitmask that fits in a register.
4747   SmallVector<std::pair<PHINode*, Constant*>, 4> DefaultResultsList;
4748   bool HasDefaultResults = GetCaseResults(SI, nullptr, SI->getDefaultDest(),
4749                                           &CommonDest, DefaultResultsList, DL);
4750 
4751   bool NeedMask = (TableHasHoles && !HasDefaultResults);
4752   if (NeedMask) {
4753     // As an extra penalty for the validity test we require more cases.
4754     if (SI->getNumCases() < 4)  // FIXME: Find best threshold value (benchmark).
4755       return false;
4756     if (!DL.fitsInLegalInteger(TableSize))
4757       return false;
4758   }
4759 
4760   for (const auto &I : DefaultResultsList) {
4761     PHINode *PHI = I.first;
4762     Constant *Result = I.second;
4763     DefaultResults[PHI] = Result;
4764   }
4765 
4766   if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes))
4767     return false;
4768 
4769   // Create the BB that does the lookups.
4770   Module &Mod = *CommonDest->getParent()->getParent();
4771   BasicBlock *LookupBB = BasicBlock::Create(Mod.getContext(),
4772                                             "switch.lookup",
4773                                             CommonDest->getParent(),
4774                                             CommonDest);
4775 
4776   // Compute the table index value.
4777   Builder.SetInsertPoint(SI);
4778   Value *TableIndex = Builder.CreateSub(SI->getCondition(), MinCaseVal,
4779                                         "switch.tableidx");
4780 
4781   // Compute the maximum table size representable by the integer type we are
4782   // switching upon.
4783   unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits();
4784   uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize;
4785   assert(MaxTableSize >= TableSize &&
4786          "It is impossible for a switch to have more entries than the max "
4787          "representable value of its input integer type's size.");
4788 
4789   // If the default destination is unreachable, or if the lookup table covers
4790   // all values of the conditional variable, branch directly to the lookup table
4791   // BB. Otherwise, check that the condition is within the case range.
4792   const bool DefaultIsReachable =
4793       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
4794   const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize);
4795   BranchInst *RangeCheckBranch = nullptr;
4796 
4797   if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
4798     Builder.CreateBr(LookupBB);
4799     // Note: We call removeProdecessor later since we need to be able to get the
4800     // PHI value for the default case in case we're using a bit mask.
4801   } else {
4802     Value *Cmp = Builder.CreateICmpULT(TableIndex, ConstantInt::get(
4803                                        MinCaseVal->getType(), TableSize));
4804     RangeCheckBranch = Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest());
4805   }
4806 
4807   // Populate the BB that does the lookups.
4808   Builder.SetInsertPoint(LookupBB);
4809 
4810   if (NeedMask) {
4811     // Before doing the lookup we do the hole check.
4812     // The LookupBB is therefore re-purposed to do the hole check
4813     // and we create a new LookupBB.
4814     BasicBlock *MaskBB = LookupBB;
4815     MaskBB->setName("switch.hole_check");
4816     LookupBB = BasicBlock::Create(Mod.getContext(),
4817                                   "switch.lookup",
4818                                   CommonDest->getParent(),
4819                                   CommonDest);
4820 
4821     // Make the mask's bitwidth at least 8bit and a power-of-2 to avoid
4822     // unnecessary illegal types.
4823     uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL));
4824     APInt MaskInt(TableSizePowOf2, 0);
4825     APInt One(TableSizePowOf2, 1);
4826     // Build bitmask; fill in a 1 bit for every case.
4827     const ResultListTy &ResultList = ResultLists[PHIs[0]];
4828     for (size_t I = 0, E = ResultList.size(); I != E; ++I) {
4829       uint64_t Idx = (ResultList[I].first->getValue() -
4830                       MinCaseVal->getValue()).getLimitedValue();
4831       MaskInt |= One << Idx;
4832     }
4833     ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt);
4834 
4835     // Get the TableIndex'th bit of the bitmask.
4836     // If this bit is 0 (meaning hole) jump to the default destination,
4837     // else continue with table lookup.
