1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Peephole optimize the CFG.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/ADT/APInt.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/SetOperations.h"
19 #include "llvm/ADT/SetVector.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/ADT/SmallSet.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/Analysis/AssumptionCache.h"
26 #include "llvm/Analysis/ConstantFolding.h"
27 #include "llvm/Analysis/EHPersonalities.h"
28 #include "llvm/Analysis/InstructionSimplify.h"
29 #include "llvm/Analysis/TargetTransformInfo.h"
30 #include "llvm/Analysis/ValueTracking.h"
31 #include "llvm/IR/BasicBlock.h"
32 #include "llvm/IR/CallSite.h"
33 #include "llvm/IR/CFG.h"
34 #include "llvm/IR/Constant.h"
35 #include "llvm/IR/ConstantRange.h"
36 #include "llvm/IR/Constants.h"
37 #include "llvm/IR/DataLayout.h"
38 #include "llvm/IR/DebugInfo.h"
39 #include "llvm/IR/DerivedTypes.h"
40 #include "llvm/IR/GlobalValue.h"
41 #include "llvm/IR/GlobalVariable.h"
42 #include "llvm/IR/IRBuilder.h"
43 #include "llvm/IR/InstrTypes.h"
44 #include "llvm/IR/Instruction.h"
45 #include "llvm/IR/Instructions.h"
46 #include "llvm/IR/IntrinsicInst.h"
47 #include "llvm/IR/Intrinsics.h"
48 #include "llvm/IR/LLVMContext.h"
49 #include "llvm/IR/MDBuilder.h"
50 #include "llvm/IR/Metadata.h"
51 #include "llvm/IR/Module.h"
52 #include "llvm/IR/NoFolder.h"
53 #include "llvm/IR/Operator.h"
54 #include "llvm/IR/PatternMatch.h"
55 #include "llvm/IR/Type.h"
56 #include "llvm/IR/User.h"
57 #include "llvm/IR/Value.h"
58 #include "llvm/IR/DebugInfo.h"
59 #include "llvm/Support/Casting.h"
60 #include "llvm/Support/CommandLine.h"
61 #include "llvm/Support/Debug.h"
62 #include "llvm/Support/ErrorHandling.h"
63 #include "llvm/Support/MathExtras.h"
64 #include "llvm/Support/raw_ostream.h"
65 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
66 #include "llvm/Transforms/Utils/Local.h"
67 #include "llvm/Transforms/Utils/ValueMapper.h"
68 #include <algorithm>
69 #include <cassert>
70 #include <climits>
71 #include <cstddef>
72 #include <cstdint>
73 #include <iterator>
74 #include <map>
75 #include <set>
76 #include <utility>
77 #include <vector>
78 
79 using namespace llvm;
80 using namespace PatternMatch;
81 
82 #define DEBUG_TYPE "simplifycfg"
83 
84 // Chosen as 2 so as to be cheap, but still to have enough power to fold
85 // a select, so the "clamp" idiom (of a min followed by a max) will be caught.
86 // To catch this, we need to fold a compare and a select, hence '2' being the
87 // minimum reasonable default.
88 static cl::opt<unsigned> PHINodeFoldingThreshold(
89     "phi-node-folding-threshold", cl::Hidden, cl::init(2),
90     cl::desc(
91         "Control the amount of phi node folding to perform (default = 2)"));
92 
93 static cl::opt<bool> DupRet(
94     "simplifycfg-dup-ret", cl::Hidden, cl::init(false),
95     cl::desc("Duplicate return instructions into unconditional branches"));
96 
97 static cl::opt<bool>
98     SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true),
99                cl::desc("Sink common instructions down to the end block"));
100 
101 static cl::opt<bool> HoistCondStores(
102     "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true),
103     cl::desc("Hoist conditional stores if an unconditional store precedes"));
104 
105 static cl::opt<bool> MergeCondStores(
106     "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true),
107     cl::desc("Hoist conditional stores even if an unconditional store does not "
108              "precede - hoist multiple conditional stores into a single "
109              "predicated store"));
110 
111 static cl::opt<bool> MergeCondStoresAggressively(
112     "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false),
113     cl::desc("When merging conditional stores, do so even if the resultant "
114              "basic blocks are unlikely to be if-converted as a result"));
115 
116 static cl::opt<bool> SpeculateOneExpensiveInst(
117     "speculate-one-expensive-inst", cl::Hidden, cl::init(true),
118     cl::desc("Allow exactly one expensive instruction to be speculatively "
119              "executed"));
120 
121 static cl::opt<unsigned> MaxSpeculationDepth(
122     "max-speculation-depth", cl::Hidden, cl::init(10),
123     cl::desc("Limit maximum recursion depth when calculating costs of "
124              "speculatively executed instructions"));
125 
126 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps");
127 STATISTIC(NumLinearMaps,
128           "Number of switch instructions turned into linear mapping");
129 STATISTIC(NumLookupTables,
130           "Number of switch instructions turned into lookup tables");
131 STATISTIC(
132     NumLookupTablesHoles,
133     "Number of switch instructions turned into lookup tables (holes checked)");
134 STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares");
135 STATISTIC(NumSinkCommons,
136           "Number of common instructions sunk down to the end block");
137 STATISTIC(NumSpeculations, "Number of speculative executed instructions");
138 
139 namespace {
140 
141 // The first field contains the value that the switch produces when a certain
142 // case group is selected, and the second field is a vector containing the
143 // cases composing the case group.
144 typedef SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2>
145     SwitchCaseResultVectorTy;
146 // The first field contains the phi node that generates a result of the switch
147 // and the second field contains the value generated for a certain case in the
148 // switch for that PHI.
149 typedef SmallVector<std::pair<PHINode *, Constant *>, 4> SwitchCaseResultsTy;
150 
151 /// ValueEqualityComparisonCase - Represents a case of a switch.
152 struct ValueEqualityComparisonCase {
153   ConstantInt *Value;
154   BasicBlock *Dest;
155 
156   ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest)
157       : Value(Value), Dest(Dest) {}
158 
159   bool operator<(ValueEqualityComparisonCase RHS) const {
160     // Comparing pointers is ok as we only rely on the order for uniquing.
161     return Value < RHS.Value;
162   }
163 
164   bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; }
165 };
166 
167 class SimplifyCFGOpt {
168   const TargetTransformInfo &TTI;
169   const DataLayout &DL;
170   unsigned BonusInstThreshold;
171   AssumptionCache *AC;
172   SmallPtrSetImpl<BasicBlock *> *LoopHeaders;
173   // See comments in SimplifyCFGOpt::SimplifySwitch.
174   bool LateSimplifyCFG;
175   Value *isValueEqualityComparison(TerminatorInst *TI);
176   BasicBlock *GetValueEqualityComparisonCases(
177       TerminatorInst *TI, std::vector<ValueEqualityComparisonCase> &Cases);
178   bool SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI,
179                                                      BasicBlock *Pred,
180                                                      IRBuilder<> &Builder);
181   bool FoldValueComparisonIntoPredecessors(TerminatorInst *TI,
182                                            IRBuilder<> &Builder);
183 
184   bool SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder);
185   bool SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder);
186   bool SimplifySingleResume(ResumeInst *RI);
187   bool SimplifyCommonResume(ResumeInst *RI);
188   bool SimplifyCleanupReturn(CleanupReturnInst *RI);
189   bool SimplifyUnreachable(UnreachableInst *UI);
190   bool SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder);
191   bool SimplifyIndirectBr(IndirectBrInst *IBI);
192   bool SimplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder);
193   bool SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder);
194 
195 public:
196   SimplifyCFGOpt(const TargetTransformInfo &TTI, const DataLayout &DL,
197                  unsigned BonusInstThreshold, AssumptionCache *AC,
198                  SmallPtrSetImpl<BasicBlock *> *LoopHeaders,
199                  bool LateSimplifyCFG)
200       : TTI(TTI), DL(DL), BonusInstThreshold(BonusInstThreshold), AC(AC),
201         LoopHeaders(LoopHeaders), LateSimplifyCFG(LateSimplifyCFG) {}
202 
203   bool run(BasicBlock *BB);
204 };
205 
206 } // end anonymous namespace
207 
208 /// Return true if it is safe to merge these two
209 /// terminator instructions together.
210 static bool
211 SafeToMergeTerminators(TerminatorInst *SI1, TerminatorInst *SI2,
212                        SmallSetVector<BasicBlock *, 4> *FailBlocks = nullptr) {
213   if (SI1 == SI2)
214     return false; // Can't merge with self!
215 
216   // It is not safe to merge these two switch instructions if they have a common
217   // successor, and if that successor has a PHI node, and if *that* PHI node has
218   // conflicting incoming values from the two switch blocks.
219   BasicBlock *SI1BB = SI1->getParent();
220   BasicBlock *SI2BB = SI2->getParent();
221 
222   SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
223   bool Fail = false;
224   for (BasicBlock *Succ : successors(SI2BB))
225     if (SI1Succs.count(Succ))
226       for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) {
227         PHINode *PN = cast<PHINode>(BBI);
228         if (PN->getIncomingValueForBlock(SI1BB) !=
229             PN->getIncomingValueForBlock(SI2BB)) {
230           if (FailBlocks)
231             FailBlocks->insert(Succ);
232           Fail = true;
233         }
234       }
235 
236   return !Fail;
237 }
238 
239 /// Return true if it is safe and profitable to merge these two terminator
240 /// instructions together, where SI1 is an unconditional branch. PhiNodes will
241 /// store all PHI nodes in common successors.
242 static bool
243 isProfitableToFoldUnconditional(BranchInst *SI1, BranchInst *SI2,
244                                 Instruction *Cond,
245                                 SmallVectorImpl<PHINode *> &PhiNodes) {
246   if (SI1 == SI2)
247     return false; // Can't merge with self!
248   assert(SI1->isUnconditional() && SI2->isConditional());
249 
250   // We fold the unconditional branch if we can easily update all PHI nodes in
251   // common successors:
252   // 1> We have a constant incoming value for the conditional branch;
253   // 2> We have "Cond" as the incoming value for the unconditional branch;
254   // 3> SI2->getCondition() and Cond have same operands.
255   CmpInst *Ci2 = dyn_cast<CmpInst>(SI2->getCondition());
256   if (!Ci2)
257     return false;
258   if (!(Cond->getOperand(0) == Ci2->getOperand(0) &&
259         Cond->getOperand(1) == Ci2->getOperand(1)) &&
260       !(Cond->getOperand(0) == Ci2->getOperand(1) &&
261         Cond->getOperand(1) == Ci2->getOperand(0)))
262     return false;
263 
264   BasicBlock *SI1BB = SI1->getParent();
265   BasicBlock *SI2BB = SI2->getParent();
266   SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
267   for (BasicBlock *Succ : successors(SI2BB))
268     if (SI1Succs.count(Succ))
269       for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) {
270         PHINode *PN = cast<PHINode>(BBI);
271         if (PN->getIncomingValueForBlock(SI1BB) != Cond ||
272             !isa<ConstantInt>(PN->getIncomingValueForBlock(SI2BB)))
273           return false;
274         PhiNodes.push_back(PN);
275       }
276   return true;
277 }
278 
279 /// Update PHI nodes in Succ to indicate that there will now be entries in it
280 /// from the 'NewPred' block. The values that will be flowing into the PHI nodes
281 /// will be the same as those coming in from ExistPred, an existing predecessor
282 /// of Succ.
283 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred,
284                                   BasicBlock *ExistPred) {
285   if (!isa<PHINode>(Succ->begin()))
286     return; // Quick exit if nothing to do
287 
288   PHINode *PN;
289   for (BasicBlock::iterator I = Succ->begin(); (PN = dyn_cast<PHINode>(I)); ++I)
290     PN->addIncoming(PN->getIncomingValueForBlock(ExistPred), NewPred);
291 }
292 
293 /// Compute an abstract "cost" of speculating the given instruction,
294 /// which is assumed to be safe to speculate. TCC_Free means cheap,
295 /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively
296 /// expensive.
297 static unsigned ComputeSpeculationCost(const User *I,
298                                        const TargetTransformInfo &TTI) {
299   assert(isSafeToSpeculativelyExecute(I) &&
300          "Instruction is not safe to speculatively execute!");
301   return TTI.getUserCost(I);
302 }
303 
304 /// If we have a merge point of an "if condition" as accepted above,
305 /// return true if the specified value dominates the block.  We
306 /// don't handle the true generality of domination here, just a special case
307 /// which works well enough for us.
308 ///
309 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to
310 /// see if V (which must be an instruction) and its recursive operands
311 /// that do not dominate BB have a combined cost lower than CostRemaining and
312 /// are non-trapping.  If both are true, the instruction is inserted into the
313 /// set and true is returned.
314 ///
315 /// The cost for most non-trapping instructions is defined as 1 except for
316 /// Select whose cost is 2.
317 ///
318 /// After this function returns, CostRemaining is decreased by the cost of
319 /// V plus its non-dominating operands.  If that cost is greater than
320 /// CostRemaining, false is returned and CostRemaining is undefined.
321 static bool DominatesMergePoint(Value *V, BasicBlock *BB,
322                                 SmallPtrSetImpl<Instruction *> *AggressiveInsts,
323                                 unsigned &CostRemaining,
324                                 const TargetTransformInfo &TTI,
325                                 unsigned Depth = 0) {
326   // It is possible to hit a zero-cost cycle (phi/gep instructions for example),
327   // so limit the recursion depth.
328   // TODO: While this recursion limit does prevent pathological behavior, it
329   // would be better to track visited instructions to avoid cycles.
330   if (Depth == MaxSpeculationDepth)
331     return false;
332 
333   Instruction *I = dyn_cast<Instruction>(V);
334   if (!I) {
335     // Non-instructions all dominate instructions, but not all constantexprs
336     // can be executed unconditionally.
337     if (ConstantExpr *C = dyn_cast<ConstantExpr>(V))
338       if (C->canTrap())
339         return false;
340     return true;
341   }
342   BasicBlock *PBB = I->getParent();
343 
344   // We don't want to allow weird loops that might have the "if condition" in
345   // the bottom of this block.
346   if (PBB == BB)
347     return false;
348 
349   // If this instruction is defined in a block that contains an unconditional
350   // branch to BB, then it must be in the 'conditional' part of the "if
351   // statement".  If not, it definitely dominates the region.
352   BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator());
353   if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB)
354     return true;
355 
356   // If we aren't allowing aggressive promotion anymore, then don't consider
357   // instructions in the 'if region'.
358   if (!AggressiveInsts)
359     return false;
360 
361   // If we have seen this instruction before, don't count it again.
362   if (AggressiveInsts->count(I))
363     return true;
364 
365   // Okay, it looks like the instruction IS in the "condition".  Check to
366   // see if it's a cheap instruction to unconditionally compute, and if it
367   // only uses stuff defined outside of the condition.  If so, hoist it out.
368   if (!isSafeToSpeculativelyExecute(I))
369     return false;
370 
371   unsigned Cost = ComputeSpeculationCost(I, TTI);
372 
373   // Allow exactly one instruction to be speculated regardless of its cost
374   // (as long as it is safe to do so).
375   // This is intended to flatten the CFG even if the instruction is a division
376   // or other expensive operation. The speculation of an expensive instruction
377   // is expected to be undone in CodeGenPrepare if the speculation has not
378   // enabled further IR optimizations.
379   if (Cost > CostRemaining &&
380       (!SpeculateOneExpensiveInst || !AggressiveInsts->empty() || Depth > 0))
381     return false;
382 
383   // Avoid unsigned wrap.
384   CostRemaining = (Cost > CostRemaining) ? 0 : CostRemaining - Cost;
385 
386   // Okay, we can only really hoist these out if their operands do
387   // not take us over the cost threshold.
388   for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i)
389     if (!DominatesMergePoint(*i, BB, AggressiveInsts, CostRemaining, TTI,
390                              Depth + 1))
391       return false;
392   // Okay, it's safe to do this!  Remember this instruction.
393   AggressiveInsts->insert(I);
394   return true;
395 }
396 
397 /// Extract ConstantInt from value, looking through IntToPtr
398 /// and PointerNullValue. Return NULL if value is not a constant int.
399 static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) {
400   // Normal constant int.
401   ConstantInt *CI = dyn_cast<ConstantInt>(V);
402   if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy())
403     return CI;
404 
405   // This is some kind of pointer constant. Turn it into a pointer-sized
406   // ConstantInt if possible.
407   IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType()));
408 
409   // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*).
410   if (isa<ConstantPointerNull>(V))
411     return ConstantInt::get(PtrTy, 0);
412 
413   // IntToPtr const int.
414   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
415     if (CE->getOpcode() == Instruction::IntToPtr)
416       if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) {
417         // The constant is very likely to have the right type already.
418         if (CI->getType() == PtrTy)
419           return CI;
420         else
421           return cast<ConstantInt>(
422               ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false));
423       }
424   return nullptr;
425 }
426 
427 namespace {
428 
429 /// Given a chain of or (||) or and (&&) comparison of a value against a
430 /// constant, this will try to recover the information required for a switch
431 /// structure.
432 /// It will depth-first traverse the chain of comparison, seeking for patterns
433 /// like %a == 12 or %a < 4 and combine them to produce a set of integer
434 /// representing the different cases for the switch.
435 /// Note that if the chain is composed of '||' it will build the set of elements
436 /// that matches the comparisons (i.e. any of this value validate the chain)
437 /// while for a chain of '&&' it will build the set elements that make the test
438 /// fail.
439 struct ConstantComparesGatherer {
440   const DataLayout &DL;
441   Value *CompValue; /// Value found for the switch comparison
442   Value *Extra;     /// Extra clause to be checked before the switch
443   SmallVector<ConstantInt *, 8> Vals; /// Set of integers to match in switch
444   unsigned UsedICmps; /// Number of comparisons matched in the and/or chain
445 
446   /// Construct and compute the result for the comparison instruction Cond
447   ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL)
448       : DL(DL), CompValue(nullptr), Extra(nullptr), UsedICmps(0) {
449     gather(Cond);
450   }
451 
452   /// Prevent copy
453   ConstantComparesGatherer(const ConstantComparesGatherer &) = delete;
454   ConstantComparesGatherer &
455   operator=(const ConstantComparesGatherer &) = delete;
456 
457 private:
458   /// Try to set the current value used for the comparison, it succeeds only if
459   /// it wasn't set before or if the new value is the same as the old one
460   bool setValueOnce(Value *NewVal) {
461     if (CompValue && CompValue != NewVal)
462       return false;
463     CompValue = NewVal;
464     return (CompValue != nullptr);
465   }
466 
467   /// Try to match Instruction "I" as a comparison against a constant and
468   /// populates the array Vals with the set of values that match (or do not
469   /// match depending on isEQ).
470   /// Return false on failure. On success, the Value the comparison matched
471   /// against is placed in CompValue.
472   /// If CompValue is already set, the function is expected to fail if a match
473   /// is found but the value compared to is different.
474   bool matchInstruction(Instruction *I, bool isEQ) {
475     // If this is an icmp against a constant, handle this as one of the cases.
476     ICmpInst *ICI;
477     ConstantInt *C;
478     if (!((ICI = dyn_cast<ICmpInst>(I)) &&
479           (C = GetConstantInt(I->getOperand(1), DL)))) {
480       return false;
481     }
482 
483     Value *RHSVal;
484     const APInt *RHSC;
485 
486     // Pattern match a special case
487     // (x & ~2^z) == y --> x == y || x == y|2^z
488     // This undoes a transformation done by instcombine to fuse 2 compares.
489     if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE)) {
490 
491       // It's a little bit hard to see why the following transformations are
492       // correct. Here is a CVC3 program to verify them for 64-bit values:
493 
494       /*
495          ONE  : BITVECTOR(64) = BVZEROEXTEND(0bin1, 63);
496          x    : BITVECTOR(64);
497          y    : BITVECTOR(64);
498          z    : BITVECTOR(64);
499          mask : BITVECTOR(64) = BVSHL(ONE, z);
500          QUERY( (y & ~mask = y) =>
501                 ((x & ~mask = y) <=> (x = y OR x = (y |  mask)))
502          );
503          QUERY( (y |  mask = y) =>
504                 ((x |  mask = y) <=> (x = y OR x = (y & ~mask)))
505          );
506       */
507 
508       // Please note that each pattern must be a dual implication (<--> or
509       // iff). One directional implication can create spurious matches. If the
510       // implication is only one-way, an unsatisfiable condition on the left
511       // side can imply a satisfiable condition on the right side. Dual
512       // implication ensures that satisfiable conditions are transformed to
513       // other satisfiable conditions and unsatisfiable conditions are
514       // transformed to other unsatisfiable conditions.
515 
516       // Here is a concrete example of a unsatisfiable condition on the left
517       // implying a satisfiable condition on the right:
518       //
519       // mask = (1 << z)
520       // (x & ~mask) == y  --> (x == y || x == (y | mask))
521       //
522       // Substituting y = 3, z = 0 yields:
523       // (x & -2) == 3 --> (x == 3 || x == 2)
524 
525       // Pattern match a special case:
526       /*
527         QUERY( (y & ~mask = y) =>
528                ((x & ~mask = y) <=> (x = y OR x = (y |  mask)))
529         );
530       */
531       if (match(ICI->getOperand(0),
532                 m_And(m_Value(RHSVal), m_APInt(RHSC)))) {
533         APInt Mask = ~*RHSC;
534         if (Mask.isPowerOf2() && (C->getValue() & ~Mask) == C->getValue()) {
535           // If we already have a value for the switch, it has to match!
536           if (!setValueOnce(RHSVal))
537             return false;
538 
539           Vals.push_back(C);
540           Vals.push_back(
541               ConstantInt::get(C->getContext(),
542                                C->getValue() | Mask));
543           UsedICmps++;
544           return true;
545         }
546       }
547 
548       // Pattern match a special case:
549       /*
550         QUERY( (y |  mask = y) =>
551                ((x |  mask = y) <=> (x = y OR x = (y & ~mask)))
552         );
553       */
554       if (match(ICI->getOperand(0),
555                 m_Or(m_Value(RHSVal), m_APInt(RHSC)))) {
556         APInt Mask = *RHSC;
557         if (Mask.isPowerOf2() && (C->getValue() | Mask) == C->getValue()) {
558           // If we already have a value for the switch, it has to match!
559           if (!setValueOnce(RHSVal))
560             return false;
561 
562           Vals.push_back(C);
563           Vals.push_back(ConstantInt::get(C->getContext(),
564                                           C->getValue() & ~Mask));
565           UsedICmps++;
566           return true;
567         }
568       }
569 
570       // If we already have a value for the switch, it has to match!
571       if (!setValueOnce(ICI->getOperand(0)))
572         return false;
573 
574       UsedICmps++;
575       Vals.push_back(C);
576       return ICI->getOperand(0);
577     }
578 
579     // If we have "x ult 3", for example, then we can add 0,1,2 to the set.
580     ConstantRange Span = ConstantRange::makeAllowedICmpRegion(
581         ICI->getPredicate(), C->getValue());
582 
583     // Shift the range if the compare is fed by an add. This is the range
584     // compare idiom as emitted by instcombine.
585     Value *CandidateVal = I->getOperand(0);
586     if (match(I->getOperand(0), m_Add(m_Value(RHSVal), m_APInt(RHSC)))) {
587       Span = Span.subtract(*RHSC);
588       CandidateVal = RHSVal;
589     }
590 
591     // If this is an and/!= check, then we are looking to build the set of
592     // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into
593     // x != 0 && x != 1.
594     if (!isEQ)
595       Span = Span.inverse();
596 
597     // If there are a ton of values, we don't want to make a ginormous switch.
598     if (Span.getSetSize().ugt(8) || Span.isEmptySet()) {
599       return false;
600     }
601 
602     // If we already have a value for the switch, it has to match!
603     if (!setValueOnce(CandidateVal))
604       return false;
605 
606     // Add all values from the range to the set
607     for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp)
608       Vals.push_back(ConstantInt::get(I->getContext(), Tmp));
609 
610     UsedICmps++;
611     return true;
612   }
613 
614   /// Given a potentially 'or'd or 'and'd together collection of icmp
615   /// eq/ne/lt/gt instructions that compare a value against a constant, extract
616   /// the value being compared, and stick the list constants into the Vals
617   /// vector.
618   /// One "Extra" case is allowed to differ from the other.
619   void gather(Value *V) {
620     Instruction *I = dyn_cast<Instruction>(V);
621     bool isEQ = (I->getOpcode() == Instruction::Or);
622 
623     // Keep a stack (SmallVector for efficiency) for depth-first traversal
624     SmallVector<Value *, 8> DFT;
625     SmallPtrSet<Value *, 8> Visited;
626 
627     // Initialize
628     Visited.insert(V);
629     DFT.push_back(V);
630 
631     while (!DFT.empty()) {
632       V = DFT.pop_back_val();
633 
634       if (Instruction *I = dyn_cast<Instruction>(V)) {
635         // If it is a || (or && depending on isEQ), process the operands.
636         if (I->getOpcode() == (isEQ ? Instruction::Or : Instruction::And)) {
637           if (Visited.insert(I->getOperand(1)).second)
638             DFT.push_back(I->getOperand(1));
639           if (Visited.insert(I->getOperand(0)).second)
640             DFT.push_back(I->getOperand(0));
641           continue;
642         }
643 
644         // Try to match the current instruction
645         if (matchInstruction(I, isEQ))
646           // Match succeed, continue the loop
647           continue;
648       }
649 
650       // One element of the sequence of || (or &&) could not be match as a
651       // comparison against the same value as the others.
652       // We allow only one "Extra" case to be checked before the switch
653       if (!Extra) {
654         Extra = V;
655         continue;
656       }
657       // Failed to parse a proper sequence, abort now
658       CompValue = nullptr;
659       break;
660     }
661   }
662 };
663 
664 } // end anonymous namespace
665 
666 static void EraseTerminatorInstAndDCECond(TerminatorInst *TI) {
667   Instruction *Cond = nullptr;
668   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
669     Cond = dyn_cast<Instruction>(SI->getCondition());
670   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
671     if (BI->isConditional())
672       Cond = dyn_cast<Instruction>(BI->getCondition());
673   } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) {
674     Cond = dyn_cast<Instruction>(IBI->getAddress());
675   }
676 
677   TI->eraseFromParent();
678   if (Cond)
679     RecursivelyDeleteTriviallyDeadInstructions(Cond);
680 }
681 
682 /// Return true if the specified terminator checks
683 /// to see if a value is equal to constant integer value.
684 Value *SimplifyCFGOpt::isValueEqualityComparison(TerminatorInst *TI) {
685   Value *CV = nullptr;
686   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
687     // Do not permit merging of large switch instructions into their
688     // predecessors unless there is only one predecessor.
689     if (SI->getNumSuccessors() * std::distance(pred_begin(SI->getParent()),
690                                                pred_end(SI->getParent())) <=
691         128)
692       CV = SI->getCondition();
693   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI))
694     if (BI->isConditional() && BI->getCondition()->hasOneUse())
695       if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) {
696         if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL))
697           CV = ICI->getOperand(0);
698       }
699 
700   // Unwrap any lossless ptrtoint cast.
701   if (CV) {
702     if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) {
703       Value *Ptr = PTII->getPointerOperand();
704       if (PTII->getType() == DL.getIntPtrType(Ptr->getType()))
705         CV = Ptr;
706     }
707   }
708   return CV;
709 }
710 
711 /// Given a value comparison instruction,
712 /// decode all of the 'cases' that it represents and return the 'default' block.
713 BasicBlock *SimplifyCFGOpt::GetValueEqualityComparisonCases(
714     TerminatorInst *TI, std::vector<ValueEqualityComparisonCase> &Cases) {
715   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
716     Cases.reserve(SI->getNumCases());
717     for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); i != e;
718          ++i)
719       Cases.push_back(
720           ValueEqualityComparisonCase(i.getCaseValue(), i.getCaseSuccessor()));
721     return SI->getDefaultDest();
722   }
723 
724   BranchInst *BI = cast<BranchInst>(TI);
725   ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
726   BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE);
727   Cases.push_back(ValueEqualityComparisonCase(
728       GetConstantInt(ICI->getOperand(1), DL), Succ));
729   return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ);
730 }
731 
732 /// Given a vector of bb/value pairs, remove any entries
733 /// in the list that match the specified block.
734 static void
735 EliminateBlockCases(BasicBlock *BB,
736                     std::vector<ValueEqualityComparisonCase> &Cases) {
737   Cases.erase(std::remove(Cases.begin(), Cases.end(), BB), Cases.end());
738 }
739 
740 /// Return true if there are any keys in C1 that exist in C2 as well.
741 static bool ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1,
742                           std::vector<ValueEqualityComparisonCase> &C2) {
743   std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2;
744 
745   // Make V1 be smaller than V2.
746   if (V1->size() > V2->size())
747     std::swap(V1, V2);
748 
749   if (V1->empty())
750     return false;
751   if (V1->size() == 1) {
752     // Just scan V2.
753     ConstantInt *TheVal = (*V1)[0].Value;
754     for (unsigned i = 0, e = V2->size(); i != e; ++i)
755       if (TheVal == (*V2)[i].Value)
756         return true;
757   }
758 
759   // Otherwise, just sort both lists and compare element by element.
760   array_pod_sort(V1->begin(), V1->end());
761   array_pod_sort(V2->begin(), V2->end());
762   unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size();
763   while (i1 != e1 && i2 != e2) {
764     if ((*V1)[i1].Value == (*V2)[i2].Value)
765       return true;
766     if ((*V1)[i1].Value < (*V2)[i2].Value)
767       ++i1;
768     else
769       ++i2;
770   }
771   return false;
772 }
773 
774 /// If TI is known to be a terminator instruction and its block is known to
775 /// only have a single predecessor block, check to see if that predecessor is
776 /// also a value comparison with the same value, and if that comparison
777 /// determines the outcome of this comparison. If so, simplify TI. This does a
778 /// very limited form of jump threading.
779 bool SimplifyCFGOpt::SimplifyEqualityComparisonWithOnlyPredecessor(
780     TerminatorInst *TI, BasicBlock *Pred, IRBuilder<> &Builder) {
781   Value *PredVal = isValueEqualityComparison(Pred->getTerminator());
782   if (!PredVal)
783     return false; // Not a value comparison in predecessor.
784 
785   Value *ThisVal = isValueEqualityComparison(TI);
786   assert(ThisVal && "This isn't a value comparison!!");
787   if (ThisVal != PredVal)
788     return false; // Different predicates.
789 
790   // TODO: Preserve branch weight metadata, similarly to how
791   // FoldValueComparisonIntoPredecessors preserves it.
792 
793   // Find out information about when control will move from Pred to TI's block.
794   std::vector<ValueEqualityComparisonCase> PredCases;
795   BasicBlock *PredDef =
796       GetValueEqualityComparisonCases(Pred->getTerminator(), PredCases);
797   EliminateBlockCases(PredDef, PredCases); // Remove default from cases.
798 
799   // Find information about how control leaves this block.
