1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Peephole optimize the CFG. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/ADT/APInt.h" 14 #include "llvm/ADT/ArrayRef.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/MapVector.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/ScopeExit.h" 20 #include "llvm/ADT/Sequence.h" 21 #include "llvm/ADT/SetOperations.h" 22 #include "llvm/ADT/SetVector.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/Statistic.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/Analysis/AssumptionCache.h" 28 #include "llvm/Analysis/ConstantFolding.h" 29 #include "llvm/Analysis/EHPersonalities.h" 30 #include "llvm/Analysis/GuardUtils.h" 31 #include "llvm/Analysis/InstructionSimplify.h" 32 #include "llvm/Analysis/MemorySSA.h" 33 #include "llvm/Analysis/MemorySSAUpdater.h" 34 #include "llvm/Analysis/TargetTransformInfo.h" 35 #include "llvm/Analysis/ValueTracking.h" 36 #include "llvm/IR/Attributes.h" 37 #include "llvm/IR/BasicBlock.h" 38 #include "llvm/IR/CFG.h" 39 #include "llvm/IR/Constant.h" 40 #include "llvm/IR/ConstantRange.h" 41 #include "llvm/IR/Constants.h" 42 #include "llvm/IR/DataLayout.h" 43 #include "llvm/IR/DerivedTypes.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/IR/GlobalValue.h" 46 #include "llvm/IR/GlobalVariable.h" 47 #include "llvm/IR/IRBuilder.h" 48 #include "llvm/IR/InstrTypes.h" 49 #include "llvm/IR/Instruction.h" 50 #include "llvm/IR/Instructions.h" 51 #include "llvm/IR/IntrinsicInst.h" 52 #include "llvm/IR/Intrinsics.h" 53 #include "llvm/IR/LLVMContext.h" 54 #include "llvm/IR/MDBuilder.h" 55 #include "llvm/IR/Metadata.h" 56 #include "llvm/IR/Module.h" 57 #include "llvm/IR/NoFolder.h" 58 #include "llvm/IR/Operator.h" 59 #include "llvm/IR/PatternMatch.h" 60 #include "llvm/IR/Type.h" 61 #include "llvm/IR/Use.h" 62 #include "llvm/IR/User.h" 63 #include "llvm/IR/Value.h" 64 #include "llvm/IR/ValueHandle.h" 65 #include "llvm/Support/Casting.h" 66 #include "llvm/Support/CommandLine.h" 67 #include "llvm/Support/Debug.h" 68 #include "llvm/Support/ErrorHandling.h" 69 #include "llvm/Support/KnownBits.h" 70 #include "llvm/Support/MathExtras.h" 71 #include "llvm/Support/raw_ostream.h" 72 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 73 #include "llvm/Transforms/Utils/Local.h" 74 #include "llvm/Transforms/Utils/SSAUpdater.h" 75 #include "llvm/Transforms/Utils/ValueMapper.h" 76 #include <algorithm> 77 #include <cassert> 78 #include <climits> 79 #include <cstddef> 80 #include <cstdint> 81 #include <iterator> 82 #include <map> 83 #include <set> 84 #include <tuple> 85 #include <utility> 86 #include <vector> 87 88 using namespace llvm; 89 using namespace PatternMatch; 90 91 #define DEBUG_TYPE "simplifycfg" 92 93 cl::opt<bool> llvm::RequireAndPreserveDomTree( 94 "simplifycfg-require-and-preserve-domtree", cl::Hidden, cl::ZeroOrMore, 95 cl::init(false), 96 cl::desc("Temorary development switch used to gradually uplift SimplifyCFG " 97 "into preserving DomTree,")); 98 99 // Chosen as 2 so as to be cheap, but still to have enough power to fold 100 // a select, so the "clamp" idiom (of a min followed by a max) will be caught. 101 // To catch this, we need to fold a compare and a select, hence '2' being the 102 // minimum reasonable default. 103 static cl::opt<unsigned> PHINodeFoldingThreshold( 104 "phi-node-folding-threshold", cl::Hidden, cl::init(2), 105 cl::desc( 106 "Control the amount of phi node folding to perform (default = 2)")); 107 108 static cl::opt<unsigned> TwoEntryPHINodeFoldingThreshold( 109 "two-entry-phi-node-folding-threshold", cl::Hidden, cl::init(4), 110 cl::desc("Control the maximal total instruction cost that we are willing " 111 "to speculatively execute to fold a 2-entry PHI node into a " 112 "select (default = 4)")); 113 114 static cl::opt<bool> DupRet( 115 "simplifycfg-dup-ret", cl::Hidden, cl::init(false), 116 cl::desc("Duplicate return instructions into unconditional branches")); 117 118 static cl::opt<bool> 119 HoistCommon("simplifycfg-hoist-common", cl::Hidden, cl::init(true), 120 cl::desc("Hoist common instructions up to the parent block")); 121 122 static cl::opt<bool> 123 SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true), 124 cl::desc("Sink common instructions down to the end block")); 125 126 static cl::opt<bool> HoistCondStores( 127 "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true), 128 cl::desc("Hoist conditional stores if an unconditional store precedes")); 129 130 static cl::opt<bool> MergeCondStores( 131 "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true), 132 cl::desc("Hoist conditional stores even if an unconditional store does not " 133 "precede - hoist multiple conditional stores into a single " 134 "predicated store")); 135 136 static cl::opt<bool> MergeCondStoresAggressively( 137 "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false), 138 cl::desc("When merging conditional stores, do so even if the resultant " 139 "basic blocks are unlikely to be if-converted as a result")); 140 141 static cl::opt<bool> SpeculateOneExpensiveInst( 142 "speculate-one-expensive-inst", cl::Hidden, cl::init(true), 143 cl::desc("Allow exactly one expensive instruction to be speculatively " 144 "executed")); 145 146 static cl::opt<unsigned> MaxSpeculationDepth( 147 "max-speculation-depth", cl::Hidden, cl::init(10), 148 cl::desc("Limit maximum recursion depth when calculating costs of " 149 "speculatively executed instructions")); 150 151 static cl::opt<int> 152 MaxSmallBlockSize("simplifycfg-max-small-block-size", cl::Hidden, cl::init(10), 153 cl::desc("Max size of a block which is still considered " 154 "small enough to thread through")); 155 156 // Two is chosen to allow one negation and a logical combine. 157 static cl::opt<unsigned> 158 BranchFoldThreshold("simplifycfg-branch-fold-threshold", cl::Hidden, 159 cl::init(2), 160 cl::desc("Maximum cost of combining conditions when " 161 "folding branches")); 162 163 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps"); 164 STATISTIC(NumLinearMaps, 165 "Number of switch instructions turned into linear mapping"); 166 STATISTIC(NumLookupTables, 167 "Number of switch instructions turned into lookup tables"); 168 STATISTIC( 169 NumLookupTablesHoles, 170 "Number of switch instructions turned into lookup tables (holes checked)"); 171 STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares"); 172 STATISTIC(NumFoldValueComparisonIntoPredecessors, 173 "Number of value comparisons folded into predecessor basic blocks"); 174 STATISTIC(NumFoldBranchToCommonDest, 175 "Number of branches folded into predecessor basic block"); 176 STATISTIC( 177 NumHoistCommonCode, 178 "Number of common instruction 'blocks' hoisted up to the begin block"); 179 STATISTIC(NumHoistCommonInstrs, 180 "Number of common instructions hoisted up to the begin block"); 181 STATISTIC(NumSinkCommonCode, 182 "Number of common instruction 'blocks' sunk down to the end block"); 183 STATISTIC(NumSinkCommonInstrs, 184 "Number of common instructions sunk down to the end block"); 185 STATISTIC(NumSpeculations, "Number of speculative executed instructions"); 186 STATISTIC(NumInvokes, 187 "Number of invokes with empty resume blocks simplified into calls"); 188 189 namespace { 190 191 // The first field contains the value that the switch produces when a certain 192 // case group is selected, and the second field is a vector containing the 193 // cases composing the case group. 194 using SwitchCaseResultVectorTy = 195 SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2>; 196 197 // The first field contains the phi node that generates a result of the switch 198 // and the second field contains the value generated for a certain case in the 199 // switch for that PHI. 200 using SwitchCaseResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>; 201 202 /// ValueEqualityComparisonCase - Represents a case of a switch. 203 struct ValueEqualityComparisonCase { 204 ConstantInt *Value; 205 BasicBlock *Dest; 206 207 ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest) 208 : Value(Value), Dest(Dest) {} 209 210 bool operator<(ValueEqualityComparisonCase RHS) const { 211 // Comparing pointers is ok as we only rely on the order for uniquing. 212 return Value < RHS.Value; 213 } 214 215 bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; } 216 }; 217 218 class SimplifyCFGOpt { 219 const TargetTransformInfo &TTI; 220 DomTreeUpdater *DTU; 221 const DataLayout &DL; 222 ArrayRef<WeakVH> LoopHeaders; 223 const SimplifyCFGOptions &Options; 224 bool Resimplify; 225 226 Value *isValueEqualityComparison(Instruction *TI); 227 BasicBlock *GetValueEqualityComparisonCases( 228 Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases); 229 bool SimplifyEqualityComparisonWithOnlyPredecessor(Instruction *TI, 230 BasicBlock *Pred, 231 IRBuilder<> &Builder); 232 bool PerformValueComparisonIntoPredecessorFolding(Instruction *TI, Value *&CV, 233 Instruction *PTI, 234 IRBuilder<> &Builder); 235 bool FoldValueComparisonIntoPredecessors(Instruction *TI, 236 IRBuilder<> &Builder); 237 238 bool simplifyReturn(ReturnInst *RI, IRBuilder<> &Builder); 239 bool simplifyResume(ResumeInst *RI, IRBuilder<> &Builder); 240 bool simplifySingleResume(ResumeInst *RI); 241 bool simplifyCommonResume(ResumeInst *RI); 242 bool simplifyCleanupReturn(CleanupReturnInst *RI); 243 bool simplifyUnreachable(UnreachableInst *UI); 244 bool simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder); 245 bool simplifyIndirectBr(IndirectBrInst *IBI); 246 bool simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder); 247 bool simplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder); 248 bool simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder); 249 bool SimplifyCondBranchToTwoReturns(BranchInst *BI, IRBuilder<> &Builder); 250 251 bool tryToSimplifyUncondBranchWithICmpInIt(ICmpInst *ICI, 252 IRBuilder<> &Builder); 253 254 bool HoistThenElseCodeToIf(BranchInst *BI, const TargetTransformInfo &TTI); 255 bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB, 256 const TargetTransformInfo &TTI); 257 bool SimplifyTerminatorOnSelect(Instruction *OldTerm, Value *Cond, 258 BasicBlock *TrueBB, BasicBlock *FalseBB, 259 uint32_t TrueWeight, uint32_t FalseWeight); 260 bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder, 261 const DataLayout &DL); 262 bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select); 263 bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI); 264 bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder); 265 266 public: 267 SimplifyCFGOpt(const TargetTransformInfo &TTI, DomTreeUpdater *DTU, 268 const DataLayout &DL, ArrayRef<WeakVH> LoopHeaders, 269 const SimplifyCFGOptions &Opts) 270 : TTI(TTI), DTU(DTU), DL(DL), LoopHeaders(LoopHeaders), Options(Opts) { 271 assert((!DTU || !DTU->hasPostDomTree()) && 272 "SimplifyCFG is not yet capable of maintaining validity of a " 273 "PostDomTree, so don't ask for it."); 274 } 275 276 bool simplifyOnce(BasicBlock *BB); 277 bool simplifyOnceImpl(BasicBlock *BB); 278 bool run(BasicBlock *BB); 279 280 // Helper to set Resimplify and return change indication. 281 bool requestResimplify() { 282 Resimplify = true; 283 return true; 284 } 285 }; 286 287 } // end anonymous namespace 288 289 /// Return true if it is safe to merge these two 290 /// terminator instructions together. 291 static bool 292 SafeToMergeTerminators(Instruction *SI1, Instruction *SI2, 293 SmallSetVector<BasicBlock *, 4> *FailBlocks = nullptr) { 294 if (SI1 == SI2) 295 return false; // Can't merge with self! 296 297 // It is not safe to merge these two switch instructions if they have a common 298 // successor, and if that successor has a PHI node, and if *that* PHI node has 299 // conflicting incoming values from the two switch blocks. 300 BasicBlock *SI1BB = SI1->getParent(); 301 BasicBlock *SI2BB = SI2->getParent(); 302 303 SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB)); 304 bool Fail = false; 305 for (BasicBlock *Succ : successors(SI2BB)) 306 if (SI1Succs.count(Succ)) 307 for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) { 308 PHINode *PN = cast<PHINode>(BBI); 309 if (PN->getIncomingValueForBlock(SI1BB) != 310 PN->getIncomingValueForBlock(SI2BB)) { 311 if (FailBlocks) 312 FailBlocks->insert(Succ); 313 Fail = true; 314 } 315 } 316 317 return !Fail; 318 } 319 320 /// Update PHI nodes in Succ to indicate that there will now be entries in it 321 /// from the 'NewPred' block. The values that will be flowing into the PHI nodes 322 /// will be the same as those coming in from ExistPred, an existing predecessor 323 /// of Succ. 324 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred, 325 BasicBlock *ExistPred, 326 MemorySSAUpdater *MSSAU = nullptr) { 327 for (PHINode &PN : Succ->phis()) 328 PN.addIncoming(PN.getIncomingValueForBlock(ExistPred), NewPred); 329 if (MSSAU) 330 if (auto *MPhi = MSSAU->getMemorySSA()->getMemoryAccess(Succ)) 331 MPhi->addIncoming(MPhi->getIncomingValueForBlock(ExistPred), NewPred); 332 } 333 334 /// Compute an abstract "cost" of speculating the given instruction, 335 /// which is assumed to be safe to speculate. TCC_Free means cheap, 336 /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively 337 /// expensive. 338 static InstructionCost computeSpeculationCost(const User *I, 339 const TargetTransformInfo &TTI) { 340 assert(isSafeToSpeculativelyExecute(I) && 341 "Instruction is not safe to speculatively execute!"); 342 return TTI.getUserCost(I, TargetTransformInfo::TCK_SizeAndLatency); 343 } 344 345 /// If we have a merge point of an "if condition" as accepted above, 346 /// return true if the specified value dominates the block. We 347 /// don't handle the true generality of domination here, just a special case 348 /// which works well enough for us. 349 /// 350 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to 351 /// see if V (which must be an instruction) and its recursive operands 352 /// that do not dominate BB have a combined cost lower than Budget and 353 /// are non-trapping. If both are true, the instruction is inserted into the 354 /// set and true is returned. 355 /// 356 /// The cost for most non-trapping instructions is defined as 1 except for 357 /// Select whose cost is 2. 358 /// 359 /// After this function returns, Cost is increased by the cost of 360 /// V plus its non-dominating operands. If that cost is greater than 361 /// Budget, false is returned and Cost is undefined. 362 static bool dominatesMergePoint(Value *V, BasicBlock *BB, 363 SmallPtrSetImpl<Instruction *> &AggressiveInsts, 364 InstructionCost &Cost, 365 InstructionCost Budget, 366 const TargetTransformInfo &TTI, 367 unsigned Depth = 0) { 368 // It is possible to hit a zero-cost cycle (phi/gep instructions for example), 369 // so limit the recursion depth. 370 // TODO: While this recursion limit does prevent pathological behavior, it 371 // would be better to track visited instructions to avoid cycles. 372 if (Depth == MaxSpeculationDepth) 373 return false; 374 375 Instruction *I = dyn_cast<Instruction>(V); 376 if (!I) { 377 // Non-instructions all dominate instructions, but not all constantexprs 378 // can be executed unconditionally. 379 if (ConstantExpr *C = dyn_cast<ConstantExpr>(V)) 380 if (C->canTrap()) 381 return false; 382 return true; 383 } 384 BasicBlock *PBB = I->getParent(); 385 386 // We don't want to allow weird loops that might have the "if condition" in 387 // the bottom of this block. 388 if (PBB == BB) 389 return false; 390 391 // If this instruction is defined in a block that contains an unconditional 392 // branch to BB, then it must be in the 'conditional' part of the "if 393 // statement". If not, it definitely dominates the region. 394 BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator()); 395 if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB) 396 return true; 397 398 // If we have seen this instruction before, don't count it again. 399 if (AggressiveInsts.count(I)) 400 return true; 401 402 // Okay, it looks like the instruction IS in the "condition". Check to 403 // see if it's a cheap instruction to unconditionally compute, and if it 404 // only uses stuff defined outside of the condition. If so, hoist it out. 405 if (!isSafeToSpeculativelyExecute(I)) 406 return false; 407 408 Cost += computeSpeculationCost(I, TTI); 409 410 // Allow exactly one instruction to be speculated regardless of its cost 411 // (as long as it is safe to do so). 412 // This is intended to flatten the CFG even if the instruction is a division 413 // or other expensive operation. The speculation of an expensive instruction 414 // is expected to be undone in CodeGenPrepare if the speculation has not 415 // enabled further IR optimizations. 416 if (Cost > Budget && 417 (!SpeculateOneExpensiveInst || !AggressiveInsts.empty() || Depth > 0 || 418 !Cost.isValid())) 419 return false; 420 421 // Okay, we can only really hoist these out if their operands do 422 // not take us over the cost threshold. 423 for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) 424 if (!dominatesMergePoint(*i, BB, AggressiveInsts, Cost, Budget, TTI, 425 Depth + 1)) 426 return false; 427 // Okay, it's safe to do this! Remember this instruction. 428 AggressiveInsts.insert(I); 429 return true; 430 } 431 432 /// Extract ConstantInt from value, looking through IntToPtr 433 /// and PointerNullValue. Return NULL if value is not a constant int. 434 static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) { 435 // Normal constant int. 436 ConstantInt *CI = dyn_cast<ConstantInt>(V); 437 if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy()) 438 return CI; 439 440 // This is some kind of pointer constant. Turn it into a pointer-sized 441 // ConstantInt if possible. 442 IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType())); 443 444 // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*). 445 if (isa<ConstantPointerNull>(V)) 446 return ConstantInt::get(PtrTy, 0); 447 448 // IntToPtr const int. 449 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 450 if (CE->getOpcode() == Instruction::IntToPtr) 451 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) { 452 // The constant is very likely to have the right type already. 453 if (CI->getType() == PtrTy) 454 return CI; 455 else 456 return cast<ConstantInt>( 457 ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false)); 458 } 459 return nullptr; 460 } 461 462 namespace { 463 464 /// Given a chain of or (||) or and (&&) comparison of a value against a 465 /// constant, this will try to recover the information required for a switch 466 /// structure. 467 /// It will depth-first traverse the chain of comparison, seeking for patterns 468 /// like %a == 12 or %a < 4 and combine them to produce a set of integer 469 /// representing the different cases for the switch. 470 /// Note that if the chain is composed of '||' it will build the set of elements 471 /// that matches the comparisons (i.e. any of this value validate the chain) 472 /// while for a chain of '&&' it will build the set elements that make the test 473 /// fail. 474 struct ConstantComparesGatherer { 475 const DataLayout &DL; 476 477 /// Value found for the switch comparison 478 Value *CompValue = nullptr; 479 480 /// Extra clause to be checked before the switch 481 Value *Extra = nullptr; 482 483 /// Set of integers to match in switch 484 SmallVector<ConstantInt *, 8> Vals; 485 486 /// Number of comparisons matched in the and/or chain 487 unsigned UsedICmps = 0; 488 489 /// Construct and compute the result for the comparison instruction Cond 490 ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL) : DL(DL) { 491 gather(Cond); 492 } 493 494 ConstantComparesGatherer(const ConstantComparesGatherer &) = delete; 495 ConstantComparesGatherer & 496 operator=(const ConstantComparesGatherer &) = delete; 497 498 private: 499 /// Try to set the current value used for the comparison, it succeeds only if 500 /// it wasn't set before or if the new value is the same as the old one 501 bool setValueOnce(Value *NewVal) { 502 if (CompValue && CompValue != NewVal) 503 return false; 504 CompValue = NewVal; 505 return (CompValue != nullptr); 506 } 507 508 /// Try to match Instruction "I" as a comparison against a constant and 509 /// populates the array Vals with the set of values that match (or do not 510 /// match depending on isEQ). 511 /// Return false on failure. On success, the Value the comparison matched 512 /// against is placed in CompValue. 513 /// If CompValue is already set, the function is expected to fail if a match 514 /// is found but the value compared to is different. 515 bool matchInstruction(Instruction *I, bool isEQ) { 516 // If this is an icmp against a constant, handle this as one of the cases. 517 ICmpInst *ICI; 518 ConstantInt *C; 519 if (!((ICI = dyn_cast<ICmpInst>(I)) && 520 (C = GetConstantInt(I->getOperand(1), DL)))) { 521 return false; 522 } 523 524 Value *RHSVal; 525 const APInt *RHSC; 526 527 // Pattern match a special case 528 // (x & ~2^z) == y --> x == y || x == y|2^z 529 // This undoes a transformation done by instcombine to fuse 2 compares. 530 if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE)) { 531 // It's a little bit hard to see why the following transformations are 532 // correct. Here is a CVC3 program to verify them for 64-bit values: 533 534 /* 535 ONE : BITVECTOR(64) = BVZEROEXTEND(0bin1, 63); 536 x : BITVECTOR(64); 537 y : BITVECTOR(64); 538 z : BITVECTOR(64); 539 mask : BITVECTOR(64) = BVSHL(ONE, z); 540 QUERY( (y & ~mask = y) => 541 ((x & ~mask = y) <=> (x = y OR x = (y | mask))) 542 ); 543 QUERY( (y | mask = y) => 544 ((x | mask = y) <=> (x = y OR x = (y & ~mask))) 545 ); 546 */ 547 548 // Please note that each pattern must be a dual implication (<--> or 549 // iff). One directional implication can create spurious matches. If the 550 // implication is only one-way, an unsatisfiable condition on the left 551 // side can imply a satisfiable condition on the right side. Dual 552 // implication ensures that satisfiable conditions are transformed to 553 // other satisfiable conditions and unsatisfiable conditions are 554 // transformed to other unsatisfiable conditions. 555 556 // Here is a concrete example of a unsatisfiable condition on the left 557 // implying a satisfiable condition on the right: 558 // 559 // mask = (1 << z) 560 // (x & ~mask) == y --> (x == y || x == (y | mask)) 561 // 562 // Substituting y = 3, z = 0 yields: 563 // (x & -2) == 3 --> (x == 3 || x == 2) 564 565 // Pattern match a special case: 566 /* 567 QUERY( (y & ~mask = y) => 568 ((x & ~mask = y) <=> (x = y OR x = (y | mask))) 569 ); 570 */ 571 if (match(ICI->getOperand(0), 572 m_And(m_Value(RHSVal), m_APInt(RHSC)))) { 573 APInt Mask = ~*RHSC; 574 if (Mask.isPowerOf2() && (C->getValue() & ~Mask) == C->getValue()) { 575 // If we already have a value for the switch, it has to match! 576 if (!setValueOnce(RHSVal)) 577 return false; 578 579 Vals.push_back(C); 580 Vals.push_back( 581 ConstantInt::get(C->getContext(), 582 C->getValue() | Mask)); 583 UsedICmps++; 584 return true; 585 } 586 } 587 588 // Pattern match a special case: 589 /* 590 QUERY( (y | mask = y) => 591 ((x | mask = y) <=> (x = y OR x = (y & ~mask))) 592 ); 593 */ 594 if (match(ICI->getOperand(0), 595 m_Or(m_Value(RHSVal), m_APInt(RHSC)))) { 596 APInt Mask = *RHSC; 597 if (Mask.isPowerOf2() && (C->getValue() | Mask) == C->getValue()) { 598 // If we already have a value for the switch, it has to match! 599 if (!setValueOnce(RHSVal)) 600 return false; 601 602 Vals.push_back(C); 603 Vals.push_back(ConstantInt::get(C->getContext(), 604 C->getValue() & ~Mask)); 605 UsedICmps++; 606 return true; 607 } 608 } 609 610 // If we already have a value for the switch, it has to match! 611 if (!setValueOnce(ICI->getOperand(0))) 612 return false; 613 614 UsedICmps++; 615 Vals.push_back(C); 616 return ICI->getOperand(0); 617 } 618 619 // If we have "x ult 3", for example, then we can add 0,1,2 to the set. 620 ConstantRange Span = ConstantRange::makeAllowedICmpRegion( 621 ICI->getPredicate(), C->getValue()); 622 623 // Shift the range if the compare is fed by an add. This is the range 624 // compare idiom as emitted by instcombine. 625 Value *CandidateVal = I->getOperand(0); 626 if (match(I->getOperand(0), m_Add(m_Value(RHSVal), m_APInt(RHSC)))) { 627 Span = Span.subtract(*RHSC); 628 CandidateVal = RHSVal; 629 } 630 631 // If this is an and/!= check, then we are looking to build the set of 632 // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into 633 // x != 0 && x != 1. 634 if (!isEQ) 635 Span = Span.inverse(); 636 637 // If there are a ton of values, we don't want to make a ginormous switch. 638 if (Span.isSizeLargerThan(8) || Span.isEmptySet()) { 639 return false; 640 } 641 642 // If we already have a value for the switch, it has to match! 643 if (!setValueOnce(CandidateVal)) 644 return false; 645 646 // Add all values from the range to the set 647 for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp) 648 Vals.push_back(ConstantInt::get(I->getContext(), Tmp)); 649 650 UsedICmps++; 651 return true; 652 } 653 654 /// Given a potentially 'or'd or 'and'd together collection of icmp 655 /// eq/ne/lt/gt instructions that compare a value against a constant, extract 656 /// the value being compared, and stick the list constants into the Vals 657 /// vector. 658 /// One "Extra" case is allowed to differ from the other. 659 void gather(Value *V) { 660 bool isEQ = match(V, m_LogicalOr(m_Value(), m_Value())); 661 662 // Keep a stack (SmallVector for efficiency) for depth-first traversal 663 SmallVector<Value *, 8> DFT; 664 SmallPtrSet<Value *, 8> Visited; 665 666 // Initialize 667 Visited.insert(V); 668 DFT.push_back(V); 669 670 while (!DFT.empty()) { 671 V = DFT.pop_back_val(); 672 673 if (Instruction *I = dyn_cast<Instruction>(V)) { 674 // If it is a || (or && depending on isEQ), process the operands. 675 Value *Op0, *Op1; 676 if (isEQ ? match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))) 677 : match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) { 678 if (Visited.insert(Op1).second) 679 DFT.push_back(Op1); 680 if (Visited.insert(Op0).second) 681 DFT.push_back(Op0); 682 683 continue; 684 } 685 686 // Try to match the current instruction 687 if (matchInstruction(I, isEQ)) 688 // Match succeed, continue the loop 689 continue; 690 } 691 692 // One element of the sequence of || (or &&) could not be match as a 693 // comparison against the same value as the others. 694 // We allow only one "Extra" case to be checked before the switch 695 if (!Extra) { 696 Extra = V; 697 continue; 698 } 699 // Failed to parse a proper sequence, abort now 700 CompValue = nullptr; 701 break; 702 } 703 } 704 }; 705 706 } // end anonymous namespace 707 708 static void EraseTerminatorAndDCECond(Instruction *TI, 709 MemorySSAUpdater *MSSAU = nullptr) { 710 Instruction *Cond = nullptr; 711 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 712 Cond = dyn_cast<Instruction>(SI->getCondition()); 713 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 714 if (BI->isConditional()) 715 Cond = dyn_cast<Instruction>(BI->getCondition()); 716 } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) { 717 Cond = dyn_cast<Instruction>(IBI->getAddress()); 718 } 719 720 TI->eraseFromParent(); 721 if (Cond) 722 RecursivelyDeleteTriviallyDeadInstructions(Cond, nullptr, MSSAU); 723 } 724 725 /// Return true if the specified terminator checks 726 /// to see if a value is equal to constant integer value. 727 Value *SimplifyCFGOpt::isValueEqualityComparison(Instruction *TI) { 728 Value *CV = nullptr; 729 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 730 // Do not permit merging of large switch instructions into their 731 // predecessors unless there is only one predecessor. 732 if (!SI->getParent()->hasNPredecessorsOrMore(128 / SI->getNumSuccessors())) 733 CV = SI->getCondition(); 734 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) 735 if (BI->isConditional() && BI->getCondition()->hasOneUse()) 736 if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) { 737 if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL)) 738 CV = ICI->getOperand(0); 739 } 740 741 // Unwrap any lossless ptrtoint cast. 742 if (CV) { 743 if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) { 744 Value *Ptr = PTII->getPointerOperand(); 745 if (PTII->getType() == DL.getIntPtrType(Ptr->getType())) 746 CV = Ptr; 747 } 748 } 749 return CV; 750 } 751 752 /// Given a value comparison instruction, 753 /// decode all of the 'cases' that it represents and return the 'default' block. 754 BasicBlock *SimplifyCFGOpt::GetValueEqualityComparisonCases( 755 Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases) { 756 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 757 Cases.reserve(SI->getNumCases()); 758 for (auto Case : SI->cases()) 759 Cases.push_back(ValueEqualityComparisonCase(Case.getCaseValue(), 760 Case.getCaseSuccessor())); 761 return SI->getDefaultDest(); 762 } 763 764 BranchInst *BI = cast<BranchInst>(TI); 765 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 766 BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE); 767 Cases.push_back(ValueEqualityComparisonCase( 768 GetConstantInt(ICI->getOperand(1), DL), Succ)); 769 return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ); 770 } 771 772 /// Given a vector of bb/value pairs, remove any entries 773 /// in the list that match the specified block. 774 static void 775 EliminateBlockCases(BasicBlock *BB, 776 std::vector<ValueEqualityComparisonCase> &Cases) { 777 llvm::erase_value(Cases, BB); 778 } 779 780 /// Return true if there are any keys in C1 that exist in C2 as well. 781 static bool ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1, 782 std::vector<ValueEqualityComparisonCase> &C2) { 783 std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2; 784 785 // Make V1 be smaller than V2. 786 if (V1->size() > V2->size()) 787 std::swap(V1, V2); 788 789 if (V1->empty()) 790 return false; 791 if (V1->size() == 1) { 792 // Just scan V2. 793 ConstantInt *TheVal = (*V1)[0].Value; 794 for (unsigned i = 0, e = V2->size(); i != e; ++i) 795 if (TheVal == (*V2)[i].Value) 796 return true; 797 } 798 799 // Otherwise, just sort both lists and compare element by element. 800 array_pod_sort(V1->begin(), V1->end()); 801 array_pod_sort(V2->begin(), V2->end()); 802 unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size(); 803 while (i1 != e1 && i2 != e2) { 804 if ((*V1)[i1].Value == (*V2)[i2].Value) 805 return true; 806 if ((*V1)[i1].Value < (*V2)[i2].Value) 807 ++i1; 808 else 809 ++i2; 810 } 811 return false; 812 } 813 814 // Set branch weights on SwitchInst. This sets the metadata if there is at 815 // least one non-zero weight. 816 static void setBranchWeights(SwitchInst *SI, ArrayRef<uint32_t> Weights) { 817 // Check that there is at least one non-zero weight. Otherwise, pass 818 // nullptr to setMetadata which will erase the existing metadata. 819 MDNode *N = nullptr; 820 if (llvm::any_of(Weights, [](uint32_t W) { return W != 0; })) 821 N = MDBuilder(SI->getParent()->getContext()).createBranchWeights(Weights); 822 SI->setMetadata(LLVMContext::MD_prof, N); 823 } 824 825 // Similar to the above, but for branch and select instructions that take 826 // exactly 2 weights. 827 static void setBranchWeights(Instruction *I, uint32_t TrueWeight, 828 uint32_t FalseWeight) { 829 assert(isa<BranchInst>(I) || isa<SelectInst>(I)); 830 // Check that there is at least one non-zero weight. Otherwise, pass 831 // nullptr to setMetadata which will erase the existing metadata. 832 MDNode *N = nullptr; 833 if (TrueWeight || FalseWeight) 834 N = MDBuilder(I->getParent()->getContext()) 835 .createBranchWeights(TrueWeight, FalseWeight); 836 I->setMetadata(LLVMContext::MD_prof, N); 837 } 838 839 /// If TI is known to be a terminator instruction and its block is known to 840 /// only have a single predecessor block, check to see if that predecessor is 841 /// also a value comparison with the same value, and if that comparison 842 /// determines the outcome of this comparison. If so, simplify TI. This does a 843 /// very limited form of jump threading. 