1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Peephole optimize the CFG. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/ADT/DenseMap.h" 15 #include "llvm/ADT/STLExtras.h" 16 #include "llvm/ADT/SetOperations.h" 17 #include "llvm/ADT/SetVector.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/Analysis/ConstantFolding.h" 22 #include "llvm/Analysis/EHPersonalities.h" 23 #include "llvm/Analysis/InstructionSimplify.h" 24 #include "llvm/Analysis/TargetTransformInfo.h" 25 #include "llvm/Analysis/ValueTracking.h" 26 #include "llvm/IR/CFG.h" 27 #include "llvm/IR/ConstantRange.h" 28 #include "llvm/IR/Constants.h" 29 #include "llvm/IR/DataLayout.h" 30 #include "llvm/IR/DerivedTypes.h" 31 #include "llvm/IR/GlobalVariable.h" 32 #include "llvm/IR/IRBuilder.h" 33 #include "llvm/IR/Instructions.h" 34 #include "llvm/IR/IntrinsicInst.h" 35 #include "llvm/IR/LLVMContext.h" 36 #include "llvm/IR/MDBuilder.h" 37 #include "llvm/IR/Metadata.h" 38 #include "llvm/IR/Module.h" 39 #include "llvm/IR/NoFolder.h" 40 #include "llvm/IR/Operator.h" 41 #include "llvm/IR/PatternMatch.h" 42 #include "llvm/IR/Type.h" 43 #include "llvm/Support/CommandLine.h" 44 #include "llvm/Support/Debug.h" 45 #include "llvm/Support/raw_ostream.h" 46 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 47 #include "llvm/Transforms/Utils/Local.h" 48 #include "llvm/Transforms/Utils/ValueMapper.h" 49 #include <algorithm> 50 #include <map> 51 #include <set> 52 using namespace llvm; 53 using namespace PatternMatch; 54 55 #define DEBUG_TYPE "simplifycfg" 56 57 // Chosen as 2 so as to be cheap, but still to have enough power to fold 58 // a select, so the "clamp" idiom (of a min followed by a max) will be caught. 59 // To catch this, we need to fold a compare and a select, hence '2' being the 60 // minimum reasonable default. 61 static cl::opt<unsigned> PHINodeFoldingThreshold( 62 "phi-node-folding-threshold", cl::Hidden, cl::init(2), 63 cl::desc( 64 "Control the amount of phi node folding to perform (default = 2)")); 65 66 static cl::opt<bool> DupRet( 67 "simplifycfg-dup-ret", cl::Hidden, cl::init(false), 68 cl::desc("Duplicate return instructions into unconditional branches")); 69 70 static cl::opt<bool> 71 SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true), 72 cl::desc("Sink common instructions down to the end block")); 73 74 static cl::opt<bool> HoistCondStores( 75 "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true), 76 cl::desc("Hoist conditional stores if an unconditional store precedes")); 77 78 static cl::opt<bool> MergeCondStores( 79 "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true), 80 cl::desc("Hoist conditional stores even if an unconditional store does not " 81 "precede - hoist multiple conditional stores into a single " 82 "predicated store")); 83 84 static cl::opt<bool> MergeCondStoresAggressively( 85 "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false), 86 cl::desc("When merging conditional stores, do so even if the resultant " 87 "basic blocks are unlikely to be if-converted as a result")); 88 89 static cl::opt<bool> SpeculateOneExpensiveInst( 90 "speculate-one-expensive-inst", cl::Hidden, cl::init(true), 91 cl::desc("Allow exactly one expensive instruction to be speculatively " 92 "executed")); 93 94 static cl::opt<unsigned> MaxSpeculationDepth( 95 "max-speculation-depth", cl::Hidden, cl::init(10), 96 cl::desc("Limit maximum recursion depth when calculating costs of " 97 "speculatively executed instructions")); 98 99 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps"); 100 STATISTIC(NumLinearMaps, 101 "Number of switch instructions turned into linear mapping"); 102 STATISTIC(NumLookupTables, 103 "Number of switch instructions turned into lookup tables"); 104 STATISTIC( 105 NumLookupTablesHoles, 106 "Number of switch instructions turned into lookup tables (holes checked)"); 107 STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares"); 108 STATISTIC(NumSinkCommons, 109 "Number of common instructions sunk down to the end block"); 110 STATISTIC(NumSpeculations, "Number of speculative executed instructions"); 111 112 namespace { 113 // The first field contains the value that the switch produces when a certain 114 // case group is selected, and the second field is a vector containing the 115 // cases composing the case group. 116 typedef SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2> 117 SwitchCaseResultVectorTy; 118 // The first field contains the phi node that generates a result of the switch 119 // and the second field contains the value generated for a certain case in the 120 // switch for that PHI. 121 typedef SmallVector<std::pair<PHINode *, Constant *>, 4> SwitchCaseResultsTy; 122 123 /// ValueEqualityComparisonCase - Represents a case of a switch. 124 struct ValueEqualityComparisonCase { 125 ConstantInt *Value; 126 BasicBlock *Dest; 127 128 ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest) 129 : Value(Value), Dest(Dest) {} 130 131 bool operator<(ValueEqualityComparisonCase RHS) const { 132 // Comparing pointers is ok as we only rely on the order for uniquing. 133 return Value < RHS.Value; 134 } 135 136 bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; } 137 }; 138 139 class SimplifyCFGOpt { 140 const TargetTransformInfo &TTI; 141 const DataLayout &DL; 142 unsigned BonusInstThreshold; 143 AssumptionCache *AC; 144 SmallPtrSetImpl<BasicBlock *> *LoopHeaders; 145 Value *isValueEqualityComparison(TerminatorInst *TI); 146 BasicBlock *GetValueEqualityComparisonCases( 147 TerminatorInst *TI, std::vector<ValueEqualityComparisonCase> &Cases); 148 bool SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI, 149 BasicBlock *Pred, 150 IRBuilder<> &Builder); 151 bool FoldValueComparisonIntoPredecessors(TerminatorInst *TI, 152 IRBuilder<> &Builder); 153 154 bool SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder); 155 bool SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder); 156 bool SimplifySingleResume(ResumeInst *RI); 157 bool SimplifyCommonResume(ResumeInst *RI); 158 bool SimplifyCleanupReturn(CleanupReturnInst *RI); 159 bool SimplifyUnreachable(UnreachableInst *UI); 160 bool SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder); 161 bool SimplifyIndirectBr(IndirectBrInst *IBI); 162 bool SimplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder); 163 bool SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder); 164 165 public: 166 SimplifyCFGOpt(const TargetTransformInfo &TTI, const DataLayout &DL, 167 unsigned BonusInstThreshold, AssumptionCache *AC, 168 SmallPtrSetImpl<BasicBlock *> *LoopHeaders) 169 : TTI(TTI), DL(DL), BonusInstThreshold(BonusInstThreshold), AC(AC), 170 LoopHeaders(LoopHeaders) {} 171 bool run(BasicBlock *BB); 172 }; 173 } 174 175 /// Return true if it is safe to merge these two 176 /// terminator instructions together. 177 static bool 178 SafeToMergeTerminators(TerminatorInst *SI1, TerminatorInst *SI2, 179 SmallSetVector<BasicBlock *, 4> *FailBlocks = nullptr) { 180 if (SI1 == SI2) 181 return false; // Can't merge with self! 182 183 // It is not safe to merge these two switch instructions if they have a common 184 // successor, and if that successor has a PHI node, and if *that* PHI node has 185 // conflicting incoming values from the two switch blocks. 186 BasicBlock *SI1BB = SI1->getParent(); 187 BasicBlock *SI2BB = SI2->getParent(); 188 189 SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB)); 190 bool Fail = false; 191 for (BasicBlock *Succ : successors(SI2BB)) 192 if (SI1Succs.count(Succ)) 193 for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) { 194 PHINode *PN = cast<PHINode>(BBI); 195 if (PN->getIncomingValueForBlock(SI1BB) != 196 PN->getIncomingValueForBlock(SI2BB)) { 197 if (FailBlocks) 198 FailBlocks->insert(Succ); 199 Fail = true; 200 } 201 } 202 203 return !Fail; 204 } 205 206 /// Return true if it is safe and profitable to merge these two terminator 207 /// instructions together, where SI1 is an unconditional branch. PhiNodes will 208 /// store all PHI nodes in common successors. 209 static bool 210 isProfitableToFoldUnconditional(BranchInst *SI1, BranchInst *SI2, 211 Instruction *Cond, 212 SmallVectorImpl<PHINode *> &PhiNodes) { 213 if (SI1 == SI2) 214 return false; // Can't merge with self! 215 assert(SI1->isUnconditional() && SI2->isConditional()); 216 217 // We fold the unconditional branch if we can easily update all PHI nodes in 218 // common successors: 219 // 1> We have a constant incoming value for the conditional branch; 220 // 2> We have "Cond" as the incoming value for the unconditional branch; 221 // 3> SI2->getCondition() and Cond have same operands. 222 CmpInst *Ci2 = dyn_cast<CmpInst>(SI2->getCondition()); 223 if (!Ci2) 224 return false; 225 if (!(Cond->getOperand(0) == Ci2->getOperand(0) && 226 Cond->getOperand(1) == Ci2->getOperand(1)) && 227 !(Cond->getOperand(0) == Ci2->getOperand(1) && 228 Cond->getOperand(1) == Ci2->getOperand(0))) 229 return false; 230 231 BasicBlock *SI1BB = SI1->getParent(); 232 BasicBlock *SI2BB = SI2->getParent(); 233 SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB)); 234 for (BasicBlock *Succ : successors(SI2BB)) 235 if (SI1Succs.count(Succ)) 236 for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) { 237 PHINode *PN = cast<PHINode>(BBI); 238 if (PN->getIncomingValueForBlock(SI1BB) != Cond || 239 !isa<ConstantInt>(PN->getIncomingValueForBlock(SI2BB))) 240 return false; 241 PhiNodes.push_back(PN); 242 } 243 return true; 244 } 245 246 /// Update PHI nodes in Succ to indicate that there will now be entries in it 247 /// from the 'NewPred' block. The values that will be flowing into the PHI nodes 248 /// will be the same as those coming in from ExistPred, an existing predecessor 249 /// of Succ. 250 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred, 251 BasicBlock *ExistPred) { 252 if (!isa<PHINode>(Succ->begin())) 253 return; // Quick exit if nothing to do 254 255 PHINode *PN; 256 for (BasicBlock::iterator I = Succ->begin(); (PN = dyn_cast<PHINode>(I)); ++I) 257 PN->addIncoming(PN->getIncomingValueForBlock(ExistPred), NewPred); 258 } 259 260 /// Compute an abstract "cost" of speculating the given instruction, 261 /// which is assumed to be safe to speculate. TCC_Free means cheap, 262 /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively 263 /// expensive. 264 static unsigned ComputeSpeculationCost(const User *I, 265 const TargetTransformInfo &TTI) { 266 assert(isSafeToSpeculativelyExecute(I) && 267 "Instruction is not safe to speculatively execute!"); 268 return TTI.getUserCost(I); 269 } 270 271 /// If we have a merge point of an "if condition" as accepted above, 272 /// return true if the specified value dominates the block. We 273 /// don't handle the true generality of domination here, just a special case 274 /// which works well enough for us. 275 /// 276 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to 277 /// see if V (which must be an instruction) and its recursive operands 278 /// that do not dominate BB have a combined cost lower than CostRemaining and 279 /// are non-trapping. If both are true, the instruction is inserted into the 280 /// set and true is returned. 281 /// 282 /// The cost for most non-trapping instructions is defined as 1 except for 283 /// Select whose cost is 2. 284 /// 285 /// After this function returns, CostRemaining is decreased by the cost of 286 /// V plus its non-dominating operands. If that cost is greater than 287 /// CostRemaining, false is returned and CostRemaining is undefined. 288 static bool DominatesMergePoint(Value *V, BasicBlock *BB, 289 SmallPtrSetImpl<Instruction *> *AggressiveInsts, 290 unsigned &CostRemaining, 291 const TargetTransformInfo &TTI, 292 unsigned Depth = 0) { 293 // It is possible to hit a zero-cost cycle (phi/gep instructions for example), 294 // so limit the recursion depth. 295 // TODO: While this recursion limit does prevent pathological behavior, it 296 // would be better to track visited instructions to avoid cycles. 297 if (Depth == MaxSpeculationDepth) 298 return false; 299 300 Instruction *I = dyn_cast<Instruction>(V); 301 if (!I) { 302 // Non-instructions all dominate instructions, but not all constantexprs 303 // can be executed unconditionally. 304 if (ConstantExpr *C = dyn_cast<ConstantExpr>(V)) 305 if (C->canTrap()) 306 return false; 307 return true; 308 } 309 BasicBlock *PBB = I->getParent(); 310 311 // We don't want to allow weird loops that might have the "if condition" in 312 // the bottom of this block. 313 if (PBB == BB) 314 return false; 315 316 // If this instruction is defined in a block that contains an unconditional 317 // branch to BB, then it must be in the 'conditional' part of the "if 318 // statement". If not, it definitely dominates the region. 319 BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator()); 320 if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB) 321 return true; 322 323 // If we aren't allowing aggressive promotion anymore, then don't consider 324 // instructions in the 'if region'. 325 if (!AggressiveInsts) 326 return false; 327 328 // If we have seen this instruction before, don't count it again. 329 if (AggressiveInsts->count(I)) 330 return true; 331 332 // Okay, it looks like the instruction IS in the "condition". Check to 333 // see if it's a cheap instruction to unconditionally compute, and if it 334 // only uses stuff defined outside of the condition. If so, hoist it out. 335 if (!isSafeToSpeculativelyExecute(I)) 336 return false; 337 338 unsigned Cost = ComputeSpeculationCost(I, TTI); 339 340 // Allow exactly one instruction to be speculated regardless of its cost 341 // (as long as it is safe to do so). 342 // This is intended to flatten the CFG even if the instruction is a division 343 // or other expensive operation. The speculation of an expensive instruction 344 // is expected to be undone in CodeGenPrepare if the speculation has not 345 // enabled further IR optimizations. 346 if (Cost > CostRemaining && 347 (!SpeculateOneExpensiveInst || !AggressiveInsts->empty() || Depth > 0)) 348 return false; 349 350 // Avoid unsigned wrap. 351 CostRemaining = (Cost > CostRemaining) ? 0 : CostRemaining - Cost; 352 353 // Okay, we can only really hoist these out if their operands do 354 // not take us over the cost threshold. 355 for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) 356 if (!DominatesMergePoint(*i, BB, AggressiveInsts, CostRemaining, TTI, 357 Depth + 1)) 358 return false; 359 // Okay, it's safe to do this! Remember this instruction. 360 AggressiveInsts->insert(I); 361 return true; 362 } 363 364 /// Extract ConstantInt from value, looking through IntToPtr 365 /// and PointerNullValue. Return NULL if value is not a constant int. 366 static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) { 367 // Normal constant int. 368 ConstantInt *CI = dyn_cast<ConstantInt>(V); 369 if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy()) 370 return CI; 371 372 // This is some kind of pointer constant. Turn it into a pointer-sized 373 // ConstantInt if possible. 374 IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType())); 375 376 // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*). 377 if (isa<ConstantPointerNull>(V)) 378 return ConstantInt::get(PtrTy, 0); 379 380 // IntToPtr const int. 381 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 382 if (CE->getOpcode() == Instruction::IntToPtr) 383 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) { 384 // The constant is very likely to have the right type already. 385 if (CI->getType() == PtrTy) 386 return CI; 387 else 388 return cast<ConstantInt>( 389 ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false)); 390 } 391 return nullptr; 392 } 393 394 namespace { 395 396 /// Given a chain of or (||) or and (&&) comparison of a value against a 397 /// constant, this will try to recover the information required for a switch 398 /// structure. 399 /// It will depth-first traverse the chain of comparison, seeking for patterns 400 /// like %a == 12 or %a < 4 and combine them to produce a set of integer 401 /// representing the different cases for the switch. 402 /// Note that if the chain is composed of '||' it will build the set of elements 403 /// that matches the comparisons (i.e. any of this value validate the chain) 404 /// while for a chain of '&&' it will build the set elements that make the test 405 /// fail. 406 struct ConstantComparesGatherer { 407 const DataLayout &DL; 408 Value *CompValue; /// Value found for the switch comparison 409 Value *Extra; /// Extra clause to be checked before the switch 410 SmallVector<ConstantInt *, 8> Vals; /// Set of integers to match in switch 411 unsigned UsedICmps; /// Number of comparisons matched in the and/or chain 412 413 /// Construct and compute the result for the comparison instruction Cond 414 ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL) 415 : DL(DL), CompValue(nullptr), Extra(nullptr), UsedICmps(0) { 416 gather(Cond); 417 } 418 419 /// Prevent copy 420 ConstantComparesGatherer(const ConstantComparesGatherer &) = delete; 421 ConstantComparesGatherer & 422 operator=(const ConstantComparesGatherer &) = delete; 423 424 private: 425 /// Try to set the current value used for the comparison, it succeeds only if 426 /// it wasn't set before or if the new value is the same as the old one 427 bool setValueOnce(Value *NewVal) { 428 if (CompValue && CompValue != NewVal) 429 return false; 430 CompValue = NewVal; 431 return (CompValue != nullptr); 432 } 433 434 /// Try to match Instruction "I" as a comparison against a constant and 435 /// populates the array Vals with the set of values that match (or do not 436 /// match depending on isEQ). 437 /// Return false on failure. On success, the Value the comparison matched 438 /// against is placed in CompValue. 439 /// If CompValue is already set, the function is expected to fail if a match 440 /// is found but the value compared to is different. 441 bool matchInstruction(Instruction *I, bool isEQ) { 442 // If this is an icmp against a constant, handle this as one of the cases. 443 ICmpInst *ICI; 444 ConstantInt *C; 445 if (!((ICI = dyn_cast<ICmpInst>(I)) && 446 (C = GetConstantInt(I->getOperand(1), DL)))) { 447 return false; 448 } 449 450 Value *RHSVal; 451 const APInt *RHSC; 452 453 // Pattern match a special case 454 // (x & ~2^z) == y --> x == y || x == y|2^z 455 // This undoes a transformation done by instcombine to fuse 2 compares. 456 if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE)) { 457 458 // It's a little bit hard to see why the following transformations are 459 // correct. Here is a CVC3 program to verify them for 64-bit values: 460 461 /* 462 ONE : BITVECTOR(64) = BVZEROEXTEND(0bin1, 63); 463 x : BITVECTOR(64); 464 y : BITVECTOR(64); 465 z : BITVECTOR(64); 466 mask : BITVECTOR(64) = BVSHL(ONE, z); 467 QUERY( (y & ~mask = y) => 468 ((x & ~mask = y) <=> (x = y OR x = (y | mask))) 469 ); 470 QUERY( (y | mask = y) => 471 ((x | mask = y) <=> (x = y OR x = (y & ~mask))) 472 ); 473 */ 474 475 // Please note that each pattern must be a dual implication (<--> or 476 // iff). One directional implication can create spurious matches. If the 477 // implication is only one-way, an unsatisfiable condition on the left 478 // side can imply a satisfiable condition on the right side. Dual 479 // implication ensures that satisfiable conditions are transformed to 480 // other satisfiable conditions and unsatisfiable conditions are 481 // transformed to other unsatisfiable conditions. 482 483 // Here is a concrete example of a unsatisfiable condition on the left 484 // implying a satisfiable condition on the right: 485 // 486 // mask = (1 << z) 487 // (x & ~mask) == y --> (x == y || x == (y | mask)) 488 // 489 // Substituting y = 3, z = 0 yields: 490 // (x & -2) == 3 --> (x == 3 || x == 2) 491 492 // Pattern match a special case: 493 /* 494 QUERY( (y & ~mask = y) => 495 ((x & ~mask = y) <=> (x = y OR x = (y | mask))) 496 ); 497 */ 498 if (match(ICI->getOperand(0), 499 m_And(m_Value(RHSVal), m_APInt(RHSC)))) { 500 APInt Mask = ~*RHSC; 501 if (Mask.isPowerOf2() && (C->getValue() & ~Mask) == C->getValue()) { 502 // If we already have a value for the switch, it has to match! 503 if (!setValueOnce(RHSVal)) 504 return false; 505 506 Vals.push_back(C); 507 Vals.push_back( 508 ConstantInt::get(C->getContext(), 509 C->getValue() | Mask)); 510 UsedICmps++; 511 return true; 512 } 513 } 514 515 // Pattern match a special case: 516 /* 517 QUERY( (y | mask = y) => 518 ((x | mask = y) <=> (x = y OR x = (y & ~mask))) 519 ); 520 */ 521 if (match(ICI->getOperand(0), 522 m_Or(m_Value(RHSVal), m_APInt(RHSC)))) { 523 APInt Mask = *RHSC; 524 if (Mask.isPowerOf2() && (C->getValue() | Mask) == C->getValue()) { 525 // If we already have a value for the switch, it has to match! 526 if (!setValueOnce(RHSVal)) 527 return false; 528 529 Vals.push_back(C); 530 Vals.push_back(ConstantInt::get(C->getContext(), 531 C->getValue() & ~Mask)); 532 UsedICmps++; 533 return true; 534 } 535 } 536 537 // If we already have a value for the switch, it has to match! 538 if (!setValueOnce(ICI->getOperand(0))) 539 return false; 540 541 UsedICmps++; 542 Vals.push_back(C); 543 return ICI->getOperand(0); 544 } 545 546 // If we have "x ult 3", for example, then we can add 0,1,2 to the set. 547 ConstantRange Span = ConstantRange::makeAllowedICmpRegion( 548 ICI->getPredicate(), C->getValue()); 549 550 // Shift the range if the compare is fed by an add. This is the range 551 // compare idiom as emitted by instcombine. 552 Value *CandidateVal = I->getOperand(0); 553 if (match(I->getOperand(0), m_Add(m_Value(RHSVal), m_APInt(RHSC)))) { 554 Span = Span.subtract(*RHSC); 555 CandidateVal = RHSVal; 556 } 557 558 // If this is an and/!= check, then we are looking to build the set of 559 // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into 560 // x != 0 && x != 1. 561 if (!isEQ) 562 Span = Span.inverse(); 563 564 // If there are a ton of values, we don't want to make a ginormous switch. 565 if (Span.getSetSize().ugt(8) || Span.isEmptySet()) { 566 return false; 567 } 568 569 // If we already have a value for the switch, it has to match! 570 if (!setValueOnce(CandidateVal)) 571 return false; 572 573 // Add all values from the range to the set 574 for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp) 575 Vals.push_back(ConstantInt::get(I->getContext(), Tmp)); 576 577 UsedICmps++; 578 return true; 579 } 580 581 /// Given a potentially 'or'd or 'and'd together collection of icmp 582 /// eq/ne/lt/gt instructions that compare a value against a constant, extract 583 /// the value being compared, and stick the list constants into the Vals 584 /// vector. 585 /// One "Extra" case is allowed to differ from the other. 586 void gather(Value *V) { 587 Instruction *I = dyn_cast<Instruction>(V); 588 bool isEQ = (I->getOpcode() == Instruction::Or); 589 590 // Keep a stack (SmallVector for efficiency) for depth-first traversal 591 SmallVector<Value *, 8> DFT; 592 SmallPtrSet<Value *, 8> Visited; 593 594 // Initialize 595 Visited.insert(V); 596 DFT.push_back(V); 597 598 while (!DFT.empty()) { 599 V = DFT.pop_back_val(); 600 601 if (Instruction *I = dyn_cast<Instruction>(V)) { 602 // If it is a || (or && depending on isEQ), process the operands. 603 if (I->getOpcode() == (isEQ ? Instruction::Or : Instruction::And)) { 604 if (Visited.insert(I->getOperand(1)).second) 605 DFT.push_back(I->getOperand(1)); 606 if (Visited.insert(I->getOperand(0)).second) 607 DFT.push_back(I->getOperand(0)); 608 continue; 609 } 610 611 // Try to match the current instruction 612 if (matchInstruction(I, isEQ)) 613 // Match succeed, continue the loop 614 continue; 615 } 616 617 // One element of the sequence of || (or &&) could not be match as a 618 // comparison against the same value as the others. 619 // We allow only one "Extra" case to be checked before the switch 620 if (!Extra) { 621 Extra = V; 622 continue; 623 } 624 // Failed to parse a proper sequence, abort now 625 CompValue = nullptr; 626 break; 627 } 628 } 629 }; 630 } 631 632 static void EraseTerminatorInstAndDCECond(TerminatorInst *TI) { 633 Instruction *Cond = nullptr; 634 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 635 Cond = dyn_cast<Instruction>(SI->getCondition()); 636 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 637 if (BI->isConditional()) 638 Cond = dyn_cast<Instruction>(BI->getCondition()); 639 } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) { 640 Cond = dyn_cast<Instruction>(IBI->getAddress()); 641 } 642 643 TI->eraseFromParent(); 644 if (Cond) 645 RecursivelyDeleteTriviallyDeadInstructions(Cond); 646 } 647 648 /// Return true if the specified terminator checks 649 /// to see if a value is equal to constant integer value. 650 Value *SimplifyCFGOpt::isValueEqualityComparison(TerminatorInst *TI) { 651 Value *CV = nullptr; 652 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 653 // Do not permit merging of large switch instructions into their 654 // predecessors unless there is only one predecessor. 655 if (SI->getNumSuccessors() * std::distance(pred_begin(SI->getParent()), 656 pred_end(SI->getParent())) <= 657 128) 658 CV = SI->getCondition(); 659 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) 660 if (BI->isConditional() && BI->getCondition()->hasOneUse()) 661 if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) { 662 if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL)) 663 CV = ICI->getOperand(0); 664 } 665 666 // Unwrap any lossless ptrtoint cast. 667 if (CV) { 668 if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) { 669 Value *Ptr = PTII->getPointerOperand(); 670 if (PTII->getType() == DL.getIntPtrType(Ptr->getType())) 671 CV = Ptr; 672 } 673 } 674 return CV; 675 } 676 677 /// Given a value comparison instruction, 678 /// decode all of the 'cases' that it represents and return the 'default' block. 679 BasicBlock *SimplifyCFGOpt::GetValueEqualityComparisonCases( 680 TerminatorInst *TI, std::vector<ValueEqualityComparisonCase> &Cases) { 681 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 682 Cases.reserve(SI->getNumCases()); 683 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); i != e; 684 ++i) 685 Cases.push_back( 686 ValueEqualityComparisonCase(i.getCaseValue(), i.getCaseSuccessor())); 687 return SI->getDefaultDest(); 688 } 689 690 BranchInst *BI = cast<BranchInst>(TI); 691 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 692 BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE); 693 Cases.push_back(ValueEqualityComparisonCase( 694 GetConstantInt(ICI->getOperand(1), DL), Succ)); 695 return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ); 696 } 697 698 /// Given a vector of bb/value pairs, remove any entries 699 /// in the list that match the specified block. 700 static void 701 EliminateBlockCases(BasicBlock *BB, 702 std::vector<ValueEqualityComparisonCase> &Cases) { 703 Cases.erase(std::remove(Cases.begin(), Cases.end(), BB), Cases.end()); 704 } 705 706 /// Return true if there are any keys in C1 that exist in C2 as well. 707 static bool ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1, 708 std::vector<ValueEqualityComparisonCase> &C2) { 709 std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2; 710 711 // Make V1 be smaller than V2. 712 if (V1->size() > V2->size()) 713 std::swap(V1, V2); 714 715 if (V1->size() == 0) 716 return false; 717 if (V1->size() == 1) { 718 // Just scan V2. 719 ConstantInt *TheVal = (*V1)[0].Value; 720 for (unsigned i = 0, e = V2->size(); i != e; ++i) 721 if (TheVal == (*V2)[i].Value) 722 return true; 723 } 724 725 // Otherwise, just sort both lists and compare element by element. 726 array_pod_sort(V1->begin(), V1->end()); 727 array_pod_sort(V2->begin(), V2->end()); 728 unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size(); 729 while (i1 != e1 && i2 != e2) { 730 if ((*V1)[i1].Value == (*V2)[i2].Value) 731 return true; 732 if ((*V1)[i1].Value < (*V2)[i2].Value) 733 ++i1; 734 else 735 ++i2; 736 } 737 return false; 738 } 739 740 /// If TI is known to be a terminator instruction and its block is known to 741 /// only have a single predecessor block, check to see if that predecessor is 742 /// also a value comparison with the same value, and if that comparison 743 /// determines the outcome of this comparison. If so, simplify TI. This does a 744 /// very limited form of jump threading. 745 bool SimplifyCFGOpt::SimplifyEqualityComparisonWithOnlyPredecessor( 746 TerminatorInst *TI, BasicBlock *Pred, IRBuilder<> &Builder) { 747 Value *PredVal = isValueEqualityComparison(Pred->getTerminator()); 748 if (!PredVal) 749 return false; // Not a value comparison in predecessor. 