4838     IntegerType *MapTy = TableMask->getType();
4839     Value *MaskIndex = Builder.CreateZExtOrTrunc(TableIndex, MapTy,
4840                                                  "switch.maskindex");
4841     Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex,
4842                                         "switch.shifted");
4843     Value *LoBit = Builder.CreateTrunc(Shifted,
4844                                        Type::getInt1Ty(Mod.getContext()),
4845                                        "switch.lobit");
4846     Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest());
4847 
4848     Builder.SetInsertPoint(LookupBB);
4849     AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, SI->getParent());
4850   }
4851 
4852   if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
4853     // We cached PHINodes in PHIs, to avoid accessing deleted PHINodes later,
4854     // do not delete PHINodes here.
4855     SI->getDefaultDest()->removePredecessor(SI->getParent(),
4856                                             /*DontDeleteUselessPHIs=*/true);
4857   }
4858 
4859   bool ReturnedEarly = false;
4860   for (size_t I = 0, E = PHIs.size(); I != E; ++I) {
4861     PHINode *PHI = PHIs[I];
4862     const ResultListTy &ResultList = ResultLists[PHI];
4863 
4864     // If using a bitmask, use any value to fill the lookup table holes.
4865     Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI];
4866     SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultList, DV, DL);
4867 
4868     Value *Result = Table.BuildLookup(TableIndex, Builder);
4869 
4870     // If the result is used to return immediately from the function, we want to
4871     // do that right here.
4872     if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->user_begin()) &&
4873         PHI->user_back() == CommonDest->getFirstNonPHIOrDbg()) {
4874       Builder.CreateRet(Result);
4875       ReturnedEarly = true;
4876       break;
4877     }
4878 
4879     // Do a small peephole optimization: re-use the switch table compare if
4880     // possible.
4881     if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) {
4882       BasicBlock *PhiBlock = PHI->getParent();
4883       // Search for compare instructions which use the phi.
4884       for (auto *User : PHI->users()) {
4885         reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList);
4886       }
4887     }
4888 
4889     PHI->addIncoming(Result, LookupBB);
4890   }
4891 
4892   if (!ReturnedEarly)
4893     Builder.CreateBr(CommonDest);
4894 
4895   // Remove the switch.
4896   for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
4897     BasicBlock *Succ = SI->getSuccessor(i);
4898 
4899     if (Succ == SI->getDefaultDest())
4900       continue;
4901     Succ->removePredecessor(SI->getParent());
4902   }
4903   SI->eraseFromParent();
4904 
4905   ++NumLookupTables;
4906   if (NeedMask)
4907     ++NumLookupTablesHoles;
4908   return true;
4909 }
4910 
4911 bool SimplifyCFGOpt::SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) {
4912   BasicBlock *BB = SI->getParent();
4913 
4914   if (isValueEqualityComparison(SI)) {
4915     // If we only have one predecessor, and if it is a branch on this value,
4916     // see if that predecessor totally determines the outcome of this switch.
4917     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
4918       if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder))
4919         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
4920 
4921     Value *Cond = SI->getCondition();
4922     if (SelectInst *Select = dyn_cast<SelectInst>(Cond))
4923       if (SimplifySwitchOnSelect(SI, Select))
4924         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
4925 
4926     // If the block only contains the switch, see if we can fold the block
4927     // away into any preds.
4928     BasicBlock::iterator BBI = BB->begin();
4929     // Ignore dbg intrinsics.
4930     while (isa<DbgInfoIntrinsic>(BBI))
4931       ++BBI;
4932     if (SI == &*BBI)
4933       if (FoldValueComparisonIntoPredecessors(SI, Builder))
4934         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
4935   }
4936 
4937   // Try to transform the switch into an icmp and a branch.
4938   if (TurnSwitchRangeIntoICmp(SI, Builder))
4939     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
4940 
4941   // Remove unreachable cases.
4942   if (EliminateDeadSwitchCases(SI, AC, DL))
4943     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
4944 
4945   if (SwitchToSelect(SI, Builder, AC, DL))
4946     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
4947 
4948   if (ForwardSwitchConditionToPHI(SI))
4949     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
4950 
4951   if (SwitchToLookupTable(SI, Builder, DL, TTI))
4952     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
4953 
4954   return false;
4955 }
4956 
4957 bool SimplifyCFGOpt::SimplifyIndirectBr(IndirectBrInst *IBI) {
4958   BasicBlock *BB = IBI->getParent();
4959   bool Changed = false;
4960 
4961   // Eliminate redundant destinations.