844 bool SimplifyCFGOpt::SimplifyEqualityComparisonWithOnlyPredecessor( 845 Instruction *TI, BasicBlock *Pred, IRBuilder<> &Builder) { 846 Value *PredVal = isValueEqualityComparison(Pred->getTerminator()); 847 if (!PredVal) 848 return false; // Not a value comparison in predecessor. 849 850 Value *ThisVal = isValueEqualityComparison(TI); 851 assert(ThisVal && "This isn't a value comparison!!"); 852 if (ThisVal != PredVal) 853 return false; // Different predicates. 854 855 // TODO: Preserve branch weight metadata, similarly to how 856 // FoldValueComparisonIntoPredecessors preserves it. 857 858 // Find out information about when control will move from Pred to TI's block. 859 std::vector<ValueEqualityComparisonCase> PredCases; 860 BasicBlock *PredDef = 861 GetValueEqualityComparisonCases(Pred->getTerminator(), PredCases); 862 EliminateBlockCases(PredDef, PredCases); // Remove default from cases. 863 864 // Find information about how control leaves this block. 865 std::vector<ValueEqualityComparisonCase> ThisCases; 866 BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases); 867 EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases. 868 869 // If TI's block is the default block from Pred's comparison, potentially 870 // simplify TI based on this knowledge. 871 if (PredDef == TI->getParent()) { 872 // If we are here, we know that the value is none of those cases listed in 873 // PredCases. If there are any cases in ThisCases that are in PredCases, we 874 // can simplify TI. 875 if (!ValuesOverlap(PredCases, ThisCases)) 876 return false; 877 878 if (isa<BranchInst>(TI)) { 879 // Okay, one of the successors of this condbr is dead. Convert it to a 880 // uncond br. 881 assert(ThisCases.size() == 1 && "Branch can only have one case!"); 882 // Insert the new branch. 883 Instruction *NI = Builder.CreateBr(ThisDef); 884 (void)NI; 885 886 // Remove PHI node entries for the dead edge. 887 ThisCases[0].Dest->removePredecessor(PredDef); 888 889 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 890 << "Through successor TI: " << *TI << "Leaving: " << *NI 891 << "\n"); 892 893 EraseTerminatorAndDCECond(TI); 894 895 if (DTU) 896 DTU->applyUpdates( 897 {{DominatorTree::Delete, PredDef, ThisCases[0].Dest}}); 898 899 return true; 900 } 901 902 SwitchInstProfUpdateWrapper SI = *cast<SwitchInst>(TI); 903 // Okay, TI has cases that are statically dead, prune them away. 904 SmallPtrSet<Constant *, 16> DeadCases; 905 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 906 DeadCases.insert(PredCases[i].Value); 907 908 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 909 << "Through successor TI: " << *TI); 910 911 SmallMapVector<BasicBlock *, int, 8> NumPerSuccessorCases; 912 for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) { 913 --i; 914 auto *Successor = i->getCaseSuccessor(); 915 ++NumPerSuccessorCases[Successor]; 916 if (DeadCases.count(i->getCaseValue())) { 917 Successor->removePredecessor(PredDef); 918 SI.removeCase(i); 919 --NumPerSuccessorCases[Successor]; 920 } 921 } 922 923 std::vector<DominatorTree::UpdateType> Updates; 924 for (const std::pair<BasicBlock *, int> &I : NumPerSuccessorCases) 925 if (I.second == 0) 926 Updates.push_back({DominatorTree::Delete, PredDef, I.first}); 927 if (DTU) 928 DTU->applyUpdates(Updates); 929 930 LLVM_DEBUG(dbgs() << "Leaving: " << *TI << "\n"); 931 return true; 932 } 933 934 // Otherwise, TI's block must correspond to some matched value. Find out 935 // which value (or set of values) this is. 936 ConstantInt *TIV = nullptr; 937 BasicBlock *TIBB = TI->getParent(); 938 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 939 if (PredCases[i].Dest == TIBB) { 940 if (TIV) 941 return false; // Cannot handle multiple values coming to this block. 942 TIV = PredCases[i].Value; 943 } 944 assert(TIV && "No edge from pred to succ?"); 945 946 // Okay, we found the one constant that our value can be if we get into TI's 947 // BB. Find out which successor will unconditionally be branched to. 948 BasicBlock *TheRealDest = nullptr; 949 for (unsigned i = 0, e = ThisCases.size(); i != e; ++i) 950 if (ThisCases[i].Value == TIV) { 951 TheRealDest = ThisCases[i].Dest; 952 break; 953 } 954 955 // If not handled by any explicit cases, it is handled by the default case. 956 if (!TheRealDest) 957 TheRealDest = ThisDef; 958 959 SmallSetVector<BasicBlock *, 2> RemovedSuccs; 960 961 // Remove PHI node entries for dead edges. 962 BasicBlock *CheckEdge = TheRealDest; 963 for (BasicBlock *Succ : successors(TIBB)) 964 if (Succ != CheckEdge) { 965 if (Succ != TheRealDest) 966 RemovedSuccs.insert(Succ); 967 Succ->removePredecessor(TIBB); 968 } else 969 CheckEdge = nullptr; 970 971 // Insert the new branch. 972 Instruction *NI = Builder.CreateBr(TheRealDest); 973 (void)NI; 974 975 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 976 << "Through successor TI: " << *TI << "Leaving: " << *NI 977 << "\n"); 978 979 EraseTerminatorAndDCECond(TI); 980 if (DTU) { 981 SmallVector<DominatorTree::UpdateType, 2> Updates; 982 Updates.reserve(RemovedSuccs.size()); 983 for (auto *RemovedSucc : RemovedSuccs) 984 Updates.push_back({DominatorTree::Delete, TIBB, RemovedSucc}); 985 DTU->applyUpdates(Updates); 986 } 987 return true; 988 } 989 990 namespace { 991 992 /// This class implements a stable ordering of constant 993 /// integers that does not depend on their address. This is important for 994 /// applications that sort ConstantInt's to ensure uniqueness. 995 struct ConstantIntOrdering { 996 bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const { 997 return LHS->getValue().ult(RHS->getValue()); 998 } 999 }; 1000 1001 } // end anonymous namespace 1002 1003 static int ConstantIntSortPredicate(ConstantInt *const *P1, 1004 ConstantInt *const *P2) { 1005 const ConstantInt *LHS = *P1; 1006 const ConstantInt *RHS = *P2; 1007 if (LHS == RHS) 1008 return 0; 1009 return LHS->getValue().ult(RHS->getValue()) ? 1 : -1; 1010 } 1011 1012 static inline bool HasBranchWeights(const Instruction *I) { 1013 MDNode *ProfMD = I->getMetadata(LLVMContext::MD_prof); 1014 if (ProfMD && ProfMD->getOperand(0)) 1015 if (MDString *MDS = dyn_cast<MDString>(ProfMD->getOperand(0))) 1016 return MDS->getString().equals("branch_weights"); 1017 1018 return false; 1019 } 1020 1021 /// Get Weights of a given terminator, the default weight is at the front 1022 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight 1023 /// metadata. 1024 static void GetBranchWeights(Instruction *TI, 1025 SmallVectorImpl<uint64_t> &Weights) { 1026 MDNode *MD = TI->getMetadata(LLVMContext::MD_prof); 1027 assert(MD); 1028 for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) { 1029 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i)); 1030 Weights.push_back(CI->getValue().getZExtValue()); 1031 } 1032 1033 // If TI is a conditional eq, the default case is the false case, 1034 // and the corresponding branch-weight data is at index 2. We swap the 1035 // default weight to be the first entry. 1036 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 1037 assert(Weights.size() == 2); 1038 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 1039 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 1040 std::swap(Weights.front(), Weights.back()); 1041 } 1042 } 1043 1044 /// Keep halving the weights until all can fit in uint32_t. 1045 static void FitWeights(MutableArrayRef<uint64_t> Weights) { 1046 uint64_t Max = *std::max_element(Weights.begin(), Weights.end()); 1047 if (Max > UINT_MAX) { 1048 unsigned Offset = 32 - countLeadingZeros(Max); 1049 for (uint64_t &I : Weights) 1050 I >>= Offset; 1051 } 1052 } 1053 1054 static void CloneInstructionsIntoPredecessorBlockAndUpdateSSAUses( 1055 BasicBlock *BB, BasicBlock *PredBlock, ValueToValueMapTy &VMap) { 1056 Instruction *PTI = PredBlock->getTerminator(); 1057 1058 // If we have bonus instructions, clone them into the predecessor block. 1059 // Note that there may be multiple predecessor blocks, so we cannot move 1060 // bonus instructions to a predecessor block. 1061 for (Instruction &BonusInst : *BB) { 1062 if (isa<DbgInfoIntrinsic>(BonusInst) || BonusInst.isTerminator()) 1063 continue; 1064 1065 Instruction *NewBonusInst = BonusInst.clone(); 1066 1067 if (PTI->getDebugLoc() != NewBonusInst->getDebugLoc()) { 1068 // Unless the instruction has the same !dbg location as the original 1069 // branch, drop it. When we fold the bonus instructions we want to make 1070 // sure we reset their debug locations in order to avoid stepping on 1071 // dead code caused by folding dead branches. 1072 NewBonusInst->setDebugLoc(DebugLoc()); 1073 } 1074 1075 RemapInstruction(NewBonusInst, VMap, 1076 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 1077 VMap[&BonusInst] = NewBonusInst; 1078 1079 // If we moved a load, we cannot any longer claim any knowledge about 1080 // its potential value. The previous information might have been valid 1081 // only given the branch precondition. 1082 // For an analogous reason, we must also drop all the metadata whose 1083 // semantics we don't understand. We *can* preserve !annotation, because 1084 // it is tied to the instruction itself, not the value or position. 1085 NewBonusInst->dropUnknownNonDebugMetadata(LLVMContext::MD_annotation); 1086 1087 PredBlock->getInstList().insert(PTI->getIterator(), NewBonusInst); 1088 NewBonusInst->takeName(&BonusInst); 1089 BonusInst.setName(NewBonusInst->getName() + ".old"); 1090 1091 // Update (liveout) uses of bonus instructions, 1092 // now that the bonus instruction has been cloned into predecessor. 1093 SSAUpdater SSAUpdate; 1094 SSAUpdate.Initialize(BonusInst.getType(), 1095 (NewBonusInst->getName() + ".merge").str()); 1096 SSAUpdate.AddAvailableValue(BB, &BonusInst); 1097 SSAUpdate.AddAvailableValue(PredBlock, NewBonusInst); 1098 for (Use &U : make_early_inc_range(BonusInst.uses())) 1099 SSAUpdate.RewriteUseAfterInsertions(U); 1100 } 1101 } 1102 1103 bool SimplifyCFGOpt::PerformValueComparisonIntoPredecessorFolding( 1104 Instruction *TI, Value *&CV, Instruction *PTI, IRBuilder<> &Builder) { 1105 BasicBlock *BB = TI->getParent(); 1106 BasicBlock *Pred = PTI->getParent(); 1107 1108 std::vector<DominatorTree::UpdateType> Updates; 1109 1110 // Figure out which 'cases' to copy from SI to PSI. 1111 std::vector<ValueEqualityComparisonCase> BBCases; 1112 BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases); 1113 1114 std::vector<ValueEqualityComparisonCase> PredCases; 1115 BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases); 1116 1117 // Based on whether the default edge from PTI goes to BB or not, fill in 1118 // PredCases and PredDefault with the new switch cases we would like to 1119 // build. 1120 SmallMapVector<BasicBlock *, int, 8> NewSuccessors; 1121 1122 // Update the branch weight metadata along the way 1123 SmallVector<uint64_t, 8> Weights; 1124 bool PredHasWeights = HasBranchWeights(PTI); 1125 bool SuccHasWeights = HasBranchWeights(TI); 1126 1127 if (PredHasWeights) { 1128 GetBranchWeights(PTI, Weights); 1129 // branch-weight metadata is inconsistent here. 1130 if (Weights.size() != 1 + PredCases.size()) 1131 PredHasWeights = SuccHasWeights = false; 1132 } else if (SuccHasWeights) 1133 // If there are no predecessor weights but there are successor weights, 1134 // populate Weights with 1, which will later be scaled to the sum of 1135 // successor's weights 1136 Weights.assign(1 + PredCases.size(), 1); 1137 1138 SmallVector<uint64_t, 8> SuccWeights; 1139 if (SuccHasWeights) { 1140 GetBranchWeights(TI, SuccWeights); 1141 // branch-weight metadata is inconsistent here. 1142 if (SuccWeights.size() != 1 + BBCases.size()) 1143 PredHasWeights = SuccHasWeights = false; 1144 } else if (PredHasWeights) 1145 SuccWeights.assign(1 + BBCases.size(), 1); 1146 1147 if (PredDefault == BB) { 1148 // If this is the default destination from PTI, only the edges in TI 1149 // that don't occur in PTI, or that branch to BB will be activated. 1150 std::set<ConstantInt *, ConstantIntOrdering> PTIHandled; 1151 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 1152 if (PredCases[i].Dest != BB) 1153 PTIHandled.insert(PredCases[i].Value); 1154 else { 1155 // The default destination is BB, we don't need explicit targets. 1156 std::swap(PredCases[i], PredCases.back()); 1157 1158 if (PredHasWeights || SuccHasWeights) { 1159 // Increase weight for the default case. 1160 Weights[0] += Weights[i + 1]; 1161 std::swap(Weights[i + 1], Weights.back()); 1162 Weights.pop_back(); 1163 } 1164 1165 PredCases.pop_back(); 1166 --i; 1167 --e; 1168 } 1169 1170 // Reconstruct the new switch statement we will be building. 1171 if (PredDefault != BBDefault) { 1172 PredDefault->removePredecessor(Pred); 1173 if (PredDefault != BB) 1174 Updates.push_back({DominatorTree::Delete, Pred, PredDefault}); 1175 PredDefault = BBDefault; 1176 ++NewSuccessors[BBDefault]; 1177 } 1178 1179 unsigned CasesFromPred = Weights.size(); 1180 uint64_t ValidTotalSuccWeight = 0; 1181 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 1182 if (!PTIHandled.count(BBCases[i].Value) && BBCases[i].Dest != BBDefault) { 1183 PredCases.push_back(BBCases[i]); 1184 ++NewSuccessors[BBCases[i].Dest]; 1185 if (SuccHasWeights || PredHasWeights) { 1186 // The default weight is at index 0, so weight for the ith case 1187 // should be at index i+1. Scale the cases from successor by 1188 // PredDefaultWeight (Weights[0]). 1189 Weights.push_back(Weights[0] * SuccWeights[i + 1]); 1190 ValidTotalSuccWeight += SuccWeights[i + 1]; 1191 } 1192 } 1193 1194 if (SuccHasWeights || PredHasWeights) { 1195 ValidTotalSuccWeight += SuccWeights[0]; 1196 // Scale the cases from predecessor by ValidTotalSuccWeight. 1197 for (unsigned i = 1; i < CasesFromPred; ++i) 1198 Weights[i] *= ValidTotalSuccWeight; 1199 // Scale the default weight by SuccDefaultWeight (SuccWeights[0]). 1200 Weights[0] *= SuccWeights[0]; 1201 } 1202 } else { 1203 // If this is not the default destination from PSI, only the edges 1204 // in SI that occur in PSI with a destination of BB will be 1205 // activated. 1206 std::set<ConstantInt *, ConstantIntOrdering> PTIHandled; 1207 std::map<ConstantInt *, uint64_t> WeightsForHandled; 1208 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 1209 if (PredCases[i].Dest == BB) { 1210 PTIHandled.insert(PredCases[i].Value); 1211 1212 if (PredHasWeights || SuccHasWeights) { 1213 WeightsForHandled[PredCases[i].Value] = Weights[i + 1]; 1214 std::swap(Weights[i + 1], Weights.back()); 1215 Weights.pop_back(); 1216 } 1217 1218 std::swap(PredCases[i], PredCases.back()); 1219 PredCases.pop_back(); 1220 --i; 1221 --e; 1222 } 1223 1224 // Okay, now we know which constants were sent to BB from the 1225 // predecessor. Figure out where they will all go now. 1226 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 1227 if (PTIHandled.count(BBCases[i].Value)) { 1228 // If this is one we are capable of getting... 1229 if (PredHasWeights || SuccHasWeights) 1230 Weights.push_back(WeightsForHandled[BBCases[i].Value]); 1231 PredCases.push_back(BBCases[i]); 1232 ++NewSuccessors[BBCases[i].Dest]; 1233 PTIHandled.erase(BBCases[i].Value); // This constant is taken care of 1234 } 1235 1236 // If there are any constants vectored to BB that TI doesn't handle, 1237 // they must go to the default destination of TI. 1238 for (ConstantInt *I : PTIHandled) { 1239 if (PredHasWeights || SuccHasWeights) 1240 Weights.push_back(WeightsForHandled[I]); 1241 PredCases.push_back(ValueEqualityComparisonCase(I, BBDefault)); 1242 ++NewSuccessors[BBDefault]; 1243 } 1244 } 1245 1246 // Okay, at this point, we know which new successor Pred will get. Make 1247 // sure we update the number of entries in the PHI nodes for these 1248 // successors. 1249 for (const std::pair<BasicBlock *, int /*Num*/> &NewSuccessor : 1250 NewSuccessors) { 1251 for (auto I : seq(0, NewSuccessor.second)) { 1252 (void)I; 1253 AddPredecessorToBlock(NewSuccessor.first, Pred, BB); 1254 } 1255 if (!is_contained(successors(Pred), NewSuccessor.first)) 1256 Updates.push_back({DominatorTree::Insert, Pred, NewSuccessor.first}); 1257 } 1258 1259 Builder.SetInsertPoint(PTI); 1260 // Convert pointer to int before we switch. 1261 if (CV->getType()->isPointerTy()) { 1262 CV = 1263 Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()), "magicptr"); 1264 } 1265 1266 // Now that the successors are updated, create the new Switch instruction. 1267 SwitchInst *NewSI = Builder.CreateSwitch(CV, PredDefault, PredCases.size()); 1268 NewSI->setDebugLoc(PTI->getDebugLoc()); 1269 for (ValueEqualityComparisonCase &V : PredCases) 1270 NewSI->addCase(V.Value, V.Dest); 1271 1272 if (PredHasWeights || SuccHasWeights) { 1273 // Halve the weights if any of them cannot fit in an uint32_t 1274 FitWeights(Weights); 1275 1276 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 1277 1278 setBranchWeights(NewSI, MDWeights); 1279 } 1280 1281 EraseTerminatorAndDCECond(PTI); 1282 1283 // Okay, last check. If BB is still a successor of PSI, then we must 1284 // have an infinite loop case. If so, add an infinitely looping block 1285 // to handle the case to preserve the behavior of the code. 1286 BasicBlock *InfLoopBlock = nullptr; 1287 for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i) 1288 if (NewSI->getSuccessor(i) == BB) { 1289 if (!InfLoopBlock) { 1290 // Insert it at the end of the function, because it's either code, 1291 // or it won't matter if it's hot. :) 1292 InfLoopBlock = 1293 BasicBlock::Create(BB->getContext(), "infloop", BB->getParent()); 1294 BranchInst::Create(InfLoopBlock, InfLoopBlock); 1295 Updates.push_back({DominatorTree::Insert, InfLoopBlock, InfLoopBlock}); 1296 } 1297 NewSI->setSuccessor(i, InfLoopBlock); 1298 } 1299 1300 if (InfLoopBlock) 1301 Updates.push_back({DominatorTree::Insert, Pred, InfLoopBlock}); 1302 1303 Updates.push_back({DominatorTree::Delete, Pred, BB}); 1304 1305 if (DTU) 1306 DTU->applyUpdates(Updates); 1307 1308 ++NumFoldValueComparisonIntoPredecessors; 1309 return true; 1310 } 1311 1312 /// The specified terminator is a value equality comparison instruction 1313 /// (either a switch or a branch on "X == c"). 1314 /// See if any of the predecessors of the terminator block are value comparisons 1315 /// on the same value. If so, and if safe to do so, fold them together. 1316 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(Instruction *TI, 1317 IRBuilder<> &Builder) { 1318 BasicBlock *BB = TI->getParent(); 1319 Value *CV = isValueEqualityComparison(TI); // CondVal 1320 assert(CV && "Not a comparison?"); 1321 1322 bool Changed = false; 1323 1324 SmallSetVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB)); 1325 while (!Preds.empty()) { 1326 BasicBlock *Pred = Preds.pop_back_val(); 1327 Instruction *PTI = Pred->getTerminator(); 1328 1329 // Don't try to fold into itself. 1330 if (Pred == BB) 1331 continue; 1332 1333 // See if the predecessor is a comparison with the same value. 1334 Value *PCV = isValueEqualityComparison(PTI); // PredCondVal 1335 if (PCV != CV) 1336 continue; 1337 1338 SmallSetVector<BasicBlock *, 4> FailBlocks; 1339 if (!SafeToMergeTerminators(TI, PTI, &FailBlocks)) { 1340 for (auto *Succ : FailBlocks) { 1341 if (!SplitBlockPredecessors(Succ, TI->getParent(), ".fold.split", DTU)) 1342 return false; 1343 } 1344 } 1345 1346 PerformValueComparisonIntoPredecessorFolding(TI, CV, PTI, Builder); 1347 Changed = true; 1348 } 1349 return Changed; 1350 } 1351 1352 // If we would need to insert a select that uses the value of this invoke 1353 // (comments in HoistThenElseCodeToIf explain why we would need to do this), we 1354 // can't hoist the invoke, as there is nowhere to put the select in this case. 1355 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2, 1356 Instruction *I1, Instruction *I2) { 1357 for (BasicBlock *Succ : successors(BB1)) { 1358 for (const PHINode &PN : Succ->phis()) { 1359 Value *BB1V = PN.getIncomingValueForBlock(BB1); 1360 Value *BB2V = PN.getIncomingValueForBlock(BB2); 1361 if (BB1V != BB2V && (BB1V == I1 || BB2V == I2)) { 1362 return false; 1363 } 1364 } 1365 } 1366 return true; 1367 } 1368 1369 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I, bool PtrValueMayBeModified = false); 1370 1371 /// Given a conditional branch that goes to BB1 and BB2, hoist any common code 1372 /// in the two blocks up into the branch block. The caller of this function 1373 /// guarantees that BI's block dominates BB1 and BB2. 1374 bool SimplifyCFGOpt::HoistThenElseCodeToIf(BranchInst *BI, 1375 const TargetTransformInfo &TTI) { 1376 // This does very trivial matching, with limited scanning, to find identical 1377 // instructions in the two blocks. In particular, we don't want to get into 1378 // O(M*N) situations here where M and N are the sizes of BB1 and BB2. As 1379 // such, we currently just scan for obviously identical instructions in an 1380 // identical order. 1381 BasicBlock *BB1 = BI->getSuccessor(0); // The true destination. 1382 BasicBlock *BB2 = BI->getSuccessor(1); // The false destination 1383 1384 BasicBlock::iterator BB1_Itr = BB1->begin(); 1385 BasicBlock::iterator BB2_Itr = BB2->begin(); 1386 1387 Instruction *I1 = &*BB1_Itr++, *I2 = &*BB2_Itr++; 1388 // Skip debug info if it is not identical. 1389 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1390 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1391 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1392 while (isa<DbgInfoIntrinsic>(I1)) 1393 I1 = &*BB1_Itr++; 1394 while (isa<DbgInfoIntrinsic>(I2)) 1395 I2 = &*BB2_Itr++; 1396 } 1397 // FIXME: Can we define a safety predicate for CallBr? 1398 if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) || 1399 (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) || 1400 isa<CallBrInst>(I1)) 1401 return false; 1402 1403 BasicBlock *BIParent = BI->getParent(); 1404 1405 bool Changed = false; 1406 1407 auto _ = make_scope_exit([&]() { 1408 if (Changed) 1409 ++NumHoistCommonCode; 1410 }); 1411 1412 do { 1413 // If we are hoisting the terminator instruction, don't move one (making a 1414 // broken BB), instead clone it, and remove BI. 1415 if (I1->isTerminator()) 1416 goto HoistTerminator; 1417 1418 // If we're going to hoist a call, make sure that the two instructions we're 1419 // commoning/hoisting are both marked with musttail, or neither of them is 1420 // marked as such. Otherwise, we might end up in a situation where we hoist 1421 // from a block where the terminator is a `ret` to a block where the terminator 1422 // is a `br`, and `musttail` calls expect to be followed by a return. 1423 auto *C1 = dyn_cast<CallInst>(I1); 1424 auto *C2 = dyn_cast<CallInst>(I2); 1425 if (C1 && C2) 1426 if (C1->isMustTailCall() != C2->isMustTailCall()) 1427 return Changed; 1428 1429 if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2)) 1430 return Changed; 1431 1432 // If any of the two call sites has nomerge attribute, stop hoisting. 1433 if (const auto *CB1 = dyn_cast<CallBase>(I1)) 1434 if (CB1->cannotMerge()) 1435 return Changed; 1436 if (const auto *CB2 = dyn_cast<CallBase>(I2)) 1437 if (CB2->cannotMerge()) 1438 return Changed; 1439 1440 if (isa<DbgInfoIntrinsic>(I1) || isa<DbgInfoIntrinsic>(I2)) { 1441 assert (isa<DbgInfoIntrinsic>(I1) && isa<DbgInfoIntrinsic>(I2)); 1442 // The debug location is an integral part of a debug info intrinsic 1443 // and can't be separated from it or replaced. Instead of attempting 1444 // to merge locations, simply hoist both copies of the intrinsic. 1445 BIParent->getInstList().splice(BI->getIterator(), 1446 BB1->getInstList(), I1); 1447 BIParent->getInstList().splice(BI->getIterator(), 1448 BB2->getInstList(), I2); 1449 Changed = true; 1450 } else { 1451 // For a normal instruction, we just move one to right before the branch, 1452 // then replace all uses of the other with the first. Finally, we remove 1453 // the now redundant second instruction. 1454 BIParent->getInstList().splice(BI->getIterator(), 1455 BB1->getInstList(), I1); 1456 if (!I2->use_empty()) 1457 I2->replaceAllUsesWith(I1); 1458 I1->andIRFlags(I2); 1459 unsigned KnownIDs[] = {LLVMContext::MD_tbaa, 1460 LLVMContext::MD_range, 1461 LLVMContext::MD_fpmath, 1462 LLVMContext::MD_invariant_load, 1463 LLVMContext::MD_nonnull, 1464 LLVMContext::MD_invariant_group, 1465 LLVMContext::MD_align, 1466 LLVMContext::MD_dereferenceable, 1467 LLVMContext::MD_dereferenceable_or_null, 1468 LLVMContext::MD_mem_parallel_loop_access, 1469 LLVMContext::MD_access_group, 1470 LLVMContext::MD_preserve_access_index}; 1471 combineMetadata(I1, I2, KnownIDs, true); 1472 1473 // I1 and I2 are being combined into a single instruction. Its debug 1474 // location is the merged locations of the original instructions. 1475 I1->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc()); 1476 1477 I2->eraseFromParent(); 1478 Changed = true; 1479 } 1480 ++NumHoistCommonInstrs; 1481 1482 I1 = &*BB1_Itr++; 1483 I2 = &*BB2_Itr++; 1484 // Skip debug info if it is not identical. 1485 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1486 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1487 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1488 while (isa<DbgInfoIntrinsic>(I1)) 1489 I1 = &*BB1_Itr++; 1490 while (isa<DbgInfoIntrinsic>(I2)) 1491 I2 = &*BB2_Itr++; 1492 } 1493 } while (I1->isIdenticalToWhenDefined(I2)); 1494 1495 return true; 1496 1497 HoistTerminator: 1498 // It may not be possible to hoist an invoke. 1499 // FIXME: Can we define a safety predicate for CallBr? 1500 if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) 1501 return Changed; 1502 1503 // TODO: callbr hoisting currently disabled pending further study. 1504 if (isa<CallBrInst>(I1)) 1505 return Changed; 1506 1507 for (BasicBlock *Succ : successors(BB1)) { 1508 for (PHINode &PN : Succ->phis()) { 1509 Value *BB1V = PN.getIncomingValueForBlock(BB1); 1510 Value *BB2V = PN.getIncomingValueForBlock(BB2); 1511 if (BB1V == BB2V) 1512 continue; 1513 1514 // Check for passingValueIsAlwaysUndefined here because we would rather 1515 // eliminate undefined control flow then converting it to a select. 1516 if (passingValueIsAlwaysUndefined(BB1V, &PN) || 1517 passingValueIsAlwaysUndefined(BB2V, &PN)) 1518 return Changed; 1519 1520 if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V)) 1521 return Changed; 1522 if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V)) 1523 return Changed; 1524 } 1525 } 1526 1527 // Okay, it is safe to hoist the terminator. 1528 Instruction *NT = I1->clone(); 1529 BIParent->getInstList().insert(BI->getIterator(), NT); 1530 if (!NT->getType()->isVoidTy()) { 1531 I1->replaceAllUsesWith(NT); 1532 I2->replaceAllUsesWith(NT); 1533 NT->takeName(I1); 1534 } 1535 Changed = true; 1536 ++NumHoistCommonInstrs; 1537 1538 // Ensure terminator gets a debug location, even an unknown one, in case 1539 // it involves inlinable calls. 1540 NT->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc()); 1541 1542 // PHIs created below will adopt NT's merged DebugLoc. 1543 IRBuilder<NoFolder> Builder(NT); 1544 1545 // Hoisting one of the terminators from our successor is a great thing. 1546 // Unfortunately, the successors of the if/else blocks may have PHI nodes in 1547 // them. If they do, all PHI entries for BB1/BB2 must agree for all PHI 1548 // nodes, so we insert select instruction to compute the final result. 1549 std::map<std::pair<Value *, Value *>, SelectInst *> InsertedSelects; 1550 for (BasicBlock *Succ : successors(BB1)) { 1551 for (PHINode &PN : Succ->phis()) { 1552 Value *BB1V = PN.getIncomingValueForBlock(BB1); 1553 Value *BB2V = PN.getIncomingValueForBlock(BB2); 1554 if (BB1V == BB2V) 1555 continue; 1556 1557 // These values do not agree. Insert a select instruction before NT 1558 // that determines the right value. 1559 SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)]; 1560 if (!SI) { 1561 // Propagate fast-math-flags from phi node to its replacement select. 1562 IRBuilder<>::FastMathFlagGuard FMFGuard(Builder); 1563 if (isa<FPMathOperator>(PN)) 1564 Builder.setFastMathFlags(PN.getFastMathFlags()); 1565 1566 SI = cast<SelectInst>( 1567 Builder.CreateSelect(BI->getCondition(), BB1V, BB2V, 1568 BB1V->getName() + "." + BB2V->getName(), BI)); 1569 } 1570 1571 // Make the PHI node use the select for all incoming values for BB1/BB2 1572 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) 1573 if (PN.getIncomingBlock(i) == BB1 || PN.getIncomingBlock(i) == BB2) 1574 PN.setIncomingValue(i, SI); 1575 } 1576 } 1577 1578 SmallVector<DominatorTree::UpdateType, 4> Updates; 1579 1580 // Update any PHI nodes in our new successors. 1581 for (BasicBlock *Succ : successors(BB1)) { 1582 AddPredecessorToBlock(Succ, BIParent, BB1); 1583 Updates.push_back({DominatorTree::Insert, BIParent, Succ}); 1584 } 1585 for (BasicBlock *Succ : successors(BI)) 1586 Updates.push_back({DominatorTree::Delete, BIParent, Succ}); 1587 1588 EraseTerminatorAndDCECond(BI); 1589 if (DTU) 1590 DTU->applyUpdates(Updates); 1591 return Changed; 1592 } 1593 1594 // Check lifetime markers. 1595 static bool isLifeTimeMarker(const Instruction *I) { 1596 if (auto II = dyn_cast<IntrinsicInst>(I)) { 1597 switch (II->getIntrinsicID()) { 1598 default: 1599 break; 1600 case Intrinsic::lifetime_start: 1601 case Intrinsic::lifetime_end: 1602 return true; 1603 } 1604 } 1605 return false; 1606 } 1607 1608 // TODO: Refine this. This should avoid cases like turning constant memcpy sizes 1609 // into variables. 1610 static bool replacingOperandWithVariableIsCheap(const Instruction *I, 1611 int OpIdx) { 1612 return !isa<IntrinsicInst>(I); 1613 } 1614 1615 // All instructions in Insts belong to different blocks that all unconditionally 1616 // branch to a common successor. Analyze each instruction and return true if it 1617 // would be possible to sink them into their successor, creating one common 1618 // instruction instead. For every value that would be required to be provided by 1619 // PHI node (because an operand varies in each input block), add to PHIOperands. 1620 static bool canSinkInstructions( 1621 ArrayRef<Instruction *> Insts, 1622 DenseMap<Instruction *, SmallVector<Value *, 4>> &PHIOperands) { 1623 // Prune out obviously bad instructions to move. Each instruction must have 1624 // exactly zero or one use, and we check later that use is by a single, common 1625 // PHI instruction in the successor. 1626 bool HasUse = !Insts.front()->user_empty(); 1627 for (auto *I : Insts) { 1628 // These instructions may change or break semantics if moved. 1629 if (isa<PHINode>(I) || I->isEHPad() || isa<AllocaInst>(I) || 1630 I->getType()->isTokenTy()) 1631 return false; 1632 1633 // Conservatively return false if I is an inline-asm instruction. Sinking 1634 // and merging inline-asm instructions can potentially create arguments 1635 // that cannot satisfy the inline-asm constraints. 1636 // If the instruction has nomerge attribute, return false. 1637 if (const auto *C = dyn_cast<CallBase>(I)) 1638 if (C->isInlineAsm() || C->cannotMerge()) 1639 return false; 1640 1641 // Each instruction must have zero or one use. 1642 if (HasUse && !I->hasOneUse()) 1643 return false; 1644 if (!HasUse && !I->user_empty()) 1645 return false; 1646 } 1647 1648 const Instruction *I0 = Insts.front(); 1649 for (auto *I : Insts) 1650 if (!I->isSameOperationAs(I0)) 1651 return false; 1652 1653 // All instructions in Insts are known to be the same opcode. If they have a 1654 // use, check that the only user is a PHI or in the same block as the 1655 // instruction, because if a user is in the same block as an instruction we're 1656 // contemplating sinking, it must already be determined to be sinkable. 