1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Peephole optimize the CFG.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/ADT/DenseMap.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/ADT/SetOperations.h"
17 #include "llvm/ADT/SetVector.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/Analysis/ConstantFolding.h"
22 #include "llvm/Analysis/EHPersonalities.h"
23 #include "llvm/Analysis/InstructionSimplify.h"
24 #include "llvm/Analysis/TargetTransformInfo.h"
25 #include "llvm/Analysis/ValueTracking.h"
26 #include "llvm/IR/CFG.h"
27 #include "llvm/IR/ConstantRange.h"
28 #include "llvm/IR/Constants.h"
29 #include "llvm/IR/DataLayout.h"
30 #include "llvm/IR/DerivedTypes.h"
31 #include "llvm/IR/GlobalVariable.h"
32 #include "llvm/IR/IRBuilder.h"
33 #include "llvm/IR/Instructions.h"
34 #include "llvm/IR/IntrinsicInst.h"
35 #include "llvm/IR/LLVMContext.h"
36 #include "llvm/IR/MDBuilder.h"
37 #include "llvm/IR/Metadata.h"
38 #include "llvm/IR/Module.h"
39 #include "llvm/IR/NoFolder.h"
40 #include "llvm/IR/Operator.h"
41 #include "llvm/IR/PatternMatch.h"
42 #include "llvm/IR/Type.h"
43 #include "llvm/Support/CommandLine.h"
44 #include "llvm/Support/Debug.h"
45 #include "llvm/Support/raw_ostream.h"
46 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
47 #include "llvm/Transforms/Utils/Local.h"
48 #include "llvm/Transforms/Utils/ValueMapper.h"
49 #include <algorithm>
50 #include <map>
51 #include <set>
52 using namespace llvm;
53 using namespace PatternMatch;
54 
55 #define DEBUG_TYPE "simplifycfg"
56 
57 // Chosen as 2 so as to be cheap, but still to have enough power to fold
58 // a select, so the "clamp" idiom (of a min followed by a max) will be caught.
59 // To catch this, we need to fold a compare and a select, hence '2' being the
60 // minimum reasonable default.
61 static cl::opt<unsigned> PHINodeFoldingThreshold(
62     "phi-node-folding-threshold", cl::Hidden, cl::init(2),
63     cl::desc(
64         "Control the amount of phi node folding to perform (default = 2)"));
65 
66 static cl::opt<bool> DupRet(
67     "simplifycfg-dup-ret", cl::Hidden, cl::init(false),
68     cl::desc("Duplicate return instructions into unconditional branches"));
69 
70 static cl::opt<bool>
71     SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true),
72                cl::desc("Sink common instructions down to the end block"));
73 
74 static cl::opt<bool> HoistCondStores(
75     "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true),
76     cl::desc("Hoist conditional stores if an unconditional store precedes"));
77 
78 static cl::opt<bool> MergeCondStores(
79     "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true),
80     cl::desc("Hoist conditional stores even if an unconditional store does not "
81              "precede - hoist multiple conditional stores into a single "
82              "predicated store"));
83 
84 static cl::opt<bool> MergeCondStoresAggressively(
85     "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false),
86     cl::desc("When merging conditional stores, do so even if the resultant "
87              "basic blocks are unlikely to be if-converted as a result"));
88 
89 static cl::opt<bool> SpeculateOneExpensiveInst(
90     "speculate-one-expensive-inst", cl::Hidden, cl::init(true),
91     cl::desc("Allow exactly one expensive instruction to be speculatively "
92              "executed"));
93 
94 static cl::opt<unsigned> MaxSpeculationDepth(
95     "max-speculation-depth", cl::Hidden, cl::init(10),
96     cl::desc("Limit maximum recursion depth when calculating costs of "
97              "speculatively executed instructions"));
98 
99 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps");
100 STATISTIC(NumLinearMaps,
101           "Number of switch instructions turned into linear mapping");
102 STATISTIC(NumLookupTables,
103           "Number of switch instructions turned into lookup tables");
104 STATISTIC(
105     NumLookupTablesHoles,
106     "Number of switch instructions turned into lookup tables (holes checked)");
107 STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares");
108 STATISTIC(NumSinkCommons,
109           "Number of common instructions sunk down to the end block");
110 STATISTIC(NumSpeculations, "Number of speculative executed instructions");
111 
112 namespace {
113 // The first field contains the value that the switch produces when a certain
114 // case group is selected, and the second field is a vector containing the
115 // cases composing the case group.
116 typedef SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2>
117     SwitchCaseResultVectorTy;
118 // The first field contains the phi node that generates a result of the switch
119 // and the second field contains the value generated for a certain case in the
120 // switch for that PHI.
121 typedef SmallVector<std::pair<PHINode *, Constant *>, 4> SwitchCaseResultsTy;
122 
123 /// ValueEqualityComparisonCase - Represents a case of a switch.
124 struct ValueEqualityComparisonCase {
125   ConstantInt *Value;
126   BasicBlock *Dest;
127 
128   ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest)
129       : Value(Value), Dest(Dest) {}
130 
131   bool operator<(ValueEqualityComparisonCase RHS) const {
132     // Comparing pointers is ok as we only rely on the order for uniquing.
133     return Value < RHS.Value;
134   }
135 
136   bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; }
137 };
138 
139 class SimplifyCFGOpt {
140   const TargetTransformInfo &TTI;
141   const DataLayout &DL;
142   unsigned BonusInstThreshold;
143   AssumptionCache *AC;
144   SmallPtrSetImpl<BasicBlock *> *LoopHeaders;
145   Value *isValueEqualityComparison(TerminatorInst *TI);
146   BasicBlock *GetValueEqualityComparisonCases(
147       TerminatorInst *TI, std::vector<ValueEqualityComparisonCase> &Cases);
148   bool SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI,
149                                                      BasicBlock *Pred,
150                                                      IRBuilder<> &Builder);
151   bool FoldValueComparisonIntoPredecessors(TerminatorInst *TI,
152                                            IRBuilder<> &Builder);
153 
154   bool SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder);
155   bool SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder);
156   bool SimplifySingleResume(ResumeInst *RI);
157   bool SimplifyCommonResume(ResumeInst *RI);
158   bool SimplifyCleanupReturn(CleanupReturnInst *RI);
159   bool SimplifyUnreachable(UnreachableInst *UI);
160   bool SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder);
161   bool SimplifyIndirectBr(IndirectBrInst *IBI);
162   bool SimplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder);
163   bool SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder);
164 
165 public:
166   SimplifyCFGOpt(const TargetTransformInfo &TTI, const DataLayout &DL,
167                  unsigned BonusInstThreshold, AssumptionCache *AC,
168                  SmallPtrSetImpl<BasicBlock *> *LoopHeaders)
169       : TTI(TTI), DL(DL), BonusInstThreshold(BonusInstThreshold), AC(AC),
170         LoopHeaders(LoopHeaders) {}
171   bool run(BasicBlock *BB);
172 };
173 }
174 
175 /// Return true if it is safe to merge these two
176 /// terminator instructions together.
177 static bool
178 SafeToMergeTerminators(TerminatorInst *SI1, TerminatorInst *SI2,
179                        SmallSetVector<BasicBlock *, 4> *FailBlocks = nullptr) {
180   if (SI1 == SI2)
181     return false; // Can't merge with self!
182 
183   // It is not safe to merge these two switch instructions if they have a common
184   // successor, and if that successor has a PHI node, and if *that* PHI node has
185   // conflicting incoming values from the two switch blocks.
186   BasicBlock *SI1BB = SI1->getParent();
187   BasicBlock *SI2BB = SI2->getParent();
188 
189   SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
190   bool Fail = false;
191   for (BasicBlock *Succ : successors(SI2BB))
192     if (SI1Succs.count(Succ))
193       for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) {
194         PHINode *PN = cast<PHINode>(BBI);
195         if (PN->getIncomingValueForBlock(SI1BB) !=
196             PN->getIncomingValueForBlock(SI2BB)) {
197           if (FailBlocks)
198             FailBlocks->insert(Succ);
199           Fail = true;
200         }
201       }
202 
203   return !Fail;
204 }
205 
206 /// Return true if it is safe and profitable to merge these two terminator
207 /// instructions together, where SI1 is an unconditional branch. PhiNodes will
208 /// store all PHI nodes in common successors.
209 static bool
210 isProfitableToFoldUnconditional(BranchInst *SI1, BranchInst *SI2,
211                                 Instruction *Cond,
212                                 SmallVectorImpl<PHINode *> &PhiNodes) {
213   if (SI1 == SI2)
214     return false; // Can't merge with self!
215   assert(SI1->isUnconditional() && SI2->isConditional());
216 
217   // We fold the unconditional branch if we can easily update all PHI nodes in
218   // common successors:
219   // 1> We have a constant incoming value for the conditional branch;
220   // 2> We have "Cond" as the incoming value for the unconditional branch;
221   // 3> SI2->getCondition() and Cond have same operands.
222   CmpInst *Ci2 = dyn_cast<CmpInst>(SI2->getCondition());
223   if (!Ci2)
224     return false;
225   if (!(Cond->getOperand(0) == Ci2->getOperand(0) &&
226         Cond->getOperand(1) == Ci2->getOperand(1)) &&
227       !(Cond->getOperand(0) == Ci2->getOperand(1) &&
228         Cond->getOperand(1) == Ci2->getOperand(0)))
229     return false;
230 
231   BasicBlock *SI1BB = SI1->getParent();
232   BasicBlock *SI2BB = SI2->getParent();
233   SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
234   for (BasicBlock *Succ : successors(SI2BB))
235     if (SI1Succs.count(Succ))
236       for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) {
237         PHINode *PN = cast<PHINode>(BBI);
238         if (PN->getIncomingValueForBlock(SI1BB) != Cond ||
239             !isa<ConstantInt>(PN->getIncomingValueForBlock(SI2BB)))
240           return false;
241         PhiNodes.push_back(PN);
242       }
243   return true;
244 }
245 
246 /// Update PHI nodes in Succ to indicate that there will now be entries in it
247 /// from the 'NewPred' block. The values that will be flowing into the PHI nodes
248 /// will be the same as those coming in from ExistPred, an existing predecessor
249 /// of Succ.
250 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred,
251                                   BasicBlock *ExistPred) {
252   if (!isa<PHINode>(Succ->begin()))
253     return; // Quick exit if nothing to do
254 
255   PHINode *PN;
256   for (BasicBlock::iterator I = Succ->begin(); (PN = dyn_cast<PHINode>(I)); ++I)
257     PN->addIncoming(PN->getIncomingValueForBlock(ExistPred), NewPred);
258 }
259 
260 /// Compute an abstract "cost" of speculating the given instruction,
261 /// which is assumed to be safe to speculate. TCC_Free means cheap,
262 /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively
263 /// expensive.
264 static unsigned ComputeSpeculationCost(const User *I,
265                                        const TargetTransformInfo &TTI) {
266   assert(isSafeToSpeculativelyExecute(I) &&
267          "Instruction is not safe to speculatively execute!");
268   return TTI.getUserCost(I);
269 }
270 
271 /// If we have a merge point of an "if condition" as accepted above,
272 /// return true if the specified value dominates the block.  We
273 /// don't handle the true generality of domination here, just a special case
274 /// which works well enough for us.
275 ///
276 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to
277 /// see if V (which must be an instruction) and its recursive operands
278 /// that do not dominate BB have a combined cost lower than CostRemaining and
279 /// are non-trapping.  If both are true, the instruction is inserted into the
280 /// set and true is returned.
281 ///
282 /// The cost for most non-trapping instructions is defined as 1 except for
283 /// Select whose cost is 2.
284 ///
285 /// After this function returns, CostRemaining is decreased by the cost of
286 /// V plus its non-dominating operands.  If that cost is greater than
287 /// CostRemaining, false is returned and CostRemaining is undefined.
288 static bool DominatesMergePoint(Value *V, BasicBlock *BB,
289                                 SmallPtrSetImpl<Instruction *> *AggressiveInsts,
290                                 unsigned &CostRemaining,
291                                 const TargetTransformInfo &TTI,
292                                 unsigned Depth = 0) {
293   // It is possible to hit a zero-cost cycle (phi/gep instructions for example),
294   // so limit the recursion depth.
295   // TODO: While this recursion limit does prevent pathological behavior, it
296   // would be better to track visited instructions to avoid cycles.
297   if (Depth == MaxSpeculationDepth)
298     return false;
299 
300   Instruction *I = dyn_cast<Instruction>(V);
301   if (!I) {
302     // Non-instructions all dominate instructions, but not all constantexprs
303     // can be executed unconditionally.
304     if (ConstantExpr *C = dyn_cast<ConstantExpr>(V))
305       if (C->canTrap())
306         return false;
307     return true;
308   }
309   BasicBlock *PBB = I->getParent();
310 
311   // We don't want to allow weird loops that might have the "if condition" in
312   // the bottom of this block.
313   if (PBB == BB)
314     return false;
315 
316   // If this instruction is defined in a block that contains an unconditional
317   // branch to BB, then it must be in the 'conditional' part of the "if
318   // statement".  If not, it definitely dominates the region.
319   BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator());
320   if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB)
321     return true;
322 
323   // If we aren't allowing aggressive promotion anymore, then don't consider
324   // instructions in the 'if region'.
325   if (!AggressiveInsts)
326     return false;
327 
328   // If we have seen this instruction before, don't count it again.
329   if (AggressiveInsts->count(I))
330     return true;
331 
332   // Okay, it looks like the instruction IS in the "condition".  Check to
333   // see if it's a cheap instruction to unconditionally compute, and if it
334   // only uses stuff defined outside of the condition.  If so, hoist it out.
335   if (!isSafeToSpeculativelyExecute(I))
336     return false;
337 
338   unsigned Cost = ComputeSpeculationCost(I, TTI);
339 
340   // Allow exactly one instruction to be speculated regardless of its cost
341   // (as long as it is safe to do so).
342   // This is intended to flatten the CFG even if the instruction is a division
343   // or other expensive operation. The speculation of an expensive instruction
344   // is expected to be undone in CodeGenPrepare if the speculation has not
345   // enabled further IR optimizations.
346   if (Cost > CostRemaining &&
347       (!SpeculateOneExpensiveInst || !AggressiveInsts->empty() || Depth > 0))
348     return false;
349 
350   // Avoid unsigned wrap.
351   CostRemaining = (Cost > CostRemaining) ? 0 : CostRemaining - Cost;
352 
353   // Okay, we can only really hoist these out if their operands do
354   // not take us over the cost threshold.
355   for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i)
356     if (!DominatesMergePoint(*i, BB, AggressiveInsts, CostRemaining, TTI,
357                              Depth + 1))
358       return false;
359   // Okay, it's safe to do this!  Remember this instruction.
360   AggressiveInsts->insert(I);
361   return true;
362 }
363 
364 /// Extract ConstantInt from value, looking through IntToPtr
365 /// and PointerNullValue. Return NULL if value is not a constant int.
366 static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) {
367   // Normal constant int.
368   ConstantInt *CI = dyn_cast<ConstantInt>(V);
369   if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy())
370     return CI;
371 
372   // This is some kind of pointer constant. Turn it into a pointer-sized
373   // ConstantInt if possible.
374   IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType()));
375 
376   // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*).
377   if (isa<ConstantPointerNull>(V))
378     return ConstantInt::get(PtrTy, 0);
379 
380   // IntToPtr const int.
381   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
382     if (CE->getOpcode() == Instruction::IntToPtr)
383       if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) {
384         // The constant is very likely to have the right type already.
385         if (CI->getType() == PtrTy)
386           return CI;
387         else
388           return cast<ConstantInt>(
389               ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false));
390       }
391   return nullptr;
392 }
393 
394 namespace {
395 
396 /// Given a chain of or (||) or and (&&) comparison of a value against a
397 /// constant, this will try to recover the information required for a switch
398 /// structure.
399 /// It will depth-first traverse the chain of comparison, seeking for patterns
400 /// like %a == 12 or %a < 4 and combine them to produce a set of integer
401 /// representing the different cases for the switch.
402 /// Note that if the chain is composed of '||' it will build the set of elements
403 /// that matches the comparisons (i.e. any of this value validate the chain)
404 /// while for a chain of '&&' it will build the set elements that make the test
405 /// fail.
406 struct ConstantComparesGatherer {
407   const DataLayout &DL;
408   Value *CompValue; /// Value found for the switch comparison
409   Value *Extra;     /// Extra clause to be checked before the switch
410   SmallVector<ConstantInt *, 8> Vals; /// Set of integers to match in switch
411   unsigned UsedICmps; /// Number of comparisons matched in the and/or chain
412 
413   /// Construct and compute the result for the comparison instruction Cond
414   ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL)
415       : DL(DL), CompValue(nullptr), Extra(nullptr), UsedICmps(0) {
416     gather(Cond);
417   }
418 
419   /// Prevent copy
420   ConstantComparesGatherer(const ConstantComparesGatherer &) = delete;
421   ConstantComparesGatherer &
422   operator=(const ConstantComparesGatherer &) = delete;
423 
424 private:
425   /// Try to set the current value used for the comparison, it succeeds only if
426   /// it wasn't set before or if the new value is the same as the old one
427   bool setValueOnce(Value *NewVal) {
428     if (CompValue && CompValue != NewVal)
429       return false;
430     CompValue = NewVal;
431     return (CompValue != nullptr);
432   }
433 
434   /// Try to match Instruction "I" as a comparison against a constant and
435   /// populates the array Vals with the set of values that match (or do not
436   /// match depending on isEQ).
437   /// Return false on failure. On success, the Value the comparison matched
438   /// against is placed in CompValue.
439   /// If CompValue is already set, the function is expected to fail if a match
440   /// is found but the value compared to is different.
441   bool matchInstruction(Instruction *I, bool isEQ) {
442     // If this is an icmp against a constant, handle this as one of the cases.
443     ICmpInst *ICI;
444     ConstantInt *C;
445     if (!((ICI = dyn_cast<ICmpInst>(I)) &&
446           (C = GetConstantInt(I->getOperand(1), DL)))) {
447       return false;
448     }
449 
450     Value *RHSVal;
451     const APInt *RHSC;
452 
453     // Pattern match a special case
454     // (x & ~2^z) == y --> x == y || x == y|2^z
455     // This undoes a transformation done by instcombine to fuse 2 compares.
456     if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE)) {
457 
458       // It's a little bit hard to see why the following transformations are
459       // correct. Here is a CVC3 program to verify them for 64-bit values:
460 
461       /*
462          ONE  : BITVECTOR(64) = BVZEROEXTEND(0bin1, 63);
463          x    : BITVECTOR(64);
464          y    : BITVECTOR(64);
465          z    : BITVECTOR(64);
466          mask : BITVECTOR(64) = BVSHL(ONE, z);
467          QUERY( (y & ~mask = y) =>
468                 ((x & ~mask = y) <=> (x = y OR x = (y |  mask)))
469          );
470          QUERY( (y |  mask = y) =>
471                 ((x |  mask = y) <=> (x = y OR x = (y & ~mask)))
472          );
473       */
474 
475       // Please note that each pattern must be a dual implication (<--> or
476       // iff). One directional implication can create spurious matches. If the
477       // implication is only one-way, an unsatisfiable condition on the left
478       // side can imply a satisfiable condition on the right side. Dual
479       // implication ensures that satisfiable conditions are transformed to
480       // other satisfiable conditions and unsatisfiable conditions are
481       // transformed to other unsatisfiable conditions.
482 
483       // Here is a concrete example of a unsatisfiable condition on the left
484       // implying a satisfiable condition on the right:
485       //
486       // mask = (1 << z)
487       // (x & ~mask) == y  --> (x == y || x == (y | mask))
488       //
489       // Substituting y = 3, z = 0 yields:
490       // (x & -2) == 3 --> (x == 3 || x == 2)
491 
492       // Pattern match a special case:
493       /*
494         QUERY( (y & ~mask = y) =>
495                ((x & ~mask = y) <=> (x = y OR x = (y |  mask)))
496         );
497       */
498       if (match(ICI->getOperand(0),
499                 m_And(m_Value(RHSVal), m_APInt(RHSC)))) {
500         APInt Mask = ~*RHSC;
501         if (Mask.isPowerOf2() && (C->getValue() & ~Mask) == C->getValue()) {
502           // If we already have a value for the switch, it has to match!
503           if (!setValueOnce(RHSVal))
504             return false;
505 
506           Vals.push_back(C);
507           Vals.push_back(
508               ConstantInt::get(C->getContext(),
509                                C->getValue() | Mask));
510           UsedICmps++;
511           return true;
512         }
513       }
514 
515       // Pattern match a special case:
516       /*
517         QUERY( (y |  mask = y) =>
518                ((x |  mask = y) <=> (x = y OR x = (y & ~mask)))
519         );
520       */
521       if (match(ICI->getOperand(0),
522                 m_Or(m_Value(RHSVal), m_APInt(RHSC)))) {
523         APInt Mask = *RHSC;
524         if (Mask.isPowerOf2() && (C->getValue() | Mask) == C->getValue()) {
525           // If we already have a value for the switch, it has to match!
526           if (!setValueOnce(RHSVal))
527             return false;
528 
529           Vals.push_back(C);
530           Vals.push_back(ConstantInt::get(C->getContext(),
531                                           C->getValue() & ~Mask));
532           UsedICmps++;
533           return true;
534         }
535       }
536 
537       // If we already have a value for the switch, it has to match!
538       if (!setValueOnce(ICI->getOperand(0)))
539         return false;
540 
541       UsedICmps++;
542       Vals.push_back(C);
543       return ICI->getOperand(0);
544     }
545 
546     // If we have "x ult 3", for example, then we can add 0,1,2 to the set.
547     ConstantRange Span = ConstantRange::makeAllowedICmpRegion(
548         ICI->getPredicate(), C->getValue());
549 
550     // Shift the range if the compare is fed by an add. This is the range
551     // compare idiom as emitted by instcombine.
552     Value *CandidateVal = I->getOperand(0);
553     if (match(I->getOperand(0), m_Add(m_Value(RHSVal), m_APInt(RHSC)))) {
554       Span = Span.subtract(*RHSC);
555       CandidateVal = RHSVal;
556     }
557 
558     // If this is an and/!= check, then we are looking to build the set of
559     // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into
560     // x != 0 && x != 1.
561     if (!isEQ)
562       Span = Span.inverse();
563 
564     // If there are a ton of values, we don't want to make a ginormous switch.
565     if (Span.getSetSize().ugt(8) || Span.isEmptySet()) {
566       return false;
567     }
568 
569     // If we already have a value for the switch, it has to match!
570     if (!setValueOnce(CandidateVal))
571       return false;
572 
573     // Add all values from the range to the set
574     for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp)
575       Vals.push_back(ConstantInt::get(I->getContext(), Tmp));
576 
577     UsedICmps++;
578     return true;
579   }
580 
581   /// Given a potentially 'or'd or 'and'd together collection of icmp
582   /// eq/ne/lt/gt instructions that compare a value against a constant, extract
583   /// the value being compared, and stick the list constants into the Vals
584   /// vector.
585   /// One "Extra" case is allowed to differ from the other.
586   void gather(Value *V) {
587     Instruction *I = dyn_cast<Instruction>(V);
588     bool isEQ = (I->getOpcode() == Instruction::Or);
589 
590     // Keep a stack (SmallVector for efficiency) for depth-first traversal
591     SmallVector<Value *, 8> DFT;
592     SmallPtrSet<Value *, 8> Visited;
593 
594     // Initialize
595     Visited.insert(V);
596     DFT.push_back(V);
597 
598     while (!DFT.empty()) {
599       V = DFT.pop_back_val();
600 
601       if (Instruction *I = dyn_cast<Instruction>(V)) {
602         // If it is a || (or && depending on isEQ), process the operands.
603         if (I->getOpcode() == (isEQ ? Instruction::Or : Instruction::And)) {
604           if (Visited.insert(I->getOperand(1)).second)
605             DFT.push_back(I->getOperand(1));
606           if (Visited.insert(I->getOperand(0)).second)
607             DFT.push_back(I->getOperand(0));
608           continue;
609         }
610 
611         // Try to match the current instruction
612         if (matchInstruction(I, isEQ))
613           // Match succeed, continue the loop
614           continue;
615       }
616 
617       // One element of the sequence of || (or &&) could not be match as a
618       // comparison against the same value as the others.
619       // We allow only one "Extra" case to be checked before the switch
620       if (!Extra) {
621         Extra = V;
622         continue;
623       }
624       // Failed to parse a proper sequence, abort now
625       CompValue = nullptr;
626       break;
627     }
628   }
629 };
630 }
631 
632 static void EraseTerminatorInstAndDCECond(TerminatorInst *TI) {
633   Instruction *Cond = nullptr;
634   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
635     Cond = dyn_cast<Instruction>(SI->getCondition());
636   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
637     if (BI->isConditional())
638       Cond = dyn_cast<Instruction>(BI->getCondition());
639   } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) {
640     Cond = dyn_cast<Instruction>(IBI->getAddress());
641   }
642 
643   TI->eraseFromParent();
644   if (Cond)
645     RecursivelyDeleteTriviallyDeadInstructions(Cond);
646 }
647 
648 /// Return true if the specified terminator checks
649 /// to see if a value is equal to constant integer value.
650 Value *SimplifyCFGOpt::isValueEqualityComparison(TerminatorInst *TI) {
651   Value *CV = nullptr;
652   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
653     // Do not permit merging of large switch instructions into their
654     // predecessors unless there is only one predecessor.
655     if (SI->getNumSuccessors() * std::distance(pred_begin(SI->getParent()),
656                                                pred_end(SI->getParent())) <=
657         128)
658       CV = SI->getCondition();
659   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI))
660     if (BI->isConditional() && BI->getCondition()->hasOneUse())
661       if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) {
662         if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL))
663           CV = ICI->getOperand(0);
664       }
665 
666   // Unwrap any lossless ptrtoint cast.
667   if (CV) {
668     if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) {
669       Value *Ptr = PTII->getPointerOperand();
670       if (PTII->getType() == DL.getIntPtrType(Ptr->getType()))
671         CV = Ptr;
672     }
673   }
674   return CV;
675 }
676 
677 /// Given a value comparison instruction,
678 /// decode all of the 'cases' that it represents and return the 'default' block.
679 BasicBlock *SimplifyCFGOpt::GetValueEqualityComparisonCases(
680     TerminatorInst *TI, std::vector<ValueEqualityComparisonCase> &Cases) {
681   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
682     Cases.reserve(SI->getNumCases());
683     for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); i != e;
684          ++i)
685       Cases.push_back(
686           ValueEqualityComparisonCase(i.getCaseValue(), i.getCaseSuccessor()));
687     return SI->getDefaultDest();
688   }
689 
690   BranchInst *BI = cast<BranchInst>(TI);
691   ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
692   BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE);
693   Cases.push_back(ValueEqualityComparisonCase(
694       GetConstantInt(ICI->getOperand(1), DL), Succ));
695   return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ);
696 }
697 
698 /// Given a vector of bb/value pairs, remove any entries
699 /// in the list that match the specified block.
700 static void
701 EliminateBlockCases(BasicBlock *BB,
702                     std::vector<ValueEqualityComparisonCase> &Cases) {
703   Cases.erase(std::remove(Cases.begin(), Cases.end(), BB), Cases.end());
704 }
705 
706 /// Return true if there are any keys in C1 that exist in C2 as well.
707 static bool ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1,
708                           std::vector<ValueEqualityComparisonCase> &C2) {
709   std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2;
710 
711   // Make V1 be smaller than V2.
712   if (V1->size() > V2->size())
713     std::swap(V1, V2);
714 
715   if (V1->size() == 0)
716     return false;
717   if (V1->size() == 1) {
718     // Just scan V2.
719     ConstantInt *TheVal = (*V1)[0].Value;
720     for (unsigned i = 0, e = V2->size(); i != e; ++i)
721       if (TheVal == (*V2)[i].Value)
722         return true;
723   }
724 
725   // Otherwise, just sort both lists and compare element by element.
726   array_pod_sort(V1->begin(), V1->end());
727   array_pod_sort(V2->begin(), V2->end());
728   unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size();
729   while (i1 != e1 && i2 != e2) {
730     if ((*V1)[i1].Value == (*V2)[i2].Value)
731       return true;
732     if ((*V1)[i1].Value < (*V2)[i2].Value)
733       ++i1;
734     else
735       ++i2;
736   }
737   return false;
738 }
739 
740 /// If TI is known to be a terminator instruction and its block is known to
741 /// only have a single predecessor block, check to see if that predecessor is
742 /// also a value comparison with the same value, and if that comparison
743 /// determines the outcome of this comparison. If so, simplify TI. This does a
744 /// very limited form of jump threading.
745 bool SimplifyCFGOpt::SimplifyEqualityComparisonWithOnlyPredecessor(
746     TerminatorInst *TI, BasicBlock *Pred, IRBuilder<> &Builder) {
747   Value *PredVal = isValueEqualityComparison(Pred->getTerminator());
748   if (!PredVal)
749     return false; // Not a value comparison in predecessor.
750 
751   Value *ThisVal = isValueEqualityComparison(TI);
752   assert(ThisVal && "This isn't a value comparison!!");
753   if (ThisVal != PredVal)
754     return false; // Different predicates.
755 
756   // TODO: Preserve branch weight metadata, similarly to how
757   // FoldValueComparisonIntoPredecessors preserves it.
758 
759   // Find out information about when control will move from Pred to TI's block.
760   std::vector<ValueEqualityComparisonCase> PredCases;
761   BasicBlock *PredDef =
762       GetValueEqualityComparisonCases(Pred->getTerminator(), PredCases);
763   EliminateBlockCases(PredDef, PredCases); // Remove default from cases.
764 
765   // Find information about how control leaves this block.
766   std::vector<ValueEqualityComparisonCase> ThisCases;
767   BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases);
768   EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases.
769 
770   // If TI's block is the default block from Pred's comparison, potentially
771   // simplify TI based on this knowledge.
772   if (PredDef == TI->getParent()) {
773     // If we are here, we know that the value is none of those cases listed in
774     // PredCases.  If there are any cases in ThisCases that are in PredCases, we
775     // can simplify TI.
776     if (!ValuesOverlap(PredCases, ThisCases))
777       return false;
778 
779     if (isa<BranchInst>(TI)) {
780       // Okay, one of the successors of this condbr is dead.  Convert it to a
781       // uncond br.