750 751 Value *ThisVal = isValueEqualityComparison(TI); 752 assert(ThisVal && "This isn't a value comparison!!"); 753 if (ThisVal != PredVal) 754 return false; // Different predicates. 755 756 // TODO: Preserve branch weight metadata, similarly to how 757 // FoldValueComparisonIntoPredecessors preserves it. 758 759 // Find out information about when control will move from Pred to TI's block. 760 std::vector<ValueEqualityComparisonCase> PredCases; 761 BasicBlock *PredDef = 762 GetValueEqualityComparisonCases(Pred->getTerminator(), PredCases); 763 EliminateBlockCases(PredDef, PredCases); // Remove default from cases. 764 765 // Find information about how control leaves this block. 766 std::vector<ValueEqualityComparisonCase> ThisCases; 767 BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases); 768 EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases. 769 770 // If TI's block is the default block from Pred's comparison, potentially 771 // simplify TI based on this knowledge. 772 if (PredDef == TI->getParent()) { 773 // If we are here, we know that the value is none of those cases listed in 774 // PredCases. If there are any cases in ThisCases that are in PredCases, we 775 // can simplify TI. 776 if (!ValuesOverlap(PredCases, ThisCases)) 777 return false; 778 779 if (isa<BranchInst>(TI)) { 780 // Okay, one of the successors of this condbr is dead. Convert it to a 781 // uncond br. 782 assert(ThisCases.size() == 1 && "Branch can only have one case!"); 783 // Insert the new branch. 784 Instruction *NI = Builder.CreateBr(ThisDef); 785 (void)NI; 786 787 // Remove PHI node entries for the dead edge. 788 ThisCases[0].Dest->removePredecessor(TI->getParent()); 789 790 DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 791 << "Through successor TI: " << *TI << "Leaving: " << *NI 792 << "\n"); 793 794 EraseTerminatorInstAndDCECond(TI); 795 return true; 796 } 797 798 SwitchInst *SI = cast<SwitchInst>(TI); 799 // Okay, TI has cases that are statically dead, prune them away. 800 SmallPtrSet<Constant *, 16> DeadCases; 801 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 802 DeadCases.insert(PredCases[i].Value); 803 804 DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 805 << "Through successor TI: " << *TI); 806 807 // Collect branch weights into a vector. 808 SmallVector<uint32_t, 8> Weights; 809 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof); 810 bool HasWeight = MD && (MD->getNumOperands() == 2 + SI->getNumCases()); 811 if (HasWeight) 812 for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e; 813 ++MD_i) { 814 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i)); 815 Weights.push_back(CI->getValue().getZExtValue()); 816 } 817 for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) { 818 --i; 819 if (DeadCases.count(i.getCaseValue())) { 820 if (HasWeight) { 821 std::swap(Weights[i.getCaseIndex() + 1], Weights.back()); 822 Weights.pop_back(); 823 } 824 i.getCaseSuccessor()->removePredecessor(TI->getParent()); 825 SI->removeCase(i); 826 } 827 } 828 if (HasWeight && Weights.size() >= 2) 829 SI->setMetadata(LLVMContext::MD_prof, 830 MDBuilder(SI->getParent()->getContext()) 831 .createBranchWeights(Weights)); 832 833 DEBUG(dbgs() << "Leaving: " << *TI << "\n"); 834 return true; 835 } 836 837 // Otherwise, TI's block must correspond to some matched value. Find out 838 // which value (or set of values) this is. 839 ConstantInt *TIV = nullptr; 840 BasicBlock *TIBB = TI->getParent(); 841 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 842 if (PredCases[i].Dest == TIBB) { 843 if (TIV) 844 return false; // Cannot handle multiple values coming to this block. 845 TIV = PredCases[i].Value; 846 } 847 assert(TIV && "No edge from pred to succ?"); 848 849 // Okay, we found the one constant that our value can be if we get into TI's 850 // BB. Find out which successor will unconditionally be branched to. 851 BasicBlock *TheRealDest = nullptr; 852 for (unsigned i = 0, e = ThisCases.size(); i != e; ++i) 853 if (ThisCases[i].Value == TIV) { 854 TheRealDest = ThisCases[i].Dest; 855 break; 856 } 857 858 // If not handled by any explicit cases, it is handled by the default case. 859 if (!TheRealDest) 860 TheRealDest = ThisDef; 861 862 // Remove PHI node entries for dead edges. 863 BasicBlock *CheckEdge = TheRealDest; 864 for (BasicBlock *Succ : successors(TIBB)) 865 if (Succ != CheckEdge) 866 Succ->removePredecessor(TIBB); 867 else 868 CheckEdge = nullptr; 869 870 // Insert the new branch. 871 Instruction *NI = Builder.CreateBr(TheRealDest); 872 (void)NI; 873 874 DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 875 << "Through successor TI: " << *TI << "Leaving: " << *NI 876 << "\n"); 877 878 EraseTerminatorInstAndDCECond(TI); 879 return true; 880 } 881 882 namespace { 883 /// This class implements a stable ordering of constant 884 /// integers that does not depend on their address. This is important for 885 /// applications that sort ConstantInt's to ensure uniqueness. 886 struct ConstantIntOrdering { 887 bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const { 888 return LHS->getValue().ult(RHS->getValue()); 889 } 890 }; 891 } 892 893 static int ConstantIntSortPredicate(ConstantInt *const *P1, 894 ConstantInt *const *P2) { 895 const ConstantInt *LHS = *P1; 896 const ConstantInt *RHS = *P2; 897 if (LHS == RHS) 898 return 0; 899 return LHS->getValue().ult(RHS->getValue()) ? 1 : -1; 900 } 901 902 static inline bool HasBranchWeights(const Instruction *I) { 903 MDNode *ProfMD = I->getMetadata(LLVMContext::MD_prof); 904 if (ProfMD && ProfMD->getOperand(0)) 905 if (MDString *MDS = dyn_cast<MDString>(ProfMD->getOperand(0))) 906 return MDS->getString().equals("branch_weights"); 907 908 return false; 909 } 910 911 /// Get Weights of a given TerminatorInst, the default weight is at the front 912 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight 913 /// metadata. 914 static void GetBranchWeights(TerminatorInst *TI, 915 SmallVectorImpl<uint64_t> &Weights) { 916 MDNode *MD = TI->getMetadata(LLVMContext::MD_prof); 917 assert(MD); 918 for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) { 919 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i)); 920 Weights.push_back(CI->getValue().getZExtValue()); 921 } 922 923 // If TI is a conditional eq, the default case is the false case, 924 // and the corresponding branch-weight data is at index 2. We swap the 925 // default weight to be the first entry. 926 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 927 assert(Weights.size() == 2); 928 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 929 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 930 std::swap(Weights.front(), Weights.back()); 931 } 932 } 933 934 /// Keep halving the weights until all can fit in uint32_t. 935 static void FitWeights(MutableArrayRef<uint64_t> Weights) { 936 uint64_t Max = *std::max_element(Weights.begin(), Weights.end()); 937 if (Max > UINT_MAX) { 938 unsigned Offset = 32 - countLeadingZeros(Max); 939 for (uint64_t &I : Weights) 940 I >>= Offset; 941 } 942 } 943 944 /// The specified terminator is a value equality comparison instruction 945 /// (either a switch or a branch on "X == c"). 946 /// See if any of the predecessors of the terminator block are value comparisons 947 /// on the same value. If so, and if safe to do so, fold them together. 948 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(TerminatorInst *TI, 949 IRBuilder<> &Builder) { 950 BasicBlock *BB = TI->getParent(); 951 Value *CV = isValueEqualityComparison(TI); // CondVal 952 assert(CV && "Not a comparison?"); 953 bool Changed = false; 954 955 SmallVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB)); 956 while (!Preds.empty()) { 957 BasicBlock *Pred = Preds.pop_back_val(); 958 959 // See if the predecessor is a comparison with the same value. 960 TerminatorInst *PTI = Pred->getTerminator(); 961 Value *PCV = isValueEqualityComparison(PTI); // PredCondVal 962 963 if (PCV == CV && TI != PTI) { 964 SmallSetVector<BasicBlock*, 4> FailBlocks; 965 if (!SafeToMergeTerminators(TI, PTI, &FailBlocks)) { 966 for (auto *Succ : FailBlocks) { 967 std::vector<BasicBlock*> Blocks = { TI->getParent() }; 968 if (!SplitBlockPredecessors(Succ, Blocks, ".fold.split")) 969 return false; 970 } 971 } 972 973 // Figure out which 'cases' to copy from SI to PSI. 974 std::vector<ValueEqualityComparisonCase> BBCases; 975 BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases); 976 977 std::vector<ValueEqualityComparisonCase> PredCases; 978 BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases); 979 980 // Based on whether the default edge from PTI goes to BB or not, fill in 981 // PredCases and PredDefault with the new switch cases we would like to 982 // build. 983 SmallVector<BasicBlock *, 8> NewSuccessors; 984 985 // Update the branch weight metadata along the way 986 SmallVector<uint64_t, 8> Weights; 987 bool PredHasWeights = HasBranchWeights(PTI); 988 bool SuccHasWeights = HasBranchWeights(TI); 989 990 if (PredHasWeights) { 991 GetBranchWeights(PTI, Weights); 992 // branch-weight metadata is inconsistent here. 993 if (Weights.size() != 1 + PredCases.size()) 994 PredHasWeights = SuccHasWeights = false; 995 } else if (SuccHasWeights) 996 // If there are no predecessor weights but there are successor weights, 997 // populate Weights with 1, which will later be scaled to the sum of 998 // successor's weights 999 Weights.assign(1 + PredCases.size(), 1); 1000 1001 SmallVector<uint64_t, 8> SuccWeights; 1002 if (SuccHasWeights) { 1003 GetBranchWeights(TI, SuccWeights); 1004 // branch-weight metadata is inconsistent here. 1005 if (SuccWeights.size() != 1 + BBCases.size()) 1006 PredHasWeights = SuccHasWeights = false; 1007 } else if (PredHasWeights) 1008 SuccWeights.assign(1 + BBCases.size(), 1); 1009 1010 if (PredDefault == BB) { 1011 // If this is the default destination from PTI, only the edges in TI 1012 // that don't occur in PTI, or that branch to BB will be activated. 1013 std::set<ConstantInt *, ConstantIntOrdering> PTIHandled; 1014 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 1015 if (PredCases[i].Dest != BB) 1016 PTIHandled.insert(PredCases[i].Value); 1017 else { 1018 // The default destination is BB, we don't need explicit targets. 1019 std::swap(PredCases[i], PredCases.back()); 1020 1021 if (PredHasWeights || SuccHasWeights) { 1022 // Increase weight for the default case. 1023 Weights[0] += Weights[i + 1]; 1024 std::swap(Weights[i + 1], Weights.back()); 1025 Weights.pop_back(); 1026 } 1027 1028 PredCases.pop_back(); 1029 --i; 1030 --e; 1031 } 1032 1033 // Reconstruct the new switch statement we will be building. 1034 if (PredDefault != BBDefault) { 1035 PredDefault->removePredecessor(Pred); 1036 PredDefault = BBDefault; 1037 NewSuccessors.push_back(BBDefault); 1038 } 1039 1040 unsigned CasesFromPred = Weights.size(); 1041 uint64_t ValidTotalSuccWeight = 0; 1042 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 1043 if (!PTIHandled.count(BBCases[i].Value) && 1044 BBCases[i].Dest != BBDefault) { 1045 PredCases.push_back(BBCases[i]); 1046 NewSuccessors.push_back(BBCases[i].Dest); 1047 if (SuccHasWeights || PredHasWeights) { 1048 // The default weight is at index 0, so weight for the ith case 1049 // should be at index i+1. Scale the cases from successor by 1050 // PredDefaultWeight (Weights[0]). 1051 Weights.push_back(Weights[0] * SuccWeights[i + 1]); 1052 ValidTotalSuccWeight += SuccWeights[i + 1]; 1053 } 1054 } 1055 1056 if (SuccHasWeights || PredHasWeights) { 1057 ValidTotalSuccWeight += SuccWeights[0]; 1058 // Scale the cases from predecessor by ValidTotalSuccWeight. 1059 for (unsigned i = 1; i < CasesFromPred; ++i) 1060 Weights[i] *= ValidTotalSuccWeight; 1061 // Scale the default weight by SuccDefaultWeight (SuccWeights[0]). 1062 Weights[0] *= SuccWeights[0]; 1063 } 1064 } else { 1065 // If this is not the default destination from PSI, only the edges 1066 // in SI that occur in PSI with a destination of BB will be 1067 // activated. 1068 std::set<ConstantInt *, ConstantIntOrdering> PTIHandled; 1069 std::map<ConstantInt *, uint64_t> WeightsForHandled; 1070 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 1071 if (PredCases[i].Dest == BB) { 1072 PTIHandled.insert(PredCases[i].Value); 1073 1074 if (PredHasWeights || SuccHasWeights) { 1075 WeightsForHandled[PredCases[i].Value] = Weights[i + 1]; 1076 std::swap(Weights[i + 1], Weights.back()); 1077 Weights.pop_back(); 1078 } 1079 1080 std::swap(PredCases[i], PredCases.back()); 1081 PredCases.pop_back(); 1082 --i; 1083 --e; 1084 } 1085 1086 // Okay, now we know which constants were sent to BB from the 1087 // predecessor. Figure out where they will all go now. 1088 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 1089 if (PTIHandled.count(BBCases[i].Value)) { 1090 // If this is one we are capable of getting... 1091 if (PredHasWeights || SuccHasWeights) 1092 Weights.push_back(WeightsForHandled[BBCases[i].Value]); 1093 PredCases.push_back(BBCases[i]); 1094 NewSuccessors.push_back(BBCases[i].Dest); 1095 PTIHandled.erase( 1096 BBCases[i].Value); // This constant is taken care of 1097 } 1098 1099 // If there are any constants vectored to BB that TI doesn't handle, 1100 // they must go to the default destination of TI. 1101 for (ConstantInt *I : PTIHandled) { 1102 if (PredHasWeights || SuccHasWeights) 1103 Weights.push_back(WeightsForHandled[I]); 1104 PredCases.push_back(ValueEqualityComparisonCase(I, BBDefault)); 1105 NewSuccessors.push_back(BBDefault); 1106 } 1107 } 1108 1109 // Okay, at this point, we know which new successor Pred will get. Make 1110 // sure we update the number of entries in the PHI nodes for these 1111 // successors. 1112 for (BasicBlock *NewSuccessor : NewSuccessors) 1113 AddPredecessorToBlock(NewSuccessor, Pred, BB); 1114 1115 Builder.SetInsertPoint(PTI); 1116 // Convert pointer to int before we switch. 1117 if (CV->getType()->isPointerTy()) { 1118 CV = Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()), 1119 "magicptr"); 1120 } 1121 1122 // Now that the successors are updated, create the new Switch instruction. 1123 SwitchInst *NewSI = 1124 Builder.CreateSwitch(CV, PredDefault, PredCases.size()); 1125 NewSI->setDebugLoc(PTI->getDebugLoc()); 1126 for (ValueEqualityComparisonCase &V : PredCases) 1127 NewSI->addCase(V.Value, V.Dest); 1128 1129 if (PredHasWeights || SuccHasWeights) { 1130 // Halve the weights if any of them cannot fit in an uint32_t 1131 FitWeights(Weights); 1132 1133 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 1134 1135 NewSI->setMetadata( 1136 LLVMContext::MD_prof, 1137 MDBuilder(BB->getContext()).createBranchWeights(MDWeights)); 1138 } 1139 1140 EraseTerminatorInstAndDCECond(PTI); 1141 1142 // Okay, last check. If BB is still a successor of PSI, then we must 1143 // have an infinite loop case. If so, add an infinitely looping block 1144 // to handle the case to preserve the behavior of the code. 1145 BasicBlock *InfLoopBlock = nullptr; 1146 for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i) 1147 if (NewSI->getSuccessor(i) == BB) { 1148 if (!InfLoopBlock) { 1149 // Insert it at the end of the function, because it's either code, 1150 // or it won't matter if it's hot. :) 1151 InfLoopBlock = BasicBlock::Create(BB->getContext(), "infloop", 1152 BB->getParent()); 1153 BranchInst::Create(InfLoopBlock, InfLoopBlock); 1154 } 1155 NewSI->setSuccessor(i, InfLoopBlock); 1156 } 1157 1158 Changed = true; 1159 } 1160 } 1161 return Changed; 1162 } 1163 1164 // If we would need to insert a select that uses the value of this invoke 1165 // (comments in HoistThenElseCodeToIf explain why we would need to do this), we 1166 // can't hoist the invoke, as there is nowhere to put the select in this case. 1167 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2, 1168 Instruction *I1, Instruction *I2) { 1169 for (BasicBlock *Succ : successors(BB1)) { 1170 PHINode *PN; 1171 for (BasicBlock::iterator BBI = Succ->begin(); 1172 (PN = dyn_cast<PHINode>(BBI)); ++BBI) { 1173 Value *BB1V = PN->getIncomingValueForBlock(BB1); 1174 Value *BB2V = PN->getIncomingValueForBlock(BB2); 1175 if (BB1V != BB2V && (BB1V == I1 || BB2V == I2)) { 1176 return false; 1177 } 1178 } 1179 } 1180 return true; 1181 } 1182 1183 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I); 1184 1185 /// Given a conditional branch that goes to BB1 and BB2, hoist any common code 1186 /// in the two blocks up into the branch block. The caller of this function 1187 /// guarantees that BI's block dominates BB1 and BB2. 1188 static bool HoistThenElseCodeToIf(BranchInst *BI, 1189 const TargetTransformInfo &TTI) { 1190 // This does very trivial matching, with limited scanning, to find identical 1191 // instructions in the two blocks. In particular, we don't want to get into 1192 // O(M*N) situations here where M and N are the sizes of BB1 and BB2. As 1193 // such, we currently just scan for obviously identical instructions in an 1194 // identical order. 1195 BasicBlock *BB1 = BI->getSuccessor(0); // The true destination. 1196 BasicBlock *BB2 = BI->getSuccessor(1); // The false destination 1197 1198 BasicBlock::iterator BB1_Itr = BB1->begin(); 1199 BasicBlock::iterator BB2_Itr = BB2->begin(); 1200 1201 Instruction *I1 = &*BB1_Itr++, *I2 = &*BB2_Itr++; 1202 // Skip debug info if it is not identical. 1203 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1204 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1205 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1206 while (isa<DbgInfoIntrinsic>(I1)) 1207 I1 = &*BB1_Itr++; 1208 while (isa<DbgInfoIntrinsic>(I2)) 1209 I2 = &*BB2_Itr++; 1210 } 1211 if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) || 1212 (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))) 1213 return false; 1214 1215 BasicBlock *BIParent = BI->getParent(); 1216 1217 bool Changed = false; 1218 do { 1219 // If we are hoisting the terminator instruction, don't move one (making a 1220 // broken BB), instead clone it, and remove BI. 1221 if (isa<TerminatorInst>(I1)) 1222 goto HoistTerminator; 1223 1224 if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2)) 1225 return Changed; 1226 1227 // For a normal instruction, we just move one to right before the branch, 1228 // then replace all uses of the other with the first. Finally, we remove 1229 // the now redundant second instruction. 1230 BIParent->getInstList().splice(BI->getIterator(), BB1->getInstList(), I1); 1231 if (!I2->use_empty()) 1232 I2->replaceAllUsesWith(I1); 1233 I1->andIRFlags(I2); 1234 unsigned KnownIDs[] = {LLVMContext::MD_tbaa, 1235 LLVMContext::MD_range, 1236 LLVMContext::MD_fpmath, 1237 LLVMContext::MD_invariant_load, 1238 LLVMContext::MD_nonnull, 1239 LLVMContext::MD_invariant_group, 1240 LLVMContext::MD_align, 1241 LLVMContext::MD_dereferenceable, 1242 LLVMContext::MD_dereferenceable_or_null, 1243 LLVMContext::MD_mem_parallel_loop_access}; 1244 combineMetadata(I1, I2, KnownIDs); 1245 1246 // If the debug loc for I1 and I2 are different, as we are combining them 1247 // into one instruction, we do not want to select debug loc randomly from 1248 // I1 or I2. Instead, we set the 0-line DebugLoc to note that we do not 1249 // know the debug loc of the hoisted instruction. 1250 if (!isa<CallInst>(I1) && I1->getDebugLoc() != I2->getDebugLoc()) 1251 I1->setDebugLoc(DebugLoc()); 1252 1253 I2->eraseFromParent(); 1254 Changed = true; 1255 1256 I1 = &*BB1_Itr++; 1257 I2 = &*BB2_Itr++; 1258 // Skip debug info if it is not identical. 1259 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1260 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1261 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1262 while (isa<DbgInfoIntrinsic>(I1)) 1263 I1 = &*BB1_Itr++; 1264 while (isa<DbgInfoIntrinsic>(I2)) 1265 I2 = &*BB2_Itr++; 1266 } 1267 } while (I1->isIdenticalToWhenDefined(I2)); 1268 1269 return true; 1270 1271 HoistTerminator: 1272 // It may not be possible to hoist an invoke. 1273 if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) 1274 return Changed; 1275 1276 for (BasicBlock *Succ : successors(BB1)) { 1277 PHINode *PN; 1278 for (BasicBlock::iterator BBI = Succ->begin(); 1279 (PN = dyn_cast<PHINode>(BBI)); ++BBI) { 1280 Value *BB1V = PN->getIncomingValueForBlock(BB1); 1281 Value *BB2V = PN->getIncomingValueForBlock(BB2); 1282 if (BB1V == BB2V) 1283 continue; 1284 1285 // Check for passingValueIsAlwaysUndefined here because we would rather 1286 // eliminate undefined control flow then converting it to a select. 1287 if (passingValueIsAlwaysUndefined(BB1V, PN) || 1288 passingValueIsAlwaysUndefined(BB2V, PN)) 1289 return Changed; 1290 1291 if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V)) 1292 return Changed; 1293 if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V)) 1294 return Changed; 1295 } 1296 } 1297 1298 // Okay, it is safe to hoist the terminator. 1299 Instruction *NT = I1->clone(); 1300 BIParent->getInstList().insert(BI->getIterator(), NT); 1301 if (!NT->getType()->isVoidTy()) { 1302 I1->replaceAllUsesWith(NT); 1303 I2->replaceAllUsesWith(NT); 1304 NT->takeName(I1); 1305 } 1306 1307 IRBuilder<NoFolder> Builder(NT); 1308 // Hoisting one of the terminators from our successor is a great thing. 1309 // Unfortunately, the successors of the if/else blocks may have PHI nodes in 1310 // them. If they do, all PHI entries for BB1/BB2 must agree for all PHI 1311 // nodes, so we insert select instruction to compute the final result. 1312 std::map<std::pair<Value *, Value *>, SelectInst *> InsertedSelects; 1313 for (BasicBlock *Succ : successors(BB1)) { 1314 PHINode *PN; 1315 for (BasicBlock::iterator BBI = Succ->begin(); 1316 (PN = dyn_cast<PHINode>(BBI)); ++BBI) { 1317 Value *BB1V = PN->getIncomingValueForBlock(BB1); 1318 Value *BB2V = PN->getIncomingValueForBlock(BB2); 1319 if (BB1V == BB2V) 1320 continue; 1321 1322 // These values do not agree. Insert a select instruction before NT 1323 // that determines the right value. 1324 SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)]; 1325 if (!SI) 1326 SI = cast<SelectInst>( 1327 Builder.CreateSelect(BI->getCondition(), BB1V, BB2V, 1328 BB1V->getName() + "." + BB2V->getName(), BI)); 1329 1330 // Make the PHI node use the select for all incoming values for BB1/BB2 1331 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 1332 if (PN->getIncomingBlock(i) == BB1 || PN->getIncomingBlock(i) == BB2) 1333 PN->setIncomingValue(i, SI); 1334 } 1335 } 1336 1337 // Update any PHI nodes in our new successors. 1338 for (BasicBlock *Succ : successors(BB1)) 1339 AddPredecessorToBlock(Succ, BIParent, BB1); 1340 1341 EraseTerminatorInstAndDCECond(BI); 1342 return true; 1343 } 1344 1345 // Is it legal to place a variable in operand \c OpIdx of \c I? 1346 // FIXME: This should be promoted to Instruction. 1347 static bool canReplaceOperandWithVariable(const Instruction *I, 1348 unsigned OpIdx) { 1349 // We can't have a PHI with a metadata type. 1350 if (I->getOperand(OpIdx)->getType()->isMetadataTy()) 1351 return false; 1352 1353 // Early exit. 1354 if (!isa<Constant>(I->getOperand(OpIdx))) 1355 return true; 1356 1357 switch (I->getOpcode()) { 1358 default: 1359 return true; 1360 case Instruction::Call: 1361 case Instruction::Invoke: 1362 // FIXME: many arithmetic intrinsics have no issue taking a 1363 // variable, however it's hard to distingish these from 1364 // specials such as @llvm.frameaddress that require a constant. 1365 if (isa<IntrinsicInst>(I)) 1366 return false; 1367 1368 // Constant bundle operands may need to retain their constant-ness for 1369 // correctness. 1370 if (ImmutableCallSite(I).isBundleOperand(OpIdx)) 1371 return false; 1372 1373 return true; 1374 1375 case Instruction::ShuffleVector: 1376 // Shufflevector masks are constant. 1377 return OpIdx != 2; 1378 case Instruction::ExtractValue: 1379 case Instruction::InsertValue: 1380 // All operands apart from the first are constant. 1381 return OpIdx == 0; 1382 case Instruction::Alloca: 1383 return false; 1384 case Instruction::GetElementPtr: 1385 if (OpIdx == 0) 1386 return true; 1387 gep_type_iterator It = std::next(gep_type_begin(I), OpIdx - 1); 1388 return !It->isStructTy(); 1389 } 1390 } 1391 1392 // All instructions in Insts belong to different blocks that all unconditionally 1393 // branch to a common successor. Analyze each instruction and return true if it 1394 // would be possible to sink them into their successor, creating one common 1395 // instruction instead. For every value that would be required to be provided by 1396 // PHI node (because an operand varies in each input block), add to PHIOperands. 1397 static bool canSinkInstructions( 1398 ArrayRef<Instruction *> Insts, 1399 DenseMap<Instruction *, SmallVector<Value *, 4>> &PHIOperands) { 1400 // Prune out obviously bad instructions to move. Any non-store instruction 1401 // must have exactly one use, and we check later that use is by a single, 1402 // common PHI instruction in the successor. 1403 for (auto *I : Insts) { 1404 // These instructions may change or break semantics if moved. 1405 if (isa<PHINode>(I) || I->isEHPad() || isa<AllocaInst>(I) || 1406 I->getType()->isTokenTy()) 1407 return false; 1408 // Everything must have only one use too, apart from stores which 1409 // have no uses. 1410 if (!isa<StoreInst>(I) && !I->hasOneUse()) 1411 return false; 1412 } 1413 1414 const Instruction *I0 = Insts.front(); 1415 for (auto *I : Insts) 1416 if (!I->isSameOperationAs(I0)) 1417 return false; 1418 1419 // All instructions in Insts are known to be the same opcode. If they aren't 1420 // stores, check the only user of each is a PHI or in the same block as the 1421 // instruction, because if a user is in the same block as an instruction 1422 // we're contemplating sinking, it must already be determined to be sinkable. 1423 if (!isa<StoreInst>(I0)) { 1424 auto *PNUse = dyn_cast<PHINode>(*I0->user_begin()); 1425 auto *Succ = I0->getParent()->getTerminator()->getSuccessor(0); 1426 if (!all_of(Insts, [&PNUse,&Succ](const Instruction *I) -> bool { 1427 auto *U = cast<Instruction>(*I->user_begin()); 1428 return (PNUse && 1429 PNUse->getParent() == Succ && 1430 PNUse->getIncomingValueForBlock(I->getParent()) == I) || 1431 U->getParent() == I->getParent(); 1432 })) 1433 return false; 1434 } 1435 1436 for (unsigned OI = 0, OE = I0->getNumOperands(); OI != OE; ++OI) { 1437 if (I0->getOperand(OI)->getType()->isTokenTy()) 1438 // Don't touch any operand of token type. 1439 return false; 1440 1441 // Because SROA can't handle speculating stores of selects, try not 1442 // to sink loads or stores of allocas when we'd have to create a PHI for 1443 // the address operand. Also, because it is likely that loads or stores 1444 // of allocas will disappear when Mem2Reg/SROA is run, don't sink them. 1445 // This can cause code churn which can have unintended consequences down 1446 // the line - see https://llvm.org/bugs/show_bug.cgi?id=30244. 1447 // FIXME: This is a workaround for a deficiency in SROA - see 1448 // https://llvm.org/bugs/show_bug.cgi?id=30188 1449 if (OI == 1 && isa<StoreInst>(I0) && 1450 any_of(Insts, [](const Instruction *I) { 1451 return isa<AllocaInst>(I->getOperand(1)); 1452 })) 1453 return false; 1454 if (OI == 0 && isa<LoadInst>(I0) && any_of(Insts, [](const Instruction *I) { 1455 return isa<AllocaInst>(I->getOperand(0)); 1456 })) 1457 return false; 1458 1459 auto SameAsI0 = [&I0, OI](const Instruction *I) { 1460 assert(I->getNumOperands() == I0->getNumOperands()); 1461 return I->getOperand(OI) == I0->getOperand(OI); 1462 }; 1463 if (!all_of(Insts, SameAsI0)) { 1464 if (!canReplaceOperandWithVariable(I0, OI)) 1465 // We can't create a PHI from this GEP. 1466 return false; 1467 // Don't create indirect calls! The called value is the final operand. 1468 if ((isa<CallInst>(I0) || isa<InvokeInst>(I0)) && OI == OE - 1) { 1469 // FIXME: if the call was *already* indirect, we should do this. 1470 return false; 1471 } 1472 for (auto *I : Insts) 1473 PHIOperands[I].push_back(I->getOperand(OI)); 1474 } 1475 } 1476 return true; 1477 } 1478 1479 // Assuming canSinkLastInstruction(Blocks) has returned true, sink the last 1480 // instruction of every block in Blocks to their common successor, commoning 1481 // into one instruction. 1482 static bool sinkLastInstruction(ArrayRef<BasicBlock*> Blocks) { 1483 auto *BBEnd = Blocks[0]->getTerminator()->getSuccessor(0); 1484 1485 // canSinkLastInstruction returning true guarantees that every block has at 1486 // least one non-terminator instruction. 