1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Peephole optimize the CFG.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/ADT/APInt.h"
14 #include "llvm/ADT/ArrayRef.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/MapVector.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/ScopeExit.h"
20 #include "llvm/ADT/Sequence.h"
21 #include "llvm/ADT/SetOperations.h"
22 #include "llvm/ADT/SetVector.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/Statistic.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/Analysis/AssumptionCache.h"
28 #include "llvm/Analysis/ConstantFolding.h"
29 #include "llvm/Analysis/EHPersonalities.h"
30 #include "llvm/Analysis/GuardUtils.h"
31 #include "llvm/Analysis/InstructionSimplify.h"
32 #include "llvm/Analysis/MemorySSA.h"
33 #include "llvm/Analysis/MemorySSAUpdater.h"
34 #include "llvm/Analysis/TargetTransformInfo.h"
35 #include "llvm/Analysis/ValueTracking.h"
36 #include "llvm/IR/Attributes.h"
37 #include "llvm/IR/BasicBlock.h"
38 #include "llvm/IR/CFG.h"
39 #include "llvm/IR/Constant.h"
40 #include "llvm/IR/ConstantRange.h"
41 #include "llvm/IR/Constants.h"
42 #include "llvm/IR/DataLayout.h"
43 #include "llvm/IR/DerivedTypes.h"
44 #include "llvm/IR/Function.h"
45 #include "llvm/IR/GlobalValue.h"
46 #include "llvm/IR/GlobalVariable.h"
47 #include "llvm/IR/IRBuilder.h"
48 #include "llvm/IR/InstrTypes.h"
49 #include "llvm/IR/Instruction.h"
50 #include "llvm/IR/Instructions.h"
51 #include "llvm/IR/IntrinsicInst.h"
52 #include "llvm/IR/Intrinsics.h"
53 #include "llvm/IR/LLVMContext.h"
54 #include "llvm/IR/MDBuilder.h"
55 #include "llvm/IR/Metadata.h"
56 #include "llvm/IR/Module.h"
57 #include "llvm/IR/NoFolder.h"
58 #include "llvm/IR/Operator.h"
59 #include "llvm/IR/PatternMatch.h"
60 #include "llvm/IR/PseudoProbe.h"
61 #include "llvm/IR/Type.h"
62 #include "llvm/IR/Use.h"
63 #include "llvm/IR/User.h"
64 #include "llvm/IR/Value.h"
65 #include "llvm/IR/ValueHandle.h"
66 #include "llvm/Support/BranchProbability.h"
67 #include "llvm/Support/Casting.h"
68 #include "llvm/Support/CommandLine.h"
69 #include "llvm/Support/Debug.h"
70 #include "llvm/Support/ErrorHandling.h"
71 #include "llvm/Support/KnownBits.h"
72 #include "llvm/Support/MathExtras.h"
73 #include "llvm/Support/raw_ostream.h"
74 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
75 #include "llvm/Transforms/Utils/Local.h"
76 #include "llvm/Transforms/Utils/SSAUpdater.h"
77 #include "llvm/Transforms/Utils/ValueMapper.h"
78 #include <algorithm>
79 #include <cassert>
80 #include <climits>
81 #include <cstddef>
82 #include <cstdint>
83 #include <iterator>
84 #include <map>
85 #include <set>
86 #include <tuple>
87 #include <utility>
88 #include <vector>
89 
90 using namespace llvm;
91 using namespace PatternMatch;
92 
93 #define DEBUG_TYPE "simplifycfg"
94 
95 cl::opt<bool> llvm::RequireAndPreserveDomTree(
96     "simplifycfg-require-and-preserve-domtree", cl::Hidden, cl::ZeroOrMore,
97     cl::init(false),
98     cl::desc("Temorary development switch used to gradually uplift SimplifyCFG "
99              "into preserving DomTree,"));
100 
101 // Chosen as 2 so as to be cheap, but still to have enough power to fold
102 // a select, so the "clamp" idiom (of a min followed by a max) will be caught.
103 // To catch this, we need to fold a compare and a select, hence '2' being the
104 // minimum reasonable default.
105 static cl::opt<unsigned> PHINodeFoldingThreshold(
106     "phi-node-folding-threshold", cl::Hidden, cl::init(2),
107     cl::desc(
108         "Control the amount of phi node folding to perform (default = 2)"));
109 
110 static cl::opt<unsigned> TwoEntryPHINodeFoldingThreshold(
111     "two-entry-phi-node-folding-threshold", cl::Hidden, cl::init(4),
112     cl::desc("Control the maximal total instruction cost that we are willing "
113              "to speculatively execute to fold a 2-entry PHI node into a "
114              "select (default = 4)"));
115 
116 static cl::opt<bool> DupRet(
117     "simplifycfg-dup-ret", cl::Hidden, cl::init(false),
118     cl::desc("Duplicate return instructions into unconditional branches"));
119 
120 static cl::opt<bool>
121     HoistCommon("simplifycfg-hoist-common", cl::Hidden, cl::init(true),
122                 cl::desc("Hoist common instructions up to the parent block"));
123 
124 static cl::opt<bool>
125     SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true),
126                cl::desc("Sink common instructions down to the end block"));
127 
128 static cl::opt<bool> HoistCondStores(
129     "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true),
130     cl::desc("Hoist conditional stores if an unconditional store precedes"));
131 
132 static cl::opt<bool> MergeCondStores(
133     "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true),
134     cl::desc("Hoist conditional stores even if an unconditional store does not "
135              "precede - hoist multiple conditional stores into a single "
136              "predicated store"));
137 
138 static cl::opt<bool> MergeCondStoresAggressively(
139     "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false),
140     cl::desc("When merging conditional stores, do so even if the resultant "
141              "basic blocks are unlikely to be if-converted as a result"));
142 
143 static cl::opt<bool> SpeculateOneExpensiveInst(
144     "speculate-one-expensive-inst", cl::Hidden, cl::init(true),
145     cl::desc("Allow exactly one expensive instruction to be speculatively "
146              "executed"));
147 
148 static cl::opt<unsigned> MaxSpeculationDepth(
149     "max-speculation-depth", cl::Hidden, cl::init(10),
150     cl::desc("Limit maximum recursion depth when calculating costs of "
151              "speculatively executed instructions"));
152 
153 static cl::opt<int>
154 MaxSmallBlockSize("simplifycfg-max-small-block-size", cl::Hidden, cl::init(10),
155                   cl::desc("Max size of a block which is still considered "
156                            "small enough to thread through"));
157 
158 // Two is chosen to allow one negation and a logical combine.
159 static cl::opt<unsigned>
160     BranchFoldThreshold("simplifycfg-branch-fold-threshold", cl::Hidden,
161                         cl::init(2),
162                         cl::desc("Maximum cost of combining conditions when "
163                                  "folding branches"));
164 
165 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps");
166 STATISTIC(NumLinearMaps,
167           "Number of switch instructions turned into linear mapping");
168 STATISTIC(NumLookupTables,
169           "Number of switch instructions turned into lookup tables");
170 STATISTIC(
171     NumLookupTablesHoles,
172     "Number of switch instructions turned into lookup tables (holes checked)");
173 STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares");
174 STATISTIC(NumFoldValueComparisonIntoPredecessors,
175           "Number of value comparisons folded into predecessor basic blocks");
176 STATISTIC(NumFoldBranchToCommonDest,
177           "Number of branches folded into predecessor basic block");
178 STATISTIC(
179     NumHoistCommonCode,
180     "Number of common instruction 'blocks' hoisted up to the begin block");
181 STATISTIC(NumHoistCommonInstrs,
182           "Number of common instructions hoisted up to the begin block");
183 STATISTIC(NumSinkCommonCode,
184           "Number of common instruction 'blocks' sunk down to the end block");
185 STATISTIC(NumSinkCommonInstrs,
186           "Number of common instructions sunk down to the end block");
187 STATISTIC(NumSpeculations, "Number of speculative executed instructions");
188 STATISTIC(NumInvokes,
189           "Number of invokes with empty resume blocks simplified into calls");
190 
191 namespace {
192 
193 // The first field contains the value that the switch produces when a certain
194 // case group is selected, and the second field is a vector containing the
195 // cases composing the case group.
196 using SwitchCaseResultVectorTy =
197     SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2>;
198 
199 // The first field contains the phi node that generates a result of the switch
200 // and the second field contains the value generated for a certain case in the
201 // switch for that PHI.
202 using SwitchCaseResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>;
203 
204 /// ValueEqualityComparisonCase - Represents a case of a switch.
205 struct ValueEqualityComparisonCase {
206   ConstantInt *Value;
207   BasicBlock *Dest;
208 
209   ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest)
210       : Value(Value), Dest(Dest) {}
211 
212   bool operator<(ValueEqualityComparisonCase RHS) const {
213     // Comparing pointers is ok as we only rely on the order for uniquing.
214     return Value < RHS.Value;
215   }
216 
217   bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; }
218 };
219 
220 class SimplifyCFGOpt {
221   const TargetTransformInfo &TTI;
222   DomTreeUpdater *DTU;
223   const DataLayout &DL;
224   ArrayRef<WeakVH> LoopHeaders;
225   const SimplifyCFGOptions &Options;
226   bool Resimplify;
227 
228   Value *isValueEqualityComparison(Instruction *TI);
229   BasicBlock *GetValueEqualityComparisonCases(
230       Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases);
231   bool SimplifyEqualityComparisonWithOnlyPredecessor(Instruction *TI,
232                                                      BasicBlock *Pred,
233                                                      IRBuilder<> &Builder);
234   bool PerformValueComparisonIntoPredecessorFolding(Instruction *TI, Value *&CV,
235                                                     Instruction *PTI,
236                                                     IRBuilder<> &Builder);
237   bool FoldValueComparisonIntoPredecessors(Instruction *TI,
238                                            IRBuilder<> &Builder);
239 
240   bool simplifyReturn(ReturnInst *RI, IRBuilder<> &Builder);
241   bool simplifyResume(ResumeInst *RI, IRBuilder<> &Builder);
242   bool simplifySingleResume(ResumeInst *RI);
243   bool simplifyCommonResume(ResumeInst *RI);
244   bool simplifyCleanupReturn(CleanupReturnInst *RI);
245   bool simplifyUnreachable(UnreachableInst *UI);
246   bool simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder);
247   bool simplifyIndirectBr(IndirectBrInst *IBI);
248   bool simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder);
249   bool simplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder);
250   bool simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder);
251   bool SimplifyCondBranchToTwoReturns(BranchInst *BI, IRBuilder<> &Builder);
252 
253   bool tryToSimplifyUncondBranchWithICmpInIt(ICmpInst *ICI,
254                                              IRBuilder<> &Builder);
255 
256   bool HoistThenElseCodeToIf(BranchInst *BI, const TargetTransformInfo &TTI,
257                              bool EqTermsOnly);
258   bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB,
259                               const TargetTransformInfo &TTI);
260   bool SimplifyTerminatorOnSelect(Instruction *OldTerm, Value *Cond,
261                                   BasicBlock *TrueBB, BasicBlock *FalseBB,
262                                   uint32_t TrueWeight, uint32_t FalseWeight);
263   bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder,
264                                  const DataLayout &DL);
265   bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select);
266   bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI);
267   bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder);
268 
269 public:
270   SimplifyCFGOpt(const TargetTransformInfo &TTI, DomTreeUpdater *DTU,
271                  const DataLayout &DL, ArrayRef<WeakVH> LoopHeaders,
272                  const SimplifyCFGOptions &Opts)
273       : TTI(TTI), DTU(DTU), DL(DL), LoopHeaders(LoopHeaders), Options(Opts) {
274     assert((!DTU || !DTU->hasPostDomTree()) &&
275            "SimplifyCFG is not yet capable of maintaining validity of a "
276            "PostDomTree, so don't ask for it.");
277   }
278 
279   bool simplifyOnce(BasicBlock *BB);
280   bool simplifyOnceImpl(BasicBlock *BB);
281   bool run(BasicBlock *BB);
282 
283   // Helper to set Resimplify and return change indication.
284   bool requestResimplify() {
285     Resimplify = true;
286     return true;
287   }
288 };
289 
290 } // end anonymous namespace
291 
292 /// Return true if it is safe to merge these two
293 /// terminator instructions together.
294 static bool
295 SafeToMergeTerminators(Instruction *SI1, Instruction *SI2,
296                        SmallSetVector<BasicBlock *, 4> *FailBlocks = nullptr) {
297   if (SI1 == SI2)
298     return false; // Can't merge with self!
299 
300   // It is not safe to merge these two switch instructions if they have a common
301   // successor, and if that successor has a PHI node, and if *that* PHI node has
302   // conflicting incoming values from the two switch blocks.
303   BasicBlock *SI1BB = SI1->getParent();
304   BasicBlock *SI2BB = SI2->getParent();
305 
306   SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
307   bool Fail = false;
308   for (BasicBlock *Succ : successors(SI2BB))
309     if (SI1Succs.count(Succ))
310       for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) {
311         PHINode *PN = cast<PHINode>(BBI);
312         if (PN->getIncomingValueForBlock(SI1BB) !=
313             PN->getIncomingValueForBlock(SI2BB)) {
314           if (FailBlocks)
315             FailBlocks->insert(Succ);
316           Fail = true;
317         }
318       }
319 
320   return !Fail;
321 }
322 
323 /// Update PHI nodes in Succ to indicate that there will now be entries in it
324 /// from the 'NewPred' block. The values that will be flowing into the PHI nodes
325 /// will be the same as those coming in from ExistPred, an existing predecessor
326 /// of Succ.
327 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred,
328                                   BasicBlock *ExistPred,
329                                   MemorySSAUpdater *MSSAU = nullptr) {
330   for (PHINode &PN : Succ->phis())
331     PN.addIncoming(PN.getIncomingValueForBlock(ExistPred), NewPred);
332   if (MSSAU)
333     if (auto *MPhi = MSSAU->getMemorySSA()->getMemoryAccess(Succ))
334       MPhi->addIncoming(MPhi->getIncomingValueForBlock(ExistPred), NewPred);
335 }
336 
337 /// Compute an abstract "cost" of speculating the given instruction,
338 /// which is assumed to be safe to speculate. TCC_Free means cheap,
339 /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively
340 /// expensive.
341 static InstructionCost computeSpeculationCost(const User *I,
342                                               const TargetTransformInfo &TTI) {
343   assert(isSafeToSpeculativelyExecute(I) &&
344          "Instruction is not safe to speculatively execute!");
345   return TTI.getUserCost(I, TargetTransformInfo::TCK_SizeAndLatency);
346 }
347 
348 /// If we have a merge point of an "if condition" as accepted above,
349 /// return true if the specified value dominates the block.  We
350 /// don't handle the true generality of domination here, just a special case
351 /// which works well enough for us.
352 ///
353 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to
354 /// see if V (which must be an instruction) and its recursive operands
355 /// that do not dominate BB have a combined cost lower than Budget and
356 /// are non-trapping.  If both are true, the instruction is inserted into the
357 /// set and true is returned.
358 ///
359 /// The cost for most non-trapping instructions is defined as 1 except for
360 /// Select whose cost is 2.
361 ///
362 /// After this function returns, Cost is increased by the cost of
363 /// V plus its non-dominating operands.  If that cost is greater than
364 /// Budget, false is returned and Cost is undefined.
365 static bool dominatesMergePoint(Value *V, BasicBlock *BB,
366                                 SmallPtrSetImpl<Instruction *> &AggressiveInsts,
367                                 InstructionCost &Cost,
368                                 InstructionCost Budget,
369                                 const TargetTransformInfo &TTI,
370                                 unsigned Depth = 0) {
371   // It is possible to hit a zero-cost cycle (phi/gep instructions for example),
372   // so limit the recursion depth.
373   // TODO: While this recursion limit does prevent pathological behavior, it
374   // would be better to track visited instructions to avoid cycles.
375   if (Depth == MaxSpeculationDepth)
376     return false;
377 
378   Instruction *I = dyn_cast<Instruction>(V);
379   if (!I) {
380     // Non-instructions all dominate instructions, but not all constantexprs
381     // can be executed unconditionally.
382     if (ConstantExpr *C = dyn_cast<ConstantExpr>(V))
383       if (C->canTrap())
384         return false;
385     return true;
386   }
387   BasicBlock *PBB = I->getParent();
388 
389   // We don't want to allow weird loops that might have the "if condition" in
390   // the bottom of this block.
391   if (PBB == BB)
392     return false;
393 
394   // If this instruction is defined in a block that contains an unconditional
395   // branch to BB, then it must be in the 'conditional' part of the "if
396   // statement".  If not, it definitely dominates the region.
397   BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator());
398   if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB)
399     return true;
400 
401   // If we have seen this instruction before, don't count it again.
402   if (AggressiveInsts.count(I))
403     return true;
404 
405   // Okay, it looks like the instruction IS in the "condition".  Check to
406   // see if it's a cheap instruction to unconditionally compute, and if it
407   // only uses stuff defined outside of the condition.  If so, hoist it out.
408   if (!isSafeToSpeculativelyExecute(I))
409     return false;
410 
411   Cost += computeSpeculationCost(I, TTI);
412 
413   // Allow exactly one instruction to be speculated regardless of its cost
414   // (as long as it is safe to do so).
415   // This is intended to flatten the CFG even if the instruction is a division
416   // or other expensive operation. The speculation of an expensive instruction
417   // is expected to be undone in CodeGenPrepare if the speculation has not
418   // enabled further IR optimizations.
419   if (Cost > Budget &&
420       (!SpeculateOneExpensiveInst || !AggressiveInsts.empty() || Depth > 0 ||
421        !Cost.isValid()))
422     return false;
423 
424   // Okay, we can only really hoist these out if their operands do
425   // not take us over the cost threshold.
426   for (Use &Op : I->operands())
427     if (!dominatesMergePoint(Op, BB, AggressiveInsts, Cost, Budget, TTI,
428                              Depth + 1))
429       return false;
430   // Okay, it's safe to do this!  Remember this instruction.
431   AggressiveInsts.insert(I);
432   return true;
433 }
434 
435 /// Extract ConstantInt from value, looking through IntToPtr
436 /// and PointerNullValue. Return NULL if value is not a constant int.
437 static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) {
438   // Normal constant int.
439   ConstantInt *CI = dyn_cast<ConstantInt>(V);
440   if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy())
441     return CI;
442 
443   // This is some kind of pointer constant. Turn it into a pointer-sized
444   // ConstantInt if possible.
445   IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType()));
446 
447   // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*).
448   if (isa<ConstantPointerNull>(V))
449     return ConstantInt::get(PtrTy, 0);
450 
451   // IntToPtr const int.
452   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
453     if (CE->getOpcode() == Instruction::IntToPtr)
454       if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) {
455         // The constant is very likely to have the right type already.
456         if (CI->getType() == PtrTy)
457           return CI;
458         else
459           return cast<ConstantInt>(
460               ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false));
461       }
462   return nullptr;
463 }
464 
465 namespace {
466 
467 /// Given a chain of or (||) or and (&&) comparison of a value against a
468 /// constant, this will try to recover the information required for a switch
469 /// structure.
