1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Peephole optimize the CFG.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/ADT/APInt.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SetOperations.h"
20 #include "llvm/ADT/SetVector.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/Statistic.h"
25 #include "llvm/ADT/StringRef.h"
26 #include "llvm/Analysis/AssumptionCache.h"
27 #include "llvm/Analysis/ConstantFolding.h"
28 #include "llvm/Analysis/EHPersonalities.h"
29 #include "llvm/Analysis/InstructionSimplify.h"
30 #include "llvm/Analysis/TargetTransformInfo.h"
31 #include "llvm/Analysis/ValueTracking.h"
32 #include "llvm/IR/Attributes.h"
33 #include "llvm/IR/BasicBlock.h"
34 #include "llvm/IR/CFG.h"
35 #include "llvm/IR/CallSite.h"
36 #include "llvm/IR/Constant.h"
37 #include "llvm/IR/ConstantRange.h"
38 #include "llvm/IR/Constants.h"
39 #include "llvm/IR/DataLayout.h"
40 #include "llvm/IR/DerivedTypes.h"
41 #include "llvm/IR/Function.h"
42 #include "llvm/IR/GlobalValue.h"
43 #include "llvm/IR/GlobalVariable.h"
44 #include "llvm/IR/IRBuilder.h"
45 #include "llvm/IR/InstrTypes.h"
46 #include "llvm/IR/Instruction.h"
47 #include "llvm/IR/Instructions.h"
48 #include "llvm/IR/IntrinsicInst.h"
49 #include "llvm/IR/Intrinsics.h"
50 #include "llvm/IR/LLVMContext.h"
51 #include "llvm/IR/MDBuilder.h"
52 #include "llvm/IR/Metadata.h"
53 #include "llvm/IR/Module.h"
54 #include "llvm/IR/NoFolder.h"
55 #include "llvm/IR/Operator.h"
56 #include "llvm/IR/PatternMatch.h"
57 #include "llvm/IR/Type.h"
58 #include "llvm/IR/Use.h"
59 #include "llvm/IR/User.h"
60 #include "llvm/IR/Value.h"
61 #include "llvm/Support/Casting.h"
62 #include "llvm/Support/CommandLine.h"
63 #include "llvm/Support/Debug.h"
64 #include "llvm/Support/ErrorHandling.h"
65 #include "llvm/Support/KnownBits.h"
66 #include "llvm/Support/MathExtras.h"
67 #include "llvm/Support/raw_ostream.h"
68 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
69 #include "llvm/Transforms/Utils/Local.h"
70 #include "llvm/Transforms/Utils/ValueMapper.h"
71 #include <algorithm>
72 #include <cassert>
73 #include <climits>
74 #include <cstddef>
75 #include <cstdint>
76 #include <iterator>
77 #include <map>
78 #include <set>
79 #include <tuple>
80 #include <utility>
81 #include <vector>
82 
83 using namespace llvm;
84 using namespace PatternMatch;
85 
86 #define DEBUG_TYPE "simplifycfg"
87 
88 // Chosen as 2 so as to be cheap, but still to have enough power to fold
89 // a select, so the "clamp" idiom (of a min followed by a max) will be caught.
90 // To catch this, we need to fold a compare and a select, hence '2' being the
91 // minimum reasonable default.
92 static cl::opt<unsigned> PHINodeFoldingThreshold(
93     "phi-node-folding-threshold", cl::Hidden, cl::init(2),
94     cl::desc(
95         "Control the amount of phi node folding to perform (default = 2)"));
96 
97 static cl::opt<bool> DupRet(
98     "simplifycfg-dup-ret", cl::Hidden, cl::init(false),
99     cl::desc("Duplicate return instructions into unconditional branches"));
100 
101 static cl::opt<bool>
102     SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true),
103                cl::desc("Sink common instructions down to the end block"));
104 
105 static cl::opt<bool> HoistCondStores(
106     "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true),
107     cl::desc("Hoist conditional stores if an unconditional store precedes"));
108 
109 static cl::opt<bool> MergeCondStores(
110     "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true),
111     cl::desc("Hoist conditional stores even if an unconditional store does not "
112              "precede - hoist multiple conditional stores into a single "
113              "predicated store"));
114 
115 static cl::opt<bool> MergeCondStoresAggressively(
116     "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false),
117     cl::desc("When merging conditional stores, do so even if the resultant "
118              "basic blocks are unlikely to be if-converted as a result"));
119 
120 static cl::opt<bool> SpeculateOneExpensiveInst(
121     "speculate-one-expensive-inst", cl::Hidden, cl::init(true),
122     cl::desc("Allow exactly one expensive instruction to be speculatively "
123              "executed"));
124 
125 static cl::opt<unsigned> MaxSpeculationDepth(
126     "max-speculation-depth", cl::Hidden, cl::init(10),
127     cl::desc("Limit maximum recursion depth when calculating costs of "
128              "speculatively executed instructions"));
129 
130 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps");
131 STATISTIC(NumLinearMaps,
132           "Number of switch instructions turned into linear mapping");
133 STATISTIC(NumLookupTables,
134           "Number of switch instructions turned into lookup tables");
135 STATISTIC(
136     NumLookupTablesHoles,
137     "Number of switch instructions turned into lookup tables (holes checked)");
138 STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares");
139 STATISTIC(NumSinkCommons,
140           "Number of common instructions sunk down to the end block");
141 STATISTIC(NumSpeculations, "Number of speculative executed instructions");
142 
143 namespace {
144 
145 // The first field contains the value that the switch produces when a certain
146 // case group is selected, and the second field is a vector containing the
147 // cases composing the case group.
148 using SwitchCaseResultVectorTy =
149     SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2>;
150 
151 // The first field contains the phi node that generates a result of the switch
152 // and the second field contains the value generated for a certain case in the
153 // switch for that PHI.
154 using SwitchCaseResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>;
155 
156 /// ValueEqualityComparisonCase - Represents a case of a switch.
157 struct ValueEqualityComparisonCase {
158   ConstantInt *Value;
159   BasicBlock *Dest;
160 
161   ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest)
162       : Value(Value), Dest(Dest) {}
163 
164   bool operator<(ValueEqualityComparisonCase RHS) const {
165     // Comparing pointers is ok as we only rely on the order for uniquing.
166     return Value < RHS.Value;
167   }
168 
169   bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; }
170 };
171 
172 class SimplifyCFGOpt {
173   const TargetTransformInfo &TTI;
174   const DataLayout &DL;
175   SmallPtrSetImpl<BasicBlock *> *LoopHeaders;
176   const SimplifyCFGOptions &Options;
177 
178   Value *isValueEqualityComparison(TerminatorInst *TI);
179   BasicBlock *GetValueEqualityComparisonCases(
180       TerminatorInst *TI, std::vector<ValueEqualityComparisonCase> &Cases);
181   bool SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI,
182                                                      BasicBlock *Pred,
183                                                      IRBuilder<> &Builder);
184   bool FoldValueComparisonIntoPredecessors(TerminatorInst *TI,
185                                            IRBuilder<> &Builder);
186 
187   bool SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder);
188   bool SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder);
189   bool SimplifySingleResume(ResumeInst *RI);
190   bool SimplifyCommonResume(ResumeInst *RI);
191   bool SimplifyCleanupReturn(CleanupReturnInst *RI);
192   bool SimplifyUnreachable(UnreachableInst *UI);
193   bool SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder);
194   bool SimplifyIndirectBr(IndirectBrInst *IBI);
195   bool SimplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder);
196   bool SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder);
197 
198 public:
199   SimplifyCFGOpt(const TargetTransformInfo &TTI, const DataLayout &DL,
200                  SmallPtrSetImpl<BasicBlock *> *LoopHeaders,
201                  const SimplifyCFGOptions &Opts)
202       : TTI(TTI), DL(DL), LoopHeaders(LoopHeaders), Options(Opts) {}
203 
204   bool run(BasicBlock *BB);
205 };
206 
207 } // end anonymous namespace
208 
209 /// Return true if it is safe to merge these two
210 /// terminator instructions together.
211 static bool
212 SafeToMergeTerminators(TerminatorInst *SI1, TerminatorInst *SI2,
213                        SmallSetVector<BasicBlock *, 4> *FailBlocks = nullptr) {
214   if (SI1 == SI2)
215     return false; // Can't merge with self!
216 
217   // It is not safe to merge these two switch instructions if they have a common
218   // successor, and if that successor has a PHI node, and if *that* PHI node has
219   // conflicting incoming values from the two switch blocks.
220   BasicBlock *SI1BB = SI1->getParent();
221   BasicBlock *SI2BB = SI2->getParent();
222 
223   SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
224   bool Fail = false;
225   for (BasicBlock *Succ : successors(SI2BB))
226     if (SI1Succs.count(Succ))
227       for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) {
228         PHINode *PN = cast<PHINode>(BBI);
229         if (PN->getIncomingValueForBlock(SI1BB) !=
230             PN->getIncomingValueForBlock(SI2BB)) {
231           if (FailBlocks)
232             FailBlocks->insert(Succ);
233           Fail = true;
234         }
235       }
236 
237   return !Fail;
238 }
239 
240 /// Return true if it is safe and profitable to merge these two terminator
241 /// instructions together, where SI1 is an unconditional branch. PhiNodes will
242 /// store all PHI nodes in common successors.
243 static bool
244 isProfitableToFoldUnconditional(BranchInst *SI1, BranchInst *SI2,
245                                 Instruction *Cond,
246                                 SmallVectorImpl<PHINode *> &PhiNodes) {
247   if (SI1 == SI2)
248     return false; // Can't merge with self!
249   assert(SI1->isUnconditional() && SI2->isConditional());
250 
251   // We fold the unconditional branch if we can easily update all PHI nodes in
252   // common successors:
253   // 1> We have a constant incoming value for the conditional branch;
254   // 2> We have "Cond" as the incoming value for the unconditional branch;
255   // 3> SI2->getCondition() and Cond have same operands.
256   CmpInst *Ci2 = dyn_cast<CmpInst>(SI2->getCondition());
257   if (!Ci2)
258     return false;
259   if (!(Cond->getOperand(0) == Ci2->getOperand(0) &&
260         Cond->getOperand(1) == Ci2->getOperand(1)) &&
261       !(Cond->getOperand(0) == Ci2->getOperand(1) &&
262         Cond->getOperand(1) == Ci2->getOperand(0)))
263     return false;
264 
265   BasicBlock *SI1BB = SI1->getParent();
266   BasicBlock *SI2BB = SI2->getParent();
267   SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
268   for (BasicBlock *Succ : successors(SI2BB))
269     if (SI1Succs.count(Succ))
270       for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) {
271         PHINode *PN = cast<PHINode>(BBI);
272         if (PN->getIncomingValueForBlock(SI1BB) != Cond ||
273             !isa<ConstantInt>(PN->getIncomingValueForBlock(SI2BB)))
274           return false;
275         PhiNodes.push_back(PN);
276       }
277   return true;
278 }
279 
280 /// Update PHI nodes in Succ to indicate that there will now be entries in it
281 /// from the 'NewPred' block. The values that will be flowing into the PHI nodes
282 /// will be the same as those coming in from ExistPred, an existing predecessor
283 /// of Succ.
284 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred,
285                                   BasicBlock *ExistPred) {
286   for (PHINode &PN : Succ->phis())
287     PN.addIncoming(PN.getIncomingValueForBlock(ExistPred), NewPred);
288 }
289 
290 /// Compute an abstract "cost" of speculating the given instruction,
291 /// which is assumed to be safe to speculate. TCC_Free means cheap,
292 /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively
293 /// expensive.
294 static unsigned ComputeSpeculationCost(const User *I,
295                                        const TargetTransformInfo &TTI) {
296   assert(isSafeToSpeculativelyExecute(I) &&
297          "Instruction is not safe to speculatively execute!");
298   return TTI.getUserCost(I);
299 }
300 
301 /// If we have a merge point of an "if condition" as accepted above,
302 /// return true if the specified value dominates the block.  We
303 /// don't handle the true generality of domination here, just a special case
304 /// which works well enough for us.
305 ///
306 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to
307 /// see if V (which must be an instruction) and its recursive operands
308 /// that do not dominate BB have a combined cost lower than CostRemaining and
309 /// are non-trapping.  If both are true, the instruction is inserted into the
310 /// set and true is returned.
311 ///
312 /// The cost for most non-trapping instructions is defined as 1 except for
313 /// Select whose cost is 2.
314 ///
315 /// After this function returns, CostRemaining is decreased by the cost of
316 /// V plus its non-dominating operands.  If that cost is greater than
317 /// CostRemaining, false is returned and CostRemaining is undefined.
318 static bool DominatesMergePoint(Value *V, BasicBlock *BB,
319                                 SmallPtrSetImpl<Instruction *> *AggressiveInsts,
320                                 unsigned &CostRemaining,
321                                 const TargetTransformInfo &TTI,
322                                 unsigned Depth = 0) {
323   // It is possible to hit a zero-cost cycle (phi/gep instructions for example),
324   // so limit the recursion depth.
325   // TODO: While this recursion limit does prevent pathological behavior, it
326   // would be better to track visited instructions to avoid cycles.
327   if (Depth == MaxSpeculationDepth)
328     return false;
329 
330   Instruction *I = dyn_cast<Instruction>(V);
331   if (!I) {
332     // Non-instructions all dominate instructions, but not all constantexprs
333     // can be executed unconditionally.
334     if (ConstantExpr *C = dyn_cast<ConstantExpr>(V))
335       if (C->canTrap())
336         return false;
337     return true;
338   }
339   BasicBlock *PBB = I->getParent();
340 
341   // We don't want to allow weird loops that might have the "if condition" in
342   // the bottom of this block.
343   if (PBB == BB)
344     return false;
345 
346   // If this instruction is defined in a block that contains an unconditional
347   // branch to BB, then it must be in the 'conditional' part of the "if
348   // statement".  If not, it definitely dominates the region.
349   BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator());
350   if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB)
351     return true;
352 
353   // If we aren't allowing aggressive promotion anymore, then don't consider
354   // instructions in the 'if region'.
355   if (!AggressiveInsts)
356     return false;
357 
358   // If we have seen this instruction before, don't count it again.
359   if (AggressiveInsts->count(I))
360     return true;
361 
362   // Okay, it looks like the instruction IS in the "condition".  Check to
363   // see if it's a cheap instruction to unconditionally compute, and if it
364   // only uses stuff defined outside of the condition.  If so, hoist it out.
365   if (!isSafeToSpeculativelyExecute(I))
366     return false;
367 
368   unsigned Cost = ComputeSpeculationCost(I, TTI);
369 
370   // Allow exactly one instruction to be speculated regardless of its cost
371   // (as long as it is safe to do so).
372   // This is intended to flatten the CFG even if the instruction is a division
373   // or other expensive operation. The speculation of an expensive instruction
374   // is expected to be undone in CodeGenPrepare if the speculation has not
375   // enabled further IR optimizations.
376   if (Cost > CostRemaining &&
377       (!SpeculateOneExpensiveInst || !AggressiveInsts->empty() || Depth > 0))
378     return false;
379 
380   // Avoid unsigned wrap.
381   CostRemaining = (Cost > CostRemaining) ? 0 : CostRemaining - Cost;
382 
383   // Okay, we can only really hoist these out if their operands do
384   // not take us over the cost threshold.
385   for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i)
386     if (!DominatesMergePoint(*i, BB, AggressiveInsts, CostRemaining, TTI,
387                              Depth + 1))
388       return false;
389   // Okay, it's safe to do this!  Remember this instruction.
390   AggressiveInsts->insert(I);
391   return true;
392 }
393 
394 /// Extract ConstantInt from value, looking through IntToPtr
395 /// and PointerNullValue. Return NULL if value is not a constant int.
396 static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) {
397   // Normal constant int.
398   ConstantInt *CI = dyn_cast<ConstantInt>(V);
399   if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy())
400     return CI;
401 
402   // This is some kind of pointer constant. Turn it into a pointer-sized
403   // ConstantInt if possible.
404   IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType()));
405 
406   // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*).
407   if (isa<ConstantPointerNull>(V))
408     return ConstantInt::get(PtrTy, 0);
409 
410   // IntToPtr const int.
411   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
412     if (CE->getOpcode() == Instruction::IntToPtr)
413       if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) {
414         // The constant is very likely to have the right type already.
415         if (CI->getType() == PtrTy)
416           return CI;
417         else
418           return cast<ConstantInt>(
419               ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false));
420       }
421   return nullptr;
422 }
423 
424 namespace {
425 
426 /// Given a chain of or (||) or and (&&) comparison of a value against a
427 /// constant, this will try to recover the information required for a switch
428 /// structure.
429 /// It will depth-first traverse the chain of comparison, seeking for patterns
430 /// like %a == 12 or %a < 4 and combine them to produce a set of integer
431 /// representing the different cases for the switch.
432 /// Note that if the chain is composed of '||' it will build the set of elements
433 /// that matches the comparisons (i.e. any of this value validate the chain)
434 /// while for a chain of '&&' it will build the set elements that make the test
435 /// fail.
436 struct ConstantComparesGatherer {
437   const DataLayout &DL;
438 
439   /// Value found for the switch comparison
440   Value *CompValue = nullptr;
441 
442   /// Extra clause to be checked before the switch
443   Value *Extra = nullptr;
444 
445   /// Set of integers to match in switch
446   SmallVector<ConstantInt *, 8> Vals;
447 
448   /// Number of comparisons matched in the and/or chain
449   unsigned UsedICmps = 0;
450 
451   /// Construct and compute the result for the comparison instruction Cond
452   ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL) : DL(DL) {
453     gather(Cond);
454   }
455 
456   ConstantComparesGatherer(const ConstantComparesGatherer &) = delete;
457   ConstantComparesGatherer &
458   operator=(const ConstantComparesGatherer &) = delete;
459 
460 private:
461   /// Try to set the current value used for the comparison, it succeeds only if
462   /// it wasn't set before or if the new value is the same as the old one
463   bool setValueOnce(Value *NewVal) {
464     if (CompValue && CompValue != NewVal)
465       return false;
466     CompValue = NewVal;
467     return (CompValue != nullptr);
468   }
469 
470   /// Try to match Instruction "I" as a comparison against a constant and
471   /// populates the array Vals with the set of values that match (or do not
472   /// match depending on isEQ).
473   /// Return false on failure. On success, the Value the comparison matched
474   /// against is placed in CompValue.
475   /// If CompValue is already set, the function is expected to fail if a match
476   /// is found but the value compared to is different.
477   bool matchInstruction(Instruction *I, bool isEQ) {
478     // If this is an icmp against a constant, handle this as one of the cases.
479     ICmpInst *ICI;
480     ConstantInt *C;
481     if (!((ICI = dyn_cast<ICmpInst>(I)) &&
482           (C = GetConstantInt(I->getOperand(1), DL)))) {
483       return false;
484     }
485 
486     Value *RHSVal;
487     const APInt *RHSC;
488 
489     // Pattern match a special case
490     // (x & ~2^z) == y --> x == y || x == y|2^z
491     // This undoes a transformation done by instcombine to fuse 2 compares.
492     if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE)) {
493       // It's a little bit hard to see why the following transformations are
494       // correct. Here is a CVC3 program to verify them for 64-bit values:
495 
496       /*
497          ONE  : BITVECTOR(64) = BVZEROEXTEND(0bin1, 63);
498          x    : BITVECTOR(64);
499          y    : BITVECTOR(64);
500          z    : BITVECTOR(64);
501          mask : BITVECTOR(64) = BVSHL(ONE, z);
502          QUERY( (y & ~mask = y) =>
503                 ((x & ~mask = y) <=> (x = y OR x = (y |  mask)))
504          );
505          QUERY( (y |  mask = y) =>
506                 ((x |  mask = y) <=> (x = y OR x = (y & ~mask)))
507          );
508       */
509 
510       // Please note that each pattern must be a dual implication (<--> or
511       // iff). One directional implication can create spurious matches. If the
512       // implication is only one-way, an unsatisfiable condition on the left
513       // side can imply a satisfiable condition on the right side. Dual
514       // implication ensures that satisfiable conditions are transformed to
515       // other satisfiable conditions and unsatisfiable conditions are
516       // transformed to other unsatisfiable conditions.
517 
518       // Here is a concrete example of a unsatisfiable condition on the left
519       // implying a satisfiable condition on the right:
520       //
521       // mask = (1 << z)
522       // (x & ~mask) == y  --> (x == y || x == (y | mask))
523       //
524       // Substituting y = 3, z = 0 yields:
525       // (x & -2) == 3 --> (x == 3 || x == 2)
526 
527       // Pattern match a special case:
528       /*
529         QUERY( (y & ~mask = y) =>
530                ((x & ~mask = y) <=> (x = y OR x = (y |  mask)))
531         );
532       */
533       if (match(ICI->getOperand(0),
534                 m_And(m_Value(RHSVal), m_APInt(RHSC)))) {
535         APInt Mask = ~*RHSC;
536         if (Mask.isPowerOf2() && (C->getValue() & ~Mask) == C->getValue()) {
537           // If we already have a value for the switch, it has to match!
538           if (!setValueOnce(RHSVal))
539             return false;
540 
541           Vals.push_back(C);
542           Vals.push_back(
543               ConstantInt::get(C->getContext(),
544                                C->getValue() | Mask));
545           UsedICmps++;
546           return true;
547         }
548       }
549 
550       // Pattern match a special case:
551       /*
552         QUERY( (y |  mask = y) =>
553                ((x |  mask = y) <=> (x = y OR x = (y & ~mask)))
554         );
555       */
556       if (match(ICI->getOperand(0),
557                 m_Or(m_Value(RHSVal), m_APInt(RHSC)))) {
558         APInt Mask = *RHSC;
559         if (Mask.isPowerOf2() && (C->getValue() | Mask) == C->getValue()) {
560           // If we already have a value for the switch, it has to match!
561           if (!setValueOnce(RHSVal))
562             return false;
563 
564           Vals.push_back(C);
565           Vals.push_back(ConstantInt::get(C->getContext(),
566                                           C->getValue() & ~Mask));
567           UsedICmps++;
568           return true;
569         }
570       }
571 
572       // If we already have a value for the switch, it has to match!
573       if (!setValueOnce(ICI->getOperand(0)))
574         return false;
575 
576       UsedICmps++;
577       Vals.push_back(C);
578       return ICI->getOperand(0);
579     }
580 
581     // If we have "x ult 3", for example, then we can add 0,1,2 to the set.
582     ConstantRange Span = ConstantRange::makeAllowedICmpRegion(
583         ICI->getPredicate(), C->getValue());
584 
585     // Shift the range if the compare is fed by an add. This is the range
586     // compare idiom as emitted by instcombine.
587     Value *CandidateVal = I->getOperand(0);
588     if (match(I->getOperand(0), m_Add(m_Value(RHSVal), m_APInt(RHSC)))) {
589       Span = Span.subtract(*RHSC);
590       CandidateVal = RHSVal;
591     }
592 
593     // If this is an and/!= check, then we are looking to build the set of
594     // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into
595     // x != 0 && x != 1.
596     if (!isEQ)
597       Span = Span.inverse();
598 
599     // If there are a ton of values, we don't want to make a ginormous switch.
600     if (Span.isSizeLargerThan(8) || Span.isEmptySet()) {
601       return false;
602     }
603 
604     // If we already have a value for the switch, it has to match!
605     if (!setValueOnce(CandidateVal))
606       return false;
607 
608     // Add all values from the range to the set
609     for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp)
610       Vals.push_back(ConstantInt::get(I->getContext(), Tmp));
611 
612     UsedICmps++;
613     return true;
614   }
615 
616   /// Given a potentially 'or'd or 'and'd together collection of icmp
617   /// eq/ne/lt/gt instructions that compare a value against a constant, extract
618   /// the value being compared, and stick the list constants into the Vals
619   /// vector.
620   /// One "Extra" case is allowed to differ from the other.
621   void gather(Value *V) {
622     Instruction *I = dyn_cast<Instruction>(V);
623     bool isEQ = (I->getOpcode() == Instruction::Or);
624 
625     // Keep a stack (SmallVector for efficiency) for depth-first traversal
626     SmallVector<Value *, 8> DFT;
627     SmallPtrSet<Value *, 8> Visited;
628 
629     // Initialize
630     Visited.insert(V);
631     DFT.push_back(V);
632 
633     while (!DFT.empty()) {
634       V = DFT.pop_back_val();
635 
636       if (Instruction *I = dyn_cast<Instruction>(V)) {
637         // If it is a || (or && depending on isEQ), process the operands.
638         if (I->getOpcode() == (isEQ ? Instruction::Or : Instruction::And)) {
639           if (Visited.insert(I->getOperand(1)).second)
640             DFT.push_back(I->getOperand(1));
641           if (Visited.insert(I->getOperand(0)).second)
642             DFT.push_back(I->getOperand(0));
643           continue;
644         }
645 
646         // Try to match the current instruction
647         if (matchInstruction(I, isEQ))
648           // Match succeed, continue the loop
649           continue;
650       }
651 
652       // One element of the sequence of || (or &&) could not be match as a
653       // comparison against the same value as the others.
654       // We allow only one "Extra" case to be checked before the switch
655       if (!Extra) {
656         Extra = V;
657         continue;
658       }
659       // Failed to parse a proper sequence, abort now
660       CompValue = nullptr;
661       break;
662     }
663   }
664 };
665 
666 } // end anonymous namespace
667 
668 static void EraseTerminatorInstAndDCECond(TerminatorInst *TI) {
669   Instruction *Cond = nullptr;
670   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
671     Cond = dyn_cast<Instruction>(SI->getCondition());
672   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
673     if (BI->isConditional())
674       Cond = dyn_cast<Instruction>(BI->getCondition());
675   } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) {
676     Cond = dyn_cast<Instruction>(IBI->getAddress());
677   }
678 
679   TI->eraseFromParent();
680   if (Cond)
681     RecursivelyDeleteTriviallyDeadInstructions(Cond);
682 }
683 
684 /// Return true if the specified terminator checks
685 /// to see if a value is equal to constant integer value.
686 Value *SimplifyCFGOpt::isValueEqualityComparison(TerminatorInst *TI) {
687   Value *CV = nullptr;
688   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
689     // Do not permit merging of large switch instructions into their
690     // predecessors unless there is only one predecessor.
691     if (SI->getNumSuccessors() * std::distance(pred_begin(SI->getParent()),
692                                                pred_end(SI->getParent())) <=
693         128)
694       CV = SI->getCondition();
695   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI))
696     if (BI->isConditional() && BI->getCondition()->hasOneUse())
697       if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) {
698         if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL))
699           CV = ICI->getOperand(0);
700       }
701 
702   // Unwrap any lossless ptrtoint cast.
703   if (CV) {
704     if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) {
705       Value *Ptr = PTII->getPointerOperand();
706       if (PTII->getType() == DL.getIntPtrType(Ptr->getType()))
707         CV = Ptr;
708     }
709   }
710   return CV;
711 }
712 
713 /// Given a value comparison instruction,
714 /// decode all of the 'cases' that it represents and return the 'default' block.
715 BasicBlock *SimplifyCFGOpt::GetValueEqualityComparisonCases(
716     TerminatorInst *TI, std::vector<ValueEqualityComparisonCase> &Cases) {
717   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
718     Cases.reserve(SI->getNumCases());
719     for (auto Case : SI->cases())
720       Cases.push_back(ValueEqualityComparisonCase(Case.getCaseValue(),
721                                                   Case.getCaseSuccessor()));
722     return SI->getDefaultDest();
723   }
724 
725   BranchInst *BI = cast<BranchInst>(TI);
726   ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
727   BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE);
728   Cases.push_back(ValueEqualityComparisonCase(
729       GetConstantInt(ICI->getOperand(1), DL), Succ));
730   return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ);
731 }
732 
733 /// Given a vector of bb/value pairs, remove any entries
734 /// in the list that match the specified block.
735 static void
736 EliminateBlockCases(BasicBlock *BB,
737                     std::vector<ValueEqualityComparisonCase> &Cases) {
738   Cases.erase(std::remove(Cases.begin(), Cases.end(), BB), Cases.end());
739 }
740 
741 /// Return true if there are any keys in C1 that exist in C2 as well.
742 static bool ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1,
743                           std::vector<ValueEqualityComparisonCase> &C2) {
744   std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2;
745 
746   // Make V1 be smaller than V2.
747   if (V1->size() > V2->size())
748     std::swap(V1, V2);
749 
750   if (V1->empty())
751     return false;
752   if (V1->size() == 1) {
753     // Just scan V2.
754     ConstantInt *TheVal = (*V1)[0].Value;
755     for (unsigned i = 0, e = V2->size(); i != e; ++i)
756       if (TheVal == (*V2)[i].Value)
757         return true;
758   }
759 
760   // Otherwise, just sort both lists and compare element by element.
761   array_pod_sort(V1->begin(), V1->end());
762   array_pod_sort(V2->begin(), V2->end());
763   unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size();
764   while (i1 != e1 && i2 != e2) {
765     if ((*V1)[i1].Value == (*V2)[i2].Value)
766       return true;
767     if ((*V1)[i1].Value < (*V2)[i2].Value)
768       ++i1;
769     else
770       ++i2;
771   }
772   return false;
773 }
774 
775 // Set branch weights on SwitchInst. This sets the metadata if there is at
776 // least one non-zero weight.
777 static void setBranchWeights(SwitchInst *SI, ArrayRef<uint32_t> Weights) {
778   // Check that there is at least one non-zero weight. Otherwise, pass
779   // nullptr to setMetadata which will erase the existing metadata.
780   MDNode *N = nullptr;
781   if (llvm::any_of(Weights, [](uint32_t W) { return W != 0; }))
782     N = MDBuilder(SI->getParent()->getContext()).createBranchWeights(Weights);
783   SI->setMetadata(LLVMContext::MD_prof, N);
784 }
785 
786 // Similar to the above, but for branch and select instructions that take
787 // exactly 2 weights.
788 static void setBranchWeights(Instruction *I, uint32_t TrueWeight,
789                              uint32_t FalseWeight) {
790   assert(isa<BranchInst>(I) || isa<SelectInst>(I));
791   // Check that there is at least one non-zero weight. Otherwise, pass
792   // nullptr to setMetadata which will erase the existing metadata.
793   MDNode *N = nullptr;
794   if (TrueWeight || FalseWeight)
795     N = MDBuilder(I->getParent()->getContext())
796             .createBranchWeights(TrueWeight, FalseWeight);
797   I->setMetadata(LLVMContext::MD_prof, N);
798 }
799 
800 /// If TI is known to be a terminator instruction and its block is known to
801 /// only have a single predecessor block, check to see if that predecessor is
802 /// also a value comparison with the same value, and if that comparison
803 /// determines the outcome of this comparison. If so, simplify TI. This does a
804 /// very limited form of jump threading.
805 bool SimplifyCFGOpt::SimplifyEqualityComparisonWithOnlyPredecessor(
806     TerminatorInst *TI, BasicBlock *Pred, IRBuilder<> &Builder) {
807   Value *PredVal = isValueEqualityComparison(Pred->getTerminator());
808   if (!PredVal)
809     return false; // Not a value comparison in predecessor.
