1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Peephole optimize the CFG. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Utils/Local.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SetOperations.h" 18 #include "llvm/ADT/SetVector.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/Analysis/ConstantFolding.h" 23 #include "llvm/Analysis/EHPersonalities.h" 24 #include "llvm/Analysis/InstructionSimplify.h" 25 #include "llvm/Analysis/TargetTransformInfo.h" 26 #include "llvm/Analysis/ValueTracking.h" 27 #include "llvm/IR/CFG.h" 28 #include "llvm/IR/ConstantRange.h" 29 #include "llvm/IR/Constants.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "llvm/IR/DerivedTypes.h" 32 #include "llvm/IR/GlobalVariable.h" 33 #include "llvm/IR/IRBuilder.h" 34 #include "llvm/IR/Instructions.h" 35 #include "llvm/IR/IntrinsicInst.h" 36 #include "llvm/IR/LLVMContext.h" 37 #include "llvm/IR/MDBuilder.h" 38 #include "llvm/IR/Metadata.h" 39 #include "llvm/IR/Module.h" 40 #include "llvm/IR/NoFolder.h" 41 #include "llvm/IR/Operator.h" 42 #include "llvm/IR/PatternMatch.h" 43 #include "llvm/IR/Type.h" 44 #include "llvm/Support/CommandLine.h" 45 #include "llvm/Support/Debug.h" 46 #include "llvm/Support/raw_ostream.h" 47 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 48 #include "llvm/Transforms/Utils/ValueMapper.h" 49 #include <algorithm> 50 #include <map> 51 #include <set> 52 using namespace llvm; 53 using namespace PatternMatch; 54 55 #define DEBUG_TYPE "simplifycfg" 56 57 // Chosen as 2 so as to be cheap, but still to have enough power to fold 58 // a select, so the "clamp" idiom (of a min followed by a max) will be caught. 59 // To catch this, we need to fold a compare and a select, hence '2' being the 60 // minimum reasonable default. 61 static cl::opt<unsigned> 62 PHINodeFoldingThreshold("phi-node-folding-threshold", cl::Hidden, cl::init(2), 63 cl::desc("Control the amount of phi node folding to perform (default = 2)")); 64 65 static cl::opt<bool> 66 DupRet("simplifycfg-dup-ret", cl::Hidden, cl::init(false), 67 cl::desc("Duplicate return instructions into unconditional branches")); 68 69 static cl::opt<bool> 70 SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true), 71 cl::desc("Sink common instructions down to the end block")); 72 73 static cl::opt<bool> HoistCondStores( 74 "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true), 75 cl::desc("Hoist conditional stores if an unconditional store precedes")); 76 77 static cl::opt<bool> MergeCondStores( 78 "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true), 79 cl::desc("Hoist conditional stores even if an unconditional store does not " 80 "precede - hoist multiple conditional stores into a single " 81 "predicated store")); 82 83 static cl::opt<bool> MergeCondStoresAggressively( 84 "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false), 85 cl::desc("When merging conditional stores, do so even if the resultant " 86 "basic blocks are unlikely to be if-converted as a result")); 87 88 static cl::opt<bool> SpeculateOneExpensiveInst( 89 "speculate-one-expensive-inst", cl::Hidden, cl::init(true), 90 cl::desc("Allow exactly one expensive instruction to be speculatively " 91 "executed")); 92 93 static cl::opt<unsigned> MaxSpeculationDepth( 94 "max-speculation-depth", cl::Hidden, cl::init(10), 95 cl::desc("Limit maximum recursion depth when calculating costs of " 96 "speculatively executed instructions")); 97 98 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps"); 99 STATISTIC(NumLinearMaps, "Number of switch instructions turned into linear mapping"); 100 STATISTIC(NumLookupTables, "Number of switch instructions turned into lookup tables"); 101 STATISTIC(NumLookupTablesHoles, "Number of switch instructions turned into lookup tables (holes checked)"); 102 STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares"); 103 STATISTIC(NumSinkCommons, "Number of common instructions sunk down to the end block"); 104 STATISTIC(NumSpeculations, "Number of speculative executed instructions"); 105 106 namespace { 107 // The first field contains the value that the switch produces when a certain 108 // case group is selected, and the second field is a vector containing the 109 // cases composing the case group. 110 typedef SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2> 111 SwitchCaseResultVectorTy; 112 // The first field contains the phi node that generates a result of the switch 113 // and the second field contains the value generated for a certain case in the 114 // switch for that PHI. 115 typedef SmallVector<std::pair<PHINode *, Constant *>, 4> SwitchCaseResultsTy; 116 117 /// ValueEqualityComparisonCase - Represents a case of a switch. 118 struct ValueEqualityComparisonCase { 119 ConstantInt *Value; 120 BasicBlock *Dest; 121 122 ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest) 123 : Value(Value), Dest(Dest) {} 124 125 bool operator<(ValueEqualityComparisonCase RHS) const { 126 // Comparing pointers is ok as we only rely on the order for uniquing. 127 return Value < RHS.Value; 128 } 129 130 bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; } 131 }; 132 133 class SimplifyCFGOpt { 134 const TargetTransformInfo &TTI; 135 const DataLayout &DL; 136 unsigned BonusInstThreshold; 137 AssumptionCache *AC; 138 Value *isValueEqualityComparison(TerminatorInst *TI); 139 BasicBlock *GetValueEqualityComparisonCases(TerminatorInst *TI, 140 std::vector<ValueEqualityComparisonCase> &Cases); 141 bool SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI, 142 BasicBlock *Pred, 143 IRBuilder<> &Builder); 144 bool FoldValueComparisonIntoPredecessors(TerminatorInst *TI, 145 IRBuilder<> &Builder); 146 147 bool SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder); 148 bool SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder); 149 bool SimplifySingleResume(ResumeInst *RI); 150 bool SimplifyCommonResume(ResumeInst *RI); 151 bool SimplifyCleanupReturn(CleanupReturnInst *RI); 152 bool SimplifyUnreachable(UnreachableInst *UI); 153 bool SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder); 154 bool SimplifyIndirectBr(IndirectBrInst *IBI); 155 bool SimplifyUncondBranch(BranchInst *BI, IRBuilder <> &Builder); 156 bool SimplifyCondBranch(BranchInst *BI, IRBuilder <>&Builder); 157 158 public: 159 SimplifyCFGOpt(const TargetTransformInfo &TTI, const DataLayout &DL, 160 unsigned BonusInstThreshold, AssumptionCache *AC) 161 : TTI(TTI), DL(DL), BonusInstThreshold(BonusInstThreshold), AC(AC) {} 162 bool run(BasicBlock *BB); 163 }; 164 } 165 166 /// Return true if it is safe to merge these two 167 /// terminator instructions together. 168 static bool SafeToMergeTerminators(TerminatorInst *SI1, TerminatorInst *SI2) { 169 if (SI1 == SI2) return false; // Can't merge with self! 170 171 // It is not safe to merge these two switch instructions if they have a common 172 // successor, and if that successor has a PHI node, and if *that* PHI node has 173 // conflicting incoming values from the two switch blocks. 174 BasicBlock *SI1BB = SI1->getParent(); 175 BasicBlock *SI2BB = SI2->getParent(); 176 SmallPtrSet<BasicBlock*, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB)); 177 178 for (succ_iterator I = succ_begin(SI2BB), E = succ_end(SI2BB); I != E; ++I) 179 if (SI1Succs.count(*I)) 180 for (BasicBlock::iterator BBI = (*I)->begin(); 181 isa<PHINode>(BBI); ++BBI) { 182 PHINode *PN = cast<PHINode>(BBI); 183 if (PN->getIncomingValueForBlock(SI1BB) != 184 PN->getIncomingValueForBlock(SI2BB)) 185 return false; 186 } 187 188 return true; 189 } 190 191 /// Return true if it is safe and profitable to merge these two terminator 192 /// instructions together, where SI1 is an unconditional branch. PhiNodes will 193 /// store all PHI nodes in common successors. 194 static bool isProfitableToFoldUnconditional(BranchInst *SI1, 195 BranchInst *SI2, 196 Instruction *Cond, 197 SmallVectorImpl<PHINode*> &PhiNodes) { 198 if (SI1 == SI2) return false; // Can't merge with self! 199 assert(SI1->isUnconditional() && SI2->isConditional()); 200 201 // We fold the unconditional branch if we can easily update all PHI nodes in 202 // common successors: 203 // 1> We have a constant incoming value for the conditional branch; 204 // 2> We have "Cond" as the incoming value for the unconditional branch; 205 // 3> SI2->getCondition() and Cond have same operands. 206 CmpInst *Ci2 = dyn_cast<CmpInst>(SI2->getCondition()); 207 if (!Ci2) return false; 208 if (!(Cond->getOperand(0) == Ci2->getOperand(0) && 209 Cond->getOperand(1) == Ci2->getOperand(1)) && 210 !(Cond->getOperand(0) == Ci2->getOperand(1) && 211 Cond->getOperand(1) == Ci2->getOperand(0))) 212 return false; 213 214 BasicBlock *SI1BB = SI1->getParent(); 215 BasicBlock *SI2BB = SI2->getParent(); 216 SmallPtrSet<BasicBlock*, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB)); 217 for (succ_iterator I = succ_begin(SI2BB), E = succ_end(SI2BB); I != E; ++I) 218 if (SI1Succs.count(*I)) 219 for (BasicBlock::iterator BBI = (*I)->begin(); 220 isa<PHINode>(BBI); ++BBI) { 221 PHINode *PN = cast<PHINode>(BBI); 222 if (PN->getIncomingValueForBlock(SI1BB) != Cond || 223 !isa<ConstantInt>(PN->getIncomingValueForBlock(SI2BB))) 224 return false; 225 PhiNodes.push_back(PN); 226 } 227 return true; 228 } 229 230 /// Update PHI nodes in Succ to indicate that there will now be entries in it 231 /// from the 'NewPred' block. The values that will be flowing into the PHI nodes 232 /// will be the same as those coming in from ExistPred, an existing predecessor 233 /// of Succ. 234 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred, 235 BasicBlock *ExistPred) { 236 if (!isa<PHINode>(Succ->begin())) return; // Quick exit if nothing to do 237 238 PHINode *PN; 239 for (BasicBlock::iterator I = Succ->begin(); 240 (PN = dyn_cast<PHINode>(I)); ++I) 241 PN->addIncoming(PN->getIncomingValueForBlock(ExistPred), NewPred); 242 } 243 244 /// Compute an abstract "cost" of speculating the given instruction, 245 /// which is assumed to be safe to speculate. TCC_Free means cheap, 246 /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively 247 /// expensive. 248 static unsigned ComputeSpeculationCost(const User *I, 249 const TargetTransformInfo &TTI) { 250 assert(isSafeToSpeculativelyExecute(I) && 251 "Instruction is not safe to speculatively execute!"); 252 return TTI.getUserCost(I); 253 } 254 255 /// If we have a merge point of an "if condition" as accepted above, 256 /// return true if the specified value dominates the block. We 257 /// don't handle the true generality of domination here, just a special case 258 /// which works well enough for us. 259 /// 260 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to 261 /// see if V (which must be an instruction) and its recursive operands 262 /// that do not dominate BB have a combined cost lower than CostRemaining and 263 /// are non-trapping. If both are true, the instruction is inserted into the 264 /// set and true is returned. 265 /// 266 /// The cost for most non-trapping instructions is defined as 1 except for 267 /// Select whose cost is 2. 268 /// 269 /// After this function returns, CostRemaining is decreased by the cost of 270 /// V plus its non-dominating operands. If that cost is greater than 271 /// CostRemaining, false is returned and CostRemaining is undefined. 272 static bool DominatesMergePoint(Value *V, BasicBlock *BB, 273 SmallPtrSetImpl<Instruction*> *AggressiveInsts, 274 unsigned &CostRemaining, 275 const TargetTransformInfo &TTI, 276 unsigned Depth = 0) { 277 // It is possible to hit a zero-cost cycle (phi/gep instructions for example), 278 // so limit the recursion depth. 279 // TODO: While this recursion limit does prevent pathological behavior, it 280 // would be better to track visited instructions to avoid cycles. 281 if (Depth == MaxSpeculationDepth) 282 return false; 283 284 Instruction *I = dyn_cast<Instruction>(V); 285 if (!I) { 286 // Non-instructions all dominate instructions, but not all constantexprs 287 // can be executed unconditionally. 288 if (ConstantExpr *C = dyn_cast<ConstantExpr>(V)) 289 if (C->canTrap()) 290 return false; 291 return true; 292 } 293 BasicBlock *PBB = I->getParent(); 294 295 // We don't want to allow weird loops that might have the "if condition" in 296 // the bottom of this block. 297 if (PBB == BB) return false; 298 299 // If this instruction is defined in a block that contains an unconditional 300 // branch to BB, then it must be in the 'conditional' part of the "if 301 // statement". If not, it definitely dominates the region. 302 BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator()); 303 if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB) 304 return true; 305 306 // If we aren't allowing aggressive promotion anymore, then don't consider 307 // instructions in the 'if region'. 308 if (!AggressiveInsts) return false; 309 310 // If we have seen this instruction before, don't count it again. 311 if (AggressiveInsts->count(I)) return true; 312 313 // Okay, it looks like the instruction IS in the "condition". Check to 314 // see if it's a cheap instruction to unconditionally compute, and if it 315 // only uses stuff defined outside of the condition. If so, hoist it out. 316 if (!isSafeToSpeculativelyExecute(I)) 317 return false; 318 319 unsigned Cost = ComputeSpeculationCost(I, TTI); 320 321 // Allow exactly one instruction to be speculated regardless of its cost 322 // (as long as it is safe to do so). 323 // This is intended to flatten the CFG even if the instruction is a division 324 // or other expensive operation. The speculation of an expensive instruction 325 // is expected to be undone in CodeGenPrepare if the speculation has not 326 // enabled further IR optimizations. 327 if (Cost > CostRemaining && 328 (!SpeculateOneExpensiveInst || !AggressiveInsts->empty() || Depth > 0)) 329 return false; 330 331 // Avoid unsigned wrap. 332 CostRemaining = (Cost > CostRemaining) ? 0 : CostRemaining - Cost; 333 334 // Okay, we can only really hoist these out if their operands do 335 // not take us over the cost threshold. 336 for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) 337 if (!DominatesMergePoint(*i, BB, AggressiveInsts, CostRemaining, TTI, 338 Depth + 1)) 339 return false; 340 // Okay, it's safe to do this! Remember this instruction. 341 AggressiveInsts->insert(I); 342 return true; 343 } 344 345 /// Extract ConstantInt from value, looking through IntToPtr 346 /// and PointerNullValue. Return NULL if value is not a constant int. 347 static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) { 348 // Normal constant int. 349 ConstantInt *CI = dyn_cast<ConstantInt>(V); 350 if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy()) 351 return CI; 352 353 // This is some kind of pointer constant. Turn it into a pointer-sized 354 // ConstantInt if possible. 355 IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType())); 356 357 // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*). 358 if (isa<ConstantPointerNull>(V)) 359 return ConstantInt::get(PtrTy, 0); 360 361 // IntToPtr const int. 362 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 363 if (CE->getOpcode() == Instruction::IntToPtr) 364 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) { 365 // The constant is very likely to have the right type already. 366 if (CI->getType() == PtrTy) 367 return CI; 368 else 369 return cast<ConstantInt> 370 (ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false)); 371 } 372 return nullptr; 373 } 374 375 namespace { 376 377 /// Given a chain of or (||) or and (&&) comparison of a value against a 378 /// constant, this will try to recover the information required for a switch 379 /// structure. 380 /// It will depth-first traverse the chain of comparison, seeking for patterns 381 /// like %a == 12 or %a < 4 and combine them to produce a set of integer 382 /// representing the different cases for the switch. 383 /// Note that if the chain is composed of '||' it will build the set of elements 384 /// that matches the comparisons (i.e. any of this value validate the chain) 385 /// while for a chain of '&&' it will build the set elements that make the test 386 /// fail. 387 struct ConstantComparesGatherer { 388 const DataLayout &DL; 389 Value *CompValue; /// Value found for the switch comparison 390 Value *Extra; /// Extra clause to be checked before the switch 391 SmallVector<ConstantInt *, 8> Vals; /// Set of integers to match in switch 392 unsigned UsedICmps; /// Number of comparisons matched in the and/or chain 393 394 /// Construct and compute the result for the comparison instruction Cond 395 ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL) 396 : DL(DL), CompValue(nullptr), Extra(nullptr), UsedICmps(0) { 397 gather(Cond); 398 } 399 400 /// Prevent copy 401 ConstantComparesGatherer(const ConstantComparesGatherer &) = delete; 402 ConstantComparesGatherer & 403 operator=(const ConstantComparesGatherer &) = delete; 404 405 private: 406 407 /// Try to set the current value used for the comparison, it succeeds only if 408 /// it wasn't set before or if the new value is the same as the old one 409 bool setValueOnce(Value *NewVal) { 410 if(CompValue && CompValue != NewVal) return false; 411 CompValue = NewVal; 412 return (CompValue != nullptr); 413 } 414 415 /// Try to match Instruction "I" as a comparison against a constant and 416 /// populates the array Vals with the set of values that match (or do not 417 /// match depending on isEQ). 418 /// Return false on failure. On success, the Value the comparison matched 419 /// against is placed in CompValue. 420 /// If CompValue is already set, the function is expected to fail if a match 421 /// is found but the value compared to is different. 422 bool matchInstruction(Instruction *I, bool isEQ) { 423 // If this is an icmp against a constant, handle this as one of the cases. 424 ICmpInst *ICI; 425 ConstantInt *C; 426 if (!((ICI = dyn_cast<ICmpInst>(I)) && 427 (C = GetConstantInt(I->getOperand(1), DL)))) { 428 return false; 429 } 430 431 Value *RHSVal; 432 ConstantInt *RHSC; 433 434 // Pattern match a special case 435 // (x & ~2^z) == y --> x == y || x == y|2^z 436 // This undoes a transformation done by instcombine to fuse 2 compares. 437 if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ:ICmpInst::ICMP_NE)) { 438 if (match(ICI->getOperand(0), 439 m_And(m_Value(RHSVal), m_ConstantInt(RHSC)))) { 440 APInt Not = ~RHSC->getValue(); 441 if (Not.isPowerOf2() && C->getValue().isPowerOf2() && 442 Not != C->getValue()) { 443 // If we already have a value for the switch, it has to match! 444 if(!setValueOnce(RHSVal)) 445 return false; 446 447 Vals.push_back(C); 448 Vals.push_back(ConstantInt::get(C->getContext(), 449 C->getValue() | Not)); 450 UsedICmps++; 451 return true; 452 } 453 } 454 455 // If we already have a value for the switch, it has to match! 456 if(!setValueOnce(ICI->getOperand(0))) 457 return false; 458 459 UsedICmps++; 460 Vals.push_back(C); 461 return ICI->getOperand(0); 462 } 463 464 // If we have "x ult 3", for example, then we can add 0,1,2 to the set. 465 ConstantRange Span = ConstantRange::makeAllowedICmpRegion( 466 ICI->getPredicate(), C->getValue()); 467 468 // Shift the range if the compare is fed by an add. This is the range 469 // compare idiom as emitted by instcombine. 470 Value *CandidateVal = I->getOperand(0); 471 if(match(I->getOperand(0), m_Add(m_Value(RHSVal), m_ConstantInt(RHSC)))) { 472 Span = Span.subtract(RHSC->getValue()); 473 CandidateVal = RHSVal; 474 } 475 476 // If this is an and/!= check, then we are looking to build the set of 477 // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into 478 // x != 0 && x != 1. 479 if (!isEQ) 480 Span = Span.inverse(); 481 482 // If there are a ton of values, we don't want to make a ginormous switch. 483 if (Span.getSetSize().ugt(8) || Span.isEmptySet()) { 484 return false; 485 } 486 487 // If we already have a value for the switch, it has to match! 488 if(!setValueOnce(CandidateVal)) 489 return false; 490 491 // Add all values from the range to the set 492 for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp) 493 Vals.push_back(ConstantInt::get(I->getContext(), Tmp)); 494 495 UsedICmps++; 496 return true; 497 498 } 499 500 /// Given a potentially 'or'd or 'and'd together collection of icmp 501 /// eq/ne/lt/gt instructions that compare a value against a constant, extract 502 /// the value being compared, and stick the list constants into the Vals 503 /// vector. 504 /// One "Extra" case is allowed to differ from the other. 505 void gather(Value *V) { 506 Instruction *I = dyn_cast<Instruction>(V); 507 bool isEQ = (I->getOpcode() == Instruction::Or); 508 509 // Keep a stack (SmallVector for efficiency) for depth-first traversal 510 SmallVector<Value *, 8> DFT; 511 512 // Initialize 513 DFT.push_back(V); 514 515 while(!DFT.empty()) { 516 V = DFT.pop_back_val(); 517 518 if (Instruction *I = dyn_cast<Instruction>(V)) { 519 // If it is a || (or && depending on isEQ), process the operands. 520 if (I->getOpcode() == (isEQ ? Instruction::Or : Instruction::And)) { 521 DFT.push_back(I->getOperand(1)); 522 DFT.push_back(I->getOperand(0)); 523 continue; 524 } 525 526 // Try to match the current instruction 527 if (matchInstruction(I, isEQ)) 528 // Match succeed, continue the loop 529 continue; 530 } 531 532 // One element of the sequence of || (or &&) could not be match as a 533 // comparison against the same value as the others. 534 // We allow only one "Extra" case to be checked before the switch 535 if (!Extra) { 536 Extra = V; 537 continue; 538 } 539 // Failed to parse a proper sequence, abort now 540 CompValue = nullptr; 541 break; 542 } 543 } 544 }; 545 546 } 547 548 static void EraseTerminatorInstAndDCECond(TerminatorInst *TI) { 549 Instruction *Cond = nullptr; 550 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 551 Cond = dyn_cast<Instruction>(SI->getCondition()); 552 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 553 if (BI->isConditional()) 554 Cond = dyn_cast<Instruction>(BI->getCondition()); 555 } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) { 556 Cond = dyn_cast<Instruction>(IBI->getAddress()); 557 } 558 559 TI->eraseFromParent(); 560 if (Cond) RecursivelyDeleteTriviallyDeadInstructions(Cond); 561 } 562 563 /// Return true if the specified terminator checks 564 /// to see if a value is equal to constant integer value. 565 Value *SimplifyCFGOpt::isValueEqualityComparison(TerminatorInst *TI) { 566 Value *CV = nullptr; 567 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 568 // Do not permit merging of large switch instructions into their 569 // predecessors unless there is only one predecessor. 570 if (SI->getNumSuccessors()*std::distance(pred_begin(SI->getParent()), 571 pred_end(SI->getParent())) <= 128) 572 CV = SI->getCondition(); 573 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) 574 if (BI->isConditional() && BI->getCondition()->hasOneUse()) 575 if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) { 576 if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL)) 577 CV = ICI->getOperand(0); 578 } 579 580 // Unwrap any lossless ptrtoint cast. 581 if (CV) { 582 if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) { 583 Value *Ptr = PTII->getPointerOperand(); 584 if (PTII->getType() == DL.getIntPtrType(Ptr->getType())) 585 CV = Ptr; 586 } 587 } 588 return CV; 589 } 590 591 /// Given a value comparison instruction, 592 /// decode all of the 'cases' that it represents and return the 'default' block. 593 BasicBlock *SimplifyCFGOpt:: 594 GetValueEqualityComparisonCases(TerminatorInst *TI, 595 std::vector<ValueEqualityComparisonCase> 596 &Cases) { 597 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 598 Cases.reserve(SI->getNumCases()); 599 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); i != e; ++i) 600 Cases.push_back(ValueEqualityComparisonCase(i.getCaseValue(), 601 i.getCaseSuccessor())); 602 return SI->getDefaultDest(); 603 } 604 605 BranchInst *BI = cast<BranchInst>(TI); 606 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 607 BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE); 608 Cases.push_back(ValueEqualityComparisonCase(GetConstantInt(ICI->getOperand(1), 609 DL), 610 Succ)); 611 return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ); 612 } 613 614 615 /// Given a vector of bb/value pairs, remove any entries 616 /// in the list that match the specified block. 617 static void EliminateBlockCases(BasicBlock *BB, 618 std::vector<ValueEqualityComparisonCase> &Cases) { 619 Cases.erase(std::remove(Cases.begin(), Cases.end(), BB), Cases.end()); 620 } 621 622 /// Return true if there are any keys in C1 that exist in C2 as well. 623 static bool 624 ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1, 625 std::vector<ValueEqualityComparisonCase > &C2) { 626 std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2; 627 628 // Make V1 be smaller than V2. 629 if (V1->size() > V2->size()) 630 std::swap(V1, V2); 631 632 if (V1->size() == 0) return false; 633 if (V1->size() == 1) { 634 // Just scan V2. 635 ConstantInt *TheVal = (*V1)[0].Value; 636 for (unsigned i = 0, e = V2->size(); i != e; ++i) 637 if (TheVal == (*V2)[i].Value) 638 return true; 639 } 640 641 // Otherwise, just sort both lists and compare element by element. 642 array_pod_sort(V1->begin(), V1->end()); 643 array_pod_sort(V2->begin(), V2->end()); 644 unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size(); 645 while (i1 != e1 && i2 != e2) { 646 if ((*V1)[i1].Value == (*V2)[i2].Value) 647 return true; 648 if ((*V1)[i1].Value < (*V2)[i2].Value) 649 ++i1; 650 else 651 ++i2; 652 } 653 return false; 654 } 655 656 /// If TI is known to be a terminator instruction and its block is known to 657 /// only have a single predecessor block, check to see if that predecessor is 658 /// also a value comparison with the same value, and if that comparison 659 /// determines the outcome of this comparison. If so, simplify TI. This does a 660 /// very limited form of jump threading. 