1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Peephole optimize the CFG. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #define DEBUG_TYPE "simplifycfg" 15 #include "llvm/Transforms/Utils/Local.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SetVector.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/Analysis/InstructionSimplify.h" 23 #include "llvm/Analysis/TargetTransformInfo.h" 24 #include "llvm/Analysis/ValueTracking.h" 25 #include "llvm/IR/Constants.h" 26 #include "llvm/IR/DataLayout.h" 27 #include "llvm/IR/DerivedTypes.h" 28 #include "llvm/IR/GlobalVariable.h" 29 #include "llvm/IR/IRBuilder.h" 30 #include "llvm/IR/Instructions.h" 31 #include "llvm/IR/IntrinsicInst.h" 32 #include "llvm/IR/LLVMContext.h" 33 #include "llvm/IR/MDBuilder.h" 34 #include "llvm/IR/Metadata.h" 35 #include "llvm/IR/Module.h" 36 #include "llvm/IR/Operator.h" 37 #include "llvm/IR/Type.h" 38 #include "llvm/Support/CFG.h" 39 #include "llvm/Support/CommandLine.h" 40 #include "llvm/Support/ConstantRange.h" 41 #include "llvm/Support/Debug.h" 42 #include "llvm/Support/NoFolder.h" 43 #include "llvm/Support/PatternMatch.h" 44 #include "llvm/Support/raw_ostream.h" 45 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 46 #include <algorithm> 47 #include <map> 48 #include <set> 49 using namespace llvm; 50 using namespace PatternMatch; 51 52 static cl::opt<unsigned> 53 PHINodeFoldingThreshold("phi-node-folding-threshold", cl::Hidden, cl::init(1), 54 cl::desc("Control the amount of phi node folding to perform (default = 1)")); 55 56 static cl::opt<bool> 57 DupRet("simplifycfg-dup-ret", cl::Hidden, cl::init(false), 58 cl::desc("Duplicate return instructions into unconditional branches")); 59 60 static cl::opt<bool> 61 SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true), 62 cl::desc("Sink common instructions down to the end block")); 63 64 static cl::opt<bool> 65 HoistCondStores("simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true), 66 cl::desc("Hoist conditional stores if an unconditional store preceeds")); 67 68 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps"); 69 STATISTIC(NumLookupTables, "Number of switch instructions turned into lookup tables"); 70 STATISTIC(NumSinkCommons, "Number of common instructions sunk down to the end block"); 71 STATISTIC(NumSpeculations, "Number of speculative executed instructions"); 72 73 namespace { 74 /// ValueEqualityComparisonCase - Represents a case of a switch. 75 struct ValueEqualityComparisonCase { 76 ConstantInt *Value; 77 BasicBlock *Dest; 78 79 ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest) 80 : Value(Value), Dest(Dest) {} 81 82 bool operator<(ValueEqualityComparisonCase RHS) const { 83 // Comparing pointers is ok as we only rely on the order for uniquing. 84 return Value < RHS.Value; 85 } 86 87 bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; } 88 }; 89 90 class SimplifyCFGOpt { 91 const TargetTransformInfo &TTI; 92 const DataLayout *const TD; 93 94 Value *isValueEqualityComparison(TerminatorInst *TI); 95 BasicBlock *GetValueEqualityComparisonCases(TerminatorInst *TI, 96 std::vector<ValueEqualityComparisonCase> &Cases); 97 bool SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI, 98 BasicBlock *Pred, 99 IRBuilder<> &Builder); 100 bool FoldValueComparisonIntoPredecessors(TerminatorInst *TI, 101 IRBuilder<> &Builder); 102 103 bool SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder); 104 bool SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder); 105 bool SimplifyUnreachable(UnreachableInst *UI); 106 bool SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder); 107 bool SimplifyIndirectBr(IndirectBrInst *IBI); 108 bool SimplifyUncondBranch(BranchInst *BI, IRBuilder <> &Builder); 109 bool SimplifyCondBranch(BranchInst *BI, IRBuilder <>&Builder); 110 111 public: 112 SimplifyCFGOpt(const TargetTransformInfo &TTI, const DataLayout *TD) 113 : TTI(TTI), TD(TD) {} 114 bool run(BasicBlock *BB); 115 }; 116 } 117 118 /// SafeToMergeTerminators - Return true if it is safe to merge these two 119 /// terminator instructions together. 120 /// 121 static bool SafeToMergeTerminators(TerminatorInst *SI1, TerminatorInst *SI2) { 122 if (SI1 == SI2) return false; // Can't merge with self! 123 124 // It is not safe to merge these two switch instructions if they have a common 125 // successor, and if that successor has a PHI node, and if *that* PHI node has 126 // conflicting incoming values from the two switch blocks. 127 BasicBlock *SI1BB = SI1->getParent(); 128 BasicBlock *SI2BB = SI2->getParent(); 129 SmallPtrSet<BasicBlock*, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB)); 130 131 for (succ_iterator I = succ_begin(SI2BB), E = succ_end(SI2BB); I != E; ++I) 132 if (SI1Succs.count(*I)) 133 for (BasicBlock::iterator BBI = (*I)->begin(); 134 isa<PHINode>(BBI); ++BBI) { 135 PHINode *PN = cast<PHINode>(BBI); 136 if (PN->getIncomingValueForBlock(SI1BB) != 137 PN->getIncomingValueForBlock(SI2BB)) 138 return false; 139 } 140 141 return true; 142 } 143 144 /// isProfitableToFoldUnconditional - Return true if it is safe and profitable 145 /// to merge these two terminator instructions together, where SI1 is an 146 /// unconditional branch. PhiNodes will store all PHI nodes in common 147 /// successors. 148 /// 149 static bool isProfitableToFoldUnconditional(BranchInst *SI1, 150 BranchInst *SI2, 151 Instruction *Cond, 152 SmallVectorImpl<PHINode*> &PhiNodes) { 153 if (SI1 == SI2) return false; // Can't merge with self! 154 assert(SI1->isUnconditional() && SI2->isConditional()); 155 156 // We fold the unconditional branch if we can easily update all PHI nodes in 157 // common successors: 158 // 1> We have a constant incoming value for the conditional branch; 159 // 2> We have "Cond" as the incoming value for the unconditional branch; 160 // 3> SI2->getCondition() and Cond have same operands. 161 CmpInst *Ci2 = dyn_cast<CmpInst>(SI2->getCondition()); 162 if (!Ci2) return false; 163 if (!(Cond->getOperand(0) == Ci2->getOperand(0) && 164 Cond->getOperand(1) == Ci2->getOperand(1)) && 165 !(Cond->getOperand(0) == Ci2->getOperand(1) && 166 Cond->getOperand(1) == Ci2->getOperand(0))) 167 return false; 168 169 BasicBlock *SI1BB = SI1->getParent(); 170 BasicBlock *SI2BB = SI2->getParent(); 171 SmallPtrSet<BasicBlock*, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB)); 172 for (succ_iterator I = succ_begin(SI2BB), E = succ_end(SI2BB); I != E; ++I) 173 if (SI1Succs.count(*I)) 174 for (BasicBlock::iterator BBI = (*I)->begin(); 175 isa<PHINode>(BBI); ++BBI) { 176 PHINode *PN = cast<PHINode>(BBI); 177 if (PN->getIncomingValueForBlock(SI1BB) != Cond || 178 !isa<ConstantInt>(PN->getIncomingValueForBlock(SI2BB))) 179 return false; 180 PhiNodes.push_back(PN); 181 } 182 return true; 183 } 184 185 /// AddPredecessorToBlock - Update PHI nodes in Succ to indicate that there will 186 /// now be entries in it from the 'NewPred' block. The values that will be 187 /// flowing into the PHI nodes will be the same as those coming in from 188 /// ExistPred, an existing predecessor of Succ. 189 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred, 190 BasicBlock *ExistPred) { 191 if (!isa<PHINode>(Succ->begin())) return; // Quick exit if nothing to do 192 193 PHINode *PN; 194 for (BasicBlock::iterator I = Succ->begin(); 195 (PN = dyn_cast<PHINode>(I)); ++I) 196 PN->addIncoming(PN->getIncomingValueForBlock(ExistPred), NewPred); 197 } 198 199 200 /// GetIfCondition - Given a basic block (BB) with two predecessors (and at 201 /// least one PHI node in it), check to see if the merge at this block is due 202 /// to an "if condition". If so, return the boolean condition that determines 203 /// which entry into BB will be taken. Also, return by references the block 204 /// that will be entered from if the condition is true, and the block that will 205 /// be entered if the condition is false. 206 /// 207 /// This does no checking to see if the true/false blocks have large or unsavory 208 /// instructions in them. 209 static Value *GetIfCondition(BasicBlock *BB, BasicBlock *&IfTrue, 210 BasicBlock *&IfFalse) { 211 PHINode *SomePHI = cast<PHINode>(BB->begin()); 212 assert(SomePHI->getNumIncomingValues() == 2 && 213 "Function can only handle blocks with 2 predecessors!"); 214 BasicBlock *Pred1 = SomePHI->getIncomingBlock(0); 215 BasicBlock *Pred2 = SomePHI->getIncomingBlock(1); 216 217 // We can only handle branches. Other control flow will be lowered to 218 // branches if possible anyway. 219 BranchInst *Pred1Br = dyn_cast<BranchInst>(Pred1->getTerminator()); 220 BranchInst *Pred2Br = dyn_cast<BranchInst>(Pred2->getTerminator()); 221 if (Pred1Br == 0 || Pred2Br == 0) 222 return 0; 223 224 // Eliminate code duplication by ensuring that Pred1Br is conditional if 225 // either are. 226 if (Pred2Br->isConditional()) { 227 // If both branches are conditional, we don't have an "if statement". In 228 // reality, we could transform this case, but since the condition will be 229 // required anyway, we stand no chance of eliminating it, so the xform is 230 // probably not profitable. 231 if (Pred1Br->isConditional()) 232 return 0; 233 234 std::swap(Pred1, Pred2); 235 std::swap(Pred1Br, Pred2Br); 236 } 237 238 if (Pred1Br->isConditional()) { 239 // The only thing we have to watch out for here is to make sure that Pred2 240 // doesn't have incoming edges from other blocks. If it does, the condition 241 // doesn't dominate BB. 242 if (Pred2->getSinglePredecessor() == 0) 243 return 0; 244 245 // If we found a conditional branch predecessor, make sure that it branches 246 // to BB and Pred2Br. If it doesn't, this isn't an "if statement". 247 if (Pred1Br->getSuccessor(0) == BB && 248 Pred1Br->getSuccessor(1) == Pred2) { 249 IfTrue = Pred1; 250 IfFalse = Pred2; 251 } else if (Pred1Br->getSuccessor(0) == Pred2 && 252 Pred1Br->getSuccessor(1) == BB) { 253 IfTrue = Pred2; 254 IfFalse = Pred1; 255 } else { 256 // We know that one arm of the conditional goes to BB, so the other must 257 // go somewhere unrelated, and this must not be an "if statement". 258 return 0; 259 } 260 261 return Pred1Br->getCondition(); 262 } 263 264 // Ok, if we got here, both predecessors end with an unconditional branch to 265 // BB. Don't panic! If both blocks only have a single (identical) 266 // predecessor, and THAT is a conditional branch, then we're all ok! 267 BasicBlock *CommonPred = Pred1->getSinglePredecessor(); 268 if (CommonPred == 0 || CommonPred != Pred2->getSinglePredecessor()) 269 return 0; 270 271 // Otherwise, if this is a conditional branch, then we can use it! 272 BranchInst *BI = dyn_cast<BranchInst>(CommonPred->getTerminator()); 273 if (BI == 0) return 0; 274 275 assert(BI->isConditional() && "Two successors but not conditional?"); 276 if (BI->getSuccessor(0) == Pred1) { 277 IfTrue = Pred1; 278 IfFalse = Pred2; 279 } else { 280 IfTrue = Pred2; 281 IfFalse = Pred1; 282 } 283 return BI->getCondition(); 284 } 285 286 /// ComputeSpeculationCost - Compute an abstract "cost" of speculating the 287 /// given instruction, which is assumed to be safe to speculate. 1 means 288 /// cheap, 2 means less cheap, and UINT_MAX means prohibitively expensive. 289 static unsigned ComputeSpeculationCost(const User *I) { 290 assert(isSafeToSpeculativelyExecute(I) && 291 "Instruction is not safe to speculatively execute!"); 292 switch (Operator::getOpcode(I)) { 293 default: 294 // In doubt, be conservative. 295 return UINT_MAX; 296 case Instruction::GetElementPtr: 297 // GEPs are cheap if all indices are constant. 298 if (!cast<GEPOperator>(I)->hasAllConstantIndices()) 299 return UINT_MAX; 300 return 1; 301 case Instruction::Load: 302 case Instruction::Add: 303 case Instruction::Sub: 304 case Instruction::And: 305 case Instruction::Or: 306 case Instruction::Xor: 307 case Instruction::Shl: 308 case Instruction::LShr: 309 case Instruction::AShr: 310 case Instruction::ICmp: 311 case Instruction::Trunc: 312 case Instruction::ZExt: 313 case Instruction::SExt: 314 return 1; // These are all cheap. 315 316 case Instruction::Call: 317 case Instruction::Select: 318 return 2; 319 } 320 } 321 322 /// DominatesMergePoint - If we have a merge point of an "if condition" as 323 /// accepted above, return true if the specified value dominates the block. We 324 /// don't handle the true generality of domination here, just a special case 325 /// which works well enough for us. 326 /// 327 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to 328 /// see if V (which must be an instruction) and its recursive operands 329 /// that do not dominate BB have a combined cost lower than CostRemaining and 330 /// are non-trapping. If both are true, the instruction is inserted into the 331 /// set and true is returned. 332 /// 333 /// The cost for most non-trapping instructions is defined as 1 except for 334 /// Select whose cost is 2. 335 /// 336 /// After this function returns, CostRemaining is decreased by the cost of 337 /// V plus its non-dominating operands. If that cost is greater than 338 /// CostRemaining, false is returned and CostRemaining is undefined. 339 static bool DominatesMergePoint(Value *V, BasicBlock *BB, 340 SmallPtrSet<Instruction*, 4> *AggressiveInsts, 341 unsigned &CostRemaining) { 342 Instruction *I = dyn_cast<Instruction>(V); 343 if (!I) { 344 // Non-instructions all dominate instructions, but not all constantexprs 345 // can be executed unconditionally. 346 if (ConstantExpr *C = dyn_cast<ConstantExpr>(V)) 347 if (C->canTrap()) 348 return false; 349 return true; 350 } 351 BasicBlock *PBB = I->getParent(); 352 353 // We don't want to allow weird loops that might have the "if condition" in 354 // the bottom of this block. 355 if (PBB == BB) return false; 356 357 // If this instruction is defined in a block that contains an unconditional 358 // branch to BB, then it must be in the 'conditional' part of the "if 359 // statement". If not, it definitely dominates the region. 360 BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator()); 361 if (BI == 0 || BI->isConditional() || BI->getSuccessor(0) != BB) 362 return true; 363 364 // If we aren't allowing aggressive promotion anymore, then don't consider 365 // instructions in the 'if region'. 366 if (AggressiveInsts == 0) return false; 367 368 // If we have seen this instruction before, don't count it again. 369 if (AggressiveInsts->count(I)) return true; 370 371 // Okay, it looks like the instruction IS in the "condition". Check to 372 // see if it's a cheap instruction to unconditionally compute, and if it 373 // only uses stuff defined outside of the condition. If so, hoist it out. 374 if (!isSafeToSpeculativelyExecute(I)) 375 return false; 376 377 unsigned Cost = ComputeSpeculationCost(I); 378 379 if (Cost > CostRemaining) 380 return false; 381 382 CostRemaining -= Cost; 383 384 // Okay, we can only really hoist these out if their operands do 385 // not take us over the cost threshold. 386 for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) 387 if (!DominatesMergePoint(*i, BB, AggressiveInsts, CostRemaining)) 388 return false; 389 // Okay, it's safe to do this! Remember this instruction. 390 AggressiveInsts->insert(I); 391 return true; 392 } 393 394 /// GetConstantInt - Extract ConstantInt from value, looking through IntToPtr 395 /// and PointerNullValue. Return NULL if value is not a constant int. 396 static ConstantInt *GetConstantInt(Value *V, const DataLayout *TD) { 397 // Normal constant int. 398 ConstantInt *CI = dyn_cast<ConstantInt>(V); 399 if (CI || !TD || !isa<Constant>(V) || !V->getType()->isPointerTy()) 400 return CI; 401 402 // This is some kind of pointer constant. Turn it into a pointer-sized 403 // ConstantInt if possible. 404 IntegerType *PtrTy = cast<IntegerType>(TD->getIntPtrType(V->getType())); 405 406 // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*). 407 if (isa<ConstantPointerNull>(V)) 408 return ConstantInt::get(PtrTy, 0); 409 410 // IntToPtr const int. 411 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 412 if (CE->getOpcode() == Instruction::IntToPtr) 413 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) { 414 // The constant is very likely to have the right type already. 415 if (CI->getType() == PtrTy) 416 return CI; 417 else 418 return cast<ConstantInt> 419 (ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false)); 420 } 421 return 0; 422 } 423 424 /// GatherConstantCompares - Given a potentially 'or'd or 'and'd together 425 /// collection of icmp eq/ne instructions that compare a value against a 426 /// constant, return the value being compared, and stick the constant into the 427 /// Values vector. 428 static Value * 429 GatherConstantCompares(Value *V, std::vector<ConstantInt*> &Vals, Value *&Extra, 430 const DataLayout *TD, bool isEQ, unsigned &UsedICmps) { 431 Instruction *I = dyn_cast<Instruction>(V); 432 if (I == 0) return 0; 433 434 // If this is an icmp against a constant, handle this as one of the cases. 435 if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) { 436 if (ConstantInt *C = GetConstantInt(I->getOperand(1), TD)) { 437 Value *RHSVal; 438 ConstantInt *RHSC; 439 440 if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ:ICmpInst::ICMP_NE)) { 441 // (x & ~2^x) == y --> x == y || x == y|2^x 442 // This undoes a transformation done by instcombine to fuse 2 compares. 443 if (match(ICI->getOperand(0), 444 m_And(m_Value(RHSVal), m_ConstantInt(RHSC)))) { 445 APInt Not = ~RHSC->getValue(); 446 if (Not.isPowerOf2()) { 447 Vals.push_back(C); 448 Vals.push_back( 449 ConstantInt::get(C->getContext(), C->getValue() | Not)); 450 UsedICmps++; 451 return RHSVal; 452 } 453 } 454 455 UsedICmps++; 456 Vals.push_back(C); 457 return I->getOperand(0); 458 } 459 460 // If we have "x ult 3" comparison, for example, then we can add 0,1,2 to 461 // the set. 462 ConstantRange Span = 463 ConstantRange::makeICmpRegion(ICI->getPredicate(), C->getValue()); 464 465 // Shift the range if the compare is fed by an add. This is the range 466 // compare idiom as emitted by instcombine. 467 bool hasAdd = 468 match(I->getOperand(0), m_Add(m_Value(RHSVal), m_ConstantInt(RHSC))); 469 if (hasAdd) 470 Span = Span.subtract(RHSC->getValue()); 471 472 // If this is an and/!= check then we want to optimize "x ugt 2" into 473 // x != 0 && x != 1. 474 if (!isEQ) 475 Span = Span.inverse(); 476 477 // If there are a ton of values, we don't want to make a ginormous switch. 478 if (Span.getSetSize().ugt(8) || Span.isEmptySet()) 479 return 0; 480 481 for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp) 482 Vals.push_back(ConstantInt::get(V->getContext(), Tmp)); 483 UsedICmps++; 484 return hasAdd ? RHSVal : I->getOperand(0); 485 } 486 return 0; 487 } 488 489 // Otherwise, we can only handle an | or &, depending on isEQ. 490 if (I->getOpcode() != (isEQ ? Instruction::Or : Instruction::And)) 491 return 0; 492 493 unsigned NumValsBeforeLHS = Vals.size(); 494 unsigned UsedICmpsBeforeLHS = UsedICmps; 495 if (Value *LHS = GatherConstantCompares(I->getOperand(0), Vals, Extra, TD, 496 isEQ, UsedICmps)) { 497 unsigned NumVals = Vals.size(); 498 unsigned UsedICmpsBeforeRHS = UsedICmps; 499 if (Value *RHS = GatherConstantCompares(I->getOperand(1), Vals, Extra, TD, 500 isEQ, UsedICmps)) { 501 if (LHS == RHS) 502 return LHS; 503 Vals.resize(NumVals); 504 UsedICmps = UsedICmpsBeforeRHS; 505 } 506 507 // The RHS of the or/and can't be folded in and we haven't used "Extra" yet, 508 // set it and return success. 509 if (Extra == 0 || Extra == I->getOperand(1)) { 510 Extra = I->getOperand(1); 511 return LHS; 512 } 513 514 Vals.resize(NumValsBeforeLHS); 515 UsedICmps = UsedICmpsBeforeLHS; 516 return 0; 517 } 518 519 // If the LHS can't be folded in, but Extra is available and RHS can, try to 520 // use LHS as Extra. 521 if (Extra == 0 || Extra == I->getOperand(0)) { 522 Value *OldExtra = Extra; 523 Extra = I->getOperand(0); 524 if (Value *RHS = GatherConstantCompares(I->getOperand(1), Vals, Extra, TD, 525 isEQ, UsedICmps)) 526 return RHS; 527 assert(Vals.size() == NumValsBeforeLHS); 528 Extra = OldExtra; 529 } 530 531 return 0; 532 } 533 534 static void EraseTerminatorInstAndDCECond(TerminatorInst *TI) { 535 Instruction *Cond = 0; 536 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 537 Cond = dyn_cast<Instruction>(SI->getCondition()); 538 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 539 if (BI->isConditional()) 540 Cond = dyn_cast<Instruction>(BI->getCondition()); 541 } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) { 542 Cond = dyn_cast<Instruction>(IBI->getAddress()); 543 } 544 545 TI->eraseFromParent(); 546 if (Cond) RecursivelyDeleteTriviallyDeadInstructions(Cond); 547 } 548 549 /// isValueEqualityComparison - Return true if the specified terminator checks 550 /// to see if a value is equal to constant integer value. 