810 
811   Value *ThisVal = isValueEqualityComparison(TI);
812   assert(ThisVal && "This isn't a value comparison!!");
813   if (ThisVal != PredVal)
814     return false; // Different predicates.
815 
816   // TODO: Preserve branch weight metadata, similarly to how
817   // FoldValueComparisonIntoPredecessors preserves it.
818 
819   // Find out information about when control will move from Pred to TI's block.
820   std::vector<ValueEqualityComparisonCase> PredCases;
821   BasicBlock *PredDef =
822       GetValueEqualityComparisonCases(Pred->getTerminator(), PredCases);
823   EliminateBlockCases(PredDef, PredCases); // Remove default from cases.
824 
825   // Find information about how control leaves this block.
826   std::vector<ValueEqualityComparisonCase> ThisCases;
827   BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases);
828   EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases.
829 
830   // If TI's block is the default block from Pred's comparison, potentially
831   // simplify TI based on this knowledge.
832   if (PredDef == TI->getParent()) {
833     // If we are here, we know that the value is none of those cases listed in
834     // PredCases.  If there are any cases in ThisCases that are in PredCases, we
835     // can simplify TI.
836     if (!ValuesOverlap(PredCases, ThisCases))
837       return false;
838 
839     if (isa<BranchInst>(TI)) {
840       // Okay, one of the successors of this condbr is dead.  Convert it to a
841       // uncond br.
842       assert(ThisCases.size() == 1 && "Branch can only have one case!");
843       // Insert the new branch.
844       Instruction *NI = Builder.CreateBr(ThisDef);
845       (void)NI;
846 
847       // Remove PHI node entries for the dead edge.
848       ThisCases[0].Dest->removePredecessor(TI->getParent());
849 
850       DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
851                    << "Through successor TI: " << *TI << "Leaving: " << *NI
852                    << "\n");
853 
854       EraseTerminatorInstAndDCECond(TI);
855       return true;
856     }
857 
858     SwitchInst *SI = cast<SwitchInst>(TI);
859     // Okay, TI has cases that are statically dead, prune them away.
860     SmallPtrSet<Constant *, 16> DeadCases;
861     for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
862       DeadCases.insert(PredCases[i].Value);
863 
864     DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
865                  << "Through successor TI: " << *TI);
866 
867     // Collect branch weights into a vector.
868     SmallVector<uint32_t, 8> Weights;
869     MDNode *MD = SI->getMetadata(LLVMContext::MD_prof);
870     bool HasWeight = MD && (MD->getNumOperands() == 2 + SI->getNumCases());
871     if (HasWeight)
872       for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e;
873            ++MD_i) {
874         ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i));
875         Weights.push_back(CI->getValue().getZExtValue());
876       }
877     for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) {
878       --i;
879       if (DeadCases.count(i->getCaseValue())) {
880         if (HasWeight) {
881           std::swap(Weights[i->getCaseIndex() + 1], Weights.back());
882           Weights.pop_back();
883         }
884         i->getCaseSuccessor()->removePredecessor(TI->getParent());
885         SI->removeCase(i);
886       }
887     }
888     if (HasWeight && Weights.size() >= 2)
889       setBranchWeights(SI, Weights);
890 
891     DEBUG(dbgs() << "Leaving: " << *TI << "\n");
892     return true;
893   }
894 
895   // Otherwise, TI's block must correspond to some matched value.  Find out
896   // which value (or set of values) this is.
897   ConstantInt *TIV = nullptr;
898   BasicBlock *TIBB = TI->getParent();
899   for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
900     if (PredCases[i].Dest == TIBB) {
901       if (TIV)
902         return false; // Cannot handle multiple values coming to this block.
903       TIV = PredCases[i].Value;
904     }
905   assert(TIV && "No edge from pred to succ?");
906 
907   // Okay, we found the one constant that our value can be if we get into TI's
908   // BB.  Find out which successor will unconditionally be branched to.
909   BasicBlock *TheRealDest = nullptr;
910   for (unsigned i = 0, e = ThisCases.size(); i != e; ++i)
911     if (ThisCases[i].Value == TIV) {
912       TheRealDest = ThisCases[i].Dest;
913       break;
914     }
915 
916   // If not handled by any explicit cases, it is handled by the default case.
917   if (!TheRealDest)
918     TheRealDest = ThisDef;
919 
920   // Remove PHI node entries for dead edges.
921   BasicBlock *CheckEdge = TheRealDest;
922   for (BasicBlock *Succ : successors(TIBB))
923     if (Succ != CheckEdge)
924       Succ->removePredecessor(TIBB);
925     else
926       CheckEdge = nullptr;
927 
928   // Insert the new branch.
929   Instruction *NI = Builder.CreateBr(TheRealDest);
930   (void)NI;
931 
932   DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
933                << "Through successor TI: " << *TI << "Leaving: " << *NI
934                << "\n");
935 
936   EraseTerminatorInstAndDCECond(TI);
937   return true;
938 }
939 
940 namespace {
941 
942 /// This class implements a stable ordering of constant
943 /// integers that does not depend on their address.  This is important for
944 /// applications that sort ConstantInt's to ensure uniqueness.
945 struct ConstantIntOrdering {
946   bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const {
947     return LHS->getValue().ult(RHS->getValue());
948   }
949 };
950 
951 } // end anonymous namespace
952 
953 static int ConstantIntSortPredicate(ConstantInt *const *P1,
954                                     ConstantInt *const *P2) {
955   const ConstantInt *LHS = *P1;
956   const ConstantInt *RHS = *P2;
957   if (LHS == RHS)
958     return 0;
959   return LHS->getValue().ult(RHS->getValue()) ? 1 : -1;
960 }
961 
962 static inline bool HasBranchWeights(const Instruction *I) {
963   MDNode *ProfMD = I->getMetadata(LLVMContext::MD_prof);
964   if (ProfMD && ProfMD->getOperand(0))
965     if (MDString *MDS = dyn_cast<MDString>(ProfMD->getOperand(0)))
966       return MDS->getString().equals("branch_weights");
967 
968   return false;
969 }
970 
971 /// Get Weights of a given TerminatorInst, the default weight is at the front
972 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight
973 /// metadata.
974 static void GetBranchWeights(TerminatorInst *TI,
975                              SmallVectorImpl<uint64_t> &Weights) {
976   MDNode *MD = TI->getMetadata(LLVMContext::MD_prof);
977   assert(MD);
978   for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) {
979     ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i));
980     Weights.push_back(CI->getValue().getZExtValue());
981   }
982 
983   // If TI is a conditional eq, the default case is the false case,
984   // and the corresponding branch-weight data is at index 2. We swap the
985   // default weight to be the first entry.
986   if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
987     assert(Weights.size() == 2);
988     ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
989     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
990       std::swap(Weights.front(), Weights.back());
991   }
992 }
993 
994 /// Keep halving the weights until all can fit in uint32_t.
995 static void FitWeights(MutableArrayRef<uint64_t> Weights) {
996   uint64_t Max = *std::max_element(Weights.begin(), Weights.end());
997   if (Max > UINT_MAX) {
998     unsigned Offset = 32 - countLeadingZeros(Max);
999     for (uint64_t &I : Weights)
1000       I >>= Offset;
1001   }
1002 }
1003 
1004 /// The specified terminator is a value equality comparison instruction
1005 /// (either a switch or a branch on "X == c").
1006 /// See if any of the predecessors of the terminator block are value comparisons
1007 /// on the same value.  If so, and if safe to do so, fold them together.
1008 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(TerminatorInst *TI,
1009                                                          IRBuilder<> &Builder) {
1010   BasicBlock *BB = TI->getParent();
1011   Value *CV = isValueEqualityComparison(TI); // CondVal
1012   assert(CV && "Not a comparison?");
1013   bool Changed = false;
1014 
1015   SmallVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB));
1016   while (!Preds.empty()) {
1017     BasicBlock *Pred = Preds.pop_back_val();
1018 
1019     // See if the predecessor is a comparison with the same value.
1020     TerminatorInst *PTI = Pred->getTerminator();
1021     Value *PCV = isValueEqualityComparison(PTI); // PredCondVal
1022 
1023     if (PCV == CV && TI != PTI) {
1024       SmallSetVector<BasicBlock*, 4> FailBlocks;
1025       if (!SafeToMergeTerminators(TI, PTI, &FailBlocks)) {
1026         for (auto *Succ : FailBlocks) {
1027           if (!SplitBlockPredecessors(Succ, TI->getParent(), ".fold.split"))
1028             return false;
1029         }
1030       }
1031 
1032       // Figure out which 'cases' to copy from SI to PSI.
1033       std::vector<ValueEqualityComparisonCase> BBCases;
1034       BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases);
1035 
1036       std::vector<ValueEqualityComparisonCase> PredCases;
1037       BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases);
1038 
1039       // Based on whether the default edge from PTI goes to BB or not, fill in
1040       // PredCases and PredDefault with the new switch cases we would like to
1041       // build.
1042       SmallVector<BasicBlock *, 8> NewSuccessors;
1043 
1044       // Update the branch weight metadata along the way
1045       SmallVector<uint64_t, 8> Weights;
1046       bool PredHasWeights = HasBranchWeights(PTI);
1047       bool SuccHasWeights = HasBranchWeights(TI);
1048 
1049       if (PredHasWeights) {
1050         GetBranchWeights(PTI, Weights);
1051         // branch-weight metadata is inconsistent here.
1052         if (Weights.size() != 1 + PredCases.size())
1053           PredHasWeights = SuccHasWeights = false;
1054       } else if (SuccHasWeights)
1055         // If there are no predecessor weights but there are successor weights,
1056         // populate Weights with 1, which will later be scaled to the sum of
1057         // successor's weights
1058         Weights.assign(1 + PredCases.size(), 1);
1059 
1060       SmallVector<uint64_t, 8> SuccWeights;
1061       if (SuccHasWeights) {
1062         GetBranchWeights(TI, SuccWeights);
1063         // branch-weight metadata is inconsistent here.
1064         if (SuccWeights.size() != 1 + BBCases.size())
1065           PredHasWeights = SuccHasWeights = false;
1066       } else if (PredHasWeights)
1067         SuccWeights.assign(1 + BBCases.size(), 1);
1068 
1069       if (PredDefault == BB) {
1070         // If this is the default destination from PTI, only the edges in TI
1071         // that don't occur in PTI, or that branch to BB will be activated.
1072         std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
1073         for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
1074           if (PredCases[i].Dest != BB)
1075             PTIHandled.insert(PredCases[i].Value);
1076           else {
1077             // The default destination is BB, we don't need explicit targets.
1078             std::swap(PredCases[i], PredCases.back());
1079 
1080             if (PredHasWeights || SuccHasWeights) {
1081               // Increase weight for the default case.
1082               Weights[0] += Weights[i + 1];
1083               std::swap(Weights[i + 1], Weights.back());
1084               Weights.pop_back();
1085             }
1086 
1087             PredCases.pop_back();
1088             --i;
1089             --e;
1090           }
1091 
1092         // Reconstruct the new switch statement we will be building.
1093         if (PredDefault != BBDefault) {
1094           PredDefault->removePredecessor(Pred);
1095           PredDefault = BBDefault;
1096           NewSuccessors.push_back(BBDefault);
1097         }
1098 
1099         unsigned CasesFromPred = Weights.size();
1100         uint64_t ValidTotalSuccWeight = 0;
1101         for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
1102           if (!PTIHandled.count(BBCases[i].Value) &&
1103               BBCases[i].Dest != BBDefault) {
1104             PredCases.push_back(BBCases[i]);
1105             NewSuccessors.push_back(BBCases[i].Dest);
1106             if (SuccHasWeights || PredHasWeights) {
1107               // The default weight is at index 0, so weight for the ith case
1108               // should be at index i+1. Scale the cases from successor by
1109               // PredDefaultWeight (Weights[0]).
1110               Weights.push_back(Weights[0] * SuccWeights[i + 1]);
1111               ValidTotalSuccWeight += SuccWeights[i + 1];
1112             }
1113           }
1114 
1115         if (SuccHasWeights || PredHasWeights) {
1116           ValidTotalSuccWeight += SuccWeights[0];
1117           // Scale the cases from predecessor by ValidTotalSuccWeight.
1118           for (unsigned i = 1; i < CasesFromPred; ++i)
1119             Weights[i] *= ValidTotalSuccWeight;
1120           // Scale the default weight by SuccDefaultWeight (SuccWeights[0]).
1121           Weights[0] *= SuccWeights[0];
1122         }
1123       } else {
1124         // If this is not the default destination from PSI, only the edges
1125         // in SI that occur in PSI with a destination of BB will be
1126         // activated.
1127         std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
1128         std::map<ConstantInt *, uint64_t> WeightsForHandled;
1129         for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
1130           if (PredCases[i].Dest == BB) {
1131             PTIHandled.insert(PredCases[i].Value);
1132 
1133             if (PredHasWeights || SuccHasWeights) {
1134               WeightsForHandled[PredCases[i].Value] = Weights[i + 1];
1135               std::swap(Weights[i + 1], Weights.back());
1136               Weights.pop_back();
1137             }
1138 
1139             std::swap(PredCases[i], PredCases.back());
1140             PredCases.pop_back();
1141             --i;
1142             --e;
1143           }
1144 
1145         // Okay, now we know which constants were sent to BB from the
1146         // predecessor.  Figure out where they will all go now.
1147         for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
1148           if (PTIHandled.count(BBCases[i].Value)) {
1149             // If this is one we are capable of getting...
1150             if (PredHasWeights || SuccHasWeights)
1151               Weights.push_back(WeightsForHandled[BBCases[i].Value]);
1152             PredCases.push_back(BBCases[i]);
1153             NewSuccessors.push_back(BBCases[i].Dest);
1154             PTIHandled.erase(
1155                 BBCases[i].Value); // This constant is taken care of
1156           }
1157 
1158         // If there are any constants vectored to BB that TI doesn't handle,
1159         // they must go to the default destination of TI.
1160         for (ConstantInt *I : PTIHandled) {
1161           if (PredHasWeights || SuccHasWeights)
1162             Weights.push_back(WeightsForHandled[I]);
1163           PredCases.push_back(ValueEqualityComparisonCase(I, BBDefault));
1164           NewSuccessors.push_back(BBDefault);
1165         }
1166       }
1167 
1168       // Okay, at this point, we know which new successor Pred will get.  Make
1169       // sure we update the number of entries in the PHI nodes for these
1170       // successors.
1171       for (BasicBlock *NewSuccessor : NewSuccessors)
1172         AddPredecessorToBlock(NewSuccessor, Pred, BB);
1173 
1174       Builder.SetInsertPoint(PTI);
1175       // Convert pointer to int before we switch.
1176       if (CV->getType()->isPointerTy()) {
1177         CV = Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()),
1178                                     "magicptr");
1179       }
1180 
1181       // Now that the successors are updated, create the new Switch instruction.
1182       SwitchInst *NewSI =
1183           Builder.CreateSwitch(CV, PredDefault, PredCases.size());
1184       NewSI->setDebugLoc(PTI->getDebugLoc());
1185       for (ValueEqualityComparisonCase &V : PredCases)
1186         NewSI->addCase(V.Value, V.Dest);
1187 
1188       if (PredHasWeights || SuccHasWeights) {
1189         // Halve the weights if any of them cannot fit in an uint32_t
1190         FitWeights(Weights);
1191 
1192         SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
1193 
1194         setBranchWeights(NewSI, MDWeights);
1195       }
1196 
1197       EraseTerminatorInstAndDCECond(PTI);
1198 
1199       // Okay, last check.  If BB is still a successor of PSI, then we must
1200       // have an infinite loop case.  If so, add an infinitely looping block
1201       // to handle the case to preserve the behavior of the code.
1202       BasicBlock *InfLoopBlock = nullptr;
1203       for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i)
1204         if (NewSI->getSuccessor(i) == BB) {
1205           if (!InfLoopBlock) {
1206             // Insert it at the end of the function, because it's either code,
1207             // or it won't matter if it's hot. :)
1208             InfLoopBlock = BasicBlock::Create(BB->getContext(), "infloop",
1209                                               BB->getParent());
1210             BranchInst::Create(InfLoopBlock, InfLoopBlock);
1211           }
1212           NewSI->setSuccessor(i, InfLoopBlock);
1213         }
1214 
1215       Changed = true;
1216     }
1217   }
1218   return Changed;
1219 }
1220 
1221 // If we would need to insert a select that uses the value of this invoke
1222 // (comments in HoistThenElseCodeToIf explain why we would need to do this), we
1223 // can't hoist the invoke, as there is nowhere to put the select in this case.
1224 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2,
1225                                 Instruction *I1, Instruction *I2) {
1226   for (BasicBlock *Succ : successors(BB1)) {
1227     for (const PHINode &PN : Succ->phis()) {
1228       Value *BB1V = PN.getIncomingValueForBlock(BB1);
1229       Value *BB2V = PN.getIncomingValueForBlock(BB2);
1230       if (BB1V != BB2V && (BB1V == I1 || BB2V == I2)) {
1231         return false;
1232       }
1233     }
1234   }
1235   return true;
1236 }
1237 
1238 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I);
1239 
1240 /// Given a conditional branch that goes to BB1 and BB2, hoist any common code
1241 /// in the two blocks up into the branch block. The caller of this function
1242 /// guarantees that BI's block dominates BB1 and BB2.
1243 static bool HoistThenElseCodeToIf(BranchInst *BI,
1244                                   const TargetTransformInfo &TTI) {
1245   // This does very trivial matching, with limited scanning, to find identical
1246   // instructions in the two blocks.  In particular, we don't want to get into
1247   // O(M*N) situations here where M and N are the sizes of BB1 and BB2.  As
1248   // such, we currently just scan for obviously identical instructions in an
1249   // identical order.
1250   BasicBlock *BB1 = BI->getSuccessor(0); // The true destination.
1251   BasicBlock *BB2 = BI->getSuccessor(1); // The false destination
1252 
1253   BasicBlock::iterator BB1_Itr = BB1->begin();
1254   BasicBlock::iterator BB2_Itr = BB2->begin();
1255 
1256   Instruction *I1 = &*BB1_Itr++, *I2 = &*BB2_Itr++;
1257   // Skip debug info if it is not identical.
1258   DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1259   DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1260   if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1261     while (isa<DbgInfoIntrinsic>(I1))
1262       I1 = &*BB1_Itr++;
1263     while (isa<DbgInfoIntrinsic>(I2))
1264       I2 = &*BB2_Itr++;
1265   }
1266   if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) ||
1267       (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)))
1268     return false;
1269 
1270   BasicBlock *BIParent = BI->getParent();
1271 
1272   bool Changed = false;
1273   do {
1274     // If we are hoisting the terminator instruction, don't move one (making a
1275     // broken BB), instead clone it, and remove BI.
1276     if (isa<TerminatorInst>(I1))
1277       goto HoistTerminator;
1278 
1279     // If we're going to hoist a call, make sure that the two instructions we're
1280     // commoning/hoisting are both marked with musttail, or neither of them is
1281     // marked as such. Otherwise, we might end up in a situation where we hoist
1282     // from a block where the terminator is a `ret` to a block where the terminator
1283     // is a `br`, and `musttail` calls expect to be followed by a return.
1284     auto *C1 = dyn_cast<CallInst>(I1);
1285     auto *C2 = dyn_cast<CallInst>(I2);
1286     if (C1 && C2)
1287       if (C1->isMustTailCall() != C2->isMustTailCall())
1288         return Changed;
1289 
1290     if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2))
1291       return Changed;
1292 
1293     // For a normal instruction, we just move one to right before the branch,
1294     // then replace all uses of the other with the first.  Finally, we remove
1295     // the now redundant second instruction.
1296     BIParent->getInstList().splice(BI->getIterator(), BB1->getInstList(), I1);
1297     if (!I2->use_empty())
1298       I2->replaceAllUsesWith(I1);
1299     I1->andIRFlags(I2);
1300     unsigned KnownIDs[] = {LLVMContext::MD_tbaa,
1301                            LLVMContext::MD_range,
1302                            LLVMContext::MD_fpmath,
1303                            LLVMContext::MD_invariant_load,
1304                            LLVMContext::MD_nonnull,
1305                            LLVMContext::MD_invariant_group,
1306                            LLVMContext::MD_align,
1307                            LLVMContext::MD_dereferenceable,
1308                            LLVMContext::MD_dereferenceable_or_null,
1309                            LLVMContext::MD_mem_parallel_loop_access};
1310     combineMetadata(I1, I2, KnownIDs);
1311 
1312     // I1 and I2 are being combined into a single instruction.  Its debug
1313     // location is the merged locations of the original instructions.
1314     I1->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc());
1315 
1316     I2->eraseFromParent();
1317     Changed = true;
1318 
1319     I1 = &*BB1_Itr++;
1320     I2 = &*BB2_Itr++;
1321     // Skip debug info if it is not identical.
1322     DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1323     DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1324     if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1325       while (isa<DbgInfoIntrinsic>(I1))
1326         I1 = &*BB1_Itr++;
1327       while (isa<DbgInfoIntrinsic>(I2))
1328         I2 = &*BB2_Itr++;
1329     }
1330   } while (I1->isIdenticalToWhenDefined(I2));
1331 
1332   return true;
1333 
1334 HoistTerminator:
1335   // It may not be possible to hoist an invoke.
1336   if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))
1337     return Changed;
1338 
1339   for (BasicBlock *Succ : successors(BB1)) {
1340     for (PHINode &PN : Succ->phis()) {
1341       Value *BB1V = PN.getIncomingValueForBlock(BB1);
1342       Value *BB2V = PN.getIncomingValueForBlock(BB2);
1343       if (BB1V == BB2V)
1344         continue;
1345 
1346       // Check for passingValueIsAlwaysUndefined here because we would rather
1347       // eliminate undefined control flow then converting it to a select.
1348       if (passingValueIsAlwaysUndefined(BB1V, &PN) ||
1349           passingValueIsAlwaysUndefined(BB2V, &PN))
1350         return Changed;
1351 
1352       if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V))
1353         return Changed;
1354       if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V))
1355         return Changed;
1356     }
1357   }
1358 
1359   // Okay, it is safe to hoist the terminator.
1360   Instruction *NT = I1->clone();
1361   BIParent->getInstList().insert(BI->getIterator(), NT);
1362   if (!NT->getType()->isVoidTy()) {
1363     I1->replaceAllUsesWith(NT);
1364     I2->replaceAllUsesWith(NT);
1365     NT->takeName(I1);
1366   }
1367 
1368   IRBuilder<NoFolder> Builder(NT);
1369   // Hoisting one of the terminators from our successor is a great thing.
1370   // Unfortunately, the successors of the if/else blocks may have PHI nodes in
1371   // them.  If they do, all PHI entries for BB1/BB2 must agree for all PHI
1372   // nodes, so we insert select instruction to compute the final result.
1373   std::map<std::pair<Value *, Value *>, SelectInst *> InsertedSelects;
1374   for (BasicBlock *Succ : successors(BB1)) {
1375     for (PHINode &PN : Succ->phis()) {
1376       Value *BB1V = PN.getIncomingValueForBlock(BB1);
1377       Value *BB2V = PN.getIncomingValueForBlock(BB2);
1378       if (BB1V == BB2V)
1379         continue;
1380 
1381       // These values do not agree.  Insert a select instruction before NT
1382       // that determines the right value.
1383       SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)];
1384       if (!SI)
1385         SI = cast<SelectInst>(
1386             Builder.CreateSelect(BI->getCondition(), BB1V, BB2V,
1387                                  BB1V->getName() + "." + BB2V->getName(), BI));
1388 
1389       // Make the PHI node use the select for all incoming values for BB1/BB2
1390       for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
1391         if (PN.getIncomingBlock(i) == BB1 || PN.getIncomingBlock(i) == BB2)
1392           PN.setIncomingValue(i, SI);
1393     }
1394   }
1395 
1396   // Update any PHI nodes in our new successors.
1397   for (BasicBlock *Succ : successors(BB1))
1398     AddPredecessorToBlock(Succ, BIParent, BB1);
1399 
1400   EraseTerminatorInstAndDCECond(BI);
1401   return true;
1402 }
1403 
1404 // All instructions in Insts belong to different blocks that all unconditionally
1405 // branch to a common successor. Analyze each instruction and return true if it
1406 // would be possible to sink them into their successor, creating one common
1407 // instruction instead. For every value that would be required to be provided by
1408 // PHI node (because an operand varies in each input block), add to PHIOperands.
1409 static bool canSinkInstructions(
1410     ArrayRef<Instruction *> Insts,
1411     DenseMap<Instruction *, SmallVector<Value *, 4>> &PHIOperands) {
1412   // Prune out obviously bad instructions to move. Any non-store instruction
1413   // must have exactly one use, and we check later that use is by a single,
1414   // common PHI instruction in the successor.
1415   for (auto *I : Insts) {
1416     // These instructions may change or break semantics if moved.
1417     if (isa<PHINode>(I) || I->isEHPad() || isa<AllocaInst>(I) ||
1418         I->getType()->isTokenTy())
1419       return false;
1420 
1421     // Conservatively return false if I is an inline-asm instruction. Sinking
1422     // and merging inline-asm instructions can potentially create arguments
1423     // that cannot satisfy the inline-asm constraints.
1424     if (const auto *C = dyn_cast<CallInst>(I))
1425       if (C->isInlineAsm())
1426         return false;
1427 
1428     // Everything must have only one use too, apart from stores which
1429     // have no uses.
1430     if (!isa<StoreInst>(I) && !I->hasOneUse())
1431       return false;
1432   }
1433 
1434   const Instruction *I0 = Insts.front();
1435   for (auto *I : Insts)
1436     if (!I->isSameOperationAs(I0))
1437       return false;
1438 
1439   // All instructions in Insts are known to be the same opcode. If they aren't
1440   // stores, check the only user of each is a PHI or in the same block as the
1441   // instruction, because if a user is in the same block as an instruction
1442   // we're contemplating sinking, it must already be determined to be sinkable.
1443   if (!isa<StoreInst>(I0)) {
1444     auto *PNUse = dyn_cast<PHINode>(*I0->user_begin());
1445     auto *Succ = I0->getParent()->getTerminator()->getSuccessor(0);
1446     if (!all_of(Insts, [&PNUse,&Succ](const Instruction *I) -> bool {
1447           auto *U = cast<Instruction>(*I->user_begin());
1448           return (PNUse &&
1449                   PNUse->getParent() == Succ &&
1450                   PNUse->getIncomingValueForBlock(I->getParent()) == I) ||
1451                  U->getParent() == I->getParent();
1452         }))
1453       return false;
1454   }
1455 
1456   // Because SROA can't handle speculating stores of selects, try not
1457   // to sink loads or stores of allocas when we'd have to create a PHI for
1458   // the address operand. Also, because it is likely that loads or stores
1459   // of allocas will disappear when Mem2Reg/SROA is run, don't sink them.
1460   // This can cause code churn which can have unintended consequences down
1461   // the line - see https://llvm.org/bugs/show_bug.cgi?id=30244.
1462   // FIXME: This is a workaround for a deficiency in SROA - see
1463   // https://llvm.org/bugs/show_bug.cgi?id=30188
1464   if (isa<StoreInst>(I0) && any_of(Insts, [](const Instruction *I) {
1465         return isa<AllocaInst>(I->getOperand(1));
1466       }))
1467     return false;
1468   if (isa<LoadInst>(I0) && any_of(Insts, [](const Instruction *I) {
1469         return isa<AllocaInst>(I->getOperand(0));
1470       }))
1471     return false;
1472 
1473   for (unsigned OI = 0, OE = I0->getNumOperands(); OI != OE; ++OI) {
1474     if (I0->getOperand(OI)->getType()->isTokenTy())
1475       // Don't touch any operand of token type.
1476       return false;
1477 
1478     auto SameAsI0 = [&I0, OI](const Instruction *I) {
1479       assert(I->getNumOperands() == I0->getNumOperands());
1480       return I->getOperand(OI) == I0->getOperand(OI);
1481     };
1482     if (!all_of(Insts, SameAsI0)) {
1483       if (!canReplaceOperandWithVariable(I0, OI))
1484         // We can't create a PHI from this GEP.
1485         return false;
1486       // Don't create indirect calls! The called value is the final operand.
1487       if ((isa<CallInst>(I0) || isa<InvokeInst>(I0)) && OI == OE - 1) {
1488         // FIXME: if the call was *already* indirect, we should do this.
1489         return false;
1490       }
1491       for (auto *I : Insts)
1492         PHIOperands[I].push_back(I->getOperand(OI));
1493     }
1494   }
1495   return true;
1496 }
1497 
1498 // Assuming canSinkLastInstruction(Blocks) has returned true, sink the last
1499 // instruction of every block in Blocks to their common successor, commoning
1500 // into one instruction.
1501 static bool sinkLastInstruction(ArrayRef<BasicBlock*> Blocks) {
1502   auto *BBEnd = Blocks[0]->getTerminator()->getSuccessor(0);
1503 
1504   // canSinkLastInstruction returning true guarantees that every block has at
1505   // least one non-terminator instruction.
1506   SmallVector<Instruction*,4> Insts;
1507   for (auto *BB : Blocks) {
1508     Instruction *I = BB->getTerminator();
1509     do {
1510       I = I->getPrevNode();
1511     } while (isa<DbgInfoIntrinsic>(I) && I != &BB->front());
1512     if (!isa<DbgInfoIntrinsic>(I))
1513       Insts.push_back(I);
1514   }
1515 
1516   // The only checking we need to do now is that all users of all instructions
1517   // are the same PHI node. canSinkLastInstruction should have checked this but
1518   // it is slightly over-aggressive - it gets confused by commutative instructions
1519   // so double-check it here.
1520   Instruction *I0 = Insts.front();
1521   if (!isa<StoreInst>(I0)) {
1522     auto *PNUse = dyn_cast<PHINode>(*I0->user_begin());
1523     if (!all_of(Insts, [&PNUse](const Instruction *I) -> bool {
1524           auto *U = cast<Instruction>(*I->user_begin());
1525           return U == PNUse;
1526         }))
1527       return false;
1528   }
1529 
1530   // We don't need to do any more checking here; canSinkLastInstruction should
1531   // have done it all for us.
1532   SmallVector<Value*, 4> NewOperands;
1533   for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) {
1534     // This check is different to that in canSinkLastInstruction. There, we
1535     // cared about the global view once simplifycfg (and instcombine) have
1536     // completed - it takes into account PHIs that become trivially
1537     // simplifiable.  However here we need a more local view; if an operand
1538     // differs we create a PHI and rely on instcombine to clean up the very
1539     // small mess we may make.
1540     bool NeedPHI = any_of(Insts, [&I0, O](const Instruction *I) {
1541       return I->getOperand(O) != I0->getOperand(O);
1542     });
1543     if (!NeedPHI) {
1544       NewOperands.push_back(I0->getOperand(O));
1545       continue;
1546     }
1547 
1548     // Create a new PHI in the successor block and populate it.
1549     auto *Op = I0->getOperand(O);
1550     assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!");
1551     auto *PN = PHINode::Create(Op->getType(), Insts.size(),
1552                                Op->getName() + ".sink", &BBEnd->front());
1553     for (auto *I : Insts)
1554       PN->addIncoming(I->getOperand(O), I->getParent());
1555     NewOperands.push_back(PN);
1556   }
1557 
1558   // Arbitrarily use I0 as the new "common" instruction; remap its operands
1559   // and move it to the start of the successor block.