661 bool SimplifyCFGOpt:: 662 SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI, 663 BasicBlock *Pred, 664 IRBuilder<> &Builder) { 665 Value *PredVal = isValueEqualityComparison(Pred->getTerminator()); 666 if (!PredVal) return false; // Not a value comparison in predecessor. 667 668 Value *ThisVal = isValueEqualityComparison(TI); 669 assert(ThisVal && "This isn't a value comparison!!"); 670 if (ThisVal != PredVal) return false; // Different predicates. 671 672 // TODO: Preserve branch weight metadata, similarly to how 673 // FoldValueComparisonIntoPredecessors preserves it. 674 675 // Find out information about when control will move from Pred to TI's block. 676 std::vector<ValueEqualityComparisonCase> PredCases; 677 BasicBlock *PredDef = GetValueEqualityComparisonCases(Pred->getTerminator(), 678 PredCases); 679 EliminateBlockCases(PredDef, PredCases); // Remove default from cases. 680 681 // Find information about how control leaves this block. 682 std::vector<ValueEqualityComparisonCase> ThisCases; 683 BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases); 684 EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases. 685 686 // If TI's block is the default block from Pred's comparison, potentially 687 // simplify TI based on this knowledge. 688 if (PredDef == TI->getParent()) { 689 // If we are here, we know that the value is none of those cases listed in 690 // PredCases. If there are any cases in ThisCases that are in PredCases, we 691 // can simplify TI. 692 if (!ValuesOverlap(PredCases, ThisCases)) 693 return false; 694 695 if (isa<BranchInst>(TI)) { 696 // Okay, one of the successors of this condbr is dead. Convert it to a 697 // uncond br. 698 assert(ThisCases.size() == 1 && "Branch can only have one case!"); 699 // Insert the new branch. 700 Instruction *NI = Builder.CreateBr(ThisDef); 701 (void) NI; 702 703 // Remove PHI node entries for the dead edge. 704 ThisCases[0].Dest->removePredecessor(TI->getParent()); 705 706 DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 707 << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n"); 708 709 EraseTerminatorInstAndDCECond(TI); 710 return true; 711 } 712 713 SwitchInst *SI = cast<SwitchInst>(TI); 714 // Okay, TI has cases that are statically dead, prune them away. 715 SmallPtrSet<Constant*, 16> DeadCases; 716 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 717 DeadCases.insert(PredCases[i].Value); 718 719 DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 720 << "Through successor TI: " << *TI); 721 722 // Collect branch weights into a vector. 723 SmallVector<uint32_t, 8> Weights; 724 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof); 725 bool HasWeight = MD && (MD->getNumOperands() == 2 + SI->getNumCases()); 726 if (HasWeight) 727 for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e; 728 ++MD_i) { 729 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i)); 730 Weights.push_back(CI->getValue().getZExtValue()); 731 } 732 for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) { 733 --i; 734 if (DeadCases.count(i.getCaseValue())) { 735 if (HasWeight) { 736 std::swap(Weights[i.getCaseIndex()+1], Weights.back()); 737 Weights.pop_back(); 738 } 739 i.getCaseSuccessor()->removePredecessor(TI->getParent()); 740 SI->removeCase(i); 741 } 742 } 743 if (HasWeight && Weights.size() >= 2) 744 SI->setMetadata(LLVMContext::MD_prof, 745 MDBuilder(SI->getParent()->getContext()). 746 createBranchWeights(Weights)); 747 748 DEBUG(dbgs() << "Leaving: " << *TI << "\n"); 749 return true; 750 } 751 752 // Otherwise, TI's block must correspond to some matched value. Find out 753 // which value (or set of values) this is. 754 ConstantInt *TIV = nullptr; 755 BasicBlock *TIBB = TI->getParent(); 756 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 757 if (PredCases[i].Dest == TIBB) { 758 if (TIV) 759 return false; // Cannot handle multiple values coming to this block. 760 TIV = PredCases[i].Value; 761 } 762 assert(TIV && "No edge from pred to succ?"); 763 764 // Okay, we found the one constant that our value can be if we get into TI's 765 // BB. Find out which successor will unconditionally be branched to. 766 BasicBlock *TheRealDest = nullptr; 767 for (unsigned i = 0, e = ThisCases.size(); i != e; ++i) 768 if (ThisCases[i].Value == TIV) { 769 TheRealDest = ThisCases[i].Dest; 770 break; 771 } 772 773 // If not handled by any explicit cases, it is handled by the default case. 774 if (!TheRealDest) TheRealDest = ThisDef; 775 776 // Remove PHI node entries for dead edges. 777 BasicBlock *CheckEdge = TheRealDest; 778 for (succ_iterator SI = succ_begin(TIBB), e = succ_end(TIBB); SI != e; ++SI) 779 if (*SI != CheckEdge) 780 (*SI)->removePredecessor(TIBB); 781 else 782 CheckEdge = nullptr; 783 784 // Insert the new branch. 785 Instruction *NI = Builder.CreateBr(TheRealDest); 786 (void) NI; 787 788 DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 789 << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n"); 790 791 EraseTerminatorInstAndDCECond(TI); 792 return true; 793 } 794 795 namespace { 796 /// This class implements a stable ordering of constant 797 /// integers that does not depend on their address. This is important for 798 /// applications that sort ConstantInt's to ensure uniqueness. 799 struct ConstantIntOrdering { 800 bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const { 801 return LHS->getValue().ult(RHS->getValue()); 802 } 803 }; 804 } 805 806 static int ConstantIntSortPredicate(ConstantInt *const *P1, 807 ConstantInt *const *P2) { 808 const ConstantInt *LHS = *P1; 809 const ConstantInt *RHS = *P2; 810 if (LHS->getValue().ult(RHS->getValue())) 811 return 1; 812 if (LHS->getValue() == RHS->getValue()) 813 return 0; 814 return -1; 815 } 816 817 static inline bool HasBranchWeights(const Instruction* I) { 818 MDNode *ProfMD = I->getMetadata(LLVMContext::MD_prof); 819 if (ProfMD && ProfMD->getOperand(0)) 820 if (MDString* MDS = dyn_cast<MDString>(ProfMD->getOperand(0))) 821 return MDS->getString().equals("branch_weights"); 822 823 return false; 824 } 825 826 /// Get Weights of a given TerminatorInst, the default weight is at the front 827 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight 828 /// metadata. 829 static void GetBranchWeights(TerminatorInst *TI, 830 SmallVectorImpl<uint64_t> &Weights) { 831 MDNode *MD = TI->getMetadata(LLVMContext::MD_prof); 832 assert(MD); 833 for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) { 834 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i)); 835 Weights.push_back(CI->getValue().getZExtValue()); 836 } 837 838 // If TI is a conditional eq, the default case is the false case, 839 // and the corresponding branch-weight data is at index 2. We swap the 840 // default weight to be the first entry. 841 if (BranchInst* BI = dyn_cast<BranchInst>(TI)) { 842 assert(Weights.size() == 2); 843 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 844 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 845 std::swap(Weights.front(), Weights.back()); 846 } 847 } 848 849 /// Keep halving the weights until all can fit in uint32_t. 850 static void FitWeights(MutableArrayRef<uint64_t> Weights) { 851 uint64_t Max = *std::max_element(Weights.begin(), Weights.end()); 852 if (Max > UINT_MAX) { 853 unsigned Offset = 32 - countLeadingZeros(Max); 854 for (uint64_t &I : Weights) 855 I >>= Offset; 856 } 857 } 858 859 /// The specified terminator is a value equality comparison instruction 860 /// (either a switch or a branch on "X == c"). 861 /// See if any of the predecessors of the terminator block are value comparisons 862 /// on the same value. If so, and if safe to do so, fold them together. 863 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(TerminatorInst *TI, 864 IRBuilder<> &Builder) { 865 BasicBlock *BB = TI->getParent(); 866 Value *CV = isValueEqualityComparison(TI); // CondVal 867 assert(CV && "Not a comparison?"); 868 bool Changed = false; 869 870 SmallVector<BasicBlock*, 16> Preds(pred_begin(BB), pred_end(BB)); 871 while (!Preds.empty()) { 872 BasicBlock *Pred = Preds.pop_back_val(); 873 874 // See if the predecessor is a comparison with the same value. 875 TerminatorInst *PTI = Pred->getTerminator(); 876 Value *PCV = isValueEqualityComparison(PTI); // PredCondVal 877 878 if (PCV == CV && SafeToMergeTerminators(TI, PTI)) { 879 // Figure out which 'cases' to copy from SI to PSI. 880 std::vector<ValueEqualityComparisonCase> BBCases; 881 BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases); 882 883 std::vector<ValueEqualityComparisonCase> PredCases; 884 BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases); 885 886 // Based on whether the default edge from PTI goes to BB or not, fill in 887 // PredCases and PredDefault with the new switch cases we would like to 888 // build. 889 SmallVector<BasicBlock*, 8> NewSuccessors; 890 891 // Update the branch weight metadata along the way 892 SmallVector<uint64_t, 8> Weights; 893 bool PredHasWeights = HasBranchWeights(PTI); 894 bool SuccHasWeights = HasBranchWeights(TI); 895 896 if (PredHasWeights) { 897 GetBranchWeights(PTI, Weights); 898 // branch-weight metadata is inconsistent here. 899 if (Weights.size() != 1 + PredCases.size()) 900 PredHasWeights = SuccHasWeights = false; 901 } else if (SuccHasWeights) 902 // If there are no predecessor weights but there are successor weights, 903 // populate Weights with 1, which will later be scaled to the sum of 904 // successor's weights 905 Weights.assign(1 + PredCases.size(), 1); 906 907 SmallVector<uint64_t, 8> SuccWeights; 908 if (SuccHasWeights) { 909 GetBranchWeights(TI, SuccWeights); 910 // branch-weight metadata is inconsistent here. 911 if (SuccWeights.size() != 1 + BBCases.size()) 912 PredHasWeights = SuccHasWeights = false; 913 } else if (PredHasWeights) 914 SuccWeights.assign(1 + BBCases.size(), 1); 915 916 if (PredDefault == BB) { 917 // If this is the default destination from PTI, only the edges in TI 918 // that don't occur in PTI, or that branch to BB will be activated. 919 std::set<ConstantInt*, ConstantIntOrdering> PTIHandled; 920 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 921 if (PredCases[i].Dest != BB) 922 PTIHandled.insert(PredCases[i].Value); 923 else { 924 // The default destination is BB, we don't need explicit targets. 925 std::swap(PredCases[i], PredCases.back()); 926 927 if (PredHasWeights || SuccHasWeights) { 928 // Increase weight for the default case. 929 Weights[0] += Weights[i+1]; 930 std::swap(Weights[i+1], Weights.back()); 931 Weights.pop_back(); 932 } 933 934 PredCases.pop_back(); 935 --i; --e; 936 } 937 938 // Reconstruct the new switch statement we will be building. 939 if (PredDefault != BBDefault) { 940 PredDefault->removePredecessor(Pred); 941 PredDefault = BBDefault; 942 NewSuccessors.push_back(BBDefault); 943 } 944 945 unsigned CasesFromPred = Weights.size(); 946 uint64_t ValidTotalSuccWeight = 0; 947 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 948 if (!PTIHandled.count(BBCases[i].Value) && 949 BBCases[i].Dest != BBDefault) { 950 PredCases.push_back(BBCases[i]); 951 NewSuccessors.push_back(BBCases[i].Dest); 952 if (SuccHasWeights || PredHasWeights) { 953 // The default weight is at index 0, so weight for the ith case 954 // should be at index i+1. Scale the cases from successor by 955 // PredDefaultWeight (Weights[0]). 956 Weights.push_back(Weights[0] * SuccWeights[i+1]); 957 ValidTotalSuccWeight += SuccWeights[i+1]; 958 } 959 } 960 961 if (SuccHasWeights || PredHasWeights) { 962 ValidTotalSuccWeight += SuccWeights[0]; 963 // Scale the cases from predecessor by ValidTotalSuccWeight. 964 for (unsigned i = 1; i < CasesFromPred; ++i) 965 Weights[i] *= ValidTotalSuccWeight; 966 // Scale the default weight by SuccDefaultWeight (SuccWeights[0]). 967 Weights[0] *= SuccWeights[0]; 968 } 969 } else { 970 // If this is not the default destination from PSI, only the edges 971 // in SI that occur in PSI with a destination of BB will be 972 // activated. 973 std::set<ConstantInt*, ConstantIntOrdering> PTIHandled; 974 std::map<ConstantInt*, uint64_t> WeightsForHandled; 975 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 976 if (PredCases[i].Dest == BB) { 977 PTIHandled.insert(PredCases[i].Value); 978 979 if (PredHasWeights || SuccHasWeights) { 980 WeightsForHandled[PredCases[i].Value] = Weights[i+1]; 981 std::swap(Weights[i+1], Weights.back()); 982 Weights.pop_back(); 983 } 984 985 std::swap(PredCases[i], PredCases.back()); 986 PredCases.pop_back(); 987 --i; --e; 988 } 989 990 // Okay, now we know which constants were sent to BB from the 991 // predecessor. Figure out where they will all go now. 992 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 993 if (PTIHandled.count(BBCases[i].Value)) { 994 // If this is one we are capable of getting... 995 if (PredHasWeights || SuccHasWeights) 996 Weights.push_back(WeightsForHandled[BBCases[i].Value]); 997 PredCases.push_back(BBCases[i]); 998 NewSuccessors.push_back(BBCases[i].Dest); 999 PTIHandled.erase(BBCases[i].Value);// This constant is taken care of 1000 } 1001 1002 // If there are any constants vectored to BB that TI doesn't handle, 1003 // they must go to the default destination of TI. 1004 for (std::set<ConstantInt*, ConstantIntOrdering>::iterator I = 1005 PTIHandled.begin(), 1006 E = PTIHandled.end(); I != E; ++I) { 1007 if (PredHasWeights || SuccHasWeights) 1008 Weights.push_back(WeightsForHandled[*I]); 1009 PredCases.push_back(ValueEqualityComparisonCase(*I, BBDefault)); 1010 NewSuccessors.push_back(BBDefault); 1011 } 1012 } 1013 1014 // Okay, at this point, we know which new successor Pred will get. Make 1015 // sure we update the number of entries in the PHI nodes for these 1016 // successors. 1017 for (BasicBlock *NewSuccessor : NewSuccessors) 1018 AddPredecessorToBlock(NewSuccessor, Pred, BB); 1019 1020 Builder.SetInsertPoint(PTI); 1021 // Convert pointer to int before we switch. 1022 if (CV->getType()->isPointerTy()) { 1023 CV = Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()), 1024 "magicptr"); 1025 } 1026 1027 // Now that the successors are updated, create the new Switch instruction. 1028 SwitchInst *NewSI = Builder.CreateSwitch(CV, PredDefault, 1029 PredCases.size()); 1030 NewSI->setDebugLoc(PTI->getDebugLoc()); 1031 for (ValueEqualityComparisonCase &V : PredCases) 1032 NewSI->addCase(V.Value, V.Dest); 1033 1034 if (PredHasWeights || SuccHasWeights) { 1035 // Halve the weights if any of them cannot fit in an uint32_t 1036 FitWeights(Weights); 1037 1038 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 1039 1040 NewSI->setMetadata(LLVMContext::MD_prof, 1041 MDBuilder(BB->getContext()). 1042 createBranchWeights(MDWeights)); 1043 } 1044 1045 EraseTerminatorInstAndDCECond(PTI); 1046 1047 // Okay, last check. If BB is still a successor of PSI, then we must 1048 // have an infinite loop case. If so, add an infinitely looping block 1049 // to handle the case to preserve the behavior of the code. 1050 BasicBlock *InfLoopBlock = nullptr; 1051 for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i) 1052 if (NewSI->getSuccessor(i) == BB) { 1053 if (!InfLoopBlock) { 1054 // Insert it at the end of the function, because it's either code, 1055 // or it won't matter if it's hot. :) 1056 InfLoopBlock = BasicBlock::Create(BB->getContext(), 1057 "infloop", BB->getParent()); 1058 BranchInst::Create(InfLoopBlock, InfLoopBlock); 1059 } 1060 NewSI->setSuccessor(i, InfLoopBlock); 1061 } 1062 1063 Changed = true; 1064 } 1065 } 1066 return Changed; 1067 } 1068 1069 // If we would need to insert a select that uses the value of this invoke 1070 // (comments in HoistThenElseCodeToIf explain why we would need to do this), we 1071 // can't hoist the invoke, as there is nowhere to put the select in this case. 1072 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2, 1073 Instruction *I1, Instruction *I2) { 1074 for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) { 1075 PHINode *PN; 1076 for (BasicBlock::iterator BBI = SI->begin(); 1077 (PN = dyn_cast<PHINode>(BBI)); ++BBI) { 1078 Value *BB1V = PN->getIncomingValueForBlock(BB1); 1079 Value *BB2V = PN->getIncomingValueForBlock(BB2); 1080 if (BB1V != BB2V && (BB1V==I1 || BB2V==I2)) { 1081 return false; 1082 } 1083 } 1084 } 1085 return true; 1086 } 1087 1088 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I); 1089 1090 /// Given a conditional branch that goes to BB1 and BB2, hoist any common code 1091 /// in the two blocks up into the branch block. The caller of this function 1092 /// guarantees that BI's block dominates BB1 and BB2. 1093 static bool HoistThenElseCodeToIf(BranchInst *BI, 1094 const TargetTransformInfo &TTI) { 1095 // This does very trivial matching, with limited scanning, to find identical 1096 // instructions in the two blocks. In particular, we don't want to get into 1097 // O(M*N) situations here where M and N are the sizes of BB1 and BB2. As 1098 // such, we currently just scan for obviously identical instructions in an 1099 // identical order. 1100 BasicBlock *BB1 = BI->getSuccessor(0); // The true destination. 1101 BasicBlock *BB2 = BI->getSuccessor(1); // The false destination 1102 1103 BasicBlock::iterator BB1_Itr = BB1->begin(); 1104 BasicBlock::iterator BB2_Itr = BB2->begin(); 1105 1106 Instruction *I1 = &*BB1_Itr++, *I2 = &*BB2_Itr++; 1107 // Skip debug info if it is not identical. 1108 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1109 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1110 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1111 while (isa<DbgInfoIntrinsic>(I1)) 1112 I1 = &*BB1_Itr++; 1113 while (isa<DbgInfoIntrinsic>(I2)) 1114 I2 = &*BB2_Itr++; 1115 } 1116 if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) || 1117 (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))) 1118 return false; 1119 1120 BasicBlock *BIParent = BI->getParent(); 1121 1122 bool Changed = false; 1123 do { 1124 // If we are hoisting the terminator instruction, don't move one (making a 1125 // broken BB), instead clone it, and remove BI. 1126 if (isa<TerminatorInst>(I1)) 1127 goto HoistTerminator; 1128 1129 if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2)) 1130 return Changed; 1131 1132 // For a normal instruction, we just move one to right before the branch, 1133 // then replace all uses of the other with the first. Finally, we remove 1134 // the now redundant second instruction. 1135 BIParent->getInstList().splice(BI->getIterator(), BB1->getInstList(), I1); 1136 if (!I2->use_empty()) 1137 I2->replaceAllUsesWith(I1); 1138 I1->intersectOptionalDataWith(I2); 1139 unsigned KnownIDs[] = { 1140 LLVMContext::MD_tbaa, LLVMContext::MD_range, 1141 LLVMContext::MD_fpmath, LLVMContext::MD_invariant_load, 1142 LLVMContext::MD_nonnull, LLVMContext::MD_invariant_group, 1143 LLVMContext::MD_align, LLVMContext::MD_dereferenceable, 1144 LLVMContext::MD_dereferenceable_or_null}; 1145 combineMetadata(I1, I2, KnownIDs); 1146 I2->eraseFromParent(); 1147 Changed = true; 1148 1149 I1 = &*BB1_Itr++; 1150 I2 = &*BB2_Itr++; 1151 // Skip debug info if it is not identical. 1152 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1153 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1154 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1155 while (isa<DbgInfoIntrinsic>(I1)) 1156 I1 = &*BB1_Itr++; 1157 while (isa<DbgInfoIntrinsic>(I2)) 1158 I2 = &*BB2_Itr++; 1159 } 1160 } while (I1->isIdenticalToWhenDefined(I2)); 1161 1162 return true; 1163 1164 HoistTerminator: 1165 // It may not be possible to hoist an invoke. 1166 if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) 1167 return Changed; 1168 1169 for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) { 1170 PHINode *PN; 1171 for (BasicBlock::iterator BBI = SI->begin(); 1172 (PN = dyn_cast<PHINode>(BBI)); ++BBI) { 1173 Value *BB1V = PN->getIncomingValueForBlock(BB1); 1174 Value *BB2V = PN->getIncomingValueForBlock(BB2); 1175 if (BB1V == BB2V) 1176 continue; 1177 1178 // Check for passingValueIsAlwaysUndefined here because we would rather 1179 // eliminate undefined control flow then converting it to a select. 1180 if (passingValueIsAlwaysUndefined(BB1V, PN) || 1181 passingValueIsAlwaysUndefined(BB2V, PN)) 1182 return Changed; 1183 1184 if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V)) 1185 return Changed; 1186 if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V)) 1187 return Changed; 1188 } 1189 } 1190 1191 // Okay, it is safe to hoist the terminator. 1192 Instruction *NT = I1->clone(); 1193 BIParent->getInstList().insert(BI->getIterator(), NT); 1194 if (!NT->getType()->isVoidTy()) { 1195 I1->replaceAllUsesWith(NT); 1196 I2->replaceAllUsesWith(NT); 1197 NT->takeName(I1); 1198 } 1199 1200 IRBuilder<true, NoFolder> Builder(NT); 1201 // Hoisting one of the terminators from our successor is a great thing. 1202 // Unfortunately, the successors of the if/else blocks may have PHI nodes in 1203 // them. If they do, all PHI entries for BB1/BB2 must agree for all PHI 1204 // nodes, so we insert select instruction to compute the final result. 1205 std::map<std::pair<Value*,Value*>, SelectInst*> InsertedSelects; 1206 for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) { 1207 PHINode *PN; 1208 for (BasicBlock::iterator BBI = SI->begin(); 1209 (PN = dyn_cast<PHINode>(BBI)); ++BBI) { 1210 Value *BB1V = PN->getIncomingValueForBlock(BB1); 1211 Value *BB2V = PN->getIncomingValueForBlock(BB2); 1212 if (BB1V == BB2V) continue; 1213 1214 // These values do not agree. Insert a select instruction before NT 1215 // that determines the right value. 1216 SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)]; 1217 if (!SI) 1218 SI = cast<SelectInst> 1219 (Builder.CreateSelect(BI->getCondition(), BB1V, BB2V, 1220 BB1V->getName()+"."+BB2V->getName())); 1221 1222 // Make the PHI node use the select for all incoming values for BB1/BB2 1223 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 1224 if (PN->getIncomingBlock(i) == BB1 || PN->getIncomingBlock(i) == BB2) 1225 PN->setIncomingValue(i, SI); 1226 } 1227 } 1228 1229 // Update any PHI nodes in our new successors. 1230 for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) 1231 AddPredecessorToBlock(*SI, BIParent, BB1); 1232 1233 EraseTerminatorInstAndDCECond(BI); 1234 return true; 1235 } 1236 1237 /// Given an unconditional branch that goes to BBEnd, 1238 /// check whether BBEnd has only two predecessors and the other predecessor 1239 /// ends with an unconditional branch. If it is true, sink any common code 1240 /// in the two predecessors to BBEnd. 1241 static bool SinkThenElseCodeToEnd(BranchInst *BI1) { 1242 assert(BI1->isUnconditional()); 1243 BasicBlock *BB1 = BI1->getParent(); 1244 BasicBlock *BBEnd = BI1->getSuccessor(0); 1245 1246 // Check that BBEnd has two predecessors and the other predecessor ends with 1247 // an unconditional branch. 1248 pred_iterator PI = pred_begin(BBEnd), PE = pred_end(BBEnd); 1249 BasicBlock *Pred0 = *PI++; 1250 if (PI == PE) // Only one predecessor. 1251 return false; 1252 BasicBlock *Pred1 = *PI++; 1253 if (PI != PE) // More than two predecessors. 1254 return false; 1255 BasicBlock *BB2 = (Pred0 == BB1) ? Pred1 : Pred0; 1256 BranchInst *BI2 = dyn_cast<BranchInst>(BB2->getTerminator()); 1257 if (!BI2 || !BI2->isUnconditional()) 1258 return false; 1259 1260 // Gather the PHI nodes in BBEnd. 1261 SmallDenseMap<std::pair<Value *, Value *>, PHINode *> JointValueMap; 1262 Instruction *FirstNonPhiInBBEnd = nullptr; 1263 for (BasicBlock::iterator I = BBEnd->begin(), E = BBEnd->end(); I != E; ++I) { 1264 if (PHINode *PN = dyn_cast<PHINode>(I)) { 1265 Value *BB1V = PN->getIncomingValueForBlock(BB1); 1266 Value *BB2V = PN->getIncomingValueForBlock(BB2); 1267 JointValueMap[std::make_pair(BB1V, BB2V)] = PN; 1268 } else { 1269 FirstNonPhiInBBEnd = &*I; 1270 break; 1271 } 1272 } 1273 if (!FirstNonPhiInBBEnd) 1274 return false; 1275 1276 // This does very trivial matching, with limited scanning, to find identical 1277 // instructions in the two blocks. We scan backward for obviously identical 1278 // instructions in an identical order. 1279 BasicBlock::InstListType::reverse_iterator RI1 = BB1->getInstList().rbegin(), 1280 RE1 = BB1->getInstList().rend(), 1281 RI2 = BB2->getInstList().rbegin(), 1282 RE2 = BB2->getInstList().rend(); 1283 // Skip debug info. 1284 while (RI1 != RE1 && isa<DbgInfoIntrinsic>(&*RI1)) ++RI1; 1285 if (RI1 == RE1) 1286 return false; 1287 while (RI2 != RE2 && isa<DbgInfoIntrinsic>(&*RI2)) ++RI2; 1288 if (RI2 == RE2) 1289 return false; 1290 // Skip the unconditional branches. 1291 ++RI1; 1292 ++RI2; 1293 1294 bool Changed = false; 1295 while (RI1 != RE1 && RI2 != RE2) { 1296 // Skip debug info. 1297 while (RI1 != RE1 && isa<DbgInfoIntrinsic>(&*RI1)) ++RI1; 1298 if (RI1 == RE1) 1299 return Changed; 1300 while (RI2 != RE2 && isa<DbgInfoIntrinsic>(&*RI2)) ++RI2; 1301 if (RI2 == RE2) 1302 return Changed; 1303 1304 Instruction *I1 = &*RI1, *I2 = &*RI2; 1305 auto InstPair = std::make_pair(I1, I2); 1306 // I1 and I2 should have a single use in the same PHI node, and they 1307 // perform the same operation. 1308 // Cannot move control-flow-involving, volatile loads, vaarg, etc. 1309 if (isa<PHINode>(I1) || isa<PHINode>(I2) || 1310 isa<TerminatorInst>(I1) || isa<TerminatorInst>(I2) || 1311 I1->isEHPad() || I2->isEHPad() || 1312 isa<AllocaInst>(I1) || isa<AllocaInst>(I2) || 1313 I1->mayHaveSideEffects() || I2->mayHaveSideEffects() || 1314 I1->mayReadOrWriteMemory() || I2->mayReadOrWriteMemory() || 1315 !I1->hasOneUse() || !I2->hasOneUse() || 1316 !JointValueMap.count(InstPair)) 1317 return Changed; 1318 1319 // Check whether we should swap the operands of ICmpInst. 1320 // TODO: Add support of communativity. 