1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Peephole optimize the CFG. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #define DEBUG_TYPE "simplifycfg" 15 #include "llvm/Transforms/Utils/Local.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SetVector.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/Analysis/InstructionSimplify.h" 23 #include "llvm/Analysis/TargetTransformInfo.h" 24 #include "llvm/Analysis/ValueTracking.h" 25 #include "llvm/IR/Constants.h" 26 #include "llvm/IR/DataLayout.h" 27 #include "llvm/IR/DerivedTypes.h" 28 #include "llvm/IR/GlobalVariable.h" 29 #include "llvm/IR/IRBuilder.h" 30 #include "llvm/IR/Instructions.h" 31 #include "llvm/IR/IntrinsicInst.h" 32 #include "llvm/IR/LLVMContext.h" 33 #include "llvm/IR/MDBuilder.h" 34 #include "llvm/IR/Metadata.h" 35 #include "llvm/IR/Module.h" 36 #include "llvm/IR/Operator.h" 37 #include "llvm/IR/Type.h" 38 #include "llvm/Support/CFG.h" 39 #include "llvm/Support/CommandLine.h" 40 #include "llvm/Support/ConstantRange.h" 41 #include "llvm/Support/Debug.h" 42 #include "llvm/Support/NoFolder.h" 43 #include "llvm/Support/raw_ostream.h" 44 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 45 #include <algorithm> 46 #include <map> 47 #include <set> 48 using namespace llvm; 49 50 static cl::opt<unsigned> 51 PHINodeFoldingThreshold("phi-node-folding-threshold", cl::Hidden, cl::init(1), 52 cl::desc("Control the amount of phi node folding to perform (default = 1)")); 53 54 static cl::opt<bool> 55 DupRet("simplifycfg-dup-ret", cl::Hidden, cl::init(false), 56 cl::desc("Duplicate return instructions into unconditional branches")); 57 58 static cl::opt<bool> 59 SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true), 60 cl::desc("Sink common instructions down to the end block")); 61 62 static cl::opt<bool> 63 HoistCondStores("simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true), 64 cl::desc("Hoist conditional stores if an unconditional store preceeds")); 65 66 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps"); 67 STATISTIC(NumLookupTables, "Number of switch instructions turned into lookup tables"); 68 STATISTIC(NumSinkCommons, "Number of common instructions sunk down to the end block"); 69 STATISTIC(NumSpeculations, "Number of speculative executed instructions"); 70 71 namespace { 72 /// ValueEqualityComparisonCase - Represents a case of a switch. 73 struct ValueEqualityComparisonCase { 74 ConstantInt *Value; 75 BasicBlock *Dest; 76 77 ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest) 78 : Value(Value), Dest(Dest) {} 79 80 bool operator<(ValueEqualityComparisonCase RHS) const { 81 // Comparing pointers is ok as we only rely on the order for uniquing. 82 return Value < RHS.Value; 83 } 84 85 bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; } 86 }; 87 88 class SimplifyCFGOpt { 89 const TargetTransformInfo &TTI; 90 const DataLayout *const TD; 91 92 Value *isValueEqualityComparison(TerminatorInst *TI); 93 BasicBlock *GetValueEqualityComparisonCases(TerminatorInst *TI, 94 std::vector<ValueEqualityComparisonCase> &Cases); 95 bool SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI, 96 BasicBlock *Pred, 97 IRBuilder<> &Builder); 98 bool FoldValueComparisonIntoPredecessors(TerminatorInst *TI, 99 IRBuilder<> &Builder); 100 101 bool SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder); 102 bool SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder); 103 bool SimplifyUnreachable(UnreachableInst *UI); 104 bool SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder); 105 bool SimplifyIndirectBr(IndirectBrInst *IBI); 106 bool SimplifyUncondBranch(BranchInst *BI, IRBuilder <> &Builder); 107 bool SimplifyCondBranch(BranchInst *BI, IRBuilder <>&Builder); 108 109 public: 110 SimplifyCFGOpt(const TargetTransformInfo &TTI, const DataLayout *TD) 111 : TTI(TTI), TD(TD) {} 112 bool run(BasicBlock *BB); 113 }; 114 } 115 116 /// SafeToMergeTerminators - Return true if it is safe to merge these two 117 /// terminator instructions together. 118 /// 119 static bool SafeToMergeTerminators(TerminatorInst *SI1, TerminatorInst *SI2) { 120 if (SI1 == SI2) return false; // Can't merge with self! 121 122 // It is not safe to merge these two switch instructions if they have a common 123 // successor, and if that successor has a PHI node, and if *that* PHI node has 124 // conflicting incoming values from the two switch blocks. 125 BasicBlock *SI1BB = SI1->getParent(); 126 BasicBlock *SI2BB = SI2->getParent(); 127 SmallPtrSet<BasicBlock*, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB)); 128 129 for (succ_iterator I = succ_begin(SI2BB), E = succ_end(SI2BB); I != E; ++I) 130 if (SI1Succs.count(*I)) 131 for (BasicBlock::iterator BBI = (*I)->begin(); 132 isa<PHINode>(BBI); ++BBI) { 133 PHINode *PN = cast<PHINode>(BBI); 134 if (PN->getIncomingValueForBlock(SI1BB) != 135 PN->getIncomingValueForBlock(SI2BB)) 136 return false; 137 } 138 139 return true; 140 } 141 142 /// isProfitableToFoldUnconditional - Return true if it is safe and profitable 143 /// to merge these two terminator instructions together, where SI1 is an 144 /// unconditional branch. PhiNodes will store all PHI nodes in common 145 /// successors. 146 /// 147 static bool isProfitableToFoldUnconditional(BranchInst *SI1, 148 BranchInst *SI2, 149 Instruction *Cond, 150 SmallVectorImpl<PHINode*> &PhiNodes) { 151 if (SI1 == SI2) return false; // Can't merge with self! 152 assert(SI1->isUnconditional() && SI2->isConditional()); 153 154 // We fold the unconditional branch if we can easily update all PHI nodes in 155 // common successors: 156 // 1> We have a constant incoming value for the conditional branch; 157 // 2> We have "Cond" as the incoming value for the unconditional branch; 158 // 3> SI2->getCondition() and Cond have same operands. 159 CmpInst *Ci2 = dyn_cast<CmpInst>(SI2->getCondition()); 160 if (!Ci2) return false; 161 if (!(Cond->getOperand(0) == Ci2->getOperand(0) && 162 Cond->getOperand(1) == Ci2->getOperand(1)) && 163 !(Cond->getOperand(0) == Ci2->getOperand(1) && 164 Cond->getOperand(1) == Ci2->getOperand(0))) 165 return false; 166 167 BasicBlock *SI1BB = SI1->getParent(); 168 BasicBlock *SI2BB = SI2->getParent(); 169 SmallPtrSet<BasicBlock*, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB)); 170 for (succ_iterator I = succ_begin(SI2BB), E = succ_end(SI2BB); I != E; ++I) 171 if (SI1Succs.count(*I)) 172 for (BasicBlock::iterator BBI = (*I)->begin(); 173 isa<PHINode>(BBI); ++BBI) { 174 PHINode *PN = cast<PHINode>(BBI); 175 if (PN->getIncomingValueForBlock(SI1BB) != Cond || 176 !isa<ConstantInt>(PN->getIncomingValueForBlock(SI2BB))) 177 return false; 178 PhiNodes.push_back(PN); 179 } 180 return true; 181 } 182 183 /// AddPredecessorToBlock - Update PHI nodes in Succ to indicate that there will 184 /// now be entries in it from the 'NewPred' block. The values that will be 185 /// flowing into the PHI nodes will be the same as those coming in from 186 /// ExistPred, an existing predecessor of Succ. 187 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred, 188 BasicBlock *ExistPred) { 189 if (!isa<PHINode>(Succ->begin())) return; // Quick exit if nothing to do 190 191 PHINode *PN; 192 for (BasicBlock::iterator I = Succ->begin(); 193 (PN = dyn_cast<PHINode>(I)); ++I) 194 PN->addIncoming(PN->getIncomingValueForBlock(ExistPred), NewPred); 195 } 196 197 198 /// GetIfCondition - Given a basic block (BB) with two predecessors (and at 199 /// least one PHI node in it), check to see if the merge at this block is due 200 /// to an "if condition". If so, return the boolean condition that determines 201 /// which entry into BB will be taken. Also, return by references the block 202 /// that will be entered from if the condition is true, and the block that will 203 /// be entered if the condition is false. 204 /// 205 /// This does no checking to see if the true/false blocks have large or unsavory 206 /// instructions in them. 207 static Value *GetIfCondition(BasicBlock *BB, BasicBlock *&IfTrue, 208 BasicBlock *&IfFalse) { 209 PHINode *SomePHI = cast<PHINode>(BB->begin()); 210 assert(SomePHI->getNumIncomingValues() == 2 && 211 "Function can only handle blocks with 2 predecessors!"); 212 BasicBlock *Pred1 = SomePHI->getIncomingBlock(0); 213 BasicBlock *Pred2 = SomePHI->getIncomingBlock(1); 214 215 // We can only handle branches. Other control flow will be lowered to 216 // branches if possible anyway. 217 BranchInst *Pred1Br = dyn_cast<BranchInst>(Pred1->getTerminator()); 218 BranchInst *Pred2Br = dyn_cast<BranchInst>(Pred2->getTerminator()); 219 if (Pred1Br == 0 || Pred2Br == 0) 220 return 0; 221 222 // Eliminate code duplication by ensuring that Pred1Br is conditional if 223 // either are. 224 if (Pred2Br->isConditional()) { 225 // If both branches are conditional, we don't have an "if statement". In 226 // reality, we could transform this case, but since the condition will be 227 // required anyway, we stand no chance of eliminating it, so the xform is 228 // probably not profitable. 229 if (Pred1Br->isConditional()) 230 return 0; 231 232 std::swap(Pred1, Pred2); 233 std::swap(Pred1Br, Pred2Br); 234 } 235 236 if (Pred1Br->isConditional()) { 237 // The only thing we have to watch out for here is to make sure that Pred2 238 // doesn't have incoming edges from other blocks. If it does, the condition 239 // doesn't dominate BB. 240 if (Pred2->getSinglePredecessor() == 0) 241 return 0; 242 243 // If we found a conditional branch predecessor, make sure that it branches 244 // to BB and Pred2Br. If it doesn't, this isn't an "if statement". 245 if (Pred1Br->getSuccessor(0) == BB && 246 Pred1Br->getSuccessor(1) == Pred2) { 247 IfTrue = Pred1; 248 IfFalse = Pred2; 249 } else if (Pred1Br->getSuccessor(0) == Pred2 && 250 Pred1Br->getSuccessor(1) == BB) { 251 IfTrue = Pred2; 252 IfFalse = Pred1; 253 } else { 254 // We know that one arm of the conditional goes to BB, so the other must 255 // go somewhere unrelated, and this must not be an "if statement". 256 return 0; 257 } 258 259 return Pred1Br->getCondition(); 260 } 261 262 // Ok, if we got here, both predecessors end with an unconditional branch to 263 // BB. Don't panic! If both blocks only have a single (identical) 264 // predecessor, and THAT is a conditional branch, then we're all ok! 265 BasicBlock *CommonPred = Pred1->getSinglePredecessor(); 266 if (CommonPred == 0 || CommonPred != Pred2->getSinglePredecessor()) 267 return 0; 268 269 // Otherwise, if this is a conditional branch, then we can use it! 270 BranchInst *BI = dyn_cast<BranchInst>(CommonPred->getTerminator()); 271 if (BI == 0) return 0; 272 273 assert(BI->isConditional() && "Two successors but not conditional?"); 274 if (BI->getSuccessor(0) == Pred1) { 275 IfTrue = Pred1; 276 IfFalse = Pred2; 277 } else { 278 IfTrue = Pred2; 279 IfFalse = Pred1; 280 } 281 return BI->getCondition(); 282 } 283 284 /// ComputeSpeculationCost - Compute an abstract "cost" of speculating the 285 /// given instruction, which is assumed to be safe to speculate. 1 means 286 /// cheap, 2 means less cheap, and UINT_MAX means prohibitively expensive. 287 static unsigned ComputeSpeculationCost(const User *I) { 288 assert(isSafeToSpeculativelyExecute(I) && 289 "Instruction is not safe to speculatively execute!"); 290 switch (Operator::getOpcode(I)) { 291 default: 292 // In doubt, be conservative. 293 return UINT_MAX; 294 case Instruction::GetElementPtr: 295 // GEPs are cheap if all indices are constant. 296 if (!cast<GEPOperator>(I)->hasAllConstantIndices()) 297 return UINT_MAX; 298 return 1; 299 case Instruction::Load: 300 case Instruction::Add: 301 case Instruction::Sub: 302 case Instruction::And: 303 case Instruction::Or: 304 case Instruction::Xor: 305 case Instruction::Shl: 306 case Instruction::LShr: 307 case Instruction::AShr: 308 case Instruction::ICmp: 309 case Instruction::Trunc: 310 case Instruction::ZExt: 311 case Instruction::SExt: 312 return 1; // These are all cheap. 313 314 case Instruction::Call: 315 case Instruction::Select: 316 return 2; 317 } 318 } 319 320 /// DominatesMergePoint - If we have a merge point of an "if condition" as 321 /// accepted above, return true if the specified value dominates the block. We 322 /// don't handle the true generality of domination here, just a special case 323 /// which works well enough for us. 324 /// 325 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to 326 /// see if V (which must be an instruction) and its recursive operands 327 /// that do not dominate BB have a combined cost lower than CostRemaining and 328 /// are non-trapping. If both are true, the instruction is inserted into the 329 /// set and true is returned. 330 /// 331 /// The cost for most non-trapping instructions is defined as 1 except for 332 /// Select whose cost is 2. 333 /// 334 /// After this function returns, CostRemaining is decreased by the cost of 335 /// V plus its non-dominating operands. If that cost is greater than 336 /// CostRemaining, false is returned and CostRemaining is undefined. 337 static bool DominatesMergePoint(Value *V, BasicBlock *BB, 338 SmallPtrSet<Instruction*, 4> *AggressiveInsts, 339 unsigned &CostRemaining) { 340 Instruction *I = dyn_cast<Instruction>(V); 341 if (!I) { 342 // Non-instructions all dominate instructions, but not all constantexprs 343 // can be executed unconditionally. 344 if (ConstantExpr *C = dyn_cast<ConstantExpr>(V)) 345 if (C->canTrap()) 346 return false; 347 return true; 348 } 349 BasicBlock *PBB = I->getParent(); 350 351 // We don't want to allow weird loops that might have the "if condition" in 352 // the bottom of this block. 353 if (PBB == BB) return false; 354 355 // If this instruction is defined in a block that contains an unconditional 356 // branch to BB, then it must be in the 'conditional' part of the "if 357 // statement". If not, it definitely dominates the region. 358 BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator()); 359 if (BI == 0 || BI->isConditional() || BI->getSuccessor(0) != BB) 360 return true; 361 362 // If we aren't allowing aggressive promotion anymore, then don't consider 363 // instructions in the 'if region'. 364 if (AggressiveInsts == 0) return false; 365 366 // If we have seen this instruction before, don't count it again. 367 if (AggressiveInsts->count(I)) return true; 368 369 // Okay, it looks like the instruction IS in the "condition". Check to 370 // see if it's a cheap instruction to unconditionally compute, and if it 371 // only uses stuff defined outside of the condition. If so, hoist it out. 372 if (!isSafeToSpeculativelyExecute(I)) 373 return false; 374 375 unsigned Cost = ComputeSpeculationCost(I); 376 377 if (Cost > CostRemaining) 378 return false; 379 380 CostRemaining -= Cost; 381 382 // Okay, we can only really hoist these out if their operands do 383 // not take us over the cost threshold. 384 for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) 385 if (!DominatesMergePoint(*i, BB, AggressiveInsts, CostRemaining)) 386 return false; 387 // Okay, it's safe to do this! Remember this instruction. 388 AggressiveInsts->insert(I); 389 return true; 390 } 391 392 /// GetConstantInt - Extract ConstantInt from value, looking through IntToPtr 393 /// and PointerNullValue. Return NULL if value is not a constant int. 394 static ConstantInt *GetConstantInt(Value *V, const DataLayout *TD) { 395 // Normal constant int. 396 ConstantInt *CI = dyn_cast<ConstantInt>(V); 397 if (CI || !TD || !isa<Constant>(V) || !V->getType()->isPointerTy()) 398 return CI; 399 400 // This is some kind of pointer constant. Turn it into a pointer-sized 401 // ConstantInt if possible. 402 IntegerType *PtrTy = cast<IntegerType>(TD->getIntPtrType(V->getType())); 403 404 // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*). 405 if (isa<ConstantPointerNull>(V)) 406 return ConstantInt::get(PtrTy, 0); 407 408 // IntToPtr const int. 409 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 410 if (CE->getOpcode() == Instruction::IntToPtr) 411 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) { 412 // The constant is very likely to have the right type already. 413 if (CI->getType() == PtrTy) 414 return CI; 415 else 416 return cast<ConstantInt> 417 (ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false)); 418 } 419 return 0; 420 } 421 422 /// GatherConstantCompares - Given a potentially 'or'd or 'and'd together 423 /// collection of icmp eq/ne instructions that compare a value against a 424 /// constant, return the value being compared, and stick the constant into the 425 /// Values vector. 426 static Value * 427 GatherConstantCompares(Value *V, std::vector<ConstantInt*> &Vals, Value *&Extra, 428 const DataLayout *TD, bool isEQ, unsigned &UsedICmps) { 429 Instruction *I = dyn_cast<Instruction>(V); 430 if (I == 0) return 0; 431 432 // If this is an icmp against a constant, handle this as one of the cases. 433 if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) { 434 if (ConstantInt *C = GetConstantInt(I->getOperand(1), TD)) { 435 if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ:ICmpInst::ICMP_NE)) { 436 UsedICmps++; 437 Vals.push_back(C); 438 return I->getOperand(0); 439 } 440 441 // If we have "x ult 3" comparison, for example, then we can add 0,1,2 to 442 // the set. 443 ConstantRange Span = 444 ConstantRange::makeICmpRegion(ICI->getPredicate(), C->getValue()); 445 446 // If this is an and/!= check then we want to optimize "x ugt 2" into 447 // x != 0 && x != 1. 448 if (!isEQ) 449 Span = Span.inverse(); 450 451 // If there are a ton of values, we don't want to make a ginormous switch. 452 if (Span.getSetSize().ugt(8) || Span.isEmptySet()) 453 return 0; 454 455 for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp) 456 Vals.push_back(ConstantInt::get(V->getContext(), Tmp)); 457 UsedICmps++; 458 return I->getOperand(0); 459 } 460 return 0; 461 } 462 463 // Otherwise, we can only handle an | or &, depending on isEQ. 464 if (I->getOpcode() != (isEQ ? Instruction::Or : Instruction::And)) 465 return 0; 466 467 unsigned NumValsBeforeLHS = Vals.size(); 468 unsigned UsedICmpsBeforeLHS = UsedICmps; 469 if (Value *LHS = GatherConstantCompares(I->getOperand(0), Vals, Extra, TD, 470 isEQ, UsedICmps)) { 471 unsigned NumVals = Vals.size(); 472 unsigned UsedICmpsBeforeRHS = UsedICmps; 473 if (Value *RHS = GatherConstantCompares(I->getOperand(1), Vals, Extra, TD, 474 isEQ, UsedICmps)) { 475 if (LHS == RHS) 476 return LHS; 477 Vals.resize(NumVals); 478 UsedICmps = UsedICmpsBeforeRHS; 479 } 480 481 // The RHS of the or/and can't be folded in and we haven't used "Extra" yet, 482 // set it and return success. 483 if (Extra == 0 || Extra == I->getOperand(1)) { 484 Extra = I->getOperand(1); 485 return LHS; 486 } 487 488 Vals.resize(NumValsBeforeLHS); 489 UsedICmps = UsedICmpsBeforeLHS; 490 return 0; 491 } 492 493 // If the LHS can't be folded in, but Extra is available and RHS can, try to 494 // use LHS as Extra. 495 if (Extra == 0 || Extra == I->getOperand(0)) { 496 Value *OldExtra = Extra; 497 Extra = I->getOperand(0); 498 if (Value *RHS = GatherConstantCompares(I->getOperand(1), Vals, Extra, TD, 499 isEQ, UsedICmps)) 500 return RHS; 501 assert(Vals.size() == NumValsBeforeLHS); 502 Extra = OldExtra; 503 } 504 505 return 0; 506 } 507 508 static void EraseTerminatorInstAndDCECond(TerminatorInst *TI) { 509 Instruction *Cond = 0; 510 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 511 Cond = dyn_cast<Instruction>(SI->getCondition()); 512 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 513 if (BI->isConditional()) 514 Cond = dyn_cast<Instruction>(BI->getCondition()); 515 } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) { 516 Cond = dyn_cast<Instruction>(IBI->getAddress()); 517 } 518 519 TI->eraseFromParent(); 520 if (Cond) RecursivelyDeleteTriviallyDeadInstructions(Cond); 521 } 522 523 /// isValueEqualityComparison - Return true if the specified terminator checks 524 /// to see if a value is equal to constant integer value. 525 Value *SimplifyCFGOpt::isValueEqualityComparison(TerminatorInst *TI) { 526 Value *CV = 0; 527 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 528 // Do not permit merging of large switch instructions into their 529 // predecessors unless there is only one predecessor. 