1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Peephole optimize the CFG. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/ADT/APInt.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SetOperations.h" 20 #include "llvm/ADT/SetVector.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/Statistic.h" 25 #include "llvm/ADT/StringRef.h" 26 #include "llvm/Analysis/AssumptionCache.h" 27 #include "llvm/Analysis/ConstantFolding.h" 28 #include "llvm/Analysis/EHPersonalities.h" 29 #include "llvm/Analysis/InstructionSimplify.h" 30 #include "llvm/Analysis/TargetTransformInfo.h" 31 #include "llvm/Analysis/ValueTracking.h" 32 #include "llvm/IR/Attributes.h" 33 #include "llvm/IR/BasicBlock.h" 34 #include "llvm/IR/CFG.h" 35 #include "llvm/IR/CallSite.h" 36 #include "llvm/IR/Constant.h" 37 #include "llvm/IR/ConstantRange.h" 38 #include "llvm/IR/Constants.h" 39 #include "llvm/IR/DataLayout.h" 40 #include "llvm/IR/DerivedTypes.h" 41 #include "llvm/IR/Function.h" 42 #include "llvm/IR/GlobalValue.h" 43 #include "llvm/IR/GlobalVariable.h" 44 #include "llvm/IR/IRBuilder.h" 45 #include "llvm/IR/InstrTypes.h" 46 #include "llvm/IR/Instruction.h" 47 #include "llvm/IR/Instructions.h" 48 #include "llvm/IR/IntrinsicInst.h" 49 #include "llvm/IR/Intrinsics.h" 50 #include "llvm/IR/LLVMContext.h" 51 #include "llvm/IR/MDBuilder.h" 52 #include "llvm/IR/Metadata.h" 53 #include "llvm/IR/Module.h" 54 #include "llvm/IR/NoFolder.h" 55 #include "llvm/IR/Operator.h" 56 #include "llvm/IR/PatternMatch.h" 57 #include "llvm/IR/Type.h" 58 #include "llvm/IR/Use.h" 59 #include "llvm/IR/User.h" 60 #include "llvm/IR/Value.h" 61 #include "llvm/Support/Casting.h" 62 #include "llvm/Support/CommandLine.h" 63 #include "llvm/Support/Debug.h" 64 #include "llvm/Support/ErrorHandling.h" 65 #include "llvm/Support/KnownBits.h" 66 #include "llvm/Support/MathExtras.h" 67 #include "llvm/Support/raw_ostream.h" 68 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 69 #include "llvm/Transforms/Utils/Local.h" 70 #include "llvm/Transforms/Utils/ValueMapper.h" 71 #include <algorithm> 72 #include <cassert> 73 #include <climits> 74 #include <cstddef> 75 #include <cstdint> 76 #include <iterator> 77 #include <map> 78 #include <set> 79 #include <tuple> 80 #include <utility> 81 #include <vector> 82 83 using namespace llvm; 84 using namespace PatternMatch; 85 86 #define DEBUG_TYPE "simplifycfg" 87 88 // Chosen as 2 so as to be cheap, but still to have enough power to fold 89 // a select, so the "clamp" idiom (of a min followed by a max) will be caught. 90 // To catch this, we need to fold a compare and a select, hence '2' being the 91 // minimum reasonable default. 92 static cl::opt<unsigned> PHINodeFoldingThreshold( 93 "phi-node-folding-threshold", cl::Hidden, cl::init(2), 94 cl::desc( 95 "Control the amount of phi node folding to perform (default = 2)")); 96 97 static cl::opt<bool> DupRet( 98 "simplifycfg-dup-ret", cl::Hidden, cl::init(false), 99 cl::desc("Duplicate return instructions into unconditional branches")); 100 101 static cl::opt<bool> 102 SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true), 103 cl::desc("Sink common instructions down to the end block")); 104 105 static cl::opt<bool> HoistCondStores( 106 "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true), 107 cl::desc("Hoist conditional stores if an unconditional store precedes")); 108 109 static cl::opt<bool> MergeCondStores( 110 "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true), 111 cl::desc("Hoist conditional stores even if an unconditional store does not " 112 "precede - hoist multiple conditional stores into a single " 113 "predicated store")); 114 115 static cl::opt<bool> MergeCondStoresAggressively( 116 "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false), 117 cl::desc("When merging conditional stores, do so even if the resultant " 118 "basic blocks are unlikely to be if-converted as a result")); 119 120 static cl::opt<bool> SpeculateOneExpensiveInst( 121 "speculate-one-expensive-inst", cl::Hidden, cl::init(true), 122 cl::desc("Allow exactly one expensive instruction to be speculatively " 123 "executed")); 124 125 static cl::opt<unsigned> MaxSpeculationDepth( 126 "max-speculation-depth", cl::Hidden, cl::init(10), 127 cl::desc("Limit maximum recursion depth when calculating costs of " 128 "speculatively executed instructions")); 129 130 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps"); 131 STATISTIC(NumLinearMaps, 132 "Number of switch instructions turned into linear mapping"); 133 STATISTIC(NumLookupTables, 134 "Number of switch instructions turned into lookup tables"); 135 STATISTIC( 136 NumLookupTablesHoles, 137 "Number of switch instructions turned into lookup tables (holes checked)"); 138 STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares"); 139 STATISTIC(NumSinkCommons, 140 "Number of common instructions sunk down to the end block"); 141 STATISTIC(NumSpeculations, "Number of speculative executed instructions"); 142 143 namespace { 144 145 // The first field contains the value that the switch produces when a certain 146 // case group is selected, and the second field is a vector containing the 147 // cases composing the case group. 148 using SwitchCaseResultVectorTy = 149 SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2>; 150 151 // The first field contains the phi node that generates a result of the switch 152 // and the second field contains the value generated for a certain case in the 153 // switch for that PHI. 154 using SwitchCaseResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>; 155 156 /// ValueEqualityComparisonCase - Represents a case of a switch. 157 struct ValueEqualityComparisonCase { 158 ConstantInt *Value; 159 BasicBlock *Dest; 160 161 ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest) 162 : Value(Value), Dest(Dest) {} 163 164 bool operator<(ValueEqualityComparisonCase RHS) const { 165 // Comparing pointers is ok as we only rely on the order for uniquing. 166 return Value < RHS.Value; 167 } 168 169 bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; } 170 }; 171 172 class SimplifyCFGOpt { 173 const TargetTransformInfo &TTI; 174 const DataLayout &DL; 175 SmallPtrSetImpl<BasicBlock *> *LoopHeaders; 176 const SimplifyCFGOptions &Options; 177 178 Value *isValueEqualityComparison(TerminatorInst *TI); 179 BasicBlock *GetValueEqualityComparisonCases( 180 TerminatorInst *TI, std::vector<ValueEqualityComparisonCase> &Cases); 181 bool SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI, 182 BasicBlock *Pred, 183 IRBuilder<> &Builder); 184 bool FoldValueComparisonIntoPredecessors(TerminatorInst *TI, 185 IRBuilder<> &Builder); 186 187 bool SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder); 188 bool SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder); 189 bool SimplifySingleResume(ResumeInst *RI); 190 bool SimplifyCommonResume(ResumeInst *RI); 191 bool SimplifyCleanupReturn(CleanupReturnInst *RI); 192 bool SimplifyUnreachable(UnreachableInst *UI); 193 bool SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder); 194 bool SimplifyIndirectBr(IndirectBrInst *IBI); 195 bool SimplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder); 196 bool SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder); 197 198 public: 199 SimplifyCFGOpt(const TargetTransformInfo &TTI, const DataLayout &DL, 200 SmallPtrSetImpl<BasicBlock *> *LoopHeaders, 201 const SimplifyCFGOptions &Opts) 202 : TTI(TTI), DL(DL), LoopHeaders(LoopHeaders), Options(Opts) {} 203 204 bool run(BasicBlock *BB); 205 }; 206 207 } // end anonymous namespace 208 209 /// Return true if it is safe to merge these two 210 /// terminator instructions together. 211 static bool 212 SafeToMergeTerminators(TerminatorInst *SI1, TerminatorInst *SI2, 213 SmallSetVector<BasicBlock *, 4> *FailBlocks = nullptr) { 214 if (SI1 == SI2) 215 return false; // Can't merge with self! 216 217 // It is not safe to merge these two switch instructions if they have a common 218 // successor, and if that successor has a PHI node, and if *that* PHI node has 219 // conflicting incoming values from the two switch blocks. 220 BasicBlock *SI1BB = SI1->getParent(); 221 BasicBlock *SI2BB = SI2->getParent(); 222 223 SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB)); 224 bool Fail = false; 225 for (BasicBlock *Succ : successors(SI2BB)) 226 if (SI1Succs.count(Succ)) 227 for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) { 228 PHINode *PN = cast<PHINode>(BBI); 229 if (PN->getIncomingValueForBlock(SI1BB) != 230 PN->getIncomingValueForBlock(SI2BB)) { 231 if (FailBlocks) 232 FailBlocks->insert(Succ); 233 Fail = true; 234 } 235 } 236 237 return !Fail; 238 } 239 240 /// Return true if it is safe and profitable to merge these two terminator 241 /// instructions together, where SI1 is an unconditional branch. PhiNodes will 242 /// store all PHI nodes in common successors. 243 static bool 244 isProfitableToFoldUnconditional(BranchInst *SI1, BranchInst *SI2, 245 Instruction *Cond, 246 SmallVectorImpl<PHINode *> &PhiNodes) { 247 if (SI1 == SI2) 248 return false; // Can't merge with self! 249 assert(SI1->isUnconditional() && SI2->isConditional()); 250 251 // We fold the unconditional branch if we can easily update all PHI nodes in 252 // common successors: 253 // 1> We have a constant incoming value for the conditional branch; 254 // 2> We have "Cond" as the incoming value for the unconditional branch; 255 // 3> SI2->getCondition() and Cond have same operands. 256 CmpInst *Ci2 = dyn_cast<CmpInst>(SI2->getCondition()); 257 if (!Ci2) 258 return false; 259 if (!(Cond->getOperand(0) == Ci2->getOperand(0) && 260 Cond->getOperand(1) == Ci2->getOperand(1)) && 261 !(Cond->getOperand(0) == Ci2->getOperand(1) && 262 Cond->getOperand(1) == Ci2->getOperand(0))) 263 return false; 264 265 BasicBlock *SI1BB = SI1->getParent(); 266 BasicBlock *SI2BB = SI2->getParent(); 267 SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB)); 268 for (BasicBlock *Succ : successors(SI2BB)) 269 if (SI1Succs.count(Succ)) 270 for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) { 271 PHINode *PN = cast<PHINode>(BBI); 272 if (PN->getIncomingValueForBlock(SI1BB) != Cond || 273 !isa<ConstantInt>(PN->getIncomingValueForBlock(SI2BB))) 274 return false; 275 PhiNodes.push_back(PN); 276 } 277 return true; 278 } 279 280 /// Update PHI nodes in Succ to indicate that there will now be entries in it 281 /// from the 'NewPred' block. The values that will be flowing into the PHI nodes 282 /// will be the same as those coming in from ExistPred, an existing predecessor 283 /// of Succ. 284 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred, 285 BasicBlock *ExistPred) { 286 for (PHINode &PN : Succ->phis()) 287 PN.addIncoming(PN.getIncomingValueForBlock(ExistPred), NewPred); 288 } 289 290 /// Compute an abstract "cost" of speculating the given instruction, 291 /// which is assumed to be safe to speculate. TCC_Free means cheap, 292 /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively 293 /// expensive. 294 static unsigned ComputeSpeculationCost(const User *I, 295 const TargetTransformInfo &TTI) { 296 assert(isSafeToSpeculativelyExecute(I) && 297 "Instruction is not safe to speculatively execute!"); 298 return TTI.getUserCost(I); 299 } 300 301 /// If we have a merge point of an "if condition" as accepted above, 302 /// return true if the specified value dominates the block. We 303 /// don't handle the true generality of domination here, just a special case 304 /// which works well enough for us. 305 /// 306 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to 307 /// see if V (which must be an instruction) and its recursive operands 308 /// that do not dominate BB have a combined cost lower than CostRemaining and 309 /// are non-trapping. If both are true, the instruction is inserted into the 310 /// set and true is returned. 311 /// 312 /// The cost for most non-trapping instructions is defined as 1 except for 313 /// Select whose cost is 2. 314 /// 315 /// After this function returns, CostRemaining is decreased by the cost of 316 /// V plus its non-dominating operands. If that cost is greater than 317 /// CostRemaining, false is returned and CostRemaining is undefined. 318 static bool DominatesMergePoint(Value *V, BasicBlock *BB, 319 SmallPtrSetImpl<Instruction *> *AggressiveInsts, 320 unsigned &CostRemaining, 321 const TargetTransformInfo &TTI, 322 unsigned Depth = 0) { 323 // It is possible to hit a zero-cost cycle (phi/gep instructions for example), 324 // so limit the recursion depth. 325 // TODO: While this recursion limit does prevent pathological behavior, it 326 // would be better to track visited instructions to avoid cycles. 327 if (Depth == MaxSpeculationDepth) 328 return false; 329 330 Instruction *I = dyn_cast<Instruction>(V); 331 if (!I) { 332 // Non-instructions all dominate instructions, but not all constantexprs 333 // can be executed unconditionally. 334 if (ConstantExpr *C = dyn_cast<ConstantExpr>(V)) 335 if (C->canTrap()) 336 return false; 337 return true; 338 } 339 BasicBlock *PBB = I->getParent(); 340 341 // We don't want to allow weird loops that might have the "if condition" in 342 // the bottom of this block. 343 if (PBB == BB) 344 return false; 345 346 // If this instruction is defined in a block that contains an unconditional 347 // branch to BB, then it must be in the 'conditional' part of the "if 348 // statement". If not, it definitely dominates the region. 349 BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator()); 350 if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB) 351 return true; 352 353 // If we aren't allowing aggressive promotion anymore, then don't consider 354 // instructions in the 'if region'. 355 if (!AggressiveInsts) 356 return false; 357 358 // If we have seen this instruction before, don't count it again. 359 if (AggressiveInsts->count(I)) 360 return true; 361 362 // Okay, it looks like the instruction IS in the "condition". Check to 363 // see if it's a cheap instruction to unconditionally compute, and if it 364 // only uses stuff defined outside of the condition. If so, hoist it out. 365 if (!isSafeToSpeculativelyExecute(I)) 366 return false; 367 368 unsigned Cost = ComputeSpeculationCost(I, TTI); 369 370 // Allow exactly one instruction to be speculated regardless of its cost 371 // (as long as it is safe to do so). 372 // This is intended to flatten the CFG even if the instruction is a division 373 // or other expensive operation. The speculation of an expensive instruction 374 // is expected to be undone in CodeGenPrepare if the speculation has not 375 // enabled further IR optimizations. 376 if (Cost > CostRemaining && 377 (!SpeculateOneExpensiveInst || !AggressiveInsts->empty() || Depth > 0)) 378 return false; 379 380 // Avoid unsigned wrap. 381 CostRemaining = (Cost > CostRemaining) ? 0 : CostRemaining - Cost; 382 383 // Okay, we can only really hoist these out if their operands do 384 // not take us over the cost threshold. 385 for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) 386 if (!DominatesMergePoint(*i, BB, AggressiveInsts, CostRemaining, TTI, 387 Depth + 1)) 388 return false; 389 // Okay, it's safe to do this! Remember this instruction. 390 AggressiveInsts->insert(I); 391 return true; 392 } 393 394 /// Extract ConstantInt from value, looking through IntToPtr 395 /// and PointerNullValue. Return NULL if value is not a constant int. 396 static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) { 397 // Normal constant int. 398 ConstantInt *CI = dyn_cast<ConstantInt>(V); 399 if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy()) 400 return CI; 401 402 // This is some kind of pointer constant. Turn it into a pointer-sized 403 // ConstantInt if possible. 404 IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType())); 405 406 // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*). 407 if (isa<ConstantPointerNull>(V)) 408 return ConstantInt::get(PtrTy, 0); 409 410 // IntToPtr const int. 411 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 412 if (CE->getOpcode() == Instruction::IntToPtr) 413 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) { 414 // The constant is very likely to have the right type already. 415 if (CI->getType() == PtrTy) 416 return CI; 417 else 418 return cast<ConstantInt>( 419 ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false)); 420 } 421 return nullptr; 422 } 423 424 namespace { 425 426 /// Given a chain of or (||) or and (&&) comparison of a value against a 427 /// constant, this will try to recover the information required for a switch 428 /// structure. 429 /// It will depth-first traverse the chain of comparison, seeking for patterns 430 /// like %a == 12 or %a < 4 and combine them to produce a set of integer 431 /// representing the different cases for the switch. 432 /// Note that if the chain is composed of '||' it will build the set of elements 433 /// that matches the comparisons (i.e. any of this value validate the chain) 434 /// while for a chain of '&&' it will build the set elements that make the test 435 /// fail. 436 struct ConstantComparesGatherer { 437 const DataLayout &DL; 438 439 /// Value found for the switch comparison 440 Value *CompValue = nullptr; 441 442 /// Extra clause to be checked before the switch 443 Value *Extra = nullptr; 444 445 /// Set of integers to match in switch 446 SmallVector<ConstantInt *, 8> Vals; 447 448 /// Number of comparisons matched in the and/or chain 449 unsigned UsedICmps = 0; 450 451 /// Construct and compute the result for the comparison instruction Cond 452 ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL) : DL(DL) { 453 gather(Cond); 454 } 455 456 ConstantComparesGatherer(const ConstantComparesGatherer &) = delete; 457 ConstantComparesGatherer & 458 operator=(const ConstantComparesGatherer &) = delete; 459 460 private: 461 /// Try to set the current value used for the comparison, it succeeds only if 462 /// it wasn't set before or if the new value is the same as the old one 463 bool setValueOnce(Value *NewVal) { 464 if (CompValue && CompValue != NewVal) 465 return false; 466 CompValue = NewVal; 467 return (CompValue != nullptr); 468 } 469 470 /// Try to match Instruction "I" as a comparison against a constant and 471 /// populates the array Vals with the set of values that match (or do not 472 /// match depending on isEQ). 473 /// Return false on failure. On success, the Value the comparison matched 474 /// against is placed in CompValue. 475 /// If CompValue is already set, the function is expected to fail if a match 476 /// is found but the value compared to is different. 477 bool matchInstruction(Instruction *I, bool isEQ) { 478 // If this is an icmp against a constant, handle this as one of the cases. 479 ICmpInst *ICI; 480 ConstantInt *C; 481 if (!((ICI = dyn_cast<ICmpInst>(I)) && 482 (C = GetConstantInt(I->getOperand(1), DL)))) { 483 return false; 484 } 485 486 Value *RHSVal; 487 const APInt *RHSC; 488 489 // Pattern match a special case 490 // (x & ~2^z) == y --> x == y || x == y|2^z 491 // This undoes a transformation done by instcombine to fuse 2 compares. 492 if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE)) { 493 // It's a little bit hard to see why the following transformations are 494 // correct. Here is a CVC3 program to verify them for 64-bit values: 495 496 /* 497 ONE : BITVECTOR(64) = BVZEROEXTEND(0bin1, 63); 498 x : BITVECTOR(64); 499 y : BITVECTOR(64); 500 z : BITVECTOR(64); 501 mask : BITVECTOR(64) = BVSHL(ONE, z); 502 QUERY( (y & ~mask = y) => 503 ((x & ~mask = y) <=> (x = y OR x = (y | mask))) 504 ); 505 QUERY( (y | mask = y) => 506 ((x | mask = y) <=> (x = y OR x = (y & ~mask))) 507 ); 508 */ 509 510 // Please note that each pattern must be a dual implication (<--> or 511 // iff). One directional implication can create spurious matches. If the 512 // implication is only one-way, an unsatisfiable condition on the left 513 // side can imply a satisfiable condition on the right side. Dual 514 // implication ensures that satisfiable conditions are transformed to 515 // other satisfiable conditions and unsatisfiable conditions are 516 // transformed to other unsatisfiable conditions. 517 518 // Here is a concrete example of a unsatisfiable condition on the left 519 // implying a satisfiable condition on the right: 520 // 521 // mask = (1 << z) 522 // (x & ~mask) == y --> (x == y || x == (y | mask)) 523 // 524 // Substituting y = 3, z = 0 yields: 525 // (x & -2) == 3 --> (x == 3 || x == 2) 526 527 // Pattern match a special case: 528 /* 529 QUERY( (y & ~mask = y) => 530 ((x & ~mask = y) <=> (x = y OR x = (y | mask))) 531 ); 532 */ 533 if (match(ICI->getOperand(0), 534 m_And(m_Value(RHSVal), m_APInt(RHSC)))) { 535 APInt Mask = ~*RHSC; 536 if (Mask.isPowerOf2() && (C->getValue() & ~Mask) == C->getValue()) { 537 // If we already have a value for the switch, it has to match! 538 if (!setValueOnce(RHSVal)) 539 return false; 540 541 Vals.push_back(C); 542 Vals.push_back( 543 ConstantInt::get(C->getContext(), 544 C->getValue() | Mask)); 545 UsedICmps++; 546 return true; 547 } 548 } 549 550 // Pattern match a special case: 551 /* 552 QUERY( (y | mask = y) => 553 ((x | mask = y) <=> (x = y OR x = (y & ~mask))) 554 ); 555 */ 556 if (match(ICI->getOperand(0), 557 m_Or(m_Value(RHSVal), m_APInt(RHSC)))) { 558 APInt Mask = *RHSC; 559 if (Mask.isPowerOf2() && (C->getValue() | Mask) == C->getValue()) { 560 // If we already have a value for the switch, it has to match! 561 if (!setValueOnce(RHSVal)) 562 return false; 563 564 Vals.push_back(C); 565 Vals.push_back(ConstantInt::get(C->getContext(), 566 C->getValue() & ~Mask)); 567 UsedICmps++; 568 return true; 569 } 570 } 571 572 // If we already have a value for the switch, it has to match! 573 if (!setValueOnce(ICI->getOperand(0))) 574 return false; 575 576 UsedICmps++; 577 Vals.push_back(C); 578 return ICI->getOperand(0); 579 } 580 581 // If we have "x ult 3", for example, then we can add 0,1,2 to the set. 582 ConstantRange Span = ConstantRange::makeAllowedICmpRegion( 583 ICI->getPredicate(), C->getValue()); 584 585 // Shift the range if the compare is fed by an add. This is the range 586 // compare idiom as emitted by instcombine. 587 Value *CandidateVal = I->getOperand(0); 588 if (match(I->getOperand(0), m_Add(m_Value(RHSVal), m_APInt(RHSC)))) { 589 Span = Span.subtract(*RHSC); 590 CandidateVal = RHSVal; 591 } 592 593 // If this is an and/!= check, then we are looking to build the set of 594 // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into 595 // x != 0 && x != 1. 596 if (!isEQ) 597 Span = Span.inverse(); 598 599 // If there are a ton of values, we don't want to make a ginormous switch. 600 if (Span.isSizeLargerThan(8) || Span.isEmptySet()) { 601 return false; 602 } 603 604 // If we already have a value for the switch, it has to match! 605 if (!setValueOnce(CandidateVal)) 606 return false; 607 608 // Add all values from the range to the set 609 for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp) 610 Vals.push_back(ConstantInt::get(I->getContext(), Tmp)); 611 612 UsedICmps++; 613 return true; 614 } 615 616 /// Given a potentially 'or'd or 'and'd together collection of icmp 617 /// eq/ne/lt/gt instructions that compare a value against a constant, extract 618 /// the value being compared, and stick the list constants into the Vals 619 /// vector. 620 /// One "Extra" case is allowed to differ from the other. 621 void gather(Value *V) { 622 Instruction *I = dyn_cast<Instruction>(V); 623 bool isEQ = (I->getOpcode() == Instruction::Or); 624 625 // Keep a stack (SmallVector for efficiency) for depth-first traversal 626 SmallVector<Value *, 8> DFT; 627 SmallPtrSet<Value *, 8> Visited; 628 629 // Initialize 630 Visited.insert(V); 631 DFT.push_back(V); 632 633 while (!DFT.empty()) { 634 V = DFT.pop_back_val(); 635 636 if (Instruction *I = dyn_cast<Instruction>(V)) { 637 // If it is a || (or && depending on isEQ), process the operands. 638 if (I->getOpcode() == (isEQ ? Instruction::Or : Instruction::And)) { 639 if (Visited.insert(I->getOperand(1)).second) 640 DFT.push_back(I->getOperand(1)); 641 if (Visited.insert(I->getOperand(0)).second) 642 DFT.push_back(I->getOperand(0)); 643 continue; 644 } 645 646 // Try to match the current instruction 647 if (matchInstruction(I, isEQ)) 648 // Match succeed, continue the loop 649 continue; 650 } 651 652 // One element of the sequence of || (or &&) could not be match as a 653 // comparison against the same value as the others. 654 // We allow only one "Extra" case to be checked before the switch 655 if (!Extra) { 656 Extra = V; 657 continue; 658 } 659 // Failed to parse a proper sequence, abort now 660 CompValue = nullptr; 661 break; 662 } 663 } 664 }; 665 666 } // end anonymous namespace 667 668 static void EraseTerminatorInstAndDCECond(TerminatorInst *TI) { 669 Instruction *Cond = nullptr; 670 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 671 Cond = dyn_cast<Instruction>(SI->getCondition()); 672 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 673 if (BI->isConditional()) 674 Cond = dyn_cast<Instruction>(BI->getCondition()); 675 } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) { 676 Cond = dyn_cast<Instruction>(IBI->getAddress()); 677 } 678 679 TI->eraseFromParent(); 680 if (Cond) 681 RecursivelyDeleteTriviallyDeadInstructions(Cond); 682 } 683 684 /// Return true if the specified terminator checks 685 /// to see if a value is equal to constant integer value. 686 Value *SimplifyCFGOpt::isValueEqualityComparison(TerminatorInst *TI) { 687 Value *CV = nullptr; 688 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 689 // Do not permit merging of large switch instructions into their 690 // predecessors unless there is only one predecessor. 691 if (SI->getNumSuccessors() * std::distance(pred_begin(SI->getParent()), 692 pred_end(SI->getParent())) <= 693 128) 694 CV = SI->getCondition(); 695 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) 696 if (BI->isConditional() && BI->getCondition()->hasOneUse()) 697 if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) { 698 if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL)) 699 CV = ICI->getOperand(0); 700 } 701 702 // Unwrap any lossless ptrtoint cast. 703 if (CV) { 704 if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) { 705 Value *Ptr = PTII->getPointerOperand(); 706 if (PTII->getType() == DL.getIntPtrType(Ptr->getType())) 707 CV = Ptr; 708 } 709 } 710 return CV; 711 } 712 713 /// Given a value comparison instruction, 714 /// decode all of the 'cases' that it represents and return the 'default' block. 715 BasicBlock *SimplifyCFGOpt::GetValueEqualityComparisonCases( 716 TerminatorInst *TI, std::vector<ValueEqualityComparisonCase> &Cases) { 717 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 718 Cases.reserve(SI->getNumCases()); 719 for (auto Case : SI->cases()) 720 Cases.push_back(ValueEqualityComparisonCase(Case.getCaseValue(), 721 Case.getCaseSuccessor())); 722 return SI->getDefaultDest(); 723 } 724 725 BranchInst *BI = cast<BranchInst>(TI); 726 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 727 BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE); 728 Cases.push_back(ValueEqualityComparisonCase( 729 GetConstantInt(ICI->getOperand(1), DL), Succ)); 730 return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ); 731 } 732 733 /// Given a vector of bb/value pairs, remove any entries 734 /// in the list that match the specified block. 735 static void 736 EliminateBlockCases(BasicBlock *BB, 737 std::vector<ValueEqualityComparisonCase> &Cases) { 738 Cases.erase(std::remove(Cases.begin(), Cases.end(), BB), Cases.end()); 739 } 740 741 /// Return true if there are any keys in C1 that exist in C2 as well. 742 static bool ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1, 743 std::vector<ValueEqualityComparisonCase> &C2) { 744 std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2; 745 746 // Make V1 be smaller than V2. 747 if (V1->size() > V2->size()) 748 std::swap(V1, V2); 749 750 if (V1->empty()) 751 return false; 752 if (V1->size() == 1) { 753 // Just scan V2. 754 ConstantInt *TheVal = (*V1)[0].Value; 755 for (unsigned i = 0, e = V2->size(); i != e; ++i) 756 if (TheVal == (*V2)[i].Value) 757 return true; 758 } 759 760 // Otherwise, just sort both lists and compare element by element. 761 array_pod_sort(V1->begin(), V1->end()); 762 array_pod_sort(V2->begin(), V2->end()); 763 unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size(); 764 while (i1 != e1 && i2 != e2) { 765 if ((*V1)[i1].Value == (*V2)[i2].Value) 766 return true; 767 if ((*V1)[i1].Value < (*V2)[i2].Value) 768 ++i1; 769 else 770 ++i2; 771 } 772 return false; 773 } 774 775 // Set branch weights on SwitchInst. This sets the metadata if there is at 776 // least one non-zero weight. 777 static void setBranchWeights(SwitchInst *SI, ArrayRef<uint32_t> Weights) { 778 // Check that there is at least one non-zero weight. Otherwise, pass 779 // nullptr to setMetadata which will erase the existing metadata. 780 MDNode *N = nullptr; 781 if (llvm::any_of(Weights, [](uint32_t W) { return W != 0; })) 782 N = MDBuilder(SI->getParent()->getContext()).createBranchWeights(Weights); 783 SI->setMetadata(LLVMContext::MD_prof, N); 784 } 785 786 // Similar to the above, but for branch and select instructions that take 787 // exactly 2 weights. 