551 Value *SimplifyCFGOpt::isValueEqualityComparison(TerminatorInst *TI) { 552 Value *CV = 0; 553 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 554 // Do not permit merging of large switch instructions into their 555 // predecessors unless there is only one predecessor. 556 if (SI->getNumSuccessors()*std::distance(pred_begin(SI->getParent()), 557 pred_end(SI->getParent())) <= 128) 558 CV = SI->getCondition(); 559 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) 560 if (BI->isConditional() && BI->getCondition()->hasOneUse()) 561 if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) 562 if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), TD)) 563 CV = ICI->getOperand(0); 564 565 // Unwrap any lossless ptrtoint cast. 566 if (TD && CV && CV->getType() == TD->getIntPtrType(CV->getContext())) 567 if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) 568 CV = PTII->getOperand(0); 569 return CV; 570 } 571 572 /// GetValueEqualityComparisonCases - Given a value comparison instruction, 573 /// decode all of the 'cases' that it represents and return the 'default' block. 574 BasicBlock *SimplifyCFGOpt:: 575 GetValueEqualityComparisonCases(TerminatorInst *TI, 576 std::vector<ValueEqualityComparisonCase> 577 &Cases) { 578 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 579 Cases.reserve(SI->getNumCases()); 580 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); i != e; ++i) 581 Cases.push_back(ValueEqualityComparisonCase(i.getCaseValue(), 582 i.getCaseSuccessor())); 583 return SI->getDefaultDest(); 584 } 585 586 BranchInst *BI = cast<BranchInst>(TI); 587 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 588 BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE); 589 Cases.push_back(ValueEqualityComparisonCase(GetConstantInt(ICI->getOperand(1), 590 TD), 591 Succ)); 592 return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ); 593 } 594 595 596 /// EliminateBlockCases - Given a vector of bb/value pairs, remove any entries 597 /// in the list that match the specified block. 598 static void EliminateBlockCases(BasicBlock *BB, 599 std::vector<ValueEqualityComparisonCase> &Cases) { 600 Cases.erase(std::remove(Cases.begin(), Cases.end(), BB), Cases.end()); 601 } 602 603 /// ValuesOverlap - Return true if there are any keys in C1 that exist in C2 as 604 /// well. 605 static bool 606 ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1, 607 std::vector<ValueEqualityComparisonCase > &C2) { 608 std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2; 609 610 // Make V1 be smaller than V2. 611 if (V1->size() > V2->size()) 612 std::swap(V1, V2); 613 614 if (V1->size() == 0) return false; 615 if (V1->size() == 1) { 616 // Just scan V2. 617 ConstantInt *TheVal = (*V1)[0].Value; 618 for (unsigned i = 0, e = V2->size(); i != e; ++i) 619 if (TheVal == (*V2)[i].Value) 620 return true; 621 } 622 623 // Otherwise, just sort both lists and compare element by element. 624 array_pod_sort(V1->begin(), V1->end()); 625 array_pod_sort(V2->begin(), V2->end()); 626 unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size(); 627 while (i1 != e1 && i2 != e2) { 628 if ((*V1)[i1].Value == (*V2)[i2].Value) 629 return true; 630 if ((*V1)[i1].Value < (*V2)[i2].Value) 631 ++i1; 632 else 633 ++i2; 634 } 635 return false; 636 } 637 638 /// SimplifyEqualityComparisonWithOnlyPredecessor - If TI is known to be a 639 /// terminator instruction and its block is known to only have a single 640 /// predecessor block, check to see if that predecessor is also a value 641 /// comparison with the same value, and if that comparison determines the 642 /// outcome of this comparison. If so, simplify TI. This does a very limited 643 /// form of jump threading. 644 bool SimplifyCFGOpt:: 645 SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI, 646 BasicBlock *Pred, 647 IRBuilder<> &Builder) { 648 Value *PredVal = isValueEqualityComparison(Pred->getTerminator()); 649 if (!PredVal) return false; // Not a value comparison in predecessor. 650 651 Value *ThisVal = isValueEqualityComparison(TI); 652 assert(ThisVal && "This isn't a value comparison!!"); 653 if (ThisVal != PredVal) return false; // Different predicates. 654 655 // TODO: Preserve branch weight metadata, similarly to how 656 // FoldValueComparisonIntoPredecessors preserves it. 657 658 // Find out information about when control will move from Pred to TI's block. 659 std::vector<ValueEqualityComparisonCase> PredCases; 660 BasicBlock *PredDef = GetValueEqualityComparisonCases(Pred->getTerminator(), 661 PredCases); 662 EliminateBlockCases(PredDef, PredCases); // Remove default from cases. 663 664 // Find information about how control leaves this block. 665 std::vector<ValueEqualityComparisonCase> ThisCases; 666 BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases); 667 EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases. 668 669 // If TI's block is the default block from Pred's comparison, potentially 670 // simplify TI based on this knowledge. 671 if (PredDef == TI->getParent()) { 672 // If we are here, we know that the value is none of those cases listed in 673 // PredCases. If there are any cases in ThisCases that are in PredCases, we 674 // can simplify TI. 675 if (!ValuesOverlap(PredCases, ThisCases)) 676 return false; 677 678 if (isa<BranchInst>(TI)) { 679 // Okay, one of the successors of this condbr is dead. Convert it to a 680 // uncond br. 681 assert(ThisCases.size() == 1 && "Branch can only have one case!"); 682 // Insert the new branch. 683 Instruction *NI = Builder.CreateBr(ThisDef); 684 (void) NI; 685 686 // Remove PHI node entries for the dead edge. 687 ThisCases[0].Dest->removePredecessor(TI->getParent()); 688 689 DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 690 << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n"); 691 692 EraseTerminatorInstAndDCECond(TI); 693 return true; 694 } 695 696 SwitchInst *SI = cast<SwitchInst>(TI); 697 // Okay, TI has cases that are statically dead, prune them away. 698 SmallPtrSet<Constant*, 16> DeadCases; 699 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 700 DeadCases.insert(PredCases[i].Value); 701 702 DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 703 << "Through successor TI: " << *TI); 704 705 // Collect branch weights into a vector. 706 SmallVector<uint32_t, 8> Weights; 707 MDNode* MD = SI->getMetadata(LLVMContext::MD_prof); 708 bool HasWeight = MD && (MD->getNumOperands() == 2 + SI->getNumCases()); 709 if (HasWeight) 710 for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e; 711 ++MD_i) { 712 ConstantInt* CI = dyn_cast<ConstantInt>(MD->getOperand(MD_i)); 713 assert(CI); 714 Weights.push_back(CI->getValue().getZExtValue()); 715 } 716 for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) { 717 --i; 718 if (DeadCases.count(i.getCaseValue())) { 719 if (HasWeight) { 720 std::swap(Weights[i.getCaseIndex()+1], Weights.back()); 721 Weights.pop_back(); 722 } 723 i.getCaseSuccessor()->removePredecessor(TI->getParent()); 724 SI->removeCase(i); 725 } 726 } 727 if (HasWeight && Weights.size() >= 2) 728 SI->setMetadata(LLVMContext::MD_prof, 729 MDBuilder(SI->getParent()->getContext()). 730 createBranchWeights(Weights)); 731 732 DEBUG(dbgs() << "Leaving: " << *TI << "\n"); 733 return true; 734 } 735 736 // Otherwise, TI's block must correspond to some matched value. Find out 737 // which value (or set of values) this is. 738 ConstantInt *TIV = 0; 739 BasicBlock *TIBB = TI->getParent(); 740 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 741 if (PredCases[i].Dest == TIBB) { 742 if (TIV != 0) 743 return false; // Cannot handle multiple values coming to this block. 744 TIV = PredCases[i].Value; 745 } 746 assert(TIV && "No edge from pred to succ?"); 747 748 // Okay, we found the one constant that our value can be if we get into TI's 749 // BB. Find out which successor will unconditionally be branched to. 750 BasicBlock *TheRealDest = 0; 751 for (unsigned i = 0, e = ThisCases.size(); i != e; ++i) 752 if (ThisCases[i].Value == TIV) { 753 TheRealDest = ThisCases[i].Dest; 754 break; 755 } 756 757 // If not handled by any explicit cases, it is handled by the default case. 758 if (TheRealDest == 0) TheRealDest = ThisDef; 759 760 // Remove PHI node entries for dead edges. 761 BasicBlock *CheckEdge = TheRealDest; 762 for (succ_iterator SI = succ_begin(TIBB), e = succ_end(TIBB); SI != e; ++SI) 763 if (*SI != CheckEdge) 764 (*SI)->removePredecessor(TIBB); 765 else 766 CheckEdge = 0; 767 768 // Insert the new branch. 769 Instruction *NI = Builder.CreateBr(TheRealDest); 770 (void) NI; 771 772 DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 773 << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n"); 774 775 EraseTerminatorInstAndDCECond(TI); 776 return true; 777 } 778 779 namespace { 780 /// ConstantIntOrdering - This class implements a stable ordering of constant 781 /// integers that does not depend on their address. This is important for 782 /// applications that sort ConstantInt's to ensure uniqueness. 783 struct ConstantIntOrdering { 784 bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const { 785 return LHS->getValue().ult(RHS->getValue()); 786 } 787 }; 788 } 789 790 static int ConstantIntSortPredicate(const void *P1, const void *P2) { 791 const ConstantInt *LHS = *(const ConstantInt*const*)P1; 792 const ConstantInt *RHS = *(const ConstantInt*const*)P2; 793 if (LHS->getValue().ult(RHS->getValue())) 794 return 1; 795 if (LHS->getValue() == RHS->getValue()) 796 return 0; 797 return -1; 798 } 799 800 static inline bool HasBranchWeights(const Instruction* I) { 801 MDNode* ProfMD = I->getMetadata(LLVMContext::MD_prof); 802 if (ProfMD && ProfMD->getOperand(0)) 803 if (MDString* MDS = dyn_cast<MDString>(ProfMD->getOperand(0))) 804 return MDS->getString().equals("branch_weights"); 805 806 return false; 807 } 808 809 /// Get Weights of a given TerminatorInst, the default weight is at the front 810 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight 811 /// metadata. 812 static void GetBranchWeights(TerminatorInst *TI, 813 SmallVectorImpl<uint64_t> &Weights) { 814 MDNode* MD = TI->getMetadata(LLVMContext::MD_prof); 815 assert(MD); 816 for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) { 817 ConstantInt* CI = dyn_cast<ConstantInt>(MD->getOperand(i)); 818 assert(CI); 819 Weights.push_back(CI->getValue().getZExtValue()); 820 } 821 822 // If TI is a conditional eq, the default case is the false case, 823 // and the corresponding branch-weight data is at index 2. We swap the 824 // default weight to be the first entry. 825 if (BranchInst* BI = dyn_cast<BranchInst>(TI)) { 826 assert(Weights.size() == 2); 827 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 828 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 829 std::swap(Weights.front(), Weights.back()); 830 } 831 } 832 833 /// Sees if any of the weights are too big for a uint32_t, and halves all the 834 /// weights if any are. 835 static void FitWeights(MutableArrayRef<uint64_t> Weights) { 836 bool Halve = false; 837 for (unsigned i = 0; i < Weights.size(); ++i) 838 if (Weights[i] > UINT_MAX) { 839 Halve = true; 840 break; 841 } 842 843 if (! Halve) 844 return; 845 846 for (unsigned i = 0; i < Weights.size(); ++i) 847 Weights[i] /= 2; 848 } 849 850 /// FoldValueComparisonIntoPredecessors - The specified terminator is a value 851 /// equality comparison instruction (either a switch or a branch on "X == c"). 852 /// See if any of the predecessors of the terminator block are value comparisons 853 /// on the same value. If so, and if safe to do so, fold them together. 854 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(TerminatorInst *TI, 855 IRBuilder<> &Builder) { 856 BasicBlock *BB = TI->getParent(); 857 Value *CV = isValueEqualityComparison(TI); // CondVal 858 assert(CV && "Not a comparison?"); 859 bool Changed = false; 860 861 SmallVector<BasicBlock*, 16> Preds(pred_begin(BB), pred_end(BB)); 862 while (!Preds.empty()) { 863 BasicBlock *Pred = Preds.pop_back_val(); 864 865 // See if the predecessor is a comparison with the same value. 866 TerminatorInst *PTI = Pred->getTerminator(); 867 Value *PCV = isValueEqualityComparison(PTI); // PredCondVal 868 869 if (PCV == CV && SafeToMergeTerminators(TI, PTI)) { 870 // Figure out which 'cases' to copy from SI to PSI. 871 std::vector<ValueEqualityComparisonCase> BBCases; 872 BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases); 873 874 std::vector<ValueEqualityComparisonCase> PredCases; 875 BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases); 876 877 // Based on whether the default edge from PTI goes to BB or not, fill in 878 // PredCases and PredDefault with the new switch cases we would like to 879 // build. 880 SmallVector<BasicBlock*, 8> NewSuccessors; 881 882 // Update the branch weight metadata along the way 883 SmallVector<uint64_t, 8> Weights; 884 bool PredHasWeights = HasBranchWeights(PTI); 885 bool SuccHasWeights = HasBranchWeights(TI); 886 887 if (PredHasWeights) { 888 GetBranchWeights(PTI, Weights); 889 // branch-weight metadata is inconsistent here. 890 if (Weights.size() != 1 + PredCases.size()) 891 PredHasWeights = SuccHasWeights = false; 892 } else if (SuccHasWeights) 893 // If there are no predecessor weights but there are successor weights, 894 // populate Weights with 1, which will later be scaled to the sum of 895 // successor's weights 896 Weights.assign(1 + PredCases.size(), 1); 897 898 SmallVector<uint64_t, 8> SuccWeights; 899 if (SuccHasWeights) { 900 GetBranchWeights(TI, SuccWeights); 901 // branch-weight metadata is inconsistent here. 902 if (SuccWeights.size() != 1 + BBCases.size()) 903 PredHasWeights = SuccHasWeights = false; 904 } else if (PredHasWeights) 905 SuccWeights.assign(1 + BBCases.size(), 1); 906 907 if (PredDefault == BB) { 908 // If this is the default destination from PTI, only the edges in TI 909 // that don't occur in PTI, or that branch to BB will be activated. 910 std::set<ConstantInt*, ConstantIntOrdering> PTIHandled; 911 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 912 if (PredCases[i].Dest != BB) 913 PTIHandled.insert(PredCases[i].Value); 914 else { 915 // The default destination is BB, we don't need explicit targets. 916 std::swap(PredCases[i], PredCases.back()); 917 918 if (PredHasWeights || SuccHasWeights) { 919 // Increase weight for the default case. 920 Weights[0] += Weights[i+1]; 921 std::swap(Weights[i+1], Weights.back()); 922 Weights.pop_back(); 923 } 924 925 PredCases.pop_back(); 926 --i; --e; 927 } 928 929 // Reconstruct the new switch statement we will be building. 930 if (PredDefault != BBDefault) { 931 PredDefault->removePredecessor(Pred); 932 PredDefault = BBDefault; 933 NewSuccessors.push_back(BBDefault); 934 } 935 936 unsigned CasesFromPred = Weights.size(); 937 uint64_t ValidTotalSuccWeight = 0; 938 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 939 if (!PTIHandled.count(BBCases[i].Value) && 940 BBCases[i].Dest != BBDefault) { 941 PredCases.push_back(BBCases[i]); 942 NewSuccessors.push_back(BBCases[i].Dest); 943 if (SuccHasWeights || PredHasWeights) { 944 // The default weight is at index 0, so weight for the ith case 945 // should be at index i+1. Scale the cases from successor by 946 // PredDefaultWeight (Weights[0]). 947 Weights.push_back(Weights[0] * SuccWeights[i+1]); 948 ValidTotalSuccWeight += SuccWeights[i+1]; 949 } 950 } 951 952 if (SuccHasWeights || PredHasWeights) { 953 ValidTotalSuccWeight += SuccWeights[0]; 954 // Scale the cases from predecessor by ValidTotalSuccWeight. 955 for (unsigned i = 1; i < CasesFromPred; ++i) 956 Weights[i] *= ValidTotalSuccWeight; 957 // Scale the default weight by SuccDefaultWeight (SuccWeights[0]). 958 Weights[0] *= SuccWeights[0]; 959 } 960 } else { 961 // If this is not the default destination from PSI, only the edges 962 // in SI that occur in PSI with a destination of BB will be 963 // activated. 964 std::set<ConstantInt*, ConstantIntOrdering> PTIHandled; 965 std::map<ConstantInt*, uint64_t> WeightsForHandled; 966 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 967 if (PredCases[i].Dest == BB) { 968 PTIHandled.insert(PredCases[i].Value); 969 970 if (PredHasWeights || SuccHasWeights) { 971 WeightsForHandled[PredCases[i].Value] = Weights[i+1]; 972 std::swap(Weights[i+1], Weights.back()); 973 Weights.pop_back(); 974 } 975 976 std::swap(PredCases[i], PredCases.back()); 977 PredCases.pop_back(); 978 --i; --e; 979 } 980 981 // Okay, now we know which constants were sent to BB from the 982 // predecessor. Figure out where they will all go now. 983 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 984 if (PTIHandled.count(BBCases[i].Value)) { 985 // If this is one we are capable of getting... 986 if (PredHasWeights || SuccHasWeights) 987 Weights.push_back(WeightsForHandled[BBCases[i].Value]); 988 PredCases.push_back(BBCases[i]); 989 NewSuccessors.push_back(BBCases[i].Dest); 990 PTIHandled.erase(BBCases[i].Value);// This constant is taken care of 991 } 992 993 // If there are any constants vectored to BB that TI doesn't handle, 994 // they must go to the default destination of TI. 995 for (std::set<ConstantInt*, ConstantIntOrdering>::iterator I = 996 PTIHandled.begin(), 997 E = PTIHandled.end(); I != E; ++I) { 998 if (PredHasWeights || SuccHasWeights) 999 Weights.push_back(WeightsForHandled[*I]); 1000 PredCases.push_back(ValueEqualityComparisonCase(*I, BBDefault)); 1001 NewSuccessors.push_back(BBDefault); 1002 } 1003 } 1004 1005 // Okay, at this point, we know which new successor Pred will get. Make 1006 // sure we update the number of entries in the PHI nodes for these 1007 // successors. 1008 for (unsigned i = 0, e = NewSuccessors.size(); i != e; ++i) 1009 AddPredecessorToBlock(NewSuccessors[i], Pred, BB); 1010 1011 Builder.SetInsertPoint(PTI); 1012 // Convert pointer to int before we switch. 1013 if (CV->getType()->isPointerTy()) { 1014 assert(TD && "Cannot switch on pointer without DataLayout"); 1015 CV = Builder.CreatePtrToInt(CV, TD->getIntPtrType(CV->getContext()), 1016 "magicptr"); 1017 } 1018 1019 // Now that the successors are updated, create the new Switch instruction. 1020 SwitchInst *NewSI = Builder.CreateSwitch(CV, PredDefault, 1021 PredCases.size()); 1022 NewSI->setDebugLoc(PTI->getDebugLoc()); 1023 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 1024 NewSI->addCase(PredCases[i].Value, PredCases[i].Dest); 1025 1026 if (PredHasWeights || SuccHasWeights) { 1027 // Halve the weights if any of them cannot fit in an uint32_t 1028 FitWeights(Weights); 1029 1030 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 1031 1032 NewSI->setMetadata(LLVMContext::MD_prof, 1033 MDBuilder(BB->getContext()). 1034 createBranchWeights(MDWeights)); 1035 } 1036 1037 EraseTerminatorInstAndDCECond(PTI); 1038 1039 // Okay, last check. If BB is still a successor of PSI, then we must 1040 // have an infinite loop case. If so, add an infinitely looping block 1041 // to handle the case to preserve the behavior of the code. 1042 BasicBlock *InfLoopBlock = 0; 1043 for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i) 1044 if (NewSI->getSuccessor(i) == BB) { 1045 if (InfLoopBlock == 0) { 1046 // Insert it at the end of the function, because it's either code, 1047 // or it won't matter if it's hot. :) 1048 InfLoopBlock = BasicBlock::Create(BB->getContext(), 1049 "infloop", BB->getParent()); 1050 BranchInst::Create(InfLoopBlock, InfLoopBlock); 1051 } 1052 NewSI->setSuccessor(i, InfLoopBlock); 1053 } 1054 1055 Changed = true; 1056 } 1057 } 1058 return Changed; 1059 } 1060 1061 // isSafeToHoistInvoke - If we would need to insert a select that uses the 1062 // value of this invoke (comments in HoistThenElseCodeToIf explain why we 1063 // would need to do this), we can't hoist the invoke, as there is nowhere 1064 // to put the select in this case. 1065 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2, 1066 Instruction *I1, Instruction *I2) { 1067 for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) { 1068 PHINode *PN; 1069 for (BasicBlock::iterator BBI = SI->begin(); 1070 (PN = dyn_cast<PHINode>(BBI)); ++BBI) { 1071 Value *BB1V = PN->getIncomingValueForBlock(BB1); 1072 Value *BB2V = PN->getIncomingValueForBlock(BB2); 1073 if (BB1V != BB2V && (BB1V==I1 || BB2V==I2)) { 1074 return false; 1075 } 1076 } 1077 } 1078 return true; 1079 } 1080 1081 /// HoistThenElseCodeToIf - Given a conditional branch that goes to BB1 and 1082 /// BB2, hoist any common code in the two blocks up into the branch block. The 1083 /// caller of this function guarantees that BI's block dominates BB1 and BB2. 