530 if (SI->getNumSuccessors()*std::distance(pred_begin(SI->getParent()), 531 pred_end(SI->getParent())) <= 128) 532 CV = SI->getCondition(); 533 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) 534 if (BI->isConditional() && BI->getCondition()->hasOneUse()) 535 if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) 536 if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), TD)) 537 CV = ICI->getOperand(0); 538 539 // Unwrap any lossless ptrtoint cast. 540 if (TD && CV && CV->getType() == TD->getIntPtrType(CV->getContext())) 541 if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) 542 CV = PTII->getOperand(0); 543 return CV; 544 } 545 546 /// GetValueEqualityComparisonCases - Given a value comparison instruction, 547 /// decode all of the 'cases' that it represents and return the 'default' block. 548 BasicBlock *SimplifyCFGOpt:: 549 GetValueEqualityComparisonCases(TerminatorInst *TI, 550 std::vector<ValueEqualityComparisonCase> 551 &Cases) { 552 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 553 Cases.reserve(SI->getNumCases()); 554 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); i != e; ++i) 555 Cases.push_back(ValueEqualityComparisonCase(i.getCaseValue(), 556 i.getCaseSuccessor())); 557 return SI->getDefaultDest(); 558 } 559 560 BranchInst *BI = cast<BranchInst>(TI); 561 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 562 BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE); 563 Cases.push_back(ValueEqualityComparisonCase(GetConstantInt(ICI->getOperand(1), 564 TD), 565 Succ)); 566 return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ); 567 } 568 569 570 /// EliminateBlockCases - Given a vector of bb/value pairs, remove any entries 571 /// in the list that match the specified block. 572 static void EliminateBlockCases(BasicBlock *BB, 573 std::vector<ValueEqualityComparisonCase> &Cases) { 574 Cases.erase(std::remove(Cases.begin(), Cases.end(), BB), Cases.end()); 575 } 576 577 /// ValuesOverlap - Return true if there are any keys in C1 that exist in C2 as 578 /// well. 579 static bool 580 ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1, 581 std::vector<ValueEqualityComparisonCase > &C2) { 582 std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2; 583 584 // Make V1 be smaller than V2. 585 if (V1->size() > V2->size()) 586 std::swap(V1, V2); 587 588 if (V1->size() == 0) return false; 589 if (V1->size() == 1) { 590 // Just scan V2. 591 ConstantInt *TheVal = (*V1)[0].Value; 592 for (unsigned i = 0, e = V2->size(); i != e; ++i) 593 if (TheVal == (*V2)[i].Value) 594 return true; 595 } 596 597 // Otherwise, just sort both lists and compare element by element. 598 array_pod_sort(V1->begin(), V1->end()); 599 array_pod_sort(V2->begin(), V2->end()); 600 unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size(); 601 while (i1 != e1 && i2 != e2) { 602 if ((*V1)[i1].Value == (*V2)[i2].Value) 603 return true; 604 if ((*V1)[i1].Value < (*V2)[i2].Value) 605 ++i1; 606 else 607 ++i2; 608 } 609 return false; 610 } 611 612 /// SimplifyEqualityComparisonWithOnlyPredecessor - If TI is known to be a 613 /// terminator instruction and its block is known to only have a single 614 /// predecessor block, check to see if that predecessor is also a value 615 /// comparison with the same value, and if that comparison determines the 616 /// outcome of this comparison. If so, simplify TI. This does a very limited 617 /// form of jump threading. 618 bool SimplifyCFGOpt:: 619 SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI, 620 BasicBlock *Pred, 621 IRBuilder<> &Builder) { 622 Value *PredVal = isValueEqualityComparison(Pred->getTerminator()); 623 if (!PredVal) return false; // Not a value comparison in predecessor. 624 625 Value *ThisVal = isValueEqualityComparison(TI); 626 assert(ThisVal && "This isn't a value comparison!!"); 627 if (ThisVal != PredVal) return false; // Different predicates. 628 629 // TODO: Preserve branch weight metadata, similarly to how 630 // FoldValueComparisonIntoPredecessors preserves it. 631 632 // Find out information about when control will move from Pred to TI's block. 633 std::vector<ValueEqualityComparisonCase> PredCases; 634 BasicBlock *PredDef = GetValueEqualityComparisonCases(Pred->getTerminator(), 635 PredCases); 636 EliminateBlockCases(PredDef, PredCases); // Remove default from cases. 637 638 // Find information about how control leaves this block. 639 std::vector<ValueEqualityComparisonCase> ThisCases; 640 BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases); 641 EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases. 642 643 // If TI's block is the default block from Pred's comparison, potentially 644 // simplify TI based on this knowledge. 645 if (PredDef == TI->getParent()) { 646 // If we are here, we know that the value is none of those cases listed in 647 // PredCases. If there are any cases in ThisCases that are in PredCases, we 648 // can simplify TI. 649 if (!ValuesOverlap(PredCases, ThisCases)) 650 return false; 651 652 if (isa<BranchInst>(TI)) { 653 // Okay, one of the successors of this condbr is dead. Convert it to a 654 // uncond br. 655 assert(ThisCases.size() == 1 && "Branch can only have one case!"); 656 // Insert the new branch. 657 Instruction *NI = Builder.CreateBr(ThisDef); 658 (void) NI; 659 660 // Remove PHI node entries for the dead edge. 661 ThisCases[0].Dest->removePredecessor(TI->getParent()); 662 663 DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 664 << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n"); 665 666 EraseTerminatorInstAndDCECond(TI); 667 return true; 668 } 669 670 SwitchInst *SI = cast<SwitchInst>(TI); 671 // Okay, TI has cases that are statically dead, prune them away. 672 SmallPtrSet<Constant*, 16> DeadCases; 673 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 674 DeadCases.insert(PredCases[i].Value); 675 676 DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 677 << "Through successor TI: " << *TI); 678 679 // Collect branch weights into a vector. 680 SmallVector<uint32_t, 8> Weights; 681 MDNode* MD = SI->getMetadata(LLVMContext::MD_prof); 682 bool HasWeight = MD && (MD->getNumOperands() == 2 + SI->getNumCases()); 683 if (HasWeight) 684 for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e; 685 ++MD_i) { 686 ConstantInt* CI = dyn_cast<ConstantInt>(MD->getOperand(MD_i)); 687 assert(CI); 688 Weights.push_back(CI->getValue().getZExtValue()); 689 } 690 for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) { 691 --i; 692 if (DeadCases.count(i.getCaseValue())) { 693 if (HasWeight) { 694 std::swap(Weights[i.getCaseIndex()+1], Weights.back()); 695 Weights.pop_back(); 696 } 697 i.getCaseSuccessor()->removePredecessor(TI->getParent()); 698 SI->removeCase(i); 699 } 700 } 701 if (HasWeight && Weights.size() >= 2) 702 SI->setMetadata(LLVMContext::MD_prof, 703 MDBuilder(SI->getParent()->getContext()). 704 createBranchWeights(Weights)); 705 706 DEBUG(dbgs() << "Leaving: " << *TI << "\n"); 707 return true; 708 } 709 710 // Otherwise, TI's block must correspond to some matched value. Find out 711 // which value (or set of values) this is. 712 ConstantInt *TIV = 0; 713 BasicBlock *TIBB = TI->getParent(); 714 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 715 if (PredCases[i].Dest == TIBB) { 716 if (TIV != 0) 717 return false; // Cannot handle multiple values coming to this block. 718 TIV = PredCases[i].Value; 719 } 720 assert(TIV && "No edge from pred to succ?"); 721 722 // Okay, we found the one constant that our value can be if we get into TI's 723 // BB. Find out which successor will unconditionally be branched to. 724 BasicBlock *TheRealDest = 0; 725 for (unsigned i = 0, e = ThisCases.size(); i != e; ++i) 726 if (ThisCases[i].Value == TIV) { 727 TheRealDest = ThisCases[i].Dest; 728 break; 729 } 730 731 // If not handled by any explicit cases, it is handled by the default case. 732 if (TheRealDest == 0) TheRealDest = ThisDef; 733 734 // Remove PHI node entries for dead edges. 735 BasicBlock *CheckEdge = TheRealDest; 736 for (succ_iterator SI = succ_begin(TIBB), e = succ_end(TIBB); SI != e; ++SI) 737 if (*SI != CheckEdge) 738 (*SI)->removePredecessor(TIBB); 739 else 740 CheckEdge = 0; 741 742 // Insert the new branch. 743 Instruction *NI = Builder.CreateBr(TheRealDest); 744 (void) NI; 745 746 DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 747 << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n"); 748 749 EraseTerminatorInstAndDCECond(TI); 750 return true; 751 } 752 753 namespace { 754 /// ConstantIntOrdering - This class implements a stable ordering of constant 755 /// integers that does not depend on their address. This is important for 756 /// applications that sort ConstantInt's to ensure uniqueness. 757 struct ConstantIntOrdering { 758 bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const { 759 return LHS->getValue().ult(RHS->getValue()); 760 } 761 }; 762 } 763 764 static int ConstantIntSortPredicate(const void *P1, const void *P2) { 765 const ConstantInt *LHS = *(const ConstantInt*const*)P1; 766 const ConstantInt *RHS = *(const ConstantInt*const*)P2; 767 if (LHS->getValue().ult(RHS->getValue())) 768 return 1; 769 if (LHS->getValue() == RHS->getValue()) 770 return 0; 771 return -1; 772 } 773 774 static inline bool HasBranchWeights(const Instruction* I) { 775 MDNode* ProfMD = I->getMetadata(LLVMContext::MD_prof); 776 if (ProfMD && ProfMD->getOperand(0)) 777 if (MDString* MDS = dyn_cast<MDString>(ProfMD->getOperand(0))) 778 return MDS->getString().equals("branch_weights"); 779 780 return false; 781 } 782 783 /// Get Weights of a given TerminatorInst, the default weight is at the front 784 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight 785 /// metadata. 786 static void GetBranchWeights(TerminatorInst *TI, 787 SmallVectorImpl<uint64_t> &Weights) { 788 MDNode* MD = TI->getMetadata(LLVMContext::MD_prof); 789 assert(MD); 790 for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) { 791 ConstantInt* CI = dyn_cast<ConstantInt>(MD->getOperand(i)); 792 assert(CI); 793 Weights.push_back(CI->getValue().getZExtValue()); 794 } 795 796 // If TI is a conditional eq, the default case is the false case, 797 // and the corresponding branch-weight data is at index 2. We swap the 798 // default weight to be the first entry. 799 if (BranchInst* BI = dyn_cast<BranchInst>(TI)) { 800 assert(Weights.size() == 2); 801 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 802 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 803 std::swap(Weights.front(), Weights.back()); 804 } 805 } 806 807 /// Sees if any of the weights are too big for a uint32_t, and halves all the 808 /// weights if any are. 809 static void FitWeights(MutableArrayRef<uint64_t> Weights) { 810 bool Halve = false; 811 for (unsigned i = 0; i < Weights.size(); ++i) 812 if (Weights[i] > UINT_MAX) { 813 Halve = true; 814 break; 815 } 816 817 if (! Halve) 818 return; 819 820 for (unsigned i = 0; i < Weights.size(); ++i) 821 Weights[i] /= 2; 822 } 823 824 /// FoldValueComparisonIntoPredecessors - The specified terminator is a value 825 /// equality comparison instruction (either a switch or a branch on "X == c"). 826 /// See if any of the predecessors of the terminator block are value comparisons 827 /// on the same value. If so, and if safe to do so, fold them together. 828 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(TerminatorInst *TI, 829 IRBuilder<> &Builder) { 830 BasicBlock *BB = TI->getParent(); 831 Value *CV = isValueEqualityComparison(TI); // CondVal 832 assert(CV && "Not a comparison?"); 833 bool Changed = false; 834 835 SmallVector<BasicBlock*, 16> Preds(pred_begin(BB), pred_end(BB)); 836 while (!Preds.empty()) { 837 BasicBlock *Pred = Preds.pop_back_val(); 838 839 // See if the predecessor is a comparison with the same value. 840 TerminatorInst *PTI = Pred->getTerminator(); 841 Value *PCV = isValueEqualityComparison(PTI); // PredCondVal 842 843 if (PCV == CV && SafeToMergeTerminators(TI, PTI)) { 844 // Figure out which 'cases' to copy from SI to PSI. 845 std::vector<ValueEqualityComparisonCase> BBCases; 846 BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases); 847 848 std::vector<ValueEqualityComparisonCase> PredCases; 849 BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases); 850 851 // Based on whether the default edge from PTI goes to BB or not, fill in 852 // PredCases and PredDefault with the new switch cases we would like to 853 // build. 854 SmallVector<BasicBlock*, 8> NewSuccessors; 855 856 // Update the branch weight metadata along the way 857 SmallVector<uint64_t, 8> Weights; 858 bool PredHasWeights = HasBranchWeights(PTI); 859 bool SuccHasWeights = HasBranchWeights(TI); 860 861 if (PredHasWeights) { 862 GetBranchWeights(PTI, Weights); 863 // branch-weight metadata is inconsistent here. 864 if (Weights.size() != 1 + PredCases.size()) 865 PredHasWeights = SuccHasWeights = false; 866 } else if (SuccHasWeights) 867 // If there are no predecessor weights but there are successor weights, 868 // populate Weights with 1, which will later be scaled to the sum of 869 // successor's weights 870 Weights.assign(1 + PredCases.size(), 1); 871 872 SmallVector<uint64_t, 8> SuccWeights; 873 if (SuccHasWeights) { 874 GetBranchWeights(TI, SuccWeights); 875 // branch-weight metadata is inconsistent here. 876 if (SuccWeights.size() != 1 + BBCases.size()) 877 PredHasWeights = SuccHasWeights = false; 878 } else if (PredHasWeights) 879 SuccWeights.assign(1 + BBCases.size(), 1); 880 881 if (PredDefault == BB) { 882 // If this is the default destination from PTI, only the edges in TI 883 // that don't occur in PTI, or that branch to BB will be activated. 884 std::set<ConstantInt*, ConstantIntOrdering> PTIHandled; 885 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 886 if (PredCases[i].Dest != BB) 887 PTIHandled.insert(PredCases[i].Value); 888 else { 889 // The default destination is BB, we don't need explicit targets. 890 std::swap(PredCases[i], PredCases.back()); 891 892 if (PredHasWeights || SuccHasWeights) { 893 // Increase weight for the default case. 894 Weights[0] += Weights[i+1]; 895 std::swap(Weights[i+1], Weights.back()); 896 Weights.pop_back(); 897 } 898 899 PredCases.pop_back(); 900 --i; --e; 901 } 902 903 // Reconstruct the new switch statement we will be building. 904 if (PredDefault != BBDefault) { 905 PredDefault->removePredecessor(Pred); 906 PredDefault = BBDefault; 907 NewSuccessors.push_back(BBDefault); 908 } 909 910 unsigned CasesFromPred = Weights.size(); 911 uint64_t ValidTotalSuccWeight = 0; 912 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 913 if (!PTIHandled.count(BBCases[i].Value) && 914 BBCases[i].Dest != BBDefault) { 915 PredCases.push_back(BBCases[i]); 916 NewSuccessors.push_back(BBCases[i].Dest); 917 if (SuccHasWeights || PredHasWeights) { 918 // The default weight is at index 0, so weight for the ith case 919 // should be at index i+1. Scale the cases from successor by 920 // PredDefaultWeight (Weights[0]). 921 Weights.push_back(Weights[0] * SuccWeights[i+1]); 922 ValidTotalSuccWeight += SuccWeights[i+1]; 923 } 924 } 925 926 if (SuccHasWeights || PredHasWeights) { 927 ValidTotalSuccWeight += SuccWeights[0]; 928 // Scale the cases from predecessor by ValidTotalSuccWeight. 929 for (unsigned i = 1; i < CasesFromPred; ++i) 930 Weights[i] *= ValidTotalSuccWeight; 931 // Scale the default weight by SuccDefaultWeight (SuccWeights[0]). 932 Weights[0] *= SuccWeights[0]; 933 } 934 } else { 935 // If this is not the default destination from PSI, only the edges 936 // in SI that occur in PSI with a destination of BB will be 937 // activated. 938 std::set<ConstantInt*, ConstantIntOrdering> PTIHandled; 939 std::map<ConstantInt*, uint64_t> WeightsForHandled; 940 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 941 if (PredCases[i].Dest == BB) { 942 PTIHandled.insert(PredCases[i].Value); 943 944 if (PredHasWeights || SuccHasWeights) { 945 WeightsForHandled[PredCases[i].Value] = Weights[i+1]; 946 std::swap(Weights[i+1], Weights.back()); 947 Weights.pop_back(); 948 } 949 950 std::swap(PredCases[i], PredCases.back()); 951 PredCases.pop_back(); 952 --i; --e; 953 } 954 955 // Okay, now we know which constants were sent to BB from the 956 // predecessor. Figure out where they will all go now. 957 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 958 if (PTIHandled.count(BBCases[i].Value)) { 959 // If this is one we are capable of getting... 960 if (PredHasWeights || SuccHasWeights) 961 Weights.push_back(WeightsForHandled[BBCases[i].Value]); 962 PredCases.push_back(BBCases[i]); 963 NewSuccessors.push_back(BBCases[i].Dest); 964 PTIHandled.erase(BBCases[i].Value);// This constant is taken care of 965 } 966 967 // If there are any constants vectored to BB that TI doesn't handle, 968 // they must go to the default destination of TI. 969 for (std::set<ConstantInt*, ConstantIntOrdering>::iterator I = 970 PTIHandled.begin(), 971 E = PTIHandled.end(); I != E; ++I) { 972 if (PredHasWeights || SuccHasWeights) 973 Weights.push_back(WeightsForHandled[*I]); 974 PredCases.push_back(ValueEqualityComparisonCase(*I, BBDefault)); 975 NewSuccessors.push_back(BBDefault); 976 } 977 } 978 979 // Okay, at this point, we know which new successor Pred will get. Make 980 // sure we update the number of entries in the PHI nodes for these 981 // successors. 982 for (unsigned i = 0, e = NewSuccessors.size(); i != e; ++i) 983 AddPredecessorToBlock(NewSuccessors[i], Pred, BB); 984 985 Builder.SetInsertPoint(PTI); 986 // Convert pointer to int before we switch. 987 if (CV->getType()->isPointerTy()) { 988 assert(TD && "Cannot switch on pointer without DataLayout"); 989 CV = Builder.CreatePtrToInt(CV, TD->getIntPtrType(CV->getContext()), 990 "magicptr"); 991 } 992 993 // Now that the successors are updated, create the new Switch instruction. 994 SwitchInst *NewSI = Builder.CreateSwitch(CV, PredDefault, 995 PredCases.size()); 996 NewSI->setDebugLoc(PTI->getDebugLoc()); 997 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 998 NewSI->addCase(PredCases[i].Value, PredCases[i].Dest); 999 1000 if (PredHasWeights || SuccHasWeights) { 1001 // Halve the weights if any of them cannot fit in an uint32_t 1002 FitWeights(Weights); 1003 1004 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 1005 1006 NewSI->setMetadata(LLVMContext::MD_prof, 1007 MDBuilder(BB->getContext()). 1008 createBranchWeights(MDWeights)); 1009 } 1010 1011 EraseTerminatorInstAndDCECond(PTI); 1012 1013 // Okay, last check. If BB is still a successor of PSI, then we must 1014 // have an infinite loop case. If so, add an infinitely looping block 1015 // to handle the case to preserve the behavior of the code. 1016 BasicBlock *InfLoopBlock = 0; 1017 for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i) 1018 if (NewSI->getSuccessor(i) == BB) { 1019 if (InfLoopBlock == 0) { 1020 // Insert it at the end of the function, because it's either code, 1021 // or it won't matter if it's hot. :) 1022 InfLoopBlock = BasicBlock::Create(BB->getContext(), 1023 "infloop", BB->getParent()); 1024 BranchInst::Create(InfLoopBlock, InfLoopBlock); 1025 } 1026 NewSI->setSuccessor(i, InfLoopBlock); 1027 } 1028 1029 Changed = true; 1030 } 1031 } 1032 return Changed; 1033 } 1034 1035 // isSafeToHoistInvoke - If we would need to insert a select that uses the 1036 // value of this invoke (comments in HoistThenElseCodeToIf explain why we 1037 // would need to do this), we can't hoist the invoke, as there is nowhere 1038 // to put the select in this case. 1039 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2, 1040 Instruction *I1, Instruction *I2) { 1041 for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) { 1042 PHINode *PN; 1043 for (BasicBlock::iterator BBI = SI->begin(); 1044 (PN = dyn_cast<PHINode>(BBI)); ++BBI) { 1045 Value *BB1V = PN->getIncomingValueForBlock(BB1); 1046 Value *BB2V = PN->getIncomingValueForBlock(BB2); 1047 if (BB1V != BB2V && (BB1V==I1 || BB2V==I2)) { 1048 return false; 1049 } 1050 } 1051 } 1052 return true; 1053 } 1054 1055 /// HoistThenElseCodeToIf - Given a conditional branch that goes to BB1 and 1056 /// BB2, hoist any common code in the two blocks up into the branch block. The 1057 /// caller of this function guarantees that BI's block dominates BB1 and BB2. 