1657 if (HasUse) { 1658 auto *PNUse = dyn_cast<PHINode>(*I0->user_begin()); 1659 auto *Succ = I0->getParent()->getTerminator()->getSuccessor(0); 1660 if (!all_of(Insts, [&PNUse,&Succ](const Instruction *I) -> bool { 1661 auto *U = cast<Instruction>(*I->user_begin()); 1662 return (PNUse && 1663 PNUse->getParent() == Succ && 1664 PNUse->getIncomingValueForBlock(I->getParent()) == I) || 1665 U->getParent() == I->getParent(); 1666 })) 1667 return false; 1668 } 1669 1670 // Because SROA can't handle speculating stores of selects, try not to sink 1671 // loads, stores or lifetime markers of allocas when we'd have to create a 1672 // PHI for the address operand. Also, because it is likely that loads or 1673 // stores of allocas will disappear when Mem2Reg/SROA is run, don't sink 1674 // them. 1675 // This can cause code churn which can have unintended consequences down 1676 // the line - see https://llvm.org/bugs/show_bug.cgi?id=30244. 1677 // FIXME: This is a workaround for a deficiency in SROA - see 1678 // https://llvm.org/bugs/show_bug.cgi?id=30188 1679 if (isa<StoreInst>(I0) && any_of(Insts, [](const Instruction *I) { 1680 return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts()); 1681 })) 1682 return false; 1683 if (isa<LoadInst>(I0) && any_of(Insts, [](const Instruction *I) { 1684 return isa<AllocaInst>(I->getOperand(0)->stripPointerCasts()); 1685 })) 1686 return false; 1687 if (isLifeTimeMarker(I0) && any_of(Insts, [](const Instruction *I) { 1688 return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts()); 1689 })) 1690 return false; 1691 1692 for (unsigned OI = 0, OE = I0->getNumOperands(); OI != OE; ++OI) { 1693 Value *Op = I0->getOperand(OI); 1694 if (Op->getType()->isTokenTy()) 1695 // Don't touch any operand of token type. 1696 return false; 1697 1698 auto SameAsI0 = [&I0, OI](const Instruction *I) { 1699 assert(I->getNumOperands() == I0->getNumOperands()); 1700 return I->getOperand(OI) == I0->getOperand(OI); 1701 }; 1702 if (!all_of(Insts, SameAsI0)) { 1703 if ((isa<Constant>(Op) && !replacingOperandWithVariableIsCheap(I0, OI)) || 1704 !canReplaceOperandWithVariable(I0, OI)) 1705 // We can't create a PHI from this GEP. 1706 return false; 1707 // Don't create indirect calls! The called value is the final operand. 1708 if (isa<CallBase>(I0) && OI == OE - 1) { 1709 // FIXME: if the call was *already* indirect, we should do this. 1710 return false; 1711 } 1712 for (auto *I : Insts) 1713 PHIOperands[I].push_back(I->getOperand(OI)); 1714 } 1715 } 1716 return true; 1717 } 1718 1719 // Assuming canSinkLastInstruction(Blocks) has returned true, sink the last 1720 // instruction of every block in Blocks to their common successor, commoning 1721 // into one instruction. 1722 static bool sinkLastInstruction(ArrayRef<BasicBlock*> Blocks) { 1723 auto *BBEnd = Blocks[0]->getTerminator()->getSuccessor(0); 1724 1725 // canSinkLastInstruction returning true guarantees that every block has at 1726 // least one non-terminator instruction. 1727 SmallVector<Instruction*,4> Insts; 1728 for (auto *BB : Blocks) { 1729 Instruction *I = BB->getTerminator(); 1730 do { 1731 I = I->getPrevNode(); 1732 } while (isa<DbgInfoIntrinsic>(I) && I != &BB->front()); 1733 if (!isa<DbgInfoIntrinsic>(I)) 1734 Insts.push_back(I); 1735 } 1736 1737 // The only checking we need to do now is that all users of all instructions 1738 // are the same PHI node. canSinkLastInstruction should have checked this but 1739 // it is slightly over-aggressive - it gets confused by commutative instructions 1740 // so double-check it here. 1741 Instruction *I0 = Insts.front(); 1742 if (!I0->user_empty()) { 1743 auto *PNUse = dyn_cast<PHINode>(*I0->user_begin()); 1744 if (!all_of(Insts, [&PNUse](const Instruction *I) -> bool { 1745 auto *U = cast<Instruction>(*I->user_begin()); 1746 return U == PNUse; 1747 })) 1748 return false; 1749 } 1750 1751 // We don't need to do any more checking here; canSinkLastInstruction should 1752 // have done it all for us. 1753 SmallVector<Value*, 4> NewOperands; 1754 for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) { 1755 // This check is different to that in canSinkLastInstruction. There, we 1756 // cared about the global view once simplifycfg (and instcombine) have 1757 // completed - it takes into account PHIs that become trivially 1758 // simplifiable. However here we need a more local view; if an operand 1759 // differs we create a PHI and rely on instcombine to clean up the very 1760 // small mess we may make. 1761 bool NeedPHI = any_of(Insts, [&I0, O](const Instruction *I) { 1762 return I->getOperand(O) != I0->getOperand(O); 1763 }); 1764 if (!NeedPHI) { 1765 NewOperands.push_back(I0->getOperand(O)); 1766 continue; 1767 } 1768 1769 // Create a new PHI in the successor block and populate it. 1770 auto *Op = I0->getOperand(O); 1771 assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!"); 1772 auto *PN = PHINode::Create(Op->getType(), Insts.size(), 1773 Op->getName() + ".sink", &BBEnd->front()); 1774 for (auto *I : Insts) 1775 PN->addIncoming(I->getOperand(O), I->getParent()); 1776 NewOperands.push_back(PN); 1777 } 1778 1779 // Arbitrarily use I0 as the new "common" instruction; remap its operands 1780 // and move it to the start of the successor block. 1781 for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) 1782 I0->getOperandUse(O).set(NewOperands[O]); 1783 I0->moveBefore(&*BBEnd->getFirstInsertionPt()); 1784 1785 // Update metadata and IR flags, and merge debug locations. 1786 for (auto *I : Insts) 1787 if (I != I0) { 1788 // The debug location for the "common" instruction is the merged locations 1789 // of all the commoned instructions. We start with the original location 1790 // of the "common" instruction and iteratively merge each location in the 1791 // loop below. 1792 // This is an N-way merge, which will be inefficient if I0 is a CallInst. 1793 // However, as N-way merge for CallInst is rare, so we use simplified API 1794 // instead of using complex API for N-way merge. 1795 I0->applyMergedLocation(I0->getDebugLoc(), I->getDebugLoc()); 1796 combineMetadataForCSE(I0, I, true); 1797 I0->andIRFlags(I); 1798 } 1799 1800 if (!I0->user_empty()) { 1801 // canSinkLastInstruction checked that all instructions were used by 1802 // one and only one PHI node. Find that now, RAUW it to our common 1803 // instruction and nuke it. 1804 auto *PN = cast<PHINode>(*I0->user_begin()); 1805 PN->replaceAllUsesWith(I0); 1806 PN->eraseFromParent(); 1807 } 1808 1809 // Finally nuke all instructions apart from the common instruction. 1810 for (auto *I : Insts) 1811 if (I != I0) 1812 I->eraseFromParent(); 1813 1814 return true; 1815 } 1816 1817 namespace { 1818 1819 // LockstepReverseIterator - Iterates through instructions 1820 // in a set of blocks in reverse order from the first non-terminator. 1821 // For example (assume all blocks have size n): 1822 // LockstepReverseIterator I([B1, B2, B3]); 1823 // *I-- = [B1[n], B2[n], B3[n]]; 1824 // *I-- = [B1[n-1], B2[n-1], B3[n-1]]; 1825 // *I-- = [B1[n-2], B2[n-2], B3[n-2]]; 1826 // ... 1827 class LockstepReverseIterator { 1828 ArrayRef<BasicBlock*> Blocks; 1829 SmallVector<Instruction*,4> Insts; 1830 bool Fail; 1831 1832 public: 1833 LockstepReverseIterator(ArrayRef<BasicBlock*> Blocks) : Blocks(Blocks) { 1834 reset(); 1835 } 1836 1837 void reset() { 1838 Fail = false; 1839 Insts.clear(); 1840 for (auto *BB : Blocks) { 1841 Instruction *Inst = BB->getTerminator(); 1842 for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);) 1843 Inst = Inst->getPrevNode(); 1844 if (!Inst) { 1845 // Block wasn't big enough. 1846 Fail = true; 1847 return; 1848 } 1849 Insts.push_back(Inst); 1850 } 1851 } 1852 1853 bool isValid() const { 1854 return !Fail; 1855 } 1856 1857 void operator--() { 1858 if (Fail) 1859 return; 1860 for (auto *&Inst : Insts) { 1861 for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);) 1862 Inst = Inst->getPrevNode(); 1863 // Already at beginning of block. 1864 if (!Inst) { 1865 Fail = true; 1866 return; 1867 } 1868 } 1869 } 1870 1871 ArrayRef<Instruction*> operator * () const { 1872 return Insts; 1873 } 1874 }; 1875 1876 } // end anonymous namespace 1877 1878 /// Check whether BB's predecessors end with unconditional branches. If it is 1879 /// true, sink any common code from the predecessors to BB. 1880 /// We also allow one predecessor to end with conditional branch (but no more 1881 /// than one). 1882 static bool SinkCommonCodeFromPredecessors(BasicBlock *BB, 1883 DomTreeUpdater *DTU) { 1884 // We support two situations: 1885 // (1) all incoming arcs are unconditional 1886 // (2) one incoming arc is conditional 1887 // 1888 // (2) is very common in switch defaults and 1889 // else-if patterns; 1890 // 1891 // if (a) f(1); 1892 // else if (b) f(2); 1893 // 1894 // produces: 1895 // 1896 // [if] 1897 // / \ 1898 // [f(1)] [if] 1899 // | | \ 1900 // | | | 1901 // | [f(2)]| 1902 // \ | / 1903 // [ end ] 1904 // 1905 // [end] has two unconditional predecessor arcs and one conditional. The 1906 // conditional refers to the implicit empty 'else' arc. This conditional 1907 // arc can also be caused by an empty default block in a switch. 1908 // 1909 // In this case, we attempt to sink code from all *unconditional* arcs. 1910 // If we can sink instructions from these arcs (determined during the scan 1911 // phase below) we insert a common successor for all unconditional arcs and 1912 // connect that to [end], to enable sinking: 1913 // 1914 // [if] 1915 // / \ 1916 // [x(1)] [if] 1917 // | | \ 1918 // | | \ 1919 // | [x(2)] | 1920 // \ / | 1921 // [sink.split] | 1922 // \ / 1923 // [ end ] 1924 // 1925 SmallVector<BasicBlock*,4> UnconditionalPreds; 1926 Instruction *Cond = nullptr; 1927 for (auto *B : predecessors(BB)) { 1928 auto *T = B->getTerminator(); 1929 if (isa<BranchInst>(T) && cast<BranchInst>(T)->isUnconditional()) 1930 UnconditionalPreds.push_back(B); 1931 else if ((isa<BranchInst>(T) || isa<SwitchInst>(T)) && !Cond) 1932 Cond = T; 1933 else 1934 return false; 1935 } 1936 if (UnconditionalPreds.size() < 2) 1937 return false; 1938 1939 // We take a two-step approach to tail sinking. First we scan from the end of 1940 // each block upwards in lockstep. If the n'th instruction from the end of each 1941 // block can be sunk, those instructions are added to ValuesToSink and we 1942 // carry on. If we can sink an instruction but need to PHI-merge some operands 1943 // (because they're not identical in each instruction) we add these to 1944 // PHIOperands. 1945 unsigned ScanIdx = 0; 1946 SmallPtrSet<Value*,4> InstructionsToSink; 1947 DenseMap<Instruction*, SmallVector<Value*,4>> PHIOperands; 1948 LockstepReverseIterator LRI(UnconditionalPreds); 1949 while (LRI.isValid() && 1950 canSinkInstructions(*LRI, PHIOperands)) { 1951 LLVM_DEBUG(dbgs() << "SINK: instruction can be sunk: " << *(*LRI)[0] 1952 << "\n"); 1953 InstructionsToSink.insert((*LRI).begin(), (*LRI).end()); 1954 ++ScanIdx; 1955 --LRI; 1956 } 1957 1958 // If no instructions can be sunk, early-return. 1959 if (ScanIdx == 0) 1960 return false; 1961 1962 bool Changed = false; 1963 1964 auto ProfitableToSinkInstruction = [&](LockstepReverseIterator &LRI) { 1965 unsigned NumPHIdValues = 0; 1966 for (auto *I : *LRI) 1967 for (auto *V : PHIOperands[I]) 1968 if (InstructionsToSink.count(V) == 0) 1969 ++NumPHIdValues; 1970 LLVM_DEBUG(dbgs() << "SINK: #phid values: " << NumPHIdValues << "\n"); 1971 unsigned NumPHIInsts = NumPHIdValues / UnconditionalPreds.size(); 1972 if ((NumPHIdValues % UnconditionalPreds.size()) != 0) 1973 NumPHIInsts++; 1974 1975 return NumPHIInsts <= 1; 1976 }; 1977 1978 if (Cond) { 1979 // Check if we would actually sink anything first! This mutates the CFG and 1980 // adds an extra block. The goal in doing this is to allow instructions that 1981 // couldn't be sunk before to be sunk - obviously, speculatable instructions 1982 // (such as trunc, add) can be sunk and predicated already. So we check that 1983 // we're going to sink at least one non-speculatable instruction. 1984 LRI.reset(); 1985 unsigned Idx = 0; 1986 bool Profitable = false; 1987 while (ProfitableToSinkInstruction(LRI) && Idx < ScanIdx) { 1988 if (!isSafeToSpeculativelyExecute((*LRI)[0])) { 1989 Profitable = true; 1990 break; 1991 } 1992 --LRI; 1993 ++Idx; 1994 } 1995 if (!Profitable) 1996 return false; 1997 1998 LLVM_DEBUG(dbgs() << "SINK: Splitting edge\n"); 1999 // We have a conditional edge and we're going to sink some instructions. 2000 // Insert a new block postdominating all blocks we're going to sink from. 2001 if (!SplitBlockPredecessors(BB, UnconditionalPreds, ".sink.split", DTU)) 2002 // Edges couldn't be split. 2003 return false; 2004 Changed = true; 2005 } 2006 2007 // Now that we've analyzed all potential sinking candidates, perform the 2008 // actual sink. We iteratively sink the last non-terminator of the source 2009 // blocks into their common successor unless doing so would require too 2010 // many PHI instructions to be generated (currently only one PHI is allowed 2011 // per sunk instruction). 2012 // 2013 // We can use InstructionsToSink to discount values needing PHI-merging that will 2014 // actually be sunk in a later iteration. This allows us to be more 2015 // aggressive in what we sink. This does allow a false positive where we 2016 // sink presuming a later value will also be sunk, but stop half way through 2017 // and never actually sink it which means we produce more PHIs than intended. 2018 // This is unlikely in practice though. 2019 unsigned SinkIdx = 0; 2020 for (; SinkIdx != ScanIdx; ++SinkIdx) { 2021 LLVM_DEBUG(dbgs() << "SINK: Sink: " 2022 << *UnconditionalPreds[0]->getTerminator()->getPrevNode() 2023 << "\n"); 2024 2025 // Because we've sunk every instruction in turn, the current instruction to 2026 // sink is always at index 0. 2027 LRI.reset(); 2028 if (!ProfitableToSinkInstruction(LRI)) { 2029 // Too many PHIs would be created. 2030 LLVM_DEBUG( 2031 dbgs() << "SINK: stopping here, too many PHIs would be created!\n"); 2032 break; 2033 } 2034 2035 if (!sinkLastInstruction(UnconditionalPreds)) { 2036 LLVM_DEBUG( 2037 dbgs() 2038 << "SINK: stopping here, failed to actually sink instruction!\n"); 2039 break; 2040 } 2041 2042 NumSinkCommonInstrs++; 2043 Changed = true; 2044 } 2045 if (SinkIdx != 0) 2046 ++NumSinkCommonCode; 2047 return Changed; 2048 } 2049 2050 /// Determine if we can hoist sink a sole store instruction out of a 2051 /// conditional block. 2052 /// 2053 /// We are looking for code like the following: 2054 /// BrBB: 2055 /// store i32 %add, i32* %arrayidx2 2056 /// ... // No other stores or function calls (we could be calling a memory 2057 /// ... // function). 2058 /// %cmp = icmp ult %x, %y 2059 /// br i1 %cmp, label %EndBB, label %ThenBB 2060 /// ThenBB: 2061 /// store i32 %add5, i32* %arrayidx2 2062 /// br label EndBB 2063 /// EndBB: 2064 /// ... 2065 /// We are going to transform this into: 2066 /// BrBB: 2067 /// store i32 %add, i32* %arrayidx2 2068 /// ... // 2069 /// %cmp = icmp ult %x, %y 2070 /// %add.add5 = select i1 %cmp, i32 %add, %add5 2071 /// store i32 %add.add5, i32* %arrayidx2 2072 /// ... 2073 /// 2074 /// \return The pointer to the value of the previous store if the store can be 2075 /// hoisted into the predecessor block. 0 otherwise. 2076 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB, 2077 BasicBlock *StoreBB, BasicBlock *EndBB) { 2078 StoreInst *StoreToHoist = dyn_cast<StoreInst>(I); 2079 if (!StoreToHoist) 2080 return nullptr; 2081 2082 // Volatile or atomic. 2083 if (!StoreToHoist->isSimple()) 2084 return nullptr; 2085 2086 Value *StorePtr = StoreToHoist->getPointerOperand(); 2087 2088 // Look for a store to the same pointer in BrBB. 2089 unsigned MaxNumInstToLookAt = 9; 2090 // Skip pseudo probe intrinsic calls which are not really killing any memory 2091 // accesses. 2092 for (Instruction &CurI : reverse(BrBB->instructionsWithoutDebug(true))) { 2093 if (!MaxNumInstToLookAt) 2094 break; 2095 --MaxNumInstToLookAt; 2096 2097 // Could be calling an instruction that affects memory like free(). 2098 if (CurI.mayHaveSideEffects() && !isa<StoreInst>(CurI)) 2099 return nullptr; 2100 2101 if (auto *SI = dyn_cast<StoreInst>(&CurI)) { 2102 // Found the previous store make sure it stores to the same location. 2103 if (SI->getPointerOperand() == StorePtr) 2104 // Found the previous store, return its value operand. 2105 return SI->getValueOperand(); 2106 return nullptr; // Unknown store. 2107 } 2108 } 2109 2110 return nullptr; 2111 } 2112 2113 /// Estimate the cost of the insertion(s) and check that the PHI nodes can be 2114 /// converted to selects. 2115 static bool validateAndCostRequiredSelects(BasicBlock *BB, BasicBlock *ThenBB, 2116 BasicBlock *EndBB, 2117 unsigned &SpeculatedInstructions, 2118 InstructionCost &Cost, 2119 const TargetTransformInfo &TTI) { 2120 TargetTransformInfo::TargetCostKind CostKind = 2121 BB->getParent()->hasMinSize() 2122 ? TargetTransformInfo::TCK_CodeSize 2123 : TargetTransformInfo::TCK_SizeAndLatency; 2124 2125 bool HaveRewritablePHIs = false; 2126 for (PHINode &PN : EndBB->phis()) { 2127 Value *OrigV = PN.getIncomingValueForBlock(BB); 2128 Value *ThenV = PN.getIncomingValueForBlock(ThenBB); 2129 2130 // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf. 2131 // Skip PHIs which are trivial. 2132 if (ThenV == OrigV) 2133 continue; 2134 2135 Cost += TTI.getCmpSelInstrCost(Instruction::Select, PN.getType(), nullptr, 2136 CmpInst::BAD_ICMP_PREDICATE, CostKind); 2137 2138 // Don't convert to selects if we could remove undefined behavior instead. 2139 if (passingValueIsAlwaysUndefined(OrigV, &PN) || 2140 passingValueIsAlwaysUndefined(ThenV, &PN)) 2141 return false; 2142 2143 HaveRewritablePHIs = true; 2144 ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV); 2145 ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV); 2146 if (!OrigCE && !ThenCE) 2147 continue; // Known safe and cheap. 2148 2149 if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE)) || 2150 (OrigCE && !isSafeToSpeculativelyExecute(OrigCE))) 2151 return false; 2152 InstructionCost OrigCost = OrigCE ? computeSpeculationCost(OrigCE, TTI) : 0; 2153 InstructionCost ThenCost = ThenCE ? computeSpeculationCost(ThenCE, TTI) : 0; 2154 InstructionCost MaxCost = 2155 2 * PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 2156 if (OrigCost + ThenCost > MaxCost) 2157 return false; 2158 2159 // Account for the cost of an unfolded ConstantExpr which could end up 2160 // getting expanded into Instructions. 2161 // FIXME: This doesn't account for how many operations are combined in the 2162 // constant expression. 2163 ++SpeculatedInstructions; 2164 if (SpeculatedInstructions > 1) 2165 return false; 2166 } 2167 2168 return HaveRewritablePHIs; 2169 } 2170 2171 /// Speculate a conditional basic block flattening the CFG. 2172 /// 2173 /// Note that this is a very risky transform currently. Speculating 2174 /// instructions like this is most often not desirable. Instead, there is an MI 2175 /// pass which can do it with full awareness of the resource constraints. 2176 /// However, some cases are "obvious" and we should do directly. An example of 2177 /// this is speculating a single, reasonably cheap instruction. 2178 /// 2179 /// There is only one distinct advantage to flattening the CFG at the IR level: 2180 /// it makes very common but simplistic optimizations such as are common in 2181 /// instcombine and the DAG combiner more powerful by removing CFG edges and 2182 /// modeling their effects with easier to reason about SSA value graphs. 2183 /// 2184 /// 2185 /// An illustration of this transform is turning this IR: 2186 /// \code 2187 /// BB: 2188 /// %cmp = icmp ult %x, %y 2189 /// br i1 %cmp, label %EndBB, label %ThenBB 2190 /// ThenBB: 2191 /// %sub = sub %x, %y 2192 /// br label BB2 2193 /// EndBB: 2194 /// %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ] 2195 /// ... 2196 /// \endcode 2197 /// 2198 /// Into this IR: 2199 /// \code 2200 /// BB: 2201 /// %cmp = icmp ult %x, %y 2202 /// %sub = sub %x, %y 2203 /// %cond = select i1 %cmp, 0, %sub 2204 /// ... 2205 /// \endcode 2206 /// 2207 /// \returns true if the conditional block is removed. 2208 bool SimplifyCFGOpt::SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB, 2209 const TargetTransformInfo &TTI) { 2210 // Be conservative for now. FP select instruction can often be expensive. 2211 Value *BrCond = BI->getCondition(); 2212 if (isa<FCmpInst>(BrCond)) 2213 return false; 2214 2215 BasicBlock *BB = BI->getParent(); 2216 BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0); 2217 InstructionCost Budget = 2218 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 2219 2220 // If ThenBB is actually on the false edge of the conditional branch, remember 2221 // to swap the select operands later. 2222 bool Invert = false; 2223 if (ThenBB != BI->getSuccessor(0)) { 2224 assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?"); 2225 Invert = true; 2226 } 2227 assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block"); 2228 2229 // Keep a count of how many times instructions are used within ThenBB when 2230 // they are candidates for sinking into ThenBB. Specifically: 2231 // - They are defined in BB, and 2232 // - They have no side effects, and 2233 // - All of their uses are in ThenBB. 2234 SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts; 2235 2236 SmallVector<Instruction *, 4> SpeculatedDbgIntrinsics; 2237 2238 unsigned SpeculatedInstructions = 0; 2239 Value *SpeculatedStoreValue = nullptr; 2240 StoreInst *SpeculatedStore = nullptr; 2241 for (BasicBlock::iterator BBI = ThenBB->begin(), 2242 BBE = std::prev(ThenBB->end()); 2243 BBI != BBE; ++BBI) { 2244 Instruction *I = &*BBI; 2245 // Skip debug info. 2246 if (isa<DbgInfoIntrinsic>(I)) { 2247 SpeculatedDbgIntrinsics.push_back(I); 2248 continue; 2249 } 2250 2251 // Skip pseudo probes. The consequence is we lose track of the branch 2252 // probability for ThenBB, which is fine since the optimization here takes 2253 // place regardless of the branch probability. 2254 if (isa<PseudoProbeInst>(I)) { 2255 SpeculatedDbgIntrinsics.push_back(I); 2256 continue; 2257 } 2258 2259 // Only speculatively execute a single instruction (not counting the 2260 // terminator) for now. 2261 ++SpeculatedInstructions; 2262 if (SpeculatedInstructions > 1) 2263 return false; 2264 2265 // Don't hoist the instruction if it's unsafe or expensive. 2266 if (!isSafeToSpeculativelyExecute(I) && 2267 !(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore( 2268 I, BB, ThenBB, EndBB)))) 2269 return false; 2270 if (!SpeculatedStoreValue && 2271 computeSpeculationCost(I, TTI) > 2272 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic) 2273 return false; 2274 2275 // Store the store speculation candidate. 2276 if (SpeculatedStoreValue) 2277 SpeculatedStore = cast<StoreInst>(I); 2278 2279 // Do not hoist the instruction if any of its operands are defined but not 2280 // used in BB. The transformation will prevent the operand from 2281 // being sunk into the use block. 2282 for (Use &Op : I->operands()) { 2283 Instruction *OpI = dyn_cast<Instruction>(Op); 2284 if (!OpI || OpI->getParent() != BB || OpI->mayHaveSideEffects()) 2285 continue; // Not a candidate for sinking. 2286 2287 ++SinkCandidateUseCounts[OpI]; 2288 } 2289 } 2290 2291 // Consider any sink candidates which are only used in ThenBB as costs for 2292 // speculation. Note, while we iterate over a DenseMap here, we are summing 2293 // and so iteration order isn't significant. 2294 for (SmallDenseMap<Instruction *, unsigned, 4>::iterator 2295 I = SinkCandidateUseCounts.begin(), 2296 E = SinkCandidateUseCounts.end(); 2297 I != E; ++I) 2298 if (I->first->hasNUses(I->second)) { 2299 ++SpeculatedInstructions; 2300 if (SpeculatedInstructions > 1) 2301 return false; 2302 } 2303 2304 // Check that we can insert the selects and that it's not too expensive to do 2305 // so. 2306 bool Convert = SpeculatedStore != nullptr; 2307 InstructionCost Cost = 0; 2308 Convert |= validateAndCostRequiredSelects(BB, ThenBB, EndBB, 2309 SpeculatedInstructions, 2310 Cost, TTI); 2311 if (!Convert || Cost > Budget) 2312 return false; 2313 2314 // If we get here, we can hoist the instruction and if-convert. 2315 LLVM_DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";); 2316 2317 // Insert a select of the value of the speculated store. 2318 if (SpeculatedStoreValue) { 2319 IRBuilder<NoFolder> Builder(BI); 2320 Value *TrueV = SpeculatedStore->getValueOperand(); 2321 Value *FalseV = SpeculatedStoreValue; 2322 if (Invert) 2323 std::swap(TrueV, FalseV); 2324 Value *S = Builder.CreateSelect( 2325 BrCond, TrueV, FalseV, "spec.store.select", BI); 2326 SpeculatedStore->setOperand(0, S); 2327 SpeculatedStore->applyMergedLocation(BI->getDebugLoc(), 2328 SpeculatedStore->getDebugLoc()); 2329 } 2330 2331 // Metadata can be dependent on the condition we are hoisting above. 2332 // Conservatively strip all metadata on the instruction. Drop the debug loc 2333 // to avoid making it appear as if the condition is a constant, which would 2334 // be misleading while debugging. 2335 for (auto &I : *ThenBB) { 2336 if (!SpeculatedStoreValue || &I != SpeculatedStore) 2337 I.setDebugLoc(DebugLoc()); 2338 I.dropUnknownNonDebugMetadata(); 2339 } 2340 2341 // Hoist the instructions. 2342 BB->getInstList().splice(BI->getIterator(), ThenBB->getInstList(), 2343 ThenBB->begin(), std::prev(ThenBB->end())); 2344 2345 // Insert selects and rewrite the PHI operands. 2346 IRBuilder<NoFolder> Builder(BI); 2347 for (PHINode &PN : EndBB->phis()) { 2348 unsigned OrigI = PN.getBasicBlockIndex(BB); 2349 unsigned ThenI = PN.getBasicBlockIndex(ThenBB); 2350 Value *OrigV = PN.getIncomingValue(OrigI); 2351 Value *ThenV = PN.getIncomingValue(ThenI); 2352 2353 // Skip PHIs which are trivial. 2354 if (OrigV == ThenV) 2355 continue; 2356 2357 // Create a select whose true value is the speculatively executed value and 2358 // false value is the pre-existing value. Swap them if the branch 2359 // destinations were inverted. 2360 Value *TrueV = ThenV, *FalseV = OrigV; 2361 if (Invert) 2362 std::swap(TrueV, FalseV); 2363 Value *V = Builder.CreateSelect(BrCond, TrueV, FalseV, "spec.select", BI); 2364 PN.setIncomingValue(OrigI, V); 2365 PN.setIncomingValue(ThenI, V); 2366 } 2367 2368 // Remove speculated dbg intrinsics. 2369 // FIXME: Is it possible to do this in a more elegant way? Moving/merging the 2370 // dbg value for the different flows and inserting it after the select. 2371 for (Instruction *I : SpeculatedDbgIntrinsics) 2372 I->eraseFromParent(); 2373 2374 ++NumSpeculations; 2375 return true; 2376 } 2377 2378 /// Return true if we can thread a branch across this block. 2379 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) { 2380 int Size = 0; 2381 2382 for (Instruction &I : BB->instructionsWithoutDebug()) { 2383 if (Size > MaxSmallBlockSize) 2384 return false; // Don't clone large BB's. 2385 2386 // Can't fold blocks that contain noduplicate or convergent calls. 2387 if (CallInst *CI = dyn_cast<CallInst>(&I)) 2388 if (CI->cannotDuplicate() || CI->isConvergent()) 2389 return false; 2390 2391 // We will delete Phis while threading, so Phis should not be accounted in 2392 // block's size 2393 if (!isa<PHINode>(I)) 2394 ++Size; 2395 2396 // We can only support instructions that do not define values that are 2397 // live outside of the current basic block. 2398 for (User *U : I.users()) { 2399 Instruction *UI = cast<Instruction>(U); 2400 if (UI->getParent() != BB || isa<PHINode>(UI)) 2401 return false; 2402 } 2403 2404 // Looks ok, continue checking. 2405 } 2406 2407 return true; 2408 } 2409 2410 /// If we have a conditional branch on a PHI node value that is defined in the 2411 /// same block as the branch and if any PHI entries are constants, thread edges 2412 /// corresponding to that entry to be branches to their ultimate destination. 2413 static bool FoldCondBranchOnPHI(BranchInst *BI, DomTreeUpdater *DTU, 2414 const DataLayout &DL, AssumptionCache *AC) { 2415 BasicBlock *BB = BI->getParent(); 2416 PHINode *PN = dyn_cast<PHINode>(BI->getCondition()); 2417 // NOTE: we currently cannot transform this case if the PHI node is used 2418 // outside of the block. 2419 if (!PN || PN->getParent() != BB || !PN->hasOneUse()) 2420 return false; 2421 2422 // Degenerate case of a single entry PHI. 2423 if (PN->getNumIncomingValues() == 1) { 2424 FoldSingleEntryPHINodes(PN->getParent()); 2425 return true; 2426 } 2427 2428 // Now we know that this block has multiple preds and two succs. 2429 if (!BlockIsSimpleEnoughToThreadThrough(BB)) 2430 return false; 2431 2432 // Okay, this is a simple enough basic block. See if any phi values are 2433 // constants. 2434 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 2435 ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i)); 2436 if (!CB || !CB->getType()->isIntegerTy(1)) 2437 continue; 2438 2439 // Okay, we now know that all edges from PredBB should be revectored to 2440 // branch to RealDest. 2441 BasicBlock *PredBB = PN->getIncomingBlock(i); 2442 BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue()); 2443 2444 if (RealDest == BB) 2445 continue; // Skip self loops. 2446 // Skip if the predecessor's terminator is an indirect branch. 2447 if (isa<IndirectBrInst>(PredBB->getTerminator())) 2448 continue; 2449 2450 SmallVector<DominatorTree::UpdateType, 3> Updates; 2451 2452 // The dest block might have PHI nodes, other predecessors and other 2453 // difficult cases. Instead of being smart about this, just insert a new 2454 // block that jumps to the destination block, effectively splitting 2455 // the edge we are about to create. 2456 BasicBlock *EdgeBB = 2457 BasicBlock::Create(BB->getContext(), RealDest->getName() + ".critedge", 2458 RealDest->getParent(), RealDest); 2459 BranchInst *CritEdgeBranch = BranchInst::Create(RealDest, EdgeBB); 2460 Updates.push_back({DominatorTree::Insert, EdgeBB, RealDest}); 2461 CritEdgeBranch->setDebugLoc(BI->getDebugLoc()); 2462 2463 // Update PHI nodes. 2464 AddPredecessorToBlock(RealDest, EdgeBB, BB); 2465 2466 // BB may have instructions that are being threaded over. Clone these 2467 // instructions into EdgeBB. We know that there will be no uses of the 2468 // cloned instructions outside of EdgeBB. 2469 BasicBlock::iterator InsertPt = EdgeBB->begin(); 2470 DenseMap<Value *, Value *> TranslateMap; // Track translated values. 2471 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) { 2472 if (PHINode *PN = dyn_cast<PHINode>(BBI)) { 2473 TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB); 2474 continue; 2475 } 2476 // Clone the instruction. 2477 Instruction *N = BBI->clone(); 2478 if (BBI->hasName()) 2479 N->setName(BBI->getName() + ".c"); 2480 2481 // Update operands due to translation. 2482 for (Use &Op : N->operands()) { 2483 DenseMap<Value *, Value *>::iterator PI = TranslateMap.find(Op); 2484 if (PI != TranslateMap.end()) 2485 Op = PI->second; 2486 } 2487 2488 // Check for trivial simplification. 2489 if (Value *V = SimplifyInstruction(N, {DL, nullptr, nullptr, AC})) { 2490 if (!BBI->use_empty()) 2491 TranslateMap[&*BBI] = V; 2492 if (!N->mayHaveSideEffects()) { 2493 N->deleteValue(); // Instruction folded away, don't need actual inst 2494 N = nullptr; 2495 } 2496 } else { 2497 if (!BBI->use_empty()) 2498 TranslateMap[&*BBI] = N; 2499 } 2500 if (N) { 2501 // Insert the new instruction into its new home. 2502 EdgeBB->getInstList().insert(InsertPt, N); 2503 2504 // Register the new instruction with the assumption cache if necessary. 2505 if (AC && match(N, m_Intrinsic<Intrinsic::assume>())) 2506 AC->registerAssumption(cast<IntrinsicInst>(N)); 2507 } 2508 } 2509 2510 // Loop over all of the edges from PredBB to BB, changing them to branch 2511 // to EdgeBB instead. 2512 Instruction *PredBBTI = PredBB->getTerminator(); 2513 for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i) 2514 if (PredBBTI->getSuccessor(i) == BB) { 2515 BB->removePredecessor(PredBB); 2516 PredBBTI->setSuccessor(i, EdgeBB); 2517 } 2518 2519 Updates.push_back({DominatorTree::Insert, PredBB, EdgeBB}); 2520 Updates.push_back({DominatorTree::Delete, PredBB, BB}); 2521 2522 if (DTU) 2523 DTU->applyUpdates(Updates); 2524 2525 // Recurse, simplifying any other constants. 