470 /// It will depth-first traverse the chain of comparison, seeking for patterns
471 /// like %a == 12 or %a < 4 and combine them to produce a set of integer
472 /// representing the different cases for the switch.
473 /// Note that if the chain is composed of '||' it will build the set of elements
474 /// that matches the comparisons (i.e. any of this value validate the chain)
475 /// while for a chain of '&&' it will build the set elements that make the test
476 /// fail.
477 struct ConstantComparesGatherer {
478   const DataLayout &DL;
479 
480   /// Value found for the switch comparison
481   Value *CompValue = nullptr;
482 
483   /// Extra clause to be checked before the switch
484   Value *Extra = nullptr;
485 
486   /// Set of integers to match in switch
487   SmallVector<ConstantInt *, 8> Vals;
488 
489   /// Number of comparisons matched in the and/or chain
490   unsigned UsedICmps = 0;
491 
492   /// Construct and compute the result for the comparison instruction Cond
493   ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL) : DL(DL) {
494     gather(Cond);
495   }
496 
497   ConstantComparesGatherer(const ConstantComparesGatherer &) = delete;
498   ConstantComparesGatherer &
499   operator=(const ConstantComparesGatherer &) = delete;
500 
501 private:
502   /// Try to set the current value used for the comparison, it succeeds only if
503   /// it wasn't set before or if the new value is the same as the old one
504   bool setValueOnce(Value *NewVal) {
505     if (CompValue && CompValue != NewVal)
506       return false;
507     CompValue = NewVal;
508     return (CompValue != nullptr);
509   }
510 
511   /// Try to match Instruction "I" as a comparison against a constant and
512   /// populates the array Vals with the set of values that match (or do not
513   /// match depending on isEQ).
514   /// Return false on failure. On success, the Value the comparison matched
515   /// against is placed in CompValue.
516   /// If CompValue is already set, the function is expected to fail if a match
517   /// is found but the value compared to is different.
518   bool matchInstruction(Instruction *I, bool isEQ) {
519     // If this is an icmp against a constant, handle this as one of the cases.
520     ICmpInst *ICI;
521     ConstantInt *C;
522     if (!((ICI = dyn_cast<ICmpInst>(I)) &&
523           (C = GetConstantInt(I->getOperand(1), DL)))) {
524       return false;
525     }
526 
527     Value *RHSVal;
528     const APInt *RHSC;
529 
530     // Pattern match a special case
531     // (x & ~2^z) == y --> x == y || x == y|2^z
532     // This undoes a transformation done by instcombine to fuse 2 compares.
533     if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE)) {
534       // It's a little bit hard to see why the following transformations are
535       // correct. Here is a CVC3 program to verify them for 64-bit values:
536 
537       /*
538          ONE  : BITVECTOR(64) = BVZEROEXTEND(0bin1, 63);
539          x    : BITVECTOR(64);
540          y    : BITVECTOR(64);
541          z    : BITVECTOR(64);
542          mask : BITVECTOR(64) = BVSHL(ONE, z);
543          QUERY( (y & ~mask = y) =>
544                 ((x & ~mask = y) <=> (x = y OR x = (y |  mask)))
545          );
546          QUERY( (y |  mask = y) =>
547                 ((x |  mask = y) <=> (x = y OR x = (y & ~mask)))
548          );
549       */
550 
551       // Please note that each pattern must be a dual implication (<--> or
552       // iff). One directional implication can create spurious matches. If the
553       // implication is only one-way, an unsatisfiable condition on the left
554       // side can imply a satisfiable condition on the right side. Dual
555       // implication ensures that satisfiable conditions are transformed to
556       // other satisfiable conditions and unsatisfiable conditions are
557       // transformed to other unsatisfiable conditions.
558 
559       // Here is a concrete example of a unsatisfiable condition on the left
560       // implying a satisfiable condition on the right:
561       //
562       // mask = (1 << z)
563       // (x & ~mask) == y  --> (x == y || x == (y | mask))
564       //
565       // Substituting y = 3, z = 0 yields:
566       // (x & -2) == 3 --> (x == 3 || x == 2)
567 
568       // Pattern match a special case:
569       /*
570         QUERY( (y & ~mask = y) =>
571                ((x & ~mask = y) <=> (x = y OR x = (y |  mask)))
572         );
573       */
574       if (match(ICI->getOperand(0),
575                 m_And(m_Value(RHSVal), m_APInt(RHSC)))) {
576         APInt Mask = ~*RHSC;
577         if (Mask.isPowerOf2() && (C->getValue() & ~Mask) == C->getValue()) {
578           // If we already have a value for the switch, it has to match!
579           if (!setValueOnce(RHSVal))
580             return false;
581 
582           Vals.push_back(C);
583           Vals.push_back(
584               ConstantInt::get(C->getContext(),
585                                C->getValue() | Mask));
586           UsedICmps++;
587           return true;
588         }
589       }
590 
591       // Pattern match a special case:
592       /*
593         QUERY( (y |  mask = y) =>
594                ((x |  mask = y) <=> (x = y OR x = (y & ~mask)))
595         );
596       */
597       if (match(ICI->getOperand(0),
598                 m_Or(m_Value(RHSVal), m_APInt(RHSC)))) {
599         APInt Mask = *RHSC;
600         if (Mask.isPowerOf2() && (C->getValue() | Mask) == C->getValue()) {
601           // If we already have a value for the switch, it has to match!
602           if (!setValueOnce(RHSVal))
603             return false;
604 
605           Vals.push_back(C);
606           Vals.push_back(ConstantInt::get(C->getContext(),
607                                           C->getValue() & ~Mask));
608           UsedICmps++;
609           return true;
610         }
611       }
612 
613       // If we already have a value for the switch, it has to match!
614       if (!setValueOnce(ICI->getOperand(0)))
615         return false;
616 
617       UsedICmps++;
618       Vals.push_back(C);
619       return ICI->getOperand(0);
620     }
621 
622     // If we have "x ult 3", for example, then we can add 0,1,2 to the set.
623     ConstantRange Span = ConstantRange::makeAllowedICmpRegion(
624         ICI->getPredicate(), C->getValue());
625 
626     // Shift the range if the compare is fed by an add. This is the range
627     // compare idiom as emitted by instcombine.
628     Value *CandidateVal = I->getOperand(0);
629     if (match(I->getOperand(0), m_Add(m_Value(RHSVal), m_APInt(RHSC)))) {
630       Span = Span.subtract(*RHSC);
631       CandidateVal = RHSVal;
632     }
633 
634     // If this is an and/!= check, then we are looking to build the set of
635     // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into
636     // x != 0 && x != 1.
637     if (!isEQ)
638       Span = Span.inverse();
639 
640     // If there are a ton of values, we don't want to make a ginormous switch.
641     if (Span.isSizeLargerThan(8) || Span.isEmptySet()) {
642       return false;
643     }
644 
645     // If we already have a value for the switch, it has to match!
646     if (!setValueOnce(CandidateVal))
647       return false;
648 
649     // Add all values from the range to the set
650     for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp)
651       Vals.push_back(ConstantInt::get(I->getContext(), Tmp));
652 
653     UsedICmps++;
654     return true;
655   }
656 
657   /// Given a potentially 'or'd or 'and'd together collection of icmp
658   /// eq/ne/lt/gt instructions that compare a value against a constant, extract
659   /// the value being compared, and stick the list constants into the Vals
660   /// vector.
661   /// One "Extra" case is allowed to differ from the other.
662   void gather(Value *V) {
663     bool isEQ = match(V, m_LogicalOr(m_Value(), m_Value()));
664 
665     // Keep a stack (SmallVector for efficiency) for depth-first traversal
666     SmallVector<Value *, 8> DFT;
667     SmallPtrSet<Value *, 8> Visited;
668 
669     // Initialize
670     Visited.insert(V);
671     DFT.push_back(V);
672 
673     while (!DFT.empty()) {
674       V = DFT.pop_back_val();
675 
676       if (Instruction *I = dyn_cast<Instruction>(V)) {
677         // If it is a || (or && depending on isEQ), process the operands.
678         Value *Op0, *Op1;
679         if (isEQ ? match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1)))
680                  : match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) {
681           if (Visited.insert(Op1).second)
682             DFT.push_back(Op1);
683           if (Visited.insert(Op0).second)
684             DFT.push_back(Op0);
685 
686           continue;
687         }
688 
689         // Try to match the current instruction
690         if (matchInstruction(I, isEQ))
691           // Match succeed, continue the loop
692           continue;
693       }
694 
695       // One element of the sequence of || (or &&) could not be match as a
696       // comparison against the same value as the others.
697       // We allow only one "Extra" case to be checked before the switch
698       if (!Extra) {
699         Extra = V;
700         continue;
701       }
702       // Failed to parse a proper sequence, abort now
703       CompValue = nullptr;
704       break;
705     }
706   }
707 };
708 
709 } // end anonymous namespace
710 
711 static void EraseTerminatorAndDCECond(Instruction *TI,
712                                       MemorySSAUpdater *MSSAU = nullptr) {
713   Instruction *Cond = nullptr;
714   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
715     Cond = dyn_cast<Instruction>(SI->getCondition());
716   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
717     if (BI->isConditional())
718       Cond = dyn_cast<Instruction>(BI->getCondition());
719   } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) {
720     Cond = dyn_cast<Instruction>(IBI->getAddress());
721   }
722 
723   TI->eraseFromParent();
724   if (Cond)
725     RecursivelyDeleteTriviallyDeadInstructions(Cond, nullptr, MSSAU);
726 }
727 
728 /// Return true if the specified terminator checks
729 /// to see if a value is equal to constant integer value.
730 Value *SimplifyCFGOpt::isValueEqualityComparison(Instruction *TI) {
731   Value *CV = nullptr;
732   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
733     // Do not permit merging of large switch instructions into their
734     // predecessors unless there is only one predecessor.
735     if (!SI->getParent()->hasNPredecessorsOrMore(128 / SI->getNumSuccessors()))
736       CV = SI->getCondition();
737   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI))
738     if (BI->isConditional() && BI->getCondition()->hasOneUse())
739       if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) {
740         if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL))
741           CV = ICI->getOperand(0);
742       }
743 
744   // Unwrap any lossless ptrtoint cast.
745   if (CV) {
746     if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) {
747       Value *Ptr = PTII->getPointerOperand();
748       if (PTII->getType() == DL.getIntPtrType(Ptr->getType()))
749         CV = Ptr;
750     }
751   }
752   return CV;
753 }
754 
755 /// Given a value comparison instruction,
756 /// decode all of the 'cases' that it represents and return the 'default' block.
757 BasicBlock *SimplifyCFGOpt::GetValueEqualityComparisonCases(
758     Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases) {
759   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
760     Cases.reserve(SI->getNumCases());
761     for (auto Case : SI->cases())
762       Cases.push_back(ValueEqualityComparisonCase(Case.getCaseValue(),
763                                                   Case.getCaseSuccessor()));
764     return SI->getDefaultDest();
765   }
766 
767   BranchInst *BI = cast<BranchInst>(TI);
768   ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
769   BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE);
770   Cases.push_back(ValueEqualityComparisonCase(
771       GetConstantInt(ICI->getOperand(1), DL), Succ));
772   return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ);
773 }
774 
775 /// Given a vector of bb/value pairs, remove any entries
776 /// in the list that match the specified block.
777 static void
778 EliminateBlockCases(BasicBlock *BB,
779                     std::vector<ValueEqualityComparisonCase> &Cases) {
780   llvm::erase_value(Cases, BB);
781 }
782 
783 /// Return true if there are any keys in C1 that exist in C2 as well.
784 static bool ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1,
785                           std::vector<ValueEqualityComparisonCase> &C2) {
786   std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2;
787 
788   // Make V1 be smaller than V2.
789   if (V1->size() > V2->size())
790     std::swap(V1, V2);
791 
792   if (V1->empty())
793     return false;
794   if (V1->size() == 1) {
795     // Just scan V2.
796     ConstantInt *TheVal = (*V1)[0].Value;
797     for (unsigned i = 0, e = V2->size(); i != e; ++i)
798       if (TheVal == (*V2)[i].Value)
799         return true;
800   }
801 
802   // Otherwise, just sort both lists and compare element by element.
803   array_pod_sort(V1->begin(), V1->end());
804   array_pod_sort(V2->begin(), V2->end());
805   unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size();
806   while (i1 != e1 && i2 != e2) {
807     if ((*V1)[i1].Value == (*V2)[i2].Value)
808       return true;
809     if ((*V1)[i1].Value < (*V2)[i2].Value)
810       ++i1;
811     else
812       ++i2;
813   }
814   return false;
815 }
816 
817 // Set branch weights on SwitchInst. This sets the metadata if there is at
818 // least one non-zero weight.
819 static void setBranchWeights(SwitchInst *SI, ArrayRef<uint32_t> Weights) {
820   // Check that there is at least one non-zero weight. Otherwise, pass
821   // nullptr to setMetadata which will erase the existing metadata.
822   MDNode *N = nullptr;
823   if (llvm::any_of(Weights, [](uint32_t W) { return W != 0; }))
824     N = MDBuilder(SI->getParent()->getContext()).createBranchWeights(Weights);
825   SI->setMetadata(LLVMContext::MD_prof, N);
826 }
827 
828 // Similar to the above, but for branch and select instructions that take
829 // exactly 2 weights.
830 static void setBranchWeights(Instruction *I, uint32_t TrueWeight,
831                              uint32_t FalseWeight) {
832   assert(isa<BranchInst>(I) || isa<SelectInst>(I));
833   // Check that there is at least one non-zero weight. Otherwise, pass
834   // nullptr to setMetadata which will erase the existing metadata.
835   MDNode *N = nullptr;
836   if (TrueWeight || FalseWeight)
837     N = MDBuilder(I->getParent()->getContext())
838             .createBranchWeights(TrueWeight, FalseWeight);
839   I->setMetadata(LLVMContext::MD_prof, N);
840 }
841 
842 /// If TI is known to be a terminator instruction and its block is known to
843 /// only have a single predecessor block, check to see if that predecessor is
844 /// also a value comparison with the same value, and if that comparison
845 /// determines the outcome of this comparison. If so, simplify TI. This does a
846 /// very limited form of jump threading.
847 bool SimplifyCFGOpt::SimplifyEqualityComparisonWithOnlyPredecessor(
848     Instruction *TI, BasicBlock *Pred, IRBuilder<> &Builder) {
849   Value *PredVal = isValueEqualityComparison(Pred->getTerminator());
850   if (!PredVal)
851     return false; // Not a value comparison in predecessor.
852 
853   Value *ThisVal = isValueEqualityComparison(TI);
854   assert(ThisVal && "This isn't a value comparison!!");
855   if (ThisVal != PredVal)
856     return false; // Different predicates.
857 
858   // TODO: Preserve branch weight metadata, similarly to how
859   // FoldValueComparisonIntoPredecessors preserves it.
860 
861   // Find out information about when control will move from Pred to TI's block.
862   std::vector<ValueEqualityComparisonCase> PredCases;
863   BasicBlock *PredDef =
864       GetValueEqualityComparisonCases(Pred->getTerminator(), PredCases);
865   EliminateBlockCases(PredDef, PredCases); // Remove default from cases.
866 
867   // Find information about how control leaves this block.
868   std::vector<ValueEqualityComparisonCase> ThisCases;
869   BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases);
870   EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases.
871 
872   // If TI's block is the default block from Pred's comparison, potentially
873   // simplify TI based on this knowledge.
874   if (PredDef == TI->getParent()) {
875     // If we are here, we know that the value is none of those cases listed in
876     // PredCases.  If there are any cases in ThisCases that are in PredCases, we
877     // can simplify TI.
878     if (!ValuesOverlap(PredCases, ThisCases))
879       return false;
880 
881     if (isa<BranchInst>(TI)) {
882       // Okay, one of the successors of this condbr is dead.  Convert it to a
883       // uncond br.
884       assert(ThisCases.size() == 1 && "Branch can only have one case!");
885       // Insert the new branch.
886       Instruction *NI = Builder.CreateBr(ThisDef);
887       (void)NI;
888 
889       // Remove PHI node entries for the dead edge.
890       ThisCases[0].Dest->removePredecessor(PredDef);
891 
892       LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
893                         << "Through successor TI: " << *TI << "Leaving: " << *NI
894                         << "\n");
895 
896       EraseTerminatorAndDCECond(TI);
897 
898       if (DTU)
899         DTU->applyUpdates(
900             {{DominatorTree::Delete, PredDef, ThisCases[0].Dest}});
901 
902       return true;
903     }
904 
905     SwitchInstProfUpdateWrapper SI = *cast<SwitchInst>(TI);
906     // Okay, TI has cases that are statically dead, prune them away.
907     SmallPtrSet<Constant *, 16> DeadCases;
908     for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
909       DeadCases.insert(PredCases[i].Value);
910 
911     LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
912                       << "Through successor TI: " << *TI);
913 
914     SmallDenseMap<BasicBlock *, int, 8> NumPerSuccessorCases;
915     for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) {
916       --i;
917       auto *Successor = i->getCaseSuccessor();
918       if (DTU)
919         ++NumPerSuccessorCases[Successor];
920       if (DeadCases.count(i->getCaseValue())) {
921         Successor->removePredecessor(PredDef);
922         SI.removeCase(i);
923         if (DTU)
924           --NumPerSuccessorCases[Successor];
925       }
926     }
927 
928     if (DTU) {
929       std::vector<DominatorTree::UpdateType> Updates;
930       for (const std::pair<BasicBlock *, int> &I : NumPerSuccessorCases)
931         if (I.second == 0)
932           Updates.push_back({DominatorTree::Delete, PredDef, I.first});
933       DTU->applyUpdates(Updates);
934     }
935 
936     LLVM_DEBUG(dbgs() << "Leaving: " << *TI << "\n");
937     return true;
938   }
939 
940   // Otherwise, TI's block must correspond to some matched value.  Find out
941   // which value (or set of values) this is.
942   ConstantInt *TIV = nullptr;
943   BasicBlock *TIBB = TI->getParent();
944   for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
945     if (PredCases[i].Dest == TIBB) {
946       if (TIV)
947         return false; // Cannot handle multiple values coming to this block.
948       TIV = PredCases[i].Value;
949     }
950   assert(TIV && "No edge from pred to succ?");
951 
952   // Okay, we found the one constant that our value can be if we get into TI's
953   // BB.  Find out which successor will unconditionally be branched to.
954   BasicBlock *TheRealDest = nullptr;
955   for (unsigned i = 0, e = ThisCases.size(); i != e; ++i)
956     if (ThisCases[i].Value == TIV) {
957       TheRealDest = ThisCases[i].Dest;
958       break;
959     }
960 
961   // If not handled by any explicit cases, it is handled by the default case.
962   if (!TheRealDest)
963     TheRealDest = ThisDef;
964 
965   SmallPtrSet<BasicBlock *, 2> RemovedSuccs;
966 
967   // Remove PHI node entries for dead edges.
968   BasicBlock *CheckEdge = TheRealDest;
969   for (BasicBlock *Succ : successors(TIBB))
970     if (Succ != CheckEdge) {
971       if (Succ != TheRealDest)
972         RemovedSuccs.insert(Succ);
973       Succ->removePredecessor(TIBB);
974     } else
975       CheckEdge = nullptr;
976 
977   // Insert the new branch.