1058 static bool HoistThenElseCodeToIf(BranchInst *BI) { 1059 // This does very trivial matching, with limited scanning, to find identical 1060 // instructions in the two blocks. In particular, we don't want to get into 1061 // O(M*N) situations here where M and N are the sizes of BB1 and BB2. As 1062 // such, we currently just scan for obviously identical instructions in an 1063 // identical order. 1064 BasicBlock *BB1 = BI->getSuccessor(0); // The true destination. 1065 BasicBlock *BB2 = BI->getSuccessor(1); // The false destination 1066 1067 BasicBlock::iterator BB1_Itr = BB1->begin(); 1068 BasicBlock::iterator BB2_Itr = BB2->begin(); 1069 1070 Instruction *I1 = BB1_Itr++, *I2 = BB2_Itr++; 1071 // Skip debug info if it is not identical. 1072 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1073 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1074 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1075 while (isa<DbgInfoIntrinsic>(I1)) 1076 I1 = BB1_Itr++; 1077 while (isa<DbgInfoIntrinsic>(I2)) 1078 I2 = BB2_Itr++; 1079 } 1080 if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) || 1081 (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))) 1082 return false; 1083 1084 BasicBlock *BIParent = BI->getParent(); 1085 1086 bool Changed = false; 1087 do { 1088 // If we are hoisting the terminator instruction, don't move one (making a 1089 // broken BB), instead clone it, and remove BI. 1090 if (isa<TerminatorInst>(I1)) 1091 goto HoistTerminator; 1092 1093 // For a normal instruction, we just move one to right before the branch, 1094 // then replace all uses of the other with the first. Finally, we remove 1095 // the now redundant second instruction. 1096 BIParent->getInstList().splice(BI, BB1->getInstList(), I1); 1097 if (!I2->use_empty()) 1098 I2->replaceAllUsesWith(I1); 1099 I1->intersectOptionalDataWith(I2); 1100 I2->eraseFromParent(); 1101 Changed = true; 1102 1103 I1 = BB1_Itr++; 1104 I2 = BB2_Itr++; 1105 // Skip debug info if it is not identical. 1106 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1107 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1108 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1109 while (isa<DbgInfoIntrinsic>(I1)) 1110 I1 = BB1_Itr++; 1111 while (isa<DbgInfoIntrinsic>(I2)) 1112 I2 = BB2_Itr++; 1113 } 1114 } while (I1->isIdenticalToWhenDefined(I2)); 1115 1116 return true; 1117 1118 HoistTerminator: 1119 // It may not be possible to hoist an invoke. 1120 if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) 1121 return Changed; 1122 1123 for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) { 1124 PHINode *PN; 1125 for (BasicBlock::iterator BBI = SI->begin(); 1126 (PN = dyn_cast<PHINode>(BBI)); ++BBI) { 1127 Value *BB1V = PN->getIncomingValueForBlock(BB1); 1128 Value *BB2V = PN->getIncomingValueForBlock(BB2); 1129 if (BB1V == BB2V) 1130 continue; 1131 1132 if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V)) 1133 return Changed; 1134 if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V)) 1135 return Changed; 1136 } 1137 } 1138 1139 // Okay, it is safe to hoist the terminator. 1140 Instruction *NT = I1->clone(); 1141 BIParent->getInstList().insert(BI, NT); 1142 if (!NT->getType()->isVoidTy()) { 1143 I1->replaceAllUsesWith(NT); 1144 I2->replaceAllUsesWith(NT); 1145 NT->takeName(I1); 1146 } 1147 1148 IRBuilder<true, NoFolder> Builder(NT); 1149 // Hoisting one of the terminators from our successor is a great thing. 1150 // Unfortunately, the successors of the if/else blocks may have PHI nodes in 1151 // them. If they do, all PHI entries for BB1/BB2 must agree for all PHI 1152 // nodes, so we insert select instruction to compute the final result. 1153 std::map<std::pair<Value*,Value*>, SelectInst*> InsertedSelects; 1154 for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) { 1155 PHINode *PN; 1156 for (BasicBlock::iterator BBI = SI->begin(); 1157 (PN = dyn_cast<PHINode>(BBI)); ++BBI) { 1158 Value *BB1V = PN->getIncomingValueForBlock(BB1); 1159 Value *BB2V = PN->getIncomingValueForBlock(BB2); 1160 if (BB1V == BB2V) continue; 1161 1162 // These values do not agree. Insert a select instruction before NT 1163 // that determines the right value. 1164 SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)]; 1165 if (SI == 0) 1166 SI = cast<SelectInst> 1167 (Builder.CreateSelect(BI->getCondition(), BB1V, BB2V, 1168 BB1V->getName()+"."+BB2V->getName())); 1169 1170 // Make the PHI node use the select for all incoming values for BB1/BB2 1171 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 1172 if (PN->getIncomingBlock(i) == BB1 || PN->getIncomingBlock(i) == BB2) 1173 PN->setIncomingValue(i, SI); 1174 } 1175 } 1176 1177 // Update any PHI nodes in our new successors. 1178 for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) 1179 AddPredecessorToBlock(*SI, BIParent, BB1); 1180 1181 EraseTerminatorInstAndDCECond(BI); 1182 return true; 1183 } 1184 1185 /// SinkThenElseCodeToEnd - Given an unconditional branch that goes to BBEnd, 1186 /// check whether BBEnd has only two predecessors and the other predecessor 1187 /// ends with an unconditional branch. If it is true, sink any common code 1188 /// in the two predecessors to BBEnd. 1189 static bool SinkThenElseCodeToEnd(BranchInst *BI1) { 1190 assert(BI1->isUnconditional()); 1191 BasicBlock *BB1 = BI1->getParent(); 1192 BasicBlock *BBEnd = BI1->getSuccessor(0); 1193 1194 // Check that BBEnd has two predecessors and the other predecessor ends with 1195 // an unconditional branch. 1196 pred_iterator PI = pred_begin(BBEnd), PE = pred_end(BBEnd); 1197 BasicBlock *Pred0 = *PI++; 1198 if (PI == PE) // Only one predecessor. 1199 return false; 1200 BasicBlock *Pred1 = *PI++; 1201 if (PI != PE) // More than two predecessors. 1202 return false; 1203 BasicBlock *BB2 = (Pred0 == BB1) ? Pred1 : Pred0; 1204 BranchInst *BI2 = dyn_cast<BranchInst>(BB2->getTerminator()); 1205 if (!BI2 || !BI2->isUnconditional()) 1206 return false; 1207 1208 // Gather the PHI nodes in BBEnd. 1209 std::map<Value*, std::pair<Value*, PHINode*> > MapValueFromBB1ToBB2; 1210 Instruction *FirstNonPhiInBBEnd = 0; 1211 for (BasicBlock::iterator I = BBEnd->begin(), E = BBEnd->end(); 1212 I != E; ++I) { 1213 if (PHINode *PN = dyn_cast<PHINode>(I)) { 1214 Value *BB1V = PN->getIncomingValueForBlock(BB1); 1215 Value *BB2V = PN->getIncomingValueForBlock(BB2); 1216 MapValueFromBB1ToBB2[BB1V] = std::make_pair(BB2V, PN); 1217 } else { 1218 FirstNonPhiInBBEnd = &*I; 1219 break; 1220 } 1221 } 1222 if (!FirstNonPhiInBBEnd) 1223 return false; 1224 1225 1226 // This does very trivial matching, with limited scanning, to find identical 1227 // instructions in the two blocks. We scan backward for obviously identical 1228 // instructions in an identical order. 1229 BasicBlock::InstListType::reverse_iterator RI1 = BB1->getInstList().rbegin(), 1230 RE1 = BB1->getInstList().rend(), RI2 = BB2->getInstList().rbegin(), 1231 RE2 = BB2->getInstList().rend(); 1232 // Skip debug info. 1233 while (RI1 != RE1 && isa<DbgInfoIntrinsic>(&*RI1)) ++RI1; 1234 if (RI1 == RE1) 1235 return false; 1236 while (RI2 != RE2 && isa<DbgInfoIntrinsic>(&*RI2)) ++RI2; 1237 if (RI2 == RE2) 1238 return false; 1239 // Skip the unconditional branches. 1240 ++RI1; 1241 ++RI2; 1242 1243 bool Changed = false; 1244 while (RI1 != RE1 && RI2 != RE2) { 1245 // Skip debug info. 1246 while (RI1 != RE1 && isa<DbgInfoIntrinsic>(&*RI1)) ++RI1; 1247 if (RI1 == RE1) 1248 return Changed; 1249 while (RI2 != RE2 && isa<DbgInfoIntrinsic>(&*RI2)) ++RI2; 1250 if (RI2 == RE2) 1251 return Changed; 1252 1253 Instruction *I1 = &*RI1, *I2 = &*RI2; 1254 // I1 and I2 should have a single use in the same PHI node, and they 1255 // perform the same operation. 1256 // Cannot move control-flow-involving, volatile loads, vaarg, etc. 1257 if (isa<PHINode>(I1) || isa<PHINode>(I2) || 1258 isa<TerminatorInst>(I1) || isa<TerminatorInst>(I2) || 1259 isa<LandingPadInst>(I1) || isa<LandingPadInst>(I2) || 1260 isa<AllocaInst>(I1) || isa<AllocaInst>(I2) || 1261 I1->mayHaveSideEffects() || I2->mayHaveSideEffects() || 1262 I1->mayReadOrWriteMemory() || I2->mayReadOrWriteMemory() || 1263 !I1->hasOneUse() || !I2->hasOneUse() || 1264 MapValueFromBB1ToBB2.find(I1) == MapValueFromBB1ToBB2.end() || 1265 MapValueFromBB1ToBB2[I1].first != I2) 1266 return Changed; 1267 1268 // Check whether we should swap the operands of ICmpInst. 1269 ICmpInst *ICmp1 = dyn_cast<ICmpInst>(I1), *ICmp2 = dyn_cast<ICmpInst>(I2); 1270 bool SwapOpnds = false; 1271 if (ICmp1 && ICmp2 && 1272 ICmp1->getOperand(0) != ICmp2->getOperand(0) && 1273 ICmp1->getOperand(1) != ICmp2->getOperand(1) && 1274 (ICmp1->getOperand(0) == ICmp2->getOperand(1) || 1275 ICmp1->getOperand(1) == ICmp2->getOperand(0))) { 1276 ICmp2->swapOperands(); 1277 SwapOpnds = true; 1278 } 1279 if (!I1->isSameOperationAs(I2)) { 1280 if (SwapOpnds) 1281 ICmp2->swapOperands(); 1282 return Changed; 1283 } 1284 1285 // The operands should be either the same or they need to be generated 1286 // with a PHI node after sinking. We only handle the case where there is 1287 // a single pair of different operands. 1288 Value *DifferentOp1 = 0, *DifferentOp2 = 0; 1289 unsigned Op1Idx = 0; 1290 for (unsigned I = 0, E = I1->getNumOperands(); I != E; ++I) { 1291 if (I1->getOperand(I) == I2->getOperand(I)) 1292 continue; 1293 // Early exit if we have more-than one pair of different operands or 1294 // the different operand is already in MapValueFromBB1ToBB2. 1295 // Early exit if we need a PHI node to replace a constant. 1296 if (DifferentOp1 || 1297 MapValueFromBB1ToBB2.find(I1->getOperand(I)) != 1298 MapValueFromBB1ToBB2.end() || 1299 isa<Constant>(I1->getOperand(I)) || 1300 isa<Constant>(I2->getOperand(I))) { 1301 // If we can't sink the instructions, undo the swapping. 1302 if (SwapOpnds) 1303 ICmp2->swapOperands(); 1304 return Changed; 1305 } 1306 DifferentOp1 = I1->getOperand(I); 1307 Op1Idx = I; 1308 DifferentOp2 = I2->getOperand(I); 1309 } 1310 1311 // We insert the pair of different operands to MapValueFromBB1ToBB2 and 1312 // remove (I1, I2) from MapValueFromBB1ToBB2. 1313 if (DifferentOp1) { 1314 PHINode *NewPN = PHINode::Create(DifferentOp1->getType(), 2, 1315 DifferentOp1->getName() + ".sink", 1316 BBEnd->begin()); 1317 MapValueFromBB1ToBB2[DifferentOp1] = std::make_pair(DifferentOp2, NewPN); 1318 // I1 should use NewPN instead of DifferentOp1. 1319 I1->setOperand(Op1Idx, NewPN); 1320 NewPN->addIncoming(DifferentOp1, BB1); 1321 NewPN->addIncoming(DifferentOp2, BB2); 1322 DEBUG(dbgs() << "Create PHI node " << *NewPN << "\n";); 1323 } 1324 PHINode *OldPN = MapValueFromBB1ToBB2[I1].second; 1325 MapValueFromBB1ToBB2.erase(I1); 1326 1327 DEBUG(dbgs() << "SINK common instructions " << *I1 << "\n";); 1328 DEBUG(dbgs() << " " << *I2 << "\n";); 1329 // We need to update RE1 and RE2 if we are going to sink the first 1330 // instruction in the basic block down. 1331 bool UpdateRE1 = (I1 == BB1->begin()), UpdateRE2 = (I2 == BB2->begin()); 1332 // Sink the instruction. 1333 BBEnd->getInstList().splice(FirstNonPhiInBBEnd, BB1->getInstList(), I1); 1334 if (!OldPN->use_empty()) 1335 OldPN->replaceAllUsesWith(I1); 1336 OldPN->eraseFromParent(); 1337 1338 if (!I2->use_empty()) 1339 I2->replaceAllUsesWith(I1); 1340 I1->intersectOptionalDataWith(I2); 1341 I2->eraseFromParent(); 1342 1343 if (UpdateRE1) 1344 RE1 = BB1->getInstList().rend(); 1345 if (UpdateRE2) 1346 RE2 = BB2->getInstList().rend(); 1347 FirstNonPhiInBBEnd = I1; 1348 NumSinkCommons++; 1349 Changed = true; 1350 } 1351 return Changed; 1352 } 1353 1354 /// \brief Determine if we can hoist sink a sole store instruction out of a 1355 /// conditional block. 1356 /// 1357 /// We are looking for code like the following: 1358 /// BrBB: 1359 /// store i32 %add, i32* %arrayidx2 1360 /// ... // No other stores or function calls (we could be calling a memory 1361 /// ... // function). 1362 /// %cmp = icmp ult %x, %y 1363 /// br i1 %cmp, label %EndBB, label %ThenBB 1364 /// ThenBB: 1365 /// store i32 %add5, i32* %arrayidx2 1366 /// br label EndBB 1367 /// EndBB: 1368 /// ... 1369 /// We are going to transform this into: 1370 /// BrBB: 1371 /// store i32 %add, i32* %arrayidx2 1372 /// ... // 1373 /// %cmp = icmp ult %x, %y 1374 /// %add.add5 = select i1 %cmp, i32 %add, %add5 1375 /// store i32 %add.add5, i32* %arrayidx2 1376 /// ... 1377 /// 1378 /// \return The pointer to the value of the previous store if the store can be 1379 /// hoisted into the predecessor block. 0 otherwise. 1380 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB, 1381 BasicBlock *StoreBB, BasicBlock *EndBB) { 1382 StoreInst *StoreToHoist = dyn_cast<StoreInst>(I); 1383 if (!StoreToHoist) 1384 return 0; 1385 1386 // Volatile or atomic. 1387 if (!StoreToHoist->isSimple()) 1388 return 0; 1389 1390 Value *StorePtr = StoreToHoist->getPointerOperand(); 1391 1392 // Look for a store to the same pointer in BrBB. 1393 unsigned MaxNumInstToLookAt = 10; 1394 for (BasicBlock::reverse_iterator RI = BrBB->rbegin(), 1395 RE = BrBB->rend(); RI != RE && (--MaxNumInstToLookAt); ++RI) { 1396 Instruction *CurI = &*RI; 1397 1398 // Could be calling an instruction that effects memory like free(). 1399 if (CurI->mayHaveSideEffects() && !isa<StoreInst>(CurI)) 1400 return 0; 1401 1402 StoreInst *SI = dyn_cast<StoreInst>(CurI); 1403 // Found the previous store make sure it stores to the same location. 1404 if (SI && SI->getPointerOperand() == StorePtr) 1405 // Found the previous store, return its value operand. 1406 return SI->getValueOperand(); 1407 else if (SI) 1408 return 0; // Unknown store. 1409 } 1410 1411 return 0; 1412 } 1413 1414 /// \brief Speculate a conditional basic block flattening the CFG. 1415 /// 1416 /// Note that this is a very risky transform currently. Speculating 1417 /// instructions like this is most often not desirable. Instead, there is an MI 1418 /// pass which can do it with full awareness of the resource constraints. 1419 /// However, some cases are "obvious" and we should do directly. An example of 1420 /// this is speculating a single, reasonably cheap instruction. 1421 /// 1422 /// There is only one distinct advantage to flattening the CFG at the IR level: 1423 /// it makes very common but simplistic optimizations such as are common in 1424 /// instcombine and the DAG combiner more powerful by removing CFG edges and 1425 /// modeling their effects with easier to reason about SSA value graphs. 1426 /// 1427 /// 1428 /// An illustration of this transform is turning this IR: 1429 /// \code 1430 /// BB: 1431 /// %cmp = icmp ult %x, %y 1432 /// br i1 %cmp, label %EndBB, label %ThenBB 1433 /// ThenBB: 1434 /// %sub = sub %x, %y 1435 /// br label BB2 1436 /// EndBB: 1437 /// %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ] 1438 /// ... 1439 /// \endcode 1440 /// 1441 /// Into this IR: 1442 /// \code 1443 /// BB: 1444 /// %cmp = icmp ult %x, %y 1445 /// %sub = sub %x, %y 1446 /// %cond = select i1 %cmp, 0, %sub 1447 /// ... 1448 /// \endcode 1449 /// 1450 /// \returns true if the conditional block is removed. 1451 static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB) { 1452 // Be conservative for now. FP select instruction can often be expensive. 1453 Value *BrCond = BI->getCondition(); 1454 if (isa<FCmpInst>(BrCond)) 1455 return false; 1456 1457 BasicBlock *BB = BI->getParent(); 1458 BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0); 1459 1460 // If ThenBB is actually on the false edge of the conditional branch, remember 1461 // to swap the select operands later. 1462 bool Invert = false; 1463 if (ThenBB != BI->getSuccessor(0)) { 1464 assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?"); 1465 Invert = true; 1466 } 1467 assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block"); 1468 1469 // Keep a count of how many times instructions are used within CondBB when 1470 // they are candidates for sinking into CondBB. Specifically: 1471 // - They are defined in BB, and 1472 // - They have no side effects, and 1473 // - All of their uses are in CondBB. 1474 SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts; 1475 1476 unsigned SpeculationCost = 0; 1477 Value *SpeculatedStoreValue = 0; 1478 StoreInst *SpeculatedStore = 0; 1479 for (BasicBlock::iterator BBI = ThenBB->begin(), 1480 BBE = llvm::prior(ThenBB->end()); 1481 BBI != BBE; ++BBI) { 1482 Instruction *I = BBI; 1483 // Skip debug info. 1484 if (isa<DbgInfoIntrinsic>(I)) 1485 continue; 1486 1487 // Only speculatively execution a single instruction (not counting the 1488 // terminator) for now. 1489 ++SpeculationCost; 1490 if (SpeculationCost > 1) 1491 return false; 1492 1493 // Don't hoist the instruction if it's unsafe or expensive. 1494 if (!isSafeToSpeculativelyExecute(I) && 1495 !(HoistCondStores && 1496 (SpeculatedStoreValue = isSafeToSpeculateStore(I, BB, ThenBB, 1497 EndBB)))) 1498 return false; 1499 if (!SpeculatedStoreValue && 1500 ComputeSpeculationCost(I) > PHINodeFoldingThreshold) 1501 return false; 1502 1503 // Store the store speculation candidate. 1504 if (SpeculatedStoreValue) 1505 SpeculatedStore = cast<StoreInst>(I); 1506 1507 // Do not hoist the instruction if any of its operands are defined but not 1508 // used in BB. The transformation will prevent the operand from 1509 // being sunk into the use block. 1510 for (User::op_iterator i = I->op_begin(), e = I->op_end(); 1511 i != e; ++i) { 1512 Instruction *OpI = dyn_cast<Instruction>(*i); 1513 if (!OpI || OpI->getParent() != BB || 1514 OpI->mayHaveSideEffects()) 1515 continue; // Not a candidate for sinking. 1516 1517 ++SinkCandidateUseCounts[OpI]; 1518 } 1519 } 1520 1521 // Consider any sink candidates which are only used in CondBB as costs for 1522 // speculation. Note, while we iterate over a DenseMap here, we are summing 1523 // and so iteration order isn't significant. 1524 for (SmallDenseMap<Instruction *, unsigned, 4>::iterator I = 1525 SinkCandidateUseCounts.begin(), E = SinkCandidateUseCounts.end(); 1526 I != E; ++I) 1527 if (I->first->getNumUses() == I->second) { 1528 ++SpeculationCost; 1529 if (SpeculationCost > 1) 1530 return false; 1531 } 1532 1533 // Check that the PHI nodes can be converted to selects. 1534 bool HaveRewritablePHIs = false; 1535 for (BasicBlock::iterator I = EndBB->begin(); 1536 PHINode *PN = dyn_cast<PHINode>(I); ++I) { 1537 Value *OrigV = PN->getIncomingValueForBlock(BB); 1538 Value *ThenV = PN->getIncomingValueForBlock(ThenBB); 1539 1540 // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf. 1541 // Skip PHIs which are trivial. 1542 if (ThenV == OrigV) 1543 continue; 1544 1545 HaveRewritablePHIs = true; 1546 ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV); 1547 ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV); 1548 if (!OrigCE && !ThenCE) 1549 continue; // Known safe and cheap. 1550 1551 if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE)) || 1552 (OrigCE && !isSafeToSpeculativelyExecute(OrigCE))) 1553 return false; 1554 unsigned OrigCost = OrigCE ? ComputeSpeculationCost(OrigCE) : 0; 1555 unsigned ThenCost = ThenCE ? ComputeSpeculationCost(ThenCE) : 0; 1556 if (OrigCost + ThenCost > 2 * PHINodeFoldingThreshold) 1557 return false; 1558 1559 // Account for the cost of an unfolded ConstantExpr which could end up 1560 // getting expanded into Instructions. 1561 // FIXME: This doesn't account for how many operations are combined in the 1562 // constant expression. 1563 ++SpeculationCost; 1564 if (SpeculationCost > 1) 1565 return false; 1566 } 1567 1568 // If there are no PHIs to process, bail early. This helps ensure idempotence 1569 // as well. 1570 if (!HaveRewritablePHIs && !(HoistCondStores && SpeculatedStoreValue)) 1571 return false; 1572 1573 // If we get here, we can hoist the instruction and if-convert. 1574 DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";); 1575 1576 // Insert a select of the value of the speculated store. 1577 if (SpeculatedStoreValue) { 1578 IRBuilder<true, NoFolder> Builder(BI); 1579 Value *TrueV = SpeculatedStore->getValueOperand(); 1580 Value *FalseV = SpeculatedStoreValue; 1581 if (Invert) 1582 std::swap(TrueV, FalseV); 1583 Value *S = Builder.CreateSelect(BrCond, TrueV, FalseV, TrueV->getName() + 1584 "." + FalseV->getName()); 1585 SpeculatedStore->setOperand(0, S); 1586 } 1587 1588 // Hoist the instructions. 1589 BB->getInstList().splice(BI, ThenBB->getInstList(), ThenBB->begin(), 1590 llvm::prior(ThenBB->end())); 1591 1592 // Insert selects and rewrite the PHI operands. 