1560   for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O)
1561     I0->getOperandUse(O).set(NewOperands[O]);
1562   I0->moveBefore(&*BBEnd->getFirstInsertionPt());
1563 
1564   // Update metadata and IR flags, and merge debug locations.
1565   for (auto *I : Insts)
1566     if (I != I0) {
1567       // The debug location for the "common" instruction is the merged locations
1568       // of all the commoned instructions.  We start with the original location
1569       // of the "common" instruction and iteratively merge each location in the
1570       // loop below.
1571       // This is an N-way merge, which will be inefficient if I0 is a CallInst.
1572       // However, as N-way merge for CallInst is rare, so we use simplified API
1573       // instead of using complex API for N-way merge.
1574       I0->applyMergedLocation(I0->getDebugLoc(), I->getDebugLoc());
1575       combineMetadataForCSE(I0, I);
1576       I0->andIRFlags(I);
1577     }
1578 
1579   if (!isa<StoreInst>(I0)) {
1580     // canSinkLastInstruction checked that all instructions were used by
1581     // one and only one PHI node. Find that now, RAUW it to our common
1582     // instruction and nuke it.
1583     assert(I0->hasOneUse());
1584     auto *PN = cast<PHINode>(*I0->user_begin());
1585     PN->replaceAllUsesWith(I0);
1586     PN->eraseFromParent();
1587   }
1588 
1589   // Finally nuke all instructions apart from the common instruction.
1590   for (auto *I : Insts)
1591     if (I != I0)
1592       I->eraseFromParent();
1593 
1594   return true;
1595 }
1596 
1597 namespace {
1598 
1599   // LockstepReverseIterator - Iterates through instructions
1600   // in a set of blocks in reverse order from the first non-terminator.
1601   // For example (assume all blocks have size n):
1602   //   LockstepReverseIterator I([B1, B2, B3]);
1603   //   *I-- = [B1[n], B2[n], B3[n]];
1604   //   *I-- = [B1[n-1], B2[n-1], B3[n-1]];
1605   //   *I-- = [B1[n-2], B2[n-2], B3[n-2]];
1606   //   ...
1607   class LockstepReverseIterator {
1608     ArrayRef<BasicBlock*> Blocks;
1609     SmallVector<Instruction*,4> Insts;
1610     bool Fail;
1611 
1612   public:
1613     LockstepReverseIterator(ArrayRef<BasicBlock*> Blocks) : Blocks(Blocks) {
1614       reset();
1615     }
1616 
1617     void reset() {
1618       Fail = false;
1619       Insts.clear();
1620       for (auto *BB : Blocks) {
1621         Instruction *Inst = BB->getTerminator();
1622         for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
1623           Inst = Inst->getPrevNode();
1624         if (!Inst) {
1625           // Block wasn't big enough.
1626           Fail = true;
1627           return;
1628         }
1629         Insts.push_back(Inst);
1630       }
1631     }
1632 
1633     bool isValid() const {
1634       return !Fail;
1635     }
1636 
1637     void operator--() {
1638       if (Fail)
1639         return;
1640       for (auto *&Inst : Insts) {
1641         for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
1642           Inst = Inst->getPrevNode();
1643         // Already at beginning of block.
1644         if (!Inst) {
1645           Fail = true;
1646           return;
1647         }
1648       }
1649     }
1650 
1651     ArrayRef<Instruction*> operator * () const {
1652       return Insts;
1653     }
1654   };
1655 
1656 } // end anonymous namespace
1657 
1658 /// Check whether BB's predecessors end with unconditional branches. If it is
1659 /// true, sink any common code from the predecessors to BB.
1660 /// We also allow one predecessor to end with conditional branch (but no more
1661 /// than one).
1662 static bool SinkCommonCodeFromPredecessors(BasicBlock *BB) {
1663   // We support two situations:
1664   //   (1) all incoming arcs are unconditional
1665   //   (2) one incoming arc is conditional
1666   //
1667   // (2) is very common in switch defaults and
1668   // else-if patterns;
1669   //
1670   //   if (a) f(1);
1671   //   else if (b) f(2);
1672   //
1673   // produces:
1674   //
1675   //       [if]
1676   //      /    \
1677   //    [f(1)] [if]
1678   //      |     | \
1679   //      |     |  |
1680   //      |  [f(2)]|
1681   //       \    | /
1682   //        [ end ]
1683   //
1684   // [end] has two unconditional predecessor arcs and one conditional. The
1685   // conditional refers to the implicit empty 'else' arc. This conditional
1686   // arc can also be caused by an empty default block in a switch.
1687   //
1688   // In this case, we attempt to sink code from all *unconditional* arcs.
1689   // If we can sink instructions from these arcs (determined during the scan
1690   // phase below) we insert a common successor for all unconditional arcs and
1691   // connect that to [end], to enable sinking:
1692   //
1693   //       [if]
1694   //      /    \
1695   //    [x(1)] [if]
1696   //      |     | \
1697   //      |     |  \
1698   //      |  [x(2)] |
1699   //       \   /    |
1700   //   [sink.split] |
1701   //         \     /
1702   //         [ end ]
1703   //
1704   SmallVector<BasicBlock*,4> UnconditionalPreds;
1705   Instruction *Cond = nullptr;
1706   for (auto *B : predecessors(BB)) {
1707     auto *T = B->getTerminator();
1708     if (isa<BranchInst>(T) && cast<BranchInst>(T)->isUnconditional())
1709       UnconditionalPreds.push_back(B);
1710     else if ((isa<BranchInst>(T) || isa<SwitchInst>(T)) && !Cond)
1711       Cond = T;
1712     else
1713       return false;
1714   }
1715   if (UnconditionalPreds.size() < 2)
1716     return false;
1717 
1718   bool Changed = false;
1719   // We take a two-step approach to tail sinking. First we scan from the end of
1720   // each block upwards in lockstep. If the n'th instruction from the end of each
1721   // block can be sunk, those instructions are added to ValuesToSink and we
1722   // carry on. If we can sink an instruction but need to PHI-merge some operands
1723   // (because they're not identical in each instruction) we add these to
1724   // PHIOperands.
1725   unsigned ScanIdx = 0;
1726   SmallPtrSet<Value*,4> InstructionsToSink;
1727   DenseMap<Instruction*, SmallVector<Value*,4>> PHIOperands;
1728   LockstepReverseIterator LRI(UnconditionalPreds);
1729   while (LRI.isValid() &&
1730          canSinkInstructions(*LRI, PHIOperands)) {
1731     DEBUG(dbgs() << "SINK: instruction can be sunk: " << *(*LRI)[0] << "\n");
1732     InstructionsToSink.insert((*LRI).begin(), (*LRI).end());
1733     ++ScanIdx;
1734     --LRI;
1735   }
1736 
1737   auto ProfitableToSinkInstruction = [&](LockstepReverseIterator &LRI) {
1738     unsigned NumPHIdValues = 0;
1739     for (auto *I : *LRI)
1740       for (auto *V : PHIOperands[I])
1741         if (InstructionsToSink.count(V) == 0)
1742           ++NumPHIdValues;
1743     DEBUG(dbgs() << "SINK: #phid values: " << NumPHIdValues << "\n");
1744     unsigned NumPHIInsts = NumPHIdValues / UnconditionalPreds.size();
1745     if ((NumPHIdValues % UnconditionalPreds.size()) != 0)
1746         NumPHIInsts++;
1747 
1748     return NumPHIInsts <= 1;
1749   };
1750 
1751   if (ScanIdx > 0 && Cond) {
1752     // Check if we would actually sink anything first! This mutates the CFG and
1753     // adds an extra block. The goal in doing this is to allow instructions that
1754     // couldn't be sunk before to be sunk - obviously, speculatable instructions
1755     // (such as trunc, add) can be sunk and predicated already. So we check that
1756     // we're going to sink at least one non-speculatable instruction.
1757     LRI.reset();
1758     unsigned Idx = 0;
1759     bool Profitable = false;
1760     while (ProfitableToSinkInstruction(LRI) && Idx < ScanIdx) {
1761       if (!isSafeToSpeculativelyExecute((*LRI)[0])) {
1762         Profitable = true;
1763         break;
1764       }
1765       --LRI;
1766       ++Idx;
1767     }
1768     if (!Profitable)
1769       return false;
1770 
1771     DEBUG(dbgs() << "SINK: Splitting edge\n");
1772     // We have a conditional edge and we're going to sink some instructions.
1773     // Insert a new block postdominating all blocks we're going to sink from.
1774     if (!SplitBlockPredecessors(BB, UnconditionalPreds, ".sink.split"))
1775       // Edges couldn't be split.
1776       return false;
1777     Changed = true;
1778   }
1779 
1780   // Now that we've analyzed all potential sinking candidates, perform the
1781   // actual sink. We iteratively sink the last non-terminator of the source
1782   // blocks into their common successor unless doing so would require too
1783   // many PHI instructions to be generated (currently only one PHI is allowed
1784   // per sunk instruction).
1785   //
1786   // We can use InstructionsToSink to discount values needing PHI-merging that will
1787   // actually be sunk in a later iteration. This allows us to be more
1788   // aggressive in what we sink. This does allow a false positive where we
1789   // sink presuming a later value will also be sunk, but stop half way through
1790   // and never actually sink it which means we produce more PHIs than intended.
1791   // This is unlikely in practice though.
1792   for (unsigned SinkIdx = 0; SinkIdx != ScanIdx; ++SinkIdx) {
1793     DEBUG(dbgs() << "SINK: Sink: "
1794                  << *UnconditionalPreds[0]->getTerminator()->getPrevNode()
1795                  << "\n");
1796 
1797     // Because we've sunk every instruction in turn, the current instruction to
1798     // sink is always at index 0.
1799     LRI.reset();
1800     if (!ProfitableToSinkInstruction(LRI)) {
1801       // Too many PHIs would be created.
1802       DEBUG(dbgs() << "SINK: stopping here, too many PHIs would be created!\n");
1803       break;
1804     }
1805 
1806     if (!sinkLastInstruction(UnconditionalPreds))
1807       return Changed;
1808     NumSinkCommons++;
1809     Changed = true;
1810   }
1811   return Changed;
1812 }
1813 
1814 /// \brief Determine if we can hoist sink a sole store instruction out of a
1815 /// conditional block.
1816 ///
1817 /// We are looking for code like the following:
1818 ///   BrBB:
1819 ///     store i32 %add, i32* %arrayidx2
1820 ///     ... // No other stores or function calls (we could be calling a memory
1821 ///     ... // function).
1822 ///     %cmp = icmp ult %x, %y
1823 ///     br i1 %cmp, label %EndBB, label %ThenBB
1824 ///   ThenBB:
1825 ///     store i32 %add5, i32* %arrayidx2
1826 ///     br label EndBB
1827 ///   EndBB:
1828 ///     ...
1829 ///   We are going to transform this into:
1830 ///   BrBB:
1831 ///     store i32 %add, i32* %arrayidx2
1832 ///     ... //
1833 ///     %cmp = icmp ult %x, %y
1834 ///     %add.add5 = select i1 %cmp, i32 %add, %add5
1835 ///     store i32 %add.add5, i32* %arrayidx2
1836 ///     ...
1837 ///
1838 /// \return The pointer to the value of the previous store if the store can be
1839 ///         hoisted into the predecessor block. 0 otherwise.
1840 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB,
1841                                      BasicBlock *StoreBB, BasicBlock *EndBB) {
1842   StoreInst *StoreToHoist = dyn_cast<StoreInst>(I);
1843   if (!StoreToHoist)
1844     return nullptr;
1845 
1846   // Volatile or atomic.
1847   if (!StoreToHoist->isSimple())
1848     return nullptr;
1849 
1850   Value *StorePtr = StoreToHoist->getPointerOperand();
1851 
1852   // Look for a store to the same pointer in BrBB.
1853   unsigned MaxNumInstToLookAt = 9;
1854   for (Instruction &CurI : reverse(*BrBB)) {
1855     if (!MaxNumInstToLookAt)
1856       break;
1857     // Skip debug info.
1858     if (isa<DbgInfoIntrinsic>(CurI))
1859       continue;
1860     --MaxNumInstToLookAt;
1861 
1862     // Could be calling an instruction that affects memory like free().
1863     if (CurI.mayHaveSideEffects() && !isa<StoreInst>(CurI))
1864       return nullptr;
1865 
1866     if (auto *SI = dyn_cast<StoreInst>(&CurI)) {
1867       // Found the previous store make sure it stores to the same location.
1868       if (SI->getPointerOperand() == StorePtr)
1869         // Found the previous store, return its value operand.
1870         return SI->getValueOperand();
1871       return nullptr; // Unknown store.
1872     }
1873   }
1874 
1875   return nullptr;
1876 }
1877 
1878 /// \brief Speculate a conditional basic block flattening the CFG.
1879 ///
1880 /// Note that this is a very risky transform currently. Speculating
1881 /// instructions like this is most often not desirable. Instead, there is an MI
1882 /// pass which can do it with full awareness of the resource constraints.
1883 /// However, some cases are "obvious" and we should do directly. An example of
1884 /// this is speculating a single, reasonably cheap instruction.
1885 ///
1886 /// There is only one distinct advantage to flattening the CFG at the IR level:
1887 /// it makes very common but simplistic optimizations such as are common in
1888 /// instcombine and the DAG combiner more powerful by removing CFG edges and
1889 /// modeling their effects with easier to reason about SSA value graphs.
1890 ///
1891 ///
1892 /// An illustration of this transform is turning this IR:
1893 /// \code
1894 ///   BB:
1895 ///     %cmp = icmp ult %x, %y
1896 ///     br i1 %cmp, label %EndBB, label %ThenBB
1897 ///   ThenBB:
1898 ///     %sub = sub %x, %y
1899 ///     br label BB2
1900 ///   EndBB:
1901 ///     %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ]
1902 ///     ...
1903 /// \endcode
1904 ///
1905 /// Into this IR:
1906 /// \code
1907 ///   BB:
1908 ///     %cmp = icmp ult %x, %y
1909 ///     %sub = sub %x, %y
1910 ///     %cond = select i1 %cmp, 0, %sub
1911 ///     ...
1912 /// \endcode
1913 ///
1914 /// \returns true if the conditional block is removed.
1915 static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB,
1916                                    const TargetTransformInfo &TTI) {
1917   // Be conservative for now. FP select instruction can often be expensive.
1918   Value *BrCond = BI->getCondition();
1919   if (isa<FCmpInst>(BrCond))
1920     return false;
1921 
1922   BasicBlock *BB = BI->getParent();
1923   BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0);
1924 
1925   // If ThenBB is actually on the false edge of the conditional branch, remember
1926   // to swap the select operands later.
1927   bool Invert = false;
1928   if (ThenBB != BI->getSuccessor(0)) {
1929     assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?");
1930     Invert = true;
1931   }
1932   assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block");
1933 
1934   // Keep a count of how many times instructions are used within CondBB when
1935   // they are candidates for sinking into CondBB. Specifically:
1936   // - They are defined in BB, and
1937   // - They have no side effects, and
1938   // - All of their uses are in CondBB.
1939   SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts;
1940 
1941   SmallVector<Instruction *, 4> SpeculatedDbgIntrinsics;
1942 
1943   unsigned SpeculationCost = 0;
1944   Value *SpeculatedStoreValue = nullptr;
1945   StoreInst *SpeculatedStore = nullptr;
1946   for (BasicBlock::iterator BBI = ThenBB->begin(),
1947                             BBE = std::prev(ThenBB->end());
1948        BBI != BBE; ++BBI) {
1949     Instruction *I = &*BBI;
1950     // Skip debug info.
1951     if (isa<DbgInfoIntrinsic>(I)) {
1952       SpeculatedDbgIntrinsics.push_back(I);
1953       continue;
1954     }
1955 
1956     // Only speculatively execute a single instruction (not counting the
1957     // terminator) for now.
1958     ++SpeculationCost;
1959     if (SpeculationCost > 1)
1960       return false;
1961 
1962     // Don't hoist the instruction if it's unsafe or expensive.
1963     if (!isSafeToSpeculativelyExecute(I) &&
1964         !(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore(
1965                                   I, BB, ThenBB, EndBB))))
1966       return false;
1967     if (!SpeculatedStoreValue &&
1968         ComputeSpeculationCost(I, TTI) >
1969             PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic)
1970       return false;
1971 
1972     // Store the store speculation candidate.
1973     if (SpeculatedStoreValue)
1974       SpeculatedStore = cast<StoreInst>(I);
1975 
1976     // Do not hoist the instruction if any of its operands are defined but not
1977     // used in BB. The transformation will prevent the operand from
1978     // being sunk into the use block.
1979     for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) {
1980       Instruction *OpI = dyn_cast<Instruction>(*i);
1981       if (!OpI || OpI->getParent() != BB || OpI->mayHaveSideEffects())
1982         continue; // Not a candidate for sinking.
1983 
1984       ++SinkCandidateUseCounts[OpI];
1985     }
1986   }
1987 
1988   // Consider any sink candidates which are only used in CondBB as costs for
1989   // speculation. Note, while we iterate over a DenseMap here, we are summing
1990   // and so iteration order isn't significant.
1991   for (SmallDenseMap<Instruction *, unsigned, 4>::iterator
1992            I = SinkCandidateUseCounts.begin(),
1993            E = SinkCandidateUseCounts.end();
1994        I != E; ++I)
1995     if (I->first->getNumUses() == I->second) {
1996       ++SpeculationCost;
1997       if (SpeculationCost > 1)
1998         return false;
1999     }
2000 
2001   // Check that the PHI nodes can be converted to selects.
2002   bool HaveRewritablePHIs = false;
2003   for (PHINode &PN : EndBB->phis()) {
2004     Value *OrigV = PN.getIncomingValueForBlock(BB);
2005     Value *ThenV = PN.getIncomingValueForBlock(ThenBB);
2006 
2007     // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf.
2008     // Skip PHIs which are trivial.
2009     if (ThenV == OrigV)
2010       continue;
2011 
2012     // Don't convert to selects if we could remove undefined behavior instead.
2013     if (passingValueIsAlwaysUndefined(OrigV, &PN) ||
2014         passingValueIsAlwaysUndefined(ThenV, &PN))
2015       return false;
2016 
2017     HaveRewritablePHIs = true;
2018     ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV);
2019     ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV);
2020     if (!OrigCE && !ThenCE)
2021       continue; // Known safe and cheap.
2022 
2023     if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE)) ||
2024         (OrigCE && !isSafeToSpeculativelyExecute(OrigCE)))
2025       return false;
2026     unsigned OrigCost = OrigCE ? ComputeSpeculationCost(OrigCE, TTI) : 0;
2027     unsigned ThenCost = ThenCE ? ComputeSpeculationCost(ThenCE, TTI) : 0;
2028     unsigned MaxCost =
2029         2 * PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
2030     if (OrigCost + ThenCost > MaxCost)
2031       return false;
2032 
2033     // Account for the cost of an unfolded ConstantExpr which could end up
2034     // getting expanded into Instructions.
2035     // FIXME: This doesn't account for how many operations are combined in the
2036     // constant expression.
2037     ++SpeculationCost;
2038     if (SpeculationCost > 1)
2039       return false;
2040   }
2041 
2042   // If there are no PHIs to process, bail early. This helps ensure idempotence
2043   // as well.
2044   if (!HaveRewritablePHIs && !(HoistCondStores && SpeculatedStoreValue))
2045     return false;
2046 
2047   // If we get here, we can hoist the instruction and if-convert.
2048   DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";);
2049 
2050   // Insert a select of the value of the speculated store.
2051   if (SpeculatedStoreValue) {
2052     IRBuilder<NoFolder> Builder(BI);
2053     Value *TrueV = SpeculatedStore->getValueOperand();
2054     Value *FalseV = SpeculatedStoreValue;
2055     if (Invert)
2056       std::swap(TrueV, FalseV);
2057     Value *S = Builder.CreateSelect(
2058         BrCond, TrueV, FalseV, "spec.store.select", BI);
2059     SpeculatedStore->setOperand(0, S);
2060     SpeculatedStore->applyMergedLocation(BI->getDebugLoc(),
2061                                          SpeculatedStore->getDebugLoc());
2062   }
2063 
2064   // Metadata can be dependent on the condition we are hoisting above.
2065   // Conservatively strip all metadata on the instruction.
2066   for (auto &I : *ThenBB)
2067     I.dropUnknownNonDebugMetadata();
2068 
2069   // Hoist the instructions.
2070   BB->getInstList().splice(BI->getIterator(), ThenBB->getInstList(),
2071                            ThenBB->begin(), std::prev(ThenBB->end()));
2072 
2073   // Insert selects and rewrite the PHI operands.
2074   IRBuilder<NoFolder> Builder(BI);
2075   for (PHINode &PN : EndBB->phis()) {
2076     unsigned OrigI = PN.getBasicBlockIndex(BB);
2077     unsigned ThenI = PN.getBasicBlockIndex(ThenBB);
2078     Value *OrigV = PN.getIncomingValue(OrigI);
2079     Value *ThenV = PN.getIncomingValue(ThenI);
2080 
2081     // Skip PHIs which are trivial.
2082     if (OrigV == ThenV)
2083       continue;
2084 
2085     // Create a select whose true value is the speculatively executed value and
2086     // false value is the preexisting value. Swap them if the branch
2087     // destinations were inverted.
2088     Value *TrueV = ThenV, *FalseV = OrigV;
2089     if (Invert)
2090       std::swap(TrueV, FalseV);
2091     Value *V = Builder.CreateSelect(
2092         BrCond, TrueV, FalseV, "spec.select", BI);
2093     PN.setIncomingValue(OrigI, V);
2094     PN.setIncomingValue(ThenI, V);
2095   }
2096 
2097   // Remove speculated dbg intrinsics.
2098   // FIXME: Is it possible to do this in a more elegant way? Moving/merging the
2099   // dbg value for the different flows and inserting it after the select.
2100   for (Instruction *I : SpeculatedDbgIntrinsics)
2101     I->eraseFromParent();
2102 
2103   ++NumSpeculations;
2104   return true;
2105 }
2106 
2107 /// Return true if we can thread a branch across this block.
2108 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) {
2109   BranchInst *BI = cast<BranchInst>(BB->getTerminator());
2110   unsigned Size = 0;
2111 
2112   for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
2113     if (isa<DbgInfoIntrinsic>(BBI))
2114       continue;
2115     if (Size > 10)
2116       return false; // Don't clone large BB's.
2117     ++Size;
2118 
2119     // We can only support instructions that do not define values that are
2120     // live outside of the current basic block.
2121     for (User *U : BBI->users()) {
2122       Instruction *UI = cast<Instruction>(U);
2123       if (UI->getParent() != BB || isa<PHINode>(UI))
2124         return false;
2125     }
2126 
2127     // Looks ok, continue checking.
2128   }
2129 
2130   return true;
2131 }
2132 
2133 /// If we have a conditional branch on a PHI node value that is defined in the
2134 /// same block as the branch and if any PHI entries are constants, thread edges
2135 /// corresponding to that entry to be branches to their ultimate destination.
2136 static bool FoldCondBranchOnPHI(BranchInst *BI, const DataLayout &DL,
2137                                 AssumptionCache *AC) {
2138   BasicBlock *BB = BI->getParent();
2139   PHINode *PN = dyn_cast<PHINode>(BI->getCondition());
2140   // NOTE: we currently cannot transform this case if the PHI node is used
2141   // outside of the block.
2142   if (!PN || PN->getParent() != BB || !PN->hasOneUse())
2143     return false;
2144 
2145   // Degenerate case of a single entry PHI.
2146   if (PN->getNumIncomingValues() == 1) {
2147     FoldSingleEntryPHINodes(PN->getParent());
2148     return true;
2149   }
2150 
2151   // Now we know that this block has multiple preds and two succs.
2152   if (!BlockIsSimpleEnoughToThreadThrough(BB))
2153     return false;
2154 
2155   // Can't fold blocks that contain noduplicate or convergent calls.
2156   if (any_of(*BB, [](const Instruction &I) {
2157         const CallInst *CI = dyn_cast<CallInst>(&I);
2158         return CI && (CI->cannotDuplicate() || CI->isConvergent());
2159       }))
2160     return false;
2161 
2162   // Okay, this is a simple enough basic block.  See if any phi values are
2163   // constants.
2164   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
2165     ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i));
2166     if (!CB || !CB->getType()->isIntegerTy(1))
2167       continue;
2168 
2169     // Okay, we now know that all edges from PredBB should be revectored to
2170     // branch to RealDest.
2171     BasicBlock *PredBB = PN->getIncomingBlock(i);
2172     BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue());
2173 
2174     if (RealDest == BB)
2175       continue; // Skip self loops.
2176     // Skip if the predecessor's terminator is an indirect branch.
2177     if (isa<IndirectBrInst>(PredBB->getTerminator()))
2178       continue;
2179 
2180     // The dest block might have PHI nodes, other predecessors and other
2181     // difficult cases.  Instead of being smart about this, just insert a new
2182     // block that jumps to the destination block, effectively splitting
2183     // the edge we are about to create.
2184     BasicBlock *EdgeBB =
2185         BasicBlock::Create(BB->getContext(), RealDest->getName() + ".critedge",
2186                            RealDest->getParent(), RealDest);
2187     BranchInst::Create(RealDest, EdgeBB);
2188 
2189     // Update PHI nodes.
2190     AddPredecessorToBlock(RealDest, EdgeBB, BB);
2191 
2192     // BB may have instructions that are being threaded over.  Clone these
2193     // instructions into EdgeBB.  We know that there will be no uses of the
2194     // cloned instructions outside of EdgeBB.
2195     BasicBlock::iterator InsertPt = EdgeBB->begin();
2196     DenseMap<Value *, Value *> TranslateMap; // Track translated values.
2197     for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
2198       if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
2199         TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB);
2200         continue;
2201       }
2202       // Clone the instruction.
2203       Instruction *N = BBI->clone();
2204       if (BBI->hasName())
2205         N->setName(BBI->getName() + ".c");
2206 
2207       // Update operands due to translation.
2208       for (User::op_iterator i = N->op_begin(), e = N->op_end(); i != e; ++i) {
2209         DenseMap<Value *, Value *>::iterator PI = TranslateMap.find(*i);
2210         if (PI != TranslateMap.end())
2211           *i = PI->second;
2212       }
2213 
2214       // Check for trivial simplification.
2215       if (Value *V = SimplifyInstruction(N, {DL, nullptr, nullptr, AC})) {
2216         if (!BBI->use_empty())
2217           TranslateMap[&*BBI] = V;
2218         if (!N->mayHaveSideEffects()) {
2219           N->deleteValue(); // Instruction folded away, don't need actual inst
2220           N = nullptr;
2221         }
2222       } else {
2223         if (!BBI->use_empty())
2224           TranslateMap[&*BBI] = N;
2225       }
2226       // Insert the new instruction into its new home.
2227       if (N)
2228         EdgeBB->getInstList().insert(InsertPt, N);
2229 
2230       // Register the new instruction with the assumption cache if necessary.
2231       if (auto *II = dyn_cast_or_null<IntrinsicInst>(N))
2232         if (II->getIntrinsicID() == Intrinsic::assume)
2233           AC->registerAssumption(II);
2234     }
2235 
2236     // Loop over all of the edges from PredBB to BB, changing them to branch
2237     // to EdgeBB instead.
2238     TerminatorInst *PredBBTI = PredBB->getTerminator();
2239     for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i)
2240       if (PredBBTI->getSuccessor(i) == BB) {
2241         BB->removePredecessor(PredBB);
2242         PredBBTI->setSuccessor(i, EdgeBB);
2243       }
2244 
2245     // Recurse, simplifying any other constants.
2246     return FoldCondBranchOnPHI(BI, DL, AC) | true;
2247   }
2248 
2249   return false;
2250 }
2251 
2252 /// Given a BB that starts with the specified two-entry PHI node,
2253 /// see if we can eliminate it.
2254 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI,
2255                                 const DataLayout &DL) {
2256   // Ok, this is a two entry PHI node.  Check to see if this is a simple "if
2257   // statement", which has a very simple dominance structure.  Basically, we
2258   // are trying to find the condition that is being branched on, which
2259   // subsequently causes this merge to happen.  We really want control
2260   // dependence information for this check, but simplifycfg can't keep it up
2261   // to date, and this catches most of the cases we care about anyway.
2262   BasicBlock *BB = PN->getParent();
2263   BasicBlock *IfTrue, *IfFalse;
2264   Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse);
2265   if (!IfCond ||
2266       // Don't bother if the branch will be constant folded trivially.
2267       isa<ConstantInt>(IfCond))
2268     return false;
2269 
2270   // Okay, we found that we can merge this two-entry phi node into a select.
2271   // Doing so would require us to fold *all* two entry phi nodes in this block.
2272   // At some point this becomes non-profitable (particularly if the target
2273   // doesn't support cmov's).  Only do this transformation if there are two or
2274   // fewer PHI nodes in this block.
2275   unsigned NumPhis = 0;
2276   for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I)
2277     if (NumPhis > 2)
2278       return false;
2279 
2280   // Loop over the PHI's seeing if we can promote them all to select
2281   // instructions.  While we are at it, keep track of the instructions
2282   // that need to be moved to the dominating block.
2283   SmallPtrSet<Instruction *, 4> AggressiveInsts;
2284   unsigned MaxCostVal0 = PHINodeFoldingThreshold,
2285            MaxCostVal1 = PHINodeFoldingThreshold;
2286   MaxCostVal0 *= TargetTransformInfo::TCC_Basic;
2287   MaxCostVal1 *= TargetTransformInfo::TCC_Basic;
2288 
2289   for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) {
2290     PHINode *PN = cast<PHINode>(II++);
2291     if (Value *V = SimplifyInstruction(PN, {DL, PN})) {
2292       PN->replaceAllUsesWith(V);
2293       PN->eraseFromParent();
2294       continue;
2295     }
2296 
2297     if (!DominatesMergePoint(PN->getIncomingValue(0), BB, &AggressiveInsts,
2298                              MaxCostVal0, TTI) ||
2299         !DominatesMergePoint(PN->getIncomingValue(1), BB, &AggressiveInsts,
2300                              MaxCostVal1, TTI))
2301       return false;
2302   }
2303 
2304   // If we folded the first phi, PN dangles at this point.  Refresh it.  If
2305   // we ran out of PHIs then we simplified them all.
2306   PN = dyn_cast<PHINode>(BB->begin());
2307   if (!PN)
2308     return true;
2309 
2310   // Don't fold i1 branches on PHIs which contain binary operators.  These can
2311   // often be turned into switches and other things.
2312   if (PN->getType()->isIntegerTy(1) &&
2313       (isa<BinaryOperator>(PN->getIncomingValue(0)) ||
2314        isa<BinaryOperator>(PN->getIncomingValue(1)) ||
2315        isa<BinaryOperator>(IfCond)))
2316     return false;
2317 
2318   // If all PHI nodes are promotable, check to make sure that all instructions
2319   // in the predecessor blocks can be promoted as well. If not, we won't be able
2320   // to get rid of the control flow, so it's not worth promoting to select
2321   // instructions.
