1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Peephole optimize the CFG. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/ADT/APInt.h" 14 #include "llvm/ADT/ArrayRef.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/MapVector.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/ScopeExit.h" 20 #include "llvm/ADT/Sequence.h" 21 #include "llvm/ADT/SetOperations.h" 22 #include "llvm/ADT/SetVector.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/Statistic.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/Analysis/AssumptionCache.h" 28 #include "llvm/Analysis/ConstantFolding.h" 29 #include "llvm/Analysis/EHPersonalities.h" 30 #include "llvm/Analysis/GuardUtils.h" 31 #include "llvm/Analysis/InstructionSimplify.h" 32 #include "llvm/Analysis/MemorySSA.h" 33 #include "llvm/Analysis/MemorySSAUpdater.h" 34 #include "llvm/Analysis/TargetTransformInfo.h" 35 #include "llvm/Analysis/ValueTracking.h" 36 #include "llvm/IR/Attributes.h" 37 #include "llvm/IR/BasicBlock.h" 38 #include "llvm/IR/CFG.h" 39 #include "llvm/IR/Constant.h" 40 #include "llvm/IR/ConstantRange.h" 41 #include "llvm/IR/Constants.h" 42 #include "llvm/IR/DataLayout.h" 43 #include "llvm/IR/DerivedTypes.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/IR/GlobalValue.h" 46 #include "llvm/IR/GlobalVariable.h" 47 #include "llvm/IR/IRBuilder.h" 48 #include "llvm/IR/InstrTypes.h" 49 #include "llvm/IR/Instruction.h" 50 #include "llvm/IR/Instructions.h" 51 #include "llvm/IR/IntrinsicInst.h" 52 #include "llvm/IR/Intrinsics.h" 53 #include "llvm/IR/LLVMContext.h" 54 #include "llvm/IR/MDBuilder.h" 55 #include "llvm/IR/Metadata.h" 56 #include "llvm/IR/Module.h" 57 #include "llvm/IR/NoFolder.h" 58 #include "llvm/IR/Operator.h" 59 #include "llvm/IR/PatternMatch.h" 60 #include "llvm/IR/PseudoProbe.h" 61 #include "llvm/IR/Type.h" 62 #include "llvm/IR/Use.h" 63 #include "llvm/IR/User.h" 64 #include "llvm/IR/Value.h" 65 #include "llvm/IR/ValueHandle.h" 66 #include "llvm/Support/BranchProbability.h" 67 #include "llvm/Support/Casting.h" 68 #include "llvm/Support/CommandLine.h" 69 #include "llvm/Support/Debug.h" 70 #include "llvm/Support/ErrorHandling.h" 71 #include "llvm/Support/KnownBits.h" 72 #include "llvm/Support/MathExtras.h" 73 #include "llvm/Support/raw_ostream.h" 74 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 75 #include "llvm/Transforms/Utils/Local.h" 76 #include "llvm/Transforms/Utils/SSAUpdater.h" 77 #include "llvm/Transforms/Utils/ValueMapper.h" 78 #include <algorithm> 79 #include <cassert> 80 #include <climits> 81 #include <cstddef> 82 #include <cstdint> 83 #include <iterator> 84 #include <map> 85 #include <set> 86 #include <tuple> 87 #include <utility> 88 #include <vector> 89 90 using namespace llvm; 91 using namespace PatternMatch; 92 93 #define DEBUG_TYPE "simplifycfg" 94 95 cl::opt<bool> llvm::RequireAndPreserveDomTree( 96 "simplifycfg-require-and-preserve-domtree", cl::Hidden, cl::ZeroOrMore, 97 cl::init(false), 98 cl::desc("Temorary development switch used to gradually uplift SimplifyCFG " 99 "into preserving DomTree,")); 100 101 // Chosen as 2 so as to be cheap, but still to have enough power to fold 102 // a select, so the "clamp" idiom (of a min followed by a max) will be caught. 103 // To catch this, we need to fold a compare and a select, hence '2' being the 104 // minimum reasonable default. 105 static cl::opt<unsigned> PHINodeFoldingThreshold( 106 "phi-node-folding-threshold", cl::Hidden, cl::init(2), 107 cl::desc( 108 "Control the amount of phi node folding to perform (default = 2)")); 109 110 static cl::opt<unsigned> TwoEntryPHINodeFoldingThreshold( 111 "two-entry-phi-node-folding-threshold", cl::Hidden, cl::init(4), 112 cl::desc("Control the maximal total instruction cost that we are willing " 113 "to speculatively execute to fold a 2-entry PHI node into a " 114 "select (default = 4)")); 115 116 static cl::opt<bool> DupRet( 117 "simplifycfg-dup-ret", cl::Hidden, cl::init(false), 118 cl::desc("Duplicate return instructions into unconditional branches")); 119 120 static cl::opt<bool> 121 HoistCommon("simplifycfg-hoist-common", cl::Hidden, cl::init(true), 122 cl::desc("Hoist common instructions up to the parent block")); 123 124 static cl::opt<bool> 125 SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true), 126 cl::desc("Sink common instructions down to the end block")); 127 128 static cl::opt<bool> HoistCondStores( 129 "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true), 130 cl::desc("Hoist conditional stores if an unconditional store precedes")); 131 132 static cl::opt<bool> MergeCondStores( 133 "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true), 134 cl::desc("Hoist conditional stores even if an unconditional store does not " 135 "precede - hoist multiple conditional stores into a single " 136 "predicated store")); 137 138 static cl::opt<bool> MergeCondStoresAggressively( 139 "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false), 140 cl::desc("When merging conditional stores, do so even if the resultant " 141 "basic blocks are unlikely to be if-converted as a result")); 142 143 static cl::opt<bool> SpeculateOneExpensiveInst( 144 "speculate-one-expensive-inst", cl::Hidden, cl::init(true), 145 cl::desc("Allow exactly one expensive instruction to be speculatively " 146 "executed")); 147 148 static cl::opt<unsigned> MaxSpeculationDepth( 149 "max-speculation-depth", cl::Hidden, cl::init(10), 150 cl::desc("Limit maximum recursion depth when calculating costs of " 151 "speculatively executed instructions")); 152 153 static cl::opt<int> 154 MaxSmallBlockSize("simplifycfg-max-small-block-size", cl::Hidden, cl::init(10), 155 cl::desc("Max size of a block which is still considered " 156 "small enough to thread through")); 157 158 // Two is chosen to allow one negation and a logical combine. 159 static cl::opt<unsigned> 160 BranchFoldThreshold("simplifycfg-branch-fold-threshold", cl::Hidden, 161 cl::init(2), 162 cl::desc("Maximum cost of combining conditions when " 163 "folding branches")); 164 165 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps"); 166 STATISTIC(NumLinearMaps, 167 "Number of switch instructions turned into linear mapping"); 168 STATISTIC(NumLookupTables, 169 "Number of switch instructions turned into lookup tables"); 170 STATISTIC( 171 NumLookupTablesHoles, 172 "Number of switch instructions turned into lookup tables (holes checked)"); 173 STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares"); 174 STATISTIC(NumFoldValueComparisonIntoPredecessors, 175 "Number of value comparisons folded into predecessor basic blocks"); 176 STATISTIC(NumFoldBranchToCommonDest, 177 "Number of branches folded into predecessor basic block"); 178 STATISTIC( 179 NumHoistCommonCode, 180 "Number of common instruction 'blocks' hoisted up to the begin block"); 181 STATISTIC(NumHoistCommonInstrs, 182 "Number of common instructions hoisted up to the begin block"); 183 STATISTIC(NumSinkCommonCode, 184 "Number of common instruction 'blocks' sunk down to the end block"); 185 STATISTIC(NumSinkCommonInstrs, 186 "Number of common instructions sunk down to the end block"); 187 STATISTIC(NumSpeculations, "Number of speculative executed instructions"); 188 STATISTIC(NumInvokes, 189 "Number of invokes with empty resume blocks simplified into calls"); 190 191 namespace { 192 193 // The first field contains the value that the switch produces when a certain 194 // case group is selected, and the second field is a vector containing the 195 // cases composing the case group. 196 using SwitchCaseResultVectorTy = 197 SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2>; 198 199 // The first field contains the phi node that generates a result of the switch 200 // and the second field contains the value generated for a certain case in the 201 // switch for that PHI. 202 using SwitchCaseResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>; 203 204 /// ValueEqualityComparisonCase - Represents a case of a switch. 205 struct ValueEqualityComparisonCase { 206 ConstantInt *Value; 207 BasicBlock *Dest; 208 209 ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest) 210 : Value(Value), Dest(Dest) {} 211 212 bool operator<(ValueEqualityComparisonCase RHS) const { 213 // Comparing pointers is ok as we only rely on the order for uniquing. 214 return Value < RHS.Value; 215 } 216 217 bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; } 218 }; 219 220 class SimplifyCFGOpt { 221 const TargetTransformInfo &TTI; 222 DomTreeUpdater *DTU; 223 const DataLayout &DL; 224 ArrayRef<WeakVH> LoopHeaders; 225 const SimplifyCFGOptions &Options; 226 bool Resimplify; 227 228 Value *isValueEqualityComparison(Instruction *TI); 229 BasicBlock *GetValueEqualityComparisonCases( 230 Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases); 231 bool SimplifyEqualityComparisonWithOnlyPredecessor(Instruction *TI, 232 BasicBlock *Pred, 233 IRBuilder<> &Builder); 234 bool PerformValueComparisonIntoPredecessorFolding(Instruction *TI, Value *&CV, 235 Instruction *PTI, 236 IRBuilder<> &Builder); 237 bool FoldValueComparisonIntoPredecessors(Instruction *TI, 238 IRBuilder<> &Builder); 239 240 bool simplifyReturn(ReturnInst *RI, IRBuilder<> &Builder); 241 bool simplifyResume(ResumeInst *RI, IRBuilder<> &Builder); 242 bool simplifySingleResume(ResumeInst *RI); 243 bool simplifyCommonResume(ResumeInst *RI); 244 bool simplifyCleanupReturn(CleanupReturnInst *RI); 245 bool simplifyUnreachable(UnreachableInst *UI); 246 bool simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder); 247 bool simplifyIndirectBr(IndirectBrInst *IBI); 248 bool simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder); 249 bool simplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder); 250 bool simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder); 251 bool SimplifyCondBranchToTwoReturns(BranchInst *BI, IRBuilder<> &Builder); 252 253 bool tryToSimplifyUncondBranchWithICmpInIt(ICmpInst *ICI, 254 IRBuilder<> &Builder); 255 256 bool HoistThenElseCodeToIf(BranchInst *BI, const TargetTransformInfo &TTI, 257 bool EqTermsOnly); 258 bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB, 259 const TargetTransformInfo &TTI); 260 bool SimplifyTerminatorOnSelect(Instruction *OldTerm, Value *Cond, 261 BasicBlock *TrueBB, BasicBlock *FalseBB, 262 uint32_t TrueWeight, uint32_t FalseWeight); 263 bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder, 264 const DataLayout &DL); 265 bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select); 266 bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI); 267 bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder); 268 269 public: 270 SimplifyCFGOpt(const TargetTransformInfo &TTI, DomTreeUpdater *DTU, 271 const DataLayout &DL, ArrayRef<WeakVH> LoopHeaders, 272 const SimplifyCFGOptions &Opts) 273 : TTI(TTI), DTU(DTU), DL(DL), LoopHeaders(LoopHeaders), Options(Opts) { 274 assert((!DTU || !DTU->hasPostDomTree()) && 275 "SimplifyCFG is not yet capable of maintaining validity of a " 276 "PostDomTree, so don't ask for it."); 277 } 278 279 bool simplifyOnce(BasicBlock *BB); 280 bool simplifyOnceImpl(BasicBlock *BB); 281 bool run(BasicBlock *BB); 282 283 // Helper to set Resimplify and return change indication. 284 bool requestResimplify() { 285 Resimplify = true; 286 return true; 287 } 288 }; 289 290 } // end anonymous namespace 291 292 /// Return true if it is safe to merge these two 293 /// terminator instructions together. 294 static bool 295 SafeToMergeTerminators(Instruction *SI1, Instruction *SI2, 296 SmallSetVector<BasicBlock *, 4> *FailBlocks = nullptr) { 297 if (SI1 == SI2) 298 return false; // Can't merge with self! 299 300 // It is not safe to merge these two switch instructions if they have a common 301 // successor, and if that successor has a PHI node, and if *that* PHI node has 302 // conflicting incoming values from the two switch blocks. 303 BasicBlock *SI1BB = SI1->getParent(); 304 BasicBlock *SI2BB = SI2->getParent(); 305 306 SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB)); 307 bool Fail = false; 308 for (BasicBlock *Succ : successors(SI2BB)) 309 if (SI1Succs.count(Succ)) 310 for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) { 311 PHINode *PN = cast<PHINode>(BBI); 312 if (PN->getIncomingValueForBlock(SI1BB) != 313 PN->getIncomingValueForBlock(SI2BB)) { 314 if (FailBlocks) 315 FailBlocks->insert(Succ); 316 Fail = true; 317 } 318 } 319 320 return !Fail; 321 } 322 323 /// Update PHI nodes in Succ to indicate that there will now be entries in it 324 /// from the 'NewPred' block. The values that will be flowing into the PHI nodes 325 /// will be the same as those coming in from ExistPred, an existing predecessor 326 /// of Succ. 327 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred, 328 BasicBlock *ExistPred, 329 MemorySSAUpdater *MSSAU = nullptr) { 330 for (PHINode &PN : Succ->phis()) 331 PN.addIncoming(PN.getIncomingValueForBlock(ExistPred), NewPred); 332 if (MSSAU) 333 if (auto *MPhi = MSSAU->getMemorySSA()->getMemoryAccess(Succ)) 334 MPhi->addIncoming(MPhi->getIncomingValueForBlock(ExistPred), NewPred); 335 } 336 337 /// Compute an abstract "cost" of speculating the given instruction, 338 /// which is assumed to be safe to speculate. TCC_Free means cheap, 339 /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively 340 /// expensive. 341 static InstructionCost computeSpeculationCost(const User *I, 342 const TargetTransformInfo &TTI) { 343 assert(isSafeToSpeculativelyExecute(I) && 344 "Instruction is not safe to speculatively execute!"); 345 return TTI.getUserCost(I, TargetTransformInfo::TCK_SizeAndLatency); 346 } 347 348 /// If we have a merge point of an "if condition" as accepted above, 349 /// return true if the specified value dominates the block. We 350 /// don't handle the true generality of domination here, just a special case 351 /// which works well enough for us. 352 /// 353 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to 354 /// see if V (which must be an instruction) and its recursive operands 355 /// that do not dominate BB have a combined cost lower than Budget and 356 /// are non-trapping. If both are true, the instruction is inserted into the 357 /// set and true is returned. 358 /// 359 /// The cost for most non-trapping instructions is defined as 1 except for 360 /// Select whose cost is 2. 361 /// 362 /// After this function returns, Cost is increased by the cost of 363 /// V plus its non-dominating operands. If that cost is greater than 364 /// Budget, false is returned and Cost is undefined. 365 static bool dominatesMergePoint(Value *V, BasicBlock *BB, 366 SmallPtrSetImpl<Instruction *> &AggressiveInsts, 367 InstructionCost &Cost, 368 InstructionCost Budget, 369 const TargetTransformInfo &TTI, 370 unsigned Depth = 0) { 371 // It is possible to hit a zero-cost cycle (phi/gep instructions for example), 372 // so limit the recursion depth. 373 // TODO: While this recursion limit does prevent pathological behavior, it 374 // would be better to track visited instructions to avoid cycles. 375 if (Depth == MaxSpeculationDepth) 376 return false; 377 378 Instruction *I = dyn_cast<Instruction>(V); 379 if (!I) { 380 // Non-instructions all dominate instructions, but not all constantexprs 381 // can be executed unconditionally. 382 if (ConstantExpr *C = dyn_cast<ConstantExpr>(V)) 383 if (C->canTrap()) 384 return false; 385 return true; 386 } 387 BasicBlock *PBB = I->getParent(); 388 389 // We don't want to allow weird loops that might have the "if condition" in 390 // the bottom of this block. 391 if (PBB == BB) 392 return false; 393 394 // If this instruction is defined in a block that contains an unconditional 395 // branch to BB, then it must be in the 'conditional' part of the "if 396 // statement". If not, it definitely dominates the region. 397 BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator()); 398 if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB) 399 return true; 400 401 // If we have seen this instruction before, don't count it again. 402 if (AggressiveInsts.count(I)) 403 return true; 404 405 // Okay, it looks like the instruction IS in the "condition". Check to 406 // see if it's a cheap instruction to unconditionally compute, and if it 407 // only uses stuff defined outside of the condition. If so, hoist it out. 408 if (!isSafeToSpeculativelyExecute(I)) 409 return false; 410 411 Cost += computeSpeculationCost(I, TTI); 412 413 // Allow exactly one instruction to be speculated regardless of its cost 414 // (as long as it is safe to do so). 415 // This is intended to flatten the CFG even if the instruction is a division 416 // or other expensive operation. The speculation of an expensive instruction 417 // is expected to be undone in CodeGenPrepare if the speculation has not 418 // enabled further IR optimizations. 419 if (Cost > Budget && 420 (!SpeculateOneExpensiveInst || !AggressiveInsts.empty() || Depth > 0 || 421 !Cost.isValid())) 422 return false; 423 424 // Okay, we can only really hoist these out if their operands do 425 // not take us over the cost threshold. 426 for (Use &Op : I->operands()) 427 if (!dominatesMergePoint(Op, BB, AggressiveInsts, Cost, Budget, TTI, 428 Depth + 1)) 429 return false; 430 // Okay, it's safe to do this! Remember this instruction. 431 AggressiveInsts.insert(I); 432 return true; 433 } 434 435 /// Extract ConstantInt from value, looking through IntToPtr 436 /// and PointerNullValue. Return NULL if value is not a constant int. 437 static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) { 438 // Normal constant int. 439 ConstantInt *CI = dyn_cast<ConstantInt>(V); 440 if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy()) 441 return CI; 442 443 // This is some kind of pointer constant. Turn it into a pointer-sized 444 // ConstantInt if possible. 445 IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType())); 446 447 // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*). 448 if (isa<ConstantPointerNull>(V)) 449 return ConstantInt::get(PtrTy, 0); 450 451 // IntToPtr const int. 452 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 453 if (CE->getOpcode() == Instruction::IntToPtr) 454 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) { 455 // The constant is very likely to have the right type already. 456 if (CI->getType() == PtrTy) 457 return CI; 458 else 459 return cast<ConstantInt>( 460 ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false)); 461 } 462 return nullptr; 463 } 464 465 namespace { 466 467 /// Given a chain of or (||) or and (&&) comparison of a value against a 468 /// constant, this will try to recover the information required for a switch 469 /// structure. 470 /// It will depth-first traverse the chain of comparison, seeking for patterns 471 /// like %a == 12 or %a < 4 and combine them to produce a set of integer 472 /// representing the different cases for the switch. 473 /// Note that if the chain is composed of '||' it will build the set of elements 474 /// that matches the comparisons (i.e. any of this value validate the chain) 475 /// while for a chain of '&&' it will build the set elements that make the test 476 /// fail. 477 struct ConstantComparesGatherer { 478 const DataLayout &DL; 479 480 /// Value found for the switch comparison 481 Value *CompValue = nullptr; 482 483 /// Extra clause to be checked before the switch 484 Value *Extra = nullptr; 485 486 /// Set of integers to match in switch 487 SmallVector<ConstantInt *, 8> Vals; 488 489 /// Number of comparisons matched in the and/or chain 490 unsigned UsedICmps = 0; 491 492 /// Construct and compute the result for the comparison instruction Cond 493 ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL) : DL(DL) { 494 gather(Cond); 495 } 496 497 ConstantComparesGatherer(const ConstantComparesGatherer &) = delete; 498 ConstantComparesGatherer & 499 operator=(const ConstantComparesGatherer &) = delete; 500 501 private: 502 /// Try to set the current value used for the comparison, it succeeds only if 503 /// it wasn't set before or if the new value is the same as the old one 504 bool setValueOnce(Value *NewVal) { 505 if (CompValue && CompValue != NewVal) 506 return false; 507 CompValue = NewVal; 508 return (CompValue != nullptr); 509 } 510 511 /// Try to match Instruction "I" as a comparison against a constant and 512 /// populates the array Vals with the set of values that match (or do not 513 /// match depending on isEQ). 514 /// Return false on failure. On success, the Value the comparison matched 515 /// against is placed in CompValue. 516 /// If CompValue is already set, the function is expected to fail if a match 517 /// is found but the value compared to is different. 518 bool matchInstruction(Instruction *I, bool isEQ) { 519 // If this is an icmp against a constant, handle this as one of the cases. 520 ICmpInst *ICI; 521 ConstantInt *C; 522 if (!((ICI = dyn_cast<ICmpInst>(I)) && 523 (C = GetConstantInt(I->getOperand(1), DL)))) { 524 return false; 525 } 526 527 Value *RHSVal; 528 const APInt *RHSC; 529 530 // Pattern match a special case 531 // (x & ~2^z) == y --> x == y || x == y|2^z 532 // This undoes a transformation done by instcombine to fuse 2 compares. 533 if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE)) { 534 // It's a little bit hard to see why the following transformations are 535 // correct. Here is a CVC3 program to verify them for 64-bit values: 536 537 /* 538 ONE : BITVECTOR(64) = BVZEROEXTEND(0bin1, 63); 539 x : BITVECTOR(64); 540 y : BITVECTOR(64); 541 z : BITVECTOR(64); 542 mask : BITVECTOR(64) = BVSHL(ONE, z); 543 QUERY( (y & ~mask = y) => 544 ((x & ~mask = y) <=> (x = y OR x = (y | mask))) 545 ); 546 QUERY( (y | mask = y) => 547 ((x | mask = y) <=> (x = y OR x = (y & ~mask))) 548 ); 549 */ 550 551 // Please note that each pattern must be a dual implication (<--> or 552 // iff). One directional implication can create spurious matches. If the 553 // implication is only one-way, an unsatisfiable condition on the left 554 // side can imply a satisfiable condition on the right side. Dual 555 // implication ensures that satisfiable conditions are transformed to 556 // other satisfiable conditions and unsatisfiable conditions are 557 // transformed to other unsatisfiable conditions. 558 559 // Here is a concrete example of a unsatisfiable condition on the left 560 // implying a satisfiable condition on the right: 561 // 562 // mask = (1 << z) 563 // (x & ~mask) == y --> (x == y || x == (y | mask)) 564 // 565 // Substituting y = 3, z = 0 yields: 566 // (x & -2) == 3 --> (x == 3 || x == 2) 567 568 // Pattern match a special case: 569 /* 570 QUERY( (y & ~mask = y) => 571 ((x & ~mask = y) <=> (x = y OR x = (y | mask))) 572 ); 573 */ 574 if (match(ICI->getOperand(0), 575 m_And(m_Value(RHSVal), m_APInt(RHSC)))) { 576 APInt Mask = ~*RHSC; 577 if (Mask.isPowerOf2() && (C->getValue() & ~Mask) == C->getValue()) { 578 // If we already have a value for the switch, it has to match! 579 if (!setValueOnce(RHSVal)) 580 return false; 581 582 Vals.push_back(C); 583 Vals.push_back( 584 ConstantInt::get(C->getContext(), 585 C->getValue() | Mask)); 586 UsedICmps++; 587 return true; 588 } 589 } 590 591 // Pattern match a special case: 592 /* 593 QUERY( (y | mask = y) => 594 ((x | mask = y) <=> (x = y OR x = (y & ~mask))) 595 ); 596 */ 597 if (match(ICI->getOperand(0), 598 m_Or(m_Value(RHSVal), m_APInt(RHSC)))) { 599 APInt Mask = *RHSC; 600 if (Mask.isPowerOf2() && (C->getValue() | Mask) == C->getValue()) { 601 // If we already have a value for the switch, it has to match! 602 if (!setValueOnce(RHSVal)) 603 return false; 604 605 Vals.push_back(C); 606 Vals.push_back(ConstantInt::get(C->getContext(), 607 C->getValue() & ~Mask)); 608 UsedICmps++; 609 return true; 610 } 611 } 612 613 // If we already have a value for the switch, it has to match! 614 if (!setValueOnce(ICI->getOperand(0))) 615 return false; 616 617 UsedICmps++; 618 Vals.push_back(C); 619 return ICI->getOperand(0); 620 } 621 622 // If we have "x ult 3", for example, then we can add 0,1,2 to the set. 623 ConstantRange Span = ConstantRange::makeAllowedICmpRegion( 624 ICI->getPredicate(), C->getValue()); 625 626 // Shift the range if the compare is fed by an add. This is the range 627 // compare idiom as emitted by instcombine. 628 Value *CandidateVal = I->getOperand(0); 629 if (match(I->getOperand(0), m_Add(m_Value(RHSVal), m_APInt(RHSC)))) { 630 Span = Span.subtract(*RHSC); 631 CandidateVal = RHSVal; 632 } 633 634 // If this is an and/!= check, then we are looking to build the set of 635 // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into 636 // x != 0 && x != 1. 637 if (!isEQ) 638 Span = Span.inverse(); 639 640 // If there are a ton of values, we don't want to make a ginormous switch. 641 if (Span.isSizeLargerThan(8) || Span.isEmptySet()) { 642 return false; 643 } 644 645 // If we already have a value for the switch, it has to match! 646 if (!setValueOnce(CandidateVal)) 647 return false; 648 649 // Add all values from the range to the set 650 for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp) 651 Vals.push_back(ConstantInt::get(I->getContext(), Tmp)); 652 653 UsedICmps++; 654 return true; 655 } 656 657 /// Given a potentially 'or'd or 'and'd together collection of icmp 658 /// eq/ne/lt/gt instructions that compare a value against a constant, extract 659 /// the value being compared, and stick the list constants into the Vals 660 /// vector. 661 /// One "Extra" case is allowed to differ from the other. 662 void gather(Value *V) { 663 bool isEQ = match(V, m_LogicalOr(m_Value(), m_Value())); 664 665 // Keep a stack (SmallVector for efficiency) for depth-first traversal 666 SmallVector<Value *, 8> DFT; 667 SmallPtrSet<Value *, 8> Visited; 668 669 // Initialize 670 Visited.insert(V); 671 DFT.push_back(V); 672 673 while (!DFT.empty()) { 674 V = DFT.pop_back_val(); 675 676 if (Instruction *I = dyn_cast<Instruction>(V)) { 677 // If it is a || (or && depending on isEQ), process the operands. 678 Value *Op0, *Op1; 679 if (isEQ ? match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))) 680 : match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) { 681 if (Visited.insert(Op1).second) 682 DFT.push_back(Op1); 683 if (Visited.insert(Op0).second) 684 DFT.push_back(Op0); 685 686 continue; 687 } 688 689 // Try to match the current instruction 690 if (matchInstruction(I, isEQ)) 691 // Match succeed, continue the loop 692 continue; 693 } 694 695 // One element of the sequence of || (or &&) could not be match as a 696 // comparison against the same value as the others. 697 // We allow only one "Extra" case to be checked before the switch 698 if (!Extra) { 699 Extra = V; 700 continue; 701 } 702 // Failed to parse a proper sequence, abort now 703 CompValue = nullptr; 704 break; 705 } 706 } 707 }; 708 709 } // end anonymous namespace 710 711 static void EraseTerminatorAndDCECond(Instruction *TI, 712 MemorySSAUpdater *MSSAU = nullptr) { 713 Instruction *Cond = nullptr; 714 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 715 Cond = dyn_cast<Instruction>(SI->getCondition()); 716 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 717 if (BI->isConditional()) 718 Cond = dyn_cast<Instruction>(BI->getCondition()); 719 } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) { 720 Cond = dyn_cast<Instruction>(IBI->getAddress()); 721 } 722 723 TI->eraseFromParent(); 724 if (Cond) 725 RecursivelyDeleteTriviallyDeadInstructions(Cond, nullptr, MSSAU); 726 } 727 728 /// Return true if the specified terminator checks 729 /// to see if a value is equal to constant integer value. 730 Value *SimplifyCFGOpt::isValueEqualityComparison(Instruction *TI) { 731 Value *CV = nullptr; 732 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 733 // Do not permit merging of large switch instructions into their 734 // predecessors unless there is only one predecessor. 735 if (!SI->getParent()->hasNPredecessorsOrMore(128 / SI->getNumSuccessors())) 736 CV = SI->getCondition(); 737 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) 738 if (BI->isConditional() && BI->getCondition()->hasOneUse()) 739 if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) { 740 if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL)) 741 CV = ICI->getOperand(0); 742 } 743 744 // Unwrap any lossless ptrtoint cast. 745 if (CV) { 746 if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) { 747 Value *Ptr = PTII->getPointerOperand(); 748 if (PTII->getType() == DL.getIntPtrType(Ptr->getType())) 749 CV = Ptr; 750 } 751 } 752 return CV; 753 } 754 755 /// Given a value comparison instruction, 756 /// decode all of the 'cases' that it represents and return the 'default' block. 757 BasicBlock *SimplifyCFGOpt::GetValueEqualityComparisonCases( 758 Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases) { 759 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 760 Cases.reserve(SI->getNumCases()); 761 for (auto Case : SI->cases()) 762 Cases.push_back(ValueEqualityComparisonCase(Case.getCaseValue(), 763 Case.getCaseSuccessor())); 764 return SI->getDefaultDest(); 765 } 766 767 BranchInst *BI = cast<BranchInst>(TI); 768 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 769 BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE); 770 Cases.push_back(ValueEqualityComparisonCase( 771 GetConstantInt(ICI->getOperand(1), DL), Succ)); 772 return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ); 773 } 774 775 /// Given a vector of bb/value pairs, remove any entries 776 /// in the list that match the specified block. 777 static void 778 EliminateBlockCases(BasicBlock *BB, 779 std::vector<ValueEqualityComparisonCase> &Cases) { 780 llvm::erase_value(Cases, BB); 781 } 782 783 /// Return true if there are any keys in C1 that exist in C2 as well. 784 static bool ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1, 785 std::vector<ValueEqualityComparisonCase> &C2) { 786 std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2; 787 788 // Make V1 be smaller than V2. 789 if (V1->size() > V2->size()) 790 std::swap(V1, V2); 791 792 if (V1->empty()) 793 return false; 794 if (V1->size() == 1) { 795 // Just scan V2. 796 ConstantInt *TheVal = (*V1)[0].Value; 797 for (unsigned i = 0, e = V2->size(); i != e; ++i) 798 if (TheVal == (*V2)[i].Value) 799 return true; 800 } 801 802 // Otherwise, just sort both lists and compare element by element. 803 array_pod_sort(V1->begin(), V1->end()); 804 array_pod_sort(V2->begin(), V2->end()); 805 unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size(); 806 while (i1 != e1 && i2 != e2) { 807 if ((*V1)[i1].Value == (*V2)[i2].Value) 808 return true; 809 if ((*V1)[i1].Value < (*V2)[i2].Value) 810 ++i1; 811 else 812 ++i2; 813 } 814 return false; 815 } 816 817 // Set branch weights on SwitchInst. This sets the metadata if there is at 818 // least one non-zero weight. 819 static void setBranchWeights(SwitchInst *SI, ArrayRef<uint32_t> Weights) { 820 // Check that there is at least one non-zero weight. Otherwise, pass 821 // nullptr to setMetadata which will erase the existing metadata. 822 MDNode *N = nullptr; 823 if (llvm::any_of(Weights, [](uint32_t W) { return W != 0; })) 824 N = MDBuilder(SI->getParent()->getContext()).createBranchWeights(Weights); 825 SI->setMetadata(LLVMContext::MD_prof, N); 826 } 827 828 // Similar to the above, but for branch and select instructions that take 829 // exactly 2 weights. 830 static void setBranchWeights(Instruction *I, uint32_t TrueWeight, 831 uint32_t FalseWeight) { 832 assert(isa<BranchInst>(I) || isa<SelectInst>(I)); 833 // Check that there is at least one non-zero weight. Otherwise, pass 834 // nullptr to setMetadata which will erase the existing metadata. 835 MDNode *N = nullptr; 836 if (TrueWeight || FalseWeight) 837 N = MDBuilder(I->getParent()->getContext()) 838 .createBranchWeights(TrueWeight, FalseWeight); 839 I->setMetadata(LLVMContext::MD_prof, N); 840 } 841 842 /// If TI is known to be a terminator instruction and its block is known to 843 /// only have a single predecessor block, check to see if that predecessor is 844 /// also a value comparison with the same value, and if that comparison 845 /// determines the outcome of this comparison. If so, simplify TI. This does a 846 /// very limited form of jump threading. 847 bool SimplifyCFGOpt::SimplifyEqualityComparisonWithOnlyPredecessor( 848 Instruction *TI, BasicBlock *Pred, IRBuilder<> &Builder) { 849 Value *PredVal = isValueEqualityComparison(Pred->getTerminator()); 850 if (!PredVal) 851 return false; // Not a value comparison in predecessor. 