1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Peephole optimize the CFG.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/ADT/APInt.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SetOperations.h"
20 #include "llvm/ADT/SetVector.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/ADT/StringRef.h"
25 #include "llvm/Analysis/AssumptionCache.h"
26 #include "llvm/Analysis/ConstantFolding.h"
27 #include "llvm/Analysis/EHPersonalities.h"
28 #include "llvm/Analysis/InstructionSimplify.h"
29 #include "llvm/Analysis/TargetTransformInfo.h"
30 #include "llvm/Transforms/Utils/Local.h"
31 #include "llvm/Analysis/ValueTracking.h"
32 #include "llvm/IR/Attributes.h"
33 #include "llvm/IR/BasicBlock.h"
34 #include "llvm/IR/CFG.h"
35 #include "llvm/IR/CallSite.h"
36 #include "llvm/IR/Constant.h"
37 #include "llvm/IR/ConstantRange.h"
38 #include "llvm/IR/Constants.h"
39 #include "llvm/IR/DataLayout.h"
40 #include "llvm/IR/DerivedTypes.h"
41 #include "llvm/IR/Function.h"
42 #include "llvm/IR/GlobalValue.h"
43 #include "llvm/IR/GlobalVariable.h"
44 #include "llvm/IR/IRBuilder.h"
45 #include "llvm/IR/InstrTypes.h"
46 #include "llvm/IR/Instruction.h"
47 #include "llvm/IR/Instructions.h"
48 #include "llvm/IR/IntrinsicInst.h"
49 #include "llvm/IR/Intrinsics.h"
50 #include "llvm/IR/LLVMContext.h"
51 #include "llvm/IR/MDBuilder.h"
52 #include "llvm/IR/Metadata.h"
53 #include "llvm/IR/Module.h"
54 #include "llvm/IR/NoFolder.h"
55 #include "llvm/IR/Operator.h"
56 #include "llvm/IR/PatternMatch.h"
57 #include "llvm/IR/Type.h"
58 #include "llvm/IR/Use.h"
59 #include "llvm/IR/User.h"
60 #include "llvm/IR/Value.h"
61 #include "llvm/Support/Casting.h"
62 #include "llvm/Support/CommandLine.h"
63 #include "llvm/Support/Debug.h"
64 #include "llvm/Support/ErrorHandling.h"
65 #include "llvm/Support/KnownBits.h"
66 #include "llvm/Support/MathExtras.h"
67 #include "llvm/Support/raw_ostream.h"
68 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
69 #include "llvm/Transforms/Utils/ValueMapper.h"
70 #include <algorithm>
71 #include <cassert>
72 #include <climits>
73 #include <cstddef>
74 #include <cstdint>
75 #include <iterator>
76 #include <map>
77 #include <set>
78 #include <tuple>
79 #include <utility>
80 #include <vector>
81 
82 using namespace llvm;
83 using namespace PatternMatch;
84 
85 #define DEBUG_TYPE "simplifycfg"
86 
87 // Chosen as 2 so as to be cheap, but still to have enough power to fold
88 // a select, so the "clamp" idiom (of a min followed by a max) will be caught.
89 // To catch this, we need to fold a compare and a select, hence '2' being the
90 // minimum reasonable default.
91 static cl::opt<unsigned> PHINodeFoldingThreshold(
92     "phi-node-folding-threshold", cl::Hidden, cl::init(2),
93     cl::desc(
94         "Control the amount of phi node folding to perform (default = 2)"));
95 
96 static cl::opt<bool> DupRet(
97     "simplifycfg-dup-ret", cl::Hidden, cl::init(false),
98     cl::desc("Duplicate return instructions into unconditional branches"));
99 
100 static cl::opt<bool>
101     SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true),
102                cl::desc("Sink common instructions down to the end block"));
103 
104 static cl::opt<bool> HoistCondStores(
105     "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true),
106     cl::desc("Hoist conditional stores if an unconditional store precedes"));
107 
108 static cl::opt<bool> MergeCondStores(
109     "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true),
110     cl::desc("Hoist conditional stores even if an unconditional store does not "
111              "precede - hoist multiple conditional stores into a single "
112              "predicated store"));
113 
114 static cl::opt<bool> MergeCondStoresAggressively(
115     "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false),
116     cl::desc("When merging conditional stores, do so even if the resultant "
117              "basic blocks are unlikely to be if-converted as a result"));
118 
119 static cl::opt<bool> SpeculateOneExpensiveInst(
120     "speculate-one-expensive-inst", cl::Hidden, cl::init(true),
121     cl::desc("Allow exactly one expensive instruction to be speculatively "
122              "executed"));
123 
124 static cl::opt<unsigned> MaxSpeculationDepth(
125     "max-speculation-depth", cl::Hidden, cl::init(10),
126     cl::desc("Limit maximum recursion depth when calculating costs of "
127              "speculatively executed instructions"));
128 
129 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps");
130 STATISTIC(NumLinearMaps,
131           "Number of switch instructions turned into linear mapping");
132 STATISTIC(NumLookupTables,
133           "Number of switch instructions turned into lookup tables");
134 STATISTIC(
135     NumLookupTablesHoles,
136     "Number of switch instructions turned into lookup tables (holes checked)");
137 STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares");
138 STATISTIC(NumSinkCommons,
139           "Number of common instructions sunk down to the end block");
140 STATISTIC(NumSpeculations, "Number of speculative executed instructions");
141 
142 namespace {
143 
144 // The first field contains the value that the switch produces when a certain
145 // case group is selected, and the second field is a vector containing the
146 // cases composing the case group.
147 using SwitchCaseResultVectorTy =
148     SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2>;
149 
150 // The first field contains the phi node that generates a result of the switch
151 // and the second field contains the value generated for a certain case in the
152 // switch for that PHI.
153 using SwitchCaseResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>;
154 
155 /// ValueEqualityComparisonCase - Represents a case of a switch.
156 struct ValueEqualityComparisonCase {
157   ConstantInt *Value;
158   BasicBlock *Dest;
159 
160   ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest)
161       : Value(Value), Dest(Dest) {}
162 
163   bool operator<(ValueEqualityComparisonCase RHS) const {
164     // Comparing pointers is ok as we only rely on the order for uniquing.
165     return Value < RHS.Value;
166   }
167 
168   bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; }
169 };
170 
171 class SimplifyCFGOpt {
172   const TargetTransformInfo &TTI;
173   const DataLayout &DL;
174   SmallPtrSetImpl<BasicBlock *> *LoopHeaders;
175   const SimplifyCFGOptions &Options;
176 
177   Value *isValueEqualityComparison(TerminatorInst *TI);
178   BasicBlock *GetValueEqualityComparisonCases(
179       TerminatorInst *TI, std::vector<ValueEqualityComparisonCase> &Cases);
180   bool SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI,
181                                                      BasicBlock *Pred,
182                                                      IRBuilder<> &Builder);
183   bool FoldValueComparisonIntoPredecessors(TerminatorInst *TI,
184                                            IRBuilder<> &Builder);
185 
186   bool SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder);
187   bool SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder);
188   bool SimplifySingleResume(ResumeInst *RI);
189   bool SimplifyCommonResume(ResumeInst *RI);
190   bool SimplifyCleanupReturn(CleanupReturnInst *RI);
191   bool SimplifyUnreachable(UnreachableInst *UI);
192   bool SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder);
193   bool SimplifyIndirectBr(IndirectBrInst *IBI);
194   bool SimplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder);
195   bool SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder);
196 
197 public:
198   SimplifyCFGOpt(const TargetTransformInfo &TTI, const DataLayout &DL,
199                  SmallPtrSetImpl<BasicBlock *> *LoopHeaders,
200                  const SimplifyCFGOptions &Opts)
201       : TTI(TTI), DL(DL), LoopHeaders(LoopHeaders), Options(Opts) {}
202 
203   bool run(BasicBlock *BB);
204 };
205 
206 } // end anonymous namespace
207 
208 /// Return true if it is safe to merge these two
209 /// terminator instructions together.
210 static bool
211 SafeToMergeTerminators(TerminatorInst *SI1, TerminatorInst *SI2,
212                        SmallSetVector<BasicBlock *, 4> *FailBlocks = nullptr) {
213   if (SI1 == SI2)
214     return false; // Can't merge with self!
215 
216   // It is not safe to merge these two switch instructions if they have a common
217   // successor, and if that successor has a PHI node, and if *that* PHI node has
218   // conflicting incoming values from the two switch blocks.
219   BasicBlock *SI1BB = SI1->getParent();
220   BasicBlock *SI2BB = SI2->getParent();
221 
222   SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
223   bool Fail = false;
224   for (BasicBlock *Succ : successors(SI2BB))
225     if (SI1Succs.count(Succ))
226       for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) {
227         PHINode *PN = cast<PHINode>(BBI);
228         if (PN->getIncomingValueForBlock(SI1BB) !=
229             PN->getIncomingValueForBlock(SI2BB)) {
230           if (FailBlocks)
231             FailBlocks->insert(Succ);
232           Fail = true;
233         }
234       }
235 
236   return !Fail;
237 }
238 
239 /// Return true if it is safe and profitable to merge these two terminator
240 /// instructions together, where SI1 is an unconditional branch. PhiNodes will
241 /// store all PHI nodes in common successors.
242 static bool
243 isProfitableToFoldUnconditional(BranchInst *SI1, BranchInst *SI2,
244                                 Instruction *Cond,
245                                 SmallVectorImpl<PHINode *> &PhiNodes) {
246   if (SI1 == SI2)
247     return false; // Can't merge with self!
248   assert(SI1->isUnconditional() && SI2->isConditional());
249 
250   // We fold the unconditional branch if we can easily update all PHI nodes in
251   // common successors:
252   // 1> We have a constant incoming value for the conditional branch;
253   // 2> We have "Cond" as the incoming value for the unconditional branch;
254   // 3> SI2->getCondition() and Cond have same operands.
255   CmpInst *Ci2 = dyn_cast<CmpInst>(SI2->getCondition());
256   if (!Ci2)
257     return false;
258   if (!(Cond->getOperand(0) == Ci2->getOperand(0) &&
259         Cond->getOperand(1) == Ci2->getOperand(1)) &&
260       !(Cond->getOperand(0) == Ci2->getOperand(1) &&
261         Cond->getOperand(1) == Ci2->getOperand(0)))
262     return false;
263 
264   BasicBlock *SI1BB = SI1->getParent();
265   BasicBlock *SI2BB = SI2->getParent();
266   SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
267   for (BasicBlock *Succ : successors(SI2BB))
268     if (SI1Succs.count(Succ))
269       for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) {
270         PHINode *PN = cast<PHINode>(BBI);
271         if (PN->getIncomingValueForBlock(SI1BB) != Cond ||
272             !isa<ConstantInt>(PN->getIncomingValueForBlock(SI2BB)))
273           return false;
274         PhiNodes.push_back(PN);
275       }
276   return true;
277 }
278 
279 /// Update PHI nodes in Succ to indicate that there will now be entries in it
280 /// from the 'NewPred' block. The values that will be flowing into the PHI nodes
281 /// will be the same as those coming in from ExistPred, an existing predecessor
282 /// of Succ.
283 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred,
284                                   BasicBlock *ExistPred) {
285   for (PHINode &PN : Succ->phis())
286     PN.addIncoming(PN.getIncomingValueForBlock(ExistPred), NewPred);
287 }
288 
289 /// Compute an abstract "cost" of speculating the given instruction,
290 /// which is assumed to be safe to speculate. TCC_Free means cheap,
291 /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively
292 /// expensive.
293 static unsigned ComputeSpeculationCost(const User *I,
294                                        const TargetTransformInfo &TTI) {
295   assert(isSafeToSpeculativelyExecute(I) &&
296          "Instruction is not safe to speculatively execute!");
297   return TTI.getUserCost(I);
298 }
299 
300 /// If we have a merge point of an "if condition" as accepted above,
301 /// return true if the specified value dominates the block.  We
302 /// don't handle the true generality of domination here, just a special case
303 /// which works well enough for us.
304 ///
305 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to
306 /// see if V (which must be an instruction) and its recursive operands
307 /// that do not dominate BB have a combined cost lower than CostRemaining and
308 /// are non-trapping.  If both are true, the instruction is inserted into the
309 /// set and true is returned.
310 ///
311 /// The cost for most non-trapping instructions is defined as 1 except for
312 /// Select whose cost is 2.
313 ///
314 /// After this function returns, CostRemaining is decreased by the cost of
315 /// V plus its non-dominating operands.  If that cost is greater than
316 /// CostRemaining, false is returned and CostRemaining is undefined.
317 static bool DominatesMergePoint(Value *V, BasicBlock *BB,
318                                 SmallPtrSetImpl<Instruction *> *AggressiveInsts,
319                                 unsigned &CostRemaining,
320                                 const TargetTransformInfo &TTI,
321                                 unsigned Depth = 0) {
322   // It is possible to hit a zero-cost cycle (phi/gep instructions for example),
323   // so limit the recursion depth.
324   // TODO: While this recursion limit does prevent pathological behavior, it
325   // would be better to track visited instructions to avoid cycles.
326   if (Depth == MaxSpeculationDepth)
327     return false;
328 
329   Instruction *I = dyn_cast<Instruction>(V);
330   if (!I) {
331     // Non-instructions all dominate instructions, but not all constantexprs
332     // can be executed unconditionally.
333     if (ConstantExpr *C = dyn_cast<ConstantExpr>(V))
334       if (C->canTrap())
335         return false;
336     return true;
337   }
338   BasicBlock *PBB = I->getParent();
339 
340   // We don't want to allow weird loops that might have the "if condition" in
341   // the bottom of this block.
342   if (PBB == BB)
343     return false;
344 
345   // If this instruction is defined in a block that contains an unconditional
346   // branch to BB, then it must be in the 'conditional' part of the "if
347   // statement".  If not, it definitely dominates the region.
348   BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator());
349   if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB)
350     return true;
351 
352   // If we aren't allowing aggressive promotion anymore, then don't consider
353   // instructions in the 'if region'.
354   if (!AggressiveInsts)
355     return false;
356 
357   // If we have seen this instruction before, don't count it again.
358   if (AggressiveInsts->count(I))
359     return true;
360 
361   // Okay, it looks like the instruction IS in the "condition".  Check to
362   // see if it's a cheap instruction to unconditionally compute, and if it
363   // only uses stuff defined outside of the condition.  If so, hoist it out.
364   if (!isSafeToSpeculativelyExecute(I))
365     return false;
366 
367   unsigned Cost = ComputeSpeculationCost(I, TTI);
368 
369   // Allow exactly one instruction to be speculated regardless of its cost
370   // (as long as it is safe to do so).
371   // This is intended to flatten the CFG even if the instruction is a division
372   // or other expensive operation. The speculation of an expensive instruction
373   // is expected to be undone in CodeGenPrepare if the speculation has not
374   // enabled further IR optimizations.
375   if (Cost > CostRemaining &&
376       (!SpeculateOneExpensiveInst || !AggressiveInsts->empty() || Depth > 0))
377     return false;
378 
379   // Avoid unsigned wrap.
380   CostRemaining = (Cost > CostRemaining) ? 0 : CostRemaining - Cost;
381 
382   // Okay, we can only really hoist these out if their operands do
383   // not take us over the cost threshold.
384   for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i)
385     if (!DominatesMergePoint(*i, BB, AggressiveInsts, CostRemaining, TTI,
386                              Depth + 1))
387       return false;
388   // Okay, it's safe to do this!  Remember this instruction.
389   AggressiveInsts->insert(I);
390   return true;
391 }
392 
393 /// Extract ConstantInt from value, looking through IntToPtr
394 /// and PointerNullValue. Return NULL if value is not a constant int.
395 static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) {
396   // Normal constant int.
397   ConstantInt *CI = dyn_cast<ConstantInt>(V);
398   if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy())
399     return CI;
400 
401   // This is some kind of pointer constant. Turn it into a pointer-sized
402   // ConstantInt if possible.
403   IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType()));
404 
405   // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*).
406   if (isa<ConstantPointerNull>(V))
407     return ConstantInt::get(PtrTy, 0);
408 
409   // IntToPtr const int.
410   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
411     if (CE->getOpcode() == Instruction::IntToPtr)
412       if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) {
413         // The constant is very likely to have the right type already.
414         if (CI->getType() == PtrTy)
415           return CI;
416         else
417           return cast<ConstantInt>(
418               ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false));
419       }
420   return nullptr;
421 }
422 
423 namespace {
424 
425 /// Given a chain of or (||) or and (&&) comparison of a value against a
426 /// constant, this will try to recover the information required for a switch
427 /// structure.
428 /// It will depth-first traverse the chain of comparison, seeking for patterns
429 /// like %a == 12 or %a < 4 and combine them to produce a set of integer
430 /// representing the different cases for the switch.
431 /// Note that if the chain is composed of '||' it will build the set of elements
432 /// that matches the comparisons (i.e. any of this value validate the chain)
433 /// while for a chain of '&&' it will build the set elements that make the test
434 /// fail.
435 struct ConstantComparesGatherer {
436   const DataLayout &DL;
437 
438   /// Value found for the switch comparison
439   Value *CompValue = nullptr;
440 
441   /// Extra clause to be checked before the switch
442   Value *Extra = nullptr;
443 
444   /// Set of integers to match in switch
445   SmallVector<ConstantInt *, 8> Vals;
446 
447   /// Number of comparisons matched in the and/or chain
448   unsigned UsedICmps = 0;
449 
450   /// Construct and compute the result for the comparison instruction Cond
451   ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL) : DL(DL) {
452     gather(Cond);
453   }
454 
455   ConstantComparesGatherer(const ConstantComparesGatherer &) = delete;
456   ConstantComparesGatherer &
457   operator=(const ConstantComparesGatherer &) = delete;
458 
459 private:
460   /// Try to set the current value used for the comparison, it succeeds only if
461   /// it wasn't set before or if the new value is the same as the old one
462   bool setValueOnce(Value *NewVal) {
463     if (CompValue && CompValue != NewVal)
464       return false;
465     CompValue = NewVal;
466     return (CompValue != nullptr);
467   }
468 
469   /// Try to match Instruction "I" as a comparison against a constant and
470   /// populates the array Vals with the set of values that match (or do not
471   /// match depending on isEQ).
472   /// Return false on failure. On success, the Value the comparison matched
473   /// against is placed in CompValue.
474   /// If CompValue is already set, the function is expected to fail if a match
475   /// is found but the value compared to is different.
476   bool matchInstruction(Instruction *I, bool isEQ) {
477     // If this is an icmp against a constant, handle this as one of the cases.
478     ICmpInst *ICI;
479     ConstantInt *C;
480     if (!((ICI = dyn_cast<ICmpInst>(I)) &&
481           (C = GetConstantInt(I->getOperand(1), DL)))) {
482       return false;
483     }
484 
485     Value *RHSVal;
486     const APInt *RHSC;
487 
488     // Pattern match a special case
489     // (x & ~2^z) == y --> x == y || x == y|2^z
490     // This undoes a transformation done by instcombine to fuse 2 compares.
491     if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE)) {
492       // It's a little bit hard to see why the following transformations are
493       // correct. Here is a CVC3 program to verify them for 64-bit values:
494 
495       /*
496          ONE  : BITVECTOR(64) = BVZEROEXTEND(0bin1, 63);
497          x    : BITVECTOR(64);
498          y    : BITVECTOR(64);
499          z    : BITVECTOR(64);
500          mask : BITVECTOR(64) = BVSHL(ONE, z);
501          QUERY( (y & ~mask = y) =>
502                 ((x & ~mask = y) <=> (x = y OR x = (y |  mask)))
503          );
504          QUERY( (y |  mask = y) =>
505                 ((x |  mask = y) <=> (x = y OR x = (y & ~mask)))
506          );
507       */
508 
509       // Please note that each pattern must be a dual implication (<--> or
510       // iff). One directional implication can create spurious matches. If the
511       // implication is only one-way, an unsatisfiable condition on the left
512       // side can imply a satisfiable condition on the right side. Dual
513       // implication ensures that satisfiable conditions are transformed to
514       // other satisfiable conditions and unsatisfiable conditions are
515       // transformed to other unsatisfiable conditions.
516 
517       // Here is a concrete example of a unsatisfiable condition on the left
518       // implying a satisfiable condition on the right:
519       //
520       // mask = (1 << z)
521       // (x & ~mask) == y  --> (x == y || x == (y | mask))
522       //
523       // Substituting y = 3, z = 0 yields:
524       // (x & -2) == 3 --> (x == 3 || x == 2)
525 
526       // Pattern match a special case:
527       /*
528         QUERY( (y & ~mask = y) =>
529                ((x & ~mask = y) <=> (x = y OR x = (y |  mask)))
530         );
531       */
532       if (match(ICI->getOperand(0),
533                 m_And(m_Value(RHSVal), m_APInt(RHSC)))) {
534         APInt Mask = ~*RHSC;
535         if (Mask.isPowerOf2() && (C->getValue() & ~Mask) == C->getValue()) {
536           // If we already have a value for the switch, it has to match!
537           if (!setValueOnce(RHSVal))
538             return false;
539 
540           Vals.push_back(C);
541           Vals.push_back(
542               ConstantInt::get(C->getContext(),
543                                C->getValue() | Mask));
544           UsedICmps++;
545           return true;
546         }
547       }
548 
549       // Pattern match a special case:
550       /*
551         QUERY( (y |  mask = y) =>
552                ((x |  mask = y) <=> (x = y OR x = (y & ~mask)))
553         );
554       */
555       if (match(ICI->getOperand(0),
556                 m_Or(m_Value(RHSVal), m_APInt(RHSC)))) {
557         APInt Mask = *RHSC;
558         if (Mask.isPowerOf2() && (C->getValue() | Mask) == C->getValue()) {
559           // If we already have a value for the switch, it has to match!
560           if (!setValueOnce(RHSVal))
561             return false;
562 
563           Vals.push_back(C);
564           Vals.push_back(ConstantInt::get(C->getContext(),
565                                           C->getValue() & ~Mask));
566           UsedICmps++;
567           return true;
568         }
569       }
570 
571       // If we already have a value for the switch, it has to match!
572       if (!setValueOnce(ICI->getOperand(0)))
573         return false;
574 
575       UsedICmps++;
576       Vals.push_back(C);
577       return ICI->getOperand(0);
578     }
579 
580     // If we have "x ult 3", for example, then we can add 0,1,2 to the set.
581     ConstantRange Span = ConstantRange::makeAllowedICmpRegion(
582         ICI->getPredicate(), C->getValue());
583 
584     // Shift the range if the compare is fed by an add. This is the range
585     // compare idiom as emitted by instcombine.
586     Value *CandidateVal = I->getOperand(0);
587     if (match(I->getOperand(0), m_Add(m_Value(RHSVal), m_APInt(RHSC)))) {
588       Span = Span.subtract(*RHSC);
589       CandidateVal = RHSVal;
590     }
591 
592     // If this is an and/!= check, then we are looking to build the set of
593     // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into
594     // x != 0 && x != 1.
595     if (!isEQ)
596       Span = Span.inverse();
597 
598     // If there are a ton of values, we don't want to make a ginormous switch.
599     if (Span.isSizeLargerThan(8) || Span.isEmptySet()) {
600       return false;
601     }
602 
603     // If we already have a value for the switch, it has to match!
604     if (!setValueOnce(CandidateVal))
605       return false;
606 
607     // Add all values from the range to the set
608     for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp)
609       Vals.push_back(ConstantInt::get(I->getContext(), Tmp));
610 
611     UsedICmps++;
612     return true;
613   }
614 
615   /// Given a potentially 'or'd or 'and'd together collection of icmp
616   /// eq/ne/lt/gt instructions that compare a value against a constant, extract
617   /// the value being compared, and stick the list constants into the Vals
618   /// vector.
619   /// One "Extra" case is allowed to differ from the other.
620   void gather(Value *V) {
621     Instruction *I = dyn_cast<Instruction>(V);
622     bool isEQ = (I->getOpcode() == Instruction::Or);
623 
624     // Keep a stack (SmallVector for efficiency) for depth-first traversal
625     SmallVector<Value *, 8> DFT;
626     SmallPtrSet<Value *, 8> Visited;
627 
628     // Initialize
629     Visited.insert(V);
630     DFT.push_back(V);
631 
632     while (!DFT.empty()) {
633       V = DFT.pop_back_val();
634 
635       if (Instruction *I = dyn_cast<Instruction>(V)) {
636         // If it is a || (or && depending on isEQ), process the operands.
637         if (I->getOpcode() == (isEQ ? Instruction::Or : Instruction::And)) {
638           if (Visited.insert(I->getOperand(1)).second)
639             DFT.push_back(I->getOperand(1));
640           if (Visited.insert(I->getOperand(0)).second)
641             DFT.push_back(I->getOperand(0));
642           continue;
643         }
644 
645         // Try to match the current instruction
646         if (matchInstruction(I, isEQ))
647           // Match succeed, continue the loop
648           continue;
649       }
650 
651       // One element of the sequence of || (or &&) could not be match as a
652       // comparison against the same value as the others.
653       // We allow only one "Extra" case to be checked before the switch
654       if (!Extra) {
655         Extra = V;
656         continue;
657       }
658       // Failed to parse a proper sequence, abort now
659       CompValue = nullptr;
660       break;
661     }
662   }
663 };
664 
665 } // end anonymous namespace
666 
667 static void EraseTerminatorInstAndDCECond(TerminatorInst *TI) {
668   Instruction *Cond = nullptr;
669   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
670     Cond = dyn_cast<Instruction>(SI->getCondition());
671   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
672     if (BI->isConditional())
673       Cond = dyn_cast<Instruction>(BI->getCondition());
674   } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) {
675     Cond = dyn_cast<Instruction>(IBI->getAddress());
676   }
677 
678   TI->eraseFromParent();
679   if (Cond)
680     RecursivelyDeleteTriviallyDeadInstructions(Cond);
681 }
682 
683 /// Return true if the specified terminator checks
684 /// to see if a value is equal to constant integer value.
685 Value *SimplifyCFGOpt::isValueEqualityComparison(TerminatorInst *TI) {
686   Value *CV = nullptr;
687   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
688     // Do not permit merging of large switch instructions into their
689     // predecessors unless there is only one predecessor.
690     if (SI->getNumSuccessors() * pred_size(SI->getParent()) <= 128)
691       CV = SI->getCondition();
692   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI))
693     if (BI->isConditional() && BI->getCondition()->hasOneUse())
694       if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) {
695         if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL))
696           CV = ICI->getOperand(0);
697       }
698 
699   // Unwrap any lossless ptrtoint cast.
700   if (CV) {
701     if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) {
702       Value *Ptr = PTII->getPointerOperand();
703       if (PTII->getType() == DL.getIntPtrType(Ptr->getType()))
704         CV = Ptr;
705     }
706   }
707   return CV;
708 }
709 
710 /// Given a value comparison instruction,
711 /// decode all of the 'cases' that it represents and return the 'default' block.
712 BasicBlock *SimplifyCFGOpt::GetValueEqualityComparisonCases(
713     TerminatorInst *TI, std::vector<ValueEqualityComparisonCase> &Cases) {
714   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
715     Cases.reserve(SI->getNumCases());
716     for (auto Case : SI->cases())
717       Cases.push_back(ValueEqualityComparisonCase(Case.getCaseValue(),
718                                                   Case.getCaseSuccessor()));
719     return SI->getDefaultDest();
720   }
721 
722   BranchInst *BI = cast<BranchInst>(TI);
723   ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
724   BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE);
725   Cases.push_back(ValueEqualityComparisonCase(
726       GetConstantInt(ICI->getOperand(1), DL), Succ));
727   return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ);
728 }
729 
730 /// Given a vector of bb/value pairs, remove any entries
731 /// in the list that match the specified block.
732 static void
733 EliminateBlockCases(BasicBlock *BB,
734                     std::vector<ValueEqualityComparisonCase> &Cases) {
735   Cases.erase(std::remove(Cases.begin(), Cases.end(), BB), Cases.end());
736 }
737 
738 /// Return true if there are any keys in C1 that exist in C2 as well.
739 static bool ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1,
740                           std::vector<ValueEqualityComparisonCase> &C2) {
741   std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2;
742 
743   // Make V1 be smaller than V2.
744   if (V1->size() > V2->size())
745     std::swap(V1, V2);
746 
747   if (V1->empty())
748     return false;
749   if (V1->size() == 1) {
750     // Just scan V2.
751     ConstantInt *TheVal = (*V1)[0].Value;
752     for (unsigned i = 0, e = V2->size(); i != e; ++i)
753       if (TheVal == (*V2)[i].Value)
754         return true;
755   }
756 
757   // Otherwise, just sort both lists and compare element by element.
758   array_pod_sort(V1->begin(), V1->end());
759   array_pod_sort(V2->begin(), V2->end());
760   unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size();
761   while (i1 != e1 && i2 != e2) {
762     if ((*V1)[i1].Value == (*V2)[i2].Value)
763       return true;
764     if ((*V1)[i1].Value < (*V2)[i2].Value)
765       ++i1;
766     else
767       ++i2;
768   }
769   return false;
770 }
771 
772 // Set branch weights on SwitchInst. This sets the metadata if there is at
773 // least one non-zero weight.
774 static void setBranchWeights(SwitchInst *SI, ArrayRef<uint32_t> Weights) {
775   // Check that there is at least one non-zero weight. Otherwise, pass
776   // nullptr to setMetadata which will erase the existing metadata.
777   MDNode *N = nullptr;
778   if (llvm::any_of(Weights, [](uint32_t W) { return W != 0; }))
779     N = MDBuilder(SI->getParent()->getContext()).createBranchWeights(Weights);
780   SI->setMetadata(LLVMContext::MD_prof, N);
781 }
782 
783 // Similar to the above, but for branch and select instructions that take
784 // exactly 2 weights.
785 static void setBranchWeights(Instruction *I, uint32_t TrueWeight,
786                              uint32_t FalseWeight) {
787   assert(isa<BranchInst>(I) || isa<SelectInst>(I));
788   // Check that there is at least one non-zero weight. Otherwise, pass
789   // nullptr to setMetadata which will erase the existing metadata.
790   MDNode *N = nullptr;
791   if (TrueWeight || FalseWeight)
792     N = MDBuilder(I->getParent()->getContext())
793             .createBranchWeights(TrueWeight, FalseWeight);
794   I->setMetadata(LLVMContext::MD_prof, N);
795 }
796 
797 /// If TI is known to be a terminator instruction and its block is known to
798 /// only have a single predecessor block, check to see if that predecessor is
799 /// also a value comparison with the same value, and if that comparison
800 /// determines the outcome of this comparison. If so, simplify TI. This does a
801 /// very limited form of jump threading.
802 bool SimplifyCFGOpt::SimplifyEqualityComparisonWithOnlyPredecessor(
803     TerminatorInst *TI, BasicBlock *Pred, IRBuilder<> &Builder) {
804   Value *PredVal = isValueEqualityComparison(Pred->getTerminator());
805   if (!PredVal)
806     return false; // Not a value comparison in predecessor.
807 
808   Value *ThisVal = isValueEqualityComparison(TI);
809   assert(ThisVal && "This isn't a value comparison!!");
810   if (ThisVal != PredVal)
811     return false; // Different predicates.
812 
813   // TODO: Preserve branch weight metadata, similarly to how
814   // FoldValueComparisonIntoPredecessors preserves it.
