1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Peephole optimize the CFG. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Utils/Local.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SetVector.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/Analysis/ConstantFolding.h" 22 #include "llvm/Analysis/InstructionSimplify.h" 23 #include "llvm/Analysis/TargetTransformInfo.h" 24 #include "llvm/Analysis/ValueTracking.h" 25 #include "llvm/IR/CFG.h" 26 #include "llvm/IR/ConstantRange.h" 27 #include "llvm/IR/Constants.h" 28 #include "llvm/IR/DataLayout.h" 29 #include "llvm/IR/DerivedTypes.h" 30 #include "llvm/IR/GlobalVariable.h" 31 #include "llvm/IR/IRBuilder.h" 32 #include "llvm/IR/Instructions.h" 33 #include "llvm/IR/IntrinsicInst.h" 34 #include "llvm/IR/LLVMContext.h" 35 #include "llvm/IR/MDBuilder.h" 36 #include "llvm/IR/Metadata.h" 37 #include "llvm/IR/Module.h" 38 #include "llvm/IR/NoFolder.h" 39 #include "llvm/IR/Operator.h" 40 #include "llvm/IR/PatternMatch.h" 41 #include "llvm/IR/Type.h" 42 #include "llvm/Support/CommandLine.h" 43 #include "llvm/Support/Debug.h" 44 #include "llvm/Support/raw_ostream.h" 45 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 46 #include "llvm/Transforms/Utils/Local.h" 47 #include "llvm/Transforms/Utils/ValueMapper.h" 48 #include <algorithm> 49 #include <map> 50 #include <set> 51 using namespace llvm; 52 using namespace PatternMatch; 53 54 #define DEBUG_TYPE "simplifycfg" 55 56 static cl::opt<unsigned> 57 PHINodeFoldingThreshold("phi-node-folding-threshold", cl::Hidden, cl::init(1), 58 cl::desc("Control the amount of phi node folding to perform (default = 1)")); 59 60 static cl::opt<bool> 61 DupRet("simplifycfg-dup-ret", cl::Hidden, cl::init(false), 62 cl::desc("Duplicate return instructions into unconditional branches")); 63 64 static cl::opt<bool> 65 SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true), 66 cl::desc("Sink common instructions down to the end block")); 67 68 static cl::opt<bool> HoistCondStores( 69 "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true), 70 cl::desc("Hoist conditional stores if an unconditional store precedes")); 71 72 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps"); 73 STATISTIC(NumLookupTables, "Number of switch instructions turned into lookup tables"); 74 STATISTIC(NumLookupTablesHoles, "Number of switch instructions turned into lookup tables (holes checked)"); 75 STATISTIC(NumSinkCommons, "Number of common instructions sunk down to the end block"); 76 STATISTIC(NumSpeculations, "Number of speculative executed instructions"); 77 78 namespace { 79 // The first field contains the value that the switch produces when a certain 80 // case group is selected, and the second field is a vector containing the cases 81 // composing the case group. 82 typedef SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2> 83 SwitchCaseResultVectorTy; 84 // The first field contains the phi node that generates a result of the switch 85 // and the second field contains the value generated for a certain case in the switch 86 // for that PHI. 87 typedef SmallVector<std::pair<PHINode *, Constant *>, 4> SwitchCaseResultsTy; 88 89 /// ValueEqualityComparisonCase - Represents a case of a switch. 90 struct ValueEqualityComparisonCase { 91 ConstantInt *Value; 92 BasicBlock *Dest; 93 94 ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest) 95 : Value(Value), Dest(Dest) {} 96 97 bool operator<(ValueEqualityComparisonCase RHS) const { 98 // Comparing pointers is ok as we only rely on the order for uniquing. 99 return Value < RHS.Value; 100 } 101 102 bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; } 103 }; 104 105 class SimplifyCFGOpt { 106 const TargetTransformInfo &TTI; 107 unsigned BonusInstThreshold; 108 const DataLayout *const DL; 109 AssumptionTracker *AT; 110 Value *isValueEqualityComparison(TerminatorInst *TI); 111 BasicBlock *GetValueEqualityComparisonCases(TerminatorInst *TI, 112 std::vector<ValueEqualityComparisonCase> &Cases); 113 bool SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI, 114 BasicBlock *Pred, 115 IRBuilder<> &Builder); 116 bool FoldValueComparisonIntoPredecessors(TerminatorInst *TI, 117 IRBuilder<> &Builder); 118 119 bool SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder); 120 bool SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder); 121 bool SimplifyUnreachable(UnreachableInst *UI); 122 bool SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder); 123 bool SimplifyIndirectBr(IndirectBrInst *IBI); 124 bool SimplifyUncondBranch(BranchInst *BI, IRBuilder <> &Builder); 125 bool SimplifyCondBranch(BranchInst *BI, IRBuilder <>&Builder); 126 127 public: 128 SimplifyCFGOpt(const TargetTransformInfo &TTI, unsigned BonusInstThreshold, 129 const DataLayout *DL, AssumptionTracker *AT) 130 : TTI(TTI), BonusInstThreshold(BonusInstThreshold), DL(DL), AT(AT) {} 131 bool run(BasicBlock *BB); 132 }; 133 } 134 135 /// SafeToMergeTerminators - Return true if it is safe to merge these two 136 /// terminator instructions together. 137 /// 138 static bool SafeToMergeTerminators(TerminatorInst *SI1, TerminatorInst *SI2) { 139 if (SI1 == SI2) return false; // Can't merge with self! 140 141 // It is not safe to merge these two switch instructions if they have a common 142 // successor, and if that successor has a PHI node, and if *that* PHI node has 143 // conflicting incoming values from the two switch blocks. 144 BasicBlock *SI1BB = SI1->getParent(); 145 BasicBlock *SI2BB = SI2->getParent(); 146 SmallPtrSet<BasicBlock*, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB)); 147 148 for (succ_iterator I = succ_begin(SI2BB), E = succ_end(SI2BB); I != E; ++I) 149 if (SI1Succs.count(*I)) 150 for (BasicBlock::iterator BBI = (*I)->begin(); 151 isa<PHINode>(BBI); ++BBI) { 152 PHINode *PN = cast<PHINode>(BBI); 153 if (PN->getIncomingValueForBlock(SI1BB) != 154 PN->getIncomingValueForBlock(SI2BB)) 155 return false; 156 } 157 158 return true; 159 } 160 161 /// isProfitableToFoldUnconditional - Return true if it is safe and profitable 162 /// to merge these two terminator instructions together, where SI1 is an 163 /// unconditional branch. PhiNodes will store all PHI nodes in common 164 /// successors. 165 /// 166 static bool isProfitableToFoldUnconditional(BranchInst *SI1, 167 BranchInst *SI2, 168 Instruction *Cond, 169 SmallVectorImpl<PHINode*> &PhiNodes) { 170 if (SI1 == SI2) return false; // Can't merge with self! 171 assert(SI1->isUnconditional() && SI2->isConditional()); 172 173 // We fold the unconditional branch if we can easily update all PHI nodes in 174 // common successors: 175 // 1> We have a constant incoming value for the conditional branch; 176 // 2> We have "Cond" as the incoming value for the unconditional branch; 177 // 3> SI2->getCondition() and Cond have same operands. 178 CmpInst *Ci2 = dyn_cast<CmpInst>(SI2->getCondition()); 179 if (!Ci2) return false; 180 if (!(Cond->getOperand(0) == Ci2->getOperand(0) && 181 Cond->getOperand(1) == Ci2->getOperand(1)) && 182 !(Cond->getOperand(0) == Ci2->getOperand(1) && 183 Cond->getOperand(1) == Ci2->getOperand(0))) 184 return false; 185 186 BasicBlock *SI1BB = SI1->getParent(); 187 BasicBlock *SI2BB = SI2->getParent(); 188 SmallPtrSet<BasicBlock*, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB)); 189 for (succ_iterator I = succ_begin(SI2BB), E = succ_end(SI2BB); I != E; ++I) 190 if (SI1Succs.count(*I)) 191 for (BasicBlock::iterator BBI = (*I)->begin(); 192 isa<PHINode>(BBI); ++BBI) { 193 PHINode *PN = cast<PHINode>(BBI); 194 if (PN->getIncomingValueForBlock(SI1BB) != Cond || 195 !isa<ConstantInt>(PN->getIncomingValueForBlock(SI2BB))) 196 return false; 197 PhiNodes.push_back(PN); 198 } 199 return true; 200 } 201 202 /// AddPredecessorToBlock - Update PHI nodes in Succ to indicate that there will 203 /// now be entries in it from the 'NewPred' block. The values that will be 204 /// flowing into the PHI nodes will be the same as those coming in from 205 /// ExistPred, an existing predecessor of Succ. 206 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred, 207 BasicBlock *ExistPred) { 208 if (!isa<PHINode>(Succ->begin())) return; // Quick exit if nothing to do 209 210 PHINode *PN; 211 for (BasicBlock::iterator I = Succ->begin(); 212 (PN = dyn_cast<PHINode>(I)); ++I) 213 PN->addIncoming(PN->getIncomingValueForBlock(ExistPred), NewPred); 214 } 215 216 /// ComputeSpeculationCost - Compute an abstract "cost" of speculating the 217 /// given instruction, which is assumed to be safe to speculate. 1 means 218 /// cheap, 2 means less cheap, and UINT_MAX means prohibitively expensive. 219 static unsigned ComputeSpeculationCost(const User *I, const DataLayout *DL) { 220 assert(isSafeToSpeculativelyExecute(I, DL) && 221 "Instruction is not safe to speculatively execute!"); 222 switch (Operator::getOpcode(I)) { 223 default: 224 // In doubt, be conservative. 225 return UINT_MAX; 226 case Instruction::GetElementPtr: 227 // GEPs are cheap if all indices are constant. 228 if (!cast<GEPOperator>(I)->hasAllConstantIndices()) 229 return UINT_MAX; 230 return 1; 231 case Instruction::ExtractValue: 232 case Instruction::Load: 233 case Instruction::Add: 234 case Instruction::Sub: 235 case Instruction::And: 236 case Instruction::Or: 237 case Instruction::Xor: 238 case Instruction::Shl: 239 case Instruction::LShr: 240 case Instruction::AShr: 241 case Instruction::ICmp: 242 case Instruction::Trunc: 243 case Instruction::ZExt: 244 case Instruction::SExt: 245 case Instruction::BitCast: 246 case Instruction::ExtractElement: 247 case Instruction::InsertElement: 248 return 1; // These are all cheap. 249 250 case Instruction::Call: 251 case Instruction::Select: 252 return 2; 253 } 254 } 255 256 /// DominatesMergePoint - If we have a merge point of an "if condition" as 257 /// accepted above, return true if the specified value dominates the block. We 258 /// don't handle the true generality of domination here, just a special case 259 /// which works well enough for us. 260 /// 261 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to 262 /// see if V (which must be an instruction) and its recursive operands 263 /// that do not dominate BB have a combined cost lower than CostRemaining and 264 /// are non-trapping. If both are true, the instruction is inserted into the 265 /// set and true is returned. 266 /// 267 /// The cost for most non-trapping instructions is defined as 1 except for 268 /// Select whose cost is 2. 269 /// 270 /// After this function returns, CostRemaining is decreased by the cost of 271 /// V plus its non-dominating operands. If that cost is greater than 272 /// CostRemaining, false is returned and CostRemaining is undefined. 273 static bool DominatesMergePoint(Value *V, BasicBlock *BB, 274 SmallPtrSetImpl<Instruction*> *AggressiveInsts, 275 unsigned &CostRemaining, 276 const DataLayout *DL) { 277 Instruction *I = dyn_cast<Instruction>(V); 278 if (!I) { 279 // Non-instructions all dominate instructions, but not all constantexprs 280 // can be executed unconditionally. 281 if (ConstantExpr *C = dyn_cast<ConstantExpr>(V)) 282 if (C->canTrap()) 283 return false; 284 return true; 285 } 286 BasicBlock *PBB = I->getParent(); 287 288 // We don't want to allow weird loops that might have the "if condition" in 289 // the bottom of this block. 290 if (PBB == BB) return false; 291 292 // If this instruction is defined in a block that contains an unconditional 293 // branch to BB, then it must be in the 'conditional' part of the "if 294 // statement". If not, it definitely dominates the region. 295 BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator()); 296 if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB) 297 return true; 298 299 // If we aren't allowing aggressive promotion anymore, then don't consider 300 // instructions in the 'if region'. 301 if (!AggressiveInsts) return false; 302 303 // If we have seen this instruction before, don't count it again. 304 if (AggressiveInsts->count(I)) return true; 305 306 // Okay, it looks like the instruction IS in the "condition". Check to 307 // see if it's a cheap instruction to unconditionally compute, and if it 308 // only uses stuff defined outside of the condition. If so, hoist it out. 309 if (!isSafeToSpeculativelyExecute(I, DL)) 310 return false; 311 312 unsigned Cost = ComputeSpeculationCost(I, DL); 313 314 if (Cost > CostRemaining) 315 return false; 316 317 CostRemaining -= Cost; 318 319 // Okay, we can only really hoist these out if their operands do 320 // not take us over the cost threshold. 321 for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) 322 if (!DominatesMergePoint(*i, BB, AggressiveInsts, CostRemaining, DL)) 323 return false; 324 // Okay, it's safe to do this! Remember this instruction. 325 AggressiveInsts->insert(I); 326 return true; 327 } 328 329 /// GetConstantInt - Extract ConstantInt from value, looking through IntToPtr 330 /// and PointerNullValue. Return NULL if value is not a constant int. 331 static ConstantInt *GetConstantInt(Value *V, const DataLayout *DL) { 332 // Normal constant int. 333 ConstantInt *CI = dyn_cast<ConstantInt>(V); 334 if (CI || !DL || !isa<Constant>(V) || !V->getType()->isPointerTy()) 335 return CI; 336 337 // This is some kind of pointer constant. Turn it into a pointer-sized 338 // ConstantInt if possible. 339 IntegerType *PtrTy = cast<IntegerType>(DL->getIntPtrType(V->getType())); 340 341 // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*). 342 if (isa<ConstantPointerNull>(V)) 343 return ConstantInt::get(PtrTy, 0); 344 345 // IntToPtr const int. 346 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 347 if (CE->getOpcode() == Instruction::IntToPtr) 348 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) { 349 // The constant is very likely to have the right type already. 350 if (CI->getType() == PtrTy) 351 return CI; 352 else 353 return cast<ConstantInt> 354 (ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false)); 355 } 356 return nullptr; 357 } 358 359 /// GatherConstantCompares - Given a potentially 'or'd or 'and'd together 360 /// collection of icmp eq/ne instructions that compare a value against a 361 /// constant, return the value being compared, and stick the constant into the 362 /// Values vector. 363 static Value * 364 GatherConstantCompares(Value *V, std::vector<ConstantInt*> &Vals, Value *&Extra, 365 const DataLayout *DL, bool isEQ, unsigned &UsedICmps) { 366 Instruction *I = dyn_cast<Instruction>(V); 367 if (!I) return nullptr; 368 369 // If this is an icmp against a constant, handle this as one of the cases. 370 if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) { 371 if (ConstantInt *C = GetConstantInt(I->getOperand(1), DL)) { 372 Value *RHSVal; 373 ConstantInt *RHSC; 374 375 if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ:ICmpInst::ICMP_NE)) { 376 // (x & ~2^x) == y --> x == y || x == y|2^x 377 // This undoes a transformation done by instcombine to fuse 2 compares. 378 if (match(ICI->getOperand(0), 379 m_And(m_Value(RHSVal), m_ConstantInt(RHSC)))) { 380 APInt Not = ~RHSC->getValue(); 381 if (Not.isPowerOf2()) { 382 Vals.push_back(C); 383 Vals.push_back( 384 ConstantInt::get(C->getContext(), C->getValue() | Not)); 385 UsedICmps++; 386 return RHSVal; 387 } 388 } 389 390 UsedICmps++; 391 Vals.push_back(C); 392 return I->getOperand(0); 393 } 394 395 // If we have "x ult 3" comparison, for example, then we can add 0,1,2 to 396 // the set. 397 ConstantRange Span = 398 ConstantRange::makeICmpRegion(ICI->getPredicate(), C->getValue()); 399 400 // Shift the range if the compare is fed by an add. This is the range 401 // compare idiom as emitted by instcombine. 402 bool hasAdd = 403 match(I->getOperand(0), m_Add(m_Value(RHSVal), m_ConstantInt(RHSC))); 404 if (hasAdd) 405 Span = Span.subtract(RHSC->getValue()); 406 407 // If this is an and/!= check then we want to optimize "x ugt 2" into 408 // x != 0 && x != 1. 409 if (!isEQ) 410 Span = Span.inverse(); 411 412 // If there are a ton of values, we don't want to make a ginormous switch. 413 if (Span.getSetSize().ugt(8) || Span.isEmptySet()) 414 return nullptr; 415 416 for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp) 417 Vals.push_back(ConstantInt::get(V->getContext(), Tmp)); 418 UsedICmps++; 419 return hasAdd ? RHSVal : I->getOperand(0); 420 } 421 return nullptr; 422 } 423 424 // Otherwise, we can only handle an | or &, depending on isEQ. 425 if (I->getOpcode() != (isEQ ? Instruction::Or : Instruction::And)) 426 return nullptr; 427 428 unsigned NumValsBeforeLHS = Vals.size(); 429 unsigned UsedICmpsBeforeLHS = UsedICmps; 430 if (Value *LHS = GatherConstantCompares(I->getOperand(0), Vals, Extra, DL, 431 isEQ, UsedICmps)) { 432 unsigned NumVals = Vals.size(); 433 unsigned UsedICmpsBeforeRHS = UsedICmps; 434 if (Value *RHS = GatherConstantCompares(I->getOperand(1), Vals, Extra, DL, 435 isEQ, UsedICmps)) { 436 if (LHS == RHS) 437 return LHS; 438 Vals.resize(NumVals); 439 UsedICmps = UsedICmpsBeforeRHS; 440 } 441 442 // The RHS of the or/and can't be folded in and we haven't used "Extra" yet, 443 // set it and return success. 444 if (Extra == nullptr || Extra == I->getOperand(1)) { 445 Extra = I->getOperand(1); 446 return LHS; 447 } 448 449 Vals.resize(NumValsBeforeLHS); 450 UsedICmps = UsedICmpsBeforeLHS; 451 return nullptr; 452 } 453 454 // If the LHS can't be folded in, but Extra is available and RHS can, try to 455 // use LHS as Extra. 456 if (Extra == nullptr || Extra == I->getOperand(0)) { 457 Value *OldExtra = Extra; 458 Extra = I->getOperand(0); 459 if (Value *RHS = GatherConstantCompares(I->getOperand(1), Vals, Extra, DL, 460 isEQ, UsedICmps)) 461 return RHS; 462 assert(Vals.size() == NumValsBeforeLHS); 463 Extra = OldExtra; 464 } 465 466 return nullptr; 467 } 468 469 static void EraseTerminatorInstAndDCECond(TerminatorInst *TI) { 470 Instruction *Cond = nullptr; 471 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 472 Cond = dyn_cast<Instruction>(SI->getCondition()); 473 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 474 if (BI->isConditional()) 475 Cond = dyn_cast<Instruction>(BI->getCondition()); 476 } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) { 477 Cond = dyn_cast<Instruction>(IBI->getAddress()); 478 } 479 480 TI->eraseFromParent(); 481 if (Cond) RecursivelyDeleteTriviallyDeadInstructions(Cond); 482 } 483 484 /// isValueEqualityComparison - Return true if the specified terminator checks 485 /// to see if a value is equal to constant integer value. 486 Value *SimplifyCFGOpt::isValueEqualityComparison(TerminatorInst *TI) { 487 Value *CV = nullptr; 488 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 489 // Do not permit merging of large switch instructions into their 490 // predecessors unless there is only one predecessor. 491 if (SI->getNumSuccessors()*std::distance(pred_begin(SI->getParent()), 492 pred_end(SI->getParent())) <= 128) 493 CV = SI->getCondition(); 494 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) 495 if (BI->isConditional() && BI->getCondition()->hasOneUse()) 496 if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) 497 if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL)) 498 CV = ICI->getOperand(0); 499 500 // Unwrap any lossless ptrtoint cast. 501 if (DL && CV) { 502 if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) { 503 Value *Ptr = PTII->getPointerOperand(); 504 if (PTII->getType() == DL->getIntPtrType(Ptr->getType())) 505 CV = Ptr; 506 } 507 } 508 return CV; 509 } 510 511 /// GetValueEqualityComparisonCases - Given a value comparison instruction, 512 /// decode all of the 'cases' that it represents and return the 'default' block. 513 BasicBlock *SimplifyCFGOpt:: 514 GetValueEqualityComparisonCases(TerminatorInst *TI, 515 std::vector<ValueEqualityComparisonCase> 516 &Cases) { 517 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 518 Cases.reserve(SI->getNumCases()); 519 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); i != e; ++i) 520 Cases.push_back(ValueEqualityComparisonCase(i.getCaseValue(), 521 i.getCaseSuccessor())); 522 return SI->getDefaultDest(); 523 } 524 525 BranchInst *BI = cast<BranchInst>(TI); 526 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 527 BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE); 528 Cases.push_back(ValueEqualityComparisonCase(GetConstantInt(ICI->getOperand(1), 529 DL), 530 Succ)); 531 return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ); 532 } 533 534 535 /// EliminateBlockCases - Given a vector of bb/value pairs, remove any entries 536 /// in the list that match the specified block. 537 static void EliminateBlockCases(BasicBlock *BB, 538 std::vector<ValueEqualityComparisonCase> &Cases) { 539 Cases.erase(std::remove(Cases.begin(), Cases.end(), BB), Cases.end()); 540 } 541 542 /// ValuesOverlap - Return true if there are any keys in C1 that exist in C2 as 543 /// well. 544 static bool 545 ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1, 546 std::vector<ValueEqualityComparisonCase > &C2) { 547 std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2; 548 549 // Make V1 be smaller than V2. 550 if (V1->size() > V2->size()) 551 std::swap(V1, V2); 552 553 if (V1->size() == 0) return false; 554 if (V1->size() == 1) { 555 // Just scan V2. 556 ConstantInt *TheVal = (*V1)[0].Value; 557 for (unsigned i = 0, e = V2->size(); i != e; ++i) 558 if (TheVal == (*V2)[i].Value) 559 return true; 560 } 561 562 // Otherwise, just sort both lists and compare element by element. 