800   std::vector<ValueEqualityComparisonCase> ThisCases;
801   BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases);
802   EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases.
803 
804   // If TI's block is the default block from Pred's comparison, potentially
805   // simplify TI based on this knowledge.
806   if (PredDef == TI->getParent()) {
807     // If we are here, we know that the value is none of those cases listed in
808     // PredCases.  If there are any cases in ThisCases that are in PredCases, we
809     // can simplify TI.
810     if (!ValuesOverlap(PredCases, ThisCases))
811       return false;
812 
813     if (isa<BranchInst>(TI)) {
814       // Okay, one of the successors of this condbr is dead.  Convert it to a
815       // uncond br.
816       assert(ThisCases.size() == 1 && "Branch can only have one case!");
817       // Insert the new branch.
818       Instruction *NI = Builder.CreateBr(ThisDef);
819       (void)NI;
820 
821       // Remove PHI node entries for the dead edge.
822       ThisCases[0].Dest->removePredecessor(TI->getParent());
823 
824       DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
825                    << "Through successor TI: " << *TI << "Leaving: " << *NI
826                    << "\n");
827 
828       EraseTerminatorInstAndDCECond(TI);
829       return true;
830     }
831 
832     SwitchInst *SI = cast<SwitchInst>(TI);
833     // Okay, TI has cases that are statically dead, prune them away.
834     SmallPtrSet<Constant *, 16> DeadCases;
835     for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
836       DeadCases.insert(PredCases[i].Value);
837 
838     DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
839                  << "Through successor TI: " << *TI);
840 
841     // Collect branch weights into a vector.
842     SmallVector<uint32_t, 8> Weights;
843     MDNode *MD = SI->getMetadata(LLVMContext::MD_prof);
844     bool HasWeight = MD && (MD->getNumOperands() == 2 + SI->getNumCases());
845     if (HasWeight)
846       for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e;
847            ++MD_i) {
848         ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i));
849         Weights.push_back(CI->getValue().getZExtValue());
850       }
851     for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) {
852       --i;
853       if (DeadCases.count(i.getCaseValue())) {
854         if (HasWeight) {
855           std::swap(Weights[i.getCaseIndex() + 1], Weights.back());
856           Weights.pop_back();
857         }
858         i.getCaseSuccessor()->removePredecessor(TI->getParent());
859         SI->removeCase(i);
860       }
861     }
862     if (HasWeight && Weights.size() >= 2)
863       SI->setMetadata(LLVMContext::MD_prof,
864                       MDBuilder(SI->getParent()->getContext())
865                           .createBranchWeights(Weights));
866 
867     DEBUG(dbgs() << "Leaving: " << *TI << "\n");
868     return true;
869   }
870 
871   // Otherwise, TI's block must correspond to some matched value.  Find out
872   // which value (or set of values) this is.
873   ConstantInt *TIV = nullptr;
874   BasicBlock *TIBB = TI->getParent();
875   for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
876     if (PredCases[i].Dest == TIBB) {
877       if (TIV)
878         return false; // Cannot handle multiple values coming to this block.
879       TIV = PredCases[i].Value;
880     }
881   assert(TIV && "No edge from pred to succ?");
882 
883   // Okay, we found the one constant that our value can be if we get into TI's
884   // BB.  Find out which successor will unconditionally be branched to.
885   BasicBlock *TheRealDest = nullptr;
886   for (unsigned i = 0, e = ThisCases.size(); i != e; ++i)
887     if (ThisCases[i].Value == TIV) {
888       TheRealDest = ThisCases[i].Dest;
889       break;
890     }
891 
892   // If not handled by any explicit cases, it is handled by the default case.
893   if (!TheRealDest)
894     TheRealDest = ThisDef;
895 
896   // Remove PHI node entries for dead edges.
897   BasicBlock *CheckEdge = TheRealDest;
898   for (BasicBlock *Succ : successors(TIBB))
899     if (Succ != CheckEdge)
900       Succ->removePredecessor(TIBB);
901     else
902       CheckEdge = nullptr;
903 
904   // Insert the new branch.
905   Instruction *NI = Builder.CreateBr(TheRealDest);
906   (void)NI;
907 
908   DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
909                << "Through successor TI: " << *TI << "Leaving: " << *NI
910                << "\n");
911 
912   EraseTerminatorInstAndDCECond(TI);
913   return true;
914 }
915 
916 namespace {
917 
918 /// This class implements a stable ordering of constant
919 /// integers that does not depend on their address.  This is important for
920 /// applications that sort ConstantInt's to ensure uniqueness.
921 struct ConstantIntOrdering {
922   bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const {
923     return LHS->getValue().ult(RHS->getValue());
924   }
925 };
926 
927 } // end anonymous namespace
928 
929 static int ConstantIntSortPredicate(ConstantInt *const *P1,
930                                     ConstantInt *const *P2) {
931   const ConstantInt *LHS = *P1;
932   const ConstantInt *RHS = *P2;
933   if (LHS == RHS)
934     return 0;
935   return LHS->getValue().ult(RHS->getValue()) ? 1 : -1;
936 }
937 
938 static inline bool HasBranchWeights(const Instruction *I) {
939   MDNode *ProfMD = I->getMetadata(LLVMContext::MD_prof);
940   if (ProfMD && ProfMD->getOperand(0))
941     if (MDString *MDS = dyn_cast<MDString>(ProfMD->getOperand(0)))
942       return MDS->getString().equals("branch_weights");
943 
944   return false;
945 }
946 
947 /// Get Weights of a given TerminatorInst, the default weight is at the front
948 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight
949 /// metadata.
950 static void GetBranchWeights(TerminatorInst *TI,
951                              SmallVectorImpl<uint64_t> &Weights) {
952   MDNode *MD = TI->getMetadata(LLVMContext::MD_prof);
953   assert(MD);
954   for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) {
955     ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i));
956     Weights.push_back(CI->getValue().getZExtValue());
957   }
958 
959   // If TI is a conditional eq, the default case is the false case,
960   // and the corresponding branch-weight data is at index 2. We swap the
961   // default weight to be the first entry.
962   if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
963     assert(Weights.size() == 2);
964     ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
965     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
966       std::swap(Weights.front(), Weights.back());
967   }
968 }
969 
970 /// Keep halving the weights until all can fit in uint32_t.
971 static void FitWeights(MutableArrayRef<uint64_t> Weights) {
972   uint64_t Max = *std::max_element(Weights.begin(), Weights.end());
973   if (Max > UINT_MAX) {
974     unsigned Offset = 32 - countLeadingZeros(Max);
975     for (uint64_t &I : Weights)
976       I >>= Offset;
977   }
978 }
979 
980 /// The specified terminator is a value equality comparison instruction
981 /// (either a switch or a branch on "X == c").
982 /// See if any of the predecessors of the terminator block are value comparisons
983 /// on the same value.  If so, and if safe to do so, fold them together.
984 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(TerminatorInst *TI,
985                                                          IRBuilder<> &Builder) {
986   BasicBlock *BB = TI->getParent();
987   Value *CV = isValueEqualityComparison(TI); // CondVal
988   assert(CV && "Not a comparison?");
989   bool Changed = false;
990 
991   SmallVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB));
992   while (!Preds.empty()) {
993     BasicBlock *Pred = Preds.pop_back_val();
994 
995     // See if the predecessor is a comparison with the same value.
996     TerminatorInst *PTI = Pred->getTerminator();
997     Value *PCV = isValueEqualityComparison(PTI); // PredCondVal
998 
999     if (PCV == CV && TI != PTI) {
1000       SmallSetVector<BasicBlock*, 4> FailBlocks;
1001       if (!SafeToMergeTerminators(TI, PTI, &FailBlocks)) {
1002         for (auto *Succ : FailBlocks) {
1003           if (!SplitBlockPredecessors(Succ, TI->getParent(), ".fold.split"))
1004             return false;
1005         }
1006       }
1007 
1008       // Figure out which 'cases' to copy from SI to PSI.
1009       std::vector<ValueEqualityComparisonCase> BBCases;
1010       BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases);
1011 
1012       std::vector<ValueEqualityComparisonCase> PredCases;
1013       BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases);
1014 
1015       // Based on whether the default edge from PTI goes to BB or not, fill in
1016       // PredCases and PredDefault with the new switch cases we would like to
1017       // build.
1018       SmallVector<BasicBlock *, 8> NewSuccessors;
1019 
1020       // Update the branch weight metadata along the way
1021       SmallVector<uint64_t, 8> Weights;
1022       bool PredHasWeights = HasBranchWeights(PTI);
1023       bool SuccHasWeights = HasBranchWeights(TI);
1024 
1025       if (PredHasWeights) {
1026         GetBranchWeights(PTI, Weights);
1027         // branch-weight metadata is inconsistent here.
1028         if (Weights.size() != 1 + PredCases.size())
1029           PredHasWeights = SuccHasWeights = false;
1030       } else if (SuccHasWeights)
1031         // If there are no predecessor weights but there are successor weights,
1032         // populate Weights with 1, which will later be scaled to the sum of
1033         // successor's weights
1034         Weights.assign(1 + PredCases.size(), 1);
1035 
1036       SmallVector<uint64_t, 8> SuccWeights;
1037       if (SuccHasWeights) {
1038         GetBranchWeights(TI, SuccWeights);
1039         // branch-weight metadata is inconsistent here.
1040         if (SuccWeights.size() != 1 + BBCases.size())
1041           PredHasWeights = SuccHasWeights = false;
1042       } else if (PredHasWeights)
1043         SuccWeights.assign(1 + BBCases.size(), 1);
1044 
1045       if (PredDefault == BB) {
1046         // If this is the default destination from PTI, only the edges in TI
1047         // that don't occur in PTI, or that branch to BB will be activated.
1048         std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
1049         for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
1050           if (PredCases[i].Dest != BB)
1051             PTIHandled.insert(PredCases[i].Value);
1052           else {
1053             // The default destination is BB, we don't need explicit targets.
1054             std::swap(PredCases[i], PredCases.back());
1055 
1056             if (PredHasWeights || SuccHasWeights) {
1057               // Increase weight for the default case.
1058               Weights[0] += Weights[i + 1];
1059               std::swap(Weights[i + 1], Weights.back());
1060               Weights.pop_back();
1061             }
1062 
1063             PredCases.pop_back();
1064             --i;
1065             --e;
1066           }
1067 
1068         // Reconstruct the new switch statement we will be building.
1069         if (PredDefault != BBDefault) {
1070           PredDefault->removePredecessor(Pred);
1071           PredDefault = BBDefault;
1072           NewSuccessors.push_back(BBDefault);
1073         }
1074 
1075         unsigned CasesFromPred = Weights.size();
1076         uint64_t ValidTotalSuccWeight = 0;
1077         for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
1078           if (!PTIHandled.count(BBCases[i].Value) &&
1079               BBCases[i].Dest != BBDefault) {
1080             PredCases.push_back(BBCases[i]);
1081             NewSuccessors.push_back(BBCases[i].Dest);
1082             if (SuccHasWeights || PredHasWeights) {
1083               // The default weight is at index 0, so weight for the ith case
1084               // should be at index i+1. Scale the cases from successor by
1085               // PredDefaultWeight (Weights[0]).
1086               Weights.push_back(Weights[0] * SuccWeights[i + 1]);
1087               ValidTotalSuccWeight += SuccWeights[i + 1];
1088             }
1089           }
1090 
1091         if (SuccHasWeights || PredHasWeights) {
1092           ValidTotalSuccWeight += SuccWeights[0];
1093           // Scale the cases from predecessor by ValidTotalSuccWeight.
1094           for (unsigned i = 1; i < CasesFromPred; ++i)
1095             Weights[i] *= ValidTotalSuccWeight;
1096           // Scale the default weight by SuccDefaultWeight (SuccWeights[0]).
1097           Weights[0] *= SuccWeights[0];
1098         }
1099       } else {
1100         // If this is not the default destination from PSI, only the edges
1101         // in SI that occur in PSI with a destination of BB will be
1102         // activated.
1103         std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
1104         std::map<ConstantInt *, uint64_t> WeightsForHandled;
1105         for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
1106           if (PredCases[i].Dest == BB) {
1107             PTIHandled.insert(PredCases[i].Value);
1108 
1109             if (PredHasWeights || SuccHasWeights) {
1110               WeightsForHandled[PredCases[i].Value] = Weights[i + 1];
1111               std::swap(Weights[i + 1], Weights.back());
1112               Weights.pop_back();
1113             }
1114 
1115             std::swap(PredCases[i], PredCases.back());
1116             PredCases.pop_back();
1117             --i;
1118             --e;
1119           }
1120 
1121         // Okay, now we know which constants were sent to BB from the
1122         // predecessor.  Figure out where they will all go now.
1123         for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
1124           if (PTIHandled.count(BBCases[i].Value)) {
1125             // If this is one we are capable of getting...
1126             if (PredHasWeights || SuccHasWeights)
1127               Weights.push_back(WeightsForHandled[BBCases[i].Value]);
1128             PredCases.push_back(BBCases[i]);
1129             NewSuccessors.push_back(BBCases[i].Dest);
1130             PTIHandled.erase(
1131                 BBCases[i].Value); // This constant is taken care of
1132           }
1133 
1134         // If there are any constants vectored to BB that TI doesn't handle,
1135         // they must go to the default destination of TI.
1136         for (ConstantInt *I : PTIHandled) {
1137           if (PredHasWeights || SuccHasWeights)
1138             Weights.push_back(WeightsForHandled[I]);
1139           PredCases.push_back(ValueEqualityComparisonCase(I, BBDefault));
1140           NewSuccessors.push_back(BBDefault);
1141         }
1142       }
1143 
1144       // Okay, at this point, we know which new successor Pred will get.  Make
1145       // sure we update the number of entries in the PHI nodes for these
1146       // successors.
1147       for (BasicBlock *NewSuccessor : NewSuccessors)
1148         AddPredecessorToBlock(NewSuccessor, Pred, BB);
1149 
1150       Builder.SetInsertPoint(PTI);
1151       // Convert pointer to int before we switch.
1152       if (CV->getType()->isPointerTy()) {
1153         CV = Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()),
1154                                     "magicptr");
1155       }
1156 
1157       // Now that the successors are updated, create the new Switch instruction.
1158       SwitchInst *NewSI =
1159           Builder.CreateSwitch(CV, PredDefault, PredCases.size());
1160       NewSI->setDebugLoc(PTI->getDebugLoc());
1161       for (ValueEqualityComparisonCase &V : PredCases)
1162         NewSI->addCase(V.Value, V.Dest);
1163 
1164       if (PredHasWeights || SuccHasWeights) {
1165         // Halve the weights if any of them cannot fit in an uint32_t
1166         FitWeights(Weights);
1167 
1168         SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
1169 
1170         NewSI->setMetadata(
1171             LLVMContext::MD_prof,
1172             MDBuilder(BB->getContext()).createBranchWeights(MDWeights));
1173       }
1174 
1175       EraseTerminatorInstAndDCECond(PTI);
1176 
1177       // Okay, last check.  If BB is still a successor of PSI, then we must
1178       // have an infinite loop case.  If so, add an infinitely looping block
1179       // to handle the case to preserve the behavior of the code.
1180       BasicBlock *InfLoopBlock = nullptr;
1181       for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i)
1182         if (NewSI->getSuccessor(i) == BB) {
1183           if (!InfLoopBlock) {
1184             // Insert it at the end of the function, because it's either code,
1185             // or it won't matter if it's hot. :)
1186             InfLoopBlock = BasicBlock::Create(BB->getContext(), "infloop",
1187                                               BB->getParent());
1188             BranchInst::Create(InfLoopBlock, InfLoopBlock);
1189           }
1190           NewSI->setSuccessor(i, InfLoopBlock);
1191         }
1192 
1193       Changed = true;
1194     }
1195   }
1196   return Changed;
1197 }
1198 
1199 // If we would need to insert a select that uses the value of this invoke
1200 // (comments in HoistThenElseCodeToIf explain why we would need to do this), we
1201 // can't hoist the invoke, as there is nowhere to put the select in this case.
1202 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2,
1203                                 Instruction *I1, Instruction *I2) {
1204   for (BasicBlock *Succ : successors(BB1)) {
1205     PHINode *PN;
1206     for (BasicBlock::iterator BBI = Succ->begin();
1207          (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
1208       Value *BB1V = PN->getIncomingValueForBlock(BB1);
1209       Value *BB2V = PN->getIncomingValueForBlock(BB2);
1210       if (BB1V != BB2V && (BB1V == I1 || BB2V == I2)) {
1211         return false;
1212       }
1213     }
1214   }
1215   return true;
1216 }
1217 
1218 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I);
1219 
1220 /// Given a conditional branch that goes to BB1 and BB2, hoist any common code
1221 /// in the two blocks up into the branch block. The caller of this function
1222 /// guarantees that BI's block dominates BB1 and BB2.
1223 static bool HoistThenElseCodeToIf(BranchInst *BI,
1224                                   const TargetTransformInfo &TTI) {
1225   // This does very trivial matching, with limited scanning, to find identical
1226   // instructions in the two blocks.  In particular, we don't want to get into
1227   // O(M*N) situations here where M and N are the sizes of BB1 and BB2.  As
1228   // such, we currently just scan for obviously identical instructions in an
1229   // identical order.
1230   BasicBlock *BB1 = BI->getSuccessor(0); // The true destination.
1231   BasicBlock *BB2 = BI->getSuccessor(1); // The false destination
1232 
1233   BasicBlock::iterator BB1_Itr = BB1->begin();
1234   BasicBlock::iterator BB2_Itr = BB2->begin();
1235 
1236   Instruction *I1 = &*BB1_Itr++, *I2 = &*BB2_Itr++;
1237   // Skip debug info if it is not identical.
1238   DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1239   DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1240   if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1241     while (isa<DbgInfoIntrinsic>(I1))
1242       I1 = &*BB1_Itr++;
1243     while (isa<DbgInfoIntrinsic>(I2))
1244       I2 = &*BB2_Itr++;
1245   }
1246   if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) ||
1247       (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)))
1248     return false;
1249 
1250   BasicBlock *BIParent = BI->getParent();
1251 
1252   bool Changed = false;
1253   do {
1254     // If we are hoisting the terminator instruction, don't move one (making a
1255     // broken BB), instead clone it, and remove BI.
1256     if (isa<TerminatorInst>(I1))
1257       goto HoistTerminator;
1258 
1259     if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2))
1260       return Changed;
1261 
1262     // For a normal instruction, we just move one to right before the branch,
1263     // then replace all uses of the other with the first.  Finally, we remove
1264     // the now redundant second instruction.
1265     BIParent->getInstList().splice(BI->getIterator(), BB1->getInstList(), I1);
1266     if (!I2->use_empty())
1267       I2->replaceAllUsesWith(I1);
1268     I1->andIRFlags(I2);
1269     unsigned KnownIDs[] = {LLVMContext::MD_tbaa,
1270                            LLVMContext::MD_range,
1271                            LLVMContext::MD_fpmath,
1272                            LLVMContext::MD_invariant_load,
1273                            LLVMContext::MD_nonnull,
1274                            LLVMContext::MD_invariant_group,
1275                            LLVMContext::MD_align,
1276                            LLVMContext::MD_dereferenceable,
1277                            LLVMContext::MD_dereferenceable_or_null,
1278                            LLVMContext::MD_mem_parallel_loop_access};
1279     combineMetadata(I1, I2, KnownIDs);
1280 
1281     // I1 and I2 are being combined into a single instruction.  Its debug
1282     // location is the merged locations of the original instructions.
1283     if (!isa<CallInst>(I1))
1284       I1->setDebugLoc(
1285           DILocation::getMergedLocation(I1->getDebugLoc(), I2->getDebugLoc()));
1286 
1287     I2->eraseFromParent();
1288     Changed = true;
1289 
1290     I1 = &*BB1_Itr++;
1291     I2 = &*BB2_Itr++;
1292     // Skip debug info if it is not identical.
1293     DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1294     DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1295     if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1296       while (isa<DbgInfoIntrinsic>(I1))
1297         I1 = &*BB1_Itr++;
1298       while (isa<DbgInfoIntrinsic>(I2))
1299         I2 = &*BB2_Itr++;
1300     }
1301   } while (I1->isIdenticalToWhenDefined(I2));
1302 
1303   return true;
1304 
1305 HoistTerminator:
1306   // It may not be possible to hoist an invoke.
1307   if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))
1308     return Changed;
1309 
1310   for (BasicBlock *Succ : successors(BB1)) {
1311     PHINode *PN;
1312     for (BasicBlock::iterator BBI = Succ->begin();
1313          (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
1314       Value *BB1V = PN->getIncomingValueForBlock(BB1);
1315       Value *BB2V = PN->getIncomingValueForBlock(BB2);
1316       if (BB1V == BB2V)
1317         continue;
1318 
1319       // Check for passingValueIsAlwaysUndefined here because we would rather
1320       // eliminate undefined control flow then converting it to a select.
1321       if (passingValueIsAlwaysUndefined(BB1V, PN) ||
1322           passingValueIsAlwaysUndefined(BB2V, PN))
1323         return Changed;
1324 
1325       if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V))
1326         return Changed;
1327       if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V))
1328         return Changed;
1329     }
1330   }
1331 
1332   // Okay, it is safe to hoist the terminator.
1333   Instruction *NT = I1->clone();
1334   BIParent->getInstList().insert(BI->getIterator(), NT);
1335   if (!NT->getType()->isVoidTy()) {
1336     I1->replaceAllUsesWith(NT);
1337     I2->replaceAllUsesWith(NT);
1338     NT->takeName(I1);
1339   }
1340 
1341   IRBuilder<NoFolder> Builder(NT);
1342   // Hoisting one of the terminators from our successor is a great thing.
1343   // Unfortunately, the successors of the if/else blocks may have PHI nodes in
1344   // them.  If they do, all PHI entries for BB1/BB2 must agree for all PHI
1345   // nodes, so we insert select instruction to compute the final result.
1346   std::map<std::pair<Value *, Value *>, SelectInst *> InsertedSelects;
1347   for (BasicBlock *Succ : successors(BB1)) {
1348     PHINode *PN;
1349     for (BasicBlock::iterator BBI = Succ->begin();
1350          (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
1351       Value *BB1V = PN->getIncomingValueForBlock(BB1);
1352       Value *BB2V = PN->getIncomingValueForBlock(BB2);
1353       if (BB1V == BB2V)
1354         continue;
1355 
1356       // These values do not agree.  Insert a select instruction before NT
1357       // that determines the right value.
1358       SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)];
1359       if (!SI)
1360         SI = cast<SelectInst>(
1361             Builder.CreateSelect(BI->getCondition(), BB1V, BB2V,
1362                                  BB1V->getName() + "." + BB2V->getName(), BI));
1363 
1364       // Make the PHI node use the select for all incoming values for BB1/BB2
1365       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1366         if (PN->getIncomingBlock(i) == BB1 || PN->getIncomingBlock(i) == BB2)
1367           PN->setIncomingValue(i, SI);
1368     }
1369   }
1370 
1371   // Update any PHI nodes in our new successors.
1372   for (BasicBlock *Succ : successors(BB1))
1373     AddPredecessorToBlock(Succ, BIParent, BB1);
1374 
1375   EraseTerminatorInstAndDCECond(BI);
1376   return true;
1377 }
1378 
1379 // Is it legal to place a variable in operand \c OpIdx of \c I?
1380 // FIXME: This should be promoted to Instruction.
1381 static bool canReplaceOperandWithVariable(const Instruction *I,
1382                                           unsigned OpIdx) {
1383   // We can't have a PHI with a metadata type.
1384   if (I->getOperand(OpIdx)->getType()->isMetadataTy())
1385     return false;
1386 
1387   // Early exit.
1388   if (!isa<Constant>(I->getOperand(OpIdx)))
1389     return true;
1390 
1391   switch (I->getOpcode()) {
1392   default:
1393     return true;
1394   case Instruction::Call:
1395   case Instruction::Invoke:
1396     // FIXME: many arithmetic intrinsics have no issue taking a
1397     // variable, however it's hard to distingish these from
1398     // specials such as @llvm.frameaddress that require a constant.
1399     if (isa<IntrinsicInst>(I))
1400       return false;
1401 
1402     // Constant bundle operands may need to retain their constant-ness for
1403     // correctness.
1404     if (ImmutableCallSite(I).isBundleOperand(OpIdx))
1405       return false;
1406 
1407     return true;
1408 
1409   case Instruction::ShuffleVector:
1410     // Shufflevector masks are constant.
1411     return OpIdx != 2;
1412   case Instruction::ExtractValue:
1413   case Instruction::InsertValue:
1414     // All operands apart from the first are constant.
1415     return OpIdx == 0;
1416   case Instruction::Alloca:
1417     return false;
1418   case Instruction::GetElementPtr:
1419     if (OpIdx == 0)
1420       return true;
1421     gep_type_iterator It = std::next(gep_type_begin(I), OpIdx - 1);
1422     return It.isSequential();
1423   }
1424 }
1425 
1426 // All instructions in Insts belong to different blocks that all unconditionally
1427 // branch to a common successor. Analyze each instruction and return true if it
1428 // would be possible to sink them into their successor, creating one common
1429 // instruction instead. For every value that would be required to be provided by
1430 // PHI node (because an operand varies in each input block), add to PHIOperands.
1431 static bool canSinkInstructions(
1432     ArrayRef<Instruction *> Insts,
1433     DenseMap<Instruction *, SmallVector<Value *, 4>> &PHIOperands) {
1434   // Prune out obviously bad instructions to move. Any non-store instruction
1435   // must have exactly one use, and we check later that use is by a single,
1436   // common PHI instruction in the successor.
1437   for (auto *I : Insts) {
1438     // These instructions may change or break semantics if moved.
1439     if (isa<PHINode>(I) || I->isEHPad() || isa<AllocaInst>(I) ||
1440         I->getType()->isTokenTy())
1441       return false;
1442 
1443     // Conservatively return false if I is an inline-asm instruction. Sinking
1444     // and merging inline-asm instructions can potentially create arguments
1445     // that cannot satisfy the inline-asm constraints.
1446     if (const auto *C = dyn_cast<CallInst>(I))
1447       if (C->isInlineAsm())
1448         return false;
1449 
1450     // Everything must have only one use too, apart from stores which
1451     // have no uses.
1452     if (!isa<StoreInst>(I) && !I->hasOneUse())
1453       return false;
1454   }
1455 
1456   const Instruction *I0 = Insts.front();
1457   for (auto *I : Insts)
1458     if (!I->isSameOperationAs(I0))
1459       return false;
1460 
1461   // All instructions in Insts are known to be the same opcode. If they aren't
1462   // stores, check the only user of each is a PHI or in the same block as the
1463   // instruction, because if a user is in the same block as an instruction
1464   // we're contemplating sinking, it must already be determined to be sinkable.
1465   if (!isa<StoreInst>(I0)) {
1466     auto *PNUse = dyn_cast<PHINode>(*I0->user_begin());
1467     auto *Succ = I0->getParent()->getTerminator()->getSuccessor(0);
1468     if (!all_of(Insts, [&PNUse,&Succ](const Instruction *I) -> bool {
1469           auto *U = cast<Instruction>(*I->user_begin());
1470           return (PNUse &&
1471                   PNUse->getParent() == Succ &&
1472                   PNUse->getIncomingValueForBlock(I->getParent()) == I) ||
1473                  U->getParent() == I->getParent();
1474         }))
1475       return false;
1476   }
1477 
1478   // Because SROA can't handle speculating stores of selects, try not
1479   // to sink loads or stores of allocas when we'd have to create a PHI for
1480   // the address operand. Also, because it is likely that loads or stores
1481   // of allocas will disappear when Mem2Reg/SROA is run, don't sink them.
1482   // This can cause code churn which can have unintended consequences down
1483   // the line - see https://llvm.org/bugs/show_bug.cgi?id=30244.
1484   // FIXME: This is a workaround for a deficiency in SROA - see
1485   // https://llvm.org/bugs/show_bug.cgi?id=30188
1486   if (isa<StoreInst>(I0) && any_of(Insts, [](const Instruction *I) {
1487         return isa<AllocaInst>(I->getOperand(1));
1488       }))
1489     return false;
1490   if (isa<LoadInst>(I0) && any_of(Insts, [](const Instruction *I) {
1491         return isa<AllocaInst>(I->getOperand(0));
1492       }))
1493     return false;
1494 
1495   for (unsigned OI = 0, OE = I0->getNumOperands(); OI != OE; ++OI) {
1496     if (I0->getOperand(OI)->getType()->isTokenTy())
1497       // Don't touch any operand of token type.
1498       return false;
1499 
1500     auto SameAsI0 = [&I0, OI](const Instruction *I) {
1501       assert(I->getNumOperands() == I0->getNumOperands());
1502       return I->getOperand(OI) == I0->getOperand(OI);
1503     };
1504     if (!all_of(Insts, SameAsI0)) {
1505       if (!canReplaceOperandWithVariable(I0, OI))
1506         // We can't create a PHI from this GEP.
1507         return false;
1508       // Don't create indirect calls! The called value is the final operand.
1509       if ((isa<CallInst>(I0) || isa<InvokeInst>(I0)) && OI == OE - 1) {
1510         // FIXME: if the call was *already* indirect, we should do this.
1511         return false;
1512       }
1513       for (auto *I : Insts)
1514         PHIOperands[I].push_back(I->getOperand(OI));
1515     }
1516   }
1517   return true;
1518 }
1519 
1520 // Assuming canSinkLastInstruction(Blocks) has returned true, sink the last
1521 // instruction of every block in Blocks to their common successor, commoning
1522 // into one instruction.
1523 static bool sinkLastInstruction(ArrayRef<BasicBlock*> Blocks) {
1524   auto *BBEnd = Blocks[0]->getTerminator()->getSuccessor(0);
1525 
1526   // canSinkLastInstruction returning true guarantees that every block has at
1527   // least one non-terminator instruction.
1528   SmallVector<Instruction*,4> Insts;
1529   for (auto *BB : Blocks) {
1530     Instruction *I = BB->getTerminator();
1531     do {
1532       I = I->getPrevNode();
1533     } while (isa<DbgInfoIntrinsic>(I) && I != &BB->front());
1534     if (!isa<DbgInfoIntrinsic>(I))
1535       Insts.push_back(I);
1536   }
1537 
1538   // The only checking we need to do now is that all users of all instructions
1539   // are the same PHI node. canSinkLastInstruction should have checked this but
1540   // it is slightly over-aggressive - it gets confused by commutative instructions
1541   // so double-check it here.