852 853 Value *ThisVal = isValueEqualityComparison(TI); 854 assert(ThisVal && "This isn't a value comparison!!"); 855 if (ThisVal != PredVal) 856 return false; // Different predicates. 857 858 // TODO: Preserve branch weight metadata, similarly to how 859 // FoldValueComparisonIntoPredecessors preserves it. 860 861 // Find out information about when control will move from Pred to TI's block. 862 std::vector<ValueEqualityComparisonCase> PredCases; 863 BasicBlock *PredDef = 864 GetValueEqualityComparisonCases(Pred->getTerminator(), PredCases); 865 EliminateBlockCases(PredDef, PredCases); // Remove default from cases. 866 867 // Find information about how control leaves this block. 868 std::vector<ValueEqualityComparisonCase> ThisCases; 869 BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases); 870 EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases. 871 872 // If TI's block is the default block from Pred's comparison, potentially 873 // simplify TI based on this knowledge. 874 if (PredDef == TI->getParent()) { 875 // If we are here, we know that the value is none of those cases listed in 876 // PredCases. If there are any cases in ThisCases that are in PredCases, we 877 // can simplify TI. 878 if (!ValuesOverlap(PredCases, ThisCases)) 879 return false; 880 881 if (isa<BranchInst>(TI)) { 882 // Okay, one of the successors of this condbr is dead. Convert it to a 883 // uncond br. 884 assert(ThisCases.size() == 1 && "Branch can only have one case!"); 885 // Insert the new branch. 886 Instruction *NI = Builder.CreateBr(ThisDef); 887 (void)NI; 888 889 // Remove PHI node entries for the dead edge. 890 ThisCases[0].Dest->removePredecessor(PredDef); 891 892 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 893 << "Through successor TI: " << *TI << "Leaving: " << *NI 894 << "\n"); 895 896 EraseTerminatorAndDCECond(TI); 897 898 if (DTU) 899 DTU->applyUpdates( 900 {{DominatorTree::Delete, PredDef, ThisCases[0].Dest}}); 901 902 return true; 903 } 904 905 SwitchInstProfUpdateWrapper SI = *cast<SwitchInst>(TI); 906 // Okay, TI has cases that are statically dead, prune them away. 907 SmallPtrSet<Constant *, 16> DeadCases; 908 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 909 DeadCases.insert(PredCases[i].Value); 910 911 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 912 << "Through successor TI: " << *TI); 913 914 SmallDenseMap<BasicBlock *, int, 8> NumPerSuccessorCases; 915 for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) { 916 --i; 917 auto *Successor = i->getCaseSuccessor(); 918 if (DTU) 919 ++NumPerSuccessorCases[Successor]; 920 if (DeadCases.count(i->getCaseValue())) { 921 Successor->removePredecessor(PredDef); 922 SI.removeCase(i); 923 if (DTU) 924 --NumPerSuccessorCases[Successor]; 925 } 926 } 927 928 if (DTU) { 929 std::vector<DominatorTree::UpdateType> Updates; 930 for (const std::pair<BasicBlock *, int> &I : NumPerSuccessorCases) 931 if (I.second == 0) 932 Updates.push_back({DominatorTree::Delete, PredDef, I.first}); 933 DTU->applyUpdates(Updates); 934 } 935 936 LLVM_DEBUG(dbgs() << "Leaving: " << *TI << "\n"); 937 return true; 938 } 939 940 // Otherwise, TI's block must correspond to some matched value. Find out 941 // which value (or set of values) this is. 942 ConstantInt *TIV = nullptr; 943 BasicBlock *TIBB = TI->getParent(); 944 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 945 if (PredCases[i].Dest == TIBB) { 946 if (TIV) 947 return false; // Cannot handle multiple values coming to this block. 948 TIV = PredCases[i].Value; 949 } 950 assert(TIV && "No edge from pred to succ?"); 951 952 // Okay, we found the one constant that our value can be if we get into TI's 953 // BB. Find out which successor will unconditionally be branched to. 954 BasicBlock *TheRealDest = nullptr; 955 for (unsigned i = 0, e = ThisCases.size(); i != e; ++i) 956 if (ThisCases[i].Value == TIV) { 957 TheRealDest = ThisCases[i].Dest; 958 break; 959 } 960 961 // If not handled by any explicit cases, it is handled by the default case. 962 if (!TheRealDest) 963 TheRealDest = ThisDef; 964 965 SmallPtrSet<BasicBlock *, 2> RemovedSuccs; 966 967 // Remove PHI node entries for dead edges. 968 BasicBlock *CheckEdge = TheRealDest; 969 for (BasicBlock *Succ : successors(TIBB)) 970 if (Succ != CheckEdge) { 971 if (Succ != TheRealDest) 972 RemovedSuccs.insert(Succ); 973 Succ->removePredecessor(TIBB); 974 } else 975 CheckEdge = nullptr; 976 977 // Insert the new branch. 978 Instruction *NI = Builder.CreateBr(TheRealDest); 979 (void)NI; 980 981 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 982 << "Through successor TI: " << *TI << "Leaving: " << *NI 983 << "\n"); 984 985 EraseTerminatorAndDCECond(TI); 986 if (DTU) { 987 SmallVector<DominatorTree::UpdateType, 2> Updates; 988 Updates.reserve(RemovedSuccs.size()); 989 for (auto *RemovedSucc : RemovedSuccs) 990 Updates.push_back({DominatorTree::Delete, TIBB, RemovedSucc}); 991 DTU->applyUpdates(Updates); 992 } 993 return true; 994 } 995 996 namespace { 997 998 /// This class implements a stable ordering of constant 999 /// integers that does not depend on their address. This is important for 1000 /// applications that sort ConstantInt's to ensure uniqueness. 1001 struct ConstantIntOrdering { 1002 bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const { 1003 return LHS->getValue().ult(RHS->getValue()); 1004 } 1005 }; 1006 1007 } // end anonymous namespace 1008 1009 static int ConstantIntSortPredicate(ConstantInt *const *P1, 1010 ConstantInt *const *P2) { 1011 const ConstantInt *LHS = *P1; 1012 const ConstantInt *RHS = *P2; 1013 if (LHS == RHS) 1014 return 0; 1015 return LHS->getValue().ult(RHS->getValue()) ? 1 : -1; 1016 } 1017 1018 static inline bool HasBranchWeights(const Instruction *I) { 1019 MDNode *ProfMD = I->getMetadata(LLVMContext::MD_prof); 1020 if (ProfMD && ProfMD->getOperand(0)) 1021 if (MDString *MDS = dyn_cast<MDString>(ProfMD->getOperand(0))) 1022 return MDS->getString().equals("branch_weights"); 1023 1024 return false; 1025 } 1026 1027 /// Get Weights of a given terminator, the default weight is at the front 1028 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight 1029 /// metadata. 1030 static void GetBranchWeights(Instruction *TI, 1031 SmallVectorImpl<uint64_t> &Weights) { 1032 MDNode *MD = TI->getMetadata(LLVMContext::MD_prof); 1033 assert(MD); 1034 for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) { 1035 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i)); 1036 Weights.push_back(CI->getValue().getZExtValue()); 1037 } 1038 1039 // If TI is a conditional eq, the default case is the false case, 1040 // and the corresponding branch-weight data is at index 2. We swap the 1041 // default weight to be the first entry. 1042 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 1043 assert(Weights.size() == 2); 1044 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 1045 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 1046 std::swap(Weights.front(), Weights.back()); 1047 } 1048 } 1049 1050 /// Keep halving the weights until all can fit in uint32_t. 1051 static void FitWeights(MutableArrayRef<uint64_t> Weights) { 1052 uint64_t Max = *std::max_element(Weights.begin(), Weights.end()); 1053 if (Max > UINT_MAX) { 1054 unsigned Offset = 32 - countLeadingZeros(Max); 1055 for (uint64_t &I : Weights) 1056 I >>= Offset; 1057 } 1058 } 1059 1060 static void CloneInstructionsIntoPredecessorBlockAndUpdateSSAUses( 1061 BasicBlock *BB, BasicBlock *PredBlock, ValueToValueMapTy &VMap) { 1062 Instruction *PTI = PredBlock->getTerminator(); 1063 1064 // If we have bonus instructions, clone them into the predecessor block. 1065 // Note that there may be multiple predecessor blocks, so we cannot move 1066 // bonus instructions to a predecessor block. 1067 for (Instruction &BonusInst : *BB) { 1068 if (isa<DbgInfoIntrinsic>(BonusInst) || BonusInst.isTerminator()) 1069 continue; 1070 1071 Instruction *NewBonusInst = BonusInst.clone(); 1072 1073 if (PTI->getDebugLoc() != NewBonusInst->getDebugLoc()) { 1074 // Unless the instruction has the same !dbg location as the original 1075 // branch, drop it. When we fold the bonus instructions we want to make 1076 // sure we reset their debug locations in order to avoid stepping on 1077 // dead code caused by folding dead branches. 1078 NewBonusInst->setDebugLoc(DebugLoc()); 1079 } 1080 1081 RemapInstruction(NewBonusInst, VMap, 1082 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 1083 VMap[&BonusInst] = NewBonusInst; 1084 1085 // If we moved a load, we cannot any longer claim any knowledge about 1086 // its potential value. The previous information might have been valid 1087 // only given the branch precondition. 1088 // For an analogous reason, we must also drop all the metadata whose 1089 // semantics we don't understand. We *can* preserve !annotation, because 1090 // it is tied to the instruction itself, not the value or position. 1091 NewBonusInst->dropUnknownNonDebugMetadata(LLVMContext::MD_annotation); 1092 1093 PredBlock->getInstList().insert(PTI->getIterator(), NewBonusInst); 1094 NewBonusInst->takeName(&BonusInst); 1095 BonusInst.setName(NewBonusInst->getName() + ".old"); 1096 1097 // Update (liveout) uses of bonus instructions, 1098 // now that the bonus instruction has been cloned into predecessor. 1099 SSAUpdater SSAUpdate; 1100 SSAUpdate.Initialize(BonusInst.getType(), 1101 (NewBonusInst->getName() + ".merge").str()); 1102 SSAUpdate.AddAvailableValue(BB, &BonusInst); 1103 SSAUpdate.AddAvailableValue(PredBlock, NewBonusInst); 1104 for (Use &U : make_early_inc_range(BonusInst.uses())) { 1105 auto *UI = cast<Instruction>(U.getUser()); 1106 if (UI->getParent() != PredBlock) 1107 SSAUpdate.RewriteUseAfterInsertions(U); 1108 else // Use is in the same block as, and comes before, NewBonusInst. 1109 SSAUpdate.RewriteUse(U); 1110 } 1111 } 1112 } 1113 1114 bool SimplifyCFGOpt::PerformValueComparisonIntoPredecessorFolding( 1115 Instruction *TI, Value *&CV, Instruction *PTI, IRBuilder<> &Builder) { 1116 BasicBlock *BB = TI->getParent(); 1117 BasicBlock *Pred = PTI->getParent(); 1118 1119 SmallVector<DominatorTree::UpdateType, 32> Updates; 1120 1121 // Figure out which 'cases' to copy from SI to PSI. 1122 std::vector<ValueEqualityComparisonCase> BBCases; 1123 BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases); 1124 1125 std::vector<ValueEqualityComparisonCase> PredCases; 1126 BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases); 1127 1128 // Based on whether the default edge from PTI goes to BB or not, fill in 1129 // PredCases and PredDefault with the new switch cases we would like to 1130 // build. 1131 SmallMapVector<BasicBlock *, int, 8> NewSuccessors; 1132 1133 // Update the branch weight metadata along the way 1134 SmallVector<uint64_t, 8> Weights; 1135 bool PredHasWeights = HasBranchWeights(PTI); 1136 bool SuccHasWeights = HasBranchWeights(TI); 1137 1138 if (PredHasWeights) { 1139 GetBranchWeights(PTI, Weights); 1140 // branch-weight metadata is inconsistent here. 1141 if (Weights.size() != 1 + PredCases.size()) 1142 PredHasWeights = SuccHasWeights = false; 1143 } else if (SuccHasWeights) 1144 // If there are no predecessor weights but there are successor weights, 1145 // populate Weights with 1, which will later be scaled to the sum of 1146 // successor's weights 1147 Weights.assign(1 + PredCases.size(), 1); 1148 1149 SmallVector<uint64_t, 8> SuccWeights; 1150 if (SuccHasWeights) { 1151 GetBranchWeights(TI, SuccWeights); 1152 // branch-weight metadata is inconsistent here. 1153 if (SuccWeights.size() != 1 + BBCases.size()) 1154 PredHasWeights = SuccHasWeights = false; 1155 } else if (PredHasWeights) 1156 SuccWeights.assign(1 + BBCases.size(), 1); 1157 1158 if (PredDefault == BB) { 1159 // If this is the default destination from PTI, only the edges in TI 1160 // that don't occur in PTI, or that branch to BB will be activated. 1161 std::set<ConstantInt *, ConstantIntOrdering> PTIHandled; 1162 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 1163 if (PredCases[i].Dest != BB) 1164 PTIHandled.insert(PredCases[i].Value); 1165 else { 1166 // The default destination is BB, we don't need explicit targets. 1167 std::swap(PredCases[i], PredCases.back()); 1168 1169 if (PredHasWeights || SuccHasWeights) { 1170 // Increase weight for the default case. 1171 Weights[0] += Weights[i + 1]; 1172 std::swap(Weights[i + 1], Weights.back()); 1173 Weights.pop_back(); 1174 } 1175 1176 PredCases.pop_back(); 1177 --i; 1178 --e; 1179 } 1180 1181 // Reconstruct the new switch statement we will be building. 1182 if (PredDefault != BBDefault) { 1183 PredDefault->removePredecessor(Pred); 1184 if (DTU && PredDefault != BB) 1185 Updates.push_back({DominatorTree::Delete, Pred, PredDefault}); 1186 PredDefault = BBDefault; 1187 ++NewSuccessors[BBDefault]; 1188 } 1189 1190 unsigned CasesFromPred = Weights.size(); 1191 uint64_t ValidTotalSuccWeight = 0; 1192 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 1193 if (!PTIHandled.count(BBCases[i].Value) && BBCases[i].Dest != BBDefault) { 1194 PredCases.push_back(BBCases[i]); 1195 ++NewSuccessors[BBCases[i].Dest]; 1196 if (SuccHasWeights || PredHasWeights) { 1197 // The default weight is at index 0, so weight for the ith case 1198 // should be at index i+1. Scale the cases from successor by 1199 // PredDefaultWeight (Weights[0]). 1200 Weights.push_back(Weights[0] * SuccWeights[i + 1]); 1201 ValidTotalSuccWeight += SuccWeights[i + 1]; 1202 } 1203 } 1204 1205 if (SuccHasWeights || PredHasWeights) { 1206 ValidTotalSuccWeight += SuccWeights[0]; 1207 // Scale the cases from predecessor by ValidTotalSuccWeight. 1208 for (unsigned i = 1; i < CasesFromPred; ++i) 1209 Weights[i] *= ValidTotalSuccWeight; 1210 // Scale the default weight by SuccDefaultWeight (SuccWeights[0]). 1211 Weights[0] *= SuccWeights[0]; 1212 } 1213 } else { 1214 // If this is not the default destination from PSI, only the edges 1215 // in SI that occur in PSI with a destination of BB will be 1216 // activated. 1217 std::set<ConstantInt *, ConstantIntOrdering> PTIHandled; 1218 std::map<ConstantInt *, uint64_t> WeightsForHandled; 1219 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 1220 if (PredCases[i].Dest == BB) { 1221 PTIHandled.insert(PredCases[i].Value); 1222 1223 if (PredHasWeights || SuccHasWeights) { 1224 WeightsForHandled[PredCases[i].Value] = Weights[i + 1]; 1225 std::swap(Weights[i + 1], Weights.back()); 1226 Weights.pop_back(); 1227 } 1228 1229 std::swap(PredCases[i], PredCases.back()); 1230 PredCases.pop_back(); 1231 --i; 1232 --e; 1233 } 1234 1235 // Okay, now we know which constants were sent to BB from the 1236 // predecessor. Figure out where they will all go now. 1237 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 1238 if (PTIHandled.count(BBCases[i].Value)) { 1239 // If this is one we are capable of getting... 1240 if (PredHasWeights || SuccHasWeights) 1241 Weights.push_back(WeightsForHandled[BBCases[i].Value]); 1242 PredCases.push_back(BBCases[i]); 1243 ++NewSuccessors[BBCases[i].Dest]; 1244 PTIHandled.erase(BBCases[i].Value); // This constant is taken care of 1245 } 1246 1247 // If there are any constants vectored to BB that TI doesn't handle, 1248 // they must go to the default destination of TI. 1249 for (ConstantInt *I : PTIHandled) { 1250 if (PredHasWeights || SuccHasWeights) 1251 Weights.push_back(WeightsForHandled[I]); 1252 PredCases.push_back(ValueEqualityComparisonCase(I, BBDefault)); 1253 ++NewSuccessors[BBDefault]; 1254 } 1255 } 1256 1257 // Okay, at this point, we know which new successor Pred will get. Make 1258 // sure we update the number of entries in the PHI nodes for these 1259 // successors. 1260 SmallPtrSet<BasicBlock *, 2> SuccsOfPred; 1261 if (DTU) { 1262 SuccsOfPred = {succ_begin(Pred), succ_end(Pred)}; 1263 Updates.reserve(Updates.size() + NewSuccessors.size()); 1264 } 1265 for (const std::pair<BasicBlock *, int /*Num*/> &NewSuccessor : 1266 NewSuccessors) { 1267 for (auto I : seq(0, NewSuccessor.second)) { 1268 (void)I; 1269 AddPredecessorToBlock(NewSuccessor.first, Pred, BB); 1270 } 1271 if (DTU && !SuccsOfPred.contains(NewSuccessor.first)) 1272 Updates.push_back({DominatorTree::Insert, Pred, NewSuccessor.first}); 1273 } 1274 1275 Builder.SetInsertPoint(PTI); 1276 // Convert pointer to int before we switch. 1277 if (CV->getType()->isPointerTy()) { 1278 CV = 1279 Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()), "magicptr"); 1280 } 1281 1282 // Now that the successors are updated, create the new Switch instruction. 1283 SwitchInst *NewSI = Builder.CreateSwitch(CV, PredDefault, PredCases.size()); 1284 NewSI->setDebugLoc(PTI->getDebugLoc()); 1285 for (ValueEqualityComparisonCase &V : PredCases) 1286 NewSI->addCase(V.Value, V.Dest); 1287 1288 if (PredHasWeights || SuccHasWeights) { 1289 // Halve the weights if any of them cannot fit in an uint32_t 1290 FitWeights(Weights); 1291 1292 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 1293 1294 setBranchWeights(NewSI, MDWeights); 1295 } 1296 1297 EraseTerminatorAndDCECond(PTI); 1298 1299 // Okay, last check. If BB is still a successor of PSI, then we must 1300 // have an infinite loop case. If so, add an infinitely looping block 1301 // to handle the case to preserve the behavior of the code. 1302 BasicBlock *InfLoopBlock = nullptr; 1303 for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i) 1304 if (NewSI->getSuccessor(i) == BB) { 1305 if (!InfLoopBlock) { 1306 // Insert it at the end of the function, because it's either code, 1307 // or it won't matter if it's hot. :) 1308 InfLoopBlock = 1309 BasicBlock::Create(BB->getContext(), "infloop", BB->getParent()); 1310 BranchInst::Create(InfLoopBlock, InfLoopBlock); 1311 if (DTU) 1312 Updates.push_back( 1313 {DominatorTree::Insert, InfLoopBlock, InfLoopBlock}); 1314 } 1315 NewSI->setSuccessor(i, InfLoopBlock); 1316 } 1317 1318 if (DTU) { 1319 if (InfLoopBlock) 1320 Updates.push_back({DominatorTree::Insert, Pred, InfLoopBlock}); 1321 1322 Updates.push_back({DominatorTree::Delete, Pred, BB}); 1323 1324 DTU->applyUpdates(Updates); 1325 } 1326 1327 ++NumFoldValueComparisonIntoPredecessors; 1328 return true; 1329 } 1330 1331 /// The specified terminator is a value equality comparison instruction 1332 /// (either a switch or a branch on "X == c"). 1333 /// See if any of the predecessors of the terminator block are value comparisons 1334 /// on the same value. If so, and if safe to do so, fold them together. 1335 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(Instruction *TI, 1336 IRBuilder<> &Builder) { 1337 BasicBlock *BB = TI->getParent(); 1338 Value *CV = isValueEqualityComparison(TI); // CondVal 1339 assert(CV && "Not a comparison?"); 1340 1341 bool Changed = false; 1342 1343 SmallSetVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB)); 1344 while (!Preds.empty()) { 1345 BasicBlock *Pred = Preds.pop_back_val(); 1346 Instruction *PTI = Pred->getTerminator(); 1347 1348 // Don't try to fold into itself. 1349 if (Pred == BB) 1350 continue; 1351 1352 // See if the predecessor is a comparison with the same value. 1353 Value *PCV = isValueEqualityComparison(PTI); // PredCondVal 1354 if (PCV != CV) 1355 continue; 1356 1357 SmallSetVector<BasicBlock *, 4> FailBlocks; 1358 if (!SafeToMergeTerminators(TI, PTI, &FailBlocks)) { 1359 for (auto *Succ : FailBlocks) { 1360 if (!SplitBlockPredecessors(Succ, TI->getParent(), ".fold.split", DTU)) 1361 return false; 1362 } 1363 } 1364 1365 PerformValueComparisonIntoPredecessorFolding(TI, CV, PTI, Builder); 1366 Changed = true; 1367 } 1368 return Changed; 1369 } 1370 1371 // If we would need to insert a select that uses the value of this invoke 1372 // (comments in HoistThenElseCodeToIf explain why we would need to do this), we 1373 // can't hoist the invoke, as there is nowhere to put the select in this case. 1374 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2, 1375 Instruction *I1, Instruction *I2) { 1376 for (BasicBlock *Succ : successors(BB1)) { 1377 for (const PHINode &PN : Succ->phis()) { 1378 Value *BB1V = PN.getIncomingValueForBlock(BB1); 1379 Value *BB2V = PN.getIncomingValueForBlock(BB2); 1380 if (BB1V != BB2V && (BB1V == I1 || BB2V == I2)) { 1381 return false; 1382 } 1383 } 1384 } 1385 return true; 1386 } 1387 1388 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I, bool PtrValueMayBeModified = false); 1389 1390 /// Given a conditional branch that goes to BB1 and BB2, hoist any common code 1391 /// in the two blocks up into the branch block. The caller of this function 1392 /// guarantees that BI's block dominates BB1 and BB2. If EqTermsOnly is given, 1393 /// only perform hoisting in case both blocks only contain a terminator. In that 1394 /// case, only the original BI will be replaced and selects for PHIs are added. 1395 bool SimplifyCFGOpt::HoistThenElseCodeToIf(BranchInst *BI, 1396 const TargetTransformInfo &TTI, 1397 bool EqTermsOnly) { 1398 // This does very trivial matching, with limited scanning, to find identical 1399 // instructions in the two blocks. In particular, we don't want to get into 1400 // O(M*N) situations here where M and N are the sizes of BB1 and BB2. As 1401 // such, we currently just scan for obviously identical instructions in an 1402 // identical order. 1403 BasicBlock *BB1 = BI->getSuccessor(0); // The true destination. 1404 BasicBlock *BB2 = BI->getSuccessor(1); // The false destination 1405 1406 BasicBlock::iterator BB1_Itr = BB1->begin(); 1407 BasicBlock::iterator BB2_Itr = BB2->begin(); 1408 1409 Instruction *I1 = &*BB1_Itr++, *I2 = &*BB2_Itr++; 1410 // Skip debug info if it is not identical. 1411 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1412 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1413 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1414 while (isa<DbgInfoIntrinsic>(I1)) 1415 I1 = &*BB1_Itr++; 1416 while (isa<DbgInfoIntrinsic>(I2)) 1417 I2 = &*BB2_Itr++; 1418 } 1419 // FIXME: Can we define a safety predicate for CallBr? 1420 if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) || 1421 (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) || 1422 isa<CallBrInst>(I1)) 1423 return false; 1424 1425 BasicBlock *BIParent = BI->getParent(); 1426 1427 bool Changed = false; 1428 1429 auto _ = make_scope_exit([&]() { 1430 if (Changed) 1431 ++NumHoistCommonCode; 1432 }); 1433 1434 // Check if only hoisting terminators is allowed. This does not add new 1435 // instructions to the hoist location. 1436 if (EqTermsOnly) { 1437 // Skip any debug intrinsics, as they are free to hoist. 1438 auto *I1NonDbg = &*skipDebugIntrinsics(I1->getIterator()); 1439 auto *I2NonDbg = &*skipDebugIntrinsics(I2->getIterator()); 1440 if (!I1NonDbg->isIdenticalToWhenDefined(I2NonDbg)) 1441 return false; 1442 if (!I1NonDbg->isTerminator()) 1443 return false; 1444 // Now we know that we only need to hoist debug instrinsics and the 1445 // terminator. Let the loop below handle those 2 cases. 1446 } 1447 1448 do { 1449 // If we are hoisting the terminator instruction, don't move one (making a 1450 // broken BB), instead clone it, and remove BI. 1451 if (I1->isTerminator()) 1452 goto HoistTerminator; 1453 1454 // If we're going to hoist a call, make sure that the two instructions we're 1455 // commoning/hoisting are both marked with musttail, or neither of them is 1456 // marked as such. Otherwise, we might end up in a situation where we hoist 1457 // from a block where the terminator is a `ret` to a block where the terminator 1458 // is a `br`, and `musttail` calls expect to be followed by a return. 1459 auto *C1 = dyn_cast<CallInst>(I1); 1460 auto *C2 = dyn_cast<CallInst>(I2); 1461 if (C1 && C2) 1462 if (C1->isMustTailCall() != C2->isMustTailCall()) 1463 return Changed; 1464 1465 if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2)) 1466 return Changed; 1467 1468 // If any of the two call sites has nomerge attribute, stop hoisting. 1469 if (const auto *CB1 = dyn_cast<CallBase>(I1)) 1470 if (CB1->cannotMerge()) 1471 return Changed; 1472 if (const auto *CB2 = dyn_cast<CallBase>(I2)) 1473 if (CB2->cannotMerge()) 1474 return Changed; 1475 1476 if (isa<DbgInfoIntrinsic>(I1) || isa<DbgInfoIntrinsic>(I2)) { 1477 assert (isa<DbgInfoIntrinsic>(I1) && isa<DbgInfoIntrinsic>(I2)); 1478 // The debug location is an integral part of a debug info intrinsic 1479 // and can't be separated from it or replaced. Instead of attempting 1480 // to merge locations, simply hoist both copies of the intrinsic. 1481 BIParent->getInstList().splice(BI->getIterator(), 1482 BB1->getInstList(), I1); 1483 BIParent->getInstList().splice(BI->getIterator(), 1484 BB2->getInstList(), I2); 1485 Changed = true; 1486 } else { 1487 // For a normal instruction, we just move one to right before the branch, 1488 // then replace all uses of the other with the first. Finally, we remove 1489 // the now redundant second instruction. 1490 BIParent->getInstList().splice(BI->getIterator(), 1491 BB1->getInstList(), I1); 1492 if (!I2->use_empty()) 1493 I2->replaceAllUsesWith(I1); 1494 I1->andIRFlags(I2); 1495 unsigned KnownIDs[] = {LLVMContext::MD_tbaa, 1496 LLVMContext::MD_range, 1497 LLVMContext::MD_fpmath, 1498 LLVMContext::MD_invariant_load, 1499 LLVMContext::MD_nonnull, 1500 LLVMContext::MD_invariant_group, 1501 LLVMContext::MD_align, 1502 LLVMContext::MD_dereferenceable, 1503 LLVMContext::MD_dereferenceable_or_null, 1504 LLVMContext::MD_mem_parallel_loop_access, 1505 LLVMContext::MD_access_group, 1506 LLVMContext::MD_preserve_access_index}; 1507 combineMetadata(I1, I2, KnownIDs, true); 1508 1509 // I1 and I2 are being combined into a single instruction. Its debug 1510 // location is the merged locations of the original instructions. 1511 I1->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc()); 1512 1513 I2->eraseFromParent(); 1514 Changed = true; 1515 } 1516 ++NumHoistCommonInstrs; 1517 1518 I1 = &*BB1_Itr++; 1519 I2 = &*BB2_Itr++; 1520 // Skip debug info if it is not identical. 1521 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1522 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1523 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1524 while (isa<DbgInfoIntrinsic>(I1)) 1525 I1 = &*BB1_Itr++; 1526 while (isa<DbgInfoIntrinsic>(I2)) 1527 I2 = &*BB2_Itr++; 1528 } 1529 } while (I1->isIdenticalToWhenDefined(I2)); 1530 1531 return true; 1532 1533 HoistTerminator: 1534 // It may not be possible to hoist an invoke. 1535 // FIXME: Can we define a safety predicate for CallBr? 1536 if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) 1537 return Changed; 1538 1539 // TODO: callbr hoisting currently disabled pending further study. 1540 if (isa<CallBrInst>(I1)) 1541 return Changed; 1542 1543 for (BasicBlock *Succ : successors(BB1)) { 1544 for (PHINode &PN : Succ->phis()) { 1545 Value *BB1V = PN.getIncomingValueForBlock(BB1); 1546 Value *BB2V = PN.getIncomingValueForBlock(BB2); 1547 if (BB1V == BB2V) 1548 continue; 1549 1550 // Check for passingValueIsAlwaysUndefined here because we would rather 1551 // eliminate undefined control flow then converting it to a select. 1552 if (passingValueIsAlwaysUndefined(BB1V, &PN) || 1553 passingValueIsAlwaysUndefined(BB2V, &PN)) 1554 return Changed; 1555 1556 if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V)) 1557 return Changed; 1558 if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V)) 1559 return Changed; 1560 } 1561 } 1562 1563 // Okay, it is safe to hoist the terminator. 1564 Instruction *NT = I1->clone(); 1565 BIParent->getInstList().insert(BI->getIterator(), NT); 1566 if (!NT->getType()->isVoidTy()) { 1567 I1->replaceAllUsesWith(NT); 1568 I2->replaceAllUsesWith(NT); 1569 NT->takeName(I1); 1570 } 1571 Changed = true; 1572 ++NumHoistCommonInstrs; 1573 1574 // Ensure terminator gets a debug location, even an unknown one, in case 1575 // it involves inlinable calls. 1576 NT->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc()); 1577 1578 // PHIs created below will adopt NT's merged DebugLoc. 1579 IRBuilder<NoFolder> Builder(NT); 1580 1581 // Hoisting one of the terminators from our successor is a great thing. 1582 // Unfortunately, the successors of the if/else blocks may have PHI nodes in 1583 // them. If they do, all PHI entries for BB1/BB2 must agree for all PHI 1584 // nodes, so we insert select instruction to compute the final result. 1585 std::map<std::pair<Value *, Value *>, SelectInst *> InsertedSelects; 1586 for (BasicBlock *Succ : successors(BB1)) { 1587 for (PHINode &PN : Succ->phis()) { 1588 Value *BB1V = PN.getIncomingValueForBlock(BB1); 1589 Value *BB2V = PN.getIncomingValueForBlock(BB2); 1590 if (BB1V == BB2V) 1591 continue; 1592 1593 // These values do not agree. Insert a select instruction before NT 1594 // that determines the right value. 1595 SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)]; 1596 if (!SI) { 1597 // Propagate fast-math-flags from phi node to its replacement select. 1598 IRBuilder<>::FastMathFlagGuard FMFGuard(Builder); 1599 if (isa<FPMathOperator>(PN)) 1600 Builder.setFastMathFlags(PN.getFastMathFlags()); 1601 1602 SI = cast<SelectInst>( 1603 Builder.CreateSelect(BI->getCondition(), BB1V, BB2V, 1604 BB1V->getName() + "." + BB2V->getName(), BI)); 1605 } 1606 1607 // Make the PHI node use the select for all incoming values for BB1/BB2 1608 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) 1609 if (PN.getIncomingBlock(i) == BB1 || PN.getIncomingBlock(i) == BB2) 1610 PN.setIncomingValue(i, SI); 1611 } 1612 } 1613 1614 SmallVector<DominatorTree::UpdateType, 4> Updates; 1615 1616 // Update any PHI nodes in our new successors. 1617 for (BasicBlock *Succ : successors(BB1)) { 1618 AddPredecessorToBlock(Succ, BIParent, BB1); 1619 if (DTU) 1620 Updates.push_back({DominatorTree::Insert, BIParent, Succ}); 1621 } 1622 1623 if (DTU) 1624 for (BasicBlock *Succ : successors(BI)) 1625 Updates.push_back({DominatorTree::Delete, BIParent, Succ}); 1626 1627 EraseTerminatorAndDCECond(BI); 1628 if (DTU) 1629 DTU->applyUpdates(Updates); 1630 return Changed; 1631 } 1632 1633 // Check lifetime markers. 1634 static bool isLifeTimeMarker(const Instruction *I) { 1635 if (auto II = dyn_cast<IntrinsicInst>(I)) { 1636 switch (II->getIntrinsicID()) { 1637 default: 1638 break; 1639 case Intrinsic::lifetime_start: 1640 case Intrinsic::lifetime_end: 1641 return true; 1642 } 1643 } 1644 return false; 1645 } 1646 1647 // TODO: Refine this. This should avoid cases like turning constant memcpy sizes 1648 // into variables. 1649 static bool replacingOperandWithVariableIsCheap(const Instruction *I, 1650 int OpIdx) { 1651 return !isa<IntrinsicInst>(I); 1652 } 1653 1654 // All instructions in Insts belong to different blocks that all unconditionally 1655 // branch to a common successor. Analyze each instruction and return true if it 1656 // would be possible to sink them into their successor, creating one common 1657 // instruction instead. For every value that would be required to be provided by 1658 // PHI node (because an operand varies in each input block), add to PHIOperands. 1659 static bool canSinkInstructions( 1660 ArrayRef<Instruction *> Insts, 1661 DenseMap<Instruction *, SmallVector<Value *, 4>> &PHIOperands) { 1662 // Prune out obviously bad instructions to move. Each instruction must have 1663 // exactly zero or one use, and we check later that use is by a single, common 1664 // PHI instruction in the successor. 1665 bool HasUse = !Insts.front()->user_empty(); 1666 for (auto *I : Insts) { 1667 // These instructions may change or break semantics if moved. 1668 if (isa<PHINode>(I) || I->isEHPad() || isa<AllocaInst>(I) || 1669 I->getType()->isTokenTy()) 1670 return false; 1671 1672 // Do not try to sink an instruction in an infinite loop - it can cause 1673 // this algorithm to infinite loop. 1674 if (I->getParent()->getSingleSuccessor() == I->getParent()) 1675 return false; 1676 1677 // Conservatively return false if I is an inline-asm instruction. Sinking 1678 // and merging inline-asm instructions can potentially create arguments 1679 // that cannot satisfy the inline-asm constraints. 1680 // If the instruction has nomerge attribute, return false. 1681 if (const auto *C = dyn_cast<CallBase>(I)) 1682 if (C->isInlineAsm() || C->cannotMerge()) 1683 return false; 1684 1685 // Each instruction must have zero or one use. 1686 if (HasUse && !I->hasOneUse()) 1687 return false; 1688 if (!HasUse && !I->user_empty()) 1689 return false; 1690 } 1691 1692 const Instruction *I0 = Insts.front(); 1693 for (auto *I : Insts) 1694 if (!I->isSameOperationAs(I0)) 1695 return false; 1696 1697 // All instructions in Insts are known to be the same opcode. If they have a 1698 // use, check that the only user is a PHI or in the same block as the 1699 // instruction, because if a user is in the same block as an instruction we're 1700 // contemplating sinking, it must already be determined to be sinkable. 