1593 IRBuilder<true, NoFolder> Builder(BI); 1594 for (BasicBlock::iterator I = EndBB->begin(); 1595 PHINode *PN = dyn_cast<PHINode>(I); ++I) { 1596 unsigned OrigI = PN->getBasicBlockIndex(BB); 1597 unsigned ThenI = PN->getBasicBlockIndex(ThenBB); 1598 Value *OrigV = PN->getIncomingValue(OrigI); 1599 Value *ThenV = PN->getIncomingValue(ThenI); 1600 1601 // Skip PHIs which are trivial. 1602 if (OrigV == ThenV) 1603 continue; 1604 1605 // Create a select whose true value is the speculatively executed value and 1606 // false value is the preexisting value. Swap them if the branch 1607 // destinations were inverted. 1608 Value *TrueV = ThenV, *FalseV = OrigV; 1609 if (Invert) 1610 std::swap(TrueV, FalseV); 1611 Value *V = Builder.CreateSelect(BrCond, TrueV, FalseV, 1612 TrueV->getName() + "." + FalseV->getName()); 1613 PN->setIncomingValue(OrigI, V); 1614 PN->setIncomingValue(ThenI, V); 1615 } 1616 1617 ++NumSpeculations; 1618 return true; 1619 } 1620 1621 /// BlockIsSimpleEnoughToThreadThrough - Return true if we can thread a branch 1622 /// across this block. 1623 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) { 1624 BranchInst *BI = cast<BranchInst>(BB->getTerminator()); 1625 unsigned Size = 0; 1626 1627 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) { 1628 if (isa<DbgInfoIntrinsic>(BBI)) 1629 continue; 1630 if (Size > 10) return false; // Don't clone large BB's. 1631 ++Size; 1632 1633 // We can only support instructions that do not define values that are 1634 // live outside of the current basic block. 1635 for (Value::use_iterator UI = BBI->use_begin(), E = BBI->use_end(); 1636 UI != E; ++UI) { 1637 Instruction *U = cast<Instruction>(*UI); 1638 if (U->getParent() != BB || isa<PHINode>(U)) return false; 1639 } 1640 1641 // Looks ok, continue checking. 1642 } 1643 1644 return true; 1645 } 1646 1647 /// FoldCondBranchOnPHI - If we have a conditional branch on a PHI node value 1648 /// that is defined in the same block as the branch and if any PHI entries are 1649 /// constants, thread edges corresponding to that entry to be branches to their 1650 /// ultimate destination. 1651 static bool FoldCondBranchOnPHI(BranchInst *BI, const DataLayout *TD) { 1652 BasicBlock *BB = BI->getParent(); 1653 PHINode *PN = dyn_cast<PHINode>(BI->getCondition()); 1654 // NOTE: we currently cannot transform this case if the PHI node is used 1655 // outside of the block. 1656 if (!PN || PN->getParent() != BB || !PN->hasOneUse()) 1657 return false; 1658 1659 // Degenerate case of a single entry PHI. 1660 if (PN->getNumIncomingValues() == 1) { 1661 FoldSingleEntryPHINodes(PN->getParent()); 1662 return true; 1663 } 1664 1665 // Now we know that this block has multiple preds and two succs. 1666 if (!BlockIsSimpleEnoughToThreadThrough(BB)) return false; 1667 1668 // Okay, this is a simple enough basic block. See if any phi values are 1669 // constants. 1670 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1671 ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i)); 1672 if (CB == 0 || !CB->getType()->isIntegerTy(1)) continue; 1673 1674 // Okay, we now know that all edges from PredBB should be revectored to 1675 // branch to RealDest. 1676 BasicBlock *PredBB = PN->getIncomingBlock(i); 1677 BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue()); 1678 1679 if (RealDest == BB) continue; // Skip self loops. 1680 // Skip if the predecessor's terminator is an indirect branch. 1681 if (isa<IndirectBrInst>(PredBB->getTerminator())) continue; 1682 1683 // The dest block might have PHI nodes, other predecessors and other 1684 // difficult cases. Instead of being smart about this, just insert a new 1685 // block that jumps to the destination block, effectively splitting 1686 // the edge we are about to create. 1687 BasicBlock *EdgeBB = BasicBlock::Create(BB->getContext(), 1688 RealDest->getName()+".critedge", 1689 RealDest->getParent(), RealDest); 1690 BranchInst::Create(RealDest, EdgeBB); 1691 1692 // Update PHI nodes. 1693 AddPredecessorToBlock(RealDest, EdgeBB, BB); 1694 1695 // BB may have instructions that are being threaded over. Clone these 1696 // instructions into EdgeBB. We know that there will be no uses of the 1697 // cloned instructions outside of EdgeBB. 1698 BasicBlock::iterator InsertPt = EdgeBB->begin(); 1699 DenseMap<Value*, Value*> TranslateMap; // Track translated values. 1700 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) { 1701 if (PHINode *PN = dyn_cast<PHINode>(BBI)) { 1702 TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB); 1703 continue; 1704 } 1705 // Clone the instruction. 1706 Instruction *N = BBI->clone(); 1707 if (BBI->hasName()) N->setName(BBI->getName()+".c"); 1708 1709 // Update operands due to translation. 1710 for (User::op_iterator i = N->op_begin(), e = N->op_end(); 1711 i != e; ++i) { 1712 DenseMap<Value*, Value*>::iterator PI = TranslateMap.find(*i); 1713 if (PI != TranslateMap.end()) 1714 *i = PI->second; 1715 } 1716 1717 // Check for trivial simplification. 1718 if (Value *V = SimplifyInstruction(N, TD)) { 1719 TranslateMap[BBI] = V; 1720 delete N; // Instruction folded away, don't need actual inst 1721 } else { 1722 // Insert the new instruction into its new home. 1723 EdgeBB->getInstList().insert(InsertPt, N); 1724 if (!BBI->use_empty()) 1725 TranslateMap[BBI] = N; 1726 } 1727 } 1728 1729 // Loop over all of the edges from PredBB to BB, changing them to branch 1730 // to EdgeBB instead. 1731 TerminatorInst *PredBBTI = PredBB->getTerminator(); 1732 for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i) 1733 if (PredBBTI->getSuccessor(i) == BB) { 1734 BB->removePredecessor(PredBB); 1735 PredBBTI->setSuccessor(i, EdgeBB); 1736 } 1737 1738 // Recurse, simplifying any other constants. 1739 return FoldCondBranchOnPHI(BI, TD) | true; 1740 } 1741 1742 return false; 1743 } 1744 1745 /// FoldTwoEntryPHINode - Given a BB that starts with the specified two-entry 1746 /// PHI node, see if we can eliminate it. 1747 static bool FoldTwoEntryPHINode(PHINode *PN, const DataLayout *TD) { 1748 // Ok, this is a two entry PHI node. Check to see if this is a simple "if 1749 // statement", which has a very simple dominance structure. Basically, we 1750 // are trying to find the condition that is being branched on, which 1751 // subsequently causes this merge to happen. We really want control 1752 // dependence information for this check, but simplifycfg can't keep it up 1753 // to date, and this catches most of the cases we care about anyway. 1754 BasicBlock *BB = PN->getParent(); 1755 BasicBlock *IfTrue, *IfFalse; 1756 Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse); 1757 if (!IfCond || 1758 // Don't bother if the branch will be constant folded trivially. 1759 isa<ConstantInt>(IfCond)) 1760 return false; 1761 1762 // Okay, we found that we can merge this two-entry phi node into a select. 1763 // Doing so would require us to fold *all* two entry phi nodes in this block. 1764 // At some point this becomes non-profitable (particularly if the target 1765 // doesn't support cmov's). Only do this transformation if there are two or 1766 // fewer PHI nodes in this block. 1767 unsigned NumPhis = 0; 1768 for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I) 1769 if (NumPhis > 2) 1770 return false; 1771 1772 // Loop over the PHI's seeing if we can promote them all to select 1773 // instructions. While we are at it, keep track of the instructions 1774 // that need to be moved to the dominating block. 1775 SmallPtrSet<Instruction*, 4> AggressiveInsts; 1776 unsigned MaxCostVal0 = PHINodeFoldingThreshold, 1777 MaxCostVal1 = PHINodeFoldingThreshold; 1778 1779 for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) { 1780 PHINode *PN = cast<PHINode>(II++); 1781 if (Value *V = SimplifyInstruction(PN, TD)) { 1782 PN->replaceAllUsesWith(V); 1783 PN->eraseFromParent(); 1784 continue; 1785 } 1786 1787 if (!DominatesMergePoint(PN->getIncomingValue(0), BB, &AggressiveInsts, 1788 MaxCostVal0) || 1789 !DominatesMergePoint(PN->getIncomingValue(1), BB, &AggressiveInsts, 1790 MaxCostVal1)) 1791 return false; 1792 } 1793 1794 // If we folded the first phi, PN dangles at this point. Refresh it. If 1795 // we ran out of PHIs then we simplified them all. 1796 PN = dyn_cast<PHINode>(BB->begin()); 1797 if (PN == 0) return true; 1798 1799 // Don't fold i1 branches on PHIs which contain binary operators. These can 1800 // often be turned into switches and other things. 1801 if (PN->getType()->isIntegerTy(1) && 1802 (isa<BinaryOperator>(PN->getIncomingValue(0)) || 1803 isa<BinaryOperator>(PN->getIncomingValue(1)) || 1804 isa<BinaryOperator>(IfCond))) 1805 return false; 1806 1807 // If we all PHI nodes are promotable, check to make sure that all 1808 // instructions in the predecessor blocks can be promoted as well. If 1809 // not, we won't be able to get rid of the control flow, so it's not 1810 // worth promoting to select instructions. 1811 BasicBlock *DomBlock = 0; 1812 BasicBlock *IfBlock1 = PN->getIncomingBlock(0); 1813 BasicBlock *IfBlock2 = PN->getIncomingBlock(1); 1814 if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) { 1815 IfBlock1 = 0; 1816 } else { 1817 DomBlock = *pred_begin(IfBlock1); 1818 for (BasicBlock::iterator I = IfBlock1->begin();!isa<TerminatorInst>(I);++I) 1819 if (!AggressiveInsts.count(I) && !isa<DbgInfoIntrinsic>(I)) { 1820 // This is not an aggressive instruction that we can promote. 1821 // Because of this, we won't be able to get rid of the control 1822 // flow, so the xform is not worth it. 1823 return false; 1824 } 1825 } 1826 1827 if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) { 1828 IfBlock2 = 0; 1829 } else { 1830 DomBlock = *pred_begin(IfBlock2); 1831 for (BasicBlock::iterator I = IfBlock2->begin();!isa<TerminatorInst>(I);++I) 1832 if (!AggressiveInsts.count(I) && !isa<DbgInfoIntrinsic>(I)) { 1833 // This is not an aggressive instruction that we can promote. 1834 // Because of this, we won't be able to get rid of the control 1835 // flow, so the xform is not worth it. 1836 return false; 1837 } 1838 } 1839 1840 DEBUG(dbgs() << "FOUND IF CONDITION! " << *IfCond << " T: " 1841 << IfTrue->getName() << " F: " << IfFalse->getName() << "\n"); 1842 1843 // If we can still promote the PHI nodes after this gauntlet of tests, 1844 // do all of the PHI's now. 1845 Instruction *InsertPt = DomBlock->getTerminator(); 1846 IRBuilder<true, NoFolder> Builder(InsertPt); 1847 1848 // Move all 'aggressive' instructions, which are defined in the 1849 // conditional parts of the if's up to the dominating block. 1850 if (IfBlock1) 1851 DomBlock->getInstList().splice(InsertPt, 1852 IfBlock1->getInstList(), IfBlock1->begin(), 1853 IfBlock1->getTerminator()); 1854 if (IfBlock2) 1855 DomBlock->getInstList().splice(InsertPt, 1856 IfBlock2->getInstList(), IfBlock2->begin(), 1857 IfBlock2->getTerminator()); 1858 1859 while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) { 1860 // Change the PHI node into a select instruction. 1861 Value *TrueVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse); 1862 Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue); 1863 1864 SelectInst *NV = 1865 cast<SelectInst>(Builder.CreateSelect(IfCond, TrueVal, FalseVal, "")); 1866 PN->replaceAllUsesWith(NV); 1867 NV->takeName(PN); 1868 PN->eraseFromParent(); 1869 } 1870 1871 // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement 1872 // has been flattened. Change DomBlock to jump directly to our new block to 1873 // avoid other simplifycfg's kicking in on the diamond. 1874 TerminatorInst *OldTI = DomBlock->getTerminator(); 1875 Builder.SetInsertPoint(OldTI); 1876 Builder.CreateBr(BB); 1877 OldTI->eraseFromParent(); 1878 return true; 1879 } 1880 1881 /// SimplifyCondBranchToTwoReturns - If we found a conditional branch that goes 1882 /// to two returning blocks, try to merge them together into one return, 1883 /// introducing a select if the return values disagree. 1884 static bool SimplifyCondBranchToTwoReturns(BranchInst *BI, 1885 IRBuilder<> &Builder) { 1886 assert(BI->isConditional() && "Must be a conditional branch"); 1887 BasicBlock *TrueSucc = BI->getSuccessor(0); 1888 BasicBlock *FalseSucc = BI->getSuccessor(1); 1889 ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator()); 1890 ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator()); 1891 1892 // Check to ensure both blocks are empty (just a return) or optionally empty 1893 // with PHI nodes. If there are other instructions, merging would cause extra 1894 // computation on one path or the other. 1895 if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator()) 1896 return false; 1897 if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator()) 1898 return false; 1899 1900 Builder.SetInsertPoint(BI); 1901 // Okay, we found a branch that is going to two return nodes. If 1902 // there is no return value for this function, just change the 1903 // branch into a return. 1904 if (FalseRet->getNumOperands() == 0) { 1905 TrueSucc->removePredecessor(BI->getParent()); 1906 FalseSucc->removePredecessor(BI->getParent()); 1907 Builder.CreateRetVoid(); 1908 EraseTerminatorInstAndDCECond(BI); 1909 return true; 1910 } 1911 1912 // Otherwise, figure out what the true and false return values are 1913 // so we can insert a new select instruction. 1914 Value *TrueValue = TrueRet->getReturnValue(); 1915 Value *FalseValue = FalseRet->getReturnValue(); 1916 1917 // Unwrap any PHI nodes in the return blocks. 1918 if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue)) 1919 if (TVPN->getParent() == TrueSucc) 1920 TrueValue = TVPN->getIncomingValueForBlock(BI->getParent()); 1921 if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue)) 1922 if (FVPN->getParent() == FalseSucc) 1923 FalseValue = FVPN->getIncomingValueForBlock(BI->getParent()); 1924 1925 // In order for this transformation to be safe, we must be able to 1926 // unconditionally execute both operands to the return. This is 1927 // normally the case, but we could have a potentially-trapping 1928 // constant expression that prevents this transformation from being 1929 // safe. 1930 if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue)) 1931 if (TCV->canTrap()) 1932 return false; 1933 if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue)) 1934 if (FCV->canTrap()) 1935 return false; 1936 1937 // Okay, we collected all the mapped values and checked them for sanity, and 1938 // defined to really do this transformation. First, update the CFG. 1939 TrueSucc->removePredecessor(BI->getParent()); 1940 FalseSucc->removePredecessor(BI->getParent()); 1941 1942 // Insert select instructions where needed. 1943 Value *BrCond = BI->getCondition(); 1944 if (TrueValue) { 1945 // Insert a select if the results differ. 1946 if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) { 1947 } else if (isa<UndefValue>(TrueValue)) { 1948 TrueValue = FalseValue; 1949 } else { 1950 TrueValue = Builder.CreateSelect(BrCond, TrueValue, 1951 FalseValue, "retval"); 1952 } 1953 } 1954 1955 Value *RI = !TrueValue ? 1956 Builder.CreateRetVoid() : Builder.CreateRet(TrueValue); 1957 1958 (void) RI; 1959 1960 DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:" 1961 << "\n " << *BI << "NewRet = " << *RI 1962 << "TRUEBLOCK: " << *TrueSucc << "FALSEBLOCK: "<< *FalseSucc); 1963 1964 EraseTerminatorInstAndDCECond(BI); 1965 1966 return true; 1967 } 1968 1969 /// ExtractBranchMetadata - Given a conditional BranchInstruction, retrieve the 1970 /// probabilities of the branch taking each edge. Fills in the two APInt 1971 /// parameters and return true, or returns false if no or invalid metadata was 1972 /// found. 1973 static bool ExtractBranchMetadata(BranchInst *BI, 1974 uint64_t &ProbTrue, uint64_t &ProbFalse) { 1975 assert(BI->isConditional() && 1976 "Looking for probabilities on unconditional branch?"); 1977 MDNode *ProfileData = BI->getMetadata(LLVMContext::MD_prof); 1978 if (!ProfileData || ProfileData->getNumOperands() != 3) return false; 1979 ConstantInt *CITrue = dyn_cast<ConstantInt>(ProfileData->getOperand(1)); 1980 ConstantInt *CIFalse = dyn_cast<ConstantInt>(ProfileData->getOperand(2)); 1981 if (!CITrue || !CIFalse) return false; 1982 ProbTrue = CITrue->getValue().getZExtValue(); 1983 ProbFalse = CIFalse->getValue().getZExtValue(); 1984 return true; 1985 } 1986 1987 /// checkCSEInPredecessor - Return true if the given instruction is available 1988 /// in its predecessor block. If yes, the instruction will be removed. 1989 /// 1990 static bool checkCSEInPredecessor(Instruction *Inst, BasicBlock *PB) { 1991 if (!isa<BinaryOperator>(Inst) && !isa<CmpInst>(Inst)) 1992 return false; 1993 for (BasicBlock::iterator I = PB->begin(), E = PB->end(); I != E; I++) { 1994 Instruction *PBI = &*I; 1995 // Check whether Inst and PBI generate the same value. 1996 if (Inst->isIdenticalTo(PBI)) { 1997 Inst->replaceAllUsesWith(PBI); 1998 Inst->eraseFromParent(); 1999 return true; 2000 } 2001 } 2002 return false; 2003 } 2004 2005 /// FoldBranchToCommonDest - If this basic block is simple enough, and if a 2006 /// predecessor branches to us and one of our successors, fold the block into 2007 /// the predecessor and use logical operations to pick the right destination. 2008 bool llvm::FoldBranchToCommonDest(BranchInst *BI) { 2009 BasicBlock *BB = BI->getParent(); 2010 2011 Instruction *Cond = 0; 2012 if (BI->isConditional()) 2013 Cond = dyn_cast<Instruction>(BI->getCondition()); 2014 else { 2015 // For unconditional branch, check for a simple CFG pattern, where 2016 // BB has a single predecessor and BB's successor is also its predecessor's 2017 // successor. If such pattern exisits, check for CSE between BB and its 2018 // predecessor. 2019 if (BasicBlock *PB = BB->getSinglePredecessor()) 2020 if (BranchInst *PBI = dyn_cast<BranchInst>(PB->getTerminator())) 2021 if (PBI->isConditional() && 2022 (BI->getSuccessor(0) == PBI->getSuccessor(0) || 2023 BI->getSuccessor(0) == PBI->getSuccessor(1))) { 2024 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); 2025 I != E; ) { 2026 Instruction *Curr = I++; 2027 if (isa<CmpInst>(Curr)) { 2028 Cond = Curr; 2029 break; 2030 } 2031 // Quit if we can't remove this instruction. 2032 if (!checkCSEInPredecessor(Curr, PB)) 2033 return false; 2034 } 2035 } 2036 2037 if (Cond == 0) 2038 return false; 2039 } 2040 2041 if (Cond == 0 || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) || 2042 Cond->getParent() != BB || !Cond->hasOneUse()) 2043 return false; 2044 2045 // Only allow this if the condition is a simple instruction that can be 2046 // executed unconditionally. It must be in the same block as the branch, and 2047 // must be at the front of the block. 2048 BasicBlock::iterator FrontIt = BB->front(); 2049 2050 // Ignore dbg intrinsics. 2051 while (isa<DbgInfoIntrinsic>(FrontIt)) ++FrontIt; 2052 2053 // Allow a single instruction to be hoisted in addition to the compare 2054 // that feeds the branch. We later ensure that any values that _it_ uses 2055 // were also live in the predecessor, so that we don't unnecessarily create 2056 // register pressure or inhibit out-of-order execution. 2057 Instruction *BonusInst = 0; 2058 if (&*FrontIt != Cond && 2059 FrontIt->hasOneUse() && *FrontIt->use_begin() == Cond && 2060 isSafeToSpeculativelyExecute(FrontIt)) { 2061 BonusInst = &*FrontIt; 2062 ++FrontIt; 2063 2064 // Ignore dbg intrinsics. 2065 while (isa<DbgInfoIntrinsic>(FrontIt)) ++FrontIt; 2066 } 2067 2068 // Only a single bonus inst is allowed. 2069 if (&*FrontIt != Cond) 2070 return false; 2071 2072 // Make sure the instruction after the condition is the cond branch. 2073 BasicBlock::iterator CondIt = Cond; ++CondIt; 2074 2075 // Ingore dbg intrinsics. 2076 while (isa<DbgInfoIntrinsic>(CondIt)) ++CondIt; 2077 2078 if (&*CondIt != BI) 2079 return false; 2080 2081 // Cond is known to be a compare or binary operator. Check to make sure that 2082 // neither operand is a potentially-trapping constant expression. 2083 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0))) 2084 if (CE->canTrap()) 2085 return false; 2086 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1))) 2087 if (CE->canTrap()) 2088 return false; 2089 2090 // Finally, don't infinitely unroll conditional loops. 