563 array_pod_sort(V1->begin(), V1->end()); 564 array_pod_sort(V2->begin(), V2->end()); 565 unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size(); 566 while (i1 != e1 && i2 != e2) { 567 if ((*V1)[i1].Value == (*V2)[i2].Value) 568 return true; 569 if ((*V1)[i1].Value < (*V2)[i2].Value) 570 ++i1; 571 else 572 ++i2; 573 } 574 return false; 575 } 576 577 /// SimplifyEqualityComparisonWithOnlyPredecessor - If TI is known to be a 578 /// terminator instruction and its block is known to only have a single 579 /// predecessor block, check to see if that predecessor is also a value 580 /// comparison with the same value, and if that comparison determines the 581 /// outcome of this comparison. If so, simplify TI. This does a very limited 582 /// form of jump threading. 583 bool SimplifyCFGOpt:: 584 SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI, 585 BasicBlock *Pred, 586 IRBuilder<> &Builder) { 587 Value *PredVal = isValueEqualityComparison(Pred->getTerminator()); 588 if (!PredVal) return false; // Not a value comparison in predecessor. 589 590 Value *ThisVal = isValueEqualityComparison(TI); 591 assert(ThisVal && "This isn't a value comparison!!"); 592 if (ThisVal != PredVal) return false; // Different predicates. 593 594 // TODO: Preserve branch weight metadata, similarly to how 595 // FoldValueComparisonIntoPredecessors preserves it. 596 597 // Find out information about when control will move from Pred to TI's block. 598 std::vector<ValueEqualityComparisonCase> PredCases; 599 BasicBlock *PredDef = GetValueEqualityComparisonCases(Pred->getTerminator(), 600 PredCases); 601 EliminateBlockCases(PredDef, PredCases); // Remove default from cases. 602 603 // Find information about how control leaves this block. 604 std::vector<ValueEqualityComparisonCase> ThisCases; 605 BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases); 606 EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases. 607 608 // If TI's block is the default block from Pred's comparison, potentially 609 // simplify TI based on this knowledge. 610 if (PredDef == TI->getParent()) { 611 // If we are here, we know that the value is none of those cases listed in 612 // PredCases. If there are any cases in ThisCases that are in PredCases, we 613 // can simplify TI. 614 if (!ValuesOverlap(PredCases, ThisCases)) 615 return false; 616 617 if (isa<BranchInst>(TI)) { 618 // Okay, one of the successors of this condbr is dead. Convert it to a 619 // uncond br. 620 assert(ThisCases.size() == 1 && "Branch can only have one case!"); 621 // Insert the new branch. 622 Instruction *NI = Builder.CreateBr(ThisDef); 623 (void) NI; 624 625 // Remove PHI node entries for the dead edge. 626 ThisCases[0].Dest->removePredecessor(TI->getParent()); 627 628 DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 629 << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n"); 630 631 EraseTerminatorInstAndDCECond(TI); 632 return true; 633 } 634 635 SwitchInst *SI = cast<SwitchInst>(TI); 636 // Okay, TI has cases that are statically dead, prune them away. 637 SmallPtrSet<Constant*, 16> DeadCases; 638 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 639 DeadCases.insert(PredCases[i].Value); 640 641 DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 642 << "Through successor TI: " << *TI); 643 644 // Collect branch weights into a vector. 645 SmallVector<uint32_t, 8> Weights; 646 MDNode* MD = SI->getMetadata(LLVMContext::MD_prof); 647 bool HasWeight = MD && (MD->getNumOperands() == 2 + SI->getNumCases()); 648 if (HasWeight) 649 for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e; 650 ++MD_i) { 651 ConstantInt* CI = dyn_cast<ConstantInt>(MD->getOperand(MD_i)); 652 assert(CI); 653 Weights.push_back(CI->getValue().getZExtValue()); 654 } 655 for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) { 656 --i; 657 if (DeadCases.count(i.getCaseValue())) { 658 if (HasWeight) { 659 std::swap(Weights[i.getCaseIndex()+1], Weights.back()); 660 Weights.pop_back(); 661 } 662 i.getCaseSuccessor()->removePredecessor(TI->getParent()); 663 SI->removeCase(i); 664 } 665 } 666 if (HasWeight && Weights.size() >= 2) 667 SI->setMetadata(LLVMContext::MD_prof, 668 MDBuilder(SI->getParent()->getContext()). 669 createBranchWeights(Weights)); 670 671 DEBUG(dbgs() << "Leaving: " << *TI << "\n"); 672 return true; 673 } 674 675 // Otherwise, TI's block must correspond to some matched value. Find out 676 // which value (or set of values) this is. 677 ConstantInt *TIV = nullptr; 678 BasicBlock *TIBB = TI->getParent(); 679 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 680 if (PredCases[i].Dest == TIBB) { 681 if (TIV) 682 return false; // Cannot handle multiple values coming to this block. 683 TIV = PredCases[i].Value; 684 } 685 assert(TIV && "No edge from pred to succ?"); 686 687 // Okay, we found the one constant that our value can be if we get into TI's 688 // BB. Find out which successor will unconditionally be branched to. 689 BasicBlock *TheRealDest = nullptr; 690 for (unsigned i = 0, e = ThisCases.size(); i != e; ++i) 691 if (ThisCases[i].Value == TIV) { 692 TheRealDest = ThisCases[i].Dest; 693 break; 694 } 695 696 // If not handled by any explicit cases, it is handled by the default case. 697 if (!TheRealDest) TheRealDest = ThisDef; 698 699 // Remove PHI node entries for dead edges. 700 BasicBlock *CheckEdge = TheRealDest; 701 for (succ_iterator SI = succ_begin(TIBB), e = succ_end(TIBB); SI != e; ++SI) 702 if (*SI != CheckEdge) 703 (*SI)->removePredecessor(TIBB); 704 else 705 CheckEdge = nullptr; 706 707 // Insert the new branch. 708 Instruction *NI = Builder.CreateBr(TheRealDest); 709 (void) NI; 710 711 DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 712 << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n"); 713 714 EraseTerminatorInstAndDCECond(TI); 715 return true; 716 } 717 718 namespace { 719 /// ConstantIntOrdering - This class implements a stable ordering of constant 720 /// integers that does not depend on their address. This is important for 721 /// applications that sort ConstantInt's to ensure uniqueness. 722 struct ConstantIntOrdering { 723 bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const { 724 return LHS->getValue().ult(RHS->getValue()); 725 } 726 }; 727 } 728 729 static int ConstantIntSortPredicate(ConstantInt *const *P1, 730 ConstantInt *const *P2) { 731 const ConstantInt *LHS = *P1; 732 const ConstantInt *RHS = *P2; 733 if (LHS->getValue().ult(RHS->getValue())) 734 return 1; 735 if (LHS->getValue() == RHS->getValue()) 736 return 0; 737 return -1; 738 } 739 740 static inline bool HasBranchWeights(const Instruction* I) { 741 MDNode* ProfMD = I->getMetadata(LLVMContext::MD_prof); 742 if (ProfMD && ProfMD->getOperand(0)) 743 if (MDString* MDS = dyn_cast<MDString>(ProfMD->getOperand(0))) 744 return MDS->getString().equals("branch_weights"); 745 746 return false; 747 } 748 749 /// Get Weights of a given TerminatorInst, the default weight is at the front 750 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight 751 /// metadata. 752 static void GetBranchWeights(TerminatorInst *TI, 753 SmallVectorImpl<uint64_t> &Weights) { 754 MDNode* MD = TI->getMetadata(LLVMContext::MD_prof); 755 assert(MD); 756 for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) { 757 ConstantInt *CI = cast<ConstantInt>(MD->getOperand(i)); 758 Weights.push_back(CI->getValue().getZExtValue()); 759 } 760 761 // If TI is a conditional eq, the default case is the false case, 762 // and the corresponding branch-weight data is at index 2. We swap the 763 // default weight to be the first entry. 764 if (BranchInst* BI = dyn_cast<BranchInst>(TI)) { 765 assert(Weights.size() == 2); 766 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 767 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 768 std::swap(Weights.front(), Weights.back()); 769 } 770 } 771 772 /// Keep halving the weights until all can fit in uint32_t. 773 static void FitWeights(MutableArrayRef<uint64_t> Weights) { 774 uint64_t Max = *std::max_element(Weights.begin(), Weights.end()); 775 if (Max > UINT_MAX) { 776 unsigned Offset = 32 - countLeadingZeros(Max); 777 for (uint64_t &I : Weights) 778 I >>= Offset; 779 } 780 } 781 782 /// FoldValueComparisonIntoPredecessors - The specified terminator is a value 783 /// equality comparison instruction (either a switch or a branch on "X == c"). 784 /// See if any of the predecessors of the terminator block are value comparisons 785 /// on the same value. If so, and if safe to do so, fold them together. 786 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(TerminatorInst *TI, 787 IRBuilder<> &Builder) { 788 BasicBlock *BB = TI->getParent(); 789 Value *CV = isValueEqualityComparison(TI); // CondVal 790 assert(CV && "Not a comparison?"); 791 bool Changed = false; 792 793 SmallVector<BasicBlock*, 16> Preds(pred_begin(BB), pred_end(BB)); 794 while (!Preds.empty()) { 795 BasicBlock *Pred = Preds.pop_back_val(); 796 797 // See if the predecessor is a comparison with the same value. 798 TerminatorInst *PTI = Pred->getTerminator(); 799 Value *PCV = isValueEqualityComparison(PTI); // PredCondVal 800 801 if (PCV == CV && SafeToMergeTerminators(TI, PTI)) { 802 // Figure out which 'cases' to copy from SI to PSI. 803 std::vector<ValueEqualityComparisonCase> BBCases; 804 BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases); 805 806 std::vector<ValueEqualityComparisonCase> PredCases; 807 BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases); 808 809 // Based on whether the default edge from PTI goes to BB or not, fill in 810 // PredCases and PredDefault with the new switch cases we would like to 811 // build. 812 SmallVector<BasicBlock*, 8> NewSuccessors; 813 814 // Update the branch weight metadata along the way 815 SmallVector<uint64_t, 8> Weights; 816 bool PredHasWeights = HasBranchWeights(PTI); 817 bool SuccHasWeights = HasBranchWeights(TI); 818 819 if (PredHasWeights) { 820 GetBranchWeights(PTI, Weights); 821 // branch-weight metadata is inconsistent here. 822 if (Weights.size() != 1 + PredCases.size()) 823 PredHasWeights = SuccHasWeights = false; 824 } else if (SuccHasWeights) 825 // If there are no predecessor weights but there are successor weights, 826 // populate Weights with 1, which will later be scaled to the sum of 827 // successor's weights 828 Weights.assign(1 + PredCases.size(), 1); 829 830 SmallVector<uint64_t, 8> SuccWeights; 831 if (SuccHasWeights) { 832 GetBranchWeights(TI, SuccWeights); 833 // branch-weight metadata is inconsistent here. 834 if (SuccWeights.size() != 1 + BBCases.size()) 835 PredHasWeights = SuccHasWeights = false; 836 } else if (PredHasWeights) 837 SuccWeights.assign(1 + BBCases.size(), 1); 838 839 if (PredDefault == BB) { 840 // If this is the default destination from PTI, only the edges in TI 841 // that don't occur in PTI, or that branch to BB will be activated. 842 std::set<ConstantInt*, ConstantIntOrdering> PTIHandled; 843 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 844 if (PredCases[i].Dest != BB) 845 PTIHandled.insert(PredCases[i].Value); 846 else { 847 // The default destination is BB, we don't need explicit targets. 848 std::swap(PredCases[i], PredCases.back()); 849 850 if (PredHasWeights || SuccHasWeights) { 851 // Increase weight for the default case. 852 Weights[0] += Weights[i+1]; 853 std::swap(Weights[i+1], Weights.back()); 854 Weights.pop_back(); 855 } 856 857 PredCases.pop_back(); 858 --i; --e; 859 } 860 861 // Reconstruct the new switch statement we will be building. 862 if (PredDefault != BBDefault) { 863 PredDefault->removePredecessor(Pred); 864 PredDefault = BBDefault; 865 NewSuccessors.push_back(BBDefault); 866 } 867 868 unsigned CasesFromPred = Weights.size(); 869 uint64_t ValidTotalSuccWeight = 0; 870 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 871 if (!PTIHandled.count(BBCases[i].Value) && 872 BBCases[i].Dest != BBDefault) { 873 PredCases.push_back(BBCases[i]); 874 NewSuccessors.push_back(BBCases[i].Dest); 875 if (SuccHasWeights || PredHasWeights) { 876 // The default weight is at index 0, so weight for the ith case 877 // should be at index i+1. Scale the cases from successor by 878 // PredDefaultWeight (Weights[0]). 879 Weights.push_back(Weights[0] * SuccWeights[i+1]); 880 ValidTotalSuccWeight += SuccWeights[i+1]; 881 } 882 } 883 884 if (SuccHasWeights || PredHasWeights) { 885 ValidTotalSuccWeight += SuccWeights[0]; 886 // Scale the cases from predecessor by ValidTotalSuccWeight. 887 for (unsigned i = 1; i < CasesFromPred; ++i) 888 Weights[i] *= ValidTotalSuccWeight; 889 // Scale the default weight by SuccDefaultWeight (SuccWeights[0]). 890 Weights[0] *= SuccWeights[0]; 891 } 892 } else { 893 // If this is not the default destination from PSI, only the edges 894 // in SI that occur in PSI with a destination of BB will be 895 // activated. 896 std::set<ConstantInt*, ConstantIntOrdering> PTIHandled; 897 std::map<ConstantInt*, uint64_t> WeightsForHandled; 898 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 899 if (PredCases[i].Dest == BB) { 900 PTIHandled.insert(PredCases[i].Value); 901 902 if (PredHasWeights || SuccHasWeights) { 903 WeightsForHandled[PredCases[i].Value] = Weights[i+1]; 904 std::swap(Weights[i+1], Weights.back()); 905 Weights.pop_back(); 906 } 907 908 std::swap(PredCases[i], PredCases.back()); 909 PredCases.pop_back(); 910 --i; --e; 911 } 912 913 // Okay, now we know which constants were sent to BB from the 914 // predecessor. Figure out where they will all go now. 915 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 916 if (PTIHandled.count(BBCases[i].Value)) { 917 // If this is one we are capable of getting... 918 if (PredHasWeights || SuccHasWeights) 919 Weights.push_back(WeightsForHandled[BBCases[i].Value]); 920 PredCases.push_back(BBCases[i]); 921 NewSuccessors.push_back(BBCases[i].Dest); 922 PTIHandled.erase(BBCases[i].Value);// This constant is taken care of 923 } 924 925 // If there are any constants vectored to BB that TI doesn't handle, 926 // they must go to the default destination of TI. 927 for (std::set<ConstantInt*, ConstantIntOrdering>::iterator I = 928 PTIHandled.begin(), 929 E = PTIHandled.end(); I != E; ++I) { 930 if (PredHasWeights || SuccHasWeights) 931 Weights.push_back(WeightsForHandled[*I]); 932 PredCases.push_back(ValueEqualityComparisonCase(*I, BBDefault)); 933 NewSuccessors.push_back(BBDefault); 934 } 935 } 936 937 // Okay, at this point, we know which new successor Pred will get. Make 938 // sure we update the number of entries in the PHI nodes for these 939 // successors. 940 for (unsigned i = 0, e = NewSuccessors.size(); i != e; ++i) 941 AddPredecessorToBlock(NewSuccessors[i], Pred, BB); 942 943 Builder.SetInsertPoint(PTI); 944 // Convert pointer to int before we switch. 945 if (CV->getType()->isPointerTy()) { 946 assert(DL && "Cannot switch on pointer without DataLayout"); 947 CV = Builder.CreatePtrToInt(CV, DL->getIntPtrType(CV->getType()), 948 "magicptr"); 949 } 950 951 // Now that the successors are updated, create the new Switch instruction. 952 SwitchInst *NewSI = Builder.CreateSwitch(CV, PredDefault, 953 PredCases.size()); 954 NewSI->setDebugLoc(PTI->getDebugLoc()); 955 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 956 NewSI->addCase(PredCases[i].Value, PredCases[i].Dest); 957 958 if (PredHasWeights || SuccHasWeights) { 959 // Halve the weights if any of them cannot fit in an uint32_t 960 FitWeights(Weights); 961 962 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 963 964 NewSI->setMetadata(LLVMContext::MD_prof, 965 MDBuilder(BB->getContext()). 966 createBranchWeights(MDWeights)); 967 } 968 969 EraseTerminatorInstAndDCECond(PTI); 970 971 // Okay, last check. If BB is still a successor of PSI, then we must 972 // have an infinite loop case. If so, add an infinitely looping block 973 // to handle the case to preserve the behavior of the code. 974 BasicBlock *InfLoopBlock = nullptr; 975 for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i) 976 if (NewSI->getSuccessor(i) == BB) { 977 if (!InfLoopBlock) { 978 // Insert it at the end of the function, because it's either code, 979 // or it won't matter if it's hot. :) 980 InfLoopBlock = BasicBlock::Create(BB->getContext(), 981 "infloop", BB->getParent()); 982 BranchInst::Create(InfLoopBlock, InfLoopBlock); 983 } 984 NewSI->setSuccessor(i, InfLoopBlock); 985 } 986 987 Changed = true; 988 } 989 } 990 return Changed; 991 } 992 993 // isSafeToHoistInvoke - If we would need to insert a select that uses the 994 // value of this invoke (comments in HoistThenElseCodeToIf explain why we 995 // would need to do this), we can't hoist the invoke, as there is nowhere 996 // to put the select in this case. 997 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2, 998 Instruction *I1, Instruction *I2) { 999 for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) { 1000 PHINode *PN; 1001 for (BasicBlock::iterator BBI = SI->begin(); 1002 (PN = dyn_cast<PHINode>(BBI)); ++BBI) { 1003 Value *BB1V = PN->getIncomingValueForBlock(BB1); 1004 Value *BB2V = PN->getIncomingValueForBlock(BB2); 1005 if (BB1V != BB2V && (BB1V==I1 || BB2V==I2)) { 1006 return false; 1007 } 1008 } 1009 } 1010 return true; 1011 } 1012 1013 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I); 1014 1015 /// HoistThenElseCodeToIf - Given a conditional branch that goes to BB1 and 1016 /// BB2, hoist any common code in the two blocks up into the branch block. The 1017 /// caller of this function guarantees that BI's block dominates BB1 and BB2. 1018 static bool HoistThenElseCodeToIf(BranchInst *BI, const DataLayout *DL) { 1019 // This does very trivial matching, with limited scanning, to find identical 1020 // instructions in the two blocks. In particular, we don't want to get into 1021 // O(M*N) situations here where M and N are the sizes of BB1 and BB2. As 1022 // such, we currently just scan for obviously identical instructions in an 1023 // identical order. 1024 BasicBlock *BB1 = BI->getSuccessor(0); // The true destination. 1025 BasicBlock *BB2 = BI->getSuccessor(1); // The false destination 1026 1027 BasicBlock::iterator BB1_Itr = BB1->begin(); 1028 BasicBlock::iterator BB2_Itr = BB2->begin(); 1029 1030 Instruction *I1 = BB1_Itr++, *I2 = BB2_Itr++; 1031 // Skip debug info if it is not identical. 1032 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1033 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1034 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1035 while (isa<DbgInfoIntrinsic>(I1)) 1036 I1 = BB1_Itr++; 1037 while (isa<DbgInfoIntrinsic>(I2)) 1038 I2 = BB2_Itr++; 1039 } 1040 if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) || 1041 (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))) 1042 return false; 1043 1044 BasicBlock *BIParent = BI->getParent(); 1045 1046 bool Changed = false; 1047 do { 1048 // If we are hoisting the terminator instruction, don't move one (making a 1049 // broken BB), instead clone it, and remove BI. 1050 if (isa<TerminatorInst>(I1)) 1051 goto HoistTerminator; 1052 1053 // For a normal instruction, we just move one to right before the branch, 1054 // then replace all uses of the other with the first. Finally, we remove 1055 // the now redundant second instruction. 1056 BIParent->getInstList().splice(BI, BB1->getInstList(), I1); 1057 if (!I2->use_empty()) 1058 I2->replaceAllUsesWith(I1); 1059 I1->intersectOptionalDataWith(I2); 1060 unsigned KnownIDs[] = { 1061 LLVMContext::MD_tbaa, 1062 LLVMContext::MD_range, 1063 LLVMContext::MD_fpmath, 1064 LLVMContext::MD_invariant_load 1065 }; 1066 combineMetadata(I1, I2, KnownIDs); 1067 I2->eraseFromParent(); 1068 Changed = true; 1069 1070 I1 = BB1_Itr++; 1071 I2 = BB2_Itr++; 1072 // Skip debug info if it is not identical. 1073 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1074 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1075 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1076 while (isa<DbgInfoIntrinsic>(I1)) 1077 I1 = BB1_Itr++; 1078 while (isa<DbgInfoIntrinsic>(I2)) 1079 I2 = BB2_Itr++; 1080 } 1081 } while (I1->isIdenticalToWhenDefined(I2)); 1082 1083 return true; 1084 1085 HoistTerminator: 1086 // It may not be possible to hoist an invoke. 1087 if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) 1088 return Changed; 1089 1090 for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) { 1091 PHINode *PN; 1092 for (BasicBlock::iterator BBI = SI->begin(); 1093 (PN = dyn_cast<PHINode>(BBI)); ++BBI) { 1094 Value *BB1V = PN->getIncomingValueForBlock(BB1); 1095 Value *BB2V = PN->getIncomingValueForBlock(BB2); 1096 if (BB1V == BB2V) 1097 continue; 1098 1099 // Check for passingValueIsAlwaysUndefined here because we would rather 1100 // eliminate undefined control flow then converting it to a select. 1101 if (passingValueIsAlwaysUndefined(BB1V, PN) || 1102 passingValueIsAlwaysUndefined(BB2V, PN)) 1103 return Changed; 1104 1105 if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V, DL)) 1106 return Changed; 1107 if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V, DL)) 1108 return Changed; 1109 } 1110 } 1111 1112 // Okay, it is safe to hoist the terminator. 1113 Instruction *NT = I1->clone(); 1114 BIParent->getInstList().insert(BI, NT); 1115 if (!NT->getType()->isVoidTy()) { 1116 I1->replaceAllUsesWith(NT); 1117 I2->replaceAllUsesWith(NT); 1118 NT->takeName(I1); 1119 } 1120 1121 IRBuilder<true, NoFolder> Builder(NT); 1122 // Hoisting one of the terminators from our successor is a great thing. 1123 // Unfortunately, the successors of the if/else blocks may have PHI nodes in 1124 // them. If they do, all PHI entries for BB1/BB2 must agree for all PHI 1125 // nodes, so we insert select instruction to compute the final result. 