1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Peephole optimize the CFG. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/ADT/APInt.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SetOperations.h" 20 #include "llvm/ADT/SetVector.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/ADT/StringRef.h" 25 #include "llvm/Analysis/AssumptionCache.h" 26 #include "llvm/Analysis/ConstantFolding.h" 27 #include "llvm/Analysis/EHPersonalities.h" 28 #include "llvm/Analysis/InstructionSimplify.h" 29 #include "llvm/Analysis/TargetTransformInfo.h" 30 #include "llvm/Transforms/Utils/Local.h" 31 #include "llvm/Analysis/ValueTracking.h" 32 #include "llvm/IR/Attributes.h" 33 #include "llvm/IR/BasicBlock.h" 34 #include "llvm/IR/CFG.h" 35 #include "llvm/IR/CallSite.h" 36 #include "llvm/IR/Constant.h" 37 #include "llvm/IR/ConstantRange.h" 38 #include "llvm/IR/Constants.h" 39 #include "llvm/IR/DataLayout.h" 40 #include "llvm/IR/DerivedTypes.h" 41 #include "llvm/IR/Function.h" 42 #include "llvm/IR/GlobalValue.h" 43 #include "llvm/IR/GlobalVariable.h" 44 #include "llvm/IR/IRBuilder.h" 45 #include "llvm/IR/InstrTypes.h" 46 #include "llvm/IR/Instruction.h" 47 #include "llvm/IR/Instructions.h" 48 #include "llvm/IR/IntrinsicInst.h" 49 #include "llvm/IR/Intrinsics.h" 50 #include "llvm/IR/LLVMContext.h" 51 #include "llvm/IR/MDBuilder.h" 52 #include "llvm/IR/Metadata.h" 53 #include "llvm/IR/Module.h" 54 #include "llvm/IR/NoFolder.h" 55 #include "llvm/IR/Operator.h" 56 #include "llvm/IR/PatternMatch.h" 57 #include "llvm/IR/Type.h" 58 #include "llvm/IR/Use.h" 59 #include "llvm/IR/User.h" 60 #include "llvm/IR/Value.h" 61 #include "llvm/Support/Casting.h" 62 #include "llvm/Support/CommandLine.h" 63 #include "llvm/Support/Debug.h" 64 #include "llvm/Support/ErrorHandling.h" 65 #include "llvm/Support/KnownBits.h" 66 #include "llvm/Support/MathExtras.h" 67 #include "llvm/Support/raw_ostream.h" 68 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 69 #include "llvm/Transforms/Utils/ValueMapper.h" 70 #include <algorithm> 71 #include <cassert> 72 #include <climits> 73 #include <cstddef> 74 #include <cstdint> 75 #include <iterator> 76 #include <map> 77 #include <set> 78 #include <tuple> 79 #include <utility> 80 #include <vector> 81 82 using namespace llvm; 83 using namespace PatternMatch; 84 85 #define DEBUG_TYPE "simplifycfg" 86 87 // Chosen as 2 so as to be cheap, but still to have enough power to fold 88 // a select, so the "clamp" idiom (of a min followed by a max) will be caught. 89 // To catch this, we need to fold a compare and a select, hence '2' being the 90 // minimum reasonable default. 91 static cl::opt<unsigned> PHINodeFoldingThreshold( 92 "phi-node-folding-threshold", cl::Hidden, cl::init(2), 93 cl::desc( 94 "Control the amount of phi node folding to perform (default = 2)")); 95 96 static cl::opt<bool> DupRet( 97 "simplifycfg-dup-ret", cl::Hidden, cl::init(false), 98 cl::desc("Duplicate return instructions into unconditional branches")); 99 100 static cl::opt<bool> 101 SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true), 102 cl::desc("Sink common instructions down to the end block")); 103 104 static cl::opt<bool> HoistCondStores( 105 "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true), 106 cl::desc("Hoist conditional stores if an unconditional store precedes")); 107 108 static cl::opt<bool> MergeCondStores( 109 "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true), 110 cl::desc("Hoist conditional stores even if an unconditional store does not " 111 "precede - hoist multiple conditional stores into a single " 112 "predicated store")); 113 114 static cl::opt<bool> MergeCondStoresAggressively( 115 "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false), 116 cl::desc("When merging conditional stores, do so even if the resultant " 117 "basic blocks are unlikely to be if-converted as a result")); 118 119 static cl::opt<bool> SpeculateOneExpensiveInst( 120 "speculate-one-expensive-inst", cl::Hidden, cl::init(true), 121 cl::desc("Allow exactly one expensive instruction to be speculatively " 122 "executed")); 123 124 static cl::opt<unsigned> MaxSpeculationDepth( 125 "max-speculation-depth", cl::Hidden, cl::init(10), 126 cl::desc("Limit maximum recursion depth when calculating costs of " 127 "speculatively executed instructions")); 128 129 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps"); 130 STATISTIC(NumLinearMaps, 131 "Number of switch instructions turned into linear mapping"); 132 STATISTIC(NumLookupTables, 133 "Number of switch instructions turned into lookup tables"); 134 STATISTIC( 135 NumLookupTablesHoles, 136 "Number of switch instructions turned into lookup tables (holes checked)"); 137 STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares"); 138 STATISTIC(NumSinkCommons, 139 "Number of common instructions sunk down to the end block"); 140 STATISTIC(NumSpeculations, "Number of speculative executed instructions"); 141 142 namespace { 143 144 // The first field contains the value that the switch produces when a certain 145 // case group is selected, and the second field is a vector containing the 146 // cases composing the case group. 147 using SwitchCaseResultVectorTy = 148 SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2>; 149 150 // The first field contains the phi node that generates a result of the switch 151 // and the second field contains the value generated for a certain case in the 152 // switch for that PHI. 153 using SwitchCaseResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>; 154 155 /// ValueEqualityComparisonCase - Represents a case of a switch. 156 struct ValueEqualityComparisonCase { 157 ConstantInt *Value; 158 BasicBlock *Dest; 159 160 ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest) 161 : Value(Value), Dest(Dest) {} 162 163 bool operator<(ValueEqualityComparisonCase RHS) const { 164 // Comparing pointers is ok as we only rely on the order for uniquing. 165 return Value < RHS.Value; 166 } 167 168 bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; } 169 }; 170 171 class SimplifyCFGOpt { 172 const TargetTransformInfo &TTI; 173 const DataLayout &DL; 174 SmallPtrSetImpl<BasicBlock *> *LoopHeaders; 175 const SimplifyCFGOptions &Options; 176 177 Value *isValueEqualityComparison(TerminatorInst *TI); 178 BasicBlock *GetValueEqualityComparisonCases( 179 TerminatorInst *TI, std::vector<ValueEqualityComparisonCase> &Cases); 180 bool SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI, 181 BasicBlock *Pred, 182 IRBuilder<> &Builder); 183 bool FoldValueComparisonIntoPredecessors(TerminatorInst *TI, 184 IRBuilder<> &Builder); 185 186 bool SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder); 187 bool SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder); 188 bool SimplifySingleResume(ResumeInst *RI); 189 bool SimplifyCommonResume(ResumeInst *RI); 190 bool SimplifyCleanupReturn(CleanupReturnInst *RI); 191 bool SimplifyUnreachable(UnreachableInst *UI); 192 bool SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder); 193 bool SimplifyIndirectBr(IndirectBrInst *IBI); 194 bool SimplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder); 195 bool SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder); 196 197 public: 198 SimplifyCFGOpt(const TargetTransformInfo &TTI, const DataLayout &DL, 199 SmallPtrSetImpl<BasicBlock *> *LoopHeaders, 200 const SimplifyCFGOptions &Opts) 201 : TTI(TTI), DL(DL), LoopHeaders(LoopHeaders), Options(Opts) {} 202 203 bool run(BasicBlock *BB); 204 }; 205 206 } // end anonymous namespace 207 208 /// Return true if it is safe to merge these two 209 /// terminator instructions together. 210 static bool 211 SafeToMergeTerminators(TerminatorInst *SI1, TerminatorInst *SI2, 212 SmallSetVector<BasicBlock *, 4> *FailBlocks = nullptr) { 213 if (SI1 == SI2) 214 return false; // Can't merge with self! 215 216 // It is not safe to merge these two switch instructions if they have a common 217 // successor, and if that successor has a PHI node, and if *that* PHI node has 218 // conflicting incoming values from the two switch blocks. 219 BasicBlock *SI1BB = SI1->getParent(); 220 BasicBlock *SI2BB = SI2->getParent(); 221 222 SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB)); 223 bool Fail = false; 224 for (BasicBlock *Succ : successors(SI2BB)) 225 if (SI1Succs.count(Succ)) 226 for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) { 227 PHINode *PN = cast<PHINode>(BBI); 228 if (PN->getIncomingValueForBlock(SI1BB) != 229 PN->getIncomingValueForBlock(SI2BB)) { 230 if (FailBlocks) 231 FailBlocks->insert(Succ); 232 Fail = true; 233 } 234 } 235 236 return !Fail; 237 } 238 239 /// Return true if it is safe and profitable to merge these two terminator 240 /// instructions together, where SI1 is an unconditional branch. PhiNodes will 241 /// store all PHI nodes in common successors. 242 static bool 243 isProfitableToFoldUnconditional(BranchInst *SI1, BranchInst *SI2, 244 Instruction *Cond, 245 SmallVectorImpl<PHINode *> &PhiNodes) { 246 if (SI1 == SI2) 247 return false; // Can't merge with self! 248 assert(SI1->isUnconditional() && SI2->isConditional()); 249 250 // We fold the unconditional branch if we can easily update all PHI nodes in 251 // common successors: 252 // 1> We have a constant incoming value for the conditional branch; 253 // 2> We have "Cond" as the incoming value for the unconditional branch; 254 // 3> SI2->getCondition() and Cond have same operands. 255 CmpInst *Ci2 = dyn_cast<CmpInst>(SI2->getCondition()); 256 if (!Ci2) 257 return false; 258 if (!(Cond->getOperand(0) == Ci2->getOperand(0) && 259 Cond->getOperand(1) == Ci2->getOperand(1)) && 260 !(Cond->getOperand(0) == Ci2->getOperand(1) && 261 Cond->getOperand(1) == Ci2->getOperand(0))) 262 return false; 263 264 BasicBlock *SI1BB = SI1->getParent(); 265 BasicBlock *SI2BB = SI2->getParent(); 266 SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB)); 267 for (BasicBlock *Succ : successors(SI2BB)) 268 if (SI1Succs.count(Succ)) 269 for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) { 270 PHINode *PN = cast<PHINode>(BBI); 271 if (PN->getIncomingValueForBlock(SI1BB) != Cond || 272 !isa<ConstantInt>(PN->getIncomingValueForBlock(SI2BB))) 273 return false; 274 PhiNodes.push_back(PN); 275 } 276 return true; 277 } 278 279 /// Update PHI nodes in Succ to indicate that there will now be entries in it 280 /// from the 'NewPred' block. The values that will be flowing into the PHI nodes 281 /// will be the same as those coming in from ExistPred, an existing predecessor 282 /// of Succ. 283 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred, 284 BasicBlock *ExistPred) { 285 for (PHINode &PN : Succ->phis()) 286 PN.addIncoming(PN.getIncomingValueForBlock(ExistPred), NewPred); 287 } 288 289 /// Compute an abstract "cost" of speculating the given instruction, 290 /// which is assumed to be safe to speculate. TCC_Free means cheap, 291 /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively 292 /// expensive. 293 static unsigned ComputeSpeculationCost(const User *I, 294 const TargetTransformInfo &TTI) { 295 assert(isSafeToSpeculativelyExecute(I) && 296 "Instruction is not safe to speculatively execute!"); 297 return TTI.getUserCost(I); 298 } 299 300 /// If we have a merge point of an "if condition" as accepted above, 301 /// return true if the specified value dominates the block. We 302 /// don't handle the true generality of domination here, just a special case 303 /// which works well enough for us. 304 /// 305 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to 306 /// see if V (which must be an instruction) and its recursive operands 307 /// that do not dominate BB have a combined cost lower than CostRemaining and 308 /// are non-trapping. If both are true, the instruction is inserted into the 309 /// set and true is returned. 310 /// 311 /// The cost for most non-trapping instructions is defined as 1 except for 312 /// Select whose cost is 2. 313 /// 314 /// After this function returns, CostRemaining is decreased by the cost of 315 /// V plus its non-dominating operands. If that cost is greater than 316 /// CostRemaining, false is returned and CostRemaining is undefined. 317 static bool DominatesMergePoint(Value *V, BasicBlock *BB, 318 SmallPtrSetImpl<Instruction *> *AggressiveInsts, 319 unsigned &CostRemaining, 320 const TargetTransformInfo &TTI, 321 unsigned Depth = 0) { 322 // It is possible to hit a zero-cost cycle (phi/gep instructions for example), 323 // so limit the recursion depth. 324 // TODO: While this recursion limit does prevent pathological behavior, it 325 // would be better to track visited instructions to avoid cycles. 326 if (Depth == MaxSpeculationDepth) 327 return false; 328 329 Instruction *I = dyn_cast<Instruction>(V); 330 if (!I) { 331 // Non-instructions all dominate instructions, but not all constantexprs 332 // can be executed unconditionally. 333 if (ConstantExpr *C = dyn_cast<ConstantExpr>(V)) 334 if (C->canTrap()) 335 return false; 336 return true; 337 } 338 BasicBlock *PBB = I->getParent(); 339 340 // We don't want to allow weird loops that might have the "if condition" in 341 // the bottom of this block. 342 if (PBB == BB) 343 return false; 344 345 // If this instruction is defined in a block that contains an unconditional 346 // branch to BB, then it must be in the 'conditional' part of the "if 347 // statement". If not, it definitely dominates the region. 348 BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator()); 349 if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB) 350 return true; 351 352 // If we aren't allowing aggressive promotion anymore, then don't consider 353 // instructions in the 'if region'. 354 if (!AggressiveInsts) 355 return false; 356 357 // If we have seen this instruction before, don't count it again. 358 if (AggressiveInsts->count(I)) 359 return true; 360 361 // Okay, it looks like the instruction IS in the "condition". Check to 362 // see if it's a cheap instruction to unconditionally compute, and if it 363 // only uses stuff defined outside of the condition. If so, hoist it out. 364 if (!isSafeToSpeculativelyExecute(I)) 365 return false; 366 367 unsigned Cost = ComputeSpeculationCost(I, TTI); 368 369 // Allow exactly one instruction to be speculated regardless of its cost 370 // (as long as it is safe to do so). 371 // This is intended to flatten the CFG even if the instruction is a division 372 // or other expensive operation. The speculation of an expensive instruction 373 // is expected to be undone in CodeGenPrepare if the speculation has not 374 // enabled further IR optimizations. 375 if (Cost > CostRemaining && 376 (!SpeculateOneExpensiveInst || !AggressiveInsts->empty() || Depth > 0)) 377 return false; 378 379 // Avoid unsigned wrap. 380 CostRemaining = (Cost > CostRemaining) ? 0 : CostRemaining - Cost; 381 382 // Okay, we can only really hoist these out if their operands do 383 // not take us over the cost threshold. 384 for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) 385 if (!DominatesMergePoint(*i, BB, AggressiveInsts, CostRemaining, TTI, 386 Depth + 1)) 387 return false; 388 // Okay, it's safe to do this! Remember this instruction. 389 AggressiveInsts->insert(I); 390 return true; 391 } 392 393 /// Extract ConstantInt from value, looking through IntToPtr 394 /// and PointerNullValue. Return NULL if value is not a constant int. 395 static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) { 396 // Normal constant int. 397 ConstantInt *CI = dyn_cast<ConstantInt>(V); 398 if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy()) 399 return CI; 400 401 // This is some kind of pointer constant. Turn it into a pointer-sized 402 // ConstantInt if possible. 403 IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType())); 404 405 // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*). 406 if (isa<ConstantPointerNull>(V)) 407 return ConstantInt::get(PtrTy, 0); 408 409 // IntToPtr const int. 410 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 411 if (CE->getOpcode() == Instruction::IntToPtr) 412 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) { 413 // The constant is very likely to have the right type already. 414 if (CI->getType() == PtrTy) 415 return CI; 416 else 417 return cast<ConstantInt>( 418 ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false)); 419 } 420 return nullptr; 421 } 422 423 namespace { 424 425 /// Given a chain of or (||) or and (&&) comparison of a value against a 426 /// constant, this will try to recover the information required for a switch 427 /// structure. 428 /// It will depth-first traverse the chain of comparison, seeking for patterns 429 /// like %a == 12 or %a < 4 and combine them to produce a set of integer 430 /// representing the different cases for the switch. 431 /// Note that if the chain is composed of '||' it will build the set of elements 432 /// that matches the comparisons (i.e. any of this value validate the chain) 433 /// while for a chain of '&&' it will build the set elements that make the test 434 /// fail. 435 struct ConstantComparesGatherer { 436 const DataLayout &DL; 437 438 /// Value found for the switch comparison 439 Value *CompValue = nullptr; 440 441 /// Extra clause to be checked before the switch 442 Value *Extra = nullptr; 443 444 /// Set of integers to match in switch 445 SmallVector<ConstantInt *, 8> Vals; 446 447 /// Number of comparisons matched in the and/or chain 448 unsigned UsedICmps = 0; 449 450 /// Construct and compute the result for the comparison instruction Cond 451 ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL) : DL(DL) { 452 gather(Cond); 453 } 454 455 ConstantComparesGatherer(const ConstantComparesGatherer &) = delete; 456 ConstantComparesGatherer & 457 operator=(const ConstantComparesGatherer &) = delete; 458 459 private: 460 /// Try to set the current value used for the comparison, it succeeds only if 461 /// it wasn't set before or if the new value is the same as the old one 462 bool setValueOnce(Value *NewVal) { 463 if (CompValue && CompValue != NewVal) 464 return false; 465 CompValue = NewVal; 466 return (CompValue != nullptr); 467 } 468 469 /// Try to match Instruction "I" as a comparison against a constant and 470 /// populates the array Vals with the set of values that match (or do not 471 /// match depending on isEQ). 472 /// Return false on failure. On success, the Value the comparison matched 473 /// against is placed in CompValue. 474 /// If CompValue is already set, the function is expected to fail if a match 475 /// is found but the value compared to is different. 476 bool matchInstruction(Instruction *I, bool isEQ) { 477 // If this is an icmp against a constant, handle this as one of the cases. 478 ICmpInst *ICI; 479 ConstantInt *C; 480 if (!((ICI = dyn_cast<ICmpInst>(I)) && 481 (C = GetConstantInt(I->getOperand(1), DL)))) { 482 return false; 483 } 484 485 Value *RHSVal; 486 const APInt *RHSC; 487 488 // Pattern match a special case 489 // (x & ~2^z) == y --> x == y || x == y|2^z 490 // This undoes a transformation done by instcombine to fuse 2 compares. 491 if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE)) { 492 // It's a little bit hard to see why the following transformations are 493 // correct. Here is a CVC3 program to verify them for 64-bit values: 494 495 /* 496 ONE : BITVECTOR(64) = BVZEROEXTEND(0bin1, 63); 497 x : BITVECTOR(64); 498 y : BITVECTOR(64); 499 z : BITVECTOR(64); 500 mask : BITVECTOR(64) = BVSHL(ONE, z); 501 QUERY( (y & ~mask = y) => 502 ((x & ~mask = y) <=> (x = y OR x = (y | mask))) 503 ); 504 QUERY( (y | mask = y) => 505 ((x | mask = y) <=> (x = y OR x = (y & ~mask))) 506 ); 507 */ 508 509 // Please note that each pattern must be a dual implication (<--> or 510 // iff). One directional implication can create spurious matches. If the 511 // implication is only one-way, an unsatisfiable condition on the left 512 // side can imply a satisfiable condition on the right side. Dual 513 // implication ensures that satisfiable conditions are transformed to 514 // other satisfiable conditions and unsatisfiable conditions are 515 // transformed to other unsatisfiable conditions. 516 517 // Here is a concrete example of a unsatisfiable condition on the left 518 // implying a satisfiable condition on the right: 519 // 520 // mask = (1 << z) 521 // (x & ~mask) == y --> (x == y || x == (y | mask)) 522 // 523 // Substituting y = 3, z = 0 yields: 524 // (x & -2) == 3 --> (x == 3 || x == 2) 525 526 // Pattern match a special case: 527 /* 528 QUERY( (y & ~mask = y) => 529 ((x & ~mask = y) <=> (x = y OR x = (y | mask))) 530 ); 531 */ 532 if (match(ICI->getOperand(0), 533 m_And(m_Value(RHSVal), m_APInt(RHSC)))) { 534 APInt Mask = ~*RHSC; 535 if (Mask.isPowerOf2() && (C->getValue() & ~Mask) == C->getValue()) { 536 // If we already have a value for the switch, it has to match! 537 if (!setValueOnce(RHSVal)) 538 return false; 539 540 Vals.push_back(C); 541 Vals.push_back( 542 ConstantInt::get(C->getContext(), 543 C->getValue() | Mask)); 544 UsedICmps++; 545 return true; 546 } 547 } 548 549 // Pattern match a special case: 550 /* 551 QUERY( (y | mask = y) => 552 ((x | mask = y) <=> (x = y OR x = (y & ~mask))) 553 ); 554 */ 555 if (match(ICI->getOperand(0), 556 m_Or(m_Value(RHSVal), m_APInt(RHSC)))) { 557 APInt Mask = *RHSC; 558 if (Mask.isPowerOf2() && (C->getValue() | Mask) == C->getValue()) { 559 // If we already have a value for the switch, it has to match! 560 if (!setValueOnce(RHSVal)) 561 return false; 562 563 Vals.push_back(C); 564 Vals.push_back(ConstantInt::get(C->getContext(), 565 C->getValue() & ~Mask)); 566 UsedICmps++; 567 return true; 568 } 569 } 570 571 // If we already have a value for the switch, it has to match! 572 if (!setValueOnce(ICI->getOperand(0))) 573 return false; 574 575 UsedICmps++; 576 Vals.push_back(C); 577 return ICI->getOperand(0); 578 } 579 580 // If we have "x ult 3", for example, then we can add 0,1,2 to the set. 581 ConstantRange Span = ConstantRange::makeAllowedICmpRegion( 582 ICI->getPredicate(), C->getValue()); 583 584 // Shift the range if the compare is fed by an add. This is the range 585 // compare idiom as emitted by instcombine. 586 Value *CandidateVal = I->getOperand(0); 587 if (match(I->getOperand(0), m_Add(m_Value(RHSVal), m_APInt(RHSC)))) { 588 Span = Span.subtract(*RHSC); 589 CandidateVal = RHSVal; 590 } 591 592 // If this is an and/!= check, then we are looking to build the set of 593 // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into 594 // x != 0 && x != 1. 595 if (!isEQ) 596 Span = Span.inverse(); 597 598 // If there are a ton of values, we don't want to make a ginormous switch. 599 if (Span.isSizeLargerThan(8) || Span.isEmptySet()) { 600 return false; 601 } 602 603 // If we already have a value for the switch, it has to match! 604 if (!setValueOnce(CandidateVal)) 605 return false; 606 607 // Add all values from the range to the set 608 for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp) 609 Vals.push_back(ConstantInt::get(I->getContext(), Tmp)); 610 611 UsedICmps++; 612 return true; 613 } 614 615 /// Given a potentially 'or'd or 'and'd together collection of icmp 616 /// eq/ne/lt/gt instructions that compare a value against a constant, extract 617 /// the value being compared, and stick the list constants into the Vals 618 /// vector. 619 /// One "Extra" case is allowed to differ from the other. 620 void gather(Value *V) { 621 Instruction *I = dyn_cast<Instruction>(V); 622 bool isEQ = (I->getOpcode() == Instruction::Or); 623 624 // Keep a stack (SmallVector for efficiency) for depth-first traversal 625 SmallVector<Value *, 8> DFT; 626 SmallPtrSet<Value *, 8> Visited; 627 628 // Initialize 629 Visited.insert(V); 630 DFT.push_back(V); 631 632 while (!DFT.empty()) { 633 V = DFT.pop_back_val(); 634 635 if (Instruction *I = dyn_cast<Instruction>(V)) { 636 // If it is a || (or && depending on isEQ), process the operands. 637 if (I->getOpcode() == (isEQ ? Instruction::Or : Instruction::And)) { 638 if (Visited.insert(I->getOperand(1)).second) 639 DFT.push_back(I->getOperand(1)); 640 if (Visited.insert(I->getOperand(0)).second) 641 DFT.push_back(I->getOperand(0)); 642 continue; 643 } 644 645 // Try to match the current instruction 646 if (matchInstruction(I, isEQ)) 647 // Match succeed, continue the loop 648 continue; 649 } 650 651 // One element of the sequence of || (or &&) could not be match as a 652 // comparison against the same value as the others. 653 // We allow only one "Extra" case to be checked before the switch 654 if (!Extra) { 655 Extra = V; 656 continue; 657 } 658 // Failed to parse a proper sequence, abort now 659 CompValue = nullptr; 660 break; 661 } 662 } 663 }; 664 665 } // end anonymous namespace 666 667 static void EraseTerminatorInstAndDCECond(TerminatorInst *TI) { 668 Instruction *Cond = nullptr; 669 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 670 Cond = dyn_cast<Instruction>(SI->getCondition()); 671 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 672 if (BI->isConditional()) 673 Cond = dyn_cast<Instruction>(BI->getCondition()); 674 } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) { 675 Cond = dyn_cast<Instruction>(IBI->getAddress()); 676 } 677 678 TI->eraseFromParent(); 679 if (Cond) 680 RecursivelyDeleteTriviallyDeadInstructions(Cond); 681 } 682 683 /// Return true if the specified terminator checks 684 /// to see if a value is equal to constant integer value. 685 Value *SimplifyCFGOpt::isValueEqualityComparison(TerminatorInst *TI) { 686 Value *CV = nullptr; 687 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 688 // Do not permit merging of large switch instructions into their 689 // predecessors unless there is only one predecessor. 690 if (SI->getNumSuccessors() * pred_size(SI->getParent()) <= 128) 691 CV = SI->getCondition(); 692 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) 693 if (BI->isConditional() && BI->getCondition()->hasOneUse()) 694 if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) { 695 if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL)) 696 CV = ICI->getOperand(0); 697 } 698 699 // Unwrap any lossless ptrtoint cast. 700 if (CV) { 701 if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) { 702 Value *Ptr = PTII->getPointerOperand(); 703 if (PTII->getType() == DL.getIntPtrType(Ptr->getType())) 704 CV = Ptr; 705 } 706 } 707 return CV; 708 } 709 710 /// Given a value comparison instruction, 711 /// decode all of the 'cases' that it represents and return the 'default' block. 712 BasicBlock *SimplifyCFGOpt::GetValueEqualityComparisonCases( 713 TerminatorInst *TI, std::vector<ValueEqualityComparisonCase> &Cases) { 714 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 715 Cases.reserve(SI->getNumCases()); 716 for (auto Case : SI->cases()) 717 Cases.push_back(ValueEqualityComparisonCase(Case.getCaseValue(), 718 Case.getCaseSuccessor())); 719 return SI->getDefaultDest(); 720 } 721 722 BranchInst *BI = cast<BranchInst>(TI); 723 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 724 BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE); 725 Cases.push_back(ValueEqualityComparisonCase( 726 GetConstantInt(ICI->getOperand(1), DL), Succ)); 727 return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ); 728 } 729 730 /// Given a vector of bb/value pairs, remove any entries 731 /// in the list that match the specified block. 732 static void 733 EliminateBlockCases(BasicBlock *BB, 734 std::vector<ValueEqualityComparisonCase> &Cases) { 735 Cases.erase(std::remove(Cases.begin(), Cases.end(), BB), Cases.end()); 736 } 737 738 /// Return true if there are any keys in C1 that exist in C2 as well. 739 static bool ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1, 740 std::vector<ValueEqualityComparisonCase> &C2) { 741 std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2; 742 743 // Make V1 be smaller than V2. 744 if (V1->size() > V2->size()) 745 std::swap(V1, V2); 746 747 if (V1->empty()) 748 return false; 749 if (V1->size() == 1) { 750 // Just scan V2. 751 ConstantInt *TheVal = (*V1)[0].Value; 752 for (unsigned i = 0, e = V2->size(); i != e; ++i) 753 if (TheVal == (*V2)[i].Value) 754 return true; 755 } 756 757 // Otherwise, just sort both lists and compare element by element. 758 array_pod_sort(V1->begin(), V1->end()); 759 array_pod_sort(V2->begin(), V2->end()); 760 unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size(); 761 while (i1 != e1 && i2 != e2) { 762 if ((*V1)[i1].Value == (*V2)[i2].Value) 763 return true; 764 if ((*V1)[i1].Value < (*V2)[i2].Value) 765 ++i1; 766 else 767 ++i2; 768 } 769 return false; 770 } 771 772 // Set branch weights on SwitchInst. This sets the metadata if there is at 773 // least one non-zero weight. 774 static void setBranchWeights(SwitchInst *SI, ArrayRef<uint32_t> Weights) { 775 // Check that there is at least one non-zero weight. Otherwise, pass 776 // nullptr to setMetadata which will erase the existing metadata. 777 MDNode *N = nullptr; 778 if (llvm::any_of(Weights, [](uint32_t W) { return W != 0; })) 779 N = MDBuilder(SI->getParent()->getContext()).createBranchWeights(Weights); 780 SI->setMetadata(LLVMContext::MD_prof, N); 781 } 782 783 // Similar to the above, but for branch and select instructions that take 784 // exactly 2 weights. 785 static void setBranchWeights(Instruction *I, uint32_t TrueWeight, 786 uint32_t FalseWeight) { 787 assert(isa<BranchInst>(I) || isa<SelectInst>(I)); 788 // Check that there is at least one non-zero weight. Otherwise, pass 789 // nullptr to setMetadata which will erase the existing metadata. 