1701 if (HasUse) { 1702 auto *PNUse = dyn_cast<PHINode>(*I0->user_begin()); 1703 auto *Succ = I0->getParent()->getTerminator()->getSuccessor(0); 1704 if (!all_of(Insts, [&PNUse,&Succ](const Instruction *I) -> bool { 1705 auto *U = cast<Instruction>(*I->user_begin()); 1706 return (PNUse && 1707 PNUse->getParent() == Succ && 1708 PNUse->getIncomingValueForBlock(I->getParent()) == I) || 1709 U->getParent() == I->getParent(); 1710 })) 1711 return false; 1712 } 1713 1714 // Because SROA can't handle speculating stores of selects, try not to sink 1715 // loads, stores or lifetime markers of allocas when we'd have to create a 1716 // PHI for the address operand. Also, because it is likely that loads or 1717 // stores of allocas will disappear when Mem2Reg/SROA is run, don't sink 1718 // them. 1719 // This can cause code churn which can have unintended consequences down 1720 // the line - see https://llvm.org/bugs/show_bug.cgi?id=30244. 1721 // FIXME: This is a workaround for a deficiency in SROA - see 1722 // https://llvm.org/bugs/show_bug.cgi?id=30188 1723 if (isa<StoreInst>(I0) && any_of(Insts, [](const Instruction *I) { 1724 return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts()); 1725 })) 1726 return false; 1727 if (isa<LoadInst>(I0) && any_of(Insts, [](const Instruction *I) { 1728 return isa<AllocaInst>(I->getOperand(0)->stripPointerCasts()); 1729 })) 1730 return false; 1731 if (isLifeTimeMarker(I0) && any_of(Insts, [](const Instruction *I) { 1732 return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts()); 1733 })) 1734 return false; 1735 1736 for (unsigned OI = 0, OE = I0->getNumOperands(); OI != OE; ++OI) { 1737 Value *Op = I0->getOperand(OI); 1738 if (Op->getType()->isTokenTy()) 1739 // Don't touch any operand of token type. 1740 return false; 1741 1742 auto SameAsI0 = [&I0, OI](const Instruction *I) { 1743 assert(I->getNumOperands() == I0->getNumOperands()); 1744 return I->getOperand(OI) == I0->getOperand(OI); 1745 }; 1746 if (!all_of(Insts, SameAsI0)) { 1747 if ((isa<Constant>(Op) && !replacingOperandWithVariableIsCheap(I0, OI)) || 1748 !canReplaceOperandWithVariable(I0, OI)) 1749 // We can't create a PHI from this GEP. 1750 return false; 1751 // Don't create indirect calls! The called value is the final operand. 1752 if (isa<CallBase>(I0) && OI == OE - 1) { 1753 // FIXME: if the call was *already* indirect, we should do this. 1754 return false; 1755 } 1756 for (auto *I : Insts) 1757 PHIOperands[I].push_back(I->getOperand(OI)); 1758 } 1759 } 1760 return true; 1761 } 1762 1763 // Assuming canSinkInstructions(Blocks) has returned true, sink the last 1764 // instruction of every block in Blocks to their common successor, commoning 1765 // into one instruction. 1766 static bool sinkLastInstruction(ArrayRef<BasicBlock*> Blocks) { 1767 auto *BBEnd = Blocks[0]->getTerminator()->getSuccessor(0); 1768 1769 // canSinkInstructions returning true guarantees that every block has at 1770 // least one non-terminator instruction. 1771 SmallVector<Instruction*,4> Insts; 1772 for (auto *BB : Blocks) { 1773 Instruction *I = BB->getTerminator(); 1774 do { 1775 I = I->getPrevNode(); 1776 } while (isa<DbgInfoIntrinsic>(I) && I != &BB->front()); 1777 if (!isa<DbgInfoIntrinsic>(I)) 1778 Insts.push_back(I); 1779 } 1780 1781 // The only checking we need to do now is that all users of all instructions 1782 // are the same PHI node. canSinkInstructions should have checked this but 1783 // it is slightly over-aggressive - it gets confused by commutative 1784 // instructions so double-check it here. 1785 Instruction *I0 = Insts.front(); 1786 if (!I0->user_empty()) { 1787 auto *PNUse = dyn_cast<PHINode>(*I0->user_begin()); 1788 if (!all_of(Insts, [&PNUse](const Instruction *I) -> bool { 1789 auto *U = cast<Instruction>(*I->user_begin()); 1790 return U == PNUse; 1791 })) 1792 return false; 1793 } 1794 1795 // We don't need to do any more checking here; canSinkInstructions should 1796 // have done it all for us. 1797 SmallVector<Value*, 4> NewOperands; 1798 for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) { 1799 // This check is different to that in canSinkInstructions. There, we 1800 // cared about the global view once simplifycfg (and instcombine) have 1801 // completed - it takes into account PHIs that become trivially 1802 // simplifiable. However here we need a more local view; if an operand 1803 // differs we create a PHI and rely on instcombine to clean up the very 1804 // small mess we may make. 1805 bool NeedPHI = any_of(Insts, [&I0, O](const Instruction *I) { 1806 return I->getOperand(O) != I0->getOperand(O); 1807 }); 1808 if (!NeedPHI) { 1809 NewOperands.push_back(I0->getOperand(O)); 1810 continue; 1811 } 1812 1813 // Create a new PHI in the successor block and populate it. 1814 auto *Op = I0->getOperand(O); 1815 assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!"); 1816 auto *PN = PHINode::Create(Op->getType(), Insts.size(), 1817 Op->getName() + ".sink", &BBEnd->front()); 1818 for (auto *I : Insts) 1819 PN->addIncoming(I->getOperand(O), I->getParent()); 1820 NewOperands.push_back(PN); 1821 } 1822 1823 // Arbitrarily use I0 as the new "common" instruction; remap its operands 1824 // and move it to the start of the successor block. 1825 for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) 1826 I0->getOperandUse(O).set(NewOperands[O]); 1827 I0->moveBefore(&*BBEnd->getFirstInsertionPt()); 1828 1829 // Update metadata and IR flags, and merge debug locations. 1830 for (auto *I : Insts) 1831 if (I != I0) { 1832 // The debug location for the "common" instruction is the merged locations 1833 // of all the commoned instructions. We start with the original location 1834 // of the "common" instruction and iteratively merge each location in the 1835 // loop below. 1836 // This is an N-way merge, which will be inefficient if I0 is a CallInst. 1837 // However, as N-way merge for CallInst is rare, so we use simplified API 1838 // instead of using complex API for N-way merge. 1839 I0->applyMergedLocation(I0->getDebugLoc(), I->getDebugLoc()); 1840 combineMetadataForCSE(I0, I, true); 1841 I0->andIRFlags(I); 1842 } 1843 1844 if (!I0->user_empty()) { 1845 // canSinkLastInstruction checked that all instructions were used by 1846 // one and only one PHI node. Find that now, RAUW it to our common 1847 // instruction and nuke it. 1848 auto *PN = cast<PHINode>(*I0->user_begin()); 1849 PN->replaceAllUsesWith(I0); 1850 PN->eraseFromParent(); 1851 } 1852 1853 // Finally nuke all instructions apart from the common instruction. 1854 for (auto *I : Insts) 1855 if (I != I0) 1856 I->eraseFromParent(); 1857 1858 return true; 1859 } 1860 1861 namespace { 1862 1863 // LockstepReverseIterator - Iterates through instructions 1864 // in a set of blocks in reverse order from the first non-terminator. 1865 // For example (assume all blocks have size n): 1866 // LockstepReverseIterator I([B1, B2, B3]); 1867 // *I-- = [B1[n], B2[n], B3[n]]; 1868 // *I-- = [B1[n-1], B2[n-1], B3[n-1]]; 1869 // *I-- = [B1[n-2], B2[n-2], B3[n-2]]; 1870 // ... 1871 class LockstepReverseIterator { 1872 ArrayRef<BasicBlock*> Blocks; 1873 SmallVector<Instruction*,4> Insts; 1874 bool Fail; 1875 1876 public: 1877 LockstepReverseIterator(ArrayRef<BasicBlock*> Blocks) : Blocks(Blocks) { 1878 reset(); 1879 } 1880 1881 void reset() { 1882 Fail = false; 1883 Insts.clear(); 1884 for (auto *BB : Blocks) { 1885 Instruction *Inst = BB->getTerminator(); 1886 for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);) 1887 Inst = Inst->getPrevNode(); 1888 if (!Inst) { 1889 // Block wasn't big enough. 1890 Fail = true; 1891 return; 1892 } 1893 Insts.push_back(Inst); 1894 } 1895 } 1896 1897 bool isValid() const { 1898 return !Fail; 1899 } 1900 1901 void operator--() { 1902 if (Fail) 1903 return; 1904 for (auto *&Inst : Insts) { 1905 for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);) 1906 Inst = Inst->getPrevNode(); 1907 // Already at beginning of block. 1908 if (!Inst) { 1909 Fail = true; 1910 return; 1911 } 1912 } 1913 } 1914 1915 ArrayRef<Instruction*> operator * () const { 1916 return Insts; 1917 } 1918 }; 1919 1920 } // end anonymous namespace 1921 1922 /// Check whether BB's predecessors end with unconditional branches. If it is 1923 /// true, sink any common code from the predecessors to BB. 1924 /// We also allow one predecessor to end with conditional branch (but no more 1925 /// than one). 1926 static bool SinkCommonCodeFromPredecessors(BasicBlock *BB, 1927 DomTreeUpdater *DTU) { 1928 // We support two situations: 1929 // (1) all incoming arcs are unconditional 1930 // (2) one incoming arc is conditional 1931 // 1932 // (2) is very common in switch defaults and 1933 // else-if patterns; 1934 // 1935 // if (a) f(1); 1936 // else if (b) f(2); 1937 // 1938 // produces: 1939 // 1940 // [if] 1941 // / \ 1942 // [f(1)] [if] 1943 // | | \ 1944 // | | | 1945 // | [f(2)]| 1946 // \ | / 1947 // [ end ] 1948 // 1949 // [end] has two unconditional predecessor arcs and one conditional. The 1950 // conditional refers to the implicit empty 'else' arc. This conditional 1951 // arc can also be caused by an empty default block in a switch. 1952 // 1953 // In this case, we attempt to sink code from all *unconditional* arcs. 1954 // If we can sink instructions from these arcs (determined during the scan 1955 // phase below) we insert a common successor for all unconditional arcs and 1956 // connect that to [end], to enable sinking: 1957 // 1958 // [if] 1959 // / \ 1960 // [x(1)] [if] 1961 // | | \ 1962 // | | \ 1963 // | [x(2)] | 1964 // \ / | 1965 // [sink.split] | 1966 // \ / 1967 // [ end ] 1968 // 1969 SmallVector<BasicBlock*,4> UnconditionalPreds; 1970 Instruction *Cond = nullptr; 1971 for (auto *B : predecessors(BB)) { 1972 auto *T = B->getTerminator(); 1973 if (isa<BranchInst>(T) && cast<BranchInst>(T)->isUnconditional()) 1974 UnconditionalPreds.push_back(B); 1975 else if ((isa<BranchInst>(T) || isa<SwitchInst>(T)) && !Cond) 1976 Cond = T; 1977 else 1978 return false; 1979 } 1980 if (UnconditionalPreds.size() < 2) 1981 return false; 1982 1983 // We take a two-step approach to tail sinking. First we scan from the end of 1984 // each block upwards in lockstep. If the n'th instruction from the end of each 1985 // block can be sunk, those instructions are added to ValuesToSink and we 1986 // carry on. If we can sink an instruction but need to PHI-merge some operands 1987 // (because they're not identical in each instruction) we add these to 1988 // PHIOperands. 1989 unsigned ScanIdx = 0; 1990 SmallPtrSet<Value*,4> InstructionsToSink; 1991 DenseMap<Instruction*, SmallVector<Value*,4>> PHIOperands; 1992 LockstepReverseIterator LRI(UnconditionalPreds); 1993 while (LRI.isValid() && 1994 canSinkInstructions(*LRI, PHIOperands)) { 1995 LLVM_DEBUG(dbgs() << "SINK: instruction can be sunk: " << *(*LRI)[0] 1996 << "\n"); 1997 InstructionsToSink.insert((*LRI).begin(), (*LRI).end()); 1998 ++ScanIdx; 1999 --LRI; 2000 } 2001 2002 // If no instructions can be sunk, early-return. 2003 if (ScanIdx == 0) 2004 return false; 2005 2006 bool Changed = false; 2007 2008 auto ProfitableToSinkInstruction = [&](LockstepReverseIterator &LRI) { 2009 unsigned NumPHIdValues = 0; 2010 for (auto *I : *LRI) 2011 for (auto *V : PHIOperands[I]) 2012 if (InstructionsToSink.count(V) == 0) 2013 ++NumPHIdValues; 2014 LLVM_DEBUG(dbgs() << "SINK: #phid values: " << NumPHIdValues << "\n"); 2015 unsigned NumPHIInsts = NumPHIdValues / UnconditionalPreds.size(); 2016 if ((NumPHIdValues % UnconditionalPreds.size()) != 0) 2017 NumPHIInsts++; 2018 2019 return NumPHIInsts <= 1; 2020 }; 2021 2022 if (Cond) { 2023 // Check if we would actually sink anything first! This mutates the CFG and 2024 // adds an extra block. The goal in doing this is to allow instructions that 2025 // couldn't be sunk before to be sunk - obviously, speculatable instructions 2026 // (such as trunc, add) can be sunk and predicated already. So we check that 2027 // we're going to sink at least one non-speculatable instruction. 2028 LRI.reset(); 2029 unsigned Idx = 0; 2030 bool Profitable = false; 2031 while (ProfitableToSinkInstruction(LRI) && Idx < ScanIdx) { 2032 if (!isSafeToSpeculativelyExecute((*LRI)[0])) { 2033 Profitable = true; 2034 break; 2035 } 2036 --LRI; 2037 ++Idx; 2038 } 2039 if (!Profitable) 2040 return false; 2041 2042 LLVM_DEBUG(dbgs() << "SINK: Splitting edge\n"); 2043 // We have a conditional edge and we're going to sink some instructions. 2044 // Insert a new block postdominating all blocks we're going to sink from. 2045 if (!SplitBlockPredecessors(BB, UnconditionalPreds, ".sink.split", DTU)) 2046 // Edges couldn't be split. 2047 return false; 2048 Changed = true; 2049 } 2050 2051 // Now that we've analyzed all potential sinking candidates, perform the 2052 // actual sink. We iteratively sink the last non-terminator of the source 2053 // blocks into their common successor unless doing so would require too 2054 // many PHI instructions to be generated (currently only one PHI is allowed 2055 // per sunk instruction). 2056 // 2057 // We can use InstructionsToSink to discount values needing PHI-merging that will 2058 // actually be sunk in a later iteration. This allows us to be more 2059 // aggressive in what we sink. This does allow a false positive where we 2060 // sink presuming a later value will also be sunk, but stop half way through 2061 // and never actually sink it which means we produce more PHIs than intended. 2062 // This is unlikely in practice though. 2063 unsigned SinkIdx = 0; 2064 for (; SinkIdx != ScanIdx; ++SinkIdx) { 2065 LLVM_DEBUG(dbgs() << "SINK: Sink: " 2066 << *UnconditionalPreds[0]->getTerminator()->getPrevNode() 2067 << "\n"); 2068 2069 // Because we've sunk every instruction in turn, the current instruction to 2070 // sink is always at index 0. 2071 LRI.reset(); 2072 if (!ProfitableToSinkInstruction(LRI)) { 2073 // Too many PHIs would be created. 2074 LLVM_DEBUG( 2075 dbgs() << "SINK: stopping here, too many PHIs would be created!\n"); 2076 break; 2077 } 2078 2079 if (!sinkLastInstruction(UnconditionalPreds)) { 2080 LLVM_DEBUG( 2081 dbgs() 2082 << "SINK: stopping here, failed to actually sink instruction!\n"); 2083 break; 2084 } 2085 2086 NumSinkCommonInstrs++; 2087 Changed = true; 2088 } 2089 if (SinkIdx != 0) 2090 ++NumSinkCommonCode; 2091 return Changed; 2092 } 2093 2094 /// Determine if we can hoist sink a sole store instruction out of a 2095 /// conditional block. 2096 /// 2097 /// We are looking for code like the following: 2098 /// BrBB: 2099 /// store i32 %add, i32* %arrayidx2 2100 /// ... // No other stores or function calls (we could be calling a memory 2101 /// ... // function). 2102 /// %cmp = icmp ult %x, %y 2103 /// br i1 %cmp, label %EndBB, label %ThenBB 2104 /// ThenBB: 2105 /// store i32 %add5, i32* %arrayidx2 2106 /// br label EndBB 2107 /// EndBB: 2108 /// ... 2109 /// We are going to transform this into: 2110 /// BrBB: 2111 /// store i32 %add, i32* %arrayidx2 2112 /// ... // 2113 /// %cmp = icmp ult %x, %y 2114 /// %add.add5 = select i1 %cmp, i32 %add, %add5 2115 /// store i32 %add.add5, i32* %arrayidx2 2116 /// ... 2117 /// 2118 /// \return The pointer to the value of the previous store if the store can be 2119 /// hoisted into the predecessor block. 0 otherwise. 2120 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB, 2121 BasicBlock *StoreBB, BasicBlock *EndBB) { 2122 StoreInst *StoreToHoist = dyn_cast<StoreInst>(I); 2123 if (!StoreToHoist) 2124 return nullptr; 2125 2126 // Volatile or atomic. 2127 if (!StoreToHoist->isSimple()) 2128 return nullptr; 2129 2130 Value *StorePtr = StoreToHoist->getPointerOperand(); 2131 2132 // Look for a store to the same pointer in BrBB. 2133 unsigned MaxNumInstToLookAt = 9; 2134 // Skip pseudo probe intrinsic calls which are not really killing any memory 2135 // accesses. 2136 for (Instruction &CurI : reverse(BrBB->instructionsWithoutDebug(true))) { 2137 if (!MaxNumInstToLookAt) 2138 break; 2139 --MaxNumInstToLookAt; 2140 2141 // Could be calling an instruction that affects memory like free(). 2142 if (CurI.mayHaveSideEffects() && !isa<StoreInst>(CurI)) 2143 return nullptr; 2144 2145 if (auto *SI = dyn_cast<StoreInst>(&CurI)) { 2146 // Found the previous store make sure it stores to the same location. 2147 if (SI->getPointerOperand() == StorePtr) 2148 // Found the previous store, return its value operand. 2149 return SI->getValueOperand(); 2150 return nullptr; // Unknown store. 2151 } 2152 } 2153 2154 return nullptr; 2155 } 2156 2157 /// Estimate the cost of the insertion(s) and check that the PHI nodes can be 2158 /// converted to selects. 2159 static bool validateAndCostRequiredSelects(BasicBlock *BB, BasicBlock *ThenBB, 2160 BasicBlock *EndBB, 2161 unsigned &SpeculatedInstructions, 2162 InstructionCost &Cost, 2163 const TargetTransformInfo &TTI) { 2164 TargetTransformInfo::TargetCostKind CostKind = 2165 BB->getParent()->hasMinSize() 2166 ? TargetTransformInfo::TCK_CodeSize 2167 : TargetTransformInfo::TCK_SizeAndLatency; 2168 2169 bool HaveRewritablePHIs = false; 2170 for (PHINode &PN : EndBB->phis()) { 2171 Value *OrigV = PN.getIncomingValueForBlock(BB); 2172 Value *ThenV = PN.getIncomingValueForBlock(ThenBB); 2173 2174 // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf. 2175 // Skip PHIs which are trivial. 2176 if (ThenV == OrigV) 2177 continue; 2178 2179 Cost += TTI.getCmpSelInstrCost(Instruction::Select, PN.getType(), nullptr, 2180 CmpInst::BAD_ICMP_PREDICATE, CostKind); 2181 2182 // Don't convert to selects if we could remove undefined behavior instead. 2183 if (passingValueIsAlwaysUndefined(OrigV, &PN) || 2184 passingValueIsAlwaysUndefined(ThenV, &PN)) 2185 return false; 2186 2187 HaveRewritablePHIs = true; 2188 ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV); 2189 ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV); 2190 if (!OrigCE && !ThenCE) 2191 continue; // Known safe and cheap. 2192 2193 if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE)) || 2194 (OrigCE && !isSafeToSpeculativelyExecute(OrigCE))) 2195 return false; 2196 InstructionCost OrigCost = OrigCE ? computeSpeculationCost(OrigCE, TTI) : 0; 2197 InstructionCost ThenCost = ThenCE ? computeSpeculationCost(ThenCE, TTI) : 0; 2198 InstructionCost MaxCost = 2199 2 * PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 2200 if (OrigCost + ThenCost > MaxCost) 2201 return false; 2202 2203 // Account for the cost of an unfolded ConstantExpr which could end up 2204 // getting expanded into Instructions. 2205 // FIXME: This doesn't account for how many operations are combined in the 2206 // constant expression. 2207 ++SpeculatedInstructions; 2208 if (SpeculatedInstructions > 1) 2209 return false; 2210 } 2211 2212 return HaveRewritablePHIs; 2213 } 2214 2215 /// Speculate a conditional basic block flattening the CFG. 2216 /// 2217 /// Note that this is a very risky transform currently. Speculating 2218 /// instructions like this is most often not desirable. Instead, there is an MI 2219 /// pass which can do it with full awareness of the resource constraints. 2220 /// However, some cases are "obvious" and we should do directly. An example of 2221 /// this is speculating a single, reasonably cheap instruction. 2222 /// 2223 /// There is only one distinct advantage to flattening the CFG at the IR level: 2224 /// it makes very common but simplistic optimizations such as are common in 2225 /// instcombine and the DAG combiner more powerful by removing CFG edges and 2226 /// modeling their effects with easier to reason about SSA value graphs. 2227 /// 2228 /// 2229 /// An illustration of this transform is turning this IR: 2230 /// \code 2231 /// BB: 2232 /// %cmp = icmp ult %x, %y 2233 /// br i1 %cmp, label %EndBB, label %ThenBB 2234 /// ThenBB: 2235 /// %sub = sub %x, %y 2236 /// br label BB2 2237 /// EndBB: 2238 /// %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ] 2239 /// ... 2240 /// \endcode 2241 /// 2242 /// Into this IR: 2243 /// \code 2244 /// BB: 2245 /// %cmp = icmp ult %x, %y 2246 /// %sub = sub %x, %y 2247 /// %cond = select i1 %cmp, 0, %sub 2248 /// ... 2249 /// \endcode 2250 /// 2251 /// \returns true if the conditional block is removed. 2252 bool SimplifyCFGOpt::SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB, 2253 const TargetTransformInfo &TTI) { 2254 // Be conservative for now. FP select instruction can often be expensive. 2255 Value *BrCond = BI->getCondition(); 2256 if (isa<FCmpInst>(BrCond)) 2257 return false; 2258 2259 BasicBlock *BB = BI->getParent(); 2260 BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0); 2261 InstructionCost Budget = 2262 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 2263 2264 // If ThenBB is actually on the false edge of the conditional branch, remember 2265 // to swap the select operands later. 2266 bool Invert = false; 2267 if (ThenBB != BI->getSuccessor(0)) { 2268 assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?"); 2269 Invert = true; 2270 } 2271 assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block"); 2272 2273 // Keep a count of how many times instructions are used within ThenBB when 2274 // they are candidates for sinking into ThenBB. Specifically: 2275 // - They are defined in BB, and 2276 // - They have no side effects, and 2277 // - All of their uses are in ThenBB. 2278 SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts; 2279 2280 SmallVector<Instruction *, 4> SpeculatedDbgIntrinsics; 2281 2282 unsigned SpeculatedInstructions = 0; 2283 Value *SpeculatedStoreValue = nullptr; 2284 StoreInst *SpeculatedStore = nullptr; 2285 for (BasicBlock::iterator BBI = ThenBB->begin(), 2286 BBE = std::prev(ThenBB->end()); 2287 BBI != BBE; ++BBI) { 2288 Instruction *I = &*BBI; 2289 // Skip debug info. 2290 if (isa<DbgInfoIntrinsic>(I)) { 2291 SpeculatedDbgIntrinsics.push_back(I); 2292 continue; 2293 } 2294 2295 // Skip pseudo probes. The consequence is we lose track of the branch 2296 // probability for ThenBB, which is fine since the optimization here takes 2297 // place regardless of the branch probability. 2298 if (isa<PseudoProbeInst>(I)) { 2299 continue; 2300 } 2301 2302 // Only speculatively execute a single instruction (not counting the 2303 // terminator) for now. 2304 ++SpeculatedInstructions; 2305 if (SpeculatedInstructions > 1) 2306 return false; 2307 2308 // Don't hoist the instruction if it's unsafe or expensive. 2309 if (!isSafeToSpeculativelyExecute(I) && 2310 !(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore( 2311 I, BB, ThenBB, EndBB)))) 2312 return false; 2313 if (!SpeculatedStoreValue && 2314 computeSpeculationCost(I, TTI) > 2315 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic) 2316 return false; 2317 2318 // Store the store speculation candidate. 2319 if (SpeculatedStoreValue) 2320 SpeculatedStore = cast<StoreInst>(I); 2321 2322 // Do not hoist the instruction if any of its operands are defined but not 2323 // used in BB. The transformation will prevent the operand from 2324 // being sunk into the use block. 2325 for (Use &Op : I->operands()) { 2326 Instruction *OpI = dyn_cast<Instruction>(Op); 2327 if (!OpI || OpI->getParent() != BB || OpI->mayHaveSideEffects()) 2328 continue; // Not a candidate for sinking. 2329 2330 ++SinkCandidateUseCounts[OpI]; 2331 } 2332 } 2333 2334 // Consider any sink candidates which are only used in ThenBB as costs for 2335 // speculation. Note, while we iterate over a DenseMap here, we are summing 2336 // and so iteration order isn't significant. 2337 for (SmallDenseMap<Instruction *, unsigned, 4>::iterator 2338 I = SinkCandidateUseCounts.begin(), 2339 E = SinkCandidateUseCounts.end(); 2340 I != E; ++I) 2341 if (I->first->hasNUses(I->second)) { 2342 ++SpeculatedInstructions; 2343 if (SpeculatedInstructions > 1) 2344 return false; 2345 } 2346 2347 // Check that we can insert the selects and that it's not too expensive to do 2348 // so. 2349 bool Convert = SpeculatedStore != nullptr; 2350 InstructionCost Cost = 0; 2351 Convert |= validateAndCostRequiredSelects(BB, ThenBB, EndBB, 2352 SpeculatedInstructions, 2353 Cost, TTI); 2354 if (!Convert || Cost > Budget) 2355 return false; 2356 2357 // If we get here, we can hoist the instruction and if-convert. 2358 LLVM_DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";); 2359 2360 // Insert a select of the value of the speculated store. 2361 if (SpeculatedStoreValue) { 2362 IRBuilder<NoFolder> Builder(BI); 2363 Value *TrueV = SpeculatedStore->getValueOperand(); 2364 Value *FalseV = SpeculatedStoreValue; 2365 if (Invert) 2366 std::swap(TrueV, FalseV); 2367 Value *S = Builder.CreateSelect( 2368 BrCond, TrueV, FalseV, "spec.store.select", BI); 2369 SpeculatedStore->setOperand(0, S); 2370 SpeculatedStore->applyMergedLocation(BI->getDebugLoc(), 2371 SpeculatedStore->getDebugLoc()); 2372 } 2373 2374 // A hoisted conditional probe should be treated as dangling so that it will 2375 // not be over-counted when the samples collected on the non-conditional path 2376 // are counted towards the conditional path. We leave it for the counts 2377 // inference algorithm to figure out a proper count for a danglng probe. 2378 moveAndDanglePseudoProbes(ThenBB, BI); 2379 2380 // Metadata can be dependent on the condition we are hoisting above. 2381 // Conservatively strip all metadata on the instruction. Drop the debug loc 2382 // to avoid making it appear as if the condition is a constant, which would 2383 // be misleading while debugging. 2384 for (auto &I : *ThenBB) { 2385 assert(!isa<PseudoProbeInst>(I) && 2386 "Should not drop debug info from any pseudo probes."); 2387 if (!SpeculatedStoreValue || &I != SpeculatedStore) 2388 I.setDebugLoc(DebugLoc()); 2389 I.dropUnknownNonDebugMetadata(); 2390 } 2391 2392 // Hoist the instructions. 2393 BB->getInstList().splice(BI->getIterator(), ThenBB->getInstList(), 2394 ThenBB->begin(), std::prev(ThenBB->end())); 2395 2396 // Insert selects and rewrite the PHI operands. 2397 IRBuilder<NoFolder> Builder(BI); 2398 for (PHINode &PN : EndBB->phis()) { 2399 unsigned OrigI = PN.getBasicBlockIndex(BB); 2400 unsigned ThenI = PN.getBasicBlockIndex(ThenBB); 2401 Value *OrigV = PN.getIncomingValue(OrigI); 2402 Value *ThenV = PN.getIncomingValue(ThenI); 2403 2404 // Skip PHIs which are trivial. 2405 if (OrigV == ThenV) 2406 continue; 2407 2408 // Create a select whose true value is the speculatively executed value and 2409 // false value is the pre-existing value. Swap them if the branch 2410 // destinations were inverted. 2411 Value *TrueV = ThenV, *FalseV = OrigV; 2412 if (Invert) 2413 std::swap(TrueV, FalseV); 2414 Value *V = Builder.CreateSelect(BrCond, TrueV, FalseV, "spec.select", BI); 2415 PN.setIncomingValue(OrigI, V); 2416 PN.setIncomingValue(ThenI, V); 2417 } 2418 2419 // Remove speculated dbg intrinsics. 2420 // FIXME: Is it possible to do this in a more elegant way? Moving/merging the 2421 // dbg value for the different flows and inserting it after the select. 2422 for (Instruction *I : SpeculatedDbgIntrinsics) 2423 I->eraseFromParent(); 2424 2425 ++NumSpeculations; 2426 return true; 2427 } 2428 2429 /// Return true if we can thread a branch across this block. 2430 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) { 2431 int Size = 0; 2432 2433 for (Instruction &I : BB->instructionsWithoutDebug()) { 2434 if (Size > MaxSmallBlockSize) 2435 return false; // Don't clone large BB's. 2436 2437 // Can't fold blocks that contain noduplicate or convergent calls. 2438 if (CallInst *CI = dyn_cast<CallInst>(&I)) 2439 if (CI->cannotDuplicate() || CI->isConvergent()) 2440 return false; 2441 2442 // We will delete Phis while threading, so Phis should not be accounted in 2443 // block's size 2444 if (!isa<PHINode>(I)) 2445 ++Size; 2446 2447 // We can only support instructions that do not define values that are 2448 // live outside of the current basic block. 2449 for (User *U : I.users()) { 2450 Instruction *UI = cast<Instruction>(U); 2451 if (UI->getParent() != BB || isa<PHINode>(UI)) 2452 return false; 2453 } 2454 2455 // Looks ok, continue checking. 2456 } 2457 2458 return true; 2459 } 2460 2461 /// If we have a conditional branch on a PHI node value that is defined in the 2462 /// same block as the branch and if any PHI entries are constants, thread edges 2463 /// corresponding to that entry to be branches to their ultimate destination. 2464 static bool FoldCondBranchOnPHI(BranchInst *BI, DomTreeUpdater *DTU, 2465 const DataLayout &DL, AssumptionCache *AC) { 2466 BasicBlock *BB = BI->getParent(); 2467 PHINode *PN = dyn_cast<PHINode>(BI->getCondition()); 2468 // NOTE: we currently cannot transform this case if the PHI node is used 2469 // outside of the block. 2470 if (!PN || PN->getParent() != BB || !PN->hasOneUse()) 2471 return false; 2472 2473 // Degenerate case of a single entry PHI. 2474 if (PN->getNumIncomingValues() == 1) { 2475 FoldSingleEntryPHINodes(PN->getParent()); 2476 return true; 2477 } 2478 2479 // Now we know that this block has multiple preds and two succs. 2480 if (!BlockIsSimpleEnoughToThreadThrough(BB)) 2481 return false; 2482 2483 // Okay, this is a simple enough basic block. See if any phi values are 2484 // constants. 2485 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 2486 ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i)); 2487 if (!CB || !CB->getType()->isIntegerTy(1)) 2488 continue; 2489 2490 // Okay, we now know that all edges from PredBB should be revectored to 2491 // branch to RealDest. 2492 BasicBlock *PredBB = PN->getIncomingBlock(i); 2493 BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue()); 2494 2495 if (RealDest == BB) 2496 continue; // Skip self loops. 2497 // Skip if the predecessor's terminator is an indirect branch. 2498 if (isa<IndirectBrInst>(PredBB->getTerminator())) 2499 continue; 2500 2501 SmallVector<DominatorTree::UpdateType, 3> Updates; 2502 2503 // The dest block might have PHI nodes, other predecessors and other 2504 // difficult cases. Instead of being smart about this, just insert a new 2505 // block that jumps to the destination block, effectively splitting 2506 // the edge we are about to create. 2507 BasicBlock *EdgeBB = 2508 BasicBlock::Create(BB->getContext(), RealDest->getName() + ".critedge", 2509 RealDest->getParent(), RealDest); 2510 BranchInst *CritEdgeBranch = BranchInst::Create(RealDest, EdgeBB); 2511 if (DTU) 2512 Updates.push_back({DominatorTree::Insert, EdgeBB, RealDest}); 2513 CritEdgeBranch->setDebugLoc(BI->getDebugLoc()); 2514 2515 // Update PHI nodes. 2516 AddPredecessorToBlock(RealDest, EdgeBB, BB); 2517 2518 // BB may have instructions that are being threaded over. Clone these 2519 // instructions into EdgeBB. We know that there will be no uses of the 2520 // cloned instructions outside of EdgeBB. 2521 BasicBlock::iterator InsertPt = EdgeBB->begin(); 2522 DenseMap<Value *, Value *> TranslateMap; // Track translated values. 2523 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) { 2524 if (PHINode *PN = dyn_cast<PHINode>(BBI)) { 2525 TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB); 2526 continue; 2527 } 2528 // Clone the instruction. 2529 Instruction *N = BBI->clone(); 2530 if (BBI->hasName()) 2531 N->setName(BBI->getName() + ".c"); 2532 2533 // Update operands due to translation. 2534 for (Use &Op : N->operands()) { 2535 DenseMap<Value *, Value *>::iterator PI = TranslateMap.find(Op); 2536 if (PI != TranslateMap.end()) 2537 Op = PI->second; 2538 } 2539 2540 // Check for trivial simplification. 2541 if (Value *V = SimplifyInstruction(N, {DL, nullptr, nullptr, AC})) { 2542 if (!BBI->use_empty()) 2543 TranslateMap[&*BBI] = V; 2544 if (!N->mayHaveSideEffects()) { 2545 N->deleteValue(); // Instruction folded away, don't need actual inst 2546 N = nullptr; 2547 } 2548 } else { 2549 if (!BBI->use_empty()) 2550 TranslateMap[&*BBI] = N; 2551 } 2552 if (N) { 2553 // Insert the new instruction into its new home. 2554 EdgeBB->getInstList().insert(InsertPt, N); 2555 2556 // Register the new instruction with the assumption cache if necessary. 2557 if (auto *Assume = dyn_cast<AssumeInst>(N)) 2558 if (AC) 2559 AC->registerAssumption(Assume); 2560 } 2561 } 2562 2563 // Loop over all of the edges from PredBB to BB, changing them to branch 2564 // to EdgeBB instead. 2565 Instruction *PredBBTI = PredBB->getTerminator(); 2566 for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i) 2567 if (PredBBTI->getSuccessor(i) == BB) { 2568 BB->removePredecessor(PredBB); 2569 PredBBTI->setSuccessor(i, EdgeBB); 2570 } 2571 2572 if (DTU) { 2573 Updates.push_back({DominatorTree::Insert, PredBB, EdgeBB}); 2574 Updates.push_back({DominatorTree::Delete, PredBB, BB}); 2575 2576 DTU->applyUpdates(Updates); 2577 } 2578 2579 // Recurse, simplifying any other constants. 