1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Peephole optimize the CFG.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/ADT/APInt.h"
14 #include "llvm/ADT/ArrayRef.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/MapVector.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SetOperations.h"
20 #include "llvm/ADT/SetVector.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/ADT/StringRef.h"
25 #include "llvm/Analysis/AssumptionCache.h"
26 #include "llvm/Analysis/ConstantFolding.h"
27 #include "llvm/Analysis/EHPersonalities.h"
28 #include "llvm/Analysis/GuardUtils.h"
29 #include "llvm/Analysis/InstructionSimplify.h"
30 #include "llvm/Analysis/MemorySSA.h"
31 #include "llvm/Analysis/MemorySSAUpdater.h"
32 #include "llvm/Analysis/TargetTransformInfo.h"
33 #include "llvm/Analysis/ValueTracking.h"
34 #include "llvm/IR/Attributes.h"
35 #include "llvm/IR/BasicBlock.h"
36 #include "llvm/IR/CFG.h"
37 #include "llvm/IR/CallSite.h"
38 #include "llvm/IR/Constant.h"
39 #include "llvm/IR/ConstantRange.h"
40 #include "llvm/IR/Constants.h"
41 #include "llvm/IR/DataLayout.h"
42 #include "llvm/IR/DebugInfoMetadata.h"
43 #include "llvm/IR/DerivedTypes.h"
44 #include "llvm/IR/Function.h"
45 #include "llvm/IR/GlobalValue.h"
46 #include "llvm/IR/GlobalVariable.h"
47 #include "llvm/IR/IRBuilder.h"
48 #include "llvm/IR/InstrTypes.h"
49 #include "llvm/IR/Instruction.h"
50 #include "llvm/IR/Instructions.h"
51 #include "llvm/IR/IntrinsicInst.h"
52 #include "llvm/IR/Intrinsics.h"
53 #include "llvm/IR/LLVMContext.h"
54 #include "llvm/IR/MDBuilder.h"
55 #include "llvm/IR/Metadata.h"
56 #include "llvm/IR/Module.h"
57 #include "llvm/IR/NoFolder.h"
58 #include "llvm/IR/Operator.h"
59 #include "llvm/IR/PatternMatch.h"
60 #include "llvm/IR/Type.h"
61 #include "llvm/IR/Use.h"
62 #include "llvm/IR/User.h"
63 #include "llvm/IR/Value.h"
64 #include "llvm/Support/Casting.h"
65 #include "llvm/Support/CommandLine.h"
66 #include "llvm/Support/Debug.h"
67 #include "llvm/Support/ErrorHandling.h"
68 #include "llvm/Support/KnownBits.h"
69 #include "llvm/Support/MathExtras.h"
70 #include "llvm/Support/raw_ostream.h"
71 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
72 #include "llvm/Transforms/Utils/Local.h"
73 #include "llvm/Transforms/Utils/ValueMapper.h"
74 #include <algorithm>
75 #include <cassert>
76 #include <climits>
77 #include <cstddef>
78 #include <cstdint>
79 #include <iterator>
80 #include <map>
81 #include <set>
82 #include <tuple>
83 #include <utility>
84 #include <vector>
85 
86 using namespace llvm;
87 using namespace PatternMatch;
88 
89 #define DEBUG_TYPE "simplifycfg"
90 
91 // Chosen as 2 so as to be cheap, but still to have enough power to fold
92 // a select, so the "clamp" idiom (of a min followed by a max) will be caught.
93 // To catch this, we need to fold a compare and a select, hence '2' being the
94 // minimum reasonable default.
95 static cl::opt<unsigned> PHINodeFoldingThreshold(
96     "phi-node-folding-threshold", cl::Hidden, cl::init(2),
97     cl::desc(
98         "Control the amount of phi node folding to perform (default = 2)"));
99 
100 static cl::opt<unsigned> TwoEntryPHINodeFoldingThreshold(
101     "two-entry-phi-node-folding-threshold", cl::Hidden, cl::init(4),
102     cl::desc("Control the maximal total instruction cost that we are willing "
103              "to speculatively execute to fold a 2-entry PHI node into a "
104              "select (default = 4)"));
105 
106 static cl::opt<bool> DupRet(
107     "simplifycfg-dup-ret", cl::Hidden, cl::init(false),
108     cl::desc("Duplicate return instructions into unconditional branches"));
109 
110 static cl::opt<bool>
111     SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true),
112                cl::desc("Sink common instructions down to the end block"));
113 
114 static cl::opt<bool> HoistCondStores(
115     "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true),
116     cl::desc("Hoist conditional stores if an unconditional store precedes"));
117 
118 static cl::opt<bool> MergeCondStores(
119     "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true),
120     cl::desc("Hoist conditional stores even if an unconditional store does not "
121              "precede - hoist multiple conditional stores into a single "
122              "predicated store"));
123 
124 static cl::opt<bool> MergeCondStoresAggressively(
125     "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false),
126     cl::desc("When merging conditional stores, do so even if the resultant "
127              "basic blocks are unlikely to be if-converted as a result"));
128 
129 static cl::opt<bool> SpeculateOneExpensiveInst(
130     "speculate-one-expensive-inst", cl::Hidden, cl::init(true),
131     cl::desc("Allow exactly one expensive instruction to be speculatively "
132              "executed"));
133 
134 static cl::opt<unsigned> MaxSpeculationDepth(
135     "max-speculation-depth", cl::Hidden, cl::init(10),
136     cl::desc("Limit maximum recursion depth when calculating costs of "
137              "speculatively executed instructions"));
138 
139 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps");
140 STATISTIC(NumLinearMaps,
141           "Number of switch instructions turned into linear mapping");
142 STATISTIC(NumLookupTables,
143           "Number of switch instructions turned into lookup tables");
144 STATISTIC(
145     NumLookupTablesHoles,
146     "Number of switch instructions turned into lookup tables (holes checked)");
147 STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares");
148 STATISTIC(NumSinkCommons,
149           "Number of common instructions sunk down to the end block");
150 STATISTIC(NumSpeculations, "Number of speculative executed instructions");
151 
152 namespace {
153 
154 // The first field contains the value that the switch produces when a certain
155 // case group is selected, and the second field is a vector containing the
156 // cases composing the case group.
157 using SwitchCaseResultVectorTy =
158     SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2>;
159 
160 // The first field contains the phi node that generates a result of the switch
161 // and the second field contains the value generated for a certain case in the
162 // switch for that PHI.
163 using SwitchCaseResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>;
164 
165 /// ValueEqualityComparisonCase - Represents a case of a switch.
166 struct ValueEqualityComparisonCase {
167   ConstantInt *Value;
168   BasicBlock *Dest;
169 
170   ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest)
171       : Value(Value), Dest(Dest) {}
172 
173   bool operator<(ValueEqualityComparisonCase RHS) const {
174     // Comparing pointers is ok as we only rely on the order for uniquing.
175     return Value < RHS.Value;
176   }
177 
178   bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; }
179 };
180 
181 class SimplifyCFGOpt {
182   const TargetTransformInfo &TTI;
183   const DataLayout &DL;
184   SmallPtrSetImpl<BasicBlock *> *LoopHeaders;
185   const SimplifyCFGOptions &Options;
186   bool Resimplify;
187 
188   Value *isValueEqualityComparison(Instruction *TI);
189   BasicBlock *GetValueEqualityComparisonCases(
190       Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases);
191   bool SimplifyEqualityComparisonWithOnlyPredecessor(Instruction *TI,
192                                                      BasicBlock *Pred,
193                                                      IRBuilder<> &Builder);
194   bool FoldValueComparisonIntoPredecessors(Instruction *TI,
195                                            IRBuilder<> &Builder);
196 
197   bool SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder);
198   bool SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder);
199   bool SimplifySingleResume(ResumeInst *RI);
200   bool SimplifyCommonResume(ResumeInst *RI);
201   bool SimplifyCleanupReturn(CleanupReturnInst *RI);
202   bool SimplifyUnreachable(UnreachableInst *UI);
203   bool SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder);
204   bool SimplifyIndirectBr(IndirectBrInst *IBI);
205   bool SimplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder);
206   bool SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder);
207 
208   bool tryToSimplifyUncondBranchWithICmpInIt(ICmpInst *ICI,
209                                              IRBuilder<> &Builder);
210 
211 public:
212   SimplifyCFGOpt(const TargetTransformInfo &TTI, const DataLayout &DL,
213                  SmallPtrSetImpl<BasicBlock *> *LoopHeaders,
214                  const SimplifyCFGOptions &Opts)
215       : TTI(TTI), DL(DL), LoopHeaders(LoopHeaders), Options(Opts) {}
216 
217   bool run(BasicBlock *BB);
218   bool simplifyOnce(BasicBlock *BB);
219 
220   // Helper to set Resimplify and return change indication.
221   bool requestResimplify() {
222     Resimplify = true;
223     return true;
224   }
225 };
226 
227 } // end anonymous namespace
228 
229 /// Return true if it is safe to merge these two
230 /// terminator instructions together.
231 static bool
232 SafeToMergeTerminators(Instruction *SI1, Instruction *SI2,
233                        SmallSetVector<BasicBlock *, 4> *FailBlocks = nullptr) {
234   if (SI1 == SI2)
235     return false; // Can't merge with self!
236 
237   // It is not safe to merge these two switch instructions if they have a common
238   // successor, and if that successor has a PHI node, and if *that* PHI node has
239   // conflicting incoming values from the two switch blocks.
240   BasicBlock *SI1BB = SI1->getParent();
241   BasicBlock *SI2BB = SI2->getParent();
242 
243   SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
244   bool Fail = false;
245   for (BasicBlock *Succ : successors(SI2BB))
246     if (SI1Succs.count(Succ))
247       for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) {
248         PHINode *PN = cast<PHINode>(BBI);
249         if (PN->getIncomingValueForBlock(SI1BB) !=
250             PN->getIncomingValueForBlock(SI2BB)) {
251           if (FailBlocks)
252             FailBlocks->insert(Succ);
253           Fail = true;
254         }
255       }
256 
257   return !Fail;
258 }
259 
260 /// Return true if it is safe and profitable to merge these two terminator
261 /// instructions together, where SI1 is an unconditional branch. PhiNodes will
262 /// store all PHI nodes in common successors.
263 static bool
264 isProfitableToFoldUnconditional(BranchInst *SI1, BranchInst *SI2,
265                                 Instruction *Cond,
266                                 SmallVectorImpl<PHINode *> &PhiNodes) {
267   if (SI1 == SI2)
268     return false; // Can't merge with self!
269   assert(SI1->isUnconditional() && SI2->isConditional());
270 
271   // We fold the unconditional branch if we can easily update all PHI nodes in
272   // common successors:
273   // 1> We have a constant incoming value for the conditional branch;
274   // 2> We have "Cond" as the incoming value for the unconditional branch;
275   // 3> SI2->getCondition() and Cond have same operands.
276   CmpInst *Ci2 = dyn_cast<CmpInst>(SI2->getCondition());
277   if (!Ci2)
278     return false;
279   if (!(Cond->getOperand(0) == Ci2->getOperand(0) &&
280         Cond->getOperand(1) == Ci2->getOperand(1)) &&
281       !(Cond->getOperand(0) == Ci2->getOperand(1) &&
282         Cond->getOperand(1) == Ci2->getOperand(0)))
283     return false;
284 
285   BasicBlock *SI1BB = SI1->getParent();
286   BasicBlock *SI2BB = SI2->getParent();
287   SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
288   for (BasicBlock *Succ : successors(SI2BB))
289     if (SI1Succs.count(Succ))
290       for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) {
291         PHINode *PN = cast<PHINode>(BBI);
292         if (PN->getIncomingValueForBlock(SI1BB) != Cond ||
293             !isa<ConstantInt>(PN->getIncomingValueForBlock(SI2BB)))
294           return false;
295         PhiNodes.push_back(PN);
296       }
297   return true;
298 }
299 
300 /// Update PHI nodes in Succ to indicate that there will now be entries in it
301 /// from the 'NewPred' block. The values that will be flowing into the PHI nodes
302 /// will be the same as those coming in from ExistPred, an existing predecessor
303 /// of Succ.
304 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred,
305                                   BasicBlock *ExistPred,
306                                   MemorySSAUpdater *MSSAU = nullptr) {
307   for (PHINode &PN : Succ->phis())
308     PN.addIncoming(PN.getIncomingValueForBlock(ExistPred), NewPred);
309   if (MSSAU)
310     if (auto *MPhi = MSSAU->getMemorySSA()->getMemoryAccess(Succ))
311       MPhi->addIncoming(MPhi->getIncomingValueForBlock(ExistPred), NewPred);
312 }
313 
314 /// Compute an abstract "cost" of speculating the given instruction,
315 /// which is assumed to be safe to speculate. TCC_Free means cheap,
316 /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively
317 /// expensive.
318 static unsigned ComputeSpeculationCost(const User *I,
319                                        const TargetTransformInfo &TTI) {
320   assert(isSafeToSpeculativelyExecute(I) &&
321          "Instruction is not safe to speculatively execute!");
322   return TTI.getUserCost(I);
323 }
324 
325 /// If we have a merge point of an "if condition" as accepted above,
326 /// return true if the specified value dominates the block.  We
327 /// don't handle the true generality of domination here, just a special case
328 /// which works well enough for us.
329 ///
330 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to
331 /// see if V (which must be an instruction) and its recursive operands
332 /// that do not dominate BB have a combined cost lower than CostRemaining and
333 /// are non-trapping.  If both are true, the instruction is inserted into the
334 /// set and true is returned.
335 ///
336 /// The cost for most non-trapping instructions is defined as 1 except for
337 /// Select whose cost is 2.
338 ///
339 /// After this function returns, CostRemaining is decreased by the cost of
340 /// V plus its non-dominating operands.  If that cost is greater than
341 /// CostRemaining, false is returned and CostRemaining is undefined.
342 static bool DominatesMergePoint(Value *V, BasicBlock *BB,
343                                 SmallPtrSetImpl<Instruction *> &AggressiveInsts,
344                                 int &BudgetRemaining,
345                                 const TargetTransformInfo &TTI,
346                                 unsigned Depth = 0) {
347   // It is possible to hit a zero-cost cycle (phi/gep instructions for example),
348   // so limit the recursion depth.
349   // TODO: While this recursion limit does prevent pathological behavior, it
350   // would be better to track visited instructions to avoid cycles.
351   if (Depth == MaxSpeculationDepth)
352     return false;
353 
354   Instruction *I = dyn_cast<Instruction>(V);
355   if (!I) {
356     // Non-instructions all dominate instructions, but not all constantexprs
357     // can be executed unconditionally.
358     if (ConstantExpr *C = dyn_cast<ConstantExpr>(V))
359       if (C->canTrap())
360         return false;
361     return true;
362   }
363   BasicBlock *PBB = I->getParent();
364 
365   // We don't want to allow weird loops that might have the "if condition" in
366   // the bottom of this block.
367   if (PBB == BB)
368     return false;
369 
370   // If this instruction is defined in a block that contains an unconditional
371   // branch to BB, then it must be in the 'conditional' part of the "if
372   // statement".  If not, it definitely dominates the region.
373   BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator());
374   if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB)
375     return true;
376 
377   // If we have seen this instruction before, don't count it again.
378   if (AggressiveInsts.count(I))
379     return true;
380 
381   // Okay, it looks like the instruction IS in the "condition".  Check to
382   // see if it's a cheap instruction to unconditionally compute, and if it
383   // only uses stuff defined outside of the condition.  If so, hoist it out.
384   if (!isSafeToSpeculativelyExecute(I))
385     return false;
386 
387   BudgetRemaining -= ComputeSpeculationCost(I, TTI);
388 
389   // Allow exactly one instruction to be speculated regardless of its cost
390   // (as long as it is safe to do so).
391   // This is intended to flatten the CFG even if the instruction is a division
392   // or other expensive operation. The speculation of an expensive instruction
393   // is expected to be undone in CodeGenPrepare if the speculation has not
394   // enabled further IR optimizations.
395   if (BudgetRemaining < 0 &&
396       (!SpeculateOneExpensiveInst || !AggressiveInsts.empty() || Depth > 0))
397     return false;
398 
399   // Okay, we can only really hoist these out if their operands do
400   // not take us over the cost threshold.
401   for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i)
402     if (!DominatesMergePoint(*i, BB, AggressiveInsts, BudgetRemaining, TTI,
403                              Depth + 1))
404       return false;
405   // Okay, it's safe to do this!  Remember this instruction.
406   AggressiveInsts.insert(I);
407   return true;
408 }
409 
410 /// Extract ConstantInt from value, looking through IntToPtr
411 /// and PointerNullValue. Return NULL if value is not a constant int.
412 static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) {
413   // Normal constant int.
414   ConstantInt *CI = dyn_cast<ConstantInt>(V);
415   if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy())
416     return CI;
417 
418   // This is some kind of pointer constant. Turn it into a pointer-sized
419   // ConstantInt if possible.
420   IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType()));
421 
422   // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*).
423   if (isa<ConstantPointerNull>(V))
424     return ConstantInt::get(PtrTy, 0);
425 
426   // IntToPtr const int.
427   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
428     if (CE->getOpcode() == Instruction::IntToPtr)
429       if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) {
430         // The constant is very likely to have the right type already.
431         if (CI->getType() == PtrTy)
432           return CI;
433         else
434           return cast<ConstantInt>(
435               ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false));
436       }
437   return nullptr;
438 }
439 
440 namespace {
441 
442 /// Given a chain of or (||) or and (&&) comparison of a value against a
443 /// constant, this will try to recover the information required for a switch
444 /// structure.
445 /// It will depth-first traverse the chain of comparison, seeking for patterns
446 /// like %a == 12 or %a < 4 and combine them to produce a set of integer
447 /// representing the different cases for the switch.
448 /// Note that if the chain is composed of '||' it will build the set of elements
449 /// that matches the comparisons (i.e. any of this value validate the chain)
450 /// while for a chain of '&&' it will build the set elements that make the test
451 /// fail.
452 struct ConstantComparesGatherer {
453   const DataLayout &DL;
454 
455   /// Value found for the switch comparison
456   Value *CompValue = nullptr;
457 
458   /// Extra clause to be checked before the switch
459   Value *Extra = nullptr;
460 
461   /// Set of integers to match in switch
462   SmallVector<ConstantInt *, 8> Vals;
463 
464   /// Number of comparisons matched in the and/or chain
465   unsigned UsedICmps = 0;
466 
467   /// Construct and compute the result for the comparison instruction Cond
468   ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL) : DL(DL) {
469     gather(Cond);
470   }
471 
472   ConstantComparesGatherer(const ConstantComparesGatherer &) = delete;
473   ConstantComparesGatherer &
474   operator=(const ConstantComparesGatherer &) = delete;
475 
476 private:
477   /// Try to set the current value used for the comparison, it succeeds only if
478   /// it wasn't set before or if the new value is the same as the old one
479   bool setValueOnce(Value *NewVal) {
480     if (CompValue && CompValue != NewVal)
481       return false;
482     CompValue = NewVal;
483     return (CompValue != nullptr);
484   }
485 
486   /// Try to match Instruction "I" as a comparison against a constant and
487   /// populates the array Vals with the set of values that match (or do not
488   /// match depending on isEQ).
489   /// Return false on failure. On success, the Value the comparison matched
490   /// against is placed in CompValue.
491   /// If CompValue is already set, the function is expected to fail if a match
492   /// is found but the value compared to is different.
493   bool matchInstruction(Instruction *I, bool isEQ) {
494     // If this is an icmp against a constant, handle this as one of the cases.
495     ICmpInst *ICI;
496     ConstantInt *C;
497     if (!((ICI = dyn_cast<ICmpInst>(I)) &&
498           (C = GetConstantInt(I->getOperand(1), DL)))) {
499       return false;
500     }
501 
502     Value *RHSVal;
503     const APInt *RHSC;
504 
505     // Pattern match a special case
506     // (x & ~2^z) == y --> x == y || x == y|2^z
507     // This undoes a transformation done by instcombine to fuse 2 compares.
508     if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE)) {
509       // It's a little bit hard to see why the following transformations are
510       // correct. Here is a CVC3 program to verify them for 64-bit values:
511 
512       /*
513          ONE  : BITVECTOR(64) = BVZEROEXTEND(0bin1, 63);
514          x    : BITVECTOR(64);
515          y    : BITVECTOR(64);
516          z    : BITVECTOR(64);
517          mask : BITVECTOR(64) = BVSHL(ONE, z);
518          QUERY( (y & ~mask = y) =>
519                 ((x & ~mask = y) <=> (x = y OR x = (y |  mask)))
520          );
521          QUERY( (y |  mask = y) =>
522                 ((x |  mask = y) <=> (x = y OR x = (y & ~mask)))
523          );
524       */
525 
526       // Please note that each pattern must be a dual implication (<--> or
527       // iff). One directional implication can create spurious matches. If the
528       // implication is only one-way, an unsatisfiable condition on the left
529       // side can imply a satisfiable condition on the right side. Dual
530       // implication ensures that satisfiable conditions are transformed to
531       // other satisfiable conditions and unsatisfiable conditions are
532       // transformed to other unsatisfiable conditions.
533 
534       // Here is a concrete example of a unsatisfiable condition on the left
535       // implying a satisfiable condition on the right:
536       //
537       // mask = (1 << z)
538       // (x & ~mask) == y  --> (x == y || x == (y | mask))
539       //
540       // Substituting y = 3, z = 0 yields:
541       // (x & -2) == 3 --> (x == 3 || x == 2)
542 
543       // Pattern match a special case:
544       /*
545         QUERY( (y & ~mask = y) =>
546                ((x & ~mask = y) <=> (x = y OR x = (y |  mask)))
547         );
548       */
549       if (match(ICI->getOperand(0),
550                 m_And(m_Value(RHSVal), m_APInt(RHSC)))) {
551         APInt Mask = ~*RHSC;
552         if (Mask.isPowerOf2() && (C->getValue() & ~Mask) == C->getValue()) {
553           // If we already have a value for the switch, it has to match!
554           if (!setValueOnce(RHSVal))
555             return false;
556 
557           Vals.push_back(C);
558           Vals.push_back(
559               ConstantInt::get(C->getContext(),
560                                C->getValue() | Mask));
561           UsedICmps++;
562           return true;
563         }
564       }
565 
566       // Pattern match a special case:
567       /*
568         QUERY( (y |  mask = y) =>
569                ((x |  mask = y) <=> (x = y OR x = (y & ~mask)))
570         );
571       */
572       if (match(ICI->getOperand(0),
573                 m_Or(m_Value(RHSVal), m_APInt(RHSC)))) {
574         APInt Mask = *RHSC;
575         if (Mask.isPowerOf2() && (C->getValue() | Mask) == C->getValue()) {
576           // If we already have a value for the switch, it has to match!
577           if (!setValueOnce(RHSVal))
578             return false;
579 
580           Vals.push_back(C);
581           Vals.push_back(ConstantInt::get(C->getContext(),
582                                           C->getValue() & ~Mask));
583           UsedICmps++;
584           return true;
585         }
586       }
587 
588       // If we already have a value for the switch, it has to match!
589       if (!setValueOnce(ICI->getOperand(0)))
590         return false;
591 
592       UsedICmps++;
593       Vals.push_back(C);
594       return ICI->getOperand(0);
595     }
596 
597     // If we have "x ult 3", for example, then we can add 0,1,2 to the set.
598     ConstantRange Span = ConstantRange::makeAllowedICmpRegion(
599         ICI->getPredicate(), C->getValue());
600 
601     // Shift the range if the compare is fed by an add. This is the range
602     // compare idiom as emitted by instcombine.
603     Value *CandidateVal = I->getOperand(0);
604     if (match(I->getOperand(0), m_Add(m_Value(RHSVal), m_APInt(RHSC)))) {
605       Span = Span.subtract(*RHSC);
606       CandidateVal = RHSVal;
607     }
608 
609     // If this is an and/!= check, then we are looking to build the set of
610     // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into
611     // x != 0 && x != 1.
612     if (!isEQ)
613       Span = Span.inverse();
614 
615     // If there are a ton of values, we don't want to make a ginormous switch.
616     if (Span.isSizeLargerThan(8) || Span.isEmptySet()) {
617       return false;
618     }
619 
620     // If we already have a value for the switch, it has to match!
621     if (!setValueOnce(CandidateVal))
622       return false;
623 
624     // Add all values from the range to the set
625     for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp)
626       Vals.push_back(ConstantInt::get(I->getContext(), Tmp));
627 
628     UsedICmps++;
629     return true;
630   }
631 
632   /// Given a potentially 'or'd or 'and'd together collection of icmp
633   /// eq/ne/lt/gt instructions that compare a value against a constant, extract
634   /// the value being compared, and stick the list constants into the Vals
635   /// vector.
636   /// One "Extra" case is allowed to differ from the other.
637   void gather(Value *V) {
638     bool isEQ = (cast<Instruction>(V)->getOpcode() == Instruction::Or);
639 
640     // Keep a stack (SmallVector for efficiency) for depth-first traversal
641     SmallVector<Value *, 8> DFT;
642     SmallPtrSet<Value *, 8> Visited;
643 
644     // Initialize
645     Visited.insert(V);
646     DFT.push_back(V);
647 
648     while (!DFT.empty()) {
649       V = DFT.pop_back_val();
650 
651       if (Instruction *I = dyn_cast<Instruction>(V)) {
652         // If it is a || (or && depending on isEQ), process the operands.
653         if (I->getOpcode() == (isEQ ? Instruction::Or : Instruction::And)) {
654           if (Visited.insert(I->getOperand(1)).second)
655             DFT.push_back(I->getOperand(1));
656           if (Visited.insert(I->getOperand(0)).second)
657             DFT.push_back(I->getOperand(0));
658           continue;
659         }
660 
661         // Try to match the current instruction
662         if (matchInstruction(I, isEQ))
663           // Match succeed, continue the loop
664           continue;
665       }
666 
667       // One element of the sequence of || (or &&) could not be match as a
668       // comparison against the same value as the others.
669       // We allow only one "Extra" case to be checked before the switch
670       if (!Extra) {
671         Extra = V;
672         continue;
673       }
674       // Failed to parse a proper sequence, abort now
675       CompValue = nullptr;
676       break;
677     }
678   }
679 };
680 
681 } // end anonymous namespace
682 
683 static void EraseTerminatorAndDCECond(Instruction *TI,
684                                       MemorySSAUpdater *MSSAU = nullptr) {
685   Instruction *Cond = nullptr;
686   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
687     Cond = dyn_cast<Instruction>(SI->getCondition());
688   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
689     if (BI->isConditional())
690       Cond = dyn_cast<Instruction>(BI->getCondition());
691   } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) {
692     Cond = dyn_cast<Instruction>(IBI->getAddress());
693   }
694 
695   TI->eraseFromParent();
696   if (Cond)
697     RecursivelyDeleteTriviallyDeadInstructions(Cond, nullptr, MSSAU);
698 }
699 
700 /// Return true if the specified terminator checks
701 /// to see if a value is equal to constant integer value.
702 Value *SimplifyCFGOpt::isValueEqualityComparison(Instruction *TI) {
703   Value *CV = nullptr;
704   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
705     // Do not permit merging of large switch instructions into their
706     // predecessors unless there is only one predecessor.
707     if (!SI->getParent()->hasNPredecessorsOrMore(128 / SI->getNumSuccessors()))
708       CV = SI->getCondition();
709   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI))
710     if (BI->isConditional() && BI->getCondition()->hasOneUse())
711       if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) {
712         if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL))
713           CV = ICI->getOperand(0);
714       }
715 
716   // Unwrap any lossless ptrtoint cast.
717   if (CV) {
718     if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) {
719       Value *Ptr = PTII->getPointerOperand();
720       if (PTII->getType() == DL.getIntPtrType(Ptr->getType()))
721         CV = Ptr;
722     }
723   }
724   return CV;
725 }
726 
727 /// Given a value comparison instruction,
728 /// decode all of the 'cases' that it represents and return the 'default' block.
729 BasicBlock *SimplifyCFGOpt::GetValueEqualityComparisonCases(
730     Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases) {
731   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
732     Cases.reserve(SI->getNumCases());
733     for (auto Case : SI->cases())
734       Cases.push_back(ValueEqualityComparisonCase(Case.getCaseValue(),
735                                                   Case.getCaseSuccessor()));
736     return SI->getDefaultDest();
737   }
738 
739   BranchInst *BI = cast<BranchInst>(TI);
740   ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
741   BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE);
742   Cases.push_back(ValueEqualityComparisonCase(
743       GetConstantInt(ICI->getOperand(1), DL), Succ));
744   return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ);
745 }
746 
747 /// Given a vector of bb/value pairs, remove any entries
748 /// in the list that match the specified block.
749 static void
750 EliminateBlockCases(BasicBlock *BB,
751                     std::vector<ValueEqualityComparisonCase> &Cases) {
752   Cases.erase(std::remove(Cases.begin(), Cases.end(), BB), Cases.end());
753 }
754 
755 /// Return true if there are any keys in C1 that exist in C2 as well.
756 static bool ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1,
757                           std::vector<ValueEqualityComparisonCase> &C2) {
758   std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2;
759 
760   // Make V1 be smaller than V2.
761   if (V1->size() > V2->size())
762     std::swap(V1, V2);
763 
764   if (V1->empty())
765     return false;
766   if (V1->size() == 1) {
767     // Just scan V2.
768     ConstantInt *TheVal = (*V1)[0].Value;
769     for (unsigned i = 0, e = V2->size(); i != e; ++i)
770       if (TheVal == (*V2)[i].Value)
771         return true;
772   }
773 
774   // Otherwise, just sort both lists and compare element by element.
775   array_pod_sort(V1->begin(), V1->end());
776   array_pod_sort(V2->begin(), V2->end());
777   unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size();
778   while (i1 != e1 && i2 != e2) {
779     if ((*V1)[i1].Value == (*V2)[i2].Value)
780       return true;
781     if ((*V1)[i1].Value < (*V2)[i2].Value)
782       ++i1;
783     else
784       ++i2;
785   }
786   return false;
787 }
788 
789 // Set branch weights on SwitchInst. This sets the metadata if there is at
790 // least one non-zero weight.
791 static void setBranchWeights(SwitchInst *SI, ArrayRef<uint32_t> Weights) {
792   // Check that there is at least one non-zero weight. Otherwise, pass
793   // nullptr to setMetadata which will erase the existing metadata.
794   MDNode *N = nullptr;
795   if (llvm::any_of(Weights, [](uint32_t W) { return W != 0; }))
796     N = MDBuilder(SI->getParent()->getContext()).createBranchWeights(Weights);
797   SI->setMetadata(LLVMContext::MD_prof, N);
798 }
799 
800 // Similar to the above, but for branch and select instructions that take
801 // exactly 2 weights.
802 static void setBranchWeights(Instruction *I, uint32_t TrueWeight,
803                              uint32_t FalseWeight) {
804   assert(isa<BranchInst>(I) || isa<SelectInst>(I));
805   // Check that there is at least one non-zero weight. Otherwise, pass
806   // nullptr to setMetadata which will erase the existing metadata.
807   MDNode *N = nullptr;
808   if (TrueWeight || FalseWeight)
809     N = MDBuilder(I->getParent()->getContext())
810             .createBranchWeights(TrueWeight, FalseWeight);
811   I->setMetadata(LLVMContext::MD_prof, N);
812 }
813 
814 /// If TI is known to be a terminator instruction and its block is known to
815 /// only have a single predecessor block, check to see if that predecessor is
816 /// also a value comparison with the same value, and if that comparison
817 /// determines the outcome of this comparison. If so, simplify TI. This does a
818 /// very limited form of jump threading.
819 bool SimplifyCFGOpt::SimplifyEqualityComparisonWithOnlyPredecessor(
820     Instruction *TI, BasicBlock *Pred, IRBuilder<> &Builder) {
821   Value *PredVal = isValueEqualityComparison(Pred->getTerminator());
822   if (!PredVal)
823     return false; // Not a value comparison in predecessor.