2091 BasicBlock *TrueDest = BI->getSuccessor(0); 2092 BasicBlock *FalseDest = (BI->isConditional()) ? BI->getSuccessor(1) : 0; 2093 if (TrueDest == BB || FalseDest == BB) 2094 return false; 2095 2096 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 2097 BasicBlock *PredBlock = *PI; 2098 BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator()); 2099 2100 // Check that we have two conditional branches. If there is a PHI node in 2101 // the common successor, verify that the same value flows in from both 2102 // blocks. 2103 SmallVector<PHINode*, 4> PHIs; 2104 if (PBI == 0 || PBI->isUnconditional() || 2105 (BI->isConditional() && 2106 !SafeToMergeTerminators(BI, PBI)) || 2107 (!BI->isConditional() && 2108 !isProfitableToFoldUnconditional(BI, PBI, Cond, PHIs))) 2109 continue; 2110 2111 // Determine if the two branches share a common destination. 2112 Instruction::BinaryOps Opc = Instruction::BinaryOpsEnd; 2113 bool InvertPredCond = false; 2114 2115 if (BI->isConditional()) { 2116 if (PBI->getSuccessor(0) == TrueDest) 2117 Opc = Instruction::Or; 2118 else if (PBI->getSuccessor(1) == FalseDest) 2119 Opc = Instruction::And; 2120 else if (PBI->getSuccessor(0) == FalseDest) 2121 Opc = Instruction::And, InvertPredCond = true; 2122 else if (PBI->getSuccessor(1) == TrueDest) 2123 Opc = Instruction::Or, InvertPredCond = true; 2124 else 2125 continue; 2126 } else { 2127 if (PBI->getSuccessor(0) != TrueDest && PBI->getSuccessor(1) != TrueDest) 2128 continue; 2129 } 2130 2131 // Ensure that any values used in the bonus instruction are also used 2132 // by the terminator of the predecessor. This means that those values 2133 // must already have been resolved, so we won't be inhibiting the 2134 // out-of-order core by speculating them earlier. 2135 if (BonusInst) { 2136 // Collect the values used by the bonus inst 2137 SmallPtrSet<Value*, 4> UsedValues; 2138 for (Instruction::op_iterator OI = BonusInst->op_begin(), 2139 OE = BonusInst->op_end(); OI != OE; ++OI) { 2140 Value *V = *OI; 2141 if (!isa<Constant>(V)) 2142 UsedValues.insert(V); 2143 } 2144 2145 SmallVector<std::pair<Value*, unsigned>, 4> Worklist; 2146 Worklist.push_back(std::make_pair(PBI->getOperand(0), 0)); 2147 2148 // Walk up to four levels back up the use-def chain of the predecessor's 2149 // terminator to see if all those values were used. The choice of four 2150 // levels is arbitrary, to provide a compile-time-cost bound. 2151 while (!Worklist.empty()) { 2152 std::pair<Value*, unsigned> Pair = Worklist.back(); 2153 Worklist.pop_back(); 2154 2155 if (Pair.second >= 4) continue; 2156 UsedValues.erase(Pair.first); 2157 if (UsedValues.empty()) break; 2158 2159 if (Instruction *I = dyn_cast<Instruction>(Pair.first)) { 2160 for (Instruction::op_iterator OI = I->op_begin(), OE = I->op_end(); 2161 OI != OE; ++OI) 2162 Worklist.push_back(std::make_pair(OI->get(), Pair.second+1)); 2163 } 2164 } 2165 2166 if (!UsedValues.empty()) return false; 2167 } 2168 2169 DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB); 2170 IRBuilder<> Builder(PBI); 2171 2172 // If we need to invert the condition in the pred block to match, do so now. 2173 if (InvertPredCond) { 2174 Value *NewCond = PBI->getCondition(); 2175 2176 if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) { 2177 CmpInst *CI = cast<CmpInst>(NewCond); 2178 CI->setPredicate(CI->getInversePredicate()); 2179 } else { 2180 NewCond = Builder.CreateNot(NewCond, 2181 PBI->getCondition()->getName()+".not"); 2182 } 2183 2184 PBI->setCondition(NewCond); 2185 PBI->swapSuccessors(); 2186 } 2187 2188 // If we have a bonus inst, clone it into the predecessor block. 2189 Instruction *NewBonus = 0; 2190 if (BonusInst) { 2191 NewBonus = BonusInst->clone(); 2192 PredBlock->getInstList().insert(PBI, NewBonus); 2193 NewBonus->takeName(BonusInst); 2194 BonusInst->setName(BonusInst->getName()+".old"); 2195 } 2196 2197 // Clone Cond into the predecessor basic block, and or/and the 2198 // two conditions together. 2199 Instruction *New = Cond->clone(); 2200 if (BonusInst) New->replaceUsesOfWith(BonusInst, NewBonus); 2201 PredBlock->getInstList().insert(PBI, New); 2202 New->takeName(Cond); 2203 Cond->setName(New->getName()+".old"); 2204 2205 if (BI->isConditional()) { 2206 Instruction *NewCond = 2207 cast<Instruction>(Builder.CreateBinOp(Opc, PBI->getCondition(), 2208 New, "or.cond")); 2209 PBI->setCondition(NewCond); 2210 2211 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 2212 bool PredHasWeights = ExtractBranchMetadata(PBI, PredTrueWeight, 2213 PredFalseWeight); 2214 bool SuccHasWeights = ExtractBranchMetadata(BI, SuccTrueWeight, 2215 SuccFalseWeight); 2216 SmallVector<uint64_t, 8> NewWeights; 2217 2218 if (PBI->getSuccessor(0) == BB) { 2219 if (PredHasWeights && SuccHasWeights) { 2220 // PBI: br i1 %x, BB, FalseDest 2221 // BI: br i1 %y, TrueDest, FalseDest 2222 //TrueWeight is TrueWeight for PBI * TrueWeight for BI. 2223 NewWeights.push_back(PredTrueWeight * SuccTrueWeight); 2224 //FalseWeight is FalseWeight for PBI * TotalWeight for BI + 2225 // TrueWeight for PBI * FalseWeight for BI. 2226 // We assume that total weights of a BranchInst can fit into 32 bits. 2227 // Therefore, we will not have overflow using 64-bit arithmetic. 2228 NewWeights.push_back(PredFalseWeight * (SuccFalseWeight + 2229 SuccTrueWeight) + PredTrueWeight * SuccFalseWeight); 2230 } 2231 AddPredecessorToBlock(TrueDest, PredBlock, BB); 2232 PBI->setSuccessor(0, TrueDest); 2233 } 2234 if (PBI->getSuccessor(1) == BB) { 2235 if (PredHasWeights && SuccHasWeights) { 2236 // PBI: br i1 %x, TrueDest, BB 2237 // BI: br i1 %y, TrueDest, FalseDest 2238 //TrueWeight is TrueWeight for PBI * TotalWeight for BI + 2239 // FalseWeight for PBI * TrueWeight for BI. 2240 NewWeights.push_back(PredTrueWeight * (SuccFalseWeight + 2241 SuccTrueWeight) + PredFalseWeight * SuccTrueWeight); 2242 //FalseWeight is FalseWeight for PBI * FalseWeight for BI. 2243 NewWeights.push_back(PredFalseWeight * SuccFalseWeight); 2244 } 2245 AddPredecessorToBlock(FalseDest, PredBlock, BB); 2246 PBI->setSuccessor(1, FalseDest); 2247 } 2248 if (NewWeights.size() == 2) { 2249 // Halve the weights if any of them cannot fit in an uint32_t 2250 FitWeights(NewWeights); 2251 2252 SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(),NewWeights.end()); 2253 PBI->setMetadata(LLVMContext::MD_prof, 2254 MDBuilder(BI->getContext()). 2255 createBranchWeights(MDWeights)); 2256 } else 2257 PBI->setMetadata(LLVMContext::MD_prof, NULL); 2258 } else { 2259 // Update PHI nodes in the common successors. 2260 for (unsigned i = 0, e = PHIs.size(); i != e; ++i) { 2261 ConstantInt *PBI_C = cast<ConstantInt>( 2262 PHIs[i]->getIncomingValueForBlock(PBI->getParent())); 2263 assert(PBI_C->getType()->isIntegerTy(1)); 2264 Instruction *MergedCond = 0; 2265 if (PBI->getSuccessor(0) == TrueDest) { 2266 // Create (PBI_Cond and PBI_C) or (!PBI_Cond and BI_Value) 2267 // PBI_C is true: PBI_Cond or (!PBI_Cond and BI_Value) 2268 // is false: !PBI_Cond and BI_Value 2269 Instruction *NotCond = 2270 cast<Instruction>(Builder.CreateNot(PBI->getCondition(), 2271 "not.cond")); 2272 MergedCond = 2273 cast<Instruction>(Builder.CreateBinOp(Instruction::And, 2274 NotCond, New, 2275 "and.cond")); 2276 if (PBI_C->isOne()) 2277 MergedCond = 2278 cast<Instruction>(Builder.CreateBinOp(Instruction::Or, 2279 PBI->getCondition(), MergedCond, 2280 "or.cond")); 2281 } else { 2282 // Create (PBI_Cond and BI_Value) or (!PBI_Cond and PBI_C) 2283 // PBI_C is true: (PBI_Cond and BI_Value) or (!PBI_Cond) 2284 // is false: PBI_Cond and BI_Value 2285 MergedCond = 2286 cast<Instruction>(Builder.CreateBinOp(Instruction::And, 2287 PBI->getCondition(), New, 2288 "and.cond")); 2289 if (PBI_C->isOne()) { 2290 Instruction *NotCond = 2291 cast<Instruction>(Builder.CreateNot(PBI->getCondition(), 2292 "not.cond")); 2293 MergedCond = 2294 cast<Instruction>(Builder.CreateBinOp(Instruction::Or, 2295 NotCond, MergedCond, 2296 "or.cond")); 2297 } 2298 } 2299 // Update PHI Node. 2300 PHIs[i]->setIncomingValue(PHIs[i]->getBasicBlockIndex(PBI->getParent()), 2301 MergedCond); 2302 } 2303 // Change PBI from Conditional to Unconditional. 2304 BranchInst *New_PBI = BranchInst::Create(TrueDest, PBI); 2305 EraseTerminatorInstAndDCECond(PBI); 2306 PBI = New_PBI; 2307 } 2308 2309 // TODO: If BB is reachable from all paths through PredBlock, then we 2310 // could replace PBI's branch probabilities with BI's. 2311 2312 // Copy any debug value intrinsics into the end of PredBlock. 2313 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) 2314 if (isa<DbgInfoIntrinsic>(*I)) 2315 I->clone()->insertBefore(PBI); 2316 2317 return true; 2318 } 2319 return false; 2320 } 2321 2322 /// SimplifyCondBranchToCondBranch - If we have a conditional branch as a 2323 /// predecessor of another block, this function tries to simplify it. We know 2324 /// that PBI and BI are both conditional branches, and BI is in one of the 2325 /// successor blocks of PBI - PBI branches to BI. 2326 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI) { 2327 assert(PBI->isConditional() && BI->isConditional()); 2328 BasicBlock *BB = BI->getParent(); 2329 2330 // If this block ends with a branch instruction, and if there is a 2331 // predecessor that ends on a branch of the same condition, make 2332 // this conditional branch redundant. 2333 if (PBI->getCondition() == BI->getCondition() && 2334 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 2335 // Okay, the outcome of this conditional branch is statically 2336 // knowable. If this block had a single pred, handle specially. 2337 if (BB->getSinglePredecessor()) { 2338 // Turn this into a branch on constant. 2339 bool CondIsTrue = PBI->getSuccessor(0) == BB; 2340 BI->setCondition(ConstantInt::get(Type::getInt1Ty(BB->getContext()), 2341 CondIsTrue)); 2342 return true; // Nuke the branch on constant. 2343 } 2344 2345 // Otherwise, if there are multiple predecessors, insert a PHI that merges 2346 // in the constant and simplify the block result. Subsequent passes of 2347 // simplifycfg will thread the block. 2348 if (BlockIsSimpleEnoughToThreadThrough(BB)) { 2349 pred_iterator PB = pred_begin(BB), PE = pred_end(BB); 2350 PHINode *NewPN = PHINode::Create(Type::getInt1Ty(BB->getContext()), 2351 std::distance(PB, PE), 2352 BI->getCondition()->getName() + ".pr", 2353 BB->begin()); 2354 // Okay, we're going to insert the PHI node. Since PBI is not the only 2355 // predecessor, compute the PHI'd conditional value for all of the preds. 2356 // Any predecessor where the condition is not computable we keep symbolic. 2357 for (pred_iterator PI = PB; PI != PE; ++PI) { 2358 BasicBlock *P = *PI; 2359 if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) && 2360 PBI != BI && PBI->isConditional() && 2361 PBI->getCondition() == BI->getCondition() && 2362 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 2363 bool CondIsTrue = PBI->getSuccessor(0) == BB; 2364 NewPN->addIncoming(ConstantInt::get(Type::getInt1Ty(BB->getContext()), 2365 CondIsTrue), P); 2366 } else { 2367 NewPN->addIncoming(BI->getCondition(), P); 2368 } 2369 } 2370 2371 BI->setCondition(NewPN); 2372 return true; 2373 } 2374 } 2375 2376 // If this is a conditional branch in an empty block, and if any 2377 // predecessors is a conditional branch to one of our destinations, 2378 // fold the conditions into logical ops and one cond br. 2379 BasicBlock::iterator BBI = BB->begin(); 2380 // Ignore dbg intrinsics. 2381 while (isa<DbgInfoIntrinsic>(BBI)) 2382 ++BBI; 2383 if (&*BBI != BI) 2384 return false; 2385 2386 2387 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BI->getCondition())) 2388 if (CE->canTrap()) 2389 return false; 2390 2391 int PBIOp, BIOp; 2392 if (PBI->getSuccessor(0) == BI->getSuccessor(0)) 2393 PBIOp = BIOp = 0; 2394 else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) 2395 PBIOp = 0, BIOp = 1; 2396 else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) 2397 PBIOp = 1, BIOp = 0; 2398 else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) 2399 PBIOp = BIOp = 1; 2400 else 2401 return false; 2402 2403 // Check to make sure that the other destination of this branch 2404 // isn't BB itself. If so, this is an infinite loop that will 2405 // keep getting unwound. 2406 if (PBI->getSuccessor(PBIOp) == BB) 2407 return false; 2408 2409 // Do not perform this transformation if it would require 2410 // insertion of a large number of select instructions. For targets 2411 // without predication/cmovs, this is a big pessimization. 2412 BasicBlock *CommonDest = PBI->getSuccessor(PBIOp); 2413 2414 unsigned NumPhis = 0; 2415 for (BasicBlock::iterator II = CommonDest->begin(); 2416 isa<PHINode>(II); ++II, ++NumPhis) 2417 if (NumPhis > 2) // Disable this xform. 2418 return false; 2419 2420 // Finally, if everything is ok, fold the branches to logical ops. 2421 BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1); 2422 2423 DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent() 2424 << "AND: " << *BI->getParent()); 2425 2426 2427 // If OtherDest *is* BB, then BB is a basic block with a single conditional 2428 // branch in it, where one edge (OtherDest) goes back to itself but the other 2429 // exits. We don't *know* that the program avoids the infinite loop 2430 // (even though that seems likely). If we do this xform naively, we'll end up 2431 // recursively unpeeling the loop. Since we know that (after the xform is 2432 // done) that the block *is* infinite if reached, we just make it an obviously 2433 // infinite loop with no cond branch. 2434 if (OtherDest == BB) { 2435 // Insert it at the end of the function, because it's either code, 2436 // or it won't matter if it's hot. :) 2437 BasicBlock *InfLoopBlock = BasicBlock::Create(BB->getContext(), 2438 "infloop", BB->getParent()); 2439 BranchInst::Create(InfLoopBlock, InfLoopBlock); 2440 OtherDest = InfLoopBlock; 2441 } 2442 2443 DEBUG(dbgs() << *PBI->getParent()->getParent()); 2444 2445 // BI may have other predecessors. Because of this, we leave 2446 // it alone, but modify PBI. 2447 2448 // Make sure we get to CommonDest on True&True directions. 2449 Value *PBICond = PBI->getCondition(); 2450 IRBuilder<true, NoFolder> Builder(PBI); 2451 if (PBIOp) 2452 PBICond = Builder.CreateNot(PBICond, PBICond->getName()+".not"); 2453 2454 Value *BICond = BI->getCondition(); 2455 if (BIOp) 2456 BICond = Builder.CreateNot(BICond, BICond->getName()+".not"); 2457 2458 // Merge the conditions. 2459 Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge"); 2460 2461 // Modify PBI to branch on the new condition to the new dests. 2462 PBI->setCondition(Cond); 2463 PBI->setSuccessor(0, CommonDest); 2464 PBI->setSuccessor(1, OtherDest); 2465 2466 // Update branch weight for PBI. 2467 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 2468 bool PredHasWeights = ExtractBranchMetadata(PBI, PredTrueWeight, 2469 PredFalseWeight); 2470 bool SuccHasWeights = ExtractBranchMetadata(BI, SuccTrueWeight, 2471 SuccFalseWeight); 2472 if (PredHasWeights && SuccHasWeights) { 2473 uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight; 2474 uint64_t PredOther = PBIOp ?PredTrueWeight : PredFalseWeight; 2475 uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight; 2476 uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight; 2477 // The weight to CommonDest should be PredCommon * SuccTotal + 2478 // PredOther * SuccCommon. 2479 // The weight to OtherDest should be PredOther * SuccOther. 2480 SmallVector<uint64_t, 2> NewWeights; 2481 NewWeights.push_back(PredCommon * (SuccCommon + SuccOther) + 2482 PredOther * SuccCommon); 2483 NewWeights.push_back(PredOther * SuccOther); 2484 // Halve the weights if any of them cannot fit in an uint32_t 2485 FitWeights(NewWeights); 2486 2487 SmallVector<uint32_t, 2> MDWeights(NewWeights.begin(),NewWeights.end()); 2488 PBI->setMetadata(LLVMContext::MD_prof, 2489 MDBuilder(BI->getContext()). 2490 createBranchWeights(MDWeights)); 2491 } 2492 2493 // OtherDest may have phi nodes. If so, add an entry from PBI's 2494 // block that are identical to the entries for BI's block. 2495 AddPredecessorToBlock(OtherDest, PBI->getParent(), BB); 2496 2497 // We know that the CommonDest already had an edge from PBI to 2498 // it. If it has PHIs though, the PHIs may have different 2499 // entries for BB and PBI's BB. If so, insert a select to make 2500 // them agree. 2501 PHINode *PN; 2502 for (BasicBlock::iterator II = CommonDest->begin(); 2503 (PN = dyn_cast<PHINode>(II)); ++II) { 2504 Value *BIV = PN->getIncomingValueForBlock(BB); 2505 unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent()); 2506 Value *PBIV = PN->getIncomingValue(PBBIdx); 2507 if (BIV != PBIV) { 2508 // Insert a select in PBI to pick the right value. 2509 Value *NV = cast<SelectInst> 2510 (Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName()+".mux")); 2511 PN->setIncomingValue(PBBIdx, NV); 2512 } 2513 } 2514 2515 DEBUG(dbgs() << "INTO: " << *PBI->getParent()); 2516 DEBUG(dbgs() << *PBI->getParent()->getParent()); 2517 2518 // This basic block is probably dead. We know it has at least 2519 // one fewer predecessor. 2520 return true; 2521 } 2522 2523 // SimplifyTerminatorOnSelect - Simplifies a terminator by replacing it with a 2524 // branch to TrueBB if Cond is true or to FalseBB if Cond is false. 2525 // Takes care of updating the successors and removing the old terminator. 2526 // Also makes sure not to introduce new successors by assuming that edges to 2527 // non-successor TrueBBs and FalseBBs aren't reachable. 2528 static bool SimplifyTerminatorOnSelect(TerminatorInst *OldTerm, Value *Cond, 2529 BasicBlock *TrueBB, BasicBlock *FalseBB, 2530 uint32_t TrueWeight, 2531 uint32_t FalseWeight){ 2532 // Remove any superfluous successor edges from the CFG. 2533 // First, figure out which successors to preserve. 2534 // If TrueBB and FalseBB are equal, only try to preserve one copy of that 2535 // successor. 2536 BasicBlock *KeepEdge1 = TrueBB; 2537 BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : 0; 2538 2539 // Then remove the rest. 2540 for (unsigned I = 0, E = OldTerm->getNumSuccessors(); I != E; ++I) { 2541 BasicBlock *Succ = OldTerm->getSuccessor(I); 2542 // Make sure only to keep exactly one copy of each edge. 2543 if (Succ == KeepEdge1) 2544 KeepEdge1 = 0; 2545 else if (Succ == KeepEdge2) 2546 KeepEdge2 = 0; 2547 else 2548 Succ->removePredecessor(OldTerm->getParent()); 2549 } 2550 2551 IRBuilder<> Builder(OldTerm); 2552 Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc()); 2553 2554 // Insert an appropriate new terminator. 2555 if ((KeepEdge1 == 0) && (KeepEdge2 == 0)) { 2556 if (TrueBB == FalseBB) 2557 // We were only looking for one successor, and it was present. 2558 // Create an unconditional branch to it. 2559 Builder.CreateBr(TrueBB); 2560 else { 2561 // We found both of the successors we were looking for. 2562 // Create a conditional branch sharing the condition of the select. 2563 BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB); 2564 if (TrueWeight != FalseWeight) 2565 NewBI->setMetadata(LLVMContext::MD_prof, 2566 MDBuilder(OldTerm->getContext()). 2567 createBranchWeights(TrueWeight, FalseWeight)); 2568 } 2569 } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) { 2570 // Neither of the selected blocks were successors, so this 2571 // terminator must be unreachable. 2572 new UnreachableInst(OldTerm->getContext(), OldTerm); 2573 } else { 2574 // One of the selected values was a successor, but the other wasn't. 2575 // Insert an unconditional branch to the one that was found; 2576 // the edge to the one that wasn't must be unreachable. 2577 if (KeepEdge1 == 0) 2578 // Only TrueBB was found. 2579 Builder.CreateBr(TrueBB); 2580 else 2581 // Only FalseBB was found. 2582 Builder.CreateBr(FalseBB); 2583 } 2584 2585 EraseTerminatorInstAndDCECond(OldTerm); 2586 return true; 2587 } 2588 2589 // SimplifySwitchOnSelect - Replaces 2590 // (switch (select cond, X, Y)) on constant X, Y 2591 // with a branch - conditional if X and Y lead to distinct BBs, 2592 // unconditional otherwise. 2593 static bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select) { 2594 // Check for constant integer values in the select. 2595 ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue()); 2596 ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue()); 2597 if (!TrueVal || !FalseVal) 2598 return false; 2599 2600 // Find the relevant condition and destinations. 