2526 return FoldCondBranchOnPHI(BI, DTU, DL, AC) || true; 2527 } 2528 2529 return false; 2530 } 2531 2532 /// Given a BB that starts with the specified two-entry PHI node, 2533 /// see if we can eliminate it. 2534 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI, 2535 DomTreeUpdater *DTU, const DataLayout &DL) { 2536 // Ok, this is a two entry PHI node. Check to see if this is a simple "if 2537 // statement", which has a very simple dominance structure. Basically, we 2538 // are trying to find the condition that is being branched on, which 2539 // subsequently causes this merge to happen. We really want control 2540 // dependence information for this check, but simplifycfg can't keep it up 2541 // to date, and this catches most of the cases we care about anyway. 2542 BasicBlock *BB = PN->getParent(); 2543 2544 BasicBlock *IfTrue, *IfFalse; 2545 Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse); 2546 if (!IfCond || 2547 // Don't bother if the branch will be constant folded trivially. 2548 isa<ConstantInt>(IfCond)) 2549 return false; 2550 2551 // Okay, we found that we can merge this two-entry phi node into a select. 2552 // Doing so would require us to fold *all* two entry phi nodes in this block. 2553 // At some point this becomes non-profitable (particularly if the target 2554 // doesn't support cmov's). Only do this transformation if there are two or 2555 // fewer PHI nodes in this block. 2556 unsigned NumPhis = 0; 2557 for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I) 2558 if (NumPhis > 2) 2559 return false; 2560 2561 // Loop over the PHI's seeing if we can promote them all to select 2562 // instructions. While we are at it, keep track of the instructions 2563 // that need to be moved to the dominating block. 2564 SmallPtrSet<Instruction *, 4> AggressiveInsts; 2565 InstructionCost Cost = 0; 2566 InstructionCost Budget = 2567 TwoEntryPHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 2568 2569 bool Changed = false; 2570 for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) { 2571 PHINode *PN = cast<PHINode>(II++); 2572 if (Value *V = SimplifyInstruction(PN, {DL, PN})) { 2573 PN->replaceAllUsesWith(V); 2574 PN->eraseFromParent(); 2575 Changed = true; 2576 continue; 2577 } 2578 2579 if (!dominatesMergePoint(PN->getIncomingValue(0), BB, AggressiveInsts, 2580 Cost, Budget, TTI) || 2581 !dominatesMergePoint(PN->getIncomingValue(1), BB, AggressiveInsts, 2582 Cost, Budget, TTI)) 2583 return Changed; 2584 } 2585 2586 // If we folded the first phi, PN dangles at this point. Refresh it. If 2587 // we ran out of PHIs then we simplified them all. 2588 PN = dyn_cast<PHINode>(BB->begin()); 2589 if (!PN) 2590 return true; 2591 2592 // Return true if at least one of these is a 'not', and another is either 2593 // a 'not' too, or a constant. 2594 auto CanHoistNotFromBothValues = [](Value *V0, Value *V1) { 2595 if (!match(V0, m_Not(m_Value()))) 2596 std::swap(V0, V1); 2597 auto Invertible = m_CombineOr(m_Not(m_Value()), m_AnyIntegralConstant()); 2598 return match(V0, m_Not(m_Value())) && match(V1, Invertible); 2599 }; 2600 2601 // Don't fold i1 branches on PHIs which contain binary operators, unless one 2602 // of the incoming values is an 'not' and another one is freely invertible. 2603 // These can often be turned into switches and other things. 2604 if (PN->getType()->isIntegerTy(1) && 2605 (isa<BinaryOperator>(PN->getIncomingValue(0)) || 2606 isa<BinaryOperator>(PN->getIncomingValue(1)) || 2607 isa<BinaryOperator>(IfCond)) && 2608 !CanHoistNotFromBothValues(PN->getIncomingValue(0), 2609 PN->getIncomingValue(1))) 2610 return Changed; 2611 2612 // If all PHI nodes are promotable, check to make sure that all instructions 2613 // in the predecessor blocks can be promoted as well. If not, we won't be able 2614 // to get rid of the control flow, so it's not worth promoting to select 2615 // instructions. 2616 BasicBlock *DomBlock = nullptr; 2617 BasicBlock *IfBlock1 = PN->getIncomingBlock(0); 2618 BasicBlock *IfBlock2 = PN->getIncomingBlock(1); 2619 if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) { 2620 IfBlock1 = nullptr; 2621 } else { 2622 DomBlock = *pred_begin(IfBlock1); 2623 for (BasicBlock::iterator I = IfBlock1->begin(); !I->isTerminator(); ++I) 2624 if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I) && 2625 !isa<PseudoProbeInst>(I)) { 2626 // This is not an aggressive instruction that we can promote. 2627 // Because of this, we won't be able to get rid of the control flow, so 2628 // the xform is not worth it. 2629 return Changed; 2630 } 2631 } 2632 2633 if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) { 2634 IfBlock2 = nullptr; 2635 } else { 2636 DomBlock = *pred_begin(IfBlock2); 2637 for (BasicBlock::iterator I = IfBlock2->begin(); !I->isTerminator(); ++I) 2638 if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I) && 2639 !isa<PseudoProbeInst>(I)) { 2640 // This is not an aggressive instruction that we can promote. 2641 // Because of this, we won't be able to get rid of the control flow, so 2642 // the xform is not worth it. 2643 return Changed; 2644 } 2645 } 2646 assert(DomBlock && "Failed to find root DomBlock"); 2647 2648 LLVM_DEBUG(dbgs() << "FOUND IF CONDITION! " << *IfCond 2649 << " T: " << IfTrue->getName() 2650 << " F: " << IfFalse->getName() << "\n"); 2651 2652 // If we can still promote the PHI nodes after this gauntlet of tests, 2653 // do all of the PHI's now. 2654 Instruction *InsertPt = DomBlock->getTerminator(); 2655 IRBuilder<NoFolder> Builder(InsertPt); 2656 2657 // Move all 'aggressive' instructions, which are defined in the 2658 // conditional parts of the if's up to the dominating block. 2659 if (IfBlock1) 2660 hoistAllInstructionsInto(DomBlock, InsertPt, IfBlock1); 2661 if (IfBlock2) 2662 hoistAllInstructionsInto(DomBlock, InsertPt, IfBlock2); 2663 2664 // Propagate fast-math-flags from phi nodes to replacement selects. 2665 IRBuilder<>::FastMathFlagGuard FMFGuard(Builder); 2666 while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) { 2667 if (isa<FPMathOperator>(PN)) 2668 Builder.setFastMathFlags(PN->getFastMathFlags()); 2669 2670 // Change the PHI node into a select instruction. 2671 Value *TrueVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse); 2672 Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue); 2673 2674 Value *Sel = Builder.CreateSelect(IfCond, TrueVal, FalseVal, "", InsertPt); 2675 PN->replaceAllUsesWith(Sel); 2676 Sel->takeName(PN); 2677 PN->eraseFromParent(); 2678 } 2679 2680 // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement 2681 // has been flattened. Change DomBlock to jump directly to our new block to 2682 // avoid other simplifycfg's kicking in on the diamond. 2683 Instruction *OldTI = DomBlock->getTerminator(); 2684 Builder.SetInsertPoint(OldTI); 2685 Builder.CreateBr(BB); 2686 2687 SmallVector<DominatorTree::UpdateType, 3> Updates; 2688 if (DTU) { 2689 Updates.push_back({DominatorTree::Insert, DomBlock, BB}); 2690 for (auto *Successor : successors(DomBlock)) 2691 Updates.push_back({DominatorTree::Delete, DomBlock, Successor}); 2692 } 2693 2694 OldTI->eraseFromParent(); 2695 if (DTU) 2696 DTU->applyUpdates(Updates); 2697 2698 return true; 2699 } 2700 2701 /// If we found a conditional branch that goes to two returning blocks, 2702 /// try to merge them together into one return, 2703 /// introducing a select if the return values disagree. 2704 bool SimplifyCFGOpt::SimplifyCondBranchToTwoReturns(BranchInst *BI, 2705 IRBuilder<> &Builder) { 2706 auto *BB = BI->getParent(); 2707 assert(BI->isConditional() && "Must be a conditional branch"); 2708 BasicBlock *TrueSucc = BI->getSuccessor(0); 2709 BasicBlock *FalseSucc = BI->getSuccessor(1); 2710 // NOTE: destinations may match, this could be degenerate uncond branch. 2711 ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator()); 2712 ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator()); 2713 2714 // Check to ensure both blocks are empty (just a return) or optionally empty 2715 // with PHI nodes. If there are other instructions, merging would cause extra 2716 // computation on one path or the other. 2717 if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator()) 2718 return false; 2719 if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator()) 2720 return false; 2721 2722 Builder.SetInsertPoint(BI); 2723 // Okay, we found a branch that is going to two return nodes. If 2724 // there is no return value for this function, just change the 2725 // branch into a return. 2726 if (FalseRet->getNumOperands() == 0) { 2727 TrueSucc->removePredecessor(BB); 2728 FalseSucc->removePredecessor(BB); 2729 Builder.CreateRetVoid(); 2730 EraseTerminatorAndDCECond(BI); 2731 if (DTU) { 2732 SmallVector<DominatorTree::UpdateType, 2> Updates; 2733 Updates.push_back({DominatorTree::Delete, BB, TrueSucc}); 2734 if (TrueSucc != FalseSucc) 2735 Updates.push_back({DominatorTree::Delete, BB, FalseSucc}); 2736 DTU->applyUpdates(Updates); 2737 } 2738 return true; 2739 } 2740 2741 // Otherwise, figure out what the true and false return values are 2742 // so we can insert a new select instruction. 2743 Value *TrueValue = TrueRet->getReturnValue(); 2744 Value *FalseValue = FalseRet->getReturnValue(); 2745 2746 // Unwrap any PHI nodes in the return blocks. 2747 if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue)) 2748 if (TVPN->getParent() == TrueSucc) 2749 TrueValue = TVPN->getIncomingValueForBlock(BB); 2750 if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue)) 2751 if (FVPN->getParent() == FalseSucc) 2752 FalseValue = FVPN->getIncomingValueForBlock(BB); 2753 2754 // In order for this transformation to be safe, we must be able to 2755 // unconditionally execute both operands to the return. This is 2756 // normally the case, but we could have a potentially-trapping 2757 // constant expression that prevents this transformation from being 2758 // safe. 2759 if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue)) 2760 if (TCV->canTrap()) 2761 return false; 2762 if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue)) 2763 if (FCV->canTrap()) 2764 return false; 2765 2766 // Okay, we collected all the mapped values and checked them for sanity, and 2767 // defined to really do this transformation. First, update the CFG. 2768 TrueSucc->removePredecessor(BB); 2769 FalseSucc->removePredecessor(BB); 2770 2771 // Insert select instructions where needed. 2772 Value *BrCond = BI->getCondition(); 2773 if (TrueValue) { 2774 // Insert a select if the results differ. 2775 if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) { 2776 } else if (isa<UndefValue>(TrueValue)) { 2777 TrueValue = FalseValue; 2778 } else { 2779 TrueValue = 2780 Builder.CreateSelect(BrCond, TrueValue, FalseValue, "retval", BI); 2781 } 2782 } 2783 2784 Value *RI = 2785 !TrueValue ? Builder.CreateRetVoid() : Builder.CreateRet(TrueValue); 2786 2787 (void)RI; 2788 2789 LLVM_DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:" 2790 << "\n " << *BI << "\nNewRet = " << *RI << "\nTRUEBLOCK: " 2791 << *TrueSucc << "\nFALSEBLOCK: " << *FalseSucc); 2792 2793 EraseTerminatorAndDCECond(BI); 2794 if (DTU) { 2795 SmallVector<DominatorTree::UpdateType, 2> Updates; 2796 Updates.push_back({DominatorTree::Delete, BB, TrueSucc}); 2797 if (TrueSucc != FalseSucc) 2798 Updates.push_back({DominatorTree::Delete, BB, FalseSucc}); 2799 DTU->applyUpdates(Updates); 2800 } 2801 2802 return true; 2803 } 2804 2805 /// Return true if either PBI or BI has branch weight available, and store 2806 /// the weights in {Pred|Succ}{True|False}Weight. If one of PBI and BI does 2807 /// not have branch weight, use 1:1 as its weight. 2808 static bool extractPredSuccWeights(BranchInst *PBI, BranchInst *BI, 2809 uint64_t &PredTrueWeight, 2810 uint64_t &PredFalseWeight, 2811 uint64_t &SuccTrueWeight, 2812 uint64_t &SuccFalseWeight) { 2813 bool PredHasWeights = 2814 PBI->extractProfMetadata(PredTrueWeight, PredFalseWeight); 2815 bool SuccHasWeights = 2816 BI->extractProfMetadata(SuccTrueWeight, SuccFalseWeight); 2817 if (PredHasWeights || SuccHasWeights) { 2818 if (!PredHasWeights) 2819 PredTrueWeight = PredFalseWeight = 1; 2820 if (!SuccHasWeights) 2821 SuccTrueWeight = SuccFalseWeight = 1; 2822 return true; 2823 } else { 2824 return false; 2825 } 2826 } 2827 2828 // Determine if the two branches share a common destination, 2829 // and deduce a glue that we need to use to join branch's conditions 2830 // to arrive at the common destination. 2831 static Optional<std::pair<Instruction::BinaryOps, bool>> 2832 CheckIfCondBranchesShareCommonDestination(BranchInst *BI, BranchInst *PBI) { 2833 assert(BI && PBI && BI->isConditional() && PBI->isConditional() && 2834 "Both blocks must end with a conditional branches."); 2835 assert(is_contained(predecessors(BI->getParent()), PBI->getParent()) && 2836 "PredBB must be a predecessor of BB."); 2837 2838 if (PBI->getSuccessor(0) == BI->getSuccessor(0)) 2839 return {{Instruction::Or, false}}; 2840 else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) 2841 return {{Instruction::And, false}}; 2842 else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) 2843 return {{Instruction::And, true}}; 2844 else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) 2845 return {{Instruction::Or, true}}; 2846 return None; 2847 } 2848 2849 static bool PerformBranchToCommonDestFolding(BranchInst *BI, BranchInst *PBI, 2850 DomTreeUpdater *DTU, 2851 MemorySSAUpdater *MSSAU) { 2852 BasicBlock *BB = BI->getParent(); 2853 BasicBlock *PredBlock = PBI->getParent(); 2854 2855 // Determine if the two branches share a common destination. 2856 Instruction::BinaryOps Opc; 2857 bool InvertPredCond; 2858 std::tie(Opc, InvertPredCond) = 2859 *CheckIfCondBranchesShareCommonDestination(BI, PBI); 2860 2861 LLVM_DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB); 2862 2863 IRBuilder<> Builder(PBI); 2864 // The builder is used to create instructions to eliminate the branch in BB. 2865 // If BB's terminator has !annotation metadata, add it to the new 2866 // instructions. 2867 Builder.CollectMetadataToCopy(BB->getTerminator(), 2868 {LLVMContext::MD_annotation}); 2869 2870 // If we need to invert the condition in the pred block to match, do so now. 2871 if (InvertPredCond) { 2872 Value *NewCond = PBI->getCondition(); 2873 if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) { 2874 CmpInst *CI = cast<CmpInst>(NewCond); 2875 CI->setPredicate(CI->getInversePredicate()); 2876 } else { 2877 NewCond = 2878 Builder.CreateNot(NewCond, PBI->getCondition()->getName() + ".not"); 2879 } 2880 2881 PBI->setCondition(NewCond); 2882 PBI->swapSuccessors(); 2883 } 2884 2885 BasicBlock *UniqueSucc = 2886 PBI->getSuccessor(0) == BB ? BI->getSuccessor(0) : BI->getSuccessor(1); 2887 2888 // Before cloning instructions, notify the successor basic block that it 2889 // is about to have a new predecessor. This will update PHI nodes, 2890 // which will allow us to update live-out uses of bonus instructions. 2891 AddPredecessorToBlock(UniqueSucc, PredBlock, BB, MSSAU); 2892 2893 // Try to update branch weights. 2894 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 2895 if (extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight, 2896 SuccTrueWeight, SuccFalseWeight)) { 2897 SmallVector<uint64_t, 8> NewWeights; 2898 2899 if (PBI->getSuccessor(0) == BB) { 2900 // PBI: br i1 %x, BB, FalseDest 2901 // BI: br i1 %y, UniqueSucc, FalseDest 2902 // TrueWeight is TrueWeight for PBI * TrueWeight for BI. 2903 NewWeights.push_back(PredTrueWeight * SuccTrueWeight); 2904 // FalseWeight is FalseWeight for PBI * TotalWeight for BI + 2905 // TrueWeight for PBI * FalseWeight for BI. 2906 // We assume that total weights of a BranchInst can fit into 32 bits. 2907 // Therefore, we will not have overflow using 64-bit arithmetic. 2908 NewWeights.push_back(PredFalseWeight * 2909 (SuccFalseWeight + SuccTrueWeight) + 2910 PredTrueWeight * SuccFalseWeight); 2911 } else { 2912 // PBI: br i1 %x, TrueDest, BB 2913 // BI: br i1 %y, TrueDest, UniqueSucc 2914 // TrueWeight is TrueWeight for PBI * TotalWeight for BI + 2915 // FalseWeight for PBI * TrueWeight for BI. 2916 NewWeights.push_back(PredTrueWeight * (SuccFalseWeight + SuccTrueWeight) + 2917 PredFalseWeight * SuccTrueWeight); 2918 // FalseWeight is FalseWeight for PBI * FalseWeight for BI. 2919 NewWeights.push_back(PredFalseWeight * SuccFalseWeight); 2920 } 2921 2922 // Halve the weights if any of them cannot fit in an uint32_t 2923 FitWeights(NewWeights); 2924 2925 SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(), NewWeights.end()); 2926 setBranchWeights(PBI, MDWeights[0], MDWeights[1]); 2927 2928 // TODO: If BB is reachable from all paths through PredBlock, then we 2929 // could replace PBI's branch probabilities with BI's. 2930 } else 2931 PBI->setMetadata(LLVMContext::MD_prof, nullptr); 2932 2933 // Now, update the CFG. 2934 PBI->setSuccessor(PBI->getSuccessor(0) != BB, UniqueSucc); 2935 2936 if (DTU) 2937 DTU->applyUpdates({{DominatorTree::Insert, PredBlock, UniqueSucc}, 2938 {DominatorTree::Delete, PredBlock, BB}}); 2939 2940 // If BI was a loop latch, it may have had associated loop metadata. 2941 // We need to copy it to the new latch, that is, PBI. 2942 if (MDNode *LoopMD = BI->getMetadata(LLVMContext::MD_loop)) 2943 PBI->setMetadata(LLVMContext::MD_loop, LoopMD); 2944 2945 ValueToValueMapTy VMap; // maps original values to cloned values 2946 CloneInstructionsIntoPredecessorBlockAndUpdateSSAUses(BB, PredBlock, VMap); 2947 2948 // Now that the Cond was cloned into the predecessor basic block, 2949 // or/and the two conditions together. 2950 Instruction *NewCond = cast<Instruction>(Builder.CreateBinOp( 2951 Opc, PBI->getCondition(), VMap[BI->getCondition()], "or.cond")); 2952 PBI->setCondition(NewCond); 2953 2954 // Copy any debug value intrinsics into the end of PredBlock. 2955 for (Instruction &I : *BB) { 2956 if (isa<DbgInfoIntrinsic>(I)) { 2957 Instruction *NewI = I.clone(); 2958 RemapInstruction(NewI, VMap, 2959 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 2960 NewI->insertBefore(PBI); 2961 } 2962 } 2963 2964 ++NumFoldBranchToCommonDest; 2965 return true; 2966 } 2967 2968 /// If this basic block is simple enough, and if a predecessor branches to us 2969 /// and one of our successors, fold the block into the predecessor and use 2970 /// logical operations to pick the right destination. 2971 bool llvm::FoldBranchToCommonDest(BranchInst *BI, DomTreeUpdater *DTU, 2972 MemorySSAUpdater *MSSAU, 2973 const TargetTransformInfo *TTI, 2974 unsigned BonusInstThreshold) { 2975 // If this block ends with an unconditional branch, 2976 // let SpeculativelyExecuteBB() deal with it. 2977 if (!BI->isConditional()) 2978 return false; 2979 2980 BasicBlock *BB = BI->getParent(); 2981 2982 const unsigned PredCount = pred_size(BB); 2983 2984 bool Changed = false; 2985 2986 TargetTransformInfo::TargetCostKind CostKind = 2987 BB->getParent()->hasMinSize() ? TargetTransformInfo::TCK_CodeSize 2988 : TargetTransformInfo::TCK_SizeAndLatency; 2989 2990 Instruction *Cond = dyn_cast<Instruction>(BI->getCondition()); 2991 2992 if (!Cond || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) || 2993 Cond->getParent() != BB || !Cond->hasOneUse()) 2994 return Changed; 2995 2996 // Only allow this transformation if computing the condition doesn't involve 2997 // too many instructions and these involved instructions can be executed 2998 // unconditionally. We denote all involved instructions except the condition 2999 // as "bonus instructions", and only allow this transformation when the 3000 // number of the bonus instructions we'll need to create when cloning into 3001 // each predecessor does not exceed a certain threshold. 3002 unsigned NumBonusInsts = 0; 3003 for (Instruction &I : *BB) { 3004 // Don't check the branch condition comparison itself. 3005 if (&I == Cond) 3006 continue; 3007 // Ignore dbg intrinsics, and the terminator. 3008 if (isa<DbgInfoIntrinsic>(I) || isa<BranchInst>(I)) 3009 continue; 3010 // I must be safe to execute unconditionally. 3011 if (!isSafeToSpeculativelyExecute(&I)) 3012 return Changed; 3013 3014 // Account for the cost of duplicating this instruction into each 3015 // predecessor. 3016 NumBonusInsts += PredCount; 3017 // Early exits once we reach the limit. 3018 if (NumBonusInsts > BonusInstThreshold) 3019 return Changed; 3020 } 3021 3022 // Cond is known to be a compare or binary operator. Check to make sure that 3023 // neither operand is a potentially-trapping constant expression. 3024 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0))) 3025 if (CE->canTrap()) 3026 return Changed; 3027 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1))) 3028 if (CE->canTrap()) 3029 return Changed; 3030 3031 // Finally, don't infinitely unroll conditional loops. 3032 if (is_contained(successors(BB), BB)) 3033 return Changed; 3034 3035 for (BasicBlock *PredBlock : predecessors(BB)) { 3036 BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator()); 3037 3038 // Check that we have two conditional branches. If there is a PHI node in 3039 // the common successor, verify that the same value flows in from both 3040 // blocks. 3041 if (!PBI || PBI->isUnconditional() || !SafeToMergeTerminators(BI, PBI)) 3042 continue; 3043 3044 // Determine if the two branches share a common destination. 3045 Instruction::BinaryOps Opc; 3046 bool InvertPredCond; 3047 if (auto Recepie = CheckIfCondBranchesShareCommonDestination(BI, PBI)) 3048 std::tie(Opc, InvertPredCond) = *Recepie; 3049 else 3050 continue; 3051 3052 // Check the cost of inserting the necessary logic before performing the 3053 // transformation. 3054 if (TTI) { 3055 Type *Ty = BI->getCondition()->getType(); 3056 InstructionCost Cost = TTI->getArithmeticInstrCost(Opc, Ty, CostKind); 3057 if (InvertPredCond && (!PBI->getCondition()->hasOneUse() || 3058 !isa<CmpInst>(PBI->getCondition()))) 3059 Cost += TTI->getArithmeticInstrCost(Instruction::Xor, Ty, CostKind); 3060 3061 if (Cost > BranchFoldThreshold) 3062 continue; 3063 } 3064 3065 return PerformBranchToCommonDestFolding(BI, PBI, DTU, MSSAU); 3066 } 3067 return Changed; 3068 } 3069 3070 // If there is only one store in BB1 and BB2, return it, otherwise return 3071 // nullptr. 3072 static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) { 3073 StoreInst *S = nullptr; 3074 for (auto *BB : {BB1, BB2}) { 3075 if (!BB) 3076 continue; 3077 for (auto &I : *BB) 3078 if (auto *SI = dyn_cast<StoreInst>(&I)) { 3079 if (S) 3080 // Multiple stores seen. 3081 return nullptr; 3082 else 3083 S = SI; 3084 } 3085 } 3086 return S; 3087 } 3088 3089 static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB, 3090 Value *AlternativeV = nullptr) { 3091 // PHI is going to be a PHI node that allows the value V that is defined in 3092 // BB to be referenced in BB's only successor. 3093 // 3094 // If AlternativeV is nullptr, the only value we care about in PHI is V. It 3095 // doesn't matter to us what the other operand is (it'll never get used). We 3096 // could just create a new PHI with an undef incoming value, but that could 3097 // increase register pressure if EarlyCSE/InstCombine can't fold it with some 3098 // other PHI. So here we directly look for some PHI in BB's successor with V 3099 // as an incoming operand. If we find one, we use it, else we create a new 3100 // one. 3101 // 3102 // If AlternativeV is not nullptr, we care about both incoming values in PHI. 3103 // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV] 3104 // where OtherBB is the single other predecessor of BB's only successor. 3105 PHINode *PHI = nullptr; 3106 BasicBlock *Succ = BB->getSingleSuccessor(); 3107 3108 for (auto I = Succ->begin(); isa<PHINode>(I); ++I) 3109 if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) { 3110 PHI = cast<PHINode>(I); 3111 if (!AlternativeV) 3112 break; 3113 3114 assert(Succ->hasNPredecessors(2)); 3115 auto PredI = pred_begin(Succ); 3116 BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI; 3117 if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV) 3118 break; 3119 PHI = nullptr; 3120 } 3121 if (PHI) 3122 return PHI; 3123 3124 // If V is not an instruction defined in BB, just return it. 3125 if (!AlternativeV && 3126 (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB)) 3127 return V; 3128 3129 PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge", &Succ->front()); 3130 PHI->addIncoming(V, BB); 3131 for (BasicBlock *PredBB : predecessors(Succ)) 3132 if (PredBB != BB) 3133 PHI->addIncoming( 3134 AlternativeV ? AlternativeV : UndefValue::get(V->getType()), PredBB); 3135 return PHI; 3136 } 3137 3138 static bool mergeConditionalStoreToAddress( 3139 BasicBlock *PTB, BasicBlock *PFB, BasicBlock *QTB, BasicBlock *QFB, 3140 BasicBlock *PostBB, Value *Address, bool InvertPCond, bool InvertQCond, 3141 DomTreeUpdater *DTU, const DataLayout &DL, const TargetTransformInfo &TTI) { 3142 // For every pointer, there must be exactly two stores, one coming from 3143 // PTB or PFB, and the other from QTB or QFB. We don't support more than one 3144 // store (to any address) in PTB,PFB or QTB,QFB. 3145 // FIXME: We could relax this restriction with a bit more work and performance 3146 // testing. 3147 StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB); 3148 StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB); 3149 if (!PStore || !QStore) 3150 return false; 3151 3152 // Now check the stores are compatible. 3153 if (!QStore->isUnordered() || !PStore->isUnordered()) 3154 return false; 3155 3156 // Check that sinking the store won't cause program behavior changes. Sinking 3157 // the store out of the Q blocks won't change any behavior as we're sinking 3158 // from a block to its unconditional successor. But we're moving a store from 3159 // the P blocks down through the middle block (QBI) and past both QFB and QTB. 3160 // So we need to check that there are no aliasing loads or stores in 3161 // QBI, QTB and QFB. We also need to check there are no conflicting memory 3162 // operations between PStore and the end of its parent block. 3163 // 3164 // The ideal way to do this is to query AliasAnalysis, but we don't 3165 // preserve AA currently so that is dangerous. Be super safe and just 3166 // check there are no other memory operations at all. 3167 for (auto &I : *QFB->getSinglePredecessor()) 3168 if (I.mayReadOrWriteMemory()) 3169 return false; 3170 for (auto &I : *QFB) 3171 if (&I != QStore && I.mayReadOrWriteMemory()) 3172 return false; 3173 if (QTB) 3174 for (auto &I : *QTB) 3175 if (&I != QStore && I.mayReadOrWriteMemory()) 3176 return false; 3177 for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end(); 3178 I != E; ++I) 3179 if (&*I != PStore && I->mayReadOrWriteMemory()) 3180 return false; 3181 3182 // If we're not in aggressive mode, we only optimize if we have some 3183 // confidence that by optimizing we'll allow P and/or Q to be if-converted. 3184 auto IsWorthwhile = [&](BasicBlock *BB, ArrayRef<StoreInst *> FreeStores) { 3185 if (!BB) 3186 return true; 3187 // Heuristic: if the block can be if-converted/phi-folded and the 3188 // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to 3189 // thread this store. 3190 InstructionCost Cost = 0; 3191 InstructionCost Budget = 3192 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 3193 for (auto &I : BB->instructionsWithoutDebug()) { 3194 // Consider terminator instruction to be free. 3195 if (I.isTerminator()) 3196 continue; 3197 // If this is one the stores that we want to speculate out of this BB, 3198 // then don't count it's cost, consider it to be free. 3199 if (auto *S = dyn_cast<StoreInst>(&I)) 3200 if (llvm::find(FreeStores, S)) 3201 continue; 3202 // Else, we have a white-list of instructions that we are ak speculating. 3203 if (!isa<BinaryOperator>(I) && !isa<GetElementPtrInst>(I)) 3204 return false; // Not in white-list - not worthwhile folding. 3205 // And finally, if this is a non-free instruction that we are okay 3206 // speculating, ensure that we consider the speculation budget. 3207 Cost += TTI.getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency); 3208 if (Cost > Budget) 3209 return false; // Eagerly refuse to fold as soon as we're out of budget. 3210 } 3211 assert(Cost <= Budget && 3212 "When we run out of budget we will eagerly return from within the " 3213 "per-instruction loop."); 3214 return true; 3215 }; 3216 3217 const std::array<StoreInst *, 2> FreeStores = {PStore, QStore}; 3218 if (!MergeCondStoresAggressively && 3219 (!IsWorthwhile(PTB, FreeStores) || !IsWorthwhile(PFB, FreeStores) || 3220 !IsWorthwhile(QTB, FreeStores) || !IsWorthwhile(QFB, FreeStores))) 3221 return false; 3222 3223 // If PostBB has more than two predecessors, we need to split it so we can 3224 // sink the store. 3225 if (std::next(pred_begin(PostBB), 2) != pred_end(PostBB)) { 3226 // We know that QFB's only successor is PostBB. And QFB has a single 3227 // predecessor. If QTB exists, then its only successor is also PostBB. 3228 // If QTB does not exist, then QFB's only predecessor has a conditional 3229 // branch to QFB and PostBB. 3230 BasicBlock *TruePred = QTB ? QTB : QFB->getSinglePredecessor(); 3231 BasicBlock *NewBB = 3232 SplitBlockPredecessors(PostBB, {QFB, TruePred}, "condstore.split", DTU); 3233 if (!NewBB) 3234 return false; 3235 PostBB = NewBB; 3236 } 3237 3238 // OK, we're going to sink the stores to PostBB. The store has to be 3239 // conditional though, so first create the predicate. 3240 Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator()) 3241 ->getCondition(); 3242 Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator()) 3243 ->getCondition(); 3244 3245 Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(), 3246 PStore->getParent()); 3247 Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(), 3248 QStore->getParent(), PPHI); 3249 3250 IRBuilder<> QB(&*PostBB->getFirstInsertionPt()); 3251 3252 Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond); 3253 Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond); 3254 3255 if (InvertPCond) 3256 PPred = QB.CreateNot(PPred); 3257 if (InvertQCond) 3258 QPred = QB.CreateNot(QPred); 3259 Value *CombinedPred = QB.CreateOr(PPred, QPred); 3260 3261 auto *T = SplitBlockAndInsertIfThen(CombinedPred, &*QB.GetInsertPoint(), 3262 /*Unreachable=*/false, 3263 /*BranchWeights=*/nullptr, DTU); 3264 QB.SetInsertPoint(T); 3265 StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address)); 3266 AAMDNodes AAMD; 3267 PStore->getAAMetadata(AAMD, /*Merge=*/false); 3268 PStore->getAAMetadata(AAMD, /*Merge=*/true); 3269 SI->setAAMetadata(AAMD); 3270 // Choose the minimum alignment. If we could prove both stores execute, we 3271 // could use biggest one. In this case, though, we only know that one of the 3272 // stores executes. And we don't know it's safe to take the alignment from a 3273 // store that doesn't execute. 3274 SI->setAlignment(std::min(PStore->getAlign(), QStore->getAlign())); 3275 3276 QStore->eraseFromParent(); 3277 PStore->eraseFromParent(); 3278 3279 return true; 3280 } 3281 3282 static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI, 3283 DomTreeUpdater *DTU, const DataLayout &DL, 3284 const TargetTransformInfo &TTI) { 3285 // The intention here is to find diamonds or triangles (see below) where each 3286 // conditional block contains a store to the same address. Both of these 3287 // stores are conditional, so they can't be unconditionally sunk. But it may 3288 // be profitable to speculatively sink the stores into one merged store at the 3289 // end, and predicate the merged store on the union of the two conditions of 3290 // PBI and QBI. 3291 // 3292 // This can reduce the number of stores executed if both of the conditions are 3293 // true, and can allow the blocks to become small enough to be if-converted. 