2580 return FoldCondBranchOnPHI(BI, DTU, DL, AC) || true; 2581 } 2582 2583 return false; 2584 } 2585 2586 /// Given a BB that starts with the specified two-entry PHI node, 2587 /// see if we can eliminate it. 2588 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI, 2589 DomTreeUpdater *DTU, const DataLayout &DL) { 2590 // Ok, this is a two entry PHI node. Check to see if this is a simple "if 2591 // statement", which has a very simple dominance structure. Basically, we 2592 // are trying to find the condition that is being branched on, which 2593 // subsequently causes this merge to happen. We really want control 2594 // dependence information for this check, but simplifycfg can't keep it up 2595 // to date, and this catches most of the cases we care about anyway. 2596 BasicBlock *BB = PN->getParent(); 2597 2598 BasicBlock *IfTrue, *IfFalse; 2599 Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse); 2600 if (!IfCond || 2601 // Don't bother if the branch will be constant folded trivially. 2602 isa<ConstantInt>(IfCond)) 2603 return false; 2604 2605 // Okay, we found that we can merge this two-entry phi node into a select. 2606 // Doing so would require us to fold *all* two entry phi nodes in this block. 2607 // At some point this becomes non-profitable (particularly if the target 2608 // doesn't support cmov's). Only do this transformation if there are two or 2609 // fewer PHI nodes in this block. 2610 unsigned NumPhis = 0; 2611 for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I) 2612 if (NumPhis > 2) 2613 return false; 2614 2615 // Loop over the PHI's seeing if we can promote them all to select 2616 // instructions. While we are at it, keep track of the instructions 2617 // that need to be moved to the dominating block. 2618 SmallPtrSet<Instruction *, 4> AggressiveInsts; 2619 InstructionCost Cost = 0; 2620 InstructionCost Budget = 2621 TwoEntryPHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 2622 2623 bool Changed = false; 2624 for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) { 2625 PHINode *PN = cast<PHINode>(II++); 2626 if (Value *V = SimplifyInstruction(PN, {DL, PN})) { 2627 PN->replaceAllUsesWith(V); 2628 PN->eraseFromParent(); 2629 Changed = true; 2630 continue; 2631 } 2632 2633 if (!dominatesMergePoint(PN->getIncomingValue(0), BB, AggressiveInsts, 2634 Cost, Budget, TTI) || 2635 !dominatesMergePoint(PN->getIncomingValue(1), BB, AggressiveInsts, 2636 Cost, Budget, TTI)) 2637 return Changed; 2638 } 2639 2640 // If we folded the first phi, PN dangles at this point. Refresh it. If 2641 // we ran out of PHIs then we simplified them all. 2642 PN = dyn_cast<PHINode>(BB->begin()); 2643 if (!PN) 2644 return true; 2645 2646 // Return true if at least one of these is a 'not', and another is either 2647 // a 'not' too, or a constant. 2648 auto CanHoistNotFromBothValues = [](Value *V0, Value *V1) { 2649 if (!match(V0, m_Not(m_Value()))) 2650 std::swap(V0, V1); 2651 auto Invertible = m_CombineOr(m_Not(m_Value()), m_AnyIntegralConstant()); 2652 return match(V0, m_Not(m_Value())) && match(V1, Invertible); 2653 }; 2654 2655 // Don't fold i1 branches on PHIs which contain binary operators or 2656 // select form of or/ands, unless one of the incoming values is an 'not' and 2657 // another one is freely invertible. 2658 // These can often be turned into switches and other things. 2659 auto IsBinOpOrAnd = [](Value *V) { 2660 return match( 2661 V, m_CombineOr(m_BinOp(), m_CombineOr(m_LogicalAnd(), m_LogicalOr()))); 2662 }; 2663 if (PN->getType()->isIntegerTy(1) && 2664 (IsBinOpOrAnd(PN->getIncomingValue(0)) || 2665 IsBinOpOrAnd(PN->getIncomingValue(1)) || IsBinOpOrAnd(IfCond)) && 2666 !CanHoistNotFromBothValues(PN->getIncomingValue(0), 2667 PN->getIncomingValue(1))) 2668 return Changed; 2669 2670 // If all PHI nodes are promotable, check to make sure that all instructions 2671 // in the predecessor blocks can be promoted as well. If not, we won't be able 2672 // to get rid of the control flow, so it's not worth promoting to select 2673 // instructions. 2674 BasicBlock *DomBlock = nullptr; 2675 BasicBlock *IfBlock1 = PN->getIncomingBlock(0); 2676 BasicBlock *IfBlock2 = PN->getIncomingBlock(1); 2677 if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) { 2678 IfBlock1 = nullptr; 2679 } else { 2680 DomBlock = *pred_begin(IfBlock1); 2681 for (BasicBlock::iterator I = IfBlock1->begin(); !I->isTerminator(); ++I) 2682 if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I) && 2683 !isa<PseudoProbeInst>(I)) { 2684 // This is not an aggressive instruction that we can promote. 2685 // Because of this, we won't be able to get rid of the control flow, so 2686 // the xform is not worth it. 2687 return Changed; 2688 } 2689 } 2690 2691 if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) { 2692 IfBlock2 = nullptr; 2693 } else { 2694 DomBlock = *pred_begin(IfBlock2); 2695 for (BasicBlock::iterator I = IfBlock2->begin(); !I->isTerminator(); ++I) 2696 if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I) && 2697 !isa<PseudoProbeInst>(I)) { 2698 // This is not an aggressive instruction that we can promote. 2699 // Because of this, we won't be able to get rid of the control flow, so 2700 // the xform is not worth it. 2701 return Changed; 2702 } 2703 } 2704 assert(DomBlock && "Failed to find root DomBlock"); 2705 2706 LLVM_DEBUG(dbgs() << "FOUND IF CONDITION! " << *IfCond 2707 << " T: " << IfTrue->getName() 2708 << " F: " << IfFalse->getName() << "\n"); 2709 2710 // If we can still promote the PHI nodes after this gauntlet of tests, 2711 // do all of the PHI's now. 2712 Instruction *InsertPt = DomBlock->getTerminator(); 2713 IRBuilder<NoFolder> Builder(InsertPt); 2714 2715 // Move all 'aggressive' instructions, which are defined in the 2716 // conditional parts of the if's up to the dominating block. 2717 if (IfBlock1) 2718 hoistAllInstructionsInto(DomBlock, InsertPt, IfBlock1); 2719 if (IfBlock2) 2720 hoistAllInstructionsInto(DomBlock, InsertPt, IfBlock2); 2721 2722 // Propagate fast-math-flags from phi nodes to replacement selects. 2723 IRBuilder<>::FastMathFlagGuard FMFGuard(Builder); 2724 while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) { 2725 if (isa<FPMathOperator>(PN)) 2726 Builder.setFastMathFlags(PN->getFastMathFlags()); 2727 2728 // Change the PHI node into a select instruction. 2729 Value *TrueVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse); 2730 Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue); 2731 2732 Value *Sel = Builder.CreateSelect(IfCond, TrueVal, FalseVal, "", InsertPt); 2733 PN->replaceAllUsesWith(Sel); 2734 Sel->takeName(PN); 2735 PN->eraseFromParent(); 2736 } 2737 2738 // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement 2739 // has been flattened. Change DomBlock to jump directly to our new block to 2740 // avoid other simplifycfg's kicking in on the diamond. 2741 Instruction *OldTI = DomBlock->getTerminator(); 2742 Builder.SetInsertPoint(OldTI); 2743 Builder.CreateBr(BB); 2744 2745 SmallVector<DominatorTree::UpdateType, 3> Updates; 2746 if (DTU) { 2747 Updates.push_back({DominatorTree::Insert, DomBlock, BB}); 2748 for (auto *Successor : successors(DomBlock)) 2749 Updates.push_back({DominatorTree::Delete, DomBlock, Successor}); 2750 } 2751 2752 OldTI->eraseFromParent(); 2753 if (DTU) 2754 DTU->applyUpdates(Updates); 2755 2756 return true; 2757 } 2758 2759 /// If we found a conditional branch that goes to two returning blocks, 2760 /// try to merge them together into one return, 2761 /// introducing a select if the return values disagree. 2762 bool SimplifyCFGOpt::SimplifyCondBranchToTwoReturns(BranchInst *BI, 2763 IRBuilder<> &Builder) { 2764 auto *BB = BI->getParent(); 2765 assert(BI->isConditional() && "Must be a conditional branch"); 2766 BasicBlock *TrueSucc = BI->getSuccessor(0); 2767 BasicBlock *FalseSucc = BI->getSuccessor(1); 2768 // NOTE: destinations may match, this could be degenerate uncond branch. 2769 ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator()); 2770 ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator()); 2771 2772 // Check to ensure both blocks are empty (just a return) or optionally empty 2773 // with PHI nodes. If there are other instructions, merging would cause extra 2774 // computation on one path or the other. 2775 if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator()) 2776 return false; 2777 if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator()) 2778 return false; 2779 2780 Builder.SetInsertPoint(BI); 2781 // Okay, we found a branch that is going to two return nodes. If 2782 // there is no return value for this function, just change the 2783 // branch into a return. 2784 if (FalseRet->getNumOperands() == 0) { 2785 TrueSucc->removePredecessor(BB); 2786 FalseSucc->removePredecessor(BB); 2787 Builder.CreateRetVoid(); 2788 EraseTerminatorAndDCECond(BI); 2789 if (DTU) { 2790 SmallVector<DominatorTree::UpdateType, 2> Updates; 2791 Updates.push_back({DominatorTree::Delete, BB, TrueSucc}); 2792 if (TrueSucc != FalseSucc) 2793 Updates.push_back({DominatorTree::Delete, BB, FalseSucc}); 2794 DTU->applyUpdates(Updates); 2795 } 2796 return true; 2797 } 2798 2799 // Otherwise, figure out what the true and false return values are 2800 // so we can insert a new select instruction. 2801 Value *TrueValue = TrueRet->getReturnValue(); 2802 Value *FalseValue = FalseRet->getReturnValue(); 2803 2804 // Unwrap any PHI nodes in the return blocks. 2805 if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue)) 2806 if (TVPN->getParent() == TrueSucc) 2807 TrueValue = TVPN->getIncomingValueForBlock(BB); 2808 if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue)) 2809 if (FVPN->getParent() == FalseSucc) 2810 FalseValue = FVPN->getIncomingValueForBlock(BB); 2811 2812 // In order for this transformation to be safe, we must be able to 2813 // unconditionally execute both operands to the return. This is 2814 // normally the case, but we could have a potentially-trapping 2815 // constant expression that prevents this transformation from being 2816 // safe. 2817 if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue)) 2818 if (TCV->canTrap()) 2819 return false; 2820 if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue)) 2821 if (FCV->canTrap()) 2822 return false; 2823 2824 // Okay, we collected all the mapped values and checked them for sanity, and 2825 // defined to really do this transformation. First, update the CFG. 2826 TrueSucc->removePredecessor(BB); 2827 FalseSucc->removePredecessor(BB); 2828 2829 // Insert select instructions where needed. 2830 Value *BrCond = BI->getCondition(); 2831 if (TrueValue) { 2832 // Insert a select if the results differ. 2833 if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) { 2834 } else if (isa<UndefValue>(TrueValue)) { 2835 TrueValue = FalseValue; 2836 } else { 2837 TrueValue = 2838 Builder.CreateSelect(BrCond, TrueValue, FalseValue, "retval", BI); 2839 } 2840 } 2841 2842 Value *RI = 2843 !TrueValue ? Builder.CreateRetVoid() : Builder.CreateRet(TrueValue); 2844 2845 (void)RI; 2846 2847 LLVM_DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:" 2848 << "\n " << *BI << "\nNewRet = " << *RI << "\nTRUEBLOCK: " 2849 << *TrueSucc << "\nFALSEBLOCK: " << *FalseSucc); 2850 2851 EraseTerminatorAndDCECond(BI); 2852 if (DTU) { 2853 SmallVector<DominatorTree::UpdateType, 2> Updates; 2854 Updates.push_back({DominatorTree::Delete, BB, TrueSucc}); 2855 if (TrueSucc != FalseSucc) 2856 Updates.push_back({DominatorTree::Delete, BB, FalseSucc}); 2857 DTU->applyUpdates(Updates); 2858 } 2859 2860 return true; 2861 } 2862 2863 /// Return true if either PBI or BI has branch weight available, and store 2864 /// the weights in {Pred|Succ}{True|False}Weight. If one of PBI and BI does 2865 /// not have branch weight, use 1:1 as its weight. 2866 static bool extractPredSuccWeights(BranchInst *PBI, BranchInst *BI, 2867 uint64_t &PredTrueWeight, 2868 uint64_t &PredFalseWeight, 2869 uint64_t &SuccTrueWeight, 2870 uint64_t &SuccFalseWeight) { 2871 bool PredHasWeights = 2872 PBI->extractProfMetadata(PredTrueWeight, PredFalseWeight); 2873 bool SuccHasWeights = 2874 BI->extractProfMetadata(SuccTrueWeight, SuccFalseWeight); 2875 if (PredHasWeights || SuccHasWeights) { 2876 if (!PredHasWeights) 2877 PredTrueWeight = PredFalseWeight = 1; 2878 if (!SuccHasWeights) 2879 SuccTrueWeight = SuccFalseWeight = 1; 2880 return true; 2881 } else { 2882 return false; 2883 } 2884 } 2885 2886 /// Determine if the two branches share a common destination and deduce a glue 2887 /// that joins the branches' conditions to arrive at the common destination if 2888 /// that would be profitable. 2889 static Optional<std::pair<Instruction::BinaryOps, bool>> 2890 shouldFoldCondBranchesToCommonDestination(BranchInst *BI, BranchInst *PBI, 2891 const TargetTransformInfo *TTI) { 2892 assert(BI && PBI && BI->isConditional() && PBI->isConditional() && 2893 "Both blocks must end with a conditional branches."); 2894 assert(is_contained(predecessors(BI->getParent()), PBI->getParent()) && 2895 "PredBB must be a predecessor of BB."); 2896 2897 // We have the potential to fold the conditions together, but if the 2898 // predecessor branch is predictable, we may not want to merge them. 2899 uint64_t PTWeight, PFWeight; 2900 BranchProbability PBITrueProb, Likely; 2901 if (TTI && PBI->extractProfMetadata(PTWeight, PFWeight) && 2902 (PTWeight + PFWeight) != 0) { 2903 PBITrueProb = 2904 BranchProbability::getBranchProbability(PTWeight, PTWeight + PFWeight); 2905 Likely = TTI->getPredictableBranchThreshold(); 2906 } 2907 2908 if (PBI->getSuccessor(0) == BI->getSuccessor(0)) { 2909 // Speculate the 2nd condition unless the 1st is probably true. 2910 if (PBITrueProb.isUnknown() || PBITrueProb < Likely) 2911 return {{Instruction::Or, false}}; 2912 } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) { 2913 // Speculate the 2nd condition unless the 1st is probably false. 2914 if (PBITrueProb.isUnknown() || PBITrueProb.getCompl() < Likely) 2915 return {{Instruction::And, false}}; 2916 } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) { 2917 // Speculate the 2nd condition unless the 1st is probably true. 2918 if (PBITrueProb.isUnknown() || PBITrueProb < Likely) 2919 return {{Instruction::And, true}}; 2920 } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) { 2921 // Speculate the 2nd condition unless the 1st is probably false. 2922 if (PBITrueProb.isUnknown() || PBITrueProb.getCompl() < Likely) 2923 return {{Instruction::Or, true}}; 2924 } 2925 return None; 2926 } 2927 2928 static bool performBranchToCommonDestFolding(BranchInst *BI, BranchInst *PBI, 2929 DomTreeUpdater *DTU, 2930 MemorySSAUpdater *MSSAU, 2931 const TargetTransformInfo *TTI) { 2932 BasicBlock *BB = BI->getParent(); 2933 BasicBlock *PredBlock = PBI->getParent(); 2934 2935 // Determine if the two branches share a common destination. 2936 Instruction::BinaryOps Opc; 2937 bool InvertPredCond; 2938 std::tie(Opc, InvertPredCond) = 2939 *shouldFoldCondBranchesToCommonDestination(BI, PBI, TTI); 2940 2941 LLVM_DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB); 2942 2943 IRBuilder<> Builder(PBI); 2944 // The builder is used to create instructions to eliminate the branch in BB. 2945 // If BB's terminator has !annotation metadata, add it to the new 2946 // instructions. 2947 Builder.CollectMetadataToCopy(BB->getTerminator(), 2948 {LLVMContext::MD_annotation}); 2949 2950 // If we need to invert the condition in the pred block to match, do so now. 2951 if (InvertPredCond) { 2952 Value *NewCond = PBI->getCondition(); 2953 if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) { 2954 CmpInst *CI = cast<CmpInst>(NewCond); 2955 CI->setPredicate(CI->getInversePredicate()); 2956 } else { 2957 NewCond = 2958 Builder.CreateNot(NewCond, PBI->getCondition()->getName() + ".not"); 2959 } 2960 2961 PBI->setCondition(NewCond); 2962 PBI->swapSuccessors(); 2963 } 2964 2965 BasicBlock *UniqueSucc = 2966 PBI->getSuccessor(0) == BB ? BI->getSuccessor(0) : BI->getSuccessor(1); 2967 2968 // Before cloning instructions, notify the successor basic block that it 2969 // is about to have a new predecessor. This will update PHI nodes, 2970 // which will allow us to update live-out uses of bonus instructions. 2971 AddPredecessorToBlock(UniqueSucc, PredBlock, BB, MSSAU); 2972 2973 // Try to update branch weights. 2974 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 2975 if (extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight, 2976 SuccTrueWeight, SuccFalseWeight)) { 2977 SmallVector<uint64_t, 8> NewWeights; 2978 2979 if (PBI->getSuccessor(0) == BB) { 2980 // PBI: br i1 %x, BB, FalseDest 2981 // BI: br i1 %y, UniqueSucc, FalseDest 2982 // TrueWeight is TrueWeight for PBI * TrueWeight for BI. 2983 NewWeights.push_back(PredTrueWeight * SuccTrueWeight); 2984 // FalseWeight is FalseWeight for PBI * TotalWeight for BI + 2985 // TrueWeight for PBI * FalseWeight for BI. 2986 // We assume that total weights of a BranchInst can fit into 32 bits. 2987 // Therefore, we will not have overflow using 64-bit arithmetic. 2988 NewWeights.push_back(PredFalseWeight * 2989 (SuccFalseWeight + SuccTrueWeight) + 2990 PredTrueWeight * SuccFalseWeight); 2991 } else { 2992 // PBI: br i1 %x, TrueDest, BB 2993 // BI: br i1 %y, TrueDest, UniqueSucc 2994 // TrueWeight is TrueWeight for PBI * TotalWeight for BI + 2995 // FalseWeight for PBI * TrueWeight for BI. 2996 NewWeights.push_back(PredTrueWeight * (SuccFalseWeight + SuccTrueWeight) + 2997 PredFalseWeight * SuccTrueWeight); 2998 // FalseWeight is FalseWeight for PBI * FalseWeight for BI. 2999 NewWeights.push_back(PredFalseWeight * SuccFalseWeight); 3000 } 3001 3002 // Halve the weights if any of them cannot fit in an uint32_t 3003 FitWeights(NewWeights); 3004 3005 SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(), NewWeights.end()); 3006 setBranchWeights(PBI, MDWeights[0], MDWeights[1]); 3007 3008 // TODO: If BB is reachable from all paths through PredBlock, then we 3009 // could replace PBI's branch probabilities with BI's. 3010 } else 3011 PBI->setMetadata(LLVMContext::MD_prof, nullptr); 3012 3013 // Now, update the CFG. 3014 PBI->setSuccessor(PBI->getSuccessor(0) != BB, UniqueSucc); 3015 3016 if (DTU) 3017 DTU->applyUpdates({{DominatorTree::Insert, PredBlock, UniqueSucc}, 3018 {DominatorTree::Delete, PredBlock, BB}}); 3019 3020 // If BI was a loop latch, it may have had associated loop metadata. 3021 // We need to copy it to the new latch, that is, PBI. 3022 if (MDNode *LoopMD = BI->getMetadata(LLVMContext::MD_loop)) 3023 PBI->setMetadata(LLVMContext::MD_loop, LoopMD); 3024 3025 ValueToValueMapTy VMap; // maps original values to cloned values 3026 CloneInstructionsIntoPredecessorBlockAndUpdateSSAUses(BB, PredBlock, VMap); 3027 3028 // Now that the Cond was cloned into the predecessor basic block, 3029 // or/and the two conditions together. 3030 Value *NewCond = nullptr; 3031 Value *BICond = VMap[BI->getCondition()]; 3032 3033 if (impliesPoison(BICond, PBI->getCondition())) 3034 NewCond = Builder.CreateBinOp(Opc, PBI->getCondition(), BICond, "or.cond"); 3035 else 3036 NewCond = 3037 Opc == Instruction::And 3038 ? Builder.CreateLogicalAnd(PBI->getCondition(), BICond, "or.cond") 3039 : Builder.CreateLogicalOr(PBI->getCondition(), BICond, "or.cond"); 3040 PBI->setCondition(NewCond); 3041 3042 // Copy any debug value intrinsics into the end of PredBlock. 3043 for (Instruction &I : *BB) { 3044 if (isa<DbgInfoIntrinsic>(I)) { 3045 Instruction *NewI = I.clone(); 3046 RemapInstruction(NewI, VMap, 3047 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 3048 NewI->insertBefore(PBI); 3049 } 3050 } 3051 3052 ++NumFoldBranchToCommonDest; 3053 return true; 3054 } 3055 3056 /// If this basic block is simple enough, and if a predecessor branches to us 3057 /// and one of our successors, fold the block into the predecessor and use 3058 /// logical operations to pick the right destination. 3059 bool llvm::FoldBranchToCommonDest(BranchInst *BI, DomTreeUpdater *DTU, 3060 MemorySSAUpdater *MSSAU, 3061 const TargetTransformInfo *TTI, 3062 unsigned BonusInstThreshold) { 3063 // If this block ends with an unconditional branch, 3064 // let SpeculativelyExecuteBB() deal with it. 3065 if (!BI->isConditional()) 3066 return false; 3067 3068 BasicBlock *BB = BI->getParent(); 3069 3070 bool Changed = false; 3071 3072 TargetTransformInfo::TargetCostKind CostKind = 3073 BB->getParent()->hasMinSize() ? TargetTransformInfo::TCK_CodeSize 3074 : TargetTransformInfo::TCK_SizeAndLatency; 3075 3076 Instruction *Cond = dyn_cast<Instruction>(BI->getCondition()); 3077 3078 if (!Cond || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) || 3079 Cond->getParent() != BB || !Cond->hasOneUse()) 3080 return Changed; 3081 3082 // Cond is known to be a compare or binary operator. Check to make sure that 3083 // neither operand is a potentially-trapping constant expression. 3084 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0))) 3085 if (CE->canTrap()) 3086 return Changed; 3087 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1))) 3088 if (CE->canTrap()) 3089 return Changed; 3090 3091 // Finally, don't infinitely unroll conditional loops. 3092 if (is_contained(successors(BB), BB)) 3093 return Changed; 3094 3095 // With which predecessors will we want to deal with? 3096 SmallVector<BasicBlock *, 8> Preds; 3097 for (BasicBlock *PredBlock : predecessors(BB)) { 3098 BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator()); 3099 3100 // Check that we have two conditional branches. If there is a PHI node in 3101 // the common successor, verify that the same value flows in from both 3102 // blocks. 3103 if (!PBI || PBI->isUnconditional() || !SafeToMergeTerminators(BI, PBI)) 3104 continue; 3105 3106 // Determine if the two branches share a common destination. 3107 Instruction::BinaryOps Opc; 3108 bool InvertPredCond; 3109 if (auto Recipe = shouldFoldCondBranchesToCommonDestination(BI, PBI, TTI)) 3110 std::tie(Opc, InvertPredCond) = *Recipe; 3111 else 3112 continue; 3113 3114 // Check the cost of inserting the necessary logic before performing the 3115 // transformation. 3116 if (TTI) { 3117 Type *Ty = BI->getCondition()->getType(); 3118 InstructionCost Cost = TTI->getArithmeticInstrCost(Opc, Ty, CostKind); 3119 if (InvertPredCond && (!PBI->getCondition()->hasOneUse() || 3120 !isa<CmpInst>(PBI->getCondition()))) 3121 Cost += TTI->getArithmeticInstrCost(Instruction::Xor, Ty, CostKind); 3122 3123 if (Cost > BranchFoldThreshold) 3124 continue; 3125 } 3126 3127 // Ok, we do want to deal with this predecessor. Record it. 3128 Preds.emplace_back(PredBlock); 3129 } 3130 3131 // If there aren't any predecessors into which we can fold, 3132 // don't bother checking the cost. 3133 if (Preds.empty()) 3134 return Changed; 3135 3136 // Only allow this transformation if computing the condition doesn't involve 3137 // too many instructions and these involved instructions can be executed 3138 // unconditionally. We denote all involved instructions except the condition 3139 // as "bonus instructions", and only allow this transformation when the 3140 // number of the bonus instructions we'll need to create when cloning into 3141 // each predecessor does not exceed a certain threshold. 3142 unsigned NumBonusInsts = 0; 3143 const unsigned PredCount = Preds.size(); 3144 for (Instruction &I : *BB) { 3145 // Don't check the branch condition comparison itself. 3146 if (&I == Cond) 3147 continue; 3148 // Ignore dbg intrinsics, and the terminator. 3149 if (isa<DbgInfoIntrinsic>(I) || isa<BranchInst>(I)) 3150 continue; 3151 // I must be safe to execute unconditionally. 3152 if (!isSafeToSpeculativelyExecute(&I)) 3153 return Changed; 3154 3155 // Account for the cost of duplicating this instruction into each 3156 // predecessor. 3157 NumBonusInsts += PredCount; 3158 // Early exits once we reach the limit. 3159 if (NumBonusInsts > BonusInstThreshold) 3160 return Changed; 3161 } 3162 3163 // Ok, we have the budget. Perform the transformation. 3164 for (BasicBlock *PredBlock : Preds) { 3165 auto *PBI = cast<BranchInst>(PredBlock->getTerminator()); 3166 return performBranchToCommonDestFolding(BI, PBI, DTU, MSSAU, TTI); 3167 } 3168 return Changed; 3169 } 3170 3171 // If there is only one store in BB1 and BB2, return it, otherwise return 3172 // nullptr. 3173 static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) { 3174 StoreInst *S = nullptr; 3175 for (auto *BB : {BB1, BB2}) { 3176 if (!BB) 3177 continue; 3178 for (auto &I : *BB) 3179 if (auto *SI = dyn_cast<StoreInst>(&I)) { 3180 if (S) 3181 // Multiple stores seen. 3182 return nullptr; 3183 else 3184 S = SI; 3185 } 3186 } 3187 return S; 3188 } 3189 3190 static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB, 3191 Value *AlternativeV = nullptr) { 3192 // PHI is going to be a PHI node that allows the value V that is defined in 3193 // BB to be referenced in BB's only successor. 3194 // 3195 // If AlternativeV is nullptr, the only value we care about in PHI is V. It 3196 // doesn't matter to us what the other operand is (it'll never get used). We 3197 // could just create a new PHI with an undef incoming value, but that could 3198 // increase register pressure if EarlyCSE/InstCombine can't fold it with some 3199 // other PHI. So here we directly look for some PHI in BB's successor with V 3200 // as an incoming operand. If we find one, we use it, else we create a new 3201 // one. 3202 // 3203 // If AlternativeV is not nullptr, we care about both incoming values in PHI. 3204 // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV] 3205 // where OtherBB is the single other predecessor of BB's only successor. 3206 PHINode *PHI = nullptr; 3207 BasicBlock *Succ = BB->getSingleSuccessor(); 3208 3209 for (auto I = Succ->begin(); isa<PHINode>(I); ++I) 3210 if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) { 3211 PHI = cast<PHINode>(I); 3212 if (!AlternativeV) 3213 break; 3214 3215 assert(Succ->hasNPredecessors(2)); 3216 auto PredI = pred_begin(Succ); 3217 BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI; 3218 if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV) 3219 break; 3220 PHI = nullptr; 3221 } 3222 if (PHI) 3223 return PHI; 3224 3225 // If V is not an instruction defined in BB, just return it. 3226 if (!AlternativeV && 3227 (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB)) 3228 return V; 3229 3230 PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge", &Succ->front()); 3231 PHI->addIncoming(V, BB); 3232 for (BasicBlock *PredBB : predecessors(Succ)) 3233 if (PredBB != BB) 3234 PHI->addIncoming( 3235 AlternativeV ? AlternativeV : UndefValue::get(V->getType()), PredBB); 3236 return PHI; 3237 } 3238 3239 static bool mergeConditionalStoreToAddress( 3240 BasicBlock *PTB, BasicBlock *PFB, BasicBlock *QTB, BasicBlock *QFB, 3241 BasicBlock *PostBB, Value *Address, bool InvertPCond, bool InvertQCond, 3242 DomTreeUpdater *DTU, const DataLayout &DL, const TargetTransformInfo &TTI) { 3243 // For every pointer, there must be exactly two stores, one coming from 3244 // PTB or PFB, and the other from QTB or QFB. We don't support more than one 3245 // store (to any address) in PTB,PFB or QTB,QFB. 3246 // FIXME: We could relax this restriction with a bit more work and performance 3247 // testing. 3248 StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB); 3249 StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB); 3250 if (!PStore || !QStore) 3251 return false; 3252 3253 // Now check the stores are compatible. 3254 if (!QStore->isUnordered() || !PStore->isUnordered()) 3255 return false; 3256 3257 // Check that sinking the store won't cause program behavior changes. Sinking 3258 // the store out of the Q blocks won't change any behavior as we're sinking 3259 // from a block to its unconditional successor. But we're moving a store from 3260 // the P blocks down through the middle block (QBI) and past both QFB and QTB. 3261 // So we need to check that there are no aliasing loads or stores in 3262 // QBI, QTB and QFB. We also need to check there are no conflicting memory 3263 // operations between PStore and the end of its parent block. 3264 // 3265 // The ideal way to do this is to query AliasAnalysis, but we don't 3266 // preserve AA currently so that is dangerous. Be super safe and just 3267 // check there are no other memory operations at all. 3268 for (auto &I : *QFB->getSinglePredecessor()) 3269 if (I.mayReadOrWriteMemory()) 3270 return false; 3271 for (auto &I : *QFB) 3272 if (&I != QStore && I.mayReadOrWriteMemory()) 3273 return false; 3274 if (QTB) 3275 for (auto &I : *QTB) 3276 if (&I != QStore && I.mayReadOrWriteMemory()) 3277 return false; 3278 for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end(); 3279 I != E; ++I) 3280 if (&*I != PStore && I->mayReadOrWriteMemory()) 3281 return false; 3282 3283 // If we're not in aggressive mode, we only optimize if we have some 3284 // confidence that by optimizing we'll allow P and/or Q to be if-converted. 3285 auto IsWorthwhile = [&](BasicBlock *BB, ArrayRef<StoreInst *> FreeStores) { 3286 if (!BB) 3287 return true; 3288 // Heuristic: if the block can be if-converted/phi-folded and the 3289 // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to 3290 // thread this store. 3291 InstructionCost Cost = 0; 3292 InstructionCost Budget = 3293 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 3294 for (auto &I : BB->instructionsWithoutDebug()) { 3295 // Consider terminator instruction to be free. 3296 if (I.isTerminator()) 3297 continue; 3298 // If this is one the stores that we want to speculate out of this BB, 3299 // then don't count it's cost, consider it to be free. 3300 if (auto *S = dyn_cast<StoreInst>(&I)) 3301 if (llvm::find(FreeStores, S)) 3302 continue; 3303 // Else, we have a white-list of instructions that we are ak speculating. 3304 if (!isa<BinaryOperator>(I) && !isa<GetElementPtrInst>(I)) 3305 return false; // Not in white-list - not worthwhile folding. 3306 // And finally, if this is a non-free instruction that we are okay 3307 // speculating, ensure that we consider the speculation budget. 3308 Cost += TTI.getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency); 3309 if (Cost > Budget) 3310 return false; // Eagerly refuse to fold as soon as we're out of budget. 3311 } 3312 assert(Cost <= Budget && 3313 "When we run out of budget we will eagerly return from within the " 3314 "per-instruction loop."); 3315 return true; 3316 }; 3317 3318 const std::array<StoreInst *, 2> FreeStores = {PStore, QStore}; 3319 if (!MergeCondStoresAggressively && 3320 (!IsWorthwhile(PTB, FreeStores) || !IsWorthwhile(PFB, FreeStores) || 3321 !IsWorthwhile(QTB, FreeStores) || !IsWorthwhile(QFB, FreeStores))) 3322 return false; 3323 3324 // If PostBB has more than two predecessors, we need to split it so we can 3325 // sink the store. 3326 if (std::next(pred_begin(PostBB), 2) != pred_end(PostBB)) { 3327 // We know that QFB's only successor is PostBB. And QFB has a single 3328 // predecessor. If QTB exists, then its only successor is also PostBB. 3329 // If QTB does not exist, then QFB's only predecessor has a conditional 3330 // branch to QFB and PostBB. 3331 BasicBlock *TruePred = QTB ? QTB : QFB->getSinglePredecessor(); 3332 BasicBlock *NewBB = 3333 SplitBlockPredecessors(PostBB, {QFB, TruePred}, "condstore.split", DTU); 3334 if (!NewBB) 3335 return false; 3336 PostBB = NewBB; 3337 } 3338 3339 // OK, we're going to sink the stores to PostBB. The store has to be 3340 // conditional though, so first create the predicate. 3341 Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator()) 3342 ->getCondition(); 3343 Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator()) 3344 ->getCondition(); 3345 3346 Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(), 3347 PStore->getParent()); 3348 Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(), 3349 QStore->getParent(), PPHI); 3350 3351 IRBuilder<> QB(&*PostBB->getFirstInsertionPt()); 3352 3353 Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond); 3354 Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond); 3355 3356 if (InvertPCond) 3357 PPred = QB.CreateNot(PPred); 3358 if (InvertQCond) 3359 QPred = QB.CreateNot(QPred); 3360 Value *CombinedPred = QB.CreateOr(PPred, QPred); 3361 3362 auto *T = SplitBlockAndInsertIfThen(CombinedPred, &*QB.GetInsertPoint(), 3363 /*Unreachable=*/false, 3364 /*BranchWeights=*/nullptr, DTU); 3365 QB.SetInsertPoint(T); 3366 StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address)); 3367 AAMDNodes AAMD; 3368 PStore->getAAMetadata(AAMD, /*Merge=*/false); 3369 PStore->getAAMetadata(AAMD, /*Merge=*/true); 3370 SI->setAAMetadata(AAMD); 3371 // Choose the minimum alignment. If we could prove both stores execute, we 3372 // could use biggest one. In this case, though, we only know that one of the 3373 // stores executes. And we don't know it's safe to take the alignment from a 3374 // store that doesn't execute. 