2601 Value *Condition = Select->getCondition(); 2602 BasicBlock *TrueBB = SI->findCaseValue(TrueVal).getCaseSuccessor(); 2603 BasicBlock *FalseBB = SI->findCaseValue(FalseVal).getCaseSuccessor(); 2604 2605 // Get weight for TrueBB and FalseBB. 2606 uint32_t TrueWeight = 0, FalseWeight = 0; 2607 SmallVector<uint64_t, 8> Weights; 2608 bool HasWeights = HasBranchWeights(SI); 2609 if (HasWeights) { 2610 GetBranchWeights(SI, Weights); 2611 if (Weights.size() == 1 + SI->getNumCases()) { 2612 TrueWeight = (uint32_t)Weights[SI->findCaseValue(TrueVal). 2613 getSuccessorIndex()]; 2614 FalseWeight = (uint32_t)Weights[SI->findCaseValue(FalseVal). 2615 getSuccessorIndex()]; 2616 } 2617 } 2618 2619 // Perform the actual simplification. 2620 return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, 2621 TrueWeight, FalseWeight); 2622 } 2623 2624 // SimplifyIndirectBrOnSelect - Replaces 2625 // (indirectbr (select cond, blockaddress(@fn, BlockA), 2626 // blockaddress(@fn, BlockB))) 2627 // with 2628 // (br cond, BlockA, BlockB). 2629 static bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI) { 2630 // Check that both operands of the select are block addresses. 2631 BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue()); 2632 BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue()); 2633 if (!TBA || !FBA) 2634 return false; 2635 2636 // Extract the actual blocks. 2637 BasicBlock *TrueBB = TBA->getBasicBlock(); 2638 BasicBlock *FalseBB = FBA->getBasicBlock(); 2639 2640 // Perform the actual simplification. 2641 return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 2642 0, 0); 2643 } 2644 2645 /// TryToSimplifyUncondBranchWithICmpInIt - This is called when we find an icmp 2646 /// instruction (a seteq/setne with a constant) as the only instruction in a 2647 /// block that ends with an uncond branch. We are looking for a very specific 2648 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified. In 2649 /// this case, we merge the first two "or's of icmp" into a switch, but then the 2650 /// default value goes to an uncond block with a seteq in it, we get something 2651 /// like: 2652 /// 2653 /// switch i8 %A, label %DEFAULT [ i8 1, label %end i8 2, label %end ] 2654 /// DEFAULT: 2655 /// %tmp = icmp eq i8 %A, 92 2656 /// br label %end 2657 /// end: 2658 /// ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ] 2659 /// 2660 /// We prefer to split the edge to 'end' so that there is a true/false entry to 2661 /// the PHI, merging the third icmp into the switch. 2662 static bool TryToSimplifyUncondBranchWithICmpInIt( 2663 ICmpInst *ICI, IRBuilder<> &Builder, const TargetTransformInfo &TTI, 2664 const DataLayout *TD) { 2665 BasicBlock *BB = ICI->getParent(); 2666 2667 // If the block has any PHIs in it or the icmp has multiple uses, it is too 2668 // complex. 2669 if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse()) return false; 2670 2671 Value *V = ICI->getOperand(0); 2672 ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1)); 2673 2674 // The pattern we're looking for is where our only predecessor is a switch on 2675 // 'V' and this block is the default case for the switch. In this case we can 2676 // fold the compared value into the switch to simplify things. 2677 BasicBlock *Pred = BB->getSinglePredecessor(); 2678 if (Pred == 0 || !isa<SwitchInst>(Pred->getTerminator())) return false; 2679 2680 SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator()); 2681 if (SI->getCondition() != V) 2682 return false; 2683 2684 // If BB is reachable on a non-default case, then we simply know the value of 2685 // V in this block. Substitute it and constant fold the icmp instruction 2686 // away. 2687 if (SI->getDefaultDest() != BB) { 2688 ConstantInt *VVal = SI->findCaseDest(BB); 2689 assert(VVal && "Should have a unique destination value"); 2690 ICI->setOperand(0, VVal); 2691 2692 if (Value *V = SimplifyInstruction(ICI, TD)) { 2693 ICI->replaceAllUsesWith(V); 2694 ICI->eraseFromParent(); 2695 } 2696 // BB is now empty, so it is likely to simplify away. 2697 return SimplifyCFG(BB, TTI, TD) | true; 2698 } 2699 2700 // Ok, the block is reachable from the default dest. If the constant we're 2701 // comparing exists in one of the other edges, then we can constant fold ICI 2702 // and zap it. 2703 if (SI->findCaseValue(Cst) != SI->case_default()) { 2704 Value *V; 2705 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 2706 V = ConstantInt::getFalse(BB->getContext()); 2707 else 2708 V = ConstantInt::getTrue(BB->getContext()); 2709 2710 ICI->replaceAllUsesWith(V); 2711 ICI->eraseFromParent(); 2712 // BB is now empty, so it is likely to simplify away. 2713 return SimplifyCFG(BB, TTI, TD) | true; 2714 } 2715 2716 // The use of the icmp has to be in the 'end' block, by the only PHI node in 2717 // the block. 2718 BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0); 2719 PHINode *PHIUse = dyn_cast<PHINode>(ICI->use_back()); 2720 if (PHIUse == 0 || PHIUse != &SuccBlock->front() || 2721 isa<PHINode>(++BasicBlock::iterator(PHIUse))) 2722 return false; 2723 2724 // If the icmp is a SETEQ, then the default dest gets false, the new edge gets 2725 // true in the PHI. 2726 Constant *DefaultCst = ConstantInt::getTrue(BB->getContext()); 2727 Constant *NewCst = ConstantInt::getFalse(BB->getContext()); 2728 2729 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 2730 std::swap(DefaultCst, NewCst); 2731 2732 // Replace ICI (which is used by the PHI for the default value) with true or 2733 // false depending on if it is EQ or NE. 2734 ICI->replaceAllUsesWith(DefaultCst); 2735 ICI->eraseFromParent(); 2736 2737 // Okay, the switch goes to this block on a default value. Add an edge from 2738 // the switch to the merge point on the compared value. 2739 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "switch.edge", 2740 BB->getParent(), BB); 2741 SmallVector<uint64_t, 8> Weights; 2742 bool HasWeights = HasBranchWeights(SI); 2743 if (HasWeights) { 2744 GetBranchWeights(SI, Weights); 2745 if (Weights.size() == 1 + SI->getNumCases()) { 2746 // Split weight for default case to case for "Cst". 2747 Weights[0] = (Weights[0]+1) >> 1; 2748 Weights.push_back(Weights[0]); 2749 2750 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 2751 SI->setMetadata(LLVMContext::MD_prof, 2752 MDBuilder(SI->getContext()). 2753 createBranchWeights(MDWeights)); 2754 } 2755 } 2756 SI->addCase(Cst, NewBB); 2757 2758 // NewBB branches to the phi block, add the uncond branch and the phi entry. 2759 Builder.SetInsertPoint(NewBB); 2760 Builder.SetCurrentDebugLocation(SI->getDebugLoc()); 2761 Builder.CreateBr(SuccBlock); 2762 PHIUse->addIncoming(NewCst, NewBB); 2763 return true; 2764 } 2765 2766 /// SimplifyBranchOnICmpChain - The specified branch is a conditional branch. 2767 /// Check to see if it is branching on an or/and chain of icmp instructions, and 2768 /// fold it into a switch instruction if so. 2769 static bool SimplifyBranchOnICmpChain(BranchInst *BI, const DataLayout *TD, 2770 IRBuilder<> &Builder) { 2771 Instruction *Cond = dyn_cast<Instruction>(BI->getCondition()); 2772 if (Cond == 0) return false; 2773 2774 2775 // Change br (X == 0 | X == 1), T, F into a switch instruction. 2776 // If this is a bunch of seteq's or'd together, or if it's a bunch of 2777 // 'setne's and'ed together, collect them. 2778 Value *CompVal = 0; 2779 std::vector<ConstantInt*> Values; 2780 bool TrueWhenEqual = true; 2781 Value *ExtraCase = 0; 2782 unsigned UsedICmps = 0; 2783 2784 if (Cond->getOpcode() == Instruction::Or) { 2785 CompVal = GatherConstantCompares(Cond, Values, ExtraCase, TD, true, 2786 UsedICmps); 2787 } else if (Cond->getOpcode() == Instruction::And) { 2788 CompVal = GatherConstantCompares(Cond, Values, ExtraCase, TD, false, 2789 UsedICmps); 2790 TrueWhenEqual = false; 2791 } 2792 2793 // If we didn't have a multiply compared value, fail. 2794 if (CompVal == 0) return false; 2795 2796 // Avoid turning single icmps into a switch. 2797 if (UsedICmps <= 1) 2798 return false; 2799 2800 // There might be duplicate constants in the list, which the switch 2801 // instruction can't handle, remove them now. 2802 array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate); 2803 Values.erase(std::unique(Values.begin(), Values.end()), Values.end()); 2804 2805 // If Extra was used, we require at least two switch values to do the 2806 // transformation. A switch with one value is just an cond branch. 2807 if (ExtraCase && Values.size() < 2) return false; 2808 2809 // TODO: Preserve branch weight metadata, similarly to how 2810 // FoldValueComparisonIntoPredecessors preserves it. 2811 2812 // Figure out which block is which destination. 2813 BasicBlock *DefaultBB = BI->getSuccessor(1); 2814 BasicBlock *EdgeBB = BI->getSuccessor(0); 2815 if (!TrueWhenEqual) std::swap(DefaultBB, EdgeBB); 2816 2817 BasicBlock *BB = BI->getParent(); 2818 2819 DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size() 2820 << " cases into SWITCH. BB is:\n" << *BB); 2821 2822 // If there are any extra values that couldn't be folded into the switch 2823 // then we evaluate them with an explicit branch first. Split the block 2824 // right before the condbr to handle it. 2825 if (ExtraCase) { 2826 BasicBlock *NewBB = BB->splitBasicBlock(BI, "switch.early.test"); 2827 // Remove the uncond branch added to the old block. 2828 TerminatorInst *OldTI = BB->getTerminator(); 2829 Builder.SetInsertPoint(OldTI); 2830 2831 if (TrueWhenEqual) 2832 Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB); 2833 else 2834 Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB); 2835 2836 OldTI->eraseFromParent(); 2837 2838 // If there are PHI nodes in EdgeBB, then we need to add a new entry to them 2839 // for the edge we just added. 2840 AddPredecessorToBlock(EdgeBB, BB, NewBB); 2841 2842 DEBUG(dbgs() << " ** 'icmp' chain unhandled condition: " << *ExtraCase 2843 << "\nEXTRABB = " << *BB); 2844 BB = NewBB; 2845 } 2846 2847 Builder.SetInsertPoint(BI); 2848 // Convert pointer to int before we switch. 2849 if (CompVal->getType()->isPointerTy()) { 2850 assert(TD && "Cannot switch on pointer without DataLayout"); 2851 CompVal = Builder.CreatePtrToInt(CompVal, 2852 TD->getIntPtrType(CompVal->getContext()), 2853 "magicptr"); 2854 } 2855 2856 // Create the new switch instruction now. 2857 SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size()); 2858 2859 // Add all of the 'cases' to the switch instruction. 2860 for (unsigned i = 0, e = Values.size(); i != e; ++i) 2861 New->addCase(Values[i], EdgeBB); 2862 2863 // We added edges from PI to the EdgeBB. As such, if there were any 2864 // PHI nodes in EdgeBB, they need entries to be added corresponding to 2865 // the number of edges added. 2866 for (BasicBlock::iterator BBI = EdgeBB->begin(); 2867 isa<PHINode>(BBI); ++BBI) { 2868 PHINode *PN = cast<PHINode>(BBI); 2869 Value *InVal = PN->getIncomingValueForBlock(BB); 2870 for (unsigned i = 0, e = Values.size()-1; i != e; ++i) 2871 PN->addIncoming(InVal, BB); 2872 } 2873 2874 // Erase the old branch instruction. 2875 EraseTerminatorInstAndDCECond(BI); 2876 2877 DEBUG(dbgs() << " ** 'icmp' chain result is:\n" << *BB << '\n'); 2878 return true; 2879 } 2880 2881 bool SimplifyCFGOpt::SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder) { 2882 // If this is a trivial landing pad that just continues unwinding the caught 2883 // exception then zap the landing pad, turning its invokes into calls. 2884 BasicBlock *BB = RI->getParent(); 2885 LandingPadInst *LPInst = dyn_cast<LandingPadInst>(BB->getFirstNonPHI()); 2886 if (RI->getValue() != LPInst) 2887 // Not a landing pad, or the resume is not unwinding the exception that 2888 // caused control to branch here. 2889 return false; 2890 2891 // Check that there are no other instructions except for debug intrinsics. 2892 BasicBlock::iterator I = LPInst, E = RI; 2893 while (++I != E) 2894 if (!isa<DbgInfoIntrinsic>(I)) 2895 return false; 2896 2897 // Turn all invokes that unwind here into calls and delete the basic block. 2898 bool InvokeRequiresTableEntry = false; 2899 bool Changed = false; 2900 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) { 2901 InvokeInst *II = cast<InvokeInst>((*PI++)->getTerminator()); 2902 2903 if (II->hasFnAttr(Attribute::UWTable)) { 2904 // Don't remove an `invoke' instruction if the ABI requires an entry into 2905 // the table. 2906 InvokeRequiresTableEntry = true; 2907 continue; 2908 } 2909 2910 SmallVector<Value*, 8> Args(II->op_begin(), II->op_end() - 3); 2911 2912 // Insert a call instruction before the invoke. 2913 CallInst *Call = CallInst::Create(II->getCalledValue(), Args, "", II); 2914 Call->takeName(II); 2915 Call->setCallingConv(II->getCallingConv()); 2916 Call->setAttributes(II->getAttributes()); 2917 Call->setDebugLoc(II->getDebugLoc()); 2918 2919 // Anything that used the value produced by the invoke instruction now uses 2920 // the value produced by the call instruction. Note that we do this even 2921 // for void functions and calls with no uses so that the callgraph edge is 2922 // updated. 2923 II->replaceAllUsesWith(Call); 2924 BB->removePredecessor(II->getParent()); 2925 2926 // Insert a branch to the normal destination right before the invoke. 2927 BranchInst::Create(II->getNormalDest(), II); 2928 2929 // Finally, delete the invoke instruction! 2930 II->eraseFromParent(); 2931 Changed = true; 2932 } 2933 2934 if (!InvokeRequiresTableEntry) 2935 // The landingpad is now unreachable. Zap it. 2936 BB->eraseFromParent(); 2937 2938 return Changed; 2939 } 2940 2941 bool SimplifyCFGOpt::SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) { 2942 BasicBlock *BB = RI->getParent(); 2943 if (!BB->getFirstNonPHIOrDbg()->isTerminator()) return false; 2944 2945 // Find predecessors that end with branches. 2946 SmallVector<BasicBlock*, 8> UncondBranchPreds; 2947 SmallVector<BranchInst*, 8> CondBranchPreds; 2948 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 2949 BasicBlock *P = *PI; 2950 TerminatorInst *PTI = P->getTerminator(); 2951 if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) { 2952 if (BI->isUnconditional()) 2953 UncondBranchPreds.push_back(P); 2954 else 2955 CondBranchPreds.push_back(BI); 2956 } 2957 } 2958 2959 // If we found some, do the transformation! 2960 if (!UncondBranchPreds.empty() && DupRet) { 2961 while (!UncondBranchPreds.empty()) { 2962 BasicBlock *Pred = UncondBranchPreds.pop_back_val(); 2963 DEBUG(dbgs() << "FOLDING: " << *BB 2964 << "INTO UNCOND BRANCH PRED: " << *Pred); 2965 (void)FoldReturnIntoUncondBranch(RI, BB, Pred); 2966 } 2967 2968 // If we eliminated all predecessors of the block, delete the block now. 2969 if (pred_begin(BB) == pred_end(BB)) 2970 // We know there are no successors, so just nuke the block. 2971 BB->eraseFromParent(); 2972 2973 return true; 2974 } 2975 2976 // Check out all of the conditional branches going to this return 2977 // instruction. If any of them just select between returns, change the 2978 // branch itself into a select/return pair. 2979 while (!CondBranchPreds.empty()) { 2980 BranchInst *BI = CondBranchPreds.pop_back_val(); 2981 2982 // Check to see if the non-BB successor is also a return block. 2983 if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) && 2984 isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) && 2985 SimplifyCondBranchToTwoReturns(BI, Builder)) 2986 return true; 2987 } 2988 return false; 2989 } 2990 2991 bool SimplifyCFGOpt::SimplifyUnreachable(UnreachableInst *UI) { 2992 BasicBlock *BB = UI->getParent(); 2993 2994 bool Changed = false; 2995 2996 // If there are any instructions immediately before the unreachable that can 2997 // be removed, do so. 2998 while (UI != BB->begin()) { 2999 BasicBlock::iterator BBI = UI; 3000 --BBI; 3001 // Do not delete instructions that can have side effects which might cause 3002 // the unreachable to not be reachable; specifically, calls and volatile 3003 // operations may have this effect. 3004 if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI)) break; 3005 3006 if (BBI->mayHaveSideEffects()) { 3007 if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) { 3008 if (SI->isVolatile()) 3009 break; 3010 } else if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) { 3011 if (LI->isVolatile()) 3012 break; 3013 } else if (AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(BBI)) { 3014 if (RMWI->isVolatile()) 3015 break; 3016 } else if (AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) { 3017 if (CXI->isVolatile()) 3018 break; 3019 } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) && 3020 !isa<LandingPadInst>(BBI)) { 3021 break; 3022 } 3023 // Note that deleting LandingPad's here is in fact okay, although it 3024 // involves a bit of subtle reasoning. If this inst is a LandingPad, 3025 // all the predecessors of this block will be the unwind edges of Invokes, 3026 // and we can therefore guarantee this block will be erased. 3027 } 3028 3029 // Delete this instruction (any uses are guaranteed to be dead) 3030 if (!BBI->use_empty()) 3031 BBI->replaceAllUsesWith(UndefValue::get(BBI->getType())); 3032 BBI->eraseFromParent(); 3033 Changed = true; 3034 } 3035 3036 // If the unreachable instruction is the first in the block, take a gander 3037 // at all of the predecessors of this instruction, and simplify them. 3038 if (&BB->front() != UI) return Changed; 3039 3040 SmallVector<BasicBlock*, 8> Preds(pred_begin(BB), pred_end(BB)); 3041 for (unsigned i = 0, e = Preds.size(); i != e; ++i) { 3042 TerminatorInst *TI = Preds[i]->getTerminator(); 3043 IRBuilder<> Builder(TI); 3044 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 3045 if (BI->isUnconditional()) { 3046 if (BI->getSuccessor(0) == BB) { 3047 new UnreachableInst(TI->getContext(), TI); 3048 TI->eraseFromParent(); 3049 Changed = true; 3050 } 3051 } else { 3052 if (BI->getSuccessor(0) == BB) { 3053 Builder.CreateBr(BI->getSuccessor(1)); 3054 EraseTerminatorInstAndDCECond(BI); 3055 } else if (BI->getSuccessor(1) == BB) { 3056 Builder.CreateBr(BI->getSuccessor(0)); 3057 EraseTerminatorInstAndDCECond(BI); 3058 Changed = true; 3059 } 3060 } 3061 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 3062 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); 3063 i != e; ++i) 3064 if (i.getCaseSuccessor() == BB) { 3065 BB->removePredecessor(SI->getParent()); 3066 SI->removeCase(i); 3067 --i; --e; 3068 Changed = true; 3069 } 3070 // If the default value is unreachable, figure out the most popular 3071 // destination and make it the default. 3072 if (SI->getDefaultDest() == BB) { 3073 std::map<BasicBlock*, std::pair<unsigned, unsigned> > Popularity; 3074 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); 3075 i != e; ++i) { 3076 std::pair<unsigned, unsigned> &entry = 3077 Popularity[i.getCaseSuccessor()]; 3078 if (entry.first == 0) { 3079 entry.first = 1; 3080 entry.second = i.getCaseIndex(); 3081 } else { 3082 entry.first++; 3083 } 3084 } 3085 3086 // Find the most popular block. 3087 unsigned MaxPop = 0; 3088 unsigned MaxIndex = 0; 3089 BasicBlock *MaxBlock = 0; 3090 for (std::map<BasicBlock*, std::pair<unsigned, unsigned> >::iterator 3091 I = Popularity.begin(), E = Popularity.end(); I != E; ++I) { 3092 if (I->second.first > MaxPop || 3093 (I->second.first == MaxPop && MaxIndex > I->second.second)) { 3094 MaxPop = I->second.first; 3095 MaxIndex = I->second.second; 3096 MaxBlock = I->first; 3097 } 3098 } 3099 if (MaxBlock) { 3100 // Make this the new default, allowing us to delete any explicit 3101 // edges to it. 3102 SI->setDefaultDest(MaxBlock); 3103 Changed = true; 3104 3105 // If MaxBlock has phinodes in it, remove MaxPop-1 entries from 3106 // it. 3107 if (isa<PHINode>(MaxBlock->begin())) 3108 for (unsigned i = 0; i != MaxPop-1; ++i) 3109 MaxBlock->removePredecessor(SI->getParent()); 3110 3111 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); 3112 i != e; ++i) 3113 if (i.getCaseSuccessor() == MaxBlock) { 3114 SI->removeCase(i); 3115 --i; --e; 3116 } 3117 } 3118 } 3119 } else if (InvokeInst *II = dyn_cast<InvokeInst>(TI)) { 3120 if (II->getUnwindDest() == BB) { 3121 // Convert the invoke to a call instruction. This would be a good 3122 // place to note that the call does not throw though. 