790 MDNode *N = nullptr; 791 if (TrueWeight || FalseWeight) 792 N = MDBuilder(I->getParent()->getContext()) 793 .createBranchWeights(TrueWeight, FalseWeight); 794 I->setMetadata(LLVMContext::MD_prof, N); 795 } 796 797 /// If TI is known to be a terminator instruction and its block is known to 798 /// only have a single predecessor block, check to see if that predecessor is 799 /// also a value comparison with the same value, and if that comparison 800 /// determines the outcome of this comparison. If so, simplify TI. This does a 801 /// very limited form of jump threading. 802 bool SimplifyCFGOpt::SimplifyEqualityComparisonWithOnlyPredecessor( 803 TerminatorInst *TI, BasicBlock *Pred, IRBuilder<> &Builder) { 804 Value *PredVal = isValueEqualityComparison(Pred->getTerminator()); 805 if (!PredVal) 806 return false; // Not a value comparison in predecessor. 807 808 Value *ThisVal = isValueEqualityComparison(TI); 809 assert(ThisVal && "This isn't a value comparison!!"); 810 if (ThisVal != PredVal) 811 return false; // Different predicates. 812 813 // TODO: Preserve branch weight metadata, similarly to how 814 // FoldValueComparisonIntoPredecessors preserves it. 815 816 // Find out information about when control will move from Pred to TI's block. 817 std::vector<ValueEqualityComparisonCase> PredCases; 818 BasicBlock *PredDef = 819 GetValueEqualityComparisonCases(Pred->getTerminator(), PredCases); 820 EliminateBlockCases(PredDef, PredCases); // Remove default from cases. 821 822 // Find information about how control leaves this block. 823 std::vector<ValueEqualityComparisonCase> ThisCases; 824 BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases); 825 EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases. 826 827 // If TI's block is the default block from Pred's comparison, potentially 828 // simplify TI based on this knowledge. 829 if (PredDef == TI->getParent()) { 830 // If we are here, we know that the value is none of those cases listed in 831 // PredCases. If there are any cases in ThisCases that are in PredCases, we 832 // can simplify TI. 833 if (!ValuesOverlap(PredCases, ThisCases)) 834 return false; 835 836 if (isa<BranchInst>(TI)) { 837 // Okay, one of the successors of this condbr is dead. Convert it to a 838 // uncond br. 839 assert(ThisCases.size() == 1 && "Branch can only have one case!"); 840 // Insert the new branch. 841 Instruction *NI = Builder.CreateBr(ThisDef); 842 (void)NI; 843 844 // Remove PHI node entries for the dead edge. 845 ThisCases[0].Dest->removePredecessor(TI->getParent()); 846 847 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 848 << "Through successor TI: " << *TI << "Leaving: " << *NI 849 << "\n"); 850 851 EraseTerminatorInstAndDCECond(TI); 852 return true; 853 } 854 855 SwitchInst *SI = cast<SwitchInst>(TI); 856 // Okay, TI has cases that are statically dead, prune them away. 857 SmallPtrSet<Constant *, 16> DeadCases; 858 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 859 DeadCases.insert(PredCases[i].Value); 860 861 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 862 << "Through successor TI: " << *TI); 863 864 // Collect branch weights into a vector. 865 SmallVector<uint32_t, 8> Weights; 866 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof); 867 bool HasWeight = MD && (MD->getNumOperands() == 2 + SI->getNumCases()); 868 if (HasWeight) 869 for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e; 870 ++MD_i) { 871 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i)); 872 Weights.push_back(CI->getValue().getZExtValue()); 873 } 874 for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) { 875 --i; 876 if (DeadCases.count(i->getCaseValue())) { 877 if (HasWeight) { 878 std::swap(Weights[i->getCaseIndex() + 1], Weights.back()); 879 Weights.pop_back(); 880 } 881 i->getCaseSuccessor()->removePredecessor(TI->getParent()); 882 SI->removeCase(i); 883 } 884 } 885 if (HasWeight && Weights.size() >= 2) 886 setBranchWeights(SI, Weights); 887 888 LLVM_DEBUG(dbgs() << "Leaving: " << *TI << "\n"); 889 return true; 890 } 891 892 // Otherwise, TI's block must correspond to some matched value. Find out 893 // which value (or set of values) this is. 894 ConstantInt *TIV = nullptr; 895 BasicBlock *TIBB = TI->getParent(); 896 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 897 if (PredCases[i].Dest == TIBB) { 898 if (TIV) 899 return false; // Cannot handle multiple values coming to this block. 900 TIV = PredCases[i].Value; 901 } 902 assert(TIV && "No edge from pred to succ?"); 903 904 // Okay, we found the one constant that our value can be if we get into TI's 905 // BB. Find out which successor will unconditionally be branched to. 906 BasicBlock *TheRealDest = nullptr; 907 for (unsigned i = 0, e = ThisCases.size(); i != e; ++i) 908 if (ThisCases[i].Value == TIV) { 909 TheRealDest = ThisCases[i].Dest; 910 break; 911 } 912 913 // If not handled by any explicit cases, it is handled by the default case. 914 if (!TheRealDest) 915 TheRealDest = ThisDef; 916 917 // Remove PHI node entries for dead edges. 918 BasicBlock *CheckEdge = TheRealDest; 919 for (BasicBlock *Succ : successors(TIBB)) 920 if (Succ != CheckEdge) 921 Succ->removePredecessor(TIBB); 922 else 923 CheckEdge = nullptr; 924 925 // Insert the new branch. 926 Instruction *NI = Builder.CreateBr(TheRealDest); 927 (void)NI; 928 929 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 930 << "Through successor TI: " << *TI << "Leaving: " << *NI 931 << "\n"); 932 933 EraseTerminatorInstAndDCECond(TI); 934 return true; 935 } 936 937 namespace { 938 939 /// This class implements a stable ordering of constant 940 /// integers that does not depend on their address. This is important for 941 /// applications that sort ConstantInt's to ensure uniqueness. 942 struct ConstantIntOrdering { 943 bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const { 944 return LHS->getValue().ult(RHS->getValue()); 945 } 946 }; 947 948 } // end anonymous namespace 949 950 static int ConstantIntSortPredicate(ConstantInt *const *P1, 951 ConstantInt *const *P2) { 952 const ConstantInt *LHS = *P1; 953 const ConstantInt *RHS = *P2; 954 if (LHS == RHS) 955 return 0; 956 return LHS->getValue().ult(RHS->getValue()) ? 1 : -1; 957 } 958 959 static inline bool HasBranchWeights(const Instruction *I) { 960 MDNode *ProfMD = I->getMetadata(LLVMContext::MD_prof); 961 if (ProfMD && ProfMD->getOperand(0)) 962 if (MDString *MDS = dyn_cast<MDString>(ProfMD->getOperand(0))) 963 return MDS->getString().equals("branch_weights"); 964 965 return false; 966 } 967 968 /// Get Weights of a given TerminatorInst, the default weight is at the front 969 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight 970 /// metadata. 971 static void GetBranchWeights(TerminatorInst *TI, 972 SmallVectorImpl<uint64_t> &Weights) { 973 MDNode *MD = TI->getMetadata(LLVMContext::MD_prof); 974 assert(MD); 975 for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) { 976 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i)); 977 Weights.push_back(CI->getValue().getZExtValue()); 978 } 979 980 // If TI is a conditional eq, the default case is the false case, 981 // and the corresponding branch-weight data is at index 2. We swap the 982 // default weight to be the first entry. 983 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 984 assert(Weights.size() == 2); 985 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 986 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 987 std::swap(Weights.front(), Weights.back()); 988 } 989 } 990 991 /// Keep halving the weights until all can fit in uint32_t. 992 static void FitWeights(MutableArrayRef<uint64_t> Weights) { 993 uint64_t Max = *std::max_element(Weights.begin(), Weights.end()); 994 if (Max > UINT_MAX) { 995 unsigned Offset = 32 - countLeadingZeros(Max); 996 for (uint64_t &I : Weights) 997 I >>= Offset; 998 } 999 } 1000 1001 /// The specified terminator is a value equality comparison instruction 1002 /// (either a switch or a branch on "X == c"). 1003 /// See if any of the predecessors of the terminator block are value comparisons 1004 /// on the same value. If so, and if safe to do so, fold them together. 1005 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(TerminatorInst *TI, 1006 IRBuilder<> &Builder) { 1007 BasicBlock *BB = TI->getParent(); 1008 Value *CV = isValueEqualityComparison(TI); // CondVal 1009 assert(CV && "Not a comparison?"); 1010 bool Changed = false; 1011 1012 SmallVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB)); 1013 while (!Preds.empty()) { 1014 BasicBlock *Pred = Preds.pop_back_val(); 1015 1016 // See if the predecessor is a comparison with the same value. 1017 TerminatorInst *PTI = Pred->getTerminator(); 1018 Value *PCV = isValueEqualityComparison(PTI); // PredCondVal 1019 1020 if (PCV == CV && TI != PTI) { 1021 SmallSetVector<BasicBlock*, 4> FailBlocks; 1022 if (!SafeToMergeTerminators(TI, PTI, &FailBlocks)) { 1023 for (auto *Succ : FailBlocks) { 1024 if (!SplitBlockPredecessors(Succ, TI->getParent(), ".fold.split")) 1025 return false; 1026 } 1027 } 1028 1029 // Figure out which 'cases' to copy from SI to PSI. 1030 std::vector<ValueEqualityComparisonCase> BBCases; 1031 BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases); 1032 1033 std::vector<ValueEqualityComparisonCase> PredCases; 1034 BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases); 1035 1036 // Based on whether the default edge from PTI goes to BB or not, fill in 1037 // PredCases and PredDefault with the new switch cases we would like to 1038 // build. 1039 SmallVector<BasicBlock *, 8> NewSuccessors; 1040 1041 // Update the branch weight metadata along the way 1042 SmallVector<uint64_t, 8> Weights; 1043 bool PredHasWeights = HasBranchWeights(PTI); 1044 bool SuccHasWeights = HasBranchWeights(TI); 1045 1046 if (PredHasWeights) { 1047 GetBranchWeights(PTI, Weights); 1048 // branch-weight metadata is inconsistent here. 1049 if (Weights.size() != 1 + PredCases.size()) 1050 PredHasWeights = SuccHasWeights = false; 1051 } else if (SuccHasWeights) 1052 // If there are no predecessor weights but there are successor weights, 1053 // populate Weights with 1, which will later be scaled to the sum of 1054 // successor's weights 1055 Weights.assign(1 + PredCases.size(), 1); 1056 1057 SmallVector<uint64_t, 8> SuccWeights; 1058 if (SuccHasWeights) { 1059 GetBranchWeights(TI, SuccWeights); 1060 // branch-weight metadata is inconsistent here. 1061 if (SuccWeights.size() != 1 + BBCases.size()) 1062 PredHasWeights = SuccHasWeights = false; 1063 } else if (PredHasWeights) 1064 SuccWeights.assign(1 + BBCases.size(), 1); 1065 1066 if (PredDefault == BB) { 1067 // If this is the default destination from PTI, only the edges in TI 1068 // that don't occur in PTI, or that branch to BB will be activated. 1069 std::set<ConstantInt *, ConstantIntOrdering> PTIHandled; 1070 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 1071 if (PredCases[i].Dest != BB) 1072 PTIHandled.insert(PredCases[i].Value); 1073 else { 1074 // The default destination is BB, we don't need explicit targets. 1075 std::swap(PredCases[i], PredCases.back()); 1076 1077 if (PredHasWeights || SuccHasWeights) { 1078 // Increase weight for the default case. 1079 Weights[0] += Weights[i + 1]; 1080 std::swap(Weights[i + 1], Weights.back()); 1081 Weights.pop_back(); 1082 } 1083 1084 PredCases.pop_back(); 1085 --i; 1086 --e; 1087 } 1088 1089 // Reconstruct the new switch statement we will be building. 1090 if (PredDefault != BBDefault) { 1091 PredDefault->removePredecessor(Pred); 1092 PredDefault = BBDefault; 1093 NewSuccessors.push_back(BBDefault); 1094 } 1095 1096 unsigned CasesFromPred = Weights.size(); 1097 uint64_t ValidTotalSuccWeight = 0; 1098 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 1099 if (!PTIHandled.count(BBCases[i].Value) && 1100 BBCases[i].Dest != BBDefault) { 1101 PredCases.push_back(BBCases[i]); 1102 NewSuccessors.push_back(BBCases[i].Dest); 1103 if (SuccHasWeights || PredHasWeights) { 1104 // The default weight is at index 0, so weight for the ith case 1105 // should be at index i+1. Scale the cases from successor by 1106 // PredDefaultWeight (Weights[0]). 1107 Weights.push_back(Weights[0] * SuccWeights[i + 1]); 1108 ValidTotalSuccWeight += SuccWeights[i + 1]; 1109 } 1110 } 1111 1112 if (SuccHasWeights || PredHasWeights) { 1113 ValidTotalSuccWeight += SuccWeights[0]; 1114 // Scale the cases from predecessor by ValidTotalSuccWeight. 1115 for (unsigned i = 1; i < CasesFromPred; ++i) 1116 Weights[i] *= ValidTotalSuccWeight; 1117 // Scale the default weight by SuccDefaultWeight (SuccWeights[0]). 1118 Weights[0] *= SuccWeights[0]; 1119 } 1120 } else { 1121 // If this is not the default destination from PSI, only the edges 1122 // in SI that occur in PSI with a destination of BB will be 1123 // activated. 1124 std::set<ConstantInt *, ConstantIntOrdering> PTIHandled; 1125 std::map<ConstantInt *, uint64_t> WeightsForHandled; 1126 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 1127 if (PredCases[i].Dest == BB) { 1128 PTIHandled.insert(PredCases[i].Value); 1129 1130 if (PredHasWeights || SuccHasWeights) { 1131 WeightsForHandled[PredCases[i].Value] = Weights[i + 1]; 1132 std::swap(Weights[i + 1], Weights.back()); 1133 Weights.pop_back(); 1134 } 1135 1136 std::swap(PredCases[i], PredCases.back()); 1137 PredCases.pop_back(); 1138 --i; 1139 --e; 1140 } 1141 1142 // Okay, now we know which constants were sent to BB from the 1143 // predecessor. Figure out where they will all go now. 1144 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 1145 if (PTIHandled.count(BBCases[i].Value)) { 1146 // If this is one we are capable of getting... 1147 if (PredHasWeights || SuccHasWeights) 1148 Weights.push_back(WeightsForHandled[BBCases[i].Value]); 1149 PredCases.push_back(BBCases[i]); 1150 NewSuccessors.push_back(BBCases[i].Dest); 1151 PTIHandled.erase( 1152 BBCases[i].Value); // This constant is taken care of 1153 } 1154 1155 // If there are any constants vectored to BB that TI doesn't handle, 1156 // they must go to the default destination of TI. 1157 for (ConstantInt *I : PTIHandled) { 1158 if (PredHasWeights || SuccHasWeights) 1159 Weights.push_back(WeightsForHandled[I]); 1160 PredCases.push_back(ValueEqualityComparisonCase(I, BBDefault)); 1161 NewSuccessors.push_back(BBDefault); 1162 } 1163 } 1164 1165 // Okay, at this point, we know which new successor Pred will get. Make 1166 // sure we update the number of entries in the PHI nodes for these 1167 // successors. 1168 for (BasicBlock *NewSuccessor : NewSuccessors) 1169 AddPredecessorToBlock(NewSuccessor, Pred, BB); 1170 1171 Builder.SetInsertPoint(PTI); 1172 // Convert pointer to int before we switch. 1173 if (CV->getType()->isPointerTy()) { 1174 CV = Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()), 1175 "magicptr"); 1176 } 1177 1178 // Now that the successors are updated, create the new Switch instruction. 1179 SwitchInst *NewSI = 1180 Builder.CreateSwitch(CV, PredDefault, PredCases.size()); 1181 NewSI->setDebugLoc(PTI->getDebugLoc()); 1182 for (ValueEqualityComparisonCase &V : PredCases) 1183 NewSI->addCase(V.Value, V.Dest); 1184 1185 if (PredHasWeights || SuccHasWeights) { 1186 // Halve the weights if any of them cannot fit in an uint32_t 1187 FitWeights(Weights); 1188 1189 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 1190 1191 setBranchWeights(NewSI, MDWeights); 1192 } 1193 1194 EraseTerminatorInstAndDCECond(PTI); 1195 1196 // Okay, last check. If BB is still a successor of PSI, then we must 1197 // have an infinite loop case. If so, add an infinitely looping block 1198 // to handle the case to preserve the behavior of the code. 1199 BasicBlock *InfLoopBlock = nullptr; 1200 for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i) 1201 if (NewSI->getSuccessor(i) == BB) { 1202 if (!InfLoopBlock) { 1203 // Insert it at the end of the function, because it's either code, 1204 // or it won't matter if it's hot. :) 1205 InfLoopBlock = BasicBlock::Create(BB->getContext(), "infloop", 1206 BB->getParent()); 1207 BranchInst::Create(InfLoopBlock, InfLoopBlock); 1208 } 1209 NewSI->setSuccessor(i, InfLoopBlock); 1210 } 1211 1212 Changed = true; 1213 } 1214 } 1215 return Changed; 1216 } 1217 1218 // If we would need to insert a select that uses the value of this invoke 1219 // (comments in HoistThenElseCodeToIf explain why we would need to do this), we 1220 // can't hoist the invoke, as there is nowhere to put the select in this case. 1221 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2, 1222 Instruction *I1, Instruction *I2) { 1223 for (BasicBlock *Succ : successors(BB1)) { 1224 for (const PHINode &PN : Succ->phis()) { 1225 Value *BB1V = PN.getIncomingValueForBlock(BB1); 1226 Value *BB2V = PN.getIncomingValueForBlock(BB2); 1227 if (BB1V != BB2V && (BB1V == I1 || BB2V == I2)) { 1228 return false; 1229 } 1230 } 1231 } 1232 return true; 1233 } 1234 1235 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I); 1236 1237 /// Given a conditional branch that goes to BB1 and BB2, hoist any common code 1238 /// in the two blocks up into the branch block. The caller of this function 1239 /// guarantees that BI's block dominates BB1 and BB2. 1240 static bool HoistThenElseCodeToIf(BranchInst *BI, 1241 const TargetTransformInfo &TTI) { 1242 // This does very trivial matching, with limited scanning, to find identical 1243 // instructions in the two blocks. In particular, we don't want to get into 1244 // O(M*N) situations here where M and N are the sizes of BB1 and BB2. As 1245 // such, we currently just scan for obviously identical instructions in an 1246 // identical order. 1247 BasicBlock *BB1 = BI->getSuccessor(0); // The true destination. 1248 BasicBlock *BB2 = BI->getSuccessor(1); // The false destination 1249 1250 BasicBlock::iterator BB1_Itr = BB1->begin(); 1251 BasicBlock::iterator BB2_Itr = BB2->begin(); 1252 1253 Instruction *I1 = &*BB1_Itr++, *I2 = &*BB2_Itr++; 1254 // Skip debug info if it is not identical. 1255 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1256 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1257 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1258 while (isa<DbgInfoIntrinsic>(I1)) 1259 I1 = &*BB1_Itr++; 1260 while (isa<DbgInfoIntrinsic>(I2)) 1261 I2 = &*BB2_Itr++; 1262 } 1263 if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) || 1264 (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))) 1265 return false; 1266 1267 BasicBlock *BIParent = BI->getParent(); 1268 1269 bool Changed = false; 1270 do { 1271 // If we are hoisting the terminator instruction, don't move one (making a 1272 // broken BB), instead clone it, and remove BI. 1273 if (I1->isTerminator()) 1274 goto HoistTerminator; 1275 1276 // If we're going to hoist a call, make sure that the two instructions we're 1277 // commoning/hoisting are both marked with musttail, or neither of them is 1278 // marked as such. Otherwise, we might end up in a situation where we hoist 1279 // from a block where the terminator is a `ret` to a block where the terminator 1280 // is a `br`, and `musttail` calls expect to be followed by a return. 1281 auto *C1 = dyn_cast<CallInst>(I1); 1282 auto *C2 = dyn_cast<CallInst>(I2); 1283 if (C1 && C2) 1284 if (C1->isMustTailCall() != C2->isMustTailCall()) 1285 return Changed; 1286 1287 if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2)) 1288 return Changed; 1289 1290 if (isa<DbgInfoIntrinsic>(I1) || isa<DbgInfoIntrinsic>(I2)) { 1291 assert (isa<DbgInfoIntrinsic>(I1) && isa<DbgInfoIntrinsic>(I2)); 1292 // The debug location is an integral part of a debug info intrinsic 1293 // and can't be separated from it or replaced. Instead of attempting 1294 // to merge locations, simply hoist both copies of the intrinsic. 1295 BIParent->getInstList().splice(BI->getIterator(), 1296 BB1->getInstList(), I1); 1297 BIParent->getInstList().splice(BI->getIterator(), 1298 BB2->getInstList(), I2); 1299 Changed = true; 1300 } else { 1301 // For a normal instruction, we just move one to right before the branch, 1302 // then replace all uses of the other with the first. Finally, we remove 1303 // the now redundant second instruction. 1304 BIParent->getInstList().splice(BI->getIterator(), 1305 BB1->getInstList(), I1); 1306 if (!I2->use_empty()) 1307 I2->replaceAllUsesWith(I1); 1308 I1->andIRFlags(I2); 1309 unsigned KnownIDs[] = {LLVMContext::MD_tbaa, 1310 LLVMContext::MD_range, 1311 LLVMContext::MD_fpmath, 1312 LLVMContext::MD_invariant_load, 1313 LLVMContext::MD_nonnull, 1314 LLVMContext::MD_invariant_group, 1315 LLVMContext::MD_align, 1316 LLVMContext::MD_dereferenceable, 1317 LLVMContext::MD_dereferenceable_or_null, 1318 LLVMContext::MD_mem_parallel_loop_access}; 1319 combineMetadata(I1, I2, KnownIDs, true); 1320 1321 // I1 and I2 are being combined into a single instruction. Its debug 1322 // location is the merged locations of the original instructions. 1323 I1->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc()); 1324 1325 I2->eraseFromParent(); 1326 Changed = true; 1327 } 1328 1329 I1 = &*BB1_Itr++; 1330 I2 = &*BB2_Itr++; 1331 // Skip debug info if it is not identical. 1332 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1333 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1334 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1335 while (isa<DbgInfoIntrinsic>(I1)) 1336 I1 = &*BB1_Itr++; 1337 while (isa<DbgInfoIntrinsic>(I2)) 1338 I2 = &*BB2_Itr++; 1339 } 1340 } while (I1->isIdenticalToWhenDefined(I2)); 1341 1342 return true; 1343 1344 HoistTerminator: 1345 // It may not be possible to hoist an invoke. 1346 if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) 1347 return Changed; 1348 1349 for (BasicBlock *Succ : successors(BB1)) { 1350 for (PHINode &PN : Succ->phis()) { 1351 Value *BB1V = PN.getIncomingValueForBlock(BB1); 1352 Value *BB2V = PN.getIncomingValueForBlock(BB2); 1353 if (BB1V == BB2V) 1354 continue; 1355 1356 // Check for passingValueIsAlwaysUndefined here because we would rather 1357 // eliminate undefined control flow then converting it to a select. 1358 if (passingValueIsAlwaysUndefined(BB1V, &PN) || 1359 passingValueIsAlwaysUndefined(BB2V, &PN)) 1360 return Changed; 1361 1362 if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V)) 1363 return Changed; 1364 if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V)) 1365 return Changed; 1366 } 1367 } 1368 1369 // Okay, it is safe to hoist the terminator. 1370 Instruction *NT = I1->clone(); 1371 BIParent->getInstList().insert(BI->getIterator(), NT); 1372 if (!NT->getType()->isVoidTy()) { 1373 I1->replaceAllUsesWith(NT); 1374 I2->replaceAllUsesWith(NT); 1375 NT->takeName(I1); 1376 } 1377 1378 IRBuilder<NoFolder> Builder(NT); 1379 // Hoisting one of the terminators from our successor is a great thing. 1380 // Unfortunately, the successors of the if/else blocks may have PHI nodes in 1381 // them. If they do, all PHI entries for BB1/BB2 must agree for all PHI 1382 // nodes, so we insert select instruction to compute the final result. 1383 std::map<std::pair<Value *, Value *>, SelectInst *> InsertedSelects; 1384 for (BasicBlock *Succ : successors(BB1)) { 1385 for (PHINode &PN : Succ->phis()) { 1386 Value *BB1V = PN.getIncomingValueForBlock(BB1); 1387 Value *BB2V = PN.getIncomingValueForBlock(BB2); 1388 if (BB1V == BB2V) 1389 continue; 1390 1391 // These values do not agree. Insert a select instruction before NT 1392 // that determines the right value. 1393 SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)]; 1394 if (!SI) 1395 SI = cast<SelectInst>( 1396 Builder.CreateSelect(BI->getCondition(), BB1V, BB2V, 1397 BB1V->getName() + "." + BB2V->getName(), BI)); 1398 1399 // Make the PHI node use the select for all incoming values for BB1/BB2 1400 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) 1401 if (PN.getIncomingBlock(i) == BB1 || PN.getIncomingBlock(i) == BB2) 1402 PN.setIncomingValue(i, SI); 1403 } 1404 } 1405 1406 // Update any PHI nodes in our new successors. 1407 for (BasicBlock *Succ : successors(BB1)) 1408 AddPredecessorToBlock(Succ, BIParent, BB1); 1409 1410 EraseTerminatorInstAndDCECond(BI); 1411 return true; 1412 } 1413 1414 // All instructions in Insts belong to different blocks that all unconditionally 1415 // branch to a common successor. Analyze each instruction and return true if it 1416 // would be possible to sink them into their successor, creating one common 1417 // instruction instead. For every value that would be required to be provided by 1418 // PHI node (because an operand varies in each input block), add to PHIOperands. 1419 static bool canSinkInstructions( 1420 ArrayRef<Instruction *> Insts, 1421 DenseMap<Instruction *, SmallVector<Value *, 4>> &PHIOperands) { 1422 // Prune out obviously bad instructions to move. Any non-store instruction 1423 // must have exactly one use, and we check later that use is by a single, 1424 // common PHI instruction in the successor. 1425 for (auto *I : Insts) { 1426 // These instructions may change or break semantics if moved. 1427 if (isa<PHINode>(I) || I->isEHPad() || isa<AllocaInst>(I) || 1428 I->getType()->isTokenTy()) 1429 return false; 1430 1431 // Conservatively return false if I is an inline-asm instruction. Sinking 1432 // and merging inline-asm instructions can potentially create arguments 1433 // that cannot satisfy the inline-asm constraints. 1434 if (const auto *C = dyn_cast<CallInst>(I)) 1435 if (C->isInlineAsm()) 1436 return false; 1437 1438 // Everything must have only one use too, apart from stores which 1439 // have no uses. 1440 if (!isa<StoreInst>(I) && !I->hasOneUse()) 1441 return false; 1442 } 1443 1444 const Instruction *I0 = Insts.front(); 1445 for (auto *I : Insts) 1446 if (!I->isSameOperationAs(I0)) 1447 return false; 1448 1449 // All instructions in Insts are known to be the same opcode. If they aren't 1450 // stores, check the only user of each is a PHI or in the same block as the 1451 // instruction, because if a user is in the same block as an instruction 1452 // we're contemplating sinking, it must already be determined to be sinkable. 1453 if (!isa<StoreInst>(I0)) { 1454 auto *PNUse = dyn_cast<PHINode>(*I0->user_begin()); 1455 auto *Succ = I0->getParent()->getTerminator()->getSuccessor(0); 1456 if (!all_of(Insts, [&PNUse,&Succ](const Instruction *I) -> bool { 1457 auto *U = cast<Instruction>(*I->user_begin()); 1458 return (PNUse && 1459 PNUse->getParent() == Succ && 1460 PNUse->getIncomingValueForBlock(I->getParent()) == I) || 1461 U->getParent() == I->getParent(); 1462 })) 1463 return false; 1464 } 1465 1466 // Because SROA can't handle speculating stores of selects, try not 1467 // to sink loads or stores of allocas when we'd have to create a PHI for 1468 // the address operand. Also, because it is likely that loads or stores 1469 // of allocas will disappear when Mem2Reg/SROA is run, don't sink them. 1470 // This can cause code churn which can have unintended consequences down 1471 // the line - see https://llvm.org/bugs/show_bug.cgi?id=30244. 1472 // FIXME: This is a workaround for a deficiency in SROA - see 1473 // https://llvm.org/bugs/show_bug.cgi?id=30188 1474 if (isa<StoreInst>(I0) && any_of(Insts, [](const Instruction *I) { 1475 return isa<AllocaInst>(I->getOperand(1)); 1476 })) 1477 return false; 1478 if (isa<LoadInst>(I0) && any_of(Insts, [](const Instruction *I) { 1479 return isa<AllocaInst>(I->getOperand(0)); 1480 })) 1481 return false; 1482 1483 for (unsigned OI = 0, OE = I0->getNumOperands(); OI != OE; ++OI) { 1484 if (I0->getOperand(OI)->getType()->isTokenTy()) 1485 // Don't touch any operand of token type. 1486 return false; 1487 1488 auto SameAsI0 = [&I0, OI](const Instruction *I) { 1489 assert(I->getNumOperands() == I0->getNumOperands()); 1490 return I->getOperand(OI) == I0->getOperand(OI); 1491 }; 1492 if (!all_of(Insts, SameAsI0)) { 1493 if (!canReplaceOperandWithVariable(I0, OI)) 1494 // We can't create a PHI from this GEP. 1495 return false; 1496 // Don't create indirect calls! The called value is the final operand. 1497 if ((isa<CallInst>(I0) || isa<InvokeInst>(I0)) && OI == OE - 1) { 1498 // FIXME: if the call was *already* indirect, we should do this. 1499 return false; 1500 } 1501 for (auto *I : Insts) 1502 PHIOperands[I].push_back(I->getOperand(OI)); 1503 } 1504 } 1505 return true; 1506 } 1507 1508 // Assuming canSinkLastInstruction(Blocks) has returned true, sink the last 1509 // instruction of every block in Blocks to their common successor, commoning 1510 // into one instruction. 1511 static bool sinkLastInstruction(ArrayRef<BasicBlock*> Blocks) { 1512 auto *BBEnd = Blocks[0]->getTerminator()->getSuccessor(0); 1513 1514 // canSinkLastInstruction returning true guarantees that every block has at 1515 // least one non-terminator instruction. 