3375 SI->setAlignment(std::min(PStore->getAlign(), QStore->getAlign())); 3376 3377 QStore->eraseFromParent(); 3378 PStore->eraseFromParent(); 3379 3380 return true; 3381 } 3382 3383 static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI, 3384 DomTreeUpdater *DTU, const DataLayout &DL, 3385 const TargetTransformInfo &TTI) { 3386 // The intention here is to find diamonds or triangles (see below) where each 3387 // conditional block contains a store to the same address. Both of these 3388 // stores are conditional, so they can't be unconditionally sunk. But it may 3389 // be profitable to speculatively sink the stores into one merged store at the 3390 // end, and predicate the merged store on the union of the two conditions of 3391 // PBI and QBI. 3392 // 3393 // This can reduce the number of stores executed if both of the conditions are 3394 // true, and can allow the blocks to become small enough to be if-converted. 3395 // This optimization will also chain, so that ladders of test-and-set 3396 // sequences can be if-converted away. 3397 // 3398 // We only deal with simple diamonds or triangles: 3399 // 3400 // PBI or PBI or a combination of the two 3401 // / \ | \ 3402 // PTB PFB | PFB 3403 // \ / | / 3404 // QBI QBI 3405 // / \ | \ 3406 // QTB QFB | QFB 3407 // \ / | / 3408 // PostBB PostBB 3409 // 3410 // We model triangles as a type of diamond with a nullptr "true" block. 3411 // Triangles are canonicalized so that the fallthrough edge is represented by 3412 // a true condition, as in the diagram above. 3413 BasicBlock *PTB = PBI->getSuccessor(0); 3414 BasicBlock *PFB = PBI->getSuccessor(1); 3415 BasicBlock *QTB = QBI->getSuccessor(0); 3416 BasicBlock *QFB = QBI->getSuccessor(1); 3417 BasicBlock *PostBB = QFB->getSingleSuccessor(); 3418 3419 // Make sure we have a good guess for PostBB. If QTB's only successor is 3420 // QFB, then QFB is a better PostBB. 3421 if (QTB->getSingleSuccessor() == QFB) 3422 PostBB = QFB; 3423 3424 // If we couldn't find a good PostBB, stop. 3425 if (!PostBB) 3426 return false; 3427 3428 bool InvertPCond = false, InvertQCond = false; 3429 // Canonicalize fallthroughs to the true branches. 3430 if (PFB == QBI->getParent()) { 3431 std::swap(PFB, PTB); 3432 InvertPCond = true; 3433 } 3434 if (QFB == PostBB) { 3435 std::swap(QFB, QTB); 3436 InvertQCond = true; 3437 } 3438 3439 // From this point on we can assume PTB or QTB may be fallthroughs but PFB 3440 // and QFB may not. Model fallthroughs as a nullptr block. 3441 if (PTB == QBI->getParent()) 3442 PTB = nullptr; 3443 if (QTB == PostBB) 3444 QTB = nullptr; 3445 3446 // Legality bailouts. We must have at least the non-fallthrough blocks and 3447 // the post-dominating block, and the non-fallthroughs must only have one 3448 // predecessor. 3449 auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) { 3450 return BB->getSinglePredecessor() == P && BB->getSingleSuccessor() == S; 3451 }; 3452 if (!HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) || 3453 !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB)) 3454 return false; 3455 if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) || 3456 (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB))) 3457 return false; 3458 if (!QBI->getParent()->hasNUses(2)) 3459 return false; 3460 3461 // OK, this is a sequence of two diamonds or triangles. 3462 // Check if there are stores in PTB or PFB that are repeated in QTB or QFB. 3463 SmallPtrSet<Value *, 4> PStoreAddresses, QStoreAddresses; 3464 for (auto *BB : {PTB, PFB}) { 3465 if (!BB) 3466 continue; 3467 for (auto &I : *BB) 3468 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) 3469 PStoreAddresses.insert(SI->getPointerOperand()); 3470 } 3471 for (auto *BB : {QTB, QFB}) { 3472 if (!BB) 3473 continue; 3474 for (auto &I : *BB) 3475 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) 3476 QStoreAddresses.insert(SI->getPointerOperand()); 3477 } 3478 3479 set_intersect(PStoreAddresses, QStoreAddresses); 3480 // set_intersect mutates PStoreAddresses in place. Rename it here to make it 3481 // clear what it contains. 3482 auto &CommonAddresses = PStoreAddresses; 3483 3484 bool Changed = false; 3485 for (auto *Address : CommonAddresses) 3486 Changed |= 3487 mergeConditionalStoreToAddress(PTB, PFB, QTB, QFB, PostBB, Address, 3488 InvertPCond, InvertQCond, DTU, DL, TTI); 3489 return Changed; 3490 } 3491 3492 /// If the previous block ended with a widenable branch, determine if reusing 3493 /// the target block is profitable and legal. This will have the effect of 3494 /// "widening" PBI, but doesn't require us to reason about hosting safety. 3495 static bool tryWidenCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI, 3496 DomTreeUpdater *DTU) { 3497 // TODO: This can be generalized in two important ways: 3498 // 1) We can allow phi nodes in IfFalseBB and simply reuse all the input 3499 // values from the PBI edge. 3500 // 2) We can sink side effecting instructions into BI's fallthrough 3501 // successor provided they doesn't contribute to computation of 3502 // BI's condition. 3503 Value *CondWB, *WC; 3504 BasicBlock *IfTrueBB, *IfFalseBB; 3505 if (!parseWidenableBranch(PBI, CondWB, WC, IfTrueBB, IfFalseBB) || 3506 IfTrueBB != BI->getParent() || !BI->getParent()->getSinglePredecessor()) 3507 return false; 3508 if (!IfFalseBB->phis().empty()) 3509 return false; // TODO 3510 // Use lambda to lazily compute expensive condition after cheap ones. 3511 auto NoSideEffects = [](BasicBlock &BB) { 3512 return !llvm::any_of(BB, [](const Instruction &I) { 3513 return I.mayWriteToMemory() || I.mayHaveSideEffects(); 3514 }); 3515 }; 3516 if (BI->getSuccessor(1) != IfFalseBB && // no inf looping 3517 BI->getSuccessor(1)->getTerminatingDeoptimizeCall() && // profitability 3518 NoSideEffects(*BI->getParent())) { 3519 auto *OldSuccessor = BI->getSuccessor(1); 3520 OldSuccessor->removePredecessor(BI->getParent()); 3521 BI->setSuccessor(1, IfFalseBB); 3522 if (DTU) 3523 DTU->applyUpdates( 3524 {{DominatorTree::Insert, BI->getParent(), IfFalseBB}, 3525 {DominatorTree::Delete, BI->getParent(), OldSuccessor}}); 3526 return true; 3527 } 3528 if (BI->getSuccessor(0) != IfFalseBB && // no inf looping 3529 BI->getSuccessor(0)->getTerminatingDeoptimizeCall() && // profitability 3530 NoSideEffects(*BI->getParent())) { 3531 auto *OldSuccessor = BI->getSuccessor(0); 3532 OldSuccessor->removePredecessor(BI->getParent()); 3533 BI->setSuccessor(0, IfFalseBB); 3534 if (DTU) 3535 DTU->applyUpdates( 3536 {{DominatorTree::Insert, BI->getParent(), IfFalseBB}, 3537 {DominatorTree::Delete, BI->getParent(), OldSuccessor}}); 3538 return true; 3539 } 3540 return false; 3541 } 3542 3543 /// If we have a conditional branch as a predecessor of another block, 3544 /// this function tries to simplify it. We know 3545 /// that PBI and BI are both conditional branches, and BI is in one of the 3546 /// successor blocks of PBI - PBI branches to BI. 3547 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI, 3548 DomTreeUpdater *DTU, 3549 const DataLayout &DL, 3550 const TargetTransformInfo &TTI) { 3551 assert(PBI->isConditional() && BI->isConditional()); 3552 BasicBlock *BB = BI->getParent(); 3553 3554 // If this block ends with a branch instruction, and if there is a 3555 // predecessor that ends on a branch of the same condition, make 3556 // this conditional branch redundant. 3557 if (PBI->getCondition() == BI->getCondition() && 3558 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 3559 // Okay, the outcome of this conditional branch is statically 3560 // knowable. If this block had a single pred, handle specially. 3561 if (BB->getSinglePredecessor()) { 3562 // Turn this into a branch on constant. 3563 bool CondIsTrue = PBI->getSuccessor(0) == BB; 3564 BI->setCondition( 3565 ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue)); 3566 return true; // Nuke the branch on constant. 3567 } 3568 3569 // Otherwise, if there are multiple predecessors, insert a PHI that merges 3570 // in the constant and simplify the block result. Subsequent passes of 3571 // simplifycfg will thread the block. 3572 if (BlockIsSimpleEnoughToThreadThrough(BB)) { 3573 pred_iterator PB = pred_begin(BB), PE = pred_end(BB); 3574 PHINode *NewPN = PHINode::Create( 3575 Type::getInt1Ty(BB->getContext()), std::distance(PB, PE), 3576 BI->getCondition()->getName() + ".pr", &BB->front()); 3577 // Okay, we're going to insert the PHI node. Since PBI is not the only 3578 // predecessor, compute the PHI'd conditional value for all of the preds. 3579 // Any predecessor where the condition is not computable we keep symbolic. 3580 for (pred_iterator PI = PB; PI != PE; ++PI) { 3581 BasicBlock *P = *PI; 3582 if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) && PBI != BI && 3583 PBI->isConditional() && PBI->getCondition() == BI->getCondition() && 3584 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 3585 bool CondIsTrue = PBI->getSuccessor(0) == BB; 3586 NewPN->addIncoming( 3587 ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue), 3588 P); 3589 } else { 3590 NewPN->addIncoming(BI->getCondition(), P); 3591 } 3592 } 3593 3594 BI->setCondition(NewPN); 3595 return true; 3596 } 3597 } 3598 3599 // If the previous block ended with a widenable branch, determine if reusing 3600 // the target block is profitable and legal. This will have the effect of 3601 // "widening" PBI, but doesn't require us to reason about hosting safety. 3602 if (tryWidenCondBranchToCondBranch(PBI, BI, DTU)) 3603 return true; 3604 3605 if (auto *CE = dyn_cast<ConstantExpr>(BI->getCondition())) 3606 if (CE->canTrap()) 3607 return false; 3608 3609 // If both branches are conditional and both contain stores to the same 3610 // address, remove the stores from the conditionals and create a conditional 3611 // merged store at the end. 3612 if (MergeCondStores && mergeConditionalStores(PBI, BI, DTU, DL, TTI)) 3613 return true; 3614 3615 // If this is a conditional branch in an empty block, and if any 3616 // predecessors are a conditional branch to one of our destinations, 3617 // fold the conditions into logical ops and one cond br. 3618 3619 // Ignore dbg intrinsics. 3620 if (&*BB->instructionsWithoutDebug().begin() != BI) 3621 return false; 3622 3623 int PBIOp, BIOp; 3624 if (PBI->getSuccessor(0) == BI->getSuccessor(0)) { 3625 PBIOp = 0; 3626 BIOp = 0; 3627 } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) { 3628 PBIOp = 0; 3629 BIOp = 1; 3630 } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) { 3631 PBIOp = 1; 3632 BIOp = 0; 3633 } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) { 3634 PBIOp = 1; 3635 BIOp = 1; 3636 } else { 3637 return false; 3638 } 3639 3640 // Check to make sure that the other destination of this branch 3641 // isn't BB itself. If so, this is an infinite loop that will 3642 // keep getting unwound. 3643 if (PBI->getSuccessor(PBIOp) == BB) 3644 return false; 3645 3646 // Do not perform this transformation if it would require 3647 // insertion of a large number of select instructions. For targets 3648 // without predication/cmovs, this is a big pessimization. 3649 3650 // Also do not perform this transformation if any phi node in the common 3651 // destination block can trap when reached by BB or PBB (PR17073). In that 3652 // case, it would be unsafe to hoist the operation into a select instruction. 3653 3654 BasicBlock *CommonDest = PBI->getSuccessor(PBIOp); 3655 BasicBlock *RemovedDest = PBI->getSuccessor(PBIOp ^ 1); 3656 unsigned NumPhis = 0; 3657 for (BasicBlock::iterator II = CommonDest->begin(); isa<PHINode>(II); 3658 ++II, ++NumPhis) { 3659 if (NumPhis > 2) // Disable this xform. 3660 return false; 3661 3662 PHINode *PN = cast<PHINode>(II); 3663 Value *BIV = PN->getIncomingValueForBlock(BB); 3664 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BIV)) 3665 if (CE->canTrap()) 3666 return false; 3667 3668 unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent()); 3669 Value *PBIV = PN->getIncomingValue(PBBIdx); 3670 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(PBIV)) 3671 if (CE->canTrap()) 3672 return false; 3673 } 3674 3675 // Finally, if everything is ok, fold the branches to logical ops. 3676 BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1); 3677 3678 LLVM_DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent() 3679 << "AND: " << *BI->getParent()); 3680 3681 SmallVector<DominatorTree::UpdateType, 5> Updates; 3682 3683 // If OtherDest *is* BB, then BB is a basic block with a single conditional 3684 // branch in it, where one edge (OtherDest) goes back to itself but the other 3685 // exits. We don't *know* that the program avoids the infinite loop 3686 // (even though that seems likely). If we do this xform naively, we'll end up 3687 // recursively unpeeling the loop. Since we know that (after the xform is 3688 // done) that the block *is* infinite if reached, we just make it an obviously 3689 // infinite loop with no cond branch. 3690 if (OtherDest == BB) { 3691 // Insert it at the end of the function, because it's either code, 3692 // or it won't matter if it's hot. :) 3693 BasicBlock *InfLoopBlock = 3694 BasicBlock::Create(BB->getContext(), "infloop", BB->getParent()); 3695 BranchInst::Create(InfLoopBlock, InfLoopBlock); 3696 if (DTU) 3697 Updates.push_back({DominatorTree::Insert, InfLoopBlock, InfLoopBlock}); 3698 OtherDest = InfLoopBlock; 3699 } 3700 3701 LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent()); 3702 3703 // BI may have other predecessors. Because of this, we leave 3704 // it alone, but modify PBI. 3705 3706 // Make sure we get to CommonDest on True&True directions. 3707 Value *PBICond = PBI->getCondition(); 3708 IRBuilder<NoFolder> Builder(PBI); 3709 if (PBIOp) 3710 PBICond = Builder.CreateNot(PBICond, PBICond->getName() + ".not"); 3711 3712 Value *BICond = BI->getCondition(); 3713 if (BIOp) 3714 BICond = Builder.CreateNot(BICond, BICond->getName() + ".not"); 3715 3716 // Merge the conditions. 3717 Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge"); 3718 3719 // Modify PBI to branch on the new condition to the new dests. 3720 PBI->setCondition(Cond); 3721 PBI->setSuccessor(0, CommonDest); 3722 PBI->setSuccessor(1, OtherDest); 3723 3724 if (DTU) { 3725 Updates.push_back({DominatorTree::Insert, PBI->getParent(), OtherDest}); 3726 Updates.push_back({DominatorTree::Delete, PBI->getParent(), RemovedDest}); 3727 3728 DTU->applyUpdates(Updates); 3729 } 3730 3731 // Update branch weight for PBI. 3732 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 3733 uint64_t PredCommon, PredOther, SuccCommon, SuccOther; 3734 bool HasWeights = 3735 extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight, 3736 SuccTrueWeight, SuccFalseWeight); 3737 if (HasWeights) { 3738 PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight; 3739 PredOther = PBIOp ? PredTrueWeight : PredFalseWeight; 3740 SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight; 3741 SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight; 3742 // The weight to CommonDest should be PredCommon * SuccTotal + 3743 // PredOther * SuccCommon. 3744 // The weight to OtherDest should be PredOther * SuccOther. 3745 uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) + 3746 PredOther * SuccCommon, 3747 PredOther * SuccOther}; 3748 // Halve the weights if any of them cannot fit in an uint32_t 3749 FitWeights(NewWeights); 3750 3751 setBranchWeights(PBI, NewWeights[0], NewWeights[1]); 3752 } 3753 3754 // OtherDest may have phi nodes. If so, add an entry from PBI's 3755 // block that are identical to the entries for BI's block. 3756 AddPredecessorToBlock(OtherDest, PBI->getParent(), BB); 3757 3758 // We know that the CommonDest already had an edge from PBI to 3759 // it. If it has PHIs though, the PHIs may have different 3760 // entries for BB and PBI's BB. If so, insert a select to make 3761 // them agree. 3762 for (PHINode &PN : CommonDest->phis()) { 3763 Value *BIV = PN.getIncomingValueForBlock(BB); 3764 unsigned PBBIdx = PN.getBasicBlockIndex(PBI->getParent()); 3765 Value *PBIV = PN.getIncomingValue(PBBIdx); 3766 if (BIV != PBIV) { 3767 // Insert a select in PBI to pick the right value. 3768 SelectInst *NV = cast<SelectInst>( 3769 Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName() + ".mux")); 3770 PN.setIncomingValue(PBBIdx, NV); 3771 // Although the select has the same condition as PBI, the original branch 3772 // weights for PBI do not apply to the new select because the select's 3773 // 'logical' edges are incoming edges of the phi that is eliminated, not 3774 // the outgoing edges of PBI. 3775 if (HasWeights) { 3776 uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight; 3777 uint64_t PredOther = PBIOp ? PredTrueWeight : PredFalseWeight; 3778 uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight; 3779 uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight; 3780 // The weight to PredCommonDest should be PredCommon * SuccTotal. 3781 // The weight to PredOtherDest should be PredOther * SuccCommon. 3782 uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther), 3783 PredOther * SuccCommon}; 3784 3785 FitWeights(NewWeights); 3786 3787 setBranchWeights(NV, NewWeights[0], NewWeights[1]); 3788 } 3789 } 3790 } 3791 3792 LLVM_DEBUG(dbgs() << "INTO: " << *PBI->getParent()); 3793 LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent()); 3794 3795 // This basic block is probably dead. We know it has at least 3796 // one fewer predecessor. 3797 return true; 3798 } 3799 3800 // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is 3801 // true or to FalseBB if Cond is false. 3802 // Takes care of updating the successors and removing the old terminator. 3803 // Also makes sure not to introduce new successors by assuming that edges to 3804 // non-successor TrueBBs and FalseBBs aren't reachable. 3805 bool SimplifyCFGOpt::SimplifyTerminatorOnSelect(Instruction *OldTerm, 3806 Value *Cond, BasicBlock *TrueBB, 3807 BasicBlock *FalseBB, 3808 uint32_t TrueWeight, 3809 uint32_t FalseWeight) { 3810 auto *BB = OldTerm->getParent(); 3811 // Remove any superfluous successor edges from the CFG. 3812 // First, figure out which successors to preserve. 3813 // If TrueBB and FalseBB are equal, only try to preserve one copy of that 3814 // successor. 3815 BasicBlock *KeepEdge1 = TrueBB; 3816 BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr; 3817 3818 SmallPtrSet<BasicBlock *, 2> RemovedSuccessors; 3819 3820 // Then remove the rest. 3821 for (BasicBlock *Succ : successors(OldTerm)) { 3822 // Make sure only to keep exactly one copy of each edge. 3823 if (Succ == KeepEdge1) 3824 KeepEdge1 = nullptr; 3825 else if (Succ == KeepEdge2) 3826 KeepEdge2 = nullptr; 3827 else { 3828 Succ->removePredecessor(BB, 3829 /*KeepOneInputPHIs=*/true); 3830 3831 if (Succ != TrueBB && Succ != FalseBB) 3832 RemovedSuccessors.insert(Succ); 3833 } 3834 } 3835 3836 IRBuilder<> Builder(OldTerm); 3837 Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc()); 3838 3839 // Insert an appropriate new terminator. 3840 if (!KeepEdge1 && !KeepEdge2) { 3841 if (TrueBB == FalseBB) { 3842 // We were only looking for one successor, and it was present. 3843 // Create an unconditional branch to it. 3844 Builder.CreateBr(TrueBB); 3845 } else { 3846 // We found both of the successors we were looking for. 3847 // Create a conditional branch sharing the condition of the select. 3848 BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB); 3849 if (TrueWeight != FalseWeight) 3850 setBranchWeights(NewBI, TrueWeight, FalseWeight); 3851 } 3852 } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) { 3853 // Neither of the selected blocks were successors, so this 3854 // terminator must be unreachable. 3855 new UnreachableInst(OldTerm->getContext(), OldTerm); 3856 } else { 3857 // One of the selected values was a successor, but the other wasn't. 3858 // Insert an unconditional branch to the one that was found; 3859 // the edge to the one that wasn't must be unreachable. 3860 if (!KeepEdge1) { 3861 // Only TrueBB was found. 3862 Builder.CreateBr(TrueBB); 3863 } else { 3864 // Only FalseBB was found. 3865 Builder.CreateBr(FalseBB); 3866 } 3867 } 3868 3869 EraseTerminatorAndDCECond(OldTerm); 3870 3871 if (DTU) { 3872 SmallVector<DominatorTree::UpdateType, 2> Updates; 3873 Updates.reserve(RemovedSuccessors.size()); 3874 for (auto *RemovedSuccessor : RemovedSuccessors) 3875 Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor}); 3876 DTU->applyUpdates(Updates); 3877 } 3878 3879 return true; 3880 } 3881 3882 // Replaces 3883 // (switch (select cond, X, Y)) on constant X, Y 3884 // with a branch - conditional if X and Y lead to distinct BBs, 3885 // unconditional otherwise. 3886 bool SimplifyCFGOpt::SimplifySwitchOnSelect(SwitchInst *SI, 3887 SelectInst *Select) { 3888 // Check for constant integer values in the select. 3889 ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue()); 3890 ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue()); 3891 if (!TrueVal || !FalseVal) 3892 return false; 3893 3894 // Find the relevant condition and destinations. 3895 Value *Condition = Select->getCondition(); 3896 BasicBlock *TrueBB = SI->findCaseValue(TrueVal)->getCaseSuccessor(); 3897 BasicBlock *FalseBB = SI->findCaseValue(FalseVal)->getCaseSuccessor(); 3898 3899 // Get weight for TrueBB and FalseBB. 3900 uint32_t TrueWeight = 0, FalseWeight = 0; 3901 SmallVector<uint64_t, 8> Weights; 3902 bool HasWeights = HasBranchWeights(SI); 3903 if (HasWeights) { 3904 GetBranchWeights(SI, Weights); 3905 if (Weights.size() == 1 + SI->getNumCases()) { 3906 TrueWeight = 3907 (uint32_t)Weights[SI->findCaseValue(TrueVal)->getSuccessorIndex()]; 3908 FalseWeight = 3909 (uint32_t)Weights[SI->findCaseValue(FalseVal)->getSuccessorIndex()]; 3910 } 3911 } 3912 3913 // Perform the actual simplification. 3914 return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, TrueWeight, 3915 FalseWeight); 3916 } 3917 3918 // Replaces 3919 // (indirectbr (select cond, blockaddress(@fn, BlockA), 3920 // blockaddress(@fn, BlockB))) 3921 // with 3922 // (br cond, BlockA, BlockB). 3923 bool SimplifyCFGOpt::SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, 3924 SelectInst *SI) { 3925 // Check that both operands of the select are block addresses. 3926 BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue()); 3927 BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue()); 3928 if (!TBA || !FBA) 3929 return false; 3930 3931 // Extract the actual blocks. 3932 BasicBlock *TrueBB = TBA->getBasicBlock(); 3933 BasicBlock *FalseBB = FBA->getBasicBlock(); 3934 3935 // Perform the actual simplification. 3936 return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 0, 3937 0); 3938 } 3939 3940 /// This is called when we find an icmp instruction 3941 /// (a seteq/setne with a constant) as the only instruction in a 3942 /// block that ends with an uncond branch. We are looking for a very specific 3943 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified. In 3944 /// this case, we merge the first two "or's of icmp" into a switch, but then the 3945 /// default value goes to an uncond block with a seteq in it, we get something 3946 /// like: 3947 /// 3948 /// switch i8 %A, label %DEFAULT [ i8 1, label %end i8 2, label %end ] 3949 /// DEFAULT: 3950 /// %tmp = icmp eq i8 %A, 92 3951 /// br label %end 3952 /// end: 3953 /// ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ] 3954 /// 3955 /// We prefer to split the edge to 'end' so that there is a true/false entry to 3956 /// the PHI, merging the third icmp into the switch. 3957 bool SimplifyCFGOpt::tryToSimplifyUncondBranchWithICmpInIt( 3958 ICmpInst *ICI, IRBuilder<> &Builder) { 3959 BasicBlock *BB = ICI->getParent(); 3960 3961 // If the block has any PHIs in it or the icmp has multiple uses, it is too 3962 // complex. 3963 if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse()) 3964 return false; 3965 3966 Value *V = ICI->getOperand(0); 3967 ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1)); 3968 3969 // The pattern we're looking for is where our only predecessor is a switch on 3970 // 'V' and this block is the default case for the switch. In this case we can 3971 // fold the compared value into the switch to simplify things. 3972 BasicBlock *Pred = BB->getSinglePredecessor(); 3973 if (!Pred || !isa<SwitchInst>(Pred->getTerminator())) 3974 return false; 3975 3976 SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator()); 3977 if (SI->getCondition() != V) 3978 return false; 3979 3980 // If BB is reachable on a non-default case, then we simply know the value of 3981 // V in this block. Substitute it and constant fold the icmp instruction 3982 // away. 3983 if (SI->getDefaultDest() != BB) { 3984 ConstantInt *VVal = SI->findCaseDest(BB); 3985 assert(VVal && "Should have a unique destination value"); 3986 ICI->setOperand(0, VVal); 3987 3988 if (Value *V = SimplifyInstruction(ICI, {DL, ICI})) { 3989 ICI->replaceAllUsesWith(V); 3990 ICI->eraseFromParent(); 3991 } 3992 // BB is now empty, so it is likely to simplify away. 3993 return requestResimplify(); 3994 } 3995 3996 // Ok, the block is reachable from the default dest. If the constant we're 3997 // comparing exists in one of the other edges, then we can constant fold ICI 3998 // and zap it. 3999 if (SI->findCaseValue(Cst) != SI->case_default()) { 4000 Value *V; 4001 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 4002 V = ConstantInt::getFalse(BB->getContext()); 4003 else 4004 V = ConstantInt::getTrue(BB->getContext()); 4005 4006 ICI->replaceAllUsesWith(V); 4007 ICI->eraseFromParent(); 4008 // BB is now empty, so it is likely to simplify away. 4009 return requestResimplify(); 4010 } 4011 4012 // The use of the icmp has to be in the 'end' block, by the only PHI node in 4013 // the block. 4014 BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0); 4015 PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back()); 4016 if (PHIUse == nullptr || PHIUse != &SuccBlock->front() || 4017 isa<PHINode>(++BasicBlock::iterator(PHIUse))) 4018 return false; 4019 4020 // If the icmp is a SETEQ, then the default dest gets false, the new edge gets 4021 // true in the PHI. 4022 Constant *DefaultCst = ConstantInt::getTrue(BB->getContext()); 4023 Constant *NewCst = ConstantInt::getFalse(BB->getContext()); 4024 4025 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 4026 std::swap(DefaultCst, NewCst); 4027 4028 // Replace ICI (which is used by the PHI for the default value) with true or 4029 // false depending on if it is EQ or NE. 4030 ICI->replaceAllUsesWith(DefaultCst); 4031 ICI->eraseFromParent(); 4032 4033 SmallVector<DominatorTree::UpdateType, 2> Updates; 4034 4035 // Okay, the switch goes to this block on a default value. Add an edge from 4036 // the switch to the merge point on the compared value. 4037 BasicBlock *NewBB = 4038 BasicBlock::Create(BB->getContext(), "switch.edge", BB->getParent(), BB); 4039 { 4040 SwitchInstProfUpdateWrapper SIW(*SI); 4041 auto W0 = SIW.getSuccessorWeight(0); 4042 SwitchInstProfUpdateWrapper::CaseWeightOpt NewW; 4043 if (W0) { 4044 NewW = ((uint64_t(*W0) + 1) >> 1); 4045 SIW.setSuccessorWeight(0, *NewW); 4046 } 4047 SIW.addCase(Cst, NewBB, NewW); 4048 if (DTU) 4049 Updates.push_back({DominatorTree::Insert, Pred, NewBB}); 4050 } 4051 4052 // NewBB branches to the phi block, add the uncond branch and the phi entry. 4053 Builder.SetInsertPoint(NewBB); 4054 Builder.SetCurrentDebugLocation(SI->getDebugLoc()); 4055 Builder.CreateBr(SuccBlock); 4056 PHIUse->addIncoming(NewCst, NewBB); 4057 if (DTU) { 4058 Updates.push_back({DominatorTree::Insert, NewBB, SuccBlock}); 4059 DTU->applyUpdates(Updates); 4060 } 4061 return true; 4062 } 4063 4064 /// The specified branch is a conditional branch. 4065 /// Check to see if it is branching on an or/and chain of icmp instructions, and 4066 /// fold it into a switch instruction if so. 4067 bool SimplifyCFGOpt::SimplifyBranchOnICmpChain(BranchInst *BI, 4068 IRBuilder<> &Builder, 4069 const DataLayout &DL) { 4070 Instruction *Cond = dyn_cast<Instruction>(BI->getCondition()); 4071 if (!Cond) 4072 return false; 4073 4074 // Change br (X == 0 | X == 1), T, F into a switch instruction. 4075 // If this is a bunch of seteq's or'd together, or if it's a bunch of 4076 // 'setne's and'ed together, collect them. 4077 4078 // Try to gather values from a chain of and/or to be turned into a switch 4079 ConstantComparesGatherer ConstantCompare(Cond, DL); 4080 // Unpack the result 4081 SmallVectorImpl<ConstantInt *> &Values = ConstantCompare.Vals; 4082 Value *CompVal = ConstantCompare.CompValue; 4083 unsigned UsedICmps = ConstantCompare.UsedICmps; 4084 Value *ExtraCase = ConstantCompare.Extra; 4085 4086 // If we didn't have a multiply compared value, fail. 4087 if (!CompVal) 4088 return false; 4089 4090 // Avoid turning single icmps into a switch. 4091 if (UsedICmps <= 1) 4092 return false; 4093 4094 bool TrueWhenEqual = match(Cond, m_LogicalOr(m_Value(), m_Value())); 4095 4096 // There might be duplicate constants in the list, which the switch 4097 // instruction can't handle, remove them now. 4098 array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate); 4099 Values.erase(std::unique(Values.begin(), Values.end()), Values.end()); 4100 4101 // If Extra was used, we require at least two switch values to do the 4102 // transformation. A switch with one value is just a conditional branch. 4103 if (ExtraCase && Values.size() < 2) 4104 return false; 4105 4106 // TODO: Preserve branch weight metadata, similarly to how 4107 // FoldValueComparisonIntoPredecessors preserves it. 4108 4109 // Figure out which block is which destination. 4110 BasicBlock *DefaultBB = BI->getSuccessor(1); 4111 BasicBlock *EdgeBB = BI->getSuccessor(0); 4112 if (!TrueWhenEqual) 4113 std::swap(DefaultBB, EdgeBB); 4114 4115 BasicBlock *BB = BI->getParent(); 4116 4117 // MSAN does not like undefs as branch condition which can be introduced 4118 // with "explicit branch". 4119 if (ExtraCase && BB->getParent()->hasFnAttribute(Attribute::SanitizeMemory)) 4120 return false; 4121 4122 LLVM_DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size() 4123 << " cases into SWITCH. BB is:\n" 4124 << *BB); 4125 4126 SmallVector<DominatorTree::UpdateType, 2> Updates; 4127 4128 // If there are any extra values that couldn't be folded into the switch 4129 // then we evaluate them with an explicit branch first. Split the block 4130 // right before the condbr to handle it. 4131 if (ExtraCase) { 4132 BasicBlock *NewBB = SplitBlock(BB, BI, DTU, /*LI=*/nullptr, 4133 /*MSSAU=*/nullptr, "switch.early.test"); 4134 4135 // Remove the uncond branch added to the old block. 4136 Instruction *OldTI = BB->getTerminator(); 4137 Builder.SetInsertPoint(OldTI); 4138 4139 if (TrueWhenEqual) 4140 Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB); 4141 else 4142 Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB); 4143 4144 OldTI->eraseFromParent(); 4145 4146 if (DTU) 4147 Updates.push_back({DominatorTree::Insert, BB, EdgeBB}); 4148 4149 // If there are PHI nodes in EdgeBB, then we need to add a new entry to them 4150 // for the edge we just added. 4151 AddPredecessorToBlock(EdgeBB, BB, NewBB); 4152 4153 LLVM_DEBUG(dbgs() << " ** 'icmp' chain unhandled condition: " << *ExtraCase 4154 << "\nEXTRABB = " << *BB); 4155 BB = NewBB; 4156 } 4157 4158 Builder.SetInsertPoint(BI); 4159 // Convert pointer to int before we switch. 4160 if (CompVal->getType()->isPointerTy()) { 4161 CompVal = Builder.CreatePtrToInt( 4162 CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr"); 4163 } 4164 4165 // Create the new switch instruction now. 4166 SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size()); 4167 4168 // Add all of the 'cases' to the switch instruction. 4169 for (unsigned i = 0, e = Values.size(); i != e; ++i) 4170 New->addCase(Values[i], EdgeBB); 4171 4172 // We added edges from PI to the EdgeBB. As such, if there were any 4173 // PHI nodes in EdgeBB, they need entries to be added corresponding to 4174 // the number of edges added. 