788 static void setBranchWeights(Instruction *I, uint32_t TrueWeight, 789 uint32_t FalseWeight) { 790 assert(isa<BranchInst>(I) || isa<SelectInst>(I)); 791 // Check that there is at least one non-zero weight. Otherwise, pass 792 // nullptr to setMetadata which will erase the existing metadata. 793 MDNode *N = nullptr; 794 if (TrueWeight || FalseWeight) 795 N = MDBuilder(I->getParent()->getContext()) 796 .createBranchWeights(TrueWeight, FalseWeight); 797 I->setMetadata(LLVMContext::MD_prof, N); 798 } 799 800 /// If TI is known to be a terminator instruction and its block is known to 801 /// only have a single predecessor block, check to see if that predecessor is 802 /// also a value comparison with the same value, and if that comparison 803 /// determines the outcome of this comparison. If so, simplify TI. This does a 804 /// very limited form of jump threading. 805 bool SimplifyCFGOpt::SimplifyEqualityComparisonWithOnlyPredecessor( 806 TerminatorInst *TI, BasicBlock *Pred, IRBuilder<> &Builder) { 807 Value *PredVal = isValueEqualityComparison(Pred->getTerminator()); 808 if (!PredVal) 809 return false; // Not a value comparison in predecessor. 810 811 Value *ThisVal = isValueEqualityComparison(TI); 812 assert(ThisVal && "This isn't a value comparison!!"); 813 if (ThisVal != PredVal) 814 return false; // Different predicates. 815 816 // TODO: Preserve branch weight metadata, similarly to how 817 // FoldValueComparisonIntoPredecessors preserves it. 818 819 // Find out information about when control will move from Pred to TI's block. 820 std::vector<ValueEqualityComparisonCase> PredCases; 821 BasicBlock *PredDef = 822 GetValueEqualityComparisonCases(Pred->getTerminator(), PredCases); 823 EliminateBlockCases(PredDef, PredCases); // Remove default from cases. 824 825 // Find information about how control leaves this block. 826 std::vector<ValueEqualityComparisonCase> ThisCases; 827 BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases); 828 EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases. 829 830 // If TI's block is the default block from Pred's comparison, potentially 831 // simplify TI based on this knowledge. 832 if (PredDef == TI->getParent()) { 833 // If we are here, we know that the value is none of those cases listed in 834 // PredCases. If there are any cases in ThisCases that are in PredCases, we 835 // can simplify TI. 836 if (!ValuesOverlap(PredCases, ThisCases)) 837 return false; 838 839 if (isa<BranchInst>(TI)) { 840 // Okay, one of the successors of this condbr is dead. Convert it to a 841 // uncond br. 842 assert(ThisCases.size() == 1 && "Branch can only have one case!"); 843 // Insert the new branch. 844 Instruction *NI = Builder.CreateBr(ThisDef); 845 (void)NI; 846 847 // Remove PHI node entries for the dead edge. 848 ThisCases[0].Dest->removePredecessor(TI->getParent()); 849 850 DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 851 << "Through successor TI: " << *TI << "Leaving: " << *NI 852 << "\n"); 853 854 EraseTerminatorInstAndDCECond(TI); 855 return true; 856 } 857 858 SwitchInst *SI = cast<SwitchInst>(TI); 859 // Okay, TI has cases that are statically dead, prune them away. 860 SmallPtrSet<Constant *, 16> DeadCases; 861 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 862 DeadCases.insert(PredCases[i].Value); 863 864 DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 865 << "Through successor TI: " << *TI); 866 867 // Collect branch weights into a vector. 868 SmallVector<uint32_t, 8> Weights; 869 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof); 870 bool HasWeight = MD && (MD->getNumOperands() == 2 + SI->getNumCases()); 871 if (HasWeight) 872 for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e; 873 ++MD_i) { 874 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i)); 875 Weights.push_back(CI->getValue().getZExtValue()); 876 } 877 for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) { 878 --i; 879 if (DeadCases.count(i->getCaseValue())) { 880 if (HasWeight) { 881 std::swap(Weights[i->getCaseIndex() + 1], Weights.back()); 882 Weights.pop_back(); 883 } 884 i->getCaseSuccessor()->removePredecessor(TI->getParent()); 885 SI->removeCase(i); 886 } 887 } 888 if (HasWeight && Weights.size() >= 2) 889 setBranchWeights(SI, Weights); 890 891 DEBUG(dbgs() << "Leaving: " << *TI << "\n"); 892 return true; 893 } 894 895 // Otherwise, TI's block must correspond to some matched value. Find out 896 // which value (or set of values) this is. 897 ConstantInt *TIV = nullptr; 898 BasicBlock *TIBB = TI->getParent(); 899 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 900 if (PredCases[i].Dest == TIBB) { 901 if (TIV) 902 return false; // Cannot handle multiple values coming to this block. 903 TIV = PredCases[i].Value; 904 } 905 assert(TIV && "No edge from pred to succ?"); 906 907 // Okay, we found the one constant that our value can be if we get into TI's 908 // BB. Find out which successor will unconditionally be branched to. 909 BasicBlock *TheRealDest = nullptr; 910 for (unsigned i = 0, e = ThisCases.size(); i != e; ++i) 911 if (ThisCases[i].Value == TIV) { 912 TheRealDest = ThisCases[i].Dest; 913 break; 914 } 915 916 // If not handled by any explicit cases, it is handled by the default case. 917 if (!TheRealDest) 918 TheRealDest = ThisDef; 919 920 // Remove PHI node entries for dead edges. 921 BasicBlock *CheckEdge = TheRealDest; 922 for (BasicBlock *Succ : successors(TIBB)) 923 if (Succ != CheckEdge) 924 Succ->removePredecessor(TIBB); 925 else 926 CheckEdge = nullptr; 927 928 // Insert the new branch. 929 Instruction *NI = Builder.CreateBr(TheRealDest); 930 (void)NI; 931 932 DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 933 << "Through successor TI: " << *TI << "Leaving: " << *NI 934 << "\n"); 935 936 EraseTerminatorInstAndDCECond(TI); 937 return true; 938 } 939 940 namespace { 941 942 /// This class implements a stable ordering of constant 943 /// integers that does not depend on their address. This is important for 944 /// applications that sort ConstantInt's to ensure uniqueness. 945 struct ConstantIntOrdering { 946 bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const { 947 return LHS->getValue().ult(RHS->getValue()); 948 } 949 }; 950 951 } // end anonymous namespace 952 953 static int ConstantIntSortPredicate(ConstantInt *const *P1, 954 ConstantInt *const *P2) { 955 const ConstantInt *LHS = *P1; 956 const ConstantInt *RHS = *P2; 957 if (LHS == RHS) 958 return 0; 959 return LHS->getValue().ult(RHS->getValue()) ? 1 : -1; 960 } 961 962 static inline bool HasBranchWeights(const Instruction *I) { 963 MDNode *ProfMD = I->getMetadata(LLVMContext::MD_prof); 964 if (ProfMD && ProfMD->getOperand(0)) 965 if (MDString *MDS = dyn_cast<MDString>(ProfMD->getOperand(0))) 966 return MDS->getString().equals("branch_weights"); 967 968 return false; 969 } 970 971 /// Get Weights of a given TerminatorInst, the default weight is at the front 972 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight 973 /// metadata. 974 static void GetBranchWeights(TerminatorInst *TI, 975 SmallVectorImpl<uint64_t> &Weights) { 976 MDNode *MD = TI->getMetadata(LLVMContext::MD_prof); 977 assert(MD); 978 for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) { 979 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i)); 980 Weights.push_back(CI->getValue().getZExtValue()); 981 } 982 983 // If TI is a conditional eq, the default case is the false case, 984 // and the corresponding branch-weight data is at index 2. We swap the 985 // default weight to be the first entry. 986 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 987 assert(Weights.size() == 2); 988 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 989 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 990 std::swap(Weights.front(), Weights.back()); 991 } 992 } 993 994 /// Keep halving the weights until all can fit in uint32_t. 995 static void FitWeights(MutableArrayRef<uint64_t> Weights) { 996 uint64_t Max = *std::max_element(Weights.begin(), Weights.end()); 997 if (Max > UINT_MAX) { 998 unsigned Offset = 32 - countLeadingZeros(Max); 999 for (uint64_t &I : Weights) 1000 I >>= Offset; 1001 } 1002 } 1003 1004 /// The specified terminator is a value equality comparison instruction 1005 /// (either a switch or a branch on "X == c"). 1006 /// See if any of the predecessors of the terminator block are value comparisons 1007 /// on the same value. If so, and if safe to do so, fold them together. 1008 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(TerminatorInst *TI, 1009 IRBuilder<> &Builder) { 1010 BasicBlock *BB = TI->getParent(); 1011 Value *CV = isValueEqualityComparison(TI); // CondVal 1012 assert(CV && "Not a comparison?"); 1013 bool Changed = false; 1014 1015 SmallVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB)); 1016 while (!Preds.empty()) { 1017 BasicBlock *Pred = Preds.pop_back_val(); 1018 1019 // See if the predecessor is a comparison with the same value. 1020 TerminatorInst *PTI = Pred->getTerminator(); 1021 Value *PCV = isValueEqualityComparison(PTI); // PredCondVal 1022 1023 if (PCV == CV && TI != PTI) { 1024 SmallSetVector<BasicBlock*, 4> FailBlocks; 1025 if (!SafeToMergeTerminators(TI, PTI, &FailBlocks)) { 1026 for (auto *Succ : FailBlocks) { 1027 if (!SplitBlockPredecessors(Succ, TI->getParent(), ".fold.split")) 1028 return false; 1029 } 1030 } 1031 1032 // Figure out which 'cases' to copy from SI to PSI. 1033 std::vector<ValueEqualityComparisonCase> BBCases; 1034 BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases); 1035 1036 std::vector<ValueEqualityComparisonCase> PredCases; 1037 BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases); 1038 1039 // Based on whether the default edge from PTI goes to BB or not, fill in 1040 // PredCases and PredDefault with the new switch cases we would like to 1041 // build. 1042 SmallVector<BasicBlock *, 8> NewSuccessors; 1043 1044 // Update the branch weight metadata along the way 1045 SmallVector<uint64_t, 8> Weights; 1046 bool PredHasWeights = HasBranchWeights(PTI); 1047 bool SuccHasWeights = HasBranchWeights(TI); 1048 1049 if (PredHasWeights) { 1050 GetBranchWeights(PTI, Weights); 1051 // branch-weight metadata is inconsistent here. 1052 if (Weights.size() != 1 + PredCases.size()) 1053 PredHasWeights = SuccHasWeights = false; 1054 } else if (SuccHasWeights) 1055 // If there are no predecessor weights but there are successor weights, 1056 // populate Weights with 1, which will later be scaled to the sum of 1057 // successor's weights 1058 Weights.assign(1 + PredCases.size(), 1); 1059 1060 SmallVector<uint64_t, 8> SuccWeights; 1061 if (SuccHasWeights) { 1062 GetBranchWeights(TI, SuccWeights); 1063 // branch-weight metadata is inconsistent here. 1064 if (SuccWeights.size() != 1 + BBCases.size()) 1065 PredHasWeights = SuccHasWeights = false; 1066 } else if (PredHasWeights) 1067 SuccWeights.assign(1 + BBCases.size(), 1); 1068 1069 if (PredDefault == BB) { 1070 // If this is the default destination from PTI, only the edges in TI 1071 // that don't occur in PTI, or that branch to BB will be activated. 1072 std::set<ConstantInt *, ConstantIntOrdering> PTIHandled; 1073 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 1074 if (PredCases[i].Dest != BB) 1075 PTIHandled.insert(PredCases[i].Value); 1076 else { 1077 // The default destination is BB, we don't need explicit targets. 1078 std::swap(PredCases[i], PredCases.back()); 1079 1080 if (PredHasWeights || SuccHasWeights) { 1081 // Increase weight for the default case. 1082 Weights[0] += Weights[i + 1]; 1083 std::swap(Weights[i + 1], Weights.back()); 1084 Weights.pop_back(); 1085 } 1086 1087 PredCases.pop_back(); 1088 --i; 1089 --e; 1090 } 1091 1092 // Reconstruct the new switch statement we will be building. 1093 if (PredDefault != BBDefault) { 1094 PredDefault->removePredecessor(Pred); 1095 PredDefault = BBDefault; 1096 NewSuccessors.push_back(BBDefault); 1097 } 1098 1099 unsigned CasesFromPred = Weights.size(); 1100 uint64_t ValidTotalSuccWeight = 0; 1101 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 1102 if (!PTIHandled.count(BBCases[i].Value) && 1103 BBCases[i].Dest != BBDefault) { 1104 PredCases.push_back(BBCases[i]); 1105 NewSuccessors.push_back(BBCases[i].Dest); 1106 if (SuccHasWeights || PredHasWeights) { 1107 // The default weight is at index 0, so weight for the ith case 1108 // should be at index i+1. Scale the cases from successor by 1109 // PredDefaultWeight (Weights[0]). 1110 Weights.push_back(Weights[0] * SuccWeights[i + 1]); 1111 ValidTotalSuccWeight += SuccWeights[i + 1]; 1112 } 1113 } 1114 1115 if (SuccHasWeights || PredHasWeights) { 1116 ValidTotalSuccWeight += SuccWeights[0]; 1117 // Scale the cases from predecessor by ValidTotalSuccWeight. 1118 for (unsigned i = 1; i < CasesFromPred; ++i) 1119 Weights[i] *= ValidTotalSuccWeight; 1120 // Scale the default weight by SuccDefaultWeight (SuccWeights[0]). 1121 Weights[0] *= SuccWeights[0]; 1122 } 1123 } else { 1124 // If this is not the default destination from PSI, only the edges 1125 // in SI that occur in PSI with a destination of BB will be 1126 // activated. 1127 std::set<ConstantInt *, ConstantIntOrdering> PTIHandled; 1128 std::map<ConstantInt *, uint64_t> WeightsForHandled; 1129 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 1130 if (PredCases[i].Dest == BB) { 1131 PTIHandled.insert(PredCases[i].Value); 1132 1133 if (PredHasWeights || SuccHasWeights) { 1134 WeightsForHandled[PredCases[i].Value] = Weights[i + 1]; 1135 std::swap(Weights[i + 1], Weights.back()); 1136 Weights.pop_back(); 1137 } 1138 1139 std::swap(PredCases[i], PredCases.back()); 1140 PredCases.pop_back(); 1141 --i; 1142 --e; 1143 } 1144 1145 // Okay, now we know which constants were sent to BB from the 1146 // predecessor. Figure out where they will all go now. 1147 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 1148 if (PTIHandled.count(BBCases[i].Value)) { 1149 // If this is one we are capable of getting... 1150 if (PredHasWeights || SuccHasWeights) 1151 Weights.push_back(WeightsForHandled[BBCases[i].Value]); 1152 PredCases.push_back(BBCases[i]); 1153 NewSuccessors.push_back(BBCases[i].Dest); 1154 PTIHandled.erase( 1155 BBCases[i].Value); // This constant is taken care of 1156 } 1157 1158 // If there are any constants vectored to BB that TI doesn't handle, 1159 // they must go to the default destination of TI. 1160 for (ConstantInt *I : PTIHandled) { 1161 if (PredHasWeights || SuccHasWeights) 1162 Weights.push_back(WeightsForHandled[I]); 1163 PredCases.push_back(ValueEqualityComparisonCase(I, BBDefault)); 1164 NewSuccessors.push_back(BBDefault); 1165 } 1166 } 1167 1168 // Okay, at this point, we know which new successor Pred will get. Make 1169 // sure we update the number of entries in the PHI nodes for these 1170 // successors. 1171 for (BasicBlock *NewSuccessor : NewSuccessors) 1172 AddPredecessorToBlock(NewSuccessor, Pred, BB); 1173 1174 Builder.SetInsertPoint(PTI); 1175 // Convert pointer to int before we switch. 1176 if (CV->getType()->isPointerTy()) { 1177 CV = Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()), 1178 "magicptr"); 1179 } 1180 1181 // Now that the successors are updated, create the new Switch instruction. 1182 SwitchInst *NewSI = 1183 Builder.CreateSwitch(CV, PredDefault, PredCases.size()); 1184 NewSI->setDebugLoc(PTI->getDebugLoc()); 1185 for (ValueEqualityComparisonCase &V : PredCases) 1186 NewSI->addCase(V.Value, V.Dest); 1187 1188 if (PredHasWeights || SuccHasWeights) { 1189 // Halve the weights if any of them cannot fit in an uint32_t 1190 FitWeights(Weights); 1191 1192 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 1193 1194 setBranchWeights(NewSI, MDWeights); 1195 } 1196 1197 EraseTerminatorInstAndDCECond(PTI); 1198 1199 // Okay, last check. If BB is still a successor of PSI, then we must 1200 // have an infinite loop case. If so, add an infinitely looping block 1201 // to handle the case to preserve the behavior of the code. 1202 BasicBlock *InfLoopBlock = nullptr; 1203 for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i) 1204 if (NewSI->getSuccessor(i) == BB) { 1205 if (!InfLoopBlock) { 1206 // Insert it at the end of the function, because it's either code, 1207 // or it won't matter if it's hot. :) 1208 InfLoopBlock = BasicBlock::Create(BB->getContext(), "infloop", 1209 BB->getParent()); 1210 BranchInst::Create(InfLoopBlock, InfLoopBlock); 1211 } 1212 NewSI->setSuccessor(i, InfLoopBlock); 1213 } 1214 1215 Changed = true; 1216 } 1217 } 1218 return Changed; 1219 } 1220 1221 // If we would need to insert a select that uses the value of this invoke 1222 // (comments in HoistThenElseCodeToIf explain why we would need to do this), we 1223 // can't hoist the invoke, as there is nowhere to put the select in this case. 1224 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2, 1225 Instruction *I1, Instruction *I2) { 1226 for (BasicBlock *Succ : successors(BB1)) { 1227 for (const PHINode &PN : Succ->phis()) { 1228 Value *BB1V = PN.getIncomingValueForBlock(BB1); 1229 Value *BB2V = PN.getIncomingValueForBlock(BB2); 1230 if (BB1V != BB2V && (BB1V == I1 || BB2V == I2)) { 1231 return false; 1232 } 1233 } 1234 } 1235 return true; 1236 } 1237 1238 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I); 1239 1240 /// Given a conditional branch that goes to BB1 and BB2, hoist any common code 1241 /// in the two blocks up into the branch block. The caller of this function 1242 /// guarantees that BI's block dominates BB1 and BB2. 1243 static bool HoistThenElseCodeToIf(BranchInst *BI, 1244 const TargetTransformInfo &TTI) { 1245 // This does very trivial matching, with limited scanning, to find identical 1246 // instructions in the two blocks. In particular, we don't want to get into 1247 // O(M*N) situations here where M and N are the sizes of BB1 and BB2. As 1248 // such, we currently just scan for obviously identical instructions in an 1249 // identical order. 1250 BasicBlock *BB1 = BI->getSuccessor(0); // The true destination. 1251 BasicBlock *BB2 = BI->getSuccessor(1); // The false destination 1252 1253 BasicBlock::iterator BB1_Itr = BB1->begin(); 1254 BasicBlock::iterator BB2_Itr = BB2->begin(); 1255 1256 Instruction *I1 = &*BB1_Itr++, *I2 = &*BB2_Itr++; 1257 // Skip debug info if it is not identical. 1258 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1259 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1260 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1261 while (isa<DbgInfoIntrinsic>(I1)) 1262 I1 = &*BB1_Itr++; 1263 while (isa<DbgInfoIntrinsic>(I2)) 1264 I2 = &*BB2_Itr++; 1265 } 1266 if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) || 1267 (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))) 1268 return false; 1269 1270 BasicBlock *BIParent = BI->getParent(); 1271 1272 bool Changed = false; 1273 do { 1274 // If we are hoisting the terminator instruction, don't move one (making a 1275 // broken BB), instead clone it, and remove BI. 1276 if (isa<TerminatorInst>(I1)) 1277 goto HoistTerminator; 1278 1279 // If we're going to hoist a call, make sure that the two instructions we're 1280 // commoning/hoisting are both marked with musttail, or neither of them is 1281 // marked as such. Otherwise, we might end up in a situation where we hoist 1282 // from a block where the terminator is a `ret` to a block where the terminator 1283 // is a `br`, and `musttail` calls expect to be followed by a return. 1284 auto *C1 = dyn_cast<CallInst>(I1); 1285 auto *C2 = dyn_cast<CallInst>(I2); 1286 if (C1 && C2) 1287 if (C1->isMustTailCall() != C2->isMustTailCall()) 1288 return Changed; 1289 1290 if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2)) 1291 return Changed; 1292 1293 // For a normal instruction, we just move one to right before the branch, 1294 // then replace all uses of the other with the first. Finally, we remove 1295 // the now redundant second instruction. 1296 BIParent->getInstList().splice(BI->getIterator(), BB1->getInstList(), I1); 1297 if (!I2->use_empty()) 1298 I2->replaceAllUsesWith(I1); 1299 I1->andIRFlags(I2); 1300 unsigned KnownIDs[] = {LLVMContext::MD_tbaa, 1301 LLVMContext::MD_range, 1302 LLVMContext::MD_fpmath, 1303 LLVMContext::MD_invariant_load, 1304 LLVMContext::MD_nonnull, 1305 LLVMContext::MD_invariant_group, 1306 LLVMContext::MD_align, 1307 LLVMContext::MD_dereferenceable, 1308 LLVMContext::MD_dereferenceable_or_null, 1309 LLVMContext::MD_mem_parallel_loop_access}; 1310 combineMetadata(I1, I2, KnownIDs); 1311 1312 // I1 and I2 are being combined into a single instruction. Its debug 1313 // location is the merged locations of the original instructions. 1314 I1->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc()); 1315 1316 I2->eraseFromParent(); 1317 Changed = true; 1318 1319 I1 = &*BB1_Itr++; 1320 I2 = &*BB2_Itr++; 1321 // Skip debug info if it is not identical. 1322 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1323 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1324 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1325 while (isa<DbgInfoIntrinsic>(I1)) 1326 I1 = &*BB1_Itr++; 1327 while (isa<DbgInfoIntrinsic>(I2)) 1328 I2 = &*BB2_Itr++; 1329 } 1330 } while (I1->isIdenticalToWhenDefined(I2)); 1331 1332 return true; 1333 1334 HoistTerminator: 1335 // It may not be possible to hoist an invoke. 1336 if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) 1337 return Changed; 1338 1339 for (BasicBlock *Succ : successors(BB1)) { 1340 for (PHINode &PN : Succ->phis()) { 1341 Value *BB1V = PN.getIncomingValueForBlock(BB1); 1342 Value *BB2V = PN.getIncomingValueForBlock(BB2); 1343 if (BB1V == BB2V) 1344 continue; 1345 1346 // Check for passingValueIsAlwaysUndefined here because we would rather 1347 // eliminate undefined control flow then converting it to a select. 1348 if (passingValueIsAlwaysUndefined(BB1V, &PN) || 1349 passingValueIsAlwaysUndefined(BB2V, &PN)) 1350 return Changed; 1351 1352 if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V)) 1353 return Changed; 1354 if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V)) 1355 return Changed; 1356 } 1357 } 1358 1359 // Okay, it is safe to hoist the terminator. 1360 Instruction *NT = I1->clone(); 1361 BIParent->getInstList().insert(BI->getIterator(), NT); 1362 if (!NT->getType()->isVoidTy()) { 1363 I1->replaceAllUsesWith(NT); 1364 I2->replaceAllUsesWith(NT); 1365 NT->takeName(I1); 1366 } 1367 1368 IRBuilder<NoFolder> Builder(NT); 1369 // Hoisting one of the terminators from our successor is a great thing. 1370 // Unfortunately, the successors of the if/else blocks may have PHI nodes in 1371 // them. If they do, all PHI entries for BB1/BB2 must agree for all PHI 1372 // nodes, so we insert select instruction to compute the final result. 1373 std::map<std::pair<Value *, Value *>, SelectInst *> InsertedSelects; 1374 for (BasicBlock *Succ : successors(BB1)) { 1375 for (PHINode &PN : Succ->phis()) { 1376 Value *BB1V = PN.getIncomingValueForBlock(BB1); 1377 Value *BB2V = PN.getIncomingValueForBlock(BB2); 1378 if (BB1V == BB2V) 1379 continue; 1380 1381 // These values do not agree. Insert a select instruction before NT 1382 // that determines the right value. 1383 SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)]; 1384 if (!SI) 1385 SI = cast<SelectInst>( 1386 Builder.CreateSelect(BI->getCondition(), BB1V, BB2V, 1387 BB1V->getName() + "." + BB2V->getName(), BI)); 1388 1389 // Make the PHI node use the select for all incoming values for BB1/BB2 1390 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) 1391 if (PN.getIncomingBlock(i) == BB1 || PN.getIncomingBlock(i) == BB2) 1392 PN.setIncomingValue(i, SI); 1393 } 1394 } 1395 1396 // Update any PHI nodes in our new successors. 1397 for (BasicBlock *Succ : successors(BB1)) 1398 AddPredecessorToBlock(Succ, BIParent, BB1); 1399 1400 EraseTerminatorInstAndDCECond(BI); 1401 return true; 1402 } 1403 1404 // All instructions in Insts belong to different blocks that all unconditionally 1405 // branch to a common successor. Analyze each instruction and return true if it 1406 // would be possible to sink them into their successor, creating one common 1407 // instruction instead. For every value that would be required to be provided by 1408 // PHI node (because an operand varies in each input block), add to PHIOperands. 1409 static bool canSinkInstructions( 1410 ArrayRef<Instruction *> Insts, 1411 DenseMap<Instruction *, SmallVector<Value *, 4>> &PHIOperands) { 1412 // Prune out obviously bad instructions to move. Any non-store instruction 1413 // must have exactly one use, and we check later that use is by a single, 1414 // common PHI instruction in the successor. 1415 for (auto *I : Insts) { 1416 // These instructions may change or break semantics if moved. 1417 if (isa<PHINode>(I) || I->isEHPad() || isa<AllocaInst>(I) || 1418 I->getType()->isTokenTy()) 1419 return false; 1420 1421 // Conservatively return false if I is an inline-asm instruction. Sinking 1422 // and merging inline-asm instructions can potentially create arguments 1423 // that cannot satisfy the inline-asm constraints. 1424 if (const auto *C = dyn_cast<CallInst>(I)) 1425 if (C->isInlineAsm()) 1426 return false; 1427 1428 // Everything must have only one use too, apart from stores which 1429 // have no uses. 1430 if (!isa<StoreInst>(I) && !I->hasOneUse()) 1431 return false; 1432 } 1433 1434 const Instruction *I0 = Insts.front(); 1435 for (auto *I : Insts) 1436 if (!I->isSameOperationAs(I0)) 1437 return false; 1438 1439 // All instructions in Insts are known to be the same opcode. If they aren't 1440 // stores, check the only user of each is a PHI or in the same block as the 1441 // instruction, because if a user is in the same block as an instruction 1442 // we're contemplating sinking, it must already be determined to be sinkable. 1443 if (!isa<StoreInst>(I0)) { 1444 auto *PNUse = dyn_cast<PHINode>(*I0->user_begin()); 1445 auto *Succ = I0->getParent()->getTerminator()->getSuccessor(0); 1446 if (!all_of(Insts, [&PNUse,&Succ](const Instruction *I) -> bool { 1447 auto *U = cast<Instruction>(*I->user_begin()); 1448 return (PNUse && 1449 PNUse->getParent() == Succ && 1450 PNUse->getIncomingValueForBlock(I->getParent()) == I) || 1451 U->getParent() == I->getParent(); 1452 })) 1453 return false; 1454 } 1455 1456 // Because SROA can't handle speculating stores of selects, try not 1457 // to sink loads or stores of allocas when we'd have to create a PHI for 1458 // the address operand. Also, because it is likely that loads or stores 1459 // of allocas will disappear when Mem2Reg/SROA is run, don't sink them. 1460 // This can cause code churn which can have unintended consequences down 1461 // the line - see https://llvm.org/bugs/show_bug.cgi?id=30244. 1462 // FIXME: This is a workaround for a deficiency in SROA - see 1463 // https://llvm.org/bugs/show_bug.cgi?id=30188 1464 if (isa<StoreInst>(I0) && any_of(Insts, [](const Instruction *I) { 1465 return isa<AllocaInst>(I->getOperand(1)); 1466 })) 1467 return false; 1468 if (isa<LoadInst>(I0) && any_of(Insts, [](const Instruction *I) { 1469 return isa<AllocaInst>(I->getOperand(0)); 1470 })) 1471 return false; 1472 1473 for (unsigned OI = 0, OE = I0->getNumOperands(); OI != OE; ++OI) { 1474 if (I0->getOperand(OI)->getType()->isTokenTy()) 1475 // Don't touch any operand of token type. 1476 return false; 1477 1478 auto SameAsI0 = [&I0, OI](const Instruction *I) { 1479 assert(I->getNumOperands() == I0->getNumOperands()); 1480 return I->getOperand(OI) == I0->getOperand(OI); 1481 }; 1482 if (!all_of(Insts, SameAsI0)) { 1483 if (!canReplaceOperandWithVariable(I0, OI)) 1484 // We can't create a PHI from this GEP. 1485 return false; 1486 // Don't create indirect calls! The called value is the final operand. 1487 if ((isa<CallInst>(I0) || isa<InvokeInst>(I0)) && OI == OE - 1) { 1488 // FIXME: if the call was *already* indirect, we should do this. 1489 return false; 1490 } 1491 for (auto *I : Insts) 1492 PHIOperands[I].push_back(I->getOperand(OI)); 1493 } 1494 } 1495 return true; 1496 } 1497 1498 // Assuming canSinkLastInstruction(Blocks) has returned true, sink the last 1499 // instruction of every block in Blocks to their common successor, commoning 1500 // into one instruction. 1501 static bool sinkLastInstruction(ArrayRef<BasicBlock*> Blocks) { 1502 auto *BBEnd = Blocks[0]->getTerminator()->getSuccessor(0); 1503 1504 // canSinkLastInstruction returning true guarantees that every block has at 1505 // least one non-terminator instruction. 