1516 SmallVector<Instruction*,4> Insts; 1517 for (auto *BB : Blocks) { 1518 Instruction *I = BB->getTerminator(); 1519 do { 1520 I = I->getPrevNode(); 1521 } while (isa<DbgInfoIntrinsic>(I) && I != &BB->front()); 1522 if (!isa<DbgInfoIntrinsic>(I)) 1523 Insts.push_back(I); 1524 } 1525 1526 // The only checking we need to do now is that all users of all instructions 1527 // are the same PHI node. canSinkLastInstruction should have checked this but 1528 // it is slightly over-aggressive - it gets confused by commutative instructions 1529 // so double-check it here. 1530 Instruction *I0 = Insts.front(); 1531 if (!isa<StoreInst>(I0)) { 1532 auto *PNUse = dyn_cast<PHINode>(*I0->user_begin()); 1533 if (!all_of(Insts, [&PNUse](const Instruction *I) -> bool { 1534 auto *U = cast<Instruction>(*I->user_begin()); 1535 return U == PNUse; 1536 })) 1537 return false; 1538 } 1539 1540 // We don't need to do any more checking here; canSinkLastInstruction should 1541 // have done it all for us. 1542 SmallVector<Value*, 4> NewOperands; 1543 for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) { 1544 // This check is different to that in canSinkLastInstruction. There, we 1545 // cared about the global view once simplifycfg (and instcombine) have 1546 // completed - it takes into account PHIs that become trivially 1547 // simplifiable. However here we need a more local view; if an operand 1548 // differs we create a PHI and rely on instcombine to clean up the very 1549 // small mess we may make. 1550 bool NeedPHI = any_of(Insts, [&I0, O](const Instruction *I) { 1551 return I->getOperand(O) != I0->getOperand(O); 1552 }); 1553 if (!NeedPHI) { 1554 NewOperands.push_back(I0->getOperand(O)); 1555 continue; 1556 } 1557 1558 // Create a new PHI in the successor block and populate it. 1559 auto *Op = I0->getOperand(O); 1560 assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!"); 1561 auto *PN = PHINode::Create(Op->getType(), Insts.size(), 1562 Op->getName() + ".sink", &BBEnd->front()); 1563 for (auto *I : Insts) 1564 PN->addIncoming(I->getOperand(O), I->getParent()); 1565 NewOperands.push_back(PN); 1566 } 1567 1568 // Arbitrarily use I0 as the new "common" instruction; remap its operands 1569 // and move it to the start of the successor block. 1570 for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) 1571 I0->getOperandUse(O).set(NewOperands[O]); 1572 I0->moveBefore(&*BBEnd->getFirstInsertionPt()); 1573 1574 // Update metadata and IR flags, and merge debug locations. 1575 for (auto *I : Insts) 1576 if (I != I0) { 1577 // The debug location for the "common" instruction is the merged locations 1578 // of all the commoned instructions. We start with the original location 1579 // of the "common" instruction and iteratively merge each location in the 1580 // loop below. 1581 // This is an N-way merge, which will be inefficient if I0 is a CallInst. 1582 // However, as N-way merge for CallInst is rare, so we use simplified API 1583 // instead of using complex API for N-way merge. 1584 I0->applyMergedLocation(I0->getDebugLoc(), I->getDebugLoc()); 1585 combineMetadataForCSE(I0, I, true); 1586 I0->andIRFlags(I); 1587 } 1588 1589 if (!isa<StoreInst>(I0)) { 1590 // canSinkLastInstruction checked that all instructions were used by 1591 // one and only one PHI node. Find that now, RAUW it to our common 1592 // instruction and nuke it. 1593 assert(I0->hasOneUse()); 1594 auto *PN = cast<PHINode>(*I0->user_begin()); 1595 PN->replaceAllUsesWith(I0); 1596 PN->eraseFromParent(); 1597 } 1598 1599 // Finally nuke all instructions apart from the common instruction. 1600 for (auto *I : Insts) 1601 if (I != I0) 1602 I->eraseFromParent(); 1603 1604 return true; 1605 } 1606 1607 namespace { 1608 1609 // LockstepReverseIterator - Iterates through instructions 1610 // in a set of blocks in reverse order from the first non-terminator. 1611 // For example (assume all blocks have size n): 1612 // LockstepReverseIterator I([B1, B2, B3]); 1613 // *I-- = [B1[n], B2[n], B3[n]]; 1614 // *I-- = [B1[n-1], B2[n-1], B3[n-1]]; 1615 // *I-- = [B1[n-2], B2[n-2], B3[n-2]]; 1616 // ... 1617 class LockstepReverseIterator { 1618 ArrayRef<BasicBlock*> Blocks; 1619 SmallVector<Instruction*,4> Insts; 1620 bool Fail; 1621 1622 public: 1623 LockstepReverseIterator(ArrayRef<BasicBlock*> Blocks) : Blocks(Blocks) { 1624 reset(); 1625 } 1626 1627 void reset() { 1628 Fail = false; 1629 Insts.clear(); 1630 for (auto *BB : Blocks) { 1631 Instruction *Inst = BB->getTerminator(); 1632 for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);) 1633 Inst = Inst->getPrevNode(); 1634 if (!Inst) { 1635 // Block wasn't big enough. 1636 Fail = true; 1637 return; 1638 } 1639 Insts.push_back(Inst); 1640 } 1641 } 1642 1643 bool isValid() const { 1644 return !Fail; 1645 } 1646 1647 void operator--() { 1648 if (Fail) 1649 return; 1650 for (auto *&Inst : Insts) { 1651 for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);) 1652 Inst = Inst->getPrevNode(); 1653 // Already at beginning of block. 1654 if (!Inst) { 1655 Fail = true; 1656 return; 1657 } 1658 } 1659 } 1660 1661 ArrayRef<Instruction*> operator * () const { 1662 return Insts; 1663 } 1664 }; 1665 1666 } // end anonymous namespace 1667 1668 /// Check whether BB's predecessors end with unconditional branches. If it is 1669 /// true, sink any common code from the predecessors to BB. 1670 /// We also allow one predecessor to end with conditional branch (but no more 1671 /// than one). 1672 static bool SinkCommonCodeFromPredecessors(BasicBlock *BB) { 1673 // We support two situations: 1674 // (1) all incoming arcs are unconditional 1675 // (2) one incoming arc is conditional 1676 // 1677 // (2) is very common in switch defaults and 1678 // else-if patterns; 1679 // 1680 // if (a) f(1); 1681 // else if (b) f(2); 1682 // 1683 // produces: 1684 // 1685 // [if] 1686 // / \ 1687 // [f(1)] [if] 1688 // | | \ 1689 // | | | 1690 // | [f(2)]| 1691 // \ | / 1692 // [ end ] 1693 // 1694 // [end] has two unconditional predecessor arcs and one conditional. The 1695 // conditional refers to the implicit empty 'else' arc. This conditional 1696 // arc can also be caused by an empty default block in a switch. 1697 // 1698 // In this case, we attempt to sink code from all *unconditional* arcs. 1699 // If we can sink instructions from these arcs (determined during the scan 1700 // phase below) we insert a common successor for all unconditional arcs and 1701 // connect that to [end], to enable sinking: 1702 // 1703 // [if] 1704 // / \ 1705 // [x(1)] [if] 1706 // | | \ 1707 // | | \ 1708 // | [x(2)] | 1709 // \ / | 1710 // [sink.split] | 1711 // \ / 1712 // [ end ] 1713 // 1714 SmallVector<BasicBlock*,4> UnconditionalPreds; 1715 Instruction *Cond = nullptr; 1716 for (auto *B : predecessors(BB)) { 1717 auto *T = B->getTerminator(); 1718 if (isa<BranchInst>(T) && cast<BranchInst>(T)->isUnconditional()) 1719 UnconditionalPreds.push_back(B); 1720 else if ((isa<BranchInst>(T) || isa<SwitchInst>(T)) && !Cond) 1721 Cond = T; 1722 else 1723 return false; 1724 } 1725 if (UnconditionalPreds.size() < 2) 1726 return false; 1727 1728 bool Changed = false; 1729 // We take a two-step approach to tail sinking. First we scan from the end of 1730 // each block upwards in lockstep. If the n'th instruction from the end of each 1731 // block can be sunk, those instructions are added to ValuesToSink and we 1732 // carry on. If we can sink an instruction but need to PHI-merge some operands 1733 // (because they're not identical in each instruction) we add these to 1734 // PHIOperands. 1735 unsigned ScanIdx = 0; 1736 SmallPtrSet<Value*,4> InstructionsToSink; 1737 DenseMap<Instruction*, SmallVector<Value*,4>> PHIOperands; 1738 LockstepReverseIterator LRI(UnconditionalPreds); 1739 while (LRI.isValid() && 1740 canSinkInstructions(*LRI, PHIOperands)) { 1741 LLVM_DEBUG(dbgs() << "SINK: instruction can be sunk: " << *(*LRI)[0] 1742 << "\n"); 1743 InstructionsToSink.insert((*LRI).begin(), (*LRI).end()); 1744 ++ScanIdx; 1745 --LRI; 1746 } 1747 1748 auto ProfitableToSinkInstruction = [&](LockstepReverseIterator &LRI) { 1749 unsigned NumPHIdValues = 0; 1750 for (auto *I : *LRI) 1751 for (auto *V : PHIOperands[I]) 1752 if (InstructionsToSink.count(V) == 0) 1753 ++NumPHIdValues; 1754 LLVM_DEBUG(dbgs() << "SINK: #phid values: " << NumPHIdValues << "\n"); 1755 unsigned NumPHIInsts = NumPHIdValues / UnconditionalPreds.size(); 1756 if ((NumPHIdValues % UnconditionalPreds.size()) != 0) 1757 NumPHIInsts++; 1758 1759 return NumPHIInsts <= 1; 1760 }; 1761 1762 if (ScanIdx > 0 && Cond) { 1763 // Check if we would actually sink anything first! This mutates the CFG and 1764 // adds an extra block. The goal in doing this is to allow instructions that 1765 // couldn't be sunk before to be sunk - obviously, speculatable instructions 1766 // (such as trunc, add) can be sunk and predicated already. So we check that 1767 // we're going to sink at least one non-speculatable instruction. 1768 LRI.reset(); 1769 unsigned Idx = 0; 1770 bool Profitable = false; 1771 while (ProfitableToSinkInstruction(LRI) && Idx < ScanIdx) { 1772 if (!isSafeToSpeculativelyExecute((*LRI)[0])) { 1773 Profitable = true; 1774 break; 1775 } 1776 --LRI; 1777 ++Idx; 1778 } 1779 if (!Profitable) 1780 return false; 1781 1782 LLVM_DEBUG(dbgs() << "SINK: Splitting edge\n"); 1783 // We have a conditional edge and we're going to sink some instructions. 1784 // Insert a new block postdominating all blocks we're going to sink from. 1785 if (!SplitBlockPredecessors(BB, UnconditionalPreds, ".sink.split")) 1786 // Edges couldn't be split. 1787 return false; 1788 Changed = true; 1789 } 1790 1791 // Now that we've analyzed all potential sinking candidates, perform the 1792 // actual sink. We iteratively sink the last non-terminator of the source 1793 // blocks into their common successor unless doing so would require too 1794 // many PHI instructions to be generated (currently only one PHI is allowed 1795 // per sunk instruction). 1796 // 1797 // We can use InstructionsToSink to discount values needing PHI-merging that will 1798 // actually be sunk in a later iteration. This allows us to be more 1799 // aggressive in what we sink. This does allow a false positive where we 1800 // sink presuming a later value will also be sunk, but stop half way through 1801 // and never actually sink it which means we produce more PHIs than intended. 1802 // This is unlikely in practice though. 1803 for (unsigned SinkIdx = 0; SinkIdx != ScanIdx; ++SinkIdx) { 1804 LLVM_DEBUG(dbgs() << "SINK: Sink: " 1805 << *UnconditionalPreds[0]->getTerminator()->getPrevNode() 1806 << "\n"); 1807 1808 // Because we've sunk every instruction in turn, the current instruction to 1809 // sink is always at index 0. 1810 LRI.reset(); 1811 if (!ProfitableToSinkInstruction(LRI)) { 1812 // Too many PHIs would be created. 1813 LLVM_DEBUG( 1814 dbgs() << "SINK: stopping here, too many PHIs would be created!\n"); 1815 break; 1816 } 1817 1818 if (!sinkLastInstruction(UnconditionalPreds)) 1819 return Changed; 1820 NumSinkCommons++; 1821 Changed = true; 1822 } 1823 return Changed; 1824 } 1825 1826 /// Determine if we can hoist sink a sole store instruction out of a 1827 /// conditional block. 1828 /// 1829 /// We are looking for code like the following: 1830 /// BrBB: 1831 /// store i32 %add, i32* %arrayidx2 1832 /// ... // No other stores or function calls (we could be calling a memory 1833 /// ... // function). 1834 /// %cmp = icmp ult %x, %y 1835 /// br i1 %cmp, label %EndBB, label %ThenBB 1836 /// ThenBB: 1837 /// store i32 %add5, i32* %arrayidx2 1838 /// br label EndBB 1839 /// EndBB: 1840 /// ... 1841 /// We are going to transform this into: 1842 /// BrBB: 1843 /// store i32 %add, i32* %arrayidx2 1844 /// ... // 1845 /// %cmp = icmp ult %x, %y 1846 /// %add.add5 = select i1 %cmp, i32 %add, %add5 1847 /// store i32 %add.add5, i32* %arrayidx2 1848 /// ... 1849 /// 1850 /// \return The pointer to the value of the previous store if the store can be 1851 /// hoisted into the predecessor block. 0 otherwise. 1852 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB, 1853 BasicBlock *StoreBB, BasicBlock *EndBB) { 1854 StoreInst *StoreToHoist = dyn_cast<StoreInst>(I); 1855 if (!StoreToHoist) 1856 return nullptr; 1857 1858 // Volatile or atomic. 1859 if (!StoreToHoist->isSimple()) 1860 return nullptr; 1861 1862 Value *StorePtr = StoreToHoist->getPointerOperand(); 1863 1864 // Look for a store to the same pointer in BrBB. 1865 unsigned MaxNumInstToLookAt = 9; 1866 for (Instruction &CurI : reverse(BrBB->instructionsWithoutDebug())) { 1867 if (!MaxNumInstToLookAt) 1868 break; 1869 --MaxNumInstToLookAt; 1870 1871 // Could be calling an instruction that affects memory like free(). 1872 if (CurI.mayHaveSideEffects() && !isa<StoreInst>(CurI)) 1873 return nullptr; 1874 1875 if (auto *SI = dyn_cast<StoreInst>(&CurI)) { 1876 // Found the previous store make sure it stores to the same location. 1877 if (SI->getPointerOperand() == StorePtr) 1878 // Found the previous store, return its value operand. 1879 return SI->getValueOperand(); 1880 return nullptr; // Unknown store. 1881 } 1882 } 1883 1884 return nullptr; 1885 } 1886 1887 /// Speculate a conditional basic block flattening the CFG. 1888 /// 1889 /// Note that this is a very risky transform currently. Speculating 1890 /// instructions like this is most often not desirable. Instead, there is an MI 1891 /// pass which can do it with full awareness of the resource constraints. 1892 /// However, some cases are "obvious" and we should do directly. An example of 1893 /// this is speculating a single, reasonably cheap instruction. 1894 /// 1895 /// There is only one distinct advantage to flattening the CFG at the IR level: 1896 /// it makes very common but simplistic optimizations such as are common in 1897 /// instcombine and the DAG combiner more powerful by removing CFG edges and 1898 /// modeling their effects with easier to reason about SSA value graphs. 1899 /// 1900 /// 1901 /// An illustration of this transform is turning this IR: 1902 /// \code 1903 /// BB: 1904 /// %cmp = icmp ult %x, %y 1905 /// br i1 %cmp, label %EndBB, label %ThenBB 1906 /// ThenBB: 1907 /// %sub = sub %x, %y 1908 /// br label BB2 1909 /// EndBB: 1910 /// %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ] 1911 /// ... 1912 /// \endcode 1913 /// 1914 /// Into this IR: 1915 /// \code 1916 /// BB: 1917 /// %cmp = icmp ult %x, %y 1918 /// %sub = sub %x, %y 1919 /// %cond = select i1 %cmp, 0, %sub 1920 /// ... 1921 /// \endcode 1922 /// 1923 /// \returns true if the conditional block is removed. 1924 static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB, 1925 const TargetTransformInfo &TTI) { 1926 // Be conservative for now. FP select instruction can often be expensive. 1927 Value *BrCond = BI->getCondition(); 1928 if (isa<FCmpInst>(BrCond)) 1929 return false; 1930 1931 BasicBlock *BB = BI->getParent(); 1932 BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0); 1933 1934 // If ThenBB is actually on the false edge of the conditional branch, remember 1935 // to swap the select operands later. 1936 bool Invert = false; 1937 if (ThenBB != BI->getSuccessor(0)) { 1938 assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?"); 1939 Invert = true; 1940 } 1941 assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block"); 1942 1943 // Keep a count of how many times instructions are used within CondBB when 1944 // they are candidates for sinking into CondBB. Specifically: 1945 // - They are defined in BB, and 1946 // - They have no side effects, and 1947 // - All of their uses are in CondBB. 1948 SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts; 1949 1950 SmallVector<Instruction *, 4> SpeculatedDbgIntrinsics; 1951 1952 unsigned SpeculationCost = 0; 1953 Value *SpeculatedStoreValue = nullptr; 1954 StoreInst *SpeculatedStore = nullptr; 1955 for (BasicBlock::iterator BBI = ThenBB->begin(), 1956 BBE = std::prev(ThenBB->end()); 1957 BBI != BBE; ++BBI) { 1958 Instruction *I = &*BBI; 1959 // Skip debug info. 1960 if (isa<DbgInfoIntrinsic>(I)) { 1961 SpeculatedDbgIntrinsics.push_back(I); 1962 continue; 1963 } 1964 1965 // Only speculatively execute a single instruction (not counting the 1966 // terminator) for now. 1967 ++SpeculationCost; 1968 if (SpeculationCost > 1) 1969 return false; 1970 1971 // Don't hoist the instruction if it's unsafe or expensive. 1972 if (!isSafeToSpeculativelyExecute(I) && 1973 !(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore( 1974 I, BB, ThenBB, EndBB)))) 1975 return false; 1976 if (!SpeculatedStoreValue && 1977 ComputeSpeculationCost(I, TTI) > 1978 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic) 1979 return false; 1980 1981 // Store the store speculation candidate. 1982 if (SpeculatedStoreValue) 1983 SpeculatedStore = cast<StoreInst>(I); 1984 1985 // Do not hoist the instruction if any of its operands are defined but not 1986 // used in BB. The transformation will prevent the operand from 1987 // being sunk into the use block. 1988 for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) { 1989 Instruction *OpI = dyn_cast<Instruction>(*i); 1990 if (!OpI || OpI->getParent() != BB || OpI->mayHaveSideEffects()) 1991 continue; // Not a candidate for sinking. 1992 1993 ++SinkCandidateUseCounts[OpI]; 1994 } 1995 } 1996 1997 // Consider any sink candidates which are only used in CondBB as costs for 1998 // speculation. Note, while we iterate over a DenseMap here, we are summing 1999 // and so iteration order isn't significant. 2000 for (SmallDenseMap<Instruction *, unsigned, 4>::iterator 2001 I = SinkCandidateUseCounts.begin(), 2002 E = SinkCandidateUseCounts.end(); 2003 I != E; ++I) 2004 if (I->first->getNumUses() == I->second) { 2005 ++SpeculationCost; 2006 if (SpeculationCost > 1) 2007 return false; 2008 } 2009 2010 // Check that the PHI nodes can be converted to selects. 2011 bool HaveRewritablePHIs = false; 2012 for (PHINode &PN : EndBB->phis()) { 2013 Value *OrigV = PN.getIncomingValueForBlock(BB); 2014 Value *ThenV = PN.getIncomingValueForBlock(ThenBB); 2015 2016 // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf. 2017 // Skip PHIs which are trivial. 2018 if (ThenV == OrigV) 2019 continue; 2020 2021 // Don't convert to selects if we could remove undefined behavior instead. 2022 if (passingValueIsAlwaysUndefined(OrigV, &PN) || 2023 passingValueIsAlwaysUndefined(ThenV, &PN)) 2024 return false; 2025 2026 HaveRewritablePHIs = true; 2027 ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV); 2028 ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV); 2029 if (!OrigCE && !ThenCE) 2030 continue; // Known safe and cheap. 2031 2032 if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE)) || 2033 (OrigCE && !isSafeToSpeculativelyExecute(OrigCE))) 2034 return false; 2035 unsigned OrigCost = OrigCE ? ComputeSpeculationCost(OrigCE, TTI) : 0; 2036 unsigned ThenCost = ThenCE ? ComputeSpeculationCost(ThenCE, TTI) : 0; 2037 unsigned MaxCost = 2038 2 * PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 2039 if (OrigCost + ThenCost > MaxCost) 2040 return false; 2041 2042 // Account for the cost of an unfolded ConstantExpr which could end up 2043 // getting expanded into Instructions. 2044 // FIXME: This doesn't account for how many operations are combined in the 2045 // constant expression. 2046 ++SpeculationCost; 2047 if (SpeculationCost > 1) 2048 return false; 2049 } 2050 2051 // If there are no PHIs to process, bail early. This helps ensure idempotence 2052 // as well. 2053 if (!HaveRewritablePHIs && !(HoistCondStores && SpeculatedStoreValue)) 2054 return false; 2055 2056 // If we get here, we can hoist the instruction and if-convert. 2057 LLVM_DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";); 2058 2059 // Insert a select of the value of the speculated store. 2060 if (SpeculatedStoreValue) { 2061 IRBuilder<NoFolder> Builder(BI); 2062 Value *TrueV = SpeculatedStore->getValueOperand(); 2063 Value *FalseV = SpeculatedStoreValue; 2064 if (Invert) 2065 std::swap(TrueV, FalseV); 2066 Value *S = Builder.CreateSelect( 2067 BrCond, TrueV, FalseV, "spec.store.select", BI); 2068 SpeculatedStore->setOperand(0, S); 2069 SpeculatedStore->applyMergedLocation(BI->getDebugLoc(), 2070 SpeculatedStore->getDebugLoc()); 2071 } 2072 2073 // Metadata can be dependent on the condition we are hoisting above. 2074 // Conservatively strip all metadata on the instruction. 2075 for (auto &I : *ThenBB) 2076 I.dropUnknownNonDebugMetadata(); 2077 2078 // Hoist the instructions. 2079 BB->getInstList().splice(BI->getIterator(), ThenBB->getInstList(), 2080 ThenBB->begin(), std::prev(ThenBB->end())); 2081 2082 // Insert selects and rewrite the PHI operands. 2083 IRBuilder<NoFolder> Builder(BI); 2084 for (PHINode &PN : EndBB->phis()) { 2085 unsigned OrigI = PN.getBasicBlockIndex(BB); 2086 unsigned ThenI = PN.getBasicBlockIndex(ThenBB); 2087 Value *OrigV = PN.getIncomingValue(OrigI); 2088 Value *ThenV = PN.getIncomingValue(ThenI); 2089 2090 // Skip PHIs which are trivial. 2091 if (OrigV == ThenV) 2092 continue; 2093 2094 // Create a select whose true value is the speculatively executed value and 2095 // false value is the preexisting value. Swap them if the branch 2096 // destinations were inverted. 2097 Value *TrueV = ThenV, *FalseV = OrigV; 2098 if (Invert) 2099 std::swap(TrueV, FalseV); 2100 Value *V = Builder.CreateSelect( 2101 BrCond, TrueV, FalseV, "spec.select", BI); 2102 PN.setIncomingValue(OrigI, V); 2103 PN.setIncomingValue(ThenI, V); 2104 } 2105 2106 // Remove speculated dbg intrinsics. 2107 // FIXME: Is it possible to do this in a more elegant way? Moving/merging the 2108 // dbg value for the different flows and inserting it after the select. 2109 for (Instruction *I : SpeculatedDbgIntrinsics) 2110 I->eraseFromParent(); 2111 2112 ++NumSpeculations; 2113 return true; 2114 } 2115 2116 /// Return true if we can thread a branch across this block. 2117 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) { 2118 unsigned Size = 0; 2119 2120 for (Instruction &I : BB->instructionsWithoutDebug()) { 2121 if (Size > 10) 2122 return false; // Don't clone large BB's. 2123 ++Size; 2124 2125 // We can only support instructions that do not define values that are 2126 // live outside of the current basic block. 2127 for (User *U : I.users()) { 2128 Instruction *UI = cast<Instruction>(U); 2129 if (UI->getParent() != BB || isa<PHINode>(UI)) 2130 return false; 2131 } 2132 2133 // Looks ok, continue checking. 2134 } 2135 2136 return true; 2137 } 2138 2139 /// If we have a conditional branch on a PHI node value that is defined in the 2140 /// same block as the branch and if any PHI entries are constants, thread edges 2141 /// corresponding to that entry to be branches to their ultimate destination. 2142 static bool FoldCondBranchOnPHI(BranchInst *BI, const DataLayout &DL, 2143 AssumptionCache *AC) { 2144 BasicBlock *BB = BI->getParent(); 2145 PHINode *PN = dyn_cast<PHINode>(BI->getCondition()); 2146 // NOTE: we currently cannot transform this case if the PHI node is used 2147 // outside of the block. 2148 if (!PN || PN->getParent() != BB || !PN->hasOneUse()) 2149 return false; 2150 2151 // Degenerate case of a single entry PHI. 2152 if (PN->getNumIncomingValues() == 1) { 2153 FoldSingleEntryPHINodes(PN->getParent()); 2154 return true; 2155 } 2156 2157 // Now we know that this block has multiple preds and two succs. 2158 if (!BlockIsSimpleEnoughToThreadThrough(BB)) 2159 return false; 2160 2161 // Can't fold blocks that contain noduplicate or convergent calls. 2162 if (any_of(*BB, [](const Instruction &I) { 2163 const CallInst *CI = dyn_cast<CallInst>(&I); 2164 return CI && (CI->cannotDuplicate() || CI->isConvergent()); 2165 })) 2166 return false; 2167 2168 // Okay, this is a simple enough basic block. See if any phi values are 2169 // constants. 2170 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 2171 ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i)); 2172 if (!CB || !CB->getType()->isIntegerTy(1)) 2173 continue; 2174 2175 // Okay, we now know that all edges from PredBB should be revectored to 2176 // branch to RealDest. 2177 BasicBlock *PredBB = PN->getIncomingBlock(i); 2178 BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue()); 2179 2180 if (RealDest == BB) 2181 continue; // Skip self loops. 2182 // Skip if the predecessor's terminator is an indirect branch. 2183 if (isa<IndirectBrInst>(PredBB->getTerminator())) 2184 continue; 2185 2186 // The dest block might have PHI nodes, other predecessors and other 2187 // difficult cases. Instead of being smart about this, just insert a new 2188 // block that jumps to the destination block, effectively splitting 2189 // the edge we are about to create. 2190 BasicBlock *EdgeBB = 2191 BasicBlock::Create(BB->getContext(), RealDest->getName() + ".critedge", 2192 RealDest->getParent(), RealDest); 2193 BranchInst::Create(RealDest, EdgeBB); 2194 2195 // Update PHI nodes. 2196 AddPredecessorToBlock(RealDest, EdgeBB, BB); 2197 2198 // BB may have instructions that are being threaded over. Clone these 2199 // instructions into EdgeBB. We know that there will be no uses of the 2200 // cloned instructions outside of EdgeBB. 2201 BasicBlock::iterator InsertPt = EdgeBB->begin(); 2202 DenseMap<Value *, Value *> TranslateMap; // Track translated values. 2203 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) { 2204 if (PHINode *PN = dyn_cast<PHINode>(BBI)) { 2205 TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB); 2206 continue; 2207 } 2208 // Clone the instruction. 2209 Instruction *N = BBI->clone(); 2210 if (BBI->hasName()) 2211 N->setName(BBI->getName() + ".c"); 2212 2213 // Update operands due to translation. 2214 for (User::op_iterator i = N->op_begin(), e = N->op_end(); i != e; ++i) { 2215 DenseMap<Value *, Value *>::iterator PI = TranslateMap.find(*i); 2216 if (PI != TranslateMap.end()) 2217 *i = PI->second; 2218 } 2219 2220 // Check for trivial simplification. 2221 if (Value *V = SimplifyInstruction(N, {DL, nullptr, nullptr, AC})) { 2222 if (!BBI->use_empty()) 2223 TranslateMap[&*BBI] = V; 2224 if (!N->mayHaveSideEffects()) { 2225 N->deleteValue(); // Instruction folded away, don't need actual inst 2226 N = nullptr; 2227 } 2228 } else { 2229 if (!BBI->use_empty()) 2230 TranslateMap[&*BBI] = N; 2231 } 2232 // Insert the new instruction into its new home. 2233 if (N) 2234 EdgeBB->getInstList().insert(InsertPt, N); 2235 2236 // Register the new instruction with the assumption cache if necessary. 2237 if (auto *II = dyn_cast_or_null<IntrinsicInst>(N)) 2238 if (II->getIntrinsicID() == Intrinsic::assume) 2239 AC->registerAssumption(II); 2240 } 2241 2242 // Loop over all of the edges from PredBB to BB, changing them to branch 2243 // to EdgeBB instead. 2244 TerminatorInst *PredBBTI = PredBB->getTerminator(); 2245 for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i) 2246 if (PredBBTI->getSuccessor(i) == BB) { 2247 BB->removePredecessor(PredBB); 2248 PredBBTI->setSuccessor(i, EdgeBB); 2249 } 2250 2251 // Recurse, simplifying any other constants. 2252 return FoldCondBranchOnPHI(BI, DL, AC) || true; 2253 } 2254 2255 return false; 2256 } 2257 2258 /// Given a BB that starts with the specified two-entry PHI node, 2259 /// see if we can eliminate it. 2260 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI, 2261 const DataLayout &DL) { 2262 // Ok, this is a two entry PHI node. Check to see if this is a simple "if 2263 // statement", which has a very simple dominance structure. Basically, we 2264 // are trying to find the condition that is being branched on, which 2265 // subsequently causes this merge to happen. We really want control 2266 // dependence information for this check, but simplifycfg can't keep it up 2267 // to date, and this catches most of the cases we care about anyway. 2268 BasicBlock *BB = PN->getParent(); 2269 const Function *Fn = BB->getParent(); 2270 if (Fn && Fn->hasFnAttribute(Attribute::OptForFuzzing)) 2271 return false; 2272 2273 BasicBlock *IfTrue, *IfFalse; 2274 Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse); 2275 if (!IfCond || 2276 // Don't bother if the branch will be constant folded trivially. 2277 isa<ConstantInt>(IfCond)) 2278 return false; 2279 2280 // Okay, we found that we can merge this two-entry phi node into a select. 2281 // Doing so would require us to fold *all* two entry phi nodes in this block. 2282 // At some point this becomes non-profitable (particularly if the target 2283 // doesn't support cmov's). Only do this transformation if there are two or 2284 // fewer PHI nodes in this block. 2285 unsigned NumPhis = 0; 2286 for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I) 2287 if (NumPhis > 2) 2288 return false; 2289 2290 // Loop over the PHI's seeing if we can promote them all to select 2291 // instructions. While we are at it, keep track of the instructions 2292 // that need to be moved to the dominating block. 2293 SmallPtrSet<Instruction *, 4> AggressiveInsts; 2294 unsigned MaxCostVal0 = PHINodeFoldingThreshold, 2295 MaxCostVal1 = PHINodeFoldingThreshold; 2296 MaxCostVal0 *= TargetTransformInfo::TCC_Basic; 2297 MaxCostVal1 *= TargetTransformInfo::TCC_Basic; 2298 2299 for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) { 2300 PHINode *PN = cast<PHINode>(II++); 2301 if (Value *V = SimplifyInstruction(PN, {DL, PN})) { 2302 PN->replaceAllUsesWith(V); 2303 PN->eraseFromParent(); 2304 continue; 2305 } 2306 2307 if (!DominatesMergePoint(PN->getIncomingValue(0), BB, &AggressiveInsts, 2308 MaxCostVal0, TTI) || 2309 !DominatesMergePoint(PN->getIncomingValue(1), BB, &AggressiveInsts, 2310 MaxCostVal1, TTI)) 2311 return false; 2312 } 2313 2314 // If we folded the first phi, PN dangles at this point. Refresh it. If 2315 // we ran out of PHIs then we simplified them all. 2316 PN = dyn_cast<PHINode>(BB->begin()); 2317 if (!PN) 2318 return true; 2319 2320 // Don't fold i1 branches on PHIs which contain binary operators. These can 2321 // often be turned into switches and other things. 2322 if (PN->getType()->isIntegerTy(1) && 2323 (isa<BinaryOperator>(PN->getIncomingValue(0)) || 2324 isa<BinaryOperator>(PN->getIncomingValue(1)) || 2325 isa<BinaryOperator>(IfCond))) 2326 return false; 2327 2328 // If all PHI nodes are promotable, check to make sure that all instructions 2329 // in the predecessor blocks can be promoted as well. If not, we won't be able 2330 // to get rid of the control flow, so it's not worth promoting to select 2331 // instructions. 