1487 SmallVector<Instruction*,4> Insts; 1488 for (auto *BB : Blocks) { 1489 Instruction *I = BB->getTerminator(); 1490 do { 1491 I = I->getPrevNode(); 1492 } while (isa<DbgInfoIntrinsic>(I) && I != &BB->front()); 1493 if (!isa<DbgInfoIntrinsic>(I)) 1494 Insts.push_back(I); 1495 } 1496 1497 // The only checking we need to do now is that all users of all instructions 1498 // are the same PHI node. canSinkLastInstruction should have checked this but 1499 // it is slightly over-aggressive - it gets confused by commutative instructions 1500 // so double-check it here. 1501 Instruction *I0 = Insts.front(); 1502 if (!isa<StoreInst>(I0)) { 1503 auto *PNUse = dyn_cast<PHINode>(*I0->user_begin()); 1504 if (!all_of(Insts, [&PNUse](const Instruction *I) -> bool { 1505 auto *U = cast<Instruction>(*I->user_begin()); 1506 return U == PNUse; 1507 })) 1508 return false; 1509 } 1510 1511 // We don't need to do any more checking here; canSinkLastInstruction should 1512 // have done it all for us. 1513 SmallVector<Value*, 4> NewOperands; 1514 for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) { 1515 // This check is different to that in canSinkLastInstruction. There, we 1516 // cared about the global view once simplifycfg (and instcombine) have 1517 // completed - it takes into account PHIs that become trivially 1518 // simplifiable. However here we need a more local view; if an operand 1519 // differs we create a PHI and rely on instcombine to clean up the very 1520 // small mess we may make. 1521 bool NeedPHI = any_of(Insts, [&I0, O](const Instruction *I) { 1522 return I->getOperand(O) != I0->getOperand(O); 1523 }); 1524 if (!NeedPHI) { 1525 NewOperands.push_back(I0->getOperand(O)); 1526 continue; 1527 } 1528 1529 // Create a new PHI in the successor block and populate it. 1530 auto *Op = I0->getOperand(O); 1531 assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!"); 1532 auto *PN = PHINode::Create(Op->getType(), Insts.size(), 1533 Op->getName() + ".sink", &BBEnd->front()); 1534 for (auto *I : Insts) 1535 PN->addIncoming(I->getOperand(O), I->getParent()); 1536 NewOperands.push_back(PN); 1537 } 1538 1539 // Arbitrarily use I0 as the new "common" instruction; remap its operands 1540 // and move it to the start of the successor block. 1541 for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) 1542 I0->getOperandUse(O).set(NewOperands[O]); 1543 I0->moveBefore(&*BBEnd->getFirstInsertionPt()); 1544 1545 // Update metadata and IR flags. 1546 for (auto *I : Insts) 1547 if (I != I0) { 1548 combineMetadataForCSE(I0, I); 1549 I0->andIRFlags(I); 1550 } 1551 1552 if (!isa<StoreInst>(I0)) { 1553 // canSinkLastInstruction checked that all instructions were used by 1554 // one and only one PHI node. Find that now, RAUW it to our common 1555 // instruction and nuke it. 1556 assert(I0->hasOneUse()); 1557 auto *PN = cast<PHINode>(*I0->user_begin()); 1558 PN->replaceAllUsesWith(I0); 1559 PN->eraseFromParent(); 1560 } 1561 1562 // Finally nuke all instructions apart from the common instruction. 1563 for (auto *I : Insts) 1564 if (I != I0) 1565 I->eraseFromParent(); 1566 1567 return true; 1568 } 1569 1570 namespace { 1571 // LockstepReverseIterator - Iterates through instructions 1572 // in a set of blocks in reverse order from the first non-terminator. 1573 // For example (assume all blocks have size n): 1574 // LockstepReverseIterator I([B1, B2, B3]); 1575 // *I-- = [B1[n], B2[n], B3[n]]; 1576 // *I-- = [B1[n-1], B2[n-1], B3[n-1]]; 1577 // *I-- = [B1[n-2], B2[n-2], B3[n-2]]; 1578 // ... 1579 class LockstepReverseIterator { 1580 ArrayRef<BasicBlock*> Blocks; 1581 SmallVector<Instruction*,4> Insts; 1582 bool Fail; 1583 public: 1584 LockstepReverseIterator(ArrayRef<BasicBlock*> Blocks) : 1585 Blocks(Blocks) { 1586 reset(); 1587 } 1588 1589 void reset() { 1590 Fail = false; 1591 Insts.clear(); 1592 for (auto *BB : Blocks) { 1593 Instruction *Inst = BB->getTerminator(); 1594 for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);) 1595 Inst = Inst->getPrevNode(); 1596 if (!Inst) { 1597 // Block wasn't big enough. 1598 Fail = true; 1599 return; 1600 } 1601 Insts.push_back(Inst); 1602 } 1603 } 1604 1605 bool isValid() const { 1606 return !Fail; 1607 } 1608 1609 void operator -- () { 1610 if (Fail) 1611 return; 1612 for (auto *&Inst : Insts) { 1613 for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);) 1614 Inst = Inst->getPrevNode(); 1615 // Already at beginning of block. 1616 if (!Inst) { 1617 Fail = true; 1618 return; 1619 } 1620 } 1621 } 1622 1623 ArrayRef<Instruction*> operator * () const { 1624 return Insts; 1625 } 1626 }; 1627 } 1628 1629 /// Given an unconditional branch that goes to BBEnd, 1630 /// check whether BBEnd has only two predecessors and the other predecessor 1631 /// ends with an unconditional branch. If it is true, sink any common code 1632 /// in the two predecessors to BBEnd. 1633 static bool SinkThenElseCodeToEnd(BranchInst *BI1) { 1634 assert(BI1->isUnconditional()); 1635 BasicBlock *BBEnd = BI1->getSuccessor(0); 1636 1637 // We support two situations: 1638 // (1) all incoming arcs are unconditional 1639 // (2) one incoming arc is conditional 1640 // 1641 // (2) is very common in switch defaults and 1642 // else-if patterns; 1643 // 1644 // if (a) f(1); 1645 // else if (b) f(2); 1646 // 1647 // produces: 1648 // 1649 // [if] 1650 // / \ 1651 // [f(1)] [if] 1652 // | | \ 1653 // | | \ 1654 // | [f(2)]| 1655 // \ | / 1656 // [ end ] 1657 // 1658 // [end] has two unconditional predecessor arcs and one conditional. The 1659 // conditional refers to the implicit empty 'else' arc. This conditional 1660 // arc can also be caused by an empty default block in a switch. 1661 // 1662 // In this case, we attempt to sink code from all *unconditional* arcs. 1663 // If we can sink instructions from these arcs (determined during the scan 1664 // phase below) we insert a common successor for all unconditional arcs and 1665 // connect that to [end], to enable sinking: 1666 // 1667 // [if] 1668 // / \ 1669 // [x(1)] [if] 1670 // | | \ 1671 // | | \ 1672 // | [x(2)] | 1673 // \ / | 1674 // [sink.split] | 1675 // \ / 1676 // [ end ] 1677 // 1678 SmallVector<BasicBlock*,4> UnconditionalPreds; 1679 Instruction *Cond = nullptr; 1680 for (auto *B : predecessors(BBEnd)) { 1681 auto *T = B->getTerminator(); 1682 if (isa<BranchInst>(T) && cast<BranchInst>(T)->isUnconditional()) 1683 UnconditionalPreds.push_back(B); 1684 else if ((isa<BranchInst>(T) || isa<SwitchInst>(T)) && !Cond) 1685 Cond = T; 1686 else 1687 return false; 1688 } 1689 if (UnconditionalPreds.size() < 2) 1690 return false; 1691 1692 bool Changed = false; 1693 // We take a two-step approach to tail sinking. First we scan from the end of 1694 // each block upwards in lockstep. If the n'th instruction from the end of each 1695 // block can be sunk, those instructions are added to ValuesToSink and we 1696 // carry on. If we can sink an instruction but need to PHI-merge some operands 1697 // (because they're not identical in each instruction) we add these to 1698 // PHIOperands. 1699 unsigned ScanIdx = 0; 1700 SmallPtrSet<Value*,4> InstructionsToSink; 1701 DenseMap<Instruction*, SmallVector<Value*,4>> PHIOperands; 1702 LockstepReverseIterator LRI(UnconditionalPreds); 1703 while (LRI.isValid() && 1704 canSinkInstructions(*LRI, PHIOperands)) { 1705 DEBUG(dbgs() << "SINK: instruction can be sunk: " << *(*LRI)[0] << "\n"); 1706 InstructionsToSink.insert((*LRI).begin(), (*LRI).end()); 1707 ++ScanIdx; 1708 --LRI; 1709 } 1710 1711 auto ProfitableToSinkInstruction = [&](LockstepReverseIterator &LRI) { 1712 unsigned NumPHIdValues = 0; 1713 for (auto *I : *LRI) 1714 for (auto *V : PHIOperands[I]) 1715 if (InstructionsToSink.count(V) == 0) 1716 ++NumPHIdValues; 1717 DEBUG(dbgs() << "SINK: #phid values: " << NumPHIdValues << "\n"); 1718 unsigned NumPHIInsts = NumPHIdValues / UnconditionalPreds.size(); 1719 if ((NumPHIdValues % UnconditionalPreds.size()) != 0) 1720 NumPHIInsts++; 1721 1722 return NumPHIInsts <= 1; 1723 }; 1724 1725 if (ScanIdx > 0 && Cond) { 1726 // Check if we would actually sink anything first! This mutates the CFG and 1727 // adds an extra block. The goal in doing this is to allow instructions that 1728 // couldn't be sunk before to be sunk - obviously, speculatable instructions 1729 // (such as trunc, add) can be sunk and predicated already. So we check that 1730 // we're going to sink at least one non-speculatable instruction. 1731 LRI.reset(); 1732 unsigned Idx = 0; 1733 bool Profitable = false; 1734 while (ProfitableToSinkInstruction(LRI) && Idx < ScanIdx) { 1735 if (!isSafeToSpeculativelyExecute((*LRI)[0])) { 1736 Profitable = true; 1737 break; 1738 } 1739 --LRI; 1740 ++Idx; 1741 } 1742 if (!Profitable) 1743 return false; 1744 1745 DEBUG(dbgs() << "SINK: Splitting edge\n"); 1746 // We have a conditional edge and we're going to sink some instructions. 1747 // Insert a new block postdominating all blocks we're going to sink from. 1748 if (!SplitBlockPredecessors(BI1->getSuccessor(0), UnconditionalPreds, 1749 ".sink.split")) 1750 // Edges couldn't be split. 1751 return false; 1752 Changed = true; 1753 } 1754 1755 // Now that we've analyzed all potential sinking candidates, perform the 1756 // actual sink. We iteratively sink the last non-terminator of the source 1757 // blocks into their common successor unless doing so would require too 1758 // many PHI instructions to be generated (currently only one PHI is allowed 1759 // per sunk instruction). 1760 // 1761 // We can use InstructionsToSink to discount values needing PHI-merging that will 1762 // actually be sunk in a later iteration. This allows us to be more 1763 // aggressive in what we sink. This does allow a false positive where we 1764 // sink presuming a later value will also be sunk, but stop half way through 1765 // and never actually sink it which means we produce more PHIs than intended. 1766 // This is unlikely in practice though. 1767 for (unsigned SinkIdx = 0; SinkIdx != ScanIdx; ++SinkIdx) { 1768 DEBUG(dbgs() << "SINK: Sink: " 1769 << *UnconditionalPreds[0]->getTerminator()->getPrevNode() 1770 << "\n"); 1771 1772 // Because we've sunk every instruction in turn, the current instruction to 1773 // sink is always at index 0. 1774 LRI.reset(); 1775 if (!ProfitableToSinkInstruction(LRI)) { 1776 // Too many PHIs would be created. 1777 DEBUG(dbgs() << "SINK: stopping here, too many PHIs would be created!\n"); 1778 break; 1779 } 1780 1781 if (!sinkLastInstruction(UnconditionalPreds)) 1782 return Changed; 1783 NumSinkCommons++; 1784 Changed = true; 1785 } 1786 return Changed; 1787 } 1788 1789 /// \brief Determine if we can hoist sink a sole store instruction out of a 1790 /// conditional block. 1791 /// 1792 /// We are looking for code like the following: 1793 /// BrBB: 1794 /// store i32 %add, i32* %arrayidx2 1795 /// ... // No other stores or function calls (we could be calling a memory 1796 /// ... // function). 1797 /// %cmp = icmp ult %x, %y 1798 /// br i1 %cmp, label %EndBB, label %ThenBB 1799 /// ThenBB: 1800 /// store i32 %add5, i32* %arrayidx2 1801 /// br label EndBB 1802 /// EndBB: 1803 /// ... 1804 /// We are going to transform this into: 1805 /// BrBB: 1806 /// store i32 %add, i32* %arrayidx2 1807 /// ... // 1808 /// %cmp = icmp ult %x, %y 1809 /// %add.add5 = select i1 %cmp, i32 %add, %add5 1810 /// store i32 %add.add5, i32* %arrayidx2 1811 /// ... 1812 /// 1813 /// \return The pointer to the value of the previous store if the store can be 1814 /// hoisted into the predecessor block. 0 otherwise. 1815 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB, 1816 BasicBlock *StoreBB, BasicBlock *EndBB) { 1817 StoreInst *StoreToHoist = dyn_cast<StoreInst>(I); 1818 if (!StoreToHoist) 1819 return nullptr; 1820 1821 // Volatile or atomic. 1822 if (!StoreToHoist->isSimple()) 1823 return nullptr; 1824 1825 Value *StorePtr = StoreToHoist->getPointerOperand(); 1826 1827 // Look for a store to the same pointer in BrBB. 1828 unsigned MaxNumInstToLookAt = 9; 1829 for (Instruction &CurI : reverse(*BrBB)) { 1830 if (!MaxNumInstToLookAt) 1831 break; 1832 // Skip debug info. 1833 if (isa<DbgInfoIntrinsic>(CurI)) 1834 continue; 1835 --MaxNumInstToLookAt; 1836 1837 // Could be calling an instruction that affects memory like free(). 1838 if (CurI.mayHaveSideEffects() && !isa<StoreInst>(CurI)) 1839 return nullptr; 1840 1841 if (auto *SI = dyn_cast<StoreInst>(&CurI)) { 1842 // Found the previous store make sure it stores to the same location. 1843 if (SI->getPointerOperand() == StorePtr) 1844 // Found the previous store, return its value operand. 1845 return SI->getValueOperand(); 1846 return nullptr; // Unknown store. 1847 } 1848 } 1849 1850 return nullptr; 1851 } 1852 1853 /// \brief Speculate a conditional basic block flattening the CFG. 1854 /// 1855 /// Note that this is a very risky transform currently. Speculating 1856 /// instructions like this is most often not desirable. Instead, there is an MI 1857 /// pass which can do it with full awareness of the resource constraints. 1858 /// However, some cases are "obvious" and we should do directly. An example of 1859 /// this is speculating a single, reasonably cheap instruction. 1860 /// 1861 /// There is only one distinct advantage to flattening the CFG at the IR level: 1862 /// it makes very common but simplistic optimizations such as are common in 1863 /// instcombine and the DAG combiner more powerful by removing CFG edges and 1864 /// modeling their effects with easier to reason about SSA value graphs. 1865 /// 1866 /// 1867 /// An illustration of this transform is turning this IR: 1868 /// \code 1869 /// BB: 1870 /// %cmp = icmp ult %x, %y 1871 /// br i1 %cmp, label %EndBB, label %ThenBB 1872 /// ThenBB: 1873 /// %sub = sub %x, %y 1874 /// br label BB2 1875 /// EndBB: 1876 /// %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ] 1877 /// ... 1878 /// \endcode 1879 /// 1880 /// Into this IR: 1881 /// \code 1882 /// BB: 1883 /// %cmp = icmp ult %x, %y 1884 /// %sub = sub %x, %y 1885 /// %cond = select i1 %cmp, 0, %sub 1886 /// ... 1887 /// \endcode 1888 /// 1889 /// \returns true if the conditional block is removed. 1890 static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB, 1891 const TargetTransformInfo &TTI) { 1892 // Be conservative for now. FP select instruction can often be expensive. 1893 Value *BrCond = BI->getCondition(); 1894 if (isa<FCmpInst>(BrCond)) 1895 return false; 1896 1897 BasicBlock *BB = BI->getParent(); 1898 BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0); 1899 1900 // If ThenBB is actually on the false edge of the conditional branch, remember 1901 // to swap the select operands later. 1902 bool Invert = false; 1903 if (ThenBB != BI->getSuccessor(0)) { 1904 assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?"); 1905 Invert = true; 1906 } 1907 assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block"); 1908 1909 // Keep a count of how many times instructions are used within CondBB when 1910 // they are candidates for sinking into CondBB. Specifically: 1911 // - They are defined in BB, and 1912 // - They have no side effects, and 1913 // - All of their uses are in CondBB. 1914 SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts; 1915 1916 unsigned SpeculationCost = 0; 1917 Value *SpeculatedStoreValue = nullptr; 1918 StoreInst *SpeculatedStore = nullptr; 1919 for (BasicBlock::iterator BBI = ThenBB->begin(), 1920 BBE = std::prev(ThenBB->end()); 1921 BBI != BBE; ++BBI) { 1922 Instruction *I = &*BBI; 1923 // Skip debug info. 1924 if (isa<DbgInfoIntrinsic>(I)) 1925 continue; 1926 1927 // Only speculatively execute a single instruction (not counting the 1928 // terminator) for now. 1929 ++SpeculationCost; 1930 if (SpeculationCost > 1) 1931 return false; 1932 1933 // Don't hoist the instruction if it's unsafe or expensive. 1934 if (!isSafeToSpeculativelyExecute(I) && 1935 !(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore( 1936 I, BB, ThenBB, EndBB)))) 1937 return false; 1938 if (!SpeculatedStoreValue && 1939 ComputeSpeculationCost(I, TTI) > 1940 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic) 1941 return false; 1942 1943 // Store the store speculation candidate. 1944 if (SpeculatedStoreValue) 1945 SpeculatedStore = cast<StoreInst>(I); 1946 1947 // Do not hoist the instruction if any of its operands are defined but not 1948 // used in BB. The transformation will prevent the operand from 1949 // being sunk into the use block. 1950 for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) { 1951 Instruction *OpI = dyn_cast<Instruction>(*i); 1952 if (!OpI || OpI->getParent() != BB || OpI->mayHaveSideEffects()) 1953 continue; // Not a candidate for sinking. 1954 1955 ++SinkCandidateUseCounts[OpI]; 1956 } 1957 } 1958 1959 // Consider any sink candidates which are only used in CondBB as costs for 1960 // speculation. Note, while we iterate over a DenseMap here, we are summing 1961 // and so iteration order isn't significant. 1962 for (SmallDenseMap<Instruction *, unsigned, 4>::iterator 1963 I = SinkCandidateUseCounts.begin(), 1964 E = SinkCandidateUseCounts.end(); 1965 I != E; ++I) 1966 if (I->first->getNumUses() == I->second) { 1967 ++SpeculationCost; 1968 if (SpeculationCost > 1) 1969 return false; 1970 } 1971 1972 // Check that the PHI nodes can be converted to selects. 1973 bool HaveRewritablePHIs = false; 1974 for (BasicBlock::iterator I = EndBB->begin(); 1975 PHINode *PN = dyn_cast<PHINode>(I); ++I) { 1976 Value *OrigV = PN->getIncomingValueForBlock(BB); 1977 Value *ThenV = PN->getIncomingValueForBlock(ThenBB); 1978 1979 // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf. 1980 // Skip PHIs which are trivial. 1981 if (ThenV == OrigV) 1982 continue; 1983 1984 // Don't convert to selects if we could remove undefined behavior instead. 1985 if (passingValueIsAlwaysUndefined(OrigV, PN) || 1986 passingValueIsAlwaysUndefined(ThenV, PN)) 1987 return false; 1988 1989 HaveRewritablePHIs = true; 1990 ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV); 1991 ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV); 1992 if (!OrigCE && !ThenCE) 1993 continue; // Known safe and cheap. 1994 1995 if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE)) || 1996 (OrigCE && !isSafeToSpeculativelyExecute(OrigCE))) 1997 return false; 1998 unsigned OrigCost = OrigCE ? ComputeSpeculationCost(OrigCE, TTI) : 0; 1999 unsigned ThenCost = ThenCE ? ComputeSpeculationCost(ThenCE, TTI) : 0; 2000 unsigned MaxCost = 2001 2 * PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 2002 if (OrigCost + ThenCost > MaxCost) 2003 return false; 2004 2005 // Account for the cost of an unfolded ConstantExpr which could end up 2006 // getting expanded into Instructions. 2007 // FIXME: This doesn't account for how many operations are combined in the 2008 // constant expression. 2009 ++SpeculationCost; 2010 if (SpeculationCost > 1) 2011 return false; 2012 } 2013 2014 // If there are no PHIs to process, bail early. This helps ensure idempotence 2015 // as well. 2016 if (!HaveRewritablePHIs && !(HoistCondStores && SpeculatedStoreValue)) 2017 return false; 2018 2019 // If we get here, we can hoist the instruction and if-convert. 2020 DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";); 2021 2022 // Insert a select of the value of the speculated store. 2023 if (SpeculatedStoreValue) { 2024 IRBuilder<NoFolder> Builder(BI); 2025 Value *TrueV = SpeculatedStore->getValueOperand(); 2026 Value *FalseV = SpeculatedStoreValue; 2027 if (Invert) 2028 std::swap(TrueV, FalseV); 2029 Value *S = Builder.CreateSelect( 2030 BrCond, TrueV, FalseV, TrueV->getName() + "." + FalseV->getName(), BI); 2031 SpeculatedStore->setOperand(0, S); 2032 } 2033 2034 // Metadata can be dependent on the condition we are hoisting above. 2035 // Conservatively strip all metadata on the instruction. 2036 for (auto &I : *ThenBB) 2037 I.dropUnknownNonDebugMetadata(); 2038 2039 // Hoist the instructions. 2040 BB->getInstList().splice(BI->getIterator(), ThenBB->getInstList(), 2041 ThenBB->begin(), std::prev(ThenBB->end())); 2042 2043 // Insert selects and rewrite the PHI operands. 2044 IRBuilder<NoFolder> Builder(BI); 2045 for (BasicBlock::iterator I = EndBB->begin(); 2046 PHINode *PN = dyn_cast<PHINode>(I); ++I) { 2047 unsigned OrigI = PN->getBasicBlockIndex(BB); 2048 unsigned ThenI = PN->getBasicBlockIndex(ThenBB); 2049 Value *OrigV = PN->getIncomingValue(OrigI); 2050 Value *ThenV = PN->getIncomingValue(ThenI); 2051 2052 // Skip PHIs which are trivial. 2053 if (OrigV == ThenV) 2054 continue; 2055 2056 // Create a select whose true value is the speculatively executed value and 2057 // false value is the preexisting value. Swap them if the branch 2058 // destinations were inverted. 2059 Value *TrueV = ThenV, *FalseV = OrigV; 2060 if (Invert) 2061 std::swap(TrueV, FalseV); 2062 Value *V = Builder.CreateSelect( 2063 BrCond, TrueV, FalseV, TrueV->getName() + "." + FalseV->getName(), BI); 2064 PN->setIncomingValue(OrigI, V); 2065 PN->setIncomingValue(ThenI, V); 2066 } 2067 2068 ++NumSpeculations; 2069 return true; 2070 } 2071 2072 /// Return true if we can thread a branch across this block. 2073 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) { 2074 BranchInst *BI = cast<BranchInst>(BB->getTerminator()); 2075 unsigned Size = 0; 2076 2077 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) { 2078 if (isa<DbgInfoIntrinsic>(BBI)) 2079 continue; 2080 if (Size > 10) 2081 return false; // Don't clone large BB's. 2082 ++Size; 2083 2084 // We can only support instructions that do not define values that are 2085 // live outside of the current basic block. 2086 for (User *U : BBI->users()) { 2087 Instruction *UI = cast<Instruction>(U); 2088 if (UI->getParent() != BB || isa<PHINode>(UI)) 2089 return false; 2090 } 2091 2092 // Looks ok, continue checking. 2093 } 2094 2095 return true; 2096 } 2097 2098 /// If we have a conditional branch on a PHI node value that is defined in the 2099 /// same block as the branch and if any PHI entries are constants, thread edges 2100 /// corresponding to that entry to be branches to their ultimate destination. 2101 static bool FoldCondBranchOnPHI(BranchInst *BI, const DataLayout &DL) { 2102 BasicBlock *BB = BI->getParent(); 2103 PHINode *PN = dyn_cast<PHINode>(BI->getCondition()); 2104 // NOTE: we currently cannot transform this case if the PHI node is used 2105 // outside of the block. 2106 if (!PN || PN->getParent() != BB || !PN->hasOneUse()) 2107 return false; 2108 2109 // Degenerate case of a single entry PHI. 2110 if (PN->getNumIncomingValues() == 1) { 2111 FoldSingleEntryPHINodes(PN->getParent()); 2112 return true; 2113 } 2114 2115 // Now we know that this block has multiple preds and two succs. 2116 if (!BlockIsSimpleEnoughToThreadThrough(BB)) 2117 return false; 2118 2119 // Can't fold blocks that contain noduplicate or convergent calls. 2120 if (any_of(*BB, [](const Instruction &I) { 2121 const CallInst *CI = dyn_cast<CallInst>(&I); 2122 return CI && (CI->cannotDuplicate() || CI->isConvergent()); 2123 })) 2124 return false; 2125 2126 // Okay, this is a simple enough basic block. See if any phi values are 2127 // constants. 2128 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 2129 ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i)); 2130 if (!CB || !CB->getType()->isIntegerTy(1)) 2131 continue; 2132 2133 // Okay, we now know that all edges from PredBB should be revectored to 2134 // branch to RealDest. 2135 BasicBlock *PredBB = PN->getIncomingBlock(i); 2136 BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue()); 2137 2138 if (RealDest == BB) 2139 continue; // Skip self loops. 2140 // Skip if the predecessor's terminator is an indirect branch. 2141 if (isa<IndirectBrInst>(PredBB->getTerminator())) 2142 continue; 2143 2144 // The dest block might have PHI nodes, other predecessors and other 2145 // difficult cases. Instead of being smart about this, just insert a new 2146 // block that jumps to the destination block, effectively splitting 2147 // the edge we are about to create. 2148 BasicBlock *EdgeBB = 2149 BasicBlock::Create(BB->getContext(), RealDest->getName() + ".critedge", 2150 RealDest->getParent(), RealDest); 2151 BranchInst::Create(RealDest, EdgeBB); 2152 2153 // Update PHI nodes. 2154 AddPredecessorToBlock(RealDest, EdgeBB, BB); 2155 2156 // BB may have instructions that are being threaded over. Clone these 2157 // instructions into EdgeBB. We know that there will be no uses of the 2158 // cloned instructions outside of EdgeBB. 2159 BasicBlock::iterator InsertPt = EdgeBB->begin(); 2160 DenseMap<Value *, Value *> TranslateMap; // Track translated values. 2161 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) { 2162 if (PHINode *PN = dyn_cast<PHINode>(BBI)) { 2163 TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB); 2164 continue; 2165 } 2166 // Clone the instruction. 2167 Instruction *N = BBI->clone(); 2168 if (BBI->hasName()) 2169 N->setName(BBI->getName() + ".c"); 2170 2171 // Update operands due to translation. 2172 for (User::op_iterator i = N->op_begin(), e = N->op_end(); i != e; ++i) { 2173 DenseMap<Value *, Value *>::iterator PI = TranslateMap.find(*i); 2174 if (PI != TranslateMap.end()) 2175 *i = PI->second; 2176 } 2177 2178 // Check for trivial simplification. 2179 if (Value *V = SimplifyInstruction(N, DL)) { 2180 if (!BBI->use_empty()) 2181 TranslateMap[&*BBI] = V; 2182 if (!N->mayHaveSideEffects()) { 2183 delete N; // Instruction folded away, don't need actual inst 2184 N = nullptr; 2185 } 2186 } else { 2187 if (!BBI->use_empty()) 2188 TranslateMap[&*BBI] = N; 2189 } 2190 // Insert the new instruction into its new home. 2191 if (N) 2192 EdgeBB->getInstList().insert(InsertPt, N); 2193 } 2194 2195 // Loop over all of the edges from PredBB to BB, changing them to branch 2196 // to EdgeBB instead. 2197 TerminatorInst *PredBBTI = PredBB->getTerminator(); 2198 for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i) 2199 if (PredBBTI->getSuccessor(i) == BB) { 2200 BB->removePredecessor(PredBB); 2201 PredBBTI->setSuccessor(i, EdgeBB); 2202 } 2203 2204 // Recurse, simplifying any other constants. 2205 return FoldCondBranchOnPHI(BI, DL) | true; 2206 } 2207 2208 return false; 2209 } 2210 2211 /// Given a BB that starts with the specified two-entry PHI node, 2212 /// see if we can eliminate it. 2213 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI, 2214 const DataLayout &DL) { 2215 // Ok, this is a two entry PHI node. Check to see if this is a simple "if 2216 // statement", which has a very simple dominance structure. Basically, we 2217 // are trying to find the condition that is being branched on, which 2218 // subsequently causes this merge to happen. We really want control 2219 // dependence information for this check, but simplifycfg can't keep it up 2220 // to date, and this catches most of the cases we care about anyway. 2221 BasicBlock *BB = PN->getParent(); 2222 BasicBlock *IfTrue, *IfFalse; 2223 Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse); 2224 if (!IfCond || 2225 // Don't bother if the branch will be constant folded trivially. 2226 isa<ConstantInt>(IfCond)) 2227 return false; 2228 2229 // Okay, we found that we can merge this two-entry phi node into a select. 2230 // Doing so would require us to fold *all* two entry phi nodes in this block. 2231 // At some point this becomes non-profitable (particularly if the target 2232 // doesn't support cmov's). Only do this transformation if there are two or 2233 // fewer PHI nodes in this block. 2234 unsigned NumPhis = 0; 2235 for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I) 2236 if (NumPhis > 2) 2237 return false; 2238 2239 // Loop over the PHI's seeing if we can promote them all to select 2240 // instructions. While we are at it, keep track of the instructions 2241 // that need to be moved to the dominating block. 2242 SmallPtrSet<Instruction *, 4> AggressiveInsts; 2243 unsigned MaxCostVal0 = PHINodeFoldingThreshold, 2244 MaxCostVal1 = PHINodeFoldingThreshold; 2245 MaxCostVal0 *= TargetTransformInfo::TCC_Basic; 2246 MaxCostVal1 *= TargetTransformInfo::TCC_Basic; 2247 2248 for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) { 2249 PHINode *PN = cast<PHINode>(II++); 2250 if (Value *V = SimplifyInstruction(PN, DL)) { 2251 PN->replaceAllUsesWith(V); 2252 PN->eraseFromParent(); 2253 continue; 2254 } 2255 2256 if (!DominatesMergePoint(PN->getIncomingValue(0), BB, &AggressiveInsts, 2257 MaxCostVal0, TTI) || 2258 !DominatesMergePoint(PN->getIncomingValue(1), BB, &AggressiveInsts, 2259 MaxCostVal1, TTI)) 2260 return false; 2261 } 2262 2263 // If we folded the first phi, PN dangles at this point. Refresh it. If 2264 // we ran out of PHIs then we simplified them all. 2265 PN = dyn_cast<PHINode>(BB->begin()); 2266 if (!PN) 2267 return true; 2268 2269 // Don't fold i1 branches on PHIs which contain binary operators. These can 2270 // often be turned into switches and other things. 