4962   SmallPtrSet<Value *, 8> Succs;
4963   for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
4964     BasicBlock *Dest = IBI->getDestination(i);
4965     if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) {
4966       Dest->removePredecessor(BB);
4967       IBI->removeDestination(i);
4968       --i; --e;
4969       Changed = true;
4970     }
4971   }
4972 
4973   if (IBI->getNumDestinations() == 0) {
4974     // If the indirectbr has no successors, change it to unreachable.
4975     new UnreachableInst(IBI->getContext(), IBI);
4976     EraseTerminatorInstAndDCECond(IBI);
4977     return true;
4978   }
4979 
4980   if (IBI->getNumDestinations() == 1) {
4981     // If the indirectbr has one successor, change it to a direct branch.
4982     BranchInst::Create(IBI->getDestination(0), IBI);
4983     EraseTerminatorInstAndDCECond(IBI);
4984     return true;
4985   }
4986 
4987   if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) {
4988     if (SimplifyIndirectBrOnSelect(IBI, SI))
4989       return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
4990   }
4991   return Changed;
4992 }
4993 
4994 /// Given an block with only a single landing pad and a unconditional branch
4995 /// try to find another basic block which this one can be merged with.  This
4996 /// handles cases where we have multiple invokes with unique landing pads, but
4997 /// a shared handler.
4998 ///
4999 /// We specifically choose to not worry about merging non-empty blocks
5000 /// here.  That is a PRE/scheduling problem and is best solved elsewhere.  In
5001 /// practice, the optimizer produces empty landing pad blocks quite frequently
5002 /// when dealing with exception dense code.  (see: instcombine, gvn, if-else
5003 /// sinking in this file)
5004 ///
5005 /// This is primarily a code size optimization.  We need to avoid performing
5006 /// any transform which might inhibit optimization (such as our ability to
5007 /// specialize a particular handler via tail commoning).  We do this by not
5008 /// merging any blocks which require us to introduce a phi.  Since the same
5009 /// values are flowing through both blocks, we don't loose any ability to
5010 /// specialize.  If anything, we make such specialization more likely.
5011 ///
5012 /// TODO - This transformation could remove entries from a phi in the target
5013 /// block when the inputs in the phi are the same for the two blocks being
5014 /// merged.  In some cases, this could result in removal of the PHI entirely.
5015 static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI,
5016                                  BasicBlock *BB) {
5017   auto Succ = BB->getUniqueSuccessor();
5018   assert(Succ);
5019   // If there's a phi in the successor block, we'd likely have to introduce
5020   // a phi into the merged landing pad block.
5021   if (isa<PHINode>(*Succ->begin()))
5022     return false;
5023 
5024   for (BasicBlock *OtherPred : predecessors(Succ)) {
5025     if (BB == OtherPred)
5026       continue;
5027     BasicBlock::iterator I = OtherPred->begin();
5028     LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I);
5029     if (!LPad2 || !LPad2->isIdenticalTo(LPad))
5030       continue;
5031     for (++I; isa<DbgInfoIntrinsic>(I); ++I) {}
5032     BranchInst *BI2 = dyn_cast<BranchInst>(I);
5033     if (!BI2 || !BI2->isIdenticalTo(BI))
5034       continue;
5035 
5036     // We've found an identical block.  Update our predecessors to take that
5037     // path instead and make ourselves dead.
5038     SmallSet<BasicBlock *, 16> Preds;
5039     Preds.insert(pred_begin(BB), pred_end(BB));
5040     for (BasicBlock *Pred : Preds) {
5041       InvokeInst *II = cast<InvokeInst>(Pred->getTerminator());
5042       assert(II->getNormalDest() != BB &&
5043              II->getUnwindDest() == BB && "unexpected successor");
5044       II->setUnwindDest(OtherPred);
5045     }
5046 
5047     // The debug info in OtherPred doesn't cover the merged control flow that
5048     // used to go through BB.  We need to delete it or update it.
5049     for (auto I = OtherPred->begin(), E = OtherPred->end();
5050          I != E;) {
5051       Instruction &Inst = *I; I++;
5052       if (isa<DbgInfoIntrinsic>(Inst))
5053         Inst.eraseFromParent();
5054     }
5055 
5056     SmallSet<BasicBlock *, 16> Succs;
5057     Succs.insert(succ_begin(BB), succ_end(BB));
5058     for (BasicBlock *Succ : Succs) {
5059       Succ->removePredecessor(BB);
5060     }
5061 
5062     IRBuilder<> Builder(BI);
5063     Builder.CreateUnreachable();
5064     BI->eraseFromParent();
5065     return true;
5066   }
5067   return false;
5068 }
5069 
5070 bool SimplifyCFGOpt::SimplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder){
5071   BasicBlock *BB = BI->getParent();
5072 
5073   if (SinkCommon && SinkThenElseCodeToEnd(BI))
5074     return true;
5075 
5076   // If the Terminator is the only non-phi instruction, simplify the block.