2332 BasicBlock *DomBlock = nullptr; 2333 BasicBlock *IfBlock1 = PN->getIncomingBlock(0); 2334 BasicBlock *IfBlock2 = PN->getIncomingBlock(1); 2335 if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) { 2336 IfBlock1 = nullptr; 2337 } else { 2338 DomBlock = *pred_begin(IfBlock1); 2339 for (BasicBlock::iterator I = IfBlock1->begin(); !I->isTerminator(); ++I) 2340 if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) { 2341 // This is not an aggressive instruction that we can promote. 2342 // Because of this, we won't be able to get rid of the control flow, so 2343 // the xform is not worth it. 2344 return false; 2345 } 2346 } 2347 2348 if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) { 2349 IfBlock2 = nullptr; 2350 } else { 2351 DomBlock = *pred_begin(IfBlock2); 2352 for (BasicBlock::iterator I = IfBlock2->begin(); !I->isTerminator(); ++I) 2353 if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) { 2354 // This is not an aggressive instruction that we can promote. 2355 // Because of this, we won't be able to get rid of the control flow, so 2356 // the xform is not worth it. 2357 return false; 2358 } 2359 } 2360 2361 LLVM_DEBUG(dbgs() << "FOUND IF CONDITION! " << *IfCond 2362 << " T: " << IfTrue->getName() 2363 << " F: " << IfFalse->getName() << "\n"); 2364 2365 // If we can still promote the PHI nodes after this gauntlet of tests, 2366 // do all of the PHI's now. 2367 Instruction *InsertPt = DomBlock->getTerminator(); 2368 IRBuilder<NoFolder> Builder(InsertPt); 2369 2370 // Move all 'aggressive' instructions, which are defined in the 2371 // conditional parts of the if's up to the dominating block. 2372 if (IfBlock1) { 2373 for (auto &I : *IfBlock1) { 2374 I.dropUnknownNonDebugMetadata(); 2375 dropDebugUsers(I); 2376 } 2377 DomBlock->getInstList().splice(InsertPt->getIterator(), 2378 IfBlock1->getInstList(), IfBlock1->begin(), 2379 IfBlock1->getTerminator()->getIterator()); 2380 } 2381 if (IfBlock2) { 2382 for (auto &I : *IfBlock2) { 2383 I.dropUnknownNonDebugMetadata(); 2384 dropDebugUsers(I); 2385 } 2386 DomBlock->getInstList().splice(InsertPt->getIterator(), 2387 IfBlock2->getInstList(), IfBlock2->begin(), 2388 IfBlock2->getTerminator()->getIterator()); 2389 } 2390 2391 while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) { 2392 // Change the PHI node into a select instruction. 2393 Value *TrueVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse); 2394 Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue); 2395 2396 Value *Sel = Builder.CreateSelect(IfCond, TrueVal, FalseVal, "", InsertPt); 2397 PN->replaceAllUsesWith(Sel); 2398 Sel->takeName(PN); 2399 PN->eraseFromParent(); 2400 } 2401 2402 // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement 2403 // has been flattened. Change DomBlock to jump directly to our new block to 2404 // avoid other simplifycfg's kicking in on the diamond. 2405 TerminatorInst *OldTI = DomBlock->getTerminator(); 2406 Builder.SetInsertPoint(OldTI); 2407 Builder.CreateBr(BB); 2408 OldTI->eraseFromParent(); 2409 return true; 2410 } 2411 2412 /// If we found a conditional branch that goes to two returning blocks, 2413 /// try to merge them together into one return, 2414 /// introducing a select if the return values disagree. 2415 static bool SimplifyCondBranchToTwoReturns(BranchInst *BI, 2416 IRBuilder<> &Builder) { 2417 assert(BI->isConditional() && "Must be a conditional branch"); 2418 BasicBlock *TrueSucc = BI->getSuccessor(0); 2419 BasicBlock *FalseSucc = BI->getSuccessor(1); 2420 ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator()); 2421 ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator()); 2422 2423 // Check to ensure both blocks are empty (just a return) or optionally empty 2424 // with PHI nodes. If there are other instructions, merging would cause extra 2425 // computation on one path or the other. 2426 if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator()) 2427 return false; 2428 if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator()) 2429 return false; 2430 2431 Builder.SetInsertPoint(BI); 2432 // Okay, we found a branch that is going to two return nodes. If 2433 // there is no return value for this function, just change the 2434 // branch into a return. 2435 if (FalseRet->getNumOperands() == 0) { 2436 TrueSucc->removePredecessor(BI->getParent()); 2437 FalseSucc->removePredecessor(BI->getParent()); 2438 Builder.CreateRetVoid(); 2439 EraseTerminatorInstAndDCECond(BI); 2440 return true; 2441 } 2442 2443 // Otherwise, figure out what the true and false return values are 2444 // so we can insert a new select instruction. 2445 Value *TrueValue = TrueRet->getReturnValue(); 2446 Value *FalseValue = FalseRet->getReturnValue(); 2447 2448 // Unwrap any PHI nodes in the return blocks. 2449 if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue)) 2450 if (TVPN->getParent() == TrueSucc) 2451 TrueValue = TVPN->getIncomingValueForBlock(BI->getParent()); 2452 if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue)) 2453 if (FVPN->getParent() == FalseSucc) 2454 FalseValue = FVPN->getIncomingValueForBlock(BI->getParent()); 2455 2456 // In order for this transformation to be safe, we must be able to 2457 // unconditionally execute both operands to the return. This is 2458 // normally the case, but we could have a potentially-trapping 2459 // constant expression that prevents this transformation from being 2460 // safe. 2461 if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue)) 2462 if (TCV->canTrap()) 2463 return false; 2464 if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue)) 2465 if (FCV->canTrap()) 2466 return false; 2467 2468 // Okay, we collected all the mapped values and checked them for sanity, and 2469 // defined to really do this transformation. First, update the CFG. 2470 TrueSucc->removePredecessor(BI->getParent()); 2471 FalseSucc->removePredecessor(BI->getParent()); 2472 2473 // Insert select instructions where needed. 2474 Value *BrCond = BI->getCondition(); 2475 if (TrueValue) { 2476 // Insert a select if the results differ. 2477 if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) { 2478 } else if (isa<UndefValue>(TrueValue)) { 2479 TrueValue = FalseValue; 2480 } else { 2481 TrueValue = 2482 Builder.CreateSelect(BrCond, TrueValue, FalseValue, "retval", BI); 2483 } 2484 } 2485 2486 Value *RI = 2487 !TrueValue ? Builder.CreateRetVoid() : Builder.CreateRet(TrueValue); 2488 2489 (void)RI; 2490 2491 LLVM_DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:" 2492 << "\n " << *BI << "NewRet = " << *RI << "TRUEBLOCK: " 2493 << *TrueSucc << "FALSEBLOCK: " << *FalseSucc); 2494 2495 EraseTerminatorInstAndDCECond(BI); 2496 2497 return true; 2498 } 2499 2500 /// Return true if the given instruction is available 2501 /// in its predecessor block. If yes, the instruction will be removed. 2502 static bool tryCSEWithPredecessor(Instruction *Inst, BasicBlock *PB) { 2503 if (!isa<BinaryOperator>(Inst) && !isa<CmpInst>(Inst)) 2504 return false; 2505 for (Instruction &I : *PB) { 2506 Instruction *PBI = &I; 2507 // Check whether Inst and PBI generate the same value. 2508 if (Inst->isIdenticalTo(PBI)) { 2509 Inst->replaceAllUsesWith(PBI); 2510 Inst->eraseFromParent(); 2511 return true; 2512 } 2513 } 2514 return false; 2515 } 2516 2517 /// Return true if either PBI or BI has branch weight available, and store 2518 /// the weights in {Pred|Succ}{True|False}Weight. If one of PBI and BI does 2519 /// not have branch weight, use 1:1 as its weight. 2520 static bool extractPredSuccWeights(BranchInst *PBI, BranchInst *BI, 2521 uint64_t &PredTrueWeight, 2522 uint64_t &PredFalseWeight, 2523 uint64_t &SuccTrueWeight, 2524 uint64_t &SuccFalseWeight) { 2525 bool PredHasWeights = 2526 PBI->extractProfMetadata(PredTrueWeight, PredFalseWeight); 2527 bool SuccHasWeights = 2528 BI->extractProfMetadata(SuccTrueWeight, SuccFalseWeight); 2529 if (PredHasWeights || SuccHasWeights) { 2530 if (!PredHasWeights) 2531 PredTrueWeight = PredFalseWeight = 1; 2532 if (!SuccHasWeights) 2533 SuccTrueWeight = SuccFalseWeight = 1; 2534 return true; 2535 } else { 2536 return false; 2537 } 2538 } 2539 2540 /// If this basic block is simple enough, and if a predecessor branches to us 2541 /// and one of our successors, fold the block into the predecessor and use 2542 /// logical operations to pick the right destination. 2543 bool llvm::FoldBranchToCommonDest(BranchInst *BI, unsigned BonusInstThreshold) { 2544 BasicBlock *BB = BI->getParent(); 2545 2546 const unsigned PredCount = pred_size(BB); 2547 2548 Instruction *Cond = nullptr; 2549 if (BI->isConditional()) 2550 Cond = dyn_cast<Instruction>(BI->getCondition()); 2551 else { 2552 // For unconditional branch, check for a simple CFG pattern, where 2553 // BB has a single predecessor and BB's successor is also its predecessor's 2554 // successor. If such pattern exists, check for CSE between BB and its 2555 // predecessor. 2556 if (BasicBlock *PB = BB->getSinglePredecessor()) 2557 if (BranchInst *PBI = dyn_cast<BranchInst>(PB->getTerminator())) 2558 if (PBI->isConditional() && 2559 (BI->getSuccessor(0) == PBI->getSuccessor(0) || 2560 BI->getSuccessor(0) == PBI->getSuccessor(1))) { 2561 for (auto I = BB->instructionsWithoutDebug().begin(), 2562 E = BB->instructionsWithoutDebug().end(); 2563 I != E;) { 2564 Instruction *Curr = &*I++; 2565 if (isa<CmpInst>(Curr)) { 2566 Cond = Curr; 2567 break; 2568 } 2569 // Quit if we can't remove this instruction. 2570 if (!tryCSEWithPredecessor(Curr, PB)) 2571 return false; 2572 } 2573 } 2574 2575 if (!Cond) 2576 return false; 2577 } 2578 2579 if (!Cond || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) || 2580 Cond->getParent() != BB || !Cond->hasOneUse()) 2581 return false; 2582 2583 // Make sure the instruction after the condition is the cond branch. 2584 BasicBlock::iterator CondIt = ++Cond->getIterator(); 2585 2586 // Ignore dbg intrinsics. 2587 while (isa<DbgInfoIntrinsic>(CondIt)) 2588 ++CondIt; 2589 2590 if (&*CondIt != BI) 2591 return false; 2592 2593 // Only allow this transformation if computing the condition doesn't involve 2594 // too many instructions and these involved instructions can be executed 2595 // unconditionally. We denote all involved instructions except the condition 2596 // as "bonus instructions", and only allow this transformation when the 2597 // number of the bonus instructions we'll need to create when cloning into 2598 // each predecessor does not exceed a certain threshold. 2599 unsigned NumBonusInsts = 0; 2600 for (auto I = BB->begin(); Cond != &*I; ++I) { 2601 // Ignore dbg intrinsics. 2602 if (isa<DbgInfoIntrinsic>(I)) 2603 continue; 2604 if (!I->hasOneUse() || !isSafeToSpeculativelyExecute(&*I)) 2605 return false; 2606 // I has only one use and can be executed unconditionally. 2607 Instruction *User = dyn_cast<Instruction>(I->user_back()); 2608 if (User == nullptr || User->getParent() != BB) 2609 return false; 2610 // I is used in the same BB. Since BI uses Cond and doesn't have more slots 2611 // to use any other instruction, User must be an instruction between next(I) 2612 // and Cond. 2613 2614 // Account for the cost of duplicating this instruction into each 2615 // predecessor. 2616 NumBonusInsts += PredCount; 2617 // Early exits once we reach the limit. 2618 if (NumBonusInsts > BonusInstThreshold) 2619 return false; 2620 } 2621 2622 // Cond is known to be a compare or binary operator. Check to make sure that 2623 // neither operand is a potentially-trapping constant expression. 2624 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0))) 2625 if (CE->canTrap()) 2626 return false; 2627 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1))) 2628 if (CE->canTrap()) 2629 return false; 2630 2631 // Finally, don't infinitely unroll conditional loops. 2632 BasicBlock *TrueDest = BI->getSuccessor(0); 2633 BasicBlock *FalseDest = (BI->isConditional()) ? BI->getSuccessor(1) : nullptr; 2634 if (TrueDest == BB || FalseDest == BB) 2635 return false; 2636 2637 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 2638 BasicBlock *PredBlock = *PI; 2639 BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator()); 2640 2641 // Check that we have two conditional branches. If there is a PHI node in 2642 // the common successor, verify that the same value flows in from both 2643 // blocks. 2644 SmallVector<PHINode *, 4> PHIs; 2645 if (!PBI || PBI->isUnconditional() || 2646 (BI->isConditional() && !SafeToMergeTerminators(BI, PBI)) || 2647 (!BI->isConditional() && 2648 !isProfitableToFoldUnconditional(BI, PBI, Cond, PHIs))) 2649 continue; 2650 2651 // Determine if the two branches share a common destination. 2652 Instruction::BinaryOps Opc = Instruction::BinaryOpsEnd; 2653 bool InvertPredCond = false; 2654 2655 if (BI->isConditional()) { 2656 if (PBI->getSuccessor(0) == TrueDest) { 2657 Opc = Instruction::Or; 2658 } else if (PBI->getSuccessor(1) == FalseDest) { 2659 Opc = Instruction::And; 2660 } else if (PBI->getSuccessor(0) == FalseDest) { 2661 Opc = Instruction::And; 2662 InvertPredCond = true; 2663 } else if (PBI->getSuccessor(1) == TrueDest) { 2664 Opc = Instruction::Or; 2665 InvertPredCond = true; 2666 } else { 2667 continue; 2668 } 2669 } else { 2670 if (PBI->getSuccessor(0) != TrueDest && PBI->getSuccessor(1) != TrueDest) 2671 continue; 2672 } 2673 2674 LLVM_DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB); 2675 IRBuilder<> Builder(PBI); 2676 2677 // If we need to invert the condition in the pred block to match, do so now. 2678 if (InvertPredCond) { 2679 Value *NewCond = PBI->getCondition(); 2680 2681 if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) { 2682 CmpInst *CI = cast<CmpInst>(NewCond); 2683 CI->setPredicate(CI->getInversePredicate()); 2684 } else { 2685 NewCond = 2686 Builder.CreateNot(NewCond, PBI->getCondition()->getName() + ".not"); 2687 } 2688 2689 PBI->setCondition(NewCond); 2690 PBI->swapSuccessors(); 2691 } 2692 2693 // If we have bonus instructions, clone them into the predecessor block. 2694 // Note that there may be multiple predecessor blocks, so we cannot move 2695 // bonus instructions to a predecessor block. 2696 ValueToValueMapTy VMap; // maps original values to cloned values 2697 // We already make sure Cond is the last instruction before BI. Therefore, 2698 // all instructions before Cond other than DbgInfoIntrinsic are bonus 2699 // instructions. 2700 for (auto BonusInst = BB->begin(); Cond != &*BonusInst; ++BonusInst) { 2701 if (isa<DbgInfoIntrinsic>(BonusInst)) 2702 continue; 2703 Instruction *NewBonusInst = BonusInst->clone(); 2704 RemapInstruction(NewBonusInst, VMap, 2705 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 2706 VMap[&*BonusInst] = NewBonusInst; 2707 2708 // If we moved a load, we cannot any longer claim any knowledge about 2709 // its potential value. The previous information might have been valid 2710 // only given the branch precondition. 2711 // For an analogous reason, we must also drop all the metadata whose 2712 // semantics we don't understand. 2713 NewBonusInst->dropUnknownNonDebugMetadata(); 2714 2715 PredBlock->getInstList().insert(PBI->getIterator(), NewBonusInst); 2716 NewBonusInst->takeName(&*BonusInst); 2717 BonusInst->setName(BonusInst->getName() + ".old"); 2718 } 2719 2720 // Clone Cond into the predecessor basic block, and or/and the 2721 // two conditions together. 2722 Instruction *CondInPred = Cond->clone(); 2723 RemapInstruction(CondInPred, VMap, 2724 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 2725 PredBlock->getInstList().insert(PBI->getIterator(), CondInPred); 2726 CondInPred->takeName(Cond); 2727 Cond->setName(CondInPred->getName() + ".old"); 2728 2729 if (BI->isConditional()) { 2730 Instruction *NewCond = cast<Instruction>( 2731 Builder.CreateBinOp(Opc, PBI->getCondition(), CondInPred, "or.cond")); 2732 PBI->setCondition(NewCond); 2733 2734 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 2735 bool HasWeights = 2736 extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight, 2737 SuccTrueWeight, SuccFalseWeight); 2738 SmallVector<uint64_t, 8> NewWeights; 2739 2740 if (PBI->getSuccessor(0) == BB) { 2741 if (HasWeights) { 2742 // PBI: br i1 %x, BB, FalseDest 2743 // BI: br i1 %y, TrueDest, FalseDest 2744 // TrueWeight is TrueWeight for PBI * TrueWeight for BI. 2745 NewWeights.push_back(PredTrueWeight * SuccTrueWeight); 2746 // FalseWeight is FalseWeight for PBI * TotalWeight for BI + 2747 // TrueWeight for PBI * FalseWeight for BI. 2748 // We assume that total weights of a BranchInst can fit into 32 bits. 2749 // Therefore, we will not have overflow using 64-bit arithmetic. 2750 NewWeights.push_back(PredFalseWeight * 2751 (SuccFalseWeight + SuccTrueWeight) + 2752 PredTrueWeight * SuccFalseWeight); 2753 } 2754 AddPredecessorToBlock(TrueDest, PredBlock, BB); 2755 PBI->setSuccessor(0, TrueDest); 2756 } 2757 if (PBI->getSuccessor(1) == BB) { 2758 if (HasWeights) { 2759 // PBI: br i1 %x, TrueDest, BB 2760 // BI: br i1 %y, TrueDest, FalseDest 2761 // TrueWeight is TrueWeight for PBI * TotalWeight for BI + 2762 // FalseWeight for PBI * TrueWeight for BI. 2763 NewWeights.push_back(PredTrueWeight * 2764 (SuccFalseWeight + SuccTrueWeight) + 2765 PredFalseWeight * SuccTrueWeight); 2766 // FalseWeight is FalseWeight for PBI * FalseWeight for BI. 2767 NewWeights.push_back(PredFalseWeight * SuccFalseWeight); 2768 } 2769 AddPredecessorToBlock(FalseDest, PredBlock, BB); 2770 PBI->setSuccessor(1, FalseDest); 2771 } 2772 if (NewWeights.size() == 2) { 2773 // Halve the weights if any of them cannot fit in an uint32_t 2774 FitWeights(NewWeights); 2775 2776 SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(), 2777 NewWeights.end()); 2778 setBranchWeights(PBI, MDWeights[0], MDWeights[1]); 2779 } else 2780 PBI->setMetadata(LLVMContext::MD_prof, nullptr); 2781 } else { 2782 // Update PHI nodes in the common successors. 2783 for (unsigned i = 0, e = PHIs.size(); i != e; ++i) { 2784 ConstantInt *PBI_C = cast<ConstantInt>( 2785 PHIs[i]->getIncomingValueForBlock(PBI->getParent())); 2786 assert(PBI_C->getType()->isIntegerTy(1)); 2787 Instruction *MergedCond = nullptr; 2788 if (PBI->getSuccessor(0) == TrueDest) { 2789 // Create (PBI_Cond and PBI_C) or (!PBI_Cond and BI_Value) 2790 // PBI_C is true: PBI_Cond or (!PBI_Cond and BI_Value) 2791 // is false: !PBI_Cond and BI_Value 2792 Instruction *NotCond = cast<Instruction>( 2793 Builder.CreateNot(PBI->getCondition(), "not.cond")); 2794 MergedCond = cast<Instruction>( 2795 Builder.CreateBinOp(Instruction::And, NotCond, CondInPred, 2796 "and.cond")); 2797 if (PBI_C->isOne()) 2798 MergedCond = cast<Instruction>(Builder.CreateBinOp( 2799 Instruction::Or, PBI->getCondition(), MergedCond, "or.cond")); 2800 } else { 2801 // Create (PBI_Cond and BI_Value) or (!PBI_Cond and PBI_C) 2802 // PBI_C is true: (PBI_Cond and BI_Value) or (!PBI_Cond) 2803 // is false: PBI_Cond and BI_Value 2804 MergedCond = cast<Instruction>(Builder.CreateBinOp( 2805 Instruction::And, PBI->getCondition(), CondInPred, "and.cond")); 2806 if (PBI_C->isOne()) { 2807 Instruction *NotCond = cast<Instruction>( 2808 Builder.CreateNot(PBI->getCondition(), "not.cond")); 2809 MergedCond = cast<Instruction>(Builder.CreateBinOp( 2810 Instruction::Or, NotCond, MergedCond, "or.cond")); 2811 } 2812 } 2813 // Update PHI Node. 2814 PHIs[i]->setIncomingValue(PHIs[i]->getBasicBlockIndex(PBI->getParent()), 2815 MergedCond); 2816 } 2817 // Change PBI from Conditional to Unconditional. 2818 BranchInst *New_PBI = BranchInst::Create(TrueDest, PBI); 2819 EraseTerminatorInstAndDCECond(PBI); 2820 PBI = New_PBI; 2821 } 2822 2823 // If BI was a loop latch, it may have had associated loop metadata. 2824 // We need to copy it to the new latch, that is, PBI. 2825 if (MDNode *LoopMD = BI->getMetadata(LLVMContext::MD_loop)) 2826 PBI->setMetadata(LLVMContext::MD_loop, LoopMD); 2827 2828 // TODO: If BB is reachable from all paths through PredBlock, then we 2829 // could replace PBI's branch probabilities with BI's. 2830 2831 // Copy any debug value intrinsics into the end of PredBlock. 2832 for (Instruction &I : *BB) 2833 if (isa<DbgInfoIntrinsic>(I)) 2834 I.clone()->insertBefore(PBI); 2835 2836 return true; 2837 } 2838 return false; 2839 } 2840 2841 // If there is only one store in BB1 and BB2, return it, otherwise return 2842 // nullptr. 2843 static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) { 2844 StoreInst *S = nullptr; 2845 for (auto *BB : {BB1, BB2}) { 2846 if (!BB) 2847 continue; 2848 for (auto &I : *BB) 2849 if (auto *SI = dyn_cast<StoreInst>(&I)) { 2850 if (S) 2851 // Multiple stores seen. 2852 return nullptr; 2853 else 2854 S = SI; 2855 } 2856 } 2857 return S; 2858 } 2859 2860 static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB, 2861 Value *AlternativeV = nullptr) { 2862 // PHI is going to be a PHI node that allows the value V that is defined in 2863 // BB to be referenced in BB's only successor. 2864 // 2865 // If AlternativeV is nullptr, the only value we care about in PHI is V. It 2866 // doesn't matter to us what the other operand is (it'll never get used). We 2867 // could just create a new PHI with an undef incoming value, but that could 2868 // increase register pressure if EarlyCSE/InstCombine can't fold it with some 2869 // other PHI. So here we directly look for some PHI in BB's successor with V 2870 // as an incoming operand. If we find one, we use it, else we create a new 2871 // one. 2872 // 2873 // If AlternativeV is not nullptr, we care about both incoming values in PHI. 2874 // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV] 2875 // where OtherBB is the single other predecessor of BB's only successor. 2876 PHINode *PHI = nullptr; 2877 BasicBlock *Succ = BB->getSingleSuccessor(); 2878 2879 for (auto I = Succ->begin(); isa<PHINode>(I); ++I) 2880 if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) { 2881 PHI = cast<PHINode>(I); 2882 if (!AlternativeV) 2883 break; 2884 2885 assert(pred_size(Succ) == 2); 2886 auto PredI = pred_begin(Succ); 2887 BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI; 2888 if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV) 2889 break; 2890 PHI = nullptr; 2891 } 2892 if (PHI) 2893 return PHI; 2894 2895 // If V is not an instruction defined in BB, just return it. 2896 if (!AlternativeV && 2897 (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB)) 2898 return V; 2899 2900 PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge", &Succ->front()); 2901 PHI->addIncoming(V, BB); 2902 for (BasicBlock *PredBB : predecessors(Succ)) 2903 if (PredBB != BB) 2904 PHI->addIncoming( 2905 AlternativeV ? AlternativeV : UndefValue::get(V->getType()), PredBB); 2906 return PHI; 2907 } 2908 2909 static bool mergeConditionalStoreToAddress(BasicBlock *PTB, BasicBlock *PFB, 2910 BasicBlock *QTB, BasicBlock *QFB, 2911 BasicBlock *PostBB, Value *Address, 2912 bool InvertPCond, bool InvertQCond, 2913 const DataLayout &DL) { 2914 auto IsaBitcastOfPointerType = [](const Instruction &I) { 2915 return Operator::getOpcode(&I) == Instruction::BitCast && 2916 I.getType()->isPointerTy(); 2917 }; 2918 2919 // If we're not in aggressive mode, we only optimize if we have some 2920 // confidence that by optimizing we'll allow P and/or Q to be if-converted. 2921 auto IsWorthwhile = [&](BasicBlock *BB) { 2922 if (!BB) 2923 return true; 2924 // Heuristic: if the block can be if-converted/phi-folded and the 2925 // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to 2926 // thread this store. 2927 unsigned N = 0; 2928 for (auto &I : BB->instructionsWithoutDebug()) { 2929 // Cheap instructions viable for folding. 2930 if (isa<BinaryOperator>(I) || isa<GetElementPtrInst>(I) || 2931 isa<StoreInst>(I)) 2932 ++N; 2933 // Free instructions. 2934 else if (I.isTerminator() || IsaBitcastOfPointerType(I)) 2935 continue; 2936 else 2937 return false; 2938 } 2939 // The store we want to merge is counted in N, so add 1 to make sure 2940 // we're counting the instructions that would be left. 2941 return N <= (PHINodeFoldingThreshold + 1); 2942 }; 2943 2944 if (!MergeCondStoresAggressively && 2945 (!IsWorthwhile(PTB) || !IsWorthwhile(PFB) || !IsWorthwhile(QTB) || 2946 !IsWorthwhile(QFB))) 2947 return false; 2948 2949 // For every pointer, there must be exactly two stores, one coming from 2950 // PTB or PFB, and the other from QTB or QFB. We don't support more than one 2951 // store (to any address) in PTB,PFB or QTB,QFB. 2952 // FIXME: We could relax this restriction with a bit more work and performance 2953 // testing. 2954 StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB); 2955 StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB); 2956 if (!PStore || !QStore) 2957 return false; 2958 2959 // Now check the stores are compatible. 2960 if (!QStore->isUnordered() || !PStore->isUnordered()) 2961 return false; 2962 2963 // Check that sinking the store won't cause program behavior changes. Sinking 2964 // the store out of the Q blocks won't change any behavior as we're sinking 2965 // from a block to its unconditional successor. But we're moving a store from 2966 // the P blocks down through the middle block (QBI) and past both QFB and QTB. 2967 // So we need to check that there are no aliasing loads or stores in 2968 // QBI, QTB and QFB. We also need to check there are no conflicting memory 2969 // operations between PStore and the end of its parent block. 2970 // 2971 // The ideal way to do this is to query AliasAnalysis, but we don't 2972 // preserve AA currently so that is dangerous. Be super safe and just 2973 // check there are no other memory operations at all. 2974 for (auto &I : *QFB->getSinglePredecessor()) 2975 if (I.mayReadOrWriteMemory()) 2976 return false; 2977 for (auto &I : *QFB) 2978 if (&I != QStore && I.mayReadOrWriteMemory()) 2979 return false; 2980 if (QTB) 2981 for (auto &I : *QTB) 2982 if (&I != QStore && I.mayReadOrWriteMemory()) 2983 return false; 2984 for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end(); 2985 I != E; ++I) 2986 if (&*I != PStore && I->mayReadOrWriteMemory()) 2987 return false; 2988 2989 // If PostBB has more than two predecessors, we need to split it so we can 2990 // sink the store. 2991 if (std::next(pred_begin(PostBB), 2) != pred_end(PostBB)) { 2992 // We know that QFB's only successor is PostBB. And QFB has a single 2993 // predecessor. If QTB exists, then its only successor is also PostBB. 2994 // If QTB does not exist, then QFB's only predecessor has a conditional 2995 // branch to QFB and PostBB. 2996 BasicBlock *TruePred = QTB ? QTB : QFB->getSinglePredecessor(); 2997 BasicBlock *NewBB = SplitBlockPredecessors(PostBB, { QFB, TruePred}, 2998 "condstore.split"); 2999 if (!NewBB) 3000 return false; 3001 PostBB = NewBB; 3002 } 3003 3004 // OK, we're going to sink the stores to PostBB. The store has to be 3005 // conditional though, so first create the predicate. 3006 Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator()) 3007 ->getCondition(); 3008 Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator()) 3009 ->getCondition(); 3010 3011 Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(), 3012 PStore->getParent()); 3013 Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(), 3014 QStore->getParent(), PPHI); 3015 3016 IRBuilder<> QB(&*PostBB->getFirstInsertionPt()); 3017 3018 Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond); 3019 Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond); 3020 3021 if (InvertPCond) 3022 PPred = QB.CreateNot(PPred); 3023 if (InvertQCond) 3024 QPred = QB.CreateNot(QPred); 3025 Value *CombinedPred = QB.CreateOr(PPred, QPred); 3026 3027 auto *T = 3028 SplitBlockAndInsertIfThen(CombinedPred, &*QB.GetInsertPoint(), false); 3029 QB.SetInsertPoint(T); 3030 StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address)); 3031 AAMDNodes AAMD; 3032 PStore->getAAMetadata(AAMD, /*Merge=*/false); 3033 PStore->getAAMetadata(AAMD, /*Merge=*/true); 3034 SI->setAAMetadata(AAMD); 3035 unsigned PAlignment = PStore->getAlignment(); 3036 unsigned QAlignment = QStore->getAlignment(); 3037 unsigned TypeAlignment = 3038 DL.getABITypeAlignment(SI->getValueOperand()->getType()); 3039 unsigned MinAlignment; 3040 unsigned MaxAlignment; 3041 std::tie(MinAlignment, MaxAlignment) = std::minmax(PAlignment, QAlignment); 3042 // Choose the minimum alignment. If we could prove both stores execute, we 3043 // could use biggest one. In this case, though, we only know that one of the 3044 // stores executes. And we don't know it's safe to take the alignment from a 3045 // store that doesn't execute. 3046 if (MinAlignment != 0) { 3047 // Choose the minimum of all non-zero alignments. 3048 SI->setAlignment(MinAlignment); 3049 } else if (MaxAlignment != 0) { 3050 // Choose the minimal alignment between the non-zero alignment and the ABI 3051 // default alignment for the type of the stored value. 3052 SI->setAlignment(std::min(MaxAlignment, TypeAlignment)); 3053 } else { 3054 // If both alignments are zero, use ABI default alignment for the type of 3055 // the stored value. 3056 SI->setAlignment(TypeAlignment); 3057 } 3058 3059 QStore->eraseFromParent(); 3060 PStore->eraseFromParent(); 3061 3062 return true; 3063 } 3064 3065 static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI, 3066 const DataLayout &DL) { 3067 // The intention here is to find diamonds or triangles (see below) where each 3068 // conditional block contains a store to the same address. Both of these 3069 // stores are conditional, so they can't be unconditionally sunk. But it may 3070 // be profitable to speculatively sink the stores into one merged store at the 3071 // end, and predicate the merged store on the union of the two conditions of 3072 // PBI and QBI. 3073 // 3074 // This can reduce the number of stores executed if both of the conditions are 3075 // true, and can allow the blocks to become small enough to be if-converted. 