1506 SmallVector<Instruction*,4> Insts; 1507 for (auto *BB : Blocks) { 1508 Instruction *I = BB->getTerminator(); 1509 do { 1510 I = I->getPrevNode(); 1511 } while (isa<DbgInfoIntrinsic>(I) && I != &BB->front()); 1512 if (!isa<DbgInfoIntrinsic>(I)) 1513 Insts.push_back(I); 1514 } 1515 1516 // The only checking we need to do now is that all users of all instructions 1517 // are the same PHI node. canSinkLastInstruction should have checked this but 1518 // it is slightly over-aggressive - it gets confused by commutative instructions 1519 // so double-check it here. 1520 Instruction *I0 = Insts.front(); 1521 if (!isa<StoreInst>(I0)) { 1522 auto *PNUse = dyn_cast<PHINode>(*I0->user_begin()); 1523 if (!all_of(Insts, [&PNUse](const Instruction *I) -> bool { 1524 auto *U = cast<Instruction>(*I->user_begin()); 1525 return U == PNUse; 1526 })) 1527 return false; 1528 } 1529 1530 // We don't need to do any more checking here; canSinkLastInstruction should 1531 // have done it all for us. 1532 SmallVector<Value*, 4> NewOperands; 1533 for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) { 1534 // This check is different to that in canSinkLastInstruction. There, we 1535 // cared about the global view once simplifycfg (and instcombine) have 1536 // completed - it takes into account PHIs that become trivially 1537 // simplifiable. However here we need a more local view; if an operand 1538 // differs we create a PHI and rely on instcombine to clean up the very 1539 // small mess we may make. 1540 bool NeedPHI = any_of(Insts, [&I0, O](const Instruction *I) { 1541 return I->getOperand(O) != I0->getOperand(O); 1542 }); 1543 if (!NeedPHI) { 1544 NewOperands.push_back(I0->getOperand(O)); 1545 continue; 1546 } 1547 1548 // Create a new PHI in the successor block and populate it. 1549 auto *Op = I0->getOperand(O); 1550 assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!"); 1551 auto *PN = PHINode::Create(Op->getType(), Insts.size(), 1552 Op->getName() + ".sink", &BBEnd->front()); 1553 for (auto *I : Insts) 1554 PN->addIncoming(I->getOperand(O), I->getParent()); 1555 NewOperands.push_back(PN); 1556 } 1557 1558 // Arbitrarily use I0 as the new "common" instruction; remap its operands 1559 // and move it to the start of the successor block. 1560 for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) 1561 I0->getOperandUse(O).set(NewOperands[O]); 1562 I0->moveBefore(&*BBEnd->getFirstInsertionPt()); 1563 1564 // Update metadata and IR flags, and merge debug locations. 1565 for (auto *I : Insts) 1566 if (I != I0) { 1567 // The debug location for the "common" instruction is the merged locations 1568 // of all the commoned instructions. We start with the original location 1569 // of the "common" instruction and iteratively merge each location in the 1570 // loop below. 1571 // This is an N-way merge, which will be inefficient if I0 is a CallInst. 1572 // However, as N-way merge for CallInst is rare, so we use simplified API 1573 // instead of using complex API for N-way merge. 1574 I0->applyMergedLocation(I0->getDebugLoc(), I->getDebugLoc()); 1575 combineMetadataForCSE(I0, I); 1576 I0->andIRFlags(I); 1577 } 1578 1579 if (!isa<StoreInst>(I0)) { 1580 // canSinkLastInstruction checked that all instructions were used by 1581 // one and only one PHI node. Find that now, RAUW it to our common 1582 // instruction and nuke it. 1583 assert(I0->hasOneUse()); 1584 auto *PN = cast<PHINode>(*I0->user_begin()); 1585 PN->replaceAllUsesWith(I0); 1586 PN->eraseFromParent(); 1587 } 1588 1589 // Finally nuke all instructions apart from the common instruction. 1590 for (auto *I : Insts) 1591 if (I != I0) 1592 I->eraseFromParent(); 1593 1594 return true; 1595 } 1596 1597 namespace { 1598 1599 // LockstepReverseIterator - Iterates through instructions 1600 // in a set of blocks in reverse order from the first non-terminator. 1601 // For example (assume all blocks have size n): 1602 // LockstepReverseIterator I([B1, B2, B3]); 1603 // *I-- = [B1[n], B2[n], B3[n]]; 1604 // *I-- = [B1[n-1], B2[n-1], B3[n-1]]; 1605 // *I-- = [B1[n-2], B2[n-2], B3[n-2]]; 1606 // ... 1607 class LockstepReverseIterator { 1608 ArrayRef<BasicBlock*> Blocks; 1609 SmallVector<Instruction*,4> Insts; 1610 bool Fail; 1611 1612 public: 1613 LockstepReverseIterator(ArrayRef<BasicBlock*> Blocks) : Blocks(Blocks) { 1614 reset(); 1615 } 1616 1617 void reset() { 1618 Fail = false; 1619 Insts.clear(); 1620 for (auto *BB : Blocks) { 1621 Instruction *Inst = BB->getTerminator(); 1622 for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);) 1623 Inst = Inst->getPrevNode(); 1624 if (!Inst) { 1625 // Block wasn't big enough. 1626 Fail = true; 1627 return; 1628 } 1629 Insts.push_back(Inst); 1630 } 1631 } 1632 1633 bool isValid() const { 1634 return !Fail; 1635 } 1636 1637 void operator--() { 1638 if (Fail) 1639 return; 1640 for (auto *&Inst : Insts) { 1641 for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);) 1642 Inst = Inst->getPrevNode(); 1643 // Already at beginning of block. 1644 if (!Inst) { 1645 Fail = true; 1646 return; 1647 } 1648 } 1649 } 1650 1651 ArrayRef<Instruction*> operator * () const { 1652 return Insts; 1653 } 1654 }; 1655 1656 } // end anonymous namespace 1657 1658 /// Check whether BB's predecessors end with unconditional branches. If it is 1659 /// true, sink any common code from the predecessors to BB. 1660 /// We also allow one predecessor to end with conditional branch (but no more 1661 /// than one). 1662 static bool SinkCommonCodeFromPredecessors(BasicBlock *BB) { 1663 // We support two situations: 1664 // (1) all incoming arcs are unconditional 1665 // (2) one incoming arc is conditional 1666 // 1667 // (2) is very common in switch defaults and 1668 // else-if patterns; 1669 // 1670 // if (a) f(1); 1671 // else if (b) f(2); 1672 // 1673 // produces: 1674 // 1675 // [if] 1676 // / \ 1677 // [f(1)] [if] 1678 // | | \ 1679 // | | | 1680 // | [f(2)]| 1681 // \ | / 1682 // [ end ] 1683 // 1684 // [end] has two unconditional predecessor arcs and one conditional. The 1685 // conditional refers to the implicit empty 'else' arc. This conditional 1686 // arc can also be caused by an empty default block in a switch. 1687 // 1688 // In this case, we attempt to sink code from all *unconditional* arcs. 1689 // If we can sink instructions from these arcs (determined during the scan 1690 // phase below) we insert a common successor for all unconditional arcs and 1691 // connect that to [end], to enable sinking: 1692 // 1693 // [if] 1694 // / \ 1695 // [x(1)] [if] 1696 // | | \ 1697 // | | \ 1698 // | [x(2)] | 1699 // \ / | 1700 // [sink.split] | 1701 // \ / 1702 // [ end ] 1703 // 1704 SmallVector<BasicBlock*,4> UnconditionalPreds; 1705 Instruction *Cond = nullptr; 1706 for (auto *B : predecessors(BB)) { 1707 auto *T = B->getTerminator(); 1708 if (isa<BranchInst>(T) && cast<BranchInst>(T)->isUnconditional()) 1709 UnconditionalPreds.push_back(B); 1710 else if ((isa<BranchInst>(T) || isa<SwitchInst>(T)) && !Cond) 1711 Cond = T; 1712 else 1713 return false; 1714 } 1715 if (UnconditionalPreds.size() < 2) 1716 return false; 1717 1718 bool Changed = false; 1719 // We take a two-step approach to tail sinking. First we scan from the end of 1720 // each block upwards in lockstep. If the n'th instruction from the end of each 1721 // block can be sunk, those instructions are added to ValuesToSink and we 1722 // carry on. If we can sink an instruction but need to PHI-merge some operands 1723 // (because they're not identical in each instruction) we add these to 1724 // PHIOperands. 1725 unsigned ScanIdx = 0; 1726 SmallPtrSet<Value*,4> InstructionsToSink; 1727 DenseMap<Instruction*, SmallVector<Value*,4>> PHIOperands; 1728 LockstepReverseIterator LRI(UnconditionalPreds); 1729 while (LRI.isValid() && 1730 canSinkInstructions(*LRI, PHIOperands)) { 1731 DEBUG(dbgs() << "SINK: instruction can be sunk: " << *(*LRI)[0] << "\n"); 1732 InstructionsToSink.insert((*LRI).begin(), (*LRI).end()); 1733 ++ScanIdx; 1734 --LRI; 1735 } 1736 1737 auto ProfitableToSinkInstruction = [&](LockstepReverseIterator &LRI) { 1738 unsigned NumPHIdValues = 0; 1739 for (auto *I : *LRI) 1740 for (auto *V : PHIOperands[I]) 1741 if (InstructionsToSink.count(V) == 0) 1742 ++NumPHIdValues; 1743 DEBUG(dbgs() << "SINK: #phid values: " << NumPHIdValues << "\n"); 1744 unsigned NumPHIInsts = NumPHIdValues / UnconditionalPreds.size(); 1745 if ((NumPHIdValues % UnconditionalPreds.size()) != 0) 1746 NumPHIInsts++; 1747 1748 return NumPHIInsts <= 1; 1749 }; 1750 1751 if (ScanIdx > 0 && Cond) { 1752 // Check if we would actually sink anything first! This mutates the CFG and 1753 // adds an extra block. The goal in doing this is to allow instructions that 1754 // couldn't be sunk before to be sunk - obviously, speculatable instructions 1755 // (such as trunc, add) can be sunk and predicated already. So we check that 1756 // we're going to sink at least one non-speculatable instruction. 1757 LRI.reset(); 1758 unsigned Idx = 0; 1759 bool Profitable = false; 1760 while (ProfitableToSinkInstruction(LRI) && Idx < ScanIdx) { 1761 if (!isSafeToSpeculativelyExecute((*LRI)[0])) { 1762 Profitable = true; 1763 break; 1764 } 1765 --LRI; 1766 ++Idx; 1767 } 1768 if (!Profitable) 1769 return false; 1770 1771 DEBUG(dbgs() << "SINK: Splitting edge\n"); 1772 // We have a conditional edge and we're going to sink some instructions. 1773 // Insert a new block postdominating all blocks we're going to sink from. 1774 if (!SplitBlockPredecessors(BB, UnconditionalPreds, ".sink.split")) 1775 // Edges couldn't be split. 1776 return false; 1777 Changed = true; 1778 } 1779 1780 // Now that we've analyzed all potential sinking candidates, perform the 1781 // actual sink. We iteratively sink the last non-terminator of the source 1782 // blocks into their common successor unless doing so would require too 1783 // many PHI instructions to be generated (currently only one PHI is allowed 1784 // per sunk instruction). 1785 // 1786 // We can use InstructionsToSink to discount values needing PHI-merging that will 1787 // actually be sunk in a later iteration. This allows us to be more 1788 // aggressive in what we sink. This does allow a false positive where we 1789 // sink presuming a later value will also be sunk, but stop half way through 1790 // and never actually sink it which means we produce more PHIs than intended. 1791 // This is unlikely in practice though. 1792 for (unsigned SinkIdx = 0; SinkIdx != ScanIdx; ++SinkIdx) { 1793 DEBUG(dbgs() << "SINK: Sink: " 1794 << *UnconditionalPreds[0]->getTerminator()->getPrevNode() 1795 << "\n"); 1796 1797 // Because we've sunk every instruction in turn, the current instruction to 1798 // sink is always at index 0. 1799 LRI.reset(); 1800 if (!ProfitableToSinkInstruction(LRI)) { 1801 // Too many PHIs would be created. 1802 DEBUG(dbgs() << "SINK: stopping here, too many PHIs would be created!\n"); 1803 break; 1804 } 1805 1806 if (!sinkLastInstruction(UnconditionalPreds)) 1807 return Changed; 1808 NumSinkCommons++; 1809 Changed = true; 1810 } 1811 return Changed; 1812 } 1813 1814 /// \brief Determine if we can hoist sink a sole store instruction out of a 1815 /// conditional block. 1816 /// 1817 /// We are looking for code like the following: 1818 /// BrBB: 1819 /// store i32 %add, i32* %arrayidx2 1820 /// ... // No other stores or function calls (we could be calling a memory 1821 /// ... // function). 1822 /// %cmp = icmp ult %x, %y 1823 /// br i1 %cmp, label %EndBB, label %ThenBB 1824 /// ThenBB: 1825 /// store i32 %add5, i32* %arrayidx2 1826 /// br label EndBB 1827 /// EndBB: 1828 /// ... 1829 /// We are going to transform this into: 1830 /// BrBB: 1831 /// store i32 %add, i32* %arrayidx2 1832 /// ... // 1833 /// %cmp = icmp ult %x, %y 1834 /// %add.add5 = select i1 %cmp, i32 %add, %add5 1835 /// store i32 %add.add5, i32* %arrayidx2 1836 /// ... 1837 /// 1838 /// \return The pointer to the value of the previous store if the store can be 1839 /// hoisted into the predecessor block. 0 otherwise. 1840 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB, 1841 BasicBlock *StoreBB, BasicBlock *EndBB) { 1842 StoreInst *StoreToHoist = dyn_cast<StoreInst>(I); 1843 if (!StoreToHoist) 1844 return nullptr; 1845 1846 // Volatile or atomic. 1847 if (!StoreToHoist->isSimple()) 1848 return nullptr; 1849 1850 Value *StorePtr = StoreToHoist->getPointerOperand(); 1851 1852 // Look for a store to the same pointer in BrBB. 1853 unsigned MaxNumInstToLookAt = 9; 1854 for (Instruction &CurI : reverse(*BrBB)) { 1855 if (!MaxNumInstToLookAt) 1856 break; 1857 // Skip debug info. 1858 if (isa<DbgInfoIntrinsic>(CurI)) 1859 continue; 1860 --MaxNumInstToLookAt; 1861 1862 // Could be calling an instruction that affects memory like free(). 1863 if (CurI.mayHaveSideEffects() && !isa<StoreInst>(CurI)) 1864 return nullptr; 1865 1866 if (auto *SI = dyn_cast<StoreInst>(&CurI)) { 1867 // Found the previous store make sure it stores to the same location. 1868 if (SI->getPointerOperand() == StorePtr) 1869 // Found the previous store, return its value operand. 1870 return SI->getValueOperand(); 1871 return nullptr; // Unknown store. 1872 } 1873 } 1874 1875 return nullptr; 1876 } 1877 1878 /// \brief Speculate a conditional basic block flattening the CFG. 1879 /// 1880 /// Note that this is a very risky transform currently. Speculating 1881 /// instructions like this is most often not desirable. Instead, there is an MI 1882 /// pass which can do it with full awareness of the resource constraints. 1883 /// However, some cases are "obvious" and we should do directly. An example of 1884 /// this is speculating a single, reasonably cheap instruction. 1885 /// 1886 /// There is only one distinct advantage to flattening the CFG at the IR level: 1887 /// it makes very common but simplistic optimizations such as are common in 1888 /// instcombine and the DAG combiner more powerful by removing CFG edges and 1889 /// modeling their effects with easier to reason about SSA value graphs. 1890 /// 1891 /// 1892 /// An illustration of this transform is turning this IR: 1893 /// \code 1894 /// BB: 1895 /// %cmp = icmp ult %x, %y 1896 /// br i1 %cmp, label %EndBB, label %ThenBB 1897 /// ThenBB: 1898 /// %sub = sub %x, %y 1899 /// br label BB2 1900 /// EndBB: 1901 /// %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ] 1902 /// ... 1903 /// \endcode 1904 /// 1905 /// Into this IR: 1906 /// \code 1907 /// BB: 1908 /// %cmp = icmp ult %x, %y 1909 /// %sub = sub %x, %y 1910 /// %cond = select i1 %cmp, 0, %sub 1911 /// ... 1912 /// \endcode 1913 /// 1914 /// \returns true if the conditional block is removed. 1915 static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB, 1916 const TargetTransformInfo &TTI) { 1917 // Be conservative for now. FP select instruction can often be expensive. 1918 Value *BrCond = BI->getCondition(); 1919 if (isa<FCmpInst>(BrCond)) 1920 return false; 1921 1922 BasicBlock *BB = BI->getParent(); 1923 BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0); 1924 1925 // If ThenBB is actually on the false edge of the conditional branch, remember 1926 // to swap the select operands later. 1927 bool Invert = false; 1928 if (ThenBB != BI->getSuccessor(0)) { 1929 assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?"); 1930 Invert = true; 1931 } 1932 assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block"); 1933 1934 // Keep a count of how many times instructions are used within CondBB when 1935 // they are candidates for sinking into CondBB. Specifically: 1936 // - They are defined in BB, and 1937 // - They have no side effects, and 1938 // - All of their uses are in CondBB. 1939 SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts; 1940 1941 SmallVector<Instruction *, 4> SpeculatedDbgIntrinsics; 1942 1943 unsigned SpeculationCost = 0; 1944 Value *SpeculatedStoreValue = nullptr; 1945 StoreInst *SpeculatedStore = nullptr; 1946 for (BasicBlock::iterator BBI = ThenBB->begin(), 1947 BBE = std::prev(ThenBB->end()); 1948 BBI != BBE; ++BBI) { 1949 Instruction *I = &*BBI; 1950 // Skip debug info. 1951 if (isa<DbgInfoIntrinsic>(I)) { 1952 SpeculatedDbgIntrinsics.push_back(I); 1953 continue; 1954 } 1955 1956 // Only speculatively execute a single instruction (not counting the 1957 // terminator) for now. 1958 ++SpeculationCost; 1959 if (SpeculationCost > 1) 1960 return false; 1961 1962 // Don't hoist the instruction if it's unsafe or expensive. 1963 if (!isSafeToSpeculativelyExecute(I) && 1964 !(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore( 1965 I, BB, ThenBB, EndBB)))) 1966 return false; 1967 if (!SpeculatedStoreValue && 1968 ComputeSpeculationCost(I, TTI) > 1969 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic) 1970 return false; 1971 1972 // Store the store speculation candidate. 1973 if (SpeculatedStoreValue) 1974 SpeculatedStore = cast<StoreInst>(I); 1975 1976 // Do not hoist the instruction if any of its operands are defined but not 1977 // used in BB. The transformation will prevent the operand from 1978 // being sunk into the use block. 1979 for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) { 1980 Instruction *OpI = dyn_cast<Instruction>(*i); 1981 if (!OpI || OpI->getParent() != BB || OpI->mayHaveSideEffects()) 1982 continue; // Not a candidate for sinking. 1983 1984 ++SinkCandidateUseCounts[OpI]; 1985 } 1986 } 1987 1988 // Consider any sink candidates which are only used in CondBB as costs for 1989 // speculation. Note, while we iterate over a DenseMap here, we are summing 1990 // and so iteration order isn't significant. 1991 for (SmallDenseMap<Instruction *, unsigned, 4>::iterator 1992 I = SinkCandidateUseCounts.begin(), 1993 E = SinkCandidateUseCounts.end(); 1994 I != E; ++I) 1995 if (I->first->getNumUses() == I->second) { 1996 ++SpeculationCost; 1997 if (SpeculationCost > 1) 1998 return false; 1999 } 2000 2001 // Check that the PHI nodes can be converted to selects. 2002 bool HaveRewritablePHIs = false; 2003 for (PHINode &PN : EndBB->phis()) { 2004 Value *OrigV = PN.getIncomingValueForBlock(BB); 2005 Value *ThenV = PN.getIncomingValueForBlock(ThenBB); 2006 2007 // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf. 2008 // Skip PHIs which are trivial. 2009 if (ThenV == OrigV) 2010 continue; 2011 2012 // Don't convert to selects if we could remove undefined behavior instead. 2013 if (passingValueIsAlwaysUndefined(OrigV, &PN) || 2014 passingValueIsAlwaysUndefined(ThenV, &PN)) 2015 return false; 2016 2017 HaveRewritablePHIs = true; 2018 ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV); 2019 ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV); 2020 if (!OrigCE && !ThenCE) 2021 continue; // Known safe and cheap. 2022 2023 if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE)) || 2024 (OrigCE && !isSafeToSpeculativelyExecute(OrigCE))) 2025 return false; 2026 unsigned OrigCost = OrigCE ? ComputeSpeculationCost(OrigCE, TTI) : 0; 2027 unsigned ThenCost = ThenCE ? ComputeSpeculationCost(ThenCE, TTI) : 0; 2028 unsigned MaxCost = 2029 2 * PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 2030 if (OrigCost + ThenCost > MaxCost) 2031 return false; 2032 2033 // Account for the cost of an unfolded ConstantExpr which could end up 2034 // getting expanded into Instructions. 2035 // FIXME: This doesn't account for how many operations are combined in the 2036 // constant expression. 2037 ++SpeculationCost; 2038 if (SpeculationCost > 1) 2039 return false; 2040 } 2041 2042 // If there are no PHIs to process, bail early. This helps ensure idempotence 2043 // as well. 2044 if (!HaveRewritablePHIs && !(HoistCondStores && SpeculatedStoreValue)) 2045 return false; 2046 2047 // If we get here, we can hoist the instruction and if-convert. 2048 DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";); 2049 2050 // Insert a select of the value of the speculated store. 2051 if (SpeculatedStoreValue) { 2052 IRBuilder<NoFolder> Builder(BI); 2053 Value *TrueV = SpeculatedStore->getValueOperand(); 2054 Value *FalseV = SpeculatedStoreValue; 2055 if (Invert) 2056 std::swap(TrueV, FalseV); 2057 Value *S = Builder.CreateSelect( 2058 BrCond, TrueV, FalseV, "spec.store.select", BI); 2059 SpeculatedStore->setOperand(0, S); 2060 SpeculatedStore->applyMergedLocation(BI->getDebugLoc(), 2061 SpeculatedStore->getDebugLoc()); 2062 } 2063 2064 // Metadata can be dependent on the condition we are hoisting above. 2065 // Conservatively strip all metadata on the instruction. 2066 for (auto &I : *ThenBB) 2067 I.dropUnknownNonDebugMetadata(); 2068 2069 // Hoist the instructions. 2070 BB->getInstList().splice(BI->getIterator(), ThenBB->getInstList(), 2071 ThenBB->begin(), std::prev(ThenBB->end())); 2072 2073 // Insert selects and rewrite the PHI operands. 2074 IRBuilder<NoFolder> Builder(BI); 2075 for (PHINode &PN : EndBB->phis()) { 2076 unsigned OrigI = PN.getBasicBlockIndex(BB); 2077 unsigned ThenI = PN.getBasicBlockIndex(ThenBB); 2078 Value *OrigV = PN.getIncomingValue(OrigI); 2079 Value *ThenV = PN.getIncomingValue(ThenI); 2080 2081 // Skip PHIs which are trivial. 2082 if (OrigV == ThenV) 2083 continue; 2084 2085 // Create a select whose true value is the speculatively executed value and 2086 // false value is the preexisting value. Swap them if the branch 2087 // destinations were inverted. 2088 Value *TrueV = ThenV, *FalseV = OrigV; 2089 if (Invert) 2090 std::swap(TrueV, FalseV); 2091 Value *V = Builder.CreateSelect( 2092 BrCond, TrueV, FalseV, "spec.select", BI); 2093 PN.setIncomingValue(OrigI, V); 2094 PN.setIncomingValue(ThenI, V); 2095 } 2096 2097 // Remove speculated dbg intrinsics. 2098 // FIXME: Is it possible to do this in a more elegant way? Moving/merging the 2099 // dbg value for the different flows and inserting it after the select. 2100 for (Instruction *I : SpeculatedDbgIntrinsics) 2101 I->eraseFromParent(); 2102 2103 ++NumSpeculations; 2104 return true; 2105 } 2106 2107 /// Return true if we can thread a branch across this block. 2108 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) { 2109 BranchInst *BI = cast<BranchInst>(BB->getTerminator()); 2110 unsigned Size = 0; 2111 2112 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) { 2113 if (isa<DbgInfoIntrinsic>(BBI)) 2114 continue; 2115 if (Size > 10) 2116 return false; // Don't clone large BB's. 2117 ++Size; 2118 2119 // We can only support instructions that do not define values that are 2120 // live outside of the current basic block. 2121 for (User *U : BBI->users()) { 2122 Instruction *UI = cast<Instruction>(U); 2123 if (UI->getParent() != BB || isa<PHINode>(UI)) 2124 return false; 2125 } 2126 2127 // Looks ok, continue checking. 2128 } 2129 2130 return true; 2131 } 2132 2133 /// If we have a conditional branch on a PHI node value that is defined in the 2134 /// same block as the branch and if any PHI entries are constants, thread edges 2135 /// corresponding to that entry to be branches to their ultimate destination. 2136 static bool FoldCondBranchOnPHI(BranchInst *BI, const DataLayout &DL, 2137 AssumptionCache *AC) { 2138 BasicBlock *BB = BI->getParent(); 2139 PHINode *PN = dyn_cast<PHINode>(BI->getCondition()); 2140 // NOTE: we currently cannot transform this case if the PHI node is used 2141 // outside of the block. 2142 if (!PN || PN->getParent() != BB || !PN->hasOneUse()) 2143 return false; 2144 2145 // Degenerate case of a single entry PHI. 2146 if (PN->getNumIncomingValues() == 1) { 2147 FoldSingleEntryPHINodes(PN->getParent()); 2148 return true; 2149 } 2150 2151 // Now we know that this block has multiple preds and two succs. 2152 if (!BlockIsSimpleEnoughToThreadThrough(BB)) 2153 return false; 2154 2155 // Can't fold blocks that contain noduplicate or convergent calls. 2156 if (any_of(*BB, [](const Instruction &I) { 2157 const CallInst *CI = dyn_cast<CallInst>(&I); 2158 return CI && (CI->cannotDuplicate() || CI->isConvergent()); 2159 })) 2160 return false; 2161 2162 // Okay, this is a simple enough basic block. See if any phi values are 2163 // constants. 2164 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 2165 ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i)); 2166 if (!CB || !CB->getType()->isIntegerTy(1)) 2167 continue; 2168 2169 // Okay, we now know that all edges from PredBB should be revectored to 2170 // branch to RealDest. 2171 BasicBlock *PredBB = PN->getIncomingBlock(i); 2172 BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue()); 2173 2174 if (RealDest == BB) 2175 continue; // Skip self loops. 2176 // Skip if the predecessor's terminator is an indirect branch. 2177 if (isa<IndirectBrInst>(PredBB->getTerminator())) 2178 continue; 2179 2180 // The dest block might have PHI nodes, other predecessors and other 2181 // difficult cases. Instead of being smart about this, just insert a new 2182 // block that jumps to the destination block, effectively splitting 2183 // the edge we are about to create. 2184 BasicBlock *EdgeBB = 2185 BasicBlock::Create(BB->getContext(), RealDest->getName() + ".critedge", 2186 RealDest->getParent(), RealDest); 2187 BranchInst::Create(RealDest, EdgeBB); 2188 2189 // Update PHI nodes. 2190 AddPredecessorToBlock(RealDest, EdgeBB, BB); 2191 2192 // BB may have instructions that are being threaded over. Clone these 2193 // instructions into EdgeBB. We know that there will be no uses of the 2194 // cloned instructions outside of EdgeBB. 2195 BasicBlock::iterator InsertPt = EdgeBB->begin(); 2196 DenseMap<Value *, Value *> TranslateMap; // Track translated values. 2197 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) { 2198 if (PHINode *PN = dyn_cast<PHINode>(BBI)) { 2199 TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB); 2200 continue; 2201 } 2202 // Clone the instruction. 2203 Instruction *N = BBI->clone(); 2204 if (BBI->hasName()) 2205 N->setName(BBI->getName() + ".c"); 2206 2207 // Update operands due to translation. 2208 for (User::op_iterator i = N->op_begin(), e = N->op_end(); i != e; ++i) { 2209 DenseMap<Value *, Value *>::iterator PI = TranslateMap.find(*i); 2210 if (PI != TranslateMap.end()) 2211 *i = PI->second; 2212 } 2213 2214 // Check for trivial simplification. 2215 if (Value *V = SimplifyInstruction(N, {DL, nullptr, nullptr, AC})) { 2216 if (!BBI->use_empty()) 2217 TranslateMap[&*BBI] = V; 2218 if (!N->mayHaveSideEffects()) { 2219 N->deleteValue(); // Instruction folded away, don't need actual inst 2220 N = nullptr; 2221 } 2222 } else { 2223 if (!BBI->use_empty()) 2224 TranslateMap[&*BBI] = N; 2225 } 2226 // Insert the new instruction into its new home. 2227 if (N) 2228 EdgeBB->getInstList().insert(InsertPt, N); 2229 2230 // Register the new instruction with the assumption cache if necessary. 2231 if (auto *II = dyn_cast_or_null<IntrinsicInst>(N)) 2232 if (II->getIntrinsicID() == Intrinsic::assume) 2233 AC->registerAssumption(II); 2234 } 2235 2236 // Loop over all of the edges from PredBB to BB, changing them to branch 2237 // to EdgeBB instead. 2238 TerminatorInst *PredBBTI = PredBB->getTerminator(); 2239 for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i) 2240 if (PredBBTI->getSuccessor(i) == BB) { 2241 BB->removePredecessor(PredBB); 2242 PredBBTI->setSuccessor(i, EdgeBB); 2243 } 2244 2245 // Recurse, simplifying any other constants. 2246 return FoldCondBranchOnPHI(BI, DL, AC) | true; 2247 } 2248 2249 return false; 2250 } 2251 2252 /// Given a BB that starts with the specified two-entry PHI node, 2253 /// see if we can eliminate it. 2254 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI, 2255 const DataLayout &DL) { 2256 // Ok, this is a two entry PHI node. Check to see if this is a simple "if 2257 // statement", which has a very simple dominance structure. Basically, we 2258 // are trying to find the condition that is being branched on, which 2259 // subsequently causes this merge to happen. We really want control 2260 // dependence information for this check, but simplifycfg can't keep it up 2261 // to date, and this catches most of the cases we care about anyway. 2262 BasicBlock *BB = PN->getParent(); 2263 BasicBlock *IfTrue, *IfFalse; 2264 Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse); 2265 if (!IfCond || 2266 // Don't bother if the branch will be constant folded trivially. 2267 isa<ConstantInt>(IfCond)) 2268 return false; 2269 2270 // Okay, we found that we can merge this two-entry phi node into a select. 2271 // Doing so would require us to fold *all* two entry phi nodes in this block. 2272 // At some point this becomes non-profitable (particularly if the target 2273 // doesn't support cmov's). Only do this transformation if there are two or 2274 // fewer PHI nodes in this block. 2275 unsigned NumPhis = 0; 2276 for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I) 2277 if (NumPhis > 2) 2278 return false; 2279 2280 // Loop over the PHI's seeing if we can promote them all to select 2281 // instructions. While we are at it, keep track of the instructions 2282 // that need to be moved to the dominating block. 2283 SmallPtrSet<Instruction *, 4> AggressiveInsts; 2284 unsigned MaxCostVal0 = PHINodeFoldingThreshold, 2285 MaxCostVal1 = PHINodeFoldingThreshold; 2286 MaxCostVal0 *= TargetTransformInfo::TCC_Basic; 2287 MaxCostVal1 *= TargetTransformInfo::TCC_Basic; 2288 2289 for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) { 2290 PHINode *PN = cast<PHINode>(II++); 2291 if (Value *V = SimplifyInstruction(PN, {DL, PN})) { 2292 PN->replaceAllUsesWith(V); 2293 PN->eraseFromParent(); 2294 continue; 2295 } 2296 2297 if (!DominatesMergePoint(PN->getIncomingValue(0), BB, &AggressiveInsts, 2298 MaxCostVal0, TTI) || 2299 !DominatesMergePoint(PN->getIncomingValue(1), BB, &AggressiveInsts, 2300 MaxCostVal1, TTI)) 2301 return false; 2302 } 2303 2304 // If we folded the first phi, PN dangles at this point. Refresh it. If 2305 // we ran out of PHIs then we simplified them all. 2306 PN = dyn_cast<PHINode>(BB->begin()); 2307 if (!PN) 2308 return true; 2309 2310 // Don't fold i1 branches on PHIs which contain binary operators. These can 2311 // often be turned into switches and other things. 