4175 for (BasicBlock::iterator BBI = EdgeBB->begin(); isa<PHINode>(BBI); ++BBI) { 4176 PHINode *PN = cast<PHINode>(BBI); 4177 Value *InVal = PN->getIncomingValueForBlock(BB); 4178 for (unsigned i = 0, e = Values.size() - 1; i != e; ++i) 4179 PN->addIncoming(InVal, BB); 4180 } 4181 4182 // Erase the old branch instruction. 4183 EraseTerminatorAndDCECond(BI); 4184 if (DTU) 4185 DTU->applyUpdates(Updates); 4186 4187 LLVM_DEBUG(dbgs() << " ** 'icmp' chain result is:\n" << *BB << '\n'); 4188 return true; 4189 } 4190 4191 bool SimplifyCFGOpt::simplifyResume(ResumeInst *RI, IRBuilder<> &Builder) { 4192 if (isa<PHINode>(RI->getValue())) 4193 return simplifyCommonResume(RI); 4194 else if (isa<LandingPadInst>(RI->getParent()->getFirstNonPHI()) && 4195 RI->getValue() == RI->getParent()->getFirstNonPHI()) 4196 // The resume must unwind the exception that caused control to branch here. 4197 return simplifySingleResume(RI); 4198 4199 return false; 4200 } 4201 4202 // Check if cleanup block is empty 4203 static bool isCleanupBlockEmpty(iterator_range<BasicBlock::iterator> R) { 4204 for (Instruction &I : R) { 4205 auto *II = dyn_cast<IntrinsicInst>(&I); 4206 if (!II) 4207 return false; 4208 4209 Intrinsic::ID IntrinsicID = II->getIntrinsicID(); 4210 switch (IntrinsicID) { 4211 case Intrinsic::dbg_declare: 4212 case Intrinsic::dbg_value: 4213 case Intrinsic::dbg_label: 4214 case Intrinsic::lifetime_end: 4215 break; 4216 default: 4217 return false; 4218 } 4219 } 4220 return true; 4221 } 4222 4223 // Simplify resume that is shared by several landing pads (phi of landing pad). 4224 bool SimplifyCFGOpt::simplifyCommonResume(ResumeInst *RI) { 4225 BasicBlock *BB = RI->getParent(); 4226 4227 // Check that there are no other instructions except for debug and lifetime 4228 // intrinsics between the phi's and resume instruction. 4229 if (!isCleanupBlockEmpty( 4230 make_range(RI->getParent()->getFirstNonPHI(), BB->getTerminator()))) 4231 return false; 4232 4233 SmallSetVector<BasicBlock *, 4> TrivialUnwindBlocks; 4234 auto *PhiLPInst = cast<PHINode>(RI->getValue()); 4235 4236 // Check incoming blocks to see if any of them are trivial. 4237 for (unsigned Idx = 0, End = PhiLPInst->getNumIncomingValues(); Idx != End; 4238 Idx++) { 4239 auto *IncomingBB = PhiLPInst->getIncomingBlock(Idx); 4240 auto *IncomingValue = PhiLPInst->getIncomingValue(Idx); 4241 4242 // If the block has other successors, we can not delete it because 4243 // it has other dependents. 4244 if (IncomingBB->getUniqueSuccessor() != BB) 4245 continue; 4246 4247 auto *LandingPad = dyn_cast<LandingPadInst>(IncomingBB->getFirstNonPHI()); 4248 // Not the landing pad that caused the control to branch here. 4249 if (IncomingValue != LandingPad) 4250 continue; 4251 4252 if (isCleanupBlockEmpty( 4253 make_range(LandingPad->getNextNode(), IncomingBB->getTerminator()))) 4254 TrivialUnwindBlocks.insert(IncomingBB); 4255 } 4256 4257 // If no trivial unwind blocks, don't do any simplifications. 4258 if (TrivialUnwindBlocks.empty()) 4259 return false; 4260 4261 // Turn all invokes that unwind here into calls. 4262 for (auto *TrivialBB : TrivialUnwindBlocks) { 4263 // Blocks that will be simplified should be removed from the phi node. 4264 // Note there could be multiple edges to the resume block, and we need 4265 // to remove them all. 4266 while (PhiLPInst->getBasicBlockIndex(TrivialBB) != -1) 4267 BB->removePredecessor(TrivialBB, true); 4268 4269 for (BasicBlock *Pred : 4270 llvm::make_early_inc_range(predecessors(TrivialBB))) { 4271 removeUnwindEdge(Pred, DTU); 4272 ++NumInvokes; 4273 } 4274 4275 // In each SimplifyCFG run, only the current processed block can be erased. 4276 // Otherwise, it will break the iteration of SimplifyCFG pass. So instead 4277 // of erasing TrivialBB, we only remove the branch to the common resume 4278 // block so that we can later erase the resume block since it has no 4279 // predecessors. 4280 TrivialBB->getTerminator()->eraseFromParent(); 4281 new UnreachableInst(RI->getContext(), TrivialBB); 4282 if (DTU) 4283 DTU->applyUpdates({{DominatorTree::Delete, TrivialBB, BB}}); 4284 } 4285 4286 // Delete the resume block if all its predecessors have been removed. 4287 if (pred_empty(BB)) { 4288 if (DTU) 4289 DTU->deleteBB(BB); 4290 else 4291 BB->eraseFromParent(); 4292 } 4293 4294 return !TrivialUnwindBlocks.empty(); 4295 } 4296 4297 // Simplify resume that is only used by a single (non-phi) landing pad. 4298 bool SimplifyCFGOpt::simplifySingleResume(ResumeInst *RI) { 4299 BasicBlock *BB = RI->getParent(); 4300 auto *LPInst = cast<LandingPadInst>(BB->getFirstNonPHI()); 4301 assert(RI->getValue() == LPInst && 4302 "Resume must unwind the exception that caused control to here"); 4303 4304 // Check that there are no other instructions except for debug intrinsics. 4305 if (!isCleanupBlockEmpty( 4306 make_range<Instruction *>(LPInst->getNextNode(), RI))) 4307 return false; 4308 4309 // Turn all invokes that unwind here into calls and delete the basic block. 4310 for (BasicBlock *Pred : llvm::make_early_inc_range(predecessors(BB))) { 4311 removeUnwindEdge(Pred, DTU); 4312 ++NumInvokes; 4313 } 4314 4315 // The landingpad is now unreachable. Zap it. 4316 if (DTU) 4317 DTU->deleteBB(BB); 4318 else 4319 BB->eraseFromParent(); 4320 return true; 4321 } 4322 4323 static bool removeEmptyCleanup(CleanupReturnInst *RI, DomTreeUpdater *DTU) { 4324 // If this is a trivial cleanup pad that executes no instructions, it can be 4325 // eliminated. If the cleanup pad continues to the caller, any predecessor 4326 // that is an EH pad will be updated to continue to the caller and any 4327 // predecessor that terminates with an invoke instruction will have its invoke 4328 // instruction converted to a call instruction. If the cleanup pad being 4329 // simplified does not continue to the caller, each predecessor will be 4330 // updated to continue to the unwind destination of the cleanup pad being 4331 // simplified. 4332 BasicBlock *BB = RI->getParent(); 4333 CleanupPadInst *CPInst = RI->getCleanupPad(); 4334 if (CPInst->getParent() != BB) 4335 // This isn't an empty cleanup. 4336 return false; 4337 4338 // We cannot kill the pad if it has multiple uses. This typically arises 4339 // from unreachable basic blocks. 4340 if (!CPInst->hasOneUse()) 4341 return false; 4342 4343 // Check that there are no other instructions except for benign intrinsics. 4344 if (!isCleanupBlockEmpty( 4345 make_range<Instruction *>(CPInst->getNextNode(), RI))) 4346 return false; 4347 4348 // If the cleanup return we are simplifying unwinds to the caller, this will 4349 // set UnwindDest to nullptr. 4350 BasicBlock *UnwindDest = RI->getUnwindDest(); 4351 Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr; 4352 4353 // We're about to remove BB from the control flow. Before we do, sink any 4354 // PHINodes into the unwind destination. Doing this before changing the 4355 // control flow avoids some potentially slow checks, since we can currently 4356 // be certain that UnwindDest and BB have no common predecessors (since they 4357 // are both EH pads). 4358 if (UnwindDest) { 4359 // First, go through the PHI nodes in UnwindDest and update any nodes that 4360 // reference the block we are removing 4361 for (BasicBlock::iterator I = UnwindDest->begin(), 4362 IE = DestEHPad->getIterator(); 4363 I != IE; ++I) { 4364 PHINode *DestPN = cast<PHINode>(I); 4365 4366 int Idx = DestPN->getBasicBlockIndex(BB); 4367 // Since BB unwinds to UnwindDest, it has to be in the PHI node. 4368 assert(Idx != -1); 4369 // This PHI node has an incoming value that corresponds to a control 4370 // path through the cleanup pad we are removing. If the incoming 4371 // value is in the cleanup pad, it must be a PHINode (because we 4372 // verified above that the block is otherwise empty). Otherwise, the 4373 // value is either a constant or a value that dominates the cleanup 4374 // pad being removed. 4375 // 4376 // Because BB and UnwindDest are both EH pads, all of their 4377 // predecessors must unwind to these blocks, and since no instruction 4378 // can have multiple unwind destinations, there will be no overlap in 4379 // incoming blocks between SrcPN and DestPN. 4380 Value *SrcVal = DestPN->getIncomingValue(Idx); 4381 PHINode *SrcPN = dyn_cast<PHINode>(SrcVal); 4382 4383 // Remove the entry for the block we are deleting. 4384 DestPN->removeIncomingValue(Idx, false); 4385 4386 if (SrcPN && SrcPN->getParent() == BB) { 4387 // If the incoming value was a PHI node in the cleanup pad we are 4388 // removing, we need to merge that PHI node's incoming values into 4389 // DestPN. 4390 for (unsigned SrcIdx = 0, SrcE = SrcPN->getNumIncomingValues(); 4391 SrcIdx != SrcE; ++SrcIdx) { 4392 DestPN->addIncoming(SrcPN->getIncomingValue(SrcIdx), 4393 SrcPN->getIncomingBlock(SrcIdx)); 4394 } 4395 } else { 4396 // Otherwise, the incoming value came from above BB and 4397 // so we can just reuse it. We must associate all of BB's 4398 // predecessors with this value. 4399 for (auto *pred : predecessors(BB)) { 4400 DestPN->addIncoming(SrcVal, pred); 4401 } 4402 } 4403 } 4404 4405 // Sink any remaining PHI nodes directly into UnwindDest. 4406 Instruction *InsertPt = DestEHPad; 4407 for (BasicBlock::iterator I = BB->begin(), 4408 IE = BB->getFirstNonPHI()->getIterator(); 4409 I != IE;) { 4410 // The iterator must be incremented here because the instructions are 4411 // being moved to another block. 4412 PHINode *PN = cast<PHINode>(I++); 4413 if (PN->use_empty() || !PN->isUsedOutsideOfBlock(BB)) 4414 // If the PHI node has no uses or all of its uses are in this basic 4415 // block (meaning they are debug or lifetime intrinsics), just leave 4416 // it. It will be erased when we erase BB below. 4417 continue; 4418 4419 // Otherwise, sink this PHI node into UnwindDest. 4420 // Any predecessors to UnwindDest which are not already represented 4421 // must be back edges which inherit the value from the path through 4422 // BB. In this case, the PHI value must reference itself. 4423 for (auto *pred : predecessors(UnwindDest)) 4424 if (pred != BB) 4425 PN->addIncoming(PN, pred); 4426 PN->moveBefore(InsertPt); 4427 } 4428 } 4429 4430 std::vector<DominatorTree::UpdateType> Updates; 4431 4432 // We use make_early_inc_range here because we may remove some predecessors. 4433 for (BasicBlock *PredBB : llvm::make_early_inc_range(predecessors(BB))) { 4434 if (UnwindDest == nullptr) { 4435 if (DTU) { 4436 DTU->applyUpdates(Updates); 4437 Updates.clear(); 4438 } 4439 removeUnwindEdge(PredBB, DTU); 4440 ++NumInvokes; 4441 } else { 4442 Instruction *TI = PredBB->getTerminator(); 4443 TI->replaceUsesOfWith(BB, UnwindDest); 4444 if (DTU) { 4445 Updates.push_back({DominatorTree::Insert, PredBB, UnwindDest}); 4446 Updates.push_back({DominatorTree::Delete, PredBB, BB}); 4447 } 4448 } 4449 } 4450 4451 if (DTU) { 4452 DTU->applyUpdates(Updates); 4453 DTU->deleteBB(BB); 4454 } else 4455 // The cleanup pad is now unreachable. Zap it. 4456 BB->eraseFromParent(); 4457 4458 return true; 4459 } 4460 4461 // Try to merge two cleanuppads together. 4462 static bool mergeCleanupPad(CleanupReturnInst *RI) { 4463 // Skip any cleanuprets which unwind to caller, there is nothing to merge 4464 // with. 4465 BasicBlock *UnwindDest = RI->getUnwindDest(); 4466 if (!UnwindDest) 4467 return false; 4468 4469 // This cleanupret isn't the only predecessor of this cleanuppad, it wouldn't 4470 // be safe to merge without code duplication. 4471 if (UnwindDest->getSinglePredecessor() != RI->getParent()) 4472 return false; 4473 4474 // Verify that our cleanuppad's unwind destination is another cleanuppad. 4475 auto *SuccessorCleanupPad = dyn_cast<CleanupPadInst>(&UnwindDest->front()); 4476 if (!SuccessorCleanupPad) 4477 return false; 4478 4479 CleanupPadInst *PredecessorCleanupPad = RI->getCleanupPad(); 4480 // Replace any uses of the successor cleanupad with the predecessor pad 4481 // The only cleanuppad uses should be this cleanupret, it's cleanupret and 4482 // funclet bundle operands. 4483 SuccessorCleanupPad->replaceAllUsesWith(PredecessorCleanupPad); 4484 // Remove the old cleanuppad. 4485 SuccessorCleanupPad->eraseFromParent(); 4486 // Now, we simply replace the cleanupret with a branch to the unwind 4487 // destination. 4488 BranchInst::Create(UnwindDest, RI->getParent()); 4489 RI->eraseFromParent(); 4490 4491 return true; 4492 } 4493 4494 bool SimplifyCFGOpt::simplifyCleanupReturn(CleanupReturnInst *RI) { 4495 // It is possible to transiantly have an undef cleanuppad operand because we 4496 // have deleted some, but not all, dead blocks. 4497 // Eventually, this block will be deleted. 4498 if (isa<UndefValue>(RI->getOperand(0))) 4499 return false; 4500 4501 if (mergeCleanupPad(RI)) 4502 return true; 4503 4504 if (removeEmptyCleanup(RI, DTU)) 4505 return true; 4506 4507 return false; 4508 } 4509 4510 bool SimplifyCFGOpt::simplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) { 4511 BasicBlock *BB = RI->getParent(); 4512 if (!BB->getFirstNonPHIOrDbg()->isTerminator()) 4513 return false; 4514 4515 // Find predecessors that end with branches. 4516 SmallVector<BasicBlock *, 8> UncondBranchPreds; 4517 SmallVector<BranchInst *, 8> CondBranchPreds; 4518 for (BasicBlock *P : predecessors(BB)) { 4519 Instruction *PTI = P->getTerminator(); 4520 if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) { 4521 if (BI->isUnconditional()) 4522 UncondBranchPreds.push_back(P); 4523 else 4524 CondBranchPreds.push_back(BI); 4525 } 4526 } 4527 4528 // If we found some, do the transformation! 4529 if (!UncondBranchPreds.empty() && DupRet) { 4530 while (!UncondBranchPreds.empty()) { 4531 BasicBlock *Pred = UncondBranchPreds.pop_back_val(); 4532 LLVM_DEBUG(dbgs() << "FOLDING: " << *BB 4533 << "INTO UNCOND BRANCH PRED: " << *Pred); 4534 (void)FoldReturnIntoUncondBranch(RI, BB, Pred, DTU); 4535 } 4536 4537 // If we eliminated all predecessors of the block, delete the block now. 4538 if (pred_empty(BB)) { 4539 // We know there are no successors, so just nuke the block. 4540 if (DTU) 4541 DTU->deleteBB(BB); 4542 else 4543 BB->eraseFromParent(); 4544 } 4545 4546 return true; 4547 } 4548 4549 // Check out all of the conditional branches going to this return 4550 // instruction. If any of them just select between returns, change the 4551 // branch itself into a select/return pair. 4552 while (!CondBranchPreds.empty()) { 4553 BranchInst *BI = CondBranchPreds.pop_back_val(); 4554 4555 // Check to see if the non-BB successor is also a return block. 4556 if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) && 4557 isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) && 4558 SimplifyCondBranchToTwoReturns(BI, Builder)) 4559 return true; 4560 } 4561 return false; 4562 } 4563 4564 bool SimplifyCFGOpt::simplifyUnreachable(UnreachableInst *UI) { 4565 BasicBlock *BB = UI->getParent(); 4566 4567 bool Changed = false; 4568 4569 // If there are any instructions immediately before the unreachable that can 4570 // be removed, do so. 4571 while (UI->getIterator() != BB->begin()) { 4572 BasicBlock::iterator BBI = UI->getIterator(); 4573 --BBI; 4574 // Do not delete instructions that can have side effects which might cause 4575 // the unreachable to not be reachable; specifically, calls and volatile 4576 // operations may have this effect. 4577 if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI)) 4578 break; 4579 4580 if (BBI->mayHaveSideEffects()) { 4581 if (auto *SI = dyn_cast<StoreInst>(BBI)) { 4582 if (SI->isVolatile()) 4583 break; 4584 } else if (auto *LI = dyn_cast<LoadInst>(BBI)) { 4585 if (LI->isVolatile()) 4586 break; 4587 } else if (auto *RMWI = dyn_cast<AtomicRMWInst>(BBI)) { 4588 if (RMWI->isVolatile()) 4589 break; 4590 } else if (auto *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) { 4591 if (CXI->isVolatile()) 4592 break; 4593 } else if (isa<CatchPadInst>(BBI)) { 4594 // A catchpad may invoke exception object constructors and such, which 4595 // in some languages can be arbitrary code, so be conservative by 4596 // default. 4597 // For CoreCLR, it just involves a type test, so can be removed. 4598 if (classifyEHPersonality(BB->getParent()->getPersonalityFn()) != 4599 EHPersonality::CoreCLR) 4600 break; 4601 } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) && 4602 !isa<LandingPadInst>(BBI)) { 4603 break; 4604 } 4605 // Note that deleting LandingPad's here is in fact okay, although it 4606 // involves a bit of subtle reasoning. If this inst is a LandingPad, 4607 // all the predecessors of this block will be the unwind edges of Invokes, 4608 // and we can therefore guarantee this block will be erased. 4609 } 4610 4611 // Delete this instruction (any uses are guaranteed to be dead) 4612 if (!BBI->use_empty()) 4613 BBI->replaceAllUsesWith(UndefValue::get(BBI->getType())); 4614 BBI->eraseFromParent(); 4615 Changed = true; 4616 } 4617 4618 // If the unreachable instruction is the first in the block, take a gander 4619 // at all of the predecessors of this instruction, and simplify them. 4620 if (&BB->front() != UI) 4621 return Changed; 4622 4623 std::vector<DominatorTree::UpdateType> Updates; 4624 4625 SmallSetVector<BasicBlock *, 8> Preds(pred_begin(BB), pred_end(BB)); 4626 for (unsigned i = 0, e = Preds.size(); i != e; ++i) { 4627 auto *Predecessor = Preds[i]; 4628 Instruction *TI = Predecessor->getTerminator(); 4629 IRBuilder<> Builder(TI); 4630 if (auto *BI = dyn_cast<BranchInst>(TI)) { 4631 // We could either have a proper unconditional branch, 4632 // or a degenerate conditional branch with matching destinations. 4633 if (all_of(BI->successors(), 4634 [BB](auto *Successor) { return Successor == BB; })) { 4635 new UnreachableInst(TI->getContext(), TI); 4636 TI->eraseFromParent(); 4637 Changed = true; 4638 } else { 4639 assert(BI->isConditional() && "Can't get here with an uncond branch."); 4640 Value* Cond = BI->getCondition(); 4641 assert(BI->getSuccessor(0) != BI->getSuccessor(1) && 4642 "The destinations are guaranteed to be different here."); 4643 if (BI->getSuccessor(0) == BB) { 4644 Builder.CreateAssumption(Builder.CreateNot(Cond)); 4645 Builder.CreateBr(BI->getSuccessor(1)); 4646 } else { 4647 assert(BI->getSuccessor(1) == BB && "Incorrect CFG"); 4648 Builder.CreateAssumption(Cond); 4649 Builder.CreateBr(BI->getSuccessor(0)); 4650 } 4651 EraseTerminatorAndDCECond(BI); 4652 Changed = true; 4653 } 4654 if (DTU) 4655 Updates.push_back({DominatorTree::Delete, Predecessor, BB}); 4656 } else if (auto *SI = dyn_cast<SwitchInst>(TI)) { 4657 SwitchInstProfUpdateWrapper SU(*SI); 4658 for (auto i = SU->case_begin(), e = SU->case_end(); i != e;) { 4659 if (i->getCaseSuccessor() != BB) { 4660 ++i; 4661 continue; 4662 } 4663 BB->removePredecessor(SU->getParent()); 4664 i = SU.removeCase(i); 4665 e = SU->case_end(); 4666 Changed = true; 4667 } 4668 // Note that the default destination can't be removed! 4669 if (DTU && SI->getDefaultDest() != BB) 4670 Updates.push_back({DominatorTree::Delete, Predecessor, BB}); 4671 } else if (auto *II = dyn_cast<InvokeInst>(TI)) { 4672 if (II->getUnwindDest() == BB) { 4673 if (DTU) { 4674 DTU->applyUpdates(Updates); 4675 Updates.clear(); 4676 } 4677 removeUnwindEdge(TI->getParent(), DTU); 4678 Changed = true; 4679 } 4680 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) { 4681 if (CSI->getUnwindDest() == BB) { 4682 if (DTU) { 4683 DTU->applyUpdates(Updates); 4684 Updates.clear(); 4685 } 4686 removeUnwindEdge(TI->getParent(), DTU); 4687 Changed = true; 4688 continue; 4689 } 4690 4691 for (CatchSwitchInst::handler_iterator I = CSI->handler_begin(), 4692 E = CSI->handler_end(); 4693 I != E; ++I) { 4694 if (*I == BB) { 4695 CSI->removeHandler(I); 4696 --I; 4697 --E; 4698 Changed = true; 4699 } 4700 } 4701 if (DTU) 4702 Updates.push_back({DominatorTree::Delete, Predecessor, BB}); 4703 if (CSI->getNumHandlers() == 0) { 4704 if (CSI->hasUnwindDest()) { 4705 // Redirect all predecessors of the block containing CatchSwitchInst 4706 // to instead branch to the CatchSwitchInst's unwind destination. 4707 if (DTU) { 4708 for (auto *PredecessorOfPredecessor : predecessors(Predecessor)) { 4709 Updates.push_back({DominatorTree::Insert, 4710 PredecessorOfPredecessor, 4711 CSI->getUnwindDest()}); 4712 Updates.push_back({DominatorTree::Delete, 4713 PredecessorOfPredecessor, Predecessor}); 4714 } 4715 } 4716 Predecessor->replaceAllUsesWith(CSI->getUnwindDest()); 4717 } else { 4718 // Rewrite all preds to unwind to caller (or from invoke to call). 4719 if (DTU) { 4720 DTU->applyUpdates(Updates); 4721 Updates.clear(); 4722 } 4723 SmallVector<BasicBlock *, 8> EHPreds(predecessors(Predecessor)); 4724 for (BasicBlock *EHPred : EHPreds) 4725 removeUnwindEdge(EHPred, DTU); 4726 } 4727 // The catchswitch is no longer reachable. 4728 new UnreachableInst(CSI->getContext(), CSI); 4729 CSI->eraseFromParent(); 4730 Changed = true; 4731 } 4732 } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) { 4733 (void)CRI; 4734 assert(CRI->hasUnwindDest() && CRI->getUnwindDest() == BB && 4735 "Expected to always have an unwind to BB."); 4736 if (DTU) 4737 Updates.push_back({DominatorTree::Delete, Predecessor, BB}); 4738 new UnreachableInst(TI->getContext(), TI); 4739 TI->eraseFromParent(); 4740 Changed = true; 4741 } 4742 } 4743 4744 if (DTU) 4745 DTU->applyUpdates(Updates); 4746 4747 // If this block is now dead, remove it. 4748 if (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) { 4749 // We know there are no successors, so just nuke the block. 4750 if (DTU) 4751 DTU->deleteBB(BB); 4752 else 4753 BB->eraseFromParent(); 4754 return true; 4755 } 4756 4757 return Changed; 4758 } 4759 4760 static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) { 4761 assert(Cases.size() >= 1); 4762 4763 array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate); 4764 for (size_t I = 1, E = Cases.size(); I != E; ++I) { 4765 if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1) 4766 return false; 4767 } 4768 return true; 4769 } 4770 4771 static void createUnreachableSwitchDefault(SwitchInst *Switch, 4772 DomTreeUpdater *DTU) { 4773 LLVM_DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n"); 4774 auto *BB = Switch->getParent(); 4775 BasicBlock *NewDefaultBlock = SplitBlockPredecessors( 4776 Switch->getDefaultDest(), Switch->getParent(), "", DTU); 4777 auto *OrigDefaultBlock = Switch->getDefaultDest(); 4778 Switch->setDefaultDest(&*NewDefaultBlock); 4779 if (DTU) 4780 DTU->applyUpdates({{DominatorTree::Insert, BB, &*NewDefaultBlock}, 4781 {DominatorTree::Delete, BB, OrigDefaultBlock}}); 4782 SplitBlock(&*NewDefaultBlock, &NewDefaultBlock->front(), DTU); 4783 SmallVector<DominatorTree::UpdateType, 2> Updates; 4784 if (DTU) 4785 for (auto *Successor : successors(NewDefaultBlock)) 4786 Updates.push_back({DominatorTree::Delete, NewDefaultBlock, Successor}); 4787 auto *NewTerminator = NewDefaultBlock->getTerminator(); 4788 new UnreachableInst(Switch->getContext(), NewTerminator); 4789 EraseTerminatorAndDCECond(NewTerminator); 4790 if (DTU) 4791 DTU->applyUpdates(Updates); 4792 } 4793 4794 /// Turn a switch with two reachable destinations into an integer range 4795 /// comparison and branch. 4796 bool SimplifyCFGOpt::TurnSwitchRangeIntoICmp(SwitchInst *SI, 4797 IRBuilder<> &Builder) { 4798 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 4799 4800 bool HasDefault = 4801 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 4802 4803 auto *BB = SI->getParent(); 4804 4805 // Partition the cases into two sets with different destinations. 4806 BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr; 4807 BasicBlock *DestB = nullptr; 4808 SmallVector<ConstantInt *, 16> CasesA; 4809 SmallVector<ConstantInt *, 16> CasesB; 4810 4811 for (auto Case : SI->cases()) { 4812 BasicBlock *Dest = Case.getCaseSuccessor(); 4813 if (!DestA) 4814 DestA = Dest; 4815 if (Dest == DestA) { 4816 CasesA.push_back(Case.getCaseValue()); 4817 continue; 4818 } 4819 if (!DestB) 4820 DestB = Dest; 4821 if (Dest == DestB) { 4822 CasesB.push_back(Case.getCaseValue()); 4823 continue; 4824 } 4825 return false; // More than two destinations. 4826 } 4827 4828 assert(DestA && DestB && 4829 "Single-destination switch should have been folded."); 4830 assert(DestA != DestB); 4831 assert(DestB != SI->getDefaultDest()); 4832 assert(!CasesB.empty() && "There must be non-default cases."); 4833 assert(!CasesA.empty() || HasDefault); 4834 4835 // Figure out if one of the sets of cases form a contiguous range. 4836 SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr; 4837 BasicBlock *ContiguousDest = nullptr; 4838 BasicBlock *OtherDest = nullptr; 4839 if (!CasesA.empty() && CasesAreContiguous(CasesA)) { 4840 ContiguousCases = &CasesA; 4841 ContiguousDest = DestA; 4842 OtherDest = DestB; 4843 } else if (CasesAreContiguous(CasesB)) { 4844 ContiguousCases = &CasesB; 4845 ContiguousDest = DestB; 4846 OtherDest = DestA; 4847 } else 4848 return false; 4849 4850 // Start building the compare and branch. 4851 4852 Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back()); 4853 Constant *NumCases = 4854 ConstantInt::get(Offset->getType(), ContiguousCases->size()); 4855 4856 Value *Sub = SI->getCondition(); 4857 if (!Offset->isNullValue()) 4858 Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off"); 4859 4860 Value *Cmp; 4861 // If NumCases overflowed, then all possible values jump to the successor. 4862 if (NumCases->isNullValue() && !ContiguousCases->empty()) 4863 Cmp = ConstantInt::getTrue(SI->getContext()); 4864 else 4865 Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch"); 4866 BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest); 4867 4868 // Update weight for the newly-created conditional branch. 4869 if (HasBranchWeights(SI)) { 4870 SmallVector<uint64_t, 8> Weights; 4871 GetBranchWeights(SI, Weights); 4872 if (Weights.size() == 1 + SI->getNumCases()) { 4873 uint64_t TrueWeight = 0; 4874 uint64_t FalseWeight = 0; 4875 for (size_t I = 0, E = Weights.size(); I != E; ++I) { 4876 if (SI->getSuccessor(I) == ContiguousDest) 4877 TrueWeight += Weights[I]; 4878 else 4879 FalseWeight += Weights[I]; 4880 } 4881 while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) { 4882 TrueWeight /= 2; 4883 FalseWeight /= 2; 4884 } 4885 setBranchWeights(NewBI, TrueWeight, FalseWeight); 4886 } 4887 } 4888 4889 // Prune obsolete incoming values off the successors' PHI nodes. 4890 for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) { 4891 unsigned PreviousEdges = ContiguousCases->size(); 4892 if (ContiguousDest == SI->getDefaultDest()) 4893 ++PreviousEdges; 4894 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I) 4895 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 4896 } 4897 for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) { 4898 unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size(); 4899 if (OtherDest == SI->getDefaultDest()) 4900 ++PreviousEdges; 4901 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I) 4902 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 4903 } 4904 4905 // Clean up the default block - it may have phis or other instructions before 4906 // the unreachable terminator. 4907 if (!HasDefault) 4908 createUnreachableSwitchDefault(SI, DTU); 4909 4910 auto *UnreachableDefault = SI->getDefaultDest(); 4911 4912 // Drop the switch. 4913 SI->eraseFromParent(); 4914 4915 if (!HasDefault && DTU) 4916 DTU->applyUpdates({{DominatorTree::Delete, BB, UnreachableDefault}}); 4917 4918 return true; 4919 } 4920 4921 /// Compute masked bits for the condition of a switch 4922 /// and use it to remove dead cases. 4923 static bool eliminateDeadSwitchCases(SwitchInst *SI, DomTreeUpdater *DTU, 4924 AssumptionCache *AC, 4925 const DataLayout &DL) { 4926 Value *Cond = SI->getCondition(); 4927 unsigned Bits = Cond->getType()->getIntegerBitWidth(); 4928 KnownBits Known = computeKnownBits(Cond, DL, 0, AC, SI); 4929 4930 // We can also eliminate cases by determining that their values are outside of 4931 // the limited range of the condition based on how many significant (non-sign) 4932 // bits are in the condition value. 4933 unsigned ExtraSignBits = ComputeNumSignBits(Cond, DL, 0, AC, SI) - 1; 4934 unsigned MaxSignificantBitsInCond = Bits - ExtraSignBits; 4935 4936 // Gather dead cases. 4937 SmallVector<ConstantInt *, 8> DeadCases; 4938 SmallDenseMap<BasicBlock *, int, 8> NumPerSuccessorCases; 4939 for (auto &Case : SI->cases()) { 4940 auto *Successor = Case.getCaseSuccessor(); 4941 if (DTU) 4942 ++NumPerSuccessorCases[Successor]; 4943 const APInt &CaseVal = Case.getCaseValue()->getValue(); 4944 if (Known.Zero.intersects(CaseVal) || !Known.One.isSubsetOf(CaseVal) || 4945 (CaseVal.getMinSignedBits() > MaxSignificantBitsInCond)) { 4946 DeadCases.push_back(Case.getCaseValue()); 4947 if (DTU) 4948 --NumPerSuccessorCases[Successor]; 4949 LLVM_DEBUG(dbgs() << "SimplifyCFG: switch case " << CaseVal 4950 << " is dead.\n"); 4951 } 4952 } 4953 4954 // If we can prove that the cases must cover all possible values, the 4955 // default destination becomes dead and we can remove it. If we know some 4956 // of the bits in the value, we can use that to more precisely compute the 4957 // number of possible unique case values. 4958 bool HasDefault = 4959 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 4960 const unsigned NumUnknownBits = 4961 Bits - (Known.Zero | Known.One).countPopulation(); 4962 assert(NumUnknownBits <= Bits); 4963 if (HasDefault && DeadCases.empty() && 4964 NumUnknownBits < 64 /* avoid overflow */ && 4965 SI->getNumCases() == (1ULL << NumUnknownBits)) { 4966 createUnreachableSwitchDefault(SI, DTU); 4967 return true; 4968 } 4969 4970 if (DeadCases.empty()) 4971 return false; 4972 4973 SwitchInstProfUpdateWrapper SIW(*SI); 4974 for (ConstantInt *DeadCase : DeadCases) { 4975 SwitchInst::CaseIt CaseI = SI->findCaseValue(DeadCase); 4976 assert(CaseI != SI->case_default() && 4977 "Case was not found. Probably mistake in DeadCases forming."); 4978 // Prune unused values from PHI nodes. 4979 CaseI->getCaseSuccessor()->removePredecessor(SI->getParent()); 4980 SIW.removeCase(CaseI); 4981 } 4982 4983 if (DTU) { 4984 std::vector<DominatorTree::UpdateType> Updates; 4985 for (const std::pair<BasicBlock *, int> &I : NumPerSuccessorCases) 4986 if (I.second == 0) 4987 Updates.push_back({DominatorTree::Delete, SI->getParent(), I.first}); 4988 DTU->applyUpdates(Updates); 4989 } 4990 4991 return true; 4992 } 4993 4994 /// If BB would be eligible for simplification by 4995 /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated 4996 /// by an unconditional branch), look at the phi node for BB in the successor 4997 /// block and see if the incoming value is equal to CaseValue. If so, return 4998 /// the phi node, and set PhiIndex to BB's index in the phi node. 4999 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue, 5000 BasicBlock *BB, int *PhiIndex) { 5001 if (BB->getFirstNonPHIOrDbg() != BB->getTerminator()) 5002 return nullptr; // BB must be empty to be a candidate for simplification. 5003 if (!BB->getSinglePredecessor()) 5004 return nullptr; // BB must be dominated by the switch. 5005 5006 BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator()); 5007 if (!Branch || !Branch->isUnconditional()) 5008 return nullptr; // Terminator must be unconditional branch. 5009 5010 BasicBlock *Succ = Branch->getSuccessor(0); 5011 5012 for (PHINode &PHI : Succ->phis()) { 5013 int Idx = PHI.getBasicBlockIndex(BB); 5014 assert(Idx >= 0 && "PHI has no entry for predecessor?"); 5015 5016 Value *InValue = PHI.getIncomingValue(Idx); 5017 if (InValue != CaseValue) 5018 continue; 5019 5020 *PhiIndex = Idx; 5021 return &PHI; 5022 } 5023 5024 return nullptr; 5025 } 5026 5027 /// Try to forward the condition of a switch instruction to a phi node 5028 /// dominated by the switch, if that would mean that some of the destination 5029 /// blocks of the switch can be folded away. Return true if a change is made. 5030 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) { 5031 using ForwardingNodesMap = DenseMap<PHINode *, SmallVector<int, 4>>; 5032 5033 ForwardingNodesMap ForwardingNodes; 5034 BasicBlock *SwitchBlock = SI->getParent(); 5035 bool Changed = false; 5036 for (auto &Case : SI->cases()) { 5037 ConstantInt *CaseValue = Case.getCaseValue(); 5038 BasicBlock *CaseDest = Case.getCaseSuccessor(); 5039 5040 // Replace phi operands in successor blocks that are using the constant case 5041 // value rather than the switch condition variable: 5042 // switchbb: 5043 // switch i32 %x, label %default [ 5044 // i32 17, label %succ 5045 // ... 5046 // succ: 5047 // %r = phi i32 ... [ 17, %switchbb ] ... 5048 // --> 5049 // %r = phi i32 ... [ %x, %switchbb ] ... 