3076 // This optimization will also chain, so that ladders of test-and-set 3077 // sequences can be if-converted away. 3078 // 3079 // We only deal with simple diamonds or triangles: 3080 // 3081 // PBI or PBI or a combination of the two 3082 // / \ | \ 3083 // PTB PFB | PFB 3084 // \ / | / 3085 // QBI QBI 3086 // / \ | \ 3087 // QTB QFB | QFB 3088 // \ / | / 3089 // PostBB PostBB 3090 // 3091 // We model triangles as a type of diamond with a nullptr "true" block. 3092 // Triangles are canonicalized so that the fallthrough edge is represented by 3093 // a true condition, as in the diagram above. 3094 BasicBlock *PTB = PBI->getSuccessor(0); 3095 BasicBlock *PFB = PBI->getSuccessor(1); 3096 BasicBlock *QTB = QBI->getSuccessor(0); 3097 BasicBlock *QFB = QBI->getSuccessor(1); 3098 BasicBlock *PostBB = QFB->getSingleSuccessor(); 3099 3100 // Make sure we have a good guess for PostBB. If QTB's only successor is 3101 // QFB, then QFB is a better PostBB. 3102 if (QTB->getSingleSuccessor() == QFB) 3103 PostBB = QFB; 3104 3105 // If we couldn't find a good PostBB, stop. 3106 if (!PostBB) 3107 return false; 3108 3109 bool InvertPCond = false, InvertQCond = false; 3110 // Canonicalize fallthroughs to the true branches. 3111 if (PFB == QBI->getParent()) { 3112 std::swap(PFB, PTB); 3113 InvertPCond = true; 3114 } 3115 if (QFB == PostBB) { 3116 std::swap(QFB, QTB); 3117 InvertQCond = true; 3118 } 3119 3120 // From this point on we can assume PTB or QTB may be fallthroughs but PFB 3121 // and QFB may not. Model fallthroughs as a nullptr block. 3122 if (PTB == QBI->getParent()) 3123 PTB = nullptr; 3124 if (QTB == PostBB) 3125 QTB = nullptr; 3126 3127 // Legality bailouts. We must have at least the non-fallthrough blocks and 3128 // the post-dominating block, and the non-fallthroughs must only have one 3129 // predecessor. 3130 auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) { 3131 return BB->getSinglePredecessor() == P && BB->getSingleSuccessor() == S; 3132 }; 3133 if (!HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) || 3134 !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB)) 3135 return false; 3136 if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) || 3137 (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB))) 3138 return false; 3139 if (!QBI->getParent()->hasNUses(2)) 3140 return false; 3141 3142 // OK, this is a sequence of two diamonds or triangles. 3143 // Check if there are stores in PTB or PFB that are repeated in QTB or QFB. 3144 SmallPtrSet<Value *, 4> PStoreAddresses, QStoreAddresses; 3145 for (auto *BB : {PTB, PFB}) { 3146 if (!BB) 3147 continue; 3148 for (auto &I : *BB) 3149 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) 3150 PStoreAddresses.insert(SI->getPointerOperand()); 3151 } 3152 for (auto *BB : {QTB, QFB}) { 3153 if (!BB) 3154 continue; 3155 for (auto &I : *BB) 3156 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) 3157 QStoreAddresses.insert(SI->getPointerOperand()); 3158 } 3159 3160 set_intersect(PStoreAddresses, QStoreAddresses); 3161 // set_intersect mutates PStoreAddresses in place. Rename it here to make it 3162 // clear what it contains. 3163 auto &CommonAddresses = PStoreAddresses; 3164 3165 bool Changed = false; 3166 for (auto *Address : CommonAddresses) 3167 Changed |= mergeConditionalStoreToAddress( 3168 PTB, PFB, QTB, QFB, PostBB, Address, InvertPCond, InvertQCond, DL); 3169 return Changed; 3170 } 3171 3172 /// If we have a conditional branch as a predecessor of another block, 3173 /// this function tries to simplify it. We know 3174 /// that PBI and BI are both conditional branches, and BI is in one of the 3175 /// successor blocks of PBI - PBI branches to BI. 3176 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI, 3177 const DataLayout &DL) { 3178 assert(PBI->isConditional() && BI->isConditional()); 3179 BasicBlock *BB = BI->getParent(); 3180 3181 // If this block ends with a branch instruction, and if there is a 3182 // predecessor that ends on a branch of the same condition, make 3183 // this conditional branch redundant. 3184 if (PBI->getCondition() == BI->getCondition() && 3185 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 3186 // Okay, the outcome of this conditional branch is statically 3187 // knowable. If this block had a single pred, handle specially. 3188 if (BB->getSinglePredecessor()) { 3189 // Turn this into a branch on constant. 3190 bool CondIsTrue = PBI->getSuccessor(0) == BB; 3191 BI->setCondition( 3192 ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue)); 3193 return true; // Nuke the branch on constant. 3194 } 3195 3196 // Otherwise, if there are multiple predecessors, insert a PHI that merges 3197 // in the constant and simplify the block result. Subsequent passes of 3198 // simplifycfg will thread the block. 3199 if (BlockIsSimpleEnoughToThreadThrough(BB)) { 3200 pred_iterator PB = pred_begin(BB), PE = pred_end(BB); 3201 PHINode *NewPN = PHINode::Create( 3202 Type::getInt1Ty(BB->getContext()), std::distance(PB, PE), 3203 BI->getCondition()->getName() + ".pr", &BB->front()); 3204 // Okay, we're going to insert the PHI node. Since PBI is not the only 3205 // predecessor, compute the PHI'd conditional value for all of the preds. 3206 // Any predecessor where the condition is not computable we keep symbolic. 3207 for (pred_iterator PI = PB; PI != PE; ++PI) { 3208 BasicBlock *P = *PI; 3209 if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) && PBI != BI && 3210 PBI->isConditional() && PBI->getCondition() == BI->getCondition() && 3211 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 3212 bool CondIsTrue = PBI->getSuccessor(0) == BB; 3213 NewPN->addIncoming( 3214 ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue), 3215 P); 3216 } else { 3217 NewPN->addIncoming(BI->getCondition(), P); 3218 } 3219 } 3220 3221 BI->setCondition(NewPN); 3222 return true; 3223 } 3224 } 3225 3226 if (auto *CE = dyn_cast<ConstantExpr>(BI->getCondition())) 3227 if (CE->canTrap()) 3228 return false; 3229 3230 // If both branches are conditional and both contain stores to the same 3231 // address, remove the stores from the conditionals and create a conditional 3232 // merged store at the end. 3233 if (MergeCondStores && mergeConditionalStores(PBI, BI, DL)) 3234 return true; 3235 3236 // If this is a conditional branch in an empty block, and if any 3237 // predecessors are a conditional branch to one of our destinations, 3238 // fold the conditions into logical ops and one cond br. 3239 3240 // Ignore dbg intrinsics. 3241 if (&*BB->instructionsWithoutDebug().begin() != BI) 3242 return false; 3243 3244 int PBIOp, BIOp; 3245 if (PBI->getSuccessor(0) == BI->getSuccessor(0)) { 3246 PBIOp = 0; 3247 BIOp = 0; 3248 } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) { 3249 PBIOp = 0; 3250 BIOp = 1; 3251 } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) { 3252 PBIOp = 1; 3253 BIOp = 0; 3254 } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) { 3255 PBIOp = 1; 3256 BIOp = 1; 3257 } else { 3258 return false; 3259 } 3260 3261 // Check to make sure that the other destination of this branch 3262 // isn't BB itself. If so, this is an infinite loop that will 3263 // keep getting unwound. 3264 if (PBI->getSuccessor(PBIOp) == BB) 3265 return false; 3266 3267 // Do not perform this transformation if it would require 3268 // insertion of a large number of select instructions. For targets 3269 // without predication/cmovs, this is a big pessimization. 3270 3271 // Also do not perform this transformation if any phi node in the common 3272 // destination block can trap when reached by BB or PBB (PR17073). In that 3273 // case, it would be unsafe to hoist the operation into a select instruction. 3274 3275 BasicBlock *CommonDest = PBI->getSuccessor(PBIOp); 3276 unsigned NumPhis = 0; 3277 for (BasicBlock::iterator II = CommonDest->begin(); isa<PHINode>(II); 3278 ++II, ++NumPhis) { 3279 if (NumPhis > 2) // Disable this xform. 3280 return false; 3281 3282 PHINode *PN = cast<PHINode>(II); 3283 Value *BIV = PN->getIncomingValueForBlock(BB); 3284 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BIV)) 3285 if (CE->canTrap()) 3286 return false; 3287 3288 unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent()); 3289 Value *PBIV = PN->getIncomingValue(PBBIdx); 3290 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(PBIV)) 3291 if (CE->canTrap()) 3292 return false; 3293 } 3294 3295 // Finally, if everything is ok, fold the branches to logical ops. 3296 BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1); 3297 3298 LLVM_DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent() 3299 << "AND: " << *BI->getParent()); 3300 3301 // If OtherDest *is* BB, then BB is a basic block with a single conditional 3302 // branch in it, where one edge (OtherDest) goes back to itself but the other 3303 // exits. We don't *know* that the program avoids the infinite loop 3304 // (even though that seems likely). If we do this xform naively, we'll end up 3305 // recursively unpeeling the loop. Since we know that (after the xform is 3306 // done) that the block *is* infinite if reached, we just make it an obviously 3307 // infinite loop with no cond branch. 3308 if (OtherDest == BB) { 3309 // Insert it at the end of the function, because it's either code, 3310 // or it won't matter if it's hot. :) 3311 BasicBlock *InfLoopBlock = 3312 BasicBlock::Create(BB->getContext(), "infloop", BB->getParent()); 3313 BranchInst::Create(InfLoopBlock, InfLoopBlock); 3314 OtherDest = InfLoopBlock; 3315 } 3316 3317 LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent()); 3318 3319 // BI may have other predecessors. Because of this, we leave 3320 // it alone, but modify PBI. 3321 3322 // Make sure we get to CommonDest on True&True directions. 3323 Value *PBICond = PBI->getCondition(); 3324 IRBuilder<NoFolder> Builder(PBI); 3325 if (PBIOp) 3326 PBICond = Builder.CreateNot(PBICond, PBICond->getName() + ".not"); 3327 3328 Value *BICond = BI->getCondition(); 3329 if (BIOp) 3330 BICond = Builder.CreateNot(BICond, BICond->getName() + ".not"); 3331 3332 // Merge the conditions. 3333 Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge"); 3334 3335 // Modify PBI to branch on the new condition to the new dests. 3336 PBI->setCondition(Cond); 3337 PBI->setSuccessor(0, CommonDest); 3338 PBI->setSuccessor(1, OtherDest); 3339 3340 // Update branch weight for PBI. 3341 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 3342 uint64_t PredCommon, PredOther, SuccCommon, SuccOther; 3343 bool HasWeights = 3344 extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight, 3345 SuccTrueWeight, SuccFalseWeight); 3346 if (HasWeights) { 3347 PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight; 3348 PredOther = PBIOp ? PredTrueWeight : PredFalseWeight; 3349 SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight; 3350 SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight; 3351 // The weight to CommonDest should be PredCommon * SuccTotal + 3352 // PredOther * SuccCommon. 3353 // The weight to OtherDest should be PredOther * SuccOther. 3354 uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) + 3355 PredOther * SuccCommon, 3356 PredOther * SuccOther}; 3357 // Halve the weights if any of them cannot fit in an uint32_t 3358 FitWeights(NewWeights); 3359 3360 setBranchWeights(PBI, NewWeights[0], NewWeights[1]); 3361 } 3362 3363 // OtherDest may have phi nodes. If so, add an entry from PBI's 3364 // block that are identical to the entries for BI's block. 3365 AddPredecessorToBlock(OtherDest, PBI->getParent(), BB); 3366 3367 // We know that the CommonDest already had an edge from PBI to 3368 // it. If it has PHIs though, the PHIs may have different 3369 // entries for BB and PBI's BB. If so, insert a select to make 3370 // them agree. 3371 for (PHINode &PN : CommonDest->phis()) { 3372 Value *BIV = PN.getIncomingValueForBlock(BB); 3373 unsigned PBBIdx = PN.getBasicBlockIndex(PBI->getParent()); 3374 Value *PBIV = PN.getIncomingValue(PBBIdx); 3375 if (BIV != PBIV) { 3376 // Insert a select in PBI to pick the right value. 3377 SelectInst *NV = cast<SelectInst>( 3378 Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName() + ".mux")); 3379 PN.setIncomingValue(PBBIdx, NV); 3380 // Although the select has the same condition as PBI, the original branch 3381 // weights for PBI do not apply to the new select because the select's 3382 // 'logical' edges are incoming edges of the phi that is eliminated, not 3383 // the outgoing edges of PBI. 3384 if (HasWeights) { 3385 uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight; 3386 uint64_t PredOther = PBIOp ? PredTrueWeight : PredFalseWeight; 3387 uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight; 3388 uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight; 3389 // The weight to PredCommonDest should be PredCommon * SuccTotal. 3390 // The weight to PredOtherDest should be PredOther * SuccCommon. 3391 uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther), 3392 PredOther * SuccCommon}; 3393 3394 FitWeights(NewWeights); 3395 3396 setBranchWeights(NV, NewWeights[0], NewWeights[1]); 3397 } 3398 } 3399 } 3400 3401 LLVM_DEBUG(dbgs() << "INTO: " << *PBI->getParent()); 3402 LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent()); 3403 3404 // This basic block is probably dead. We know it has at least 3405 // one fewer predecessor. 3406 return true; 3407 } 3408 3409 // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is 3410 // true or to FalseBB if Cond is false. 3411 // Takes care of updating the successors and removing the old terminator. 3412 // Also makes sure not to introduce new successors by assuming that edges to 3413 // non-successor TrueBBs and FalseBBs aren't reachable. 3414 static bool SimplifyTerminatorOnSelect(TerminatorInst *OldTerm, Value *Cond, 3415 BasicBlock *TrueBB, BasicBlock *FalseBB, 3416 uint32_t TrueWeight, 3417 uint32_t FalseWeight) { 3418 // Remove any superfluous successor edges from the CFG. 3419 // First, figure out which successors to preserve. 3420 // If TrueBB and FalseBB are equal, only try to preserve one copy of that 3421 // successor. 3422 BasicBlock *KeepEdge1 = TrueBB; 3423 BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr; 3424 3425 // Then remove the rest. 3426 for (BasicBlock *Succ : successors(OldTerm)) { 3427 // Make sure only to keep exactly one copy of each edge. 3428 if (Succ == KeepEdge1) 3429 KeepEdge1 = nullptr; 3430 else if (Succ == KeepEdge2) 3431 KeepEdge2 = nullptr; 3432 else 3433 Succ->removePredecessor(OldTerm->getParent(), 3434 /*DontDeleteUselessPHIs=*/true); 3435 } 3436 3437 IRBuilder<> Builder(OldTerm); 3438 Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc()); 3439 3440 // Insert an appropriate new terminator. 3441 if (!KeepEdge1 && !KeepEdge2) { 3442 if (TrueBB == FalseBB) 3443 // We were only looking for one successor, and it was present. 3444 // Create an unconditional branch to it. 3445 Builder.CreateBr(TrueBB); 3446 else { 3447 // We found both of the successors we were looking for. 3448 // Create a conditional branch sharing the condition of the select. 3449 BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB); 3450 if (TrueWeight != FalseWeight) 3451 setBranchWeights(NewBI, TrueWeight, FalseWeight); 3452 } 3453 } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) { 3454 // Neither of the selected blocks were successors, so this 3455 // terminator must be unreachable. 3456 new UnreachableInst(OldTerm->getContext(), OldTerm); 3457 } else { 3458 // One of the selected values was a successor, but the other wasn't. 3459 // Insert an unconditional branch to the one that was found; 3460 // the edge to the one that wasn't must be unreachable. 3461 if (!KeepEdge1) 3462 // Only TrueBB was found. 3463 Builder.CreateBr(TrueBB); 3464 else 3465 // Only FalseBB was found. 3466 Builder.CreateBr(FalseBB); 3467 } 3468 3469 EraseTerminatorInstAndDCECond(OldTerm); 3470 return true; 3471 } 3472 3473 // Replaces 3474 // (switch (select cond, X, Y)) on constant X, Y 3475 // with a branch - conditional if X and Y lead to distinct BBs, 3476 // unconditional otherwise. 3477 static bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select) { 3478 // Check for constant integer values in the select. 3479 ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue()); 3480 ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue()); 3481 if (!TrueVal || !FalseVal) 3482 return false; 3483 3484 // Find the relevant condition and destinations. 3485 Value *Condition = Select->getCondition(); 3486 BasicBlock *TrueBB = SI->findCaseValue(TrueVal)->getCaseSuccessor(); 3487 BasicBlock *FalseBB = SI->findCaseValue(FalseVal)->getCaseSuccessor(); 3488 3489 // Get weight for TrueBB and FalseBB. 3490 uint32_t TrueWeight = 0, FalseWeight = 0; 3491 SmallVector<uint64_t, 8> Weights; 3492 bool HasWeights = HasBranchWeights(SI); 3493 if (HasWeights) { 3494 GetBranchWeights(SI, Weights); 3495 if (Weights.size() == 1 + SI->getNumCases()) { 3496 TrueWeight = 3497 (uint32_t)Weights[SI->findCaseValue(TrueVal)->getSuccessorIndex()]; 3498 FalseWeight = 3499 (uint32_t)Weights[SI->findCaseValue(FalseVal)->getSuccessorIndex()]; 3500 } 3501 } 3502 3503 // Perform the actual simplification. 3504 return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, TrueWeight, 3505 FalseWeight); 3506 } 3507 3508 // Replaces 3509 // (indirectbr (select cond, blockaddress(@fn, BlockA), 3510 // blockaddress(@fn, BlockB))) 3511 // with 3512 // (br cond, BlockA, BlockB). 3513 static bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI) { 3514 // Check that both operands of the select are block addresses. 3515 BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue()); 3516 BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue()); 3517 if (!TBA || !FBA) 3518 return false; 3519 3520 // Extract the actual blocks. 3521 BasicBlock *TrueBB = TBA->getBasicBlock(); 3522 BasicBlock *FalseBB = FBA->getBasicBlock(); 3523 3524 // Perform the actual simplification. 3525 return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 0, 3526 0); 3527 } 3528 3529 /// This is called when we find an icmp instruction 3530 /// (a seteq/setne with a constant) as the only instruction in a 3531 /// block that ends with an uncond branch. We are looking for a very specific 3532 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified. In 3533 /// this case, we merge the first two "or's of icmp" into a switch, but then the 3534 /// default value goes to an uncond block with a seteq in it, we get something 3535 /// like: 3536 /// 3537 /// switch i8 %A, label %DEFAULT [ i8 1, label %end i8 2, label %end ] 3538 /// DEFAULT: 3539 /// %tmp = icmp eq i8 %A, 92 3540 /// br label %end 3541 /// end: 3542 /// ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ] 3543 /// 3544 /// We prefer to split the edge to 'end' so that there is a true/false entry to 3545 /// the PHI, merging the third icmp into the switch. 3546 static bool tryToSimplifyUncondBranchWithICmpInIt( 3547 ICmpInst *ICI, IRBuilder<> &Builder, const DataLayout &DL, 3548 const TargetTransformInfo &TTI, const SimplifyCFGOptions &Options) { 3549 BasicBlock *BB = ICI->getParent(); 3550 3551 // If the block has any PHIs in it or the icmp has multiple uses, it is too 3552 // complex. 3553 if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse()) 3554 return false; 3555 3556 Value *V = ICI->getOperand(0); 3557 ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1)); 3558 3559 // The pattern we're looking for is where our only predecessor is a switch on 3560 // 'V' and this block is the default case for the switch. In this case we can 3561 // fold the compared value into the switch to simplify things. 3562 BasicBlock *Pred = BB->getSinglePredecessor(); 3563 if (!Pred || !isa<SwitchInst>(Pred->getTerminator())) 3564 return false; 3565 3566 SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator()); 3567 if (SI->getCondition() != V) 3568 return false; 3569 3570 // If BB is reachable on a non-default case, then we simply know the value of 3571 // V in this block. Substitute it and constant fold the icmp instruction 3572 // away. 3573 if (SI->getDefaultDest() != BB) { 3574 ConstantInt *VVal = SI->findCaseDest(BB); 3575 assert(VVal && "Should have a unique destination value"); 3576 ICI->setOperand(0, VVal); 3577 3578 if (Value *V = SimplifyInstruction(ICI, {DL, ICI})) { 3579 ICI->replaceAllUsesWith(V); 3580 ICI->eraseFromParent(); 3581 } 3582 // BB is now empty, so it is likely to simplify away. 3583 return simplifyCFG(BB, TTI, Options) || true; 3584 } 3585 3586 // Ok, the block is reachable from the default dest. If the constant we're 3587 // comparing exists in one of the other edges, then we can constant fold ICI 3588 // and zap it. 3589 if (SI->findCaseValue(Cst) != SI->case_default()) { 3590 Value *V; 3591 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 3592 V = ConstantInt::getFalse(BB->getContext()); 3593 else 3594 V = ConstantInt::getTrue(BB->getContext()); 3595 3596 ICI->replaceAllUsesWith(V); 3597 ICI->eraseFromParent(); 3598 // BB is now empty, so it is likely to simplify away. 3599 return simplifyCFG(BB, TTI, Options) || true; 3600 } 3601 3602 // The use of the icmp has to be in the 'end' block, by the only PHI node in 3603 // the block. 3604 BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0); 3605 PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back()); 3606 if (PHIUse == nullptr || PHIUse != &SuccBlock->front() || 3607 isa<PHINode>(++BasicBlock::iterator(PHIUse))) 3608 return false; 3609 3610 // If the icmp is a SETEQ, then the default dest gets false, the new edge gets 3611 // true in the PHI. 3612 Constant *DefaultCst = ConstantInt::getTrue(BB->getContext()); 3613 Constant *NewCst = ConstantInt::getFalse(BB->getContext()); 3614 3615 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 3616 std::swap(DefaultCst, NewCst); 3617 3618 // Replace ICI (which is used by the PHI for the default value) with true or 3619 // false depending on if it is EQ or NE. 3620 ICI->replaceAllUsesWith(DefaultCst); 3621 ICI->eraseFromParent(); 3622 3623 // Okay, the switch goes to this block on a default value. Add an edge from 3624 // the switch to the merge point on the compared value. 3625 BasicBlock *NewBB = 3626 BasicBlock::Create(BB->getContext(), "switch.edge", BB->getParent(), BB); 3627 SmallVector<uint64_t, 8> Weights; 3628 bool HasWeights = HasBranchWeights(SI); 3629 if (HasWeights) { 3630 GetBranchWeights(SI, Weights); 3631 if (Weights.size() == 1 + SI->getNumCases()) { 3632 // Split weight for default case to case for "Cst". 3633 Weights[0] = (Weights[0] + 1) >> 1; 3634 Weights.push_back(Weights[0]); 3635 3636 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 3637 setBranchWeights(SI, MDWeights); 3638 } 3639 } 3640 SI->addCase(Cst, NewBB); 3641 3642 // NewBB branches to the phi block, add the uncond branch and the phi entry. 3643 Builder.SetInsertPoint(NewBB); 3644 Builder.SetCurrentDebugLocation(SI->getDebugLoc()); 3645 Builder.CreateBr(SuccBlock); 3646 PHIUse->addIncoming(NewCst, NewBB); 3647 return true; 3648 } 3649 3650 /// The specified branch is a conditional branch. 3651 /// Check to see if it is branching on an or/and chain of icmp instructions, and 3652 /// fold it into a switch instruction if so. 3653 static bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder, 3654 const DataLayout &DL) { 3655 Instruction *Cond = dyn_cast<Instruction>(BI->getCondition()); 3656 if (!Cond) 3657 return false; 3658 3659 // Change br (X == 0 | X == 1), T, F into a switch instruction. 3660 // If this is a bunch of seteq's or'd together, or if it's a bunch of 3661 // 'setne's and'ed together, collect them. 3662 3663 // Try to gather values from a chain of and/or to be turned into a switch 3664 ConstantComparesGatherer ConstantCompare(Cond, DL); 3665 // Unpack the result 3666 SmallVectorImpl<ConstantInt *> &Values = ConstantCompare.Vals; 3667 Value *CompVal = ConstantCompare.CompValue; 3668 unsigned UsedICmps = ConstantCompare.UsedICmps; 3669 Value *ExtraCase = ConstantCompare.Extra; 3670 3671 // If we didn't have a multiply compared value, fail. 3672 if (!CompVal) 3673 return false; 3674 3675 // Avoid turning single icmps into a switch. 3676 if (UsedICmps <= 1) 3677 return false; 3678 3679 bool TrueWhenEqual = (Cond->getOpcode() == Instruction::Or); 3680 3681 // There might be duplicate constants in the list, which the switch 3682 // instruction can't handle, remove them now. 3683 array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate); 3684 Values.erase(std::unique(Values.begin(), Values.end()), Values.end()); 3685 3686 // If Extra was used, we require at least two switch values to do the 3687 // transformation. A switch with one value is just a conditional branch. 3688 if (ExtraCase && Values.size() < 2) 3689 return false; 3690 3691 // TODO: Preserve branch weight metadata, similarly to how 3692 // FoldValueComparisonIntoPredecessors preserves it. 3693 3694 // Figure out which block is which destination. 3695 BasicBlock *DefaultBB = BI->getSuccessor(1); 3696 BasicBlock *EdgeBB = BI->getSuccessor(0); 3697 if (!TrueWhenEqual) 3698 std::swap(DefaultBB, EdgeBB); 3699 3700 BasicBlock *BB = BI->getParent(); 3701 3702 LLVM_DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size() 3703 << " cases into SWITCH. BB is:\n" 3704 << *BB); 3705 3706 // If there are any extra values that couldn't be folded into the switch 3707 // then we evaluate them with an explicit branch first. Split the block 3708 // right before the condbr to handle it. 3709 if (ExtraCase) { 3710 BasicBlock *NewBB = 3711 BB->splitBasicBlock(BI->getIterator(), "switch.early.test"); 3712 // Remove the uncond branch added to the old block. 3713 TerminatorInst *OldTI = BB->getTerminator(); 3714 Builder.SetInsertPoint(OldTI); 3715 3716 if (TrueWhenEqual) 3717 Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB); 3718 else 3719 Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB); 3720 3721 OldTI->eraseFromParent(); 3722 3723 // If there are PHI nodes in EdgeBB, then we need to add a new entry to them 3724 // for the edge we just added. 3725 AddPredecessorToBlock(EdgeBB, BB, NewBB); 3726 3727 LLVM_DEBUG(dbgs() << " ** 'icmp' chain unhandled condition: " << *ExtraCase 3728 << "\nEXTRABB = " << *BB); 3729 BB = NewBB; 3730 } 3731 3732 Builder.SetInsertPoint(BI); 3733 // Convert pointer to int before we switch. 3734 if (CompVal->getType()->isPointerTy()) { 3735 CompVal = Builder.CreatePtrToInt( 3736 CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr"); 3737 } 3738 3739 // Create the new switch instruction now. 3740 SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size()); 3741 3742 // Add all of the 'cases' to the switch instruction. 3743 for (unsigned i = 0, e = Values.size(); i != e; ++i) 3744 New->addCase(Values[i], EdgeBB); 3745 3746 // We added edges from PI to the EdgeBB. As such, if there were any 3747 // PHI nodes in EdgeBB, they need entries to be added corresponding to 3748 // the number of edges added. 3749 for (BasicBlock::iterator BBI = EdgeBB->begin(); isa<PHINode>(BBI); ++BBI) { 3750 PHINode *PN = cast<PHINode>(BBI); 3751 Value *InVal = PN->getIncomingValueForBlock(BB); 3752 for (unsigned i = 0, e = Values.size() - 1; i != e; ++i) 3753 PN->addIncoming(InVal, BB); 3754 } 3755 3756 // Erase the old branch instruction. 3757 EraseTerminatorInstAndDCECond(BI); 3758 3759 LLVM_DEBUG(dbgs() << " ** 'icmp' chain result is:\n" << *BB << '\n'); 3760 return true; 3761 } 3762 3763 bool SimplifyCFGOpt::SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder) { 3764 if (isa<PHINode>(RI->getValue())) 3765 return SimplifyCommonResume(RI); 3766 else if (isa<LandingPadInst>(RI->getParent()->getFirstNonPHI()) && 3767 RI->getValue() == RI->getParent()->getFirstNonPHI()) 3768 // The resume must unwind the exception that caused control to branch here. 3769 return SimplifySingleResume(RI); 3770 3771 return false; 3772 } 3773 3774 // Simplify resume that is shared by several landing pads (phi of landing pad). 3775 bool SimplifyCFGOpt::SimplifyCommonResume(ResumeInst *RI) { 3776 BasicBlock *BB = RI->getParent(); 3777 3778 // Check that there are no other instructions except for debug intrinsics 3779 // between the phi of landing pads (RI->getValue()) and resume instruction. 3780 BasicBlock::iterator I = cast<Instruction>(RI->getValue())->getIterator(), 3781 E = RI->getIterator(); 3782 while (++I != E) 3783 if (!isa<DbgInfoIntrinsic>(I)) 3784 return false; 3785 3786 SmallSetVector<BasicBlock *, 4> TrivialUnwindBlocks; 3787 auto *PhiLPInst = cast<PHINode>(RI->getValue()); 3788 3789 // Check incoming blocks to see if any of them are trivial. 3790 for (unsigned Idx = 0, End = PhiLPInst->getNumIncomingValues(); Idx != End; 3791 Idx++) { 3792 auto *IncomingBB = PhiLPInst->getIncomingBlock(Idx); 3793 auto *IncomingValue = PhiLPInst->getIncomingValue(Idx); 3794 3795 // If the block has other successors, we can not delete it because 3796 // it has other dependents. 