978   Instruction *NI = Builder.CreateBr(TheRealDest);
979   (void)NI;
980 
981   LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
982                     << "Through successor TI: " << *TI << "Leaving: " << *NI
983                     << "\n");
984 
985   EraseTerminatorAndDCECond(TI);
986   if (DTU) {
987     SmallVector<DominatorTree::UpdateType, 2> Updates;
988     Updates.reserve(RemovedSuccs.size());
989     for (auto *RemovedSucc : RemovedSuccs)
990       Updates.push_back({DominatorTree::Delete, TIBB, RemovedSucc});
991     DTU->applyUpdates(Updates);
992   }
993   return true;
994 }
995 
996 namespace {
997 
998 /// This class implements a stable ordering of constant
999 /// integers that does not depend on their address.  This is important for
1000 /// applications that sort ConstantInt's to ensure uniqueness.
1001 struct ConstantIntOrdering {
1002   bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const {
1003     return LHS->getValue().ult(RHS->getValue());
1004   }
1005 };
1006 
1007 } // end anonymous namespace
1008 
1009 static int ConstantIntSortPredicate(ConstantInt *const *P1,
1010                                     ConstantInt *const *P2) {
1011   const ConstantInt *LHS = *P1;
1012   const ConstantInt *RHS = *P2;
1013   if (LHS == RHS)
1014     return 0;
1015   return LHS->getValue().ult(RHS->getValue()) ? 1 : -1;
1016 }
1017 
1018 static inline bool HasBranchWeights(const Instruction *I) {
1019   MDNode *ProfMD = I->getMetadata(LLVMContext::MD_prof);
1020   if (ProfMD && ProfMD->getOperand(0))
1021     if (MDString *MDS = dyn_cast<MDString>(ProfMD->getOperand(0)))
1022       return MDS->getString().equals("branch_weights");
1023 
1024   return false;
1025 }
1026 
1027 /// Get Weights of a given terminator, the default weight is at the front
1028 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight
1029 /// metadata.
1030 static void GetBranchWeights(Instruction *TI,
1031                              SmallVectorImpl<uint64_t> &Weights) {
1032   MDNode *MD = TI->getMetadata(LLVMContext::MD_prof);
1033   assert(MD);
1034   for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) {
1035     ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i));
1036     Weights.push_back(CI->getValue().getZExtValue());
1037   }
1038 
1039   // If TI is a conditional eq, the default case is the false case,
1040   // and the corresponding branch-weight data is at index 2. We swap the
1041   // default weight to be the first entry.
1042   if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
1043     assert(Weights.size() == 2);
1044     ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
1045     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
1046       std::swap(Weights.front(), Weights.back());
1047   }
1048 }
1049 
1050 /// Keep halving the weights until all can fit in uint32_t.
1051 static void FitWeights(MutableArrayRef<uint64_t> Weights) {
1052   uint64_t Max = *std::max_element(Weights.begin(), Weights.end());
1053   if (Max > UINT_MAX) {
1054     unsigned Offset = 32 - countLeadingZeros(Max);
1055     for (uint64_t &I : Weights)
1056       I >>= Offset;
1057   }
1058 }
1059 
1060 static void CloneInstructionsIntoPredecessorBlockAndUpdateSSAUses(
1061     BasicBlock *BB, BasicBlock *PredBlock, ValueToValueMapTy &VMap) {
1062   Instruction *PTI = PredBlock->getTerminator();
1063 
1064   // If we have bonus instructions, clone them into the predecessor block.
1065   // Note that there may be multiple predecessor blocks, so we cannot move
1066   // bonus instructions to a predecessor block.
1067   for (Instruction &BonusInst : *BB) {
1068     if (isa<DbgInfoIntrinsic>(BonusInst) || BonusInst.isTerminator())
1069       continue;
1070 
1071     Instruction *NewBonusInst = BonusInst.clone();
1072 
1073     if (PTI->getDebugLoc() != NewBonusInst->getDebugLoc()) {
1074       // Unless the instruction has the same !dbg location as the original
1075       // branch, drop it. When we fold the bonus instructions we want to make
1076       // sure we reset their debug locations in order to avoid stepping on
1077       // dead code caused by folding dead branches.
1078       NewBonusInst->setDebugLoc(DebugLoc());
1079     }
1080 
1081     RemapInstruction(NewBonusInst, VMap,
1082                      RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
1083     VMap[&BonusInst] = NewBonusInst;
1084 
1085     // If we moved a load, we cannot any longer claim any knowledge about
1086     // its potential value. The previous information might have been valid
1087     // only given the branch precondition.
1088     // For an analogous reason, we must also drop all the metadata whose
1089     // semantics we don't understand. We *can* preserve !annotation, because
1090     // it is tied to the instruction itself, not the value or position.
1091     NewBonusInst->dropUnknownNonDebugMetadata(LLVMContext::MD_annotation);
1092 
1093     PredBlock->getInstList().insert(PTI->getIterator(), NewBonusInst);
1094     NewBonusInst->takeName(&BonusInst);
1095     BonusInst.setName(NewBonusInst->getName() + ".old");
1096 
1097     // Update (liveout) uses of bonus instructions,
1098     // now that the bonus instruction has been cloned into predecessor.
1099     SSAUpdater SSAUpdate;
1100     SSAUpdate.Initialize(BonusInst.getType(),
1101                          (NewBonusInst->getName() + ".merge").str());
1102     SSAUpdate.AddAvailableValue(BB, &BonusInst);
1103     SSAUpdate.AddAvailableValue(PredBlock, NewBonusInst);
1104     for (Use &U : make_early_inc_range(BonusInst.uses())) {
1105       auto *UI = cast<Instruction>(U.getUser());
1106       if (UI->getParent() != PredBlock)
1107         SSAUpdate.RewriteUseAfterInsertions(U);
1108       else // Use is in the same block as, and comes before, NewBonusInst.
1109         SSAUpdate.RewriteUse(U);
1110     }
1111   }
1112 }
1113 
1114 bool SimplifyCFGOpt::PerformValueComparisonIntoPredecessorFolding(
1115     Instruction *TI, Value *&CV, Instruction *PTI, IRBuilder<> &Builder) {
1116   BasicBlock *BB = TI->getParent();
1117   BasicBlock *Pred = PTI->getParent();
1118 
1119   SmallVector<DominatorTree::UpdateType, 32> Updates;
1120 
1121   // Figure out which 'cases' to copy from SI to PSI.
1122   std::vector<ValueEqualityComparisonCase> BBCases;
1123   BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases);
1124 
1125   std::vector<ValueEqualityComparisonCase> PredCases;
1126   BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases);
1127 
1128   // Based on whether the default edge from PTI goes to BB or not, fill in
1129   // PredCases and PredDefault with the new switch cases we would like to
1130   // build.
1131   SmallMapVector<BasicBlock *, int, 8> NewSuccessors;
1132 
1133   // Update the branch weight metadata along the way
1134   SmallVector<uint64_t, 8> Weights;
1135   bool PredHasWeights = HasBranchWeights(PTI);
1136   bool SuccHasWeights = HasBranchWeights(TI);
1137 
1138   if (PredHasWeights) {
1139     GetBranchWeights(PTI, Weights);
1140     // branch-weight metadata is inconsistent here.
1141     if (Weights.size() != 1 + PredCases.size())
1142       PredHasWeights = SuccHasWeights = false;
1143   } else if (SuccHasWeights)
1144     // If there are no predecessor weights but there are successor weights,
1145     // populate Weights with 1, which will later be scaled to the sum of
1146     // successor's weights
1147     Weights.assign(1 + PredCases.size(), 1);
1148 
1149   SmallVector<uint64_t, 8> SuccWeights;
1150   if (SuccHasWeights) {
1151     GetBranchWeights(TI, SuccWeights);
1152     // branch-weight metadata is inconsistent here.
1153     if (SuccWeights.size() != 1 + BBCases.size())
1154       PredHasWeights = SuccHasWeights = false;
1155   } else if (PredHasWeights)
1156     SuccWeights.assign(1 + BBCases.size(), 1);
1157 
1158   if (PredDefault == BB) {
1159     // If this is the default destination from PTI, only the edges in TI
1160     // that don't occur in PTI, or that branch to BB will be activated.
1161     std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
1162     for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
1163       if (PredCases[i].Dest != BB)
1164         PTIHandled.insert(PredCases[i].Value);
1165       else {
1166         // The default destination is BB, we don't need explicit targets.
1167         std::swap(PredCases[i], PredCases.back());
1168 
1169         if (PredHasWeights || SuccHasWeights) {
1170           // Increase weight for the default case.
1171           Weights[0] += Weights[i + 1];
1172           std::swap(Weights[i + 1], Weights.back());
1173           Weights.pop_back();
1174         }
1175 
1176         PredCases.pop_back();
1177         --i;
1178         --e;
1179       }
1180 
1181     // Reconstruct the new switch statement we will be building.
1182     if (PredDefault != BBDefault) {
1183       PredDefault->removePredecessor(Pred);
1184       if (DTU && PredDefault != BB)
1185         Updates.push_back({DominatorTree::Delete, Pred, PredDefault});
1186       PredDefault = BBDefault;
1187       ++NewSuccessors[BBDefault];
1188     }
1189 
1190     unsigned CasesFromPred = Weights.size();
1191     uint64_t ValidTotalSuccWeight = 0;
1192     for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
1193       if (!PTIHandled.count(BBCases[i].Value) && BBCases[i].Dest != BBDefault) {
1194         PredCases.push_back(BBCases[i]);
1195         ++NewSuccessors[BBCases[i].Dest];
1196         if (SuccHasWeights || PredHasWeights) {
1197           // The default weight is at index 0, so weight for the ith case
1198           // should be at index i+1. Scale the cases from successor by
1199           // PredDefaultWeight (Weights[0]).
1200           Weights.push_back(Weights[0] * SuccWeights[i + 1]);
1201           ValidTotalSuccWeight += SuccWeights[i + 1];
1202         }
1203       }
1204 
1205     if (SuccHasWeights || PredHasWeights) {
1206       ValidTotalSuccWeight += SuccWeights[0];
1207       // Scale the cases from predecessor by ValidTotalSuccWeight.
1208       for (unsigned i = 1; i < CasesFromPred; ++i)
1209         Weights[i] *= ValidTotalSuccWeight;
1210       // Scale the default weight by SuccDefaultWeight (SuccWeights[0]).
1211       Weights[0] *= SuccWeights[0];
1212     }
1213   } else {
1214     // If this is not the default destination from PSI, only the edges
1215     // in SI that occur in PSI with a destination of BB will be
1216     // activated.
1217     std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
1218     std::map<ConstantInt *, uint64_t> WeightsForHandled;
1219     for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
1220       if (PredCases[i].Dest == BB) {
1221         PTIHandled.insert(PredCases[i].Value);
1222 
1223         if (PredHasWeights || SuccHasWeights) {
1224           WeightsForHandled[PredCases[i].Value] = Weights[i + 1];
1225           std::swap(Weights[i + 1], Weights.back());
1226           Weights.pop_back();
1227         }
1228 
1229         std::swap(PredCases[i], PredCases.back());
1230         PredCases.pop_back();
1231         --i;
1232         --e;
1233       }
1234 
1235     // Okay, now we know which constants were sent to BB from the
1236     // predecessor.  Figure out where they will all go now.
1237     for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
1238       if (PTIHandled.count(BBCases[i].Value)) {
1239         // If this is one we are capable of getting...
1240         if (PredHasWeights || SuccHasWeights)
1241           Weights.push_back(WeightsForHandled[BBCases[i].Value]);
1242         PredCases.push_back(BBCases[i]);
1243         ++NewSuccessors[BBCases[i].Dest];
1244         PTIHandled.erase(BBCases[i].Value); // This constant is taken care of
1245       }
1246 
1247     // If there are any constants vectored to BB that TI doesn't handle,
1248     // they must go to the default destination of TI.
1249     for (ConstantInt *I : PTIHandled) {
1250       if (PredHasWeights || SuccHasWeights)
1251         Weights.push_back(WeightsForHandled[I]);
1252       PredCases.push_back(ValueEqualityComparisonCase(I, BBDefault));
1253       ++NewSuccessors[BBDefault];
1254     }
1255   }
1256 
1257   // Okay, at this point, we know which new successor Pred will get.  Make
1258   // sure we update the number of entries in the PHI nodes for these
1259   // successors.
1260   SmallPtrSet<BasicBlock *, 2> SuccsOfPred;
1261   if (DTU) {
1262     SuccsOfPred = {succ_begin(Pred), succ_end(Pred)};
1263     Updates.reserve(Updates.size() + NewSuccessors.size());
1264   }
1265   for (const std::pair<BasicBlock *, int /*Num*/> &NewSuccessor :
1266        NewSuccessors) {
1267     for (auto I : seq(0, NewSuccessor.second)) {
1268       (void)I;
1269       AddPredecessorToBlock(NewSuccessor.first, Pred, BB);
1270     }
1271     if (DTU && !SuccsOfPred.contains(NewSuccessor.first))
1272       Updates.push_back({DominatorTree::Insert, Pred, NewSuccessor.first});
1273   }
1274 
1275   Builder.SetInsertPoint(PTI);
1276   // Convert pointer to int before we switch.
1277   if (CV->getType()->isPointerTy()) {
1278     CV =
1279         Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()), "magicptr");
1280   }
1281 
1282   // Now that the successors are updated, create the new Switch instruction.
1283   SwitchInst *NewSI = Builder.CreateSwitch(CV, PredDefault, PredCases.size());
1284   NewSI->setDebugLoc(PTI->getDebugLoc());
1285   for (ValueEqualityComparisonCase &V : PredCases)
1286     NewSI->addCase(V.Value, V.Dest);
1287 
1288   if (PredHasWeights || SuccHasWeights) {
1289     // Halve the weights if any of them cannot fit in an uint32_t
1290     FitWeights(Weights);
1291 
1292     SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
1293 
1294     setBranchWeights(NewSI, MDWeights);
1295   }
1296 
1297   EraseTerminatorAndDCECond(PTI);
1298 
1299   // Okay, last check.  If BB is still a successor of PSI, then we must
1300   // have an infinite loop case.  If so, add an infinitely looping block
1301   // to handle the case to preserve the behavior of the code.
1302   BasicBlock *InfLoopBlock = nullptr;
1303   for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i)
1304     if (NewSI->getSuccessor(i) == BB) {
1305       if (!InfLoopBlock) {
1306         // Insert it at the end of the function, because it's either code,
1307         // or it won't matter if it's hot. :)
1308         InfLoopBlock =
1309             BasicBlock::Create(BB->getContext(), "infloop", BB->getParent());
1310         BranchInst::Create(InfLoopBlock, InfLoopBlock);
1311         if (DTU)
1312           Updates.push_back(
1313               {DominatorTree::Insert, InfLoopBlock, InfLoopBlock});
1314       }
1315       NewSI->setSuccessor(i, InfLoopBlock);
1316     }
1317 
1318   if (DTU) {
1319     if (InfLoopBlock)
1320       Updates.push_back({DominatorTree::Insert, Pred, InfLoopBlock});
1321 
1322     Updates.push_back({DominatorTree::Delete, Pred, BB});
1323 
1324     DTU->applyUpdates(Updates);
1325   }
1326 
1327   ++NumFoldValueComparisonIntoPredecessors;
1328   return true;
1329 }
1330 
1331 /// The specified terminator is a value equality comparison instruction
1332 /// (either a switch or a branch on "X == c").
1333 /// See if any of the predecessors of the terminator block are value comparisons
1334 /// on the same value.  If so, and if safe to do so, fold them together.
1335 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(Instruction *TI,
1336                                                          IRBuilder<> &Builder) {
1337   BasicBlock *BB = TI->getParent();
1338   Value *CV = isValueEqualityComparison(TI); // CondVal
1339   assert(CV && "Not a comparison?");
1340 
1341   bool Changed = false;
1342 
1343   SmallSetVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB));
1344   while (!Preds.empty()) {
1345     BasicBlock *Pred = Preds.pop_back_val();
1346     Instruction *PTI = Pred->getTerminator();
1347 
1348     // Don't try to fold into itself.
1349     if (Pred == BB)
1350       continue;
1351 
1352     // See if the predecessor is a comparison with the same value.
1353     Value *PCV = isValueEqualityComparison(PTI); // PredCondVal
1354     if (PCV != CV)
1355       continue;
1356 
1357     SmallSetVector<BasicBlock *, 4> FailBlocks;
1358     if (!SafeToMergeTerminators(TI, PTI, &FailBlocks)) {
1359       for (auto *Succ : FailBlocks) {
1360         if (!SplitBlockPredecessors(Succ, TI->getParent(), ".fold.split", DTU))
1361           return false;
1362       }
1363     }
1364 
1365     PerformValueComparisonIntoPredecessorFolding(TI, CV, PTI, Builder);
1366     Changed = true;
1367   }
1368   return Changed;
1369 }
1370 
1371 // If we would need to insert a select that uses the value of this invoke
1372 // (comments in HoistThenElseCodeToIf explain why we would need to do this), we
1373 // can't hoist the invoke, as there is nowhere to put the select in this case.
1374 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2,
1375                                 Instruction *I1, Instruction *I2) {
1376   for (BasicBlock *Succ : successors(BB1)) {
1377     for (const PHINode &PN : Succ->phis()) {
1378       Value *BB1V = PN.getIncomingValueForBlock(BB1);
1379       Value *BB2V = PN.getIncomingValueForBlock(BB2);
1380       if (BB1V != BB2V && (BB1V == I1 || BB2V == I2)) {
1381         return false;
1382       }
1383     }
1384   }
1385   return true;
1386 }
1387 
1388 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I, bool PtrValueMayBeModified = false);
1389 
1390 /// Given a conditional branch that goes to BB1 and BB2, hoist any common code
1391 /// in the two blocks up into the branch block. The caller of this function
1392 /// guarantees that BI's block dominates BB1 and BB2. If EqTermsOnly is given,
1393 /// only perform hoisting in case both blocks only contain a terminator. In that
1394 /// case, only the original BI will be replaced and selects for PHIs are added.
1395 bool SimplifyCFGOpt::HoistThenElseCodeToIf(BranchInst *BI,
1396                                            const TargetTransformInfo &TTI,
1397                                            bool EqTermsOnly) {
1398   // This does very trivial matching, with limited scanning, to find identical
1399   // instructions in the two blocks.  In particular, we don't want to get into
1400   // O(M*N) situations here where M and N are the sizes of BB1 and BB2.  As
1401   // such, we currently just scan for obviously identical instructions in an
1402   // identical order.
1403   BasicBlock *BB1 = BI->getSuccessor(0); // The true destination.
1404   BasicBlock *BB2 = BI->getSuccessor(1); // The false destination
1405 
1406   BasicBlock::iterator BB1_Itr = BB1->begin();
1407   BasicBlock::iterator BB2_Itr = BB2->begin();
1408 
1409   Instruction *I1 = &*BB1_Itr++, *I2 = &*BB2_Itr++;
1410   // Skip debug info if it is not identical.