815 
816   // Find out information about when control will move from Pred to TI's block.
817   std::vector<ValueEqualityComparisonCase> PredCases;
818   BasicBlock *PredDef =
819       GetValueEqualityComparisonCases(Pred->getTerminator(), PredCases);
820   EliminateBlockCases(PredDef, PredCases); // Remove default from cases.
821 
822   // Find information about how control leaves this block.
823   std::vector<ValueEqualityComparisonCase> ThisCases;
824   BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases);
825   EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases.
826 
827   // If TI's block is the default block from Pred's comparison, potentially
828   // simplify TI based on this knowledge.
829   if (PredDef == TI->getParent()) {
830     // If we are here, we know that the value is none of those cases listed in
831     // PredCases.  If there are any cases in ThisCases that are in PredCases, we
832     // can simplify TI.
833     if (!ValuesOverlap(PredCases, ThisCases))
834       return false;
835 
836     if (isa<BranchInst>(TI)) {
837       // Okay, one of the successors of this condbr is dead.  Convert it to a
838       // uncond br.
839       assert(ThisCases.size() == 1 && "Branch can only have one case!");
840       // Insert the new branch.
841       Instruction *NI = Builder.CreateBr(ThisDef);
842       (void)NI;
843 
844       // Remove PHI node entries for the dead edge.
845       ThisCases[0].Dest->removePredecessor(TI->getParent());
846 
847       LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
848                         << "Through successor TI: " << *TI << "Leaving: " << *NI
849                         << "\n");
850 
851       EraseTerminatorInstAndDCECond(TI);
852       return true;
853     }
854 
855     SwitchInst *SI = cast<SwitchInst>(TI);
856     // Okay, TI has cases that are statically dead, prune them away.
857     SmallPtrSet<Constant *, 16> DeadCases;
858     for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
859       DeadCases.insert(PredCases[i].Value);
860 
861     LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
862                       << "Through successor TI: " << *TI);
863 
864     // Collect branch weights into a vector.
865     SmallVector<uint32_t, 8> Weights;
866     MDNode *MD = SI->getMetadata(LLVMContext::MD_prof);
867     bool HasWeight = MD && (MD->getNumOperands() == 2 + SI->getNumCases());
868     if (HasWeight)
869       for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e;
870            ++MD_i) {
871         ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i));
872         Weights.push_back(CI->getValue().getZExtValue());
873       }
874     for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) {
875       --i;
876       if (DeadCases.count(i->getCaseValue())) {
877         if (HasWeight) {
878           std::swap(Weights[i->getCaseIndex() + 1], Weights.back());
879           Weights.pop_back();
880         }
881         i->getCaseSuccessor()->removePredecessor(TI->getParent());
882         SI->removeCase(i);
883       }
884     }
885     if (HasWeight && Weights.size() >= 2)
886       setBranchWeights(SI, Weights);
887 
888     LLVM_DEBUG(dbgs() << "Leaving: " << *TI << "\n");
889     return true;
890   }
891 
892   // Otherwise, TI's block must correspond to some matched value.  Find out
893   // which value (or set of values) this is.
894   ConstantInt *TIV = nullptr;
895   BasicBlock *TIBB = TI->getParent();
896   for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
897     if (PredCases[i].Dest == TIBB) {
898       if (TIV)
899         return false; // Cannot handle multiple values coming to this block.
900       TIV = PredCases[i].Value;
901     }
902   assert(TIV && "No edge from pred to succ?");
903 
904   // Okay, we found the one constant that our value can be if we get into TI's
905   // BB.  Find out which successor will unconditionally be branched to.
906   BasicBlock *TheRealDest = nullptr;
907   for (unsigned i = 0, e = ThisCases.size(); i != e; ++i)
908     if (ThisCases[i].Value == TIV) {
909       TheRealDest = ThisCases[i].Dest;
910       break;
911     }
912 
913   // If not handled by any explicit cases, it is handled by the default case.
914   if (!TheRealDest)
915     TheRealDest = ThisDef;
916 
917   // Remove PHI node entries for dead edges.
918   BasicBlock *CheckEdge = TheRealDest;
919   for (BasicBlock *Succ : successors(TIBB))
920     if (Succ != CheckEdge)
921       Succ->removePredecessor(TIBB);
922     else
923       CheckEdge = nullptr;
924 
925   // Insert the new branch.
926   Instruction *NI = Builder.CreateBr(TheRealDest);
927   (void)NI;
928 
929   LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
930                     << "Through successor TI: " << *TI << "Leaving: " << *NI
931                     << "\n");
932 
933   EraseTerminatorInstAndDCECond(TI);
934   return true;
935 }
936 
937 namespace {
938 
939 /// This class implements a stable ordering of constant
940 /// integers that does not depend on their address.  This is important for
941 /// applications that sort ConstantInt's to ensure uniqueness.
942 struct ConstantIntOrdering {
943   bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const {
944     return LHS->getValue().ult(RHS->getValue());
945   }
946 };
947 
948 } // end anonymous namespace
949 
950 static int ConstantIntSortPredicate(ConstantInt *const *P1,
951                                     ConstantInt *const *P2) {
952   const ConstantInt *LHS = *P1;
953   const ConstantInt *RHS = *P2;
954   if (LHS == RHS)
955     return 0;
956   return LHS->getValue().ult(RHS->getValue()) ? 1 : -1;
957 }
958 
959 static inline bool HasBranchWeights(const Instruction *I) {
960   MDNode *ProfMD = I->getMetadata(LLVMContext::MD_prof);
961   if (ProfMD && ProfMD->getOperand(0))
962     if (MDString *MDS = dyn_cast<MDString>(ProfMD->getOperand(0)))
963       return MDS->getString().equals("branch_weights");
964 
965   return false;
966 }
967 
968 /// Get Weights of a given TerminatorInst, the default weight is at the front
969 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight
970 /// metadata.
971 static void GetBranchWeights(TerminatorInst *TI,
972                              SmallVectorImpl<uint64_t> &Weights) {
973   MDNode *MD = TI->getMetadata(LLVMContext::MD_prof);
974   assert(MD);
975   for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) {
976     ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i));
977     Weights.push_back(CI->getValue().getZExtValue());
978   }
979 
980   // If TI is a conditional eq, the default case is the false case,
981   // and the corresponding branch-weight data is at index 2. We swap the
982   // default weight to be the first entry.
983   if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
984     assert(Weights.size() == 2);
985     ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
986     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
987       std::swap(Weights.front(), Weights.back());
988   }
989 }
990 
991 /// Keep halving the weights until all can fit in uint32_t.
992 static void FitWeights(MutableArrayRef<uint64_t> Weights) {
993   uint64_t Max = *std::max_element(Weights.begin(), Weights.end());
994   if (Max > UINT_MAX) {
995     unsigned Offset = 32 - countLeadingZeros(Max);
996     for (uint64_t &I : Weights)
997       I >>= Offset;
998   }
999 }
1000 
1001 /// The specified terminator is a value equality comparison instruction
1002 /// (either a switch or a branch on "X == c").
1003 /// See if any of the predecessors of the terminator block are value comparisons
1004 /// on the same value.  If so, and if safe to do so, fold them together.
1005 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(TerminatorInst *TI,
1006                                                          IRBuilder<> &Builder) {
1007   BasicBlock *BB = TI->getParent();
1008   Value *CV = isValueEqualityComparison(TI); // CondVal
1009   assert(CV && "Not a comparison?");
1010   bool Changed = false;
1011 
1012   SmallVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB));
1013   while (!Preds.empty()) {
1014     BasicBlock *Pred = Preds.pop_back_val();
1015 
1016     // See if the predecessor is a comparison with the same value.
1017     TerminatorInst *PTI = Pred->getTerminator();
1018     Value *PCV = isValueEqualityComparison(PTI); // PredCondVal
1019 
1020     if (PCV == CV && TI != PTI) {
1021       SmallSetVector<BasicBlock*, 4> FailBlocks;
1022       if (!SafeToMergeTerminators(TI, PTI, &FailBlocks)) {
1023         for (auto *Succ : FailBlocks) {
1024           if (!SplitBlockPredecessors(Succ, TI->getParent(), ".fold.split"))
1025             return false;
1026         }
1027       }
1028 
1029       // Figure out which 'cases' to copy from SI to PSI.
1030       std::vector<ValueEqualityComparisonCase> BBCases;
1031       BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases);
1032 
1033       std::vector<ValueEqualityComparisonCase> PredCases;
1034       BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases);
1035 
1036       // Based on whether the default edge from PTI goes to BB or not, fill in
1037       // PredCases and PredDefault with the new switch cases we would like to
1038       // build.
1039       SmallVector<BasicBlock *, 8> NewSuccessors;
1040 
1041       // Update the branch weight metadata along the way
1042       SmallVector<uint64_t, 8> Weights;
1043       bool PredHasWeights = HasBranchWeights(PTI);
1044       bool SuccHasWeights = HasBranchWeights(TI);
1045 
1046       if (PredHasWeights) {
1047         GetBranchWeights(PTI, Weights);
1048         // branch-weight metadata is inconsistent here.
1049         if (Weights.size() != 1 + PredCases.size())
1050           PredHasWeights = SuccHasWeights = false;
1051       } else if (SuccHasWeights)
1052         // If there are no predecessor weights but there are successor weights,
1053         // populate Weights with 1, which will later be scaled to the sum of
1054         // successor's weights
1055         Weights.assign(1 + PredCases.size(), 1);
1056 
1057       SmallVector<uint64_t, 8> SuccWeights;
1058       if (SuccHasWeights) {
1059         GetBranchWeights(TI, SuccWeights);
1060         // branch-weight metadata is inconsistent here.
1061         if (SuccWeights.size() != 1 + BBCases.size())
1062           PredHasWeights = SuccHasWeights = false;
1063       } else if (PredHasWeights)
1064         SuccWeights.assign(1 + BBCases.size(), 1);
1065 
1066       if (PredDefault == BB) {
1067         // If this is the default destination from PTI, only the edges in TI
1068         // that don't occur in PTI, or that branch to BB will be activated.
1069         std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
1070         for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
1071           if (PredCases[i].Dest != BB)
1072             PTIHandled.insert(PredCases[i].Value);
1073           else {
1074             // The default destination is BB, we don't need explicit targets.
1075             std::swap(PredCases[i], PredCases.back());
1076 
1077             if (PredHasWeights || SuccHasWeights) {
1078               // Increase weight for the default case.
1079               Weights[0] += Weights[i + 1];
1080               std::swap(Weights[i + 1], Weights.back());
1081               Weights.pop_back();
1082             }
1083 
1084             PredCases.pop_back();
1085             --i;
1086             --e;
1087           }
1088 
1089         // Reconstruct the new switch statement we will be building.
1090         if (PredDefault != BBDefault) {
1091           PredDefault->removePredecessor(Pred);
1092           PredDefault = BBDefault;
1093           NewSuccessors.push_back(BBDefault);
1094         }
1095 
1096         unsigned CasesFromPred = Weights.size();
1097         uint64_t ValidTotalSuccWeight = 0;
1098         for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
1099           if (!PTIHandled.count(BBCases[i].Value) &&
1100               BBCases[i].Dest != BBDefault) {
1101             PredCases.push_back(BBCases[i]);
1102             NewSuccessors.push_back(BBCases[i].Dest);
1103             if (SuccHasWeights || PredHasWeights) {
1104               // The default weight is at index 0, so weight for the ith case
1105               // should be at index i+1. Scale the cases from successor by
1106               // PredDefaultWeight (Weights[0]).
1107               Weights.push_back(Weights[0] * SuccWeights[i + 1]);
1108               ValidTotalSuccWeight += SuccWeights[i + 1];
1109             }
1110           }
1111 
1112         if (SuccHasWeights || PredHasWeights) {
1113           ValidTotalSuccWeight += SuccWeights[0];
1114           // Scale the cases from predecessor by ValidTotalSuccWeight.
1115           for (unsigned i = 1; i < CasesFromPred; ++i)
1116             Weights[i] *= ValidTotalSuccWeight;
1117           // Scale the default weight by SuccDefaultWeight (SuccWeights[0]).
1118           Weights[0] *= SuccWeights[0];
1119         }
1120       } else {
1121         // If this is not the default destination from PSI, only the edges
1122         // in SI that occur in PSI with a destination of BB will be
1123         // activated.
1124         std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
1125         std::map<ConstantInt *, uint64_t> WeightsForHandled;
1126         for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
1127           if (PredCases[i].Dest == BB) {
1128             PTIHandled.insert(PredCases[i].Value);
1129 
1130             if (PredHasWeights || SuccHasWeights) {
1131               WeightsForHandled[PredCases[i].Value] = Weights[i + 1];
1132               std::swap(Weights[i + 1], Weights.back());
1133               Weights.pop_back();
1134             }
1135 
1136             std::swap(PredCases[i], PredCases.back());
1137             PredCases.pop_back();
1138             --i;
1139             --e;
1140           }
1141 
1142         // Okay, now we know which constants were sent to BB from the
1143         // predecessor.  Figure out where they will all go now.
1144         for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
1145           if (PTIHandled.count(BBCases[i].Value)) {
1146             // If this is one we are capable of getting...
1147             if (PredHasWeights || SuccHasWeights)
1148               Weights.push_back(WeightsForHandled[BBCases[i].Value]);
1149             PredCases.push_back(BBCases[i]);
1150             NewSuccessors.push_back(BBCases[i].Dest);
1151             PTIHandled.erase(
1152                 BBCases[i].Value); // This constant is taken care of
1153           }
1154 
1155         // If there are any constants vectored to BB that TI doesn't handle,
1156         // they must go to the default destination of TI.
1157         for (ConstantInt *I : PTIHandled) {
1158           if (PredHasWeights || SuccHasWeights)
1159             Weights.push_back(WeightsForHandled[I]);
1160           PredCases.push_back(ValueEqualityComparisonCase(I, BBDefault));
1161           NewSuccessors.push_back(BBDefault);
1162         }
1163       }
1164 
1165       // Okay, at this point, we know which new successor Pred will get.  Make
1166       // sure we update the number of entries in the PHI nodes for these
1167       // successors.
1168       for (BasicBlock *NewSuccessor : NewSuccessors)
1169         AddPredecessorToBlock(NewSuccessor, Pred, BB);
1170 
1171       Builder.SetInsertPoint(PTI);
1172       // Convert pointer to int before we switch.
1173       if (CV->getType()->isPointerTy()) {
1174         CV = Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()),
1175                                     "magicptr");
1176       }
1177 
1178       // Now that the successors are updated, create the new Switch instruction.
1179       SwitchInst *NewSI =
1180           Builder.CreateSwitch(CV, PredDefault, PredCases.size());
1181       NewSI->setDebugLoc(PTI->getDebugLoc());
1182       for (ValueEqualityComparisonCase &V : PredCases)
1183         NewSI->addCase(V.Value, V.Dest);
1184 
1185       if (PredHasWeights || SuccHasWeights) {
1186         // Halve the weights if any of them cannot fit in an uint32_t
1187         FitWeights(Weights);
1188 
1189         SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
1190 
1191         setBranchWeights(NewSI, MDWeights);
1192       }
1193 
1194       EraseTerminatorInstAndDCECond(PTI);
1195 
1196       // Okay, last check.  If BB is still a successor of PSI, then we must
1197       // have an infinite loop case.  If so, add an infinitely looping block
1198       // to handle the case to preserve the behavior of the code.
1199       BasicBlock *InfLoopBlock = nullptr;
1200       for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i)
1201         if (NewSI->getSuccessor(i) == BB) {
1202           if (!InfLoopBlock) {
1203             // Insert it at the end of the function, because it's either code,
1204             // or it won't matter if it's hot. :)
1205             InfLoopBlock = BasicBlock::Create(BB->getContext(), "infloop",
1206                                               BB->getParent());
1207             BranchInst::Create(InfLoopBlock, InfLoopBlock);
1208           }
1209           NewSI->setSuccessor(i, InfLoopBlock);
1210         }
1211 
1212       Changed = true;
1213     }
1214   }
1215   return Changed;
1216 }
1217 
1218 // If we would need to insert a select that uses the value of this invoke
1219 // (comments in HoistThenElseCodeToIf explain why we would need to do this), we
1220 // can't hoist the invoke, as there is nowhere to put the select in this case.
1221 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2,
1222                                 Instruction *I1, Instruction *I2) {
1223   for (BasicBlock *Succ : successors(BB1)) {
1224     for (const PHINode &PN : Succ->phis()) {
1225       Value *BB1V = PN.getIncomingValueForBlock(BB1);
1226       Value *BB2V = PN.getIncomingValueForBlock(BB2);
1227       if (BB1V != BB2V && (BB1V == I1 || BB2V == I2)) {
1228         return false;
1229       }
1230     }
1231   }
1232   return true;
1233 }
1234 
1235 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I);
1236 
1237 /// Given a conditional branch that goes to BB1 and BB2, hoist any common code
1238 /// in the two blocks up into the branch block. The caller of this function
1239 /// guarantees that BI's block dominates BB1 and BB2.
1240 static bool HoistThenElseCodeToIf(BranchInst *BI,
1241                                   const TargetTransformInfo &TTI) {
1242   // This does very trivial matching, with limited scanning, to find identical
1243   // instructions in the two blocks.  In particular, we don't want to get into
1244   // O(M*N) situations here where M and N are the sizes of BB1 and BB2.  As
1245   // such, we currently just scan for obviously identical instructions in an
1246   // identical order.
1247   BasicBlock *BB1 = BI->getSuccessor(0); // The true destination.
1248   BasicBlock *BB2 = BI->getSuccessor(1); // The false destination
1249 
1250   BasicBlock::iterator BB1_Itr = BB1->begin();
1251   BasicBlock::iterator BB2_Itr = BB2->begin();
1252 
1253   Instruction *I1 = &*BB1_Itr++, *I2 = &*BB2_Itr++;
1254   // Skip debug info if it is not identical.
1255   DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1256   DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1257   if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1258     while (isa<DbgInfoIntrinsic>(I1))
1259       I1 = &*BB1_Itr++;
1260     while (isa<DbgInfoIntrinsic>(I2))
1261       I2 = &*BB2_Itr++;
1262   }
1263   if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) ||
1264       (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)))
1265     return false;
1266 
1267   BasicBlock *BIParent = BI->getParent();
1268 
1269   bool Changed = false;
1270   do {
1271     // If we are hoisting the terminator instruction, don't move one (making a
1272     // broken BB), instead clone it, and remove BI.
1273     if (I1->isTerminator())
1274       goto HoistTerminator;
1275 
1276     // If we're going to hoist a call, make sure that the two instructions we're
1277     // commoning/hoisting are both marked with musttail, or neither of them is
1278     // marked as such. Otherwise, we might end up in a situation where we hoist
1279     // from a block where the terminator is a `ret` to a block where the terminator
1280     // is a `br`, and `musttail` calls expect to be followed by a return.
1281     auto *C1 = dyn_cast<CallInst>(I1);
1282     auto *C2 = dyn_cast<CallInst>(I2);
1283     if (C1 && C2)
1284       if (C1->isMustTailCall() != C2->isMustTailCall())
1285         return Changed;
1286 
1287     if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2))
1288       return Changed;
1289 
1290     if (isa<DbgInfoIntrinsic>(I1) || isa<DbgInfoIntrinsic>(I2)) {
1291       assert (isa<DbgInfoIntrinsic>(I1) && isa<DbgInfoIntrinsic>(I2));
1292       // The debug location is an integral part of a debug info intrinsic
1293       // and can't be separated from it or replaced.  Instead of attempting
1294       // to merge locations, simply hoist both copies of the intrinsic.
1295       BIParent->getInstList().splice(BI->getIterator(),
1296                                      BB1->getInstList(), I1);
1297       BIParent->getInstList().splice(BI->getIterator(),
1298                                      BB2->getInstList(), I2);
1299       Changed = true;
1300     } else {
1301       // For a normal instruction, we just move one to right before the branch,
1302       // then replace all uses of the other with the first.  Finally, we remove
1303       // the now redundant second instruction.
1304       BIParent->getInstList().splice(BI->getIterator(),
1305                                      BB1->getInstList(), I1);
1306       if (!I2->use_empty())
1307         I2->replaceAllUsesWith(I1);
1308       I1->andIRFlags(I2);
1309       unsigned KnownIDs[] = {LLVMContext::MD_tbaa,
1310                              LLVMContext::MD_range,
1311                              LLVMContext::MD_fpmath,
1312                              LLVMContext::MD_invariant_load,
1313                              LLVMContext::MD_nonnull,
1314                              LLVMContext::MD_invariant_group,
1315                              LLVMContext::MD_align,
1316                              LLVMContext::MD_dereferenceable,
1317                              LLVMContext::MD_dereferenceable_or_null,
1318                              LLVMContext::MD_mem_parallel_loop_access};
1319       combineMetadata(I1, I2, KnownIDs, true);
1320 
1321       // I1 and I2 are being combined into a single instruction.  Its debug
1322       // location is the merged locations of the original instructions.
1323       I1->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc());
1324 
1325       I2->eraseFromParent();
1326       Changed = true;
1327     }
1328 
1329     I1 = &*BB1_Itr++;
1330     I2 = &*BB2_Itr++;
1331     // Skip debug info if it is not identical.
1332     DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1333     DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1334     if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1335       while (isa<DbgInfoIntrinsic>(I1))
1336         I1 = &*BB1_Itr++;
1337       while (isa<DbgInfoIntrinsic>(I2))
1338         I2 = &*BB2_Itr++;
1339     }
1340   } while (I1->isIdenticalToWhenDefined(I2));
1341 
1342   return true;
1343 
1344 HoistTerminator:
1345   // It may not be possible to hoist an invoke.
1346   if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))
1347     return Changed;
1348 
1349   for (BasicBlock *Succ : successors(BB1)) {
1350     for (PHINode &PN : Succ->phis()) {
1351       Value *BB1V = PN.getIncomingValueForBlock(BB1);
1352       Value *BB2V = PN.getIncomingValueForBlock(BB2);
1353       if (BB1V == BB2V)
1354         continue;
1355 
1356       // Check for passingValueIsAlwaysUndefined here because we would rather
1357       // eliminate undefined control flow then converting it to a select.
1358       if (passingValueIsAlwaysUndefined(BB1V, &PN) ||
1359           passingValueIsAlwaysUndefined(BB2V, &PN))
1360         return Changed;
1361 
1362       if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V))
1363         return Changed;
1364       if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V))
1365         return Changed;
1366     }
1367   }
1368 
1369   // Okay, it is safe to hoist the terminator.
1370   Instruction *NT = I1->clone();
1371   BIParent->getInstList().insert(BI->getIterator(), NT);
1372   if (!NT->getType()->isVoidTy()) {
1373     I1->replaceAllUsesWith(NT);
1374     I2->replaceAllUsesWith(NT);
1375     NT->takeName(I1);
1376   }
1377 
1378   IRBuilder<NoFolder> Builder(NT);
1379   // Hoisting one of the terminators from our successor is a great thing.
1380   // Unfortunately, the successors of the if/else blocks may have PHI nodes in
1381   // them.  If they do, all PHI entries for BB1/BB2 must agree for all PHI
1382   // nodes, so we insert select instruction to compute the final result.
1383   std::map<std::pair<Value *, Value *>, SelectInst *> InsertedSelects;
1384   for (BasicBlock *Succ : successors(BB1)) {
1385     for (PHINode &PN : Succ->phis()) {
1386       Value *BB1V = PN.getIncomingValueForBlock(BB1);
1387       Value *BB2V = PN.getIncomingValueForBlock(BB2);
1388       if (BB1V == BB2V)
1389         continue;
1390 
1391       // These values do not agree.  Insert a select instruction before NT
1392       // that determines the right value.
1393       SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)];
1394       if (!SI)
1395         SI = cast<SelectInst>(
1396             Builder.CreateSelect(BI->getCondition(), BB1V, BB2V,
1397                                  BB1V->getName() + "." + BB2V->getName(), BI));
1398 
1399       // Make the PHI node use the select for all incoming values for BB1/BB2
1400       for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
1401         if (PN.getIncomingBlock(i) == BB1 || PN.getIncomingBlock(i) == BB2)
1402           PN.setIncomingValue(i, SI);
1403     }
1404   }
1405 
1406   // Update any PHI nodes in our new successors.
1407   for (BasicBlock *Succ : successors(BB1))
1408     AddPredecessorToBlock(Succ, BIParent, BB1);
1409 
1410   EraseTerminatorInstAndDCECond(BI);
1411   return true;
1412 }
1413 
1414 // All instructions in Insts belong to different blocks that all unconditionally
1415 // branch to a common successor. Analyze each instruction and return true if it
1416 // would be possible to sink them into their successor, creating one common
1417 // instruction instead. For every value that would be required to be provided by
1418 // PHI node (because an operand varies in each input block), add to PHIOperands.
1419 static bool canSinkInstructions(
1420     ArrayRef<Instruction *> Insts,
1421     DenseMap<Instruction *, SmallVector<Value *, 4>> &PHIOperands) {
1422   // Prune out obviously bad instructions to move. Any non-store instruction
1423   // must have exactly one use, and we check later that use is by a single,
1424   // common PHI instruction in the successor.
1425   for (auto *I : Insts) {
1426     // These instructions may change or break semantics if moved.
1427     if (isa<PHINode>(I) || I->isEHPad() || isa<AllocaInst>(I) ||
1428         I->getType()->isTokenTy())
1429       return false;
1430 
1431     // Conservatively return false if I is an inline-asm instruction. Sinking
1432     // and merging inline-asm instructions can potentially create arguments
1433     // that cannot satisfy the inline-asm constraints.
1434     if (const auto *C = dyn_cast<CallInst>(I))
1435       if (C->isInlineAsm())
1436         return false;
1437 
1438     // Everything must have only one use too, apart from stores which
1439     // have no uses.
1440     if (!isa<StoreInst>(I) && !I->hasOneUse())
1441       return false;
1442   }
1443 
1444   const Instruction *I0 = Insts.front();
1445   for (auto *I : Insts)
1446     if (!I->isSameOperationAs(I0))
1447       return false;
1448 
1449   // All instructions in Insts are known to be the same opcode. If they aren't
1450   // stores, check the only user of each is a PHI or in the same block as the
1451   // instruction, because if a user is in the same block as an instruction
1452   // we're contemplating sinking, it must already be determined to be sinkable.
1453   if (!isa<StoreInst>(I0)) {
1454     auto *PNUse = dyn_cast<PHINode>(*I0->user_begin());
1455     auto *Succ = I0->getParent()->getTerminator()->getSuccessor(0);
1456     if (!all_of(Insts, [&PNUse,&Succ](const Instruction *I) -> bool {
1457           auto *U = cast<Instruction>(*I->user_begin());
1458           return (PNUse &&
1459                   PNUse->getParent() == Succ &&
1460                   PNUse->getIncomingValueForBlock(I->getParent()) == I) ||
1461                  U->getParent() == I->getParent();
1462         }))
1463       return false;
1464   }
1465 
1466   // Because SROA can't handle speculating stores of selects, try not
1467   // to sink loads or stores of allocas when we'd have to create a PHI for
1468   // the address operand. Also, because it is likely that loads or stores
1469   // of allocas will disappear when Mem2Reg/SROA is run, don't sink them.
1470   // This can cause code churn which can have unintended consequences down
1471   // the line - see https://llvm.org/bugs/show_bug.cgi?id=30244.
1472   // FIXME: This is a workaround for a deficiency in SROA - see
1473   // https://llvm.org/bugs/show_bug.cgi?id=30188
1474   if (isa<StoreInst>(I0) && any_of(Insts, [](const Instruction *I) {
1475         return isa<AllocaInst>(I->getOperand(1));
1476       }))
1477     return false;
1478   if (isa<LoadInst>(I0) && any_of(Insts, [](const Instruction *I) {
1479         return isa<AllocaInst>(I->getOperand(0));
1480       }))
1481     return false;
1482 
1483   for (unsigned OI = 0, OE = I0->getNumOperands(); OI != OE; ++OI) {
1484     if (I0->getOperand(OI)->getType()->isTokenTy())
1485       // Don't touch any operand of token type.
1486       return false;
1487 
1488     auto SameAsI0 = [&I0, OI](const Instruction *I) {
1489       assert(I->getNumOperands() == I0->getNumOperands());
1490       return I->getOperand(OI) == I0->getOperand(OI);
1491     };
1492     if (!all_of(Insts, SameAsI0)) {
1493       if (!canReplaceOperandWithVariable(I0, OI))
1494         // We can't create a PHI from this GEP.
1495         return false;
1496       // Don't create indirect calls! The called value is the final operand.
1497       if ((isa<CallInst>(I0) || isa<InvokeInst>(I0)) && OI == OE - 1) {
1498         // FIXME: if the call was *already* indirect, we should do this.
1499         return false;
1500       }
1501       for (auto *I : Insts)
1502         PHIOperands[I].push_back(I->getOperand(OI));
1503     }
1504   }
1505   return true;
1506 }
1507 
1508 // Assuming canSinkLastInstruction(Blocks) has returned true, sink the last
1509 // instruction of every block in Blocks to their common successor, commoning
1510 // into one instruction.
1511 static bool sinkLastInstruction(ArrayRef<BasicBlock*> Blocks) {
1512   auto *BBEnd = Blocks[0]->getTerminator()->getSuccessor(0);
1513 
1514   // canSinkLastInstruction returning true guarantees that every block has at
1515   // least one non-terminator instruction.
1516   SmallVector<Instruction*,4> Insts;
1517   for (auto *BB : Blocks) {
1518     Instruction *I = BB->getTerminator();
1519     do {
1520       I = I->getPrevNode();
1521     } while (isa<DbgInfoIntrinsic>(I) && I != &BB->front());
1522     if (!isa<DbgInfoIntrinsic>(I))
1523       Insts.push_back(I);
1524   }
1525 
1526   // The only checking we need to do now is that all users of all instructions
1527   // are the same PHI node. canSinkLastInstruction should have checked this but
1528   // it is slightly over-aggressive - it gets confused by commutative instructions
1529   // so double-check it here.
1530   Instruction *I0 = Insts.front();
1531   if (!isa<StoreInst>(I0)) {
1532     auto *PNUse = dyn_cast<PHINode>(*I0->user_begin());
1533     if (!all_of(Insts, [&PNUse](const Instruction *I) -> bool {
1534           auto *U = cast<Instruction>(*I->user_begin());
1535           return U == PNUse;
1536         }))
1537       return false;
1538   }
1539 
1540   // We don't need to do any more checking here; canSinkLastInstruction should
1541   // have done it all for us.
1542   SmallVector<Value*, 4> NewOperands;
1543   for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) {
1544     // This check is different to that in canSinkLastInstruction. There, we
1545     // cared about the global view once simplifycfg (and instcombine) have
1546     // completed - it takes into account PHIs that become trivially
1547     // simplifiable.  However here we need a more local view; if an operand
1548     // differs we create a PHI and rely on instcombine to clean up the very
1549     // small mess we may make.
1550     bool NeedPHI = any_of(Insts, [&I0, O](const Instruction *I) {
1551       return I->getOperand(O) != I0->getOperand(O);
1552     });
1553     if (!NeedPHI) {
1554       NewOperands.push_back(I0->getOperand(O));
1555       continue;
1556     }
1557 
1558     // Create a new PHI in the successor block and populate it.