2271 if (PN->getType()->isIntegerTy(1) && 2272 (isa<BinaryOperator>(PN->getIncomingValue(0)) || 2273 isa<BinaryOperator>(PN->getIncomingValue(1)) || 2274 isa<BinaryOperator>(IfCond))) 2275 return false; 2276 2277 // If all PHI nodes are promotable, check to make sure that all instructions 2278 // in the predecessor blocks can be promoted as well. If not, we won't be able 2279 // to get rid of the control flow, so it's not worth promoting to select 2280 // instructions. 2281 BasicBlock *DomBlock = nullptr; 2282 BasicBlock *IfBlock1 = PN->getIncomingBlock(0); 2283 BasicBlock *IfBlock2 = PN->getIncomingBlock(1); 2284 if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) { 2285 IfBlock1 = nullptr; 2286 } else { 2287 DomBlock = *pred_begin(IfBlock1); 2288 for (BasicBlock::iterator I = IfBlock1->begin(); !isa<TerminatorInst>(I); 2289 ++I) 2290 if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) { 2291 // This is not an aggressive instruction that we can promote. 2292 // Because of this, we won't be able to get rid of the control flow, so 2293 // the xform is not worth it. 2294 return false; 2295 } 2296 } 2297 2298 if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) { 2299 IfBlock2 = nullptr; 2300 } else { 2301 DomBlock = *pred_begin(IfBlock2); 2302 for (BasicBlock::iterator I = IfBlock2->begin(); !isa<TerminatorInst>(I); 2303 ++I) 2304 if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) { 2305 // This is not an aggressive instruction that we can promote. 2306 // Because of this, we won't be able to get rid of the control flow, so 2307 // the xform is not worth it. 2308 return false; 2309 } 2310 } 2311 2312 DEBUG(dbgs() << "FOUND IF CONDITION! " << *IfCond << " T: " 2313 << IfTrue->getName() << " F: " << IfFalse->getName() << "\n"); 2314 2315 // If we can still promote the PHI nodes after this gauntlet of tests, 2316 // do all of the PHI's now. 2317 Instruction *InsertPt = DomBlock->getTerminator(); 2318 IRBuilder<NoFolder> Builder(InsertPt); 2319 2320 // Move all 'aggressive' instructions, which are defined in the 2321 // conditional parts of the if's up to the dominating block. 2322 if (IfBlock1) { 2323 for (auto &I : *IfBlock1) 2324 I.dropUnknownNonDebugMetadata(); 2325 DomBlock->getInstList().splice(InsertPt->getIterator(), 2326 IfBlock1->getInstList(), IfBlock1->begin(), 2327 IfBlock1->getTerminator()->getIterator()); 2328 } 2329 if (IfBlock2) { 2330 for (auto &I : *IfBlock2) 2331 I.dropUnknownNonDebugMetadata(); 2332 DomBlock->getInstList().splice(InsertPt->getIterator(), 2333 IfBlock2->getInstList(), IfBlock2->begin(), 2334 IfBlock2->getTerminator()->getIterator()); 2335 } 2336 2337 while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) { 2338 // Change the PHI node into a select instruction. 2339 Value *TrueVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse); 2340 Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue); 2341 2342 Value *Sel = Builder.CreateSelect(IfCond, TrueVal, FalseVal, "", InsertPt); 2343 PN->replaceAllUsesWith(Sel); 2344 Sel->takeName(PN); 2345 PN->eraseFromParent(); 2346 } 2347 2348 // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement 2349 // has been flattened. Change DomBlock to jump directly to our new block to 2350 // avoid other simplifycfg's kicking in on the diamond. 2351 TerminatorInst *OldTI = DomBlock->getTerminator(); 2352 Builder.SetInsertPoint(OldTI); 2353 Builder.CreateBr(BB); 2354 OldTI->eraseFromParent(); 2355 return true; 2356 } 2357 2358 /// If we found a conditional branch that goes to two returning blocks, 2359 /// try to merge them together into one return, 2360 /// introducing a select if the return values disagree. 2361 static bool SimplifyCondBranchToTwoReturns(BranchInst *BI, 2362 IRBuilder<> &Builder) { 2363 assert(BI->isConditional() && "Must be a conditional branch"); 2364 BasicBlock *TrueSucc = BI->getSuccessor(0); 2365 BasicBlock *FalseSucc = BI->getSuccessor(1); 2366 ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator()); 2367 ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator()); 2368 2369 // Check to ensure both blocks are empty (just a return) or optionally empty 2370 // with PHI nodes. If there are other instructions, merging would cause extra 2371 // computation on one path or the other. 2372 if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator()) 2373 return false; 2374 if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator()) 2375 return false; 2376 2377 Builder.SetInsertPoint(BI); 2378 // Okay, we found a branch that is going to two return nodes. If 2379 // there is no return value for this function, just change the 2380 // branch into a return. 2381 if (FalseRet->getNumOperands() == 0) { 2382 TrueSucc->removePredecessor(BI->getParent()); 2383 FalseSucc->removePredecessor(BI->getParent()); 2384 Builder.CreateRetVoid(); 2385 EraseTerminatorInstAndDCECond(BI); 2386 return true; 2387 } 2388 2389 // Otherwise, figure out what the true and false return values are 2390 // so we can insert a new select instruction. 2391 Value *TrueValue = TrueRet->getReturnValue(); 2392 Value *FalseValue = FalseRet->getReturnValue(); 2393 2394 // Unwrap any PHI nodes in the return blocks. 2395 if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue)) 2396 if (TVPN->getParent() == TrueSucc) 2397 TrueValue = TVPN->getIncomingValueForBlock(BI->getParent()); 2398 if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue)) 2399 if (FVPN->getParent() == FalseSucc) 2400 FalseValue = FVPN->getIncomingValueForBlock(BI->getParent()); 2401 2402 // In order for this transformation to be safe, we must be able to 2403 // unconditionally execute both operands to the return. This is 2404 // normally the case, but we could have a potentially-trapping 2405 // constant expression that prevents this transformation from being 2406 // safe. 2407 if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue)) 2408 if (TCV->canTrap()) 2409 return false; 2410 if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue)) 2411 if (FCV->canTrap()) 2412 return false; 2413 2414 // Okay, we collected all the mapped values and checked them for sanity, and 2415 // defined to really do this transformation. First, update the CFG. 2416 TrueSucc->removePredecessor(BI->getParent()); 2417 FalseSucc->removePredecessor(BI->getParent()); 2418 2419 // Insert select instructions where needed. 2420 Value *BrCond = BI->getCondition(); 2421 if (TrueValue) { 2422 // Insert a select if the results differ. 2423 if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) { 2424 } else if (isa<UndefValue>(TrueValue)) { 2425 TrueValue = FalseValue; 2426 } else { 2427 TrueValue = 2428 Builder.CreateSelect(BrCond, TrueValue, FalseValue, "retval", BI); 2429 } 2430 } 2431 2432 Value *RI = 2433 !TrueValue ? Builder.CreateRetVoid() : Builder.CreateRet(TrueValue); 2434 2435 (void)RI; 2436 2437 DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:" 2438 << "\n " << *BI << "NewRet = " << *RI 2439 << "TRUEBLOCK: " << *TrueSucc << "FALSEBLOCK: " << *FalseSucc); 2440 2441 EraseTerminatorInstAndDCECond(BI); 2442 2443 return true; 2444 } 2445 2446 /// Return true if the given instruction is available 2447 /// in its predecessor block. If yes, the instruction will be removed. 2448 static bool checkCSEInPredecessor(Instruction *Inst, BasicBlock *PB) { 2449 if (!isa<BinaryOperator>(Inst) && !isa<CmpInst>(Inst)) 2450 return false; 2451 for (Instruction &I : *PB) { 2452 Instruction *PBI = &I; 2453 // Check whether Inst and PBI generate the same value. 2454 if (Inst->isIdenticalTo(PBI)) { 2455 Inst->replaceAllUsesWith(PBI); 2456 Inst->eraseFromParent(); 2457 return true; 2458 } 2459 } 2460 return false; 2461 } 2462 2463 /// Return true if either PBI or BI has branch weight available, and store 2464 /// the weights in {Pred|Succ}{True|False}Weight. If one of PBI and BI does 2465 /// not have branch weight, use 1:1 as its weight. 2466 static bool extractPredSuccWeights(BranchInst *PBI, BranchInst *BI, 2467 uint64_t &PredTrueWeight, 2468 uint64_t &PredFalseWeight, 2469 uint64_t &SuccTrueWeight, 2470 uint64_t &SuccFalseWeight) { 2471 bool PredHasWeights = 2472 PBI->extractProfMetadata(PredTrueWeight, PredFalseWeight); 2473 bool SuccHasWeights = 2474 BI->extractProfMetadata(SuccTrueWeight, SuccFalseWeight); 2475 if (PredHasWeights || SuccHasWeights) { 2476 if (!PredHasWeights) 2477 PredTrueWeight = PredFalseWeight = 1; 2478 if (!SuccHasWeights) 2479 SuccTrueWeight = SuccFalseWeight = 1; 2480 return true; 2481 } else { 2482 return false; 2483 } 2484 } 2485 2486 /// If this basic block is simple enough, and if a predecessor branches to us 2487 /// and one of our successors, fold the block into the predecessor and use 2488 /// logical operations to pick the right destination. 2489 bool llvm::FoldBranchToCommonDest(BranchInst *BI, unsigned BonusInstThreshold) { 2490 BasicBlock *BB = BI->getParent(); 2491 2492 Instruction *Cond = nullptr; 2493 if (BI->isConditional()) 2494 Cond = dyn_cast<Instruction>(BI->getCondition()); 2495 else { 2496 // For unconditional branch, check for a simple CFG pattern, where 2497 // BB has a single predecessor and BB's successor is also its predecessor's 2498 // successor. If such pattern exisits, check for CSE between BB and its 2499 // predecessor. 2500 if (BasicBlock *PB = BB->getSinglePredecessor()) 2501 if (BranchInst *PBI = dyn_cast<BranchInst>(PB->getTerminator())) 2502 if (PBI->isConditional() && 2503 (BI->getSuccessor(0) == PBI->getSuccessor(0) || 2504 BI->getSuccessor(0) == PBI->getSuccessor(1))) { 2505 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 2506 Instruction *Curr = &*I++; 2507 if (isa<CmpInst>(Curr)) { 2508 Cond = Curr; 2509 break; 2510 } 2511 // Quit if we can't remove this instruction. 2512 if (!checkCSEInPredecessor(Curr, PB)) 2513 return false; 2514 } 2515 } 2516 2517 if (!Cond) 2518 return false; 2519 } 2520 2521 if (!Cond || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) || 2522 Cond->getParent() != BB || !Cond->hasOneUse()) 2523 return false; 2524 2525 // Make sure the instruction after the condition is the cond branch. 2526 BasicBlock::iterator CondIt = ++Cond->getIterator(); 2527 2528 // Ignore dbg intrinsics. 2529 while (isa<DbgInfoIntrinsic>(CondIt)) 2530 ++CondIt; 2531 2532 if (&*CondIt != BI) 2533 return false; 2534 2535 // Only allow this transformation if computing the condition doesn't involve 2536 // too many instructions and these involved instructions can be executed 2537 // unconditionally. We denote all involved instructions except the condition 2538 // as "bonus instructions", and only allow this transformation when the 2539 // number of the bonus instructions does not exceed a certain threshold. 2540 unsigned NumBonusInsts = 0; 2541 for (auto I = BB->begin(); Cond != &*I; ++I) { 2542 // Ignore dbg intrinsics. 2543 if (isa<DbgInfoIntrinsic>(I)) 2544 continue; 2545 if (!I->hasOneUse() || !isSafeToSpeculativelyExecute(&*I)) 2546 return false; 2547 // I has only one use and can be executed unconditionally. 2548 Instruction *User = dyn_cast<Instruction>(I->user_back()); 2549 if (User == nullptr || User->getParent() != BB) 2550 return false; 2551 // I is used in the same BB. Since BI uses Cond and doesn't have more slots 2552 // to use any other instruction, User must be an instruction between next(I) 2553 // and Cond. 2554 ++NumBonusInsts; 2555 // Early exits once we reach the limit. 2556 if (NumBonusInsts > BonusInstThreshold) 2557 return false; 2558 } 2559 2560 // Cond is known to be a compare or binary operator. Check to make sure that 2561 // neither operand is a potentially-trapping constant expression. 2562 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0))) 2563 if (CE->canTrap()) 2564 return false; 2565 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1))) 2566 if (CE->canTrap()) 2567 return false; 2568 2569 // Finally, don't infinitely unroll conditional loops. 2570 BasicBlock *TrueDest = BI->getSuccessor(0); 2571 BasicBlock *FalseDest = (BI->isConditional()) ? BI->getSuccessor(1) : nullptr; 2572 if (TrueDest == BB || FalseDest == BB) 2573 return false; 2574 2575 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 2576 BasicBlock *PredBlock = *PI; 2577 BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator()); 2578 2579 // Check that we have two conditional branches. If there is a PHI node in 2580 // the common successor, verify that the same value flows in from both 2581 // blocks. 2582 SmallVector<PHINode *, 4> PHIs; 2583 if (!PBI || PBI->isUnconditional() || 2584 (BI->isConditional() && !SafeToMergeTerminators(BI, PBI)) || 2585 (!BI->isConditional() && 2586 !isProfitableToFoldUnconditional(BI, PBI, Cond, PHIs))) 2587 continue; 2588 2589 // Determine if the two branches share a common destination. 2590 Instruction::BinaryOps Opc = Instruction::BinaryOpsEnd; 2591 bool InvertPredCond = false; 2592 2593 if (BI->isConditional()) { 2594 if (PBI->getSuccessor(0) == TrueDest) { 2595 Opc = Instruction::Or; 2596 } else if (PBI->getSuccessor(1) == FalseDest) { 2597 Opc = Instruction::And; 2598 } else if (PBI->getSuccessor(0) == FalseDest) { 2599 Opc = Instruction::And; 2600 InvertPredCond = true; 2601 } else if (PBI->getSuccessor(1) == TrueDest) { 2602 Opc = Instruction::Or; 2603 InvertPredCond = true; 2604 } else { 2605 continue; 2606 } 2607 } else { 2608 if (PBI->getSuccessor(0) != TrueDest && PBI->getSuccessor(1) != TrueDest) 2609 continue; 2610 } 2611 2612 DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB); 2613 IRBuilder<> Builder(PBI); 2614 2615 // If we need to invert the condition in the pred block to match, do so now. 2616 if (InvertPredCond) { 2617 Value *NewCond = PBI->getCondition(); 2618 2619 if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) { 2620 CmpInst *CI = cast<CmpInst>(NewCond); 2621 CI->setPredicate(CI->getInversePredicate()); 2622 } else { 2623 NewCond = 2624 Builder.CreateNot(NewCond, PBI->getCondition()->getName() + ".not"); 2625 } 2626 2627 PBI->setCondition(NewCond); 2628 PBI->swapSuccessors(); 2629 } 2630 2631 // If we have bonus instructions, clone them into the predecessor block. 2632 // Note that there may be multiple predecessor blocks, so we cannot move 2633 // bonus instructions to a predecessor block. 2634 ValueToValueMapTy VMap; // maps original values to cloned values 2635 // We already make sure Cond is the last instruction before BI. Therefore, 2636 // all instructions before Cond other than DbgInfoIntrinsic are bonus 2637 // instructions. 2638 for (auto BonusInst = BB->begin(); Cond != &*BonusInst; ++BonusInst) { 2639 if (isa<DbgInfoIntrinsic>(BonusInst)) 2640 continue; 2641 Instruction *NewBonusInst = BonusInst->clone(); 2642 RemapInstruction(NewBonusInst, VMap, 2643 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 2644 VMap[&*BonusInst] = NewBonusInst; 2645 2646 // If we moved a load, we cannot any longer claim any knowledge about 2647 // its potential value. The previous information might have been valid 2648 // only given the branch precondition. 2649 // For an analogous reason, we must also drop all the metadata whose 2650 // semantics we don't understand. 2651 NewBonusInst->dropUnknownNonDebugMetadata(); 2652 2653 PredBlock->getInstList().insert(PBI->getIterator(), NewBonusInst); 2654 NewBonusInst->takeName(&*BonusInst); 2655 BonusInst->setName(BonusInst->getName() + ".old"); 2656 } 2657 2658 // Clone Cond into the predecessor basic block, and or/and the 2659 // two conditions together. 2660 Instruction *New = Cond->clone(); 2661 RemapInstruction(New, VMap, 2662 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 2663 PredBlock->getInstList().insert(PBI->getIterator(), New); 2664 New->takeName(Cond); 2665 Cond->setName(New->getName() + ".old"); 2666 2667 if (BI->isConditional()) { 2668 Instruction *NewCond = cast<Instruction>( 2669 Builder.CreateBinOp(Opc, PBI->getCondition(), New, "or.cond")); 2670 PBI->setCondition(NewCond); 2671 2672 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 2673 bool HasWeights = 2674 extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight, 2675 SuccTrueWeight, SuccFalseWeight); 2676 SmallVector<uint64_t, 8> NewWeights; 2677 2678 if (PBI->getSuccessor(0) == BB) { 2679 if (HasWeights) { 2680 // PBI: br i1 %x, BB, FalseDest 2681 // BI: br i1 %y, TrueDest, FalseDest 2682 // TrueWeight is TrueWeight for PBI * TrueWeight for BI. 2683 NewWeights.push_back(PredTrueWeight * SuccTrueWeight); 2684 // FalseWeight is FalseWeight for PBI * TotalWeight for BI + 2685 // TrueWeight for PBI * FalseWeight for BI. 2686 // We assume that total weights of a BranchInst can fit into 32 bits. 2687 // Therefore, we will not have overflow using 64-bit arithmetic. 2688 NewWeights.push_back(PredFalseWeight * 2689 (SuccFalseWeight + SuccTrueWeight) + 2690 PredTrueWeight * SuccFalseWeight); 2691 } 2692 AddPredecessorToBlock(TrueDest, PredBlock, BB); 2693 PBI->setSuccessor(0, TrueDest); 2694 } 2695 if (PBI->getSuccessor(1) == BB) { 2696 if (HasWeights) { 2697 // PBI: br i1 %x, TrueDest, BB 2698 // BI: br i1 %y, TrueDest, FalseDest 2699 // TrueWeight is TrueWeight for PBI * TotalWeight for BI + 2700 // FalseWeight for PBI * TrueWeight for BI. 2701 NewWeights.push_back(PredTrueWeight * 2702 (SuccFalseWeight + SuccTrueWeight) + 2703 PredFalseWeight * SuccTrueWeight); 2704 // FalseWeight is FalseWeight for PBI * FalseWeight for BI. 2705 NewWeights.push_back(PredFalseWeight * SuccFalseWeight); 2706 } 2707 AddPredecessorToBlock(FalseDest, PredBlock, BB); 2708 PBI->setSuccessor(1, FalseDest); 2709 } 2710 if (NewWeights.size() == 2) { 2711 // Halve the weights if any of them cannot fit in an uint32_t 2712 FitWeights(NewWeights); 2713 2714 SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(), 2715 NewWeights.end()); 2716 PBI->setMetadata( 2717 LLVMContext::MD_prof, 2718 MDBuilder(BI->getContext()).createBranchWeights(MDWeights)); 2719 } else 2720 PBI->setMetadata(LLVMContext::MD_prof, nullptr); 2721 } else { 2722 // Update PHI nodes in the common successors. 2723 for (unsigned i = 0, e = PHIs.size(); i != e; ++i) { 2724 ConstantInt *PBI_C = cast<ConstantInt>( 2725 PHIs[i]->getIncomingValueForBlock(PBI->getParent())); 2726 assert(PBI_C->getType()->isIntegerTy(1)); 2727 Instruction *MergedCond = nullptr; 2728 if (PBI->getSuccessor(0) == TrueDest) { 2729 // Create (PBI_Cond and PBI_C) or (!PBI_Cond and BI_Value) 2730 // PBI_C is true: PBI_Cond or (!PBI_Cond and BI_Value) 2731 // is false: !PBI_Cond and BI_Value 2732 Instruction *NotCond = cast<Instruction>( 2733 Builder.CreateNot(PBI->getCondition(), "not.cond")); 2734 MergedCond = cast<Instruction>( 2735 Builder.CreateBinOp(Instruction::And, NotCond, New, "and.cond")); 2736 if (PBI_C->isOne()) 2737 MergedCond = cast<Instruction>(Builder.CreateBinOp( 2738 Instruction::Or, PBI->getCondition(), MergedCond, "or.cond")); 2739 } else { 2740 // Create (PBI_Cond and BI_Value) or (!PBI_Cond and PBI_C) 2741 // PBI_C is true: (PBI_Cond and BI_Value) or (!PBI_Cond) 2742 // is false: PBI_Cond and BI_Value 2743 MergedCond = cast<Instruction>(Builder.CreateBinOp( 2744 Instruction::And, PBI->getCondition(), New, "and.cond")); 2745 if (PBI_C->isOne()) { 2746 Instruction *NotCond = cast<Instruction>( 2747 Builder.CreateNot(PBI->getCondition(), "not.cond")); 2748 MergedCond = cast<Instruction>(Builder.CreateBinOp( 2749 Instruction::Or, NotCond, MergedCond, "or.cond")); 2750 } 2751 } 2752 // Update PHI Node. 2753 PHIs[i]->setIncomingValue(PHIs[i]->getBasicBlockIndex(PBI->getParent()), 2754 MergedCond); 2755 } 2756 // Change PBI from Conditional to Unconditional. 2757 BranchInst *New_PBI = BranchInst::Create(TrueDest, PBI); 2758 EraseTerminatorInstAndDCECond(PBI); 2759 PBI = New_PBI; 2760 } 2761 2762 // TODO: If BB is reachable from all paths through PredBlock, then we 2763 // could replace PBI's branch probabilities with BI's. 2764 2765 // Copy any debug value intrinsics into the end of PredBlock. 2766 for (Instruction &I : *BB) 2767 if (isa<DbgInfoIntrinsic>(I)) 2768 I.clone()->insertBefore(PBI); 2769 2770 return true; 2771 } 2772 return false; 2773 } 2774 2775 // If there is only one store in BB1 and BB2, return it, otherwise return 2776 // nullptr. 2777 static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) { 2778 StoreInst *S = nullptr; 2779 for (auto *BB : {BB1, BB2}) { 2780 if (!BB) 2781 continue; 2782 for (auto &I : *BB) 2783 if (auto *SI = dyn_cast<StoreInst>(&I)) { 2784 if (S) 2785 // Multiple stores seen. 2786 return nullptr; 2787 else 2788 S = SI; 2789 } 2790 } 2791 return S; 2792 } 2793 2794 static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB, 2795 Value *AlternativeV = nullptr) { 2796 // PHI is going to be a PHI node that allows the value V that is defined in 2797 // BB to be referenced in BB's only successor. 2798 // 2799 // If AlternativeV is nullptr, the only value we care about in PHI is V. It 2800 // doesn't matter to us what the other operand is (it'll never get used). We 2801 // could just create a new PHI with an undef incoming value, but that could 2802 // increase register pressure if EarlyCSE/InstCombine can't fold it with some 2803 // other PHI. So here we directly look for some PHI in BB's successor with V 2804 // as an incoming operand. If we find one, we use it, else we create a new 2805 // one. 2806 // 2807 // If AlternativeV is not nullptr, we care about both incoming values in PHI. 2808 // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV] 2809 // where OtherBB is the single other predecessor of BB's only successor. 2810 PHINode *PHI = nullptr; 2811 BasicBlock *Succ = BB->getSingleSuccessor(); 2812 2813 for (auto I = Succ->begin(); isa<PHINode>(I); ++I) 2814 if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) { 2815 PHI = cast<PHINode>(I); 2816 if (!AlternativeV) 2817 break; 2818 2819 assert(std::distance(pred_begin(Succ), pred_end(Succ)) == 2); 2820 auto PredI = pred_begin(Succ); 2821 BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI; 2822 if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV) 2823 break; 2824 PHI = nullptr; 2825 } 2826 if (PHI) 2827 return PHI; 2828 2829 // If V is not an instruction defined in BB, just return it. 2830 if (!AlternativeV && 2831 (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB)) 2832 return V; 2833 2834 PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge", &Succ->front()); 2835 PHI->addIncoming(V, BB); 2836 for (BasicBlock *PredBB : predecessors(Succ)) 2837 if (PredBB != BB) 2838 PHI->addIncoming( 2839 AlternativeV ? AlternativeV : UndefValue::get(V->getType()), PredBB); 2840 return PHI; 2841 } 2842 2843 static bool mergeConditionalStoreToAddress(BasicBlock *PTB, BasicBlock *PFB, 2844 BasicBlock *QTB, BasicBlock *QFB, 2845 BasicBlock *PostBB, Value *Address, 2846 bool InvertPCond, bool InvertQCond) { 2847 auto IsaBitcastOfPointerType = [](const Instruction &I) { 2848 return Operator::getOpcode(&I) == Instruction::BitCast && 2849 I.getType()->isPointerTy(); 2850 }; 2851 2852 // If we're not in aggressive mode, we only optimize if we have some 2853 // confidence that by optimizing we'll allow P and/or Q to be if-converted. 2854 auto IsWorthwhile = [&](BasicBlock *BB) { 2855 if (!BB) 2856 return true; 2857 // Heuristic: if the block can be if-converted/phi-folded and the 2858 // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to 2859 // thread this store. 2860 unsigned N = 0; 2861 for (auto &I : *BB) { 2862 // Cheap instructions viable for folding. 2863 if (isa<BinaryOperator>(I) || isa<GetElementPtrInst>(I) || 2864 isa<StoreInst>(I)) 2865 ++N; 2866 // Free instructions. 2867 else if (isa<TerminatorInst>(I) || isa<DbgInfoIntrinsic>(I) || 2868 IsaBitcastOfPointerType(I)) 2869 continue; 2870 else 2871 return false; 2872 } 2873 return N <= PHINodeFoldingThreshold; 2874 }; 2875 2876 if (!MergeCondStoresAggressively && 2877 (!IsWorthwhile(PTB) || !IsWorthwhile(PFB) || !IsWorthwhile(QTB) || 2878 !IsWorthwhile(QFB))) 2879 return false; 2880 2881 // For every pointer, there must be exactly two stores, one coming from 2882 // PTB or PFB, and the other from QTB or QFB. We don't support more than one 2883 // store (to any address) in PTB,PFB or QTB,QFB. 2884 // FIXME: We could relax this restriction with a bit more work and performance 2885 // testing. 2886 StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB); 2887 StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB); 2888 if (!PStore || !QStore) 2889 return false; 2890 2891 // Now check the stores are compatible. 2892 if (!QStore->isUnordered() || !PStore->isUnordered()) 2893 return false; 2894 2895 // Check that sinking the store won't cause program behavior changes. Sinking 2896 // the store out of the Q blocks won't change any behavior as we're sinking 2897 // from a block to its unconditional successor. But we're moving a store from 2898 // the P blocks down through the middle block (QBI) and past both QFB and QTB. 2899 // So we need to check that there are no aliasing loads or stores in 2900 // QBI, QTB and QFB. We also need to check there are no conflicting memory 2901 // operations between PStore and the end of its parent block. 2902 // 2903 // The ideal way to do this is to query AliasAnalysis, but we don't 2904 // preserve AA currently so that is dangerous. Be super safe and just 2905 // check there are no other memory operations at all. 2906 for (auto &I : *QFB->getSinglePredecessor()) 2907 if (I.mayReadOrWriteMemory()) 2908 return false; 2909 for (auto &I : *QFB) 2910 if (&I != QStore && I.mayReadOrWriteMemory()) 2911 return false; 2912 if (QTB) 2913 for (auto &I : *QTB) 2914 if (&I != QStore && I.mayReadOrWriteMemory()) 2915 return false; 2916 for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end(); 2917 I != E; ++I) 2918 if (&*I != PStore && I->mayReadOrWriteMemory()) 2919 return false; 2920 2921 // OK, we're going to sink the stores to PostBB. The store has to be 2922 // conditional though, so first create the predicate. 2923 Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator()) 2924 ->getCondition(); 2925 Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator()) 2926 ->getCondition(); 2927 2928 Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(), 2929 PStore->getParent()); 2930 Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(), 2931 QStore->getParent(), PPHI); 2932 2933 IRBuilder<> QB(&*PostBB->getFirstInsertionPt()); 2934 2935 Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond); 2936 Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond); 2937 2938 if (InvertPCond) 2939 PPred = QB.CreateNot(PPred); 2940 if (InvertQCond) 2941 QPred = QB.CreateNot(QPred); 2942 Value *CombinedPred = QB.CreateOr(PPred, QPred); 2943 2944 auto *T = 2945 SplitBlockAndInsertIfThen(CombinedPred, &*QB.GetInsertPoint(), false); 2946 QB.SetInsertPoint(T); 2947 StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address)); 2948 AAMDNodes AAMD; 2949 PStore->getAAMetadata(AAMD, /*Merge=*/false); 2950 PStore->getAAMetadata(AAMD, /*Merge=*/true); 2951 SI->setAAMetadata(AAMD); 2952 2953 QStore->eraseFromParent(); 2954 PStore->eraseFromParent(); 2955 2956 return true; 2957 } 2958 2959 static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI) { 2960 // The intention here is to find diamonds or triangles (see below) where each 2961 // conditional block contains a store to the same address. Both of these 2962 // stores are conditional, so they can't be unconditionally sunk. But it may 2963 // be profitable to speculatively sink the stores into one merged store at the 2964 // end, and predicate the merged store on the union of the two conditions of 2965 // PBI and QBI. 2966 // 2967 // This can reduce the number of stores executed if both of the conditions are 2968 // true, and can allow the blocks to become small enough to be if-converted. 2969 // This optimization will also chain, so that ladders of test-and-set 2970 // sequences can be if-converted away. 2971 // 2972 // We only deal with simple diamonds or triangles: 2973 // 2974 // PBI or PBI or a combination of the two 2975 // / \ | \ 2976 // PTB PFB | PFB 2977 // \ / | / 2978 // QBI QBI 2979 // / \ | \ 2980 // QTB QFB | QFB 2981 // \ / | / 2982 // PostBB PostBB 2983 // 2984 // We model triangles as a type of diamond with a nullptr "true" block. 2985 // Triangles are canonicalized so that the fallthrough edge is represented by 2986 // a true condition, as in the diagram above. 2987 // 2988 BasicBlock *PTB = PBI->getSuccessor(0); 2989 BasicBlock *PFB = PBI->getSuccessor(1); 2990 BasicBlock *QTB = QBI->getSuccessor(0); 2991 BasicBlock *QFB = QBI->getSuccessor(1); 2992 BasicBlock *PostBB = QFB->getSingleSuccessor(); 2993 2994 bool InvertPCond = false, InvertQCond = false; 2995 // Canonicalize fallthroughs to the true branches. 2996 if (PFB == QBI->getParent()) { 2997 std::swap(PFB, PTB); 2998 InvertPCond = true; 2999 } 3000 if (QFB == PostBB) { 3001 std::swap(QFB, QTB); 3002 InvertQCond = true; 3003 } 3004 3005 // From this point on we can assume PTB or QTB may be fallthroughs but PFB 3006 // and QFB may not. Model fallthroughs as a nullptr block. 