824 
825   Value *ThisVal = isValueEqualityComparison(TI);
826   assert(ThisVal && "This isn't a value comparison!!");
827   if (ThisVal != PredVal)
828     return false; // Different predicates.
829 
830   // TODO: Preserve branch weight metadata, similarly to how
831   // FoldValueComparisonIntoPredecessors preserves it.
832 
833   // Find out information about when control will move from Pred to TI's block.
834   std::vector<ValueEqualityComparisonCase> PredCases;
835   BasicBlock *PredDef =
836       GetValueEqualityComparisonCases(Pred->getTerminator(), PredCases);
837   EliminateBlockCases(PredDef, PredCases); // Remove default from cases.
838 
839   // Find information about how control leaves this block.
840   std::vector<ValueEqualityComparisonCase> ThisCases;
841   BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases);
842   EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases.
843 
844   // If TI's block is the default block from Pred's comparison, potentially
845   // simplify TI based on this knowledge.
846   if (PredDef == TI->getParent()) {
847     // If we are here, we know that the value is none of those cases listed in
848     // PredCases.  If there are any cases in ThisCases that are in PredCases, we
849     // can simplify TI.
850     if (!ValuesOverlap(PredCases, ThisCases))
851       return false;
852 
853     if (isa<BranchInst>(TI)) {
854       // Okay, one of the successors of this condbr is dead.  Convert it to a
855       // uncond br.
856       assert(ThisCases.size() == 1 && "Branch can only have one case!");
857       // Insert the new branch.
858       Instruction *NI = Builder.CreateBr(ThisDef);
859       (void)NI;
860 
861       // Remove PHI node entries for the dead edge.
862       ThisCases[0].Dest->removePredecessor(TI->getParent());
863 
864       LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
865                         << "Through successor TI: " << *TI << "Leaving: " << *NI
866                         << "\n");
867 
868       EraseTerminatorAndDCECond(TI);
869       return true;
870     }
871 
872     SwitchInstProfUpdateWrapper SI = *cast<SwitchInst>(TI);
873     // Okay, TI has cases that are statically dead, prune them away.
874     SmallPtrSet<Constant *, 16> DeadCases;
875     for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
876       DeadCases.insert(PredCases[i].Value);
877 
878     LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
879                       << "Through successor TI: " << *TI);
880 
881     for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) {
882       --i;
883       if (DeadCases.count(i->getCaseValue())) {
884         i->getCaseSuccessor()->removePredecessor(TI->getParent());
885         SI.removeCase(i);
886       }
887     }
888     LLVM_DEBUG(dbgs() << "Leaving: " << *TI << "\n");
889     return true;
890   }
891 
892   // Otherwise, TI's block must correspond to some matched value.  Find out
893   // which value (or set of values) this is.
894   ConstantInt *TIV = nullptr;
895   BasicBlock *TIBB = TI->getParent();
896   for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
897     if (PredCases[i].Dest == TIBB) {
898       if (TIV)
899         return false; // Cannot handle multiple values coming to this block.
900       TIV = PredCases[i].Value;
901     }
902   assert(TIV && "No edge from pred to succ?");
903 
904   // Okay, we found the one constant that our value can be if we get into TI's
905   // BB.  Find out which successor will unconditionally be branched to.
906   BasicBlock *TheRealDest = nullptr;
907   for (unsigned i = 0, e = ThisCases.size(); i != e; ++i)
908     if (ThisCases[i].Value == TIV) {
909       TheRealDest = ThisCases[i].Dest;
910       break;
911     }
912 
913   // If not handled by any explicit cases, it is handled by the default case.
914   if (!TheRealDest)
915     TheRealDest = ThisDef;
916 
917   // Remove PHI node entries for dead edges.
918   BasicBlock *CheckEdge = TheRealDest;
919   for (BasicBlock *Succ : successors(TIBB))
920     if (Succ != CheckEdge)
921       Succ->removePredecessor(TIBB);
922     else
923       CheckEdge = nullptr;
924 
925   // Insert the new branch.
926   Instruction *NI = Builder.CreateBr(TheRealDest);
927   (void)NI;
928 
929   LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
930                     << "Through successor TI: " << *TI << "Leaving: " << *NI
931                     << "\n");
932 
933   EraseTerminatorAndDCECond(TI);
934   return true;
935 }
936 
937 namespace {
938 
939 /// This class implements a stable ordering of constant
940 /// integers that does not depend on their address.  This is important for
941 /// applications that sort ConstantInt's to ensure uniqueness.
942 struct ConstantIntOrdering {
943   bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const {
944     return LHS->getValue().ult(RHS->getValue());
945   }
946 };
947 
948 } // end anonymous namespace
949 
950 static int ConstantIntSortPredicate(ConstantInt *const *P1,
951                                     ConstantInt *const *P2) {
952   const ConstantInt *LHS = *P1;
953   const ConstantInt *RHS = *P2;
954   if (LHS == RHS)
955     return 0;
956   return LHS->getValue().ult(RHS->getValue()) ? 1 : -1;
957 }
958 
959 static inline bool HasBranchWeights(const Instruction *I) {
960   MDNode *ProfMD = I->getMetadata(LLVMContext::MD_prof);
961   if (ProfMD && ProfMD->getOperand(0))
962     if (MDString *MDS = dyn_cast<MDString>(ProfMD->getOperand(0)))
963       return MDS->getString().equals("branch_weights");
964 
965   return false;
966 }
967 
968 /// Get Weights of a given terminator, the default weight is at the front
969 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight
970 /// metadata.
971 static void GetBranchWeights(Instruction *TI,
972                              SmallVectorImpl<uint64_t> &Weights) {
973   MDNode *MD = TI->getMetadata(LLVMContext::MD_prof);
974   assert(MD);
975   for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) {
976     ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i));
977     Weights.push_back(CI->getValue().getZExtValue());
978   }
979 
980   // If TI is a conditional eq, the default case is the false case,
981   // and the corresponding branch-weight data is at index 2. We swap the
982   // default weight to be the first entry.
983   if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
984     assert(Weights.size() == 2);
985     ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
986     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
987       std::swap(Weights.front(), Weights.back());
988   }
989 }
990 
991 /// Keep halving the weights until all can fit in uint32_t.
992 static void FitWeights(MutableArrayRef<uint64_t> Weights) {
993   uint64_t Max = *std::max_element(Weights.begin(), Weights.end());
994   if (Max > UINT_MAX) {
995     unsigned Offset = 32 - countLeadingZeros(Max);
996     for (uint64_t &I : Weights)
997       I >>= Offset;
998   }
999 }
1000 
1001 /// The specified terminator is a value equality comparison instruction
1002 /// (either a switch or a branch on "X == c").
1003 /// See if any of the predecessors of the terminator block are value comparisons
1004 /// on the same value.  If so, and if safe to do so, fold them together.
1005 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(Instruction *TI,
1006                                                          IRBuilder<> &Builder) {
1007   BasicBlock *BB = TI->getParent();
1008   Value *CV = isValueEqualityComparison(TI); // CondVal
1009   assert(CV && "Not a comparison?");
1010   bool Changed = false;
1011 
1012   SmallVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB));
1013   while (!Preds.empty()) {
1014     BasicBlock *Pred = Preds.pop_back_val();
1015 
1016     // See if the predecessor is a comparison with the same value.
1017     Instruction *PTI = Pred->getTerminator();
1018     Value *PCV = isValueEqualityComparison(PTI); // PredCondVal
1019 
1020     if (PCV == CV && TI != PTI) {
1021       SmallSetVector<BasicBlock*, 4> FailBlocks;
1022       if (!SafeToMergeTerminators(TI, PTI, &FailBlocks)) {
1023         for (auto *Succ : FailBlocks) {
1024           if (!SplitBlockPredecessors(Succ, TI->getParent(), ".fold.split"))
1025             return false;
1026         }
1027       }
1028 
1029       // Figure out which 'cases' to copy from SI to PSI.
1030       std::vector<ValueEqualityComparisonCase> BBCases;
1031       BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases);
1032 
1033       std::vector<ValueEqualityComparisonCase> PredCases;
1034       BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases);
1035 
1036       // Based on whether the default edge from PTI goes to BB or not, fill in
1037       // PredCases and PredDefault with the new switch cases we would like to
1038       // build.
1039       SmallVector<BasicBlock *, 8> NewSuccessors;
1040 
1041       // Update the branch weight metadata along the way
1042       SmallVector<uint64_t, 8> Weights;
1043       bool PredHasWeights = HasBranchWeights(PTI);
1044       bool SuccHasWeights = HasBranchWeights(TI);
1045 
1046       if (PredHasWeights) {
1047         GetBranchWeights(PTI, Weights);
1048         // branch-weight metadata is inconsistent here.
1049         if (Weights.size() != 1 + PredCases.size())
1050           PredHasWeights = SuccHasWeights = false;
1051       } else if (SuccHasWeights)
1052         // If there are no predecessor weights but there are successor weights,
1053         // populate Weights with 1, which will later be scaled to the sum of
1054         // successor's weights
1055         Weights.assign(1 + PredCases.size(), 1);
1056 
1057       SmallVector<uint64_t, 8> SuccWeights;
1058       if (SuccHasWeights) {
1059         GetBranchWeights(TI, SuccWeights);
1060         // branch-weight metadata is inconsistent here.
1061         if (SuccWeights.size() != 1 + BBCases.size())
1062           PredHasWeights = SuccHasWeights = false;
1063       } else if (PredHasWeights)
1064         SuccWeights.assign(1 + BBCases.size(), 1);
1065 
1066       if (PredDefault == BB) {
1067         // If this is the default destination from PTI, only the edges in TI
1068         // that don't occur in PTI, or that branch to BB will be activated.
1069         std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
1070         for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
1071           if (PredCases[i].Dest != BB)
1072             PTIHandled.insert(PredCases[i].Value);
1073           else {
1074             // The default destination is BB, we don't need explicit targets.
1075             std::swap(PredCases[i], PredCases.back());
1076 
1077             if (PredHasWeights || SuccHasWeights) {
1078               // Increase weight for the default case.
1079               Weights[0] += Weights[i + 1];
1080               std::swap(Weights[i + 1], Weights.back());
1081               Weights.pop_back();
1082             }
1083 
1084             PredCases.pop_back();
1085             --i;
1086             --e;
1087           }
1088 
1089         // Reconstruct the new switch statement we will be building.
1090         if (PredDefault != BBDefault) {
1091           PredDefault->removePredecessor(Pred);
1092           PredDefault = BBDefault;
1093           NewSuccessors.push_back(BBDefault);
1094         }
1095 
1096         unsigned CasesFromPred = Weights.size();
1097         uint64_t ValidTotalSuccWeight = 0;
1098         for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
1099           if (!PTIHandled.count(BBCases[i].Value) &&
1100               BBCases[i].Dest != BBDefault) {
1101             PredCases.push_back(BBCases[i]);
1102             NewSuccessors.push_back(BBCases[i].Dest);
1103             if (SuccHasWeights || PredHasWeights) {
1104               // The default weight is at index 0, so weight for the ith case
1105               // should be at index i+1. Scale the cases from successor by
1106               // PredDefaultWeight (Weights[0]).
1107               Weights.push_back(Weights[0] * SuccWeights[i + 1]);
1108               ValidTotalSuccWeight += SuccWeights[i + 1];
1109             }
1110           }
1111 
1112         if (SuccHasWeights || PredHasWeights) {
1113           ValidTotalSuccWeight += SuccWeights[0];
1114           // Scale the cases from predecessor by ValidTotalSuccWeight.
1115           for (unsigned i = 1; i < CasesFromPred; ++i)
1116             Weights[i] *= ValidTotalSuccWeight;
1117           // Scale the default weight by SuccDefaultWeight (SuccWeights[0]).
1118           Weights[0] *= SuccWeights[0];
1119         }
1120       } else {
1121         // If this is not the default destination from PSI, only the edges
1122         // in SI that occur in PSI with a destination of BB will be
1123         // activated.
1124         std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
1125         std::map<ConstantInt *, uint64_t> WeightsForHandled;
1126         for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
1127           if (PredCases[i].Dest == BB) {
1128             PTIHandled.insert(PredCases[i].Value);
1129 
1130             if (PredHasWeights || SuccHasWeights) {
1131               WeightsForHandled[PredCases[i].Value] = Weights[i + 1];
1132               std::swap(Weights[i + 1], Weights.back());
1133               Weights.pop_back();
1134             }
1135 
1136             std::swap(PredCases[i], PredCases.back());
1137             PredCases.pop_back();
1138             --i;
1139             --e;
1140           }
1141 
1142         // Okay, now we know which constants were sent to BB from the
1143         // predecessor.  Figure out where they will all go now.
1144         for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
1145           if (PTIHandled.count(BBCases[i].Value)) {
1146             // If this is one we are capable of getting...
1147             if (PredHasWeights || SuccHasWeights)
1148               Weights.push_back(WeightsForHandled[BBCases[i].Value]);
1149             PredCases.push_back(BBCases[i]);
1150             NewSuccessors.push_back(BBCases[i].Dest);
1151             PTIHandled.erase(
1152                 BBCases[i].Value); // This constant is taken care of
1153           }
1154 
1155         // If there are any constants vectored to BB that TI doesn't handle,
1156         // they must go to the default destination of TI.
1157         for (ConstantInt *I : PTIHandled) {
1158           if (PredHasWeights || SuccHasWeights)
1159             Weights.push_back(WeightsForHandled[I]);
1160           PredCases.push_back(ValueEqualityComparisonCase(I, BBDefault));
1161           NewSuccessors.push_back(BBDefault);
1162         }
1163       }
1164 
1165       // Okay, at this point, we know which new successor Pred will get.  Make
1166       // sure we update the number of entries in the PHI nodes for these
1167       // successors.
1168       for (BasicBlock *NewSuccessor : NewSuccessors)
1169         AddPredecessorToBlock(NewSuccessor, Pred, BB);
1170 
1171       Builder.SetInsertPoint(PTI);
1172       // Convert pointer to int before we switch.
1173       if (CV->getType()->isPointerTy()) {
1174         CV = Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()),
1175                                     "magicptr");
1176       }
1177 
1178       // Now that the successors are updated, create the new Switch instruction.
1179       SwitchInst *NewSI =
1180           Builder.CreateSwitch(CV, PredDefault, PredCases.size());
1181       NewSI->setDebugLoc(PTI->getDebugLoc());
1182       for (ValueEqualityComparisonCase &V : PredCases)
1183         NewSI->addCase(V.Value, V.Dest);
1184 
1185       if (PredHasWeights || SuccHasWeights) {
1186         // Halve the weights if any of them cannot fit in an uint32_t
1187         FitWeights(Weights);
1188 
1189         SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
1190 
1191         setBranchWeights(NewSI, MDWeights);
1192       }
1193 
1194       EraseTerminatorAndDCECond(PTI);
1195 
1196       // Okay, last check.  If BB is still a successor of PSI, then we must
1197       // have an infinite loop case.  If so, add an infinitely looping block
1198       // to handle the case to preserve the behavior of the code.
1199       BasicBlock *InfLoopBlock = nullptr;
1200       for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i)
1201         if (NewSI->getSuccessor(i) == BB) {
1202           if (!InfLoopBlock) {
1203             // Insert it at the end of the function, because it's either code,
1204             // or it won't matter if it's hot. :)
1205             InfLoopBlock = BasicBlock::Create(BB->getContext(), "infloop",
1206                                               BB->getParent());
1207             BranchInst::Create(InfLoopBlock, InfLoopBlock);
1208           }
1209           NewSI->setSuccessor(i, InfLoopBlock);
1210         }
1211 
1212       Changed = true;
1213     }
1214   }
1215   return Changed;
1216 }
1217 
1218 // If we would need to insert a select that uses the value of this invoke
1219 // (comments in HoistThenElseCodeToIf explain why we would need to do this), we
1220 // can't hoist the invoke, as there is nowhere to put the select in this case.
1221 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2,
1222                                 Instruction *I1, Instruction *I2) {
1223   for (BasicBlock *Succ : successors(BB1)) {
1224     for (const PHINode &PN : Succ->phis()) {
1225       Value *BB1V = PN.getIncomingValueForBlock(BB1);
1226       Value *BB2V = PN.getIncomingValueForBlock(BB2);
1227       if (BB1V != BB2V && (BB1V == I1 || BB2V == I2)) {
1228         return false;
1229       }
1230     }
1231   }
1232   return true;
1233 }
1234 
1235 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I);
1236 
1237 /// Given a conditional branch that goes to BB1 and BB2, hoist any common code
1238 /// in the two blocks up into the branch block. The caller of this function
1239 /// guarantees that BI's block dominates BB1 and BB2.
1240 static bool HoistThenElseCodeToIf(BranchInst *BI,
1241                                   const TargetTransformInfo &TTI) {
1242   // This does very trivial matching, with limited scanning, to find identical
1243   // instructions in the two blocks.  In particular, we don't want to get into
1244   // O(M*N) situations here where M and N are the sizes of BB1 and BB2.  As
1245   // such, we currently just scan for obviously identical instructions in an
1246   // identical order.
1247   BasicBlock *BB1 = BI->getSuccessor(0); // The true destination.
1248   BasicBlock *BB2 = BI->getSuccessor(1); // The false destination
1249 
1250   BasicBlock::iterator BB1_Itr = BB1->begin();
1251   BasicBlock::iterator BB2_Itr = BB2->begin();
1252 
1253   Instruction *I1 = &*BB1_Itr++, *I2 = &*BB2_Itr++;
1254   // Skip debug info if it is not identical.
1255 
1256   // If the terminator instruction is hoisted, and any variable locations have
1257   // non-identical debug intrinsics, then those variable locations must be set
1258   // as undef.
1259   // FIXME: If each block contains identical debug variable intrinsics in a
1260   // different order, they will be considered non-identical and be dropped.
1261   MapVector<DebugVariable, DbgVariableIntrinsic *> UndefDVIs;
1262 
1263   auto SkipDbgInfo = [&UndefDVIs](Instruction *&I,
1264                                   BasicBlock::iterator &BB_Itr) {
1265     while (isa<DbgInfoIntrinsic>(I)) {
1266       if (DbgVariableIntrinsic *DVI = dyn_cast<DbgVariableIntrinsic>(I))
1267         UndefDVIs.insert(
1268             {DebugVariable(DVI->getVariable(), DVI->getExpression(),
1269                            DVI->getDebugLoc()->getInlinedAt()),
1270              DVI});
1271       I = &*BB_Itr++;
1272     }
1273   };
1274 
1275   auto SkipNonIdenticalDbgInfo =
1276       [&BB1_Itr, &BB2_Itr, &SkipDbgInfo](Instruction *&I1, Instruction *&I2) {
1277         DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1278         DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1279         if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1280           SkipDbgInfo(I1, BB1_Itr);
1281           SkipDbgInfo(I2, BB2_Itr);
1282         }
1283       };
1284 
1285   SkipNonIdenticalDbgInfo(I1, I2);
1286 
1287   // FIXME: Can we define a safety predicate for CallBr?
1288   if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) ||
1289       (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) ||
1290       isa<CallBrInst>(I1))
1291     return false;
1292 
1293   BasicBlock *BIParent = BI->getParent();
1294 
1295   bool Changed = false;
1296   do {
1297     // If we are hoisting the terminator instruction, don't move one (making a
1298     // broken BB), instead clone it, and remove BI.
1299     if (I1->isTerminator())
1300       goto HoistTerminator;
1301 
1302     // If we're going to hoist a call, make sure that the two instructions we're
1303     // commoning/hoisting are both marked with musttail, or neither of them is
1304     // marked as such. Otherwise, we might end up in a situation where we hoist
1305     // from a block where the terminator is a `ret` to a block where the terminator
1306     // is a `br`, and `musttail` calls expect to be followed by a return.
1307     auto *C1 = dyn_cast<CallInst>(I1);
1308     auto *C2 = dyn_cast<CallInst>(I2);
1309     if (C1 && C2)
1310       if (C1->isMustTailCall() != C2->isMustTailCall())
1311         return Changed;
1312 
1313     if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2))
1314       return Changed;
1315 
1316     if (isa<DbgInfoIntrinsic>(I1) || isa<DbgInfoIntrinsic>(I2)) {
1317       assert (isa<DbgInfoIntrinsic>(I1) && isa<DbgInfoIntrinsic>(I2));
1318       // The debug location is an integral part of a debug info intrinsic
1319       // and can't be separated from it or replaced.  Instead of attempting
1320       // to merge locations, simply hoist both copies of the intrinsic.
1321       BIParent->getInstList().splice(BI->getIterator(),
1322                                      BB1->getInstList(), I1);
1323       BIParent->getInstList().splice(BI->getIterator(),
1324                                      BB2->getInstList(), I2);
1325       Changed = true;
1326     } else {
1327       // For a normal instruction, we just move one to right before the branch,
1328       // then replace all uses of the other with the first.  Finally, we remove
1329       // the now redundant second instruction.
1330       BIParent->getInstList().splice(BI->getIterator(),
1331                                      BB1->getInstList(), I1);
1332       if (!I2->use_empty())
1333         I2->replaceAllUsesWith(I1);
1334       I1->andIRFlags(I2);
1335       unsigned KnownIDs[] = {LLVMContext::MD_tbaa,
1336                              LLVMContext::MD_range,
1337                              LLVMContext::MD_fpmath,
1338                              LLVMContext::MD_invariant_load,
1339                              LLVMContext::MD_nonnull,
1340                              LLVMContext::MD_invariant_group,
1341                              LLVMContext::MD_align,
1342                              LLVMContext::MD_dereferenceable,
1343                              LLVMContext::MD_dereferenceable_or_null,
1344                              LLVMContext::MD_mem_parallel_loop_access,
1345                              LLVMContext::MD_access_group,
1346                              LLVMContext::MD_preserve_access_index};
1347       combineMetadata(I1, I2, KnownIDs, true);
1348 
1349       // I1 and I2 are being combined into a single instruction.  Its debug
1350       // location is the merged locations of the original instructions.
1351       I1->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc());
1352 
1353       I2->eraseFromParent();
1354       Changed = true;
1355     }
1356 
1357     I1 = &*BB1_Itr++;
1358     I2 = &*BB2_Itr++;
1359     SkipNonIdenticalDbgInfo(I1, I2);
1360   } while (I1->isIdenticalToWhenDefined(I2));
1361 
1362   return true;
1363 
1364 HoistTerminator:
1365   // It may not be possible to hoist an invoke.
1366   // FIXME: Can we define a safety predicate for CallBr?
1367   if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))
1368     return Changed;
1369 
1370   // TODO: callbr hoisting currently disabled pending further study.
1371   if (isa<CallBrInst>(I1))
1372     return Changed;
1373 
1374   for (BasicBlock *Succ : successors(BB1)) {
1375     for (PHINode &PN : Succ->phis()) {
1376       Value *BB1V = PN.getIncomingValueForBlock(BB1);
1377       Value *BB2V = PN.getIncomingValueForBlock(BB2);
1378       if (BB1V == BB2V)
1379         continue;
1380 
1381       // Check for passingValueIsAlwaysUndefined here because we would rather
1382       // eliminate undefined control flow then converting it to a select.
1383       if (passingValueIsAlwaysUndefined(BB1V, &PN) ||
1384           passingValueIsAlwaysUndefined(BB2V, &PN))
1385         return Changed;
1386 
1387       if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V))
1388         return Changed;
1389       if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V))
1390         return Changed;
1391     }
1392   }
1393 
1394   // Okay, it is safe to hoist the terminator.
1395   for (auto DIVariableInst : UndefDVIs) {
1396     DbgVariableIntrinsic *DVI = DIVariableInst.second;
1397     DVI->moveBefore(BI);
1398     if (DVI->getVariableLocation())
1399       setDbgVariableUndef(DVI);
1400   }
1401 
1402   Instruction *NT = I1->clone();
1403   BIParent->getInstList().insert(BI->getIterator(), NT);
1404   if (!NT->getType()->isVoidTy()) {
1405     I1->replaceAllUsesWith(NT);
1406     I2->replaceAllUsesWith(NT);
1407     NT->takeName(I1);
1408   }
1409 
1410   // Ensure terminator gets a debug location, even an unknown one, in case
1411   // it involves inlinable calls.
1412   NT->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc());
1413 
1414   // PHIs created below will adopt NT's merged DebugLoc.
1415   IRBuilder<NoFolder> Builder(NT);
1416 
1417   // Hoisting one of the terminators from our successor is a great thing.
1418   // Unfortunately, the successors of the if/else blocks may have PHI nodes in
1419   // them.  If they do, all PHI entries for BB1/BB2 must agree for all PHI
1420   // nodes, so we insert select instruction to compute the final result.
1421   std::map<std::pair<Value *, Value *>, SelectInst *> InsertedSelects;
1422   for (BasicBlock *Succ : successors(BB1)) {
1423     for (PHINode &PN : Succ->phis()) {
1424       Value *BB1V = PN.getIncomingValueForBlock(BB1);
1425       Value *BB2V = PN.getIncomingValueForBlock(BB2);
1426       if (BB1V == BB2V)
1427         continue;
1428 
1429       // These values do not agree.  Insert a select instruction before NT
1430       // that determines the right value.
1431       SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)];
1432       if (!SI) {
1433         // Propagate fast-math-flags from phi node to its replacement select.
1434         IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
1435         if (isa<FPMathOperator>(PN))
1436           Builder.setFastMathFlags(PN.getFastMathFlags());
1437 
1438         SI = cast<SelectInst>(
1439             Builder.CreateSelect(BI->getCondition(), BB1V, BB2V,
1440                                  BB1V->getName() + "." + BB2V->getName(), BI));
1441       }
1442 
1443       // Make the PHI node use the select for all incoming values for BB1/BB2
1444       for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
1445         if (PN.getIncomingBlock(i) == BB1 || PN.getIncomingBlock(i) == BB2)
1446           PN.setIncomingValue(i, SI);
1447     }
1448   }
1449 
1450   // Update any PHI nodes in our new successors.
1451   for (BasicBlock *Succ : successors(BB1))
1452     AddPredecessorToBlock(Succ, BIParent, BB1);
1453 
1454   EraseTerminatorAndDCECond(BI);
1455   return true;
1456 }
1457 
1458 // Check lifetime markers.
1459 static bool isLifeTimeMarker(const Instruction *I) {
1460   if (auto II = dyn_cast<IntrinsicInst>(I)) {
1461     switch (II->getIntrinsicID()) {
1462     default:
1463       break;
1464     case Intrinsic::lifetime_start:
1465     case Intrinsic::lifetime_end:
1466       return true;
1467     }
1468   }
1469   return false;
1470 }
1471 
1472 // All instructions in Insts belong to different blocks that all unconditionally
1473 // branch to a common successor. Analyze each instruction and return true if it
1474 // would be possible to sink them into their successor, creating one common
1475 // instruction instead. For every value that would be required to be provided by
1476 // PHI node (because an operand varies in each input block), add to PHIOperands.
1477 static bool canSinkInstructions(
1478     ArrayRef<Instruction *> Insts,
1479     DenseMap<Instruction *, SmallVector<Value *, 4>> &PHIOperands) {
1480   // Prune out obviously bad instructions to move. Each instruction must have
1481   // exactly zero or one use, and we check later that use is by a single, common
1482   // PHI instruction in the successor.
1483   bool HasUse = !Insts.front()->user_empty();
1484   for (auto *I : Insts) {
1485     // These instructions may change or break semantics if moved.
1486     if (isa<PHINode>(I) || I->isEHPad() || isa<AllocaInst>(I) ||
1487         I->getType()->isTokenTy())
1488       return false;
1489 
1490     // Conservatively return false if I is an inline-asm instruction. Sinking
1491     // and merging inline-asm instructions can potentially create arguments
1492     // that cannot satisfy the inline-asm constraints.
1493     if (const auto *C = dyn_cast<CallBase>(I))
1494       if (C->isInlineAsm())
1495         return false;
1496 
1497     // Each instruction must have zero or one use.
1498     if (HasUse && !I->hasOneUse())
1499       return false;
1500     if (!HasUse && !I->user_empty())
1501       return false;
1502   }
1503 
1504   const Instruction *I0 = Insts.front();
1505   for (auto *I : Insts)
1506     if (!I->isSameOperationAs(I0))
1507       return false;
1508 
1509   // All instructions in Insts are known to be the same opcode. If they have a
1510   // use, check that the only user is a PHI or in the same block as the
1511   // instruction, because if a user is in the same block as an instruction we're
1512   // contemplating sinking, it must already be determined to be sinkable.
1513   if (HasUse) {
1514     auto *PNUse = dyn_cast<PHINode>(*I0->user_begin());
1515     auto *Succ = I0->getParent()->getTerminator()->getSuccessor(0);
1516     if (!all_of(Insts, [&PNUse,&Succ](const Instruction *I) -> bool {
1517           auto *U = cast<Instruction>(*I->user_begin());
1518           return (PNUse &&
1519                   PNUse->getParent() == Succ &&
1520                   PNUse->getIncomingValueForBlock(I->getParent()) == I) ||
1521                  U->getParent() == I->getParent();
1522         }))
1523       return false;
1524   }
1525 
1526   // Because SROA can't handle speculating stores of selects, try not to sink
1527   // loads, stores or lifetime markers of allocas when we'd have to create a
1528   // PHI for the address operand. Also, because it is likely that loads or
1529   // stores of allocas will disappear when Mem2Reg/SROA is run, don't sink
1530   // them.
1531   // This can cause code churn which can have unintended consequences down
1532   // the line - see https://llvm.org/bugs/show_bug.cgi?id=30244.
1533   // FIXME: This is a workaround for a deficiency in SROA - see
1534   // https://llvm.org/bugs/show_bug.cgi?id=30188
1535   if (isa<StoreInst>(I0) && any_of(Insts, [](const Instruction *I) {
1536         return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts());
1537       }))
1538     return false;
1539   if (isa<LoadInst>(I0) && any_of(Insts, [](const Instruction *I) {
1540         return isa<AllocaInst>(I->getOperand(0)->stripPointerCasts());
1541       }))
1542     return false;
1543   if (isLifeTimeMarker(I0) && any_of(Insts, [](const Instruction *I) {
1544         return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts());
1545       }))
1546     return false;
1547 
1548   for (unsigned OI = 0, OE = I0->getNumOperands(); OI != OE; ++OI) {
1549     if (I0->getOperand(OI)->getType()->isTokenTy())
1550       // Don't touch any operand of token type.
1551       return false;
1552 
1553     auto SameAsI0 = [&I0, OI](const Instruction *I) {
1554       assert(I->getNumOperands() == I0->getNumOperands());
1555       return I->getOperand(OI) == I0->getOperand(OI);
1556     };
1557     if (!all_of(Insts, SameAsI0)) {
1558       if (!canReplaceOperandWithVariable(I0, OI))
1559         // We can't create a PHI from this GEP.
1560         return false;
1561       // Don't create indirect calls! The called value is the final operand.
1562       if (isa<CallBase>(I0) && OI == OE - 1) {
1563         // FIXME: if the call was *already* indirect, we should do this.
1564         return false;
1565       }
1566       for (auto *I : Insts)
1567         PHIOperands[I].push_back(I->getOperand(OI));
1568     }
1569   }
1570   return true;
1571 }
1572 
1573 // Assuming canSinkLastInstruction(Blocks) has returned true, sink the last
1574 // instruction of every block in Blocks to their common successor, commoning
1575 // into one instruction.
1576 static bool sinkLastInstruction(ArrayRef<BasicBlock*> Blocks) {
1577   auto *BBEnd = Blocks[0]->getTerminator()->getSuccessor(0);
1578 
1579   // canSinkLastInstruction returning true guarantees that every block has at
1580   // least one non-terminator instruction.
1581   SmallVector<Instruction*,4> Insts;
1582   for (auto *BB : Blocks) {
1583     Instruction *I = BB->getTerminator();
1584     do {
1585       I = I->getPrevNode();
1586     } while (isa<DbgInfoIntrinsic>(I) && I != &BB->front());
1587     if (!isa<DbgInfoIntrinsic>(I))
1588       Insts.push_back(I);
1589   }
1590 
1591   // The only checking we need to do now is that all users of all instructions
1592   // are the same PHI node. canSinkLastInstruction should have checked this but
1593   // it is slightly over-aggressive - it gets confused by commutative instructions
1594   // so double-check it here.