5050 5051 for (PHINode &Phi : CaseDest->phis()) { 5052 // This only works if there is exactly 1 incoming edge from the switch to 5053 // a phi. If there is >1, that means multiple cases of the switch map to 1 5054 // value in the phi, and that phi value is not the switch condition. Thus, 5055 // this transform would not make sense (the phi would be invalid because 5056 // a phi can't have different incoming values from the same block). 5057 int SwitchBBIdx = Phi.getBasicBlockIndex(SwitchBlock); 5058 if (Phi.getIncomingValue(SwitchBBIdx) == CaseValue && 5059 count(Phi.blocks(), SwitchBlock) == 1) { 5060 Phi.setIncomingValue(SwitchBBIdx, SI->getCondition()); 5061 Changed = true; 5062 } 5063 } 5064 5065 // Collect phi nodes that are indirectly using this switch's case constants. 5066 int PhiIdx; 5067 if (auto *Phi = FindPHIForConditionForwarding(CaseValue, CaseDest, &PhiIdx)) 5068 ForwardingNodes[Phi].push_back(PhiIdx); 5069 } 5070 5071 for (auto &ForwardingNode : ForwardingNodes) { 5072 PHINode *Phi = ForwardingNode.first; 5073 SmallVectorImpl<int> &Indexes = ForwardingNode.second; 5074 if (Indexes.size() < 2) 5075 continue; 5076 5077 for (int Index : Indexes) 5078 Phi->setIncomingValue(Index, SI->getCondition()); 5079 Changed = true; 5080 } 5081 5082 return Changed; 5083 } 5084 5085 /// Return true if the backend will be able to handle 5086 /// initializing an array of constants like C. 5087 static bool ValidLookupTableConstant(Constant *C, const TargetTransformInfo &TTI) { 5088 if (C->isThreadDependent()) 5089 return false; 5090 if (C->isDLLImportDependent()) 5091 return false; 5092 5093 if (!isa<ConstantFP>(C) && !isa<ConstantInt>(C) && 5094 !isa<ConstantPointerNull>(C) && !isa<GlobalValue>(C) && 5095 !isa<UndefValue>(C) && !isa<ConstantExpr>(C)) 5096 return false; 5097 5098 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 5099 if (!CE->isGEPWithNoNotionalOverIndexing()) 5100 return false; 5101 if (!ValidLookupTableConstant(CE->getOperand(0), TTI)) 5102 return false; 5103 } 5104 5105 if (!TTI.shouldBuildLookupTablesForConstant(C)) 5106 return false; 5107 5108 return true; 5109 } 5110 5111 /// If V is a Constant, return it. Otherwise, try to look up 5112 /// its constant value in ConstantPool, returning 0 if it's not there. 5113 static Constant * 5114 LookupConstant(Value *V, 5115 const SmallDenseMap<Value *, Constant *> &ConstantPool) { 5116 if (Constant *C = dyn_cast<Constant>(V)) 5117 return C; 5118 return ConstantPool.lookup(V); 5119 } 5120 5121 /// Try to fold instruction I into a constant. This works for 5122 /// simple instructions such as binary operations where both operands are 5123 /// constant or can be replaced by constants from the ConstantPool. Returns the 5124 /// resulting constant on success, 0 otherwise. 5125 static Constant * 5126 ConstantFold(Instruction *I, const DataLayout &DL, 5127 const SmallDenseMap<Value *, Constant *> &ConstantPool) { 5128 if (SelectInst *Select = dyn_cast<SelectInst>(I)) { 5129 Constant *A = LookupConstant(Select->getCondition(), ConstantPool); 5130 if (!A) 5131 return nullptr; 5132 if (A->isAllOnesValue()) 5133 return LookupConstant(Select->getTrueValue(), ConstantPool); 5134 if (A->isNullValue()) 5135 return LookupConstant(Select->getFalseValue(), ConstantPool); 5136 return nullptr; 5137 } 5138 5139 SmallVector<Constant *, 4> COps; 5140 for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) { 5141 if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool)) 5142 COps.push_back(A); 5143 else 5144 return nullptr; 5145 } 5146 5147 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) { 5148 return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0], 5149 COps[1], DL); 5150 } 5151 5152 return ConstantFoldInstOperands(I, COps, DL); 5153 } 5154 5155 /// Try to determine the resulting constant values in phi nodes 5156 /// at the common destination basic block, *CommonDest, for one of the case 5157 /// destionations CaseDest corresponding to value CaseVal (0 for the default 5158 /// case), of a switch instruction SI. 5159 static bool 5160 GetCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest, 5161 BasicBlock **CommonDest, 5162 SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res, 5163 const DataLayout &DL, const TargetTransformInfo &TTI) { 5164 // The block from which we enter the common destination. 5165 BasicBlock *Pred = SI->getParent(); 5166 5167 // If CaseDest is empty except for some side-effect free instructions through 5168 // which we can constant-propagate the CaseVal, continue to its successor. 5169 SmallDenseMap<Value *, Constant *> ConstantPool; 5170 ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal)); 5171 for (Instruction &I :CaseDest->instructionsWithoutDebug()) { 5172 if (I.isTerminator()) { 5173 // If the terminator is a simple branch, continue to the next block. 5174 if (I.getNumSuccessors() != 1 || I.isExceptionalTerminator()) 5175 return false; 5176 Pred = CaseDest; 5177 CaseDest = I.getSuccessor(0); 5178 } else if (Constant *C = ConstantFold(&I, DL, ConstantPool)) { 5179 // Instruction is side-effect free and constant. 5180 5181 // If the instruction has uses outside this block or a phi node slot for 5182 // the block, it is not safe to bypass the instruction since it would then 5183 // no longer dominate all its uses. 5184 for (auto &Use : I.uses()) { 5185 User *User = Use.getUser(); 5186 if (Instruction *I = dyn_cast<Instruction>(User)) 5187 if (I->getParent() == CaseDest) 5188 continue; 5189 if (PHINode *Phi = dyn_cast<PHINode>(User)) 5190 if (Phi->getIncomingBlock(Use) == CaseDest) 5191 continue; 5192 return false; 5193 } 5194 5195 ConstantPool.insert(std::make_pair(&I, C)); 5196 } else { 5197 break; 5198 } 5199 } 5200 5201 // If we did not have a CommonDest before, use the current one. 5202 if (!*CommonDest) 5203 *CommonDest = CaseDest; 5204 // If the destination isn't the common one, abort. 5205 if (CaseDest != *CommonDest) 5206 return false; 5207 5208 // Get the values for this case from phi nodes in the destination block. 5209 for (PHINode &PHI : (*CommonDest)->phis()) { 5210 int Idx = PHI.getBasicBlockIndex(Pred); 5211 if (Idx == -1) 5212 continue; 5213 5214 Constant *ConstVal = 5215 LookupConstant(PHI.getIncomingValue(Idx), ConstantPool); 5216 if (!ConstVal) 5217 return false; 5218 5219 // Be conservative about which kinds of constants we support. 5220 if (!ValidLookupTableConstant(ConstVal, TTI)) 5221 return false; 5222 5223 Res.push_back(std::make_pair(&PHI, ConstVal)); 5224 } 5225 5226 return Res.size() > 0; 5227 } 5228 5229 // Helper function used to add CaseVal to the list of cases that generate 5230 // Result. Returns the updated number of cases that generate this result. 5231 static uintptr_t MapCaseToResult(ConstantInt *CaseVal, 5232 SwitchCaseResultVectorTy &UniqueResults, 5233 Constant *Result) { 5234 for (auto &I : UniqueResults) { 5235 if (I.first == Result) { 5236 I.second.push_back(CaseVal); 5237 return I.second.size(); 5238 } 5239 } 5240 UniqueResults.push_back( 5241 std::make_pair(Result, SmallVector<ConstantInt *, 4>(1, CaseVal))); 5242 return 1; 5243 } 5244 5245 // Helper function that initializes a map containing 5246 // results for the PHI node of the common destination block for a switch 5247 // instruction. Returns false if multiple PHI nodes have been found or if 5248 // there is not a common destination block for the switch. 5249 static bool 5250 InitializeUniqueCases(SwitchInst *SI, PHINode *&PHI, BasicBlock *&CommonDest, 5251 SwitchCaseResultVectorTy &UniqueResults, 5252 Constant *&DefaultResult, const DataLayout &DL, 5253 const TargetTransformInfo &TTI, 5254 uintptr_t MaxUniqueResults, uintptr_t MaxCasesPerResult) { 5255 for (auto &I : SI->cases()) { 5256 ConstantInt *CaseVal = I.getCaseValue(); 5257 5258 // Resulting value at phi nodes for this case value. 5259 SwitchCaseResultsTy Results; 5260 if (!GetCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results, 5261 DL, TTI)) 5262 return false; 5263 5264 // Only one value per case is permitted. 5265 if (Results.size() > 1) 5266 return false; 5267 5268 // Add the case->result mapping to UniqueResults. 5269 const uintptr_t NumCasesForResult = 5270 MapCaseToResult(CaseVal, UniqueResults, Results.begin()->second); 5271 5272 // Early out if there are too many cases for this result. 5273 if (NumCasesForResult > MaxCasesPerResult) 5274 return false; 5275 5276 // Early out if there are too many unique results. 5277 if (UniqueResults.size() > MaxUniqueResults) 5278 return false; 5279 5280 // Check the PHI consistency. 5281 if (!PHI) 5282 PHI = Results[0].first; 5283 else if (PHI != Results[0].first) 5284 return false; 5285 } 5286 // Find the default result value. 5287 SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults; 5288 BasicBlock *DefaultDest = SI->getDefaultDest(); 5289 GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults, 5290 DL, TTI); 5291 // If the default value is not found abort unless the default destination 5292 // is unreachable. 5293 DefaultResult = 5294 DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr; 5295 if ((!DefaultResult && 5296 !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()))) 5297 return false; 5298 5299 return true; 5300 } 5301 5302 // Helper function that checks if it is possible to transform a switch with only 5303 // two cases (or two cases + default) that produces a result into a select. 5304 // Example: 5305 // switch (a) { 5306 // case 10: %0 = icmp eq i32 %a, 10 5307 // return 10; %1 = select i1 %0, i32 10, i32 4 5308 // case 20: ----> %2 = icmp eq i32 %a, 20 5309 // return 2; %3 = select i1 %2, i32 2, i32 %1 5310 // default: 5311 // return 4; 5312 // } 5313 static Value *ConvertTwoCaseSwitch(const SwitchCaseResultVectorTy &ResultVector, 5314 Constant *DefaultResult, Value *Condition, 5315 IRBuilder<> &Builder) { 5316 // If we are selecting between only two cases transform into a simple 5317 // select or a two-way select if default is possible. 5318 if (ResultVector.size() == 2 && ResultVector[0].second.size() == 1 && 5319 ResultVector[1].second.size() == 1) { 5320 ConstantInt *const FirstCase = ResultVector[0].second[0]; 5321 ConstantInt *const SecondCase = ResultVector[1].second[0]; 5322 5323 bool DefaultCanTrigger = DefaultResult; 5324 Value *SelectValue = ResultVector[1].first; 5325 if (DefaultCanTrigger) { 5326 Value *const ValueCompare = 5327 Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp"); 5328 SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first, 5329 DefaultResult, "switch.select"); 5330 } 5331 Value *const ValueCompare = 5332 Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp"); 5333 return Builder.CreateSelect(ValueCompare, ResultVector[0].first, 5334 SelectValue, "switch.select"); 5335 } 5336 5337 // Handle the degenerate case where two cases have the same value. 5338 if (ResultVector.size() == 1 && ResultVector[0].second.size() == 2 && 5339 DefaultResult) { 5340 Value *Cmp1 = Builder.CreateICmpEQ( 5341 Condition, ResultVector[0].second[0], "switch.selectcmp.case1"); 5342 Value *Cmp2 = Builder.CreateICmpEQ( 5343 Condition, ResultVector[0].second[1], "switch.selectcmp.case2"); 5344 Value *Cmp = Builder.CreateOr(Cmp1, Cmp2, "switch.selectcmp"); 5345 return Builder.CreateSelect(Cmp, ResultVector[0].first, DefaultResult); 5346 } 5347 5348 return nullptr; 5349 } 5350 5351 // Helper function to cleanup a switch instruction that has been converted into 5352 // a select, fixing up PHI nodes and basic blocks. 5353 static void RemoveSwitchAfterSelectConversion(SwitchInst *SI, PHINode *PHI, 5354 Value *SelectValue, 5355 IRBuilder<> &Builder, 5356 DomTreeUpdater *DTU) { 5357 std::vector<DominatorTree::UpdateType> Updates; 5358 5359 BasicBlock *SelectBB = SI->getParent(); 5360 BasicBlock *DestBB = PHI->getParent(); 5361 5362 if (DTU && !is_contained(predecessors(DestBB), SelectBB)) 5363 Updates.push_back({DominatorTree::Insert, SelectBB, DestBB}); 5364 Builder.CreateBr(DestBB); 5365 5366 // Remove the switch. 5367 5368 while (PHI->getBasicBlockIndex(SelectBB) >= 0) 5369 PHI->removeIncomingValue(SelectBB); 5370 PHI->addIncoming(SelectValue, SelectBB); 5371 5372 SmallPtrSet<BasicBlock *, 4> RemovedSuccessors; 5373 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { 5374 BasicBlock *Succ = SI->getSuccessor(i); 5375 5376 if (Succ == DestBB) 5377 continue; 5378 Succ->removePredecessor(SelectBB); 5379 if (DTU && RemovedSuccessors.insert(Succ).second) 5380 Updates.push_back({DominatorTree::Delete, SelectBB, Succ}); 5381 } 5382 SI->eraseFromParent(); 5383 if (DTU) 5384 DTU->applyUpdates(Updates); 5385 } 5386 5387 /// If the switch is only used to initialize one or more 5388 /// phi nodes in a common successor block with only two different 5389 /// constant values, replace the switch with select. 5390 static bool switchToSelect(SwitchInst *SI, IRBuilder<> &Builder, 5391 DomTreeUpdater *DTU, const DataLayout &DL, 5392 const TargetTransformInfo &TTI) { 5393 Value *const Cond = SI->getCondition(); 5394 PHINode *PHI = nullptr; 5395 BasicBlock *CommonDest = nullptr; 5396 Constant *DefaultResult; 5397 SwitchCaseResultVectorTy UniqueResults; 5398 // Collect all the cases that will deliver the same value from the switch. 5399 if (!InitializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult, 5400 DL, TTI, /*MaxUniqueResults*/2, 5401 /*MaxCasesPerResult*/2)) 5402 return false; 5403 assert(PHI != nullptr && "PHI for value select not found"); 5404 5405 Builder.SetInsertPoint(SI); 5406 Value *SelectValue = 5407 ConvertTwoCaseSwitch(UniqueResults, DefaultResult, Cond, Builder); 5408 if (SelectValue) { 5409 RemoveSwitchAfterSelectConversion(SI, PHI, SelectValue, Builder, DTU); 5410 return true; 5411 } 5412 // The switch couldn't be converted into a select. 5413 return false; 5414 } 5415 5416 namespace { 5417 5418 /// This class represents a lookup table that can be used to replace a switch. 5419 class SwitchLookupTable { 5420 public: 5421 /// Create a lookup table to use as a switch replacement with the contents 5422 /// of Values, using DefaultValue to fill any holes in the table. 5423 SwitchLookupTable( 5424 Module &M, uint64_t TableSize, ConstantInt *Offset, 5425 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values, 5426 Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName); 5427 5428 /// Build instructions with Builder to retrieve the value at 5429 /// the position given by Index in the lookup table. 5430 Value *BuildLookup(Value *Index, IRBuilder<> &Builder); 5431 5432 /// Return true if a table with TableSize elements of 5433 /// type ElementType would fit in a target-legal register. 5434 static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize, 5435 Type *ElementType); 5436 5437 private: 5438 // Depending on the contents of the table, it can be represented in 5439 // different ways. 5440 enum { 5441 // For tables where each element contains the same value, we just have to 5442 // store that single value and return it for each lookup. 5443 SingleValueKind, 5444 5445 // For tables where there is a linear relationship between table index 5446 // and values. We calculate the result with a simple multiplication 5447 // and addition instead of a table lookup. 5448 LinearMapKind, 5449 5450 // For small tables with integer elements, we can pack them into a bitmap 5451 // that fits into a target-legal register. Values are retrieved by 5452 // shift and mask operations. 5453 BitMapKind, 5454 5455 // The table is stored as an array of values. Values are retrieved by load 5456 // instructions from the table. 5457 ArrayKind 5458 } Kind; 5459 5460 // For SingleValueKind, this is the single value. 5461 Constant *SingleValue = nullptr; 5462 5463 // For BitMapKind, this is the bitmap. 5464 ConstantInt *BitMap = nullptr; 5465 IntegerType *BitMapElementTy = nullptr; 5466 5467 // For LinearMapKind, these are the constants used to derive the value. 5468 ConstantInt *LinearOffset = nullptr; 5469 ConstantInt *LinearMultiplier = nullptr; 5470 5471 // For ArrayKind, this is the array. 5472 GlobalVariable *Array = nullptr; 5473 }; 5474 5475 } // end anonymous namespace 5476 5477 SwitchLookupTable::SwitchLookupTable( 5478 Module &M, uint64_t TableSize, ConstantInt *Offset, 5479 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values, 5480 Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName) { 5481 assert(Values.size() && "Can't build lookup table without values!"); 5482 assert(TableSize >= Values.size() && "Can't fit values in table!"); 5483 5484 // If all values in the table are equal, this is that value. 5485 SingleValue = Values.begin()->second; 5486 5487 Type *ValueType = Values.begin()->second->getType(); 5488 5489 // Build up the table contents. 5490 SmallVector<Constant *, 64> TableContents(TableSize); 5491 for (size_t I = 0, E = Values.size(); I != E; ++I) { 5492 ConstantInt *CaseVal = Values[I].first; 5493 Constant *CaseRes = Values[I].second; 5494 assert(CaseRes->getType() == ValueType); 5495 5496 uint64_t Idx = (CaseVal->getValue() - Offset->getValue()).getLimitedValue(); 5497 TableContents[Idx] = CaseRes; 5498 5499 if (CaseRes != SingleValue) 5500 SingleValue = nullptr; 5501 } 5502 5503 // Fill in any holes in the table with the default result. 5504 if (Values.size() < TableSize) { 5505 assert(DefaultValue && 5506 "Need a default value to fill the lookup table holes."); 5507 assert(DefaultValue->getType() == ValueType); 5508 for (uint64_t I = 0; I < TableSize; ++I) { 5509 if (!TableContents[I]) 5510 TableContents[I] = DefaultValue; 5511 } 5512 5513 if (DefaultValue != SingleValue) 5514 SingleValue = nullptr; 5515 } 5516 5517 // If each element in the table contains the same value, we only need to store 5518 // that single value. 5519 if (SingleValue) { 5520 Kind = SingleValueKind; 5521 return; 5522 } 5523 5524 // Check if we can derive the value with a linear transformation from the 5525 // table index. 5526 if (isa<IntegerType>(ValueType)) { 5527 bool LinearMappingPossible = true; 5528 APInt PrevVal; 5529 APInt DistToPrev; 5530 assert(TableSize >= 2 && "Should be a SingleValue table."); 5531 // Check if there is the same distance between two consecutive values. 5532 for (uint64_t I = 0; I < TableSize; ++I) { 5533 ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]); 5534 if (!ConstVal) { 5535 // This is an undef. We could deal with it, but undefs in lookup tables 5536 // are very seldom. It's probably not worth the additional complexity. 5537 LinearMappingPossible = false; 5538 break; 5539 } 5540 const APInt &Val = ConstVal->getValue(); 5541 if (I != 0) { 5542 APInt Dist = Val - PrevVal; 5543 if (I == 1) { 5544 DistToPrev = Dist; 5545 } else if (Dist != DistToPrev) { 5546 LinearMappingPossible = false; 5547 break; 5548 } 5549 } 5550 PrevVal = Val; 5551 } 5552 if (LinearMappingPossible) { 5553 LinearOffset = cast<ConstantInt>(TableContents[0]); 5554 LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev); 5555 Kind = LinearMapKind; 5556 ++NumLinearMaps; 5557 return; 5558 } 5559 } 5560 5561 // If the type is integer and the table fits in a register, build a bitmap. 5562 if (WouldFitInRegister(DL, TableSize, ValueType)) { 5563 IntegerType *IT = cast<IntegerType>(ValueType); 5564 APInt TableInt(TableSize * IT->getBitWidth(), 0); 5565 for (uint64_t I = TableSize; I > 0; --I) { 5566 TableInt <<= IT->getBitWidth(); 5567 // Insert values into the bitmap. Undef values are set to zero. 5568 if (!isa<UndefValue>(TableContents[I - 1])) { 5569 ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]); 5570 TableInt |= Val->getValue().zext(TableInt.getBitWidth()); 5571 } 5572 } 5573 BitMap = ConstantInt::get(M.getContext(), TableInt); 5574 BitMapElementTy = IT; 5575 Kind = BitMapKind; 5576 ++NumBitMaps; 5577 return; 5578 } 5579 5580 // Store the table in an array. 5581 ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize); 5582 Constant *Initializer = ConstantArray::get(ArrayTy, TableContents); 5583 5584 Array = new GlobalVariable(M, ArrayTy, /*isConstant=*/true, 5585 GlobalVariable::PrivateLinkage, Initializer, 5586 "switch.table." + FuncName); 5587 Array->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); 5588 // Set the alignment to that of an array items. We will be only loading one 5589 // value out of it. 5590 Array->setAlignment(Align(DL.getPrefTypeAlignment(ValueType))); 5591 Kind = ArrayKind; 5592 } 5593 5594 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) { 5595 switch (Kind) { 5596 case SingleValueKind: 5597 return SingleValue; 5598 case LinearMapKind: { 5599 // Derive the result value from the input value. 5600 Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(), 5601 false, "switch.idx.cast"); 5602 if (!LinearMultiplier->isOne()) 5603 Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult"); 5604 if (!LinearOffset->isZero()) 5605 Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset"); 5606 return Result; 5607 } 5608 case BitMapKind: { 5609 // Type of the bitmap (e.g. i59). 5610 IntegerType *MapTy = BitMap->getType(); 5611 5612 // Cast Index to the same type as the bitmap. 5613 // Note: The Index is <= the number of elements in the table, so 5614 // truncating it to the width of the bitmask is safe. 5615 Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast"); 5616 5617 // Multiply the shift amount by the element width. 5618 ShiftAmt = Builder.CreateMul( 5619 ShiftAmt, ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()), 5620 "switch.shiftamt"); 5621 5622 // Shift down. 5623 Value *DownShifted = 5624 Builder.CreateLShr(BitMap, ShiftAmt, "switch.downshift"); 5625 // Mask off. 5626 return Builder.CreateTrunc(DownShifted, BitMapElementTy, "switch.masked"); 5627 } 5628 case ArrayKind: { 5629 // Make sure the table index will not overflow when treated as signed. 5630 IntegerType *IT = cast<IntegerType>(Index->getType()); 5631 uint64_t TableSize = 5632 Array->getInitializer()->getType()->getArrayNumElements(); 5633 if (TableSize > (1ULL << (IT->getBitWidth() - 1))) 5634 Index = Builder.CreateZExt( 5635 Index, IntegerType::get(IT->getContext(), IT->getBitWidth() + 1), 5636 "switch.tableidx.zext"); 5637 5638 Value *GEPIndices[] = {Builder.getInt32(0), Index}; 5639 Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array, 5640 GEPIndices, "switch.gep"); 5641 return Builder.CreateLoad( 5642 cast<ArrayType>(Array->getValueType())->getElementType(), GEP, 5643 "switch.load"); 5644 } 5645 } 5646 llvm_unreachable("Unknown lookup table kind!"); 5647 } 5648 5649 bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL, 5650 uint64_t TableSize, 5651 Type *ElementType) { 5652 auto *IT = dyn_cast<IntegerType>(ElementType); 5653 if (!IT) 5654 return false; 5655 // FIXME: If the type is wider than it needs to be, e.g. i8 but all values 5656 // are <= 15, we could try to narrow the type. 5657 5658 // Avoid overflow, fitsInLegalInteger uses unsigned int for the width. 5659 if (TableSize >= UINT_MAX / IT->getBitWidth()) 5660 return false; 5661 return DL.fitsInLegalInteger(TableSize * IT->getBitWidth()); 5662 } 5663 5664 /// Determine whether a lookup table should be built for this switch, based on 5665 /// the number of cases, size of the table, and the types of the results. 5666 static bool 5667 ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize, 5668 const TargetTransformInfo &TTI, const DataLayout &DL, 5669 const SmallDenseMap<PHINode *, Type *> &ResultTypes) { 5670 if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10) 5671 return false; // TableSize overflowed, or mul below might overflow. 5672 5673 bool AllTablesFitInRegister = true; 5674 bool HasIllegalType = false; 5675 for (const auto &I : ResultTypes) { 5676 Type *Ty = I.second; 5677 5678 // Saturate this flag to true. 5679 HasIllegalType = HasIllegalType || !TTI.isTypeLegal(Ty); 5680 5681 // Saturate this flag to false. 5682 AllTablesFitInRegister = 5683 AllTablesFitInRegister && 5684 SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty); 5685 5686 // If both flags saturate, we're done. NOTE: This *only* works with 5687 // saturating flags, and all flags have to saturate first due to the 5688 // non-deterministic behavior of iterating over a dense map. 5689 if (HasIllegalType && !AllTablesFitInRegister) 5690 break; 5691 } 5692 5693 // If each table would fit in a register, we should build it anyway. 5694 if (AllTablesFitInRegister) 5695 return true; 5696 5697 // Don't build a table that doesn't fit in-register if it has illegal types. 5698 if (HasIllegalType) 5699 return false; 5700 5701 // The table density should be at least 40%. This is the same criterion as for 5702 // jump tables, see SelectionDAGBuilder::handleJTSwitchCase. 5703 // FIXME: Find the best cut-off. 5704 return SI->getNumCases() * 10 >= TableSize * 4; 5705 } 5706 5707 /// Try to reuse the switch table index compare. Following pattern: 5708 /// \code 5709 /// if (idx < tablesize) 5710 /// r = table[idx]; // table does not contain default_value 5711 /// else 5712 /// r = default_value; 5713 /// if (r != default_value) 5714 /// ... 5715 /// \endcode 5716 /// Is optimized to: 5717 /// \code 5718 /// cond = idx < tablesize; 5719 /// if (cond) 5720 /// r = table[idx]; 5721 /// else 5722 /// r = default_value; 5723 /// if (cond) 5724 /// ... 5725 /// \endcode 5726 /// Jump threading will then eliminate the second if(cond). 5727 static void reuseTableCompare( 5728 User *PhiUser, BasicBlock *PhiBlock, BranchInst *RangeCheckBranch, 5729 Constant *DefaultValue, 5730 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values) { 5731 ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser); 5732 if (!CmpInst) 5733 return; 5734 5735 // We require that the compare is in the same block as the phi so that jump 5736 // threading can do its work afterwards. 5737 if (CmpInst->getParent() != PhiBlock) 5738 return; 5739 5740 Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1)); 5741 if (!CmpOp1) 5742 return; 5743 5744 Value *RangeCmp = RangeCheckBranch->getCondition(); 5745 Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType()); 5746 Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType()); 5747 5748 // Check if the compare with the default value is constant true or false. 5749 Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(), 5750 DefaultValue, CmpOp1, true); 5751 if (DefaultConst != TrueConst && DefaultConst != FalseConst) 5752 return; 5753 5754 // Check if the compare with the case values is distinct from the default 5755 // compare result. 5756 for (auto ValuePair : Values) { 5757 Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(), 5758 ValuePair.second, CmpOp1, true); 5759 if (!CaseConst || CaseConst == DefaultConst || isa<UndefValue>(CaseConst)) 5760 return; 5761 assert((CaseConst == TrueConst || CaseConst == FalseConst) && 5762 "Expect true or false as compare result."); 5763 } 5764 5765 // Check if the branch instruction dominates the phi node. It's a simple 5766 // dominance check, but sufficient for our needs. 5767 // Although this check is invariant in the calling loops, it's better to do it 5768 // at this late stage. Practically we do it at most once for a switch. 5769 BasicBlock *BranchBlock = RangeCheckBranch->getParent(); 5770 for (BasicBlock *Pred : predecessors(PhiBlock)) { 5771 if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock) 5772 return; 5773 } 5774 5775 if (DefaultConst == FalseConst) { 5776 // The compare yields the same result. We can replace it. 5777 CmpInst->replaceAllUsesWith(RangeCmp); 5778 ++NumTableCmpReuses; 5779 } else { 5780 // The compare yields the same result, just inverted. We can replace it. 5781 Value *InvertedTableCmp = BinaryOperator::CreateXor( 5782 RangeCmp, ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp", 5783 RangeCheckBranch); 5784 CmpInst->replaceAllUsesWith(InvertedTableCmp); 5785 ++NumTableCmpReuses; 5786 } 5787 } 5788 5789 /// If the switch is only used to initialize one or more phi nodes in a common 5790 /// successor block with different constant values, replace the switch with 5791 /// lookup tables. 5792 static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder, 5793 DomTreeUpdater *DTU, const DataLayout &DL, 5794 const TargetTransformInfo &TTI) { 5795 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 5796 5797 BasicBlock *BB = SI->getParent(); 5798 Function *Fn = BB->getParent(); 5799 // Only build lookup table when we have a target that supports it or the 5800 // attribute is not set. 5801 if (!TTI.shouldBuildLookupTables() || 5802 (Fn->getFnAttribute("no-jump-tables").getValueAsBool())) 5803 return false; 5804 5805 // FIXME: If the switch is too sparse for a lookup table, perhaps we could 5806 // split off a dense part and build a lookup table for that. 5807 5808 // FIXME: This creates arrays of GEPs to constant strings, which means each 5809 // GEP needs a runtime relocation in PIC code. We should just build one big 5810 // string and lookup indices into that. 5811 5812 // Ignore switches with less than three cases. Lookup tables will not make 5813 // them faster, so we don't analyze them. 5814 if (SI->getNumCases() < 3) 5815 return false; 5816 5817 // Figure out the corresponding result for each case value and phi node in the 5818 // common destination, as well as the min and max case values. 5819 assert(!SI->cases().empty()); 5820 SwitchInst::CaseIt CI = SI->case_begin(); 5821 ConstantInt *MinCaseVal = CI->getCaseValue(); 5822 ConstantInt *MaxCaseVal = CI->getCaseValue(); 5823 5824 BasicBlock *CommonDest = nullptr; 5825 5826 using ResultListTy = SmallVector<std::pair<ConstantInt *, Constant *>, 4>; 5827 SmallDenseMap<PHINode *, ResultListTy> ResultLists; 5828 5829 SmallDenseMap<PHINode *, Constant *> DefaultResults; 5830 SmallDenseMap<PHINode *, Type *> ResultTypes; 5831 SmallVector<PHINode *, 4> PHIs; 5832 5833 for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) { 5834 ConstantInt *CaseVal = CI->getCaseValue(); 5835 if (CaseVal->getValue().slt(MinCaseVal->getValue())) 5836 MinCaseVal = CaseVal; 5837 if (CaseVal->getValue().sgt(MaxCaseVal->getValue())) 5838 MaxCaseVal = CaseVal; 5839 5840 // Resulting value at phi nodes for this case value. 5841 using ResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>; 5842 ResultsTy Results; 5843 if (!GetCaseResults(SI, CaseVal, CI->getCaseSuccessor(), &CommonDest, 5844 Results, DL, TTI)) 5845 return false; 5846 5847 // Append the result from this case to the list for each phi. 5848 for (const auto &I : Results) { 5849 PHINode *PHI = I.first; 5850 Constant *Value = I.second; 5851 if (!ResultLists.count(PHI)) 5852 PHIs.push_back(PHI); 5853 ResultLists[PHI].push_back(std::make_pair(CaseVal, Value)); 5854 } 5855 } 5856 5857 // Keep track of the result types. 5858 for (PHINode *PHI : PHIs) { 5859 ResultTypes[PHI] = ResultLists[PHI][0].second->getType(); 5860 } 5861 5862 uint64_t NumResults = ResultLists[PHIs[0]].size(); 5863 APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue(); 5864 uint64_t TableSize = RangeSpread.getLimitedValue() + 1; 5865 bool TableHasHoles = (NumResults < TableSize); 5866 5867 // If the table has holes, we need a constant result for the default case 5868 // or a bitmask that fits in a register. 5869 SmallVector<std::pair<PHINode *, Constant *>, 4> DefaultResultsList; 5870 bool HasDefaultResults = 5871 GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, 5872 DefaultResultsList, DL, TTI); 5873 5874 bool NeedMask = (TableHasHoles && !HasDefaultResults); 5875 if (NeedMask) { 5876 // As an extra penalty for the validity test we require more cases. 5877 if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark). 5878 return false; 5879 if (!DL.fitsInLegalInteger(TableSize)) 5880 return false; 5881 } 5882 5883 for (const auto &I : DefaultResultsList) { 5884 PHINode *PHI = I.first; 5885 Constant *Result = I.second; 5886 DefaultResults[PHI] = Result; 5887 } 5888 5889 if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes)) 5890 return false; 5891 5892 std::vector<DominatorTree::UpdateType> Updates; 5893 5894 // Create the BB that does the lookups. 5895 Module &Mod = *CommonDest->getParent()->getParent(); 5896 BasicBlock *LookupBB = BasicBlock::Create( 5897 Mod.getContext(), "switch.lookup", CommonDest->getParent(), CommonDest); 5898 5899 // Compute the table index value. 