1411   DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1412   DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1413   if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1414     while (isa<DbgInfoIntrinsic>(I1))
1415       I1 = &*BB1_Itr++;
1416     while (isa<DbgInfoIntrinsic>(I2))
1417       I2 = &*BB2_Itr++;
1418   }
1419   // FIXME: Can we define a safety predicate for CallBr?
1420   if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) ||
1421       (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) ||
1422       isa<CallBrInst>(I1))
1423     return false;
1424 
1425   BasicBlock *BIParent = BI->getParent();
1426 
1427   bool Changed = false;
1428 
1429   auto _ = make_scope_exit([&]() {
1430     if (Changed)
1431       ++NumHoistCommonCode;
1432   });
1433 
1434   // Check if only hoisting terminators is allowed. This does not add new
1435   // instructions to the hoist location.
1436   if (EqTermsOnly) {
1437     // Skip any debug intrinsics, as they are free to hoist.
1438     auto *I1NonDbg = &*skipDebugIntrinsics(I1->getIterator());
1439     auto *I2NonDbg = &*skipDebugIntrinsics(I2->getIterator());
1440     if (!I1NonDbg->isIdenticalToWhenDefined(I2NonDbg))
1441       return false;
1442     if (!I1NonDbg->isTerminator())
1443       return false;
1444     // Now we know that we only need to hoist debug instrinsics and the
1445     // terminator. Let the loop below handle those 2 cases.
1446   }
1447 
1448   do {
1449     // If we are hoisting the terminator instruction, don't move one (making a
1450     // broken BB), instead clone it, and remove BI.
1451     if (I1->isTerminator())
1452       goto HoistTerminator;
1453 
1454     // If we're going to hoist a call, make sure that the two instructions we're
1455     // commoning/hoisting are both marked with musttail, or neither of them is
1456     // marked as such. Otherwise, we might end up in a situation where we hoist
1457     // from a block where the terminator is a `ret` to a block where the terminator
1458     // is a `br`, and `musttail` calls expect to be followed by a return.
1459     auto *C1 = dyn_cast<CallInst>(I1);
1460     auto *C2 = dyn_cast<CallInst>(I2);
1461     if (C1 && C2)
1462       if (C1->isMustTailCall() != C2->isMustTailCall())
1463         return Changed;
1464 
1465     if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2))
1466       return Changed;
1467 
1468     // If any of the two call sites has nomerge attribute, stop hoisting.
1469     if (const auto *CB1 = dyn_cast<CallBase>(I1))
1470       if (CB1->cannotMerge())
1471         return Changed;
1472     if (const auto *CB2 = dyn_cast<CallBase>(I2))
1473       if (CB2->cannotMerge())
1474         return Changed;
1475 
1476     if (isa<DbgInfoIntrinsic>(I1) || isa<DbgInfoIntrinsic>(I2)) {
1477       assert (isa<DbgInfoIntrinsic>(I1) && isa<DbgInfoIntrinsic>(I2));
1478       // The debug location is an integral part of a debug info intrinsic
1479       // and can't be separated from it or replaced.  Instead of attempting
1480       // to merge locations, simply hoist both copies of the intrinsic.
1481       BIParent->getInstList().splice(BI->getIterator(),
1482                                      BB1->getInstList(), I1);
1483       BIParent->getInstList().splice(BI->getIterator(),
1484                                      BB2->getInstList(), I2);
1485       Changed = true;
1486     } else {
1487       // For a normal instruction, we just move one to right before the branch,
1488       // then replace all uses of the other with the first.  Finally, we remove
1489       // the now redundant second instruction.
1490       BIParent->getInstList().splice(BI->getIterator(),
1491                                      BB1->getInstList(), I1);
1492       if (!I2->use_empty())
1493         I2->replaceAllUsesWith(I1);
1494       I1->andIRFlags(I2);
1495       unsigned KnownIDs[] = {LLVMContext::MD_tbaa,
1496                              LLVMContext::MD_range,
1497                              LLVMContext::MD_fpmath,
1498                              LLVMContext::MD_invariant_load,
1499                              LLVMContext::MD_nonnull,
1500                              LLVMContext::MD_invariant_group,
1501                              LLVMContext::MD_align,
1502                              LLVMContext::MD_dereferenceable,
1503                              LLVMContext::MD_dereferenceable_or_null,
1504                              LLVMContext::MD_mem_parallel_loop_access,
1505                              LLVMContext::MD_access_group,
1506                              LLVMContext::MD_preserve_access_index};
1507       combineMetadata(I1, I2, KnownIDs, true);
1508 
1509       // I1 and I2 are being combined into a single instruction.  Its debug
1510       // location is the merged locations of the original instructions.
1511       I1->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc());
1512 
1513       I2->eraseFromParent();
1514       Changed = true;
1515     }
1516     ++NumHoistCommonInstrs;
1517 
1518     I1 = &*BB1_Itr++;
1519     I2 = &*BB2_Itr++;
1520     // Skip debug info if it is not identical.
1521     DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1522     DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1523     if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1524       while (isa<DbgInfoIntrinsic>(I1))
1525         I1 = &*BB1_Itr++;
1526       while (isa<DbgInfoIntrinsic>(I2))
1527         I2 = &*BB2_Itr++;
1528     }
1529   } while (I1->isIdenticalToWhenDefined(I2));
1530 
1531   return true;
1532 
1533 HoistTerminator:
1534   // It may not be possible to hoist an invoke.
1535   // FIXME: Can we define a safety predicate for CallBr?
1536   if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))
1537     return Changed;
1538 
1539   // TODO: callbr hoisting currently disabled pending further study.
1540   if (isa<CallBrInst>(I1))
1541     return Changed;
1542 
1543   for (BasicBlock *Succ : successors(BB1)) {
1544     for (PHINode &PN : Succ->phis()) {
1545       Value *BB1V = PN.getIncomingValueForBlock(BB1);
1546       Value *BB2V = PN.getIncomingValueForBlock(BB2);
1547       if (BB1V == BB2V)
1548         continue;
1549 
1550       // Check for passingValueIsAlwaysUndefined here because we would rather
1551       // eliminate undefined control flow then converting it to a select.
1552       if (passingValueIsAlwaysUndefined(BB1V, &PN) ||
1553           passingValueIsAlwaysUndefined(BB2V, &PN))
1554         return Changed;
1555 
1556       if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V))
1557         return Changed;
1558       if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V))
1559         return Changed;
1560     }
1561   }
1562 
1563   // Okay, it is safe to hoist the terminator.
1564   Instruction *NT = I1->clone();
1565   BIParent->getInstList().insert(BI->getIterator(), NT);
1566   if (!NT->getType()->isVoidTy()) {
1567     I1->replaceAllUsesWith(NT);
1568     I2->replaceAllUsesWith(NT);
1569     NT->takeName(I1);
1570   }
1571   Changed = true;
1572   ++NumHoistCommonInstrs;
1573 
1574   // Ensure terminator gets a debug location, even an unknown one, in case
1575   // it involves inlinable calls.
1576   NT->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc());
1577 
1578   // PHIs created below will adopt NT's merged DebugLoc.
1579   IRBuilder<NoFolder> Builder(NT);
1580 
1581   // Hoisting one of the terminators from our successor is a great thing.
1582   // Unfortunately, the successors of the if/else blocks may have PHI nodes in
1583   // them.  If they do, all PHI entries for BB1/BB2 must agree for all PHI
1584   // nodes, so we insert select instruction to compute the final result.
1585   std::map<std::pair<Value *, Value *>, SelectInst *> InsertedSelects;
1586   for (BasicBlock *Succ : successors(BB1)) {
1587     for (PHINode &PN : Succ->phis()) {
1588       Value *BB1V = PN.getIncomingValueForBlock(BB1);
1589       Value *BB2V = PN.getIncomingValueForBlock(BB2);
1590       if (BB1V == BB2V)
1591         continue;
1592 
1593       // These values do not agree.  Insert a select instruction before NT
1594       // that determines the right value.
1595       SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)];
1596       if (!SI) {
1597         // Propagate fast-math-flags from phi node to its replacement select.
1598         IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
1599         if (isa<FPMathOperator>(PN))
1600           Builder.setFastMathFlags(PN.getFastMathFlags());
1601 
1602         SI = cast<SelectInst>(
1603             Builder.CreateSelect(BI->getCondition(), BB1V, BB2V,
1604                                  BB1V->getName() + "." + BB2V->getName(), BI));
1605       }
1606 
1607       // Make the PHI node use the select for all incoming values for BB1/BB2
1608       for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
1609         if (PN.getIncomingBlock(i) == BB1 || PN.getIncomingBlock(i) == BB2)
1610           PN.setIncomingValue(i, SI);
1611     }
1612   }
1613 
1614   SmallVector<DominatorTree::UpdateType, 4> Updates;
1615 
1616   // Update any PHI nodes in our new successors.
1617   for (BasicBlock *Succ : successors(BB1)) {
1618     AddPredecessorToBlock(Succ, BIParent, BB1);
1619     if (DTU)
1620       Updates.push_back({DominatorTree::Insert, BIParent, Succ});
1621   }
1622 
1623   if (DTU)
1624     for (BasicBlock *Succ : successors(BI))
1625       Updates.push_back({DominatorTree::Delete, BIParent, Succ});
1626 
1627   EraseTerminatorAndDCECond(BI);
1628   if (DTU)
1629     DTU->applyUpdates(Updates);
1630   return Changed;
1631 }
1632 
1633 // Check lifetime markers.
1634 static bool isLifeTimeMarker(const Instruction *I) {
1635   if (auto II = dyn_cast<IntrinsicInst>(I)) {
1636     switch (II->getIntrinsicID()) {
1637     default:
1638       break;
1639     case Intrinsic::lifetime_start:
1640     case Intrinsic::lifetime_end:
1641       return true;
1642     }
1643   }
1644   return false;
1645 }
1646 
1647 // TODO: Refine this. This should avoid cases like turning constant memcpy sizes
1648 // into variables.
1649 static bool replacingOperandWithVariableIsCheap(const Instruction *I,
1650                                                 int OpIdx) {
1651   return !isa<IntrinsicInst>(I);
1652 }
1653 
1654 // All instructions in Insts belong to different blocks that all unconditionally
1655 // branch to a common successor. Analyze each instruction and return true if it
1656 // would be possible to sink them into their successor, creating one common
1657 // instruction instead. For every value that would be required to be provided by
1658 // PHI node (because an operand varies in each input block), add to PHIOperands.
1659 static bool canSinkInstructions(
1660     ArrayRef<Instruction *> Insts,
1661     DenseMap<Instruction *, SmallVector<Value *, 4>> &PHIOperands) {
1662   // Prune out obviously bad instructions to move. Each instruction must have
1663   // exactly zero or one use, and we check later that use is by a single, common
1664   // PHI instruction in the successor.
1665   bool HasUse = !Insts.front()->user_empty();
1666   for (auto *I : Insts) {
1667     // These instructions may change or break semantics if moved.
1668     if (isa<PHINode>(I) || I->isEHPad() || isa<AllocaInst>(I) ||
1669         I->getType()->isTokenTy())
1670       return false;
1671 
1672     // Do not try to sink an instruction in an infinite loop - it can cause
1673     // this algorithm to infinite loop.
1674     if (I->getParent()->getSingleSuccessor() == I->getParent())
1675       return false;
1676 
1677     // Conservatively return false if I is an inline-asm instruction. Sinking
1678     // and merging inline-asm instructions can potentially create arguments
1679     // that cannot satisfy the inline-asm constraints.
1680     // If the instruction has nomerge attribute, return false.
1681     if (const auto *C = dyn_cast<CallBase>(I))
1682       if (C->isInlineAsm() || C->cannotMerge())
1683         return false;
1684 
1685     // Each instruction must have zero or one use.
1686     if (HasUse && !I->hasOneUse())
1687       return false;
1688     if (!HasUse && !I->user_empty())
1689       return false;
1690   }
1691 
1692   const Instruction *I0 = Insts.front();
1693   for (auto *I : Insts)
1694     if (!I->isSameOperationAs(I0))
1695       return false;
1696 
1697   // All instructions in Insts are known to be the same opcode. If they have a
1698   // use, check that the only user is a PHI or in the same block as the
1699   // instruction, because if a user is in the same block as an instruction we're
1700   // contemplating sinking, it must already be determined to be sinkable.
1701   if (HasUse) {
1702     auto *PNUse = dyn_cast<PHINode>(*I0->user_begin());
1703     auto *Succ = I0->getParent()->getTerminator()->getSuccessor(0);
1704     if (!all_of(Insts, [&PNUse,&Succ](const Instruction *I) -> bool {
1705           auto *U = cast<Instruction>(*I->user_begin());
1706           return (PNUse &&
1707                   PNUse->getParent() == Succ &&
1708                   PNUse->getIncomingValueForBlock(I->getParent()) == I) ||
1709                  U->getParent() == I->getParent();
1710         }))
1711       return false;
1712   }
1713 
1714   // Because SROA can't handle speculating stores of selects, try not to sink
1715   // loads, stores or lifetime markers of allocas when we'd have to create a
1716   // PHI for the address operand. Also, because it is likely that loads or
1717   // stores of allocas will disappear when Mem2Reg/SROA is run, don't sink
1718   // them.
1719   // This can cause code churn which can have unintended consequences down
1720   // the line - see https://llvm.org/bugs/show_bug.cgi?id=30244.
1721   // FIXME: This is a workaround for a deficiency in SROA - see
1722   // https://llvm.org/bugs/show_bug.cgi?id=30188
1723   if (isa<StoreInst>(I0) && any_of(Insts, [](const Instruction *I) {
1724         return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts());
1725       }))
1726     return false;
1727   if (isa<LoadInst>(I0) && any_of(Insts, [](const Instruction *I) {
1728         return isa<AllocaInst>(I->getOperand(0)->stripPointerCasts());
1729       }))
1730     return false;
1731   if (isLifeTimeMarker(I0) && any_of(Insts, [](const Instruction *I) {
1732         return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts());
1733       }))
1734     return false;
1735 
1736   for (unsigned OI = 0, OE = I0->getNumOperands(); OI != OE; ++OI) {
1737     Value *Op = I0->getOperand(OI);
1738     if (Op->getType()->isTokenTy())
1739       // Don't touch any operand of token type.
1740       return false;
1741 
1742     auto SameAsI0 = [&I0, OI](const Instruction *I) {
1743       assert(I->getNumOperands() == I0->getNumOperands());
1744       return I->getOperand(OI) == I0->getOperand(OI);
1745     };
1746     if (!all_of(Insts, SameAsI0)) {
1747       if ((isa<Constant>(Op) && !replacingOperandWithVariableIsCheap(I0, OI)) ||
1748           !canReplaceOperandWithVariable(I0, OI))
1749         // We can't create a PHI from this GEP.
1750         return false;
1751       // Don't create indirect calls! The called value is the final operand.
1752       if (isa<CallBase>(I0) && OI == OE - 1) {
1753         // FIXME: if the call was *already* indirect, we should do this.
1754         return false;
1755       }
1756       for (auto *I : Insts)
1757         PHIOperands[I].push_back(I->getOperand(OI));
1758     }
1759   }
1760   return true;
1761 }
1762 
1763 // Assuming canSinkInstructions(Blocks) has returned true, sink the last
1764 // instruction of every block in Blocks to their common successor, commoning
1765 // into one instruction.
1766 static bool sinkLastInstruction(ArrayRef<BasicBlock*> Blocks) {
1767   auto *BBEnd = Blocks[0]->getTerminator()->getSuccessor(0);
1768 
1769   // canSinkInstructions returning true guarantees that every block has at
1770   // least one non-terminator instruction.
1771   SmallVector<Instruction*,4> Insts;
1772   for (auto *BB : Blocks) {
1773     Instruction *I = BB->getTerminator();
1774     do {
1775       I = I->getPrevNode();
1776     } while (isa<DbgInfoIntrinsic>(I) && I != &BB->front());
1777     if (!isa<DbgInfoIntrinsic>(I))
1778       Insts.push_back(I);
1779   }
1780 
1781   // The only checking we need to do now is that all users of all instructions
1782   // are the same PHI node. canSinkInstructions should have checked this but
1783   // it is slightly over-aggressive - it gets confused by commutative
1784   // instructions so double-check it here.
1785   Instruction *I0 = Insts.front();
1786   if (!I0->user_empty()) {
1787     auto *PNUse = dyn_cast<PHINode>(*I0->user_begin());
1788     if (!all_of(Insts, [&PNUse](const Instruction *I) -> bool {
1789           auto *U = cast<Instruction>(*I->user_begin());
1790           return U == PNUse;
1791         }))
1792       return false;
1793   }
1794 
1795   // We don't need to do any more checking here; canSinkInstructions should
1796   // have done it all for us.
1797   SmallVector<Value*, 4> NewOperands;
1798   for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) {
1799     // This check is different to that in canSinkInstructions. There, we
1800     // cared about the global view once simplifycfg (and instcombine) have
1801     // completed - it takes into account PHIs that become trivially
1802     // simplifiable.  However here we need a more local view; if an operand
1803     // differs we create a PHI and rely on instcombine to clean up the very
1804     // small mess we may make.
1805     bool NeedPHI = any_of(Insts, [&I0, O](const Instruction *I) {
1806       return I->getOperand(O) != I0->getOperand(O);
1807     });
1808     if (!NeedPHI) {
1809       NewOperands.push_back(I0->getOperand(O));
1810       continue;
1811     }
1812 
1813     // Create a new PHI in the successor block and populate it.
1814     auto *Op = I0->getOperand(O);
1815     assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!");
1816     auto *PN = PHINode::Create(Op->getType(), Insts.size(),
1817                                Op->getName() + ".sink", &BBEnd->front());
1818     for (auto *I : Insts)
1819       PN->addIncoming(I->getOperand(O), I->getParent());
1820     NewOperands.push_back(PN);
1821   }
1822 
1823   // Arbitrarily use I0 as the new "common" instruction; remap its operands
1824   // and move it to the start of the successor block.
1825   for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O)
1826     I0->getOperandUse(O).set(NewOperands[O]);
1827   I0->moveBefore(&*BBEnd->getFirstInsertionPt());
1828 
1829   // Update metadata and IR flags, and merge debug locations.
1830   for (auto *I : Insts)
1831     if (I != I0) {
1832       // The debug location for the "common" instruction is the merged locations
1833       // of all the commoned instructions.  We start with the original location
1834       // of the "common" instruction and iteratively merge each location in the
1835       // loop below.
1836       // This is an N-way merge, which will be inefficient if I0 is a CallInst.
1837       // However, as N-way merge for CallInst is rare, so we use simplified API
1838       // instead of using complex API for N-way merge.
1839       I0->applyMergedLocation(I0->getDebugLoc(), I->getDebugLoc());
1840       combineMetadataForCSE(I0, I, true);
1841       I0->andIRFlags(I);
1842     }
1843 
1844   if (!I0->user_empty()) {
1845     // canSinkLastInstruction checked that all instructions were used by
1846     // one and only one PHI node. Find that now, RAUW it to our common
1847     // instruction and nuke it.
1848     auto *PN = cast<PHINode>(*I0->user_begin());
1849     PN->replaceAllUsesWith(I0);
1850     PN->eraseFromParent();
1851   }
1852 
1853   // Finally nuke all instructions apart from the common instruction.