3123 BranchInst *BI = Builder.CreateBr(II->getNormalDest()); 3124 II->removeFromParent(); // Take out of symbol table 3125 3126 // Insert the call now... 3127 SmallVector<Value*, 8> Args(II->op_begin(), II->op_end()-3); 3128 Builder.SetInsertPoint(BI); 3129 CallInst *CI = Builder.CreateCall(II->getCalledValue(), 3130 Args, II->getName()); 3131 CI->setCallingConv(II->getCallingConv()); 3132 CI->setAttributes(II->getAttributes()); 3133 // If the invoke produced a value, the call does now instead. 3134 II->replaceAllUsesWith(CI); 3135 delete II; 3136 Changed = true; 3137 } 3138 } 3139 } 3140 3141 // If this block is now dead, remove it. 3142 if (pred_begin(BB) == pred_end(BB) && 3143 BB != &BB->getParent()->getEntryBlock()) { 3144 // We know there are no successors, so just nuke the block. 3145 BB->eraseFromParent(); 3146 return true; 3147 } 3148 3149 return Changed; 3150 } 3151 3152 /// TurnSwitchRangeIntoICmp - Turns a switch with that contains only a 3153 /// integer range comparison into a sub, an icmp and a branch. 3154 static bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder) { 3155 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 3156 3157 // Make sure all cases point to the same destination and gather the values. 3158 SmallVector<ConstantInt *, 16> Cases; 3159 SwitchInst::CaseIt I = SI->case_begin(); 3160 Cases.push_back(I.getCaseValue()); 3161 SwitchInst::CaseIt PrevI = I++; 3162 for (SwitchInst::CaseIt E = SI->case_end(); I != E; PrevI = I++) { 3163 if (PrevI.getCaseSuccessor() != I.getCaseSuccessor()) 3164 return false; 3165 Cases.push_back(I.getCaseValue()); 3166 } 3167 assert(Cases.size() == SI->getNumCases() && "Not all cases gathered"); 3168 3169 // Sort the case values, then check if they form a range we can transform. 3170 array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate); 3171 for (unsigned I = 1, E = Cases.size(); I != E; ++I) { 3172 if (Cases[I-1]->getValue() != Cases[I]->getValue()+1) 3173 return false; 3174 } 3175 3176 Constant *Offset = ConstantExpr::getNeg(Cases.back()); 3177 Constant *NumCases = ConstantInt::get(Offset->getType(), SI->getNumCases()); 3178 3179 Value *Sub = SI->getCondition(); 3180 if (!Offset->isNullValue()) 3181 Sub = Builder.CreateAdd(Sub, Offset, Sub->getName()+".off"); 3182 Value *Cmp; 3183 // If NumCases overflowed, then all possible values jump to the successor. 3184 if (NumCases->isNullValue() && SI->getNumCases() != 0) 3185 Cmp = ConstantInt::getTrue(SI->getContext()); 3186 else 3187 Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch"); 3188 BranchInst *NewBI = Builder.CreateCondBr( 3189 Cmp, SI->case_begin().getCaseSuccessor(), SI->getDefaultDest()); 3190 3191 // Update weight for the newly-created conditional branch. 3192 SmallVector<uint64_t, 8> Weights; 3193 bool HasWeights = HasBranchWeights(SI); 3194 if (HasWeights) { 3195 GetBranchWeights(SI, Weights); 3196 if (Weights.size() == 1 + SI->getNumCases()) { 3197 // Combine all weights for the cases to be the true weight of NewBI. 3198 // We assume that the sum of all weights for a Terminator can fit into 32 3199 // bits. 3200 uint32_t NewTrueWeight = 0; 3201 for (unsigned I = 1, E = Weights.size(); I != E; ++I) 3202 NewTrueWeight += (uint32_t)Weights[I]; 3203 NewBI->setMetadata(LLVMContext::MD_prof, 3204 MDBuilder(SI->getContext()). 3205 createBranchWeights(NewTrueWeight, 3206 (uint32_t)Weights[0])); 3207 } 3208 } 3209 3210 // Prune obsolete incoming values off the successor's PHI nodes. 3211 for (BasicBlock::iterator BBI = SI->case_begin().getCaseSuccessor()->begin(); 3212 isa<PHINode>(BBI); ++BBI) { 3213 for (unsigned I = 0, E = SI->getNumCases()-1; I != E; ++I) 3214 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 3215 } 3216 SI->eraseFromParent(); 3217 3218 return true; 3219 } 3220 3221 /// EliminateDeadSwitchCases - Compute masked bits for the condition of a switch 3222 /// and use it to remove dead cases. 3223 static bool EliminateDeadSwitchCases(SwitchInst *SI) { 3224 Value *Cond = SI->getCondition(); 3225 unsigned Bits = cast<IntegerType>(Cond->getType())->getBitWidth(); 3226 APInt KnownZero(Bits, 0), KnownOne(Bits, 0); 3227 ComputeMaskedBits(Cond, KnownZero, KnownOne); 3228 3229 // Gather dead cases. 3230 SmallVector<ConstantInt*, 8> DeadCases; 3231 for (SwitchInst::CaseIt I = SI->case_begin(), E = SI->case_end(); I != E; ++I) { 3232 if ((I.getCaseValue()->getValue() & KnownZero) != 0 || 3233 (I.getCaseValue()->getValue() & KnownOne) != KnownOne) { 3234 DeadCases.push_back(I.getCaseValue()); 3235 DEBUG(dbgs() << "SimplifyCFG: switch case '" 3236 << I.getCaseValue() << "' is dead.\n"); 3237 } 3238 } 3239 3240 SmallVector<uint64_t, 8> Weights; 3241 bool HasWeight = HasBranchWeights(SI); 3242 if (HasWeight) { 3243 GetBranchWeights(SI, Weights); 3244 HasWeight = (Weights.size() == 1 + SI->getNumCases()); 3245 } 3246 3247 // Remove dead cases from the switch. 3248 for (unsigned I = 0, E = DeadCases.size(); I != E; ++I) { 3249 SwitchInst::CaseIt Case = SI->findCaseValue(DeadCases[I]); 3250 assert(Case != SI->case_default() && 3251 "Case was not found. Probably mistake in DeadCases forming."); 3252 if (HasWeight) { 3253 std::swap(Weights[Case.getCaseIndex()+1], Weights.back()); 3254 Weights.pop_back(); 3255 } 3256 3257 // Prune unused values from PHI nodes. 3258 Case.getCaseSuccessor()->removePredecessor(SI->getParent()); 3259 SI->removeCase(Case); 3260 } 3261 if (HasWeight) { 3262 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 3263 SI->setMetadata(LLVMContext::MD_prof, 3264 MDBuilder(SI->getParent()->getContext()). 3265 createBranchWeights(MDWeights)); 3266 } 3267 3268 return !DeadCases.empty(); 3269 } 3270 3271 /// FindPHIForConditionForwarding - If BB would be eligible for simplification 3272 /// by TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated 3273 /// by an unconditional branch), look at the phi node for BB in the successor 3274 /// block and see if the incoming value is equal to CaseValue. If so, return 3275 /// the phi node, and set PhiIndex to BB's index in the phi node. 3276 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue, 3277 BasicBlock *BB, 3278 int *PhiIndex) { 3279 if (BB->getFirstNonPHIOrDbg() != BB->getTerminator()) 3280 return NULL; // BB must be empty to be a candidate for simplification. 3281 if (!BB->getSinglePredecessor()) 3282 return NULL; // BB must be dominated by the switch. 3283 3284 BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator()); 3285 if (!Branch || !Branch->isUnconditional()) 3286 return NULL; // Terminator must be unconditional branch. 3287 3288 BasicBlock *Succ = Branch->getSuccessor(0); 3289 3290 BasicBlock::iterator I = Succ->begin(); 3291 while (PHINode *PHI = dyn_cast<PHINode>(I++)) { 3292 int Idx = PHI->getBasicBlockIndex(BB); 3293 assert(Idx >= 0 && "PHI has no entry for predecessor?"); 3294 3295 Value *InValue = PHI->getIncomingValue(Idx); 3296 if (InValue != CaseValue) continue; 3297 3298 *PhiIndex = Idx; 3299 return PHI; 3300 } 3301 3302 return NULL; 3303 } 3304 3305 /// ForwardSwitchConditionToPHI - Try to forward the condition of a switch 3306 /// instruction to a phi node dominated by the switch, if that would mean that 3307 /// some of the destination blocks of the switch can be folded away. 3308 /// Returns true if a change is made. 3309 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) { 3310 typedef DenseMap<PHINode*, SmallVector<int,4> > ForwardingNodesMap; 3311 ForwardingNodesMap ForwardingNodes; 3312 3313 for (SwitchInst::CaseIt I = SI->case_begin(), E = SI->case_end(); I != E; ++I) { 3314 ConstantInt *CaseValue = I.getCaseValue(); 3315 BasicBlock *CaseDest = I.getCaseSuccessor(); 3316 3317 int PhiIndex; 3318 PHINode *PHI = FindPHIForConditionForwarding(CaseValue, CaseDest, 3319 &PhiIndex); 3320 if (!PHI) continue; 3321 3322 ForwardingNodes[PHI].push_back(PhiIndex); 3323 } 3324 3325 bool Changed = false; 3326 3327 for (ForwardingNodesMap::iterator I = ForwardingNodes.begin(), 3328 E = ForwardingNodes.end(); I != E; ++I) { 3329 PHINode *Phi = I->first; 3330 SmallVector<int,4> &Indexes = I->second; 3331 3332 if (Indexes.size() < 2) continue; 3333 3334 for (size_t I = 0, E = Indexes.size(); I != E; ++I) 3335 Phi->setIncomingValue(Indexes[I], SI->getCondition()); 3336 Changed = true; 3337 } 3338 3339 return Changed; 3340 } 3341 3342 /// ValidLookupTableConstant - Return true if the backend will be able to handle 3343 /// initializing an array of constants like C. 3344 static bool ValidLookupTableConstant(Constant *C) { 3345 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) 3346 return CE->isGEPWithNoNotionalOverIndexing(); 3347 3348 return isa<ConstantFP>(C) || 3349 isa<ConstantInt>(C) || 3350 isa<ConstantPointerNull>(C) || 3351 isa<GlobalValue>(C) || 3352 isa<UndefValue>(C); 3353 } 3354 3355 /// LookupConstant - If V is a Constant, return it. Otherwise, try to look up 3356 /// its constant value in ConstantPool, returning 0 if it's not there. 3357 static Constant *LookupConstant(Value *V, 3358 const SmallDenseMap<Value*, Constant*>& ConstantPool) { 3359 if (Constant *C = dyn_cast<Constant>(V)) 3360 return C; 3361 return ConstantPool.lookup(V); 3362 } 3363 3364 /// ConstantFold - Try to fold instruction I into a constant. This works for 3365 /// simple instructions such as binary operations where both operands are 3366 /// constant or can be replaced by constants from the ConstantPool. Returns the 3367 /// resulting constant on success, 0 otherwise. 3368 static Constant *ConstantFold(Instruction *I, 3369 const SmallDenseMap<Value*, Constant*>& ConstantPool) { 3370 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) { 3371 Constant *A = LookupConstant(BO->getOperand(0), ConstantPool); 3372 if (!A) 3373 return 0; 3374 Constant *B = LookupConstant(BO->getOperand(1), ConstantPool); 3375 if (!B) 3376 return 0; 3377 return ConstantExpr::get(BO->getOpcode(), A, B); 3378 } 3379 3380 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) { 3381 Constant *A = LookupConstant(I->getOperand(0), ConstantPool); 3382 if (!A) 3383 return 0; 3384 Constant *B = LookupConstant(I->getOperand(1), ConstantPool); 3385 if (!B) 3386 return 0; 3387 return ConstantExpr::getCompare(Cmp->getPredicate(), A, B); 3388 } 3389 3390 if (SelectInst *Select = dyn_cast<SelectInst>(I)) { 3391 Constant *A = LookupConstant(Select->getCondition(), ConstantPool); 3392 if (!A) 3393 return 0; 3394 if (A->isAllOnesValue()) 3395 return LookupConstant(Select->getTrueValue(), ConstantPool); 3396 if (A->isNullValue()) 3397 return LookupConstant(Select->getFalseValue(), ConstantPool); 3398 return 0; 3399 } 3400 3401 if (CastInst *Cast = dyn_cast<CastInst>(I)) { 3402 Constant *A = LookupConstant(I->getOperand(0), ConstantPool); 3403 if (!A) 3404 return 0; 3405 return ConstantExpr::getCast(Cast->getOpcode(), A, Cast->getDestTy()); 3406 } 3407 3408 return 0; 3409 } 3410 3411 /// GetCaseResults - Try to determine the resulting constant values in phi nodes 3412 /// at the common destination basic block, *CommonDest, for one of the case 3413 /// destionations CaseDest corresponding to value CaseVal (0 for the default 3414 /// case), of a switch instruction SI. 3415 static bool GetCaseResults(SwitchInst *SI, 3416 ConstantInt *CaseVal, 3417 BasicBlock *CaseDest, 3418 BasicBlock **CommonDest, 3419 SmallVector<std::pair<PHINode*,Constant*>, 4> &Res) { 3420 // The block from which we enter the common destination. 3421 BasicBlock *Pred = SI->getParent(); 3422 3423 // If CaseDest is empty except for some side-effect free instructions through 3424 // which we can constant-propagate the CaseVal, continue to its successor. 3425 SmallDenseMap<Value*, Constant*> ConstantPool; 3426 ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal)); 3427 for (BasicBlock::iterator I = CaseDest->begin(), E = CaseDest->end(); I != E; 3428 ++I) { 3429 if (TerminatorInst *T = dyn_cast<TerminatorInst>(I)) { 3430 // If the terminator is a simple branch, continue to the next block. 3431 if (T->getNumSuccessors() != 1) 3432 return false; 3433 Pred = CaseDest; 3434 CaseDest = T->getSuccessor(0); 3435 } else if (isa<DbgInfoIntrinsic>(I)) { 3436 // Skip debug intrinsic. 3437 continue; 3438 } else if (Constant *C = ConstantFold(I, ConstantPool)) { 3439 // Instruction is side-effect free and constant. 3440 ConstantPool.insert(std::make_pair(I, C)); 3441 } else { 3442 break; 3443 } 3444 } 3445 3446 // If we did not have a CommonDest before, use the current one. 3447 if (!*CommonDest) 3448 *CommonDest = CaseDest; 3449 // If the destination isn't the common one, abort. 3450 if (CaseDest != *CommonDest) 3451 return false; 3452 3453 // Get the values for this case from phi nodes in the destination block. 3454 BasicBlock::iterator I = (*CommonDest)->begin(); 3455 while (PHINode *PHI = dyn_cast<PHINode>(I++)) { 3456 int Idx = PHI->getBasicBlockIndex(Pred); 3457 if (Idx == -1) 3458 continue; 3459 3460 Constant *ConstVal = LookupConstant(PHI->getIncomingValue(Idx), 3461 ConstantPool); 3462 if (!ConstVal) 3463 return false; 3464 3465 // Note: If the constant comes from constant-propagating the case value 3466 // through the CaseDest basic block, it will be safe to remove the 3467 // instructions in that block. They cannot be used (except in the phi nodes 3468 // we visit) outside CaseDest, because that block does not dominate its 3469 // successor. If it did, we would not be in this phi node. 3470 3471 // Be conservative about which kinds of constants we support. 3472 if (!ValidLookupTableConstant(ConstVal)) 3473 return false; 3474 3475 Res.push_back(std::make_pair(PHI, ConstVal)); 3476 } 3477 3478 return true; 3479 } 3480 3481 namespace { 3482 /// SwitchLookupTable - This class represents a lookup table that can be used 3483 /// to replace a switch. 3484 class SwitchLookupTable { 3485 public: 3486 /// SwitchLookupTable - Create a lookup table to use as a switch replacement 3487 /// with the contents of Values, using DefaultValue to fill any holes in the 3488 /// table. 3489 SwitchLookupTable(Module &M, 3490 uint64_t TableSize, 3491 ConstantInt *Offset, 3492 const SmallVector<std::pair<ConstantInt*, Constant*>, 4>& Values, 3493 Constant *DefaultValue, 3494 const DataLayout *TD); 3495 3496 /// BuildLookup - Build instructions with Builder to retrieve the value at 3497 /// the position given by Index in the lookup table. 3498 Value *BuildLookup(Value *Index, IRBuilder<> &Builder); 3499 3500 /// WouldFitInRegister - Return true if a table with TableSize elements of 3501 /// type ElementType would fit in a target-legal register. 3502 static bool WouldFitInRegister(const DataLayout *TD, 3503 uint64_t TableSize, 3504 const Type *ElementType); 3505 3506 private: 3507 // Depending on the contents of the table, it can be represented in 3508 // different ways. 3509 enum { 3510 // For tables where each element contains the same value, we just have to 3511 // store that single value and return it for each lookup. 3512 SingleValueKind, 3513 3514 // For small tables with integer elements, we can pack them into a bitmap 3515 // that fits into a target-legal register. Values are retrieved by 3516 // shift and mask operations. 3517 BitMapKind, 3518 3519 // The table is stored as an array of values. Values are retrieved by load 3520 // instructions from the table. 3521 ArrayKind 3522 } Kind; 3523 3524 // For SingleValueKind, this is the single value. 3525 Constant *SingleValue; 3526 3527 // For BitMapKind, this is the bitmap. 3528 ConstantInt *BitMap; 3529 IntegerType *BitMapElementTy; 3530 3531 // For ArrayKind, this is the array. 3532 GlobalVariable *Array; 3533 }; 3534 } 3535 3536 SwitchLookupTable::SwitchLookupTable(Module &M, 3537 uint64_t TableSize, 3538 ConstantInt *Offset, 3539 const SmallVector<std::pair<ConstantInt*, Constant*>, 4>& Values, 3540 Constant *DefaultValue, 3541 const DataLayout *TD) 3542 : SingleValue(0), BitMap(0), BitMapElementTy(0), Array(0) { 3543 assert(Values.size() && "Can't build lookup table without values!"); 3544 assert(TableSize >= Values.size() && "Can't fit values in table!"); 3545 3546 // If all values in the table are equal, this is that value. 3547 SingleValue = Values.begin()->second; 3548 3549 // Build up the table contents. 3550 SmallVector<Constant*, 64> TableContents(TableSize); 3551 for (size_t I = 0, E = Values.size(); I != E; ++I) { 3552 ConstantInt *CaseVal = Values[I].first; 3553 Constant *CaseRes = Values[I].second; 3554 assert(CaseRes->getType() == DefaultValue->getType()); 3555 3556 uint64_t Idx = (CaseVal->getValue() - Offset->getValue()) 3557 .getLimitedValue(); 3558 TableContents[Idx] = CaseRes; 3559 3560 if (CaseRes != SingleValue) 3561 SingleValue = 0; 3562 } 3563 3564 // Fill in any holes in the table with the default result. 3565 if (Values.size() < TableSize) { 3566 for (uint64_t I = 0; I < TableSize; ++I) { 3567 if (!TableContents[I]) 3568 TableContents[I] = DefaultValue; 3569 } 3570 3571 if (DefaultValue != SingleValue) 3572 SingleValue = 0; 3573 } 3574 3575 // If each element in the table contains the same value, we only need to store 3576 // that single value. 3577 if (SingleValue) { 3578 Kind = SingleValueKind; 3579 return; 3580 } 3581 3582 // If the type is integer and the table fits in a register, build a bitmap. 3583 if (WouldFitInRegister(TD, TableSize, DefaultValue->getType())) { 3584 IntegerType *IT = cast<IntegerType>(DefaultValue->getType()); 3585 APInt TableInt(TableSize * IT->getBitWidth(), 0); 3586 for (uint64_t I = TableSize; I > 0; --I) { 3587 TableInt <<= IT->getBitWidth(); 3588 // Insert values into the bitmap. Undef values are set to zero. 3589 if (!isa<UndefValue>(TableContents[I - 1])) { 3590 ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]); 3591 TableInt |= Val->getValue().zext(TableInt.getBitWidth()); 3592 } 3593 } 3594 BitMap = ConstantInt::get(M.getContext(), TableInt); 3595 BitMapElementTy = IT; 3596 Kind = BitMapKind; 3597 ++NumBitMaps; 3598 return; 3599 } 3600 3601 // Store the table in an array. 3602 ArrayType *ArrayTy = ArrayType::get(DefaultValue->getType(), TableSize); 3603 Constant *Initializer = ConstantArray::get(ArrayTy, TableContents); 3604 3605 Array = new GlobalVariable(M, ArrayTy, /*constant=*/ true, 3606 GlobalVariable::PrivateLinkage, 3607 Initializer, 3608 "switch.table"); 3609 Array->setUnnamedAddr(true); 3610 Kind = ArrayKind; 3611 } 3612 3613 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) { 3614 switch (Kind) { 3615 case SingleValueKind: 3616 return SingleValue; 3617 case BitMapKind: { 3618 // Type of the bitmap (e.g. i59). 3619 IntegerType *MapTy = BitMap->getType(); 3620 3621 // Cast Index to the same type as the bitmap. 3622 // Note: The Index is <= the number of elements in the table, so 3623 // truncating it to the width of the bitmask is safe. 3624 Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast"); 3625 3626 // Multiply the shift amount by the element width. 3627 ShiftAmt = Builder.CreateMul(ShiftAmt, 3628 ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()), 3629 "switch.shiftamt"); 3630 3631 // Shift down. 3632 Value *DownShifted = Builder.CreateLShr(BitMap, ShiftAmt, 3633 "switch.downshift"); 3634 // Mask off. 3635 return Builder.CreateTrunc(DownShifted, BitMapElementTy, 3636 "switch.masked"); 3637 } 3638 case ArrayKind: { 3639 Value *GEPIndices[] = { Builder.getInt32(0), Index }; 3640 Value *GEP = Builder.CreateInBoundsGEP(Array, GEPIndices, 3641 "switch.gep"); 3642 return Builder.CreateLoad(GEP, "switch.load"); 3643 } 3644 } 3645 llvm_unreachable("Unknown lookup table kind!"); 3646 } 3647 3648 bool SwitchLookupTable::WouldFitInRegister(const DataLayout *TD, 3649 uint64_t TableSize, 3650 const Type *ElementType) { 3651 if (!TD) 3652 return false; 3653 const IntegerType *IT = dyn_cast<IntegerType>(ElementType); 3654 if (!IT) 3655 return false; 3656 // FIXME: If the type is wider than it needs to be, e.g. i8 but all values 3657 // are <= 15, we could try to narrow the type. 3658 3659 // Avoid overflow, fitsInLegalInteger uses unsigned int for the width. 3660 if (TableSize >= UINT_MAX/IT->getBitWidth()) 3661 return false; 3662 return TD->fitsInLegalInteger(TableSize * IT->getBitWidth()); 3663 } 3664 3665 /// ShouldBuildLookupTable - Determine whether a lookup table should be built 3666 /// for this switch, based on the number of cases, size of the table and the 3667 /// types of the results. 