782       assert(ThisCases.size() == 1 && "Branch can only have one case!");
783       // Insert the new branch.
784       Instruction *NI = Builder.CreateBr(ThisDef);
785       (void)NI;
786 
787       // Remove PHI node entries for the dead edge.
788       ThisCases[0].Dest->removePredecessor(TI->getParent());
789 
790       DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
791                    << "Through successor TI: " << *TI << "Leaving: " << *NI
792                    << "\n");
793 
794       EraseTerminatorInstAndDCECond(TI);
795       return true;
796     }
797 
798     SwitchInst *SI = cast<SwitchInst>(TI);
799     // Okay, TI has cases that are statically dead, prune them away.
800     SmallPtrSet<Constant *, 16> DeadCases;
801     for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
802       DeadCases.insert(PredCases[i].Value);
803 
804     DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
805                  << "Through successor TI: " << *TI);
806 
807     // Collect branch weights into a vector.
808     SmallVector<uint32_t, 8> Weights;
809     MDNode *MD = SI->getMetadata(LLVMContext::MD_prof);
810     bool HasWeight = MD && (MD->getNumOperands() == 2 + SI->getNumCases());
811     if (HasWeight)
812       for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e;
813            ++MD_i) {
814         ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i));
815         Weights.push_back(CI->getValue().getZExtValue());
816       }
817     for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) {
818       --i;
819       if (DeadCases.count(i.getCaseValue())) {
820         if (HasWeight) {
821           std::swap(Weights[i.getCaseIndex() + 1], Weights.back());
822           Weights.pop_back();
823         }
824         i.getCaseSuccessor()->removePredecessor(TI->getParent());
825         SI->removeCase(i);
826       }
827     }
828     if (HasWeight && Weights.size() >= 2)
829       SI->setMetadata(LLVMContext::MD_prof,
830                       MDBuilder(SI->getParent()->getContext())
831                           .createBranchWeights(Weights));
832 
833     DEBUG(dbgs() << "Leaving: " << *TI << "\n");
834     return true;
835   }
836 
837   // Otherwise, TI's block must correspond to some matched value.  Find out
838   // which value (or set of values) this is.
839   ConstantInt *TIV = nullptr;
840   BasicBlock *TIBB = TI->getParent();
841   for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
842     if (PredCases[i].Dest == TIBB) {
843       if (TIV)
844         return false; // Cannot handle multiple values coming to this block.
845       TIV = PredCases[i].Value;
846     }
847   assert(TIV && "No edge from pred to succ?");
848 
849   // Okay, we found the one constant that our value can be if we get into TI's
850   // BB.  Find out which successor will unconditionally be branched to.
851   BasicBlock *TheRealDest = nullptr;
852   for (unsigned i = 0, e = ThisCases.size(); i != e; ++i)
853     if (ThisCases[i].Value == TIV) {
854       TheRealDest = ThisCases[i].Dest;
855       break;
856     }
857 
858   // If not handled by any explicit cases, it is handled by the default case.
859   if (!TheRealDest)
860     TheRealDest = ThisDef;
861 
862   // Remove PHI node entries for dead edges.
863   BasicBlock *CheckEdge = TheRealDest;
864   for (BasicBlock *Succ : successors(TIBB))
865     if (Succ != CheckEdge)
866       Succ->removePredecessor(TIBB);
867     else
868       CheckEdge = nullptr;
869 
870   // Insert the new branch.
871   Instruction *NI = Builder.CreateBr(TheRealDest);
872   (void)NI;
873 
874   DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
875                << "Through successor TI: " << *TI << "Leaving: " << *NI
876                << "\n");
877 
878   EraseTerminatorInstAndDCECond(TI);
879   return true;
880 }
881 
882 namespace {
883 /// This class implements a stable ordering of constant
884 /// integers that does not depend on their address.  This is important for
885 /// applications that sort ConstantInt's to ensure uniqueness.
886 struct ConstantIntOrdering {
887   bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const {
888     return LHS->getValue().ult(RHS->getValue());
889   }
890 };
891 }
892 
893 static int ConstantIntSortPredicate(ConstantInt *const *P1,
894                                     ConstantInt *const *P2) {
895   const ConstantInt *LHS = *P1;
896   const ConstantInt *RHS = *P2;
897   if (LHS == RHS)
898     return 0;
899   return LHS->getValue().ult(RHS->getValue()) ? 1 : -1;
900 }
901 
902 static inline bool HasBranchWeights(const Instruction *I) {
903   MDNode *ProfMD = I->getMetadata(LLVMContext::MD_prof);
904   if (ProfMD && ProfMD->getOperand(0))
905     if (MDString *MDS = dyn_cast<MDString>(ProfMD->getOperand(0)))
906       return MDS->getString().equals("branch_weights");
907 
908   return false;
909 }
910 
911 /// Get Weights of a given TerminatorInst, the default weight is at the front
912 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight
913 /// metadata.
914 static void GetBranchWeights(TerminatorInst *TI,
915                              SmallVectorImpl<uint64_t> &Weights) {
916   MDNode *MD = TI->getMetadata(LLVMContext::MD_prof);
917   assert(MD);
918   for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) {
919     ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i));
920     Weights.push_back(CI->getValue().getZExtValue());
921   }
922 
923   // If TI is a conditional eq, the default case is the false case,
924   // and the corresponding branch-weight data is at index 2. We swap the
925   // default weight to be the first entry.
926   if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
927     assert(Weights.size() == 2);
928     ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
929     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
930       std::swap(Weights.front(), Weights.back());
931   }
932 }
933 
934 /// Keep halving the weights until all can fit in uint32_t.
935 static void FitWeights(MutableArrayRef<uint64_t> Weights) {
936   uint64_t Max = *std::max_element(Weights.begin(), Weights.end());
937   if (Max > UINT_MAX) {
938     unsigned Offset = 32 - countLeadingZeros(Max);
939     for (uint64_t &I : Weights)
940       I >>= Offset;
941   }
942 }
943 
944 /// The specified terminator is a value equality comparison instruction
945 /// (either a switch or a branch on "X == c").
946 /// See if any of the predecessors of the terminator block are value comparisons
947 /// on the same value.  If so, and if safe to do so, fold them together.
948 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(TerminatorInst *TI,
949                                                          IRBuilder<> &Builder) {
950   BasicBlock *BB = TI->getParent();
951   Value *CV = isValueEqualityComparison(TI); // CondVal
952   assert(CV && "Not a comparison?");
953   bool Changed = false;
954 
955   SmallVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB));
956   while (!Preds.empty()) {
957     BasicBlock *Pred = Preds.pop_back_val();
958 
959     // See if the predecessor is a comparison with the same value.
960     TerminatorInst *PTI = Pred->getTerminator();
961     Value *PCV = isValueEqualityComparison(PTI); // PredCondVal
962 
963     if (PCV == CV && TI != PTI) {
964       SmallSetVector<BasicBlock*, 4> FailBlocks;
965       if (!SafeToMergeTerminators(TI, PTI, &FailBlocks)) {
966         for (auto *Succ : FailBlocks) {
967           std::vector<BasicBlock*> Blocks = { TI->getParent() };
968           if (!SplitBlockPredecessors(Succ, Blocks, ".fold.split"))
969             return false;
970         }
971       }
972 
973       // Figure out which 'cases' to copy from SI to PSI.
974       std::vector<ValueEqualityComparisonCase> BBCases;
975       BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases);
976 
977       std::vector<ValueEqualityComparisonCase> PredCases;
978       BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases);
979 
980       // Based on whether the default edge from PTI goes to BB or not, fill in
981       // PredCases and PredDefault with the new switch cases we would like to
982       // build.
983       SmallVector<BasicBlock *, 8> NewSuccessors;
984 
985       // Update the branch weight metadata along the way
986       SmallVector<uint64_t, 8> Weights;
987       bool PredHasWeights = HasBranchWeights(PTI);
988       bool SuccHasWeights = HasBranchWeights(TI);
989 
990       if (PredHasWeights) {
991         GetBranchWeights(PTI, Weights);
992         // branch-weight metadata is inconsistent here.
993         if (Weights.size() != 1 + PredCases.size())
994           PredHasWeights = SuccHasWeights = false;
995       } else if (SuccHasWeights)
996         // If there are no predecessor weights but there are successor weights,
997         // populate Weights with 1, which will later be scaled to the sum of
998         // successor's weights
999         Weights.assign(1 + PredCases.size(), 1);
1000 
1001       SmallVector<uint64_t, 8> SuccWeights;
1002       if (SuccHasWeights) {
1003         GetBranchWeights(TI, SuccWeights);
1004         // branch-weight metadata is inconsistent here.
1005         if (SuccWeights.size() != 1 + BBCases.size())
1006           PredHasWeights = SuccHasWeights = false;
1007       } else if (PredHasWeights)
1008         SuccWeights.assign(1 + BBCases.size(), 1);
1009 
1010       if (PredDefault == BB) {
1011         // If this is the default destination from PTI, only the edges in TI
1012         // that don't occur in PTI, or that branch to BB will be activated.
1013         std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
1014         for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
1015           if (PredCases[i].Dest != BB)
1016             PTIHandled.insert(PredCases[i].Value);
1017           else {
1018             // The default destination is BB, we don't need explicit targets.
1019             std::swap(PredCases[i], PredCases.back());
1020 
1021             if (PredHasWeights || SuccHasWeights) {
1022               // Increase weight for the default case.
1023               Weights[0] += Weights[i + 1];
1024               std::swap(Weights[i + 1], Weights.back());
1025               Weights.pop_back();
1026             }
1027 
1028             PredCases.pop_back();
1029             --i;
1030             --e;
1031           }
1032 
1033         // Reconstruct the new switch statement we will be building.
1034         if (PredDefault != BBDefault) {
1035           PredDefault->removePredecessor(Pred);
1036           PredDefault = BBDefault;
1037           NewSuccessors.push_back(BBDefault);
1038         }
1039 
1040         unsigned CasesFromPred = Weights.size();
1041         uint64_t ValidTotalSuccWeight = 0;
1042         for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
1043           if (!PTIHandled.count(BBCases[i].Value) &&
1044               BBCases[i].Dest != BBDefault) {
1045             PredCases.push_back(BBCases[i]);
1046             NewSuccessors.push_back(BBCases[i].Dest);
1047             if (SuccHasWeights || PredHasWeights) {
1048               // The default weight is at index 0, so weight for the ith case
1049               // should be at index i+1. Scale the cases from successor by
1050               // PredDefaultWeight (Weights[0]).
1051               Weights.push_back(Weights[0] * SuccWeights[i + 1]);
1052               ValidTotalSuccWeight += SuccWeights[i + 1];
1053             }
1054           }
1055 
1056         if (SuccHasWeights || PredHasWeights) {
1057           ValidTotalSuccWeight += SuccWeights[0];
1058           // Scale the cases from predecessor by ValidTotalSuccWeight.
1059           for (unsigned i = 1; i < CasesFromPred; ++i)
1060             Weights[i] *= ValidTotalSuccWeight;
1061           // Scale the default weight by SuccDefaultWeight (SuccWeights[0]).
1062           Weights[0] *= SuccWeights[0];
1063         }
1064       } else {
1065         // If this is not the default destination from PSI, only the edges
1066         // in SI that occur in PSI with a destination of BB will be
1067         // activated.
1068         std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
1069         std::map<ConstantInt *, uint64_t> WeightsForHandled;
1070         for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
1071           if (PredCases[i].Dest == BB) {
1072             PTIHandled.insert(PredCases[i].Value);
1073 
1074             if (PredHasWeights || SuccHasWeights) {
1075               WeightsForHandled[PredCases[i].Value] = Weights[i + 1];
1076               std::swap(Weights[i + 1], Weights.back());
1077               Weights.pop_back();
1078             }
1079 
1080             std::swap(PredCases[i], PredCases.back());
1081             PredCases.pop_back();
1082             --i;
1083             --e;
1084           }
1085 
1086         // Okay, now we know which constants were sent to BB from the
1087         // predecessor.  Figure out where they will all go now.
1088         for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
1089           if (PTIHandled.count(BBCases[i].Value)) {
1090             // If this is one we are capable of getting...
1091             if (PredHasWeights || SuccHasWeights)
1092               Weights.push_back(WeightsForHandled[BBCases[i].Value]);
1093             PredCases.push_back(BBCases[i]);
1094             NewSuccessors.push_back(BBCases[i].Dest);
1095             PTIHandled.erase(
1096                 BBCases[i].Value); // This constant is taken care of
1097           }
1098 
1099         // If there are any constants vectored to BB that TI doesn't handle,
1100         // they must go to the default destination of TI.
1101         for (ConstantInt *I : PTIHandled) {
1102           if (PredHasWeights || SuccHasWeights)
1103             Weights.push_back(WeightsForHandled[I]);
1104           PredCases.push_back(ValueEqualityComparisonCase(I, BBDefault));
1105           NewSuccessors.push_back(BBDefault);
1106         }
1107       }
1108 
1109       // Okay, at this point, we know which new successor Pred will get.  Make
1110       // sure we update the number of entries in the PHI nodes for these
1111       // successors.
1112       for (BasicBlock *NewSuccessor : NewSuccessors)
1113         AddPredecessorToBlock(NewSuccessor, Pred, BB);
1114 
1115       Builder.SetInsertPoint(PTI);
1116       // Convert pointer to int before we switch.
1117       if (CV->getType()->isPointerTy()) {
1118         CV = Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()),
1119                                     "magicptr");
1120       }
1121 
1122       // Now that the successors are updated, create the new Switch instruction.
1123       SwitchInst *NewSI =
1124           Builder.CreateSwitch(CV, PredDefault, PredCases.size());
1125       NewSI->setDebugLoc(PTI->getDebugLoc());
1126       for (ValueEqualityComparisonCase &V : PredCases)
1127         NewSI->addCase(V.Value, V.Dest);
1128 
1129       if (PredHasWeights || SuccHasWeights) {
1130         // Halve the weights if any of them cannot fit in an uint32_t
1131         FitWeights(Weights);
1132 
1133         SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
1134 
1135         NewSI->setMetadata(
1136             LLVMContext::MD_prof,
1137             MDBuilder(BB->getContext()).createBranchWeights(MDWeights));
1138       }
1139 
1140       EraseTerminatorInstAndDCECond(PTI);
1141 
1142       // Okay, last check.  If BB is still a successor of PSI, then we must
1143       // have an infinite loop case.  If so, add an infinitely looping block
1144       // to handle the case to preserve the behavior of the code.
1145       BasicBlock *InfLoopBlock = nullptr;
1146       for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i)
1147         if (NewSI->getSuccessor(i) == BB) {
1148           if (!InfLoopBlock) {
1149             // Insert it at the end of the function, because it's either code,
1150             // or it won't matter if it's hot. :)
1151             InfLoopBlock = BasicBlock::Create(BB->getContext(), "infloop",
1152                                               BB->getParent());
1153             BranchInst::Create(InfLoopBlock, InfLoopBlock);
1154           }
1155           NewSI->setSuccessor(i, InfLoopBlock);
1156         }
1157 
1158       Changed = true;
1159     }
1160   }
1161   return Changed;
1162 }
1163 
1164 // If we would need to insert a select that uses the value of this invoke
1165 // (comments in HoistThenElseCodeToIf explain why we would need to do this), we
1166 // can't hoist the invoke, as there is nowhere to put the select in this case.
1167 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2,
1168                                 Instruction *I1, Instruction *I2) {
1169   for (BasicBlock *Succ : successors(BB1)) {
1170     PHINode *PN;
1171     for (BasicBlock::iterator BBI = Succ->begin();
1172          (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
1173       Value *BB1V = PN->getIncomingValueForBlock(BB1);
1174       Value *BB2V = PN->getIncomingValueForBlock(BB2);
1175       if (BB1V != BB2V && (BB1V == I1 || BB2V == I2)) {
1176         return false;
1177       }
1178     }
1179   }
1180   return true;
1181 }
1182 
1183 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I);
1184 
1185 /// Given a conditional branch that goes to BB1 and BB2, hoist any common code
1186 /// in the two blocks up into the branch block. The caller of this function
1187 /// guarantees that BI's block dominates BB1 and BB2.
1188 static bool HoistThenElseCodeToIf(BranchInst *BI,
1189                                   const TargetTransformInfo &TTI) {
1190   // This does very trivial matching, with limited scanning, to find identical
1191   // instructions in the two blocks.  In particular, we don't want to get into
1192   // O(M*N) situations here where M and N are the sizes of BB1 and BB2.  As
1193   // such, we currently just scan for obviously identical instructions in an
1194   // identical order.
1195   BasicBlock *BB1 = BI->getSuccessor(0); // The true destination.
1196   BasicBlock *BB2 = BI->getSuccessor(1); // The false destination
1197 
1198   BasicBlock::iterator BB1_Itr = BB1->begin();
1199   BasicBlock::iterator BB2_Itr = BB2->begin();
1200 
1201   Instruction *I1 = &*BB1_Itr++, *I2 = &*BB2_Itr++;
1202   // Skip debug info if it is not identical.
1203   DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1204   DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1205   if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1206     while (isa<DbgInfoIntrinsic>(I1))
1207       I1 = &*BB1_Itr++;
1208     while (isa<DbgInfoIntrinsic>(I2))
1209       I2 = &*BB2_Itr++;
1210   }
1211   if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) ||
1212       (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)))
1213     return false;
1214 
1215   BasicBlock *BIParent = BI->getParent();
1216 
1217   bool Changed = false;
1218   do {
1219     // If we are hoisting the terminator instruction, don't move one (making a
1220     // broken BB), instead clone it, and remove BI.
1221     if (isa<TerminatorInst>(I1))
1222       goto HoistTerminator;
1223 
1224     if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2))
1225       return Changed;
1226 
1227     // For a normal instruction, we just move one to right before the branch,
1228     // then replace all uses of the other with the first.  Finally, we remove
1229     // the now redundant second instruction.
1230     BIParent->getInstList().splice(BI->getIterator(), BB1->getInstList(), I1);
1231     if (!I2->use_empty())
1232       I2->replaceAllUsesWith(I1);
1233     I1->andIRFlags(I2);
1234     unsigned KnownIDs[] = {LLVMContext::MD_tbaa,
1235                            LLVMContext::MD_range,
1236                            LLVMContext::MD_fpmath,
1237                            LLVMContext::MD_invariant_load,
1238                            LLVMContext::MD_nonnull,
1239                            LLVMContext::MD_invariant_group,
1240                            LLVMContext::MD_align,
1241                            LLVMContext::MD_dereferenceable,
1242                            LLVMContext::MD_dereferenceable_or_null,
1243                            LLVMContext::MD_mem_parallel_loop_access};
1244     combineMetadata(I1, I2, KnownIDs);
1245 
1246     // If the debug loc for I1 and I2 are different, as we are combining them
1247     // into one instruction, we do not want to select debug loc randomly from
1248     // I1 or I2. Instead, we set the 0-line DebugLoc to note that we do not
1249     // know the debug loc of the hoisted instruction.
1250     if (!isa<CallInst>(I1) &&  I1->getDebugLoc() != I2->getDebugLoc())
1251       I1->setDebugLoc(DebugLoc());
1252 
1253     I2->eraseFromParent();
1254     Changed = true;
1255 
1256     I1 = &*BB1_Itr++;
1257     I2 = &*BB2_Itr++;
1258     // Skip debug info if it is not identical.
1259     DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1260     DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1261     if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1262       while (isa<DbgInfoIntrinsic>(I1))
1263         I1 = &*BB1_Itr++;
1264       while (isa<DbgInfoIntrinsic>(I2))
1265         I2 = &*BB2_Itr++;
1266     }
1267   } while (I1->isIdenticalToWhenDefined(I2));
1268 
1269   return true;
1270 
1271 HoistTerminator:
1272   // It may not be possible to hoist an invoke.
1273   if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))
1274     return Changed;
1275 
1276   for (BasicBlock *Succ : successors(BB1)) {
1277     PHINode *PN;
1278     for (BasicBlock::iterator BBI = Succ->begin();
1279          (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
1280       Value *BB1V = PN->getIncomingValueForBlock(BB1);
1281       Value *BB2V = PN->getIncomingValueForBlock(BB2);
1282       if (BB1V == BB2V)
1283         continue;
1284 
1285       // Check for passingValueIsAlwaysUndefined here because we would rather
1286       // eliminate undefined control flow then converting it to a select.
1287       if (passingValueIsAlwaysUndefined(BB1V, PN) ||
1288           passingValueIsAlwaysUndefined(BB2V, PN))
1289         return Changed;
1290 
1291       if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V))
1292         return Changed;
1293       if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V))
1294         return Changed;
1295     }
1296   }
1297 
1298   // Okay, it is safe to hoist the terminator.
1299   Instruction *NT = I1->clone();
1300   BIParent->getInstList().insert(BI->getIterator(), NT);
1301   if (!NT->getType()->isVoidTy()) {
1302     I1->replaceAllUsesWith(NT);
1303     I2->replaceAllUsesWith(NT);
1304     NT->takeName(I1);
1305   }
1306 
1307   IRBuilder<NoFolder> Builder(NT);
1308   // Hoisting one of the terminators from our successor is a great thing.
1309   // Unfortunately, the successors of the if/else blocks may have PHI nodes in
1310   // them.  If they do, all PHI entries for BB1/BB2 must agree for all PHI
1311   // nodes, so we insert select instruction to compute the final result.
1312   std::map<std::pair<Value *, Value *>, SelectInst *> InsertedSelects;
1313   for (BasicBlock *Succ : successors(BB1)) {
1314     PHINode *PN;
1315     for (BasicBlock::iterator BBI = Succ->begin();
1316          (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
1317       Value *BB1V = PN->getIncomingValueForBlock(BB1);
1318       Value *BB2V = PN->getIncomingValueForBlock(BB2);
1319       if (BB1V == BB2V)
1320         continue;
1321 
1322       // These values do not agree.  Insert a select instruction before NT
1323       // that determines the right value.
1324       SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)];
1325       if (!SI)
1326         SI = cast<SelectInst>(
1327             Builder.CreateSelect(BI->getCondition(), BB1V, BB2V,
1328                                  BB1V->getName() + "." + BB2V->getName(), BI));
1329 
1330       // Make the PHI node use the select for all incoming values for BB1/BB2
1331       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1332         if (PN->getIncomingBlock(i) == BB1 || PN->getIncomingBlock(i) == BB2)
1333           PN->setIncomingValue(i, SI);
1334     }
1335   }
1336 
1337   // Update any PHI nodes in our new successors.
1338   for (BasicBlock *Succ : successors(BB1))
1339     AddPredecessorToBlock(Succ, BIParent, BB1);
1340 
1341   EraseTerminatorInstAndDCECond(BI);
1342   return true;
1343 }
1344 
1345 // Is it legal to place a variable in operand \c OpIdx of \c I?
1346 // FIXME: This should be promoted to Instruction.
1347 static bool canReplaceOperandWithVariable(const Instruction *I,
1348                                           unsigned OpIdx) {
1349   // We can't have a PHI with a metadata type.
1350   if (I->getOperand(OpIdx)->getType()->isMetadataTy())
1351     return false;
1352 
1353   // Early exit.
1354   if (!isa<Constant>(I->getOperand(OpIdx)))
1355     return true;
1356 
1357   switch (I->getOpcode()) {
1358   default:
1359     return true;
1360   case Instruction::Call:
1361   case Instruction::Invoke:
1362     // FIXME: many arithmetic intrinsics have no issue taking a
1363     // variable, however it's hard to distingish these from
1364     // specials such as @llvm.frameaddress that require a constant.
1365     if (isa<IntrinsicInst>(I))
1366       return false;
1367 
1368     // Constant bundle operands may need to retain their constant-ness for
1369     // correctness.
1370     if (ImmutableCallSite(I).isBundleOperand(OpIdx))
1371       return false;
1372 
1373     return true;
1374 
1375   case Instruction::ShuffleVector:
1376     // Shufflevector masks are constant.
1377     return OpIdx != 2;
1378   case Instruction::ExtractValue:
1379   case Instruction::InsertValue:
1380     // All operands apart from the first are constant.
1381     return OpIdx == 0;
1382   case Instruction::Alloca:
1383     return false;
1384   case Instruction::GetElementPtr:
1385     if (OpIdx == 0)
1386       return true;
1387     gep_type_iterator It = std::next(gep_type_begin(I), OpIdx - 1);
1388     return !It->isStructTy();
1389   }
1390 }
1391 
1392 // All instructions in Insts belong to different blocks that all unconditionally
1393 // branch to a common successor. Analyze each instruction and return true if it
1394 // would be possible to sink them into their successor, creating one common
1395 // instruction instead. For every value that would be required to be provided by
1396 // PHI node (because an operand varies in each input block), add to PHIOperands.
1397 static bool canSinkInstructions(
1398     ArrayRef<Instruction *> Insts,
1399     DenseMap<Instruction *, SmallVector<Value *, 4>> &PHIOperands) {
1400   // Prune out obviously bad instructions to move. Any non-store instruction
1401   // must have exactly one use, and we check later that use is by a single,
1402   // common PHI instruction in the successor.
1403   for (auto *I : Insts) {
1404     // These instructions may change or break semantics if moved.
1405     if (isa<PHINode>(I) || I->isEHPad() || isa<AllocaInst>(I) ||
1406         I->getType()->isTokenTy())
1407       return false;
1408     // Everything must have only one use too, apart from stores which
1409     // have no uses.
1410     if (!isa<StoreInst>(I) && !I->hasOneUse())
1411       return false;
1412   }
1413 
1414   const Instruction *I0 = Insts.front();
1415   for (auto *I : Insts)
1416     if (!I->isSameOperationAs(I0))
1417       return false;
1418 
1419   // All instructions in Insts are known to be the same opcode. If they aren't
1420   // stores, check the only user of each is a PHI or in the same block as the
1421   // instruction, because if a user is in the same block as an instruction
1422   // we're contemplating sinking, it must already be determined to be sinkable.
1423   if (!isa<StoreInst>(I0)) {
1424     auto *PNUse = dyn_cast<PHINode>(*I0->user_begin());
1425     auto *Succ = I0->getParent()->getTerminator()->getSuccessor(0);
1426     if (!all_of(Insts, [&PNUse,&Succ](const Instruction *I) -> bool {
1427           auto *U = cast<Instruction>(*I->user_begin());
1428           return (PNUse &&
1429                   PNUse->getParent() == Succ &&
1430                   PNUse->getIncomingValueForBlock(I->getParent()) == I) ||
1431                  U->getParent() == I->getParent();
1432         }))
1433       return false;
1434   }
1435 
1436   for (unsigned OI = 0, OE = I0->getNumOperands(); OI != OE; ++OI) {
1437     if (I0->getOperand(OI)->getType()->isTokenTy())
1438       // Don't touch any operand of token type.
1439       return false;
1440 
1441     // Because SROA can't handle speculating stores of selects, try not
1442     // to sink loads or stores of allocas when we'd have to create a PHI for
1443     // the address operand. Also, because it is likely that loads or stores
1444     // of allocas will disappear when Mem2Reg/SROA is run, don't sink them.
1445     // This can cause code churn which can have unintended consequences down
1446     // the line - see https://llvm.org/bugs/show_bug.cgi?id=30244.
1447     // FIXME: This is a workaround for a deficiency in SROA - see
1448     // https://llvm.org/bugs/show_bug.cgi?id=30188
1449     if (OI == 1 && isa<StoreInst>(I0) &&
1450         any_of(Insts, [](const Instruction *I) {
1451           return isa<AllocaInst>(I->getOperand(1));
1452         }))
1453       return false;
1454     if (OI == 0 && isa<LoadInst>(I0) && any_of(Insts, [](const Instruction *I) {
1455           return isa<AllocaInst>(I->getOperand(0));
1456         }))
1457       return false;
1458 
1459     auto SameAsI0 = [&I0, OI](const Instruction *I) {
1460       assert(I->getNumOperands() == I0->getNumOperands());
1461       return I->getOperand(OI) == I0->getOperand(OI);
1462     };
1463     if (!all_of(Insts, SameAsI0)) {
1464       if (!canReplaceOperandWithVariable(I0, OI))
1465         // We can't create a PHI from this GEP.
1466         return false;
1467       // Don't create indirect calls! The called value is the final operand.
1468       if ((isa<CallInst>(I0) || isa<InvokeInst>(I0)) && OI == OE - 1) {
1469         // FIXME: if the call was *already* indirect, we should do this.
1470         return false;
1471       }
1472       for (auto *I : Insts)
1473         PHIOperands[I].push_back(I->getOperand(OI));
1474     }
1475   }
1476   return true;
1477 }
1478 
1479 // Assuming canSinkLastInstruction(Blocks) has returned true, sink the last
1480 // instruction of every block in Blocks to their common successor, commoning
1481 // into one instruction.
1482 static bool sinkLastInstruction(ArrayRef<BasicBlock*> Blocks) {
1483   auto *BBEnd = Blocks[0]->getTerminator()->getSuccessor(0);
1484 
1485   // canSinkLastInstruction returning true guarantees that every block has at
1486   // least one non-terminator instruction.
1487   SmallVector<Instruction*,4> Insts;
1488   for (auto *BB : Blocks) {
1489     Instruction *I = BB->getTerminator();
1490     do {
1491       I = I->getPrevNode();
1492     } while (isa<DbgInfoIntrinsic>(I) && I != &BB->front());
1493     if (!isa<DbgInfoIntrinsic>(I))
1494       Insts.push_back(I);
1495   }
1496 
1497   // The only checking we need to do now is that all users of all instructions
1498   // are the same PHI node. canSinkLastInstruction should have checked this but
1499   // it is slightly over-aggressive - it gets confused by commutative instructions
1500   // so double-check it here.
1501   Instruction *I0 = Insts.front();
1502   if (!isa<StoreInst>(I0)) {
1503     auto *PNUse = dyn_cast<PHINode>(*I0->user_begin());
1504     if (!all_of(Insts, [&PNUse](const Instruction *I) -> bool {
1505           auto *U = cast<Instruction>(*I->user_begin());
1506           return U == PNUse;
1507         }))
1508       return false;
1509   }
1510 
1511   // We don't need to do any more checking here; canSinkLastInstruction should
1512   // have done it all for us.
1513   SmallVector<Value*, 4> NewOperands;
1514   for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) {
1515     // This check is different to that in canSinkLastInstruction. There, we
1516     // cared about the global view once simplifycfg (and instcombine) have
1517     // completed - it takes into account PHIs that become trivially
1518     // simplifiable.  However here we need a more local view; if an operand
1519     // differs we create a PHI and rely on instcombine to clean up the very
1520     // small mess we may make.