1542   Instruction *I0 = Insts.front();
1543   if (!isa<StoreInst>(I0)) {
1544     auto *PNUse = dyn_cast<PHINode>(*I0->user_begin());
1545     if (!all_of(Insts, [&PNUse](const Instruction *I) -> bool {
1546           auto *U = cast<Instruction>(*I->user_begin());
1547           return U == PNUse;
1548         }))
1549       return false;
1550   }
1551 
1552   // We don't need to do any more checking here; canSinkLastInstruction should
1553   // have done it all for us.
1554   SmallVector<Value*, 4> NewOperands;
1555   for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) {
1556     // This check is different to that in canSinkLastInstruction. There, we
1557     // cared about the global view once simplifycfg (and instcombine) have
1558     // completed - it takes into account PHIs that become trivially
1559     // simplifiable.  However here we need a more local view; if an operand
1560     // differs we create a PHI and rely on instcombine to clean up the very
1561     // small mess we may make.
1562     bool NeedPHI = any_of(Insts, [&I0, O](const Instruction *I) {
1563       return I->getOperand(O) != I0->getOperand(O);
1564     });
1565     if (!NeedPHI) {
1566       NewOperands.push_back(I0->getOperand(O));
1567       continue;
1568     }
1569 
1570     // Create a new PHI in the successor block and populate it.
1571     auto *Op = I0->getOperand(O);
1572     assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!");
1573     auto *PN = PHINode::Create(Op->getType(), Insts.size(),
1574                                Op->getName() + ".sink", &BBEnd->front());
1575     for (auto *I : Insts)
1576       PN->addIncoming(I->getOperand(O), I->getParent());
1577     NewOperands.push_back(PN);
1578   }
1579 
1580   // Arbitrarily use I0 as the new "common" instruction; remap its operands
1581   // and move it to the start of the successor block.
1582   for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O)
1583     I0->getOperandUse(O).set(NewOperands[O]);
1584   I0->moveBefore(&*BBEnd->getFirstInsertionPt());
1585 
1586   // The debug location for the "common" instruction is the merged locations of
1587   // all the commoned instructions.  We start with the original location of the
1588   // "common" instruction and iteratively merge each location in the loop below.
1589   const DILocation *Loc = I0->getDebugLoc();
1590 
1591   // Update metadata and IR flags, and merge debug locations.
1592   for (auto *I : Insts)
1593     if (I != I0) {
1594       Loc = DILocation::getMergedLocation(Loc, I->getDebugLoc());
1595       combineMetadataForCSE(I0, I);
1596       I0->andIRFlags(I);
1597     }
1598   if (!isa<CallInst>(I0))
1599     I0->setDebugLoc(Loc);
1600 
1601   if (!isa<StoreInst>(I0)) {
1602     // canSinkLastInstruction checked that all instructions were used by
1603     // one and only one PHI node. Find that now, RAUW it to our common
1604     // instruction and nuke it.
1605     assert(I0->hasOneUse());
1606     auto *PN = cast<PHINode>(*I0->user_begin());
1607     PN->replaceAllUsesWith(I0);
1608     PN->eraseFromParent();
1609   }
1610 
1611   // Finally nuke all instructions apart from the common instruction.
1612   for (auto *I : Insts)
1613     if (I != I0)
1614       I->eraseFromParent();
1615 
1616   return true;
1617 }
1618 
1619 namespace {
1620 
1621   // LockstepReverseIterator - Iterates through instructions
1622   // in a set of blocks in reverse order from the first non-terminator.
1623   // For example (assume all blocks have size n):
1624   //   LockstepReverseIterator I([B1, B2, B3]);
1625   //   *I-- = [B1[n], B2[n], B3[n]];
1626   //   *I-- = [B1[n-1], B2[n-1], B3[n-1]];
1627   //   *I-- = [B1[n-2], B2[n-2], B3[n-2]];
1628   //   ...
1629   class LockstepReverseIterator {
1630     ArrayRef<BasicBlock*> Blocks;
1631     SmallVector<Instruction*,4> Insts;
1632     bool Fail;
1633   public:
1634     LockstepReverseIterator(ArrayRef<BasicBlock*> Blocks) :
1635       Blocks(Blocks) {
1636       reset();
1637     }
1638 
1639     void reset() {
1640       Fail = false;
1641       Insts.clear();
1642       for (auto *BB : Blocks) {
1643         Instruction *Inst = BB->getTerminator();
1644         for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
1645           Inst = Inst->getPrevNode();
1646         if (!Inst) {
1647           // Block wasn't big enough.
1648           Fail = true;
1649           return;
1650         }
1651         Insts.push_back(Inst);
1652       }
1653     }
1654 
1655     bool isValid() const {
1656       return !Fail;
1657     }
1658 
1659     void operator -- () {
1660       if (Fail)
1661         return;
1662       for (auto *&Inst : Insts) {
1663         for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
1664           Inst = Inst->getPrevNode();
1665         // Already at beginning of block.
1666         if (!Inst) {
1667           Fail = true;
1668           return;
1669         }
1670       }
1671     }
1672 
1673     ArrayRef<Instruction*> operator * () const {
1674       return Insts;
1675     }
1676   };
1677 
1678 } // end anonymous namespace
1679 
1680 /// Given an unconditional branch that goes to BBEnd,
1681 /// check whether BBEnd has only two predecessors and the other predecessor
1682 /// ends with an unconditional branch. If it is true, sink any common code
1683 /// in the two predecessors to BBEnd.
1684 static bool SinkThenElseCodeToEnd(BranchInst *BI1) {
1685   assert(BI1->isUnconditional());
1686   BasicBlock *BBEnd = BI1->getSuccessor(0);
1687 
1688   // We support two situations:
1689   //   (1) all incoming arcs are unconditional
1690   //   (2) one incoming arc is conditional
1691   //
1692   // (2) is very common in switch defaults and
1693   // else-if patterns;
1694   //
1695   //   if (a) f(1);
1696   //   else if (b) f(2);
1697   //
1698   // produces:
1699   //
1700   //       [if]
1701   //      /    \
1702   //    [f(1)] [if]
1703   //      |     | \
1704   //      |     |  |
1705   //      |  [f(2)]|
1706   //       \    | /
1707   //        [ end ]
1708   //
1709   // [end] has two unconditional predecessor arcs and one conditional. The
1710   // conditional refers to the implicit empty 'else' arc. This conditional
1711   // arc can also be caused by an empty default block in a switch.
1712   //
1713   // In this case, we attempt to sink code from all *unconditional* arcs.
1714   // If we can sink instructions from these arcs (determined during the scan
1715   // phase below) we insert a common successor for all unconditional arcs and
1716   // connect that to [end], to enable sinking:
1717   //
1718   //       [if]
1719   //      /    \
1720   //    [x(1)] [if]
1721   //      |     | \
1722   //      |     |  \
1723   //      |  [x(2)] |
1724   //       \   /    |
1725   //   [sink.split] |
1726   //         \     /
1727   //         [ end ]
1728   //
1729   SmallVector<BasicBlock*,4> UnconditionalPreds;
1730   Instruction *Cond = nullptr;
1731   for (auto *B : predecessors(BBEnd)) {
1732     auto *T = B->getTerminator();
1733     if (isa<BranchInst>(T) && cast<BranchInst>(T)->isUnconditional())
1734       UnconditionalPreds.push_back(B);
1735     else if ((isa<BranchInst>(T) || isa<SwitchInst>(T)) && !Cond)
1736       Cond = T;
1737     else
1738       return false;
1739   }
1740   if (UnconditionalPreds.size() < 2)
1741     return false;
1742 
1743   bool Changed = false;
1744   // We take a two-step approach to tail sinking. First we scan from the end of
1745   // each block upwards in lockstep. If the n'th instruction from the end of each
1746   // block can be sunk, those instructions are added to ValuesToSink and we
1747   // carry on. If we can sink an instruction but need to PHI-merge some operands
1748   // (because they're not identical in each instruction) we add these to
1749   // PHIOperands.
1750   unsigned ScanIdx = 0;
1751   SmallPtrSet<Value*,4> InstructionsToSink;
1752   DenseMap<Instruction*, SmallVector<Value*,4>> PHIOperands;
1753   LockstepReverseIterator LRI(UnconditionalPreds);
1754   while (LRI.isValid() &&
1755          canSinkInstructions(*LRI, PHIOperands)) {
1756     DEBUG(dbgs() << "SINK: instruction can be sunk: " << *(*LRI)[0] << "\n");
1757     InstructionsToSink.insert((*LRI).begin(), (*LRI).end());
1758     ++ScanIdx;
1759     --LRI;
1760   }
1761 
1762   auto ProfitableToSinkInstruction = [&](LockstepReverseIterator &LRI) {
1763     unsigned NumPHIdValues = 0;
1764     for (auto *I : *LRI)
1765       for (auto *V : PHIOperands[I])
1766         if (InstructionsToSink.count(V) == 0)
1767           ++NumPHIdValues;
1768     DEBUG(dbgs() << "SINK: #phid values: " << NumPHIdValues << "\n");
1769     unsigned NumPHIInsts = NumPHIdValues / UnconditionalPreds.size();
1770     if ((NumPHIdValues % UnconditionalPreds.size()) != 0)
1771         NumPHIInsts++;
1772 
1773     return NumPHIInsts <= 1;
1774   };
1775 
1776   if (ScanIdx > 0 && Cond) {
1777     // Check if we would actually sink anything first! This mutates the CFG and
1778     // adds an extra block. The goal in doing this is to allow instructions that
1779     // couldn't be sunk before to be sunk - obviously, speculatable instructions
1780     // (such as trunc, add) can be sunk and predicated already. So we check that
1781     // we're going to sink at least one non-speculatable instruction.
1782     LRI.reset();
1783     unsigned Idx = 0;
1784     bool Profitable = false;
1785     while (ProfitableToSinkInstruction(LRI) && Idx < ScanIdx) {
1786       if (!isSafeToSpeculativelyExecute((*LRI)[0])) {
1787         Profitable = true;
1788         break;
1789       }
1790       --LRI;
1791       ++Idx;
1792     }
1793     if (!Profitable)
1794       return false;
1795 
1796     DEBUG(dbgs() << "SINK: Splitting edge\n");
1797     // We have a conditional edge and we're going to sink some instructions.
1798     // Insert a new block postdominating all blocks we're going to sink from.
1799     if (!SplitBlockPredecessors(BI1->getSuccessor(0), UnconditionalPreds,
1800                                 ".sink.split"))
1801       // Edges couldn't be split.
1802       return false;
1803     Changed = true;
1804   }
1805 
1806   // Now that we've analyzed all potential sinking candidates, perform the
1807   // actual sink. We iteratively sink the last non-terminator of the source
1808   // blocks into their common successor unless doing so would require too
1809   // many PHI instructions to be generated (currently only one PHI is allowed
1810   // per sunk instruction).
1811   //
1812   // We can use InstructionsToSink to discount values needing PHI-merging that will
1813   // actually be sunk in a later iteration. This allows us to be more
1814   // aggressive in what we sink. This does allow a false positive where we
1815   // sink presuming a later value will also be sunk, but stop half way through
1816   // and never actually sink it which means we produce more PHIs than intended.
1817   // This is unlikely in practice though.
1818   for (unsigned SinkIdx = 0; SinkIdx != ScanIdx; ++SinkIdx) {
1819     DEBUG(dbgs() << "SINK: Sink: "
1820                  << *UnconditionalPreds[0]->getTerminator()->getPrevNode()
1821                  << "\n");
1822 
1823     // Because we've sunk every instruction in turn, the current instruction to
1824     // sink is always at index 0.
1825     LRI.reset();
1826     if (!ProfitableToSinkInstruction(LRI)) {
1827       // Too many PHIs would be created.
1828       DEBUG(dbgs() << "SINK: stopping here, too many PHIs would be created!\n");
1829       break;
1830     }
1831 
1832     if (!sinkLastInstruction(UnconditionalPreds))
1833       return Changed;
1834     NumSinkCommons++;
1835     Changed = true;
1836   }
1837   return Changed;
1838 }
1839 
1840 /// \brief Determine if we can hoist sink a sole store instruction out of a
1841 /// conditional block.
1842 ///
1843 /// We are looking for code like the following:
1844 ///   BrBB:
1845 ///     store i32 %add, i32* %arrayidx2
1846 ///     ... // No other stores or function calls (we could be calling a memory
1847 ///     ... // function).
1848 ///     %cmp = icmp ult %x, %y
1849 ///     br i1 %cmp, label %EndBB, label %ThenBB
1850 ///   ThenBB:
1851 ///     store i32 %add5, i32* %arrayidx2
1852 ///     br label EndBB
1853 ///   EndBB:
1854 ///     ...
1855 ///   We are going to transform this into:
1856 ///   BrBB:
1857 ///     store i32 %add, i32* %arrayidx2
1858 ///     ... //
1859 ///     %cmp = icmp ult %x, %y
1860 ///     %add.add5 = select i1 %cmp, i32 %add, %add5
1861 ///     store i32 %add.add5, i32* %arrayidx2
1862 ///     ...
1863 ///
1864 /// \return The pointer to the value of the previous store if the store can be
1865 ///         hoisted into the predecessor block. 0 otherwise.
1866 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB,
1867                                      BasicBlock *StoreBB, BasicBlock *EndBB) {
1868   StoreInst *StoreToHoist = dyn_cast<StoreInst>(I);
1869   if (!StoreToHoist)
1870     return nullptr;
1871 
1872   // Volatile or atomic.
1873   if (!StoreToHoist->isSimple())
1874     return nullptr;
1875 
1876   Value *StorePtr = StoreToHoist->getPointerOperand();
1877 
1878   // Look for a store to the same pointer in BrBB.
1879   unsigned MaxNumInstToLookAt = 9;
1880   for (Instruction &CurI : reverse(*BrBB)) {
1881     if (!MaxNumInstToLookAt)
1882       break;
1883     // Skip debug info.
1884     if (isa<DbgInfoIntrinsic>(CurI))
1885       continue;
1886     --MaxNumInstToLookAt;
1887 
1888     // Could be calling an instruction that affects memory like free().
1889     if (CurI.mayHaveSideEffects() && !isa<StoreInst>(CurI))
1890       return nullptr;
1891 
1892     if (auto *SI = dyn_cast<StoreInst>(&CurI)) {
1893       // Found the previous store make sure it stores to the same location.
1894       if (SI->getPointerOperand() == StorePtr)
1895         // Found the previous store, return its value operand.
1896         return SI->getValueOperand();
1897       return nullptr; // Unknown store.
1898     }
1899   }
1900 
1901   return nullptr;
1902 }
1903 
1904 /// \brief Speculate a conditional basic block flattening the CFG.
1905 ///
1906 /// Note that this is a very risky transform currently. Speculating
1907 /// instructions like this is most often not desirable. Instead, there is an MI
1908 /// pass which can do it with full awareness of the resource constraints.
1909 /// However, some cases are "obvious" and we should do directly. An example of
1910 /// this is speculating a single, reasonably cheap instruction.
1911 ///
1912 /// There is only one distinct advantage to flattening the CFG at the IR level:
1913 /// it makes very common but simplistic optimizations such as are common in
1914 /// instcombine and the DAG combiner more powerful by removing CFG edges and
1915 /// modeling their effects with easier to reason about SSA value graphs.
1916 ///
1917 ///
1918 /// An illustration of this transform is turning this IR:
1919 /// \code
1920 ///   BB:
1921 ///     %cmp = icmp ult %x, %y
1922 ///     br i1 %cmp, label %EndBB, label %ThenBB
1923 ///   ThenBB:
1924 ///     %sub = sub %x, %y
1925 ///     br label BB2
1926 ///   EndBB:
1927 ///     %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ]
1928 ///     ...
1929 /// \endcode
1930 ///
1931 /// Into this IR:
1932 /// \code
1933 ///   BB:
1934 ///     %cmp = icmp ult %x, %y
1935 ///     %sub = sub %x, %y
1936 ///     %cond = select i1 %cmp, 0, %sub
1937 ///     ...
1938 /// \endcode
1939 ///
1940 /// \returns true if the conditional block is removed.
1941 static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB,
1942                                    const TargetTransformInfo &TTI) {
1943   // Be conservative for now. FP select instruction can often be expensive.
1944   Value *BrCond = BI->getCondition();
1945   if (isa<FCmpInst>(BrCond))
1946     return false;
1947 
1948   BasicBlock *BB = BI->getParent();
1949   BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0);
1950 
1951   // If ThenBB is actually on the false edge of the conditional branch, remember
1952   // to swap the select operands later.
1953   bool Invert = false;
1954   if (ThenBB != BI->getSuccessor(0)) {
1955     assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?");
1956     Invert = true;
1957   }
1958   assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block");
1959 
1960   // Keep a count of how many times instructions are used within CondBB when
1961   // they are candidates for sinking into CondBB. Specifically:
1962   // - They are defined in BB, and
1963   // - They have no side effects, and
1964   // - All of their uses are in CondBB.
1965   SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts;
1966 
1967   unsigned SpeculationCost = 0;
1968   Value *SpeculatedStoreValue = nullptr;
1969   StoreInst *SpeculatedStore = nullptr;
1970   for (BasicBlock::iterator BBI = ThenBB->begin(),
1971                             BBE = std::prev(ThenBB->end());
1972        BBI != BBE; ++BBI) {
1973     Instruction *I = &*BBI;
1974     // Skip debug info.
1975     if (isa<DbgInfoIntrinsic>(I))
1976       continue;
1977 
1978     // Only speculatively execute a single instruction (not counting the
1979     // terminator) for now.
1980     ++SpeculationCost;
1981     if (SpeculationCost > 1)
1982       return false;
1983 
1984     // Don't hoist the instruction if it's unsafe or expensive.
1985     if (!isSafeToSpeculativelyExecute(I) &&
1986         !(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore(
1987                                   I, BB, ThenBB, EndBB))))
1988       return false;
1989     if (!SpeculatedStoreValue &&
1990         ComputeSpeculationCost(I, TTI) >
1991             PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic)
1992       return false;
1993 
1994     // Store the store speculation candidate.
1995     if (SpeculatedStoreValue)
1996       SpeculatedStore = cast<StoreInst>(I);
1997 
1998     // Do not hoist the instruction if any of its operands are defined but not
1999     // used in BB. The transformation will prevent the operand from
2000     // being sunk into the use block.
2001     for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) {
2002       Instruction *OpI = dyn_cast<Instruction>(*i);
2003       if (!OpI || OpI->getParent() != BB || OpI->mayHaveSideEffects())
2004         continue; // Not a candidate for sinking.
2005 
2006       ++SinkCandidateUseCounts[OpI];
2007     }
2008   }
2009 
2010   // Consider any sink candidates which are only used in CondBB as costs for
2011   // speculation. Note, while we iterate over a DenseMap here, we are summing
2012   // and so iteration order isn't significant.
2013   for (SmallDenseMap<Instruction *, unsigned, 4>::iterator
2014            I = SinkCandidateUseCounts.begin(),
2015            E = SinkCandidateUseCounts.end();
2016        I != E; ++I)
2017     if (I->first->getNumUses() == I->second) {
2018       ++SpeculationCost;
2019       if (SpeculationCost > 1)
2020         return false;
2021     }
2022 
2023   // Check that the PHI nodes can be converted to selects.
2024   bool HaveRewritablePHIs = false;
2025   for (BasicBlock::iterator I = EndBB->begin();
2026        PHINode *PN = dyn_cast<PHINode>(I); ++I) {
2027     Value *OrigV = PN->getIncomingValueForBlock(BB);
2028     Value *ThenV = PN->getIncomingValueForBlock(ThenBB);
2029 
2030     // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf.
2031     // Skip PHIs which are trivial.
2032     if (ThenV == OrigV)
2033       continue;
2034 
2035     // Don't convert to selects if we could remove undefined behavior instead.
2036     if (passingValueIsAlwaysUndefined(OrigV, PN) ||
2037         passingValueIsAlwaysUndefined(ThenV, PN))
2038       return false;
2039 
2040     HaveRewritablePHIs = true;
2041     ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV);
2042     ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV);
2043     if (!OrigCE && !ThenCE)
2044       continue; // Known safe and cheap.
2045 
2046     if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE)) ||
2047         (OrigCE && !isSafeToSpeculativelyExecute(OrigCE)))
2048       return false;
2049     unsigned OrigCost = OrigCE ? ComputeSpeculationCost(OrigCE, TTI) : 0;
2050     unsigned ThenCost = ThenCE ? ComputeSpeculationCost(ThenCE, TTI) : 0;
2051     unsigned MaxCost =
2052         2 * PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
2053     if (OrigCost + ThenCost > MaxCost)
2054       return false;
2055 
2056     // Account for the cost of an unfolded ConstantExpr which could end up
2057     // getting expanded into Instructions.
2058     // FIXME: This doesn't account for how many operations are combined in the
2059     // constant expression.
2060     ++SpeculationCost;
2061     if (SpeculationCost > 1)
2062       return false;
2063   }
2064 
2065   // If there are no PHIs to process, bail early. This helps ensure idempotence
2066   // as well.
2067   if (!HaveRewritablePHIs && !(HoistCondStores && SpeculatedStoreValue))
2068     return false;
2069 
2070   // If we get here, we can hoist the instruction and if-convert.
2071   DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";);
2072 
2073   // Insert a select of the value of the speculated store.
2074   if (SpeculatedStoreValue) {
2075     IRBuilder<NoFolder> Builder(BI);
2076     Value *TrueV = SpeculatedStore->getValueOperand();
2077     Value *FalseV = SpeculatedStoreValue;
2078     if (Invert)
2079       std::swap(TrueV, FalseV);
2080     Value *S = Builder.CreateSelect(
2081         BrCond, TrueV, FalseV, TrueV->getName() + "." + FalseV->getName(), BI);
2082     SpeculatedStore->setOperand(0, S);
2083     SpeculatedStore->setDebugLoc(
2084         DILocation::getMergedLocation(
2085           BI->getDebugLoc(), SpeculatedStore->getDebugLoc()));
2086   }
2087 
2088   // Metadata can be dependent on the condition we are hoisting above.
2089   // Conservatively strip all metadata on the instruction.
2090   for (auto &I : *ThenBB)
2091     I.dropUnknownNonDebugMetadata();
2092 
2093   // Hoist the instructions.
2094   BB->getInstList().splice(BI->getIterator(), ThenBB->getInstList(),
2095                            ThenBB->begin(), std::prev(ThenBB->end()));
2096 
2097   // Insert selects and rewrite the PHI operands.
2098   IRBuilder<NoFolder> Builder(BI);
2099   for (BasicBlock::iterator I = EndBB->begin();
2100        PHINode *PN = dyn_cast<PHINode>(I); ++I) {
2101     unsigned OrigI = PN->getBasicBlockIndex(BB);
2102     unsigned ThenI = PN->getBasicBlockIndex(ThenBB);
2103     Value *OrigV = PN->getIncomingValue(OrigI);
2104     Value *ThenV = PN->getIncomingValue(ThenI);
2105 
2106     // Skip PHIs which are trivial.
2107     if (OrigV == ThenV)
2108       continue;
2109 
2110     // Create a select whose true value is the speculatively executed value and
2111     // false value is the preexisting value. Swap them if the branch
2112     // destinations were inverted.
2113     Value *TrueV = ThenV, *FalseV = OrigV;
2114     if (Invert)
2115       std::swap(TrueV, FalseV);
2116     Value *V = Builder.CreateSelect(
2117         BrCond, TrueV, FalseV, TrueV->getName() + "." + FalseV->getName(), BI);
2118     PN->setIncomingValue(OrigI, V);
2119     PN->setIncomingValue(ThenI, V);
2120   }
2121 
2122   ++NumSpeculations;
2123   return true;
2124 }
2125 
2126 /// Return true if we can thread a branch across this block.
2127 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) {
2128   BranchInst *BI = cast<BranchInst>(BB->getTerminator());
2129   unsigned Size = 0;
2130 
2131   for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
2132     if (isa<DbgInfoIntrinsic>(BBI))
2133       continue;
2134     if (Size > 10)
2135       return false; // Don't clone large BB's.
2136     ++Size;
2137 
2138     // We can only support instructions that do not define values that are
2139     // live outside of the current basic block.
2140     for (User *U : BBI->users()) {
2141       Instruction *UI = cast<Instruction>(U);
2142       if (UI->getParent() != BB || isa<PHINode>(UI))
2143         return false;
2144     }
2145 
2146     // Looks ok, continue checking.
2147   }
2148 
2149   return true;
2150 }
2151 
2152 /// If we have a conditional branch on a PHI node value that is defined in the
2153 /// same block as the branch and if any PHI entries are constants, thread edges
2154 /// corresponding to that entry to be branches to their ultimate destination.
2155 static bool FoldCondBranchOnPHI(BranchInst *BI, const DataLayout &DL,
2156                                 AssumptionCache *AC) {
2157   BasicBlock *BB = BI->getParent();
2158   PHINode *PN = dyn_cast<PHINode>(BI->getCondition());
2159   // NOTE: we currently cannot transform this case if the PHI node is used
2160   // outside of the block.
2161   if (!PN || PN->getParent() != BB || !PN->hasOneUse())
2162     return false;
2163 
2164   // Degenerate case of a single entry PHI.
2165   if (PN->getNumIncomingValues() == 1) {
2166     FoldSingleEntryPHINodes(PN->getParent());
2167     return true;
2168   }
2169 
2170   // Now we know that this block has multiple preds and two succs.
2171   if (!BlockIsSimpleEnoughToThreadThrough(BB))
2172     return false;
2173 
2174   // Can't fold blocks that contain noduplicate or convergent calls.
2175   if (any_of(*BB, [](const Instruction &I) {
2176         const CallInst *CI = dyn_cast<CallInst>(&I);
2177         return CI && (CI->cannotDuplicate() || CI->isConvergent());
2178       }))
2179     return false;
2180 
2181   // Okay, this is a simple enough basic block.  See if any phi values are
2182   // constants.
2183   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
2184     ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i));
2185     if (!CB || !CB->getType()->isIntegerTy(1))
2186       continue;
2187 
2188     // Okay, we now know that all edges from PredBB should be revectored to
2189     // branch to RealDest.
2190     BasicBlock *PredBB = PN->getIncomingBlock(i);
2191     BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue());
2192 
2193     if (RealDest == BB)
2194       continue; // Skip self loops.
2195     // Skip if the predecessor's terminator is an indirect branch.
2196     if (isa<IndirectBrInst>(PredBB->getTerminator()))
2197       continue;
2198 
2199     // The dest block might have PHI nodes, other predecessors and other
2200     // difficult cases.  Instead of being smart about this, just insert a new
2201     // block that jumps to the destination block, effectively splitting
2202     // the edge we are about to create.
2203     BasicBlock *EdgeBB =
2204         BasicBlock::Create(BB->getContext(), RealDest->getName() + ".critedge",
2205                            RealDest->getParent(), RealDest);
2206     BranchInst::Create(RealDest, EdgeBB);
2207 
2208     // Update PHI nodes.
2209     AddPredecessorToBlock(RealDest, EdgeBB, BB);
2210 
2211     // BB may have instructions that are being threaded over.  Clone these
2212     // instructions into EdgeBB.  We know that there will be no uses of the
2213     // cloned instructions outside of EdgeBB.
2214     BasicBlock::iterator InsertPt = EdgeBB->begin();
2215     DenseMap<Value *, Value *> TranslateMap; // Track translated values.
2216     for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
2217       if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
2218         TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB);
2219         continue;
2220       }
2221       // Clone the instruction.
2222       Instruction *N = BBI->clone();
2223       if (BBI->hasName())
2224         N->setName(BBI->getName() + ".c");
2225 
2226       // Update operands due to translation.
2227       for (User::op_iterator i = N->op_begin(), e = N->op_end(); i != e; ++i) {
2228         DenseMap<Value *, Value *>::iterator PI = TranslateMap.find(*i);
2229         if (PI != TranslateMap.end())
2230           *i = PI->second;
2231       }
2232 
2233       // Check for trivial simplification.
2234       if (Value *V = SimplifyInstruction(N, DL)) {
2235         if (!BBI->use_empty())
2236           TranslateMap[&*BBI] = V;
2237         if (!N->mayHaveSideEffects()) {
2238           delete N; // Instruction folded away, don't need actual inst
2239           N = nullptr;
2240         }
2241       } else {
2242         if (!BBI->use_empty())
2243           TranslateMap[&*BBI] = N;
2244       }
2245       // Insert the new instruction into its new home.
2246       if (N)
2247         EdgeBB->getInstList().insert(InsertPt, N);
2248 
2249       // Register the new instruction with the assumption cache if necessary.
2250       if (auto *II = dyn_cast_or_null<IntrinsicInst>(N))
2251         if (II->getIntrinsicID() == Intrinsic::assume)
2252           AC->registerAssumption(II);
2253     }
2254 
2255     // Loop over all of the edges from PredBB to BB, changing them to branch
2256     // to EdgeBB instead.
2257     TerminatorInst *PredBBTI = PredBB->getTerminator();
2258     for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i)
2259       if (PredBBTI->getSuccessor(i) == BB) {
2260         BB->removePredecessor(PredBB);
2261         PredBBTI->setSuccessor(i, EdgeBB);
2262       }
2263 
2264     // Recurse, simplifying any other constants.
2265     return FoldCondBranchOnPHI(BI, DL, AC) | true;
2266   }
2267 
2268   return false;
2269 }
2270 
2271 /// Given a BB that starts with the specified two-entry PHI node,
2272 /// see if we can eliminate it.
2273 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI,
2274                                 const DataLayout &DL) {
2275   // Ok, this is a two entry PHI node.  Check to see if this is a simple "if
2276   // statement", which has a very simple dominance structure.  Basically, we
2277   // are trying to find the condition that is being branched on, which
2278   // subsequently causes this merge to happen.  We really want control
2279   // dependence information for this check, but simplifycfg can't keep it up
2280   // to date, and this catches most of the cases we care about anyway.
2281   BasicBlock *BB = PN->getParent();
2282   BasicBlock *IfTrue, *IfFalse;
2283   Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse);
2284   if (!IfCond ||
2285       // Don't bother if the branch will be constant folded trivially.
2286       isa<ConstantInt>(IfCond))
2287     return false;
2288 
2289   // Okay, we found that we can merge this two-entry phi node into a select.
2290   // Doing so would require us to fold *all* two entry phi nodes in this block.
2291   // At some point this becomes non-profitable (particularly if the target
2292   // doesn't support cmov's).  Only do this transformation if there are two or
2293   // fewer PHI nodes in this block.
2294   unsigned NumPhis = 0;
2295   for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I)
2296     if (NumPhis > 2)
2297       return false;
2298 
2299   // Loop over the PHI's seeing if we can promote them all to select
2300   // instructions.  While we are at it, keep track of the instructions
2301   // that need to be moved to the dominating block.