1084 static bool HoistThenElseCodeToIf(BranchInst *BI) { 1085 // This does very trivial matching, with limited scanning, to find identical 1086 // instructions in the two blocks. In particular, we don't want to get into 1087 // O(M*N) situations here where M and N are the sizes of BB1 and BB2. As 1088 // such, we currently just scan for obviously identical instructions in an 1089 // identical order. 1090 BasicBlock *BB1 = BI->getSuccessor(0); // The true destination. 1091 BasicBlock *BB2 = BI->getSuccessor(1); // The false destination 1092 1093 BasicBlock::iterator BB1_Itr = BB1->begin(); 1094 BasicBlock::iterator BB2_Itr = BB2->begin(); 1095 1096 Instruction *I1 = BB1_Itr++, *I2 = BB2_Itr++; 1097 // Skip debug info if it is not identical. 1098 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1099 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1100 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1101 while (isa<DbgInfoIntrinsic>(I1)) 1102 I1 = BB1_Itr++; 1103 while (isa<DbgInfoIntrinsic>(I2)) 1104 I2 = BB2_Itr++; 1105 } 1106 if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) || 1107 (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))) 1108 return false; 1109 1110 BasicBlock *BIParent = BI->getParent(); 1111 1112 bool Changed = false; 1113 do { 1114 // If we are hoisting the terminator instruction, don't move one (making a 1115 // broken BB), instead clone it, and remove BI. 1116 if (isa<TerminatorInst>(I1)) 1117 goto HoistTerminator; 1118 1119 // For a normal instruction, we just move one to right before the branch, 1120 // then replace all uses of the other with the first. Finally, we remove 1121 // the now redundant second instruction. 1122 BIParent->getInstList().splice(BI, BB1->getInstList(), I1); 1123 if (!I2->use_empty()) 1124 I2->replaceAllUsesWith(I1); 1125 I1->intersectOptionalDataWith(I2); 1126 I2->eraseFromParent(); 1127 Changed = true; 1128 1129 I1 = BB1_Itr++; 1130 I2 = BB2_Itr++; 1131 // Skip debug info if it is not identical. 1132 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1133 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1134 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1135 while (isa<DbgInfoIntrinsic>(I1)) 1136 I1 = BB1_Itr++; 1137 while (isa<DbgInfoIntrinsic>(I2)) 1138 I2 = BB2_Itr++; 1139 } 1140 } while (I1->isIdenticalToWhenDefined(I2)); 1141 1142 return true; 1143 1144 HoistTerminator: 1145 // It may not be possible to hoist an invoke. 1146 if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) 1147 return Changed; 1148 1149 for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) { 1150 PHINode *PN; 1151 for (BasicBlock::iterator BBI = SI->begin(); 1152 (PN = dyn_cast<PHINode>(BBI)); ++BBI) { 1153 Value *BB1V = PN->getIncomingValueForBlock(BB1); 1154 Value *BB2V = PN->getIncomingValueForBlock(BB2); 1155 if (BB1V == BB2V) 1156 continue; 1157 1158 if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V)) 1159 return Changed; 1160 if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V)) 1161 return Changed; 1162 } 1163 } 1164 1165 // Okay, it is safe to hoist the terminator. 1166 Instruction *NT = I1->clone(); 1167 BIParent->getInstList().insert(BI, NT); 1168 if (!NT->getType()->isVoidTy()) { 1169 I1->replaceAllUsesWith(NT); 1170 I2->replaceAllUsesWith(NT); 1171 NT->takeName(I1); 1172 } 1173 1174 IRBuilder<true, NoFolder> Builder(NT); 1175 // Hoisting one of the terminators from our successor is a great thing. 1176 // Unfortunately, the successors of the if/else blocks may have PHI nodes in 1177 // them. If they do, all PHI entries for BB1/BB2 must agree for all PHI 1178 // nodes, so we insert select instruction to compute the final result. 1179 std::map<std::pair<Value*,Value*>, SelectInst*> InsertedSelects; 1180 for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) { 1181 PHINode *PN; 1182 for (BasicBlock::iterator BBI = SI->begin(); 1183 (PN = dyn_cast<PHINode>(BBI)); ++BBI) { 1184 Value *BB1V = PN->getIncomingValueForBlock(BB1); 1185 Value *BB2V = PN->getIncomingValueForBlock(BB2); 1186 if (BB1V == BB2V) continue; 1187 1188 // These values do not agree. Insert a select instruction before NT 1189 // that determines the right value. 1190 SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)]; 1191 if (SI == 0) 1192 SI = cast<SelectInst> 1193 (Builder.CreateSelect(BI->getCondition(), BB1V, BB2V, 1194 BB1V->getName()+"."+BB2V->getName())); 1195 1196 // Make the PHI node use the select for all incoming values for BB1/BB2 1197 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 1198 if (PN->getIncomingBlock(i) == BB1 || PN->getIncomingBlock(i) == BB2) 1199 PN->setIncomingValue(i, SI); 1200 } 1201 } 1202 1203 // Update any PHI nodes in our new successors. 1204 for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) 1205 AddPredecessorToBlock(*SI, BIParent, BB1); 1206 1207 EraseTerminatorInstAndDCECond(BI); 1208 return true; 1209 } 1210 1211 /// SinkThenElseCodeToEnd - Given an unconditional branch that goes to BBEnd, 1212 /// check whether BBEnd has only two predecessors and the other predecessor 1213 /// ends with an unconditional branch. If it is true, sink any common code 1214 /// in the two predecessors to BBEnd. 1215 static bool SinkThenElseCodeToEnd(BranchInst *BI1) { 1216 assert(BI1->isUnconditional()); 1217 BasicBlock *BB1 = BI1->getParent(); 1218 BasicBlock *BBEnd = BI1->getSuccessor(0); 1219 1220 // Check that BBEnd has two predecessors and the other predecessor ends with 1221 // an unconditional branch. 1222 pred_iterator PI = pred_begin(BBEnd), PE = pred_end(BBEnd); 1223 BasicBlock *Pred0 = *PI++; 1224 if (PI == PE) // Only one predecessor. 1225 return false; 1226 BasicBlock *Pred1 = *PI++; 1227 if (PI != PE) // More than two predecessors. 1228 return false; 1229 BasicBlock *BB2 = (Pred0 == BB1) ? Pred1 : Pred0; 1230 BranchInst *BI2 = dyn_cast<BranchInst>(BB2->getTerminator()); 1231 if (!BI2 || !BI2->isUnconditional()) 1232 return false; 1233 1234 // Gather the PHI nodes in BBEnd. 1235 std::map<Value*, std::pair<Value*, PHINode*> > MapValueFromBB1ToBB2; 1236 Instruction *FirstNonPhiInBBEnd = 0; 1237 for (BasicBlock::iterator I = BBEnd->begin(), E = BBEnd->end(); 1238 I != E; ++I) { 1239 if (PHINode *PN = dyn_cast<PHINode>(I)) { 1240 Value *BB1V = PN->getIncomingValueForBlock(BB1); 1241 Value *BB2V = PN->getIncomingValueForBlock(BB2); 1242 MapValueFromBB1ToBB2[BB1V] = std::make_pair(BB2V, PN); 1243 } else { 1244 FirstNonPhiInBBEnd = &*I; 1245 break; 1246 } 1247 } 1248 if (!FirstNonPhiInBBEnd) 1249 return false; 1250 1251 1252 // This does very trivial matching, with limited scanning, to find identical 1253 // instructions in the two blocks. We scan backward for obviously identical 1254 // instructions in an identical order. 1255 BasicBlock::InstListType::reverse_iterator RI1 = BB1->getInstList().rbegin(), 1256 RE1 = BB1->getInstList().rend(), RI2 = BB2->getInstList().rbegin(), 1257 RE2 = BB2->getInstList().rend(); 1258 // Skip debug info. 1259 while (RI1 != RE1 && isa<DbgInfoIntrinsic>(&*RI1)) ++RI1; 1260 if (RI1 == RE1) 1261 return false; 1262 while (RI2 != RE2 && isa<DbgInfoIntrinsic>(&*RI2)) ++RI2; 1263 if (RI2 == RE2) 1264 return false; 1265 // Skip the unconditional branches. 1266 ++RI1; 1267 ++RI2; 1268 1269 bool Changed = false; 1270 while (RI1 != RE1 && RI2 != RE2) { 1271 // Skip debug info. 1272 while (RI1 != RE1 && isa<DbgInfoIntrinsic>(&*RI1)) ++RI1; 1273 if (RI1 == RE1) 1274 return Changed; 1275 while (RI2 != RE2 && isa<DbgInfoIntrinsic>(&*RI2)) ++RI2; 1276 if (RI2 == RE2) 1277 return Changed; 1278 1279 Instruction *I1 = &*RI1, *I2 = &*RI2; 1280 // I1 and I2 should have a single use in the same PHI node, and they 1281 // perform the same operation. 1282 // Cannot move control-flow-involving, volatile loads, vaarg, etc. 1283 if (isa<PHINode>(I1) || isa<PHINode>(I2) || 1284 isa<TerminatorInst>(I1) || isa<TerminatorInst>(I2) || 1285 isa<LandingPadInst>(I1) || isa<LandingPadInst>(I2) || 1286 isa<AllocaInst>(I1) || isa<AllocaInst>(I2) || 1287 I1->mayHaveSideEffects() || I2->mayHaveSideEffects() || 1288 I1->mayReadOrWriteMemory() || I2->mayReadOrWriteMemory() || 1289 !I1->hasOneUse() || !I2->hasOneUse() || 1290 MapValueFromBB1ToBB2.find(I1) == MapValueFromBB1ToBB2.end() || 1291 MapValueFromBB1ToBB2[I1].first != I2) 1292 return Changed; 1293 1294 // Check whether we should swap the operands of ICmpInst. 1295 ICmpInst *ICmp1 = dyn_cast<ICmpInst>(I1), *ICmp2 = dyn_cast<ICmpInst>(I2); 1296 bool SwapOpnds = false; 1297 if (ICmp1 && ICmp2 && 1298 ICmp1->getOperand(0) != ICmp2->getOperand(0) && 1299 ICmp1->getOperand(1) != ICmp2->getOperand(1) && 1300 (ICmp1->getOperand(0) == ICmp2->getOperand(1) || 1301 ICmp1->getOperand(1) == ICmp2->getOperand(0))) { 1302 ICmp2->swapOperands(); 1303 SwapOpnds = true; 1304 } 1305 if (!I1->isSameOperationAs(I2)) { 1306 if (SwapOpnds) 1307 ICmp2->swapOperands(); 1308 return Changed; 1309 } 1310 1311 // The operands should be either the same or they need to be generated 1312 // with a PHI node after sinking. We only handle the case where there is 1313 // a single pair of different operands. 1314 Value *DifferentOp1 = 0, *DifferentOp2 = 0; 1315 unsigned Op1Idx = 0; 1316 for (unsigned I = 0, E = I1->getNumOperands(); I != E; ++I) { 1317 if (I1->getOperand(I) == I2->getOperand(I)) 1318 continue; 1319 // Early exit if we have more-than one pair of different operands or 1320 // the different operand is already in MapValueFromBB1ToBB2. 1321 // Early exit if we need a PHI node to replace a constant. 1322 if (DifferentOp1 || 1323 MapValueFromBB1ToBB2.find(I1->getOperand(I)) != 1324 MapValueFromBB1ToBB2.end() || 1325 isa<Constant>(I1->getOperand(I)) || 1326 isa<Constant>(I2->getOperand(I))) { 1327 // If we can't sink the instructions, undo the swapping. 1328 if (SwapOpnds) 1329 ICmp2->swapOperands(); 1330 return Changed; 1331 } 1332 DifferentOp1 = I1->getOperand(I); 1333 Op1Idx = I; 1334 DifferentOp2 = I2->getOperand(I); 1335 } 1336 1337 // We insert the pair of different operands to MapValueFromBB1ToBB2 and 1338 // remove (I1, I2) from MapValueFromBB1ToBB2. 1339 if (DifferentOp1) { 1340 PHINode *NewPN = PHINode::Create(DifferentOp1->getType(), 2, 1341 DifferentOp1->getName() + ".sink", 1342 BBEnd->begin()); 1343 MapValueFromBB1ToBB2[DifferentOp1] = std::make_pair(DifferentOp2, NewPN); 1344 // I1 should use NewPN instead of DifferentOp1. 1345 I1->setOperand(Op1Idx, NewPN); 1346 NewPN->addIncoming(DifferentOp1, BB1); 1347 NewPN->addIncoming(DifferentOp2, BB2); 1348 DEBUG(dbgs() << "Create PHI node " << *NewPN << "\n";); 1349 } 1350 PHINode *OldPN = MapValueFromBB1ToBB2[I1].second; 1351 MapValueFromBB1ToBB2.erase(I1); 1352 1353 DEBUG(dbgs() << "SINK common instructions " << *I1 << "\n";); 1354 DEBUG(dbgs() << " " << *I2 << "\n";); 1355 // We need to update RE1 and RE2 if we are going to sink the first 1356 // instruction in the basic block down. 1357 bool UpdateRE1 = (I1 == BB1->begin()), UpdateRE2 = (I2 == BB2->begin()); 1358 // Sink the instruction. 1359 BBEnd->getInstList().splice(FirstNonPhiInBBEnd, BB1->getInstList(), I1); 1360 if (!OldPN->use_empty()) 1361 OldPN->replaceAllUsesWith(I1); 1362 OldPN->eraseFromParent(); 1363 1364 if (!I2->use_empty()) 1365 I2->replaceAllUsesWith(I1); 1366 I1->intersectOptionalDataWith(I2); 1367 I2->eraseFromParent(); 1368 1369 if (UpdateRE1) 1370 RE1 = BB1->getInstList().rend(); 1371 if (UpdateRE2) 1372 RE2 = BB2->getInstList().rend(); 1373 FirstNonPhiInBBEnd = I1; 1374 NumSinkCommons++; 1375 Changed = true; 1376 } 1377 return Changed; 1378 } 1379 1380 /// \brief Determine if we can hoist sink a sole store instruction out of a 1381 /// conditional block. 1382 /// 1383 /// We are looking for code like the following: 1384 /// BrBB: 1385 /// store i32 %add, i32* %arrayidx2 1386 /// ... // No other stores or function calls (we could be calling a memory 1387 /// ... // function). 1388 /// %cmp = icmp ult %x, %y 1389 /// br i1 %cmp, label %EndBB, label %ThenBB 1390 /// ThenBB: 1391 /// store i32 %add5, i32* %arrayidx2 1392 /// br label EndBB 1393 /// EndBB: 1394 /// ... 1395 /// We are going to transform this into: 1396 /// BrBB: 1397 /// store i32 %add, i32* %arrayidx2 1398 /// ... // 1399 /// %cmp = icmp ult %x, %y 1400 /// %add.add5 = select i1 %cmp, i32 %add, %add5 1401 /// store i32 %add.add5, i32* %arrayidx2 1402 /// ... 1403 /// 1404 /// \return The pointer to the value of the previous store if the store can be 1405 /// hoisted into the predecessor block. 0 otherwise. 1406 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB, 1407 BasicBlock *StoreBB, BasicBlock *EndBB) { 1408 StoreInst *StoreToHoist = dyn_cast<StoreInst>(I); 1409 if (!StoreToHoist) 1410 return 0; 1411 1412 // Volatile or atomic. 1413 if (!StoreToHoist->isSimple()) 1414 return 0; 1415 1416 Value *StorePtr = StoreToHoist->getPointerOperand(); 1417 1418 // Look for a store to the same pointer in BrBB. 1419 unsigned MaxNumInstToLookAt = 10; 1420 for (BasicBlock::reverse_iterator RI = BrBB->rbegin(), 1421 RE = BrBB->rend(); RI != RE && (--MaxNumInstToLookAt); ++RI) { 1422 Instruction *CurI = &*RI; 1423 1424 // Could be calling an instruction that effects memory like free(). 1425 if (CurI->mayHaveSideEffects() && !isa<StoreInst>(CurI)) 1426 return 0; 1427 1428 StoreInst *SI = dyn_cast<StoreInst>(CurI); 1429 // Found the previous store make sure it stores to the same location. 1430 if (SI && SI->getPointerOperand() == StorePtr) 1431 // Found the previous store, return its value operand. 1432 return SI->getValueOperand(); 1433 else if (SI) 1434 return 0; // Unknown store. 1435 } 1436 1437 return 0; 1438 } 1439 1440 /// \brief Speculate a conditional basic block flattening the CFG. 1441 /// 1442 /// Note that this is a very risky transform currently. Speculating 1443 /// instructions like this is most often not desirable. Instead, there is an MI 1444 /// pass which can do it with full awareness of the resource constraints. 1445 /// However, some cases are "obvious" and we should do directly. An example of 1446 /// this is speculating a single, reasonably cheap instruction. 1447 /// 1448 /// There is only one distinct advantage to flattening the CFG at the IR level: 1449 /// it makes very common but simplistic optimizations such as are common in 1450 /// instcombine and the DAG combiner more powerful by removing CFG edges and 1451 /// modeling their effects with easier to reason about SSA value graphs. 1452 /// 1453 /// 1454 /// An illustration of this transform is turning this IR: 1455 /// \code 1456 /// BB: 1457 /// %cmp = icmp ult %x, %y 1458 /// br i1 %cmp, label %EndBB, label %ThenBB 1459 /// ThenBB: 1460 /// %sub = sub %x, %y 1461 /// br label BB2 1462 /// EndBB: 1463 /// %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ] 1464 /// ... 1465 /// \endcode 1466 /// 1467 /// Into this IR: 1468 /// \code 1469 /// BB: 1470 /// %cmp = icmp ult %x, %y 1471 /// %sub = sub %x, %y 1472 /// %cond = select i1 %cmp, 0, %sub 1473 /// ... 1474 /// \endcode 1475 /// 1476 /// \returns true if the conditional block is removed. 1477 static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB) { 1478 // Be conservative for now. FP select instruction can often be expensive. 1479 Value *BrCond = BI->getCondition(); 1480 if (isa<FCmpInst>(BrCond)) 1481 return false; 1482 1483 BasicBlock *BB = BI->getParent(); 1484 BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0); 1485 1486 // If ThenBB is actually on the false edge of the conditional branch, remember 1487 // to swap the select operands later. 1488 bool Invert = false; 1489 if (ThenBB != BI->getSuccessor(0)) { 1490 assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?"); 1491 Invert = true; 1492 } 1493 assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block"); 1494 1495 // Keep a count of how many times instructions are used within CondBB when 1496 // they are candidates for sinking into CondBB. Specifically: 1497 // - They are defined in BB, and 1498 // - They have no side effects, and 1499 // - All of their uses are in CondBB. 1500 SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts; 1501 1502 unsigned SpeculationCost = 0; 1503 Value *SpeculatedStoreValue = 0; 1504 StoreInst *SpeculatedStore = 0; 1505 for (BasicBlock::iterator BBI = ThenBB->begin(), 1506 BBE = llvm::prior(ThenBB->end()); 1507 BBI != BBE; ++BBI) { 1508 Instruction *I = BBI; 1509 // Skip debug info. 1510 if (isa<DbgInfoIntrinsic>(I)) 1511 continue; 1512 1513 // Only speculatively execution a single instruction (not counting the 1514 // terminator) for now. 1515 ++SpeculationCost; 1516 if (SpeculationCost > 1) 1517 return false; 1518 1519 // Don't hoist the instruction if it's unsafe or expensive. 1520 if (!isSafeToSpeculativelyExecute(I) && 1521 !(HoistCondStores && 1522 (SpeculatedStoreValue = isSafeToSpeculateStore(I, BB, ThenBB, 1523 EndBB)))) 1524 return false; 1525 if (!SpeculatedStoreValue && 1526 ComputeSpeculationCost(I) > PHINodeFoldingThreshold) 1527 return false; 1528 1529 // Store the store speculation candidate. 1530 if (SpeculatedStoreValue) 1531 SpeculatedStore = cast<StoreInst>(I); 1532 1533 // Do not hoist the instruction if any of its operands are defined but not 1534 // used in BB. The transformation will prevent the operand from 1535 // being sunk into the use block. 1536 for (User::op_iterator i = I->op_begin(), e = I->op_end(); 1537 i != e; ++i) { 1538 Instruction *OpI = dyn_cast<Instruction>(*i); 1539 if (!OpI || OpI->getParent() != BB || 1540 OpI->mayHaveSideEffects()) 1541 continue; // Not a candidate for sinking. 1542 1543 ++SinkCandidateUseCounts[OpI]; 1544 } 1545 } 1546 1547 // Consider any sink candidates which are only used in CondBB as costs for 1548 // speculation. Note, while we iterate over a DenseMap here, we are summing 1549 // and so iteration order isn't significant. 1550 for (SmallDenseMap<Instruction *, unsigned, 4>::iterator I = 1551 SinkCandidateUseCounts.begin(), E = SinkCandidateUseCounts.end(); 1552 I != E; ++I) 1553 if (I->first->getNumUses() == I->second) { 1554 ++SpeculationCost; 1555 if (SpeculationCost > 1) 1556 return false; 1557 } 1558 1559 // Check that the PHI nodes can be converted to selects. 1560 bool HaveRewritablePHIs = false; 1561 for (BasicBlock::iterator I = EndBB->begin(); 1562 PHINode *PN = dyn_cast<PHINode>(I); ++I) { 1563 Value *OrigV = PN->getIncomingValueForBlock(BB); 1564 Value *ThenV = PN->getIncomingValueForBlock(ThenBB); 1565 1566 // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf. 1567 // Skip PHIs which are trivial. 1568 if (ThenV == OrigV) 1569 continue; 1570 1571 HaveRewritablePHIs = true; 1572 ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV); 1573 ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV); 1574 if (!OrigCE && !ThenCE) 1575 continue; // Known safe and cheap. 1576 1577 if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE)) || 1578 (OrigCE && !isSafeToSpeculativelyExecute(OrigCE))) 1579 return false; 1580 unsigned OrigCost = OrigCE ? ComputeSpeculationCost(OrigCE) : 0; 1581 unsigned ThenCost = ThenCE ? ComputeSpeculationCost(ThenCE) : 0; 1582 if (OrigCost + ThenCost > 2 * PHINodeFoldingThreshold) 1583 return false; 1584 1585 // Account for the cost of an unfolded ConstantExpr which could end up 1586 // getting expanded into Instructions. 1587 // FIXME: This doesn't account for how many operations are combined in the 1588 // constant expression. 1589 ++SpeculationCost; 1590 if (SpeculationCost > 1) 1591 return false; 1592 } 1593 1594 // If there are no PHIs to process, bail early. This helps ensure idempotence 1595 // as well. 1596 if (!HaveRewritablePHIs && !(HoistCondStores && SpeculatedStoreValue)) 1597 return false; 1598 1599 // If we get here, we can hoist the instruction and if-convert. 1600 DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";); 1601 1602 // Insert a select of the value of the speculated store. 