1521     bool NeedPHI = any_of(Insts, [&I0, O](const Instruction *I) {
1522       return I->getOperand(O) != I0->getOperand(O);
1523     });
1524     if (!NeedPHI) {
1525       NewOperands.push_back(I0->getOperand(O));
1526       continue;
1527     }
1528 
1529     // Create a new PHI in the successor block and populate it.
1530     auto *Op = I0->getOperand(O);
1531     assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!");
1532     auto *PN = PHINode::Create(Op->getType(), Insts.size(),
1533                                Op->getName() + ".sink", &BBEnd->front());
1534     for (auto *I : Insts)
1535       PN->addIncoming(I->getOperand(O), I->getParent());
1536     NewOperands.push_back(PN);
1537   }
1538 
1539   // Arbitrarily use I0 as the new "common" instruction; remap its operands
1540   // and move it to the start of the successor block.
1541   for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O)
1542     I0->getOperandUse(O).set(NewOperands[O]);
1543   I0->moveBefore(&*BBEnd->getFirstInsertionPt());
1544 
1545   // Update metadata and IR flags.
1546   for (auto *I : Insts)
1547     if (I != I0) {
1548       combineMetadataForCSE(I0, I);
1549       I0->andIRFlags(I);
1550     }
1551 
1552   if (!isa<StoreInst>(I0)) {
1553     // canSinkLastInstruction checked that all instructions were used by
1554     // one and only one PHI node. Find that now, RAUW it to our common
1555     // instruction and nuke it.
1556     assert(I0->hasOneUse());
1557     auto *PN = cast<PHINode>(*I0->user_begin());
1558     PN->replaceAllUsesWith(I0);
1559     PN->eraseFromParent();
1560   }
1561 
1562   // Finally nuke all instructions apart from the common instruction.
1563   for (auto *I : Insts)
1564     if (I != I0)
1565       I->eraseFromParent();
1566 
1567   return true;
1568 }
1569 
1570 namespace {
1571   // LockstepReverseIterator - Iterates through instructions
1572   // in a set of blocks in reverse order from the first non-terminator.
1573   // For example (assume all blocks have size n):
1574   //   LockstepReverseIterator I([B1, B2, B3]);
1575   //   *I-- = [B1[n], B2[n], B3[n]];
1576   //   *I-- = [B1[n-1], B2[n-1], B3[n-1]];
1577   //   *I-- = [B1[n-2], B2[n-2], B3[n-2]];
1578   //   ...
1579   class LockstepReverseIterator {
1580     ArrayRef<BasicBlock*> Blocks;
1581     SmallVector<Instruction*,4> Insts;
1582     bool Fail;
1583   public:
1584     LockstepReverseIterator(ArrayRef<BasicBlock*> Blocks) :
1585       Blocks(Blocks) {
1586       reset();
1587     }
1588 
1589     void reset() {
1590       Fail = false;
1591       Insts.clear();
1592       for (auto *BB : Blocks) {
1593         Instruction *Inst = BB->getTerminator();
1594         for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
1595           Inst = Inst->getPrevNode();
1596         if (!Inst) {
1597           // Block wasn't big enough.
1598           Fail = true;
1599           return;
1600         }
1601         Insts.push_back(Inst);
1602       }
1603     }
1604 
1605     bool isValid() const {
1606       return !Fail;
1607     }
1608 
1609     void operator -- () {
1610       if (Fail)
1611         return;
1612       for (auto *&Inst : Insts) {
1613         for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
1614           Inst = Inst->getPrevNode();
1615         // Already at beginning of block.
1616         if (!Inst) {
1617           Fail = true;
1618           return;
1619         }
1620       }
1621     }
1622 
1623     ArrayRef<Instruction*> operator * () const {
1624       return Insts;
1625     }
1626   };
1627 }
1628 
1629 /// Given an unconditional branch that goes to BBEnd,
1630 /// check whether BBEnd has only two predecessors and the other predecessor
1631 /// ends with an unconditional branch. If it is true, sink any common code
1632 /// in the two predecessors to BBEnd.
1633 static bool SinkThenElseCodeToEnd(BranchInst *BI1) {
1634   assert(BI1->isUnconditional());
1635   BasicBlock *BBEnd = BI1->getSuccessor(0);
1636 
1637   // We support two situations:
1638   //   (1) all incoming arcs are unconditional
1639   //   (2) one incoming arc is conditional
1640   //
1641   // (2) is very common in switch defaults and
1642   // else-if patterns;
1643   //
1644   //   if (a) f(1);
1645   //   else if (b) f(2);
1646   //
1647   // produces:
1648   //
1649   //       [if]
1650   //      /    \
1651   //    [f(1)] [if]
1652   //      |     | \
1653   //      |     |  \
1654   //      |  [f(2)]|
1655   //       \    | /
1656   //        [ end ]
1657   //
1658   // [end] has two unconditional predecessor arcs and one conditional. The
1659   // conditional refers to the implicit empty 'else' arc. This conditional
1660   // arc can also be caused by an empty default block in a switch.
1661   //
1662   // In this case, we attempt to sink code from all *unconditional* arcs.
1663   // If we can sink instructions from these arcs (determined during the scan
1664   // phase below) we insert a common successor for all unconditional arcs and
1665   // connect that to [end], to enable sinking:
1666   //
1667   //       [if]
1668   //      /    \
1669   //    [x(1)] [if]
1670   //      |     | \
1671   //      |     |  \
1672   //      |  [x(2)] |
1673   //       \   /    |
1674   //   [sink.split] |
1675   //         \     /
1676   //         [ end ]
1677   //
1678   SmallVector<BasicBlock*,4> UnconditionalPreds;
1679   Instruction *Cond = nullptr;
1680   for (auto *B : predecessors(BBEnd)) {
1681     auto *T = B->getTerminator();
1682     if (isa<BranchInst>(T) && cast<BranchInst>(T)->isUnconditional())
1683       UnconditionalPreds.push_back(B);
1684     else if ((isa<BranchInst>(T) || isa<SwitchInst>(T)) && !Cond)
1685       Cond = T;
1686     else
1687       return false;
1688   }
1689   if (UnconditionalPreds.size() < 2)
1690     return false;
1691 
1692   bool Changed = false;
1693   // We take a two-step approach to tail sinking. First we scan from the end of
1694   // each block upwards in lockstep. If the n'th instruction from the end of each
1695   // block can be sunk, those instructions are added to ValuesToSink and we
1696   // carry on. If we can sink an instruction but need to PHI-merge some operands
1697   // (because they're not identical in each instruction) we add these to
1698   // PHIOperands.
1699   unsigned ScanIdx = 0;
1700   SmallPtrSet<Value*,4> InstructionsToSink;
1701   DenseMap<Instruction*, SmallVector<Value*,4>> PHIOperands;
1702   LockstepReverseIterator LRI(UnconditionalPreds);
1703   while (LRI.isValid() &&
1704          canSinkInstructions(*LRI, PHIOperands)) {
1705     DEBUG(dbgs() << "SINK: instruction can be sunk: " << *(*LRI)[0] << "\n");
1706     InstructionsToSink.insert((*LRI).begin(), (*LRI).end());
1707     ++ScanIdx;
1708     --LRI;
1709   }
1710 
1711   auto ProfitableToSinkInstruction = [&](LockstepReverseIterator &LRI) {
1712     unsigned NumPHIdValues = 0;
1713     for (auto *I : *LRI)
1714       for (auto *V : PHIOperands[I])
1715         if (InstructionsToSink.count(V) == 0)
1716           ++NumPHIdValues;
1717     DEBUG(dbgs() << "SINK: #phid values: " << NumPHIdValues << "\n");
1718     unsigned NumPHIInsts = NumPHIdValues / UnconditionalPreds.size();
1719     if ((NumPHIdValues % UnconditionalPreds.size()) != 0)
1720         NumPHIInsts++;
1721 
1722     return NumPHIInsts <= 1;
1723   };
1724 
1725   if (ScanIdx > 0 && Cond) {
1726     // Check if we would actually sink anything first! This mutates the CFG and
1727     // adds an extra block. The goal in doing this is to allow instructions that
1728     // couldn't be sunk before to be sunk - obviously, speculatable instructions
1729     // (such as trunc, add) can be sunk and predicated already. So we check that
1730     // we're going to sink at least one non-speculatable instruction.
1731     LRI.reset();
1732     unsigned Idx = 0;
1733     bool Profitable = false;
1734     while (ProfitableToSinkInstruction(LRI) && Idx < ScanIdx) {
1735       if (!isSafeToSpeculativelyExecute((*LRI)[0])) {
1736         Profitable = true;
1737         break;
1738       }
1739       --LRI;
1740       ++Idx;
1741     }
1742     if (!Profitable)
1743       return false;
1744 
1745     DEBUG(dbgs() << "SINK: Splitting edge\n");
1746     // We have a conditional edge and we're going to sink some instructions.
1747     // Insert a new block postdominating all blocks we're going to sink from.
1748     if (!SplitBlockPredecessors(BI1->getSuccessor(0), UnconditionalPreds,
1749                                 ".sink.split"))
1750       // Edges couldn't be split.
1751       return false;
1752     Changed = true;
1753   }
1754 
1755   // Now that we've analyzed all potential sinking candidates, perform the
1756   // actual sink. We iteratively sink the last non-terminator of the source
1757   // blocks into their common successor unless doing so would require too
1758   // many PHI instructions to be generated (currently only one PHI is allowed
1759   // per sunk instruction).
1760   //
1761   // We can use InstructionsToSink to discount values needing PHI-merging that will
1762   // actually be sunk in a later iteration. This allows us to be more
1763   // aggressive in what we sink. This does allow a false positive where we
1764   // sink presuming a later value will also be sunk, but stop half way through
1765   // and never actually sink it which means we produce more PHIs than intended.
1766   // This is unlikely in practice though.
1767   for (unsigned SinkIdx = 0; SinkIdx != ScanIdx; ++SinkIdx) {
1768     DEBUG(dbgs() << "SINK: Sink: "
1769                  << *UnconditionalPreds[0]->getTerminator()->getPrevNode()
1770                  << "\n");
1771 
1772     // Because we've sunk every instruction in turn, the current instruction to
1773     // sink is always at index 0.
1774     LRI.reset();
1775     if (!ProfitableToSinkInstruction(LRI)) {
1776       // Too many PHIs would be created.
1777       DEBUG(dbgs() << "SINK: stopping here, too many PHIs would be created!\n");
1778       break;
1779     }
1780 
1781     if (!sinkLastInstruction(UnconditionalPreds))
1782       return Changed;
1783     NumSinkCommons++;
1784     Changed = true;
1785   }
1786   return Changed;
1787 }
1788 
1789 /// \brief Determine if we can hoist sink a sole store instruction out of a
1790 /// conditional block.
1791 ///
1792 /// We are looking for code like the following:
1793 ///   BrBB:
1794 ///     store i32 %add, i32* %arrayidx2
1795 ///     ... // No other stores or function calls (we could be calling a memory
1796 ///     ... // function).
1797 ///     %cmp = icmp ult %x, %y
1798 ///     br i1 %cmp, label %EndBB, label %ThenBB
1799 ///   ThenBB:
1800 ///     store i32 %add5, i32* %arrayidx2
1801 ///     br label EndBB
1802 ///   EndBB:
1803 ///     ...
1804 ///   We are going to transform this into:
1805 ///   BrBB:
1806 ///     store i32 %add, i32* %arrayidx2
1807 ///     ... //
1808 ///     %cmp = icmp ult %x, %y
1809 ///     %add.add5 = select i1 %cmp, i32 %add, %add5
1810 ///     store i32 %add.add5, i32* %arrayidx2
1811 ///     ...
1812 ///
1813 /// \return The pointer to the value of the previous store if the store can be
1814 ///         hoisted into the predecessor block. 0 otherwise.
1815 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB,
1816                                      BasicBlock *StoreBB, BasicBlock *EndBB) {
1817   StoreInst *StoreToHoist = dyn_cast<StoreInst>(I);
1818   if (!StoreToHoist)
1819     return nullptr;
1820 
1821   // Volatile or atomic.
1822   if (!StoreToHoist->isSimple())
1823     return nullptr;
1824 
1825   Value *StorePtr = StoreToHoist->getPointerOperand();
1826 
1827   // Look for a store to the same pointer in BrBB.
1828   unsigned MaxNumInstToLookAt = 9;
1829   for (Instruction &CurI : reverse(*BrBB)) {
1830     if (!MaxNumInstToLookAt)
1831       break;
1832     // Skip debug info.
1833     if (isa<DbgInfoIntrinsic>(CurI))
1834       continue;
1835     --MaxNumInstToLookAt;
1836 
1837     // Could be calling an instruction that affects memory like free().
1838     if (CurI.mayHaveSideEffects() && !isa<StoreInst>(CurI))
1839       return nullptr;
1840 
1841     if (auto *SI = dyn_cast<StoreInst>(&CurI)) {
1842       // Found the previous store make sure it stores to the same location.
1843       if (SI->getPointerOperand() == StorePtr)
1844         // Found the previous store, return its value operand.
1845         return SI->getValueOperand();
1846       return nullptr; // Unknown store.
1847     }
1848   }
1849 
1850   return nullptr;
1851 }
1852 
1853 /// \brief Speculate a conditional basic block flattening the CFG.
1854 ///
1855 /// Note that this is a very risky transform currently. Speculating
1856 /// instructions like this is most often not desirable. Instead, there is an MI
1857 /// pass which can do it with full awareness of the resource constraints.
1858 /// However, some cases are "obvious" and we should do directly. An example of
1859 /// this is speculating a single, reasonably cheap instruction.
1860 ///
1861 /// There is only one distinct advantage to flattening the CFG at the IR level:
1862 /// it makes very common but simplistic optimizations such as are common in
1863 /// instcombine and the DAG combiner more powerful by removing CFG edges and
1864 /// modeling their effects with easier to reason about SSA value graphs.
1865 ///
1866 ///
1867 /// An illustration of this transform is turning this IR:
1868 /// \code
1869 ///   BB:
1870 ///     %cmp = icmp ult %x, %y
1871 ///     br i1 %cmp, label %EndBB, label %ThenBB
1872 ///   ThenBB:
1873 ///     %sub = sub %x, %y
1874 ///     br label BB2
1875 ///   EndBB:
1876 ///     %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ]
1877 ///     ...
1878 /// \endcode
1879 ///
1880 /// Into this IR:
1881 /// \code
1882 ///   BB:
1883 ///     %cmp = icmp ult %x, %y
1884 ///     %sub = sub %x, %y
1885 ///     %cond = select i1 %cmp, 0, %sub
1886 ///     ...
1887 /// \endcode
1888 ///
1889 /// \returns true if the conditional block is removed.
1890 static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB,
1891                                    const TargetTransformInfo &TTI) {
1892   // Be conservative for now. FP select instruction can often be expensive.
1893   Value *BrCond = BI->getCondition();
1894   if (isa<FCmpInst>(BrCond))
1895     return false;
1896 
1897   BasicBlock *BB = BI->getParent();
1898   BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0);
1899 
1900   // If ThenBB is actually on the false edge of the conditional branch, remember
1901   // to swap the select operands later.
1902   bool Invert = false;
1903   if (ThenBB != BI->getSuccessor(0)) {
1904     assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?");
1905     Invert = true;
1906   }
1907   assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block");
1908 
1909   // Keep a count of how many times instructions are used within CondBB when
1910   // they are candidates for sinking into CondBB. Specifically:
1911   // - They are defined in BB, and
1912   // - They have no side effects, and
1913   // - All of their uses are in CondBB.
1914   SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts;
1915 
1916   unsigned SpeculationCost = 0;
1917   Value *SpeculatedStoreValue = nullptr;
1918   StoreInst *SpeculatedStore = nullptr;
1919   for (BasicBlock::iterator BBI = ThenBB->begin(),
1920                             BBE = std::prev(ThenBB->end());
1921        BBI != BBE; ++BBI) {
1922     Instruction *I = &*BBI;
1923     // Skip debug info.
1924     if (isa<DbgInfoIntrinsic>(I))
1925       continue;
1926 
1927     // Only speculatively execute a single instruction (not counting the
1928     // terminator) for now.
1929     ++SpeculationCost;
1930     if (SpeculationCost > 1)
1931       return false;
1932 
1933     // Don't hoist the instruction if it's unsafe or expensive.
1934     if (!isSafeToSpeculativelyExecute(I) &&
1935         !(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore(
1936                                   I, BB, ThenBB, EndBB))))
1937       return false;
1938     if (!SpeculatedStoreValue &&
1939         ComputeSpeculationCost(I, TTI) >
1940             PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic)
1941       return false;
1942 
1943     // Store the store speculation candidate.
1944     if (SpeculatedStoreValue)
1945       SpeculatedStore = cast<StoreInst>(I);
1946 
1947     // Do not hoist the instruction if any of its operands are defined but not
1948     // used in BB. The transformation will prevent the operand from
1949     // being sunk into the use block.
1950     for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) {
1951       Instruction *OpI = dyn_cast<Instruction>(*i);
1952       if (!OpI || OpI->getParent() != BB || OpI->mayHaveSideEffects())
1953         continue; // Not a candidate for sinking.
1954 
1955       ++SinkCandidateUseCounts[OpI];
1956     }
1957   }
1958 
1959   // Consider any sink candidates which are only used in CondBB as costs for
1960   // speculation. Note, while we iterate over a DenseMap here, we are summing
1961   // and so iteration order isn't significant.
1962   for (SmallDenseMap<Instruction *, unsigned, 4>::iterator
1963            I = SinkCandidateUseCounts.begin(),
1964            E = SinkCandidateUseCounts.end();
1965        I != E; ++I)
1966     if (I->first->getNumUses() == I->second) {
1967       ++SpeculationCost;
1968       if (SpeculationCost > 1)
1969         return false;
1970     }
1971 
1972   // Check that the PHI nodes can be converted to selects.
1973   bool HaveRewritablePHIs = false;
1974   for (BasicBlock::iterator I = EndBB->begin();
1975        PHINode *PN = dyn_cast<PHINode>(I); ++I) {
1976     Value *OrigV = PN->getIncomingValueForBlock(BB);
1977     Value *ThenV = PN->getIncomingValueForBlock(ThenBB);
1978 
1979     // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf.
1980     // Skip PHIs which are trivial.
1981     if (ThenV == OrigV)
1982       continue;
1983 
1984     // Don't convert to selects if we could remove undefined behavior instead.
1985     if (passingValueIsAlwaysUndefined(OrigV, PN) ||
1986         passingValueIsAlwaysUndefined(ThenV, PN))
1987       return false;
1988 
1989     HaveRewritablePHIs = true;
1990     ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV);
1991     ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV);
1992     if (!OrigCE && !ThenCE)
1993       continue; // Known safe and cheap.
1994 
1995     if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE)) ||
1996         (OrigCE && !isSafeToSpeculativelyExecute(OrigCE)))
1997       return false;
1998     unsigned OrigCost = OrigCE ? ComputeSpeculationCost(OrigCE, TTI) : 0;
1999     unsigned ThenCost = ThenCE ? ComputeSpeculationCost(ThenCE, TTI) : 0;
2000     unsigned MaxCost =
2001         2 * PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
2002     if (OrigCost + ThenCost > MaxCost)
2003       return false;
2004 
2005     // Account for the cost of an unfolded ConstantExpr which could end up
2006     // getting expanded into Instructions.
2007     // FIXME: This doesn't account for how many operations are combined in the
2008     // constant expression.
2009     ++SpeculationCost;
2010     if (SpeculationCost > 1)
2011       return false;
2012   }
2013 
2014   // If there are no PHIs to process, bail early. This helps ensure idempotence
2015   // as well.
2016   if (!HaveRewritablePHIs && !(HoistCondStores && SpeculatedStoreValue))
2017     return false;
2018 
2019   // If we get here, we can hoist the instruction and if-convert.
2020   DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";);
2021 
2022   // Insert a select of the value of the speculated store.
2023   if (SpeculatedStoreValue) {
2024     IRBuilder<NoFolder> Builder(BI);
2025     Value *TrueV = SpeculatedStore->getValueOperand();
2026     Value *FalseV = SpeculatedStoreValue;
2027     if (Invert)
2028       std::swap(TrueV, FalseV);
2029     Value *S = Builder.CreateSelect(
2030         BrCond, TrueV, FalseV, TrueV->getName() + "." + FalseV->getName(), BI);
2031     SpeculatedStore->setOperand(0, S);
2032   }
2033 
2034   // Metadata can be dependent on the condition we are hoisting above.
2035   // Conservatively strip all metadata on the instruction.
2036   for (auto &I : *ThenBB)
2037     I.dropUnknownNonDebugMetadata();
2038 
2039   // Hoist the instructions.
2040   BB->getInstList().splice(BI->getIterator(), ThenBB->getInstList(),
2041                            ThenBB->begin(), std::prev(ThenBB->end()));
2042 
2043   // Insert selects and rewrite the PHI operands.
2044   IRBuilder<NoFolder> Builder(BI);
2045   for (BasicBlock::iterator I = EndBB->begin();
2046        PHINode *PN = dyn_cast<PHINode>(I); ++I) {
2047     unsigned OrigI = PN->getBasicBlockIndex(BB);
2048     unsigned ThenI = PN->getBasicBlockIndex(ThenBB);
2049     Value *OrigV = PN->getIncomingValue(OrigI);
2050     Value *ThenV = PN->getIncomingValue(ThenI);
2051 
2052     // Skip PHIs which are trivial.
2053     if (OrigV == ThenV)
2054       continue;
2055 
2056     // Create a select whose true value is the speculatively executed value and
2057     // false value is the preexisting value. Swap them if the branch
2058     // destinations were inverted.
2059     Value *TrueV = ThenV, *FalseV = OrigV;
2060     if (Invert)
2061       std::swap(TrueV, FalseV);
2062     Value *V = Builder.CreateSelect(
2063         BrCond, TrueV, FalseV, TrueV->getName() + "." + FalseV->getName(), BI);
2064     PN->setIncomingValue(OrigI, V);
2065     PN->setIncomingValue(ThenI, V);
2066   }
2067 
2068   ++NumSpeculations;
2069   return true;
2070 }
2071 
2072 /// Return true if we can thread a branch across this block.
2073 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) {
2074   BranchInst *BI = cast<BranchInst>(BB->getTerminator());
2075   unsigned Size = 0;
2076 
2077   for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
2078     if (isa<DbgInfoIntrinsic>(BBI))
2079       continue;
2080     if (Size > 10)
2081       return false; // Don't clone large BB's.
2082     ++Size;
2083 
2084     // We can only support instructions that do not define values that are
2085     // live outside of the current basic block.
2086     for (User *U : BBI->users()) {
2087       Instruction *UI = cast<Instruction>(U);
2088       if (UI->getParent() != BB || isa<PHINode>(UI))
2089         return false;
2090     }
2091 
2092     // Looks ok, continue checking.
2093   }
2094 
2095   return true;
2096 }
2097 
2098 /// If we have a conditional branch on a PHI node value that is defined in the
2099 /// same block as the branch and if any PHI entries are constants, thread edges
2100 /// corresponding to that entry to be branches to their ultimate destination.
2101 static bool FoldCondBranchOnPHI(BranchInst *BI, const DataLayout &DL) {
2102   BasicBlock *BB = BI->getParent();
2103   PHINode *PN = dyn_cast<PHINode>(BI->getCondition());
2104   // NOTE: we currently cannot transform this case if the PHI node is used
2105   // outside of the block.
2106   if (!PN || PN->getParent() != BB || !PN->hasOneUse())
2107     return false;
2108 
2109   // Degenerate case of a single entry PHI.
2110   if (PN->getNumIncomingValues() == 1) {
2111     FoldSingleEntryPHINodes(PN->getParent());
2112     return true;
2113   }
2114 
2115   // Now we know that this block has multiple preds and two succs.
2116   if (!BlockIsSimpleEnoughToThreadThrough(BB))
2117     return false;
2118 
2119   // Can't fold blocks that contain noduplicate or convergent calls.
2120   if (any_of(*BB, [](const Instruction &I) {
2121         const CallInst *CI = dyn_cast<CallInst>(&I);
2122         return CI && (CI->cannotDuplicate() || CI->isConvergent());
2123       }))
2124     return false;
2125 
2126   // Okay, this is a simple enough basic block.  See if any phi values are
2127   // constants.
2128   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
2129     ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i));
2130     if (!CB || !CB->getType()->isIntegerTy(1))
2131       continue;
2132 
2133     // Okay, we now know that all edges from PredBB should be revectored to
2134     // branch to RealDest.
2135     BasicBlock *PredBB = PN->getIncomingBlock(i);
2136     BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue());
2137 
2138     if (RealDest == BB)
2139       continue; // Skip self loops.
2140     // Skip if the predecessor's terminator is an indirect branch.
2141     if (isa<IndirectBrInst>(PredBB->getTerminator()))
2142       continue;
2143 
2144     // The dest block might have PHI nodes, other predecessors and other
2145     // difficult cases.  Instead of being smart about this, just insert a new
2146     // block that jumps to the destination block, effectively splitting
2147     // the edge we are about to create.
2148     BasicBlock *EdgeBB =
2149         BasicBlock::Create(BB->getContext(), RealDest->getName() + ".critedge",
2150                            RealDest->getParent(), RealDest);
2151     BranchInst::Create(RealDest, EdgeBB);
2152 
2153     // Update PHI nodes.
2154     AddPredecessorToBlock(RealDest, EdgeBB, BB);
2155 
2156     // BB may have instructions that are being threaded over.  Clone these
2157     // instructions into EdgeBB.  We know that there will be no uses of the
2158     // cloned instructions outside of EdgeBB.
2159     BasicBlock::iterator InsertPt = EdgeBB->begin();
2160     DenseMap<Value *, Value *> TranslateMap; // Track translated values.
2161     for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
2162       if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
2163         TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB);
2164         continue;
2165       }
2166       // Clone the instruction.
2167       Instruction *N = BBI->clone();
2168       if (BBI->hasName())
2169         N->setName(BBI->getName() + ".c");
2170 
2171       // Update operands due to translation.
2172       for (User::op_iterator i = N->op_begin(), e = N->op_end(); i != e; ++i) {
2173         DenseMap<Value *, Value *>::iterator PI = TranslateMap.find(*i);
2174         if (PI != TranslateMap.end())
2175           *i = PI->second;
2176       }
2177 
2178       // Check for trivial simplification.
2179       if (Value *V = SimplifyInstruction(N, DL)) {
2180         if (!BBI->use_empty())
2181           TranslateMap[&*BBI] = V;
2182         if (!N->mayHaveSideEffects()) {
2183           delete N; // Instruction folded away, don't need actual inst
2184           N = nullptr;
2185         }
2186       } else {
2187         if (!BBI->use_empty())
2188           TranslateMap[&*BBI] = N;
2189       }
2190       // Insert the new instruction into its new home.
2191       if (N)
2192         EdgeBB->getInstList().insert(InsertPt, N);
2193     }
2194 
2195     // Loop over all of the edges from PredBB to BB, changing them to branch
2196     // to EdgeBB instead.
2197     TerminatorInst *PredBBTI = PredBB->getTerminator();
2198     for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i)
2199       if (PredBBTI->getSuccessor(i) == BB) {
2200         BB->removePredecessor(PredBB);
2201         PredBBTI->setSuccessor(i, EdgeBB);
2202       }
2203 
2204     // Recurse, simplifying any other constants.
2205     return FoldCondBranchOnPHI(BI, DL) | true;
2206   }
2207 
2208   return false;
2209 }
2210 
2211 /// Given a BB that starts with the specified two-entry PHI node,
2212 /// see if we can eliminate it.
2213 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI,
2214                                 const DataLayout &DL) {
2215   // Ok, this is a two entry PHI node.  Check to see if this is a simple "if
2216   // statement", which has a very simple dominance structure.  Basically, we
2217   // are trying to find the condition that is being branched on, which
2218   // subsequently causes this merge to happen.  We really want control
2219   // dependence information for this check, but simplifycfg can't keep it up
2220   // to date, and this catches most of the cases we care about anyway.
2221   BasicBlock *BB = PN->getParent();
2222   BasicBlock *IfTrue, *IfFalse;
2223   Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse);
2224   if (!IfCond ||
2225       // Don't bother if the branch will be constant folded trivially.
2226       isa<ConstantInt>(IfCond))
2227     return false;
2228 
2229   // Okay, we found that we can merge this two-entry phi node into a select.
2230   // Doing so would require us to fold *all* two entry phi nodes in this block.
2231   // At some point this becomes non-profitable (particularly if the target
2232   // doesn't support cmov's).  Only do this transformation if there are two or
2233   // fewer PHI nodes in this block.
2234   unsigned NumPhis = 0;
2235   for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I)
2236     if (NumPhis > 2)
2237       return false;
2238 
2239   // Loop over the PHI's seeing if we can promote them all to select
2240   // instructions.  While we are at it, keep track of the instructions
2241   // that need to be moved to the dominating block.
2242   SmallPtrSet<Instruction *, 4> AggressiveInsts;
2243   unsigned MaxCostVal0 = PHINodeFoldingThreshold,
2244            MaxCostVal1 = PHINodeFoldingThreshold;
2245   MaxCostVal0 *= TargetTransformInfo::TCC_Basic;
2246   MaxCostVal1 *= TargetTransformInfo::TCC_Basic;
2247 
2248   for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) {
2249     PHINode *PN = cast<PHINode>(II++);
2250     if (Value *V = SimplifyInstruction(PN, DL)) {
2251       PN->replaceAllUsesWith(V);
2252       PN->eraseFromParent();
2253       continue;
2254     }
2255 
2256     if (!DominatesMergePoint(PN->getIncomingValue(0), BB, &AggressiveInsts,
2257                              MaxCostVal0, TTI) ||
2258         !DominatesMergePoint(PN->getIncomingValue(1), BB, &AggressiveInsts,
2259                              MaxCostVal1, TTI))
2260       return false;
2261   }
2262 
2263   // If we folded the first phi, PN dangles at this point.  Refresh it.  If
2264   // we ran out of PHIs then we simplified them all.
2265   PN = dyn_cast<PHINode>(BB->begin());
2266   if (!PN)
2267     return true;
2268 
2269   // Don't fold i1 branches on PHIs which contain binary operators.  These can
2270   // often be turned into switches and other things.