2302   SmallPtrSet<Instruction *, 4> AggressiveInsts;
2303   unsigned MaxCostVal0 = PHINodeFoldingThreshold,
2304            MaxCostVal1 = PHINodeFoldingThreshold;
2305   MaxCostVal0 *= TargetTransformInfo::TCC_Basic;
2306   MaxCostVal1 *= TargetTransformInfo::TCC_Basic;
2307 
2308   for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) {
2309     PHINode *PN = cast<PHINode>(II++);
2310     if (Value *V = SimplifyInstruction(PN, DL)) {
2311       PN->replaceAllUsesWith(V);
2312       PN->eraseFromParent();
2313       continue;
2314     }
2315 
2316     if (!DominatesMergePoint(PN->getIncomingValue(0), BB, &AggressiveInsts,
2317                              MaxCostVal0, TTI) ||
2318         !DominatesMergePoint(PN->getIncomingValue(1), BB, &AggressiveInsts,
2319                              MaxCostVal1, TTI))
2320       return false;
2321   }
2322 
2323   // If we folded the first phi, PN dangles at this point.  Refresh it.  If
2324   // we ran out of PHIs then we simplified them all.
2325   PN = dyn_cast<PHINode>(BB->begin());
2326   if (!PN)
2327     return true;
2328 
2329   // Don't fold i1 branches on PHIs which contain binary operators.  These can
2330   // often be turned into switches and other things.
2331   if (PN->getType()->isIntegerTy(1) &&
2332       (isa<BinaryOperator>(PN->getIncomingValue(0)) ||
2333        isa<BinaryOperator>(PN->getIncomingValue(1)) ||
2334        isa<BinaryOperator>(IfCond)))
2335     return false;
2336 
2337   // If all PHI nodes are promotable, check to make sure that all instructions
2338   // in the predecessor blocks can be promoted as well. If not, we won't be able
2339   // to get rid of the control flow, so it's not worth promoting to select
2340   // instructions.
2341   BasicBlock *DomBlock = nullptr;
2342   BasicBlock *IfBlock1 = PN->getIncomingBlock(0);
2343   BasicBlock *IfBlock2 = PN->getIncomingBlock(1);
2344   if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) {
2345     IfBlock1 = nullptr;
2346   } else {
2347     DomBlock = *pred_begin(IfBlock1);
2348     for (BasicBlock::iterator I = IfBlock1->begin(); !isa<TerminatorInst>(I);
2349          ++I)
2350       if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) {
2351         // This is not an aggressive instruction that we can promote.
2352         // Because of this, we won't be able to get rid of the control flow, so
2353         // the xform is not worth it.
2354         return false;
2355       }
2356   }
2357 
2358   if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) {
2359     IfBlock2 = nullptr;
2360   } else {
2361     DomBlock = *pred_begin(IfBlock2);
2362     for (BasicBlock::iterator I = IfBlock2->begin(); !isa<TerminatorInst>(I);
2363          ++I)
2364       if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) {
2365         // This is not an aggressive instruction that we can promote.
2366         // Because of this, we won't be able to get rid of the control flow, so
2367         // the xform is not worth it.
2368         return false;
2369       }
2370   }
2371 
2372   DEBUG(dbgs() << "FOUND IF CONDITION!  " << *IfCond << "  T: "
2373                << IfTrue->getName() << "  F: " << IfFalse->getName() << "\n");
2374 
2375   // If we can still promote the PHI nodes after this gauntlet of tests,
2376   // do all of the PHI's now.
2377   Instruction *InsertPt = DomBlock->getTerminator();
2378   IRBuilder<NoFolder> Builder(InsertPt);
2379 
2380   // Move all 'aggressive' instructions, which are defined in the
2381   // conditional parts of the if's up to the dominating block.
2382   if (IfBlock1) {
2383     for (auto &I : *IfBlock1)
2384       I.dropUnknownNonDebugMetadata();
2385     DomBlock->getInstList().splice(InsertPt->getIterator(),
2386                                    IfBlock1->getInstList(), IfBlock1->begin(),
2387                                    IfBlock1->getTerminator()->getIterator());
2388   }
2389   if (IfBlock2) {
2390     for (auto &I : *IfBlock2)
2391       I.dropUnknownNonDebugMetadata();
2392     DomBlock->getInstList().splice(InsertPt->getIterator(),
2393                                    IfBlock2->getInstList(), IfBlock2->begin(),
2394                                    IfBlock2->getTerminator()->getIterator());
2395   }
2396 
2397   while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
2398     // Change the PHI node into a select instruction.
2399     Value *TrueVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse);
2400     Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue);
2401 
2402     Value *Sel = Builder.CreateSelect(IfCond, TrueVal, FalseVal, "", InsertPt);
2403     PN->replaceAllUsesWith(Sel);
2404     Sel->takeName(PN);
2405     PN->eraseFromParent();
2406   }
2407 
2408   // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement
2409   // has been flattened.  Change DomBlock to jump directly to our new block to
2410   // avoid other simplifycfg's kicking in on the diamond.
2411   TerminatorInst *OldTI = DomBlock->getTerminator();
2412   Builder.SetInsertPoint(OldTI);
2413   Builder.CreateBr(BB);
2414   OldTI->eraseFromParent();
2415   return true;
2416 }
2417 
2418 /// If we found a conditional branch that goes to two returning blocks,
2419 /// try to merge them together into one return,
2420 /// introducing a select if the return values disagree.
2421 static bool SimplifyCondBranchToTwoReturns(BranchInst *BI,
2422                                            IRBuilder<> &Builder) {
2423   assert(BI->isConditional() && "Must be a conditional branch");
2424   BasicBlock *TrueSucc = BI->getSuccessor(0);
2425   BasicBlock *FalseSucc = BI->getSuccessor(1);
2426   ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator());
2427   ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator());
2428 
2429   // Check to ensure both blocks are empty (just a return) or optionally empty
2430   // with PHI nodes.  If there are other instructions, merging would cause extra
2431   // computation on one path or the other.
2432   if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator())
2433     return false;
2434   if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator())
2435     return false;
2436 
2437   Builder.SetInsertPoint(BI);
2438   // Okay, we found a branch that is going to two return nodes.  If
2439   // there is no return value for this function, just change the
2440   // branch into a return.
2441   if (FalseRet->getNumOperands() == 0) {
2442     TrueSucc->removePredecessor(BI->getParent());
2443     FalseSucc->removePredecessor(BI->getParent());
2444     Builder.CreateRetVoid();
2445     EraseTerminatorInstAndDCECond(BI);
2446     return true;
2447   }
2448 
2449   // Otherwise, figure out what the true and false return values are
2450   // so we can insert a new select instruction.
2451   Value *TrueValue = TrueRet->getReturnValue();
2452   Value *FalseValue = FalseRet->getReturnValue();
2453 
2454   // Unwrap any PHI nodes in the return blocks.
2455   if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue))
2456     if (TVPN->getParent() == TrueSucc)
2457       TrueValue = TVPN->getIncomingValueForBlock(BI->getParent());
2458   if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue))
2459     if (FVPN->getParent() == FalseSucc)
2460       FalseValue = FVPN->getIncomingValueForBlock(BI->getParent());
2461 
2462   // In order for this transformation to be safe, we must be able to
2463   // unconditionally execute both operands to the return.  This is
2464   // normally the case, but we could have a potentially-trapping
2465   // constant expression that prevents this transformation from being
2466   // safe.
2467   if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue))
2468     if (TCV->canTrap())
2469       return false;
2470   if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue))
2471     if (FCV->canTrap())
2472       return false;
2473 
2474   // Okay, we collected all the mapped values and checked them for sanity, and
2475   // defined to really do this transformation.  First, update the CFG.
2476   TrueSucc->removePredecessor(BI->getParent());
2477   FalseSucc->removePredecessor(BI->getParent());
2478 
2479   // Insert select instructions where needed.
2480   Value *BrCond = BI->getCondition();
2481   if (TrueValue) {
2482     // Insert a select if the results differ.
2483     if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) {
2484     } else if (isa<UndefValue>(TrueValue)) {
2485       TrueValue = FalseValue;
2486     } else {
2487       TrueValue =
2488           Builder.CreateSelect(BrCond, TrueValue, FalseValue, "retval", BI);
2489     }
2490   }
2491 
2492   Value *RI =
2493       !TrueValue ? Builder.CreateRetVoid() : Builder.CreateRet(TrueValue);
2494 
2495   (void)RI;
2496 
2497   DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:"
2498                << "\n  " << *BI << "NewRet = " << *RI
2499                << "TRUEBLOCK: " << *TrueSucc << "FALSEBLOCK: " << *FalseSucc);
2500 
2501   EraseTerminatorInstAndDCECond(BI);
2502 
2503   return true;
2504 }
2505 
2506 /// Return true if the given instruction is available
2507 /// in its predecessor block. If yes, the instruction will be removed.
2508 static bool checkCSEInPredecessor(Instruction *Inst, BasicBlock *PB) {
2509   if (!isa<BinaryOperator>(Inst) && !isa<CmpInst>(Inst))
2510     return false;
2511   for (Instruction &I : *PB) {
2512     Instruction *PBI = &I;
2513     // Check whether Inst and PBI generate the same value.
2514     if (Inst->isIdenticalTo(PBI)) {
2515       Inst->replaceAllUsesWith(PBI);
2516       Inst->eraseFromParent();
2517       return true;
2518     }
2519   }
2520   return false;
2521 }
2522 
2523 /// Return true if either PBI or BI has branch weight available, and store
2524 /// the weights in {Pred|Succ}{True|False}Weight. If one of PBI and BI does
2525 /// not have branch weight, use 1:1 as its weight.
2526 static bool extractPredSuccWeights(BranchInst *PBI, BranchInst *BI,
2527                                    uint64_t &PredTrueWeight,
2528                                    uint64_t &PredFalseWeight,
2529                                    uint64_t &SuccTrueWeight,
2530                                    uint64_t &SuccFalseWeight) {
2531   bool PredHasWeights =
2532       PBI->extractProfMetadata(PredTrueWeight, PredFalseWeight);
2533   bool SuccHasWeights =
2534       BI->extractProfMetadata(SuccTrueWeight, SuccFalseWeight);
2535   if (PredHasWeights || SuccHasWeights) {
2536     if (!PredHasWeights)
2537       PredTrueWeight = PredFalseWeight = 1;
2538     if (!SuccHasWeights)
2539       SuccTrueWeight = SuccFalseWeight = 1;
2540     return true;
2541   } else {
2542     return false;
2543   }
2544 }
2545 
2546 /// If this basic block is simple enough, and if a predecessor branches to us
2547 /// and one of our successors, fold the block into the predecessor and use
2548 /// logical operations to pick the right destination.
2549 bool llvm::FoldBranchToCommonDest(BranchInst *BI, unsigned BonusInstThreshold) {
2550   BasicBlock *BB = BI->getParent();
2551 
2552   Instruction *Cond = nullptr;
2553   if (BI->isConditional())
2554     Cond = dyn_cast<Instruction>(BI->getCondition());
2555   else {
2556     // For unconditional branch, check for a simple CFG pattern, where
2557     // BB has a single predecessor and BB's successor is also its predecessor's
2558     // successor. If such pattern exisits, check for CSE between BB and its
2559     // predecessor.
2560     if (BasicBlock *PB = BB->getSinglePredecessor())
2561       if (BranchInst *PBI = dyn_cast<BranchInst>(PB->getTerminator()))
2562         if (PBI->isConditional() &&
2563             (BI->getSuccessor(0) == PBI->getSuccessor(0) ||
2564              BI->getSuccessor(0) == PBI->getSuccessor(1))) {
2565           for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
2566             Instruction *Curr = &*I++;
2567             if (isa<CmpInst>(Curr)) {
2568               Cond = Curr;
2569               break;
2570             }
2571             // Quit if we can't remove this instruction.
2572             if (!checkCSEInPredecessor(Curr, PB))
2573               return false;
2574           }
2575         }
2576 
2577     if (!Cond)
2578       return false;
2579   }
2580 
2581   if (!Cond || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) ||
2582       Cond->getParent() != BB || !Cond->hasOneUse())
2583     return false;
2584 
2585   // Make sure the instruction after the condition is the cond branch.
2586   BasicBlock::iterator CondIt = ++Cond->getIterator();
2587 
2588   // Ignore dbg intrinsics.
2589   while (isa<DbgInfoIntrinsic>(CondIt))
2590     ++CondIt;
2591 
2592   if (&*CondIt != BI)
2593     return false;
2594 
2595   // Only allow this transformation if computing the condition doesn't involve
2596   // too many instructions and these involved instructions can be executed
2597   // unconditionally. We denote all involved instructions except the condition
2598   // as "bonus instructions", and only allow this transformation when the
2599   // number of the bonus instructions does not exceed a certain threshold.
2600   unsigned NumBonusInsts = 0;
2601   for (auto I = BB->begin(); Cond != &*I; ++I) {
2602     // Ignore dbg intrinsics.
2603     if (isa<DbgInfoIntrinsic>(I))
2604       continue;
2605     if (!I->hasOneUse() || !isSafeToSpeculativelyExecute(&*I))
2606       return false;
2607     // I has only one use and can be executed unconditionally.
2608     Instruction *User = dyn_cast<Instruction>(I->user_back());
2609     if (User == nullptr || User->getParent() != BB)
2610       return false;
2611     // I is used in the same BB. Since BI uses Cond and doesn't have more slots
2612     // to use any other instruction, User must be an instruction between next(I)
2613     // and Cond.
2614     ++NumBonusInsts;
2615     // Early exits once we reach the limit.
2616     if (NumBonusInsts > BonusInstThreshold)
2617       return false;
2618   }
2619 
2620   // Cond is known to be a compare or binary operator.  Check to make sure that
2621   // neither operand is a potentially-trapping constant expression.
2622   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0)))
2623     if (CE->canTrap())
2624       return false;
2625   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1)))
2626     if (CE->canTrap())
2627       return false;
2628 
2629   // Finally, don't infinitely unroll conditional loops.
2630   BasicBlock *TrueDest = BI->getSuccessor(0);
2631   BasicBlock *FalseDest = (BI->isConditional()) ? BI->getSuccessor(1) : nullptr;
2632   if (TrueDest == BB || FalseDest == BB)
2633     return false;
2634 
2635   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
2636     BasicBlock *PredBlock = *PI;
2637     BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator());
2638 
2639     // Check that we have two conditional branches.  If there is a PHI node in
2640     // the common successor, verify that the same value flows in from both
2641     // blocks.
2642     SmallVector<PHINode *, 4> PHIs;
2643     if (!PBI || PBI->isUnconditional() ||
2644         (BI->isConditional() && !SafeToMergeTerminators(BI, PBI)) ||
2645         (!BI->isConditional() &&
2646          !isProfitableToFoldUnconditional(BI, PBI, Cond, PHIs)))
2647       continue;
2648 
2649     // Determine if the two branches share a common destination.
2650     Instruction::BinaryOps Opc = Instruction::BinaryOpsEnd;
2651     bool InvertPredCond = false;
2652 
2653     if (BI->isConditional()) {
2654       if (PBI->getSuccessor(0) == TrueDest) {
2655         Opc = Instruction::Or;
2656       } else if (PBI->getSuccessor(1) == FalseDest) {
2657         Opc = Instruction::And;
2658       } else if (PBI->getSuccessor(0) == FalseDest) {
2659         Opc = Instruction::And;
2660         InvertPredCond = true;
2661       } else if (PBI->getSuccessor(1) == TrueDest) {
2662         Opc = Instruction::Or;
2663         InvertPredCond = true;
2664       } else {
2665         continue;
2666       }
2667     } else {
2668       if (PBI->getSuccessor(0) != TrueDest && PBI->getSuccessor(1) != TrueDest)
2669         continue;
2670     }
2671 
2672     DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB);
2673     IRBuilder<> Builder(PBI);
2674 
2675     // If we need to invert the condition in the pred block to match, do so now.
2676     if (InvertPredCond) {
2677       Value *NewCond = PBI->getCondition();
2678 
2679       if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) {
2680         CmpInst *CI = cast<CmpInst>(NewCond);
2681         CI->setPredicate(CI->getInversePredicate());
2682       } else {
2683         NewCond =
2684             Builder.CreateNot(NewCond, PBI->getCondition()->getName() + ".not");
2685       }
2686 
2687       PBI->setCondition(NewCond);
2688       PBI->swapSuccessors();
2689     }
2690 
2691     // If we have bonus instructions, clone them into the predecessor block.
2692     // Note that there may be multiple predecessor blocks, so we cannot move
2693     // bonus instructions to a predecessor block.
2694     ValueToValueMapTy VMap; // maps original values to cloned values
2695     // We already make sure Cond is the last instruction before BI. Therefore,
2696     // all instructions before Cond other than DbgInfoIntrinsic are bonus
2697     // instructions.
2698     for (auto BonusInst = BB->begin(); Cond != &*BonusInst; ++BonusInst) {
2699       if (isa<DbgInfoIntrinsic>(BonusInst))
2700         continue;
2701       Instruction *NewBonusInst = BonusInst->clone();
2702       RemapInstruction(NewBonusInst, VMap,
2703                        RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
2704       VMap[&*BonusInst] = NewBonusInst;
2705 
2706       // If we moved a load, we cannot any longer claim any knowledge about
2707       // its potential value. The previous information might have been valid
2708       // only given the branch precondition.
2709       // For an analogous reason, we must also drop all the metadata whose
2710       // semantics we don't understand.
2711       NewBonusInst->dropUnknownNonDebugMetadata();
2712 
2713       PredBlock->getInstList().insert(PBI->getIterator(), NewBonusInst);
2714       NewBonusInst->takeName(&*BonusInst);
2715       BonusInst->setName(BonusInst->getName() + ".old");
2716     }
2717 
2718     // Clone Cond into the predecessor basic block, and or/and the
2719     // two conditions together.
2720     Instruction *New = Cond->clone();
2721     RemapInstruction(New, VMap,
2722                      RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
2723     PredBlock->getInstList().insert(PBI->getIterator(), New);
2724     New->takeName(Cond);
2725     Cond->setName(New->getName() + ".old");
2726 
2727     if (BI->isConditional()) {
2728       Instruction *NewCond = cast<Instruction>(
2729           Builder.CreateBinOp(Opc, PBI->getCondition(), New, "or.cond"));
2730       PBI->setCondition(NewCond);
2731 
2732       uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
2733       bool HasWeights =
2734           extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
2735                                  SuccTrueWeight, SuccFalseWeight);
2736       SmallVector<uint64_t, 8> NewWeights;
2737 
2738       if (PBI->getSuccessor(0) == BB) {
2739         if (HasWeights) {
2740           // PBI: br i1 %x, BB, FalseDest
2741           // BI:  br i1 %y, TrueDest, FalseDest
2742           // TrueWeight is TrueWeight for PBI * TrueWeight for BI.
2743           NewWeights.push_back(PredTrueWeight * SuccTrueWeight);
2744           // FalseWeight is FalseWeight for PBI * TotalWeight for BI +
2745           //               TrueWeight for PBI * FalseWeight for BI.
2746           // We assume that total weights of a BranchInst can fit into 32 bits.
2747           // Therefore, we will not have overflow using 64-bit arithmetic.
2748           NewWeights.push_back(PredFalseWeight *
2749                                    (SuccFalseWeight + SuccTrueWeight) +
2750                                PredTrueWeight * SuccFalseWeight);
2751         }
2752         AddPredecessorToBlock(TrueDest, PredBlock, BB);
2753         PBI->setSuccessor(0, TrueDest);
2754       }
2755       if (PBI->getSuccessor(1) == BB) {
2756         if (HasWeights) {
2757           // PBI: br i1 %x, TrueDest, BB
2758           // BI:  br i1 %y, TrueDest, FalseDest
2759           // TrueWeight is TrueWeight for PBI * TotalWeight for BI +
2760           //              FalseWeight for PBI * TrueWeight for BI.
2761           NewWeights.push_back(PredTrueWeight *
2762                                    (SuccFalseWeight + SuccTrueWeight) +
2763                                PredFalseWeight * SuccTrueWeight);
2764           // FalseWeight is FalseWeight for PBI * FalseWeight for BI.
2765           NewWeights.push_back(PredFalseWeight * SuccFalseWeight);
2766         }
2767         AddPredecessorToBlock(FalseDest, PredBlock, BB);
2768         PBI->setSuccessor(1, FalseDest);
2769       }
2770       if (NewWeights.size() == 2) {
2771         // Halve the weights if any of them cannot fit in an uint32_t
2772         FitWeights(NewWeights);
2773 
2774         SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(),
2775                                            NewWeights.end());
2776         PBI->setMetadata(
2777             LLVMContext::MD_prof,
2778             MDBuilder(BI->getContext()).createBranchWeights(MDWeights));
2779       } else
2780         PBI->setMetadata(LLVMContext::MD_prof, nullptr);
2781     } else {
2782       // Update PHI nodes in the common successors.
2783       for (unsigned i = 0, e = PHIs.size(); i != e; ++i) {
2784         ConstantInt *PBI_C = cast<ConstantInt>(
2785             PHIs[i]->getIncomingValueForBlock(PBI->getParent()));
2786         assert(PBI_C->getType()->isIntegerTy(1));
2787         Instruction *MergedCond = nullptr;
2788         if (PBI->getSuccessor(0) == TrueDest) {
2789           // Create (PBI_Cond and PBI_C) or (!PBI_Cond and BI_Value)
2790           // PBI_C is true: PBI_Cond or (!PBI_Cond and BI_Value)
2791           //       is false: !PBI_Cond and BI_Value
2792           Instruction *NotCond = cast<Instruction>(
2793               Builder.CreateNot(PBI->getCondition(), "not.cond"));
2794           MergedCond = cast<Instruction>(
2795               Builder.CreateBinOp(Instruction::And, NotCond, New, "and.cond"));
2796           if (PBI_C->isOne())
2797             MergedCond = cast<Instruction>(Builder.CreateBinOp(
2798                 Instruction::Or, PBI->getCondition(), MergedCond, "or.cond"));
2799         } else {
2800           // Create (PBI_Cond and BI_Value) or (!PBI_Cond and PBI_C)
2801           // PBI_C is true: (PBI_Cond and BI_Value) or (!PBI_Cond)
2802           //       is false: PBI_Cond and BI_Value
2803           MergedCond = cast<Instruction>(Builder.CreateBinOp(
2804               Instruction::And, PBI->getCondition(), New, "and.cond"));
2805           if (PBI_C->isOne()) {
2806             Instruction *NotCond = cast<Instruction>(
2807                 Builder.CreateNot(PBI->getCondition(), "not.cond"));
2808             MergedCond = cast<Instruction>(Builder.CreateBinOp(
2809                 Instruction::Or, NotCond, MergedCond, "or.cond"));
2810           }
2811         }
2812         // Update PHI Node.
2813         PHIs[i]->setIncomingValue(PHIs[i]->getBasicBlockIndex(PBI->getParent()),
2814                                   MergedCond);
2815       }
2816       // Change PBI from Conditional to Unconditional.
2817       BranchInst *New_PBI = BranchInst::Create(TrueDest, PBI);
2818       EraseTerminatorInstAndDCECond(PBI);
2819       PBI = New_PBI;
2820     }
2821 
2822     // If BI was a loop latch, it may have had associated loop metadata.
2823     // We need to copy it to the new latch, that is, PBI.
2824     if (MDNode *LoopMD = BI->getMetadata(LLVMContext::MD_loop))
2825       PBI->setMetadata(LLVMContext::MD_loop, LoopMD);
2826 
2827     // TODO: If BB is reachable from all paths through PredBlock, then we
2828     // could replace PBI's branch probabilities with BI's.
2829 
2830     // Copy any debug value intrinsics into the end of PredBlock.
2831     for (Instruction &I : *BB)
2832       if (isa<DbgInfoIntrinsic>(I))
2833         I.clone()->insertBefore(PBI);
2834 
2835     return true;
2836   }
2837   return false;
2838 }
2839 
2840 // If there is only one store in BB1 and BB2, return it, otherwise return
2841 // nullptr.
2842 static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) {
2843   StoreInst *S = nullptr;
2844   for (auto *BB : {BB1, BB2}) {
2845     if (!BB)
2846       continue;
2847     for (auto &I : *BB)
2848       if (auto *SI = dyn_cast<StoreInst>(&I)) {
2849         if (S)
2850           // Multiple stores seen.
2851           return nullptr;
2852         else
2853           S = SI;
2854       }
2855   }
2856   return S;
2857 }
2858 
2859 static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB,
2860                                               Value *AlternativeV = nullptr) {
2861   // PHI is going to be a PHI node that allows the value V that is defined in
2862   // BB to be referenced in BB's only successor.
2863   //
2864   // If AlternativeV is nullptr, the only value we care about in PHI is V. It
2865   // doesn't matter to us what the other operand is (it'll never get used). We
2866   // could just create a new PHI with an undef incoming value, but that could
2867   // increase register pressure if EarlyCSE/InstCombine can't fold it with some
2868   // other PHI. So here we directly look for some PHI in BB's successor with V
2869   // as an incoming operand. If we find one, we use it, else we create a new
2870   // one.
2871   //
2872   // If AlternativeV is not nullptr, we care about both incoming values in PHI.
2873   // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV]
2874   // where OtherBB is the single other predecessor of BB's only successor.
2875   PHINode *PHI = nullptr;
2876   BasicBlock *Succ = BB->getSingleSuccessor();
2877 
2878   for (auto I = Succ->begin(); isa<PHINode>(I); ++I)
2879     if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) {
2880       PHI = cast<PHINode>(I);
2881       if (!AlternativeV)
2882         break;
2883 
2884       assert(std::distance(pred_begin(Succ), pred_end(Succ)) == 2);
2885       auto PredI = pred_begin(Succ);
2886       BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI;
2887       if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV)
2888         break;
2889       PHI = nullptr;
2890     }
2891   if (PHI)
2892     return PHI;
2893 
2894   // If V is not an instruction defined in BB, just return it.
2895   if (!AlternativeV &&
2896       (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB))
2897     return V;
2898 
2899   PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge", &Succ->front());
2900   PHI->addIncoming(V, BB);
2901   for (BasicBlock *PredBB : predecessors(Succ))
2902     if (PredBB != BB)
2903       PHI->addIncoming(
2904           AlternativeV ? AlternativeV : UndefValue::get(V->getType()), PredBB);
2905   return PHI;
2906 }
2907 
2908 static bool mergeConditionalStoreToAddress(BasicBlock *PTB, BasicBlock *PFB,
2909                                            BasicBlock *QTB, BasicBlock *QFB,
2910                                            BasicBlock *PostBB, Value *Address,
2911                                            bool InvertPCond, bool InvertQCond) {
2912   auto IsaBitcastOfPointerType = [](const Instruction &I) {
2913     return Operator::getOpcode(&I) == Instruction::BitCast &&
2914            I.getType()->isPointerTy();
2915   };
2916 
2917   // If we're not in aggressive mode, we only optimize if we have some
2918   // confidence that by optimizing we'll allow P and/or Q to be if-converted.
2919   auto IsWorthwhile = [&](BasicBlock *BB) {
2920     if (!BB)
2921       return true;
2922     // Heuristic: if the block can be if-converted/phi-folded and the
2923     // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to
2924     // thread this store.
2925     unsigned N = 0;
2926     for (auto &I : *BB) {
2927       // Cheap instructions viable for folding.
2928       if (isa<BinaryOperator>(I) || isa<GetElementPtrInst>(I) ||
2929           isa<StoreInst>(I))
2930         ++N;
2931       // Free instructions.
2932       else if (isa<TerminatorInst>(I) || isa<DbgInfoIntrinsic>(I) ||
2933                IsaBitcastOfPointerType(I))
2934         continue;
2935       else
2936         return false;
2937     }
2938     return N <= PHINodeFoldingThreshold;
2939   };
2940 
2941   if (!MergeCondStoresAggressively &&
2942       (!IsWorthwhile(PTB) || !IsWorthwhile(PFB) || !IsWorthwhile(QTB) ||
2943        !IsWorthwhile(QFB)))
2944     return false;
2945 
2946   // For every pointer, there must be exactly two stores, one coming from
2947   // PTB or PFB, and the other from QTB or QFB. We don't support more than one
2948   // store (to any address) in PTB,PFB or QTB,QFB.
2949   // FIXME: We could relax this restriction with a bit more work and performance
2950   // testing.
2951   StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB);
2952   StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB);
2953   if (!PStore || !QStore)
2954     return false;
2955 
2956   // Now check the stores are compatible.
2957   if (!QStore->isUnordered() || !PStore->isUnordered())
2958     return false;
2959 
2960   // Check that sinking the store won't cause program behavior changes. Sinking
2961   // the store out of the Q blocks won't change any behavior as we're sinking
2962   // from a block to its unconditional successor. But we're moving a store from
2963   // the P blocks down through the middle block (QBI) and past both QFB and QTB.
2964   // So we need to check that there are no aliasing loads or stores in
2965   // QBI, QTB and QFB. We also need to check there are no conflicting memory
2966   // operations between PStore and the end of its parent block.
2967   //
2968   // The ideal way to do this is to query AliasAnalysis, but we don't
2969   // preserve AA currently so that is dangerous. Be super safe and just
2970   // check there are no other memory operations at all.
2971   for (auto &I : *QFB->getSinglePredecessor())
2972     if (I.mayReadOrWriteMemory())
2973       return false;
2974   for (auto &I : *QFB)
2975     if (&I != QStore && I.mayReadOrWriteMemory())
2976       return false;
2977   if (QTB)
2978     for (auto &I : *QTB)
2979       if (&I != QStore && I.mayReadOrWriteMemory())
2980         return false;
2981   for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end();
2982        I != E; ++I)
2983     if (&*I != PStore && I->mayReadOrWriteMemory())
2984       return false;
2985 
2986   // OK, we're going to sink the stores to PostBB. The store has to be
2987   // conditional though, so first create the predicate.
2988   Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator())
2989                      ->getCondition();
2990   Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator())
2991                      ->getCondition();
2992 
2993   Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(),
2994                                                 PStore->getParent());
2995   Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(),
2996                                                 QStore->getParent(), PPHI);
2997 
2998   IRBuilder<> QB(&*PostBB->getFirstInsertionPt());
2999 
3000   Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond);
3001   Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond);
3002 
3003   if (InvertPCond)
3004     PPred = QB.CreateNot(PPred);
3005   if (InvertQCond)
3006     QPred = QB.CreateNot(QPred);
3007   Value *CombinedPred = QB.CreateOr(PPred, QPred);
3008 
3009   auto *T =
3010       SplitBlockAndInsertIfThen(CombinedPred, &*QB.GetInsertPoint(), false);
3011   QB.SetInsertPoint(T);
3012   StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address));
3013   AAMDNodes AAMD;
3014   PStore->getAAMetadata(AAMD, /*Merge=*/false);
3015   PStore->getAAMetadata(AAMD, /*Merge=*/true);
3016   SI->setAAMetadata(AAMD);
3017 
3018   QStore->eraseFromParent();
3019   PStore->eraseFromParent();
3020 
3021   return true;
3022 }
3023 
3024 static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI) {
3025   // The intention here is to find diamonds or triangles (see below) where each
3026   // conditional block contains a store to the same address. Both of these
3027   // stores are conditional, so they can't be unconditionally sunk. But it may
3028   // be profitable to speculatively sink the stores into one merged store at the
3029   // end, and predicate the merged store on the union of the two conditions of
3030   // PBI and QBI.