3294 // This optimization will also chain, so that ladders of test-and-set 3295 // sequences can be if-converted away. 3296 // 3297 // We only deal with simple diamonds or triangles: 3298 // 3299 // PBI or PBI or a combination of the two 3300 // / \ | \ 3301 // PTB PFB | PFB 3302 // \ / | / 3303 // QBI QBI 3304 // / \ | \ 3305 // QTB QFB | QFB 3306 // \ / | / 3307 // PostBB PostBB 3308 // 3309 // We model triangles as a type of diamond with a nullptr "true" block. 3310 // Triangles are canonicalized so that the fallthrough edge is represented by 3311 // a true condition, as in the diagram above. 3312 BasicBlock *PTB = PBI->getSuccessor(0); 3313 BasicBlock *PFB = PBI->getSuccessor(1); 3314 BasicBlock *QTB = QBI->getSuccessor(0); 3315 BasicBlock *QFB = QBI->getSuccessor(1); 3316 BasicBlock *PostBB = QFB->getSingleSuccessor(); 3317 3318 // Make sure we have a good guess for PostBB. If QTB's only successor is 3319 // QFB, then QFB is a better PostBB. 3320 if (QTB->getSingleSuccessor() == QFB) 3321 PostBB = QFB; 3322 3323 // If we couldn't find a good PostBB, stop. 3324 if (!PostBB) 3325 return false; 3326 3327 bool InvertPCond = false, InvertQCond = false; 3328 // Canonicalize fallthroughs to the true branches. 3329 if (PFB == QBI->getParent()) { 3330 std::swap(PFB, PTB); 3331 InvertPCond = true; 3332 } 3333 if (QFB == PostBB) { 3334 std::swap(QFB, QTB); 3335 InvertQCond = true; 3336 } 3337 3338 // From this point on we can assume PTB or QTB may be fallthroughs but PFB 3339 // and QFB may not. Model fallthroughs as a nullptr block. 3340 if (PTB == QBI->getParent()) 3341 PTB = nullptr; 3342 if (QTB == PostBB) 3343 QTB = nullptr; 3344 3345 // Legality bailouts. We must have at least the non-fallthrough blocks and 3346 // the post-dominating block, and the non-fallthroughs must only have one 3347 // predecessor. 3348 auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) { 3349 return BB->getSinglePredecessor() == P && BB->getSingleSuccessor() == S; 3350 }; 3351 if (!HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) || 3352 !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB)) 3353 return false; 3354 if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) || 3355 (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB))) 3356 return false; 3357 if (!QBI->getParent()->hasNUses(2)) 3358 return false; 3359 3360 // OK, this is a sequence of two diamonds or triangles. 3361 // Check if there are stores in PTB or PFB that are repeated in QTB or QFB. 3362 SmallPtrSet<Value *, 4> PStoreAddresses, QStoreAddresses; 3363 for (auto *BB : {PTB, PFB}) { 3364 if (!BB) 3365 continue; 3366 for (auto &I : *BB) 3367 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) 3368 PStoreAddresses.insert(SI->getPointerOperand()); 3369 } 3370 for (auto *BB : {QTB, QFB}) { 3371 if (!BB) 3372 continue; 3373 for (auto &I : *BB) 3374 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) 3375 QStoreAddresses.insert(SI->getPointerOperand()); 3376 } 3377 3378 set_intersect(PStoreAddresses, QStoreAddresses); 3379 // set_intersect mutates PStoreAddresses in place. Rename it here to make it 3380 // clear what it contains. 3381 auto &CommonAddresses = PStoreAddresses; 3382 3383 bool Changed = false; 3384 for (auto *Address : CommonAddresses) 3385 Changed |= 3386 mergeConditionalStoreToAddress(PTB, PFB, QTB, QFB, PostBB, Address, 3387 InvertPCond, InvertQCond, DTU, DL, TTI); 3388 return Changed; 3389 } 3390 3391 /// If the previous block ended with a widenable branch, determine if reusing 3392 /// the target block is profitable and legal. This will have the effect of 3393 /// "widening" PBI, but doesn't require us to reason about hosting safety. 3394 static bool tryWidenCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI, 3395 DomTreeUpdater *DTU) { 3396 // TODO: This can be generalized in two important ways: 3397 // 1) We can allow phi nodes in IfFalseBB and simply reuse all the input 3398 // values from the PBI edge. 3399 // 2) We can sink side effecting instructions into BI's fallthrough 3400 // successor provided they doesn't contribute to computation of 3401 // BI's condition. 3402 Value *CondWB, *WC; 3403 BasicBlock *IfTrueBB, *IfFalseBB; 3404 if (!parseWidenableBranch(PBI, CondWB, WC, IfTrueBB, IfFalseBB) || 3405 IfTrueBB != BI->getParent() || !BI->getParent()->getSinglePredecessor()) 3406 return false; 3407 if (!IfFalseBB->phis().empty()) 3408 return false; // TODO 3409 // Use lambda to lazily compute expensive condition after cheap ones. 3410 auto NoSideEffects = [](BasicBlock &BB) { 3411 return !llvm::any_of(BB, [](const Instruction &I) { 3412 return I.mayWriteToMemory() || I.mayHaveSideEffects(); 3413 }); 3414 }; 3415 if (BI->getSuccessor(1) != IfFalseBB && // no inf looping 3416 BI->getSuccessor(1)->getTerminatingDeoptimizeCall() && // profitability 3417 NoSideEffects(*BI->getParent())) { 3418 auto *OldSuccessor = BI->getSuccessor(1); 3419 OldSuccessor->removePredecessor(BI->getParent()); 3420 BI->setSuccessor(1, IfFalseBB); 3421 if (DTU) 3422 DTU->applyUpdates( 3423 {{DominatorTree::Insert, BI->getParent(), IfFalseBB}, 3424 {DominatorTree::Delete, BI->getParent(), OldSuccessor}}); 3425 return true; 3426 } 3427 if (BI->getSuccessor(0) != IfFalseBB && // no inf looping 3428 BI->getSuccessor(0)->getTerminatingDeoptimizeCall() && // profitability 3429 NoSideEffects(*BI->getParent())) { 3430 auto *OldSuccessor = BI->getSuccessor(0); 3431 OldSuccessor->removePredecessor(BI->getParent()); 3432 BI->setSuccessor(0, IfFalseBB); 3433 if (DTU) 3434 DTU->applyUpdates( 3435 {{DominatorTree::Insert, BI->getParent(), IfFalseBB}, 3436 {DominatorTree::Delete, BI->getParent(), OldSuccessor}}); 3437 return true; 3438 } 3439 return false; 3440 } 3441 3442 /// If we have a conditional branch as a predecessor of another block, 3443 /// this function tries to simplify it. We know 3444 /// that PBI and BI are both conditional branches, and BI is in one of the 3445 /// successor blocks of PBI - PBI branches to BI. 3446 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI, 3447 DomTreeUpdater *DTU, 3448 const DataLayout &DL, 3449 const TargetTransformInfo &TTI) { 3450 assert(PBI->isConditional() && BI->isConditional()); 3451 BasicBlock *BB = BI->getParent(); 3452 3453 // If this block ends with a branch instruction, and if there is a 3454 // predecessor that ends on a branch of the same condition, make 3455 // this conditional branch redundant. 3456 if (PBI->getCondition() == BI->getCondition() && 3457 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 3458 // Okay, the outcome of this conditional branch is statically 3459 // knowable. If this block had a single pred, handle specially. 3460 if (BB->getSinglePredecessor()) { 3461 // Turn this into a branch on constant. 3462 bool CondIsTrue = PBI->getSuccessor(0) == BB; 3463 BI->setCondition( 3464 ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue)); 3465 return true; // Nuke the branch on constant. 3466 } 3467 3468 // Otherwise, if there are multiple predecessors, insert a PHI that merges 3469 // in the constant and simplify the block result. Subsequent passes of 3470 // simplifycfg will thread the block. 3471 if (BlockIsSimpleEnoughToThreadThrough(BB)) { 3472 pred_iterator PB = pred_begin(BB), PE = pred_end(BB); 3473 PHINode *NewPN = PHINode::Create( 3474 Type::getInt1Ty(BB->getContext()), std::distance(PB, PE), 3475 BI->getCondition()->getName() + ".pr", &BB->front()); 3476 // Okay, we're going to insert the PHI node. Since PBI is not the only 3477 // predecessor, compute the PHI'd conditional value for all of the preds. 3478 // Any predecessor where the condition is not computable we keep symbolic. 3479 for (pred_iterator PI = PB; PI != PE; ++PI) { 3480 BasicBlock *P = *PI; 3481 if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) && PBI != BI && 3482 PBI->isConditional() && PBI->getCondition() == BI->getCondition() && 3483 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 3484 bool CondIsTrue = PBI->getSuccessor(0) == BB; 3485 NewPN->addIncoming( 3486 ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue), 3487 P); 3488 } else { 3489 NewPN->addIncoming(BI->getCondition(), P); 3490 } 3491 } 3492 3493 BI->setCondition(NewPN); 3494 return true; 3495 } 3496 } 3497 3498 // If the previous block ended with a widenable branch, determine if reusing 3499 // the target block is profitable and legal. This will have the effect of 3500 // "widening" PBI, but doesn't require us to reason about hosting safety. 3501 if (tryWidenCondBranchToCondBranch(PBI, BI, DTU)) 3502 return true; 3503 3504 if (auto *CE = dyn_cast<ConstantExpr>(BI->getCondition())) 3505 if (CE->canTrap()) 3506 return false; 3507 3508 // If both branches are conditional and both contain stores to the same 3509 // address, remove the stores from the conditionals and create a conditional 3510 // merged store at the end. 3511 if (MergeCondStores && mergeConditionalStores(PBI, BI, DTU, DL, TTI)) 3512 return true; 3513 3514 // If this is a conditional branch in an empty block, and if any 3515 // predecessors are a conditional branch to one of our destinations, 3516 // fold the conditions into logical ops and one cond br. 3517 3518 // Ignore dbg intrinsics. 3519 if (&*BB->instructionsWithoutDebug().begin() != BI) 3520 return false; 3521 3522 int PBIOp, BIOp; 3523 if (PBI->getSuccessor(0) == BI->getSuccessor(0)) { 3524 PBIOp = 0; 3525 BIOp = 0; 3526 } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) { 3527 PBIOp = 0; 3528 BIOp = 1; 3529 } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) { 3530 PBIOp = 1; 3531 BIOp = 0; 3532 } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) { 3533 PBIOp = 1; 3534 BIOp = 1; 3535 } else { 3536 return false; 3537 } 3538 3539 // Check to make sure that the other destination of this branch 3540 // isn't BB itself. If so, this is an infinite loop that will 3541 // keep getting unwound. 3542 if (PBI->getSuccessor(PBIOp) == BB) 3543 return false; 3544 3545 // Do not perform this transformation if it would require 3546 // insertion of a large number of select instructions. For targets 3547 // without predication/cmovs, this is a big pessimization. 3548 3549 // Also do not perform this transformation if any phi node in the common 3550 // destination block can trap when reached by BB or PBB (PR17073). In that 3551 // case, it would be unsafe to hoist the operation into a select instruction. 3552 3553 BasicBlock *CommonDest = PBI->getSuccessor(PBIOp); 3554 BasicBlock *RemovedDest = PBI->getSuccessor(PBIOp ^ 1); 3555 unsigned NumPhis = 0; 3556 for (BasicBlock::iterator II = CommonDest->begin(); isa<PHINode>(II); 3557 ++II, ++NumPhis) { 3558 if (NumPhis > 2) // Disable this xform. 3559 return false; 3560 3561 PHINode *PN = cast<PHINode>(II); 3562 Value *BIV = PN->getIncomingValueForBlock(BB); 3563 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BIV)) 3564 if (CE->canTrap()) 3565 return false; 3566 3567 unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent()); 3568 Value *PBIV = PN->getIncomingValue(PBBIdx); 3569 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(PBIV)) 3570 if (CE->canTrap()) 3571 return false; 3572 } 3573 3574 // Finally, if everything is ok, fold the branches to logical ops. 3575 BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1); 3576 3577 LLVM_DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent() 3578 << "AND: " << *BI->getParent()); 3579 3580 SmallVector<DominatorTree::UpdateType, 5> Updates; 3581 3582 // If OtherDest *is* BB, then BB is a basic block with a single conditional 3583 // branch in it, where one edge (OtherDest) goes back to itself but the other 3584 // exits. We don't *know* that the program avoids the infinite loop 3585 // (even though that seems likely). If we do this xform naively, we'll end up 3586 // recursively unpeeling the loop. Since we know that (after the xform is 3587 // done) that the block *is* infinite if reached, we just make it an obviously 3588 // infinite loop with no cond branch. 3589 if (OtherDest == BB) { 3590 // Insert it at the end of the function, because it's either code, 3591 // or it won't matter if it's hot. :) 3592 BasicBlock *InfLoopBlock = 3593 BasicBlock::Create(BB->getContext(), "infloop", BB->getParent()); 3594 BranchInst::Create(InfLoopBlock, InfLoopBlock); 3595 Updates.push_back({DominatorTree::Insert, InfLoopBlock, InfLoopBlock}); 3596 OtherDest = InfLoopBlock; 3597 } 3598 3599 LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent()); 3600 3601 // BI may have other predecessors. Because of this, we leave 3602 // it alone, but modify PBI. 3603 3604 // Make sure we get to CommonDest on True&True directions. 3605 Value *PBICond = PBI->getCondition(); 3606 IRBuilder<NoFolder> Builder(PBI); 3607 if (PBIOp) 3608 PBICond = Builder.CreateNot(PBICond, PBICond->getName() + ".not"); 3609 3610 Value *BICond = BI->getCondition(); 3611 if (BIOp) 3612 BICond = Builder.CreateNot(BICond, BICond->getName() + ".not"); 3613 3614 // Merge the conditions. 3615 Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge"); 3616 3617 // Modify PBI to branch on the new condition to the new dests. 3618 PBI->setCondition(Cond); 3619 PBI->setSuccessor(0, CommonDest); 3620 PBI->setSuccessor(1, OtherDest); 3621 3622 Updates.push_back({DominatorTree::Insert, PBI->getParent(), OtherDest}); 3623 Updates.push_back({DominatorTree::Delete, PBI->getParent(), RemovedDest}); 3624 3625 if (DTU) 3626 DTU->applyUpdates(Updates); 3627 3628 // Update branch weight for PBI. 3629 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 3630 uint64_t PredCommon, PredOther, SuccCommon, SuccOther; 3631 bool HasWeights = 3632 extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight, 3633 SuccTrueWeight, SuccFalseWeight); 3634 if (HasWeights) { 3635 PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight; 3636 PredOther = PBIOp ? PredTrueWeight : PredFalseWeight; 3637 SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight; 3638 SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight; 3639 // The weight to CommonDest should be PredCommon * SuccTotal + 3640 // PredOther * SuccCommon. 3641 // The weight to OtherDest should be PredOther * SuccOther. 3642 uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) + 3643 PredOther * SuccCommon, 3644 PredOther * SuccOther}; 3645 // Halve the weights if any of them cannot fit in an uint32_t 3646 FitWeights(NewWeights); 3647 3648 setBranchWeights(PBI, NewWeights[0], NewWeights[1]); 3649 } 3650 3651 // OtherDest may have phi nodes. If so, add an entry from PBI's 3652 // block that are identical to the entries for BI's block. 3653 AddPredecessorToBlock(OtherDest, PBI->getParent(), BB); 3654 3655 // We know that the CommonDest already had an edge from PBI to 3656 // it. If it has PHIs though, the PHIs may have different 3657 // entries for BB and PBI's BB. If so, insert a select to make 3658 // them agree. 3659 for (PHINode &PN : CommonDest->phis()) { 3660 Value *BIV = PN.getIncomingValueForBlock(BB); 3661 unsigned PBBIdx = PN.getBasicBlockIndex(PBI->getParent()); 3662 Value *PBIV = PN.getIncomingValue(PBBIdx); 3663 if (BIV != PBIV) { 3664 // Insert a select in PBI to pick the right value. 3665 SelectInst *NV = cast<SelectInst>( 3666 Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName() + ".mux")); 3667 PN.setIncomingValue(PBBIdx, NV); 3668 // Although the select has the same condition as PBI, the original branch 3669 // weights for PBI do not apply to the new select because the select's 3670 // 'logical' edges are incoming edges of the phi that is eliminated, not 3671 // the outgoing edges of PBI. 3672 if (HasWeights) { 3673 uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight; 3674 uint64_t PredOther = PBIOp ? PredTrueWeight : PredFalseWeight; 3675 uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight; 3676 uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight; 3677 // The weight to PredCommonDest should be PredCommon * SuccTotal. 3678 // The weight to PredOtherDest should be PredOther * SuccCommon. 3679 uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther), 3680 PredOther * SuccCommon}; 3681 3682 FitWeights(NewWeights); 3683 3684 setBranchWeights(NV, NewWeights[0], NewWeights[1]); 3685 } 3686 } 3687 } 3688 3689 LLVM_DEBUG(dbgs() << "INTO: " << *PBI->getParent()); 3690 LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent()); 3691 3692 // This basic block is probably dead. We know it has at least 3693 // one fewer predecessor. 3694 return true; 3695 } 3696 3697 // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is 3698 // true or to FalseBB if Cond is false. 3699 // Takes care of updating the successors and removing the old terminator. 3700 // Also makes sure not to introduce new successors by assuming that edges to 3701 // non-successor TrueBBs and FalseBBs aren't reachable. 3702 bool SimplifyCFGOpt::SimplifyTerminatorOnSelect(Instruction *OldTerm, 3703 Value *Cond, BasicBlock *TrueBB, 3704 BasicBlock *FalseBB, 3705 uint32_t TrueWeight, 3706 uint32_t FalseWeight) { 3707 auto *BB = OldTerm->getParent(); 3708 // Remove any superfluous successor edges from the CFG. 3709 // First, figure out which successors to preserve. 3710 // If TrueBB and FalseBB are equal, only try to preserve one copy of that 3711 // successor. 3712 BasicBlock *KeepEdge1 = TrueBB; 3713 BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr; 3714 3715 SmallSetVector<BasicBlock *, 2> RemovedSuccessors; 3716 3717 // Then remove the rest. 3718 for (BasicBlock *Succ : successors(OldTerm)) { 3719 // Make sure only to keep exactly one copy of each edge. 3720 if (Succ == KeepEdge1) 3721 KeepEdge1 = nullptr; 3722 else if (Succ == KeepEdge2) 3723 KeepEdge2 = nullptr; 3724 else { 3725 Succ->removePredecessor(BB, 3726 /*KeepOneInputPHIs=*/true); 3727 3728 if (Succ != TrueBB && Succ != FalseBB) 3729 RemovedSuccessors.insert(Succ); 3730 } 3731 } 3732 3733 IRBuilder<> Builder(OldTerm); 3734 Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc()); 3735 3736 // Insert an appropriate new terminator. 3737 if (!KeepEdge1 && !KeepEdge2) { 3738 if (TrueBB == FalseBB) { 3739 // We were only looking for one successor, and it was present. 3740 // Create an unconditional branch to it. 3741 Builder.CreateBr(TrueBB); 3742 } else { 3743 // We found both of the successors we were looking for. 3744 // Create a conditional branch sharing the condition of the select. 3745 BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB); 3746 if (TrueWeight != FalseWeight) 3747 setBranchWeights(NewBI, TrueWeight, FalseWeight); 3748 } 3749 } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) { 3750 // Neither of the selected blocks were successors, so this 3751 // terminator must be unreachable. 3752 new UnreachableInst(OldTerm->getContext(), OldTerm); 3753 } else { 3754 // One of the selected values was a successor, but the other wasn't. 3755 // Insert an unconditional branch to the one that was found; 3756 // the edge to the one that wasn't must be unreachable. 3757 if (!KeepEdge1) { 3758 // Only TrueBB was found. 3759 Builder.CreateBr(TrueBB); 3760 } else { 3761 // Only FalseBB was found. 3762 Builder.CreateBr(FalseBB); 3763 } 3764 } 3765 3766 EraseTerminatorAndDCECond(OldTerm); 3767 3768 if (DTU) { 3769 SmallVector<DominatorTree::UpdateType, 2> Updates; 3770 Updates.reserve(RemovedSuccessors.size()); 3771 for (auto *RemovedSuccessor : RemovedSuccessors) 3772 Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor}); 3773 DTU->applyUpdates(Updates); 3774 } 3775 3776 return true; 3777 } 3778 3779 // Replaces 3780 // (switch (select cond, X, Y)) on constant X, Y 3781 // with a branch - conditional if X and Y lead to distinct BBs, 3782 // unconditional otherwise. 3783 bool SimplifyCFGOpt::SimplifySwitchOnSelect(SwitchInst *SI, 3784 SelectInst *Select) { 3785 // Check for constant integer values in the select. 3786 ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue()); 3787 ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue()); 3788 if (!TrueVal || !FalseVal) 3789 return false; 3790 3791 // Find the relevant condition and destinations. 3792 Value *Condition = Select->getCondition(); 3793 BasicBlock *TrueBB = SI->findCaseValue(TrueVal)->getCaseSuccessor(); 3794 BasicBlock *FalseBB = SI->findCaseValue(FalseVal)->getCaseSuccessor(); 3795 3796 // Get weight for TrueBB and FalseBB. 3797 uint32_t TrueWeight = 0, FalseWeight = 0; 3798 SmallVector<uint64_t, 8> Weights; 3799 bool HasWeights = HasBranchWeights(SI); 3800 if (HasWeights) { 3801 GetBranchWeights(SI, Weights); 3802 if (Weights.size() == 1 + SI->getNumCases()) { 3803 TrueWeight = 3804 (uint32_t)Weights[SI->findCaseValue(TrueVal)->getSuccessorIndex()]; 3805 FalseWeight = 3806 (uint32_t)Weights[SI->findCaseValue(FalseVal)->getSuccessorIndex()]; 3807 } 3808 } 3809 3810 // Perform the actual simplification. 3811 return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, TrueWeight, 3812 FalseWeight); 3813 } 3814 3815 // Replaces 3816 // (indirectbr (select cond, blockaddress(@fn, BlockA), 3817 // blockaddress(@fn, BlockB))) 3818 // with 3819 // (br cond, BlockA, BlockB). 3820 bool SimplifyCFGOpt::SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, 3821 SelectInst *SI) { 3822 // Check that both operands of the select are block addresses. 3823 BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue()); 3824 BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue()); 3825 if (!TBA || !FBA) 3826 return false; 3827 3828 // Extract the actual blocks. 3829 BasicBlock *TrueBB = TBA->getBasicBlock(); 3830 BasicBlock *FalseBB = FBA->getBasicBlock(); 3831 3832 // Perform the actual simplification. 3833 return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 0, 3834 0); 3835 } 3836 3837 /// This is called when we find an icmp instruction 3838 /// (a seteq/setne with a constant) as the only instruction in a 3839 /// block that ends with an uncond branch. We are looking for a very specific 3840 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified. In 3841 /// this case, we merge the first two "or's of icmp" into a switch, but then the 3842 /// default value goes to an uncond block with a seteq in it, we get something 3843 /// like: 3844 /// 3845 /// switch i8 %A, label %DEFAULT [ i8 1, label %end i8 2, label %end ] 3846 /// DEFAULT: 3847 /// %tmp = icmp eq i8 %A, 92 3848 /// br label %end 3849 /// end: 3850 /// ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ] 3851 /// 3852 /// We prefer to split the edge to 'end' so that there is a true/false entry to 3853 /// the PHI, merging the third icmp into the switch. 3854 bool SimplifyCFGOpt::tryToSimplifyUncondBranchWithICmpInIt( 3855 ICmpInst *ICI, IRBuilder<> &Builder) { 3856 BasicBlock *BB = ICI->getParent(); 3857 3858 // If the block has any PHIs in it or the icmp has multiple uses, it is too 3859 // complex. 3860 if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse()) 3861 return false; 3862 3863 Value *V = ICI->getOperand(0); 3864 ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1)); 3865 3866 // The pattern we're looking for is where our only predecessor is a switch on 3867 // 'V' and this block is the default case for the switch. In this case we can 3868 // fold the compared value into the switch to simplify things. 3869 BasicBlock *Pred = BB->getSinglePredecessor(); 3870 if (!Pred || !isa<SwitchInst>(Pred->getTerminator())) 3871 return false; 3872 3873 SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator()); 3874 if (SI->getCondition() != V) 3875 return false; 3876 3877 // If BB is reachable on a non-default case, then we simply know the value of 3878 // V in this block. Substitute it and constant fold the icmp instruction 3879 // away. 3880 if (SI->getDefaultDest() != BB) { 3881 ConstantInt *VVal = SI->findCaseDest(BB); 3882 assert(VVal && "Should have a unique destination value"); 3883 ICI->setOperand(0, VVal); 3884 3885 if (Value *V = SimplifyInstruction(ICI, {DL, ICI})) { 3886 ICI->replaceAllUsesWith(V); 3887 ICI->eraseFromParent(); 3888 } 3889 // BB is now empty, so it is likely to simplify away. 3890 return requestResimplify(); 3891 } 3892 3893 // Ok, the block is reachable from the default dest. If the constant we're 3894 // comparing exists in one of the other edges, then we can constant fold ICI 3895 // and zap it. 3896 if (SI->findCaseValue(Cst) != SI->case_default()) { 3897 Value *V; 3898 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 3899 V = ConstantInt::getFalse(BB->getContext()); 3900 else 3901 V = ConstantInt::getTrue(BB->getContext()); 3902 3903 ICI->replaceAllUsesWith(V); 3904 ICI->eraseFromParent(); 3905 // BB is now empty, so it is likely to simplify away. 3906 return requestResimplify(); 3907 } 3908 3909 // The use of the icmp has to be in the 'end' block, by the only PHI node in 3910 // the block. 3911 BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0); 3912 PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back()); 3913 if (PHIUse == nullptr || PHIUse != &SuccBlock->front() || 3914 isa<PHINode>(++BasicBlock::iterator(PHIUse))) 3915 return false; 3916 3917 // If the icmp is a SETEQ, then the default dest gets false, the new edge gets 3918 // true in the PHI. 3919 Constant *DefaultCst = ConstantInt::getTrue(BB->getContext()); 3920 Constant *NewCst = ConstantInt::getFalse(BB->getContext()); 3921 3922 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 3923 std::swap(DefaultCst, NewCst); 3924 3925 // Replace ICI (which is used by the PHI for the default value) with true or 3926 // false depending on if it is EQ or NE. 3927 ICI->replaceAllUsesWith(DefaultCst); 3928 ICI->eraseFromParent(); 3929 3930 SmallVector<DominatorTree::UpdateType, 2> Updates; 3931 3932 // Okay, the switch goes to this block on a default value. Add an edge from 3933 // the switch to the merge point on the compared value. 3934 BasicBlock *NewBB = 3935 BasicBlock::Create(BB->getContext(), "switch.edge", BB->getParent(), BB); 3936 { 3937 SwitchInstProfUpdateWrapper SIW(*SI); 3938 auto W0 = SIW.getSuccessorWeight(0); 3939 SwitchInstProfUpdateWrapper::CaseWeightOpt NewW; 3940 if (W0) { 3941 NewW = ((uint64_t(*W0) + 1) >> 1); 3942 SIW.setSuccessorWeight(0, *NewW); 3943 } 3944 SIW.addCase(Cst, NewBB, NewW); 3945 Updates.push_back({DominatorTree::Insert, Pred, NewBB}); 3946 } 3947 3948 // NewBB branches to the phi block, add the uncond branch and the phi entry. 3949 Builder.SetInsertPoint(NewBB); 3950 Builder.SetCurrentDebugLocation(SI->getDebugLoc()); 3951 Builder.CreateBr(SuccBlock); 3952 Updates.push_back({DominatorTree::Insert, NewBB, SuccBlock}); 3953 PHIUse->addIncoming(NewCst, NewBB); 3954 if (DTU) 3955 DTU->applyUpdates(Updates); 3956 return true; 3957 } 3958 3959 /// The specified branch is a conditional branch. 3960 /// Check to see if it is branching on an or/and chain of icmp instructions, and 3961 /// fold it into a switch instruction if so. 3962 bool SimplifyCFGOpt::SimplifyBranchOnICmpChain(BranchInst *BI, 3963 IRBuilder<> &Builder, 3964 const DataLayout &DL) { 3965 Instruction *Cond = dyn_cast<Instruction>(BI->getCondition()); 3966 if (!Cond) 3967 return false; 3968 3969 // Change br (X == 0 | X == 1), T, F into a switch instruction. 3970 // If this is a bunch of seteq's or'd together, or if it's a bunch of 3971 // 'setne's and'ed together, collect them. 3972 3973 // Try to gather values from a chain of and/or to be turned into a switch 3974 ConstantComparesGatherer ConstantCompare(Cond, DL); 3975 // Unpack the result 3976 SmallVectorImpl<ConstantInt *> &Values = ConstantCompare.Vals; 3977 Value *CompVal = ConstantCompare.CompValue; 3978 unsigned UsedICmps = ConstantCompare.UsedICmps; 3979 Value *ExtraCase = ConstantCompare.Extra; 3980 3981 // If we didn't have a multiply compared value, fail. 3982 if (!CompVal) 3983 return false; 3984 3985 // Avoid turning single icmps into a switch. 3986 if (UsedICmps <= 1) 3987 return false; 3988 3989 bool TrueWhenEqual = match(Cond, m_LogicalOr(m_Value(), m_Value())); 3990 3991 // There might be duplicate constants in the list, which the switch 3992 // instruction can't handle, remove them now. 3993 array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate); 3994 Values.erase(std::unique(Values.begin(), Values.end()), Values.end()); 3995 3996 // If Extra was used, we require at least two switch values to do the 3997 // transformation. A switch with one value is just a conditional branch. 3998 if (ExtraCase && Values.size() < 2) 3999 return false; 4000 4001 // TODO: Preserve branch weight metadata, similarly to how 4002 // FoldValueComparisonIntoPredecessors preserves it. 4003 4004 // Figure out which block is which destination. 4005 BasicBlock *DefaultBB = BI->getSuccessor(1); 4006 BasicBlock *EdgeBB = BI->getSuccessor(0); 4007 if (!TrueWhenEqual) 4008 std::swap(DefaultBB, EdgeBB); 4009 4010 BasicBlock *BB = BI->getParent(); 4011 4012 // MSAN does not like undefs as branch condition which can be introduced 4013 // with "explicit branch". 4014 if (ExtraCase && BB->getParent()->hasFnAttribute(Attribute::SanitizeMemory)) 4015 return false; 4016 4017 LLVM_DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size() 4018 << " cases into SWITCH. BB is:\n" 4019 << *BB); 4020 4021 SmallVector<DominatorTree::UpdateType, 2> Updates; 4022 4023 // If there are any extra values that couldn't be folded into the switch 4024 // then we evaluate them with an explicit branch first. Split the block 4025 // right before the condbr to handle it. 4026 if (ExtraCase) { 4027 BasicBlock *NewBB = SplitBlock(BB, BI, DTU, /*LI=*/nullptr, 4028 /*MSSAU=*/nullptr, "switch.early.test"); 4029 4030 // Remove the uncond branch added to the old block. 4031 Instruction *OldTI = BB->getTerminator(); 4032 Builder.SetInsertPoint(OldTI); 4033 4034 if (TrueWhenEqual) 4035 Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB); 4036 else 4037 Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB); 4038 4039 OldTI->eraseFromParent(); 4040 4041 Updates.push_back({DominatorTree::Insert, BB, EdgeBB}); 4042 4043 // If there are PHI nodes in EdgeBB, then we need to add a new entry to them 4044 // for the edge we just added. 4045 AddPredecessorToBlock(EdgeBB, BB, NewBB); 4046 4047 LLVM_DEBUG(dbgs() << " ** 'icmp' chain unhandled condition: " << *ExtraCase 4048 << "\nEXTRABB = " << *BB); 4049 BB = NewBB; 4050 } 4051 4052 Builder.SetInsertPoint(BI); 4053 // Convert pointer to int before we switch. 4054 if (CompVal->getType()->isPointerTy()) { 4055 CompVal = Builder.CreatePtrToInt( 4056 CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr"); 4057 } 4058 4059 // Create the new switch instruction now. 4060 SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size()); 4061 4062 // Add all of the 'cases' to the switch instruction. 4063 for (unsigned i = 0, e = Values.size(); i != e; ++i) 4064 New->addCase(Values[i], EdgeBB); 4065 4066 // We added edges from PI to the EdgeBB. As such, if there were any 4067 // PHI nodes in EdgeBB, they need entries to be added corresponding to 4068 // the number of edges added. 4069 for (BasicBlock::iterator BBI = EdgeBB->begin(); isa<PHINode>(BBI); ++BBI) { 4070 PHINode *PN = cast<PHINode>(BBI); 4071 Value *InVal = PN->getIncomingValueForBlock(BB); 4072 for (unsigned i = 0, e = Values.size() - 1; i != e; ++i) 4073 PN->addIncoming(InVal, BB); 4074 } 4075 4076 // Erase the old branch instruction. 4077 EraseTerminatorAndDCECond(BI); 4078 if (DTU) 4079 DTU->applyUpdates(Updates); 4080 4081 LLVM_DEBUG(dbgs() << " ** 'icmp' chain result is:\n" << *BB << '\n'); 4082 return true; 4083 } 4084 4085 bool SimplifyCFGOpt::simplifyResume(ResumeInst *RI, IRBuilder<> &Builder) { 4086 if (isa<PHINode>(RI->getValue())) 4087 return simplifyCommonResume(RI); 4088 else if (isa<LandingPadInst>(RI->getParent()->getFirstNonPHI()) && 4089 RI->getValue() == RI->getParent()->getFirstNonPHI()) 4090 // The resume must unwind the exception that caused control to branch here. 4091 return simplifySingleResume(RI); 4092 4093 return false; 4094 } 4095 4096 // Check if cleanup block is empty 4097 static bool isCleanupBlockEmpty(iterator_range<BasicBlock::iterator> R) { 4098 for (Instruction &I : R) { 4099 auto *II = dyn_cast<IntrinsicInst>(&I); 4100 if (!II) 4101 return false; 4102 4103 Intrinsic::ID IntrinsicID = II->getIntrinsicID(); 4104 switch (IntrinsicID) { 4105 case Intrinsic::dbg_declare: 4106 case Intrinsic::dbg_value: 4107 case Intrinsic::dbg_label: 4108 case Intrinsic::lifetime_end: 4109 break; 4110 default: 4111 return false; 4112 } 4113 } 4114 return true; 4115 } 4116 4117 // Simplify resume that is shared by several landing pads (phi of landing pad). 