1854   for (auto *I : Insts)
1855     if (I != I0)
1856       I->eraseFromParent();
1857 
1858   return true;
1859 }
1860 
1861 namespace {
1862 
1863   // LockstepReverseIterator - Iterates through instructions
1864   // in a set of blocks in reverse order from the first non-terminator.
1865   // For example (assume all blocks have size n):
1866   //   LockstepReverseIterator I([B1, B2, B3]);
1867   //   *I-- = [B1[n], B2[n], B3[n]];
1868   //   *I-- = [B1[n-1], B2[n-1], B3[n-1]];
1869   //   *I-- = [B1[n-2], B2[n-2], B3[n-2]];
1870   //   ...
1871   class LockstepReverseIterator {
1872     ArrayRef<BasicBlock*> Blocks;
1873     SmallVector<Instruction*,4> Insts;
1874     bool Fail;
1875 
1876   public:
1877     LockstepReverseIterator(ArrayRef<BasicBlock*> Blocks) : Blocks(Blocks) {
1878       reset();
1879     }
1880 
1881     void reset() {
1882       Fail = false;
1883       Insts.clear();
1884       for (auto *BB : Blocks) {
1885         Instruction *Inst = BB->getTerminator();
1886         for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
1887           Inst = Inst->getPrevNode();
1888         if (!Inst) {
1889           // Block wasn't big enough.
1890           Fail = true;
1891           return;
1892         }
1893         Insts.push_back(Inst);
1894       }
1895     }
1896 
1897     bool isValid() const {
1898       return !Fail;
1899     }
1900 
1901     void operator--() {
1902       if (Fail)
1903         return;
1904       for (auto *&Inst : Insts) {
1905         for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
1906           Inst = Inst->getPrevNode();
1907         // Already at beginning of block.
1908         if (!Inst) {
1909           Fail = true;
1910           return;
1911         }
1912       }
1913     }
1914 
1915     ArrayRef<Instruction*> operator * () const {
1916       return Insts;
1917     }
1918   };
1919 
1920 } // end anonymous namespace
1921 
1922 /// Check whether BB's predecessors end with unconditional branches. If it is
1923 /// true, sink any common code from the predecessors to BB.
1924 /// We also allow one predecessor to end with conditional branch (but no more
1925 /// than one).
1926 static bool SinkCommonCodeFromPredecessors(BasicBlock *BB,
1927                                            DomTreeUpdater *DTU) {
1928   // We support two situations:
1929   //   (1) all incoming arcs are unconditional
1930   //   (2) one incoming arc is conditional
1931   //
1932   // (2) is very common in switch defaults and
1933   // else-if patterns;
1934   //
1935   //   if (a) f(1);
1936   //   else if (b) f(2);
1937   //
1938   // produces:
1939   //
1940   //       [if]
1941   //      /    \
1942   //    [f(1)] [if]
1943   //      |     | \
1944   //      |     |  |
1945   //      |  [f(2)]|
1946   //       \    | /
1947   //        [ end ]
1948   //
1949   // [end] has two unconditional predecessor arcs and one conditional. The
1950   // conditional refers to the implicit empty 'else' arc. This conditional
1951   // arc can also be caused by an empty default block in a switch.
1952   //
1953   // In this case, we attempt to sink code from all *unconditional* arcs.
1954   // If we can sink instructions from these arcs (determined during the scan
1955   // phase below) we insert a common successor for all unconditional arcs and
1956   // connect that to [end], to enable sinking:
1957   //
1958   //       [if]
1959   //      /    \
1960   //    [x(1)] [if]
1961   //      |     | \
1962   //      |     |  \
1963   //      |  [x(2)] |
1964   //       \   /    |
1965   //   [sink.split] |
1966   //         \     /
1967   //         [ end ]
1968   //
1969   SmallVector<BasicBlock*,4> UnconditionalPreds;
1970   Instruction *Cond = nullptr;
1971   for (auto *B : predecessors(BB)) {
1972     auto *T = B->getTerminator();
1973     if (isa<BranchInst>(T) && cast<BranchInst>(T)->isUnconditional())
1974       UnconditionalPreds.push_back(B);
1975     else if ((isa<BranchInst>(T) || isa<SwitchInst>(T)) && !Cond)
1976       Cond = T;
1977     else
1978       return false;
1979   }
1980   if (UnconditionalPreds.size() < 2)
1981     return false;
1982 
1983   // We take a two-step approach to tail sinking. First we scan from the end of
1984   // each block upwards in lockstep. If the n'th instruction from the end of each
1985   // block can be sunk, those instructions are added to ValuesToSink and we
1986   // carry on. If we can sink an instruction but need to PHI-merge some operands
1987   // (because they're not identical in each instruction) we add these to
1988   // PHIOperands.
1989   unsigned ScanIdx = 0;
1990   SmallPtrSet<Value*,4> InstructionsToSink;
1991   DenseMap<Instruction*, SmallVector<Value*,4>> PHIOperands;
1992   LockstepReverseIterator LRI(UnconditionalPreds);
1993   while (LRI.isValid() &&
1994          canSinkInstructions(*LRI, PHIOperands)) {
1995     LLVM_DEBUG(dbgs() << "SINK: instruction can be sunk: " << *(*LRI)[0]
1996                       << "\n");
1997     InstructionsToSink.insert((*LRI).begin(), (*LRI).end());
1998     ++ScanIdx;
1999     --LRI;
2000   }
2001 
2002   // If no instructions can be sunk, early-return.
2003   if (ScanIdx == 0)
2004     return false;
2005 
2006   bool Changed = false;
2007 
2008   auto ProfitableToSinkInstruction = [&](LockstepReverseIterator &LRI) {
2009     unsigned NumPHIdValues = 0;
2010     for (auto *I : *LRI)
2011       for (auto *V : PHIOperands[I])
2012         if (InstructionsToSink.count(V) == 0)
2013           ++NumPHIdValues;
2014     LLVM_DEBUG(dbgs() << "SINK: #phid values: " << NumPHIdValues << "\n");
2015     unsigned NumPHIInsts = NumPHIdValues / UnconditionalPreds.size();
2016     if ((NumPHIdValues % UnconditionalPreds.size()) != 0)
2017         NumPHIInsts++;
2018 
2019     return NumPHIInsts <= 1;
2020   };
2021 
2022   if (Cond) {
2023     // Check if we would actually sink anything first! This mutates the CFG and
2024     // adds an extra block. The goal in doing this is to allow instructions that
2025     // couldn't be sunk before to be sunk - obviously, speculatable instructions
2026     // (such as trunc, add) can be sunk and predicated already. So we check that
2027     // we're going to sink at least one non-speculatable instruction.
2028     LRI.reset();
2029     unsigned Idx = 0;
2030     bool Profitable = false;
2031     while (ProfitableToSinkInstruction(LRI) && Idx < ScanIdx) {
2032       if (!isSafeToSpeculativelyExecute((*LRI)[0])) {
2033         Profitable = true;
2034         break;
2035       }
2036       --LRI;
2037       ++Idx;
2038     }
2039     if (!Profitable)
2040       return false;
2041 
2042     LLVM_DEBUG(dbgs() << "SINK: Splitting edge\n");
2043     // We have a conditional edge and we're going to sink some instructions.
2044     // Insert a new block postdominating all blocks we're going to sink from.
2045     if (!SplitBlockPredecessors(BB, UnconditionalPreds, ".sink.split", DTU))
2046       // Edges couldn't be split.
2047       return false;
2048     Changed = true;
2049   }
2050 
2051   // Now that we've analyzed all potential sinking candidates, perform the
2052   // actual sink. We iteratively sink the last non-terminator of the source
2053   // blocks into their common successor unless doing so would require too
2054   // many PHI instructions to be generated (currently only one PHI is allowed
2055   // per sunk instruction).
2056   //
2057   // We can use InstructionsToSink to discount values needing PHI-merging that will
2058   // actually be sunk in a later iteration. This allows us to be more
2059   // aggressive in what we sink. This does allow a false positive where we
2060   // sink presuming a later value will also be sunk, but stop half way through
2061   // and never actually sink it which means we produce more PHIs than intended.
2062   // This is unlikely in practice though.
2063   unsigned SinkIdx = 0;
2064   for (; SinkIdx != ScanIdx; ++SinkIdx) {
2065     LLVM_DEBUG(dbgs() << "SINK: Sink: "
2066                       << *UnconditionalPreds[0]->getTerminator()->getPrevNode()
2067                       << "\n");
2068 
2069     // Because we've sunk every instruction in turn, the current instruction to
2070     // sink is always at index 0.
2071     LRI.reset();
2072     if (!ProfitableToSinkInstruction(LRI)) {
2073       // Too many PHIs would be created.
2074       LLVM_DEBUG(
2075           dbgs() << "SINK: stopping here, too many PHIs would be created!\n");
2076       break;
2077     }
2078 
2079     if (!sinkLastInstruction(UnconditionalPreds)) {
2080       LLVM_DEBUG(
2081           dbgs()
2082           << "SINK: stopping here, failed to actually sink instruction!\n");
2083       break;
2084     }
2085 
2086     NumSinkCommonInstrs++;
2087     Changed = true;
2088   }
2089   if (SinkIdx != 0)
2090     ++NumSinkCommonCode;
2091   return Changed;
2092 }
2093 
2094 /// Determine if we can hoist sink a sole store instruction out of a
2095 /// conditional block.
2096 ///
2097 /// We are looking for code like the following:
2098 ///   BrBB:
2099 ///     store i32 %add, i32* %arrayidx2
2100 ///     ... // No other stores or function calls (we could be calling a memory
2101 ///     ... // function).
2102 ///     %cmp = icmp ult %x, %y
2103 ///     br i1 %cmp, label %EndBB, label %ThenBB
2104 ///   ThenBB:
2105 ///     store i32 %add5, i32* %arrayidx2
2106 ///     br label EndBB
2107 ///   EndBB:
2108 ///     ...
2109 ///   We are going to transform this into:
2110 ///   BrBB:
2111 ///     store i32 %add, i32* %arrayidx2
2112 ///     ... //
2113 ///     %cmp = icmp ult %x, %y
2114 ///     %add.add5 = select i1 %cmp, i32 %add, %add5
2115 ///     store i32 %add.add5, i32* %arrayidx2
2116 ///     ...
2117 ///
2118 /// \return The pointer to the value of the previous store if the store can be
2119 ///         hoisted into the predecessor block. 0 otherwise.
2120 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB,
2121                                      BasicBlock *StoreBB, BasicBlock *EndBB) {
2122   StoreInst *StoreToHoist = dyn_cast<StoreInst>(I);
2123   if (!StoreToHoist)
2124     return nullptr;
2125 
2126   // Volatile or atomic.
2127   if (!StoreToHoist->isSimple())
2128     return nullptr;
2129 
2130   Value *StorePtr = StoreToHoist->getPointerOperand();
2131 
2132   // Look for a store to the same pointer in BrBB.
2133   unsigned MaxNumInstToLookAt = 9;
2134   // Skip pseudo probe intrinsic calls which are not really killing any memory
2135   // accesses.
2136   for (Instruction &CurI : reverse(BrBB->instructionsWithoutDebug(true))) {
2137     if (!MaxNumInstToLookAt)
2138       break;
2139     --MaxNumInstToLookAt;
2140 
2141     // Could be calling an instruction that affects memory like free().
2142     if (CurI.mayHaveSideEffects() && !isa<StoreInst>(CurI))
2143       return nullptr;
2144 
2145     if (auto *SI = dyn_cast<StoreInst>(&CurI)) {
2146       // Found the previous store make sure it stores to the same location.
2147       if (SI->getPointerOperand() == StorePtr)
2148         // Found the previous store, return its value operand.
2149         return SI->getValueOperand();
2150       return nullptr; // Unknown store.
2151     }
2152   }
2153 
2154   return nullptr;
2155 }
2156 
2157 /// Estimate the cost of the insertion(s) and check that the PHI nodes can be
2158 /// converted to selects.
2159 static bool validateAndCostRequiredSelects(BasicBlock *BB, BasicBlock *ThenBB,
2160                                            BasicBlock *EndBB,
2161                                            unsigned &SpeculatedInstructions,
2162                                            InstructionCost &Cost,
2163                                            const TargetTransformInfo &TTI) {
2164   TargetTransformInfo::TargetCostKind CostKind =
2165     BB->getParent()->hasMinSize()
2166     ? TargetTransformInfo::TCK_CodeSize
2167     : TargetTransformInfo::TCK_SizeAndLatency;
2168 
2169   bool HaveRewritablePHIs = false;
2170   for (PHINode &PN : EndBB->phis()) {
2171     Value *OrigV = PN.getIncomingValueForBlock(BB);
2172     Value *ThenV = PN.getIncomingValueForBlock(ThenBB);
2173 
2174     // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf.
2175     // Skip PHIs which are trivial.
2176     if (ThenV == OrigV)
2177       continue;
2178 
2179     Cost += TTI.getCmpSelInstrCost(Instruction::Select, PN.getType(), nullptr,
2180                                    CmpInst::BAD_ICMP_PREDICATE, CostKind);
2181 
2182     // Don't convert to selects if we could remove undefined behavior instead.
2183     if (passingValueIsAlwaysUndefined(OrigV, &PN) ||
2184         passingValueIsAlwaysUndefined(ThenV, &PN))
2185       return false;
2186 
2187     HaveRewritablePHIs = true;
2188     ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV);
2189     ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV);
2190     if (!OrigCE && !ThenCE)
2191       continue; // Known safe and cheap.
2192 
2193     if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE)) ||
2194         (OrigCE && !isSafeToSpeculativelyExecute(OrigCE)))
2195       return false;
2196     InstructionCost OrigCost = OrigCE ? computeSpeculationCost(OrigCE, TTI) : 0;
2197     InstructionCost ThenCost = ThenCE ? computeSpeculationCost(ThenCE, TTI) : 0;
2198     InstructionCost MaxCost =
2199         2 * PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
2200     if (OrigCost + ThenCost > MaxCost)
2201       return false;
2202 
2203     // Account for the cost of an unfolded ConstantExpr which could end up
2204     // getting expanded into Instructions.
2205     // FIXME: This doesn't account for how many operations are combined in the
2206     // constant expression.
2207     ++SpeculatedInstructions;
2208     if (SpeculatedInstructions > 1)
2209       return false;
2210   }
2211 
2212   return HaveRewritablePHIs;
2213 }
2214 
2215 /// Speculate a conditional basic block flattening the CFG.
2216 ///
2217 /// Note that this is a very risky transform currently. Speculating
2218 /// instructions like this is most often not desirable. Instead, there is an MI
2219 /// pass which can do it with full awareness of the resource constraints.
2220 /// However, some cases are "obvious" and we should do directly. An example of
2221 /// this is speculating a single, reasonably cheap instruction.
2222 ///
2223 /// There is only one distinct advantage to flattening the CFG at the IR level:
2224 /// it makes very common but simplistic optimizations such as are common in
2225 /// instcombine and the DAG combiner more powerful by removing CFG edges and
2226 /// modeling their effects with easier to reason about SSA value graphs.
2227 ///
2228 ///
2229 /// An illustration of this transform is turning this IR:
2230 /// \code
2231 ///   BB:
2232 ///     %cmp = icmp ult %x, %y
2233 ///     br i1 %cmp, label %EndBB, label %ThenBB
2234 ///   ThenBB:
2235 ///     %sub = sub %x, %y
2236 ///     br label BB2
2237 ///   EndBB:
2238 ///     %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ]
2239 ///     ...
2240 /// \endcode
2241 ///
2242 /// Into this IR:
2243 /// \code
2244 ///   BB:
2245 ///     %cmp = icmp ult %x, %y
2246 ///     %sub = sub %x, %y
2247 ///     %cond = select i1 %cmp, 0, %sub
2248 ///     ...
2249 /// \endcode
2250 ///
2251 /// \returns true if the conditional block is removed.
2252 bool SimplifyCFGOpt::SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB,
2253                                             const TargetTransformInfo &TTI) {
2254   // Be conservative for now. FP select instruction can often be expensive.
2255   Value *BrCond = BI->getCondition();
2256   if (isa<FCmpInst>(BrCond))
2257     return false;
2258 
2259   BasicBlock *BB = BI->getParent();
2260   BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0);
2261   InstructionCost Budget =
2262       PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
2263 
2264   // If ThenBB is actually on the false edge of the conditional branch, remember
2265   // to swap the select operands later.
2266   bool Invert = false;
2267   if (ThenBB != BI->getSuccessor(0)) {
2268     assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?");
2269     Invert = true;
2270   }
2271   assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block");
2272 
2273   // Keep a count of how many times instructions are used within ThenBB when
2274   // they are candidates for sinking into ThenBB. Specifically:
2275   // - They are defined in BB, and
2276   // - They have no side effects, and
2277   // - All of their uses are in ThenBB.
2278   SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts;
2279 
2280   SmallVector<Instruction *, 4> SpeculatedDbgIntrinsics;
2281 
2282   unsigned SpeculatedInstructions = 0;
2283   Value *SpeculatedStoreValue = nullptr;
2284   StoreInst *SpeculatedStore = nullptr;
2285   for (BasicBlock::iterator BBI = ThenBB->begin(),
2286                             BBE = std::prev(ThenBB->end());
2287        BBI != BBE; ++BBI) {
2288     Instruction *I = &*BBI;
2289     // Skip debug info.
2290     if (isa<DbgInfoIntrinsic>(I)) {
2291       SpeculatedDbgIntrinsics.push_back(I);
2292       continue;
2293     }
2294 
2295     // Skip pseudo probes. The consequence is we lose track of the branch
2296     // probability for ThenBB, which is fine since the optimization here takes
2297     // place regardless of the branch probability.
2298     if (isa<PseudoProbeInst>(I)) {
2299       continue;
2300     }
2301 
2302     // Only speculatively execute a single instruction (not counting the
2303     // terminator) for now.
2304     ++SpeculatedInstructions;
2305     if (SpeculatedInstructions > 1)
2306       return false;
2307 
2308     // Don't hoist the instruction if it's unsafe or expensive.
2309     if (!isSafeToSpeculativelyExecute(I) &&
2310         !(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore(
2311                                   I, BB, ThenBB, EndBB))))
2312       return false;
2313     if (!SpeculatedStoreValue &&
2314         computeSpeculationCost(I, TTI) >
2315             PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic)
2316       return false;
2317 
2318     // Store the store speculation candidate.
2319     if (SpeculatedStoreValue)
2320       SpeculatedStore = cast<StoreInst>(I);
2321 
2322     // Do not hoist the instruction if any of its operands are defined but not
2323     // used in BB. The transformation will prevent the operand from
2324     // being sunk into the use block.
2325     for (Use &Op : I->operands()) {
2326       Instruction *OpI = dyn_cast<Instruction>(Op);
2327       if (!OpI || OpI->getParent() != BB || OpI->mayHaveSideEffects())
2328         continue; // Not a candidate for sinking.
2329 
2330       ++SinkCandidateUseCounts[OpI];
2331     }
2332   }
2333 
2334   // Consider any sink candidates which are only used in ThenBB as costs for
2335   // speculation. Note, while we iterate over a DenseMap here, we are summing
2336   // and so iteration order isn't significant.