3031   //
3032   // This can reduce the number of stores executed if both of the conditions are
3033   // true, and can allow the blocks to become small enough to be if-converted.
3034   // This optimization will also chain, so that ladders of test-and-set
3035   // sequences can be if-converted away.
3036   //
3037   // We only deal with simple diamonds or triangles:
3038   //
3039   //     PBI       or      PBI        or a combination of the two
3040   //    /   \               | \
3041   //   PTB  PFB             |  PFB
3042   //    \   /               | /
3043   //     QBI                QBI
3044   //    /  \                | \
3045   //   QTB  QFB             |  QFB
3046   //    \  /                | /
3047   //    PostBB            PostBB
3048   //
3049   // We model triangles as a type of diamond with a nullptr "true" block.
3050   // Triangles are canonicalized so that the fallthrough edge is represented by
3051   // a true condition, as in the diagram above.
3052   //
3053   BasicBlock *PTB = PBI->getSuccessor(0);
3054   BasicBlock *PFB = PBI->getSuccessor(1);
3055   BasicBlock *QTB = QBI->getSuccessor(0);
3056   BasicBlock *QFB = QBI->getSuccessor(1);
3057   BasicBlock *PostBB = QFB->getSingleSuccessor();
3058 
3059   bool InvertPCond = false, InvertQCond = false;
3060   // Canonicalize fallthroughs to the true branches.
3061   if (PFB == QBI->getParent()) {
3062     std::swap(PFB, PTB);
3063     InvertPCond = true;
3064   }
3065   if (QFB == PostBB) {
3066     std::swap(QFB, QTB);
3067     InvertQCond = true;
3068   }
3069 
3070   // From this point on we can assume PTB or QTB may be fallthroughs but PFB
3071   // and QFB may not. Model fallthroughs as a nullptr block.
3072   if (PTB == QBI->getParent())
3073     PTB = nullptr;
3074   if (QTB == PostBB)
3075     QTB = nullptr;
3076 
3077   // Legality bailouts. We must have at least the non-fallthrough blocks and
3078   // the post-dominating block, and the non-fallthroughs must only have one
3079   // predecessor.
3080   auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) {
3081     return BB->getSinglePredecessor() == P && BB->getSingleSuccessor() == S;
3082   };
3083   if (!PostBB ||
3084       !HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) ||
3085       !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB))
3086     return false;
3087   if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) ||
3088       (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB)))
3089     return false;
3090   if (PostBB->getNumUses() != 2 || QBI->getParent()->getNumUses() != 2)
3091     return false;
3092 
3093   // OK, this is a sequence of two diamonds or triangles.
3094   // Check if there are stores in PTB or PFB that are repeated in QTB or QFB.
3095   SmallPtrSet<Value *, 4> PStoreAddresses, QStoreAddresses;
3096   for (auto *BB : {PTB, PFB}) {
3097     if (!BB)
3098       continue;
3099     for (auto &I : *BB)
3100       if (StoreInst *SI = dyn_cast<StoreInst>(&I))
3101         PStoreAddresses.insert(SI->getPointerOperand());
3102   }
3103   for (auto *BB : {QTB, QFB}) {
3104     if (!BB)
3105       continue;
3106     for (auto &I : *BB)
3107       if (StoreInst *SI = dyn_cast<StoreInst>(&I))
3108         QStoreAddresses.insert(SI->getPointerOperand());
3109   }
3110 
3111   set_intersect(PStoreAddresses, QStoreAddresses);
3112   // set_intersect mutates PStoreAddresses in place. Rename it here to make it
3113   // clear what it contains.
3114   auto &CommonAddresses = PStoreAddresses;
3115 
3116   bool Changed = false;
3117   for (auto *Address : CommonAddresses)
3118     Changed |= mergeConditionalStoreToAddress(
3119         PTB, PFB, QTB, QFB, PostBB, Address, InvertPCond, InvertQCond);
3120   return Changed;
3121 }
3122 
3123 /// If we have a conditional branch as a predecessor of another block,
3124 /// this function tries to simplify it.  We know
3125 /// that PBI and BI are both conditional branches, and BI is in one of the
3126 /// successor blocks of PBI - PBI branches to BI.
3127 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI,
3128                                            const DataLayout &DL) {
3129   assert(PBI->isConditional() && BI->isConditional());
3130   BasicBlock *BB = BI->getParent();
3131 
3132   // If this block ends with a branch instruction, and if there is a
3133   // predecessor that ends on a branch of the same condition, make
3134   // this conditional branch redundant.
3135   if (PBI->getCondition() == BI->getCondition() &&
3136       PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
3137     // Okay, the outcome of this conditional branch is statically
3138     // knowable.  If this block had a single pred, handle specially.
3139     if (BB->getSinglePredecessor()) {
3140       // Turn this into a branch on constant.
3141       bool CondIsTrue = PBI->getSuccessor(0) == BB;
3142       BI->setCondition(
3143           ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue));
3144       return true; // Nuke the branch on constant.
3145     }
3146 
3147     // Otherwise, if there are multiple predecessors, insert a PHI that merges
3148     // in the constant and simplify the block result.  Subsequent passes of
3149     // simplifycfg will thread the block.
3150     if (BlockIsSimpleEnoughToThreadThrough(BB)) {
3151       pred_iterator PB = pred_begin(BB), PE = pred_end(BB);
3152       PHINode *NewPN = PHINode::Create(
3153           Type::getInt1Ty(BB->getContext()), std::distance(PB, PE),
3154           BI->getCondition()->getName() + ".pr", &BB->front());
3155       // Okay, we're going to insert the PHI node.  Since PBI is not the only
3156       // predecessor, compute the PHI'd conditional value for all of the preds.
3157       // Any predecessor where the condition is not computable we keep symbolic.
3158       for (pred_iterator PI = PB; PI != PE; ++PI) {
3159         BasicBlock *P = *PI;
3160         if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) && PBI != BI &&
3161             PBI->isConditional() && PBI->getCondition() == BI->getCondition() &&
3162             PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
3163           bool CondIsTrue = PBI->getSuccessor(0) == BB;
3164           NewPN->addIncoming(
3165               ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue),
3166               P);
3167         } else {
3168           NewPN->addIncoming(BI->getCondition(), P);
3169         }
3170       }
3171 
3172       BI->setCondition(NewPN);
3173       return true;
3174     }
3175   }
3176 
3177   if (auto *CE = dyn_cast<ConstantExpr>(BI->getCondition()))
3178     if (CE->canTrap())
3179       return false;
3180 
3181   // If both branches are conditional and both contain stores to the same
3182   // address, remove the stores from the conditionals and create a conditional
3183   // merged store at the end.
3184   if (MergeCondStores && mergeConditionalStores(PBI, BI))
3185     return true;
3186 
3187   // If this is a conditional branch in an empty block, and if any
3188   // predecessors are a conditional branch to one of our destinations,
3189   // fold the conditions into logical ops and one cond br.
3190   BasicBlock::iterator BBI = BB->begin();
3191   // Ignore dbg intrinsics.
3192   while (isa<DbgInfoIntrinsic>(BBI))
3193     ++BBI;
3194   if (&*BBI != BI)
3195     return false;
3196 
3197   int PBIOp, BIOp;
3198   if (PBI->getSuccessor(0) == BI->getSuccessor(0)) {
3199     PBIOp = 0;
3200     BIOp = 0;
3201   } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) {
3202     PBIOp = 0;
3203     BIOp = 1;
3204   } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) {
3205     PBIOp = 1;
3206     BIOp = 0;
3207   } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) {
3208     PBIOp = 1;
3209     BIOp = 1;
3210   } else {
3211     return false;
3212   }
3213 
3214   // Check to make sure that the other destination of this branch
3215   // isn't BB itself.  If so, this is an infinite loop that will
3216   // keep getting unwound.
3217   if (PBI->getSuccessor(PBIOp) == BB)
3218     return false;
3219 
3220   // Do not perform this transformation if it would require
3221   // insertion of a large number of select instructions. For targets
3222   // without predication/cmovs, this is a big pessimization.
3223 
3224   // Also do not perform this transformation if any phi node in the common
3225   // destination block can trap when reached by BB or PBB (PR17073). In that
3226   // case, it would be unsafe to hoist the operation into a select instruction.
3227 
3228   BasicBlock *CommonDest = PBI->getSuccessor(PBIOp);
3229   unsigned NumPhis = 0;
3230   for (BasicBlock::iterator II = CommonDest->begin(); isa<PHINode>(II);
3231        ++II, ++NumPhis) {
3232     if (NumPhis > 2) // Disable this xform.
3233       return false;
3234 
3235     PHINode *PN = cast<PHINode>(II);
3236     Value *BIV = PN->getIncomingValueForBlock(BB);
3237     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BIV))
3238       if (CE->canTrap())
3239         return false;
3240 
3241     unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
3242     Value *PBIV = PN->getIncomingValue(PBBIdx);
3243     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(PBIV))
3244       if (CE->canTrap())
3245         return false;
3246   }
3247 
3248   // Finally, if everything is ok, fold the branches to logical ops.
3249   BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1);
3250 
3251   DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent()
3252                << "AND: " << *BI->getParent());
3253 
3254   // If OtherDest *is* BB, then BB is a basic block with a single conditional
3255   // branch in it, where one edge (OtherDest) goes back to itself but the other
3256   // exits.  We don't *know* that the program avoids the infinite loop
3257   // (even though that seems likely).  If we do this xform naively, we'll end up
3258   // recursively unpeeling the loop.  Since we know that (after the xform is
3259   // done) that the block *is* infinite if reached, we just make it an obviously
3260   // infinite loop with no cond branch.
3261   if (OtherDest == BB) {
3262     // Insert it at the end of the function, because it's either code,
3263     // or it won't matter if it's hot. :)
3264     BasicBlock *InfLoopBlock =
3265         BasicBlock::Create(BB->getContext(), "infloop", BB->getParent());
3266     BranchInst::Create(InfLoopBlock, InfLoopBlock);
3267     OtherDest = InfLoopBlock;
3268   }
3269 
3270   DEBUG(dbgs() << *PBI->getParent()->getParent());
3271 
3272   // BI may have other predecessors.  Because of this, we leave
3273   // it alone, but modify PBI.
3274 
3275   // Make sure we get to CommonDest on True&True directions.
3276   Value *PBICond = PBI->getCondition();
3277   IRBuilder<NoFolder> Builder(PBI);
3278   if (PBIOp)
3279     PBICond = Builder.CreateNot(PBICond, PBICond->getName() + ".not");
3280 
3281   Value *BICond = BI->getCondition();
3282   if (BIOp)
3283     BICond = Builder.CreateNot(BICond, BICond->getName() + ".not");
3284 
3285   // Merge the conditions.
3286   Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge");
3287 
3288   // Modify PBI to branch on the new condition to the new dests.
3289   PBI->setCondition(Cond);
3290   PBI->setSuccessor(0, CommonDest);
3291   PBI->setSuccessor(1, OtherDest);
3292 
3293   // Update branch weight for PBI.
3294   uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
3295   uint64_t PredCommon, PredOther, SuccCommon, SuccOther;
3296   bool HasWeights =
3297       extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
3298                              SuccTrueWeight, SuccFalseWeight);
3299   if (HasWeights) {
3300     PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
3301     PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
3302     SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
3303     SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
3304     // The weight to CommonDest should be PredCommon * SuccTotal +
3305     //                                    PredOther * SuccCommon.
3306     // The weight to OtherDest should be PredOther * SuccOther.
3307     uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) +
3308                                   PredOther * SuccCommon,
3309                               PredOther * SuccOther};
3310     // Halve the weights if any of them cannot fit in an uint32_t
3311     FitWeights(NewWeights);
3312 
3313     PBI->setMetadata(LLVMContext::MD_prof,
3314                      MDBuilder(BI->getContext())
3315                          .createBranchWeights(NewWeights[0], NewWeights[1]));
3316   }
3317 
3318   // OtherDest may have phi nodes.  If so, add an entry from PBI's
3319   // block that are identical to the entries for BI's block.
3320   AddPredecessorToBlock(OtherDest, PBI->getParent(), BB);
3321 
3322   // We know that the CommonDest already had an edge from PBI to
3323   // it.  If it has PHIs though, the PHIs may have different
3324   // entries for BB and PBI's BB.  If so, insert a select to make
3325   // them agree.
3326   PHINode *PN;
3327   for (BasicBlock::iterator II = CommonDest->begin();
3328        (PN = dyn_cast<PHINode>(II)); ++II) {
3329     Value *BIV = PN->getIncomingValueForBlock(BB);
3330     unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
3331     Value *PBIV = PN->getIncomingValue(PBBIdx);
3332     if (BIV != PBIV) {
3333       // Insert a select in PBI to pick the right value.
3334       SelectInst *NV = cast<SelectInst>(
3335           Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName() + ".mux"));
3336       PN->setIncomingValue(PBBIdx, NV);
3337       // Although the select has the same condition as PBI, the original branch
3338       // weights for PBI do not apply to the new select because the select's
3339       // 'logical' edges are incoming edges of the phi that is eliminated, not
3340       // the outgoing edges of PBI.
3341       if (HasWeights) {
3342         uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
3343         uint64_t PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
3344         uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
3345         uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
3346         // The weight to PredCommonDest should be PredCommon * SuccTotal.
3347         // The weight to PredOtherDest should be PredOther * SuccCommon.
3348         uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther),
3349                                   PredOther * SuccCommon};
3350 
3351         FitWeights(NewWeights);
3352 
3353         NV->setMetadata(LLVMContext::MD_prof,
3354                         MDBuilder(BI->getContext())
3355                             .createBranchWeights(NewWeights[0], NewWeights[1]));
3356       }
3357     }
3358   }
3359 
3360   DEBUG(dbgs() << "INTO: " << *PBI->getParent());
3361   DEBUG(dbgs() << *PBI->getParent()->getParent());
3362 
3363   // This basic block is probably dead.  We know it has at least
3364   // one fewer predecessor.
3365   return true;
3366 }
3367 
3368 // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is
3369 // true or to FalseBB if Cond is false.
3370 // Takes care of updating the successors and removing the old terminator.
3371 // Also makes sure not to introduce new successors by assuming that edges to
3372 // non-successor TrueBBs and FalseBBs aren't reachable.
3373 static bool SimplifyTerminatorOnSelect(TerminatorInst *OldTerm, Value *Cond,
3374                                        BasicBlock *TrueBB, BasicBlock *FalseBB,
3375                                        uint32_t TrueWeight,
3376                                        uint32_t FalseWeight) {
3377   // Remove any superfluous successor edges from the CFG.
3378   // First, figure out which successors to preserve.
3379   // If TrueBB and FalseBB are equal, only try to preserve one copy of that
3380   // successor.
3381   BasicBlock *KeepEdge1 = TrueBB;
3382   BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr;
3383 
3384   // Then remove the rest.
3385   for (BasicBlock *Succ : OldTerm->successors()) {
3386     // Make sure only to keep exactly one copy of each edge.
3387     if (Succ == KeepEdge1)
3388       KeepEdge1 = nullptr;
3389     else if (Succ == KeepEdge2)
3390       KeepEdge2 = nullptr;
3391     else
3392       Succ->removePredecessor(OldTerm->getParent(),
3393                               /*DontDeleteUselessPHIs=*/true);
3394   }
3395 
3396   IRBuilder<> Builder(OldTerm);
3397   Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc());
3398 
3399   // Insert an appropriate new terminator.
3400   if (!KeepEdge1 && !KeepEdge2) {
3401     if (TrueBB == FalseBB)
3402       // We were only looking for one successor, and it was present.
3403       // Create an unconditional branch to it.
3404       Builder.CreateBr(TrueBB);
3405     else {
3406       // We found both of the successors we were looking for.
3407       // Create a conditional branch sharing the condition of the select.
3408       BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB);
3409       if (TrueWeight != FalseWeight)
3410         NewBI->setMetadata(LLVMContext::MD_prof,
3411                            MDBuilder(OldTerm->getContext())
3412                                .createBranchWeights(TrueWeight, FalseWeight));
3413     }
3414   } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) {
3415     // Neither of the selected blocks were successors, so this
3416     // terminator must be unreachable.
3417     new UnreachableInst(OldTerm->getContext(), OldTerm);
3418   } else {
3419     // One of the selected values was a successor, but the other wasn't.
3420     // Insert an unconditional branch to the one that was found;
3421     // the edge to the one that wasn't must be unreachable.
3422     if (!KeepEdge1)
3423       // Only TrueBB was found.
3424       Builder.CreateBr(TrueBB);
3425     else
3426       // Only FalseBB was found.
3427       Builder.CreateBr(FalseBB);
3428   }
3429 
3430   EraseTerminatorInstAndDCECond(OldTerm);
3431   return true;
3432 }
3433 
3434 // Replaces
3435 //   (switch (select cond, X, Y)) on constant X, Y
3436 // with a branch - conditional if X and Y lead to distinct BBs,
3437 // unconditional otherwise.
3438 static bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select) {
3439   // Check for constant integer values in the select.
3440   ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue());
3441   ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue());
3442   if (!TrueVal || !FalseVal)
3443     return false;
3444 
3445   // Find the relevant condition and destinations.
3446   Value *Condition = Select->getCondition();
3447   BasicBlock *TrueBB = SI->findCaseValue(TrueVal).getCaseSuccessor();
3448   BasicBlock *FalseBB = SI->findCaseValue(FalseVal).getCaseSuccessor();
3449 
3450   // Get weight for TrueBB and FalseBB.
3451   uint32_t TrueWeight = 0, FalseWeight = 0;
3452   SmallVector<uint64_t, 8> Weights;
3453   bool HasWeights = HasBranchWeights(SI);
3454   if (HasWeights) {
3455     GetBranchWeights(SI, Weights);
3456     if (Weights.size() == 1 + SI->getNumCases()) {
3457       TrueWeight =
3458           (uint32_t)Weights[SI->findCaseValue(TrueVal).getSuccessorIndex()];
3459       FalseWeight =
3460           (uint32_t)Weights[SI->findCaseValue(FalseVal).getSuccessorIndex()];
3461     }
3462   }
3463 
3464   // Perform the actual simplification.
3465   return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, TrueWeight,
3466                                     FalseWeight);
3467 }
3468 
3469 // Replaces
3470 //   (indirectbr (select cond, blockaddress(@fn, BlockA),
3471 //                             blockaddress(@fn, BlockB)))
3472 // with
3473 //   (br cond, BlockA, BlockB).
3474 static bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI) {
3475   // Check that both operands of the select are block addresses.
3476   BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue());
3477   BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue());
3478   if (!TBA || !FBA)
3479     return false;
3480 
3481   // Extract the actual blocks.
3482   BasicBlock *TrueBB = TBA->getBasicBlock();
3483   BasicBlock *FalseBB = FBA->getBasicBlock();
3484 
3485   // Perform the actual simplification.
3486   return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 0,
3487                                     0);
3488 }
3489 
3490 /// This is called when we find an icmp instruction
3491 /// (a seteq/setne with a constant) as the only instruction in a
3492 /// block that ends with an uncond branch.  We are looking for a very specific
3493 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified.  In
3494 /// this case, we merge the first two "or's of icmp" into a switch, but then the
3495 /// default value goes to an uncond block with a seteq in it, we get something
3496 /// like:
3497 ///
3498 ///   switch i8 %A, label %DEFAULT [ i8 1, label %end    i8 2, label %end ]
3499 /// DEFAULT:
3500 ///   %tmp = icmp eq i8 %A, 92
3501 ///   br label %end
3502 /// end:
3503 ///   ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ]
3504 ///
3505 /// We prefer to split the edge to 'end' so that there is a true/false entry to
3506 /// the PHI, merging the third icmp into the switch.
3507 static bool TryToSimplifyUncondBranchWithICmpInIt(
3508     ICmpInst *ICI, IRBuilder<> &Builder, const DataLayout &DL,
3509     const TargetTransformInfo &TTI, unsigned BonusInstThreshold,
3510     AssumptionCache *AC) {
3511   BasicBlock *BB = ICI->getParent();
3512 
3513   // If the block has any PHIs in it or the icmp has multiple uses, it is too
3514   // complex.
3515   if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse())
3516     return false;
3517 
3518   Value *V = ICI->getOperand(0);
3519   ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1));
3520 
3521   // The pattern we're looking for is where our only predecessor is a switch on
3522   // 'V' and this block is the default case for the switch.  In this case we can
3523   // fold the compared value into the switch to simplify things.
3524   BasicBlock *Pred = BB->getSinglePredecessor();
3525   if (!Pred || !isa<SwitchInst>(Pred->getTerminator()))
3526     return false;
3527 
3528   SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator());
3529   if (SI->getCondition() != V)
3530     return false;
3531 
3532   // If BB is reachable on a non-default case, then we simply know the value of
3533   // V in this block.  Substitute it and constant fold the icmp instruction
3534   // away.
3535   if (SI->getDefaultDest() != BB) {
3536     ConstantInt *VVal = SI->findCaseDest(BB);
3537     assert(VVal && "Should have a unique destination value");
3538     ICI->setOperand(0, VVal);
3539 
3540     if (Value *V = SimplifyInstruction(ICI, DL)) {
3541       ICI->replaceAllUsesWith(V);
3542       ICI->eraseFromParent();
3543     }
3544     // BB is now empty, so it is likely to simplify away.
3545     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
3546   }
3547 
3548   // Ok, the block is reachable from the default dest.  If the constant we're
3549   // comparing exists in one of the other edges, then we can constant fold ICI
3550   // and zap it.
3551   if (SI->findCaseValue(Cst) != SI->case_default()) {
3552     Value *V;
3553     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
3554       V = ConstantInt::getFalse(BB->getContext());
3555     else
3556       V = ConstantInt::getTrue(BB->getContext());
3557 
3558     ICI->replaceAllUsesWith(V);
3559     ICI->eraseFromParent();
3560     // BB is now empty, so it is likely to simplify away.
3561     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
3562   }
3563 
3564   // The use of the icmp has to be in the 'end' block, by the only PHI node in
3565   // the block.
3566   BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0);
3567   PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back());
3568   if (PHIUse == nullptr || PHIUse != &SuccBlock->front() ||
3569       isa<PHINode>(++BasicBlock::iterator(PHIUse)))
3570     return false;
3571 
3572   // If the icmp is a SETEQ, then the default dest gets false, the new edge gets
3573   // true in the PHI.
3574   Constant *DefaultCst = ConstantInt::getTrue(BB->getContext());
3575   Constant *NewCst = ConstantInt::getFalse(BB->getContext());
3576 
3577   if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
3578     std::swap(DefaultCst, NewCst);
3579 
3580   // Replace ICI (which is used by the PHI for the default value) with true or
3581   // false depending on if it is EQ or NE.
3582   ICI->replaceAllUsesWith(DefaultCst);
3583   ICI->eraseFromParent();
3584 
3585   // Okay, the switch goes to this block on a default value.  Add an edge from
3586   // the switch to the merge point on the compared value.
3587   BasicBlock *NewBB =
3588       BasicBlock::Create(BB->getContext(), "switch.edge", BB->getParent(), BB);
3589   SmallVector<uint64_t, 8> Weights;
3590   bool HasWeights = HasBranchWeights(SI);
3591   if (HasWeights) {
3592     GetBranchWeights(SI, Weights);
3593     if (Weights.size() == 1 + SI->getNumCases()) {
3594       // Split weight for default case to case for "Cst".
3595       Weights[0] = (Weights[0] + 1) >> 1;
3596       Weights.push_back(Weights[0]);
3597 
3598       SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
3599       SI->setMetadata(
3600           LLVMContext::MD_prof,
3601           MDBuilder(SI->getContext()).createBranchWeights(MDWeights));
3602     }
3603   }
3604   SI->addCase(Cst, NewBB);
3605 
3606   // NewBB branches to the phi block, add the uncond branch and the phi entry.
3607   Builder.SetInsertPoint(NewBB);
3608   Builder.SetCurrentDebugLocation(SI->getDebugLoc());
3609   Builder.CreateBr(SuccBlock);
3610   PHIUse->addIncoming(NewCst, NewBB);
3611   return true;
3612 }
3613 
3614 /// The specified branch is a conditional branch.
3615 /// Check to see if it is branching on an or/and chain of icmp instructions, and
3616 /// fold it into a switch instruction if so.
3617 static bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder,
3618                                       const DataLayout &DL) {
3619   Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
3620   if (!Cond)
3621     return false;
3622 
3623   // Change br (X == 0 | X == 1), T, F into a switch instruction.
3624   // If this is a bunch of seteq's or'd together, or if it's a bunch of
3625   // 'setne's and'ed together, collect them.
3626 
3627   // Try to gather values from a chain of and/or to be turned into a switch
3628   ConstantComparesGatherer ConstantCompare(Cond, DL);
3629   // Unpack the result
3630   SmallVectorImpl<ConstantInt *> &Values = ConstantCompare.Vals;
3631   Value *CompVal = ConstantCompare.CompValue;
3632   unsigned UsedICmps = ConstantCompare.UsedICmps;
3633   Value *ExtraCase = ConstantCompare.Extra;
3634 
3635   // If we didn't have a multiply compared value, fail.
3636   if (!CompVal)
3637     return false;
3638 
3639   // Avoid turning single icmps into a switch.
3640   if (UsedICmps <= 1)
3641     return false;
3642 
3643   bool TrueWhenEqual = (Cond->getOpcode() == Instruction::Or);
3644 
3645   // There might be duplicate constants in the list, which the switch
3646   // instruction can't handle, remove them now.
3647   array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate);
3648   Values.erase(std::unique(Values.begin(), Values.end()), Values.end());
3649 
3650   // If Extra was used, we require at least two switch values to do the
3651   // transformation.  A switch with one value is just a conditional branch.
3652   if (ExtraCase && Values.size() < 2)
3653     return false;
3654 
3655   // TODO: Preserve branch weight metadata, similarly to how
3656   // FoldValueComparisonIntoPredecessors preserves it.
3657 
3658   // Figure out which block is which destination.
3659   BasicBlock *DefaultBB = BI->getSuccessor(1);
3660   BasicBlock *EdgeBB = BI->getSuccessor(0);
3661   if (!TrueWhenEqual)
3662     std::swap(DefaultBB, EdgeBB);
3663 
3664   BasicBlock *BB = BI->getParent();
3665 
3666   DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size()
3667                << " cases into SWITCH.  BB is:\n"
3668                << *BB);
3669 
3670   // If there are any extra values that couldn't be folded into the switch
3671   // then we evaluate them with an explicit branch first.  Split the block
3672   // right before the condbr to handle it.
3673   if (ExtraCase) {
3674     BasicBlock *NewBB =
3675         BB->splitBasicBlock(BI->getIterator(), "switch.early.test");
3676     // Remove the uncond branch added to the old block.
3677     TerminatorInst *OldTI = BB->getTerminator();
3678     Builder.SetInsertPoint(OldTI);
3679 
3680     if (TrueWhenEqual)
3681       Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB);
3682     else
3683       Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB);
3684 
3685     OldTI->eraseFromParent();
3686 
3687     // If there are PHI nodes in EdgeBB, then we need to add a new entry to them
3688     // for the edge we just added.
3689     AddPredecessorToBlock(EdgeBB, BB, NewBB);
3690 
3691     DEBUG(dbgs() << "  ** 'icmp' chain unhandled condition: " << *ExtraCase
3692                  << "\nEXTRABB = " << *BB);
3693     BB = NewBB;
3694   }
3695 
3696   Builder.SetInsertPoint(BI);
3697   // Convert pointer to int before we switch.
3698   if (CompVal->getType()->isPointerTy()) {
3699     CompVal = Builder.CreatePtrToInt(
3700         CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr");
3701   }
3702 
3703   // Create the new switch instruction now.
3704   SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size());
3705 
3706   // Add all of the 'cases' to the switch instruction.
3707   for (unsigned i = 0, e = Values.size(); i != e; ++i)
3708     New->addCase(Values[i], EdgeBB);
3709 
3710   // We added edges from PI to the EdgeBB.  As such, if there were any
3711   // PHI nodes in EdgeBB, they need entries to be added corresponding to
3712   // the number of edges added.
3713   for (BasicBlock::iterator BBI = EdgeBB->begin(); isa<PHINode>(BBI); ++BBI) {
3714     PHINode *PN = cast<PHINode>(BBI);
3715     Value *InVal = PN->getIncomingValueForBlock(BB);
3716     for (unsigned i = 0, e = Values.size() - 1; i != e; ++i)
3717       PN->addIncoming(InVal, BB);
3718   }
3719 
3720   // Erase the old branch instruction.
3721   EraseTerminatorInstAndDCECond(BI);
3722 
3723   DEBUG(dbgs() << "  ** 'icmp' chain result is:\n" << *BB << '\n');
3724   return true;
3725 }
3726 
3727 bool SimplifyCFGOpt::SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder) {
3728   if (isa<PHINode>(RI->getValue()))
3729     return SimplifyCommonResume(RI);
3730   else if (isa<LandingPadInst>(RI->getParent()->getFirstNonPHI()) &&
3731            RI->getValue() == RI->getParent()->getFirstNonPHI())
3732     // The resume must unwind the exception that caused control to branch here.
3733     return SimplifySingleResume(RI);
3734 
3735   return false;
3736 }
3737 
3738 // Simplify resume that is shared by several landing pads (phi of landing pad).
3739 bool SimplifyCFGOpt::SimplifyCommonResume(ResumeInst *RI) {
3740   BasicBlock *BB = RI->getParent();
3741 
3742   // Check that there are no other instructions except for debug intrinsics
3743   // between the phi of landing pads (RI->getValue()) and resume instruction.
3744   BasicBlock::iterator I = cast<Instruction>(RI->getValue())->getIterator(),
3745                        E = RI->getIterator();
3746   while (++I != E)
3747     if (!isa<DbgInfoIntrinsic>(I))
3748       return false;
3749 
3750   SmallSet<BasicBlock *, 4> TrivialUnwindBlocks;
3751   auto *PhiLPInst = cast<PHINode>(RI->getValue());
3752 
3753   // Check incoming blocks to see if any of them are trivial.
3754   for (unsigned Idx = 0, End = PhiLPInst->getNumIncomingValues(); Idx != End;
3755        Idx++) {
3756     auto *IncomingBB = PhiLPInst->getIncomingBlock(Idx);
3757     auto *IncomingValue = PhiLPInst->getIncomingValue(Idx);
3758 
3759     // If the block has other successors, we can not delete it because
3760     // it has other dependents.