5077   // if LoopHeader is provided, check if the block is a loop header
5078   // (This is for early invocations before loop simplify and vectorization
5079   // to keep canonical loop forms for nested loops.
5080   // These blocks can be eliminated when the pass is invoked later
5081   // in the back-end.)
5082   BasicBlock::iterator I = BB->getFirstNonPHIOrDbg()->getIterator();
5083   if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() &&
5084       (!LoopHeaders || !LoopHeaders->count(BB)) &&
5085       TryToSimplifyUncondBranchFromEmptyBlock(BB))
5086     return true;
5087 
5088   // If the only instruction in the block is a seteq/setne comparison
5089   // against a constant, try to simplify the block.
5090   if (ICmpInst *ICI = dyn_cast<ICmpInst>(I))
5091     if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) {
5092       for (++I; isa<DbgInfoIntrinsic>(I); ++I)
5093         ;
5094       if (I->isTerminator() &&
5095           TryToSimplifyUncondBranchWithICmpInIt(ICI, Builder, DL, TTI,
5096                                                 BonusInstThreshold, AC))
5097         return true;
5098     }
5099 
5100   // See if we can merge an empty landing pad block with another which is
5101   // equivalent.
5102   if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) {
5103     for (++I; isa<DbgInfoIntrinsic>(I); ++I) {}
5104     if (I->isTerminator() &&
5105         TryToMergeLandingPad(LPad, BI, BB))
5106       return true;
5107   }
5108 
5109   // If this basic block is ONLY a compare and a branch, and if a predecessor
5110   // branches to us and our successor, fold the comparison into the
5111   // predecessor and use logical operations to update the incoming value
5112   // for PHI nodes in common successor.
5113   if (FoldBranchToCommonDest(BI, BonusInstThreshold))
5114     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5115   return false;
5116 }
5117 
5118 static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) {
5119   BasicBlock *PredPred = nullptr;
5120   for (auto *P : predecessors(BB)) {
5121     BasicBlock *PPred = P->getSinglePredecessor();
5122     if (!PPred || (PredPred && PredPred != PPred))
5123       return nullptr;
5124     PredPred = PPred;
5125   }
5126   return PredPred;
5127 }
5128 
5129 bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) {
5130   BasicBlock *BB = BI->getParent();
5131 
5132   // Conditional branch
5133   if (isValueEqualityComparison(BI)) {
5134     // If we only have one predecessor, and if it is a branch on this value,
5135     // see if that predecessor totally determines the outcome of this
5136     // switch.
5137     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
5138       if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder))
5139         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5140 
5141     // This block must be empty, except for the setcond inst, if it exists.
5142     // Ignore dbg intrinsics.
5143     BasicBlock::iterator I = BB->begin();
5144     // Ignore dbg intrinsics.
5145     while (isa<DbgInfoIntrinsic>(I))
5146       ++I;
5147     if (&*I == BI) {
5148       if (FoldValueComparisonIntoPredecessors(BI, Builder))
5149         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5150     } else if (&*I == cast<Instruction>(BI->getCondition())){
5151       ++I;
5152       // Ignore dbg intrinsics.
5153       while (isa<DbgInfoIntrinsic>(I))
5154         ++I;
5155       if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder))
5156         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5157     }
5158   }
5159 
5160   // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction.
5161   if (SimplifyBranchOnICmpChain(BI, Builder, DL))
5162     return true;
5163 
5164   // If this basic block is ONLY a compare and a branch, and if a predecessor
5165   // branches to us and one of our successors, fold the comparison into the
5166   // predecessor and use logical operations to pick the right destination.
5167   if (FoldBranchToCommonDest(BI, BonusInstThreshold))
5168     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5169 
5170   // We have a conditional branch to two blocks that are only reachable
5171   // from BI.  We know that the condbr dominates the two blocks, so see if
5172   // there is any identical code in the "then" and "else" blocks.  If so, we
5173   // can hoist it up to the branching block.