5900 Builder.SetInsertPoint(SI); 5901 Value *TableIndex; 5902 if (MinCaseVal->isNullValue()) 5903 TableIndex = SI->getCondition(); 5904 else 5905 TableIndex = Builder.CreateSub(SI->getCondition(), MinCaseVal, 5906 "switch.tableidx"); 5907 5908 // Compute the maximum table size representable by the integer type we are 5909 // switching upon. 5910 unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits(); 5911 uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize; 5912 assert(MaxTableSize >= TableSize && 5913 "It is impossible for a switch to have more entries than the max " 5914 "representable value of its input integer type's size."); 5915 5916 // If the default destination is unreachable, or if the lookup table covers 5917 // all values of the conditional variable, branch directly to the lookup table 5918 // BB. Otherwise, check that the condition is within the case range. 5919 const bool DefaultIsReachable = 5920 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 5921 const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize); 5922 BranchInst *RangeCheckBranch = nullptr; 5923 5924 if (!DefaultIsReachable || GeneratingCoveredLookupTable) { 5925 Builder.CreateBr(LookupBB); 5926 if (DTU) 5927 Updates.push_back({DominatorTree::Insert, BB, LookupBB}); 5928 // Note: We call removeProdecessor later since we need to be able to get the 5929 // PHI value for the default case in case we're using a bit mask. 5930 } else { 5931 Value *Cmp = Builder.CreateICmpULT( 5932 TableIndex, ConstantInt::get(MinCaseVal->getType(), TableSize)); 5933 RangeCheckBranch = 5934 Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest()); 5935 if (DTU) 5936 Updates.push_back({DominatorTree::Insert, BB, LookupBB}); 5937 } 5938 5939 // Populate the BB that does the lookups. 5940 Builder.SetInsertPoint(LookupBB); 5941 5942 if (NeedMask) { 5943 // Before doing the lookup, we do the hole check. The LookupBB is therefore 5944 // re-purposed to do the hole check, and we create a new LookupBB. 5945 BasicBlock *MaskBB = LookupBB; 5946 MaskBB->setName("switch.hole_check"); 5947 LookupBB = BasicBlock::Create(Mod.getContext(), "switch.lookup", 5948 CommonDest->getParent(), CommonDest); 5949 5950 // Make the mask's bitwidth at least 8-bit and a power-of-2 to avoid 5951 // unnecessary illegal types. 5952 uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL)); 5953 APInt MaskInt(TableSizePowOf2, 0); 5954 APInt One(TableSizePowOf2, 1); 5955 // Build bitmask; fill in a 1 bit for every case. 5956 const ResultListTy &ResultList = ResultLists[PHIs[0]]; 5957 for (size_t I = 0, E = ResultList.size(); I != E; ++I) { 5958 uint64_t Idx = (ResultList[I].first->getValue() - MinCaseVal->getValue()) 5959 .getLimitedValue(); 5960 MaskInt |= One << Idx; 5961 } 5962 ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt); 5963 5964 // Get the TableIndex'th bit of the bitmask. 5965 // If this bit is 0 (meaning hole) jump to the default destination, 5966 // else continue with table lookup. 5967 IntegerType *MapTy = TableMask->getType(); 5968 Value *MaskIndex = 5969 Builder.CreateZExtOrTrunc(TableIndex, MapTy, "switch.maskindex"); 5970 Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, "switch.shifted"); 5971 Value *LoBit = Builder.CreateTrunc( 5972 Shifted, Type::getInt1Ty(Mod.getContext()), "switch.lobit"); 5973 Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest()); 5974 if (DTU) { 5975 Updates.push_back({DominatorTree::Insert, MaskBB, LookupBB}); 5976 Updates.push_back({DominatorTree::Insert, MaskBB, SI->getDefaultDest()}); 5977 } 5978 Builder.SetInsertPoint(LookupBB); 5979 AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, BB); 5980 } 5981 5982 if (!DefaultIsReachable || GeneratingCoveredLookupTable) { 5983 // We cached PHINodes in PHIs. To avoid accessing deleted PHINodes later, 5984 // do not delete PHINodes here. 5985 SI->getDefaultDest()->removePredecessor(BB, 5986 /*KeepOneInputPHIs=*/true); 5987 if (DTU) 5988 Updates.push_back({DominatorTree::Delete, BB, SI->getDefaultDest()}); 5989 } 5990 5991 bool ReturnedEarly = false; 5992 for (PHINode *PHI : PHIs) { 5993 const ResultListTy &ResultList = ResultLists[PHI]; 5994 5995 // If using a bitmask, use any value to fill the lookup table holes. 5996 Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI]; 5997 StringRef FuncName = Fn->getName(); 5998 SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultList, DV, DL, 5999 FuncName); 6000 6001 Value *Result = Table.BuildLookup(TableIndex, Builder); 6002 6003 // If the result is used to return immediately from the function, we want to 6004 // do that right here. 6005 if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->user_begin()) && 6006 PHI->user_back() == CommonDest->getFirstNonPHIOrDbg()) { 6007 Builder.CreateRet(Result); 6008 ReturnedEarly = true; 6009 break; 6010 } 6011 6012 // Do a small peephole optimization: re-use the switch table compare if 6013 // possible. 6014 if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) { 6015 BasicBlock *PhiBlock = PHI->getParent(); 6016 // Search for compare instructions which use the phi. 6017 for (auto *User : PHI->users()) { 6018 reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList); 6019 } 6020 } 6021 6022 PHI->addIncoming(Result, LookupBB); 6023 } 6024 6025 if (!ReturnedEarly) { 6026 Builder.CreateBr(CommonDest); 6027 if (DTU) 6028 Updates.push_back({DominatorTree::Insert, LookupBB, CommonDest}); 6029 } 6030 6031 // Remove the switch. 6032 SmallPtrSet<BasicBlock *, 8> RemovedSuccessors; 6033 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { 6034 BasicBlock *Succ = SI->getSuccessor(i); 6035 6036 if (Succ == SI->getDefaultDest()) 6037 continue; 6038 Succ->removePredecessor(BB); 6039 RemovedSuccessors.insert(Succ); 6040 } 6041 SI->eraseFromParent(); 6042 6043 if (DTU) { 6044 for (BasicBlock *RemovedSuccessor : RemovedSuccessors) 6045 Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor}); 6046 DTU->applyUpdates(Updates); 6047 } 6048 6049 ++NumLookupTables; 6050 if (NeedMask) 6051 ++NumLookupTablesHoles; 6052 return true; 6053 } 6054 6055 static bool isSwitchDense(ArrayRef<int64_t> Values) { 6056 // See also SelectionDAGBuilder::isDense(), which this function was based on. 6057 uint64_t Diff = (uint64_t)Values.back() - (uint64_t)Values.front(); 6058 uint64_t Range = Diff + 1; 6059 uint64_t NumCases = Values.size(); 6060 // 40% is the default density for building a jump table in optsize/minsize mode. 6061 uint64_t MinDensity = 40; 6062 6063 return NumCases * 100 >= Range * MinDensity; 6064 } 6065 6066 /// Try to transform a switch that has "holes" in it to a contiguous sequence 6067 /// of cases. 6068 /// 6069 /// A switch such as: switch(i) {case 5: case 9: case 13: case 17:} can be 6070 /// range-reduced to: switch ((i-5) / 4) {case 0: case 1: case 2: case 3:}. 6071 /// 6072 /// This converts a sparse switch into a dense switch which allows better 6073 /// lowering and could also allow transforming into a lookup table. 6074 static bool ReduceSwitchRange(SwitchInst *SI, IRBuilder<> &Builder, 6075 const DataLayout &DL, 6076 const TargetTransformInfo &TTI) { 6077 auto *CondTy = cast<IntegerType>(SI->getCondition()->getType()); 6078 if (CondTy->getIntegerBitWidth() > 64 || 6079 !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth())) 6080 return false; 6081 // Only bother with this optimization if there are more than 3 switch cases; 6082 // SDAG will only bother creating jump tables for 4 or more cases. 6083 if (SI->getNumCases() < 4) 6084 return false; 6085 6086 // This transform is agnostic to the signedness of the input or case values. We 6087 // can treat the case values as signed or unsigned. We can optimize more common 6088 // cases such as a sequence crossing zero {-4,0,4,8} if we interpret case values 6089 // as signed. 6090 SmallVector<int64_t,4> Values; 6091 for (auto &C : SI->cases()) 6092 Values.push_back(C.getCaseValue()->getValue().getSExtValue()); 6093 llvm::sort(Values); 6094 6095 // If the switch is already dense, there's nothing useful to do here. 6096 if (isSwitchDense(Values)) 6097 return false; 6098 6099 // First, transform the values such that they start at zero and ascend. 6100 int64_t Base = Values[0]; 6101 for (auto &V : Values) 6102 V -= (uint64_t)(Base); 6103 6104 // Now we have signed numbers that have been shifted so that, given enough 6105 // precision, there are no negative values. Since the rest of the transform 6106 // is bitwise only, we switch now to an unsigned representation. 6107 6108 // This transform can be done speculatively because it is so cheap - it 6109 // results in a single rotate operation being inserted. 6110 // FIXME: It's possible that optimizing a switch on powers of two might also 6111 // be beneficial - flag values are often powers of two and we could use a CLZ 6112 // as the key function. 6113 6114 // countTrailingZeros(0) returns 64. As Values is guaranteed to have more than 6115 // one element and LLVM disallows duplicate cases, Shift is guaranteed to be 6116 // less than 64. 6117 unsigned Shift = 64; 6118 for (auto &V : Values) 6119 Shift = std::min(Shift, countTrailingZeros((uint64_t)V)); 6120 assert(Shift < 64); 6121 if (Shift > 0) 6122 for (auto &V : Values) 6123 V = (int64_t)((uint64_t)V >> Shift); 6124 6125 if (!isSwitchDense(Values)) 6126 // Transform didn't create a dense switch. 6127 return false; 6128 6129 // The obvious transform is to shift the switch condition right and emit a 6130 // check that the condition actually cleanly divided by GCD, i.e. 6131 // C & (1 << Shift - 1) == 0 6132 // inserting a new CFG edge to handle the case where it didn't divide cleanly. 6133 // 6134 // A cheaper way of doing this is a simple ROTR(C, Shift). This performs the 6135 // shift and puts the shifted-off bits in the uppermost bits. If any of these 6136 // are nonzero then the switch condition will be very large and will hit the 6137 // default case. 6138 6139 auto *Ty = cast<IntegerType>(SI->getCondition()->getType()); 6140 Builder.SetInsertPoint(SI); 6141 auto *ShiftC = ConstantInt::get(Ty, Shift); 6142 auto *Sub = Builder.CreateSub(SI->getCondition(), ConstantInt::get(Ty, Base)); 6143 auto *LShr = Builder.CreateLShr(Sub, ShiftC); 6144 auto *Shl = Builder.CreateShl(Sub, Ty->getBitWidth() - Shift); 6145 auto *Rot = Builder.CreateOr(LShr, Shl); 6146 SI->replaceUsesOfWith(SI->getCondition(), Rot); 6147 6148 for (auto Case : SI->cases()) { 6149 auto *Orig = Case.getCaseValue(); 6150 auto Sub = Orig->getValue() - APInt(Ty->getBitWidth(), Base); 6151 Case.setValue( 6152 cast<ConstantInt>(ConstantInt::get(Ty, Sub.lshr(ShiftC->getValue())))); 6153 } 6154 return true; 6155 } 6156 6157 bool SimplifyCFGOpt::simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) { 6158 BasicBlock *BB = SI->getParent(); 6159 6160 if (isValueEqualityComparison(SI)) { 6161 // If we only have one predecessor, and if it is a branch on this value, 6162 // see if that predecessor totally determines the outcome of this switch. 6163 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 6164 if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder)) 6165 return requestResimplify(); 6166 6167 Value *Cond = SI->getCondition(); 6168 if (SelectInst *Select = dyn_cast<SelectInst>(Cond)) 6169 if (SimplifySwitchOnSelect(SI, Select)) 6170 return requestResimplify(); 6171 6172 // If the block only contains the switch, see if we can fold the block 6173 // away into any preds. 6174 if (SI == &*BB->instructionsWithoutDebug().begin()) 6175 if (FoldValueComparisonIntoPredecessors(SI, Builder)) 6176 return requestResimplify(); 6177 } 6178 6179 // Try to transform the switch into an icmp and a branch. 6180 if (TurnSwitchRangeIntoICmp(SI, Builder)) 6181 return requestResimplify(); 6182 6183 // Remove unreachable cases. 6184 if (eliminateDeadSwitchCases(SI, DTU, Options.AC, DL)) 6185 return requestResimplify(); 6186 6187 if (switchToSelect(SI, Builder, DTU, DL, TTI)) 6188 return requestResimplify(); 6189 6190 if (Options.ForwardSwitchCondToPhi && ForwardSwitchConditionToPHI(SI)) 6191 return requestResimplify(); 6192 6193 // The conversion from switch to lookup tables results in difficult-to-analyze 6194 // code and makes pruning branches much harder. This is a problem if the 6195 // switch expression itself can still be restricted as a result of inlining or 6196 // CVP. Therefore, only apply this transformation during late stages of the 6197 // optimisation pipeline. 6198 if (Options.ConvertSwitchToLookupTable && 6199 SwitchToLookupTable(SI, Builder, DTU, DL, TTI)) 6200 return requestResimplify(); 6201 6202 if (ReduceSwitchRange(SI, Builder, DL, TTI)) 6203 return requestResimplify(); 6204 6205 return false; 6206 } 6207 6208 bool SimplifyCFGOpt::simplifyIndirectBr(IndirectBrInst *IBI) { 6209 BasicBlock *BB = IBI->getParent(); 6210 bool Changed = false; 6211 6212 // Eliminate redundant destinations. 6213 SmallPtrSet<Value *, 8> Succs; 6214 SmallPtrSet<BasicBlock *, 8> RemovedSuccs; 6215 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 6216 BasicBlock *Dest = IBI->getDestination(i); 6217 if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) { 6218 if (!Dest->hasAddressTaken()) 6219 RemovedSuccs.insert(Dest); 6220 Dest->removePredecessor(BB); 6221 IBI->removeDestination(i); 6222 --i; 6223 --e; 6224 Changed = true; 6225 } 6226 } 6227 6228 if (DTU) { 6229 std::vector<DominatorTree::UpdateType> Updates; 6230 Updates.reserve(RemovedSuccs.size()); 6231 for (auto *RemovedSucc : RemovedSuccs) 6232 Updates.push_back({DominatorTree::Delete, BB, RemovedSucc}); 6233 DTU->applyUpdates(Updates); 6234 } 6235 6236 if (IBI->getNumDestinations() == 0) { 6237 // If the indirectbr has no successors, change it to unreachable. 6238 new UnreachableInst(IBI->getContext(), IBI); 6239 EraseTerminatorAndDCECond(IBI); 6240 return true; 6241 } 6242 6243 if (IBI->getNumDestinations() == 1) { 6244 // If the indirectbr has one successor, change it to a direct branch. 6245 BranchInst::Create(IBI->getDestination(0), IBI); 6246 EraseTerminatorAndDCECond(IBI); 6247 return true; 6248 } 6249 6250 if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) { 6251 if (SimplifyIndirectBrOnSelect(IBI, SI)) 6252 return requestResimplify(); 6253 } 6254 return Changed; 6255 } 6256 6257 /// Given an block with only a single landing pad and a unconditional branch 6258 /// try to find another basic block which this one can be merged with. This 6259 /// handles cases where we have multiple invokes with unique landing pads, but 6260 /// a shared handler. 6261 /// 6262 /// We specifically choose to not worry about merging non-empty blocks 6263 /// here. That is a PRE/scheduling problem and is best solved elsewhere. In 6264 /// practice, the optimizer produces empty landing pad blocks quite frequently 6265 /// when dealing with exception dense code. (see: instcombine, gvn, if-else 6266 /// sinking in this file) 6267 /// 6268 /// This is primarily a code size optimization. We need to avoid performing 6269 /// any transform which might inhibit optimization (such as our ability to 6270 /// specialize a particular handler via tail commoning). We do this by not 6271 /// merging any blocks which require us to introduce a phi. Since the same 6272 /// values are flowing through both blocks, we don't lose any ability to 6273 /// specialize. If anything, we make such specialization more likely. 6274 /// 6275 /// TODO - This transformation could remove entries from a phi in the target 6276 /// block when the inputs in the phi are the same for the two blocks being 6277 /// merged. In some cases, this could result in removal of the PHI entirely. 6278 static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI, 6279 BasicBlock *BB, DomTreeUpdater *DTU) { 6280 auto Succ = BB->getUniqueSuccessor(); 6281 assert(Succ); 6282 // If there's a phi in the successor block, we'd likely have to introduce 6283 // a phi into the merged landing pad block. 6284 if (isa<PHINode>(*Succ->begin())) 6285 return false; 6286 6287 for (BasicBlock *OtherPred : predecessors(Succ)) { 6288 if (BB == OtherPred) 6289 continue; 6290 BasicBlock::iterator I = OtherPred->begin(); 6291 LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I); 6292 if (!LPad2 || !LPad2->isIdenticalTo(LPad)) 6293 continue; 6294 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 6295 ; 6296 BranchInst *BI2 = dyn_cast<BranchInst>(I); 6297 if (!BI2 || !BI2->isIdenticalTo(BI)) 6298 continue; 6299 6300 std::vector<DominatorTree::UpdateType> Updates; 6301 6302 // We've found an identical block. Update our predecessors to take that 6303 // path instead and make ourselves dead. 6304 SmallPtrSet<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB)); 6305 for (BasicBlock *Pred : Preds) { 6306 InvokeInst *II = cast<InvokeInst>(Pred->getTerminator()); 6307 assert(II->getNormalDest() != BB && II->getUnwindDest() == BB && 6308 "unexpected successor"); 6309 II->setUnwindDest(OtherPred); 6310 if (DTU) { 6311 Updates.push_back({DominatorTree::Insert, Pred, OtherPred}); 6312 Updates.push_back({DominatorTree::Delete, Pred, BB}); 6313 } 6314 } 6315 6316 // The debug info in OtherPred doesn't cover the merged control flow that 6317 // used to go through BB. We need to delete it or update it. 6318 for (auto I = OtherPred->begin(), E = OtherPred->end(); I != E;) { 6319 Instruction &Inst = *I; 6320 I++; 6321 if (isa<DbgInfoIntrinsic>(Inst)) 6322 Inst.eraseFromParent(); 6323 } 6324 6325 SmallPtrSet<BasicBlock *, 16> Succs(succ_begin(BB), succ_end(BB)); 6326 for (BasicBlock *Succ : Succs) { 6327 Succ->removePredecessor(BB); 6328 if (DTU) 6329 Updates.push_back({DominatorTree::Delete, BB, Succ}); 6330 } 6331 6332 IRBuilder<> Builder(BI); 6333 Builder.CreateUnreachable(); 6334 BI->eraseFromParent(); 6335 if (DTU) 6336 DTU->applyUpdates(Updates); 6337 return true; 6338 } 6339 return false; 6340 } 6341 6342 bool SimplifyCFGOpt::simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder) { 6343 return Branch->isUnconditional() ? simplifyUncondBranch(Branch, Builder) 6344 : simplifyCondBranch(Branch, Builder); 6345 } 6346 6347 bool SimplifyCFGOpt::simplifyUncondBranch(BranchInst *BI, 6348 IRBuilder<> &Builder) { 6349 BasicBlock *BB = BI->getParent(); 6350 BasicBlock *Succ = BI->getSuccessor(0); 6351 6352 // If the Terminator is the only non-phi instruction, simplify the block. 6353 // If LoopHeader is provided, check if the block or its successor is a loop 6354 // header. (This is for early invocations before loop simplify and 6355 // vectorization to keep canonical loop forms for nested loops. These blocks 6356 // can be eliminated when the pass is invoked later in the back-end.) 6357 // Note that if BB has only one predecessor then we do not introduce new 6358 // backedge, so we can eliminate BB. 6359 bool NeedCanonicalLoop = 6360 Options.NeedCanonicalLoop && 6361 (!LoopHeaders.empty() && BB->hasNPredecessorsOrMore(2) && 6362 (is_contained(LoopHeaders, BB) || is_contained(LoopHeaders, Succ))); 6363 BasicBlock::iterator I = BB->getFirstNonPHIOrDbg(true)->getIterator(); 6364 if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() && 6365 !NeedCanonicalLoop && TryToSimplifyUncondBranchFromEmptyBlock(BB, DTU)) 6366 return true; 6367 6368 // If the only instruction in the block is a seteq/setne comparison against a 6369 // constant, try to simplify the block. 6370 if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) 6371 if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) { 6372 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 6373 ; 6374 if (I->isTerminator() && 6375 tryToSimplifyUncondBranchWithICmpInIt(ICI, Builder)) 6376 return true; 6377 } 6378 6379 // See if we can merge an empty landing pad block with another which is 6380 // equivalent. 6381 if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) { 6382 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 6383 ; 6384 if (I->isTerminator() && TryToMergeLandingPad(LPad, BI, BB, DTU)) 6385 return true; 6386 } 6387 6388 // If this basic block is ONLY a compare and a branch, and if a predecessor 6389 // branches to us and our successor, fold the comparison into the 6390 // predecessor and use logical operations to update the incoming value 6391 // for PHI nodes in common successor. 6392 if (FoldBranchToCommonDest(BI, DTU, /*MSSAU=*/nullptr, &TTI, 6393 Options.BonusInstThreshold)) 6394 return requestResimplify(); 6395 return false; 6396 } 6397 6398 static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) { 6399 BasicBlock *PredPred = nullptr; 6400 for (auto *P : predecessors(BB)) { 6401 BasicBlock *PPred = P->getSinglePredecessor(); 6402 if (!PPred || (PredPred && PredPred != PPred)) 6403 return nullptr; 6404 PredPred = PPred; 6405 } 6406 return PredPred; 6407 } 6408 6409 bool SimplifyCFGOpt::simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) { 6410 BasicBlock *BB = BI->getParent(); 6411 if (!Options.SimplifyCondBranch) 6412 return false; 6413 6414 // Conditional branch 6415 if (isValueEqualityComparison(BI)) { 6416 // If we only have one predecessor, and if it is a branch on this value, 6417 // see if that predecessor totally determines the outcome of this 6418 // switch. 6419 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 6420 if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder)) 6421 return requestResimplify(); 6422 6423 // This block must be empty, except for the setcond inst, if it exists. 6424 // Ignore dbg and pseudo intrinsics. 6425 auto I = BB->instructionsWithoutDebug(true).begin(); 6426 if (&*I == BI) { 6427 if (FoldValueComparisonIntoPredecessors(BI, Builder)) 6428 return requestResimplify(); 6429 } else if (&*I == cast<Instruction>(BI->getCondition())) { 6430 ++I; 6431 if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder)) 6432 return requestResimplify(); 6433 } 6434 } 6435 6436 // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction. 6437 if (SimplifyBranchOnICmpChain(BI, Builder, DL)) 6438 return true; 6439 6440 // If this basic block has dominating predecessor blocks and the dominating 6441 // blocks' conditions imply BI's condition, we know the direction of BI. 6442 Optional<bool> Imp = isImpliedByDomCondition(BI->getCondition(), BI, DL); 6443 if (Imp) { 6444 // Turn this into a branch on constant. 6445 auto *OldCond = BI->getCondition(); 6446 ConstantInt *TorF = *Imp ? ConstantInt::getTrue(BB->getContext()) 6447 : ConstantInt::getFalse(BB->getContext()); 6448 BI->setCondition(TorF); 6449 RecursivelyDeleteTriviallyDeadInstructions(OldCond); 6450 return requestResimplify(); 6451 } 6452 6453 // If this basic block is ONLY a compare and a branch, and if a predecessor 6454 // branches to us and one of our successors, fold the comparison into the 6455 // predecessor and use logical operations to pick the right destination. 6456 if (FoldBranchToCommonDest(BI, DTU, /*MSSAU=*/nullptr, &TTI, 6457 Options.BonusInstThreshold)) 6458 return requestResimplify(); 6459 6460 // We have a conditional branch to two blocks that are only reachable 6461 // from BI. We know that the condbr dominates the two blocks, so see if 6462 // there is any identical code in the "then" and "else" blocks. If so, we 6463 // can hoist it up to the branching block. 6464 if (BI->getSuccessor(0)->getSinglePredecessor()) { 6465 if (BI->getSuccessor(1)->getSinglePredecessor()) { 6466 if (HoistCommon && 6467 HoistThenElseCodeToIf(BI, TTI, !Options.HoistCommonInsts)) 6468 return requestResimplify(); 6469 } else { 6470 // If Successor #1 has multiple preds, we may be able to conditionally 6471 // execute Successor #0 if it branches to Successor #1. 6472 Instruction *Succ0TI = BI->getSuccessor(0)->getTerminator(); 6473 if (Succ0TI->getNumSuccessors() == 1 && 6474 Succ0TI->getSuccessor(0) == BI->getSuccessor(1)) 6475 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), TTI)) 6476 return requestResimplify(); 6477 } 6478 } else if (BI->getSuccessor(1)->getSinglePredecessor()) { 6479 // If Successor #0 has multiple preds, we may be able to conditionally 6480 // execute Successor #1 if it branches to Successor #0. 6481 Instruction *Succ1TI = BI->getSuccessor(1)->getTerminator(); 6482 if (Succ1TI->getNumSuccessors() == 1 && 6483 Succ1TI->getSuccessor(0) == BI->getSuccessor(0)) 6484 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), TTI)) 6485 return requestResimplify(); 6486 } 6487 6488 // If this is a branch on a phi node in the current block, thread control 6489 // through this block if any PHI node entries are constants. 6490 if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition())) 6491 if (PN->getParent() == BI->getParent()) 6492 if (FoldCondBranchOnPHI(BI, DTU, DL, Options.AC)) 6493 return requestResimplify(); 6494 6495 // Scan predecessor blocks for conditional branches. 6496 for (BasicBlock *Pred : predecessors(BB)) 6497 if (BranchInst *PBI = dyn_cast<BranchInst>(Pred->getTerminator())) 6498 if (PBI != BI && PBI->isConditional()) 6499 if (SimplifyCondBranchToCondBranch(PBI, BI, DTU, DL, TTI)) 6500 return requestResimplify(); 6501 6502 // Look for diamond patterns. 6503 if (MergeCondStores) 6504 if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB)) 6505 if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator())) 6506 if (PBI != BI && PBI->isConditional()) 6507 if (mergeConditionalStores(PBI, BI, DTU, DL, TTI)) 6508 return requestResimplify(); 6509 6510 return false; 6511 } 6512 6513 /// Check if passing a value to an instruction will cause undefined behavior. 6514 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I, bool PtrValueMayBeModified) { 6515 Constant *C = dyn_cast<Constant>(V); 6516 if (!C) 6517 return false; 6518 6519 if (I->use_empty()) 6520 return false; 6521 6522 if (C->isNullValue() || isa<UndefValue>(C)) { 6523 // Only look at the first use, avoid hurting compile time with long uselists 6524 User *Use = *I->user_begin(); 6525 6526 // Now make sure that there are no instructions in between that can alter 6527 // control flow (eg. calls) 6528 for (BasicBlock::iterator 6529 i = ++BasicBlock::iterator(I), 6530 UI = BasicBlock::iterator(dyn_cast<Instruction>(Use)); 6531 i != UI; ++i) 6532 if (i == I->getParent()->end() || i->mayHaveSideEffects()) 6533 return false; 6534 6535 // Look through GEPs. A load from a GEP derived from NULL is still undefined 6536 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use)) 6537 if (GEP->getPointerOperand() == I) { 6538 if (!GEP->isInBounds() || !GEP->hasAllZeroIndices()) 6539 PtrValueMayBeModified = true; 6540 return passingValueIsAlwaysUndefined(V, GEP, PtrValueMayBeModified); 6541 } 6542 6543 // Look through bitcasts. 6544 if (BitCastInst *BC = dyn_cast<BitCastInst>(Use)) 6545 return passingValueIsAlwaysUndefined(V, BC, PtrValueMayBeModified); 6546 6547 // Load from null is undefined. 6548 if (LoadInst *LI = dyn_cast<LoadInst>(Use)) 6549 if (!LI->isVolatile()) 6550 return !NullPointerIsDefined(LI->getFunction(), 6551 LI->getPointerAddressSpace()); 6552 6553 // Store to null is undefined. 6554 if (StoreInst *SI = dyn_cast<StoreInst>(Use)) 6555 if (!SI->isVolatile()) 6556 return (!NullPointerIsDefined(SI->getFunction(), 6557 SI->getPointerAddressSpace())) && 6558 SI->getPointerOperand() == I; 6559 6560 if (auto *CB = dyn_cast<CallBase>(Use)) { 6561 if (C->isNullValue() && NullPointerIsDefined(CB->getFunction())) 6562 return false; 6563 // A call to null is undefined. 6564 if (CB->getCalledOperand() == I) 6565 return true; 6566 6567 if (C->isNullValue()) { 6568 for (const llvm::Use &Arg : CB->args()) 6569 if (Arg == I) { 6570 unsigned ArgIdx = CB->getArgOperandNo(&Arg); 6571 if (CB->isPassingUndefUB(ArgIdx) && 6572 CB->paramHasAttr(ArgIdx, Attribute::NonNull)) { 6573 // Passing null to a nonnnull+noundef argument is undefined. 6574 return !PtrValueMayBeModified; 6575 } 6576 } 6577 } else if (isa<UndefValue>(C)) { 6578 // Passing undef to a noundef argument is undefined. 6579 for (const llvm::Use &Arg : CB->args()) 6580 if (Arg == I) { 6581 unsigned ArgIdx = CB->getArgOperandNo(&Arg); 6582 if (CB->isPassingUndefUB(ArgIdx)) { 6583 // Passing undef to a noundef argument is undefined. 6584 return true; 6585 } 6586 } 6587 } 6588 } 6589 } 6590 return false; 6591 } 6592 6593 /// If BB has an incoming value that will always trigger undefined behavior 6594 /// (eg. null pointer dereference), remove the branch leading here. 6595 static bool removeUndefIntroducingPredecessor(BasicBlock *BB, 6596 DomTreeUpdater *DTU) { 6597 for (PHINode &PHI : BB->phis()) 6598 for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i) 6599 if (passingValueIsAlwaysUndefined(PHI.getIncomingValue(i), &PHI)) { 6600 BasicBlock *Predecessor = PHI.getIncomingBlock(i); 6601 Instruction *T = Predecessor->getTerminator(); 6602 IRBuilder<> Builder(T); 6603 if (BranchInst *BI = dyn_cast<BranchInst>(T)) { 6604 BB->removePredecessor(Predecessor); 6605 // Turn uncoditional branches into unreachables and remove the dead 6606 // destination from conditional branches. 6607 if (BI->isUnconditional()) 6608 Builder.CreateUnreachable(); 6609 else 6610 Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1) 6611 : BI->getSuccessor(0)); 6612 BI->eraseFromParent(); 6613 if (DTU) 6614 DTU->applyUpdates({{DominatorTree::Delete, Predecessor, BB}}); 6615 return true; 6616 } 6617 // TODO: SwitchInst. 6618 } 6619 6620 return false; 6621 } 6622 6623 bool SimplifyCFGOpt::simplifyOnceImpl(BasicBlock *BB) { 6624 bool Changed = false; 6625 6626 assert(BB && BB->getParent() && "Block not embedded in function!"); 6627 assert(BB->getTerminator() && "Degenerate basic block encountered!"); 6628 6629 // Remove basic blocks that have no predecessors (except the entry block)... 6630 // or that just have themself as a predecessor. These are unreachable. 6631 if ((pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) || 6632 BB->getSinglePredecessor() == BB) { 6633 LLVM_DEBUG(dbgs() << "Removing BB: \n" << *BB); 6634 DeleteDeadBlock(BB, DTU); 6635 return true; 6636 } 6637 6638 // Check to see if we can constant propagate this terminator instruction 6639 // away... 6640 Changed |= ConstantFoldTerminator(BB, /*DeleteDeadConditions=*/true, 6641 /*TLI=*/nullptr, DTU); 6642 6643 // Check for and eliminate duplicate PHI nodes in this block. 6644 Changed |= EliminateDuplicatePHINodes(BB); 6645 6646 // Check for and remove branches that will always cause undefined behavior. 6647 Changed |= removeUndefIntroducingPredecessor(BB, DTU); 6648 6649 // Merge basic blocks into their predecessor if there is only one distinct 6650 // pred, and if there is only one distinct successor of the predecessor, and 6651 // if there are no PHI nodes. 6652 if (MergeBlockIntoPredecessor(BB, DTU)) 6653 return true; 6654 6655 if (SinkCommon && Options.SinkCommonInsts) 6656 Changed |= SinkCommonCodeFromPredecessors(BB, DTU); 6657 6658 IRBuilder<> Builder(BB); 6659 6660 if (Options.FoldTwoEntryPHINode) { 6661 // If there is a trivial two-entry PHI node in this basic block, and we can 6662 // eliminate it, do so now. 6663 if (auto *PN = dyn_cast<PHINode>(BB->begin())) 6664 if (PN->getNumIncomingValues() == 2) 6665 Changed |= FoldTwoEntryPHINode(PN, TTI, DTU, DL); 6666 } 6667 6668 Instruction *Terminator = BB->getTerminator(); 6669 Builder.SetInsertPoint(Terminator); 6670 switch (Terminator->getOpcode()) { 6671 case Instruction::Br: 6672 Changed |= simplifyBranch(cast<BranchInst>(Terminator), Builder); 6673 break; 6674 case Instruction::Ret: 6675 Changed |= simplifyReturn(cast<ReturnInst>(Terminator), Builder); 6676 break; 6677 case Instruction::Resume: 6678 Changed |= simplifyResume(cast<ResumeInst>(Terminator), Builder); 6679 break; 6680 case Instruction::CleanupRet: 6681 Changed |= simplifyCleanupReturn(cast<CleanupReturnInst>(Terminator)); 6682 break; 6683 case Instruction::Switch: 6684 Changed |= simplifySwitch(cast<SwitchInst>(Terminator), Builder); 6685 break; 6686 case Instruction::Unreachable: 6687 Changed |= simplifyUnreachable(cast<UnreachableInst>(Terminator)); 6688 break; 6689 case Instruction::IndirectBr: 6690 Changed |= simplifyIndirectBr(cast<IndirectBrInst>(Terminator)); 6691 break; 6692 } 6693 6694 return Changed; 6695 } 6696 6697 bool SimplifyCFGOpt::simplifyOnce(BasicBlock *BB) { 6698 bool Changed = simplifyOnceImpl(BB); 6699 6700 return Changed; 6701 } 6702 6703 bool SimplifyCFGOpt::run(BasicBlock *BB) { 6704 bool Changed = false; 6705 6706 // Repeated simplify BB as long as resimplification is requested. 6707 do { 6708 Resimplify = false; 6709 6710 // Perform one round of simplifcation. Resimplify flag will be set if 6711 // another iteration is requested. 6712 Changed |= simplifyOnce(BB); 6713 } while (Resimplify); 6714 6715 return Changed; 6716 } 6717 6718 bool llvm::simplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI, 6719 DomTreeUpdater *DTU, const SimplifyCFGOptions &Options, 6720 ArrayRef<WeakVH> LoopHeaders) { 6721 return SimplifyCFGOpt(TTI, DTU, BB->getModule()->getDataLayout(), LoopHeaders, 6722 Options) 6723 .run(BB); 6724 } 6725