1603 if (SpeculatedStoreValue) { 1604 IRBuilder<true, NoFolder> Builder(BI); 1605 Value *TrueV = SpeculatedStore->getValueOperand(); 1606 Value *FalseV = SpeculatedStoreValue; 1607 if (Invert) 1608 std::swap(TrueV, FalseV); 1609 Value *S = Builder.CreateSelect(BrCond, TrueV, FalseV, TrueV->getName() + 1610 "." + FalseV->getName()); 1611 SpeculatedStore->setOperand(0, S); 1612 } 1613 1614 // Hoist the instructions. 1615 BB->getInstList().splice(BI, ThenBB->getInstList(), ThenBB->begin(), 1616 llvm::prior(ThenBB->end())); 1617 1618 // Insert selects and rewrite the PHI operands. 1619 IRBuilder<true, NoFolder> Builder(BI); 1620 for (BasicBlock::iterator I = EndBB->begin(); 1621 PHINode *PN = dyn_cast<PHINode>(I); ++I) { 1622 unsigned OrigI = PN->getBasicBlockIndex(BB); 1623 unsigned ThenI = PN->getBasicBlockIndex(ThenBB); 1624 Value *OrigV = PN->getIncomingValue(OrigI); 1625 Value *ThenV = PN->getIncomingValue(ThenI); 1626 1627 // Skip PHIs which are trivial. 1628 if (OrigV == ThenV) 1629 continue; 1630 1631 // Create a select whose true value is the speculatively executed value and 1632 // false value is the preexisting value. Swap them if the branch 1633 // destinations were inverted. 1634 Value *TrueV = ThenV, *FalseV = OrigV; 1635 if (Invert) 1636 std::swap(TrueV, FalseV); 1637 Value *V = Builder.CreateSelect(BrCond, TrueV, FalseV, 1638 TrueV->getName() + "." + FalseV->getName()); 1639 PN->setIncomingValue(OrigI, V); 1640 PN->setIncomingValue(ThenI, V); 1641 } 1642 1643 ++NumSpeculations; 1644 return true; 1645 } 1646 1647 /// BlockIsSimpleEnoughToThreadThrough - Return true if we can thread a branch 1648 /// across this block. 1649 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) { 1650 BranchInst *BI = cast<BranchInst>(BB->getTerminator()); 1651 unsigned Size = 0; 1652 1653 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) { 1654 if (isa<DbgInfoIntrinsic>(BBI)) 1655 continue; 1656 if (Size > 10) return false; // Don't clone large BB's. 1657 ++Size; 1658 1659 // We can only support instructions that do not define values that are 1660 // live outside of the current basic block. 1661 for (Value::use_iterator UI = BBI->use_begin(), E = BBI->use_end(); 1662 UI != E; ++UI) { 1663 Instruction *U = cast<Instruction>(*UI); 1664 if (U->getParent() != BB || isa<PHINode>(U)) return false; 1665 } 1666 1667 // Looks ok, continue checking. 1668 } 1669 1670 return true; 1671 } 1672 1673 /// FoldCondBranchOnPHI - If we have a conditional branch on a PHI node value 1674 /// that is defined in the same block as the branch and if any PHI entries are 1675 /// constants, thread edges corresponding to that entry to be branches to their 1676 /// ultimate destination. 1677 static bool FoldCondBranchOnPHI(BranchInst *BI, const DataLayout *TD) { 1678 BasicBlock *BB = BI->getParent(); 1679 PHINode *PN = dyn_cast<PHINode>(BI->getCondition()); 1680 // NOTE: we currently cannot transform this case if the PHI node is used 1681 // outside of the block. 1682 if (!PN || PN->getParent() != BB || !PN->hasOneUse()) 1683 return false; 1684 1685 // Degenerate case of a single entry PHI. 1686 if (PN->getNumIncomingValues() == 1) { 1687 FoldSingleEntryPHINodes(PN->getParent()); 1688 return true; 1689 } 1690 1691 // Now we know that this block has multiple preds and two succs. 1692 if (!BlockIsSimpleEnoughToThreadThrough(BB)) return false; 1693 1694 // Okay, this is a simple enough basic block. See if any phi values are 1695 // constants. 1696 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1697 ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i)); 1698 if (CB == 0 || !CB->getType()->isIntegerTy(1)) continue; 1699 1700 // Okay, we now know that all edges from PredBB should be revectored to 1701 // branch to RealDest. 1702 BasicBlock *PredBB = PN->getIncomingBlock(i); 1703 BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue()); 1704 1705 if (RealDest == BB) continue; // Skip self loops. 1706 // Skip if the predecessor's terminator is an indirect branch. 1707 if (isa<IndirectBrInst>(PredBB->getTerminator())) continue; 1708 1709 // The dest block might have PHI nodes, other predecessors and other 1710 // difficult cases. Instead of being smart about this, just insert a new 1711 // block that jumps to the destination block, effectively splitting 1712 // the edge we are about to create. 1713 BasicBlock *EdgeBB = BasicBlock::Create(BB->getContext(), 1714 RealDest->getName()+".critedge", 1715 RealDest->getParent(), RealDest); 1716 BranchInst::Create(RealDest, EdgeBB); 1717 1718 // Update PHI nodes. 1719 AddPredecessorToBlock(RealDest, EdgeBB, BB); 1720 1721 // BB may have instructions that are being threaded over. Clone these 1722 // instructions into EdgeBB. We know that there will be no uses of the 1723 // cloned instructions outside of EdgeBB. 1724 BasicBlock::iterator InsertPt = EdgeBB->begin(); 1725 DenseMap<Value*, Value*> TranslateMap; // Track translated values. 1726 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) { 1727 if (PHINode *PN = dyn_cast<PHINode>(BBI)) { 1728 TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB); 1729 continue; 1730 } 1731 // Clone the instruction. 1732 Instruction *N = BBI->clone(); 1733 if (BBI->hasName()) N->setName(BBI->getName()+".c"); 1734 1735 // Update operands due to translation. 1736 for (User::op_iterator i = N->op_begin(), e = N->op_end(); 1737 i != e; ++i) { 1738 DenseMap<Value*, Value*>::iterator PI = TranslateMap.find(*i); 1739 if (PI != TranslateMap.end()) 1740 *i = PI->second; 1741 } 1742 1743 // Check for trivial simplification. 1744 if (Value *V = SimplifyInstruction(N, TD)) { 1745 TranslateMap[BBI] = V; 1746 delete N; // Instruction folded away, don't need actual inst 1747 } else { 1748 // Insert the new instruction into its new home. 1749 EdgeBB->getInstList().insert(InsertPt, N); 1750 if (!BBI->use_empty()) 1751 TranslateMap[BBI] = N; 1752 } 1753 } 1754 1755 // Loop over all of the edges from PredBB to BB, changing them to branch 1756 // to EdgeBB instead. 1757 TerminatorInst *PredBBTI = PredBB->getTerminator(); 1758 for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i) 1759 if (PredBBTI->getSuccessor(i) == BB) { 1760 BB->removePredecessor(PredBB); 1761 PredBBTI->setSuccessor(i, EdgeBB); 1762 } 1763 1764 // Recurse, simplifying any other constants. 1765 return FoldCondBranchOnPHI(BI, TD) | true; 1766 } 1767 1768 return false; 1769 } 1770 1771 /// FoldTwoEntryPHINode - Given a BB that starts with the specified two-entry 1772 /// PHI node, see if we can eliminate it. 1773 static bool FoldTwoEntryPHINode(PHINode *PN, const DataLayout *TD) { 1774 // Ok, this is a two entry PHI node. Check to see if this is a simple "if 1775 // statement", which has a very simple dominance structure. Basically, we 1776 // are trying to find the condition that is being branched on, which 1777 // subsequently causes this merge to happen. We really want control 1778 // dependence information for this check, but simplifycfg can't keep it up 1779 // to date, and this catches most of the cases we care about anyway. 1780 BasicBlock *BB = PN->getParent(); 1781 BasicBlock *IfTrue, *IfFalse; 1782 Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse); 1783 if (!IfCond || 1784 // Don't bother if the branch will be constant folded trivially. 1785 isa<ConstantInt>(IfCond)) 1786 return false; 1787 1788 // Okay, we found that we can merge this two-entry phi node into a select. 1789 // Doing so would require us to fold *all* two entry phi nodes in this block. 1790 // At some point this becomes non-profitable (particularly if the target 1791 // doesn't support cmov's). Only do this transformation if there are two or 1792 // fewer PHI nodes in this block. 1793 unsigned NumPhis = 0; 1794 for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I) 1795 if (NumPhis > 2) 1796 return false; 1797 1798 // Loop over the PHI's seeing if we can promote them all to select 1799 // instructions. While we are at it, keep track of the instructions 1800 // that need to be moved to the dominating block. 1801 SmallPtrSet<Instruction*, 4> AggressiveInsts; 1802 unsigned MaxCostVal0 = PHINodeFoldingThreshold, 1803 MaxCostVal1 = PHINodeFoldingThreshold; 1804 1805 for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) { 1806 PHINode *PN = cast<PHINode>(II++); 1807 if (Value *V = SimplifyInstruction(PN, TD)) { 1808 PN->replaceAllUsesWith(V); 1809 PN->eraseFromParent(); 1810 continue; 1811 } 1812 1813 if (!DominatesMergePoint(PN->getIncomingValue(0), BB, &AggressiveInsts, 1814 MaxCostVal0) || 1815 !DominatesMergePoint(PN->getIncomingValue(1), BB, &AggressiveInsts, 1816 MaxCostVal1)) 1817 return false; 1818 } 1819 1820 // If we folded the first phi, PN dangles at this point. Refresh it. If 1821 // we ran out of PHIs then we simplified them all. 1822 PN = dyn_cast<PHINode>(BB->begin()); 1823 if (PN == 0) return true; 1824 1825 // Don't fold i1 branches on PHIs which contain binary operators. These can 1826 // often be turned into switches and other things. 1827 if (PN->getType()->isIntegerTy(1) && 1828 (isa<BinaryOperator>(PN->getIncomingValue(0)) || 1829 isa<BinaryOperator>(PN->getIncomingValue(1)) || 1830 isa<BinaryOperator>(IfCond))) 1831 return false; 1832 1833 // If we all PHI nodes are promotable, check to make sure that all 1834 // instructions in the predecessor blocks can be promoted as well. If 1835 // not, we won't be able to get rid of the control flow, so it's not 1836 // worth promoting to select instructions. 1837 BasicBlock *DomBlock = 0; 1838 BasicBlock *IfBlock1 = PN->getIncomingBlock(0); 1839 BasicBlock *IfBlock2 = PN->getIncomingBlock(1); 1840 if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) { 1841 IfBlock1 = 0; 1842 } else { 1843 DomBlock = *pred_begin(IfBlock1); 1844 for (BasicBlock::iterator I = IfBlock1->begin();!isa<TerminatorInst>(I);++I) 1845 if (!AggressiveInsts.count(I) && !isa<DbgInfoIntrinsic>(I)) { 1846 // This is not an aggressive instruction that we can promote. 1847 // Because of this, we won't be able to get rid of the control 1848 // flow, so the xform is not worth it. 1849 return false; 1850 } 1851 } 1852 1853 if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) { 1854 IfBlock2 = 0; 1855 } else { 1856 DomBlock = *pred_begin(IfBlock2); 1857 for (BasicBlock::iterator I = IfBlock2->begin();!isa<TerminatorInst>(I);++I) 1858 if (!AggressiveInsts.count(I) && !isa<DbgInfoIntrinsic>(I)) { 1859 // This is not an aggressive instruction that we can promote. 1860 // Because of this, we won't be able to get rid of the control 1861 // flow, so the xform is not worth it. 1862 return false; 1863 } 1864 } 1865 1866 DEBUG(dbgs() << "FOUND IF CONDITION! " << *IfCond << " T: " 1867 << IfTrue->getName() << " F: " << IfFalse->getName() << "\n"); 1868 1869 // If we can still promote the PHI nodes after this gauntlet of tests, 1870 // do all of the PHI's now. 1871 Instruction *InsertPt = DomBlock->getTerminator(); 1872 IRBuilder<true, NoFolder> Builder(InsertPt); 1873 1874 // Move all 'aggressive' instructions, which are defined in the 1875 // conditional parts of the if's up to the dominating block. 1876 if (IfBlock1) 1877 DomBlock->getInstList().splice(InsertPt, 1878 IfBlock1->getInstList(), IfBlock1->begin(), 1879 IfBlock1->getTerminator()); 1880 if (IfBlock2) 1881 DomBlock->getInstList().splice(InsertPt, 1882 IfBlock2->getInstList(), IfBlock2->begin(), 1883 IfBlock2->getTerminator()); 1884 1885 while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) { 1886 // Change the PHI node into a select instruction. 1887 Value *TrueVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse); 1888 Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue); 1889 1890 SelectInst *NV = 1891 cast<SelectInst>(Builder.CreateSelect(IfCond, TrueVal, FalseVal, "")); 1892 PN->replaceAllUsesWith(NV); 1893 NV->takeName(PN); 1894 PN->eraseFromParent(); 1895 } 1896 1897 // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement 1898 // has been flattened. Change DomBlock to jump directly to our new block to 1899 // avoid other simplifycfg's kicking in on the diamond. 1900 TerminatorInst *OldTI = DomBlock->getTerminator(); 1901 Builder.SetInsertPoint(OldTI); 1902 Builder.CreateBr(BB); 1903 OldTI->eraseFromParent(); 1904 return true; 1905 } 1906 1907 /// SimplifyCondBranchToTwoReturns - If we found a conditional branch that goes 1908 /// to two returning blocks, try to merge them together into one return, 1909 /// introducing a select if the return values disagree. 1910 static bool SimplifyCondBranchToTwoReturns(BranchInst *BI, 1911 IRBuilder<> &Builder) { 1912 assert(BI->isConditional() && "Must be a conditional branch"); 1913 BasicBlock *TrueSucc = BI->getSuccessor(0); 1914 BasicBlock *FalseSucc = BI->getSuccessor(1); 1915 ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator()); 1916 ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator()); 1917 1918 // Check to ensure both blocks are empty (just a return) or optionally empty 1919 // with PHI nodes. If there are other instructions, merging would cause extra 1920 // computation on one path or the other. 1921 if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator()) 1922 return false; 1923 if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator()) 1924 return false; 1925 1926 Builder.SetInsertPoint(BI); 1927 // Okay, we found a branch that is going to two return nodes. If 1928 // there is no return value for this function, just change the 1929 // branch into a return. 1930 if (FalseRet->getNumOperands() == 0) { 1931 TrueSucc->removePredecessor(BI->getParent()); 1932 FalseSucc->removePredecessor(BI->getParent()); 1933 Builder.CreateRetVoid(); 1934 EraseTerminatorInstAndDCECond(BI); 1935 return true; 1936 } 1937 1938 // Otherwise, figure out what the true and false return values are 1939 // so we can insert a new select instruction. 1940 Value *TrueValue = TrueRet->getReturnValue(); 1941 Value *FalseValue = FalseRet->getReturnValue(); 1942 1943 // Unwrap any PHI nodes in the return blocks. 1944 if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue)) 1945 if (TVPN->getParent() == TrueSucc) 1946 TrueValue = TVPN->getIncomingValueForBlock(BI->getParent()); 1947 if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue)) 1948 if (FVPN->getParent() == FalseSucc) 1949 FalseValue = FVPN->getIncomingValueForBlock(BI->getParent()); 1950 1951 // In order for this transformation to be safe, we must be able to 1952 // unconditionally execute both operands to the return. This is 1953 // normally the case, but we could have a potentially-trapping 1954 // constant expression that prevents this transformation from being 1955 // safe. 1956 if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue)) 1957 if (TCV->canTrap()) 1958 return false; 1959 if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue)) 1960 if (FCV->canTrap()) 1961 return false; 1962 1963 // Okay, we collected all the mapped values and checked them for sanity, and 1964 // defined to really do this transformation. First, update the CFG. 1965 TrueSucc->removePredecessor(BI->getParent()); 1966 FalseSucc->removePredecessor(BI->getParent()); 1967 1968 // Insert select instructions where needed. 1969 Value *BrCond = BI->getCondition(); 1970 if (TrueValue) { 1971 // Insert a select if the results differ. 1972 if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) { 1973 } else if (isa<UndefValue>(TrueValue)) { 1974 TrueValue = FalseValue; 1975 } else { 1976 TrueValue = Builder.CreateSelect(BrCond, TrueValue, 1977 FalseValue, "retval"); 1978 } 1979 } 1980 1981 Value *RI = !TrueValue ? 1982 Builder.CreateRetVoid() : Builder.CreateRet(TrueValue); 1983 1984 (void) RI; 1985 1986 DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:" 1987 << "\n " << *BI << "NewRet = " << *RI 1988 << "TRUEBLOCK: " << *TrueSucc << "FALSEBLOCK: "<< *FalseSucc); 1989 1990 EraseTerminatorInstAndDCECond(BI); 1991 1992 return true; 1993 } 1994 1995 /// ExtractBranchMetadata - Given a conditional BranchInstruction, retrieve the 1996 /// probabilities of the branch taking each edge. Fills in the two APInt 1997 /// parameters and return true, or returns false if no or invalid metadata was 1998 /// found. 1999 static bool ExtractBranchMetadata(BranchInst *BI, 2000 uint64_t &ProbTrue, uint64_t &ProbFalse) { 2001 assert(BI->isConditional() && 2002 "Looking for probabilities on unconditional branch?"); 2003 MDNode *ProfileData = BI->getMetadata(LLVMContext::MD_prof); 2004 if (!ProfileData || ProfileData->getNumOperands() != 3) return false; 2005 ConstantInt *CITrue = dyn_cast<ConstantInt>(ProfileData->getOperand(1)); 2006 ConstantInt *CIFalse = dyn_cast<ConstantInt>(ProfileData->getOperand(2)); 2007 if (!CITrue || !CIFalse) return false; 2008 ProbTrue = CITrue->getValue().getZExtValue(); 2009 ProbFalse = CIFalse->getValue().getZExtValue(); 2010 return true; 2011 } 2012 2013 /// checkCSEInPredecessor - Return true if the given instruction is available 2014 /// in its predecessor block. If yes, the instruction will be removed. 2015 /// 2016 static bool checkCSEInPredecessor(Instruction *Inst, BasicBlock *PB) { 2017 if (!isa<BinaryOperator>(Inst) && !isa<CmpInst>(Inst)) 2018 return false; 2019 for (BasicBlock::iterator I = PB->begin(), E = PB->end(); I != E; I++) { 2020 Instruction *PBI = &*I; 2021 // Check whether Inst and PBI generate the same value. 2022 if (Inst->isIdenticalTo(PBI)) { 2023 Inst->replaceAllUsesWith(PBI); 2024 Inst->eraseFromParent(); 2025 return true; 2026 } 2027 } 2028 return false; 2029 } 2030 2031 /// FoldBranchToCommonDest - If this basic block is simple enough, and if a 2032 /// predecessor branches to us and one of our successors, fold the block into 2033 /// the predecessor and use logical operations to pick the right destination. 2034 bool llvm::FoldBranchToCommonDest(BranchInst *BI) { 2035 BasicBlock *BB = BI->getParent(); 2036 2037 Instruction *Cond = 0; 2038 if (BI->isConditional()) 2039 Cond = dyn_cast<Instruction>(BI->getCondition()); 2040 else { 2041 // For unconditional branch, check for a simple CFG pattern, where 2042 // BB has a single predecessor and BB's successor is also its predecessor's 2043 // successor. If such pattern exisits, check for CSE between BB and its 2044 // predecessor. 2045 if (BasicBlock *PB = BB->getSinglePredecessor()) 2046 if (BranchInst *PBI = dyn_cast<BranchInst>(PB->getTerminator())) 2047 if (PBI->isConditional() && 2048 (BI->getSuccessor(0) == PBI->getSuccessor(0) || 2049 BI->getSuccessor(0) == PBI->getSuccessor(1))) { 2050 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); 2051 I != E; ) { 2052 Instruction *Curr = I++; 2053 if (isa<CmpInst>(Curr)) { 2054 Cond = Curr; 2055 break; 2056 } 2057 // Quit if we can't remove this instruction. 2058 if (!checkCSEInPredecessor(Curr, PB)) 2059 return false; 2060 } 2061 } 2062 2063 if (Cond == 0) 2064 return false; 2065 } 2066 2067 if (Cond == 0 || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) || 2068 Cond->getParent() != BB || !Cond->hasOneUse()) 2069 return false; 2070 2071 // Only allow this if the condition is a simple instruction that can be 2072 // executed unconditionally. It must be in the same block as the branch, and 2073 // must be at the front of the block. 2074 BasicBlock::iterator FrontIt = BB->front(); 2075 2076 // Ignore dbg intrinsics. 2077 while (isa<DbgInfoIntrinsic>(FrontIt)) ++FrontIt; 2078 2079 // Allow a single instruction to be hoisted in addition to the compare 2080 // that feeds the branch. We later ensure that any values that _it_ uses 2081 // were also live in the predecessor, so that we don't unnecessarily create 2082 // register pressure or inhibit out-of-order execution. 2083 Instruction *BonusInst = 0; 2084 if (&*FrontIt != Cond && 2085 FrontIt->hasOneUse() && *FrontIt->use_begin() == Cond && 2086 isSafeToSpeculativelyExecute(FrontIt)) { 2087 BonusInst = &*FrontIt; 2088 ++FrontIt; 2089 2090 // Ignore dbg intrinsics. 2091 while (isa<DbgInfoIntrinsic>(FrontIt)) ++FrontIt; 2092 } 2093 2094 // Only a single bonus inst is allowed. 2095 if (&*FrontIt != Cond) 2096 return false; 2097 2098 // Make sure the instruction after the condition is the cond branch. 2099 BasicBlock::iterator CondIt = Cond; ++CondIt; 2100 2101 // Ingore dbg intrinsics. 2102 while (isa<DbgInfoIntrinsic>(CondIt)) ++CondIt; 2103 2104 if (&*CondIt != BI) 2105 return false; 2106 2107 // Cond is known to be a compare or binary operator. Check to make sure that 2108 // neither operand is a potentially-trapping constant expression. 