3797 if (IncomingBB->getUniqueSuccessor() != BB) 3798 continue; 3799 3800 auto *LandingPad = dyn_cast<LandingPadInst>(IncomingBB->getFirstNonPHI()); 3801 // Not the landing pad that caused the control to branch here. 3802 if (IncomingValue != LandingPad) 3803 continue; 3804 3805 bool isTrivial = true; 3806 3807 I = IncomingBB->getFirstNonPHI()->getIterator(); 3808 E = IncomingBB->getTerminator()->getIterator(); 3809 while (++I != E) 3810 if (!isa<DbgInfoIntrinsic>(I)) { 3811 isTrivial = false; 3812 break; 3813 } 3814 3815 if (isTrivial) 3816 TrivialUnwindBlocks.insert(IncomingBB); 3817 } 3818 3819 // If no trivial unwind blocks, don't do any simplifications. 3820 if (TrivialUnwindBlocks.empty()) 3821 return false; 3822 3823 // Turn all invokes that unwind here into calls. 3824 for (auto *TrivialBB : TrivialUnwindBlocks) { 3825 // Blocks that will be simplified should be removed from the phi node. 3826 // Note there could be multiple edges to the resume block, and we need 3827 // to remove them all. 3828 while (PhiLPInst->getBasicBlockIndex(TrivialBB) != -1) 3829 BB->removePredecessor(TrivialBB, true); 3830 3831 for (pred_iterator PI = pred_begin(TrivialBB), PE = pred_end(TrivialBB); 3832 PI != PE;) { 3833 BasicBlock *Pred = *PI++; 3834 removeUnwindEdge(Pred); 3835 } 3836 3837 // In each SimplifyCFG run, only the current processed block can be erased. 3838 // Otherwise, it will break the iteration of SimplifyCFG pass. So instead 3839 // of erasing TrivialBB, we only remove the branch to the common resume 3840 // block so that we can later erase the resume block since it has no 3841 // predecessors. 3842 TrivialBB->getTerminator()->eraseFromParent(); 3843 new UnreachableInst(RI->getContext(), TrivialBB); 3844 } 3845 3846 // Delete the resume block if all its predecessors have been removed. 3847 if (pred_empty(BB)) 3848 BB->eraseFromParent(); 3849 3850 return !TrivialUnwindBlocks.empty(); 3851 } 3852 3853 // Simplify resume that is only used by a single (non-phi) landing pad. 3854 bool SimplifyCFGOpt::SimplifySingleResume(ResumeInst *RI) { 3855 BasicBlock *BB = RI->getParent(); 3856 LandingPadInst *LPInst = dyn_cast<LandingPadInst>(BB->getFirstNonPHI()); 3857 assert(RI->getValue() == LPInst && 3858 "Resume must unwind the exception that caused control to here"); 3859 3860 // Check that there are no other instructions except for debug intrinsics. 3861 BasicBlock::iterator I = LPInst->getIterator(), E = RI->getIterator(); 3862 while (++I != E) 3863 if (!isa<DbgInfoIntrinsic>(I)) 3864 return false; 3865 3866 // Turn all invokes that unwind here into calls and delete the basic block. 3867 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) { 3868 BasicBlock *Pred = *PI++; 3869 removeUnwindEdge(Pred); 3870 } 3871 3872 // The landingpad is now unreachable. Zap it. 3873 if (LoopHeaders) 3874 LoopHeaders->erase(BB); 3875 BB->eraseFromParent(); 3876 return true; 3877 } 3878 3879 static bool removeEmptyCleanup(CleanupReturnInst *RI) { 3880 // If this is a trivial cleanup pad that executes no instructions, it can be 3881 // eliminated. If the cleanup pad continues to the caller, any predecessor 3882 // that is an EH pad will be updated to continue to the caller and any 3883 // predecessor that terminates with an invoke instruction will have its invoke 3884 // instruction converted to a call instruction. If the cleanup pad being 3885 // simplified does not continue to the caller, each predecessor will be 3886 // updated to continue to the unwind destination of the cleanup pad being 3887 // simplified. 3888 BasicBlock *BB = RI->getParent(); 3889 CleanupPadInst *CPInst = RI->getCleanupPad(); 3890 if (CPInst->getParent() != BB) 3891 // This isn't an empty cleanup. 3892 return false; 3893 3894 // We cannot kill the pad if it has multiple uses. This typically arises 3895 // from unreachable basic blocks. 3896 if (!CPInst->hasOneUse()) 3897 return false; 3898 3899 // Check that there are no other instructions except for benign intrinsics. 3900 BasicBlock::iterator I = CPInst->getIterator(), E = RI->getIterator(); 3901 while (++I != E) { 3902 auto *II = dyn_cast<IntrinsicInst>(I); 3903 if (!II) 3904 return false; 3905 3906 Intrinsic::ID IntrinsicID = II->getIntrinsicID(); 3907 switch (IntrinsicID) { 3908 case Intrinsic::dbg_declare: 3909 case Intrinsic::dbg_value: 3910 case Intrinsic::dbg_label: 3911 case Intrinsic::lifetime_end: 3912 break; 3913 default: 3914 return false; 3915 } 3916 } 3917 3918 // If the cleanup return we are simplifying unwinds to the caller, this will 3919 // set UnwindDest to nullptr. 3920 BasicBlock *UnwindDest = RI->getUnwindDest(); 3921 Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr; 3922 3923 // We're about to remove BB from the control flow. Before we do, sink any 3924 // PHINodes into the unwind destination. Doing this before changing the 3925 // control flow avoids some potentially slow checks, since we can currently 3926 // be certain that UnwindDest and BB have no common predecessors (since they 3927 // are both EH pads). 3928 if (UnwindDest) { 3929 // First, go through the PHI nodes in UnwindDest and update any nodes that 3930 // reference the block we are removing 3931 for (BasicBlock::iterator I = UnwindDest->begin(), 3932 IE = DestEHPad->getIterator(); 3933 I != IE; ++I) { 3934 PHINode *DestPN = cast<PHINode>(I); 3935 3936 int Idx = DestPN->getBasicBlockIndex(BB); 3937 // Since BB unwinds to UnwindDest, it has to be in the PHI node. 3938 assert(Idx != -1); 3939 // This PHI node has an incoming value that corresponds to a control 3940 // path through the cleanup pad we are removing. If the incoming 3941 // value is in the cleanup pad, it must be a PHINode (because we 3942 // verified above that the block is otherwise empty). Otherwise, the 3943 // value is either a constant or a value that dominates the cleanup 3944 // pad being removed. 3945 // 3946 // Because BB and UnwindDest are both EH pads, all of their 3947 // predecessors must unwind to these blocks, and since no instruction 3948 // can have multiple unwind destinations, there will be no overlap in 3949 // incoming blocks between SrcPN and DestPN. 3950 Value *SrcVal = DestPN->getIncomingValue(Idx); 3951 PHINode *SrcPN = dyn_cast<PHINode>(SrcVal); 3952 3953 // Remove the entry for the block we are deleting. 3954 DestPN->removeIncomingValue(Idx, false); 3955 3956 if (SrcPN && SrcPN->getParent() == BB) { 3957 // If the incoming value was a PHI node in the cleanup pad we are 3958 // removing, we need to merge that PHI node's incoming values into 3959 // DestPN. 3960 for (unsigned SrcIdx = 0, SrcE = SrcPN->getNumIncomingValues(); 3961 SrcIdx != SrcE; ++SrcIdx) { 3962 DestPN->addIncoming(SrcPN->getIncomingValue(SrcIdx), 3963 SrcPN->getIncomingBlock(SrcIdx)); 3964 } 3965 } else { 3966 // Otherwise, the incoming value came from above BB and 3967 // so we can just reuse it. We must associate all of BB's 3968 // predecessors with this value. 3969 for (auto *pred : predecessors(BB)) { 3970 DestPN->addIncoming(SrcVal, pred); 3971 } 3972 } 3973 } 3974 3975 // Sink any remaining PHI nodes directly into UnwindDest. 3976 Instruction *InsertPt = DestEHPad; 3977 for (BasicBlock::iterator I = BB->begin(), 3978 IE = BB->getFirstNonPHI()->getIterator(); 3979 I != IE;) { 3980 // The iterator must be incremented here because the instructions are 3981 // being moved to another block. 3982 PHINode *PN = cast<PHINode>(I++); 3983 if (PN->use_empty()) 3984 // If the PHI node has no uses, just leave it. It will be erased 3985 // when we erase BB below. 3986 continue; 3987 3988 // Otherwise, sink this PHI node into UnwindDest. 3989 // Any predecessors to UnwindDest which are not already represented 3990 // must be back edges which inherit the value from the path through 3991 // BB. In this case, the PHI value must reference itself. 3992 for (auto *pred : predecessors(UnwindDest)) 3993 if (pred != BB) 3994 PN->addIncoming(PN, pred); 3995 PN->moveBefore(InsertPt); 3996 } 3997 } 3998 3999 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) { 4000 // The iterator must be updated here because we are removing this pred. 4001 BasicBlock *PredBB = *PI++; 4002 if (UnwindDest == nullptr) { 4003 removeUnwindEdge(PredBB); 4004 } else { 4005 TerminatorInst *TI = PredBB->getTerminator(); 4006 TI->replaceUsesOfWith(BB, UnwindDest); 4007 } 4008 } 4009 4010 // The cleanup pad is now unreachable. Zap it. 4011 BB->eraseFromParent(); 4012 return true; 4013 } 4014 4015 // Try to merge two cleanuppads together. 4016 static bool mergeCleanupPad(CleanupReturnInst *RI) { 4017 // Skip any cleanuprets which unwind to caller, there is nothing to merge 4018 // with. 4019 BasicBlock *UnwindDest = RI->getUnwindDest(); 4020 if (!UnwindDest) 4021 return false; 4022 4023 // This cleanupret isn't the only predecessor of this cleanuppad, it wouldn't 4024 // be safe to merge without code duplication. 4025 if (UnwindDest->getSinglePredecessor() != RI->getParent()) 4026 return false; 4027 4028 // Verify that our cleanuppad's unwind destination is another cleanuppad. 4029 auto *SuccessorCleanupPad = dyn_cast<CleanupPadInst>(&UnwindDest->front()); 4030 if (!SuccessorCleanupPad) 4031 return false; 4032 4033 CleanupPadInst *PredecessorCleanupPad = RI->getCleanupPad(); 4034 // Replace any uses of the successor cleanupad with the predecessor pad 4035 // The only cleanuppad uses should be this cleanupret, it's cleanupret and 4036 // funclet bundle operands. 4037 SuccessorCleanupPad->replaceAllUsesWith(PredecessorCleanupPad); 4038 // Remove the old cleanuppad. 4039 SuccessorCleanupPad->eraseFromParent(); 4040 // Now, we simply replace the cleanupret with a branch to the unwind 4041 // destination. 4042 BranchInst::Create(UnwindDest, RI->getParent()); 4043 RI->eraseFromParent(); 4044 4045 return true; 4046 } 4047 4048 bool SimplifyCFGOpt::SimplifyCleanupReturn(CleanupReturnInst *RI) { 4049 // It is possible to transiantly have an undef cleanuppad operand because we 4050 // have deleted some, but not all, dead blocks. 4051 // Eventually, this block will be deleted. 4052 if (isa<UndefValue>(RI->getOperand(0))) 4053 return false; 4054 4055 if (mergeCleanupPad(RI)) 4056 return true; 4057 4058 if (removeEmptyCleanup(RI)) 4059 return true; 4060 4061 return false; 4062 } 4063 4064 bool SimplifyCFGOpt::SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) { 4065 BasicBlock *BB = RI->getParent(); 4066 if (!BB->getFirstNonPHIOrDbg()->isTerminator()) 4067 return false; 4068 4069 // Find predecessors that end with branches. 4070 SmallVector<BasicBlock *, 8> UncondBranchPreds; 4071 SmallVector<BranchInst *, 8> CondBranchPreds; 4072 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 4073 BasicBlock *P = *PI; 4074 TerminatorInst *PTI = P->getTerminator(); 4075 if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) { 4076 if (BI->isUnconditional()) 4077 UncondBranchPreds.push_back(P); 4078 else 4079 CondBranchPreds.push_back(BI); 4080 } 4081 } 4082 4083 // If we found some, do the transformation! 4084 if (!UncondBranchPreds.empty() && DupRet) { 4085 while (!UncondBranchPreds.empty()) { 4086 BasicBlock *Pred = UncondBranchPreds.pop_back_val(); 4087 LLVM_DEBUG(dbgs() << "FOLDING: " << *BB 4088 << "INTO UNCOND BRANCH PRED: " << *Pred); 4089 (void)FoldReturnIntoUncondBranch(RI, BB, Pred); 4090 } 4091 4092 // If we eliminated all predecessors of the block, delete the block now. 4093 if (pred_empty(BB)) { 4094 // We know there are no successors, so just nuke the block. 4095 if (LoopHeaders) 4096 LoopHeaders->erase(BB); 4097 BB->eraseFromParent(); 4098 } 4099 4100 return true; 4101 } 4102 4103 // Check out all of the conditional branches going to this return 4104 // instruction. If any of them just select between returns, change the 4105 // branch itself into a select/return pair. 4106 while (!CondBranchPreds.empty()) { 4107 BranchInst *BI = CondBranchPreds.pop_back_val(); 4108 4109 // Check to see if the non-BB successor is also a return block. 4110 if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) && 4111 isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) && 4112 SimplifyCondBranchToTwoReturns(BI, Builder)) 4113 return true; 4114 } 4115 return false; 4116 } 4117 4118 bool SimplifyCFGOpt::SimplifyUnreachable(UnreachableInst *UI) { 4119 BasicBlock *BB = UI->getParent(); 4120 4121 bool Changed = false; 4122 4123 // If there are any instructions immediately before the unreachable that can 4124 // be removed, do so. 4125 while (UI->getIterator() != BB->begin()) { 4126 BasicBlock::iterator BBI = UI->getIterator(); 4127 --BBI; 4128 // Do not delete instructions that can have side effects which might cause 4129 // the unreachable to not be reachable; specifically, calls and volatile 4130 // operations may have this effect. 4131 if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI)) 4132 break; 4133 4134 if (BBI->mayHaveSideEffects()) { 4135 if (auto *SI = dyn_cast<StoreInst>(BBI)) { 4136 if (SI->isVolatile()) 4137 break; 4138 } else if (auto *LI = dyn_cast<LoadInst>(BBI)) { 4139 if (LI->isVolatile()) 4140 break; 4141 } else if (auto *RMWI = dyn_cast<AtomicRMWInst>(BBI)) { 4142 if (RMWI->isVolatile()) 4143 break; 4144 } else if (auto *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) { 4145 if (CXI->isVolatile()) 4146 break; 4147 } else if (isa<CatchPadInst>(BBI)) { 4148 // A catchpad may invoke exception object constructors and such, which 4149 // in some languages can be arbitrary code, so be conservative by 4150 // default. 4151 // For CoreCLR, it just involves a type test, so can be removed. 4152 if (classifyEHPersonality(BB->getParent()->getPersonalityFn()) != 4153 EHPersonality::CoreCLR) 4154 break; 4155 } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) && 4156 !isa<LandingPadInst>(BBI)) { 4157 break; 4158 } 4159 // Note that deleting LandingPad's here is in fact okay, although it 4160 // involves a bit of subtle reasoning. If this inst is a LandingPad, 4161 // all the predecessors of this block will be the unwind edges of Invokes, 4162 // and we can therefore guarantee this block will be erased. 4163 } 4164 4165 // Delete this instruction (any uses are guaranteed to be dead) 4166 if (!BBI->use_empty()) 4167 BBI->replaceAllUsesWith(UndefValue::get(BBI->getType())); 4168 BBI->eraseFromParent(); 4169 Changed = true; 4170 } 4171 4172 // If the unreachable instruction is the first in the block, take a gander 4173 // at all of the predecessors of this instruction, and simplify them. 4174 if (&BB->front() != UI) 4175 return Changed; 4176 4177 SmallVector<BasicBlock *, 8> Preds(pred_begin(BB), pred_end(BB)); 4178 for (unsigned i = 0, e = Preds.size(); i != e; ++i) { 4179 TerminatorInst *TI = Preds[i]->getTerminator(); 4180 IRBuilder<> Builder(TI); 4181 if (auto *BI = dyn_cast<BranchInst>(TI)) { 4182 if (BI->isUnconditional()) { 4183 if (BI->getSuccessor(0) == BB) { 4184 new UnreachableInst(TI->getContext(), TI); 4185 TI->eraseFromParent(); 4186 Changed = true; 4187 } 4188 } else { 4189 if (BI->getSuccessor(0) == BB) { 4190 Builder.CreateBr(BI->getSuccessor(1)); 4191 EraseTerminatorInstAndDCECond(BI); 4192 } else if (BI->getSuccessor(1) == BB) { 4193 Builder.CreateBr(BI->getSuccessor(0)); 4194 EraseTerminatorInstAndDCECond(BI); 4195 Changed = true; 4196 } 4197 } 4198 } else if (auto *SI = dyn_cast<SwitchInst>(TI)) { 4199 for (auto i = SI->case_begin(), e = SI->case_end(); i != e;) { 4200 if (i->getCaseSuccessor() != BB) { 4201 ++i; 4202 continue; 4203 } 4204 BB->removePredecessor(SI->getParent()); 4205 i = SI->removeCase(i); 4206 e = SI->case_end(); 4207 Changed = true; 4208 } 4209 } else if (auto *II = dyn_cast<InvokeInst>(TI)) { 4210 if (II->getUnwindDest() == BB) { 4211 removeUnwindEdge(TI->getParent()); 4212 Changed = true; 4213 } 4214 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) { 4215 if (CSI->getUnwindDest() == BB) { 4216 removeUnwindEdge(TI->getParent()); 4217 Changed = true; 4218 continue; 4219 } 4220 4221 for (CatchSwitchInst::handler_iterator I = CSI->handler_begin(), 4222 E = CSI->handler_end(); 4223 I != E; ++I) { 4224 if (*I == BB) { 4225 CSI->removeHandler(I); 4226 --I; 4227 --E; 4228 Changed = true; 4229 } 4230 } 4231 if (CSI->getNumHandlers() == 0) { 4232 BasicBlock *CatchSwitchBB = CSI->getParent(); 4233 if (CSI->hasUnwindDest()) { 4234 // Redirect preds to the unwind dest 4235 CatchSwitchBB->replaceAllUsesWith(CSI->getUnwindDest()); 4236 } else { 4237 // Rewrite all preds to unwind to caller (or from invoke to call). 4238 SmallVector<BasicBlock *, 8> EHPreds(predecessors(CatchSwitchBB)); 4239 for (BasicBlock *EHPred : EHPreds) 4240 removeUnwindEdge(EHPred); 4241 } 4242 // The catchswitch is no longer reachable. 4243 new UnreachableInst(CSI->getContext(), CSI); 4244 CSI->eraseFromParent(); 4245 Changed = true; 4246 } 4247 } else if (isa<CleanupReturnInst>(TI)) { 4248 new UnreachableInst(TI->getContext(), TI); 4249 TI->eraseFromParent(); 4250 Changed = true; 4251 } 4252 } 4253 4254 // If this block is now dead, remove it. 4255 if (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) { 4256 // We know there are no successors, so just nuke the block. 4257 if (LoopHeaders) 4258 LoopHeaders->erase(BB); 4259 BB->eraseFromParent(); 4260 return true; 4261 } 4262 4263 return Changed; 4264 } 4265 4266 static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) { 4267 assert(Cases.size() >= 1); 4268 4269 array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate); 4270 for (size_t I = 1, E = Cases.size(); I != E; ++I) { 4271 if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1) 4272 return false; 4273 } 4274 return true; 4275 } 4276 4277 /// Turn a switch with two reachable destinations into an integer range 4278 /// comparison and branch. 4279 static bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder) { 4280 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 4281 4282 bool HasDefault = 4283 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 4284 4285 // Partition the cases into two sets with different destinations. 4286 BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr; 4287 BasicBlock *DestB = nullptr; 4288 SmallVector<ConstantInt *, 16> CasesA; 4289 SmallVector<ConstantInt *, 16> CasesB; 4290 4291 for (auto Case : SI->cases()) { 4292 BasicBlock *Dest = Case.getCaseSuccessor(); 4293 if (!DestA) 4294 DestA = Dest; 4295 if (Dest == DestA) { 4296 CasesA.push_back(Case.getCaseValue()); 4297 continue; 4298 } 4299 if (!DestB) 4300 DestB = Dest; 4301 if (Dest == DestB) { 4302 CasesB.push_back(Case.getCaseValue()); 4303 continue; 4304 } 4305 return false; // More than two destinations. 4306 } 4307 4308 assert(DestA && DestB && 4309 "Single-destination switch should have been folded."); 4310 assert(DestA != DestB); 4311 assert(DestB != SI->getDefaultDest()); 4312 assert(!CasesB.empty() && "There must be non-default cases."); 4313 assert(!CasesA.empty() || HasDefault); 4314 4315 // Figure out if one of the sets of cases form a contiguous range. 4316 SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr; 4317 BasicBlock *ContiguousDest = nullptr; 4318 BasicBlock *OtherDest = nullptr; 4319 if (!CasesA.empty() && CasesAreContiguous(CasesA)) { 4320 ContiguousCases = &CasesA; 4321 ContiguousDest = DestA; 4322 OtherDest = DestB; 4323 } else if (CasesAreContiguous(CasesB)) { 4324 ContiguousCases = &CasesB; 4325 ContiguousDest = DestB; 4326 OtherDest = DestA; 4327 } else 4328 return false; 4329 4330 // Start building the compare and branch. 4331 4332 Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back()); 4333 Constant *NumCases = 4334 ConstantInt::get(Offset->getType(), ContiguousCases->size()); 4335 4336 Value *Sub = SI->getCondition(); 4337 if (!Offset->isNullValue()) 4338 Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off"); 4339 4340 Value *Cmp; 4341 // If NumCases overflowed, then all possible values jump to the successor. 4342 if (NumCases->isNullValue() && !ContiguousCases->empty()) 4343 Cmp = ConstantInt::getTrue(SI->getContext()); 4344 else 4345 Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch"); 4346 BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest); 4347 4348 // Update weight for the newly-created conditional branch. 4349 if (HasBranchWeights(SI)) { 4350 SmallVector<uint64_t, 8> Weights; 4351 GetBranchWeights(SI, Weights); 4352 if (Weights.size() == 1 + SI->getNumCases()) { 4353 uint64_t TrueWeight = 0; 4354 uint64_t FalseWeight = 0; 4355 for (size_t I = 0, E = Weights.size(); I != E; ++I) { 4356 if (SI->getSuccessor(I) == ContiguousDest) 4357 TrueWeight += Weights[I]; 4358 else 4359 FalseWeight += Weights[I]; 4360 } 4361 while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) { 4362 TrueWeight /= 2; 4363 FalseWeight /= 2; 4364 } 4365 setBranchWeights(NewBI, TrueWeight, FalseWeight); 4366 } 4367 } 4368 4369 // Prune obsolete incoming values off the successors' PHI nodes. 4370 for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) { 4371 unsigned PreviousEdges = ContiguousCases->size(); 4372 if (ContiguousDest == SI->getDefaultDest()) 4373 ++PreviousEdges; 4374 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I) 4375 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 4376 } 4377 for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) { 4378 unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size(); 4379 if (OtherDest == SI->getDefaultDest()) 4380 ++PreviousEdges; 4381 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I) 4382 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 4383 } 4384 4385 // Drop the switch. 4386 SI->eraseFromParent(); 4387 4388 return true; 4389 } 4390 4391 /// Compute masked bits for the condition of a switch 4392 /// and use it to remove dead cases. 4393 static bool eliminateDeadSwitchCases(SwitchInst *SI, AssumptionCache *AC, 4394 const DataLayout &DL) { 4395 Value *Cond = SI->getCondition(); 4396 unsigned Bits = Cond->getType()->getIntegerBitWidth(); 4397 KnownBits Known = computeKnownBits(Cond, DL, 0, AC, SI); 4398 4399 // We can also eliminate cases by determining that their values are outside of 4400 // the limited range of the condition based on how many significant (non-sign) 4401 // bits are in the condition value. 4402 unsigned ExtraSignBits = ComputeNumSignBits(Cond, DL, 0, AC, SI) - 1; 4403 unsigned MaxSignificantBitsInCond = Bits - ExtraSignBits; 4404 4405 // Gather dead cases. 4406 SmallVector<ConstantInt *, 8> DeadCases; 4407 for (auto &Case : SI->cases()) { 4408 const APInt &CaseVal = Case.getCaseValue()->getValue(); 4409 if (Known.Zero.intersects(CaseVal) || !Known.One.isSubsetOf(CaseVal) || 4410 (CaseVal.getMinSignedBits() > MaxSignificantBitsInCond)) { 4411 DeadCases.push_back(Case.getCaseValue()); 4412 LLVM_DEBUG(dbgs() << "SimplifyCFG: switch case " << CaseVal 4413 << " is dead.\n"); 4414 } 4415 } 4416 4417 // If we can prove that the cases must cover all possible values, the 4418 // default destination becomes dead and we can remove it. If we know some 4419 // of the bits in the value, we can use that to more precisely compute the 4420 // number of possible unique case values. 4421 bool HasDefault = 4422 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 4423 const unsigned NumUnknownBits = 4424 Bits - (Known.Zero | Known.One).countPopulation(); 4425 assert(NumUnknownBits <= Bits); 4426 if (HasDefault && DeadCases.empty() && 4427 NumUnknownBits < 64 /* avoid overflow */ && 4428 SI->getNumCases() == (1ULL << NumUnknownBits)) { 4429 LLVM_DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n"); 4430 BasicBlock *NewDefault = 4431 SplitBlockPredecessors(SI->getDefaultDest(), SI->getParent(), ""); 4432 SI->setDefaultDest(&*NewDefault); 4433 SplitBlock(&*NewDefault, &NewDefault->front()); 4434 auto *OldTI = NewDefault->getTerminator(); 4435 new UnreachableInst(SI->getContext(), OldTI); 4436 EraseTerminatorInstAndDCECond(OldTI); 4437 return true; 4438 } 4439 4440 SmallVector<uint64_t, 8> Weights; 4441 bool HasWeight = HasBranchWeights(SI); 4442 if (HasWeight) { 4443 GetBranchWeights(SI, Weights); 4444 HasWeight = (Weights.size() == 1 + SI->getNumCases()); 4445 } 4446 4447 // Remove dead cases from the switch. 4448 for (ConstantInt *DeadCase : DeadCases) { 4449 SwitchInst::CaseIt CaseI = SI->findCaseValue(DeadCase); 4450 assert(CaseI != SI->case_default() && 4451 "Case was not found. Probably mistake in DeadCases forming."); 4452 if (HasWeight) { 4453 std::swap(Weights[CaseI->getCaseIndex() + 1], Weights.back()); 4454 Weights.pop_back(); 4455 } 4456 4457 // Prune unused values from PHI nodes. 4458 CaseI->getCaseSuccessor()->removePredecessor(SI->getParent()); 4459 SI->removeCase(CaseI); 4460 } 4461 if (HasWeight && Weights.size() >= 2) { 4462 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 4463 setBranchWeights(SI, MDWeights); 4464 } 4465 4466 return !DeadCases.empty(); 4467 } 4468 4469 /// If BB would be eligible for simplification by 4470 /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated 4471 /// by an unconditional branch), look at the phi node for BB in the successor 4472 /// block and see if the incoming value is equal to CaseValue. If so, return 4473 /// the phi node, and set PhiIndex to BB's index in the phi node. 4474 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue, 4475 BasicBlock *BB, int *PhiIndex) { 4476 if (BB->getFirstNonPHIOrDbg() != BB->getTerminator()) 4477 return nullptr; // BB must be empty to be a candidate for simplification. 4478 if (!BB->getSinglePredecessor()) 4479 return nullptr; // BB must be dominated by the switch. 4480 4481 BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator()); 4482 if (!Branch || !Branch->isUnconditional()) 4483 return nullptr; // Terminator must be unconditional branch. 4484 4485 BasicBlock *Succ = Branch->getSuccessor(0); 4486 4487 for (PHINode &PHI : Succ->phis()) { 4488 int Idx = PHI.getBasicBlockIndex(BB); 4489 assert(Idx >= 0 && "PHI has no entry for predecessor?"); 4490 4491 Value *InValue = PHI.getIncomingValue(Idx); 4492 if (InValue != CaseValue) 4493 continue; 4494 4495 *PhiIndex = Idx; 4496 return &PHI; 4497 } 4498 4499 return nullptr; 4500 } 4501 4502 /// Try to forward the condition of a switch instruction to a phi node 4503 /// dominated by the switch, if that would mean that some of the destination 4504 /// blocks of the switch can be folded away. Return true if a change is made. 4505 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) { 4506 using ForwardingNodesMap = DenseMap<PHINode *, SmallVector<int, 4>>; 4507 4508 ForwardingNodesMap ForwardingNodes; 4509 BasicBlock *SwitchBlock = SI->getParent(); 4510 bool Changed = false; 4511 for (auto &Case : SI->cases()) { 4512 ConstantInt *CaseValue = Case.getCaseValue(); 4513 BasicBlock *CaseDest = Case.getCaseSuccessor(); 4514 4515 // Replace phi operands in successor blocks that are using the constant case 4516 // value rather than the switch condition variable: 4517 // switchbb: 4518 // switch i32 %x, label %default [ 4519 // i32 17, label %succ 4520 // ... 4521 // succ: 4522 // %r = phi i32 ... [ 17, %switchbb ] ... 4523 // --> 4524 // %r = phi i32 ... [ %x, %switchbb ] ... 4525 4526 for (PHINode &Phi : CaseDest->phis()) { 4527 // This only works if there is exactly 1 incoming edge from the switch to 4528 // a phi. If there is >1, that means multiple cases of the switch map to 1 4529 // value in the phi, and that phi value is not the switch condition. Thus, 4530 // this transform would not make sense (the phi would be invalid because 4531 // a phi can't have different incoming values from the same block). 4532 int SwitchBBIdx = Phi.getBasicBlockIndex(SwitchBlock); 4533 if (Phi.getIncomingValue(SwitchBBIdx) == CaseValue && 4534 count(Phi.blocks(), SwitchBlock) == 1) { 4535 Phi.setIncomingValue(SwitchBBIdx, SI->getCondition()); 4536 Changed = true; 4537 } 4538 } 4539 4540 // Collect phi nodes that are indirectly using this switch's case constants. 4541 int PhiIdx; 4542 if (auto *Phi = FindPHIForConditionForwarding(CaseValue, CaseDest, &PhiIdx)) 4543 ForwardingNodes[Phi].push_back(PhiIdx); 4544 } 4545 4546 for (auto &ForwardingNode : ForwardingNodes) { 4547 PHINode *Phi = ForwardingNode.first; 4548 SmallVectorImpl<int> &Indexes = ForwardingNode.second; 4549 if (Indexes.size() < 2) 4550 continue; 4551 4552 for (int Index : Indexes) 4553 Phi->setIncomingValue(Index, SI->getCondition()); 4554 Changed = true; 4555 } 4556 4557 return Changed; 4558 } 4559 4560 /// Return true if the backend will be able to handle 4561 /// initializing an array of constants like C. 4562 static bool ValidLookupTableConstant(Constant *C, const TargetTransformInfo &TTI) { 4563 if (C->isThreadDependent()) 4564 return false; 4565 if (C->isDLLImportDependent()) 4566 return false; 4567 4568 if (!isa<ConstantFP>(C) && !isa<ConstantInt>(C) && 4569 !isa<ConstantPointerNull>(C) && !isa<GlobalValue>(C) && 4570 !isa<UndefValue>(C) && !isa<ConstantExpr>(C)) 4571 return false; 4572 4573 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 4574 if (!CE->isGEPWithNoNotionalOverIndexing()) 4575 return false; 4576 if (!ValidLookupTableConstant(CE->getOperand(0), TTI)) 4577 return false; 4578 } 4579 4580 if (!TTI.shouldBuildLookupTablesForConstant(C)) 4581 return false; 4582 4583 return true; 4584 } 4585 4586 /// If V is a Constant, return it. Otherwise, try to look up 4587 /// its constant value in ConstantPool, returning 0 if it's not there. 4588 static Constant * 4589 LookupConstant(Value *V, 4590 const SmallDenseMap<Value *, Constant *> &ConstantPool) { 4591 if (Constant *C = dyn_cast<Constant>(V)) 4592 return C; 4593 return ConstantPool.lookup(V); 4594 } 4595 4596 /// Try to fold instruction I into a constant. This works for 4597 /// simple instructions such as binary operations where both operands are 4598 /// constant or can be replaced by constants from the ConstantPool. Returns the 4599 /// resulting constant on success, 0 otherwise. 