2337   for (SmallDenseMap<Instruction *, unsigned, 4>::iterator
2338            I = SinkCandidateUseCounts.begin(),
2339            E = SinkCandidateUseCounts.end();
2340        I != E; ++I)
2341     if (I->first->hasNUses(I->second)) {
2342       ++SpeculatedInstructions;
2343       if (SpeculatedInstructions > 1)
2344         return false;
2345     }
2346 
2347   // Check that we can insert the selects and that it's not too expensive to do
2348   // so.
2349   bool Convert = SpeculatedStore != nullptr;
2350   InstructionCost Cost = 0;
2351   Convert |= validateAndCostRequiredSelects(BB, ThenBB, EndBB,
2352                                             SpeculatedInstructions,
2353                                             Cost, TTI);
2354   if (!Convert || Cost > Budget)
2355     return false;
2356 
2357   // If we get here, we can hoist the instruction and if-convert.
2358   LLVM_DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";);
2359 
2360   // Insert a select of the value of the speculated store.
2361   if (SpeculatedStoreValue) {
2362     IRBuilder<NoFolder> Builder(BI);
2363     Value *TrueV = SpeculatedStore->getValueOperand();
2364     Value *FalseV = SpeculatedStoreValue;
2365     if (Invert)
2366       std::swap(TrueV, FalseV);
2367     Value *S = Builder.CreateSelect(
2368         BrCond, TrueV, FalseV, "spec.store.select", BI);
2369     SpeculatedStore->setOperand(0, S);
2370     SpeculatedStore->applyMergedLocation(BI->getDebugLoc(),
2371                                          SpeculatedStore->getDebugLoc());
2372   }
2373 
2374   // A hoisted conditional probe should be treated as dangling so that it will
2375   // not be over-counted when the samples collected on the non-conditional path
2376   // are counted towards the conditional path. We leave it for the counts
2377   // inference algorithm to figure out a proper count for a danglng probe.
2378   moveAndDanglePseudoProbes(ThenBB, BI);
2379 
2380   // Metadata can be dependent on the condition we are hoisting above.
2381   // Conservatively strip all metadata on the instruction. Drop the debug loc
2382   // to avoid making it appear as if the condition is a constant, which would
2383   // be misleading while debugging.
2384   for (auto &I : *ThenBB) {
2385     assert(!isa<PseudoProbeInst>(I) &&
2386            "Should not drop debug info from any pseudo probes.");
2387     if (!SpeculatedStoreValue || &I != SpeculatedStore)
2388       I.setDebugLoc(DebugLoc());
2389     I.dropUnknownNonDebugMetadata();
2390   }
2391 
2392   // Hoist the instructions.
2393   BB->getInstList().splice(BI->getIterator(), ThenBB->getInstList(),
2394                            ThenBB->begin(), std::prev(ThenBB->end()));
2395 
2396   // Insert selects and rewrite the PHI operands.
2397   IRBuilder<NoFolder> Builder(BI);
2398   for (PHINode &PN : EndBB->phis()) {
2399     unsigned OrigI = PN.getBasicBlockIndex(BB);
2400     unsigned ThenI = PN.getBasicBlockIndex(ThenBB);
2401     Value *OrigV = PN.getIncomingValue(OrigI);
2402     Value *ThenV = PN.getIncomingValue(ThenI);
2403 
2404     // Skip PHIs which are trivial.
2405     if (OrigV == ThenV)
2406       continue;
2407 
2408     // Create a select whose true value is the speculatively executed value and
2409     // false value is the pre-existing value. Swap them if the branch
2410     // destinations were inverted.
2411     Value *TrueV = ThenV, *FalseV = OrigV;
2412     if (Invert)
2413       std::swap(TrueV, FalseV);
2414     Value *V = Builder.CreateSelect(BrCond, TrueV, FalseV, "spec.select", BI);
2415     PN.setIncomingValue(OrigI, V);
2416     PN.setIncomingValue(ThenI, V);
2417   }
2418 
2419   // Remove speculated dbg intrinsics.
2420   // FIXME: Is it possible to do this in a more elegant way? Moving/merging the
2421   // dbg value for the different flows and inserting it after the select.
2422   for (Instruction *I : SpeculatedDbgIntrinsics)
2423     I->eraseFromParent();
2424 
2425   ++NumSpeculations;
2426   return true;
2427 }
2428 
2429 /// Return true if we can thread a branch across this block.
2430 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) {
2431   int Size = 0;
2432 
2433   for (Instruction &I : BB->instructionsWithoutDebug()) {
2434     if (Size > MaxSmallBlockSize)
2435       return false; // Don't clone large BB's.
2436 
2437     // Can't fold blocks that contain noduplicate or convergent calls.
2438     if (CallInst *CI = dyn_cast<CallInst>(&I))
2439       if (CI->cannotDuplicate() || CI->isConvergent())
2440         return false;
2441 
2442     // We will delete Phis while threading, so Phis should not be accounted in
2443     // block's size
2444     if (!isa<PHINode>(I))
2445       ++Size;
2446 
2447     // We can only support instructions that do not define values that are
2448     // live outside of the current basic block.
2449     for (User *U : I.users()) {
2450       Instruction *UI = cast<Instruction>(U);
2451       if (UI->getParent() != BB || isa<PHINode>(UI))
2452         return false;
2453     }
2454 
2455     // Looks ok, continue checking.
2456   }
2457 
2458   return true;
2459 }
2460 
2461 /// If we have a conditional branch on a PHI node value that is defined in the
2462 /// same block as the branch and if any PHI entries are constants, thread edges
2463 /// corresponding to that entry to be branches to their ultimate destination.
2464 static bool FoldCondBranchOnPHI(BranchInst *BI, DomTreeUpdater *DTU,
2465                                 const DataLayout &DL, AssumptionCache *AC) {
2466   BasicBlock *BB = BI->getParent();
2467   PHINode *PN = dyn_cast<PHINode>(BI->getCondition());
2468   // NOTE: we currently cannot transform this case if the PHI node is used
2469   // outside of the block.
2470   if (!PN || PN->getParent() != BB || !PN->hasOneUse())
2471     return false;
2472 
2473   // Degenerate case of a single entry PHI.
2474   if (PN->getNumIncomingValues() == 1) {
2475     FoldSingleEntryPHINodes(PN->getParent());
2476     return true;
2477   }
2478 
2479   // Now we know that this block has multiple preds and two succs.
2480   if (!BlockIsSimpleEnoughToThreadThrough(BB))
2481     return false;
2482 
2483   // Okay, this is a simple enough basic block.  See if any phi values are
2484   // constants.
2485   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
2486     ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i));
2487     if (!CB || !CB->getType()->isIntegerTy(1))
2488       continue;
2489 
2490     // Okay, we now know that all edges from PredBB should be revectored to
2491     // branch to RealDest.
2492     BasicBlock *PredBB = PN->getIncomingBlock(i);
2493     BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue());
2494 
2495     if (RealDest == BB)
2496       continue; // Skip self loops.
2497     // Skip if the predecessor's terminator is an indirect branch.
2498     if (isa<IndirectBrInst>(PredBB->getTerminator()))
2499       continue;
2500 
2501     SmallVector<DominatorTree::UpdateType, 3> Updates;
2502 
2503     // The dest block might have PHI nodes, other predecessors and other
2504     // difficult cases.  Instead of being smart about this, just insert a new
2505     // block that jumps to the destination block, effectively splitting
2506     // the edge we are about to create.
2507     BasicBlock *EdgeBB =
2508         BasicBlock::Create(BB->getContext(), RealDest->getName() + ".critedge",
2509                            RealDest->getParent(), RealDest);
2510     BranchInst *CritEdgeBranch = BranchInst::Create(RealDest, EdgeBB);
2511     if (DTU)
2512       Updates.push_back({DominatorTree::Insert, EdgeBB, RealDest});
2513     CritEdgeBranch->setDebugLoc(BI->getDebugLoc());
2514 
2515     // Update PHI nodes.
2516     AddPredecessorToBlock(RealDest, EdgeBB, BB);
2517 
2518     // BB may have instructions that are being threaded over.  Clone these
2519     // instructions into EdgeBB.  We know that there will be no uses of the
2520     // cloned instructions outside of EdgeBB.
2521     BasicBlock::iterator InsertPt = EdgeBB->begin();
2522     DenseMap<Value *, Value *> TranslateMap; // Track translated values.
2523     for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
2524       if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
2525         TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB);
2526         continue;
2527       }
2528       // Clone the instruction.
2529       Instruction *N = BBI->clone();
2530       if (BBI->hasName())
2531         N->setName(BBI->getName() + ".c");
2532 
2533       // Update operands due to translation.
2534       for (Use &Op : N->operands()) {
2535         DenseMap<Value *, Value *>::iterator PI = TranslateMap.find(Op);
2536         if (PI != TranslateMap.end())
2537           Op = PI->second;
2538       }
2539 
2540       // Check for trivial simplification.
2541       if (Value *V = SimplifyInstruction(N, {DL, nullptr, nullptr, AC})) {
2542         if (!BBI->use_empty())
2543           TranslateMap[&*BBI] = V;
2544         if (!N->mayHaveSideEffects()) {
2545           N->deleteValue(); // Instruction folded away, don't need actual inst
2546           N = nullptr;
2547         }
2548       } else {
2549         if (!BBI->use_empty())
2550           TranslateMap[&*BBI] = N;
2551       }
2552       if (N) {
2553         // Insert the new instruction into its new home.
2554         EdgeBB->getInstList().insert(InsertPt, N);
2555 
2556         // Register the new instruction with the assumption cache if necessary.
2557         if (auto *Assume = dyn_cast<AssumeInst>(N))
2558           if (AC)
2559             AC->registerAssumption(Assume);
2560       }
2561     }
2562 
2563     // Loop over all of the edges from PredBB to BB, changing them to branch
2564     // to EdgeBB instead.
2565     Instruction *PredBBTI = PredBB->getTerminator();
2566     for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i)
2567       if (PredBBTI->getSuccessor(i) == BB) {
2568         BB->removePredecessor(PredBB);
2569         PredBBTI->setSuccessor(i, EdgeBB);
2570       }
2571 
2572     if (DTU) {
2573       Updates.push_back({DominatorTree::Insert, PredBB, EdgeBB});
2574       Updates.push_back({DominatorTree::Delete, PredBB, BB});
2575 
2576       DTU->applyUpdates(Updates);
2577     }
2578 
2579     // Recurse, simplifying any other constants.
2580     return FoldCondBranchOnPHI(BI, DTU, DL, AC) || true;
2581   }
2582 
2583   return false;
2584 }
2585 
2586 /// Given a BB that starts with the specified two-entry PHI node,
2587 /// see if we can eliminate it.
2588 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI,
2589                                 DomTreeUpdater *DTU, const DataLayout &DL) {
2590   // Ok, this is a two entry PHI node.  Check to see if this is a simple "if
2591   // statement", which has a very simple dominance structure.  Basically, we
2592   // are trying to find the condition that is being branched on, which
2593   // subsequently causes this merge to happen.  We really want control
2594   // dependence information for this check, but simplifycfg can't keep it up
2595   // to date, and this catches most of the cases we care about anyway.
2596   BasicBlock *BB = PN->getParent();
2597 
2598   BasicBlock *IfTrue, *IfFalse;
2599   Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse);
2600   if (!IfCond ||
2601       // Don't bother if the branch will be constant folded trivially.
2602       isa<ConstantInt>(IfCond))
2603     return false;
2604 
2605   // Okay, we found that we can merge this two-entry phi node into a select.
2606   // Doing so would require us to fold *all* two entry phi nodes in this block.
2607   // At some point this becomes non-profitable (particularly if the target
2608   // doesn't support cmov's).  Only do this transformation if there are two or
2609   // fewer PHI nodes in this block.
2610   unsigned NumPhis = 0;
2611   for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I)
2612     if (NumPhis > 2)
2613       return false;
2614 
2615   // Loop over the PHI's seeing if we can promote them all to select
2616   // instructions.  While we are at it, keep track of the instructions
2617   // that need to be moved to the dominating block.
2618   SmallPtrSet<Instruction *, 4> AggressiveInsts;
2619   InstructionCost Cost = 0;
2620   InstructionCost Budget =
2621       TwoEntryPHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
2622 
2623   bool Changed = false;
2624   for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) {
2625     PHINode *PN = cast<PHINode>(II++);
2626     if (Value *V = SimplifyInstruction(PN, {DL, PN})) {
2627       PN->replaceAllUsesWith(V);
2628       PN->eraseFromParent();
2629       Changed = true;
2630       continue;
2631     }
2632 
2633     if (!dominatesMergePoint(PN->getIncomingValue(0), BB, AggressiveInsts,
2634                              Cost, Budget, TTI) ||
2635         !dominatesMergePoint(PN->getIncomingValue(1), BB, AggressiveInsts,
2636                              Cost, Budget, TTI))
2637       return Changed;
2638   }
2639 
2640   // If we folded the first phi, PN dangles at this point.  Refresh it.  If
2641   // we ran out of PHIs then we simplified them all.
2642   PN = dyn_cast<PHINode>(BB->begin());
2643   if (!PN)
2644     return true;
2645 
2646   // Return true if at least one of these is a 'not', and another is either
2647   // a 'not' too, or a constant.
2648   auto CanHoistNotFromBothValues = [](Value *V0, Value *V1) {
2649     if (!match(V0, m_Not(m_Value())))
2650       std::swap(V0, V1);
2651     auto Invertible = m_CombineOr(m_Not(m_Value()), m_AnyIntegralConstant());
2652     return match(V0, m_Not(m_Value())) && match(V1, Invertible);
2653   };
2654 
2655   // Don't fold i1 branches on PHIs which contain binary operators or
2656   // select form of or/ands, unless one of the incoming values is an 'not' and
2657   // another one is freely invertible.
2658   // These can often be turned into switches and other things.
2659   auto IsBinOpOrAnd = [](Value *V) {
2660     return match(
2661         V, m_CombineOr(m_BinOp(), m_CombineOr(m_LogicalAnd(), m_LogicalOr())));
2662   };
2663   if (PN->getType()->isIntegerTy(1) &&
2664       (IsBinOpOrAnd(PN->getIncomingValue(0)) ||
2665        IsBinOpOrAnd(PN->getIncomingValue(1)) || IsBinOpOrAnd(IfCond)) &&
2666       !CanHoistNotFromBothValues(PN->getIncomingValue(0),
2667                                  PN->getIncomingValue(1)))
2668     return Changed;
2669 
2670   // If all PHI nodes are promotable, check to make sure that all instructions
2671   // in the predecessor blocks can be promoted as well. If not, we won't be able
2672   // to get rid of the control flow, so it's not worth promoting to select
2673   // instructions.
2674   BasicBlock *DomBlock = nullptr;
2675   BasicBlock *IfBlock1 = PN->getIncomingBlock(0);
2676   BasicBlock *IfBlock2 = PN->getIncomingBlock(1);
2677   if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) {
2678     IfBlock1 = nullptr;
2679   } else {
2680     DomBlock = *pred_begin(IfBlock1);
2681     for (BasicBlock::iterator I = IfBlock1->begin(); !I->isTerminator(); ++I)
2682       if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I) &&
2683           !isa<PseudoProbeInst>(I)) {
2684         // This is not an aggressive instruction that we can promote.
2685         // Because of this, we won't be able to get rid of the control flow, so
2686         // the xform is not worth it.
2687         return Changed;
2688       }
2689   }
2690 
2691   if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) {
2692     IfBlock2 = nullptr;
2693   } else {
2694     DomBlock = *pred_begin(IfBlock2);
2695     for (BasicBlock::iterator I = IfBlock2->begin(); !I->isTerminator(); ++I)
2696       if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I) &&
2697           !isa<PseudoProbeInst>(I)) {
2698         // This is not an aggressive instruction that we can promote.
2699         // Because of this, we won't be able to get rid of the control flow, so
2700         // the xform is not worth it.
2701         return Changed;
2702       }
2703   }
2704   assert(DomBlock && "Failed to find root DomBlock");
2705 
2706   LLVM_DEBUG(dbgs() << "FOUND IF CONDITION!  " << *IfCond
2707                     << "  T: " << IfTrue->getName()
2708                     << "  F: " << IfFalse->getName() << "\n");
2709 
2710   // If we can still promote the PHI nodes after this gauntlet of tests,
2711   // do all of the PHI's now.
2712   Instruction *InsertPt = DomBlock->getTerminator();
2713   IRBuilder<NoFolder> Builder(InsertPt);
2714 
2715   // Move all 'aggressive' instructions, which are defined in the
2716   // conditional parts of the if's up to the dominating block.
2717   if (IfBlock1)
2718     hoistAllInstructionsInto(DomBlock, InsertPt, IfBlock1);
2719   if (IfBlock2)
2720     hoistAllInstructionsInto(DomBlock, InsertPt, IfBlock2);
2721 
2722   // Propagate fast-math-flags from phi nodes to replacement selects.
2723   IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
2724   while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
2725     if (isa<FPMathOperator>(PN))
2726       Builder.setFastMathFlags(PN->getFastMathFlags());
2727 
2728     // Change the PHI node into a select instruction.
2729     Value *TrueVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse);
2730     Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue);
2731 
2732     Value *Sel = Builder.CreateSelect(IfCond, TrueVal, FalseVal, "", InsertPt);
2733     PN->replaceAllUsesWith(Sel);
2734     Sel->takeName(PN);
2735     PN->eraseFromParent();
2736   }
2737 
2738   // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement
2739   // has been flattened.  Change DomBlock to jump directly to our new block to
2740   // avoid other simplifycfg's kicking in on the diamond.
2741   Instruction *OldTI = DomBlock->getTerminator();
2742   Builder.SetInsertPoint(OldTI);
2743   Builder.CreateBr(BB);
2744 
2745   SmallVector<DominatorTree::UpdateType, 3> Updates;
2746   if (DTU) {
2747     Updates.push_back({DominatorTree::Insert, DomBlock, BB});
2748     for (auto *Successor : successors(DomBlock))
2749       Updates.push_back({DominatorTree::Delete, DomBlock, Successor});
2750   }
2751 
2752   OldTI->eraseFromParent();
2753   if (DTU)
2754     DTU->applyUpdates(Updates);
2755 
2756   return true;
2757 }
2758 
2759 /// If we found a conditional branch that goes to two returning blocks,
2760 /// try to merge them together into one return,
2761 /// introducing a select if the return values disagree.
2762 bool SimplifyCFGOpt::SimplifyCondBranchToTwoReturns(BranchInst *BI,
2763                                                     IRBuilder<> &Builder) {
2764   auto *BB = BI->getParent();
2765   assert(BI->isConditional() && "Must be a conditional branch");
2766   BasicBlock *TrueSucc = BI->getSuccessor(0);
2767   BasicBlock *FalseSucc = BI->getSuccessor(1);
2768   // NOTE: destinations may match, this could be degenerate uncond branch.
2769   ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator());
2770   ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator());
2771 
2772   // Check to ensure both blocks are empty (just a return) or optionally empty
2773   // with PHI nodes.  If there are other instructions, merging would cause extra
2774   // computation on one path or the other.