2312 if (PN->getType()->isIntegerTy(1) && 2313 (isa<BinaryOperator>(PN->getIncomingValue(0)) || 2314 isa<BinaryOperator>(PN->getIncomingValue(1)) || 2315 isa<BinaryOperator>(IfCond))) 2316 return false; 2317 2318 // If all PHI nodes are promotable, check to make sure that all instructions 2319 // in the predecessor blocks can be promoted as well. If not, we won't be able 2320 // to get rid of the control flow, so it's not worth promoting to select 2321 // instructions. 2322 BasicBlock *DomBlock = nullptr; 2323 BasicBlock *IfBlock1 = PN->getIncomingBlock(0); 2324 BasicBlock *IfBlock2 = PN->getIncomingBlock(1); 2325 if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) { 2326 IfBlock1 = nullptr; 2327 } else { 2328 DomBlock = *pred_begin(IfBlock1); 2329 for (BasicBlock::iterator I = IfBlock1->begin(); !isa<TerminatorInst>(I); 2330 ++I) 2331 if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) { 2332 // This is not an aggressive instruction that we can promote. 2333 // Because of this, we won't be able to get rid of the control flow, so 2334 // the xform is not worth it. 2335 return false; 2336 } 2337 } 2338 2339 if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) { 2340 IfBlock2 = nullptr; 2341 } else { 2342 DomBlock = *pred_begin(IfBlock2); 2343 for (BasicBlock::iterator I = IfBlock2->begin(); !isa<TerminatorInst>(I); 2344 ++I) 2345 if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) { 2346 // This is not an aggressive instruction that we can promote. 2347 // Because of this, we won't be able to get rid of the control flow, so 2348 // the xform is not worth it. 2349 return false; 2350 } 2351 } 2352 2353 DEBUG(dbgs() << "FOUND IF CONDITION! " << *IfCond << " T: " 2354 << IfTrue->getName() << " F: " << IfFalse->getName() << "\n"); 2355 2356 // If we can still promote the PHI nodes after this gauntlet of tests, 2357 // do all of the PHI's now. 2358 Instruction *InsertPt = DomBlock->getTerminator(); 2359 IRBuilder<NoFolder> Builder(InsertPt); 2360 2361 // Move all 'aggressive' instructions, which are defined in the 2362 // conditional parts of the if's up to the dominating block. 2363 if (IfBlock1) { 2364 for (auto &I : *IfBlock1) 2365 I.dropUnknownNonDebugMetadata(); 2366 DomBlock->getInstList().splice(InsertPt->getIterator(), 2367 IfBlock1->getInstList(), IfBlock1->begin(), 2368 IfBlock1->getTerminator()->getIterator()); 2369 } 2370 if (IfBlock2) { 2371 for (auto &I : *IfBlock2) 2372 I.dropUnknownNonDebugMetadata(); 2373 DomBlock->getInstList().splice(InsertPt->getIterator(), 2374 IfBlock2->getInstList(), IfBlock2->begin(), 2375 IfBlock2->getTerminator()->getIterator()); 2376 } 2377 2378 while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) { 2379 // Change the PHI node into a select instruction. 2380 Value *TrueVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse); 2381 Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue); 2382 2383 Value *Sel = Builder.CreateSelect(IfCond, TrueVal, FalseVal, "", InsertPt); 2384 PN->replaceAllUsesWith(Sel); 2385 Sel->takeName(PN); 2386 PN->eraseFromParent(); 2387 } 2388 2389 // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement 2390 // has been flattened. Change DomBlock to jump directly to our new block to 2391 // avoid other simplifycfg's kicking in on the diamond. 2392 TerminatorInst *OldTI = DomBlock->getTerminator(); 2393 Builder.SetInsertPoint(OldTI); 2394 Builder.CreateBr(BB); 2395 OldTI->eraseFromParent(); 2396 return true; 2397 } 2398 2399 /// If we found a conditional branch that goes to two returning blocks, 2400 /// try to merge them together into one return, 2401 /// introducing a select if the return values disagree. 2402 static bool SimplifyCondBranchToTwoReturns(BranchInst *BI, 2403 IRBuilder<> &Builder) { 2404 assert(BI->isConditional() && "Must be a conditional branch"); 2405 BasicBlock *TrueSucc = BI->getSuccessor(0); 2406 BasicBlock *FalseSucc = BI->getSuccessor(1); 2407 ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator()); 2408 ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator()); 2409 2410 // Check to ensure both blocks are empty (just a return) or optionally empty 2411 // with PHI nodes. If there are other instructions, merging would cause extra 2412 // computation on one path or the other. 2413 if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator()) 2414 return false; 2415 if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator()) 2416 return false; 2417 2418 Builder.SetInsertPoint(BI); 2419 // Okay, we found a branch that is going to two return nodes. If 2420 // there is no return value for this function, just change the 2421 // branch into a return. 2422 if (FalseRet->getNumOperands() == 0) { 2423 TrueSucc->removePredecessor(BI->getParent()); 2424 FalseSucc->removePredecessor(BI->getParent()); 2425 Builder.CreateRetVoid(); 2426 EraseTerminatorInstAndDCECond(BI); 2427 return true; 2428 } 2429 2430 // Otherwise, figure out what the true and false return values are 2431 // so we can insert a new select instruction. 2432 Value *TrueValue = TrueRet->getReturnValue(); 2433 Value *FalseValue = FalseRet->getReturnValue(); 2434 2435 // Unwrap any PHI nodes in the return blocks. 2436 if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue)) 2437 if (TVPN->getParent() == TrueSucc) 2438 TrueValue = TVPN->getIncomingValueForBlock(BI->getParent()); 2439 if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue)) 2440 if (FVPN->getParent() == FalseSucc) 2441 FalseValue = FVPN->getIncomingValueForBlock(BI->getParent()); 2442 2443 // In order for this transformation to be safe, we must be able to 2444 // unconditionally execute both operands to the return. This is 2445 // normally the case, but we could have a potentially-trapping 2446 // constant expression that prevents this transformation from being 2447 // safe. 2448 if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue)) 2449 if (TCV->canTrap()) 2450 return false; 2451 if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue)) 2452 if (FCV->canTrap()) 2453 return false; 2454 2455 // Okay, we collected all the mapped values and checked them for sanity, and 2456 // defined to really do this transformation. First, update the CFG. 2457 TrueSucc->removePredecessor(BI->getParent()); 2458 FalseSucc->removePredecessor(BI->getParent()); 2459 2460 // Insert select instructions where needed. 2461 Value *BrCond = BI->getCondition(); 2462 if (TrueValue) { 2463 // Insert a select if the results differ. 2464 if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) { 2465 } else if (isa<UndefValue>(TrueValue)) { 2466 TrueValue = FalseValue; 2467 } else { 2468 TrueValue = 2469 Builder.CreateSelect(BrCond, TrueValue, FalseValue, "retval", BI); 2470 } 2471 } 2472 2473 Value *RI = 2474 !TrueValue ? Builder.CreateRetVoid() : Builder.CreateRet(TrueValue); 2475 2476 (void)RI; 2477 2478 DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:" 2479 << "\n " << *BI << "NewRet = " << *RI 2480 << "TRUEBLOCK: " << *TrueSucc << "FALSEBLOCK: " << *FalseSucc); 2481 2482 EraseTerminatorInstAndDCECond(BI); 2483 2484 return true; 2485 } 2486 2487 /// Return true if the given instruction is available 2488 /// in its predecessor block. If yes, the instruction will be removed. 2489 static bool checkCSEInPredecessor(Instruction *Inst, BasicBlock *PB) { 2490 if (!isa<BinaryOperator>(Inst) && !isa<CmpInst>(Inst)) 2491 return false; 2492 for (Instruction &I : *PB) { 2493 Instruction *PBI = &I; 2494 // Check whether Inst and PBI generate the same value. 2495 if (Inst->isIdenticalTo(PBI)) { 2496 Inst->replaceAllUsesWith(PBI); 2497 Inst->eraseFromParent(); 2498 return true; 2499 } 2500 } 2501 return false; 2502 } 2503 2504 /// Return true if either PBI or BI has branch weight available, and store 2505 /// the weights in {Pred|Succ}{True|False}Weight. If one of PBI and BI does 2506 /// not have branch weight, use 1:1 as its weight. 2507 static bool extractPredSuccWeights(BranchInst *PBI, BranchInst *BI, 2508 uint64_t &PredTrueWeight, 2509 uint64_t &PredFalseWeight, 2510 uint64_t &SuccTrueWeight, 2511 uint64_t &SuccFalseWeight) { 2512 bool PredHasWeights = 2513 PBI->extractProfMetadata(PredTrueWeight, PredFalseWeight); 2514 bool SuccHasWeights = 2515 BI->extractProfMetadata(SuccTrueWeight, SuccFalseWeight); 2516 if (PredHasWeights || SuccHasWeights) { 2517 if (!PredHasWeights) 2518 PredTrueWeight = PredFalseWeight = 1; 2519 if (!SuccHasWeights) 2520 SuccTrueWeight = SuccFalseWeight = 1; 2521 return true; 2522 } else { 2523 return false; 2524 } 2525 } 2526 2527 /// If this basic block is simple enough, and if a predecessor branches to us 2528 /// and one of our successors, fold the block into the predecessor and use 2529 /// logical operations to pick the right destination. 2530 bool llvm::FoldBranchToCommonDest(BranchInst *BI, unsigned BonusInstThreshold) { 2531 BasicBlock *BB = BI->getParent(); 2532 2533 Instruction *Cond = nullptr; 2534 if (BI->isConditional()) 2535 Cond = dyn_cast<Instruction>(BI->getCondition()); 2536 else { 2537 // For unconditional branch, check for a simple CFG pattern, where 2538 // BB has a single predecessor and BB's successor is also its predecessor's 2539 // successor. If such pattern exists, check for CSE between BB and its 2540 // predecessor. 2541 if (BasicBlock *PB = BB->getSinglePredecessor()) 2542 if (BranchInst *PBI = dyn_cast<BranchInst>(PB->getTerminator())) 2543 if (PBI->isConditional() && 2544 (BI->getSuccessor(0) == PBI->getSuccessor(0) || 2545 BI->getSuccessor(0) == PBI->getSuccessor(1))) { 2546 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 2547 Instruction *Curr = &*I++; 2548 if (isa<CmpInst>(Curr)) { 2549 Cond = Curr; 2550 break; 2551 } 2552 // Quit if we can't remove this instruction. 2553 if (!checkCSEInPredecessor(Curr, PB)) 2554 return false; 2555 } 2556 } 2557 2558 if (!Cond) 2559 return false; 2560 } 2561 2562 if (!Cond || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) || 2563 Cond->getParent() != BB || !Cond->hasOneUse()) 2564 return false; 2565 2566 // Make sure the instruction after the condition is the cond branch. 2567 BasicBlock::iterator CondIt = ++Cond->getIterator(); 2568 2569 // Ignore dbg intrinsics. 2570 while (isa<DbgInfoIntrinsic>(CondIt)) 2571 ++CondIt; 2572 2573 if (&*CondIt != BI) 2574 return false; 2575 2576 // Only allow this transformation if computing the condition doesn't involve 2577 // too many instructions and these involved instructions can be executed 2578 // unconditionally. We denote all involved instructions except the condition 2579 // as "bonus instructions", and only allow this transformation when the 2580 // number of the bonus instructions does not exceed a certain threshold. 2581 unsigned NumBonusInsts = 0; 2582 for (auto I = BB->begin(); Cond != &*I; ++I) { 2583 // Ignore dbg intrinsics. 2584 if (isa<DbgInfoIntrinsic>(I)) 2585 continue; 2586 if (!I->hasOneUse() || !isSafeToSpeculativelyExecute(&*I)) 2587 return false; 2588 // I has only one use and can be executed unconditionally. 2589 Instruction *User = dyn_cast<Instruction>(I->user_back()); 2590 if (User == nullptr || User->getParent() != BB) 2591 return false; 2592 // I is used in the same BB. Since BI uses Cond and doesn't have more slots 2593 // to use any other instruction, User must be an instruction between next(I) 2594 // and Cond. 2595 ++NumBonusInsts; 2596 // Early exits once we reach the limit. 2597 if (NumBonusInsts > BonusInstThreshold) 2598 return false; 2599 } 2600 2601 // Cond is known to be a compare or binary operator. Check to make sure that 2602 // neither operand is a potentially-trapping constant expression. 2603 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0))) 2604 if (CE->canTrap()) 2605 return false; 2606 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1))) 2607 if (CE->canTrap()) 2608 return false; 2609 2610 // Finally, don't infinitely unroll conditional loops. 2611 BasicBlock *TrueDest = BI->getSuccessor(0); 2612 BasicBlock *FalseDest = (BI->isConditional()) ? BI->getSuccessor(1) : nullptr; 2613 if (TrueDest == BB || FalseDest == BB) 2614 return false; 2615 2616 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 2617 BasicBlock *PredBlock = *PI; 2618 BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator()); 2619 2620 // Check that we have two conditional branches. If there is a PHI node in 2621 // the common successor, verify that the same value flows in from both 2622 // blocks. 2623 SmallVector<PHINode *, 4> PHIs; 2624 if (!PBI || PBI->isUnconditional() || 2625 (BI->isConditional() && !SafeToMergeTerminators(BI, PBI)) || 2626 (!BI->isConditional() && 2627 !isProfitableToFoldUnconditional(BI, PBI, Cond, PHIs))) 2628 continue; 2629 2630 // Determine if the two branches share a common destination. 2631 Instruction::BinaryOps Opc = Instruction::BinaryOpsEnd; 2632 bool InvertPredCond = false; 2633 2634 if (BI->isConditional()) { 2635 if (PBI->getSuccessor(0) == TrueDest) { 2636 Opc = Instruction::Or; 2637 } else if (PBI->getSuccessor(1) == FalseDest) { 2638 Opc = Instruction::And; 2639 } else if (PBI->getSuccessor(0) == FalseDest) { 2640 Opc = Instruction::And; 2641 InvertPredCond = true; 2642 } else if (PBI->getSuccessor(1) == TrueDest) { 2643 Opc = Instruction::Or; 2644 InvertPredCond = true; 2645 } else { 2646 continue; 2647 } 2648 } else { 2649 if (PBI->getSuccessor(0) != TrueDest && PBI->getSuccessor(1) != TrueDest) 2650 continue; 2651 } 2652 2653 DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB); 2654 IRBuilder<> Builder(PBI); 2655 2656 // If we need to invert the condition in the pred block to match, do so now. 2657 if (InvertPredCond) { 2658 Value *NewCond = PBI->getCondition(); 2659 2660 if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) { 2661 CmpInst *CI = cast<CmpInst>(NewCond); 2662 CI->setPredicate(CI->getInversePredicate()); 2663 } else { 2664 NewCond = 2665 Builder.CreateNot(NewCond, PBI->getCondition()->getName() + ".not"); 2666 } 2667 2668 PBI->setCondition(NewCond); 2669 PBI->swapSuccessors(); 2670 } 2671 2672 // If we have bonus instructions, clone them into the predecessor block. 2673 // Note that there may be multiple predecessor blocks, so we cannot move 2674 // bonus instructions to a predecessor block. 2675 ValueToValueMapTy VMap; // maps original values to cloned values 2676 // We already make sure Cond is the last instruction before BI. Therefore, 2677 // all instructions before Cond other than DbgInfoIntrinsic are bonus 2678 // instructions. 2679 for (auto BonusInst = BB->begin(); Cond != &*BonusInst; ++BonusInst) { 2680 if (isa<DbgInfoIntrinsic>(BonusInst)) 2681 continue; 2682 Instruction *NewBonusInst = BonusInst->clone(); 2683 RemapInstruction(NewBonusInst, VMap, 2684 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 2685 VMap[&*BonusInst] = NewBonusInst; 2686 2687 // If we moved a load, we cannot any longer claim any knowledge about 2688 // its potential value. The previous information might have been valid 2689 // only given the branch precondition. 2690 // For an analogous reason, we must also drop all the metadata whose 2691 // semantics we don't understand. 2692 NewBonusInst->dropUnknownNonDebugMetadata(); 2693 2694 PredBlock->getInstList().insert(PBI->getIterator(), NewBonusInst); 2695 NewBonusInst->takeName(&*BonusInst); 2696 BonusInst->setName(BonusInst->getName() + ".old"); 2697 } 2698 2699 // Clone Cond into the predecessor basic block, and or/and the 2700 // two conditions together. 2701 Instruction *New = Cond->clone(); 2702 RemapInstruction(New, VMap, 2703 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 2704 PredBlock->getInstList().insert(PBI->getIterator(), New); 2705 New->takeName(Cond); 2706 Cond->setName(New->getName() + ".old"); 2707 2708 if (BI->isConditional()) { 2709 Instruction *NewCond = cast<Instruction>( 2710 Builder.CreateBinOp(Opc, PBI->getCondition(), New, "or.cond")); 2711 PBI->setCondition(NewCond); 2712 2713 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 2714 bool HasWeights = 2715 extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight, 2716 SuccTrueWeight, SuccFalseWeight); 2717 SmallVector<uint64_t, 8> NewWeights; 2718 2719 if (PBI->getSuccessor(0) == BB) { 2720 if (HasWeights) { 2721 // PBI: br i1 %x, BB, FalseDest 2722 // BI: br i1 %y, TrueDest, FalseDest 2723 // TrueWeight is TrueWeight for PBI * TrueWeight for BI. 2724 NewWeights.push_back(PredTrueWeight * SuccTrueWeight); 2725 // FalseWeight is FalseWeight for PBI * TotalWeight for BI + 2726 // TrueWeight for PBI * FalseWeight for BI. 2727 // We assume that total weights of a BranchInst can fit into 32 bits. 2728 // Therefore, we will not have overflow using 64-bit arithmetic. 2729 NewWeights.push_back(PredFalseWeight * 2730 (SuccFalseWeight + SuccTrueWeight) + 2731 PredTrueWeight * SuccFalseWeight); 2732 } 2733 AddPredecessorToBlock(TrueDest, PredBlock, BB); 2734 PBI->setSuccessor(0, TrueDest); 2735 } 2736 if (PBI->getSuccessor(1) == BB) { 2737 if (HasWeights) { 2738 // PBI: br i1 %x, TrueDest, BB 2739 // BI: br i1 %y, TrueDest, FalseDest 2740 // TrueWeight is TrueWeight for PBI * TotalWeight for BI + 2741 // FalseWeight for PBI * TrueWeight for BI. 2742 NewWeights.push_back(PredTrueWeight * 2743 (SuccFalseWeight + SuccTrueWeight) + 2744 PredFalseWeight * SuccTrueWeight); 2745 // FalseWeight is FalseWeight for PBI * FalseWeight for BI. 2746 NewWeights.push_back(PredFalseWeight * SuccFalseWeight); 2747 } 2748 AddPredecessorToBlock(FalseDest, PredBlock, BB); 2749 PBI->setSuccessor(1, FalseDest); 2750 } 2751 if (NewWeights.size() == 2) { 2752 // Halve the weights if any of them cannot fit in an uint32_t 2753 FitWeights(NewWeights); 2754 2755 SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(), 2756 NewWeights.end()); 2757 setBranchWeights(PBI, MDWeights[0], MDWeights[1]); 2758 } else 2759 PBI->setMetadata(LLVMContext::MD_prof, nullptr); 2760 } else { 2761 // Update PHI nodes in the common successors. 2762 for (unsigned i = 0, e = PHIs.size(); i != e; ++i) { 2763 ConstantInt *PBI_C = cast<ConstantInt>( 2764 PHIs[i]->getIncomingValueForBlock(PBI->getParent())); 2765 assert(PBI_C->getType()->isIntegerTy(1)); 2766 Instruction *MergedCond = nullptr; 2767 if (PBI->getSuccessor(0) == TrueDest) { 2768 // Create (PBI_Cond and PBI_C) or (!PBI_Cond and BI_Value) 2769 // PBI_C is true: PBI_Cond or (!PBI_Cond and BI_Value) 2770 // is false: !PBI_Cond and BI_Value 2771 Instruction *NotCond = cast<Instruction>( 2772 Builder.CreateNot(PBI->getCondition(), "not.cond")); 2773 MergedCond = cast<Instruction>( 2774 Builder.CreateBinOp(Instruction::And, NotCond, New, "and.cond")); 2775 if (PBI_C->isOne()) 2776 MergedCond = cast<Instruction>(Builder.CreateBinOp( 2777 Instruction::Or, PBI->getCondition(), MergedCond, "or.cond")); 2778 } else { 2779 // Create (PBI_Cond and BI_Value) or (!PBI_Cond and PBI_C) 2780 // PBI_C is true: (PBI_Cond and BI_Value) or (!PBI_Cond) 2781 // is false: PBI_Cond and BI_Value 2782 MergedCond = cast<Instruction>(Builder.CreateBinOp( 2783 Instruction::And, PBI->getCondition(), New, "and.cond")); 2784 if (PBI_C->isOne()) { 2785 Instruction *NotCond = cast<Instruction>( 2786 Builder.CreateNot(PBI->getCondition(), "not.cond")); 2787 MergedCond = cast<Instruction>(Builder.CreateBinOp( 2788 Instruction::Or, NotCond, MergedCond, "or.cond")); 2789 } 2790 } 2791 // Update PHI Node. 2792 PHIs[i]->setIncomingValue(PHIs[i]->getBasicBlockIndex(PBI->getParent()), 2793 MergedCond); 2794 } 2795 // Change PBI from Conditional to Unconditional. 2796 BranchInst *New_PBI = BranchInst::Create(TrueDest, PBI); 2797 EraseTerminatorInstAndDCECond(PBI); 2798 PBI = New_PBI; 2799 } 2800 2801 // If BI was a loop latch, it may have had associated loop metadata. 2802 // We need to copy it to the new latch, that is, PBI. 2803 if (MDNode *LoopMD = BI->getMetadata(LLVMContext::MD_loop)) 2804 PBI->setMetadata(LLVMContext::MD_loop, LoopMD); 2805 2806 // TODO: If BB is reachable from all paths through PredBlock, then we 2807 // could replace PBI's branch probabilities with BI's. 2808 2809 // Copy any debug value intrinsics into the end of PredBlock. 2810 for (Instruction &I : *BB) 2811 if (isa<DbgInfoIntrinsic>(I)) 2812 I.clone()->insertBefore(PBI); 2813 2814 return true; 2815 } 2816 return false; 2817 } 2818 2819 // If there is only one store in BB1 and BB2, return it, otherwise return 2820 // nullptr. 2821 static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) { 2822 StoreInst *S = nullptr; 2823 for (auto *BB : {BB1, BB2}) { 2824 if (!BB) 2825 continue; 2826 for (auto &I : *BB) 2827 if (auto *SI = dyn_cast<StoreInst>(&I)) { 2828 if (S) 2829 // Multiple stores seen. 2830 return nullptr; 2831 else 2832 S = SI; 2833 } 2834 } 2835 return S; 2836 } 2837 2838 static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB, 2839 Value *AlternativeV = nullptr) { 2840 // PHI is going to be a PHI node that allows the value V that is defined in 2841 // BB to be referenced in BB's only successor. 2842 // 2843 // If AlternativeV is nullptr, the only value we care about in PHI is V. It 2844 // doesn't matter to us what the other operand is (it'll never get used). We 2845 // could just create a new PHI with an undef incoming value, but that could 2846 // increase register pressure if EarlyCSE/InstCombine can't fold it with some 2847 // other PHI. So here we directly look for some PHI in BB's successor with V 2848 // as an incoming operand. If we find one, we use it, else we create a new 2849 // one. 2850 // 2851 // If AlternativeV is not nullptr, we care about both incoming values in PHI. 2852 // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV] 2853 // where OtherBB is the single other predecessor of BB's only successor. 2854 PHINode *PHI = nullptr; 2855 BasicBlock *Succ = BB->getSingleSuccessor(); 2856 2857 for (auto I = Succ->begin(); isa<PHINode>(I); ++I) 2858 if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) { 2859 PHI = cast<PHINode>(I); 2860 if (!AlternativeV) 2861 break; 2862 2863 assert(std::distance(pred_begin(Succ), pred_end(Succ)) == 2); 2864 auto PredI = pred_begin(Succ); 2865 BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI; 2866 if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV) 2867 break; 2868 PHI = nullptr; 2869 } 2870 if (PHI) 2871 return PHI; 2872 2873 // If V is not an instruction defined in BB, just return it. 2874 if (!AlternativeV && 2875 (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB)) 2876 return V; 2877 2878 PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge", &Succ->front()); 2879 PHI->addIncoming(V, BB); 2880 for (BasicBlock *PredBB : predecessors(Succ)) 2881 if (PredBB != BB) 2882 PHI->addIncoming( 2883 AlternativeV ? AlternativeV : UndefValue::get(V->getType()), PredBB); 2884 return PHI; 2885 } 2886 2887 static bool mergeConditionalStoreToAddress(BasicBlock *PTB, BasicBlock *PFB, 2888 BasicBlock *QTB, BasicBlock *QFB, 2889 BasicBlock *PostBB, Value *Address, 2890 bool InvertPCond, bool InvertQCond, 2891 const DataLayout &DL) { 2892 auto IsaBitcastOfPointerType = [](const Instruction &I) { 2893 return Operator::getOpcode(&I) == Instruction::BitCast && 2894 I.getType()->isPointerTy(); 2895 }; 2896 2897 // If we're not in aggressive mode, we only optimize if we have some 2898 // confidence that by optimizing we'll allow P and/or Q to be if-converted. 2899 auto IsWorthwhile = [&](BasicBlock *BB) { 2900 if (!BB) 2901 return true; 2902 // Heuristic: if the block can be if-converted/phi-folded and the 2903 // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to 2904 // thread this store. 2905 unsigned N = 0; 2906 for (auto &I : *BB) { 2907 // Cheap instructions viable for folding. 2908 if (isa<BinaryOperator>(I) || isa<GetElementPtrInst>(I) || 2909 isa<StoreInst>(I)) 2910 ++N; 2911 // Free instructions. 2912 else if (isa<TerminatorInst>(I) || isa<DbgInfoIntrinsic>(I) || 2913 IsaBitcastOfPointerType(I)) 2914 continue; 2915 else 2916 return false; 2917 } 2918 // The store we want to merge is counted in N, so add 1 to make sure 2919 // we're counting the instructions that would be left. 2920 return N <= (PHINodeFoldingThreshold + 1); 2921 }; 2922 2923 if (!MergeCondStoresAggressively && 2924 (!IsWorthwhile(PTB) || !IsWorthwhile(PFB) || !IsWorthwhile(QTB) || 2925 !IsWorthwhile(QFB))) 2926 return false; 2927 2928 // For every pointer, there must be exactly two stores, one coming from 2929 // PTB or PFB, and the other from QTB or QFB. We don't support more than one 2930 // store (to any address) in PTB,PFB or QTB,QFB. 2931 // FIXME: We could relax this restriction with a bit more work and performance 2932 // testing. 2933 StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB); 2934 StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB); 2935 if (!PStore || !QStore) 2936 return false; 2937 2938 // Now check the stores are compatible. 2939 if (!QStore->isUnordered() || !PStore->isUnordered()) 2940 return false; 2941 2942 // Check that sinking the store won't cause program behavior changes. Sinking 2943 // the store out of the Q blocks won't change any behavior as we're sinking 2944 // from a block to its unconditional successor. But we're moving a store from 2945 // the P blocks down through the middle block (QBI) and past both QFB and QTB. 2946 // So we need to check that there are no aliasing loads or stores in 2947 // QBI, QTB and QFB. We also need to check there are no conflicting memory 2948 // operations between PStore and the end of its parent block. 2949 // 2950 // The ideal way to do this is to query AliasAnalysis, but we don't 2951 // preserve AA currently so that is dangerous. Be super safe and just 2952 // check there are no other memory operations at all. 2953 for (auto &I : *QFB->getSinglePredecessor()) 2954 if (I.mayReadOrWriteMemory()) 2955 return false; 2956 for (auto &I : *QFB) 2957 if (&I != QStore && I.mayReadOrWriteMemory()) 2958 return false; 2959 if (QTB) 2960 for (auto &I : *QTB) 2961 if (&I != QStore && I.mayReadOrWriteMemory()) 2962 return false; 2963 for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end(); 2964 I != E; ++I) 2965 if (&*I != PStore && I->mayReadOrWriteMemory()) 2966 return false; 2967 2968 // OK, we're going to sink the stores to PostBB. The store has to be 2969 // conditional though, so first create the predicate. 2970 Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator()) 2971 ->getCondition(); 2972 Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator()) 2973 ->getCondition(); 2974 2975 Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(), 2976 PStore->getParent()); 2977 Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(), 2978 QStore->getParent(), PPHI); 2979 2980 IRBuilder<> QB(&*PostBB->getFirstInsertionPt()); 2981 2982 Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond); 2983 Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond); 2984 2985 if (InvertPCond) 2986 PPred = QB.CreateNot(PPred); 2987 if (InvertQCond) 2988 QPred = QB.CreateNot(QPred); 2989 Value *CombinedPred = QB.CreateOr(PPred, QPred); 2990 2991 auto *T = 2992 SplitBlockAndInsertIfThen(CombinedPred, &*QB.GetInsertPoint(), false); 2993 QB.SetInsertPoint(T); 2994 StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address)); 2995 AAMDNodes AAMD; 2996 PStore->getAAMetadata(AAMD, /*Merge=*/false); 2997 PStore->getAAMetadata(AAMD, /*Merge=*/true); 2998 SI->setAAMetadata(AAMD); 2999 unsigned PAlignment = PStore->getAlignment(); 3000 unsigned QAlignment = QStore->getAlignment(); 3001 unsigned TypeAlignment = 3002 DL.getABITypeAlignment(SI->getValueOperand()->getType()); 3003 unsigned MinAlignment; 3004 unsigned MaxAlignment; 3005 std::tie(MinAlignment, MaxAlignment) = std::minmax(PAlignment, QAlignment); 3006 // Choose the minimum alignment. If we could prove both stores execute, we 3007 // could use biggest one. In this case, though, we only know that one of the 3008 // stores executes. And we don't know it's safe to take the alignment from a 3009 // store that doesn't execute. 3010 if (MinAlignment != 0) { 3011 // Choose the minimum of all non-zero alignments. 3012 SI->setAlignment(MinAlignment); 3013 } else if (MaxAlignment != 0) { 3014 // Choose the minimal alignment between the non-zero alignment and the ABI 3015 // default alignment for the type of the stored value. 3016 SI->setAlignment(std::min(MaxAlignment, TypeAlignment)); 3017 } else { 3018 // If both alignments are zero, use ABI default alignment for the type of 3019 // the stored value. 3020 SI->setAlignment(TypeAlignment); 3021 } 3022 3023 QStore->eraseFromParent(); 3024 PStore->eraseFromParent(); 3025 3026 return true; 3027 } 3028 3029 static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI, 3030 const DataLayout &DL) { 3031 // The intention here is to find diamonds or triangles (see below) where each 3032 // conditional block contains a store to the same address. Both of these 3033 // stores are conditional, so they can't be unconditionally sunk. But it may 3034 // be profitable to speculatively sink the stores into one merged store at the 3035 // end, and predicate the merged store on the union of the two conditions of 3036 // PBI and QBI. 3037 // 3038 // This can reduce the number of stores executed if both of the conditions are 3039 // true, and can allow the blocks to become small enough to be if-converted. 3040 // This optimization will also chain, so that ladders of test-and-set 3041 // sequences can be if-converted away. 3042 // 3043 // We only deal with simple diamonds or triangles: 3044 // 3045 // PBI or PBI or a combination of the two 3046 // / \ | \ 3047 // PTB PFB | PFB 3048 // \ / | / 3049 // QBI QBI 3050 // / \ | \ 3051 // QTB QFB | QFB 3052 // \ / | / 3053 // PostBB PostBB 3054 // 3055 // We model triangles as a type of diamond with a nullptr "true" block. 