2271   if (PN->getType()->isIntegerTy(1) &&
2272       (isa<BinaryOperator>(PN->getIncomingValue(0)) ||
2273        isa<BinaryOperator>(PN->getIncomingValue(1)) ||
2274        isa<BinaryOperator>(IfCond)))
2275     return false;
2276 
2277   // If all PHI nodes are promotable, check to make sure that all instructions
2278   // in the predecessor blocks can be promoted as well. If not, we won't be able
2279   // to get rid of the control flow, so it's not worth promoting to select
2280   // instructions.
2281   BasicBlock *DomBlock = nullptr;
2282   BasicBlock *IfBlock1 = PN->getIncomingBlock(0);
2283   BasicBlock *IfBlock2 = PN->getIncomingBlock(1);
2284   if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) {
2285     IfBlock1 = nullptr;
2286   } else {
2287     DomBlock = *pred_begin(IfBlock1);
2288     for (BasicBlock::iterator I = IfBlock1->begin(); !isa<TerminatorInst>(I);
2289          ++I)
2290       if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) {
2291         // This is not an aggressive instruction that we can promote.
2292         // Because of this, we won't be able to get rid of the control flow, so
2293         // the xform is not worth it.
2294         return false;
2295       }
2296   }
2297 
2298   if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) {
2299     IfBlock2 = nullptr;
2300   } else {
2301     DomBlock = *pred_begin(IfBlock2);
2302     for (BasicBlock::iterator I = IfBlock2->begin(); !isa<TerminatorInst>(I);
2303          ++I)
2304       if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) {
2305         // This is not an aggressive instruction that we can promote.
2306         // Because of this, we won't be able to get rid of the control flow, so
2307         // the xform is not worth it.
2308         return false;
2309       }
2310   }
2311 
2312   DEBUG(dbgs() << "FOUND IF CONDITION!  " << *IfCond << "  T: "
2313                << IfTrue->getName() << "  F: " << IfFalse->getName() << "\n");
2314 
2315   // If we can still promote the PHI nodes after this gauntlet of tests,
2316   // do all of the PHI's now.
2317   Instruction *InsertPt = DomBlock->getTerminator();
2318   IRBuilder<NoFolder> Builder(InsertPt);
2319 
2320   // Move all 'aggressive' instructions, which are defined in the
2321   // conditional parts of the if's up to the dominating block.
2322   if (IfBlock1) {
2323     for (auto &I : *IfBlock1)
2324       I.dropUnknownNonDebugMetadata();
2325     DomBlock->getInstList().splice(InsertPt->getIterator(),
2326                                    IfBlock1->getInstList(), IfBlock1->begin(),
2327                                    IfBlock1->getTerminator()->getIterator());
2328   }
2329   if (IfBlock2) {
2330     for (auto &I : *IfBlock2)
2331       I.dropUnknownNonDebugMetadata();
2332     DomBlock->getInstList().splice(InsertPt->getIterator(),
2333                                    IfBlock2->getInstList(), IfBlock2->begin(),
2334                                    IfBlock2->getTerminator()->getIterator());
2335   }
2336 
2337   while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
2338     // Change the PHI node into a select instruction.
2339     Value *TrueVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse);
2340     Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue);
2341 
2342     Value *Sel = Builder.CreateSelect(IfCond, TrueVal, FalseVal, "", InsertPt);
2343     PN->replaceAllUsesWith(Sel);
2344     Sel->takeName(PN);
2345     PN->eraseFromParent();
2346   }
2347 
2348   // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement
2349   // has been flattened.  Change DomBlock to jump directly to our new block to
2350   // avoid other simplifycfg's kicking in on the diamond.
2351   TerminatorInst *OldTI = DomBlock->getTerminator();
2352   Builder.SetInsertPoint(OldTI);
2353   Builder.CreateBr(BB);
2354   OldTI->eraseFromParent();
2355   return true;
2356 }
2357 
2358 /// If we found a conditional branch that goes to two returning blocks,
2359 /// try to merge them together into one return,
2360 /// introducing a select if the return values disagree.
2361 static bool SimplifyCondBranchToTwoReturns(BranchInst *BI,
2362                                            IRBuilder<> &Builder) {
2363   assert(BI->isConditional() && "Must be a conditional branch");
2364   BasicBlock *TrueSucc = BI->getSuccessor(0);
2365   BasicBlock *FalseSucc = BI->getSuccessor(1);
2366   ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator());
2367   ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator());
2368 
2369   // Check to ensure both blocks are empty (just a return) or optionally empty
2370   // with PHI nodes.  If there are other instructions, merging would cause extra
2371   // computation on one path or the other.
2372   if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator())
2373     return false;
2374   if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator())
2375     return false;
2376 
2377   Builder.SetInsertPoint(BI);
2378   // Okay, we found a branch that is going to two return nodes.  If
2379   // there is no return value for this function, just change the
2380   // branch into a return.
2381   if (FalseRet->getNumOperands() == 0) {
2382     TrueSucc->removePredecessor(BI->getParent());
2383     FalseSucc->removePredecessor(BI->getParent());
2384     Builder.CreateRetVoid();
2385     EraseTerminatorInstAndDCECond(BI);
2386     return true;
2387   }
2388 
2389   // Otherwise, figure out what the true and false return values are
2390   // so we can insert a new select instruction.
2391   Value *TrueValue = TrueRet->getReturnValue();
2392   Value *FalseValue = FalseRet->getReturnValue();
2393 
2394   // Unwrap any PHI nodes in the return blocks.
2395   if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue))
2396     if (TVPN->getParent() == TrueSucc)
2397       TrueValue = TVPN->getIncomingValueForBlock(BI->getParent());
2398   if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue))
2399     if (FVPN->getParent() == FalseSucc)
2400       FalseValue = FVPN->getIncomingValueForBlock(BI->getParent());
2401 
2402   // In order for this transformation to be safe, we must be able to
2403   // unconditionally execute both operands to the return.  This is
2404   // normally the case, but we could have a potentially-trapping
2405   // constant expression that prevents this transformation from being
2406   // safe.
2407   if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue))
2408     if (TCV->canTrap())
2409       return false;
2410   if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue))
2411     if (FCV->canTrap())
2412       return false;
2413 
2414   // Okay, we collected all the mapped values and checked them for sanity, and
2415   // defined to really do this transformation.  First, update the CFG.
2416   TrueSucc->removePredecessor(BI->getParent());
2417   FalseSucc->removePredecessor(BI->getParent());
2418 
2419   // Insert select instructions where needed.
2420   Value *BrCond = BI->getCondition();
2421   if (TrueValue) {
2422     // Insert a select if the results differ.
2423     if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) {
2424     } else if (isa<UndefValue>(TrueValue)) {
2425       TrueValue = FalseValue;
2426     } else {
2427       TrueValue =
2428           Builder.CreateSelect(BrCond, TrueValue, FalseValue, "retval", BI);
2429     }
2430   }
2431 
2432   Value *RI =
2433       !TrueValue ? Builder.CreateRetVoid() : Builder.CreateRet(TrueValue);
2434 
2435   (void)RI;
2436 
2437   DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:"
2438                << "\n  " << *BI << "NewRet = " << *RI
2439                << "TRUEBLOCK: " << *TrueSucc << "FALSEBLOCK: " << *FalseSucc);
2440 
2441   EraseTerminatorInstAndDCECond(BI);
2442 
2443   return true;
2444 }
2445 
2446 /// Return true if the given instruction is available
2447 /// in its predecessor block. If yes, the instruction will be removed.
2448 static bool checkCSEInPredecessor(Instruction *Inst, BasicBlock *PB) {
2449   if (!isa<BinaryOperator>(Inst) && !isa<CmpInst>(Inst))
2450     return false;
2451   for (Instruction &I : *PB) {
2452     Instruction *PBI = &I;
2453     // Check whether Inst and PBI generate the same value.
2454     if (Inst->isIdenticalTo(PBI)) {
2455       Inst->replaceAllUsesWith(PBI);
2456       Inst->eraseFromParent();
2457       return true;
2458     }
2459   }
2460   return false;
2461 }
2462 
2463 /// Return true if either PBI or BI has branch weight available, and store
2464 /// the weights in {Pred|Succ}{True|False}Weight. If one of PBI and BI does
2465 /// not have branch weight, use 1:1 as its weight.
2466 static bool extractPredSuccWeights(BranchInst *PBI, BranchInst *BI,
2467                                    uint64_t &PredTrueWeight,
2468                                    uint64_t &PredFalseWeight,
2469                                    uint64_t &SuccTrueWeight,
2470                                    uint64_t &SuccFalseWeight) {
2471   bool PredHasWeights =
2472       PBI->extractProfMetadata(PredTrueWeight, PredFalseWeight);
2473   bool SuccHasWeights =
2474       BI->extractProfMetadata(SuccTrueWeight, SuccFalseWeight);
2475   if (PredHasWeights || SuccHasWeights) {
2476     if (!PredHasWeights)
2477       PredTrueWeight = PredFalseWeight = 1;
2478     if (!SuccHasWeights)
2479       SuccTrueWeight = SuccFalseWeight = 1;
2480     return true;
2481   } else {
2482     return false;
2483   }
2484 }
2485 
2486 /// If this basic block is simple enough, and if a predecessor branches to us
2487 /// and one of our successors, fold the block into the predecessor and use
2488 /// logical operations to pick the right destination.
2489 bool llvm::FoldBranchToCommonDest(BranchInst *BI, unsigned BonusInstThreshold) {
2490   BasicBlock *BB = BI->getParent();
2491 
2492   Instruction *Cond = nullptr;
2493   if (BI->isConditional())
2494     Cond = dyn_cast<Instruction>(BI->getCondition());
2495   else {
2496     // For unconditional branch, check for a simple CFG pattern, where
2497     // BB has a single predecessor and BB's successor is also its predecessor's
2498     // successor. If such pattern exisits, check for CSE between BB and its
2499     // predecessor.
2500     if (BasicBlock *PB = BB->getSinglePredecessor())
2501       if (BranchInst *PBI = dyn_cast<BranchInst>(PB->getTerminator()))
2502         if (PBI->isConditional() &&
2503             (BI->getSuccessor(0) == PBI->getSuccessor(0) ||
2504              BI->getSuccessor(0) == PBI->getSuccessor(1))) {
2505           for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
2506             Instruction *Curr = &*I++;
2507             if (isa<CmpInst>(Curr)) {
2508               Cond = Curr;
2509               break;
2510             }
2511             // Quit if we can't remove this instruction.
2512             if (!checkCSEInPredecessor(Curr, PB))
2513               return false;
2514           }
2515         }
2516 
2517     if (!Cond)
2518       return false;
2519   }
2520 
2521   if (!Cond || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) ||
2522       Cond->getParent() != BB || !Cond->hasOneUse())
2523     return false;
2524 
2525   // Make sure the instruction after the condition is the cond branch.
2526   BasicBlock::iterator CondIt = ++Cond->getIterator();
2527 
2528   // Ignore dbg intrinsics.
2529   while (isa<DbgInfoIntrinsic>(CondIt))
2530     ++CondIt;
2531 
2532   if (&*CondIt != BI)
2533     return false;
2534 
2535   // Only allow this transformation if computing the condition doesn't involve
2536   // too many instructions and these involved instructions can be executed
2537   // unconditionally. We denote all involved instructions except the condition
2538   // as "bonus instructions", and only allow this transformation when the
2539   // number of the bonus instructions does not exceed a certain threshold.
2540   unsigned NumBonusInsts = 0;
2541   for (auto I = BB->begin(); Cond != &*I; ++I) {
2542     // Ignore dbg intrinsics.
2543     if (isa<DbgInfoIntrinsic>(I))
2544       continue;
2545     if (!I->hasOneUse() || !isSafeToSpeculativelyExecute(&*I))
2546       return false;
2547     // I has only one use and can be executed unconditionally.
2548     Instruction *User = dyn_cast<Instruction>(I->user_back());
2549     if (User == nullptr || User->getParent() != BB)
2550       return false;
2551     // I is used in the same BB. Since BI uses Cond and doesn't have more slots
2552     // to use any other instruction, User must be an instruction between next(I)
2553     // and Cond.
2554     ++NumBonusInsts;
2555     // Early exits once we reach the limit.
2556     if (NumBonusInsts > BonusInstThreshold)
2557       return false;
2558   }
2559 
2560   // Cond is known to be a compare or binary operator.  Check to make sure that
2561   // neither operand is a potentially-trapping constant expression.
2562   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0)))
2563     if (CE->canTrap())
2564       return false;
2565   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1)))
2566     if (CE->canTrap())
2567       return false;
2568 
2569   // Finally, don't infinitely unroll conditional loops.
2570   BasicBlock *TrueDest = BI->getSuccessor(0);
2571   BasicBlock *FalseDest = (BI->isConditional()) ? BI->getSuccessor(1) : nullptr;
2572   if (TrueDest == BB || FalseDest == BB)
2573     return false;
2574 
2575   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
2576     BasicBlock *PredBlock = *PI;
2577     BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator());
2578 
2579     // Check that we have two conditional branches.  If there is a PHI node in
2580     // the common successor, verify that the same value flows in from both
2581     // blocks.
2582     SmallVector<PHINode *, 4> PHIs;
2583     if (!PBI || PBI->isUnconditional() ||
2584         (BI->isConditional() && !SafeToMergeTerminators(BI, PBI)) ||
2585         (!BI->isConditional() &&
2586          !isProfitableToFoldUnconditional(BI, PBI, Cond, PHIs)))
2587       continue;
2588 
2589     // Determine if the two branches share a common destination.
2590     Instruction::BinaryOps Opc = Instruction::BinaryOpsEnd;
2591     bool InvertPredCond = false;
2592 
2593     if (BI->isConditional()) {
2594       if (PBI->getSuccessor(0) == TrueDest) {
2595         Opc = Instruction::Or;
2596       } else if (PBI->getSuccessor(1) == FalseDest) {
2597         Opc = Instruction::And;
2598       } else if (PBI->getSuccessor(0) == FalseDest) {
2599         Opc = Instruction::And;
2600         InvertPredCond = true;
2601       } else if (PBI->getSuccessor(1) == TrueDest) {
2602         Opc = Instruction::Or;
2603         InvertPredCond = true;
2604       } else {
2605         continue;
2606       }
2607     } else {
2608       if (PBI->getSuccessor(0) != TrueDest && PBI->getSuccessor(1) != TrueDest)
2609         continue;
2610     }
2611 
2612     DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB);
2613     IRBuilder<> Builder(PBI);
2614 
2615     // If we need to invert the condition in the pred block to match, do so now.
2616     if (InvertPredCond) {
2617       Value *NewCond = PBI->getCondition();
2618 
2619       if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) {
2620         CmpInst *CI = cast<CmpInst>(NewCond);
2621         CI->setPredicate(CI->getInversePredicate());
2622       } else {
2623         NewCond =
2624             Builder.CreateNot(NewCond, PBI->getCondition()->getName() + ".not");
2625       }
2626 
2627       PBI->setCondition(NewCond);
2628       PBI->swapSuccessors();
2629     }
2630 
2631     // If we have bonus instructions, clone them into the predecessor block.
2632     // Note that there may be multiple predecessor blocks, so we cannot move
2633     // bonus instructions to a predecessor block.
2634     ValueToValueMapTy VMap; // maps original values to cloned values
2635     // We already make sure Cond is the last instruction before BI. Therefore,
2636     // all instructions before Cond other than DbgInfoIntrinsic are bonus
2637     // instructions.
2638     for (auto BonusInst = BB->begin(); Cond != &*BonusInst; ++BonusInst) {
2639       if (isa<DbgInfoIntrinsic>(BonusInst))
2640         continue;
2641       Instruction *NewBonusInst = BonusInst->clone();
2642       RemapInstruction(NewBonusInst, VMap,
2643                        RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
2644       VMap[&*BonusInst] = NewBonusInst;
2645 
2646       // If we moved a load, we cannot any longer claim any knowledge about
2647       // its potential value. The previous information might have been valid
2648       // only given the branch precondition.
2649       // For an analogous reason, we must also drop all the metadata whose
2650       // semantics we don't understand.
2651       NewBonusInst->dropUnknownNonDebugMetadata();
2652 
2653       PredBlock->getInstList().insert(PBI->getIterator(), NewBonusInst);
2654       NewBonusInst->takeName(&*BonusInst);
2655       BonusInst->setName(BonusInst->getName() + ".old");
2656     }
2657 
2658     // Clone Cond into the predecessor basic block, and or/and the
2659     // two conditions together.
2660     Instruction *New = Cond->clone();
2661     RemapInstruction(New, VMap,
2662                      RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
2663     PredBlock->getInstList().insert(PBI->getIterator(), New);
2664     New->takeName(Cond);
2665     Cond->setName(New->getName() + ".old");
2666 
2667     if (BI->isConditional()) {
2668       Instruction *NewCond = cast<Instruction>(
2669           Builder.CreateBinOp(Opc, PBI->getCondition(), New, "or.cond"));
2670       PBI->setCondition(NewCond);
2671 
2672       uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
2673       bool HasWeights =
2674           extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
2675                                  SuccTrueWeight, SuccFalseWeight);
2676       SmallVector<uint64_t, 8> NewWeights;
2677 
2678       if (PBI->getSuccessor(0) == BB) {
2679         if (HasWeights) {
2680           // PBI: br i1 %x, BB, FalseDest
2681           // BI:  br i1 %y, TrueDest, FalseDest
2682           // TrueWeight is TrueWeight for PBI * TrueWeight for BI.
2683           NewWeights.push_back(PredTrueWeight * SuccTrueWeight);
2684           // FalseWeight is FalseWeight for PBI * TotalWeight for BI +
2685           //               TrueWeight for PBI * FalseWeight for BI.
2686           // We assume that total weights of a BranchInst can fit into 32 bits.
2687           // Therefore, we will not have overflow using 64-bit arithmetic.
2688           NewWeights.push_back(PredFalseWeight *
2689                                    (SuccFalseWeight + SuccTrueWeight) +
2690                                PredTrueWeight * SuccFalseWeight);
2691         }
2692         AddPredecessorToBlock(TrueDest, PredBlock, BB);
2693         PBI->setSuccessor(0, TrueDest);
2694       }
2695       if (PBI->getSuccessor(1) == BB) {
2696         if (HasWeights) {
2697           // PBI: br i1 %x, TrueDest, BB
2698           // BI:  br i1 %y, TrueDest, FalseDest
2699           // TrueWeight is TrueWeight for PBI * TotalWeight for BI +
2700           //              FalseWeight for PBI * TrueWeight for BI.
2701           NewWeights.push_back(PredTrueWeight *
2702                                    (SuccFalseWeight + SuccTrueWeight) +
2703                                PredFalseWeight * SuccTrueWeight);
2704           // FalseWeight is FalseWeight for PBI * FalseWeight for BI.
2705           NewWeights.push_back(PredFalseWeight * SuccFalseWeight);
2706         }
2707         AddPredecessorToBlock(FalseDest, PredBlock, BB);
2708         PBI->setSuccessor(1, FalseDest);
2709       }
2710       if (NewWeights.size() == 2) {
2711         // Halve the weights if any of them cannot fit in an uint32_t
2712         FitWeights(NewWeights);
2713 
2714         SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(),
2715                                            NewWeights.end());
2716         PBI->setMetadata(
2717             LLVMContext::MD_prof,
2718             MDBuilder(BI->getContext()).createBranchWeights(MDWeights));
2719       } else
2720         PBI->setMetadata(LLVMContext::MD_prof, nullptr);
2721     } else {
2722       // Update PHI nodes in the common successors.
2723       for (unsigned i = 0, e = PHIs.size(); i != e; ++i) {
2724         ConstantInt *PBI_C = cast<ConstantInt>(
2725             PHIs[i]->getIncomingValueForBlock(PBI->getParent()));
2726         assert(PBI_C->getType()->isIntegerTy(1));
2727         Instruction *MergedCond = nullptr;
2728         if (PBI->getSuccessor(0) == TrueDest) {
2729           // Create (PBI_Cond and PBI_C) or (!PBI_Cond and BI_Value)
2730           // PBI_C is true: PBI_Cond or (!PBI_Cond and BI_Value)
2731           //       is false: !PBI_Cond and BI_Value
2732           Instruction *NotCond = cast<Instruction>(
2733               Builder.CreateNot(PBI->getCondition(), "not.cond"));
2734           MergedCond = cast<Instruction>(
2735               Builder.CreateBinOp(Instruction::And, NotCond, New, "and.cond"));
2736           if (PBI_C->isOne())
2737             MergedCond = cast<Instruction>(Builder.CreateBinOp(
2738                 Instruction::Or, PBI->getCondition(), MergedCond, "or.cond"));
2739         } else {
2740           // Create (PBI_Cond and BI_Value) or (!PBI_Cond and PBI_C)
2741           // PBI_C is true: (PBI_Cond and BI_Value) or (!PBI_Cond)
2742           //       is false: PBI_Cond and BI_Value
2743           MergedCond = cast<Instruction>(Builder.CreateBinOp(
2744               Instruction::And, PBI->getCondition(), New, "and.cond"));
2745           if (PBI_C->isOne()) {
2746             Instruction *NotCond = cast<Instruction>(
2747                 Builder.CreateNot(PBI->getCondition(), "not.cond"));
2748             MergedCond = cast<Instruction>(Builder.CreateBinOp(
2749                 Instruction::Or, NotCond, MergedCond, "or.cond"));
2750           }
2751         }
2752         // Update PHI Node.
2753         PHIs[i]->setIncomingValue(PHIs[i]->getBasicBlockIndex(PBI->getParent()),
2754                                   MergedCond);
2755       }
2756       // Change PBI from Conditional to Unconditional.
2757       BranchInst *New_PBI = BranchInst::Create(TrueDest, PBI);
2758       EraseTerminatorInstAndDCECond(PBI);
2759       PBI = New_PBI;
2760     }
2761 
2762     // TODO: If BB is reachable from all paths through PredBlock, then we
2763     // could replace PBI's branch probabilities with BI's.
2764 
2765     // Copy any debug value intrinsics into the end of PredBlock.
2766     for (Instruction &I : *BB)
2767       if (isa<DbgInfoIntrinsic>(I))
2768         I.clone()->insertBefore(PBI);
2769 
2770     return true;
2771   }
2772   return false;
2773 }
2774 
2775 // If there is only one store in BB1 and BB2, return it, otherwise return
2776 // nullptr.
2777 static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) {
2778   StoreInst *S = nullptr;
2779   for (auto *BB : {BB1, BB2}) {
2780     if (!BB)
2781       continue;
2782     for (auto &I : *BB)
2783       if (auto *SI = dyn_cast<StoreInst>(&I)) {
2784         if (S)
2785           // Multiple stores seen.
2786           return nullptr;
2787         else
2788           S = SI;
2789       }
2790   }
2791   return S;
2792 }
2793 
2794 static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB,
2795                                               Value *AlternativeV = nullptr) {
2796   // PHI is going to be a PHI node that allows the value V that is defined in
2797   // BB to be referenced in BB's only successor.
2798   //
2799   // If AlternativeV is nullptr, the only value we care about in PHI is V. It
2800   // doesn't matter to us what the other operand is (it'll never get used). We
2801   // could just create a new PHI with an undef incoming value, but that could
2802   // increase register pressure if EarlyCSE/InstCombine can't fold it with some
2803   // other PHI. So here we directly look for some PHI in BB's successor with V
2804   // as an incoming operand. If we find one, we use it, else we create a new
2805   // one.
2806   //
2807   // If AlternativeV is not nullptr, we care about both incoming values in PHI.
2808   // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV]
2809   // where OtherBB is the single other predecessor of BB's only successor.
2810   PHINode *PHI = nullptr;
2811   BasicBlock *Succ = BB->getSingleSuccessor();
2812 
2813   for (auto I = Succ->begin(); isa<PHINode>(I); ++I)
2814     if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) {
2815       PHI = cast<PHINode>(I);
2816       if (!AlternativeV)
2817         break;
2818 
2819       assert(std::distance(pred_begin(Succ), pred_end(Succ)) == 2);
2820       auto PredI = pred_begin(Succ);
2821       BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI;
2822       if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV)
2823         break;
2824       PHI = nullptr;
2825     }
2826   if (PHI)
2827     return PHI;
2828 
2829   // If V is not an instruction defined in BB, just return it.
2830   if (!AlternativeV &&
2831       (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB))
2832     return V;
2833 
2834   PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge", &Succ->front());
2835   PHI->addIncoming(V, BB);
2836   for (BasicBlock *PredBB : predecessors(Succ))
2837     if (PredBB != BB)
2838       PHI->addIncoming(
2839           AlternativeV ? AlternativeV : UndefValue::get(V->getType()), PredBB);
2840   return PHI;
2841 }
2842 
2843 static bool mergeConditionalStoreToAddress(BasicBlock *PTB, BasicBlock *PFB,
2844                                            BasicBlock *QTB, BasicBlock *QFB,
2845                                            BasicBlock *PostBB, Value *Address,
2846                                            bool InvertPCond, bool InvertQCond) {
2847   auto IsaBitcastOfPointerType = [](const Instruction &I) {
2848     return Operator::getOpcode(&I) == Instruction::BitCast &&
2849            I.getType()->isPointerTy();
2850   };
2851 
2852   // If we're not in aggressive mode, we only optimize if we have some
2853   // confidence that by optimizing we'll allow P and/or Q to be if-converted.
2854   auto IsWorthwhile = [&](BasicBlock *BB) {
2855     if (!BB)
2856       return true;
2857     // Heuristic: if the block can be if-converted/phi-folded and the
2858     // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to
2859     // thread this store.
2860     unsigned N = 0;
2861     for (auto &I : *BB) {
2862       // Cheap instructions viable for folding.
2863       if (isa<BinaryOperator>(I) || isa<GetElementPtrInst>(I) ||
2864           isa<StoreInst>(I))
2865         ++N;
2866       // Free instructions.
2867       else if (isa<TerminatorInst>(I) || isa<DbgInfoIntrinsic>(I) ||
2868                IsaBitcastOfPointerType(I))
2869         continue;
2870       else
2871         return false;
2872     }
2873     return N <= PHINodeFoldingThreshold;
2874   };
2875 
2876   if (!MergeCondStoresAggressively &&
2877       (!IsWorthwhile(PTB) || !IsWorthwhile(PFB) || !IsWorthwhile(QTB) ||
2878        !IsWorthwhile(QFB)))
2879     return false;
2880 
2881   // For every pointer, there must be exactly two stores, one coming from
2882   // PTB or PFB, and the other from QTB or QFB. We don't support more than one
2883   // store (to any address) in PTB,PFB or QTB,QFB.
2884   // FIXME: We could relax this restriction with a bit more work and performance
2885   // testing.
2886   StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB);
2887   StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB);
2888   if (!PStore || !QStore)
2889     return false;
2890 
2891   // Now check the stores are compatible.
2892   if (!QStore->isUnordered() || !PStore->isUnordered())
2893     return false;
2894 
2895   // Check that sinking the store won't cause program behavior changes. Sinking
2896   // the store out of the Q blocks won't change any behavior as we're sinking
2897   // from a block to its unconditional successor. But we're moving a store from
2898   // the P blocks down through the middle block (QBI) and past both QFB and QTB.
2899   // So we need to check that there are no aliasing loads or stores in
2900   // QBI, QTB and QFB. We also need to check there are no conflicting memory
2901   // operations between PStore and the end of its parent block.
2902   //
2903   // The ideal way to do this is to query AliasAnalysis, but we don't
2904   // preserve AA currently so that is dangerous. Be super safe and just
2905   // check there are no other memory operations at all.
2906   for (auto &I : *QFB->getSinglePredecessor())
2907     if (I.mayReadOrWriteMemory())
2908       return false;
2909   for (auto &I : *QFB)
2910     if (&I != QStore && I.mayReadOrWriteMemory())
2911       return false;
2912   if (QTB)
2913     for (auto &I : *QTB)
2914       if (&I != QStore && I.mayReadOrWriteMemory())
2915         return false;
2916   for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end();
2917        I != E; ++I)
2918     if (&*I != PStore && I->mayReadOrWriteMemory())
2919       return false;
2920 
2921   // OK, we're going to sink the stores to PostBB. The store has to be
2922   // conditional though, so first create the predicate.
2923   Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator())
2924                      ->getCondition();
2925   Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator())
2926                      ->getCondition();
2927 
2928   Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(),
2929                                                 PStore->getParent());
2930   Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(),
2931                                                 QStore->getParent(), PPHI);
2932 
2933   IRBuilder<> QB(&*PostBB->getFirstInsertionPt());
2934 
2935   Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond);
2936   Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond);
2937 
2938   if (InvertPCond)
2939     PPred = QB.CreateNot(PPred);
2940   if (InvertQCond)
2941     QPred = QB.CreateNot(QPred);
2942   Value *CombinedPred = QB.CreateOr(PPred, QPred);
2943 
2944   auto *T =
2945       SplitBlockAndInsertIfThen(CombinedPred, &*QB.GetInsertPoint(), false);
2946   QB.SetInsertPoint(T);
2947   StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address));
2948   AAMDNodes AAMD;
2949   PStore->getAAMetadata(AAMD, /*Merge=*/false);
2950   PStore->getAAMetadata(AAMD, /*Merge=*/true);
2951   SI->setAAMetadata(AAMD);
2952 
2953   QStore->eraseFromParent();
2954   PStore->eraseFromParent();
2955 
2956   return true;
2957 }
2958 
2959 static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI) {
2960   // The intention here is to find diamonds or triangles (see below) where each
2961   // conditional block contains a store to the same address. Both of these
2962   // stores are conditional, so they can't be unconditionally sunk. But it may
2963   // be profitable to speculatively sink the stores into one merged store at the
2964   // end, and predicate the merged store on the union of the two conditions of
2965   // PBI and QBI.
2966   //
2967   // This can reduce the number of stores executed if both of the conditions are
2968   // true, and can allow the blocks to become small enough to be if-converted.
2969   // This optimization will also chain, so that ladders of test-and-set
2970   // sequences can be if-converted away.
2971   //
2972   // We only deal with simple diamonds or triangles:
2973   //
2974   //     PBI       or      PBI        or a combination of the two
2975   //    /   \               | \
2976   //   PTB  PFB             |  PFB
2977   //    \   /               | /
2978   //     QBI                QBI
2979   //    /  \                | \
2980   //   QTB  QFB             |  QFB
2981   //    \  /                | /
2982   //    PostBB            PostBB
2983   //
2984   // We model triangles as a type of diamond with a nullptr "true" block.