1559     auto *Op = I0->getOperand(O);
1560     assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!");
1561     auto *PN = PHINode::Create(Op->getType(), Insts.size(),
1562                                Op->getName() + ".sink", &BBEnd->front());
1563     for (auto *I : Insts)
1564       PN->addIncoming(I->getOperand(O), I->getParent());
1565     NewOperands.push_back(PN);
1566   }
1567 
1568   // Arbitrarily use I0 as the new "common" instruction; remap its operands
1569   // and move it to the start of the successor block.
1570   for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O)
1571     I0->getOperandUse(O).set(NewOperands[O]);
1572   I0->moveBefore(&*BBEnd->getFirstInsertionPt());
1573 
1574   // Update metadata and IR flags, and merge debug locations.
1575   for (auto *I : Insts)
1576     if (I != I0) {
1577       // The debug location for the "common" instruction is the merged locations
1578       // of all the commoned instructions.  We start with the original location
1579       // of the "common" instruction and iteratively merge each location in the
1580       // loop below.
1581       // This is an N-way merge, which will be inefficient if I0 is a CallInst.
1582       // However, as N-way merge for CallInst is rare, so we use simplified API
1583       // instead of using complex API for N-way merge.
1584       I0->applyMergedLocation(I0->getDebugLoc(), I->getDebugLoc());
1585       combineMetadataForCSE(I0, I, true);
1586       I0->andIRFlags(I);
1587     }
1588 
1589   if (!isa<StoreInst>(I0)) {
1590     // canSinkLastInstruction checked that all instructions were used by
1591     // one and only one PHI node. Find that now, RAUW it to our common
1592     // instruction and nuke it.
1593     assert(I0->hasOneUse());
1594     auto *PN = cast<PHINode>(*I0->user_begin());
1595     PN->replaceAllUsesWith(I0);
1596     PN->eraseFromParent();
1597   }
1598 
1599   // Finally nuke all instructions apart from the common instruction.
1600   for (auto *I : Insts)
1601     if (I != I0)
1602       I->eraseFromParent();
1603 
1604   return true;
1605 }
1606 
1607 namespace {
1608 
1609   // LockstepReverseIterator - Iterates through instructions
1610   // in a set of blocks in reverse order from the first non-terminator.
1611   // For example (assume all blocks have size n):
1612   //   LockstepReverseIterator I([B1, B2, B3]);
1613   //   *I-- = [B1[n], B2[n], B3[n]];
1614   //   *I-- = [B1[n-1], B2[n-1], B3[n-1]];
1615   //   *I-- = [B1[n-2], B2[n-2], B3[n-2]];
1616   //   ...
1617   class LockstepReverseIterator {
1618     ArrayRef<BasicBlock*> Blocks;
1619     SmallVector<Instruction*,4> Insts;
1620     bool Fail;
1621 
1622   public:
1623     LockstepReverseIterator(ArrayRef<BasicBlock*> Blocks) : Blocks(Blocks) {
1624       reset();
1625     }
1626 
1627     void reset() {
1628       Fail = false;
1629       Insts.clear();
1630       for (auto *BB : Blocks) {
1631         Instruction *Inst = BB->getTerminator();
1632         for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
1633           Inst = Inst->getPrevNode();
1634         if (!Inst) {
1635           // Block wasn't big enough.
1636           Fail = true;
1637           return;
1638         }
1639         Insts.push_back(Inst);
1640       }
1641     }
1642 
1643     bool isValid() const {
1644       return !Fail;
1645     }
1646 
1647     void operator--() {
1648       if (Fail)
1649         return;
1650       for (auto *&Inst : Insts) {
1651         for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
1652           Inst = Inst->getPrevNode();
1653         // Already at beginning of block.
1654         if (!Inst) {
1655           Fail = true;
1656           return;
1657         }
1658       }
1659     }
1660 
1661     ArrayRef<Instruction*> operator * () const {
1662       return Insts;
1663     }
1664   };
1665 
1666 } // end anonymous namespace
1667 
1668 /// Check whether BB's predecessors end with unconditional branches. If it is
1669 /// true, sink any common code from the predecessors to BB.
1670 /// We also allow one predecessor to end with conditional branch (but no more
1671 /// than one).
1672 static bool SinkCommonCodeFromPredecessors(BasicBlock *BB) {
1673   // We support two situations:
1674   //   (1) all incoming arcs are unconditional
1675   //   (2) one incoming arc is conditional
1676   //
1677   // (2) is very common in switch defaults and
1678   // else-if patterns;
1679   //
1680   //   if (a) f(1);
1681   //   else if (b) f(2);
1682   //
1683   // produces:
1684   //
1685   //       [if]
1686   //      /    \
1687   //    [f(1)] [if]
1688   //      |     | \
1689   //      |     |  |
1690   //      |  [f(2)]|
1691   //       \    | /
1692   //        [ end ]
1693   //
1694   // [end] has two unconditional predecessor arcs and one conditional. The
1695   // conditional refers to the implicit empty 'else' arc. This conditional
1696   // arc can also be caused by an empty default block in a switch.
1697   //
1698   // In this case, we attempt to sink code from all *unconditional* arcs.
1699   // If we can sink instructions from these arcs (determined during the scan
1700   // phase below) we insert a common successor for all unconditional arcs and
1701   // connect that to [end], to enable sinking:
1702   //
1703   //       [if]
1704   //      /    \
1705   //    [x(1)] [if]
1706   //      |     | \
1707   //      |     |  \
1708   //      |  [x(2)] |
1709   //       \   /    |
1710   //   [sink.split] |
1711   //         \     /
1712   //         [ end ]
1713   //
1714   SmallVector<BasicBlock*,4> UnconditionalPreds;
1715   Instruction *Cond = nullptr;
1716   for (auto *B : predecessors(BB)) {
1717     auto *T = B->getTerminator();
1718     if (isa<BranchInst>(T) && cast<BranchInst>(T)->isUnconditional())
1719       UnconditionalPreds.push_back(B);
1720     else if ((isa<BranchInst>(T) || isa<SwitchInst>(T)) && !Cond)
1721       Cond = T;
1722     else
1723       return false;
1724   }
1725   if (UnconditionalPreds.size() < 2)
1726     return false;
1727 
1728   bool Changed = false;
1729   // We take a two-step approach to tail sinking. First we scan from the end of
1730   // each block upwards in lockstep. If the n'th instruction from the end of each
1731   // block can be sunk, those instructions are added to ValuesToSink and we
1732   // carry on. If we can sink an instruction but need to PHI-merge some operands
1733   // (because they're not identical in each instruction) we add these to
1734   // PHIOperands.
1735   unsigned ScanIdx = 0;
1736   SmallPtrSet<Value*,4> InstructionsToSink;
1737   DenseMap<Instruction*, SmallVector<Value*,4>> PHIOperands;
1738   LockstepReverseIterator LRI(UnconditionalPreds);
1739   while (LRI.isValid() &&
1740          canSinkInstructions(*LRI, PHIOperands)) {
1741     LLVM_DEBUG(dbgs() << "SINK: instruction can be sunk: " << *(*LRI)[0]
1742                       << "\n");
1743     InstructionsToSink.insert((*LRI).begin(), (*LRI).end());
1744     ++ScanIdx;
1745     --LRI;
1746   }
1747 
1748   auto ProfitableToSinkInstruction = [&](LockstepReverseIterator &LRI) {
1749     unsigned NumPHIdValues = 0;
1750     for (auto *I : *LRI)
1751       for (auto *V : PHIOperands[I])
1752         if (InstructionsToSink.count(V) == 0)
1753           ++NumPHIdValues;
1754     LLVM_DEBUG(dbgs() << "SINK: #phid values: " << NumPHIdValues << "\n");
1755     unsigned NumPHIInsts = NumPHIdValues / UnconditionalPreds.size();
1756     if ((NumPHIdValues % UnconditionalPreds.size()) != 0)
1757         NumPHIInsts++;
1758 
1759     return NumPHIInsts <= 1;
1760   };
1761 
1762   if (ScanIdx > 0 && Cond) {
1763     // Check if we would actually sink anything first! This mutates the CFG and
1764     // adds an extra block. The goal in doing this is to allow instructions that
1765     // couldn't be sunk before to be sunk - obviously, speculatable instructions
1766     // (such as trunc, add) can be sunk and predicated already. So we check that
1767     // we're going to sink at least one non-speculatable instruction.
1768     LRI.reset();
1769     unsigned Idx = 0;
1770     bool Profitable = false;
1771     while (ProfitableToSinkInstruction(LRI) && Idx < ScanIdx) {
1772       if (!isSafeToSpeculativelyExecute((*LRI)[0])) {
1773         Profitable = true;
1774         break;
1775       }
1776       --LRI;
1777       ++Idx;
1778     }
1779     if (!Profitable)
1780       return false;
1781 
1782     LLVM_DEBUG(dbgs() << "SINK: Splitting edge\n");
1783     // We have a conditional edge and we're going to sink some instructions.
1784     // Insert a new block postdominating all blocks we're going to sink from.
1785     if (!SplitBlockPredecessors(BB, UnconditionalPreds, ".sink.split"))
1786       // Edges couldn't be split.
1787       return false;
1788     Changed = true;
1789   }
1790 
1791   // Now that we've analyzed all potential sinking candidates, perform the
1792   // actual sink. We iteratively sink the last non-terminator of the source
1793   // blocks into their common successor unless doing so would require too
1794   // many PHI instructions to be generated (currently only one PHI is allowed
1795   // per sunk instruction).
1796   //
1797   // We can use InstructionsToSink to discount values needing PHI-merging that will
1798   // actually be sunk in a later iteration. This allows us to be more
1799   // aggressive in what we sink. This does allow a false positive where we
1800   // sink presuming a later value will also be sunk, but stop half way through
1801   // and never actually sink it which means we produce more PHIs than intended.
1802   // This is unlikely in practice though.
1803   for (unsigned SinkIdx = 0; SinkIdx != ScanIdx; ++SinkIdx) {
1804     LLVM_DEBUG(dbgs() << "SINK: Sink: "
1805                       << *UnconditionalPreds[0]->getTerminator()->getPrevNode()
1806                       << "\n");
1807 
1808     // Because we've sunk every instruction in turn, the current instruction to
1809     // sink is always at index 0.
1810     LRI.reset();
1811     if (!ProfitableToSinkInstruction(LRI)) {
1812       // Too many PHIs would be created.
1813       LLVM_DEBUG(
1814           dbgs() << "SINK: stopping here, too many PHIs would be created!\n");
1815       break;
1816     }
1817 
1818     if (!sinkLastInstruction(UnconditionalPreds))
1819       return Changed;
1820     NumSinkCommons++;
1821     Changed = true;
1822   }
1823   return Changed;
1824 }
1825 
1826 /// Determine if we can hoist sink a sole store instruction out of a
1827 /// conditional block.
1828 ///
1829 /// We are looking for code like the following:
1830 ///   BrBB:
1831 ///     store i32 %add, i32* %arrayidx2
1832 ///     ... // No other stores or function calls (we could be calling a memory
1833 ///     ... // function).
1834 ///     %cmp = icmp ult %x, %y
1835 ///     br i1 %cmp, label %EndBB, label %ThenBB
1836 ///   ThenBB:
1837 ///     store i32 %add5, i32* %arrayidx2
1838 ///     br label EndBB
1839 ///   EndBB:
1840 ///     ...
1841 ///   We are going to transform this into:
1842 ///   BrBB:
1843 ///     store i32 %add, i32* %arrayidx2
1844 ///     ... //
1845 ///     %cmp = icmp ult %x, %y
1846 ///     %add.add5 = select i1 %cmp, i32 %add, %add5
1847 ///     store i32 %add.add5, i32* %arrayidx2
1848 ///     ...
1849 ///
1850 /// \return The pointer to the value of the previous store if the store can be
1851 ///         hoisted into the predecessor block. 0 otherwise.
1852 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB,
1853                                      BasicBlock *StoreBB, BasicBlock *EndBB) {
1854   StoreInst *StoreToHoist = dyn_cast<StoreInst>(I);
1855   if (!StoreToHoist)
1856     return nullptr;
1857 
1858   // Volatile or atomic.
1859   if (!StoreToHoist->isSimple())
1860     return nullptr;
1861 
1862   Value *StorePtr = StoreToHoist->getPointerOperand();
1863 
1864   // Look for a store to the same pointer in BrBB.
1865   unsigned MaxNumInstToLookAt = 9;
1866   for (Instruction &CurI : reverse(BrBB->instructionsWithoutDebug())) {
1867     if (!MaxNumInstToLookAt)
1868       break;
1869     --MaxNumInstToLookAt;
1870 
1871     // Could be calling an instruction that affects memory like free().
1872     if (CurI.mayHaveSideEffects() && !isa<StoreInst>(CurI))
1873       return nullptr;
1874 
1875     if (auto *SI = dyn_cast<StoreInst>(&CurI)) {
1876       // Found the previous store make sure it stores to the same location.
1877       if (SI->getPointerOperand() == StorePtr)
1878         // Found the previous store, return its value operand.
1879         return SI->getValueOperand();
1880       return nullptr; // Unknown store.
1881     }
1882   }
1883 
1884   return nullptr;
1885 }
1886 
1887 /// Speculate a conditional basic block flattening the CFG.
1888 ///
1889 /// Note that this is a very risky transform currently. Speculating
1890 /// instructions like this is most often not desirable. Instead, there is an MI
1891 /// pass which can do it with full awareness of the resource constraints.
1892 /// However, some cases are "obvious" and we should do directly. An example of
1893 /// this is speculating a single, reasonably cheap instruction.
1894 ///
1895 /// There is only one distinct advantage to flattening the CFG at the IR level:
1896 /// it makes very common but simplistic optimizations such as are common in
1897 /// instcombine and the DAG combiner more powerful by removing CFG edges and
1898 /// modeling their effects with easier to reason about SSA value graphs.
1899 ///
1900 ///
1901 /// An illustration of this transform is turning this IR:
1902 /// \code
1903 ///   BB:
1904 ///     %cmp = icmp ult %x, %y
1905 ///     br i1 %cmp, label %EndBB, label %ThenBB
1906 ///   ThenBB:
1907 ///     %sub = sub %x, %y
1908 ///     br label BB2
1909 ///   EndBB:
1910 ///     %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ]
1911 ///     ...
1912 /// \endcode
1913 ///
1914 /// Into this IR:
1915 /// \code
1916 ///   BB:
1917 ///     %cmp = icmp ult %x, %y
1918 ///     %sub = sub %x, %y
1919 ///     %cond = select i1 %cmp, 0, %sub
1920 ///     ...
1921 /// \endcode
1922 ///
1923 /// \returns true if the conditional block is removed.
1924 static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB,
1925                                    const TargetTransformInfo &TTI) {
1926   // Be conservative for now. FP select instruction can often be expensive.
1927   Value *BrCond = BI->getCondition();
1928   if (isa<FCmpInst>(BrCond))
1929     return false;
1930 
1931   BasicBlock *BB = BI->getParent();
1932   BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0);
1933 
1934   // If ThenBB is actually on the false edge of the conditional branch, remember
1935   // to swap the select operands later.
1936   bool Invert = false;
1937   if (ThenBB != BI->getSuccessor(0)) {
1938     assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?");
1939     Invert = true;
1940   }
1941   assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block");
1942 
1943   // Keep a count of how many times instructions are used within CondBB when
1944   // they are candidates for sinking into CondBB. Specifically:
1945   // - They are defined in BB, and
1946   // - They have no side effects, and
1947   // - All of their uses are in CondBB.
1948   SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts;
1949 
1950   SmallVector<Instruction *, 4> SpeculatedDbgIntrinsics;
1951 
1952   unsigned SpeculationCost = 0;
1953   Value *SpeculatedStoreValue = nullptr;
1954   StoreInst *SpeculatedStore = nullptr;
1955   for (BasicBlock::iterator BBI = ThenBB->begin(),
1956                             BBE = std::prev(ThenBB->end());
1957        BBI != BBE; ++BBI) {
1958     Instruction *I = &*BBI;
1959     // Skip debug info.
1960     if (isa<DbgInfoIntrinsic>(I)) {
1961       SpeculatedDbgIntrinsics.push_back(I);
1962       continue;
1963     }
1964 
1965     // Only speculatively execute a single instruction (not counting the
1966     // terminator) for now.
1967     ++SpeculationCost;
1968     if (SpeculationCost > 1)
1969       return false;
1970 
1971     // Don't hoist the instruction if it's unsafe or expensive.
1972     if (!isSafeToSpeculativelyExecute(I) &&
1973         !(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore(
1974                                   I, BB, ThenBB, EndBB))))
1975       return false;
1976     if (!SpeculatedStoreValue &&
1977         ComputeSpeculationCost(I, TTI) >
1978             PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic)
1979       return false;
1980 
1981     // Store the store speculation candidate.
1982     if (SpeculatedStoreValue)
1983       SpeculatedStore = cast<StoreInst>(I);
1984 
1985     // Do not hoist the instruction if any of its operands are defined but not
1986     // used in BB. The transformation will prevent the operand from
1987     // being sunk into the use block.
1988     for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) {
1989       Instruction *OpI = dyn_cast<Instruction>(*i);
1990       if (!OpI || OpI->getParent() != BB || OpI->mayHaveSideEffects())
1991         continue; // Not a candidate for sinking.
1992 
1993       ++SinkCandidateUseCounts[OpI];
1994     }
1995   }
1996 
1997   // Consider any sink candidates which are only used in CondBB as costs for
1998   // speculation. Note, while we iterate over a DenseMap here, we are summing
1999   // and so iteration order isn't significant.
2000   for (SmallDenseMap<Instruction *, unsigned, 4>::iterator
2001            I = SinkCandidateUseCounts.begin(),
2002            E = SinkCandidateUseCounts.end();
2003        I != E; ++I)
2004     if (I->first->getNumUses() == I->second) {
2005       ++SpeculationCost;
2006       if (SpeculationCost > 1)
2007         return false;
2008     }
2009 
2010   // Check that the PHI nodes can be converted to selects.
2011   bool HaveRewritablePHIs = false;
2012   for (PHINode &PN : EndBB->phis()) {
2013     Value *OrigV = PN.getIncomingValueForBlock(BB);
2014     Value *ThenV = PN.getIncomingValueForBlock(ThenBB);
2015 
2016     // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf.
2017     // Skip PHIs which are trivial.
2018     if (ThenV == OrigV)
2019       continue;
2020 
2021     // Don't convert to selects if we could remove undefined behavior instead.
2022     if (passingValueIsAlwaysUndefined(OrigV, &PN) ||
2023         passingValueIsAlwaysUndefined(ThenV, &PN))
2024       return false;
2025 
2026     HaveRewritablePHIs = true;
2027     ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV);
2028     ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV);
2029     if (!OrigCE && !ThenCE)
2030       continue; // Known safe and cheap.
2031 
2032     if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE)) ||
2033         (OrigCE && !isSafeToSpeculativelyExecute(OrigCE)))
2034       return false;
2035     unsigned OrigCost = OrigCE ? ComputeSpeculationCost(OrigCE, TTI) : 0;
2036     unsigned ThenCost = ThenCE ? ComputeSpeculationCost(ThenCE, TTI) : 0;
2037     unsigned MaxCost =
2038         2 * PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
2039     if (OrigCost + ThenCost > MaxCost)
2040       return false;
2041 
2042     // Account for the cost of an unfolded ConstantExpr which could end up
2043     // getting expanded into Instructions.
2044     // FIXME: This doesn't account for how many operations are combined in the
2045     // constant expression.
2046     ++SpeculationCost;
2047     if (SpeculationCost > 1)
2048       return false;
2049   }
2050 
2051   // If there are no PHIs to process, bail early. This helps ensure idempotence
2052   // as well.
2053   if (!HaveRewritablePHIs && !(HoistCondStores && SpeculatedStoreValue))
2054     return false;
2055 
2056   // If we get here, we can hoist the instruction and if-convert.
2057   LLVM_DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";);
2058 
2059   // Insert a select of the value of the speculated store.
2060   if (SpeculatedStoreValue) {
2061     IRBuilder<NoFolder> Builder(BI);
2062     Value *TrueV = SpeculatedStore->getValueOperand();
2063     Value *FalseV = SpeculatedStoreValue;
2064     if (Invert)
2065       std::swap(TrueV, FalseV);
2066     Value *S = Builder.CreateSelect(
2067         BrCond, TrueV, FalseV, "spec.store.select", BI);
2068     SpeculatedStore->setOperand(0, S);
2069     SpeculatedStore->applyMergedLocation(BI->getDebugLoc(),
2070                                          SpeculatedStore->getDebugLoc());
2071   }
2072 
2073   // Metadata can be dependent on the condition we are hoisting above.
2074   // Conservatively strip all metadata on the instruction.
2075   for (auto &I : *ThenBB)
2076     I.dropUnknownNonDebugMetadata();
2077 
2078   // Hoist the instructions.
2079   BB->getInstList().splice(BI->getIterator(), ThenBB->getInstList(),
2080                            ThenBB->begin(), std::prev(ThenBB->end()));
2081 
2082   // Insert selects and rewrite the PHI operands.
2083   IRBuilder<NoFolder> Builder(BI);
2084   for (PHINode &PN : EndBB->phis()) {
2085     unsigned OrigI = PN.getBasicBlockIndex(BB);
2086     unsigned ThenI = PN.getBasicBlockIndex(ThenBB);
2087     Value *OrigV = PN.getIncomingValue(OrigI);
2088     Value *ThenV = PN.getIncomingValue(ThenI);
2089 
2090     // Skip PHIs which are trivial.
2091     if (OrigV == ThenV)
2092       continue;
2093 
2094     // Create a select whose true value is the speculatively executed value and
2095     // false value is the preexisting value. Swap them if the branch
2096     // destinations were inverted.
2097     Value *TrueV = ThenV, *FalseV = OrigV;
2098     if (Invert)
2099       std::swap(TrueV, FalseV);
2100     Value *V = Builder.CreateSelect(
2101         BrCond, TrueV, FalseV, "spec.select", BI);
2102     PN.setIncomingValue(OrigI, V);
2103     PN.setIncomingValue(ThenI, V);
2104   }
2105 
2106   // Remove speculated dbg intrinsics.
2107   // FIXME: Is it possible to do this in a more elegant way? Moving/merging the
2108   // dbg value for the different flows and inserting it after the select.
2109   for (Instruction *I : SpeculatedDbgIntrinsics)
2110     I->eraseFromParent();
2111 
2112   ++NumSpeculations;
2113   return true;
2114 }
2115 
2116 /// Return true if we can thread a branch across this block.
2117 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) {
2118   unsigned Size = 0;
2119 
2120   for (Instruction &I : BB->instructionsWithoutDebug()) {
2121     if (Size > 10)
2122       return false; // Don't clone large BB's.
2123     ++Size;
2124 
2125     // We can only support instructions that do not define values that are
2126     // live outside of the current basic block.
2127     for (User *U : I.users()) {
2128       Instruction *UI = cast<Instruction>(U);
2129       if (UI->getParent() != BB || isa<PHINode>(UI))
2130         return false;
2131     }
2132 
2133     // Looks ok, continue checking.
2134   }
2135 
2136   return true;
2137 }
2138 
2139 /// If we have a conditional branch on a PHI node value that is defined in the
2140 /// same block as the branch and if any PHI entries are constants, thread edges
2141 /// corresponding to that entry to be branches to their ultimate destination.
2142 static bool FoldCondBranchOnPHI(BranchInst *BI, const DataLayout &DL,
2143                                 AssumptionCache *AC) {
2144   BasicBlock *BB = BI->getParent();
2145   PHINode *PN = dyn_cast<PHINode>(BI->getCondition());
2146   // NOTE: we currently cannot transform this case if the PHI node is used
2147   // outside of the block.
2148   if (!PN || PN->getParent() != BB || !PN->hasOneUse())
2149     return false;
2150 
2151   // Degenerate case of a single entry PHI.
2152   if (PN->getNumIncomingValues() == 1) {
2153     FoldSingleEntryPHINodes(PN->getParent());
2154     return true;
2155   }
2156 
2157   // Now we know that this block has multiple preds and two succs.
2158   if (!BlockIsSimpleEnoughToThreadThrough(BB))
2159     return false;
2160 
2161   // Can't fold blocks that contain noduplicate or convergent calls.
2162   if (any_of(*BB, [](const Instruction &I) {
2163         const CallInst *CI = dyn_cast<CallInst>(&I);
2164         return CI && (CI->cannotDuplicate() || CI->isConvergent());
2165       }))
2166     return false;
2167 
2168   // Okay, this is a simple enough basic block.  See if any phi values are
2169   // constants.
2170   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
2171     ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i));
2172     if (!CB || !CB->getType()->isIntegerTy(1))
2173       continue;
2174 
2175     // Okay, we now know that all edges from PredBB should be revectored to
2176     // branch to RealDest.
2177     BasicBlock *PredBB = PN->getIncomingBlock(i);
2178     BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue());
2179 
2180     if (RealDest == BB)
2181       continue; // Skip self loops.
2182     // Skip if the predecessor's terminator is an indirect branch.
2183     if (isa<IndirectBrInst>(PredBB->getTerminator()))
2184       continue;
2185 
2186     // The dest block might have PHI nodes, other predecessors and other
2187     // difficult cases.  Instead of being smart about this, just insert a new
2188     // block that jumps to the destination block, effectively splitting
2189     // the edge we are about to create.
2190     BasicBlock *EdgeBB =
2191         BasicBlock::Create(BB->getContext(), RealDest->getName() + ".critedge",
2192                            RealDest->getParent(), RealDest);
2193     BranchInst::Create(RealDest, EdgeBB);
2194 
2195     // Update PHI nodes.
2196     AddPredecessorToBlock(RealDest, EdgeBB, BB);
2197 
2198     // BB may have instructions that are being threaded over.  Clone these
2199     // instructions into EdgeBB.  We know that there will be no uses of the
2200     // cloned instructions outside of EdgeBB.
2201     BasicBlock::iterator InsertPt = EdgeBB->begin();
2202     DenseMap<Value *, Value *> TranslateMap; // Track translated values.
2203     for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
2204       if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
2205         TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB);
2206         continue;
2207       }
2208       // Clone the instruction.
2209       Instruction *N = BBI->clone();
2210       if (BBI->hasName())
2211         N->setName(BBI->getName() + ".c");
2212 
2213       // Update operands due to translation.
2214       for (User::op_iterator i = N->op_begin(), e = N->op_end(); i != e; ++i) {
2215         DenseMap<Value *, Value *>::iterator PI = TranslateMap.find(*i);
2216         if (PI != TranslateMap.end())
2217           *i = PI->second;
2218       }
2219 
2220       // Check for trivial simplification.
2221       if (Value *V = SimplifyInstruction(N, {DL, nullptr, nullptr, AC})) {
2222         if (!BBI->use_empty())
2223           TranslateMap[&*BBI] = V;
2224         if (!N->mayHaveSideEffects()) {
2225           N->deleteValue(); // Instruction folded away, don't need actual inst
2226           N = nullptr;
2227         }
2228       } else {
2229         if (!BBI->use_empty())
2230           TranslateMap[&*BBI] = N;
2231       }
2232       // Insert the new instruction into its new home.
2233       if (N)
2234         EdgeBB->getInstList().insert(InsertPt, N);
2235 
2236       // Register the new instruction with the assumption cache if necessary.
2237       if (auto *II = dyn_cast_or_null<IntrinsicInst>(N))
2238         if (II->getIntrinsicID() == Intrinsic::assume)
2239           AC->registerAssumption(II);
2240     }
2241 
2242     // Loop over all of the edges from PredBB to BB, changing them to branch
2243     // to EdgeBB instead.
2244     TerminatorInst *PredBBTI = PredBB->getTerminator();
2245     for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i)
2246       if (PredBBTI->getSuccessor(i) == BB) {
2247         BB->removePredecessor(PredBB);
2248         PredBBTI->setSuccessor(i, EdgeBB);
2249       }
2250 
2251     // Recurse, simplifying any other constants.
2252     return FoldCondBranchOnPHI(BI, DL, AC) || true;
2253   }
2254 
2255   return false;
2256 }
2257 
2258 /// Given a BB that starts with the specified two-entry PHI node,
2259 /// see if we can eliminate it.
2260 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI,
2261                                 const DataLayout &DL) {
2262   // Ok, this is a two entry PHI node.  Check to see if this is a simple "if
2263   // statement", which has a very simple dominance structure.  Basically, we
2264   // are trying to find the condition that is being branched on, which
2265   // subsequently causes this merge to happen.  We really want control
2266   // dependence information for this check, but simplifycfg can't keep it up
2267   // to date, and this catches most of the cases we care about anyway.
2268   BasicBlock *BB = PN->getParent();
2269   const Function *Fn = BB->getParent();
2270   if (Fn && Fn->hasFnAttribute(Attribute::OptForFuzzing))
2271     return false;
2272 
2273   BasicBlock *IfTrue, *IfFalse;
2274   Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse);
2275   if (!IfCond ||
2276       // Don't bother if the branch will be constant folded trivially.
2277       isa<ConstantInt>(IfCond))
2278     return false;
2279 
2280   // Okay, we found that we can merge this two-entry phi node into a select.
2281   // Doing so would require us to fold *all* two entry phi nodes in this block.
2282   // At some point this becomes non-profitable (particularly if the target
2283   // doesn't support cmov's).  Only do this transformation if there are two or
2284   // fewer PHI nodes in this block.
2285   unsigned NumPhis = 0;
2286   for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I)
2287     if (NumPhis > 2)
2288       return false;
2289 
2290   // Loop over the PHI's seeing if we can promote them all to select
2291   // instructions.  While we are at it, keep track of the instructions
2292   // that need to be moved to the dominating block.
2293   SmallPtrSet<Instruction *, 4> AggressiveInsts;
2294   unsigned MaxCostVal0 = PHINodeFoldingThreshold,
2295            MaxCostVal1 = PHINodeFoldingThreshold;
2296   MaxCostVal0 *= TargetTransformInfo::TCC_Basic;
2297   MaxCostVal1 *= TargetTransformInfo::TCC_Basic;
2298 
2299   for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) {
2300     PHINode *PN = cast<PHINode>(II++);
2301     if (Value *V = SimplifyInstruction(PN, {DL, PN})) {
2302       PN->replaceAllUsesWith(V);
2303       PN->eraseFromParent();
2304       continue;
2305     }
2306 
2307     if (!DominatesMergePoint(PN->getIncomingValue(0), BB, &AggressiveInsts,
2308                              MaxCostVal0, TTI) ||
2309         !DominatesMergePoint(PN->getIncomingValue(1), BB, &AggressiveInsts,
2310                              MaxCostVal1, TTI))
2311       return false;
2312   }
2313 
2314   // If we folded the first phi, PN dangles at this point.  Refresh it.  If
2315   // we ran out of PHIs then we simplified them all.
2316   PN = dyn_cast<PHINode>(BB->begin());
2317   if (!PN)
2318     return true;
2319 
2320   // Don't fold i1 branches on PHIs which contain binary operators.  These can
2321   // often be turned into switches and other things.
2322   if (PN->getType()->isIntegerTy(1) &&
2323       (isa<BinaryOperator>(PN->getIncomingValue(0)) ||
2324        isa<BinaryOperator>(PN->getIncomingValue(1)) ||
2325        isa<BinaryOperator>(IfCond)))
2326     return false;
2327 
2328   // If all PHI nodes are promotable, check to make sure that all instructions
2329   // in the predecessor blocks can be promoted as well. If not, we won't be able
2330   // to get rid of the control flow, so it's not worth promoting to select
2331   // instructions.