3056 // Triangles are canonicalized so that the fallthrough edge is represented by 3057 // a true condition, as in the diagram above. 3058 BasicBlock *PTB = PBI->getSuccessor(0); 3059 BasicBlock *PFB = PBI->getSuccessor(1); 3060 BasicBlock *QTB = QBI->getSuccessor(0); 3061 BasicBlock *QFB = QBI->getSuccessor(1); 3062 BasicBlock *PostBB = QFB->getSingleSuccessor(); 3063 3064 // Make sure we have a good guess for PostBB. If QTB's only successor is 3065 // QFB, then QFB is a better PostBB. 3066 if (QTB->getSingleSuccessor() == QFB) 3067 PostBB = QFB; 3068 3069 // If we couldn't find a good PostBB, stop. 3070 if (!PostBB) 3071 return false; 3072 3073 bool InvertPCond = false, InvertQCond = false; 3074 // Canonicalize fallthroughs to the true branches. 3075 if (PFB == QBI->getParent()) { 3076 std::swap(PFB, PTB); 3077 InvertPCond = true; 3078 } 3079 if (QFB == PostBB) { 3080 std::swap(QFB, QTB); 3081 InvertQCond = true; 3082 } 3083 3084 // From this point on we can assume PTB or QTB may be fallthroughs but PFB 3085 // and QFB may not. Model fallthroughs as a nullptr block. 3086 if (PTB == QBI->getParent()) 3087 PTB = nullptr; 3088 if (QTB == PostBB) 3089 QTB = nullptr; 3090 3091 // Legality bailouts. We must have at least the non-fallthrough blocks and 3092 // the post-dominating block, and the non-fallthroughs must only have one 3093 // predecessor. 3094 auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) { 3095 return BB->getSinglePredecessor() == P && BB->getSingleSuccessor() == S; 3096 }; 3097 if (!HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) || 3098 !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB)) 3099 return false; 3100 if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) || 3101 (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB))) 3102 return false; 3103 if (!PostBB->hasNUses(2) || !QBI->getParent()->hasNUses(2)) 3104 return false; 3105 3106 // OK, this is a sequence of two diamonds or triangles. 3107 // Check if there are stores in PTB or PFB that are repeated in QTB or QFB. 3108 SmallPtrSet<Value *, 4> PStoreAddresses, QStoreAddresses; 3109 for (auto *BB : {PTB, PFB}) { 3110 if (!BB) 3111 continue; 3112 for (auto &I : *BB) 3113 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) 3114 PStoreAddresses.insert(SI->getPointerOperand()); 3115 } 3116 for (auto *BB : {QTB, QFB}) { 3117 if (!BB) 3118 continue; 3119 for (auto &I : *BB) 3120 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) 3121 QStoreAddresses.insert(SI->getPointerOperand()); 3122 } 3123 3124 set_intersect(PStoreAddresses, QStoreAddresses); 3125 // set_intersect mutates PStoreAddresses in place. Rename it here to make it 3126 // clear what it contains. 3127 auto &CommonAddresses = PStoreAddresses; 3128 3129 bool Changed = false; 3130 for (auto *Address : CommonAddresses) 3131 Changed |= mergeConditionalStoreToAddress( 3132 PTB, PFB, QTB, QFB, PostBB, Address, InvertPCond, InvertQCond, DL); 3133 return Changed; 3134 } 3135 3136 /// If we have a conditional branch as a predecessor of another block, 3137 /// this function tries to simplify it. We know 3138 /// that PBI and BI are both conditional branches, and BI is in one of the 3139 /// successor blocks of PBI - PBI branches to BI. 3140 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI, 3141 const DataLayout &DL) { 3142 assert(PBI->isConditional() && BI->isConditional()); 3143 BasicBlock *BB = BI->getParent(); 3144 3145 // If this block ends with a branch instruction, and if there is a 3146 // predecessor that ends on a branch of the same condition, make 3147 // this conditional branch redundant. 3148 if (PBI->getCondition() == BI->getCondition() && 3149 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 3150 // Okay, the outcome of this conditional branch is statically 3151 // knowable. If this block had a single pred, handle specially. 3152 if (BB->getSinglePredecessor()) { 3153 // Turn this into a branch on constant. 3154 bool CondIsTrue = PBI->getSuccessor(0) == BB; 3155 BI->setCondition( 3156 ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue)); 3157 return true; // Nuke the branch on constant. 3158 } 3159 3160 // Otherwise, if there are multiple predecessors, insert a PHI that merges 3161 // in the constant and simplify the block result. Subsequent passes of 3162 // simplifycfg will thread the block. 3163 if (BlockIsSimpleEnoughToThreadThrough(BB)) { 3164 pred_iterator PB = pred_begin(BB), PE = pred_end(BB); 3165 PHINode *NewPN = PHINode::Create( 3166 Type::getInt1Ty(BB->getContext()), std::distance(PB, PE), 3167 BI->getCondition()->getName() + ".pr", &BB->front()); 3168 // Okay, we're going to insert the PHI node. Since PBI is not the only 3169 // predecessor, compute the PHI'd conditional value for all of the preds. 3170 // Any predecessor where the condition is not computable we keep symbolic. 3171 for (pred_iterator PI = PB; PI != PE; ++PI) { 3172 BasicBlock *P = *PI; 3173 if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) && PBI != BI && 3174 PBI->isConditional() && PBI->getCondition() == BI->getCondition() && 3175 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 3176 bool CondIsTrue = PBI->getSuccessor(0) == BB; 3177 NewPN->addIncoming( 3178 ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue), 3179 P); 3180 } else { 3181 NewPN->addIncoming(BI->getCondition(), P); 3182 } 3183 } 3184 3185 BI->setCondition(NewPN); 3186 return true; 3187 } 3188 } 3189 3190 if (auto *CE = dyn_cast<ConstantExpr>(BI->getCondition())) 3191 if (CE->canTrap()) 3192 return false; 3193 3194 // If both branches are conditional and both contain stores to the same 3195 // address, remove the stores from the conditionals and create a conditional 3196 // merged store at the end. 3197 if (MergeCondStores && mergeConditionalStores(PBI, BI, DL)) 3198 return true; 3199 3200 // If this is a conditional branch in an empty block, and if any 3201 // predecessors are a conditional branch to one of our destinations, 3202 // fold the conditions into logical ops and one cond br. 3203 BasicBlock::iterator BBI = BB->begin(); 3204 // Ignore dbg intrinsics. 3205 while (isa<DbgInfoIntrinsic>(BBI)) 3206 ++BBI; 3207 if (&*BBI != BI) 3208 return false; 3209 3210 int PBIOp, BIOp; 3211 if (PBI->getSuccessor(0) == BI->getSuccessor(0)) { 3212 PBIOp = 0; 3213 BIOp = 0; 3214 } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) { 3215 PBIOp = 0; 3216 BIOp = 1; 3217 } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) { 3218 PBIOp = 1; 3219 BIOp = 0; 3220 } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) { 3221 PBIOp = 1; 3222 BIOp = 1; 3223 } else { 3224 return false; 3225 } 3226 3227 // Check to make sure that the other destination of this branch 3228 // isn't BB itself. If so, this is an infinite loop that will 3229 // keep getting unwound. 3230 if (PBI->getSuccessor(PBIOp) == BB) 3231 return false; 3232 3233 // Do not perform this transformation if it would require 3234 // insertion of a large number of select instructions. For targets 3235 // without predication/cmovs, this is a big pessimization. 3236 3237 // Also do not perform this transformation if any phi node in the common 3238 // destination block can trap when reached by BB or PBB (PR17073). In that 3239 // case, it would be unsafe to hoist the operation into a select instruction. 3240 3241 BasicBlock *CommonDest = PBI->getSuccessor(PBIOp); 3242 unsigned NumPhis = 0; 3243 for (BasicBlock::iterator II = CommonDest->begin(); isa<PHINode>(II); 3244 ++II, ++NumPhis) { 3245 if (NumPhis > 2) // Disable this xform. 3246 return false; 3247 3248 PHINode *PN = cast<PHINode>(II); 3249 Value *BIV = PN->getIncomingValueForBlock(BB); 3250 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BIV)) 3251 if (CE->canTrap()) 3252 return false; 3253 3254 unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent()); 3255 Value *PBIV = PN->getIncomingValue(PBBIdx); 3256 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(PBIV)) 3257 if (CE->canTrap()) 3258 return false; 3259 } 3260 3261 // Finally, if everything is ok, fold the branches to logical ops. 3262 BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1); 3263 3264 DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent() 3265 << "AND: " << *BI->getParent()); 3266 3267 // If OtherDest *is* BB, then BB is a basic block with a single conditional 3268 // branch in it, where one edge (OtherDest) goes back to itself but the other 3269 // exits. We don't *know* that the program avoids the infinite loop 3270 // (even though that seems likely). If we do this xform naively, we'll end up 3271 // recursively unpeeling the loop. Since we know that (after the xform is 3272 // done) that the block *is* infinite if reached, we just make it an obviously 3273 // infinite loop with no cond branch. 3274 if (OtherDest == BB) { 3275 // Insert it at the end of the function, because it's either code, 3276 // or it won't matter if it's hot. :) 3277 BasicBlock *InfLoopBlock = 3278 BasicBlock::Create(BB->getContext(), "infloop", BB->getParent()); 3279 BranchInst::Create(InfLoopBlock, InfLoopBlock); 3280 OtherDest = InfLoopBlock; 3281 } 3282 3283 DEBUG(dbgs() << *PBI->getParent()->getParent()); 3284 3285 // BI may have other predecessors. Because of this, we leave 3286 // it alone, but modify PBI. 3287 3288 // Make sure we get to CommonDest on True&True directions. 3289 Value *PBICond = PBI->getCondition(); 3290 IRBuilder<NoFolder> Builder(PBI); 3291 if (PBIOp) 3292 PBICond = Builder.CreateNot(PBICond, PBICond->getName() + ".not"); 3293 3294 Value *BICond = BI->getCondition(); 3295 if (BIOp) 3296 BICond = Builder.CreateNot(BICond, BICond->getName() + ".not"); 3297 3298 // Merge the conditions. 3299 Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge"); 3300 3301 // Modify PBI to branch on the new condition to the new dests. 3302 PBI->setCondition(Cond); 3303 PBI->setSuccessor(0, CommonDest); 3304 PBI->setSuccessor(1, OtherDest); 3305 3306 // Update branch weight for PBI. 3307 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 3308 uint64_t PredCommon, PredOther, SuccCommon, SuccOther; 3309 bool HasWeights = 3310 extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight, 3311 SuccTrueWeight, SuccFalseWeight); 3312 if (HasWeights) { 3313 PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight; 3314 PredOther = PBIOp ? PredTrueWeight : PredFalseWeight; 3315 SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight; 3316 SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight; 3317 // The weight to CommonDest should be PredCommon * SuccTotal + 3318 // PredOther * SuccCommon. 3319 // The weight to OtherDest should be PredOther * SuccOther. 3320 uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) + 3321 PredOther * SuccCommon, 3322 PredOther * SuccOther}; 3323 // Halve the weights if any of them cannot fit in an uint32_t 3324 FitWeights(NewWeights); 3325 3326 setBranchWeights(PBI, NewWeights[0], NewWeights[1]); 3327 } 3328 3329 // OtherDest may have phi nodes. If so, add an entry from PBI's 3330 // block that are identical to the entries for BI's block. 3331 AddPredecessorToBlock(OtherDest, PBI->getParent(), BB); 3332 3333 // We know that the CommonDest already had an edge from PBI to 3334 // it. If it has PHIs though, the PHIs may have different 3335 // entries for BB and PBI's BB. If so, insert a select to make 3336 // them agree. 3337 for (PHINode &PN : CommonDest->phis()) { 3338 Value *BIV = PN.getIncomingValueForBlock(BB); 3339 unsigned PBBIdx = PN.getBasicBlockIndex(PBI->getParent()); 3340 Value *PBIV = PN.getIncomingValue(PBBIdx); 3341 if (BIV != PBIV) { 3342 // Insert a select in PBI to pick the right value. 3343 SelectInst *NV = cast<SelectInst>( 3344 Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName() + ".mux")); 3345 PN.setIncomingValue(PBBIdx, NV); 3346 // Although the select has the same condition as PBI, the original branch 3347 // weights for PBI do not apply to the new select because the select's 3348 // 'logical' edges are incoming edges of the phi that is eliminated, not 3349 // the outgoing edges of PBI. 3350 if (HasWeights) { 3351 uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight; 3352 uint64_t PredOther = PBIOp ? PredTrueWeight : PredFalseWeight; 3353 uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight; 3354 uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight; 3355 // The weight to PredCommonDest should be PredCommon * SuccTotal. 3356 // The weight to PredOtherDest should be PredOther * SuccCommon. 3357 uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther), 3358 PredOther * SuccCommon}; 3359 3360 FitWeights(NewWeights); 3361 3362 setBranchWeights(NV, NewWeights[0], NewWeights[1]); 3363 } 3364 } 3365 } 3366 3367 DEBUG(dbgs() << "INTO: " << *PBI->getParent()); 3368 DEBUG(dbgs() << *PBI->getParent()->getParent()); 3369 3370 // This basic block is probably dead. We know it has at least 3371 // one fewer predecessor. 3372 return true; 3373 } 3374 3375 // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is 3376 // true or to FalseBB if Cond is false. 3377 // Takes care of updating the successors and removing the old terminator. 3378 // Also makes sure not to introduce new successors by assuming that edges to 3379 // non-successor TrueBBs and FalseBBs aren't reachable. 3380 static bool SimplifyTerminatorOnSelect(TerminatorInst *OldTerm, Value *Cond, 3381 BasicBlock *TrueBB, BasicBlock *FalseBB, 3382 uint32_t TrueWeight, 3383 uint32_t FalseWeight) { 3384 // Remove any superfluous successor edges from the CFG. 3385 // First, figure out which successors to preserve. 3386 // If TrueBB and FalseBB are equal, only try to preserve one copy of that 3387 // successor. 3388 BasicBlock *KeepEdge1 = TrueBB; 3389 BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr; 3390 3391 // Then remove the rest. 3392 for (BasicBlock *Succ : OldTerm->successors()) { 3393 // Make sure only to keep exactly one copy of each edge. 3394 if (Succ == KeepEdge1) 3395 KeepEdge1 = nullptr; 3396 else if (Succ == KeepEdge2) 3397 KeepEdge2 = nullptr; 3398 else 3399 Succ->removePredecessor(OldTerm->getParent(), 3400 /*DontDeleteUselessPHIs=*/true); 3401 } 3402 3403 IRBuilder<> Builder(OldTerm); 3404 Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc()); 3405 3406 // Insert an appropriate new terminator. 3407 if (!KeepEdge1 && !KeepEdge2) { 3408 if (TrueBB == FalseBB) 3409 // We were only looking for one successor, and it was present. 3410 // Create an unconditional branch to it. 3411 Builder.CreateBr(TrueBB); 3412 else { 3413 // We found both of the successors we were looking for. 3414 // Create a conditional branch sharing the condition of the select. 3415 BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB); 3416 if (TrueWeight != FalseWeight) 3417 setBranchWeights(NewBI, TrueWeight, FalseWeight); 3418 } 3419 } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) { 3420 // Neither of the selected blocks were successors, so this 3421 // terminator must be unreachable. 3422 new UnreachableInst(OldTerm->getContext(), OldTerm); 3423 } else { 3424 // One of the selected values was a successor, but the other wasn't. 3425 // Insert an unconditional branch to the one that was found; 3426 // the edge to the one that wasn't must be unreachable. 3427 if (!KeepEdge1) 3428 // Only TrueBB was found. 3429 Builder.CreateBr(TrueBB); 3430 else 3431 // Only FalseBB was found. 3432 Builder.CreateBr(FalseBB); 3433 } 3434 3435 EraseTerminatorInstAndDCECond(OldTerm); 3436 return true; 3437 } 3438 3439 // Replaces 3440 // (switch (select cond, X, Y)) on constant X, Y 3441 // with a branch - conditional if X and Y lead to distinct BBs, 3442 // unconditional otherwise. 3443 static bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select) { 3444 // Check for constant integer values in the select. 3445 ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue()); 3446 ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue()); 3447 if (!TrueVal || !FalseVal) 3448 return false; 3449 3450 // Find the relevant condition and destinations. 3451 Value *Condition = Select->getCondition(); 3452 BasicBlock *TrueBB = SI->findCaseValue(TrueVal)->getCaseSuccessor(); 3453 BasicBlock *FalseBB = SI->findCaseValue(FalseVal)->getCaseSuccessor(); 3454 3455 // Get weight for TrueBB and FalseBB. 3456 uint32_t TrueWeight = 0, FalseWeight = 0; 3457 SmallVector<uint64_t, 8> Weights; 3458 bool HasWeights = HasBranchWeights(SI); 3459 if (HasWeights) { 3460 GetBranchWeights(SI, Weights); 3461 if (Weights.size() == 1 + SI->getNumCases()) { 3462 TrueWeight = 3463 (uint32_t)Weights[SI->findCaseValue(TrueVal)->getSuccessorIndex()]; 3464 FalseWeight = 3465 (uint32_t)Weights[SI->findCaseValue(FalseVal)->getSuccessorIndex()]; 3466 } 3467 } 3468 3469 // Perform the actual simplification. 3470 return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, TrueWeight, 3471 FalseWeight); 3472 } 3473 3474 // Replaces 3475 // (indirectbr (select cond, blockaddress(@fn, BlockA), 3476 // blockaddress(@fn, BlockB))) 3477 // with 3478 // (br cond, BlockA, BlockB). 3479 static bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI) { 3480 // Check that both operands of the select are block addresses. 3481 BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue()); 3482 BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue()); 3483 if (!TBA || !FBA) 3484 return false; 3485 3486 // Extract the actual blocks. 3487 BasicBlock *TrueBB = TBA->getBasicBlock(); 3488 BasicBlock *FalseBB = FBA->getBasicBlock(); 3489 3490 // Perform the actual simplification. 3491 return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 0, 3492 0); 3493 } 3494 3495 /// This is called when we find an icmp instruction 3496 /// (a seteq/setne with a constant) as the only instruction in a 3497 /// block that ends with an uncond branch. We are looking for a very specific 3498 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified. In 3499 /// this case, we merge the first two "or's of icmp" into a switch, but then the 3500 /// default value goes to an uncond block with a seteq in it, we get something 3501 /// like: 3502 /// 3503 /// switch i8 %A, label %DEFAULT [ i8 1, label %end i8 2, label %end ] 3504 /// DEFAULT: 3505 /// %tmp = icmp eq i8 %A, 92 3506 /// br label %end 3507 /// end: 3508 /// ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ] 3509 /// 3510 /// We prefer to split the edge to 'end' so that there is a true/false entry to 3511 /// the PHI, merging the third icmp into the switch. 3512 static bool tryToSimplifyUncondBranchWithICmpInIt( 3513 ICmpInst *ICI, IRBuilder<> &Builder, const DataLayout &DL, 3514 const TargetTransformInfo &TTI, const SimplifyCFGOptions &Options) { 3515 BasicBlock *BB = ICI->getParent(); 3516 3517 // If the block has any PHIs in it or the icmp has multiple uses, it is too 3518 // complex. 3519 if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse()) 3520 return false; 3521 3522 Value *V = ICI->getOperand(0); 3523 ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1)); 3524 3525 // The pattern we're looking for is where our only predecessor is a switch on 3526 // 'V' and this block is the default case for the switch. In this case we can 3527 // fold the compared value into the switch to simplify things. 3528 BasicBlock *Pred = BB->getSinglePredecessor(); 3529 if (!Pred || !isa<SwitchInst>(Pred->getTerminator())) 3530 return false; 3531 3532 SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator()); 3533 if (SI->getCondition() != V) 3534 return false; 3535 3536 // If BB is reachable on a non-default case, then we simply know the value of 3537 // V in this block. Substitute it and constant fold the icmp instruction 3538 // away. 3539 if (SI->getDefaultDest() != BB) { 3540 ConstantInt *VVal = SI->findCaseDest(BB); 3541 assert(VVal && "Should have a unique destination value"); 3542 ICI->setOperand(0, VVal); 3543 3544 if (Value *V = SimplifyInstruction(ICI, {DL, ICI})) { 3545 ICI->replaceAllUsesWith(V); 3546 ICI->eraseFromParent(); 3547 } 3548 // BB is now empty, so it is likely to simplify away. 3549 return simplifyCFG(BB, TTI, Options) | true; 3550 } 3551 3552 // Ok, the block is reachable from the default dest. If the constant we're 3553 // comparing exists in one of the other edges, then we can constant fold ICI 3554 // and zap it. 3555 if (SI->findCaseValue(Cst) != SI->case_default()) { 3556 Value *V; 3557 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 3558 V = ConstantInt::getFalse(BB->getContext()); 3559 else 3560 V = ConstantInt::getTrue(BB->getContext()); 3561 3562 ICI->replaceAllUsesWith(V); 3563 ICI->eraseFromParent(); 3564 // BB is now empty, so it is likely to simplify away. 3565 return simplifyCFG(BB, TTI, Options) | true; 3566 } 3567 3568 // The use of the icmp has to be in the 'end' block, by the only PHI node in 3569 // the block. 3570 BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0); 3571 PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back()); 3572 if (PHIUse == nullptr || PHIUse != &SuccBlock->front() || 3573 isa<PHINode>(++BasicBlock::iterator(PHIUse))) 3574 return false; 3575 3576 // If the icmp is a SETEQ, then the default dest gets false, the new edge gets 3577 // true in the PHI. 3578 Constant *DefaultCst = ConstantInt::getTrue(BB->getContext()); 3579 Constant *NewCst = ConstantInt::getFalse(BB->getContext()); 3580 3581 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 3582 std::swap(DefaultCst, NewCst); 3583 3584 // Replace ICI (which is used by the PHI for the default value) with true or 3585 // false depending on if it is EQ or NE. 3586 ICI->replaceAllUsesWith(DefaultCst); 3587 ICI->eraseFromParent(); 3588 3589 // Okay, the switch goes to this block on a default value. Add an edge from 3590 // the switch to the merge point on the compared value. 3591 BasicBlock *NewBB = 3592 BasicBlock::Create(BB->getContext(), "switch.edge", BB->getParent(), BB); 3593 SmallVector<uint64_t, 8> Weights; 3594 bool HasWeights = HasBranchWeights(SI); 3595 if (HasWeights) { 3596 GetBranchWeights(SI, Weights); 3597 if (Weights.size() == 1 + SI->getNumCases()) { 3598 // Split weight for default case to case for "Cst". 3599 Weights[0] = (Weights[0] + 1) >> 1; 3600 Weights.push_back(Weights[0]); 3601 3602 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 3603 setBranchWeights(SI, MDWeights); 3604 } 3605 } 3606 SI->addCase(Cst, NewBB); 3607 3608 // NewBB branches to the phi block, add the uncond branch and the phi entry. 3609 Builder.SetInsertPoint(NewBB); 3610 Builder.SetCurrentDebugLocation(SI->getDebugLoc()); 3611 Builder.CreateBr(SuccBlock); 3612 PHIUse->addIncoming(NewCst, NewBB); 3613 return true; 3614 } 3615 3616 /// The specified branch is a conditional branch. 3617 /// Check to see if it is branching on an or/and chain of icmp instructions, and 3618 /// fold it into a switch instruction if so. 3619 static bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder, 3620 const DataLayout &DL) { 3621 Instruction *Cond = dyn_cast<Instruction>(BI->getCondition()); 3622 if (!Cond) 3623 return false; 3624 3625 // Change br (X == 0 | X == 1), T, F into a switch instruction. 3626 // If this is a bunch of seteq's or'd together, or if it's a bunch of 3627 // 'setne's and'ed together, collect them. 3628 3629 // Try to gather values from a chain of and/or to be turned into a switch 3630 ConstantComparesGatherer ConstantCompare(Cond, DL); 3631 // Unpack the result 3632 SmallVectorImpl<ConstantInt *> &Values = ConstantCompare.Vals; 3633 Value *CompVal = ConstantCompare.CompValue; 3634 unsigned UsedICmps = ConstantCompare.UsedICmps; 3635 Value *ExtraCase = ConstantCompare.Extra; 3636 3637 // If we didn't have a multiply compared value, fail. 3638 if (!CompVal) 3639 return false; 3640 3641 // Avoid turning single icmps into a switch. 3642 if (UsedICmps <= 1) 3643 return false; 3644 3645 bool TrueWhenEqual = (Cond->getOpcode() == Instruction::Or); 3646 3647 // There might be duplicate constants in the list, which the switch 3648 // instruction can't handle, remove them now. 3649 array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate); 3650 Values.erase(std::unique(Values.begin(), Values.end()), Values.end()); 3651 3652 // If Extra was used, we require at least two switch values to do the 3653 // transformation. A switch with one value is just a conditional branch. 3654 if (ExtraCase && Values.size() < 2) 3655 return false; 3656 3657 // TODO: Preserve branch weight metadata, similarly to how 3658 // FoldValueComparisonIntoPredecessors preserves it. 3659 3660 // Figure out which block is which destination. 3661 BasicBlock *DefaultBB = BI->getSuccessor(1); 3662 BasicBlock *EdgeBB = BI->getSuccessor(0); 3663 if (!TrueWhenEqual) 3664 std::swap(DefaultBB, EdgeBB); 3665 3666 BasicBlock *BB = BI->getParent(); 3667 3668 DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size() 3669 << " cases into SWITCH. BB is:\n" 3670 << *BB); 3671 3672 // If there are any extra values that couldn't be folded into the switch 3673 // then we evaluate them with an explicit branch first. Split the block 3674 // right before the condbr to handle it. 3675 if (ExtraCase) { 3676 BasicBlock *NewBB = 3677 BB->splitBasicBlock(BI->getIterator(), "switch.early.test"); 3678 // Remove the uncond branch added to the old block. 3679 TerminatorInst *OldTI = BB->getTerminator(); 3680 Builder.SetInsertPoint(OldTI); 3681 3682 if (TrueWhenEqual) 3683 Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB); 3684 else 3685 Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB); 3686 3687 OldTI->eraseFromParent(); 3688 3689 // If there are PHI nodes in EdgeBB, then we need to add a new entry to them 3690 // for the edge we just added. 3691 AddPredecessorToBlock(EdgeBB, BB, NewBB); 3692 3693 DEBUG(dbgs() << " ** 'icmp' chain unhandled condition: " << *ExtraCase 3694 << "\nEXTRABB = " << *BB); 3695 BB = NewBB; 3696 } 3697 3698 Builder.SetInsertPoint(BI); 3699 // Convert pointer to int before we switch. 3700 if (CompVal->getType()->isPointerTy()) { 3701 CompVal = Builder.CreatePtrToInt( 3702 CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr"); 3703 } 3704 3705 // Create the new switch instruction now. 3706 SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size()); 3707 3708 // Add all of the 'cases' to the switch instruction. 3709 for (unsigned i = 0, e = Values.size(); i != e; ++i) 3710 New->addCase(Values[i], EdgeBB); 3711 3712 // We added edges from PI to the EdgeBB. As such, if there were any 3713 // PHI nodes in EdgeBB, they need entries to be added corresponding to 3714 // the number of edges added. 3715 for (BasicBlock::iterator BBI = EdgeBB->begin(); isa<PHINode>(BBI); ++BBI) { 3716 PHINode *PN = cast<PHINode>(BBI); 3717 Value *InVal = PN->getIncomingValueForBlock(BB); 3718 for (unsigned i = 0, e = Values.size() - 1; i != e; ++i) 3719 PN->addIncoming(InVal, BB); 3720 } 3721 3722 // Erase the old branch instruction. 3723 EraseTerminatorInstAndDCECond(BI); 3724 3725 DEBUG(dbgs() << " ** 'icmp' chain result is:\n" << *BB << '\n'); 3726 return true; 3727 } 3728 3729 bool SimplifyCFGOpt::SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder) { 3730 if (isa<PHINode>(RI->getValue())) 3731 return SimplifyCommonResume(RI); 3732 else if (isa<LandingPadInst>(RI->getParent()->getFirstNonPHI()) && 3733 RI->getValue() == RI->getParent()->getFirstNonPHI()) 3734 // The resume must unwind the exception that caused control to branch here. 3735 return SimplifySingleResume(RI); 3736 3737 return false; 3738 } 3739 3740 // Simplify resume that is shared by several landing pads (phi of landing pad). 3741 bool SimplifyCFGOpt::SimplifyCommonResume(ResumeInst *RI) { 3742 BasicBlock *BB = RI->getParent(); 3743 3744 // Check that there are no other instructions except for debug intrinsics 3745 // between the phi of landing pads (RI->getValue()) and resume instruction. 3746 BasicBlock::iterator I = cast<Instruction>(RI->getValue())->getIterator(), 3747 E = RI->getIterator(); 3748 while (++I != E) 3749 if (!isa<DbgInfoIntrinsic>(I)) 3750 return false; 3751 3752 SmallSetVector<BasicBlock *, 4> TrivialUnwindBlocks; 3753 auto *PhiLPInst = cast<PHINode>(RI->getValue()); 3754 3755 // Check incoming blocks to see if any of them are trivial. 3756 for (unsigned Idx = 0, End = PhiLPInst->getNumIncomingValues(); Idx != End; 3757 Idx++) { 3758 auto *IncomingBB = PhiLPInst->getIncomingBlock(Idx); 3759 auto *IncomingValue = PhiLPInst->getIncomingValue(Idx); 3760 3761 // If the block has other successors, we can not delete it because 3762 // it has other dependents. 3763 if (IncomingBB->getUniqueSuccessor() != BB) 3764 continue; 3765 3766 auto *LandingPad = dyn_cast<LandingPadInst>(IncomingBB->getFirstNonPHI()); 3767 // Not the landing pad that caused the control to branch here. 3768 if (IncomingValue != LandingPad) 3769 continue; 3770 3771 bool isTrivial = true; 3772 3773 I = IncomingBB->getFirstNonPHI()->getIterator(); 3774 E = IncomingBB->getTerminator()->getIterator(); 3775 while (++I != E) 3776 if (!isa<DbgInfoIntrinsic>(I)) { 3777 isTrivial = false; 3778 break; 3779 } 3780 3781 if (isTrivial) 3782 TrivialUnwindBlocks.insert(IncomingBB); 3783 } 3784 3785 // If no trivial unwind blocks, don't do any simplifications. 