1126 std::map<std::pair<Value*,Value*>, SelectInst*> InsertedSelects; 1127 for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) { 1128 PHINode *PN; 1129 for (BasicBlock::iterator BBI = SI->begin(); 1130 (PN = dyn_cast<PHINode>(BBI)); ++BBI) { 1131 Value *BB1V = PN->getIncomingValueForBlock(BB1); 1132 Value *BB2V = PN->getIncomingValueForBlock(BB2); 1133 if (BB1V == BB2V) continue; 1134 1135 // These values do not agree. Insert a select instruction before NT 1136 // that determines the right value. 1137 SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)]; 1138 if (!SI) 1139 SI = cast<SelectInst> 1140 (Builder.CreateSelect(BI->getCondition(), BB1V, BB2V, 1141 BB1V->getName()+"."+BB2V->getName())); 1142 1143 // Make the PHI node use the select for all incoming values for BB1/BB2 1144 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 1145 if (PN->getIncomingBlock(i) == BB1 || PN->getIncomingBlock(i) == BB2) 1146 PN->setIncomingValue(i, SI); 1147 } 1148 } 1149 1150 // Update any PHI nodes in our new successors. 1151 for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) 1152 AddPredecessorToBlock(*SI, BIParent, BB1); 1153 1154 EraseTerminatorInstAndDCECond(BI); 1155 return true; 1156 } 1157 1158 /// SinkThenElseCodeToEnd - Given an unconditional branch that goes to BBEnd, 1159 /// check whether BBEnd has only two predecessors and the other predecessor 1160 /// ends with an unconditional branch. If it is true, sink any common code 1161 /// in the two predecessors to BBEnd. 1162 static bool SinkThenElseCodeToEnd(BranchInst *BI1) { 1163 assert(BI1->isUnconditional()); 1164 BasicBlock *BB1 = BI1->getParent(); 1165 BasicBlock *BBEnd = BI1->getSuccessor(0); 1166 1167 // Check that BBEnd has two predecessors and the other predecessor ends with 1168 // an unconditional branch. 1169 pred_iterator PI = pred_begin(BBEnd), PE = pred_end(BBEnd); 1170 BasicBlock *Pred0 = *PI++; 1171 if (PI == PE) // Only one predecessor. 1172 return false; 1173 BasicBlock *Pred1 = *PI++; 1174 if (PI != PE) // More than two predecessors. 1175 return false; 1176 BasicBlock *BB2 = (Pred0 == BB1) ? Pred1 : Pred0; 1177 BranchInst *BI2 = dyn_cast<BranchInst>(BB2->getTerminator()); 1178 if (!BI2 || !BI2->isUnconditional()) 1179 return false; 1180 1181 // Gather the PHI nodes in BBEnd. 1182 std::map<Value*, std::pair<Value*, PHINode*> > MapValueFromBB1ToBB2; 1183 Instruction *FirstNonPhiInBBEnd = nullptr; 1184 for (BasicBlock::iterator I = BBEnd->begin(), E = BBEnd->end(); 1185 I != E; ++I) { 1186 if (PHINode *PN = dyn_cast<PHINode>(I)) { 1187 Value *BB1V = PN->getIncomingValueForBlock(BB1); 1188 Value *BB2V = PN->getIncomingValueForBlock(BB2); 1189 MapValueFromBB1ToBB2[BB1V] = std::make_pair(BB2V, PN); 1190 } else { 1191 FirstNonPhiInBBEnd = &*I; 1192 break; 1193 } 1194 } 1195 if (!FirstNonPhiInBBEnd) 1196 return false; 1197 1198 1199 // This does very trivial matching, with limited scanning, to find identical 1200 // instructions in the two blocks. We scan backward for obviously identical 1201 // instructions in an identical order. 1202 BasicBlock::InstListType::reverse_iterator RI1 = BB1->getInstList().rbegin(), 1203 RE1 = BB1->getInstList().rend(), RI2 = BB2->getInstList().rbegin(), 1204 RE2 = BB2->getInstList().rend(); 1205 // Skip debug info. 1206 while (RI1 != RE1 && isa<DbgInfoIntrinsic>(&*RI1)) ++RI1; 1207 if (RI1 == RE1) 1208 return false; 1209 while (RI2 != RE2 && isa<DbgInfoIntrinsic>(&*RI2)) ++RI2; 1210 if (RI2 == RE2) 1211 return false; 1212 // Skip the unconditional branches. 1213 ++RI1; 1214 ++RI2; 1215 1216 bool Changed = false; 1217 while (RI1 != RE1 && RI2 != RE2) { 1218 // Skip debug info. 1219 while (RI1 != RE1 && isa<DbgInfoIntrinsic>(&*RI1)) ++RI1; 1220 if (RI1 == RE1) 1221 return Changed; 1222 while (RI2 != RE2 && isa<DbgInfoIntrinsic>(&*RI2)) ++RI2; 1223 if (RI2 == RE2) 1224 return Changed; 1225 1226 Instruction *I1 = &*RI1, *I2 = &*RI2; 1227 // I1 and I2 should have a single use in the same PHI node, and they 1228 // perform the same operation. 1229 // Cannot move control-flow-involving, volatile loads, vaarg, etc. 1230 if (isa<PHINode>(I1) || isa<PHINode>(I2) || 1231 isa<TerminatorInst>(I1) || isa<TerminatorInst>(I2) || 1232 isa<LandingPadInst>(I1) || isa<LandingPadInst>(I2) || 1233 isa<AllocaInst>(I1) || isa<AllocaInst>(I2) || 1234 I1->mayHaveSideEffects() || I2->mayHaveSideEffects() || 1235 I1->mayReadOrWriteMemory() || I2->mayReadOrWriteMemory() || 1236 !I1->hasOneUse() || !I2->hasOneUse() || 1237 MapValueFromBB1ToBB2.find(I1) == MapValueFromBB1ToBB2.end() || 1238 MapValueFromBB1ToBB2[I1].first != I2) 1239 return Changed; 1240 1241 // Check whether we should swap the operands of ICmpInst. 1242 ICmpInst *ICmp1 = dyn_cast<ICmpInst>(I1), *ICmp2 = dyn_cast<ICmpInst>(I2); 1243 bool SwapOpnds = false; 1244 if (ICmp1 && ICmp2 && 1245 ICmp1->getOperand(0) != ICmp2->getOperand(0) && 1246 ICmp1->getOperand(1) != ICmp2->getOperand(1) && 1247 (ICmp1->getOperand(0) == ICmp2->getOperand(1) || 1248 ICmp1->getOperand(1) == ICmp2->getOperand(0))) { 1249 ICmp2->swapOperands(); 1250 SwapOpnds = true; 1251 } 1252 if (!I1->isSameOperationAs(I2)) { 1253 if (SwapOpnds) 1254 ICmp2->swapOperands(); 1255 return Changed; 1256 } 1257 1258 // The operands should be either the same or they need to be generated 1259 // with a PHI node after sinking. We only handle the case where there is 1260 // a single pair of different operands. 1261 Value *DifferentOp1 = nullptr, *DifferentOp2 = nullptr; 1262 unsigned Op1Idx = 0; 1263 for (unsigned I = 0, E = I1->getNumOperands(); I != E; ++I) { 1264 if (I1->getOperand(I) == I2->getOperand(I)) 1265 continue; 1266 // Early exit if we have more-than one pair of different operands or 1267 // the different operand is already in MapValueFromBB1ToBB2. 1268 // Early exit if we need a PHI node to replace a constant. 1269 if (DifferentOp1 || 1270 MapValueFromBB1ToBB2.find(I1->getOperand(I)) != 1271 MapValueFromBB1ToBB2.end() || 1272 isa<Constant>(I1->getOperand(I)) || 1273 isa<Constant>(I2->getOperand(I))) { 1274 // If we can't sink the instructions, undo the swapping. 1275 if (SwapOpnds) 1276 ICmp2->swapOperands(); 1277 return Changed; 1278 } 1279 DifferentOp1 = I1->getOperand(I); 1280 Op1Idx = I; 1281 DifferentOp2 = I2->getOperand(I); 1282 } 1283 1284 // We insert the pair of different operands to MapValueFromBB1ToBB2 and 1285 // remove (I1, I2) from MapValueFromBB1ToBB2. 1286 if (DifferentOp1) { 1287 PHINode *NewPN = PHINode::Create(DifferentOp1->getType(), 2, 1288 DifferentOp1->getName() + ".sink", 1289 BBEnd->begin()); 1290 MapValueFromBB1ToBB2[DifferentOp1] = std::make_pair(DifferentOp2, NewPN); 1291 // I1 should use NewPN instead of DifferentOp1. 1292 I1->setOperand(Op1Idx, NewPN); 1293 NewPN->addIncoming(DifferentOp1, BB1); 1294 NewPN->addIncoming(DifferentOp2, BB2); 1295 DEBUG(dbgs() << "Create PHI node " << *NewPN << "\n";); 1296 } 1297 PHINode *OldPN = MapValueFromBB1ToBB2[I1].second; 1298 MapValueFromBB1ToBB2.erase(I1); 1299 1300 DEBUG(dbgs() << "SINK common instructions " << *I1 << "\n";); 1301 DEBUG(dbgs() << " " << *I2 << "\n";); 1302 // We need to update RE1 and RE2 if we are going to sink the first 1303 // instruction in the basic block down. 1304 bool UpdateRE1 = (I1 == BB1->begin()), UpdateRE2 = (I2 == BB2->begin()); 1305 // Sink the instruction. 1306 BBEnd->getInstList().splice(FirstNonPhiInBBEnd, BB1->getInstList(), I1); 1307 if (!OldPN->use_empty()) 1308 OldPN->replaceAllUsesWith(I1); 1309 OldPN->eraseFromParent(); 1310 1311 if (!I2->use_empty()) 1312 I2->replaceAllUsesWith(I1); 1313 I1->intersectOptionalDataWith(I2); 1314 I2->eraseFromParent(); 1315 1316 if (UpdateRE1) 1317 RE1 = BB1->getInstList().rend(); 1318 if (UpdateRE2) 1319 RE2 = BB2->getInstList().rend(); 1320 FirstNonPhiInBBEnd = I1; 1321 NumSinkCommons++; 1322 Changed = true; 1323 } 1324 return Changed; 1325 } 1326 1327 /// \brief Determine if we can hoist sink a sole store instruction out of a 1328 /// conditional block. 1329 /// 1330 /// We are looking for code like the following: 1331 /// BrBB: 1332 /// store i32 %add, i32* %arrayidx2 1333 /// ... // No other stores or function calls (we could be calling a memory 1334 /// ... // function). 1335 /// %cmp = icmp ult %x, %y 1336 /// br i1 %cmp, label %EndBB, label %ThenBB 1337 /// ThenBB: 1338 /// store i32 %add5, i32* %arrayidx2 1339 /// br label EndBB 1340 /// EndBB: 1341 /// ... 1342 /// We are going to transform this into: 1343 /// BrBB: 1344 /// store i32 %add, i32* %arrayidx2 1345 /// ... // 1346 /// %cmp = icmp ult %x, %y 1347 /// %add.add5 = select i1 %cmp, i32 %add, %add5 1348 /// store i32 %add.add5, i32* %arrayidx2 1349 /// ... 1350 /// 1351 /// \return The pointer to the value of the previous store if the store can be 1352 /// hoisted into the predecessor block. 0 otherwise. 1353 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB, 1354 BasicBlock *StoreBB, BasicBlock *EndBB) { 1355 StoreInst *StoreToHoist = dyn_cast<StoreInst>(I); 1356 if (!StoreToHoist) 1357 return nullptr; 1358 1359 // Volatile or atomic. 1360 if (!StoreToHoist->isSimple()) 1361 return nullptr; 1362 1363 Value *StorePtr = StoreToHoist->getPointerOperand(); 1364 1365 // Look for a store to the same pointer in BrBB. 1366 unsigned MaxNumInstToLookAt = 10; 1367 for (BasicBlock::reverse_iterator RI = BrBB->rbegin(), 1368 RE = BrBB->rend(); RI != RE && (--MaxNumInstToLookAt); ++RI) { 1369 Instruction *CurI = &*RI; 1370 1371 // Could be calling an instruction that effects memory like free(). 1372 if (CurI->mayHaveSideEffects() && !isa<StoreInst>(CurI)) 1373 return nullptr; 1374 1375 StoreInst *SI = dyn_cast<StoreInst>(CurI); 1376 // Found the previous store make sure it stores to the same location. 1377 if (SI && SI->getPointerOperand() == StorePtr) 1378 // Found the previous store, return its value operand. 1379 return SI->getValueOperand(); 1380 else if (SI) 1381 return nullptr; // Unknown store. 1382 } 1383 1384 return nullptr; 1385 } 1386 1387 /// \brief Speculate a conditional basic block flattening the CFG. 1388 /// 1389 /// Note that this is a very risky transform currently. Speculating 1390 /// instructions like this is most often not desirable. Instead, there is an MI 1391 /// pass which can do it with full awareness of the resource constraints. 1392 /// However, some cases are "obvious" and we should do directly. An example of 1393 /// this is speculating a single, reasonably cheap instruction. 1394 /// 1395 /// There is only one distinct advantage to flattening the CFG at the IR level: 1396 /// it makes very common but simplistic optimizations such as are common in 1397 /// instcombine and the DAG combiner more powerful by removing CFG edges and 1398 /// modeling their effects with easier to reason about SSA value graphs. 1399 /// 1400 /// 1401 /// An illustration of this transform is turning this IR: 1402 /// \code 1403 /// BB: 1404 /// %cmp = icmp ult %x, %y 1405 /// br i1 %cmp, label %EndBB, label %ThenBB 1406 /// ThenBB: 1407 /// %sub = sub %x, %y 1408 /// br label BB2 1409 /// EndBB: 1410 /// %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ] 1411 /// ... 1412 /// \endcode 1413 /// 1414 /// Into this IR: 1415 /// \code 1416 /// BB: 1417 /// %cmp = icmp ult %x, %y 1418 /// %sub = sub %x, %y 1419 /// %cond = select i1 %cmp, 0, %sub 1420 /// ... 1421 /// \endcode 1422 /// 1423 /// \returns true if the conditional block is removed. 1424 static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB, 1425 const DataLayout *DL) { 1426 // Be conservative for now. FP select instruction can often be expensive. 1427 Value *BrCond = BI->getCondition(); 1428 if (isa<FCmpInst>(BrCond)) 1429 return false; 1430 1431 BasicBlock *BB = BI->getParent(); 1432 BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0); 1433 1434 // If ThenBB is actually on the false edge of the conditional branch, remember 1435 // to swap the select operands later. 1436 bool Invert = false; 1437 if (ThenBB != BI->getSuccessor(0)) { 1438 assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?"); 1439 Invert = true; 1440 } 1441 assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block"); 1442 1443 // Keep a count of how many times instructions are used within CondBB when 1444 // they are candidates for sinking into CondBB. Specifically: 1445 // - They are defined in BB, and 1446 // - They have no side effects, and 1447 // - All of their uses are in CondBB. 1448 SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts; 1449 1450 unsigned SpeculationCost = 0; 1451 Value *SpeculatedStoreValue = nullptr; 1452 StoreInst *SpeculatedStore = nullptr; 1453 for (BasicBlock::iterator BBI = ThenBB->begin(), 1454 BBE = std::prev(ThenBB->end()); 1455 BBI != BBE; ++BBI) { 1456 Instruction *I = BBI; 1457 // Skip debug info. 1458 if (isa<DbgInfoIntrinsic>(I)) 1459 continue; 1460 1461 // Only speculatively execution a single instruction (not counting the 1462 // terminator) for now. 1463 ++SpeculationCost; 1464 if (SpeculationCost > 1) 1465 return false; 1466 1467 // Don't hoist the instruction if it's unsafe or expensive. 1468 if (!isSafeToSpeculativelyExecute(I, DL) && 1469 !(HoistCondStores && 1470 (SpeculatedStoreValue = isSafeToSpeculateStore(I, BB, ThenBB, 1471 EndBB)))) 1472 return false; 1473 if (!SpeculatedStoreValue && 1474 ComputeSpeculationCost(I, DL) > PHINodeFoldingThreshold) 1475 return false; 1476 1477 // Store the store speculation candidate. 1478 if (SpeculatedStoreValue) 1479 SpeculatedStore = cast<StoreInst>(I); 1480 1481 // Do not hoist the instruction if any of its operands are defined but not 1482 // used in BB. The transformation will prevent the operand from 1483 // being sunk into the use block. 1484 for (User::op_iterator i = I->op_begin(), e = I->op_end(); 1485 i != e; ++i) { 1486 Instruction *OpI = dyn_cast<Instruction>(*i); 1487 if (!OpI || OpI->getParent() != BB || 1488 OpI->mayHaveSideEffects()) 1489 continue; // Not a candidate for sinking. 1490 1491 ++SinkCandidateUseCounts[OpI]; 1492 } 1493 } 1494 1495 // Consider any sink candidates which are only used in CondBB as costs for 1496 // speculation. Note, while we iterate over a DenseMap here, we are summing 1497 // and so iteration order isn't significant. 1498 for (SmallDenseMap<Instruction *, unsigned, 4>::iterator I = 1499 SinkCandidateUseCounts.begin(), E = SinkCandidateUseCounts.end(); 1500 I != E; ++I) 1501 if (I->first->getNumUses() == I->second) { 1502 ++SpeculationCost; 1503 if (SpeculationCost > 1) 1504 return false; 1505 } 1506 1507 // Check that the PHI nodes can be converted to selects. 1508 bool HaveRewritablePHIs = false; 1509 for (BasicBlock::iterator I = EndBB->begin(); 1510 PHINode *PN = dyn_cast<PHINode>(I); ++I) { 1511 Value *OrigV = PN->getIncomingValueForBlock(BB); 1512 Value *ThenV = PN->getIncomingValueForBlock(ThenBB); 1513 1514 // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf. 1515 // Skip PHIs which are trivial. 1516 if (ThenV == OrigV) 1517 continue; 1518 1519 // Don't convert to selects if we could remove undefined behavior instead. 1520 if (passingValueIsAlwaysUndefined(OrigV, PN) || 1521 passingValueIsAlwaysUndefined(ThenV, PN)) 1522 return false; 1523 1524 HaveRewritablePHIs = true; 1525 ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV); 1526 ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV); 1527 if (!OrigCE && !ThenCE) 1528 continue; // Known safe and cheap. 1529 1530 if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE, DL)) || 1531 (OrigCE && !isSafeToSpeculativelyExecute(OrigCE, DL))) 1532 return false; 1533 unsigned OrigCost = OrigCE ? ComputeSpeculationCost(OrigCE, DL) : 0; 1534 unsigned ThenCost = ThenCE ? ComputeSpeculationCost(ThenCE, DL) : 0; 1535 if (OrigCost + ThenCost > 2 * PHINodeFoldingThreshold) 1536 return false; 1537 1538 // Account for the cost of an unfolded ConstantExpr which could end up 1539 // getting expanded into Instructions. 1540 // FIXME: This doesn't account for how many operations are combined in the 1541 // constant expression. 1542 ++SpeculationCost; 1543 if (SpeculationCost > 1) 1544 return false; 1545 } 1546 1547 // If there are no PHIs to process, bail early. This helps ensure idempotence 1548 // as well. 1549 if (!HaveRewritablePHIs && !(HoistCondStores && SpeculatedStoreValue)) 1550 return false; 1551 1552 // If we get here, we can hoist the instruction and if-convert. 1553 DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";); 1554 1555 // Insert a select of the value of the speculated store. 1556 if (SpeculatedStoreValue) { 1557 IRBuilder<true, NoFolder> Builder(BI); 1558 Value *TrueV = SpeculatedStore->getValueOperand(); 1559 Value *FalseV = SpeculatedStoreValue; 1560 if (Invert) 1561 std::swap(TrueV, FalseV); 1562 Value *S = Builder.CreateSelect(BrCond, TrueV, FalseV, TrueV->getName() + 1563 "." + FalseV->getName()); 1564 SpeculatedStore->setOperand(0, S); 1565 } 1566 1567 // Hoist the instructions. 1568 BB->getInstList().splice(BI, ThenBB->getInstList(), ThenBB->begin(), 1569 std::prev(ThenBB->end())); 1570 1571 // Insert selects and rewrite the PHI operands. 1572 IRBuilder<true, NoFolder> Builder(BI); 1573 for (BasicBlock::iterator I = EndBB->begin(); 1574 PHINode *PN = dyn_cast<PHINode>(I); ++I) { 1575 unsigned OrigI = PN->getBasicBlockIndex(BB); 1576 unsigned ThenI = PN->getBasicBlockIndex(ThenBB); 1577 Value *OrigV = PN->getIncomingValue(OrigI); 1578 Value *ThenV = PN->getIncomingValue(ThenI); 1579 1580 // Skip PHIs which are trivial. 1581 if (OrigV == ThenV) 1582 continue; 1583 1584 // Create a select whose true value is the speculatively executed value and 1585 // false value is the preexisting value. Swap them if the branch 1586 // destinations were inverted. 1587 Value *TrueV = ThenV, *FalseV = OrigV; 1588 if (Invert) 1589 std::swap(TrueV, FalseV); 1590 Value *V = Builder.CreateSelect(BrCond, TrueV, FalseV, 1591 TrueV->getName() + "." + FalseV->getName()); 1592 PN->setIncomingValue(OrigI, V); 1593 PN->setIncomingValue(ThenI, V); 1594 } 1595 1596 ++NumSpeculations; 1597 return true; 1598 } 1599 1600 /// \returns True if this block contains a CallInst with the NoDuplicate 1601 /// attribute. 1602 static bool HasNoDuplicateCall(const BasicBlock *BB) { 1603 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I) { 1604 const CallInst *CI = dyn_cast<CallInst>(I); 1605 if (!CI) 1606 continue; 1607 if (CI->cannotDuplicate()) 1608 return true; 1609 } 1610 return false; 1611 } 1612 1613 /// BlockIsSimpleEnoughToThreadThrough - Return true if we can thread a branch 1614 /// across this block. 1615 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) { 1616 BranchInst *BI = cast<BranchInst>(BB->getTerminator()); 1617 unsigned Size = 0; 1618 1619 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) { 1620 if (isa<DbgInfoIntrinsic>(BBI)) 1621 continue; 1622 if (Size > 10) return false; // Don't clone large BB's. 1623 ++Size; 1624 1625 // We can only support instructions that do not define values that are 1626 // live outside of the current basic block. 1627 for (User *U : BBI->users()) { 1628 Instruction *UI = cast<Instruction>(U); 1629 if (UI->getParent() != BB || isa<PHINode>(UI)) return false; 1630 } 1631 1632 // Looks ok, continue checking. 1633 } 1634 1635 return true; 1636 } 1637 1638 /// FoldCondBranchOnPHI - If we have a conditional branch on a PHI node value 1639 /// that is defined in the same block as the branch and if any PHI entries are 1640 /// constants, thread edges corresponding to that entry to be branches to their 1641 /// ultimate destination. 1642 static bool FoldCondBranchOnPHI(BranchInst *BI, const DataLayout *DL) { 1643 BasicBlock *BB = BI->getParent(); 1644 PHINode *PN = dyn_cast<PHINode>(BI->getCondition()); 1645 // NOTE: we currently cannot transform this case if the PHI node is used 1646 // outside of the block. 1647 if (!PN || PN->getParent() != BB || !PN->hasOneUse()) 1648 return false; 1649 1650 // Degenerate case of a single entry PHI. 1651 if (PN->getNumIncomingValues() == 1) { 1652 FoldSingleEntryPHINodes(PN->getParent()); 1653 return true; 1654 } 1655 1656 // Now we know that this block has multiple preds and two succs. 1657 if (!BlockIsSimpleEnoughToThreadThrough(BB)) return false; 1658 1659 if (HasNoDuplicateCall(BB)) return false; 1660 1661 // Okay, this is a simple enough basic block. See if any phi values are 1662 // constants. 1663 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1664 ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i)); 1665 if (!CB || !CB->getType()->isIntegerTy(1)) continue; 1666 1667 // Okay, we now know that all edges from PredBB should be revectored to 1668 // branch to RealDest. 1669 BasicBlock *PredBB = PN->getIncomingBlock(i); 1670 BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue()); 1671 1672 if (RealDest == BB) continue; // Skip self loops. 1673 // Skip if the predecessor's terminator is an indirect branch. 1674 if (isa<IndirectBrInst>(PredBB->getTerminator())) continue; 1675 1676 // The dest block might have PHI nodes, other predecessors and other 1677 // difficult cases. Instead of being smart about this, just insert a new 1678 // block that jumps to the destination block, effectively splitting 1679 // the edge we are about to create. 1680 BasicBlock *EdgeBB = BasicBlock::Create(BB->getContext(), 1681 RealDest->getName()+".critedge", 1682 RealDest->getParent(), RealDest); 1683 BranchInst::Create(RealDest, EdgeBB); 1684 1685 // Update PHI nodes. 1686 AddPredecessorToBlock(RealDest, EdgeBB, BB); 1687 1688 // BB may have instructions that are being threaded over. Clone these 1689 // instructions into EdgeBB. We know that there will be no uses of the 1690 // cloned instructions outside of EdgeBB. 1691 BasicBlock::iterator InsertPt = EdgeBB->begin(); 1692 DenseMap<Value*, Value*> TranslateMap; // Track translated values. 