1595   Instruction *I0 = Insts.front();
1596   if (!I0->user_empty()) {
1597     auto *PNUse = dyn_cast<PHINode>(*I0->user_begin());
1598     if (!all_of(Insts, [&PNUse](const Instruction *I) -> bool {
1599           auto *U = cast<Instruction>(*I->user_begin());
1600           return U == PNUse;
1601         }))
1602       return false;
1603   }
1604 
1605   // We don't need to do any more checking here; canSinkLastInstruction should
1606   // have done it all for us.
1607   SmallVector<Value*, 4> NewOperands;
1608   for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) {
1609     // This check is different to that in canSinkLastInstruction. There, we
1610     // cared about the global view once simplifycfg (and instcombine) have
1611     // completed - it takes into account PHIs that become trivially
1612     // simplifiable.  However here we need a more local view; if an operand
1613     // differs we create a PHI and rely on instcombine to clean up the very
1614     // small mess we may make.
1615     bool NeedPHI = any_of(Insts, [&I0, O](const Instruction *I) {
1616       return I->getOperand(O) != I0->getOperand(O);
1617     });
1618     if (!NeedPHI) {
1619       NewOperands.push_back(I0->getOperand(O));
1620       continue;
1621     }
1622 
1623     // Create a new PHI in the successor block and populate it.
1624     auto *Op = I0->getOperand(O);
1625     assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!");
1626     auto *PN = PHINode::Create(Op->getType(), Insts.size(),
1627                                Op->getName() + ".sink", &BBEnd->front());
1628     for (auto *I : Insts)
1629       PN->addIncoming(I->getOperand(O), I->getParent());
1630     NewOperands.push_back(PN);
1631   }
1632 
1633   // Arbitrarily use I0 as the new "common" instruction; remap its operands
1634   // and move it to the start of the successor block.
1635   for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O)
1636     I0->getOperandUse(O).set(NewOperands[O]);
1637   I0->moveBefore(&*BBEnd->getFirstInsertionPt());
1638 
1639   // Update metadata and IR flags, and merge debug locations.
1640   for (auto *I : Insts)
1641     if (I != I0) {
1642       // The debug location for the "common" instruction is the merged locations
1643       // of all the commoned instructions.  We start with the original location
1644       // of the "common" instruction and iteratively merge each location in the
1645       // loop below.
1646       // This is an N-way merge, which will be inefficient if I0 is a CallInst.
1647       // However, as N-way merge for CallInst is rare, so we use simplified API
1648       // instead of using complex API for N-way merge.
1649       I0->applyMergedLocation(I0->getDebugLoc(), I->getDebugLoc());
1650       combineMetadataForCSE(I0, I, true);
1651       I0->andIRFlags(I);
1652     }
1653 
1654   if (!I0->user_empty()) {
1655     // canSinkLastInstruction checked that all instructions were used by
1656     // one and only one PHI node. Find that now, RAUW it to our common
1657     // instruction and nuke it.
1658     auto *PN = cast<PHINode>(*I0->user_begin());
1659     PN->replaceAllUsesWith(I0);
1660     PN->eraseFromParent();
1661   }
1662 
1663   // Finally nuke all instructions apart from the common instruction.
1664   for (auto *I : Insts)
1665     if (I != I0)
1666       I->eraseFromParent();
1667 
1668   return true;
1669 }
1670 
1671 namespace {
1672 
1673   // LockstepReverseIterator - Iterates through instructions
1674   // in a set of blocks in reverse order from the first non-terminator.
1675   // For example (assume all blocks have size n):
1676   //   LockstepReverseIterator I([B1, B2, B3]);
1677   //   *I-- = [B1[n], B2[n], B3[n]];
1678   //   *I-- = [B1[n-1], B2[n-1], B3[n-1]];
1679   //   *I-- = [B1[n-2], B2[n-2], B3[n-2]];
1680   //   ...
1681   class LockstepReverseIterator {
1682     ArrayRef<BasicBlock*> Blocks;
1683     SmallVector<Instruction*,4> Insts;
1684     bool Fail;
1685 
1686   public:
1687     LockstepReverseIterator(ArrayRef<BasicBlock*> Blocks) : Blocks(Blocks) {
1688       reset();
1689     }
1690 
1691     void reset() {
1692       Fail = false;
1693       Insts.clear();
1694       for (auto *BB : Blocks) {
1695         Instruction *Inst = BB->getTerminator();
1696         for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
1697           Inst = Inst->getPrevNode();
1698         if (!Inst) {
1699           // Block wasn't big enough.
1700           Fail = true;
1701           return;
1702         }
1703         Insts.push_back(Inst);
1704       }
1705     }
1706 
1707     bool isValid() const {
1708       return !Fail;
1709     }
1710 
1711     void operator--() {
1712       if (Fail)
1713         return;
1714       for (auto *&Inst : Insts) {
1715         for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
1716           Inst = Inst->getPrevNode();
1717         // Already at beginning of block.
1718         if (!Inst) {
1719           Fail = true;
1720           return;
1721         }
1722       }
1723     }
1724 
1725     ArrayRef<Instruction*> operator * () const {
1726       return Insts;
1727     }
1728   };
1729 
1730 } // end anonymous namespace
1731 
1732 /// Check whether BB's predecessors end with unconditional branches. If it is
1733 /// true, sink any common code from the predecessors to BB.
1734 /// We also allow one predecessor to end with conditional branch (but no more
1735 /// than one).
1736 static bool SinkCommonCodeFromPredecessors(BasicBlock *BB) {
1737   // We support two situations:
1738   //   (1) all incoming arcs are unconditional
1739   //   (2) one incoming arc is conditional
1740   //
1741   // (2) is very common in switch defaults and
1742   // else-if patterns;
1743   //
1744   //   if (a) f(1);
1745   //   else if (b) f(2);
1746   //
1747   // produces:
1748   //
1749   //       [if]
1750   //      /    \
1751   //    [f(1)] [if]
1752   //      |     | \
1753   //      |     |  |
1754   //      |  [f(2)]|
1755   //       \    | /
1756   //        [ end ]
1757   //
1758   // [end] has two unconditional predecessor arcs and one conditional. The
1759   // conditional refers to the implicit empty 'else' arc. This conditional
1760   // arc can also be caused by an empty default block in a switch.
1761   //
1762   // In this case, we attempt to sink code from all *unconditional* arcs.
1763   // If we can sink instructions from these arcs (determined during the scan
1764   // phase below) we insert a common successor for all unconditional arcs and
1765   // connect that to [end], to enable sinking:
1766   //
1767   //       [if]
1768   //      /    \
1769   //    [x(1)] [if]
1770   //      |     | \
1771   //      |     |  \
1772   //      |  [x(2)] |
1773   //       \   /    |
1774   //   [sink.split] |
1775   //         \     /
1776   //         [ end ]
1777   //
1778   SmallVector<BasicBlock*,4> UnconditionalPreds;
1779   Instruction *Cond = nullptr;
1780   for (auto *B : predecessors(BB)) {
1781     auto *T = B->getTerminator();
1782     if (isa<BranchInst>(T) && cast<BranchInst>(T)->isUnconditional())
1783       UnconditionalPreds.push_back(B);
1784     else if ((isa<BranchInst>(T) || isa<SwitchInst>(T)) && !Cond)
1785       Cond = T;
1786     else
1787       return false;
1788   }
1789   if (UnconditionalPreds.size() < 2)
1790     return false;
1791 
1792   bool Changed = false;
1793   // We take a two-step approach to tail sinking. First we scan from the end of
1794   // each block upwards in lockstep. If the n'th instruction from the end of each
1795   // block can be sunk, those instructions are added to ValuesToSink and we
1796   // carry on. If we can sink an instruction but need to PHI-merge some operands
1797   // (because they're not identical in each instruction) we add these to
1798   // PHIOperands.
1799   unsigned ScanIdx = 0;
1800   SmallPtrSet<Value*,4> InstructionsToSink;
1801   DenseMap<Instruction*, SmallVector<Value*,4>> PHIOperands;
1802   LockstepReverseIterator LRI(UnconditionalPreds);
1803   while (LRI.isValid() &&
1804          canSinkInstructions(*LRI, PHIOperands)) {
1805     LLVM_DEBUG(dbgs() << "SINK: instruction can be sunk: " << *(*LRI)[0]
1806                       << "\n");
1807     InstructionsToSink.insert((*LRI).begin(), (*LRI).end());
1808     ++ScanIdx;
1809     --LRI;
1810   }
1811 
1812   auto ProfitableToSinkInstruction = [&](LockstepReverseIterator &LRI) {
1813     unsigned NumPHIdValues = 0;
1814     for (auto *I : *LRI)
1815       for (auto *V : PHIOperands[I])
1816         if (InstructionsToSink.count(V) == 0)
1817           ++NumPHIdValues;
1818     LLVM_DEBUG(dbgs() << "SINK: #phid values: " << NumPHIdValues << "\n");
1819     unsigned NumPHIInsts = NumPHIdValues / UnconditionalPreds.size();
1820     if ((NumPHIdValues % UnconditionalPreds.size()) != 0)
1821         NumPHIInsts++;
1822 
1823     return NumPHIInsts <= 1;
1824   };
1825 
1826   if (ScanIdx > 0 && Cond) {
1827     // Check if we would actually sink anything first! This mutates the CFG and
1828     // adds an extra block. The goal in doing this is to allow instructions that
1829     // couldn't be sunk before to be sunk - obviously, speculatable instructions
1830     // (such as trunc, add) can be sunk and predicated already. So we check that
1831     // we're going to sink at least one non-speculatable instruction.
1832     LRI.reset();
1833     unsigned Idx = 0;
1834     bool Profitable = false;
1835     while (ProfitableToSinkInstruction(LRI) && Idx < ScanIdx) {
1836       if (!isSafeToSpeculativelyExecute((*LRI)[0])) {
1837         Profitable = true;
1838         break;
1839       }
1840       --LRI;
1841       ++Idx;
1842     }
1843     if (!Profitable)
1844       return false;
1845 
1846     LLVM_DEBUG(dbgs() << "SINK: Splitting edge\n");
1847     // We have a conditional edge and we're going to sink some instructions.
1848     // Insert a new block postdominating all blocks we're going to sink from.
1849     if (!SplitBlockPredecessors(BB, UnconditionalPreds, ".sink.split"))
1850       // Edges couldn't be split.
1851       return false;
1852     Changed = true;
1853   }
1854 
1855   // Now that we've analyzed all potential sinking candidates, perform the
1856   // actual sink. We iteratively sink the last non-terminator of the source
1857   // blocks into their common successor unless doing so would require too
1858   // many PHI instructions to be generated (currently only one PHI is allowed
1859   // per sunk instruction).
1860   //
1861   // We can use InstructionsToSink to discount values needing PHI-merging that will
1862   // actually be sunk in a later iteration. This allows us to be more
1863   // aggressive in what we sink. This does allow a false positive where we
1864   // sink presuming a later value will also be sunk, but stop half way through
1865   // and never actually sink it which means we produce more PHIs than intended.
1866   // This is unlikely in practice though.
1867   for (unsigned SinkIdx = 0; SinkIdx != ScanIdx; ++SinkIdx) {
1868     LLVM_DEBUG(dbgs() << "SINK: Sink: "
1869                       << *UnconditionalPreds[0]->getTerminator()->getPrevNode()
1870                       << "\n");
1871 
1872     // Because we've sunk every instruction in turn, the current instruction to
1873     // sink is always at index 0.
1874     LRI.reset();
1875     if (!ProfitableToSinkInstruction(LRI)) {
1876       // Too many PHIs would be created.
1877       LLVM_DEBUG(
1878           dbgs() << "SINK: stopping here, too many PHIs would be created!\n");
1879       break;
1880     }
1881 
1882     if (!sinkLastInstruction(UnconditionalPreds))
1883       return Changed;
1884     NumSinkCommons++;
1885     Changed = true;
1886   }
1887   return Changed;
1888 }
1889 
1890 /// Determine if we can hoist sink a sole store instruction out of a
1891 /// conditional block.
1892 ///
1893 /// We are looking for code like the following:
1894 ///   BrBB:
1895 ///     store i32 %add, i32* %arrayidx2
1896 ///     ... // No other stores or function calls (we could be calling a memory
1897 ///     ... // function).
1898 ///     %cmp = icmp ult %x, %y
1899 ///     br i1 %cmp, label %EndBB, label %ThenBB
1900 ///   ThenBB:
1901 ///     store i32 %add5, i32* %arrayidx2
1902 ///     br label EndBB
1903 ///   EndBB:
1904 ///     ...
1905 ///   We are going to transform this into:
1906 ///   BrBB:
1907 ///     store i32 %add, i32* %arrayidx2
1908 ///     ... //
1909 ///     %cmp = icmp ult %x, %y
1910 ///     %add.add5 = select i1 %cmp, i32 %add, %add5
1911 ///     store i32 %add.add5, i32* %arrayidx2
1912 ///     ...
1913 ///
1914 /// \return The pointer to the value of the previous store if the store can be
1915 ///         hoisted into the predecessor block. 0 otherwise.
1916 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB,
1917                                      BasicBlock *StoreBB, BasicBlock *EndBB) {
1918   StoreInst *StoreToHoist = dyn_cast<StoreInst>(I);
1919   if (!StoreToHoist)
1920     return nullptr;
1921 
1922   // Volatile or atomic.
1923   if (!StoreToHoist->isSimple())
1924     return nullptr;
1925 
1926   Value *StorePtr = StoreToHoist->getPointerOperand();
1927 
1928   // Look for a store to the same pointer in BrBB.
1929   unsigned MaxNumInstToLookAt = 9;
1930   for (Instruction &CurI : reverse(BrBB->instructionsWithoutDebug())) {
1931     if (!MaxNumInstToLookAt)
1932       break;
1933     --MaxNumInstToLookAt;
1934 
1935     // Could be calling an instruction that affects memory like free().
1936     if (CurI.mayHaveSideEffects() && !isa<StoreInst>(CurI))
1937       return nullptr;
1938 
1939     if (auto *SI = dyn_cast<StoreInst>(&CurI)) {
1940       // Found the previous store make sure it stores to the same location.
1941       if (SI->getPointerOperand() == StorePtr)
1942         // Found the previous store, return its value operand.
1943         return SI->getValueOperand();
1944       return nullptr; // Unknown store.
1945     }
1946   }
1947 
1948   return nullptr;
1949 }
1950 
1951 /// Speculate a conditional basic block flattening the CFG.
1952 ///
1953 /// Note that this is a very risky transform currently. Speculating
1954 /// instructions like this is most often not desirable. Instead, there is an MI
1955 /// pass which can do it with full awareness of the resource constraints.
1956 /// However, some cases are "obvious" and we should do directly. An example of
1957 /// this is speculating a single, reasonably cheap instruction.
1958 ///
1959 /// There is only one distinct advantage to flattening the CFG at the IR level:
1960 /// it makes very common but simplistic optimizations such as are common in
1961 /// instcombine and the DAG combiner more powerful by removing CFG edges and
1962 /// modeling their effects with easier to reason about SSA value graphs.
1963 ///
1964 ///
1965 /// An illustration of this transform is turning this IR:
1966 /// \code
1967 ///   BB:
1968 ///     %cmp = icmp ult %x, %y
1969 ///     br i1 %cmp, label %EndBB, label %ThenBB
1970 ///   ThenBB:
1971 ///     %sub = sub %x, %y
1972 ///     br label BB2
1973 ///   EndBB:
1974 ///     %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ]
1975 ///     ...
1976 /// \endcode
1977 ///
1978 /// Into this IR:
1979 /// \code
1980 ///   BB:
1981 ///     %cmp = icmp ult %x, %y
1982 ///     %sub = sub %x, %y
1983 ///     %cond = select i1 %cmp, 0, %sub
1984 ///     ...
1985 /// \endcode
1986 ///
1987 /// \returns true if the conditional block is removed.
1988 static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB,
1989                                    const TargetTransformInfo &TTI) {
1990   // Be conservative for now. FP select instruction can often be expensive.
1991   Value *BrCond = BI->getCondition();
1992   if (isa<FCmpInst>(BrCond))
1993     return false;
1994 
1995   BasicBlock *BB = BI->getParent();
1996   BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0);
1997 
1998   // If ThenBB is actually on the false edge of the conditional branch, remember
1999   // to swap the select operands later.
2000   bool Invert = false;
2001   if (ThenBB != BI->getSuccessor(0)) {
2002     assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?");
2003     Invert = true;
2004   }
2005   assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block");
2006 
2007   // Keep a count of how many times instructions are used within ThenBB when
2008   // they are candidates for sinking into ThenBB. Specifically:
2009   // - They are defined in BB, and
2010   // - They have no side effects, and
2011   // - All of their uses are in ThenBB.
2012   SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts;
2013 
2014   SmallVector<Instruction *, 4> SpeculatedDbgIntrinsics;
2015 
2016   unsigned SpeculatedInstructions = 0;
2017   Value *SpeculatedStoreValue = nullptr;
2018   StoreInst *SpeculatedStore = nullptr;
2019   for (BasicBlock::iterator BBI = ThenBB->begin(),
2020                             BBE = std::prev(ThenBB->end());
2021        BBI != BBE; ++BBI) {
2022     Instruction *I = &*BBI;
2023     // Skip debug info.
2024     if (isa<DbgInfoIntrinsic>(I)) {
2025       SpeculatedDbgIntrinsics.push_back(I);
2026       continue;
2027     }
2028 
2029     // Only speculatively execute a single instruction (not counting the
2030     // terminator) for now.
2031     ++SpeculatedInstructions;
2032     if (SpeculatedInstructions > 1)
2033       return false;
2034 
2035     // Don't hoist the instruction if it's unsafe or expensive.
2036     if (!isSafeToSpeculativelyExecute(I) &&
2037         !(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore(
2038                                   I, BB, ThenBB, EndBB))))
2039       return false;
2040     if (!SpeculatedStoreValue &&
2041         ComputeSpeculationCost(I, TTI) >
2042             PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic)
2043       return false;
2044 
2045     // Store the store speculation candidate.
2046     if (SpeculatedStoreValue)
2047       SpeculatedStore = cast<StoreInst>(I);
2048 
2049     // Do not hoist the instruction if any of its operands are defined but not
2050     // used in BB. The transformation will prevent the operand from
2051     // being sunk into the use block.
2052     for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) {
2053       Instruction *OpI = dyn_cast<Instruction>(*i);
2054       if (!OpI || OpI->getParent() != BB || OpI->mayHaveSideEffects())
2055         continue; // Not a candidate for sinking.
2056 
2057       ++SinkCandidateUseCounts[OpI];
2058     }
2059   }
2060 
2061   // Consider any sink candidates which are only used in ThenBB as costs for
2062   // speculation. Note, while we iterate over a DenseMap here, we are summing
2063   // and so iteration order isn't significant.
2064   for (SmallDenseMap<Instruction *, unsigned, 4>::iterator
2065            I = SinkCandidateUseCounts.begin(),
2066            E = SinkCandidateUseCounts.end();
2067        I != E; ++I)
2068     if (I->first->hasNUses(I->second)) {
2069       ++SpeculatedInstructions;
2070       if (SpeculatedInstructions > 1)
2071         return false;
2072     }
2073 
2074   // Check that the PHI nodes can be converted to selects.
2075   bool HaveRewritablePHIs = false;
2076   for (PHINode &PN : EndBB->phis()) {
2077     Value *OrigV = PN.getIncomingValueForBlock(BB);
2078     Value *ThenV = PN.getIncomingValueForBlock(ThenBB);
2079 
2080     // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf.
2081     // Skip PHIs which are trivial.
2082     if (ThenV == OrigV)
2083       continue;
2084 
2085     // Don't convert to selects if we could remove undefined behavior instead.
2086     if (passingValueIsAlwaysUndefined(OrigV, &PN) ||
2087         passingValueIsAlwaysUndefined(ThenV, &PN))
2088       return false;
2089 
2090     HaveRewritablePHIs = true;
2091     ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV);
2092     ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV);
2093     if (!OrigCE && !ThenCE)
2094       continue; // Known safe and cheap.
2095 
2096     if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE)) ||
2097         (OrigCE && !isSafeToSpeculativelyExecute(OrigCE)))
2098       return false;
2099     unsigned OrigCost = OrigCE ? ComputeSpeculationCost(OrigCE, TTI) : 0;
2100     unsigned ThenCost = ThenCE ? ComputeSpeculationCost(ThenCE, TTI) : 0;
2101     unsigned MaxCost =
2102         2 * PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
2103     if (OrigCost + ThenCost > MaxCost)
2104       return false;
2105 
2106     // Account for the cost of an unfolded ConstantExpr which could end up
2107     // getting expanded into Instructions.
2108     // FIXME: This doesn't account for how many operations are combined in the
2109     // constant expression.
2110     ++SpeculatedInstructions;
2111     if (SpeculatedInstructions > 1)
2112       return false;
2113   }
2114 
2115   // If there are no PHIs to process, bail early. This helps ensure idempotence
2116   // as well.
2117   if (!HaveRewritablePHIs && !(HoistCondStores && SpeculatedStoreValue))
2118     return false;
2119 
2120   // If we get here, we can hoist the instruction and if-convert.
2121   LLVM_DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";);
2122 
2123   // Insert a select of the value of the speculated store.
2124   if (SpeculatedStoreValue) {
2125     IRBuilder<NoFolder> Builder(BI);
2126     Value *TrueV = SpeculatedStore->getValueOperand();
2127     Value *FalseV = SpeculatedStoreValue;
2128     if (Invert)
2129       std::swap(TrueV, FalseV);
2130     Value *S = Builder.CreateSelect(
2131         BrCond, TrueV, FalseV, "spec.store.select", BI);
2132     SpeculatedStore->setOperand(0, S);
2133     SpeculatedStore->applyMergedLocation(BI->getDebugLoc(),
2134                                          SpeculatedStore->getDebugLoc());
2135   }
2136 
2137   // Metadata can be dependent on the condition we are hoisting above.
2138   // Conservatively strip all metadata on the instruction.
2139   for (auto &I : *ThenBB)
2140     I.dropUnknownNonDebugMetadata();
2141 
2142   // Hoist the instructions.
2143   BB->getInstList().splice(BI->getIterator(), ThenBB->getInstList(),
2144                            ThenBB->begin(), std::prev(ThenBB->end()));
2145 
2146   // Insert selects and rewrite the PHI operands.
2147   IRBuilder<NoFolder> Builder(BI);
2148   for (PHINode &PN : EndBB->phis()) {
2149     unsigned OrigI = PN.getBasicBlockIndex(BB);
2150     unsigned ThenI = PN.getBasicBlockIndex(ThenBB);
2151     Value *OrigV = PN.getIncomingValue(OrigI);
2152     Value *ThenV = PN.getIncomingValue(ThenI);
2153 
2154     // Skip PHIs which are trivial.
2155     if (OrigV == ThenV)
2156       continue;
2157 
2158     // Create a select whose true value is the speculatively executed value and
2159     // false value is the preexisting value. Swap them if the branch
2160     // destinations were inverted.
2161     Value *TrueV = ThenV, *FalseV = OrigV;
2162     if (Invert)
2163       std::swap(TrueV, FalseV);
2164     Value *V = Builder.CreateSelect(
2165         BrCond, TrueV, FalseV, "spec.select", BI);
2166     PN.setIncomingValue(OrigI, V);
2167     PN.setIncomingValue(ThenI, V);
2168   }
2169 
2170   // Remove speculated dbg intrinsics.
2171   // FIXME: Is it possible to do this in a more elegant way? Moving/merging the
2172   // dbg value for the different flows and inserting it after the select.
2173   for (Instruction *I : SpeculatedDbgIntrinsics)
2174     I->eraseFromParent();
2175 
2176   ++NumSpeculations;
2177   return true;
2178 }
2179 
2180 /// Return true if we can thread a branch across this block.
2181 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) {
2182   unsigned Size = 0;
2183 
2184   for (Instruction &I : BB->instructionsWithoutDebug()) {
2185     if (Size > 10)
2186       return false; // Don't clone large BB's.
2187     ++Size;
2188 
2189     // We can only support instructions that do not define values that are
2190     // live outside of the current basic block.
2191     for (User *U : I.users()) {
2192       Instruction *UI = cast<Instruction>(U);
2193       if (UI->getParent() != BB || isa<PHINode>(UI))
2194         return false;
2195     }
2196 
2197     // Looks ok, continue checking.
2198   }
2199 
2200   return true;
2201 }
2202 
2203 /// If we have a conditional branch on a PHI node value that is defined in the
2204 /// same block as the branch and if any PHI entries are constants, thread edges
2205 /// corresponding to that entry to be branches to their ultimate destination.
2206 static bool FoldCondBranchOnPHI(BranchInst *BI, const DataLayout &DL,
2207                                 AssumptionCache *AC) {
2208   BasicBlock *BB = BI->getParent();
2209   PHINode *PN = dyn_cast<PHINode>(BI->getCondition());
2210   // NOTE: we currently cannot transform this case if the PHI node is used
2211   // outside of the block.
2212   if (!PN || PN->getParent() != BB || !PN->hasOneUse())
2213     return false;
2214 
2215   // Degenerate case of a single entry PHI.
2216   if (PN->getNumIncomingValues() == 1) {
2217     FoldSingleEntryPHINodes(PN->getParent());
2218     return true;
2219   }
2220 
2221   // Now we know that this block has multiple preds and two succs.
2222   if (!BlockIsSimpleEnoughToThreadThrough(BB))
2223     return false;
2224 
2225   // Can't fold blocks that contain noduplicate or convergent calls.
2226   if (any_of(*BB, [](const Instruction &I) {
2227         const CallInst *CI = dyn_cast<CallInst>(&I);
2228         return CI && (CI->cannotDuplicate() || CI->isConvergent());
2229       }))
2230     return false;
2231 
2232   // Okay, this is a simple enough basic block.  See if any phi values are
2233   // constants.
2234   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
2235     ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i));
2236     if (!CB || !CB->getType()->isIntegerTy(1))
2237       continue;
2238 
2239     // Okay, we now know that all edges from PredBB should be revectored to
2240     // branch to RealDest.
2241     BasicBlock *PredBB = PN->getIncomingBlock(i);
2242     BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue());
2243 
2244     if (RealDest == BB)
2245       continue; // Skip self loops.
2246     // Skip if the predecessor's terminator is an indirect branch.
2247     if (isa<IndirectBrInst>(PredBB->getTerminator()))
2248       continue;
2249 
2250     // The dest block might have PHI nodes, other predecessors and other
2251     // difficult cases.  Instead of being smart about this, just insert a new
2252     // block that jumps to the destination block, effectively splitting
2253     // the edge we are about to create.
2254     BasicBlock *EdgeBB =
2255         BasicBlock::Create(BB->getContext(), RealDest->getName() + ".critedge",
2256                            RealDest->getParent(), RealDest);
2257     BranchInst *CritEdgeBranch = BranchInst::Create(RealDest, EdgeBB);
2258     CritEdgeBranch->setDebugLoc(BI->getDebugLoc());
2259 
2260     // Update PHI nodes.
2261     AddPredecessorToBlock(RealDest, EdgeBB, BB);
2262 
2263     // BB may have instructions that are being threaded over.  Clone these
2264     // instructions into EdgeBB.  We know that there will be no uses of the
2265     // cloned instructions outside of EdgeBB.
2266     BasicBlock::iterator InsertPt = EdgeBB->begin();
2267     DenseMap<Value *, Value *> TranslateMap; // Track translated values.
2268     for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
2269       if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
2270         TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB);
2271         continue;
2272       }
2273       // Clone the instruction.
2274       Instruction *N = BBI->clone();
2275       if (BBI->hasName())
2276         N->setName(BBI->getName() + ".c");
2277 
2278       // Update operands due to translation.
2279       for (User::op_iterator i = N->op_begin(), e = N->op_end(); i != e; ++i) {
2280         DenseMap<Value *, Value *>::iterator PI = TranslateMap.find(*i);
2281         if (PI != TranslateMap.end())
2282           *i = PI->second;
2283       }
2284 
2285       // Check for trivial simplification.
2286       if (Value *V = SimplifyInstruction(N, {DL, nullptr, nullptr, AC})) {
2287         if (!BBI->use_empty())
2288           TranslateMap[&*BBI] = V;
2289         if (!N->mayHaveSideEffects()) {
2290           N->deleteValue(); // Instruction folded away, don't need actual inst
2291           N = nullptr;
2292         }
2293       } else {
2294         if (!BBI->use_empty())
2295           TranslateMap[&*BBI] = N;
2296       }
2297       if (N) {
2298         // Insert the new instruction into its new home.
2299         EdgeBB->getInstList().insert(InsertPt, N);
2300 
2301         // Register the new instruction with the assumption cache if necessary.
2302         if (AC && match(N, m_Intrinsic<Intrinsic::assume>()))
2303           AC->registerAssumption(cast<IntrinsicInst>(N));
2304       }
2305     }
2306 
2307     // Loop over all of the edges from PredBB to BB, changing them to branch
2308     // to EdgeBB instead.
2309     Instruction *PredBBTI = PredBB->getTerminator();
2310     for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i)
2311       if (PredBBTI->getSuccessor(i) == BB) {
2312         BB->removePredecessor(PredBB);
2313         PredBBTI->setSuccessor(i, EdgeBB);
2314       }
2315 
2316     // Recurse, simplifying any other constants.
2317     return FoldCondBranchOnPHI(BI, DL, AC) || true;
2318   }
2319 
2320   return false;
2321 }
2322 
2323 /// Given a BB that starts with the specified two-entry PHI node,
2324 /// see if we can eliminate it.
2325 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI,
2326                                 const DataLayout &DL) {
2327   // Ok, this is a two entry PHI node.  Check to see if this is a simple "if
2328   // statement", which has a very simple dominance structure.  Basically, we
2329   // are trying to find the condition that is being branched on, which
2330   // subsequently causes this merge to happen.  We really want control
2331   // dependence information for this check, but simplifycfg can't keep it up
2332   // to date, and this catches most of the cases we care about anyway.
2333   BasicBlock *BB = PN->getParent();
2334   const Function *Fn = BB->getParent();
2335   if (Fn && Fn->hasFnAttribute(Attribute::OptForFuzzing))
2336     return false;
2337 
2338   BasicBlock *IfTrue, *IfFalse;
2339   Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse);
2340   if (!IfCond ||
2341       // Don't bother if the branch will be constant folded trivially.
2342       isa<ConstantInt>(IfCond))
2343     return false;
2344 
2345   // Okay, we found that we can merge this two-entry phi node into a select.
2346   // Doing so would require us to fold *all* two entry phi nodes in this block.
2347   // At some point this becomes non-profitable (particularly if the target
2348   // doesn't support cmov's).  Only do this transformation if there are two or
2349   // fewer PHI nodes in this block.
2350   unsigned NumPhis = 0;
2351   for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I)
2352     if (NumPhis > 2)
2353       return false;
2354 
2355   // Loop over the PHI's seeing if we can promote them all to select
2356   // instructions.  While we are at it, keep track of the instructions
2357   // that need to be moved to the dominating block.
2358   SmallPtrSet<Instruction *, 4> AggressiveInsts;
2359   int BudgetRemaining =
2360       TwoEntryPHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
2361 
2362   for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) {
2363     PHINode *PN = cast<PHINode>(II++);
2364     if (Value *V = SimplifyInstruction(PN, {DL, PN})) {
2365       PN->replaceAllUsesWith(V);
2366       PN->eraseFromParent();
2367       continue;
2368     }
2369 
2370     if (!DominatesMergePoint(PN->getIncomingValue(0), BB, AggressiveInsts,
2371                              BudgetRemaining, TTI) ||
2372         !DominatesMergePoint(PN->getIncomingValue(1), BB, AggressiveInsts,
2373                              BudgetRemaining, TTI))
2374       return false;
2375   }
2376 
2377   // If we folded the first phi, PN dangles at this point.  Refresh it.  If
2378   // we ran out of PHIs then we simplified them all.