3786 if (TrivialUnwindBlocks.empty()) 3787 return false; 3788 3789 // Turn all invokes that unwind here into calls. 3790 for (auto *TrivialBB : TrivialUnwindBlocks) { 3791 // Blocks that will be simplified should be removed from the phi node. 3792 // Note there could be multiple edges to the resume block, and we need 3793 // to remove them all. 3794 while (PhiLPInst->getBasicBlockIndex(TrivialBB) != -1) 3795 BB->removePredecessor(TrivialBB, true); 3796 3797 for (pred_iterator PI = pred_begin(TrivialBB), PE = pred_end(TrivialBB); 3798 PI != PE;) { 3799 BasicBlock *Pred = *PI++; 3800 removeUnwindEdge(Pred); 3801 } 3802 3803 // In each SimplifyCFG run, only the current processed block can be erased. 3804 // Otherwise, it will break the iteration of SimplifyCFG pass. So instead 3805 // of erasing TrivialBB, we only remove the branch to the common resume 3806 // block so that we can later erase the resume block since it has no 3807 // predecessors. 3808 TrivialBB->getTerminator()->eraseFromParent(); 3809 new UnreachableInst(RI->getContext(), TrivialBB); 3810 } 3811 3812 // Delete the resume block if all its predecessors have been removed. 3813 if (pred_empty(BB)) 3814 BB->eraseFromParent(); 3815 3816 return !TrivialUnwindBlocks.empty(); 3817 } 3818 3819 // Simplify resume that is only used by a single (non-phi) landing pad. 3820 bool SimplifyCFGOpt::SimplifySingleResume(ResumeInst *RI) { 3821 BasicBlock *BB = RI->getParent(); 3822 LandingPadInst *LPInst = dyn_cast<LandingPadInst>(BB->getFirstNonPHI()); 3823 assert(RI->getValue() == LPInst && 3824 "Resume must unwind the exception that caused control to here"); 3825 3826 // Check that there are no other instructions except for debug intrinsics. 3827 BasicBlock::iterator I = LPInst->getIterator(), E = RI->getIterator(); 3828 while (++I != E) 3829 if (!isa<DbgInfoIntrinsic>(I)) 3830 return false; 3831 3832 // Turn all invokes that unwind here into calls and delete the basic block. 3833 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) { 3834 BasicBlock *Pred = *PI++; 3835 removeUnwindEdge(Pred); 3836 } 3837 3838 // The landingpad is now unreachable. Zap it. 3839 BB->eraseFromParent(); 3840 if (LoopHeaders) 3841 LoopHeaders->erase(BB); 3842 return true; 3843 } 3844 3845 static bool removeEmptyCleanup(CleanupReturnInst *RI) { 3846 // If this is a trivial cleanup pad that executes no instructions, it can be 3847 // eliminated. If the cleanup pad continues to the caller, any predecessor 3848 // that is an EH pad will be updated to continue to the caller and any 3849 // predecessor that terminates with an invoke instruction will have its invoke 3850 // instruction converted to a call instruction. If the cleanup pad being 3851 // simplified does not continue to the caller, each predecessor will be 3852 // updated to continue to the unwind destination of the cleanup pad being 3853 // simplified. 3854 BasicBlock *BB = RI->getParent(); 3855 CleanupPadInst *CPInst = RI->getCleanupPad(); 3856 if (CPInst->getParent() != BB) 3857 // This isn't an empty cleanup. 3858 return false; 3859 3860 // We cannot kill the pad if it has multiple uses. This typically arises 3861 // from unreachable basic blocks. 3862 if (!CPInst->hasOneUse()) 3863 return false; 3864 3865 // Check that there are no other instructions except for benign intrinsics. 3866 BasicBlock::iterator I = CPInst->getIterator(), E = RI->getIterator(); 3867 while (++I != E) { 3868 auto *II = dyn_cast<IntrinsicInst>(I); 3869 if (!II) 3870 return false; 3871 3872 Intrinsic::ID IntrinsicID = II->getIntrinsicID(); 3873 switch (IntrinsicID) { 3874 case Intrinsic::dbg_declare: 3875 case Intrinsic::dbg_value: 3876 case Intrinsic::lifetime_end: 3877 break; 3878 default: 3879 return false; 3880 } 3881 } 3882 3883 // If the cleanup return we are simplifying unwinds to the caller, this will 3884 // set UnwindDest to nullptr. 3885 BasicBlock *UnwindDest = RI->getUnwindDest(); 3886 Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr; 3887 3888 // We're about to remove BB from the control flow. Before we do, sink any 3889 // PHINodes into the unwind destination. Doing this before changing the 3890 // control flow avoids some potentially slow checks, since we can currently 3891 // be certain that UnwindDest and BB have no common predecessors (since they 3892 // are both EH pads). 3893 if (UnwindDest) { 3894 // First, go through the PHI nodes in UnwindDest and update any nodes that 3895 // reference the block we are removing 3896 for (BasicBlock::iterator I = UnwindDest->begin(), 3897 IE = DestEHPad->getIterator(); 3898 I != IE; ++I) { 3899 PHINode *DestPN = cast<PHINode>(I); 3900 3901 int Idx = DestPN->getBasicBlockIndex(BB); 3902 // Since BB unwinds to UnwindDest, it has to be in the PHI node. 3903 assert(Idx != -1); 3904 // This PHI node has an incoming value that corresponds to a control 3905 // path through the cleanup pad we are removing. If the incoming 3906 // value is in the cleanup pad, it must be a PHINode (because we 3907 // verified above that the block is otherwise empty). Otherwise, the 3908 // value is either a constant or a value that dominates the cleanup 3909 // pad being removed. 3910 // 3911 // Because BB and UnwindDest are both EH pads, all of their 3912 // predecessors must unwind to these blocks, and since no instruction 3913 // can have multiple unwind destinations, there will be no overlap in 3914 // incoming blocks between SrcPN and DestPN. 3915 Value *SrcVal = DestPN->getIncomingValue(Idx); 3916 PHINode *SrcPN = dyn_cast<PHINode>(SrcVal); 3917 3918 // Remove the entry for the block we are deleting. 3919 DestPN->removeIncomingValue(Idx, false); 3920 3921 if (SrcPN && SrcPN->getParent() == BB) { 3922 // If the incoming value was a PHI node in the cleanup pad we are 3923 // removing, we need to merge that PHI node's incoming values into 3924 // DestPN. 3925 for (unsigned SrcIdx = 0, SrcE = SrcPN->getNumIncomingValues(); 3926 SrcIdx != SrcE; ++SrcIdx) { 3927 DestPN->addIncoming(SrcPN->getIncomingValue(SrcIdx), 3928 SrcPN->getIncomingBlock(SrcIdx)); 3929 } 3930 } else { 3931 // Otherwise, the incoming value came from above BB and 3932 // so we can just reuse it. We must associate all of BB's 3933 // predecessors with this value. 3934 for (auto *pred : predecessors(BB)) { 3935 DestPN->addIncoming(SrcVal, pred); 3936 } 3937 } 3938 } 3939 3940 // Sink any remaining PHI nodes directly into UnwindDest. 3941 Instruction *InsertPt = DestEHPad; 3942 for (BasicBlock::iterator I = BB->begin(), 3943 IE = BB->getFirstNonPHI()->getIterator(); 3944 I != IE;) { 3945 // The iterator must be incremented here because the instructions are 3946 // being moved to another block. 3947 PHINode *PN = cast<PHINode>(I++); 3948 if (PN->use_empty()) 3949 // If the PHI node has no uses, just leave it. It will be erased 3950 // when we erase BB below. 3951 continue; 3952 3953 // Otherwise, sink this PHI node into UnwindDest. 3954 // Any predecessors to UnwindDest which are not already represented 3955 // must be back edges which inherit the value from the path through 3956 // BB. In this case, the PHI value must reference itself. 3957 for (auto *pred : predecessors(UnwindDest)) 3958 if (pred != BB) 3959 PN->addIncoming(PN, pred); 3960 PN->moveBefore(InsertPt); 3961 } 3962 } 3963 3964 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) { 3965 // The iterator must be updated here because we are removing this pred. 3966 BasicBlock *PredBB = *PI++; 3967 if (UnwindDest == nullptr) { 3968 removeUnwindEdge(PredBB); 3969 } else { 3970 TerminatorInst *TI = PredBB->getTerminator(); 3971 TI->replaceUsesOfWith(BB, UnwindDest); 3972 } 3973 } 3974 3975 // The cleanup pad is now unreachable. Zap it. 3976 BB->eraseFromParent(); 3977 return true; 3978 } 3979 3980 // Try to merge two cleanuppads together. 3981 static bool mergeCleanupPad(CleanupReturnInst *RI) { 3982 // Skip any cleanuprets which unwind to caller, there is nothing to merge 3983 // with. 3984 BasicBlock *UnwindDest = RI->getUnwindDest(); 3985 if (!UnwindDest) 3986 return false; 3987 3988 // This cleanupret isn't the only predecessor of this cleanuppad, it wouldn't 3989 // be safe to merge without code duplication. 3990 if (UnwindDest->getSinglePredecessor() != RI->getParent()) 3991 return false; 3992 3993 // Verify that our cleanuppad's unwind destination is another cleanuppad. 3994 auto *SuccessorCleanupPad = dyn_cast<CleanupPadInst>(&UnwindDest->front()); 3995 if (!SuccessorCleanupPad) 3996 return false; 3997 3998 CleanupPadInst *PredecessorCleanupPad = RI->getCleanupPad(); 3999 // Replace any uses of the successor cleanupad with the predecessor pad 4000 // The only cleanuppad uses should be this cleanupret, it's cleanupret and 4001 // funclet bundle operands. 4002 SuccessorCleanupPad->replaceAllUsesWith(PredecessorCleanupPad); 4003 // Remove the old cleanuppad. 4004 SuccessorCleanupPad->eraseFromParent(); 4005 // Now, we simply replace the cleanupret with a branch to the unwind 4006 // destination. 4007 BranchInst::Create(UnwindDest, RI->getParent()); 4008 RI->eraseFromParent(); 4009 4010 return true; 4011 } 4012 4013 bool SimplifyCFGOpt::SimplifyCleanupReturn(CleanupReturnInst *RI) { 4014 // It is possible to transiantly have an undef cleanuppad operand because we 4015 // have deleted some, but not all, dead blocks. 4016 // Eventually, this block will be deleted. 4017 if (isa<UndefValue>(RI->getOperand(0))) 4018 return false; 4019 4020 if (mergeCleanupPad(RI)) 4021 return true; 4022 4023 if (removeEmptyCleanup(RI)) 4024 return true; 4025 4026 return false; 4027 } 4028 4029 bool SimplifyCFGOpt::SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) { 4030 BasicBlock *BB = RI->getParent(); 4031 if (!BB->getFirstNonPHIOrDbg()->isTerminator()) 4032 return false; 4033 4034 // Find predecessors that end with branches. 4035 SmallVector<BasicBlock *, 8> UncondBranchPreds; 4036 SmallVector<BranchInst *, 8> CondBranchPreds; 4037 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 4038 BasicBlock *P = *PI; 4039 TerminatorInst *PTI = P->getTerminator(); 4040 if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) { 4041 if (BI->isUnconditional()) 4042 UncondBranchPreds.push_back(P); 4043 else 4044 CondBranchPreds.push_back(BI); 4045 } 4046 } 4047 4048 // If we found some, do the transformation! 4049 if (!UncondBranchPreds.empty() && DupRet) { 4050 while (!UncondBranchPreds.empty()) { 4051 BasicBlock *Pred = UncondBranchPreds.pop_back_val(); 4052 DEBUG(dbgs() << "FOLDING: " << *BB 4053 << "INTO UNCOND BRANCH PRED: " << *Pred); 4054 (void)FoldReturnIntoUncondBranch(RI, BB, Pred); 4055 } 4056 4057 // If we eliminated all predecessors of the block, delete the block now. 4058 if (pred_empty(BB)) { 4059 // We know there are no successors, so just nuke the block. 4060 BB->eraseFromParent(); 4061 if (LoopHeaders) 4062 LoopHeaders->erase(BB); 4063 } 4064 4065 return true; 4066 } 4067 4068 // Check out all of the conditional branches going to this return 4069 // instruction. If any of them just select between returns, change the 4070 // branch itself into a select/return pair. 4071 while (!CondBranchPreds.empty()) { 4072 BranchInst *BI = CondBranchPreds.pop_back_val(); 4073 4074 // Check to see if the non-BB successor is also a return block. 4075 if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) && 4076 isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) && 4077 SimplifyCondBranchToTwoReturns(BI, Builder)) 4078 return true; 4079 } 4080 return false; 4081 } 4082 4083 bool SimplifyCFGOpt::SimplifyUnreachable(UnreachableInst *UI) { 4084 BasicBlock *BB = UI->getParent(); 4085 4086 bool Changed = false; 4087 4088 // If there are any instructions immediately before the unreachable that can 4089 // be removed, do so. 4090 while (UI->getIterator() != BB->begin()) { 4091 BasicBlock::iterator BBI = UI->getIterator(); 4092 --BBI; 4093 // Do not delete instructions that can have side effects which might cause 4094 // the unreachable to not be reachable; specifically, calls and volatile 4095 // operations may have this effect. 4096 if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI)) 4097 break; 4098 4099 if (BBI->mayHaveSideEffects()) { 4100 if (auto *SI = dyn_cast<StoreInst>(BBI)) { 4101 if (SI->isVolatile()) 4102 break; 4103 } else if (auto *LI = dyn_cast<LoadInst>(BBI)) { 4104 if (LI->isVolatile()) 4105 break; 4106 } else if (auto *RMWI = dyn_cast<AtomicRMWInst>(BBI)) { 4107 if (RMWI->isVolatile()) 4108 break; 4109 } else if (auto *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) { 4110 if (CXI->isVolatile()) 4111 break; 4112 } else if (isa<CatchPadInst>(BBI)) { 4113 // A catchpad may invoke exception object constructors and such, which 4114 // in some languages can be arbitrary code, so be conservative by 4115 // default. 4116 // For CoreCLR, it just involves a type test, so can be removed. 4117 if (classifyEHPersonality(BB->getParent()->getPersonalityFn()) != 4118 EHPersonality::CoreCLR) 4119 break; 4120 } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) && 4121 !isa<LandingPadInst>(BBI)) { 4122 break; 4123 } 4124 // Note that deleting LandingPad's here is in fact okay, although it 4125 // involves a bit of subtle reasoning. If this inst is a LandingPad, 4126 // all the predecessors of this block will be the unwind edges of Invokes, 4127 // and we can therefore guarantee this block will be erased. 4128 } 4129 4130 // Delete this instruction (any uses are guaranteed to be dead) 4131 if (!BBI->use_empty()) 4132 BBI->replaceAllUsesWith(UndefValue::get(BBI->getType())); 4133 BBI->eraseFromParent(); 4134 Changed = true; 4135 } 4136 4137 // If the unreachable instruction is the first in the block, take a gander 4138 // at all of the predecessors of this instruction, and simplify them. 4139 if (&BB->front() != UI) 4140 return Changed; 4141 4142 SmallVector<BasicBlock *, 8> Preds(pred_begin(BB), pred_end(BB)); 4143 for (unsigned i = 0, e = Preds.size(); i != e; ++i) { 4144 TerminatorInst *TI = Preds[i]->getTerminator(); 4145 IRBuilder<> Builder(TI); 4146 if (auto *BI = dyn_cast<BranchInst>(TI)) { 4147 if (BI->isUnconditional()) { 4148 if (BI->getSuccessor(0) == BB) { 4149 new UnreachableInst(TI->getContext(), TI); 4150 TI->eraseFromParent(); 4151 Changed = true; 4152 } 4153 } else { 4154 if (BI->getSuccessor(0) == BB) { 4155 Builder.CreateBr(BI->getSuccessor(1)); 4156 EraseTerminatorInstAndDCECond(BI); 4157 } else if (BI->getSuccessor(1) == BB) { 4158 Builder.CreateBr(BI->getSuccessor(0)); 4159 EraseTerminatorInstAndDCECond(BI); 4160 Changed = true; 4161 } 4162 } 4163 } else if (auto *SI = dyn_cast<SwitchInst>(TI)) { 4164 for (auto i = SI->case_begin(), e = SI->case_end(); i != e;) { 4165 if (i->getCaseSuccessor() != BB) { 4166 ++i; 4167 continue; 4168 } 4169 BB->removePredecessor(SI->getParent()); 4170 i = SI->removeCase(i); 4171 e = SI->case_end(); 4172 Changed = true; 4173 } 4174 } else if (auto *II = dyn_cast<InvokeInst>(TI)) { 4175 if (II->getUnwindDest() == BB) { 4176 removeUnwindEdge(TI->getParent()); 4177 Changed = true; 4178 } 4179 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) { 4180 if (CSI->getUnwindDest() == BB) { 4181 removeUnwindEdge(TI->getParent()); 4182 Changed = true; 4183 continue; 4184 } 4185 4186 for (CatchSwitchInst::handler_iterator I = CSI->handler_begin(), 4187 E = CSI->handler_end(); 4188 I != E; ++I) { 4189 if (*I == BB) { 4190 CSI->removeHandler(I); 4191 --I; 4192 --E; 4193 Changed = true; 4194 } 4195 } 4196 if (CSI->getNumHandlers() == 0) { 4197 BasicBlock *CatchSwitchBB = CSI->getParent(); 4198 if (CSI->hasUnwindDest()) { 4199 // Redirect preds to the unwind dest 4200 CatchSwitchBB->replaceAllUsesWith(CSI->getUnwindDest()); 4201 } else { 4202 // Rewrite all preds to unwind to caller (or from invoke to call). 4203 SmallVector<BasicBlock *, 8> EHPreds(predecessors(CatchSwitchBB)); 4204 for (BasicBlock *EHPred : EHPreds) 4205 removeUnwindEdge(EHPred); 4206 } 4207 // The catchswitch is no longer reachable. 4208 new UnreachableInst(CSI->getContext(), CSI); 4209 CSI->eraseFromParent(); 4210 Changed = true; 4211 } 4212 } else if (isa<CleanupReturnInst>(TI)) { 4213 new UnreachableInst(TI->getContext(), TI); 4214 TI->eraseFromParent(); 4215 Changed = true; 4216 } 4217 } 4218 4219 // If this block is now dead, remove it. 4220 if (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) { 4221 // We know there are no successors, so just nuke the block. 4222 BB->eraseFromParent(); 4223 if (LoopHeaders) 4224 LoopHeaders->erase(BB); 4225 return true; 4226 } 4227 4228 return Changed; 4229 } 4230 4231 static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) { 4232 assert(Cases.size() >= 1); 4233 4234 array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate); 4235 for (size_t I = 1, E = Cases.size(); I != E; ++I) { 4236 if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1) 4237 return false; 4238 } 4239 return true; 4240 } 4241 4242 /// Turn a switch with two reachable destinations into an integer range 4243 /// comparison and branch. 4244 static bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder) { 4245 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 4246 4247 bool HasDefault = 4248 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 4249 4250 // Partition the cases into two sets with different destinations. 4251 BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr; 4252 BasicBlock *DestB = nullptr; 4253 SmallVector<ConstantInt *, 16> CasesA; 4254 SmallVector<ConstantInt *, 16> CasesB; 4255 4256 for (auto Case : SI->cases()) { 4257 BasicBlock *Dest = Case.getCaseSuccessor(); 4258 if (!DestA) 4259 DestA = Dest; 4260 if (Dest == DestA) { 4261 CasesA.push_back(Case.getCaseValue()); 4262 continue; 4263 } 4264 if (!DestB) 4265 DestB = Dest; 4266 if (Dest == DestB) { 4267 CasesB.push_back(Case.getCaseValue()); 4268 continue; 4269 } 4270 return false; // More than two destinations. 4271 } 4272 4273 assert(DestA && DestB && 4274 "Single-destination switch should have been folded."); 4275 assert(DestA != DestB); 4276 assert(DestB != SI->getDefaultDest()); 4277 assert(!CasesB.empty() && "There must be non-default cases."); 4278 assert(!CasesA.empty() || HasDefault); 4279 4280 // Figure out if one of the sets of cases form a contiguous range. 4281 SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr; 4282 BasicBlock *ContiguousDest = nullptr; 4283 BasicBlock *OtherDest = nullptr; 4284 if (!CasesA.empty() && CasesAreContiguous(CasesA)) { 4285 ContiguousCases = &CasesA; 4286 ContiguousDest = DestA; 4287 OtherDest = DestB; 4288 } else if (CasesAreContiguous(CasesB)) { 4289 ContiguousCases = &CasesB; 4290 ContiguousDest = DestB; 4291 OtherDest = DestA; 4292 } else 4293 return false; 4294 4295 // Start building the compare and branch. 4296 4297 Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back()); 4298 Constant *NumCases = 4299 ConstantInt::get(Offset->getType(), ContiguousCases->size()); 4300 4301 Value *Sub = SI->getCondition(); 4302 if (!Offset->isNullValue()) 4303 Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off"); 4304 4305 Value *Cmp; 4306 // If NumCases overflowed, then all possible values jump to the successor. 4307 if (NumCases->isNullValue() && !ContiguousCases->empty()) 4308 Cmp = ConstantInt::getTrue(SI->getContext()); 4309 else 4310 Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch"); 4311 BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest); 4312 4313 // Update weight for the newly-created conditional branch. 4314 if (HasBranchWeights(SI)) { 4315 SmallVector<uint64_t, 8> Weights; 4316 GetBranchWeights(SI, Weights); 4317 if (Weights.size() == 1 + SI->getNumCases()) { 4318 uint64_t TrueWeight = 0; 4319 uint64_t FalseWeight = 0; 4320 for (size_t I = 0, E = Weights.size(); I != E; ++I) { 4321 if (SI->getSuccessor(I) == ContiguousDest) 4322 TrueWeight += Weights[I]; 4323 else 4324 FalseWeight += Weights[I]; 4325 } 4326 while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) { 4327 TrueWeight /= 2; 4328 FalseWeight /= 2; 4329 } 4330 setBranchWeights(NewBI, TrueWeight, FalseWeight); 4331 } 4332 } 4333 4334 // Prune obsolete incoming values off the successors' PHI nodes. 4335 for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) { 4336 unsigned PreviousEdges = ContiguousCases->size(); 4337 if (ContiguousDest == SI->getDefaultDest()) 4338 ++PreviousEdges; 4339 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I) 4340 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 4341 } 4342 for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) { 4343 unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size(); 4344 if (OtherDest == SI->getDefaultDest()) 4345 ++PreviousEdges; 4346 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I) 4347 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 4348 } 4349 4350 // Drop the switch. 4351 SI->eraseFromParent(); 4352 4353 return true; 4354 } 4355 4356 /// Compute masked bits for the condition of a switch 4357 /// and use it to remove dead cases. 4358 static bool eliminateDeadSwitchCases(SwitchInst *SI, AssumptionCache *AC, 4359 const DataLayout &DL) { 4360 Value *Cond = SI->getCondition(); 4361 unsigned Bits = Cond->getType()->getIntegerBitWidth(); 4362 KnownBits Known = computeKnownBits(Cond, DL, 0, AC, SI); 4363 4364 // We can also eliminate cases by determining that their values are outside of 4365 // the limited range of the condition based on how many significant (non-sign) 4366 // bits are in the condition value. 4367 unsigned ExtraSignBits = ComputeNumSignBits(Cond, DL, 0, AC, SI) - 1; 4368 unsigned MaxSignificantBitsInCond = Bits - ExtraSignBits; 4369 4370 // Gather dead cases. 4371 SmallVector<ConstantInt *, 8> DeadCases; 4372 for (auto &Case : SI->cases()) { 4373 const APInt &CaseVal = Case.getCaseValue()->getValue(); 4374 if (Known.Zero.intersects(CaseVal) || !Known.One.isSubsetOf(CaseVal) || 4375 (CaseVal.getMinSignedBits() > MaxSignificantBitsInCond)) { 4376 DeadCases.push_back(Case.getCaseValue()); 4377 DEBUG(dbgs() << "SimplifyCFG: switch case " << CaseVal << " is dead.\n"); 4378 } 4379 } 4380 4381 // If we can prove that the cases must cover all possible values, the 4382 // default destination becomes dead and we can remove it. If we know some 4383 // of the bits in the value, we can use that to more precisely compute the 4384 // number of possible unique case values. 4385 bool HasDefault = 4386 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 4387 const unsigned NumUnknownBits = 4388 Bits - (Known.Zero | Known.One).countPopulation(); 4389 assert(NumUnknownBits <= Bits); 4390 if (HasDefault && DeadCases.empty() && 4391 NumUnknownBits < 64 /* avoid overflow */ && 4392 SI->getNumCases() == (1ULL << NumUnknownBits)) { 4393 DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n"); 4394 BasicBlock *NewDefault = 4395 SplitBlockPredecessors(SI->getDefaultDest(), SI->getParent(), ""); 4396 SI->setDefaultDest(&*NewDefault); 4397 SplitBlock(&*NewDefault, &NewDefault->front()); 4398 auto *OldTI = NewDefault->getTerminator(); 4399 new UnreachableInst(SI->getContext(), OldTI); 4400 EraseTerminatorInstAndDCECond(OldTI); 4401 return true; 4402 } 4403 4404 SmallVector<uint64_t, 8> Weights; 4405 bool HasWeight = HasBranchWeights(SI); 4406 if (HasWeight) { 4407 GetBranchWeights(SI, Weights); 4408 HasWeight = (Weights.size() == 1 + SI->getNumCases()); 4409 } 4410 4411 // Remove dead cases from the switch. 4412 for (ConstantInt *DeadCase : DeadCases) { 4413 SwitchInst::CaseIt CaseI = SI->findCaseValue(DeadCase); 4414 assert(CaseI != SI->case_default() && 4415 "Case was not found. Probably mistake in DeadCases forming."); 4416 if (HasWeight) { 4417 std::swap(Weights[CaseI->getCaseIndex() + 1], Weights.back()); 4418 Weights.pop_back(); 4419 } 4420 4421 // Prune unused values from PHI nodes. 4422 CaseI->getCaseSuccessor()->removePredecessor(SI->getParent()); 4423 SI->removeCase(CaseI); 4424 } 4425 if (HasWeight && Weights.size() >= 2) { 4426 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 4427 setBranchWeights(SI, MDWeights); 4428 } 4429 4430 return !DeadCases.empty(); 4431 } 4432 4433 /// If BB would be eligible for simplification by 4434 /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated 4435 /// by an unconditional branch), look at the phi node for BB in the successor 4436 /// block and see if the incoming value is equal to CaseValue. If so, return 4437 /// the phi node, and set PhiIndex to BB's index in the phi node. 4438 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue, 4439 BasicBlock *BB, int *PhiIndex) { 4440 if (BB->getFirstNonPHIOrDbg() != BB->getTerminator()) 4441 return nullptr; // BB must be empty to be a candidate for simplification. 4442 if (!BB->getSinglePredecessor()) 4443 return nullptr; // BB must be dominated by the switch. 4444 4445 BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator()); 4446 if (!Branch || !Branch->isUnconditional()) 4447 return nullptr; // Terminator must be unconditional branch. 4448 4449 BasicBlock *Succ = Branch->getSuccessor(0); 4450 4451 for (PHINode &PHI : Succ->phis()) { 4452 int Idx = PHI.getBasicBlockIndex(BB); 4453 assert(Idx >= 0 && "PHI has no entry for predecessor?"); 4454 4455 Value *InValue = PHI.getIncomingValue(Idx); 4456 if (InValue != CaseValue) 4457 continue; 4458 4459 *PhiIndex = Idx; 4460 return &PHI; 4461 } 4462 4463 return nullptr; 4464 } 4465 4466 /// Try to forward the condition of a switch instruction to a phi node 4467 /// dominated by the switch, if that would mean that some of the destination 4468 /// blocks of the switch can be folded away. Return true if a change is made. 4469 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) { 4470 using ForwardingNodesMap = DenseMap<PHINode *, SmallVector<int, 4>>; 4471 4472 ForwardingNodesMap ForwardingNodes; 4473 BasicBlock *SwitchBlock = SI->getParent(); 4474 bool Changed = false; 4475 for (auto &Case : SI->cases()) { 4476 ConstantInt *CaseValue = Case.getCaseValue(); 4477 BasicBlock *CaseDest = Case.getCaseSuccessor(); 4478 4479 // Replace phi operands in successor blocks that are using the constant case 4480 // value rather than the switch condition variable: 4481 // switchbb: 4482 // switch i32 %x, label %default [ 4483 // i32 17, label %succ 4484 // ... 4485 // succ: 4486 // %r = phi i32 ... [ 17, %switchbb ] ... 4487 // --> 4488 // %r = phi i32 ... [ %x, %switchbb ] ... 4489 4490 for (PHINode &Phi : CaseDest->phis()) { 4491 // This only works if there is exactly 1 incoming edge from the switch to 4492 // a phi. If there is >1, that means multiple cases of the switch map to 1 4493 // value in the phi, and that phi value is not the switch condition. Thus, 4494 // this transform would not make sense (the phi would be invalid because 4495 // a phi can't have different incoming values from the same block). 4496 int SwitchBBIdx = Phi.getBasicBlockIndex(SwitchBlock); 4497 if (Phi.getIncomingValue(SwitchBBIdx) == CaseValue && 4498 count(Phi.blocks(), SwitchBlock) == 1) { 4499 Phi.setIncomingValue(SwitchBBIdx, SI->getCondition()); 4500 Changed = true; 4501 } 4502 } 4503 4504 // Collect phi nodes that are indirectly using this switch's case constants. 4505 int PhiIdx; 4506 if (auto *Phi = FindPHIForConditionForwarding(CaseValue, CaseDest, &PhiIdx)) 4507 ForwardingNodes[Phi].push_back(PhiIdx); 4508 } 4509 4510 for (auto &ForwardingNode : ForwardingNodes) { 4511 PHINode *Phi = ForwardingNode.first; 4512 SmallVectorImpl<int> &Indexes = ForwardingNode.second; 4513 if (Indexes.size() < 2) 4514 continue; 4515 4516 for (int Index : Indexes) 4517 Phi->setIncomingValue(Index, SI->getCondition()); 4518 Changed = true; 4519 } 4520 4521 return Changed; 4522 } 4523 4524 /// Return true if the backend will be able to handle 4525 /// initializing an array of constants like C. 4526 static bool ValidLookupTableConstant(Constant *C, const TargetTransformInfo &TTI) { 4527 if (C->isThreadDependent()) 4528 return false; 4529 if (C->isDLLImportDependent()) 4530 return false; 4531 4532 if (!isa<ConstantFP>(C) && !isa<ConstantInt>(C) && 4533 !isa<ConstantPointerNull>(C) && !isa<GlobalValue>(C) && 4534 !isa<UndefValue>(C) && !isa<ConstantExpr>(C)) 4535 return false; 4536 4537 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 4538 if (!CE->isGEPWithNoNotionalOverIndexing()) 4539 return false; 4540 if (!ValidLookupTableConstant(CE->getOperand(0), TTI)) 4541 return false; 4542 } 4543 4544 if (!TTI.shouldBuildLookupTablesForConstant(C)) 4545 return false; 4546 4547 return true; 4548 } 4549 4550 /// If V is a Constant, return it. Otherwise, try to look up 4551 /// its constant value in ConstantPool, returning 0 if it's not there. 4552 static Constant * 4553 LookupConstant(Value *V, 4554 const SmallDenseMap<Value *, Constant *> &ConstantPool) { 4555 if (Constant *C = dyn_cast<Constant>(V)) 4556 return C; 4557 return ConstantPool.lookup(V); 4558 } 4559 4560 /// Try to fold instruction I into a constant. This works for 4561 /// simple instructions such as binary operations where both operands are 4562 /// constant or can be replaced by constants from the ConstantPool. Returns the 4563 /// resulting constant on success, 0 otherwise. 