3007 if (PTB == QBI->getParent()) 3008 PTB = nullptr; 3009 if (QTB == PostBB) 3010 QTB = nullptr; 3011 3012 // Legality bailouts. We must have at least the non-fallthrough blocks and 3013 // the post-dominating block, and the non-fallthroughs must only have one 3014 // predecessor. 3015 auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) { 3016 return BB->getSinglePredecessor() == P && BB->getSingleSuccessor() == S; 3017 }; 3018 if (!PostBB || 3019 !HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) || 3020 !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB)) 3021 return false; 3022 if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) || 3023 (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB))) 3024 return false; 3025 if (PostBB->getNumUses() != 2 || QBI->getParent()->getNumUses() != 2) 3026 return false; 3027 3028 // OK, this is a sequence of two diamonds or triangles. 3029 // Check if there are stores in PTB or PFB that are repeated in QTB or QFB. 3030 SmallPtrSet<Value *, 4> PStoreAddresses, QStoreAddresses; 3031 for (auto *BB : {PTB, PFB}) { 3032 if (!BB) 3033 continue; 3034 for (auto &I : *BB) 3035 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) 3036 PStoreAddresses.insert(SI->getPointerOperand()); 3037 } 3038 for (auto *BB : {QTB, QFB}) { 3039 if (!BB) 3040 continue; 3041 for (auto &I : *BB) 3042 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) 3043 QStoreAddresses.insert(SI->getPointerOperand()); 3044 } 3045 3046 set_intersect(PStoreAddresses, QStoreAddresses); 3047 // set_intersect mutates PStoreAddresses in place. Rename it here to make it 3048 // clear what it contains. 3049 auto &CommonAddresses = PStoreAddresses; 3050 3051 bool Changed = false; 3052 for (auto *Address : CommonAddresses) 3053 Changed |= mergeConditionalStoreToAddress( 3054 PTB, PFB, QTB, QFB, PostBB, Address, InvertPCond, InvertQCond); 3055 return Changed; 3056 } 3057 3058 /// If we have a conditional branch as a predecessor of another block, 3059 /// this function tries to simplify it. We know 3060 /// that PBI and BI are both conditional branches, and BI is in one of the 3061 /// successor blocks of PBI - PBI branches to BI. 3062 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI, 3063 const DataLayout &DL) { 3064 assert(PBI->isConditional() && BI->isConditional()); 3065 BasicBlock *BB = BI->getParent(); 3066 3067 // If this block ends with a branch instruction, and if there is a 3068 // predecessor that ends on a branch of the same condition, make 3069 // this conditional branch redundant. 3070 if (PBI->getCondition() == BI->getCondition() && 3071 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 3072 // Okay, the outcome of this conditional branch is statically 3073 // knowable. If this block had a single pred, handle specially. 3074 if (BB->getSinglePredecessor()) { 3075 // Turn this into a branch on constant. 3076 bool CondIsTrue = PBI->getSuccessor(0) == BB; 3077 BI->setCondition( 3078 ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue)); 3079 return true; // Nuke the branch on constant. 3080 } 3081 3082 // Otherwise, if there are multiple predecessors, insert a PHI that merges 3083 // in the constant and simplify the block result. Subsequent passes of 3084 // simplifycfg will thread the block. 3085 if (BlockIsSimpleEnoughToThreadThrough(BB)) { 3086 pred_iterator PB = pred_begin(BB), PE = pred_end(BB); 3087 PHINode *NewPN = PHINode::Create( 3088 Type::getInt1Ty(BB->getContext()), std::distance(PB, PE), 3089 BI->getCondition()->getName() + ".pr", &BB->front()); 3090 // Okay, we're going to insert the PHI node. Since PBI is not the only 3091 // predecessor, compute the PHI'd conditional value for all of the preds. 3092 // Any predecessor where the condition is not computable we keep symbolic. 3093 for (pred_iterator PI = PB; PI != PE; ++PI) { 3094 BasicBlock *P = *PI; 3095 if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) && PBI != BI && 3096 PBI->isConditional() && PBI->getCondition() == BI->getCondition() && 3097 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 3098 bool CondIsTrue = PBI->getSuccessor(0) == BB; 3099 NewPN->addIncoming( 3100 ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue), 3101 P); 3102 } else { 3103 NewPN->addIncoming(BI->getCondition(), P); 3104 } 3105 } 3106 3107 BI->setCondition(NewPN); 3108 return true; 3109 } 3110 } 3111 3112 if (auto *CE = dyn_cast<ConstantExpr>(BI->getCondition())) 3113 if (CE->canTrap()) 3114 return false; 3115 3116 // If both branches are conditional and both contain stores to the same 3117 // address, remove the stores from the conditionals and create a conditional 3118 // merged store at the end. 3119 if (MergeCondStores && mergeConditionalStores(PBI, BI)) 3120 return true; 3121 3122 // If this is a conditional branch in an empty block, and if any 3123 // predecessors are a conditional branch to one of our destinations, 3124 // fold the conditions into logical ops and one cond br. 3125 BasicBlock::iterator BBI = BB->begin(); 3126 // Ignore dbg intrinsics. 3127 while (isa<DbgInfoIntrinsic>(BBI)) 3128 ++BBI; 3129 if (&*BBI != BI) 3130 return false; 3131 3132 int PBIOp, BIOp; 3133 if (PBI->getSuccessor(0) == BI->getSuccessor(0)) { 3134 PBIOp = 0; 3135 BIOp = 0; 3136 } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) { 3137 PBIOp = 0; 3138 BIOp = 1; 3139 } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) { 3140 PBIOp = 1; 3141 BIOp = 0; 3142 } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) { 3143 PBIOp = 1; 3144 BIOp = 1; 3145 } else { 3146 return false; 3147 } 3148 3149 // Check to make sure that the other destination of this branch 3150 // isn't BB itself. If so, this is an infinite loop that will 3151 // keep getting unwound. 3152 if (PBI->getSuccessor(PBIOp) == BB) 3153 return false; 3154 3155 // Do not perform this transformation if it would require 3156 // insertion of a large number of select instructions. For targets 3157 // without predication/cmovs, this is a big pessimization. 3158 3159 // Also do not perform this transformation if any phi node in the common 3160 // destination block can trap when reached by BB or PBB (PR17073). In that 3161 // case, it would be unsafe to hoist the operation into a select instruction. 3162 3163 BasicBlock *CommonDest = PBI->getSuccessor(PBIOp); 3164 unsigned NumPhis = 0; 3165 for (BasicBlock::iterator II = CommonDest->begin(); isa<PHINode>(II); 3166 ++II, ++NumPhis) { 3167 if (NumPhis > 2) // Disable this xform. 3168 return false; 3169 3170 PHINode *PN = cast<PHINode>(II); 3171 Value *BIV = PN->getIncomingValueForBlock(BB); 3172 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BIV)) 3173 if (CE->canTrap()) 3174 return false; 3175 3176 unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent()); 3177 Value *PBIV = PN->getIncomingValue(PBBIdx); 3178 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(PBIV)) 3179 if (CE->canTrap()) 3180 return false; 3181 } 3182 3183 // Finally, if everything is ok, fold the branches to logical ops. 3184 BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1); 3185 3186 DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent() 3187 << "AND: " << *BI->getParent()); 3188 3189 // If OtherDest *is* BB, then BB is a basic block with a single conditional 3190 // branch in it, where one edge (OtherDest) goes back to itself but the other 3191 // exits. We don't *know* that the program avoids the infinite loop 3192 // (even though that seems likely). If we do this xform naively, we'll end up 3193 // recursively unpeeling the loop. Since we know that (after the xform is 3194 // done) that the block *is* infinite if reached, we just make it an obviously 3195 // infinite loop with no cond branch. 3196 if (OtherDest == BB) { 3197 // Insert it at the end of the function, because it's either code, 3198 // or it won't matter if it's hot. :) 3199 BasicBlock *InfLoopBlock = 3200 BasicBlock::Create(BB->getContext(), "infloop", BB->getParent()); 3201 BranchInst::Create(InfLoopBlock, InfLoopBlock); 3202 OtherDest = InfLoopBlock; 3203 } 3204 3205 DEBUG(dbgs() << *PBI->getParent()->getParent()); 3206 3207 // BI may have other predecessors. Because of this, we leave 3208 // it alone, but modify PBI. 3209 3210 // Make sure we get to CommonDest on True&True directions. 3211 Value *PBICond = PBI->getCondition(); 3212 IRBuilder<NoFolder> Builder(PBI); 3213 if (PBIOp) 3214 PBICond = Builder.CreateNot(PBICond, PBICond->getName() + ".not"); 3215 3216 Value *BICond = BI->getCondition(); 3217 if (BIOp) 3218 BICond = Builder.CreateNot(BICond, BICond->getName() + ".not"); 3219 3220 // Merge the conditions. 3221 Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge"); 3222 3223 // Modify PBI to branch on the new condition to the new dests. 3224 PBI->setCondition(Cond); 3225 PBI->setSuccessor(0, CommonDest); 3226 PBI->setSuccessor(1, OtherDest); 3227 3228 // Update branch weight for PBI. 3229 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 3230 uint64_t PredCommon, PredOther, SuccCommon, SuccOther; 3231 bool HasWeights = 3232 extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight, 3233 SuccTrueWeight, SuccFalseWeight); 3234 if (HasWeights) { 3235 PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight; 3236 PredOther = PBIOp ? PredTrueWeight : PredFalseWeight; 3237 SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight; 3238 SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight; 3239 // The weight to CommonDest should be PredCommon * SuccTotal + 3240 // PredOther * SuccCommon. 3241 // The weight to OtherDest should be PredOther * SuccOther. 3242 uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) + 3243 PredOther * SuccCommon, 3244 PredOther * SuccOther}; 3245 // Halve the weights if any of them cannot fit in an uint32_t 3246 FitWeights(NewWeights); 3247 3248 PBI->setMetadata(LLVMContext::MD_prof, 3249 MDBuilder(BI->getContext()) 3250 .createBranchWeights(NewWeights[0], NewWeights[1])); 3251 } 3252 3253 // OtherDest may have phi nodes. If so, add an entry from PBI's 3254 // block that are identical to the entries for BI's block. 3255 AddPredecessorToBlock(OtherDest, PBI->getParent(), BB); 3256 3257 // We know that the CommonDest already had an edge from PBI to 3258 // it. If it has PHIs though, the PHIs may have different 3259 // entries for BB and PBI's BB. If so, insert a select to make 3260 // them agree. 3261 PHINode *PN; 3262 for (BasicBlock::iterator II = CommonDest->begin(); 3263 (PN = dyn_cast<PHINode>(II)); ++II) { 3264 Value *BIV = PN->getIncomingValueForBlock(BB); 3265 unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent()); 3266 Value *PBIV = PN->getIncomingValue(PBBIdx); 3267 if (BIV != PBIV) { 3268 // Insert a select in PBI to pick the right value. 3269 SelectInst *NV = cast<SelectInst>( 3270 Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName() + ".mux")); 3271 PN->setIncomingValue(PBBIdx, NV); 3272 // Although the select has the same condition as PBI, the original branch 3273 // weights for PBI do not apply to the new select because the select's 3274 // 'logical' edges are incoming edges of the phi that is eliminated, not 3275 // the outgoing edges of PBI. 3276 if (HasWeights) { 3277 uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight; 3278 uint64_t PredOther = PBIOp ? PredTrueWeight : PredFalseWeight; 3279 uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight; 3280 uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight; 3281 // The weight to PredCommonDest should be PredCommon * SuccTotal. 3282 // The weight to PredOtherDest should be PredOther * SuccCommon. 3283 uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther), 3284 PredOther * SuccCommon}; 3285 3286 FitWeights(NewWeights); 3287 3288 NV->setMetadata(LLVMContext::MD_prof, 3289 MDBuilder(BI->getContext()) 3290 .createBranchWeights(NewWeights[0], NewWeights[1])); 3291 } 3292 } 3293 } 3294 3295 DEBUG(dbgs() << "INTO: " << *PBI->getParent()); 3296 DEBUG(dbgs() << *PBI->getParent()->getParent()); 3297 3298 // This basic block is probably dead. We know it has at least 3299 // one fewer predecessor. 3300 return true; 3301 } 3302 3303 // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is 3304 // true or to FalseBB if Cond is false. 3305 // Takes care of updating the successors and removing the old terminator. 3306 // Also makes sure not to introduce new successors by assuming that edges to 3307 // non-successor TrueBBs and FalseBBs aren't reachable. 3308 static bool SimplifyTerminatorOnSelect(TerminatorInst *OldTerm, Value *Cond, 3309 BasicBlock *TrueBB, BasicBlock *FalseBB, 3310 uint32_t TrueWeight, 3311 uint32_t FalseWeight) { 3312 // Remove any superfluous successor edges from the CFG. 3313 // First, figure out which successors to preserve. 3314 // If TrueBB and FalseBB are equal, only try to preserve one copy of that 3315 // successor. 3316 BasicBlock *KeepEdge1 = TrueBB; 3317 BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr; 3318 3319 // Then remove the rest. 3320 for (BasicBlock *Succ : OldTerm->successors()) { 3321 // Make sure only to keep exactly one copy of each edge. 3322 if (Succ == KeepEdge1) 3323 KeepEdge1 = nullptr; 3324 else if (Succ == KeepEdge2) 3325 KeepEdge2 = nullptr; 3326 else 3327 Succ->removePredecessor(OldTerm->getParent(), 3328 /*DontDeleteUselessPHIs=*/true); 3329 } 3330 3331 IRBuilder<> Builder(OldTerm); 3332 Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc()); 3333 3334 // Insert an appropriate new terminator. 3335 if (!KeepEdge1 && !KeepEdge2) { 3336 if (TrueBB == FalseBB) 3337 // We were only looking for one successor, and it was present. 3338 // Create an unconditional branch to it. 3339 Builder.CreateBr(TrueBB); 3340 else { 3341 // We found both of the successors we were looking for. 3342 // Create a conditional branch sharing the condition of the select. 3343 BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB); 3344 if (TrueWeight != FalseWeight) 3345 NewBI->setMetadata(LLVMContext::MD_prof, 3346 MDBuilder(OldTerm->getContext()) 3347 .createBranchWeights(TrueWeight, FalseWeight)); 3348 } 3349 } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) { 3350 // Neither of the selected blocks were successors, so this 3351 // terminator must be unreachable. 3352 new UnreachableInst(OldTerm->getContext(), OldTerm); 3353 } else { 3354 // One of the selected values was a successor, but the other wasn't. 3355 // Insert an unconditional branch to the one that was found; 3356 // the edge to the one that wasn't must be unreachable. 3357 if (!KeepEdge1) 3358 // Only TrueBB was found. 3359 Builder.CreateBr(TrueBB); 3360 else 3361 // Only FalseBB was found. 3362 Builder.CreateBr(FalseBB); 3363 } 3364 3365 EraseTerminatorInstAndDCECond(OldTerm); 3366 return true; 3367 } 3368 3369 // Replaces 3370 // (switch (select cond, X, Y)) on constant X, Y 3371 // with a branch - conditional if X and Y lead to distinct BBs, 3372 // unconditional otherwise. 3373 static bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select) { 3374 // Check for constant integer values in the select. 3375 ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue()); 3376 ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue()); 3377 if (!TrueVal || !FalseVal) 3378 return false; 3379 3380 // Find the relevant condition and destinations. 3381 Value *Condition = Select->getCondition(); 3382 BasicBlock *TrueBB = SI->findCaseValue(TrueVal).getCaseSuccessor(); 3383 BasicBlock *FalseBB = SI->findCaseValue(FalseVal).getCaseSuccessor(); 3384 3385 // Get weight for TrueBB and FalseBB. 3386 uint32_t TrueWeight = 0, FalseWeight = 0; 3387 SmallVector<uint64_t, 8> Weights; 3388 bool HasWeights = HasBranchWeights(SI); 3389 if (HasWeights) { 3390 GetBranchWeights(SI, Weights); 3391 if (Weights.size() == 1 + SI->getNumCases()) { 3392 TrueWeight = 3393 (uint32_t)Weights[SI->findCaseValue(TrueVal).getSuccessorIndex()]; 3394 FalseWeight = 3395 (uint32_t)Weights[SI->findCaseValue(FalseVal).getSuccessorIndex()]; 3396 } 3397 } 3398 3399 // Perform the actual simplification. 3400 return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, TrueWeight, 3401 FalseWeight); 3402 } 3403 3404 // Replaces 3405 // (indirectbr (select cond, blockaddress(@fn, BlockA), 3406 // blockaddress(@fn, BlockB))) 3407 // with 3408 // (br cond, BlockA, BlockB). 3409 static bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI) { 3410 // Check that both operands of the select are block addresses. 3411 BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue()); 3412 BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue()); 3413 if (!TBA || !FBA) 3414 return false; 3415 3416 // Extract the actual blocks. 3417 BasicBlock *TrueBB = TBA->getBasicBlock(); 3418 BasicBlock *FalseBB = FBA->getBasicBlock(); 3419 3420 // Perform the actual simplification. 3421 return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 0, 3422 0); 3423 } 3424 3425 /// This is called when we find an icmp instruction 3426 /// (a seteq/setne with a constant) as the only instruction in a 3427 /// block that ends with an uncond branch. We are looking for a very specific 3428 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified. In 3429 /// this case, we merge the first two "or's of icmp" into a switch, but then the 3430 /// default value goes to an uncond block with a seteq in it, we get something 3431 /// like: 3432 /// 3433 /// switch i8 %A, label %DEFAULT [ i8 1, label %end i8 2, label %end ] 3434 /// DEFAULT: 3435 /// %tmp = icmp eq i8 %A, 92 3436 /// br label %end 3437 /// end: 3438 /// ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ] 3439 /// 3440 /// We prefer to split the edge to 'end' so that there is a true/false entry to 3441 /// the PHI, merging the third icmp into the switch. 3442 static bool TryToSimplifyUncondBranchWithICmpInIt( 3443 ICmpInst *ICI, IRBuilder<> &Builder, const DataLayout &DL, 3444 const TargetTransformInfo &TTI, unsigned BonusInstThreshold, 3445 AssumptionCache *AC) { 3446 BasicBlock *BB = ICI->getParent(); 3447 3448 // If the block has any PHIs in it or the icmp has multiple uses, it is too 3449 // complex. 3450 if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse()) 3451 return false; 3452 3453 Value *V = ICI->getOperand(0); 3454 ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1)); 3455 3456 // The pattern we're looking for is where our only predecessor is a switch on 3457 // 'V' and this block is the default case for the switch. In this case we can 3458 // fold the compared value into the switch to simplify things. 3459 BasicBlock *Pred = BB->getSinglePredecessor(); 3460 if (!Pred || !isa<SwitchInst>(Pred->getTerminator())) 3461 return false; 3462 3463 SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator()); 3464 if (SI->getCondition() != V) 3465 return false; 3466 3467 // If BB is reachable on a non-default case, then we simply know the value of 3468 // V in this block. Substitute it and constant fold the icmp instruction 3469 // away. 3470 if (SI->getDefaultDest() != BB) { 3471 ConstantInt *VVal = SI->findCaseDest(BB); 3472 assert(VVal && "Should have a unique destination value"); 3473 ICI->setOperand(0, VVal); 3474 3475 if (Value *V = SimplifyInstruction(ICI, DL)) { 3476 ICI->replaceAllUsesWith(V); 3477 ICI->eraseFromParent(); 3478 } 3479 // BB is now empty, so it is likely to simplify away. 3480 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 3481 } 3482 3483 // Ok, the block is reachable from the default dest. If the constant we're 3484 // comparing exists in one of the other edges, then we can constant fold ICI 3485 // and zap it. 3486 if (SI->findCaseValue(Cst) != SI->case_default()) { 3487 Value *V; 3488 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 3489 V = ConstantInt::getFalse(BB->getContext()); 3490 else 3491 V = ConstantInt::getTrue(BB->getContext()); 3492 3493 ICI->replaceAllUsesWith(V); 3494 ICI->eraseFromParent(); 3495 // BB is now empty, so it is likely to simplify away. 3496 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 3497 } 3498 3499 // The use of the icmp has to be in the 'end' block, by the only PHI node in 3500 // the block. 3501 BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0); 3502 PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back()); 3503 if (PHIUse == nullptr || PHIUse != &SuccBlock->front() || 3504 isa<PHINode>(++BasicBlock::iterator(PHIUse))) 3505 return false; 3506 3507 // If the icmp is a SETEQ, then the default dest gets false, the new edge gets 3508 // true in the PHI. 3509 Constant *DefaultCst = ConstantInt::getTrue(BB->getContext()); 3510 Constant *NewCst = ConstantInt::getFalse(BB->getContext()); 3511 3512 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 3513 std::swap(DefaultCst, NewCst); 3514 3515 // Replace ICI (which is used by the PHI for the default value) with true or 3516 // false depending on if it is EQ or NE. 3517 ICI->replaceAllUsesWith(DefaultCst); 3518 ICI->eraseFromParent(); 3519 3520 // Okay, the switch goes to this block on a default value. Add an edge from 3521 // the switch to the merge point on the compared value. 3522 BasicBlock *NewBB = 3523 BasicBlock::Create(BB->getContext(), "switch.edge", BB->getParent(), BB); 3524 SmallVector<uint64_t, 8> Weights; 3525 bool HasWeights = HasBranchWeights(SI); 3526 if (HasWeights) { 3527 GetBranchWeights(SI, Weights); 3528 if (Weights.size() == 1 + SI->getNumCases()) { 3529 // Split weight for default case to case for "Cst". 3530 Weights[0] = (Weights[0] + 1) >> 1; 3531 Weights.push_back(Weights[0]); 3532 3533 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 3534 SI->setMetadata( 3535 LLVMContext::MD_prof, 3536 MDBuilder(SI->getContext()).createBranchWeights(MDWeights)); 3537 } 3538 } 3539 SI->addCase(Cst, NewBB); 3540 3541 // NewBB branches to the phi block, add the uncond branch and the phi entry. 3542 Builder.SetInsertPoint(NewBB); 3543 Builder.SetCurrentDebugLocation(SI->getDebugLoc()); 3544 Builder.CreateBr(SuccBlock); 3545 PHIUse->addIncoming(NewCst, NewBB); 3546 return true; 3547 } 3548 3549 /// The specified branch is a conditional branch. 3550 /// Check to see if it is branching on an or/and chain of icmp instructions, and 3551 /// fold it into a switch instruction if so. 3552 static bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder, 3553 const DataLayout &DL) { 3554 Instruction *Cond = dyn_cast<Instruction>(BI->getCondition()); 3555 if (!Cond) 3556 return false; 3557 3558 // Change br (X == 0 | X == 1), T, F into a switch instruction. 3559 // If this is a bunch of seteq's or'd together, or if it's a bunch of 3560 // 'setne's and'ed together, collect them. 3561 3562 // Try to gather values from a chain of and/or to be turned into a switch 3563 ConstantComparesGatherer ConstantCompare(Cond, DL); 3564 // Unpack the result 3565 SmallVectorImpl<ConstantInt *> &Values = ConstantCompare.Vals; 3566 Value *CompVal = ConstantCompare.CompValue; 3567 unsigned UsedICmps = ConstantCompare.UsedICmps; 3568 Value *ExtraCase = ConstantCompare.Extra; 3569 3570 // If we didn't have a multiply compared value, fail. 3571 if (!CompVal) 3572 return false; 3573 3574 // Avoid turning single icmps into a switch. 3575 if (UsedICmps <= 1) 3576 return false; 3577 3578 bool TrueWhenEqual = (Cond->getOpcode() == Instruction::Or); 3579 3580 // There might be duplicate constants in the list, which the switch 3581 // instruction can't handle, remove them now. 3582 array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate); 3583 Values.erase(std::unique(Values.begin(), Values.end()), Values.end()); 3584 3585 // If Extra was used, we require at least two switch values to do the 3586 // transformation. A switch with one value is just a conditional branch. 3587 if (ExtraCase && Values.size() < 2) 3588 return false; 3589 3590 // TODO: Preserve branch weight metadata, similarly to how 3591 // FoldValueComparisonIntoPredecessors preserves it. 3592 3593 // Figure out which block is which destination. 3594 BasicBlock *DefaultBB = BI->getSuccessor(1); 3595 BasicBlock *EdgeBB = BI->getSuccessor(0); 3596 if (!TrueWhenEqual) 3597 std::swap(DefaultBB, EdgeBB); 3598 3599 BasicBlock *BB = BI->getParent(); 3600 3601 DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size() 3602 << " cases into SWITCH. BB is:\n" 3603 << *BB); 3604 3605 // If there are any extra values that couldn't be folded into the switch 3606 // then we evaluate them with an explicit branch first. Split the block 3607 // right before the condbr to handle it. 3608 if (ExtraCase) { 3609 BasicBlock *NewBB = 3610 BB->splitBasicBlock(BI->getIterator(), "switch.early.test"); 3611 // Remove the uncond branch added to the old block. 3612 TerminatorInst *OldTI = BB->getTerminator(); 3613 Builder.SetInsertPoint(OldTI); 3614 3615 if (TrueWhenEqual) 3616 Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB); 3617 else 3618 Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB); 3619 3620 OldTI->eraseFromParent(); 3621 3622 // If there are PHI nodes in EdgeBB, then we need to add a new entry to them 3623 // for the edge we just added. 3624 AddPredecessorToBlock(EdgeBB, BB, NewBB); 3625 3626 DEBUG(dbgs() << " ** 'icmp' chain unhandled condition: " << *ExtraCase 3627 << "\nEXTRABB = " << *BB); 3628 BB = NewBB; 3629 } 3630 3631 Builder.SetInsertPoint(BI); 3632 // Convert pointer to int before we switch. 3633 if (CompVal->getType()->isPointerTy()) { 3634 CompVal = Builder.CreatePtrToInt( 3635 CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr"); 3636 } 3637 3638 // Create the new switch instruction now. 3639 SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size()); 3640 3641 // Add all of the 'cases' to the switch instruction. 3642 for (unsigned i = 0, e = Values.size(); i != e; ++i) 3643 New->addCase(Values[i], EdgeBB); 3644 3645 // We added edges from PI to the EdgeBB. As such, if there were any 3646 // PHI nodes in EdgeBB, they need entries to be added corresponding to 3647 // the number of edges added. 3648 for (BasicBlock::iterator BBI = EdgeBB->begin(); isa<PHINode>(BBI); ++BBI) { 3649 PHINode *PN = cast<PHINode>(BBI); 3650 Value *InVal = PN->getIncomingValueForBlock(BB); 3651 for (unsigned i = 0, e = Values.size() - 1; i != e; ++i) 3652 PN->addIncoming(InVal, BB); 3653 } 3654 3655 // Erase the old branch instruction. 3656 EraseTerminatorInstAndDCECond(BI); 3657 3658 DEBUG(dbgs() << " ** 'icmp' chain result is:\n" << *BB << '\n'); 3659 return true; 3660 } 3661 3662 bool SimplifyCFGOpt::SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder) { 3663 if (isa<PHINode>(RI->getValue())) 3664 return SimplifyCommonResume(RI); 3665 else if (isa<LandingPadInst>(RI->getParent()->getFirstNonPHI()) && 3666 RI->getValue() == RI->getParent()->getFirstNonPHI()) 3667 // The resume must unwind the exception that caused control to branch here. 3668 return SimplifySingleResume(RI); 3669 3670 return false; 3671 } 3672 3673 // Simplify resume that is shared by several landing pads (phi of landing pad). 3674 bool SimplifyCFGOpt::SimplifyCommonResume(ResumeInst *RI) { 3675 BasicBlock *BB = RI->getParent(); 3676 3677 // Check that there are no other instructions except for debug intrinsics 3678 // between the phi of landing pads (RI->getValue()) and resume instruction. 3679 BasicBlock::iterator I = cast<Instruction>(RI->getValue())->getIterator(), 3680 E = RI->getIterator(); 3681 while (++I != E) 3682 if (!isa<DbgInfoIntrinsic>(I)) 3683 return false; 3684 3685 SmallSet<BasicBlock *, 4> TrivialUnwindBlocks; 3686 auto *PhiLPInst = cast<PHINode>(RI->getValue()); 3687 3688 // Check incoming blocks to see if any of them are trivial. 3689 for (unsigned Idx = 0, End = PhiLPInst->getNumIncomingValues(); Idx != End; 3690 Idx++) { 3691 auto *IncomingBB = PhiLPInst->getIncomingBlock(Idx); 3692 auto *IncomingValue = PhiLPInst->getIncomingValue(Idx); 3693 3694 // If the block has other successors, we can not delete it because 3695 // it has other dependents. 3696 if (IncomingBB->getUniqueSuccessor() != BB) 3697 continue; 3698 3699 auto *LandingPad = dyn_cast<LandingPadInst>(IncomingBB->getFirstNonPHI()); 3700 // Not the landing pad that caused the control to branch here. 3701 if (IncomingValue != LandingPad) 3702 continue; 3703 3704 bool isTrivial = true; 3705 3706 I = IncomingBB->getFirstNonPHI()->getIterator(); 3707 E = IncomingBB->getTerminator()->getIterator(); 3708 while (++I != E) 3709 if (!isa<DbgInfoIntrinsic>(I)) { 3710 isTrivial = false; 3711 break; 3712 } 3713 3714 if (isTrivial) 3715 TrivialUnwindBlocks.insert(IncomingBB); 3716 } 3717 3718 // If no trivial unwind blocks, don't do any simplifications. 3719 if (TrivialUnwindBlocks.empty()) 3720 return false; 3721 3722 // Turn all invokes that unwind here into calls. 