3668 static bool ShouldBuildLookupTable(SwitchInst *SI, 3669 uint64_t TableSize, 3670 const TargetTransformInfo &TTI, 3671 const DataLayout *TD, 3672 const SmallDenseMap<PHINode*, Type*>& ResultTypes) { 3673 if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10) 3674 return false; // TableSize overflowed, or mul below might overflow. 3675 3676 bool AllTablesFitInRegister = true; 3677 bool HasIllegalType = false; 3678 for (SmallDenseMap<PHINode*, Type*>::const_iterator I = ResultTypes.begin(), 3679 E = ResultTypes.end(); I != E; ++I) { 3680 Type *Ty = I->second; 3681 3682 // Saturate this flag to true. 3683 HasIllegalType = HasIllegalType || !TTI.isTypeLegal(Ty); 3684 3685 // Saturate this flag to false. 3686 AllTablesFitInRegister = AllTablesFitInRegister && 3687 SwitchLookupTable::WouldFitInRegister(TD, TableSize, Ty); 3688 3689 // If both flags saturate, we're done. NOTE: This *only* works with 3690 // saturating flags, and all flags have to saturate first due to the 3691 // non-deterministic behavior of iterating over a dense map. 3692 if (HasIllegalType && !AllTablesFitInRegister) 3693 break; 3694 } 3695 3696 // If each table would fit in a register, we should build it anyway. 3697 if (AllTablesFitInRegister) 3698 return true; 3699 3700 // Don't build a table that doesn't fit in-register if it has illegal types. 3701 if (HasIllegalType) 3702 return false; 3703 3704 // The table density should be at least 40%. This is the same criterion as for 3705 // jump tables, see SelectionDAGBuilder::handleJTSwitchCase. 3706 // FIXME: Find the best cut-off. 3707 return SI->getNumCases() * 10 >= TableSize * 4; 3708 } 3709 3710 /// SwitchToLookupTable - If the switch is only used to initialize one or more 3711 /// phi nodes in a common successor block with different constant values, 3712 /// replace the switch with lookup tables. 3713 static bool SwitchToLookupTable(SwitchInst *SI, 3714 IRBuilder<> &Builder, 3715 const TargetTransformInfo &TTI, 3716 const DataLayout* TD) { 3717 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 3718 3719 // Only build lookup table when we have a target that supports it. 3720 if (!TTI.shouldBuildLookupTables()) 3721 return false; 3722 3723 // FIXME: If the switch is too sparse for a lookup table, perhaps we could 3724 // split off a dense part and build a lookup table for that. 3725 3726 // FIXME: This creates arrays of GEPs to constant strings, which means each 3727 // GEP needs a runtime relocation in PIC code. We should just build one big 3728 // string and lookup indices into that. 3729 3730 // Ignore the switch if the number of cases is too small. 3731 // This is similar to the check when building jump tables in 3732 // SelectionDAGBuilder::handleJTSwitchCase. 3733 // FIXME: Determine the best cut-off. 3734 if (SI->getNumCases() < 4) 3735 return false; 3736 3737 // Figure out the corresponding result for each case value and phi node in the 3738 // common destination, as well as the the min and max case values. 3739 assert(SI->case_begin() != SI->case_end()); 3740 SwitchInst::CaseIt CI = SI->case_begin(); 3741 ConstantInt *MinCaseVal = CI.getCaseValue(); 3742 ConstantInt *MaxCaseVal = CI.getCaseValue(); 3743 3744 BasicBlock *CommonDest = 0; 3745 typedef SmallVector<std::pair<ConstantInt*, Constant*>, 4> ResultListTy; 3746 SmallDenseMap<PHINode*, ResultListTy> ResultLists; 3747 SmallDenseMap<PHINode*, Constant*> DefaultResults; 3748 SmallDenseMap<PHINode*, Type*> ResultTypes; 3749 SmallVector<PHINode*, 4> PHIs; 3750 3751 for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) { 3752 ConstantInt *CaseVal = CI.getCaseValue(); 3753 if (CaseVal->getValue().slt(MinCaseVal->getValue())) 3754 MinCaseVal = CaseVal; 3755 if (CaseVal->getValue().sgt(MaxCaseVal->getValue())) 3756 MaxCaseVal = CaseVal; 3757 3758 // Resulting value at phi nodes for this case value. 3759 typedef SmallVector<std::pair<PHINode*, Constant*>, 4> ResultsTy; 3760 ResultsTy Results; 3761 if (!GetCaseResults(SI, CaseVal, CI.getCaseSuccessor(), &CommonDest, 3762 Results)) 3763 return false; 3764 3765 // Append the result from this case to the list for each phi. 3766 for (ResultsTy::iterator I = Results.begin(), E = Results.end(); I!=E; ++I) { 3767 if (!ResultLists.count(I->first)) 3768 PHIs.push_back(I->first); 3769 ResultLists[I->first].push_back(std::make_pair(CaseVal, I->second)); 3770 } 3771 } 3772 3773 // Get the resulting values for the default case. 3774 SmallVector<std::pair<PHINode*, Constant*>, 4> DefaultResultsList; 3775 if (!GetCaseResults(SI, 0, SI->getDefaultDest(), &CommonDest, 3776 DefaultResultsList)) 3777 return false; 3778 for (size_t I = 0, E = DefaultResultsList.size(); I != E; ++I) { 3779 PHINode *PHI = DefaultResultsList[I].first; 3780 Constant *Result = DefaultResultsList[I].second; 3781 DefaultResults[PHI] = Result; 3782 ResultTypes[PHI] = Result->getType(); 3783 } 3784 3785 APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue(); 3786 uint64_t TableSize = RangeSpread.getLimitedValue() + 1; 3787 if (!ShouldBuildLookupTable(SI, TableSize, TTI, TD, ResultTypes)) 3788 return false; 3789 3790 // Create the BB that does the lookups. 3791 Module &Mod = *CommonDest->getParent()->getParent(); 3792 BasicBlock *LookupBB = BasicBlock::Create(Mod.getContext(), 3793 "switch.lookup", 3794 CommonDest->getParent(), 3795 CommonDest); 3796 3797 // Check whether the condition value is within the case range, and branch to 3798 // the new BB. 3799 Builder.SetInsertPoint(SI); 3800 Value *TableIndex = Builder.CreateSub(SI->getCondition(), MinCaseVal, 3801 "switch.tableidx"); 3802 Value *Cmp = Builder.CreateICmpULT(TableIndex, ConstantInt::get( 3803 MinCaseVal->getType(), TableSize)); 3804 Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest()); 3805 3806 // Populate the BB that does the lookups. 3807 Builder.SetInsertPoint(LookupBB); 3808 bool ReturnedEarly = false; 3809 for (size_t I = 0, E = PHIs.size(); I != E; ++I) { 3810 PHINode *PHI = PHIs[I]; 3811 3812 SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultLists[PHI], 3813 DefaultResults[PHI], TD); 3814 3815 Value *Result = Table.BuildLookup(TableIndex, Builder); 3816 3817 // If the result is used to return immediately from the function, we want to 3818 // do that right here. 3819 if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->use_begin()) && 3820 *PHI->use_begin() == CommonDest->getFirstNonPHIOrDbg()) { 3821 Builder.CreateRet(Result); 3822 ReturnedEarly = true; 3823 break; 3824 } 3825 3826 PHI->addIncoming(Result, LookupBB); 3827 } 3828 3829 if (!ReturnedEarly) 3830 Builder.CreateBr(CommonDest); 3831 3832 // Remove the switch. 3833 for (unsigned i = 0; i < SI->getNumSuccessors(); ++i) { 3834 BasicBlock *Succ = SI->getSuccessor(i); 3835 if (Succ == SI->getDefaultDest()) continue; 3836 Succ->removePredecessor(SI->getParent()); 3837 } 3838 SI->eraseFromParent(); 3839 3840 ++NumLookupTables; 3841 return true; 3842 } 3843 3844 bool SimplifyCFGOpt::SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) { 3845 BasicBlock *BB = SI->getParent(); 3846 3847 if (isValueEqualityComparison(SI)) { 3848 // If we only have one predecessor, and if it is a branch on this value, 3849 // see if that predecessor totally determines the outcome of this switch. 3850 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 3851 if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder)) 3852 return SimplifyCFG(BB, TTI, TD) | true; 3853 3854 Value *Cond = SI->getCondition(); 3855 if (SelectInst *Select = dyn_cast<SelectInst>(Cond)) 3856 if (SimplifySwitchOnSelect(SI, Select)) 3857 return SimplifyCFG(BB, TTI, TD) | true; 3858 3859 // If the block only contains the switch, see if we can fold the block 3860 // away into any preds. 3861 BasicBlock::iterator BBI = BB->begin(); 3862 // Ignore dbg intrinsics. 3863 while (isa<DbgInfoIntrinsic>(BBI)) 3864 ++BBI; 3865 if (SI == &*BBI) 3866 if (FoldValueComparisonIntoPredecessors(SI, Builder)) 3867 return SimplifyCFG(BB, TTI, TD) | true; 3868 } 3869 3870 // Try to transform the switch into an icmp and a branch. 3871 if (TurnSwitchRangeIntoICmp(SI, Builder)) 3872 return SimplifyCFG(BB, TTI, TD) | true; 3873 3874 // Remove unreachable cases. 3875 if (EliminateDeadSwitchCases(SI)) 3876 return SimplifyCFG(BB, TTI, TD) | true; 3877 3878 if (ForwardSwitchConditionToPHI(SI)) 3879 return SimplifyCFG(BB, TTI, TD) | true; 3880 3881 if (SwitchToLookupTable(SI, Builder, TTI, TD)) 3882 return SimplifyCFG(BB, TTI, TD) | true; 3883 3884 return false; 3885 } 3886 3887 bool SimplifyCFGOpt::SimplifyIndirectBr(IndirectBrInst *IBI) { 3888 BasicBlock *BB = IBI->getParent(); 3889 bool Changed = false; 3890 3891 // Eliminate redundant destinations. 3892 SmallPtrSet<Value *, 8> Succs; 3893 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 3894 BasicBlock *Dest = IBI->getDestination(i); 3895 if (!Dest->hasAddressTaken() || !Succs.insert(Dest)) { 3896 Dest->removePredecessor(BB); 3897 IBI->removeDestination(i); 3898 --i; --e; 3899 Changed = true; 3900 } 3901 } 3902 3903 if (IBI->getNumDestinations() == 0) { 3904 // If the indirectbr has no successors, change it to unreachable. 3905 new UnreachableInst(IBI->getContext(), IBI); 3906 EraseTerminatorInstAndDCECond(IBI); 3907 return true; 3908 } 3909 3910 if (IBI->getNumDestinations() == 1) { 3911 // If the indirectbr has one successor, change it to a direct branch. 3912 BranchInst::Create(IBI->getDestination(0), IBI); 3913 EraseTerminatorInstAndDCECond(IBI); 3914 return true; 3915 } 3916 3917 if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) { 3918 if (SimplifyIndirectBrOnSelect(IBI, SI)) 3919 return SimplifyCFG(BB, TTI, TD) | true; 3920 } 3921 return Changed; 3922 } 3923 3924 bool SimplifyCFGOpt::SimplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder){ 3925 BasicBlock *BB = BI->getParent(); 3926 3927 if (SinkCommon && SinkThenElseCodeToEnd(BI)) 3928 return true; 3929 3930 // If the Terminator is the only non-phi instruction, simplify the block. 3931 BasicBlock::iterator I = BB->getFirstNonPHIOrDbgOrLifetime(); 3932 if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() && 3933 TryToSimplifyUncondBranchFromEmptyBlock(BB)) 3934 return true; 3935 3936 // If the only instruction in the block is a seteq/setne comparison 3937 // against a constant, try to simplify the block. 3938 if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) 3939 if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) { 3940 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 3941 ; 3942 if (I->isTerminator() && 3943 TryToSimplifyUncondBranchWithICmpInIt(ICI, Builder, TTI, TD)) 3944 return true; 3945 } 3946 3947 // If this basic block is ONLY a compare and a branch, and if a predecessor 3948 // branches to us and our successor, fold the comparison into the 3949 // predecessor and use logical operations to update the incoming value 3950 // for PHI nodes in common successor. 3951 if (FoldBranchToCommonDest(BI)) 3952 return SimplifyCFG(BB, TTI, TD) | true; 3953 return false; 3954 } 3955 3956 3957 bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) { 3958 BasicBlock *BB = BI->getParent(); 3959 3960 // Conditional branch 3961 if (isValueEqualityComparison(BI)) { 3962 // If we only have one predecessor, and if it is a branch on this value, 3963 // see if that predecessor totally determines the outcome of this 3964 // switch. 3965 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 3966 if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder)) 3967 return SimplifyCFG(BB, TTI, TD) | true; 3968 3969 // This block must be empty, except for the setcond inst, if it exists. 3970 // Ignore dbg intrinsics. 3971 BasicBlock::iterator I = BB->begin(); 3972 // Ignore dbg intrinsics. 3973 while (isa<DbgInfoIntrinsic>(I)) 3974 ++I; 3975 if (&*I == BI) { 3976 if (FoldValueComparisonIntoPredecessors(BI, Builder)) 3977 return SimplifyCFG(BB, TTI, TD) | true; 3978 } else if (&*I == cast<Instruction>(BI->getCondition())){ 3979 ++I; 3980 // Ignore dbg intrinsics. 3981 while (isa<DbgInfoIntrinsic>(I)) 3982 ++I; 3983 if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder)) 3984 return SimplifyCFG(BB, TTI, TD) | true; 3985 } 3986 } 3987 3988 // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction. 3989 if (SimplifyBranchOnICmpChain(BI, TD, Builder)) 3990 return true; 3991 3992 // If this basic block is ONLY a compare and a branch, and if a predecessor 3993 // branches to us and one of our successors, fold the comparison into the 3994 // predecessor and use logical operations to pick the right destination. 3995 if (FoldBranchToCommonDest(BI)) 3996 return SimplifyCFG(BB, TTI, TD) | true; 3997 3998 // We have a conditional branch to two blocks that are only reachable 3999 // from BI. We know that the condbr dominates the two blocks, so see if 4000 // there is any identical code in the "then" and "else" blocks. If so, we 4001 // can hoist it up to the branching block. 4002 if (BI->getSuccessor(0)->getSinglePredecessor() != 0) { 4003 if (BI->getSuccessor(1)->getSinglePredecessor() != 0) { 4004 if (HoistThenElseCodeToIf(BI)) 4005 return SimplifyCFG(BB, TTI, TD) | true; 4006 } else { 4007 // If Successor #1 has multiple preds, we may be able to conditionally 4008 // execute Successor #0 if it branches to successor #1. 4009 TerminatorInst *Succ0TI = BI->getSuccessor(0)->getTerminator(); 4010 if (Succ0TI->getNumSuccessors() == 1 && 4011 Succ0TI->getSuccessor(0) == BI->getSuccessor(1)) 4012 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0))) 4013 return SimplifyCFG(BB, TTI, TD) | true; 4014 } 4015 } else if (BI->getSuccessor(1)->getSinglePredecessor() != 0) { 4016 // If Successor #0 has multiple preds, we may be able to conditionally 4017 // execute Successor #1 if it branches to successor #0. 4018 TerminatorInst *Succ1TI = BI->getSuccessor(1)->getTerminator(); 4019 if (Succ1TI->getNumSuccessors() == 1 && 4020 Succ1TI->getSuccessor(0) == BI->getSuccessor(0)) 4021 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1))) 4022 return SimplifyCFG(BB, TTI, TD) | true; 4023 } 4024 4025 // If this is a branch on a phi node in the current block, thread control 4026 // through this block if any PHI node entries are constants. 4027 if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition())) 4028 if (PN->getParent() == BI->getParent()) 4029 if (FoldCondBranchOnPHI(BI, TD)) 4030 return SimplifyCFG(BB, TTI, TD) | true; 4031 4032 // Scan predecessor blocks for conditional branches. 4033 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 4034 if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator())) 4035 if (PBI != BI && PBI->isConditional()) 4036 if (SimplifyCondBranchToCondBranch(PBI, BI)) 4037 return SimplifyCFG(BB, TTI, TD) | true; 4038 4039 return false; 4040 } 4041 4042 /// Check if passing a value to an instruction will cause undefined behavior. 4043 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I) { 4044 Constant *C = dyn_cast<Constant>(V); 4045 if (!C) 4046 return false; 4047 4048 if (I->use_empty()) 4049 return false; 4050 4051 if (C->isNullValue()) { 4052 // Only look at the first use, avoid hurting compile time with long uselists 4053 User *Use = *I->use_begin(); 4054 4055 // Now make sure that there are no instructions in between that can alter 4056 // control flow (eg. calls) 4057 for (BasicBlock::iterator i = ++BasicBlock::iterator(I); &*i != Use; ++i) 4058 if (i == I->getParent()->end() || i->mayHaveSideEffects()) 4059 return false; 4060 4061 // Look through GEPs. A load from a GEP derived from NULL is still undefined 4062 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use)) 4063 if (GEP->getPointerOperand() == I) 4064 return passingValueIsAlwaysUndefined(V, GEP); 4065 4066 // Look through bitcasts. 4067 if (BitCastInst *BC = dyn_cast<BitCastInst>(Use)) 4068 return passingValueIsAlwaysUndefined(V, BC); 4069 4070 // Load from null is undefined. 4071 if (LoadInst *LI = dyn_cast<LoadInst>(Use)) 4072 if (!LI->isVolatile()) 4073 return LI->getPointerAddressSpace() == 0; 4074 4075 // Store to null is undefined. 4076 if (StoreInst *SI = dyn_cast<StoreInst>(Use)) 4077 if (!SI->isVolatile()) 4078 return SI->getPointerAddressSpace() == 0 && SI->getPointerOperand() == I; 4079 } 4080 return false; 4081 } 4082 4083 /// If BB has an incoming value that will always trigger undefined behavior 4084 /// (eg. null pointer dereference), remove the branch leading here. 4085 static bool removeUndefIntroducingPredecessor(BasicBlock *BB) { 4086 for (BasicBlock::iterator i = BB->begin(); 4087 PHINode *PHI = dyn_cast<PHINode>(i); ++i) 4088 for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) 4089 if (passingValueIsAlwaysUndefined(PHI->getIncomingValue(i), PHI)) { 4090 TerminatorInst *T = PHI->getIncomingBlock(i)->getTerminator(); 4091 IRBuilder<> Builder(T); 4092 if (BranchInst *BI = dyn_cast<BranchInst>(T)) { 4093 BB->removePredecessor(PHI->getIncomingBlock(i)); 4094 // Turn uncoditional branches into unreachables and remove the dead 4095 // destination from conditional branches. 4096 if (BI->isUnconditional()) 4097 Builder.CreateUnreachable(); 4098 else 4099 Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1) : 4100 BI->getSuccessor(0)); 4101 BI->eraseFromParent(); 4102 return true; 4103 } 4104 // TODO: SwitchInst. 4105 } 4106 4107 return false; 4108 } 4109 4110 bool SimplifyCFGOpt::run(BasicBlock *BB) { 4111 bool Changed = false; 4112 4113 assert(BB && BB->getParent() && "Block not embedded in function!"); 4114 assert(BB->getTerminator() && "Degenerate basic block encountered!"); 4115 4116 // Remove basic blocks that have no predecessors (except the entry block)... 4117 // or that just have themself as a predecessor. These are unreachable. 4118 if ((pred_begin(BB) == pred_end(BB) && 4119 BB != &BB->getParent()->getEntryBlock()) || 4120 BB->getSinglePredecessor() == BB) { 4121 DEBUG(dbgs() << "Removing BB: \n" << *BB); 4122 DeleteDeadBlock(BB); 4123 return true; 4124 } 4125 4126 // Check to see if we can constant propagate this terminator instruction 4127 // away... 4128 Changed |= ConstantFoldTerminator(BB, true); 4129 4130 // Check for and eliminate duplicate PHI nodes in this block. 4131 Changed |= EliminateDuplicatePHINodes(BB); 4132 4133 // Check for and remove branches that will always cause undefined behavior. 4134 Changed |= removeUndefIntroducingPredecessor(BB); 4135 4136 // Merge basic blocks into their predecessor if there is only one distinct 4137 // pred, and if there is only one distinct successor of the predecessor, and 4138 // if there are no PHI nodes. 4139 // 4140 if (MergeBlockIntoPredecessor(BB)) 4141 return true; 4142 4143 IRBuilder<> Builder(BB); 4144 4145 // If there is a trivial two-entry PHI node in this basic block, and we can 4146 // eliminate it, do so now. 4147 if (PHINode *PN = dyn_cast<PHINode>(BB->begin())) 4148 if (PN->getNumIncomingValues() == 2) 4149 Changed |= FoldTwoEntryPHINode(PN, TD); 4150 4151 Builder.SetInsertPoint(BB->getTerminator()); 4152 if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) { 4153 if (BI->isUnconditional()) { 4154 if (SimplifyUncondBranch(BI, Builder)) return true; 4155 } else { 4156 if (SimplifyCondBranch(BI, Builder)) return true; 4157 } 4158 } else if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) { 4159 if (SimplifyReturn(RI, Builder)) return true; 4160 } else if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator())) { 4161 if (SimplifyResume(RI, Builder)) return true; 4162 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) { 4163 if (SimplifySwitch(SI, Builder)) return true; 4164 } else if (UnreachableInst *UI = 4165 dyn_cast<UnreachableInst>(BB->getTerminator())) { 4166 if (SimplifyUnreachable(UI)) return true; 4167 } else if (IndirectBrInst *IBI = 4168 dyn_cast<IndirectBrInst>(BB->getTerminator())) { 4169 if (SimplifyIndirectBr(IBI)) return true; 4170 } 4171 4172 return Changed; 4173 } 4174 4175 /// SimplifyCFG - This function is used to do simplification of a CFG. For 4176 /// example, it adjusts branches to branches to eliminate the extra hop, it 4177 /// eliminates unreachable basic blocks, and does other "peephole" optimization 4178 /// of the CFG. It returns true if a modification was made. 4179 /// 4180 bool llvm::SimplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI, 4181 const DataLayout *TD) { 4182 return SimplifyCFGOpt(TTI, TD).run(BB); 4183 } 4184