1693 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) { 1694 if (PHINode *PN = dyn_cast<PHINode>(BBI)) { 1695 TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB); 1696 continue; 1697 } 1698 // Clone the instruction. 1699 Instruction *N = BBI->clone(); 1700 if (BBI->hasName()) N->setName(BBI->getName()+".c"); 1701 1702 // Update operands due to translation. 1703 for (User::op_iterator i = N->op_begin(), e = N->op_end(); 1704 i != e; ++i) { 1705 DenseMap<Value*, Value*>::iterator PI = TranslateMap.find(*i); 1706 if (PI != TranslateMap.end()) 1707 *i = PI->second; 1708 } 1709 1710 // Check for trivial simplification. 1711 if (Value *V = SimplifyInstruction(N, DL)) { 1712 TranslateMap[BBI] = V; 1713 delete N; // Instruction folded away, don't need actual inst 1714 } else { 1715 // Insert the new instruction into its new home. 1716 EdgeBB->getInstList().insert(InsertPt, N); 1717 if (!BBI->use_empty()) 1718 TranslateMap[BBI] = N; 1719 } 1720 } 1721 1722 // Loop over all of the edges from PredBB to BB, changing them to branch 1723 // to EdgeBB instead. 1724 TerminatorInst *PredBBTI = PredBB->getTerminator(); 1725 for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i) 1726 if (PredBBTI->getSuccessor(i) == BB) { 1727 BB->removePredecessor(PredBB); 1728 PredBBTI->setSuccessor(i, EdgeBB); 1729 } 1730 1731 // Recurse, simplifying any other constants. 1732 return FoldCondBranchOnPHI(BI, DL) | true; 1733 } 1734 1735 return false; 1736 } 1737 1738 /// FoldTwoEntryPHINode - Given a BB that starts with the specified two-entry 1739 /// PHI node, see if we can eliminate it. 1740 static bool FoldTwoEntryPHINode(PHINode *PN, const DataLayout *DL) { 1741 // Ok, this is a two entry PHI node. Check to see if this is a simple "if 1742 // statement", which has a very simple dominance structure. Basically, we 1743 // are trying to find the condition that is being branched on, which 1744 // subsequently causes this merge to happen. We really want control 1745 // dependence information for this check, but simplifycfg can't keep it up 1746 // to date, and this catches most of the cases we care about anyway. 1747 BasicBlock *BB = PN->getParent(); 1748 BasicBlock *IfTrue, *IfFalse; 1749 Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse); 1750 if (!IfCond || 1751 // Don't bother if the branch will be constant folded trivially. 1752 isa<ConstantInt>(IfCond)) 1753 return false; 1754 1755 // Okay, we found that we can merge this two-entry phi node into a select. 1756 // Doing so would require us to fold *all* two entry phi nodes in this block. 1757 // At some point this becomes non-profitable (particularly if the target 1758 // doesn't support cmov's). Only do this transformation if there are two or 1759 // fewer PHI nodes in this block. 1760 unsigned NumPhis = 0; 1761 for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I) 1762 if (NumPhis > 2) 1763 return false; 1764 1765 // Loop over the PHI's seeing if we can promote them all to select 1766 // instructions. While we are at it, keep track of the instructions 1767 // that need to be moved to the dominating block. 1768 SmallPtrSet<Instruction*, 4> AggressiveInsts; 1769 unsigned MaxCostVal0 = PHINodeFoldingThreshold, 1770 MaxCostVal1 = PHINodeFoldingThreshold; 1771 1772 for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) { 1773 PHINode *PN = cast<PHINode>(II++); 1774 if (Value *V = SimplifyInstruction(PN, DL)) { 1775 PN->replaceAllUsesWith(V); 1776 PN->eraseFromParent(); 1777 continue; 1778 } 1779 1780 if (!DominatesMergePoint(PN->getIncomingValue(0), BB, &AggressiveInsts, 1781 MaxCostVal0, DL) || 1782 !DominatesMergePoint(PN->getIncomingValue(1), BB, &AggressiveInsts, 1783 MaxCostVal1, DL)) 1784 return false; 1785 } 1786 1787 // If we folded the first phi, PN dangles at this point. Refresh it. If 1788 // we ran out of PHIs then we simplified them all. 1789 PN = dyn_cast<PHINode>(BB->begin()); 1790 if (!PN) return true; 1791 1792 // Don't fold i1 branches on PHIs which contain binary operators. These can 1793 // often be turned into switches and other things. 1794 if (PN->getType()->isIntegerTy(1) && 1795 (isa<BinaryOperator>(PN->getIncomingValue(0)) || 1796 isa<BinaryOperator>(PN->getIncomingValue(1)) || 1797 isa<BinaryOperator>(IfCond))) 1798 return false; 1799 1800 // If we all PHI nodes are promotable, check to make sure that all 1801 // instructions in the predecessor blocks can be promoted as well. If 1802 // not, we won't be able to get rid of the control flow, so it's not 1803 // worth promoting to select instructions. 1804 BasicBlock *DomBlock = nullptr; 1805 BasicBlock *IfBlock1 = PN->getIncomingBlock(0); 1806 BasicBlock *IfBlock2 = PN->getIncomingBlock(1); 1807 if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) { 1808 IfBlock1 = nullptr; 1809 } else { 1810 DomBlock = *pred_begin(IfBlock1); 1811 for (BasicBlock::iterator I = IfBlock1->begin();!isa<TerminatorInst>(I);++I) 1812 if (!AggressiveInsts.count(I) && !isa<DbgInfoIntrinsic>(I)) { 1813 // This is not an aggressive instruction that we can promote. 1814 // Because of this, we won't be able to get rid of the control 1815 // flow, so the xform is not worth it. 1816 return false; 1817 } 1818 } 1819 1820 if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) { 1821 IfBlock2 = nullptr; 1822 } else { 1823 DomBlock = *pred_begin(IfBlock2); 1824 for (BasicBlock::iterator I = IfBlock2->begin();!isa<TerminatorInst>(I);++I) 1825 if (!AggressiveInsts.count(I) && !isa<DbgInfoIntrinsic>(I)) { 1826 // This is not an aggressive instruction that we can promote. 1827 // Because of this, we won't be able to get rid of the control 1828 // flow, so the xform is not worth it. 1829 return false; 1830 } 1831 } 1832 1833 DEBUG(dbgs() << "FOUND IF CONDITION! " << *IfCond << " T: " 1834 << IfTrue->getName() << " F: " << IfFalse->getName() << "\n"); 1835 1836 // If we can still promote the PHI nodes after this gauntlet of tests, 1837 // do all of the PHI's now. 1838 Instruction *InsertPt = DomBlock->getTerminator(); 1839 IRBuilder<true, NoFolder> Builder(InsertPt); 1840 1841 // Move all 'aggressive' instructions, which are defined in the 1842 // conditional parts of the if's up to the dominating block. 1843 if (IfBlock1) 1844 DomBlock->getInstList().splice(InsertPt, 1845 IfBlock1->getInstList(), IfBlock1->begin(), 1846 IfBlock1->getTerminator()); 1847 if (IfBlock2) 1848 DomBlock->getInstList().splice(InsertPt, 1849 IfBlock2->getInstList(), IfBlock2->begin(), 1850 IfBlock2->getTerminator()); 1851 1852 while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) { 1853 // Change the PHI node into a select instruction. 1854 Value *TrueVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse); 1855 Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue); 1856 1857 SelectInst *NV = 1858 cast<SelectInst>(Builder.CreateSelect(IfCond, TrueVal, FalseVal, "")); 1859 PN->replaceAllUsesWith(NV); 1860 NV->takeName(PN); 1861 PN->eraseFromParent(); 1862 } 1863 1864 // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement 1865 // has been flattened. Change DomBlock to jump directly to our new block to 1866 // avoid other simplifycfg's kicking in on the diamond. 1867 TerminatorInst *OldTI = DomBlock->getTerminator(); 1868 Builder.SetInsertPoint(OldTI); 1869 Builder.CreateBr(BB); 1870 OldTI->eraseFromParent(); 1871 return true; 1872 } 1873 1874 /// SimplifyCondBranchToTwoReturns - If we found a conditional branch that goes 1875 /// to two returning blocks, try to merge them together into one return, 1876 /// introducing a select if the return values disagree. 1877 static bool SimplifyCondBranchToTwoReturns(BranchInst *BI, 1878 IRBuilder<> &Builder) { 1879 assert(BI->isConditional() && "Must be a conditional branch"); 1880 BasicBlock *TrueSucc = BI->getSuccessor(0); 1881 BasicBlock *FalseSucc = BI->getSuccessor(1); 1882 ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator()); 1883 ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator()); 1884 1885 // Check to ensure both blocks are empty (just a return) or optionally empty 1886 // with PHI nodes. If there are other instructions, merging would cause extra 1887 // computation on one path or the other. 1888 if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator()) 1889 return false; 1890 if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator()) 1891 return false; 1892 1893 Builder.SetInsertPoint(BI); 1894 // Okay, we found a branch that is going to two return nodes. If 1895 // there is no return value for this function, just change the 1896 // branch into a return. 1897 if (FalseRet->getNumOperands() == 0) { 1898 TrueSucc->removePredecessor(BI->getParent()); 1899 FalseSucc->removePredecessor(BI->getParent()); 1900 Builder.CreateRetVoid(); 1901 EraseTerminatorInstAndDCECond(BI); 1902 return true; 1903 } 1904 1905 // Otherwise, figure out what the true and false return values are 1906 // so we can insert a new select instruction. 1907 Value *TrueValue = TrueRet->getReturnValue(); 1908 Value *FalseValue = FalseRet->getReturnValue(); 1909 1910 // Unwrap any PHI nodes in the return blocks. 1911 if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue)) 1912 if (TVPN->getParent() == TrueSucc) 1913 TrueValue = TVPN->getIncomingValueForBlock(BI->getParent()); 1914 if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue)) 1915 if (FVPN->getParent() == FalseSucc) 1916 FalseValue = FVPN->getIncomingValueForBlock(BI->getParent()); 1917 1918 // In order for this transformation to be safe, we must be able to 1919 // unconditionally execute both operands to the return. This is 1920 // normally the case, but we could have a potentially-trapping 1921 // constant expression that prevents this transformation from being 1922 // safe. 1923 if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue)) 1924 if (TCV->canTrap()) 1925 return false; 1926 if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue)) 1927 if (FCV->canTrap()) 1928 return false; 1929 1930 // Okay, we collected all the mapped values and checked them for sanity, and 1931 // defined to really do this transformation. First, update the CFG. 1932 TrueSucc->removePredecessor(BI->getParent()); 1933 FalseSucc->removePredecessor(BI->getParent()); 1934 1935 // Insert select instructions where needed. 1936 Value *BrCond = BI->getCondition(); 1937 if (TrueValue) { 1938 // Insert a select if the results differ. 1939 if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) { 1940 } else if (isa<UndefValue>(TrueValue)) { 1941 TrueValue = FalseValue; 1942 } else { 1943 TrueValue = Builder.CreateSelect(BrCond, TrueValue, 1944 FalseValue, "retval"); 1945 } 1946 } 1947 1948 Value *RI = !TrueValue ? 1949 Builder.CreateRetVoid() : Builder.CreateRet(TrueValue); 1950 1951 (void) RI; 1952 1953 DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:" 1954 << "\n " << *BI << "NewRet = " << *RI 1955 << "TRUEBLOCK: " << *TrueSucc << "FALSEBLOCK: "<< *FalseSucc); 1956 1957 EraseTerminatorInstAndDCECond(BI); 1958 1959 return true; 1960 } 1961 1962 /// ExtractBranchMetadata - Given a conditional BranchInstruction, retrieve the 1963 /// probabilities of the branch taking each edge. Fills in the two APInt 1964 /// parameters and return true, or returns false if no or invalid metadata was 1965 /// found. 1966 static bool ExtractBranchMetadata(BranchInst *BI, 1967 uint64_t &ProbTrue, uint64_t &ProbFalse) { 1968 assert(BI->isConditional() && 1969 "Looking for probabilities on unconditional branch?"); 1970 MDNode *ProfileData = BI->getMetadata(LLVMContext::MD_prof); 1971 if (!ProfileData || ProfileData->getNumOperands() != 3) return false; 1972 ConstantInt *CITrue = dyn_cast<ConstantInt>(ProfileData->getOperand(1)); 1973 ConstantInt *CIFalse = dyn_cast<ConstantInt>(ProfileData->getOperand(2)); 1974 if (!CITrue || !CIFalse) return false; 1975 ProbTrue = CITrue->getValue().getZExtValue(); 1976 ProbFalse = CIFalse->getValue().getZExtValue(); 1977 return true; 1978 } 1979 1980 /// checkCSEInPredecessor - Return true if the given instruction is available 1981 /// in its predecessor block. If yes, the instruction will be removed. 1982 /// 1983 static bool checkCSEInPredecessor(Instruction *Inst, BasicBlock *PB) { 1984 if (!isa<BinaryOperator>(Inst) && !isa<CmpInst>(Inst)) 1985 return false; 1986 for (BasicBlock::iterator I = PB->begin(), E = PB->end(); I != E; I++) { 1987 Instruction *PBI = &*I; 1988 // Check whether Inst and PBI generate the same value. 1989 if (Inst->isIdenticalTo(PBI)) { 1990 Inst->replaceAllUsesWith(PBI); 1991 Inst->eraseFromParent(); 1992 return true; 1993 } 1994 } 1995 return false; 1996 } 1997 1998 /// FoldBranchToCommonDest - If this basic block is simple enough, and if a 1999 /// predecessor branches to us and one of our successors, fold the block into 2000 /// the predecessor and use logical operations to pick the right destination. 2001 bool llvm::FoldBranchToCommonDest(BranchInst *BI, const DataLayout *DL, 2002 unsigned BonusInstThreshold) { 2003 BasicBlock *BB = BI->getParent(); 2004 2005 Instruction *Cond = nullptr; 2006 if (BI->isConditional()) 2007 Cond = dyn_cast<Instruction>(BI->getCondition()); 2008 else { 2009 // For unconditional branch, check for a simple CFG pattern, where 2010 // BB has a single predecessor and BB's successor is also its predecessor's 2011 // successor. If such pattern exisits, check for CSE between BB and its 2012 // predecessor. 2013 if (BasicBlock *PB = BB->getSinglePredecessor()) 2014 if (BranchInst *PBI = dyn_cast<BranchInst>(PB->getTerminator())) 2015 if (PBI->isConditional() && 2016 (BI->getSuccessor(0) == PBI->getSuccessor(0) || 2017 BI->getSuccessor(0) == PBI->getSuccessor(1))) { 2018 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); 2019 I != E; ) { 2020 Instruction *Curr = I++; 2021 if (isa<CmpInst>(Curr)) { 2022 Cond = Curr; 2023 break; 2024 } 2025 // Quit if we can't remove this instruction. 2026 if (!checkCSEInPredecessor(Curr, PB)) 2027 return false; 2028 } 2029 } 2030 2031 if (!Cond) 2032 return false; 2033 } 2034 2035 if (!Cond || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) || 2036 Cond->getParent() != BB || !Cond->hasOneUse()) 2037 return false; 2038 2039 // Make sure the instruction after the condition is the cond branch. 2040 BasicBlock::iterator CondIt = Cond; ++CondIt; 2041 2042 // Ignore dbg intrinsics. 2043 while (isa<DbgInfoIntrinsic>(CondIt)) ++CondIt; 2044 2045 if (&*CondIt != BI) 2046 return false; 2047 2048 // Only allow this transformation if computing the condition doesn't involve 2049 // too many instructions and these involved instructions can be executed 2050 // unconditionally. We denote all involved instructions except the condition 2051 // as "bonus instructions", and only allow this transformation when the 2052 // number of the bonus instructions does not exceed a certain threshold. 2053 unsigned NumBonusInsts = 0; 2054 for (auto I = BB->begin(); Cond != I; ++I) { 2055 // Ignore dbg intrinsics. 2056 if (isa<DbgInfoIntrinsic>(I)) 2057 continue; 2058 if (!I->hasOneUse() || !isSafeToSpeculativelyExecute(I, DL)) 2059 return false; 2060 // I has only one use and can be executed unconditionally. 2061 Instruction *User = dyn_cast<Instruction>(I->user_back()); 2062 if (User == nullptr || User->getParent() != BB) 2063 return false; 2064 // I is used in the same BB. Since BI uses Cond and doesn't have more slots 2065 // to use any other instruction, User must be an instruction between next(I) 2066 // and Cond. 2067 ++NumBonusInsts; 2068 // Early exits once we reach the limit. 2069 if (NumBonusInsts > BonusInstThreshold) 2070 return false; 2071 } 2072 2073 // Cond is known to be a compare or binary operator. Check to make sure that 2074 // neither operand is a potentially-trapping constant expression. 2075 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0))) 2076 if (CE->canTrap()) 2077 return false; 2078 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1))) 2079 if (CE->canTrap()) 2080 return false; 2081 2082 // Finally, don't infinitely unroll conditional loops. 2083 BasicBlock *TrueDest = BI->getSuccessor(0); 2084 BasicBlock *FalseDest = (BI->isConditional()) ? BI->getSuccessor(1) : nullptr; 2085 if (TrueDest == BB || FalseDest == BB) 2086 return false; 2087 2088 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 2089 BasicBlock *PredBlock = *PI; 2090 BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator()); 2091 2092 // Check that we have two conditional branches. If there is a PHI node in 2093 // the common successor, verify that the same value flows in from both 2094 // blocks. 2095 SmallVector<PHINode*, 4> PHIs; 2096 if (!PBI || PBI->isUnconditional() || 2097 (BI->isConditional() && 2098 !SafeToMergeTerminators(BI, PBI)) || 2099 (!BI->isConditional() && 2100 !isProfitableToFoldUnconditional(BI, PBI, Cond, PHIs))) 2101 continue; 2102 2103 // Determine if the two branches share a common destination. 2104 Instruction::BinaryOps Opc = Instruction::BinaryOpsEnd; 2105 bool InvertPredCond = false; 2106 2107 if (BI->isConditional()) { 2108 if (PBI->getSuccessor(0) == TrueDest) 2109 Opc = Instruction::Or; 2110 else if (PBI->getSuccessor(1) == FalseDest) 2111 Opc = Instruction::And; 2112 else if (PBI->getSuccessor(0) == FalseDest) 2113 Opc = Instruction::And, InvertPredCond = true; 2114 else if (PBI->getSuccessor(1) == TrueDest) 2115 Opc = Instruction::Or, InvertPredCond = true; 2116 else 2117 continue; 2118 } else { 2119 if (PBI->getSuccessor(0) != TrueDest && PBI->getSuccessor(1) != TrueDest) 2120 continue; 2121 } 2122 2123 DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB); 2124 IRBuilder<> Builder(PBI); 2125 2126 // If we need to invert the condition in the pred block to match, do so now. 2127 if (InvertPredCond) { 2128 Value *NewCond = PBI->getCondition(); 2129 2130 if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) { 2131 CmpInst *CI = cast<CmpInst>(NewCond); 2132 CI->setPredicate(CI->getInversePredicate()); 2133 } else { 2134 NewCond = Builder.CreateNot(NewCond, 2135 PBI->getCondition()->getName()+".not"); 2136 } 2137 2138 PBI->setCondition(NewCond); 2139 PBI->swapSuccessors(); 2140 } 2141 2142 // If we have bonus instructions, clone them into the predecessor block. 2143 // Note that there may be mutliple predecessor blocks, so we cannot move 2144 // bonus instructions to a predecessor block. 2145 ValueToValueMapTy VMap; // maps original values to cloned values 2146 // We already make sure Cond is the last instruction before BI. Therefore, 2147 // every instructions before Cond other than DbgInfoIntrinsic are bonus 2148 // instructions. 2149 for (auto BonusInst = BB->begin(); Cond != BonusInst; ++BonusInst) { 2150 if (isa<DbgInfoIntrinsic>(BonusInst)) 2151 continue; 2152 Instruction *NewBonusInst = BonusInst->clone(); 2153 RemapInstruction(NewBonusInst, VMap, 2154 RF_NoModuleLevelChanges | RF_IgnoreMissingEntries); 2155 VMap[BonusInst] = NewBonusInst; 2156 2157 // If we moved a load, we cannot any longer claim any knowledge about 2158 // its potential value. The previous information might have been valid 2159 // only given the branch precondition. 2160 // For an analogous reason, we must also drop all the metadata whose 2161 // semantics we don't understand. 2162 NewBonusInst->dropUnknownMetadata(LLVMContext::MD_dbg); 2163 2164 PredBlock->getInstList().insert(PBI, NewBonusInst); 2165 NewBonusInst->takeName(BonusInst); 2166 BonusInst->setName(BonusInst->getName() + ".old"); 2167 } 2168 2169 // Clone Cond into the predecessor basic block, and or/and the 2170 // two conditions together. 2171 Instruction *New = Cond->clone(); 2172 RemapInstruction(New, VMap, 2173 RF_NoModuleLevelChanges | RF_IgnoreMissingEntries); 2174 PredBlock->getInstList().insert(PBI, New); 2175 New->takeName(Cond); 2176 Cond->setName(New->getName() + ".old"); 2177 2178 if (BI->isConditional()) { 2179 Instruction *NewCond = 2180 cast<Instruction>(Builder.CreateBinOp(Opc, PBI->getCondition(), 2181 New, "or.cond")); 2182 PBI->setCondition(NewCond); 2183 2184 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 2185 bool PredHasWeights = ExtractBranchMetadata(PBI, PredTrueWeight, 2186 PredFalseWeight); 2187 bool SuccHasWeights = ExtractBranchMetadata(BI, SuccTrueWeight, 2188 SuccFalseWeight); 2189 SmallVector<uint64_t, 8> NewWeights; 2190 2191 if (PBI->getSuccessor(0) == BB) { 2192 if (PredHasWeights && SuccHasWeights) { 2193 // PBI: br i1 %x, BB, FalseDest 2194 // BI: br i1 %y, TrueDest, FalseDest 2195 //TrueWeight is TrueWeight for PBI * TrueWeight for BI. 2196 NewWeights.push_back(PredTrueWeight * SuccTrueWeight); 2197 //FalseWeight is FalseWeight for PBI * TotalWeight for BI + 2198 // TrueWeight for PBI * FalseWeight for BI. 2199 // We assume that total weights of a BranchInst can fit into 32 bits. 2200 // Therefore, we will not have overflow using 64-bit arithmetic. 2201 NewWeights.push_back(PredFalseWeight * (SuccFalseWeight + 2202 SuccTrueWeight) + PredTrueWeight * SuccFalseWeight); 2203 } 2204 AddPredecessorToBlock(TrueDest, PredBlock, BB); 2205 PBI->setSuccessor(0, TrueDest); 2206 } 2207 if (PBI->getSuccessor(1) == BB) { 2208 if (PredHasWeights && SuccHasWeights) { 2209 // PBI: br i1 %x, TrueDest, BB 2210 // BI: br i1 %y, TrueDest, FalseDest 2211 //TrueWeight is TrueWeight for PBI * TotalWeight for BI + 2212 // FalseWeight for PBI * TrueWeight for BI. 2213 NewWeights.push_back(PredTrueWeight * (SuccFalseWeight + 2214 SuccTrueWeight) + PredFalseWeight * SuccTrueWeight); 2215 //FalseWeight is FalseWeight for PBI * FalseWeight for BI. 2216 NewWeights.push_back(PredFalseWeight * SuccFalseWeight); 2217 } 2218 AddPredecessorToBlock(FalseDest, PredBlock, BB); 2219 PBI->setSuccessor(1, FalseDest); 2220 } 2221 if (NewWeights.size() == 2) { 2222 // Halve the weights if any of them cannot fit in an uint32_t 2223 FitWeights(NewWeights); 2224 2225 SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(),NewWeights.end()); 2226 PBI->setMetadata(LLVMContext::MD_prof, 2227 MDBuilder(BI->getContext()). 