5174   if (BI->getSuccessor(0)->getSinglePredecessor()) {
5175     if (BI->getSuccessor(1)->getSinglePredecessor()) {
5176       if (HoistThenElseCodeToIf(BI, TTI))
5177         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5178     } else {
5179       // If Successor #1 has multiple preds, we may be able to conditionally
5180       // execute Successor #0 if it branches to Successor #1.
5181       TerminatorInst *Succ0TI = BI->getSuccessor(0)->getTerminator();
5182       if (Succ0TI->getNumSuccessors() == 1 &&
5183           Succ0TI->getSuccessor(0) == BI->getSuccessor(1))
5184         if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), TTI))
5185           return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5186     }
5187   } else if (BI->getSuccessor(1)->getSinglePredecessor()) {
5188     // If Successor #0 has multiple preds, we may be able to conditionally
5189     // execute Successor #1 if it branches to Successor #0.
5190     TerminatorInst *Succ1TI = BI->getSuccessor(1)->getTerminator();
5191     if (Succ1TI->getNumSuccessors() == 1 &&
5192         Succ1TI->getSuccessor(0) == BI->getSuccessor(0))
5193       if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), TTI))
5194         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5195   }
5196 
5197   // If this is a branch on a phi node in the current block, thread control
5198   // through this block if any PHI node entries are constants.
5199   if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition()))
5200     if (PN->getParent() == BI->getParent())
5201       if (FoldCondBranchOnPHI(BI, DL))
5202         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5203 
5204   // Scan predecessor blocks for conditional branches.
5205   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
5206     if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
5207       if (PBI != BI && PBI->isConditional())
5208         if (SimplifyCondBranchToCondBranch(PBI, BI, DL))
5209           return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5210 
5211   // Look for diamond patterns.
5212   if (MergeCondStores)
5213     if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB))
5214       if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator()))
5215         if (PBI != BI && PBI->isConditional())
5216           if (mergeConditionalStores(PBI, BI))
5217             return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5218 
5219   return false;
5220 }
5221 
5222 /// Check if passing a value to an instruction will cause undefined behavior.
5223 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I) {
5224   Constant *C = dyn_cast<Constant>(V);
5225   if (!C)
5226     return false;
5227 
5228   if (I->use_empty())
5229     return false;
5230 
5231   if (C->isNullValue()) {
5232     // Only look at the first use, avoid hurting compile time with long uselists
5233     User *Use = *I->user_begin();
5234 
5235     // Now make sure that there are no instructions in between that can alter
5236     // control flow (eg. calls)
5237     for (BasicBlock::iterator i = ++BasicBlock::iterator(I); &*i != Use; ++i)
5238       if (i == I->getParent()->end() || i->mayHaveSideEffects())
5239         return false;
5240 
5241     // Look through GEPs. A load from a GEP derived from NULL is still undefined
5242     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use))
5243       if (GEP->getPointerOperand() == I)
5244         return passingValueIsAlwaysUndefined(V, GEP);
5245 
5246     // Look through bitcasts.
5247     if (BitCastInst *BC = dyn_cast<BitCastInst>(Use))
5248       return passingValueIsAlwaysUndefined(V, BC);
5249 
5250     // Load from null is undefined.
5251     if (LoadInst *LI = dyn_cast<LoadInst>(Use))
5252       if (!LI->isVolatile())
5253         return LI->getPointerAddressSpace() == 0;
5254 
5255     // Store to null is undefined.
5256     if (StoreInst *SI = dyn_cast<StoreInst>(Use))
5257       if (!SI->isVolatile())
5258         return SI->getPointerAddressSpace() == 0 && SI->getPointerOperand() == I;
5259   }
5260   return false;
5261 }
5262 
5263 /// If BB has an incoming value that will always trigger undefined behavior
5264 /// (eg. null pointer dereference), remove the branch leading here.
5265 static bool removeUndefIntroducingPredecessor(BasicBlock *BB) {
5266   for (BasicBlock::iterator i = BB->begin();
5267        PHINode *PHI = dyn_cast<PHINode>(i); ++i)
5268     for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i)
5269       if (passingValueIsAlwaysUndefined(PHI->getIncomingValue(i), PHI)) {
5270         TerminatorInst *T = PHI->getIncomingBlock(i)->getTerminator();
5271         IRBuilder<> Builder(T);
5272         if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
5273           BB->removePredecessor(PHI->getIncomingBlock(i));
5274           // Turn uncoditional branches into unreachables and remove the dead
5275           // destination from conditional branches.