2322   BasicBlock *DomBlock = nullptr;
2323   BasicBlock *IfBlock1 = PN->getIncomingBlock(0);
2324   BasicBlock *IfBlock2 = PN->getIncomingBlock(1);
2325   if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) {
2326     IfBlock1 = nullptr;
2327   } else {
2328     DomBlock = *pred_begin(IfBlock1);
2329     for (BasicBlock::iterator I = IfBlock1->begin(); !isa<TerminatorInst>(I);
2330          ++I)
2331       if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) {
2332         // This is not an aggressive instruction that we can promote.
2333         // Because of this, we won't be able to get rid of the control flow, so
2334         // the xform is not worth it.
2335         return false;
2336       }
2337   }
2338 
2339   if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) {
2340     IfBlock2 = nullptr;
2341   } else {
2342     DomBlock = *pred_begin(IfBlock2);
2343     for (BasicBlock::iterator I = IfBlock2->begin(); !isa<TerminatorInst>(I);
2344          ++I)
2345       if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) {
2346         // This is not an aggressive instruction that we can promote.
2347         // Because of this, we won't be able to get rid of the control flow, so
2348         // the xform is not worth it.
2349         return false;
2350       }
2351   }
2352 
2353   DEBUG(dbgs() << "FOUND IF CONDITION!  " << *IfCond << "  T: "
2354                << IfTrue->getName() << "  F: " << IfFalse->getName() << "\n");
2355 
2356   // If we can still promote the PHI nodes after this gauntlet of tests,
2357   // do all of the PHI's now.
2358   Instruction *InsertPt = DomBlock->getTerminator();
2359   IRBuilder<NoFolder> Builder(InsertPt);
2360 
2361   // Move all 'aggressive' instructions, which are defined in the
2362   // conditional parts of the if's up to the dominating block.
2363   if (IfBlock1) {
2364     for (auto &I : *IfBlock1)
2365       I.dropUnknownNonDebugMetadata();
2366     DomBlock->getInstList().splice(InsertPt->getIterator(),
2367                                    IfBlock1->getInstList(), IfBlock1->begin(),
2368                                    IfBlock1->getTerminator()->getIterator());
2369   }
2370   if (IfBlock2) {
2371     for (auto &I : *IfBlock2)
2372       I.dropUnknownNonDebugMetadata();
2373     DomBlock->getInstList().splice(InsertPt->getIterator(),
2374                                    IfBlock2->getInstList(), IfBlock2->begin(),
2375                                    IfBlock2->getTerminator()->getIterator());
2376   }
2377 
2378   while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
2379     // Change the PHI node into a select instruction.
2380     Value *TrueVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse);
2381     Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue);
2382 
2383     Value *Sel = Builder.CreateSelect(IfCond, TrueVal, FalseVal, "", InsertPt);
2384     PN->replaceAllUsesWith(Sel);
2385     Sel->takeName(PN);
2386     PN->eraseFromParent();
2387   }
2388 
2389   // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement
2390   // has been flattened.  Change DomBlock to jump directly to our new block to
2391   // avoid other simplifycfg's kicking in on the diamond.
2392   TerminatorInst *OldTI = DomBlock->getTerminator();
2393   Builder.SetInsertPoint(OldTI);
2394   Builder.CreateBr(BB);
2395   OldTI->eraseFromParent();
2396   return true;
2397 }
2398 
2399 /// If we found a conditional branch that goes to two returning blocks,
2400 /// try to merge them together into one return,
2401 /// introducing a select if the return values disagree.
2402 static bool SimplifyCondBranchToTwoReturns(BranchInst *BI,
2403                                            IRBuilder<> &Builder) {
2404   assert(BI->isConditional() && "Must be a conditional branch");
2405   BasicBlock *TrueSucc = BI->getSuccessor(0);
2406   BasicBlock *FalseSucc = BI->getSuccessor(1);
2407   ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator());
2408   ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator());
2409 
2410   // Check to ensure both blocks are empty (just a return) or optionally empty
2411   // with PHI nodes.  If there are other instructions, merging would cause extra
2412   // computation on one path or the other.
2413   if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator())
2414     return false;
2415   if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator())
2416     return false;
2417 
2418   Builder.SetInsertPoint(BI);
2419   // Okay, we found a branch that is going to two return nodes.  If
2420   // there is no return value for this function, just change the
2421   // branch into a return.
2422   if (FalseRet->getNumOperands() == 0) {
2423     TrueSucc->removePredecessor(BI->getParent());
2424     FalseSucc->removePredecessor(BI->getParent());
2425     Builder.CreateRetVoid();
2426     EraseTerminatorInstAndDCECond(BI);
2427     return true;
2428   }
2429 
2430   // Otherwise, figure out what the true and false return values are
2431   // so we can insert a new select instruction.
2432   Value *TrueValue = TrueRet->getReturnValue();
2433   Value *FalseValue = FalseRet->getReturnValue();
2434 
2435   // Unwrap any PHI nodes in the return blocks.
2436   if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue))
2437     if (TVPN->getParent() == TrueSucc)
2438       TrueValue = TVPN->getIncomingValueForBlock(BI->getParent());
2439   if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue))
2440     if (FVPN->getParent() == FalseSucc)
2441       FalseValue = FVPN->getIncomingValueForBlock(BI->getParent());
2442 
2443   // In order for this transformation to be safe, we must be able to
2444   // unconditionally execute both operands to the return.  This is
2445   // normally the case, but we could have a potentially-trapping
2446   // constant expression that prevents this transformation from being
2447   // safe.
2448   if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue))
2449     if (TCV->canTrap())
2450       return false;
2451   if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue))
2452     if (FCV->canTrap())
2453       return false;
2454 
2455   // Okay, we collected all the mapped values and checked them for sanity, and
2456   // defined to really do this transformation.  First, update the CFG.
2457   TrueSucc->removePredecessor(BI->getParent());
2458   FalseSucc->removePredecessor(BI->getParent());
2459 
2460   // Insert select instructions where needed.
2461   Value *BrCond = BI->getCondition();
2462   if (TrueValue) {
2463     // Insert a select if the results differ.
2464     if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) {
2465     } else if (isa<UndefValue>(TrueValue)) {
2466       TrueValue = FalseValue;
2467     } else {
2468       TrueValue =
2469           Builder.CreateSelect(BrCond, TrueValue, FalseValue, "retval", BI);
2470     }
2471   }
2472 
2473   Value *RI =
2474       !TrueValue ? Builder.CreateRetVoid() : Builder.CreateRet(TrueValue);
2475 
2476   (void)RI;
2477 
2478   DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:"
2479                << "\n  " << *BI << "NewRet = " << *RI
2480                << "TRUEBLOCK: " << *TrueSucc << "FALSEBLOCK: " << *FalseSucc);
2481 
2482   EraseTerminatorInstAndDCECond(BI);
2483 
2484   return true;
2485 }
2486 
2487 /// Return true if the given instruction is available
2488 /// in its predecessor block. If yes, the instruction will be removed.
2489 static bool checkCSEInPredecessor(Instruction *Inst, BasicBlock *PB) {
2490   if (!isa<BinaryOperator>(Inst) && !isa<CmpInst>(Inst))
2491     return false;
2492   for (Instruction &I : *PB) {
2493     Instruction *PBI = &I;
2494     // Check whether Inst and PBI generate the same value.
2495     if (Inst->isIdenticalTo(PBI)) {
2496       Inst->replaceAllUsesWith(PBI);
2497       Inst->eraseFromParent();
2498       return true;
2499     }
2500   }
2501   return false;
2502 }
2503 
2504 /// Return true if either PBI or BI has branch weight available, and store
2505 /// the weights in {Pred|Succ}{True|False}Weight. If one of PBI and BI does
2506 /// not have branch weight, use 1:1 as its weight.
2507 static bool extractPredSuccWeights(BranchInst *PBI, BranchInst *BI,
2508                                    uint64_t &PredTrueWeight,
2509                                    uint64_t &PredFalseWeight,
2510                                    uint64_t &SuccTrueWeight,
2511                                    uint64_t &SuccFalseWeight) {
2512   bool PredHasWeights =
2513       PBI->extractProfMetadata(PredTrueWeight, PredFalseWeight);
2514   bool SuccHasWeights =
2515       BI->extractProfMetadata(SuccTrueWeight, SuccFalseWeight);
2516   if (PredHasWeights || SuccHasWeights) {
2517     if (!PredHasWeights)
2518       PredTrueWeight = PredFalseWeight = 1;
2519     if (!SuccHasWeights)
2520       SuccTrueWeight = SuccFalseWeight = 1;
2521     return true;
2522   } else {
2523     return false;
2524   }
2525 }
2526 
2527 /// If this basic block is simple enough, and if a predecessor branches to us
2528 /// and one of our successors, fold the block into the predecessor and use
2529 /// logical operations to pick the right destination.
2530 bool llvm::FoldBranchToCommonDest(BranchInst *BI, unsigned BonusInstThreshold) {
2531   BasicBlock *BB = BI->getParent();
2532 
2533   Instruction *Cond = nullptr;
2534   if (BI->isConditional())
2535     Cond = dyn_cast<Instruction>(BI->getCondition());
2536   else {
2537     // For unconditional branch, check for a simple CFG pattern, where
2538     // BB has a single predecessor and BB's successor is also its predecessor's
2539     // successor. If such pattern exists, check for CSE between BB and its
2540     // predecessor.
2541     if (BasicBlock *PB = BB->getSinglePredecessor())
2542       if (BranchInst *PBI = dyn_cast<BranchInst>(PB->getTerminator()))
2543         if (PBI->isConditional() &&
2544             (BI->getSuccessor(0) == PBI->getSuccessor(0) ||
2545              BI->getSuccessor(0) == PBI->getSuccessor(1))) {
2546           for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
2547             Instruction *Curr = &*I++;
2548             if (isa<CmpInst>(Curr)) {
2549               Cond = Curr;
2550               break;
2551             }
2552             // Quit if we can't remove this instruction.
2553             if (!checkCSEInPredecessor(Curr, PB))
2554               return false;
2555           }
2556         }
2557 
2558     if (!Cond)
2559       return false;
2560   }
2561 
2562   if (!Cond || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) ||
2563       Cond->getParent() != BB || !Cond->hasOneUse())
2564     return false;
2565 
2566   // Make sure the instruction after the condition is the cond branch.
2567   BasicBlock::iterator CondIt = ++Cond->getIterator();
2568 
2569   // Ignore dbg intrinsics.
2570   while (isa<DbgInfoIntrinsic>(CondIt))
2571     ++CondIt;
2572 
2573   if (&*CondIt != BI)
2574     return false;
2575 
2576   // Only allow this transformation if computing the condition doesn't involve
2577   // too many instructions and these involved instructions can be executed
2578   // unconditionally. We denote all involved instructions except the condition
2579   // as "bonus instructions", and only allow this transformation when the
2580   // number of the bonus instructions does not exceed a certain threshold.
2581   unsigned NumBonusInsts = 0;
2582   for (auto I = BB->begin(); Cond != &*I; ++I) {
2583     // Ignore dbg intrinsics.
2584     if (isa<DbgInfoIntrinsic>(I))
2585       continue;
2586     if (!I->hasOneUse() || !isSafeToSpeculativelyExecute(&*I))
2587       return false;
2588     // I has only one use and can be executed unconditionally.
2589     Instruction *User = dyn_cast<Instruction>(I->user_back());
2590     if (User == nullptr || User->getParent() != BB)
2591       return false;
2592     // I is used in the same BB. Since BI uses Cond and doesn't have more slots
2593     // to use any other instruction, User must be an instruction between next(I)
2594     // and Cond.
2595     ++NumBonusInsts;
2596     // Early exits once we reach the limit.
2597     if (NumBonusInsts > BonusInstThreshold)
2598       return false;
2599   }
2600 
2601   // Cond is known to be a compare or binary operator.  Check to make sure that
2602   // neither operand is a potentially-trapping constant expression.
2603   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0)))
2604     if (CE->canTrap())
2605       return false;
2606   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1)))
2607     if (CE->canTrap())
2608       return false;
2609 
2610   // Finally, don't infinitely unroll conditional loops.
2611   BasicBlock *TrueDest = BI->getSuccessor(0);
2612   BasicBlock *FalseDest = (BI->isConditional()) ? BI->getSuccessor(1) : nullptr;
2613   if (TrueDest == BB || FalseDest == BB)
2614     return false;
2615 
2616   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
2617     BasicBlock *PredBlock = *PI;
2618     BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator());
2619 
2620     // Check that we have two conditional branches.  If there is a PHI node in
2621     // the common successor, verify that the same value flows in from both
2622     // blocks.
2623     SmallVector<PHINode *, 4> PHIs;
2624     if (!PBI || PBI->isUnconditional() ||
2625         (BI->isConditional() && !SafeToMergeTerminators(BI, PBI)) ||
2626         (!BI->isConditional() &&
2627          !isProfitableToFoldUnconditional(BI, PBI, Cond, PHIs)))
2628       continue;
2629 
2630     // Determine if the two branches share a common destination.
2631     Instruction::BinaryOps Opc = Instruction::BinaryOpsEnd;
2632     bool InvertPredCond = false;
2633 
2634     if (BI->isConditional()) {
2635       if (PBI->getSuccessor(0) == TrueDest) {
2636         Opc = Instruction::Or;
2637       } else if (PBI->getSuccessor(1) == FalseDest) {
2638         Opc = Instruction::And;
2639       } else if (PBI->getSuccessor(0) == FalseDest) {
2640         Opc = Instruction::And;
2641         InvertPredCond = true;
2642       } else if (PBI->getSuccessor(1) == TrueDest) {
2643         Opc = Instruction::Or;
2644         InvertPredCond = true;
2645       } else {
2646         continue;
2647       }
2648     } else {
2649       if (PBI->getSuccessor(0) != TrueDest && PBI->getSuccessor(1) != TrueDest)
2650         continue;
2651     }
2652 
2653     DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB);
2654     IRBuilder<> Builder(PBI);
2655 
2656     // If we need to invert the condition in the pred block to match, do so now.
2657     if (InvertPredCond) {
2658       Value *NewCond = PBI->getCondition();
2659 
2660       if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) {
2661         CmpInst *CI = cast<CmpInst>(NewCond);
2662         CI->setPredicate(CI->getInversePredicate());
2663       } else {
2664         NewCond =
2665             Builder.CreateNot(NewCond, PBI->getCondition()->getName() + ".not");
2666       }
2667 
2668       PBI->setCondition(NewCond);
2669       PBI->swapSuccessors();
2670     }
2671 
2672     // If we have bonus instructions, clone them into the predecessor block.
2673     // Note that there may be multiple predecessor blocks, so we cannot move
2674     // bonus instructions to a predecessor block.
2675     ValueToValueMapTy VMap; // maps original values to cloned values
2676     // We already make sure Cond is the last instruction before BI. Therefore,
2677     // all instructions before Cond other than DbgInfoIntrinsic are bonus
2678     // instructions.
2679     for (auto BonusInst = BB->begin(); Cond != &*BonusInst; ++BonusInst) {
2680       if (isa<DbgInfoIntrinsic>(BonusInst))
2681         continue;
2682       Instruction *NewBonusInst = BonusInst->clone();
2683       RemapInstruction(NewBonusInst, VMap,
2684                        RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
2685       VMap[&*BonusInst] = NewBonusInst;
2686 
2687       // If we moved a load, we cannot any longer claim any knowledge about
2688       // its potential value. The previous information might have been valid
2689       // only given the branch precondition.
2690       // For an analogous reason, we must also drop all the metadata whose
2691       // semantics we don't understand.
2692       NewBonusInst->dropUnknownNonDebugMetadata();
2693 
2694       PredBlock->getInstList().insert(PBI->getIterator(), NewBonusInst);
2695       NewBonusInst->takeName(&*BonusInst);
2696       BonusInst->setName(BonusInst->getName() + ".old");
2697     }
2698 
2699     // Clone Cond into the predecessor basic block, and or/and the
2700     // two conditions together.
2701     Instruction *New = Cond->clone();
2702     RemapInstruction(New, VMap,
2703                      RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
2704     PredBlock->getInstList().insert(PBI->getIterator(), New);
2705     New->takeName(Cond);
2706     Cond->setName(New->getName() + ".old");
2707 
2708     if (BI->isConditional()) {
2709       Instruction *NewCond = cast<Instruction>(
2710           Builder.CreateBinOp(Opc, PBI->getCondition(), New, "or.cond"));
2711       PBI->setCondition(NewCond);
2712 
2713       uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
2714       bool HasWeights =
2715           extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
2716                                  SuccTrueWeight, SuccFalseWeight);
2717       SmallVector<uint64_t, 8> NewWeights;
2718 
2719       if (PBI->getSuccessor(0) == BB) {
2720         if (HasWeights) {
2721           // PBI: br i1 %x, BB, FalseDest
2722           // BI:  br i1 %y, TrueDest, FalseDest
2723           // TrueWeight is TrueWeight for PBI * TrueWeight for BI.
2724           NewWeights.push_back(PredTrueWeight * SuccTrueWeight);
2725           // FalseWeight is FalseWeight for PBI * TotalWeight for BI +
2726           //               TrueWeight for PBI * FalseWeight for BI.
2727           // We assume that total weights of a BranchInst can fit into 32 bits.
2728           // Therefore, we will not have overflow using 64-bit arithmetic.
2729           NewWeights.push_back(PredFalseWeight *
2730                                    (SuccFalseWeight + SuccTrueWeight) +
2731                                PredTrueWeight * SuccFalseWeight);
2732         }
2733         AddPredecessorToBlock(TrueDest, PredBlock, BB);
2734         PBI->setSuccessor(0, TrueDest);
2735       }
2736       if (PBI->getSuccessor(1) == BB) {
2737         if (HasWeights) {
2738           // PBI: br i1 %x, TrueDest, BB
2739           // BI:  br i1 %y, TrueDest, FalseDest
2740           // TrueWeight is TrueWeight for PBI * TotalWeight for BI +
2741           //              FalseWeight for PBI * TrueWeight for BI.
2742           NewWeights.push_back(PredTrueWeight *
2743                                    (SuccFalseWeight + SuccTrueWeight) +
2744                                PredFalseWeight * SuccTrueWeight);
2745           // FalseWeight is FalseWeight for PBI * FalseWeight for BI.
2746           NewWeights.push_back(PredFalseWeight * SuccFalseWeight);
2747         }
2748         AddPredecessorToBlock(FalseDest, PredBlock, BB);
2749         PBI->setSuccessor(1, FalseDest);
2750       }
2751       if (NewWeights.size() == 2) {
2752         // Halve the weights if any of them cannot fit in an uint32_t
2753         FitWeights(NewWeights);
2754 
2755         SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(),
2756                                            NewWeights.end());
2757         setBranchWeights(PBI, MDWeights[0], MDWeights[1]);
2758       } else
2759         PBI->setMetadata(LLVMContext::MD_prof, nullptr);
2760     } else {
2761       // Update PHI nodes in the common successors.
2762       for (unsigned i = 0, e = PHIs.size(); i != e; ++i) {
2763         ConstantInt *PBI_C = cast<ConstantInt>(
2764             PHIs[i]->getIncomingValueForBlock(PBI->getParent()));
2765         assert(PBI_C->getType()->isIntegerTy(1));
2766         Instruction *MergedCond = nullptr;
2767         if (PBI->getSuccessor(0) == TrueDest) {
2768           // Create (PBI_Cond and PBI_C) or (!PBI_Cond and BI_Value)
2769           // PBI_C is true: PBI_Cond or (!PBI_Cond and BI_Value)
2770           //       is false: !PBI_Cond and BI_Value
2771           Instruction *NotCond = cast<Instruction>(
2772               Builder.CreateNot(PBI->getCondition(), "not.cond"));
2773           MergedCond = cast<Instruction>(
2774               Builder.CreateBinOp(Instruction::And, NotCond, New, "and.cond"));
2775           if (PBI_C->isOne())
2776             MergedCond = cast<Instruction>(Builder.CreateBinOp(
2777                 Instruction::Or, PBI->getCondition(), MergedCond, "or.cond"));
2778         } else {
2779           // Create (PBI_Cond and BI_Value) or (!PBI_Cond and PBI_C)
2780           // PBI_C is true: (PBI_Cond and BI_Value) or (!PBI_Cond)
2781           //       is false: PBI_Cond and BI_Value
2782           MergedCond = cast<Instruction>(Builder.CreateBinOp(
2783               Instruction::And, PBI->getCondition(), New, "and.cond"));
2784           if (PBI_C->isOne()) {
2785             Instruction *NotCond = cast<Instruction>(
2786                 Builder.CreateNot(PBI->getCondition(), "not.cond"));
2787             MergedCond = cast<Instruction>(Builder.CreateBinOp(
2788                 Instruction::Or, NotCond, MergedCond, "or.cond"));
2789           }
2790         }
2791         // Update PHI Node.
2792         PHIs[i]->setIncomingValue(PHIs[i]->getBasicBlockIndex(PBI->getParent()),
2793                                   MergedCond);
2794       }
2795       // Change PBI from Conditional to Unconditional.
2796       BranchInst *New_PBI = BranchInst::Create(TrueDest, PBI);
2797       EraseTerminatorInstAndDCECond(PBI);
2798       PBI = New_PBI;
2799     }
2800 
2801     // If BI was a loop latch, it may have had associated loop metadata.
2802     // We need to copy it to the new latch, that is, PBI.
2803     if (MDNode *LoopMD = BI->getMetadata(LLVMContext::MD_loop))
2804       PBI->setMetadata(LLVMContext::MD_loop, LoopMD);
2805 
2806     // TODO: If BB is reachable from all paths through PredBlock, then we
2807     // could replace PBI's branch probabilities with BI's.
2808 
2809     // Copy any debug value intrinsics into the end of PredBlock.
2810     for (Instruction &I : *BB)
2811       if (isa<DbgInfoIntrinsic>(I))
2812         I.clone()->insertBefore(PBI);
2813 
2814     return true;
2815   }
2816   return false;
2817 }
2818 
2819 // If there is only one store in BB1 and BB2, return it, otherwise return
2820 // nullptr.
2821 static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) {
2822   StoreInst *S = nullptr;
2823   for (auto *BB : {BB1, BB2}) {
2824     if (!BB)
2825       continue;
2826     for (auto &I : *BB)
2827       if (auto *SI = dyn_cast<StoreInst>(&I)) {
2828         if (S)
2829           // Multiple stores seen.
2830           return nullptr;
2831         else
2832           S = SI;
2833       }
2834   }
2835   return S;
2836 }
2837 
2838 static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB,
2839                                               Value *AlternativeV = nullptr) {
2840   // PHI is going to be a PHI node that allows the value V that is defined in
2841   // BB to be referenced in BB's only successor.
2842   //
2843   // If AlternativeV is nullptr, the only value we care about in PHI is V. It
2844   // doesn't matter to us what the other operand is (it'll never get used). We
2845   // could just create a new PHI with an undef incoming value, but that could
2846   // increase register pressure if EarlyCSE/InstCombine can't fold it with some
2847   // other PHI. So here we directly look for some PHI in BB's successor with V
2848   // as an incoming operand. If we find one, we use it, else we create a new
2849   // one.
2850   //
2851   // If AlternativeV is not nullptr, we care about both incoming values in PHI.
2852   // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV]
2853   // where OtherBB is the single other predecessor of BB's only successor.
2854   PHINode *PHI = nullptr;
2855   BasicBlock *Succ = BB->getSingleSuccessor();
2856 
2857   for (auto I = Succ->begin(); isa<PHINode>(I); ++I)
2858     if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) {
2859       PHI = cast<PHINode>(I);
2860       if (!AlternativeV)
2861         break;
2862 
2863       assert(std::distance(pred_begin(Succ), pred_end(Succ)) == 2);
2864       auto PredI = pred_begin(Succ);
2865       BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI;
2866       if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV)
2867         break;
2868       PHI = nullptr;
2869     }
2870   if (PHI)
2871     return PHI;
2872 
2873   // If V is not an instruction defined in BB, just return it.
2874   if (!AlternativeV &&
2875       (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB))
2876     return V;
2877 
2878   PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge", &Succ->front());
2879   PHI->addIncoming(V, BB);
2880   for (BasicBlock *PredBB : predecessors(Succ))
2881     if (PredBB != BB)
2882       PHI->addIncoming(
2883           AlternativeV ? AlternativeV : UndefValue::get(V->getType()), PredBB);
2884   return PHI;
2885 }
2886 
2887 static bool mergeConditionalStoreToAddress(BasicBlock *PTB, BasicBlock *PFB,
2888                                            BasicBlock *QTB, BasicBlock *QFB,
2889                                            BasicBlock *PostBB, Value *Address,
2890                                            bool InvertPCond, bool InvertQCond,
2891                                            const DataLayout &DL) {
2892   auto IsaBitcastOfPointerType = [](const Instruction &I) {
2893     return Operator::getOpcode(&I) == Instruction::BitCast &&
2894            I.getType()->isPointerTy();
2895   };
2896 
2897   // If we're not in aggressive mode, we only optimize if we have some
2898   // confidence that by optimizing we'll allow P and/or Q to be if-converted.
2899   auto IsWorthwhile = [&](BasicBlock *BB) {
2900     if (!BB)
2901       return true;
2902     // Heuristic: if the block can be if-converted/phi-folded and the
2903     // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to
2904     // thread this store.
2905     unsigned N = 0;
2906     for (auto &I : *BB) {
2907       // Cheap instructions viable for folding.
2908       if (isa<BinaryOperator>(I) || isa<GetElementPtrInst>(I) ||
2909           isa<StoreInst>(I))
2910         ++N;
2911       // Free instructions.
2912       else if (isa<TerminatorInst>(I) || isa<DbgInfoIntrinsic>(I) ||
2913                IsaBitcastOfPointerType(I))
2914         continue;
2915       else
2916         return false;
2917     }
2918     // The store we want to merge is counted in N, so add 1 to make sure
2919     // we're counting the instructions that would be left.
2920     return N <= (PHINodeFoldingThreshold + 1);
2921   };
2922 
2923   if (!MergeCondStoresAggressively &&
2924       (!IsWorthwhile(PTB) || !IsWorthwhile(PFB) || !IsWorthwhile(QTB) ||
2925        !IsWorthwhile(QFB)))
2926     return false;
2927 
2928   // For every pointer, there must be exactly two stores, one coming from
2929   // PTB or PFB, and the other from QTB or QFB. We don't support more than one
2930   // store (to any address) in PTB,PFB or QTB,QFB.
2931   // FIXME: We could relax this restriction with a bit more work and performance
2932   // testing.
2933   StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB);
2934   StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB);
2935   if (!PStore || !QStore)
2936     return false;
2937 
2938   // Now check the stores are compatible.
2939   if (!QStore->isUnordered() || !PStore->isUnordered())
2940     return false;
2941 
2942   // Check that sinking the store won't cause program behavior changes. Sinking
2943   // the store out of the Q blocks won't change any behavior as we're sinking
2944   // from a block to its unconditional successor. But we're moving a store from
2945   // the P blocks down through the middle block (QBI) and past both QFB and QTB.
2946   // So we need to check that there are no aliasing loads or stores in
2947   // QBI, QTB and QFB. We also need to check there are no conflicting memory
2948   // operations between PStore and the end of its parent block.
2949   //
2950   // The ideal way to do this is to query AliasAnalysis, but we don't
2951   // preserve AA currently so that is dangerous. Be super safe and just
2952   // check there are no other memory operations at all.
2953   for (auto &I : *QFB->getSinglePredecessor())
2954     if (I.mayReadOrWriteMemory())
2955       return false;
2956   for (auto &I : *QFB)
2957     if (&I != QStore && I.mayReadOrWriteMemory())
2958       return false;
2959   if (QTB)
2960     for (auto &I : *QTB)
2961       if (&I != QStore && I.mayReadOrWriteMemory())
2962         return false;
2963   for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end();
2964        I != E; ++I)
2965     if (&*I != PStore && I->mayReadOrWriteMemory())
2966       return false;
2967 
2968   // OK, we're going to sink the stores to PostBB. The store has to be
2969   // conditional though, so first create the predicate.
2970   Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator())
2971                      ->getCondition();
2972   Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator())
2973                      ->getCondition();
2974 
2975   Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(),
2976                                                 PStore->getParent());
2977   Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(),
2978                                                 QStore->getParent(), PPHI);
2979 
2980   IRBuilder<> QB(&*PostBB->getFirstInsertionPt());
2981 
2982   Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond);
2983   Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond);
2984 
2985   if (InvertPCond)
2986     PPred = QB.CreateNot(PPred);
2987   if (InvertQCond)
2988     QPred = QB.CreateNot(QPred);
2989   Value *CombinedPred = QB.CreateOr(PPred, QPred);
2990 
2991   auto *T =
2992       SplitBlockAndInsertIfThen(CombinedPred, &*QB.GetInsertPoint(), false);
2993   QB.SetInsertPoint(T);
2994   StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address));
2995   AAMDNodes AAMD;
2996   PStore->getAAMetadata(AAMD, /*Merge=*/false);
2997   PStore->getAAMetadata(AAMD, /*Merge=*/true);
2998   SI->setAAMetadata(AAMD);
2999   unsigned PAlignment = PStore->getAlignment();
3000   unsigned QAlignment = QStore->getAlignment();
3001   unsigned TypeAlignment =
3002       DL.getABITypeAlignment(SI->getValueOperand()->getType());
3003   unsigned MinAlignment;
3004   unsigned MaxAlignment;
3005   std::tie(MinAlignment, MaxAlignment) = std::minmax(PAlignment, QAlignment);
3006   // Choose the minimum alignment. If we could prove both stores execute, we
3007   // could use biggest one.  In this case, though, we only know that one of the
3008   // stores executes.  And we don't know it's safe to take the alignment from a
3009   // store that doesn't execute.
3010   if (MinAlignment != 0) {
3011     // Choose the minimum of all non-zero alignments.
3012     SI->setAlignment(MinAlignment);
3013   } else if (MaxAlignment != 0) {
3014     // Choose the minimal alignment between the non-zero alignment and the ABI
3015     // default alignment for the type of the stored value.
3016     SI->setAlignment(std::min(MaxAlignment, TypeAlignment));
3017   } else {
3018     // If both alignments are zero, use ABI default alignment for the type of
3019     // the stored value.
3020     SI->setAlignment(TypeAlignment);
3021   }
3022 
3023   QStore->eraseFromParent();
3024   PStore->eraseFromParent();
3025 
3026   return true;
3027 }
3028 
3029 static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI,
3030                                    const DataLayout &DL) {
3031   // The intention here is to find diamonds or triangles (see below) where each
3032   // conditional block contains a store to the same address. Both of these
3033   // stores are conditional, so they can't be unconditionally sunk. But it may
3034   // be profitable to speculatively sink the stores into one merged store at the
3035   // end, and predicate the merged store on the union of the two conditions of
3036   // PBI and QBI.
3037   //
3038   // This can reduce the number of stores executed if both of the conditions are
3039   // true, and can allow the blocks to become small enough to be if-converted.