3761     if (IncomingBB->getUniqueSuccessor() != BB)
3762       continue;
3763 
3764     auto *LandingPad = dyn_cast<LandingPadInst>(IncomingBB->getFirstNonPHI());
3765     // Not the landing pad that caused the control to branch here.
3766     if (IncomingValue != LandingPad)
3767       continue;
3768 
3769     bool isTrivial = true;
3770 
3771     I = IncomingBB->getFirstNonPHI()->getIterator();
3772     E = IncomingBB->getTerminator()->getIterator();
3773     while (++I != E)
3774       if (!isa<DbgInfoIntrinsic>(I)) {
3775         isTrivial = false;
3776         break;
3777       }
3778 
3779     if (isTrivial)
3780       TrivialUnwindBlocks.insert(IncomingBB);
3781   }
3782 
3783   // If no trivial unwind blocks, don't do any simplifications.
3784   if (TrivialUnwindBlocks.empty())
3785     return false;
3786 
3787   // Turn all invokes that unwind here into calls.
3788   for (auto *TrivialBB : TrivialUnwindBlocks) {
3789     // Blocks that will be simplified should be removed from the phi node.
3790     // Note there could be multiple edges to the resume block, and we need
3791     // to remove them all.
3792     while (PhiLPInst->getBasicBlockIndex(TrivialBB) != -1)
3793       BB->removePredecessor(TrivialBB, true);
3794 
3795     for (pred_iterator PI = pred_begin(TrivialBB), PE = pred_end(TrivialBB);
3796          PI != PE;) {
3797       BasicBlock *Pred = *PI++;
3798       removeUnwindEdge(Pred);
3799     }
3800 
3801     // In each SimplifyCFG run, only the current processed block can be erased.
3802     // Otherwise, it will break the iteration of SimplifyCFG pass. So instead
3803     // of erasing TrivialBB, we only remove the branch to the common resume
3804     // block so that we can later erase the resume block since it has no
3805     // predecessors.
3806     TrivialBB->getTerminator()->eraseFromParent();
3807     new UnreachableInst(RI->getContext(), TrivialBB);
3808   }
3809 
3810   // Delete the resume block if all its predecessors have been removed.
3811   if (pred_empty(BB))
3812     BB->eraseFromParent();
3813 
3814   return !TrivialUnwindBlocks.empty();
3815 }
3816 
3817 // Simplify resume that is only used by a single (non-phi) landing pad.
3818 bool SimplifyCFGOpt::SimplifySingleResume(ResumeInst *RI) {
3819   BasicBlock *BB = RI->getParent();
3820   LandingPadInst *LPInst = dyn_cast<LandingPadInst>(BB->getFirstNonPHI());
3821   assert(RI->getValue() == LPInst &&
3822          "Resume must unwind the exception that caused control to here");
3823 
3824   // Check that there are no other instructions except for debug intrinsics.
3825   BasicBlock::iterator I = LPInst->getIterator(), E = RI->getIterator();
3826   while (++I != E)
3827     if (!isa<DbgInfoIntrinsic>(I))
3828       return false;
3829 
3830   // Turn all invokes that unwind here into calls and delete the basic block.
3831   for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) {
3832     BasicBlock *Pred = *PI++;
3833     removeUnwindEdge(Pred);
3834   }
3835 
3836   // The landingpad is now unreachable.  Zap it.
3837   BB->eraseFromParent();
3838   if (LoopHeaders)
3839     LoopHeaders->erase(BB);
3840   return true;
3841 }
3842 
3843 static bool removeEmptyCleanup(CleanupReturnInst *RI) {
3844   // If this is a trivial cleanup pad that executes no instructions, it can be
3845   // eliminated.  If the cleanup pad continues to the caller, any predecessor
3846   // that is an EH pad will be updated to continue to the caller and any
3847   // predecessor that terminates with an invoke instruction will have its invoke
3848   // instruction converted to a call instruction.  If the cleanup pad being
3849   // simplified does not continue to the caller, each predecessor will be
3850   // updated to continue to the unwind destination of the cleanup pad being
3851   // simplified.
3852   BasicBlock *BB = RI->getParent();
3853   CleanupPadInst *CPInst = RI->getCleanupPad();
3854   if (CPInst->getParent() != BB)
3855     // This isn't an empty cleanup.
3856     return false;
3857 
3858   // We cannot kill the pad if it has multiple uses.  This typically arises
3859   // from unreachable basic blocks.
3860   if (!CPInst->hasOneUse())
3861     return false;
3862 
3863   // Check that there are no other instructions except for benign intrinsics.
3864   BasicBlock::iterator I = CPInst->getIterator(), E = RI->getIterator();
3865   while (++I != E) {
3866     auto *II = dyn_cast<IntrinsicInst>(I);
3867     if (!II)
3868       return false;
3869 
3870     Intrinsic::ID IntrinsicID = II->getIntrinsicID();
3871     switch (IntrinsicID) {
3872     case Intrinsic::dbg_declare:
3873     case Intrinsic::dbg_value:
3874     case Intrinsic::lifetime_end:
3875       break;
3876     default:
3877       return false;
3878     }
3879   }
3880 
3881   // If the cleanup return we are simplifying unwinds to the caller, this will
3882   // set UnwindDest to nullptr.
3883   BasicBlock *UnwindDest = RI->getUnwindDest();
3884   Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr;
3885 
3886   // We're about to remove BB from the control flow.  Before we do, sink any
3887   // PHINodes into the unwind destination.  Doing this before changing the
3888   // control flow avoids some potentially slow checks, since we can currently
3889   // be certain that UnwindDest and BB have no common predecessors (since they
3890   // are both EH pads).
3891   if (UnwindDest) {
3892     // First, go through the PHI nodes in UnwindDest and update any nodes that
3893     // reference the block we are removing
3894     for (BasicBlock::iterator I = UnwindDest->begin(),
3895                               IE = DestEHPad->getIterator();
3896          I != IE; ++I) {
3897       PHINode *DestPN = cast<PHINode>(I);
3898 
3899       int Idx = DestPN->getBasicBlockIndex(BB);
3900       // Since BB unwinds to UnwindDest, it has to be in the PHI node.
3901       assert(Idx != -1);
3902       // This PHI node has an incoming value that corresponds to a control
3903       // path through the cleanup pad we are removing.  If the incoming
3904       // value is in the cleanup pad, it must be a PHINode (because we
3905       // verified above that the block is otherwise empty).  Otherwise, the
3906       // value is either a constant or a value that dominates the cleanup
3907       // pad being removed.
3908       //
3909       // Because BB and UnwindDest are both EH pads, all of their
3910       // predecessors must unwind to these blocks, and since no instruction
3911       // can have multiple unwind destinations, there will be no overlap in
3912       // incoming blocks between SrcPN and DestPN.
3913       Value *SrcVal = DestPN->getIncomingValue(Idx);
3914       PHINode *SrcPN = dyn_cast<PHINode>(SrcVal);
3915 
3916       // Remove the entry for the block we are deleting.
3917       DestPN->removeIncomingValue(Idx, false);
3918 
3919       if (SrcPN && SrcPN->getParent() == BB) {
3920         // If the incoming value was a PHI node in the cleanup pad we are
3921         // removing, we need to merge that PHI node's incoming values into
3922         // DestPN.
3923         for (unsigned SrcIdx = 0, SrcE = SrcPN->getNumIncomingValues();
3924              SrcIdx != SrcE; ++SrcIdx) {
3925           DestPN->addIncoming(SrcPN->getIncomingValue(SrcIdx),
3926                               SrcPN->getIncomingBlock(SrcIdx));
3927         }
3928       } else {
3929         // Otherwise, the incoming value came from above BB and
3930         // so we can just reuse it.  We must associate all of BB's
3931         // predecessors with this value.
3932         for (auto *pred : predecessors(BB)) {
3933           DestPN->addIncoming(SrcVal, pred);
3934         }
3935       }
3936     }
3937 
3938     // Sink any remaining PHI nodes directly into UnwindDest.
3939     Instruction *InsertPt = DestEHPad;
3940     for (BasicBlock::iterator I = BB->begin(),
3941                               IE = BB->getFirstNonPHI()->getIterator();
3942          I != IE;) {
3943       // The iterator must be incremented here because the instructions are
3944       // being moved to another block.
3945       PHINode *PN = cast<PHINode>(I++);
3946       if (PN->use_empty())
3947         // If the PHI node has no uses, just leave it.  It will be erased
3948         // when we erase BB below.
3949         continue;
3950 
3951       // Otherwise, sink this PHI node into UnwindDest.
3952       // Any predecessors to UnwindDest which are not already represented
3953       // must be back edges which inherit the value from the path through
3954       // BB.  In this case, the PHI value must reference itself.
3955       for (auto *pred : predecessors(UnwindDest))
3956         if (pred != BB)
3957           PN->addIncoming(PN, pred);
3958       PN->moveBefore(InsertPt);
3959     }
3960   }
3961 
3962   for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) {
3963     // The iterator must be updated here because we are removing this pred.
3964     BasicBlock *PredBB = *PI++;
3965     if (UnwindDest == nullptr) {
3966       removeUnwindEdge(PredBB);
3967     } else {
3968       TerminatorInst *TI = PredBB->getTerminator();
3969       TI->replaceUsesOfWith(BB, UnwindDest);
3970     }
3971   }
3972 
3973   // The cleanup pad is now unreachable.  Zap it.
3974   BB->eraseFromParent();
3975   return true;
3976 }
3977 
3978 // Try to merge two cleanuppads together.
3979 static bool mergeCleanupPad(CleanupReturnInst *RI) {
3980   // Skip any cleanuprets which unwind to caller, there is nothing to merge
3981   // with.
3982   BasicBlock *UnwindDest = RI->getUnwindDest();
3983   if (!UnwindDest)
3984     return false;
3985 
3986   // This cleanupret isn't the only predecessor of this cleanuppad, it wouldn't
3987   // be safe to merge without code duplication.
3988   if (UnwindDest->getSinglePredecessor() != RI->getParent())
3989     return false;
3990 
3991   // Verify that our cleanuppad's unwind destination is another cleanuppad.
3992   auto *SuccessorCleanupPad = dyn_cast<CleanupPadInst>(&UnwindDest->front());
3993   if (!SuccessorCleanupPad)
3994     return false;
3995 
3996   CleanupPadInst *PredecessorCleanupPad = RI->getCleanupPad();
3997   // Replace any uses of the successor cleanupad with the predecessor pad
3998   // The only cleanuppad uses should be this cleanupret, it's cleanupret and
3999   // funclet bundle operands.
4000   SuccessorCleanupPad->replaceAllUsesWith(PredecessorCleanupPad);
4001   // Remove the old cleanuppad.
4002   SuccessorCleanupPad->eraseFromParent();
4003   // Now, we simply replace the cleanupret with a branch to the unwind
4004   // destination.
4005   BranchInst::Create(UnwindDest, RI->getParent());
4006   RI->eraseFromParent();
4007 
4008   return true;
4009 }
4010 
4011 bool SimplifyCFGOpt::SimplifyCleanupReturn(CleanupReturnInst *RI) {
4012   // It is possible to transiantly have an undef cleanuppad operand because we
4013   // have deleted some, but not all, dead blocks.
4014   // Eventually, this block will be deleted.
4015   if (isa<UndefValue>(RI->getOperand(0)))
4016     return false;
4017 
4018   if (mergeCleanupPad(RI))
4019     return true;
4020 
4021   if (removeEmptyCleanup(RI))
4022     return true;
4023 
4024   return false;
4025 }
4026 
4027 bool SimplifyCFGOpt::SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) {
4028   BasicBlock *BB = RI->getParent();
4029   if (!BB->getFirstNonPHIOrDbg()->isTerminator())
4030     return false;
4031 
4032   // Find predecessors that end with branches.
4033   SmallVector<BasicBlock *, 8> UncondBranchPreds;
4034   SmallVector<BranchInst *, 8> CondBranchPreds;
4035   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
4036     BasicBlock *P = *PI;
4037     TerminatorInst *PTI = P->getTerminator();
4038     if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) {
4039       if (BI->isUnconditional())
4040         UncondBranchPreds.push_back(P);
4041       else
4042         CondBranchPreds.push_back(BI);
4043     }
4044   }
4045 
4046   // If we found some, do the transformation!
4047   if (!UncondBranchPreds.empty() && DupRet) {
4048     while (!UncondBranchPreds.empty()) {
4049       BasicBlock *Pred = UncondBranchPreds.pop_back_val();
4050       DEBUG(dbgs() << "FOLDING: " << *BB
4051                    << "INTO UNCOND BRANCH PRED: " << *Pred);
4052       (void)FoldReturnIntoUncondBranch(RI, BB, Pred);
4053     }
4054 
4055     // If we eliminated all predecessors of the block, delete the block now.
4056     if (pred_empty(BB)) {
4057       // We know there are no successors, so just nuke the block.
4058       BB->eraseFromParent();
4059       if (LoopHeaders)
4060         LoopHeaders->erase(BB);
4061     }
4062 
4063     return true;
4064   }
4065 
4066   // Check out all of the conditional branches going to this return
4067   // instruction.  If any of them just select between returns, change the
4068   // branch itself into a select/return pair.
4069   while (!CondBranchPreds.empty()) {
4070     BranchInst *BI = CondBranchPreds.pop_back_val();
4071 
4072     // Check to see if the non-BB successor is also a return block.
4073     if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) &&
4074         isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) &&
4075         SimplifyCondBranchToTwoReturns(BI, Builder))
4076       return true;
4077   }
4078   return false;
4079 }
4080 
4081 bool SimplifyCFGOpt::SimplifyUnreachable(UnreachableInst *UI) {
4082   BasicBlock *BB = UI->getParent();
4083 
4084   bool Changed = false;
4085 
4086   // If there are any instructions immediately before the unreachable that can
4087   // be removed, do so.
4088   while (UI->getIterator() != BB->begin()) {
4089     BasicBlock::iterator BBI = UI->getIterator();
4090     --BBI;
4091     // Do not delete instructions that can have side effects which might cause
4092     // the unreachable to not be reachable; specifically, calls and volatile
4093     // operations may have this effect.
4094     if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI))
4095       break;
4096 
4097     if (BBI->mayHaveSideEffects()) {
4098       if (auto *SI = dyn_cast<StoreInst>(BBI)) {
4099         if (SI->isVolatile())
4100           break;
4101       } else if (auto *LI = dyn_cast<LoadInst>(BBI)) {
4102         if (LI->isVolatile())
4103           break;
4104       } else if (auto *RMWI = dyn_cast<AtomicRMWInst>(BBI)) {
4105         if (RMWI->isVolatile())
4106           break;
4107       } else if (auto *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) {
4108         if (CXI->isVolatile())
4109           break;
4110       } else if (isa<CatchPadInst>(BBI)) {
4111         // A catchpad may invoke exception object constructors and such, which
4112         // in some languages can be arbitrary code, so be conservative by
4113         // default.
4114         // For CoreCLR, it just involves a type test, so can be removed.
4115         if (classifyEHPersonality(BB->getParent()->getPersonalityFn()) !=
4116             EHPersonality::CoreCLR)
4117           break;
4118       } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) &&
4119                  !isa<LandingPadInst>(BBI)) {
4120         break;
4121       }
4122       // Note that deleting LandingPad's here is in fact okay, although it
4123       // involves a bit of subtle reasoning. If this inst is a LandingPad,
4124       // all the predecessors of this block will be the unwind edges of Invokes,
4125       // and we can therefore guarantee this block will be erased.
4126     }
4127 
4128     // Delete this instruction (any uses are guaranteed to be dead)
4129     if (!BBI->use_empty())
4130       BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
4131     BBI->eraseFromParent();
4132     Changed = true;
4133   }
4134 
4135   // If the unreachable instruction is the first in the block, take a gander
4136   // at all of the predecessors of this instruction, and simplify them.
4137   if (&BB->front() != UI)
4138     return Changed;
4139 
4140   SmallVector<BasicBlock *, 8> Preds(pred_begin(BB), pred_end(BB));
4141   for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
4142     TerminatorInst *TI = Preds[i]->getTerminator();
4143     IRBuilder<> Builder(TI);
4144     if (auto *BI = dyn_cast<BranchInst>(TI)) {
4145       if (BI->isUnconditional()) {
4146         if (BI->getSuccessor(0) == BB) {
4147           new UnreachableInst(TI->getContext(), TI);
4148           TI->eraseFromParent();
4149           Changed = true;
4150         }
4151       } else {
4152         if (BI->getSuccessor(0) == BB) {
4153           Builder.CreateBr(BI->getSuccessor(1));
4154           EraseTerminatorInstAndDCECond(BI);
4155         } else if (BI->getSuccessor(1) == BB) {
4156           Builder.CreateBr(BI->getSuccessor(0));
4157           EraseTerminatorInstAndDCECond(BI);
4158           Changed = true;
4159         }
4160       }
4161     } else if (auto *SI = dyn_cast<SwitchInst>(TI)) {
4162       for (auto i = SI->case_begin(), e = SI->case_end(); i != e;) {
4163         if (i.getCaseSuccessor() != BB) {
4164           ++i;
4165           continue;
4166         }
4167         BB->removePredecessor(SI->getParent());
4168         i = SI->removeCase(i);
4169         e = SI->case_end();
4170         Changed = true;
4171       }
4172     } else if (auto *II = dyn_cast<InvokeInst>(TI)) {
4173       if (II->getUnwindDest() == BB) {
4174         removeUnwindEdge(TI->getParent());
4175         Changed = true;
4176       }
4177     } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) {
4178       if (CSI->getUnwindDest() == BB) {
4179         removeUnwindEdge(TI->getParent());
4180         Changed = true;
4181         continue;
4182       }
4183 
4184       for (CatchSwitchInst::handler_iterator I = CSI->handler_begin(),
4185                                              E = CSI->handler_end();
4186            I != E; ++I) {
4187         if (*I == BB) {
4188           CSI->removeHandler(I);
4189           --I;
4190           --E;
4191           Changed = true;
4192         }
4193       }
4194       if (CSI->getNumHandlers() == 0) {
4195         BasicBlock *CatchSwitchBB = CSI->getParent();
4196         if (CSI->hasUnwindDest()) {
4197           // Redirect preds to the unwind dest
4198           CatchSwitchBB->replaceAllUsesWith(CSI->getUnwindDest());
4199         } else {
4200           // Rewrite all preds to unwind to caller (or from invoke to call).
4201           SmallVector<BasicBlock *, 8> EHPreds(predecessors(CatchSwitchBB));
4202           for (BasicBlock *EHPred : EHPreds)
4203             removeUnwindEdge(EHPred);
4204         }
4205         // The catchswitch is no longer reachable.
4206         new UnreachableInst(CSI->getContext(), CSI);
4207         CSI->eraseFromParent();
4208         Changed = true;
4209       }
4210     } else if (isa<CleanupReturnInst>(TI)) {
4211       new UnreachableInst(TI->getContext(), TI);
4212       TI->eraseFromParent();
4213       Changed = true;
4214     }
4215   }
4216 
4217   // If this block is now dead, remove it.
4218   if (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) {
4219     // We know there are no successors, so just nuke the block.
4220     BB->eraseFromParent();
4221     if (LoopHeaders)
4222       LoopHeaders->erase(BB);
4223     return true;
4224   }
4225 
4226   return Changed;
4227 }
4228 
4229 static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) {
4230   assert(Cases.size() >= 1);
4231 
4232   array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate);
4233   for (size_t I = 1, E = Cases.size(); I != E; ++I) {
4234     if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1)
4235       return false;
4236   }
4237   return true;
4238 }
4239 
4240 /// Turn a switch with two reachable destinations into an integer range
4241 /// comparison and branch.
4242 static bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder) {
4243   assert(SI->getNumCases() > 1 && "Degenerate switch?");
4244 
4245   bool HasDefault =
4246       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
4247 
4248   // Partition the cases into two sets with different destinations.
4249   BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr;
4250   BasicBlock *DestB = nullptr;
4251   SmallVector<ConstantInt *, 16> CasesA;
4252   SmallVector<ConstantInt *, 16> CasesB;
4253 
4254   for (SwitchInst::CaseIt I : SI->cases()) {
4255     BasicBlock *Dest = I.getCaseSuccessor();
4256     if (!DestA)
4257       DestA = Dest;
4258     if (Dest == DestA) {
4259       CasesA.push_back(I.getCaseValue());
4260       continue;
4261     }
4262     if (!DestB)
4263       DestB = Dest;
4264     if (Dest == DestB) {
4265       CasesB.push_back(I.getCaseValue());
4266       continue;
4267     }
4268     return false; // More than two destinations.
4269   }
4270 
4271   assert(DestA && DestB &&
4272          "Single-destination switch should have been folded.");
4273   assert(DestA != DestB);
4274   assert(DestB != SI->getDefaultDest());
4275   assert(!CasesB.empty() && "There must be non-default cases.");
4276   assert(!CasesA.empty() || HasDefault);
4277 
4278   // Figure out if one of the sets of cases form a contiguous range.
4279   SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr;
4280   BasicBlock *ContiguousDest = nullptr;
4281   BasicBlock *OtherDest = nullptr;
4282   if (!CasesA.empty() && CasesAreContiguous(CasesA)) {
4283     ContiguousCases = &CasesA;
4284     ContiguousDest = DestA;
4285     OtherDest = DestB;
4286   } else if (CasesAreContiguous(CasesB)) {
4287     ContiguousCases = &CasesB;
4288     ContiguousDest = DestB;
4289     OtherDest = DestA;
4290   } else
4291     return false;
4292 
4293   // Start building the compare and branch.
4294 
4295   Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back());
4296   Constant *NumCases =
4297       ConstantInt::get(Offset->getType(), ContiguousCases->size());
4298 
4299   Value *Sub = SI->getCondition();
4300   if (!Offset->isNullValue())
4301     Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off");
4302 
4303   Value *Cmp;
4304   // If NumCases overflowed, then all possible values jump to the successor.
4305   if (NumCases->isNullValue() && !ContiguousCases->empty())
4306     Cmp = ConstantInt::getTrue(SI->getContext());
4307   else
4308     Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch");
4309   BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest);
4310 
4311   // Update weight for the newly-created conditional branch.
4312   if (HasBranchWeights(SI)) {
4313     SmallVector<uint64_t, 8> Weights;
4314     GetBranchWeights(SI, Weights);
4315     if (Weights.size() == 1 + SI->getNumCases()) {
4316       uint64_t TrueWeight = 0;
4317       uint64_t FalseWeight = 0;
4318       for (size_t I = 0, E = Weights.size(); I != E; ++I) {
4319         if (SI->getSuccessor(I) == ContiguousDest)
4320           TrueWeight += Weights[I];
4321         else
4322           FalseWeight += Weights[I];
4323       }
4324       while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) {
4325         TrueWeight /= 2;
4326         FalseWeight /= 2;
4327       }
4328       NewBI->setMetadata(LLVMContext::MD_prof,
4329                          MDBuilder(SI->getContext())
4330                              .createBranchWeights((uint32_t)TrueWeight,
4331                                                   (uint32_t)FalseWeight));
4332     }
4333   }
4334 
4335   // Prune obsolete incoming values off the successors' PHI nodes.
4336   for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) {
4337     unsigned PreviousEdges = ContiguousCases->size();
4338     if (ContiguousDest == SI->getDefaultDest())
4339       ++PreviousEdges;
4340     for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
4341       cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
4342   }
4343   for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) {
4344     unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size();
4345     if (OtherDest == SI->getDefaultDest())
4346       ++PreviousEdges;
4347     for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
4348       cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
4349   }
4350 
4351   // Drop the switch.
4352   SI->eraseFromParent();
4353 
4354   return true;
4355 }
4356 
4357 /// Compute masked bits for the condition of a switch
4358 /// and use it to remove dead cases.
4359 static bool EliminateDeadSwitchCases(SwitchInst *SI, AssumptionCache *AC,
4360                                      const DataLayout &DL) {
4361   Value *Cond = SI->getCondition();
4362   unsigned Bits = Cond->getType()->getIntegerBitWidth();
4363   APInt KnownZero(Bits, 0), KnownOne(Bits, 0);
4364   computeKnownBits(Cond, KnownZero, KnownOne, DL, 0, AC, SI);
4365 
4366   // We can also eliminate cases by determining that their values are outside of
4367   // the limited range of the condition based on how many significant (non-sign)
4368   // bits are in the condition value.
4369   unsigned ExtraSignBits = ComputeNumSignBits(Cond, DL, 0, AC, SI) - 1;
4370   unsigned MaxSignificantBitsInCond = Bits - ExtraSignBits;
4371 
4372   // Gather dead cases.
4373   SmallVector<ConstantInt *, 8> DeadCases;
4374   for (auto &Case : SI->cases()) {
4375     APInt CaseVal = Case.getCaseValue()->getValue();
4376     if ((CaseVal & KnownZero) != 0 || (CaseVal & KnownOne) != KnownOne ||
4377         (CaseVal.getMinSignedBits() > MaxSignificantBitsInCond)) {
4378       DeadCases.push_back(Case.getCaseValue());
4379       DEBUG(dbgs() << "SimplifyCFG: switch case " << CaseVal << " is dead.\n");
4380     }
4381   }
4382 
4383   // If we can prove that the cases must cover all possible values, the
4384   // default destination becomes dead and we can remove it.  If we know some
4385   // of the bits in the value, we can use that to more precisely compute the
4386   // number of possible unique case values.
4387   bool HasDefault =
4388       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
4389   const unsigned NumUnknownBits =
4390       Bits - (KnownZero | KnownOne).countPopulation();
4391   assert(NumUnknownBits <= Bits);
4392   if (HasDefault && DeadCases.empty() &&
4393       NumUnknownBits < 64 /* avoid overflow */ &&
4394       SI->getNumCases() == (1ULL << NumUnknownBits)) {
4395     DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n");
4396     BasicBlock *NewDefault =
4397         SplitBlockPredecessors(SI->getDefaultDest(), SI->getParent(), "");
4398     SI->setDefaultDest(&*NewDefault);
4399     SplitBlock(&*NewDefault, &NewDefault->front());
4400     auto *OldTI = NewDefault->getTerminator();
4401     new UnreachableInst(SI->getContext(), OldTI);
4402     EraseTerminatorInstAndDCECond(OldTI);
4403     return true;
4404   }
4405 
4406   SmallVector<uint64_t, 8> Weights;
4407   bool HasWeight = HasBranchWeights(SI);
4408   if (HasWeight) {
4409     GetBranchWeights(SI, Weights);
4410     HasWeight = (Weights.size() == 1 + SI->getNumCases());
4411   }
4412 
4413   // Remove dead cases from the switch.
4414   for (ConstantInt *DeadCase : DeadCases) {
4415     SwitchInst::CaseIt Case = SI->findCaseValue(DeadCase);
4416     assert(Case != SI->case_default() &&
4417            "Case was not found. Probably mistake in DeadCases forming.");
4418     if (HasWeight) {
4419       std::swap(Weights[Case.getCaseIndex() + 1], Weights.back());
4420       Weights.pop_back();
4421     }
4422 
4423     // Prune unused values from PHI nodes.
4424     Case.getCaseSuccessor()->removePredecessor(SI->getParent());
4425     SI->removeCase(Case);
4426   }
4427   if (HasWeight && Weights.size() >= 2) {
4428     SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
4429     SI->setMetadata(LLVMContext::MD_prof,
4430                     MDBuilder(SI->getParent()->getContext())
4431                         .createBranchWeights(MDWeights));
4432   }
4433 
4434   return !DeadCases.empty();
4435 }
4436 
4437 /// If BB would be eligible for simplification by
4438 /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated
4439 /// by an unconditional branch), look at the phi node for BB in the successor
4440 /// block and see if the incoming value is equal to CaseValue. If so, return
4441 /// the phi node, and set PhiIndex to BB's index in the phi node.
4442 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue,
4443                                               BasicBlock *BB, int *PhiIndex) {
4444   if (BB->getFirstNonPHIOrDbg() != BB->getTerminator())
4445     return nullptr; // BB must be empty to be a candidate for simplification.
4446   if (!BB->getSinglePredecessor())
4447     return nullptr; // BB must be dominated by the switch.
4448 
4449   BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator());
4450   if (!Branch || !Branch->isUnconditional())
4451     return nullptr; // Terminator must be unconditional branch.
4452 
4453   BasicBlock *Succ = Branch->getSuccessor(0);
4454 
4455   BasicBlock::iterator I = Succ->begin();
4456   while (PHINode *PHI = dyn_cast<PHINode>(I++)) {
4457     int Idx = PHI->getBasicBlockIndex(BB);
4458     assert(Idx >= 0 && "PHI has no entry for predecessor?");
4459 
4460     Value *InValue = PHI->getIncomingValue(Idx);
4461     if (InValue != CaseValue)
4462       continue;
4463 
4464     *PhiIndex = Idx;
4465     return PHI;
4466   }
4467 
4468   return nullptr;
4469 }
4470 
4471 /// Try to forward the condition of a switch instruction to a phi node
4472 /// dominated by the switch, if that would mean that some of the destination
4473 /// blocks of the switch can be folded away.
4474 /// Returns true if a change is made.
4475 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) {
4476   typedef DenseMap<PHINode *, SmallVector<int, 4>> ForwardingNodesMap;
4477   ForwardingNodesMap ForwardingNodes;
4478 
4479   for (SwitchInst::CaseIt I = SI->case_begin(), E = SI->case_end(); I != E;
4480        ++I) {
4481     ConstantInt *CaseValue = I.getCaseValue();
4482     BasicBlock *CaseDest = I.getCaseSuccessor();
4483 
4484     int PhiIndex;
4485     PHINode *PHI =
4486         FindPHIForConditionForwarding(CaseValue, CaseDest, &PhiIndex);
4487     if (!PHI)
4488       continue;
4489 
4490     ForwardingNodes[PHI].push_back(PhiIndex);
4491   }
4492 
4493   bool Changed = false;
4494 
4495   for (ForwardingNodesMap::iterator I = ForwardingNodes.begin(),
4496                                     E = ForwardingNodes.end();
4497        I != E; ++I) {
4498     PHINode *Phi = I->first;
4499     SmallVectorImpl<int> &Indexes = I->second;
4500 
4501     if (Indexes.size() < 2)
4502       continue;
4503 
4504     for (size_t I = 0, E = Indexes.size(); I != E; ++I)
4505       Phi->setIncomingValue(Indexes[I], SI->getCondition());
4506     Changed = true;
4507   }
4508 
4509   return Changed;
4510 }
4511 
4512 /// Return true if the backend will be able to handle
4513 /// initializing an array of constants like C.