2985   // Triangles are canonicalized so that the fallthrough edge is represented by
2986   // a true condition, as in the diagram above.
2987   //
2988   BasicBlock *PTB = PBI->getSuccessor(0);
2989   BasicBlock *PFB = PBI->getSuccessor(1);
2990   BasicBlock *QTB = QBI->getSuccessor(0);
2991   BasicBlock *QFB = QBI->getSuccessor(1);
2992   BasicBlock *PostBB = QFB->getSingleSuccessor();
2993 
2994   bool InvertPCond = false, InvertQCond = false;
2995   // Canonicalize fallthroughs to the true branches.
2996   if (PFB == QBI->getParent()) {
2997     std::swap(PFB, PTB);
2998     InvertPCond = true;
2999   }
3000   if (QFB == PostBB) {
3001     std::swap(QFB, QTB);
3002     InvertQCond = true;
3003   }
3004 
3005   // From this point on we can assume PTB or QTB may be fallthroughs but PFB
3006   // and QFB may not. Model fallthroughs as a nullptr block.
3007   if (PTB == QBI->getParent())
3008     PTB = nullptr;
3009   if (QTB == PostBB)
3010     QTB = nullptr;
3011 
3012   // Legality bailouts. We must have at least the non-fallthrough blocks and
3013   // the post-dominating block, and the non-fallthroughs must only have one
3014   // predecessor.
3015   auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) {
3016     return BB->getSinglePredecessor() == P && BB->getSingleSuccessor() == S;
3017   };
3018   if (!PostBB ||
3019       !HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) ||
3020       !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB))
3021     return false;
3022   if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) ||
3023       (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB)))
3024     return false;
3025   if (PostBB->getNumUses() != 2 || QBI->getParent()->getNumUses() != 2)
3026     return false;
3027 
3028   // OK, this is a sequence of two diamonds or triangles.
3029   // Check if there are stores in PTB or PFB that are repeated in QTB or QFB.
3030   SmallPtrSet<Value *, 4> PStoreAddresses, QStoreAddresses;
3031   for (auto *BB : {PTB, PFB}) {
3032     if (!BB)
3033       continue;
3034     for (auto &I : *BB)
3035       if (StoreInst *SI = dyn_cast<StoreInst>(&I))
3036         PStoreAddresses.insert(SI->getPointerOperand());
3037   }
3038   for (auto *BB : {QTB, QFB}) {
3039     if (!BB)
3040       continue;
3041     for (auto &I : *BB)
3042       if (StoreInst *SI = dyn_cast<StoreInst>(&I))
3043         QStoreAddresses.insert(SI->getPointerOperand());
3044   }
3045 
3046   set_intersect(PStoreAddresses, QStoreAddresses);
3047   // set_intersect mutates PStoreAddresses in place. Rename it here to make it
3048   // clear what it contains.
3049   auto &CommonAddresses = PStoreAddresses;
3050 
3051   bool Changed = false;
3052   for (auto *Address : CommonAddresses)
3053     Changed |= mergeConditionalStoreToAddress(
3054         PTB, PFB, QTB, QFB, PostBB, Address, InvertPCond, InvertQCond);
3055   return Changed;
3056 }
3057 
3058 /// If we have a conditional branch as a predecessor of another block,
3059 /// this function tries to simplify it.  We know
3060 /// that PBI and BI are both conditional branches, and BI is in one of the
3061 /// successor blocks of PBI - PBI branches to BI.
3062 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI,
3063                                            const DataLayout &DL) {
3064   assert(PBI->isConditional() && BI->isConditional());
3065   BasicBlock *BB = BI->getParent();
3066 
3067   // If this block ends with a branch instruction, and if there is a
3068   // predecessor that ends on a branch of the same condition, make
3069   // this conditional branch redundant.
3070   if (PBI->getCondition() == BI->getCondition() &&
3071       PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
3072     // Okay, the outcome of this conditional branch is statically
3073     // knowable.  If this block had a single pred, handle specially.
3074     if (BB->getSinglePredecessor()) {
3075       // Turn this into a branch on constant.
3076       bool CondIsTrue = PBI->getSuccessor(0) == BB;
3077       BI->setCondition(
3078           ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue));
3079       return true; // Nuke the branch on constant.
3080     }
3081 
3082     // Otherwise, if there are multiple predecessors, insert a PHI that merges
3083     // in the constant and simplify the block result.  Subsequent passes of
3084     // simplifycfg will thread the block.
3085     if (BlockIsSimpleEnoughToThreadThrough(BB)) {
3086       pred_iterator PB = pred_begin(BB), PE = pred_end(BB);
3087       PHINode *NewPN = PHINode::Create(
3088           Type::getInt1Ty(BB->getContext()), std::distance(PB, PE),
3089           BI->getCondition()->getName() + ".pr", &BB->front());
3090       // Okay, we're going to insert the PHI node.  Since PBI is not the only
3091       // predecessor, compute the PHI'd conditional value for all of the preds.
3092       // Any predecessor where the condition is not computable we keep symbolic.
3093       for (pred_iterator PI = PB; PI != PE; ++PI) {
3094         BasicBlock *P = *PI;
3095         if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) && PBI != BI &&
3096             PBI->isConditional() && PBI->getCondition() == BI->getCondition() &&
3097             PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
3098           bool CondIsTrue = PBI->getSuccessor(0) == BB;
3099           NewPN->addIncoming(
3100               ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue),
3101               P);
3102         } else {
3103           NewPN->addIncoming(BI->getCondition(), P);
3104         }
3105       }
3106 
3107       BI->setCondition(NewPN);
3108       return true;
3109     }
3110   }
3111 
3112   if (auto *CE = dyn_cast<ConstantExpr>(BI->getCondition()))
3113     if (CE->canTrap())
3114       return false;
3115 
3116   // If both branches are conditional and both contain stores to the same
3117   // address, remove the stores from the conditionals and create a conditional
3118   // merged store at the end.
3119   if (MergeCondStores && mergeConditionalStores(PBI, BI))
3120     return true;
3121 
3122   // If this is a conditional branch in an empty block, and if any
3123   // predecessors are a conditional branch to one of our destinations,
3124   // fold the conditions into logical ops and one cond br.
3125   BasicBlock::iterator BBI = BB->begin();
3126   // Ignore dbg intrinsics.
3127   while (isa<DbgInfoIntrinsic>(BBI))
3128     ++BBI;
3129   if (&*BBI != BI)
3130     return false;
3131 
3132   int PBIOp, BIOp;
3133   if (PBI->getSuccessor(0) == BI->getSuccessor(0)) {
3134     PBIOp = 0;
3135     BIOp = 0;
3136   } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) {
3137     PBIOp = 0;
3138     BIOp = 1;
3139   } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) {
3140     PBIOp = 1;
3141     BIOp = 0;
3142   } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) {
3143     PBIOp = 1;
3144     BIOp = 1;
3145   } else {
3146     return false;
3147   }
3148 
3149   // Check to make sure that the other destination of this branch
3150   // isn't BB itself.  If so, this is an infinite loop that will
3151   // keep getting unwound.
3152   if (PBI->getSuccessor(PBIOp) == BB)
3153     return false;
3154 
3155   // Do not perform this transformation if it would require
3156   // insertion of a large number of select instructions. For targets
3157   // without predication/cmovs, this is a big pessimization.
3158 
3159   // Also do not perform this transformation if any phi node in the common
3160   // destination block can trap when reached by BB or PBB (PR17073). In that
3161   // case, it would be unsafe to hoist the operation into a select instruction.
3162 
3163   BasicBlock *CommonDest = PBI->getSuccessor(PBIOp);
3164   unsigned NumPhis = 0;
3165   for (BasicBlock::iterator II = CommonDest->begin(); isa<PHINode>(II);
3166        ++II, ++NumPhis) {
3167     if (NumPhis > 2) // Disable this xform.
3168       return false;
3169 
3170     PHINode *PN = cast<PHINode>(II);
3171     Value *BIV = PN->getIncomingValueForBlock(BB);
3172     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BIV))
3173       if (CE->canTrap())
3174         return false;
3175 
3176     unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
3177     Value *PBIV = PN->getIncomingValue(PBBIdx);
3178     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(PBIV))
3179       if (CE->canTrap())
3180         return false;
3181   }
3182 
3183   // Finally, if everything is ok, fold the branches to logical ops.
3184   BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1);
3185 
3186   DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent()
3187                << "AND: " << *BI->getParent());
3188 
3189   // If OtherDest *is* BB, then BB is a basic block with a single conditional
3190   // branch in it, where one edge (OtherDest) goes back to itself but the other
3191   // exits.  We don't *know* that the program avoids the infinite loop
3192   // (even though that seems likely).  If we do this xform naively, we'll end up
3193   // recursively unpeeling the loop.  Since we know that (after the xform is
3194   // done) that the block *is* infinite if reached, we just make it an obviously
3195   // infinite loop with no cond branch.
3196   if (OtherDest == BB) {
3197     // Insert it at the end of the function, because it's either code,
3198     // or it won't matter if it's hot. :)
3199     BasicBlock *InfLoopBlock =
3200         BasicBlock::Create(BB->getContext(), "infloop", BB->getParent());
3201     BranchInst::Create(InfLoopBlock, InfLoopBlock);
3202     OtherDest = InfLoopBlock;
3203   }
3204 
3205   DEBUG(dbgs() << *PBI->getParent()->getParent());
3206 
3207   // BI may have other predecessors.  Because of this, we leave
3208   // it alone, but modify PBI.
3209 
3210   // Make sure we get to CommonDest on True&True directions.
3211   Value *PBICond = PBI->getCondition();
3212   IRBuilder<NoFolder> Builder(PBI);
3213   if (PBIOp)
3214     PBICond = Builder.CreateNot(PBICond, PBICond->getName() + ".not");
3215 
3216   Value *BICond = BI->getCondition();
3217   if (BIOp)
3218     BICond = Builder.CreateNot(BICond, BICond->getName() + ".not");
3219 
3220   // Merge the conditions.
3221   Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge");
3222 
3223   // Modify PBI to branch on the new condition to the new dests.
3224   PBI->setCondition(Cond);
3225   PBI->setSuccessor(0, CommonDest);
3226   PBI->setSuccessor(1, OtherDest);
3227 
3228   // Update branch weight for PBI.
3229   uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
3230   uint64_t PredCommon, PredOther, SuccCommon, SuccOther;
3231   bool HasWeights =
3232       extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
3233                              SuccTrueWeight, SuccFalseWeight);
3234   if (HasWeights) {
3235     PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
3236     PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
3237     SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
3238     SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
3239     // The weight to CommonDest should be PredCommon * SuccTotal +
3240     //                                    PredOther * SuccCommon.
3241     // The weight to OtherDest should be PredOther * SuccOther.
3242     uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) +
3243                                   PredOther * SuccCommon,
3244                               PredOther * SuccOther};
3245     // Halve the weights if any of them cannot fit in an uint32_t
3246     FitWeights(NewWeights);
3247 
3248     PBI->setMetadata(LLVMContext::MD_prof,
3249                      MDBuilder(BI->getContext())
3250                          .createBranchWeights(NewWeights[0], NewWeights[1]));
3251   }
3252 
3253   // OtherDest may have phi nodes.  If so, add an entry from PBI's
3254   // block that are identical to the entries for BI's block.
3255   AddPredecessorToBlock(OtherDest, PBI->getParent(), BB);
3256 
3257   // We know that the CommonDest already had an edge from PBI to
3258   // it.  If it has PHIs though, the PHIs may have different
3259   // entries for BB and PBI's BB.  If so, insert a select to make
3260   // them agree.
3261   PHINode *PN;
3262   for (BasicBlock::iterator II = CommonDest->begin();
3263        (PN = dyn_cast<PHINode>(II)); ++II) {
3264     Value *BIV = PN->getIncomingValueForBlock(BB);
3265     unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
3266     Value *PBIV = PN->getIncomingValue(PBBIdx);
3267     if (BIV != PBIV) {
3268       // Insert a select in PBI to pick the right value.
3269       SelectInst *NV = cast<SelectInst>(
3270           Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName() + ".mux"));
3271       PN->setIncomingValue(PBBIdx, NV);
3272       // Although the select has the same condition as PBI, the original branch
3273       // weights for PBI do not apply to the new select because the select's
3274       // 'logical' edges are incoming edges of the phi that is eliminated, not
3275       // the outgoing edges of PBI.
3276       if (HasWeights) {
3277         uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
3278         uint64_t PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
3279         uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
3280         uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
3281         // The weight to PredCommonDest should be PredCommon * SuccTotal.
3282         // The weight to PredOtherDest should be PredOther * SuccCommon.
3283         uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther),
3284                                   PredOther * SuccCommon};
3285 
3286         FitWeights(NewWeights);
3287 
3288         NV->setMetadata(LLVMContext::MD_prof,
3289                         MDBuilder(BI->getContext())
3290                             .createBranchWeights(NewWeights[0], NewWeights[1]));
3291       }
3292     }
3293   }
3294 
3295   DEBUG(dbgs() << "INTO: " << *PBI->getParent());
3296   DEBUG(dbgs() << *PBI->getParent()->getParent());
3297 
3298   // This basic block is probably dead.  We know it has at least
3299   // one fewer predecessor.
3300   return true;
3301 }
3302 
3303 // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is
3304 // true or to FalseBB if Cond is false.
3305 // Takes care of updating the successors and removing the old terminator.
3306 // Also makes sure not to introduce new successors by assuming that edges to
3307 // non-successor TrueBBs and FalseBBs aren't reachable.
3308 static bool SimplifyTerminatorOnSelect(TerminatorInst *OldTerm, Value *Cond,
3309                                        BasicBlock *TrueBB, BasicBlock *FalseBB,
3310                                        uint32_t TrueWeight,
3311                                        uint32_t FalseWeight) {
3312   // Remove any superfluous successor edges from the CFG.
3313   // First, figure out which successors to preserve.
3314   // If TrueBB and FalseBB are equal, only try to preserve one copy of that
3315   // successor.
3316   BasicBlock *KeepEdge1 = TrueBB;
3317   BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr;
3318 
3319   // Then remove the rest.
3320   for (BasicBlock *Succ : OldTerm->successors()) {
3321     // Make sure only to keep exactly one copy of each edge.
3322     if (Succ == KeepEdge1)
3323       KeepEdge1 = nullptr;
3324     else if (Succ == KeepEdge2)
3325       KeepEdge2 = nullptr;
3326     else
3327       Succ->removePredecessor(OldTerm->getParent(),
3328                               /*DontDeleteUselessPHIs=*/true);
3329   }
3330 
3331   IRBuilder<> Builder(OldTerm);
3332   Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc());
3333 
3334   // Insert an appropriate new terminator.
3335   if (!KeepEdge1 && !KeepEdge2) {
3336     if (TrueBB == FalseBB)
3337       // We were only looking for one successor, and it was present.
3338       // Create an unconditional branch to it.
3339       Builder.CreateBr(TrueBB);
3340     else {
3341       // We found both of the successors we were looking for.
3342       // Create a conditional branch sharing the condition of the select.
3343       BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB);
3344       if (TrueWeight != FalseWeight)
3345         NewBI->setMetadata(LLVMContext::MD_prof,
3346                            MDBuilder(OldTerm->getContext())
3347                                .createBranchWeights(TrueWeight, FalseWeight));
3348     }
3349   } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) {
3350     // Neither of the selected blocks were successors, so this
3351     // terminator must be unreachable.
3352     new UnreachableInst(OldTerm->getContext(), OldTerm);
3353   } else {
3354     // One of the selected values was a successor, but the other wasn't.
3355     // Insert an unconditional branch to the one that was found;
3356     // the edge to the one that wasn't must be unreachable.
3357     if (!KeepEdge1)
3358       // Only TrueBB was found.
3359       Builder.CreateBr(TrueBB);
3360     else
3361       // Only FalseBB was found.
3362       Builder.CreateBr(FalseBB);
3363   }
3364 
3365   EraseTerminatorInstAndDCECond(OldTerm);
3366   return true;
3367 }
3368 
3369 // Replaces
3370 //   (switch (select cond, X, Y)) on constant X, Y
3371 // with a branch - conditional if X and Y lead to distinct BBs,
3372 // unconditional otherwise.
3373 static bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select) {
3374   // Check for constant integer values in the select.
3375   ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue());
3376   ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue());
3377   if (!TrueVal || !FalseVal)
3378     return false;
3379 
3380   // Find the relevant condition and destinations.
3381   Value *Condition = Select->getCondition();
3382   BasicBlock *TrueBB = SI->findCaseValue(TrueVal).getCaseSuccessor();
3383   BasicBlock *FalseBB = SI->findCaseValue(FalseVal).getCaseSuccessor();
3384 
3385   // Get weight for TrueBB and FalseBB.
3386   uint32_t TrueWeight = 0, FalseWeight = 0;
3387   SmallVector<uint64_t, 8> Weights;
3388   bool HasWeights = HasBranchWeights(SI);
3389   if (HasWeights) {
3390     GetBranchWeights(SI, Weights);
3391     if (Weights.size() == 1 + SI->getNumCases()) {
3392       TrueWeight =
3393           (uint32_t)Weights[SI->findCaseValue(TrueVal).getSuccessorIndex()];
3394       FalseWeight =
3395           (uint32_t)Weights[SI->findCaseValue(FalseVal).getSuccessorIndex()];
3396     }
3397   }
3398 
3399   // Perform the actual simplification.
3400   return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, TrueWeight,
3401                                     FalseWeight);
3402 }
3403 
3404 // Replaces
3405 //   (indirectbr (select cond, blockaddress(@fn, BlockA),
3406 //                             blockaddress(@fn, BlockB)))
3407 // with
3408 //   (br cond, BlockA, BlockB).
3409 static bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI) {
3410   // Check that both operands of the select are block addresses.
3411   BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue());
3412   BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue());
3413   if (!TBA || !FBA)
3414     return false;
3415 
3416   // Extract the actual blocks.
3417   BasicBlock *TrueBB = TBA->getBasicBlock();
3418   BasicBlock *FalseBB = FBA->getBasicBlock();
3419 
3420   // Perform the actual simplification.
3421   return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 0,
3422                                     0);
3423 }
3424 
3425 /// This is called when we find an icmp instruction
3426 /// (a seteq/setne with a constant) as the only instruction in a
3427 /// block that ends with an uncond branch.  We are looking for a very specific
3428 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified.  In
3429 /// this case, we merge the first two "or's of icmp" into a switch, but then the
3430 /// default value goes to an uncond block with a seteq in it, we get something
3431 /// like:
3432 ///
3433 ///   switch i8 %A, label %DEFAULT [ i8 1, label %end    i8 2, label %end ]
3434 /// DEFAULT:
3435 ///   %tmp = icmp eq i8 %A, 92
3436 ///   br label %end
3437 /// end:
3438 ///   ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ]
3439 ///
3440 /// We prefer to split the edge to 'end' so that there is a true/false entry to
3441 /// the PHI, merging the third icmp into the switch.
3442 static bool TryToSimplifyUncondBranchWithICmpInIt(
3443     ICmpInst *ICI, IRBuilder<> &Builder, const DataLayout &DL,
3444     const TargetTransformInfo &TTI, unsigned BonusInstThreshold,
3445     AssumptionCache *AC) {
3446   BasicBlock *BB = ICI->getParent();
3447 
3448   // If the block has any PHIs in it or the icmp has multiple uses, it is too
3449   // complex.
3450   if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse())
3451     return false;
3452 
3453   Value *V = ICI->getOperand(0);
3454   ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1));
3455 
3456   // The pattern we're looking for is where our only predecessor is a switch on
3457   // 'V' and this block is the default case for the switch.  In this case we can
3458   // fold the compared value into the switch to simplify things.
3459   BasicBlock *Pred = BB->getSinglePredecessor();
3460   if (!Pred || !isa<SwitchInst>(Pred->getTerminator()))
3461     return false;
3462 
3463   SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator());
3464   if (SI->getCondition() != V)
3465     return false;
3466 
3467   // If BB is reachable on a non-default case, then we simply know the value of
3468   // V in this block.  Substitute it and constant fold the icmp instruction
3469   // away.
3470   if (SI->getDefaultDest() != BB) {
3471     ConstantInt *VVal = SI->findCaseDest(BB);
3472     assert(VVal && "Should have a unique destination value");
3473     ICI->setOperand(0, VVal);
3474 
3475     if (Value *V = SimplifyInstruction(ICI, DL)) {
3476       ICI->replaceAllUsesWith(V);
3477       ICI->eraseFromParent();
3478     }
3479     // BB is now empty, so it is likely to simplify away.
3480     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
3481   }
3482 
3483   // Ok, the block is reachable from the default dest.  If the constant we're
3484   // comparing exists in one of the other edges, then we can constant fold ICI
3485   // and zap it.
3486   if (SI->findCaseValue(Cst) != SI->case_default()) {
3487     Value *V;
3488     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
3489       V = ConstantInt::getFalse(BB->getContext());
3490     else
3491       V = ConstantInt::getTrue(BB->getContext());
3492 
3493     ICI->replaceAllUsesWith(V);
3494     ICI->eraseFromParent();
3495     // BB is now empty, so it is likely to simplify away.
3496     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
3497   }
3498 
3499   // The use of the icmp has to be in the 'end' block, by the only PHI node in
3500   // the block.
3501   BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0);
3502   PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back());
3503   if (PHIUse == nullptr || PHIUse != &SuccBlock->front() ||
3504       isa<PHINode>(++BasicBlock::iterator(PHIUse)))
3505     return false;
3506 
3507   // If the icmp is a SETEQ, then the default dest gets false, the new edge gets
3508   // true in the PHI.
3509   Constant *DefaultCst = ConstantInt::getTrue(BB->getContext());
3510   Constant *NewCst = ConstantInt::getFalse(BB->getContext());
3511 
3512   if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
3513     std::swap(DefaultCst, NewCst);
3514 
3515   // Replace ICI (which is used by the PHI for the default value) with true or
3516   // false depending on if it is EQ or NE.
3517   ICI->replaceAllUsesWith(DefaultCst);
3518   ICI->eraseFromParent();
3519 
3520   // Okay, the switch goes to this block on a default value.  Add an edge from
3521   // the switch to the merge point on the compared value.
3522   BasicBlock *NewBB =
3523       BasicBlock::Create(BB->getContext(), "switch.edge", BB->getParent(), BB);
3524   SmallVector<uint64_t, 8> Weights;
3525   bool HasWeights = HasBranchWeights(SI);
3526   if (HasWeights) {
3527     GetBranchWeights(SI, Weights);
3528     if (Weights.size() == 1 + SI->getNumCases()) {
3529       // Split weight for default case to case for "Cst".
3530       Weights[0] = (Weights[0] + 1) >> 1;
3531       Weights.push_back(Weights[0]);
3532 
3533       SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
3534       SI->setMetadata(
3535           LLVMContext::MD_prof,
3536           MDBuilder(SI->getContext()).createBranchWeights(MDWeights));
3537     }
3538   }
3539   SI->addCase(Cst, NewBB);
3540 
3541   // NewBB branches to the phi block, add the uncond branch and the phi entry.
3542   Builder.SetInsertPoint(NewBB);
3543   Builder.SetCurrentDebugLocation(SI->getDebugLoc());
3544   Builder.CreateBr(SuccBlock);
3545   PHIUse->addIncoming(NewCst, NewBB);
3546   return true;
3547 }
3548 
3549 /// The specified branch is a conditional branch.
3550 /// Check to see if it is branching on an or/and chain of icmp instructions, and
3551 /// fold it into a switch instruction if so.
3552 static bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder,
3553                                       const DataLayout &DL) {
3554   Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
3555   if (!Cond)
3556     return false;
3557 
3558   // Change br (X == 0 | X == 1), T, F into a switch instruction.
3559   // If this is a bunch of seteq's or'd together, or if it's a bunch of
3560   // 'setne's and'ed together, collect them.
3561 
3562   // Try to gather values from a chain of and/or to be turned into a switch
3563   ConstantComparesGatherer ConstantCompare(Cond, DL);
3564   // Unpack the result
3565   SmallVectorImpl<ConstantInt *> &Values = ConstantCompare.Vals;
3566   Value *CompVal = ConstantCompare.CompValue;
3567   unsigned UsedICmps = ConstantCompare.UsedICmps;
3568   Value *ExtraCase = ConstantCompare.Extra;
3569 
3570   // If we didn't have a multiply compared value, fail.
3571   if (!CompVal)
3572     return false;
3573 
3574   // Avoid turning single icmps into a switch.
3575   if (UsedICmps <= 1)
3576     return false;
3577 
3578   bool TrueWhenEqual = (Cond->getOpcode() == Instruction::Or);
3579 
3580   // There might be duplicate constants in the list, which the switch
3581   // instruction can't handle, remove them now.
3582   array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate);
3583   Values.erase(std::unique(Values.begin(), Values.end()), Values.end());
3584 
3585   // If Extra was used, we require at least two switch values to do the
3586   // transformation.  A switch with one value is just a conditional branch.
3587   if (ExtraCase && Values.size() < 2)
3588     return false;
3589 
3590   // TODO: Preserve branch weight metadata, similarly to how
3591   // FoldValueComparisonIntoPredecessors preserves it.
3592 
3593   // Figure out which block is which destination.
3594   BasicBlock *DefaultBB = BI->getSuccessor(1);
3595   BasicBlock *EdgeBB = BI->getSuccessor(0);
3596   if (!TrueWhenEqual)
3597     std::swap(DefaultBB, EdgeBB);
3598 
3599   BasicBlock *BB = BI->getParent();
3600 
3601   DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size()
3602                << " cases into SWITCH.  BB is:\n"
3603                << *BB);
3604 
3605   // If there are any extra values that couldn't be folded into the switch
3606   // then we evaluate them with an explicit branch first.  Split the block
3607   // right before the condbr to handle it.
3608   if (ExtraCase) {
3609     BasicBlock *NewBB =
3610         BB->splitBasicBlock(BI->getIterator(), "switch.early.test");
3611     // Remove the uncond branch added to the old block.
3612     TerminatorInst *OldTI = BB->getTerminator();
3613     Builder.SetInsertPoint(OldTI);
3614 
3615     if (TrueWhenEqual)
3616       Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB);
3617     else
3618       Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB);
3619 
3620     OldTI->eraseFromParent();
3621 
3622     // If there are PHI nodes in EdgeBB, then we need to add a new entry to them
3623     // for the edge we just added.
3624     AddPredecessorToBlock(EdgeBB, BB, NewBB);
3625 
3626     DEBUG(dbgs() << "  ** 'icmp' chain unhandled condition: " << *ExtraCase
3627                  << "\nEXTRABB = " << *BB);
3628     BB = NewBB;
3629   }
3630 
3631   Builder.SetInsertPoint(BI);
3632   // Convert pointer to int before we switch.
3633   if (CompVal->getType()->isPointerTy()) {
3634     CompVal = Builder.CreatePtrToInt(
3635         CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr");
3636   }
3637 
3638   // Create the new switch instruction now.
3639   SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size());
3640 
3641   // Add all of the 'cases' to the switch instruction.
3642   for (unsigned i = 0, e = Values.size(); i != e; ++i)
3643     New->addCase(Values[i], EdgeBB);
3644 
3645   // We added edges from PI to the EdgeBB.  As such, if there were any
3646   // PHI nodes in EdgeBB, they need entries to be added corresponding to
3647   // the number of edges added.
3648   for (BasicBlock::iterator BBI = EdgeBB->begin(); isa<PHINode>(BBI); ++BBI) {
3649     PHINode *PN = cast<PHINode>(BBI);
3650     Value *InVal = PN->getIncomingValueForBlock(BB);
3651     for (unsigned i = 0, e = Values.size() - 1; i != e; ++i)
3652       PN->addIncoming(InVal, BB);
3653   }
3654 
3655   // Erase the old branch instruction.
3656   EraseTerminatorInstAndDCECond(BI);
3657 
3658   DEBUG(dbgs() << "  ** 'icmp' chain result is:\n" << *BB << '\n');
3659   return true;
3660 }
3661 
3662 bool SimplifyCFGOpt::SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder) {
3663   if (isa<PHINode>(RI->getValue()))
3664     return SimplifyCommonResume(RI);
3665   else if (isa<LandingPadInst>(RI->getParent()->getFirstNonPHI()) &&
3666            RI->getValue() == RI->getParent()->getFirstNonPHI())
3667     // The resume must unwind the exception that caused control to branch here.
3668     return SimplifySingleResume(RI);
3669 
3670   return false;
3671 }
3672 
3673 // Simplify resume that is shared by several landing pads (phi of landing pad).
3674 bool SimplifyCFGOpt::SimplifyCommonResume(ResumeInst *RI) {
3675   BasicBlock *BB = RI->getParent();
3676 
3677   // Check that there are no other instructions except for debug intrinsics
3678   // between the phi of landing pads (RI->getValue()) and resume instruction.
3679   BasicBlock::iterator I = cast<Instruction>(RI->getValue())->getIterator(),
3680                        E = RI->getIterator();
3681   while (++I != E)
3682     if (!isa<DbgInfoIntrinsic>(I))
3683       return false;
3684 
3685   SmallSet<BasicBlock *, 4> TrivialUnwindBlocks;
3686   auto *PhiLPInst = cast<PHINode>(RI->getValue());
3687 
3688   // Check incoming blocks to see if any of them are trivial.
3689   for (unsigned Idx = 0, End = PhiLPInst->getNumIncomingValues(); Idx != End;
3690        Idx++) {
3691     auto *IncomingBB = PhiLPInst->getIncomingBlock(Idx);
3692     auto *IncomingValue = PhiLPInst->getIncomingValue(Idx);
3693 
3694     // If the block has other successors, we can not delete it because
3695     // it has other dependents.
3696     if (IncomingBB->getUniqueSuccessor() != BB)
3697       continue;
3698 
3699     auto *LandingPad = dyn_cast<LandingPadInst>(IncomingBB->getFirstNonPHI());
3700     // Not the landing pad that caused the control to branch here.
3701     if (IncomingValue != LandingPad)
3702       continue;
3703 
3704     bool isTrivial = true;
3705 
3706     I = IncomingBB->getFirstNonPHI()->getIterator();
3707     E = IncomingBB->getTerminator()->getIterator();
3708     while (++I != E)
3709       if (!isa<DbgInfoIntrinsic>(I)) {
3710         isTrivial = false;
3711         break;
3712       }
3713 
3714     if (isTrivial)
3715       TrivialUnwindBlocks.insert(IncomingBB);
3716   }
3717 
3718   // If no trivial unwind blocks, don't do any simplifications.