1321 ICmpInst *ICmp1 = dyn_cast<ICmpInst>(I1), *ICmp2 = dyn_cast<ICmpInst>(I2); 1322 bool SwapOpnds = false; 1323 if (ICmp1 && ICmp2 && 1324 ICmp1->getOperand(0) != ICmp2->getOperand(0) && 1325 ICmp1->getOperand(1) != ICmp2->getOperand(1) && 1326 (ICmp1->getOperand(0) == ICmp2->getOperand(1) || 1327 ICmp1->getOperand(1) == ICmp2->getOperand(0))) { 1328 ICmp2->swapOperands(); 1329 SwapOpnds = true; 1330 } 1331 if (!I1->isSameOperationAs(I2)) { 1332 if (SwapOpnds) 1333 ICmp2->swapOperands(); 1334 return Changed; 1335 } 1336 1337 // The operands should be either the same or they need to be generated 1338 // with a PHI node after sinking. We only handle the case where there is 1339 // a single pair of different operands. 1340 Value *DifferentOp1 = nullptr, *DifferentOp2 = nullptr; 1341 unsigned Op1Idx = ~0U; 1342 for (unsigned I = 0, E = I1->getNumOperands(); I != E; ++I) { 1343 if (I1->getOperand(I) == I2->getOperand(I)) 1344 continue; 1345 // Early exit if we have more-than one pair of different operands or if 1346 // we need a PHI node to replace a constant. 1347 if (Op1Idx != ~0U || 1348 isa<Constant>(I1->getOperand(I)) || 1349 isa<Constant>(I2->getOperand(I))) { 1350 // If we can't sink the instructions, undo the swapping. 1351 if (SwapOpnds) 1352 ICmp2->swapOperands(); 1353 return Changed; 1354 } 1355 DifferentOp1 = I1->getOperand(I); 1356 Op1Idx = I; 1357 DifferentOp2 = I2->getOperand(I); 1358 } 1359 1360 DEBUG(dbgs() << "SINK common instructions " << *I1 << "\n"); 1361 DEBUG(dbgs() << " " << *I2 << "\n"); 1362 1363 // We insert the pair of different operands to JointValueMap and 1364 // remove (I1, I2) from JointValueMap. 1365 if (Op1Idx != ~0U) { 1366 auto &NewPN = JointValueMap[std::make_pair(DifferentOp1, DifferentOp2)]; 1367 if (!NewPN) { 1368 NewPN = 1369 PHINode::Create(DifferentOp1->getType(), 2, 1370 DifferentOp1->getName() + ".sink", &BBEnd->front()); 1371 NewPN->addIncoming(DifferentOp1, BB1); 1372 NewPN->addIncoming(DifferentOp2, BB2); 1373 DEBUG(dbgs() << "Create PHI node " << *NewPN << "\n";); 1374 } 1375 // I1 should use NewPN instead of DifferentOp1. 1376 I1->setOperand(Op1Idx, NewPN); 1377 } 1378 PHINode *OldPN = JointValueMap[InstPair]; 1379 JointValueMap.erase(InstPair); 1380 1381 // We need to update RE1 and RE2 if we are going to sink the first 1382 // instruction in the basic block down. 1383 bool UpdateRE1 = (I1 == BB1->begin()), UpdateRE2 = (I2 == BB2->begin()); 1384 // Sink the instruction. 1385 BBEnd->getInstList().splice(FirstNonPhiInBBEnd->getIterator(), 1386 BB1->getInstList(), I1); 1387 if (!OldPN->use_empty()) 1388 OldPN->replaceAllUsesWith(I1); 1389 OldPN->eraseFromParent(); 1390 1391 if (!I2->use_empty()) 1392 I2->replaceAllUsesWith(I1); 1393 I1->intersectOptionalDataWith(I2); 1394 // TODO: Use combineMetadata here to preserve what metadata we can 1395 // (analogous to the hoisting case above). 1396 I2->eraseFromParent(); 1397 1398 if (UpdateRE1) 1399 RE1 = BB1->getInstList().rend(); 1400 if (UpdateRE2) 1401 RE2 = BB2->getInstList().rend(); 1402 FirstNonPhiInBBEnd = &*I1; 1403 NumSinkCommons++; 1404 Changed = true; 1405 } 1406 return Changed; 1407 } 1408 1409 /// \brief Determine if we can hoist sink a sole store instruction out of a 1410 /// conditional block. 1411 /// 1412 /// We are looking for code like the following: 1413 /// BrBB: 1414 /// store i32 %add, i32* %arrayidx2 1415 /// ... // No other stores or function calls (we could be calling a memory 1416 /// ... // function). 1417 /// %cmp = icmp ult %x, %y 1418 /// br i1 %cmp, label %EndBB, label %ThenBB 1419 /// ThenBB: 1420 /// store i32 %add5, i32* %arrayidx2 1421 /// br label EndBB 1422 /// EndBB: 1423 /// ... 1424 /// We are going to transform this into: 1425 /// BrBB: 1426 /// store i32 %add, i32* %arrayidx2 1427 /// ... // 1428 /// %cmp = icmp ult %x, %y 1429 /// %add.add5 = select i1 %cmp, i32 %add, %add5 1430 /// store i32 %add.add5, i32* %arrayidx2 1431 /// ... 1432 /// 1433 /// \return The pointer to the value of the previous store if the store can be 1434 /// hoisted into the predecessor block. 0 otherwise. 1435 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB, 1436 BasicBlock *StoreBB, BasicBlock *EndBB) { 1437 StoreInst *StoreToHoist = dyn_cast<StoreInst>(I); 1438 if (!StoreToHoist) 1439 return nullptr; 1440 1441 // Volatile or atomic. 1442 if (!StoreToHoist->isSimple()) 1443 return nullptr; 1444 1445 Value *StorePtr = StoreToHoist->getPointerOperand(); 1446 1447 // Look for a store to the same pointer in BrBB. 1448 unsigned MaxNumInstToLookAt = 10; 1449 for (BasicBlock::reverse_iterator RI = BrBB->rbegin(), 1450 RE = BrBB->rend(); RI != RE && (--MaxNumInstToLookAt); ++RI) { 1451 Instruction *CurI = &*RI; 1452 1453 // Could be calling an instruction that effects memory like free(). 1454 if (CurI->mayHaveSideEffects() && !isa<StoreInst>(CurI)) 1455 return nullptr; 1456 1457 StoreInst *SI = dyn_cast<StoreInst>(CurI); 1458 // Found the previous store make sure it stores to the same location. 1459 if (SI && SI->getPointerOperand() == StorePtr) 1460 // Found the previous store, return its value operand. 1461 return SI->getValueOperand(); 1462 else if (SI) 1463 return nullptr; // Unknown store. 1464 } 1465 1466 return nullptr; 1467 } 1468 1469 /// \brief Speculate a conditional basic block flattening the CFG. 1470 /// 1471 /// Note that this is a very risky transform currently. Speculating 1472 /// instructions like this is most often not desirable. Instead, there is an MI 1473 /// pass which can do it with full awareness of the resource constraints. 1474 /// However, some cases are "obvious" and we should do directly. An example of 1475 /// this is speculating a single, reasonably cheap instruction. 1476 /// 1477 /// There is only one distinct advantage to flattening the CFG at the IR level: 1478 /// it makes very common but simplistic optimizations such as are common in 1479 /// instcombine and the DAG combiner more powerful by removing CFG edges and 1480 /// modeling their effects with easier to reason about SSA value graphs. 1481 /// 1482 /// 1483 /// An illustration of this transform is turning this IR: 1484 /// \code 1485 /// BB: 1486 /// %cmp = icmp ult %x, %y 1487 /// br i1 %cmp, label %EndBB, label %ThenBB 1488 /// ThenBB: 1489 /// %sub = sub %x, %y 1490 /// br label BB2 1491 /// EndBB: 1492 /// %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ] 1493 /// ... 1494 /// \endcode 1495 /// 1496 /// Into this IR: 1497 /// \code 1498 /// BB: 1499 /// %cmp = icmp ult %x, %y 1500 /// %sub = sub %x, %y 1501 /// %cond = select i1 %cmp, 0, %sub 1502 /// ... 1503 /// \endcode 1504 /// 1505 /// \returns true if the conditional block is removed. 1506 static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB, 1507 const TargetTransformInfo &TTI) { 1508 // Be conservative for now. FP select instruction can often be expensive. 1509 Value *BrCond = BI->getCondition(); 1510 if (isa<FCmpInst>(BrCond)) 1511 return false; 1512 1513 BasicBlock *BB = BI->getParent(); 1514 BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0); 1515 1516 // If ThenBB is actually on the false edge of the conditional branch, remember 1517 // to swap the select operands later. 1518 bool Invert = false; 1519 if (ThenBB != BI->getSuccessor(0)) { 1520 assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?"); 1521 Invert = true; 1522 } 1523 assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block"); 1524 1525 // Keep a count of how many times instructions are used within CondBB when 1526 // they are candidates for sinking into CondBB. Specifically: 1527 // - They are defined in BB, and 1528 // - They have no side effects, and 1529 // - All of their uses are in CondBB. 1530 SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts; 1531 1532 unsigned SpeculationCost = 0; 1533 Value *SpeculatedStoreValue = nullptr; 1534 StoreInst *SpeculatedStore = nullptr; 1535 for (BasicBlock::iterator BBI = ThenBB->begin(), 1536 BBE = std::prev(ThenBB->end()); 1537 BBI != BBE; ++BBI) { 1538 Instruction *I = &*BBI; 1539 // Skip debug info. 1540 if (isa<DbgInfoIntrinsic>(I)) 1541 continue; 1542 1543 // Only speculatively execute a single instruction (not counting the 1544 // terminator) for now. 1545 ++SpeculationCost; 1546 if (SpeculationCost > 1) 1547 return false; 1548 1549 // Don't hoist the instruction if it's unsafe or expensive. 1550 if (!isSafeToSpeculativelyExecute(I) && 1551 !(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore( 1552 I, BB, ThenBB, EndBB)))) 1553 return false; 1554 if (!SpeculatedStoreValue && 1555 ComputeSpeculationCost(I, TTI) > 1556 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic) 1557 return false; 1558 1559 // Store the store speculation candidate. 1560 if (SpeculatedStoreValue) 1561 SpeculatedStore = cast<StoreInst>(I); 1562 1563 // Do not hoist the instruction if any of its operands are defined but not 1564 // used in BB. The transformation will prevent the operand from 1565 // being sunk into the use block. 1566 for (User::op_iterator i = I->op_begin(), e = I->op_end(); 1567 i != e; ++i) { 1568 Instruction *OpI = dyn_cast<Instruction>(*i); 1569 if (!OpI || OpI->getParent() != BB || 1570 OpI->mayHaveSideEffects()) 1571 continue; // Not a candidate for sinking. 1572 1573 ++SinkCandidateUseCounts[OpI]; 1574 } 1575 } 1576 1577 // Consider any sink candidates which are only used in CondBB as costs for 1578 // speculation. Note, while we iterate over a DenseMap here, we are summing 1579 // and so iteration order isn't significant. 1580 for (SmallDenseMap<Instruction *, unsigned, 4>::iterator I = 1581 SinkCandidateUseCounts.begin(), E = SinkCandidateUseCounts.end(); 1582 I != E; ++I) 1583 if (I->first->getNumUses() == I->second) { 1584 ++SpeculationCost; 1585 if (SpeculationCost > 1) 1586 return false; 1587 } 1588 1589 // Check that the PHI nodes can be converted to selects. 1590 bool HaveRewritablePHIs = false; 1591 for (BasicBlock::iterator I = EndBB->begin(); 1592 PHINode *PN = dyn_cast<PHINode>(I); ++I) { 1593 Value *OrigV = PN->getIncomingValueForBlock(BB); 1594 Value *ThenV = PN->getIncomingValueForBlock(ThenBB); 1595 1596 // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf. 1597 // Skip PHIs which are trivial. 1598 if (ThenV == OrigV) 1599 continue; 1600 1601 // Don't convert to selects if we could remove undefined behavior instead. 1602 if (passingValueIsAlwaysUndefined(OrigV, PN) || 1603 passingValueIsAlwaysUndefined(ThenV, PN)) 1604 return false; 1605 1606 HaveRewritablePHIs = true; 1607 ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV); 1608 ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV); 1609 if (!OrigCE && !ThenCE) 1610 continue; // Known safe and cheap. 1611 1612 if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE)) || 1613 (OrigCE && !isSafeToSpeculativelyExecute(OrigCE))) 1614 return false; 1615 unsigned OrigCost = OrigCE ? ComputeSpeculationCost(OrigCE, TTI) : 0; 1616 unsigned ThenCost = ThenCE ? ComputeSpeculationCost(ThenCE, TTI) : 0; 1617 unsigned MaxCost = 2 * PHINodeFoldingThreshold * 1618 TargetTransformInfo::TCC_Basic; 1619 if (OrigCost + ThenCost > MaxCost) 1620 return false; 1621 1622 // Account for the cost of an unfolded ConstantExpr which could end up 1623 // getting expanded into Instructions. 1624 // FIXME: This doesn't account for how many operations are combined in the 1625 // constant expression. 1626 ++SpeculationCost; 1627 if (SpeculationCost > 1) 1628 return false; 1629 } 1630 1631 // If there are no PHIs to process, bail early. This helps ensure idempotence 1632 // as well. 1633 if (!HaveRewritablePHIs && !(HoistCondStores && SpeculatedStoreValue)) 1634 return false; 1635 1636 // If we get here, we can hoist the instruction and if-convert. 1637 DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";); 1638 1639 // Insert a select of the value of the speculated store. 1640 if (SpeculatedStoreValue) { 1641 IRBuilder<true, NoFolder> Builder(BI); 1642 Value *TrueV = SpeculatedStore->getValueOperand(); 1643 Value *FalseV = SpeculatedStoreValue; 1644 if (Invert) 1645 std::swap(TrueV, FalseV); 1646 Value *S = Builder.CreateSelect(BrCond, TrueV, FalseV, TrueV->getName() + 1647 "." + FalseV->getName()); 1648 SpeculatedStore->setOperand(0, S); 1649 } 1650 1651 // Metadata can be dependent on the condition we are hoisting above. 1652 // Conservatively strip all metadata on the instruction. 1653 for (auto &I: *ThenBB) 1654 I.dropUnknownNonDebugMetadata(); 1655 1656 // Hoist the instructions. 1657 BB->getInstList().splice(BI->getIterator(), ThenBB->getInstList(), 1658 ThenBB->begin(), std::prev(ThenBB->end())); 1659 1660 // Insert selects and rewrite the PHI operands. 1661 IRBuilder<true, NoFolder> Builder(BI); 1662 for (BasicBlock::iterator I = EndBB->begin(); 1663 PHINode *PN = dyn_cast<PHINode>(I); ++I) { 1664 unsigned OrigI = PN->getBasicBlockIndex(BB); 1665 unsigned ThenI = PN->getBasicBlockIndex(ThenBB); 1666 Value *OrigV = PN->getIncomingValue(OrigI); 1667 Value *ThenV = PN->getIncomingValue(ThenI); 1668 1669 // Skip PHIs which are trivial. 1670 if (OrigV == ThenV) 1671 continue; 1672 1673 // Create a select whose true value is the speculatively executed value and 1674 // false value is the preexisting value. Swap them if the branch 1675 // destinations were inverted. 1676 Value *TrueV = ThenV, *FalseV = OrigV; 1677 if (Invert) 1678 std::swap(TrueV, FalseV); 1679 Value *V = Builder.CreateSelect(BrCond, TrueV, FalseV, 1680 TrueV->getName() + "." + FalseV->getName()); 1681 PN->setIncomingValue(OrigI, V); 1682 PN->setIncomingValue(ThenI, V); 1683 } 1684 1685 ++NumSpeculations; 1686 return true; 1687 } 1688 1689 /// \returns True if this block contains a CallInst with the NoDuplicate 1690 /// attribute. 1691 static bool HasNoDuplicateCall(const BasicBlock *BB) { 1692 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I) { 1693 const CallInst *CI = dyn_cast<CallInst>(I); 1694 if (!CI) 1695 continue; 1696 if (CI->cannotDuplicate()) 1697 return true; 1698 } 1699 return false; 1700 } 1701 1702 /// Return true if we can thread a branch across this block. 1703 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) { 1704 BranchInst *BI = cast<BranchInst>(BB->getTerminator()); 1705 unsigned Size = 0; 1706 1707 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) { 1708 if (isa<DbgInfoIntrinsic>(BBI)) 1709 continue; 1710 if (Size > 10) return false; // Don't clone large BB's. 1711 ++Size; 1712 1713 // We can only support instructions that do not define values that are 1714 // live outside of the current basic block. 1715 for (User *U : BBI->users()) { 1716 Instruction *UI = cast<Instruction>(U); 1717 if (UI->getParent() != BB || isa<PHINode>(UI)) return false; 1718 } 1719 1720 // Looks ok, continue checking. 1721 } 1722 1723 return true; 1724 } 1725 1726 /// If we have a conditional branch on a PHI node value that is defined in the 1727 /// same block as the branch and if any PHI entries are constants, thread edges 1728 /// corresponding to that entry to be branches to their ultimate destination. 1729 static bool FoldCondBranchOnPHI(BranchInst *BI, const DataLayout &DL) { 1730 BasicBlock *BB = BI->getParent(); 1731 PHINode *PN = dyn_cast<PHINode>(BI->getCondition()); 1732 // NOTE: we currently cannot transform this case if the PHI node is used 1733 // outside of the block. 1734 if (!PN || PN->getParent() != BB || !PN->hasOneUse()) 1735 return false; 1736 1737 // Degenerate case of a single entry PHI. 1738 if (PN->getNumIncomingValues() == 1) { 1739 FoldSingleEntryPHINodes(PN->getParent()); 1740 return true; 1741 } 1742 1743 // Now we know that this block has multiple preds and two succs. 1744 if (!BlockIsSimpleEnoughToThreadThrough(BB)) return false; 1745 1746 if (HasNoDuplicateCall(BB)) return false; 1747 1748 // Okay, this is a simple enough basic block. See if any phi values are 1749 // constants. 1750 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1751 ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i)); 1752 if (!CB || !CB->getType()->isIntegerTy(1)) continue; 1753 1754 // Okay, we now know that all edges from PredBB should be revectored to 1755 // branch to RealDest. 1756 BasicBlock *PredBB = PN->getIncomingBlock(i); 1757 BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue()); 1758 1759 if (RealDest == BB) continue; // Skip self loops. 1760 // Skip if the predecessor's terminator is an indirect branch. 1761 if (isa<IndirectBrInst>(PredBB->getTerminator())) continue; 1762 1763 // The dest block might have PHI nodes, other predecessors and other 1764 // difficult cases. Instead of being smart about this, just insert a new 1765 // block that jumps to the destination block, effectively splitting 1766 // the edge we are about to create. 1767 BasicBlock *EdgeBB = BasicBlock::Create(BB->getContext(), 1768 RealDest->getName()+".critedge", 1769 RealDest->getParent(), RealDest); 1770 BranchInst::Create(RealDest, EdgeBB); 1771 1772 // Update PHI nodes. 1773 AddPredecessorToBlock(RealDest, EdgeBB, BB); 1774 1775 // BB may have instructions that are being threaded over. Clone these 1776 // instructions into EdgeBB. We know that there will be no uses of the 1777 // cloned instructions outside of EdgeBB. 1778 BasicBlock::iterator InsertPt = EdgeBB->begin(); 1779 DenseMap<Value*, Value*> TranslateMap; // Track translated values. 1780 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) { 1781 if (PHINode *PN = dyn_cast<PHINode>(BBI)) { 1782 TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB); 1783 continue; 1784 } 1785 // Clone the instruction. 1786 Instruction *N = BBI->clone(); 1787 if (BBI->hasName()) N->setName(BBI->getName()+".c"); 1788 1789 // Update operands due to translation. 1790 for (User::op_iterator i = N->op_begin(), e = N->op_end(); 1791 i != e; ++i) { 1792 DenseMap<Value*, Value*>::iterator PI = TranslateMap.find(*i); 1793 if (PI != TranslateMap.end()) 1794 *i = PI->second; 1795 } 1796 1797 // Check for trivial simplification. 1798 if (Value *V = SimplifyInstruction(N, DL)) { 1799 TranslateMap[&*BBI] = V; 1800 delete N; // Instruction folded away, don't need actual inst 1801 } else { 1802 // Insert the new instruction into its new home. 1803 EdgeBB->getInstList().insert(InsertPt, N); 1804 if (!BBI->use_empty()) 1805 TranslateMap[&*BBI] = N; 1806 } 1807 } 1808 1809 // Loop over all of the edges from PredBB to BB, changing them to branch 1810 // to EdgeBB instead. 1811 TerminatorInst *PredBBTI = PredBB->getTerminator(); 1812 for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i) 1813 if (PredBBTI->getSuccessor(i) == BB) { 1814 BB->removePredecessor(PredBB); 1815 PredBBTI->setSuccessor(i, EdgeBB); 1816 } 1817 1818 // Recurse, simplifying any other constants. 1819 return FoldCondBranchOnPHI(BI, DL) | true; 1820 } 1821 1822 return false; 1823 } 1824 1825 /// Given a BB that starts with the specified two-entry PHI node, 1826 /// see if we can eliminate it. 1827 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI, 1828 const DataLayout &DL) { 1829 // Ok, this is a two entry PHI node. Check to see if this is a simple "if 1830 // statement", which has a very simple dominance structure. Basically, we 1831 // are trying to find the condition that is being branched on, which 1832 // subsequently causes this merge to happen. We really want control 1833 // dependence information for this check, but simplifycfg can't keep it up 1834 // to date, and this catches most of the cases we care about anyway. 1835 BasicBlock *BB = PN->getParent(); 1836 BasicBlock *IfTrue, *IfFalse; 1837 Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse); 1838 if (!IfCond || 1839 // Don't bother if the branch will be constant folded trivially. 1840 isa<ConstantInt>(IfCond)) 1841 return false; 1842 1843 // Okay, we found that we can merge this two-entry phi node into a select. 1844 // Doing so would require us to fold *all* two entry phi nodes in this block. 1845 // At some point this becomes non-profitable (particularly if the target 1846 // doesn't support cmov's). Only do this transformation if there are two or 1847 // fewer PHI nodes in this block. 1848 unsigned NumPhis = 0; 1849 for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I) 1850 if (NumPhis > 2) 1851 return false; 1852 1853 // Loop over the PHI's seeing if we can promote them all to select 1854 // instructions. While we are at it, keep track of the instructions 1855 // that need to be moved to the dominating block. 1856 SmallPtrSet<Instruction*, 4> AggressiveInsts; 1857 unsigned MaxCostVal0 = PHINodeFoldingThreshold, 1858 MaxCostVal1 = PHINodeFoldingThreshold; 1859 MaxCostVal0 *= TargetTransformInfo::TCC_Basic; 1860 MaxCostVal1 *= TargetTransformInfo::TCC_Basic; 1861 1862 for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) { 1863 PHINode *PN = cast<PHINode>(II++); 1864 if (Value *V = SimplifyInstruction(PN, DL)) { 1865 PN->replaceAllUsesWith(V); 1866 PN->eraseFromParent(); 1867 continue; 1868 } 1869 1870 if (!DominatesMergePoint(PN->getIncomingValue(0), BB, &AggressiveInsts, 1871 MaxCostVal0, TTI) || 1872 !DominatesMergePoint(PN->getIncomingValue(1), BB, &AggressiveInsts, 1873 MaxCostVal1, TTI)) 1874 return false; 1875 } 1876 1877 // If we folded the first phi, PN dangles at this point. Refresh it. If 1878 // we ran out of PHIs then we simplified them all. 1879 PN = dyn_cast<PHINode>(BB->begin()); 1880 if (!PN) return true; 1881 1882 // Don't fold i1 branches on PHIs which contain binary operators. These can 1883 // often be turned into switches and other things. 1884 if (PN->getType()->isIntegerTy(1) && 1885 (isa<BinaryOperator>(PN->getIncomingValue(0)) || 1886 isa<BinaryOperator>(PN->getIncomingValue(1)) || 1887 isa<BinaryOperator>(IfCond))) 1888 return false; 1889 1890 // If we all PHI nodes are promotable, check to make sure that all 1891 // instructions in the predecessor blocks can be promoted as well. If 1892 // not, we won't be able to get rid of the control flow, so it's not 1893 // worth promoting to select instructions. 1894 BasicBlock *DomBlock = nullptr; 1895 BasicBlock *IfBlock1 = PN->getIncomingBlock(0); 1896 BasicBlock *IfBlock2 = PN->getIncomingBlock(1); 1897 if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) { 1898 IfBlock1 = nullptr; 1899 } else { 1900 DomBlock = *pred_begin(IfBlock1); 1901 for (BasicBlock::iterator I = IfBlock1->begin();!isa<TerminatorInst>(I);++I) 1902 if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) { 1903 // This is not an aggressive instruction that we can promote. 1904 // Because of this, we won't be able to get rid of the control 1905 // flow, so the xform is not worth it. 1906 return false; 1907 } 1908 } 1909 1910 if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) { 1911 IfBlock2 = nullptr; 1912 } else { 1913 DomBlock = *pred_begin(IfBlock2); 1914 for (BasicBlock::iterator I = IfBlock2->begin();!isa<TerminatorInst>(I);++I) 1915 if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) { 1916 // This is not an aggressive instruction that we can promote. 1917 // Because of this, we won't be able to get rid of the control 1918 // flow, so the xform is not worth it. 1919 return false; 1920 } 1921 } 1922 1923 DEBUG(dbgs() << "FOUND IF CONDITION! " << *IfCond << " T: " 1924 << IfTrue->getName() << " F: " << IfFalse->getName() << "\n"); 1925 1926 // If we can still promote the PHI nodes after this gauntlet of tests, 1927 // do all of the PHI's now. 1928 Instruction *InsertPt = DomBlock->getTerminator(); 1929 IRBuilder<true, NoFolder> Builder(InsertPt); 1930 1931 // Move all 'aggressive' instructions, which are defined in the 1932 // conditional parts of the if's up to the dominating block. 1933 if (IfBlock1) 1934 DomBlock->getInstList().splice(InsertPt->getIterator(), 1935 IfBlock1->getInstList(), IfBlock1->begin(), 1936 IfBlock1->getTerminator()->getIterator()); 1937 if (IfBlock2) 1938 DomBlock->getInstList().splice(InsertPt->getIterator(), 1939 IfBlock2->getInstList(), IfBlock2->begin(), 1940 IfBlock2->getTerminator()->getIterator()); 1941 1942 while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) { 1943 // Change the PHI node into a select instruction. 1944 Value *TrueVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse); 1945 Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue); 1946 1947 SelectInst *NV = 1948 cast<SelectInst>(Builder.CreateSelect(IfCond, TrueVal, FalseVal, "")); 1949 PN->replaceAllUsesWith(NV); 1950 NV->takeName(PN); 1951 PN->eraseFromParent(); 1952 } 1953 1954 // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement 1955 // has been flattened. Change DomBlock to jump directly to our new block to 1956 // avoid other simplifycfg's kicking in on the diamond. 1957 TerminatorInst *OldTI = DomBlock->getTerminator(); 1958 Builder.SetInsertPoint(OldTI); 1959 Builder.CreateBr(BB); 1960 OldTI->eraseFromParent(); 1961 return true; 1962 } 1963 1964 /// If we found a conditional branch that goes to two returning blocks, 1965 /// try to merge them together into one return, 1966 /// introducing a select if the return values disagree. 1967 static bool SimplifyCondBranchToTwoReturns(BranchInst *BI, 1968 IRBuilder<> &Builder) { 1969 assert(BI->isConditional() && "Must be a conditional branch"); 1970 BasicBlock *TrueSucc = BI->getSuccessor(0); 1971 BasicBlock *FalseSucc = BI->getSuccessor(1); 1972 ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator()); 1973 ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator()); 1974 1975 // Check to ensure both blocks are empty (just a return) or optionally empty 1976 // with PHI nodes. If there are other instructions, merging would cause extra 1977 // computation on one path or the other. 1978 if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator()) 1979 return false; 1980 if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator()) 1981 return false; 1982 1983 Builder.SetInsertPoint(BI); 1984 // Okay, we found a branch that is going to two return nodes. If 1985 // there is no return value for this function, just change the 1986 // branch into a return. 