4118 bool SimplifyCFGOpt::simplifyCommonResume(ResumeInst *RI) { 4119 BasicBlock *BB = RI->getParent(); 4120 4121 // Check that there are no other instructions except for debug and lifetime 4122 // intrinsics between the phi's and resume instruction. 4123 if (!isCleanupBlockEmpty( 4124 make_range(RI->getParent()->getFirstNonPHI(), BB->getTerminator()))) 4125 return false; 4126 4127 SmallSetVector<BasicBlock *, 4> TrivialUnwindBlocks; 4128 auto *PhiLPInst = cast<PHINode>(RI->getValue()); 4129 4130 // Check incoming blocks to see if any of them are trivial. 4131 for (unsigned Idx = 0, End = PhiLPInst->getNumIncomingValues(); Idx != End; 4132 Idx++) { 4133 auto *IncomingBB = PhiLPInst->getIncomingBlock(Idx); 4134 auto *IncomingValue = PhiLPInst->getIncomingValue(Idx); 4135 4136 // If the block has other successors, we can not delete it because 4137 // it has other dependents. 4138 if (IncomingBB->getUniqueSuccessor() != BB) 4139 continue; 4140 4141 auto *LandingPad = dyn_cast<LandingPadInst>(IncomingBB->getFirstNonPHI()); 4142 // Not the landing pad that caused the control to branch here. 4143 if (IncomingValue != LandingPad) 4144 continue; 4145 4146 if (isCleanupBlockEmpty( 4147 make_range(LandingPad->getNextNode(), IncomingBB->getTerminator()))) 4148 TrivialUnwindBlocks.insert(IncomingBB); 4149 } 4150 4151 // If no trivial unwind blocks, don't do any simplifications. 4152 if (TrivialUnwindBlocks.empty()) 4153 return false; 4154 4155 // Turn all invokes that unwind here into calls. 4156 for (auto *TrivialBB : TrivialUnwindBlocks) { 4157 // Blocks that will be simplified should be removed from the phi node. 4158 // Note there could be multiple edges to the resume block, and we need 4159 // to remove them all. 4160 while (PhiLPInst->getBasicBlockIndex(TrivialBB) != -1) 4161 BB->removePredecessor(TrivialBB, true); 4162 4163 for (pred_iterator PI = pred_begin(TrivialBB), PE = pred_end(TrivialBB); 4164 PI != PE;) { 4165 BasicBlock *Pred = *PI++; 4166 removeUnwindEdge(Pred, DTU); 4167 ++NumInvokes; 4168 } 4169 4170 // In each SimplifyCFG run, only the current processed block can be erased. 4171 // Otherwise, it will break the iteration of SimplifyCFG pass. So instead 4172 // of erasing TrivialBB, we only remove the branch to the common resume 4173 // block so that we can later erase the resume block since it has no 4174 // predecessors. 4175 TrivialBB->getTerminator()->eraseFromParent(); 4176 new UnreachableInst(RI->getContext(), TrivialBB); 4177 if (DTU) 4178 DTU->applyUpdates({{DominatorTree::Delete, TrivialBB, BB}}); 4179 } 4180 4181 // Delete the resume block if all its predecessors have been removed. 4182 if (pred_empty(BB)) { 4183 if (DTU) 4184 DTU->deleteBB(BB); 4185 else 4186 BB->eraseFromParent(); 4187 } 4188 4189 return !TrivialUnwindBlocks.empty(); 4190 } 4191 4192 // Simplify resume that is only used by a single (non-phi) landing pad. 4193 bool SimplifyCFGOpt::simplifySingleResume(ResumeInst *RI) { 4194 BasicBlock *BB = RI->getParent(); 4195 auto *LPInst = cast<LandingPadInst>(BB->getFirstNonPHI()); 4196 assert(RI->getValue() == LPInst && 4197 "Resume must unwind the exception that caused control to here"); 4198 4199 // Check that there are no other instructions except for debug intrinsics. 4200 if (!isCleanupBlockEmpty( 4201 make_range<Instruction *>(LPInst->getNextNode(), RI))) 4202 return false; 4203 4204 // Turn all invokes that unwind here into calls and delete the basic block. 4205 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) { 4206 BasicBlock *Pred = *PI++; 4207 removeUnwindEdge(Pred, DTU); 4208 ++NumInvokes; 4209 } 4210 4211 // The landingpad is now unreachable. Zap it. 4212 if (DTU) 4213 DTU->deleteBB(BB); 4214 else 4215 BB->eraseFromParent(); 4216 return true; 4217 } 4218 4219 static bool removeEmptyCleanup(CleanupReturnInst *RI, DomTreeUpdater *DTU) { 4220 // If this is a trivial cleanup pad that executes no instructions, it can be 4221 // eliminated. If the cleanup pad continues to the caller, any predecessor 4222 // that is an EH pad will be updated to continue to the caller and any 4223 // predecessor that terminates with an invoke instruction will have its invoke 4224 // instruction converted to a call instruction. If the cleanup pad being 4225 // simplified does not continue to the caller, each predecessor will be 4226 // updated to continue to the unwind destination of the cleanup pad being 4227 // simplified. 4228 BasicBlock *BB = RI->getParent(); 4229 CleanupPadInst *CPInst = RI->getCleanupPad(); 4230 if (CPInst->getParent() != BB) 4231 // This isn't an empty cleanup. 4232 return false; 4233 4234 // We cannot kill the pad if it has multiple uses. This typically arises 4235 // from unreachable basic blocks. 4236 if (!CPInst->hasOneUse()) 4237 return false; 4238 4239 // Check that there are no other instructions except for benign intrinsics. 4240 if (!isCleanupBlockEmpty( 4241 make_range<Instruction *>(CPInst->getNextNode(), RI))) 4242 return false; 4243 4244 // If the cleanup return we are simplifying unwinds to the caller, this will 4245 // set UnwindDest to nullptr. 4246 BasicBlock *UnwindDest = RI->getUnwindDest(); 4247 Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr; 4248 4249 // We're about to remove BB from the control flow. Before we do, sink any 4250 // PHINodes into the unwind destination. Doing this before changing the 4251 // control flow avoids some potentially slow checks, since we can currently 4252 // be certain that UnwindDest and BB have no common predecessors (since they 4253 // are both EH pads). 4254 if (UnwindDest) { 4255 // First, go through the PHI nodes in UnwindDest and update any nodes that 4256 // reference the block we are removing 4257 for (BasicBlock::iterator I = UnwindDest->begin(), 4258 IE = DestEHPad->getIterator(); 4259 I != IE; ++I) { 4260 PHINode *DestPN = cast<PHINode>(I); 4261 4262 int Idx = DestPN->getBasicBlockIndex(BB); 4263 // Since BB unwinds to UnwindDest, it has to be in the PHI node. 4264 assert(Idx != -1); 4265 // This PHI node has an incoming value that corresponds to a control 4266 // path through the cleanup pad we are removing. If the incoming 4267 // value is in the cleanup pad, it must be a PHINode (because we 4268 // verified above that the block is otherwise empty). Otherwise, the 4269 // value is either a constant or a value that dominates the cleanup 4270 // pad being removed. 4271 // 4272 // Because BB and UnwindDest are both EH pads, all of their 4273 // predecessors must unwind to these blocks, and since no instruction 4274 // can have multiple unwind destinations, there will be no overlap in 4275 // incoming blocks between SrcPN and DestPN. 4276 Value *SrcVal = DestPN->getIncomingValue(Idx); 4277 PHINode *SrcPN = dyn_cast<PHINode>(SrcVal); 4278 4279 // Remove the entry for the block we are deleting. 4280 DestPN->removeIncomingValue(Idx, false); 4281 4282 if (SrcPN && SrcPN->getParent() == BB) { 4283 // If the incoming value was a PHI node in the cleanup pad we are 4284 // removing, we need to merge that PHI node's incoming values into 4285 // DestPN. 4286 for (unsigned SrcIdx = 0, SrcE = SrcPN->getNumIncomingValues(); 4287 SrcIdx != SrcE; ++SrcIdx) { 4288 DestPN->addIncoming(SrcPN->getIncomingValue(SrcIdx), 4289 SrcPN->getIncomingBlock(SrcIdx)); 4290 } 4291 } else { 4292 // Otherwise, the incoming value came from above BB and 4293 // so we can just reuse it. We must associate all of BB's 4294 // predecessors with this value. 4295 for (auto *pred : predecessors(BB)) { 4296 DestPN->addIncoming(SrcVal, pred); 4297 } 4298 } 4299 } 4300 4301 // Sink any remaining PHI nodes directly into UnwindDest. 4302 Instruction *InsertPt = DestEHPad; 4303 for (BasicBlock::iterator I = BB->begin(), 4304 IE = BB->getFirstNonPHI()->getIterator(); 4305 I != IE;) { 4306 // The iterator must be incremented here because the instructions are 4307 // being moved to another block. 4308 PHINode *PN = cast<PHINode>(I++); 4309 if (PN->use_empty() || !PN->isUsedOutsideOfBlock(BB)) 4310 // If the PHI node has no uses or all of its uses are in this basic 4311 // block (meaning they are debug or lifetime intrinsics), just leave 4312 // it. It will be erased when we erase BB below. 4313 continue; 4314 4315 // Otherwise, sink this PHI node into UnwindDest. 4316 // Any predecessors to UnwindDest which are not already represented 4317 // must be back edges which inherit the value from the path through 4318 // BB. In this case, the PHI value must reference itself. 4319 for (auto *pred : predecessors(UnwindDest)) 4320 if (pred != BB) 4321 PN->addIncoming(PN, pred); 4322 PN->moveBefore(InsertPt); 4323 } 4324 } 4325 4326 std::vector<DominatorTree::UpdateType> Updates; 4327 4328 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) { 4329 // The iterator must be updated here because we are removing this pred. 4330 BasicBlock *PredBB = *PI++; 4331 if (UnwindDest == nullptr) { 4332 if (DTU) 4333 DTU->applyUpdates(Updates); 4334 Updates.clear(); 4335 removeUnwindEdge(PredBB, DTU); 4336 ++NumInvokes; 4337 } else { 4338 Instruction *TI = PredBB->getTerminator(); 4339 TI->replaceUsesOfWith(BB, UnwindDest); 4340 Updates.push_back({DominatorTree::Insert, PredBB, UnwindDest}); 4341 Updates.push_back({DominatorTree::Delete, PredBB, BB}); 4342 } 4343 } 4344 4345 if (DTU) { 4346 DTU->applyUpdates(Updates); 4347 DTU->deleteBB(BB); 4348 } else 4349 // The cleanup pad is now unreachable. Zap it. 4350 BB->eraseFromParent(); 4351 4352 return true; 4353 } 4354 4355 // Try to merge two cleanuppads together. 4356 static bool mergeCleanupPad(CleanupReturnInst *RI) { 4357 // Skip any cleanuprets which unwind to caller, there is nothing to merge 4358 // with. 4359 BasicBlock *UnwindDest = RI->getUnwindDest(); 4360 if (!UnwindDest) 4361 return false; 4362 4363 // This cleanupret isn't the only predecessor of this cleanuppad, it wouldn't 4364 // be safe to merge without code duplication. 4365 if (UnwindDest->getSinglePredecessor() != RI->getParent()) 4366 return false; 4367 4368 // Verify that our cleanuppad's unwind destination is another cleanuppad. 4369 auto *SuccessorCleanupPad = dyn_cast<CleanupPadInst>(&UnwindDest->front()); 4370 if (!SuccessorCleanupPad) 4371 return false; 4372 4373 CleanupPadInst *PredecessorCleanupPad = RI->getCleanupPad(); 4374 // Replace any uses of the successor cleanupad with the predecessor pad 4375 // The only cleanuppad uses should be this cleanupret, it's cleanupret and 4376 // funclet bundle operands. 4377 SuccessorCleanupPad->replaceAllUsesWith(PredecessorCleanupPad); 4378 // Remove the old cleanuppad. 4379 SuccessorCleanupPad->eraseFromParent(); 4380 // Now, we simply replace the cleanupret with a branch to the unwind 4381 // destination. 4382 BranchInst::Create(UnwindDest, RI->getParent()); 4383 RI->eraseFromParent(); 4384 4385 return true; 4386 } 4387 4388 bool SimplifyCFGOpt::simplifyCleanupReturn(CleanupReturnInst *RI) { 4389 // It is possible to transiantly have an undef cleanuppad operand because we 4390 // have deleted some, but not all, dead blocks. 4391 // Eventually, this block will be deleted. 4392 if (isa<UndefValue>(RI->getOperand(0))) 4393 return false; 4394 4395 if (mergeCleanupPad(RI)) 4396 return true; 4397 4398 if (removeEmptyCleanup(RI, DTU)) 4399 return true; 4400 4401 return false; 4402 } 4403 4404 bool SimplifyCFGOpt::simplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) { 4405 BasicBlock *BB = RI->getParent(); 4406 if (!BB->getFirstNonPHIOrDbg()->isTerminator()) 4407 return false; 4408 4409 // Find predecessors that end with branches. 4410 SmallVector<BasicBlock *, 8> UncondBranchPreds; 4411 SmallVector<BranchInst *, 8> CondBranchPreds; 4412 for (BasicBlock *P : predecessors(BB)) { 4413 Instruction *PTI = P->getTerminator(); 4414 if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) { 4415 if (BI->isUnconditional()) 4416 UncondBranchPreds.push_back(P); 4417 else 4418 CondBranchPreds.push_back(BI); 4419 } 4420 } 4421 4422 // If we found some, do the transformation! 4423 if (!UncondBranchPreds.empty() && DupRet) { 4424 while (!UncondBranchPreds.empty()) { 4425 BasicBlock *Pred = UncondBranchPreds.pop_back_val(); 4426 LLVM_DEBUG(dbgs() << "FOLDING: " << *BB 4427 << "INTO UNCOND BRANCH PRED: " << *Pred); 4428 (void)FoldReturnIntoUncondBranch(RI, BB, Pred, DTU); 4429 } 4430 4431 // If we eliminated all predecessors of the block, delete the block now. 4432 if (pred_empty(BB)) { 4433 // We know there are no successors, so just nuke the block. 4434 if (DTU) 4435 DTU->deleteBB(BB); 4436 else 4437 BB->eraseFromParent(); 4438 } 4439 4440 return true; 4441 } 4442 4443 // Check out all of the conditional branches going to this return 4444 // instruction. If any of them just select between returns, change the 4445 // branch itself into a select/return pair. 4446 while (!CondBranchPreds.empty()) { 4447 BranchInst *BI = CondBranchPreds.pop_back_val(); 4448 4449 // Check to see if the non-BB successor is also a return block. 4450 if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) && 4451 isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) && 4452 SimplifyCondBranchToTwoReturns(BI, Builder)) 4453 return true; 4454 } 4455 return false; 4456 } 4457 4458 bool SimplifyCFGOpt::simplifyUnreachable(UnreachableInst *UI) { 4459 BasicBlock *BB = UI->getParent(); 4460 4461 bool Changed = false; 4462 4463 // If there are any instructions immediately before the unreachable that can 4464 // be removed, do so. 4465 while (UI->getIterator() != BB->begin()) { 4466 BasicBlock::iterator BBI = UI->getIterator(); 4467 --BBI; 4468 // Do not delete instructions that can have side effects which might cause 4469 // the unreachable to not be reachable; specifically, calls and volatile 4470 // operations may have this effect. 4471 if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI)) 4472 break; 4473 4474 if (BBI->mayHaveSideEffects()) { 4475 if (auto *SI = dyn_cast<StoreInst>(BBI)) { 4476 if (SI->isVolatile()) 4477 break; 4478 } else if (auto *LI = dyn_cast<LoadInst>(BBI)) { 4479 if (LI->isVolatile()) 4480 break; 4481 } else if (auto *RMWI = dyn_cast<AtomicRMWInst>(BBI)) { 4482 if (RMWI->isVolatile()) 4483 break; 4484 } else if (auto *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) { 4485 if (CXI->isVolatile()) 4486 break; 4487 } else if (isa<CatchPadInst>(BBI)) { 4488 // A catchpad may invoke exception object constructors and such, which 4489 // in some languages can be arbitrary code, so be conservative by 4490 // default. 4491 // For CoreCLR, it just involves a type test, so can be removed. 4492 if (classifyEHPersonality(BB->getParent()->getPersonalityFn()) != 4493 EHPersonality::CoreCLR) 4494 break; 4495 } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) && 4496 !isa<LandingPadInst>(BBI)) { 4497 break; 4498 } 4499 // Note that deleting LandingPad's here is in fact okay, although it 4500 // involves a bit of subtle reasoning. If this inst is a LandingPad, 4501 // all the predecessors of this block will be the unwind edges of Invokes, 4502 // and we can therefore guarantee this block will be erased. 4503 } 4504 4505 // Delete this instruction (any uses are guaranteed to be dead) 4506 if (!BBI->use_empty()) 4507 BBI->replaceAllUsesWith(UndefValue::get(BBI->getType())); 4508 BBI->eraseFromParent(); 4509 Changed = true; 4510 } 4511 4512 // If the unreachable instruction is the first in the block, take a gander 4513 // at all of the predecessors of this instruction, and simplify them. 4514 if (&BB->front() != UI) 4515 return Changed; 4516 4517 std::vector<DominatorTree::UpdateType> Updates; 4518 4519 SmallSetVector<BasicBlock *, 8> Preds(pred_begin(BB), pred_end(BB)); 4520 for (unsigned i = 0, e = Preds.size(); i != e; ++i) { 4521 auto *Predecessor = Preds[i]; 4522 Instruction *TI = Predecessor->getTerminator(); 4523 IRBuilder<> Builder(TI); 4524 if (auto *BI = dyn_cast<BranchInst>(TI)) { 4525 // We could either have a proper unconditional branch, 4526 // or a degenerate conditional branch with matching destinations. 4527 if (all_of(BI->successors(), 4528 [BB](auto *Successor) { return Successor == BB; })) { 4529 new UnreachableInst(TI->getContext(), TI); 4530 TI->eraseFromParent(); 4531 Changed = true; 4532 } else { 4533 assert(BI->isConditional() && "Can't get here with an uncond branch."); 4534 Value* Cond = BI->getCondition(); 4535 assert(BI->getSuccessor(0) != BI->getSuccessor(1) && 4536 "The destinations are guaranteed to be different here."); 4537 if (BI->getSuccessor(0) == BB) { 4538 Builder.CreateAssumption(Builder.CreateNot(Cond)); 4539 Builder.CreateBr(BI->getSuccessor(1)); 4540 } else { 4541 assert(BI->getSuccessor(1) == BB && "Incorrect CFG"); 4542 Builder.CreateAssumption(Cond); 4543 Builder.CreateBr(BI->getSuccessor(0)); 4544 } 4545 EraseTerminatorAndDCECond(BI); 4546 Changed = true; 4547 } 4548 Updates.push_back({DominatorTree::Delete, Predecessor, BB}); 4549 } else if (auto *SI = dyn_cast<SwitchInst>(TI)) { 4550 SwitchInstProfUpdateWrapper SU(*SI); 4551 for (auto i = SU->case_begin(), e = SU->case_end(); i != e;) { 4552 if (i->getCaseSuccessor() != BB) { 4553 ++i; 4554 continue; 4555 } 4556 BB->removePredecessor(SU->getParent()); 4557 i = SU.removeCase(i); 4558 e = SU->case_end(); 4559 Changed = true; 4560 } 4561 // Note that the default destination can't be removed! 4562 if (SI->getDefaultDest() != BB) 4563 Updates.push_back({DominatorTree::Delete, Predecessor, BB}); 4564 } else if (auto *II = dyn_cast<InvokeInst>(TI)) { 4565 if (II->getUnwindDest() == BB) { 4566 if (DTU) 4567 DTU->applyUpdates(Updates); 4568 Updates.clear(); 4569 removeUnwindEdge(TI->getParent(), DTU); 4570 Changed = true; 4571 } 4572 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) { 4573 if (CSI->getUnwindDest() == BB) { 4574 if (DTU) 4575 DTU->applyUpdates(Updates); 4576 Updates.clear(); 4577 removeUnwindEdge(TI->getParent(), DTU); 4578 Changed = true; 4579 continue; 4580 } 4581 4582 for (CatchSwitchInst::handler_iterator I = CSI->handler_begin(), 4583 E = CSI->handler_end(); 4584 I != E; ++I) { 4585 if (*I == BB) { 4586 CSI->removeHandler(I); 4587 --I; 4588 --E; 4589 Changed = true; 4590 } 4591 } 4592 Updates.push_back({DominatorTree::Delete, Predecessor, BB}); 4593 if (CSI->getNumHandlers() == 0) { 4594 if (CSI->hasUnwindDest()) { 4595 // Redirect all predecessors of the block containing CatchSwitchInst 4596 // to instead branch to the CatchSwitchInst's unwind destination. 4597 for (auto *PredecessorOfPredecessor : predecessors(Predecessor)) { 4598 Updates.push_back({DominatorTree::Insert, PredecessorOfPredecessor, 4599 CSI->getUnwindDest()}); 4600 Updates.push_back( 4601 {DominatorTree::Delete, PredecessorOfPredecessor, Predecessor}); 4602 } 4603 Predecessor->replaceAllUsesWith(CSI->getUnwindDest()); 4604 } else { 4605 // Rewrite all preds to unwind to caller (or from invoke to call). 4606 if (DTU) 4607 DTU->applyUpdates(Updates); 4608 Updates.clear(); 4609 SmallVector<BasicBlock *, 8> EHPreds(predecessors(Predecessor)); 4610 for (BasicBlock *EHPred : EHPreds) 4611 removeUnwindEdge(EHPred, DTU); 4612 } 4613 // The catchswitch is no longer reachable. 4614 new UnreachableInst(CSI->getContext(), CSI); 4615 CSI->eraseFromParent(); 4616 Changed = true; 4617 } 4618 } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) { 4619 (void)CRI; 4620 assert(CRI->hasUnwindDest() && CRI->getUnwindDest() == BB && 4621 "Expected to always have an unwind to BB."); 4622 Updates.push_back({DominatorTree::Delete, Predecessor, BB}); 4623 new UnreachableInst(TI->getContext(), TI); 4624 TI->eraseFromParent(); 4625 Changed = true; 4626 } 4627 } 4628 4629 if (DTU) 4630 DTU->applyUpdates(Updates); 4631 4632 // If this block is now dead, remove it. 4633 if (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) { 4634 // We know there are no successors, so just nuke the block. 4635 if (DTU) 4636 DTU->deleteBB(BB); 4637 else 4638 BB->eraseFromParent(); 4639 return true; 4640 } 4641 4642 return Changed; 4643 } 4644 4645 static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) { 4646 assert(Cases.size() >= 1); 4647 4648 array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate); 4649 for (size_t I = 1, E = Cases.size(); I != E; ++I) { 4650 if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1) 4651 return false; 4652 } 4653 return true; 4654 } 4655 4656 static void createUnreachableSwitchDefault(SwitchInst *Switch, 4657 DomTreeUpdater *DTU) { 4658 LLVM_DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n"); 4659 auto *BB = Switch->getParent(); 4660 BasicBlock *NewDefaultBlock = SplitBlockPredecessors( 4661 Switch->getDefaultDest(), Switch->getParent(), "", DTU); 4662 auto *OrigDefaultBlock = Switch->getDefaultDest(); 4663 Switch->setDefaultDest(&*NewDefaultBlock); 4664 if (DTU) 4665 DTU->applyUpdates({{DominatorTree::Insert, BB, &*NewDefaultBlock}, 4666 {DominatorTree::Delete, BB, OrigDefaultBlock}}); 4667 SplitBlock(&*NewDefaultBlock, &NewDefaultBlock->front(), DTU); 4668 SmallVector<DominatorTree::UpdateType, 2> Updates; 4669 for (auto *Successor : successors(NewDefaultBlock)) 4670 Updates.push_back({DominatorTree::Delete, NewDefaultBlock, Successor}); 4671 auto *NewTerminator = NewDefaultBlock->getTerminator(); 4672 new UnreachableInst(Switch->getContext(), NewTerminator); 4673 EraseTerminatorAndDCECond(NewTerminator); 4674 if (DTU) 4675 DTU->applyUpdates(Updates); 4676 } 4677 4678 /// Turn a switch with two reachable destinations into an integer range 4679 /// comparison and branch. 4680 bool SimplifyCFGOpt::TurnSwitchRangeIntoICmp(SwitchInst *SI, 4681 IRBuilder<> &Builder) { 4682 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 4683 4684 bool HasDefault = 4685 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 4686 4687 auto *BB = SI->getParent(); 4688 4689 // Partition the cases into two sets with different destinations. 4690 BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr; 4691 BasicBlock *DestB = nullptr; 4692 SmallVector<ConstantInt *, 16> CasesA; 4693 SmallVector<ConstantInt *, 16> CasesB; 4694 4695 for (auto Case : SI->cases()) { 4696 BasicBlock *Dest = Case.getCaseSuccessor(); 4697 if (!DestA) 4698 DestA = Dest; 4699 if (Dest == DestA) { 4700 CasesA.push_back(Case.getCaseValue()); 4701 continue; 4702 } 4703 if (!DestB) 4704 DestB = Dest; 4705 if (Dest == DestB) { 4706 CasesB.push_back(Case.getCaseValue()); 4707 continue; 4708 } 4709 return false; // More than two destinations. 4710 } 4711 4712 assert(DestA && DestB && 4713 "Single-destination switch should have been folded."); 4714 assert(DestA != DestB); 4715 assert(DestB != SI->getDefaultDest()); 4716 assert(!CasesB.empty() && "There must be non-default cases."); 4717 assert(!CasesA.empty() || HasDefault); 4718 4719 // Figure out if one of the sets of cases form a contiguous range. 4720 SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr; 4721 BasicBlock *ContiguousDest = nullptr; 4722 BasicBlock *OtherDest = nullptr; 4723 if (!CasesA.empty() && CasesAreContiguous(CasesA)) { 4724 ContiguousCases = &CasesA; 4725 ContiguousDest = DestA; 4726 OtherDest = DestB; 4727 } else if (CasesAreContiguous(CasesB)) { 4728 ContiguousCases = &CasesB; 4729 ContiguousDest = DestB; 4730 OtherDest = DestA; 4731 } else 4732 return false; 4733 4734 // Start building the compare and branch. 4735 4736 Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back()); 4737 Constant *NumCases = 4738 ConstantInt::get(Offset->getType(), ContiguousCases->size()); 4739 4740 Value *Sub = SI->getCondition(); 4741 if (!Offset->isNullValue()) 4742 Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off"); 4743 4744 Value *Cmp; 4745 // If NumCases overflowed, then all possible values jump to the successor. 4746 if (NumCases->isNullValue() && !ContiguousCases->empty()) 4747 Cmp = ConstantInt::getTrue(SI->getContext()); 4748 else 4749 Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch"); 4750 BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest); 4751 4752 // Update weight for the newly-created conditional branch. 4753 if (HasBranchWeights(SI)) { 4754 SmallVector<uint64_t, 8> Weights; 4755 GetBranchWeights(SI, Weights); 4756 if (Weights.size() == 1 + SI->getNumCases()) { 4757 uint64_t TrueWeight = 0; 4758 uint64_t FalseWeight = 0; 4759 for (size_t I = 0, E = Weights.size(); I != E; ++I) { 4760 if (SI->getSuccessor(I) == ContiguousDest) 4761 TrueWeight += Weights[I]; 4762 else 4763 FalseWeight += Weights[I]; 4764 } 4765 while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) { 4766 TrueWeight /= 2; 4767 FalseWeight /= 2; 4768 } 4769 setBranchWeights(NewBI, TrueWeight, FalseWeight); 4770 } 4771 } 4772 4773 // Prune obsolete incoming values off the successors' PHI nodes. 4774 for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) { 4775 unsigned PreviousEdges = ContiguousCases->size(); 4776 if (ContiguousDest == SI->getDefaultDest()) 4777 ++PreviousEdges; 4778 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I) 4779 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 4780 } 4781 for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) { 4782 unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size(); 4783 if (OtherDest == SI->getDefaultDest()) 4784 ++PreviousEdges; 4785 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I) 4786 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 4787 } 4788 4789 // Clean up the default block - it may have phis or other instructions before 4790 // the unreachable terminator. 4791 if (!HasDefault) 4792 createUnreachableSwitchDefault(SI, DTU); 4793 4794 auto *UnreachableDefault = SI->getDefaultDest(); 4795 4796 // Drop the switch. 4797 SI->eraseFromParent(); 4798 4799 if (!HasDefault && DTU) 4800 DTU->applyUpdates({{DominatorTree::Delete, BB, UnreachableDefault}}); 4801 4802 return true; 4803 } 4804 4805 /// Compute masked bits for the condition of a switch 4806 /// and use it to remove dead cases. 4807 static bool eliminateDeadSwitchCases(SwitchInst *SI, DomTreeUpdater *DTU, 4808 AssumptionCache *AC, 4809 const DataLayout &DL) { 4810 Value *Cond = SI->getCondition(); 4811 unsigned Bits = Cond->getType()->getIntegerBitWidth(); 4812 KnownBits Known = computeKnownBits(Cond, DL, 0, AC, SI); 4813 4814 // We can also eliminate cases by determining that their values are outside of 4815 // the limited range of the condition based on how many significant (non-sign) 4816 // bits are in the condition value. 4817 unsigned ExtraSignBits = ComputeNumSignBits(Cond, DL, 0, AC, SI) - 1; 4818 unsigned MaxSignificantBitsInCond = Bits - ExtraSignBits; 4819 4820 // Gather dead cases. 4821 SmallVector<ConstantInt *, 8> DeadCases; 4822 SmallMapVector<BasicBlock *, int, 8> NumPerSuccessorCases; 4823 for (auto &Case : SI->cases()) { 4824 auto *Successor = Case.getCaseSuccessor(); 4825 ++NumPerSuccessorCases[Successor]; 4826 const APInt &CaseVal = Case.getCaseValue()->getValue(); 4827 if (Known.Zero.intersects(CaseVal) || !Known.One.isSubsetOf(CaseVal) || 4828 (CaseVal.getMinSignedBits() > MaxSignificantBitsInCond)) { 4829 DeadCases.push_back(Case.getCaseValue()); 4830 --NumPerSuccessorCases[Successor]; 4831 LLVM_DEBUG(dbgs() << "SimplifyCFG: switch case " << CaseVal 4832 << " is dead.\n"); 4833 } 4834 } 4835 4836 // If we can prove that the cases must cover all possible values, the 4837 // default destination becomes dead and we can remove it. If we know some 4838 // of the bits in the value, we can use that to more precisely compute the 4839 // number of possible unique case values. 4840 bool HasDefault = 4841 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 4842 const unsigned NumUnknownBits = 4843 Bits - (Known.Zero | Known.One).countPopulation(); 4844 assert(NumUnknownBits <= Bits); 4845 if (HasDefault && DeadCases.empty() && 4846 NumUnknownBits < 64 /* avoid overflow */ && 4847 SI->getNumCases() == (1ULL << NumUnknownBits)) { 4848 createUnreachableSwitchDefault(SI, DTU); 4849 return true; 4850 } 4851 4852 if (DeadCases.empty()) 4853 return false; 4854 4855 SwitchInstProfUpdateWrapper SIW(*SI); 4856 for (ConstantInt *DeadCase : DeadCases) { 4857 SwitchInst::CaseIt CaseI = SI->findCaseValue(DeadCase); 4858 assert(CaseI != SI->case_default() && 4859 "Case was not found. Probably mistake in DeadCases forming."); 4860 // Prune unused values from PHI nodes. 4861 CaseI->getCaseSuccessor()->removePredecessor(SI->getParent()); 4862 SIW.removeCase(CaseI); 4863 } 4864 4865 std::vector<DominatorTree::UpdateType> Updates; 4866 for (const std::pair<BasicBlock *, int> &I : NumPerSuccessorCases) 4867 if (I.second == 0) 4868 Updates.push_back({DominatorTree::Delete, SI->getParent(), I.first}); 4869 if (DTU) 4870 DTU->applyUpdates(Updates); 4871 4872 return true; 4873 } 4874 4875 /// If BB would be eligible for simplification by 4876 /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated 4877 /// by an unconditional branch), look at the phi node for BB in the successor 4878 /// block and see if the incoming value is equal to CaseValue. If so, return 4879 /// the phi node, and set PhiIndex to BB's index in the phi node. 4880 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue, 4881 BasicBlock *BB, int *PhiIndex) { 4882 if (BB->getFirstNonPHIOrDbg() != BB->getTerminator()) 4883 return nullptr; // BB must be empty to be a candidate for simplification. 4884 if (!BB->getSinglePredecessor()) 4885 return nullptr; // BB must be dominated by the switch. 4886 4887 BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator()); 4888 if (!Branch || !Branch->isUnconditional()) 4889 return nullptr; // Terminator must be unconditional branch. 4890 4891 BasicBlock *Succ = Branch->getSuccessor(0); 4892 4893 for (PHINode &PHI : Succ->phis()) { 4894 int Idx = PHI.getBasicBlockIndex(BB); 4895 assert(Idx >= 0 && "PHI has no entry for predecessor?"); 4896 4897 Value *InValue = PHI.getIncomingValue(Idx); 4898 if (InValue != CaseValue) 4899 continue; 4900 4901 *PhiIndex = Idx; 4902 return &PHI; 4903 } 4904 4905 return nullptr; 4906 } 4907 4908 /// Try to forward the condition of a switch instruction to a phi node 4909 /// dominated by the switch, if that would mean that some of the destination 4910 /// blocks of the switch can be folded away. Return true if a change is made. 4911 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) { 4912 using ForwardingNodesMap = DenseMap<PHINode *, SmallVector<int, 4>>; 4913 4914 ForwardingNodesMap ForwardingNodes; 4915 BasicBlock *SwitchBlock = SI->getParent(); 4916 bool Changed = false; 4917 for (auto &Case : SI->cases()) { 4918 ConstantInt *CaseValue = Case.getCaseValue(); 4919 BasicBlock *CaseDest = Case.getCaseSuccessor(); 4920 4921 // Replace phi operands in successor blocks that are using the constant case 4922 // value rather than the switch condition variable: 4923 // switchbb: 4924 // switch i32 %x, label %default [ 4925 // i32 17, label %succ 4926 // ... 4927 // succ: 4928 // %r = phi i32 ... [ 17, %switchbb ] ... 4929 // --> 4930 // %r = phi i32 ... [ %x, %switchbb ] ... 4931 4932 for (PHINode &Phi : CaseDest->phis()) { 4933 // This only works if there is exactly 1 incoming edge from the switch to 4934 // a phi. If there is >1, that means multiple cases of the switch map to 1 4935 // value in the phi, and that phi value is not the switch condition. Thus, 4936 // this transform would not make sense (the phi would be invalid because 4937 // a phi can't have different incoming values from the same block). 4938 int SwitchBBIdx = Phi.getBasicBlockIndex(SwitchBlock); 4939 if (Phi.getIncomingValue(SwitchBBIdx) == CaseValue && 4940 count(Phi.blocks(), SwitchBlock) == 1) { 4941 Phi.setIncomingValue(SwitchBBIdx, SI->getCondition()); 4942 Changed = true; 4943 } 4944 } 4945 4946 // Collect phi nodes that are indirectly using this switch's case constants. 