4564 static Constant * 4565 ConstantFold(Instruction *I, const DataLayout &DL, 4566 const SmallDenseMap<Value *, Constant *> &ConstantPool) { 4567 if (SelectInst *Select = dyn_cast<SelectInst>(I)) { 4568 Constant *A = LookupConstant(Select->getCondition(), ConstantPool); 4569 if (!A) 4570 return nullptr; 4571 if (A->isAllOnesValue()) 4572 return LookupConstant(Select->getTrueValue(), ConstantPool); 4573 if (A->isNullValue()) 4574 return LookupConstant(Select->getFalseValue(), ConstantPool); 4575 return nullptr; 4576 } 4577 4578 SmallVector<Constant *, 4> COps; 4579 for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) { 4580 if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool)) 4581 COps.push_back(A); 4582 else 4583 return nullptr; 4584 } 4585 4586 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) { 4587 return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0], 4588 COps[1], DL); 4589 } 4590 4591 return ConstantFoldInstOperands(I, COps, DL); 4592 } 4593 4594 /// Try to determine the resulting constant values in phi nodes 4595 /// at the common destination basic block, *CommonDest, for one of the case 4596 /// destionations CaseDest corresponding to value CaseVal (0 for the default 4597 /// case), of a switch instruction SI. 4598 static bool 4599 GetCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest, 4600 BasicBlock **CommonDest, 4601 SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res, 4602 const DataLayout &DL, const TargetTransformInfo &TTI) { 4603 // The block from which we enter the common destination. 4604 BasicBlock *Pred = SI->getParent(); 4605 4606 // If CaseDest is empty except for some side-effect free instructions through 4607 // which we can constant-propagate the CaseVal, continue to its successor. 4608 SmallDenseMap<Value *, Constant *> ConstantPool; 4609 ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal)); 4610 for (BasicBlock::iterator I = CaseDest->begin(), E = CaseDest->end(); I != E; 4611 ++I) { 4612 if (TerminatorInst *T = dyn_cast<TerminatorInst>(I)) { 4613 // If the terminator is a simple branch, continue to the next block. 4614 if (T->getNumSuccessors() != 1 || T->isExceptional()) 4615 return false; 4616 Pred = CaseDest; 4617 CaseDest = T->getSuccessor(0); 4618 } else if (isa<DbgInfoIntrinsic>(I)) { 4619 // Skip debug intrinsic. 4620 continue; 4621 } else if (Constant *C = ConstantFold(&*I, DL, ConstantPool)) { 4622 // Instruction is side-effect free and constant. 4623 4624 // If the instruction has uses outside this block or a phi node slot for 4625 // the block, it is not safe to bypass the instruction since it would then 4626 // no longer dominate all its uses. 4627 for (auto &Use : I->uses()) { 4628 User *User = Use.getUser(); 4629 if (Instruction *I = dyn_cast<Instruction>(User)) 4630 if (I->getParent() == CaseDest) 4631 continue; 4632 if (PHINode *Phi = dyn_cast<PHINode>(User)) 4633 if (Phi->getIncomingBlock(Use) == CaseDest) 4634 continue; 4635 return false; 4636 } 4637 4638 ConstantPool.insert(std::make_pair(&*I, C)); 4639 } else { 4640 break; 4641 } 4642 } 4643 4644 // If we did not have a CommonDest before, use the current one. 4645 if (!*CommonDest) 4646 *CommonDest = CaseDest; 4647 // If the destination isn't the common one, abort. 4648 if (CaseDest != *CommonDest) 4649 return false; 4650 4651 // Get the values for this case from phi nodes in the destination block. 4652 for (PHINode &PHI : (*CommonDest)->phis()) { 4653 int Idx = PHI.getBasicBlockIndex(Pred); 4654 if (Idx == -1) 4655 continue; 4656 4657 Constant *ConstVal = 4658 LookupConstant(PHI.getIncomingValue(Idx), ConstantPool); 4659 if (!ConstVal) 4660 return false; 4661 4662 // Be conservative about which kinds of constants we support. 4663 if (!ValidLookupTableConstant(ConstVal, TTI)) 4664 return false; 4665 4666 Res.push_back(std::make_pair(&PHI, ConstVal)); 4667 } 4668 4669 return Res.size() > 0; 4670 } 4671 4672 // Helper function used to add CaseVal to the list of cases that generate 4673 // Result. Returns the updated number of cases that generate this result. 4674 static uintptr_t MapCaseToResult(ConstantInt *CaseVal, 4675 SwitchCaseResultVectorTy &UniqueResults, 4676 Constant *Result) { 4677 for (auto &I : UniqueResults) { 4678 if (I.first == Result) { 4679 I.second.push_back(CaseVal); 4680 return I.second.size(); 4681 } 4682 } 4683 UniqueResults.push_back( 4684 std::make_pair(Result, SmallVector<ConstantInt *, 4>(1, CaseVal))); 4685 return 1; 4686 } 4687 4688 // Helper function that initializes a map containing 4689 // results for the PHI node of the common destination block for a switch 4690 // instruction. Returns false if multiple PHI nodes have been found or if 4691 // there is not a common destination block for the switch. 4692 static bool 4693 InitializeUniqueCases(SwitchInst *SI, PHINode *&PHI, BasicBlock *&CommonDest, 4694 SwitchCaseResultVectorTy &UniqueResults, 4695 Constant *&DefaultResult, const DataLayout &DL, 4696 const TargetTransformInfo &TTI, 4697 uintptr_t MaxUniqueResults, uintptr_t MaxCasesPerResult) { 4698 for (auto &I : SI->cases()) { 4699 ConstantInt *CaseVal = I.getCaseValue(); 4700 4701 // Resulting value at phi nodes for this case value. 4702 SwitchCaseResultsTy Results; 4703 if (!GetCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results, 4704 DL, TTI)) 4705 return false; 4706 4707 // Only one value per case is permitted. 4708 if (Results.size() > 1) 4709 return false; 4710 4711 // Add the case->result mapping to UniqueResults. 4712 const uintptr_t NumCasesForResult = 4713 MapCaseToResult(CaseVal, UniqueResults, Results.begin()->second); 4714 4715 // Early out if there are too many cases for this result. 4716 if (NumCasesForResult > MaxCasesPerResult) 4717 return false; 4718 4719 // Early out if there are too many unique results. 4720 if (UniqueResults.size() > MaxUniqueResults) 4721 return false; 4722 4723 // Check the PHI consistency. 4724 if (!PHI) 4725 PHI = Results[0].first; 4726 else if (PHI != Results[0].first) 4727 return false; 4728 } 4729 // Find the default result value. 4730 SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults; 4731 BasicBlock *DefaultDest = SI->getDefaultDest(); 4732 GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults, 4733 DL, TTI); 4734 // If the default value is not found abort unless the default destination 4735 // is unreachable. 4736 DefaultResult = 4737 DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr; 4738 if ((!DefaultResult && 4739 !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()))) 4740 return false; 4741 4742 return true; 4743 } 4744 4745 // Helper function that checks if it is possible to transform a switch with only 4746 // two cases (or two cases + default) that produces a result into a select. 4747 // Example: 4748 // switch (a) { 4749 // case 10: %0 = icmp eq i32 %a, 10 4750 // return 10; %1 = select i1 %0, i32 10, i32 4 4751 // case 20: ----> %2 = icmp eq i32 %a, 20 4752 // return 2; %3 = select i1 %2, i32 2, i32 %1 4753 // default: 4754 // return 4; 4755 // } 4756 static Value *ConvertTwoCaseSwitch(const SwitchCaseResultVectorTy &ResultVector, 4757 Constant *DefaultResult, Value *Condition, 4758 IRBuilder<> &Builder) { 4759 assert(ResultVector.size() == 2 && 4760 "We should have exactly two unique results at this point"); 4761 // If we are selecting between only two cases transform into a simple 4762 // select or a two-way select if default is possible. 4763 if (ResultVector[0].second.size() == 1 && 4764 ResultVector[1].second.size() == 1) { 4765 ConstantInt *const FirstCase = ResultVector[0].second[0]; 4766 ConstantInt *const SecondCase = ResultVector[1].second[0]; 4767 4768 bool DefaultCanTrigger = DefaultResult; 4769 Value *SelectValue = ResultVector[1].first; 4770 if (DefaultCanTrigger) { 4771 Value *const ValueCompare = 4772 Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp"); 4773 SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first, 4774 DefaultResult, "switch.select"); 4775 } 4776 Value *const ValueCompare = 4777 Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp"); 4778 return Builder.CreateSelect(ValueCompare, ResultVector[0].first, 4779 SelectValue, "switch.select"); 4780 } 4781 4782 return nullptr; 4783 } 4784 4785 // Helper function to cleanup a switch instruction that has been converted into 4786 // a select, fixing up PHI nodes and basic blocks. 4787 static void RemoveSwitchAfterSelectConversion(SwitchInst *SI, PHINode *PHI, 4788 Value *SelectValue, 4789 IRBuilder<> &Builder) { 4790 BasicBlock *SelectBB = SI->getParent(); 4791 while (PHI->getBasicBlockIndex(SelectBB) >= 0) 4792 PHI->removeIncomingValue(SelectBB); 4793 PHI->addIncoming(SelectValue, SelectBB); 4794 4795 Builder.CreateBr(PHI->getParent()); 4796 4797 // Remove the switch. 4798 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { 4799 BasicBlock *Succ = SI->getSuccessor(i); 4800 4801 if (Succ == PHI->getParent()) 4802 continue; 4803 Succ->removePredecessor(SelectBB); 4804 } 4805 SI->eraseFromParent(); 4806 } 4807 4808 /// If the switch is only used to initialize one or more 4809 /// phi nodes in a common successor block with only two different 4810 /// constant values, replace the switch with select. 4811 static bool switchToSelect(SwitchInst *SI, IRBuilder<> &Builder, 4812 const DataLayout &DL, 4813 const TargetTransformInfo &TTI) { 4814 Value *const Cond = SI->getCondition(); 4815 PHINode *PHI = nullptr; 4816 BasicBlock *CommonDest = nullptr; 4817 Constant *DefaultResult; 4818 SwitchCaseResultVectorTy UniqueResults; 4819 // Collect all the cases that will deliver the same value from the switch. 4820 if (!InitializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult, 4821 DL, TTI, 2, 1)) 4822 return false; 4823 // Selects choose between maximum two values. 4824 if (UniqueResults.size() != 2) 4825 return false; 4826 assert(PHI != nullptr && "PHI for value select not found"); 4827 4828 Builder.SetInsertPoint(SI); 4829 Value *SelectValue = 4830 ConvertTwoCaseSwitch(UniqueResults, DefaultResult, Cond, Builder); 4831 if (SelectValue) { 4832 RemoveSwitchAfterSelectConversion(SI, PHI, SelectValue, Builder); 4833 return true; 4834 } 4835 // The switch couldn't be converted into a select. 4836 return false; 4837 } 4838 4839 namespace { 4840 4841 /// This class represents a lookup table that can be used to replace a switch. 4842 class SwitchLookupTable { 4843 public: 4844 /// Create a lookup table to use as a switch replacement with the contents 4845 /// of Values, using DefaultValue to fill any holes in the table. 4846 SwitchLookupTable( 4847 Module &M, uint64_t TableSize, ConstantInt *Offset, 4848 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values, 4849 Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName); 4850 4851 /// Build instructions with Builder to retrieve the value at 4852 /// the position given by Index in the lookup table. 4853 Value *BuildLookup(Value *Index, IRBuilder<> &Builder); 4854 4855 /// Return true if a table with TableSize elements of 4856 /// type ElementType would fit in a target-legal register. 4857 static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize, 4858 Type *ElementType); 4859 4860 private: 4861 // Depending on the contents of the table, it can be represented in 4862 // different ways. 4863 enum { 4864 // For tables where each element contains the same value, we just have to 4865 // store that single value and return it for each lookup. 4866 SingleValueKind, 4867 4868 // For tables where there is a linear relationship between table index 4869 // and values. We calculate the result with a simple multiplication 4870 // and addition instead of a table lookup. 4871 LinearMapKind, 4872 4873 // For small tables with integer elements, we can pack them into a bitmap 4874 // that fits into a target-legal register. Values are retrieved by 4875 // shift and mask operations. 4876 BitMapKind, 4877 4878 // The table is stored as an array of values. Values are retrieved by load 4879 // instructions from the table. 4880 ArrayKind 4881 } Kind; 4882 4883 // For SingleValueKind, this is the single value. 4884 Constant *SingleValue = nullptr; 4885 4886 // For BitMapKind, this is the bitmap. 4887 ConstantInt *BitMap = nullptr; 4888 IntegerType *BitMapElementTy = nullptr; 4889 4890 // For LinearMapKind, these are the constants used to derive the value. 4891 ConstantInt *LinearOffset = nullptr; 4892 ConstantInt *LinearMultiplier = nullptr; 4893 4894 // For ArrayKind, this is the array. 4895 GlobalVariable *Array = nullptr; 4896 }; 4897 4898 } // end anonymous namespace 4899 4900 SwitchLookupTable::SwitchLookupTable( 4901 Module &M, uint64_t TableSize, ConstantInt *Offset, 4902 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values, 4903 Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName) { 4904 assert(Values.size() && "Can't build lookup table without values!"); 4905 assert(TableSize >= Values.size() && "Can't fit values in table!"); 4906 4907 // If all values in the table are equal, this is that value. 4908 SingleValue = Values.begin()->second; 4909 4910 Type *ValueType = Values.begin()->second->getType(); 4911 4912 // Build up the table contents. 4913 SmallVector<Constant *, 64> TableContents(TableSize); 4914 for (size_t I = 0, E = Values.size(); I != E; ++I) { 4915 ConstantInt *CaseVal = Values[I].first; 4916 Constant *CaseRes = Values[I].second; 4917 assert(CaseRes->getType() == ValueType); 4918 4919 uint64_t Idx = (CaseVal->getValue() - Offset->getValue()).getLimitedValue(); 4920 TableContents[Idx] = CaseRes; 4921 4922 if (CaseRes != SingleValue) 4923 SingleValue = nullptr; 4924 } 4925 4926 // Fill in any holes in the table with the default result. 4927 if (Values.size() < TableSize) { 4928 assert(DefaultValue && 4929 "Need a default value to fill the lookup table holes."); 4930 assert(DefaultValue->getType() == ValueType); 4931 for (uint64_t I = 0; I < TableSize; ++I) { 4932 if (!TableContents[I]) 4933 TableContents[I] = DefaultValue; 4934 } 4935 4936 if (DefaultValue != SingleValue) 4937 SingleValue = nullptr; 4938 } 4939 4940 // If each element in the table contains the same value, we only need to store 4941 // that single value. 4942 if (SingleValue) { 4943 Kind = SingleValueKind; 4944 return; 4945 } 4946 4947 // Check if we can derive the value with a linear transformation from the 4948 // table index. 4949 if (isa<IntegerType>(ValueType)) { 4950 bool LinearMappingPossible = true; 4951 APInt PrevVal; 4952 APInt DistToPrev; 4953 assert(TableSize >= 2 && "Should be a SingleValue table."); 4954 // Check if there is the same distance between two consecutive values. 4955 for (uint64_t I = 0; I < TableSize; ++I) { 4956 ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]); 4957 if (!ConstVal) { 4958 // This is an undef. We could deal with it, but undefs in lookup tables 4959 // are very seldom. It's probably not worth the additional complexity. 4960 LinearMappingPossible = false; 4961 break; 4962 } 4963 const APInt &Val = ConstVal->getValue(); 4964 if (I != 0) { 4965 APInt Dist = Val - PrevVal; 4966 if (I == 1) { 4967 DistToPrev = Dist; 4968 } else if (Dist != DistToPrev) { 4969 LinearMappingPossible = false; 4970 break; 4971 } 4972 } 4973 PrevVal = Val; 4974 } 4975 if (LinearMappingPossible) { 4976 LinearOffset = cast<ConstantInt>(TableContents[0]); 4977 LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev); 4978 Kind = LinearMapKind; 4979 ++NumLinearMaps; 4980 return; 4981 } 4982 } 4983 4984 // If the type is integer and the table fits in a register, build a bitmap. 4985 if (WouldFitInRegister(DL, TableSize, ValueType)) { 4986 IntegerType *IT = cast<IntegerType>(ValueType); 4987 APInt TableInt(TableSize * IT->getBitWidth(), 0); 4988 for (uint64_t I = TableSize; I > 0; --I) { 4989 TableInt <<= IT->getBitWidth(); 4990 // Insert values into the bitmap. Undef values are set to zero. 4991 if (!isa<UndefValue>(TableContents[I - 1])) { 4992 ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]); 4993 TableInt |= Val->getValue().zext(TableInt.getBitWidth()); 4994 } 4995 } 4996 BitMap = ConstantInt::get(M.getContext(), TableInt); 4997 BitMapElementTy = IT; 4998 Kind = BitMapKind; 4999 ++NumBitMaps; 5000 return; 5001 } 5002 5003 // Store the table in an array. 5004 ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize); 5005 Constant *Initializer = ConstantArray::get(ArrayTy, TableContents); 5006 5007 Array = new GlobalVariable(M, ArrayTy, /*constant=*/true, 5008 GlobalVariable::PrivateLinkage, Initializer, 5009 "switch.table." + FuncName); 5010 Array->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); 5011 Kind = ArrayKind; 5012 } 5013 5014 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) { 5015 switch (Kind) { 5016 case SingleValueKind: 5017 return SingleValue; 5018 case LinearMapKind: { 5019 // Derive the result value from the input value. 5020 Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(), 5021 false, "switch.idx.cast"); 5022 if (!LinearMultiplier->isOne()) 5023 Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult"); 5024 if (!LinearOffset->isZero()) 5025 Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset"); 5026 return Result; 5027 } 5028 case BitMapKind: { 5029 // Type of the bitmap (e.g. i59). 5030 IntegerType *MapTy = BitMap->getType(); 5031 5032 // Cast Index to the same type as the bitmap. 5033 // Note: The Index is <= the number of elements in the table, so 5034 // truncating it to the width of the bitmask is safe. 5035 Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast"); 5036 5037 // Multiply the shift amount by the element width. 5038 ShiftAmt = Builder.CreateMul( 5039 ShiftAmt, ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()), 5040 "switch.shiftamt"); 5041 5042 // Shift down. 5043 Value *DownShifted = 5044 Builder.CreateLShr(BitMap, ShiftAmt, "switch.downshift"); 5045 // Mask off. 5046 return Builder.CreateTrunc(DownShifted, BitMapElementTy, "switch.masked"); 5047 } 5048 case ArrayKind: { 5049 // Make sure the table index will not overflow when treated as signed. 5050 IntegerType *IT = cast<IntegerType>(Index->getType()); 5051 uint64_t TableSize = 5052 Array->getInitializer()->getType()->getArrayNumElements(); 5053 if (TableSize > (1ULL << (IT->getBitWidth() - 1))) 5054 Index = Builder.CreateZExt( 5055 Index, IntegerType::get(IT->getContext(), IT->getBitWidth() + 1), 5056 "switch.tableidx.zext"); 5057 5058 Value *GEPIndices[] = {Builder.getInt32(0), Index}; 5059 Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array, 5060 GEPIndices, "switch.gep"); 5061 return Builder.CreateLoad(GEP, "switch.load"); 5062 } 5063 } 5064 llvm_unreachable("Unknown lookup table kind!"); 5065 } 5066 5067 bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL, 5068 uint64_t TableSize, 5069 Type *ElementType) { 5070 auto *IT = dyn_cast<IntegerType>(ElementType); 5071 if (!IT) 5072 return false; 5073 // FIXME: If the type is wider than it needs to be, e.g. i8 but all values 5074 // are <= 15, we could try to narrow the type. 5075 5076 // Avoid overflow, fitsInLegalInteger uses unsigned int for the width. 5077 if (TableSize >= UINT_MAX / IT->getBitWidth()) 5078 return false; 5079 return DL.fitsInLegalInteger(TableSize * IT->getBitWidth()); 5080 } 5081 5082 /// Determine whether a lookup table should be built for this switch, based on 5083 /// the number of cases, size of the table, and the types of the results. 5084 static bool 5085 ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize, 5086 const TargetTransformInfo &TTI, const DataLayout &DL, 5087 const SmallDenseMap<PHINode *, Type *> &ResultTypes) { 5088 if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10) 5089 return false; // TableSize overflowed, or mul below might overflow. 5090 5091 bool AllTablesFitInRegister = true; 5092 bool HasIllegalType = false; 5093 for (const auto &I : ResultTypes) { 5094 Type *Ty = I.second; 5095 5096 // Saturate this flag to true. 5097 HasIllegalType = HasIllegalType || !TTI.isTypeLegal(Ty); 5098 5099 // Saturate this flag to false. 5100 AllTablesFitInRegister = 5101 AllTablesFitInRegister && 5102 SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty); 5103 5104 // If both flags saturate, we're done. NOTE: This *only* works with 5105 // saturating flags, and all flags have to saturate first due to the 5106 // non-deterministic behavior of iterating over a dense map. 5107 if (HasIllegalType && !AllTablesFitInRegister) 5108 break; 5109 } 5110 5111 // If each table would fit in a register, we should build it anyway. 5112 if (AllTablesFitInRegister) 5113 return true; 5114 5115 // Don't build a table that doesn't fit in-register if it has illegal types. 5116 if (HasIllegalType) 5117 return false; 5118 5119 // The table density should be at least 40%. This is the same criterion as for 5120 // jump tables, see SelectionDAGBuilder::handleJTSwitchCase. 5121 // FIXME: Find the best cut-off. 5122 return SI->getNumCases() * 10 >= TableSize * 4; 5123 } 5124 5125 /// Try to reuse the switch table index compare. Following pattern: 5126 /// \code 5127 /// if (idx < tablesize) 5128 /// r = table[idx]; // table does not contain default_value 5129 /// else 5130 /// r = default_value; 5131 /// if (r != default_value) 5132 /// ... 5133 /// \endcode 5134 /// Is optimized to: 5135 /// \code 5136 /// cond = idx < tablesize; 5137 /// if (cond) 5138 /// r = table[idx]; 5139 /// else 5140 /// r = default_value; 5141 /// if (cond) 5142 /// ... 5143 /// \endcode 5144 /// Jump threading will then eliminate the second if(cond). 5145 static void reuseTableCompare( 5146 User *PhiUser, BasicBlock *PhiBlock, BranchInst *RangeCheckBranch, 5147 Constant *DefaultValue, 5148 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values) { 5149 ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser); 5150 if (!CmpInst) 5151 return; 5152 5153 // We require that the compare is in the same block as the phi so that jump 5154 // threading can do its work afterwards. 5155 if (CmpInst->getParent() != PhiBlock) 5156 return; 5157 5158 Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1)); 5159 if (!CmpOp1) 5160 return; 5161 5162 Value *RangeCmp = RangeCheckBranch->getCondition(); 5163 Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType()); 5164 Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType()); 5165 5166 // Check if the compare with the default value is constant true or false. 5167 Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(), 5168 DefaultValue, CmpOp1, true); 5169 if (DefaultConst != TrueConst && DefaultConst != FalseConst) 5170 return; 5171 5172 // Check if the compare with the case values is distinct from the default 5173 // compare result. 5174 for (auto ValuePair : Values) { 5175 Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(), 5176 ValuePair.second, CmpOp1, true); 5177 if (!CaseConst || CaseConst == DefaultConst || isa<UndefValue>(CaseConst)) 5178 return; 5179 assert((CaseConst == TrueConst || CaseConst == FalseConst) && 5180 "Expect true or false as compare result."); 5181 } 5182 5183 // Check if the branch instruction dominates the phi node. It's a simple 5184 // dominance check, but sufficient for our needs. 5185 // Although this check is invariant in the calling loops, it's better to do it 5186 // at this late stage. Practically we do it at most once for a switch. 5187 BasicBlock *BranchBlock = RangeCheckBranch->getParent(); 5188 for (auto PI = pred_begin(PhiBlock), E = pred_end(PhiBlock); PI != E; ++PI) { 5189 BasicBlock *Pred = *PI; 5190 if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock) 5191 return; 5192 } 5193 5194 if (DefaultConst == FalseConst) { 5195 // The compare yields the same result. We can replace it. 5196 CmpInst->replaceAllUsesWith(RangeCmp); 5197 ++NumTableCmpReuses; 5198 } else { 5199 // The compare yields the same result, just inverted. We can replace it. 5200 Value *InvertedTableCmp = BinaryOperator::CreateXor( 5201 RangeCmp, ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp", 5202 RangeCheckBranch); 5203 CmpInst->replaceAllUsesWith(InvertedTableCmp); 5204 ++NumTableCmpReuses; 5205 } 5206 } 5207 5208 /// If the switch is only used to initialize one or more phi nodes in a common 5209 /// successor block with different constant values, replace the switch with 5210 /// lookup tables. 5211 static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder, 5212 const DataLayout &DL, 5213 const TargetTransformInfo &TTI) { 5214 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 5215 5216 Function *Fn = SI->getParent()->getParent(); 5217 // Only build lookup table when we have a target that supports it or the 5218 // attribute is not set. 5219 if (!TTI.shouldBuildLookupTables() || 5220 (Fn->getFnAttribute("no-jump-tables").getValueAsString() == "true")) 5221 return false; 5222 5223 // FIXME: If the switch is too sparse for a lookup table, perhaps we could 5224 // split off a dense part and build a lookup table for that. 5225 5226 // FIXME: This creates arrays of GEPs to constant strings, which means each 5227 // GEP needs a runtime relocation in PIC code. We should just build one big 5228 // string and lookup indices into that. 5229 5230 // Ignore switches with less than three cases. Lookup tables will not make 5231 // them faster, so we don't analyze them. 5232 if (SI->getNumCases() < 3) 5233 return false; 5234 5235 // Figure out the corresponding result for each case value and phi node in the 5236 // common destination, as well as the min and max case values. 5237 assert(SI->case_begin() != SI->case_end()); 5238 SwitchInst::CaseIt CI = SI->case_begin(); 5239 ConstantInt *MinCaseVal = CI->getCaseValue(); 5240 ConstantInt *MaxCaseVal = CI->getCaseValue(); 5241 5242 BasicBlock *CommonDest = nullptr; 5243 5244 using ResultListTy = SmallVector<std::pair<ConstantInt *, Constant *>, 4>; 5245 SmallDenseMap<PHINode *, ResultListTy> ResultLists; 5246 5247 SmallDenseMap<PHINode *, Constant *> DefaultResults; 5248 SmallDenseMap<PHINode *, Type *> ResultTypes; 5249 SmallVector<PHINode *, 4> PHIs; 5250 5251 for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) { 5252 ConstantInt *CaseVal = CI->getCaseValue(); 5253 if (CaseVal->getValue().slt(MinCaseVal->getValue())) 5254 MinCaseVal = CaseVal; 5255 if (CaseVal->getValue().sgt(MaxCaseVal->getValue())) 5256 MaxCaseVal = CaseVal; 5257 5258 // Resulting value at phi nodes for this case value. 5259 using ResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>; 5260 ResultsTy Results; 5261 if (!GetCaseResults(SI, CaseVal, CI->getCaseSuccessor(), &CommonDest, 5262 Results, DL, TTI)) 5263 return false; 5264 5265 // Append the result from this case to the list for each phi. 5266 for (const auto &I : Results) { 5267 PHINode *PHI = I.first; 5268 Constant *Value = I.second; 5269 if (!ResultLists.count(PHI)) 5270 PHIs.push_back(PHI); 5271 ResultLists[PHI].push_back(std::make_pair(CaseVal, Value)); 5272 } 5273 } 5274 5275 // Keep track of the result types. 5276 for (PHINode *PHI : PHIs) { 5277 ResultTypes[PHI] = ResultLists[PHI][0].second->getType(); 5278 } 5279 5280 uint64_t NumResults = ResultLists[PHIs[0]].size(); 5281 APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue(); 5282 uint64_t TableSize = RangeSpread.getLimitedValue() + 1; 5283 bool TableHasHoles = (NumResults < TableSize); 5284 5285 // If the table has holes, we need a constant result for the default case 5286 // or a bitmask that fits in a register. 5287 SmallVector<std::pair<PHINode *, Constant *>, 4> DefaultResultsList; 5288 bool HasDefaultResults = 5289 GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, 5290 DefaultResultsList, DL, TTI); 5291 5292 bool NeedMask = (TableHasHoles && !HasDefaultResults); 5293 if (NeedMask) { 5294 // As an extra penalty for the validity test we require more cases. 5295 if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark). 5296 return false; 5297 if (!DL.fitsInLegalInteger(TableSize)) 5298 return false; 5299 } 5300 5301 for (const auto &I : DefaultResultsList) { 5302 PHINode *PHI = I.first; 5303 Constant *Result = I.second; 5304 DefaultResults[PHI] = Result; 5305 } 5306 5307 if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes)) 5308 return false; 5309 5310 // Create the BB that does the lookups. 5311 Module &Mod = *CommonDest->getParent()->getParent(); 5312 BasicBlock *LookupBB = BasicBlock::Create( 5313 Mod.getContext(), "switch.lookup", CommonDest->getParent(), CommonDest); 5314 5315 // Compute the table index value. 5316 Builder.SetInsertPoint(SI); 5317 Value *TableIndex; 5318 if (MinCaseVal->isNullValue()) 5319 TableIndex = SI->getCondition(); 5320 else 5321 TableIndex = Builder.CreateSub(SI->getCondition(), MinCaseVal, 5322 "switch.tableidx"); 5323 5324 // Compute the maximum table size representable by the integer type we are 5325 // switching upon. 5326 unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits(); 5327 uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize; 5328 assert(MaxTableSize >= TableSize && 5329 "It is impossible for a switch to have more entries than the max " 5330 "representable value of its input integer type's size."); 5331 5332 // If the default destination is unreachable, or if the lookup table covers 5333 // all values of the conditional variable, branch directly to the lookup table 5334 // BB. Otherwise, check that the condition is within the case range. 