2332   BasicBlock *DomBlock = nullptr;
2333   BasicBlock *IfBlock1 = PN->getIncomingBlock(0);
2334   BasicBlock *IfBlock2 = PN->getIncomingBlock(1);
2335   if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) {
2336     IfBlock1 = nullptr;
2337   } else {
2338     DomBlock = *pred_begin(IfBlock1);
2339     for (BasicBlock::iterator I = IfBlock1->begin(); !I->isTerminator(); ++I)
2340       if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) {
2341         // This is not an aggressive instruction that we can promote.
2342         // Because of this, we won't be able to get rid of the control flow, so
2343         // the xform is not worth it.
2344         return false;
2345       }
2346   }
2347 
2348   if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) {
2349     IfBlock2 = nullptr;
2350   } else {
2351     DomBlock = *pred_begin(IfBlock2);
2352     for (BasicBlock::iterator I = IfBlock2->begin(); !I->isTerminator(); ++I)
2353       if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) {
2354         // This is not an aggressive instruction that we can promote.
2355         // Because of this, we won't be able to get rid of the control flow, so
2356         // the xform is not worth it.
2357         return false;
2358       }
2359   }
2360 
2361   LLVM_DEBUG(dbgs() << "FOUND IF CONDITION!  " << *IfCond
2362                     << "  T: " << IfTrue->getName()
2363                     << "  F: " << IfFalse->getName() << "\n");
2364 
2365   // If we can still promote the PHI nodes after this gauntlet of tests,
2366   // do all of the PHI's now.
2367   Instruction *InsertPt = DomBlock->getTerminator();
2368   IRBuilder<NoFolder> Builder(InsertPt);
2369 
2370   // Move all 'aggressive' instructions, which are defined in the
2371   // conditional parts of the if's up to the dominating block.
2372   if (IfBlock1) {
2373     for (auto &I : *IfBlock1) {
2374       I.dropUnknownNonDebugMetadata();
2375       dropDebugUsers(I);
2376     }
2377     DomBlock->getInstList().splice(InsertPt->getIterator(),
2378                                    IfBlock1->getInstList(), IfBlock1->begin(),
2379                                    IfBlock1->getTerminator()->getIterator());
2380   }
2381   if (IfBlock2) {
2382     for (auto &I : *IfBlock2) {
2383       I.dropUnknownNonDebugMetadata();
2384       dropDebugUsers(I);
2385     }
2386     DomBlock->getInstList().splice(InsertPt->getIterator(),
2387                                    IfBlock2->getInstList(), IfBlock2->begin(),
2388                                    IfBlock2->getTerminator()->getIterator());
2389   }
2390 
2391   while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
2392     // Change the PHI node into a select instruction.
2393     Value *TrueVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse);
2394     Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue);
2395 
2396     Value *Sel = Builder.CreateSelect(IfCond, TrueVal, FalseVal, "", InsertPt);
2397     PN->replaceAllUsesWith(Sel);
2398     Sel->takeName(PN);
2399     PN->eraseFromParent();
2400   }
2401 
2402   // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement
2403   // has been flattened.  Change DomBlock to jump directly to our new block to
2404   // avoid other simplifycfg's kicking in on the diamond.
2405   TerminatorInst *OldTI = DomBlock->getTerminator();
2406   Builder.SetInsertPoint(OldTI);
2407   Builder.CreateBr(BB);
2408   OldTI->eraseFromParent();
2409   return true;
2410 }
2411 
2412 /// If we found a conditional branch that goes to two returning blocks,
2413 /// try to merge them together into one return,
2414 /// introducing a select if the return values disagree.
2415 static bool SimplifyCondBranchToTwoReturns(BranchInst *BI,
2416                                            IRBuilder<> &Builder) {
2417   assert(BI->isConditional() && "Must be a conditional branch");
2418   BasicBlock *TrueSucc = BI->getSuccessor(0);
2419   BasicBlock *FalseSucc = BI->getSuccessor(1);
2420   ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator());
2421   ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator());
2422 
2423   // Check to ensure both blocks are empty (just a return) or optionally empty
2424   // with PHI nodes.  If there are other instructions, merging would cause extra
2425   // computation on one path or the other.
2426   if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator())
2427     return false;
2428   if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator())
2429     return false;
2430 
2431   Builder.SetInsertPoint(BI);
2432   // Okay, we found a branch that is going to two return nodes.  If
2433   // there is no return value for this function, just change the
2434   // branch into a return.
2435   if (FalseRet->getNumOperands() == 0) {
2436     TrueSucc->removePredecessor(BI->getParent());
2437     FalseSucc->removePredecessor(BI->getParent());
2438     Builder.CreateRetVoid();
2439     EraseTerminatorInstAndDCECond(BI);
2440     return true;
2441   }
2442 
2443   // Otherwise, figure out what the true and false return values are
2444   // so we can insert a new select instruction.
2445   Value *TrueValue = TrueRet->getReturnValue();
2446   Value *FalseValue = FalseRet->getReturnValue();
2447 
2448   // Unwrap any PHI nodes in the return blocks.
2449   if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue))
2450     if (TVPN->getParent() == TrueSucc)
2451       TrueValue = TVPN->getIncomingValueForBlock(BI->getParent());
2452   if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue))
2453     if (FVPN->getParent() == FalseSucc)
2454       FalseValue = FVPN->getIncomingValueForBlock(BI->getParent());
2455 
2456   // In order for this transformation to be safe, we must be able to
2457   // unconditionally execute both operands to the return.  This is
2458   // normally the case, but we could have a potentially-trapping
2459   // constant expression that prevents this transformation from being
2460   // safe.
2461   if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue))
2462     if (TCV->canTrap())
2463       return false;
2464   if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue))
2465     if (FCV->canTrap())
2466       return false;
2467 
2468   // Okay, we collected all the mapped values and checked them for sanity, and
2469   // defined to really do this transformation.  First, update the CFG.
2470   TrueSucc->removePredecessor(BI->getParent());
2471   FalseSucc->removePredecessor(BI->getParent());
2472 
2473   // Insert select instructions where needed.
2474   Value *BrCond = BI->getCondition();
2475   if (TrueValue) {
2476     // Insert a select if the results differ.
2477     if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) {
2478     } else if (isa<UndefValue>(TrueValue)) {
2479       TrueValue = FalseValue;
2480     } else {
2481       TrueValue =
2482           Builder.CreateSelect(BrCond, TrueValue, FalseValue, "retval", BI);
2483     }
2484   }
2485 
2486   Value *RI =
2487       !TrueValue ? Builder.CreateRetVoid() : Builder.CreateRet(TrueValue);
2488 
2489   (void)RI;
2490 
2491   LLVM_DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:"
2492                     << "\n  " << *BI << "NewRet = " << *RI << "TRUEBLOCK: "
2493                     << *TrueSucc << "FALSEBLOCK: " << *FalseSucc);
2494 
2495   EraseTerminatorInstAndDCECond(BI);
2496 
2497   return true;
2498 }
2499 
2500 /// Return true if the given instruction is available
2501 /// in its predecessor block. If yes, the instruction will be removed.
2502 static bool tryCSEWithPredecessor(Instruction *Inst, BasicBlock *PB) {
2503   if (!isa<BinaryOperator>(Inst) && !isa<CmpInst>(Inst))
2504     return false;
2505   for (Instruction &I : *PB) {
2506     Instruction *PBI = &I;
2507     // Check whether Inst and PBI generate the same value.
2508     if (Inst->isIdenticalTo(PBI)) {
2509       Inst->replaceAllUsesWith(PBI);
2510       Inst->eraseFromParent();
2511       return true;
2512     }
2513   }
2514   return false;
2515 }
2516 
2517 /// Return true if either PBI or BI has branch weight available, and store
2518 /// the weights in {Pred|Succ}{True|False}Weight. If one of PBI and BI does
2519 /// not have branch weight, use 1:1 as its weight.
2520 static bool extractPredSuccWeights(BranchInst *PBI, BranchInst *BI,
2521                                    uint64_t &PredTrueWeight,
2522                                    uint64_t &PredFalseWeight,
2523                                    uint64_t &SuccTrueWeight,
2524                                    uint64_t &SuccFalseWeight) {
2525   bool PredHasWeights =
2526       PBI->extractProfMetadata(PredTrueWeight, PredFalseWeight);
2527   bool SuccHasWeights =
2528       BI->extractProfMetadata(SuccTrueWeight, SuccFalseWeight);
2529   if (PredHasWeights || SuccHasWeights) {
2530     if (!PredHasWeights)
2531       PredTrueWeight = PredFalseWeight = 1;
2532     if (!SuccHasWeights)
2533       SuccTrueWeight = SuccFalseWeight = 1;
2534     return true;
2535   } else {
2536     return false;
2537   }
2538 }
2539 
2540 /// If this basic block is simple enough, and if a predecessor branches to us
2541 /// and one of our successors, fold the block into the predecessor and use
2542 /// logical operations to pick the right destination.
2543 bool llvm::FoldBranchToCommonDest(BranchInst *BI, unsigned BonusInstThreshold) {
2544   BasicBlock *BB = BI->getParent();
2545 
2546   const unsigned PredCount = pred_size(BB);
2547 
2548   Instruction *Cond = nullptr;
2549   if (BI->isConditional())
2550     Cond = dyn_cast<Instruction>(BI->getCondition());
2551   else {
2552     // For unconditional branch, check for a simple CFG pattern, where
2553     // BB has a single predecessor and BB's successor is also its predecessor's
2554     // successor. If such pattern exists, check for CSE between BB and its
2555     // predecessor.
2556     if (BasicBlock *PB = BB->getSinglePredecessor())
2557       if (BranchInst *PBI = dyn_cast<BranchInst>(PB->getTerminator()))
2558         if (PBI->isConditional() &&
2559             (BI->getSuccessor(0) == PBI->getSuccessor(0) ||
2560              BI->getSuccessor(0) == PBI->getSuccessor(1))) {
2561           for (auto I = BB->instructionsWithoutDebug().begin(),
2562                     E = BB->instructionsWithoutDebug().end();
2563                I != E;) {
2564             Instruction *Curr = &*I++;
2565             if (isa<CmpInst>(Curr)) {
2566               Cond = Curr;
2567               break;
2568             }
2569             // Quit if we can't remove this instruction.
2570             if (!tryCSEWithPredecessor(Curr, PB))
2571               return false;
2572           }
2573         }
2574 
2575     if (!Cond)
2576       return false;
2577   }
2578 
2579   if (!Cond || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) ||
2580       Cond->getParent() != BB || !Cond->hasOneUse())
2581     return false;
2582 
2583   // Make sure the instruction after the condition is the cond branch.
2584   BasicBlock::iterator CondIt = ++Cond->getIterator();
2585 
2586   // Ignore dbg intrinsics.
2587   while (isa<DbgInfoIntrinsic>(CondIt))
2588     ++CondIt;
2589 
2590   if (&*CondIt != BI)
2591     return false;
2592 
2593   // Only allow this transformation if computing the condition doesn't involve
2594   // too many instructions and these involved instructions can be executed
2595   // unconditionally. We denote all involved instructions except the condition
2596   // as "bonus instructions", and only allow this transformation when the
2597   // number of the bonus instructions we'll need to create when cloning into
2598   // each predecessor does not exceed a certain threshold.
2599   unsigned NumBonusInsts = 0;
2600   for (auto I = BB->begin(); Cond != &*I; ++I) {
2601     // Ignore dbg intrinsics.
2602     if (isa<DbgInfoIntrinsic>(I))
2603       continue;
2604     if (!I->hasOneUse() || !isSafeToSpeculativelyExecute(&*I))
2605       return false;
2606     // I has only one use and can be executed unconditionally.
2607     Instruction *User = dyn_cast<Instruction>(I->user_back());
2608     if (User == nullptr || User->getParent() != BB)
2609       return false;
2610     // I is used in the same BB. Since BI uses Cond and doesn't have more slots
2611     // to use any other instruction, User must be an instruction between next(I)
2612     // and Cond.
2613 
2614     // Account for the cost of duplicating this instruction into each
2615     // predecessor.
2616     NumBonusInsts += PredCount;
2617     // Early exits once we reach the limit.
2618     if (NumBonusInsts > BonusInstThreshold)
2619       return false;
2620   }
2621 
2622   // Cond is known to be a compare or binary operator.  Check to make sure that
2623   // neither operand is a potentially-trapping constant expression.
2624   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0)))
2625     if (CE->canTrap())
2626       return false;
2627   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1)))
2628     if (CE->canTrap())
2629       return false;
2630 
2631   // Finally, don't infinitely unroll conditional loops.
2632   BasicBlock *TrueDest = BI->getSuccessor(0);
2633   BasicBlock *FalseDest = (BI->isConditional()) ? BI->getSuccessor(1) : nullptr;
2634   if (TrueDest == BB || FalseDest == BB)
2635     return false;
2636 
2637   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
2638     BasicBlock *PredBlock = *PI;
2639     BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator());
2640 
2641     // Check that we have two conditional branches.  If there is a PHI node in
2642     // the common successor, verify that the same value flows in from both
2643     // blocks.
2644     SmallVector<PHINode *, 4> PHIs;
2645     if (!PBI || PBI->isUnconditional() ||
2646         (BI->isConditional() && !SafeToMergeTerminators(BI, PBI)) ||
2647         (!BI->isConditional() &&
2648          !isProfitableToFoldUnconditional(BI, PBI, Cond, PHIs)))
2649       continue;
2650 
2651     // Determine if the two branches share a common destination.
2652     Instruction::BinaryOps Opc = Instruction::BinaryOpsEnd;
2653     bool InvertPredCond = false;
2654 
2655     if (BI->isConditional()) {
2656       if (PBI->getSuccessor(0) == TrueDest) {
2657         Opc = Instruction::Or;
2658       } else if (PBI->getSuccessor(1) == FalseDest) {
2659         Opc = Instruction::And;
2660       } else if (PBI->getSuccessor(0) == FalseDest) {
2661         Opc = Instruction::And;
2662         InvertPredCond = true;
2663       } else if (PBI->getSuccessor(1) == TrueDest) {
2664         Opc = Instruction::Or;
2665         InvertPredCond = true;
2666       } else {
2667         continue;
2668       }
2669     } else {
2670       if (PBI->getSuccessor(0) != TrueDest && PBI->getSuccessor(1) != TrueDest)
2671         continue;
2672     }
2673 
2674     LLVM_DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB);
2675     IRBuilder<> Builder(PBI);
2676 
2677     // If we need to invert the condition in the pred block to match, do so now.
2678     if (InvertPredCond) {
2679       Value *NewCond = PBI->getCondition();
2680 
2681       if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) {
2682         CmpInst *CI = cast<CmpInst>(NewCond);
2683         CI->setPredicate(CI->getInversePredicate());
2684       } else {
2685         NewCond =
2686             Builder.CreateNot(NewCond, PBI->getCondition()->getName() + ".not");
2687       }
2688 
2689       PBI->setCondition(NewCond);
2690       PBI->swapSuccessors();
2691     }
2692 
2693     // If we have bonus instructions, clone them into the predecessor block.
2694     // Note that there may be multiple predecessor blocks, so we cannot move
2695     // bonus instructions to a predecessor block.
2696     ValueToValueMapTy VMap; // maps original values to cloned values
2697     // We already make sure Cond is the last instruction before BI. Therefore,
2698     // all instructions before Cond other than DbgInfoIntrinsic are bonus
2699     // instructions.
2700     for (auto BonusInst = BB->begin(); Cond != &*BonusInst; ++BonusInst) {
2701       if (isa<DbgInfoIntrinsic>(BonusInst))
2702         continue;
2703       Instruction *NewBonusInst = BonusInst->clone();
2704       RemapInstruction(NewBonusInst, VMap,
2705                        RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
2706       VMap[&*BonusInst] = NewBonusInst;
2707 
2708       // If we moved a load, we cannot any longer claim any knowledge about
2709       // its potential value. The previous information might have been valid
2710       // only given the branch precondition.
2711       // For an analogous reason, we must also drop all the metadata whose
2712       // semantics we don't understand.
2713       NewBonusInst->dropUnknownNonDebugMetadata();
2714 
2715       PredBlock->getInstList().insert(PBI->getIterator(), NewBonusInst);
2716       NewBonusInst->takeName(&*BonusInst);
2717       BonusInst->setName(BonusInst->getName() + ".old");
2718     }
2719 
2720     // Clone Cond into the predecessor basic block, and or/and the
2721     // two conditions together.
2722     Instruction *CondInPred = Cond->clone();
2723     RemapInstruction(CondInPred, VMap,
2724                      RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
2725     PredBlock->getInstList().insert(PBI->getIterator(), CondInPred);
2726     CondInPred->takeName(Cond);
2727     Cond->setName(CondInPred->getName() + ".old");
2728 
2729     if (BI->isConditional()) {
2730       Instruction *NewCond = cast<Instruction>(
2731           Builder.CreateBinOp(Opc, PBI->getCondition(), CondInPred, "or.cond"));
2732       PBI->setCondition(NewCond);
2733 
2734       uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
2735       bool HasWeights =
2736           extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
2737                                  SuccTrueWeight, SuccFalseWeight);
2738       SmallVector<uint64_t, 8> NewWeights;
2739 
2740       if (PBI->getSuccessor(0) == BB) {
2741         if (HasWeights) {
2742           // PBI: br i1 %x, BB, FalseDest
2743           // BI:  br i1 %y, TrueDest, FalseDest
2744           // TrueWeight is TrueWeight for PBI * TrueWeight for BI.
2745           NewWeights.push_back(PredTrueWeight * SuccTrueWeight);
2746           // FalseWeight is FalseWeight for PBI * TotalWeight for BI +
2747           //               TrueWeight for PBI * FalseWeight for BI.
2748           // We assume that total weights of a BranchInst can fit into 32 bits.
2749           // Therefore, we will not have overflow using 64-bit arithmetic.
2750           NewWeights.push_back(PredFalseWeight *
2751                                    (SuccFalseWeight + SuccTrueWeight) +
2752                                PredTrueWeight * SuccFalseWeight);
2753         }
2754         AddPredecessorToBlock(TrueDest, PredBlock, BB);
2755         PBI->setSuccessor(0, TrueDest);
2756       }
2757       if (PBI->getSuccessor(1) == BB) {
2758         if (HasWeights) {
2759           // PBI: br i1 %x, TrueDest, BB
2760           // BI:  br i1 %y, TrueDest, FalseDest
2761           // TrueWeight is TrueWeight for PBI * TotalWeight for BI +
2762           //              FalseWeight for PBI * TrueWeight for BI.
2763           NewWeights.push_back(PredTrueWeight *
2764                                    (SuccFalseWeight + SuccTrueWeight) +
2765                                PredFalseWeight * SuccTrueWeight);
2766           // FalseWeight is FalseWeight for PBI * FalseWeight for BI.
2767           NewWeights.push_back(PredFalseWeight * SuccFalseWeight);
2768         }
2769         AddPredecessorToBlock(FalseDest, PredBlock, BB);
2770         PBI->setSuccessor(1, FalseDest);
2771       }
2772       if (NewWeights.size() == 2) {
2773         // Halve the weights if any of them cannot fit in an uint32_t
2774         FitWeights(NewWeights);
2775 
2776         SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(),
2777                                            NewWeights.end());
2778         setBranchWeights(PBI, MDWeights[0], MDWeights[1]);
2779       } else
2780         PBI->setMetadata(LLVMContext::MD_prof, nullptr);
2781     } else {
2782       // Update PHI nodes in the common successors.
2783       for (unsigned i = 0, e = PHIs.size(); i != e; ++i) {
2784         ConstantInt *PBI_C = cast<ConstantInt>(
2785             PHIs[i]->getIncomingValueForBlock(PBI->getParent()));
2786         assert(PBI_C->getType()->isIntegerTy(1));
2787         Instruction *MergedCond = nullptr;
2788         if (PBI->getSuccessor(0) == TrueDest) {
2789           // Create (PBI_Cond and PBI_C) or (!PBI_Cond and BI_Value)
2790           // PBI_C is true: PBI_Cond or (!PBI_Cond and BI_Value)
2791           //       is false: !PBI_Cond and BI_Value
2792           Instruction *NotCond = cast<Instruction>(
2793               Builder.CreateNot(PBI->getCondition(), "not.cond"));
2794           MergedCond = cast<Instruction>(
2795                Builder.CreateBinOp(Instruction::And, NotCond, CondInPred,
2796                                    "and.cond"));
2797           if (PBI_C->isOne())
2798             MergedCond = cast<Instruction>(Builder.CreateBinOp(
2799                 Instruction::Or, PBI->getCondition(), MergedCond, "or.cond"));
2800         } else {
2801           // Create (PBI_Cond and BI_Value) or (!PBI_Cond and PBI_C)
2802           // PBI_C is true: (PBI_Cond and BI_Value) or (!PBI_Cond)
2803           //       is false: PBI_Cond and BI_Value
2804           MergedCond = cast<Instruction>(Builder.CreateBinOp(
2805               Instruction::And, PBI->getCondition(), CondInPred, "and.cond"));
2806           if (PBI_C->isOne()) {
2807             Instruction *NotCond = cast<Instruction>(
2808                 Builder.CreateNot(PBI->getCondition(), "not.cond"));
2809             MergedCond = cast<Instruction>(Builder.CreateBinOp(
2810                 Instruction::Or, NotCond, MergedCond, "or.cond"));
2811           }
2812         }
2813         // Update PHI Node.
2814         PHIs[i]->setIncomingValue(PHIs[i]->getBasicBlockIndex(PBI->getParent()),
2815                                   MergedCond);
2816       }
2817       // Change PBI from Conditional to Unconditional.
2818       BranchInst *New_PBI = BranchInst::Create(TrueDest, PBI);
2819       EraseTerminatorInstAndDCECond(PBI);
2820       PBI = New_PBI;
2821     }
2822 
2823     // If BI was a loop latch, it may have had associated loop metadata.
2824     // We need to copy it to the new latch, that is, PBI.
2825     if (MDNode *LoopMD = BI->getMetadata(LLVMContext::MD_loop))
2826       PBI->setMetadata(LLVMContext::MD_loop, LoopMD);
2827 
2828     // TODO: If BB is reachable from all paths through PredBlock, then we
2829     // could replace PBI's branch probabilities with BI's.
2830 
2831     // Copy any debug value intrinsics into the end of PredBlock.
2832     for (Instruction &I : *BB)
2833       if (isa<DbgInfoIntrinsic>(I))
2834         I.clone()->insertBefore(PBI);
2835 
2836     return true;
2837   }
2838   return false;
2839 }
2840 
2841 // If there is only one store in BB1 and BB2, return it, otherwise return
2842 // nullptr.
2843 static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) {
2844   StoreInst *S = nullptr;
2845   for (auto *BB : {BB1, BB2}) {
2846     if (!BB)
2847       continue;
2848     for (auto &I : *BB)
2849       if (auto *SI = dyn_cast<StoreInst>(&I)) {
2850         if (S)
2851           // Multiple stores seen.
2852           return nullptr;
2853         else
2854           S = SI;
2855       }
2856   }
2857   return S;
2858 }
2859 
2860 static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB,
2861                                               Value *AlternativeV = nullptr) {
2862   // PHI is going to be a PHI node that allows the value V that is defined in
2863   // BB to be referenced in BB's only successor.
2864   //
2865   // If AlternativeV is nullptr, the only value we care about in PHI is V. It
2866   // doesn't matter to us what the other operand is (it'll never get used). We
2867   // could just create a new PHI with an undef incoming value, but that could
2868   // increase register pressure if EarlyCSE/InstCombine can't fold it with some
2869   // other PHI. So here we directly look for some PHI in BB's successor with V
2870   // as an incoming operand. If we find one, we use it, else we create a new
2871   // one.
2872   //
2873   // If AlternativeV is not nullptr, we care about both incoming values in PHI.
2874   // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV]
2875   // where OtherBB is the single other predecessor of BB's only successor.
2876   PHINode *PHI = nullptr;
2877   BasicBlock *Succ = BB->getSingleSuccessor();
2878 
2879   for (auto I = Succ->begin(); isa<PHINode>(I); ++I)
2880     if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) {
2881       PHI = cast<PHINode>(I);
2882       if (!AlternativeV)
2883         break;
2884 
2885       assert(pred_size(Succ) == 2);
2886       auto PredI = pred_begin(Succ);
2887       BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI;
2888       if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV)
2889         break;
2890       PHI = nullptr;
2891     }
2892   if (PHI)
2893     return PHI;
2894 
2895   // If V is not an instruction defined in BB, just return it.
2896   if (!AlternativeV &&
2897       (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB))
2898     return V;
2899 
2900   PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge", &Succ->front());
2901   PHI->addIncoming(V, BB);
2902   for (BasicBlock *PredBB : predecessors(Succ))
2903     if (PredBB != BB)
2904       PHI->addIncoming(
2905           AlternativeV ? AlternativeV : UndefValue::get(V->getType()), PredBB);
2906   return PHI;
2907 }
2908 
2909 static bool mergeConditionalStoreToAddress(BasicBlock *PTB, BasicBlock *PFB,
2910                                            BasicBlock *QTB, BasicBlock *QFB,
2911                                            BasicBlock *PostBB, Value *Address,
2912                                            bool InvertPCond, bool InvertQCond,
2913                                            const DataLayout &DL) {
2914   auto IsaBitcastOfPointerType = [](const Instruction &I) {
2915     return Operator::getOpcode(&I) == Instruction::BitCast &&
2916            I.getType()->isPointerTy();
2917   };
2918 
2919   // If we're not in aggressive mode, we only optimize if we have some
2920   // confidence that by optimizing we'll allow P and/or Q to be if-converted.
2921   auto IsWorthwhile = [&](BasicBlock *BB) {
2922     if (!BB)
2923       return true;
2924     // Heuristic: if the block can be if-converted/phi-folded and the
2925     // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to
2926     // thread this store.
2927     unsigned N = 0;
2928     for (auto &I : BB->instructionsWithoutDebug()) {
2929       // Cheap instructions viable for folding.
2930       if (isa<BinaryOperator>(I) || isa<GetElementPtrInst>(I) ||
2931           isa<StoreInst>(I))
2932         ++N;
2933       // Free instructions.
2934       else if (I.isTerminator() || IsaBitcastOfPointerType(I))
2935         continue;
2936       else
2937         return false;
2938     }
2939     // The store we want to merge is counted in N, so add 1 to make sure
2940     // we're counting the instructions that would be left.
2941     return N <= (PHINodeFoldingThreshold + 1);
2942   };
2943 
2944   if (!MergeCondStoresAggressively &&
2945       (!IsWorthwhile(PTB) || !IsWorthwhile(PFB) || !IsWorthwhile(QTB) ||
2946        !IsWorthwhile(QFB)))
2947     return false;
2948 
2949   // For every pointer, there must be exactly two stores, one coming from
2950   // PTB or PFB, and the other from QTB or QFB. We don't support more than one
2951   // store (to any address) in PTB,PFB or QTB,QFB.
2952   // FIXME: We could relax this restriction with a bit more work and performance
2953   // testing.
2954   StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB);
2955   StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB);
2956   if (!PStore || !QStore)
2957     return false;
2958 
2959   // Now check the stores are compatible.
2960   if (!QStore->isUnordered() || !PStore->isUnordered())
2961     return false;
2962 
2963   // Check that sinking the store won't cause program behavior changes. Sinking
2964   // the store out of the Q blocks won't change any behavior as we're sinking
2965   // from a block to its unconditional successor. But we're moving a store from
2966   // the P blocks down through the middle block (QBI) and past both QFB and QTB.
2967   // So we need to check that there are no aliasing loads or stores in
2968   // QBI, QTB and QFB. We also need to check there are no conflicting memory
2969   // operations between PStore and the end of its parent block.
2970   //
2971   // The ideal way to do this is to query AliasAnalysis, but we don't
2972   // preserve AA currently so that is dangerous. Be super safe and just
2973   // check there are no other memory operations at all.
2974   for (auto &I : *QFB->getSinglePredecessor())
2975     if (I.mayReadOrWriteMemory())
2976       return false;
2977   for (auto &I : *QFB)
2978     if (&I != QStore && I.mayReadOrWriteMemory())
2979       return false;
2980   if (QTB)
2981     for (auto &I : *QTB)
2982       if (&I != QStore && I.mayReadOrWriteMemory())
2983         return false;
2984   for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end();
2985        I != E; ++I)
2986     if (&*I != PStore && I->mayReadOrWriteMemory())
2987       return false;
2988 
2989   // If PostBB has more than two predecessors, we need to split it so we can
2990   // sink the store.
2991   if (std::next(pred_begin(PostBB), 2) != pred_end(PostBB)) {
2992     // We know that QFB's only successor is PostBB. And QFB has a single
2993     // predecessor. If QTB exists, then its only successor is also PostBB.
2994     // If QTB does not exist, then QFB's only predecessor has a conditional
2995     // branch to QFB and PostBB.
2996     BasicBlock *TruePred = QTB ? QTB : QFB->getSinglePredecessor();
2997     BasicBlock *NewBB = SplitBlockPredecessors(PostBB, { QFB, TruePred},
2998                                                "condstore.split");
2999     if (!NewBB)
3000       return false;
3001     PostBB = NewBB;
3002   }
3003 
3004   // OK, we're going to sink the stores to PostBB. The store has to be
3005   // conditional though, so first create the predicate.
3006   Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator())
3007                      ->getCondition();
3008   Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator())
3009                      ->getCondition();
3010 
3011   Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(),
3012                                                 PStore->getParent());
3013   Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(),
3014                                                 QStore->getParent(), PPHI);
3015 
3016   IRBuilder<> QB(&*PostBB->getFirstInsertionPt());
3017 
3018   Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond);
3019   Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond);
3020 
3021   if (InvertPCond)
3022     PPred = QB.CreateNot(PPred);
3023   if (InvertQCond)
3024     QPred = QB.CreateNot(QPred);
3025   Value *CombinedPred = QB.CreateOr(PPred, QPred);
3026 
3027   auto *T =
3028       SplitBlockAndInsertIfThen(CombinedPred, &*QB.GetInsertPoint(), false);
3029   QB.SetInsertPoint(T);
3030   StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address));
3031   AAMDNodes AAMD;
3032   PStore->getAAMetadata(AAMD, /*Merge=*/false);
3033   PStore->getAAMetadata(AAMD, /*Merge=*/true);
3034   SI->setAAMetadata(AAMD);
3035   unsigned PAlignment = PStore->getAlignment();
3036   unsigned QAlignment = QStore->getAlignment();
3037   unsigned TypeAlignment =
3038       DL.getABITypeAlignment(SI->getValueOperand()->getType());
3039   unsigned MinAlignment;
3040   unsigned MaxAlignment;
3041   std::tie(MinAlignment, MaxAlignment) = std::minmax(PAlignment, QAlignment);
3042   // Choose the minimum alignment. If we could prove both stores execute, we
3043   // could use biggest one.  In this case, though, we only know that one of the
3044   // stores executes.  And we don't know it's safe to take the alignment from a
3045   // store that doesn't execute.
3046   if (MinAlignment != 0) {
3047     // Choose the minimum of all non-zero alignments.
3048     SI->setAlignment(MinAlignment);
3049   } else if (MaxAlignment != 0) {
3050     // Choose the minimal alignment between the non-zero alignment and the ABI
3051     // default alignment for the type of the stored value.