2109 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0))) 2110 if (CE->canTrap()) 2111 return false; 2112 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1))) 2113 if (CE->canTrap()) 2114 return false; 2115 2116 // Finally, don't infinitely unroll conditional loops. 2117 BasicBlock *TrueDest = BI->getSuccessor(0); 2118 BasicBlock *FalseDest = (BI->isConditional()) ? BI->getSuccessor(1) : 0; 2119 if (TrueDest == BB || FalseDest == BB) 2120 return false; 2121 2122 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 2123 BasicBlock *PredBlock = *PI; 2124 BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator()); 2125 2126 // Check that we have two conditional branches. If there is a PHI node in 2127 // the common successor, verify that the same value flows in from both 2128 // blocks. 2129 SmallVector<PHINode*, 4> PHIs; 2130 if (PBI == 0 || PBI->isUnconditional() || 2131 (BI->isConditional() && 2132 !SafeToMergeTerminators(BI, PBI)) || 2133 (!BI->isConditional() && 2134 !isProfitableToFoldUnconditional(BI, PBI, Cond, PHIs))) 2135 continue; 2136 2137 // Determine if the two branches share a common destination. 2138 Instruction::BinaryOps Opc = Instruction::BinaryOpsEnd; 2139 bool InvertPredCond = false; 2140 2141 if (BI->isConditional()) { 2142 if (PBI->getSuccessor(0) == TrueDest) 2143 Opc = Instruction::Or; 2144 else if (PBI->getSuccessor(1) == FalseDest) 2145 Opc = Instruction::And; 2146 else if (PBI->getSuccessor(0) == FalseDest) 2147 Opc = Instruction::And, InvertPredCond = true; 2148 else if (PBI->getSuccessor(1) == TrueDest) 2149 Opc = Instruction::Or, InvertPredCond = true; 2150 else 2151 continue; 2152 } else { 2153 if (PBI->getSuccessor(0) != TrueDest && PBI->getSuccessor(1) != TrueDest) 2154 continue; 2155 } 2156 2157 // Ensure that any values used in the bonus instruction are also used 2158 // by the terminator of the predecessor. This means that those values 2159 // must already have been resolved, so we won't be inhibiting the 2160 // out-of-order core by speculating them earlier. 2161 if (BonusInst) { 2162 // Collect the values used by the bonus inst 2163 SmallPtrSet<Value*, 4> UsedValues; 2164 for (Instruction::op_iterator OI = BonusInst->op_begin(), 2165 OE = BonusInst->op_end(); OI != OE; ++OI) { 2166 Value *V = *OI; 2167 if (!isa<Constant>(V)) 2168 UsedValues.insert(V); 2169 } 2170 2171 SmallVector<std::pair<Value*, unsigned>, 4> Worklist; 2172 Worklist.push_back(std::make_pair(PBI->getOperand(0), 0)); 2173 2174 // Walk up to four levels back up the use-def chain of the predecessor's 2175 // terminator to see if all those values were used. The choice of four 2176 // levels is arbitrary, to provide a compile-time-cost bound. 2177 while (!Worklist.empty()) { 2178 std::pair<Value*, unsigned> Pair = Worklist.back(); 2179 Worklist.pop_back(); 2180 2181 if (Pair.second >= 4) continue; 2182 UsedValues.erase(Pair.first); 2183 if (UsedValues.empty()) break; 2184 2185 if (Instruction *I = dyn_cast<Instruction>(Pair.first)) { 2186 for (Instruction::op_iterator OI = I->op_begin(), OE = I->op_end(); 2187 OI != OE; ++OI) 2188 Worklist.push_back(std::make_pair(OI->get(), Pair.second+1)); 2189 } 2190 } 2191 2192 if (!UsedValues.empty()) return false; 2193 } 2194 2195 DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB); 2196 IRBuilder<> Builder(PBI); 2197 2198 // If we need to invert the condition in the pred block to match, do so now. 2199 if (InvertPredCond) { 2200 Value *NewCond = PBI->getCondition(); 2201 2202 if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) { 2203 CmpInst *CI = cast<CmpInst>(NewCond); 2204 CI->setPredicate(CI->getInversePredicate()); 2205 } else { 2206 NewCond = Builder.CreateNot(NewCond, 2207 PBI->getCondition()->getName()+".not"); 2208 } 2209 2210 PBI->setCondition(NewCond); 2211 PBI->swapSuccessors(); 2212 } 2213 2214 // If we have a bonus inst, clone it into the predecessor block. 2215 Instruction *NewBonus = 0; 2216 if (BonusInst) { 2217 NewBonus = BonusInst->clone(); 2218 PredBlock->getInstList().insert(PBI, NewBonus); 2219 NewBonus->takeName(BonusInst); 2220 BonusInst->setName(BonusInst->getName()+".old"); 2221 } 2222 2223 // Clone Cond into the predecessor basic block, and or/and the 2224 // two conditions together. 2225 Instruction *New = Cond->clone(); 2226 if (BonusInst) New->replaceUsesOfWith(BonusInst, NewBonus); 2227 PredBlock->getInstList().insert(PBI, New); 2228 New->takeName(Cond); 2229 Cond->setName(New->getName()+".old"); 2230 2231 if (BI->isConditional()) { 2232 Instruction *NewCond = 2233 cast<Instruction>(Builder.CreateBinOp(Opc, PBI->getCondition(), 2234 New, "or.cond")); 2235 PBI->setCondition(NewCond); 2236 2237 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 2238 bool PredHasWeights = ExtractBranchMetadata(PBI, PredTrueWeight, 2239 PredFalseWeight); 2240 bool SuccHasWeights = ExtractBranchMetadata(BI, SuccTrueWeight, 2241 SuccFalseWeight); 2242 SmallVector<uint64_t, 8> NewWeights; 2243 2244 if (PBI->getSuccessor(0) == BB) { 2245 if (PredHasWeights && SuccHasWeights) { 2246 // PBI: br i1 %x, BB, FalseDest 2247 // BI: br i1 %y, TrueDest, FalseDest 2248 //TrueWeight is TrueWeight for PBI * TrueWeight for BI. 2249 NewWeights.push_back(PredTrueWeight * SuccTrueWeight); 2250 //FalseWeight is FalseWeight for PBI * TotalWeight for BI + 2251 // TrueWeight for PBI * FalseWeight for BI. 2252 // We assume that total weights of a BranchInst can fit into 32 bits. 2253 // Therefore, we will not have overflow using 64-bit arithmetic. 2254 NewWeights.push_back(PredFalseWeight * (SuccFalseWeight + 2255 SuccTrueWeight) + PredTrueWeight * SuccFalseWeight); 2256 } 2257 AddPredecessorToBlock(TrueDest, PredBlock, BB); 2258 PBI->setSuccessor(0, TrueDest); 2259 } 2260 if (PBI->getSuccessor(1) == BB) { 2261 if (PredHasWeights && SuccHasWeights) { 2262 // PBI: br i1 %x, TrueDest, BB 2263 // BI: br i1 %y, TrueDest, FalseDest 2264 //TrueWeight is TrueWeight for PBI * TotalWeight for BI + 2265 // FalseWeight for PBI * TrueWeight for BI. 2266 NewWeights.push_back(PredTrueWeight * (SuccFalseWeight + 2267 SuccTrueWeight) + PredFalseWeight * SuccTrueWeight); 2268 //FalseWeight is FalseWeight for PBI * FalseWeight for BI. 2269 NewWeights.push_back(PredFalseWeight * SuccFalseWeight); 2270 } 2271 AddPredecessorToBlock(FalseDest, PredBlock, BB); 2272 PBI->setSuccessor(1, FalseDest); 2273 } 2274 if (NewWeights.size() == 2) { 2275 // Halve the weights if any of them cannot fit in an uint32_t 2276 FitWeights(NewWeights); 2277 2278 SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(),NewWeights.end()); 2279 PBI->setMetadata(LLVMContext::MD_prof, 2280 MDBuilder(BI->getContext()). 2281 createBranchWeights(MDWeights)); 2282 } else 2283 PBI->setMetadata(LLVMContext::MD_prof, NULL); 2284 } else { 2285 // Update PHI nodes in the common successors. 2286 for (unsigned i = 0, e = PHIs.size(); i != e; ++i) { 2287 ConstantInt *PBI_C = cast<ConstantInt>( 2288 PHIs[i]->getIncomingValueForBlock(PBI->getParent())); 2289 assert(PBI_C->getType()->isIntegerTy(1)); 2290 Instruction *MergedCond = 0; 2291 if (PBI->getSuccessor(0) == TrueDest) { 2292 // Create (PBI_Cond and PBI_C) or (!PBI_Cond and BI_Value) 2293 // PBI_C is true: PBI_Cond or (!PBI_Cond and BI_Value) 2294 // is false: !PBI_Cond and BI_Value 2295 Instruction *NotCond = 2296 cast<Instruction>(Builder.CreateNot(PBI->getCondition(), 2297 "not.cond")); 2298 MergedCond = 2299 cast<Instruction>(Builder.CreateBinOp(Instruction::And, 2300 NotCond, New, 2301 "and.cond")); 2302 if (PBI_C->isOne()) 2303 MergedCond = 2304 cast<Instruction>(Builder.CreateBinOp(Instruction::Or, 2305 PBI->getCondition(), MergedCond, 2306 "or.cond")); 2307 } else { 2308 // Create (PBI_Cond and BI_Value) or (!PBI_Cond and PBI_C) 2309 // PBI_C is true: (PBI_Cond and BI_Value) or (!PBI_Cond) 2310 // is false: PBI_Cond and BI_Value 2311 MergedCond = 2312 cast<Instruction>(Builder.CreateBinOp(Instruction::And, 2313 PBI->getCondition(), New, 2314 "and.cond")); 2315 if (PBI_C->isOne()) { 2316 Instruction *NotCond = 2317 cast<Instruction>(Builder.CreateNot(PBI->getCondition(), 2318 "not.cond")); 2319 MergedCond = 2320 cast<Instruction>(Builder.CreateBinOp(Instruction::Or, 2321 NotCond, MergedCond, 2322 "or.cond")); 2323 } 2324 } 2325 // Update PHI Node. 2326 PHIs[i]->setIncomingValue(PHIs[i]->getBasicBlockIndex(PBI->getParent()), 2327 MergedCond); 2328 } 2329 // Change PBI from Conditional to Unconditional. 2330 BranchInst *New_PBI = BranchInst::Create(TrueDest, PBI); 2331 EraseTerminatorInstAndDCECond(PBI); 2332 PBI = New_PBI; 2333 } 2334 2335 // TODO: If BB is reachable from all paths through PredBlock, then we 2336 // could replace PBI's branch probabilities with BI's. 2337 2338 // Copy any debug value intrinsics into the end of PredBlock. 2339 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) 2340 if (isa<DbgInfoIntrinsic>(*I)) 2341 I->clone()->insertBefore(PBI); 2342 2343 return true; 2344 } 2345 return false; 2346 } 2347 2348 /// SimplifyCondBranchToCondBranch - If we have a conditional branch as a 2349 /// predecessor of another block, this function tries to simplify it. We know 2350 /// that PBI and BI are both conditional branches, and BI is in one of the 2351 /// successor blocks of PBI - PBI branches to BI. 2352 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI) { 2353 assert(PBI->isConditional() && BI->isConditional()); 2354 BasicBlock *BB = BI->getParent(); 2355 2356 // If this block ends with a branch instruction, and if there is a 2357 // predecessor that ends on a branch of the same condition, make 2358 // this conditional branch redundant. 2359 if (PBI->getCondition() == BI->getCondition() && 2360 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 2361 // Okay, the outcome of this conditional branch is statically 2362 // knowable. If this block had a single pred, handle specially. 2363 if (BB->getSinglePredecessor()) { 2364 // Turn this into a branch on constant. 2365 bool CondIsTrue = PBI->getSuccessor(0) == BB; 2366 BI->setCondition(ConstantInt::get(Type::getInt1Ty(BB->getContext()), 2367 CondIsTrue)); 2368 return true; // Nuke the branch on constant. 2369 } 2370 2371 // Otherwise, if there are multiple predecessors, insert a PHI that merges 2372 // in the constant and simplify the block result. Subsequent passes of 2373 // simplifycfg will thread the block. 2374 if (BlockIsSimpleEnoughToThreadThrough(BB)) { 2375 pred_iterator PB = pred_begin(BB), PE = pred_end(BB); 2376 PHINode *NewPN = PHINode::Create(Type::getInt1Ty(BB->getContext()), 2377 std::distance(PB, PE), 2378 BI->getCondition()->getName() + ".pr", 2379 BB->begin()); 2380 // Okay, we're going to insert the PHI node. Since PBI is not the only 2381 // predecessor, compute the PHI'd conditional value for all of the preds. 2382 // Any predecessor where the condition is not computable we keep symbolic. 2383 for (pred_iterator PI = PB; PI != PE; ++PI) { 2384 BasicBlock *P = *PI; 2385 if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) && 2386 PBI != BI && PBI->isConditional() && 2387 PBI->getCondition() == BI->getCondition() && 2388 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 2389 bool CondIsTrue = PBI->getSuccessor(0) == BB; 2390 NewPN->addIncoming(ConstantInt::get(Type::getInt1Ty(BB->getContext()), 2391 CondIsTrue), P); 2392 } else { 2393 NewPN->addIncoming(BI->getCondition(), P); 2394 } 2395 } 2396 2397 BI->setCondition(NewPN); 2398 return true; 2399 } 2400 } 2401 2402 // If this is a conditional branch in an empty block, and if any 2403 // predecessors is a conditional branch to one of our destinations, 2404 // fold the conditions into logical ops and one cond br. 2405 BasicBlock::iterator BBI = BB->begin(); 2406 // Ignore dbg intrinsics. 2407 while (isa<DbgInfoIntrinsic>(BBI)) 2408 ++BBI; 2409 if (&*BBI != BI) 2410 return false; 2411 2412 2413 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BI->getCondition())) 2414 if (CE->canTrap()) 2415 return false; 2416 2417 int PBIOp, BIOp; 2418 if (PBI->getSuccessor(0) == BI->getSuccessor(0)) 2419 PBIOp = BIOp = 0; 2420 else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) 2421 PBIOp = 0, BIOp = 1; 2422 else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) 2423 PBIOp = 1, BIOp = 0; 2424 else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) 2425 PBIOp = BIOp = 1; 2426 else 2427 return false; 2428 2429 // Check to make sure that the other destination of this branch 2430 // isn't BB itself. If so, this is an infinite loop that will 2431 // keep getting unwound. 2432 if (PBI->getSuccessor(PBIOp) == BB) 2433 return false; 2434 2435 // Do not perform this transformation if it would require 2436 // insertion of a large number of select instructions. For targets 2437 // without predication/cmovs, this is a big pessimization. 2438 BasicBlock *CommonDest = PBI->getSuccessor(PBIOp); 2439 2440 unsigned NumPhis = 0; 2441 for (BasicBlock::iterator II = CommonDest->begin(); 2442 isa<PHINode>(II); ++II, ++NumPhis) 2443 if (NumPhis > 2) // Disable this xform. 2444 return false; 2445 2446 // Finally, if everything is ok, fold the branches to logical ops. 2447 BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1); 2448 2449 DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent() 2450 << "AND: " << *BI->getParent()); 2451 2452 2453 // If OtherDest *is* BB, then BB is a basic block with a single conditional 2454 // branch in it, where one edge (OtherDest) goes back to itself but the other 2455 // exits. We don't *know* that the program avoids the infinite loop 2456 // (even though that seems likely). If we do this xform naively, we'll end up 2457 // recursively unpeeling the loop. Since we know that (after the xform is 2458 // done) that the block *is* infinite if reached, we just make it an obviously 2459 // infinite loop with no cond branch. 2460 if (OtherDest == BB) { 2461 // Insert it at the end of the function, because it's either code, 2462 // or it won't matter if it's hot. :) 2463 BasicBlock *InfLoopBlock = BasicBlock::Create(BB->getContext(), 2464 "infloop", BB->getParent()); 2465 BranchInst::Create(InfLoopBlock, InfLoopBlock); 2466 OtherDest = InfLoopBlock; 2467 } 2468 2469 DEBUG(dbgs() << *PBI->getParent()->getParent()); 2470 2471 // BI may have other predecessors. Because of this, we leave 2472 // it alone, but modify PBI. 2473 2474 // Make sure we get to CommonDest on True&True directions. 2475 Value *PBICond = PBI->getCondition(); 2476 IRBuilder<true, NoFolder> Builder(PBI); 2477 if (PBIOp) 2478 PBICond = Builder.CreateNot(PBICond, PBICond->getName()+".not"); 2479 2480 Value *BICond = BI->getCondition(); 2481 if (BIOp) 2482 BICond = Builder.CreateNot(BICond, BICond->getName()+".not"); 2483 2484 // Merge the conditions. 2485 Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge"); 2486 2487 // Modify PBI to branch on the new condition to the new dests. 2488 PBI->setCondition(Cond); 2489 PBI->setSuccessor(0, CommonDest); 2490 PBI->setSuccessor(1, OtherDest); 2491 2492 // Update branch weight for PBI. 2493 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 2494 bool PredHasWeights = ExtractBranchMetadata(PBI, PredTrueWeight, 2495 PredFalseWeight); 2496 bool SuccHasWeights = ExtractBranchMetadata(BI, SuccTrueWeight, 2497 SuccFalseWeight); 2498 if (PredHasWeights && SuccHasWeights) { 2499 uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight; 2500 uint64_t PredOther = PBIOp ?PredTrueWeight : PredFalseWeight; 2501 uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight; 2502 uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight; 2503 // The weight to CommonDest should be PredCommon * SuccTotal + 2504 // PredOther * SuccCommon. 2505 // The weight to OtherDest should be PredOther * SuccOther. 2506 SmallVector<uint64_t, 2> NewWeights; 2507 NewWeights.push_back(PredCommon * (SuccCommon + SuccOther) + 2508 PredOther * SuccCommon); 2509 NewWeights.push_back(PredOther * SuccOther); 2510 // Halve the weights if any of them cannot fit in an uint32_t 2511 FitWeights(NewWeights); 2512 2513 SmallVector<uint32_t, 2> MDWeights(NewWeights.begin(),NewWeights.end()); 2514 PBI->setMetadata(LLVMContext::MD_prof, 2515 MDBuilder(BI->getContext()). 2516 createBranchWeights(MDWeights)); 2517 } 2518 2519 // OtherDest may have phi nodes. If so, add an entry from PBI's 2520 // block that are identical to the entries for BI's block. 2521 AddPredecessorToBlock(OtherDest, PBI->getParent(), BB); 2522 2523 // We know that the CommonDest already had an edge from PBI to 2524 // it. If it has PHIs though, the PHIs may have different 2525 // entries for BB and PBI's BB. If so, insert a select to make 2526 // them agree. 2527 PHINode *PN; 2528 for (BasicBlock::iterator II = CommonDest->begin(); 2529 (PN = dyn_cast<PHINode>(II)); ++II) { 2530 Value *BIV = PN->getIncomingValueForBlock(BB); 2531 unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent()); 2532 Value *PBIV = PN->getIncomingValue(PBBIdx); 2533 if (BIV != PBIV) { 2534 // Insert a select in PBI to pick the right value. 2535 Value *NV = cast<SelectInst> 2536 (Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName()+".mux")); 2537 PN->setIncomingValue(PBBIdx, NV); 2538 } 2539 } 2540 2541 DEBUG(dbgs() << "INTO: " << *PBI->getParent()); 2542 DEBUG(dbgs() << *PBI->getParent()->getParent()); 2543 2544 // This basic block is probably dead. We know it has at least 2545 // one fewer predecessor. 2546 return true; 2547 } 2548 2549 // SimplifyTerminatorOnSelect - Simplifies a terminator by replacing it with a 2550 // branch to TrueBB if Cond is true or to FalseBB if Cond is false. 2551 // Takes care of updating the successors and removing the old terminator. 2552 // Also makes sure not to introduce new successors by assuming that edges to 2553 // non-successor TrueBBs and FalseBBs aren't reachable. 2554 static bool SimplifyTerminatorOnSelect(TerminatorInst *OldTerm, Value *Cond, 2555 BasicBlock *TrueBB, BasicBlock *FalseBB, 2556 uint32_t TrueWeight, 2557 uint32_t FalseWeight){ 2558 // Remove any superfluous successor edges from the CFG. 2559 // First, figure out which successors to preserve. 2560 // If TrueBB and FalseBB are equal, only try to preserve one copy of that 2561 // successor. 2562 BasicBlock *KeepEdge1 = TrueBB; 2563 BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : 0; 2564 2565 // Then remove the rest. 2566 for (unsigned I = 0, E = OldTerm->getNumSuccessors(); I != E; ++I) { 2567 BasicBlock *Succ = OldTerm->getSuccessor(I); 2568 // Make sure only to keep exactly one copy of each edge. 2569 if (Succ == KeepEdge1) 2570 KeepEdge1 = 0; 2571 else if (Succ == KeepEdge2) 2572 KeepEdge2 = 0; 2573 else 2574 Succ->removePredecessor(OldTerm->getParent()); 2575 } 2576 2577 IRBuilder<> Builder(OldTerm); 2578 Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc()); 2579 2580 // Insert an appropriate new terminator. 2581 if ((KeepEdge1 == 0) && (KeepEdge2 == 0)) { 2582 if (TrueBB == FalseBB) 2583 // We were only looking for one successor, and it was present. 2584 // Create an unconditional branch to it. 2585 Builder.CreateBr(TrueBB); 2586 else { 2587 // We found both of the successors we were looking for. 2588 // Create a conditional branch sharing the condition of the select. 2589 BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB); 2590 if (TrueWeight != FalseWeight) 2591 NewBI->setMetadata(LLVMContext::MD_prof, 2592 MDBuilder(OldTerm->getContext()). 2593 createBranchWeights(TrueWeight, FalseWeight)); 2594 } 2595 } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) { 2596 // Neither of the selected blocks were successors, so this 2597 // terminator must be unreachable. 2598 new UnreachableInst(OldTerm->getContext(), OldTerm); 2599 } else { 2600 // One of the selected values was a successor, but the other wasn't. 2601 // Insert an unconditional branch to the one that was found; 2602 // the edge to the one that wasn't must be unreachable. 2603 if (KeepEdge1 == 0) 2604 // Only TrueBB was found. 2605 Builder.CreateBr(TrueBB); 2606 else 2607 // Only FalseBB was found. 2608 Builder.CreateBr(FalseBB); 2609 } 2610 2611 EraseTerminatorInstAndDCECond(OldTerm); 2612 return true; 2613 } 2614 2615 // SimplifySwitchOnSelect - Replaces 2616 // (switch (select cond, X, Y)) on constant X, Y 2617 // with a branch - conditional if X and Y lead to distinct BBs, 2618 // unconditional otherwise. 