2379   PN = dyn_cast<PHINode>(BB->begin());
2380   if (!PN)
2381     return true;
2382 
2383   // Return true if at least one of these is a 'not', and another is either
2384   // a 'not' too, or a constant.
2385   auto CanHoistNotFromBothValues = [](Value *V0, Value *V1) {
2386     if (!match(V0, m_Not(m_Value())))
2387       std::swap(V0, V1);
2388     auto Invertible = m_CombineOr(m_Not(m_Value()), m_AnyIntegralConstant());
2389     return match(V0, m_Not(m_Value())) && match(V1, Invertible);
2390   };
2391 
2392   // Don't fold i1 branches on PHIs which contain binary operators, unless one
2393   // of the incoming values is an 'not' and another one is freely invertible.
2394   // These can often be turned into switches and other things.
2395   if (PN->getType()->isIntegerTy(1) &&
2396       (isa<BinaryOperator>(PN->getIncomingValue(0)) ||
2397        isa<BinaryOperator>(PN->getIncomingValue(1)) ||
2398        isa<BinaryOperator>(IfCond)) &&
2399       !CanHoistNotFromBothValues(PN->getIncomingValue(0),
2400                                  PN->getIncomingValue(1)))
2401     return false;
2402 
2403   // If all PHI nodes are promotable, check to make sure that all instructions
2404   // in the predecessor blocks can be promoted as well. If not, we won't be able
2405   // to get rid of the control flow, so it's not worth promoting to select
2406   // instructions.
2407   BasicBlock *DomBlock = nullptr;
2408   BasicBlock *IfBlock1 = PN->getIncomingBlock(0);
2409   BasicBlock *IfBlock2 = PN->getIncomingBlock(1);
2410   if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) {
2411     IfBlock1 = nullptr;
2412   } else {
2413     DomBlock = *pred_begin(IfBlock1);
2414     for (BasicBlock::iterator I = IfBlock1->begin(); !I->isTerminator(); ++I)
2415       if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) {
2416         // This is not an aggressive instruction that we can promote.
2417         // Because of this, we won't be able to get rid of the control flow, so
2418         // the xform is not worth it.
2419         return false;
2420       }
2421   }
2422 
2423   if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) {
2424     IfBlock2 = nullptr;
2425   } else {
2426     DomBlock = *pred_begin(IfBlock2);
2427     for (BasicBlock::iterator I = IfBlock2->begin(); !I->isTerminator(); ++I)
2428       if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) {
2429         // This is not an aggressive instruction that we can promote.
2430         // Because of this, we won't be able to get rid of the control flow, so
2431         // the xform is not worth it.
2432         return false;
2433       }
2434   }
2435   assert(DomBlock && "Failed to find root DomBlock");
2436 
2437   LLVM_DEBUG(dbgs() << "FOUND IF CONDITION!  " << *IfCond
2438                     << "  T: " << IfTrue->getName()
2439                     << "  F: " << IfFalse->getName() << "\n");
2440 
2441   // If we can still promote the PHI nodes after this gauntlet of tests,
2442   // do all of the PHI's now.
2443   Instruction *InsertPt = DomBlock->getTerminator();
2444   IRBuilder<NoFolder> Builder(InsertPt);
2445 
2446   // Move all 'aggressive' instructions, which are defined in the
2447   // conditional parts of the if's up to the dominating block.
2448   if (IfBlock1)
2449     hoistAllInstructionsInto(DomBlock, InsertPt, IfBlock1);
2450   if (IfBlock2)
2451     hoistAllInstructionsInto(DomBlock, InsertPt, IfBlock2);
2452 
2453   // Propagate fast-math-flags from phi nodes to replacement selects.
2454   IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
2455   while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
2456     if (isa<FPMathOperator>(PN))
2457       Builder.setFastMathFlags(PN->getFastMathFlags());
2458 
2459     // Change the PHI node into a select instruction.
2460     Value *TrueVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse);
2461     Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue);
2462 
2463     Value *Sel = Builder.CreateSelect(IfCond, TrueVal, FalseVal, "", InsertPt);
2464     PN->replaceAllUsesWith(Sel);
2465     Sel->takeName(PN);
2466     PN->eraseFromParent();
2467   }
2468 
2469   // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement
2470   // has been flattened.  Change DomBlock to jump directly to our new block to
2471   // avoid other simplifycfg's kicking in on the diamond.
2472   Instruction *OldTI = DomBlock->getTerminator();
2473   Builder.SetInsertPoint(OldTI);
2474   Builder.CreateBr(BB);
2475   OldTI->eraseFromParent();
2476   return true;
2477 }
2478 
2479 /// If we found a conditional branch that goes to two returning blocks,
2480 /// try to merge them together into one return,
2481 /// introducing a select if the return values disagree.
2482 static bool SimplifyCondBranchToTwoReturns(BranchInst *BI,
2483                                            IRBuilder<> &Builder) {
2484   assert(BI->isConditional() && "Must be a conditional branch");
2485   BasicBlock *TrueSucc = BI->getSuccessor(0);
2486   BasicBlock *FalseSucc = BI->getSuccessor(1);
2487   ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator());
2488   ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator());
2489 
2490   // Check to ensure both blocks are empty (just a return) or optionally empty
2491   // with PHI nodes.  If there are other instructions, merging would cause extra
2492   // computation on one path or the other.
2493   if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator())
2494     return false;
2495   if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator())
2496     return false;
2497 
2498   Builder.SetInsertPoint(BI);
2499   // Okay, we found a branch that is going to two return nodes.  If
2500   // there is no return value for this function, just change the
2501   // branch into a return.
2502   if (FalseRet->getNumOperands() == 0) {
2503     TrueSucc->removePredecessor(BI->getParent());
2504     FalseSucc->removePredecessor(BI->getParent());
2505     Builder.CreateRetVoid();
2506     EraseTerminatorAndDCECond(BI);
2507     return true;
2508   }
2509 
2510   // Otherwise, figure out what the true and false return values are
2511   // so we can insert a new select instruction.
2512   Value *TrueValue = TrueRet->getReturnValue();
2513   Value *FalseValue = FalseRet->getReturnValue();
2514 
2515   // Unwrap any PHI nodes in the return blocks.
2516   if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue))
2517     if (TVPN->getParent() == TrueSucc)
2518       TrueValue = TVPN->getIncomingValueForBlock(BI->getParent());
2519   if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue))
2520     if (FVPN->getParent() == FalseSucc)
2521       FalseValue = FVPN->getIncomingValueForBlock(BI->getParent());
2522 
2523   // In order for this transformation to be safe, we must be able to
2524   // unconditionally execute both operands to the return.  This is
2525   // normally the case, but we could have a potentially-trapping
2526   // constant expression that prevents this transformation from being
2527   // safe.
2528   if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue))
2529     if (TCV->canTrap())
2530       return false;
2531   if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue))
2532     if (FCV->canTrap())
2533       return false;
2534 
2535   // Okay, we collected all the mapped values and checked them for sanity, and
2536   // defined to really do this transformation.  First, update the CFG.
2537   TrueSucc->removePredecessor(BI->getParent());
2538   FalseSucc->removePredecessor(BI->getParent());
2539 
2540   // Insert select instructions where needed.
2541   Value *BrCond = BI->getCondition();
2542   if (TrueValue) {
2543     // Insert a select if the results differ.
2544     if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) {
2545     } else if (isa<UndefValue>(TrueValue)) {
2546       TrueValue = FalseValue;
2547     } else {
2548       TrueValue =
2549           Builder.CreateSelect(BrCond, TrueValue, FalseValue, "retval", BI);
2550     }
2551   }
2552 
2553   Value *RI =
2554       !TrueValue ? Builder.CreateRetVoid() : Builder.CreateRet(TrueValue);
2555 
2556   (void)RI;
2557 
2558   LLVM_DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:"
2559                     << "\n  " << *BI << "NewRet = " << *RI << "TRUEBLOCK: "
2560                     << *TrueSucc << "FALSEBLOCK: " << *FalseSucc);
2561 
2562   EraseTerminatorAndDCECond(BI);
2563 
2564   return true;
2565 }
2566 
2567 /// Return true if the given instruction is available
2568 /// in its predecessor block. If yes, the instruction will be removed.
2569 static bool tryCSEWithPredecessor(Instruction *Inst, BasicBlock *PB) {
2570   if (!isa<BinaryOperator>(Inst) && !isa<CmpInst>(Inst))
2571     return false;
2572   for (Instruction &I : *PB) {
2573     Instruction *PBI = &I;
2574     // Check whether Inst and PBI generate the same value.
2575     if (Inst->isIdenticalTo(PBI)) {
2576       Inst->replaceAllUsesWith(PBI);
2577       Inst->eraseFromParent();
2578       return true;
2579     }
2580   }
2581   return false;
2582 }
2583 
2584 /// Return true if either PBI or BI has branch weight available, and store
2585 /// the weights in {Pred|Succ}{True|False}Weight. If one of PBI and BI does
2586 /// not have branch weight, use 1:1 as its weight.
2587 static bool extractPredSuccWeights(BranchInst *PBI, BranchInst *BI,
2588                                    uint64_t &PredTrueWeight,
2589                                    uint64_t &PredFalseWeight,
2590                                    uint64_t &SuccTrueWeight,
2591                                    uint64_t &SuccFalseWeight) {
2592   bool PredHasWeights =
2593       PBI->extractProfMetadata(PredTrueWeight, PredFalseWeight);
2594   bool SuccHasWeights =
2595       BI->extractProfMetadata(SuccTrueWeight, SuccFalseWeight);
2596   if (PredHasWeights || SuccHasWeights) {
2597     if (!PredHasWeights)
2598       PredTrueWeight = PredFalseWeight = 1;
2599     if (!SuccHasWeights)
2600       SuccTrueWeight = SuccFalseWeight = 1;
2601     return true;
2602   } else {
2603     return false;
2604   }
2605 }
2606 
2607 /// If this basic block is simple enough, and if a predecessor branches to us
2608 /// and one of our successors, fold the block into the predecessor and use
2609 /// logical operations to pick the right destination.
2610 bool llvm::FoldBranchToCommonDest(BranchInst *BI, MemorySSAUpdater *MSSAU,
2611                                   unsigned BonusInstThreshold) {
2612   BasicBlock *BB = BI->getParent();
2613 
2614   const unsigned PredCount = pred_size(BB);
2615 
2616   Instruction *Cond = nullptr;
2617   if (BI->isConditional())
2618     Cond = dyn_cast<Instruction>(BI->getCondition());
2619   else {
2620     // For unconditional branch, check for a simple CFG pattern, where
2621     // BB has a single predecessor and BB's successor is also its predecessor's
2622     // successor. If such pattern exists, check for CSE between BB and its
2623     // predecessor.
2624     if (BasicBlock *PB = BB->getSinglePredecessor())
2625       if (BranchInst *PBI = dyn_cast<BranchInst>(PB->getTerminator()))
2626         if (PBI->isConditional() &&
2627             (BI->getSuccessor(0) == PBI->getSuccessor(0) ||
2628              BI->getSuccessor(0) == PBI->getSuccessor(1))) {
2629           for (auto I = BB->instructionsWithoutDebug().begin(),
2630                     E = BB->instructionsWithoutDebug().end();
2631                I != E;) {
2632             Instruction *Curr = &*I++;
2633             if (isa<CmpInst>(Curr)) {
2634               Cond = Curr;
2635               break;
2636             }
2637             // Quit if we can't remove this instruction.
2638             if (!tryCSEWithPredecessor(Curr, PB))
2639               return false;
2640           }
2641         }
2642 
2643     if (!Cond)
2644       return false;
2645   }
2646 
2647   if (!Cond || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) ||
2648       Cond->getParent() != BB || !Cond->hasOneUse())
2649     return false;
2650 
2651   // Make sure the instruction after the condition is the cond branch.
2652   BasicBlock::iterator CondIt = ++Cond->getIterator();
2653 
2654   // Ignore dbg intrinsics.
2655   while (isa<DbgInfoIntrinsic>(CondIt))
2656     ++CondIt;
2657 
2658   if (&*CondIt != BI)
2659     return false;
2660 
2661   // Only allow this transformation if computing the condition doesn't involve
2662   // too many instructions and these involved instructions can be executed
2663   // unconditionally. We denote all involved instructions except the condition
2664   // as "bonus instructions", and only allow this transformation when the
2665   // number of the bonus instructions we'll need to create when cloning into
2666   // each predecessor does not exceed a certain threshold.
2667   unsigned NumBonusInsts = 0;
2668   for (auto I = BB->begin(); Cond != &*I; ++I) {
2669     // Ignore dbg intrinsics.
2670     if (isa<DbgInfoIntrinsic>(I))
2671       continue;
2672     if (!I->hasOneUse() || !isSafeToSpeculativelyExecute(&*I))
2673       return false;
2674     // I has only one use and can be executed unconditionally.
2675     Instruction *User = dyn_cast<Instruction>(I->user_back());
2676     if (User == nullptr || User->getParent() != BB)
2677       return false;
2678     // I is used in the same BB. Since BI uses Cond and doesn't have more slots
2679     // to use any other instruction, User must be an instruction between next(I)
2680     // and Cond.
2681 
2682     // Account for the cost of duplicating this instruction into each
2683     // predecessor.
2684     NumBonusInsts += PredCount;
2685     // Early exits once we reach the limit.
2686     if (NumBonusInsts > BonusInstThreshold)
2687       return false;
2688   }
2689 
2690   // Cond is known to be a compare or binary operator.  Check to make sure that
2691   // neither operand is a potentially-trapping constant expression.
2692   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0)))
2693     if (CE->canTrap())
2694       return false;
2695   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1)))
2696     if (CE->canTrap())
2697       return false;
2698 
2699   // Finally, don't infinitely unroll conditional loops.
2700   BasicBlock *TrueDest = BI->getSuccessor(0);
2701   BasicBlock *FalseDest = (BI->isConditional()) ? BI->getSuccessor(1) : nullptr;
2702   if (TrueDest == BB || FalseDest == BB)
2703     return false;
2704 
2705   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
2706     BasicBlock *PredBlock = *PI;
2707     BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator());
2708 
2709     // Check that we have two conditional branches.  If there is a PHI node in
2710     // the common successor, verify that the same value flows in from both
2711     // blocks.
2712     SmallVector<PHINode *, 4> PHIs;
2713     if (!PBI || PBI->isUnconditional() ||
2714         (BI->isConditional() && !SafeToMergeTerminators(BI, PBI)) ||
2715         (!BI->isConditional() &&
2716          !isProfitableToFoldUnconditional(BI, PBI, Cond, PHIs)))
2717       continue;
2718 
2719     // Determine if the two branches share a common destination.
2720     Instruction::BinaryOps Opc = Instruction::BinaryOpsEnd;
2721     bool InvertPredCond = false;
2722 
2723     if (BI->isConditional()) {
2724       if (PBI->getSuccessor(0) == TrueDest) {
2725         Opc = Instruction::Or;
2726       } else if (PBI->getSuccessor(1) == FalseDest) {
2727         Opc = Instruction::And;
2728       } else if (PBI->getSuccessor(0) == FalseDest) {
2729         Opc = Instruction::And;
2730         InvertPredCond = true;
2731       } else if (PBI->getSuccessor(1) == TrueDest) {
2732         Opc = Instruction::Or;
2733         InvertPredCond = true;
2734       } else {
2735         continue;
2736       }
2737     } else {
2738       if (PBI->getSuccessor(0) != TrueDest && PBI->getSuccessor(1) != TrueDest)
2739         continue;
2740     }
2741 
2742     LLVM_DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB);
2743     IRBuilder<> Builder(PBI);
2744 
2745     // If we need to invert the condition in the pred block to match, do so now.
2746     if (InvertPredCond) {
2747       Value *NewCond = PBI->getCondition();
2748 
2749       if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) {
2750         CmpInst *CI = cast<CmpInst>(NewCond);
2751         CI->setPredicate(CI->getInversePredicate());
2752       } else {
2753         NewCond =
2754             Builder.CreateNot(NewCond, PBI->getCondition()->getName() + ".not");
2755       }
2756 
2757       PBI->setCondition(NewCond);
2758       PBI->swapSuccessors();
2759     }
2760 
2761     // If we have bonus instructions, clone them into the predecessor block.
2762     // Note that there may be multiple predecessor blocks, so we cannot move
2763     // bonus instructions to a predecessor block.
2764     ValueToValueMapTy VMap; // maps original values to cloned values
2765     // We already make sure Cond is the last instruction before BI. Therefore,
2766     // all instructions before Cond other than DbgInfoIntrinsic are bonus
2767     // instructions.
2768     for (auto BonusInst = BB->begin(); Cond != &*BonusInst; ++BonusInst) {
2769       if (isa<DbgInfoIntrinsic>(BonusInst))
2770         continue;
2771       Instruction *NewBonusInst = BonusInst->clone();
2772       RemapInstruction(NewBonusInst, VMap,
2773                        RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
2774       VMap[&*BonusInst] = NewBonusInst;
2775 
2776       // If we moved a load, we cannot any longer claim any knowledge about
2777       // its potential value. The previous information might have been valid
2778       // only given the branch precondition.
2779       // For an analogous reason, we must also drop all the metadata whose
2780       // semantics we don't understand.
2781       NewBonusInst->dropUnknownNonDebugMetadata();
2782 
2783       PredBlock->getInstList().insert(PBI->getIterator(), NewBonusInst);
2784       NewBonusInst->takeName(&*BonusInst);
2785       BonusInst->setName(BonusInst->getName() + ".old");
2786     }
2787 
2788     // Clone Cond into the predecessor basic block, and or/and the
2789     // two conditions together.
2790     Instruction *CondInPred = Cond->clone();
2791     RemapInstruction(CondInPred, VMap,
2792                      RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
2793     PredBlock->getInstList().insert(PBI->getIterator(), CondInPred);
2794     CondInPred->takeName(Cond);
2795     Cond->setName(CondInPred->getName() + ".old");
2796 
2797     if (BI->isConditional()) {
2798       Instruction *NewCond = cast<Instruction>(
2799           Builder.CreateBinOp(Opc, PBI->getCondition(), CondInPred, "or.cond"));
2800       PBI->setCondition(NewCond);
2801 
2802       uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
2803       bool HasWeights =
2804           extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
2805                                  SuccTrueWeight, SuccFalseWeight);
2806       SmallVector<uint64_t, 8> NewWeights;
2807 
2808       if (PBI->getSuccessor(0) == BB) {
2809         if (HasWeights) {
2810           // PBI: br i1 %x, BB, FalseDest
2811           // BI:  br i1 %y, TrueDest, FalseDest
2812           // TrueWeight is TrueWeight for PBI * TrueWeight for BI.
2813           NewWeights.push_back(PredTrueWeight * SuccTrueWeight);
2814           // FalseWeight is FalseWeight for PBI * TotalWeight for BI +
2815           //               TrueWeight for PBI * FalseWeight for BI.
2816           // We assume that total weights of a BranchInst can fit into 32 bits.
2817           // Therefore, we will not have overflow using 64-bit arithmetic.
2818           NewWeights.push_back(PredFalseWeight *
2819                                    (SuccFalseWeight + SuccTrueWeight) +
2820                                PredTrueWeight * SuccFalseWeight);
2821         }
2822         AddPredecessorToBlock(TrueDest, PredBlock, BB, MSSAU);
2823         PBI->setSuccessor(0, TrueDest);
2824       }
2825       if (PBI->getSuccessor(1) == BB) {
2826         if (HasWeights) {
2827           // PBI: br i1 %x, TrueDest, BB
2828           // BI:  br i1 %y, TrueDest, FalseDest
2829           // TrueWeight is TrueWeight for PBI * TotalWeight for BI +
2830           //              FalseWeight for PBI * TrueWeight for BI.
2831           NewWeights.push_back(PredTrueWeight *
2832                                    (SuccFalseWeight + SuccTrueWeight) +
2833                                PredFalseWeight * SuccTrueWeight);
2834           // FalseWeight is FalseWeight for PBI * FalseWeight for BI.
2835           NewWeights.push_back(PredFalseWeight * SuccFalseWeight);
2836         }
2837         AddPredecessorToBlock(FalseDest, PredBlock, BB, MSSAU);
2838         PBI->setSuccessor(1, FalseDest);
2839       }
2840       if (NewWeights.size() == 2) {
2841         // Halve the weights if any of them cannot fit in an uint32_t
2842         FitWeights(NewWeights);
2843 
2844         SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(),
2845                                            NewWeights.end());
2846         setBranchWeights(PBI, MDWeights[0], MDWeights[1]);
2847       } else
2848         PBI->setMetadata(LLVMContext::MD_prof, nullptr);
2849     } else {
2850       // Update PHI nodes in the common successors.
2851       for (unsigned i = 0, e = PHIs.size(); i != e; ++i) {
2852         ConstantInt *PBI_C = cast<ConstantInt>(
2853             PHIs[i]->getIncomingValueForBlock(PBI->getParent()));
2854         assert(PBI_C->getType()->isIntegerTy(1));
2855         Instruction *MergedCond = nullptr;
2856         if (PBI->getSuccessor(0) == TrueDest) {
2857           // Create (PBI_Cond and PBI_C) or (!PBI_Cond and BI_Value)
2858           // PBI_C is true: PBI_Cond or (!PBI_Cond and BI_Value)
2859           //       is false: !PBI_Cond and BI_Value
2860           Instruction *NotCond = cast<Instruction>(
2861               Builder.CreateNot(PBI->getCondition(), "not.cond"));
2862           MergedCond = cast<Instruction>(
2863                Builder.CreateBinOp(Instruction::And, NotCond, CondInPred,
2864                                    "and.cond"));
2865           if (PBI_C->isOne())
2866             MergedCond = cast<Instruction>(Builder.CreateBinOp(
2867                 Instruction::Or, PBI->getCondition(), MergedCond, "or.cond"));
2868         } else {
2869           // Create (PBI_Cond and BI_Value) or (!PBI_Cond and PBI_C)
2870           // PBI_C is true: (PBI_Cond and BI_Value) or (!PBI_Cond)
2871           //       is false: PBI_Cond and BI_Value
2872           MergedCond = cast<Instruction>(Builder.CreateBinOp(
2873               Instruction::And, PBI->getCondition(), CondInPred, "and.cond"));
2874           if (PBI_C->isOne()) {
2875             Instruction *NotCond = cast<Instruction>(
2876                 Builder.CreateNot(PBI->getCondition(), "not.cond"));
2877             MergedCond = cast<Instruction>(Builder.CreateBinOp(
2878                 Instruction::Or, NotCond, MergedCond, "or.cond"));
2879           }
2880         }
2881         // Update PHI Node.
2882 	PHIs[i]->setIncomingValueForBlock(PBI->getParent(), MergedCond);
2883       }
2884 
2885       // PBI is changed to branch to TrueDest below. Remove itself from
2886       // potential phis from all other successors.
2887       if (MSSAU)
2888         MSSAU->changeCondBranchToUnconditionalTo(PBI, TrueDest);
2889 
2890       // Change PBI from Conditional to Unconditional.
2891       BranchInst *New_PBI = BranchInst::Create(TrueDest, PBI);
2892       EraseTerminatorAndDCECond(PBI, MSSAU);
2893       PBI = New_PBI;
2894     }
2895 
2896     // If BI was a loop latch, it may have had associated loop metadata.
2897     // We need to copy it to the new latch, that is, PBI.
2898     if (MDNode *LoopMD = BI->getMetadata(LLVMContext::MD_loop))
2899       PBI->setMetadata(LLVMContext::MD_loop, LoopMD);
2900 
2901     // TODO: If BB is reachable from all paths through PredBlock, then we
2902     // could replace PBI's branch probabilities with BI's.
2903 
2904     // Copy any debug value intrinsics into the end of PredBlock.
2905     for (Instruction &I : *BB)
2906       if (isa<DbgInfoIntrinsic>(I))
2907         I.clone()->insertBefore(PBI);
2908 
2909     return true;
2910   }
2911   return false;
2912 }
2913 
2914 // If there is only one store in BB1 and BB2, return it, otherwise return
2915 // nullptr.
2916 static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) {
2917   StoreInst *S = nullptr;
2918   for (auto *BB : {BB1, BB2}) {
2919     if (!BB)
2920       continue;
2921     for (auto &I : *BB)
2922       if (auto *SI = dyn_cast<StoreInst>(&I)) {
2923         if (S)
2924           // Multiple stores seen.
2925           return nullptr;
2926         else
2927           S = SI;
2928       }
2929   }
2930   return S;
2931 }
2932 
2933 static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB,
2934                                               Value *AlternativeV = nullptr) {
2935   // PHI is going to be a PHI node that allows the value V that is defined in
2936   // BB to be referenced in BB's only successor.
2937   //
2938   // If AlternativeV is nullptr, the only value we care about in PHI is V. It
2939   // doesn't matter to us what the other operand is (it'll never get used). We
2940   // could just create a new PHI with an undef incoming value, but that could
2941   // increase register pressure if EarlyCSE/InstCombine can't fold it with some
2942   // other PHI. So here we directly look for some PHI in BB's successor with V
2943   // as an incoming operand. If we find one, we use it, else we create a new
2944   // one.
2945   //
2946   // If AlternativeV is not nullptr, we care about both incoming values in PHI.
2947   // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV]
2948   // where OtherBB is the single other predecessor of BB's only successor.
2949   PHINode *PHI = nullptr;
2950   BasicBlock *Succ = BB->getSingleSuccessor();
2951 
2952   for (auto I = Succ->begin(); isa<PHINode>(I); ++I)
2953     if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) {
2954       PHI = cast<PHINode>(I);
2955       if (!AlternativeV)
2956         break;
2957 
2958       assert(Succ->hasNPredecessors(2));
2959       auto PredI = pred_begin(Succ);
2960       BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI;
2961       if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV)
2962         break;
2963       PHI = nullptr;
2964     }
2965   if (PHI)
2966     return PHI;
2967 
2968   // If V is not an instruction defined in BB, just return it.
2969   if (!AlternativeV &&
2970       (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB))
2971     return V;
2972 
2973   PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge", &Succ->front());
2974   PHI->addIncoming(V, BB);
2975   for (BasicBlock *PredBB : predecessors(Succ))
2976     if (PredBB != BB)
2977       PHI->addIncoming(
2978           AlternativeV ? AlternativeV : UndefValue::get(V->getType()), PredBB);
2979   return PHI;
2980 }
2981 
2982 static bool mergeConditionalStoreToAddress(BasicBlock *PTB, BasicBlock *PFB,
2983                                            BasicBlock *QTB, BasicBlock *QFB,
2984                                            BasicBlock *PostBB, Value *Address,
2985                                            bool InvertPCond, bool InvertQCond,
2986                                            const DataLayout &DL,
2987                                            const TargetTransformInfo &TTI) {
2988   // For every pointer, there must be exactly two stores, one coming from
2989   // PTB or PFB, and the other from QTB or QFB. We don't support more than one
2990   // store (to any address) in PTB,PFB or QTB,QFB.
2991   // FIXME: We could relax this restriction with a bit more work and performance
2992   // testing.
2993   StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB);
2994   StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB);
2995   if (!PStore || !QStore)
2996     return false;
2997 
2998   // Now check the stores are compatible.
2999   if (!QStore->isUnordered() || !PStore->isUnordered())
3000     return false;
3001 
3002   // Check that sinking the store won't cause program behavior changes. Sinking
3003   // the store out of the Q blocks won't change any behavior as we're sinking
3004   // from a block to its unconditional successor. But we're moving a store from
3005   // the P blocks down through the middle block (QBI) and past both QFB and QTB.
3006   // So we need to check that there are no aliasing loads or stores in
3007   // QBI, QTB and QFB. We also need to check there are no conflicting memory
3008   // operations between PStore and the end of its parent block.
3009   //
3010   // The ideal way to do this is to query AliasAnalysis, but we don't
3011   // preserve AA currently so that is dangerous. Be super safe and just
3012   // check there are no other memory operations at all.
3013   for (auto &I : *QFB->getSinglePredecessor())
3014     if (I.mayReadOrWriteMemory())
3015       return false;
3016   for (auto &I : *QFB)
3017     if (&I != QStore && I.mayReadOrWriteMemory())
3018       return false;
3019   if (QTB)
3020     for (auto &I : *QTB)
3021       if (&I != QStore && I.mayReadOrWriteMemory())
3022         return false;
3023   for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end();
3024        I != E; ++I)
3025     if (&*I != PStore && I->mayReadOrWriteMemory())
3026       return false;
3027 
3028   // If we're not in aggressive mode, we only optimize if we have some
3029   // confidence that by optimizing we'll allow P and/or Q to be if-converted.
3030   auto IsWorthwhile = [&](BasicBlock *BB, ArrayRef<StoreInst *> FreeStores) {
3031     if (!BB)
3032       return true;
3033     // Heuristic: if the block can be if-converted/phi-folded and the
3034     // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to
3035     // thread this store.
3036     int BudgetRemaining =
3037         PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
3038     for (auto &I : BB->instructionsWithoutDebug()) {
3039       // Consider terminator instruction to be free.
3040       if (I.isTerminator())
3041         continue;
3042       // If this is one the stores that we want to speculate out of this BB,
3043       // then don't count it's cost, consider it to be free.
3044       if (auto *S = dyn_cast<StoreInst>(&I))
3045         if (llvm::find(FreeStores, S))
3046           continue;
3047       // Else, we have a white-list of instructions that we are ak speculating.
3048       if (!isa<BinaryOperator>(I) && !isa<GetElementPtrInst>(I))
3049         return false; // Not in white-list - not worthwhile folding.
3050       // And finally, if this is a non-free instruction that we are okay
3051       // speculating, ensure that we consider the speculation budget.
3052       BudgetRemaining -= TTI.getUserCost(&I);
3053       if (BudgetRemaining < 0)
3054         return false; // Eagerly refuse to fold as soon as we're out of budget.
3055     }
3056     assert(BudgetRemaining >= 0 &&
3057            "When we run out of budget we will eagerly return from within the "
3058            "per-instruction loop.");
3059     return true;
3060   };
3061 
3062   const SmallVector<StoreInst *, 2> FreeStores = {PStore, QStore};
3063   if (!MergeCondStoresAggressively &&
3064       (!IsWorthwhile(PTB, FreeStores) || !IsWorthwhile(PFB, FreeStores) ||
3065        !IsWorthwhile(QTB, FreeStores) || !IsWorthwhile(QFB, FreeStores)))
3066     return false;
3067 
3068   // If PostBB has more than two predecessors, we need to split it so we can
3069   // sink the store.
3070   if (std::next(pred_begin(PostBB), 2) != pred_end(PostBB)) {
3071     // We know that QFB's only successor is PostBB. And QFB has a single
3072     // predecessor. If QTB exists, then its only successor is also PostBB.
3073     // If QTB does not exist, then QFB's only predecessor has a conditional
3074     // branch to QFB and PostBB.
3075     BasicBlock *TruePred = QTB ? QTB : QFB->getSinglePredecessor();
3076     BasicBlock *NewBB = SplitBlockPredecessors(PostBB, { QFB, TruePred},
3077                                                "condstore.split");
3078     if (!NewBB)
3079       return false;
3080     PostBB = NewBB;
3081   }
3082 
3083   // OK, we're going to sink the stores to PostBB. The store has to be
3084   // conditional though, so first create the predicate.