5335 const bool DefaultIsReachable = 5336 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 5337 const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize); 5338 BranchInst *RangeCheckBranch = nullptr; 5339 5340 if (!DefaultIsReachable || GeneratingCoveredLookupTable) { 5341 Builder.CreateBr(LookupBB); 5342 // Note: We call removeProdecessor later since we need to be able to get the 5343 // PHI value for the default case in case we're using a bit mask. 5344 } else { 5345 Value *Cmp = Builder.CreateICmpULT( 5346 TableIndex, ConstantInt::get(MinCaseVal->getType(), TableSize)); 5347 RangeCheckBranch = 5348 Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest()); 5349 } 5350 5351 // Populate the BB that does the lookups. 5352 Builder.SetInsertPoint(LookupBB); 5353 5354 if (NeedMask) { 5355 // Before doing the lookup, we do the hole check. The LookupBB is therefore 5356 // re-purposed to do the hole check, and we create a new LookupBB. 5357 BasicBlock *MaskBB = LookupBB; 5358 MaskBB->setName("switch.hole_check"); 5359 LookupBB = BasicBlock::Create(Mod.getContext(), "switch.lookup", 5360 CommonDest->getParent(), CommonDest); 5361 5362 // Make the mask's bitwidth at least 8-bit and a power-of-2 to avoid 5363 // unnecessary illegal types. 5364 uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL)); 5365 APInt MaskInt(TableSizePowOf2, 0); 5366 APInt One(TableSizePowOf2, 1); 5367 // Build bitmask; fill in a 1 bit for every case. 5368 const ResultListTy &ResultList = ResultLists[PHIs[0]]; 5369 for (size_t I = 0, E = ResultList.size(); I != E; ++I) { 5370 uint64_t Idx = (ResultList[I].first->getValue() - MinCaseVal->getValue()) 5371 .getLimitedValue(); 5372 MaskInt |= One << Idx; 5373 } 5374 ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt); 5375 5376 // Get the TableIndex'th bit of the bitmask. 5377 // If this bit is 0 (meaning hole) jump to the default destination, 5378 // else continue with table lookup. 5379 IntegerType *MapTy = TableMask->getType(); 5380 Value *MaskIndex = 5381 Builder.CreateZExtOrTrunc(TableIndex, MapTy, "switch.maskindex"); 5382 Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, "switch.shifted"); 5383 Value *LoBit = Builder.CreateTrunc( 5384 Shifted, Type::getInt1Ty(Mod.getContext()), "switch.lobit"); 5385 Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest()); 5386 5387 Builder.SetInsertPoint(LookupBB); 5388 AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, SI->getParent()); 5389 } 5390 5391 if (!DefaultIsReachable || GeneratingCoveredLookupTable) { 5392 // We cached PHINodes in PHIs. To avoid accessing deleted PHINodes later, 5393 // do not delete PHINodes here. 5394 SI->getDefaultDest()->removePredecessor(SI->getParent(), 5395 /*DontDeleteUselessPHIs=*/true); 5396 } 5397 5398 bool ReturnedEarly = false; 5399 for (size_t I = 0, E = PHIs.size(); I != E; ++I) { 5400 PHINode *PHI = PHIs[I]; 5401 const ResultListTy &ResultList = ResultLists[PHI]; 5402 5403 // If using a bitmask, use any value to fill the lookup table holes. 5404 Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI]; 5405 StringRef FuncName = Fn->getName(); 5406 SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultList, DV, DL, 5407 FuncName); 5408 5409 Value *Result = Table.BuildLookup(TableIndex, Builder); 5410 5411 // If the result is used to return immediately from the function, we want to 5412 // do that right here. 5413 if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->user_begin()) && 5414 PHI->user_back() == CommonDest->getFirstNonPHIOrDbg()) { 5415 Builder.CreateRet(Result); 5416 ReturnedEarly = true; 5417 break; 5418 } 5419 5420 // Do a small peephole optimization: re-use the switch table compare if 5421 // possible. 5422 if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) { 5423 BasicBlock *PhiBlock = PHI->getParent(); 5424 // Search for compare instructions which use the phi. 5425 for (auto *User : PHI->users()) { 5426 reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList); 5427 } 5428 } 5429 5430 PHI->addIncoming(Result, LookupBB); 5431 } 5432 5433 if (!ReturnedEarly) 5434 Builder.CreateBr(CommonDest); 5435 5436 // Remove the switch. 5437 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { 5438 BasicBlock *Succ = SI->getSuccessor(i); 5439 5440 if (Succ == SI->getDefaultDest()) 5441 continue; 5442 Succ->removePredecessor(SI->getParent()); 5443 } 5444 SI->eraseFromParent(); 5445 5446 ++NumLookupTables; 5447 if (NeedMask) 5448 ++NumLookupTablesHoles; 5449 return true; 5450 } 5451 5452 static bool isSwitchDense(ArrayRef<int64_t> Values) { 5453 // See also SelectionDAGBuilder::isDense(), which this function was based on. 5454 uint64_t Diff = (uint64_t)Values.back() - (uint64_t)Values.front(); 5455 uint64_t Range = Diff + 1; 5456 uint64_t NumCases = Values.size(); 5457 // 40% is the default density for building a jump table in optsize/minsize mode. 5458 uint64_t MinDensity = 40; 5459 5460 return NumCases * 100 >= Range * MinDensity; 5461 } 5462 5463 /// Try to transform a switch that has "holes" in it to a contiguous sequence 5464 /// of cases. 5465 /// 5466 /// A switch such as: switch(i) {case 5: case 9: case 13: case 17:} can be 5467 /// range-reduced to: switch ((i-5) / 4) {case 0: case 1: case 2: case 3:}. 5468 /// 5469 /// This converts a sparse switch into a dense switch which allows better 5470 /// lowering and could also allow transforming into a lookup table. 5471 static bool ReduceSwitchRange(SwitchInst *SI, IRBuilder<> &Builder, 5472 const DataLayout &DL, 5473 const TargetTransformInfo &TTI) { 5474 auto *CondTy = cast<IntegerType>(SI->getCondition()->getType()); 5475 if (CondTy->getIntegerBitWidth() > 64 || 5476 !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth())) 5477 return false; 5478 // Only bother with this optimization if there are more than 3 switch cases; 5479 // SDAG will only bother creating jump tables for 4 or more cases. 5480 if (SI->getNumCases() < 4) 5481 return false; 5482 5483 // This transform is agnostic to the signedness of the input or case values. We 5484 // can treat the case values as signed or unsigned. We can optimize more common 5485 // cases such as a sequence crossing zero {-4,0,4,8} if we interpret case values 5486 // as signed. 5487 SmallVector<int64_t,4> Values; 5488 for (auto &C : SI->cases()) 5489 Values.push_back(C.getCaseValue()->getValue().getSExtValue()); 5490 std::sort(Values.begin(), Values.end()); 5491 5492 // If the switch is already dense, there's nothing useful to do here. 5493 if (isSwitchDense(Values)) 5494 return false; 5495 5496 // First, transform the values such that they start at zero and ascend. 5497 int64_t Base = Values[0]; 5498 for (auto &V : Values) 5499 V -= (uint64_t)(Base); 5500 5501 // Now we have signed numbers that have been shifted so that, given enough 5502 // precision, there are no negative values. Since the rest of the transform 5503 // is bitwise only, we switch now to an unsigned representation. 5504 uint64_t GCD = 0; 5505 for (auto &V : Values) 5506 GCD = GreatestCommonDivisor64(GCD, (uint64_t)V); 5507 5508 // This transform can be done speculatively because it is so cheap - it results 5509 // in a single rotate operation being inserted. This can only happen if the 5510 // factor extracted is a power of 2. 5511 // FIXME: If the GCD is an odd number we can multiply by the multiplicative 5512 // inverse of GCD and then perform this transform. 5513 // FIXME: It's possible that optimizing a switch on powers of two might also 5514 // be beneficial - flag values are often powers of two and we could use a CLZ 5515 // as the key function. 5516 if (GCD <= 1 || !isPowerOf2_64(GCD)) 5517 // No common divisor found or too expensive to compute key function. 5518 return false; 5519 5520 unsigned Shift = Log2_64(GCD); 5521 for (auto &V : Values) 5522 V = (int64_t)((uint64_t)V >> Shift); 5523 5524 if (!isSwitchDense(Values)) 5525 // Transform didn't create a dense switch. 5526 return false; 5527 5528 // The obvious transform is to shift the switch condition right and emit a 5529 // check that the condition actually cleanly divided by GCD, i.e. 5530 // C & (1 << Shift - 1) == 0 5531 // inserting a new CFG edge to handle the case where it didn't divide cleanly. 5532 // 5533 // A cheaper way of doing this is a simple ROTR(C, Shift). This performs the 5534 // shift and puts the shifted-off bits in the uppermost bits. If any of these 5535 // are nonzero then the switch condition will be very large and will hit the 5536 // default case. 5537 5538 auto *Ty = cast<IntegerType>(SI->getCondition()->getType()); 5539 Builder.SetInsertPoint(SI); 5540 auto *ShiftC = ConstantInt::get(Ty, Shift); 5541 auto *Sub = Builder.CreateSub(SI->getCondition(), ConstantInt::get(Ty, Base)); 5542 auto *LShr = Builder.CreateLShr(Sub, ShiftC); 5543 auto *Shl = Builder.CreateShl(Sub, Ty->getBitWidth() - Shift); 5544 auto *Rot = Builder.CreateOr(LShr, Shl); 5545 SI->replaceUsesOfWith(SI->getCondition(), Rot); 5546 5547 for (auto Case : SI->cases()) { 5548 auto *Orig = Case.getCaseValue(); 5549 auto Sub = Orig->getValue() - APInt(Ty->getBitWidth(), Base); 5550 Case.setValue( 5551 cast<ConstantInt>(ConstantInt::get(Ty, Sub.lshr(ShiftC->getValue())))); 5552 } 5553 return true; 5554 } 5555 5556 bool SimplifyCFGOpt::SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) { 5557 BasicBlock *BB = SI->getParent(); 5558 5559 if (isValueEqualityComparison(SI)) { 5560 // If we only have one predecessor, and if it is a branch on this value, 5561 // see if that predecessor totally determines the outcome of this switch. 5562 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 5563 if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder)) 5564 return simplifyCFG(BB, TTI, Options) | true; 5565 5566 Value *Cond = SI->getCondition(); 5567 if (SelectInst *Select = dyn_cast<SelectInst>(Cond)) 5568 if (SimplifySwitchOnSelect(SI, Select)) 5569 return simplifyCFG(BB, TTI, Options) | true; 5570 5571 // If the block only contains the switch, see if we can fold the block 5572 // away into any preds. 5573 BasicBlock::iterator BBI = BB->begin(); 5574 // Ignore dbg intrinsics. 5575 while (isa<DbgInfoIntrinsic>(BBI)) 5576 ++BBI; 5577 if (SI == &*BBI) 5578 if (FoldValueComparisonIntoPredecessors(SI, Builder)) 5579 return simplifyCFG(BB, TTI, Options) | true; 5580 } 5581 5582 // Try to transform the switch into an icmp and a branch. 5583 if (TurnSwitchRangeIntoICmp(SI, Builder)) 5584 return simplifyCFG(BB, TTI, Options) | true; 5585 5586 // Remove unreachable cases. 5587 if (eliminateDeadSwitchCases(SI, Options.AC, DL)) 5588 return simplifyCFG(BB, TTI, Options) | true; 5589 5590 if (switchToSelect(SI, Builder, DL, TTI)) 5591 return simplifyCFG(BB, TTI, Options) | true; 5592 5593 if (Options.ForwardSwitchCondToPhi && ForwardSwitchConditionToPHI(SI)) 5594 return simplifyCFG(BB, TTI, Options) | true; 5595 5596 // The conversion from switch to lookup tables results in difficult-to-analyze 5597 // code and makes pruning branches much harder. This is a problem if the 5598 // switch expression itself can still be restricted as a result of inlining or 5599 // CVP. Therefore, only apply this transformation during late stages of the 5600 // optimisation pipeline. 5601 if (Options.ConvertSwitchToLookupTable && 5602 SwitchToLookupTable(SI, Builder, DL, TTI)) 5603 return simplifyCFG(BB, TTI, Options) | true; 5604 5605 if (ReduceSwitchRange(SI, Builder, DL, TTI)) 5606 return simplifyCFG(BB, TTI, Options) | true; 5607 5608 return false; 5609 } 5610 5611 bool SimplifyCFGOpt::SimplifyIndirectBr(IndirectBrInst *IBI) { 5612 BasicBlock *BB = IBI->getParent(); 5613 bool Changed = false; 5614 5615 // Eliminate redundant destinations. 5616 SmallPtrSet<Value *, 8> Succs; 5617 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 5618 BasicBlock *Dest = IBI->getDestination(i); 5619 if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) { 5620 Dest->removePredecessor(BB); 5621 IBI->removeDestination(i); 5622 --i; 5623 --e; 5624 Changed = true; 5625 } 5626 } 5627 5628 if (IBI->getNumDestinations() == 0) { 5629 // If the indirectbr has no successors, change it to unreachable. 5630 new UnreachableInst(IBI->getContext(), IBI); 5631 EraseTerminatorInstAndDCECond(IBI); 5632 return true; 5633 } 5634 5635 if (IBI->getNumDestinations() == 1) { 5636 // If the indirectbr has one successor, change it to a direct branch. 5637 BranchInst::Create(IBI->getDestination(0), IBI); 5638 EraseTerminatorInstAndDCECond(IBI); 5639 return true; 5640 } 5641 5642 if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) { 5643 if (SimplifyIndirectBrOnSelect(IBI, SI)) 5644 return simplifyCFG(BB, TTI, Options) | true; 5645 } 5646 return Changed; 5647 } 5648 5649 /// Given an block with only a single landing pad and a unconditional branch 5650 /// try to find another basic block which this one can be merged with. This 5651 /// handles cases where we have multiple invokes with unique landing pads, but 5652 /// a shared handler. 5653 /// 5654 /// We specifically choose to not worry about merging non-empty blocks 5655 /// here. That is a PRE/scheduling problem and is best solved elsewhere. In 5656 /// practice, the optimizer produces empty landing pad blocks quite frequently 5657 /// when dealing with exception dense code. (see: instcombine, gvn, if-else 5658 /// sinking in this file) 5659 /// 5660 /// This is primarily a code size optimization. We need to avoid performing 5661 /// any transform which might inhibit optimization (such as our ability to 5662 /// specialize a particular handler via tail commoning). We do this by not 5663 /// merging any blocks which require us to introduce a phi. Since the same 5664 /// values are flowing through both blocks, we don't loose any ability to 5665 /// specialize. If anything, we make such specialization more likely. 5666 /// 5667 /// TODO - This transformation could remove entries from a phi in the target 5668 /// block when the inputs in the phi are the same for the two blocks being 5669 /// merged. In some cases, this could result in removal of the PHI entirely. 5670 static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI, 5671 BasicBlock *BB) { 5672 auto Succ = BB->getUniqueSuccessor(); 5673 assert(Succ); 5674 // If there's a phi in the successor block, we'd likely have to introduce 5675 // a phi into the merged landing pad block. 5676 if (isa<PHINode>(*Succ->begin())) 5677 return false; 5678 5679 for (BasicBlock *OtherPred : predecessors(Succ)) { 5680 if (BB == OtherPred) 5681 continue; 5682 BasicBlock::iterator I = OtherPred->begin(); 5683 LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I); 5684 if (!LPad2 || !LPad2->isIdenticalTo(LPad)) 5685 continue; 5686 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 5687 ; 5688 BranchInst *BI2 = dyn_cast<BranchInst>(I); 5689 if (!BI2 || !BI2->isIdenticalTo(BI)) 5690 continue; 5691 5692 // We've found an identical block. Update our predecessors to take that 5693 // path instead and make ourselves dead. 5694 SmallSet<BasicBlock *, 16> Preds; 5695 Preds.insert(pred_begin(BB), pred_end(BB)); 5696 for (BasicBlock *Pred : Preds) { 5697 InvokeInst *II = cast<InvokeInst>(Pred->getTerminator()); 5698 assert(II->getNormalDest() != BB && II->getUnwindDest() == BB && 5699 "unexpected successor"); 5700 II->setUnwindDest(OtherPred); 5701 } 5702 5703 // The debug info in OtherPred doesn't cover the merged control flow that 5704 // used to go through BB. We need to delete it or update it. 5705 for (auto I = OtherPred->begin(), E = OtherPred->end(); I != E;) { 5706 Instruction &Inst = *I; 5707 I++; 5708 if (isa<DbgInfoIntrinsic>(Inst)) 5709 Inst.eraseFromParent(); 5710 } 5711 5712 SmallSet<BasicBlock *, 16> Succs; 5713 Succs.insert(succ_begin(BB), succ_end(BB)); 5714 for (BasicBlock *Succ : Succs) { 5715 Succ->removePredecessor(BB); 5716 } 5717 5718 IRBuilder<> Builder(BI); 5719 Builder.CreateUnreachable(); 5720 BI->eraseFromParent(); 5721 return true; 5722 } 5723 return false; 5724 } 5725 5726 bool SimplifyCFGOpt::SimplifyUncondBranch(BranchInst *BI, 5727 IRBuilder<> &Builder) { 5728 BasicBlock *BB = BI->getParent(); 5729 BasicBlock *Succ = BI->getSuccessor(0); 5730 5731 // If the Terminator is the only non-phi instruction, simplify the block. 5732 // If LoopHeader is provided, check if the block or its successor is a loop 5733 // header. (This is for early invocations before loop simplify and 5734 // vectorization to keep canonical loop forms for nested loops. These blocks 5735 // can be eliminated when the pass is invoked later in the back-end.) 5736 bool NeedCanonicalLoop = 5737 Options.NeedCanonicalLoop && 5738 (LoopHeaders && (LoopHeaders->count(BB) || LoopHeaders->count(Succ))); 5739 BasicBlock::iterator I = BB->getFirstNonPHIOrDbg()->getIterator(); 5740 if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() && 5741 !NeedCanonicalLoop && TryToSimplifyUncondBranchFromEmptyBlock(BB)) 5742 return true; 5743 5744 // If the only instruction in the block is a seteq/setne comparison against a 5745 // constant, try to simplify the block. 5746 if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) 5747 if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) { 5748 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 5749 ; 5750 if (I->isTerminator() && 5751 tryToSimplifyUncondBranchWithICmpInIt(ICI, Builder, DL, TTI, Options)) 5752 return true; 5753 } 5754 5755 // See if we can merge an empty landing pad block with another which is 5756 // equivalent. 5757 if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) { 5758 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 5759 ; 5760 if (I->isTerminator() && TryToMergeLandingPad(LPad, BI, BB)) 5761 return true; 5762 } 5763 5764 // If this basic block is ONLY a compare and a branch, and if a predecessor 5765 // branches to us and our successor, fold the comparison into the 5766 // predecessor and use logical operations to update the incoming value 5767 // for PHI nodes in common successor. 5768 if (FoldBranchToCommonDest(BI, Options.BonusInstThreshold)) 5769 return simplifyCFG(BB, TTI, Options) | true; 5770 return false; 5771 } 5772 5773 static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) { 5774 BasicBlock *PredPred = nullptr; 5775 for (auto *P : predecessors(BB)) { 5776 BasicBlock *PPred = P->getSinglePredecessor(); 5777 if (!PPred || (PredPred && PredPred != PPred)) 5778 return nullptr; 5779 PredPred = PPred; 5780 } 5781 return PredPred; 5782 } 5783 5784 bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) { 5785 BasicBlock *BB = BI->getParent(); 5786 5787 // Conditional branch 5788 if (isValueEqualityComparison(BI)) { 5789 // If we only have one predecessor, and if it is a branch on this value, 5790 // see if that predecessor totally determines the outcome of this 5791 // switch. 5792 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 5793 if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder)) 5794 return simplifyCFG(BB, TTI, Options) | true; 5795 5796 // This block must be empty, except for the setcond inst, if it exists. 5797 // Ignore dbg intrinsics. 5798 BasicBlock::iterator I = BB->begin(); 5799 // Ignore dbg intrinsics. 5800 while (isa<DbgInfoIntrinsic>(I)) 5801 ++I; 5802 if (&*I == BI) { 5803 if (FoldValueComparisonIntoPredecessors(BI, Builder)) 5804 return simplifyCFG(BB, TTI, Options) | true; 5805 } else if (&*I == cast<Instruction>(BI->getCondition())) { 5806 ++I; 5807 // Ignore dbg intrinsics. 5808 while (isa<DbgInfoIntrinsic>(I)) 5809 ++I; 5810 if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder)) 5811 return simplifyCFG(BB, TTI, Options) | true; 5812 } 5813 } 5814 5815 // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction. 5816 if (SimplifyBranchOnICmpChain(BI, Builder, DL)) 5817 return true; 5818 5819 // If this basic block has a single dominating predecessor block and the 5820 // dominating block's condition implies BI's condition, we know the direction 5821 // of the BI branch. 5822 if (BasicBlock *Dom = BB->getSinglePredecessor()) { 5823 auto *PBI = dyn_cast_or_null<BranchInst>(Dom->getTerminator()); 5824 if (PBI && PBI->isConditional() && 5825 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 5826 assert(PBI->getSuccessor(0) == BB || PBI->getSuccessor(1) == BB); 5827 bool CondIsTrue = PBI->getSuccessor(0) == BB; 5828 Optional<bool> Implication = isImpliedCondition( 5829 PBI->getCondition(), BI->getCondition(), DL, CondIsTrue); 5830 if (Implication) { 5831 // Turn this into a branch on constant. 5832 auto *OldCond = BI->getCondition(); 5833 ConstantInt *CI = *Implication 5834 ? ConstantInt::getTrue(BB->getContext()) 5835 : ConstantInt::getFalse(BB->getContext()); 5836 BI->setCondition(CI); 5837 RecursivelyDeleteTriviallyDeadInstructions(OldCond); 5838 return simplifyCFG(BB, TTI, Options) | true; 5839 } 5840 } 5841 } 5842 5843 // If this basic block is ONLY a compare and a branch, and if a predecessor 5844 // branches to us and one of our successors, fold the comparison into the 5845 // predecessor and use logical operations to pick the right destination. 5846 if (FoldBranchToCommonDest(BI, Options.BonusInstThreshold)) 5847 return simplifyCFG(BB, TTI, Options) | true; 5848 5849 // We have a conditional branch to two blocks that are only reachable 5850 // from BI. We know that the condbr dominates the two blocks, so see if 5851 // there is any identical code in the "then" and "else" blocks. If so, we 5852 // can hoist it up to the branching block. 5853 if (BI->getSuccessor(0)->getSinglePredecessor()) { 5854 if (BI->getSuccessor(1)->getSinglePredecessor()) { 5855 if (HoistThenElseCodeToIf(BI, TTI)) 5856 return simplifyCFG(BB, TTI, Options) | true; 5857 } else { 5858 // If Successor #1 has multiple preds, we may be able to conditionally 5859 // execute Successor #0 if it branches to Successor #1. 5860 TerminatorInst *Succ0TI = BI->getSuccessor(0)->getTerminator(); 5861 if (Succ0TI->getNumSuccessors() == 1 && 5862 Succ0TI->getSuccessor(0) == BI->getSuccessor(1)) 5863 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), TTI)) 5864 return simplifyCFG(BB, TTI, Options) | true; 5865 } 5866 } else if (BI->getSuccessor(1)->getSinglePredecessor()) { 5867 // If Successor #0 has multiple preds, we may be able to conditionally 5868 // execute Successor #1 if it branches to Successor #0. 5869 TerminatorInst *Succ1TI = BI->getSuccessor(1)->getTerminator(); 5870 if (Succ1TI->getNumSuccessors() == 1 && 5871 Succ1TI->getSuccessor(0) == BI->getSuccessor(0)) 5872 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), TTI)) 5873 return simplifyCFG(BB, TTI, Options) | true; 5874 } 5875 5876 // If this is a branch on a phi node in the current block, thread control 5877 // through this block if any PHI node entries are constants. 5878 if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition())) 5879 if (PN->getParent() == BI->getParent()) 5880 if (FoldCondBranchOnPHI(BI, DL, Options.AC)) 5881 return simplifyCFG(BB, TTI, Options) | true; 5882 5883 // Scan predecessor blocks for conditional branches. 5884 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 5885 if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator())) 5886 if (PBI != BI && PBI->isConditional()) 5887 if (SimplifyCondBranchToCondBranch(PBI, BI, DL)) 5888 return simplifyCFG(BB, TTI, Options) | true; 5889 5890 // Look for diamond patterns. 5891 if (MergeCondStores) 5892 if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB)) 5893 if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator())) 5894 if (PBI != BI && PBI->isConditional()) 5895 if (mergeConditionalStores(PBI, BI, DL)) 5896 return simplifyCFG(BB, TTI, Options) | true; 5897 5898 return false; 5899 } 5900 5901 /// Check if passing a value to an instruction will cause undefined behavior. 5902 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I) { 5903 Constant *C = dyn_cast<Constant>(V); 5904 if (!C) 5905 return false; 5906 5907 if (I->use_empty()) 5908 return false; 5909 5910 if (C->isNullValue() || isa<UndefValue>(C)) { 5911 // Only look at the first use, avoid hurting compile time with long uselists 5912 User *Use = *I->user_begin(); 5913 5914 // Now make sure that there are no instructions in between that can alter 5915 // control flow (eg. calls) 5916 for (BasicBlock::iterator 5917 i = ++BasicBlock::iterator(I), 5918 UI = BasicBlock::iterator(dyn_cast<Instruction>(Use)); 5919 i != UI; ++i) 5920 if (i == I->getParent()->end() || i->mayHaveSideEffects()) 5921 return false; 5922 5923 // Look through GEPs. A load from a GEP derived from NULL is still undefined 5924 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use)) 5925 if (GEP->getPointerOperand() == I) 5926 return passingValueIsAlwaysUndefined(V, GEP); 5927 5928 // Look through bitcasts. 5929 if (BitCastInst *BC = dyn_cast<BitCastInst>(Use)) 5930 return passingValueIsAlwaysUndefined(V, BC); 5931 5932 // Load from null is undefined. 5933 if (LoadInst *LI = dyn_cast<LoadInst>(Use)) 5934 if (!LI->isVolatile()) 5935 return LI->getPointerAddressSpace() == 0; 5936 5937 // Store to null is undefined. 5938 if (StoreInst *SI = dyn_cast<StoreInst>(Use)) 5939 if (!SI->isVolatile()) 5940 return SI->getPointerAddressSpace() == 0 && 5941 SI->getPointerOperand() == I; 5942 5943 // A call to null is undefined. 5944 if (auto CS = CallSite(Use)) 5945 return CS.getCalledValue() == I; 5946 } 5947 return false; 5948 } 5949 5950 /// If BB has an incoming value that will always trigger undefined behavior 5951 /// (eg. null pointer dereference), remove the branch leading here. 5952 static bool removeUndefIntroducingPredecessor(BasicBlock *BB) { 5953 for (PHINode &PHI : BB->phis()) 5954 for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i) 5955 if (passingValueIsAlwaysUndefined(PHI.getIncomingValue(i), &PHI)) { 5956 TerminatorInst *T = PHI.getIncomingBlock(i)->getTerminator(); 5957 IRBuilder<> Builder(T); 5958 if (BranchInst *BI = dyn_cast<BranchInst>(T)) { 5959 BB->removePredecessor(PHI.getIncomingBlock(i)); 5960 // Turn uncoditional branches into unreachables and remove the dead 5961 // destination from conditional branches. 5962 if (BI->isUnconditional()) 5963 Builder.CreateUnreachable(); 5964 else 5965 Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1) 5966 : BI->getSuccessor(0)); 5967 BI->eraseFromParent(); 5968 return true; 5969 } 5970 // TODO: SwitchInst. 5971 } 5972 5973 return false; 5974 } 5975 5976 bool SimplifyCFGOpt::run(BasicBlock *BB) { 5977 bool Changed = false; 5978 5979 assert(BB && BB->getParent() && "Block not embedded in function!"); 5980 assert(BB->getTerminator() && "Degenerate basic block encountered!"); 5981 5982 // Remove basic blocks that have no predecessors (except the entry block)... 5983 // or that just have themself as a predecessor. These are unreachable. 5984 if ((pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) || 5985 BB->getSinglePredecessor() == BB) { 5986 DEBUG(dbgs() << "Removing BB: \n" << *BB); 5987 DeleteDeadBlock(BB); 5988 return true; 5989 } 5990 5991 // Check to see if we can constant propagate this terminator instruction 5992 // away... 5993 Changed |= ConstantFoldTerminator(BB, true); 5994 5995 // Check for and eliminate duplicate PHI nodes in this block. 5996 Changed |= EliminateDuplicatePHINodes(BB); 5997 5998 // Check for and remove branches that will always cause undefined behavior. 5999 Changed |= removeUndefIntroducingPredecessor(BB); 6000 6001 // Merge basic blocks into their predecessor if there is only one distinct 6002 // pred, and if there is only one distinct successor of the predecessor, and 6003 // if there are no PHI nodes. 6004 if (MergeBlockIntoPredecessor(BB)) 6005 return true; 6006 6007 if (SinkCommon && Options.SinkCommonInsts) 6008 Changed |= SinkCommonCodeFromPredecessors(BB); 6009 6010 IRBuilder<> Builder(BB); 6011 6012 // If there is a trivial two-entry PHI node in this basic block, and we can 6013 // eliminate it, do so now. 6014 if (auto *PN = dyn_cast<PHINode>(BB->begin())) 6015 if (PN->getNumIncomingValues() == 2) 6016 Changed |= FoldTwoEntryPHINode(PN, TTI, DL); 6017 6018 Builder.SetInsertPoint(BB->getTerminator()); 6019 if (auto *BI = dyn_cast<BranchInst>(BB->getTerminator())) { 6020 if (BI->isUnconditional()) { 6021 if (SimplifyUncondBranch(BI, Builder)) 6022 return true; 6023 } else { 6024 if (SimplifyCondBranch(BI, Builder)) 6025 return true; 6026 } 6027 } else if (auto *RI = dyn_cast<ReturnInst>(BB->getTerminator())) { 6028 if (SimplifyReturn(RI, Builder)) 6029 return true; 6030 } else if (auto *RI = dyn_cast<ResumeInst>(BB->getTerminator())) { 6031 if (SimplifyResume(RI, Builder)) 6032 return true; 6033 } else if (auto *RI = dyn_cast<CleanupReturnInst>(BB->getTerminator())) { 6034 if (SimplifyCleanupReturn(RI)) 6035 return true; 6036 } else if (auto *SI = dyn_cast<SwitchInst>(BB->getTerminator())) { 6037 if (SimplifySwitch(SI, Builder)) 6038 return true; 6039 } else if (auto *UI = dyn_cast<UnreachableInst>(BB->getTerminator())) { 6040 if (SimplifyUnreachable(UI)) 6041 return true; 6042 } else if (auto *IBI = dyn_cast<IndirectBrInst>(BB->getTerminator())) { 6043 if (SimplifyIndirectBr(IBI)) 6044 return true; 6045 } 6046 6047 return Changed; 6048 } 6049 6050 bool llvm::simplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI, 6051 const SimplifyCFGOptions &Options, 6052 SmallPtrSetImpl<BasicBlock *> *LoopHeaders) { 6053 return SimplifyCFGOpt(TTI, BB->getModule()->getDataLayout(), LoopHeaders, 6054 Options) 6055 .run(BB); 6056 } 6057