4600 static Constant * 4601 ConstantFold(Instruction *I, const DataLayout &DL, 4602 const SmallDenseMap<Value *, Constant *> &ConstantPool) { 4603 if (SelectInst *Select = dyn_cast<SelectInst>(I)) { 4604 Constant *A = LookupConstant(Select->getCondition(), ConstantPool); 4605 if (!A) 4606 return nullptr; 4607 if (A->isAllOnesValue()) 4608 return LookupConstant(Select->getTrueValue(), ConstantPool); 4609 if (A->isNullValue()) 4610 return LookupConstant(Select->getFalseValue(), ConstantPool); 4611 return nullptr; 4612 } 4613 4614 SmallVector<Constant *, 4> COps; 4615 for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) { 4616 if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool)) 4617 COps.push_back(A); 4618 else 4619 return nullptr; 4620 } 4621 4622 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) { 4623 return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0], 4624 COps[1], DL); 4625 } 4626 4627 return ConstantFoldInstOperands(I, COps, DL); 4628 } 4629 4630 /// Try to determine the resulting constant values in phi nodes 4631 /// at the common destination basic block, *CommonDest, for one of the case 4632 /// destionations CaseDest corresponding to value CaseVal (0 for the default 4633 /// case), of a switch instruction SI. 4634 static bool 4635 GetCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest, 4636 BasicBlock **CommonDest, 4637 SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res, 4638 const DataLayout &DL, const TargetTransformInfo &TTI) { 4639 // The block from which we enter the common destination. 4640 BasicBlock *Pred = SI->getParent(); 4641 4642 // If CaseDest is empty except for some side-effect free instructions through 4643 // which we can constant-propagate the CaseVal, continue to its successor. 4644 SmallDenseMap<Value *, Constant *> ConstantPool; 4645 ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal)); 4646 for (Instruction &I :CaseDest->instructionsWithoutDebug()) { 4647 if (TerminatorInst *T = dyn_cast<TerminatorInst>(&I)) { 4648 // If the terminator is a simple branch, continue to the next block. 4649 if (T->getNumSuccessors() != 1 || T->isExceptionalTerminator()) 4650 return false; 4651 Pred = CaseDest; 4652 CaseDest = T->getSuccessor(0); 4653 } else if (Constant *C = ConstantFold(&I, DL, ConstantPool)) { 4654 // Instruction is side-effect free and constant. 4655 4656 // If the instruction has uses outside this block or a phi node slot for 4657 // the block, it is not safe to bypass the instruction since it would then 4658 // no longer dominate all its uses. 4659 for (auto &Use : I.uses()) { 4660 User *User = Use.getUser(); 4661 if (Instruction *I = dyn_cast<Instruction>(User)) 4662 if (I->getParent() == CaseDest) 4663 continue; 4664 if (PHINode *Phi = dyn_cast<PHINode>(User)) 4665 if (Phi->getIncomingBlock(Use) == CaseDest) 4666 continue; 4667 return false; 4668 } 4669 4670 ConstantPool.insert(std::make_pair(&I, C)); 4671 } else { 4672 break; 4673 } 4674 } 4675 4676 // If we did not have a CommonDest before, use the current one. 4677 if (!*CommonDest) 4678 *CommonDest = CaseDest; 4679 // If the destination isn't the common one, abort. 4680 if (CaseDest != *CommonDest) 4681 return false; 4682 4683 // Get the values for this case from phi nodes in the destination block. 4684 for (PHINode &PHI : (*CommonDest)->phis()) { 4685 int Idx = PHI.getBasicBlockIndex(Pred); 4686 if (Idx == -1) 4687 continue; 4688 4689 Constant *ConstVal = 4690 LookupConstant(PHI.getIncomingValue(Idx), ConstantPool); 4691 if (!ConstVal) 4692 return false; 4693 4694 // Be conservative about which kinds of constants we support. 4695 if (!ValidLookupTableConstant(ConstVal, TTI)) 4696 return false; 4697 4698 Res.push_back(std::make_pair(&PHI, ConstVal)); 4699 } 4700 4701 return Res.size() > 0; 4702 } 4703 4704 // Helper function used to add CaseVal to the list of cases that generate 4705 // Result. Returns the updated number of cases that generate this result. 4706 static uintptr_t MapCaseToResult(ConstantInt *CaseVal, 4707 SwitchCaseResultVectorTy &UniqueResults, 4708 Constant *Result) { 4709 for (auto &I : UniqueResults) { 4710 if (I.first == Result) { 4711 I.second.push_back(CaseVal); 4712 return I.second.size(); 4713 } 4714 } 4715 UniqueResults.push_back( 4716 std::make_pair(Result, SmallVector<ConstantInt *, 4>(1, CaseVal))); 4717 return 1; 4718 } 4719 4720 // Helper function that initializes a map containing 4721 // results for the PHI node of the common destination block for a switch 4722 // instruction. Returns false if multiple PHI nodes have been found or if 4723 // there is not a common destination block for the switch. 4724 static bool 4725 InitializeUniqueCases(SwitchInst *SI, PHINode *&PHI, BasicBlock *&CommonDest, 4726 SwitchCaseResultVectorTy &UniqueResults, 4727 Constant *&DefaultResult, const DataLayout &DL, 4728 const TargetTransformInfo &TTI, 4729 uintptr_t MaxUniqueResults, uintptr_t MaxCasesPerResult) { 4730 for (auto &I : SI->cases()) { 4731 ConstantInt *CaseVal = I.getCaseValue(); 4732 4733 // Resulting value at phi nodes for this case value. 4734 SwitchCaseResultsTy Results; 4735 if (!GetCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results, 4736 DL, TTI)) 4737 return false; 4738 4739 // Only one value per case is permitted. 4740 if (Results.size() > 1) 4741 return false; 4742 4743 // Add the case->result mapping to UniqueResults. 4744 const uintptr_t NumCasesForResult = 4745 MapCaseToResult(CaseVal, UniqueResults, Results.begin()->second); 4746 4747 // Early out if there are too many cases for this result. 4748 if (NumCasesForResult > MaxCasesPerResult) 4749 return false; 4750 4751 // Early out if there are too many unique results. 4752 if (UniqueResults.size() > MaxUniqueResults) 4753 return false; 4754 4755 // Check the PHI consistency. 4756 if (!PHI) 4757 PHI = Results[0].first; 4758 else if (PHI != Results[0].first) 4759 return false; 4760 } 4761 // Find the default result value. 4762 SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults; 4763 BasicBlock *DefaultDest = SI->getDefaultDest(); 4764 GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults, 4765 DL, TTI); 4766 // If the default value is not found abort unless the default destination 4767 // is unreachable. 4768 DefaultResult = 4769 DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr; 4770 if ((!DefaultResult && 4771 !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()))) 4772 return false; 4773 4774 return true; 4775 } 4776 4777 // Helper function that checks if it is possible to transform a switch with only 4778 // two cases (or two cases + default) that produces a result into a select. 4779 // Example: 4780 // switch (a) { 4781 // case 10: %0 = icmp eq i32 %a, 10 4782 // return 10; %1 = select i1 %0, i32 10, i32 4 4783 // case 20: ----> %2 = icmp eq i32 %a, 20 4784 // return 2; %3 = select i1 %2, i32 2, i32 %1 4785 // default: 4786 // return 4; 4787 // } 4788 static Value *ConvertTwoCaseSwitch(const SwitchCaseResultVectorTy &ResultVector, 4789 Constant *DefaultResult, Value *Condition, 4790 IRBuilder<> &Builder) { 4791 assert(ResultVector.size() == 2 && 4792 "We should have exactly two unique results at this point"); 4793 // If we are selecting between only two cases transform into a simple 4794 // select or a two-way select if default is possible. 4795 if (ResultVector[0].second.size() == 1 && 4796 ResultVector[1].second.size() == 1) { 4797 ConstantInt *const FirstCase = ResultVector[0].second[0]; 4798 ConstantInt *const SecondCase = ResultVector[1].second[0]; 4799 4800 bool DefaultCanTrigger = DefaultResult; 4801 Value *SelectValue = ResultVector[1].first; 4802 if (DefaultCanTrigger) { 4803 Value *const ValueCompare = 4804 Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp"); 4805 SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first, 4806 DefaultResult, "switch.select"); 4807 } 4808 Value *const ValueCompare = 4809 Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp"); 4810 return Builder.CreateSelect(ValueCompare, ResultVector[0].first, 4811 SelectValue, "switch.select"); 4812 } 4813 4814 return nullptr; 4815 } 4816 4817 // Helper function to cleanup a switch instruction that has been converted into 4818 // a select, fixing up PHI nodes and basic blocks. 4819 static void RemoveSwitchAfterSelectConversion(SwitchInst *SI, PHINode *PHI, 4820 Value *SelectValue, 4821 IRBuilder<> &Builder) { 4822 BasicBlock *SelectBB = SI->getParent(); 4823 while (PHI->getBasicBlockIndex(SelectBB) >= 0) 4824 PHI->removeIncomingValue(SelectBB); 4825 PHI->addIncoming(SelectValue, SelectBB); 4826 4827 Builder.CreateBr(PHI->getParent()); 4828 4829 // Remove the switch. 4830 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { 4831 BasicBlock *Succ = SI->getSuccessor(i); 4832 4833 if (Succ == PHI->getParent()) 4834 continue; 4835 Succ->removePredecessor(SelectBB); 4836 } 4837 SI->eraseFromParent(); 4838 } 4839 4840 /// If the switch is only used to initialize one or more 4841 /// phi nodes in a common successor block with only two different 4842 /// constant values, replace the switch with select. 4843 static bool switchToSelect(SwitchInst *SI, IRBuilder<> &Builder, 4844 const DataLayout &DL, 4845 const TargetTransformInfo &TTI) { 4846 Value *const Cond = SI->getCondition(); 4847 PHINode *PHI = nullptr; 4848 BasicBlock *CommonDest = nullptr; 4849 Constant *DefaultResult; 4850 SwitchCaseResultVectorTy UniqueResults; 4851 // Collect all the cases that will deliver the same value from the switch. 4852 if (!InitializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult, 4853 DL, TTI, 2, 1)) 4854 return false; 4855 // Selects choose between maximum two values. 4856 if (UniqueResults.size() != 2) 4857 return false; 4858 assert(PHI != nullptr && "PHI for value select not found"); 4859 4860 Builder.SetInsertPoint(SI); 4861 Value *SelectValue = 4862 ConvertTwoCaseSwitch(UniqueResults, DefaultResult, Cond, Builder); 4863 if (SelectValue) { 4864 RemoveSwitchAfterSelectConversion(SI, PHI, SelectValue, Builder); 4865 return true; 4866 } 4867 // The switch couldn't be converted into a select. 4868 return false; 4869 } 4870 4871 namespace { 4872 4873 /// This class represents a lookup table that can be used to replace a switch. 4874 class SwitchLookupTable { 4875 public: 4876 /// Create a lookup table to use as a switch replacement with the contents 4877 /// of Values, using DefaultValue to fill any holes in the table. 4878 SwitchLookupTable( 4879 Module &M, uint64_t TableSize, ConstantInt *Offset, 4880 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values, 4881 Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName); 4882 4883 /// Build instructions with Builder to retrieve the value at 4884 /// the position given by Index in the lookup table. 4885 Value *BuildLookup(Value *Index, IRBuilder<> &Builder); 4886 4887 /// Return true if a table with TableSize elements of 4888 /// type ElementType would fit in a target-legal register. 4889 static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize, 4890 Type *ElementType); 4891 4892 private: 4893 // Depending on the contents of the table, it can be represented in 4894 // different ways. 4895 enum { 4896 // For tables where each element contains the same value, we just have to 4897 // store that single value and return it for each lookup. 4898 SingleValueKind, 4899 4900 // For tables where there is a linear relationship between table index 4901 // and values. We calculate the result with a simple multiplication 4902 // and addition instead of a table lookup. 4903 LinearMapKind, 4904 4905 // For small tables with integer elements, we can pack them into a bitmap 4906 // that fits into a target-legal register. Values are retrieved by 4907 // shift and mask operations. 4908 BitMapKind, 4909 4910 // The table is stored as an array of values. Values are retrieved by load 4911 // instructions from the table. 4912 ArrayKind 4913 } Kind; 4914 4915 // For SingleValueKind, this is the single value. 4916 Constant *SingleValue = nullptr; 4917 4918 // For BitMapKind, this is the bitmap. 4919 ConstantInt *BitMap = nullptr; 4920 IntegerType *BitMapElementTy = nullptr; 4921 4922 // For LinearMapKind, these are the constants used to derive the value. 4923 ConstantInt *LinearOffset = nullptr; 4924 ConstantInt *LinearMultiplier = nullptr; 4925 4926 // For ArrayKind, this is the array. 4927 GlobalVariable *Array = nullptr; 4928 }; 4929 4930 } // end anonymous namespace 4931 4932 SwitchLookupTable::SwitchLookupTable( 4933 Module &M, uint64_t TableSize, ConstantInt *Offset, 4934 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values, 4935 Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName) { 4936 assert(Values.size() && "Can't build lookup table without values!"); 4937 assert(TableSize >= Values.size() && "Can't fit values in table!"); 4938 4939 // If all values in the table are equal, this is that value. 4940 SingleValue = Values.begin()->second; 4941 4942 Type *ValueType = Values.begin()->second->getType(); 4943 4944 // Build up the table contents. 4945 SmallVector<Constant *, 64> TableContents(TableSize); 4946 for (size_t I = 0, E = Values.size(); I != E; ++I) { 4947 ConstantInt *CaseVal = Values[I].first; 4948 Constant *CaseRes = Values[I].second; 4949 assert(CaseRes->getType() == ValueType); 4950 4951 uint64_t Idx = (CaseVal->getValue() - Offset->getValue()).getLimitedValue(); 4952 TableContents[Idx] = CaseRes; 4953 4954 if (CaseRes != SingleValue) 4955 SingleValue = nullptr; 4956 } 4957 4958 // Fill in any holes in the table with the default result. 4959 if (Values.size() < TableSize) { 4960 assert(DefaultValue && 4961 "Need a default value to fill the lookup table holes."); 4962 assert(DefaultValue->getType() == ValueType); 4963 for (uint64_t I = 0; I < TableSize; ++I) { 4964 if (!TableContents[I]) 4965 TableContents[I] = DefaultValue; 4966 } 4967 4968 if (DefaultValue != SingleValue) 4969 SingleValue = nullptr; 4970 } 4971 4972 // If each element in the table contains the same value, we only need to store 4973 // that single value. 4974 if (SingleValue) { 4975 Kind = SingleValueKind; 4976 return; 4977 } 4978 4979 // Check if we can derive the value with a linear transformation from the 4980 // table index. 4981 if (isa<IntegerType>(ValueType)) { 4982 bool LinearMappingPossible = true; 4983 APInt PrevVal; 4984 APInt DistToPrev; 4985 assert(TableSize >= 2 && "Should be a SingleValue table."); 4986 // Check if there is the same distance between two consecutive values. 4987 for (uint64_t I = 0; I < TableSize; ++I) { 4988 ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]); 4989 if (!ConstVal) { 4990 // This is an undef. We could deal with it, but undefs in lookup tables 4991 // are very seldom. It's probably not worth the additional complexity. 4992 LinearMappingPossible = false; 4993 break; 4994 } 4995 const APInt &Val = ConstVal->getValue(); 4996 if (I != 0) { 4997 APInt Dist = Val - PrevVal; 4998 if (I == 1) { 4999 DistToPrev = Dist; 5000 } else if (Dist != DistToPrev) { 5001 LinearMappingPossible = false; 5002 break; 5003 } 5004 } 5005 PrevVal = Val; 5006 } 5007 if (LinearMappingPossible) { 5008 LinearOffset = cast<ConstantInt>(TableContents[0]); 5009 LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev); 5010 Kind = LinearMapKind; 5011 ++NumLinearMaps; 5012 return; 5013 } 5014 } 5015 5016 // If the type is integer and the table fits in a register, build a bitmap. 5017 if (WouldFitInRegister(DL, TableSize, ValueType)) { 5018 IntegerType *IT = cast<IntegerType>(ValueType); 5019 APInt TableInt(TableSize * IT->getBitWidth(), 0); 5020 for (uint64_t I = TableSize; I > 0; --I) { 5021 TableInt <<= IT->getBitWidth(); 5022 // Insert values into the bitmap. Undef values are set to zero. 5023 if (!isa<UndefValue>(TableContents[I - 1])) { 5024 ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]); 5025 TableInt |= Val->getValue().zext(TableInt.getBitWidth()); 5026 } 5027 } 5028 BitMap = ConstantInt::get(M.getContext(), TableInt); 5029 BitMapElementTy = IT; 5030 Kind = BitMapKind; 5031 ++NumBitMaps; 5032 return; 5033 } 5034 5035 // Store the table in an array. 5036 ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize); 5037 Constant *Initializer = ConstantArray::get(ArrayTy, TableContents); 5038 5039 Array = new GlobalVariable(M, ArrayTy, /*constant=*/true, 5040 GlobalVariable::PrivateLinkage, Initializer, 5041 "switch.table." + FuncName); 5042 Array->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); 5043 // Set the alignment to that of an array items. We will be only loading one 5044 // value out of it. 5045 Array->setAlignment(DL.getPrefTypeAlignment(ValueType)); 5046 Kind = ArrayKind; 5047 } 5048 5049 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) { 5050 switch (Kind) { 5051 case SingleValueKind: 5052 return SingleValue; 5053 case LinearMapKind: { 5054 // Derive the result value from the input value. 5055 Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(), 5056 false, "switch.idx.cast"); 5057 if (!LinearMultiplier->isOne()) 5058 Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult"); 5059 if (!LinearOffset->isZero()) 5060 Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset"); 5061 return Result; 5062 } 5063 case BitMapKind: { 5064 // Type of the bitmap (e.g. i59). 5065 IntegerType *MapTy = BitMap->getType(); 5066 5067 // Cast Index to the same type as the bitmap. 5068 // Note: The Index is <= the number of elements in the table, so 5069 // truncating it to the width of the bitmask is safe. 5070 Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast"); 5071 5072 // Multiply the shift amount by the element width. 5073 ShiftAmt = Builder.CreateMul( 5074 ShiftAmt, ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()), 5075 "switch.shiftamt"); 5076 5077 // Shift down. 5078 Value *DownShifted = 5079 Builder.CreateLShr(BitMap, ShiftAmt, "switch.downshift"); 5080 // Mask off. 5081 return Builder.CreateTrunc(DownShifted, BitMapElementTy, "switch.masked"); 5082 } 5083 case ArrayKind: { 5084 // Make sure the table index will not overflow when treated as signed. 5085 IntegerType *IT = cast<IntegerType>(Index->getType()); 5086 uint64_t TableSize = 5087 Array->getInitializer()->getType()->getArrayNumElements(); 5088 if (TableSize > (1ULL << (IT->getBitWidth() - 1))) 5089 Index = Builder.CreateZExt( 5090 Index, IntegerType::get(IT->getContext(), IT->getBitWidth() + 1), 5091 "switch.tableidx.zext"); 5092 5093 Value *GEPIndices[] = {Builder.getInt32(0), Index}; 5094 Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array, 5095 GEPIndices, "switch.gep"); 5096 return Builder.CreateLoad(GEP, "switch.load"); 5097 } 5098 } 5099 llvm_unreachable("Unknown lookup table kind!"); 5100 } 5101 5102 bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL, 5103 uint64_t TableSize, 5104 Type *ElementType) { 5105 auto *IT = dyn_cast<IntegerType>(ElementType); 5106 if (!IT) 5107 return false; 5108 // FIXME: If the type is wider than it needs to be, e.g. i8 but all values 5109 // are <= 15, we could try to narrow the type. 5110 5111 // Avoid overflow, fitsInLegalInteger uses unsigned int for the width. 5112 if (TableSize >= UINT_MAX / IT->getBitWidth()) 5113 return false; 5114 return DL.fitsInLegalInteger(TableSize * IT->getBitWidth()); 5115 } 5116 5117 /// Determine whether a lookup table should be built for this switch, based on 5118 /// the number of cases, size of the table, and the types of the results. 5119 static bool 5120 ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize, 5121 const TargetTransformInfo &TTI, const DataLayout &DL, 5122 const SmallDenseMap<PHINode *, Type *> &ResultTypes) { 5123 if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10) 5124 return false; // TableSize overflowed, or mul below might overflow. 5125 5126 bool AllTablesFitInRegister = true; 5127 bool HasIllegalType = false; 5128 for (const auto &I : ResultTypes) { 5129 Type *Ty = I.second; 5130 5131 // Saturate this flag to true. 5132 HasIllegalType = HasIllegalType || !TTI.isTypeLegal(Ty); 5133 5134 // Saturate this flag to false. 5135 AllTablesFitInRegister = 5136 AllTablesFitInRegister && 5137 SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty); 5138 5139 // If both flags saturate, we're done. NOTE: This *only* works with 5140 // saturating flags, and all flags have to saturate first due to the 5141 // non-deterministic behavior of iterating over a dense map. 5142 if (HasIllegalType && !AllTablesFitInRegister) 5143 break; 5144 } 5145 5146 // If each table would fit in a register, we should build it anyway. 5147 if (AllTablesFitInRegister) 5148 return true; 5149 5150 // Don't build a table that doesn't fit in-register if it has illegal types. 5151 if (HasIllegalType) 5152 return false; 5153 5154 // The table density should be at least 40%. This is the same criterion as for 5155 // jump tables, see SelectionDAGBuilder::handleJTSwitchCase. 5156 // FIXME: Find the best cut-off. 5157 return SI->getNumCases() * 10 >= TableSize * 4; 5158 } 5159 5160 /// Try to reuse the switch table index compare. Following pattern: 5161 /// \code 5162 /// if (idx < tablesize) 5163 /// r = table[idx]; // table does not contain default_value 5164 /// else 5165 /// r = default_value; 5166 /// if (r != default_value) 5167 /// ... 5168 /// \endcode 5169 /// Is optimized to: 5170 /// \code 5171 /// cond = idx < tablesize; 5172 /// if (cond) 5173 /// r = table[idx]; 5174 /// else 5175 /// r = default_value; 5176 /// if (cond) 5177 /// ... 5178 /// \endcode 5179 /// Jump threading will then eliminate the second if(cond). 5180 static void reuseTableCompare( 5181 User *PhiUser, BasicBlock *PhiBlock, BranchInst *RangeCheckBranch, 5182 Constant *DefaultValue, 5183 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values) { 5184 ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser); 5185 if (!CmpInst) 5186 return; 5187 5188 // We require that the compare is in the same block as the phi so that jump 5189 // threading can do its work afterwards. 5190 if (CmpInst->getParent() != PhiBlock) 5191 return; 5192 5193 Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1)); 5194 if (!CmpOp1) 5195 return; 5196 5197 Value *RangeCmp = RangeCheckBranch->getCondition(); 5198 Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType()); 5199 Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType()); 5200 5201 // Check if the compare with the default value is constant true or false. 5202 Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(), 5203 DefaultValue, CmpOp1, true); 5204 if (DefaultConst != TrueConst && DefaultConst != FalseConst) 5205 return; 5206 5207 // Check if the compare with the case values is distinct from the default 5208 // compare result. 5209 for (auto ValuePair : Values) { 5210 Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(), 5211 ValuePair.second, CmpOp1, true); 5212 if (!CaseConst || CaseConst == DefaultConst || isa<UndefValue>(CaseConst)) 5213 return; 5214 assert((CaseConst == TrueConst || CaseConst == FalseConst) && 5215 "Expect true or false as compare result."); 5216 } 5217 5218 // Check if the branch instruction dominates the phi node. It's a simple 5219 // dominance check, but sufficient for our needs. 5220 // Although this check is invariant in the calling loops, it's better to do it 5221 // at this late stage. Practically we do it at most once for a switch. 5222 BasicBlock *BranchBlock = RangeCheckBranch->getParent(); 5223 for (auto PI = pred_begin(PhiBlock), E = pred_end(PhiBlock); PI != E; ++PI) { 5224 BasicBlock *Pred = *PI; 5225 if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock) 5226 return; 5227 } 5228 5229 if (DefaultConst == FalseConst) { 5230 // The compare yields the same result. We can replace it. 5231 CmpInst->replaceAllUsesWith(RangeCmp); 5232 ++NumTableCmpReuses; 5233 } else { 5234 // The compare yields the same result, just inverted. We can replace it. 5235 Value *InvertedTableCmp = BinaryOperator::CreateXor( 5236 RangeCmp, ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp", 5237 RangeCheckBranch); 5238 CmpInst->replaceAllUsesWith(InvertedTableCmp); 5239 ++NumTableCmpReuses; 5240 } 5241 } 5242 5243 /// If the switch is only used to initialize one or more phi nodes in a common 5244 /// successor block with different constant values, replace the switch with 5245 /// lookup tables. 5246 static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder, 5247 const DataLayout &DL, 5248 const TargetTransformInfo &TTI) { 5249 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 5250 5251 Function *Fn = SI->getParent()->getParent(); 5252 // Only build lookup table when we have a target that supports it or the 5253 // attribute is not set. 5254 if (!TTI.shouldBuildLookupTables() || 5255 (Fn->getFnAttribute("no-jump-tables").getValueAsString() == "true")) 5256 return false; 5257 5258 // FIXME: If the switch is too sparse for a lookup table, perhaps we could 5259 // split off a dense part and build a lookup table for that. 5260 5261 // FIXME: This creates arrays of GEPs to constant strings, which means each 5262 // GEP needs a runtime relocation in PIC code. We should just build one big 5263 // string and lookup indices into that. 5264 5265 // Ignore switches with less than three cases. Lookup tables will not make 5266 // them faster, so we don't analyze them. 5267 if (SI->getNumCases() < 3) 5268 return false; 5269 5270 // Figure out the corresponding result for each case value and phi node in the 5271 // common destination, as well as the min and max case values. 5272 assert(SI->case_begin() != SI->case_end()); 5273 SwitchInst::CaseIt CI = SI->case_begin(); 5274 ConstantInt *MinCaseVal = CI->getCaseValue(); 5275 ConstantInt *MaxCaseVal = CI->getCaseValue(); 5276 5277 BasicBlock *CommonDest = nullptr; 5278 5279 using ResultListTy = SmallVector<std::pair<ConstantInt *, Constant *>, 4>; 5280 SmallDenseMap<PHINode *, ResultListTy> ResultLists; 5281 5282 SmallDenseMap<PHINode *, Constant *> DefaultResults; 5283 SmallDenseMap<PHINode *, Type *> ResultTypes; 5284 SmallVector<PHINode *, 4> PHIs; 5285 5286 for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) { 5287 ConstantInt *CaseVal = CI->getCaseValue(); 5288 if (CaseVal->getValue().slt(MinCaseVal->getValue())) 5289 MinCaseVal = CaseVal; 5290 if (CaseVal->getValue().sgt(MaxCaseVal->getValue())) 5291 MaxCaseVal = CaseVal; 5292 5293 // Resulting value at phi nodes for this case value. 5294 using ResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>; 5295 ResultsTy Results; 5296 if (!GetCaseResults(SI, CaseVal, CI->getCaseSuccessor(), &CommonDest, 5297 Results, DL, TTI)) 5298 return false; 5299 5300 // Append the result from this case to the list for each phi. 5301 for (const auto &I : Results) { 5302 PHINode *PHI = I.first; 5303 Constant *Value = I.second; 5304 if (!ResultLists.count(PHI)) 5305 PHIs.push_back(PHI); 5306 ResultLists[PHI].push_back(std::make_pair(CaseVal, Value)); 5307 } 5308 } 5309 5310 // Keep track of the result types. 5311 for (PHINode *PHI : PHIs) { 5312 ResultTypes[PHI] = ResultLists[PHI][0].second->getType(); 5313 } 5314 5315 uint64_t NumResults = ResultLists[PHIs[0]].size(); 5316 APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue(); 5317 uint64_t TableSize = RangeSpread.getLimitedValue() + 1; 5318 bool TableHasHoles = (NumResults < TableSize); 5319 5320 // If the table has holes, we need a constant result for the default case 5321 // or a bitmask that fits in a register. 5322 SmallVector<std::pair<PHINode *, Constant *>, 4> DefaultResultsList; 5323 bool HasDefaultResults = 5324 GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, 5325 DefaultResultsList, DL, TTI); 5326 5327 bool NeedMask = (TableHasHoles && !HasDefaultResults); 5328 if (NeedMask) { 5329 // As an extra penalty for the validity test we require more cases. 5330 if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark). 5331 return false; 5332 if (!DL.fitsInLegalInteger(TableSize)) 5333 return false; 5334 } 5335 5336 for (const auto &I : DefaultResultsList) { 5337 PHINode *PHI = I.first; 5338 Constant *Result = I.second; 5339 DefaultResults[PHI] = Result; 5340 } 5341 5342 if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes)) 5343 return false; 5344 5345 // Create the BB that does the lookups. 5346 Module &Mod = *CommonDest->getParent()->getParent(); 5347 BasicBlock *LookupBB = BasicBlock::Create( 5348 Mod.getContext(), "switch.lookup", CommonDest->getParent(), CommonDest); 5349 5350 // Compute the table index value. 5351 Builder.SetInsertPoint(SI); 5352 Value *TableIndex; 5353 if (MinCaseVal->isNullValue()) 5354 TableIndex = SI->getCondition(); 5355 else 5356 TableIndex = Builder.CreateSub(SI->getCondition(), MinCaseVal, 5357 "switch.tableidx"); 5358 5359 // Compute the maximum table size representable by the integer type we are 5360 // switching upon. 5361 unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits(); 5362 uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize; 5363 assert(MaxTableSize >= TableSize && 5364 "It is impossible for a switch to have more entries than the max " 5365 "representable value of its input integer type's size."); 5366 5367 // If the default destination is unreachable, or if the lookup table covers 5368 // all values of the conditional variable, branch directly to the lookup table 5369 // BB. Otherwise, check that the condition is within the case range. 