3085   Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator())
3086                      ->getCondition();
3087   Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator())
3088                      ->getCondition();
3089 
3090   Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(),
3091                                                 PStore->getParent());
3092   Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(),
3093                                                 QStore->getParent(), PPHI);
3094 
3095   IRBuilder<> QB(&*PostBB->getFirstInsertionPt());
3096 
3097   Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond);
3098   Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond);
3099 
3100   if (InvertPCond)
3101     PPred = QB.CreateNot(PPred);
3102   if (InvertQCond)
3103     QPred = QB.CreateNot(QPred);
3104   Value *CombinedPred = QB.CreateOr(PPred, QPred);
3105 
3106   auto *T =
3107       SplitBlockAndInsertIfThen(CombinedPred, &*QB.GetInsertPoint(), false);
3108   QB.SetInsertPoint(T);
3109   StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address));
3110   AAMDNodes AAMD;
3111   PStore->getAAMetadata(AAMD, /*Merge=*/false);
3112   PStore->getAAMetadata(AAMD, /*Merge=*/true);
3113   SI->setAAMetadata(AAMD);
3114   unsigned PAlignment = PStore->getAlignment();
3115   unsigned QAlignment = QStore->getAlignment();
3116   unsigned TypeAlignment =
3117       DL.getABITypeAlignment(SI->getValueOperand()->getType());
3118   unsigned MinAlignment;
3119   unsigned MaxAlignment;
3120   std::tie(MinAlignment, MaxAlignment) = std::minmax(PAlignment, QAlignment);
3121   // Choose the minimum alignment. If we could prove both stores execute, we
3122   // could use biggest one.  In this case, though, we only know that one of the
3123   // stores executes.  And we don't know it's safe to take the alignment from a
3124   // store that doesn't execute.
3125   if (MinAlignment != 0) {
3126     // Choose the minimum of all non-zero alignments.
3127     SI->setAlignment(Align(MinAlignment));
3128   } else if (MaxAlignment != 0) {
3129     // Choose the minimal alignment between the non-zero alignment and the ABI
3130     // default alignment for the type of the stored value.
3131     SI->setAlignment(Align(std::min(MaxAlignment, TypeAlignment)));
3132   } else {
3133     // If both alignments are zero, use ABI default alignment for the type of
3134     // the stored value.
3135     SI->setAlignment(Align(TypeAlignment));
3136   }
3137 
3138   QStore->eraseFromParent();
3139   PStore->eraseFromParent();
3140 
3141   return true;
3142 }
3143 
3144 static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI,
3145                                    const DataLayout &DL,
3146                                    const TargetTransformInfo &TTI) {
3147   // The intention here is to find diamonds or triangles (see below) where each
3148   // conditional block contains a store to the same address. Both of these
3149   // stores are conditional, so they can't be unconditionally sunk. But it may
3150   // be profitable to speculatively sink the stores into one merged store at the
3151   // end, and predicate the merged store on the union of the two conditions of
3152   // PBI and QBI.
3153   //
3154   // This can reduce the number of stores executed if both of the conditions are
3155   // true, and can allow the blocks to become small enough to be if-converted.
3156   // This optimization will also chain, so that ladders of test-and-set
3157   // sequences can be if-converted away.
3158   //
3159   // We only deal with simple diamonds or triangles:
3160   //
3161   //     PBI       or      PBI        or a combination of the two
3162   //    /   \               | \
3163   //   PTB  PFB             |  PFB
3164   //    \   /               | /
3165   //     QBI                QBI
3166   //    /  \                | \
3167   //   QTB  QFB             |  QFB
3168   //    \  /                | /
3169   //    PostBB            PostBB
3170   //
3171   // We model triangles as a type of diamond with a nullptr "true" block.
3172   // Triangles are canonicalized so that the fallthrough edge is represented by
3173   // a true condition, as in the diagram above.
3174   BasicBlock *PTB = PBI->getSuccessor(0);
3175   BasicBlock *PFB = PBI->getSuccessor(1);
3176   BasicBlock *QTB = QBI->getSuccessor(0);
3177   BasicBlock *QFB = QBI->getSuccessor(1);
3178   BasicBlock *PostBB = QFB->getSingleSuccessor();
3179 
3180   // Make sure we have a good guess for PostBB. If QTB's only successor is
3181   // QFB, then QFB is a better PostBB.
3182   if (QTB->getSingleSuccessor() == QFB)
3183     PostBB = QFB;
3184 
3185   // If we couldn't find a good PostBB, stop.
3186   if (!PostBB)
3187     return false;
3188 
3189   bool InvertPCond = false, InvertQCond = false;
3190   // Canonicalize fallthroughs to the true branches.
3191   if (PFB == QBI->getParent()) {
3192     std::swap(PFB, PTB);
3193     InvertPCond = true;
3194   }
3195   if (QFB == PostBB) {
3196     std::swap(QFB, QTB);
3197     InvertQCond = true;
3198   }
3199 
3200   // From this point on we can assume PTB or QTB may be fallthroughs but PFB
3201   // and QFB may not. Model fallthroughs as a nullptr block.
3202   if (PTB == QBI->getParent())
3203     PTB = nullptr;
3204   if (QTB == PostBB)
3205     QTB = nullptr;
3206 
3207   // Legality bailouts. We must have at least the non-fallthrough blocks and
3208   // the post-dominating block, and the non-fallthroughs must only have one
3209   // predecessor.
3210   auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) {
3211     return BB->getSinglePredecessor() == P && BB->getSingleSuccessor() == S;
3212   };
3213   if (!HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) ||
3214       !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB))
3215     return false;
3216   if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) ||
3217       (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB)))
3218     return false;
3219   if (!QBI->getParent()->hasNUses(2))
3220     return false;
3221 
3222   // OK, this is a sequence of two diamonds or triangles.
3223   // Check if there are stores in PTB or PFB that are repeated in QTB or QFB.
3224   SmallPtrSet<Value *, 4> PStoreAddresses, QStoreAddresses;
3225   for (auto *BB : {PTB, PFB}) {
3226     if (!BB)
3227       continue;
3228     for (auto &I : *BB)
3229       if (StoreInst *SI = dyn_cast<StoreInst>(&I))
3230         PStoreAddresses.insert(SI->getPointerOperand());
3231   }
3232   for (auto *BB : {QTB, QFB}) {
3233     if (!BB)
3234       continue;
3235     for (auto &I : *BB)
3236       if (StoreInst *SI = dyn_cast<StoreInst>(&I))
3237         QStoreAddresses.insert(SI->getPointerOperand());
3238   }
3239 
3240   set_intersect(PStoreAddresses, QStoreAddresses);
3241   // set_intersect mutates PStoreAddresses in place. Rename it here to make it
3242   // clear what it contains.
3243   auto &CommonAddresses = PStoreAddresses;
3244 
3245   bool Changed = false;
3246   for (auto *Address : CommonAddresses)
3247     Changed |= mergeConditionalStoreToAddress(
3248         PTB, PFB, QTB, QFB, PostBB, Address, InvertPCond, InvertQCond, DL, TTI);
3249   return Changed;
3250 }
3251 
3252 
3253 /// If the previous block ended with a widenable branch, determine if reusing
3254 /// the target block is profitable and legal.  This will have the effect of
3255 /// "widening" PBI, but doesn't require us to reason about hosting safety.
3256 static bool tryWidenCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI) {
3257   // TODO: This can be generalized in two important ways:
3258   // 1) We can allow phi nodes in IfFalseBB and simply reuse all the input
3259   //    values from the PBI edge.
3260   // 2) We can sink side effecting instructions into BI's fallthrough
3261   //    successor provided they doesn't contribute to computation of
3262   //    BI's condition.
3263   Value *CondWB, *WC;
3264   BasicBlock *IfTrueBB, *IfFalseBB;
3265   if (!parseWidenableBranch(PBI, CondWB, WC, IfTrueBB, IfFalseBB) ||
3266       IfTrueBB != BI->getParent() || !BI->getParent()->getSinglePredecessor())
3267     return false;
3268   if (!IfFalseBB->phis().empty())
3269     return false; // TODO
3270   // Use lambda to lazily compute expensive condition after cheap ones.
3271   auto NoSideEffects = [](BasicBlock &BB) {
3272     return !llvm::any_of(BB, [](const Instruction &I) {
3273         return I.mayWriteToMemory() || I.mayHaveSideEffects();
3274       });
3275   };
3276   if (BI->getSuccessor(1) != IfFalseBB && // no inf looping
3277       BI->getSuccessor(1)->getTerminatingDeoptimizeCall() && // profitability
3278       NoSideEffects(*BI->getParent())) {
3279     BI->getSuccessor(1)->removePredecessor(BI->getParent());
3280     BI->setSuccessor(1, IfFalseBB);
3281     return true;
3282   }
3283   if (BI->getSuccessor(0) != IfFalseBB && // no inf looping
3284       BI->getSuccessor(0)->getTerminatingDeoptimizeCall() && // profitability
3285       NoSideEffects(*BI->getParent())) {
3286     BI->getSuccessor(0)->removePredecessor(BI->getParent());
3287     BI->setSuccessor(0, IfFalseBB);
3288     return true;
3289   }
3290   return false;
3291 }
3292 
3293 /// If we have a conditional branch as a predecessor of another block,
3294 /// this function tries to simplify it.  We know
3295 /// that PBI and BI are both conditional branches, and BI is in one of the
3296 /// successor blocks of PBI - PBI branches to BI.
3297 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI,
3298                                            const DataLayout &DL,
3299                                            const TargetTransformInfo &TTI) {
3300   assert(PBI->isConditional() && BI->isConditional());
3301   BasicBlock *BB = BI->getParent();
3302 
3303   // If this block ends with a branch instruction, and if there is a
3304   // predecessor that ends on a branch of the same condition, make
3305   // this conditional branch redundant.
3306   if (PBI->getCondition() == BI->getCondition() &&
3307       PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
3308     // Okay, the outcome of this conditional branch is statically
3309     // knowable.  If this block had a single pred, handle specially.
3310     if (BB->getSinglePredecessor()) {
3311       // Turn this into a branch on constant.
3312       bool CondIsTrue = PBI->getSuccessor(0) == BB;
3313       BI->setCondition(
3314           ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue));
3315       return true; // Nuke the branch on constant.
3316     }
3317 
3318     // Otherwise, if there are multiple predecessors, insert a PHI that merges
3319     // in the constant and simplify the block result.  Subsequent passes of
3320     // simplifycfg will thread the block.
3321     if (BlockIsSimpleEnoughToThreadThrough(BB)) {
3322       pred_iterator PB = pred_begin(BB), PE = pred_end(BB);
3323       PHINode *NewPN = PHINode::Create(
3324           Type::getInt1Ty(BB->getContext()), std::distance(PB, PE),
3325           BI->getCondition()->getName() + ".pr", &BB->front());
3326       // Okay, we're going to insert the PHI node.  Since PBI is not the only
3327       // predecessor, compute the PHI'd conditional value for all of the preds.
3328       // Any predecessor where the condition is not computable we keep symbolic.
3329       for (pred_iterator PI = PB; PI != PE; ++PI) {
3330         BasicBlock *P = *PI;
3331         if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) && PBI != BI &&
3332             PBI->isConditional() && PBI->getCondition() == BI->getCondition() &&
3333             PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
3334           bool CondIsTrue = PBI->getSuccessor(0) == BB;
3335           NewPN->addIncoming(
3336               ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue),
3337               P);
3338         } else {
3339           NewPN->addIncoming(BI->getCondition(), P);
3340         }
3341       }
3342 
3343       BI->setCondition(NewPN);
3344       return true;
3345     }
3346   }
3347 
3348   // If the previous block ended with a widenable branch, determine if reusing
3349   // the target block is profitable and legal.  This will have the effect of
3350   // "widening" PBI, but doesn't require us to reason about hosting safety.
3351   if (tryWidenCondBranchToCondBranch(PBI, BI))
3352     return true;
3353 
3354   if (auto *CE = dyn_cast<ConstantExpr>(BI->getCondition()))
3355     if (CE->canTrap())
3356       return false;
3357 
3358   // If both branches are conditional and both contain stores to the same
3359   // address, remove the stores from the conditionals and create a conditional
3360   // merged store at the end.
3361   if (MergeCondStores && mergeConditionalStores(PBI, BI, DL, TTI))
3362     return true;
3363 
3364   // If this is a conditional branch in an empty block, and if any
3365   // predecessors are a conditional branch to one of our destinations,
3366   // fold the conditions into logical ops and one cond br.
3367 
3368   // Ignore dbg intrinsics.
3369   if (&*BB->instructionsWithoutDebug().begin() != BI)
3370     return false;
3371 
3372   int PBIOp, BIOp;
3373   if (PBI->getSuccessor(0) == BI->getSuccessor(0)) {
3374     PBIOp = 0;
3375     BIOp = 0;
3376   } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) {
3377     PBIOp = 0;
3378     BIOp = 1;
3379   } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) {
3380     PBIOp = 1;
3381     BIOp = 0;
3382   } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) {
3383     PBIOp = 1;
3384     BIOp = 1;
3385   } else {
3386     return false;
3387   }
3388 
3389   // Check to make sure that the other destination of this branch
3390   // isn't BB itself.  If so, this is an infinite loop that will
3391   // keep getting unwound.
3392   if (PBI->getSuccessor(PBIOp) == BB)
3393     return false;
3394 
3395   // Do not perform this transformation if it would require
3396   // insertion of a large number of select instructions. For targets
3397   // without predication/cmovs, this is a big pessimization.
3398 
3399   // Also do not perform this transformation if any phi node in the common
3400   // destination block can trap when reached by BB or PBB (PR17073). In that
3401   // case, it would be unsafe to hoist the operation into a select instruction.
3402 
3403   BasicBlock *CommonDest = PBI->getSuccessor(PBIOp);
3404   unsigned NumPhis = 0;
3405   for (BasicBlock::iterator II = CommonDest->begin(); isa<PHINode>(II);
3406        ++II, ++NumPhis) {
3407     if (NumPhis > 2) // Disable this xform.
3408       return false;
3409 
3410     PHINode *PN = cast<PHINode>(II);
3411     Value *BIV = PN->getIncomingValueForBlock(BB);
3412     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BIV))
3413       if (CE->canTrap())
3414         return false;
3415 
3416     unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
3417     Value *PBIV = PN->getIncomingValue(PBBIdx);
3418     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(PBIV))
3419       if (CE->canTrap())
3420         return false;
3421   }
3422 
3423   // Finally, if everything is ok, fold the branches to logical ops.
3424   BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1);
3425 
3426   LLVM_DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent()
3427                     << "AND: " << *BI->getParent());
3428 
3429   // If OtherDest *is* BB, then BB is a basic block with a single conditional
3430   // branch in it, where one edge (OtherDest) goes back to itself but the other
3431   // exits.  We don't *know* that the program avoids the infinite loop
3432   // (even though that seems likely).  If we do this xform naively, we'll end up
3433   // recursively unpeeling the loop.  Since we know that (after the xform is
3434   // done) that the block *is* infinite if reached, we just make it an obviously
3435   // infinite loop with no cond branch.
3436   if (OtherDest == BB) {
3437     // Insert it at the end of the function, because it's either code,
3438     // or it won't matter if it's hot. :)
3439     BasicBlock *InfLoopBlock =
3440         BasicBlock::Create(BB->getContext(), "infloop", BB->getParent());
3441     BranchInst::Create(InfLoopBlock, InfLoopBlock);
3442     OtherDest = InfLoopBlock;
3443   }
3444 
3445   LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent());
3446 
3447   // BI may have other predecessors.  Because of this, we leave
3448   // it alone, but modify PBI.
3449 
3450   // Make sure we get to CommonDest on True&True directions.
3451   Value *PBICond = PBI->getCondition();
3452   IRBuilder<NoFolder> Builder(PBI);
3453   if (PBIOp)
3454     PBICond = Builder.CreateNot(PBICond, PBICond->getName() + ".not");
3455 
3456   Value *BICond = BI->getCondition();
3457   if (BIOp)
3458     BICond = Builder.CreateNot(BICond, BICond->getName() + ".not");
3459 
3460   // Merge the conditions.
3461   Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge");
3462 
3463   // Modify PBI to branch on the new condition to the new dests.
3464   PBI->setCondition(Cond);
3465   PBI->setSuccessor(0, CommonDest);
3466   PBI->setSuccessor(1, OtherDest);
3467 
3468   // Update branch weight for PBI.
3469   uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
3470   uint64_t PredCommon, PredOther, SuccCommon, SuccOther;
3471   bool HasWeights =
3472       extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
3473                              SuccTrueWeight, SuccFalseWeight);
3474   if (HasWeights) {
3475     PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
3476     PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
3477     SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
3478     SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
3479     // The weight to CommonDest should be PredCommon * SuccTotal +
3480     //                                    PredOther * SuccCommon.
3481     // The weight to OtherDest should be PredOther * SuccOther.
3482     uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) +
3483                                   PredOther * SuccCommon,
3484                               PredOther * SuccOther};
3485     // Halve the weights if any of them cannot fit in an uint32_t
3486     FitWeights(NewWeights);
3487 
3488     setBranchWeights(PBI, NewWeights[0], NewWeights[1]);
3489   }
3490 
3491   // OtherDest may have phi nodes.  If so, add an entry from PBI's
3492   // block that are identical to the entries for BI's block.
3493   AddPredecessorToBlock(OtherDest, PBI->getParent(), BB);
3494 
3495   // We know that the CommonDest already had an edge from PBI to
3496   // it.  If it has PHIs though, the PHIs may have different
3497   // entries for BB and PBI's BB.  If so, insert a select to make
3498   // them agree.
3499   for (PHINode &PN : CommonDest->phis()) {
3500     Value *BIV = PN.getIncomingValueForBlock(BB);
3501     unsigned PBBIdx = PN.getBasicBlockIndex(PBI->getParent());
3502     Value *PBIV = PN.getIncomingValue(PBBIdx);
3503     if (BIV != PBIV) {
3504       // Insert a select in PBI to pick the right value.
3505       SelectInst *NV = cast<SelectInst>(
3506           Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName() + ".mux"));
3507       PN.setIncomingValue(PBBIdx, NV);
3508       // Although the select has the same condition as PBI, the original branch
3509       // weights for PBI do not apply to the new select because the select's
3510       // 'logical' edges are incoming edges of the phi that is eliminated, not
3511       // the outgoing edges of PBI.
3512       if (HasWeights) {
3513         uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
3514         uint64_t PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
3515         uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
3516         uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
3517         // The weight to PredCommonDest should be PredCommon * SuccTotal.
3518         // The weight to PredOtherDest should be PredOther * SuccCommon.
3519         uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther),
3520                                   PredOther * SuccCommon};
3521 
3522         FitWeights(NewWeights);
3523 
3524         setBranchWeights(NV, NewWeights[0], NewWeights[1]);
3525       }
3526     }
3527   }
3528 
3529   LLVM_DEBUG(dbgs() << "INTO: " << *PBI->getParent());
3530   LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent());
3531 
3532   // This basic block is probably dead.  We know it has at least
3533   // one fewer predecessor.
3534   return true;
3535 }
3536 
3537 // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is
3538 // true or to FalseBB if Cond is false.
3539 // Takes care of updating the successors and removing the old terminator.
3540 // Also makes sure not to introduce new successors by assuming that edges to
3541 // non-successor TrueBBs and FalseBBs aren't reachable.
3542 static bool SimplifyTerminatorOnSelect(Instruction *OldTerm, Value *Cond,
3543                                        BasicBlock *TrueBB, BasicBlock *FalseBB,
3544                                        uint32_t TrueWeight,
3545                                        uint32_t FalseWeight) {
3546   // Remove any superfluous successor edges from the CFG.
3547   // First, figure out which successors to preserve.
3548   // If TrueBB and FalseBB are equal, only try to preserve one copy of that
3549   // successor.
3550   BasicBlock *KeepEdge1 = TrueBB;
3551   BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr;
3552 
3553   // Then remove the rest.
3554   for (BasicBlock *Succ : successors(OldTerm)) {
3555     // Make sure only to keep exactly one copy of each edge.
3556     if (Succ == KeepEdge1)
3557       KeepEdge1 = nullptr;
3558     else if (Succ == KeepEdge2)
3559       KeepEdge2 = nullptr;
3560     else
3561       Succ->removePredecessor(OldTerm->getParent(),
3562                               /*KeepOneInputPHIs=*/true);
3563   }
3564 
3565   IRBuilder<> Builder(OldTerm);
3566   Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc());
3567 
3568   // Insert an appropriate new terminator.
3569   if (!KeepEdge1 && !KeepEdge2) {
3570     if (TrueBB == FalseBB)
3571       // We were only looking for one successor, and it was present.
3572       // Create an unconditional branch to it.
3573       Builder.CreateBr(TrueBB);
3574     else {
3575       // We found both of the successors we were looking for.
3576       // Create a conditional branch sharing the condition of the select.
3577       BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB);
3578       if (TrueWeight != FalseWeight)
3579         setBranchWeights(NewBI, TrueWeight, FalseWeight);
3580     }
3581   } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) {
3582     // Neither of the selected blocks were successors, so this
3583     // terminator must be unreachable.
3584     new UnreachableInst(OldTerm->getContext(), OldTerm);
3585   } else {
3586     // One of the selected values was a successor, but the other wasn't.
3587     // Insert an unconditional branch to the one that was found;
3588     // the edge to the one that wasn't must be unreachable.
3589     if (!KeepEdge1)
3590       // Only TrueBB was found.
3591       Builder.CreateBr(TrueBB);
3592     else
3593       // Only FalseBB was found.
3594       Builder.CreateBr(FalseBB);
3595   }
3596 
3597   EraseTerminatorAndDCECond(OldTerm);
3598   return true;
3599 }
3600 
3601 // Replaces
3602 //   (switch (select cond, X, Y)) on constant X, Y
3603 // with a branch - conditional if X and Y lead to distinct BBs,
3604 // unconditional otherwise.
3605 static bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select) {
3606   // Check for constant integer values in the select.
3607   ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue());
3608   ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue());
3609   if (!TrueVal || !FalseVal)
3610     return false;
3611 
3612   // Find the relevant condition and destinations.
3613   Value *Condition = Select->getCondition();
3614   BasicBlock *TrueBB = SI->findCaseValue(TrueVal)->getCaseSuccessor();
3615   BasicBlock *FalseBB = SI->findCaseValue(FalseVal)->getCaseSuccessor();
3616 
3617   // Get weight for TrueBB and FalseBB.
3618   uint32_t TrueWeight = 0, FalseWeight = 0;
3619   SmallVector<uint64_t, 8> Weights;
3620   bool HasWeights = HasBranchWeights(SI);
3621   if (HasWeights) {
3622     GetBranchWeights(SI, Weights);
3623     if (Weights.size() == 1 + SI->getNumCases()) {
3624       TrueWeight =
3625           (uint32_t)Weights[SI->findCaseValue(TrueVal)->getSuccessorIndex()];
3626       FalseWeight =
3627           (uint32_t)Weights[SI->findCaseValue(FalseVal)->getSuccessorIndex()];
3628     }
3629   }
3630 
3631   // Perform the actual simplification.
3632   return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, TrueWeight,
3633                                     FalseWeight);
3634 }
3635 
3636 // Replaces
3637 //   (indirectbr (select cond, blockaddress(@fn, BlockA),
3638 //                             blockaddress(@fn, BlockB)))
3639 // with
3640 //   (br cond, BlockA, BlockB).
3641 static bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI) {
3642   // Check that both operands of the select are block addresses.
3643   BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue());
3644   BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue());
3645   if (!TBA || !FBA)
3646     return false;
3647 
3648   // Extract the actual blocks.
3649   BasicBlock *TrueBB = TBA->getBasicBlock();
3650   BasicBlock *FalseBB = FBA->getBasicBlock();
3651 
3652   // Perform the actual simplification.
3653   return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 0,
3654                                     0);
3655 }
3656 
3657 /// This is called when we find an icmp instruction
3658 /// (a seteq/setne with a constant) as the only instruction in a
3659 /// block that ends with an uncond branch.  We are looking for a very specific
3660 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified.  In
3661 /// this case, we merge the first two "or's of icmp" into a switch, but then the
3662 /// default value goes to an uncond block with a seteq in it, we get something
3663 /// like:
3664 ///
3665 ///   switch i8 %A, label %DEFAULT [ i8 1, label %end    i8 2, label %end ]
3666 /// DEFAULT:
3667 ///   %tmp = icmp eq i8 %A, 92
3668 ///   br label %end
3669 /// end:
3670 ///   ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ]
3671 ///
3672 /// We prefer to split the edge to 'end' so that there is a true/false entry to
3673 /// the PHI, merging the third icmp into the switch.
3674 bool SimplifyCFGOpt::tryToSimplifyUncondBranchWithICmpInIt(
3675     ICmpInst *ICI, IRBuilder<> &Builder) {
3676   BasicBlock *BB = ICI->getParent();
3677 
3678   // If the block has any PHIs in it or the icmp has multiple uses, it is too
3679   // complex.
3680   if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse())
3681     return false;
3682 
3683   Value *V = ICI->getOperand(0);
3684   ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1));
3685 
3686   // The pattern we're looking for is where our only predecessor is a switch on
3687   // 'V' and this block is the default case for the switch.  In this case we can
3688   // fold the compared value into the switch to simplify things.
3689   BasicBlock *Pred = BB->getSinglePredecessor();
3690   if (!Pred || !isa<SwitchInst>(Pred->getTerminator()))
3691     return false;
3692 
3693   SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator());
3694   if (SI->getCondition() != V)
3695     return false;
3696 
3697   // If BB is reachable on a non-default case, then we simply know the value of
3698   // V in this block.  Substitute it and constant fold the icmp instruction
3699   // away.
3700   if (SI->getDefaultDest() != BB) {
3701     ConstantInt *VVal = SI->findCaseDest(BB);
3702     assert(VVal && "Should have a unique destination value");
3703     ICI->setOperand(0, VVal);
3704 
3705     if (Value *V = SimplifyInstruction(ICI, {DL, ICI})) {
3706       ICI->replaceAllUsesWith(V);
3707       ICI->eraseFromParent();
3708     }
3709     // BB is now empty, so it is likely to simplify away.
3710     return requestResimplify();
3711   }
3712 
3713   // Ok, the block is reachable from the default dest.  If the constant we're
3714   // comparing exists in one of the other edges, then we can constant fold ICI
3715   // and zap it.
3716   if (SI->findCaseValue(Cst) != SI->case_default()) {
3717     Value *V;
3718     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
3719       V = ConstantInt::getFalse(BB->getContext());
3720     else
3721       V = ConstantInt::getTrue(BB->getContext());
3722 
3723     ICI->replaceAllUsesWith(V);
3724     ICI->eraseFromParent();
3725     // BB is now empty, so it is likely to simplify away.
3726     return requestResimplify();
3727   }
3728 
3729   // The use of the icmp has to be in the 'end' block, by the only PHI node in
3730   // the block.
3731   BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0);
3732   PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back());
3733   if (PHIUse == nullptr || PHIUse != &SuccBlock->front() ||
3734       isa<PHINode>(++BasicBlock::iterator(PHIUse)))
3735     return false;
3736 
3737   // If the icmp is a SETEQ, then the default dest gets false, the new edge gets
3738   // true in the PHI.
3739   Constant *DefaultCst = ConstantInt::getTrue(BB->getContext());
3740   Constant *NewCst = ConstantInt::getFalse(BB->getContext());
3741 
3742   if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
3743     std::swap(DefaultCst, NewCst);
3744 
3745   // Replace ICI (which is used by the PHI for the default value) with true or
3746   // false depending on if it is EQ or NE.
3747   ICI->replaceAllUsesWith(DefaultCst);
3748   ICI->eraseFromParent();
3749 
3750   // Okay, the switch goes to this block on a default value.  Add an edge from
3751   // the switch to the merge point on the compared value.
3752   BasicBlock *NewBB =
3753       BasicBlock::Create(BB->getContext(), "switch.edge", BB->getParent(), BB);
3754   {
3755     SwitchInstProfUpdateWrapper SIW(*SI);
3756     auto W0 = SIW.getSuccessorWeight(0);
3757     SwitchInstProfUpdateWrapper::CaseWeightOpt NewW;
3758     if (W0) {
3759       NewW = ((uint64_t(*W0) + 1) >> 1);
3760       SIW.setSuccessorWeight(0, *NewW);
3761     }
3762     SIW.addCase(Cst, NewBB, NewW);
3763   }
3764 
3765   // NewBB branches to the phi block, add the uncond branch and the phi entry.
3766   Builder.SetInsertPoint(NewBB);
3767   Builder.SetCurrentDebugLocation(SI->getDebugLoc());
3768   Builder.CreateBr(SuccBlock);
3769   PHIUse->addIncoming(NewCst, NewBB);
3770   return true;
3771 }
3772 
3773 /// The specified branch is a conditional branch.
3774 /// Check to see if it is branching on an or/and chain of icmp instructions, and
3775 /// fold it into a switch instruction if so.
3776 static bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder,
3777                                       const DataLayout &DL) {
3778   Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
3779   if (!Cond)
3780     return false;
3781 
3782   // Change br (X == 0 | X == 1), T, F into a switch instruction.
3783   // If this is a bunch of seteq's or'd together, or if it's a bunch of
3784   // 'setne's and'ed together, collect them.
3785 
3786   // Try to gather values from a chain of and/or to be turned into a switch
3787   ConstantComparesGatherer ConstantCompare(Cond, DL);
3788   // Unpack the result
3789   SmallVectorImpl<ConstantInt *> &Values = ConstantCompare.Vals;
3790   Value *CompVal = ConstantCompare.CompValue;
3791   unsigned UsedICmps = ConstantCompare.UsedICmps;
3792   Value *ExtraCase = ConstantCompare.Extra;
3793 
3794   // If we didn't have a multiply compared value, fail.
3795   if (!CompVal)
3796     return false;
3797 
3798   // Avoid turning single icmps into a switch.
3799   if (UsedICmps <= 1)
3800     return false;
3801 
3802   bool TrueWhenEqual = (Cond->getOpcode() == Instruction::Or);
3803 
3804   // There might be duplicate constants in the list, which the switch
3805   // instruction can't handle, remove them now.
3806   array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate);
3807   Values.erase(std::unique(Values.begin(), Values.end()), Values.end());
3808 
3809   // If Extra was used, we require at least two switch values to do the
3810   // transformation.  A switch with one value is just a conditional branch.
3811   if (ExtraCase && Values.size() < 2)
3812     return false;
3813 
3814   // TODO: Preserve branch weight metadata, similarly to how
3815   // FoldValueComparisonIntoPredecessors preserves it.
3816 
3817   // Figure out which block is which destination.
3818   BasicBlock *DefaultBB = BI->getSuccessor(1);
3819   BasicBlock *EdgeBB = BI->getSuccessor(0);
3820   if (!TrueWhenEqual)
3821     std::swap(DefaultBB, EdgeBB);
3822 
3823   BasicBlock *BB = BI->getParent();
3824 
3825   // MSAN does not like undefs as branch condition which can be introduced
3826   // with "explicit branch".
3827   if (ExtraCase && BB->getParent()->hasFnAttribute(Attribute::SanitizeMemory))
3828     return false;
3829 
3830   LLVM_DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size()
3831                     << " cases into SWITCH.  BB is:\n"
3832                     << *BB);
3833 
3834   // If there are any extra values that couldn't be folded into the switch
3835   // then we evaluate them with an explicit branch first. Split the block
3836   // right before the condbr to handle it.
3837   if (ExtraCase) {
3838     BasicBlock *NewBB =
3839         BB->splitBasicBlock(BI->getIterator(), "switch.early.test");
3840     // Remove the uncond branch added to the old block.
3841     Instruction *OldTI = BB->getTerminator();
3842     Builder.SetInsertPoint(OldTI);
3843 
3844     if (TrueWhenEqual)
3845       Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB);
3846     else
3847       Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB);
3848 
3849     OldTI->eraseFromParent();
3850 
3851     // If there are PHI nodes in EdgeBB, then we need to add a new entry to them
3852     // for the edge we just added.
3853     AddPredecessorToBlock(EdgeBB, BB, NewBB);
3854 
3855     LLVM_DEBUG(dbgs() << "  ** 'icmp' chain unhandled condition: " << *ExtraCase
3856                       << "\nEXTRABB = " << *BB);
3857     BB = NewBB;
3858   }
3859 
3860   Builder.SetInsertPoint(BI);
3861   // Convert pointer to int before we switch.
3862   if (CompVal->getType()->isPointerTy()) {
3863     CompVal = Builder.CreatePtrToInt(
3864         CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr");
3865   }
3866 
3867   // Create the new switch instruction now.
3868   SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size());
3869 
3870   // Add all of the 'cases' to the switch instruction.