4947 int PhiIdx; 4948 if (auto *Phi = FindPHIForConditionForwarding(CaseValue, CaseDest, &PhiIdx)) 4949 ForwardingNodes[Phi].push_back(PhiIdx); 4950 } 4951 4952 for (auto &ForwardingNode : ForwardingNodes) { 4953 PHINode *Phi = ForwardingNode.first; 4954 SmallVectorImpl<int> &Indexes = ForwardingNode.second; 4955 if (Indexes.size() < 2) 4956 continue; 4957 4958 for (int Index : Indexes) 4959 Phi->setIncomingValue(Index, SI->getCondition()); 4960 Changed = true; 4961 } 4962 4963 return Changed; 4964 } 4965 4966 /// Return true if the backend will be able to handle 4967 /// initializing an array of constants like C. 4968 static bool ValidLookupTableConstant(Constant *C, const TargetTransformInfo &TTI) { 4969 if (C->isThreadDependent()) 4970 return false; 4971 if (C->isDLLImportDependent()) 4972 return false; 4973 4974 if (!isa<ConstantFP>(C) && !isa<ConstantInt>(C) && 4975 !isa<ConstantPointerNull>(C) && !isa<GlobalValue>(C) && 4976 !isa<UndefValue>(C) && !isa<ConstantExpr>(C)) 4977 return false; 4978 4979 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 4980 if (!CE->isGEPWithNoNotionalOverIndexing()) 4981 return false; 4982 if (!ValidLookupTableConstant(CE->getOperand(0), TTI)) 4983 return false; 4984 } 4985 4986 if (!TTI.shouldBuildLookupTablesForConstant(C)) 4987 return false; 4988 4989 return true; 4990 } 4991 4992 /// If V is a Constant, return it. Otherwise, try to look up 4993 /// its constant value in ConstantPool, returning 0 if it's not there. 4994 static Constant * 4995 LookupConstant(Value *V, 4996 const SmallDenseMap<Value *, Constant *> &ConstantPool) { 4997 if (Constant *C = dyn_cast<Constant>(V)) 4998 return C; 4999 return ConstantPool.lookup(V); 5000 } 5001 5002 /// Try to fold instruction I into a constant. This works for 5003 /// simple instructions such as binary operations where both operands are 5004 /// constant or can be replaced by constants from the ConstantPool. Returns the 5005 /// resulting constant on success, 0 otherwise. 5006 static Constant * 5007 ConstantFold(Instruction *I, const DataLayout &DL, 5008 const SmallDenseMap<Value *, Constant *> &ConstantPool) { 5009 if (SelectInst *Select = dyn_cast<SelectInst>(I)) { 5010 Constant *A = LookupConstant(Select->getCondition(), ConstantPool); 5011 if (!A) 5012 return nullptr; 5013 if (A->isAllOnesValue()) 5014 return LookupConstant(Select->getTrueValue(), ConstantPool); 5015 if (A->isNullValue()) 5016 return LookupConstant(Select->getFalseValue(), ConstantPool); 5017 return nullptr; 5018 } 5019 5020 SmallVector<Constant *, 4> COps; 5021 for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) { 5022 if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool)) 5023 COps.push_back(A); 5024 else 5025 return nullptr; 5026 } 5027 5028 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) { 5029 return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0], 5030 COps[1], DL); 5031 } 5032 5033 return ConstantFoldInstOperands(I, COps, DL); 5034 } 5035 5036 /// Try to determine the resulting constant values in phi nodes 5037 /// at the common destination basic block, *CommonDest, for one of the case 5038 /// destionations CaseDest corresponding to value CaseVal (0 for the default 5039 /// case), of a switch instruction SI. 5040 static bool 5041 GetCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest, 5042 BasicBlock **CommonDest, 5043 SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res, 5044 const DataLayout &DL, const TargetTransformInfo &TTI) { 5045 // The block from which we enter the common destination. 5046 BasicBlock *Pred = SI->getParent(); 5047 5048 // If CaseDest is empty except for some side-effect free instructions through 5049 // which we can constant-propagate the CaseVal, continue to its successor. 5050 SmallDenseMap<Value *, Constant *> ConstantPool; 5051 ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal)); 5052 for (Instruction &I :CaseDest->instructionsWithoutDebug()) { 5053 if (I.isTerminator()) { 5054 // If the terminator is a simple branch, continue to the next block. 5055 if (I.getNumSuccessors() != 1 || I.isExceptionalTerminator()) 5056 return false; 5057 Pred = CaseDest; 5058 CaseDest = I.getSuccessor(0); 5059 } else if (Constant *C = ConstantFold(&I, DL, ConstantPool)) { 5060 // Instruction is side-effect free and constant. 5061 5062 // If the instruction has uses outside this block or a phi node slot for 5063 // the block, it is not safe to bypass the instruction since it would then 5064 // no longer dominate all its uses. 5065 for (auto &Use : I.uses()) { 5066 User *User = Use.getUser(); 5067 if (Instruction *I = dyn_cast<Instruction>(User)) 5068 if (I->getParent() == CaseDest) 5069 continue; 5070 if (PHINode *Phi = dyn_cast<PHINode>(User)) 5071 if (Phi->getIncomingBlock(Use) == CaseDest) 5072 continue; 5073 return false; 5074 } 5075 5076 ConstantPool.insert(std::make_pair(&I, C)); 5077 } else { 5078 break; 5079 } 5080 } 5081 5082 // If we did not have a CommonDest before, use the current one. 5083 if (!*CommonDest) 5084 *CommonDest = CaseDest; 5085 // If the destination isn't the common one, abort. 5086 if (CaseDest != *CommonDest) 5087 return false; 5088 5089 // Get the values for this case from phi nodes in the destination block. 5090 for (PHINode &PHI : (*CommonDest)->phis()) { 5091 int Idx = PHI.getBasicBlockIndex(Pred); 5092 if (Idx == -1) 5093 continue; 5094 5095 Constant *ConstVal = 5096 LookupConstant(PHI.getIncomingValue(Idx), ConstantPool); 5097 if (!ConstVal) 5098 return false; 5099 5100 // Be conservative about which kinds of constants we support. 5101 if (!ValidLookupTableConstant(ConstVal, TTI)) 5102 return false; 5103 5104 Res.push_back(std::make_pair(&PHI, ConstVal)); 5105 } 5106 5107 return Res.size() > 0; 5108 } 5109 5110 // Helper function used to add CaseVal to the list of cases that generate 5111 // Result. Returns the updated number of cases that generate this result. 5112 static uintptr_t MapCaseToResult(ConstantInt *CaseVal, 5113 SwitchCaseResultVectorTy &UniqueResults, 5114 Constant *Result) { 5115 for (auto &I : UniqueResults) { 5116 if (I.first == Result) { 5117 I.second.push_back(CaseVal); 5118 return I.second.size(); 5119 } 5120 } 5121 UniqueResults.push_back( 5122 std::make_pair(Result, SmallVector<ConstantInt *, 4>(1, CaseVal))); 5123 return 1; 5124 } 5125 5126 // Helper function that initializes a map containing 5127 // results for the PHI node of the common destination block for a switch 5128 // instruction. Returns false if multiple PHI nodes have been found or if 5129 // there is not a common destination block for the switch. 5130 static bool 5131 InitializeUniqueCases(SwitchInst *SI, PHINode *&PHI, BasicBlock *&CommonDest, 5132 SwitchCaseResultVectorTy &UniqueResults, 5133 Constant *&DefaultResult, const DataLayout &DL, 5134 const TargetTransformInfo &TTI, 5135 uintptr_t MaxUniqueResults, uintptr_t MaxCasesPerResult) { 5136 for (auto &I : SI->cases()) { 5137 ConstantInt *CaseVal = I.getCaseValue(); 5138 5139 // Resulting value at phi nodes for this case value. 5140 SwitchCaseResultsTy Results; 5141 if (!GetCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results, 5142 DL, TTI)) 5143 return false; 5144 5145 // Only one value per case is permitted. 5146 if (Results.size() > 1) 5147 return false; 5148 5149 // Add the case->result mapping to UniqueResults. 5150 const uintptr_t NumCasesForResult = 5151 MapCaseToResult(CaseVal, UniqueResults, Results.begin()->second); 5152 5153 // Early out if there are too many cases for this result. 5154 if (NumCasesForResult > MaxCasesPerResult) 5155 return false; 5156 5157 // Early out if there are too many unique results. 5158 if (UniqueResults.size() > MaxUniqueResults) 5159 return false; 5160 5161 // Check the PHI consistency. 5162 if (!PHI) 5163 PHI = Results[0].first; 5164 else if (PHI != Results[0].first) 5165 return false; 5166 } 5167 // Find the default result value. 5168 SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults; 5169 BasicBlock *DefaultDest = SI->getDefaultDest(); 5170 GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults, 5171 DL, TTI); 5172 // If the default value is not found abort unless the default destination 5173 // is unreachable. 5174 DefaultResult = 5175 DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr; 5176 if ((!DefaultResult && 5177 !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()))) 5178 return false; 5179 5180 return true; 5181 } 5182 5183 // Helper function that checks if it is possible to transform a switch with only 5184 // two cases (or two cases + default) that produces a result into a select. 5185 // Example: 5186 // switch (a) { 5187 // case 10: %0 = icmp eq i32 %a, 10 5188 // return 10; %1 = select i1 %0, i32 10, i32 4 5189 // case 20: ----> %2 = icmp eq i32 %a, 20 5190 // return 2; %3 = select i1 %2, i32 2, i32 %1 5191 // default: 5192 // return 4; 5193 // } 5194 static Value *ConvertTwoCaseSwitch(const SwitchCaseResultVectorTy &ResultVector, 5195 Constant *DefaultResult, Value *Condition, 5196 IRBuilder<> &Builder) { 5197 assert(ResultVector.size() == 2 && 5198 "We should have exactly two unique results at this point"); 5199 // If we are selecting between only two cases transform into a simple 5200 // select or a two-way select if default is possible. 5201 if (ResultVector[0].second.size() == 1 && 5202 ResultVector[1].second.size() == 1) { 5203 ConstantInt *const FirstCase = ResultVector[0].second[0]; 5204 ConstantInt *const SecondCase = ResultVector[1].second[0]; 5205 5206 bool DefaultCanTrigger = DefaultResult; 5207 Value *SelectValue = ResultVector[1].first; 5208 if (DefaultCanTrigger) { 5209 Value *const ValueCompare = 5210 Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp"); 5211 SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first, 5212 DefaultResult, "switch.select"); 5213 } 5214 Value *const ValueCompare = 5215 Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp"); 5216 return Builder.CreateSelect(ValueCompare, ResultVector[0].first, 5217 SelectValue, "switch.select"); 5218 } 5219 5220 return nullptr; 5221 } 5222 5223 // Helper function to cleanup a switch instruction that has been converted into 5224 // a select, fixing up PHI nodes and basic blocks. 5225 static void RemoveSwitchAfterSelectConversion(SwitchInst *SI, PHINode *PHI, 5226 Value *SelectValue, 5227 IRBuilder<> &Builder, 5228 DomTreeUpdater *DTU) { 5229 std::vector<DominatorTree::UpdateType> Updates; 5230 5231 BasicBlock *SelectBB = SI->getParent(); 5232 BasicBlock *DestBB = PHI->getParent(); 5233 5234 if (!is_contained(predecessors(DestBB), SelectBB)) 5235 Updates.push_back({DominatorTree::Insert, SelectBB, DestBB}); 5236 Builder.CreateBr(DestBB); 5237 5238 // Remove the switch. 5239 5240 while (PHI->getBasicBlockIndex(SelectBB) >= 0) 5241 PHI->removeIncomingValue(SelectBB); 5242 PHI->addIncoming(SelectValue, SelectBB); 5243 5244 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { 5245 BasicBlock *Succ = SI->getSuccessor(i); 5246 5247 if (Succ == DestBB) 5248 continue; 5249 Succ->removePredecessor(SelectBB); 5250 Updates.push_back({DominatorTree::Delete, SelectBB, Succ}); 5251 } 5252 SI->eraseFromParent(); 5253 if (DTU) 5254 DTU->applyUpdates(Updates); 5255 } 5256 5257 /// If the switch is only used to initialize one or more 5258 /// phi nodes in a common successor block with only two different 5259 /// constant values, replace the switch with select. 5260 static bool switchToSelect(SwitchInst *SI, IRBuilder<> &Builder, 5261 DomTreeUpdater *DTU, const DataLayout &DL, 5262 const TargetTransformInfo &TTI) { 5263 Value *const Cond = SI->getCondition(); 5264 PHINode *PHI = nullptr; 5265 BasicBlock *CommonDest = nullptr; 5266 Constant *DefaultResult; 5267 SwitchCaseResultVectorTy UniqueResults; 5268 // Collect all the cases that will deliver the same value from the switch. 5269 if (!InitializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult, 5270 DL, TTI, 2, 1)) 5271 return false; 5272 // Selects choose between maximum two values. 5273 if (UniqueResults.size() != 2) 5274 return false; 5275 assert(PHI != nullptr && "PHI for value select not found"); 5276 5277 Builder.SetInsertPoint(SI); 5278 Value *SelectValue = 5279 ConvertTwoCaseSwitch(UniqueResults, DefaultResult, Cond, Builder); 5280 if (SelectValue) { 5281 RemoveSwitchAfterSelectConversion(SI, PHI, SelectValue, Builder, DTU); 5282 return true; 5283 } 5284 // The switch couldn't be converted into a select. 5285 return false; 5286 } 5287 5288 namespace { 5289 5290 /// This class represents a lookup table that can be used to replace a switch. 5291 class SwitchLookupTable { 5292 public: 5293 /// Create a lookup table to use as a switch replacement with the contents 5294 /// of Values, using DefaultValue to fill any holes in the table. 5295 SwitchLookupTable( 5296 Module &M, uint64_t TableSize, ConstantInt *Offset, 5297 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values, 5298 Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName); 5299 5300 /// Build instructions with Builder to retrieve the value at 5301 /// the position given by Index in the lookup table. 5302 Value *BuildLookup(Value *Index, IRBuilder<> &Builder); 5303 5304 /// Return true if a table with TableSize elements of 5305 /// type ElementType would fit in a target-legal register. 5306 static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize, 5307 Type *ElementType); 5308 5309 private: 5310 // Depending on the contents of the table, it can be represented in 5311 // different ways. 5312 enum { 5313 // For tables where each element contains the same value, we just have to 5314 // store that single value and return it for each lookup. 5315 SingleValueKind, 5316 5317 // For tables where there is a linear relationship between table index 5318 // and values. We calculate the result with a simple multiplication 5319 // and addition instead of a table lookup. 5320 LinearMapKind, 5321 5322 // For small tables with integer elements, we can pack them into a bitmap 5323 // that fits into a target-legal register. Values are retrieved by 5324 // shift and mask operations. 5325 BitMapKind, 5326 5327 // The table is stored as an array of values. Values are retrieved by load 5328 // instructions from the table. 5329 ArrayKind 5330 } Kind; 5331 5332 // For SingleValueKind, this is the single value. 5333 Constant *SingleValue = nullptr; 5334 5335 // For BitMapKind, this is the bitmap. 5336 ConstantInt *BitMap = nullptr; 5337 IntegerType *BitMapElementTy = nullptr; 5338 5339 // For LinearMapKind, these are the constants used to derive the value. 5340 ConstantInt *LinearOffset = nullptr; 5341 ConstantInt *LinearMultiplier = nullptr; 5342 5343 // For ArrayKind, this is the array. 5344 GlobalVariable *Array = nullptr; 5345 }; 5346 5347 } // end anonymous namespace 5348 5349 SwitchLookupTable::SwitchLookupTable( 5350 Module &M, uint64_t TableSize, ConstantInt *Offset, 5351 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values, 5352 Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName) { 5353 assert(Values.size() && "Can't build lookup table without values!"); 5354 assert(TableSize >= Values.size() && "Can't fit values in table!"); 5355 5356 // If all values in the table are equal, this is that value. 5357 SingleValue = Values.begin()->second; 5358 5359 Type *ValueType = Values.begin()->second->getType(); 5360 5361 // Build up the table contents. 5362 SmallVector<Constant *, 64> TableContents(TableSize); 5363 for (size_t I = 0, E = Values.size(); I != E; ++I) { 5364 ConstantInt *CaseVal = Values[I].first; 5365 Constant *CaseRes = Values[I].second; 5366 assert(CaseRes->getType() == ValueType); 5367 5368 uint64_t Idx = (CaseVal->getValue() - Offset->getValue()).getLimitedValue(); 5369 TableContents[Idx] = CaseRes; 5370 5371 if (CaseRes != SingleValue) 5372 SingleValue = nullptr; 5373 } 5374 5375 // Fill in any holes in the table with the default result. 5376 if (Values.size() < TableSize) { 5377 assert(DefaultValue && 5378 "Need a default value to fill the lookup table holes."); 5379 assert(DefaultValue->getType() == ValueType); 5380 for (uint64_t I = 0; I < TableSize; ++I) { 5381 if (!TableContents[I]) 5382 TableContents[I] = DefaultValue; 5383 } 5384 5385 if (DefaultValue != SingleValue) 5386 SingleValue = nullptr; 5387 } 5388 5389 // If each element in the table contains the same value, we only need to store 5390 // that single value. 5391 if (SingleValue) { 5392 Kind = SingleValueKind; 5393 return; 5394 } 5395 5396 // Check if we can derive the value with a linear transformation from the 5397 // table index. 5398 if (isa<IntegerType>(ValueType)) { 5399 bool LinearMappingPossible = true; 5400 APInt PrevVal; 5401 APInt DistToPrev; 5402 assert(TableSize >= 2 && "Should be a SingleValue table."); 5403 // Check if there is the same distance between two consecutive values. 5404 for (uint64_t I = 0; I < TableSize; ++I) { 5405 ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]); 5406 if (!ConstVal) { 5407 // This is an undef. We could deal with it, but undefs in lookup tables 5408 // are very seldom. It's probably not worth the additional complexity. 5409 LinearMappingPossible = false; 5410 break; 5411 } 5412 const APInt &Val = ConstVal->getValue(); 5413 if (I != 0) { 5414 APInt Dist = Val - PrevVal; 5415 if (I == 1) { 5416 DistToPrev = Dist; 5417 } else if (Dist != DistToPrev) { 5418 LinearMappingPossible = false; 5419 break; 5420 } 5421 } 5422 PrevVal = Val; 5423 } 5424 if (LinearMappingPossible) { 5425 LinearOffset = cast<ConstantInt>(TableContents[0]); 5426 LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev); 5427 Kind = LinearMapKind; 5428 ++NumLinearMaps; 5429 return; 5430 } 5431 } 5432 5433 // If the type is integer and the table fits in a register, build a bitmap. 5434 if (WouldFitInRegister(DL, TableSize, ValueType)) { 5435 IntegerType *IT = cast<IntegerType>(ValueType); 5436 APInt TableInt(TableSize * IT->getBitWidth(), 0); 5437 for (uint64_t I = TableSize; I > 0; --I) { 5438 TableInt <<= IT->getBitWidth(); 5439 // Insert values into the bitmap. Undef values are set to zero. 5440 if (!isa<UndefValue>(TableContents[I - 1])) { 5441 ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]); 5442 TableInt |= Val->getValue().zext(TableInt.getBitWidth()); 5443 } 5444 } 5445 BitMap = ConstantInt::get(M.getContext(), TableInt); 5446 BitMapElementTy = IT; 5447 Kind = BitMapKind; 5448 ++NumBitMaps; 5449 return; 5450 } 5451 5452 // Store the table in an array. 5453 ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize); 5454 Constant *Initializer = ConstantArray::get(ArrayTy, TableContents); 5455 5456 Array = new GlobalVariable(M, ArrayTy, /*isConstant=*/true, 5457 GlobalVariable::PrivateLinkage, Initializer, 5458 "switch.table." + FuncName); 5459 Array->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); 5460 // Set the alignment to that of an array items. We will be only loading one 5461 // value out of it. 5462 Array->setAlignment(Align(DL.getPrefTypeAlignment(ValueType))); 5463 Kind = ArrayKind; 5464 } 5465 5466 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) { 5467 switch (Kind) { 5468 case SingleValueKind: 5469 return SingleValue; 5470 case LinearMapKind: { 5471 // Derive the result value from the input value. 5472 Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(), 5473 false, "switch.idx.cast"); 5474 if (!LinearMultiplier->isOne()) 5475 Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult"); 5476 if (!LinearOffset->isZero()) 5477 Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset"); 5478 return Result; 5479 } 5480 case BitMapKind: { 5481 // Type of the bitmap (e.g. i59). 5482 IntegerType *MapTy = BitMap->getType(); 5483 5484 // Cast Index to the same type as the bitmap. 5485 // Note: The Index is <= the number of elements in the table, so 5486 // truncating it to the width of the bitmask is safe. 5487 Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast"); 5488 5489 // Multiply the shift amount by the element width. 5490 ShiftAmt = Builder.CreateMul( 5491 ShiftAmt, ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()), 5492 "switch.shiftamt"); 5493 5494 // Shift down. 5495 Value *DownShifted = 5496 Builder.CreateLShr(BitMap, ShiftAmt, "switch.downshift"); 5497 // Mask off. 5498 return Builder.CreateTrunc(DownShifted, BitMapElementTy, "switch.masked"); 5499 } 5500 case ArrayKind: { 5501 // Make sure the table index will not overflow when treated as signed. 5502 IntegerType *IT = cast<IntegerType>(Index->getType()); 5503 uint64_t TableSize = 5504 Array->getInitializer()->getType()->getArrayNumElements(); 5505 if (TableSize > (1ULL << (IT->getBitWidth() - 1))) 5506 Index = Builder.CreateZExt( 5507 Index, IntegerType::get(IT->getContext(), IT->getBitWidth() + 1), 5508 "switch.tableidx.zext"); 5509 5510 Value *GEPIndices[] = {Builder.getInt32(0), Index}; 5511 Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array, 5512 GEPIndices, "switch.gep"); 5513 return Builder.CreateLoad( 5514 cast<ArrayType>(Array->getValueType())->getElementType(), GEP, 5515 "switch.load"); 5516 } 5517 } 5518 llvm_unreachable("Unknown lookup table kind!"); 5519 } 5520 5521 bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL, 5522 uint64_t TableSize, 5523 Type *ElementType) { 5524 auto *IT = dyn_cast<IntegerType>(ElementType); 5525 if (!IT) 5526 return false; 5527 // FIXME: If the type is wider than it needs to be, e.g. i8 but all values 5528 // are <= 15, we could try to narrow the type. 5529 5530 // Avoid overflow, fitsInLegalInteger uses unsigned int for the width. 5531 if (TableSize >= UINT_MAX / IT->getBitWidth()) 5532 return false; 5533 return DL.fitsInLegalInteger(TableSize * IT->getBitWidth()); 5534 } 5535 5536 /// Determine whether a lookup table should be built for this switch, based on 5537 /// the number of cases, size of the table, and the types of the results. 5538 static bool 5539 ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize, 5540 const TargetTransformInfo &TTI, const DataLayout &DL, 5541 const SmallDenseMap<PHINode *, Type *> &ResultTypes) { 5542 if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10) 5543 return false; // TableSize overflowed, or mul below might overflow. 5544 5545 bool AllTablesFitInRegister = true; 5546 bool HasIllegalType = false; 5547 for (const auto &I : ResultTypes) { 5548 Type *Ty = I.second; 5549 5550 // Saturate this flag to true. 5551 HasIllegalType = HasIllegalType || !TTI.isTypeLegal(Ty); 5552 5553 // Saturate this flag to false. 5554 AllTablesFitInRegister = 5555 AllTablesFitInRegister && 5556 SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty); 5557 5558 // If both flags saturate, we're done. NOTE: This *only* works with 5559 // saturating flags, and all flags have to saturate first due to the 5560 // non-deterministic behavior of iterating over a dense map. 5561 if (HasIllegalType && !AllTablesFitInRegister) 5562 break; 5563 } 5564 5565 // If each table would fit in a register, we should build it anyway. 5566 if (AllTablesFitInRegister) 5567 return true; 5568 5569 // Don't build a table that doesn't fit in-register if it has illegal types. 5570 if (HasIllegalType) 5571 return false; 5572 5573 // The table density should be at least 40%. This is the same criterion as for 5574 // jump tables, see SelectionDAGBuilder::handleJTSwitchCase. 5575 // FIXME: Find the best cut-off. 5576 return SI->getNumCases() * 10 >= TableSize * 4; 5577 } 5578 5579 /// Try to reuse the switch table index compare. Following pattern: 5580 /// \code 5581 /// if (idx < tablesize) 5582 /// r = table[idx]; // table does not contain default_value 5583 /// else 5584 /// r = default_value; 5585 /// if (r != default_value) 5586 /// ... 5587 /// \endcode 5588 /// Is optimized to: 5589 /// \code 5590 /// cond = idx < tablesize; 5591 /// if (cond) 5592 /// r = table[idx]; 5593 /// else 5594 /// r = default_value; 5595 /// if (cond) 5596 /// ... 5597 /// \endcode 5598 /// Jump threading will then eliminate the second if(cond). 5599 static void reuseTableCompare( 5600 User *PhiUser, BasicBlock *PhiBlock, BranchInst *RangeCheckBranch, 5601 Constant *DefaultValue, 5602 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values) { 5603 ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser); 5604 if (!CmpInst) 5605 return; 5606 5607 // We require that the compare is in the same block as the phi so that jump 5608 // threading can do its work afterwards. 5609 if (CmpInst->getParent() != PhiBlock) 5610 return; 5611 5612 Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1)); 5613 if (!CmpOp1) 5614 return; 5615 5616 Value *RangeCmp = RangeCheckBranch->getCondition(); 5617 Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType()); 5618 Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType()); 5619 5620 // Check if the compare with the default value is constant true or false. 5621 Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(), 5622 DefaultValue, CmpOp1, true); 5623 if (DefaultConst != TrueConst && DefaultConst != FalseConst) 5624 return; 5625 5626 // Check if the compare with the case values is distinct from the default 5627 // compare result. 5628 for (auto ValuePair : Values) { 5629 Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(), 5630 ValuePair.second, CmpOp1, true); 5631 if (!CaseConst || CaseConst == DefaultConst || isa<UndefValue>(CaseConst)) 5632 return; 5633 assert((CaseConst == TrueConst || CaseConst == FalseConst) && 5634 "Expect true or false as compare result."); 5635 } 5636 5637 // Check if the branch instruction dominates the phi node. It's a simple 5638 // dominance check, but sufficient for our needs. 5639 // Although this check is invariant in the calling loops, it's better to do it 5640 // at this late stage. Practically we do it at most once for a switch. 5641 BasicBlock *BranchBlock = RangeCheckBranch->getParent(); 5642 for (BasicBlock *Pred : predecessors(PhiBlock)) { 5643 if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock) 5644 return; 5645 } 5646 5647 if (DefaultConst == FalseConst) { 5648 // The compare yields the same result. We can replace it. 5649 CmpInst->replaceAllUsesWith(RangeCmp); 5650 ++NumTableCmpReuses; 5651 } else { 5652 // The compare yields the same result, just inverted. We can replace it. 5653 Value *InvertedTableCmp = BinaryOperator::CreateXor( 5654 RangeCmp, ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp", 5655 RangeCheckBranch); 5656 CmpInst->replaceAllUsesWith(InvertedTableCmp); 5657 ++NumTableCmpReuses; 5658 } 5659 } 5660 5661 /// If the switch is only used to initialize one or more phi nodes in a common 5662 /// successor block with different constant values, replace the switch with 5663 /// lookup tables. 5664 static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder, 5665 DomTreeUpdater *DTU, const DataLayout &DL, 5666 const TargetTransformInfo &TTI) { 5667 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 5668 5669 BasicBlock *BB = SI->getParent(); 5670 Function *Fn = BB->getParent(); 5671 // Only build lookup table when we have a target that supports it or the 5672 // attribute is not set. 5673 if (!TTI.shouldBuildLookupTables() || 5674 (Fn->getFnAttribute("no-jump-tables").getValueAsString() == "true")) 5675 return false; 5676 5677 // FIXME: If the switch is too sparse for a lookup table, perhaps we could 5678 // split off a dense part and build a lookup table for that. 5679 5680 // FIXME: This creates arrays of GEPs to constant strings, which means each 5681 // GEP needs a runtime relocation in PIC code. We should just build one big 5682 // string and lookup indices into that. 5683 5684 // Ignore switches with less than three cases. Lookup tables will not make 5685 // them faster, so we don't analyze them. 5686 if (SI->getNumCases() < 3) 5687 return false; 5688 5689 // Figure out the corresponding result for each case value and phi node in the 5690 // common destination, as well as the min and max case values. 5691 assert(!SI->cases().empty()); 5692 SwitchInst::CaseIt CI = SI->case_begin(); 5693 ConstantInt *MinCaseVal = CI->getCaseValue(); 5694 ConstantInt *MaxCaseVal = CI->getCaseValue(); 5695 5696 BasicBlock *CommonDest = nullptr; 5697 5698 using ResultListTy = SmallVector<std::pair<ConstantInt *, Constant *>, 4>; 5699 SmallDenseMap<PHINode *, ResultListTy> ResultLists; 5700 5701 SmallDenseMap<PHINode *, Constant *> DefaultResults; 5702 SmallDenseMap<PHINode *, Type *> ResultTypes; 5703 SmallVector<PHINode *, 4> PHIs; 5704 5705 for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) { 5706 ConstantInt *CaseVal = CI->getCaseValue(); 5707 if (CaseVal->getValue().slt(MinCaseVal->getValue())) 5708 MinCaseVal = CaseVal; 5709 if (CaseVal->getValue().sgt(MaxCaseVal->getValue())) 5710 MaxCaseVal = CaseVal; 5711 5712 // Resulting value at phi nodes for this case value. 5713 using ResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>; 5714 ResultsTy Results; 5715 if (!GetCaseResults(SI, CaseVal, CI->getCaseSuccessor(), &CommonDest, 5716 Results, DL, TTI)) 5717 return false; 5718 5719 // Append the result from this case to the list for each phi. 5720 for (const auto &I : Results) { 5721 PHINode *PHI = I.first; 5722 Constant *Value = I.second; 5723 if (!ResultLists.count(PHI)) 5724 PHIs.push_back(PHI); 5725 ResultLists[PHI].push_back(std::make_pair(CaseVal, Value)); 5726 } 5727 } 5728 5729 // Keep track of the result types. 5730 for (PHINode *PHI : PHIs) { 5731 ResultTypes[PHI] = ResultLists[PHI][0].second->getType(); 5732 } 5733 5734 uint64_t NumResults = ResultLists[PHIs[0]].size(); 5735 APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue(); 5736 uint64_t TableSize = RangeSpread.getLimitedValue() + 1; 5737 bool TableHasHoles = (NumResults < TableSize); 5738 5739 // If the table has holes, we need a constant result for the default case 5740 // or a bitmask that fits in a register. 5741 SmallVector<std::pair<PHINode *, Constant *>, 4> DefaultResultsList; 5742 bool HasDefaultResults = 5743 GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, 5744 DefaultResultsList, DL, TTI); 5745 5746 bool NeedMask = (TableHasHoles && !HasDefaultResults); 5747 if (NeedMask) { 5748 // As an extra penalty for the validity test we require more cases. 5749 if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark). 5750 return false; 5751 if (!DL.fitsInLegalInteger(TableSize)) 5752 return false; 5753 } 5754 5755 for (const auto &I : DefaultResultsList) { 5756 PHINode *PHI = I.first; 5757 Constant *Result = I.second; 5758 DefaultResults[PHI] = Result; 5759 } 5760 5761 if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes)) 5762 return false; 5763 5764 std::vector<DominatorTree::UpdateType> Updates; 5765 5766 // Create the BB that does the lookups. 5767 Module &Mod = *CommonDest->getParent()->getParent(); 5768 BasicBlock *LookupBB = BasicBlock::Create( 5769 Mod.getContext(), "switch.lookup", CommonDest->getParent(), CommonDest); 5770 5771 // Compute the table index value. 5772 Builder.SetInsertPoint(SI); 5773 Value *TableIndex; 5774 if (MinCaseVal->isNullValue()) 5775 TableIndex = SI->getCondition(); 5776 else 5777 TableIndex = Builder.CreateSub(SI->getCondition(), MinCaseVal, 5778 "switch.tableidx"); 5779 5780 // Compute the maximum table size representable by the integer type we are 5781 // switching upon. 5782 unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits(); 5783 uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize; 5784 assert(MaxTableSize >= TableSize && 5785 "It is impossible for a switch to have more entries than the max " 5786 "representable value of its input integer type's size."); 5787 5788 // If the default destination is unreachable, or if the lookup table covers 5789 // all values of the conditional variable, branch directly to the lookup table 5790 // BB. Otherwise, check that the condition is within the case range. 