1987 if (FalseRet->getNumOperands() == 0) { 1988 TrueSucc->removePredecessor(BI->getParent()); 1989 FalseSucc->removePredecessor(BI->getParent()); 1990 Builder.CreateRetVoid(); 1991 EraseTerminatorInstAndDCECond(BI); 1992 return true; 1993 } 1994 1995 // Otherwise, figure out what the true and false return values are 1996 // so we can insert a new select instruction. 1997 Value *TrueValue = TrueRet->getReturnValue(); 1998 Value *FalseValue = FalseRet->getReturnValue(); 1999 2000 // Unwrap any PHI nodes in the return blocks. 2001 if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue)) 2002 if (TVPN->getParent() == TrueSucc) 2003 TrueValue = TVPN->getIncomingValueForBlock(BI->getParent()); 2004 if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue)) 2005 if (FVPN->getParent() == FalseSucc) 2006 FalseValue = FVPN->getIncomingValueForBlock(BI->getParent()); 2007 2008 // In order for this transformation to be safe, we must be able to 2009 // unconditionally execute both operands to the return. This is 2010 // normally the case, but we could have a potentially-trapping 2011 // constant expression that prevents this transformation from being 2012 // safe. 2013 if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue)) 2014 if (TCV->canTrap()) 2015 return false; 2016 if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue)) 2017 if (FCV->canTrap()) 2018 return false; 2019 2020 // Okay, we collected all the mapped values and checked them for sanity, and 2021 // defined to really do this transformation. First, update the CFG. 2022 TrueSucc->removePredecessor(BI->getParent()); 2023 FalseSucc->removePredecessor(BI->getParent()); 2024 2025 // Insert select instructions where needed. 2026 Value *BrCond = BI->getCondition(); 2027 if (TrueValue) { 2028 // Insert a select if the results differ. 2029 if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) { 2030 } else if (isa<UndefValue>(TrueValue)) { 2031 TrueValue = FalseValue; 2032 } else { 2033 TrueValue = Builder.CreateSelect(BrCond, TrueValue, 2034 FalseValue, "retval"); 2035 } 2036 } 2037 2038 Value *RI = !TrueValue ? 2039 Builder.CreateRetVoid() : Builder.CreateRet(TrueValue); 2040 2041 (void) RI; 2042 2043 DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:" 2044 << "\n " << *BI << "NewRet = " << *RI 2045 << "TRUEBLOCK: " << *TrueSucc << "FALSEBLOCK: "<< *FalseSucc); 2046 2047 EraseTerminatorInstAndDCECond(BI); 2048 2049 return true; 2050 } 2051 2052 /// Given a conditional BranchInstruction, retrieve the probabilities of the 2053 /// branch taking each edge. Fills in the two APInt parameters and returns true, 2054 /// or returns false if no or invalid metadata was found. 2055 static bool ExtractBranchMetadata(BranchInst *BI, 2056 uint64_t &ProbTrue, uint64_t &ProbFalse) { 2057 assert(BI->isConditional() && 2058 "Looking for probabilities on unconditional branch?"); 2059 MDNode *ProfileData = BI->getMetadata(LLVMContext::MD_prof); 2060 if (!ProfileData || ProfileData->getNumOperands() != 3) return false; 2061 ConstantInt *CITrue = 2062 mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(1)); 2063 ConstantInt *CIFalse = 2064 mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(2)); 2065 if (!CITrue || !CIFalse) return false; 2066 ProbTrue = CITrue->getValue().getZExtValue(); 2067 ProbFalse = CIFalse->getValue().getZExtValue(); 2068 return true; 2069 } 2070 2071 /// Return true if the given instruction is available 2072 /// in its predecessor block. If yes, the instruction will be removed. 2073 static bool checkCSEInPredecessor(Instruction *Inst, BasicBlock *PB) { 2074 if (!isa<BinaryOperator>(Inst) && !isa<CmpInst>(Inst)) 2075 return false; 2076 for (BasicBlock::iterator I = PB->begin(), E = PB->end(); I != E; I++) { 2077 Instruction *PBI = &*I; 2078 // Check whether Inst and PBI generate the same value. 2079 if (Inst->isIdenticalTo(PBI)) { 2080 Inst->replaceAllUsesWith(PBI); 2081 Inst->eraseFromParent(); 2082 return true; 2083 } 2084 } 2085 return false; 2086 } 2087 2088 /// If this basic block is simple enough, and if a predecessor branches to us 2089 /// and one of our successors, fold the block into the predecessor and use 2090 /// logical operations to pick the right destination. 2091 bool llvm::FoldBranchToCommonDest(BranchInst *BI, unsigned BonusInstThreshold) { 2092 BasicBlock *BB = BI->getParent(); 2093 2094 Instruction *Cond = nullptr; 2095 if (BI->isConditional()) 2096 Cond = dyn_cast<Instruction>(BI->getCondition()); 2097 else { 2098 // For unconditional branch, check for a simple CFG pattern, where 2099 // BB has a single predecessor and BB's successor is also its predecessor's 2100 // successor. If such pattern exisits, check for CSE between BB and its 2101 // predecessor. 2102 if (BasicBlock *PB = BB->getSinglePredecessor()) 2103 if (BranchInst *PBI = dyn_cast<BranchInst>(PB->getTerminator())) 2104 if (PBI->isConditional() && 2105 (BI->getSuccessor(0) == PBI->getSuccessor(0) || 2106 BI->getSuccessor(0) == PBI->getSuccessor(1))) { 2107 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); 2108 I != E; ) { 2109 Instruction *Curr = &*I++; 2110 if (isa<CmpInst>(Curr)) { 2111 Cond = Curr; 2112 break; 2113 } 2114 // Quit if we can't remove this instruction. 2115 if (!checkCSEInPredecessor(Curr, PB)) 2116 return false; 2117 } 2118 } 2119 2120 if (!Cond) 2121 return false; 2122 } 2123 2124 if (!Cond || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) || 2125 Cond->getParent() != BB || !Cond->hasOneUse()) 2126 return false; 2127 2128 // Make sure the instruction after the condition is the cond branch. 2129 BasicBlock::iterator CondIt = ++Cond->getIterator(); 2130 2131 // Ignore dbg intrinsics. 2132 while (isa<DbgInfoIntrinsic>(CondIt)) ++CondIt; 2133 2134 if (&*CondIt != BI) 2135 return false; 2136 2137 // Only allow this transformation if computing the condition doesn't involve 2138 // too many instructions and these involved instructions can be executed 2139 // unconditionally. We denote all involved instructions except the condition 2140 // as "bonus instructions", and only allow this transformation when the 2141 // number of the bonus instructions does not exceed a certain threshold. 2142 unsigned NumBonusInsts = 0; 2143 for (auto I = BB->begin(); Cond != I; ++I) { 2144 // Ignore dbg intrinsics. 2145 if (isa<DbgInfoIntrinsic>(I)) 2146 continue; 2147 if (!I->hasOneUse() || !isSafeToSpeculativelyExecute(&*I)) 2148 return false; 2149 // I has only one use and can be executed unconditionally. 2150 Instruction *User = dyn_cast<Instruction>(I->user_back()); 2151 if (User == nullptr || User->getParent() != BB) 2152 return false; 2153 // I is used in the same BB. Since BI uses Cond and doesn't have more slots 2154 // to use any other instruction, User must be an instruction between next(I) 2155 // and Cond. 2156 ++NumBonusInsts; 2157 // Early exits once we reach the limit. 2158 if (NumBonusInsts > BonusInstThreshold) 2159 return false; 2160 } 2161 2162 // Cond is known to be a compare or binary operator. Check to make sure that 2163 // neither operand is a potentially-trapping constant expression. 2164 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0))) 2165 if (CE->canTrap()) 2166 return false; 2167 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1))) 2168 if (CE->canTrap()) 2169 return false; 2170 2171 // Finally, don't infinitely unroll conditional loops. 2172 BasicBlock *TrueDest = BI->getSuccessor(0); 2173 BasicBlock *FalseDest = (BI->isConditional()) ? BI->getSuccessor(1) : nullptr; 2174 if (TrueDest == BB || FalseDest == BB) 2175 return false; 2176 2177 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 2178 BasicBlock *PredBlock = *PI; 2179 BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator()); 2180 2181 // Check that we have two conditional branches. If there is a PHI node in 2182 // the common successor, verify that the same value flows in from both 2183 // blocks. 2184 SmallVector<PHINode*, 4> PHIs; 2185 if (!PBI || PBI->isUnconditional() || 2186 (BI->isConditional() && 2187 !SafeToMergeTerminators(BI, PBI)) || 2188 (!BI->isConditional() && 2189 !isProfitableToFoldUnconditional(BI, PBI, Cond, PHIs))) 2190 continue; 2191 2192 // Determine if the two branches share a common destination. 2193 Instruction::BinaryOps Opc = Instruction::BinaryOpsEnd; 2194 bool InvertPredCond = false; 2195 2196 if (BI->isConditional()) { 2197 if (PBI->getSuccessor(0) == TrueDest) 2198 Opc = Instruction::Or; 2199 else if (PBI->getSuccessor(1) == FalseDest) 2200 Opc = Instruction::And; 2201 else if (PBI->getSuccessor(0) == FalseDest) 2202 Opc = Instruction::And, InvertPredCond = true; 2203 else if (PBI->getSuccessor(1) == TrueDest) 2204 Opc = Instruction::Or, InvertPredCond = true; 2205 else 2206 continue; 2207 } else { 2208 if (PBI->getSuccessor(0) != TrueDest && PBI->getSuccessor(1) != TrueDest) 2209 continue; 2210 } 2211 2212 DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB); 2213 IRBuilder<> Builder(PBI); 2214 2215 // If we need to invert the condition in the pred block to match, do so now. 2216 if (InvertPredCond) { 2217 Value *NewCond = PBI->getCondition(); 2218 2219 if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) { 2220 CmpInst *CI = cast<CmpInst>(NewCond); 2221 CI->setPredicate(CI->getInversePredicate()); 2222 } else { 2223 NewCond = Builder.CreateNot(NewCond, 2224 PBI->getCondition()->getName()+".not"); 2225 } 2226 2227 PBI->setCondition(NewCond); 2228 PBI->swapSuccessors(); 2229 } 2230 2231 // If we have bonus instructions, clone them into the predecessor block. 2232 // Note that there may be multiple predecessor blocks, so we cannot move 2233 // bonus instructions to a predecessor block. 2234 ValueToValueMapTy VMap; // maps original values to cloned values 2235 // We already make sure Cond is the last instruction before BI. Therefore, 2236 // all instructions before Cond other than DbgInfoIntrinsic are bonus 2237 // instructions. 2238 for (auto BonusInst = BB->begin(); Cond != BonusInst; ++BonusInst) { 2239 if (isa<DbgInfoIntrinsic>(BonusInst)) 2240 continue; 2241 Instruction *NewBonusInst = BonusInst->clone(); 2242 RemapInstruction(NewBonusInst, VMap, 2243 RF_NoModuleLevelChanges | RF_IgnoreMissingEntries); 2244 VMap[&*BonusInst] = NewBonusInst; 2245 2246 // If we moved a load, we cannot any longer claim any knowledge about 2247 // its potential value. The previous information might have been valid 2248 // only given the branch precondition. 2249 // For an analogous reason, we must also drop all the metadata whose 2250 // semantics we don't understand. 2251 NewBonusInst->dropUnknownNonDebugMetadata(); 2252 2253 PredBlock->getInstList().insert(PBI->getIterator(), NewBonusInst); 2254 NewBonusInst->takeName(&*BonusInst); 2255 BonusInst->setName(BonusInst->getName() + ".old"); 2256 } 2257 2258 // Clone Cond into the predecessor basic block, and or/and the 2259 // two conditions together. 2260 Instruction *New = Cond->clone(); 2261 RemapInstruction(New, VMap, 2262 RF_NoModuleLevelChanges | RF_IgnoreMissingEntries); 2263 PredBlock->getInstList().insert(PBI->getIterator(), New); 2264 New->takeName(Cond); 2265 Cond->setName(New->getName() + ".old"); 2266 2267 if (BI->isConditional()) { 2268 Instruction *NewCond = 2269 cast<Instruction>(Builder.CreateBinOp(Opc, PBI->getCondition(), 2270 New, "or.cond")); 2271 PBI->setCondition(NewCond); 2272 2273 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 2274 bool PredHasWeights = ExtractBranchMetadata(PBI, PredTrueWeight, 2275 PredFalseWeight); 2276 bool SuccHasWeights = ExtractBranchMetadata(BI, SuccTrueWeight, 2277 SuccFalseWeight); 2278 SmallVector<uint64_t, 8> NewWeights; 2279 2280 if (PBI->getSuccessor(0) == BB) { 2281 if (PredHasWeights && SuccHasWeights) { 2282 // PBI: br i1 %x, BB, FalseDest 2283 // BI: br i1 %y, TrueDest, FalseDest 2284 //TrueWeight is TrueWeight for PBI * TrueWeight for BI. 2285 NewWeights.push_back(PredTrueWeight * SuccTrueWeight); 2286 //FalseWeight is FalseWeight for PBI * TotalWeight for BI + 2287 // TrueWeight for PBI * FalseWeight for BI. 2288 // We assume that total weights of a BranchInst can fit into 32 bits. 2289 // Therefore, we will not have overflow using 64-bit arithmetic. 2290 NewWeights.push_back(PredFalseWeight * (SuccFalseWeight + 2291 SuccTrueWeight) + PredTrueWeight * SuccFalseWeight); 2292 } 2293 AddPredecessorToBlock(TrueDest, PredBlock, BB); 2294 PBI->setSuccessor(0, TrueDest); 2295 } 2296 if (PBI->getSuccessor(1) == BB) { 2297 if (PredHasWeights && SuccHasWeights) { 2298 // PBI: br i1 %x, TrueDest, BB 2299 // BI: br i1 %y, TrueDest, FalseDest 2300 //TrueWeight is TrueWeight for PBI * TotalWeight for BI + 2301 // FalseWeight for PBI * TrueWeight for BI. 2302 NewWeights.push_back(PredTrueWeight * (SuccFalseWeight + 2303 SuccTrueWeight) + PredFalseWeight * SuccTrueWeight); 2304 //FalseWeight is FalseWeight for PBI * FalseWeight for BI. 2305 NewWeights.push_back(PredFalseWeight * SuccFalseWeight); 2306 } 2307 AddPredecessorToBlock(FalseDest, PredBlock, BB); 2308 PBI->setSuccessor(1, FalseDest); 2309 } 2310 if (NewWeights.size() == 2) { 2311 // Halve the weights if any of them cannot fit in an uint32_t 2312 FitWeights(NewWeights); 2313 2314 SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(),NewWeights.end()); 2315 PBI->setMetadata(LLVMContext::MD_prof, 2316 MDBuilder(BI->getContext()). 2317 createBranchWeights(MDWeights)); 2318 } else 2319 PBI->setMetadata(LLVMContext::MD_prof, nullptr); 2320 } else { 2321 // Update PHI nodes in the common successors. 2322 for (unsigned i = 0, e = PHIs.size(); i != e; ++i) { 2323 ConstantInt *PBI_C = cast<ConstantInt>( 2324 PHIs[i]->getIncomingValueForBlock(PBI->getParent())); 2325 assert(PBI_C->getType()->isIntegerTy(1)); 2326 Instruction *MergedCond = nullptr; 2327 if (PBI->getSuccessor(0) == TrueDest) { 2328 // Create (PBI_Cond and PBI_C) or (!PBI_Cond and BI_Value) 2329 // PBI_C is true: PBI_Cond or (!PBI_Cond and BI_Value) 2330 // is false: !PBI_Cond and BI_Value 2331 Instruction *NotCond = 2332 cast<Instruction>(Builder.CreateNot(PBI->getCondition(), 2333 "not.cond")); 2334 MergedCond = 2335 cast<Instruction>(Builder.CreateBinOp(Instruction::And, 2336 NotCond, New, 2337 "and.cond")); 2338 if (PBI_C->isOne()) 2339 MergedCond = 2340 cast<Instruction>(Builder.CreateBinOp(Instruction::Or, 2341 PBI->getCondition(), MergedCond, 2342 "or.cond")); 2343 } else { 2344 // Create (PBI_Cond and BI_Value) or (!PBI_Cond and PBI_C) 2345 // PBI_C is true: (PBI_Cond and BI_Value) or (!PBI_Cond) 2346 // is false: PBI_Cond and BI_Value 2347 MergedCond = 2348 cast<Instruction>(Builder.CreateBinOp(Instruction::And, 2349 PBI->getCondition(), New, 2350 "and.cond")); 2351 if (PBI_C->isOne()) { 2352 Instruction *NotCond = 2353 cast<Instruction>(Builder.CreateNot(PBI->getCondition(), 2354 "not.cond")); 2355 MergedCond = 2356 cast<Instruction>(Builder.CreateBinOp(Instruction::Or, 2357 NotCond, MergedCond, 2358 "or.cond")); 2359 } 2360 } 2361 // Update PHI Node. 2362 PHIs[i]->setIncomingValue(PHIs[i]->getBasicBlockIndex(PBI->getParent()), 2363 MergedCond); 2364 } 2365 // Change PBI from Conditional to Unconditional. 2366 BranchInst *New_PBI = BranchInst::Create(TrueDest, PBI); 2367 EraseTerminatorInstAndDCECond(PBI); 2368 PBI = New_PBI; 2369 } 2370 2371 // TODO: If BB is reachable from all paths through PredBlock, then we 2372 // could replace PBI's branch probabilities with BI's. 2373 2374 // Copy any debug value intrinsics into the end of PredBlock. 2375 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) 2376 if (isa<DbgInfoIntrinsic>(*I)) 2377 I->clone()->insertBefore(PBI); 2378 2379 return true; 2380 } 2381 return false; 2382 } 2383 2384 // If there is only one store in BB1 and BB2, return it, otherwise return 2385 // nullptr. 2386 static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) { 2387 StoreInst *S = nullptr; 2388 for (auto *BB : {BB1, BB2}) { 2389 if (!BB) 2390 continue; 2391 for (auto &I : *BB) 2392 if (auto *SI = dyn_cast<StoreInst>(&I)) { 2393 if (S) 2394 // Multiple stores seen. 2395 return nullptr; 2396 else 2397 S = SI; 2398 } 2399 } 2400 return S; 2401 } 2402 2403 static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB, 2404 Value *AlternativeV = nullptr) { 2405 // PHI is going to be a PHI node that allows the value V that is defined in 2406 // BB to be referenced in BB's only successor. 2407 // 2408 // If AlternativeV is nullptr, the only value we care about in PHI is V. It 2409 // doesn't matter to us what the other operand is (it'll never get used). We 2410 // could just create a new PHI with an undef incoming value, but that could 2411 // increase register pressure if EarlyCSE/InstCombine can't fold it with some 2412 // other PHI. So here we directly look for some PHI in BB's successor with V 2413 // as an incoming operand. If we find one, we use it, else we create a new 2414 // one. 2415 // 2416 // If AlternativeV is not nullptr, we care about both incoming values in PHI. 2417 // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV] 2418 // where OtherBB is the single other predecessor of BB's only successor. 2419 PHINode *PHI = nullptr; 2420 BasicBlock *Succ = BB->getSingleSuccessor(); 2421 2422 for (auto I = Succ->begin(); isa<PHINode>(I); ++I) 2423 if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) { 2424 PHI = cast<PHINode>(I); 2425 if (!AlternativeV) 2426 break; 2427 2428 assert(std::distance(pred_begin(Succ), pred_end(Succ)) == 2); 2429 auto PredI = pred_begin(Succ); 2430 BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI; 2431 if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV) 2432 break; 2433 PHI = nullptr; 2434 } 2435 if (PHI) 2436 return PHI; 2437 2438 // If V is not an instruction defined in BB, just return it. 2439 if (!AlternativeV && 2440 (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB)) 2441 return V; 2442 2443 PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge", &Succ->front()); 2444 PHI->addIncoming(V, BB); 2445 for (BasicBlock *PredBB : predecessors(Succ)) 2446 if (PredBB != BB) 2447 PHI->addIncoming(AlternativeV ? AlternativeV : UndefValue::get(V->getType()), 2448 PredBB); 2449 return PHI; 2450 } 2451 2452 static bool mergeConditionalStoreToAddress(BasicBlock *PTB, BasicBlock *PFB, 2453 BasicBlock *QTB, BasicBlock *QFB, 2454 BasicBlock *PostBB, Value *Address, 2455 bool InvertPCond, bool InvertQCond) { 2456 auto IsaBitcastOfPointerType = [](const Instruction &I) { 2457 return Operator::getOpcode(&I) == Instruction::BitCast && 2458 I.getType()->isPointerTy(); 2459 }; 2460 2461 // If we're not in aggressive mode, we only optimize if we have some 2462 // confidence that by optimizing we'll allow P and/or Q to be if-converted. 2463 auto IsWorthwhile = [&](BasicBlock *BB) { 2464 if (!BB) 2465 return true; 2466 // Heuristic: if the block can be if-converted/phi-folded and the 2467 // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to 2468 // thread this store. 2469 unsigned N = 0; 2470 for (auto &I : *BB) { 2471 // Cheap instructions viable for folding. 2472 if (isa<BinaryOperator>(I) || isa<GetElementPtrInst>(I) || 2473 isa<StoreInst>(I)) 2474 ++N; 2475 // Free instructions. 2476 else if (isa<TerminatorInst>(I) || isa<DbgInfoIntrinsic>(I) || 2477 IsaBitcastOfPointerType(I)) 2478 continue; 2479 else 2480 return false; 2481 } 2482 return N <= PHINodeFoldingThreshold; 2483 }; 2484 2485 if (!MergeCondStoresAggressively && (!IsWorthwhile(PTB) || 2486 !IsWorthwhile(PFB) || 2487 !IsWorthwhile(QTB) || 2488 !IsWorthwhile(QFB))) 2489 return false; 2490 2491 // For every pointer, there must be exactly two stores, one coming from 2492 // PTB or PFB, and the other from QTB or QFB. We don't support more than one 2493 // store (to any address) in PTB,PFB or QTB,QFB. 2494 // FIXME: We could relax this restriction with a bit more work and performance 2495 // testing. 2496 StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB); 2497 StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB); 2498 if (!PStore || !QStore) 2499 return false; 2500 2501 // Now check the stores are compatible. 2502 if (!QStore->isUnordered() || !PStore->isUnordered()) 2503 return false; 2504 2505 // Check that sinking the store won't cause program behavior changes. Sinking 2506 // the store out of the Q blocks won't change any behavior as we're sinking 2507 // from a block to its unconditional successor. But we're moving a store from 2508 // the P blocks down through the middle block (QBI) and past both QFB and QTB. 2509 // So we need to check that there are no aliasing loads or stores in 2510 // QBI, QTB and QFB. We also need to check there are no conflicting memory 2511 // operations between PStore and the end of its parent block. 2512 // 2513 // The ideal way to do this is to query AliasAnalysis, but we don't 2514 // preserve AA currently so that is dangerous. Be super safe and just 2515 // check there are no other memory operations at all. 2516 for (auto &I : *QFB->getSinglePredecessor()) 2517 if (I.mayReadOrWriteMemory()) 2518 return false; 2519 for (auto &I : *QFB) 2520 if (&I != QStore && I.mayReadOrWriteMemory()) 2521 return false; 2522 if (QTB) 2523 for (auto &I : *QTB) 2524 if (&I != QStore && I.mayReadOrWriteMemory()) 2525 return false; 2526 for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end(); 2527 I != E; ++I) 2528 if (&*I != PStore && I->mayReadOrWriteMemory()) 2529 return false; 2530 2531 // OK, we're going to sink the stores to PostBB. The store has to be 2532 // conditional though, so first create the predicate. 2533 Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator()) 2534 ->getCondition(); 2535 Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator()) 2536 ->getCondition(); 2537 2538 Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(), 2539 PStore->getParent()); 2540 Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(), 2541 QStore->getParent(), PPHI); 2542 2543 IRBuilder<> QB(&*PostBB->getFirstInsertionPt()); 2544 2545 Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond); 2546 Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond); 2547 2548 if (InvertPCond) 2549 PPred = QB.CreateNot(PPred); 2550 if (InvertQCond) 2551 QPred = QB.CreateNot(QPred); 2552 Value *CombinedPred = QB.CreateOr(PPred, QPred); 2553 2554 auto *T = 2555 SplitBlockAndInsertIfThen(CombinedPred, &*QB.GetInsertPoint(), false); 2556 QB.SetInsertPoint(T); 2557 StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address)); 2558 AAMDNodes AAMD; 2559 PStore->getAAMetadata(AAMD, /*Merge=*/false); 2560 PStore->getAAMetadata(AAMD, /*Merge=*/true); 2561 SI->setAAMetadata(AAMD); 2562 2563 QStore->eraseFromParent(); 2564 PStore->eraseFromParent(); 2565 2566 return true; 2567 } 2568 2569 static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI) { 2570 // The intention here is to find diamonds or triangles (see below) where each 2571 // conditional block contains a store to the same address. Both of these 2572 // stores are conditional, so they can't be unconditionally sunk. But it may 2573 // be profitable to speculatively sink the stores into one merged store at the 2574 // end, and predicate the merged store on the union of the two conditions of 2575 // PBI and QBI. 2576 // 2577 // This can reduce the number of stores executed if both of the conditions are 2578 // true, and can allow the blocks to become small enough to be if-converted. 2579 // This optimization will also chain, so that ladders of test-and-set 2580 // sequences can be if-converted away. 2581 // 2582 // We only deal with simple diamonds or triangles: 2583 // 2584 // PBI or PBI or a combination of the two 2585 // / \ | \ 2586 // PTB PFB | PFB 2587 // \ / | / 2588 // QBI QBI 2589 // / \ | \ 2590 // QTB QFB | QFB 2591 // \ / | / 2592 // PostBB PostBB 2593 // 2594 // We model triangles as a type of diamond with a nullptr "true" block. 2595 // Triangles are canonicalized so that the fallthrough edge is represented by 2596 // a true condition, as in the diagram above. 2597 // 2598 BasicBlock *PTB = PBI->getSuccessor(0); 2599 BasicBlock *PFB = PBI->getSuccessor(1); 2600 BasicBlock *QTB = QBI->getSuccessor(0); 2601 BasicBlock *QFB = QBI->getSuccessor(1); 2602 BasicBlock *PostBB = QFB->getSingleSuccessor(); 2603 2604 bool InvertPCond = false, InvertQCond = false; 2605 // Canonicalize fallthroughs to the true branches. 2606 if (PFB == QBI->getParent()) { 2607 std::swap(PFB, PTB); 2608 InvertPCond = true; 2609 } 2610 if (QFB == PostBB) { 2611 std::swap(QFB, QTB); 2612 InvertQCond = true; 2613 } 2614 2615 // From this point on we can assume PTB or QTB may be fallthroughs but PFB 2616 // and QFB may not. Model fallthroughs as a nullptr block. 2617 if (PTB == QBI->getParent()) 2618 PTB = nullptr; 2619 if (QTB == PostBB) 2620 QTB = nullptr; 2621 2622 // Legality bailouts. We must have at least the non-fallthrough blocks and 2623 // the post-dominating block, and the non-fallthroughs must only have one 2624 // predecessor. 2625 auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) { 2626 return BB->getSinglePredecessor() == P && 2627 BB->getSingleSuccessor() == S; 2628 }; 2629 if (!PostBB || 2630 !HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) || 2631 !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB)) 2632 return false; 2633 if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) || 2634 (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB))) 2635 return false; 2636 if (PostBB->getNumUses() != 2 || QBI->getParent()->getNumUses() != 2) 2637 return false; 2638 2639 // OK, this is a sequence of two diamonds or triangles. 