3040   // This optimization will also chain, so that ladders of test-and-set
3041   // sequences can be if-converted away.
3042   //
3043   // We only deal with simple diamonds or triangles:
3044   //
3045   //     PBI       or      PBI        or a combination of the two
3046   //    /   \               | \
3047   //   PTB  PFB             |  PFB
3048   //    \   /               | /
3049   //     QBI                QBI
3050   //    /  \                | \
3051   //   QTB  QFB             |  QFB
3052   //    \  /                | /
3053   //    PostBB            PostBB
3054   //
3055   // We model triangles as a type of diamond with a nullptr "true" block.
3056   // Triangles are canonicalized so that the fallthrough edge is represented by
3057   // a true condition, as in the diagram above.
3058   BasicBlock *PTB = PBI->getSuccessor(0);
3059   BasicBlock *PFB = PBI->getSuccessor(1);
3060   BasicBlock *QTB = QBI->getSuccessor(0);
3061   BasicBlock *QFB = QBI->getSuccessor(1);
3062   BasicBlock *PostBB = QFB->getSingleSuccessor();
3063 
3064   // Make sure we have a good guess for PostBB. If QTB's only successor is
3065   // QFB, then QFB is a better PostBB.
3066   if (QTB->getSingleSuccessor() == QFB)
3067     PostBB = QFB;
3068 
3069   // If we couldn't find a good PostBB, stop.
3070   if (!PostBB)
3071     return false;
3072 
3073   bool InvertPCond = false, InvertQCond = false;
3074   // Canonicalize fallthroughs to the true branches.
3075   if (PFB == QBI->getParent()) {
3076     std::swap(PFB, PTB);
3077     InvertPCond = true;
3078   }
3079   if (QFB == PostBB) {
3080     std::swap(QFB, QTB);
3081     InvertQCond = true;
3082   }
3083 
3084   // From this point on we can assume PTB or QTB may be fallthroughs but PFB
3085   // and QFB may not. Model fallthroughs as a nullptr block.
3086   if (PTB == QBI->getParent())
3087     PTB = nullptr;
3088   if (QTB == PostBB)
3089     QTB = nullptr;
3090 
3091   // Legality bailouts. We must have at least the non-fallthrough blocks and
3092   // the post-dominating block, and the non-fallthroughs must only have one
3093   // predecessor.
3094   auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) {
3095     return BB->getSinglePredecessor() == P && BB->getSingleSuccessor() == S;
3096   };
3097   if (!HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) ||
3098       !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB))
3099     return false;
3100   if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) ||
3101       (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB)))
3102     return false;
3103   if (!PostBB->hasNUses(2) || !QBI->getParent()->hasNUses(2))
3104     return false;
3105 
3106   // OK, this is a sequence of two diamonds or triangles.
3107   // Check if there are stores in PTB or PFB that are repeated in QTB or QFB.
3108   SmallPtrSet<Value *, 4> PStoreAddresses, QStoreAddresses;
3109   for (auto *BB : {PTB, PFB}) {
3110     if (!BB)
3111       continue;
3112     for (auto &I : *BB)
3113       if (StoreInst *SI = dyn_cast<StoreInst>(&I))
3114         PStoreAddresses.insert(SI->getPointerOperand());
3115   }
3116   for (auto *BB : {QTB, QFB}) {
3117     if (!BB)
3118       continue;
3119     for (auto &I : *BB)
3120       if (StoreInst *SI = dyn_cast<StoreInst>(&I))
3121         QStoreAddresses.insert(SI->getPointerOperand());
3122   }
3123 
3124   set_intersect(PStoreAddresses, QStoreAddresses);
3125   // set_intersect mutates PStoreAddresses in place. Rename it here to make it
3126   // clear what it contains.
3127   auto &CommonAddresses = PStoreAddresses;
3128 
3129   bool Changed = false;
3130   for (auto *Address : CommonAddresses)
3131     Changed |= mergeConditionalStoreToAddress(
3132         PTB, PFB, QTB, QFB, PostBB, Address, InvertPCond, InvertQCond, DL);
3133   return Changed;
3134 }
3135 
3136 /// If we have a conditional branch as a predecessor of another block,
3137 /// this function tries to simplify it.  We know
3138 /// that PBI and BI are both conditional branches, and BI is in one of the
3139 /// successor blocks of PBI - PBI branches to BI.
3140 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI,
3141                                            const DataLayout &DL) {
3142   assert(PBI->isConditional() && BI->isConditional());
3143   BasicBlock *BB = BI->getParent();
3144 
3145   // If this block ends with a branch instruction, and if there is a
3146   // predecessor that ends on a branch of the same condition, make
3147   // this conditional branch redundant.
3148   if (PBI->getCondition() == BI->getCondition() &&
3149       PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
3150     // Okay, the outcome of this conditional branch is statically
3151     // knowable.  If this block had a single pred, handle specially.
3152     if (BB->getSinglePredecessor()) {
3153       // Turn this into a branch on constant.
3154       bool CondIsTrue = PBI->getSuccessor(0) == BB;
3155       BI->setCondition(
3156           ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue));
3157       return true; // Nuke the branch on constant.
3158     }
3159 
3160     // Otherwise, if there are multiple predecessors, insert a PHI that merges
3161     // in the constant and simplify the block result.  Subsequent passes of
3162     // simplifycfg will thread the block.
3163     if (BlockIsSimpleEnoughToThreadThrough(BB)) {
3164       pred_iterator PB = pred_begin(BB), PE = pred_end(BB);
3165       PHINode *NewPN = PHINode::Create(
3166           Type::getInt1Ty(BB->getContext()), std::distance(PB, PE),
3167           BI->getCondition()->getName() + ".pr", &BB->front());
3168       // Okay, we're going to insert the PHI node.  Since PBI is not the only
3169       // predecessor, compute the PHI'd conditional value for all of the preds.
3170       // Any predecessor where the condition is not computable we keep symbolic.
3171       for (pred_iterator PI = PB; PI != PE; ++PI) {
3172         BasicBlock *P = *PI;
3173         if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) && PBI != BI &&
3174             PBI->isConditional() && PBI->getCondition() == BI->getCondition() &&
3175             PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
3176           bool CondIsTrue = PBI->getSuccessor(0) == BB;
3177           NewPN->addIncoming(
3178               ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue),
3179               P);
3180         } else {
3181           NewPN->addIncoming(BI->getCondition(), P);
3182         }
3183       }
3184 
3185       BI->setCondition(NewPN);
3186       return true;
3187     }
3188   }
3189 
3190   if (auto *CE = dyn_cast<ConstantExpr>(BI->getCondition()))
3191     if (CE->canTrap())
3192       return false;
3193 
3194   // If both branches are conditional and both contain stores to the same
3195   // address, remove the stores from the conditionals and create a conditional
3196   // merged store at the end.
3197   if (MergeCondStores && mergeConditionalStores(PBI, BI, DL))
3198     return true;
3199 
3200   // If this is a conditional branch in an empty block, and if any
3201   // predecessors are a conditional branch to one of our destinations,
3202   // fold the conditions into logical ops and one cond br.
3203   BasicBlock::iterator BBI = BB->begin();
3204   // Ignore dbg intrinsics.
3205   while (isa<DbgInfoIntrinsic>(BBI))
3206     ++BBI;
3207   if (&*BBI != BI)
3208     return false;
3209 
3210   int PBIOp, BIOp;
3211   if (PBI->getSuccessor(0) == BI->getSuccessor(0)) {
3212     PBIOp = 0;
3213     BIOp = 0;
3214   } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) {
3215     PBIOp = 0;
3216     BIOp = 1;
3217   } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) {
3218     PBIOp = 1;
3219     BIOp = 0;
3220   } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) {
3221     PBIOp = 1;
3222     BIOp = 1;
3223   } else {
3224     return false;
3225   }
3226 
3227   // Check to make sure that the other destination of this branch
3228   // isn't BB itself.  If so, this is an infinite loop that will
3229   // keep getting unwound.
3230   if (PBI->getSuccessor(PBIOp) == BB)
3231     return false;
3232 
3233   // Do not perform this transformation if it would require
3234   // insertion of a large number of select instructions. For targets
3235   // without predication/cmovs, this is a big pessimization.
3236 
3237   // Also do not perform this transformation if any phi node in the common
3238   // destination block can trap when reached by BB or PBB (PR17073). In that
3239   // case, it would be unsafe to hoist the operation into a select instruction.
3240 
3241   BasicBlock *CommonDest = PBI->getSuccessor(PBIOp);
3242   unsigned NumPhis = 0;
3243   for (BasicBlock::iterator II = CommonDest->begin(); isa<PHINode>(II);
3244        ++II, ++NumPhis) {
3245     if (NumPhis > 2) // Disable this xform.
3246       return false;
3247 
3248     PHINode *PN = cast<PHINode>(II);
3249     Value *BIV = PN->getIncomingValueForBlock(BB);
3250     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BIV))
3251       if (CE->canTrap())
3252         return false;
3253 
3254     unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
3255     Value *PBIV = PN->getIncomingValue(PBBIdx);
3256     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(PBIV))
3257       if (CE->canTrap())
3258         return false;
3259   }
3260 
3261   // Finally, if everything is ok, fold the branches to logical ops.
3262   BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1);
3263 
3264   DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent()
3265                << "AND: " << *BI->getParent());
3266 
3267   // If OtherDest *is* BB, then BB is a basic block with a single conditional
3268   // branch in it, where one edge (OtherDest) goes back to itself but the other
3269   // exits.  We don't *know* that the program avoids the infinite loop
3270   // (even though that seems likely).  If we do this xform naively, we'll end up
3271   // recursively unpeeling the loop.  Since we know that (after the xform is
3272   // done) that the block *is* infinite if reached, we just make it an obviously
3273   // infinite loop with no cond branch.
3274   if (OtherDest == BB) {
3275     // Insert it at the end of the function, because it's either code,
3276     // or it won't matter if it's hot. :)
3277     BasicBlock *InfLoopBlock =
3278         BasicBlock::Create(BB->getContext(), "infloop", BB->getParent());
3279     BranchInst::Create(InfLoopBlock, InfLoopBlock);
3280     OtherDest = InfLoopBlock;
3281   }
3282 
3283   DEBUG(dbgs() << *PBI->getParent()->getParent());
3284 
3285   // BI may have other predecessors.  Because of this, we leave
3286   // it alone, but modify PBI.
3287 
3288   // Make sure we get to CommonDest on True&True directions.
3289   Value *PBICond = PBI->getCondition();
3290   IRBuilder<NoFolder> Builder(PBI);
3291   if (PBIOp)
3292     PBICond = Builder.CreateNot(PBICond, PBICond->getName() + ".not");
3293 
3294   Value *BICond = BI->getCondition();
3295   if (BIOp)
3296     BICond = Builder.CreateNot(BICond, BICond->getName() + ".not");
3297 
3298   // Merge the conditions.
3299   Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge");
3300 
3301   // Modify PBI to branch on the new condition to the new dests.
3302   PBI->setCondition(Cond);
3303   PBI->setSuccessor(0, CommonDest);
3304   PBI->setSuccessor(1, OtherDest);
3305 
3306   // Update branch weight for PBI.
3307   uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
3308   uint64_t PredCommon, PredOther, SuccCommon, SuccOther;
3309   bool HasWeights =
3310       extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
3311                              SuccTrueWeight, SuccFalseWeight);
3312   if (HasWeights) {
3313     PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
3314     PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
3315     SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
3316     SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
3317     // The weight to CommonDest should be PredCommon * SuccTotal +
3318     //                                    PredOther * SuccCommon.
3319     // The weight to OtherDest should be PredOther * SuccOther.
3320     uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) +
3321                                   PredOther * SuccCommon,
3322                               PredOther * SuccOther};
3323     // Halve the weights if any of them cannot fit in an uint32_t
3324     FitWeights(NewWeights);
3325 
3326     setBranchWeights(PBI, NewWeights[0], NewWeights[1]);
3327   }
3328 
3329   // OtherDest may have phi nodes.  If so, add an entry from PBI's
3330   // block that are identical to the entries for BI's block.
3331   AddPredecessorToBlock(OtherDest, PBI->getParent(), BB);
3332 
3333   // We know that the CommonDest already had an edge from PBI to
3334   // it.  If it has PHIs though, the PHIs may have different
3335   // entries for BB and PBI's BB.  If so, insert a select to make
3336   // them agree.
3337   for (PHINode &PN : CommonDest->phis()) {
3338     Value *BIV = PN.getIncomingValueForBlock(BB);
3339     unsigned PBBIdx = PN.getBasicBlockIndex(PBI->getParent());
3340     Value *PBIV = PN.getIncomingValue(PBBIdx);
3341     if (BIV != PBIV) {
3342       // Insert a select in PBI to pick the right value.
3343       SelectInst *NV = cast<SelectInst>(
3344           Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName() + ".mux"));
3345       PN.setIncomingValue(PBBIdx, NV);
3346       // Although the select has the same condition as PBI, the original branch
3347       // weights for PBI do not apply to the new select because the select's
3348       // 'logical' edges are incoming edges of the phi that is eliminated, not
3349       // the outgoing edges of PBI.
3350       if (HasWeights) {
3351         uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
3352         uint64_t PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
3353         uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
3354         uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
3355         // The weight to PredCommonDest should be PredCommon * SuccTotal.
3356         // The weight to PredOtherDest should be PredOther * SuccCommon.
3357         uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther),
3358                                   PredOther * SuccCommon};
3359 
3360         FitWeights(NewWeights);
3361 
3362         setBranchWeights(NV, NewWeights[0], NewWeights[1]);
3363       }
3364     }
3365   }
3366 
3367   DEBUG(dbgs() << "INTO: " << *PBI->getParent());
3368   DEBUG(dbgs() << *PBI->getParent()->getParent());
3369 
3370   // This basic block is probably dead.  We know it has at least
3371   // one fewer predecessor.
3372   return true;
3373 }
3374 
3375 // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is
3376 // true or to FalseBB if Cond is false.
3377 // Takes care of updating the successors and removing the old terminator.
3378 // Also makes sure not to introduce new successors by assuming that edges to
3379 // non-successor TrueBBs and FalseBBs aren't reachable.
3380 static bool SimplifyTerminatorOnSelect(TerminatorInst *OldTerm, Value *Cond,
3381                                        BasicBlock *TrueBB, BasicBlock *FalseBB,
3382                                        uint32_t TrueWeight,
3383                                        uint32_t FalseWeight) {
3384   // Remove any superfluous successor edges from the CFG.
3385   // First, figure out which successors to preserve.
3386   // If TrueBB and FalseBB are equal, only try to preserve one copy of that
3387   // successor.
3388   BasicBlock *KeepEdge1 = TrueBB;
3389   BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr;
3390 
3391   // Then remove the rest.
3392   for (BasicBlock *Succ : OldTerm->successors()) {
3393     // Make sure only to keep exactly one copy of each edge.
3394     if (Succ == KeepEdge1)
3395       KeepEdge1 = nullptr;
3396     else if (Succ == KeepEdge2)
3397       KeepEdge2 = nullptr;
3398     else
3399       Succ->removePredecessor(OldTerm->getParent(),
3400                               /*DontDeleteUselessPHIs=*/true);
3401   }
3402 
3403   IRBuilder<> Builder(OldTerm);
3404   Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc());
3405 
3406   // Insert an appropriate new terminator.
3407   if (!KeepEdge1 && !KeepEdge2) {
3408     if (TrueBB == FalseBB)
3409       // We were only looking for one successor, and it was present.
3410       // Create an unconditional branch to it.
3411       Builder.CreateBr(TrueBB);
3412     else {
3413       // We found both of the successors we were looking for.
3414       // Create a conditional branch sharing the condition of the select.
3415       BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB);
3416       if (TrueWeight != FalseWeight)
3417         setBranchWeights(NewBI, TrueWeight, FalseWeight);
3418     }
3419   } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) {
3420     // Neither of the selected blocks were successors, so this
3421     // terminator must be unreachable.
3422     new UnreachableInst(OldTerm->getContext(), OldTerm);
3423   } else {
3424     // One of the selected values was a successor, but the other wasn't.
3425     // Insert an unconditional branch to the one that was found;
3426     // the edge to the one that wasn't must be unreachable.
3427     if (!KeepEdge1)
3428       // Only TrueBB was found.
3429       Builder.CreateBr(TrueBB);
3430     else
3431       // Only FalseBB was found.
3432       Builder.CreateBr(FalseBB);
3433   }
3434 
3435   EraseTerminatorInstAndDCECond(OldTerm);
3436   return true;
3437 }
3438 
3439 // Replaces
3440 //   (switch (select cond, X, Y)) on constant X, Y
3441 // with a branch - conditional if X and Y lead to distinct BBs,
3442 // unconditional otherwise.
3443 static bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select) {
3444   // Check for constant integer values in the select.
3445   ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue());
3446   ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue());
3447   if (!TrueVal || !FalseVal)
3448     return false;
3449 
3450   // Find the relevant condition and destinations.
3451   Value *Condition = Select->getCondition();
3452   BasicBlock *TrueBB = SI->findCaseValue(TrueVal)->getCaseSuccessor();
3453   BasicBlock *FalseBB = SI->findCaseValue(FalseVal)->getCaseSuccessor();
3454 
3455   // Get weight for TrueBB and FalseBB.
3456   uint32_t TrueWeight = 0, FalseWeight = 0;
3457   SmallVector<uint64_t, 8> Weights;
3458   bool HasWeights = HasBranchWeights(SI);
3459   if (HasWeights) {
3460     GetBranchWeights(SI, Weights);
3461     if (Weights.size() == 1 + SI->getNumCases()) {
3462       TrueWeight =
3463           (uint32_t)Weights[SI->findCaseValue(TrueVal)->getSuccessorIndex()];
3464       FalseWeight =
3465           (uint32_t)Weights[SI->findCaseValue(FalseVal)->getSuccessorIndex()];
3466     }
3467   }
3468 
3469   // Perform the actual simplification.
3470   return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, TrueWeight,
3471                                     FalseWeight);
3472 }
3473 
3474 // Replaces
3475 //   (indirectbr (select cond, blockaddress(@fn, BlockA),
3476 //                             blockaddress(@fn, BlockB)))
3477 // with
3478 //   (br cond, BlockA, BlockB).
3479 static bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI) {
3480   // Check that both operands of the select are block addresses.
3481   BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue());
3482   BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue());
3483   if (!TBA || !FBA)
3484     return false;
3485 
3486   // Extract the actual blocks.
3487   BasicBlock *TrueBB = TBA->getBasicBlock();
3488   BasicBlock *FalseBB = FBA->getBasicBlock();
3489 
3490   // Perform the actual simplification.
3491   return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 0,
3492                                     0);
3493 }
3494 
3495 /// This is called when we find an icmp instruction
3496 /// (a seteq/setne with a constant) as the only instruction in a
3497 /// block that ends with an uncond branch.  We are looking for a very specific
3498 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified.  In
3499 /// this case, we merge the first two "or's of icmp" into a switch, but then the
3500 /// default value goes to an uncond block with a seteq in it, we get something
3501 /// like:
3502 ///
3503 ///   switch i8 %A, label %DEFAULT [ i8 1, label %end    i8 2, label %end ]
3504 /// DEFAULT:
3505 ///   %tmp = icmp eq i8 %A, 92
3506 ///   br label %end
3507 /// end:
3508 ///   ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ]
3509 ///
3510 /// We prefer to split the edge to 'end' so that there is a true/false entry to
3511 /// the PHI, merging the third icmp into the switch.
3512 static bool tryToSimplifyUncondBranchWithICmpInIt(
3513     ICmpInst *ICI, IRBuilder<> &Builder, const DataLayout &DL,
3514     const TargetTransformInfo &TTI, const SimplifyCFGOptions &Options) {
3515   BasicBlock *BB = ICI->getParent();
3516 
3517   // If the block has any PHIs in it or the icmp has multiple uses, it is too
3518   // complex.
3519   if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse())
3520     return false;
3521 
3522   Value *V = ICI->getOperand(0);
3523   ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1));
3524 
3525   // The pattern we're looking for is where our only predecessor is a switch on
3526   // 'V' and this block is the default case for the switch.  In this case we can
3527   // fold the compared value into the switch to simplify things.
3528   BasicBlock *Pred = BB->getSinglePredecessor();
3529   if (!Pred || !isa<SwitchInst>(Pred->getTerminator()))
3530     return false;
3531 
3532   SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator());
3533   if (SI->getCondition() != V)
3534     return false;
3535 
3536   // If BB is reachable on a non-default case, then we simply know the value of
3537   // V in this block.  Substitute it and constant fold the icmp instruction
3538   // away.
3539   if (SI->getDefaultDest() != BB) {
3540     ConstantInt *VVal = SI->findCaseDest(BB);
3541     assert(VVal && "Should have a unique destination value");
3542     ICI->setOperand(0, VVal);
3543 
3544     if (Value *V = SimplifyInstruction(ICI, {DL, ICI})) {
3545       ICI->replaceAllUsesWith(V);
3546       ICI->eraseFromParent();
3547     }
3548     // BB is now empty, so it is likely to simplify away.
3549     return simplifyCFG(BB, TTI, Options) | true;
3550   }
3551 
3552   // Ok, the block is reachable from the default dest.  If the constant we're
3553   // comparing exists in one of the other edges, then we can constant fold ICI
3554   // and zap it.
3555   if (SI->findCaseValue(Cst) != SI->case_default()) {
3556     Value *V;
3557     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
3558       V = ConstantInt::getFalse(BB->getContext());
3559     else
3560       V = ConstantInt::getTrue(BB->getContext());
3561 
3562     ICI->replaceAllUsesWith(V);
3563     ICI->eraseFromParent();
3564     // BB is now empty, so it is likely to simplify away.
3565     return simplifyCFG(BB, TTI, Options) | true;
3566   }
3567 
3568   // The use of the icmp has to be in the 'end' block, by the only PHI node in
3569   // the block.
3570   BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0);
3571   PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back());
3572   if (PHIUse == nullptr || PHIUse != &SuccBlock->front() ||
3573       isa<PHINode>(++BasicBlock::iterator(PHIUse)))
3574     return false;
3575 
3576   // If the icmp is a SETEQ, then the default dest gets false, the new edge gets
3577   // true in the PHI.
3578   Constant *DefaultCst = ConstantInt::getTrue(BB->getContext());
3579   Constant *NewCst = ConstantInt::getFalse(BB->getContext());
3580 
3581   if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
3582     std::swap(DefaultCst, NewCst);
3583 
3584   // Replace ICI (which is used by the PHI for the default value) with true or
3585   // false depending on if it is EQ or NE.
3586   ICI->replaceAllUsesWith(DefaultCst);
3587   ICI->eraseFromParent();
3588 
3589   // Okay, the switch goes to this block on a default value.  Add an edge from
3590   // the switch to the merge point on the compared value.
3591   BasicBlock *NewBB =
3592       BasicBlock::Create(BB->getContext(), "switch.edge", BB->getParent(), BB);
3593   SmallVector<uint64_t, 8> Weights;
3594   bool HasWeights = HasBranchWeights(SI);
3595   if (HasWeights) {
3596     GetBranchWeights(SI, Weights);
3597     if (Weights.size() == 1 + SI->getNumCases()) {
3598       // Split weight for default case to case for "Cst".
3599       Weights[0] = (Weights[0] + 1) >> 1;
3600       Weights.push_back(Weights[0]);
3601 
3602       SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
3603       setBranchWeights(SI, MDWeights);
3604     }
3605   }
3606   SI->addCase(Cst, NewBB);
3607 
3608   // NewBB branches to the phi block, add the uncond branch and the phi entry.
3609   Builder.SetInsertPoint(NewBB);
3610   Builder.SetCurrentDebugLocation(SI->getDebugLoc());
3611   Builder.CreateBr(SuccBlock);
3612   PHIUse->addIncoming(NewCst, NewBB);
3613   return true;
3614 }
3615 
3616 /// The specified branch is a conditional branch.
3617 /// Check to see if it is branching on an or/and chain of icmp instructions, and
3618 /// fold it into a switch instruction if so.
3619 static bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder,
3620                                       const DataLayout &DL) {
3621   Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
3622   if (!Cond)
3623     return false;
3624 
3625   // Change br (X == 0 | X == 1), T, F into a switch instruction.
3626   // If this is a bunch of seteq's or'd together, or if it's a bunch of
3627   // 'setne's and'ed together, collect them.
3628 
3629   // Try to gather values from a chain of and/or to be turned into a switch
3630   ConstantComparesGatherer ConstantCompare(Cond, DL);
3631   // Unpack the result
3632   SmallVectorImpl<ConstantInt *> &Values = ConstantCompare.Vals;
3633   Value *CompVal = ConstantCompare.CompValue;
3634   unsigned UsedICmps = ConstantCompare.UsedICmps;
3635   Value *ExtraCase = ConstantCompare.Extra;
3636 
3637   // If we didn't have a multiply compared value, fail.
3638   if (!CompVal)
3639     return false;
3640 
3641   // Avoid turning single icmps into a switch.
3642   if (UsedICmps <= 1)
3643     return false;
3644 
3645   bool TrueWhenEqual = (Cond->getOpcode() == Instruction::Or);
3646 
3647   // There might be duplicate constants in the list, which the switch
3648   // instruction can't handle, remove them now.
3649   array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate);
3650   Values.erase(std::unique(Values.begin(), Values.end()), Values.end());
3651 
3652   // If Extra was used, we require at least two switch values to do the
3653   // transformation.  A switch with one value is just a conditional branch.
3654   if (ExtraCase && Values.size() < 2)
3655     return false;
3656 
3657   // TODO: Preserve branch weight metadata, similarly to how
3658   // FoldValueComparisonIntoPredecessors preserves it.
3659 
3660   // Figure out which block is which destination.
3661   BasicBlock *DefaultBB = BI->getSuccessor(1);
3662   BasicBlock *EdgeBB = BI->getSuccessor(0);
3663   if (!TrueWhenEqual)
3664     std::swap(DefaultBB, EdgeBB);
3665 
3666   BasicBlock *BB = BI->getParent();
3667 
3668   DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size()
3669                << " cases into SWITCH.  BB is:\n"
3670                << *BB);
3671 
3672   // If there are any extra values that couldn't be folded into the switch
3673   // then we evaluate them with an explicit branch first.  Split the block
3674   // right before the condbr to handle it.
3675   if (ExtraCase) {
3676     BasicBlock *NewBB =
3677         BB->splitBasicBlock(BI->getIterator(), "switch.early.test");
3678     // Remove the uncond branch added to the old block.
3679     TerminatorInst *OldTI = BB->getTerminator();
3680     Builder.SetInsertPoint(OldTI);
3681 
3682     if (TrueWhenEqual)
3683       Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB);
3684     else
3685       Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB);
3686 
3687     OldTI->eraseFromParent();
3688 
3689     // If there are PHI nodes in EdgeBB, then we need to add a new entry to them
3690     // for the edge we just added.
3691     AddPredecessorToBlock(EdgeBB, BB, NewBB);
3692 
3693     DEBUG(dbgs() << "  ** 'icmp' chain unhandled condition: " << *ExtraCase
3694                  << "\nEXTRABB = " << *BB);
3695     BB = NewBB;
3696   }
3697 
3698   Builder.SetInsertPoint(BI);
3699   // Convert pointer to int before we switch.
3700   if (CompVal->getType()->isPointerTy()) {
3701     CompVal = Builder.CreatePtrToInt(
3702         CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr");
3703   }
3704 
3705   // Create the new switch instruction now.
3706   SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size());
3707 
3708   // Add all of the 'cases' to the switch instruction.
3709   for (unsigned i = 0, e = Values.size(); i != e; ++i)
3710     New->addCase(Values[i], EdgeBB);
3711 
3712   // We added edges from PI to the EdgeBB.  As such, if there were any
3713   // PHI nodes in EdgeBB, they need entries to be added corresponding to
3714   // the number of edges added.
3715   for (BasicBlock::iterator BBI = EdgeBB->begin(); isa<PHINode>(BBI); ++BBI) {
3716     PHINode *PN = cast<PHINode>(BBI);
3717     Value *InVal = PN->getIncomingValueForBlock(BB);
3718     for (unsigned i = 0, e = Values.size() - 1; i != e; ++i)
3719       PN->addIncoming(InVal, BB);
3720   }
3721 
3722   // Erase the old branch instruction.
3723   EraseTerminatorInstAndDCECond(BI);
3724 
3725   DEBUG(dbgs() << "  ** 'icmp' chain result is:\n" << *BB << '\n');
3726   return true;
3727 }
3728 
3729 bool SimplifyCFGOpt::SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder) {
3730   if (isa<PHINode>(RI->getValue()))
3731     return SimplifyCommonResume(RI);
3732   else if (isa<LandingPadInst>(RI->getParent()->getFirstNonPHI()) &&
3733            RI->getValue() == RI->getParent()->getFirstNonPHI())
3734     // The resume must unwind the exception that caused control to branch here.
3735     return SimplifySingleResume(RI);
3736 
3737   return false;
3738 }
3739 
3740 // Simplify resume that is shared by several landing pads (phi of landing pad).
3741 bool SimplifyCFGOpt::SimplifyCommonResume(ResumeInst *RI) {
3742   BasicBlock *BB = RI->getParent();
3743 
3744   // Check that there are no other instructions except for debug intrinsics
3745   // between the phi of landing pads (RI->getValue()) and resume instruction.
3746   BasicBlock::iterator I = cast<Instruction>(RI->getValue())->getIterator(),
3747                        E = RI->getIterator();
3748   while (++I != E)
3749     if (!isa<DbgInfoIntrinsic>(I))
3750       return false;
3751 
3752   SmallSetVector<BasicBlock *, 4> TrivialUnwindBlocks;
3753   auto *PhiLPInst = cast<PHINode>(RI->getValue());
3754 
3755   // Check incoming blocks to see if any of them are trivial.
3756   for (unsigned Idx = 0, End = PhiLPInst->getNumIncomingValues(); Idx != End;
3757        Idx++) {
3758     auto *IncomingBB = PhiLPInst->getIncomingBlock(Idx);
3759     auto *IncomingValue = PhiLPInst->getIncomingValue(Idx);
3760 
3761     // If the block has other successors, we can not delete it because
3762     // it has other dependents.
3763     if (IncomingBB->getUniqueSuccessor() != BB)
3764       continue;
3765 
3766     auto *LandingPad = dyn_cast<LandingPadInst>(IncomingBB->getFirstNonPHI());
3767     // Not the landing pad that caused the control to branch here.
3768     if (IncomingValue != LandingPad)
3769       continue;
3770 
3771     bool isTrivial = true;
3772 
3773     I = IncomingBB->getFirstNonPHI()->getIterator();
3774     E = IncomingBB->getTerminator()->getIterator();
3775     while (++I != E)
3776       if (!isa<DbgInfoIntrinsic>(I)) {
3777         isTrivial = false;
3778         break;
3779       }
3780 
3781     if (isTrivial)
3782       TrivialUnwindBlocks.insert(IncomingBB);
3783   }
3784 
3785   // If no trivial unwind blocks, don't do any simplifications.