3871   for (unsigned i = 0, e = Values.size(); i != e; ++i)
3872     New->addCase(Values[i], EdgeBB);
3873 
3874   // We added edges from PI to the EdgeBB.  As such, if there were any
3875   // PHI nodes in EdgeBB, they need entries to be added corresponding to
3876   // the number of edges added.
3877   for (BasicBlock::iterator BBI = EdgeBB->begin(); isa<PHINode>(BBI); ++BBI) {
3878     PHINode *PN = cast<PHINode>(BBI);
3879     Value *InVal = PN->getIncomingValueForBlock(BB);
3880     for (unsigned i = 0, e = Values.size() - 1; i != e; ++i)
3881       PN->addIncoming(InVal, BB);
3882   }
3883 
3884   // Erase the old branch instruction.
3885   EraseTerminatorAndDCECond(BI);
3886 
3887   LLVM_DEBUG(dbgs() << "  ** 'icmp' chain result is:\n" << *BB << '\n');
3888   return true;
3889 }
3890 
3891 bool SimplifyCFGOpt::SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder) {
3892   if (isa<PHINode>(RI->getValue()))
3893     return SimplifyCommonResume(RI);
3894   else if (isa<LandingPadInst>(RI->getParent()->getFirstNonPHI()) &&
3895            RI->getValue() == RI->getParent()->getFirstNonPHI())
3896     // The resume must unwind the exception that caused control to branch here.
3897     return SimplifySingleResume(RI);
3898 
3899   return false;
3900 }
3901 
3902 // Simplify resume that is shared by several landing pads (phi of landing pad).
3903 bool SimplifyCFGOpt::SimplifyCommonResume(ResumeInst *RI) {
3904   BasicBlock *BB = RI->getParent();
3905 
3906   // Check that there are no other instructions except for debug intrinsics
3907   // between the phi of landing pads (RI->getValue()) and resume instruction.
3908   BasicBlock::iterator I = cast<Instruction>(RI->getValue())->getIterator(),
3909                        E = RI->getIterator();
3910   while (++I != E)
3911     if (!isa<DbgInfoIntrinsic>(I))
3912       return false;
3913 
3914   SmallSetVector<BasicBlock *, 4> TrivialUnwindBlocks;
3915   auto *PhiLPInst = cast<PHINode>(RI->getValue());
3916 
3917   // Check incoming blocks to see if any of them are trivial.
3918   for (unsigned Idx = 0, End = PhiLPInst->getNumIncomingValues(); Idx != End;
3919        Idx++) {
3920     auto *IncomingBB = PhiLPInst->getIncomingBlock(Idx);
3921     auto *IncomingValue = PhiLPInst->getIncomingValue(Idx);
3922 
3923     // If the block has other successors, we can not delete it because
3924     // it has other dependents.
3925     if (IncomingBB->getUniqueSuccessor() != BB)
3926       continue;
3927 
3928     auto *LandingPad = dyn_cast<LandingPadInst>(IncomingBB->getFirstNonPHI());
3929     // Not the landing pad that caused the control to branch here.
3930     if (IncomingValue != LandingPad)
3931       continue;
3932 
3933     bool isTrivial = true;
3934 
3935     I = IncomingBB->getFirstNonPHI()->getIterator();
3936     E = IncomingBB->getTerminator()->getIterator();
3937     while (++I != E)
3938       if (!isa<DbgInfoIntrinsic>(I)) {
3939         isTrivial = false;
3940         break;
3941       }
3942 
3943     if (isTrivial)
3944       TrivialUnwindBlocks.insert(IncomingBB);
3945   }
3946 
3947   // If no trivial unwind blocks, don't do any simplifications.
3948   if (TrivialUnwindBlocks.empty())
3949     return false;
3950 
3951   // Turn all invokes that unwind here into calls.
3952   for (auto *TrivialBB : TrivialUnwindBlocks) {
3953     // Blocks that will be simplified should be removed from the phi node.
3954     // Note there could be multiple edges to the resume block, and we need
3955     // to remove them all.
3956     while (PhiLPInst->getBasicBlockIndex(TrivialBB) != -1)
3957       BB->removePredecessor(TrivialBB, true);
3958 
3959     for (pred_iterator PI = pred_begin(TrivialBB), PE = pred_end(TrivialBB);
3960          PI != PE;) {
3961       BasicBlock *Pred = *PI++;
3962       removeUnwindEdge(Pred);
3963     }
3964 
3965     // In each SimplifyCFG run, only the current processed block can be erased.
3966     // Otherwise, it will break the iteration of SimplifyCFG pass. So instead
3967     // of erasing TrivialBB, we only remove the branch to the common resume
3968     // block so that we can later erase the resume block since it has no
3969     // predecessors.
3970     TrivialBB->getTerminator()->eraseFromParent();
3971     new UnreachableInst(RI->getContext(), TrivialBB);
3972   }
3973 
3974   // Delete the resume block if all its predecessors have been removed.
3975   if (pred_empty(BB))
3976     BB->eraseFromParent();
3977 
3978   return !TrivialUnwindBlocks.empty();
3979 }
3980 
3981 // Simplify resume that is only used by a single (non-phi) landing pad.
3982 bool SimplifyCFGOpt::SimplifySingleResume(ResumeInst *RI) {
3983   BasicBlock *BB = RI->getParent();
3984   auto *LPInst = cast<LandingPadInst>(BB->getFirstNonPHI());
3985   assert(RI->getValue() == LPInst &&
3986          "Resume must unwind the exception that caused control to here");
3987 
3988   // Check that there are no other instructions except for debug intrinsics.
3989   BasicBlock::iterator I = LPInst->getIterator(), E = RI->getIterator();
3990   while (++I != E)
3991     if (!isa<DbgInfoIntrinsic>(I))
3992       return false;
3993 
3994   // Turn all invokes that unwind here into calls and delete the basic block.
3995   for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) {
3996     BasicBlock *Pred = *PI++;
3997     removeUnwindEdge(Pred);
3998   }
3999 
4000   // The landingpad is now unreachable.  Zap it.
4001   if (LoopHeaders)
4002     LoopHeaders->erase(BB);
4003   BB->eraseFromParent();
4004   return true;
4005 }
4006 
4007 static bool removeEmptyCleanup(CleanupReturnInst *RI) {
4008   // If this is a trivial cleanup pad that executes no instructions, it can be
4009   // eliminated.  If the cleanup pad continues to the caller, any predecessor
4010   // that is an EH pad will be updated to continue to the caller and any
4011   // predecessor that terminates with an invoke instruction will have its invoke
4012   // instruction converted to a call instruction.  If the cleanup pad being
4013   // simplified does not continue to the caller, each predecessor will be
4014   // updated to continue to the unwind destination of the cleanup pad being
4015   // simplified.
4016   BasicBlock *BB = RI->getParent();
4017   CleanupPadInst *CPInst = RI->getCleanupPad();
4018   if (CPInst->getParent() != BB)
4019     // This isn't an empty cleanup.
4020     return false;
4021 
4022   // We cannot kill the pad if it has multiple uses.  This typically arises
4023   // from unreachable basic blocks.
4024   if (!CPInst->hasOneUse())
4025     return false;
4026 
4027   // Check that there are no other instructions except for benign intrinsics.
4028   BasicBlock::iterator I = CPInst->getIterator(), E = RI->getIterator();
4029   while (++I != E) {
4030     auto *II = dyn_cast<IntrinsicInst>(I);
4031     if (!II)
4032       return false;
4033 
4034     Intrinsic::ID IntrinsicID = II->getIntrinsicID();
4035     switch (IntrinsicID) {
4036     case Intrinsic::dbg_declare:
4037     case Intrinsic::dbg_value:
4038     case Intrinsic::dbg_label:
4039     case Intrinsic::lifetime_end:
4040       break;
4041     default:
4042       return false;
4043     }
4044   }
4045 
4046   // If the cleanup return we are simplifying unwinds to the caller, this will
4047   // set UnwindDest to nullptr.
4048   BasicBlock *UnwindDest = RI->getUnwindDest();
4049   Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr;
4050 
4051   // We're about to remove BB from the control flow.  Before we do, sink any
4052   // PHINodes into the unwind destination.  Doing this before changing the
4053   // control flow avoids some potentially slow checks, since we can currently
4054   // be certain that UnwindDest and BB have no common predecessors (since they
4055   // are both EH pads).
4056   if (UnwindDest) {
4057     // First, go through the PHI nodes in UnwindDest and update any nodes that
4058     // reference the block we are removing
4059     for (BasicBlock::iterator I = UnwindDest->begin(),
4060                               IE = DestEHPad->getIterator();
4061          I != IE; ++I) {
4062       PHINode *DestPN = cast<PHINode>(I);
4063 
4064       int Idx = DestPN->getBasicBlockIndex(BB);
4065       // Since BB unwinds to UnwindDest, it has to be in the PHI node.
4066       assert(Idx != -1);
4067       // This PHI node has an incoming value that corresponds to a control
4068       // path through the cleanup pad we are removing.  If the incoming
4069       // value is in the cleanup pad, it must be a PHINode (because we
4070       // verified above that the block is otherwise empty).  Otherwise, the
4071       // value is either a constant or a value that dominates the cleanup
4072       // pad being removed.
4073       //
4074       // Because BB and UnwindDest are both EH pads, all of their
4075       // predecessors must unwind to these blocks, and since no instruction
4076       // can have multiple unwind destinations, there will be no overlap in
4077       // incoming blocks between SrcPN and DestPN.
4078       Value *SrcVal = DestPN->getIncomingValue(Idx);
4079       PHINode *SrcPN = dyn_cast<PHINode>(SrcVal);
4080 
4081       // Remove the entry for the block we are deleting.
4082       DestPN->removeIncomingValue(Idx, false);
4083 
4084       if (SrcPN && SrcPN->getParent() == BB) {
4085         // If the incoming value was a PHI node in the cleanup pad we are
4086         // removing, we need to merge that PHI node's incoming values into
4087         // DestPN.
4088         for (unsigned SrcIdx = 0, SrcE = SrcPN->getNumIncomingValues();
4089              SrcIdx != SrcE; ++SrcIdx) {
4090           DestPN->addIncoming(SrcPN->getIncomingValue(SrcIdx),
4091                               SrcPN->getIncomingBlock(SrcIdx));
4092         }
4093       } else {
4094         // Otherwise, the incoming value came from above BB and
4095         // so we can just reuse it.  We must associate all of BB's
4096         // predecessors with this value.
4097         for (auto *pred : predecessors(BB)) {
4098           DestPN->addIncoming(SrcVal, pred);
4099         }
4100       }
4101     }
4102 
4103     // Sink any remaining PHI nodes directly into UnwindDest.
4104     Instruction *InsertPt = DestEHPad;
4105     for (BasicBlock::iterator I = BB->begin(),
4106                               IE = BB->getFirstNonPHI()->getIterator();
4107          I != IE;) {
4108       // The iterator must be incremented here because the instructions are
4109       // being moved to another block.
4110       PHINode *PN = cast<PHINode>(I++);
4111       if (PN->use_empty())
4112         // If the PHI node has no uses, just leave it.  It will be erased
4113         // when we erase BB below.
4114         continue;
4115 
4116       // Otherwise, sink this PHI node into UnwindDest.
4117       // Any predecessors to UnwindDest which are not already represented
4118       // must be back edges which inherit the value from the path through
4119       // BB.  In this case, the PHI value must reference itself.
4120       for (auto *pred : predecessors(UnwindDest))
4121         if (pred != BB)
4122           PN->addIncoming(PN, pred);
4123       PN->moveBefore(InsertPt);
4124     }
4125   }
4126 
4127   for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) {
4128     // The iterator must be updated here because we are removing this pred.
4129     BasicBlock *PredBB = *PI++;
4130     if (UnwindDest == nullptr) {
4131       removeUnwindEdge(PredBB);
4132     } else {
4133       Instruction *TI = PredBB->getTerminator();
4134       TI->replaceUsesOfWith(BB, UnwindDest);
4135     }
4136   }
4137 
4138   // The cleanup pad is now unreachable.  Zap it.
4139   BB->eraseFromParent();
4140   return true;
4141 }
4142 
4143 // Try to merge two cleanuppads together.
4144 static bool mergeCleanupPad(CleanupReturnInst *RI) {
4145   // Skip any cleanuprets which unwind to caller, there is nothing to merge
4146   // with.
4147   BasicBlock *UnwindDest = RI->getUnwindDest();
4148   if (!UnwindDest)
4149     return false;
4150 
4151   // This cleanupret isn't the only predecessor of this cleanuppad, it wouldn't
4152   // be safe to merge without code duplication.
4153   if (UnwindDest->getSinglePredecessor() != RI->getParent())
4154     return false;
4155 
4156   // Verify that our cleanuppad's unwind destination is another cleanuppad.
4157   auto *SuccessorCleanupPad = dyn_cast<CleanupPadInst>(&UnwindDest->front());
4158   if (!SuccessorCleanupPad)
4159     return false;
4160 
4161   CleanupPadInst *PredecessorCleanupPad = RI->getCleanupPad();
4162   // Replace any uses of the successor cleanupad with the predecessor pad
4163   // The only cleanuppad uses should be this cleanupret, it's cleanupret and
4164   // funclet bundle operands.
4165   SuccessorCleanupPad->replaceAllUsesWith(PredecessorCleanupPad);
4166   // Remove the old cleanuppad.
4167   SuccessorCleanupPad->eraseFromParent();
4168   // Now, we simply replace the cleanupret with a branch to the unwind
4169   // destination.
4170   BranchInst::Create(UnwindDest, RI->getParent());
4171   RI->eraseFromParent();
4172 
4173   return true;
4174 }
4175 
4176 bool SimplifyCFGOpt::SimplifyCleanupReturn(CleanupReturnInst *RI) {
4177   // It is possible to transiantly have an undef cleanuppad operand because we
4178   // have deleted some, but not all, dead blocks.
4179   // Eventually, this block will be deleted.
4180   if (isa<UndefValue>(RI->getOperand(0)))
4181     return false;
4182 
4183   if (mergeCleanupPad(RI))
4184     return true;
4185 
4186   if (removeEmptyCleanup(RI))
4187     return true;
4188 
4189   return false;
4190 }
4191 
4192 bool SimplifyCFGOpt::SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) {
4193   BasicBlock *BB = RI->getParent();
4194   if (!BB->getFirstNonPHIOrDbg()->isTerminator())
4195     return false;
4196 
4197   // Find predecessors that end with branches.
4198   SmallVector<BasicBlock *, 8> UncondBranchPreds;
4199   SmallVector<BranchInst *, 8> CondBranchPreds;
4200   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
4201     BasicBlock *P = *PI;
4202     Instruction *PTI = P->getTerminator();
4203     if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) {
4204       if (BI->isUnconditional())
4205         UncondBranchPreds.push_back(P);
4206       else
4207         CondBranchPreds.push_back(BI);
4208     }
4209   }
4210 
4211   // If we found some, do the transformation!
4212   if (!UncondBranchPreds.empty() && DupRet) {
4213     while (!UncondBranchPreds.empty()) {
4214       BasicBlock *Pred = UncondBranchPreds.pop_back_val();
4215       LLVM_DEBUG(dbgs() << "FOLDING: " << *BB
4216                         << "INTO UNCOND BRANCH PRED: " << *Pred);
4217       (void)FoldReturnIntoUncondBranch(RI, BB, Pred);
4218     }
4219 
4220     // If we eliminated all predecessors of the block, delete the block now.
4221     if (pred_empty(BB)) {
4222       // We know there are no successors, so just nuke the block.
4223       if (LoopHeaders)
4224         LoopHeaders->erase(BB);
4225       BB->eraseFromParent();
4226     }
4227 
4228     return true;
4229   }
4230 
4231   // Check out all of the conditional branches going to this return
4232   // instruction.  If any of them just select between returns, change the
4233   // branch itself into a select/return pair.
4234   while (!CondBranchPreds.empty()) {
4235     BranchInst *BI = CondBranchPreds.pop_back_val();
4236 
4237     // Check to see if the non-BB successor is also a return block.
4238     if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) &&
4239         isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) &&
4240         SimplifyCondBranchToTwoReturns(BI, Builder))
4241       return true;
4242   }
4243   return false;
4244 }
4245 
4246 bool SimplifyCFGOpt::SimplifyUnreachable(UnreachableInst *UI) {
4247   BasicBlock *BB = UI->getParent();
4248 
4249   bool Changed = false;
4250 
4251   // If there are any instructions immediately before the unreachable that can
4252   // be removed, do so.
4253   while (UI->getIterator() != BB->begin()) {
4254     BasicBlock::iterator BBI = UI->getIterator();
4255     --BBI;
4256     // Do not delete instructions that can have side effects which might cause
4257     // the unreachable to not be reachable; specifically, calls and volatile
4258     // operations may have this effect.
4259     if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI))
4260       break;
4261 
4262     if (BBI->mayHaveSideEffects()) {
4263       if (auto *SI = dyn_cast<StoreInst>(BBI)) {
4264         if (SI->isVolatile())
4265           break;
4266       } else if (auto *LI = dyn_cast<LoadInst>(BBI)) {
4267         if (LI->isVolatile())
4268           break;
4269       } else if (auto *RMWI = dyn_cast<AtomicRMWInst>(BBI)) {
4270         if (RMWI->isVolatile())
4271           break;
4272       } else if (auto *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) {
4273         if (CXI->isVolatile())
4274           break;
4275       } else if (isa<CatchPadInst>(BBI)) {
4276         // A catchpad may invoke exception object constructors and such, which
4277         // in some languages can be arbitrary code, so be conservative by
4278         // default.
4279         // For CoreCLR, it just involves a type test, so can be removed.
4280         if (classifyEHPersonality(BB->getParent()->getPersonalityFn()) !=
4281             EHPersonality::CoreCLR)
4282           break;
4283       } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) &&
4284                  !isa<LandingPadInst>(BBI)) {
4285         break;
4286       }
4287       // Note that deleting LandingPad's here is in fact okay, although it
4288       // involves a bit of subtle reasoning. If this inst is a LandingPad,
4289       // all the predecessors of this block will be the unwind edges of Invokes,
4290       // and we can therefore guarantee this block will be erased.
4291     }
4292 
4293     // Delete this instruction (any uses are guaranteed to be dead)
4294     if (!BBI->use_empty())
4295       BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
4296     BBI->eraseFromParent();
4297     Changed = true;
4298   }
4299 
4300   // If the unreachable instruction is the first in the block, take a gander
4301   // at all of the predecessors of this instruction, and simplify them.
4302   if (&BB->front() != UI)
4303     return Changed;
4304 
4305   SmallVector<BasicBlock *, 8> Preds(pred_begin(BB), pred_end(BB));
4306   for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
4307     Instruction *TI = Preds[i]->getTerminator();
4308     IRBuilder<> Builder(TI);
4309     if (auto *BI = dyn_cast<BranchInst>(TI)) {
4310       if (BI->isUnconditional()) {
4311         assert(BI->getSuccessor(0) == BB && "Incorrect CFG");
4312         new UnreachableInst(TI->getContext(), TI);
4313         TI->eraseFromParent();
4314         Changed = true;
4315       } else {
4316         Value* Cond = BI->getCondition();
4317         if (BI->getSuccessor(0) == BB) {
4318           Builder.CreateAssumption(Builder.CreateNot(Cond));
4319           Builder.CreateBr(BI->getSuccessor(1));
4320         } else {
4321           assert(BI->getSuccessor(1) == BB && "Incorrect CFG");
4322           Builder.CreateAssumption(Cond);
4323           Builder.CreateBr(BI->getSuccessor(0));
4324         }
4325         EraseTerminatorAndDCECond(BI);
4326         Changed = true;
4327       }
4328     } else if (auto *SI = dyn_cast<SwitchInst>(TI)) {
4329       SwitchInstProfUpdateWrapper SU(*SI);
4330       for (auto i = SU->case_begin(), e = SU->case_end(); i != e;) {
4331         if (i->getCaseSuccessor() != BB) {
4332           ++i;
4333           continue;
4334         }
4335         BB->removePredecessor(SU->getParent());
4336         i = SU.removeCase(i);
4337         e = SU->case_end();
4338         Changed = true;
4339       }
4340     } else if (auto *II = dyn_cast<InvokeInst>(TI)) {
4341       if (II->getUnwindDest() == BB) {
4342         removeUnwindEdge(TI->getParent());
4343         Changed = true;
4344       }
4345     } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) {
4346       if (CSI->getUnwindDest() == BB) {
4347         removeUnwindEdge(TI->getParent());
4348         Changed = true;
4349         continue;
4350       }
4351 
4352       for (CatchSwitchInst::handler_iterator I = CSI->handler_begin(),
4353                                              E = CSI->handler_end();
4354            I != E; ++I) {
4355         if (*I == BB) {
4356           CSI->removeHandler(I);
4357           --I;
4358           --E;
4359           Changed = true;
4360         }
4361       }
4362       if (CSI->getNumHandlers() == 0) {
4363         BasicBlock *CatchSwitchBB = CSI->getParent();
4364         if (CSI->hasUnwindDest()) {
4365           // Redirect preds to the unwind dest
4366           CatchSwitchBB->replaceAllUsesWith(CSI->getUnwindDest());
4367         } else {
4368           // Rewrite all preds to unwind to caller (or from invoke to call).
4369           SmallVector<BasicBlock *, 8> EHPreds(predecessors(CatchSwitchBB));
4370           for (BasicBlock *EHPred : EHPreds)
4371             removeUnwindEdge(EHPred);
4372         }
4373         // The catchswitch is no longer reachable.
4374         new UnreachableInst(CSI->getContext(), CSI);
4375         CSI->eraseFromParent();
4376         Changed = true;
4377       }
4378     } else if (isa<CleanupReturnInst>(TI)) {
4379       new UnreachableInst(TI->getContext(), TI);
4380       TI->eraseFromParent();
4381       Changed = true;
4382     }
4383   }
4384 
4385   // If this block is now dead, remove it.
4386   if (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) {
4387     // We know there are no successors, so just nuke the block.
4388     if (LoopHeaders)
4389       LoopHeaders->erase(BB);
4390     BB->eraseFromParent();
4391     return true;
4392   }
4393 
4394   return Changed;
4395 }
4396 
4397 static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) {
4398   assert(Cases.size() >= 1);
4399 
4400   array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate);
4401   for (size_t I = 1, E = Cases.size(); I != E; ++I) {
4402     if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1)
4403       return false;
4404   }
4405   return true;
4406 }
4407 
4408 static void createUnreachableSwitchDefault(SwitchInst *Switch) {
4409   LLVM_DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n");
4410   BasicBlock *NewDefaultBlock =
4411      SplitBlockPredecessors(Switch->getDefaultDest(), Switch->getParent(), "");
4412   Switch->setDefaultDest(&*NewDefaultBlock);
4413   SplitBlock(&*NewDefaultBlock, &NewDefaultBlock->front());
4414   auto *NewTerminator = NewDefaultBlock->getTerminator();
4415   new UnreachableInst(Switch->getContext(), NewTerminator);
4416   EraseTerminatorAndDCECond(NewTerminator);
4417 }
4418 
4419 /// Turn a switch with two reachable destinations into an integer range
4420 /// comparison and branch.
4421 static bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder) {
4422   assert(SI->getNumCases() > 1 && "Degenerate switch?");
4423 
4424   bool HasDefault =
4425       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
4426 
4427   // Partition the cases into two sets with different destinations.
4428   BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr;
4429   BasicBlock *DestB = nullptr;
4430   SmallVector<ConstantInt *, 16> CasesA;
4431   SmallVector<ConstantInt *, 16> CasesB;
4432 
4433   for (auto Case : SI->cases()) {
4434     BasicBlock *Dest = Case.getCaseSuccessor();
4435     if (!DestA)
4436       DestA = Dest;
4437     if (Dest == DestA) {
4438       CasesA.push_back(Case.getCaseValue());
4439       continue;
4440     }
4441     if (!DestB)
4442       DestB = Dest;
4443     if (Dest == DestB) {
4444       CasesB.push_back(Case.getCaseValue());
4445       continue;
4446     }
4447     return false; // More than two destinations.
4448   }
4449 
4450   assert(DestA && DestB &&
4451          "Single-destination switch should have been folded.");
4452   assert(DestA != DestB);
4453   assert(DestB != SI->getDefaultDest());
4454   assert(!CasesB.empty() && "There must be non-default cases.");
4455   assert(!CasesA.empty() || HasDefault);
4456 
4457   // Figure out if one of the sets of cases form a contiguous range.
4458   SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr;
4459   BasicBlock *ContiguousDest = nullptr;
4460   BasicBlock *OtherDest = nullptr;
4461   if (!CasesA.empty() && CasesAreContiguous(CasesA)) {
4462     ContiguousCases = &CasesA;
4463     ContiguousDest = DestA;
4464     OtherDest = DestB;
4465   } else if (CasesAreContiguous(CasesB)) {
4466     ContiguousCases = &CasesB;
4467     ContiguousDest = DestB;
4468     OtherDest = DestA;
4469   } else
4470     return false;
4471 
4472   // Start building the compare and branch.
4473 
4474   Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back());
4475   Constant *NumCases =
4476       ConstantInt::get(Offset->getType(), ContiguousCases->size());
4477 
4478   Value *Sub = SI->getCondition();
4479   if (!Offset->isNullValue())
4480     Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off");
4481 
4482   Value *Cmp;
4483   // If NumCases overflowed, then all possible values jump to the successor.
4484   if (NumCases->isNullValue() && !ContiguousCases->empty())
4485     Cmp = ConstantInt::getTrue(SI->getContext());
4486   else
4487     Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch");
4488   BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest);
4489 
4490   // Update weight for the newly-created conditional branch.
4491   if (HasBranchWeights(SI)) {
4492     SmallVector<uint64_t, 8> Weights;
4493     GetBranchWeights(SI, Weights);
4494     if (Weights.size() == 1 + SI->getNumCases()) {
4495       uint64_t TrueWeight = 0;
4496       uint64_t FalseWeight = 0;
4497       for (size_t I = 0, E = Weights.size(); I != E; ++I) {
4498         if (SI->getSuccessor(I) == ContiguousDest)
4499           TrueWeight += Weights[I];
4500         else
4501           FalseWeight += Weights[I];
4502       }
4503       while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) {
4504         TrueWeight /= 2;
4505         FalseWeight /= 2;
4506       }
4507       setBranchWeights(NewBI, TrueWeight, FalseWeight);
4508     }
4509   }
4510 
4511   // Prune obsolete incoming values off the successors' PHI nodes.
4512   for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) {
4513     unsigned PreviousEdges = ContiguousCases->size();
4514     if (ContiguousDest == SI->getDefaultDest())
4515       ++PreviousEdges;
4516     for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
4517       cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
4518   }
4519   for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) {
4520     unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size();
4521     if (OtherDest == SI->getDefaultDest())
4522       ++PreviousEdges;
4523     for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
4524       cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
4525   }
4526 
4527   // Clean up the default block - it may have phis or other instructions before
4528   // the unreachable terminator.
4529   if (!HasDefault)
4530     createUnreachableSwitchDefault(SI);
4531 
4532   // Drop the switch.
4533   SI->eraseFromParent();
4534 
4535   return true;
4536 }
4537 
4538 /// Compute masked bits for the condition of a switch
4539 /// and use it to remove dead cases.
4540 static bool eliminateDeadSwitchCases(SwitchInst *SI, AssumptionCache *AC,
4541                                      const DataLayout &DL) {
4542   Value *Cond = SI->getCondition();
4543   unsigned Bits = Cond->getType()->getIntegerBitWidth();
4544   KnownBits Known = computeKnownBits(Cond, DL, 0, AC, SI);
4545 
4546   // We can also eliminate cases by determining that their values are outside of
4547   // the limited range of the condition based on how many significant (non-sign)
4548   // bits are in the condition value.
4549   unsigned ExtraSignBits = ComputeNumSignBits(Cond, DL, 0, AC, SI) - 1;
4550   unsigned MaxSignificantBitsInCond = Bits - ExtraSignBits;
4551 
4552   // Gather dead cases.
4553   SmallVector<ConstantInt *, 8> DeadCases;
4554   for (auto &Case : SI->cases()) {
4555     const APInt &CaseVal = Case.getCaseValue()->getValue();
4556     if (Known.Zero.intersects(CaseVal) || !Known.One.isSubsetOf(CaseVal) ||
4557         (CaseVal.getMinSignedBits() > MaxSignificantBitsInCond)) {
4558       DeadCases.push_back(Case.getCaseValue());
4559       LLVM_DEBUG(dbgs() << "SimplifyCFG: switch case " << CaseVal
4560                         << " is dead.\n");
4561     }
4562   }
4563 
4564   // If we can prove that the cases must cover all possible values, the
4565   // default destination becomes dead and we can remove it.  If we know some
4566   // of the bits in the value, we can use that to more precisely compute the
4567   // number of possible unique case values.
4568   bool HasDefault =
4569       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
4570   const unsigned NumUnknownBits =
4571       Bits - (Known.Zero | Known.One).countPopulation();
4572   assert(NumUnknownBits <= Bits);
4573   if (HasDefault && DeadCases.empty() &&
4574       NumUnknownBits < 64 /* avoid overflow */ &&
4575       SI->getNumCases() == (1ULL << NumUnknownBits)) {
4576     createUnreachableSwitchDefault(SI);
4577     return true;
4578   }
4579 
4580   if (DeadCases.empty())
4581     return false;
4582 
4583   SwitchInstProfUpdateWrapper SIW(*SI);
4584   for (ConstantInt *DeadCase : DeadCases) {
4585     SwitchInst::CaseIt CaseI = SI->findCaseValue(DeadCase);
4586     assert(CaseI != SI->case_default() &&
4587            "Case was not found. Probably mistake in DeadCases forming.");
4588     // Prune unused values from PHI nodes.
4589     CaseI->getCaseSuccessor()->removePredecessor(SI->getParent());
4590     SIW.removeCase(CaseI);
4591   }
4592 
4593   return true;
4594 }
4595 
4596 /// If BB would be eligible for simplification by
4597 /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated
4598 /// by an unconditional branch), look at the phi node for BB in the successor
4599 /// block and see if the incoming value is equal to CaseValue. If so, return
4600 /// the phi node, and set PhiIndex to BB's index in the phi node.
4601 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue,
4602                                               BasicBlock *BB, int *PhiIndex) {
4603   if (BB->getFirstNonPHIOrDbg() != BB->getTerminator())
4604     return nullptr; // BB must be empty to be a candidate for simplification.
4605   if (!BB->getSinglePredecessor())
4606     return nullptr; // BB must be dominated by the switch.
4607 
4608   BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator());
4609   if (!Branch || !Branch->isUnconditional())
4610     return nullptr; // Terminator must be unconditional branch.
4611 
4612   BasicBlock *Succ = Branch->getSuccessor(0);
4613 
4614   for (PHINode &PHI : Succ->phis()) {
4615     int Idx = PHI.getBasicBlockIndex(BB);
4616     assert(Idx >= 0 && "PHI has no entry for predecessor?");
4617 
4618     Value *InValue = PHI.getIncomingValue(Idx);
4619     if (InValue != CaseValue)
4620       continue;
4621 
4622     *PhiIndex = Idx;
4623     return &PHI;
4624   }
4625 
4626   return nullptr;
4627 }
4628 
4629 /// Try to forward the condition of a switch instruction to a phi node
4630 /// dominated by the switch, if that would mean that some of the destination
4631 /// blocks of the switch can be folded away. Return true if a change is made.
4632 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) {
4633   using ForwardingNodesMap = DenseMap<PHINode *, SmallVector<int, 4>>;
4634 
4635   ForwardingNodesMap ForwardingNodes;
4636   BasicBlock *SwitchBlock = SI->getParent();
4637   bool Changed = false;
4638   for (auto &Case : SI->cases()) {
4639     ConstantInt *CaseValue = Case.getCaseValue();
4640     BasicBlock *CaseDest = Case.getCaseSuccessor();
4641 
4642     // Replace phi operands in successor blocks that are using the constant case
4643     // value rather than the switch condition variable:
4644     //   switchbb:
4645     //   switch i32 %x, label %default [
4646     //     i32 17, label %succ
4647     //   ...