2640 // Check if there are stores in PTB or PFB that are repeated in QTB or QFB. 2641 SmallPtrSet<Value *,4> PStoreAddresses, QStoreAddresses; 2642 for (auto *BB : {PTB, PFB}) { 2643 if (!BB) 2644 continue; 2645 for (auto &I : *BB) 2646 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) 2647 PStoreAddresses.insert(SI->getPointerOperand()); 2648 } 2649 for (auto *BB : {QTB, QFB}) { 2650 if (!BB) 2651 continue; 2652 for (auto &I : *BB) 2653 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) 2654 QStoreAddresses.insert(SI->getPointerOperand()); 2655 } 2656 2657 set_intersect(PStoreAddresses, QStoreAddresses); 2658 // set_intersect mutates PStoreAddresses in place. Rename it here to make it 2659 // clear what it contains. 2660 auto &CommonAddresses = PStoreAddresses; 2661 2662 bool Changed = false; 2663 for (auto *Address : CommonAddresses) 2664 Changed |= mergeConditionalStoreToAddress( 2665 PTB, PFB, QTB, QFB, PostBB, Address, InvertPCond, InvertQCond); 2666 return Changed; 2667 } 2668 2669 /// If we have a conditional branch as a predecessor of another block, 2670 /// this function tries to simplify it. We know 2671 /// that PBI and BI are both conditional branches, and BI is in one of the 2672 /// successor blocks of PBI - PBI branches to BI. 2673 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI, 2674 const DataLayout &DL) { 2675 assert(PBI->isConditional() && BI->isConditional()); 2676 BasicBlock *BB = BI->getParent(); 2677 2678 // If this block ends with a branch instruction, and if there is a 2679 // predecessor that ends on a branch of the same condition, make 2680 // this conditional branch redundant. 2681 if (PBI->getCondition() == BI->getCondition() && 2682 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 2683 // Okay, the outcome of this conditional branch is statically 2684 // knowable. If this block had a single pred, handle specially. 2685 if (BB->getSinglePredecessor()) { 2686 // Turn this into a branch on constant. 2687 bool CondIsTrue = PBI->getSuccessor(0) == BB; 2688 BI->setCondition(ConstantInt::get(Type::getInt1Ty(BB->getContext()), 2689 CondIsTrue)); 2690 return true; // Nuke the branch on constant. 2691 } 2692 2693 // Otherwise, if there are multiple predecessors, insert a PHI that merges 2694 // in the constant and simplify the block result. Subsequent passes of 2695 // simplifycfg will thread the block. 2696 if (BlockIsSimpleEnoughToThreadThrough(BB)) { 2697 pred_iterator PB = pred_begin(BB), PE = pred_end(BB); 2698 PHINode *NewPN = PHINode::Create( 2699 Type::getInt1Ty(BB->getContext()), std::distance(PB, PE), 2700 BI->getCondition()->getName() + ".pr", &BB->front()); 2701 // Okay, we're going to insert the PHI node. Since PBI is not the only 2702 // predecessor, compute the PHI'd conditional value for all of the preds. 2703 // Any predecessor where the condition is not computable we keep symbolic. 2704 for (pred_iterator PI = PB; PI != PE; ++PI) { 2705 BasicBlock *P = *PI; 2706 if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) && 2707 PBI != BI && PBI->isConditional() && 2708 PBI->getCondition() == BI->getCondition() && 2709 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 2710 bool CondIsTrue = PBI->getSuccessor(0) == BB; 2711 NewPN->addIncoming(ConstantInt::get(Type::getInt1Ty(BB->getContext()), 2712 CondIsTrue), P); 2713 } else { 2714 NewPN->addIncoming(BI->getCondition(), P); 2715 } 2716 } 2717 2718 BI->setCondition(NewPN); 2719 return true; 2720 } 2721 } 2722 2723 if (auto *CE = dyn_cast<ConstantExpr>(BI->getCondition())) 2724 if (CE->canTrap()) 2725 return false; 2726 2727 // If BI is reached from the true path of PBI and PBI's condition implies 2728 // BI's condition, we know the direction of the BI branch. 2729 if (PBI->getSuccessor(0) == BI->getParent() && 2730 isImpliedCondition(PBI->getCondition(), BI->getCondition(), DL) && 2731 PBI->getSuccessor(0) != PBI->getSuccessor(1) && 2732 BB->getSinglePredecessor()) { 2733 // Turn this into a branch on constant. 2734 auto *OldCond = BI->getCondition(); 2735 BI->setCondition(ConstantInt::getTrue(BB->getContext())); 2736 RecursivelyDeleteTriviallyDeadInstructions(OldCond); 2737 return true; // Nuke the branch on constant. 2738 } 2739 2740 // If both branches are conditional and both contain stores to the same 2741 // address, remove the stores from the conditionals and create a conditional 2742 // merged store at the end. 2743 if (MergeCondStores && mergeConditionalStores(PBI, BI)) 2744 return true; 2745 2746 // If this is a conditional branch in an empty block, and if any 2747 // predecessors are a conditional branch to one of our destinations, 2748 // fold the conditions into logical ops and one cond br. 2749 BasicBlock::iterator BBI = BB->begin(); 2750 // Ignore dbg intrinsics. 2751 while (isa<DbgInfoIntrinsic>(BBI)) 2752 ++BBI; 2753 if (&*BBI != BI) 2754 return false; 2755 2756 int PBIOp, BIOp; 2757 if (PBI->getSuccessor(0) == BI->getSuccessor(0)) 2758 PBIOp = BIOp = 0; 2759 else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) 2760 PBIOp = 0, BIOp = 1; 2761 else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) 2762 PBIOp = 1, BIOp = 0; 2763 else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) 2764 PBIOp = BIOp = 1; 2765 else 2766 return false; 2767 2768 // Check to make sure that the other destination of this branch 2769 // isn't BB itself. If so, this is an infinite loop that will 2770 // keep getting unwound. 2771 if (PBI->getSuccessor(PBIOp) == BB) 2772 return false; 2773 2774 // Do not perform this transformation if it would require 2775 // insertion of a large number of select instructions. For targets 2776 // without predication/cmovs, this is a big pessimization. 2777 2778 // Also do not perform this transformation if any phi node in the common 2779 // destination block can trap when reached by BB or PBB (PR17073). In that 2780 // case, it would be unsafe to hoist the operation into a select instruction. 2781 2782 BasicBlock *CommonDest = PBI->getSuccessor(PBIOp); 2783 unsigned NumPhis = 0; 2784 for (BasicBlock::iterator II = CommonDest->begin(); 2785 isa<PHINode>(II); ++II, ++NumPhis) { 2786 if (NumPhis > 2) // Disable this xform. 2787 return false; 2788 2789 PHINode *PN = cast<PHINode>(II); 2790 Value *BIV = PN->getIncomingValueForBlock(BB); 2791 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BIV)) 2792 if (CE->canTrap()) 2793 return false; 2794 2795 unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent()); 2796 Value *PBIV = PN->getIncomingValue(PBBIdx); 2797 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(PBIV)) 2798 if (CE->canTrap()) 2799 return false; 2800 } 2801 2802 // Finally, if everything is ok, fold the branches to logical ops. 2803 BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1); 2804 2805 DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent() 2806 << "AND: " << *BI->getParent()); 2807 2808 2809 // If OtherDest *is* BB, then BB is a basic block with a single conditional 2810 // branch in it, where one edge (OtherDest) goes back to itself but the other 2811 // exits. We don't *know* that the program avoids the infinite loop 2812 // (even though that seems likely). If we do this xform naively, we'll end up 2813 // recursively unpeeling the loop. Since we know that (after the xform is 2814 // done) that the block *is* infinite if reached, we just make it an obviously 2815 // infinite loop with no cond branch. 2816 if (OtherDest == BB) { 2817 // Insert it at the end of the function, because it's either code, 2818 // or it won't matter if it's hot. :) 2819 BasicBlock *InfLoopBlock = BasicBlock::Create(BB->getContext(), 2820 "infloop", BB->getParent()); 2821 BranchInst::Create(InfLoopBlock, InfLoopBlock); 2822 OtherDest = InfLoopBlock; 2823 } 2824 2825 DEBUG(dbgs() << *PBI->getParent()->getParent()); 2826 2827 // BI may have other predecessors. Because of this, we leave 2828 // it alone, but modify PBI. 2829 2830 // Make sure we get to CommonDest on True&True directions. 2831 Value *PBICond = PBI->getCondition(); 2832 IRBuilder<true, NoFolder> Builder(PBI); 2833 if (PBIOp) 2834 PBICond = Builder.CreateNot(PBICond, PBICond->getName()+".not"); 2835 2836 Value *BICond = BI->getCondition(); 2837 if (BIOp) 2838 BICond = Builder.CreateNot(BICond, BICond->getName()+".not"); 2839 2840 // Merge the conditions. 2841 Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge"); 2842 2843 // Modify PBI to branch on the new condition to the new dests. 2844 PBI->setCondition(Cond); 2845 PBI->setSuccessor(0, CommonDest); 2846 PBI->setSuccessor(1, OtherDest); 2847 2848 // Update branch weight for PBI. 2849 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 2850 bool PredHasWeights = ExtractBranchMetadata(PBI, PredTrueWeight, 2851 PredFalseWeight); 2852 bool SuccHasWeights = ExtractBranchMetadata(BI, SuccTrueWeight, 2853 SuccFalseWeight); 2854 if (PredHasWeights && SuccHasWeights) { 2855 uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight; 2856 uint64_t PredOther = PBIOp ?PredTrueWeight : PredFalseWeight; 2857 uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight; 2858 uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight; 2859 // The weight to CommonDest should be PredCommon * SuccTotal + 2860 // PredOther * SuccCommon. 2861 // The weight to OtherDest should be PredOther * SuccOther. 2862 uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) + 2863 PredOther * SuccCommon, 2864 PredOther * SuccOther}; 2865 // Halve the weights if any of them cannot fit in an uint32_t 2866 FitWeights(NewWeights); 2867 2868 PBI->setMetadata(LLVMContext::MD_prof, 2869 MDBuilder(BI->getContext()) 2870 .createBranchWeights(NewWeights[0], NewWeights[1])); 2871 } 2872 2873 // OtherDest may have phi nodes. If so, add an entry from PBI's 2874 // block that are identical to the entries for BI's block. 2875 AddPredecessorToBlock(OtherDest, PBI->getParent(), BB); 2876 2877 // We know that the CommonDest already had an edge from PBI to 2878 // it. If it has PHIs though, the PHIs may have different 2879 // entries for BB and PBI's BB. If so, insert a select to make 2880 // them agree. 2881 PHINode *PN; 2882 for (BasicBlock::iterator II = CommonDest->begin(); 2883 (PN = dyn_cast<PHINode>(II)); ++II) { 2884 Value *BIV = PN->getIncomingValueForBlock(BB); 2885 unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent()); 2886 Value *PBIV = PN->getIncomingValue(PBBIdx); 2887 if (BIV != PBIV) { 2888 // Insert a select in PBI to pick the right value. 2889 Value *NV = cast<SelectInst> 2890 (Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName()+".mux")); 2891 PN->setIncomingValue(PBBIdx, NV); 2892 } 2893 } 2894 2895 DEBUG(dbgs() << "INTO: " << *PBI->getParent()); 2896 DEBUG(dbgs() << *PBI->getParent()->getParent()); 2897 2898 // This basic block is probably dead. We know it has at least 2899 // one fewer predecessor. 2900 return true; 2901 } 2902 2903 // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is 2904 // true or to FalseBB if Cond is false. 2905 // Takes care of updating the successors and removing the old terminator. 2906 // Also makes sure not to introduce new successors by assuming that edges to 2907 // non-successor TrueBBs and FalseBBs aren't reachable. 2908 static bool SimplifyTerminatorOnSelect(TerminatorInst *OldTerm, Value *Cond, 2909 BasicBlock *TrueBB, BasicBlock *FalseBB, 2910 uint32_t TrueWeight, 2911 uint32_t FalseWeight){ 2912 // Remove any superfluous successor edges from the CFG. 2913 // First, figure out which successors to preserve. 2914 // If TrueBB and FalseBB are equal, only try to preserve one copy of that 2915 // successor. 2916 BasicBlock *KeepEdge1 = TrueBB; 2917 BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr; 2918 2919 // Then remove the rest. 2920 for (BasicBlock *Succ : OldTerm->successors()) { 2921 // Make sure only to keep exactly one copy of each edge. 2922 if (Succ == KeepEdge1) 2923 KeepEdge1 = nullptr; 2924 else if (Succ == KeepEdge2) 2925 KeepEdge2 = nullptr; 2926 else 2927 Succ->removePredecessor(OldTerm->getParent(), 2928 /*DontDeleteUselessPHIs=*/true); 2929 } 2930 2931 IRBuilder<> Builder(OldTerm); 2932 Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc()); 2933 2934 // Insert an appropriate new terminator. 2935 if (!KeepEdge1 && !KeepEdge2) { 2936 if (TrueBB == FalseBB) 2937 // We were only looking for one successor, and it was present. 2938 // Create an unconditional branch to it. 2939 Builder.CreateBr(TrueBB); 2940 else { 2941 // We found both of the successors we were looking for. 2942 // Create a conditional branch sharing the condition of the select. 2943 BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB); 2944 if (TrueWeight != FalseWeight) 2945 NewBI->setMetadata(LLVMContext::MD_prof, 2946 MDBuilder(OldTerm->getContext()). 2947 createBranchWeights(TrueWeight, FalseWeight)); 2948 } 2949 } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) { 2950 // Neither of the selected blocks were successors, so this 2951 // terminator must be unreachable. 2952 new UnreachableInst(OldTerm->getContext(), OldTerm); 2953 } else { 2954 // One of the selected values was a successor, but the other wasn't. 2955 // Insert an unconditional branch to the one that was found; 2956 // the edge to the one that wasn't must be unreachable. 2957 if (!KeepEdge1) 2958 // Only TrueBB was found. 2959 Builder.CreateBr(TrueBB); 2960 else 2961 // Only FalseBB was found. 2962 Builder.CreateBr(FalseBB); 2963 } 2964 2965 EraseTerminatorInstAndDCECond(OldTerm); 2966 return true; 2967 } 2968 2969 // Replaces 2970 // (switch (select cond, X, Y)) on constant X, Y 2971 // with a branch - conditional if X and Y lead to distinct BBs, 2972 // unconditional otherwise. 2973 static bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select) { 2974 // Check for constant integer values in the select. 2975 ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue()); 2976 ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue()); 2977 if (!TrueVal || !FalseVal) 2978 return false; 2979 2980 // Find the relevant condition and destinations. 2981 Value *Condition = Select->getCondition(); 2982 BasicBlock *TrueBB = SI->findCaseValue(TrueVal).getCaseSuccessor(); 2983 BasicBlock *FalseBB = SI->findCaseValue(FalseVal).getCaseSuccessor(); 2984 2985 // Get weight for TrueBB and FalseBB. 2986 uint32_t TrueWeight = 0, FalseWeight = 0; 2987 SmallVector<uint64_t, 8> Weights; 2988 bool HasWeights = HasBranchWeights(SI); 2989 if (HasWeights) { 2990 GetBranchWeights(SI, Weights); 2991 if (Weights.size() == 1 + SI->getNumCases()) { 2992 TrueWeight = (uint32_t)Weights[SI->findCaseValue(TrueVal). 2993 getSuccessorIndex()]; 2994 FalseWeight = (uint32_t)Weights[SI->findCaseValue(FalseVal). 2995 getSuccessorIndex()]; 2996 } 2997 } 2998 2999 // Perform the actual simplification. 3000 return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, 3001 TrueWeight, FalseWeight); 3002 } 3003 3004 // Replaces 3005 // (indirectbr (select cond, blockaddress(@fn, BlockA), 3006 // blockaddress(@fn, BlockB))) 3007 // with 3008 // (br cond, BlockA, BlockB). 3009 static bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI) { 3010 // Check that both operands of the select are block addresses. 3011 BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue()); 3012 BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue()); 3013 if (!TBA || !FBA) 3014 return false; 3015 3016 // Extract the actual blocks. 3017 BasicBlock *TrueBB = TBA->getBasicBlock(); 3018 BasicBlock *FalseBB = FBA->getBasicBlock(); 3019 3020 // Perform the actual simplification. 3021 return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 3022 0, 0); 3023 } 3024 3025 /// This is called when we find an icmp instruction 3026 /// (a seteq/setne with a constant) as the only instruction in a 3027 /// block that ends with an uncond branch. We are looking for a very specific 3028 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified. In 3029 /// this case, we merge the first two "or's of icmp" into a switch, but then the 3030 /// default value goes to an uncond block with a seteq in it, we get something 3031 /// like: 3032 /// 3033 /// switch i8 %A, label %DEFAULT [ i8 1, label %end i8 2, label %end ] 3034 /// DEFAULT: 3035 /// %tmp = icmp eq i8 %A, 92 3036 /// br label %end 3037 /// end: 3038 /// ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ] 3039 /// 3040 /// We prefer to split the edge to 'end' so that there is a true/false entry to 3041 /// the PHI, merging the third icmp into the switch. 3042 static bool TryToSimplifyUncondBranchWithICmpInIt( 3043 ICmpInst *ICI, IRBuilder<> &Builder, const DataLayout &DL, 3044 const TargetTransformInfo &TTI, unsigned BonusInstThreshold, 3045 AssumptionCache *AC) { 3046 BasicBlock *BB = ICI->getParent(); 3047 3048 // If the block has any PHIs in it or the icmp has multiple uses, it is too 3049 // complex. 3050 if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse()) return false; 3051 3052 Value *V = ICI->getOperand(0); 3053 ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1)); 3054 3055 // The pattern we're looking for is where our only predecessor is a switch on 3056 // 'V' and this block is the default case for the switch. In this case we can 3057 // fold the compared value into the switch to simplify things. 3058 BasicBlock *Pred = BB->getSinglePredecessor(); 3059 if (!Pred || !isa<SwitchInst>(Pred->getTerminator())) return false; 3060 3061 SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator()); 3062 if (SI->getCondition() != V) 3063 return false; 3064 3065 // If BB is reachable on a non-default case, then we simply know the value of 3066 // V in this block. Substitute it and constant fold the icmp instruction 3067 // away. 3068 if (SI->getDefaultDest() != BB) { 3069 ConstantInt *VVal = SI->findCaseDest(BB); 3070 assert(VVal && "Should have a unique destination value"); 3071 ICI->setOperand(0, VVal); 3072 3073 if (Value *V = SimplifyInstruction(ICI, DL)) { 3074 ICI->replaceAllUsesWith(V); 3075 ICI->eraseFromParent(); 3076 } 3077 // BB is now empty, so it is likely to simplify away. 3078 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 3079 } 3080 3081 // Ok, the block is reachable from the default dest. If the constant we're 3082 // comparing exists in one of the other edges, then we can constant fold ICI 3083 // and zap it. 3084 if (SI->findCaseValue(Cst) != SI->case_default()) { 3085 Value *V; 3086 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 3087 V = ConstantInt::getFalse(BB->getContext()); 3088 else 3089 V = ConstantInt::getTrue(BB->getContext()); 3090 3091 ICI->replaceAllUsesWith(V); 3092 ICI->eraseFromParent(); 3093 // BB is now empty, so it is likely to simplify away. 3094 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 3095 } 3096 3097 // The use of the icmp has to be in the 'end' block, by the only PHI node in 3098 // the block. 3099 BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0); 3100 PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back()); 3101 if (PHIUse == nullptr || PHIUse != &SuccBlock->front() || 3102 isa<PHINode>(++BasicBlock::iterator(PHIUse))) 3103 return false; 3104 3105 // If the icmp is a SETEQ, then the default dest gets false, the new edge gets 3106 // true in the PHI. 3107 Constant *DefaultCst = ConstantInt::getTrue(BB->getContext()); 3108 Constant *NewCst = ConstantInt::getFalse(BB->getContext()); 3109 3110 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 3111 std::swap(DefaultCst, NewCst); 3112 3113 // Replace ICI (which is used by the PHI for the default value) with true or 3114 // false depending on if it is EQ or NE. 3115 ICI->replaceAllUsesWith(DefaultCst); 3116 ICI->eraseFromParent(); 3117 3118 // Okay, the switch goes to this block on a default value. Add an edge from 3119 // the switch to the merge point on the compared value. 3120 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "switch.edge", 3121 BB->getParent(), BB); 3122 SmallVector<uint64_t, 8> Weights; 3123 bool HasWeights = HasBranchWeights(SI); 3124 if (HasWeights) { 3125 GetBranchWeights(SI, Weights); 3126 if (Weights.size() == 1 + SI->getNumCases()) { 3127 // Split weight for default case to case for "Cst". 3128 Weights[0] = (Weights[0]+1) >> 1; 3129 Weights.push_back(Weights[0]); 3130 3131 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 3132 SI->setMetadata(LLVMContext::MD_prof, 3133 MDBuilder(SI->getContext()). 3134 createBranchWeights(MDWeights)); 3135 } 3136 } 3137 SI->addCase(Cst, NewBB); 3138 3139 // NewBB branches to the phi block, add the uncond branch and the phi entry. 3140 Builder.SetInsertPoint(NewBB); 3141 Builder.SetCurrentDebugLocation(SI->getDebugLoc()); 3142 Builder.CreateBr(SuccBlock); 3143 PHIUse->addIncoming(NewCst, NewBB); 3144 return true; 3145 } 3146 3147 /// The specified branch is a conditional branch. 3148 /// Check to see if it is branching on an or/and chain of icmp instructions, and 3149 /// fold it into a switch instruction if so. 3150 static bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder, 3151 const DataLayout &DL) { 3152 Instruction *Cond = dyn_cast<Instruction>(BI->getCondition()); 3153 if (!Cond) return false; 3154 3155 // Change br (X == 0 | X == 1), T, F into a switch instruction. 3156 // If this is a bunch of seteq's or'd together, or if it's a bunch of 3157 // 'setne's and'ed together, collect them. 3158 3159 // Try to gather values from a chain of and/or to be turned into a switch 3160 ConstantComparesGatherer ConstantCompare(Cond, DL); 3161 // Unpack the result 3162 SmallVectorImpl<ConstantInt*> &Values = ConstantCompare.Vals; 3163 Value *CompVal = ConstantCompare.CompValue; 3164 unsigned UsedICmps = ConstantCompare.UsedICmps; 3165 Value *ExtraCase = ConstantCompare.Extra; 3166 3167 // If we didn't have a multiply compared value, fail. 3168 if (!CompVal) return false; 3169 3170 // Avoid turning single icmps into a switch. 3171 if (UsedICmps <= 1) 3172 return false; 3173 3174 bool TrueWhenEqual = (Cond->getOpcode() == Instruction::Or); 3175 3176 // There might be duplicate constants in the list, which the switch 3177 // instruction can't handle, remove them now. 3178 array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate); 3179 Values.erase(std::unique(Values.begin(), Values.end()), Values.end()); 3180 3181 // If Extra was used, we require at least two switch values to do the 3182 // transformation. A switch with one value is just a conditional branch. 3183 if (ExtraCase && Values.size() < 2) return false; 3184 3185 // TODO: Preserve branch weight metadata, similarly to how 3186 // FoldValueComparisonIntoPredecessors preserves it. 3187 3188 // Figure out which block is which destination. 3189 BasicBlock *DefaultBB = BI->getSuccessor(1); 3190 BasicBlock *EdgeBB = BI->getSuccessor(0); 3191 if (!TrueWhenEqual) std::swap(DefaultBB, EdgeBB); 3192 3193 BasicBlock *BB = BI->getParent(); 3194 3195 DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size() 3196 << " cases into SWITCH. BB is:\n" << *BB); 3197 3198 // If there are any extra values that couldn't be folded into the switch 3199 // then we evaluate them with an explicit branch first. Split the block 3200 // right before the condbr to handle it. 3201 if (ExtraCase) { 3202 BasicBlock *NewBB = 3203 BB->splitBasicBlock(BI->getIterator(), "switch.early.test"); 3204 // Remove the uncond branch added to the old block. 3205 TerminatorInst *OldTI = BB->getTerminator(); 3206 Builder.SetInsertPoint(OldTI); 3207 3208 if (TrueWhenEqual) 3209 Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB); 3210 else 3211 Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB); 3212 3213 OldTI->eraseFromParent(); 3214 3215 // If there are PHI nodes in EdgeBB, then we need to add a new entry to them 3216 // for the edge we just added. 3217 AddPredecessorToBlock(EdgeBB, BB, NewBB); 3218 3219 DEBUG(dbgs() << " ** 'icmp' chain unhandled condition: " << *ExtraCase 3220 << "\nEXTRABB = " << *BB); 3221 BB = NewBB; 3222 } 3223 3224 Builder.SetInsertPoint(BI); 3225 // Convert pointer to int before we switch. 3226 if (CompVal->getType()->isPointerTy()) { 3227 CompVal = Builder.CreatePtrToInt( 3228 CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr"); 3229 } 3230 3231 // Create the new switch instruction now. 3232 SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size()); 3233 3234 // Add all of the 'cases' to the switch instruction. 3235 for (unsigned i = 0, e = Values.size(); i != e; ++i) 3236 New->addCase(Values[i], EdgeBB); 3237 3238 // We added edges from PI to the EdgeBB. As such, if there were any 3239 // PHI nodes in EdgeBB, they need entries to be added corresponding to 3240 // the number of edges added. 3241 for (BasicBlock::iterator BBI = EdgeBB->begin(); 3242 isa<PHINode>(BBI); ++BBI) { 3243 PHINode *PN = cast<PHINode>(BBI); 3244 Value *InVal = PN->getIncomingValueForBlock(BB); 3245 for (unsigned i = 0, e = Values.size()-1; i != e; ++i) 3246 PN->addIncoming(InVal, BB); 3247 } 3248 3249 // Erase the old branch instruction. 3250 EraseTerminatorInstAndDCECond(BI); 3251 3252 DEBUG(dbgs() << " ** 'icmp' chain result is:\n" << *BB << '\n'); 3253 return true; 3254 } 3255 3256 bool SimplifyCFGOpt::SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder) { 3257 if (isa<PHINode>(RI->getValue())) 3258 return SimplifyCommonResume(RI); 3259 else if (isa<LandingPadInst>(RI->getParent()->getFirstNonPHI()) && 3260 RI->getValue() == RI->getParent()->getFirstNonPHI()) 3261 // The resume must unwind the exception that caused control to branch here. 3262 return SimplifySingleResume(RI); 3263 3264 return false; 3265 } 3266 3267 // Simplify resume that is shared by several landing pads (phi of landing pad). 3268 bool SimplifyCFGOpt::SimplifyCommonResume(ResumeInst *RI) { 3269 BasicBlock *BB = RI->getParent(); 3270 3271 // Check that there are no other instructions except for debug intrinsics 3272 // between the phi of landing pads (RI->getValue()) and resume instruction. 3273 BasicBlock::iterator I = cast<Instruction>(RI->getValue())->getIterator(), 3274 E = RI->getIterator(); 3275 while (++I != E) 3276 if (!isa<DbgInfoIntrinsic>(I)) 3277 return false; 3278 3279 SmallSet<BasicBlock *, 4> TrivialUnwindBlocks; 3280 auto *PhiLPInst = cast<PHINode>(RI->getValue()); 3281 3282 // Check incoming blocks to see if any of them are trivial. 