2228 createBranchWeights(MDWeights)); 2229 } else 2230 PBI->setMetadata(LLVMContext::MD_prof, nullptr); 2231 } else { 2232 // Update PHI nodes in the common successors. 2233 for (unsigned i = 0, e = PHIs.size(); i != e; ++i) { 2234 ConstantInt *PBI_C = cast<ConstantInt>( 2235 PHIs[i]->getIncomingValueForBlock(PBI->getParent())); 2236 assert(PBI_C->getType()->isIntegerTy(1)); 2237 Instruction *MergedCond = nullptr; 2238 if (PBI->getSuccessor(0) == TrueDest) { 2239 // Create (PBI_Cond and PBI_C) or (!PBI_Cond and BI_Value) 2240 // PBI_C is true: PBI_Cond or (!PBI_Cond and BI_Value) 2241 // is false: !PBI_Cond and BI_Value 2242 Instruction *NotCond = 2243 cast<Instruction>(Builder.CreateNot(PBI->getCondition(), 2244 "not.cond")); 2245 MergedCond = 2246 cast<Instruction>(Builder.CreateBinOp(Instruction::And, 2247 NotCond, New, 2248 "and.cond")); 2249 if (PBI_C->isOne()) 2250 MergedCond = 2251 cast<Instruction>(Builder.CreateBinOp(Instruction::Or, 2252 PBI->getCondition(), MergedCond, 2253 "or.cond")); 2254 } else { 2255 // Create (PBI_Cond and BI_Value) or (!PBI_Cond and PBI_C) 2256 // PBI_C is true: (PBI_Cond and BI_Value) or (!PBI_Cond) 2257 // is false: PBI_Cond and BI_Value 2258 MergedCond = 2259 cast<Instruction>(Builder.CreateBinOp(Instruction::And, 2260 PBI->getCondition(), New, 2261 "and.cond")); 2262 if (PBI_C->isOne()) { 2263 Instruction *NotCond = 2264 cast<Instruction>(Builder.CreateNot(PBI->getCondition(), 2265 "not.cond")); 2266 MergedCond = 2267 cast<Instruction>(Builder.CreateBinOp(Instruction::Or, 2268 NotCond, MergedCond, 2269 "or.cond")); 2270 } 2271 } 2272 // Update PHI Node. 2273 PHIs[i]->setIncomingValue(PHIs[i]->getBasicBlockIndex(PBI->getParent()), 2274 MergedCond); 2275 } 2276 // Change PBI from Conditional to Unconditional. 2277 BranchInst *New_PBI = BranchInst::Create(TrueDest, PBI); 2278 EraseTerminatorInstAndDCECond(PBI); 2279 PBI = New_PBI; 2280 } 2281 2282 // TODO: If BB is reachable from all paths through PredBlock, then we 2283 // could replace PBI's branch probabilities with BI's. 2284 2285 // Copy any debug value intrinsics into the end of PredBlock. 2286 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) 2287 if (isa<DbgInfoIntrinsic>(*I)) 2288 I->clone()->insertBefore(PBI); 2289 2290 return true; 2291 } 2292 return false; 2293 } 2294 2295 /// SimplifyCondBranchToCondBranch - If we have a conditional branch as a 2296 /// predecessor of another block, this function tries to simplify it. We know 2297 /// that PBI and BI are both conditional branches, and BI is in one of the 2298 /// successor blocks of PBI - PBI branches to BI. 2299 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI) { 2300 assert(PBI->isConditional() && BI->isConditional()); 2301 BasicBlock *BB = BI->getParent(); 2302 2303 // If this block ends with a branch instruction, and if there is a 2304 // predecessor that ends on a branch of the same condition, make 2305 // this conditional branch redundant. 2306 if (PBI->getCondition() == BI->getCondition() && 2307 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 2308 // Okay, the outcome of this conditional branch is statically 2309 // knowable. If this block had a single pred, handle specially. 2310 if (BB->getSinglePredecessor()) { 2311 // Turn this into a branch on constant. 2312 bool CondIsTrue = PBI->getSuccessor(0) == BB; 2313 BI->setCondition(ConstantInt::get(Type::getInt1Ty(BB->getContext()), 2314 CondIsTrue)); 2315 return true; // Nuke the branch on constant. 2316 } 2317 2318 // Otherwise, if there are multiple predecessors, insert a PHI that merges 2319 // in the constant and simplify the block result. Subsequent passes of 2320 // simplifycfg will thread the block. 2321 if (BlockIsSimpleEnoughToThreadThrough(BB)) { 2322 pred_iterator PB = pred_begin(BB), PE = pred_end(BB); 2323 PHINode *NewPN = PHINode::Create(Type::getInt1Ty(BB->getContext()), 2324 std::distance(PB, PE), 2325 BI->getCondition()->getName() + ".pr", 2326 BB->begin()); 2327 // Okay, we're going to insert the PHI node. Since PBI is not the only 2328 // predecessor, compute the PHI'd conditional value for all of the preds. 2329 // Any predecessor where the condition is not computable we keep symbolic. 2330 for (pred_iterator PI = PB; PI != PE; ++PI) { 2331 BasicBlock *P = *PI; 2332 if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) && 2333 PBI != BI && PBI->isConditional() && 2334 PBI->getCondition() == BI->getCondition() && 2335 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 2336 bool CondIsTrue = PBI->getSuccessor(0) == BB; 2337 NewPN->addIncoming(ConstantInt::get(Type::getInt1Ty(BB->getContext()), 2338 CondIsTrue), P); 2339 } else { 2340 NewPN->addIncoming(BI->getCondition(), P); 2341 } 2342 } 2343 2344 BI->setCondition(NewPN); 2345 return true; 2346 } 2347 } 2348 2349 // If this is a conditional branch in an empty block, and if any 2350 // predecessors are a conditional branch to one of our destinations, 2351 // fold the conditions into logical ops and one cond br. 2352 BasicBlock::iterator BBI = BB->begin(); 2353 // Ignore dbg intrinsics. 2354 while (isa<DbgInfoIntrinsic>(BBI)) 2355 ++BBI; 2356 if (&*BBI != BI) 2357 return false; 2358 2359 2360 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BI->getCondition())) 2361 if (CE->canTrap()) 2362 return false; 2363 2364 int PBIOp, BIOp; 2365 if (PBI->getSuccessor(0) == BI->getSuccessor(0)) 2366 PBIOp = BIOp = 0; 2367 else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) 2368 PBIOp = 0, BIOp = 1; 2369 else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) 2370 PBIOp = 1, BIOp = 0; 2371 else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) 2372 PBIOp = BIOp = 1; 2373 else 2374 return false; 2375 2376 // Check to make sure that the other destination of this branch 2377 // isn't BB itself. If so, this is an infinite loop that will 2378 // keep getting unwound. 2379 if (PBI->getSuccessor(PBIOp) == BB) 2380 return false; 2381 2382 // Do not perform this transformation if it would require 2383 // insertion of a large number of select instructions. For targets 2384 // without predication/cmovs, this is a big pessimization. 2385 2386 // Also do not perform this transformation if any phi node in the common 2387 // destination block can trap when reached by BB or PBB (PR17073). In that 2388 // case, it would be unsafe to hoist the operation into a select instruction. 2389 2390 BasicBlock *CommonDest = PBI->getSuccessor(PBIOp); 2391 unsigned NumPhis = 0; 2392 for (BasicBlock::iterator II = CommonDest->begin(); 2393 isa<PHINode>(II); ++II, ++NumPhis) { 2394 if (NumPhis > 2) // Disable this xform. 2395 return false; 2396 2397 PHINode *PN = cast<PHINode>(II); 2398 Value *BIV = PN->getIncomingValueForBlock(BB); 2399 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BIV)) 2400 if (CE->canTrap()) 2401 return false; 2402 2403 unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent()); 2404 Value *PBIV = PN->getIncomingValue(PBBIdx); 2405 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(PBIV)) 2406 if (CE->canTrap()) 2407 return false; 2408 } 2409 2410 // Finally, if everything is ok, fold the branches to logical ops. 2411 BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1); 2412 2413 DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent() 2414 << "AND: " << *BI->getParent()); 2415 2416 2417 // If OtherDest *is* BB, then BB is a basic block with a single conditional 2418 // branch in it, where one edge (OtherDest) goes back to itself but the other 2419 // exits. We don't *know* that the program avoids the infinite loop 2420 // (even though that seems likely). If we do this xform naively, we'll end up 2421 // recursively unpeeling the loop. Since we know that (after the xform is 2422 // done) that the block *is* infinite if reached, we just make it an obviously 2423 // infinite loop with no cond branch. 2424 if (OtherDest == BB) { 2425 // Insert it at the end of the function, because it's either code, 2426 // or it won't matter if it's hot. :) 2427 BasicBlock *InfLoopBlock = BasicBlock::Create(BB->getContext(), 2428 "infloop", BB->getParent()); 2429 BranchInst::Create(InfLoopBlock, InfLoopBlock); 2430 OtherDest = InfLoopBlock; 2431 } 2432 2433 DEBUG(dbgs() << *PBI->getParent()->getParent()); 2434 2435 // BI may have other predecessors. Because of this, we leave 2436 // it alone, but modify PBI. 2437 2438 // Make sure we get to CommonDest on True&True directions. 2439 Value *PBICond = PBI->getCondition(); 2440 IRBuilder<true, NoFolder> Builder(PBI); 2441 if (PBIOp) 2442 PBICond = Builder.CreateNot(PBICond, PBICond->getName()+".not"); 2443 2444 Value *BICond = BI->getCondition(); 2445 if (BIOp) 2446 BICond = Builder.CreateNot(BICond, BICond->getName()+".not"); 2447 2448 // Merge the conditions. 2449 Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge"); 2450 2451 // Modify PBI to branch on the new condition to the new dests. 2452 PBI->setCondition(Cond); 2453 PBI->setSuccessor(0, CommonDest); 2454 PBI->setSuccessor(1, OtherDest); 2455 2456 // Update branch weight for PBI. 2457 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 2458 bool PredHasWeights = ExtractBranchMetadata(PBI, PredTrueWeight, 2459 PredFalseWeight); 2460 bool SuccHasWeights = ExtractBranchMetadata(BI, SuccTrueWeight, 2461 SuccFalseWeight); 2462 if (PredHasWeights && SuccHasWeights) { 2463 uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight; 2464 uint64_t PredOther = PBIOp ?PredTrueWeight : PredFalseWeight; 2465 uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight; 2466 uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight; 2467 // The weight to CommonDest should be PredCommon * SuccTotal + 2468 // PredOther * SuccCommon. 2469 // The weight to OtherDest should be PredOther * SuccOther. 2470 SmallVector<uint64_t, 2> NewWeights; 2471 NewWeights.push_back(PredCommon * (SuccCommon + SuccOther) + 2472 PredOther * SuccCommon); 2473 NewWeights.push_back(PredOther * SuccOther); 2474 // Halve the weights if any of them cannot fit in an uint32_t 2475 FitWeights(NewWeights); 2476 2477 SmallVector<uint32_t, 2> MDWeights(NewWeights.begin(),NewWeights.end()); 2478 PBI->setMetadata(LLVMContext::MD_prof, 2479 MDBuilder(BI->getContext()). 2480 createBranchWeights(MDWeights)); 2481 } 2482 2483 // OtherDest may have phi nodes. If so, add an entry from PBI's 2484 // block that are identical to the entries for BI's block. 2485 AddPredecessorToBlock(OtherDest, PBI->getParent(), BB); 2486 2487 // We know that the CommonDest already had an edge from PBI to 2488 // it. If it has PHIs though, the PHIs may have different 2489 // entries for BB and PBI's BB. If so, insert a select to make 2490 // them agree. 2491 PHINode *PN; 2492 for (BasicBlock::iterator II = CommonDest->begin(); 2493 (PN = dyn_cast<PHINode>(II)); ++II) { 2494 Value *BIV = PN->getIncomingValueForBlock(BB); 2495 unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent()); 2496 Value *PBIV = PN->getIncomingValue(PBBIdx); 2497 if (BIV != PBIV) { 2498 // Insert a select in PBI to pick the right value. 2499 Value *NV = cast<SelectInst> 2500 (Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName()+".mux")); 2501 PN->setIncomingValue(PBBIdx, NV); 2502 } 2503 } 2504 2505 DEBUG(dbgs() << "INTO: " << *PBI->getParent()); 2506 DEBUG(dbgs() << *PBI->getParent()->getParent()); 2507 2508 // This basic block is probably dead. We know it has at least 2509 // one fewer predecessor. 2510 return true; 2511 } 2512 2513 // SimplifyTerminatorOnSelect - Simplifies a terminator by replacing it with a 2514 // branch to TrueBB if Cond is true or to FalseBB if Cond is false. 2515 // Takes care of updating the successors and removing the old terminator. 2516 // Also makes sure not to introduce new successors by assuming that edges to 2517 // non-successor TrueBBs and FalseBBs aren't reachable. 2518 static bool SimplifyTerminatorOnSelect(TerminatorInst *OldTerm, Value *Cond, 2519 BasicBlock *TrueBB, BasicBlock *FalseBB, 2520 uint32_t TrueWeight, 2521 uint32_t FalseWeight){ 2522 // Remove any superfluous successor edges from the CFG. 2523 // First, figure out which successors to preserve. 2524 // If TrueBB and FalseBB are equal, only try to preserve one copy of that 2525 // successor. 2526 BasicBlock *KeepEdge1 = TrueBB; 2527 BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr; 2528 2529 // Then remove the rest. 2530 for (unsigned I = 0, E = OldTerm->getNumSuccessors(); I != E; ++I) { 2531 BasicBlock *Succ = OldTerm->getSuccessor(I); 2532 // Make sure only to keep exactly one copy of each edge. 2533 if (Succ == KeepEdge1) 2534 KeepEdge1 = nullptr; 2535 else if (Succ == KeepEdge2) 2536 KeepEdge2 = nullptr; 2537 else 2538 Succ->removePredecessor(OldTerm->getParent()); 2539 } 2540 2541 IRBuilder<> Builder(OldTerm); 2542 Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc()); 2543 2544 // Insert an appropriate new terminator. 2545 if (!KeepEdge1 && !KeepEdge2) { 2546 if (TrueBB == FalseBB) 2547 // We were only looking for one successor, and it was present. 2548 // Create an unconditional branch to it. 2549 Builder.CreateBr(TrueBB); 2550 else { 2551 // We found both of the successors we were looking for. 2552 // Create a conditional branch sharing the condition of the select. 2553 BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB); 2554 if (TrueWeight != FalseWeight) 2555 NewBI->setMetadata(LLVMContext::MD_prof, 2556 MDBuilder(OldTerm->getContext()). 2557 createBranchWeights(TrueWeight, FalseWeight)); 2558 } 2559 } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) { 2560 // Neither of the selected blocks were successors, so this 2561 // terminator must be unreachable. 2562 new UnreachableInst(OldTerm->getContext(), OldTerm); 2563 } else { 2564 // One of the selected values was a successor, but the other wasn't. 2565 // Insert an unconditional branch to the one that was found; 2566 // the edge to the one that wasn't must be unreachable. 2567 if (!KeepEdge1) 2568 // Only TrueBB was found. 2569 Builder.CreateBr(TrueBB); 2570 else 2571 // Only FalseBB was found. 2572 Builder.CreateBr(FalseBB); 2573 } 2574 2575 EraseTerminatorInstAndDCECond(OldTerm); 2576 return true; 2577 } 2578 2579 // SimplifySwitchOnSelect - Replaces 2580 // (switch (select cond, X, Y)) on constant X, Y 2581 // with a branch - conditional if X and Y lead to distinct BBs, 2582 // unconditional otherwise. 2583 static bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select) { 2584 // Check for constant integer values in the select. 2585 ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue()); 2586 ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue()); 2587 if (!TrueVal || !FalseVal) 2588 return false; 2589 2590 // Find the relevant condition and destinations. 2591 Value *Condition = Select->getCondition(); 2592 BasicBlock *TrueBB = SI->findCaseValue(TrueVal).getCaseSuccessor(); 2593 BasicBlock *FalseBB = SI->findCaseValue(FalseVal).getCaseSuccessor(); 2594 2595 // Get weight for TrueBB and FalseBB. 2596 uint32_t TrueWeight = 0, FalseWeight = 0; 2597 SmallVector<uint64_t, 8> Weights; 2598 bool HasWeights = HasBranchWeights(SI); 2599 if (HasWeights) { 2600 GetBranchWeights(SI, Weights); 2601 if (Weights.size() == 1 + SI->getNumCases()) { 2602 TrueWeight = (uint32_t)Weights[SI->findCaseValue(TrueVal). 2603 getSuccessorIndex()]; 2604 FalseWeight = (uint32_t)Weights[SI->findCaseValue(FalseVal). 2605 getSuccessorIndex()]; 2606 } 2607 } 2608 2609 // Perform the actual simplification. 2610 return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, 2611 TrueWeight, FalseWeight); 2612 } 2613 2614 // SimplifyIndirectBrOnSelect - Replaces 2615 // (indirectbr (select cond, blockaddress(@fn, BlockA), 2616 // blockaddress(@fn, BlockB))) 2617 // with 2618 // (br cond, BlockA, BlockB). 2619 static bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI) { 2620 // Check that both operands of the select are block addresses. 2621 BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue()); 2622 BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue()); 2623 if (!TBA || !FBA) 2624 return false; 2625 2626 // Extract the actual blocks. 2627 BasicBlock *TrueBB = TBA->getBasicBlock(); 2628 BasicBlock *FalseBB = FBA->getBasicBlock(); 2629 2630 // Perform the actual simplification. 2631 return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 2632 0, 0); 2633 } 2634 2635 /// TryToSimplifyUncondBranchWithICmpInIt - This is called when we find an icmp 2636 /// instruction (a seteq/setne with a constant) as the only instruction in a 2637 /// block that ends with an uncond branch. We are looking for a very specific 2638 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified. In 2639 /// this case, we merge the first two "or's of icmp" into a switch, but then the 2640 /// default value goes to an uncond block with a seteq in it, we get something 2641 /// like: 2642 /// 2643 /// switch i8 %A, label %DEFAULT [ i8 1, label %end i8 2, label %end ] 2644 /// DEFAULT: 2645 /// %tmp = icmp eq i8 %A, 92 2646 /// br label %end 2647 /// end: 2648 /// ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ] 2649 /// 2650 /// We prefer to split the edge to 'end' so that there is a true/false entry to 2651 /// the PHI, merging the third icmp into the switch. 2652 static bool TryToSimplifyUncondBranchWithICmpInIt( 2653 ICmpInst *ICI, IRBuilder<> &Builder, const TargetTransformInfo &TTI, 2654 unsigned BonusInstThreshold, const DataLayout *DL, AssumptionTracker *AT) { 2655 BasicBlock *BB = ICI->getParent(); 2656 2657 // If the block has any PHIs in it or the icmp has multiple uses, it is too 2658 // complex. 2659 if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse()) return false; 2660 2661 Value *V = ICI->getOperand(0); 2662 ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1)); 2663 2664 // The pattern we're looking for is where our only predecessor is a switch on 2665 // 'V' and this block is the default case for the switch. In this case we can 2666 // fold the compared value into the switch to simplify things. 2667 BasicBlock *Pred = BB->getSinglePredecessor(); 2668 if (!Pred || !isa<SwitchInst>(Pred->getTerminator())) return false; 2669 2670 SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator()); 2671 if (SI->getCondition() != V) 2672 return false; 2673 2674 // If BB is reachable on a non-default case, then we simply know the value of 2675 // V in this block. Substitute it and constant fold the icmp instruction 2676 // away. 2677 if (SI->getDefaultDest() != BB) { 2678 ConstantInt *VVal = SI->findCaseDest(BB); 2679 assert(VVal && "Should have a unique destination value"); 2680 ICI->setOperand(0, VVal); 2681 2682 if (Value *V = SimplifyInstruction(ICI, DL)) { 2683 ICI->replaceAllUsesWith(V); 2684 ICI->eraseFromParent(); 2685 } 2686 // BB is now empty, so it is likely to simplify away. 2687 return SimplifyCFG(BB, TTI, BonusInstThreshold, DL, AT) | true; 2688 } 2689 2690 // Ok, the block is reachable from the default dest. If the constant we're 2691 // comparing exists in one of the other edges, then we can constant fold ICI 2692 // and zap it. 2693 if (SI->findCaseValue(Cst) != SI->case_default()) { 2694 Value *V; 2695 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 2696 V = ConstantInt::getFalse(BB->getContext()); 2697 else 2698 V = ConstantInt::getTrue(BB->getContext()); 2699 2700 ICI->replaceAllUsesWith(V); 2701 ICI->eraseFromParent(); 2702 // BB is now empty, so it is likely to simplify away. 2703 return SimplifyCFG(BB, TTI, BonusInstThreshold, DL, AT) | true; 2704 } 2705 2706 // The use of the icmp has to be in the 'end' block, by the only PHI node in 2707 // the block. 2708 BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0); 2709 PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back()); 2710 if (PHIUse == nullptr || PHIUse != &SuccBlock->front() || 2711 isa<PHINode>(++BasicBlock::iterator(PHIUse))) 2712 return false; 2713 2714 // If the icmp is a SETEQ, then the default dest gets false, the new edge gets 2715 // true in the PHI. 2716 Constant *DefaultCst = ConstantInt::getTrue(BB->getContext()); 2717 Constant *NewCst = ConstantInt::getFalse(BB->getContext()); 2718 2719 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 2720 std::swap(DefaultCst, NewCst); 2721 2722 // Replace ICI (which is used by the PHI for the default value) with true or 2723 // false depending on if it is EQ or NE. 2724 ICI->replaceAllUsesWith(DefaultCst); 2725 ICI->eraseFromParent(); 2726 2727 // Okay, the switch goes to this block on a default value. Add an edge from 2728 // the switch to the merge point on the compared value. 2729 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "switch.edge", 2730 BB->getParent(), BB); 2731 SmallVector<uint64_t, 8> Weights; 2732 bool HasWeights = HasBranchWeights(SI); 2733 if (HasWeights) { 2734 GetBranchWeights(SI, Weights); 2735 if (Weights.size() == 1 + SI->getNumCases()) { 2736 // Split weight for default case to case for "Cst". 2737 Weights[0] = (Weights[0]+1) >> 1; 2738 Weights.push_back(Weights[0]); 2739 2740 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 2741 SI->setMetadata(LLVMContext::MD_prof, 2742 MDBuilder(SI->getContext()). 2743 createBranchWeights(MDWeights)); 2744 } 2745 } 2746 SI->addCase(Cst, NewBB); 2747 2748 // NewBB branches to the phi block, add the uncond branch and the phi entry. 