4648     //   succ:
4649     //     %r = phi i32 ... [ 17, %switchbb ] ...
4650     // -->
4651     //     %r = phi i32 ... [ %x, %switchbb ] ...
4652 
4653     for (PHINode &Phi : CaseDest->phis()) {
4654       // This only works if there is exactly 1 incoming edge from the switch to
4655       // a phi. If there is >1, that means multiple cases of the switch map to 1
4656       // value in the phi, and that phi value is not the switch condition. Thus,
4657       // this transform would not make sense (the phi would be invalid because
4658       // a phi can't have different incoming values from the same block).
4659       int SwitchBBIdx = Phi.getBasicBlockIndex(SwitchBlock);
4660       if (Phi.getIncomingValue(SwitchBBIdx) == CaseValue &&
4661           count(Phi.blocks(), SwitchBlock) == 1) {
4662         Phi.setIncomingValue(SwitchBBIdx, SI->getCondition());
4663         Changed = true;
4664       }
4665     }
4666 
4667     // Collect phi nodes that are indirectly using this switch's case constants.
4668     int PhiIdx;
4669     if (auto *Phi = FindPHIForConditionForwarding(CaseValue, CaseDest, &PhiIdx))
4670       ForwardingNodes[Phi].push_back(PhiIdx);
4671   }
4672 
4673   for (auto &ForwardingNode : ForwardingNodes) {
4674     PHINode *Phi = ForwardingNode.first;
4675     SmallVectorImpl<int> &Indexes = ForwardingNode.second;
4676     if (Indexes.size() < 2)
4677       continue;
4678 
4679     for (int Index : Indexes)
4680       Phi->setIncomingValue(Index, SI->getCondition());
4681     Changed = true;
4682   }
4683 
4684   return Changed;
4685 }
4686 
4687 /// Return true if the backend will be able to handle
4688 /// initializing an array of constants like C.
4689 static bool ValidLookupTableConstant(Constant *C, const TargetTransformInfo &TTI) {
4690   if (C->isThreadDependent())
4691     return false;
4692   if (C->isDLLImportDependent())
4693     return false;
4694 
4695   if (!isa<ConstantFP>(C) && !isa<ConstantInt>(C) &&
4696       !isa<ConstantPointerNull>(C) && !isa<GlobalValue>(C) &&
4697       !isa<UndefValue>(C) && !isa<ConstantExpr>(C))
4698     return false;
4699 
4700   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
4701     if (!CE->isGEPWithNoNotionalOverIndexing())
4702       return false;
4703     if (!ValidLookupTableConstant(CE->getOperand(0), TTI))
4704       return false;
4705   }
4706 
4707   if (!TTI.shouldBuildLookupTablesForConstant(C))
4708     return false;
4709 
4710   return true;
4711 }
4712 
4713 /// If V is a Constant, return it. Otherwise, try to look up
4714 /// its constant value in ConstantPool, returning 0 if it's not there.
4715 static Constant *
4716 LookupConstant(Value *V,
4717                const SmallDenseMap<Value *, Constant *> &ConstantPool) {
4718   if (Constant *C = dyn_cast<Constant>(V))
4719     return C;
4720   return ConstantPool.lookup(V);
4721 }
4722 
4723 /// Try to fold instruction I into a constant. This works for
4724 /// simple instructions such as binary operations where both operands are
4725 /// constant or can be replaced by constants from the ConstantPool. Returns the
4726 /// resulting constant on success, 0 otherwise.
4727 static Constant *
4728 ConstantFold(Instruction *I, const DataLayout &DL,
4729              const SmallDenseMap<Value *, Constant *> &ConstantPool) {
4730   if (SelectInst *Select = dyn_cast<SelectInst>(I)) {
4731     Constant *A = LookupConstant(Select->getCondition(), ConstantPool);
4732     if (!A)
4733       return nullptr;
4734     if (A->isAllOnesValue())
4735       return LookupConstant(Select->getTrueValue(), ConstantPool);
4736     if (A->isNullValue())
4737       return LookupConstant(Select->getFalseValue(), ConstantPool);
4738     return nullptr;
4739   }
4740 
4741   SmallVector<Constant *, 4> COps;
4742   for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) {
4743     if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool))
4744       COps.push_back(A);
4745     else
4746       return nullptr;
4747   }
4748 
4749   if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
4750     return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0],
4751                                            COps[1], DL);
4752   }
4753 
4754   return ConstantFoldInstOperands(I, COps, DL);
4755 }
4756 
4757 /// Try to determine the resulting constant values in phi nodes
4758 /// at the common destination basic block, *CommonDest, for one of the case
4759 /// destionations CaseDest corresponding to value CaseVal (0 for the default
4760 /// case), of a switch instruction SI.
4761 static bool
4762 GetCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest,
4763                BasicBlock **CommonDest,
4764                SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res,
4765                const DataLayout &DL, const TargetTransformInfo &TTI) {
4766   // The block from which we enter the common destination.
4767   BasicBlock *Pred = SI->getParent();
4768 
4769   // If CaseDest is empty except for some side-effect free instructions through
4770   // which we can constant-propagate the CaseVal, continue to its successor.
4771   SmallDenseMap<Value *, Constant *> ConstantPool;
4772   ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal));
4773   for (Instruction &I :CaseDest->instructionsWithoutDebug()) {
4774     if (I.isTerminator()) {
4775       // If the terminator is a simple branch, continue to the next block.
4776       if (I.getNumSuccessors() != 1 || I.isExceptionalTerminator())
4777         return false;
4778       Pred = CaseDest;
4779       CaseDest = I.getSuccessor(0);
4780     } else if (Constant *C = ConstantFold(&I, DL, ConstantPool)) {
4781       // Instruction is side-effect free and constant.
4782 
4783       // If the instruction has uses outside this block or a phi node slot for
4784       // the block, it is not safe to bypass the instruction since it would then
4785       // no longer dominate all its uses.
4786       for (auto &Use : I.uses()) {
4787         User *User = Use.getUser();
4788         if (Instruction *I = dyn_cast<Instruction>(User))
4789           if (I->getParent() == CaseDest)
4790             continue;
4791         if (PHINode *Phi = dyn_cast<PHINode>(User))
4792           if (Phi->getIncomingBlock(Use) == CaseDest)
4793             continue;
4794         return false;
4795       }
4796 
4797       ConstantPool.insert(std::make_pair(&I, C));
4798     } else {
4799       break;
4800     }
4801   }
4802 
4803   // If we did not have a CommonDest before, use the current one.
4804   if (!*CommonDest)
4805     *CommonDest = CaseDest;
4806   // If the destination isn't the common one, abort.
4807   if (CaseDest != *CommonDest)
4808     return false;
4809 
4810   // Get the values for this case from phi nodes in the destination block.
4811   for (PHINode &PHI : (*CommonDest)->phis()) {
4812     int Idx = PHI.getBasicBlockIndex(Pred);
4813     if (Idx == -1)
4814       continue;
4815 
4816     Constant *ConstVal =
4817         LookupConstant(PHI.getIncomingValue(Idx), ConstantPool);
4818     if (!ConstVal)
4819       return false;
4820 
4821     // Be conservative about which kinds of constants we support.
4822     if (!ValidLookupTableConstant(ConstVal, TTI))
4823       return false;
4824 
4825     Res.push_back(std::make_pair(&PHI, ConstVal));
4826   }
4827 
4828   return Res.size() > 0;
4829 }
4830 
4831 // Helper function used to add CaseVal to the list of cases that generate
4832 // Result. Returns the updated number of cases that generate this result.
4833 static uintptr_t MapCaseToResult(ConstantInt *CaseVal,
4834                                  SwitchCaseResultVectorTy &UniqueResults,
4835                                  Constant *Result) {
4836   for (auto &I : UniqueResults) {
4837     if (I.first == Result) {
4838       I.second.push_back(CaseVal);
4839       return I.second.size();
4840     }
4841   }
4842   UniqueResults.push_back(
4843       std::make_pair(Result, SmallVector<ConstantInt *, 4>(1, CaseVal)));
4844   return 1;
4845 }
4846 
4847 // Helper function that initializes a map containing
4848 // results for the PHI node of the common destination block for a switch
4849 // instruction. Returns false if multiple PHI nodes have been found or if
4850 // there is not a common destination block for the switch.
4851 static bool
4852 InitializeUniqueCases(SwitchInst *SI, PHINode *&PHI, BasicBlock *&CommonDest,
4853                       SwitchCaseResultVectorTy &UniqueResults,
4854                       Constant *&DefaultResult, const DataLayout &DL,
4855                       const TargetTransformInfo &TTI,
4856                       uintptr_t MaxUniqueResults, uintptr_t MaxCasesPerResult) {
4857   for (auto &I : SI->cases()) {
4858     ConstantInt *CaseVal = I.getCaseValue();
4859 
4860     // Resulting value at phi nodes for this case value.
4861     SwitchCaseResultsTy Results;
4862     if (!GetCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results,
4863                         DL, TTI))
4864       return false;
4865 
4866     // Only one value per case is permitted.
4867     if (Results.size() > 1)
4868       return false;
4869 
4870     // Add the case->result mapping to UniqueResults.
4871     const uintptr_t NumCasesForResult =
4872         MapCaseToResult(CaseVal, UniqueResults, Results.begin()->second);
4873 
4874     // Early out if there are too many cases for this result.
4875     if (NumCasesForResult > MaxCasesPerResult)
4876       return false;
4877 
4878     // Early out if there are too many unique results.
4879     if (UniqueResults.size() > MaxUniqueResults)
4880       return false;
4881 
4882     // Check the PHI consistency.
4883     if (!PHI)
4884       PHI = Results[0].first;
4885     else if (PHI != Results[0].first)
4886       return false;
4887   }
4888   // Find the default result value.
4889   SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults;
4890   BasicBlock *DefaultDest = SI->getDefaultDest();
4891   GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults,
4892                  DL, TTI);
4893   // If the default value is not found abort unless the default destination
4894   // is unreachable.
4895   DefaultResult =
4896       DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr;
4897   if ((!DefaultResult &&
4898        !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg())))
4899     return false;
4900 
4901   return true;
4902 }
4903 
4904 // Helper function that checks if it is possible to transform a switch with only
4905 // two cases (or two cases + default) that produces a result into a select.
4906 // Example:
4907 // switch (a) {
4908 //   case 10:                %0 = icmp eq i32 %a, 10
4909 //     return 10;            %1 = select i1 %0, i32 10, i32 4
4910 //   case 20:        ---->   %2 = icmp eq i32 %a, 20
4911 //     return 2;             %3 = select i1 %2, i32 2, i32 %1
4912 //   default:
4913 //     return 4;
4914 // }
4915 static Value *ConvertTwoCaseSwitch(const SwitchCaseResultVectorTy &ResultVector,
4916                                    Constant *DefaultResult, Value *Condition,
4917                                    IRBuilder<> &Builder) {
4918   assert(ResultVector.size() == 2 &&
4919          "We should have exactly two unique results at this point");
4920   // If we are selecting between only two cases transform into a simple
4921   // select or a two-way select if default is possible.
4922   if (ResultVector[0].second.size() == 1 &&
4923       ResultVector[1].second.size() == 1) {
4924     ConstantInt *const FirstCase = ResultVector[0].second[0];
4925     ConstantInt *const SecondCase = ResultVector[1].second[0];
4926 
4927     bool DefaultCanTrigger = DefaultResult;
4928     Value *SelectValue = ResultVector[1].first;
4929     if (DefaultCanTrigger) {
4930       Value *const ValueCompare =
4931           Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp");
4932       SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first,
4933                                          DefaultResult, "switch.select");
4934     }
4935     Value *const ValueCompare =
4936         Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp");
4937     return Builder.CreateSelect(ValueCompare, ResultVector[0].first,
4938                                 SelectValue, "switch.select");
4939   }
4940 
4941   return nullptr;
4942 }
4943 
4944 // Helper function to cleanup a switch instruction that has been converted into
4945 // a select, fixing up PHI nodes and basic blocks.
4946 static void RemoveSwitchAfterSelectConversion(SwitchInst *SI, PHINode *PHI,
4947                                               Value *SelectValue,
4948                                               IRBuilder<> &Builder) {
4949   BasicBlock *SelectBB = SI->getParent();
4950   while (PHI->getBasicBlockIndex(SelectBB) >= 0)
4951     PHI->removeIncomingValue(SelectBB);
4952   PHI->addIncoming(SelectValue, SelectBB);
4953 
4954   Builder.CreateBr(PHI->getParent());
4955 
4956   // Remove the switch.
4957   for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
4958     BasicBlock *Succ = SI->getSuccessor(i);
4959 
4960     if (Succ == PHI->getParent())
4961       continue;
4962     Succ->removePredecessor(SelectBB);
4963   }
4964   SI->eraseFromParent();
4965 }
4966 
4967 /// If the switch is only used to initialize one or more
4968 /// phi nodes in a common successor block with only two different
4969 /// constant values, replace the switch with select.
4970 static bool switchToSelect(SwitchInst *SI, IRBuilder<> &Builder,
4971                            const DataLayout &DL,
4972                            const TargetTransformInfo &TTI) {
4973   Value *const Cond = SI->getCondition();
4974   PHINode *PHI = nullptr;
4975   BasicBlock *CommonDest = nullptr;
4976   Constant *DefaultResult;
4977   SwitchCaseResultVectorTy UniqueResults;
4978   // Collect all the cases that will deliver the same value from the switch.
4979   if (!InitializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult,
4980                              DL, TTI, 2, 1))
4981     return false;
4982   // Selects choose between maximum two values.
4983   if (UniqueResults.size() != 2)
4984     return false;
4985   assert(PHI != nullptr && "PHI for value select not found");
4986 
4987   Builder.SetInsertPoint(SI);
4988   Value *SelectValue =
4989       ConvertTwoCaseSwitch(UniqueResults, DefaultResult, Cond, Builder);
4990   if (SelectValue) {
4991     RemoveSwitchAfterSelectConversion(SI, PHI, SelectValue, Builder);
4992     return true;
4993   }
4994   // The switch couldn't be converted into a select.
4995   return false;
4996 }
4997 
4998 namespace {
4999 
5000 /// This class represents a lookup table that can be used to replace a switch.
5001 class SwitchLookupTable {
5002 public:
5003   /// Create a lookup table to use as a switch replacement with the contents
5004   /// of Values, using DefaultValue to fill any holes in the table.
5005   SwitchLookupTable(
5006       Module &M, uint64_t TableSize, ConstantInt *Offset,
5007       const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
5008       Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName);
5009 
5010   /// Build instructions with Builder to retrieve the value at
5011   /// the position given by Index in the lookup table.
5012   Value *BuildLookup(Value *Index, IRBuilder<> &Builder);
5013 
5014   /// Return true if a table with TableSize elements of
5015   /// type ElementType would fit in a target-legal register.
5016   static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize,
5017                                  Type *ElementType);
5018 
5019 private:
5020   // Depending on the contents of the table, it can be represented in
5021   // different ways.
5022   enum {
5023     // For tables where each element contains the same value, we just have to
5024     // store that single value and return it for each lookup.
5025     SingleValueKind,
5026 
5027     // For tables where there is a linear relationship between table index
5028     // and values. We calculate the result with a simple multiplication
5029     // and addition instead of a table lookup.
5030     LinearMapKind,
5031 
5032     // For small tables with integer elements, we can pack them into a bitmap
5033     // that fits into a target-legal register. Values are retrieved by
5034     // shift and mask operations.
5035     BitMapKind,
5036 
5037     // The table is stored as an array of values. Values are retrieved by load
5038     // instructions from the table.
5039     ArrayKind
5040   } Kind;
5041 
5042   // For SingleValueKind, this is the single value.
5043   Constant *SingleValue = nullptr;
5044 
5045   // For BitMapKind, this is the bitmap.
5046   ConstantInt *BitMap = nullptr;
5047   IntegerType *BitMapElementTy = nullptr;
5048 
5049   // For LinearMapKind, these are the constants used to derive the value.
5050   ConstantInt *LinearOffset = nullptr;
5051   ConstantInt *LinearMultiplier = nullptr;
5052 
5053   // For ArrayKind, this is the array.
5054   GlobalVariable *Array = nullptr;
5055 };
5056 
5057 } // end anonymous namespace
5058 
5059 SwitchLookupTable::SwitchLookupTable(
5060     Module &M, uint64_t TableSize, ConstantInt *Offset,
5061     const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
5062     Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName) {
5063   assert(Values.size() && "Can't build lookup table without values!");
5064   assert(TableSize >= Values.size() && "Can't fit values in table!");
5065 
5066   // If all values in the table are equal, this is that value.
5067   SingleValue = Values.begin()->second;
5068 
5069   Type *ValueType = Values.begin()->second->getType();
5070 
5071   // Build up the table contents.
5072   SmallVector<Constant *, 64> TableContents(TableSize);
5073   for (size_t I = 0, E = Values.size(); I != E; ++I) {
5074     ConstantInt *CaseVal = Values[I].first;
5075     Constant *CaseRes = Values[I].second;
5076     assert(CaseRes->getType() == ValueType);
5077 
5078     uint64_t Idx = (CaseVal->getValue() - Offset->getValue()).getLimitedValue();
5079     TableContents[Idx] = CaseRes;
5080 
5081     if (CaseRes != SingleValue)
5082       SingleValue = nullptr;
5083   }
5084 
5085   // Fill in any holes in the table with the default result.
5086   if (Values.size() < TableSize) {
5087     assert(DefaultValue &&
5088            "Need a default value to fill the lookup table holes.");
5089     assert(DefaultValue->getType() == ValueType);
5090     for (uint64_t I = 0; I < TableSize; ++I) {
5091       if (!TableContents[I])
5092         TableContents[I] = DefaultValue;
5093     }
5094 
5095     if (DefaultValue != SingleValue)
5096       SingleValue = nullptr;
5097   }
5098 
5099   // If each element in the table contains the same value, we only need to store
5100   // that single value.
5101   if (SingleValue) {
5102     Kind = SingleValueKind;
5103     return;
5104   }
5105 
5106   // Check if we can derive the value with a linear transformation from the
5107   // table index.
5108   if (isa<IntegerType>(ValueType)) {
5109     bool LinearMappingPossible = true;
5110     APInt PrevVal;
5111     APInt DistToPrev;
5112     assert(TableSize >= 2 && "Should be a SingleValue table.");
5113     // Check if there is the same distance between two consecutive values.
5114     for (uint64_t I = 0; I < TableSize; ++I) {
5115       ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]);
5116       if (!ConstVal) {
5117         // This is an undef. We could deal with it, but undefs in lookup tables
5118         // are very seldom. It's probably not worth the additional complexity.
5119         LinearMappingPossible = false;
5120         break;
5121       }
5122       const APInt &Val = ConstVal->getValue();
5123       if (I != 0) {
5124         APInt Dist = Val - PrevVal;
5125         if (I == 1) {
5126           DistToPrev = Dist;
5127         } else if (Dist != DistToPrev) {
5128           LinearMappingPossible = false;
5129           break;
5130         }
5131       }
5132       PrevVal = Val;
5133     }
5134     if (LinearMappingPossible) {
5135       LinearOffset = cast<ConstantInt>(TableContents[0]);
5136       LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev);
5137       Kind = LinearMapKind;
5138       ++NumLinearMaps;
5139       return;
5140     }
5141   }
5142 
5143   // If the type is integer and the table fits in a register, build a bitmap.
5144   if (WouldFitInRegister(DL, TableSize, ValueType)) {
5145     IntegerType *IT = cast<IntegerType>(ValueType);
5146     APInt TableInt(TableSize * IT->getBitWidth(), 0);
5147     for (uint64_t I = TableSize; I > 0; --I) {
5148       TableInt <<= IT->getBitWidth();
5149       // Insert values into the bitmap. Undef values are set to zero.
5150       if (!isa<UndefValue>(TableContents[I - 1])) {
5151         ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]);
5152         TableInt |= Val->getValue().zext(TableInt.getBitWidth());
5153       }
5154     }
5155     BitMap = ConstantInt::get(M.getContext(), TableInt);
5156     BitMapElementTy = IT;
5157     Kind = BitMapKind;
5158     ++NumBitMaps;
5159     return;
5160   }
5161 
5162   // Store the table in an array.
5163   ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize);
5164   Constant *Initializer = ConstantArray::get(ArrayTy, TableContents);
5165 
5166   Array = new GlobalVariable(M, ArrayTy, /*isConstant=*/true,
5167                              GlobalVariable::PrivateLinkage, Initializer,
5168                              "switch.table." + FuncName);
5169   Array->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
5170   // Set the alignment to that of an array items. We will be only loading one
5171   // value out of it.
5172   Array->setAlignment(Align(DL.getPrefTypeAlignment(ValueType)));
5173   Kind = ArrayKind;
5174 }
5175 
5176 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) {
5177   switch (Kind) {
5178   case SingleValueKind:
5179     return SingleValue;
5180   case LinearMapKind: {
5181     // Derive the result value from the input value.
5182     Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(),
5183                                           false, "switch.idx.cast");
5184     if (!LinearMultiplier->isOne())
5185       Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult");
5186     if (!LinearOffset->isZero())
5187       Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset");
5188     return Result;
5189   }
5190   case BitMapKind: {
5191     // Type of the bitmap (e.g. i59).
5192     IntegerType *MapTy = BitMap->getType();
5193 
5194     // Cast Index to the same type as the bitmap.
5195     // Note: The Index is <= the number of elements in the table, so
5196     // truncating it to the width of the bitmask is safe.
5197     Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast");
5198 
5199     // Multiply the shift amount by the element width.
5200     ShiftAmt = Builder.CreateMul(
5201         ShiftAmt, ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()),
5202         "switch.shiftamt");
5203 
5204     // Shift down.
5205     Value *DownShifted =
5206         Builder.CreateLShr(BitMap, ShiftAmt, "switch.downshift");
5207     // Mask off.
5208     return Builder.CreateTrunc(DownShifted, BitMapElementTy, "switch.masked");
5209   }
5210   case ArrayKind: {
5211     // Make sure the table index will not overflow when treated as signed.
5212     IntegerType *IT = cast<IntegerType>(Index->getType());
5213     uint64_t TableSize =
5214         Array->getInitializer()->getType()->getArrayNumElements();
5215     if (TableSize > (1ULL << (IT->getBitWidth() - 1)))
5216       Index = Builder.CreateZExt(
5217           Index, IntegerType::get(IT->getContext(), IT->getBitWidth() + 1),
5218           "switch.tableidx.zext");
5219 
5220     Value *GEPIndices[] = {Builder.getInt32(0), Index};
5221     Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array,
5222                                            GEPIndices, "switch.gep");
5223     return Builder.CreateLoad(
5224         cast<ArrayType>(Array->getValueType())->getElementType(), GEP,
5225         "switch.load");
5226   }
5227   }
5228   llvm_unreachable("Unknown lookup table kind!");
5229 }
5230 
5231 bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL,
5232                                            uint64_t TableSize,
5233                                            Type *ElementType) {
5234   auto *IT = dyn_cast<IntegerType>(ElementType);
5235   if (!IT)
5236     return false;
5237   // FIXME: If the type is wider than it needs to be, e.g. i8 but all values
5238   // are <= 15, we could try to narrow the type.
5239 
5240   // Avoid overflow, fitsInLegalInteger uses unsigned int for the width.
5241   if (TableSize >= UINT_MAX / IT->getBitWidth())
5242     return false;
5243   return DL.fitsInLegalInteger(TableSize * IT->getBitWidth());
5244 }
5245 
5246 /// Determine whether a lookup table should be built for this switch, based on
5247 /// the number of cases, size of the table, and the types of the results.
5248 static bool
5249 ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize,
5250                        const TargetTransformInfo &TTI, const DataLayout &DL,
5251                        const SmallDenseMap<PHINode *, Type *> &ResultTypes) {
5252   if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10)
5253     return false; // TableSize overflowed, or mul below might overflow.
5254 
5255   bool AllTablesFitInRegister = true;
5256   bool HasIllegalType = false;
5257   for (const auto &I : ResultTypes) {
5258     Type *Ty = I.second;
5259 
5260     // Saturate this flag to true.
5261     HasIllegalType = HasIllegalType || !TTI.isTypeLegal(Ty);
5262 
5263     // Saturate this flag to false.
5264     AllTablesFitInRegister =
5265         AllTablesFitInRegister &&
5266         SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty);
5267 
5268     // If both flags saturate, we're done. NOTE: This *only* works with
5269     // saturating flags, and all flags have to saturate first due to the
5270     // non-deterministic behavior of iterating over a dense map.
5271     if (HasIllegalType && !AllTablesFitInRegister)
5272       break;
5273   }
5274 
5275   // If each table would fit in a register, we should build it anyway.
5276   if (AllTablesFitInRegister)
5277     return true;
5278 
5279   // Don't build a table that doesn't fit in-register if it has illegal types.
5280   if (HasIllegalType)
5281     return false;
5282 
5283   // The table density should be at least 40%. This is the same criterion as for
5284   // jump tables, see SelectionDAGBuilder::handleJTSwitchCase.
5285   // FIXME: Find the best cut-off.
5286   return SI->getNumCases() * 10 >= TableSize * 4;
5287 }
5288 
5289 /// Try to reuse the switch table index compare. Following pattern:
5290 /// \code
5291 ///     if (idx < tablesize)
5292 ///        r = table[idx]; // table does not contain default_value
5293 ///     else
5294 ///        r = default_value;
5295 ///     if (r != default_value)
5296 ///        ...
5297 /// \endcode
5298 /// Is optimized to:
5299 /// \code
5300 ///     cond = idx < tablesize;
5301 ///     if (cond)
5302 ///        r = table[idx];
5303 ///     else
5304 ///        r = default_value;
5305 ///     if (cond)
5306 ///        ...
5307 /// \endcode
5308 /// Jump threading will then eliminate the second if(cond).
5309 static void reuseTableCompare(
5310     User *PhiUser, BasicBlock *PhiBlock, BranchInst *RangeCheckBranch,
5311     Constant *DefaultValue,
5312     const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values) {
5313   ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser);
5314   if (!CmpInst)
5315     return;
5316 
5317   // We require that the compare is in the same block as the phi so that jump
5318   // threading can do its work afterwards.
5319   if (CmpInst->getParent() != PhiBlock)
5320     return;
5321 
5322   Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1));
5323   if (!CmpOp1)
5324     return;
5325 
5326   Value *RangeCmp = RangeCheckBranch->getCondition();
5327   Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType());
5328   Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType());
5329 
5330   // Check if the compare with the default value is constant true or false.
5331   Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
5332                                                  DefaultValue, CmpOp1, true);
5333   if (DefaultConst != TrueConst && DefaultConst != FalseConst)
5334     return;
5335 
5336   // Check if the compare with the case values is distinct from the default
5337   // compare result.
5338   for (auto ValuePair : Values) {
5339     Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
5340                                                 ValuePair.second, CmpOp1, true);
5341     if (!CaseConst || CaseConst == DefaultConst || isa<UndefValue>(CaseConst))
5342       return;
5343     assert((CaseConst == TrueConst || CaseConst == FalseConst) &&
5344            "Expect true or false as compare result.");
5345   }
5346 
5347   // Check if the branch instruction dominates the phi node. It's a simple
5348   // dominance check, but sufficient for our needs.
5349   // Although this check is invariant in the calling loops, it's better to do it
5350   // at this late stage. Practically we do it at most once for a switch.
5351   BasicBlock *BranchBlock = RangeCheckBranch->getParent();
5352   for (auto PI = pred_begin(PhiBlock), E = pred_end(PhiBlock); PI != E; ++PI) {
5353     BasicBlock *Pred = *PI;
5354     if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock)
5355       return;
5356   }
5357 
5358   if (DefaultConst == FalseConst) {
5359     // The compare yields the same result. We can replace it.
5360     CmpInst->replaceAllUsesWith(RangeCmp);
5361     ++NumTableCmpReuses;
5362   } else {
5363     // The compare yields the same result, just inverted. We can replace it.
5364     Value *InvertedTableCmp = BinaryOperator::CreateXor(
5365         RangeCmp, ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp",
5366         RangeCheckBranch);
5367     CmpInst->replaceAllUsesWith(InvertedTableCmp);
5368     ++NumTableCmpReuses;
5369   }
5370 }
5371 
5372 /// If the switch is only used to initialize one or more phi nodes in a common
5373 /// successor block with different constant values, replace the switch with
5374 /// lookup tables.
5375 static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder,
5376                                 const DataLayout &DL,
5377                                 const TargetTransformInfo &TTI) {
5378   assert(SI->getNumCases() > 1 && "Degenerate switch?");
5379 
5380   Function *Fn = SI->getParent()->getParent();
5381   // Only build lookup table when we have a target that supports it or the
5382   // attribute is not set.
5383   if (!TTI.shouldBuildLookupTables() ||
5384       (Fn->getFnAttribute("no-jump-tables").getValueAsString() == "true"))
5385     return false;
5386 
5387   // FIXME: If the switch is too sparse for a lookup table, perhaps we could
5388   // split off a dense part and build a lookup table for that.
5389 
5390   // FIXME: This creates arrays of GEPs to constant strings, which means each
5391   // GEP needs a runtime relocation in PIC code. We should just build one big
5392   // string and lookup indices into that.
5393 
5394   // Ignore switches with less than three cases. Lookup tables will not make
5395   // them faster, so we don't analyze them.
5396   if (SI->getNumCases() < 3)
5397     return false;
5398 
5399   // Figure out the corresponding result for each case value and phi node in the
5400   // common destination, as well as the min and max case values.
5401   assert(!SI->cases().empty());
5402   SwitchInst::CaseIt CI = SI->case_begin();
5403   ConstantInt *MinCaseVal = CI->getCaseValue();
5404   ConstantInt *MaxCaseVal = CI->getCaseValue();
5405 
5406   BasicBlock *CommonDest = nullptr;
5407 
5408   using ResultListTy = SmallVector<std::pair<ConstantInt *, Constant *>, 4>;
5409   SmallDenseMap<PHINode *, ResultListTy> ResultLists;
5410 
5411   SmallDenseMap<PHINode *, Constant *> DefaultResults;
5412   SmallDenseMap<PHINode *, Type *> ResultTypes;
5413   SmallVector<PHINode *, 4> PHIs;
5414 
5415   for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) {
5416     ConstantInt *CaseVal = CI->getCaseValue();
5417     if (CaseVal->getValue().slt(MinCaseVal->getValue()))
5418       MinCaseVal = CaseVal;
5419     if (CaseVal->getValue().sgt(MaxCaseVal->getValue()))
5420       MaxCaseVal = CaseVal;
5421 
5422     // Resulting value at phi nodes for this case value.
5423     using ResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>;
5424     ResultsTy Results;
5425     if (!GetCaseResults(SI, CaseVal, CI->getCaseSuccessor(), &CommonDest,
5426                         Results, DL, TTI))
5427       return false;
5428 
5429     // Append the result from this case to the list for each phi.
5430     for (const auto &I : Results) {
5431       PHINode *PHI = I.first;
5432       Constant *Value = I.second;
5433       if (!ResultLists.count(PHI))
5434         PHIs.push_back(PHI);
5435       ResultLists[PHI].push_back(std::make_pair(CaseVal, Value));
5436     }
5437   }
5438 
5439   // Keep track of the result types.
5440   for (PHINode *PHI : PHIs) {
5441     ResultTypes[PHI] = ResultLists[PHI][0].second->getType();
5442   }
5443 
5444   uint64_t NumResults = ResultLists[PHIs[0]].size();
5445   APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue();
5446   uint64_t TableSize = RangeSpread.getLimitedValue() + 1;
5447   bool TableHasHoles = (NumResults < TableSize);
5448 
5449   // If the table has holes, we need a constant result for the default case
5450   // or a bitmask that fits in a register.
5451   SmallVector<std::pair<PHINode *, Constant *>, 4> DefaultResultsList;
5452   bool HasDefaultResults =
5453       GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest,
5454                      DefaultResultsList, DL, TTI);
5455 
5456   bool NeedMask = (TableHasHoles && !HasDefaultResults);
5457   if (NeedMask) {
5458     // As an extra penalty for the validity test we require more cases.