3786   if (TrivialUnwindBlocks.empty())
3787     return false;
3788 
3789   // Turn all invokes that unwind here into calls.
3790   for (auto *TrivialBB : TrivialUnwindBlocks) {
3791     // Blocks that will be simplified should be removed from the phi node.
3792     // Note there could be multiple edges to the resume block, and we need
3793     // to remove them all.
3794     while (PhiLPInst->getBasicBlockIndex(TrivialBB) != -1)
3795       BB->removePredecessor(TrivialBB, true);
3796 
3797     for (pred_iterator PI = pred_begin(TrivialBB), PE = pred_end(TrivialBB);
3798          PI != PE;) {
3799       BasicBlock *Pred = *PI++;
3800       removeUnwindEdge(Pred);
3801     }
3802 
3803     // In each SimplifyCFG run, only the current processed block can be erased.
3804     // Otherwise, it will break the iteration of SimplifyCFG pass. So instead
3805     // of erasing TrivialBB, we only remove the branch to the common resume
3806     // block so that we can later erase the resume block since it has no
3807     // predecessors.
3808     TrivialBB->getTerminator()->eraseFromParent();
3809     new UnreachableInst(RI->getContext(), TrivialBB);
3810   }
3811 
3812   // Delete the resume block if all its predecessors have been removed.
3813   if (pred_empty(BB))
3814     BB->eraseFromParent();
3815 
3816   return !TrivialUnwindBlocks.empty();
3817 }
3818 
3819 // Simplify resume that is only used by a single (non-phi) landing pad.
3820 bool SimplifyCFGOpt::SimplifySingleResume(ResumeInst *RI) {
3821   BasicBlock *BB = RI->getParent();
3822   LandingPadInst *LPInst = dyn_cast<LandingPadInst>(BB->getFirstNonPHI());
3823   assert(RI->getValue() == LPInst &&
3824          "Resume must unwind the exception that caused control to here");
3825 
3826   // Check that there are no other instructions except for debug intrinsics.
3827   BasicBlock::iterator I = LPInst->getIterator(), E = RI->getIterator();
3828   while (++I != E)
3829     if (!isa<DbgInfoIntrinsic>(I))
3830       return false;
3831 
3832   // Turn all invokes that unwind here into calls and delete the basic block.
3833   for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) {
3834     BasicBlock *Pred = *PI++;
3835     removeUnwindEdge(Pred);
3836   }
3837 
3838   // The landingpad is now unreachable.  Zap it.
3839   BB->eraseFromParent();
3840   if (LoopHeaders)
3841     LoopHeaders->erase(BB);
3842   return true;
3843 }
3844 
3845 static bool removeEmptyCleanup(CleanupReturnInst *RI) {
3846   // If this is a trivial cleanup pad that executes no instructions, it can be
3847   // eliminated.  If the cleanup pad continues to the caller, any predecessor
3848   // that is an EH pad will be updated to continue to the caller and any
3849   // predecessor that terminates with an invoke instruction will have its invoke
3850   // instruction converted to a call instruction.  If the cleanup pad being
3851   // simplified does not continue to the caller, each predecessor will be
3852   // updated to continue to the unwind destination of the cleanup pad being
3853   // simplified.
3854   BasicBlock *BB = RI->getParent();
3855   CleanupPadInst *CPInst = RI->getCleanupPad();
3856   if (CPInst->getParent() != BB)
3857     // This isn't an empty cleanup.
3858     return false;
3859 
3860   // We cannot kill the pad if it has multiple uses.  This typically arises
3861   // from unreachable basic blocks.
3862   if (!CPInst->hasOneUse())
3863     return false;
3864 
3865   // Check that there are no other instructions except for benign intrinsics.
3866   BasicBlock::iterator I = CPInst->getIterator(), E = RI->getIterator();
3867   while (++I != E) {
3868     auto *II = dyn_cast<IntrinsicInst>(I);
3869     if (!II)
3870       return false;
3871 
3872     Intrinsic::ID IntrinsicID = II->getIntrinsicID();
3873     switch (IntrinsicID) {
3874     case Intrinsic::dbg_declare:
3875     case Intrinsic::dbg_value:
3876     case Intrinsic::lifetime_end:
3877       break;
3878     default:
3879       return false;
3880     }
3881   }
3882 
3883   // If the cleanup return we are simplifying unwinds to the caller, this will
3884   // set UnwindDest to nullptr.
3885   BasicBlock *UnwindDest = RI->getUnwindDest();
3886   Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr;
3887 
3888   // We're about to remove BB from the control flow.  Before we do, sink any
3889   // PHINodes into the unwind destination.  Doing this before changing the
3890   // control flow avoids some potentially slow checks, since we can currently
3891   // be certain that UnwindDest and BB have no common predecessors (since they
3892   // are both EH pads).
3893   if (UnwindDest) {
3894     // First, go through the PHI nodes in UnwindDest and update any nodes that
3895     // reference the block we are removing
3896     for (BasicBlock::iterator I = UnwindDest->begin(),
3897                               IE = DestEHPad->getIterator();
3898          I != IE; ++I) {
3899       PHINode *DestPN = cast<PHINode>(I);
3900 
3901       int Idx = DestPN->getBasicBlockIndex(BB);
3902       // Since BB unwinds to UnwindDest, it has to be in the PHI node.
3903       assert(Idx != -1);
3904       // This PHI node has an incoming value that corresponds to a control
3905       // path through the cleanup pad we are removing.  If the incoming
3906       // value is in the cleanup pad, it must be a PHINode (because we
3907       // verified above that the block is otherwise empty).  Otherwise, the
3908       // value is either a constant or a value that dominates the cleanup
3909       // pad being removed.
3910       //
3911       // Because BB and UnwindDest are both EH pads, all of their
3912       // predecessors must unwind to these blocks, and since no instruction
3913       // can have multiple unwind destinations, there will be no overlap in
3914       // incoming blocks between SrcPN and DestPN.
3915       Value *SrcVal = DestPN->getIncomingValue(Idx);
3916       PHINode *SrcPN = dyn_cast<PHINode>(SrcVal);
3917 
3918       // Remove the entry for the block we are deleting.
3919       DestPN->removeIncomingValue(Idx, false);
3920 
3921       if (SrcPN && SrcPN->getParent() == BB) {
3922         // If the incoming value was a PHI node in the cleanup pad we are
3923         // removing, we need to merge that PHI node's incoming values into
3924         // DestPN.
3925         for (unsigned SrcIdx = 0, SrcE = SrcPN->getNumIncomingValues();
3926              SrcIdx != SrcE; ++SrcIdx) {
3927           DestPN->addIncoming(SrcPN->getIncomingValue(SrcIdx),
3928                               SrcPN->getIncomingBlock(SrcIdx));
3929         }
3930       } else {
3931         // Otherwise, the incoming value came from above BB and
3932         // so we can just reuse it.  We must associate all of BB's
3933         // predecessors with this value.
3934         for (auto *pred : predecessors(BB)) {
3935           DestPN->addIncoming(SrcVal, pred);
3936         }
3937       }
3938     }
3939 
3940     // Sink any remaining PHI nodes directly into UnwindDest.
3941     Instruction *InsertPt = DestEHPad;
3942     for (BasicBlock::iterator I = BB->begin(),
3943                               IE = BB->getFirstNonPHI()->getIterator();
3944          I != IE;) {
3945       // The iterator must be incremented here because the instructions are
3946       // being moved to another block.
3947       PHINode *PN = cast<PHINode>(I++);
3948       if (PN->use_empty())
3949         // If the PHI node has no uses, just leave it.  It will be erased
3950         // when we erase BB below.
3951         continue;
3952 
3953       // Otherwise, sink this PHI node into UnwindDest.
3954       // Any predecessors to UnwindDest which are not already represented
3955       // must be back edges which inherit the value from the path through
3956       // BB.  In this case, the PHI value must reference itself.
3957       for (auto *pred : predecessors(UnwindDest))
3958         if (pred != BB)
3959           PN->addIncoming(PN, pred);
3960       PN->moveBefore(InsertPt);
3961     }
3962   }
3963 
3964   for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) {
3965     // The iterator must be updated here because we are removing this pred.
3966     BasicBlock *PredBB = *PI++;
3967     if (UnwindDest == nullptr) {
3968       removeUnwindEdge(PredBB);
3969     } else {
3970       TerminatorInst *TI = PredBB->getTerminator();
3971       TI->replaceUsesOfWith(BB, UnwindDest);
3972     }
3973   }
3974 
3975   // The cleanup pad is now unreachable.  Zap it.
3976   BB->eraseFromParent();
3977   return true;
3978 }
3979 
3980 // Try to merge two cleanuppads together.
3981 static bool mergeCleanupPad(CleanupReturnInst *RI) {
3982   // Skip any cleanuprets which unwind to caller, there is nothing to merge
3983   // with.
3984   BasicBlock *UnwindDest = RI->getUnwindDest();
3985   if (!UnwindDest)
3986     return false;
3987 
3988   // This cleanupret isn't the only predecessor of this cleanuppad, it wouldn't
3989   // be safe to merge without code duplication.
3990   if (UnwindDest->getSinglePredecessor() != RI->getParent())
3991     return false;
3992 
3993   // Verify that our cleanuppad's unwind destination is another cleanuppad.
3994   auto *SuccessorCleanupPad = dyn_cast<CleanupPadInst>(&UnwindDest->front());
3995   if (!SuccessorCleanupPad)
3996     return false;
3997 
3998   CleanupPadInst *PredecessorCleanupPad = RI->getCleanupPad();
3999   // Replace any uses of the successor cleanupad with the predecessor pad
4000   // The only cleanuppad uses should be this cleanupret, it's cleanupret and
4001   // funclet bundle operands.
4002   SuccessorCleanupPad->replaceAllUsesWith(PredecessorCleanupPad);
4003   // Remove the old cleanuppad.
4004   SuccessorCleanupPad->eraseFromParent();
4005   // Now, we simply replace the cleanupret with a branch to the unwind
4006   // destination.
4007   BranchInst::Create(UnwindDest, RI->getParent());
4008   RI->eraseFromParent();
4009 
4010   return true;
4011 }
4012 
4013 bool SimplifyCFGOpt::SimplifyCleanupReturn(CleanupReturnInst *RI) {
4014   // It is possible to transiantly have an undef cleanuppad operand because we
4015   // have deleted some, but not all, dead blocks.
4016   // Eventually, this block will be deleted.
4017   if (isa<UndefValue>(RI->getOperand(0)))
4018     return false;
4019 
4020   if (mergeCleanupPad(RI))
4021     return true;
4022 
4023   if (removeEmptyCleanup(RI))
4024     return true;
4025 
4026   return false;
4027 }
4028 
4029 bool SimplifyCFGOpt::SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) {
4030   BasicBlock *BB = RI->getParent();
4031   if (!BB->getFirstNonPHIOrDbg()->isTerminator())
4032     return false;
4033 
4034   // Find predecessors that end with branches.
4035   SmallVector<BasicBlock *, 8> UncondBranchPreds;
4036   SmallVector<BranchInst *, 8> CondBranchPreds;
4037   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
4038     BasicBlock *P = *PI;
4039     TerminatorInst *PTI = P->getTerminator();
4040     if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) {
4041       if (BI->isUnconditional())
4042         UncondBranchPreds.push_back(P);
4043       else
4044         CondBranchPreds.push_back(BI);
4045     }
4046   }
4047 
4048   // If we found some, do the transformation!
4049   if (!UncondBranchPreds.empty() && DupRet) {
4050     while (!UncondBranchPreds.empty()) {
4051       BasicBlock *Pred = UncondBranchPreds.pop_back_val();
4052       DEBUG(dbgs() << "FOLDING: " << *BB
4053                    << "INTO UNCOND BRANCH PRED: " << *Pred);
4054       (void)FoldReturnIntoUncondBranch(RI, BB, Pred);
4055     }
4056 
4057     // If we eliminated all predecessors of the block, delete the block now.
4058     if (pred_empty(BB)) {
4059       // We know there are no successors, so just nuke the block.
4060       BB->eraseFromParent();
4061       if (LoopHeaders)
4062         LoopHeaders->erase(BB);
4063     }
4064 
4065     return true;
4066   }
4067 
4068   // Check out all of the conditional branches going to this return
4069   // instruction.  If any of them just select between returns, change the
4070   // branch itself into a select/return pair.
4071   while (!CondBranchPreds.empty()) {
4072     BranchInst *BI = CondBranchPreds.pop_back_val();
4073 
4074     // Check to see if the non-BB successor is also a return block.
4075     if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) &&
4076         isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) &&
4077         SimplifyCondBranchToTwoReturns(BI, Builder))
4078       return true;
4079   }
4080   return false;
4081 }
4082 
4083 bool SimplifyCFGOpt::SimplifyUnreachable(UnreachableInst *UI) {
4084   BasicBlock *BB = UI->getParent();
4085 
4086   bool Changed = false;
4087 
4088   // If there are any instructions immediately before the unreachable that can
4089   // be removed, do so.
4090   while (UI->getIterator() != BB->begin()) {
4091     BasicBlock::iterator BBI = UI->getIterator();
4092     --BBI;
4093     // Do not delete instructions that can have side effects which might cause
4094     // the unreachable to not be reachable; specifically, calls and volatile
4095     // operations may have this effect.
4096     if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI))
4097       break;
4098 
4099     if (BBI->mayHaveSideEffects()) {
4100       if (auto *SI = dyn_cast<StoreInst>(BBI)) {
4101         if (SI->isVolatile())
4102           break;
4103       } else if (auto *LI = dyn_cast<LoadInst>(BBI)) {
4104         if (LI->isVolatile())
4105           break;
4106       } else if (auto *RMWI = dyn_cast<AtomicRMWInst>(BBI)) {
4107         if (RMWI->isVolatile())
4108           break;
4109       } else if (auto *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) {
4110         if (CXI->isVolatile())
4111           break;
4112       } else if (isa<CatchPadInst>(BBI)) {
4113         // A catchpad may invoke exception object constructors and such, which
4114         // in some languages can be arbitrary code, so be conservative by
4115         // default.
4116         // For CoreCLR, it just involves a type test, so can be removed.
4117         if (classifyEHPersonality(BB->getParent()->getPersonalityFn()) !=
4118             EHPersonality::CoreCLR)
4119           break;
4120       } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) &&
4121                  !isa<LandingPadInst>(BBI)) {
4122         break;
4123       }
4124       // Note that deleting LandingPad's here is in fact okay, although it
4125       // involves a bit of subtle reasoning. If this inst is a LandingPad,
4126       // all the predecessors of this block will be the unwind edges of Invokes,
4127       // and we can therefore guarantee this block will be erased.
4128     }
4129 
4130     // Delete this instruction (any uses are guaranteed to be dead)
4131     if (!BBI->use_empty())
4132       BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
4133     BBI->eraseFromParent();
4134     Changed = true;
4135   }
4136 
4137   // If the unreachable instruction is the first in the block, take a gander
4138   // at all of the predecessors of this instruction, and simplify them.
4139   if (&BB->front() != UI)
4140     return Changed;
4141 
4142   SmallVector<BasicBlock *, 8> Preds(pred_begin(BB), pred_end(BB));
4143   for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
4144     TerminatorInst *TI = Preds[i]->getTerminator();
4145     IRBuilder<> Builder(TI);
4146     if (auto *BI = dyn_cast<BranchInst>(TI)) {
4147       if (BI->isUnconditional()) {
4148         if (BI->getSuccessor(0) == BB) {
4149           new UnreachableInst(TI->getContext(), TI);
4150           TI->eraseFromParent();
4151           Changed = true;
4152         }
4153       } else {
4154         if (BI->getSuccessor(0) == BB) {
4155           Builder.CreateBr(BI->getSuccessor(1));
4156           EraseTerminatorInstAndDCECond(BI);
4157         } else if (BI->getSuccessor(1) == BB) {
4158           Builder.CreateBr(BI->getSuccessor(0));
4159           EraseTerminatorInstAndDCECond(BI);
4160           Changed = true;
4161         }
4162       }
4163     } else if (auto *SI = dyn_cast<SwitchInst>(TI)) {
4164       for (auto i = SI->case_begin(), e = SI->case_end(); i != e;) {
4165         if (i->getCaseSuccessor() != BB) {
4166           ++i;
4167           continue;
4168         }
4169         BB->removePredecessor(SI->getParent());
4170         i = SI->removeCase(i);
4171         e = SI->case_end();
4172         Changed = true;
4173       }
4174     } else if (auto *II = dyn_cast<InvokeInst>(TI)) {
4175       if (II->getUnwindDest() == BB) {
4176         removeUnwindEdge(TI->getParent());
4177         Changed = true;
4178       }
4179     } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) {
4180       if (CSI->getUnwindDest() == BB) {
4181         removeUnwindEdge(TI->getParent());
4182         Changed = true;
4183         continue;
4184       }
4185 
4186       for (CatchSwitchInst::handler_iterator I = CSI->handler_begin(),
4187                                              E = CSI->handler_end();
4188            I != E; ++I) {
4189         if (*I == BB) {
4190           CSI->removeHandler(I);
4191           --I;
4192           --E;
4193           Changed = true;
4194         }
4195       }
4196       if (CSI->getNumHandlers() == 0) {
4197         BasicBlock *CatchSwitchBB = CSI->getParent();
4198         if (CSI->hasUnwindDest()) {
4199           // Redirect preds to the unwind dest
4200           CatchSwitchBB->replaceAllUsesWith(CSI->getUnwindDest());
4201         } else {
4202           // Rewrite all preds to unwind to caller (or from invoke to call).
4203           SmallVector<BasicBlock *, 8> EHPreds(predecessors(CatchSwitchBB));
4204           for (BasicBlock *EHPred : EHPreds)
4205             removeUnwindEdge(EHPred);
4206         }
4207         // The catchswitch is no longer reachable.
4208         new UnreachableInst(CSI->getContext(), CSI);
4209         CSI->eraseFromParent();
4210         Changed = true;
4211       }
4212     } else if (isa<CleanupReturnInst>(TI)) {
4213       new UnreachableInst(TI->getContext(), TI);
4214       TI->eraseFromParent();
4215       Changed = true;
4216     }
4217   }
4218 
4219   // If this block is now dead, remove it.
4220   if (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) {
4221     // We know there are no successors, so just nuke the block.
4222     BB->eraseFromParent();
4223     if (LoopHeaders)
4224       LoopHeaders->erase(BB);
4225     return true;
4226   }
4227 
4228   return Changed;
4229 }
4230 
4231 static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) {
4232   assert(Cases.size() >= 1);
4233 
4234   array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate);
4235   for (size_t I = 1, E = Cases.size(); I != E; ++I) {
4236     if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1)
4237       return false;
4238   }
4239   return true;
4240 }
4241 
4242 /// Turn a switch with two reachable destinations into an integer range
4243 /// comparison and branch.
4244 static bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder) {
4245   assert(SI->getNumCases() > 1 && "Degenerate switch?");
4246 
4247   bool HasDefault =
4248       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
4249 
4250   // Partition the cases into two sets with different destinations.
4251   BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr;
4252   BasicBlock *DestB = nullptr;
4253   SmallVector<ConstantInt *, 16> CasesA;
4254   SmallVector<ConstantInt *, 16> CasesB;
4255 
4256   for (auto Case : SI->cases()) {
4257     BasicBlock *Dest = Case.getCaseSuccessor();
4258     if (!DestA)
4259       DestA = Dest;
4260     if (Dest == DestA) {
4261       CasesA.push_back(Case.getCaseValue());
4262       continue;
4263     }
4264     if (!DestB)
4265       DestB = Dest;
4266     if (Dest == DestB) {
4267       CasesB.push_back(Case.getCaseValue());
4268       continue;
4269     }
4270     return false; // More than two destinations.
4271   }
4272 
4273   assert(DestA && DestB &&
4274          "Single-destination switch should have been folded.");
4275   assert(DestA != DestB);
4276   assert(DestB != SI->getDefaultDest());
4277   assert(!CasesB.empty() && "There must be non-default cases.");
4278   assert(!CasesA.empty() || HasDefault);
4279 
4280   // Figure out if one of the sets of cases form a contiguous range.
4281   SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr;
4282   BasicBlock *ContiguousDest = nullptr;
4283   BasicBlock *OtherDest = nullptr;
4284   if (!CasesA.empty() && CasesAreContiguous(CasesA)) {
4285     ContiguousCases = &CasesA;
4286     ContiguousDest = DestA;
4287     OtherDest = DestB;
4288   } else if (CasesAreContiguous(CasesB)) {
4289     ContiguousCases = &CasesB;
4290     ContiguousDest = DestB;
4291     OtherDest = DestA;
4292   } else
4293     return false;
4294 
4295   // Start building the compare and branch.
4296 
4297   Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back());
4298   Constant *NumCases =
4299       ConstantInt::get(Offset->getType(), ContiguousCases->size());
4300 
4301   Value *Sub = SI->getCondition();
4302   if (!Offset->isNullValue())
4303     Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off");
4304 
4305   Value *Cmp;
4306   // If NumCases overflowed, then all possible values jump to the successor.
4307   if (NumCases->isNullValue() && !ContiguousCases->empty())
4308     Cmp = ConstantInt::getTrue(SI->getContext());
4309   else
4310     Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch");
4311   BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest);
4312 
4313   // Update weight for the newly-created conditional branch.
4314   if (HasBranchWeights(SI)) {
4315     SmallVector<uint64_t, 8> Weights;
4316     GetBranchWeights(SI, Weights);
4317     if (Weights.size() == 1 + SI->getNumCases()) {
4318       uint64_t TrueWeight = 0;
4319       uint64_t FalseWeight = 0;
4320       for (size_t I = 0, E = Weights.size(); I != E; ++I) {
4321         if (SI->getSuccessor(I) == ContiguousDest)
4322           TrueWeight += Weights[I];
4323         else
4324           FalseWeight += Weights[I];
4325       }
4326       while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) {
4327         TrueWeight /= 2;
4328         FalseWeight /= 2;
4329       }
4330       setBranchWeights(NewBI, TrueWeight, FalseWeight);
4331     }
4332   }
4333 
4334   // Prune obsolete incoming values off the successors' PHI nodes.
4335   for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) {
4336     unsigned PreviousEdges = ContiguousCases->size();
4337     if (ContiguousDest == SI->getDefaultDest())
4338       ++PreviousEdges;
4339     for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
4340       cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
4341   }
4342   for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) {
4343     unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size();
4344     if (OtherDest == SI->getDefaultDest())
4345       ++PreviousEdges;
4346     for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
4347       cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
4348   }
4349 
4350   // Drop the switch.
4351   SI->eraseFromParent();
4352 
4353   return true;
4354 }
4355 
4356 /// Compute masked bits for the condition of a switch
4357 /// and use it to remove dead cases.
4358 static bool eliminateDeadSwitchCases(SwitchInst *SI, AssumptionCache *AC,
4359                                      const DataLayout &DL) {
4360   Value *Cond = SI->getCondition();
4361   unsigned Bits = Cond->getType()->getIntegerBitWidth();
4362   KnownBits Known = computeKnownBits(Cond, DL, 0, AC, SI);
4363 
4364   // We can also eliminate cases by determining that their values are outside of
4365   // the limited range of the condition based on how many significant (non-sign)
4366   // bits are in the condition value.
4367   unsigned ExtraSignBits = ComputeNumSignBits(Cond, DL, 0, AC, SI) - 1;
4368   unsigned MaxSignificantBitsInCond = Bits - ExtraSignBits;
4369 
4370   // Gather dead cases.
4371   SmallVector<ConstantInt *, 8> DeadCases;
4372   for (auto &Case : SI->cases()) {
4373     const APInt &CaseVal = Case.getCaseValue()->getValue();
4374     if (Known.Zero.intersects(CaseVal) || !Known.One.isSubsetOf(CaseVal) ||
4375         (CaseVal.getMinSignedBits() > MaxSignificantBitsInCond)) {
4376       DeadCases.push_back(Case.getCaseValue());
4377       DEBUG(dbgs() << "SimplifyCFG: switch case " << CaseVal << " is dead.\n");
4378     }
4379   }
4380 
4381   // If we can prove that the cases must cover all possible values, the
4382   // default destination becomes dead and we can remove it.  If we know some
4383   // of the bits in the value, we can use that to more precisely compute the
4384   // number of possible unique case values.
4385   bool HasDefault =
4386       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
4387   const unsigned NumUnknownBits =
4388       Bits - (Known.Zero | Known.One).countPopulation();
4389   assert(NumUnknownBits <= Bits);
4390   if (HasDefault && DeadCases.empty() &&
4391       NumUnknownBits < 64 /* avoid overflow */ &&
4392       SI->getNumCases() == (1ULL << NumUnknownBits)) {
4393     DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n");
4394     BasicBlock *NewDefault =
4395         SplitBlockPredecessors(SI->getDefaultDest(), SI->getParent(), "");
4396     SI->setDefaultDest(&*NewDefault);
4397     SplitBlock(&*NewDefault, &NewDefault->front());
4398     auto *OldTI = NewDefault->getTerminator();
4399     new UnreachableInst(SI->getContext(), OldTI);
4400     EraseTerminatorInstAndDCECond(OldTI);
4401     return true;
4402   }
4403 
4404   SmallVector<uint64_t, 8> Weights;
4405   bool HasWeight = HasBranchWeights(SI);
4406   if (HasWeight) {
4407     GetBranchWeights(SI, Weights);
4408     HasWeight = (Weights.size() == 1 + SI->getNumCases());
4409   }
4410 
4411   // Remove dead cases from the switch.
4412   for (ConstantInt *DeadCase : DeadCases) {
4413     SwitchInst::CaseIt CaseI = SI->findCaseValue(DeadCase);
4414     assert(CaseI != SI->case_default() &&
4415            "Case was not found. Probably mistake in DeadCases forming.");
4416     if (HasWeight) {
4417       std::swap(Weights[CaseI->getCaseIndex() + 1], Weights.back());
4418       Weights.pop_back();
4419     }
4420 
4421     // Prune unused values from PHI nodes.
4422     CaseI->getCaseSuccessor()->removePredecessor(SI->getParent());
4423     SI->removeCase(CaseI);
4424   }
4425   if (HasWeight && Weights.size() >= 2) {
4426     SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
4427     setBranchWeights(SI, MDWeights);
4428   }
4429 
4430   return !DeadCases.empty();
4431 }
4432 
4433 /// If BB would be eligible for simplification by
4434 /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated
4435 /// by an unconditional branch), look at the phi node for BB in the successor
4436 /// block and see if the incoming value is equal to CaseValue. If so, return
4437 /// the phi node, and set PhiIndex to BB's index in the phi node.
4438 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue,
4439                                               BasicBlock *BB, int *PhiIndex) {
4440   if (BB->getFirstNonPHIOrDbg() != BB->getTerminator())
4441     return nullptr; // BB must be empty to be a candidate for simplification.
4442   if (!BB->getSinglePredecessor())
4443     return nullptr; // BB must be dominated by the switch.
4444 
4445   BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator());
4446   if (!Branch || !Branch->isUnconditional())
4447     return nullptr; // Terminator must be unconditional branch.
4448 
4449   BasicBlock *Succ = Branch->getSuccessor(0);
4450 
4451   for (PHINode &PHI : Succ->phis()) {
4452     int Idx = PHI.getBasicBlockIndex(BB);
4453     assert(Idx >= 0 && "PHI has no entry for predecessor?");
4454 
4455     Value *InValue = PHI.getIncomingValue(Idx);
4456     if (InValue != CaseValue)
4457       continue;
4458 
4459     *PhiIndex = Idx;
4460     return &PHI;
4461   }
4462 
4463   return nullptr;
4464 }
4465 
4466 /// Try to forward the condition of a switch instruction to a phi node
4467 /// dominated by the switch, if that would mean that some of the destination
4468 /// blocks of the switch can be folded away. Return true if a change is made.
4469 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) {
4470   using ForwardingNodesMap = DenseMap<PHINode *, SmallVector<int, 4>>;
4471 
4472   ForwardingNodesMap ForwardingNodes;
4473   BasicBlock *SwitchBlock = SI->getParent();
4474   bool Changed = false;
4475   for (auto &Case : SI->cases()) {
4476     ConstantInt *CaseValue = Case.getCaseValue();
4477     BasicBlock *CaseDest = Case.getCaseSuccessor();
4478 
4479     // Replace phi operands in successor blocks that are using the constant case
4480     // value rather than the switch condition variable:
4481     //   switchbb:
4482     //   switch i32 %x, label %default [
4483     //     i32 17, label %succ
4484     //   ...
4485     //   succ:
4486     //     %r = phi i32 ... [ 17, %switchbb ] ...
4487     // -->
4488     //     %r = phi i32 ... [ %x, %switchbb ] ...
4489 
4490     for (PHINode &Phi : CaseDest->phis()) {
4491       // This only works if there is exactly 1 incoming edge from the switch to
4492       // a phi. If there is >1, that means multiple cases of the switch map to 1
4493       // value in the phi, and that phi value is not the switch condition. Thus,
4494       // this transform would not make sense (the phi would be invalid because
4495       // a phi can't have different incoming values from the same block).
4496       int SwitchBBIdx = Phi.getBasicBlockIndex(SwitchBlock);
4497       if (Phi.getIncomingValue(SwitchBBIdx) == CaseValue &&
4498           count(Phi.blocks(), SwitchBlock) == 1) {
4499         Phi.setIncomingValue(SwitchBBIdx, SI->getCondition());
4500         Changed = true;
4501       }
4502     }
4503 
4504     // Collect phi nodes that are indirectly using this switch's case constants.
4505     int PhiIdx;
4506     if (auto *Phi = FindPHIForConditionForwarding(CaseValue, CaseDest, &PhiIdx))
4507       ForwardingNodes[Phi].push_back(PhiIdx);
4508   }
4509 
4510   for (auto &ForwardingNode : ForwardingNodes) {
4511     PHINode *Phi = ForwardingNode.first;
4512     SmallVectorImpl<int> &Indexes = ForwardingNode.second;
4513     if (Indexes.size() < 2)
4514       continue;
4515 
4516     for (int Index : Indexes)
4517       Phi->setIncomingValue(Index, SI->getCondition());
4518     Changed = true;
4519   }
4520 
4521   return Changed;
4522 }
4523 
4524 /// Return true if the backend will be able to handle
4525 /// initializing an array of constants like C.
4526 static bool ValidLookupTableConstant(Constant *C, const TargetTransformInfo &TTI) {
4527   if (C->isThreadDependent())
4528     return false;
4529   if (C->isDLLImportDependent())
4530     return false;
4531 
4532   if (!isa<ConstantFP>(C) && !isa<ConstantInt>(C) &&
4533       !isa<ConstantPointerNull>(C) && !isa<GlobalValue>(C) &&
4534       !isa<UndefValue>(C) && !isa<ConstantExpr>(C))
4535     return false;
4536 
4537   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
4538     if (!CE->isGEPWithNoNotionalOverIndexing())
4539       return false;
4540     if (!ValidLookupTableConstant(CE->getOperand(0), TTI))
4541       return false;
4542   }
4543 
4544   if (!TTI.shouldBuildLookupTablesForConstant(C))
4545     return false;
4546 
4547   return true;
4548 }
4549 
4550 /// If V is a Constant, return it. Otherwise, try to look up
4551 /// its constant value in ConstantPool, returning 0 if it's not there.