2749 Builder.SetInsertPoint(NewBB); 2750 Builder.SetCurrentDebugLocation(SI->getDebugLoc()); 2751 Builder.CreateBr(SuccBlock); 2752 PHIUse->addIncoming(NewCst, NewBB); 2753 return true; 2754 } 2755 2756 /// SimplifyBranchOnICmpChain - The specified branch is a conditional branch. 2757 /// Check to see if it is branching on an or/and chain of icmp instructions, and 2758 /// fold it into a switch instruction if so. 2759 static bool SimplifyBranchOnICmpChain(BranchInst *BI, const DataLayout *DL, 2760 IRBuilder<> &Builder) { 2761 Instruction *Cond = dyn_cast<Instruction>(BI->getCondition()); 2762 if (!Cond) return false; 2763 2764 2765 // Change br (X == 0 | X == 1), T, F into a switch instruction. 2766 // If this is a bunch of seteq's or'd together, or if it's a bunch of 2767 // 'setne's and'ed together, collect them. 2768 Value *CompVal = nullptr; 2769 std::vector<ConstantInt*> Values; 2770 bool TrueWhenEqual = true; 2771 Value *ExtraCase = nullptr; 2772 unsigned UsedICmps = 0; 2773 2774 if (Cond->getOpcode() == Instruction::Or) { 2775 CompVal = GatherConstantCompares(Cond, Values, ExtraCase, DL, true, 2776 UsedICmps); 2777 } else if (Cond->getOpcode() == Instruction::And) { 2778 CompVal = GatherConstantCompares(Cond, Values, ExtraCase, DL, false, 2779 UsedICmps); 2780 TrueWhenEqual = false; 2781 } 2782 2783 // If we didn't have a multiply compared value, fail. 2784 if (!CompVal) return false; 2785 2786 // Avoid turning single icmps into a switch. 2787 if (UsedICmps <= 1) 2788 return false; 2789 2790 // There might be duplicate constants in the list, which the switch 2791 // instruction can't handle, remove them now. 2792 array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate); 2793 Values.erase(std::unique(Values.begin(), Values.end()), Values.end()); 2794 2795 // If Extra was used, we require at least two switch values to do the 2796 // transformation. A switch with one value is just an cond branch. 2797 if (ExtraCase && Values.size() < 2) return false; 2798 2799 // TODO: Preserve branch weight metadata, similarly to how 2800 // FoldValueComparisonIntoPredecessors preserves it. 2801 2802 // Figure out which block is which destination. 2803 BasicBlock *DefaultBB = BI->getSuccessor(1); 2804 BasicBlock *EdgeBB = BI->getSuccessor(0); 2805 if (!TrueWhenEqual) std::swap(DefaultBB, EdgeBB); 2806 2807 BasicBlock *BB = BI->getParent(); 2808 2809 DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size() 2810 << " cases into SWITCH. BB is:\n" << *BB); 2811 2812 // If there are any extra values that couldn't be folded into the switch 2813 // then we evaluate them with an explicit branch first. Split the block 2814 // right before the condbr to handle it. 2815 if (ExtraCase) { 2816 BasicBlock *NewBB = BB->splitBasicBlock(BI, "switch.early.test"); 2817 // Remove the uncond branch added to the old block. 2818 TerminatorInst *OldTI = BB->getTerminator(); 2819 Builder.SetInsertPoint(OldTI); 2820 2821 if (TrueWhenEqual) 2822 Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB); 2823 else 2824 Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB); 2825 2826 OldTI->eraseFromParent(); 2827 2828 // If there are PHI nodes in EdgeBB, then we need to add a new entry to them 2829 // for the edge we just added. 2830 AddPredecessorToBlock(EdgeBB, BB, NewBB); 2831 2832 DEBUG(dbgs() << " ** 'icmp' chain unhandled condition: " << *ExtraCase 2833 << "\nEXTRABB = " << *BB); 2834 BB = NewBB; 2835 } 2836 2837 Builder.SetInsertPoint(BI); 2838 // Convert pointer to int before we switch. 2839 if (CompVal->getType()->isPointerTy()) { 2840 assert(DL && "Cannot switch on pointer without DataLayout"); 2841 CompVal = Builder.CreatePtrToInt(CompVal, 2842 DL->getIntPtrType(CompVal->getType()), 2843 "magicptr"); 2844 } 2845 2846 // Create the new switch instruction now. 2847 SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size()); 2848 2849 // Add all of the 'cases' to the switch instruction. 2850 for (unsigned i = 0, e = Values.size(); i != e; ++i) 2851 New->addCase(Values[i], EdgeBB); 2852 2853 // We added edges from PI to the EdgeBB. As such, if there were any 2854 // PHI nodes in EdgeBB, they need entries to be added corresponding to 2855 // the number of edges added. 2856 for (BasicBlock::iterator BBI = EdgeBB->begin(); 2857 isa<PHINode>(BBI); ++BBI) { 2858 PHINode *PN = cast<PHINode>(BBI); 2859 Value *InVal = PN->getIncomingValueForBlock(BB); 2860 for (unsigned i = 0, e = Values.size()-1; i != e; ++i) 2861 PN->addIncoming(InVal, BB); 2862 } 2863 2864 // Erase the old branch instruction. 2865 EraseTerminatorInstAndDCECond(BI); 2866 2867 DEBUG(dbgs() << " ** 'icmp' chain result is:\n" << *BB << '\n'); 2868 return true; 2869 } 2870 2871 bool SimplifyCFGOpt::SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder) { 2872 // If this is a trivial landing pad that just continues unwinding the caught 2873 // exception then zap the landing pad, turning its invokes into calls. 2874 BasicBlock *BB = RI->getParent(); 2875 LandingPadInst *LPInst = dyn_cast<LandingPadInst>(BB->getFirstNonPHI()); 2876 if (RI->getValue() != LPInst) 2877 // Not a landing pad, or the resume is not unwinding the exception that 2878 // caused control to branch here. 2879 return false; 2880 2881 // Check that there are no other instructions except for debug intrinsics. 2882 BasicBlock::iterator I = LPInst, E = RI; 2883 while (++I != E) 2884 if (!isa<DbgInfoIntrinsic>(I)) 2885 return false; 2886 2887 // Turn all invokes that unwind here into calls and delete the basic block. 2888 bool InvokeRequiresTableEntry = false; 2889 bool Changed = false; 2890 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) { 2891 InvokeInst *II = cast<InvokeInst>((*PI++)->getTerminator()); 2892 2893 if (II->hasFnAttr(Attribute::UWTable)) { 2894 // Don't remove an `invoke' instruction if the ABI requires an entry into 2895 // the table. 2896 InvokeRequiresTableEntry = true; 2897 continue; 2898 } 2899 2900 SmallVector<Value*, 8> Args(II->op_begin(), II->op_end() - 3); 2901 2902 // Insert a call instruction before the invoke. 2903 CallInst *Call = CallInst::Create(II->getCalledValue(), Args, "", II); 2904 Call->takeName(II); 2905 Call->setCallingConv(II->getCallingConv()); 2906 Call->setAttributes(II->getAttributes()); 2907 Call->setDebugLoc(II->getDebugLoc()); 2908 2909 // Anything that used the value produced by the invoke instruction now uses 2910 // the value produced by the call instruction. Note that we do this even 2911 // for void functions and calls with no uses so that the callgraph edge is 2912 // updated. 2913 II->replaceAllUsesWith(Call); 2914 BB->removePredecessor(II->getParent()); 2915 2916 // Insert a branch to the normal destination right before the invoke. 2917 BranchInst::Create(II->getNormalDest(), II); 2918 2919 // Finally, delete the invoke instruction! 2920 II->eraseFromParent(); 2921 Changed = true; 2922 } 2923 2924 if (!InvokeRequiresTableEntry) 2925 // The landingpad is now unreachable. Zap it. 2926 BB->eraseFromParent(); 2927 2928 return Changed; 2929 } 2930 2931 bool SimplifyCFGOpt::SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) { 2932 BasicBlock *BB = RI->getParent(); 2933 if (!BB->getFirstNonPHIOrDbg()->isTerminator()) return false; 2934 2935 // Find predecessors that end with branches. 2936 SmallVector<BasicBlock*, 8> UncondBranchPreds; 2937 SmallVector<BranchInst*, 8> CondBranchPreds; 2938 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 2939 BasicBlock *P = *PI; 2940 TerminatorInst *PTI = P->getTerminator(); 2941 if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) { 2942 if (BI->isUnconditional()) 2943 UncondBranchPreds.push_back(P); 2944 else 2945 CondBranchPreds.push_back(BI); 2946 } 2947 } 2948 2949 // If we found some, do the transformation! 2950 if (!UncondBranchPreds.empty() && DupRet) { 2951 while (!UncondBranchPreds.empty()) { 2952 BasicBlock *Pred = UncondBranchPreds.pop_back_val(); 2953 DEBUG(dbgs() << "FOLDING: " << *BB 2954 << "INTO UNCOND BRANCH PRED: " << *Pred); 2955 (void)FoldReturnIntoUncondBranch(RI, BB, Pred); 2956 } 2957 2958 // If we eliminated all predecessors of the block, delete the block now. 2959 if (pred_begin(BB) == pred_end(BB)) 2960 // We know there are no successors, so just nuke the block. 2961 BB->eraseFromParent(); 2962 2963 return true; 2964 } 2965 2966 // Check out all of the conditional branches going to this return 2967 // instruction. If any of them just select between returns, change the 2968 // branch itself into a select/return pair. 2969 while (!CondBranchPreds.empty()) { 2970 BranchInst *BI = CondBranchPreds.pop_back_val(); 2971 2972 // Check to see if the non-BB successor is also a return block. 2973 if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) && 2974 isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) && 2975 SimplifyCondBranchToTwoReturns(BI, Builder)) 2976 return true; 2977 } 2978 return false; 2979 } 2980 2981 bool SimplifyCFGOpt::SimplifyUnreachable(UnreachableInst *UI) { 2982 BasicBlock *BB = UI->getParent(); 2983 2984 bool Changed = false; 2985 2986 // If there are any instructions immediately before the unreachable that can 2987 // be removed, do so. 2988 while (UI != BB->begin()) { 2989 BasicBlock::iterator BBI = UI; 2990 --BBI; 2991 // Do not delete instructions that can have side effects which might cause 2992 // the unreachable to not be reachable; specifically, calls and volatile 2993 // operations may have this effect. 2994 if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI)) break; 2995 2996 if (BBI->mayHaveSideEffects()) { 2997 if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) { 2998 if (SI->isVolatile()) 2999 break; 3000 } else if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) { 3001 if (LI->isVolatile()) 3002 break; 3003 } else if (AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(BBI)) { 3004 if (RMWI->isVolatile()) 3005 break; 3006 } else if (AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) { 3007 if (CXI->isVolatile()) 3008 break; 3009 } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) && 3010 !isa<LandingPadInst>(BBI)) { 3011 break; 3012 } 3013 // Note that deleting LandingPad's here is in fact okay, although it 3014 // involves a bit of subtle reasoning. If this inst is a LandingPad, 3015 // all the predecessors of this block will be the unwind edges of Invokes, 3016 // and we can therefore guarantee this block will be erased. 3017 } 3018 3019 // Delete this instruction (any uses are guaranteed to be dead) 3020 if (!BBI->use_empty()) 3021 BBI->replaceAllUsesWith(UndefValue::get(BBI->getType())); 3022 BBI->eraseFromParent(); 3023 Changed = true; 3024 } 3025 3026 // If the unreachable instruction is the first in the block, take a gander 3027 // at all of the predecessors of this instruction, and simplify them. 3028 if (&BB->front() != UI) return Changed; 3029 3030 SmallVector<BasicBlock*, 8> Preds(pred_begin(BB), pred_end(BB)); 3031 for (unsigned i = 0, e = Preds.size(); i != e; ++i) { 3032 TerminatorInst *TI = Preds[i]->getTerminator(); 3033 IRBuilder<> Builder(TI); 3034 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 3035 if (BI->isUnconditional()) { 3036 if (BI->getSuccessor(0) == BB) { 3037 new UnreachableInst(TI->getContext(), TI); 3038 TI->eraseFromParent(); 3039 Changed = true; 3040 } 3041 } else { 3042 if (BI->getSuccessor(0) == BB) { 3043 Builder.CreateBr(BI->getSuccessor(1)); 3044 EraseTerminatorInstAndDCECond(BI); 3045 } else if (BI->getSuccessor(1) == BB) { 3046 Builder.CreateBr(BI->getSuccessor(0)); 3047 EraseTerminatorInstAndDCECond(BI); 3048 Changed = true; 3049 } 3050 } 3051 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 3052 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); 3053 i != e; ++i) 3054 if (i.getCaseSuccessor() == BB) { 3055 BB->removePredecessor(SI->getParent()); 3056 SI->removeCase(i); 3057 --i; --e; 3058 Changed = true; 3059 } 3060 // If the default value is unreachable, figure out the most popular 3061 // destination and make it the default. 3062 if (SI->getDefaultDest() == BB) { 3063 std::map<BasicBlock*, std::pair<unsigned, unsigned> > Popularity; 3064 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); 3065 i != e; ++i) { 3066 std::pair<unsigned, unsigned> &entry = 3067 Popularity[i.getCaseSuccessor()]; 3068 if (entry.first == 0) { 3069 entry.first = 1; 3070 entry.second = i.getCaseIndex(); 3071 } else { 3072 entry.first++; 3073 } 3074 } 3075 3076 // Find the most popular block. 3077 unsigned MaxPop = 0; 3078 unsigned MaxIndex = 0; 3079 BasicBlock *MaxBlock = nullptr; 3080 for (std::map<BasicBlock*, std::pair<unsigned, unsigned> >::iterator 3081 I = Popularity.begin(), E = Popularity.end(); I != E; ++I) { 3082 if (I->second.first > MaxPop || 3083 (I->second.first == MaxPop && MaxIndex > I->second.second)) { 3084 MaxPop = I->second.first; 3085 MaxIndex = I->second.second; 3086 MaxBlock = I->first; 3087 } 3088 } 3089 if (MaxBlock) { 3090 // Make this the new default, allowing us to delete any explicit 3091 // edges to it. 3092 SI->setDefaultDest(MaxBlock); 3093 Changed = true; 3094 3095 // If MaxBlock has phinodes in it, remove MaxPop-1 entries from 3096 // it. 3097 if (isa<PHINode>(MaxBlock->begin())) 3098 for (unsigned i = 0; i != MaxPop-1; ++i) 3099 MaxBlock->removePredecessor(SI->getParent()); 3100 3101 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); 3102 i != e; ++i) 3103 if (i.getCaseSuccessor() == MaxBlock) { 3104 SI->removeCase(i); 3105 --i; --e; 3106 } 3107 } 3108 } 3109 } else if (InvokeInst *II = dyn_cast<InvokeInst>(TI)) { 3110 if (II->getUnwindDest() == BB) { 3111 // Convert the invoke to a call instruction. This would be a good 3112 // place to note that the call does not throw though. 3113 BranchInst *BI = Builder.CreateBr(II->getNormalDest()); 3114 II->removeFromParent(); // Take out of symbol table 3115 3116 // Insert the call now... 3117 SmallVector<Value*, 8> Args(II->op_begin(), II->op_end()-3); 3118 Builder.SetInsertPoint(BI); 3119 CallInst *CI = Builder.CreateCall(II->getCalledValue(), 3120 Args, II->getName()); 3121 CI->setCallingConv(II->getCallingConv()); 3122 CI->setAttributes(II->getAttributes()); 3123 // If the invoke produced a value, the call does now instead. 3124 II->replaceAllUsesWith(CI); 3125 delete II; 3126 Changed = true; 3127 } 3128 } 3129 } 3130 3131 // If this block is now dead, remove it. 3132 if (pred_begin(BB) == pred_end(BB) && 3133 BB != &BB->getParent()->getEntryBlock()) { 3134 // We know there are no successors, so just nuke the block. 3135 BB->eraseFromParent(); 3136 return true; 3137 } 3138 3139 return Changed; 3140 } 3141 3142 /// TurnSwitchRangeIntoICmp - Turns a switch with that contains only a 3143 /// integer range comparison into a sub, an icmp and a branch. 3144 static bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder) { 3145 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 3146 3147 // Make sure all cases point to the same destination and gather the values. 3148 SmallVector<ConstantInt *, 16> Cases; 3149 SwitchInst::CaseIt I = SI->case_begin(); 3150 Cases.push_back(I.getCaseValue()); 3151 SwitchInst::CaseIt PrevI = I++; 3152 for (SwitchInst::CaseIt E = SI->case_end(); I != E; PrevI = I++) { 3153 if (PrevI.getCaseSuccessor() != I.getCaseSuccessor()) 3154 return false; 3155 Cases.push_back(I.getCaseValue()); 3156 } 3157 assert(Cases.size() == SI->getNumCases() && "Not all cases gathered"); 3158 3159 // Sort the case values, then check if they form a range we can transform. 3160 array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate); 3161 for (unsigned I = 1, E = Cases.size(); I != E; ++I) { 3162 if (Cases[I-1]->getValue() != Cases[I]->getValue()+1) 3163 return false; 3164 } 3165 3166 Constant *Offset = ConstantExpr::getNeg(Cases.back()); 3167 Constant *NumCases = ConstantInt::get(Offset->getType(), SI->getNumCases()); 3168 3169 Value *Sub = SI->getCondition(); 3170 if (!Offset->isNullValue()) 3171 Sub = Builder.CreateAdd(Sub, Offset, Sub->getName()+".off"); 3172 Value *Cmp; 3173 // If NumCases overflowed, then all possible values jump to the successor. 3174 if (NumCases->isNullValue() && SI->getNumCases() != 0) 3175 Cmp = ConstantInt::getTrue(SI->getContext()); 3176 else 3177 Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch"); 3178 BranchInst *NewBI = Builder.CreateCondBr( 3179 Cmp, SI->case_begin().getCaseSuccessor(), SI->getDefaultDest()); 3180 3181 // Update weight for the newly-created conditional branch. 3182 SmallVector<uint64_t, 8> Weights; 3183 bool HasWeights = HasBranchWeights(SI); 3184 if (HasWeights) { 3185 GetBranchWeights(SI, Weights); 3186 if (Weights.size() == 1 + SI->getNumCases()) { 3187 // Combine all weights for the cases to be the true weight of NewBI. 3188 // We assume that the sum of all weights for a Terminator can fit into 32 3189 // bits. 3190 uint32_t NewTrueWeight = 0; 3191 for (unsigned I = 1, E = Weights.size(); I != E; ++I) 3192 NewTrueWeight += (uint32_t)Weights[I]; 3193 NewBI->setMetadata(LLVMContext::MD_prof, 3194 MDBuilder(SI->getContext()). 3195 createBranchWeights(NewTrueWeight, 3196 (uint32_t)Weights[0])); 3197 } 3198 } 3199 3200 // Prune obsolete incoming values off the successor's PHI nodes. 3201 for (BasicBlock::iterator BBI = SI->case_begin().getCaseSuccessor()->begin(); 3202 isa<PHINode>(BBI); ++BBI) { 3203 for (unsigned I = 0, E = SI->getNumCases()-1; I != E; ++I) 3204 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 3205 } 3206 SI->eraseFromParent(); 3207 3208 return true; 3209 } 3210 3211 /// EliminateDeadSwitchCases - Compute masked bits for the condition of a switch 3212 /// and use it to remove dead cases. 3213 static bool EliminateDeadSwitchCases(SwitchInst *SI, const DataLayout *DL, 3214 AssumptionTracker *AT) { 3215 Value *Cond = SI->getCondition(); 3216 unsigned Bits = Cond->getType()->getIntegerBitWidth(); 3217 APInt KnownZero(Bits, 0), KnownOne(Bits, 0); 3218 computeKnownBits(Cond, KnownZero, KnownOne, DL, 0, AT, SI); 3219 3220 // Gather dead cases. 3221 SmallVector<ConstantInt*, 8> DeadCases; 3222 for (SwitchInst::CaseIt I = SI->case_begin(), E = SI->case_end(); I != E; ++I) { 3223 if ((I.getCaseValue()->getValue() & KnownZero) != 0 || 3224 (I.getCaseValue()->getValue() & KnownOne) != KnownOne) { 3225 DeadCases.push_back(I.getCaseValue()); 3226 DEBUG(dbgs() << "SimplifyCFG: switch case '" 3227 << I.getCaseValue() << "' is dead.\n"); 3228 } 3229 } 3230 3231 SmallVector<uint64_t, 8> Weights; 3232 bool HasWeight = HasBranchWeights(SI); 3233 if (HasWeight) { 3234 GetBranchWeights(SI, Weights); 3235 HasWeight = (Weights.size() == 1 + SI->getNumCases()); 3236 } 3237 3238 // Remove dead cases from the switch. 3239 for (unsigned I = 0, E = DeadCases.size(); I != E; ++I) { 3240 SwitchInst::CaseIt Case = SI->findCaseValue(DeadCases[I]); 3241 assert(Case != SI->case_default() && 3242 "Case was not found. Probably mistake in DeadCases forming."); 3243 if (HasWeight) { 3244 std::swap(Weights[Case.getCaseIndex()+1], Weights.back()); 3245 Weights.pop_back(); 3246 } 3247 3248 // Prune unused values from PHI nodes. 3249 Case.getCaseSuccessor()->removePredecessor(SI->getParent()); 3250 SI->removeCase(Case); 3251 } 3252 if (HasWeight && Weights.size() >= 2) { 3253 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 3254 SI->setMetadata(LLVMContext::MD_prof, 3255 MDBuilder(SI->getParent()->getContext()). 3256 createBranchWeights(MDWeights)); 3257 } 3258 3259 return !DeadCases.empty(); 3260 } 3261 3262 /// FindPHIForConditionForwarding - If BB would be eligible for simplification 3263 /// by TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated 3264 /// by an unconditional branch), look at the phi node for BB in the successor 3265 /// block and see if the incoming value is equal to CaseValue. If so, return 3266 /// the phi node, and set PhiIndex to BB's index in the phi node. 3267 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue, 3268 BasicBlock *BB, 3269 int *PhiIndex) { 3270 if (BB->getFirstNonPHIOrDbg() != BB->getTerminator()) 3271 return nullptr; // BB must be empty to be a candidate for simplification. 3272 if (!BB->getSinglePredecessor()) 3273 return nullptr; // BB must be dominated by the switch. 3274 3275 BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator()); 3276 if (!Branch || !Branch->isUnconditional()) 3277 return nullptr; // Terminator must be unconditional branch. 