3719   if (TrivialUnwindBlocks.empty())
3720     return false;
3721 
3722   // Turn all invokes that unwind here into calls.
3723   for (auto *TrivialBB : TrivialUnwindBlocks) {
3724     // Blocks that will be simplified should be removed from the phi node.
3725     // Note there could be multiple edges to the resume block, and we need
3726     // to remove them all.
3727     while (PhiLPInst->getBasicBlockIndex(TrivialBB) != -1)
3728       BB->removePredecessor(TrivialBB, true);
3729 
3730     for (pred_iterator PI = pred_begin(TrivialBB), PE = pred_end(TrivialBB);
3731          PI != PE;) {
3732       BasicBlock *Pred = *PI++;
3733       removeUnwindEdge(Pred);
3734     }
3735 
3736     // In each SimplifyCFG run, only the current processed block can be erased.
3737     // Otherwise, it will break the iteration of SimplifyCFG pass. So instead
3738     // of erasing TrivialBB, we only remove the branch to the common resume
3739     // block so that we can later erase the resume block since it has no
3740     // predecessors.
3741     TrivialBB->getTerminator()->eraseFromParent();
3742     new UnreachableInst(RI->getContext(), TrivialBB);
3743   }
3744 
3745   // Delete the resume block if all its predecessors have been removed.
3746   if (pred_empty(BB))
3747     BB->eraseFromParent();
3748 
3749   return !TrivialUnwindBlocks.empty();
3750 }
3751 
3752 // Simplify resume that is only used by a single (non-phi) landing pad.
3753 bool SimplifyCFGOpt::SimplifySingleResume(ResumeInst *RI) {
3754   BasicBlock *BB = RI->getParent();
3755   LandingPadInst *LPInst = dyn_cast<LandingPadInst>(BB->getFirstNonPHI());
3756   assert(RI->getValue() == LPInst &&
3757          "Resume must unwind the exception that caused control to here");
3758 
3759   // Check that there are no other instructions except for debug intrinsics.
3760   BasicBlock::iterator I = LPInst->getIterator(), E = RI->getIterator();
3761   while (++I != E)
3762     if (!isa<DbgInfoIntrinsic>(I))
3763       return false;
3764 
3765   // Turn all invokes that unwind here into calls and delete the basic block.
3766   for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) {
3767     BasicBlock *Pred = *PI++;
3768     removeUnwindEdge(Pred);
3769   }
3770 
3771   // The landingpad is now unreachable.  Zap it.
3772   BB->eraseFromParent();
3773   if (LoopHeaders)
3774     LoopHeaders->erase(BB);
3775   return true;
3776 }
3777 
3778 static bool removeEmptyCleanup(CleanupReturnInst *RI) {
3779   // If this is a trivial cleanup pad that executes no instructions, it can be
3780   // eliminated.  If the cleanup pad continues to the caller, any predecessor
3781   // that is an EH pad will be updated to continue to the caller and any
3782   // predecessor that terminates with an invoke instruction will have its invoke
3783   // instruction converted to a call instruction.  If the cleanup pad being
3784   // simplified does not continue to the caller, each predecessor will be
3785   // updated to continue to the unwind destination of the cleanup pad being
3786   // simplified.
3787   BasicBlock *BB = RI->getParent();
3788   CleanupPadInst *CPInst = RI->getCleanupPad();
3789   if (CPInst->getParent() != BB)
3790     // This isn't an empty cleanup.
3791     return false;
3792 
3793   // We cannot kill the pad if it has multiple uses.  This typically arises
3794   // from unreachable basic blocks.
3795   if (!CPInst->hasOneUse())
3796     return false;
3797 
3798   // Check that there are no other instructions except for benign intrinsics.
3799   BasicBlock::iterator I = CPInst->getIterator(), E = RI->getIterator();
3800   while (++I != E) {
3801     auto *II = dyn_cast<IntrinsicInst>(I);
3802     if (!II)
3803       return false;
3804 
3805     Intrinsic::ID IntrinsicID = II->getIntrinsicID();
3806     switch (IntrinsicID) {
3807     case Intrinsic::dbg_declare:
3808     case Intrinsic::dbg_value:
3809     case Intrinsic::lifetime_end:
3810       break;
3811     default:
3812       return false;
3813     }
3814   }
3815 
3816   // If the cleanup return we are simplifying unwinds to the caller, this will
3817   // set UnwindDest to nullptr.
3818   BasicBlock *UnwindDest = RI->getUnwindDest();
3819   Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr;
3820 
3821   // We're about to remove BB from the control flow.  Before we do, sink any
3822   // PHINodes into the unwind destination.  Doing this before changing the
3823   // control flow avoids some potentially slow checks, since we can currently
3824   // be certain that UnwindDest and BB have no common predecessors (since they
3825   // are both EH pads).
3826   if (UnwindDest) {
3827     // First, go through the PHI nodes in UnwindDest and update any nodes that
3828     // reference the block we are removing
3829     for (BasicBlock::iterator I = UnwindDest->begin(),
3830                               IE = DestEHPad->getIterator();
3831          I != IE; ++I) {
3832       PHINode *DestPN = cast<PHINode>(I);
3833 
3834       int Idx = DestPN->getBasicBlockIndex(BB);
3835       // Since BB unwinds to UnwindDest, it has to be in the PHI node.
3836       assert(Idx != -1);
3837       // This PHI node has an incoming value that corresponds to a control
3838       // path through the cleanup pad we are removing.  If the incoming
3839       // value is in the cleanup pad, it must be a PHINode (because we
3840       // verified above that the block is otherwise empty).  Otherwise, the
3841       // value is either a constant or a value that dominates the cleanup
3842       // pad being removed.
3843       //
3844       // Because BB and UnwindDest are both EH pads, all of their
3845       // predecessors must unwind to these blocks, and since no instruction
3846       // can have multiple unwind destinations, there will be no overlap in
3847       // incoming blocks between SrcPN and DestPN.
3848       Value *SrcVal = DestPN->getIncomingValue(Idx);
3849       PHINode *SrcPN = dyn_cast<PHINode>(SrcVal);
3850 
3851       // Remove the entry for the block we are deleting.
3852       DestPN->removeIncomingValue(Idx, false);
3853 
3854       if (SrcPN && SrcPN->getParent() == BB) {
3855         // If the incoming value was a PHI node in the cleanup pad we are
3856         // removing, we need to merge that PHI node's incoming values into
3857         // DestPN.
3858         for (unsigned SrcIdx = 0, SrcE = SrcPN->getNumIncomingValues();
3859              SrcIdx != SrcE; ++SrcIdx) {
3860           DestPN->addIncoming(SrcPN->getIncomingValue(SrcIdx),
3861                               SrcPN->getIncomingBlock(SrcIdx));
3862         }
3863       } else {
3864         // Otherwise, the incoming value came from above BB and
3865         // so we can just reuse it.  We must associate all of BB's
3866         // predecessors with this value.
3867         for (auto *pred : predecessors(BB)) {
3868           DestPN->addIncoming(SrcVal, pred);
3869         }
3870       }
3871     }
3872 
3873     // Sink any remaining PHI nodes directly into UnwindDest.
3874     Instruction *InsertPt = DestEHPad;
3875     for (BasicBlock::iterator I = BB->begin(),
3876                               IE = BB->getFirstNonPHI()->getIterator();
3877          I != IE;) {
3878       // The iterator must be incremented here because the instructions are
3879       // being moved to another block.
3880       PHINode *PN = cast<PHINode>(I++);
3881       if (PN->use_empty())
3882         // If the PHI node has no uses, just leave it.  It will be erased
3883         // when we erase BB below.
3884         continue;
3885 
3886       // Otherwise, sink this PHI node into UnwindDest.
3887       // Any predecessors to UnwindDest which are not already represented
3888       // must be back edges which inherit the value from the path through
3889       // BB.  In this case, the PHI value must reference itself.
3890       for (auto *pred : predecessors(UnwindDest))
3891         if (pred != BB)
3892           PN->addIncoming(PN, pred);
3893       PN->moveBefore(InsertPt);
3894     }
3895   }
3896 
3897   for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) {
3898     // The iterator must be updated here because we are removing this pred.
3899     BasicBlock *PredBB = *PI++;
3900     if (UnwindDest == nullptr) {
3901       removeUnwindEdge(PredBB);
3902     } else {
3903       TerminatorInst *TI = PredBB->getTerminator();
3904       TI->replaceUsesOfWith(BB, UnwindDest);
3905     }
3906   }
3907 
3908   // The cleanup pad is now unreachable.  Zap it.
3909   BB->eraseFromParent();
3910   return true;
3911 }
3912 
3913 // Try to merge two cleanuppads together.
3914 static bool mergeCleanupPad(CleanupReturnInst *RI) {
3915   // Skip any cleanuprets which unwind to caller, there is nothing to merge
3916   // with.
3917   BasicBlock *UnwindDest = RI->getUnwindDest();
3918   if (!UnwindDest)
3919     return false;
3920 
3921   // This cleanupret isn't the only predecessor of this cleanuppad, it wouldn't
3922   // be safe to merge without code duplication.
3923   if (UnwindDest->getSinglePredecessor() != RI->getParent())
3924     return false;
3925 
3926   // Verify that our cleanuppad's unwind destination is another cleanuppad.
3927   auto *SuccessorCleanupPad = dyn_cast<CleanupPadInst>(&UnwindDest->front());
3928   if (!SuccessorCleanupPad)
3929     return false;
3930 
3931   CleanupPadInst *PredecessorCleanupPad = RI->getCleanupPad();
3932   // Replace any uses of the successor cleanupad with the predecessor pad
3933   // The only cleanuppad uses should be this cleanupret, it's cleanupret and
3934   // funclet bundle operands.
3935   SuccessorCleanupPad->replaceAllUsesWith(PredecessorCleanupPad);
3936   // Remove the old cleanuppad.
3937   SuccessorCleanupPad->eraseFromParent();
3938   // Now, we simply replace the cleanupret with a branch to the unwind
3939   // destination.
3940   BranchInst::Create(UnwindDest, RI->getParent());
3941   RI->eraseFromParent();
3942 
3943   return true;
3944 }
3945 
3946 bool SimplifyCFGOpt::SimplifyCleanupReturn(CleanupReturnInst *RI) {
3947   // It is possible to transiantly have an undef cleanuppad operand because we
3948   // have deleted some, but not all, dead blocks.
3949   // Eventually, this block will be deleted.
3950   if (isa<UndefValue>(RI->getOperand(0)))
3951     return false;
3952 
3953   if (mergeCleanupPad(RI))
3954     return true;
3955 
3956   if (removeEmptyCleanup(RI))
3957     return true;
3958 
3959   return false;
3960 }
3961 
3962 bool SimplifyCFGOpt::SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) {
3963   BasicBlock *BB = RI->getParent();
3964   if (!BB->getFirstNonPHIOrDbg()->isTerminator())
3965     return false;
3966 
3967   // Find predecessors that end with branches.
3968   SmallVector<BasicBlock *, 8> UncondBranchPreds;
3969   SmallVector<BranchInst *, 8> CondBranchPreds;
3970   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
3971     BasicBlock *P = *PI;
3972     TerminatorInst *PTI = P->getTerminator();
3973     if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) {
3974       if (BI->isUnconditional())
3975         UncondBranchPreds.push_back(P);
3976       else
3977         CondBranchPreds.push_back(BI);
3978     }
3979   }
3980 
3981   // If we found some, do the transformation!
3982   if (!UncondBranchPreds.empty() && DupRet) {
3983     while (!UncondBranchPreds.empty()) {
3984       BasicBlock *Pred = UncondBranchPreds.pop_back_val();
3985       DEBUG(dbgs() << "FOLDING: " << *BB
3986                    << "INTO UNCOND BRANCH PRED: " << *Pred);
3987       (void)FoldReturnIntoUncondBranch(RI, BB, Pred);
3988     }
3989 
3990     // If we eliminated all predecessors of the block, delete the block now.
3991     if (pred_empty(BB)) {
3992       // We know there are no successors, so just nuke the block.
3993       BB->eraseFromParent();
3994       if (LoopHeaders)
3995         LoopHeaders->erase(BB);
3996     }
3997 
3998     return true;
3999   }
4000 
4001   // Check out all of the conditional branches going to this return
4002   // instruction.  If any of them just select between returns, change the
4003   // branch itself into a select/return pair.
4004   while (!CondBranchPreds.empty()) {
4005     BranchInst *BI = CondBranchPreds.pop_back_val();
4006 
4007     // Check to see if the non-BB successor is also a return block.
4008     if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) &&
4009         isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) &&
4010         SimplifyCondBranchToTwoReturns(BI, Builder))
4011       return true;
4012   }
4013   return false;
4014 }
4015 
4016 bool SimplifyCFGOpt::SimplifyUnreachable(UnreachableInst *UI) {
4017   BasicBlock *BB = UI->getParent();
4018 
4019   bool Changed = false;
4020 
4021   // If there are any instructions immediately before the unreachable that can
4022   // be removed, do so.
4023   while (UI->getIterator() != BB->begin()) {
4024     BasicBlock::iterator BBI = UI->getIterator();
4025     --BBI;
4026     // Do not delete instructions that can have side effects which might cause
4027     // the unreachable to not be reachable; specifically, calls and volatile
4028     // operations may have this effect.
4029     if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI))
4030       break;
4031 
4032     if (BBI->mayHaveSideEffects()) {
4033       if (auto *SI = dyn_cast<StoreInst>(BBI)) {
4034         if (SI->isVolatile())
4035           break;
4036       } else if (auto *LI = dyn_cast<LoadInst>(BBI)) {
4037         if (LI->isVolatile())
4038           break;
4039       } else if (auto *RMWI = dyn_cast<AtomicRMWInst>(BBI)) {
4040         if (RMWI->isVolatile())
4041           break;
4042       } else if (auto *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) {
4043         if (CXI->isVolatile())
4044           break;
4045       } else if (isa<CatchPadInst>(BBI)) {
4046         // A catchpad may invoke exception object constructors and such, which
4047         // in some languages can be arbitrary code, so be conservative by
4048         // default.
4049         // For CoreCLR, it just involves a type test, so can be removed.
4050         if (classifyEHPersonality(BB->getParent()->getPersonalityFn()) !=
4051             EHPersonality::CoreCLR)
4052           break;
4053       } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) &&
4054                  !isa<LandingPadInst>(BBI)) {
4055         break;
4056       }
4057       // Note that deleting LandingPad's here is in fact okay, although it
4058       // involves a bit of subtle reasoning. If this inst is a LandingPad,
4059       // all the predecessors of this block will be the unwind edges of Invokes,
4060       // and we can therefore guarantee this block will be erased.
4061     }
4062 
4063     // Delete this instruction (any uses are guaranteed to be dead)
4064     if (!BBI->use_empty())
4065       BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
4066     BBI->eraseFromParent();
4067     Changed = true;
4068   }
4069 
4070   // If the unreachable instruction is the first in the block, take a gander
4071   // at all of the predecessors of this instruction, and simplify them.
4072   if (&BB->front() != UI)
4073     return Changed;
4074 
4075   SmallVector<BasicBlock *, 8> Preds(pred_begin(BB), pred_end(BB));
4076   for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
4077     TerminatorInst *TI = Preds[i]->getTerminator();
4078     IRBuilder<> Builder(TI);
4079     if (auto *BI = dyn_cast<BranchInst>(TI)) {
4080       if (BI->isUnconditional()) {
4081         if (BI->getSuccessor(0) == BB) {
4082           new UnreachableInst(TI->getContext(), TI);
4083           TI->eraseFromParent();
4084           Changed = true;
4085         }
4086       } else {
4087         if (BI->getSuccessor(0) == BB) {
4088           Builder.CreateBr(BI->getSuccessor(1));
4089           EraseTerminatorInstAndDCECond(BI);
4090         } else if (BI->getSuccessor(1) == BB) {
4091           Builder.CreateBr(BI->getSuccessor(0));
4092           EraseTerminatorInstAndDCECond(BI);
4093           Changed = true;
4094         }
4095       }
4096     } else if (auto *SI = dyn_cast<SwitchInst>(TI)) {
4097       for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); i != e;
4098            ++i)
4099         if (i.getCaseSuccessor() == BB) {
4100           BB->removePredecessor(SI->getParent());
4101           SI->removeCase(i);
4102           --i;
4103           --e;
4104           Changed = true;
4105         }
4106     } else if (auto *II = dyn_cast<InvokeInst>(TI)) {
4107       if (II->getUnwindDest() == BB) {
4108         removeUnwindEdge(TI->getParent());
4109         Changed = true;
4110       }
4111     } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) {
4112       if (CSI->getUnwindDest() == BB) {
4113         removeUnwindEdge(TI->getParent());
4114         Changed = true;
4115         continue;
4116       }
4117 
4118       for (CatchSwitchInst::handler_iterator I = CSI->handler_begin(),
4119                                              E = CSI->handler_end();
4120            I != E; ++I) {
4121         if (*I == BB) {
4122           CSI->removeHandler(I);
4123           --I;
4124           --E;
4125           Changed = true;
4126         }
4127       }
4128       if (CSI->getNumHandlers() == 0) {
4129         BasicBlock *CatchSwitchBB = CSI->getParent();
4130         if (CSI->hasUnwindDest()) {
4131           // Redirect preds to the unwind dest
4132           CatchSwitchBB->replaceAllUsesWith(CSI->getUnwindDest());
4133         } else {
4134           // Rewrite all preds to unwind to caller (or from invoke to call).
4135           SmallVector<BasicBlock *, 8> EHPreds(predecessors(CatchSwitchBB));
4136           for (BasicBlock *EHPred : EHPreds)
4137             removeUnwindEdge(EHPred);
4138         }
4139         // The catchswitch is no longer reachable.
4140         new UnreachableInst(CSI->getContext(), CSI);
4141         CSI->eraseFromParent();
4142         Changed = true;
4143       }
4144     } else if (isa<CleanupReturnInst>(TI)) {
4145       new UnreachableInst(TI->getContext(), TI);
4146       TI->eraseFromParent();
4147       Changed = true;
4148     }
4149   }
4150 
4151   // If this block is now dead, remove it.
4152   if (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) {
4153     // We know there are no successors, so just nuke the block.
4154     BB->eraseFromParent();
4155     if (LoopHeaders)
4156       LoopHeaders->erase(BB);
4157     return true;
4158   }
4159 
4160   return Changed;
4161 }
4162 
4163 static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) {
4164   assert(Cases.size() >= 1);
4165 
4166   array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate);
4167   for (size_t I = 1, E = Cases.size(); I != E; ++I) {
4168     if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1)
4169       return false;
4170   }
4171   return true;
4172 }
4173 
4174 /// Turn a switch with two reachable destinations into an integer range
4175 /// comparison and branch.
4176 static bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder) {
4177   assert(SI->getNumCases() > 1 && "Degenerate switch?");
4178 
4179   bool HasDefault =
4180       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
4181 
4182   // Partition the cases into two sets with different destinations.
4183   BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr;
4184   BasicBlock *DestB = nullptr;
4185   SmallVector<ConstantInt *, 16> CasesA;
4186   SmallVector<ConstantInt *, 16> CasesB;
4187 
4188   for (SwitchInst::CaseIt I : SI->cases()) {
4189     BasicBlock *Dest = I.getCaseSuccessor();
4190     if (!DestA)
4191       DestA = Dest;
4192     if (Dest == DestA) {
4193       CasesA.push_back(I.getCaseValue());
4194       continue;
4195     }
4196     if (!DestB)
4197       DestB = Dest;
4198     if (Dest == DestB) {
4199       CasesB.push_back(I.getCaseValue());
4200       continue;
4201     }
4202     return false; // More than two destinations.
4203   }
4204 
4205   assert(DestA && DestB &&
4206          "Single-destination switch should have been folded.");
4207   assert(DestA != DestB);
4208   assert(DestB != SI->getDefaultDest());
4209   assert(!CasesB.empty() && "There must be non-default cases.");
4210   assert(!CasesA.empty() || HasDefault);
4211 
4212   // Figure out if one of the sets of cases form a contiguous range.
4213   SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr;
4214   BasicBlock *ContiguousDest = nullptr;
4215   BasicBlock *OtherDest = nullptr;
4216   if (!CasesA.empty() && CasesAreContiguous(CasesA)) {
4217     ContiguousCases = &CasesA;
4218     ContiguousDest = DestA;
4219     OtherDest = DestB;
4220   } else if (CasesAreContiguous(CasesB)) {
4221     ContiguousCases = &CasesB;
4222     ContiguousDest = DestB;
4223     OtherDest = DestA;
4224   } else
4225     return false;
4226 
4227   // Start building the compare and branch.
4228 
4229   Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back());
4230   Constant *NumCases =
4231       ConstantInt::get(Offset->getType(), ContiguousCases->size());
4232 
4233   Value *Sub = SI->getCondition();
4234   if (!Offset->isNullValue())
4235     Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off");
4236 
4237   Value *Cmp;
4238   // If NumCases overflowed, then all possible values jump to the successor.
4239   if (NumCases->isNullValue() && !ContiguousCases->empty())
4240     Cmp = ConstantInt::getTrue(SI->getContext());
4241   else
4242     Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch");
4243   BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest);
4244 
4245   // Update weight for the newly-created conditional branch.
4246   if (HasBranchWeights(SI)) {
4247     SmallVector<uint64_t, 8> Weights;
4248     GetBranchWeights(SI, Weights);
4249     if (Weights.size() == 1 + SI->getNumCases()) {
4250       uint64_t TrueWeight = 0;
4251       uint64_t FalseWeight = 0;
4252       for (size_t I = 0, E = Weights.size(); I != E; ++I) {
4253         if (SI->getSuccessor(I) == ContiguousDest)
4254           TrueWeight += Weights[I];
4255         else
4256           FalseWeight += Weights[I];
4257       }
4258       while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) {
4259         TrueWeight /= 2;
4260         FalseWeight /= 2;
4261       }
4262       NewBI->setMetadata(LLVMContext::MD_prof,
4263                          MDBuilder(SI->getContext())
4264                              .createBranchWeights((uint32_t)TrueWeight,
4265                                                   (uint32_t)FalseWeight));
4266     }
4267   }
4268 
4269   // Prune obsolete incoming values off the successors' PHI nodes.
4270   for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) {
4271     unsigned PreviousEdges = ContiguousCases->size();
4272     if (ContiguousDest == SI->getDefaultDest())
4273       ++PreviousEdges;
4274     for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
4275       cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
4276   }
4277   for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) {
4278     unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size();
4279     if (OtherDest == SI->getDefaultDest())
4280       ++PreviousEdges;
4281     for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
4282       cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
4283   }
4284 
4285   // Drop the switch.
4286   SI->eraseFromParent();
4287 
4288   return true;
4289 }
4290 
4291 /// Compute masked bits for the condition of a switch
4292 /// and use it to remove dead cases.
4293 static bool EliminateDeadSwitchCases(SwitchInst *SI, AssumptionCache *AC,
4294                                      const DataLayout &DL) {
4295   Value *Cond = SI->getCondition();
4296   unsigned Bits = Cond->getType()->getIntegerBitWidth();
4297   APInt KnownZero(Bits, 0), KnownOne(Bits, 0);
4298   computeKnownBits(Cond, KnownZero, KnownOne, DL, 0, AC, SI);
4299 
4300   // We can also eliminate cases by determining that their values are outside of
4301   // the limited range of the condition based on how many significant (non-sign)
4302   // bits are in the condition value.
4303   unsigned ExtraSignBits = ComputeNumSignBits(Cond, DL, 0, AC, SI) - 1;
4304   unsigned MaxSignificantBitsInCond = Bits - ExtraSignBits;
4305 
4306   // Gather dead cases.
4307   SmallVector<ConstantInt *, 8> DeadCases;
4308   for (auto &Case : SI->cases()) {
4309     APInt CaseVal = Case.getCaseValue()->getValue();
4310     if ((CaseVal & KnownZero) != 0 || (CaseVal & KnownOne) != KnownOne ||
4311         (CaseVal.getMinSignedBits() > MaxSignificantBitsInCond)) {
4312       DeadCases.push_back(Case.getCaseValue());
4313       DEBUG(dbgs() << "SimplifyCFG: switch case " << CaseVal << " is dead.\n");
4314     }
4315   }
4316 
4317   // If we can prove that the cases must cover all possible values, the
4318   // default destination becomes dead and we can remove it.  If we know some
4319   // of the bits in the value, we can use that to more precisely compute the
4320   // number of possible unique case values.
4321   bool HasDefault =
4322       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
4323   const unsigned NumUnknownBits =
4324       Bits - (KnownZero.Or(KnownOne)).countPopulation();
4325   assert(NumUnknownBits <= Bits);
4326   if (HasDefault && DeadCases.empty() &&
4327       NumUnknownBits < 64 /* avoid overflow */ &&
4328       SI->getNumCases() == (1ULL << NumUnknownBits)) {
4329     DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n");
4330     BasicBlock *NewDefault =
4331         SplitBlockPredecessors(SI->getDefaultDest(), SI->getParent(), "");
4332     SI->setDefaultDest(&*NewDefault);
4333     SplitBlock(&*NewDefault, &NewDefault->front());
4334     auto *OldTI = NewDefault->getTerminator();
4335     new UnreachableInst(SI->getContext(), OldTI);
4336     EraseTerminatorInstAndDCECond(OldTI);
4337     return true;
4338   }
4339 
4340   SmallVector<uint64_t, 8> Weights;
4341   bool HasWeight = HasBranchWeights(SI);
4342   if (HasWeight) {
4343     GetBranchWeights(SI, Weights);
4344     HasWeight = (Weights.size() == 1 + SI->getNumCases());
4345   }
4346 
4347   // Remove dead cases from the switch.
4348   for (ConstantInt *DeadCase : DeadCases) {
4349     SwitchInst::CaseIt Case = SI->findCaseValue(DeadCase);
4350     assert(Case != SI->case_default() &&
4351            "Case was not found. Probably mistake in DeadCases forming.");
4352     if (HasWeight) {
4353       std::swap(Weights[Case.getCaseIndex() + 1], Weights.back());
4354       Weights.pop_back();
4355     }
4356 
4357     // Prune unused values from PHI nodes.
4358     Case.getCaseSuccessor()->removePredecessor(SI->getParent());
4359     SI->removeCase(Case);
4360   }
4361   if (HasWeight && Weights.size() >= 2) {
4362     SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
4363     SI->setMetadata(LLVMContext::MD_prof,
4364                     MDBuilder(SI->getParent()->getContext())
4365                         .createBranchWeights(MDWeights));
4366   }
4367 
4368   return !DeadCases.empty();
4369 }
4370 
4371 /// If BB would be eligible for simplification by
4372 /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated
4373 /// by an unconditional branch), look at the phi node for BB in the successor
4374 /// block and see if the incoming value is equal to CaseValue. If so, return
4375 /// the phi node, and set PhiIndex to BB's index in the phi node.
4376 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue,
4377                                               BasicBlock *BB, int *PhiIndex) {
4378   if (BB->getFirstNonPHIOrDbg() != BB->getTerminator())
4379     return nullptr; // BB must be empty to be a candidate for simplification.
4380   if (!BB->getSinglePredecessor())
4381     return nullptr; // BB must be dominated by the switch.
4382 
4383   BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator());
4384   if (!Branch || !Branch->isUnconditional())
4385     return nullptr; // Terminator must be unconditional branch.
4386 
4387   BasicBlock *Succ = Branch->getSuccessor(0);
4388 
4389   BasicBlock::iterator I = Succ->begin();
4390   while (PHINode *PHI = dyn_cast<PHINode>(I++)) {
4391     int Idx = PHI->getBasicBlockIndex(BB);
4392     assert(Idx >= 0 && "PHI has no entry for predecessor?");
4393 
4394     Value *InValue = PHI->getIncomingValue(Idx);
4395     if (InValue != CaseValue)
4396       continue;
4397 
4398     *PhiIndex = Idx;
4399     return PHI;
4400   }
4401 
4402   return nullptr;
4403 }
4404 
4405 /// Try to forward the condition of a switch instruction to a phi node
4406 /// dominated by the switch, if that would mean that some of the destination
4407 /// blocks of the switch can be folded away.
4408 /// Returns true if a change is made.
4409 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) {
4410   typedef DenseMap<PHINode *, SmallVector<int, 4>> ForwardingNodesMap;
4411   ForwardingNodesMap ForwardingNodes;
4412 
4413   for (SwitchInst::CaseIt I = SI->case_begin(), E = SI->case_end(); I != E;
4414        ++I) {
4415     ConstantInt *CaseValue = I.getCaseValue();
4416     BasicBlock *CaseDest = I.getCaseSuccessor();
4417 
4418     int PhiIndex;
4419     PHINode *PHI =
4420         FindPHIForConditionForwarding(CaseValue, CaseDest, &PhiIndex);
4421     if (!PHI)
4422       continue;
4423 
4424     ForwardingNodes[PHI].push_back(PhiIndex);
4425   }
4426 
4427   bool Changed = false;
4428 
4429   for (ForwardingNodesMap::iterator I = ForwardingNodes.begin(),
4430                                     E = ForwardingNodes.end();
4431        I != E; ++I) {
4432     PHINode *Phi = I->first;
4433     SmallVectorImpl<int> &Indexes = I->second;
4434 
4435     if (Indexes.size() < 2)
4436       continue;
4437 
4438     for (size_t I = 0, E = Indexes.size(); I != E; ++I)
4439       Phi->setIncomingValue(Indexes[I], SI->getCondition());
4440     Changed = true;
4441   }
4442 
4443   return Changed;
4444 }
4445 
4446 /// Return true if the backend will be able to handle
4447 /// initializing an array of constants like C.