4552 static Constant *
4553 LookupConstant(Value *V,
4554                const SmallDenseMap<Value *, Constant *> &ConstantPool) {
4555   if (Constant *C = dyn_cast<Constant>(V))
4556     return C;
4557   return ConstantPool.lookup(V);
4558 }
4559 
4560 /// Try to fold instruction I into a constant. This works for
4561 /// simple instructions such as binary operations where both operands are
4562 /// constant or can be replaced by constants from the ConstantPool. Returns the
4563 /// resulting constant on success, 0 otherwise.
4564 static Constant *
4565 ConstantFold(Instruction *I, const DataLayout &DL,
4566              const SmallDenseMap<Value *, Constant *> &ConstantPool) {
4567   if (SelectInst *Select = dyn_cast<SelectInst>(I)) {
4568     Constant *A = LookupConstant(Select->getCondition(), ConstantPool);
4569     if (!A)
4570       return nullptr;
4571     if (A->isAllOnesValue())
4572       return LookupConstant(Select->getTrueValue(), ConstantPool);
4573     if (A->isNullValue())
4574       return LookupConstant(Select->getFalseValue(), ConstantPool);
4575     return nullptr;
4576   }
4577 
4578   SmallVector<Constant *, 4> COps;
4579   for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) {
4580     if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool))
4581       COps.push_back(A);
4582     else
4583       return nullptr;
4584   }
4585 
4586   if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
4587     return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0],
4588                                            COps[1], DL);
4589   }
4590 
4591   return ConstantFoldInstOperands(I, COps, DL);
4592 }
4593 
4594 /// Try to determine the resulting constant values in phi nodes
4595 /// at the common destination basic block, *CommonDest, for one of the case
4596 /// destionations CaseDest corresponding to value CaseVal (0 for the default
4597 /// case), of a switch instruction SI.
4598 static bool
4599 GetCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest,
4600                BasicBlock **CommonDest,
4601                SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res,
4602                const DataLayout &DL, const TargetTransformInfo &TTI) {
4603   // The block from which we enter the common destination.
4604   BasicBlock *Pred = SI->getParent();
4605 
4606   // If CaseDest is empty except for some side-effect free instructions through
4607   // which we can constant-propagate the CaseVal, continue to its successor.
4608   SmallDenseMap<Value *, Constant *> ConstantPool;
4609   ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal));
4610   for (BasicBlock::iterator I = CaseDest->begin(), E = CaseDest->end(); I != E;
4611        ++I) {
4612     if (TerminatorInst *T = dyn_cast<TerminatorInst>(I)) {
4613       // If the terminator is a simple branch, continue to the next block.
4614       if (T->getNumSuccessors() != 1 || T->isExceptional())
4615         return false;
4616       Pred = CaseDest;
4617       CaseDest = T->getSuccessor(0);
4618     } else if (isa<DbgInfoIntrinsic>(I)) {
4619       // Skip debug intrinsic.
4620       continue;
4621     } else if (Constant *C = ConstantFold(&*I, DL, ConstantPool)) {
4622       // Instruction is side-effect free and constant.
4623 
4624       // If the instruction has uses outside this block or a phi node slot for
4625       // the block, it is not safe to bypass the instruction since it would then
4626       // no longer dominate all its uses.
4627       for (auto &Use : I->uses()) {
4628         User *User = Use.getUser();
4629         if (Instruction *I = dyn_cast<Instruction>(User))
4630           if (I->getParent() == CaseDest)
4631             continue;
4632         if (PHINode *Phi = dyn_cast<PHINode>(User))
4633           if (Phi->getIncomingBlock(Use) == CaseDest)
4634             continue;
4635         return false;
4636       }
4637 
4638       ConstantPool.insert(std::make_pair(&*I, C));
4639     } else {
4640       break;
4641     }
4642   }
4643 
4644   // If we did not have a CommonDest before, use the current one.
4645   if (!*CommonDest)
4646     *CommonDest = CaseDest;
4647   // If the destination isn't the common one, abort.
4648   if (CaseDest != *CommonDest)
4649     return false;
4650 
4651   // Get the values for this case from phi nodes in the destination block.
4652   for (PHINode &PHI : (*CommonDest)->phis()) {
4653     int Idx = PHI.getBasicBlockIndex(Pred);
4654     if (Idx == -1)
4655       continue;
4656 
4657     Constant *ConstVal =
4658         LookupConstant(PHI.getIncomingValue(Idx), ConstantPool);
4659     if (!ConstVal)
4660       return false;
4661 
4662     // Be conservative about which kinds of constants we support.
4663     if (!ValidLookupTableConstant(ConstVal, TTI))
4664       return false;
4665 
4666     Res.push_back(std::make_pair(&PHI, ConstVal));
4667   }
4668 
4669   return Res.size() > 0;
4670 }
4671 
4672 // Helper function used to add CaseVal to the list of cases that generate
4673 // Result. Returns the updated number of cases that generate this result.
4674 static uintptr_t MapCaseToResult(ConstantInt *CaseVal,
4675                                  SwitchCaseResultVectorTy &UniqueResults,
4676                                  Constant *Result) {
4677   for (auto &I : UniqueResults) {
4678     if (I.first == Result) {
4679       I.second.push_back(CaseVal);
4680       return I.second.size();
4681     }
4682   }
4683   UniqueResults.push_back(
4684       std::make_pair(Result, SmallVector<ConstantInt *, 4>(1, CaseVal)));
4685   return 1;
4686 }
4687 
4688 // Helper function that initializes a map containing
4689 // results for the PHI node of the common destination block for a switch
4690 // instruction. Returns false if multiple PHI nodes have been found or if
4691 // there is not a common destination block for the switch.
4692 static bool
4693 InitializeUniqueCases(SwitchInst *SI, PHINode *&PHI, BasicBlock *&CommonDest,
4694                       SwitchCaseResultVectorTy &UniqueResults,
4695                       Constant *&DefaultResult, const DataLayout &DL,
4696                       const TargetTransformInfo &TTI,
4697                       uintptr_t MaxUniqueResults, uintptr_t MaxCasesPerResult) {
4698   for (auto &I : SI->cases()) {
4699     ConstantInt *CaseVal = I.getCaseValue();
4700 
4701     // Resulting value at phi nodes for this case value.
4702     SwitchCaseResultsTy Results;
4703     if (!GetCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results,
4704                         DL, TTI))
4705       return false;
4706 
4707     // Only one value per case is permitted.
4708     if (Results.size() > 1)
4709       return false;
4710 
4711     // Add the case->result mapping to UniqueResults.
4712     const uintptr_t NumCasesForResult =
4713         MapCaseToResult(CaseVal, UniqueResults, Results.begin()->second);
4714 
4715     // Early out if there are too many cases for this result.
4716     if (NumCasesForResult > MaxCasesPerResult)
4717       return false;
4718 
4719     // Early out if there are too many unique results.
4720     if (UniqueResults.size() > MaxUniqueResults)
4721       return false;
4722 
4723     // Check the PHI consistency.
4724     if (!PHI)
4725       PHI = Results[0].first;
4726     else if (PHI != Results[0].first)
4727       return false;
4728   }
4729   // Find the default result value.
4730   SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults;
4731   BasicBlock *DefaultDest = SI->getDefaultDest();
4732   GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults,
4733                  DL, TTI);
4734   // If the default value is not found abort unless the default destination
4735   // is unreachable.
4736   DefaultResult =
4737       DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr;
4738   if ((!DefaultResult &&
4739        !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg())))
4740     return false;
4741 
4742   return true;
4743 }
4744 
4745 // Helper function that checks if it is possible to transform a switch with only
4746 // two cases (or two cases + default) that produces a result into a select.
4747 // Example:
4748 // switch (a) {
4749 //   case 10:                %0 = icmp eq i32 %a, 10
4750 //     return 10;            %1 = select i1 %0, i32 10, i32 4
4751 //   case 20:        ---->   %2 = icmp eq i32 %a, 20
4752 //     return 2;             %3 = select i1 %2, i32 2, i32 %1
4753 //   default:
4754 //     return 4;
4755 // }
4756 static Value *ConvertTwoCaseSwitch(const SwitchCaseResultVectorTy &ResultVector,
4757                                    Constant *DefaultResult, Value *Condition,
4758                                    IRBuilder<> &Builder) {
4759   assert(ResultVector.size() == 2 &&
4760          "We should have exactly two unique results at this point");
4761   // If we are selecting between only two cases transform into a simple
4762   // select or a two-way select if default is possible.
4763   if (ResultVector[0].second.size() == 1 &&
4764       ResultVector[1].second.size() == 1) {
4765     ConstantInt *const FirstCase = ResultVector[0].second[0];
4766     ConstantInt *const SecondCase = ResultVector[1].second[0];
4767 
4768     bool DefaultCanTrigger = DefaultResult;
4769     Value *SelectValue = ResultVector[1].first;
4770     if (DefaultCanTrigger) {
4771       Value *const ValueCompare =
4772           Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp");
4773       SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first,
4774                                          DefaultResult, "switch.select");
4775     }
4776     Value *const ValueCompare =
4777         Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp");
4778     return Builder.CreateSelect(ValueCompare, ResultVector[0].first,
4779                                 SelectValue, "switch.select");
4780   }
4781 
4782   return nullptr;
4783 }
4784 
4785 // Helper function to cleanup a switch instruction that has been converted into
4786 // a select, fixing up PHI nodes and basic blocks.
4787 static void RemoveSwitchAfterSelectConversion(SwitchInst *SI, PHINode *PHI,
4788                                               Value *SelectValue,
4789                                               IRBuilder<> &Builder) {
4790   BasicBlock *SelectBB = SI->getParent();
4791   while (PHI->getBasicBlockIndex(SelectBB) >= 0)
4792     PHI->removeIncomingValue(SelectBB);
4793   PHI->addIncoming(SelectValue, SelectBB);
4794 
4795   Builder.CreateBr(PHI->getParent());
4796 
4797   // Remove the switch.
4798   for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
4799     BasicBlock *Succ = SI->getSuccessor(i);
4800 
4801     if (Succ == PHI->getParent())
4802       continue;
4803     Succ->removePredecessor(SelectBB);
4804   }
4805   SI->eraseFromParent();
4806 }
4807 
4808 /// If the switch is only used to initialize one or more
4809 /// phi nodes in a common successor block with only two different
4810 /// constant values, replace the switch with select.
4811 static bool switchToSelect(SwitchInst *SI, IRBuilder<> &Builder,
4812                            const DataLayout &DL,
4813                            const TargetTransformInfo &TTI) {
4814   Value *const Cond = SI->getCondition();
4815   PHINode *PHI = nullptr;
4816   BasicBlock *CommonDest = nullptr;
4817   Constant *DefaultResult;
4818   SwitchCaseResultVectorTy UniqueResults;
4819   // Collect all the cases that will deliver the same value from the switch.
4820   if (!InitializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult,
4821                              DL, TTI, 2, 1))
4822     return false;
4823   // Selects choose between maximum two values.
4824   if (UniqueResults.size() != 2)
4825     return false;
4826   assert(PHI != nullptr && "PHI for value select not found");
4827 
4828   Builder.SetInsertPoint(SI);
4829   Value *SelectValue =
4830       ConvertTwoCaseSwitch(UniqueResults, DefaultResult, Cond, Builder);
4831   if (SelectValue) {
4832     RemoveSwitchAfterSelectConversion(SI, PHI, SelectValue, Builder);
4833     return true;
4834   }
4835   // The switch couldn't be converted into a select.
4836   return false;
4837 }
4838 
4839 namespace {
4840 
4841 /// This class represents a lookup table that can be used to replace a switch.
4842 class SwitchLookupTable {
4843 public:
4844   /// Create a lookup table to use as a switch replacement with the contents
4845   /// of Values, using DefaultValue to fill any holes in the table.
4846   SwitchLookupTable(
4847       Module &M, uint64_t TableSize, ConstantInt *Offset,
4848       const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
4849       Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName);
4850 
4851   /// Build instructions with Builder to retrieve the value at
4852   /// the position given by Index in the lookup table.
4853   Value *BuildLookup(Value *Index, IRBuilder<> &Builder);
4854 
4855   /// Return true if a table with TableSize elements of
4856   /// type ElementType would fit in a target-legal register.
4857   static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize,
4858                                  Type *ElementType);
4859 
4860 private:
4861   // Depending on the contents of the table, it can be represented in
4862   // different ways.
4863   enum {
4864     // For tables where each element contains the same value, we just have to
4865     // store that single value and return it for each lookup.
4866     SingleValueKind,
4867 
4868     // For tables where there is a linear relationship between table index
4869     // and values. We calculate the result with a simple multiplication
4870     // and addition instead of a table lookup.
4871     LinearMapKind,
4872 
4873     // For small tables with integer elements, we can pack them into a bitmap
4874     // that fits into a target-legal register. Values are retrieved by
4875     // shift and mask operations.
4876     BitMapKind,
4877 
4878     // The table is stored as an array of values. Values are retrieved by load
4879     // instructions from the table.
4880     ArrayKind
4881   } Kind;
4882 
4883   // For SingleValueKind, this is the single value.
4884   Constant *SingleValue = nullptr;
4885 
4886   // For BitMapKind, this is the bitmap.
4887   ConstantInt *BitMap = nullptr;
4888   IntegerType *BitMapElementTy = nullptr;
4889 
4890   // For LinearMapKind, these are the constants used to derive the value.
4891   ConstantInt *LinearOffset = nullptr;
4892   ConstantInt *LinearMultiplier = nullptr;
4893 
4894   // For ArrayKind, this is the array.
4895   GlobalVariable *Array = nullptr;
4896 };
4897 
4898 } // end anonymous namespace
4899 
4900 SwitchLookupTable::SwitchLookupTable(
4901     Module &M, uint64_t TableSize, ConstantInt *Offset,
4902     const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
4903     Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName) {
4904   assert(Values.size() && "Can't build lookup table without values!");
4905   assert(TableSize >= Values.size() && "Can't fit values in table!");
4906 
4907   // If all values in the table are equal, this is that value.
4908   SingleValue = Values.begin()->second;
4909 
4910   Type *ValueType = Values.begin()->second->getType();
4911 
4912   // Build up the table contents.
4913   SmallVector<Constant *, 64> TableContents(TableSize);
4914   for (size_t I = 0, E = Values.size(); I != E; ++I) {
4915     ConstantInt *CaseVal = Values[I].first;
4916     Constant *CaseRes = Values[I].second;
4917     assert(CaseRes->getType() == ValueType);
4918 
4919     uint64_t Idx = (CaseVal->getValue() - Offset->getValue()).getLimitedValue();
4920     TableContents[Idx] = CaseRes;
4921 
4922     if (CaseRes != SingleValue)
4923       SingleValue = nullptr;
4924   }
4925 
4926   // Fill in any holes in the table with the default result.
4927   if (Values.size() < TableSize) {
4928     assert(DefaultValue &&
4929            "Need a default value to fill the lookup table holes.");
4930     assert(DefaultValue->getType() == ValueType);
4931     for (uint64_t I = 0; I < TableSize; ++I) {
4932       if (!TableContents[I])
4933         TableContents[I] = DefaultValue;
4934     }
4935 
4936     if (DefaultValue != SingleValue)
4937       SingleValue = nullptr;
4938   }
4939 
4940   // If each element in the table contains the same value, we only need to store
4941   // that single value.
4942   if (SingleValue) {
4943     Kind = SingleValueKind;
4944     return;
4945   }
4946 
4947   // Check if we can derive the value with a linear transformation from the
4948   // table index.
4949   if (isa<IntegerType>(ValueType)) {
4950     bool LinearMappingPossible = true;
4951     APInt PrevVal;
4952     APInt DistToPrev;
4953     assert(TableSize >= 2 && "Should be a SingleValue table.");
4954     // Check if there is the same distance between two consecutive values.
4955     for (uint64_t I = 0; I < TableSize; ++I) {
4956       ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]);
4957       if (!ConstVal) {
4958         // This is an undef. We could deal with it, but undefs in lookup tables
4959         // are very seldom. It's probably not worth the additional complexity.
4960         LinearMappingPossible = false;
4961         break;
4962       }
4963       const APInt &Val = ConstVal->getValue();
4964       if (I != 0) {
4965         APInt Dist = Val - PrevVal;
4966         if (I == 1) {
4967           DistToPrev = Dist;
4968         } else if (Dist != DistToPrev) {
4969           LinearMappingPossible = false;
4970           break;
4971         }
4972       }
4973       PrevVal = Val;
4974     }
4975     if (LinearMappingPossible) {
4976       LinearOffset = cast<ConstantInt>(TableContents[0]);
4977       LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev);
4978       Kind = LinearMapKind;
4979       ++NumLinearMaps;
4980       return;
4981     }
4982   }
4983 
4984   // If the type is integer and the table fits in a register, build a bitmap.
4985   if (WouldFitInRegister(DL, TableSize, ValueType)) {
4986     IntegerType *IT = cast<IntegerType>(ValueType);
4987     APInt TableInt(TableSize * IT->getBitWidth(), 0);
4988     for (uint64_t I = TableSize; I > 0; --I) {
4989       TableInt <<= IT->getBitWidth();
4990       // Insert values into the bitmap. Undef values are set to zero.
4991       if (!isa<UndefValue>(TableContents[I - 1])) {
4992         ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]);
4993         TableInt |= Val->getValue().zext(TableInt.getBitWidth());
4994       }
4995     }
4996     BitMap = ConstantInt::get(M.getContext(), TableInt);
4997     BitMapElementTy = IT;
4998     Kind = BitMapKind;
4999     ++NumBitMaps;
5000     return;
5001   }
5002 
5003   // Store the table in an array.
5004   ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize);
5005   Constant *Initializer = ConstantArray::get(ArrayTy, TableContents);
5006 
5007   Array = new GlobalVariable(M, ArrayTy, /*constant=*/true,
5008                              GlobalVariable::PrivateLinkage, Initializer,
5009                              "switch.table." + FuncName);
5010   Array->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
5011   Kind = ArrayKind;
5012 }
5013 
5014 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) {
5015   switch (Kind) {
5016   case SingleValueKind:
5017     return SingleValue;
5018   case LinearMapKind: {
5019     // Derive the result value from the input value.
5020     Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(),
5021                                           false, "switch.idx.cast");
5022     if (!LinearMultiplier->isOne())
5023       Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult");
5024     if (!LinearOffset->isZero())
5025       Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset");
5026     return Result;
5027   }
5028   case BitMapKind: {
5029     // Type of the bitmap (e.g. i59).
5030     IntegerType *MapTy = BitMap->getType();
5031 
5032     // Cast Index to the same type as the bitmap.
5033     // Note: The Index is <= the number of elements in the table, so
5034     // truncating it to the width of the bitmask is safe.
5035     Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast");
5036 
5037     // Multiply the shift amount by the element width.
5038     ShiftAmt = Builder.CreateMul(
5039         ShiftAmt, ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()),
5040         "switch.shiftamt");
5041 
5042     // Shift down.
5043     Value *DownShifted =
5044         Builder.CreateLShr(BitMap, ShiftAmt, "switch.downshift");
5045     // Mask off.
5046     return Builder.CreateTrunc(DownShifted, BitMapElementTy, "switch.masked");
5047   }
5048   case ArrayKind: {
5049     // Make sure the table index will not overflow when treated as signed.
5050     IntegerType *IT = cast<IntegerType>(Index->getType());
5051     uint64_t TableSize =
5052         Array->getInitializer()->getType()->getArrayNumElements();
5053     if (TableSize > (1ULL << (IT->getBitWidth() - 1)))
5054       Index = Builder.CreateZExt(
5055           Index, IntegerType::get(IT->getContext(), IT->getBitWidth() + 1),
5056           "switch.tableidx.zext");
5057 
5058     Value *GEPIndices[] = {Builder.getInt32(0), Index};
5059     Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array,
5060                                            GEPIndices, "switch.gep");
5061     return Builder.CreateLoad(GEP, "switch.load");
5062   }
5063   }
5064   llvm_unreachable("Unknown lookup table kind!");
5065 }
5066 
5067 bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL,
5068                                            uint64_t TableSize,
5069                                            Type *ElementType) {
5070   auto *IT = dyn_cast<IntegerType>(ElementType);
5071   if (!IT)
5072     return false;
5073   // FIXME: If the type is wider than it needs to be, e.g. i8 but all values
5074   // are <= 15, we could try to narrow the type.
5075 
5076   // Avoid overflow, fitsInLegalInteger uses unsigned int for the width.
5077   if (TableSize >= UINT_MAX / IT->getBitWidth())
5078     return false;
5079   return DL.fitsInLegalInteger(TableSize * IT->getBitWidth());
5080 }
5081 
5082 /// Determine whether a lookup table should be built for this switch, based on
5083 /// the number of cases, size of the table, and the types of the results.
5084 static bool
5085 ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize,
5086                        const TargetTransformInfo &TTI, const DataLayout &DL,
5087                        const SmallDenseMap<PHINode *, Type *> &ResultTypes) {
5088   if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10)
5089     return false; // TableSize overflowed, or mul below might overflow.
5090 
5091   bool AllTablesFitInRegister = true;
5092   bool HasIllegalType = false;
5093   for (const auto &I : ResultTypes) {
5094     Type *Ty = I.second;
5095 
5096     // Saturate this flag to true.
5097     HasIllegalType = HasIllegalType || !TTI.isTypeLegal(Ty);
5098 
5099     // Saturate this flag to false.
5100     AllTablesFitInRegister =
5101         AllTablesFitInRegister &&
5102         SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty);
5103 
5104     // If both flags saturate, we're done. NOTE: This *only* works with
5105     // saturating flags, and all flags have to saturate first due to the
5106     // non-deterministic behavior of iterating over a dense map.
5107     if (HasIllegalType && !AllTablesFitInRegister)
5108       break;
5109   }
5110 
5111   // If each table would fit in a register, we should build it anyway.
5112   if (AllTablesFitInRegister)
5113     return true;
5114 
5115   // Don't build a table that doesn't fit in-register if it has illegal types.
5116   if (HasIllegalType)
5117     return false;
5118 
5119   // The table density should be at least 40%. This is the same criterion as for
5120   // jump tables, see SelectionDAGBuilder::handleJTSwitchCase.
5121   // FIXME: Find the best cut-off.
5122   return SI->getNumCases() * 10 >= TableSize * 4;
5123 }
5124 
5125 /// Try to reuse the switch table index compare. Following pattern:
5126 /// \code
5127 ///     if (idx < tablesize)
5128 ///        r = table[idx]; // table does not contain default_value
5129 ///     else
5130 ///        r = default_value;
5131 ///     if (r != default_value)
5132 ///        ...
5133 /// \endcode
5134 /// Is optimized to:
5135 /// \code
5136 ///     cond = idx < tablesize;
5137 ///     if (cond)
5138 ///        r = table[idx];
5139 ///     else
5140 ///        r = default_value;
5141 ///     if (cond)
5142 ///        ...
5143 /// \endcode
5144 /// Jump threading will then eliminate the second if(cond).
5145 static void reuseTableCompare(
5146     User *PhiUser, BasicBlock *PhiBlock, BranchInst *RangeCheckBranch,
5147     Constant *DefaultValue,
5148     const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values) {
5149   ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser);
5150   if (!CmpInst)
5151     return;
5152 
5153   // We require that the compare is in the same block as the phi so that jump
5154   // threading can do its work afterwards.
5155   if (CmpInst->getParent() != PhiBlock)
5156     return;
5157 
5158   Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1));
5159   if (!CmpOp1)
5160     return;
5161 
5162   Value *RangeCmp = RangeCheckBranch->getCondition();
5163   Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType());
5164   Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType());
5165 
5166   // Check if the compare with the default value is constant true or false.
5167   Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
5168                                                  DefaultValue, CmpOp1, true);
5169   if (DefaultConst != TrueConst && DefaultConst != FalseConst)
5170     return;
5171 
5172   // Check if the compare with the case values is distinct from the default
5173   // compare result.
5174   for (auto ValuePair : Values) {
5175     Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
5176                                                 ValuePair.second, CmpOp1, true);
5177     if (!CaseConst || CaseConst == DefaultConst || isa<UndefValue>(CaseConst))
5178       return;
5179     assert((CaseConst == TrueConst || CaseConst == FalseConst) &&
5180            "Expect true or false as compare result.");
5181   }
5182 
5183   // Check if the branch instruction dominates the phi node. It's a simple
5184   // dominance check, but sufficient for our needs.
5185   // Although this check is invariant in the calling loops, it's better to do it
5186   // at this late stage. Practically we do it at most once for a switch.
5187   BasicBlock *BranchBlock = RangeCheckBranch->getParent();
5188   for (auto PI = pred_begin(PhiBlock), E = pred_end(PhiBlock); PI != E; ++PI) {
5189     BasicBlock *Pred = *PI;
5190     if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock)
5191       return;
5192   }
5193 
5194   if (DefaultConst == FalseConst) {
5195     // The compare yields the same result. We can replace it.
5196     CmpInst->replaceAllUsesWith(RangeCmp);
5197     ++NumTableCmpReuses;
5198   } else {
5199     // The compare yields the same result, just inverted. We can replace it.
5200     Value *InvertedTableCmp = BinaryOperator::CreateXor(
5201         RangeCmp, ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp",
5202         RangeCheckBranch);
5203     CmpInst->replaceAllUsesWith(InvertedTableCmp);
5204     ++NumTableCmpReuses;
5205   }
5206 }
5207 
5208 /// If the switch is only used to initialize one or more phi nodes in a common
5209 /// successor block with different constant values, replace the switch with
5210 /// lookup tables.
5211 static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder,
5212                                 const DataLayout &DL,
5213                                 const TargetTransformInfo &TTI) {
5214   assert(SI->getNumCases() > 1 && "Degenerate switch?");
5215 
5216   Function *Fn = SI->getParent()->getParent();
5217   // Only build lookup table when we have a target that supports it or the
5218   // attribute is not set.
5219   if (!TTI.shouldBuildLookupTables() ||
5220       (Fn->getFnAttribute("no-jump-tables").getValueAsString() == "true"))
5221     return false;
5222 
5223   // FIXME: If the switch is too sparse for a lookup table, perhaps we could
5224   // split off a dense part and build a lookup table for that.
5225 
5226   // FIXME: This creates arrays of GEPs to constant strings, which means each
5227   // GEP needs a runtime relocation in PIC code. We should just build one big
5228   // string and lookup indices into that.
5229 
5230   // Ignore switches with less than three cases. Lookup tables will not make
5231   // them faster, so we don't analyze them.
5232   if (SI->getNumCases() < 3)
5233     return false;
5234 
5235   // Figure out the corresponding result for each case value and phi node in the
5236   // common destination, as well as the min and max case values.
5237   assert(SI->case_begin() != SI->case_end());
5238   SwitchInst::CaseIt CI = SI->case_begin();
5239   ConstantInt *MinCaseVal = CI->getCaseValue();
5240   ConstantInt *MaxCaseVal = CI->getCaseValue();
5241 
5242   BasicBlock *CommonDest = nullptr;
5243 
5244   using ResultListTy = SmallVector<std::pair<ConstantInt *, Constant *>, 4>;
5245   SmallDenseMap<PHINode *, ResultListTy> ResultLists;
5246 
5247   SmallDenseMap<PHINode *, Constant *> DefaultResults;
5248   SmallDenseMap<PHINode *, Type *> ResultTypes;
5249   SmallVector<PHINode *, 4> PHIs;
5250 
5251   for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) {
5252     ConstantInt *CaseVal = CI->getCaseValue();
5253     if (CaseVal->getValue().slt(MinCaseVal->getValue()))
5254       MinCaseVal = CaseVal;
5255     if (CaseVal->getValue().sgt(MaxCaseVal->getValue()))
5256       MaxCaseVal = CaseVal;
5257 
5258     // Resulting value at phi nodes for this case value.
5259     using ResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>;
5260     ResultsTy Results;
5261     if (!GetCaseResults(SI, CaseVal, CI->getCaseSuccessor(), &CommonDest,
5262                         Results, DL, TTI))
5263       return false;
5264 
5265     // Append the result from this case to the list for each phi.
5266     for (const auto &I : Results) {
5267       PHINode *PHI = I.first;
5268       Constant *Value = I.second;
5269       if (!ResultLists.count(PHI))
5270         PHIs.push_back(PHI);
5271       ResultLists[PHI].push_back(std::make_pair(CaseVal, Value));
5272     }
5273   }
5274 
5275   // Keep track of the result types.
5276   for (PHINode *PHI : PHIs) {
5277     ResultTypes[PHI] = ResultLists[PHI][0].second->getType();
5278   }
5279 
5280   uint64_t NumResults = ResultLists[PHIs[0]].size();
5281   APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue();
5282   uint64_t TableSize = RangeSpread.getLimitedValue() + 1;
5283   bool TableHasHoles = (NumResults < TableSize);
5284 
5285   // If the table has holes, we need a constant result for the default case
5286   // or a bitmask that fits in a register.
5287   SmallVector<std::pair<PHINode *, Constant *>, 4> DefaultResultsList;
5288   bool HasDefaultResults =
5289       GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest,
5290                      DefaultResultsList, DL, TTI);
5291 
5292   bool NeedMask = (TableHasHoles && !HasDefaultResults);
5293   if (NeedMask) {
5294     // As an extra penalty for the validity test we require more cases.
5295     if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark).
5296       return false;
5297     if (!DL.fitsInLegalInteger(TableSize))
5298       return false;
5299   }
5300 
5301   for (const auto &I : DefaultResultsList) {
5302     PHINode *PHI = I.first;
5303     Constant *Result = I.second;
5304     DefaultResults[PHI] = Result;
5305   }
5306 
5307   if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes))
5308     return false;
5309 
5310   // Create the BB that does the lookups.
5311   Module &Mod = *CommonDest->getParent()->getParent();
5312   BasicBlock *LookupBB = BasicBlock::Create(
5313       Mod.getContext(), "switch.lookup", CommonDest->getParent(), CommonDest);
5314 
5315   // Compute the table index value.
5316   Builder.SetInsertPoint(SI);
5317   Value *TableIndex;
5318   if (MinCaseVal->isNullValue())
5319     TableIndex = SI->getCondition();
5320   else
5321     TableIndex = Builder.CreateSub(SI->getCondition(), MinCaseVal,
5322                                    "switch.tableidx");
5323 
5324   // Compute the maximum table size representable by the integer type we are
5325   // switching upon.
5326   unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits();
5327   uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize;
5328   assert(MaxTableSize >= TableSize &&
5329          "It is impossible for a switch to have more entries than the max "
5330          "representable value of its input integer type's size.");
5331 
5332   // If the default destination is unreachable, or if the lookup table covers
5333   // all values of the conditional variable, branch directly to the lookup table
5334   // BB. Otherwise, check that the condition is within the case range.
5335   const bool DefaultIsReachable =
5336       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
5337   const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize);
5338   BranchInst *RangeCheckBranch = nullptr;
5339 
5340   if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
5341     Builder.CreateBr(LookupBB);
5342     // Note: We call removeProdecessor later since we need to be able to get the
5343     // PHI value for the default case in case we're using a bit mask.