3052     SI->setAlignment(std::min(MaxAlignment, TypeAlignment));
3053   } else {
3054     // If both alignments are zero, use ABI default alignment for the type of
3055     // the stored value.
3056     SI->setAlignment(TypeAlignment);
3057   }
3058 
3059   QStore->eraseFromParent();
3060   PStore->eraseFromParent();
3061 
3062   return true;
3063 }
3064 
3065 static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI,
3066                                    const DataLayout &DL) {
3067   // The intention here is to find diamonds or triangles (see below) where each
3068   // conditional block contains a store to the same address. Both of these
3069   // stores are conditional, so they can't be unconditionally sunk. But it may
3070   // be profitable to speculatively sink the stores into one merged store at the
3071   // end, and predicate the merged store on the union of the two conditions of
3072   // PBI and QBI.
3073   //
3074   // This can reduce the number of stores executed if both of the conditions are
3075   // true, and can allow the blocks to become small enough to be if-converted.
3076   // This optimization will also chain, so that ladders of test-and-set
3077   // sequences can be if-converted away.
3078   //
3079   // We only deal with simple diamonds or triangles:
3080   //
3081   //     PBI       or      PBI        or a combination of the two
3082   //    /   \               | \
3083   //   PTB  PFB             |  PFB
3084   //    \   /               | /
3085   //     QBI                QBI
3086   //    /  \                | \
3087   //   QTB  QFB             |  QFB
3088   //    \  /                | /
3089   //    PostBB            PostBB
3090   //
3091   // We model triangles as a type of diamond with a nullptr "true" block.
3092   // Triangles are canonicalized so that the fallthrough edge is represented by
3093   // a true condition, as in the diagram above.
3094   BasicBlock *PTB = PBI->getSuccessor(0);
3095   BasicBlock *PFB = PBI->getSuccessor(1);
3096   BasicBlock *QTB = QBI->getSuccessor(0);
3097   BasicBlock *QFB = QBI->getSuccessor(1);
3098   BasicBlock *PostBB = QFB->getSingleSuccessor();
3099 
3100   // Make sure we have a good guess for PostBB. If QTB's only successor is
3101   // QFB, then QFB is a better PostBB.
3102   if (QTB->getSingleSuccessor() == QFB)
3103     PostBB = QFB;
3104 
3105   // If we couldn't find a good PostBB, stop.
3106   if (!PostBB)
3107     return false;
3108 
3109   bool InvertPCond = false, InvertQCond = false;
3110   // Canonicalize fallthroughs to the true branches.
3111   if (PFB == QBI->getParent()) {
3112     std::swap(PFB, PTB);
3113     InvertPCond = true;
3114   }
3115   if (QFB == PostBB) {
3116     std::swap(QFB, QTB);
3117     InvertQCond = true;
3118   }
3119 
3120   // From this point on we can assume PTB or QTB may be fallthroughs but PFB
3121   // and QFB may not. Model fallthroughs as a nullptr block.
3122   if (PTB == QBI->getParent())
3123     PTB = nullptr;
3124   if (QTB == PostBB)
3125     QTB = nullptr;
3126 
3127   // Legality bailouts. We must have at least the non-fallthrough blocks and
3128   // the post-dominating block, and the non-fallthroughs must only have one
3129   // predecessor.
3130   auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) {
3131     return BB->getSinglePredecessor() == P && BB->getSingleSuccessor() == S;
3132   };
3133   if (!HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) ||
3134       !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB))
3135     return false;
3136   if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) ||
3137       (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB)))
3138     return false;
3139   if (!QBI->getParent()->hasNUses(2))
3140     return false;
3141 
3142   // OK, this is a sequence of two diamonds or triangles.
3143   // Check if there are stores in PTB or PFB that are repeated in QTB or QFB.
3144   SmallPtrSet<Value *, 4> PStoreAddresses, QStoreAddresses;
3145   for (auto *BB : {PTB, PFB}) {
3146     if (!BB)
3147       continue;
3148     for (auto &I : *BB)
3149       if (StoreInst *SI = dyn_cast<StoreInst>(&I))
3150         PStoreAddresses.insert(SI->getPointerOperand());
3151   }
3152   for (auto *BB : {QTB, QFB}) {
3153     if (!BB)
3154       continue;
3155     for (auto &I : *BB)
3156       if (StoreInst *SI = dyn_cast<StoreInst>(&I))
3157         QStoreAddresses.insert(SI->getPointerOperand());
3158   }
3159 
3160   set_intersect(PStoreAddresses, QStoreAddresses);
3161   // set_intersect mutates PStoreAddresses in place. Rename it here to make it
3162   // clear what it contains.
3163   auto &CommonAddresses = PStoreAddresses;
3164 
3165   bool Changed = false;
3166   for (auto *Address : CommonAddresses)
3167     Changed |= mergeConditionalStoreToAddress(
3168         PTB, PFB, QTB, QFB, PostBB, Address, InvertPCond, InvertQCond, DL);
3169   return Changed;
3170 }
3171 
3172 /// If we have a conditional branch as a predecessor of another block,
3173 /// this function tries to simplify it.  We know
3174 /// that PBI and BI are both conditional branches, and BI is in one of the
3175 /// successor blocks of PBI - PBI branches to BI.
3176 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI,
3177                                            const DataLayout &DL) {
3178   assert(PBI->isConditional() && BI->isConditional());
3179   BasicBlock *BB = BI->getParent();
3180 
3181   // If this block ends with a branch instruction, and if there is a
3182   // predecessor that ends on a branch of the same condition, make
3183   // this conditional branch redundant.
3184   if (PBI->getCondition() == BI->getCondition() &&
3185       PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
3186     // Okay, the outcome of this conditional branch is statically
3187     // knowable.  If this block had a single pred, handle specially.
3188     if (BB->getSinglePredecessor()) {
3189       // Turn this into a branch on constant.
3190       bool CondIsTrue = PBI->getSuccessor(0) == BB;
3191       BI->setCondition(
3192           ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue));
3193       return true; // Nuke the branch on constant.
3194     }
3195 
3196     // Otherwise, if there are multiple predecessors, insert a PHI that merges
3197     // in the constant and simplify the block result.  Subsequent passes of
3198     // simplifycfg will thread the block.
3199     if (BlockIsSimpleEnoughToThreadThrough(BB)) {
3200       pred_iterator PB = pred_begin(BB), PE = pred_end(BB);
3201       PHINode *NewPN = PHINode::Create(
3202           Type::getInt1Ty(BB->getContext()), std::distance(PB, PE),
3203           BI->getCondition()->getName() + ".pr", &BB->front());
3204       // Okay, we're going to insert the PHI node.  Since PBI is not the only
3205       // predecessor, compute the PHI'd conditional value for all of the preds.
3206       // Any predecessor where the condition is not computable we keep symbolic.
3207       for (pred_iterator PI = PB; PI != PE; ++PI) {
3208         BasicBlock *P = *PI;
3209         if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) && PBI != BI &&
3210             PBI->isConditional() && PBI->getCondition() == BI->getCondition() &&
3211             PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
3212           bool CondIsTrue = PBI->getSuccessor(0) == BB;
3213           NewPN->addIncoming(
3214               ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue),
3215               P);
3216         } else {
3217           NewPN->addIncoming(BI->getCondition(), P);
3218         }
3219       }
3220 
3221       BI->setCondition(NewPN);
3222       return true;
3223     }
3224   }
3225 
3226   if (auto *CE = dyn_cast<ConstantExpr>(BI->getCondition()))
3227     if (CE->canTrap())
3228       return false;
3229 
3230   // If both branches are conditional and both contain stores to the same
3231   // address, remove the stores from the conditionals and create a conditional
3232   // merged store at the end.
3233   if (MergeCondStores && mergeConditionalStores(PBI, BI, DL))
3234     return true;
3235 
3236   // If this is a conditional branch in an empty block, and if any
3237   // predecessors are a conditional branch to one of our destinations,
3238   // fold the conditions into logical ops and one cond br.
3239 
3240   // Ignore dbg intrinsics.
3241   if (&*BB->instructionsWithoutDebug().begin() != BI)
3242     return false;
3243 
3244   int PBIOp, BIOp;
3245   if (PBI->getSuccessor(0) == BI->getSuccessor(0)) {
3246     PBIOp = 0;
3247     BIOp = 0;
3248   } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) {
3249     PBIOp = 0;
3250     BIOp = 1;
3251   } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) {
3252     PBIOp = 1;
3253     BIOp = 0;
3254   } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) {
3255     PBIOp = 1;
3256     BIOp = 1;
3257   } else {
3258     return false;
3259   }
3260 
3261   // Check to make sure that the other destination of this branch
3262   // isn't BB itself.  If so, this is an infinite loop that will
3263   // keep getting unwound.
3264   if (PBI->getSuccessor(PBIOp) == BB)
3265     return false;
3266 
3267   // Do not perform this transformation if it would require
3268   // insertion of a large number of select instructions. For targets
3269   // without predication/cmovs, this is a big pessimization.
3270 
3271   // Also do not perform this transformation if any phi node in the common
3272   // destination block can trap when reached by BB or PBB (PR17073). In that
3273   // case, it would be unsafe to hoist the operation into a select instruction.
3274 
3275   BasicBlock *CommonDest = PBI->getSuccessor(PBIOp);
3276   unsigned NumPhis = 0;
3277   for (BasicBlock::iterator II = CommonDest->begin(); isa<PHINode>(II);
3278        ++II, ++NumPhis) {
3279     if (NumPhis > 2) // Disable this xform.
3280       return false;
3281 
3282     PHINode *PN = cast<PHINode>(II);
3283     Value *BIV = PN->getIncomingValueForBlock(BB);
3284     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BIV))
3285       if (CE->canTrap())
3286         return false;
3287 
3288     unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
3289     Value *PBIV = PN->getIncomingValue(PBBIdx);
3290     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(PBIV))
3291       if (CE->canTrap())
3292         return false;
3293   }
3294 
3295   // Finally, if everything is ok, fold the branches to logical ops.
3296   BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1);
3297 
3298   LLVM_DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent()
3299                     << "AND: " << *BI->getParent());
3300 
3301   // If OtherDest *is* BB, then BB is a basic block with a single conditional
3302   // branch in it, where one edge (OtherDest) goes back to itself but the other
3303   // exits.  We don't *know* that the program avoids the infinite loop
3304   // (even though that seems likely).  If we do this xform naively, we'll end up
3305   // recursively unpeeling the loop.  Since we know that (after the xform is
3306   // done) that the block *is* infinite if reached, we just make it an obviously
3307   // infinite loop with no cond branch.
3308   if (OtherDest == BB) {
3309     // Insert it at the end of the function, because it's either code,
3310     // or it won't matter if it's hot. :)
3311     BasicBlock *InfLoopBlock =
3312         BasicBlock::Create(BB->getContext(), "infloop", BB->getParent());
3313     BranchInst::Create(InfLoopBlock, InfLoopBlock);
3314     OtherDest = InfLoopBlock;
3315   }
3316 
3317   LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent());
3318 
3319   // BI may have other predecessors.  Because of this, we leave
3320   // it alone, but modify PBI.
3321 
3322   // Make sure we get to CommonDest on True&True directions.
3323   Value *PBICond = PBI->getCondition();
3324   IRBuilder<NoFolder> Builder(PBI);
3325   if (PBIOp)
3326     PBICond = Builder.CreateNot(PBICond, PBICond->getName() + ".not");
3327 
3328   Value *BICond = BI->getCondition();
3329   if (BIOp)
3330     BICond = Builder.CreateNot(BICond, BICond->getName() + ".not");
3331 
3332   // Merge the conditions.
3333   Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge");
3334 
3335   // Modify PBI to branch on the new condition to the new dests.
3336   PBI->setCondition(Cond);
3337   PBI->setSuccessor(0, CommonDest);
3338   PBI->setSuccessor(1, OtherDest);
3339 
3340   // Update branch weight for PBI.
3341   uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
3342   uint64_t PredCommon, PredOther, SuccCommon, SuccOther;
3343   bool HasWeights =
3344       extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
3345                              SuccTrueWeight, SuccFalseWeight);
3346   if (HasWeights) {
3347     PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
3348     PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
3349     SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
3350     SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
3351     // The weight to CommonDest should be PredCommon * SuccTotal +
3352     //                                    PredOther * SuccCommon.
3353     // The weight to OtherDest should be PredOther * SuccOther.
3354     uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) +
3355                                   PredOther * SuccCommon,
3356                               PredOther * SuccOther};
3357     // Halve the weights if any of them cannot fit in an uint32_t
3358     FitWeights(NewWeights);
3359 
3360     setBranchWeights(PBI, NewWeights[0], NewWeights[1]);
3361   }
3362 
3363   // OtherDest may have phi nodes.  If so, add an entry from PBI's
3364   // block that are identical to the entries for BI's block.
3365   AddPredecessorToBlock(OtherDest, PBI->getParent(), BB);
3366 
3367   // We know that the CommonDest already had an edge from PBI to
3368   // it.  If it has PHIs though, the PHIs may have different
3369   // entries for BB and PBI's BB.  If so, insert a select to make
3370   // them agree.
3371   for (PHINode &PN : CommonDest->phis()) {
3372     Value *BIV = PN.getIncomingValueForBlock(BB);
3373     unsigned PBBIdx = PN.getBasicBlockIndex(PBI->getParent());
3374     Value *PBIV = PN.getIncomingValue(PBBIdx);
3375     if (BIV != PBIV) {
3376       // Insert a select in PBI to pick the right value.
3377       SelectInst *NV = cast<SelectInst>(
3378           Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName() + ".mux"));
3379       PN.setIncomingValue(PBBIdx, NV);
3380       // Although the select has the same condition as PBI, the original branch
3381       // weights for PBI do not apply to the new select because the select's
3382       // 'logical' edges are incoming edges of the phi that is eliminated, not
3383       // the outgoing edges of PBI.
3384       if (HasWeights) {
3385         uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
3386         uint64_t PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
3387         uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
3388         uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
3389         // The weight to PredCommonDest should be PredCommon * SuccTotal.
3390         // The weight to PredOtherDest should be PredOther * SuccCommon.
3391         uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther),
3392                                   PredOther * SuccCommon};
3393 
3394         FitWeights(NewWeights);
3395 
3396         setBranchWeights(NV, NewWeights[0], NewWeights[1]);
3397       }
3398     }
3399   }
3400 
3401   LLVM_DEBUG(dbgs() << "INTO: " << *PBI->getParent());
3402   LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent());
3403 
3404   // This basic block is probably dead.  We know it has at least
3405   // one fewer predecessor.
3406   return true;
3407 }
3408 
3409 // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is
3410 // true or to FalseBB if Cond is false.
3411 // Takes care of updating the successors and removing the old terminator.
3412 // Also makes sure not to introduce new successors by assuming that edges to
3413 // non-successor TrueBBs and FalseBBs aren't reachable.
3414 static bool SimplifyTerminatorOnSelect(TerminatorInst *OldTerm, Value *Cond,
3415                                        BasicBlock *TrueBB, BasicBlock *FalseBB,
3416                                        uint32_t TrueWeight,
3417                                        uint32_t FalseWeight) {
3418   // Remove any superfluous successor edges from the CFG.
3419   // First, figure out which successors to preserve.
3420   // If TrueBB and FalseBB are equal, only try to preserve one copy of that
3421   // successor.
3422   BasicBlock *KeepEdge1 = TrueBB;
3423   BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr;
3424 
3425   // Then remove the rest.
3426   for (BasicBlock *Succ : successors(OldTerm)) {
3427     // Make sure only to keep exactly one copy of each edge.
3428     if (Succ == KeepEdge1)
3429       KeepEdge1 = nullptr;
3430     else if (Succ == KeepEdge2)
3431       KeepEdge2 = nullptr;
3432     else
3433       Succ->removePredecessor(OldTerm->getParent(),
3434                               /*DontDeleteUselessPHIs=*/true);
3435   }
3436 
3437   IRBuilder<> Builder(OldTerm);
3438   Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc());
3439 
3440   // Insert an appropriate new terminator.
3441   if (!KeepEdge1 && !KeepEdge2) {
3442     if (TrueBB == FalseBB)
3443       // We were only looking for one successor, and it was present.
3444       // Create an unconditional branch to it.
3445       Builder.CreateBr(TrueBB);
3446     else {
3447       // We found both of the successors we were looking for.
3448       // Create a conditional branch sharing the condition of the select.
3449       BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB);
3450       if (TrueWeight != FalseWeight)
3451         setBranchWeights(NewBI, TrueWeight, FalseWeight);
3452     }
3453   } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) {
3454     // Neither of the selected blocks were successors, so this
3455     // terminator must be unreachable.
3456     new UnreachableInst(OldTerm->getContext(), OldTerm);
3457   } else {
3458     // One of the selected values was a successor, but the other wasn't.
3459     // Insert an unconditional branch to the one that was found;
3460     // the edge to the one that wasn't must be unreachable.
3461     if (!KeepEdge1)
3462       // Only TrueBB was found.
3463       Builder.CreateBr(TrueBB);
3464     else
3465       // Only FalseBB was found.
3466       Builder.CreateBr(FalseBB);
3467   }
3468 
3469   EraseTerminatorInstAndDCECond(OldTerm);
3470   return true;
3471 }
3472 
3473 // Replaces
3474 //   (switch (select cond, X, Y)) on constant X, Y
3475 // with a branch - conditional if X and Y lead to distinct BBs,
3476 // unconditional otherwise.
3477 static bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select) {
3478   // Check for constant integer values in the select.
3479   ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue());
3480   ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue());
3481   if (!TrueVal || !FalseVal)
3482     return false;
3483 
3484   // Find the relevant condition and destinations.
3485   Value *Condition = Select->getCondition();
3486   BasicBlock *TrueBB = SI->findCaseValue(TrueVal)->getCaseSuccessor();
3487   BasicBlock *FalseBB = SI->findCaseValue(FalseVal)->getCaseSuccessor();
3488 
3489   // Get weight for TrueBB and FalseBB.
3490   uint32_t TrueWeight = 0, FalseWeight = 0;
3491   SmallVector<uint64_t, 8> Weights;
3492   bool HasWeights = HasBranchWeights(SI);
3493   if (HasWeights) {
3494     GetBranchWeights(SI, Weights);
3495     if (Weights.size() == 1 + SI->getNumCases()) {
3496       TrueWeight =
3497           (uint32_t)Weights[SI->findCaseValue(TrueVal)->getSuccessorIndex()];
3498       FalseWeight =
3499           (uint32_t)Weights[SI->findCaseValue(FalseVal)->getSuccessorIndex()];
3500     }
3501   }
3502 
3503   // Perform the actual simplification.
3504   return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, TrueWeight,
3505                                     FalseWeight);
3506 }
3507 
3508 // Replaces
3509 //   (indirectbr (select cond, blockaddress(@fn, BlockA),
3510 //                             blockaddress(@fn, BlockB)))
3511 // with
3512 //   (br cond, BlockA, BlockB).
3513 static bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI) {
3514   // Check that both operands of the select are block addresses.
3515   BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue());
3516   BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue());
3517   if (!TBA || !FBA)
3518     return false;
3519 
3520   // Extract the actual blocks.
3521   BasicBlock *TrueBB = TBA->getBasicBlock();
3522   BasicBlock *FalseBB = FBA->getBasicBlock();
3523 
3524   // Perform the actual simplification.
3525   return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 0,
3526                                     0);
3527 }
3528 
3529 /// This is called when we find an icmp instruction
3530 /// (a seteq/setne with a constant) as the only instruction in a
3531 /// block that ends with an uncond branch.  We are looking for a very specific
3532 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified.  In
3533 /// this case, we merge the first two "or's of icmp" into a switch, but then the
3534 /// default value goes to an uncond block with a seteq in it, we get something
3535 /// like:
3536 ///
3537 ///   switch i8 %A, label %DEFAULT [ i8 1, label %end    i8 2, label %end ]
3538 /// DEFAULT:
3539 ///   %tmp = icmp eq i8 %A, 92
3540 ///   br label %end
3541 /// end:
3542 ///   ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ]
3543 ///
3544 /// We prefer to split the edge to 'end' so that there is a true/false entry to
3545 /// the PHI, merging the third icmp into the switch.
3546 static bool tryToSimplifyUncondBranchWithICmpInIt(
3547     ICmpInst *ICI, IRBuilder<> &Builder, const DataLayout &DL,
3548     const TargetTransformInfo &TTI, const SimplifyCFGOptions &Options) {
3549   BasicBlock *BB = ICI->getParent();
3550 
3551   // If the block has any PHIs in it or the icmp has multiple uses, it is too
3552   // complex.
3553   if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse())
3554     return false;
3555 
3556   Value *V = ICI->getOperand(0);
3557   ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1));
3558 
3559   // The pattern we're looking for is where our only predecessor is a switch on
3560   // 'V' and this block is the default case for the switch.  In this case we can
3561   // fold the compared value into the switch to simplify things.
3562   BasicBlock *Pred = BB->getSinglePredecessor();
3563   if (!Pred || !isa<SwitchInst>(Pred->getTerminator()))
3564     return false;
3565 
3566   SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator());
3567   if (SI->getCondition() != V)
3568     return false;
3569 
3570   // If BB is reachable on a non-default case, then we simply know the value of
3571   // V in this block.  Substitute it and constant fold the icmp instruction
3572   // away.
3573   if (SI->getDefaultDest() != BB) {
3574     ConstantInt *VVal = SI->findCaseDest(BB);
3575     assert(VVal && "Should have a unique destination value");
3576     ICI->setOperand(0, VVal);
3577 
3578     if (Value *V = SimplifyInstruction(ICI, {DL, ICI})) {
3579       ICI->replaceAllUsesWith(V);
3580       ICI->eraseFromParent();
3581     }
3582     // BB is now empty, so it is likely to simplify away.
3583     return simplifyCFG(BB, TTI, Options) || true;
3584   }
3585 
3586   // Ok, the block is reachable from the default dest.  If the constant we're
3587   // comparing exists in one of the other edges, then we can constant fold ICI
3588   // and zap it.
3589   if (SI->findCaseValue(Cst) != SI->case_default()) {
3590     Value *V;
3591     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
3592       V = ConstantInt::getFalse(BB->getContext());
3593     else
3594       V = ConstantInt::getTrue(BB->getContext());
3595 
3596     ICI->replaceAllUsesWith(V);
3597     ICI->eraseFromParent();
3598     // BB is now empty, so it is likely to simplify away.
3599     return simplifyCFG(BB, TTI, Options) || true;
3600   }
3601 
3602   // The use of the icmp has to be in the 'end' block, by the only PHI node in
3603   // the block.
3604   BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0);
3605   PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back());
3606   if (PHIUse == nullptr || PHIUse != &SuccBlock->front() ||
3607       isa<PHINode>(++BasicBlock::iterator(PHIUse)))
3608     return false;
3609 
3610   // If the icmp is a SETEQ, then the default dest gets false, the new edge gets
3611   // true in the PHI.
3612   Constant *DefaultCst = ConstantInt::getTrue(BB->getContext());
3613   Constant *NewCst = ConstantInt::getFalse(BB->getContext());
3614 
3615   if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
3616     std::swap(DefaultCst, NewCst);
3617 
3618   // Replace ICI (which is used by the PHI for the default value) with true or
3619   // false depending on if it is EQ or NE.
3620   ICI->replaceAllUsesWith(DefaultCst);
3621   ICI->eraseFromParent();
3622 
3623   // Okay, the switch goes to this block on a default value.  Add an edge from
3624   // the switch to the merge point on the compared value.
3625   BasicBlock *NewBB =
3626       BasicBlock::Create(BB->getContext(), "switch.edge", BB->getParent(), BB);
3627   SmallVector<uint64_t, 8> Weights;
3628   bool HasWeights = HasBranchWeights(SI);
3629   if (HasWeights) {
3630     GetBranchWeights(SI, Weights);
3631     if (Weights.size() == 1 + SI->getNumCases()) {
3632       // Split weight for default case to case for "Cst".
3633       Weights[0] = (Weights[0] + 1) >> 1;
3634       Weights.push_back(Weights[0]);
3635 
3636       SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
3637       setBranchWeights(SI, MDWeights);
3638     }
3639   }
3640   SI->addCase(Cst, NewBB);
3641 
3642   // NewBB branches to the phi block, add the uncond branch and the phi entry.
3643   Builder.SetInsertPoint(NewBB);
3644   Builder.SetCurrentDebugLocation(SI->getDebugLoc());
3645   Builder.CreateBr(SuccBlock);
3646   PHIUse->addIncoming(NewCst, NewBB);
3647   return true;
3648 }
3649 
3650 /// The specified branch is a conditional branch.
3651 /// Check to see if it is branching on an or/and chain of icmp instructions, and
3652 /// fold it into a switch instruction if so.
3653 static bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder,
3654                                       const DataLayout &DL) {
3655   Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
3656   if (!Cond)
3657     return false;
3658 
3659   // Change br (X == 0 | X == 1), T, F into a switch instruction.
3660   // If this is a bunch of seteq's or'd together, or if it's a bunch of
3661   // 'setne's and'ed together, collect them.
3662 
3663   // Try to gather values from a chain of and/or to be turned into a switch
3664   ConstantComparesGatherer ConstantCompare(Cond, DL);
3665   // Unpack the result
3666   SmallVectorImpl<ConstantInt *> &Values = ConstantCompare.Vals;
3667   Value *CompVal = ConstantCompare.CompValue;
3668   unsigned UsedICmps = ConstantCompare.UsedICmps;
3669   Value *ExtraCase = ConstantCompare.Extra;
3670 
3671   // If we didn't have a multiply compared value, fail.
3672   if (!CompVal)
3673     return false;
3674 
3675   // Avoid turning single icmps into a switch.
3676   if (UsedICmps <= 1)
3677     return false;
3678 
3679   bool TrueWhenEqual = (Cond->getOpcode() == Instruction::Or);
3680 
3681   // There might be duplicate constants in the list, which the switch
3682   // instruction can't handle, remove them now.
3683   array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate);
3684   Values.erase(std::unique(Values.begin(), Values.end()), Values.end());
3685 
3686   // If Extra was used, we require at least two switch values to do the
3687   // transformation.  A switch with one value is just a conditional branch.
3688   if (ExtraCase && Values.size() < 2)
3689     return false;
3690 
3691   // TODO: Preserve branch weight metadata, similarly to how
3692   // FoldValueComparisonIntoPredecessors preserves it.
3693 
3694   // Figure out which block is which destination.
3695   BasicBlock *DefaultBB = BI->getSuccessor(1);
3696   BasicBlock *EdgeBB = BI->getSuccessor(0);
3697   if (!TrueWhenEqual)
3698     std::swap(DefaultBB, EdgeBB);
3699 
3700   BasicBlock *BB = BI->getParent();
3701 
3702   LLVM_DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size()
3703                     << " cases into SWITCH.  BB is:\n"
3704                     << *BB);
3705 
3706   // If there are any extra values that couldn't be folded into the switch
3707   // then we evaluate them with an explicit branch first.  Split the block
3708   // right before the condbr to handle it.
3709   if (ExtraCase) {
3710     BasicBlock *NewBB =
3711         BB->splitBasicBlock(BI->getIterator(), "switch.early.test");
3712     // Remove the uncond branch added to the old block.
3713     TerminatorInst *OldTI = BB->getTerminator();
3714     Builder.SetInsertPoint(OldTI);
3715 
3716     if (TrueWhenEqual)
3717       Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB);
3718     else
3719       Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB);
3720 
3721     OldTI->eraseFromParent();
3722 
3723     // If there are PHI nodes in EdgeBB, then we need to add a new entry to them
3724     // for the edge we just added.
3725     AddPredecessorToBlock(EdgeBB, BB, NewBB);
3726 
3727     LLVM_DEBUG(dbgs() << "  ** 'icmp' chain unhandled condition: " << *ExtraCase
3728                       << "\nEXTRABB = " << *BB);
3729     BB = NewBB;
3730   }
3731 
3732   Builder.SetInsertPoint(BI);
3733   // Convert pointer to int before we switch.
3734   if (CompVal->getType()->isPointerTy()) {
3735     CompVal = Builder.CreatePtrToInt(
3736         CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr");
3737   }
3738 
3739   // Create the new switch instruction now.
3740   SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size());
3741 
3742   // Add all of the 'cases' to the switch instruction.
3743   for (unsigned i = 0, e = Values.size(); i != e; ++i)
3744     New->addCase(Values[i], EdgeBB);
3745 
3746   // We added edges from PI to the EdgeBB.  As such, if there were any
3747   // PHI nodes in EdgeBB, they need entries to be added corresponding to
3748   // the number of edges added.
3749   for (BasicBlock::iterator BBI = EdgeBB->begin(); isa<PHINode>(BBI); ++BBI) {
3750     PHINode *PN = cast<PHINode>(BBI);
3751     Value *InVal = PN->getIncomingValueForBlock(BB);
3752     for (unsigned i = 0, e = Values.size() - 1; i != e; ++i)
3753       PN->addIncoming(InVal, BB);
3754   }
3755 
3756   // Erase the old branch instruction.
3757   EraseTerminatorInstAndDCECond(BI);
3758 
3759   LLVM_DEBUG(dbgs() << "  ** 'icmp' chain result is:\n" << *BB << '\n');
3760   return true;
3761 }
3762 
3763 bool SimplifyCFGOpt::SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder) {
3764   if (isa<PHINode>(RI->getValue()))
3765     return SimplifyCommonResume(RI);
3766   else if (isa<LandingPadInst>(RI->getParent()->getFirstNonPHI()) &&
3767            RI->getValue() == RI->getParent()->getFirstNonPHI())
3768     // The resume must unwind the exception that caused control to branch here.
3769     return SimplifySingleResume(RI);
3770 
3771   return false;
3772 }
3773 
3774 // Simplify resume that is shared by several landing pads (phi of landing pad).
3775 bool SimplifyCFGOpt::SimplifyCommonResume(ResumeInst *RI) {
3776   BasicBlock *BB = RI->getParent();
3777 
3778   // Check that there are no other instructions except for debug intrinsics
3779   // between the phi of landing pads (RI->getValue()) and resume instruction.
3780   BasicBlock::iterator I = cast<Instruction>(RI->getValue())->getIterator(),
3781                        E = RI->getIterator();
3782   while (++I != E)
3783     if (!isa<DbgInfoIntrinsic>(I))
3784       return false;
3785 
3786   SmallSetVector<BasicBlock *, 4> TrivialUnwindBlocks;
3787   auto *PhiLPInst = cast<PHINode>(RI->getValue());
3788 
3789   // Check incoming blocks to see if any of them are trivial.
3790   for (unsigned Idx = 0, End = PhiLPInst->getNumIncomingValues(); Idx != End;
3791        Idx++) {
3792     auto *IncomingBB = PhiLPInst->getIncomingBlock(Idx);
3793     auto *IncomingValue = PhiLPInst->getIncomingValue(Idx);
3794 
3795     // If the block has other successors, we can not delete it because
3796     // it has other dependents.
3797     if (IncomingBB->getUniqueSuccessor() != BB)
3798       continue;
3799 
3800     auto *LandingPad = dyn_cast<LandingPadInst>(IncomingBB->getFirstNonPHI());
3801     // Not the landing pad that caused the control to branch here.