4514 static bool ValidLookupTableConstant(Constant *C, const TargetTransformInfo &TTI) {
4515   if (C->isThreadDependent())
4516     return false;
4517   if (C->isDLLImportDependent())
4518     return false;
4519 
4520   if (!isa<ConstantFP>(C) && !isa<ConstantInt>(C) &&
4521       !isa<ConstantPointerNull>(C) && !isa<GlobalValue>(C) &&
4522       !isa<UndefValue>(C) && !isa<ConstantExpr>(C))
4523     return false;
4524 
4525   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
4526     if (!CE->isGEPWithNoNotionalOverIndexing())
4527       return false;
4528     if (!ValidLookupTableConstant(CE->getOperand(0), TTI))
4529       return false;
4530   }
4531 
4532   if (!TTI.shouldBuildLookupTablesForConstant(C))
4533     return false;
4534 
4535   return true;
4536 }
4537 
4538 /// If V is a Constant, return it. Otherwise, try to look up
4539 /// its constant value in ConstantPool, returning 0 if it's not there.
4540 static Constant *
4541 LookupConstant(Value *V,
4542                const SmallDenseMap<Value *, Constant *> &ConstantPool) {
4543   if (Constant *C = dyn_cast<Constant>(V))
4544     return C;
4545   return ConstantPool.lookup(V);
4546 }
4547 
4548 /// Try to fold instruction I into a constant. This works for
4549 /// simple instructions such as binary operations where both operands are
4550 /// constant or can be replaced by constants from the ConstantPool. Returns the
4551 /// resulting constant on success, 0 otherwise.
4552 static Constant *
4553 ConstantFold(Instruction *I, const DataLayout &DL,
4554              const SmallDenseMap<Value *, Constant *> &ConstantPool) {
4555   if (SelectInst *Select = dyn_cast<SelectInst>(I)) {
4556     Constant *A = LookupConstant(Select->getCondition(), ConstantPool);
4557     if (!A)
4558       return nullptr;
4559     if (A->isAllOnesValue())
4560       return LookupConstant(Select->getTrueValue(), ConstantPool);
4561     if (A->isNullValue())
4562       return LookupConstant(Select->getFalseValue(), ConstantPool);
4563     return nullptr;
4564   }
4565 
4566   SmallVector<Constant *, 4> COps;
4567   for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) {
4568     if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool))
4569       COps.push_back(A);
4570     else
4571       return nullptr;
4572   }
4573 
4574   if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
4575     return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0],
4576                                            COps[1], DL);
4577   }
4578 
4579   return ConstantFoldInstOperands(I, COps, DL);
4580 }
4581 
4582 /// Try to determine the resulting constant values in phi nodes
4583 /// at the common destination basic block, *CommonDest, for one of the case
4584 /// destionations CaseDest corresponding to value CaseVal (0 for the default
4585 /// case), of a switch instruction SI.
4586 static bool
4587 GetCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest,
4588                BasicBlock **CommonDest,
4589                SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res,
4590                const DataLayout &DL, const TargetTransformInfo &TTI) {
4591   // The block from which we enter the common destination.
4592   BasicBlock *Pred = SI->getParent();
4593 
4594   // If CaseDest is empty except for some side-effect free instructions through
4595   // which we can constant-propagate the CaseVal, continue to its successor.
4596   SmallDenseMap<Value *, Constant *> ConstantPool;
4597   ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal));
4598   for (BasicBlock::iterator I = CaseDest->begin(), E = CaseDest->end(); I != E;
4599        ++I) {
4600     if (TerminatorInst *T = dyn_cast<TerminatorInst>(I)) {
4601       // If the terminator is a simple branch, continue to the next block.
4602       if (T->getNumSuccessors() != 1 || T->isExceptional())
4603         return false;
4604       Pred = CaseDest;
4605       CaseDest = T->getSuccessor(0);
4606     } else if (isa<DbgInfoIntrinsic>(I)) {
4607       // Skip debug intrinsic.
4608       continue;
4609     } else if (Constant *C = ConstantFold(&*I, DL, ConstantPool)) {
4610       // Instruction is side-effect free and constant.
4611 
4612       // If the instruction has uses outside this block or a phi node slot for
4613       // the block, it is not safe to bypass the instruction since it would then
4614       // no longer dominate all its uses.
4615       for (auto &Use : I->uses()) {
4616         User *User = Use.getUser();
4617         if (Instruction *I = dyn_cast<Instruction>(User))
4618           if (I->getParent() == CaseDest)
4619             continue;
4620         if (PHINode *Phi = dyn_cast<PHINode>(User))
4621           if (Phi->getIncomingBlock(Use) == CaseDest)
4622             continue;
4623         return false;
4624       }
4625 
4626       ConstantPool.insert(std::make_pair(&*I, C));
4627     } else {
4628       break;
4629     }
4630   }
4631 
4632   // If we did not have a CommonDest before, use the current one.
4633   if (!*CommonDest)
4634     *CommonDest = CaseDest;
4635   // If the destination isn't the common one, abort.
4636   if (CaseDest != *CommonDest)
4637     return false;
4638 
4639   // Get the values for this case from phi nodes in the destination block.
4640   BasicBlock::iterator I = (*CommonDest)->begin();
4641   while (PHINode *PHI = dyn_cast<PHINode>(I++)) {
4642     int Idx = PHI->getBasicBlockIndex(Pred);
4643     if (Idx == -1)
4644       continue;
4645 
4646     Constant *ConstVal =
4647         LookupConstant(PHI->getIncomingValue(Idx), ConstantPool);
4648     if (!ConstVal)
4649       return false;
4650 
4651     // Be conservative about which kinds of constants we support.
4652     if (!ValidLookupTableConstant(ConstVal, TTI))
4653       return false;
4654 
4655     Res.push_back(std::make_pair(PHI, ConstVal));
4656   }
4657 
4658   return Res.size() > 0;
4659 }
4660 
4661 // Helper function used to add CaseVal to the list of cases that generate
4662 // Result.
4663 static void MapCaseToResult(ConstantInt *CaseVal,
4664                             SwitchCaseResultVectorTy &UniqueResults,
4665                             Constant *Result) {
4666   for (auto &I : UniqueResults) {
4667     if (I.first == Result) {
4668       I.second.push_back(CaseVal);
4669       return;
4670     }
4671   }
4672   UniqueResults.push_back(
4673       std::make_pair(Result, SmallVector<ConstantInt *, 4>(1, CaseVal)));
4674 }
4675 
4676 // Helper function that initializes a map containing
4677 // results for the PHI node of the common destination block for a switch
4678 // instruction. Returns false if multiple PHI nodes have been found or if
4679 // there is not a common destination block for the switch.
4680 static bool InitializeUniqueCases(SwitchInst *SI, PHINode *&PHI,
4681                                   BasicBlock *&CommonDest,
4682                                   SwitchCaseResultVectorTy &UniqueResults,
4683                                   Constant *&DefaultResult,
4684                                   const DataLayout &DL,
4685                                   const TargetTransformInfo &TTI) {
4686   for (auto &I : SI->cases()) {
4687     ConstantInt *CaseVal = I.getCaseValue();
4688 
4689     // Resulting value at phi nodes for this case value.
4690     SwitchCaseResultsTy Results;
4691     if (!GetCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results,
4692                         DL, TTI))
4693       return false;
4694 
4695     // Only one value per case is permitted
4696     if (Results.size() > 1)
4697       return false;
4698     MapCaseToResult(CaseVal, UniqueResults, Results.begin()->second);
4699 
4700     // Check the PHI consistency.
4701     if (!PHI)
4702       PHI = Results[0].first;
4703     else if (PHI != Results[0].first)
4704       return false;
4705   }
4706   // Find the default result value.
4707   SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults;
4708   BasicBlock *DefaultDest = SI->getDefaultDest();
4709   GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults,
4710                  DL, TTI);
4711   // If the default value is not found abort unless the default destination
4712   // is unreachable.
4713   DefaultResult =
4714       DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr;
4715   if ((!DefaultResult &&
4716        !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg())))
4717     return false;
4718 
4719   return true;
4720 }
4721 
4722 // Helper function that checks if it is possible to transform a switch with only
4723 // two cases (or two cases + default) that produces a result into a select.
4724 // Example:
4725 // switch (a) {
4726 //   case 10:                %0 = icmp eq i32 %a, 10
4727 //     return 10;            %1 = select i1 %0, i32 10, i32 4
4728 //   case 20:        ---->   %2 = icmp eq i32 %a, 20
4729 //     return 2;             %3 = select i1 %2, i32 2, i32 %1
4730 //   default:
4731 //     return 4;
4732 // }
4733 static Value *ConvertTwoCaseSwitch(const SwitchCaseResultVectorTy &ResultVector,
4734                                    Constant *DefaultResult, Value *Condition,
4735                                    IRBuilder<> &Builder) {
4736   assert(ResultVector.size() == 2 &&
4737          "We should have exactly two unique results at this point");
4738   // If we are selecting between only two cases transform into a simple
4739   // select or a two-way select if default is possible.
4740   if (ResultVector[0].second.size() == 1 &&
4741       ResultVector[1].second.size() == 1) {
4742     ConstantInt *const FirstCase = ResultVector[0].second[0];
4743     ConstantInt *const SecondCase = ResultVector[1].second[0];
4744 
4745     bool DefaultCanTrigger = DefaultResult;
4746     Value *SelectValue = ResultVector[1].first;
4747     if (DefaultCanTrigger) {
4748       Value *const ValueCompare =
4749           Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp");
4750       SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first,
4751                                          DefaultResult, "switch.select");
4752     }
4753     Value *const ValueCompare =
4754         Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp");
4755     return Builder.CreateSelect(ValueCompare, ResultVector[0].first,
4756                                 SelectValue, "switch.select");
4757   }
4758 
4759   return nullptr;
4760 }
4761 
4762 // Helper function to cleanup a switch instruction that has been converted into
4763 // a select, fixing up PHI nodes and basic blocks.
4764 static void RemoveSwitchAfterSelectConversion(SwitchInst *SI, PHINode *PHI,
4765                                               Value *SelectValue,
4766                                               IRBuilder<> &Builder) {
4767   BasicBlock *SelectBB = SI->getParent();
4768   while (PHI->getBasicBlockIndex(SelectBB) >= 0)
4769     PHI->removeIncomingValue(SelectBB);
4770   PHI->addIncoming(SelectValue, SelectBB);
4771 
4772   Builder.CreateBr(PHI->getParent());
4773 
4774   // Remove the switch.
4775   for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
4776     BasicBlock *Succ = SI->getSuccessor(i);
4777 
4778     if (Succ == PHI->getParent())
4779       continue;
4780     Succ->removePredecessor(SelectBB);
4781   }
4782   SI->eraseFromParent();
4783 }
4784 
4785 /// If the switch is only used to initialize one or more
4786 /// phi nodes in a common successor block with only two different
4787 /// constant values, replace the switch with select.
4788 static bool SwitchToSelect(SwitchInst *SI, IRBuilder<> &Builder,
4789                            AssumptionCache *AC, const DataLayout &DL,
4790                            const TargetTransformInfo &TTI) {
4791   Value *const Cond = SI->getCondition();
4792   PHINode *PHI = nullptr;
4793   BasicBlock *CommonDest = nullptr;
4794   Constant *DefaultResult;
4795   SwitchCaseResultVectorTy UniqueResults;
4796   // Collect all the cases that will deliver the same value from the switch.
4797   if (!InitializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult,
4798                              DL, TTI))
4799     return false;
4800   // Selects choose between maximum two values.
4801   if (UniqueResults.size() != 2)
4802     return false;
4803   assert(PHI != nullptr && "PHI for value select not found");
4804 
4805   Builder.SetInsertPoint(SI);
4806   Value *SelectValue =
4807       ConvertTwoCaseSwitch(UniqueResults, DefaultResult, Cond, Builder);
4808   if (SelectValue) {
4809     RemoveSwitchAfterSelectConversion(SI, PHI, SelectValue, Builder);
4810     return true;
4811   }
4812   // The switch couldn't be converted into a select.
4813   return false;
4814 }
4815 
4816 namespace {
4817 
4818 /// This class represents a lookup table that can be used to replace a switch.
4819 class SwitchLookupTable {
4820 public:
4821   /// Create a lookup table to use as a switch replacement with the contents
4822   /// of Values, using DefaultValue to fill any holes in the table.
4823   SwitchLookupTable(
4824       Module &M, uint64_t TableSize, ConstantInt *Offset,
4825       const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
4826       Constant *DefaultValue, const DataLayout &DL);
4827 
4828   /// Build instructions with Builder to retrieve the value at
4829   /// the position given by Index in the lookup table.
4830   Value *BuildLookup(Value *Index, IRBuilder<> &Builder);
4831 
4832   /// Return true if a table with TableSize elements of
4833   /// type ElementType would fit in a target-legal register.
4834   static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize,
4835                                  Type *ElementType);
4836 
4837 private:
4838   // Depending on the contents of the table, it can be represented in
4839   // different ways.
4840   enum {
4841     // For tables where each element contains the same value, we just have to
4842     // store that single value and return it for each lookup.
4843     SingleValueKind,
4844 
4845     // For tables where there is a linear relationship between table index
4846     // and values. We calculate the result with a simple multiplication
4847     // and addition instead of a table lookup.
4848     LinearMapKind,
4849 
4850     // For small tables with integer elements, we can pack them into a bitmap
4851     // that fits into a target-legal register. Values are retrieved by
4852     // shift and mask operations.
4853     BitMapKind,
4854 
4855     // The table is stored as an array of values. Values are retrieved by load
4856     // instructions from the table.
4857     ArrayKind
4858   } Kind;
4859 
4860   // For SingleValueKind, this is the single value.
4861   Constant *SingleValue;
4862 
4863   // For BitMapKind, this is the bitmap.
4864   ConstantInt *BitMap;
4865   IntegerType *BitMapElementTy;
4866 
4867   // For LinearMapKind, these are the constants used to derive the value.
4868   ConstantInt *LinearOffset;
4869   ConstantInt *LinearMultiplier;
4870 
4871   // For ArrayKind, this is the array.
4872   GlobalVariable *Array;
4873 };
4874 
4875 } // end anonymous namespace
4876 
4877 SwitchLookupTable::SwitchLookupTable(
4878     Module &M, uint64_t TableSize, ConstantInt *Offset,
4879     const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
4880     Constant *DefaultValue, const DataLayout &DL)
4881     : SingleValue(nullptr), BitMap(nullptr), BitMapElementTy(nullptr),
4882       LinearOffset(nullptr), LinearMultiplier(nullptr), Array(nullptr) {
4883   assert(Values.size() && "Can't build lookup table without values!");
4884   assert(TableSize >= Values.size() && "Can't fit values in table!");
4885 
4886   // If all values in the table are equal, this is that value.
4887   SingleValue = Values.begin()->second;
4888 
4889   Type *ValueType = Values.begin()->second->getType();
4890 
4891   // Build up the table contents.
4892   SmallVector<Constant *, 64> TableContents(TableSize);
4893   for (size_t I = 0, E = Values.size(); I != E; ++I) {
4894     ConstantInt *CaseVal = Values[I].first;
4895     Constant *CaseRes = Values[I].second;
4896     assert(CaseRes->getType() == ValueType);
4897 
4898     uint64_t Idx = (CaseVal->getValue() - Offset->getValue()).getLimitedValue();
4899     TableContents[Idx] = CaseRes;
4900 
4901     if (CaseRes != SingleValue)
4902       SingleValue = nullptr;
4903   }
4904 
4905   // Fill in any holes in the table with the default result.
4906   if (Values.size() < TableSize) {
4907     assert(DefaultValue &&
4908            "Need a default value to fill the lookup table holes.");
4909     assert(DefaultValue->getType() == ValueType);
4910     for (uint64_t I = 0; I < TableSize; ++I) {
4911       if (!TableContents[I])
4912         TableContents[I] = DefaultValue;
4913     }
4914 
4915     if (DefaultValue != SingleValue)
4916       SingleValue = nullptr;
4917   }
4918 
4919   // If each element in the table contains the same value, we only need to store
4920   // that single value.
4921   if (SingleValue) {
4922     Kind = SingleValueKind;
4923     return;
4924   }
4925 
4926   // Check if we can derive the value with a linear transformation from the
4927   // table index.
4928   if (isa<IntegerType>(ValueType)) {
4929     bool LinearMappingPossible = true;
4930     APInt PrevVal;
4931     APInt DistToPrev;
4932     assert(TableSize >= 2 && "Should be a SingleValue table.");
4933     // Check if there is the same distance between two consecutive values.
4934     for (uint64_t I = 0; I < TableSize; ++I) {
4935       ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]);
4936       if (!ConstVal) {
4937         // This is an undef. We could deal with it, but undefs in lookup tables
4938         // are very seldom. It's probably not worth the additional complexity.
4939         LinearMappingPossible = false;
4940         break;
4941       }
4942       APInt Val = ConstVal->getValue();
4943       if (I != 0) {
4944         APInt Dist = Val - PrevVal;
4945         if (I == 1) {
4946           DistToPrev = Dist;
4947         } else if (Dist != DistToPrev) {
4948           LinearMappingPossible = false;
4949           break;
4950         }
4951       }
4952       PrevVal = Val;
4953     }
4954     if (LinearMappingPossible) {
4955       LinearOffset = cast<ConstantInt>(TableContents[0]);
4956       LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev);
4957       Kind = LinearMapKind;
4958       ++NumLinearMaps;
4959       return;
4960     }
4961   }
4962 
4963   // If the type is integer and the table fits in a register, build a bitmap.
4964   if (WouldFitInRegister(DL, TableSize, ValueType)) {
4965     IntegerType *IT = cast<IntegerType>(ValueType);
4966     APInt TableInt(TableSize * IT->getBitWidth(), 0);
4967     for (uint64_t I = TableSize; I > 0; --I) {
4968       TableInt <<= IT->getBitWidth();
4969       // Insert values into the bitmap. Undef values are set to zero.
4970       if (!isa<UndefValue>(TableContents[I - 1])) {
4971         ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]);
4972         TableInt |= Val->getValue().zext(TableInt.getBitWidth());
4973       }
4974     }
4975     BitMap = ConstantInt::get(M.getContext(), TableInt);
4976     BitMapElementTy = IT;
4977     Kind = BitMapKind;
4978     ++NumBitMaps;
4979     return;
4980   }
4981 
4982   // Store the table in an array.
4983   ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize);
4984   Constant *Initializer = ConstantArray::get(ArrayTy, TableContents);
4985 
4986   Array = new GlobalVariable(M, ArrayTy, /*constant=*/true,
4987                              GlobalVariable::PrivateLinkage, Initializer,
4988                              "switch.table");
4989   Array->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
4990   Kind = ArrayKind;
4991 }
4992 
4993 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) {
4994   switch (Kind) {
4995   case SingleValueKind:
4996     return SingleValue;
4997   case LinearMapKind: {
4998     // Derive the result value from the input value.
4999     Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(),
5000                                           false, "switch.idx.cast");
5001     if (!LinearMultiplier->isOne())
5002       Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult");
5003     if (!LinearOffset->isZero())
5004       Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset");
5005     return Result;
5006   }
5007   case BitMapKind: {
5008     // Type of the bitmap (e.g. i59).
5009     IntegerType *MapTy = BitMap->getType();
5010 
5011     // Cast Index to the same type as the bitmap.
5012     // Note: The Index is <= the number of elements in the table, so
5013     // truncating it to the width of the bitmask is safe.
5014     Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast");
5015 
5016     // Multiply the shift amount by the element width.
5017     ShiftAmt = Builder.CreateMul(
5018         ShiftAmt, ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()),
5019         "switch.shiftamt");
5020 
5021     // Shift down.
5022     Value *DownShifted =
5023         Builder.CreateLShr(BitMap, ShiftAmt, "switch.downshift");
5024     // Mask off.
5025     return Builder.CreateTrunc(DownShifted, BitMapElementTy, "switch.masked");
5026   }
5027   case ArrayKind: {
5028     // Make sure the table index will not overflow when treated as signed.
5029     IntegerType *IT = cast<IntegerType>(Index->getType());
5030     uint64_t TableSize =
5031         Array->getInitializer()->getType()->getArrayNumElements();
5032     if (TableSize > (1ULL << (IT->getBitWidth() - 1)))
5033       Index = Builder.CreateZExt(
5034           Index, IntegerType::get(IT->getContext(), IT->getBitWidth() + 1),
5035           "switch.tableidx.zext");
5036 
5037     Value *GEPIndices[] = {Builder.getInt32(0), Index};
5038     Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array,
5039                                            GEPIndices, "switch.gep");
5040     return Builder.CreateLoad(GEP, "switch.load");
5041   }
5042   }
5043   llvm_unreachable("Unknown lookup table kind!");
5044 }
5045 
5046 bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL,
5047                                            uint64_t TableSize,
5048                                            Type *ElementType) {
5049   auto *IT = dyn_cast<IntegerType>(ElementType);
5050   if (!IT)
5051     return false;
5052   // FIXME: If the type is wider than it needs to be, e.g. i8 but all values
5053   // are <= 15, we could try to narrow the type.
5054 
5055   // Avoid overflow, fitsInLegalInteger uses unsigned int for the width.
5056   if (TableSize >= UINT_MAX / IT->getBitWidth())
5057     return false;
5058   return DL.fitsInLegalInteger(TableSize * IT->getBitWidth());
5059 }
5060 
5061 /// Determine whether a lookup table should be built for this switch, based on
5062 /// the number of cases, size of the table, and the types of the results.
5063 static bool
5064 ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize,
5065                        const TargetTransformInfo &TTI, const DataLayout &DL,
5066                        const SmallDenseMap<PHINode *, Type *> &ResultTypes) {
5067   if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10)
5068     return false; // TableSize overflowed, or mul below might overflow.
5069 
5070   bool AllTablesFitInRegister = true;
5071   bool HasIllegalType = false;
5072   for (const auto &I : ResultTypes) {
5073     Type *Ty = I.second;
5074 
5075     // Saturate this flag to true.
5076     HasIllegalType = HasIllegalType || !TTI.isTypeLegal(Ty);
5077 
5078     // Saturate this flag to false.
5079     AllTablesFitInRegister =
5080         AllTablesFitInRegister &&
5081         SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty);
5082 
5083     // If both flags saturate, we're done. NOTE: This *only* works with
5084     // saturating flags, and all flags have to saturate first due to the
5085     // non-deterministic behavior of iterating over a dense map.
5086     if (HasIllegalType && !AllTablesFitInRegister)
5087       break;
5088   }
5089 
5090   // If each table would fit in a register, we should build it anyway.
5091   if (AllTablesFitInRegister)
5092     return true;
5093 
5094   // Don't build a table that doesn't fit in-register if it has illegal types.
5095   if (HasIllegalType)
5096     return false;
5097 
5098   // The table density should be at least 40%. This is the same criterion as for
5099   // jump tables, see SelectionDAGBuilder::handleJTSwitchCase.
5100   // FIXME: Find the best cut-off.
5101   return SI->getNumCases() * 10 >= TableSize * 4;
5102 }
5103 
5104 /// Try to reuse the switch table index compare. Following pattern:
5105 /// \code
5106 ///     if (idx < tablesize)
5107 ///        r = table[idx]; // table does not contain default_value
5108 ///     else
5109 ///        r = default_value;
5110 ///     if (r != default_value)
5111 ///        ...
5112 /// \endcode
5113 /// Is optimized to:
5114 /// \code
5115 ///     cond = idx < tablesize;
5116 ///     if (cond)
5117 ///        r = table[idx];
5118 ///     else
5119 ///        r = default_value;
5120 ///     if (cond)
5121 ///        ...
5122 /// \endcode
5123 /// Jump threading will then eliminate the second if(cond).
5124 static void reuseTableCompare(
5125     User *PhiUser, BasicBlock *PhiBlock, BranchInst *RangeCheckBranch,
5126     Constant *DefaultValue,
5127     const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values) {
5128 
5129   ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser);
5130   if (!CmpInst)
5131     return;
5132 
5133   // We require that the compare is in the same block as the phi so that jump
5134   // threading can do its work afterwards.
5135   if (CmpInst->getParent() != PhiBlock)
5136     return;
5137 
5138   Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1));
5139   if (!CmpOp1)
5140     return;
5141 
5142   Value *RangeCmp = RangeCheckBranch->getCondition();
5143   Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType());
5144   Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType());
5145 
5146   // Check if the compare with the default value is constant true or false.
5147   Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
5148                                                  DefaultValue, CmpOp1, true);
5149   if (DefaultConst != TrueConst && DefaultConst != FalseConst)
5150     return;
5151 
5152   // Check if the compare with the case values is distinct from the default
5153   // compare result.
5154   for (auto ValuePair : Values) {
5155     Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
5156                                                 ValuePair.second, CmpOp1, true);
5157     if (!CaseConst || CaseConst == DefaultConst)
5158       return;
5159     assert((CaseConst == TrueConst || CaseConst == FalseConst) &&
5160            "Expect true or false as compare result.");
5161   }
5162 
5163   // Check if the branch instruction dominates the phi node. It's a simple
5164   // dominance check, but sufficient for our needs.
5165   // Although this check is invariant in the calling loops, it's better to do it
5166   // at this late stage. Practically we do it at most once for a switch.
5167   BasicBlock *BranchBlock = RangeCheckBranch->getParent();
5168   for (auto PI = pred_begin(PhiBlock), E = pred_end(PhiBlock); PI != E; ++PI) {
5169     BasicBlock *Pred = *PI;
5170     if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock)
5171       return;
5172   }
5173 
5174   if (DefaultConst == FalseConst) {
5175     // The compare yields the same result. We can replace it.
5176     CmpInst->replaceAllUsesWith(RangeCmp);
5177     ++NumTableCmpReuses;
5178   } else {
5179     // The compare yields the same result, just inverted. We can replace it.
5180     Value *InvertedTableCmp = BinaryOperator::CreateXor(
5181         RangeCmp, ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp",
5182         RangeCheckBranch);
5183     CmpInst->replaceAllUsesWith(InvertedTableCmp);
5184     ++NumTableCmpReuses;
5185   }
5186 }
5187 
5188 /// If the switch is only used to initialize one or more phi nodes in a common
5189 /// successor block with different constant values, replace the switch with
5190 /// lookup tables.
5191 static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder,
5192                                 const DataLayout &DL,
5193                                 const TargetTransformInfo &TTI) {
5194   assert(SI->getNumCases() > 1 && "Degenerate switch?");
5195 
5196   // Only build lookup table when we have a target that supports it.
5197   if (!TTI.shouldBuildLookupTables())
5198     return false;
5199 
5200   // FIXME: If the switch is too sparse for a lookup table, perhaps we could
5201   // split off a dense part and build a lookup table for that.
5202 
5203   // FIXME: This creates arrays of GEPs to constant strings, which means each
5204   // GEP needs a runtime relocation in PIC code. We should just build one big
5205   // string and lookup indices into that.
5206 
5207   // Ignore switches with less than three cases. Lookup tables will not make
5208   // them
5209   // faster, so we don't analyze them.
5210   if (SI->getNumCases() < 3)
5211     return false;
5212 
5213   // Figure out the corresponding result for each case value and phi node in the
5214   // common destination, as well as the min and max case values.
5215   assert(SI->case_begin() != SI->case_end());
5216   SwitchInst::CaseIt CI = SI->case_begin();
5217   ConstantInt *MinCaseVal = CI.getCaseValue();
5218   ConstantInt *MaxCaseVal = CI.getCaseValue();
5219 
5220   BasicBlock *CommonDest = nullptr;
5221   typedef SmallVector<std::pair<ConstantInt *, Constant *>, 4> ResultListTy;
5222   SmallDenseMap<PHINode *, ResultListTy> ResultLists;
5223   SmallDenseMap<PHINode *, Constant *> DefaultResults;
5224   SmallDenseMap<PHINode *, Type *> ResultTypes;
5225   SmallVector<PHINode *, 4> PHIs;
5226 
5227   for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) {
5228     ConstantInt *CaseVal = CI.getCaseValue();
5229     if (CaseVal->getValue().slt(MinCaseVal->getValue()))
5230       MinCaseVal = CaseVal;
5231     if (CaseVal->getValue().sgt(MaxCaseVal->getValue()))
5232       MaxCaseVal = CaseVal;
5233 
5234     // Resulting value at phi nodes for this case value.
5235     typedef SmallVector<std::pair<PHINode *, Constant *>, 4> ResultsTy;
5236     ResultsTy Results;
5237     if (!GetCaseResults(SI, CaseVal, CI.getCaseSuccessor(), &CommonDest,
5238                         Results, DL, TTI))
5239       return false;
5240 
5241     // Append the result from this case to the list for each phi.
5242     for (const auto &I : Results) {
5243       PHINode *PHI = I.first;
5244       Constant *Value = I.second;
5245       if (!ResultLists.count(PHI))
5246         PHIs.push_back(PHI);
5247       ResultLists[PHI].push_back(std::make_pair(CaseVal, Value));
5248     }
5249   }
5250 
5251   // Keep track of the result types.
5252   for (PHINode *PHI : PHIs) {
5253     ResultTypes[PHI] = ResultLists[PHI][0].second->getType();
5254   }
5255 
5256   uint64_t NumResults = ResultLists[PHIs[0]].size();
5257   APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue();
5258   uint64_t TableSize = RangeSpread.getLimitedValue() + 1;
5259   bool TableHasHoles = (NumResults < TableSize);
5260 
5261   // If the table has holes, we need a constant result for the default case
5262   // or a bitmask that fits in a register.
5263   SmallVector<std::pair<PHINode *, Constant *>, 4> DefaultResultsList;
5264   bool HasDefaultResults =
5265       GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest,
5266                      DefaultResultsList, DL, TTI);
5267 
5268   bool NeedMask = (TableHasHoles && !HasDefaultResults);
5269   if (NeedMask) {
5270     // As an extra penalty for the validity test we require more cases.
5271     if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark).
5272       return false;
5273     if (!DL.fitsInLegalInteger(TableSize))
5274       return false;
5275   }
5276 
5277   for (const auto &I : DefaultResultsList) {
5278     PHINode *PHI = I.first;
5279     Constant *Result = I.second;
5280     DefaultResults[PHI] = Result;
5281   }
5282 
5283   if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes))
5284     return false;
5285 
5286   // Create the BB that does the lookups.
5287   Module &Mod = *CommonDest->getParent()->getParent();
5288   BasicBlock *LookupBB = BasicBlock::Create(
5289       Mod.getContext(), "switch.lookup", CommonDest->getParent(), CommonDest);
5290 
5291   // Compute the table index value.
5292   Builder.SetInsertPoint(SI);
5293   Value *TableIndex =
5294       Builder.CreateSub(SI->getCondition(), MinCaseVal, "switch.tableidx");
5295 
5296   // Compute the maximum table size representable by the integer type we are
5297   // switching upon.