4448 static bool ValidLookupTableConstant(Constant *C, const TargetTransformInfo &TTI) {
4449   if (C->isThreadDependent())
4450     return false;
4451   if (C->isDLLImportDependent())
4452     return false;
4453 
4454   if (!isa<ConstantFP>(C) && !isa<ConstantInt>(C) &&
4455       !isa<ConstantPointerNull>(C) && !isa<GlobalValue>(C) &&
4456       !isa<UndefValue>(C) && !isa<ConstantExpr>(C))
4457     return false;
4458 
4459   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
4460     if (!CE->isGEPWithNoNotionalOverIndexing())
4461       return false;
4462     if (!ValidLookupTableConstant(CE->getOperand(0), TTI))
4463       return false;
4464   }
4465 
4466   if (!TTI.shouldBuildLookupTablesForConstant(C))
4467     return false;
4468 
4469   return true;
4470 }
4471 
4472 /// If V is a Constant, return it. Otherwise, try to look up
4473 /// its constant value in ConstantPool, returning 0 if it's not there.
4474 static Constant *
4475 LookupConstant(Value *V,
4476                const SmallDenseMap<Value *, Constant *> &ConstantPool) {
4477   if (Constant *C = dyn_cast<Constant>(V))
4478     return C;
4479   return ConstantPool.lookup(V);
4480 }
4481 
4482 /// Try to fold instruction I into a constant. This works for
4483 /// simple instructions such as binary operations where both operands are
4484 /// constant or can be replaced by constants from the ConstantPool. Returns the
4485 /// resulting constant on success, 0 otherwise.
4486 static Constant *
4487 ConstantFold(Instruction *I, const DataLayout &DL,
4488              const SmallDenseMap<Value *, Constant *> &ConstantPool) {
4489   if (SelectInst *Select = dyn_cast<SelectInst>(I)) {
4490     Constant *A = LookupConstant(Select->getCondition(), ConstantPool);
4491     if (!A)
4492       return nullptr;
4493     if (A->isAllOnesValue())
4494       return LookupConstant(Select->getTrueValue(), ConstantPool);
4495     if (A->isNullValue())
4496       return LookupConstant(Select->getFalseValue(), ConstantPool);
4497     return nullptr;
4498   }
4499 
4500   SmallVector<Constant *, 4> COps;
4501   for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) {
4502     if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool))
4503       COps.push_back(A);
4504     else
4505       return nullptr;
4506   }
4507 
4508   if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
4509     return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0],
4510                                            COps[1], DL);
4511   }
4512 
4513   return ConstantFoldInstOperands(I, COps, DL);
4514 }
4515 
4516 /// Try to determine the resulting constant values in phi nodes
4517 /// at the common destination basic block, *CommonDest, for one of the case
4518 /// destionations CaseDest corresponding to value CaseVal (0 for the default
4519 /// case), of a switch instruction SI.
4520 static bool
4521 GetCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest,
4522                BasicBlock **CommonDest,
4523                SmallVectorImpl<std::pair<PHINode *, Constant *> > &Res,
4524                const DataLayout &DL, const TargetTransformInfo &TTI) {
4525   // The block from which we enter the common destination.
4526   BasicBlock *Pred = SI->getParent();
4527 
4528   // If CaseDest is empty except for some side-effect free instructions through
4529   // which we can constant-propagate the CaseVal, continue to its successor.
4530   SmallDenseMap<Value *, Constant *> ConstantPool;
4531   ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal));
4532   for (BasicBlock::iterator I = CaseDest->begin(), E = CaseDest->end(); I != E;
4533        ++I) {
4534     if (TerminatorInst *T = dyn_cast<TerminatorInst>(I)) {
4535       // If the terminator is a simple branch, continue to the next block.
4536       if (T->getNumSuccessors() != 1 || T->isExceptional())
4537         return false;
4538       Pred = CaseDest;
4539       CaseDest = T->getSuccessor(0);
4540     } else if (isa<DbgInfoIntrinsic>(I)) {
4541       // Skip debug intrinsic.
4542       continue;
4543     } else if (Constant *C = ConstantFold(&*I, DL, ConstantPool)) {
4544       // Instruction is side-effect free and constant.
4545 
4546       // If the instruction has uses outside this block or a phi node slot for
4547       // the block, it is not safe to bypass the instruction since it would then
4548       // no longer dominate all its uses.
4549       for (auto &Use : I->uses()) {
4550         User *User = Use.getUser();
4551         if (Instruction *I = dyn_cast<Instruction>(User))
4552           if (I->getParent() == CaseDest)
4553             continue;
4554         if (PHINode *Phi = dyn_cast<PHINode>(User))
4555           if (Phi->getIncomingBlock(Use) == CaseDest)
4556             continue;
4557         return false;
4558       }
4559 
4560       ConstantPool.insert(std::make_pair(&*I, C));
4561     } else {
4562       break;
4563     }
4564   }
4565 
4566   // If we did not have a CommonDest before, use the current one.
4567   if (!*CommonDest)
4568     *CommonDest = CaseDest;
4569   // If the destination isn't the common one, abort.
4570   if (CaseDest != *CommonDest)
4571     return false;
4572 
4573   // Get the values for this case from phi nodes in the destination block.
4574   BasicBlock::iterator I = (*CommonDest)->begin();
4575   while (PHINode *PHI = dyn_cast<PHINode>(I++)) {
4576     int Idx = PHI->getBasicBlockIndex(Pred);
4577     if (Idx == -1)
4578       continue;
4579 
4580     Constant *ConstVal =
4581         LookupConstant(PHI->getIncomingValue(Idx), ConstantPool);
4582     if (!ConstVal)
4583       return false;
4584 
4585     // Be conservative about which kinds of constants we support.
4586     if (!ValidLookupTableConstant(ConstVal, TTI))
4587       return false;
4588 
4589     Res.push_back(std::make_pair(PHI, ConstVal));
4590   }
4591 
4592   return Res.size() > 0;
4593 }
4594 
4595 // Helper function used to add CaseVal to the list of cases that generate
4596 // Result.
4597 static void MapCaseToResult(ConstantInt *CaseVal,
4598                             SwitchCaseResultVectorTy &UniqueResults,
4599                             Constant *Result) {
4600   for (auto &I : UniqueResults) {
4601     if (I.first == Result) {
4602       I.second.push_back(CaseVal);
4603       return;
4604     }
4605   }
4606   UniqueResults.push_back(
4607       std::make_pair(Result, SmallVector<ConstantInt *, 4>(1, CaseVal)));
4608 }
4609 
4610 // Helper function that initializes a map containing
4611 // results for the PHI node of the common destination block for a switch
4612 // instruction. Returns false if multiple PHI nodes have been found or if
4613 // there is not a common destination block for the switch.
4614 static bool InitializeUniqueCases(SwitchInst *SI, PHINode *&PHI,
4615                                   BasicBlock *&CommonDest,
4616                                   SwitchCaseResultVectorTy &UniqueResults,
4617                                   Constant *&DefaultResult,
4618                                   const DataLayout &DL,
4619                                   const TargetTransformInfo &TTI) {
4620   for (auto &I : SI->cases()) {
4621     ConstantInt *CaseVal = I.getCaseValue();
4622 
4623     // Resulting value at phi nodes for this case value.
4624     SwitchCaseResultsTy Results;
4625     if (!GetCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results,
4626                         DL, TTI))
4627       return false;
4628 
4629     // Only one value per case is permitted
4630     if (Results.size() > 1)
4631       return false;
4632     MapCaseToResult(CaseVal, UniqueResults, Results.begin()->second);
4633 
4634     // Check the PHI consistency.
4635     if (!PHI)
4636       PHI = Results[0].first;
4637     else if (PHI != Results[0].first)
4638       return false;
4639   }
4640   // Find the default result value.
4641   SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults;
4642   BasicBlock *DefaultDest = SI->getDefaultDest();
4643   GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults,
4644                  DL, TTI);
4645   // If the default value is not found abort unless the default destination
4646   // is unreachable.
4647   DefaultResult =
4648       DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr;
4649   if ((!DefaultResult &&
4650        !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg())))
4651     return false;
4652 
4653   return true;
4654 }
4655 
4656 // Helper function that checks if it is possible to transform a switch with only
4657 // two cases (or two cases + default) that produces a result into a select.
4658 // Example:
4659 // switch (a) {
4660 //   case 10:                %0 = icmp eq i32 %a, 10
4661 //     return 10;            %1 = select i1 %0, i32 10, i32 4
4662 //   case 20:        ---->   %2 = icmp eq i32 %a, 20
4663 //     return 2;             %3 = select i1 %2, i32 2, i32 %1
4664 //   default:
4665 //     return 4;
4666 // }
4667 static Value *ConvertTwoCaseSwitch(const SwitchCaseResultVectorTy &ResultVector,
4668                                    Constant *DefaultResult, Value *Condition,
4669                                    IRBuilder<> &Builder) {
4670   assert(ResultVector.size() == 2 &&
4671          "We should have exactly two unique results at this point");
4672   // If we are selecting between only two cases transform into a simple
4673   // select or a two-way select if default is possible.
4674   if (ResultVector[0].second.size() == 1 &&
4675       ResultVector[1].second.size() == 1) {
4676     ConstantInt *const FirstCase = ResultVector[0].second[0];
4677     ConstantInt *const SecondCase = ResultVector[1].second[0];
4678 
4679     bool DefaultCanTrigger = DefaultResult;
4680     Value *SelectValue = ResultVector[1].first;
4681     if (DefaultCanTrigger) {
4682       Value *const ValueCompare =
4683           Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp");
4684       SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first,
4685                                          DefaultResult, "switch.select");
4686     }
4687     Value *const ValueCompare =
4688         Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp");
4689     return Builder.CreateSelect(ValueCompare, ResultVector[0].first,
4690                                 SelectValue, "switch.select");
4691   }
4692 
4693   return nullptr;
4694 }
4695 
4696 // Helper function to cleanup a switch instruction that has been converted into
4697 // a select, fixing up PHI nodes and basic blocks.
4698 static void RemoveSwitchAfterSelectConversion(SwitchInst *SI, PHINode *PHI,
4699                                               Value *SelectValue,
4700                                               IRBuilder<> &Builder) {
4701   BasicBlock *SelectBB = SI->getParent();
4702   while (PHI->getBasicBlockIndex(SelectBB) >= 0)
4703     PHI->removeIncomingValue(SelectBB);
4704   PHI->addIncoming(SelectValue, SelectBB);
4705 
4706   Builder.CreateBr(PHI->getParent());
4707 
4708   // Remove the switch.
4709   for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
4710     BasicBlock *Succ = SI->getSuccessor(i);
4711 
4712     if (Succ == PHI->getParent())
4713       continue;
4714     Succ->removePredecessor(SelectBB);
4715   }
4716   SI->eraseFromParent();
4717 }
4718 
4719 /// If the switch is only used to initialize one or more
4720 /// phi nodes in a common successor block with only two different
4721 /// constant values, replace the switch with select.
4722 static bool SwitchToSelect(SwitchInst *SI, IRBuilder<> &Builder,
4723                            AssumptionCache *AC, const DataLayout &DL,
4724                            const TargetTransformInfo &TTI) {
4725   Value *const Cond = SI->getCondition();
4726   PHINode *PHI = nullptr;
4727   BasicBlock *CommonDest = nullptr;
4728   Constant *DefaultResult;
4729   SwitchCaseResultVectorTy UniqueResults;
4730   // Collect all the cases that will deliver the same value from the switch.
4731   if (!InitializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult,
4732                              DL, TTI))
4733     return false;
4734   // Selects choose between maximum two values.
4735   if (UniqueResults.size() != 2)
4736     return false;
4737   assert(PHI != nullptr && "PHI for value select not found");
4738 
4739   Builder.SetInsertPoint(SI);
4740   Value *SelectValue =
4741       ConvertTwoCaseSwitch(UniqueResults, DefaultResult, Cond, Builder);
4742   if (SelectValue) {
4743     RemoveSwitchAfterSelectConversion(SI, PHI, SelectValue, Builder);
4744     return true;
4745   }
4746   // The switch couldn't be converted into a select.
4747   return false;
4748 }
4749 
4750 namespace {
4751 /// This class represents a lookup table that can be used to replace a switch.
4752 class SwitchLookupTable {
4753 public:
4754   /// Create a lookup table to use as a switch replacement with the contents
4755   /// of Values, using DefaultValue to fill any holes in the table.
4756   SwitchLookupTable(
4757       Module &M, uint64_t TableSize, ConstantInt *Offset,
4758       const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
4759       Constant *DefaultValue, const DataLayout &DL);
4760 
4761   /// Build instructions with Builder to retrieve the value at
4762   /// the position given by Index in the lookup table.
4763   Value *BuildLookup(Value *Index, IRBuilder<> &Builder);
4764 
4765   /// Return true if a table with TableSize elements of
4766   /// type ElementType would fit in a target-legal register.
4767   static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize,
4768                                  Type *ElementType);
4769 
4770 private:
4771   // Depending on the contents of the table, it can be represented in
4772   // different ways.
4773   enum {
4774     // For tables where each element contains the same value, we just have to
4775     // store that single value and return it for each lookup.
4776     SingleValueKind,
4777 
4778     // For tables where there is a linear relationship between table index
4779     // and values. We calculate the result with a simple multiplication
4780     // and addition instead of a table lookup.
4781     LinearMapKind,
4782 
4783     // For small tables with integer elements, we can pack them into a bitmap
4784     // that fits into a target-legal register. Values are retrieved by
4785     // shift and mask operations.
4786     BitMapKind,
4787 
4788     // The table is stored as an array of values. Values are retrieved by load
4789     // instructions from the table.
4790     ArrayKind
4791   } Kind;
4792 
4793   // For SingleValueKind, this is the single value.
4794   Constant *SingleValue;
4795 
4796   // For BitMapKind, this is the bitmap.
4797   ConstantInt *BitMap;
4798   IntegerType *BitMapElementTy;
4799 
4800   // For LinearMapKind, these are the constants used to derive the value.
4801   ConstantInt *LinearOffset;
4802   ConstantInt *LinearMultiplier;
4803 
4804   // For ArrayKind, this is the array.
4805   GlobalVariable *Array;
4806 };
4807 }
4808 
4809 SwitchLookupTable::SwitchLookupTable(
4810     Module &M, uint64_t TableSize, ConstantInt *Offset,
4811     const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
4812     Constant *DefaultValue, const DataLayout &DL)
4813     : SingleValue(nullptr), BitMap(nullptr), BitMapElementTy(nullptr),
4814       LinearOffset(nullptr), LinearMultiplier(nullptr), Array(nullptr) {
4815   assert(Values.size() && "Can't build lookup table without values!");
4816   assert(TableSize >= Values.size() && "Can't fit values in table!");
4817 
4818   // If all values in the table are equal, this is that value.
4819   SingleValue = Values.begin()->second;
4820 
4821   Type *ValueType = Values.begin()->second->getType();
4822 
4823   // Build up the table contents.
4824   SmallVector<Constant *, 64> TableContents(TableSize);
4825   for (size_t I = 0, E = Values.size(); I != E; ++I) {
4826     ConstantInt *CaseVal = Values[I].first;
4827     Constant *CaseRes = Values[I].second;
4828     assert(CaseRes->getType() == ValueType);
4829 
4830     uint64_t Idx = (CaseVal->getValue() - Offset->getValue()).getLimitedValue();
4831     TableContents[Idx] = CaseRes;
4832 
4833     if (CaseRes != SingleValue)
4834       SingleValue = nullptr;
4835   }
4836 
4837   // Fill in any holes in the table with the default result.
4838   if (Values.size() < TableSize) {
4839     assert(DefaultValue &&
4840            "Need a default value to fill the lookup table holes.");
4841     assert(DefaultValue->getType() == ValueType);
4842     for (uint64_t I = 0; I < TableSize; ++I) {
4843       if (!TableContents[I])
4844         TableContents[I] = DefaultValue;
4845     }
4846 
4847     if (DefaultValue != SingleValue)
4848       SingleValue = nullptr;
4849   }
4850 
4851   // If each element in the table contains the same value, we only need to store
4852   // that single value.
4853   if (SingleValue) {
4854     Kind = SingleValueKind;
4855     return;
4856   }
4857 
4858   // Check if we can derive the value with a linear transformation from the
4859   // table index.
4860   if (isa<IntegerType>(ValueType)) {
4861     bool LinearMappingPossible = true;
4862     APInt PrevVal;
4863     APInt DistToPrev;
4864     assert(TableSize >= 2 && "Should be a SingleValue table.");
4865     // Check if there is the same distance between two consecutive values.
4866     for (uint64_t I = 0; I < TableSize; ++I) {
4867       ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]);
4868       if (!ConstVal) {
4869         // This is an undef. We could deal with it, but undefs in lookup tables
4870         // are very seldom. It's probably not worth the additional complexity.
4871         LinearMappingPossible = false;
4872         break;
4873       }
4874       APInt Val = ConstVal->getValue();
4875       if (I != 0) {
4876         APInt Dist = Val - PrevVal;
4877         if (I == 1) {
4878           DistToPrev = Dist;
4879         } else if (Dist != DistToPrev) {
4880           LinearMappingPossible = false;
4881           break;
4882         }
4883       }
4884       PrevVal = Val;
4885     }
4886     if (LinearMappingPossible) {
4887       LinearOffset = cast<ConstantInt>(TableContents[0]);
4888       LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev);
4889       Kind = LinearMapKind;
4890       ++NumLinearMaps;
4891       return;
4892     }
4893   }
4894 
4895   // If the type is integer and the table fits in a register, build a bitmap.
4896   if (WouldFitInRegister(DL, TableSize, ValueType)) {
4897     IntegerType *IT = cast<IntegerType>(ValueType);
4898     APInt TableInt(TableSize * IT->getBitWidth(), 0);
4899     for (uint64_t I = TableSize; I > 0; --I) {
4900       TableInt <<= IT->getBitWidth();
4901       // Insert values into the bitmap. Undef values are set to zero.
4902       if (!isa<UndefValue>(TableContents[I - 1])) {
4903         ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]);
4904         TableInt |= Val->getValue().zext(TableInt.getBitWidth());
4905       }
4906     }
4907     BitMap = ConstantInt::get(M.getContext(), TableInt);
4908     BitMapElementTy = IT;
4909     Kind = BitMapKind;
4910     ++NumBitMaps;
4911     return;
4912   }
4913 
4914   // Store the table in an array.
4915   ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize);
4916   Constant *Initializer = ConstantArray::get(ArrayTy, TableContents);
4917 
4918   Array = new GlobalVariable(M, ArrayTy, /*constant=*/true,
4919                              GlobalVariable::PrivateLinkage, Initializer,
4920                              "switch.table");
4921   Array->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
4922   Kind = ArrayKind;
4923 }
4924 
4925 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) {
4926   switch (Kind) {
4927   case SingleValueKind:
4928     return SingleValue;
4929   case LinearMapKind: {
4930     // Derive the result value from the input value.
4931     Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(),
4932                                           false, "switch.idx.cast");
4933     if (!LinearMultiplier->isOne())
4934       Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult");
4935     if (!LinearOffset->isZero())
4936       Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset");
4937     return Result;
4938   }
4939   case BitMapKind: {
4940     // Type of the bitmap (e.g. i59).
4941     IntegerType *MapTy = BitMap->getType();
4942 
4943     // Cast Index to the same type as the bitmap.
4944     // Note: The Index is <= the number of elements in the table, so
4945     // truncating it to the width of the bitmask is safe.
4946     Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast");
4947 
4948     // Multiply the shift amount by the element width.
4949     ShiftAmt = Builder.CreateMul(
4950         ShiftAmt, ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()),
4951         "switch.shiftamt");
4952 
4953     // Shift down.
4954     Value *DownShifted =
4955         Builder.CreateLShr(BitMap, ShiftAmt, "switch.downshift");
4956     // Mask off.
4957     return Builder.CreateTrunc(DownShifted, BitMapElementTy, "switch.masked");
4958   }
4959   case ArrayKind: {
4960     // Make sure the table index will not overflow when treated as signed.
4961     IntegerType *IT = cast<IntegerType>(Index->getType());
4962     uint64_t TableSize =
4963         Array->getInitializer()->getType()->getArrayNumElements();
4964     if (TableSize > (1ULL << (IT->getBitWidth() - 1)))
4965       Index = Builder.CreateZExt(
4966           Index, IntegerType::get(IT->getContext(), IT->getBitWidth() + 1),
4967           "switch.tableidx.zext");
4968 
4969     Value *GEPIndices[] = {Builder.getInt32(0), Index};
4970     Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array,
4971                                            GEPIndices, "switch.gep");
4972     return Builder.CreateLoad(GEP, "switch.load");
4973   }
4974   }
4975   llvm_unreachable("Unknown lookup table kind!");
4976 }
4977 
4978 bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL,
4979                                            uint64_t TableSize,
4980                                            Type *ElementType) {
4981   auto *IT = dyn_cast<IntegerType>(ElementType);
4982   if (!IT)
4983     return false;
4984   // FIXME: If the type is wider than it needs to be, e.g. i8 but all values
4985   // are <= 15, we could try to narrow the type.
4986 
4987   // Avoid overflow, fitsInLegalInteger uses unsigned int for the width.
4988   if (TableSize >= UINT_MAX / IT->getBitWidth())
4989     return false;
4990   return DL.fitsInLegalInteger(TableSize * IT->getBitWidth());
4991 }
4992 
4993 /// Determine whether a lookup table should be built for this switch, based on
4994 /// the number of cases, size of the table, and the types of the results.
4995 static bool
4996 ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize,
4997                        const TargetTransformInfo &TTI, const DataLayout &DL,
4998                        const SmallDenseMap<PHINode *, Type *> &ResultTypes) {
4999   if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10)
5000     return false; // TableSize overflowed, or mul below might overflow.
5001 
5002   bool AllTablesFitInRegister = true;
5003   bool HasIllegalType = false;
5004   for (const auto &I : ResultTypes) {
5005     Type *Ty = I.second;
5006 
5007     // Saturate this flag to true.
5008     HasIllegalType = HasIllegalType || !TTI.isTypeLegal(Ty);
5009 
5010     // Saturate this flag to false.
5011     AllTablesFitInRegister =
5012         AllTablesFitInRegister &&
5013         SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty);
5014 
5015     // If both flags saturate, we're done. NOTE: This *only* works with
5016     // saturating flags, and all flags have to saturate first due to the
5017     // non-deterministic behavior of iterating over a dense map.
5018     if (HasIllegalType && !AllTablesFitInRegister)
5019       break;
5020   }
5021 
5022   // If each table would fit in a register, we should build it anyway.
5023   if (AllTablesFitInRegister)
5024     return true;
5025 
5026   // Don't build a table that doesn't fit in-register if it has illegal types.
5027   if (HasIllegalType)
5028     return false;
5029 
5030   // The table density should be at least 40%. This is the same criterion as for
5031   // jump tables, see SelectionDAGBuilder::handleJTSwitchCase.
5032   // FIXME: Find the best cut-off.
5033   return SI->getNumCases() * 10 >= TableSize * 4;
5034 }
5035 
5036 /// Try to reuse the switch table index compare. Following pattern:
5037 /// \code
5038 ///     if (idx < tablesize)
5039 ///        r = table[idx]; // table does not contain default_value
5040 ///     else
5041 ///        r = default_value;
5042 ///     if (r != default_value)
5043 ///        ...
5044 /// \endcode
5045 /// Is optimized to:
5046 /// \code
5047 ///     cond = idx < tablesize;
5048 ///     if (cond)
5049 ///        r = table[idx];
5050 ///     else
5051 ///        r = default_value;
5052 ///     if (cond)
5053 ///        ...
5054 /// \endcode
5055 /// Jump threading will then eliminate the second if(cond).
5056 static void reuseTableCompare(
5057     User *PhiUser, BasicBlock *PhiBlock, BranchInst *RangeCheckBranch,
5058     Constant *DefaultValue,
5059     const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values) {
5060 
5061   ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser);
5062   if (!CmpInst)
5063     return;
5064 
5065   // We require that the compare is in the same block as the phi so that jump
5066   // threading can do its work afterwards.
5067   if (CmpInst->getParent() != PhiBlock)
5068     return;
5069 
5070   Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1));
5071   if (!CmpOp1)
5072     return;
5073 
5074   Value *RangeCmp = RangeCheckBranch->getCondition();
5075   Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType());
5076   Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType());
5077 
5078   // Check if the compare with the default value is constant true or false.
5079   Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
5080                                                  DefaultValue, CmpOp1, true);
5081   if (DefaultConst != TrueConst && DefaultConst != FalseConst)
5082     return;
5083 
5084   // Check if the compare with the case values is distinct from the default
5085   // compare result.
5086   for (auto ValuePair : Values) {
5087     Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
5088                                                 ValuePair.second, CmpOp1, true);
5089     if (!CaseConst || CaseConst == DefaultConst)
5090       return;
5091     assert((CaseConst == TrueConst || CaseConst == FalseConst) &&
5092            "Expect true or false as compare result.");
5093   }
5094 
5095   // Check if the branch instruction dominates the phi node. It's a simple
5096   // dominance check, but sufficient for our needs.
5097   // Although this check is invariant in the calling loops, it's better to do it
5098   // at this late stage. Practically we do it at most once for a switch.
5099   BasicBlock *BranchBlock = RangeCheckBranch->getParent();
5100   for (auto PI = pred_begin(PhiBlock), E = pred_end(PhiBlock); PI != E; ++PI) {
5101     BasicBlock *Pred = *PI;
5102     if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock)
5103       return;
5104   }
5105 
5106   if (DefaultConst == FalseConst) {
5107     // The compare yields the same result. We can replace it.
5108     CmpInst->replaceAllUsesWith(RangeCmp);
5109     ++NumTableCmpReuses;
5110   } else {
5111     // The compare yields the same result, just inverted. We can replace it.
5112     Value *InvertedTableCmp = BinaryOperator::CreateXor(
5113         RangeCmp, ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp",
5114         RangeCheckBranch);
5115     CmpInst->replaceAllUsesWith(InvertedTableCmp);
5116     ++NumTableCmpReuses;
5117   }
5118 }
5119 
5120 /// If the switch is only used to initialize one or more phi nodes in a common
5121 /// successor block with different constant values, replace the switch with
5122 /// lookup tables.
5123 static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder,
5124                                 const DataLayout &DL,
5125                                 const TargetTransformInfo &TTI) {
5126   assert(SI->getNumCases() > 1 && "Degenerate switch?");
5127 
5128   // Only build lookup table when we have a target that supports it.
5129   if (!TTI.shouldBuildLookupTables())
5130     return false;
5131 
5132   // FIXME: If the switch is too sparse for a lookup table, perhaps we could
5133   // split off a dense part and build a lookup table for that.
5134 
5135   // FIXME: This creates arrays of GEPs to constant strings, which means each
5136   // GEP needs a runtime relocation in PIC code. We should just build one big
5137   // string and lookup indices into that.
5138 
5139   // Ignore switches with less than three cases. Lookup tables will not make
5140   // them
5141   // faster, so we don't analyze them.
5142   if (SI->getNumCases() < 3)
5143     return false;
5144 
5145   // Figure out the corresponding result for each case value and phi node in the
5146   // common destination, as well as the min and max case values.
5147   assert(SI->case_begin() != SI->case_end());
5148   SwitchInst::CaseIt CI = SI->case_begin();
5149   ConstantInt *MinCaseVal = CI.getCaseValue();
5150   ConstantInt *MaxCaseVal = CI.getCaseValue();
5151 
5152   BasicBlock *CommonDest = nullptr;
5153   typedef SmallVector<std::pair<ConstantInt *, Constant *>, 4> ResultListTy;
5154   SmallDenseMap<PHINode *, ResultListTy> ResultLists;
5155   SmallDenseMap<PHINode *, Constant *> DefaultResults;
5156   SmallDenseMap<PHINode *, Type *> ResultTypes;
5157   SmallVector<PHINode *, 4> PHIs;
5158 
5159   for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) {
5160     ConstantInt *CaseVal = CI.getCaseValue();
5161     if (CaseVal->getValue().slt(MinCaseVal->getValue()))
5162       MinCaseVal = CaseVal;
5163     if (CaseVal->getValue().sgt(MaxCaseVal->getValue()))
5164       MaxCaseVal = CaseVal;
5165 
5166     // Resulting value at phi nodes for this case value.
5167     typedef SmallVector<std::pair<PHINode *, Constant *>, 4> ResultsTy;
5168     ResultsTy Results;
5169     if (!GetCaseResults(SI, CaseVal, CI.getCaseSuccessor(), &CommonDest,
5170                         Results, DL, TTI))
5171       return false;
5172 
5173     // Append the result from this case to the list for each phi.
5174     for (const auto &I : Results) {
5175       PHINode *PHI = I.first;
5176       Constant *Value = I.second;
5177       if (!ResultLists.count(PHI))
5178         PHIs.push_back(PHI);
5179       ResultLists[PHI].push_back(std::make_pair(CaseVal, Value));
5180     }
5181   }
5182 
5183   // Keep track of the result types.
5184   for (PHINode *PHI : PHIs) {
5185     ResultTypes[PHI] = ResultLists[PHI][0].second->getType();
5186   }
5187 
5188   uint64_t NumResults = ResultLists[PHIs[0]].size();
5189   APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue();
5190   uint64_t TableSize = RangeSpread.getLimitedValue() + 1;
5191   bool TableHasHoles = (NumResults < TableSize);
5192 
5193   // If the table has holes, we need a constant result for the default case
5194   // or a bitmask that fits in a register.
5195   SmallVector<std::pair<PHINode *, Constant *>, 4> DefaultResultsList;
5196   bool HasDefaultResults =
5197       GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest,
5198                      DefaultResultsList, DL, TTI);
5199 
5200   bool NeedMask = (TableHasHoles && !HasDefaultResults);
5201   if (NeedMask) {
5202     // As an extra penalty for the validity test we require more cases.
5203     if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark).
5204       return false;
5205     if (!DL.fitsInLegalInteger(TableSize))
5206       return false;
5207   }
5208 
5209   for (const auto &I : DefaultResultsList) {
5210     PHINode *PHI = I.first;
5211     Constant *Result = I.second;
5212     DefaultResults[PHI] = Result;
5213   }
5214 
5215   if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes))
5216     return false;
5217 
5218   // Create the BB that does the lookups.
5219   Module &Mod = *CommonDest->getParent()->getParent();
5220   BasicBlock *LookupBB = BasicBlock::Create(
5221       Mod.getContext(), "switch.lookup", CommonDest->getParent(), CommonDest);
5222 
5223   // Compute the table index value.
5224   Builder.SetInsertPoint(SI);
5225   Value *TableIndex =
5226       Builder.CreateSub(SI->getCondition(), MinCaseVal, "switch.tableidx");
5227 
5228   // Compute the maximum table size representable by the integer type we are
5229   // switching upon.