3802     if (IncomingValue != LandingPad)
3803       continue;
3804 
3805     bool isTrivial = true;
3806 
3807     I = IncomingBB->getFirstNonPHI()->getIterator();
3808     E = IncomingBB->getTerminator()->getIterator();
3809     while (++I != E)
3810       if (!isa<DbgInfoIntrinsic>(I)) {
3811         isTrivial = false;
3812         break;
3813       }
3814 
3815     if (isTrivial)
3816       TrivialUnwindBlocks.insert(IncomingBB);
3817   }
3818 
3819   // If no trivial unwind blocks, don't do any simplifications.
3820   if (TrivialUnwindBlocks.empty())
3821     return false;
3822 
3823   // Turn all invokes that unwind here into calls.
3824   for (auto *TrivialBB : TrivialUnwindBlocks) {
3825     // Blocks that will be simplified should be removed from the phi node.
3826     // Note there could be multiple edges to the resume block, and we need
3827     // to remove them all.
3828     while (PhiLPInst->getBasicBlockIndex(TrivialBB) != -1)
3829       BB->removePredecessor(TrivialBB, true);
3830 
3831     for (pred_iterator PI = pred_begin(TrivialBB), PE = pred_end(TrivialBB);
3832          PI != PE;) {
3833       BasicBlock *Pred = *PI++;
3834       removeUnwindEdge(Pred);
3835     }
3836 
3837     // In each SimplifyCFG run, only the current processed block can be erased.
3838     // Otherwise, it will break the iteration of SimplifyCFG pass. So instead
3839     // of erasing TrivialBB, we only remove the branch to the common resume
3840     // block so that we can later erase the resume block since it has no
3841     // predecessors.
3842     TrivialBB->getTerminator()->eraseFromParent();
3843     new UnreachableInst(RI->getContext(), TrivialBB);
3844   }
3845 
3846   // Delete the resume block if all its predecessors have been removed.
3847   if (pred_empty(BB))
3848     BB->eraseFromParent();
3849 
3850   return !TrivialUnwindBlocks.empty();
3851 }
3852 
3853 // Simplify resume that is only used by a single (non-phi) landing pad.
3854 bool SimplifyCFGOpt::SimplifySingleResume(ResumeInst *RI) {
3855   BasicBlock *BB = RI->getParent();
3856   LandingPadInst *LPInst = dyn_cast<LandingPadInst>(BB->getFirstNonPHI());
3857   assert(RI->getValue() == LPInst &&
3858          "Resume must unwind the exception that caused control to here");
3859 
3860   // Check that there are no other instructions except for debug intrinsics.
3861   BasicBlock::iterator I = LPInst->getIterator(), E = RI->getIterator();
3862   while (++I != E)
3863     if (!isa<DbgInfoIntrinsic>(I))
3864       return false;
3865 
3866   // Turn all invokes that unwind here into calls and delete the basic block.
3867   for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) {
3868     BasicBlock *Pred = *PI++;
3869     removeUnwindEdge(Pred);
3870   }
3871 
3872   // The landingpad is now unreachable.  Zap it.
3873   if (LoopHeaders)
3874     LoopHeaders->erase(BB);
3875   BB->eraseFromParent();
3876   return true;
3877 }
3878 
3879 static bool removeEmptyCleanup(CleanupReturnInst *RI) {
3880   // If this is a trivial cleanup pad that executes no instructions, it can be
3881   // eliminated.  If the cleanup pad continues to the caller, any predecessor
3882   // that is an EH pad will be updated to continue to the caller and any
3883   // predecessor that terminates with an invoke instruction will have its invoke
3884   // instruction converted to a call instruction.  If the cleanup pad being
3885   // simplified does not continue to the caller, each predecessor will be
3886   // updated to continue to the unwind destination of the cleanup pad being
3887   // simplified.
3888   BasicBlock *BB = RI->getParent();
3889   CleanupPadInst *CPInst = RI->getCleanupPad();
3890   if (CPInst->getParent() != BB)
3891     // This isn't an empty cleanup.
3892     return false;
3893 
3894   // We cannot kill the pad if it has multiple uses.  This typically arises
3895   // from unreachable basic blocks.
3896   if (!CPInst->hasOneUse())
3897     return false;
3898 
3899   // Check that there are no other instructions except for benign intrinsics.
3900   BasicBlock::iterator I = CPInst->getIterator(), E = RI->getIterator();
3901   while (++I != E) {
3902     auto *II = dyn_cast<IntrinsicInst>(I);
3903     if (!II)
3904       return false;
3905 
3906     Intrinsic::ID IntrinsicID = II->getIntrinsicID();
3907     switch (IntrinsicID) {
3908     case Intrinsic::dbg_declare:
3909     case Intrinsic::dbg_value:
3910     case Intrinsic::dbg_label:
3911     case Intrinsic::lifetime_end:
3912       break;
3913     default:
3914       return false;
3915     }
3916   }
3917 
3918   // If the cleanup return we are simplifying unwinds to the caller, this will
3919   // set UnwindDest to nullptr.
3920   BasicBlock *UnwindDest = RI->getUnwindDest();
3921   Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr;
3922 
3923   // We're about to remove BB from the control flow.  Before we do, sink any
3924   // PHINodes into the unwind destination.  Doing this before changing the
3925   // control flow avoids some potentially slow checks, since we can currently
3926   // be certain that UnwindDest and BB have no common predecessors (since they
3927   // are both EH pads).
3928   if (UnwindDest) {
3929     // First, go through the PHI nodes in UnwindDest and update any nodes that
3930     // reference the block we are removing
3931     for (BasicBlock::iterator I = UnwindDest->begin(),
3932                               IE = DestEHPad->getIterator();
3933          I != IE; ++I) {
3934       PHINode *DestPN = cast<PHINode>(I);
3935 
3936       int Idx = DestPN->getBasicBlockIndex(BB);
3937       // Since BB unwinds to UnwindDest, it has to be in the PHI node.
3938       assert(Idx != -1);
3939       // This PHI node has an incoming value that corresponds to a control
3940       // path through the cleanup pad we are removing.  If the incoming
3941       // value is in the cleanup pad, it must be a PHINode (because we
3942       // verified above that the block is otherwise empty).  Otherwise, the
3943       // value is either a constant or a value that dominates the cleanup
3944       // pad being removed.
3945       //
3946       // Because BB and UnwindDest are both EH pads, all of their
3947       // predecessors must unwind to these blocks, and since no instruction
3948       // can have multiple unwind destinations, there will be no overlap in
3949       // incoming blocks between SrcPN and DestPN.
3950       Value *SrcVal = DestPN->getIncomingValue(Idx);
3951       PHINode *SrcPN = dyn_cast<PHINode>(SrcVal);
3952 
3953       // Remove the entry for the block we are deleting.
3954       DestPN->removeIncomingValue(Idx, false);
3955 
3956       if (SrcPN && SrcPN->getParent() == BB) {
3957         // If the incoming value was a PHI node in the cleanup pad we are
3958         // removing, we need to merge that PHI node's incoming values into
3959         // DestPN.
3960         for (unsigned SrcIdx = 0, SrcE = SrcPN->getNumIncomingValues();
3961              SrcIdx != SrcE; ++SrcIdx) {
3962           DestPN->addIncoming(SrcPN->getIncomingValue(SrcIdx),
3963                               SrcPN->getIncomingBlock(SrcIdx));
3964         }
3965       } else {
3966         // Otherwise, the incoming value came from above BB and
3967         // so we can just reuse it.  We must associate all of BB's
3968         // predecessors with this value.
3969         for (auto *pred : predecessors(BB)) {
3970           DestPN->addIncoming(SrcVal, pred);
3971         }
3972       }
3973     }
3974 
3975     // Sink any remaining PHI nodes directly into UnwindDest.
3976     Instruction *InsertPt = DestEHPad;
3977     for (BasicBlock::iterator I = BB->begin(),
3978                               IE = BB->getFirstNonPHI()->getIterator();
3979          I != IE;) {
3980       // The iterator must be incremented here because the instructions are
3981       // being moved to another block.
3982       PHINode *PN = cast<PHINode>(I++);
3983       if (PN->use_empty())
3984         // If the PHI node has no uses, just leave it.  It will be erased
3985         // when we erase BB below.
3986         continue;
3987 
3988       // Otherwise, sink this PHI node into UnwindDest.
3989       // Any predecessors to UnwindDest which are not already represented
3990       // must be back edges which inherit the value from the path through
3991       // BB.  In this case, the PHI value must reference itself.
3992       for (auto *pred : predecessors(UnwindDest))
3993         if (pred != BB)
3994           PN->addIncoming(PN, pred);
3995       PN->moveBefore(InsertPt);
3996     }
3997   }
3998 
3999   for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) {
4000     // The iterator must be updated here because we are removing this pred.
4001     BasicBlock *PredBB = *PI++;
4002     if (UnwindDest == nullptr) {
4003       removeUnwindEdge(PredBB);
4004     } else {
4005       TerminatorInst *TI = PredBB->getTerminator();
4006       TI->replaceUsesOfWith(BB, UnwindDest);
4007     }
4008   }
4009 
4010   // The cleanup pad is now unreachable.  Zap it.
4011   BB->eraseFromParent();
4012   return true;
4013 }
4014 
4015 // Try to merge two cleanuppads together.
4016 static bool mergeCleanupPad(CleanupReturnInst *RI) {
4017   // Skip any cleanuprets which unwind to caller, there is nothing to merge
4018   // with.
4019   BasicBlock *UnwindDest = RI->getUnwindDest();
4020   if (!UnwindDest)
4021     return false;
4022 
4023   // This cleanupret isn't the only predecessor of this cleanuppad, it wouldn't
4024   // be safe to merge without code duplication.
4025   if (UnwindDest->getSinglePredecessor() != RI->getParent())
4026     return false;
4027 
4028   // Verify that our cleanuppad's unwind destination is another cleanuppad.
4029   auto *SuccessorCleanupPad = dyn_cast<CleanupPadInst>(&UnwindDest->front());
4030   if (!SuccessorCleanupPad)
4031     return false;
4032 
4033   CleanupPadInst *PredecessorCleanupPad = RI->getCleanupPad();
4034   // Replace any uses of the successor cleanupad with the predecessor pad
4035   // The only cleanuppad uses should be this cleanupret, it's cleanupret and
4036   // funclet bundle operands.
4037   SuccessorCleanupPad->replaceAllUsesWith(PredecessorCleanupPad);
4038   // Remove the old cleanuppad.
4039   SuccessorCleanupPad->eraseFromParent();
4040   // Now, we simply replace the cleanupret with a branch to the unwind
4041   // destination.
4042   BranchInst::Create(UnwindDest, RI->getParent());
4043   RI->eraseFromParent();
4044 
4045   return true;
4046 }
4047 
4048 bool SimplifyCFGOpt::SimplifyCleanupReturn(CleanupReturnInst *RI) {
4049   // It is possible to transiantly have an undef cleanuppad operand because we
4050   // have deleted some, but not all, dead blocks.
4051   // Eventually, this block will be deleted.
4052   if (isa<UndefValue>(RI->getOperand(0)))
4053     return false;
4054 
4055   if (mergeCleanupPad(RI))
4056     return true;
4057 
4058   if (removeEmptyCleanup(RI))
4059     return true;
4060 
4061   return false;
4062 }
4063 
4064 bool SimplifyCFGOpt::SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) {
4065   BasicBlock *BB = RI->getParent();
4066   if (!BB->getFirstNonPHIOrDbg()->isTerminator())
4067     return false;
4068 
4069   // Find predecessors that end with branches.
4070   SmallVector<BasicBlock *, 8> UncondBranchPreds;
4071   SmallVector<BranchInst *, 8> CondBranchPreds;
4072   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
4073     BasicBlock *P = *PI;
4074     TerminatorInst *PTI = P->getTerminator();
4075     if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) {
4076       if (BI->isUnconditional())
4077         UncondBranchPreds.push_back(P);
4078       else
4079         CondBranchPreds.push_back(BI);
4080     }
4081   }
4082 
4083   // If we found some, do the transformation!
4084   if (!UncondBranchPreds.empty() && DupRet) {
4085     while (!UncondBranchPreds.empty()) {
4086       BasicBlock *Pred = UncondBranchPreds.pop_back_val();
4087       LLVM_DEBUG(dbgs() << "FOLDING: " << *BB
4088                         << "INTO UNCOND BRANCH PRED: " << *Pred);
4089       (void)FoldReturnIntoUncondBranch(RI, BB, Pred);
4090     }
4091 
4092     // If we eliminated all predecessors of the block, delete the block now.
4093     if (pred_empty(BB)) {
4094       // We know there are no successors, so just nuke the block.
4095       if (LoopHeaders)
4096         LoopHeaders->erase(BB);
4097       BB->eraseFromParent();
4098     }
4099 
4100     return true;
4101   }
4102 
4103   // Check out all of the conditional branches going to this return
4104   // instruction.  If any of them just select between returns, change the
4105   // branch itself into a select/return pair.
4106   while (!CondBranchPreds.empty()) {
4107     BranchInst *BI = CondBranchPreds.pop_back_val();
4108 
4109     // Check to see if the non-BB successor is also a return block.
4110     if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) &&
4111         isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) &&
4112         SimplifyCondBranchToTwoReturns(BI, Builder))
4113       return true;
4114   }
4115   return false;
4116 }
4117 
4118 bool SimplifyCFGOpt::SimplifyUnreachable(UnreachableInst *UI) {
4119   BasicBlock *BB = UI->getParent();
4120 
4121   bool Changed = false;
4122 
4123   // If there are any instructions immediately before the unreachable that can
4124   // be removed, do so.
4125   while (UI->getIterator() != BB->begin()) {
4126     BasicBlock::iterator BBI = UI->getIterator();
4127     --BBI;
4128     // Do not delete instructions that can have side effects which might cause
4129     // the unreachable to not be reachable; specifically, calls and volatile
4130     // operations may have this effect.
4131     if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI))
4132       break;
4133 
4134     if (BBI->mayHaveSideEffects()) {
4135       if (auto *SI = dyn_cast<StoreInst>(BBI)) {
4136         if (SI->isVolatile())
4137           break;
4138       } else if (auto *LI = dyn_cast<LoadInst>(BBI)) {
4139         if (LI->isVolatile())
4140           break;
4141       } else if (auto *RMWI = dyn_cast<AtomicRMWInst>(BBI)) {
4142         if (RMWI->isVolatile())
4143           break;
4144       } else if (auto *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) {
4145         if (CXI->isVolatile())
4146           break;
4147       } else if (isa<CatchPadInst>(BBI)) {
4148         // A catchpad may invoke exception object constructors and such, which
4149         // in some languages can be arbitrary code, so be conservative by
4150         // default.
4151         // For CoreCLR, it just involves a type test, so can be removed.
4152         if (classifyEHPersonality(BB->getParent()->getPersonalityFn()) !=
4153             EHPersonality::CoreCLR)
4154           break;
4155       } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) &&
4156                  !isa<LandingPadInst>(BBI)) {
4157         break;
4158       }
4159       // Note that deleting LandingPad's here is in fact okay, although it
4160       // involves a bit of subtle reasoning. If this inst is a LandingPad,
4161       // all the predecessors of this block will be the unwind edges of Invokes,
4162       // and we can therefore guarantee this block will be erased.
4163     }
4164 
4165     // Delete this instruction (any uses are guaranteed to be dead)
4166     if (!BBI->use_empty())
4167       BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
4168     BBI->eraseFromParent();
4169     Changed = true;
4170   }
4171 
4172   // If the unreachable instruction is the first in the block, take a gander
4173   // at all of the predecessors of this instruction, and simplify them.
4174   if (&BB->front() != UI)
4175     return Changed;
4176 
4177   SmallVector<BasicBlock *, 8> Preds(pred_begin(BB), pred_end(BB));
4178   for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
4179     TerminatorInst *TI = Preds[i]->getTerminator();
4180     IRBuilder<> Builder(TI);
4181     if (auto *BI = dyn_cast<BranchInst>(TI)) {
4182       if (BI->isUnconditional()) {
4183         if (BI->getSuccessor(0) == BB) {
4184           new UnreachableInst(TI->getContext(), TI);
4185           TI->eraseFromParent();
4186           Changed = true;
4187         }
4188       } else {
4189         if (BI->getSuccessor(0) == BB) {
4190           Builder.CreateBr(BI->getSuccessor(1));
4191           EraseTerminatorInstAndDCECond(BI);
4192         } else if (BI->getSuccessor(1) == BB) {
4193           Builder.CreateBr(BI->getSuccessor(0));
4194           EraseTerminatorInstAndDCECond(BI);
4195           Changed = true;
4196         }
4197       }
4198     } else if (auto *SI = dyn_cast<SwitchInst>(TI)) {
4199       for (auto i = SI->case_begin(), e = SI->case_end(); i != e;) {
4200         if (i->getCaseSuccessor() != BB) {
4201           ++i;
4202           continue;
4203         }
4204         BB->removePredecessor(SI->getParent());
4205         i = SI->removeCase(i);
4206         e = SI->case_end();
4207         Changed = true;
4208       }
4209     } else if (auto *II = dyn_cast<InvokeInst>(TI)) {
4210       if (II->getUnwindDest() == BB) {
4211         removeUnwindEdge(TI->getParent());
4212         Changed = true;
4213       }
4214     } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) {
4215       if (CSI->getUnwindDest() == BB) {
4216         removeUnwindEdge(TI->getParent());
4217         Changed = true;
4218         continue;
4219       }
4220 
4221       for (CatchSwitchInst::handler_iterator I = CSI->handler_begin(),
4222                                              E = CSI->handler_end();
4223            I != E; ++I) {
4224         if (*I == BB) {
4225           CSI->removeHandler(I);
4226           --I;
4227           --E;
4228           Changed = true;
4229         }
4230       }
4231       if (CSI->getNumHandlers() == 0) {
4232         BasicBlock *CatchSwitchBB = CSI->getParent();
4233         if (CSI->hasUnwindDest()) {
4234           // Redirect preds to the unwind dest
4235           CatchSwitchBB->replaceAllUsesWith(CSI->getUnwindDest());
4236         } else {
4237           // Rewrite all preds to unwind to caller (or from invoke to call).
4238           SmallVector<BasicBlock *, 8> EHPreds(predecessors(CatchSwitchBB));
4239           for (BasicBlock *EHPred : EHPreds)
4240             removeUnwindEdge(EHPred);
4241         }
4242         // The catchswitch is no longer reachable.
4243         new UnreachableInst(CSI->getContext(), CSI);
4244         CSI->eraseFromParent();
4245         Changed = true;
4246       }
4247     } else if (isa<CleanupReturnInst>(TI)) {
4248       new UnreachableInst(TI->getContext(), TI);
4249       TI->eraseFromParent();
4250       Changed = true;
4251     }
4252   }
4253 
4254   // If this block is now dead, remove it.
4255   if (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) {
4256     // We know there are no successors, so just nuke the block.
4257     if (LoopHeaders)
4258       LoopHeaders->erase(BB);
4259     BB->eraseFromParent();
4260     return true;
4261   }
4262 
4263   return Changed;
4264 }
4265 
4266 static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) {
4267   assert(Cases.size() >= 1);
4268 
4269   array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate);
4270   for (size_t I = 1, E = Cases.size(); I != E; ++I) {
4271     if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1)
4272       return false;
4273   }
4274   return true;
4275 }
4276 
4277 /// Turn a switch with two reachable destinations into an integer range
4278 /// comparison and branch.
4279 static bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder) {
4280   assert(SI->getNumCases() > 1 && "Degenerate switch?");
4281 
4282   bool HasDefault =
4283       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
4284 
4285   // Partition the cases into two sets with different destinations.
4286   BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr;
4287   BasicBlock *DestB = nullptr;
4288   SmallVector<ConstantInt *, 16> CasesA;
4289   SmallVector<ConstantInt *, 16> CasesB;
4290 
4291   for (auto Case : SI->cases()) {
4292     BasicBlock *Dest = Case.getCaseSuccessor();
4293     if (!DestA)
4294       DestA = Dest;
4295     if (Dest == DestA) {
4296       CasesA.push_back(Case.getCaseValue());
4297       continue;
4298     }
4299     if (!DestB)
4300       DestB = Dest;
4301     if (Dest == DestB) {
4302       CasesB.push_back(Case.getCaseValue());
4303       continue;
4304     }
4305     return false; // More than two destinations.
4306   }
4307 
4308   assert(DestA && DestB &&
4309          "Single-destination switch should have been folded.");
4310   assert(DestA != DestB);
4311   assert(DestB != SI->getDefaultDest());
4312   assert(!CasesB.empty() && "There must be non-default cases.");
4313   assert(!CasesA.empty() || HasDefault);
4314 
4315   // Figure out if one of the sets of cases form a contiguous range.
4316   SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr;
4317   BasicBlock *ContiguousDest = nullptr;
4318   BasicBlock *OtherDest = nullptr;
4319   if (!CasesA.empty() && CasesAreContiguous(CasesA)) {
4320     ContiguousCases = &CasesA;
4321     ContiguousDest = DestA;
4322     OtherDest = DestB;
4323   } else if (CasesAreContiguous(CasesB)) {
4324     ContiguousCases = &CasesB;
4325     ContiguousDest = DestB;
4326     OtherDest = DestA;
4327   } else
4328     return false;
4329 
4330   // Start building the compare and branch.
4331 
4332   Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back());
4333   Constant *NumCases =
4334       ConstantInt::get(Offset->getType(), ContiguousCases->size());
4335 
4336   Value *Sub = SI->getCondition();
4337   if (!Offset->isNullValue())
4338     Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off");
4339 
4340   Value *Cmp;
4341   // If NumCases overflowed, then all possible values jump to the successor.
4342   if (NumCases->isNullValue() && !ContiguousCases->empty())
4343     Cmp = ConstantInt::getTrue(SI->getContext());
4344   else
4345     Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch");
4346   BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest);
4347 
4348   // Update weight for the newly-created conditional branch.
4349   if (HasBranchWeights(SI)) {
4350     SmallVector<uint64_t, 8> Weights;
4351     GetBranchWeights(SI, Weights);
4352     if (Weights.size() == 1 + SI->getNumCases()) {
4353       uint64_t TrueWeight = 0;
4354       uint64_t FalseWeight = 0;
4355       for (size_t I = 0, E = Weights.size(); I != E; ++I) {
4356         if (SI->getSuccessor(I) == ContiguousDest)
4357           TrueWeight += Weights[I];
4358         else
4359           FalseWeight += Weights[I];
4360       }
4361       while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) {
4362         TrueWeight /= 2;
4363         FalseWeight /= 2;
4364       }
4365       setBranchWeights(NewBI, TrueWeight, FalseWeight);
4366     }
4367   }
4368 
4369   // Prune obsolete incoming values off the successors' PHI nodes.
4370   for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) {
4371     unsigned PreviousEdges = ContiguousCases->size();
4372     if (ContiguousDest == SI->getDefaultDest())
4373       ++PreviousEdges;
4374     for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
4375       cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
4376   }
4377   for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) {
4378     unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size();
4379     if (OtherDest == SI->getDefaultDest())
4380       ++PreviousEdges;
4381     for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
4382       cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
4383   }
4384 
4385   // Drop the switch.
4386   SI->eraseFromParent();
4387 
4388   return true;
4389 }
4390 
4391 /// Compute masked bits for the condition of a switch
4392 /// and use it to remove dead cases.
4393 static bool eliminateDeadSwitchCases(SwitchInst *SI, AssumptionCache *AC,
4394                                      const DataLayout &DL) {
4395   Value *Cond = SI->getCondition();
4396   unsigned Bits = Cond->getType()->getIntegerBitWidth();
4397   KnownBits Known = computeKnownBits(Cond, DL, 0, AC, SI);
4398 
4399   // We can also eliminate cases by determining that their values are outside of
4400   // the limited range of the condition based on how many significant (non-sign)
4401   // bits are in the condition value.
4402   unsigned ExtraSignBits = ComputeNumSignBits(Cond, DL, 0, AC, SI) - 1;
4403   unsigned MaxSignificantBitsInCond = Bits - ExtraSignBits;
4404 
4405   // Gather dead cases.
4406   SmallVector<ConstantInt *, 8> DeadCases;
4407   for (auto &Case : SI->cases()) {
4408     const APInt &CaseVal = Case.getCaseValue()->getValue();
4409     if (Known.Zero.intersects(CaseVal) || !Known.One.isSubsetOf(CaseVal) ||
4410         (CaseVal.getMinSignedBits() > MaxSignificantBitsInCond)) {
4411       DeadCases.push_back(Case.getCaseValue());
4412       LLVM_DEBUG(dbgs() << "SimplifyCFG: switch case " << CaseVal
4413                         << " is dead.\n");
4414     }
4415   }
4416 
4417   // If we can prove that the cases must cover all possible values, the
4418   // default destination becomes dead and we can remove it.  If we know some
4419   // of the bits in the value, we can use that to more precisely compute the
4420   // number of possible unique case values.
4421   bool HasDefault =
4422       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
4423   const unsigned NumUnknownBits =
4424       Bits - (Known.Zero | Known.One).countPopulation();
4425   assert(NumUnknownBits <= Bits);
4426   if (HasDefault && DeadCases.empty() &&
4427       NumUnknownBits < 64 /* avoid overflow */ &&
4428       SI->getNumCases() == (1ULL << NumUnknownBits)) {
4429     LLVM_DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n");
4430     BasicBlock *NewDefault =
4431         SplitBlockPredecessors(SI->getDefaultDest(), SI->getParent(), "");
4432     SI->setDefaultDest(&*NewDefault);
4433     SplitBlock(&*NewDefault, &NewDefault->front());
4434     auto *OldTI = NewDefault->getTerminator();
4435     new UnreachableInst(SI->getContext(), OldTI);
4436     EraseTerminatorInstAndDCECond(OldTI);
4437     return true;
4438   }
4439 
4440   SmallVector<uint64_t, 8> Weights;
4441   bool HasWeight = HasBranchWeights(SI);
4442   if (HasWeight) {
4443     GetBranchWeights(SI, Weights);
4444     HasWeight = (Weights.size() == 1 + SI->getNumCases());
4445   }
4446 
4447   // Remove dead cases from the switch.
4448   for (ConstantInt *DeadCase : DeadCases) {
4449     SwitchInst::CaseIt CaseI = SI->findCaseValue(DeadCase);
4450     assert(CaseI != SI->case_default() &&
4451            "Case was not found. Probably mistake in DeadCases forming.");
4452     if (HasWeight) {
4453       std::swap(Weights[CaseI->getCaseIndex() + 1], Weights.back());
4454       Weights.pop_back();
4455     }
4456 
4457     // Prune unused values from PHI nodes.
4458     CaseI->getCaseSuccessor()->removePredecessor(SI->getParent());
4459     SI->removeCase(CaseI);
4460   }
4461   if (HasWeight && Weights.size() >= 2) {
4462     SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
4463     setBranchWeights(SI, MDWeights);
4464   }
4465 
4466   return !DeadCases.empty();
4467 }
4468 
4469 /// If BB would be eligible for simplification by
4470 /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated
4471 /// by an unconditional branch), look at the phi node for BB in the successor
4472 /// block and see if the incoming value is equal to CaseValue. If so, return
4473 /// the phi node, and set PhiIndex to BB's index in the phi node.
4474 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue,
4475                                               BasicBlock *BB, int *PhiIndex) {
4476   if (BB->getFirstNonPHIOrDbg() != BB->getTerminator())
4477     return nullptr; // BB must be empty to be a candidate for simplification.
4478   if (!BB->getSinglePredecessor())
4479     return nullptr; // BB must be dominated by the switch.
4480 
4481   BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator());
4482   if (!Branch || !Branch->isUnconditional())
4483     return nullptr; // Terminator must be unconditional branch.
4484 
4485   BasicBlock *Succ = Branch->getSuccessor(0);
4486 
4487   for (PHINode &PHI : Succ->phis()) {
4488     int Idx = PHI.getBasicBlockIndex(BB);
4489     assert(Idx >= 0 && "PHI has no entry for predecessor?");
4490 
4491     Value *InValue = PHI.getIncomingValue(Idx);
4492     if (InValue != CaseValue)
4493       continue;
4494 
4495     *PhiIndex = Idx;
4496     return &PHI;
4497   }
4498 
4499   return nullptr;
4500 }
4501 
4502 /// Try to forward the condition of a switch instruction to a phi node
4503 /// dominated by the switch, if that would mean that some of the destination
4504 /// blocks of the switch can be folded away. Return true if a change is made.
4505 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) {
4506   using ForwardingNodesMap = DenseMap<PHINode *, SmallVector<int, 4>>;
4507 
4508   ForwardingNodesMap ForwardingNodes;
4509   BasicBlock *SwitchBlock = SI->getParent();
4510   bool Changed = false;
4511   for (auto &Case : SI->cases()) {
4512     ConstantInt *CaseValue = Case.getCaseValue();
4513     BasicBlock *CaseDest = Case.getCaseSuccessor();
4514 
4515     // Replace phi operands in successor blocks that are using the constant case
4516     // value rather than the switch condition variable:
4517     //   switchbb:
4518     //   switch i32 %x, label %default [
4519     //     i32 17, label %succ
4520     //   ...
4521     //   succ:
4522     //     %r = phi i32 ... [ 17, %switchbb ] ...
4523     // -->
4524     //     %r = phi i32 ... [ %x, %switchbb ] ...
4525 
4526     for (PHINode &Phi : CaseDest->phis()) {
4527       // This only works if there is exactly 1 incoming edge from the switch to
4528       // a phi. If there is >1, that means multiple cases of the switch map to 1
4529       // value in the phi, and that phi value is not the switch condition. Thus,
4530       // this transform would not make sense (the phi would be invalid because
4531       // a phi can't have different incoming values from the same block).
4532       int SwitchBBIdx = Phi.getBasicBlockIndex(SwitchBlock);
4533       if (Phi.getIncomingValue(SwitchBBIdx) == CaseValue &&
4534           count(Phi.blocks(), SwitchBlock) == 1) {
4535         Phi.setIncomingValue(SwitchBBIdx, SI->getCondition());
4536         Changed = true;
4537       }
4538     }
4539 
4540     // Collect phi nodes that are indirectly using this switch's case constants.
4541     int PhiIdx;
4542     if (auto *Phi = FindPHIForConditionForwarding(CaseValue, CaseDest, &PhiIdx))
4543       ForwardingNodes[Phi].push_back(PhiIdx);
4544   }
4545 
4546   for (auto &ForwardingNode : ForwardingNodes) {
4547     PHINode *Phi = ForwardingNode.first;
4548     SmallVectorImpl<int> &Indexes = ForwardingNode.second;
4549     if (Indexes.size() < 2)
4550       continue;
4551 
4552     for (int Index : Indexes)
4553       Phi->setIncomingValue(Index, SI->getCondition());
4554     Changed = true;
4555   }
4556 
4557   return Changed;
4558 }
4559 
4560 /// Return true if the backend will be able to handle
4561 /// initializing an array of constants like C.