5370 const bool DefaultIsReachable = 5371 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 5372 const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize); 5373 BranchInst *RangeCheckBranch = nullptr; 5374 5375 if (!DefaultIsReachable || GeneratingCoveredLookupTable) { 5376 Builder.CreateBr(LookupBB); 5377 // Note: We call removeProdecessor later since we need to be able to get the 5378 // PHI value for the default case in case we're using a bit mask. 5379 } else { 5380 Value *Cmp = Builder.CreateICmpULT( 5381 TableIndex, ConstantInt::get(MinCaseVal->getType(), TableSize)); 5382 RangeCheckBranch = 5383 Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest()); 5384 } 5385 5386 // Populate the BB that does the lookups. 5387 Builder.SetInsertPoint(LookupBB); 5388 5389 if (NeedMask) { 5390 // Before doing the lookup, we do the hole check. The LookupBB is therefore 5391 // re-purposed to do the hole check, and we create a new LookupBB. 5392 BasicBlock *MaskBB = LookupBB; 5393 MaskBB->setName("switch.hole_check"); 5394 LookupBB = BasicBlock::Create(Mod.getContext(), "switch.lookup", 5395 CommonDest->getParent(), CommonDest); 5396 5397 // Make the mask's bitwidth at least 8-bit and a power-of-2 to avoid 5398 // unnecessary illegal types. 5399 uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL)); 5400 APInt MaskInt(TableSizePowOf2, 0); 5401 APInt One(TableSizePowOf2, 1); 5402 // Build bitmask; fill in a 1 bit for every case. 5403 const ResultListTy &ResultList = ResultLists[PHIs[0]]; 5404 for (size_t I = 0, E = ResultList.size(); I != E; ++I) { 5405 uint64_t Idx = (ResultList[I].first->getValue() - MinCaseVal->getValue()) 5406 .getLimitedValue(); 5407 MaskInt |= One << Idx; 5408 } 5409 ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt); 5410 5411 // Get the TableIndex'th bit of the bitmask. 5412 // If this bit is 0 (meaning hole) jump to the default destination, 5413 // else continue with table lookup. 5414 IntegerType *MapTy = TableMask->getType(); 5415 Value *MaskIndex = 5416 Builder.CreateZExtOrTrunc(TableIndex, MapTy, "switch.maskindex"); 5417 Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, "switch.shifted"); 5418 Value *LoBit = Builder.CreateTrunc( 5419 Shifted, Type::getInt1Ty(Mod.getContext()), "switch.lobit"); 5420 Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest()); 5421 5422 Builder.SetInsertPoint(LookupBB); 5423 AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, SI->getParent()); 5424 } 5425 5426 if (!DefaultIsReachable || GeneratingCoveredLookupTable) { 5427 // We cached PHINodes in PHIs. To avoid accessing deleted PHINodes later, 5428 // do not delete PHINodes here. 5429 SI->getDefaultDest()->removePredecessor(SI->getParent(), 5430 /*DontDeleteUselessPHIs=*/true); 5431 } 5432 5433 bool ReturnedEarly = false; 5434 for (PHINode *PHI : PHIs) { 5435 const ResultListTy &ResultList = ResultLists[PHI]; 5436 5437 // If using a bitmask, use any value to fill the lookup table holes. 5438 Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI]; 5439 StringRef FuncName = Fn->getName(); 5440 SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultList, DV, DL, 5441 FuncName); 5442 5443 Value *Result = Table.BuildLookup(TableIndex, Builder); 5444 5445 // If the result is used to return immediately from the function, we want to 5446 // do that right here. 5447 if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->user_begin()) && 5448 PHI->user_back() == CommonDest->getFirstNonPHIOrDbg()) { 5449 Builder.CreateRet(Result); 5450 ReturnedEarly = true; 5451 break; 5452 } 5453 5454 // Do a small peephole optimization: re-use the switch table compare if 5455 // possible. 5456 if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) { 5457 BasicBlock *PhiBlock = PHI->getParent(); 5458 // Search for compare instructions which use the phi. 5459 for (auto *User : PHI->users()) { 5460 reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList); 5461 } 5462 } 5463 5464 PHI->addIncoming(Result, LookupBB); 5465 } 5466 5467 if (!ReturnedEarly) 5468 Builder.CreateBr(CommonDest); 5469 5470 // Remove the switch. 5471 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { 5472 BasicBlock *Succ = SI->getSuccessor(i); 5473 5474 if (Succ == SI->getDefaultDest()) 5475 continue; 5476 Succ->removePredecessor(SI->getParent()); 5477 } 5478 SI->eraseFromParent(); 5479 5480 ++NumLookupTables; 5481 if (NeedMask) 5482 ++NumLookupTablesHoles; 5483 return true; 5484 } 5485 5486 static bool isSwitchDense(ArrayRef<int64_t> Values) { 5487 // See also SelectionDAGBuilder::isDense(), which this function was based on. 5488 uint64_t Diff = (uint64_t)Values.back() - (uint64_t)Values.front(); 5489 uint64_t Range = Diff + 1; 5490 uint64_t NumCases = Values.size(); 5491 // 40% is the default density for building a jump table in optsize/minsize mode. 5492 uint64_t MinDensity = 40; 5493 5494 return NumCases * 100 >= Range * MinDensity; 5495 } 5496 5497 /// Try to transform a switch that has "holes" in it to a contiguous sequence 5498 /// of cases. 5499 /// 5500 /// A switch such as: switch(i) {case 5: case 9: case 13: case 17:} can be 5501 /// range-reduced to: switch ((i-5) / 4) {case 0: case 1: case 2: case 3:}. 5502 /// 5503 /// This converts a sparse switch into a dense switch which allows better 5504 /// lowering and could also allow transforming into a lookup table. 5505 static bool ReduceSwitchRange(SwitchInst *SI, IRBuilder<> &Builder, 5506 const DataLayout &DL, 5507 const TargetTransformInfo &TTI) { 5508 auto *CondTy = cast<IntegerType>(SI->getCondition()->getType()); 5509 if (CondTy->getIntegerBitWidth() > 64 || 5510 !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth())) 5511 return false; 5512 // Only bother with this optimization if there are more than 3 switch cases; 5513 // SDAG will only bother creating jump tables for 4 or more cases. 5514 if (SI->getNumCases() < 4) 5515 return false; 5516 5517 // This transform is agnostic to the signedness of the input or case values. We 5518 // can treat the case values as signed or unsigned. We can optimize more common 5519 // cases such as a sequence crossing zero {-4,0,4,8} if we interpret case values 5520 // as signed. 5521 SmallVector<int64_t,4> Values; 5522 for (auto &C : SI->cases()) 5523 Values.push_back(C.getCaseValue()->getValue().getSExtValue()); 5524 llvm::sort(Values.begin(), Values.end()); 5525 5526 // If the switch is already dense, there's nothing useful to do here. 5527 if (isSwitchDense(Values)) 5528 return false; 5529 5530 // First, transform the values such that they start at zero and ascend. 5531 int64_t Base = Values[0]; 5532 for (auto &V : Values) 5533 V -= (uint64_t)(Base); 5534 5535 // Now we have signed numbers that have been shifted so that, given enough 5536 // precision, there are no negative values. Since the rest of the transform 5537 // is bitwise only, we switch now to an unsigned representation. 5538 uint64_t GCD = 0; 5539 for (auto &V : Values) 5540 GCD = GreatestCommonDivisor64(GCD, (uint64_t)V); 5541 5542 // This transform can be done speculatively because it is so cheap - it results 5543 // in a single rotate operation being inserted. This can only happen if the 5544 // factor extracted is a power of 2. 5545 // FIXME: If the GCD is an odd number we can multiply by the multiplicative 5546 // inverse of GCD and then perform this transform. 5547 // FIXME: It's possible that optimizing a switch on powers of two might also 5548 // be beneficial - flag values are often powers of two and we could use a CLZ 5549 // as the key function. 5550 if (GCD <= 1 || !isPowerOf2_64(GCD)) 5551 // No common divisor found or too expensive to compute key function. 5552 return false; 5553 5554 unsigned Shift = Log2_64(GCD); 5555 for (auto &V : Values) 5556 V = (int64_t)((uint64_t)V >> Shift); 5557 5558 if (!isSwitchDense(Values)) 5559 // Transform didn't create a dense switch. 5560 return false; 5561 5562 // The obvious transform is to shift the switch condition right and emit a 5563 // check that the condition actually cleanly divided by GCD, i.e. 5564 // C & (1 << Shift - 1) == 0 5565 // inserting a new CFG edge to handle the case where it didn't divide cleanly. 5566 // 5567 // A cheaper way of doing this is a simple ROTR(C, Shift). This performs the 5568 // shift and puts the shifted-off bits in the uppermost bits. If any of these 5569 // are nonzero then the switch condition will be very large and will hit the 5570 // default case. 5571 5572 auto *Ty = cast<IntegerType>(SI->getCondition()->getType()); 5573 Builder.SetInsertPoint(SI); 5574 auto *ShiftC = ConstantInt::get(Ty, Shift); 5575 auto *Sub = Builder.CreateSub(SI->getCondition(), ConstantInt::get(Ty, Base)); 5576 auto *LShr = Builder.CreateLShr(Sub, ShiftC); 5577 auto *Shl = Builder.CreateShl(Sub, Ty->getBitWidth() - Shift); 5578 auto *Rot = Builder.CreateOr(LShr, Shl); 5579 SI->replaceUsesOfWith(SI->getCondition(), Rot); 5580 5581 for (auto Case : SI->cases()) { 5582 auto *Orig = Case.getCaseValue(); 5583 auto Sub = Orig->getValue() - APInt(Ty->getBitWidth(), Base); 5584 Case.setValue( 5585 cast<ConstantInt>(ConstantInt::get(Ty, Sub.lshr(ShiftC->getValue())))); 5586 } 5587 return true; 5588 } 5589 5590 bool SimplifyCFGOpt::SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) { 5591 BasicBlock *BB = SI->getParent(); 5592 5593 if (isValueEqualityComparison(SI)) { 5594 // If we only have one predecessor, and if it is a branch on this value, 5595 // see if that predecessor totally determines the outcome of this switch. 5596 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 5597 if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder)) 5598 return simplifyCFG(BB, TTI, Options) || true; 5599 5600 Value *Cond = SI->getCondition(); 5601 if (SelectInst *Select = dyn_cast<SelectInst>(Cond)) 5602 if (SimplifySwitchOnSelect(SI, Select)) 5603 return simplifyCFG(BB, TTI, Options) || true; 5604 5605 // If the block only contains the switch, see if we can fold the block 5606 // away into any preds. 5607 if (SI == &*BB->instructionsWithoutDebug().begin()) 5608 if (FoldValueComparisonIntoPredecessors(SI, Builder)) 5609 return simplifyCFG(BB, TTI, Options) || true; 5610 } 5611 5612 // Try to transform the switch into an icmp and a branch. 5613 if (TurnSwitchRangeIntoICmp(SI, Builder)) 5614 return simplifyCFG(BB, TTI, Options) || true; 5615 5616 // Remove unreachable cases. 5617 if (eliminateDeadSwitchCases(SI, Options.AC, DL)) 5618 return simplifyCFG(BB, TTI, Options) || true; 5619 5620 if (switchToSelect(SI, Builder, DL, TTI)) 5621 return simplifyCFG(BB, TTI, Options) || true; 5622 5623 if (Options.ForwardSwitchCondToPhi && ForwardSwitchConditionToPHI(SI)) 5624 return simplifyCFG(BB, TTI, Options) || true; 5625 5626 // The conversion from switch to lookup tables results in difficult-to-analyze 5627 // code and makes pruning branches much harder. This is a problem if the 5628 // switch expression itself can still be restricted as a result of inlining or 5629 // CVP. Therefore, only apply this transformation during late stages of the 5630 // optimisation pipeline. 5631 if (Options.ConvertSwitchToLookupTable && 5632 SwitchToLookupTable(SI, Builder, DL, TTI)) 5633 return simplifyCFG(BB, TTI, Options) || true; 5634 5635 if (ReduceSwitchRange(SI, Builder, DL, TTI)) 5636 return simplifyCFG(BB, TTI, Options) || true; 5637 5638 return false; 5639 } 5640 5641 bool SimplifyCFGOpt::SimplifyIndirectBr(IndirectBrInst *IBI) { 5642 BasicBlock *BB = IBI->getParent(); 5643 bool Changed = false; 5644 5645 // Eliminate redundant destinations. 5646 SmallPtrSet<Value *, 8> Succs; 5647 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 5648 BasicBlock *Dest = IBI->getDestination(i); 5649 if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) { 5650 Dest->removePredecessor(BB); 5651 IBI->removeDestination(i); 5652 --i; 5653 --e; 5654 Changed = true; 5655 } 5656 } 5657 5658 if (IBI->getNumDestinations() == 0) { 5659 // If the indirectbr has no successors, change it to unreachable. 5660 new UnreachableInst(IBI->getContext(), IBI); 5661 EraseTerminatorInstAndDCECond(IBI); 5662 return true; 5663 } 5664 5665 if (IBI->getNumDestinations() == 1) { 5666 // If the indirectbr has one successor, change it to a direct branch. 5667 BranchInst::Create(IBI->getDestination(0), IBI); 5668 EraseTerminatorInstAndDCECond(IBI); 5669 return true; 5670 } 5671 5672 if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) { 5673 if (SimplifyIndirectBrOnSelect(IBI, SI)) 5674 return simplifyCFG(BB, TTI, Options) || true; 5675 } 5676 return Changed; 5677 } 5678 5679 /// Given an block with only a single landing pad and a unconditional branch 5680 /// try to find another basic block which this one can be merged with. This 5681 /// handles cases where we have multiple invokes with unique landing pads, but 5682 /// a shared handler. 5683 /// 5684 /// We specifically choose to not worry about merging non-empty blocks 5685 /// here. That is a PRE/scheduling problem and is best solved elsewhere. In 5686 /// practice, the optimizer produces empty landing pad blocks quite frequently 5687 /// when dealing with exception dense code. (see: instcombine, gvn, if-else 5688 /// sinking in this file) 5689 /// 5690 /// This is primarily a code size optimization. We need to avoid performing 5691 /// any transform which might inhibit optimization (such as our ability to 5692 /// specialize a particular handler via tail commoning). We do this by not 5693 /// merging any blocks which require us to introduce a phi. Since the same 5694 /// values are flowing through both blocks, we don't lose any ability to 5695 /// specialize. If anything, we make such specialization more likely. 5696 /// 5697 /// TODO - This transformation could remove entries from a phi in the target 5698 /// block when the inputs in the phi are the same for the two blocks being 5699 /// merged. In some cases, this could result in removal of the PHI entirely. 5700 static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI, 5701 BasicBlock *BB) { 5702 auto Succ = BB->getUniqueSuccessor(); 5703 assert(Succ); 5704 // If there's a phi in the successor block, we'd likely have to introduce 5705 // a phi into the merged landing pad block. 5706 if (isa<PHINode>(*Succ->begin())) 5707 return false; 5708 5709 for (BasicBlock *OtherPred : predecessors(Succ)) { 5710 if (BB == OtherPred) 5711 continue; 5712 BasicBlock::iterator I = OtherPred->begin(); 5713 LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I); 5714 if (!LPad2 || !LPad2->isIdenticalTo(LPad)) 5715 continue; 5716 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 5717 ; 5718 BranchInst *BI2 = dyn_cast<BranchInst>(I); 5719 if (!BI2 || !BI2->isIdenticalTo(BI)) 5720 continue; 5721 5722 // We've found an identical block. Update our predecessors to take that 5723 // path instead and make ourselves dead. 5724 SmallPtrSet<BasicBlock *, 16> Preds; 5725 Preds.insert(pred_begin(BB), pred_end(BB)); 5726 for (BasicBlock *Pred : Preds) { 5727 InvokeInst *II = cast<InvokeInst>(Pred->getTerminator()); 5728 assert(II->getNormalDest() != BB && II->getUnwindDest() == BB && 5729 "unexpected successor"); 5730 II->setUnwindDest(OtherPred); 5731 } 5732 5733 // The debug info in OtherPred doesn't cover the merged control flow that 5734 // used to go through BB. We need to delete it or update it. 5735 for (auto I = OtherPred->begin(), E = OtherPred->end(); I != E;) { 5736 Instruction &Inst = *I; 5737 I++; 5738 if (isa<DbgInfoIntrinsic>(Inst)) 5739 Inst.eraseFromParent(); 5740 } 5741 5742 SmallPtrSet<BasicBlock *, 16> Succs; 5743 Succs.insert(succ_begin(BB), succ_end(BB)); 5744 for (BasicBlock *Succ : Succs) { 5745 Succ->removePredecessor(BB); 5746 } 5747 5748 IRBuilder<> Builder(BI); 5749 Builder.CreateUnreachable(); 5750 BI->eraseFromParent(); 5751 return true; 5752 } 5753 return false; 5754 } 5755 5756 bool SimplifyCFGOpt::SimplifyUncondBranch(BranchInst *BI, 5757 IRBuilder<> &Builder) { 5758 BasicBlock *BB = BI->getParent(); 5759 BasicBlock *Succ = BI->getSuccessor(0); 5760 5761 // If the Terminator is the only non-phi instruction, simplify the block. 5762 // If LoopHeader is provided, check if the block or its successor is a loop 5763 // header. (This is for early invocations before loop simplify and 5764 // vectorization to keep canonical loop forms for nested loops. These blocks 5765 // can be eliminated when the pass is invoked later in the back-end.) 5766 // Note that if BB has only one predecessor then we do not introduce new 5767 // backedge, so we can eliminate BB. 5768 bool NeedCanonicalLoop = 5769 Options.NeedCanonicalLoop && 5770 (LoopHeaders && pred_size(BB) > 1 && 5771 (LoopHeaders->count(BB) || LoopHeaders->count(Succ))); 5772 BasicBlock::iterator I = BB->getFirstNonPHIOrDbg()->getIterator(); 5773 if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() && 5774 !NeedCanonicalLoop && TryToSimplifyUncondBranchFromEmptyBlock(BB)) 5775 return true; 5776 5777 // If the only instruction in the block is a seteq/setne comparison against a 5778 // constant, try to simplify the block. 5779 if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) 5780 if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) { 5781 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 5782 ; 5783 if (I->isTerminator() && 5784 tryToSimplifyUncondBranchWithICmpInIt(ICI, Builder, DL, TTI, Options)) 5785 return true; 5786 } 5787 5788 // See if we can merge an empty landing pad block with another which is 5789 // equivalent. 5790 if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) { 5791 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 5792 ; 5793 if (I->isTerminator() && TryToMergeLandingPad(LPad, BI, BB)) 5794 return true; 5795 } 5796 5797 // If this basic block is ONLY a compare and a branch, and if a predecessor 5798 // branches to us and our successor, fold the comparison into the 5799 // predecessor and use logical operations to update the incoming value 5800 // for PHI nodes in common successor. 5801 if (FoldBranchToCommonDest(BI, Options.BonusInstThreshold)) 5802 return simplifyCFG(BB, TTI, Options) || true; 5803 return false; 5804 } 5805 5806 static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) { 5807 BasicBlock *PredPred = nullptr; 5808 for (auto *P : predecessors(BB)) { 5809 BasicBlock *PPred = P->getSinglePredecessor(); 5810 if (!PPred || (PredPred && PredPred != PPred)) 5811 return nullptr; 5812 PredPred = PPred; 5813 } 5814 return PredPred; 5815 } 5816 5817 bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) { 5818 BasicBlock *BB = BI->getParent(); 5819 const Function *Fn = BB->getParent(); 5820 if (Fn && Fn->hasFnAttribute(Attribute::OptForFuzzing)) 5821 return false; 5822 5823 // Conditional branch 5824 if (isValueEqualityComparison(BI)) { 5825 // If we only have one predecessor, and if it is a branch on this value, 5826 // see if that predecessor totally determines the outcome of this 5827 // switch. 5828 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 5829 if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder)) 5830 return simplifyCFG(BB, TTI, Options) || true; 5831 5832 // This block must be empty, except for the setcond inst, if it exists. 5833 // Ignore dbg intrinsics. 5834 auto I = BB->instructionsWithoutDebug().begin(); 5835 if (&*I == BI) { 5836 if (FoldValueComparisonIntoPredecessors(BI, Builder)) 5837 return simplifyCFG(BB, TTI, Options) || true; 5838 } else if (&*I == cast<Instruction>(BI->getCondition())) { 5839 ++I; 5840 if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder)) 5841 return simplifyCFG(BB, TTI, Options) || true; 5842 } 5843 } 5844 5845 // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction. 5846 if (SimplifyBranchOnICmpChain(BI, Builder, DL)) 5847 return true; 5848 5849 // If this basic block has a single dominating predecessor block and the 5850 // dominating block's condition implies BI's condition, we know the direction 5851 // of the BI branch. 5852 if (BasicBlock *Dom = BB->getSinglePredecessor()) { 5853 auto *PBI = dyn_cast_or_null<BranchInst>(Dom->getTerminator()); 5854 if (PBI && PBI->isConditional() && 5855 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 5856 assert(PBI->getSuccessor(0) == BB || PBI->getSuccessor(1) == BB); 5857 bool CondIsTrue = PBI->getSuccessor(0) == BB; 5858 Optional<bool> Implication = isImpliedCondition( 5859 PBI->getCondition(), BI->getCondition(), DL, CondIsTrue); 5860 if (Implication) { 5861 // Turn this into a branch on constant. 5862 auto *OldCond = BI->getCondition(); 5863 ConstantInt *CI = *Implication 5864 ? ConstantInt::getTrue(BB->getContext()) 5865 : ConstantInt::getFalse(BB->getContext()); 5866 BI->setCondition(CI); 5867 RecursivelyDeleteTriviallyDeadInstructions(OldCond); 5868 return simplifyCFG(BB, TTI, Options) || true; 5869 } 5870 } 5871 } 5872 5873 // If this basic block is ONLY a compare and a branch, and if a predecessor 5874 // branches to us and one of our successors, fold the comparison into the 5875 // predecessor and use logical operations to pick the right destination. 5876 if (FoldBranchToCommonDest(BI, Options.BonusInstThreshold)) 5877 return simplifyCFG(BB, TTI, Options) || true; 5878 5879 // We have a conditional branch to two blocks that are only reachable 5880 // from BI. We know that the condbr dominates the two blocks, so see if 5881 // there is any identical code in the "then" and "else" blocks. If so, we 5882 // can hoist it up to the branching block. 5883 if (BI->getSuccessor(0)->getSinglePredecessor()) { 5884 if (BI->getSuccessor(1)->getSinglePredecessor()) { 5885 if (HoistThenElseCodeToIf(BI, TTI)) 5886 return simplifyCFG(BB, TTI, Options) || true; 5887 } else { 5888 // If Successor #1 has multiple preds, we may be able to conditionally 5889 // execute Successor #0 if it branches to Successor #1. 5890 TerminatorInst *Succ0TI = BI->getSuccessor(0)->getTerminator(); 5891 if (Succ0TI->getNumSuccessors() == 1 && 5892 Succ0TI->getSuccessor(0) == BI->getSuccessor(1)) 5893 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), TTI)) 5894 return simplifyCFG(BB, TTI, Options) || true; 5895 } 5896 } else if (BI->getSuccessor(1)->getSinglePredecessor()) { 5897 // If Successor #0 has multiple preds, we may be able to conditionally 5898 // execute Successor #1 if it branches to Successor #0. 5899 TerminatorInst *Succ1TI = BI->getSuccessor(1)->getTerminator(); 5900 if (Succ1TI->getNumSuccessors() == 1 && 5901 Succ1TI->getSuccessor(0) == BI->getSuccessor(0)) 5902 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), TTI)) 5903 return simplifyCFG(BB, TTI, Options) || true; 5904 } 5905 5906 // If this is a branch on a phi node in the current block, thread control 5907 // through this block if any PHI node entries are constants. 5908 if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition())) 5909 if (PN->getParent() == BI->getParent()) 5910 if (FoldCondBranchOnPHI(BI, DL, Options.AC)) 5911 return simplifyCFG(BB, TTI, Options) || true; 5912 5913 // Scan predecessor blocks for conditional branches. 5914 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 5915 if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator())) 5916 if (PBI != BI && PBI->isConditional()) 5917 if (SimplifyCondBranchToCondBranch(PBI, BI, DL)) 5918 return simplifyCFG(BB, TTI, Options) || true; 5919 5920 // Look for diamond patterns. 5921 if (MergeCondStores) 5922 if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB)) 5923 if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator())) 5924 if (PBI != BI && PBI->isConditional()) 5925 if (mergeConditionalStores(PBI, BI, DL)) 5926 return simplifyCFG(BB, TTI, Options) || true; 5927 5928 return false; 5929 } 5930 5931 /// Check if passing a value to an instruction will cause undefined behavior. 5932 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I) { 5933 Constant *C = dyn_cast<Constant>(V); 5934 if (!C) 5935 return false; 5936 5937 if (I->use_empty()) 5938 return false; 5939 5940 if (C->isNullValue() || isa<UndefValue>(C)) { 5941 // Only look at the first use, avoid hurting compile time with long uselists 5942 User *Use = *I->user_begin(); 5943 5944 // Now make sure that there are no instructions in between that can alter 5945 // control flow (eg. calls) 5946 for (BasicBlock::iterator 5947 i = ++BasicBlock::iterator(I), 5948 UI = BasicBlock::iterator(dyn_cast<Instruction>(Use)); 5949 i != UI; ++i) 5950 if (i == I->getParent()->end() || i->mayHaveSideEffects()) 5951 return false; 5952 5953 // Look through GEPs. A load from a GEP derived from NULL is still undefined 5954 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use)) 5955 if (GEP->getPointerOperand() == I) 5956 return passingValueIsAlwaysUndefined(V, GEP); 5957 5958 // Look through bitcasts. 5959 if (BitCastInst *BC = dyn_cast<BitCastInst>(Use)) 5960 return passingValueIsAlwaysUndefined(V, BC); 5961 5962 // Load from null is undefined. 5963 if (LoadInst *LI = dyn_cast<LoadInst>(Use)) 5964 if (!LI->isVolatile()) 5965 return !NullPointerIsDefined(LI->getFunction(), 5966 LI->getPointerAddressSpace()); 5967 5968 // Store to null is undefined. 5969 if (StoreInst *SI = dyn_cast<StoreInst>(Use)) 5970 if (!SI->isVolatile()) 5971 return (!NullPointerIsDefined(SI->getFunction(), 5972 SI->getPointerAddressSpace())) && 5973 SI->getPointerOperand() == I; 5974 5975 // A call to null is undefined. 5976 if (auto CS = CallSite(Use)) 5977 return !NullPointerIsDefined(CS->getFunction()) && 5978 CS.getCalledValue() == I; 5979 } 5980 return false; 5981 } 5982 5983 /// If BB has an incoming value that will always trigger undefined behavior 5984 /// (eg. null pointer dereference), remove the branch leading here. 5985 static bool removeUndefIntroducingPredecessor(BasicBlock *BB) { 5986 for (PHINode &PHI : BB->phis()) 5987 for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i) 5988 if (passingValueIsAlwaysUndefined(PHI.getIncomingValue(i), &PHI)) { 5989 TerminatorInst *T = PHI.getIncomingBlock(i)->getTerminator(); 5990 IRBuilder<> Builder(T); 5991 if (BranchInst *BI = dyn_cast<BranchInst>(T)) { 5992 BB->removePredecessor(PHI.getIncomingBlock(i)); 5993 // Turn uncoditional branches into unreachables and remove the dead 5994 // destination from conditional branches. 5995 if (BI->isUnconditional()) 5996 Builder.CreateUnreachable(); 5997 else 5998 Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1) 5999 : BI->getSuccessor(0)); 6000 BI->eraseFromParent(); 6001 return true; 6002 } 6003 // TODO: SwitchInst. 6004 } 6005 6006 return false; 6007 } 6008 6009 bool SimplifyCFGOpt::run(BasicBlock *BB) { 6010 bool Changed = false; 6011 6012 assert(BB && BB->getParent() && "Block not embedded in function!"); 6013 assert(BB->getTerminator() && "Degenerate basic block encountered!"); 6014 6015 // Remove basic blocks that have no predecessors (except the entry block)... 6016 // or that just have themself as a predecessor. These are unreachable. 6017 if ((pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) || 6018 BB->getSinglePredecessor() == BB) { 6019 LLVM_DEBUG(dbgs() << "Removing BB: \n" << *BB); 6020 DeleteDeadBlock(BB); 6021 return true; 6022 } 6023 6024 // Check to see if we can constant propagate this terminator instruction 6025 // away... 6026 Changed |= ConstantFoldTerminator(BB, true); 6027 6028 // Check for and eliminate duplicate PHI nodes in this block. 6029 Changed |= EliminateDuplicatePHINodes(BB); 6030 6031 // Check for and remove branches that will always cause undefined behavior. 6032 Changed |= removeUndefIntroducingPredecessor(BB); 6033 6034 // Merge basic blocks into their predecessor if there is only one distinct 6035 // pred, and if there is only one distinct successor of the predecessor, and 6036 // if there are no PHI nodes. 6037 if (MergeBlockIntoPredecessor(BB)) 6038 return true; 6039 6040 if (SinkCommon && Options.SinkCommonInsts) 6041 Changed |= SinkCommonCodeFromPredecessors(BB); 6042 6043 IRBuilder<> Builder(BB); 6044 6045 // If there is a trivial two-entry PHI node in this basic block, and we can 6046 // eliminate it, do so now. 6047 if (auto *PN = dyn_cast<PHINode>(BB->begin())) 6048 if (PN->getNumIncomingValues() == 2) 6049 Changed |= FoldTwoEntryPHINode(PN, TTI, DL); 6050 6051 Builder.SetInsertPoint(BB->getTerminator()); 6052 if (auto *BI = dyn_cast<BranchInst>(BB->getTerminator())) { 6053 if (BI->isUnconditional()) { 6054 if (SimplifyUncondBranch(BI, Builder)) 6055 return true; 6056 } else { 6057 if (SimplifyCondBranch(BI, Builder)) 6058 return true; 6059 } 6060 } else if (auto *RI = dyn_cast<ReturnInst>(BB->getTerminator())) { 6061 if (SimplifyReturn(RI, Builder)) 6062 return true; 6063 } else if (auto *RI = dyn_cast<ResumeInst>(BB->getTerminator())) { 6064 if (SimplifyResume(RI, Builder)) 6065 return true; 6066 } else if (auto *RI = dyn_cast<CleanupReturnInst>(BB->getTerminator())) { 6067 if (SimplifyCleanupReturn(RI)) 6068 return true; 6069 } else if (auto *SI = dyn_cast<SwitchInst>(BB->getTerminator())) { 6070 if (SimplifySwitch(SI, Builder)) 6071 return true; 6072 } else if (auto *UI = dyn_cast<UnreachableInst>(BB->getTerminator())) { 6073 if (SimplifyUnreachable(UI)) 6074 return true; 6075 } else if (auto *IBI = dyn_cast<IndirectBrInst>(BB->getTerminator())) { 6076 if (SimplifyIndirectBr(IBI)) 6077 return true; 6078 } 6079 6080 return Changed; 6081 } 6082 6083 bool llvm::simplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI, 6084 const SimplifyCFGOptions &Options, 6085 SmallPtrSetImpl<BasicBlock *> *LoopHeaders) { 6086 return SimplifyCFGOpt(TTI, BB->getModule()->getDataLayout(), LoopHeaders, 6087 Options) 6088 .run(BB); 6089 } 6090