5298   unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits();
5299   uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize;
5300   assert(MaxTableSize >= TableSize &&
5301          "It is impossible for a switch to have more entries than the max "
5302          "representable value of its input integer type's size.");
5303 
5304   // If the default destination is unreachable, or if the lookup table covers
5305   // all values of the conditional variable, branch directly to the lookup table
5306   // BB. Otherwise, check that the condition is within the case range.
5307   const bool DefaultIsReachable =
5308       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
5309   const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize);
5310   BranchInst *RangeCheckBranch = nullptr;
5311 
5312   if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
5313     Builder.CreateBr(LookupBB);
5314     // Note: We call removeProdecessor later since we need to be able to get the
5315     // PHI value for the default case in case we're using a bit mask.
5316   } else {
5317     Value *Cmp = Builder.CreateICmpULT(
5318         TableIndex, ConstantInt::get(MinCaseVal->getType(), TableSize));
5319     RangeCheckBranch =
5320         Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest());
5321   }
5322 
5323   // Populate the BB that does the lookups.
5324   Builder.SetInsertPoint(LookupBB);
5325 
5326   if (NeedMask) {
5327     // Before doing the lookup we do the hole check.
5328     // The LookupBB is therefore re-purposed to do the hole check
5329     // and we create a new LookupBB.
5330     BasicBlock *MaskBB = LookupBB;
5331     MaskBB->setName("switch.hole_check");
5332     LookupBB = BasicBlock::Create(Mod.getContext(), "switch.lookup",
5333                                   CommonDest->getParent(), CommonDest);
5334 
5335     // Make the mask's bitwidth at least 8bit and a power-of-2 to avoid
5336     // unnecessary illegal types.
5337     uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL));
5338     APInt MaskInt(TableSizePowOf2, 0);
5339     APInt One(TableSizePowOf2, 1);
5340     // Build bitmask; fill in a 1 bit for every case.
5341     const ResultListTy &ResultList = ResultLists[PHIs[0]];
5342     for (size_t I = 0, E = ResultList.size(); I != E; ++I) {
5343       uint64_t Idx = (ResultList[I].first->getValue() - MinCaseVal->getValue())
5344                          .getLimitedValue();
5345       MaskInt |= One << Idx;
5346     }
5347     ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt);
5348 
5349     // Get the TableIndex'th bit of the bitmask.
5350     // If this bit is 0 (meaning hole) jump to the default destination,
5351     // else continue with table lookup.
5352     IntegerType *MapTy = TableMask->getType();
5353     Value *MaskIndex =
5354         Builder.CreateZExtOrTrunc(TableIndex, MapTy, "switch.maskindex");
5355     Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, "switch.shifted");
5356     Value *LoBit = Builder.CreateTrunc(
5357         Shifted, Type::getInt1Ty(Mod.getContext()), "switch.lobit");
5358     Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest());
5359 
5360     Builder.SetInsertPoint(LookupBB);
5361     AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, SI->getParent());
5362   }
5363 
5364   if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
5365     // We cached PHINodes in PHIs, to avoid accessing deleted PHINodes later,
5366     // do not delete PHINodes here.
5367     SI->getDefaultDest()->removePredecessor(SI->getParent(),
5368                                             /*DontDeleteUselessPHIs=*/true);
5369   }
5370 
5371   bool ReturnedEarly = false;
5372   for (size_t I = 0, E = PHIs.size(); I != E; ++I) {
5373     PHINode *PHI = PHIs[I];
5374     const ResultListTy &ResultList = ResultLists[PHI];
5375 
5376     // If using a bitmask, use any value to fill the lookup table holes.
5377     Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI];
5378     SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultList, DV, DL);
5379 
5380     Value *Result = Table.BuildLookup(TableIndex, Builder);
5381 
5382     // If the result is used to return immediately from the function, we want to
5383     // do that right here.
5384     if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->user_begin()) &&
5385         PHI->user_back() == CommonDest->getFirstNonPHIOrDbg()) {
5386       Builder.CreateRet(Result);
5387       ReturnedEarly = true;
5388       break;
5389     }
5390 
5391     // Do a small peephole optimization: re-use the switch table compare if
5392     // possible.
5393     if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) {
5394       BasicBlock *PhiBlock = PHI->getParent();
5395       // Search for compare instructions which use the phi.
5396       for (auto *User : PHI->users()) {
5397         reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList);
5398       }
5399     }
5400 
5401     PHI->addIncoming(Result, LookupBB);
5402   }
5403 
5404   if (!ReturnedEarly)
5405     Builder.CreateBr(CommonDest);
5406 
5407   // Remove the switch.
5408   for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
5409     BasicBlock *Succ = SI->getSuccessor(i);
5410 
5411     if (Succ == SI->getDefaultDest())
5412       continue;
5413     Succ->removePredecessor(SI->getParent());
5414   }
5415   SI->eraseFromParent();
5416 
5417   ++NumLookupTables;
5418   if (NeedMask)
5419     ++NumLookupTablesHoles;
5420   return true;
5421 }
5422 
5423 static bool isSwitchDense(ArrayRef<int64_t> Values) {
5424   // See also SelectionDAGBuilder::isDense(), which this function was based on.
5425   uint64_t Diff = (uint64_t)Values.back() - (uint64_t)Values.front();
5426   uint64_t Range = Diff + 1;
5427   uint64_t NumCases = Values.size();
5428   // 40% is the default density for building a jump table in optsize/minsize mode.
5429   uint64_t MinDensity = 40;
5430 
5431   return NumCases * 100 >= Range * MinDensity;
5432 }
5433 
5434 // Try and transform a switch that has "holes" in it to a contiguous sequence
5435 // of cases.
5436 //
5437 // A switch such as: switch(i) {case 5: case 9: case 13: case 17:} can be
5438 // range-reduced to: switch ((i-5) / 4) {case 0: case 1: case 2: case 3:}.
5439 //
5440 // This converts a sparse switch into a dense switch which allows better
5441 // lowering and could also allow transforming into a lookup table.
5442 static bool ReduceSwitchRange(SwitchInst *SI, IRBuilder<> &Builder,
5443                               const DataLayout &DL,
5444                               const TargetTransformInfo &TTI) {
5445   auto *CondTy = cast<IntegerType>(SI->getCondition()->getType());
5446   if (CondTy->getIntegerBitWidth() > 64 ||
5447       !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth()))
5448     return false;
5449   // Only bother with this optimization if there are more than 3 switch cases;
5450   // SDAG will only bother creating jump tables for 4 or more cases.
5451   if (SI->getNumCases() < 4)
5452     return false;
5453 
5454   // This transform is agnostic to the signedness of the input or case values. We
5455   // can treat the case values as signed or unsigned. We can optimize more common
5456   // cases such as a sequence crossing zero {-4,0,4,8} if we interpret case values
5457   // as signed.
5458   SmallVector<int64_t,4> Values;
5459   for (auto &C : SI->cases())
5460     Values.push_back(C.getCaseValue()->getValue().getSExtValue());
5461   std::sort(Values.begin(), Values.end());
5462 
5463   // If the switch is already dense, there's nothing useful to do here.
5464   if (isSwitchDense(Values))
5465     return false;
5466 
5467   // First, transform the values such that they start at zero and ascend.
5468   int64_t Base = Values[0];
5469   for (auto &V : Values)
5470     V -= Base;
5471 
5472   // Now we have signed numbers that have been shifted so that, given enough
5473   // precision, there are no negative values. Since the rest of the transform
5474   // is bitwise only, we switch now to an unsigned representation.
5475   uint64_t GCD = 0;
5476   for (auto &V : Values)
5477     GCD = GreatestCommonDivisor64(GCD, (uint64_t)V);
5478 
5479   // This transform can be done speculatively because it is so cheap - it results
5480   // in a single rotate operation being inserted. This can only happen if the
5481   // factor extracted is a power of 2.
5482   // FIXME: If the GCD is an odd number we can multiply by the multiplicative
5483   // inverse of GCD and then perform this transform.
5484   // FIXME: It's possible that optimizing a switch on powers of two might also
5485   // be beneficial - flag values are often powers of two and we could use a CLZ
5486   // as the key function.
5487   if (GCD <= 1 || !isPowerOf2_64(GCD))
5488     // No common divisor found or too expensive to compute key function.
5489     return false;
5490 
5491   unsigned Shift = Log2_64(GCD);
5492   for (auto &V : Values)
5493     V = (int64_t)((uint64_t)V >> Shift);
5494 
5495   if (!isSwitchDense(Values))
5496     // Transform didn't create a dense switch.
5497     return false;
5498 
5499   // The obvious transform is to shift the switch condition right and emit a
5500   // check that the condition actually cleanly divided by GCD, i.e.
5501   //   C & (1 << Shift - 1) == 0
5502   // inserting a new CFG edge to handle the case where it didn't divide cleanly.
5503   //
5504   // A cheaper way of doing this is a simple ROTR(C, Shift). This performs the
5505   // shift and puts the shifted-off bits in the uppermost bits. If any of these
5506   // are nonzero then the switch condition will be very large and will hit the
5507   // default case.
5508 
5509   auto *Ty = cast<IntegerType>(SI->getCondition()->getType());
5510   Builder.SetInsertPoint(SI);
5511   auto *ShiftC = ConstantInt::get(Ty, Shift);
5512   auto *Sub = Builder.CreateSub(SI->getCondition(), ConstantInt::get(Ty, Base));
5513   auto *LShr = Builder.CreateLShr(Sub, ShiftC);
5514   auto *Shl = Builder.CreateShl(Sub, Ty->getBitWidth() - Shift);
5515   auto *Rot = Builder.CreateOr(LShr, Shl);
5516   SI->replaceUsesOfWith(SI->getCondition(), Rot);
5517 
5518   for (SwitchInst::CaseIt C = SI->case_begin(), E = SI->case_end(); C != E;
5519        ++C) {
5520     auto *Orig = C.getCaseValue();
5521     auto Sub = Orig->getValue() - APInt(Ty->getBitWidth(), Base);
5522     C.setValue(
5523         cast<ConstantInt>(ConstantInt::get(Ty, Sub.lshr(ShiftC->getValue()))));
5524   }
5525   return true;
5526 }
5527 
5528 bool SimplifyCFGOpt::SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) {
5529   BasicBlock *BB = SI->getParent();
5530 
5531   if (isValueEqualityComparison(SI)) {
5532     // If we only have one predecessor, and if it is a branch on this value,
5533     // see if that predecessor totally determines the outcome of this switch.
5534     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
5535       if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder))
5536         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5537 
5538     Value *Cond = SI->getCondition();
5539     if (SelectInst *Select = dyn_cast<SelectInst>(Cond))
5540       if (SimplifySwitchOnSelect(SI, Select))
5541         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5542 
5543     // If the block only contains the switch, see if we can fold the block
5544     // away into any preds.
5545     BasicBlock::iterator BBI = BB->begin();
5546     // Ignore dbg intrinsics.
5547     while (isa<DbgInfoIntrinsic>(BBI))
5548       ++BBI;
5549     if (SI == &*BBI)
5550       if (FoldValueComparisonIntoPredecessors(SI, Builder))
5551         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5552   }
5553 
5554   // Try to transform the switch into an icmp and a branch.
5555   if (TurnSwitchRangeIntoICmp(SI, Builder))
5556     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5557 
5558   // Remove unreachable cases.
5559   if (EliminateDeadSwitchCases(SI, AC, DL))
5560     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5561 
5562   if (SwitchToSelect(SI, Builder, AC, DL, TTI))
5563     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5564 
5565   if (ForwardSwitchConditionToPHI(SI))
5566     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5567 
5568   // The conversion from switch to lookup tables results in difficult
5569   // to analyze code and makes pruning branches much harder.
5570   // This is a problem of the switch expression itself can still be
5571   // restricted as a result of inlining or CVP. There only apply this
5572   // transformation during late steps of the optimisation chain.
5573   if (LateSimplifyCFG && SwitchToLookupTable(SI, Builder, DL, TTI))
5574     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5575 
5576   if (ReduceSwitchRange(SI, Builder, DL, TTI))
5577     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5578 
5579   return false;
5580 }
5581 
5582 bool SimplifyCFGOpt::SimplifyIndirectBr(IndirectBrInst *IBI) {
5583   BasicBlock *BB = IBI->getParent();
5584   bool Changed = false;
5585 
5586   // Eliminate redundant destinations.
5587   SmallPtrSet<Value *, 8> Succs;
5588   for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
5589     BasicBlock *Dest = IBI->getDestination(i);
5590     if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) {
5591       Dest->removePredecessor(BB);
5592       IBI->removeDestination(i);
5593       --i;
5594       --e;
5595       Changed = true;
5596     }
5597   }
5598 
5599   if (IBI->getNumDestinations() == 0) {
5600     // If the indirectbr has no successors, change it to unreachable.
5601     new UnreachableInst(IBI->getContext(), IBI);
5602     EraseTerminatorInstAndDCECond(IBI);
5603     return true;
5604   }
5605 
5606   if (IBI->getNumDestinations() == 1) {
5607     // If the indirectbr has one successor, change it to a direct branch.
5608     BranchInst::Create(IBI->getDestination(0), IBI);
5609     EraseTerminatorInstAndDCECond(IBI);
5610     return true;
5611   }
5612 
5613   if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) {
5614     if (SimplifyIndirectBrOnSelect(IBI, SI))
5615       return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5616   }
5617   return Changed;
5618 }
5619 
5620 /// Given an block with only a single landing pad and a unconditional branch
5621 /// try to find another basic block which this one can be merged with.  This
5622 /// handles cases where we have multiple invokes with unique landing pads, but
5623 /// a shared handler.
5624 ///
5625 /// We specifically choose to not worry about merging non-empty blocks
5626 /// here.  That is a PRE/scheduling problem and is best solved elsewhere.  In
5627 /// practice, the optimizer produces empty landing pad blocks quite frequently
5628 /// when dealing with exception dense code.  (see: instcombine, gvn, if-else
5629 /// sinking in this file)
5630 ///
5631 /// This is primarily a code size optimization.  We need to avoid performing
5632 /// any transform which might inhibit optimization (such as our ability to
5633 /// specialize a particular handler via tail commoning).  We do this by not
5634 /// merging any blocks which require us to introduce a phi.  Since the same
5635 /// values are flowing through both blocks, we don't loose any ability to
5636 /// specialize.  If anything, we make such specialization more likely.
5637 ///
5638 /// TODO - This transformation could remove entries from a phi in the target
5639 /// block when the inputs in the phi are the same for the two blocks being
5640 /// merged.  In some cases, this could result in removal of the PHI entirely.
5641 static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI,
5642                                  BasicBlock *BB) {
5643   auto Succ = BB->getUniqueSuccessor();
5644   assert(Succ);
5645   // If there's a phi in the successor block, we'd likely have to introduce
5646   // a phi into the merged landing pad block.
5647   if (isa<PHINode>(*Succ->begin()))
5648     return false;
5649 
5650   for (BasicBlock *OtherPred : predecessors(Succ)) {
5651     if (BB == OtherPred)
5652       continue;
5653     BasicBlock::iterator I = OtherPred->begin();
5654     LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I);
5655     if (!LPad2 || !LPad2->isIdenticalTo(LPad))
5656       continue;
5657     for (++I; isa<DbgInfoIntrinsic>(I); ++I) {
5658     }
5659     BranchInst *BI2 = dyn_cast<BranchInst>(I);
5660     if (!BI2 || !BI2->isIdenticalTo(BI))
5661       continue;
5662 
5663     // We've found an identical block.  Update our predecessors to take that
5664     // path instead and make ourselves dead.
5665     SmallSet<BasicBlock *, 16> Preds;
5666     Preds.insert(pred_begin(BB), pred_end(BB));
5667     for (BasicBlock *Pred : Preds) {
5668       InvokeInst *II = cast<InvokeInst>(Pred->getTerminator());
5669       assert(II->getNormalDest() != BB && II->getUnwindDest() == BB &&
5670              "unexpected successor");
5671       II->setUnwindDest(OtherPred);
5672     }
5673 
5674     // The debug info in OtherPred doesn't cover the merged control flow that
5675     // used to go through BB.  We need to delete it or update it.
5676     for (auto I = OtherPred->begin(), E = OtherPred->end(); I != E;) {
5677       Instruction &Inst = *I;
5678       I++;
5679       if (isa<DbgInfoIntrinsic>(Inst))
5680         Inst.eraseFromParent();
5681     }
5682 
5683     SmallSet<BasicBlock *, 16> Succs;
5684     Succs.insert(succ_begin(BB), succ_end(BB));
5685     for (BasicBlock *Succ : Succs) {
5686       Succ->removePredecessor(BB);
5687     }
5688 
5689     IRBuilder<> Builder(BI);
5690     Builder.CreateUnreachable();
5691     BI->eraseFromParent();
5692     return true;
5693   }
5694   return false;
5695 }
5696 
5697 bool SimplifyCFGOpt::SimplifyUncondBranch(BranchInst *BI,
5698                                           IRBuilder<> &Builder) {
5699   BasicBlock *BB = BI->getParent();
5700 
5701   if (SinkCommon && SinkThenElseCodeToEnd(BI))
5702     return true;
5703 
5704   // If the Terminator is the only non-phi instruction, simplify the block.
5705   // if LoopHeader is provided, check if the block is a loop header
5706   // (This is for early invocations before loop simplify and vectorization
5707   // to keep canonical loop forms for nested loops.
5708   // These blocks can be eliminated when the pass is invoked later
5709   // in the back-end.)
5710   BasicBlock::iterator I = BB->getFirstNonPHIOrDbg()->getIterator();
5711   if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() &&
5712       (!LoopHeaders || !LoopHeaders->count(BB)) &&
5713       TryToSimplifyUncondBranchFromEmptyBlock(BB))
5714     return true;
5715 
5716   // If the only instruction in the block is a seteq/setne comparison
5717   // against a constant, try to simplify the block.
5718   if (ICmpInst *ICI = dyn_cast<ICmpInst>(I))
5719     if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) {
5720       for (++I; isa<DbgInfoIntrinsic>(I); ++I)
5721         ;
5722       if (I->isTerminator() &&
5723           TryToSimplifyUncondBranchWithICmpInIt(ICI, Builder, DL, TTI,
5724                                                 BonusInstThreshold, AC))
5725         return true;
5726     }
5727 
5728   // See if we can merge an empty landing pad block with another which is
5729   // equivalent.
5730   if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) {
5731     for (++I; isa<DbgInfoIntrinsic>(I); ++I) {
5732     }
5733     if (I->isTerminator() && TryToMergeLandingPad(LPad, BI, BB))
5734       return true;
5735   }
5736 
5737   // If this basic block is ONLY a compare and a branch, and if a predecessor
5738   // branches to us and our successor, fold the comparison into the
5739   // predecessor and use logical operations to update the incoming value
5740   // for PHI nodes in common successor.
5741   if (FoldBranchToCommonDest(BI, BonusInstThreshold))
5742     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5743   return false;
5744 }
5745 
5746 static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) {
5747   BasicBlock *PredPred = nullptr;
5748   for (auto *P : predecessors(BB)) {
5749     BasicBlock *PPred = P->getSinglePredecessor();
5750     if (!PPred || (PredPred && PredPred != PPred))
5751       return nullptr;
5752     PredPred = PPred;
5753   }
5754   return PredPred;
5755 }
5756 
5757 bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) {
5758   BasicBlock *BB = BI->getParent();
5759 
5760   // Conditional branch
5761   if (isValueEqualityComparison(BI)) {
5762     // If we only have one predecessor, and if it is a branch on this value,
5763     // see if that predecessor totally determines the outcome of this
5764     // switch.
5765     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
5766       if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder))
5767         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5768 
5769     // This block must be empty, except for the setcond inst, if it exists.
5770     // Ignore dbg intrinsics.
5771     BasicBlock::iterator I = BB->begin();
5772     // Ignore dbg intrinsics.
5773     while (isa<DbgInfoIntrinsic>(I))
5774       ++I;
5775     if (&*I == BI) {
5776       if (FoldValueComparisonIntoPredecessors(BI, Builder))
5777         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5778     } else if (&*I == cast<Instruction>(BI->getCondition())) {
5779       ++I;
5780       // Ignore dbg intrinsics.
5781       while (isa<DbgInfoIntrinsic>(I))
5782         ++I;
5783       if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder))
5784         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5785     }
5786   }
5787 
5788   // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction.
5789   if (SimplifyBranchOnICmpChain(BI, Builder, DL))
5790     return true;
5791 
5792   // If this basic block has a single dominating predecessor block and the
5793   // dominating block's condition implies BI's condition, we know the direction
5794   // of the BI branch.
5795   if (BasicBlock *Dom = BB->getSinglePredecessor()) {
5796     auto *PBI = dyn_cast_or_null<BranchInst>(Dom->getTerminator());
5797     if (PBI && PBI->isConditional() &&
5798         PBI->getSuccessor(0) != PBI->getSuccessor(1) &&
5799         (PBI->getSuccessor(0) == BB || PBI->getSuccessor(1) == BB)) {
5800       bool CondIsFalse = PBI->getSuccessor(1) == BB;
5801       Optional<bool> Implication = isImpliedCondition(
5802           PBI->getCondition(), BI->getCondition(), DL, CondIsFalse);
5803       if (Implication) {
5804         // Turn this into a branch on constant.
5805         auto *OldCond = BI->getCondition();
5806         ConstantInt *CI = *Implication
5807                               ? ConstantInt::getTrue(BB->getContext())
5808                               : ConstantInt::getFalse(BB->getContext());
5809         BI->setCondition(CI);
5810         RecursivelyDeleteTriviallyDeadInstructions(OldCond);
5811         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5812       }
5813     }
5814   }
5815 
5816   // If this basic block is ONLY a compare and a branch, and if a predecessor
5817   // branches to us and one of our successors, fold the comparison into the
5818   // predecessor and use logical operations to pick the right destination.
5819   if (FoldBranchToCommonDest(BI, BonusInstThreshold))
5820     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5821 
5822   // We have a conditional branch to two blocks that are only reachable
5823   // from BI.  We know that the condbr dominates the two blocks, so see if
5824   // there is any identical code in the "then" and "else" blocks.  If so, we
5825   // can hoist it up to the branching block.
5826   if (BI->getSuccessor(0)->getSinglePredecessor()) {
5827     if (BI->getSuccessor(1)->getSinglePredecessor()) {
5828       if (HoistThenElseCodeToIf(BI, TTI))
5829         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5830     } else {
5831       // If Successor #1 has multiple preds, we may be able to conditionally
5832       // execute Successor #0 if it branches to Successor #1.
5833       TerminatorInst *Succ0TI = BI->getSuccessor(0)->getTerminator();
5834       if (Succ0TI->getNumSuccessors() == 1 &&
5835           Succ0TI->getSuccessor(0) == BI->getSuccessor(1))
5836         if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), TTI))
5837           return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5838     }
5839   } else if (BI->getSuccessor(1)->getSinglePredecessor()) {
5840     // If Successor #0 has multiple preds, we may be able to conditionally
5841     // execute Successor #1 if it branches to Successor #0.
5842     TerminatorInst *Succ1TI = BI->getSuccessor(1)->getTerminator();
5843     if (Succ1TI->getNumSuccessors() == 1 &&
5844         Succ1TI->getSuccessor(0) == BI->getSuccessor(0))
5845       if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), TTI))
5846         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5847   }
5848 
5849   // If this is a branch on a phi node in the current block, thread control
5850   // through this block if any PHI node entries are constants.
5851   if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition()))
5852     if (PN->getParent() == BI->getParent())
5853       if (FoldCondBranchOnPHI(BI, DL, AC))
5854         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5855 
5856   // Scan predecessor blocks for conditional branches.
5857   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
5858     if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
5859       if (PBI != BI && PBI->isConditional())
5860         if (SimplifyCondBranchToCondBranch(PBI, BI, DL))
5861           return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5862 
5863   // Look for diamond patterns.
5864   if (MergeCondStores)
5865     if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB))
5866       if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator()))
5867         if (PBI != BI && PBI->isConditional())
5868           if (mergeConditionalStores(PBI, BI))
5869             return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5870 
5871   return false;
5872 }
5873 
5874 /// Check if passing a value to an instruction will cause undefined behavior.
5875 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I) {
5876   Constant *C = dyn_cast<Constant>(V);
5877   if (!C)
5878     return false;
5879 
5880   if (I->use_empty())
5881     return false;
5882 
5883   if (C->isNullValue() || isa<UndefValue>(C)) {
5884     // Only look at the first use, avoid hurting compile time with long uselists
5885     User *Use = *I->user_begin();
5886 
5887     // Now make sure that there are no instructions in between that can alter
5888     // control flow (eg. calls)
5889     for (BasicBlock::iterator
5890              i = ++BasicBlock::iterator(I),
5891              UI = BasicBlock::iterator(dyn_cast<Instruction>(Use));
5892          i != UI; ++i)
5893       if (i == I->getParent()->end() || i->mayHaveSideEffects())
5894         return false;
5895 
5896     // Look through GEPs. A load from a GEP derived from NULL is still undefined
5897     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use))
5898       if (GEP->getPointerOperand() == I)
5899         return passingValueIsAlwaysUndefined(V, GEP);
5900 
5901     // Look through bitcasts.
5902     if (BitCastInst *BC = dyn_cast<BitCastInst>(Use))
5903       return passingValueIsAlwaysUndefined(V, BC);
5904 
5905     // Load from null is undefined.
5906     if (LoadInst *LI = dyn_cast<LoadInst>(Use))
5907       if (!LI->isVolatile())
5908         return LI->getPointerAddressSpace() == 0;
5909 
5910     // Store to null is undefined.
5911     if (StoreInst *SI = dyn_cast<StoreInst>(Use))
5912       if (!SI->isVolatile())
5913         return SI->getPointerAddressSpace() == 0 &&
5914                SI->getPointerOperand() == I;
5915 
5916     // A call to null is undefined.
5917     if (auto CS = CallSite(Use))
5918       return CS.getCalledValue() == I;
5919   }
5920   return false;
5921 }
5922 
5923 /// If BB has an incoming value that will always trigger undefined behavior
5924 /// (eg. null pointer dereference), remove the branch leading here.
5925 static bool removeUndefIntroducingPredecessor(BasicBlock *BB) {
5926   for (BasicBlock::iterator i = BB->begin();
5927        PHINode *PHI = dyn_cast<PHINode>(i); ++i)
5928     for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i)
5929       if (passingValueIsAlwaysUndefined(PHI->getIncomingValue(i), PHI)) {
5930         TerminatorInst *T = PHI->getIncomingBlock(i)->getTerminator();
5931         IRBuilder<> Builder(T);
5932         if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
5933           BB->removePredecessor(PHI->getIncomingBlock(i));
5934           // Turn uncoditional branches into unreachables and remove the dead
5935           // destination from conditional branches.
5936           if (BI->isUnconditional())
5937             Builder.CreateUnreachable();
5938           else
5939             Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1)
5940                                                        : BI->getSuccessor(0));
5941           BI->eraseFromParent();
5942           return true;
5943         }
5944         // TODO: SwitchInst.
5945       }
5946 
5947   return false;
5948 }
5949 
5950 bool SimplifyCFGOpt::run(BasicBlock *BB) {
5951   bool Changed = false;
5952 
5953   assert(BB && BB->getParent() && "Block not embedded in function!");
5954   assert(BB->getTerminator() && "Degenerate basic block encountered!");
5955 
5956   // Remove basic blocks that have no predecessors (except the entry block)...
5957   // or that just have themself as a predecessor.  These are unreachable.
5958   if ((pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) ||
5959       BB->getSinglePredecessor() == BB) {
5960     DEBUG(dbgs() << "Removing BB: \n" << *BB);
5961     DeleteDeadBlock(BB);
5962     return true;
5963   }
5964 
5965   // Check to see if we can constant propagate this terminator instruction
5966   // away...
5967   Changed |= ConstantFoldTerminator(BB, true);
5968 
5969   // Check for and eliminate duplicate PHI nodes in this block.
5970   Changed |= EliminateDuplicatePHINodes(BB);
5971 
5972   // Check for and remove branches that will always cause undefined behavior.
5973   Changed |= removeUndefIntroducingPredecessor(BB);
5974 
5975   // Merge basic blocks into their predecessor if there is only one distinct
5976   // pred, and if there is only one distinct successor of the predecessor, and
5977   // if there are no PHI nodes.
5978   //
5979   if (MergeBlockIntoPredecessor(BB))
5980     return true;
5981 
5982   IRBuilder<> Builder(BB);
5983 
5984   // If there is a trivial two-entry PHI node in this basic block, and we can
5985   // eliminate it, do so now.
5986   if (PHINode *PN = dyn_cast<PHINode>(BB->begin()))
5987     if (PN->getNumIncomingValues() == 2)
5988       Changed |= FoldTwoEntryPHINode(PN, TTI, DL);
5989 
5990   Builder.SetInsertPoint(BB->getTerminator());
5991   if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
5992     if (BI->isUnconditional()) {
5993       if (SimplifyUncondBranch(BI, Builder))
5994         return true;
5995     } else {
5996       if (SimplifyCondBranch(BI, Builder))
5997         return true;
5998     }
5999   } else if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
6000     if (SimplifyReturn(RI, Builder))
6001       return true;
6002   } else if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator())) {
6003     if (SimplifyResume(RI, Builder))
6004       return true;
6005   } else if (CleanupReturnInst *RI =
6006                  dyn_cast<CleanupReturnInst>(BB->getTerminator())) {
6007     if (SimplifyCleanupReturn(RI))
6008       return true;
6009   } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
6010     if (SimplifySwitch(SI, Builder))
6011       return true;
6012   } else if (UnreachableInst *UI =
6013                  dyn_cast<UnreachableInst>(BB->getTerminator())) {
6014     if (SimplifyUnreachable(UI))
6015       return true;
6016   } else if (IndirectBrInst *IBI =
6017                  dyn_cast<IndirectBrInst>(BB->getTerminator())) {
6018     if (SimplifyIndirectBr(IBI))
6019       return true;
6020   }
6021 
6022   return Changed;
6023 }
6024 
6025 /// This function is used to do simplification of a CFG.
6026 /// For example, it adjusts branches to branches to eliminate the extra hop,
6027 /// eliminates unreachable basic blocks, and does other "peephole" optimization
6028 /// of the CFG.  It returns true if a modification was made.
6029 ///
6030 bool llvm::SimplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI,
6031                        unsigned BonusInstThreshold, AssumptionCache *AC,
6032                        SmallPtrSetImpl<BasicBlock *> *LoopHeaders,
6033                        bool LateSimplifyCFG) {
6034   return SimplifyCFGOpt(TTI, BB->getModule()->getDataLayout(),
6035                         BonusInstThreshold, AC, LoopHeaders, LateSimplifyCFG)
6036       .run(BB);
6037 }
6038