3723 for (auto *TrivialBB : TrivialUnwindBlocks) { 3724 // Blocks that will be simplified should be removed from the phi node. 3725 // Note there could be multiple edges to the resume block, and we need 3726 // to remove them all. 3727 while (PhiLPInst->getBasicBlockIndex(TrivialBB) != -1) 3728 BB->removePredecessor(TrivialBB, true); 3729 3730 for (pred_iterator PI = pred_begin(TrivialBB), PE = pred_end(TrivialBB); 3731 PI != PE;) { 3732 BasicBlock *Pred = *PI++; 3733 removeUnwindEdge(Pred); 3734 } 3735 3736 // In each SimplifyCFG run, only the current processed block can be erased. 3737 // Otherwise, it will break the iteration of SimplifyCFG pass. So instead 3738 // of erasing TrivialBB, we only remove the branch to the common resume 3739 // block so that we can later erase the resume block since it has no 3740 // predecessors. 3741 TrivialBB->getTerminator()->eraseFromParent(); 3742 new UnreachableInst(RI->getContext(), TrivialBB); 3743 } 3744 3745 // Delete the resume block if all its predecessors have been removed. 3746 if (pred_empty(BB)) 3747 BB->eraseFromParent(); 3748 3749 return !TrivialUnwindBlocks.empty(); 3750 } 3751 3752 // Simplify resume that is only used by a single (non-phi) landing pad. 3753 bool SimplifyCFGOpt::SimplifySingleResume(ResumeInst *RI) { 3754 BasicBlock *BB = RI->getParent(); 3755 LandingPadInst *LPInst = dyn_cast<LandingPadInst>(BB->getFirstNonPHI()); 3756 assert(RI->getValue() == LPInst && 3757 "Resume must unwind the exception that caused control to here"); 3758 3759 // Check that there are no other instructions except for debug intrinsics. 3760 BasicBlock::iterator I = LPInst->getIterator(), E = RI->getIterator(); 3761 while (++I != E) 3762 if (!isa<DbgInfoIntrinsic>(I)) 3763 return false; 3764 3765 // Turn all invokes that unwind here into calls and delete the basic block. 3766 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) { 3767 BasicBlock *Pred = *PI++; 3768 removeUnwindEdge(Pred); 3769 } 3770 3771 // The landingpad is now unreachable. Zap it. 3772 BB->eraseFromParent(); 3773 if (LoopHeaders) 3774 LoopHeaders->erase(BB); 3775 return true; 3776 } 3777 3778 static bool removeEmptyCleanup(CleanupReturnInst *RI) { 3779 // If this is a trivial cleanup pad that executes no instructions, it can be 3780 // eliminated. If the cleanup pad continues to the caller, any predecessor 3781 // that is an EH pad will be updated to continue to the caller and any 3782 // predecessor that terminates with an invoke instruction will have its invoke 3783 // instruction converted to a call instruction. If the cleanup pad being 3784 // simplified does not continue to the caller, each predecessor will be 3785 // updated to continue to the unwind destination of the cleanup pad being 3786 // simplified. 3787 BasicBlock *BB = RI->getParent(); 3788 CleanupPadInst *CPInst = RI->getCleanupPad(); 3789 if (CPInst->getParent() != BB) 3790 // This isn't an empty cleanup. 3791 return false; 3792 3793 // We cannot kill the pad if it has multiple uses. This typically arises 3794 // from unreachable basic blocks. 3795 if (!CPInst->hasOneUse()) 3796 return false; 3797 3798 // Check that there are no other instructions except for benign intrinsics. 3799 BasicBlock::iterator I = CPInst->getIterator(), E = RI->getIterator(); 3800 while (++I != E) { 3801 auto *II = dyn_cast<IntrinsicInst>(I); 3802 if (!II) 3803 return false; 3804 3805 Intrinsic::ID IntrinsicID = II->getIntrinsicID(); 3806 switch (IntrinsicID) { 3807 case Intrinsic::dbg_declare: 3808 case Intrinsic::dbg_value: 3809 case Intrinsic::lifetime_end: 3810 break; 3811 default: 3812 return false; 3813 } 3814 } 3815 3816 // If the cleanup return we are simplifying unwinds to the caller, this will 3817 // set UnwindDest to nullptr. 3818 BasicBlock *UnwindDest = RI->getUnwindDest(); 3819 Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr; 3820 3821 // We're about to remove BB from the control flow. Before we do, sink any 3822 // PHINodes into the unwind destination. Doing this before changing the 3823 // control flow avoids some potentially slow checks, since we can currently 3824 // be certain that UnwindDest and BB have no common predecessors (since they 3825 // are both EH pads). 3826 if (UnwindDest) { 3827 // First, go through the PHI nodes in UnwindDest and update any nodes that 3828 // reference the block we are removing 3829 for (BasicBlock::iterator I = UnwindDest->begin(), 3830 IE = DestEHPad->getIterator(); 3831 I != IE; ++I) { 3832 PHINode *DestPN = cast<PHINode>(I); 3833 3834 int Idx = DestPN->getBasicBlockIndex(BB); 3835 // Since BB unwinds to UnwindDest, it has to be in the PHI node. 3836 assert(Idx != -1); 3837 // This PHI node has an incoming value that corresponds to a control 3838 // path through the cleanup pad we are removing. If the incoming 3839 // value is in the cleanup pad, it must be a PHINode (because we 3840 // verified above that the block is otherwise empty). Otherwise, the 3841 // value is either a constant or a value that dominates the cleanup 3842 // pad being removed. 3843 // 3844 // Because BB and UnwindDest are both EH pads, all of their 3845 // predecessors must unwind to these blocks, and since no instruction 3846 // can have multiple unwind destinations, there will be no overlap in 3847 // incoming blocks between SrcPN and DestPN. 3848 Value *SrcVal = DestPN->getIncomingValue(Idx); 3849 PHINode *SrcPN = dyn_cast<PHINode>(SrcVal); 3850 3851 // Remove the entry for the block we are deleting. 3852 DestPN->removeIncomingValue(Idx, false); 3853 3854 if (SrcPN && SrcPN->getParent() == BB) { 3855 // If the incoming value was a PHI node in the cleanup pad we are 3856 // removing, we need to merge that PHI node's incoming values into 3857 // DestPN. 3858 for (unsigned SrcIdx = 0, SrcE = SrcPN->getNumIncomingValues(); 3859 SrcIdx != SrcE; ++SrcIdx) { 3860 DestPN->addIncoming(SrcPN->getIncomingValue(SrcIdx), 3861 SrcPN->getIncomingBlock(SrcIdx)); 3862 } 3863 } else { 3864 // Otherwise, the incoming value came from above BB and 3865 // so we can just reuse it. We must associate all of BB's 3866 // predecessors with this value. 3867 for (auto *pred : predecessors(BB)) { 3868 DestPN->addIncoming(SrcVal, pred); 3869 } 3870 } 3871 } 3872 3873 // Sink any remaining PHI nodes directly into UnwindDest. 3874 Instruction *InsertPt = DestEHPad; 3875 for (BasicBlock::iterator I = BB->begin(), 3876 IE = BB->getFirstNonPHI()->getIterator(); 3877 I != IE;) { 3878 // The iterator must be incremented here because the instructions are 3879 // being moved to another block. 3880 PHINode *PN = cast<PHINode>(I++); 3881 if (PN->use_empty()) 3882 // If the PHI node has no uses, just leave it. It will be erased 3883 // when we erase BB below. 3884 continue; 3885 3886 // Otherwise, sink this PHI node into UnwindDest. 3887 // Any predecessors to UnwindDest which are not already represented 3888 // must be back edges which inherit the value from the path through 3889 // BB. In this case, the PHI value must reference itself. 3890 for (auto *pred : predecessors(UnwindDest)) 3891 if (pred != BB) 3892 PN->addIncoming(PN, pred); 3893 PN->moveBefore(InsertPt); 3894 } 3895 } 3896 3897 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) { 3898 // The iterator must be updated here because we are removing this pred. 3899 BasicBlock *PredBB = *PI++; 3900 if (UnwindDest == nullptr) { 3901 removeUnwindEdge(PredBB); 3902 } else { 3903 TerminatorInst *TI = PredBB->getTerminator(); 3904 TI->replaceUsesOfWith(BB, UnwindDest); 3905 } 3906 } 3907 3908 // The cleanup pad is now unreachable. Zap it. 3909 BB->eraseFromParent(); 3910 return true; 3911 } 3912 3913 // Try to merge two cleanuppads together. 3914 static bool mergeCleanupPad(CleanupReturnInst *RI) { 3915 // Skip any cleanuprets which unwind to caller, there is nothing to merge 3916 // with. 3917 BasicBlock *UnwindDest = RI->getUnwindDest(); 3918 if (!UnwindDest) 3919 return false; 3920 3921 // This cleanupret isn't the only predecessor of this cleanuppad, it wouldn't 3922 // be safe to merge without code duplication. 3923 if (UnwindDest->getSinglePredecessor() != RI->getParent()) 3924 return false; 3925 3926 // Verify that our cleanuppad's unwind destination is another cleanuppad. 3927 auto *SuccessorCleanupPad = dyn_cast<CleanupPadInst>(&UnwindDest->front()); 3928 if (!SuccessorCleanupPad) 3929 return false; 3930 3931 CleanupPadInst *PredecessorCleanupPad = RI->getCleanupPad(); 3932 // Replace any uses of the successor cleanupad with the predecessor pad 3933 // The only cleanuppad uses should be this cleanupret, it's cleanupret and 3934 // funclet bundle operands. 3935 SuccessorCleanupPad->replaceAllUsesWith(PredecessorCleanupPad); 3936 // Remove the old cleanuppad. 3937 SuccessorCleanupPad->eraseFromParent(); 3938 // Now, we simply replace the cleanupret with a branch to the unwind 3939 // destination. 3940 BranchInst::Create(UnwindDest, RI->getParent()); 3941 RI->eraseFromParent(); 3942 3943 return true; 3944 } 3945 3946 bool SimplifyCFGOpt::SimplifyCleanupReturn(CleanupReturnInst *RI) { 3947 // It is possible to transiantly have an undef cleanuppad operand because we 3948 // have deleted some, but not all, dead blocks. 3949 // Eventually, this block will be deleted. 3950 if (isa<UndefValue>(RI->getOperand(0))) 3951 return false; 3952 3953 if (mergeCleanupPad(RI)) 3954 return true; 3955 3956 if (removeEmptyCleanup(RI)) 3957 return true; 3958 3959 return false; 3960 } 3961 3962 bool SimplifyCFGOpt::SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) { 3963 BasicBlock *BB = RI->getParent(); 3964 if (!BB->getFirstNonPHIOrDbg()->isTerminator()) 3965 return false; 3966 3967 // Find predecessors that end with branches. 3968 SmallVector<BasicBlock *, 8> UncondBranchPreds; 3969 SmallVector<BranchInst *, 8> CondBranchPreds; 3970 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 3971 BasicBlock *P = *PI; 3972 TerminatorInst *PTI = P->getTerminator(); 3973 if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) { 3974 if (BI->isUnconditional()) 3975 UncondBranchPreds.push_back(P); 3976 else 3977 CondBranchPreds.push_back(BI); 3978 } 3979 } 3980 3981 // If we found some, do the transformation! 3982 if (!UncondBranchPreds.empty() && DupRet) { 3983 while (!UncondBranchPreds.empty()) { 3984 BasicBlock *Pred = UncondBranchPreds.pop_back_val(); 3985 DEBUG(dbgs() << "FOLDING: " << *BB 3986 << "INTO UNCOND BRANCH PRED: " << *Pred); 3987 (void)FoldReturnIntoUncondBranch(RI, BB, Pred); 3988 } 3989 3990 // If we eliminated all predecessors of the block, delete the block now. 3991 if (pred_empty(BB)) { 3992 // We know there are no successors, so just nuke the block. 3993 BB->eraseFromParent(); 3994 if (LoopHeaders) 3995 LoopHeaders->erase(BB); 3996 } 3997 3998 return true; 3999 } 4000 4001 // Check out all of the conditional branches going to this return 4002 // instruction. If any of them just select between returns, change the 4003 // branch itself into a select/return pair. 4004 while (!CondBranchPreds.empty()) { 4005 BranchInst *BI = CondBranchPreds.pop_back_val(); 4006 4007 // Check to see if the non-BB successor is also a return block. 4008 if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) && 4009 isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) && 4010 SimplifyCondBranchToTwoReturns(BI, Builder)) 4011 return true; 4012 } 4013 return false; 4014 } 4015 4016 bool SimplifyCFGOpt::SimplifyUnreachable(UnreachableInst *UI) { 4017 BasicBlock *BB = UI->getParent(); 4018 4019 bool Changed = false; 4020 4021 // If there are any instructions immediately before the unreachable that can 4022 // be removed, do so. 4023 while (UI->getIterator() != BB->begin()) { 4024 BasicBlock::iterator BBI = UI->getIterator(); 4025 --BBI; 4026 // Do not delete instructions that can have side effects which might cause 4027 // the unreachable to not be reachable; specifically, calls and volatile 4028 // operations may have this effect. 4029 if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI)) 4030 break; 4031 4032 if (BBI->mayHaveSideEffects()) { 4033 if (auto *SI = dyn_cast<StoreInst>(BBI)) { 4034 if (SI->isVolatile()) 4035 break; 4036 } else if (auto *LI = dyn_cast<LoadInst>(BBI)) { 4037 if (LI->isVolatile()) 4038 break; 4039 } else if (auto *RMWI = dyn_cast<AtomicRMWInst>(BBI)) { 4040 if (RMWI->isVolatile()) 4041 break; 4042 } else if (auto *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) { 4043 if (CXI->isVolatile()) 4044 break; 4045 } else if (isa<CatchPadInst>(BBI)) { 4046 // A catchpad may invoke exception object constructors and such, which 4047 // in some languages can be arbitrary code, so be conservative by 4048 // default. 4049 // For CoreCLR, it just involves a type test, so can be removed. 4050 if (classifyEHPersonality(BB->getParent()->getPersonalityFn()) != 4051 EHPersonality::CoreCLR) 4052 break; 4053 } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) && 4054 !isa<LandingPadInst>(BBI)) { 4055 break; 4056 } 4057 // Note that deleting LandingPad's here is in fact okay, although it 4058 // involves a bit of subtle reasoning. If this inst is a LandingPad, 4059 // all the predecessors of this block will be the unwind edges of Invokes, 4060 // and we can therefore guarantee this block will be erased. 4061 } 4062 4063 // Delete this instruction (any uses are guaranteed to be dead) 4064 if (!BBI->use_empty()) 4065 BBI->replaceAllUsesWith(UndefValue::get(BBI->getType())); 4066 BBI->eraseFromParent(); 4067 Changed = true; 4068 } 4069 4070 // If the unreachable instruction is the first in the block, take a gander 4071 // at all of the predecessors of this instruction, and simplify them. 4072 if (&BB->front() != UI) 4073 return Changed; 4074 4075 SmallVector<BasicBlock *, 8> Preds(pred_begin(BB), pred_end(BB)); 4076 for (unsigned i = 0, e = Preds.size(); i != e; ++i) { 4077 TerminatorInst *TI = Preds[i]->getTerminator(); 4078 IRBuilder<> Builder(TI); 4079 if (auto *BI = dyn_cast<BranchInst>(TI)) { 4080 if (BI->isUnconditional()) { 4081 if (BI->getSuccessor(0) == BB) { 4082 new UnreachableInst(TI->getContext(), TI); 4083 TI->eraseFromParent(); 4084 Changed = true; 4085 } 4086 } else { 4087 if (BI->getSuccessor(0) == BB) { 4088 Builder.CreateBr(BI->getSuccessor(1)); 4089 EraseTerminatorInstAndDCECond(BI); 4090 } else if (BI->getSuccessor(1) == BB) { 4091 Builder.CreateBr(BI->getSuccessor(0)); 4092 EraseTerminatorInstAndDCECond(BI); 4093 Changed = true; 4094 } 4095 } 4096 } else if (auto *SI = dyn_cast<SwitchInst>(TI)) { 4097 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); i != e; 4098 ++i) 4099 if (i.getCaseSuccessor() == BB) { 4100 BB->removePredecessor(SI->getParent()); 4101 SI->removeCase(i); 4102 --i; 4103 --e; 4104 Changed = true; 4105 } 4106 } else if (auto *II = dyn_cast<InvokeInst>(TI)) { 4107 if (II->getUnwindDest() == BB) { 4108 removeUnwindEdge(TI->getParent()); 4109 Changed = true; 4110 } 4111 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) { 4112 if (CSI->getUnwindDest() == BB) { 4113 removeUnwindEdge(TI->getParent()); 4114 Changed = true; 4115 continue; 4116 } 4117 4118 for (CatchSwitchInst::handler_iterator I = CSI->handler_begin(), 4119 E = CSI->handler_end(); 4120 I != E; ++I) { 4121 if (*I == BB) { 4122 CSI->removeHandler(I); 4123 --I; 4124 --E; 4125 Changed = true; 4126 } 4127 } 4128 if (CSI->getNumHandlers() == 0) { 4129 BasicBlock *CatchSwitchBB = CSI->getParent(); 4130 if (CSI->hasUnwindDest()) { 4131 // Redirect preds to the unwind dest 4132 CatchSwitchBB->replaceAllUsesWith(CSI->getUnwindDest()); 4133 } else { 4134 // Rewrite all preds to unwind to caller (or from invoke to call). 4135 SmallVector<BasicBlock *, 8> EHPreds(predecessors(CatchSwitchBB)); 4136 for (BasicBlock *EHPred : EHPreds) 4137 removeUnwindEdge(EHPred); 4138 } 4139 // The catchswitch is no longer reachable. 4140 new UnreachableInst(CSI->getContext(), CSI); 4141 CSI->eraseFromParent(); 4142 Changed = true; 4143 } 4144 } else if (isa<CleanupReturnInst>(TI)) { 4145 new UnreachableInst(TI->getContext(), TI); 4146 TI->eraseFromParent(); 4147 Changed = true; 4148 } 4149 } 4150 4151 // If this block is now dead, remove it. 4152 if (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) { 4153 // We know there are no successors, so just nuke the block. 4154 BB->eraseFromParent(); 4155 if (LoopHeaders) 4156 LoopHeaders->erase(BB); 4157 return true; 4158 } 4159 4160 return Changed; 4161 } 4162 4163 static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) { 4164 assert(Cases.size() >= 1); 4165 4166 array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate); 4167 for (size_t I = 1, E = Cases.size(); I != E; ++I) { 4168 if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1) 4169 return false; 4170 } 4171 return true; 4172 } 4173 4174 /// Turn a switch with two reachable destinations into an integer range 4175 /// comparison and branch. 4176 static bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder) { 4177 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 4178 4179 bool HasDefault = 4180 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 4181 4182 // Partition the cases into two sets with different destinations. 4183 BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr; 4184 BasicBlock *DestB = nullptr; 4185 SmallVector<ConstantInt *, 16> CasesA; 4186 SmallVector<ConstantInt *, 16> CasesB; 4187 4188 for (SwitchInst::CaseIt I : SI->cases()) { 4189 BasicBlock *Dest = I.getCaseSuccessor(); 4190 if (!DestA) 4191 DestA = Dest; 4192 if (Dest == DestA) { 4193 CasesA.push_back(I.getCaseValue()); 4194 continue; 4195 } 4196 if (!DestB) 4197 DestB = Dest; 4198 if (Dest == DestB) { 4199 CasesB.push_back(I.getCaseValue()); 4200 continue; 4201 } 4202 return false; // More than two destinations. 4203 } 4204 4205 assert(DestA && DestB && 4206 "Single-destination switch should have been folded."); 4207 assert(DestA != DestB); 4208 assert(DestB != SI->getDefaultDest()); 4209 assert(!CasesB.empty() && "There must be non-default cases."); 4210 assert(!CasesA.empty() || HasDefault); 4211 4212 // Figure out if one of the sets of cases form a contiguous range. 4213 SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr; 4214 BasicBlock *ContiguousDest = nullptr; 4215 BasicBlock *OtherDest = nullptr; 4216 if (!CasesA.empty() && CasesAreContiguous(CasesA)) { 4217 ContiguousCases = &CasesA; 4218 ContiguousDest = DestA; 4219 OtherDest = DestB; 4220 } else if (CasesAreContiguous(CasesB)) { 4221 ContiguousCases = &CasesB; 4222 ContiguousDest = DestB; 4223 OtherDest = DestA; 4224 } else 4225 return false; 4226 4227 // Start building the compare and branch. 4228 4229 Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back()); 4230 Constant *NumCases = 4231 ConstantInt::get(Offset->getType(), ContiguousCases->size()); 4232 4233 Value *Sub = SI->getCondition(); 4234 if (!Offset->isNullValue()) 4235 Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off"); 4236 4237 Value *Cmp; 4238 // If NumCases overflowed, then all possible values jump to the successor. 4239 if (NumCases->isNullValue() && !ContiguousCases->empty()) 4240 Cmp = ConstantInt::getTrue(SI->getContext()); 4241 else 4242 Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch"); 4243 BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest); 4244 4245 // Update weight for the newly-created conditional branch. 4246 if (HasBranchWeights(SI)) { 4247 SmallVector<uint64_t, 8> Weights; 4248 GetBranchWeights(SI, Weights); 4249 if (Weights.size() == 1 + SI->getNumCases()) { 4250 uint64_t TrueWeight = 0; 4251 uint64_t FalseWeight = 0; 4252 for (size_t I = 0, E = Weights.size(); I != E; ++I) { 4253 if (SI->getSuccessor(I) == ContiguousDest) 4254 TrueWeight += Weights[I]; 4255 else 4256 FalseWeight += Weights[I]; 4257 } 4258 while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) { 4259 TrueWeight /= 2; 4260 FalseWeight /= 2; 4261 } 4262 NewBI->setMetadata(LLVMContext::MD_prof, 4263 MDBuilder(SI->getContext()) 4264 .createBranchWeights((uint32_t)TrueWeight, 4265 (uint32_t)FalseWeight)); 4266 } 4267 } 4268 4269 // Prune obsolete incoming values off the successors' PHI nodes. 4270 for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) { 4271 unsigned PreviousEdges = ContiguousCases->size(); 4272 if (ContiguousDest == SI->getDefaultDest()) 4273 ++PreviousEdges; 4274 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I) 4275 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 4276 } 4277 for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) { 4278 unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size(); 4279 if (OtherDest == SI->getDefaultDest()) 4280 ++PreviousEdges; 4281 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I) 4282 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 4283 } 4284 4285 // Drop the switch. 4286 SI->eraseFromParent(); 4287 4288 return true; 4289 } 4290 4291 /// Compute masked bits for the condition of a switch 4292 /// and use it to remove dead cases. 4293 static bool EliminateDeadSwitchCases(SwitchInst *SI, AssumptionCache *AC, 4294 const DataLayout &DL) { 4295 Value *Cond = SI->getCondition(); 4296 unsigned Bits = Cond->getType()->getIntegerBitWidth(); 4297 APInt KnownZero(Bits, 0), KnownOne(Bits, 0); 4298 computeKnownBits(Cond, KnownZero, KnownOne, DL, 0, AC, SI); 4299 4300 // We can also eliminate cases by determining that their values are outside of 4301 // the limited range of the condition based on how many significant (non-sign) 4302 // bits are in the condition value. 4303 unsigned ExtraSignBits = ComputeNumSignBits(Cond, DL, 0, AC, SI) - 1; 4304 unsigned MaxSignificantBitsInCond = Bits - ExtraSignBits; 4305 4306 // Gather dead cases. 4307 SmallVector<ConstantInt *, 8> DeadCases; 4308 for (auto &Case : SI->cases()) { 4309 APInt CaseVal = Case.getCaseValue()->getValue(); 4310 if ((CaseVal & KnownZero) != 0 || (CaseVal & KnownOne) != KnownOne || 4311 (CaseVal.getMinSignedBits() > MaxSignificantBitsInCond)) { 4312 DeadCases.push_back(Case.getCaseValue()); 4313 DEBUG(dbgs() << "SimplifyCFG: switch case " << CaseVal << " is dead.\n"); 4314 } 4315 } 4316 4317 // If we can prove that the cases must cover all possible values, the 4318 // default destination becomes dead and we can remove it. If we know some 4319 // of the bits in the value, we can use that to more precisely compute the 4320 // number of possible unique case values. 4321 bool HasDefault = 4322 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 4323 const unsigned NumUnknownBits = 4324 Bits - (KnownZero.Or(KnownOne)).countPopulation(); 4325 assert(NumUnknownBits <= Bits); 4326 if (HasDefault && DeadCases.empty() && 4327 NumUnknownBits < 64 /* avoid overflow */ && 4328 SI->getNumCases() == (1ULL << NumUnknownBits)) { 4329 DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n"); 4330 BasicBlock *NewDefault = 4331 SplitBlockPredecessors(SI->getDefaultDest(), SI->getParent(), ""); 4332 SI->setDefaultDest(&*NewDefault); 4333 SplitBlock(&*NewDefault, &NewDefault->front()); 4334 auto *OldTI = NewDefault->getTerminator(); 4335 new UnreachableInst(SI->getContext(), OldTI); 4336 EraseTerminatorInstAndDCECond(OldTI); 4337 return true; 4338 } 4339 4340 SmallVector<uint64_t, 8> Weights; 4341 bool HasWeight = HasBranchWeights(SI); 4342 if (HasWeight) { 4343 GetBranchWeights(SI, Weights); 4344 HasWeight = (Weights.size() == 1 + SI->getNumCases()); 4345 } 4346 4347 // Remove dead cases from the switch. 4348 for (ConstantInt *DeadCase : DeadCases) { 4349 SwitchInst::CaseIt Case = SI->findCaseValue(DeadCase); 4350 assert(Case != SI->case_default() && 4351 "Case was not found. Probably mistake in DeadCases forming."); 4352 if (HasWeight) { 4353 std::swap(Weights[Case.getCaseIndex() + 1], Weights.back()); 4354 Weights.pop_back(); 4355 } 4356 4357 // Prune unused values from PHI nodes. 4358 Case.getCaseSuccessor()->removePredecessor(SI->getParent()); 4359 SI->removeCase(Case); 4360 } 4361 if (HasWeight && Weights.size() >= 2) { 4362 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 4363 SI->setMetadata(LLVMContext::MD_prof, 4364 MDBuilder(SI->getParent()->getContext()) 4365 .createBranchWeights(MDWeights)); 4366 } 4367 4368 return !DeadCases.empty(); 4369 } 4370 4371 /// If BB would be eligible for simplification by 4372 /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated 4373 /// by an unconditional branch), look at the phi node for BB in the successor 4374 /// block and see if the incoming value is equal to CaseValue. If so, return 4375 /// the phi node, and set PhiIndex to BB's index in the phi node. 4376 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue, 4377 BasicBlock *BB, int *PhiIndex) { 4378 if (BB->getFirstNonPHIOrDbg() != BB->getTerminator()) 4379 return nullptr; // BB must be empty to be a candidate for simplification. 4380 if (!BB->getSinglePredecessor()) 4381 return nullptr; // BB must be dominated by the switch. 4382 4383 BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator()); 4384 if (!Branch || !Branch->isUnconditional()) 4385 return nullptr; // Terminator must be unconditional branch. 4386 4387 BasicBlock *Succ = Branch->getSuccessor(0); 4388 4389 BasicBlock::iterator I = Succ->begin(); 4390 while (PHINode *PHI = dyn_cast<PHINode>(I++)) { 4391 int Idx = PHI->getBasicBlockIndex(BB); 4392 assert(Idx >= 0 && "PHI has no entry for predecessor?"); 4393 4394 Value *InValue = PHI->getIncomingValue(Idx); 4395 if (InValue != CaseValue) 4396 continue; 4397 4398 *PhiIndex = Idx; 4399 return PHI; 4400 } 4401 4402 return nullptr; 4403 } 4404 4405 /// Try to forward the condition of a switch instruction to a phi node 4406 /// dominated by the switch, if that would mean that some of the destination 4407 /// blocks of the switch can be folded away. 4408 /// Returns true if a change is made. 4409 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) { 4410 typedef DenseMap<PHINode *, SmallVector<int, 4>> ForwardingNodesMap; 4411 ForwardingNodesMap ForwardingNodes; 4412 4413 for (SwitchInst::CaseIt I = SI->case_begin(), E = SI->case_end(); I != E; 4414 ++I) { 4415 ConstantInt *CaseValue = I.getCaseValue(); 4416 BasicBlock *CaseDest = I.getCaseSuccessor(); 4417 4418 int PhiIndex; 4419 PHINode *PHI = 4420 FindPHIForConditionForwarding(CaseValue, CaseDest, &PhiIndex); 4421 if (!PHI) 4422 continue; 4423 4424 ForwardingNodes[PHI].push_back(PhiIndex); 4425 } 4426 4427 bool Changed = false; 4428 4429 for (ForwardingNodesMap::iterator I = ForwardingNodes.begin(), 4430 E = ForwardingNodes.end(); 4431 I != E; ++I) { 4432 PHINode *Phi = I->first; 4433 SmallVectorImpl<int> &Indexes = I->second; 4434 4435 if (Indexes.size() < 2) 4436 continue; 4437 4438 for (size_t I = 0, E = Indexes.size(); I != E; ++I) 4439 Phi->setIncomingValue(Indexes[I], SI->getCondition()); 4440 Changed = true; 4441 } 4442 4443 return Changed; 4444 } 4445 4446 /// Return true if the backend will be able to handle 4447 /// initializing an array of constants like C. 4448 static bool ValidLookupTableConstant(Constant *C, const TargetTransformInfo &TTI) { 4449 if (C->isThreadDependent()) 4450 return false; 4451 if (C->isDLLImportDependent()) 4452 return false; 4453 4454 if (!isa<ConstantFP>(C) && !isa<ConstantInt>(C) && 4455 !isa<ConstantPointerNull>(C) && !isa<GlobalValue>(C) && 4456 !isa<UndefValue>(C) && !isa<ConstantExpr>(C)) 4457 return false; 4458 4459 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 4460 if (!CE->isGEPWithNoNotionalOverIndexing()) 4461 return false; 4462 if (!ValidLookupTableConstant(CE->getOperand(0), TTI)) 4463 return false; 4464 } 4465 4466 if (!TTI.shouldBuildLookupTablesForConstant(C)) 4467 return false; 4468 4469 return true; 4470 } 4471 4472 /// If V is a Constant, return it. Otherwise, try to look up 4473 /// its constant value in ConstantPool, returning 0 if it's not there. 4474 static Constant * 4475 LookupConstant(Value *V, 4476 const SmallDenseMap<Value *, Constant *> &ConstantPool) { 4477 if (Constant *C = dyn_cast<Constant>(V)) 4478 return C; 4479 return ConstantPool.lookup(V); 4480 } 4481 4482 /// Try to fold instruction I into a constant. This works for 4483 /// simple instructions such as binary operations where both operands are 4484 /// constant or can be replaced by constants from the ConstantPool. Returns the 4485 /// resulting constant on success, 0 otherwise. 