2619 static bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select) { 2620 // Check for constant integer values in the select. 2621 ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue()); 2622 ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue()); 2623 if (!TrueVal || !FalseVal) 2624 return false; 2625 2626 // Find the relevant condition and destinations. 2627 Value *Condition = Select->getCondition(); 2628 BasicBlock *TrueBB = SI->findCaseValue(TrueVal).getCaseSuccessor(); 2629 BasicBlock *FalseBB = SI->findCaseValue(FalseVal).getCaseSuccessor(); 2630 2631 // Get weight for TrueBB and FalseBB. 2632 uint32_t TrueWeight = 0, FalseWeight = 0; 2633 SmallVector<uint64_t, 8> Weights; 2634 bool HasWeights = HasBranchWeights(SI); 2635 if (HasWeights) { 2636 GetBranchWeights(SI, Weights); 2637 if (Weights.size() == 1 + SI->getNumCases()) { 2638 TrueWeight = (uint32_t)Weights[SI->findCaseValue(TrueVal). 2639 getSuccessorIndex()]; 2640 FalseWeight = (uint32_t)Weights[SI->findCaseValue(FalseVal). 2641 getSuccessorIndex()]; 2642 } 2643 } 2644 2645 // Perform the actual simplification. 2646 return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, 2647 TrueWeight, FalseWeight); 2648 } 2649 2650 // SimplifyIndirectBrOnSelect - Replaces 2651 // (indirectbr (select cond, blockaddress(@fn, BlockA), 2652 // blockaddress(@fn, BlockB))) 2653 // with 2654 // (br cond, BlockA, BlockB). 2655 static bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI) { 2656 // Check that both operands of the select are block addresses. 2657 BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue()); 2658 BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue()); 2659 if (!TBA || !FBA) 2660 return false; 2661 2662 // Extract the actual blocks. 2663 BasicBlock *TrueBB = TBA->getBasicBlock(); 2664 BasicBlock *FalseBB = FBA->getBasicBlock(); 2665 2666 // Perform the actual simplification. 2667 return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 2668 0, 0); 2669 } 2670 2671 /// TryToSimplifyUncondBranchWithICmpInIt - This is called when we find an icmp 2672 /// instruction (a seteq/setne with a constant) as the only instruction in a 2673 /// block that ends with an uncond branch. We are looking for a very specific 2674 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified. In 2675 /// this case, we merge the first two "or's of icmp" into a switch, but then the 2676 /// default value goes to an uncond block with a seteq in it, we get something 2677 /// like: 2678 /// 2679 /// switch i8 %A, label %DEFAULT [ i8 1, label %end i8 2, label %end ] 2680 /// DEFAULT: 2681 /// %tmp = icmp eq i8 %A, 92 2682 /// br label %end 2683 /// end: 2684 /// ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ] 2685 /// 2686 /// We prefer to split the edge to 'end' so that there is a true/false entry to 2687 /// the PHI, merging the third icmp into the switch. 2688 static bool TryToSimplifyUncondBranchWithICmpInIt( 2689 ICmpInst *ICI, IRBuilder<> &Builder, const TargetTransformInfo &TTI, 2690 const DataLayout *TD) { 2691 BasicBlock *BB = ICI->getParent(); 2692 2693 // If the block has any PHIs in it or the icmp has multiple uses, it is too 2694 // complex. 2695 if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse()) return false; 2696 2697 Value *V = ICI->getOperand(0); 2698 ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1)); 2699 2700 // The pattern we're looking for is where our only predecessor is a switch on 2701 // 'V' and this block is the default case for the switch. In this case we can 2702 // fold the compared value into the switch to simplify things. 2703 BasicBlock *Pred = BB->getSinglePredecessor(); 2704 if (Pred == 0 || !isa<SwitchInst>(Pred->getTerminator())) return false; 2705 2706 SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator()); 2707 if (SI->getCondition() != V) 2708 return false; 2709 2710 // If BB is reachable on a non-default case, then we simply know the value of 2711 // V in this block. Substitute it and constant fold the icmp instruction 2712 // away. 2713 if (SI->getDefaultDest() != BB) { 2714 ConstantInt *VVal = SI->findCaseDest(BB); 2715 assert(VVal && "Should have a unique destination value"); 2716 ICI->setOperand(0, VVal); 2717 2718 if (Value *V = SimplifyInstruction(ICI, TD)) { 2719 ICI->replaceAllUsesWith(V); 2720 ICI->eraseFromParent(); 2721 } 2722 // BB is now empty, so it is likely to simplify away. 2723 return SimplifyCFG(BB, TTI, TD) | true; 2724 } 2725 2726 // Ok, the block is reachable from the default dest. If the constant we're 2727 // comparing exists in one of the other edges, then we can constant fold ICI 2728 // and zap it. 2729 if (SI->findCaseValue(Cst) != SI->case_default()) { 2730 Value *V; 2731 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 2732 V = ConstantInt::getFalse(BB->getContext()); 2733 else 2734 V = ConstantInt::getTrue(BB->getContext()); 2735 2736 ICI->replaceAllUsesWith(V); 2737 ICI->eraseFromParent(); 2738 // BB is now empty, so it is likely to simplify away. 2739 return SimplifyCFG(BB, TTI, TD) | true; 2740 } 2741 2742 // The use of the icmp has to be in the 'end' block, by the only PHI node in 2743 // the block. 2744 BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0); 2745 PHINode *PHIUse = dyn_cast<PHINode>(ICI->use_back()); 2746 if (PHIUse == 0 || PHIUse != &SuccBlock->front() || 2747 isa<PHINode>(++BasicBlock::iterator(PHIUse))) 2748 return false; 2749 2750 // If the icmp is a SETEQ, then the default dest gets false, the new edge gets 2751 // true in the PHI. 2752 Constant *DefaultCst = ConstantInt::getTrue(BB->getContext()); 2753 Constant *NewCst = ConstantInt::getFalse(BB->getContext()); 2754 2755 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 2756 std::swap(DefaultCst, NewCst); 2757 2758 // Replace ICI (which is used by the PHI for the default value) with true or 2759 // false depending on if it is EQ or NE. 2760 ICI->replaceAllUsesWith(DefaultCst); 2761 ICI->eraseFromParent(); 2762 2763 // Okay, the switch goes to this block on a default value. Add an edge from 2764 // the switch to the merge point on the compared value. 2765 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "switch.edge", 2766 BB->getParent(), BB); 2767 SmallVector<uint64_t, 8> Weights; 2768 bool HasWeights = HasBranchWeights(SI); 2769 if (HasWeights) { 2770 GetBranchWeights(SI, Weights); 2771 if (Weights.size() == 1 + SI->getNumCases()) { 2772 // Split weight for default case to case for "Cst". 2773 Weights[0] = (Weights[0]+1) >> 1; 2774 Weights.push_back(Weights[0]); 2775 2776 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 2777 SI->setMetadata(LLVMContext::MD_prof, 2778 MDBuilder(SI->getContext()). 2779 createBranchWeights(MDWeights)); 2780 } 2781 } 2782 SI->addCase(Cst, NewBB); 2783 2784 // NewBB branches to the phi block, add the uncond branch and the phi entry. 2785 Builder.SetInsertPoint(NewBB); 2786 Builder.SetCurrentDebugLocation(SI->getDebugLoc()); 2787 Builder.CreateBr(SuccBlock); 2788 PHIUse->addIncoming(NewCst, NewBB); 2789 return true; 2790 } 2791 2792 /// SimplifyBranchOnICmpChain - The specified branch is a conditional branch. 2793 /// Check to see if it is branching on an or/and chain of icmp instructions, and 2794 /// fold it into a switch instruction if so. 2795 static bool SimplifyBranchOnICmpChain(BranchInst *BI, const DataLayout *TD, 2796 IRBuilder<> &Builder) { 2797 Instruction *Cond = dyn_cast<Instruction>(BI->getCondition()); 2798 if (Cond == 0) return false; 2799 2800 2801 // Change br (X == 0 | X == 1), T, F into a switch instruction. 2802 // If this is a bunch of seteq's or'd together, or if it's a bunch of 2803 // 'setne's and'ed together, collect them. 2804 Value *CompVal = 0; 2805 std::vector<ConstantInt*> Values; 2806 bool TrueWhenEqual = true; 2807 Value *ExtraCase = 0; 2808 unsigned UsedICmps = 0; 2809 2810 if (Cond->getOpcode() == Instruction::Or) { 2811 CompVal = GatherConstantCompares(Cond, Values, ExtraCase, TD, true, 2812 UsedICmps); 2813 } else if (Cond->getOpcode() == Instruction::And) { 2814 CompVal = GatherConstantCompares(Cond, Values, ExtraCase, TD, false, 2815 UsedICmps); 2816 TrueWhenEqual = false; 2817 } 2818 2819 // If we didn't have a multiply compared value, fail. 2820 if (CompVal == 0) return false; 2821 2822 // Avoid turning single icmps into a switch. 2823 if (UsedICmps <= 1) 2824 return false; 2825 2826 // There might be duplicate constants in the list, which the switch 2827 // instruction can't handle, remove them now. 2828 array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate); 2829 Values.erase(std::unique(Values.begin(), Values.end()), Values.end()); 2830 2831 // If Extra was used, we require at least two switch values to do the 2832 // transformation. A switch with one value is just an cond branch. 2833 if (ExtraCase && Values.size() < 2) return false; 2834 2835 // TODO: Preserve branch weight metadata, similarly to how 2836 // FoldValueComparisonIntoPredecessors preserves it. 2837 2838 // Figure out which block is which destination. 2839 BasicBlock *DefaultBB = BI->getSuccessor(1); 2840 BasicBlock *EdgeBB = BI->getSuccessor(0); 2841 if (!TrueWhenEqual) std::swap(DefaultBB, EdgeBB); 2842 2843 BasicBlock *BB = BI->getParent(); 2844 2845 DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size() 2846 << " cases into SWITCH. BB is:\n" << *BB); 2847 2848 // If there are any extra values that couldn't be folded into the switch 2849 // then we evaluate them with an explicit branch first. Split the block 2850 // right before the condbr to handle it. 2851 if (ExtraCase) { 2852 BasicBlock *NewBB = BB->splitBasicBlock(BI, "switch.early.test"); 2853 // Remove the uncond branch added to the old block. 2854 TerminatorInst *OldTI = BB->getTerminator(); 2855 Builder.SetInsertPoint(OldTI); 2856 2857 if (TrueWhenEqual) 2858 Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB); 2859 else 2860 Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB); 2861 2862 OldTI->eraseFromParent(); 2863 2864 // If there are PHI nodes in EdgeBB, then we need to add a new entry to them 2865 // for the edge we just added. 2866 AddPredecessorToBlock(EdgeBB, BB, NewBB); 2867 2868 DEBUG(dbgs() << " ** 'icmp' chain unhandled condition: " << *ExtraCase 2869 << "\nEXTRABB = " << *BB); 2870 BB = NewBB; 2871 } 2872 2873 Builder.SetInsertPoint(BI); 2874 // Convert pointer to int before we switch. 2875 if (CompVal->getType()->isPointerTy()) { 2876 assert(TD && "Cannot switch on pointer without DataLayout"); 2877 CompVal = Builder.CreatePtrToInt(CompVal, 2878 TD->getIntPtrType(CompVal->getContext()), 2879 "magicptr"); 2880 } 2881 2882 // Create the new switch instruction now. 2883 SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size()); 2884 2885 // Add all of the 'cases' to the switch instruction. 2886 for (unsigned i = 0, e = Values.size(); i != e; ++i) 2887 New->addCase(Values[i], EdgeBB); 2888 2889 // We added edges from PI to the EdgeBB. As such, if there were any 2890 // PHI nodes in EdgeBB, they need entries to be added corresponding to 2891 // the number of edges added. 2892 for (BasicBlock::iterator BBI = EdgeBB->begin(); 2893 isa<PHINode>(BBI); ++BBI) { 2894 PHINode *PN = cast<PHINode>(BBI); 2895 Value *InVal = PN->getIncomingValueForBlock(BB); 2896 for (unsigned i = 0, e = Values.size()-1; i != e; ++i) 2897 PN->addIncoming(InVal, BB); 2898 } 2899 2900 // Erase the old branch instruction. 2901 EraseTerminatorInstAndDCECond(BI); 2902 2903 DEBUG(dbgs() << " ** 'icmp' chain result is:\n" << *BB << '\n'); 2904 return true; 2905 } 2906 2907 bool SimplifyCFGOpt::SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder) { 2908 // If this is a trivial landing pad that just continues unwinding the caught 2909 // exception then zap the landing pad, turning its invokes into calls. 2910 BasicBlock *BB = RI->getParent(); 2911 LandingPadInst *LPInst = dyn_cast<LandingPadInst>(BB->getFirstNonPHI()); 2912 if (RI->getValue() != LPInst) 2913 // Not a landing pad, or the resume is not unwinding the exception that 2914 // caused control to branch here. 2915 return false; 2916 2917 // Check that there are no other instructions except for debug intrinsics. 2918 BasicBlock::iterator I = LPInst, E = RI; 2919 while (++I != E) 2920 if (!isa<DbgInfoIntrinsic>(I)) 2921 return false; 2922 2923 // Turn all invokes that unwind here into calls and delete the basic block. 2924 bool InvokeRequiresTableEntry = false; 2925 bool Changed = false; 2926 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) { 2927 InvokeInst *II = cast<InvokeInst>((*PI++)->getTerminator()); 2928 2929 if (II->hasFnAttr(Attribute::UWTable)) { 2930 // Don't remove an `invoke' instruction if the ABI requires an entry into 2931 // the table. 2932 InvokeRequiresTableEntry = true; 2933 continue; 2934 } 2935 2936 SmallVector<Value*, 8> Args(II->op_begin(), II->op_end() - 3); 2937 2938 // Insert a call instruction before the invoke. 2939 CallInst *Call = CallInst::Create(II->getCalledValue(), Args, "", II); 2940 Call->takeName(II); 2941 Call->setCallingConv(II->getCallingConv()); 2942 Call->setAttributes(II->getAttributes()); 2943 Call->setDebugLoc(II->getDebugLoc()); 2944 2945 // Anything that used the value produced by the invoke instruction now uses 2946 // the value produced by the call instruction. Note that we do this even 2947 // for void functions and calls with no uses so that the callgraph edge is 2948 // updated. 2949 II->replaceAllUsesWith(Call); 2950 BB->removePredecessor(II->getParent()); 2951 2952 // Insert a branch to the normal destination right before the invoke. 2953 BranchInst::Create(II->getNormalDest(), II); 2954 2955 // Finally, delete the invoke instruction! 2956 II->eraseFromParent(); 2957 Changed = true; 2958 } 2959 2960 if (!InvokeRequiresTableEntry) 2961 // The landingpad is now unreachable. Zap it. 2962 BB->eraseFromParent(); 2963 2964 return Changed; 2965 } 2966 2967 bool SimplifyCFGOpt::SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) { 2968 BasicBlock *BB = RI->getParent(); 2969 if (!BB->getFirstNonPHIOrDbg()->isTerminator()) return false; 2970 2971 // Find predecessors that end with branches. 2972 SmallVector<BasicBlock*, 8> UncondBranchPreds; 2973 SmallVector<BranchInst*, 8> CondBranchPreds; 2974 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 2975 BasicBlock *P = *PI; 2976 TerminatorInst *PTI = P->getTerminator(); 2977 if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) { 2978 if (BI->isUnconditional()) 2979 UncondBranchPreds.push_back(P); 2980 else 2981 CondBranchPreds.push_back(BI); 2982 } 2983 } 2984 2985 // If we found some, do the transformation! 2986 if (!UncondBranchPreds.empty() && DupRet) { 2987 while (!UncondBranchPreds.empty()) { 2988 BasicBlock *Pred = UncondBranchPreds.pop_back_val(); 2989 DEBUG(dbgs() << "FOLDING: " << *BB 2990 << "INTO UNCOND BRANCH PRED: " << *Pred); 2991 (void)FoldReturnIntoUncondBranch(RI, BB, Pred); 2992 } 2993 2994 // If we eliminated all predecessors of the block, delete the block now. 2995 if (pred_begin(BB) == pred_end(BB)) 2996 // We know there are no successors, so just nuke the block. 2997 BB->eraseFromParent(); 2998 2999 return true; 3000 } 3001 3002 // Check out all of the conditional branches going to this return 3003 // instruction. If any of them just select between returns, change the 3004 // branch itself into a select/return pair. 3005 while (!CondBranchPreds.empty()) { 3006 BranchInst *BI = CondBranchPreds.pop_back_val(); 3007 3008 // Check to see if the non-BB successor is also a return block. 3009 if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) && 3010 isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) && 3011 SimplifyCondBranchToTwoReturns(BI, Builder)) 3012 return true; 3013 } 3014 return false; 3015 } 3016 3017 bool SimplifyCFGOpt::SimplifyUnreachable(UnreachableInst *UI) { 3018 BasicBlock *BB = UI->getParent(); 3019 3020 bool Changed = false; 3021 3022 // If there are any instructions immediately before the unreachable that can 3023 // be removed, do so. 3024 while (UI != BB->begin()) { 3025 BasicBlock::iterator BBI = UI; 3026 --BBI; 3027 // Do not delete instructions that can have side effects which might cause 3028 // the unreachable to not be reachable; specifically, calls and volatile 3029 // operations may have this effect. 3030 if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI)) break; 3031 3032 if (BBI->mayHaveSideEffects()) { 3033 if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) { 3034 if (SI->isVolatile()) 3035 break; 3036 } else if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) { 3037 if (LI->isVolatile()) 3038 break; 3039 } else if (AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(BBI)) { 3040 if (RMWI->isVolatile()) 3041 break; 3042 } else if (AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) { 3043 if (CXI->isVolatile()) 3044 break; 3045 } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) && 3046 !isa<LandingPadInst>(BBI)) { 3047 break; 3048 } 3049 // Note that deleting LandingPad's here is in fact okay, although it 3050 // involves a bit of subtle reasoning. If this inst is a LandingPad, 3051 // all the predecessors of this block will be the unwind edges of Invokes, 3052 // and we can therefore guarantee this block will be erased. 3053 } 3054 3055 // Delete this instruction (any uses are guaranteed to be dead) 3056 if (!BBI->use_empty()) 3057 BBI->replaceAllUsesWith(UndefValue::get(BBI->getType())); 3058 BBI->eraseFromParent(); 3059 Changed = true; 3060 } 3061 3062 // If the unreachable instruction is the first in the block, take a gander 3063 // at all of the predecessors of this instruction, and simplify them. 3064 if (&BB->front() != UI) return Changed; 3065 3066 SmallVector<BasicBlock*, 8> Preds(pred_begin(BB), pred_end(BB)); 3067 for (unsigned i = 0, e = Preds.size(); i != e; ++i) { 3068 TerminatorInst *TI = Preds[i]->getTerminator(); 3069 IRBuilder<> Builder(TI); 3070 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 3071 if (BI->isUnconditional()) { 3072 if (BI->getSuccessor(0) == BB) { 3073 new UnreachableInst(TI->getContext(), TI); 3074 TI->eraseFromParent(); 3075 Changed = true; 3076 } 3077 } else { 3078 if (BI->getSuccessor(0) == BB) { 3079 Builder.CreateBr(BI->getSuccessor(1)); 3080 EraseTerminatorInstAndDCECond(BI); 3081 } else if (BI->getSuccessor(1) == BB) { 3082 Builder.CreateBr(BI->getSuccessor(0)); 3083 EraseTerminatorInstAndDCECond(BI); 3084 Changed = true; 3085 } 3086 } 3087 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 3088 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); 3089 i != e; ++i) 3090 if (i.getCaseSuccessor() == BB) { 3091 BB->removePredecessor(SI->getParent()); 3092 SI->removeCase(i); 3093 --i; --e; 3094 Changed = true; 3095 } 3096 // If the default value is unreachable, figure out the most popular 3097 // destination and make it the default. 3098 if (SI->getDefaultDest() == BB) { 3099 std::map<BasicBlock*, std::pair<unsigned, unsigned> > Popularity; 3100 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); 3101 i != e; ++i) { 3102 std::pair<unsigned, unsigned> &entry = 3103 Popularity[i.getCaseSuccessor()]; 3104 if (entry.first == 0) { 3105 entry.first = 1; 3106 entry.second = i.getCaseIndex(); 3107 } else { 3108 entry.first++; 3109 } 3110 } 3111 3112 // Find the most popular block. 3113 unsigned MaxPop = 0; 3114 unsigned MaxIndex = 0; 3115 BasicBlock *MaxBlock = 0; 3116 for (std::map<BasicBlock*, std::pair<unsigned, unsigned> >::iterator 3117 I = Popularity.begin(), E = Popularity.end(); I != E; ++I) { 3118 if (I->second.first > MaxPop || 3119 (I->second.first == MaxPop && MaxIndex > I->second.second)) { 3120 MaxPop = I->second.first; 3121 MaxIndex = I->second.second; 3122 MaxBlock = I->first; 3123 } 3124 } 3125 if (MaxBlock) { 3126 // Make this the new default, allowing us to delete any explicit 3127 // edges to it. 3128 SI->setDefaultDest(MaxBlock); 3129 Changed = true; 3130 3131 // If MaxBlock has phinodes in it, remove MaxPop-1 entries from 3132 // it. 3133 if (isa<PHINode>(MaxBlock->begin())) 3134 for (unsigned i = 0; i != MaxPop-1; ++i) 3135 MaxBlock->removePredecessor(SI->getParent()); 3136 3137 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); 3138 i != e; ++i) 3139 if (i.getCaseSuccessor() == MaxBlock) { 3140 SI->removeCase(i); 3141 --i; --e; 3142 } 3143 } 3144 } 3145 } else if (InvokeInst *II = dyn_cast<InvokeInst>(TI)) { 3146 if (II->getUnwindDest() == BB) { 3147 // Convert the invoke to a call instruction. This would be a good 3148 // place to note that the call does not throw though. 