5344   } else {
5345     Value *Cmp = Builder.CreateICmpULT(
5346         TableIndex, ConstantInt::get(MinCaseVal->getType(), TableSize));
5347     RangeCheckBranch =
5348         Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest());
5349   }
5350 
5351   // Populate the BB that does the lookups.
5352   Builder.SetInsertPoint(LookupBB);
5353 
5354   if (NeedMask) {
5355     // Before doing the lookup, we do the hole check. The LookupBB is therefore
5356     // re-purposed to do the hole check, and we create a new LookupBB.
5357     BasicBlock *MaskBB = LookupBB;
5358     MaskBB->setName("switch.hole_check");
5359     LookupBB = BasicBlock::Create(Mod.getContext(), "switch.lookup",
5360                                   CommonDest->getParent(), CommonDest);
5361 
5362     // Make the mask's bitwidth at least 8-bit and a power-of-2 to avoid
5363     // unnecessary illegal types.
5364     uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL));
5365     APInt MaskInt(TableSizePowOf2, 0);
5366     APInt One(TableSizePowOf2, 1);
5367     // Build bitmask; fill in a 1 bit for every case.
5368     const ResultListTy &ResultList = ResultLists[PHIs[0]];
5369     for (size_t I = 0, E = ResultList.size(); I != E; ++I) {
5370       uint64_t Idx = (ResultList[I].first->getValue() - MinCaseVal->getValue())
5371                          .getLimitedValue();
5372       MaskInt |= One << Idx;
5373     }
5374     ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt);
5375 
5376     // Get the TableIndex'th bit of the bitmask.
5377     // If this bit is 0 (meaning hole) jump to the default destination,
5378     // else continue with table lookup.
5379     IntegerType *MapTy = TableMask->getType();
5380     Value *MaskIndex =
5381         Builder.CreateZExtOrTrunc(TableIndex, MapTy, "switch.maskindex");
5382     Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, "switch.shifted");
5383     Value *LoBit = Builder.CreateTrunc(
5384         Shifted, Type::getInt1Ty(Mod.getContext()), "switch.lobit");
5385     Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest());
5386 
5387     Builder.SetInsertPoint(LookupBB);
5388     AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, SI->getParent());
5389   }
5390 
5391   if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
5392     // We cached PHINodes in PHIs. To avoid accessing deleted PHINodes later,
5393     // do not delete PHINodes here.
5394     SI->getDefaultDest()->removePredecessor(SI->getParent(),
5395                                             /*DontDeleteUselessPHIs=*/true);
5396   }
5397 
5398   bool ReturnedEarly = false;
5399   for (size_t I = 0, E = PHIs.size(); I != E; ++I) {
5400     PHINode *PHI = PHIs[I];
5401     const ResultListTy &ResultList = ResultLists[PHI];
5402 
5403     // If using a bitmask, use any value to fill the lookup table holes.
5404     Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI];
5405     StringRef FuncName = Fn->getName();
5406     SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultList, DV, DL,
5407                             FuncName);
5408 
5409     Value *Result = Table.BuildLookup(TableIndex, Builder);
5410 
5411     // If the result is used to return immediately from the function, we want to
5412     // do that right here.
5413     if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->user_begin()) &&
5414         PHI->user_back() == CommonDest->getFirstNonPHIOrDbg()) {
5415       Builder.CreateRet(Result);
5416       ReturnedEarly = true;
5417       break;
5418     }
5419 
5420     // Do a small peephole optimization: re-use the switch table compare if
5421     // possible.
5422     if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) {
5423       BasicBlock *PhiBlock = PHI->getParent();
5424       // Search for compare instructions which use the phi.
5425       for (auto *User : PHI->users()) {
5426         reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList);
5427       }
5428     }
5429 
5430     PHI->addIncoming(Result, LookupBB);
5431   }
5432 
5433   if (!ReturnedEarly)
5434     Builder.CreateBr(CommonDest);
5435 
5436   // Remove the switch.
5437   for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
5438     BasicBlock *Succ = SI->getSuccessor(i);
5439 
5440     if (Succ == SI->getDefaultDest())
5441       continue;
5442     Succ->removePredecessor(SI->getParent());
5443   }
5444   SI->eraseFromParent();
5445 
5446   ++NumLookupTables;
5447   if (NeedMask)
5448     ++NumLookupTablesHoles;
5449   return true;
5450 }
5451 
5452 static bool isSwitchDense(ArrayRef<int64_t> Values) {
5453   // See also SelectionDAGBuilder::isDense(), which this function was based on.
5454   uint64_t Diff = (uint64_t)Values.back() - (uint64_t)Values.front();
5455   uint64_t Range = Diff + 1;
5456   uint64_t NumCases = Values.size();
5457   // 40% is the default density for building a jump table in optsize/minsize mode.
5458   uint64_t MinDensity = 40;
5459 
5460   return NumCases * 100 >= Range * MinDensity;
5461 }
5462 
5463 /// Try to transform a switch that has "holes" in it to a contiguous sequence
5464 /// of cases.
5465 ///
5466 /// A switch such as: switch(i) {case 5: case 9: case 13: case 17:} can be
5467 /// range-reduced to: switch ((i-5) / 4) {case 0: case 1: case 2: case 3:}.
5468 ///
5469 /// This converts a sparse switch into a dense switch which allows better
5470 /// lowering and could also allow transforming into a lookup table.
5471 static bool ReduceSwitchRange(SwitchInst *SI, IRBuilder<> &Builder,
5472                               const DataLayout &DL,
5473                               const TargetTransformInfo &TTI) {
5474   auto *CondTy = cast<IntegerType>(SI->getCondition()->getType());
5475   if (CondTy->getIntegerBitWidth() > 64 ||
5476       !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth()))
5477     return false;
5478   // Only bother with this optimization if there are more than 3 switch cases;
5479   // SDAG will only bother creating jump tables for 4 or more cases.
5480   if (SI->getNumCases() < 4)
5481     return false;
5482 
5483   // This transform is agnostic to the signedness of the input or case values. We
5484   // can treat the case values as signed or unsigned. We can optimize more common
5485   // cases such as a sequence crossing zero {-4,0,4,8} if we interpret case values
5486   // as signed.
5487   SmallVector<int64_t,4> Values;
5488   for (auto &C : SI->cases())
5489     Values.push_back(C.getCaseValue()->getValue().getSExtValue());
5490   std::sort(Values.begin(), Values.end());
5491 
5492   // If the switch is already dense, there's nothing useful to do here.
5493   if (isSwitchDense(Values))
5494     return false;
5495 
5496   // First, transform the values such that they start at zero and ascend.
5497   int64_t Base = Values[0];
5498   for (auto &V : Values)
5499     V -= (uint64_t)(Base);
5500 
5501   // Now we have signed numbers that have been shifted so that, given enough
5502   // precision, there are no negative values. Since the rest of the transform
5503   // is bitwise only, we switch now to an unsigned representation.
5504   uint64_t GCD = 0;
5505   for (auto &V : Values)
5506     GCD = GreatestCommonDivisor64(GCD, (uint64_t)V);
5507 
5508   // This transform can be done speculatively because it is so cheap - it results
5509   // in a single rotate operation being inserted. This can only happen if the
5510   // factor extracted is a power of 2.
5511   // FIXME: If the GCD is an odd number we can multiply by the multiplicative
5512   // inverse of GCD and then perform this transform.
5513   // FIXME: It's possible that optimizing a switch on powers of two might also
5514   // be beneficial - flag values are often powers of two and we could use a CLZ
5515   // as the key function.
5516   if (GCD <= 1 || !isPowerOf2_64(GCD))
5517     // No common divisor found or too expensive to compute key function.
5518     return false;
5519 
5520   unsigned Shift = Log2_64(GCD);
5521   for (auto &V : Values)
5522     V = (int64_t)((uint64_t)V >> Shift);
5523 
5524   if (!isSwitchDense(Values))
5525     // Transform didn't create a dense switch.
5526     return false;
5527 
5528   // The obvious transform is to shift the switch condition right and emit a
5529   // check that the condition actually cleanly divided by GCD, i.e.
5530   //   C & (1 << Shift - 1) == 0
5531   // inserting a new CFG edge to handle the case where it didn't divide cleanly.
5532   //
5533   // A cheaper way of doing this is a simple ROTR(C, Shift). This performs the
5534   // shift and puts the shifted-off bits in the uppermost bits. If any of these
5535   // are nonzero then the switch condition will be very large and will hit the
5536   // default case.
5537 
5538   auto *Ty = cast<IntegerType>(SI->getCondition()->getType());
5539   Builder.SetInsertPoint(SI);
5540   auto *ShiftC = ConstantInt::get(Ty, Shift);
5541   auto *Sub = Builder.CreateSub(SI->getCondition(), ConstantInt::get(Ty, Base));
5542   auto *LShr = Builder.CreateLShr(Sub, ShiftC);
5543   auto *Shl = Builder.CreateShl(Sub, Ty->getBitWidth() - Shift);
5544   auto *Rot = Builder.CreateOr(LShr, Shl);
5545   SI->replaceUsesOfWith(SI->getCondition(), Rot);
5546 
5547   for (auto Case : SI->cases()) {
5548     auto *Orig = Case.getCaseValue();
5549     auto Sub = Orig->getValue() - APInt(Ty->getBitWidth(), Base);
5550     Case.setValue(
5551         cast<ConstantInt>(ConstantInt::get(Ty, Sub.lshr(ShiftC->getValue()))));
5552   }
5553   return true;
5554 }
5555 
5556 bool SimplifyCFGOpt::SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) {
5557   BasicBlock *BB = SI->getParent();
5558 
5559   if (isValueEqualityComparison(SI)) {
5560     // If we only have one predecessor, and if it is a branch on this value,
5561     // see if that predecessor totally determines the outcome of this switch.
5562     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
5563       if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder))
5564         return simplifyCFG(BB, TTI, Options) | true;
5565 
5566     Value *Cond = SI->getCondition();
5567     if (SelectInst *Select = dyn_cast<SelectInst>(Cond))
5568       if (SimplifySwitchOnSelect(SI, Select))
5569         return simplifyCFG(BB, TTI, Options) | true;
5570 
5571     // If the block only contains the switch, see if we can fold the block
5572     // away into any preds.
5573     BasicBlock::iterator BBI = BB->begin();
5574     // Ignore dbg intrinsics.
5575     while (isa<DbgInfoIntrinsic>(BBI))
5576       ++BBI;
5577     if (SI == &*BBI)
5578       if (FoldValueComparisonIntoPredecessors(SI, Builder))
5579         return simplifyCFG(BB, TTI, Options) | true;
5580   }
5581 
5582   // Try to transform the switch into an icmp and a branch.
5583   if (TurnSwitchRangeIntoICmp(SI, Builder))
5584     return simplifyCFG(BB, TTI, Options) | true;
5585 
5586   // Remove unreachable cases.
5587   if (eliminateDeadSwitchCases(SI, Options.AC, DL))
5588     return simplifyCFG(BB, TTI, Options) | true;
5589 
5590   if (switchToSelect(SI, Builder, DL, TTI))
5591     return simplifyCFG(BB, TTI, Options) | true;
5592 
5593   if (Options.ForwardSwitchCondToPhi && ForwardSwitchConditionToPHI(SI))
5594     return simplifyCFG(BB, TTI, Options) | true;
5595 
5596   // The conversion from switch to lookup tables results in difficult-to-analyze
5597   // code and makes pruning branches much harder. This is a problem if the
5598   // switch expression itself can still be restricted as a result of inlining or
5599   // CVP. Therefore, only apply this transformation during late stages of the
5600   // optimisation pipeline.
5601   if (Options.ConvertSwitchToLookupTable &&
5602       SwitchToLookupTable(SI, Builder, DL, TTI))
5603     return simplifyCFG(BB, TTI, Options) | true;
5604 
5605   if (ReduceSwitchRange(SI, Builder, DL, TTI))
5606     return simplifyCFG(BB, TTI, Options) | true;
5607 
5608   return false;
5609 }
5610 
5611 bool SimplifyCFGOpt::SimplifyIndirectBr(IndirectBrInst *IBI) {
5612   BasicBlock *BB = IBI->getParent();
5613   bool Changed = false;
5614 
5615   // Eliminate redundant destinations.
5616   SmallPtrSet<Value *, 8> Succs;
5617   for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
5618     BasicBlock *Dest = IBI->getDestination(i);
5619     if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) {
5620       Dest->removePredecessor(BB);
5621       IBI->removeDestination(i);
5622       --i;
5623       --e;
5624       Changed = true;
5625     }
5626   }
5627 
5628   if (IBI->getNumDestinations() == 0) {
5629     // If the indirectbr has no successors, change it to unreachable.
5630     new UnreachableInst(IBI->getContext(), IBI);
5631     EraseTerminatorInstAndDCECond(IBI);
5632     return true;
5633   }
5634 
5635   if (IBI->getNumDestinations() == 1) {
5636     // If the indirectbr has one successor, change it to a direct branch.
5637     BranchInst::Create(IBI->getDestination(0), IBI);
5638     EraseTerminatorInstAndDCECond(IBI);
5639     return true;
5640   }
5641 
5642   if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) {
5643     if (SimplifyIndirectBrOnSelect(IBI, SI))
5644       return simplifyCFG(BB, TTI, Options) | true;
5645   }
5646   return Changed;
5647 }
5648 
5649 /// Given an block with only a single landing pad and a unconditional branch
5650 /// try to find another basic block which this one can be merged with.  This
5651 /// handles cases where we have multiple invokes with unique landing pads, but
5652 /// a shared handler.
5653 ///
5654 /// We specifically choose to not worry about merging non-empty blocks
5655 /// here.  That is a PRE/scheduling problem and is best solved elsewhere.  In
5656 /// practice, the optimizer produces empty landing pad blocks quite frequently
5657 /// when dealing with exception dense code.  (see: instcombine, gvn, if-else
5658 /// sinking in this file)
5659 ///
5660 /// This is primarily a code size optimization.  We need to avoid performing
5661 /// any transform which might inhibit optimization (such as our ability to
5662 /// specialize a particular handler via tail commoning).  We do this by not
5663 /// merging any blocks which require us to introduce a phi.  Since the same
5664 /// values are flowing through both blocks, we don't loose any ability to
5665 /// specialize.  If anything, we make such specialization more likely.
5666 ///
5667 /// TODO - This transformation could remove entries from a phi in the target
5668 /// block when the inputs in the phi are the same for the two blocks being
5669 /// merged.  In some cases, this could result in removal of the PHI entirely.
5670 static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI,
5671                                  BasicBlock *BB) {
5672   auto Succ = BB->getUniqueSuccessor();
5673   assert(Succ);
5674   // If there's a phi in the successor block, we'd likely have to introduce
5675   // a phi into the merged landing pad block.
5676   if (isa<PHINode>(*Succ->begin()))
5677     return false;
5678 
5679   for (BasicBlock *OtherPred : predecessors(Succ)) {
5680     if (BB == OtherPred)
5681       continue;
5682     BasicBlock::iterator I = OtherPred->begin();
5683     LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I);
5684     if (!LPad2 || !LPad2->isIdenticalTo(LPad))
5685       continue;
5686     for (++I; isa<DbgInfoIntrinsic>(I); ++I)
5687       ;
5688     BranchInst *BI2 = dyn_cast<BranchInst>(I);
5689     if (!BI2 || !BI2->isIdenticalTo(BI))
5690       continue;
5691 
5692     // We've found an identical block.  Update our predecessors to take that
5693     // path instead and make ourselves dead.
5694     SmallSet<BasicBlock *, 16> Preds;
5695     Preds.insert(pred_begin(BB), pred_end(BB));
5696     for (BasicBlock *Pred : Preds) {
5697       InvokeInst *II = cast<InvokeInst>(Pred->getTerminator());
5698       assert(II->getNormalDest() != BB && II->getUnwindDest() == BB &&
5699              "unexpected successor");
5700       II->setUnwindDest(OtherPred);
5701     }
5702 
5703     // The debug info in OtherPred doesn't cover the merged control flow that
5704     // used to go through BB.  We need to delete it or update it.
5705     for (auto I = OtherPred->begin(), E = OtherPred->end(); I != E;) {
5706       Instruction &Inst = *I;
5707       I++;
5708       if (isa<DbgInfoIntrinsic>(Inst))
5709         Inst.eraseFromParent();
5710     }
5711 
5712     SmallSet<BasicBlock *, 16> Succs;
5713     Succs.insert(succ_begin(BB), succ_end(BB));
5714     for (BasicBlock *Succ : Succs) {
5715       Succ->removePredecessor(BB);
5716     }
5717 
5718     IRBuilder<> Builder(BI);
5719     Builder.CreateUnreachable();
5720     BI->eraseFromParent();
5721     return true;
5722   }
5723   return false;
5724 }
5725 
5726 bool SimplifyCFGOpt::SimplifyUncondBranch(BranchInst *BI,
5727                                           IRBuilder<> &Builder) {
5728   BasicBlock *BB = BI->getParent();
5729   BasicBlock *Succ = BI->getSuccessor(0);
5730 
5731   // If the Terminator is the only non-phi instruction, simplify the block.
5732   // If LoopHeader is provided, check if the block or its successor is a loop
5733   // header. (This is for early invocations before loop simplify and
5734   // vectorization to keep canonical loop forms for nested loops. These blocks
5735   // can be eliminated when the pass is invoked later in the back-end.)
5736   bool NeedCanonicalLoop =
5737       Options.NeedCanonicalLoop &&
5738       (LoopHeaders && (LoopHeaders->count(BB) || LoopHeaders->count(Succ)));
5739   BasicBlock::iterator I = BB->getFirstNonPHIOrDbg()->getIterator();
5740   if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() &&
5741       !NeedCanonicalLoop && TryToSimplifyUncondBranchFromEmptyBlock(BB))
5742     return true;
5743 
5744   // If the only instruction in the block is a seteq/setne comparison against a
5745   // constant, try to simplify the block.
5746   if (ICmpInst *ICI = dyn_cast<ICmpInst>(I))
5747     if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) {
5748       for (++I; isa<DbgInfoIntrinsic>(I); ++I)
5749         ;
5750       if (I->isTerminator() &&
5751           tryToSimplifyUncondBranchWithICmpInIt(ICI, Builder, DL, TTI, Options))
5752         return true;
5753     }
5754 
5755   // See if we can merge an empty landing pad block with another which is
5756   // equivalent.
5757   if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) {
5758     for (++I; isa<DbgInfoIntrinsic>(I); ++I)
5759       ;
5760     if (I->isTerminator() && TryToMergeLandingPad(LPad, BI, BB))
5761       return true;
5762   }
5763 
5764   // If this basic block is ONLY a compare and a branch, and if a predecessor
5765   // branches to us and our successor, fold the comparison into the
5766   // predecessor and use logical operations to update the incoming value
5767   // for PHI nodes in common successor.
5768   if (FoldBranchToCommonDest(BI, Options.BonusInstThreshold))
5769     return simplifyCFG(BB, TTI, Options) | true;
5770   return false;
5771 }
5772 
5773 static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) {
5774   BasicBlock *PredPred = nullptr;
5775   for (auto *P : predecessors(BB)) {
5776     BasicBlock *PPred = P->getSinglePredecessor();
5777     if (!PPred || (PredPred && PredPred != PPred))
5778       return nullptr;
5779     PredPred = PPred;
5780   }
5781   return PredPred;
5782 }
5783 
5784 bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) {
5785   BasicBlock *BB = BI->getParent();
5786 
5787   // Conditional branch
5788   if (isValueEqualityComparison(BI)) {
5789     // If we only have one predecessor, and if it is a branch on this value,
5790     // see if that predecessor totally determines the outcome of this
5791     // switch.
5792     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
5793       if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder))
5794         return simplifyCFG(BB, TTI, Options) | true;
5795 
5796     // This block must be empty, except for the setcond inst, if it exists.
5797     // Ignore dbg intrinsics.
5798     BasicBlock::iterator I = BB->begin();
5799     // Ignore dbg intrinsics.
5800     while (isa<DbgInfoIntrinsic>(I))
5801       ++I;
5802     if (&*I == BI) {
5803       if (FoldValueComparisonIntoPredecessors(BI, Builder))
5804         return simplifyCFG(BB, TTI, Options) | true;
5805     } else if (&*I == cast<Instruction>(BI->getCondition())) {
5806       ++I;
5807       // Ignore dbg intrinsics.
5808       while (isa<DbgInfoIntrinsic>(I))
5809         ++I;
5810       if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder))
5811         return simplifyCFG(BB, TTI, Options) | true;
5812     }
5813   }
5814 
5815   // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction.
5816   if (SimplifyBranchOnICmpChain(BI, Builder, DL))
5817     return true;
5818 
5819   // If this basic block has a single dominating predecessor block and the
5820   // dominating block's condition implies BI's condition, we know the direction
5821   // of the BI branch.
5822   if (BasicBlock *Dom = BB->getSinglePredecessor()) {
5823     auto *PBI = dyn_cast_or_null<BranchInst>(Dom->getTerminator());
5824     if (PBI && PBI->isConditional() &&
5825         PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
5826       assert(PBI->getSuccessor(0) == BB || PBI->getSuccessor(1) == BB);
5827       bool CondIsTrue = PBI->getSuccessor(0) == BB;
5828       Optional<bool> Implication = isImpliedCondition(
5829           PBI->getCondition(), BI->getCondition(), DL, CondIsTrue);
5830       if (Implication) {
5831         // Turn this into a branch on constant.
5832         auto *OldCond = BI->getCondition();
5833         ConstantInt *CI = *Implication
5834                               ? ConstantInt::getTrue(BB->getContext())
5835                               : ConstantInt::getFalse(BB->getContext());
5836         BI->setCondition(CI);
5837         RecursivelyDeleteTriviallyDeadInstructions(OldCond);
5838         return simplifyCFG(BB, TTI, Options) | true;
5839       }
5840     }
5841   }
5842 
5843   // If this basic block is ONLY a compare and a branch, and if a predecessor
5844   // branches to us and one of our successors, fold the comparison into the
5845   // predecessor and use logical operations to pick the right destination.
5846   if (FoldBranchToCommonDest(BI, Options.BonusInstThreshold))
5847     return simplifyCFG(BB, TTI, Options) | true;
5848 
5849   // We have a conditional branch to two blocks that are only reachable
5850   // from BI.  We know that the condbr dominates the two blocks, so see if
5851   // there is any identical code in the "then" and "else" blocks.  If so, we
5852   // can hoist it up to the branching block.
5853   if (BI->getSuccessor(0)->getSinglePredecessor()) {
5854     if (BI->getSuccessor(1)->getSinglePredecessor()) {
5855       if (HoistThenElseCodeToIf(BI, TTI))
5856         return simplifyCFG(BB, TTI, Options) | true;
5857     } else {
5858       // If Successor #1 has multiple preds, we may be able to conditionally
5859       // execute Successor #0 if it branches to Successor #1.
5860       TerminatorInst *Succ0TI = BI->getSuccessor(0)->getTerminator();
5861       if (Succ0TI->getNumSuccessors() == 1 &&
5862           Succ0TI->getSuccessor(0) == BI->getSuccessor(1))
5863         if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), TTI))
5864           return simplifyCFG(BB, TTI, Options) | true;
5865     }
5866   } else if (BI->getSuccessor(1)->getSinglePredecessor()) {
5867     // If Successor #0 has multiple preds, we may be able to conditionally
5868     // execute Successor #1 if it branches to Successor #0.
5869     TerminatorInst *Succ1TI = BI->getSuccessor(1)->getTerminator();
5870     if (Succ1TI->getNumSuccessors() == 1 &&
5871         Succ1TI->getSuccessor(0) == BI->getSuccessor(0))
5872       if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), TTI))
5873         return simplifyCFG(BB, TTI, Options) | true;
5874   }
5875 
5876   // If this is a branch on a phi node in the current block, thread control
5877   // through this block if any PHI node entries are constants.
5878   if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition()))
5879     if (PN->getParent() == BI->getParent())
5880       if (FoldCondBranchOnPHI(BI, DL, Options.AC))
5881         return simplifyCFG(BB, TTI, Options) | true;
5882 
5883   // Scan predecessor blocks for conditional branches.
5884   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
5885     if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
5886       if (PBI != BI && PBI->isConditional())
5887         if (SimplifyCondBranchToCondBranch(PBI, BI, DL))
5888           return simplifyCFG(BB, TTI, Options) | true;
5889 
5890   // Look for diamond patterns.
5891   if (MergeCondStores)
5892     if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB))
5893       if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator()))
5894         if (PBI != BI && PBI->isConditional())
5895           if (mergeConditionalStores(PBI, BI, DL))
5896             return simplifyCFG(BB, TTI, Options) | true;
5897 
5898   return false;
5899 }
5900 
5901 /// Check if passing a value to an instruction will cause undefined behavior.
5902 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I) {
5903   Constant *C = dyn_cast<Constant>(V);
5904   if (!C)
5905     return false;
5906 
5907   if (I->use_empty())
5908     return false;
5909 
5910   if (C->isNullValue() || isa<UndefValue>(C)) {
5911     // Only look at the first use, avoid hurting compile time with long uselists
5912     User *Use = *I->user_begin();
5913 
5914     // Now make sure that there are no instructions in between that can alter
5915     // control flow (eg. calls)
5916     for (BasicBlock::iterator
5917              i = ++BasicBlock::iterator(I),
5918              UI = BasicBlock::iterator(dyn_cast<Instruction>(Use));
5919          i != UI; ++i)
5920       if (i == I->getParent()->end() || i->mayHaveSideEffects())
5921         return false;
5922 
5923     // Look through GEPs. A load from a GEP derived from NULL is still undefined
5924     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use))
5925       if (GEP->getPointerOperand() == I)
5926         return passingValueIsAlwaysUndefined(V, GEP);
5927 
5928     // Look through bitcasts.
5929     if (BitCastInst *BC = dyn_cast<BitCastInst>(Use))
5930       return passingValueIsAlwaysUndefined(V, BC);
5931 
5932     // Load from null is undefined.
5933     if (LoadInst *LI = dyn_cast<LoadInst>(Use))
5934       if (!LI->isVolatile())
5935         return LI->getPointerAddressSpace() == 0;
5936 
5937     // Store to null is undefined.
5938     if (StoreInst *SI = dyn_cast<StoreInst>(Use))
5939       if (!SI->isVolatile())
5940         return SI->getPointerAddressSpace() == 0 &&
5941                SI->getPointerOperand() == I;
5942 
5943     // A call to null is undefined.
5944     if (auto CS = CallSite(Use))
5945       return CS.getCalledValue() == I;
5946   }
5947   return false;
5948 }
5949 
5950 /// If BB has an incoming value that will always trigger undefined behavior
5951 /// (eg. null pointer dereference), remove the branch leading here.
5952 static bool removeUndefIntroducingPredecessor(BasicBlock *BB) {
5953   for (PHINode &PHI : BB->phis())
5954     for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i)
5955       if (passingValueIsAlwaysUndefined(PHI.getIncomingValue(i), &PHI)) {
5956         TerminatorInst *T = PHI.getIncomingBlock(i)->getTerminator();
5957         IRBuilder<> Builder(T);
5958         if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
5959           BB->removePredecessor(PHI.getIncomingBlock(i));
5960           // Turn uncoditional branches into unreachables and remove the dead
5961           // destination from conditional branches.
5962           if (BI->isUnconditional())
5963             Builder.CreateUnreachable();
5964           else
5965             Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1)
5966                                                        : BI->getSuccessor(0));
5967           BI->eraseFromParent();
5968           return true;
5969         }
5970         // TODO: SwitchInst.
5971       }
5972 
5973   return false;
5974 }
5975 
5976 bool SimplifyCFGOpt::run(BasicBlock *BB) {
5977   bool Changed = false;
5978 
5979   assert(BB && BB->getParent() && "Block not embedded in function!");
5980   assert(BB->getTerminator() && "Degenerate basic block encountered!");
5981 
5982   // Remove basic blocks that have no predecessors (except the entry block)...
5983   // or that just have themself as a predecessor.  These are unreachable.
5984   if ((pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) ||
5985       BB->getSinglePredecessor() == BB) {
5986     DEBUG(dbgs() << "Removing BB: \n" << *BB);
5987     DeleteDeadBlock(BB);
5988     return true;
5989   }
5990 
5991   // Check to see if we can constant propagate this terminator instruction
5992   // away...
5993   Changed |= ConstantFoldTerminator(BB, true);
5994 
5995   // Check for and eliminate duplicate PHI nodes in this block.
5996   Changed |= EliminateDuplicatePHINodes(BB);
5997 
5998   // Check for and remove branches that will always cause undefined behavior.
5999   Changed |= removeUndefIntroducingPredecessor(BB);
6000 
6001   // Merge basic blocks into their predecessor if there is only one distinct
6002   // pred, and if there is only one distinct successor of the predecessor, and
6003   // if there are no PHI nodes.
6004   if (MergeBlockIntoPredecessor(BB))
6005     return true;
6006 
6007   if (SinkCommon && Options.SinkCommonInsts)
6008     Changed |= SinkCommonCodeFromPredecessors(BB);
6009 
6010   IRBuilder<> Builder(BB);
6011 
6012   // If there is a trivial two-entry PHI node in this basic block, and we can
6013   // eliminate it, do so now.
6014   if (auto *PN = dyn_cast<PHINode>(BB->begin()))
6015     if (PN->getNumIncomingValues() == 2)
6016       Changed |= FoldTwoEntryPHINode(PN, TTI, DL);
6017 
6018   Builder.SetInsertPoint(BB->getTerminator());
6019   if (auto *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
6020     if (BI->isUnconditional()) {
6021       if (SimplifyUncondBranch(BI, Builder))
6022         return true;
6023     } else {
6024       if (SimplifyCondBranch(BI, Builder))
6025         return true;
6026     }
6027   } else if (auto *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
6028     if (SimplifyReturn(RI, Builder))
6029       return true;
6030   } else if (auto *RI = dyn_cast<ResumeInst>(BB->getTerminator())) {
6031     if (SimplifyResume(RI, Builder))
6032       return true;
6033   } else if (auto *RI = dyn_cast<CleanupReturnInst>(BB->getTerminator())) {
6034     if (SimplifyCleanupReturn(RI))
6035       return true;
6036   } else if (auto *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
6037     if (SimplifySwitch(SI, Builder))
6038       return true;
6039   } else if (auto *UI = dyn_cast<UnreachableInst>(BB->getTerminator())) {
6040     if (SimplifyUnreachable(UI))
6041       return true;
6042   } else if (auto *IBI = dyn_cast<IndirectBrInst>(BB->getTerminator())) {
6043     if (SimplifyIndirectBr(IBI))
6044       return true;
6045   }
6046 
6047   return Changed;
6048 }
6049 
6050 bool llvm::simplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI,
6051                        const SimplifyCFGOptions &Options,
6052                        SmallPtrSetImpl<BasicBlock *> *LoopHeaders) {
6053   return SimplifyCFGOpt(TTI, BB->getModule()->getDataLayout(), LoopHeaders,
6054                         Options)
6055       .run(BB);
6056 }
6057