2775   if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator())
2776     return false;
2777   if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator())
2778     return false;
2779 
2780   Builder.SetInsertPoint(BI);
2781   // Okay, we found a branch that is going to two return nodes.  If
2782   // there is no return value for this function, just change the
2783   // branch into a return.
2784   if (FalseRet->getNumOperands() == 0) {
2785     TrueSucc->removePredecessor(BB);
2786     FalseSucc->removePredecessor(BB);
2787     Builder.CreateRetVoid();
2788     EraseTerminatorAndDCECond(BI);
2789     if (DTU) {
2790       SmallVector<DominatorTree::UpdateType, 2> Updates;
2791       Updates.push_back({DominatorTree::Delete, BB, TrueSucc});
2792       if (TrueSucc != FalseSucc)
2793         Updates.push_back({DominatorTree::Delete, BB, FalseSucc});
2794       DTU->applyUpdates(Updates);
2795     }
2796     return true;
2797   }
2798 
2799   // Otherwise, figure out what the true and false return values are
2800   // so we can insert a new select instruction.
2801   Value *TrueValue = TrueRet->getReturnValue();
2802   Value *FalseValue = FalseRet->getReturnValue();
2803 
2804   // Unwrap any PHI nodes in the return blocks.
2805   if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue))
2806     if (TVPN->getParent() == TrueSucc)
2807       TrueValue = TVPN->getIncomingValueForBlock(BB);
2808   if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue))
2809     if (FVPN->getParent() == FalseSucc)
2810       FalseValue = FVPN->getIncomingValueForBlock(BB);
2811 
2812   // In order for this transformation to be safe, we must be able to
2813   // unconditionally execute both operands to the return.  This is
2814   // normally the case, but we could have a potentially-trapping
2815   // constant expression that prevents this transformation from being
2816   // safe.
2817   if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue))
2818     if (TCV->canTrap())
2819       return false;
2820   if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue))
2821     if (FCV->canTrap())
2822       return false;
2823 
2824   // Okay, we collected all the mapped values and checked them for sanity, and
2825   // defined to really do this transformation.  First, update the CFG.
2826   TrueSucc->removePredecessor(BB);
2827   FalseSucc->removePredecessor(BB);
2828 
2829   // Insert select instructions where needed.
2830   Value *BrCond = BI->getCondition();
2831   if (TrueValue) {
2832     // Insert a select if the results differ.
2833     if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) {
2834     } else if (isa<UndefValue>(TrueValue)) {
2835       TrueValue = FalseValue;
2836     } else {
2837       TrueValue =
2838           Builder.CreateSelect(BrCond, TrueValue, FalseValue, "retval", BI);
2839     }
2840   }
2841 
2842   Value *RI =
2843       !TrueValue ? Builder.CreateRetVoid() : Builder.CreateRet(TrueValue);
2844 
2845   (void)RI;
2846 
2847   LLVM_DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:"
2848                     << "\n  " << *BI << "\nNewRet = " << *RI << "\nTRUEBLOCK: "
2849                     << *TrueSucc << "\nFALSEBLOCK: " << *FalseSucc);
2850 
2851   EraseTerminatorAndDCECond(BI);
2852   if (DTU) {
2853     SmallVector<DominatorTree::UpdateType, 2> Updates;
2854     Updates.push_back({DominatorTree::Delete, BB, TrueSucc});
2855     if (TrueSucc != FalseSucc)
2856       Updates.push_back({DominatorTree::Delete, BB, FalseSucc});
2857     DTU->applyUpdates(Updates);
2858   }
2859 
2860   return true;
2861 }
2862 
2863 /// Return true if either PBI or BI has branch weight available, and store
2864 /// the weights in {Pred|Succ}{True|False}Weight. If one of PBI and BI does
2865 /// not have branch weight, use 1:1 as its weight.
2866 static bool extractPredSuccWeights(BranchInst *PBI, BranchInst *BI,
2867                                    uint64_t &PredTrueWeight,
2868                                    uint64_t &PredFalseWeight,
2869                                    uint64_t &SuccTrueWeight,
2870                                    uint64_t &SuccFalseWeight) {
2871   bool PredHasWeights =
2872       PBI->extractProfMetadata(PredTrueWeight, PredFalseWeight);
2873   bool SuccHasWeights =
2874       BI->extractProfMetadata(SuccTrueWeight, SuccFalseWeight);
2875   if (PredHasWeights || SuccHasWeights) {
2876     if (!PredHasWeights)
2877       PredTrueWeight = PredFalseWeight = 1;
2878     if (!SuccHasWeights)
2879       SuccTrueWeight = SuccFalseWeight = 1;
2880     return true;
2881   } else {
2882     return false;
2883   }
2884 }
2885 
2886 /// Determine if the two branches share a common destination and deduce a glue
2887 /// that joins the branches' conditions to arrive at the common destination if
2888 /// that would be profitable.
2889 static Optional<std::pair<Instruction::BinaryOps, bool>>
2890 shouldFoldCondBranchesToCommonDestination(BranchInst *BI, BranchInst *PBI,
2891                                           const TargetTransformInfo *TTI) {
2892   assert(BI && PBI && BI->isConditional() && PBI->isConditional() &&
2893          "Both blocks must end with a conditional branches.");
2894   assert(is_contained(predecessors(BI->getParent()), PBI->getParent()) &&
2895          "PredBB must be a predecessor of BB.");
2896 
2897   // We have the potential to fold the conditions together, but if the
2898   // predecessor branch is predictable, we may not want to merge them.
2899   uint64_t PTWeight, PFWeight;
2900   BranchProbability PBITrueProb, Likely;
2901   if (TTI && PBI->extractProfMetadata(PTWeight, PFWeight) &&
2902       (PTWeight + PFWeight) != 0) {
2903     PBITrueProb =
2904         BranchProbability::getBranchProbability(PTWeight, PTWeight + PFWeight);
2905     Likely = TTI->getPredictableBranchThreshold();
2906   }
2907 
2908   if (PBI->getSuccessor(0) == BI->getSuccessor(0)) {
2909     // Speculate the 2nd condition unless the 1st is probably true.
2910     if (PBITrueProb.isUnknown() || PBITrueProb < Likely)
2911       return {{Instruction::Or, false}};
2912   } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) {
2913     // Speculate the 2nd condition unless the 1st is probably false.
2914     if (PBITrueProb.isUnknown() || PBITrueProb.getCompl() < Likely)
2915       return {{Instruction::And, false}};
2916   } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) {
2917     // Speculate the 2nd condition unless the 1st is probably true.
2918     if (PBITrueProb.isUnknown() || PBITrueProb < Likely)
2919       return {{Instruction::And, true}};
2920   } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) {
2921     // Speculate the 2nd condition unless the 1st is probably false.
2922     if (PBITrueProb.isUnknown() || PBITrueProb.getCompl() < Likely)
2923       return {{Instruction::Or, true}};
2924   }
2925   return None;
2926 }
2927 
2928 static bool performBranchToCommonDestFolding(BranchInst *BI, BranchInst *PBI,
2929                                              DomTreeUpdater *DTU,
2930                                              MemorySSAUpdater *MSSAU,
2931                                              const TargetTransformInfo *TTI) {
2932   BasicBlock *BB = BI->getParent();
2933   BasicBlock *PredBlock = PBI->getParent();
2934 
2935   // Determine if the two branches share a common destination.
2936   Instruction::BinaryOps Opc;
2937   bool InvertPredCond;
2938   std::tie(Opc, InvertPredCond) =
2939       *shouldFoldCondBranchesToCommonDestination(BI, PBI, TTI);
2940 
2941   LLVM_DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB);
2942 
2943   IRBuilder<> Builder(PBI);
2944   // The builder is used to create instructions to eliminate the branch in BB.
2945   // If BB's terminator has !annotation metadata, add it to the new
2946   // instructions.
2947   Builder.CollectMetadataToCopy(BB->getTerminator(),
2948                                 {LLVMContext::MD_annotation});
2949 
2950   // If we need to invert the condition in the pred block to match, do so now.
2951   if (InvertPredCond) {
2952     Value *NewCond = PBI->getCondition();
2953     if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) {
2954       CmpInst *CI = cast<CmpInst>(NewCond);
2955       CI->setPredicate(CI->getInversePredicate());
2956     } else {
2957       NewCond =
2958           Builder.CreateNot(NewCond, PBI->getCondition()->getName() + ".not");
2959     }
2960 
2961     PBI->setCondition(NewCond);
2962     PBI->swapSuccessors();
2963   }
2964 
2965   BasicBlock *UniqueSucc =
2966       PBI->getSuccessor(0) == BB ? BI->getSuccessor(0) : BI->getSuccessor(1);
2967 
2968   // Before cloning instructions, notify the successor basic block that it
2969   // is about to have a new predecessor. This will update PHI nodes,
2970   // which will allow us to update live-out uses of bonus instructions.
2971   AddPredecessorToBlock(UniqueSucc, PredBlock, BB, MSSAU);
2972 
2973   // Try to update branch weights.
2974   uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
2975   if (extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
2976                              SuccTrueWeight, SuccFalseWeight)) {
2977     SmallVector<uint64_t, 8> NewWeights;
2978 
2979     if (PBI->getSuccessor(0) == BB) {
2980       // PBI: br i1 %x, BB, FalseDest
2981       // BI:  br i1 %y, UniqueSucc, FalseDest
2982       // TrueWeight is TrueWeight for PBI * TrueWeight for BI.
2983       NewWeights.push_back(PredTrueWeight * SuccTrueWeight);
2984       // FalseWeight is FalseWeight for PBI * TotalWeight for BI +
2985       //               TrueWeight for PBI * FalseWeight for BI.
2986       // We assume that total weights of a BranchInst can fit into 32 bits.
2987       // Therefore, we will not have overflow using 64-bit arithmetic.
2988       NewWeights.push_back(PredFalseWeight *
2989                                (SuccFalseWeight + SuccTrueWeight) +
2990                            PredTrueWeight * SuccFalseWeight);
2991     } else {
2992       // PBI: br i1 %x, TrueDest, BB
2993       // BI:  br i1 %y, TrueDest, UniqueSucc
2994       // TrueWeight is TrueWeight for PBI * TotalWeight for BI +
2995       //              FalseWeight for PBI * TrueWeight for BI.
2996       NewWeights.push_back(PredTrueWeight * (SuccFalseWeight + SuccTrueWeight) +
2997                            PredFalseWeight * SuccTrueWeight);
2998       // FalseWeight is FalseWeight for PBI * FalseWeight for BI.
2999       NewWeights.push_back(PredFalseWeight * SuccFalseWeight);
3000     }
3001 
3002     // Halve the weights if any of them cannot fit in an uint32_t
3003     FitWeights(NewWeights);
3004 
3005     SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(), NewWeights.end());
3006     setBranchWeights(PBI, MDWeights[0], MDWeights[1]);
3007 
3008     // TODO: If BB is reachable from all paths through PredBlock, then we
3009     // could replace PBI's branch probabilities with BI's.
3010   } else
3011     PBI->setMetadata(LLVMContext::MD_prof, nullptr);
3012 
3013   // Now, update the CFG.
3014   PBI->setSuccessor(PBI->getSuccessor(0) != BB, UniqueSucc);
3015 
3016   if (DTU)
3017     DTU->applyUpdates({{DominatorTree::Insert, PredBlock, UniqueSucc},
3018                        {DominatorTree::Delete, PredBlock, BB}});
3019 
3020   // If BI was a loop latch, it may have had associated loop metadata.
3021   // We need to copy it to the new latch, that is, PBI.
3022   if (MDNode *LoopMD = BI->getMetadata(LLVMContext::MD_loop))
3023     PBI->setMetadata(LLVMContext::MD_loop, LoopMD);
3024 
3025   ValueToValueMapTy VMap; // maps original values to cloned values
3026   CloneInstructionsIntoPredecessorBlockAndUpdateSSAUses(BB, PredBlock, VMap);
3027 
3028   // Now that the Cond was cloned into the predecessor basic block,
3029   // or/and the two conditions together.
3030   Value *NewCond = nullptr;
3031   Value *BICond = VMap[BI->getCondition()];
3032 
3033   if (impliesPoison(BICond, PBI->getCondition()))
3034     NewCond = Builder.CreateBinOp(Opc, PBI->getCondition(), BICond, "or.cond");
3035   else
3036     NewCond =
3037         Opc == Instruction::And
3038             ? Builder.CreateLogicalAnd(PBI->getCondition(), BICond, "or.cond")
3039             : Builder.CreateLogicalOr(PBI->getCondition(), BICond, "or.cond");
3040   PBI->setCondition(NewCond);
3041 
3042   // Copy any debug value intrinsics into the end of PredBlock.
3043   for (Instruction &I : *BB) {
3044     if (isa<DbgInfoIntrinsic>(I)) {
3045       Instruction *NewI = I.clone();
3046       RemapInstruction(NewI, VMap,
3047                        RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
3048       NewI->insertBefore(PBI);
3049     }
3050   }
3051 
3052   ++NumFoldBranchToCommonDest;
3053   return true;
3054 }
3055 
3056 /// If this basic block is simple enough, and if a predecessor branches to us
3057 /// and one of our successors, fold the block into the predecessor and use
3058 /// logical operations to pick the right destination.
3059 bool llvm::FoldBranchToCommonDest(BranchInst *BI, DomTreeUpdater *DTU,
3060                                   MemorySSAUpdater *MSSAU,
3061                                   const TargetTransformInfo *TTI,
3062                                   unsigned BonusInstThreshold) {
3063   // If this block ends with an unconditional branch,
3064   // let SpeculativelyExecuteBB() deal with it.
3065   if (!BI->isConditional())
3066     return false;
3067 
3068   BasicBlock *BB = BI->getParent();
3069 
3070   bool Changed = false;
3071 
3072   TargetTransformInfo::TargetCostKind CostKind =
3073     BB->getParent()->hasMinSize() ? TargetTransformInfo::TCK_CodeSize
3074                                   : TargetTransformInfo::TCK_SizeAndLatency;
3075 
3076   Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
3077 
3078   if (!Cond || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) ||
3079       Cond->getParent() != BB || !Cond->hasOneUse())
3080     return Changed;
3081 
3082   // Cond is known to be a compare or binary operator.  Check to make sure that
3083   // neither operand is a potentially-trapping constant expression.
3084   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0)))
3085     if (CE->canTrap())
3086       return Changed;
3087   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1)))
3088     if (CE->canTrap())
3089       return Changed;
3090 
3091   // Finally, don't infinitely unroll conditional loops.
3092   if (is_contained(successors(BB), BB))
3093     return Changed;
3094 
3095   // With which predecessors will we want to deal with?
3096   SmallVector<BasicBlock *, 8> Preds;
3097   for (BasicBlock *PredBlock : predecessors(BB)) {
3098     BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator());
3099 
3100     // Check that we have two conditional branches.  If there is a PHI node in
3101     // the common successor, verify that the same value flows in from both
3102     // blocks.
3103     if (!PBI || PBI->isUnconditional() || !SafeToMergeTerminators(BI, PBI))
3104       continue;
3105 
3106     // Determine if the two branches share a common destination.
3107     Instruction::BinaryOps Opc;
3108     bool InvertPredCond;
3109     if (auto Recipe = shouldFoldCondBranchesToCommonDestination(BI, PBI, TTI))
3110       std::tie(Opc, InvertPredCond) = *Recipe;
3111     else
3112       continue;
3113 
3114     // Check the cost of inserting the necessary logic before performing the
3115     // transformation.
3116     if (TTI) {
3117       Type *Ty = BI->getCondition()->getType();
3118       InstructionCost Cost = TTI->getArithmeticInstrCost(Opc, Ty, CostKind);
3119       if (InvertPredCond && (!PBI->getCondition()->hasOneUse() ||
3120           !isa<CmpInst>(PBI->getCondition())))
3121         Cost += TTI->getArithmeticInstrCost(Instruction::Xor, Ty, CostKind);
3122 
3123       if (Cost > BranchFoldThreshold)
3124         continue;
3125     }
3126 
3127     // Ok, we do want to deal with this predecessor. Record it.
3128     Preds.emplace_back(PredBlock);
3129   }
3130 
3131   // If there aren't any predecessors into which we can fold,
3132   // don't bother checking the cost.
3133   if (Preds.empty())
3134     return Changed;
3135 
3136   // Only allow this transformation if computing the condition doesn't involve
3137   // too many instructions and these involved instructions can be executed
3138   // unconditionally. We denote all involved instructions except the condition
3139   // as "bonus instructions", and only allow this transformation when the
3140   // number of the bonus instructions we'll need to create when cloning into
3141   // each predecessor does not exceed a certain threshold.
3142   unsigned NumBonusInsts = 0;
3143   const unsigned PredCount = Preds.size();
3144   for (Instruction &I : *BB) {
3145     // Don't check the branch condition comparison itself.
3146     if (&I == Cond)
3147       continue;
3148     // Ignore dbg intrinsics, and the terminator.
3149     if (isa<DbgInfoIntrinsic>(I) || isa<BranchInst>(I))
3150       continue;
3151     // I must be safe to execute unconditionally.
3152     if (!isSafeToSpeculativelyExecute(&I))
3153       return Changed;
3154 
3155     // Account for the cost of duplicating this instruction into each
3156     // predecessor.
3157     NumBonusInsts += PredCount;
3158     // Early exits once we reach the limit.
3159     if (NumBonusInsts > BonusInstThreshold)
3160       return Changed;
3161   }
3162 
3163   // Ok, we have the budget. Perform the transformation.
3164   for (BasicBlock *PredBlock : Preds) {
3165     auto *PBI = cast<BranchInst>(PredBlock->getTerminator());
3166     return performBranchToCommonDestFolding(BI, PBI, DTU, MSSAU, TTI);
3167   }
3168   return Changed;
3169 }
3170 
3171 // If there is only one store in BB1 and BB2, return it, otherwise return
3172 // nullptr.
3173 static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) {
3174   StoreInst *S = nullptr;
3175   for (auto *BB : {BB1, BB2}) {
3176     if (!BB)
3177       continue;
3178     for (auto &I : *BB)
3179       if (auto *SI = dyn_cast<StoreInst>(&I)) {
3180         if (S)
3181           // Multiple stores seen.
3182           return nullptr;
3183         else
3184           S = SI;
3185       }
3186   }
3187   return S;
3188 }
3189 
3190 static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB,
3191                                               Value *AlternativeV = nullptr) {
3192   // PHI is going to be a PHI node that allows the value V that is defined in
3193   // BB to be referenced in BB's only successor.
3194   //
3195   // If AlternativeV is nullptr, the only value we care about in PHI is V. It
3196   // doesn't matter to us what the other operand is (it'll never get used). We
3197   // could just create a new PHI with an undef incoming value, but that could
3198   // increase register pressure if EarlyCSE/InstCombine can't fold it with some
3199   // other PHI. So here we directly look for some PHI in BB's successor with V
3200   // as an incoming operand. If we find one, we use it, else we create a new
3201   // one.
3202   //
3203   // If AlternativeV is not nullptr, we care about both incoming values in PHI.