4562 static bool ValidLookupTableConstant(Constant *C, const TargetTransformInfo &TTI) {
4563   if (C->isThreadDependent())
4564     return false;
4565   if (C->isDLLImportDependent())
4566     return false;
4567 
4568   if (!isa<ConstantFP>(C) && !isa<ConstantInt>(C) &&
4569       !isa<ConstantPointerNull>(C) && !isa<GlobalValue>(C) &&
4570       !isa<UndefValue>(C) && !isa<ConstantExpr>(C))
4571     return false;
4572 
4573   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
4574     if (!CE->isGEPWithNoNotionalOverIndexing())
4575       return false;
4576     if (!ValidLookupTableConstant(CE->getOperand(0), TTI))
4577       return false;
4578   }
4579 
4580   if (!TTI.shouldBuildLookupTablesForConstant(C))
4581     return false;
4582 
4583   return true;
4584 }
4585 
4586 /// If V is a Constant, return it. Otherwise, try to look up
4587 /// its constant value in ConstantPool, returning 0 if it's not there.
4588 static Constant *
4589 LookupConstant(Value *V,
4590                const SmallDenseMap<Value *, Constant *> &ConstantPool) {
4591   if (Constant *C = dyn_cast<Constant>(V))
4592     return C;
4593   return ConstantPool.lookup(V);
4594 }
4595 
4596 /// Try to fold instruction I into a constant. This works for
4597 /// simple instructions such as binary operations where both operands are
4598 /// constant or can be replaced by constants from the ConstantPool. Returns the
4599 /// resulting constant on success, 0 otherwise.
4600 static Constant *
4601 ConstantFold(Instruction *I, const DataLayout &DL,
4602              const SmallDenseMap<Value *, Constant *> &ConstantPool) {
4603   if (SelectInst *Select = dyn_cast<SelectInst>(I)) {
4604     Constant *A = LookupConstant(Select->getCondition(), ConstantPool);
4605     if (!A)
4606       return nullptr;
4607     if (A->isAllOnesValue())
4608       return LookupConstant(Select->getTrueValue(), ConstantPool);
4609     if (A->isNullValue())
4610       return LookupConstant(Select->getFalseValue(), ConstantPool);
4611     return nullptr;
4612   }
4613 
4614   SmallVector<Constant *, 4> COps;
4615   for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) {
4616     if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool))
4617       COps.push_back(A);
4618     else
4619       return nullptr;
4620   }
4621 
4622   if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
4623     return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0],
4624                                            COps[1], DL);
4625   }
4626 
4627   return ConstantFoldInstOperands(I, COps, DL);
4628 }
4629 
4630 /// Try to determine the resulting constant values in phi nodes
4631 /// at the common destination basic block, *CommonDest, for one of the case
4632 /// destionations CaseDest corresponding to value CaseVal (0 for the default
4633 /// case), of a switch instruction SI.
4634 static bool
4635 GetCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest,
4636                BasicBlock **CommonDest,
4637                SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res,
4638                const DataLayout &DL, const TargetTransformInfo &TTI) {
4639   // The block from which we enter the common destination.
4640   BasicBlock *Pred = SI->getParent();
4641 
4642   // If CaseDest is empty except for some side-effect free instructions through
4643   // which we can constant-propagate the CaseVal, continue to its successor.
4644   SmallDenseMap<Value *, Constant *> ConstantPool;
4645   ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal));
4646   for (Instruction &I :CaseDest->instructionsWithoutDebug()) {
4647     if (TerminatorInst *T = dyn_cast<TerminatorInst>(&I)) {
4648       // If the terminator is a simple branch, continue to the next block.
4649       if (T->getNumSuccessors() != 1 || T->isExceptionalTerminator())
4650         return false;
4651       Pred = CaseDest;
4652       CaseDest = T->getSuccessor(0);
4653     } else if (Constant *C = ConstantFold(&I, DL, ConstantPool)) {
4654       // Instruction is side-effect free and constant.
4655 
4656       // If the instruction has uses outside this block or a phi node slot for
4657       // the block, it is not safe to bypass the instruction since it would then
4658       // no longer dominate all its uses.
4659       for (auto &Use : I.uses()) {
4660         User *User = Use.getUser();
4661         if (Instruction *I = dyn_cast<Instruction>(User))
4662           if (I->getParent() == CaseDest)
4663             continue;
4664         if (PHINode *Phi = dyn_cast<PHINode>(User))
4665           if (Phi->getIncomingBlock(Use) == CaseDest)
4666             continue;
4667         return false;
4668       }
4669 
4670       ConstantPool.insert(std::make_pair(&I, C));
4671     } else {
4672       break;
4673     }
4674   }
4675 
4676   // If we did not have a CommonDest before, use the current one.
4677   if (!*CommonDest)
4678     *CommonDest = CaseDest;
4679   // If the destination isn't the common one, abort.
4680   if (CaseDest != *CommonDest)
4681     return false;
4682 
4683   // Get the values for this case from phi nodes in the destination block.
4684   for (PHINode &PHI : (*CommonDest)->phis()) {
4685     int Idx = PHI.getBasicBlockIndex(Pred);
4686     if (Idx == -1)
4687       continue;
4688 
4689     Constant *ConstVal =
4690         LookupConstant(PHI.getIncomingValue(Idx), ConstantPool);
4691     if (!ConstVal)
4692       return false;
4693 
4694     // Be conservative about which kinds of constants we support.
4695     if (!ValidLookupTableConstant(ConstVal, TTI))
4696       return false;
4697 
4698     Res.push_back(std::make_pair(&PHI, ConstVal));
4699   }
4700 
4701   return Res.size() > 0;
4702 }
4703 
4704 // Helper function used to add CaseVal to the list of cases that generate
4705 // Result. Returns the updated number of cases that generate this result.
4706 static uintptr_t MapCaseToResult(ConstantInt *CaseVal,
4707                                  SwitchCaseResultVectorTy &UniqueResults,
4708                                  Constant *Result) {
4709   for (auto &I : UniqueResults) {
4710     if (I.first == Result) {
4711       I.second.push_back(CaseVal);
4712       return I.second.size();
4713     }
4714   }
4715   UniqueResults.push_back(
4716       std::make_pair(Result, SmallVector<ConstantInt *, 4>(1, CaseVal)));
4717   return 1;
4718 }
4719 
4720 // Helper function that initializes a map containing
4721 // results for the PHI node of the common destination block for a switch
4722 // instruction. Returns false if multiple PHI nodes have been found or if
4723 // there is not a common destination block for the switch.
4724 static bool
4725 InitializeUniqueCases(SwitchInst *SI, PHINode *&PHI, BasicBlock *&CommonDest,
4726                       SwitchCaseResultVectorTy &UniqueResults,
4727                       Constant *&DefaultResult, const DataLayout &DL,
4728                       const TargetTransformInfo &TTI,
4729                       uintptr_t MaxUniqueResults, uintptr_t MaxCasesPerResult) {
4730   for (auto &I : SI->cases()) {
4731     ConstantInt *CaseVal = I.getCaseValue();
4732 
4733     // Resulting value at phi nodes for this case value.
4734     SwitchCaseResultsTy Results;
4735     if (!GetCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results,
4736                         DL, TTI))
4737       return false;
4738 
4739     // Only one value per case is permitted.
4740     if (Results.size() > 1)
4741       return false;
4742 
4743     // Add the case->result mapping to UniqueResults.
4744     const uintptr_t NumCasesForResult =
4745         MapCaseToResult(CaseVal, UniqueResults, Results.begin()->second);
4746 
4747     // Early out if there are too many cases for this result.
4748     if (NumCasesForResult > MaxCasesPerResult)
4749       return false;
4750 
4751     // Early out if there are too many unique results.
4752     if (UniqueResults.size() > MaxUniqueResults)
4753       return false;
4754 
4755     // Check the PHI consistency.
4756     if (!PHI)
4757       PHI = Results[0].first;
4758     else if (PHI != Results[0].first)
4759       return false;
4760   }
4761   // Find the default result value.
4762   SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults;
4763   BasicBlock *DefaultDest = SI->getDefaultDest();
4764   GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults,
4765                  DL, TTI);
4766   // If the default value is not found abort unless the default destination
4767   // is unreachable.
4768   DefaultResult =
4769       DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr;
4770   if ((!DefaultResult &&
4771        !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg())))
4772     return false;
4773 
4774   return true;
4775 }
4776 
4777 // Helper function that checks if it is possible to transform a switch with only
4778 // two cases (or two cases + default) that produces a result into a select.
4779 // Example:
4780 // switch (a) {
4781 //   case 10:                %0 = icmp eq i32 %a, 10
4782 //     return 10;            %1 = select i1 %0, i32 10, i32 4
4783 //   case 20:        ---->   %2 = icmp eq i32 %a, 20
4784 //     return 2;             %3 = select i1 %2, i32 2, i32 %1
4785 //   default:
4786 //     return 4;
4787 // }
4788 static Value *ConvertTwoCaseSwitch(const SwitchCaseResultVectorTy &ResultVector,
4789                                    Constant *DefaultResult, Value *Condition,
4790                                    IRBuilder<> &Builder) {
4791   assert(ResultVector.size() == 2 &&
4792          "We should have exactly two unique results at this point");
4793   // If we are selecting between only two cases transform into a simple
4794   // select or a two-way select if default is possible.
4795   if (ResultVector[0].second.size() == 1 &&
4796       ResultVector[1].second.size() == 1) {
4797     ConstantInt *const FirstCase = ResultVector[0].second[0];
4798     ConstantInt *const SecondCase = ResultVector[1].second[0];
4799 
4800     bool DefaultCanTrigger = DefaultResult;
4801     Value *SelectValue = ResultVector[1].first;
4802     if (DefaultCanTrigger) {
4803       Value *const ValueCompare =
4804           Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp");
4805       SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first,
4806                                          DefaultResult, "switch.select");
4807     }
4808     Value *const ValueCompare =
4809         Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp");
4810     return Builder.CreateSelect(ValueCompare, ResultVector[0].first,
4811                                 SelectValue, "switch.select");
4812   }
4813 
4814   return nullptr;
4815 }
4816 
4817 // Helper function to cleanup a switch instruction that has been converted into
4818 // a select, fixing up PHI nodes and basic blocks.
4819 static void RemoveSwitchAfterSelectConversion(SwitchInst *SI, PHINode *PHI,
4820                                               Value *SelectValue,
4821                                               IRBuilder<> &Builder) {
4822   BasicBlock *SelectBB = SI->getParent();
4823   while (PHI->getBasicBlockIndex(SelectBB) >= 0)
4824     PHI->removeIncomingValue(SelectBB);
4825   PHI->addIncoming(SelectValue, SelectBB);
4826 
4827   Builder.CreateBr(PHI->getParent());
4828 
4829   // Remove the switch.
4830   for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
4831     BasicBlock *Succ = SI->getSuccessor(i);
4832 
4833     if (Succ == PHI->getParent())
4834       continue;
4835     Succ->removePredecessor(SelectBB);
4836   }
4837   SI->eraseFromParent();
4838 }
4839 
4840 /// If the switch is only used to initialize one or more
4841 /// phi nodes in a common successor block with only two different
4842 /// constant values, replace the switch with select.
4843 static bool switchToSelect(SwitchInst *SI, IRBuilder<> &Builder,
4844                            const DataLayout &DL,
4845                            const TargetTransformInfo &TTI) {
4846   Value *const Cond = SI->getCondition();
4847   PHINode *PHI = nullptr;
4848   BasicBlock *CommonDest = nullptr;
4849   Constant *DefaultResult;
4850   SwitchCaseResultVectorTy UniqueResults;
4851   // Collect all the cases that will deliver the same value from the switch.
4852   if (!InitializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult,
4853                              DL, TTI, 2, 1))
4854     return false;
4855   // Selects choose between maximum two values.
4856   if (UniqueResults.size() != 2)
4857     return false;
4858   assert(PHI != nullptr && "PHI for value select not found");
4859 
4860   Builder.SetInsertPoint(SI);
4861   Value *SelectValue =
4862       ConvertTwoCaseSwitch(UniqueResults, DefaultResult, Cond, Builder);
4863   if (SelectValue) {
4864     RemoveSwitchAfterSelectConversion(SI, PHI, SelectValue, Builder);
4865     return true;
4866   }
4867   // The switch couldn't be converted into a select.
4868   return false;
4869 }
4870 
4871 namespace {
4872 
4873 /// This class represents a lookup table that can be used to replace a switch.
4874 class SwitchLookupTable {
4875 public:
4876   /// Create a lookup table to use as a switch replacement with the contents
4877   /// of Values, using DefaultValue to fill any holes in the table.
4878   SwitchLookupTable(
4879       Module &M, uint64_t TableSize, ConstantInt *Offset,
4880       const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
4881       Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName);
4882 
4883   /// Build instructions with Builder to retrieve the value at
4884   /// the position given by Index in the lookup table.
4885   Value *BuildLookup(Value *Index, IRBuilder<> &Builder);
4886 
4887   /// Return true if a table with TableSize elements of
4888   /// type ElementType would fit in a target-legal register.
4889   static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize,
4890                                  Type *ElementType);
4891 
4892 private:
4893   // Depending on the contents of the table, it can be represented in
4894   // different ways.
4895   enum {
4896     // For tables where each element contains the same value, we just have to
4897     // store that single value and return it for each lookup.
4898     SingleValueKind,
4899 
4900     // For tables where there is a linear relationship between table index
4901     // and values. We calculate the result with a simple multiplication
4902     // and addition instead of a table lookup.
4903     LinearMapKind,
4904 
4905     // For small tables with integer elements, we can pack them into a bitmap
4906     // that fits into a target-legal register. Values are retrieved by
4907     // shift and mask operations.
4908     BitMapKind,
4909 
4910     // The table is stored as an array of values. Values are retrieved by load
4911     // instructions from the table.
4912     ArrayKind
4913   } Kind;
4914 
4915   // For SingleValueKind, this is the single value.
4916   Constant *SingleValue = nullptr;
4917 
4918   // For BitMapKind, this is the bitmap.
4919   ConstantInt *BitMap = nullptr;
4920   IntegerType *BitMapElementTy = nullptr;
4921 
4922   // For LinearMapKind, these are the constants used to derive the value.
4923   ConstantInt *LinearOffset = nullptr;
4924   ConstantInt *LinearMultiplier = nullptr;
4925 
4926   // For ArrayKind, this is the array.
4927   GlobalVariable *Array = nullptr;
4928 };
4929 
4930 } // end anonymous namespace
4931 
4932 SwitchLookupTable::SwitchLookupTable(
4933     Module &M, uint64_t TableSize, ConstantInt *Offset,
4934     const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
4935     Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName) {
4936   assert(Values.size() && "Can't build lookup table without values!");
4937   assert(TableSize >= Values.size() && "Can't fit values in table!");
4938 
4939   // If all values in the table are equal, this is that value.
4940   SingleValue = Values.begin()->second;
4941 
4942   Type *ValueType = Values.begin()->second->getType();
4943 
4944   // Build up the table contents.
4945   SmallVector<Constant *, 64> TableContents(TableSize);
4946   for (size_t I = 0, E = Values.size(); I != E; ++I) {
4947     ConstantInt *CaseVal = Values[I].first;
4948     Constant *CaseRes = Values[I].second;
4949     assert(CaseRes->getType() == ValueType);
4950 
4951     uint64_t Idx = (CaseVal->getValue() - Offset->getValue()).getLimitedValue();
4952     TableContents[Idx] = CaseRes;
4953 
4954     if (CaseRes != SingleValue)
4955       SingleValue = nullptr;
4956   }
4957 
4958   // Fill in any holes in the table with the default result.
4959   if (Values.size() < TableSize) {
4960     assert(DefaultValue &&
4961            "Need a default value to fill the lookup table holes.");
4962     assert(DefaultValue->getType() == ValueType);
4963     for (uint64_t I = 0; I < TableSize; ++I) {
4964       if (!TableContents[I])
4965         TableContents[I] = DefaultValue;
4966     }
4967 
4968     if (DefaultValue != SingleValue)
4969       SingleValue = nullptr;
4970   }
4971 
4972   // If each element in the table contains the same value, we only need to store
4973   // that single value.
4974   if (SingleValue) {
4975     Kind = SingleValueKind;
4976     return;
4977   }
4978 
4979   // Check if we can derive the value with a linear transformation from the
4980   // table index.
4981   if (isa<IntegerType>(ValueType)) {
4982     bool LinearMappingPossible = true;
4983     APInt PrevVal;
4984     APInt DistToPrev;
4985     assert(TableSize >= 2 && "Should be a SingleValue table.");
4986     // Check if there is the same distance between two consecutive values.
4987     for (uint64_t I = 0; I < TableSize; ++I) {
4988       ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]);
4989       if (!ConstVal) {
4990         // This is an undef. We could deal with it, but undefs in lookup tables
4991         // are very seldom. It's probably not worth the additional complexity.
4992         LinearMappingPossible = false;
4993         break;
4994       }
4995       const APInt &Val = ConstVal->getValue();
4996       if (I != 0) {
4997         APInt Dist = Val - PrevVal;
4998         if (I == 1) {
4999           DistToPrev = Dist;
5000         } else if (Dist != DistToPrev) {
5001           LinearMappingPossible = false;
5002           break;
5003         }
5004       }
5005       PrevVal = Val;
5006     }
5007     if (LinearMappingPossible) {
5008       LinearOffset = cast<ConstantInt>(TableContents[0]);
5009       LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev);
5010       Kind = LinearMapKind;
5011       ++NumLinearMaps;
5012       return;
5013     }
5014   }
5015 
5016   // If the type is integer and the table fits in a register, build a bitmap.
5017   if (WouldFitInRegister(DL, TableSize, ValueType)) {
5018     IntegerType *IT = cast<IntegerType>(ValueType);
5019     APInt TableInt(TableSize * IT->getBitWidth(), 0);
5020     for (uint64_t I = TableSize; I > 0; --I) {
5021       TableInt <<= IT->getBitWidth();
5022       // Insert values into the bitmap. Undef values are set to zero.
5023       if (!isa<UndefValue>(TableContents[I - 1])) {
5024         ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]);
5025         TableInt |= Val->getValue().zext(TableInt.getBitWidth());
5026       }
5027     }
5028     BitMap = ConstantInt::get(M.getContext(), TableInt);
5029     BitMapElementTy = IT;
5030     Kind = BitMapKind;
5031     ++NumBitMaps;
5032     return;
5033   }
5034 
5035   // Store the table in an array.
5036   ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize);
5037   Constant *Initializer = ConstantArray::get(ArrayTy, TableContents);
5038 
5039   Array = new GlobalVariable(M, ArrayTy, /*constant=*/true,
5040                              GlobalVariable::PrivateLinkage, Initializer,
5041                              "switch.table." + FuncName);
5042   Array->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
5043   // Set the alignment to that of an array items. We will be only loading one
5044   // value out of it.
5045   Array->setAlignment(DL.getPrefTypeAlignment(ValueType));
5046   Kind = ArrayKind;
5047 }
5048 
5049 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) {
5050   switch (Kind) {
5051   case SingleValueKind:
5052     return SingleValue;
5053   case LinearMapKind: {
5054     // Derive the result value from the input value.
5055     Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(),
5056                                           false, "switch.idx.cast");
5057     if (!LinearMultiplier->isOne())
5058       Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult");
5059     if (!LinearOffset->isZero())
5060       Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset");
5061     return Result;
5062   }
5063   case BitMapKind: {
5064     // Type of the bitmap (e.g. i59).
5065     IntegerType *MapTy = BitMap->getType();
5066 
5067     // Cast Index to the same type as the bitmap.
5068     // Note: The Index is <= the number of elements in the table, so
5069     // truncating it to the width of the bitmask is safe.
5070     Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast");
5071 
5072     // Multiply the shift amount by the element width.
5073     ShiftAmt = Builder.CreateMul(
5074         ShiftAmt, ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()),
5075         "switch.shiftamt");
5076 
5077     // Shift down.
5078     Value *DownShifted =
5079         Builder.CreateLShr(BitMap, ShiftAmt, "switch.downshift");
5080     // Mask off.
5081     return Builder.CreateTrunc(DownShifted, BitMapElementTy, "switch.masked");
5082   }
5083   case ArrayKind: {
5084     // Make sure the table index will not overflow when treated as signed.
5085     IntegerType *IT = cast<IntegerType>(Index->getType());
5086     uint64_t TableSize =
5087         Array->getInitializer()->getType()->getArrayNumElements();
5088     if (TableSize > (1ULL << (IT->getBitWidth() - 1)))
5089       Index = Builder.CreateZExt(
5090           Index, IntegerType::get(IT->getContext(), IT->getBitWidth() + 1),
5091           "switch.tableidx.zext");
5092 
5093     Value *GEPIndices[] = {Builder.getInt32(0), Index};
5094     Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array,
5095                                            GEPIndices, "switch.gep");
5096     return Builder.CreateLoad(GEP, "switch.load");
5097   }
5098   }
5099   llvm_unreachable("Unknown lookup table kind!");
5100 }
5101 
5102 bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL,
5103                                            uint64_t TableSize,
5104                                            Type *ElementType) {
5105   auto *IT = dyn_cast<IntegerType>(ElementType);
5106   if (!IT)
5107     return false;
5108   // FIXME: If the type is wider than it needs to be, e.g. i8 but all values
5109   // are <= 15, we could try to narrow the type.
5110 
5111   // Avoid overflow, fitsInLegalInteger uses unsigned int for the width.
5112   if (TableSize >= UINT_MAX / IT->getBitWidth())
5113     return false;
5114   return DL.fitsInLegalInteger(TableSize * IT->getBitWidth());
5115 }
5116 
5117 /// Determine whether a lookup table should be built for this switch, based on
5118 /// the number of cases, size of the table, and the types of the results.
5119 static bool
5120 ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize,
5121                        const TargetTransformInfo &TTI, const DataLayout &DL,
5122                        const SmallDenseMap<PHINode *, Type *> &ResultTypes) {
5123   if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10)
5124     return false; // TableSize overflowed, or mul below might overflow.
5125 
5126   bool AllTablesFitInRegister = true;
5127   bool HasIllegalType = false;
5128   for (const auto &I : ResultTypes) {
5129     Type *Ty = I.second;
5130 
5131     // Saturate this flag to true.
5132     HasIllegalType = HasIllegalType || !TTI.isTypeLegal(Ty);
5133 
5134     // Saturate this flag to false.
5135     AllTablesFitInRegister =
5136         AllTablesFitInRegister &&
5137         SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty);
5138 
5139     // If both flags saturate, we're done. NOTE: This *only* works with
5140     // saturating flags, and all flags have to saturate first due to the
5141     // non-deterministic behavior of iterating over a dense map.
5142     if (HasIllegalType && !AllTablesFitInRegister)
5143       break;
5144   }
5145 
5146   // If each table would fit in a register, we should build it anyway.
5147   if (AllTablesFitInRegister)
5148     return true;
5149 
5150   // Don't build a table that doesn't fit in-register if it has illegal types.
5151   if (HasIllegalType)
5152     return false;
5153 
5154   // The table density should be at least 40%. This is the same criterion as for
5155   // jump tables, see SelectionDAGBuilder::handleJTSwitchCase.
5156   // FIXME: Find the best cut-off.
5157   return SI->getNumCases() * 10 >= TableSize * 4;
5158 }
5159 
5160 /// Try to reuse the switch table index compare. Following pattern:
5161 /// \code
5162 ///     if (idx < tablesize)
5163 ///        r = table[idx]; // table does not contain default_value
5164 ///     else
5165 ///        r = default_value;
5166 ///     if (r != default_value)
5167 ///        ...
5168 /// \endcode
5169 /// Is optimized to:
5170 /// \code
5171 ///     cond = idx < tablesize;
5172 ///     if (cond)
5173 ///        r = table[idx];
5174 ///     else
5175 ///        r = default_value;
5176 ///     if (cond)
5177 ///        ...
5178 /// \endcode
5179 /// Jump threading will then eliminate the second if(cond).
5180 static void reuseTableCompare(
5181     User *PhiUser, BasicBlock *PhiBlock, BranchInst *RangeCheckBranch,
5182     Constant *DefaultValue,
5183     const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values) {
5184   ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser);
5185   if (!CmpInst)
5186     return;
5187 
5188   // We require that the compare is in the same block as the phi so that jump
5189   // threading can do its work afterwards.
5190   if (CmpInst->getParent() != PhiBlock)
5191     return;
5192 
5193   Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1));
5194   if (!CmpOp1)
5195     return;
5196 
5197   Value *RangeCmp = RangeCheckBranch->getCondition();
5198   Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType());
5199   Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType());
5200 
5201   // Check if the compare with the default value is constant true or false.
5202   Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
5203                                                  DefaultValue, CmpOp1, true);
5204   if (DefaultConst != TrueConst && DefaultConst != FalseConst)
5205     return;
5206 
5207   // Check if the compare with the case values is distinct from the default
5208   // compare result.
5209   for (auto ValuePair : Values) {
5210     Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
5211                                                 ValuePair.second, CmpOp1, true);
5212     if (!CaseConst || CaseConst == DefaultConst || isa<UndefValue>(CaseConst))
5213       return;
5214     assert((CaseConst == TrueConst || CaseConst == FalseConst) &&
5215            "Expect true or false as compare result.");
5216   }
5217 
5218   // Check if the branch instruction dominates the phi node. It's a simple
5219   // dominance check, but sufficient for our needs.
5220   // Although this check is invariant in the calling loops, it's better to do it
5221   // at this late stage. Practically we do it at most once for a switch.
5222   BasicBlock *BranchBlock = RangeCheckBranch->getParent();
5223   for (auto PI = pred_begin(PhiBlock), E = pred_end(PhiBlock); PI != E; ++PI) {
5224     BasicBlock *Pred = *PI;
5225     if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock)
5226       return;
5227   }
5228 
5229   if (DefaultConst == FalseConst) {
5230     // The compare yields the same result. We can replace it.
5231     CmpInst->replaceAllUsesWith(RangeCmp);
5232     ++NumTableCmpReuses;
5233   } else {
5234     // The compare yields the same result, just inverted. We can replace it.
5235     Value *InvertedTableCmp = BinaryOperator::CreateXor(
5236         RangeCmp, ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp",
5237         RangeCheckBranch);
5238     CmpInst->replaceAllUsesWith(InvertedTableCmp);
5239     ++NumTableCmpReuses;
5240   }
5241 }
5242 
5243 /// If the switch is only used to initialize one or more phi nodes in a common
5244 /// successor block with different constant values, replace the switch with
5245 /// lookup tables.
5246 static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder,
5247                                 const DataLayout &DL,
5248                                 const TargetTransformInfo &TTI) {
5249   assert(SI->getNumCases() > 1 && "Degenerate switch?");
5250 
5251   Function *Fn = SI->getParent()->getParent();
5252   // Only build lookup table when we have a target that supports it or the
5253   // attribute is not set.
5254   if (!TTI.shouldBuildLookupTables() ||
5255       (Fn->getFnAttribute("no-jump-tables").getValueAsString() == "true"))
5256     return false;
5257 
5258   // FIXME: If the switch is too sparse for a lookup table, perhaps we could
5259   // split off a dense part and build a lookup table for that.
5260 
5261   // FIXME: This creates arrays of GEPs to constant strings, which means each
5262   // GEP needs a runtime relocation in PIC code. We should just build one big
5263   // string and lookup indices into that.
5264 
5265   // Ignore switches with less than three cases. Lookup tables will not make
5266   // them faster, so we don't analyze them.
5267   if (SI->getNumCases() < 3)
5268     return false;
5269 
5270   // Figure out the corresponding result for each case value and phi node in the
5271   // common destination, as well as the min and max case values.
5272   assert(SI->case_begin() != SI->case_end());
5273   SwitchInst::CaseIt CI = SI->case_begin();
5274   ConstantInt *MinCaseVal = CI->getCaseValue();
5275   ConstantInt *MaxCaseVal = CI->getCaseValue();
5276 
5277   BasicBlock *CommonDest = nullptr;
5278 
5279   using ResultListTy = SmallVector<std::pair<ConstantInt *, Constant *>, 4>;
5280   SmallDenseMap<PHINode *, ResultListTy> ResultLists;
5281 
5282   SmallDenseMap<PHINode *, Constant *> DefaultResults;
5283   SmallDenseMap<PHINode *, Type *> ResultTypes;
5284   SmallVector<PHINode *, 4> PHIs;
5285 
5286   for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) {
5287     ConstantInt *CaseVal = CI->getCaseValue();
5288     if (CaseVal->getValue().slt(MinCaseVal->getValue()))
5289       MinCaseVal = CaseVal;
5290     if (CaseVal->getValue().sgt(MaxCaseVal->getValue()))
5291       MaxCaseVal = CaseVal;
5292 
5293     // Resulting value at phi nodes for this case value.
5294     using ResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>;
5295     ResultsTy Results;
5296     if (!GetCaseResults(SI, CaseVal, CI->getCaseSuccessor(), &CommonDest,
5297                         Results, DL, TTI))
5298       return false;
5299 
5300     // Append the result from this case to the list for each phi.
5301     for (const auto &I : Results) {
5302       PHINode *PHI = I.first;
5303       Constant *Value = I.second;
5304       if (!ResultLists.count(PHI))
5305         PHIs.push_back(PHI);
5306       ResultLists[PHI].push_back(std::make_pair(CaseVal, Value));
5307     }
5308   }
5309 
5310   // Keep track of the result types.
5311   for (PHINode *PHI : PHIs) {
5312     ResultTypes[PHI] = ResultLists[PHI][0].second->getType();
5313   }
5314 
5315   uint64_t NumResults = ResultLists[PHIs[0]].size();
5316   APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue();
5317   uint64_t TableSize = RangeSpread.getLimitedValue() + 1;
5318   bool TableHasHoles = (NumResults < TableSize);
5319 
5320   // If the table has holes, we need a constant result for the default case
5321   // or a bitmask that fits in a register.
5322   SmallVector<std::pair<PHINode *, Constant *>, 4> DefaultResultsList;
5323   bool HasDefaultResults =
5324       GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest,
5325                      DefaultResultsList, DL, TTI);
5326 
5327   bool NeedMask = (TableHasHoles && !HasDefaultResults);
5328   if (NeedMask) {
5329     // As an extra penalty for the validity test we require more cases.
5330     if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark).
5331       return false;
5332     if (!DL.fitsInLegalInteger(TableSize))
5333       return false;
5334   }
5335 
5336   for (const auto &I : DefaultResultsList) {
5337     PHINode *PHI = I.first;
5338     Constant *Result = I.second;
5339     DefaultResults[PHI] = Result;
5340   }
5341 
5342   if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes))
5343     return false;
5344 
5345   // Create the BB that does the lookups.
5346   Module &Mod = *CommonDest->getParent()->getParent();
5347   BasicBlock *LookupBB = BasicBlock::Create(
5348       Mod.getContext(), "switch.lookup", CommonDest->getParent(), CommonDest);
5349 
5350   // Compute the table index value.
5351   Builder.SetInsertPoint(SI);
5352   Value *TableIndex;
5353   if (MinCaseVal->isNullValue())
5354     TableIndex = SI->getCondition();
5355   else
5356     TableIndex = Builder.CreateSub(SI->getCondition(), MinCaseVal,
5357                                    "switch.tableidx");
5358 
5359   // Compute the maximum table size representable by the integer type we are
5360   // switching upon.
5361   unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits();
5362   uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize;
5363   assert(MaxTableSize >= TableSize &&
5364          "It is impossible for a switch to have more entries than the max "
5365          "representable value of its input integer type's size.");
5366 
5367   // If the default destination is unreachable, or if the lookup table covers
5368   // all values of the conditional variable, branch directly to the lookup table
5369   // BB. Otherwise, check that the condition is within the case range.