5459     if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark).
5460       return false;
5461     if (!DL.fitsInLegalInteger(TableSize))
5462       return false;
5463   }
5464 
5465   for (const auto &I : DefaultResultsList) {
5466     PHINode *PHI = I.first;
5467     Constant *Result = I.second;
5468     DefaultResults[PHI] = Result;
5469   }
5470 
5471   if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes))
5472     return false;
5473 
5474   // Create the BB that does the lookups.
5475   Module &Mod = *CommonDest->getParent()->getParent();
5476   BasicBlock *LookupBB = BasicBlock::Create(
5477       Mod.getContext(), "switch.lookup", CommonDest->getParent(), CommonDest);
5478 
5479   // Compute the table index value.
5480   Builder.SetInsertPoint(SI);
5481   Value *TableIndex;
5482   if (MinCaseVal->isNullValue())
5483     TableIndex = SI->getCondition();
5484   else
5485     TableIndex = Builder.CreateSub(SI->getCondition(), MinCaseVal,
5486                                    "switch.tableidx");
5487 
5488   // Compute the maximum table size representable by the integer type we are
5489   // switching upon.
5490   unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits();
5491   uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize;
5492   assert(MaxTableSize >= TableSize &&
5493          "It is impossible for a switch to have more entries than the max "
5494          "representable value of its input integer type's size.");
5495 
5496   // If the default destination is unreachable, or if the lookup table covers
5497   // all values of the conditional variable, branch directly to the lookup table
5498   // BB. Otherwise, check that the condition is within the case range.
5499   const bool DefaultIsReachable =
5500       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
5501   const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize);
5502   BranchInst *RangeCheckBranch = nullptr;
5503 
5504   if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
5505     Builder.CreateBr(LookupBB);
5506     // Note: We call removeProdecessor later since we need to be able to get the
5507     // PHI value for the default case in case we're using a bit mask.
5508   } else {
5509     Value *Cmp = Builder.CreateICmpULT(
5510         TableIndex, ConstantInt::get(MinCaseVal->getType(), TableSize));
5511     RangeCheckBranch =
5512         Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest());
5513   }
5514 
5515   // Populate the BB that does the lookups.
5516   Builder.SetInsertPoint(LookupBB);
5517 
5518   if (NeedMask) {
5519     // Before doing the lookup, we do the hole check. The LookupBB is therefore
5520     // re-purposed to do the hole check, and we create a new LookupBB.
5521     BasicBlock *MaskBB = LookupBB;
5522     MaskBB->setName("switch.hole_check");
5523     LookupBB = BasicBlock::Create(Mod.getContext(), "switch.lookup",
5524                                   CommonDest->getParent(), CommonDest);
5525 
5526     // Make the mask's bitwidth at least 8-bit and a power-of-2 to avoid
5527     // unnecessary illegal types.
5528     uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL));
5529     APInt MaskInt(TableSizePowOf2, 0);
5530     APInt One(TableSizePowOf2, 1);
5531     // Build bitmask; fill in a 1 bit for every case.
5532     const ResultListTy &ResultList = ResultLists[PHIs[0]];
5533     for (size_t I = 0, E = ResultList.size(); I != E; ++I) {
5534       uint64_t Idx = (ResultList[I].first->getValue() - MinCaseVal->getValue())
5535                          .getLimitedValue();
5536       MaskInt |= One << Idx;
5537     }
5538     ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt);
5539 
5540     // Get the TableIndex'th bit of the bitmask.
5541     // If this bit is 0 (meaning hole) jump to the default destination,
5542     // else continue with table lookup.
5543     IntegerType *MapTy = TableMask->getType();
5544     Value *MaskIndex =
5545         Builder.CreateZExtOrTrunc(TableIndex, MapTy, "switch.maskindex");
5546     Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, "switch.shifted");
5547     Value *LoBit = Builder.CreateTrunc(
5548         Shifted, Type::getInt1Ty(Mod.getContext()), "switch.lobit");
5549     Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest());
5550 
5551     Builder.SetInsertPoint(LookupBB);
5552     AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, SI->getParent());
5553   }
5554 
5555   if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
5556     // We cached PHINodes in PHIs. To avoid accessing deleted PHINodes later,
5557     // do not delete PHINodes here.
5558     SI->getDefaultDest()->removePredecessor(SI->getParent(),
5559                                             /*KeepOneInputPHIs=*/true);
5560   }
5561 
5562   bool ReturnedEarly = false;
5563   for (PHINode *PHI : PHIs) {
5564     const ResultListTy &ResultList = ResultLists[PHI];
5565 
5566     // If using a bitmask, use any value to fill the lookup table holes.
5567     Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI];
5568     StringRef FuncName = Fn->getName();
5569     SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultList, DV, DL,
5570                             FuncName);
5571 
5572     Value *Result = Table.BuildLookup(TableIndex, Builder);
5573 
5574     // If the result is used to return immediately from the function, we want to
5575     // do that right here.
5576     if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->user_begin()) &&
5577         PHI->user_back() == CommonDest->getFirstNonPHIOrDbg()) {
5578       Builder.CreateRet(Result);
5579       ReturnedEarly = true;
5580       break;
5581     }
5582 
5583     // Do a small peephole optimization: re-use the switch table compare if
5584     // possible.
5585     if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) {
5586       BasicBlock *PhiBlock = PHI->getParent();
5587       // Search for compare instructions which use the phi.
5588       for (auto *User : PHI->users()) {
5589         reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList);
5590       }
5591     }
5592 
5593     PHI->addIncoming(Result, LookupBB);
5594   }
5595 
5596   if (!ReturnedEarly)
5597     Builder.CreateBr(CommonDest);
5598 
5599   // Remove the switch.
5600   for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
5601     BasicBlock *Succ = SI->getSuccessor(i);
5602 
5603     if (Succ == SI->getDefaultDest())
5604       continue;
5605     Succ->removePredecessor(SI->getParent());
5606   }
5607   SI->eraseFromParent();
5608 
5609   ++NumLookupTables;
5610   if (NeedMask)
5611     ++NumLookupTablesHoles;
5612   return true;
5613 }
5614 
5615 static bool isSwitchDense(ArrayRef<int64_t> Values) {
5616   // See also SelectionDAGBuilder::isDense(), which this function was based on.
5617   uint64_t Diff = (uint64_t)Values.back() - (uint64_t)Values.front();
5618   uint64_t Range = Diff + 1;
5619   uint64_t NumCases = Values.size();
5620   // 40% is the default density for building a jump table in optsize/minsize mode.
5621   uint64_t MinDensity = 40;
5622 
5623   return NumCases * 100 >= Range * MinDensity;
5624 }
5625 
5626 /// Try to transform a switch that has "holes" in it to a contiguous sequence
5627 /// of cases.
5628 ///
5629 /// A switch such as: switch(i) {case 5: case 9: case 13: case 17:} can be
5630 /// range-reduced to: switch ((i-5) / 4) {case 0: case 1: case 2: case 3:}.
5631 ///
5632 /// This converts a sparse switch into a dense switch which allows better
5633 /// lowering and could also allow transforming into a lookup table.
5634 static bool ReduceSwitchRange(SwitchInst *SI, IRBuilder<> &Builder,
5635                               const DataLayout &DL,
5636                               const TargetTransformInfo &TTI) {
5637   auto *CondTy = cast<IntegerType>(SI->getCondition()->getType());
5638   if (CondTy->getIntegerBitWidth() > 64 ||
5639       !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth()))
5640     return false;
5641   // Only bother with this optimization if there are more than 3 switch cases;
5642   // SDAG will only bother creating jump tables for 4 or more cases.
5643   if (SI->getNumCases() < 4)
5644     return false;
5645 
5646   // This transform is agnostic to the signedness of the input or case values. We
5647   // can treat the case values as signed or unsigned. We can optimize more common
5648   // cases such as a sequence crossing zero {-4,0,4,8} if we interpret case values
5649   // as signed.
5650   SmallVector<int64_t,4> Values;
5651   for (auto &C : SI->cases())
5652     Values.push_back(C.getCaseValue()->getValue().getSExtValue());
5653   llvm::sort(Values);
5654 
5655   // If the switch is already dense, there's nothing useful to do here.
5656   if (isSwitchDense(Values))
5657     return false;
5658 
5659   // First, transform the values such that they start at zero and ascend.
5660   int64_t Base = Values[0];
5661   for (auto &V : Values)
5662     V -= (uint64_t)(Base);
5663 
5664   // Now we have signed numbers that have been shifted so that, given enough
5665   // precision, there are no negative values. Since the rest of the transform
5666   // is bitwise only, we switch now to an unsigned representation.
5667 
5668   // This transform can be done speculatively because it is so cheap - it
5669   // results in a single rotate operation being inserted.
5670   // FIXME: It's possible that optimizing a switch on powers of two might also
5671   // be beneficial - flag values are often powers of two and we could use a CLZ
5672   // as the key function.
5673 
5674   // countTrailingZeros(0) returns 64. As Values is guaranteed to have more than
5675   // one element and LLVM disallows duplicate cases, Shift is guaranteed to be
5676   // less than 64.
5677   unsigned Shift = 64;
5678   for (auto &V : Values)
5679     Shift = std::min(Shift, countTrailingZeros((uint64_t)V));
5680   assert(Shift < 64);
5681   if (Shift > 0)
5682     for (auto &V : Values)
5683       V = (int64_t)((uint64_t)V >> Shift);
5684 
5685   if (!isSwitchDense(Values))
5686     // Transform didn't create a dense switch.
5687     return false;
5688 
5689   // The obvious transform is to shift the switch condition right and emit a
5690   // check that the condition actually cleanly divided by GCD, i.e.
5691   //   C & (1 << Shift - 1) == 0
5692   // inserting a new CFG edge to handle the case where it didn't divide cleanly.
5693   //
5694   // A cheaper way of doing this is a simple ROTR(C, Shift). This performs the
5695   // shift and puts the shifted-off bits in the uppermost bits. If any of these
5696   // are nonzero then the switch condition will be very large and will hit the
5697   // default case.
5698 
5699   auto *Ty = cast<IntegerType>(SI->getCondition()->getType());
5700   Builder.SetInsertPoint(SI);
5701   auto *ShiftC = ConstantInt::get(Ty, Shift);
5702   auto *Sub = Builder.CreateSub(SI->getCondition(), ConstantInt::get(Ty, Base));
5703   auto *LShr = Builder.CreateLShr(Sub, ShiftC);
5704   auto *Shl = Builder.CreateShl(Sub, Ty->getBitWidth() - Shift);
5705   auto *Rot = Builder.CreateOr(LShr, Shl);
5706   SI->replaceUsesOfWith(SI->getCondition(), Rot);
5707 
5708   for (auto Case : SI->cases()) {
5709     auto *Orig = Case.getCaseValue();
5710     auto Sub = Orig->getValue() - APInt(Ty->getBitWidth(), Base);
5711     Case.setValue(
5712         cast<ConstantInt>(ConstantInt::get(Ty, Sub.lshr(ShiftC->getValue()))));
5713   }
5714   return true;
5715 }
5716 
5717 bool SimplifyCFGOpt::SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) {
5718   BasicBlock *BB = SI->getParent();
5719 
5720   if (isValueEqualityComparison(SI)) {
5721     // If we only have one predecessor, and if it is a branch on this value,
5722     // see if that predecessor totally determines the outcome of this switch.
5723     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
5724       if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder))
5725         return requestResimplify();
5726 
5727     Value *Cond = SI->getCondition();
5728     if (SelectInst *Select = dyn_cast<SelectInst>(Cond))
5729       if (SimplifySwitchOnSelect(SI, Select))
5730         return requestResimplify();
5731 
5732     // If the block only contains the switch, see if we can fold the block
5733     // away into any preds.
5734     if (SI == &*BB->instructionsWithoutDebug().begin())
5735       if (FoldValueComparisonIntoPredecessors(SI, Builder))
5736         return requestResimplify();
5737   }
5738 
5739   // Try to transform the switch into an icmp and a branch.
5740   if (TurnSwitchRangeIntoICmp(SI, Builder))
5741     return requestResimplify();
5742 
5743   // Remove unreachable cases.
5744   if (eliminateDeadSwitchCases(SI, Options.AC, DL))
5745     return requestResimplify();
5746 
5747   if (switchToSelect(SI, Builder, DL, TTI))
5748     return requestResimplify();
5749 
5750   if (Options.ForwardSwitchCondToPhi && ForwardSwitchConditionToPHI(SI))
5751     return requestResimplify();
5752 
5753   // The conversion from switch to lookup tables results in difficult-to-analyze
5754   // code and makes pruning branches much harder. This is a problem if the
5755   // switch expression itself can still be restricted as a result of inlining or
5756   // CVP. Therefore, only apply this transformation during late stages of the
5757   // optimisation pipeline.
5758   if (Options.ConvertSwitchToLookupTable &&
5759       SwitchToLookupTable(SI, Builder, DL, TTI))
5760     return requestResimplify();
5761 
5762   if (ReduceSwitchRange(SI, Builder, DL, TTI))
5763     return requestResimplify();
5764 
5765   return false;
5766 }
5767 
5768 bool SimplifyCFGOpt::SimplifyIndirectBr(IndirectBrInst *IBI) {
5769   BasicBlock *BB = IBI->getParent();
5770   bool Changed = false;
5771 
5772   // Eliminate redundant destinations.
5773   SmallPtrSet<Value *, 8> Succs;
5774   for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
5775     BasicBlock *Dest = IBI->getDestination(i);
5776     if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) {
5777       Dest->removePredecessor(BB);
5778       IBI->removeDestination(i);
5779       --i;
5780       --e;
5781       Changed = true;
5782     }
5783   }
5784 
5785   if (IBI->getNumDestinations() == 0) {
5786     // If the indirectbr has no successors, change it to unreachable.
5787     new UnreachableInst(IBI->getContext(), IBI);
5788     EraseTerminatorAndDCECond(IBI);
5789     return true;
5790   }
5791 
5792   if (IBI->getNumDestinations() == 1) {
5793     // If the indirectbr has one successor, change it to a direct branch.
5794     BranchInst::Create(IBI->getDestination(0), IBI);
5795     EraseTerminatorAndDCECond(IBI);
5796     return true;
5797   }
5798 
5799   if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) {
5800     if (SimplifyIndirectBrOnSelect(IBI, SI))
5801       return requestResimplify();
5802   }
5803   return Changed;
5804 }
5805 
5806 /// Given an block with only a single landing pad and a unconditional branch
5807 /// try to find another basic block which this one can be merged with.  This
5808 /// handles cases where we have multiple invokes with unique landing pads, but
5809 /// a shared handler.
5810 ///
5811 /// We specifically choose to not worry about merging non-empty blocks
5812 /// here.  That is a PRE/scheduling problem and is best solved elsewhere.  In
5813 /// practice, the optimizer produces empty landing pad blocks quite frequently
5814 /// when dealing with exception dense code.  (see: instcombine, gvn, if-else
5815 /// sinking in this file)
5816 ///
5817 /// This is primarily a code size optimization.  We need to avoid performing
5818 /// any transform which might inhibit optimization (such as our ability to
5819 /// specialize a particular handler via tail commoning).  We do this by not
5820 /// merging any blocks which require us to introduce a phi.  Since the same
5821 /// values are flowing through both blocks, we don't lose any ability to
5822 /// specialize.  If anything, we make such specialization more likely.
5823 ///
5824 /// TODO - This transformation could remove entries from a phi in the target
5825 /// block when the inputs in the phi are the same for the two blocks being
5826 /// merged.  In some cases, this could result in removal of the PHI entirely.
5827 static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI,
5828                                  BasicBlock *BB) {
5829   auto Succ = BB->getUniqueSuccessor();
5830   assert(Succ);
5831   // If there's a phi in the successor block, we'd likely have to introduce
5832   // a phi into the merged landing pad block.
5833   if (isa<PHINode>(*Succ->begin()))
5834     return false;
5835 
5836   for (BasicBlock *OtherPred : predecessors(Succ)) {
5837     if (BB == OtherPred)
5838       continue;
5839     BasicBlock::iterator I = OtherPred->begin();
5840     LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I);
5841     if (!LPad2 || !LPad2->isIdenticalTo(LPad))
5842       continue;
5843     for (++I; isa<DbgInfoIntrinsic>(I); ++I)
5844       ;
5845     BranchInst *BI2 = dyn_cast<BranchInst>(I);
5846     if (!BI2 || !BI2->isIdenticalTo(BI))
5847       continue;
5848 
5849     // We've found an identical block.  Update our predecessors to take that
5850     // path instead and make ourselves dead.
5851     SmallPtrSet<BasicBlock *, 16> Preds;
5852     Preds.insert(pred_begin(BB), pred_end(BB));
5853     for (BasicBlock *Pred : Preds) {
5854       InvokeInst *II = cast<InvokeInst>(Pred->getTerminator());
5855       assert(II->getNormalDest() != BB && II->getUnwindDest() == BB &&
5856              "unexpected successor");
5857       II->setUnwindDest(OtherPred);
5858     }
5859 
5860     // The debug info in OtherPred doesn't cover the merged control flow that
5861     // used to go through BB.  We need to delete it or update it.
5862     for (auto I = OtherPred->begin(), E = OtherPred->end(); I != E;) {
5863       Instruction &Inst = *I;
5864       I++;
5865       if (isa<DbgInfoIntrinsic>(Inst))
5866         Inst.eraseFromParent();
5867     }
5868 
5869     SmallPtrSet<BasicBlock *, 16> Succs;
5870     Succs.insert(succ_begin(BB), succ_end(BB));
5871     for (BasicBlock *Succ : Succs) {
5872       Succ->removePredecessor(BB);
5873     }
5874 
5875     IRBuilder<> Builder(BI);
5876     Builder.CreateUnreachable();
5877     BI->eraseFromParent();
5878     return true;
5879   }
5880   return false;
5881 }
5882 
5883 bool SimplifyCFGOpt::SimplifyUncondBranch(BranchInst *BI,
5884                                           IRBuilder<> &Builder) {
5885   BasicBlock *BB = BI->getParent();
5886   BasicBlock *Succ = BI->getSuccessor(0);
5887 
5888   // If the Terminator is the only non-phi instruction, simplify the block.
5889   // If LoopHeader is provided, check if the block or its successor is a loop
5890   // header. (This is for early invocations before loop simplify and
5891   // vectorization to keep canonical loop forms for nested loops. These blocks
5892   // can be eliminated when the pass is invoked later in the back-end.)
5893   // Note that if BB has only one predecessor then we do not introduce new
5894   // backedge, so we can eliminate BB.
5895   bool NeedCanonicalLoop =
5896       Options.NeedCanonicalLoop &&
5897       (LoopHeaders && BB->hasNPredecessorsOrMore(2) &&
5898        (LoopHeaders->count(BB) || LoopHeaders->count(Succ)));
5899   BasicBlock::iterator I = BB->getFirstNonPHIOrDbg()->getIterator();
5900   if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() &&
5901       !NeedCanonicalLoop && TryToSimplifyUncondBranchFromEmptyBlock(BB))
5902     return true;
5903 
5904   // If the only instruction in the block is a seteq/setne comparison against a
5905   // constant, try to simplify the block.
5906   if (ICmpInst *ICI = dyn_cast<ICmpInst>(I))
5907     if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) {
5908       for (++I; isa<DbgInfoIntrinsic>(I); ++I)
5909         ;
5910       if (I->isTerminator() &&
5911           tryToSimplifyUncondBranchWithICmpInIt(ICI, Builder))
5912         return true;
5913     }
5914 
5915   // See if we can merge an empty landing pad block with another which is
5916   // equivalent.
5917   if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) {
5918     for (++I; isa<DbgInfoIntrinsic>(I); ++I)
5919       ;
5920     if (I->isTerminator() && TryToMergeLandingPad(LPad, BI, BB))
5921       return true;
5922   }
5923 
5924   // If this basic block is ONLY a compare and a branch, and if a predecessor
5925   // branches to us and our successor, fold the comparison into the
5926   // predecessor and use logical operations to update the incoming value
5927   // for PHI nodes in common successor.
5928   if (FoldBranchToCommonDest(BI, nullptr, Options.BonusInstThreshold))
5929     return requestResimplify();
5930   return false;
5931 }
5932 
5933 static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) {
5934   BasicBlock *PredPred = nullptr;
5935   for (auto *P : predecessors(BB)) {
5936     BasicBlock *PPred = P->getSinglePredecessor();
5937     if (!PPred || (PredPred && PredPred != PPred))
5938       return nullptr;
5939     PredPred = PPred;
5940   }
5941   return PredPred;
5942 }
5943 
5944 bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) {
5945   BasicBlock *BB = BI->getParent();
5946   const Function *Fn = BB->getParent();
5947   if (Fn && Fn->hasFnAttribute(Attribute::OptForFuzzing))
5948     return false;
5949 
5950   // Conditional branch
5951   if (isValueEqualityComparison(BI)) {
5952     // If we only have one predecessor, and if it is a branch on this value,
5953     // see if that predecessor totally determines the outcome of this
5954     // switch.
5955     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
5956       if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder))
5957         return requestResimplify();
5958 
5959     // This block must be empty, except for the setcond inst, if it exists.
5960     // Ignore dbg intrinsics.
5961     auto I = BB->instructionsWithoutDebug().begin();
5962     if (&*I == BI) {
5963       if (FoldValueComparisonIntoPredecessors(BI, Builder))
5964         return requestResimplify();
5965     } else if (&*I == cast<Instruction>(BI->getCondition())) {
5966       ++I;
5967       if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder))
5968         return requestResimplify();
5969     }
5970   }
5971 
5972   // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction.
5973   if (SimplifyBranchOnICmpChain(BI, Builder, DL))
5974     return true;
5975 
5976   // If this basic block has dominating predecessor blocks and the dominating
5977   // blocks' conditions imply BI's condition, we know the direction of BI.
5978   Optional<bool> Imp = isImpliedByDomCondition(BI->getCondition(), BI, DL);
5979   if (Imp) {
5980     // Turn this into a branch on constant.
5981     auto *OldCond = BI->getCondition();
5982     ConstantInt *TorF = *Imp ? ConstantInt::getTrue(BB->getContext())
5983                              : ConstantInt::getFalse(BB->getContext());
5984     BI->setCondition(TorF);
5985     RecursivelyDeleteTriviallyDeadInstructions(OldCond);
5986     return requestResimplify();
5987   }
5988 
5989   // If this basic block is ONLY a compare and a branch, and if a predecessor
5990   // branches to us and one of our successors, fold the comparison into the
5991   // predecessor and use logical operations to pick the right destination.
5992   if (FoldBranchToCommonDest(BI, nullptr, Options.BonusInstThreshold))
5993     return requestResimplify();
5994 
5995   // We have a conditional branch to two blocks that are only reachable
5996   // from BI.  We know that the condbr dominates the two blocks, so see if
5997   // there is any identical code in the "then" and "else" blocks.  If so, we
5998   // can hoist it up to the branching block.
5999   if (BI->getSuccessor(0)->getSinglePredecessor()) {
6000     if (BI->getSuccessor(1)->getSinglePredecessor()) {
6001       if (HoistThenElseCodeToIf(BI, TTI))
6002         return requestResimplify();
6003     } else {
6004       // If Successor #1 has multiple preds, we may be able to conditionally
6005       // execute Successor #0 if it branches to Successor #1.
6006       Instruction *Succ0TI = BI->getSuccessor(0)->getTerminator();
6007       if (Succ0TI->getNumSuccessors() == 1 &&
6008           Succ0TI->getSuccessor(0) == BI->getSuccessor(1))
6009         if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), TTI))
6010           return requestResimplify();
6011     }
6012   } else if (BI->getSuccessor(1)->getSinglePredecessor()) {
6013     // If Successor #0 has multiple preds, we may be able to conditionally
6014     // execute Successor #1 if it branches to Successor #0.
6015     Instruction *Succ1TI = BI->getSuccessor(1)->getTerminator();
6016     if (Succ1TI->getNumSuccessors() == 1 &&
6017         Succ1TI->getSuccessor(0) == BI->getSuccessor(0))
6018       if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), TTI))
6019         return requestResimplify();
6020   }
6021 
6022   // If this is a branch on a phi node in the current block, thread control
6023   // through this block if any PHI node entries are constants.
6024   if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition()))
6025     if (PN->getParent() == BI->getParent())
6026       if (FoldCondBranchOnPHI(BI, DL, Options.AC))
6027         return requestResimplify();
6028 
6029   // Scan predecessor blocks for conditional branches.
6030   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
6031     if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
6032       if (PBI != BI && PBI->isConditional())
6033         if (SimplifyCondBranchToCondBranch(PBI, BI, DL, TTI))
6034           return requestResimplify();
6035 
6036   // Look for diamond patterns.
6037   if (MergeCondStores)
6038     if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB))
6039       if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator()))
6040         if (PBI != BI && PBI->isConditional())
6041           if (mergeConditionalStores(PBI, BI, DL, TTI))
6042             return requestResimplify();
6043 
6044   return false;
6045 }
6046 
6047 /// Check if passing a value to an instruction will cause undefined behavior.
6048 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I) {
6049   Constant *C = dyn_cast<Constant>(V);
6050   if (!C)
6051     return false;
6052 
6053   if (I->use_empty())
6054     return false;
6055 
6056   if (C->isNullValue() || isa<UndefValue>(C)) {
6057     // Only look at the first use, avoid hurting compile time with long uselists
6058     User *Use = *I->user_begin();
6059 
6060     // Now make sure that there are no instructions in between that can alter
6061     // control flow (eg. calls)
6062     for (BasicBlock::iterator
6063              i = ++BasicBlock::iterator(I),
6064              UI = BasicBlock::iterator(dyn_cast<Instruction>(Use));
6065          i != UI; ++i)
6066       if (i == I->getParent()->end() || i->mayHaveSideEffects())
6067         return false;
6068 
6069     // Look through GEPs. A load from a GEP derived from NULL is still undefined
6070     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use))
6071       if (GEP->getPointerOperand() == I)
6072         return passingValueIsAlwaysUndefined(V, GEP);
6073 
6074     // Look through bitcasts.
6075     if (BitCastInst *BC = dyn_cast<BitCastInst>(Use))
6076       return passingValueIsAlwaysUndefined(V, BC);
6077 
6078     // Load from null is undefined.
6079     if (LoadInst *LI = dyn_cast<LoadInst>(Use))
6080       if (!LI->isVolatile())
6081         return !NullPointerIsDefined(LI->getFunction(),
6082                                      LI->getPointerAddressSpace());
6083 
6084     // Store to null is undefined.
6085     if (StoreInst *SI = dyn_cast<StoreInst>(Use))
6086       if (!SI->isVolatile())
6087         return (!NullPointerIsDefined(SI->getFunction(),
6088                                       SI->getPointerAddressSpace())) &&
6089                SI->getPointerOperand() == I;
6090 
6091     // A call to null is undefined.
6092     if (auto CS = CallSite(Use))
6093       return !NullPointerIsDefined(CS->getFunction()) &&
6094              CS.getCalledValue() == I;
6095   }
6096   return false;
6097 }
6098 
6099 /// If BB has an incoming value that will always trigger undefined behavior
6100 /// (eg. null pointer dereference), remove the branch leading here.
6101 static bool removeUndefIntroducingPredecessor(BasicBlock *BB) {
6102   for (PHINode &PHI : BB->phis())
6103     for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i)
6104       if (passingValueIsAlwaysUndefined(PHI.getIncomingValue(i), &PHI)) {
6105         Instruction *T = PHI.getIncomingBlock(i)->getTerminator();
6106         IRBuilder<> Builder(T);
6107         if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
6108           BB->removePredecessor(PHI.getIncomingBlock(i));
6109           // Turn uncoditional branches into unreachables and remove the dead
6110           // destination from conditional branches.
6111           if (BI->isUnconditional())
6112             Builder.CreateUnreachable();
6113           else
6114             Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1)
6115                                                        : BI->getSuccessor(0));
6116           BI->eraseFromParent();
6117           return true;
6118         }
6119         // TODO: SwitchInst.
6120       }
6121 
6122   return false;
6123 }
6124 
6125 bool SimplifyCFGOpt::simplifyOnce(BasicBlock *BB) {
6126   bool Changed = false;
6127 
6128   assert(BB && BB->getParent() && "Block not embedded in function!");
6129   assert(BB->getTerminator() && "Degenerate basic block encountered!");
6130 
6131   // Remove basic blocks that have no predecessors (except the entry block)...
6132   // or that just have themself as a predecessor.  These are unreachable.
6133   if ((pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) ||
6134       BB->getSinglePredecessor() == BB) {
6135     LLVM_DEBUG(dbgs() << "Removing BB: \n" << *BB);
6136     DeleteDeadBlock(BB);
6137     return true;
6138   }
6139 
6140   // Check to see if we can constant propagate this terminator instruction
6141   // away...
6142   Changed |= ConstantFoldTerminator(BB, true);
6143 
6144   // Check for and eliminate duplicate PHI nodes in this block.
6145   Changed |= EliminateDuplicatePHINodes(BB);
6146 
6147   // Check for and remove branches that will always cause undefined behavior.
6148   Changed |= removeUndefIntroducingPredecessor(BB);
6149 
6150   // Merge basic blocks into their predecessor if there is only one distinct
6151   // pred, and if there is only one distinct successor of the predecessor, and
6152   // if there are no PHI nodes.
6153   if (MergeBlockIntoPredecessor(BB))
6154     return true;
6155 
6156   if (SinkCommon && Options.SinkCommonInsts)
6157     Changed |= SinkCommonCodeFromPredecessors(BB);
6158 
6159   IRBuilder<> Builder(BB);
6160 
6161   // If there is a trivial two-entry PHI node in this basic block, and we can
6162   // eliminate it, do so now.
6163   if (auto *PN = dyn_cast<PHINode>(BB->begin()))
6164     if (PN->getNumIncomingValues() == 2)
6165       Changed |= FoldTwoEntryPHINode(PN, TTI, DL);
6166 
6167   Builder.SetInsertPoint(BB->getTerminator());
6168   if (auto *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
6169     if (BI->isUnconditional()) {
6170       if (SimplifyUncondBranch(BI, Builder))
6171         return true;
6172     } else {
6173       if (SimplifyCondBranch(BI, Builder))
6174         return true;
6175     }
6176   } else if (auto *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
6177     if (SimplifyReturn(RI, Builder))
6178       return true;
6179   } else if (auto *RI = dyn_cast<ResumeInst>(BB->getTerminator())) {
6180     if (SimplifyResume(RI, Builder))
6181       return true;
6182   } else if (auto *RI = dyn_cast<CleanupReturnInst>(BB->getTerminator())) {
6183     if (SimplifyCleanupReturn(RI))
6184       return true;
6185   } else if (auto *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
6186     if (SimplifySwitch(SI, Builder))
6187       return true;
6188   } else if (auto *UI = dyn_cast<UnreachableInst>(BB->getTerminator())) {
6189     if (SimplifyUnreachable(UI))
6190       return true;
6191   } else if (auto *IBI = dyn_cast<IndirectBrInst>(BB->getTerminator())) {
6192     if (SimplifyIndirectBr(IBI))
6193       return true;
6194   }
6195 
6196   return Changed;
6197 }
6198 
6199 bool SimplifyCFGOpt::run(BasicBlock *BB) {
6200   bool Changed = false;
6201 
6202   // Repeated simplify BB as long as resimplification is requested.
6203   do {
6204     Resimplify = false;
6205 
6206     // Perform one round of simplifcation. Resimplify flag will be set if
6207     // another iteration is requested.
6208     Changed |= simplifyOnce(BB);
6209   } while (Resimplify);
6210 
6211   return Changed;
6212 }
6213 
6214 bool llvm::simplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI,
6215                        const SimplifyCFGOptions &Options,
6216                        SmallPtrSetImpl<BasicBlock *> *LoopHeaders) {
6217   return SimplifyCFGOpt(TTI, BB->getModule()->getDataLayout(), LoopHeaders,
6218                         Options)
6219       .run(BB);
6220 }
6221