4486 static Constant * 4487 ConstantFold(Instruction *I, const DataLayout &DL, 4488 const SmallDenseMap<Value *, Constant *> &ConstantPool) { 4489 if (SelectInst *Select = dyn_cast<SelectInst>(I)) { 4490 Constant *A = LookupConstant(Select->getCondition(), ConstantPool); 4491 if (!A) 4492 return nullptr; 4493 if (A->isAllOnesValue()) 4494 return LookupConstant(Select->getTrueValue(), ConstantPool); 4495 if (A->isNullValue()) 4496 return LookupConstant(Select->getFalseValue(), ConstantPool); 4497 return nullptr; 4498 } 4499 4500 SmallVector<Constant *, 4> COps; 4501 for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) { 4502 if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool)) 4503 COps.push_back(A); 4504 else 4505 return nullptr; 4506 } 4507 4508 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) { 4509 return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0], 4510 COps[1], DL); 4511 } 4512 4513 return ConstantFoldInstOperands(I, COps, DL); 4514 } 4515 4516 /// Try to determine the resulting constant values in phi nodes 4517 /// at the common destination basic block, *CommonDest, for one of the case 4518 /// destionations CaseDest corresponding to value CaseVal (0 for the default 4519 /// case), of a switch instruction SI. 4520 static bool 4521 GetCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest, 4522 BasicBlock **CommonDest, 4523 SmallVectorImpl<std::pair<PHINode *, Constant *> > &Res, 4524 const DataLayout &DL, const TargetTransformInfo &TTI) { 4525 // The block from which we enter the common destination. 4526 BasicBlock *Pred = SI->getParent(); 4527 4528 // If CaseDest is empty except for some side-effect free instructions through 4529 // which we can constant-propagate the CaseVal, continue to its successor. 4530 SmallDenseMap<Value *, Constant *> ConstantPool; 4531 ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal)); 4532 for (BasicBlock::iterator I = CaseDest->begin(), E = CaseDest->end(); I != E; 4533 ++I) { 4534 if (TerminatorInst *T = dyn_cast<TerminatorInst>(I)) { 4535 // If the terminator is a simple branch, continue to the next block. 4536 if (T->getNumSuccessors() != 1 || T->isExceptional()) 4537 return false; 4538 Pred = CaseDest; 4539 CaseDest = T->getSuccessor(0); 4540 } else if (isa<DbgInfoIntrinsic>(I)) { 4541 // Skip debug intrinsic. 4542 continue; 4543 } else if (Constant *C = ConstantFold(&*I, DL, ConstantPool)) { 4544 // Instruction is side-effect free and constant. 4545 4546 // If the instruction has uses outside this block or a phi node slot for 4547 // the block, it is not safe to bypass the instruction since it would then 4548 // no longer dominate all its uses. 4549 for (auto &Use : I->uses()) { 4550 User *User = Use.getUser(); 4551 if (Instruction *I = dyn_cast<Instruction>(User)) 4552 if (I->getParent() == CaseDest) 4553 continue; 4554 if (PHINode *Phi = dyn_cast<PHINode>(User)) 4555 if (Phi->getIncomingBlock(Use) == CaseDest) 4556 continue; 4557 return false; 4558 } 4559 4560 ConstantPool.insert(std::make_pair(&*I, C)); 4561 } else { 4562 break; 4563 } 4564 } 4565 4566 // If we did not have a CommonDest before, use the current one. 4567 if (!*CommonDest) 4568 *CommonDest = CaseDest; 4569 // If the destination isn't the common one, abort. 4570 if (CaseDest != *CommonDest) 4571 return false; 4572 4573 // Get the values for this case from phi nodes in the destination block. 4574 BasicBlock::iterator I = (*CommonDest)->begin(); 4575 while (PHINode *PHI = dyn_cast<PHINode>(I++)) { 4576 int Idx = PHI->getBasicBlockIndex(Pred); 4577 if (Idx == -1) 4578 continue; 4579 4580 Constant *ConstVal = 4581 LookupConstant(PHI->getIncomingValue(Idx), ConstantPool); 4582 if (!ConstVal) 4583 return false; 4584 4585 // Be conservative about which kinds of constants we support. 4586 if (!ValidLookupTableConstant(ConstVal, TTI)) 4587 return false; 4588 4589 Res.push_back(std::make_pair(PHI, ConstVal)); 4590 } 4591 4592 return Res.size() > 0; 4593 } 4594 4595 // Helper function used to add CaseVal to the list of cases that generate 4596 // Result. 4597 static void MapCaseToResult(ConstantInt *CaseVal, 4598 SwitchCaseResultVectorTy &UniqueResults, 4599 Constant *Result) { 4600 for (auto &I : UniqueResults) { 4601 if (I.first == Result) { 4602 I.second.push_back(CaseVal); 4603 return; 4604 } 4605 } 4606 UniqueResults.push_back( 4607 std::make_pair(Result, SmallVector<ConstantInt *, 4>(1, CaseVal))); 4608 } 4609 4610 // Helper function that initializes a map containing 4611 // results for the PHI node of the common destination block for a switch 4612 // instruction. Returns false if multiple PHI nodes have been found or if 4613 // there is not a common destination block for the switch. 4614 static bool InitializeUniqueCases(SwitchInst *SI, PHINode *&PHI, 4615 BasicBlock *&CommonDest, 4616 SwitchCaseResultVectorTy &UniqueResults, 4617 Constant *&DefaultResult, 4618 const DataLayout &DL, 4619 const TargetTransformInfo &TTI) { 4620 for (auto &I : SI->cases()) { 4621 ConstantInt *CaseVal = I.getCaseValue(); 4622 4623 // Resulting value at phi nodes for this case value. 4624 SwitchCaseResultsTy Results; 4625 if (!GetCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results, 4626 DL, TTI)) 4627 return false; 4628 4629 // Only one value per case is permitted 4630 if (Results.size() > 1) 4631 return false; 4632 MapCaseToResult(CaseVal, UniqueResults, Results.begin()->second); 4633 4634 // Check the PHI consistency. 4635 if (!PHI) 4636 PHI = Results[0].first; 4637 else if (PHI != Results[0].first) 4638 return false; 4639 } 4640 // Find the default result value. 4641 SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults; 4642 BasicBlock *DefaultDest = SI->getDefaultDest(); 4643 GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults, 4644 DL, TTI); 4645 // If the default value is not found abort unless the default destination 4646 // is unreachable. 4647 DefaultResult = 4648 DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr; 4649 if ((!DefaultResult && 4650 !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()))) 4651 return false; 4652 4653 return true; 4654 } 4655 4656 // Helper function that checks if it is possible to transform a switch with only 4657 // two cases (or two cases + default) that produces a result into a select. 4658 // Example: 4659 // switch (a) { 4660 // case 10: %0 = icmp eq i32 %a, 10 4661 // return 10; %1 = select i1 %0, i32 10, i32 4 4662 // case 20: ----> %2 = icmp eq i32 %a, 20 4663 // return 2; %3 = select i1 %2, i32 2, i32 %1 4664 // default: 4665 // return 4; 4666 // } 4667 static Value *ConvertTwoCaseSwitch(const SwitchCaseResultVectorTy &ResultVector, 4668 Constant *DefaultResult, Value *Condition, 4669 IRBuilder<> &Builder) { 4670 assert(ResultVector.size() == 2 && 4671 "We should have exactly two unique results at this point"); 4672 // If we are selecting between only two cases transform into a simple 4673 // select or a two-way select if default is possible. 4674 if (ResultVector[0].second.size() == 1 && 4675 ResultVector[1].second.size() == 1) { 4676 ConstantInt *const FirstCase = ResultVector[0].second[0]; 4677 ConstantInt *const SecondCase = ResultVector[1].second[0]; 4678 4679 bool DefaultCanTrigger = DefaultResult; 4680 Value *SelectValue = ResultVector[1].first; 4681 if (DefaultCanTrigger) { 4682 Value *const ValueCompare = 4683 Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp"); 4684 SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first, 4685 DefaultResult, "switch.select"); 4686 } 4687 Value *const ValueCompare = 4688 Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp"); 4689 return Builder.CreateSelect(ValueCompare, ResultVector[0].first, 4690 SelectValue, "switch.select"); 4691 } 4692 4693 return nullptr; 4694 } 4695 4696 // Helper function to cleanup a switch instruction that has been converted into 4697 // a select, fixing up PHI nodes and basic blocks. 4698 static void RemoveSwitchAfterSelectConversion(SwitchInst *SI, PHINode *PHI, 4699 Value *SelectValue, 4700 IRBuilder<> &Builder) { 4701 BasicBlock *SelectBB = SI->getParent(); 4702 while (PHI->getBasicBlockIndex(SelectBB) >= 0) 4703 PHI->removeIncomingValue(SelectBB); 4704 PHI->addIncoming(SelectValue, SelectBB); 4705 4706 Builder.CreateBr(PHI->getParent()); 4707 4708 // Remove the switch. 4709 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { 4710 BasicBlock *Succ = SI->getSuccessor(i); 4711 4712 if (Succ == PHI->getParent()) 4713 continue; 4714 Succ->removePredecessor(SelectBB); 4715 } 4716 SI->eraseFromParent(); 4717 } 4718 4719 /// If the switch is only used to initialize one or more 4720 /// phi nodes in a common successor block with only two different 4721 /// constant values, replace the switch with select. 4722 static bool SwitchToSelect(SwitchInst *SI, IRBuilder<> &Builder, 4723 AssumptionCache *AC, const DataLayout &DL, 4724 const TargetTransformInfo &TTI) { 4725 Value *const Cond = SI->getCondition(); 4726 PHINode *PHI = nullptr; 4727 BasicBlock *CommonDest = nullptr; 4728 Constant *DefaultResult; 4729 SwitchCaseResultVectorTy UniqueResults; 4730 // Collect all the cases that will deliver the same value from the switch. 4731 if (!InitializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult, 4732 DL, TTI)) 4733 return false; 4734 // Selects choose between maximum two values. 4735 if (UniqueResults.size() != 2) 4736 return false; 4737 assert(PHI != nullptr && "PHI for value select not found"); 4738 4739 Builder.SetInsertPoint(SI); 4740 Value *SelectValue = 4741 ConvertTwoCaseSwitch(UniqueResults, DefaultResult, Cond, Builder); 4742 if (SelectValue) { 4743 RemoveSwitchAfterSelectConversion(SI, PHI, SelectValue, Builder); 4744 return true; 4745 } 4746 // The switch couldn't be converted into a select. 4747 return false; 4748 } 4749 4750 namespace { 4751 /// This class represents a lookup table that can be used to replace a switch. 4752 class SwitchLookupTable { 4753 public: 4754 /// Create a lookup table to use as a switch replacement with the contents 4755 /// of Values, using DefaultValue to fill any holes in the table. 4756 SwitchLookupTable( 4757 Module &M, uint64_t TableSize, ConstantInt *Offset, 4758 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values, 4759 Constant *DefaultValue, const DataLayout &DL); 4760 4761 /// Build instructions with Builder to retrieve the value at 4762 /// the position given by Index in the lookup table. 4763 Value *BuildLookup(Value *Index, IRBuilder<> &Builder); 4764 4765 /// Return true if a table with TableSize elements of 4766 /// type ElementType would fit in a target-legal register. 4767 static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize, 4768 Type *ElementType); 4769 4770 private: 4771 // Depending on the contents of the table, it can be represented in 4772 // different ways. 4773 enum { 4774 // For tables where each element contains the same value, we just have to 4775 // store that single value and return it for each lookup. 4776 SingleValueKind, 4777 4778 // For tables where there is a linear relationship between table index 4779 // and values. We calculate the result with a simple multiplication 4780 // and addition instead of a table lookup. 4781 LinearMapKind, 4782 4783 // For small tables with integer elements, we can pack them into a bitmap 4784 // that fits into a target-legal register. Values are retrieved by 4785 // shift and mask operations. 4786 BitMapKind, 4787 4788 // The table is stored as an array of values. Values are retrieved by load 4789 // instructions from the table. 4790 ArrayKind 4791 } Kind; 4792 4793 // For SingleValueKind, this is the single value. 4794 Constant *SingleValue; 4795 4796 // For BitMapKind, this is the bitmap. 4797 ConstantInt *BitMap; 4798 IntegerType *BitMapElementTy; 4799 4800 // For LinearMapKind, these are the constants used to derive the value. 4801 ConstantInt *LinearOffset; 4802 ConstantInt *LinearMultiplier; 4803 4804 // For ArrayKind, this is the array. 4805 GlobalVariable *Array; 4806 }; 4807 } 4808 4809 SwitchLookupTable::SwitchLookupTable( 4810 Module &M, uint64_t TableSize, ConstantInt *Offset, 4811 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values, 4812 Constant *DefaultValue, const DataLayout &DL) 4813 : SingleValue(nullptr), BitMap(nullptr), BitMapElementTy(nullptr), 4814 LinearOffset(nullptr), LinearMultiplier(nullptr), Array(nullptr) { 4815 assert(Values.size() && "Can't build lookup table without values!"); 4816 assert(TableSize >= Values.size() && "Can't fit values in table!"); 4817 4818 // If all values in the table are equal, this is that value. 4819 SingleValue = Values.begin()->second; 4820 4821 Type *ValueType = Values.begin()->second->getType(); 4822 4823 // Build up the table contents. 4824 SmallVector<Constant *, 64> TableContents(TableSize); 4825 for (size_t I = 0, E = Values.size(); I != E; ++I) { 4826 ConstantInt *CaseVal = Values[I].first; 4827 Constant *CaseRes = Values[I].second; 4828 assert(CaseRes->getType() == ValueType); 4829 4830 uint64_t Idx = (CaseVal->getValue() - Offset->getValue()).getLimitedValue(); 4831 TableContents[Idx] = CaseRes; 4832 4833 if (CaseRes != SingleValue) 4834 SingleValue = nullptr; 4835 } 4836 4837 // Fill in any holes in the table with the default result. 4838 if (Values.size() < TableSize) { 4839 assert(DefaultValue && 4840 "Need a default value to fill the lookup table holes."); 4841 assert(DefaultValue->getType() == ValueType); 4842 for (uint64_t I = 0; I < TableSize; ++I) { 4843 if (!TableContents[I]) 4844 TableContents[I] = DefaultValue; 4845 } 4846 4847 if (DefaultValue != SingleValue) 4848 SingleValue = nullptr; 4849 } 4850 4851 // If each element in the table contains the same value, we only need to store 4852 // that single value. 4853 if (SingleValue) { 4854 Kind = SingleValueKind; 4855 return; 4856 } 4857 4858 // Check if we can derive the value with a linear transformation from the 4859 // table index. 4860 if (isa<IntegerType>(ValueType)) { 4861 bool LinearMappingPossible = true; 4862 APInt PrevVal; 4863 APInt DistToPrev; 4864 assert(TableSize >= 2 && "Should be a SingleValue table."); 4865 // Check if there is the same distance between two consecutive values. 4866 for (uint64_t I = 0; I < TableSize; ++I) { 4867 ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]); 4868 if (!ConstVal) { 4869 // This is an undef. We could deal with it, but undefs in lookup tables 4870 // are very seldom. It's probably not worth the additional complexity. 4871 LinearMappingPossible = false; 4872 break; 4873 } 4874 APInt Val = ConstVal->getValue(); 4875 if (I != 0) { 4876 APInt Dist = Val - PrevVal; 4877 if (I == 1) { 4878 DistToPrev = Dist; 4879 } else if (Dist != DistToPrev) { 4880 LinearMappingPossible = false; 4881 break; 4882 } 4883 } 4884 PrevVal = Val; 4885 } 4886 if (LinearMappingPossible) { 4887 LinearOffset = cast<ConstantInt>(TableContents[0]); 4888 LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev); 4889 Kind = LinearMapKind; 4890 ++NumLinearMaps; 4891 return; 4892 } 4893 } 4894 4895 // If the type is integer and the table fits in a register, build a bitmap. 4896 if (WouldFitInRegister(DL, TableSize, ValueType)) { 4897 IntegerType *IT = cast<IntegerType>(ValueType); 4898 APInt TableInt(TableSize * IT->getBitWidth(), 0); 4899 for (uint64_t I = TableSize; I > 0; --I) { 4900 TableInt <<= IT->getBitWidth(); 4901 // Insert values into the bitmap. Undef values are set to zero. 4902 if (!isa<UndefValue>(TableContents[I - 1])) { 4903 ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]); 4904 TableInt |= Val->getValue().zext(TableInt.getBitWidth()); 4905 } 4906 } 4907 BitMap = ConstantInt::get(M.getContext(), TableInt); 4908 BitMapElementTy = IT; 4909 Kind = BitMapKind; 4910 ++NumBitMaps; 4911 return; 4912 } 4913 4914 // Store the table in an array. 4915 ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize); 4916 Constant *Initializer = ConstantArray::get(ArrayTy, TableContents); 4917 4918 Array = new GlobalVariable(M, ArrayTy, /*constant=*/true, 4919 GlobalVariable::PrivateLinkage, Initializer, 4920 "switch.table"); 4921 Array->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); 4922 Kind = ArrayKind; 4923 } 4924 4925 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) { 4926 switch (Kind) { 4927 case SingleValueKind: 4928 return SingleValue; 4929 case LinearMapKind: { 4930 // Derive the result value from the input value. 4931 Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(), 4932 false, "switch.idx.cast"); 4933 if (!LinearMultiplier->isOne()) 4934 Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult"); 4935 if (!LinearOffset->isZero()) 4936 Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset"); 4937 return Result; 4938 } 4939 case BitMapKind: { 4940 // Type of the bitmap (e.g. i59). 4941 IntegerType *MapTy = BitMap->getType(); 4942 4943 // Cast Index to the same type as the bitmap. 4944 // Note: The Index is <= the number of elements in the table, so 4945 // truncating it to the width of the bitmask is safe. 4946 Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast"); 4947 4948 // Multiply the shift amount by the element width. 4949 ShiftAmt = Builder.CreateMul( 4950 ShiftAmt, ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()), 4951 "switch.shiftamt"); 4952 4953 // Shift down. 4954 Value *DownShifted = 4955 Builder.CreateLShr(BitMap, ShiftAmt, "switch.downshift"); 4956 // Mask off. 4957 return Builder.CreateTrunc(DownShifted, BitMapElementTy, "switch.masked"); 4958 } 4959 case ArrayKind: { 4960 // Make sure the table index will not overflow when treated as signed. 4961 IntegerType *IT = cast<IntegerType>(Index->getType()); 4962 uint64_t TableSize = 4963 Array->getInitializer()->getType()->getArrayNumElements(); 4964 if (TableSize > (1ULL << (IT->getBitWidth() - 1))) 4965 Index = Builder.CreateZExt( 4966 Index, IntegerType::get(IT->getContext(), IT->getBitWidth() + 1), 4967 "switch.tableidx.zext"); 4968 4969 Value *GEPIndices[] = {Builder.getInt32(0), Index}; 4970 Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array, 4971 GEPIndices, "switch.gep"); 4972 return Builder.CreateLoad(GEP, "switch.load"); 4973 } 4974 } 4975 llvm_unreachable("Unknown lookup table kind!"); 4976 } 4977 4978 bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL, 4979 uint64_t TableSize, 4980 Type *ElementType) { 4981 auto *IT = dyn_cast<IntegerType>(ElementType); 4982 if (!IT) 4983 return false; 4984 // FIXME: If the type is wider than it needs to be, e.g. i8 but all values 4985 // are <= 15, we could try to narrow the type. 4986 4987 // Avoid overflow, fitsInLegalInteger uses unsigned int for the width. 4988 if (TableSize >= UINT_MAX / IT->getBitWidth()) 4989 return false; 4990 return DL.fitsInLegalInteger(TableSize * IT->getBitWidth()); 4991 } 4992 4993 /// Determine whether a lookup table should be built for this switch, based on 4994 /// the number of cases, size of the table, and the types of the results. 4995 static bool 4996 ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize, 4997 const TargetTransformInfo &TTI, const DataLayout &DL, 4998 const SmallDenseMap<PHINode *, Type *> &ResultTypes) { 4999 if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10) 5000 return false; // TableSize overflowed, or mul below might overflow. 5001 5002 bool AllTablesFitInRegister = true; 5003 bool HasIllegalType = false; 5004 for (const auto &I : ResultTypes) { 5005 Type *Ty = I.second; 5006 5007 // Saturate this flag to true. 5008 HasIllegalType = HasIllegalType || !TTI.isTypeLegal(Ty); 5009 5010 // Saturate this flag to false. 5011 AllTablesFitInRegister = 5012 AllTablesFitInRegister && 5013 SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty); 5014 5015 // If both flags saturate, we're done. NOTE: This *only* works with 5016 // saturating flags, and all flags have to saturate first due to the 5017 // non-deterministic behavior of iterating over a dense map. 5018 if (HasIllegalType && !AllTablesFitInRegister) 5019 break; 5020 } 5021 5022 // If each table would fit in a register, we should build it anyway. 5023 if (AllTablesFitInRegister) 5024 return true; 5025 5026 // Don't build a table that doesn't fit in-register if it has illegal types. 5027 if (HasIllegalType) 5028 return false; 5029 5030 // The table density should be at least 40%. This is the same criterion as for 5031 // jump tables, see SelectionDAGBuilder::handleJTSwitchCase. 5032 // FIXME: Find the best cut-off. 5033 return SI->getNumCases() * 10 >= TableSize * 4; 5034 } 5035 5036 /// Try to reuse the switch table index compare. Following pattern: 5037 /// \code 5038 /// if (idx < tablesize) 5039 /// r = table[idx]; // table does not contain default_value 5040 /// else 5041 /// r = default_value; 5042 /// if (r != default_value) 5043 /// ... 5044 /// \endcode 5045 /// Is optimized to: 5046 /// \code 5047 /// cond = idx < tablesize; 5048 /// if (cond) 5049 /// r = table[idx]; 5050 /// else 5051 /// r = default_value; 5052 /// if (cond) 5053 /// ... 5054 /// \endcode 5055 /// Jump threading will then eliminate the second if(cond). 5056 static void reuseTableCompare( 5057 User *PhiUser, BasicBlock *PhiBlock, BranchInst *RangeCheckBranch, 5058 Constant *DefaultValue, 5059 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values) { 5060 5061 ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser); 5062 if (!CmpInst) 5063 return; 5064 5065 // We require that the compare is in the same block as the phi so that jump 5066 // threading can do its work afterwards. 5067 if (CmpInst->getParent() != PhiBlock) 5068 return; 5069 5070 Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1)); 5071 if (!CmpOp1) 5072 return; 5073 5074 Value *RangeCmp = RangeCheckBranch->getCondition(); 5075 Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType()); 5076 Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType()); 5077 5078 // Check if the compare with the default value is constant true or false. 5079 Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(), 5080 DefaultValue, CmpOp1, true); 5081 if (DefaultConst != TrueConst && DefaultConst != FalseConst) 5082 return; 5083 5084 // Check if the compare with the case values is distinct from the default 5085 // compare result. 5086 for (auto ValuePair : Values) { 5087 Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(), 5088 ValuePair.second, CmpOp1, true); 5089 if (!CaseConst || CaseConst == DefaultConst) 5090 return; 5091 assert((CaseConst == TrueConst || CaseConst == FalseConst) && 5092 "Expect true or false as compare result."); 5093 } 5094 5095 // Check if the branch instruction dominates the phi node. It's a simple 5096 // dominance check, but sufficient for our needs. 5097 // Although this check is invariant in the calling loops, it's better to do it 5098 // at this late stage. Practically we do it at most once for a switch. 5099 BasicBlock *BranchBlock = RangeCheckBranch->getParent(); 5100 for (auto PI = pred_begin(PhiBlock), E = pred_end(PhiBlock); PI != E; ++PI) { 5101 BasicBlock *Pred = *PI; 5102 if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock) 5103 return; 5104 } 5105 5106 if (DefaultConst == FalseConst) { 5107 // The compare yields the same result. We can replace it. 5108 CmpInst->replaceAllUsesWith(RangeCmp); 5109 ++NumTableCmpReuses; 5110 } else { 5111 // The compare yields the same result, just inverted. We can replace it. 5112 Value *InvertedTableCmp = BinaryOperator::CreateXor( 5113 RangeCmp, ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp", 5114 RangeCheckBranch); 5115 CmpInst->replaceAllUsesWith(InvertedTableCmp); 5116 ++NumTableCmpReuses; 5117 } 5118 } 5119 5120 /// If the switch is only used to initialize one or more phi nodes in a common 5121 /// successor block with different constant values, replace the switch with 5122 /// lookup tables. 5123 static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder, 5124 const DataLayout &DL, 5125 const TargetTransformInfo &TTI) { 5126 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 5127 5128 // Only build lookup table when we have a target that supports it. 5129 if (!TTI.shouldBuildLookupTables()) 5130 return false; 5131 5132 // FIXME: If the switch is too sparse for a lookup table, perhaps we could 5133 // split off a dense part and build a lookup table for that. 5134 5135 // FIXME: This creates arrays of GEPs to constant strings, which means each 5136 // GEP needs a runtime relocation in PIC code. We should just build one big 5137 // string and lookup indices into that. 5138 5139 // Ignore switches with less than three cases. Lookup tables will not make 5140 // them 5141 // faster, so we don't analyze them. 5142 if (SI->getNumCases() < 3) 5143 return false; 5144 5145 // Figure out the corresponding result for each case value and phi node in the 5146 // common destination, as well as the min and max case values. 5147 assert(SI->case_begin() != SI->case_end()); 5148 SwitchInst::CaseIt CI = SI->case_begin(); 5149 ConstantInt *MinCaseVal = CI.getCaseValue(); 5150 ConstantInt *MaxCaseVal = CI.getCaseValue(); 5151 5152 BasicBlock *CommonDest = nullptr; 5153 typedef SmallVector<std::pair<ConstantInt *, Constant *>, 4> ResultListTy; 5154 SmallDenseMap<PHINode *, ResultListTy> ResultLists; 5155 SmallDenseMap<PHINode *, Constant *> DefaultResults; 5156 SmallDenseMap<PHINode *, Type *> ResultTypes; 5157 SmallVector<PHINode *, 4> PHIs; 5158 5159 for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) { 5160 ConstantInt *CaseVal = CI.getCaseValue(); 5161 if (CaseVal->getValue().slt(MinCaseVal->getValue())) 5162 MinCaseVal = CaseVal; 5163 if (CaseVal->getValue().sgt(MaxCaseVal->getValue())) 5164 MaxCaseVal = CaseVal; 5165 5166 // Resulting value at phi nodes for this case value. 5167 typedef SmallVector<std::pair<PHINode *, Constant *>, 4> ResultsTy; 5168 ResultsTy Results; 5169 if (!GetCaseResults(SI, CaseVal, CI.getCaseSuccessor(), &CommonDest, 5170 Results, DL, TTI)) 5171 return false; 5172 5173 // Append the result from this case to the list for each phi. 5174 for (const auto &I : Results) { 5175 PHINode *PHI = I.first; 5176 Constant *Value = I.second; 5177 if (!ResultLists.count(PHI)) 5178 PHIs.push_back(PHI); 5179 ResultLists[PHI].push_back(std::make_pair(CaseVal, Value)); 5180 } 5181 } 5182 5183 // Keep track of the result types. 5184 for (PHINode *PHI : PHIs) { 5185 ResultTypes[PHI] = ResultLists[PHI][0].second->getType(); 5186 } 5187 5188 uint64_t NumResults = ResultLists[PHIs[0]].size(); 5189 APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue(); 5190 uint64_t TableSize = RangeSpread.getLimitedValue() + 1; 5191 bool TableHasHoles = (NumResults < TableSize); 5192 5193 // If the table has holes, we need a constant result for the default case 5194 // or a bitmask that fits in a register. 5195 SmallVector<std::pair<PHINode *, Constant *>, 4> DefaultResultsList; 5196 bool HasDefaultResults = 5197 GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, 5198 DefaultResultsList, DL, TTI); 5199 5200 bool NeedMask = (TableHasHoles && !HasDefaultResults); 5201 if (NeedMask) { 5202 // As an extra penalty for the validity test we require more cases. 5203 if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark). 5204 return false; 5205 if (!DL.fitsInLegalInteger(TableSize)) 5206 return false; 5207 } 5208 5209 for (const auto &I : DefaultResultsList) { 5210 PHINode *PHI = I.first; 5211 Constant *Result = I.second; 5212 DefaultResults[PHI] = Result; 5213 } 5214 5215 if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes)) 5216 return false; 5217 5218 // Create the BB that does the lookups. 5219 Module &Mod = *CommonDest->getParent()->getParent(); 5220 BasicBlock *LookupBB = BasicBlock::Create( 5221 Mod.getContext(), "switch.lookup", CommonDest->getParent(), CommonDest); 5222 5223 // Compute the table index value. 5224 Builder.SetInsertPoint(SI); 5225 Value *TableIndex = 5226 Builder.CreateSub(SI->getCondition(), MinCaseVal, "switch.tableidx"); 5227 5228 // Compute the maximum table size representable by the integer type we are 5229 // switching upon. 5230 unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits(); 5231 uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize; 5232 assert(MaxTableSize >= TableSize && 5233 "It is impossible for a switch to have more entries than the max " 5234 "representable value of its input integer type's size."); 5235 5236 // If the default destination is unreachable, or if the lookup table covers 5237 // all values of the conditional variable, branch directly to the lookup table 5238 // BB. Otherwise, check that the condition is within the case range. 5239 const bool DefaultIsReachable = 5240 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 5241 const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize); 5242 BranchInst *RangeCheckBranch = nullptr; 5243 5244 if (!DefaultIsReachable || GeneratingCoveredLookupTable) { 5245 Builder.CreateBr(LookupBB); 5246 // Note: We call removeProdecessor later since we need to be able to get the 5247 // PHI value for the default case in case we're using a bit mask. 5248 } else { 5249 Value *Cmp = Builder.CreateICmpULT( 5250 TableIndex, ConstantInt::get(MinCaseVal->getType(), TableSize)); 5251 RangeCheckBranch = 5252 Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest()); 5253 } 5254 5255 // Populate the BB that does the lookups. 