3278 3279 BasicBlock *Succ = Branch->getSuccessor(0); 3280 3281 BasicBlock::iterator I = Succ->begin(); 3282 while (PHINode *PHI = dyn_cast<PHINode>(I++)) { 3283 int Idx = PHI->getBasicBlockIndex(BB); 3284 assert(Idx >= 0 && "PHI has no entry for predecessor?"); 3285 3286 Value *InValue = PHI->getIncomingValue(Idx); 3287 if (InValue != CaseValue) continue; 3288 3289 *PhiIndex = Idx; 3290 return PHI; 3291 } 3292 3293 return nullptr; 3294 } 3295 3296 /// ForwardSwitchConditionToPHI - Try to forward the condition of a switch 3297 /// instruction to a phi node dominated by the switch, if that would mean that 3298 /// some of the destination blocks of the switch can be folded away. 3299 /// Returns true if a change is made. 3300 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) { 3301 typedef DenseMap<PHINode*, SmallVector<int,4> > ForwardingNodesMap; 3302 ForwardingNodesMap ForwardingNodes; 3303 3304 for (SwitchInst::CaseIt I = SI->case_begin(), E = SI->case_end(); I != E; ++I) { 3305 ConstantInt *CaseValue = I.getCaseValue(); 3306 BasicBlock *CaseDest = I.getCaseSuccessor(); 3307 3308 int PhiIndex; 3309 PHINode *PHI = FindPHIForConditionForwarding(CaseValue, CaseDest, 3310 &PhiIndex); 3311 if (!PHI) continue; 3312 3313 ForwardingNodes[PHI].push_back(PhiIndex); 3314 } 3315 3316 bool Changed = false; 3317 3318 for (ForwardingNodesMap::iterator I = ForwardingNodes.begin(), 3319 E = ForwardingNodes.end(); I != E; ++I) { 3320 PHINode *Phi = I->first; 3321 SmallVectorImpl<int> &Indexes = I->second; 3322 3323 if (Indexes.size() < 2) continue; 3324 3325 for (size_t I = 0, E = Indexes.size(); I != E; ++I) 3326 Phi->setIncomingValue(Indexes[I], SI->getCondition()); 3327 Changed = true; 3328 } 3329 3330 return Changed; 3331 } 3332 3333 /// ValidLookupTableConstant - Return true if the backend will be able to handle 3334 /// initializing an array of constants like C. 3335 static bool ValidLookupTableConstant(Constant *C) { 3336 if (C->isThreadDependent()) 3337 return false; 3338 if (C->isDLLImportDependent()) 3339 return false; 3340 3341 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) 3342 return CE->isGEPWithNoNotionalOverIndexing(); 3343 3344 return isa<ConstantFP>(C) || 3345 isa<ConstantInt>(C) || 3346 isa<ConstantPointerNull>(C) || 3347 isa<GlobalValue>(C) || 3348 isa<UndefValue>(C); 3349 } 3350 3351 /// LookupConstant - If V is a Constant, return it. Otherwise, try to look up 3352 /// its constant value in ConstantPool, returning 0 if it's not there. 3353 static Constant *LookupConstant(Value *V, 3354 const SmallDenseMap<Value*, Constant*>& ConstantPool) { 3355 if (Constant *C = dyn_cast<Constant>(V)) 3356 return C; 3357 return ConstantPool.lookup(V); 3358 } 3359 3360 /// ConstantFold - Try to fold instruction I into a constant. This works for 3361 /// simple instructions such as binary operations where both operands are 3362 /// constant or can be replaced by constants from the ConstantPool. Returns the 3363 /// resulting constant on success, 0 otherwise. 3364 static Constant * 3365 ConstantFold(Instruction *I, 3366 const SmallDenseMap<Value *, Constant *> &ConstantPool, 3367 const DataLayout *DL) { 3368 if (SelectInst *Select = dyn_cast<SelectInst>(I)) { 3369 Constant *A = LookupConstant(Select->getCondition(), ConstantPool); 3370 if (!A) 3371 return nullptr; 3372 if (A->isAllOnesValue()) 3373 return LookupConstant(Select->getTrueValue(), ConstantPool); 3374 if (A->isNullValue()) 3375 return LookupConstant(Select->getFalseValue(), ConstantPool); 3376 return nullptr; 3377 } 3378 3379 SmallVector<Constant *, 4> COps; 3380 for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) { 3381 if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool)) 3382 COps.push_back(A); 3383 else 3384 return nullptr; 3385 } 3386 3387 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) 3388 return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0], 3389 COps[1], DL); 3390 3391 return ConstantFoldInstOperands(I->getOpcode(), I->getType(), COps, DL); 3392 } 3393 3394 /// GetCaseResults - Try to determine the resulting constant values in phi nodes 3395 /// at the common destination basic block, *CommonDest, for one of the case 3396 /// destionations CaseDest corresponding to value CaseVal (0 for the default 3397 /// case), of a switch instruction SI. 3398 static bool 3399 GetCaseResults(SwitchInst *SI, 3400 ConstantInt *CaseVal, 3401 BasicBlock *CaseDest, 3402 BasicBlock **CommonDest, 3403 SmallVectorImpl<std::pair<PHINode *, Constant *> > &Res, 3404 const DataLayout *DL) { 3405 // The block from which we enter the common destination. 3406 BasicBlock *Pred = SI->getParent(); 3407 3408 // If CaseDest is empty except for some side-effect free instructions through 3409 // which we can constant-propagate the CaseVal, continue to its successor. 3410 SmallDenseMap<Value*, Constant*> ConstantPool; 3411 ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal)); 3412 for (BasicBlock::iterator I = CaseDest->begin(), E = CaseDest->end(); I != E; 3413 ++I) { 3414 if (TerminatorInst *T = dyn_cast<TerminatorInst>(I)) { 3415 // If the terminator is a simple branch, continue to the next block. 3416 if (T->getNumSuccessors() != 1) 3417 return false; 3418 Pred = CaseDest; 3419 CaseDest = T->getSuccessor(0); 3420 } else if (isa<DbgInfoIntrinsic>(I)) { 3421 // Skip debug intrinsic. 3422 continue; 3423 } else if (Constant *C = ConstantFold(I, ConstantPool, DL)) { 3424 // Instruction is side-effect free and constant. 3425 ConstantPool.insert(std::make_pair(I, C)); 3426 } else { 3427 break; 3428 } 3429 } 3430 3431 // If we did not have a CommonDest before, use the current one. 3432 if (!*CommonDest) 3433 *CommonDest = CaseDest; 3434 // If the destination isn't the common one, abort. 3435 if (CaseDest != *CommonDest) 3436 return false; 3437 3438 // Get the values for this case from phi nodes in the destination block. 3439 BasicBlock::iterator I = (*CommonDest)->begin(); 3440 while (PHINode *PHI = dyn_cast<PHINode>(I++)) { 3441 int Idx = PHI->getBasicBlockIndex(Pred); 3442 if (Idx == -1) 3443 continue; 3444 3445 Constant *ConstVal = LookupConstant(PHI->getIncomingValue(Idx), 3446 ConstantPool); 3447 if (!ConstVal) 3448 return false; 3449 3450 // Note: If the constant comes from constant-propagating the case value 3451 // through the CaseDest basic block, it will be safe to remove the 3452 // instructions in that block. They cannot be used (except in the phi nodes 3453 // we visit) outside CaseDest, because that block does not dominate its 3454 // successor. If it did, we would not be in this phi node. 3455 3456 // Be conservative about which kinds of constants we support. 3457 if (!ValidLookupTableConstant(ConstVal)) 3458 return false; 3459 3460 Res.push_back(std::make_pair(PHI, ConstVal)); 3461 } 3462 3463 return Res.size() > 0; 3464 } 3465 3466 // MapCaseToResult - Helper function used to 3467 // add CaseVal to the list of cases that generate Result. 3468 static void MapCaseToResult(ConstantInt *CaseVal, 3469 SwitchCaseResultVectorTy &UniqueResults, 3470 Constant *Result) { 3471 for (auto &I : UniqueResults) { 3472 if (I.first == Result) { 3473 I.second.push_back(CaseVal); 3474 return; 3475 } 3476 } 3477 UniqueResults.push_back(std::make_pair(Result, 3478 SmallVector<ConstantInt*, 4>(1, CaseVal))); 3479 } 3480 3481 // InitializeUniqueCases - Helper function that initializes a map containing 3482 // results for the PHI node of the common destination block for a switch 3483 // instruction. Returns false if multiple PHI nodes have been found or if 3484 // there is not a common destination block for the switch. 3485 static bool InitializeUniqueCases( 3486 SwitchInst *SI, const DataLayout *DL, PHINode *&PHI, 3487 BasicBlock *&CommonDest, 3488 SwitchCaseResultVectorTy &UniqueResults, 3489 Constant *&DefaultResult) { 3490 for (auto &I : SI->cases()) { 3491 ConstantInt *CaseVal = I.getCaseValue(); 3492 3493 // Resulting value at phi nodes for this case value. 3494 SwitchCaseResultsTy Results; 3495 if (!GetCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results, 3496 DL)) 3497 return false; 3498 3499 // Only one value per case is permitted 3500 if (Results.size() > 1) 3501 return false; 3502 MapCaseToResult(CaseVal, UniqueResults, Results.begin()->second); 3503 3504 // Check the PHI consistency. 3505 if (!PHI) 3506 PHI = Results[0].first; 3507 else if (PHI != Results[0].first) 3508 return false; 3509 } 3510 // Find the default result value. 3511 SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults; 3512 BasicBlock *DefaultDest = SI->getDefaultDest(); 3513 GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults, 3514 DL); 3515 // If the default value is not found abort unless the default destination 3516 // is unreachable. 3517 DefaultResult = 3518 DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr; 3519 if ((!DefaultResult && 3520 !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()))) 3521 return false; 3522 3523 return true; 3524 } 3525 3526 // ConvertTwoCaseSwitch - Helper function that checks if it is possible to 3527 // transform a switch with only two cases (or two cases + default) 3528 // that produces a result into a value select. 3529 // Example: 3530 // switch (a) { 3531 // case 10: %0 = icmp eq i32 %a, 10 3532 // return 10; %1 = select i1 %0, i32 10, i32 4 3533 // case 20: ----> %2 = icmp eq i32 %a, 20 3534 // return 2; %3 = select i1 %2, i32 2, i32 %1 3535 // default: 3536 // return 4; 3537 // } 3538 static Value * 3539 ConvertTwoCaseSwitch(const SwitchCaseResultVectorTy &ResultVector, 3540 Constant *DefaultResult, Value *Condition, 3541 IRBuilder<> &Builder) { 3542 assert(ResultVector.size() == 2 && 3543 "We should have exactly two unique results at this point"); 3544 // If we are selecting between only two cases transform into a simple 3545 // select or a two-way select if default is possible. 3546 if (ResultVector[0].second.size() == 1 && 3547 ResultVector[1].second.size() == 1) { 3548 ConstantInt *const FirstCase = ResultVector[0].second[0]; 3549 ConstantInt *const SecondCase = ResultVector[1].second[0]; 3550 3551 bool DefaultCanTrigger = DefaultResult; 3552 Value *SelectValue = ResultVector[1].first; 3553 if (DefaultCanTrigger) { 3554 Value *const ValueCompare = 3555 Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp"); 3556 SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first, 3557 DefaultResult, "switch.select"); 3558 } 3559 Value *const ValueCompare = 3560 Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp"); 3561 return Builder.CreateSelect(ValueCompare, ResultVector[0].first, SelectValue, 3562 "switch.select"); 3563 } 3564 3565 return nullptr; 3566 } 3567 3568 // RemoveSwitchAfterSelectConversion - Helper function to cleanup a switch 3569 // instruction that has been converted into a select, fixing up PHI nodes and 3570 // basic blocks. 3571 static void RemoveSwitchAfterSelectConversion(SwitchInst *SI, PHINode *PHI, 3572 Value *SelectValue, 3573 IRBuilder<> &Builder) { 3574 BasicBlock *SelectBB = SI->getParent(); 3575 while (PHI->getBasicBlockIndex(SelectBB) >= 0) 3576 PHI->removeIncomingValue(SelectBB); 3577 PHI->addIncoming(SelectValue, SelectBB); 3578 3579 Builder.CreateBr(PHI->getParent()); 3580 3581 // Remove the switch. 3582 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { 3583 BasicBlock *Succ = SI->getSuccessor(i); 3584 3585 if (Succ == PHI->getParent()) 3586 continue; 3587 Succ->removePredecessor(SelectBB); 3588 } 3589 SI->eraseFromParent(); 3590 } 3591 3592 /// SwitchToSelect - If the switch is only used to initialize one or more 3593 /// phi nodes in a common successor block with only two different 3594 /// constant values, replace the switch with select. 3595 static bool SwitchToSelect(SwitchInst *SI, IRBuilder<> &Builder, 3596 const DataLayout *DL, AssumptionTracker *AT) { 3597 Value *const Cond = SI->getCondition(); 3598 PHINode *PHI = nullptr; 3599 BasicBlock *CommonDest = nullptr; 3600 Constant *DefaultResult; 3601 SwitchCaseResultVectorTy UniqueResults; 3602 // Collect all the cases that will deliver the same value from the switch. 3603 if (!InitializeUniqueCases(SI, DL, PHI, CommonDest, UniqueResults, 3604 DefaultResult)) 3605 return false; 3606 // Selects choose between maximum two values. 3607 if (UniqueResults.size() != 2) 3608 return false; 3609 assert(PHI != nullptr && "PHI for value select not found"); 3610 3611 Builder.SetInsertPoint(SI); 3612 Value *SelectValue = ConvertTwoCaseSwitch( 3613 UniqueResults, 3614 DefaultResult, Cond, Builder); 3615 if (SelectValue) { 3616 RemoveSwitchAfterSelectConversion(SI, PHI, SelectValue, Builder); 3617 return true; 3618 } 3619 // The switch couldn't be converted into a select. 3620 return false; 3621 } 3622 3623 namespace { 3624 /// SwitchLookupTable - This class represents a lookup table that can be used 3625 /// to replace a switch. 3626 class SwitchLookupTable { 3627 public: 3628 /// SwitchLookupTable - Create a lookup table to use as a switch replacement 3629 /// with the contents of Values, using DefaultValue to fill any holes in the 3630 /// table. 3631 SwitchLookupTable(Module &M, 3632 uint64_t TableSize, 3633 ConstantInt *Offset, 3634 const SmallVectorImpl<std::pair<ConstantInt*, Constant*> >& Values, 3635 Constant *DefaultValue, 3636 const DataLayout *DL); 3637 3638 /// BuildLookup - Build instructions with Builder to retrieve the value at 3639 /// the position given by Index in the lookup table. 3640 Value *BuildLookup(Value *Index, IRBuilder<> &Builder); 3641 3642 /// WouldFitInRegister - Return true if a table with TableSize elements of 3643 /// type ElementType would fit in a target-legal register. 3644 static bool WouldFitInRegister(const DataLayout *DL, 3645 uint64_t TableSize, 3646 const Type *ElementType); 3647 3648 private: 3649 // Depending on the contents of the table, it can be represented in 3650 // different ways. 3651 enum { 3652 // For tables where each element contains the same value, we just have to 3653 // store that single value and return it for each lookup. 3654 SingleValueKind, 3655 3656 // For small tables with integer elements, we can pack them into a bitmap 3657 // that fits into a target-legal register. Values are retrieved by 3658 // shift and mask operations. 3659 BitMapKind, 3660 3661 // The table is stored as an array of values. Values are retrieved by load 3662 // instructions from the table. 3663 ArrayKind 3664 } Kind; 3665 3666 // For SingleValueKind, this is the single value. 3667 Constant *SingleValue; 3668 3669 // For BitMapKind, this is the bitmap. 3670 ConstantInt *BitMap; 3671 IntegerType *BitMapElementTy; 3672 3673 // For ArrayKind, this is the array. 3674 GlobalVariable *Array; 3675 }; 3676 } 3677 3678 SwitchLookupTable::SwitchLookupTable(Module &M, 3679 uint64_t TableSize, 3680 ConstantInt *Offset, 3681 const SmallVectorImpl<std::pair<ConstantInt*, Constant*> >& Values, 3682 Constant *DefaultValue, 3683 const DataLayout *DL) 3684 : SingleValue(nullptr), BitMap(nullptr), BitMapElementTy(nullptr), 3685 Array(nullptr) { 3686 assert(Values.size() && "Can't build lookup table without values!"); 3687 assert(TableSize >= Values.size() && "Can't fit values in table!"); 3688 3689 // If all values in the table are equal, this is that value. 3690 SingleValue = Values.begin()->second; 3691 3692 Type *ValueType = Values.begin()->second->getType(); 3693 3694 // Build up the table contents. 3695 SmallVector<Constant*, 64> TableContents(TableSize); 3696 for (size_t I = 0, E = Values.size(); I != E; ++I) { 3697 ConstantInt *CaseVal = Values[I].first; 3698 Constant *CaseRes = Values[I].second; 3699 assert(CaseRes->getType() == ValueType); 3700 3701 uint64_t Idx = (CaseVal->getValue() - Offset->getValue()) 3702 .getLimitedValue(); 3703 TableContents[Idx] = CaseRes; 3704 3705 if (CaseRes != SingleValue) 3706 SingleValue = nullptr; 3707 } 3708 3709 // Fill in any holes in the table with the default result. 3710 if (Values.size() < TableSize) { 3711 assert(DefaultValue && 3712 "Need a default value to fill the lookup table holes."); 3713 assert(DefaultValue->getType() == ValueType); 3714 for (uint64_t I = 0; I < TableSize; ++I) { 3715 if (!TableContents[I]) 3716 TableContents[I] = DefaultValue; 3717 } 3718 3719 if (DefaultValue != SingleValue) 3720 SingleValue = nullptr; 3721 } 3722 3723 // If each element in the table contains the same value, we only need to store 3724 // that single value. 3725 if (SingleValue) { 3726 Kind = SingleValueKind; 3727 return; 3728 } 3729 3730 // If the type is integer and the table fits in a register, build a bitmap. 3731 if (WouldFitInRegister(DL, TableSize, ValueType)) { 3732 IntegerType *IT = cast<IntegerType>(ValueType); 3733 APInt TableInt(TableSize * IT->getBitWidth(), 0); 3734 for (uint64_t I = TableSize; I > 0; --I) { 3735 TableInt <<= IT->getBitWidth(); 3736 // Insert values into the bitmap. Undef values are set to zero. 3737 if (!isa<UndefValue>(TableContents[I - 1])) { 3738 ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]); 3739 TableInt |= Val->getValue().zext(TableInt.getBitWidth()); 3740 } 3741 } 3742 BitMap = ConstantInt::get(M.getContext(), TableInt); 3743 BitMapElementTy = IT; 3744 Kind = BitMapKind; 3745 ++NumBitMaps; 3746 return; 3747 } 3748 3749 // Store the table in an array. 3750 ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize); 3751 Constant *Initializer = ConstantArray::get(ArrayTy, TableContents); 3752 3753 Array = new GlobalVariable(M, ArrayTy, /*constant=*/ true, 3754 GlobalVariable::PrivateLinkage, 3755 Initializer, 3756 "switch.table"); 3757 Array->setUnnamedAddr(true); 3758 Kind = ArrayKind; 3759 } 3760 3761 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) { 3762 switch (Kind) { 3763 case SingleValueKind: 3764 return SingleValue; 3765 case BitMapKind: { 3766 // Type of the bitmap (e.g. i59). 3767 IntegerType *MapTy = BitMap->getType(); 3768 3769 // Cast Index to the same type as the bitmap. 3770 // Note: The Index is <= the number of elements in the table, so 3771 // truncating it to the width of the bitmask is safe. 3772 Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast"); 3773 3774 // Multiply the shift amount by the element width. 3775 ShiftAmt = Builder.CreateMul(ShiftAmt, 3776 ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()), 3777 "switch.shiftamt"); 3778 3779 // Shift down. 3780 Value *DownShifted = Builder.CreateLShr(BitMap, ShiftAmt, 3781 "switch.downshift"); 3782 // Mask off. 3783 return Builder.CreateTrunc(DownShifted, BitMapElementTy, 3784 "switch.masked"); 3785 } 3786 case ArrayKind: { 3787 // Make sure the table index will not overflow when treated as signed. 3788 IntegerType *IT = cast<IntegerType>(Index->getType()); 3789 uint64_t TableSize = Array->getInitializer()->getType() 3790 ->getArrayNumElements(); 3791 if (TableSize > (1ULL << (IT->getBitWidth() - 1))) 3792 Index = Builder.CreateZExt(Index, 3793 IntegerType::get(IT->getContext(), 3794 IT->getBitWidth() + 1), 3795 "switch.tableidx.zext"); 3796 3797 Value *GEPIndices[] = { Builder.getInt32(0), Index }; 3798 Value *GEP = Builder.CreateInBoundsGEP(Array, GEPIndices, 3799 "switch.gep"); 3800 return Builder.CreateLoad(GEP, "switch.load"); 3801 } 3802 } 3803 llvm_unreachable("Unknown lookup table kind!"); 3804 } 3805 3806 bool SwitchLookupTable::WouldFitInRegister(const DataLayout *DL, 3807 uint64_t TableSize, 3808 const Type *ElementType) { 3809 if (!DL) 3810 return false; 3811 const IntegerType *IT = dyn_cast<IntegerType>(ElementType); 3812 if (!IT) 3813 return false; 3814 // FIXME: If the type is wider than it needs to be, e.g. i8 but all values 3815 // are <= 15, we could try to narrow the type. 3816 3817 // Avoid overflow, fitsInLegalInteger uses unsigned int for the width. 3818 if (TableSize >= UINT_MAX/IT->getBitWidth()) 3819 return false; 3820 return DL->fitsInLegalInteger(TableSize * IT->getBitWidth()); 3821 } 3822 3823 /// ShouldBuildLookupTable - Determine whether a lookup table should be built 3824 /// for this switch, based on the number of cases, size of the table and the 3825 /// types of the results. 3826 static bool ShouldBuildLookupTable(SwitchInst *SI, 3827 uint64_t TableSize, 3828 const TargetTransformInfo &TTI, 3829 const DataLayout *DL, 3830 const SmallDenseMap<PHINode*, Type*>& ResultTypes) { 3831 if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10) 3832 return false; // TableSize overflowed, or mul below might overflow. 3833 3834 bool AllTablesFitInRegister = true; 3835 bool HasIllegalType = false; 3836 for (SmallDenseMap<PHINode*, Type*>::const_iterator I = ResultTypes.begin(), 3837 E = ResultTypes.end(); I != E; ++I) { 3838 Type *Ty = I->second; 3839 3840 // Saturate this flag to true. 3841 HasIllegalType = HasIllegalType || !TTI.isTypeLegal(Ty); 3842 3843 // Saturate this flag to false. 3844 AllTablesFitInRegister = AllTablesFitInRegister && 3845 SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty); 3846 3847 // If both flags saturate, we're done. NOTE: This *only* works with 3848 // saturating flags, and all flags have to saturate first due to the 3849 // non-deterministic behavior of iterating over a dense map. 3850 if (HasIllegalType && !AllTablesFitInRegister) 3851 break; 3852 } 3853 3854 // If each table would fit in a register, we should build it anyway. 3855 if (AllTablesFitInRegister) 3856 return true; 3857 3858 // Don't build a table that doesn't fit in-register if it has illegal types. 3859 if (HasIllegalType) 3860 return false; 3861 3862 // The table density should be at least 40%. This is the same criterion as for 3863 // jump tables, see SelectionDAGBuilder::handleJTSwitchCase. 3864 // FIXME: Find the best cut-off. 3865 return SI->getNumCases() * 10 >= TableSize * 4; 3866 } 3867 3868 /// SwitchToLookupTable - If the switch is only used to initialize one or more 3869 /// phi nodes in a common successor block with different constant values, 3870 /// replace the switch with lookup tables. 3871 static bool SwitchToLookupTable(SwitchInst *SI, 3872 IRBuilder<> &Builder, 3873 const TargetTransformInfo &TTI, 3874 const DataLayout* DL) { 3875 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 3876 3877 // Only build lookup table when we have a target that supports it. 3878 if (!TTI.shouldBuildLookupTables()) 3879 return false; 3880 3881 // FIXME: If the switch is too sparse for a lookup table, perhaps we could 3882 // split off a dense part and build a lookup table for that. 3883 3884 // FIXME: This creates arrays of GEPs to constant strings, which means each 3885 // GEP needs a runtime relocation in PIC code. We should just build one big 3886 // string and lookup indices into that. 3887 3888 // Ignore switches with less than three cases. Lookup tables will not make them 3889 // faster, so we don't analyze them. 3890 if (SI->getNumCases() < 3) 3891 return false; 3892 3893 // Figure out the corresponding result for each case value and phi node in the 3894 // common destination, as well as the the min and max case values. 