3283 for (unsigned Idx = 0, End = PhiLPInst->getNumIncomingValues(); 3284 Idx != End; Idx++) { 3285 auto *IncomingBB = PhiLPInst->getIncomingBlock(Idx); 3286 auto *IncomingValue = PhiLPInst->getIncomingValue(Idx); 3287 3288 // If the block has other successors, we can not delete it because 3289 // it has other dependents. 3290 if (IncomingBB->getUniqueSuccessor() != BB) 3291 continue; 3292 3293 auto *LandingPad = 3294 dyn_cast<LandingPadInst>(IncomingBB->getFirstNonPHI()); 3295 // Not the landing pad that caused the control to branch here. 3296 if (IncomingValue != LandingPad) 3297 continue; 3298 3299 bool isTrivial = true; 3300 3301 I = IncomingBB->getFirstNonPHI()->getIterator(); 3302 E = IncomingBB->getTerminator()->getIterator(); 3303 while (++I != E) 3304 if (!isa<DbgInfoIntrinsic>(I)) { 3305 isTrivial = false; 3306 break; 3307 } 3308 3309 if (isTrivial) 3310 TrivialUnwindBlocks.insert(IncomingBB); 3311 } 3312 3313 // If no trivial unwind blocks, don't do any simplifications. 3314 if (TrivialUnwindBlocks.empty()) return false; 3315 3316 // Turn all invokes that unwind here into calls. 3317 for (auto *TrivialBB : TrivialUnwindBlocks) { 3318 // Blocks that will be simplified should be removed from the phi node. 3319 // Note there could be multiple edges to the resume block, and we need 3320 // to remove them all. 3321 while (PhiLPInst->getBasicBlockIndex(TrivialBB) != -1) 3322 BB->removePredecessor(TrivialBB, true); 3323 3324 for (pred_iterator PI = pred_begin(TrivialBB), PE = pred_end(TrivialBB); 3325 PI != PE;) { 3326 BasicBlock *Pred = *PI++; 3327 removeUnwindEdge(Pred); 3328 } 3329 3330 // In each SimplifyCFG run, only the current processed block can be erased. 3331 // Otherwise, it will break the iteration of SimplifyCFG pass. So instead 3332 // of erasing TrivialBB, we only remove the branch to the common resume 3333 // block so that we can later erase the resume block since it has no 3334 // predecessors. 3335 TrivialBB->getTerminator()->eraseFromParent(); 3336 new UnreachableInst(RI->getContext(), TrivialBB); 3337 } 3338 3339 // Delete the resume block if all its predecessors have been removed. 3340 if (pred_empty(BB)) 3341 BB->eraseFromParent(); 3342 3343 return !TrivialUnwindBlocks.empty(); 3344 } 3345 3346 // Simplify resume that is only used by a single (non-phi) landing pad. 3347 bool SimplifyCFGOpt::SimplifySingleResume(ResumeInst *RI) { 3348 BasicBlock *BB = RI->getParent(); 3349 LandingPadInst *LPInst = dyn_cast<LandingPadInst>(BB->getFirstNonPHI()); 3350 assert (RI->getValue() == LPInst && 3351 "Resume must unwind the exception that caused control to here"); 3352 3353 // Check that there are no other instructions except for debug intrinsics. 3354 BasicBlock::iterator I = LPInst->getIterator(), E = RI->getIterator(); 3355 while (++I != E) 3356 if (!isa<DbgInfoIntrinsic>(I)) 3357 return false; 3358 3359 // Turn all invokes that unwind here into calls and delete the basic block. 3360 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) { 3361 BasicBlock *Pred = *PI++; 3362 removeUnwindEdge(Pred); 3363 } 3364 3365 // The landingpad is now unreachable. Zap it. 3366 BB->eraseFromParent(); 3367 return true; 3368 } 3369 3370 bool SimplifyCFGOpt::SimplifyCleanupReturn(CleanupReturnInst *RI) { 3371 // If this is a trivial cleanup pad that executes no instructions, it can be 3372 // eliminated. If the cleanup pad continues to the caller, any predecessor 3373 // that is an EH pad will be updated to continue to the caller and any 3374 // predecessor that terminates with an invoke instruction will have its invoke 3375 // instruction converted to a call instruction. If the cleanup pad being 3376 // simplified does not continue to the caller, each predecessor will be 3377 // updated to continue to the unwind destination of the cleanup pad being 3378 // simplified. 3379 BasicBlock *BB = RI->getParent(); 3380 CleanupPadInst *CPInst = RI->getCleanupPad(); 3381 if (CPInst->getParent() != BB) 3382 // This isn't an empty cleanup. 3383 return false; 3384 3385 // Check that there are no other instructions except for debug intrinsics. 3386 BasicBlock::iterator I = CPInst->getIterator(), E = RI->getIterator(); 3387 while (++I != E) 3388 if (!isa<DbgInfoIntrinsic>(I)) 3389 return false; 3390 3391 // If the cleanup return we are simplifying unwinds to the caller, this will 3392 // set UnwindDest to nullptr. 3393 BasicBlock *UnwindDest = RI->getUnwindDest(); 3394 Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr; 3395 3396 // We're about to remove BB from the control flow. Before we do, sink any 3397 // PHINodes into the unwind destination. Doing this before changing the 3398 // control flow avoids some potentially slow checks, since we can currently 3399 // be certain that UnwindDest and BB have no common predecessors (since they 3400 // are both EH pads). 3401 if (UnwindDest) { 3402 // First, go through the PHI nodes in UnwindDest and update any nodes that 3403 // reference the block we are removing 3404 for (BasicBlock::iterator I = UnwindDest->begin(), 3405 IE = DestEHPad->getIterator(); 3406 I != IE; ++I) { 3407 PHINode *DestPN = cast<PHINode>(I); 3408 3409 int Idx = DestPN->getBasicBlockIndex(BB); 3410 // Since BB unwinds to UnwindDest, it has to be in the PHI node. 3411 assert(Idx != -1); 3412 // This PHI node has an incoming value that corresponds to a control 3413 // path through the cleanup pad we are removing. If the incoming 3414 // value is in the cleanup pad, it must be a PHINode (because we 3415 // verified above that the block is otherwise empty). Otherwise, the 3416 // value is either a constant or a value that dominates the cleanup 3417 // pad being removed. 3418 // 3419 // Because BB and UnwindDest are both EH pads, all of their 3420 // predecessors must unwind to these blocks, and since no instruction 3421 // can have multiple unwind destinations, there will be no overlap in 3422 // incoming blocks between SrcPN and DestPN. 3423 Value *SrcVal = DestPN->getIncomingValue(Idx); 3424 PHINode *SrcPN = dyn_cast<PHINode>(SrcVal); 3425 3426 // Remove the entry for the block we are deleting. 3427 DestPN->removeIncomingValue(Idx, false); 3428 3429 if (SrcPN && SrcPN->getParent() == BB) { 3430 // If the incoming value was a PHI node in the cleanup pad we are 3431 // removing, we need to merge that PHI node's incoming values into 3432 // DestPN. 3433 for (unsigned SrcIdx = 0, SrcE = SrcPN->getNumIncomingValues(); 3434 SrcIdx != SrcE; ++SrcIdx) { 3435 DestPN->addIncoming(SrcPN->getIncomingValue(SrcIdx), 3436 SrcPN->getIncomingBlock(SrcIdx)); 3437 } 3438 } else { 3439 // Otherwise, the incoming value came from above BB and 3440 // so we can just reuse it. We must associate all of BB's 3441 // predecessors with this value. 3442 for (auto *pred : predecessors(BB)) { 3443 DestPN->addIncoming(SrcVal, pred); 3444 } 3445 } 3446 } 3447 3448 // Sink any remaining PHI nodes directly into UnwindDest. 3449 Instruction *InsertPt = DestEHPad; 3450 for (BasicBlock::iterator I = BB->begin(), 3451 IE = BB->getFirstNonPHI()->getIterator(); 3452 I != IE;) { 3453 // The iterator must be incremented here because the instructions are 3454 // being moved to another block. 3455 PHINode *PN = cast<PHINode>(I++); 3456 if (PN->use_empty()) 3457 // If the PHI node has no uses, just leave it. It will be erased 3458 // when we erase BB below. 3459 continue; 3460 3461 // Otherwise, sink this PHI node into UnwindDest. 3462 // Any predecessors to UnwindDest which are not already represented 3463 // must be back edges which inherit the value from the path through 3464 // BB. In this case, the PHI value must reference itself. 3465 for (auto *pred : predecessors(UnwindDest)) 3466 if (pred != BB) 3467 PN->addIncoming(PN, pred); 3468 PN->moveBefore(InsertPt); 3469 } 3470 } 3471 3472 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) { 3473 // The iterator must be updated here because we are removing this pred. 3474 BasicBlock *PredBB = *PI++; 3475 if (UnwindDest == nullptr) { 3476 removeUnwindEdge(PredBB); 3477 } else { 3478 TerminatorInst *TI = PredBB->getTerminator(); 3479 TI->replaceUsesOfWith(BB, UnwindDest); 3480 } 3481 } 3482 3483 // The cleanup pad is now unreachable. Zap it. 3484 BB->eraseFromParent(); 3485 return true; 3486 } 3487 3488 bool SimplifyCFGOpt::SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) { 3489 BasicBlock *BB = RI->getParent(); 3490 if (!BB->getFirstNonPHIOrDbg()->isTerminator()) return false; 3491 3492 // Find predecessors that end with branches. 3493 SmallVector<BasicBlock*, 8> UncondBranchPreds; 3494 SmallVector<BranchInst*, 8> CondBranchPreds; 3495 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 3496 BasicBlock *P = *PI; 3497 TerminatorInst *PTI = P->getTerminator(); 3498 if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) { 3499 if (BI->isUnconditional()) 3500 UncondBranchPreds.push_back(P); 3501 else 3502 CondBranchPreds.push_back(BI); 3503 } 3504 } 3505 3506 // If we found some, do the transformation! 3507 if (!UncondBranchPreds.empty() && DupRet) { 3508 while (!UncondBranchPreds.empty()) { 3509 BasicBlock *Pred = UncondBranchPreds.pop_back_val(); 3510 DEBUG(dbgs() << "FOLDING: " << *BB 3511 << "INTO UNCOND BRANCH PRED: " << *Pred); 3512 (void)FoldReturnIntoUncondBranch(RI, BB, Pred); 3513 } 3514 3515 // If we eliminated all predecessors of the block, delete the block now. 3516 if (pred_empty(BB)) 3517 // We know there are no successors, so just nuke the block. 3518 BB->eraseFromParent(); 3519 3520 return true; 3521 } 3522 3523 // Check out all of the conditional branches going to this return 3524 // instruction. If any of them just select between returns, change the 3525 // branch itself into a select/return pair. 3526 while (!CondBranchPreds.empty()) { 3527 BranchInst *BI = CondBranchPreds.pop_back_val(); 3528 3529 // Check to see if the non-BB successor is also a return block. 3530 if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) && 3531 isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) && 3532 SimplifyCondBranchToTwoReturns(BI, Builder)) 3533 return true; 3534 } 3535 return false; 3536 } 3537 3538 bool SimplifyCFGOpt::SimplifyUnreachable(UnreachableInst *UI) { 3539 BasicBlock *BB = UI->getParent(); 3540 3541 bool Changed = false; 3542 3543 // If there are any instructions immediately before the unreachable that can 3544 // be removed, do so. 3545 while (UI->getIterator() != BB->begin()) { 3546 BasicBlock::iterator BBI = UI->getIterator(); 3547 --BBI; 3548 // Do not delete instructions that can have side effects which might cause 3549 // the unreachable to not be reachable; specifically, calls and volatile 3550 // operations may have this effect. 3551 if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI)) break; 3552 3553 if (BBI->mayHaveSideEffects()) { 3554 if (auto *SI = dyn_cast<StoreInst>(BBI)) { 3555 if (SI->isVolatile()) 3556 break; 3557 } else if (auto *LI = dyn_cast<LoadInst>(BBI)) { 3558 if (LI->isVolatile()) 3559 break; 3560 } else if (auto *RMWI = dyn_cast<AtomicRMWInst>(BBI)) { 3561 if (RMWI->isVolatile()) 3562 break; 3563 } else if (auto *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) { 3564 if (CXI->isVolatile()) 3565 break; 3566 } else if (isa<CatchPadInst>(BBI)) { 3567 // A catchpad may invoke exception object constructors and such, which 3568 // in some languages can be arbitrary code, so be conservative by 3569 // default. 3570 // For CoreCLR, it just involves a type test, so can be removed. 3571 if (classifyEHPersonality(BB->getParent()->getPersonalityFn()) != 3572 EHPersonality::CoreCLR) 3573 break; 3574 } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) && 3575 !isa<LandingPadInst>(BBI)) { 3576 break; 3577 } 3578 // Note that deleting LandingPad's here is in fact okay, although it 3579 // involves a bit of subtle reasoning. If this inst is a LandingPad, 3580 // all the predecessors of this block will be the unwind edges of Invokes, 3581 // and we can therefore guarantee this block will be erased. 3582 } 3583 3584 // Delete this instruction (any uses are guaranteed to be dead) 3585 if (!BBI->use_empty()) 3586 BBI->replaceAllUsesWith(UndefValue::get(BBI->getType())); 3587 BBI->eraseFromParent(); 3588 Changed = true; 3589 } 3590 3591 // If the unreachable instruction is the first in the block, take a gander 3592 // at all of the predecessors of this instruction, and simplify them. 3593 if (&BB->front() != UI) return Changed; 3594 3595 SmallVector<BasicBlock*, 8> Preds(pred_begin(BB), pred_end(BB)); 3596 for (unsigned i = 0, e = Preds.size(); i != e; ++i) { 3597 TerminatorInst *TI = Preds[i]->getTerminator(); 3598 IRBuilder<> Builder(TI); 3599 if (auto *BI = dyn_cast<BranchInst>(TI)) { 3600 if (BI->isUnconditional()) { 3601 if (BI->getSuccessor(0) == BB) { 3602 new UnreachableInst(TI->getContext(), TI); 3603 TI->eraseFromParent(); 3604 Changed = true; 3605 } 3606 } else { 3607 if (BI->getSuccessor(0) == BB) { 3608 Builder.CreateBr(BI->getSuccessor(1)); 3609 EraseTerminatorInstAndDCECond(BI); 3610 } else if (BI->getSuccessor(1) == BB) { 3611 Builder.CreateBr(BI->getSuccessor(0)); 3612 EraseTerminatorInstAndDCECond(BI); 3613 Changed = true; 3614 } 3615 } 3616 } else if (auto *SI = dyn_cast<SwitchInst>(TI)) { 3617 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); 3618 i != e; ++i) 3619 if (i.getCaseSuccessor() == BB) { 3620 BB->removePredecessor(SI->getParent()); 3621 SI->removeCase(i); 3622 --i; --e; 3623 Changed = true; 3624 } 3625 } else if (auto *II = dyn_cast<InvokeInst>(TI)) { 3626 if (II->getUnwindDest() == BB) { 3627 removeUnwindEdge(TI->getParent()); 3628 Changed = true; 3629 } 3630 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) { 3631 if (CSI->getUnwindDest() == BB) { 3632 removeUnwindEdge(TI->getParent()); 3633 Changed = true; 3634 continue; 3635 } 3636 3637 for (CatchSwitchInst::handler_iterator I = CSI->handler_begin(), 3638 E = CSI->handler_end(); 3639 I != E; ++I) { 3640 if (*I == BB) { 3641 CSI->removeHandler(I); 3642 --I; 3643 --E; 3644 Changed = true; 3645 } 3646 } 3647 if (CSI->getNumHandlers() == 0) { 3648 BasicBlock *CatchSwitchBB = CSI->getParent(); 3649 if (CSI->hasUnwindDest()) { 3650 // Redirect preds to the unwind dest 3651 CatchSwitchBB->replaceAllUsesWith(CSI->getUnwindDest()); 3652 } else { 3653 // Rewrite all preds to unwind to caller (or from invoke to call). 3654 SmallVector<BasicBlock *, 8> EHPreds(predecessors(CatchSwitchBB)); 3655 for (BasicBlock *EHPred : EHPreds) 3656 removeUnwindEdge(EHPred); 3657 } 3658 // The catchswitch is no longer reachable. 3659 new UnreachableInst(CSI->getContext(), CSI); 3660 CSI->eraseFromParent(); 3661 Changed = true; 3662 } 3663 } else if (isa<CleanupReturnInst>(TI)) { 3664 new UnreachableInst(TI->getContext(), TI); 3665 TI->eraseFromParent(); 3666 Changed = true; 3667 } 3668 } 3669 3670 // If this block is now dead, remove it. 3671 if (pred_empty(BB) && 3672 BB != &BB->getParent()->getEntryBlock()) { 3673 // We know there are no successors, so just nuke the block. 3674 BB->eraseFromParent(); 3675 return true; 3676 } 3677 3678 return Changed; 3679 } 3680 3681 static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) { 3682 assert(Cases.size() >= 1); 3683 3684 array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate); 3685 for (size_t I = 1, E = Cases.size(); I != E; ++I) { 3686 if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1) 3687 return false; 3688 } 3689 return true; 3690 } 3691 3692 /// Turn a switch with two reachable destinations into an integer range 3693 /// comparison and branch. 3694 static bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder) { 3695 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 3696 3697 bool HasDefault = 3698 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 3699 3700 // Partition the cases into two sets with different destinations. 3701 BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr; 3702 BasicBlock *DestB = nullptr; 3703 SmallVector <ConstantInt *, 16> CasesA; 3704 SmallVector <ConstantInt *, 16> CasesB; 3705 3706 for (SwitchInst::CaseIt I : SI->cases()) { 3707 BasicBlock *Dest = I.getCaseSuccessor(); 3708 if (!DestA) DestA = Dest; 3709 if (Dest == DestA) { 3710 CasesA.push_back(I.getCaseValue()); 3711 continue; 3712 } 3713 if (!DestB) DestB = Dest; 3714 if (Dest == DestB) { 3715 CasesB.push_back(I.getCaseValue()); 3716 continue; 3717 } 3718 return false; // More than two destinations. 3719 } 3720 3721 assert(DestA && DestB && "Single-destination switch should have been folded."); 3722 assert(DestA != DestB); 3723 assert(DestB != SI->getDefaultDest()); 3724 assert(!CasesB.empty() && "There must be non-default cases."); 3725 assert(!CasesA.empty() || HasDefault); 3726 3727 // Figure out if one of the sets of cases form a contiguous range. 3728 SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr; 3729 BasicBlock *ContiguousDest = nullptr; 3730 BasicBlock *OtherDest = nullptr; 3731 if (!CasesA.empty() && CasesAreContiguous(CasesA)) { 3732 ContiguousCases = &CasesA; 3733 ContiguousDest = DestA; 3734 OtherDest = DestB; 3735 } else if (CasesAreContiguous(CasesB)) { 3736 ContiguousCases = &CasesB; 3737 ContiguousDest = DestB; 3738 OtherDest = DestA; 3739 } else 3740 return false; 3741 3742 // Start building the compare and branch. 3743 3744 Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back()); 3745 Constant *NumCases = ConstantInt::get(Offset->getType(), ContiguousCases->size()); 3746 3747 Value *Sub = SI->getCondition(); 3748 if (!Offset->isNullValue()) 3749 Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off"); 3750 3751 Value *Cmp; 3752 // If NumCases overflowed, then all possible values jump to the successor. 3753 if (NumCases->isNullValue() && !ContiguousCases->empty()) 3754 Cmp = ConstantInt::getTrue(SI->getContext()); 3755 else 3756 Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch"); 3757 BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest); 3758 3759 // Update weight for the newly-created conditional branch. 3760 if (HasBranchWeights(SI)) { 3761 SmallVector<uint64_t, 8> Weights; 3762 GetBranchWeights(SI, Weights); 3763 if (Weights.size() == 1 + SI->getNumCases()) { 3764 uint64_t TrueWeight = 0; 3765 uint64_t FalseWeight = 0; 3766 for (size_t I = 0, E = Weights.size(); I != E; ++I) { 3767 if (SI->getSuccessor(I) == ContiguousDest) 3768 TrueWeight += Weights[I]; 3769 else 3770 FalseWeight += Weights[I]; 3771 } 3772 while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) { 3773 TrueWeight /= 2; 3774 FalseWeight /= 2; 3775 } 3776 NewBI->setMetadata(LLVMContext::MD_prof, 3777 MDBuilder(SI->getContext()).createBranchWeights( 3778 (uint32_t)TrueWeight, (uint32_t)FalseWeight)); 3779 } 3780 } 3781 3782 // Prune obsolete incoming values off the successors' PHI nodes. 3783 for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) { 3784 unsigned PreviousEdges = ContiguousCases->size(); 3785 if (ContiguousDest == SI->getDefaultDest()) ++PreviousEdges; 3786 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I) 3787 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 3788 } 3789 for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) { 3790 unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size(); 3791 if (OtherDest == SI->getDefaultDest()) ++PreviousEdges; 3792 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I) 3793 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 3794 } 3795 3796 // Drop the switch. 3797 SI->eraseFromParent(); 3798 3799 return true; 3800 } 3801 3802 /// Compute masked bits for the condition of a switch 3803 /// and use it to remove dead cases. 3804 static bool EliminateDeadSwitchCases(SwitchInst *SI, AssumptionCache *AC, 3805 const DataLayout &DL) { 3806 Value *Cond = SI->getCondition(); 3807 unsigned Bits = Cond->getType()->getIntegerBitWidth(); 3808 APInt KnownZero(Bits, 0), KnownOne(Bits, 0); 3809 computeKnownBits(Cond, KnownZero, KnownOne, DL, 0, AC, SI); 3810 3811 // Gather dead cases. 3812 SmallVector<ConstantInt*, 8> DeadCases; 3813 for (SwitchInst::CaseIt I = SI->case_begin(), E = SI->case_end(); I != E; ++I) { 3814 if ((I.getCaseValue()->getValue() & KnownZero) != 0 || 3815 (I.getCaseValue()->getValue() & KnownOne) != KnownOne) { 3816 DeadCases.push_back(I.getCaseValue()); 3817 DEBUG(dbgs() << "SimplifyCFG: switch case '" 3818 << I.getCaseValue() << "' is dead.\n"); 3819 } 3820 } 3821 3822 // If we can prove that the cases must cover all possible values, the 3823 // default destination becomes dead and we can remove it. If we know some 3824 // of the bits in the value, we can use that to more precisely compute the 3825 // number of possible unique case values. 3826 bool HasDefault = 3827 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 3828 const unsigned NumUnknownBits = Bits - 3829 (KnownZero.Or(KnownOne)).countPopulation(); 3830 assert(NumUnknownBits <= Bits); 3831 if (HasDefault && DeadCases.empty() && 3832 NumUnknownBits < 64 /* avoid overflow */ && 3833 SI->getNumCases() == (1ULL << NumUnknownBits)) { 3834 DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n"); 3835 BasicBlock *NewDefault = SplitBlockPredecessors(SI->getDefaultDest(), 3836 SI->getParent(), ""); 3837 SI->setDefaultDest(&*NewDefault); 3838 SplitBlock(&*NewDefault, &NewDefault->front()); 3839 auto *OldTI = NewDefault->getTerminator(); 3840 new UnreachableInst(SI->getContext(), OldTI); 3841 EraseTerminatorInstAndDCECond(OldTI); 3842 return true; 3843 } 3844 3845 SmallVector<uint64_t, 8> Weights; 3846 bool HasWeight = HasBranchWeights(SI); 3847 if (HasWeight) { 3848 GetBranchWeights(SI, Weights); 3849 HasWeight = (Weights.size() == 1 + SI->getNumCases()); 3850 } 3851 3852 // Remove dead cases from the switch. 3853 for (unsigned I = 0, E = DeadCases.size(); I != E; ++I) { 3854 SwitchInst::CaseIt Case = SI->findCaseValue(DeadCases[I]); 3855 assert(Case != SI->case_default() && 3856 "Case was not found. Probably mistake in DeadCases forming."); 3857 if (HasWeight) { 3858 std::swap(Weights[Case.getCaseIndex()+1], Weights.back()); 3859 Weights.pop_back(); 3860 } 3861 3862 // Prune unused values from PHI nodes. 3863 Case.getCaseSuccessor()->removePredecessor(SI->getParent()); 3864 SI->removeCase(Case); 3865 } 3866 if (HasWeight && Weights.size() >= 2) { 3867 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 3868 SI->setMetadata(LLVMContext::MD_prof, 3869 MDBuilder(SI->getParent()->getContext()). 3870 createBranchWeights(MDWeights)); 3871 } 3872 3873 return !DeadCases.empty(); 3874 } 3875 3876 /// If BB would be eligible for simplification by 3877 /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated 3878 /// by an unconditional branch), look at the phi node for BB in the successor 3879 /// block and see if the incoming value is equal to CaseValue. If so, return 3880 /// the phi node, and set PhiIndex to BB's index in the phi node. 3881 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue, 3882 BasicBlock *BB, 3883 int *PhiIndex) { 3884 if (BB->getFirstNonPHIOrDbg() != BB->getTerminator()) 3885 return nullptr; // BB must be empty to be a candidate for simplification. 3886 if (!BB->getSinglePredecessor()) 3887 return nullptr; // BB must be dominated by the switch. 3888 3889 BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator()); 3890 if (!Branch || !Branch->isUnconditional()) 3891 return nullptr; // Terminator must be unconditional branch. 3892 3893 BasicBlock *Succ = Branch->getSuccessor(0); 3894 3895 BasicBlock::iterator I = Succ->begin(); 3896 while (PHINode *PHI = dyn_cast<PHINode>(I++)) { 3897 int Idx = PHI->getBasicBlockIndex(BB); 3898 assert(Idx >= 0 && "PHI has no entry for predecessor?"); 3899 3900 Value *InValue = PHI->getIncomingValue(Idx); 3901 if (InValue != CaseValue) continue; 3902 3903 *PhiIndex = Idx; 3904 return PHI; 3905 } 3906 3907 return nullptr; 3908 } 3909 3910 /// Try to forward the condition of a switch instruction to a phi node 3911 /// dominated by the switch, if that would mean that some of the destination 3912 /// blocks of the switch can be folded away. 3913 /// Returns true if a change is made. 3914 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) { 3915 typedef DenseMap<PHINode*, SmallVector<int,4> > ForwardingNodesMap; 3916 ForwardingNodesMap ForwardingNodes; 3917 3918 for (SwitchInst::CaseIt I = SI->case_begin(), E = SI->case_end(); I != E; ++I) { 3919 ConstantInt *CaseValue = I.getCaseValue(); 3920 BasicBlock *CaseDest = I.getCaseSuccessor(); 3921 3922 int PhiIndex; 3923 PHINode *PHI = FindPHIForConditionForwarding(CaseValue, CaseDest, 3924 &PhiIndex); 3925 if (!PHI) continue; 3926 3927 ForwardingNodes[PHI].push_back(PhiIndex); 3928 } 3929 3930 bool Changed = false; 3931 3932 for (ForwardingNodesMap::iterator I = ForwardingNodes.begin(), 3933 E = ForwardingNodes.end(); I != E; ++I) { 3934 PHINode *Phi = I->first; 3935 SmallVectorImpl<int> &Indexes = I->second; 3936 3937 if (Indexes.size() < 2) continue; 3938 3939 for (size_t I = 0, E = Indexes.size(); I != E; ++I) 3940 Phi->setIncomingValue(Indexes[I], SI->getCondition()); 3941 Changed = true; 3942 } 3943 3944 return Changed; 3945 } 3946 3947 /// Return true if the backend will be able to handle 3948 /// initializing an array of constants like C. 3949 static bool ValidLookupTableConstant(Constant *C) { 3950 if (C->isThreadDependent()) 3951 return false; 3952 if (C->isDLLImportDependent()) 3953 return false; 3954 3955 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) 3956 return CE->isGEPWithNoNotionalOverIndexing(); 3957 3958 return isa<ConstantFP>(C) || 3959 isa<ConstantInt>(C) || 3960 isa<ConstantPointerNull>(C) || 3961 isa<GlobalValue>(C) || 3962 isa<UndefValue>(C); 3963 } 3964 3965 /// If V is a Constant, return it. Otherwise, try to look up 3966 /// its constant value in ConstantPool, returning 0 if it's not there. 