5256 Builder.SetInsertPoint(LookupBB); 5257 5258 if (NeedMask) { 5259 // Before doing the lookup we do the hole check. 5260 // The LookupBB is therefore re-purposed to do the hole check 5261 // and we create a new LookupBB. 5262 BasicBlock *MaskBB = LookupBB; 5263 MaskBB->setName("switch.hole_check"); 5264 LookupBB = BasicBlock::Create(Mod.getContext(), "switch.lookup", 5265 CommonDest->getParent(), CommonDest); 5266 5267 // Make the mask's bitwidth at least 8bit and a power-of-2 to avoid 5268 // unnecessary illegal types. 5269 uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL)); 5270 APInt MaskInt(TableSizePowOf2, 0); 5271 APInt One(TableSizePowOf2, 1); 5272 // Build bitmask; fill in a 1 bit for every case. 5273 const ResultListTy &ResultList = ResultLists[PHIs[0]]; 5274 for (size_t I = 0, E = ResultList.size(); I != E; ++I) { 5275 uint64_t Idx = (ResultList[I].first->getValue() - MinCaseVal->getValue()) 5276 .getLimitedValue(); 5277 MaskInt |= One << Idx; 5278 } 5279 ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt); 5280 5281 // Get the TableIndex'th bit of the bitmask. 5282 // If this bit is 0 (meaning hole) jump to the default destination, 5283 // else continue with table lookup. 5284 IntegerType *MapTy = TableMask->getType(); 5285 Value *MaskIndex = 5286 Builder.CreateZExtOrTrunc(TableIndex, MapTy, "switch.maskindex"); 5287 Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, "switch.shifted"); 5288 Value *LoBit = Builder.CreateTrunc( 5289 Shifted, Type::getInt1Ty(Mod.getContext()), "switch.lobit"); 5290 Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest()); 5291 5292 Builder.SetInsertPoint(LookupBB); 5293 AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, SI->getParent()); 5294 } 5295 5296 if (!DefaultIsReachable || GeneratingCoveredLookupTable) { 5297 // We cached PHINodes in PHIs, to avoid accessing deleted PHINodes later, 5298 // do not delete PHINodes here. 5299 SI->getDefaultDest()->removePredecessor(SI->getParent(), 5300 /*DontDeleteUselessPHIs=*/true); 5301 } 5302 5303 bool ReturnedEarly = false; 5304 for (size_t I = 0, E = PHIs.size(); I != E; ++I) { 5305 PHINode *PHI = PHIs[I]; 5306 const ResultListTy &ResultList = ResultLists[PHI]; 5307 5308 // If using a bitmask, use any value to fill the lookup table holes. 5309 Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI]; 5310 SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultList, DV, DL); 5311 5312 Value *Result = Table.BuildLookup(TableIndex, Builder); 5313 5314 // If the result is used to return immediately from the function, we want to 5315 // do that right here. 5316 if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->user_begin()) && 5317 PHI->user_back() == CommonDest->getFirstNonPHIOrDbg()) { 5318 Builder.CreateRet(Result); 5319 ReturnedEarly = true; 5320 break; 5321 } 5322 5323 // Do a small peephole optimization: re-use the switch table compare if 5324 // possible. 5325 if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) { 5326 BasicBlock *PhiBlock = PHI->getParent(); 5327 // Search for compare instructions which use the phi. 5328 for (auto *User : PHI->users()) { 5329 reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList); 5330 } 5331 } 5332 5333 PHI->addIncoming(Result, LookupBB); 5334 } 5335 5336 if (!ReturnedEarly) 5337 Builder.CreateBr(CommonDest); 5338 5339 // Remove the switch. 5340 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { 5341 BasicBlock *Succ = SI->getSuccessor(i); 5342 5343 if (Succ == SI->getDefaultDest()) 5344 continue; 5345 Succ->removePredecessor(SI->getParent()); 5346 } 5347 SI->eraseFromParent(); 5348 5349 ++NumLookupTables; 5350 if (NeedMask) 5351 ++NumLookupTablesHoles; 5352 return true; 5353 } 5354 5355 static bool isSwitchDense(ArrayRef<int64_t> Values) { 5356 // See also SelectionDAGBuilder::isDense(), which this function was based on. 5357 uint64_t Diff = (uint64_t)Values.back() - (uint64_t)Values.front(); 5358 uint64_t Range = Diff + 1; 5359 uint64_t NumCases = Values.size(); 5360 // 40% is the default density for building a jump table in optsize/minsize mode. 5361 uint64_t MinDensity = 40; 5362 5363 return NumCases * 100 >= Range * MinDensity; 5364 } 5365 5366 // Try and transform a switch that has "holes" in it to a contiguous sequence 5367 // of cases. 5368 // 5369 // A switch such as: switch(i) {case 5: case 9: case 13: case 17:} can be 5370 // range-reduced to: switch ((i-5) / 4) {case 0: case 1: case 2: case 3:}. 5371 // 5372 // This converts a sparse switch into a dense switch which allows better 5373 // lowering and could also allow transforming into a lookup table. 5374 static bool ReduceSwitchRange(SwitchInst *SI, IRBuilder<> &Builder, 5375 const DataLayout &DL, 5376 const TargetTransformInfo &TTI) { 5377 auto *CondTy = cast<IntegerType>(SI->getCondition()->getType()); 5378 if (CondTy->getIntegerBitWidth() > 64 || 5379 !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth())) 5380 return false; 5381 // Only bother with this optimization if there are more than 3 switch cases; 5382 // SDAG will only bother creating jump tables for 4 or more cases. 5383 if (SI->getNumCases() < 4) 5384 return false; 5385 5386 // This transform is agnostic to the signedness of the input or case values. We 5387 // can treat the case values as signed or unsigned. We can optimize more common 5388 // cases such as a sequence crossing zero {-4,0,4,8} if we interpret case values 5389 // as signed. 5390 SmallVector<int64_t,4> Values; 5391 for (auto &C : SI->cases()) 5392 Values.push_back(C.getCaseValue()->getValue().getSExtValue()); 5393 std::sort(Values.begin(), Values.end()); 5394 5395 // If the switch is already dense, there's nothing useful to do here. 5396 if (isSwitchDense(Values)) 5397 return false; 5398 5399 // First, transform the values such that they start at zero and ascend. 5400 int64_t Base = Values[0]; 5401 for (auto &V : Values) 5402 V -= Base; 5403 5404 // Now we have signed numbers that have been shifted so that, given enough 5405 // precision, there are no negative values. Since the rest of the transform 5406 // is bitwise only, we switch now to an unsigned representation. 5407 uint64_t GCD = 0; 5408 for (auto &V : Values) 5409 GCD = llvm::GreatestCommonDivisor64(GCD, (uint64_t)V); 5410 5411 // This transform can be done speculatively because it is so cheap - it results 5412 // in a single rotate operation being inserted. This can only happen if the 5413 // factor extracted is a power of 2. 5414 // FIXME: If the GCD is an odd number we can multiply by the multiplicative 5415 // inverse of GCD and then perform this transform. 5416 // FIXME: It's possible that optimizing a switch on powers of two might also 5417 // be beneficial - flag values are often powers of two and we could use a CLZ 5418 // as the key function. 5419 if (GCD <= 1 || !llvm::isPowerOf2_64(GCD)) 5420 // No common divisor found or too expensive to compute key function. 5421 return false; 5422 5423 unsigned Shift = llvm::Log2_64(GCD); 5424 for (auto &V : Values) 5425 V = (int64_t)((uint64_t)V >> Shift); 5426 5427 if (!isSwitchDense(Values)) 5428 // Transform didn't create a dense switch. 5429 return false; 5430 5431 // The obvious transform is to shift the switch condition right and emit a 5432 // check that the condition actually cleanly divided by GCD, i.e. 5433 // C & (1 << Shift - 1) == 0 5434 // inserting a new CFG edge to handle the case where it didn't divide cleanly. 5435 // 5436 // A cheaper way of doing this is a simple ROTR(C, Shift). This performs the 5437 // shift and puts the shifted-off bits in the uppermost bits. If any of these 5438 // are nonzero then the switch condition will be very large and will hit the 5439 // default case. 5440 5441 auto *Ty = cast<IntegerType>(SI->getCondition()->getType()); 5442 Builder.SetInsertPoint(SI); 5443 auto *ShiftC = ConstantInt::get(Ty, Shift); 5444 auto *Sub = Builder.CreateSub(SI->getCondition(), ConstantInt::get(Ty, Base)); 5445 auto *LShr = Builder.CreateLShr(Sub, ShiftC); 5446 auto *Shl = Builder.CreateShl(Sub, Ty->getBitWidth() - Shift); 5447 auto *Rot = Builder.CreateOr(LShr, Shl); 5448 SI->replaceUsesOfWith(SI->getCondition(), Rot); 5449 5450 for (SwitchInst::CaseIt C = SI->case_begin(), E = SI->case_end(); C != E; 5451 ++C) { 5452 auto *Orig = C.getCaseValue(); 5453 auto Sub = Orig->getValue() - APInt(Ty->getBitWidth(), Base); 5454 C.setValue( 5455 cast<ConstantInt>(ConstantInt::get(Ty, Sub.lshr(ShiftC->getValue())))); 5456 } 5457 return true; 5458 } 5459 5460 bool SimplifyCFGOpt::SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) { 5461 BasicBlock *BB = SI->getParent(); 5462 5463 if (isValueEqualityComparison(SI)) { 5464 // If we only have one predecessor, and if it is a branch on this value, 5465 // see if that predecessor totally determines the outcome of this switch. 5466 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 5467 if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder)) 5468 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5469 5470 Value *Cond = SI->getCondition(); 5471 if (SelectInst *Select = dyn_cast<SelectInst>(Cond)) 5472 if (SimplifySwitchOnSelect(SI, Select)) 5473 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5474 5475 // If the block only contains the switch, see if we can fold the block 5476 // away into any preds. 5477 BasicBlock::iterator BBI = BB->begin(); 5478 // Ignore dbg intrinsics. 5479 while (isa<DbgInfoIntrinsic>(BBI)) 5480 ++BBI; 5481 if (SI == &*BBI) 5482 if (FoldValueComparisonIntoPredecessors(SI, Builder)) 5483 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5484 } 5485 5486 // Try to transform the switch into an icmp and a branch. 5487 if (TurnSwitchRangeIntoICmp(SI, Builder)) 5488 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5489 5490 // Remove unreachable cases. 5491 if (EliminateDeadSwitchCases(SI, AC, DL)) 5492 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5493 5494 if (SwitchToSelect(SI, Builder, AC, DL, TTI)) 5495 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5496 5497 if (ForwardSwitchConditionToPHI(SI)) 5498 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5499 5500 if (SwitchToLookupTable(SI, Builder, DL, TTI)) 5501 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5502 5503 if (ReduceSwitchRange(SI, Builder, DL, TTI)) 5504 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5505 5506 return false; 5507 } 5508 5509 bool SimplifyCFGOpt::SimplifyIndirectBr(IndirectBrInst *IBI) { 5510 BasicBlock *BB = IBI->getParent(); 5511 bool Changed = false; 5512 5513 // Eliminate redundant destinations. 5514 SmallPtrSet<Value *, 8> Succs; 5515 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 5516 BasicBlock *Dest = IBI->getDestination(i); 5517 if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) { 5518 Dest->removePredecessor(BB); 5519 IBI->removeDestination(i); 5520 --i; 5521 --e; 5522 Changed = true; 5523 } 5524 } 5525 5526 if (IBI->getNumDestinations() == 0) { 5527 // If the indirectbr has no successors, change it to unreachable. 5528 new UnreachableInst(IBI->getContext(), IBI); 5529 EraseTerminatorInstAndDCECond(IBI); 5530 return true; 5531 } 5532 5533 if (IBI->getNumDestinations() == 1) { 5534 // If the indirectbr has one successor, change it to a direct branch. 5535 BranchInst::Create(IBI->getDestination(0), IBI); 5536 EraseTerminatorInstAndDCECond(IBI); 5537 return true; 5538 } 5539 5540 if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) { 5541 if (SimplifyIndirectBrOnSelect(IBI, SI)) 5542 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5543 } 5544 return Changed; 5545 } 5546 5547 /// Given an block with only a single landing pad and a unconditional branch 5548 /// try to find another basic block which this one can be merged with. This 5549 /// handles cases where we have multiple invokes with unique landing pads, but 5550 /// a shared handler. 5551 /// 5552 /// We specifically choose to not worry about merging non-empty blocks 5553 /// here. That is a PRE/scheduling problem and is best solved elsewhere. In 5554 /// practice, the optimizer produces empty landing pad blocks quite frequently 5555 /// when dealing with exception dense code. (see: instcombine, gvn, if-else 5556 /// sinking in this file) 5557 /// 5558 /// This is primarily a code size optimization. We need to avoid performing 5559 /// any transform which might inhibit optimization (such as our ability to 5560 /// specialize a particular handler via tail commoning). We do this by not 5561 /// merging any blocks which require us to introduce a phi. Since the same 5562 /// values are flowing through both blocks, we don't loose any ability to 5563 /// specialize. If anything, we make such specialization more likely. 5564 /// 5565 /// TODO - This transformation could remove entries from a phi in the target 5566 /// block when the inputs in the phi are the same for the two blocks being 5567 /// merged. In some cases, this could result in removal of the PHI entirely. 5568 static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI, 5569 BasicBlock *BB) { 5570 auto Succ = BB->getUniqueSuccessor(); 5571 assert(Succ); 5572 // If there's a phi in the successor block, we'd likely have to introduce 5573 // a phi into the merged landing pad block. 5574 if (isa<PHINode>(*Succ->begin())) 5575 return false; 5576 5577 for (BasicBlock *OtherPred : predecessors(Succ)) { 5578 if (BB == OtherPred) 5579 continue; 5580 BasicBlock::iterator I = OtherPred->begin(); 5581 LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I); 5582 if (!LPad2 || !LPad2->isIdenticalTo(LPad)) 5583 continue; 5584 for (++I; isa<DbgInfoIntrinsic>(I); ++I) { 5585 } 5586 BranchInst *BI2 = dyn_cast<BranchInst>(I); 5587 if (!BI2 || !BI2->isIdenticalTo(BI)) 5588 continue; 5589 5590 // We've found an identical block. Update our predecessors to take that 5591 // path instead and make ourselves dead. 5592 SmallSet<BasicBlock *, 16> Preds; 5593 Preds.insert(pred_begin(BB), pred_end(BB)); 5594 for (BasicBlock *Pred : Preds) { 5595 InvokeInst *II = cast<InvokeInst>(Pred->getTerminator()); 5596 assert(II->getNormalDest() != BB && II->getUnwindDest() == BB && 5597 "unexpected successor"); 5598 II->setUnwindDest(OtherPred); 5599 } 5600 5601 // The debug info in OtherPred doesn't cover the merged control flow that 5602 // used to go through BB. We need to delete it or update it. 5603 for (auto I = OtherPred->begin(), E = OtherPred->end(); I != E;) { 5604 Instruction &Inst = *I; 5605 I++; 5606 if (isa<DbgInfoIntrinsic>(Inst)) 5607 Inst.eraseFromParent(); 5608 } 5609 5610 SmallSet<BasicBlock *, 16> Succs; 5611 Succs.insert(succ_begin(BB), succ_end(BB)); 5612 for (BasicBlock *Succ : Succs) { 5613 Succ->removePredecessor(BB); 5614 } 5615 5616 IRBuilder<> Builder(BI); 5617 Builder.CreateUnreachable(); 5618 BI->eraseFromParent(); 5619 return true; 5620 } 5621 return false; 5622 } 5623 5624 bool SimplifyCFGOpt::SimplifyUncondBranch(BranchInst *BI, 5625 IRBuilder<> &Builder) { 5626 BasicBlock *BB = BI->getParent(); 5627 5628 if (SinkCommon && SinkThenElseCodeToEnd(BI)) 5629 return true; 5630 5631 // If the Terminator is the only non-phi instruction, simplify the block. 5632 // if LoopHeader is provided, check if the block is a loop header 5633 // (This is for early invocations before loop simplify and vectorization 5634 // to keep canonical loop forms for nested loops. 5635 // These blocks can be eliminated when the pass is invoked later 5636 // in the back-end.) 5637 BasicBlock::iterator I = BB->getFirstNonPHIOrDbg()->getIterator(); 5638 if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() && 5639 (!LoopHeaders || !LoopHeaders->count(BB)) && 5640 TryToSimplifyUncondBranchFromEmptyBlock(BB)) 5641 return true; 5642 5643 // If the only instruction in the block is a seteq/setne comparison 5644 // against a constant, try to simplify the block. 5645 if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) 5646 if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) { 5647 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 5648 ; 5649 if (I->isTerminator() && 5650 TryToSimplifyUncondBranchWithICmpInIt(ICI, Builder, DL, TTI, 5651 BonusInstThreshold, AC)) 5652 return true; 5653 } 5654 5655 // See if we can merge an empty landing pad block with another which is 5656 // equivalent. 5657 if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) { 5658 for (++I; isa<DbgInfoIntrinsic>(I); ++I) { 5659 } 5660 if (I->isTerminator() && TryToMergeLandingPad(LPad, BI, BB)) 5661 return true; 5662 } 5663 5664 // If this basic block is ONLY a compare and a branch, and if a predecessor 5665 // branches to us and our successor, fold the comparison into the 5666 // predecessor and use logical operations to update the incoming value 5667 // for PHI nodes in common successor. 5668 if (FoldBranchToCommonDest(BI, BonusInstThreshold)) 5669 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5670 return false; 5671 } 5672 5673 static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) { 5674 BasicBlock *PredPred = nullptr; 5675 for (auto *P : predecessors(BB)) { 5676 BasicBlock *PPred = P->getSinglePredecessor(); 5677 if (!PPred || (PredPred && PredPred != PPred)) 5678 return nullptr; 5679 PredPred = PPred; 5680 } 5681 return PredPred; 5682 } 5683 5684 bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) { 5685 BasicBlock *BB = BI->getParent(); 5686 5687 // Conditional branch 5688 if (isValueEqualityComparison(BI)) { 5689 // If we only have one predecessor, and if it is a branch on this value, 5690 // see if that predecessor totally determines the outcome of this 5691 // switch. 5692 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 5693 if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder)) 5694 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5695 5696 // This block must be empty, except for the setcond inst, if it exists. 5697 // Ignore dbg intrinsics. 5698 BasicBlock::iterator I = BB->begin(); 5699 // Ignore dbg intrinsics. 5700 while (isa<DbgInfoIntrinsic>(I)) 5701 ++I; 5702 if (&*I == BI) { 5703 if (FoldValueComparisonIntoPredecessors(BI, Builder)) 5704 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5705 } else if (&*I == cast<Instruction>(BI->getCondition())) { 5706 ++I; 5707 // Ignore dbg intrinsics. 5708 while (isa<DbgInfoIntrinsic>(I)) 5709 ++I; 5710 if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder)) 5711 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5712 } 5713 } 5714 5715 // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction. 5716 if (SimplifyBranchOnICmpChain(BI, Builder, DL)) 5717 return true; 5718 5719 // If this basic block has a single dominating predecessor block and the 5720 // dominating block's condition implies BI's condition, we know the direction 5721 // of the BI branch. 5722 if (BasicBlock *Dom = BB->getSinglePredecessor()) { 5723 auto *PBI = dyn_cast_or_null<BranchInst>(Dom->getTerminator()); 5724 if (PBI && PBI->isConditional() && 5725 PBI->getSuccessor(0) != PBI->getSuccessor(1) && 5726 (PBI->getSuccessor(0) == BB || PBI->getSuccessor(1) == BB)) { 5727 bool CondIsFalse = PBI->getSuccessor(1) == BB; 5728 Optional<bool> Implication = isImpliedCondition( 5729 PBI->getCondition(), BI->getCondition(), DL, CondIsFalse); 5730 if (Implication) { 5731 // Turn this into a branch on constant. 5732 auto *OldCond = BI->getCondition(); 5733 ConstantInt *CI = *Implication 5734 ? ConstantInt::getTrue(BB->getContext()) 5735 : ConstantInt::getFalse(BB->getContext()); 5736 BI->setCondition(CI); 5737 RecursivelyDeleteTriviallyDeadInstructions(OldCond); 5738 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5739 } 5740 } 5741 } 5742 5743 // If this basic block is ONLY a compare and a branch, and if a predecessor 5744 // branches to us and one of our successors, fold the comparison into the 5745 // predecessor and use logical operations to pick the right destination. 5746 if (FoldBranchToCommonDest(BI, BonusInstThreshold)) 5747 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5748 5749 // We have a conditional branch to two blocks that are only reachable 5750 // from BI. We know that the condbr dominates the two blocks, so see if 5751 // there is any identical code in the "then" and "else" blocks. If so, we 5752 // can hoist it up to the branching block. 5753 if (BI->getSuccessor(0)->getSinglePredecessor()) { 5754 if (BI->getSuccessor(1)->getSinglePredecessor()) { 5755 if (HoistThenElseCodeToIf(BI, TTI)) 5756 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5757 } else { 5758 // If Successor #1 has multiple preds, we may be able to conditionally 5759 // execute Successor #0 if it branches to Successor #1. 5760 TerminatorInst *Succ0TI = BI->getSuccessor(0)->getTerminator(); 5761 if (Succ0TI->getNumSuccessors() == 1 && 5762 Succ0TI->getSuccessor(0) == BI->getSuccessor(1)) 5763 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), TTI)) 5764 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5765 } 5766 } else if (BI->getSuccessor(1)->getSinglePredecessor()) { 5767 // If Successor #0 has multiple preds, we may be able to conditionally 5768 // execute Successor #1 if it branches to Successor #0. 5769 TerminatorInst *Succ1TI = BI->getSuccessor(1)->getTerminator(); 5770 if (Succ1TI->getNumSuccessors() == 1 && 5771 Succ1TI->getSuccessor(0) == BI->getSuccessor(0)) 5772 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), TTI)) 5773 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5774 } 5775 5776 // If this is a branch on a phi node in the current block, thread control 5777 // through this block if any PHI node entries are constants. 5778 if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition())) 5779 if (PN->getParent() == BI->getParent()) 5780 if (FoldCondBranchOnPHI(BI, DL)) 5781 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5782 5783 // Scan predecessor blocks for conditional branches. 5784 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 5785 if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator())) 5786 if (PBI != BI && PBI->isConditional()) 5787 if (SimplifyCondBranchToCondBranch(PBI, BI, DL)) 5788 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5789 5790 // Look for diamond patterns. 5791 if (MergeCondStores) 5792 if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB)) 5793 if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator())) 5794 if (PBI != BI && PBI->isConditional()) 5795 if (mergeConditionalStores(PBI, BI)) 5796 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5797 5798 return false; 5799 } 5800 5801 /// Check if passing a value to an instruction will cause undefined behavior. 5802 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I) { 5803 Constant *C = dyn_cast<Constant>(V); 5804 if (!C) 5805 return false; 5806 5807 if (I->use_empty()) 5808 return false; 5809 5810 if (C->isNullValue() || isa<UndefValue>(C)) { 5811 // Only look at the first use, avoid hurting compile time with long uselists 5812 User *Use = *I->user_begin(); 5813 5814 // Now make sure that there are no instructions in between that can alter 5815 // control flow (eg. calls) 5816 for (BasicBlock::iterator 5817 i = ++BasicBlock::iterator(I), 5818 UI = BasicBlock::iterator(dyn_cast<Instruction>(Use)); 5819 i != UI; ++i) 5820 if (i == I->getParent()->end() || i->mayHaveSideEffects()) 5821 return false; 5822 5823 // Look through GEPs. A load from a GEP derived from NULL is still undefined 5824 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use)) 5825 if (GEP->getPointerOperand() == I) 5826 return passingValueIsAlwaysUndefined(V, GEP); 5827 5828 // Look through bitcasts. 5829 if (BitCastInst *BC = dyn_cast<BitCastInst>(Use)) 5830 return passingValueIsAlwaysUndefined(V, BC); 5831 5832 // Load from null is undefined. 5833 if (LoadInst *LI = dyn_cast<LoadInst>(Use)) 5834 if (!LI->isVolatile()) 5835 return LI->getPointerAddressSpace() == 0; 5836 5837 // Store to null is undefined. 5838 if (StoreInst *SI = dyn_cast<StoreInst>(Use)) 5839 if (!SI->isVolatile()) 5840 return SI->getPointerAddressSpace() == 0 && 5841 SI->getPointerOperand() == I; 5842 5843 // A call to null is undefined. 5844 if (auto CS = CallSite(Use)) 5845 return CS.getCalledValue() == I; 5846 } 5847 return false; 5848 } 5849 5850 /// If BB has an incoming value that will always trigger undefined behavior 5851 /// (eg. null pointer dereference), remove the branch leading here. 5852 static bool removeUndefIntroducingPredecessor(BasicBlock *BB) { 5853 for (BasicBlock::iterator i = BB->begin(); 5854 PHINode *PHI = dyn_cast<PHINode>(i); ++i) 5855 for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) 5856 if (passingValueIsAlwaysUndefined(PHI->getIncomingValue(i), PHI)) { 5857 TerminatorInst *T = PHI->getIncomingBlock(i)->getTerminator(); 5858 IRBuilder<> Builder(T); 5859 if (BranchInst *BI = dyn_cast<BranchInst>(T)) { 5860 BB->removePredecessor(PHI->getIncomingBlock(i)); 5861 // Turn uncoditional branches into unreachables and remove the dead 5862 // destination from conditional branches. 5863 if (BI->isUnconditional()) 5864 Builder.CreateUnreachable(); 5865 else 5866 Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1) 5867 : BI->getSuccessor(0)); 5868 BI->eraseFromParent(); 5869 return true; 5870 } 5871 // TODO: SwitchInst. 5872 } 5873 5874 return false; 5875 } 5876 5877 bool SimplifyCFGOpt::run(BasicBlock *BB) { 5878 bool Changed = false; 5879 5880 assert(BB && BB->getParent() && "Block not embedded in function!"); 5881 assert(BB->getTerminator() && "Degenerate basic block encountered!"); 5882 5883 // Remove basic blocks that have no predecessors (except the entry block)... 5884 // or that just have themself as a predecessor. These are unreachable. 5885 if ((pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) || 5886 BB->getSinglePredecessor() == BB) { 5887 DEBUG(dbgs() << "Removing BB: \n" << *BB); 5888 DeleteDeadBlock(BB); 5889 return true; 5890 } 5891 5892 // Check to see if we can constant propagate this terminator instruction 5893 // away... 5894 Changed |= ConstantFoldTerminator(BB, true); 5895 5896 // Check for and eliminate duplicate PHI nodes in this block. 5897 Changed |= EliminateDuplicatePHINodes(BB); 5898 5899 // Check for and remove branches that will always cause undefined behavior. 5900 Changed |= removeUndefIntroducingPredecessor(BB); 5901 5902 // Merge basic blocks into their predecessor if there is only one distinct 5903 // pred, and if there is only one distinct successor of the predecessor, and 5904 // if there are no PHI nodes. 5905 // 5906 if (MergeBlockIntoPredecessor(BB)) 5907 return true; 5908 5909 IRBuilder<> Builder(BB); 5910 5911 // If there is a trivial two-entry PHI node in this basic block, and we can 5912 // eliminate it, do so now. 5913 if (PHINode *PN = dyn_cast<PHINode>(BB->begin())) 5914 if (PN->getNumIncomingValues() == 2) 5915 Changed |= FoldTwoEntryPHINode(PN, TTI, DL); 5916 5917 Builder.SetInsertPoint(BB->getTerminator()); 5918 if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) { 5919 if (BI->isUnconditional()) { 5920 if (SimplifyUncondBranch(BI, Builder)) 5921 return true; 5922 } else { 5923 if (SimplifyCondBranch(BI, Builder)) 5924 return true; 5925 } 5926 } else if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) { 5927 if (SimplifyReturn(RI, Builder)) 5928 return true; 5929 } else if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator())) { 5930 if (SimplifyResume(RI, Builder)) 5931 return true; 5932 } else if (CleanupReturnInst *RI = 5933 dyn_cast<CleanupReturnInst>(BB->getTerminator())) { 5934 if (SimplifyCleanupReturn(RI)) 5935 return true; 5936 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) { 5937 if (SimplifySwitch(SI, Builder)) 5938 return true; 5939 } else if (UnreachableInst *UI = 5940 dyn_cast<UnreachableInst>(BB->getTerminator())) { 5941 if (SimplifyUnreachable(UI)) 5942 return true; 5943 } else if (IndirectBrInst *IBI = 5944 dyn_cast<IndirectBrInst>(BB->getTerminator())) { 5945 if (SimplifyIndirectBr(IBI)) 5946 return true; 5947 } 5948 5949 return Changed; 5950 } 5951 5952 /// This function is used to do simplification of a CFG. 5953 /// For example, it adjusts branches to branches to eliminate the extra hop, 5954 /// eliminates unreachable basic blocks, and does other "peephole" optimization 5955 /// of the CFG. It returns true if a modification was made. 5956 /// 5957 bool llvm::SimplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI, 5958 unsigned BonusInstThreshold, AssumptionCache *AC, 5959 SmallPtrSetImpl<BasicBlock *> *LoopHeaders) { 5960 return SimplifyCFGOpt(TTI, BB->getModule()->getDataLayout(), 5961 BonusInstThreshold, AC, LoopHeaders) 5962 .run(BB); 5963 } 5964