5276           if (BI->isUnconditional())
5277             Builder.CreateUnreachable();
5278           else
5279             Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1) :
5280                                                          BI->getSuccessor(0));
5281           BI->eraseFromParent();
5282           return true;
5283         }
5284         // TODO: SwitchInst.
5285       }
5286 
5287   return false;
5288 }
5289 
5290 bool SimplifyCFGOpt::run(BasicBlock *BB) {
5291   bool Changed = false;
5292 
5293   assert(BB && BB->getParent() && "Block not embedded in function!");
5294   assert(BB->getTerminator() && "Degenerate basic block encountered!");
5295 
5296   // Remove basic blocks that have no predecessors (except the entry block)...
5297   // or that just have themself as a predecessor.  These are unreachable.
5298   if ((pred_empty(BB) &&
5299        BB != &BB->getParent()->getEntryBlock()) ||
5300       BB->getSinglePredecessor() == BB) {
5301     DEBUG(dbgs() << "Removing BB: \n" << *BB);
5302     DeleteDeadBlock(BB);
5303     return true;
5304   }
5305 
5306   // Check to see if we can constant propagate this terminator instruction
5307   // away...
5308   Changed |= ConstantFoldTerminator(BB, true);
5309 
5310   // Check for and eliminate duplicate PHI nodes in this block.
5311   Changed |= EliminateDuplicatePHINodes(BB);
5312 
5313   // Check for and remove branches that will always cause undefined behavior.
5314   Changed |= removeUndefIntroducingPredecessor(BB);
5315 
5316   // Merge basic blocks into their predecessor if there is only one distinct
5317   // pred, and if there is only one distinct successor of the predecessor, and
5318   // if there are no PHI nodes.
5319   //
5320   if (MergeBlockIntoPredecessor(BB))
5321     return true;
5322 
5323   IRBuilder<> Builder(BB);
5324 
5325   // If there is a trivial two-entry PHI node in this basic block, and we can
5326   // eliminate it, do so now.
5327   if (PHINode *PN = dyn_cast<PHINode>(BB->begin()))
5328     if (PN->getNumIncomingValues() == 2)
5329       Changed |= FoldTwoEntryPHINode(PN, TTI, DL);
5330 
5331   Builder.SetInsertPoint(BB->getTerminator());
5332   if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
5333     if (BI->isUnconditional()) {
5334       if (SimplifyUncondBranch(BI, Builder)) return true;
5335     } else {
5336       if (SimplifyCondBranch(BI, Builder)) return true;
5337     }
5338   } else if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
5339     if (SimplifyReturn(RI, Builder)) return true;
5340   } else if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator())) {
5341     if (SimplifyResume(RI, Builder)) return true;
5342   } else if (CleanupReturnInst *RI =
5343                dyn_cast<CleanupReturnInst>(BB->getTerminator())) {
5344     if (SimplifyCleanupReturn(RI)) return true;
5345   } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
5346     if (SimplifySwitch(SI, Builder)) return true;
5347   } else if (UnreachableInst *UI =
5348                dyn_cast<UnreachableInst>(BB->getTerminator())) {
5349     if (SimplifyUnreachable(UI)) return true;
5350   } else if (IndirectBrInst *IBI =
5351                dyn_cast<IndirectBrInst>(BB->getTerminator())) {
5352     if (SimplifyIndirectBr(IBI)) return true;
5353   }
5354 
5355   return Changed;
5356 }
5357 
5358 /// This function is used to do simplification of a CFG.
5359 /// For example, it adjusts branches to branches to eliminate the extra hop,
5360 /// eliminates unreachable basic blocks, and does other "peephole" optimization
5361 /// of the CFG.  It returns true if a modification was made.
5362 ///
5363 bool llvm::SimplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI,
5364                        unsigned BonusInstThreshold, AssumptionCache *AC,
5365                        SmallPtrSetImpl<BasicBlock *> *LoopHeaders) {
5366   return SimplifyCFGOpt(TTI, BB->getModule()->getDataLayout(),
5367                         BonusInstThreshold, AC, LoopHeaders).run(BB);
5368 }
5369