3149 BranchInst *BI = Builder.CreateBr(II->getNormalDest()); 3150 II->removeFromParent(); // Take out of symbol table 3151 3152 // Insert the call now... 3153 SmallVector<Value*, 8> Args(II->op_begin(), II->op_end()-3); 3154 Builder.SetInsertPoint(BI); 3155 CallInst *CI = Builder.CreateCall(II->getCalledValue(), 3156 Args, II->getName()); 3157 CI->setCallingConv(II->getCallingConv()); 3158 CI->setAttributes(II->getAttributes()); 3159 // If the invoke produced a value, the call does now instead. 3160 II->replaceAllUsesWith(CI); 3161 delete II; 3162 Changed = true; 3163 } 3164 } 3165 } 3166 3167 // If this block is now dead, remove it. 3168 if (pred_begin(BB) == pred_end(BB) && 3169 BB != &BB->getParent()->getEntryBlock()) { 3170 // We know there are no successors, so just nuke the block. 3171 BB->eraseFromParent(); 3172 return true; 3173 } 3174 3175 return Changed; 3176 } 3177 3178 /// TurnSwitchRangeIntoICmp - Turns a switch with that contains only a 3179 /// integer range comparison into a sub, an icmp and a branch. 3180 static bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder) { 3181 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 3182 3183 // Make sure all cases point to the same destination and gather the values. 3184 SmallVector<ConstantInt *, 16> Cases; 3185 SwitchInst::CaseIt I = SI->case_begin(); 3186 Cases.push_back(I.getCaseValue()); 3187 SwitchInst::CaseIt PrevI = I++; 3188 for (SwitchInst::CaseIt E = SI->case_end(); I != E; PrevI = I++) { 3189 if (PrevI.getCaseSuccessor() != I.getCaseSuccessor()) 3190 return false; 3191 Cases.push_back(I.getCaseValue()); 3192 } 3193 assert(Cases.size() == SI->getNumCases() && "Not all cases gathered"); 3194 3195 // Sort the case values, then check if they form a range we can transform. 3196 array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate); 3197 for (unsigned I = 1, E = Cases.size(); I != E; ++I) { 3198 if (Cases[I-1]->getValue() != Cases[I]->getValue()+1) 3199 return false; 3200 } 3201 3202 Constant *Offset = ConstantExpr::getNeg(Cases.back()); 3203 Constant *NumCases = ConstantInt::get(Offset->getType(), SI->getNumCases()); 3204 3205 Value *Sub = SI->getCondition(); 3206 if (!Offset->isNullValue()) 3207 Sub = Builder.CreateAdd(Sub, Offset, Sub->getName()+".off"); 3208 Value *Cmp; 3209 // If NumCases overflowed, then all possible values jump to the successor. 3210 if (NumCases->isNullValue() && SI->getNumCases() != 0) 3211 Cmp = ConstantInt::getTrue(SI->getContext()); 3212 else 3213 Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch"); 3214 BranchInst *NewBI = Builder.CreateCondBr( 3215 Cmp, SI->case_begin().getCaseSuccessor(), SI->getDefaultDest()); 3216 3217 // Update weight for the newly-created conditional branch. 3218 SmallVector<uint64_t, 8> Weights; 3219 bool HasWeights = HasBranchWeights(SI); 3220 if (HasWeights) { 3221 GetBranchWeights(SI, Weights); 3222 if (Weights.size() == 1 + SI->getNumCases()) { 3223 // Combine all weights for the cases to be the true weight of NewBI. 3224 // We assume that the sum of all weights for a Terminator can fit into 32 3225 // bits. 3226 uint32_t NewTrueWeight = 0; 3227 for (unsigned I = 1, E = Weights.size(); I != E; ++I) 3228 NewTrueWeight += (uint32_t)Weights[I]; 3229 NewBI->setMetadata(LLVMContext::MD_prof, 3230 MDBuilder(SI->getContext()). 3231 createBranchWeights(NewTrueWeight, 3232 (uint32_t)Weights[0])); 3233 } 3234 } 3235 3236 // Prune obsolete incoming values off the successor's PHI nodes. 3237 for (BasicBlock::iterator BBI = SI->case_begin().getCaseSuccessor()->begin(); 3238 isa<PHINode>(BBI); ++BBI) { 3239 for (unsigned I = 0, E = SI->getNumCases()-1; I != E; ++I) 3240 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 3241 } 3242 SI->eraseFromParent(); 3243 3244 return true; 3245 } 3246 3247 /// EliminateDeadSwitchCases - Compute masked bits for the condition of a switch 3248 /// and use it to remove dead cases. 3249 static bool EliminateDeadSwitchCases(SwitchInst *SI) { 3250 Value *Cond = SI->getCondition(); 3251 unsigned Bits = cast<IntegerType>(Cond->getType())->getBitWidth(); 3252 APInt KnownZero(Bits, 0), KnownOne(Bits, 0); 3253 ComputeMaskedBits(Cond, KnownZero, KnownOne); 3254 3255 // Gather dead cases. 3256 SmallVector<ConstantInt*, 8> DeadCases; 3257 for (SwitchInst::CaseIt I = SI->case_begin(), E = SI->case_end(); I != E; ++I) { 3258 if ((I.getCaseValue()->getValue() & KnownZero) != 0 || 3259 (I.getCaseValue()->getValue() & KnownOne) != KnownOne) { 3260 DeadCases.push_back(I.getCaseValue()); 3261 DEBUG(dbgs() << "SimplifyCFG: switch case '" 3262 << I.getCaseValue() << "' is dead.\n"); 3263 } 3264 } 3265 3266 SmallVector<uint64_t, 8> Weights; 3267 bool HasWeight = HasBranchWeights(SI); 3268 if (HasWeight) { 3269 GetBranchWeights(SI, Weights); 3270 HasWeight = (Weights.size() == 1 + SI->getNumCases()); 3271 } 3272 3273 // Remove dead cases from the switch. 3274 for (unsigned I = 0, E = DeadCases.size(); I != E; ++I) { 3275 SwitchInst::CaseIt Case = SI->findCaseValue(DeadCases[I]); 3276 assert(Case != SI->case_default() && 3277 "Case was not found. Probably mistake in DeadCases forming."); 3278 if (HasWeight) { 3279 std::swap(Weights[Case.getCaseIndex()+1], Weights.back()); 3280 Weights.pop_back(); 3281 } 3282 3283 // Prune unused values from PHI nodes. 3284 Case.getCaseSuccessor()->removePredecessor(SI->getParent()); 3285 SI->removeCase(Case); 3286 } 3287 if (HasWeight) { 3288 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 3289 SI->setMetadata(LLVMContext::MD_prof, 3290 MDBuilder(SI->getParent()->getContext()). 3291 createBranchWeights(MDWeights)); 3292 } 3293 3294 return !DeadCases.empty(); 3295 } 3296 3297 /// FindPHIForConditionForwarding - If BB would be eligible for simplification 3298 /// by TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated 3299 /// by an unconditional branch), look at the phi node for BB in the successor 3300 /// block and see if the incoming value is equal to CaseValue. If so, return 3301 /// the phi node, and set PhiIndex to BB's index in the phi node. 3302 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue, 3303 BasicBlock *BB, 3304 int *PhiIndex) { 3305 if (BB->getFirstNonPHIOrDbg() != BB->getTerminator()) 3306 return NULL; // BB must be empty to be a candidate for simplification. 3307 if (!BB->getSinglePredecessor()) 3308 return NULL; // BB must be dominated by the switch. 3309 3310 BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator()); 3311 if (!Branch || !Branch->isUnconditional()) 3312 return NULL; // Terminator must be unconditional branch. 3313 3314 BasicBlock *Succ = Branch->getSuccessor(0); 3315 3316 BasicBlock::iterator I = Succ->begin(); 3317 while (PHINode *PHI = dyn_cast<PHINode>(I++)) { 3318 int Idx = PHI->getBasicBlockIndex(BB); 3319 assert(Idx >= 0 && "PHI has no entry for predecessor?"); 3320 3321 Value *InValue = PHI->getIncomingValue(Idx); 3322 if (InValue != CaseValue) continue; 3323 3324 *PhiIndex = Idx; 3325 return PHI; 3326 } 3327 3328 return NULL; 3329 } 3330 3331 /// ForwardSwitchConditionToPHI - Try to forward the condition of a switch 3332 /// instruction to a phi node dominated by the switch, if that would mean that 3333 /// some of the destination blocks of the switch can be folded away. 3334 /// Returns true if a change is made. 3335 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) { 3336 typedef DenseMap<PHINode*, SmallVector<int,4> > ForwardingNodesMap; 3337 ForwardingNodesMap ForwardingNodes; 3338 3339 for (SwitchInst::CaseIt I = SI->case_begin(), E = SI->case_end(); I != E; ++I) { 3340 ConstantInt *CaseValue = I.getCaseValue(); 3341 BasicBlock *CaseDest = I.getCaseSuccessor(); 3342 3343 int PhiIndex; 3344 PHINode *PHI = FindPHIForConditionForwarding(CaseValue, CaseDest, 3345 &PhiIndex); 3346 if (!PHI) continue; 3347 3348 ForwardingNodes[PHI].push_back(PhiIndex); 3349 } 3350 3351 bool Changed = false; 3352 3353 for (ForwardingNodesMap::iterator I = ForwardingNodes.begin(), 3354 E = ForwardingNodes.end(); I != E; ++I) { 3355 PHINode *Phi = I->first; 3356 SmallVectorImpl<int> &Indexes = I->second; 3357 3358 if (Indexes.size() < 2) continue; 3359 3360 for (size_t I = 0, E = Indexes.size(); I != E; ++I) 3361 Phi->setIncomingValue(Indexes[I], SI->getCondition()); 3362 Changed = true; 3363 } 3364 3365 return Changed; 3366 } 3367 3368 /// ValidLookupTableConstant - Return true if the backend will be able to handle 3369 /// initializing an array of constants like C. 3370 static bool ValidLookupTableConstant(Constant *C) { 3371 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) 3372 return CE->isGEPWithNoNotionalOverIndexing(); 3373 3374 return isa<ConstantFP>(C) || 3375 isa<ConstantInt>(C) || 3376 isa<ConstantPointerNull>(C) || 3377 isa<GlobalValue>(C) || 3378 isa<UndefValue>(C); 3379 } 3380 3381 /// LookupConstant - If V is a Constant, return it. Otherwise, try to look up 3382 /// its constant value in ConstantPool, returning 0 if it's not there. 3383 static Constant *LookupConstant(Value *V, 3384 const SmallDenseMap<Value*, Constant*>& ConstantPool) { 3385 if (Constant *C = dyn_cast<Constant>(V)) 3386 return C; 3387 return ConstantPool.lookup(V); 3388 } 3389 3390 /// ConstantFold - Try to fold instruction I into a constant. This works for 3391 /// simple instructions such as binary operations where both operands are 3392 /// constant or can be replaced by constants from the ConstantPool. Returns the 3393 /// resulting constant on success, 0 otherwise. 3394 static Constant *ConstantFold(Instruction *I, 3395 const SmallDenseMap<Value*, Constant*>& ConstantPool) { 3396 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) { 3397 Constant *A = LookupConstant(BO->getOperand(0), ConstantPool); 3398 if (!A) 3399 return 0; 3400 Constant *B = LookupConstant(BO->getOperand(1), ConstantPool); 3401 if (!B) 3402 return 0; 3403 return ConstantExpr::get(BO->getOpcode(), A, B); 3404 } 3405 3406 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) { 3407 Constant *A = LookupConstant(I->getOperand(0), ConstantPool); 3408 if (!A) 3409 return 0; 3410 Constant *B = LookupConstant(I->getOperand(1), ConstantPool); 3411 if (!B) 3412 return 0; 3413 return ConstantExpr::getCompare(Cmp->getPredicate(), A, B); 3414 } 3415 3416 if (SelectInst *Select = dyn_cast<SelectInst>(I)) { 3417 Constant *A = LookupConstant(Select->getCondition(), ConstantPool); 3418 if (!A) 3419 return 0; 3420 if (A->isAllOnesValue()) 3421 return LookupConstant(Select->getTrueValue(), ConstantPool); 3422 if (A->isNullValue()) 3423 return LookupConstant(Select->getFalseValue(), ConstantPool); 3424 return 0; 3425 } 3426 3427 if (CastInst *Cast = dyn_cast<CastInst>(I)) { 3428 Constant *A = LookupConstant(I->getOperand(0), ConstantPool); 3429 if (!A) 3430 return 0; 3431 return ConstantExpr::getCast(Cast->getOpcode(), A, Cast->getDestTy()); 3432 } 3433 3434 return 0; 3435 } 3436 3437 /// GetCaseResults - Try to determine the resulting constant values in phi nodes 3438 /// at the common destination basic block, *CommonDest, for one of the case 3439 /// destionations CaseDest corresponding to value CaseVal (0 for the default 3440 /// case), of a switch instruction SI. 3441 static bool 3442 GetCaseResults(SwitchInst *SI, 3443 ConstantInt *CaseVal, 3444 BasicBlock *CaseDest, 3445 BasicBlock **CommonDest, 3446 SmallVectorImpl<std::pair<PHINode*,Constant*> > &Res) { 3447 // The block from which we enter the common destination. 3448 BasicBlock *Pred = SI->getParent(); 3449 3450 // If CaseDest is empty except for some side-effect free instructions through 3451 // which we can constant-propagate the CaseVal, continue to its successor. 3452 SmallDenseMap<Value*, Constant*> ConstantPool; 3453 ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal)); 3454 for (BasicBlock::iterator I = CaseDest->begin(), E = CaseDest->end(); I != E; 3455 ++I) { 3456 if (TerminatorInst *T = dyn_cast<TerminatorInst>(I)) { 3457 // If the terminator is a simple branch, continue to the next block. 3458 if (T->getNumSuccessors() != 1) 3459 return false; 3460 Pred = CaseDest; 3461 CaseDest = T->getSuccessor(0); 3462 } else if (isa<DbgInfoIntrinsic>(I)) { 3463 // Skip debug intrinsic. 3464 continue; 3465 } else if (Constant *C = ConstantFold(I, ConstantPool)) { 3466 // Instruction is side-effect free and constant. 3467 ConstantPool.insert(std::make_pair(I, C)); 3468 } else { 3469 break; 3470 } 3471 } 3472 3473 // If we did not have a CommonDest before, use the current one. 3474 if (!*CommonDest) 3475 *CommonDest = CaseDest; 3476 // If the destination isn't the common one, abort. 3477 if (CaseDest != *CommonDest) 3478 return false; 3479 3480 // Get the values for this case from phi nodes in the destination block. 3481 BasicBlock::iterator I = (*CommonDest)->begin(); 3482 while (PHINode *PHI = dyn_cast<PHINode>(I++)) { 3483 int Idx = PHI->getBasicBlockIndex(Pred); 3484 if (Idx == -1) 3485 continue; 3486 3487 Constant *ConstVal = LookupConstant(PHI->getIncomingValue(Idx), 3488 ConstantPool); 3489 if (!ConstVal) 3490 return false; 3491 3492 // Note: If the constant comes from constant-propagating the case value 3493 // through the CaseDest basic block, it will be safe to remove the 3494 // instructions in that block. They cannot be used (except in the phi nodes 3495 // we visit) outside CaseDest, because that block does not dominate its 3496 // successor. If it did, we would not be in this phi node. 3497 3498 // Be conservative about which kinds of constants we support. 3499 if (!ValidLookupTableConstant(ConstVal)) 3500 return false; 3501 3502 Res.push_back(std::make_pair(PHI, ConstVal)); 3503 } 3504 3505 return true; 3506 } 3507 3508 namespace { 3509 /// SwitchLookupTable - This class represents a lookup table that can be used 3510 /// to replace a switch. 3511 class SwitchLookupTable { 3512 public: 3513 /// SwitchLookupTable - Create a lookup table to use as a switch replacement 3514 /// with the contents of Values, using DefaultValue to fill any holes in the 3515 /// table. 3516 SwitchLookupTable(Module &M, 3517 uint64_t TableSize, 3518 ConstantInt *Offset, 3519 const SmallVectorImpl<std::pair<ConstantInt*, Constant*> >& Values, 3520 Constant *DefaultValue, 3521 const DataLayout *TD); 3522 3523 /// BuildLookup - Build instructions with Builder to retrieve the value at 3524 /// the position given by Index in the lookup table. 3525 Value *BuildLookup(Value *Index, IRBuilder<> &Builder); 3526 3527 /// WouldFitInRegister - Return true if a table with TableSize elements of 3528 /// type ElementType would fit in a target-legal register. 3529 static bool WouldFitInRegister(const DataLayout *TD, 3530 uint64_t TableSize, 3531 const Type *ElementType); 3532 3533 private: 3534 // Depending on the contents of the table, it can be represented in 3535 // different ways. 3536 enum { 3537 // For tables where each element contains the same value, we just have to 3538 // store that single value and return it for each lookup. 3539 SingleValueKind, 3540 3541 // For small tables with integer elements, we can pack them into a bitmap 3542 // that fits into a target-legal register. Values are retrieved by 3543 // shift and mask operations. 3544 BitMapKind, 3545 3546 // The table is stored as an array of values. Values are retrieved by load 3547 // instructions from the table. 3548 ArrayKind 3549 } Kind; 3550 3551 // For SingleValueKind, this is the single value. 3552 Constant *SingleValue; 3553 3554 // For BitMapKind, this is the bitmap. 3555 ConstantInt *BitMap; 3556 IntegerType *BitMapElementTy; 3557 3558 // For ArrayKind, this is the array. 3559 GlobalVariable *Array; 3560 }; 3561 } 3562 3563 SwitchLookupTable::SwitchLookupTable(Module &M, 3564 uint64_t TableSize, 3565 ConstantInt *Offset, 3566 const SmallVectorImpl<std::pair<ConstantInt*, Constant*> >& Values, 3567 Constant *DefaultValue, 3568 const DataLayout *TD) 3569 : SingleValue(0), BitMap(0), BitMapElementTy(0), Array(0) { 3570 assert(Values.size() && "Can't build lookup table without values!"); 3571 assert(TableSize >= Values.size() && "Can't fit values in table!"); 3572 3573 // If all values in the table are equal, this is that value. 3574 SingleValue = Values.begin()->second; 3575 3576 // Build up the table contents. 3577 SmallVector<Constant*, 64> TableContents(TableSize); 3578 for (size_t I = 0, E = Values.size(); I != E; ++I) { 3579 ConstantInt *CaseVal = Values[I].first; 3580 Constant *CaseRes = Values[I].second; 3581 assert(CaseRes->getType() == DefaultValue->getType()); 3582 3583 uint64_t Idx = (CaseVal->getValue() - Offset->getValue()) 3584 .getLimitedValue(); 3585 TableContents[Idx] = CaseRes; 3586 3587 if (CaseRes != SingleValue) 3588 SingleValue = 0; 3589 } 3590 3591 // Fill in any holes in the table with the default result. 3592 if (Values.size() < TableSize) { 3593 for (uint64_t I = 0; I < TableSize; ++I) { 3594 if (!TableContents[I]) 3595 TableContents[I] = DefaultValue; 3596 } 3597 3598 if (DefaultValue != SingleValue) 3599 SingleValue = 0; 3600 } 3601 3602 // If each element in the table contains the same value, we only need to store 3603 // that single value. 3604 if (SingleValue) { 3605 Kind = SingleValueKind; 3606 return; 3607 } 3608 3609 // If the type is integer and the table fits in a register, build a bitmap. 3610 if (WouldFitInRegister(TD, TableSize, DefaultValue->getType())) { 3611 IntegerType *IT = cast<IntegerType>(DefaultValue->getType()); 3612 APInt TableInt(TableSize * IT->getBitWidth(), 0); 3613 for (uint64_t I = TableSize; I > 0; --I) { 3614 TableInt <<= IT->getBitWidth(); 3615 // Insert values into the bitmap. Undef values are set to zero. 3616 if (!isa<UndefValue>(TableContents[I - 1])) { 3617 ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]); 3618 TableInt |= Val->getValue().zext(TableInt.getBitWidth()); 3619 } 3620 } 3621 BitMap = ConstantInt::get(M.getContext(), TableInt); 3622 BitMapElementTy = IT; 3623 Kind = BitMapKind; 3624 ++NumBitMaps; 3625 return; 3626 } 3627 3628 // Store the table in an array. 3629 ArrayType *ArrayTy = ArrayType::get(DefaultValue->getType(), TableSize); 3630 Constant *Initializer = ConstantArray::get(ArrayTy, TableContents); 3631 3632 Array = new GlobalVariable(M, ArrayTy, /*constant=*/ true, 3633 GlobalVariable::PrivateLinkage, 3634 Initializer, 3635 "switch.table"); 3636 Array->setUnnamedAddr(true); 3637 Kind = ArrayKind; 3638 } 3639 3640 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) { 3641 switch (Kind) { 3642 case SingleValueKind: 3643 return SingleValue; 3644 case BitMapKind: { 3645 // Type of the bitmap (e.g. i59). 3646 IntegerType *MapTy = BitMap->getType(); 3647 3648 // Cast Index to the same type as the bitmap. 3649 // Note: The Index is <= the number of elements in the table, so 3650 // truncating it to the width of the bitmask is safe. 3651 Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast"); 3652 3653 // Multiply the shift amount by the element width. 3654 ShiftAmt = Builder.CreateMul(ShiftAmt, 3655 ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()), 3656 "switch.shiftamt"); 3657 3658 // Shift down. 3659 Value *DownShifted = Builder.CreateLShr(BitMap, ShiftAmt, 3660 "switch.downshift"); 3661 // Mask off. 3662 return Builder.CreateTrunc(DownShifted, BitMapElementTy, 3663 "switch.masked"); 3664 } 3665 case ArrayKind: { 3666 Value *GEPIndices[] = { Builder.getInt32(0), Index }; 3667 Value *GEP = Builder.CreateInBoundsGEP(Array, GEPIndices, 3668 "switch.gep"); 3669 return Builder.CreateLoad(GEP, "switch.load"); 3670 } 3671 } 3672 llvm_unreachable("Unknown lookup table kind!"); 3673 } 3674 3675 bool SwitchLookupTable::WouldFitInRegister(const DataLayout *TD, 3676 uint64_t TableSize, 3677 const Type *ElementType) { 3678 if (!TD) 3679 return false; 3680 const IntegerType *IT = dyn_cast<IntegerType>(ElementType); 3681 if (!IT) 3682 return false; 3683 // FIXME: If the type is wider than it needs to be, e.g. i8 but all values 3684 // are <= 15, we could try to narrow the type. 3685 3686 // Avoid overflow, fitsInLegalInteger uses unsigned int for the width. 3687 if (TableSize >= UINT_MAX/IT->getBitWidth()) 3688 return false; 3689 return TD->fitsInLegalInteger(TableSize * IT->getBitWidth()); 3690 } 3691 3692 /// ShouldBuildLookupTable - Determine whether a lookup table should be built 3693 /// for this switch, based on the number of cases, size of the table and the 3694 /// types of the results. 