5230   unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits();
5231   uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize;
5232   assert(MaxTableSize >= TableSize &&
5233          "It is impossible for a switch to have more entries than the max "
5234          "representable value of its input integer type's size.");
5235 
5236   // If the default destination is unreachable, or if the lookup table covers
5237   // all values of the conditional variable, branch directly to the lookup table
5238   // BB. Otherwise, check that the condition is within the case range.
5239   const bool DefaultIsReachable =
5240       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
5241   const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize);
5242   BranchInst *RangeCheckBranch = nullptr;
5243 
5244   if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
5245     Builder.CreateBr(LookupBB);
5246     // Note: We call removeProdecessor later since we need to be able to get the
5247     // PHI value for the default case in case we're using a bit mask.
5248   } else {
5249     Value *Cmp = Builder.CreateICmpULT(
5250         TableIndex, ConstantInt::get(MinCaseVal->getType(), TableSize));
5251     RangeCheckBranch =
5252         Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest());
5253   }
5254 
5255   // Populate the BB that does the lookups.
5256   Builder.SetInsertPoint(LookupBB);
5257 
5258   if (NeedMask) {
5259     // Before doing the lookup we do the hole check.
5260     // The LookupBB is therefore re-purposed to do the hole check
5261     // and we create a new LookupBB.
5262     BasicBlock *MaskBB = LookupBB;
5263     MaskBB->setName("switch.hole_check");
5264     LookupBB = BasicBlock::Create(Mod.getContext(), "switch.lookup",
5265                                   CommonDest->getParent(), CommonDest);
5266 
5267     // Make the mask's bitwidth at least 8bit and a power-of-2 to avoid
5268     // unnecessary illegal types.
5269     uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL));
5270     APInt MaskInt(TableSizePowOf2, 0);
5271     APInt One(TableSizePowOf2, 1);
5272     // Build bitmask; fill in a 1 bit for every case.
5273     const ResultListTy &ResultList = ResultLists[PHIs[0]];
5274     for (size_t I = 0, E = ResultList.size(); I != E; ++I) {
5275       uint64_t Idx = (ResultList[I].first->getValue() - MinCaseVal->getValue())
5276                          .getLimitedValue();
5277       MaskInt |= One << Idx;
5278     }
5279     ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt);
5280 
5281     // Get the TableIndex'th bit of the bitmask.
5282     // If this bit is 0 (meaning hole) jump to the default destination,
5283     // else continue with table lookup.
5284     IntegerType *MapTy = TableMask->getType();
5285     Value *MaskIndex =
5286         Builder.CreateZExtOrTrunc(TableIndex, MapTy, "switch.maskindex");
5287     Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, "switch.shifted");
5288     Value *LoBit = Builder.CreateTrunc(
5289         Shifted, Type::getInt1Ty(Mod.getContext()), "switch.lobit");
5290     Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest());
5291 
5292     Builder.SetInsertPoint(LookupBB);
5293     AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, SI->getParent());
5294   }
5295 
5296   if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
5297     // We cached PHINodes in PHIs, to avoid accessing deleted PHINodes later,
5298     // do not delete PHINodes here.
5299     SI->getDefaultDest()->removePredecessor(SI->getParent(),
5300                                             /*DontDeleteUselessPHIs=*/true);
5301   }
5302 
5303   bool ReturnedEarly = false;
5304   for (size_t I = 0, E = PHIs.size(); I != E; ++I) {
5305     PHINode *PHI = PHIs[I];
5306     const ResultListTy &ResultList = ResultLists[PHI];
5307 
5308     // If using a bitmask, use any value to fill the lookup table holes.
5309     Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI];
5310     SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultList, DV, DL);
5311 
5312     Value *Result = Table.BuildLookup(TableIndex, Builder);
5313 
5314     // If the result is used to return immediately from the function, we want to
5315     // do that right here.
5316     if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->user_begin()) &&
5317         PHI->user_back() == CommonDest->getFirstNonPHIOrDbg()) {
5318       Builder.CreateRet(Result);
5319       ReturnedEarly = true;
5320       break;
5321     }
5322 
5323     // Do a small peephole optimization: re-use the switch table compare if
5324     // possible.
5325     if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) {
5326       BasicBlock *PhiBlock = PHI->getParent();
5327       // Search for compare instructions which use the phi.
5328       for (auto *User : PHI->users()) {
5329         reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList);
5330       }
5331     }
5332 
5333     PHI->addIncoming(Result, LookupBB);
5334   }
5335 
5336   if (!ReturnedEarly)
5337     Builder.CreateBr(CommonDest);
5338 
5339   // Remove the switch.
5340   for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
5341     BasicBlock *Succ = SI->getSuccessor(i);
5342 
5343     if (Succ == SI->getDefaultDest())
5344       continue;
5345     Succ->removePredecessor(SI->getParent());
5346   }
5347   SI->eraseFromParent();
5348 
5349   ++NumLookupTables;
5350   if (NeedMask)
5351     ++NumLookupTablesHoles;
5352   return true;
5353 }
5354 
5355 static bool isSwitchDense(ArrayRef<int64_t> Values) {
5356   // See also SelectionDAGBuilder::isDense(), which this function was based on.
5357   uint64_t Diff = (uint64_t)Values.back() - (uint64_t)Values.front();
5358   uint64_t Range = Diff + 1;
5359   uint64_t NumCases = Values.size();
5360   // 40% is the default density for building a jump table in optsize/minsize mode.
5361   uint64_t MinDensity = 40;
5362 
5363   return NumCases * 100 >= Range * MinDensity;
5364 }
5365 
5366 // Try and transform a switch that has "holes" in it to a contiguous sequence
5367 // of cases.
5368 //
5369 // A switch such as: switch(i) {case 5: case 9: case 13: case 17:} can be
5370 // range-reduced to: switch ((i-5) / 4) {case 0: case 1: case 2: case 3:}.
5371 //
5372 // This converts a sparse switch into a dense switch which allows better
5373 // lowering and could also allow transforming into a lookup table.
5374 static bool ReduceSwitchRange(SwitchInst *SI, IRBuilder<> &Builder,
5375                               const DataLayout &DL,
5376                               const TargetTransformInfo &TTI) {
5377   auto *CondTy = cast<IntegerType>(SI->getCondition()->getType());
5378   if (CondTy->getIntegerBitWidth() > 64 ||
5379       !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth()))
5380     return false;
5381   // Only bother with this optimization if there are more than 3 switch cases;
5382   // SDAG will only bother creating jump tables for 4 or more cases.
5383   if (SI->getNumCases() < 4)
5384     return false;
5385 
5386   // This transform is agnostic to the signedness of the input or case values. We
5387   // can treat the case values as signed or unsigned. We can optimize more common
5388   // cases such as a sequence crossing zero {-4,0,4,8} if we interpret case values
5389   // as signed.
5390   SmallVector<int64_t,4> Values;
5391   for (auto &C : SI->cases())
5392     Values.push_back(C.getCaseValue()->getValue().getSExtValue());
5393   std::sort(Values.begin(), Values.end());
5394 
5395   // If the switch is already dense, there's nothing useful to do here.
5396   if (isSwitchDense(Values))
5397     return false;
5398 
5399   // First, transform the values such that they start at zero and ascend.
5400   int64_t Base = Values[0];
5401   for (auto &V : Values)
5402     V -= Base;
5403 
5404   // Now we have signed numbers that have been shifted so that, given enough
5405   // precision, there are no negative values. Since the rest of the transform
5406   // is bitwise only, we switch now to an unsigned representation.
5407   uint64_t GCD = 0;
5408   for (auto &V : Values)
5409     GCD = llvm::GreatestCommonDivisor64(GCD, (uint64_t)V);
5410 
5411   // This transform can be done speculatively because it is so cheap - it results
5412   // in a single rotate operation being inserted. This can only happen if the
5413   // factor extracted is a power of 2.
5414   // FIXME: If the GCD is an odd number we can multiply by the multiplicative
5415   // inverse of GCD and then perform this transform.
5416   // FIXME: It's possible that optimizing a switch on powers of two might also
5417   // be beneficial - flag values are often powers of two and we could use a CLZ
5418   // as the key function.
5419   if (GCD <= 1 || !llvm::isPowerOf2_64(GCD))
5420     // No common divisor found or too expensive to compute key function.
5421     return false;
5422 
5423   unsigned Shift = llvm::Log2_64(GCD);
5424   for (auto &V : Values)
5425     V = (int64_t)((uint64_t)V >> Shift);
5426 
5427   if (!isSwitchDense(Values))
5428     // Transform didn't create a dense switch.
5429     return false;
5430 
5431   // The obvious transform is to shift the switch condition right and emit a
5432   // check that the condition actually cleanly divided by GCD, i.e.
5433   //   C & (1 << Shift - 1) == 0
5434   // inserting a new CFG edge to handle the case where it didn't divide cleanly.
5435   //
5436   // A cheaper way of doing this is a simple ROTR(C, Shift). This performs the
5437   // shift and puts the shifted-off bits in the uppermost bits. If any of these
5438   // are nonzero then the switch condition will be very large and will hit the
5439   // default case.
5440 
5441   auto *Ty = cast<IntegerType>(SI->getCondition()->getType());
5442   Builder.SetInsertPoint(SI);
5443   auto *ShiftC = ConstantInt::get(Ty, Shift);
5444   auto *Sub = Builder.CreateSub(SI->getCondition(), ConstantInt::get(Ty, Base));
5445   auto *LShr = Builder.CreateLShr(Sub, ShiftC);
5446   auto *Shl = Builder.CreateShl(Sub, Ty->getBitWidth() - Shift);
5447   auto *Rot = Builder.CreateOr(LShr, Shl);
5448   SI->replaceUsesOfWith(SI->getCondition(), Rot);
5449 
5450   for (SwitchInst::CaseIt C = SI->case_begin(), E = SI->case_end(); C != E;
5451        ++C) {
5452     auto *Orig = C.getCaseValue();
5453     auto Sub = Orig->getValue() - APInt(Ty->getBitWidth(), Base);
5454     C.setValue(
5455         cast<ConstantInt>(ConstantInt::get(Ty, Sub.lshr(ShiftC->getValue()))));
5456   }
5457   return true;
5458 }
5459 
5460 bool SimplifyCFGOpt::SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) {
5461   BasicBlock *BB = SI->getParent();
5462 
5463   if (isValueEqualityComparison(SI)) {
5464     // If we only have one predecessor, and if it is a branch on this value,
5465     // see if that predecessor totally determines the outcome of this switch.
5466     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
5467       if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder))
5468         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5469 
5470     Value *Cond = SI->getCondition();
5471     if (SelectInst *Select = dyn_cast<SelectInst>(Cond))
5472       if (SimplifySwitchOnSelect(SI, Select))
5473         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5474 
5475     // If the block only contains the switch, see if we can fold the block
5476     // away into any preds.
5477     BasicBlock::iterator BBI = BB->begin();
5478     // Ignore dbg intrinsics.
5479     while (isa<DbgInfoIntrinsic>(BBI))
5480       ++BBI;
5481     if (SI == &*BBI)
5482       if (FoldValueComparisonIntoPredecessors(SI, Builder))
5483         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5484   }
5485 
5486   // Try to transform the switch into an icmp and a branch.
5487   if (TurnSwitchRangeIntoICmp(SI, Builder))
5488     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5489 
5490   // Remove unreachable cases.
5491   if (EliminateDeadSwitchCases(SI, AC, DL))
5492     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5493 
5494   if (SwitchToSelect(SI, Builder, AC, DL, TTI))
5495     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5496 
5497   if (ForwardSwitchConditionToPHI(SI))
5498     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5499 
5500   if (SwitchToLookupTable(SI, Builder, DL, TTI))
5501     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5502 
5503   if (ReduceSwitchRange(SI, Builder, DL, TTI))
5504     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5505 
5506   return false;
5507 }
5508 
5509 bool SimplifyCFGOpt::SimplifyIndirectBr(IndirectBrInst *IBI) {
5510   BasicBlock *BB = IBI->getParent();
5511   bool Changed = false;
5512 
5513   // Eliminate redundant destinations.
5514   SmallPtrSet<Value *, 8> Succs;
5515   for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
5516     BasicBlock *Dest = IBI->getDestination(i);
5517     if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) {
5518       Dest->removePredecessor(BB);
5519       IBI->removeDestination(i);
5520       --i;
5521       --e;
5522       Changed = true;
5523     }
5524   }
5525 
5526   if (IBI->getNumDestinations() == 0) {
5527     // If the indirectbr has no successors, change it to unreachable.
5528     new UnreachableInst(IBI->getContext(), IBI);
5529     EraseTerminatorInstAndDCECond(IBI);
5530     return true;
5531   }
5532 
5533   if (IBI->getNumDestinations() == 1) {
5534     // If the indirectbr has one successor, change it to a direct branch.
5535     BranchInst::Create(IBI->getDestination(0), IBI);
5536     EraseTerminatorInstAndDCECond(IBI);
5537     return true;
5538   }
5539 
5540   if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) {
5541     if (SimplifyIndirectBrOnSelect(IBI, SI))
5542       return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5543   }
5544   return Changed;
5545 }
5546 
5547 /// Given an block with only a single landing pad and a unconditional branch
5548 /// try to find another basic block which this one can be merged with.  This
5549 /// handles cases where we have multiple invokes with unique landing pads, but
5550 /// a shared handler.
5551 ///
5552 /// We specifically choose to not worry about merging non-empty blocks
5553 /// here.  That is a PRE/scheduling problem and is best solved elsewhere.  In
5554 /// practice, the optimizer produces empty landing pad blocks quite frequently
5555 /// when dealing with exception dense code.  (see: instcombine, gvn, if-else
5556 /// sinking in this file)
5557 ///
5558 /// This is primarily a code size optimization.  We need to avoid performing
5559 /// any transform which might inhibit optimization (such as our ability to
5560 /// specialize a particular handler via tail commoning).  We do this by not
5561 /// merging any blocks which require us to introduce a phi.  Since the same
5562 /// values are flowing through both blocks, we don't loose any ability to
5563 /// specialize.  If anything, we make such specialization more likely.
5564 ///
5565 /// TODO - This transformation could remove entries from a phi in the target
5566 /// block when the inputs in the phi are the same for the two blocks being
5567 /// merged.  In some cases, this could result in removal of the PHI entirely.
5568 static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI,
5569                                  BasicBlock *BB) {
5570   auto Succ = BB->getUniqueSuccessor();
5571   assert(Succ);
5572   // If there's a phi in the successor block, we'd likely have to introduce
5573   // a phi into the merged landing pad block.
5574   if (isa<PHINode>(*Succ->begin()))
5575     return false;
5576 
5577   for (BasicBlock *OtherPred : predecessors(Succ)) {
5578     if (BB == OtherPred)
5579       continue;
5580     BasicBlock::iterator I = OtherPred->begin();
5581     LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I);
5582     if (!LPad2 || !LPad2->isIdenticalTo(LPad))
5583       continue;
5584     for (++I; isa<DbgInfoIntrinsic>(I); ++I) {
5585     }
5586     BranchInst *BI2 = dyn_cast<BranchInst>(I);
5587     if (!BI2 || !BI2->isIdenticalTo(BI))
5588       continue;
5589 
5590     // We've found an identical block.  Update our predecessors to take that
5591     // path instead and make ourselves dead.
5592     SmallSet<BasicBlock *, 16> Preds;
5593     Preds.insert(pred_begin(BB), pred_end(BB));
5594     for (BasicBlock *Pred : Preds) {
5595       InvokeInst *II = cast<InvokeInst>(Pred->getTerminator());
5596       assert(II->getNormalDest() != BB && II->getUnwindDest() == BB &&
5597              "unexpected successor");
5598       II->setUnwindDest(OtherPred);
5599     }
5600 
5601     // The debug info in OtherPred doesn't cover the merged control flow that
5602     // used to go through BB.  We need to delete it or update it.
5603     for (auto I = OtherPred->begin(), E = OtherPred->end(); I != E;) {
5604       Instruction &Inst = *I;
5605       I++;
5606       if (isa<DbgInfoIntrinsic>(Inst))
5607         Inst.eraseFromParent();
5608     }
5609 
5610     SmallSet<BasicBlock *, 16> Succs;
5611     Succs.insert(succ_begin(BB), succ_end(BB));
5612     for (BasicBlock *Succ : Succs) {
5613       Succ->removePredecessor(BB);
5614     }
5615 
5616     IRBuilder<> Builder(BI);
5617     Builder.CreateUnreachable();
5618     BI->eraseFromParent();
5619     return true;
5620   }
5621   return false;
5622 }
5623 
5624 bool SimplifyCFGOpt::SimplifyUncondBranch(BranchInst *BI,
5625                                           IRBuilder<> &Builder) {
5626   BasicBlock *BB = BI->getParent();
5627 
5628   if (SinkCommon && SinkThenElseCodeToEnd(BI))
5629     return true;
5630 
5631   // If the Terminator is the only non-phi instruction, simplify the block.
5632   // if LoopHeader is provided, check if the block is a loop header
5633   // (This is for early invocations before loop simplify and vectorization
5634   // to keep canonical loop forms for nested loops.
5635   // These blocks can be eliminated when the pass is invoked later
5636   // in the back-end.)
5637   BasicBlock::iterator I = BB->getFirstNonPHIOrDbg()->getIterator();
5638   if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() &&
5639       (!LoopHeaders || !LoopHeaders->count(BB)) &&
5640       TryToSimplifyUncondBranchFromEmptyBlock(BB))
5641     return true;
5642 
5643   // If the only instruction in the block is a seteq/setne comparison
5644   // against a constant, try to simplify the block.
5645   if (ICmpInst *ICI = dyn_cast<ICmpInst>(I))
5646     if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) {
5647       for (++I; isa<DbgInfoIntrinsic>(I); ++I)
5648         ;
5649       if (I->isTerminator() &&
5650           TryToSimplifyUncondBranchWithICmpInIt(ICI, Builder, DL, TTI,
5651                                                 BonusInstThreshold, AC))
5652         return true;
5653     }
5654 
5655   // See if we can merge an empty landing pad block with another which is
5656   // equivalent.
5657   if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) {
5658     for (++I; isa<DbgInfoIntrinsic>(I); ++I) {
5659     }
5660     if (I->isTerminator() && TryToMergeLandingPad(LPad, BI, BB))
5661       return true;
5662   }
5663 
5664   // If this basic block is ONLY a compare and a branch, and if a predecessor
5665   // branches to us and our successor, fold the comparison into the
5666   // predecessor and use logical operations to update the incoming value
5667   // for PHI nodes in common successor.
5668   if (FoldBranchToCommonDest(BI, BonusInstThreshold))
5669     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5670   return false;
5671 }
5672 
5673 static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) {
5674   BasicBlock *PredPred = nullptr;
5675   for (auto *P : predecessors(BB)) {
5676     BasicBlock *PPred = P->getSinglePredecessor();
5677     if (!PPred || (PredPred && PredPred != PPred))
5678       return nullptr;
5679     PredPred = PPred;
5680   }
5681   return PredPred;
5682 }
5683 
5684 bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) {
5685   BasicBlock *BB = BI->getParent();
5686 
5687   // Conditional branch
5688   if (isValueEqualityComparison(BI)) {
5689     // If we only have one predecessor, and if it is a branch on this value,
5690     // see if that predecessor totally determines the outcome of this
5691     // switch.
5692     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
5693       if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder))
5694         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5695 
5696     // This block must be empty, except for the setcond inst, if it exists.
5697     // Ignore dbg intrinsics.
5698     BasicBlock::iterator I = BB->begin();
5699     // Ignore dbg intrinsics.
5700     while (isa<DbgInfoIntrinsic>(I))
5701       ++I;
5702     if (&*I == BI) {
5703       if (FoldValueComparisonIntoPredecessors(BI, Builder))
5704         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5705     } else if (&*I == cast<Instruction>(BI->getCondition())) {
5706       ++I;
5707       // Ignore dbg intrinsics.
5708       while (isa<DbgInfoIntrinsic>(I))
5709         ++I;
5710       if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder))
5711         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5712     }
5713   }
5714 
5715   // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction.
5716   if (SimplifyBranchOnICmpChain(BI, Builder, DL))
5717     return true;
5718 
5719   // If this basic block has a single dominating predecessor block and the
5720   // dominating block's condition implies BI's condition, we know the direction
5721   // of the BI branch.
5722   if (BasicBlock *Dom = BB->getSinglePredecessor()) {
5723     auto *PBI = dyn_cast_or_null<BranchInst>(Dom->getTerminator());
5724     if (PBI && PBI->isConditional() &&
5725         PBI->getSuccessor(0) != PBI->getSuccessor(1) &&
5726         (PBI->getSuccessor(0) == BB || PBI->getSuccessor(1) == BB)) {
5727       bool CondIsFalse = PBI->getSuccessor(1) == BB;
5728       Optional<bool> Implication = isImpliedCondition(
5729           PBI->getCondition(), BI->getCondition(), DL, CondIsFalse);
5730       if (Implication) {
5731         // Turn this into a branch on constant.
5732         auto *OldCond = BI->getCondition();
5733         ConstantInt *CI = *Implication
5734                               ? ConstantInt::getTrue(BB->getContext())
5735                               : ConstantInt::getFalse(BB->getContext());
5736         BI->setCondition(CI);
5737         RecursivelyDeleteTriviallyDeadInstructions(OldCond);
5738         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5739       }
5740     }
5741   }
5742 
5743   // If this basic block is ONLY a compare and a branch, and if a predecessor
5744   // branches to us and one of our successors, fold the comparison into the
5745   // predecessor and use logical operations to pick the right destination.
5746   if (FoldBranchToCommonDest(BI, BonusInstThreshold))
5747     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5748 
5749   // We have a conditional branch to two blocks that are only reachable
5750   // from BI.  We know that the condbr dominates the two blocks, so see if
5751   // there is any identical code in the "then" and "else" blocks.  If so, we
5752   // can hoist it up to the branching block.
5753   if (BI->getSuccessor(0)->getSinglePredecessor()) {
5754     if (BI->getSuccessor(1)->getSinglePredecessor()) {
5755       if (HoistThenElseCodeToIf(BI, TTI))
5756         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5757     } else {
5758       // If Successor #1 has multiple preds, we may be able to conditionally
5759       // execute Successor #0 if it branches to Successor #1.
5760       TerminatorInst *Succ0TI = BI->getSuccessor(0)->getTerminator();
5761       if (Succ0TI->getNumSuccessors() == 1 &&
5762           Succ0TI->getSuccessor(0) == BI->getSuccessor(1))
5763         if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), TTI))
5764           return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5765     }
5766   } else if (BI->getSuccessor(1)->getSinglePredecessor()) {
5767     // If Successor #0 has multiple preds, we may be able to conditionally
5768     // execute Successor #1 if it branches to Successor #0.
5769     TerminatorInst *Succ1TI = BI->getSuccessor(1)->getTerminator();
5770     if (Succ1TI->getNumSuccessors() == 1 &&
5771         Succ1TI->getSuccessor(0) == BI->getSuccessor(0))
5772       if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), TTI))
5773         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5774   }
5775 
5776   // If this is a branch on a phi node in the current block, thread control
5777   // through this block if any PHI node entries are constants.
5778   if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition()))
5779     if (PN->getParent() == BI->getParent())
5780       if (FoldCondBranchOnPHI(BI, DL))
5781         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5782 
5783   // Scan predecessor blocks for conditional branches.
5784   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
5785     if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
5786       if (PBI != BI && PBI->isConditional())
5787         if (SimplifyCondBranchToCondBranch(PBI, BI, DL))
5788           return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5789 
5790   // Look for diamond patterns.
5791   if (MergeCondStores)
5792     if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB))
5793       if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator()))
5794         if (PBI != BI && PBI->isConditional())
5795           if (mergeConditionalStores(PBI, BI))
5796             return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5797 
5798   return false;
5799 }
5800 
5801 /// Check if passing a value to an instruction will cause undefined behavior.
5802 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I) {
5803   Constant *C = dyn_cast<Constant>(V);
5804   if (!C)
5805     return false;
5806 
5807   if (I->use_empty())
5808     return false;
5809 
5810   if (C->isNullValue() || isa<UndefValue>(C)) {
5811     // Only look at the first use, avoid hurting compile time with long uselists
5812     User *Use = *I->user_begin();
5813 
5814     // Now make sure that there are no instructions in between that can alter
5815     // control flow (eg. calls)
5816     for (BasicBlock::iterator
5817              i = ++BasicBlock::iterator(I),
5818              UI = BasicBlock::iterator(dyn_cast<Instruction>(Use));
5819          i != UI; ++i)
5820       if (i == I->getParent()->end() || i->mayHaveSideEffects())
5821         return false;
5822 
5823     // Look through GEPs. A load from a GEP derived from NULL is still undefined
5824     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use))
5825       if (GEP->getPointerOperand() == I)
5826         return passingValueIsAlwaysUndefined(V, GEP);
5827 
5828     // Look through bitcasts.
5829     if (BitCastInst *BC = dyn_cast<BitCastInst>(Use))
5830       return passingValueIsAlwaysUndefined(V, BC);
5831 
5832     // Load from null is undefined.
5833     if (LoadInst *LI = dyn_cast<LoadInst>(Use))
5834       if (!LI->isVolatile())
5835         return LI->getPointerAddressSpace() == 0;
5836 
5837     // Store to null is undefined.
5838     if (StoreInst *SI = dyn_cast<StoreInst>(Use))
5839       if (!SI->isVolatile())
5840         return SI->getPointerAddressSpace() == 0 &&
5841                SI->getPointerOperand() == I;
5842 
5843     // A call to null is undefined.
5844     if (auto CS = CallSite(Use))
5845       return CS.getCalledValue() == I;
5846   }
5847   return false;
5848 }
5849 
5850 /// If BB has an incoming value that will always trigger undefined behavior
5851 /// (eg. null pointer dereference), remove the branch leading here.
5852 static bool removeUndefIntroducingPredecessor(BasicBlock *BB) {
5853   for (BasicBlock::iterator i = BB->begin();
5854        PHINode *PHI = dyn_cast<PHINode>(i); ++i)
5855     for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i)
5856       if (passingValueIsAlwaysUndefined(PHI->getIncomingValue(i), PHI)) {
5857         TerminatorInst *T = PHI->getIncomingBlock(i)->getTerminator();
5858         IRBuilder<> Builder(T);
5859         if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
5860           BB->removePredecessor(PHI->getIncomingBlock(i));
5861           // Turn uncoditional branches into unreachables and remove the dead
5862           // destination from conditional branches.
5863           if (BI->isUnconditional())
5864             Builder.CreateUnreachable();
5865           else
5866             Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1)
5867                                                        : BI->getSuccessor(0));
5868           BI->eraseFromParent();
5869           return true;
5870         }
5871         // TODO: SwitchInst.
5872       }
5873 
5874   return false;
5875 }
5876 
5877 bool SimplifyCFGOpt::run(BasicBlock *BB) {
5878   bool Changed = false;
5879 
5880   assert(BB && BB->getParent() && "Block not embedded in function!");
5881   assert(BB->getTerminator() && "Degenerate basic block encountered!");
5882 
5883   // Remove basic blocks that have no predecessors (except the entry block)...
5884   // or that just have themself as a predecessor.  These are unreachable.
5885   if ((pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) ||
5886       BB->getSinglePredecessor() == BB) {
5887     DEBUG(dbgs() << "Removing BB: \n" << *BB);
5888     DeleteDeadBlock(BB);
5889     return true;
5890   }
5891 
5892   // Check to see if we can constant propagate this terminator instruction
5893   // away...
5894   Changed |= ConstantFoldTerminator(BB, true);
5895 
5896   // Check for and eliminate duplicate PHI nodes in this block.
5897   Changed |= EliminateDuplicatePHINodes(BB);
5898 
5899   // Check for and remove branches that will always cause undefined behavior.
5900   Changed |= removeUndefIntroducingPredecessor(BB);
5901 
5902   // Merge basic blocks into their predecessor if there is only one distinct
5903   // pred, and if there is only one distinct successor of the predecessor, and
5904   // if there are no PHI nodes.
5905   //
5906   if (MergeBlockIntoPredecessor(BB))
5907     return true;
5908 
5909   IRBuilder<> Builder(BB);
5910 
5911   // If there is a trivial two-entry PHI node in this basic block, and we can
5912   // eliminate it, do so now.
5913   if (PHINode *PN = dyn_cast<PHINode>(BB->begin()))
5914     if (PN->getNumIncomingValues() == 2)
5915       Changed |= FoldTwoEntryPHINode(PN, TTI, DL);
5916 
5917   Builder.SetInsertPoint(BB->getTerminator());
5918   if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
5919     if (BI->isUnconditional()) {
5920       if (SimplifyUncondBranch(BI, Builder))
5921         return true;
5922     } else {
5923       if (SimplifyCondBranch(BI, Builder))
5924         return true;
5925     }
5926   } else if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
5927     if (SimplifyReturn(RI, Builder))
5928       return true;
5929   } else if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator())) {
5930     if (SimplifyResume(RI, Builder))
5931       return true;
5932   } else if (CleanupReturnInst *RI =
5933                  dyn_cast<CleanupReturnInst>(BB->getTerminator())) {
5934     if (SimplifyCleanupReturn(RI))
5935       return true;
5936   } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
5937     if (SimplifySwitch(SI, Builder))
5938       return true;
5939   } else if (UnreachableInst *UI =
5940                  dyn_cast<UnreachableInst>(BB->getTerminator())) {
5941     if (SimplifyUnreachable(UI))
5942       return true;
5943   } else if (IndirectBrInst *IBI =
5944                  dyn_cast<IndirectBrInst>(BB->getTerminator())) {
5945     if (SimplifyIndirectBr(IBI))
5946       return true;
5947   }
5948 
5949   return Changed;
5950 }
5951 
5952 /// This function is used to do simplification of a CFG.
5953 /// For example, it adjusts branches to branches to eliminate the extra hop,
5954 /// eliminates unreachable basic blocks, and does other "peephole" optimization
5955 /// of the CFG.  It returns true if a modification was made.
5956 ///
5957 bool llvm::SimplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI,
5958                        unsigned BonusInstThreshold, AssumptionCache *AC,
5959                        SmallPtrSetImpl<BasicBlock *> *LoopHeaders) {
5960   return SimplifyCFGOpt(TTI, BB->getModule()->getDataLayout(),
5961                         BonusInstThreshold, AC, LoopHeaders)
5962       .run(BB);
5963 }
5964