3967 static Constant *LookupConstant(Value *V, 3968 const SmallDenseMap<Value*, Constant*>& ConstantPool) { 3969 if (Constant *C = dyn_cast<Constant>(V)) 3970 return C; 3971 return ConstantPool.lookup(V); 3972 } 3973 3974 /// Try to fold instruction I into a constant. This works for 3975 /// simple instructions such as binary operations where both operands are 3976 /// constant or can be replaced by constants from the ConstantPool. Returns the 3977 /// resulting constant on success, 0 otherwise. 3978 static Constant * 3979 ConstantFold(Instruction *I, const DataLayout &DL, 3980 const SmallDenseMap<Value *, Constant *> &ConstantPool) { 3981 if (SelectInst *Select = dyn_cast<SelectInst>(I)) { 3982 Constant *A = LookupConstant(Select->getCondition(), ConstantPool); 3983 if (!A) 3984 return nullptr; 3985 if (A->isAllOnesValue()) 3986 return LookupConstant(Select->getTrueValue(), ConstantPool); 3987 if (A->isNullValue()) 3988 return LookupConstant(Select->getFalseValue(), ConstantPool); 3989 return nullptr; 3990 } 3991 3992 SmallVector<Constant *, 4> COps; 3993 for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) { 3994 if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool)) 3995 COps.push_back(A); 3996 else 3997 return nullptr; 3998 } 3999 4000 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) { 4001 return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0], 4002 COps[1], DL); 4003 } 4004 4005 return ConstantFoldInstOperands(I, COps, DL); 4006 } 4007 4008 /// Try to determine the resulting constant values in phi nodes 4009 /// at the common destination basic block, *CommonDest, for one of the case 4010 /// destionations CaseDest corresponding to value CaseVal (0 for the default 4011 /// case), of a switch instruction SI. 4012 static bool 4013 GetCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest, 4014 BasicBlock **CommonDest, 4015 SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res, 4016 const DataLayout &DL) { 4017 // The block from which we enter the common destination. 4018 BasicBlock *Pred = SI->getParent(); 4019 4020 // If CaseDest is empty except for some side-effect free instructions through 4021 // which we can constant-propagate the CaseVal, continue to its successor. 4022 SmallDenseMap<Value*, Constant*> ConstantPool; 4023 ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal)); 4024 for (BasicBlock::iterator I = CaseDest->begin(), E = CaseDest->end(); I != E; 4025 ++I) { 4026 if (TerminatorInst *T = dyn_cast<TerminatorInst>(I)) { 4027 // If the terminator is a simple branch, continue to the next block. 4028 if (T->getNumSuccessors() != 1) 4029 return false; 4030 Pred = CaseDest; 4031 CaseDest = T->getSuccessor(0); 4032 } else if (isa<DbgInfoIntrinsic>(I)) { 4033 // Skip debug intrinsic. 4034 continue; 4035 } else if (Constant *C = ConstantFold(&*I, DL, ConstantPool)) { 4036 // Instruction is side-effect free and constant. 4037 4038 // If the instruction has uses outside this block or a phi node slot for 4039 // the block, it is not safe to bypass the instruction since it would then 4040 // no longer dominate all its uses. 4041 for (auto &Use : I->uses()) { 4042 User *User = Use.getUser(); 4043 if (Instruction *I = dyn_cast<Instruction>(User)) 4044 if (I->getParent() == CaseDest) 4045 continue; 4046 if (PHINode *Phi = dyn_cast<PHINode>(User)) 4047 if (Phi->getIncomingBlock(Use) == CaseDest) 4048 continue; 4049 return false; 4050 } 4051 4052 ConstantPool.insert(std::make_pair(&*I, C)); 4053 } else { 4054 break; 4055 } 4056 } 4057 4058 // If we did not have a CommonDest before, use the current one. 4059 if (!*CommonDest) 4060 *CommonDest = CaseDest; 4061 // If the destination isn't the common one, abort. 4062 if (CaseDest != *CommonDest) 4063 return false; 4064 4065 // Get the values for this case from phi nodes in the destination block. 4066 BasicBlock::iterator I = (*CommonDest)->begin(); 4067 while (PHINode *PHI = dyn_cast<PHINode>(I++)) { 4068 int Idx = PHI->getBasicBlockIndex(Pred); 4069 if (Idx == -1) 4070 continue; 4071 4072 Constant *ConstVal = LookupConstant(PHI->getIncomingValue(Idx), 4073 ConstantPool); 4074 if (!ConstVal) 4075 return false; 4076 4077 // Be conservative about which kinds of constants we support. 4078 if (!ValidLookupTableConstant(ConstVal)) 4079 return false; 4080 4081 Res.push_back(std::make_pair(PHI, ConstVal)); 4082 } 4083 4084 return Res.size() > 0; 4085 } 4086 4087 // Helper function used to add CaseVal to the list of cases that generate 4088 // Result. 4089 static void MapCaseToResult(ConstantInt *CaseVal, 4090 SwitchCaseResultVectorTy &UniqueResults, 4091 Constant *Result) { 4092 for (auto &I : UniqueResults) { 4093 if (I.first == Result) { 4094 I.second.push_back(CaseVal); 4095 return; 4096 } 4097 } 4098 UniqueResults.push_back(std::make_pair(Result, 4099 SmallVector<ConstantInt*, 4>(1, CaseVal))); 4100 } 4101 4102 // Helper function that initializes a map containing 4103 // results for the PHI node of the common destination block for a switch 4104 // instruction. Returns false if multiple PHI nodes have been found or if 4105 // there is not a common destination block for the switch. 4106 static bool InitializeUniqueCases(SwitchInst *SI, PHINode *&PHI, 4107 BasicBlock *&CommonDest, 4108 SwitchCaseResultVectorTy &UniqueResults, 4109 Constant *&DefaultResult, 4110 const DataLayout &DL) { 4111 for (auto &I : SI->cases()) { 4112 ConstantInt *CaseVal = I.getCaseValue(); 4113 4114 // Resulting value at phi nodes for this case value. 4115 SwitchCaseResultsTy Results; 4116 if (!GetCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results, 4117 DL)) 4118 return false; 4119 4120 // Only one value per case is permitted 4121 if (Results.size() > 1) 4122 return false; 4123 MapCaseToResult(CaseVal, UniqueResults, Results.begin()->second); 4124 4125 // Check the PHI consistency. 4126 if (!PHI) 4127 PHI = Results[0].first; 4128 else if (PHI != Results[0].first) 4129 return false; 4130 } 4131 // Find the default result value. 4132 SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults; 4133 BasicBlock *DefaultDest = SI->getDefaultDest(); 4134 GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults, 4135 DL); 4136 // If the default value is not found abort unless the default destination 4137 // is unreachable. 4138 DefaultResult = 4139 DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr; 4140 if ((!DefaultResult && 4141 !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()))) 4142 return false; 4143 4144 return true; 4145 } 4146 4147 // Helper function that checks if it is possible to transform a switch with only 4148 // two cases (or two cases + default) that produces a result into a select. 4149 // Example: 4150 // switch (a) { 4151 // case 10: %0 = icmp eq i32 %a, 10 4152 // return 10; %1 = select i1 %0, i32 10, i32 4 4153 // case 20: ----> %2 = icmp eq i32 %a, 20 4154 // return 2; %3 = select i1 %2, i32 2, i32 %1 4155 // default: 4156 // return 4; 4157 // } 4158 static Value * 4159 ConvertTwoCaseSwitch(const SwitchCaseResultVectorTy &ResultVector, 4160 Constant *DefaultResult, Value *Condition, 4161 IRBuilder<> &Builder) { 4162 assert(ResultVector.size() == 2 && 4163 "We should have exactly two unique results at this point"); 4164 // If we are selecting between only two cases transform into a simple 4165 // select or a two-way select if default is possible. 4166 if (ResultVector[0].second.size() == 1 && 4167 ResultVector[1].second.size() == 1) { 4168 ConstantInt *const FirstCase = ResultVector[0].second[0]; 4169 ConstantInt *const SecondCase = ResultVector[1].second[0]; 4170 4171 bool DefaultCanTrigger = DefaultResult; 4172 Value *SelectValue = ResultVector[1].first; 4173 if (DefaultCanTrigger) { 4174 Value *const ValueCompare = 4175 Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp"); 4176 SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first, 4177 DefaultResult, "switch.select"); 4178 } 4179 Value *const ValueCompare = 4180 Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp"); 4181 return Builder.CreateSelect(ValueCompare, ResultVector[0].first, SelectValue, 4182 "switch.select"); 4183 } 4184 4185 return nullptr; 4186 } 4187 4188 // Helper function to cleanup a switch instruction that has been converted into 4189 // a select, fixing up PHI nodes and basic blocks. 4190 static void RemoveSwitchAfterSelectConversion(SwitchInst *SI, PHINode *PHI, 4191 Value *SelectValue, 4192 IRBuilder<> &Builder) { 4193 BasicBlock *SelectBB = SI->getParent(); 4194 while (PHI->getBasicBlockIndex(SelectBB) >= 0) 4195 PHI->removeIncomingValue(SelectBB); 4196 PHI->addIncoming(SelectValue, SelectBB); 4197 4198 Builder.CreateBr(PHI->getParent()); 4199 4200 // Remove the switch. 4201 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { 4202 BasicBlock *Succ = SI->getSuccessor(i); 4203 4204 if (Succ == PHI->getParent()) 4205 continue; 4206 Succ->removePredecessor(SelectBB); 4207 } 4208 SI->eraseFromParent(); 4209 } 4210 4211 /// If the switch is only used to initialize one or more 4212 /// phi nodes in a common successor block with only two different 4213 /// constant values, replace the switch with select. 4214 static bool SwitchToSelect(SwitchInst *SI, IRBuilder<> &Builder, 4215 AssumptionCache *AC, const DataLayout &DL) { 4216 Value *const Cond = SI->getCondition(); 4217 PHINode *PHI = nullptr; 4218 BasicBlock *CommonDest = nullptr; 4219 Constant *DefaultResult; 4220 SwitchCaseResultVectorTy UniqueResults; 4221 // Collect all the cases that will deliver the same value from the switch. 4222 if (!InitializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult, 4223 DL)) 4224 return false; 4225 // Selects choose between maximum two values. 4226 if (UniqueResults.size() != 2) 4227 return false; 4228 assert(PHI != nullptr && "PHI for value select not found"); 4229 4230 Builder.SetInsertPoint(SI); 4231 Value *SelectValue = ConvertTwoCaseSwitch( 4232 UniqueResults, 4233 DefaultResult, Cond, Builder); 4234 if (SelectValue) { 4235 RemoveSwitchAfterSelectConversion(SI, PHI, SelectValue, Builder); 4236 return true; 4237 } 4238 // The switch couldn't be converted into a select. 4239 return false; 4240 } 4241 4242 namespace { 4243 /// This class represents a lookup table that can be used to replace a switch. 4244 class SwitchLookupTable { 4245 public: 4246 /// Create a lookup table to use as a switch replacement with the contents 4247 /// of Values, using DefaultValue to fill any holes in the table. 4248 SwitchLookupTable( 4249 Module &M, uint64_t TableSize, ConstantInt *Offset, 4250 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values, 4251 Constant *DefaultValue, const DataLayout &DL); 4252 4253 /// Build instructions with Builder to retrieve the value at 4254 /// the position given by Index in the lookup table. 4255 Value *BuildLookup(Value *Index, IRBuilder<> &Builder); 4256 4257 /// Return true if a table with TableSize elements of 4258 /// type ElementType would fit in a target-legal register. 4259 static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize, 4260 Type *ElementType); 4261 4262 private: 4263 // Depending on the contents of the table, it can be represented in 4264 // different ways. 4265 enum { 4266 // For tables where each element contains the same value, we just have to 4267 // store that single value and return it for each lookup. 4268 SingleValueKind, 4269 4270 // For tables where there is a linear relationship between table index 4271 // and values. We calculate the result with a simple multiplication 4272 // and addition instead of a table lookup. 4273 LinearMapKind, 4274 4275 // For small tables with integer elements, we can pack them into a bitmap 4276 // that fits into a target-legal register. Values are retrieved by 4277 // shift and mask operations. 4278 BitMapKind, 4279 4280 // The table is stored as an array of values. Values are retrieved by load 4281 // instructions from the table. 4282 ArrayKind 4283 } Kind; 4284 4285 // For SingleValueKind, this is the single value. 4286 Constant *SingleValue; 4287 4288 // For BitMapKind, this is the bitmap. 4289 ConstantInt *BitMap; 4290 IntegerType *BitMapElementTy; 4291 4292 // For LinearMapKind, these are the constants used to derive the value. 4293 ConstantInt *LinearOffset; 4294 ConstantInt *LinearMultiplier; 4295 4296 // For ArrayKind, this is the array. 4297 GlobalVariable *Array; 4298 }; 4299 } 4300 4301 SwitchLookupTable::SwitchLookupTable( 4302 Module &M, uint64_t TableSize, ConstantInt *Offset, 4303 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values, 4304 Constant *DefaultValue, const DataLayout &DL) 4305 : SingleValue(nullptr), BitMap(nullptr), BitMapElementTy(nullptr), 4306 LinearOffset(nullptr), LinearMultiplier(nullptr), Array(nullptr) { 4307 assert(Values.size() && "Can't build lookup table without values!"); 4308 assert(TableSize >= Values.size() && "Can't fit values in table!"); 4309 4310 // If all values in the table are equal, this is that value. 4311 SingleValue = Values.begin()->second; 4312 4313 Type *ValueType = Values.begin()->second->getType(); 4314 4315 // Build up the table contents. 4316 SmallVector<Constant*, 64> TableContents(TableSize); 4317 for (size_t I = 0, E = Values.size(); I != E; ++I) { 4318 ConstantInt *CaseVal = Values[I].first; 4319 Constant *CaseRes = Values[I].second; 4320 assert(CaseRes->getType() == ValueType); 4321 4322 uint64_t Idx = (CaseVal->getValue() - Offset->getValue()) 4323 .getLimitedValue(); 4324 TableContents[Idx] = CaseRes; 4325 4326 if (CaseRes != SingleValue) 4327 SingleValue = nullptr; 4328 } 4329 4330 // Fill in any holes in the table with the default result. 4331 if (Values.size() < TableSize) { 4332 assert(DefaultValue && 4333 "Need a default value to fill the lookup table holes."); 4334 assert(DefaultValue->getType() == ValueType); 4335 for (uint64_t I = 0; I < TableSize; ++I) { 4336 if (!TableContents[I]) 4337 TableContents[I] = DefaultValue; 4338 } 4339 4340 if (DefaultValue != SingleValue) 4341 SingleValue = nullptr; 4342 } 4343 4344 // If each element in the table contains the same value, we only need to store 4345 // that single value. 4346 if (SingleValue) { 4347 Kind = SingleValueKind; 4348 return; 4349 } 4350 4351 // Check if we can derive the value with a linear transformation from the 4352 // table index. 4353 if (isa<IntegerType>(ValueType)) { 4354 bool LinearMappingPossible = true; 4355 APInt PrevVal; 4356 APInt DistToPrev; 4357 assert(TableSize >= 2 && "Should be a SingleValue table."); 4358 // Check if there is the same distance between two consecutive values. 4359 for (uint64_t I = 0; I < TableSize; ++I) { 4360 ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]); 4361 if (!ConstVal) { 4362 // This is an undef. We could deal with it, but undefs in lookup tables 4363 // are very seldom. It's probably not worth the additional complexity. 4364 LinearMappingPossible = false; 4365 break; 4366 } 4367 APInt Val = ConstVal->getValue(); 4368 if (I != 0) { 4369 APInt Dist = Val - PrevVal; 4370 if (I == 1) { 4371 DistToPrev = Dist; 4372 } else if (Dist != DistToPrev) { 4373 LinearMappingPossible = false; 4374 break; 4375 } 4376 } 4377 PrevVal = Val; 4378 } 4379 if (LinearMappingPossible) { 4380 LinearOffset = cast<ConstantInt>(TableContents[0]); 4381 LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev); 4382 Kind = LinearMapKind; 4383 ++NumLinearMaps; 4384 return; 4385 } 4386 } 4387 4388 // If the type is integer and the table fits in a register, build a bitmap. 4389 if (WouldFitInRegister(DL, TableSize, ValueType)) { 4390 IntegerType *IT = cast<IntegerType>(ValueType); 4391 APInt TableInt(TableSize * IT->getBitWidth(), 0); 4392 for (uint64_t I = TableSize; I > 0; --I) { 4393 TableInt <<= IT->getBitWidth(); 4394 // Insert values into the bitmap. Undef values are set to zero. 4395 if (!isa<UndefValue>(TableContents[I - 1])) { 4396 ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]); 4397 TableInt |= Val->getValue().zext(TableInt.getBitWidth()); 4398 } 4399 } 4400 BitMap = ConstantInt::get(M.getContext(), TableInt); 4401 BitMapElementTy = IT; 4402 Kind = BitMapKind; 4403 ++NumBitMaps; 4404 return; 4405 } 4406 4407 // Store the table in an array. 4408 ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize); 4409 Constant *Initializer = ConstantArray::get(ArrayTy, TableContents); 4410 4411 Array = new GlobalVariable(M, ArrayTy, /*constant=*/ true, 4412 GlobalVariable::PrivateLinkage, 4413 Initializer, 4414 "switch.table"); 4415 Array->setUnnamedAddr(true); 4416 Kind = ArrayKind; 4417 } 4418 4419 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) { 4420 switch (Kind) { 4421 case SingleValueKind: 4422 return SingleValue; 4423 case LinearMapKind: { 4424 // Derive the result value from the input value. 4425 Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(), 4426 false, "switch.idx.cast"); 4427 if (!LinearMultiplier->isOne()) 4428 Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult"); 4429 if (!LinearOffset->isZero()) 4430 Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset"); 4431 return Result; 4432 } 4433 case BitMapKind: { 4434 // Type of the bitmap (e.g. i59). 4435 IntegerType *MapTy = BitMap->getType(); 4436 4437 // Cast Index to the same type as the bitmap. 4438 // Note: The Index is <= the number of elements in the table, so 4439 // truncating it to the width of the bitmask is safe. 4440 Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast"); 4441 4442 // Multiply the shift amount by the element width. 4443 ShiftAmt = Builder.CreateMul(ShiftAmt, 4444 ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()), 4445 "switch.shiftamt"); 4446 4447 // Shift down. 4448 Value *DownShifted = Builder.CreateLShr(BitMap, ShiftAmt, 4449 "switch.downshift"); 4450 // Mask off. 4451 return Builder.CreateTrunc(DownShifted, BitMapElementTy, 4452 "switch.masked"); 4453 } 4454 case ArrayKind: { 4455 // Make sure the table index will not overflow when treated as signed. 4456 IntegerType *IT = cast<IntegerType>(Index->getType()); 4457 uint64_t TableSize = Array->getInitializer()->getType() 4458 ->getArrayNumElements(); 4459 if (TableSize > (1ULL << (IT->getBitWidth() - 1))) 4460 Index = Builder.CreateZExt(Index, 4461 IntegerType::get(IT->getContext(), 4462 IT->getBitWidth() + 1), 4463 "switch.tableidx.zext"); 4464 4465 Value *GEPIndices[] = { Builder.getInt32(0), Index }; 4466 Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array, 4467 GEPIndices, "switch.gep"); 4468 return Builder.CreateLoad(GEP, "switch.load"); 4469 } 4470 } 4471 llvm_unreachable("Unknown lookup table kind!"); 4472 } 4473 4474 bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL, 4475 uint64_t TableSize, 4476 Type *ElementType) { 4477 auto *IT = dyn_cast<IntegerType>(ElementType); 4478 if (!IT) 4479 return false; 4480 // FIXME: If the type is wider than it needs to be, e.g. i8 but all values 4481 // are <= 15, we could try to narrow the type. 4482 4483 // Avoid overflow, fitsInLegalInteger uses unsigned int for the width. 4484 if (TableSize >= UINT_MAX/IT->getBitWidth()) 4485 return false; 4486 return DL.fitsInLegalInteger(TableSize * IT->getBitWidth()); 4487 } 4488 4489 /// Determine whether a lookup table should be built for this switch, based on 4490 /// the number of cases, size of the table, and the types of the results. 4491 static bool 4492 ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize, 4493 const TargetTransformInfo &TTI, const DataLayout &DL, 4494 const SmallDenseMap<PHINode *, Type *> &ResultTypes) { 4495 if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10) 4496 return false; // TableSize overflowed, or mul below might overflow. 4497 4498 bool AllTablesFitInRegister = true; 4499 bool HasIllegalType = false; 4500 for (const auto &I : ResultTypes) { 4501 Type *Ty = I.second; 4502 4503 // Saturate this flag to true. 4504 HasIllegalType = HasIllegalType || !TTI.isTypeLegal(Ty); 4505 4506 // Saturate this flag to false. 4507 AllTablesFitInRegister = AllTablesFitInRegister && 4508 SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty); 4509 4510 // If both flags saturate, we're done. NOTE: This *only* works with 4511 // saturating flags, and all flags have to saturate first due to the 4512 // non-deterministic behavior of iterating over a dense map. 4513 if (HasIllegalType && !AllTablesFitInRegister) 4514 break; 4515 } 4516 4517 // If each table would fit in a register, we should build it anyway. 4518 if (AllTablesFitInRegister) 4519 return true; 4520 4521 // Don't build a table that doesn't fit in-register if it has illegal types. 4522 if (HasIllegalType) 4523 return false; 4524 4525 // The table density should be at least 40%. This is the same criterion as for 4526 // jump tables, see SelectionDAGBuilder::handleJTSwitchCase. 4527 // FIXME: Find the best cut-off. 4528 return SI->getNumCases() * 10 >= TableSize * 4; 4529 } 4530 4531 /// Try to reuse the switch table index compare. Following pattern: 4532 /// \code 4533 /// if (idx < tablesize) 4534 /// r = table[idx]; // table does not contain default_value 4535 /// else 4536 /// r = default_value; 4537 /// if (r != default_value) 4538 /// ... 4539 /// \endcode 4540 /// Is optimized to: 4541 /// \code 4542 /// cond = idx < tablesize; 4543 /// if (cond) 4544 /// r = table[idx]; 4545 /// else 4546 /// r = default_value; 4547 /// if (cond) 4548 /// ... 4549 /// \endcode 4550 /// Jump threading will then eliminate the second if(cond). 4551 static void reuseTableCompare(User *PhiUser, BasicBlock *PhiBlock, 4552 BranchInst *RangeCheckBranch, Constant *DefaultValue, 4553 const SmallVectorImpl<std::pair<ConstantInt*, Constant*> >& Values) { 4554 4555 ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser); 4556 if (!CmpInst) 4557 return; 4558 4559 // We require that the compare is in the same block as the phi so that jump 4560 // threading can do its work afterwards. 4561 if (CmpInst->getParent() != PhiBlock) 4562 return; 4563 4564 Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1)); 4565 if (!CmpOp1) 4566 return; 4567 4568 Value *RangeCmp = RangeCheckBranch->getCondition(); 4569 Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType()); 4570 Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType()); 4571 4572 // Check if the compare with the default value is constant true or false. 4573 Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(), 4574 DefaultValue, CmpOp1, true); 4575 if (DefaultConst != TrueConst && DefaultConst != FalseConst) 4576 return; 4577 4578 // Check if the compare with the case values is distinct from the default 4579 // compare result. 4580 for (auto ValuePair : Values) { 4581 Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(), 4582 ValuePair.second, CmpOp1, true); 4583 if (!CaseConst || CaseConst == DefaultConst) 4584 return; 4585 assert((CaseConst == TrueConst || CaseConst == FalseConst) && 4586 "Expect true or false as compare result."); 4587 } 4588 4589 // Check if the branch instruction dominates the phi node. It's a simple 4590 // dominance check, but sufficient for our needs. 4591 // Although this check is invariant in the calling loops, it's better to do it 4592 // at this late stage. Practically we do it at most once for a switch. 4593 BasicBlock *BranchBlock = RangeCheckBranch->getParent(); 4594 for (auto PI = pred_begin(PhiBlock), E = pred_end(PhiBlock); PI != E; ++PI) { 4595 BasicBlock *Pred = *PI; 4596 if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock) 4597 return; 4598 } 4599 4600 if (DefaultConst == FalseConst) { 4601 // The compare yields the same result. We can replace it. 4602 CmpInst->replaceAllUsesWith(RangeCmp); 4603 ++NumTableCmpReuses; 4604 } else { 4605 // The compare yields the same result, just inverted. We can replace it. 4606 Value *InvertedTableCmp = BinaryOperator::CreateXor(RangeCmp, 4607 ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp", 4608 RangeCheckBranch); 4609 CmpInst->replaceAllUsesWith(InvertedTableCmp); 4610 ++NumTableCmpReuses; 4611 } 4612 } 4613 4614 /// If the switch is only used to initialize one or more phi nodes in a common 4615 /// successor block with different constant values, replace the switch with 4616 /// lookup tables. 4617 static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder, 4618 const DataLayout &DL, 4619 const TargetTransformInfo &TTI) { 4620 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 4621 4622 // Only build lookup table when we have a target that supports it. 4623 if (!TTI.shouldBuildLookupTables()) 4624 return false; 4625 4626 // FIXME: If the switch is too sparse for a lookup table, perhaps we could 4627 // split off a dense part and build a lookup table for that. 4628 4629 // FIXME: This creates arrays of GEPs to constant strings, which means each 4630 // GEP needs a runtime relocation in PIC code. We should just build one big 4631 // string and lookup indices into that. 4632 4633 // Ignore switches with less than three cases. Lookup tables will not make them 4634 // faster, so we don't analyze them. 4635 if (SI->getNumCases() < 3) 4636 return false; 4637 4638 // Figure out the corresponding result for each case value and phi node in the 4639 // common destination, as well as the min and max case values. 4640 assert(SI->case_begin() != SI->case_end()); 4641 SwitchInst::CaseIt CI = SI->case_begin(); 4642 ConstantInt *MinCaseVal = CI.getCaseValue(); 4643 ConstantInt *MaxCaseVal = CI.getCaseValue(); 4644 4645 BasicBlock *CommonDest = nullptr; 4646 typedef SmallVector<std::pair<ConstantInt*, Constant*>, 4> ResultListTy; 4647 SmallDenseMap<PHINode*, ResultListTy> ResultLists; 4648 SmallDenseMap<PHINode*, Constant*> DefaultResults; 4649 SmallDenseMap<PHINode*, Type*> ResultTypes; 4650 SmallVector<PHINode*, 4> PHIs; 4651 4652 for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) { 4653 ConstantInt *CaseVal = CI.getCaseValue(); 4654 if (CaseVal->getValue().slt(MinCaseVal->getValue())) 4655 MinCaseVal = CaseVal; 4656 if (CaseVal->getValue().sgt(MaxCaseVal->getValue())) 4657 MaxCaseVal = CaseVal; 4658 4659 // Resulting value at phi nodes for this case value. 