3695 static bool ShouldBuildLookupTable(SwitchInst *SI, 3696 uint64_t TableSize, 3697 const TargetTransformInfo &TTI, 3698 const DataLayout *TD, 3699 const SmallDenseMap<PHINode*, Type*>& ResultTypes) { 3700 if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10) 3701 return false; // TableSize overflowed, or mul below might overflow. 3702 3703 bool AllTablesFitInRegister = true; 3704 bool HasIllegalType = false; 3705 for (SmallDenseMap<PHINode*, Type*>::const_iterator I = ResultTypes.begin(), 3706 E = ResultTypes.end(); I != E; ++I) { 3707 Type *Ty = I->second; 3708 3709 // Saturate this flag to true. 3710 HasIllegalType = HasIllegalType || !TTI.isTypeLegal(Ty); 3711 3712 // Saturate this flag to false. 3713 AllTablesFitInRegister = AllTablesFitInRegister && 3714 SwitchLookupTable::WouldFitInRegister(TD, TableSize, Ty); 3715 3716 // If both flags saturate, we're done. NOTE: This *only* works with 3717 // saturating flags, and all flags have to saturate first due to the 3718 // non-deterministic behavior of iterating over a dense map. 3719 if (HasIllegalType && !AllTablesFitInRegister) 3720 break; 3721 } 3722 3723 // If each table would fit in a register, we should build it anyway. 3724 if (AllTablesFitInRegister) 3725 return true; 3726 3727 // Don't build a table that doesn't fit in-register if it has illegal types. 3728 if (HasIllegalType) 3729 return false; 3730 3731 // The table density should be at least 40%. This is the same criterion as for 3732 // jump tables, see SelectionDAGBuilder::handleJTSwitchCase. 3733 // FIXME: Find the best cut-off. 3734 return SI->getNumCases() * 10 >= TableSize * 4; 3735 } 3736 3737 /// SwitchToLookupTable - If the switch is only used to initialize one or more 3738 /// phi nodes in a common successor block with different constant values, 3739 /// replace the switch with lookup tables. 3740 static bool SwitchToLookupTable(SwitchInst *SI, 3741 IRBuilder<> &Builder, 3742 const TargetTransformInfo &TTI, 3743 const DataLayout* TD) { 3744 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 3745 3746 // Only build lookup table when we have a target that supports it. 3747 if (!TTI.shouldBuildLookupTables()) 3748 return false; 3749 3750 // FIXME: If the switch is too sparse for a lookup table, perhaps we could 3751 // split off a dense part and build a lookup table for that. 3752 3753 // FIXME: This creates arrays of GEPs to constant strings, which means each 3754 // GEP needs a runtime relocation in PIC code. We should just build one big 3755 // string and lookup indices into that. 3756 3757 // Ignore the switch if the number of cases is too small. 3758 // This is similar to the check when building jump tables in 3759 // SelectionDAGBuilder::handleJTSwitchCase. 3760 // FIXME: Determine the best cut-off. 3761 if (SI->getNumCases() < 4) 3762 return false; 3763 3764 // Figure out the corresponding result for each case value and phi node in the 3765 // common destination, as well as the the min and max case values. 3766 assert(SI->case_begin() != SI->case_end()); 3767 SwitchInst::CaseIt CI = SI->case_begin(); 3768 ConstantInt *MinCaseVal = CI.getCaseValue(); 3769 ConstantInt *MaxCaseVal = CI.getCaseValue(); 3770 3771 BasicBlock *CommonDest = 0; 3772 typedef SmallVector<std::pair<ConstantInt*, Constant*>, 4> ResultListTy; 3773 SmallDenseMap<PHINode*, ResultListTy> ResultLists; 3774 SmallDenseMap<PHINode*, Constant*> DefaultResults; 3775 SmallDenseMap<PHINode*, Type*> ResultTypes; 3776 SmallVector<PHINode*, 4> PHIs; 3777 3778 for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) { 3779 ConstantInt *CaseVal = CI.getCaseValue(); 3780 if (CaseVal->getValue().slt(MinCaseVal->getValue())) 3781 MinCaseVal = CaseVal; 3782 if (CaseVal->getValue().sgt(MaxCaseVal->getValue())) 3783 MaxCaseVal = CaseVal; 3784 3785 // Resulting value at phi nodes for this case value. 3786 typedef SmallVector<std::pair<PHINode*, Constant*>, 4> ResultsTy; 3787 ResultsTy Results; 3788 if (!GetCaseResults(SI, CaseVal, CI.getCaseSuccessor(), &CommonDest, 3789 Results)) 3790 return false; 3791 3792 // Append the result from this case to the list for each phi. 3793 for (ResultsTy::iterator I = Results.begin(), E = Results.end(); I!=E; ++I) { 3794 if (!ResultLists.count(I->first)) 3795 PHIs.push_back(I->first); 3796 ResultLists[I->first].push_back(std::make_pair(CaseVal, I->second)); 3797 } 3798 } 3799 3800 // Get the resulting values for the default case. 3801 SmallVector<std::pair<PHINode*, Constant*>, 4> DefaultResultsList; 3802 if (!GetCaseResults(SI, 0, SI->getDefaultDest(), &CommonDest, 3803 DefaultResultsList)) 3804 return false; 3805 for (size_t I = 0, E = DefaultResultsList.size(); I != E; ++I) { 3806 PHINode *PHI = DefaultResultsList[I].first; 3807 Constant *Result = DefaultResultsList[I].second; 3808 DefaultResults[PHI] = Result; 3809 ResultTypes[PHI] = Result->getType(); 3810 } 3811 3812 APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue(); 3813 uint64_t TableSize = RangeSpread.getLimitedValue() + 1; 3814 if (!ShouldBuildLookupTable(SI, TableSize, TTI, TD, ResultTypes)) 3815 return false; 3816 3817 // Create the BB that does the lookups. 3818 Module &Mod = *CommonDest->getParent()->getParent(); 3819 BasicBlock *LookupBB = BasicBlock::Create(Mod.getContext(), 3820 "switch.lookup", 3821 CommonDest->getParent(), 3822 CommonDest); 3823 3824 // Check whether the condition value is within the case range, and branch to 3825 // the new BB. 3826 Builder.SetInsertPoint(SI); 3827 Value *TableIndex = Builder.CreateSub(SI->getCondition(), MinCaseVal, 3828 "switch.tableidx"); 3829 Value *Cmp = Builder.CreateICmpULT(TableIndex, ConstantInt::get( 3830 MinCaseVal->getType(), TableSize)); 3831 Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest()); 3832 3833 // Populate the BB that does the lookups. 3834 Builder.SetInsertPoint(LookupBB); 3835 bool ReturnedEarly = false; 3836 for (size_t I = 0, E = PHIs.size(); I != E; ++I) { 3837 PHINode *PHI = PHIs[I]; 3838 3839 SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultLists[PHI], 3840 DefaultResults[PHI], TD); 3841 3842 Value *Result = Table.BuildLookup(TableIndex, Builder); 3843 3844 // If the result is used to return immediately from the function, we want to 3845 // do that right here. 3846 if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->use_begin()) && 3847 *PHI->use_begin() == CommonDest->getFirstNonPHIOrDbg()) { 3848 Builder.CreateRet(Result); 3849 ReturnedEarly = true; 3850 break; 3851 } 3852 3853 PHI->addIncoming(Result, LookupBB); 3854 } 3855 3856 if (!ReturnedEarly) 3857 Builder.CreateBr(CommonDest); 3858 3859 // Remove the switch. 3860 for (unsigned i = 0; i < SI->getNumSuccessors(); ++i) { 3861 BasicBlock *Succ = SI->getSuccessor(i); 3862 if (Succ == SI->getDefaultDest()) continue; 3863 Succ->removePredecessor(SI->getParent()); 3864 } 3865 SI->eraseFromParent(); 3866 3867 ++NumLookupTables; 3868 return true; 3869 } 3870 3871 bool SimplifyCFGOpt::SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) { 3872 BasicBlock *BB = SI->getParent(); 3873 3874 if (isValueEqualityComparison(SI)) { 3875 // If we only have one predecessor, and if it is a branch on this value, 3876 // see if that predecessor totally determines the outcome of this switch. 3877 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 3878 if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder)) 3879 return SimplifyCFG(BB, TTI, TD) | true; 3880 3881 Value *Cond = SI->getCondition(); 3882 if (SelectInst *Select = dyn_cast<SelectInst>(Cond)) 3883 if (SimplifySwitchOnSelect(SI, Select)) 3884 return SimplifyCFG(BB, TTI, TD) | true; 3885 3886 // If the block only contains the switch, see if we can fold the block 3887 // away into any preds. 3888 BasicBlock::iterator BBI = BB->begin(); 3889 // Ignore dbg intrinsics. 3890 while (isa<DbgInfoIntrinsic>(BBI)) 3891 ++BBI; 3892 if (SI == &*BBI) 3893 if (FoldValueComparisonIntoPredecessors(SI, Builder)) 3894 return SimplifyCFG(BB, TTI, TD) | true; 3895 } 3896 3897 // Try to transform the switch into an icmp and a branch. 3898 if (TurnSwitchRangeIntoICmp(SI, Builder)) 3899 return SimplifyCFG(BB, TTI, TD) | true; 3900 3901 // Remove unreachable cases. 3902 if (EliminateDeadSwitchCases(SI)) 3903 return SimplifyCFG(BB, TTI, TD) | true; 3904 3905 if (ForwardSwitchConditionToPHI(SI)) 3906 return SimplifyCFG(BB, TTI, TD) | true; 3907 3908 if (SwitchToLookupTable(SI, Builder, TTI, TD)) 3909 return SimplifyCFG(BB, TTI, TD) | true; 3910 3911 return false; 3912 } 3913 3914 bool SimplifyCFGOpt::SimplifyIndirectBr(IndirectBrInst *IBI) { 3915 BasicBlock *BB = IBI->getParent(); 3916 bool Changed = false; 3917 3918 // Eliminate redundant destinations. 3919 SmallPtrSet<Value *, 8> Succs; 3920 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 3921 BasicBlock *Dest = IBI->getDestination(i); 3922 if (!Dest->hasAddressTaken() || !Succs.insert(Dest)) { 3923 Dest->removePredecessor(BB); 3924 IBI->removeDestination(i); 3925 --i; --e; 3926 Changed = true; 3927 } 3928 } 3929 3930 if (IBI->getNumDestinations() == 0) { 3931 // If the indirectbr has no successors, change it to unreachable. 3932 new UnreachableInst(IBI->getContext(), IBI); 3933 EraseTerminatorInstAndDCECond(IBI); 3934 return true; 3935 } 3936 3937 if (IBI->getNumDestinations() == 1) { 3938 // If the indirectbr has one successor, change it to a direct branch. 3939 BranchInst::Create(IBI->getDestination(0), IBI); 3940 EraseTerminatorInstAndDCECond(IBI); 3941 return true; 3942 } 3943 3944 if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) { 3945 if (SimplifyIndirectBrOnSelect(IBI, SI)) 3946 return SimplifyCFG(BB, TTI, TD) | true; 3947 } 3948 return Changed; 3949 } 3950 3951 bool SimplifyCFGOpt::SimplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder){ 3952 BasicBlock *BB = BI->getParent(); 3953 3954 if (SinkCommon && SinkThenElseCodeToEnd(BI)) 3955 return true; 3956 3957 // If the Terminator is the only non-phi instruction, simplify the block. 3958 BasicBlock::iterator I = BB->getFirstNonPHIOrDbgOrLifetime(); 3959 if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() && 3960 TryToSimplifyUncondBranchFromEmptyBlock(BB)) 3961 return true; 3962 3963 // If the only instruction in the block is a seteq/setne comparison 3964 // against a constant, try to simplify the block. 3965 if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) 3966 if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) { 3967 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 3968 ; 3969 if (I->isTerminator() && 3970 TryToSimplifyUncondBranchWithICmpInIt(ICI, Builder, TTI, TD)) 3971 return true; 3972 } 3973 3974 // If this basic block is ONLY a compare and a branch, and if a predecessor 3975 // branches to us and our successor, fold the comparison into the 3976 // predecessor and use logical operations to update the incoming value 3977 // for PHI nodes in common successor. 3978 if (FoldBranchToCommonDest(BI)) 3979 return SimplifyCFG(BB, TTI, TD) | true; 3980 return false; 3981 } 3982 3983 3984 bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) { 3985 BasicBlock *BB = BI->getParent(); 3986 3987 // Conditional branch 3988 if (isValueEqualityComparison(BI)) { 3989 // If we only have one predecessor, and if it is a branch on this value, 3990 // see if that predecessor totally determines the outcome of this 3991 // switch. 3992 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 3993 if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder)) 3994 return SimplifyCFG(BB, TTI, TD) | true; 3995 3996 // This block must be empty, except for the setcond inst, if it exists. 3997 // Ignore dbg intrinsics. 3998 BasicBlock::iterator I = BB->begin(); 3999 // Ignore dbg intrinsics. 4000 while (isa<DbgInfoIntrinsic>(I)) 4001 ++I; 4002 if (&*I == BI) { 4003 if (FoldValueComparisonIntoPredecessors(BI, Builder)) 4004 return SimplifyCFG(BB, TTI, TD) | true; 4005 } else if (&*I == cast<Instruction>(BI->getCondition())){ 4006 ++I; 4007 // Ignore dbg intrinsics. 4008 while (isa<DbgInfoIntrinsic>(I)) 4009 ++I; 4010 if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder)) 4011 return SimplifyCFG(BB, TTI, TD) | true; 4012 } 4013 } 4014 4015 // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction. 4016 if (SimplifyBranchOnICmpChain(BI, TD, Builder)) 4017 return true; 4018 4019 // If this basic block is ONLY a compare and a branch, and if a predecessor 4020 // branches to us and one of our successors, fold the comparison into the 4021 // predecessor and use logical operations to pick the right destination. 4022 if (FoldBranchToCommonDest(BI)) 4023 return SimplifyCFG(BB, TTI, TD) | true; 4024 4025 // We have a conditional branch to two blocks that are only reachable 4026 // from BI. We know that the condbr dominates the two blocks, so see if 4027 // there is any identical code in the "then" and "else" blocks. If so, we 4028 // can hoist it up to the branching block. 4029 if (BI->getSuccessor(0)->getSinglePredecessor() != 0) { 4030 if (BI->getSuccessor(1)->getSinglePredecessor() != 0) { 4031 if (HoistThenElseCodeToIf(BI)) 4032 return SimplifyCFG(BB, TTI, TD) | true; 4033 } else { 4034 // If Successor #1 has multiple preds, we may be able to conditionally 4035 // execute Successor #0 if it branches to successor #1. 4036 TerminatorInst *Succ0TI = BI->getSuccessor(0)->getTerminator(); 4037 if (Succ0TI->getNumSuccessors() == 1 && 4038 Succ0TI->getSuccessor(0) == BI->getSuccessor(1)) 4039 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0))) 4040 return SimplifyCFG(BB, TTI, TD) | true; 4041 } 4042 } else if (BI->getSuccessor(1)->getSinglePredecessor() != 0) { 4043 // If Successor #0 has multiple preds, we may be able to conditionally 4044 // execute Successor #1 if it branches to successor #0. 4045 TerminatorInst *Succ1TI = BI->getSuccessor(1)->getTerminator(); 4046 if (Succ1TI->getNumSuccessors() == 1 && 4047 Succ1TI->getSuccessor(0) == BI->getSuccessor(0)) 4048 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1))) 4049 return SimplifyCFG(BB, TTI, TD) | true; 4050 } 4051 4052 // If this is a branch on a phi node in the current block, thread control 4053 // through this block if any PHI node entries are constants. 4054 if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition())) 4055 if (PN->getParent() == BI->getParent()) 4056 if (FoldCondBranchOnPHI(BI, TD)) 4057 return SimplifyCFG(BB, TTI, TD) | true; 4058 4059 // Scan predecessor blocks for conditional branches. 4060 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 4061 if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator())) 4062 if (PBI != BI && PBI->isConditional()) 4063 if (SimplifyCondBranchToCondBranch(PBI, BI)) 4064 return SimplifyCFG(BB, TTI, TD) | true; 4065 4066 return false; 4067 } 4068 4069 /// Check if passing a value to an instruction will cause undefined behavior. 4070 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I) { 4071 Constant *C = dyn_cast<Constant>(V); 4072 if (!C) 4073 return false; 4074 4075 if (I->use_empty()) 4076 return false; 4077 4078 if (C->isNullValue()) { 4079 // Only look at the first use, avoid hurting compile time with long uselists 4080 User *Use = *I->use_begin(); 4081 4082 // Now make sure that there are no instructions in between that can alter 4083 // control flow (eg. calls) 4084 for (BasicBlock::iterator i = ++BasicBlock::iterator(I); &*i != Use; ++i) 4085 if (i == I->getParent()->end() || i->mayHaveSideEffects()) 4086 return false; 4087 4088 // Look through GEPs. A load from a GEP derived from NULL is still undefined 4089 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use)) 4090 if (GEP->getPointerOperand() == I) 4091 return passingValueIsAlwaysUndefined(V, GEP); 4092 4093 // Look through bitcasts. 4094 if (BitCastInst *BC = dyn_cast<BitCastInst>(Use)) 4095 return passingValueIsAlwaysUndefined(V, BC); 4096 4097 // Load from null is undefined. 4098 if (LoadInst *LI = dyn_cast<LoadInst>(Use)) 4099 if (!LI->isVolatile()) 4100 return LI->getPointerAddressSpace() == 0; 4101 4102 // Store to null is undefined. 4103 if (StoreInst *SI = dyn_cast<StoreInst>(Use)) 4104 if (!SI->isVolatile()) 4105 return SI->getPointerAddressSpace() == 0 && SI->getPointerOperand() == I; 4106 } 4107 return false; 4108 } 4109 4110 /// If BB has an incoming value that will always trigger undefined behavior 4111 /// (eg. null pointer dereference), remove the branch leading here. 4112 static bool removeUndefIntroducingPredecessor(BasicBlock *BB) { 4113 for (BasicBlock::iterator i = BB->begin(); 4114 PHINode *PHI = dyn_cast<PHINode>(i); ++i) 4115 for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) 4116 if (passingValueIsAlwaysUndefined(PHI->getIncomingValue(i), PHI)) { 4117 TerminatorInst *T = PHI->getIncomingBlock(i)->getTerminator(); 4118 IRBuilder<> Builder(T); 4119 if (BranchInst *BI = dyn_cast<BranchInst>(T)) { 4120 BB->removePredecessor(PHI->getIncomingBlock(i)); 4121 // Turn uncoditional branches into unreachables and remove the dead 4122 // destination from conditional branches. 4123 if (BI->isUnconditional()) 4124 Builder.CreateUnreachable(); 4125 else 4126 Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1) : 4127 BI->getSuccessor(0)); 4128 BI->eraseFromParent(); 4129 return true; 4130 } 4131 // TODO: SwitchInst. 4132 } 4133 4134 return false; 4135 } 4136 4137 bool SimplifyCFGOpt::run(BasicBlock *BB) { 4138 bool Changed = false; 4139 4140 assert(BB && BB->getParent() && "Block not embedded in function!"); 4141 assert(BB->getTerminator() && "Degenerate basic block encountered!"); 4142 4143 // Remove basic blocks that have no predecessors (except the entry block)... 4144 // or that just have themself as a predecessor. These are unreachable. 4145 if ((pred_begin(BB) == pred_end(BB) && 4146 BB != &BB->getParent()->getEntryBlock()) || 4147 BB->getSinglePredecessor() == BB) { 4148 DEBUG(dbgs() << "Removing BB: \n" << *BB); 4149 DeleteDeadBlock(BB); 4150 return true; 4151 } 4152 4153 // Check to see if we can constant propagate this terminator instruction 4154 // away... 4155 Changed |= ConstantFoldTerminator(BB, true); 4156 4157 // Check for and eliminate duplicate PHI nodes in this block. 4158 Changed |= EliminateDuplicatePHINodes(BB); 4159 4160 // Check for and remove branches that will always cause undefined behavior. 4161 Changed |= removeUndefIntroducingPredecessor(BB); 4162 4163 // Merge basic blocks into their predecessor if there is only one distinct 4164 // pred, and if there is only one distinct successor of the predecessor, and 4165 // if there are no PHI nodes. 4166 // 4167 if (MergeBlockIntoPredecessor(BB)) 4168 return true; 4169 4170 IRBuilder<> Builder(BB); 4171 4172 // If there is a trivial two-entry PHI node in this basic block, and we can 4173 // eliminate it, do so now. 4174 if (PHINode *PN = dyn_cast<PHINode>(BB->begin())) 4175 if (PN->getNumIncomingValues() == 2) 4176 Changed |= FoldTwoEntryPHINode(PN, TD); 4177 4178 Builder.SetInsertPoint(BB->getTerminator()); 4179 if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) { 4180 if (BI->isUnconditional()) { 4181 if (SimplifyUncondBranch(BI, Builder)) return true; 4182 } else { 4183 if (SimplifyCondBranch(BI, Builder)) return true; 4184 } 4185 } else if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) { 4186 if (SimplifyReturn(RI, Builder)) return true; 4187 } else if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator())) { 4188 if (SimplifyResume(RI, Builder)) return true; 4189 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) { 4190 if (SimplifySwitch(SI, Builder)) return true; 4191 } else if (UnreachableInst *UI = 4192 dyn_cast<UnreachableInst>(BB->getTerminator())) { 4193 if (SimplifyUnreachable(UI)) return true; 4194 } else if (IndirectBrInst *IBI = 4195 dyn_cast<IndirectBrInst>(BB->getTerminator())) { 4196 if (SimplifyIndirectBr(IBI)) return true; 4197 } 4198 4199 return Changed; 4200 } 4201 4202 /// SimplifyCFG - This function is used to do simplification of a CFG. For 4203 /// example, it adjusts branches to branches to eliminate the extra hop, it 4204 /// eliminates unreachable basic blocks, and does other "peephole" optimization 4205 /// of the CFG. It returns true if a modification was made. 4206 /// 4207 bool llvm::SimplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI, 4208 const DataLayout *TD) { 4209 return SimplifyCFGOpt(TTI, TD).run(BB); 4210 } 4211