3895 assert(SI->case_begin() != SI->case_end()); 3896 SwitchInst::CaseIt CI = SI->case_begin(); 3897 ConstantInt *MinCaseVal = CI.getCaseValue(); 3898 ConstantInt *MaxCaseVal = CI.getCaseValue(); 3899 3900 BasicBlock *CommonDest = nullptr; 3901 typedef SmallVector<std::pair<ConstantInt*, Constant*>, 4> ResultListTy; 3902 SmallDenseMap<PHINode*, ResultListTy> ResultLists; 3903 SmallDenseMap<PHINode*, Constant*> DefaultResults; 3904 SmallDenseMap<PHINode*, Type*> ResultTypes; 3905 SmallVector<PHINode*, 4> PHIs; 3906 3907 for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) { 3908 ConstantInt *CaseVal = CI.getCaseValue(); 3909 if (CaseVal->getValue().slt(MinCaseVal->getValue())) 3910 MinCaseVal = CaseVal; 3911 if (CaseVal->getValue().sgt(MaxCaseVal->getValue())) 3912 MaxCaseVal = CaseVal; 3913 3914 // Resulting value at phi nodes for this case value. 3915 typedef SmallVector<std::pair<PHINode*, Constant*>, 4> ResultsTy; 3916 ResultsTy Results; 3917 if (!GetCaseResults(SI, CaseVal, CI.getCaseSuccessor(), &CommonDest, 3918 Results, DL)) 3919 return false; 3920 3921 // Append the result from this case to the list for each phi. 3922 for (ResultsTy::iterator I = Results.begin(), E = Results.end(); I!=E; ++I) { 3923 if (!ResultLists.count(I->first)) 3924 PHIs.push_back(I->first); 3925 ResultLists[I->first].push_back(std::make_pair(CaseVal, I->second)); 3926 } 3927 } 3928 3929 // Keep track of the result types. 3930 for (size_t I = 0, E = PHIs.size(); I != E; ++I) { 3931 PHINode *PHI = PHIs[I]; 3932 ResultTypes[PHI] = ResultLists[PHI][0].second->getType(); 3933 } 3934 3935 uint64_t NumResults = ResultLists[PHIs[0]].size(); 3936 APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue(); 3937 uint64_t TableSize = RangeSpread.getLimitedValue() + 1; 3938 bool TableHasHoles = (NumResults < TableSize); 3939 3940 // If the table has holes, we need a constant result for the default case 3941 // or a bitmask that fits in a register. 3942 SmallVector<std::pair<PHINode*, Constant*>, 4> DefaultResultsList; 3943 bool HasDefaultResults = false; 3944 if (TableHasHoles) { 3945 HasDefaultResults = GetCaseResults(SI, nullptr, SI->getDefaultDest(), 3946 &CommonDest, DefaultResultsList, DL); 3947 } 3948 bool NeedMask = (TableHasHoles && !HasDefaultResults); 3949 if (NeedMask) { 3950 // As an extra penalty for the validity test we require more cases. 3951 if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark). 3952 return false; 3953 if (!(DL && DL->fitsInLegalInteger(TableSize))) 3954 return false; 3955 } 3956 3957 for (size_t I = 0, E = DefaultResultsList.size(); I != E; ++I) { 3958 PHINode *PHI = DefaultResultsList[I].first; 3959 Constant *Result = DefaultResultsList[I].second; 3960 DefaultResults[PHI] = Result; 3961 } 3962 3963 if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes)) 3964 return false; 3965 3966 // Create the BB that does the lookups. 3967 Module &Mod = *CommonDest->getParent()->getParent(); 3968 BasicBlock *LookupBB = BasicBlock::Create(Mod.getContext(), 3969 "switch.lookup", 3970 CommonDest->getParent(), 3971 CommonDest); 3972 3973 // Compute the table index value. 3974 Builder.SetInsertPoint(SI); 3975 Value *TableIndex = Builder.CreateSub(SI->getCondition(), MinCaseVal, 3976 "switch.tableidx"); 3977 3978 // Compute the maximum table size representable by the integer type we are 3979 // switching upon. 3980 unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits(); 3981 uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize; 3982 assert(MaxTableSize >= TableSize && 3983 "It is impossible for a switch to have more entries than the max " 3984 "representable value of its input integer type's size."); 3985 3986 // If we have a fully covered lookup table, unconditionally branch to the 3987 // lookup table BB. Otherwise, check if the condition value is within the case 3988 // range. If it is so, branch to the new BB. Otherwise branch to SI's default 3989 // destination. 3990 const bool GeneratingCoveredLookupTable = MaxTableSize == TableSize; 3991 if (GeneratingCoveredLookupTable) { 3992 Builder.CreateBr(LookupBB); 3993 // We cached PHINodes in PHIs, to avoid accessing deleted PHINodes later, 3994 // do not delete PHINodes here. 3995 SI->getDefaultDest()->removePredecessor(SI->getParent(), 3996 true/*DontDeleteUselessPHIs*/); 3997 } else { 3998 Value *Cmp = Builder.CreateICmpULT(TableIndex, ConstantInt::get( 3999 MinCaseVal->getType(), TableSize)); 4000 Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest()); 4001 } 4002 4003 // Populate the BB that does the lookups. 4004 Builder.SetInsertPoint(LookupBB); 4005 4006 if (NeedMask) { 4007 // Before doing the lookup we do the hole check. 4008 // The LookupBB is therefore re-purposed to do the hole check 4009 // and we create a new LookupBB. 4010 BasicBlock *MaskBB = LookupBB; 4011 MaskBB->setName("switch.hole_check"); 4012 LookupBB = BasicBlock::Create(Mod.getContext(), 4013 "switch.lookup", 4014 CommonDest->getParent(), 4015 CommonDest); 4016 4017 // Build bitmask; fill in a 1 bit for every case. 4018 APInt MaskInt(TableSize, 0); 4019 APInt One(TableSize, 1); 4020 const ResultListTy &ResultList = ResultLists[PHIs[0]]; 4021 for (size_t I = 0, E = ResultList.size(); I != E; ++I) { 4022 uint64_t Idx = (ResultList[I].first->getValue() - 4023 MinCaseVal->getValue()).getLimitedValue(); 4024 MaskInt |= One << Idx; 4025 } 4026 ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt); 4027 4028 // Get the TableIndex'th bit of the bitmask. 4029 // If this bit is 0 (meaning hole) jump to the default destination, 4030 // else continue with table lookup. 4031 IntegerType *MapTy = TableMask->getType(); 4032 Value *MaskIndex = Builder.CreateZExtOrTrunc(TableIndex, MapTy, 4033 "switch.maskindex"); 4034 Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, 4035 "switch.shifted"); 4036 Value *LoBit = Builder.CreateTrunc(Shifted, 4037 Type::getInt1Ty(Mod.getContext()), 4038 "switch.lobit"); 4039 Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest()); 4040 4041 Builder.SetInsertPoint(LookupBB); 4042 AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, SI->getParent()); 4043 } 4044 4045 bool ReturnedEarly = false; 4046 for (size_t I = 0, E = PHIs.size(); I != E; ++I) { 4047 PHINode *PHI = PHIs[I]; 4048 4049 // If using a bitmask, use any value to fill the lookup table holes. 4050 Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI]; 4051 SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultLists[PHI], 4052 DV, DL); 4053 4054 Value *Result = Table.BuildLookup(TableIndex, Builder); 4055 4056 // If the result is used to return immediately from the function, we want to 4057 // do that right here. 4058 if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->user_begin()) && 4059 PHI->user_back() == CommonDest->getFirstNonPHIOrDbg()) { 4060 Builder.CreateRet(Result); 4061 ReturnedEarly = true; 4062 break; 4063 } 4064 4065 PHI->addIncoming(Result, LookupBB); 4066 } 4067 4068 if (!ReturnedEarly) 4069 Builder.CreateBr(CommonDest); 4070 4071 // Remove the switch. 4072 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { 4073 BasicBlock *Succ = SI->getSuccessor(i); 4074 4075 if (Succ == SI->getDefaultDest()) 4076 continue; 4077 Succ->removePredecessor(SI->getParent()); 4078 } 4079 SI->eraseFromParent(); 4080 4081 ++NumLookupTables; 4082 if (NeedMask) 4083 ++NumLookupTablesHoles; 4084 return true; 4085 } 4086 4087 bool SimplifyCFGOpt::SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) { 4088 BasicBlock *BB = SI->getParent(); 4089 4090 if (isValueEqualityComparison(SI)) { 4091 // If we only have one predecessor, and if it is a branch on this value, 4092 // see if that predecessor totally determines the outcome of this switch. 4093 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 4094 if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder)) 4095 return SimplifyCFG(BB, TTI, BonusInstThreshold, DL, AT) | true; 4096 4097 Value *Cond = SI->getCondition(); 4098 if (SelectInst *Select = dyn_cast<SelectInst>(Cond)) 4099 if (SimplifySwitchOnSelect(SI, Select)) 4100 return SimplifyCFG(BB, TTI, BonusInstThreshold, DL, AT) | true; 4101 4102 // If the block only contains the switch, see if we can fold the block 4103 // away into any preds. 4104 BasicBlock::iterator BBI = BB->begin(); 4105 // Ignore dbg intrinsics. 4106 while (isa<DbgInfoIntrinsic>(BBI)) 4107 ++BBI; 4108 if (SI == &*BBI) 4109 if (FoldValueComparisonIntoPredecessors(SI, Builder)) 4110 return SimplifyCFG(BB, TTI, BonusInstThreshold, DL, AT) | true; 4111 } 4112 4113 // Try to transform the switch into an icmp and a branch. 4114 if (TurnSwitchRangeIntoICmp(SI, Builder)) 4115 return SimplifyCFG(BB, TTI, BonusInstThreshold, DL, AT) | true; 4116 4117 // Remove unreachable cases. 4118 if (EliminateDeadSwitchCases(SI, DL, AT)) 4119 return SimplifyCFG(BB, TTI, BonusInstThreshold, DL, AT) | true; 4120 4121 if (SwitchToSelect(SI, Builder, DL, AT)) 4122 return SimplifyCFG(BB, TTI, BonusInstThreshold, DL, AT) | true; 4123 4124 if (ForwardSwitchConditionToPHI(SI)) 4125 return SimplifyCFG(BB, TTI, BonusInstThreshold, DL, AT) | true; 4126 4127 if (SwitchToLookupTable(SI, Builder, TTI, DL)) 4128 return SimplifyCFG(BB, TTI, BonusInstThreshold, DL, AT) | true; 4129 4130 return false; 4131 } 4132 4133 bool SimplifyCFGOpt::SimplifyIndirectBr(IndirectBrInst *IBI) { 4134 BasicBlock *BB = IBI->getParent(); 4135 bool Changed = false; 4136 4137 // Eliminate redundant destinations. 4138 SmallPtrSet<Value *, 8> Succs; 4139 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 4140 BasicBlock *Dest = IBI->getDestination(i); 4141 if (!Dest->hasAddressTaken() || !Succs.insert(Dest)) { 4142 Dest->removePredecessor(BB); 4143 IBI->removeDestination(i); 4144 --i; --e; 4145 Changed = true; 4146 } 4147 } 4148 4149 if (IBI->getNumDestinations() == 0) { 4150 // If the indirectbr has no successors, change it to unreachable. 4151 new UnreachableInst(IBI->getContext(), IBI); 4152 EraseTerminatorInstAndDCECond(IBI); 4153 return true; 4154 } 4155 4156 if (IBI->getNumDestinations() == 1) { 4157 // If the indirectbr has one successor, change it to a direct branch. 4158 BranchInst::Create(IBI->getDestination(0), IBI); 4159 EraseTerminatorInstAndDCECond(IBI); 4160 return true; 4161 } 4162 4163 if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) { 4164 if (SimplifyIndirectBrOnSelect(IBI, SI)) 4165 return SimplifyCFG(BB, TTI, BonusInstThreshold, DL, AT) | true; 4166 } 4167 return Changed; 4168 } 4169 4170 bool SimplifyCFGOpt::SimplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder){ 4171 BasicBlock *BB = BI->getParent(); 4172 4173 if (SinkCommon && SinkThenElseCodeToEnd(BI)) 4174 return true; 4175 4176 // If the Terminator is the only non-phi instruction, simplify the block. 4177 BasicBlock::iterator I = BB->getFirstNonPHIOrDbg(); 4178 if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() && 4179 TryToSimplifyUncondBranchFromEmptyBlock(BB)) 4180 return true; 4181 4182 // If the only instruction in the block is a seteq/setne comparison 4183 // against a constant, try to simplify the block. 4184 if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) 4185 if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) { 4186 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 4187 ; 4188 if (I->isTerminator() && 4189 TryToSimplifyUncondBranchWithICmpInIt(ICI, Builder, TTI, 4190 BonusInstThreshold, DL, AT)) 4191 return true; 4192 } 4193 4194 // If this basic block is ONLY a compare and a branch, and if a predecessor 4195 // branches to us and our successor, fold the comparison into the 4196 // predecessor and use logical operations to update the incoming value 4197 // for PHI nodes in common successor. 4198 if (FoldBranchToCommonDest(BI, DL, BonusInstThreshold)) 4199 return SimplifyCFG(BB, TTI, BonusInstThreshold, DL, AT) | true; 4200 return false; 4201 } 4202 4203 4204 bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) { 4205 BasicBlock *BB = BI->getParent(); 4206 4207 // Conditional branch 4208 if (isValueEqualityComparison(BI)) { 4209 // If we only have one predecessor, and if it is a branch on this value, 4210 // see if that predecessor totally determines the outcome of this 4211 // switch. 4212 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 4213 if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder)) 4214 return SimplifyCFG(BB, TTI, BonusInstThreshold, DL, AT) | true; 4215 4216 // This block must be empty, except for the setcond inst, if it exists. 4217 // Ignore dbg intrinsics. 4218 BasicBlock::iterator I = BB->begin(); 4219 // Ignore dbg intrinsics. 4220 while (isa<DbgInfoIntrinsic>(I)) 4221 ++I; 4222 if (&*I == BI) { 4223 if (FoldValueComparisonIntoPredecessors(BI, Builder)) 4224 return SimplifyCFG(BB, TTI, BonusInstThreshold, DL, AT) | true; 4225 } else if (&*I == cast<Instruction>(BI->getCondition())){ 4226 ++I; 4227 // Ignore dbg intrinsics. 4228 while (isa<DbgInfoIntrinsic>(I)) 4229 ++I; 4230 if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder)) 4231 return SimplifyCFG(BB, TTI, BonusInstThreshold, DL, AT) | true; 4232 } 4233 } 4234 4235 // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction. 4236 if (SimplifyBranchOnICmpChain(BI, DL, Builder)) 4237 return true; 4238 4239 // If this basic block is ONLY a compare and a branch, and if a predecessor 4240 // branches to us and one of our successors, fold the comparison into the 4241 // predecessor and use logical operations to pick the right destination. 4242 if (FoldBranchToCommonDest(BI, DL, BonusInstThreshold)) 4243 return SimplifyCFG(BB, TTI, BonusInstThreshold, DL, AT) | true; 4244 4245 // We have a conditional branch to two blocks that are only reachable 4246 // from BI. We know that the condbr dominates the two blocks, so see if 4247 // there is any identical code in the "then" and "else" blocks. If so, we 4248 // can hoist it up to the branching block. 4249 if (BI->getSuccessor(0)->getSinglePredecessor()) { 4250 if (BI->getSuccessor(1)->getSinglePredecessor()) { 4251 if (HoistThenElseCodeToIf(BI, DL)) 4252 return SimplifyCFG(BB, TTI, BonusInstThreshold, DL, AT) | true; 4253 } else { 4254 // If Successor #1 has multiple preds, we may be able to conditionally 4255 // execute Successor #0 if it branches to Successor #1. 4256 TerminatorInst *Succ0TI = BI->getSuccessor(0)->getTerminator(); 4257 if (Succ0TI->getNumSuccessors() == 1 && 4258 Succ0TI->getSuccessor(0) == BI->getSuccessor(1)) 4259 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), DL)) 4260 return SimplifyCFG(BB, TTI, BonusInstThreshold, DL, AT) | true; 4261 } 4262 } else if (BI->getSuccessor(1)->getSinglePredecessor()) { 4263 // If Successor #0 has multiple preds, we may be able to conditionally 4264 // execute Successor #1 if it branches to Successor #0. 4265 TerminatorInst *Succ1TI = BI->getSuccessor(1)->getTerminator(); 4266 if (Succ1TI->getNumSuccessors() == 1 && 4267 Succ1TI->getSuccessor(0) == BI->getSuccessor(0)) 4268 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), DL)) 4269 return SimplifyCFG(BB, TTI, BonusInstThreshold, DL, AT) | true; 4270 } 4271 4272 // If this is a branch on a phi node in the current block, thread control 4273 // through this block if any PHI node entries are constants. 4274 if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition())) 4275 if (PN->getParent() == BI->getParent()) 4276 if (FoldCondBranchOnPHI(BI, DL)) 4277 return SimplifyCFG(BB, TTI, BonusInstThreshold, DL, AT) | true; 4278 4279 // Scan predecessor blocks for conditional branches. 4280 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 4281 if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator())) 4282 if (PBI != BI && PBI->isConditional()) 4283 if (SimplifyCondBranchToCondBranch(PBI, BI)) 4284 return SimplifyCFG(BB, TTI, BonusInstThreshold, DL, AT) | true; 4285 4286 return false; 4287 } 4288 4289 /// Check if passing a value to an instruction will cause undefined behavior. 4290 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I) { 4291 Constant *C = dyn_cast<Constant>(V); 4292 if (!C) 4293 return false; 4294 4295 if (I->use_empty()) 4296 return false; 4297 4298 if (C->isNullValue()) { 4299 // Only look at the first use, avoid hurting compile time with long uselists 4300 User *Use = *I->user_begin(); 4301 4302 // Now make sure that there are no instructions in between that can alter 4303 // control flow (eg. calls) 4304 for (BasicBlock::iterator i = ++BasicBlock::iterator(I); &*i != Use; ++i) 4305 if (i == I->getParent()->end() || i->mayHaveSideEffects()) 4306 return false; 4307 4308 // Look through GEPs. A load from a GEP derived from NULL is still undefined 4309 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use)) 4310 if (GEP->getPointerOperand() == I) 4311 return passingValueIsAlwaysUndefined(V, GEP); 4312 4313 // Look through bitcasts. 4314 if (BitCastInst *BC = dyn_cast<BitCastInst>(Use)) 4315 return passingValueIsAlwaysUndefined(V, BC); 4316 4317 // Load from null is undefined. 4318 if (LoadInst *LI = dyn_cast<LoadInst>(Use)) 4319 if (!LI->isVolatile()) 4320 return LI->getPointerAddressSpace() == 0; 4321 4322 // Store to null is undefined. 4323 if (StoreInst *SI = dyn_cast<StoreInst>(Use)) 4324 if (!SI->isVolatile()) 4325 return SI->getPointerAddressSpace() == 0 && SI->getPointerOperand() == I; 4326 } 4327 return false; 4328 } 4329 4330 /// If BB has an incoming value that will always trigger undefined behavior 4331 /// (eg. null pointer dereference), remove the branch leading here. 4332 static bool removeUndefIntroducingPredecessor(BasicBlock *BB) { 4333 for (BasicBlock::iterator i = BB->begin(); 4334 PHINode *PHI = dyn_cast<PHINode>(i); ++i) 4335 for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) 4336 if (passingValueIsAlwaysUndefined(PHI->getIncomingValue(i), PHI)) { 4337 TerminatorInst *T = PHI->getIncomingBlock(i)->getTerminator(); 4338 IRBuilder<> Builder(T); 4339 if (BranchInst *BI = dyn_cast<BranchInst>(T)) { 4340 BB->removePredecessor(PHI->getIncomingBlock(i)); 4341 // Turn uncoditional branches into unreachables and remove the dead 4342 // destination from conditional branches. 4343 if (BI->isUnconditional()) 4344 Builder.CreateUnreachable(); 4345 else 4346 Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1) : 4347 BI->getSuccessor(0)); 4348 BI->eraseFromParent(); 4349 return true; 4350 } 4351 // TODO: SwitchInst. 4352 } 4353 4354 return false; 4355 } 4356 4357 bool SimplifyCFGOpt::run(BasicBlock *BB) { 4358 bool Changed = false; 4359 4360 assert(BB && BB->getParent() && "Block not embedded in function!"); 4361 assert(BB->getTerminator() && "Degenerate basic block encountered!"); 4362 4363 // Remove basic blocks that have no predecessors (except the entry block)... 4364 // or that just have themself as a predecessor. These are unreachable. 4365 if ((pred_begin(BB) == pred_end(BB) && 4366 BB != &BB->getParent()->getEntryBlock()) || 4367 BB->getSinglePredecessor() == BB) { 4368 DEBUG(dbgs() << "Removing BB: \n" << *BB); 4369 DeleteDeadBlock(BB); 4370 return true; 4371 } 4372 4373 // Check to see if we can constant propagate this terminator instruction 4374 // away... 4375 Changed |= ConstantFoldTerminator(BB, true); 4376 4377 // Check for and eliminate duplicate PHI nodes in this block. 4378 Changed |= EliminateDuplicatePHINodes(BB); 4379 4380 // Check for and remove branches that will always cause undefined behavior. 4381 Changed |= removeUndefIntroducingPredecessor(BB); 4382 4383 // Merge basic blocks into their predecessor if there is only one distinct 4384 // pred, and if there is only one distinct successor of the predecessor, and 4385 // if there are no PHI nodes. 4386 // 4387 if (MergeBlockIntoPredecessor(BB)) 4388 return true; 4389 4390 IRBuilder<> Builder(BB); 4391 4392 // If there is a trivial two-entry PHI node in this basic block, and we can 4393 // eliminate it, do so now. 4394 if (PHINode *PN = dyn_cast<PHINode>(BB->begin())) 4395 if (PN->getNumIncomingValues() == 2) 4396 Changed |= FoldTwoEntryPHINode(PN, DL); 4397 4398 Builder.SetInsertPoint(BB->getTerminator()); 4399 if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) { 4400 if (BI->isUnconditional()) { 4401 if (SimplifyUncondBranch(BI, Builder)) return true; 4402 } else { 4403 if (SimplifyCondBranch(BI, Builder)) return true; 4404 } 4405 } else if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) { 4406 if (SimplifyReturn(RI, Builder)) return true; 4407 } else if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator())) { 4408 if (SimplifyResume(RI, Builder)) return true; 4409 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) { 4410 if (SimplifySwitch(SI, Builder)) return true; 4411 } else if (UnreachableInst *UI = 4412 dyn_cast<UnreachableInst>(BB->getTerminator())) { 4413 if (SimplifyUnreachable(UI)) return true; 4414 } else if (IndirectBrInst *IBI = 4415 dyn_cast<IndirectBrInst>(BB->getTerminator())) { 4416 if (SimplifyIndirectBr(IBI)) return true; 4417 } 4418 4419 return Changed; 4420 } 4421 4422 /// SimplifyCFG - This function is used to do simplification of a CFG. For 4423 /// example, it adjusts branches to branches to eliminate the extra hop, it 4424 /// eliminates unreachable basic blocks, and does other "peephole" optimization 4425 /// of the CFG. It returns true if a modification was made. 4426 /// 4427 bool llvm::SimplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI, 4428 unsigned BonusInstThreshold, 4429 const DataLayout *DL, AssumptionTracker *AT) { 4430 return SimplifyCFGOpt(TTI, BonusInstThreshold, DL, AT).run(BB); 4431 } 4432