4660 typedef SmallVector<std::pair<PHINode*, Constant*>, 4> ResultsTy; 4661 ResultsTy Results; 4662 if (!GetCaseResults(SI, CaseVal, CI.getCaseSuccessor(), &CommonDest, 4663 Results, DL)) 4664 return false; 4665 4666 // Append the result from this case to the list for each phi. 4667 for (const auto &I : Results) { 4668 PHINode *PHI = I.first; 4669 Constant *Value = I.second; 4670 if (!ResultLists.count(PHI)) 4671 PHIs.push_back(PHI); 4672 ResultLists[PHI].push_back(std::make_pair(CaseVal, Value)); 4673 } 4674 } 4675 4676 // Keep track of the result types. 4677 for (PHINode *PHI : PHIs) { 4678 ResultTypes[PHI] = ResultLists[PHI][0].second->getType(); 4679 } 4680 4681 uint64_t NumResults = ResultLists[PHIs[0]].size(); 4682 APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue(); 4683 uint64_t TableSize = RangeSpread.getLimitedValue() + 1; 4684 bool TableHasHoles = (NumResults < TableSize); 4685 4686 // If the table has holes, we need a constant result for the default case 4687 // or a bitmask that fits in a register. 4688 SmallVector<std::pair<PHINode*, Constant*>, 4> DefaultResultsList; 4689 bool HasDefaultResults = GetCaseResults(SI, nullptr, SI->getDefaultDest(), 4690 &CommonDest, DefaultResultsList, DL); 4691 4692 bool NeedMask = (TableHasHoles && !HasDefaultResults); 4693 if (NeedMask) { 4694 // As an extra penalty for the validity test we require more cases. 4695 if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark). 4696 return false; 4697 if (!DL.fitsInLegalInteger(TableSize)) 4698 return false; 4699 } 4700 4701 for (const auto &I : DefaultResultsList) { 4702 PHINode *PHI = I.first; 4703 Constant *Result = I.second; 4704 DefaultResults[PHI] = Result; 4705 } 4706 4707 if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes)) 4708 return false; 4709 4710 // Create the BB that does the lookups. 4711 Module &Mod = *CommonDest->getParent()->getParent(); 4712 BasicBlock *LookupBB = BasicBlock::Create(Mod.getContext(), 4713 "switch.lookup", 4714 CommonDest->getParent(), 4715 CommonDest); 4716 4717 // Compute the table index value. 4718 Builder.SetInsertPoint(SI); 4719 Value *TableIndex = Builder.CreateSub(SI->getCondition(), MinCaseVal, 4720 "switch.tableidx"); 4721 4722 // Compute the maximum table size representable by the integer type we are 4723 // switching upon. 4724 unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits(); 4725 uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize; 4726 assert(MaxTableSize >= TableSize && 4727 "It is impossible for a switch to have more entries than the max " 4728 "representable value of its input integer type's size."); 4729 4730 // If the default destination is unreachable, or if the lookup table covers 4731 // all values of the conditional variable, branch directly to the lookup table 4732 // BB. Otherwise, check that the condition is within the case range. 4733 const bool DefaultIsReachable = 4734 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 4735 const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize); 4736 BranchInst *RangeCheckBranch = nullptr; 4737 4738 if (!DefaultIsReachable || GeneratingCoveredLookupTable) { 4739 Builder.CreateBr(LookupBB); 4740 // Note: We call removeProdecessor later since we need to be able to get the 4741 // PHI value for the default case in case we're using a bit mask. 4742 } else { 4743 Value *Cmp = Builder.CreateICmpULT(TableIndex, ConstantInt::get( 4744 MinCaseVal->getType(), TableSize)); 4745 RangeCheckBranch = Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest()); 4746 } 4747 4748 // Populate the BB that does the lookups. 4749 Builder.SetInsertPoint(LookupBB); 4750 4751 if (NeedMask) { 4752 // Before doing the lookup we do the hole check. 4753 // The LookupBB is therefore re-purposed to do the hole check 4754 // and we create a new LookupBB. 4755 BasicBlock *MaskBB = LookupBB; 4756 MaskBB->setName("switch.hole_check"); 4757 LookupBB = BasicBlock::Create(Mod.getContext(), 4758 "switch.lookup", 4759 CommonDest->getParent(), 4760 CommonDest); 4761 4762 // Make the mask's bitwidth at least 8bit and a power-of-2 to avoid 4763 // unnecessary illegal types. 4764 uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL)); 4765 APInt MaskInt(TableSizePowOf2, 0); 4766 APInt One(TableSizePowOf2, 1); 4767 // Build bitmask; fill in a 1 bit for every case. 4768 const ResultListTy &ResultList = ResultLists[PHIs[0]]; 4769 for (size_t I = 0, E = ResultList.size(); I != E; ++I) { 4770 uint64_t Idx = (ResultList[I].first->getValue() - 4771 MinCaseVal->getValue()).getLimitedValue(); 4772 MaskInt |= One << Idx; 4773 } 4774 ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt); 4775 4776 // Get the TableIndex'th bit of the bitmask. 4777 // If this bit is 0 (meaning hole) jump to the default destination, 4778 // else continue with table lookup. 4779 IntegerType *MapTy = TableMask->getType(); 4780 Value *MaskIndex = Builder.CreateZExtOrTrunc(TableIndex, MapTy, 4781 "switch.maskindex"); 4782 Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, 4783 "switch.shifted"); 4784 Value *LoBit = Builder.CreateTrunc(Shifted, 4785 Type::getInt1Ty(Mod.getContext()), 4786 "switch.lobit"); 4787 Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest()); 4788 4789 Builder.SetInsertPoint(LookupBB); 4790 AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, SI->getParent()); 4791 } 4792 4793 if (!DefaultIsReachable || GeneratingCoveredLookupTable) { 4794 // We cached PHINodes in PHIs, to avoid accessing deleted PHINodes later, 4795 // do not delete PHINodes here. 4796 SI->getDefaultDest()->removePredecessor(SI->getParent(), 4797 /*DontDeleteUselessPHIs=*/true); 4798 } 4799 4800 bool ReturnedEarly = false; 4801 for (size_t I = 0, E = PHIs.size(); I != E; ++I) { 4802 PHINode *PHI = PHIs[I]; 4803 const ResultListTy &ResultList = ResultLists[PHI]; 4804 4805 // If using a bitmask, use any value to fill the lookup table holes. 4806 Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI]; 4807 SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultList, DV, DL); 4808 4809 Value *Result = Table.BuildLookup(TableIndex, Builder); 4810 4811 // If the result is used to return immediately from the function, we want to 4812 // do that right here. 4813 if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->user_begin()) && 4814 PHI->user_back() == CommonDest->getFirstNonPHIOrDbg()) { 4815 Builder.CreateRet(Result); 4816 ReturnedEarly = true; 4817 break; 4818 } 4819 4820 // Do a small peephole optimization: re-use the switch table compare if 4821 // possible. 4822 if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) { 4823 BasicBlock *PhiBlock = PHI->getParent(); 4824 // Search for compare instructions which use the phi. 4825 for (auto *User : PHI->users()) { 4826 reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList); 4827 } 4828 } 4829 4830 PHI->addIncoming(Result, LookupBB); 4831 } 4832 4833 if (!ReturnedEarly) 4834 Builder.CreateBr(CommonDest); 4835 4836 // Remove the switch. 4837 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { 4838 BasicBlock *Succ = SI->getSuccessor(i); 4839 4840 if (Succ == SI->getDefaultDest()) 4841 continue; 4842 Succ->removePredecessor(SI->getParent()); 4843 } 4844 SI->eraseFromParent(); 4845 4846 ++NumLookupTables; 4847 if (NeedMask) 4848 ++NumLookupTablesHoles; 4849 return true; 4850 } 4851 4852 bool SimplifyCFGOpt::SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) { 4853 BasicBlock *BB = SI->getParent(); 4854 4855 if (isValueEqualityComparison(SI)) { 4856 // If we only have one predecessor, and if it is a branch on this value, 4857 // see if that predecessor totally determines the outcome of this switch. 4858 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 4859 if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder)) 4860 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 4861 4862 Value *Cond = SI->getCondition(); 4863 if (SelectInst *Select = dyn_cast<SelectInst>(Cond)) 4864 if (SimplifySwitchOnSelect(SI, Select)) 4865 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 4866 4867 // If the block only contains the switch, see if we can fold the block 4868 // away into any preds. 4869 BasicBlock::iterator BBI = BB->begin(); 4870 // Ignore dbg intrinsics. 4871 while (isa<DbgInfoIntrinsic>(BBI)) 4872 ++BBI; 4873 if (SI == &*BBI) 4874 if (FoldValueComparisonIntoPredecessors(SI, Builder)) 4875 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 4876 } 4877 4878 // Try to transform the switch into an icmp and a branch. 4879 if (TurnSwitchRangeIntoICmp(SI, Builder)) 4880 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 4881 4882 // Remove unreachable cases. 4883 if (EliminateDeadSwitchCases(SI, AC, DL)) 4884 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 4885 4886 if (SwitchToSelect(SI, Builder, AC, DL)) 4887 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 4888 4889 if (ForwardSwitchConditionToPHI(SI)) 4890 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 4891 4892 if (SwitchToLookupTable(SI, Builder, DL, TTI)) 4893 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 4894 4895 return false; 4896 } 4897 4898 bool SimplifyCFGOpt::SimplifyIndirectBr(IndirectBrInst *IBI) { 4899 BasicBlock *BB = IBI->getParent(); 4900 bool Changed = false; 4901 4902 // Eliminate redundant destinations. 4903 SmallPtrSet<Value *, 8> Succs; 4904 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 4905 BasicBlock *Dest = IBI->getDestination(i); 4906 if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) { 4907 Dest->removePredecessor(BB); 4908 IBI->removeDestination(i); 4909 --i; --e; 4910 Changed = true; 4911 } 4912 } 4913 4914 if (IBI->getNumDestinations() == 0) { 4915 // If the indirectbr has no successors, change it to unreachable. 4916 new UnreachableInst(IBI->getContext(), IBI); 4917 EraseTerminatorInstAndDCECond(IBI); 4918 return true; 4919 } 4920 4921 if (IBI->getNumDestinations() == 1) { 4922 // If the indirectbr has one successor, change it to a direct branch. 4923 BranchInst::Create(IBI->getDestination(0), IBI); 4924 EraseTerminatorInstAndDCECond(IBI); 4925 return true; 4926 } 4927 4928 if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) { 4929 if (SimplifyIndirectBrOnSelect(IBI, SI)) 4930 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 4931 } 4932 return Changed; 4933 } 4934 4935 /// Given an block with only a single landing pad and a unconditional branch 4936 /// try to find another basic block which this one can be merged with. This 4937 /// handles cases where we have multiple invokes with unique landing pads, but 4938 /// a shared handler. 4939 /// 4940 /// We specifically choose to not worry about merging non-empty blocks 4941 /// here. That is a PRE/scheduling problem and is best solved elsewhere. In 4942 /// practice, the optimizer produces empty landing pad blocks quite frequently 4943 /// when dealing with exception dense code. (see: instcombine, gvn, if-else 4944 /// sinking in this file) 4945 /// 4946 /// This is primarily a code size optimization. We need to avoid performing 4947 /// any transform which might inhibit optimization (such as our ability to 4948 /// specialize a particular handler via tail commoning). We do this by not 4949 /// merging any blocks which require us to introduce a phi. Since the same 4950 /// values are flowing through both blocks, we don't loose any ability to 4951 /// specialize. If anything, we make such specialization more likely. 4952 /// 4953 /// TODO - This transformation could remove entries from a phi in the target 4954 /// block when the inputs in the phi are the same for the two blocks being 4955 /// merged. In some cases, this could result in removal of the PHI entirely. 4956 static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI, 4957 BasicBlock *BB) { 4958 auto Succ = BB->getUniqueSuccessor(); 4959 assert(Succ); 4960 // If there's a phi in the successor block, we'd likely have to introduce 4961 // a phi into the merged landing pad block. 4962 if (isa<PHINode>(*Succ->begin())) 4963 return false; 4964 4965 for (BasicBlock *OtherPred : predecessors(Succ)) { 4966 if (BB == OtherPred) 4967 continue; 4968 BasicBlock::iterator I = OtherPred->begin(); 4969 LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I); 4970 if (!LPad2 || !LPad2->isIdenticalTo(LPad)) 4971 continue; 4972 for (++I; isa<DbgInfoIntrinsic>(I); ++I) {} 4973 BranchInst *BI2 = dyn_cast<BranchInst>(I); 4974 if (!BI2 || !BI2->isIdenticalTo(BI)) 4975 continue; 4976 4977 // We've found an identical block. Update our predeccessors to take that 4978 // path instead and make ourselves dead. 4979 SmallSet<BasicBlock *, 16> Preds; 4980 Preds.insert(pred_begin(BB), pred_end(BB)); 4981 for (BasicBlock *Pred : Preds) { 4982 InvokeInst *II = cast<InvokeInst>(Pred->getTerminator()); 4983 assert(II->getNormalDest() != BB && 4984 II->getUnwindDest() == BB && "unexpected successor"); 4985 II->setUnwindDest(OtherPred); 4986 } 4987 4988 // The debug info in OtherPred doesn't cover the merged control flow that 4989 // used to go through BB. We need to delete it or update it. 4990 for (auto I = OtherPred->begin(), E = OtherPred->end(); 4991 I != E;) { 4992 Instruction &Inst = *I; I++; 4993 if (isa<DbgInfoIntrinsic>(Inst)) 4994 Inst.eraseFromParent(); 4995 } 4996 4997 SmallSet<BasicBlock *, 16> Succs; 4998 Succs.insert(succ_begin(BB), succ_end(BB)); 4999 for (BasicBlock *Succ : Succs) { 5000 Succ->removePredecessor(BB); 5001 } 5002 5003 IRBuilder<> Builder(BI); 5004 Builder.CreateUnreachable(); 5005 BI->eraseFromParent(); 5006 return true; 5007 } 5008 return false; 5009 } 5010 5011 bool SimplifyCFGOpt::SimplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder){ 5012 BasicBlock *BB = BI->getParent(); 5013 5014 if (SinkCommon && SinkThenElseCodeToEnd(BI)) 5015 return true; 5016 5017 // If the Terminator is the only non-phi instruction, simplify the block. 5018 BasicBlock::iterator I = BB->getFirstNonPHIOrDbg()->getIterator(); 5019 if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() && 5020 TryToSimplifyUncondBranchFromEmptyBlock(BB)) 5021 return true; 5022 5023 // If the only instruction in the block is a seteq/setne comparison 5024 // against a constant, try to simplify the block. 5025 if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) 5026 if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) { 5027 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 5028 ; 5029 if (I->isTerminator() && 5030 TryToSimplifyUncondBranchWithICmpInIt(ICI, Builder, DL, TTI, 5031 BonusInstThreshold, AC)) 5032 return true; 5033 } 5034 5035 // See if we can merge an empty landing pad block with another which is 5036 // equivalent. 5037 if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) { 5038 for (++I; isa<DbgInfoIntrinsic>(I); ++I) {} 5039 if (I->isTerminator() && 5040 TryToMergeLandingPad(LPad, BI, BB)) 5041 return true; 5042 } 5043 5044 // If this basic block is ONLY a compare and a branch, and if a predecessor 5045 // branches to us and our successor, fold the comparison into the 5046 // predecessor and use logical operations to update the incoming value 5047 // for PHI nodes in common successor. 5048 if (FoldBranchToCommonDest(BI, BonusInstThreshold)) 5049 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5050 return false; 5051 } 5052 5053 static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) { 5054 BasicBlock *PredPred = nullptr; 5055 for (auto *P : predecessors(BB)) { 5056 BasicBlock *PPred = P->getSinglePredecessor(); 5057 if (!PPred || (PredPred && PredPred != PPred)) 5058 return nullptr; 5059 PredPred = PPred; 5060 } 5061 return PredPred; 5062 } 5063 5064 bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) { 5065 BasicBlock *BB = BI->getParent(); 5066 5067 // Conditional branch 5068 if (isValueEqualityComparison(BI)) { 5069 // If we only have one predecessor, and if it is a branch on this value, 5070 // see if that predecessor totally determines the outcome of this 5071 // switch. 5072 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 5073 if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder)) 5074 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5075 5076 // This block must be empty, except for the setcond inst, if it exists. 5077 // Ignore dbg intrinsics. 5078 BasicBlock::iterator I = BB->begin(); 5079 // Ignore dbg intrinsics. 5080 while (isa<DbgInfoIntrinsic>(I)) 5081 ++I; 5082 if (&*I == BI) { 5083 if (FoldValueComparisonIntoPredecessors(BI, Builder)) 5084 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5085 } else if (&*I == cast<Instruction>(BI->getCondition())){ 5086 ++I; 5087 // Ignore dbg intrinsics. 5088 while (isa<DbgInfoIntrinsic>(I)) 5089 ++I; 5090 if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder)) 5091 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5092 } 5093 } 5094 5095 // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction. 5096 if (SimplifyBranchOnICmpChain(BI, Builder, DL)) 5097 return true; 5098 5099 // If this basic block is ONLY a compare and a branch, and if a predecessor 5100 // branches to us and one of our successors, fold the comparison into the 5101 // predecessor and use logical operations to pick the right destination. 5102 if (FoldBranchToCommonDest(BI, BonusInstThreshold)) 5103 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5104 5105 // We have a conditional branch to two blocks that are only reachable 5106 // from BI. We know that the condbr dominates the two blocks, so see if 5107 // there is any identical code in the "then" and "else" blocks. If so, we 5108 // can hoist it up to the branching block. 5109 if (BI->getSuccessor(0)->getSinglePredecessor()) { 5110 if (BI->getSuccessor(1)->getSinglePredecessor()) { 5111 if (HoistThenElseCodeToIf(BI, TTI)) 5112 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5113 } else { 5114 // If Successor #1 has multiple preds, we may be able to conditionally 5115 // execute Successor #0 if it branches to Successor #1. 5116 TerminatorInst *Succ0TI = BI->getSuccessor(0)->getTerminator(); 5117 if (Succ0TI->getNumSuccessors() == 1 && 5118 Succ0TI->getSuccessor(0) == BI->getSuccessor(1)) 5119 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), TTI)) 5120 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5121 } 5122 } else if (BI->getSuccessor(1)->getSinglePredecessor()) { 5123 // If Successor #0 has multiple preds, we may be able to conditionally 5124 // execute Successor #1 if it branches to Successor #0. 5125 TerminatorInst *Succ1TI = BI->getSuccessor(1)->getTerminator(); 5126 if (Succ1TI->getNumSuccessors() == 1 && 5127 Succ1TI->getSuccessor(0) == BI->getSuccessor(0)) 5128 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), TTI)) 5129 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5130 } 5131 5132 // If this is a branch on a phi node in the current block, thread control 5133 // through this block if any PHI node entries are constants. 5134 if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition())) 5135 if (PN->getParent() == BI->getParent()) 5136 if (FoldCondBranchOnPHI(BI, DL)) 5137 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5138 5139 // Scan predecessor blocks for conditional branches. 5140 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 5141 if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator())) 5142 if (PBI != BI && PBI->isConditional()) 5143 if (SimplifyCondBranchToCondBranch(PBI, BI, DL)) 5144 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5145 5146 // Look for diamond patterns. 5147 if (MergeCondStores) 5148 if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB)) 5149 if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator())) 5150 if (PBI != BI && PBI->isConditional()) 5151 if (mergeConditionalStores(PBI, BI)) 5152 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5153 5154 return false; 5155 } 5156 5157 /// Check if passing a value to an instruction will cause undefined behavior. 5158 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I) { 5159 Constant *C = dyn_cast<Constant>(V); 5160 if (!C) 5161 return false; 5162 5163 if (I->use_empty()) 5164 return false; 5165 5166 if (C->isNullValue()) { 5167 // Only look at the first use, avoid hurting compile time with long uselists 5168 User *Use = *I->user_begin(); 5169 5170 // Now make sure that there are no instructions in between that can alter 5171 // control flow (eg. calls) 5172 for (BasicBlock::iterator i = ++BasicBlock::iterator(I); &*i != Use; ++i) 5173 if (i == I->getParent()->end() || i->mayHaveSideEffects()) 5174 return false; 5175 5176 // Look through GEPs. A load from a GEP derived from NULL is still undefined 5177 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use)) 5178 if (GEP->getPointerOperand() == I) 5179 return passingValueIsAlwaysUndefined(V, GEP); 5180 5181 // Look through bitcasts. 5182 if (BitCastInst *BC = dyn_cast<BitCastInst>(Use)) 5183 return passingValueIsAlwaysUndefined(V, BC); 5184 5185 // Load from null is undefined. 5186 if (LoadInst *LI = dyn_cast<LoadInst>(Use)) 5187 if (!LI->isVolatile()) 5188 return LI->getPointerAddressSpace() == 0; 5189 5190 // Store to null is undefined. 5191 if (StoreInst *SI = dyn_cast<StoreInst>(Use)) 5192 if (!SI->isVolatile()) 5193 return SI->getPointerAddressSpace() == 0 && SI->getPointerOperand() == I; 5194 } 5195 return false; 5196 } 5197 5198 /// If BB has an incoming value that will always trigger undefined behavior 5199 /// (eg. null pointer dereference), remove the branch leading here. 5200 static bool removeUndefIntroducingPredecessor(BasicBlock *BB) { 5201 for (BasicBlock::iterator i = BB->begin(); 5202 PHINode *PHI = dyn_cast<PHINode>(i); ++i) 5203 for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) 5204 if (passingValueIsAlwaysUndefined(PHI->getIncomingValue(i), PHI)) { 5205 TerminatorInst *T = PHI->getIncomingBlock(i)->getTerminator(); 5206 IRBuilder<> Builder(T); 5207 if (BranchInst *BI = dyn_cast<BranchInst>(T)) { 5208 BB->removePredecessor(PHI->getIncomingBlock(i)); 5209 // Turn uncoditional branches into unreachables and remove the dead 5210 // destination from conditional branches. 5211 if (BI->isUnconditional()) 5212 Builder.CreateUnreachable(); 5213 else 5214 Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1) : 5215 BI->getSuccessor(0)); 5216 BI->eraseFromParent(); 5217 return true; 5218 } 5219 // TODO: SwitchInst. 5220 } 5221 5222 return false; 5223 } 5224 5225 bool SimplifyCFGOpt::run(BasicBlock *BB) { 5226 bool Changed = false; 5227 5228 assert(BB && BB->getParent() && "Block not embedded in function!"); 5229 assert(BB->getTerminator() && "Degenerate basic block encountered!"); 5230 5231 // Remove basic blocks that have no predecessors (except the entry block)... 5232 // or that just have themself as a predecessor. These are unreachable. 5233 if ((pred_empty(BB) && 5234 BB != &BB->getParent()->getEntryBlock()) || 5235 BB->getSinglePredecessor() == BB) { 5236 DEBUG(dbgs() << "Removing BB: \n" << *BB); 5237 DeleteDeadBlock(BB); 5238 return true; 5239 } 5240 5241 // Check to see if we can constant propagate this terminator instruction 5242 // away... 5243 Changed |= ConstantFoldTerminator(BB, true); 5244 5245 // Check for and eliminate duplicate PHI nodes in this block. 5246 Changed |= EliminateDuplicatePHINodes(BB); 5247 5248 // Check for and remove branches that will always cause undefined behavior. 5249 Changed |= removeUndefIntroducingPredecessor(BB); 5250 5251 // Merge basic blocks into their predecessor if there is only one distinct 5252 // pred, and if there is only one distinct successor of the predecessor, and 5253 // if there are no PHI nodes. 5254 // 5255 if (MergeBlockIntoPredecessor(BB)) 5256 return true; 5257 5258 IRBuilder<> Builder(BB); 5259 5260 // If there is a trivial two-entry PHI node in this basic block, and we can 5261 // eliminate it, do so now. 5262 if (PHINode *PN = dyn_cast<PHINode>(BB->begin())) 5263 if (PN->getNumIncomingValues() == 2) 5264 Changed |= FoldTwoEntryPHINode(PN, TTI, DL); 5265 5266 Builder.SetInsertPoint(BB->getTerminator()); 5267 if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) { 5268 if (BI->isUnconditional()) { 5269 if (SimplifyUncondBranch(BI, Builder)) return true; 5270 } else { 5271 if (SimplifyCondBranch(BI, Builder)) return true; 5272 } 5273 } else if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) { 5274 if (SimplifyReturn(RI, Builder)) return true; 5275 } else if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator())) { 5276 if (SimplifyResume(RI, Builder)) return true; 5277 } else if (CleanupReturnInst *RI = 5278 dyn_cast<CleanupReturnInst>(BB->getTerminator())) { 5279 if (SimplifyCleanupReturn(RI)) return true; 5280 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) { 5281 if (SimplifySwitch(SI, Builder)) return true; 5282 } else if (UnreachableInst *UI = 5283 dyn_cast<UnreachableInst>(BB->getTerminator())) { 5284 if (SimplifyUnreachable(UI)) return true; 5285 } else if (IndirectBrInst *IBI = 5286 dyn_cast<IndirectBrInst>(BB->getTerminator())) { 5287 if (SimplifyIndirectBr(IBI)) return true; 5288 } 5289 5290 return Changed; 5291 } 5292 5293 /// This function is used to do simplification of a CFG. 5294 /// For example, it adjusts branches to branches to eliminate the extra hop, 5295 /// eliminates unreachable basic blocks, and does other "peephole" optimization 5296 /// of the CFG. It returns true if a modification was made. 5297 /// 5298 bool llvm::SimplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI, 5299 unsigned BonusInstThreshold, AssumptionCache *AC) { 5300 return SimplifyCFGOpt(TTI, BB->getModule()->getDataLayout(), 5301 BonusInstThreshold, AC).run(BB); 5302 } 5303