5791 const bool DefaultIsReachable = 5792 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 5793 const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize); 5794 BranchInst *RangeCheckBranch = nullptr; 5795 5796 if (!DefaultIsReachable || GeneratingCoveredLookupTable) { 5797 Builder.CreateBr(LookupBB); 5798 Updates.push_back({DominatorTree::Insert, BB, LookupBB}); 5799 // Note: We call removeProdecessor later since we need to be able to get the 5800 // PHI value for the default case in case we're using a bit mask. 5801 } else { 5802 Value *Cmp = Builder.CreateICmpULT( 5803 TableIndex, ConstantInt::get(MinCaseVal->getType(), TableSize)); 5804 RangeCheckBranch = 5805 Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest()); 5806 Updates.push_back({DominatorTree::Insert, BB, LookupBB}); 5807 } 5808 5809 // Populate the BB that does the lookups. 5810 Builder.SetInsertPoint(LookupBB); 5811 5812 if (NeedMask) { 5813 // Before doing the lookup, we do the hole check. The LookupBB is therefore 5814 // re-purposed to do the hole check, and we create a new LookupBB. 5815 BasicBlock *MaskBB = LookupBB; 5816 MaskBB->setName("switch.hole_check"); 5817 LookupBB = BasicBlock::Create(Mod.getContext(), "switch.lookup", 5818 CommonDest->getParent(), CommonDest); 5819 5820 // Make the mask's bitwidth at least 8-bit and a power-of-2 to avoid 5821 // unnecessary illegal types. 5822 uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL)); 5823 APInt MaskInt(TableSizePowOf2, 0); 5824 APInt One(TableSizePowOf2, 1); 5825 // Build bitmask; fill in a 1 bit for every case. 5826 const ResultListTy &ResultList = ResultLists[PHIs[0]]; 5827 for (size_t I = 0, E = ResultList.size(); I != E; ++I) { 5828 uint64_t Idx = (ResultList[I].first->getValue() - MinCaseVal->getValue()) 5829 .getLimitedValue(); 5830 MaskInt |= One << Idx; 5831 } 5832 ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt); 5833 5834 // Get the TableIndex'th bit of the bitmask. 5835 // If this bit is 0 (meaning hole) jump to the default destination, 5836 // else continue with table lookup. 5837 IntegerType *MapTy = TableMask->getType(); 5838 Value *MaskIndex = 5839 Builder.CreateZExtOrTrunc(TableIndex, MapTy, "switch.maskindex"); 5840 Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, "switch.shifted"); 5841 Value *LoBit = Builder.CreateTrunc( 5842 Shifted, Type::getInt1Ty(Mod.getContext()), "switch.lobit"); 5843 Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest()); 5844 Updates.push_back({DominatorTree::Insert, MaskBB, LookupBB}); 5845 Updates.push_back({DominatorTree::Insert, MaskBB, SI->getDefaultDest()}); 5846 Builder.SetInsertPoint(LookupBB); 5847 AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, BB); 5848 } 5849 5850 if (!DefaultIsReachable || GeneratingCoveredLookupTable) { 5851 // We cached PHINodes in PHIs. To avoid accessing deleted PHINodes later, 5852 // do not delete PHINodes here. 5853 SI->getDefaultDest()->removePredecessor(BB, 5854 /*KeepOneInputPHIs=*/true); 5855 Updates.push_back({DominatorTree::Delete, BB, SI->getDefaultDest()}); 5856 } 5857 5858 bool ReturnedEarly = false; 5859 for (PHINode *PHI : PHIs) { 5860 const ResultListTy &ResultList = ResultLists[PHI]; 5861 5862 // If using a bitmask, use any value to fill the lookup table holes. 5863 Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI]; 5864 StringRef FuncName = Fn->getName(); 5865 SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultList, DV, DL, 5866 FuncName); 5867 5868 Value *Result = Table.BuildLookup(TableIndex, Builder); 5869 5870 // If the result is used to return immediately from the function, we want to 5871 // do that right here. 5872 if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->user_begin()) && 5873 PHI->user_back() == CommonDest->getFirstNonPHIOrDbg()) { 5874 Builder.CreateRet(Result); 5875 ReturnedEarly = true; 5876 break; 5877 } 5878 5879 // Do a small peephole optimization: re-use the switch table compare if 5880 // possible. 5881 if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) { 5882 BasicBlock *PhiBlock = PHI->getParent(); 5883 // Search for compare instructions which use the phi. 5884 for (auto *User : PHI->users()) { 5885 reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList); 5886 } 5887 } 5888 5889 PHI->addIncoming(Result, LookupBB); 5890 } 5891 5892 if (!ReturnedEarly) { 5893 Builder.CreateBr(CommonDest); 5894 Updates.push_back({DominatorTree::Insert, LookupBB, CommonDest}); 5895 } 5896 5897 // Remove the switch. 5898 SmallSetVector<BasicBlock *, 8> RemovedSuccessors; 5899 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { 5900 BasicBlock *Succ = SI->getSuccessor(i); 5901 5902 if (Succ == SI->getDefaultDest()) 5903 continue; 5904 Succ->removePredecessor(BB); 5905 RemovedSuccessors.insert(Succ); 5906 } 5907 SI->eraseFromParent(); 5908 5909 if (DTU) { 5910 for (BasicBlock *RemovedSuccessor : RemovedSuccessors) 5911 Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor}); 5912 DTU->applyUpdates(Updates); 5913 } 5914 5915 ++NumLookupTables; 5916 if (NeedMask) 5917 ++NumLookupTablesHoles; 5918 return true; 5919 } 5920 5921 static bool isSwitchDense(ArrayRef<int64_t> Values) { 5922 // See also SelectionDAGBuilder::isDense(), which this function was based on. 5923 uint64_t Diff = (uint64_t)Values.back() - (uint64_t)Values.front(); 5924 uint64_t Range = Diff + 1; 5925 uint64_t NumCases = Values.size(); 5926 // 40% is the default density for building a jump table in optsize/minsize mode. 5927 uint64_t MinDensity = 40; 5928 5929 return NumCases * 100 >= Range * MinDensity; 5930 } 5931 5932 /// Try to transform a switch that has "holes" in it to a contiguous sequence 5933 /// of cases. 5934 /// 5935 /// A switch such as: switch(i) {case 5: case 9: case 13: case 17:} can be 5936 /// range-reduced to: switch ((i-5) / 4) {case 0: case 1: case 2: case 3:}. 5937 /// 5938 /// This converts a sparse switch into a dense switch which allows better 5939 /// lowering and could also allow transforming into a lookup table. 5940 static bool ReduceSwitchRange(SwitchInst *SI, IRBuilder<> &Builder, 5941 const DataLayout &DL, 5942 const TargetTransformInfo &TTI) { 5943 auto *CondTy = cast<IntegerType>(SI->getCondition()->getType()); 5944 if (CondTy->getIntegerBitWidth() > 64 || 5945 !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth())) 5946 return false; 5947 // Only bother with this optimization if there are more than 3 switch cases; 5948 // SDAG will only bother creating jump tables for 4 or more cases. 5949 if (SI->getNumCases() < 4) 5950 return false; 5951 5952 // This transform is agnostic to the signedness of the input or case values. We 5953 // can treat the case values as signed or unsigned. We can optimize more common 5954 // cases such as a sequence crossing zero {-4,0,4,8} if we interpret case values 5955 // as signed. 5956 SmallVector<int64_t,4> Values; 5957 for (auto &C : SI->cases()) 5958 Values.push_back(C.getCaseValue()->getValue().getSExtValue()); 5959 llvm::sort(Values); 5960 5961 // If the switch is already dense, there's nothing useful to do here. 5962 if (isSwitchDense(Values)) 5963 return false; 5964 5965 // First, transform the values such that they start at zero and ascend. 5966 int64_t Base = Values[0]; 5967 for (auto &V : Values) 5968 V -= (uint64_t)(Base); 5969 5970 // Now we have signed numbers that have been shifted so that, given enough 5971 // precision, there are no negative values. Since the rest of the transform 5972 // is bitwise only, we switch now to an unsigned representation. 5973 5974 // This transform can be done speculatively because it is so cheap - it 5975 // results in a single rotate operation being inserted. 5976 // FIXME: It's possible that optimizing a switch on powers of two might also 5977 // be beneficial - flag values are often powers of two and we could use a CLZ 5978 // as the key function. 5979 5980 // countTrailingZeros(0) returns 64. As Values is guaranteed to have more than 5981 // one element and LLVM disallows duplicate cases, Shift is guaranteed to be 5982 // less than 64. 5983 unsigned Shift = 64; 5984 for (auto &V : Values) 5985 Shift = std::min(Shift, countTrailingZeros((uint64_t)V)); 5986 assert(Shift < 64); 5987 if (Shift > 0) 5988 for (auto &V : Values) 5989 V = (int64_t)((uint64_t)V >> Shift); 5990 5991 if (!isSwitchDense(Values)) 5992 // Transform didn't create a dense switch. 5993 return false; 5994 5995 // The obvious transform is to shift the switch condition right and emit a 5996 // check that the condition actually cleanly divided by GCD, i.e. 5997 // C & (1 << Shift - 1) == 0 5998 // inserting a new CFG edge to handle the case where it didn't divide cleanly. 5999 // 6000 // A cheaper way of doing this is a simple ROTR(C, Shift). This performs the 6001 // shift and puts the shifted-off bits in the uppermost bits. If any of these 6002 // are nonzero then the switch condition will be very large and will hit the 6003 // default case. 6004 6005 auto *Ty = cast<IntegerType>(SI->getCondition()->getType()); 6006 Builder.SetInsertPoint(SI); 6007 auto *ShiftC = ConstantInt::get(Ty, Shift); 6008 auto *Sub = Builder.CreateSub(SI->getCondition(), ConstantInt::get(Ty, Base)); 6009 auto *LShr = Builder.CreateLShr(Sub, ShiftC); 6010 auto *Shl = Builder.CreateShl(Sub, Ty->getBitWidth() - Shift); 6011 auto *Rot = Builder.CreateOr(LShr, Shl); 6012 SI->replaceUsesOfWith(SI->getCondition(), Rot); 6013 6014 for (auto Case : SI->cases()) { 6015 auto *Orig = Case.getCaseValue(); 6016 auto Sub = Orig->getValue() - APInt(Ty->getBitWidth(), Base); 6017 Case.setValue( 6018 cast<ConstantInt>(ConstantInt::get(Ty, Sub.lshr(ShiftC->getValue())))); 6019 } 6020 return true; 6021 } 6022 6023 bool SimplifyCFGOpt::simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) { 6024 BasicBlock *BB = SI->getParent(); 6025 6026 if (isValueEqualityComparison(SI)) { 6027 // If we only have one predecessor, and if it is a branch on this value, 6028 // see if that predecessor totally determines the outcome of this switch. 6029 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 6030 if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder)) 6031 return requestResimplify(); 6032 6033 Value *Cond = SI->getCondition(); 6034 if (SelectInst *Select = dyn_cast<SelectInst>(Cond)) 6035 if (SimplifySwitchOnSelect(SI, Select)) 6036 return requestResimplify(); 6037 6038 // If the block only contains the switch, see if we can fold the block 6039 // away into any preds. 6040 if (SI == &*BB->instructionsWithoutDebug().begin()) 6041 if (FoldValueComparisonIntoPredecessors(SI, Builder)) 6042 return requestResimplify(); 6043 } 6044 6045 // Try to transform the switch into an icmp and a branch. 6046 if (TurnSwitchRangeIntoICmp(SI, Builder)) 6047 return requestResimplify(); 6048 6049 // Remove unreachable cases. 6050 if (eliminateDeadSwitchCases(SI, DTU, Options.AC, DL)) 6051 return requestResimplify(); 6052 6053 if (switchToSelect(SI, Builder, DTU, DL, TTI)) 6054 return requestResimplify(); 6055 6056 if (Options.ForwardSwitchCondToPhi && ForwardSwitchConditionToPHI(SI)) 6057 return requestResimplify(); 6058 6059 // The conversion from switch to lookup tables results in difficult-to-analyze 6060 // code and makes pruning branches much harder. This is a problem if the 6061 // switch expression itself can still be restricted as a result of inlining or 6062 // CVP. Therefore, only apply this transformation during late stages of the 6063 // optimisation pipeline. 6064 if (Options.ConvertSwitchToLookupTable && 6065 SwitchToLookupTable(SI, Builder, DTU, DL, TTI)) 6066 return requestResimplify(); 6067 6068 if (ReduceSwitchRange(SI, Builder, DL, TTI)) 6069 return requestResimplify(); 6070 6071 return false; 6072 } 6073 6074 bool SimplifyCFGOpt::simplifyIndirectBr(IndirectBrInst *IBI) { 6075 BasicBlock *BB = IBI->getParent(); 6076 bool Changed = false; 6077 6078 // Eliminate redundant destinations. 6079 SmallPtrSet<Value *, 8> Succs; 6080 SmallSetVector<BasicBlock *, 8> RemovedSuccs; 6081 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 6082 BasicBlock *Dest = IBI->getDestination(i); 6083 if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) { 6084 if (!Dest->hasAddressTaken()) 6085 RemovedSuccs.insert(Dest); 6086 Dest->removePredecessor(BB); 6087 IBI->removeDestination(i); 6088 --i; 6089 --e; 6090 Changed = true; 6091 } 6092 } 6093 6094 if (DTU) { 6095 std::vector<DominatorTree::UpdateType> Updates; 6096 Updates.reserve(RemovedSuccs.size()); 6097 for (auto *RemovedSucc : RemovedSuccs) 6098 Updates.push_back({DominatorTree::Delete, BB, RemovedSucc}); 6099 DTU->applyUpdates(Updates); 6100 } 6101 6102 if (IBI->getNumDestinations() == 0) { 6103 // If the indirectbr has no successors, change it to unreachable. 6104 new UnreachableInst(IBI->getContext(), IBI); 6105 EraseTerminatorAndDCECond(IBI); 6106 return true; 6107 } 6108 6109 if (IBI->getNumDestinations() == 1) { 6110 // If the indirectbr has one successor, change it to a direct branch. 6111 BranchInst::Create(IBI->getDestination(0), IBI); 6112 EraseTerminatorAndDCECond(IBI); 6113 return true; 6114 } 6115 6116 if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) { 6117 if (SimplifyIndirectBrOnSelect(IBI, SI)) 6118 return requestResimplify(); 6119 } 6120 return Changed; 6121 } 6122 6123 /// Given an block with only a single landing pad and a unconditional branch 6124 /// try to find another basic block which this one can be merged with. This 6125 /// handles cases where we have multiple invokes with unique landing pads, but 6126 /// a shared handler. 6127 /// 6128 /// We specifically choose to not worry about merging non-empty blocks 6129 /// here. That is a PRE/scheduling problem and is best solved elsewhere. In 6130 /// practice, the optimizer produces empty landing pad blocks quite frequently 6131 /// when dealing with exception dense code. (see: instcombine, gvn, if-else 6132 /// sinking in this file) 6133 /// 6134 /// This is primarily a code size optimization. We need to avoid performing 6135 /// any transform which might inhibit optimization (such as our ability to 6136 /// specialize a particular handler via tail commoning). We do this by not 6137 /// merging any blocks which require us to introduce a phi. Since the same 6138 /// values are flowing through both blocks, we don't lose any ability to 6139 /// specialize. If anything, we make such specialization more likely. 6140 /// 6141 /// TODO - This transformation could remove entries from a phi in the target 6142 /// block when the inputs in the phi are the same for the two blocks being 6143 /// merged. In some cases, this could result in removal of the PHI entirely. 6144 static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI, 6145 BasicBlock *BB, DomTreeUpdater *DTU) { 6146 auto Succ = BB->getUniqueSuccessor(); 6147 assert(Succ); 6148 // If there's a phi in the successor block, we'd likely have to introduce 6149 // a phi into the merged landing pad block. 6150 if (isa<PHINode>(*Succ->begin())) 6151 return false; 6152 6153 for (BasicBlock *OtherPred : predecessors(Succ)) { 6154 if (BB == OtherPred) 6155 continue; 6156 BasicBlock::iterator I = OtherPred->begin(); 6157 LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I); 6158 if (!LPad2 || !LPad2->isIdenticalTo(LPad)) 6159 continue; 6160 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 6161 ; 6162 BranchInst *BI2 = dyn_cast<BranchInst>(I); 6163 if (!BI2 || !BI2->isIdenticalTo(BI)) 6164 continue; 6165 6166 std::vector<DominatorTree::UpdateType> Updates; 6167 6168 // We've found an identical block. Update our predecessors to take that 6169 // path instead and make ourselves dead. 6170 SmallPtrSet<BasicBlock *, 16> Preds; 6171 Preds.insert(pred_begin(BB), pred_end(BB)); 6172 for (BasicBlock *Pred : Preds) { 6173 InvokeInst *II = cast<InvokeInst>(Pred->getTerminator()); 6174 assert(II->getNormalDest() != BB && II->getUnwindDest() == BB && 6175 "unexpected successor"); 6176 II->setUnwindDest(OtherPred); 6177 Updates.push_back({DominatorTree::Insert, Pred, OtherPred}); 6178 Updates.push_back({DominatorTree::Delete, Pred, BB}); 6179 } 6180 6181 // The debug info in OtherPred doesn't cover the merged control flow that 6182 // used to go through BB. We need to delete it or update it. 6183 for (auto I = OtherPred->begin(), E = OtherPred->end(); I != E;) { 6184 Instruction &Inst = *I; 6185 I++; 6186 if (isa<DbgInfoIntrinsic>(Inst)) 6187 Inst.eraseFromParent(); 6188 } 6189 6190 SmallPtrSet<BasicBlock *, 16> Succs; 6191 Succs.insert(succ_begin(BB), succ_end(BB)); 6192 for (BasicBlock *Succ : Succs) { 6193 Succ->removePredecessor(BB); 6194 Updates.push_back({DominatorTree::Delete, BB, Succ}); 6195 } 6196 6197 IRBuilder<> Builder(BI); 6198 Builder.CreateUnreachable(); 6199 BI->eraseFromParent(); 6200 if (DTU) 6201 DTU->applyUpdates(Updates); 6202 return true; 6203 } 6204 return false; 6205 } 6206 6207 bool SimplifyCFGOpt::simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder) { 6208 return Branch->isUnconditional() ? simplifyUncondBranch(Branch, Builder) 6209 : simplifyCondBranch(Branch, Builder); 6210 } 6211 6212 bool SimplifyCFGOpt::simplifyUncondBranch(BranchInst *BI, 6213 IRBuilder<> &Builder) { 6214 BasicBlock *BB = BI->getParent(); 6215 BasicBlock *Succ = BI->getSuccessor(0); 6216 6217 // If the Terminator is the only non-phi instruction, simplify the block. 6218 // If LoopHeader is provided, check if the block or its successor is a loop 6219 // header. (This is for early invocations before loop simplify and 6220 // vectorization to keep canonical loop forms for nested loops. These blocks 6221 // can be eliminated when the pass is invoked later in the back-end.) 6222 // Note that if BB has only one predecessor then we do not introduce new 6223 // backedge, so we can eliminate BB. 6224 bool NeedCanonicalLoop = 6225 Options.NeedCanonicalLoop && 6226 (!LoopHeaders.empty() && BB->hasNPredecessorsOrMore(2) && 6227 (is_contained(LoopHeaders, BB) || is_contained(LoopHeaders, Succ))); 6228 BasicBlock::iterator I = BB->getFirstNonPHIOrDbg()->getIterator(); 6229 if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() && 6230 !NeedCanonicalLoop && TryToSimplifyUncondBranchFromEmptyBlock(BB, DTU)) 6231 return true; 6232 6233 // If the only instruction in the block is a seteq/setne comparison against a 6234 // constant, try to simplify the block. 6235 if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) 6236 if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) { 6237 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 6238 ; 6239 if (I->isTerminator() && 6240 tryToSimplifyUncondBranchWithICmpInIt(ICI, Builder)) 6241 return true; 6242 } 6243 6244 // See if we can merge an empty landing pad block with another which is 6245 // equivalent. 6246 if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) { 6247 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 6248 ; 6249 if (I->isTerminator() && TryToMergeLandingPad(LPad, BI, BB, DTU)) 6250 return true; 6251 } 6252 6253 // If this basic block is ONLY a compare and a branch, and if a predecessor 6254 // branches to us and our successor, fold the comparison into the 6255 // predecessor and use logical operations to update the incoming value 6256 // for PHI nodes in common successor. 6257 if (FoldBranchToCommonDest(BI, DTU, /*MSSAU=*/nullptr, &TTI, 6258 Options.BonusInstThreshold)) 6259 return requestResimplify(); 6260 return false; 6261 } 6262 6263 static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) { 6264 BasicBlock *PredPred = nullptr; 6265 for (auto *P : predecessors(BB)) { 6266 BasicBlock *PPred = P->getSinglePredecessor(); 6267 if (!PPred || (PredPred && PredPred != PPred)) 6268 return nullptr; 6269 PredPred = PPred; 6270 } 6271 return PredPred; 6272 } 6273 6274 bool SimplifyCFGOpt::simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) { 6275 BasicBlock *BB = BI->getParent(); 6276 if (!Options.SimplifyCondBranch) 6277 return false; 6278 6279 // Conditional branch 6280 if (isValueEqualityComparison(BI)) { 6281 // If we only have one predecessor, and if it is a branch on this value, 6282 // see if that predecessor totally determines the outcome of this 6283 // switch. 6284 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 6285 if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder)) 6286 return requestResimplify(); 6287 6288 // This block must be empty, except for the setcond inst, if it exists. 6289 // Ignore dbg intrinsics. 6290 auto I = BB->instructionsWithoutDebug().begin(); 6291 if (&*I == BI) { 6292 if (FoldValueComparisonIntoPredecessors(BI, Builder)) 6293 return requestResimplify(); 6294 } else if (&*I == cast<Instruction>(BI->getCondition())) { 6295 ++I; 6296 if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder)) 6297 return requestResimplify(); 6298 } 6299 } 6300 6301 // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction. 6302 if (SimplifyBranchOnICmpChain(BI, Builder, DL)) 6303 return true; 6304 6305 // If this basic block has dominating predecessor blocks and the dominating 6306 // blocks' conditions imply BI's condition, we know the direction of BI. 6307 Optional<bool> Imp = isImpliedByDomCondition(BI->getCondition(), BI, DL); 6308 if (Imp) { 6309 // Turn this into a branch on constant. 6310 auto *OldCond = BI->getCondition(); 6311 ConstantInt *TorF = *Imp ? ConstantInt::getTrue(BB->getContext()) 6312 : ConstantInt::getFalse(BB->getContext()); 6313 BI->setCondition(TorF); 6314 RecursivelyDeleteTriviallyDeadInstructions(OldCond); 6315 return requestResimplify(); 6316 } 6317 6318 // If this basic block is ONLY a compare and a branch, and if a predecessor 6319 // branches to us and one of our successors, fold the comparison into the 6320 // predecessor and use logical operations to pick the right destination. 6321 if (FoldBranchToCommonDest(BI, DTU, /*MSSAU=*/nullptr, &TTI, 6322 Options.BonusInstThreshold)) 6323 return requestResimplify(); 6324 6325 // We have a conditional branch to two blocks that are only reachable 6326 // from BI. We know that the condbr dominates the two blocks, so see if 6327 // there is any identical code in the "then" and "else" blocks. If so, we 6328 // can hoist it up to the branching block. 6329 if (BI->getSuccessor(0)->getSinglePredecessor()) { 6330 if (BI->getSuccessor(1)->getSinglePredecessor()) { 6331 if (HoistCommon && Options.HoistCommonInsts) 6332 if (HoistThenElseCodeToIf(BI, TTI)) 6333 return requestResimplify(); 6334 } else { 6335 // If Successor #1 has multiple preds, we may be able to conditionally 6336 // execute Successor #0 if it branches to Successor #1. 6337 Instruction *Succ0TI = BI->getSuccessor(0)->getTerminator(); 6338 if (Succ0TI->getNumSuccessors() == 1 && 6339 Succ0TI->getSuccessor(0) == BI->getSuccessor(1)) 6340 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), TTI)) 6341 return requestResimplify(); 6342 } 6343 } else if (BI->getSuccessor(1)->getSinglePredecessor()) { 6344 // If Successor #0 has multiple preds, we may be able to conditionally 6345 // execute Successor #1 if it branches to Successor #0. 6346 Instruction *Succ1TI = BI->getSuccessor(1)->getTerminator(); 6347 if (Succ1TI->getNumSuccessors() == 1 && 6348 Succ1TI->getSuccessor(0) == BI->getSuccessor(0)) 6349 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), TTI)) 6350 return requestResimplify(); 6351 } 6352 6353 // If this is a branch on a phi node in the current block, thread control 6354 // through this block if any PHI node entries are constants. 6355 if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition())) 6356 if (PN->getParent() == BI->getParent()) 6357 if (FoldCondBranchOnPHI(BI, DTU, DL, Options.AC)) 6358 return requestResimplify(); 6359 6360 // Scan predecessor blocks for conditional branches. 6361 for (BasicBlock *Pred : predecessors(BB)) 6362 if (BranchInst *PBI = dyn_cast<BranchInst>(Pred->getTerminator())) 6363 if (PBI != BI && PBI->isConditional()) 6364 if (SimplifyCondBranchToCondBranch(PBI, BI, DTU, DL, TTI)) 6365 return requestResimplify(); 6366 6367 // Look for diamond patterns. 6368 if (MergeCondStores) 6369 if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB)) 6370 if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator())) 6371 if (PBI != BI && PBI->isConditional()) 6372 if (mergeConditionalStores(PBI, BI, DTU, DL, TTI)) 6373 return requestResimplify(); 6374 6375 return false; 6376 } 6377 6378 /// Check if passing a value to an instruction will cause undefined behavior. 6379 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I, bool PtrValueMayBeModified) { 6380 Constant *C = dyn_cast<Constant>(V); 6381 if (!C) 6382 return false; 6383 6384 if (I->use_empty()) 6385 return false; 6386 6387 if (C->isNullValue() || isa<UndefValue>(C)) { 6388 // Only look at the first use, avoid hurting compile time with long uselists 6389 User *Use = *I->user_begin(); 6390 6391 // Now make sure that there are no instructions in between that can alter 6392 // control flow (eg. calls) 6393 for (BasicBlock::iterator 6394 i = ++BasicBlock::iterator(I), 6395 UI = BasicBlock::iterator(dyn_cast<Instruction>(Use)); 6396 i != UI; ++i) 6397 if (i == I->getParent()->end() || i->mayHaveSideEffects()) 6398 return false; 6399 6400 // Look through GEPs. A load from a GEP derived from NULL is still undefined 6401 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use)) 6402 if (GEP->getPointerOperand() == I) { 6403 if (!GEP->isInBounds() || !GEP->hasAllZeroIndices()) 6404 PtrValueMayBeModified = true; 6405 return passingValueIsAlwaysUndefined(V, GEP, PtrValueMayBeModified); 6406 } 6407 6408 // Look through bitcasts. 6409 if (BitCastInst *BC = dyn_cast<BitCastInst>(Use)) 6410 return passingValueIsAlwaysUndefined(V, BC, PtrValueMayBeModified); 6411 6412 // Load from null is undefined. 6413 if (LoadInst *LI = dyn_cast<LoadInst>(Use)) 6414 if (!LI->isVolatile()) 6415 return !NullPointerIsDefined(LI->getFunction(), 6416 LI->getPointerAddressSpace()); 6417 6418 // Store to null is undefined. 6419 if (StoreInst *SI = dyn_cast<StoreInst>(Use)) 6420 if (!SI->isVolatile()) 6421 return (!NullPointerIsDefined(SI->getFunction(), 6422 SI->getPointerAddressSpace())) && 6423 SI->getPointerOperand() == I; 6424 6425 if (auto *CB = dyn_cast<CallBase>(Use)) { 6426 if (C->isNullValue() && NullPointerIsDefined(CB->getFunction())) 6427 return false; 6428 // A call to null is undefined. 6429 if (CB->getCalledOperand() == I) 6430 return true; 6431 6432 if (C->isNullValue()) { 6433 for (const llvm::Use &Arg : CB->args()) 6434 if (Arg == I) { 6435 unsigned ArgIdx = CB->getArgOperandNo(&Arg); 6436 if (CB->paramHasAttr(ArgIdx, Attribute::NonNull) && 6437 CB->paramHasAttr(ArgIdx, Attribute::NoUndef)) { 6438 // Passing null to a nonnnull+noundef argument is undefined. 6439 return !PtrValueMayBeModified; 6440 } 6441 } 6442 } else if (isa<UndefValue>(C)) { 6443 // Passing undef to a noundef argument is undefined. 6444 for (const llvm::Use &Arg : CB->args()) 6445 if (Arg == I) { 6446 unsigned ArgIdx = CB->getArgOperandNo(&Arg); 6447 if (CB->paramHasAttr(ArgIdx, Attribute::NoUndef)) { 6448 // Passing undef to a noundef argument is undefined. 6449 return true; 6450 } 6451 } 6452 } 6453 } 6454 } 6455 return false; 6456 } 6457 6458 /// If BB has an incoming value that will always trigger undefined behavior 6459 /// (eg. null pointer dereference), remove the branch leading here. 6460 static bool removeUndefIntroducingPredecessor(BasicBlock *BB, 6461 DomTreeUpdater *DTU) { 6462 for (PHINode &PHI : BB->phis()) 6463 for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i) 6464 if (passingValueIsAlwaysUndefined(PHI.getIncomingValue(i), &PHI)) { 6465 BasicBlock *Predecessor = PHI.getIncomingBlock(i); 6466 Instruction *T = Predecessor->getTerminator(); 6467 IRBuilder<> Builder(T); 6468 if (BranchInst *BI = dyn_cast<BranchInst>(T)) { 6469 BB->removePredecessor(Predecessor); 6470 // Turn uncoditional branches into unreachables and remove the dead 6471 // destination from conditional branches. 6472 if (BI->isUnconditional()) 6473 Builder.CreateUnreachable(); 6474 else 6475 Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1) 6476 : BI->getSuccessor(0)); 6477 BI->eraseFromParent(); 6478 if (DTU) 6479 DTU->applyUpdates({{DominatorTree::Delete, Predecessor, BB}}); 6480 return true; 6481 } 6482 // TODO: SwitchInst. 6483 } 6484 6485 return false; 6486 } 6487 6488 bool SimplifyCFGOpt::simplifyOnceImpl(BasicBlock *BB) { 6489 bool Changed = false; 6490 6491 assert(BB && BB->getParent() && "Block not embedded in function!"); 6492 assert(BB->getTerminator() && "Degenerate basic block encountered!"); 6493 6494 // Remove basic blocks that have no predecessors (except the entry block)... 6495 // or that just have themself as a predecessor. These are unreachable. 6496 if ((pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) || 6497 BB->getSinglePredecessor() == BB) { 6498 LLVM_DEBUG(dbgs() << "Removing BB: \n" << *BB); 6499 DeleteDeadBlock(BB, DTU); 6500 return true; 6501 } 6502 6503 // Check to see if we can constant propagate this terminator instruction 6504 // away... 6505 Changed |= ConstantFoldTerminator(BB, /*DeleteDeadConditions=*/true, 6506 /*TLI=*/nullptr, DTU); 6507 6508 // Check for and eliminate duplicate PHI nodes in this block. 6509 Changed |= EliminateDuplicatePHINodes(BB); 6510 6511 // Check for and remove branches that will always cause undefined behavior. 6512 Changed |= removeUndefIntroducingPredecessor(BB, DTU); 6513 6514 // Merge basic blocks into their predecessor if there is only one distinct 6515 // pred, and if there is only one distinct successor of the predecessor, and 6516 // if there are no PHI nodes. 6517 if (MergeBlockIntoPredecessor(BB, DTU)) 6518 return true; 6519 6520 if (SinkCommon && Options.SinkCommonInsts) 6521 Changed |= SinkCommonCodeFromPredecessors(BB, DTU); 6522 6523 IRBuilder<> Builder(BB); 6524 6525 if (Options.FoldTwoEntryPHINode) { 6526 // If there is a trivial two-entry PHI node in this basic block, and we can 6527 // eliminate it, do so now. 6528 if (auto *PN = dyn_cast<PHINode>(BB->begin())) 6529 if (PN->getNumIncomingValues() == 2) 6530 Changed |= FoldTwoEntryPHINode(PN, TTI, DTU, DL); 6531 } 6532 6533 Instruction *Terminator = BB->getTerminator(); 6534 Builder.SetInsertPoint(Terminator); 6535 switch (Terminator->getOpcode()) { 6536 case Instruction::Br: 6537 Changed |= simplifyBranch(cast<BranchInst>(Terminator), Builder); 6538 break; 6539 case Instruction::Ret: 6540 Changed |= simplifyReturn(cast<ReturnInst>(Terminator), Builder); 6541 break; 6542 case Instruction::Resume: 6543 Changed |= simplifyResume(cast<ResumeInst>(Terminator), Builder); 6544 break; 6545 case Instruction::CleanupRet: 6546 Changed |= simplifyCleanupReturn(cast<CleanupReturnInst>(Terminator)); 6547 break; 6548 case Instruction::Switch: 6549 Changed |= simplifySwitch(cast<SwitchInst>(Terminator), Builder); 6550 break; 6551 case Instruction::Unreachable: 6552 Changed |= simplifyUnreachable(cast<UnreachableInst>(Terminator)); 6553 break; 6554 case Instruction::IndirectBr: 6555 Changed |= simplifyIndirectBr(cast<IndirectBrInst>(Terminator)); 6556 break; 6557 } 6558 6559 return Changed; 6560 } 6561 6562 bool SimplifyCFGOpt::simplifyOnce(BasicBlock *BB) { 6563 bool Changed = simplifyOnceImpl(BB); 6564 6565 return Changed; 6566 } 6567 6568 bool SimplifyCFGOpt::run(BasicBlock *BB) { 6569 bool Changed = false; 6570 6571 // Repeated simplify BB as long as resimplification is requested. 6572 do { 6573 Resimplify = false; 6574 6575 // Perform one round of simplifcation. Resimplify flag will be set if 6576 // another iteration is requested. 6577 Changed |= simplifyOnce(BB); 6578 } while (Resimplify); 6579 6580 return Changed; 6581 } 6582 6583 bool llvm::simplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI, 6584 DomTreeUpdater *DTU, const SimplifyCFGOptions &Options, 6585 ArrayRef<WeakVH> LoopHeaders) { 6586 return SimplifyCFGOpt(TTI, DTU, BB->getModule()->getDataLayout(), LoopHeaders, 6587 Options) 6588 .run(BB); 6589 } 6590