5370   const bool DefaultIsReachable =
5371       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
5372   const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize);
5373   BranchInst *RangeCheckBranch = nullptr;
5374 
5375   if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
5376     Builder.CreateBr(LookupBB);
5377     // Note: We call removeProdecessor later since we need to be able to get the
5378     // PHI value for the default case in case we're using a bit mask.
5379   } else {
5380     Value *Cmp = Builder.CreateICmpULT(
5381         TableIndex, ConstantInt::get(MinCaseVal->getType(), TableSize));
5382     RangeCheckBranch =
5383         Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest());
5384   }
5385 
5386   // Populate the BB that does the lookups.
5387   Builder.SetInsertPoint(LookupBB);
5388 
5389   if (NeedMask) {
5390     // Before doing the lookup, we do the hole check. The LookupBB is therefore
5391     // re-purposed to do the hole check, and we create a new LookupBB.
5392     BasicBlock *MaskBB = LookupBB;
5393     MaskBB->setName("switch.hole_check");
5394     LookupBB = BasicBlock::Create(Mod.getContext(), "switch.lookup",
5395                                   CommonDest->getParent(), CommonDest);
5396 
5397     // Make the mask's bitwidth at least 8-bit and a power-of-2 to avoid
5398     // unnecessary illegal types.
5399     uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL));
5400     APInt MaskInt(TableSizePowOf2, 0);
5401     APInt One(TableSizePowOf2, 1);
5402     // Build bitmask; fill in a 1 bit for every case.
5403     const ResultListTy &ResultList = ResultLists[PHIs[0]];
5404     for (size_t I = 0, E = ResultList.size(); I != E; ++I) {
5405       uint64_t Idx = (ResultList[I].first->getValue() - MinCaseVal->getValue())
5406                          .getLimitedValue();
5407       MaskInt |= One << Idx;
5408     }
5409     ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt);
5410 
5411     // Get the TableIndex'th bit of the bitmask.
5412     // If this bit is 0 (meaning hole) jump to the default destination,
5413     // else continue with table lookup.
5414     IntegerType *MapTy = TableMask->getType();
5415     Value *MaskIndex =
5416         Builder.CreateZExtOrTrunc(TableIndex, MapTy, "switch.maskindex");
5417     Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, "switch.shifted");
5418     Value *LoBit = Builder.CreateTrunc(
5419         Shifted, Type::getInt1Ty(Mod.getContext()), "switch.lobit");
5420     Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest());
5421 
5422     Builder.SetInsertPoint(LookupBB);
5423     AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, SI->getParent());
5424   }
5425 
5426   if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
5427     // We cached PHINodes in PHIs. To avoid accessing deleted PHINodes later,
5428     // do not delete PHINodes here.
5429     SI->getDefaultDest()->removePredecessor(SI->getParent(),
5430                                             /*DontDeleteUselessPHIs=*/true);
5431   }
5432 
5433   bool ReturnedEarly = false;
5434   for (PHINode *PHI : PHIs) {
5435     const ResultListTy &ResultList = ResultLists[PHI];
5436 
5437     // If using a bitmask, use any value to fill the lookup table holes.
5438     Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI];
5439     StringRef FuncName = Fn->getName();
5440     SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultList, DV, DL,
5441                             FuncName);
5442 
5443     Value *Result = Table.BuildLookup(TableIndex, Builder);
5444 
5445     // If the result is used to return immediately from the function, we want to
5446     // do that right here.
5447     if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->user_begin()) &&
5448         PHI->user_back() == CommonDest->getFirstNonPHIOrDbg()) {
5449       Builder.CreateRet(Result);
5450       ReturnedEarly = true;
5451       break;
5452     }
5453 
5454     // Do a small peephole optimization: re-use the switch table compare if
5455     // possible.
5456     if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) {
5457       BasicBlock *PhiBlock = PHI->getParent();
5458       // Search for compare instructions which use the phi.
5459       for (auto *User : PHI->users()) {
5460         reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList);
5461       }
5462     }
5463 
5464     PHI->addIncoming(Result, LookupBB);
5465   }
5466 
5467   if (!ReturnedEarly)
5468     Builder.CreateBr(CommonDest);
5469 
5470   // Remove the switch.
5471   for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
5472     BasicBlock *Succ = SI->getSuccessor(i);
5473 
5474     if (Succ == SI->getDefaultDest())
5475       continue;
5476     Succ->removePredecessor(SI->getParent());
5477   }
5478   SI->eraseFromParent();
5479 
5480   ++NumLookupTables;
5481   if (NeedMask)
5482     ++NumLookupTablesHoles;
5483   return true;
5484 }
5485 
5486 static bool isSwitchDense(ArrayRef<int64_t> Values) {
5487   // See also SelectionDAGBuilder::isDense(), which this function was based on.
5488   uint64_t Diff = (uint64_t)Values.back() - (uint64_t)Values.front();
5489   uint64_t Range = Diff + 1;
5490   uint64_t NumCases = Values.size();
5491   // 40% is the default density for building a jump table in optsize/minsize mode.
5492   uint64_t MinDensity = 40;
5493 
5494   return NumCases * 100 >= Range * MinDensity;
5495 }
5496 
5497 /// Try to transform a switch that has "holes" in it to a contiguous sequence
5498 /// of cases.
5499 ///
5500 /// A switch such as: switch(i) {case 5: case 9: case 13: case 17:} can be
5501 /// range-reduced to: switch ((i-5) / 4) {case 0: case 1: case 2: case 3:}.
5502 ///
5503 /// This converts a sparse switch into a dense switch which allows better
5504 /// lowering and could also allow transforming into a lookup table.
5505 static bool ReduceSwitchRange(SwitchInst *SI, IRBuilder<> &Builder,
5506                               const DataLayout &DL,
5507                               const TargetTransformInfo &TTI) {
5508   auto *CondTy = cast<IntegerType>(SI->getCondition()->getType());
5509   if (CondTy->getIntegerBitWidth() > 64 ||
5510       !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth()))
5511     return false;
5512   // Only bother with this optimization if there are more than 3 switch cases;
5513   // SDAG will only bother creating jump tables for 4 or more cases.
5514   if (SI->getNumCases() < 4)
5515     return false;
5516 
5517   // This transform is agnostic to the signedness of the input or case values. We
5518   // can treat the case values as signed or unsigned. We can optimize more common
5519   // cases such as a sequence crossing zero {-4,0,4,8} if we interpret case values
5520   // as signed.
5521   SmallVector<int64_t,4> Values;
5522   for (auto &C : SI->cases())
5523     Values.push_back(C.getCaseValue()->getValue().getSExtValue());
5524   llvm::sort(Values.begin(), Values.end());
5525 
5526   // If the switch is already dense, there's nothing useful to do here.
5527   if (isSwitchDense(Values))
5528     return false;
5529 
5530   // First, transform the values such that they start at zero and ascend.
5531   int64_t Base = Values[0];
5532   for (auto &V : Values)
5533     V -= (uint64_t)(Base);
5534 
5535   // Now we have signed numbers that have been shifted so that, given enough
5536   // precision, there are no negative values. Since the rest of the transform
5537   // is bitwise only, we switch now to an unsigned representation.
5538   uint64_t GCD = 0;
5539   for (auto &V : Values)
5540     GCD = GreatestCommonDivisor64(GCD, (uint64_t)V);
5541 
5542   // This transform can be done speculatively because it is so cheap - it results
5543   // in a single rotate operation being inserted. This can only happen if the
5544   // factor extracted is a power of 2.
5545   // FIXME: If the GCD is an odd number we can multiply by the multiplicative
5546   // inverse of GCD and then perform this transform.
5547   // FIXME: It's possible that optimizing a switch on powers of two might also
5548   // be beneficial - flag values are often powers of two and we could use a CLZ
5549   // as the key function.
5550   if (GCD <= 1 || !isPowerOf2_64(GCD))
5551     // No common divisor found or too expensive to compute key function.
5552     return false;
5553 
5554   unsigned Shift = Log2_64(GCD);
5555   for (auto &V : Values)
5556     V = (int64_t)((uint64_t)V >> Shift);
5557 
5558   if (!isSwitchDense(Values))
5559     // Transform didn't create a dense switch.
5560     return false;
5561 
5562   // The obvious transform is to shift the switch condition right and emit a
5563   // check that the condition actually cleanly divided by GCD, i.e.
5564   //   C & (1 << Shift - 1) == 0
5565   // inserting a new CFG edge to handle the case where it didn't divide cleanly.
5566   //
5567   // A cheaper way of doing this is a simple ROTR(C, Shift). This performs the
5568   // shift and puts the shifted-off bits in the uppermost bits. If any of these
5569   // are nonzero then the switch condition will be very large and will hit the
5570   // default case.
5571 
5572   auto *Ty = cast<IntegerType>(SI->getCondition()->getType());
5573   Builder.SetInsertPoint(SI);
5574   auto *ShiftC = ConstantInt::get(Ty, Shift);
5575   auto *Sub = Builder.CreateSub(SI->getCondition(), ConstantInt::get(Ty, Base));
5576   auto *LShr = Builder.CreateLShr(Sub, ShiftC);
5577   auto *Shl = Builder.CreateShl(Sub, Ty->getBitWidth() - Shift);
5578   auto *Rot = Builder.CreateOr(LShr, Shl);
5579   SI->replaceUsesOfWith(SI->getCondition(), Rot);
5580 
5581   for (auto Case : SI->cases()) {
5582     auto *Orig = Case.getCaseValue();
5583     auto Sub = Orig->getValue() - APInt(Ty->getBitWidth(), Base);
5584     Case.setValue(
5585         cast<ConstantInt>(ConstantInt::get(Ty, Sub.lshr(ShiftC->getValue()))));
5586   }
5587   return true;
5588 }
5589 
5590 bool SimplifyCFGOpt::SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) {
5591   BasicBlock *BB = SI->getParent();
5592 
5593   if (isValueEqualityComparison(SI)) {
5594     // If we only have one predecessor, and if it is a branch on this value,
5595     // see if that predecessor totally determines the outcome of this switch.
5596     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
5597       if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder))
5598         return simplifyCFG(BB, TTI, Options) || true;
5599 
5600     Value *Cond = SI->getCondition();
5601     if (SelectInst *Select = dyn_cast<SelectInst>(Cond))
5602       if (SimplifySwitchOnSelect(SI, Select))
5603         return simplifyCFG(BB, TTI, Options) || true;
5604 
5605     // If the block only contains the switch, see if we can fold the block
5606     // away into any preds.
5607     if (SI == &*BB->instructionsWithoutDebug().begin())
5608       if (FoldValueComparisonIntoPredecessors(SI, Builder))
5609         return simplifyCFG(BB, TTI, Options) || true;
5610   }
5611 
5612   // Try to transform the switch into an icmp and a branch.
5613   if (TurnSwitchRangeIntoICmp(SI, Builder))
5614     return simplifyCFG(BB, TTI, Options) || true;
5615 
5616   // Remove unreachable cases.
5617   if (eliminateDeadSwitchCases(SI, Options.AC, DL))
5618     return simplifyCFG(BB, TTI, Options) || true;
5619 
5620   if (switchToSelect(SI, Builder, DL, TTI))
5621     return simplifyCFG(BB, TTI, Options) || true;
5622 
5623   if (Options.ForwardSwitchCondToPhi && ForwardSwitchConditionToPHI(SI))
5624     return simplifyCFG(BB, TTI, Options) || true;
5625 
5626   // The conversion from switch to lookup tables results in difficult-to-analyze
5627   // code and makes pruning branches much harder. This is a problem if the
5628   // switch expression itself can still be restricted as a result of inlining or
5629   // CVP. Therefore, only apply this transformation during late stages of the
5630   // optimisation pipeline.
5631   if (Options.ConvertSwitchToLookupTable &&
5632       SwitchToLookupTable(SI, Builder, DL, TTI))
5633     return simplifyCFG(BB, TTI, Options) || true;
5634 
5635   if (ReduceSwitchRange(SI, Builder, DL, TTI))
5636     return simplifyCFG(BB, TTI, Options) || true;
5637 
5638   return false;
5639 }
5640 
5641 bool SimplifyCFGOpt::SimplifyIndirectBr(IndirectBrInst *IBI) {
5642   BasicBlock *BB = IBI->getParent();
5643   bool Changed = false;
5644 
5645   // Eliminate redundant destinations.
5646   SmallPtrSet<Value *, 8> Succs;
5647   for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
5648     BasicBlock *Dest = IBI->getDestination(i);
5649     if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) {
5650       Dest->removePredecessor(BB);
5651       IBI->removeDestination(i);
5652       --i;
5653       --e;
5654       Changed = true;
5655     }
5656   }
5657 
5658   if (IBI->getNumDestinations() == 0) {
5659     // If the indirectbr has no successors, change it to unreachable.
5660     new UnreachableInst(IBI->getContext(), IBI);
5661     EraseTerminatorInstAndDCECond(IBI);
5662     return true;
5663   }
5664 
5665   if (IBI->getNumDestinations() == 1) {
5666     // If the indirectbr has one successor, change it to a direct branch.
5667     BranchInst::Create(IBI->getDestination(0), IBI);
5668     EraseTerminatorInstAndDCECond(IBI);
5669     return true;
5670   }
5671 
5672   if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) {
5673     if (SimplifyIndirectBrOnSelect(IBI, SI))
5674       return simplifyCFG(BB, TTI, Options) || true;
5675   }
5676   return Changed;
5677 }
5678 
5679 /// Given an block with only a single landing pad and a unconditional branch
5680 /// try to find another basic block which this one can be merged with.  This
5681 /// handles cases where we have multiple invokes with unique landing pads, but
5682 /// a shared handler.
5683 ///
5684 /// We specifically choose to not worry about merging non-empty blocks
5685 /// here.  That is a PRE/scheduling problem and is best solved elsewhere.  In
5686 /// practice, the optimizer produces empty landing pad blocks quite frequently
5687 /// when dealing with exception dense code.  (see: instcombine, gvn, if-else
5688 /// sinking in this file)
5689 ///
5690 /// This is primarily a code size optimization.  We need to avoid performing
5691 /// any transform which might inhibit optimization (such as our ability to
5692 /// specialize a particular handler via tail commoning).  We do this by not
5693 /// merging any blocks which require us to introduce a phi.  Since the same
5694 /// values are flowing through both blocks, we don't lose any ability to
5695 /// specialize.  If anything, we make such specialization more likely.
5696 ///
5697 /// TODO - This transformation could remove entries from a phi in the target
5698 /// block when the inputs in the phi are the same for the two blocks being
5699 /// merged.  In some cases, this could result in removal of the PHI entirely.
5700 static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI,
5701                                  BasicBlock *BB) {
5702   auto Succ = BB->getUniqueSuccessor();
5703   assert(Succ);
5704   // If there's a phi in the successor block, we'd likely have to introduce
5705   // a phi into the merged landing pad block.
5706   if (isa<PHINode>(*Succ->begin()))
5707     return false;
5708 
5709   for (BasicBlock *OtherPred : predecessors(Succ)) {
5710     if (BB == OtherPred)
5711       continue;
5712     BasicBlock::iterator I = OtherPred->begin();
5713     LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I);
5714     if (!LPad2 || !LPad2->isIdenticalTo(LPad))
5715       continue;
5716     for (++I; isa<DbgInfoIntrinsic>(I); ++I)
5717       ;
5718     BranchInst *BI2 = dyn_cast<BranchInst>(I);
5719     if (!BI2 || !BI2->isIdenticalTo(BI))
5720       continue;
5721 
5722     // We've found an identical block.  Update our predecessors to take that
5723     // path instead and make ourselves dead.
5724     SmallPtrSet<BasicBlock *, 16> Preds;
5725     Preds.insert(pred_begin(BB), pred_end(BB));
5726     for (BasicBlock *Pred : Preds) {
5727       InvokeInst *II = cast<InvokeInst>(Pred->getTerminator());
5728       assert(II->getNormalDest() != BB && II->getUnwindDest() == BB &&
5729              "unexpected successor");
5730       II->setUnwindDest(OtherPred);
5731     }
5732 
5733     // The debug info in OtherPred doesn't cover the merged control flow that
5734     // used to go through BB.  We need to delete it or update it.
5735     for (auto I = OtherPred->begin(), E = OtherPred->end(); I != E;) {
5736       Instruction &Inst = *I;
5737       I++;
5738       if (isa<DbgInfoIntrinsic>(Inst))
5739         Inst.eraseFromParent();
5740     }
5741 
5742     SmallPtrSet<BasicBlock *, 16> Succs;
5743     Succs.insert(succ_begin(BB), succ_end(BB));
5744     for (BasicBlock *Succ : Succs) {
5745       Succ->removePredecessor(BB);
5746     }
5747 
5748     IRBuilder<> Builder(BI);
5749     Builder.CreateUnreachable();
5750     BI->eraseFromParent();
5751     return true;
5752   }
5753   return false;
5754 }
5755 
5756 bool SimplifyCFGOpt::SimplifyUncondBranch(BranchInst *BI,
5757                                           IRBuilder<> &Builder) {
5758   BasicBlock *BB = BI->getParent();
5759   BasicBlock *Succ = BI->getSuccessor(0);
5760 
5761   // If the Terminator is the only non-phi instruction, simplify the block.
5762   // If LoopHeader is provided, check if the block or its successor is a loop
5763   // header. (This is for early invocations before loop simplify and
5764   // vectorization to keep canonical loop forms for nested loops. These blocks
5765   // can be eliminated when the pass is invoked later in the back-end.)
5766   // Note that if BB has only one predecessor then we do not introduce new
5767   // backedge, so we can eliminate BB.
5768   bool NeedCanonicalLoop =
5769       Options.NeedCanonicalLoop &&
5770       (LoopHeaders && pred_size(BB) > 1 &&
5771        (LoopHeaders->count(BB) || LoopHeaders->count(Succ)));
5772   BasicBlock::iterator I = BB->getFirstNonPHIOrDbg()->getIterator();
5773   if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() &&
5774       !NeedCanonicalLoop && TryToSimplifyUncondBranchFromEmptyBlock(BB))
5775     return true;
5776 
5777   // If the only instruction in the block is a seteq/setne comparison against a
5778   // constant, try to simplify the block.
5779   if (ICmpInst *ICI = dyn_cast<ICmpInst>(I))
5780     if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) {
5781       for (++I; isa<DbgInfoIntrinsic>(I); ++I)
5782         ;
5783       if (I->isTerminator() &&
5784           tryToSimplifyUncondBranchWithICmpInIt(ICI, Builder, DL, TTI, Options))
5785         return true;
5786     }
5787 
5788   // See if we can merge an empty landing pad block with another which is
5789   // equivalent.
5790   if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) {
5791     for (++I; isa<DbgInfoIntrinsic>(I); ++I)
5792       ;
5793     if (I->isTerminator() && TryToMergeLandingPad(LPad, BI, BB))
5794       return true;
5795   }
5796 
5797   // If this basic block is ONLY a compare and a branch, and if a predecessor
5798   // branches to us and our successor, fold the comparison into the
5799   // predecessor and use logical operations to update the incoming value
5800   // for PHI nodes in common successor.
5801   if (FoldBranchToCommonDest(BI, Options.BonusInstThreshold))
5802     return simplifyCFG(BB, TTI, Options) || true;
5803   return false;
5804 }
5805 
5806 static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) {
5807   BasicBlock *PredPred = nullptr;
5808   for (auto *P : predecessors(BB)) {
5809     BasicBlock *PPred = P->getSinglePredecessor();
5810     if (!PPred || (PredPred && PredPred != PPred))
5811       return nullptr;
5812     PredPred = PPred;
5813   }
5814   return PredPred;
5815 }
5816 
5817 bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) {
5818   BasicBlock *BB = BI->getParent();
5819   const Function *Fn = BB->getParent();
5820   if (Fn && Fn->hasFnAttribute(Attribute::OptForFuzzing))
5821     return false;
5822 
5823   // Conditional branch
5824   if (isValueEqualityComparison(BI)) {
5825     // If we only have one predecessor, and if it is a branch on this value,
5826     // see if that predecessor totally determines the outcome of this
5827     // switch.
5828     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
5829       if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder))
5830         return simplifyCFG(BB, TTI, Options) || true;
5831 
5832     // This block must be empty, except for the setcond inst, if it exists.
5833     // Ignore dbg intrinsics.
5834     auto I = BB->instructionsWithoutDebug().begin();
5835     if (&*I == BI) {
5836       if (FoldValueComparisonIntoPredecessors(BI, Builder))
5837         return simplifyCFG(BB, TTI, Options) || true;
5838     } else if (&*I == cast<Instruction>(BI->getCondition())) {
5839       ++I;
5840       if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder))
5841         return simplifyCFG(BB, TTI, Options) || true;
5842     }
5843   }
5844 
5845   // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction.
5846   if (SimplifyBranchOnICmpChain(BI, Builder, DL))
5847     return true;
5848 
5849   // If this basic block has a single dominating predecessor block and the
5850   // dominating block's condition implies BI's condition, we know the direction
5851   // of the BI branch.
5852   if (BasicBlock *Dom = BB->getSinglePredecessor()) {
5853     auto *PBI = dyn_cast_or_null<BranchInst>(Dom->getTerminator());
5854     if (PBI && PBI->isConditional() &&
5855         PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
5856       assert(PBI->getSuccessor(0) == BB || PBI->getSuccessor(1) == BB);
5857       bool CondIsTrue = PBI->getSuccessor(0) == BB;
5858       Optional<bool> Implication = isImpliedCondition(
5859           PBI->getCondition(), BI->getCondition(), DL, CondIsTrue);
5860       if (Implication) {
5861         // Turn this into a branch on constant.
5862         auto *OldCond = BI->getCondition();
5863         ConstantInt *CI = *Implication
5864                               ? ConstantInt::getTrue(BB->getContext())
5865                               : ConstantInt::getFalse(BB->getContext());
5866         BI->setCondition(CI);
5867         RecursivelyDeleteTriviallyDeadInstructions(OldCond);
5868         return simplifyCFG(BB, TTI, Options) || true;
5869       }
5870     }
5871   }
5872 
5873   // If this basic block is ONLY a compare and a branch, and if a predecessor
5874   // branches to us and one of our successors, fold the comparison into the
5875   // predecessor and use logical operations to pick the right destination.
5876   if (FoldBranchToCommonDest(BI, Options.BonusInstThreshold))
5877     return simplifyCFG(BB, TTI, Options) || true;
5878 
5879   // We have a conditional branch to two blocks that are only reachable
5880   // from BI.  We know that the condbr dominates the two blocks, so see if
5881   // there is any identical code in the "then" and "else" blocks.  If so, we
5882   // can hoist it up to the branching block.
5883   if (BI->getSuccessor(0)->getSinglePredecessor()) {
5884     if (BI->getSuccessor(1)->getSinglePredecessor()) {
5885       if (HoistThenElseCodeToIf(BI, TTI))
5886         return simplifyCFG(BB, TTI, Options) || true;
5887     } else {
5888       // If Successor #1 has multiple preds, we may be able to conditionally
5889       // execute Successor #0 if it branches to Successor #1.
5890       TerminatorInst *Succ0TI = BI->getSuccessor(0)->getTerminator();
5891       if (Succ0TI->getNumSuccessors() == 1 &&
5892           Succ0TI->getSuccessor(0) == BI->getSuccessor(1))
5893         if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), TTI))
5894           return simplifyCFG(BB, TTI, Options) || true;
5895     }
5896   } else if (BI->getSuccessor(1)->getSinglePredecessor()) {
5897     // If Successor #0 has multiple preds, we may be able to conditionally
5898     // execute Successor #1 if it branches to Successor #0.
5899     TerminatorInst *Succ1TI = BI->getSuccessor(1)->getTerminator();
5900     if (Succ1TI->getNumSuccessors() == 1 &&
5901         Succ1TI->getSuccessor(0) == BI->getSuccessor(0))
5902       if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), TTI))
5903         return simplifyCFG(BB, TTI, Options) || true;
5904   }
5905 
5906   // If this is a branch on a phi node in the current block, thread control
5907   // through this block if any PHI node entries are constants.
5908   if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition()))
5909     if (PN->getParent() == BI->getParent())
5910       if (FoldCondBranchOnPHI(BI, DL, Options.AC))
5911         return simplifyCFG(BB, TTI, Options) || true;
5912 
5913   // Scan predecessor blocks for conditional branches.
5914   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
5915     if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
5916       if (PBI != BI && PBI->isConditional())
5917         if (SimplifyCondBranchToCondBranch(PBI, BI, DL))
5918           return simplifyCFG(BB, TTI, Options) || true;
5919 
5920   // Look for diamond patterns.
5921   if (MergeCondStores)
5922     if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB))
5923       if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator()))
5924         if (PBI != BI && PBI->isConditional())
5925           if (mergeConditionalStores(PBI, BI, DL))
5926             return simplifyCFG(BB, TTI, Options) || true;
5927 
5928   return false;
5929 }
5930 
5931 /// Check if passing a value to an instruction will cause undefined behavior.
5932 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I) {
5933   Constant *C = dyn_cast<Constant>(V);
5934   if (!C)
5935     return false;
5936 
5937   if (I->use_empty())
5938     return false;
5939 
5940   if (C->isNullValue() || isa<UndefValue>(C)) {
5941     // Only look at the first use, avoid hurting compile time with long uselists
5942     User *Use = *I->user_begin();
5943 
5944     // Now make sure that there are no instructions in between that can alter
5945     // control flow (eg. calls)
5946     for (BasicBlock::iterator
5947              i = ++BasicBlock::iterator(I),
5948              UI = BasicBlock::iterator(dyn_cast<Instruction>(Use));
5949          i != UI; ++i)
5950       if (i == I->getParent()->end() || i->mayHaveSideEffects())
5951         return false;
5952 
5953     // Look through GEPs. A load from a GEP derived from NULL is still undefined
5954     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use))
5955       if (GEP->getPointerOperand() == I)
5956         return passingValueIsAlwaysUndefined(V, GEP);
5957 
5958     // Look through bitcasts.
5959     if (BitCastInst *BC = dyn_cast<BitCastInst>(Use))
5960       return passingValueIsAlwaysUndefined(V, BC);
5961 
5962     // Load from null is undefined.
5963     if (LoadInst *LI = dyn_cast<LoadInst>(Use))
5964       if (!LI->isVolatile())
5965         return !NullPointerIsDefined(LI->getFunction(),
5966                                      LI->getPointerAddressSpace());
5967 
5968     // Store to null is undefined.
5969     if (StoreInst *SI = dyn_cast<StoreInst>(Use))
5970       if (!SI->isVolatile())
5971         return (!NullPointerIsDefined(SI->getFunction(),
5972                                       SI->getPointerAddressSpace())) &&
5973                SI->getPointerOperand() == I;
5974 
5975     // A call to null is undefined.
5976     if (auto CS = CallSite(Use))
5977       return !NullPointerIsDefined(CS->getFunction()) &&
5978              CS.getCalledValue() == I;
5979   }
5980   return false;
5981 }
5982 
5983 /// If BB has an incoming value that will always trigger undefined behavior
5984 /// (eg. null pointer dereference), remove the branch leading here.
5985 static bool removeUndefIntroducingPredecessor(BasicBlock *BB) {
5986   for (PHINode &PHI : BB->phis())
5987     for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i)
5988       if (passingValueIsAlwaysUndefined(PHI.getIncomingValue(i), &PHI)) {
5989         TerminatorInst *T = PHI.getIncomingBlock(i)->getTerminator();
5990         IRBuilder<> Builder(T);
5991         if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
5992           BB->removePredecessor(PHI.getIncomingBlock(i));
5993           // Turn uncoditional branches into unreachables and remove the dead
5994           // destination from conditional branches.
5995           if (BI->isUnconditional())
5996             Builder.CreateUnreachable();
5997           else
5998             Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1)
5999                                                        : BI->getSuccessor(0));
6000           BI->eraseFromParent();
6001           return true;
6002         }
6003         // TODO: SwitchInst.
6004       }
6005 
6006   return false;
6007 }
6008 
6009 bool SimplifyCFGOpt::run(BasicBlock *BB) {
6010   bool Changed = false;
6011 
6012   assert(BB && BB->getParent() && "Block not embedded in function!");
6013   assert(BB->getTerminator() && "Degenerate basic block encountered!");
6014 
6015   // Remove basic blocks that have no predecessors (except the entry block)...
6016   // or that just have themself as a predecessor.  These are unreachable.
6017   if ((pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) ||
6018       BB->getSinglePredecessor() == BB) {
6019     LLVM_DEBUG(dbgs() << "Removing BB: \n" << *BB);
6020     DeleteDeadBlock(BB);
6021     return true;
6022   }
6023 
6024   // Check to see if we can constant propagate this terminator instruction
6025   // away...
6026   Changed |= ConstantFoldTerminator(BB, true);
6027 
6028   // Check for and eliminate duplicate PHI nodes in this block.
6029   Changed |= EliminateDuplicatePHINodes(BB);
6030 
6031   // Check for and remove branches that will always cause undefined behavior.
6032   Changed |= removeUndefIntroducingPredecessor(BB);
6033 
6034   // Merge basic blocks into their predecessor if there is only one distinct
6035   // pred, and if there is only one distinct successor of the predecessor, and
6036   // if there are no PHI nodes.
6037   if (MergeBlockIntoPredecessor(BB))
6038     return true;
6039 
6040   if (SinkCommon && Options.SinkCommonInsts)
6041     Changed |= SinkCommonCodeFromPredecessors(BB);
6042 
6043   IRBuilder<> Builder(BB);
6044 
6045   // If there is a trivial two-entry PHI node in this basic block, and we can
6046   // eliminate it, do so now.
6047   if (auto *PN = dyn_cast<PHINode>(BB->begin()))
6048     if (PN->getNumIncomingValues() == 2)
6049       Changed |= FoldTwoEntryPHINode(PN, TTI, DL);
6050 
6051   Builder.SetInsertPoint(BB->getTerminator());
6052   if (auto *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
6053     if (BI->isUnconditional()) {
6054       if (SimplifyUncondBranch(BI, Builder))
6055         return true;
6056     } else {
6057       if (SimplifyCondBranch(BI, Builder))
6058         return true;
6059     }
6060   } else if (auto *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
6061     if (SimplifyReturn(RI, Builder))
6062       return true;
6063   } else if (auto *RI = dyn_cast<ResumeInst>(BB->getTerminator())) {
6064     if (SimplifyResume(RI, Builder))
6065       return true;
6066   } else if (auto *RI = dyn_cast<CleanupReturnInst>(BB->getTerminator())) {
6067     if (SimplifyCleanupReturn(RI))
6068       return true;
6069   } else if (auto *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
6070     if (SimplifySwitch(SI, Builder))
6071       return true;
6072   } else if (auto *UI = dyn_cast<UnreachableInst>(BB->getTerminator())) {
6073     if (SimplifyUnreachable(UI))
6074       return true;
6075   } else if (auto *IBI = dyn_cast<IndirectBrInst>(BB->getTerminator())) {
6076     if (SimplifyIndirectBr(IBI))
6077       return true;
6078   }
6079 
6080   return Changed;
6081 }
6082 
6083 bool llvm::simplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI,
6084                        const SimplifyCFGOptions &Options,
6085                        SmallPtrSetImpl<BasicBlock *> *LoopHeaders) {
6086   return SimplifyCFGOpt(TTI, BB->getModule()->getDataLayout(), LoopHeaders,
6087                         Options)
6088       .run(BB);
6089 }
6090