3204   // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV]
3205   // where OtherBB is the single other predecessor of BB's only successor.
3206   PHINode *PHI = nullptr;
3207   BasicBlock *Succ = BB->getSingleSuccessor();
3208 
3209   for (auto I = Succ->begin(); isa<PHINode>(I); ++I)
3210     if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) {
3211       PHI = cast<PHINode>(I);
3212       if (!AlternativeV)
3213         break;
3214 
3215       assert(Succ->hasNPredecessors(2));
3216       auto PredI = pred_begin(Succ);
3217       BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI;
3218       if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV)
3219         break;
3220       PHI = nullptr;
3221     }
3222   if (PHI)
3223     return PHI;
3224 
3225   // If V is not an instruction defined in BB, just return it.
3226   if (!AlternativeV &&
3227       (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB))
3228     return V;
3229 
3230   PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge", &Succ->front());
3231   PHI->addIncoming(V, BB);
3232   for (BasicBlock *PredBB : predecessors(Succ))
3233     if (PredBB != BB)
3234       PHI->addIncoming(
3235           AlternativeV ? AlternativeV : UndefValue::get(V->getType()), PredBB);
3236   return PHI;
3237 }
3238 
3239 static bool mergeConditionalStoreToAddress(
3240     BasicBlock *PTB, BasicBlock *PFB, BasicBlock *QTB, BasicBlock *QFB,
3241     BasicBlock *PostBB, Value *Address, bool InvertPCond, bool InvertQCond,
3242     DomTreeUpdater *DTU, const DataLayout &DL, const TargetTransformInfo &TTI) {
3243   // For every pointer, there must be exactly two stores, one coming from
3244   // PTB or PFB, and the other from QTB or QFB. We don't support more than one
3245   // store (to any address) in PTB,PFB or QTB,QFB.
3246   // FIXME: We could relax this restriction with a bit more work and performance
3247   // testing.
3248   StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB);
3249   StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB);
3250   if (!PStore || !QStore)
3251     return false;
3252 
3253   // Now check the stores are compatible.
3254   if (!QStore->isUnordered() || !PStore->isUnordered())
3255     return false;
3256 
3257   // Check that sinking the store won't cause program behavior changes. Sinking
3258   // the store out of the Q blocks won't change any behavior as we're sinking
3259   // from a block to its unconditional successor. But we're moving a store from
3260   // the P blocks down through the middle block (QBI) and past both QFB and QTB.
3261   // So we need to check that there are no aliasing loads or stores in
3262   // QBI, QTB and QFB. We also need to check there are no conflicting memory
3263   // operations between PStore and the end of its parent block.
3264   //
3265   // The ideal way to do this is to query AliasAnalysis, but we don't
3266   // preserve AA currently so that is dangerous. Be super safe and just
3267   // check there are no other memory operations at all.
3268   for (auto &I : *QFB->getSinglePredecessor())
3269     if (I.mayReadOrWriteMemory())
3270       return false;
3271   for (auto &I : *QFB)
3272     if (&I != QStore && I.mayReadOrWriteMemory())
3273       return false;
3274   if (QTB)
3275     for (auto &I : *QTB)
3276       if (&I != QStore && I.mayReadOrWriteMemory())
3277         return false;
3278   for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end();
3279        I != E; ++I)
3280     if (&*I != PStore && I->mayReadOrWriteMemory())
3281       return false;
3282 
3283   // If we're not in aggressive mode, we only optimize if we have some
3284   // confidence that by optimizing we'll allow P and/or Q to be if-converted.
3285   auto IsWorthwhile = [&](BasicBlock *BB, ArrayRef<StoreInst *> FreeStores) {
3286     if (!BB)
3287       return true;
3288     // Heuristic: if the block can be if-converted/phi-folded and the
3289     // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to
3290     // thread this store.
3291     InstructionCost Cost = 0;
3292     InstructionCost Budget =
3293         PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
3294     for (auto &I : BB->instructionsWithoutDebug()) {
3295       // Consider terminator instruction to be free.
3296       if (I.isTerminator())
3297         continue;
3298       // If this is one the stores that we want to speculate out of this BB,
3299       // then don't count it's cost, consider it to be free.
3300       if (auto *S = dyn_cast<StoreInst>(&I))
3301         if (llvm::find(FreeStores, S))
3302           continue;
3303       // Else, we have a white-list of instructions that we are ak speculating.
3304       if (!isa<BinaryOperator>(I) && !isa<GetElementPtrInst>(I))
3305         return false; // Not in white-list - not worthwhile folding.
3306       // And finally, if this is a non-free instruction that we are okay
3307       // speculating, ensure that we consider the speculation budget.
3308       Cost += TTI.getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency);
3309       if (Cost > Budget)
3310         return false; // Eagerly refuse to fold as soon as we're out of budget.
3311     }
3312     assert(Cost <= Budget &&
3313            "When we run out of budget we will eagerly return from within the "
3314            "per-instruction loop.");
3315     return true;
3316   };
3317 
3318   const std::array<StoreInst *, 2> FreeStores = {PStore, QStore};
3319   if (!MergeCondStoresAggressively &&
3320       (!IsWorthwhile(PTB, FreeStores) || !IsWorthwhile(PFB, FreeStores) ||
3321        !IsWorthwhile(QTB, FreeStores) || !IsWorthwhile(QFB, FreeStores)))
3322     return false;
3323 
3324   // If PostBB has more than two predecessors, we need to split it so we can
3325   // sink the store.
3326   if (std::next(pred_begin(PostBB), 2) != pred_end(PostBB)) {
3327     // We know that QFB's only successor is PostBB. And QFB has a single
3328     // predecessor. If QTB exists, then its only successor is also PostBB.
3329     // If QTB does not exist, then QFB's only predecessor has a conditional
3330     // branch to QFB and PostBB.
3331     BasicBlock *TruePred = QTB ? QTB : QFB->getSinglePredecessor();
3332     BasicBlock *NewBB =
3333         SplitBlockPredecessors(PostBB, {QFB, TruePred}, "condstore.split", DTU);
3334     if (!NewBB)
3335       return false;
3336     PostBB = NewBB;
3337   }
3338 
3339   // OK, we're going to sink the stores to PostBB. The store has to be
3340   // conditional though, so first create the predicate.
3341   Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator())
3342                      ->getCondition();
3343   Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator())
3344                      ->getCondition();
3345 
3346   Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(),
3347                                                 PStore->getParent());
3348   Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(),
3349                                                 QStore->getParent(), PPHI);
3350 
3351   IRBuilder<> QB(&*PostBB->getFirstInsertionPt());
3352 
3353   Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond);
3354   Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond);
3355 
3356   if (InvertPCond)
3357     PPred = QB.CreateNot(PPred);
3358   if (InvertQCond)
3359     QPred = QB.CreateNot(QPred);
3360   Value *CombinedPred = QB.CreateOr(PPred, QPred);
3361 
3362   auto *T = SplitBlockAndInsertIfThen(CombinedPred, &*QB.GetInsertPoint(),
3363                                       /*Unreachable=*/false,
3364                                       /*BranchWeights=*/nullptr, DTU);
3365   QB.SetInsertPoint(T);
3366   StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address));
3367   AAMDNodes AAMD;
3368   PStore->getAAMetadata(AAMD, /*Merge=*/false);
3369   PStore->getAAMetadata(AAMD, /*Merge=*/true);
3370   SI->setAAMetadata(AAMD);
3371   // Choose the minimum alignment. If we could prove both stores execute, we
3372   // could use biggest one.  In this case, though, we only know that one of the
3373   // stores executes.  And we don't know it's safe to take the alignment from a
3374   // store that doesn't execute.
3375   SI->setAlignment(std::min(PStore->getAlign(), QStore->getAlign()));
3376 
3377   QStore->eraseFromParent();
3378   PStore->eraseFromParent();
3379 
3380   return true;
3381 }
3382 
3383 static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI,
3384                                    DomTreeUpdater *DTU, const DataLayout &DL,
3385                                    const TargetTransformInfo &TTI) {
3386   // The intention here is to find diamonds or triangles (see below) where each
3387   // conditional block contains a store to the same address. Both of these
3388   // stores are conditional, so they can't be unconditionally sunk. But it may
3389   // be profitable to speculatively sink the stores into one merged store at the
3390   // end, and predicate the merged store on the union of the two conditions of
3391   // PBI and QBI.
3392   //
3393   // This can reduce the number of stores executed if both of the conditions are
3394   // true, and can allow the blocks to become small enough to be if-converted.
3395   // This optimization will also chain, so that ladders of test-and-set
3396   // sequences can be if-converted away.
3397   //
3398   // We only deal with simple diamonds or triangles:
3399   //
3400   //     PBI       or      PBI        or a combination of the two
3401   //    /   \               | \
3402   //   PTB  PFB             |  PFB
3403   //    \   /               | /
3404   //     QBI                QBI
3405   //    /  \                | \
3406   //   QTB  QFB             |  QFB
3407   //    \  /                | /
3408   //    PostBB            PostBB
3409   //
3410   // We model triangles as a type of diamond with a nullptr "true" block.
3411   // Triangles are canonicalized so that the fallthrough edge is represented by
3412   // a true condition, as in the diagram above.
3413   BasicBlock *PTB = PBI->getSuccessor(0);
3414   BasicBlock *PFB = PBI->getSuccessor(1);
3415   BasicBlock *QTB = QBI->getSuccessor(0);
3416   BasicBlock *QFB = QBI->getSuccessor(1);
3417   BasicBlock *PostBB = QFB->getSingleSuccessor();
3418 
3419   // Make sure we have a good guess for PostBB. If QTB's only successor is
3420   // QFB, then QFB is a better PostBB.
3421   if (QTB->getSingleSuccessor() == QFB)
3422     PostBB = QFB;
3423 
3424   // If we couldn't find a good PostBB, stop.
3425   if (!PostBB)
3426     return false;
3427 
3428   bool InvertPCond = false, InvertQCond = false;
3429   // Canonicalize fallthroughs to the true branches.
3430   if (PFB == QBI->getParent()) {
3431     std::swap(PFB, PTB);
3432     InvertPCond = true;
3433   }
3434   if (QFB == PostBB) {
3435     std::swap(QFB, QTB);
3436     InvertQCond = true;
3437   }
3438 
3439   // From this point on we can assume PTB or QTB may be fallthroughs but PFB
3440   // and QFB may not. Model fallthroughs as a nullptr block.
3441   if (PTB == QBI->getParent())
3442     PTB = nullptr;
3443   if (QTB == PostBB)
3444     QTB = nullptr;
3445 
3446   // Legality bailouts. We must have at least the non-fallthrough blocks and
3447   // the post-dominating block, and the non-fallthroughs must only have one
3448   // predecessor.
3449   auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) {
3450     return BB->getSinglePredecessor() == P && BB->getSingleSuccessor() == S;
3451   };
3452   if (!HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) ||
3453       !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB))
3454     return false;
3455   if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) ||
3456       (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB)))
3457     return false;
3458   if (!QBI->getParent()->hasNUses(2))
3459     return false;
3460 
3461   // OK, this is a sequence of two diamonds or triangles.
3462   // Check if there are stores in PTB or PFB that are repeated in QTB or QFB.
3463   SmallPtrSet<Value *, 4> PStoreAddresses, QStoreAddresses;
3464   for (auto *BB : {PTB, PFB}) {
3465     if (!BB)
3466       continue;
3467     for (auto &I : *BB)
3468       if (StoreInst *SI = dyn_cast<StoreInst>(&I))
3469         PStoreAddresses.insert(SI->getPointerOperand());
3470   }
3471   for (auto *BB : {QTB, QFB}) {
3472     if (!BB)
3473       continue;
3474     for (auto &I : *BB)
3475       if (StoreInst *SI = dyn_cast<StoreInst>(&I))
3476         QStoreAddresses.insert(SI->getPointerOperand());
3477   }
3478 
3479   set_intersect(PStoreAddresses, QStoreAddresses);
3480   // set_intersect mutates PStoreAddresses in place. Rename it here to make it
3481   // clear what it contains.
3482   auto &CommonAddresses = PStoreAddresses;
3483 
3484   bool Changed = false;
3485   for (auto *Address : CommonAddresses)
3486     Changed |=
3487         mergeConditionalStoreToAddress(PTB, PFB, QTB, QFB, PostBB, Address,
3488                                        InvertPCond, InvertQCond, DTU, DL, TTI);
3489   return Changed;
3490 }
3491 
3492 /// If the previous block ended with a widenable branch, determine if reusing
3493 /// the target block is profitable and legal.  This will have the effect of
3494 /// "widening" PBI, but doesn't require us to reason about hosting safety.
3495 static bool tryWidenCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI,
3496                                            DomTreeUpdater *DTU) {
3497   // TODO: This can be generalized in two important ways:
3498   // 1) We can allow phi nodes in IfFalseBB and simply reuse all the input
3499   //    values from the PBI edge.
3500   // 2) We can sink side effecting instructions into BI's fallthrough
3501   //    successor provided they doesn't contribute to computation of
3502   //    BI's condition.
3503   Value *CondWB, *WC;
3504   BasicBlock *IfTrueBB, *IfFalseBB;
3505   if (!parseWidenableBranch(PBI, CondWB, WC, IfTrueBB, IfFalseBB) ||
3506       IfTrueBB != BI->getParent() || !BI->getParent()->getSinglePredecessor())
3507     return false;
3508   if (!IfFalseBB->phis().empty())
3509     return false; // TODO
3510   // Use lambda to lazily compute expensive condition after cheap ones.
3511   auto NoSideEffects = [](BasicBlock &BB) {
3512     return !llvm::any_of(BB, [](const Instruction &I) {
3513         return I.mayWriteToMemory() || I.mayHaveSideEffects();
3514       });
3515   };
3516   if (BI->getSuccessor(1) != IfFalseBB && // no inf looping
3517       BI->getSuccessor(1)->getTerminatingDeoptimizeCall() && // profitability
3518       NoSideEffects(*BI->getParent())) {
3519     auto *OldSuccessor = BI->getSuccessor(1);
3520     OldSuccessor->removePredecessor(BI->getParent());
3521     BI->setSuccessor(1, IfFalseBB);
3522     if (DTU)
3523       DTU->applyUpdates(
3524           {{DominatorTree::Insert, BI->getParent(), IfFalseBB},
3525            {DominatorTree::Delete, BI->getParent(), OldSuccessor}});
3526     return true;
3527   }
3528   if (BI->getSuccessor(0) != IfFalseBB && // no inf looping
3529       BI->getSuccessor(0)->getTerminatingDeoptimizeCall() && // profitability
3530       NoSideEffects(*BI->getParent())) {
3531     auto *OldSuccessor = BI->getSuccessor(0);
3532     OldSuccessor->removePredecessor(BI->getParent());
3533     BI->setSuccessor(0, IfFalseBB);
3534     if (DTU)
3535       DTU->applyUpdates(
3536           {{DominatorTree::Insert, BI->getParent(), IfFalseBB},
3537            {DominatorTree::Delete, BI->getParent(), OldSuccessor}});
3538     return true;
3539   }
3540   return false;
3541 }
3542 
3543 /// If we have a conditional branch as a predecessor of another block,
3544 /// this function tries to simplify it.  We know
3545 /// that PBI and BI are both conditional branches, and BI is in one of the
3546 /// successor blocks of PBI - PBI branches to BI.
3547 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI,
3548                                            DomTreeUpdater *DTU,
3549                                            const DataLayout &DL,
3550                                            const TargetTransformInfo &TTI) {
3551   assert(PBI->isConditional() && BI->isConditional());
3552   BasicBlock *BB = BI->getParent();
3553 
3554   // If this block ends with a branch instruction, and if there is a
3555   // predecessor that ends on a branch of the same condition, make
3556   // this conditional branch redundant.
3557   if (PBI->getCondition() == BI->getCondition() &&
3558       PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
3559     // Okay, the outcome of this conditional branch is statically
3560     // knowable.  If this block had a single pred, handle specially.
3561     if (BB->getSinglePredecessor()) {
3562       // Turn this into a branch on constant.
3563       bool CondIsTrue = PBI->getSuccessor(0) == BB;
3564       BI->setCondition(
3565           ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue));
3566       return true; // Nuke the branch on constant.
3567     }
3568 
3569     // Otherwise, if there are multiple predecessors, insert a PHI that merges
3570     // in the constant and simplify the block result.  Subsequent passes of
3571     // simplifycfg will thread the block.
3572     if (BlockIsSimpleEnoughToThreadThrough(BB)) {
3573       pred_iterator PB = pred_begin(BB), PE = pred_end(BB);
3574       PHINode *NewPN = PHINode::Create(
3575           Type::getInt1Ty(BB->getContext()), std::distance(PB, PE),
3576           BI->getCondition()->getName() + ".pr", &BB->front());
3577       // Okay, we're going to insert the PHI node.  Since PBI is not the only
3578       // predecessor, compute the PHI'd conditional value for all of the preds.
3579       // Any predecessor where the condition is not computable we keep symbolic.
3580       for (pred_iterator PI = PB; PI != PE; ++PI) {
3581         BasicBlock *P = *PI;
3582         if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) && PBI != BI &&
3583             PBI->isConditional() && PBI->getCondition() == BI->getCondition() &&
3584             PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
3585           bool CondIsTrue = PBI->getSuccessor(0) == BB;
3586           NewPN->addIncoming(
3587               ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue),
3588               P);
3589         } else {
3590           NewPN->addIncoming(BI->getCondition(), P);
3591         }
3592       }
3593 
3594       BI->setCondition(NewPN);
3595       return true;
3596     }
3597   }
3598 
3599   // If the previous block ended with a widenable branch, determine if reusing
3600   // the target block is profitable and legal.  This will have the effect of
3601   // "widening" PBI, but doesn't require us to reason about hosting safety.
3602   if (tryWidenCondBranchToCondBranch(PBI, BI, DTU))
3603     return true;
3604 
3605   if (auto *CE = dyn_cast<ConstantExpr>(BI->getCondition()))
3606     if (CE->canTrap())
3607       return false;
3608 
3609   // If both branches are conditional and both contain stores to the same
3610   // address, remove the stores from the conditionals and create a conditional
3611   // merged store at the end.
3612   if (MergeCondStores && mergeConditionalStores(PBI, BI, DTU, DL, TTI))
3613     return true;
3614 
3615   // If this is a conditional branch in an empty block, and if any
3616   // predecessors are a conditional branch to one of our destinations,
3617   // fold the conditions into logical ops and one cond br.
3618 
3619   // Ignore dbg intrinsics.
3620   if (&*BB->instructionsWithoutDebug().begin() != BI)
3621     return false;
3622 
3623   int PBIOp, BIOp;
3624   if (PBI->getSuccessor(0) == BI->getSuccessor(0)) {
3625     PBIOp = 0;
3626     BIOp = 0;
3627   } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) {
3628     PBIOp = 0;
3629     BIOp = 1;
3630   } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) {
3631     PBIOp = 1;
3632     BIOp = 0;
3633   } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) {
3634     PBIOp = 1;
3635     BIOp = 1;
3636   } else {
3637     return false;
3638   }
3639 
3640   // Check to make sure that the other destination of this branch
3641   // isn't BB itself.  If so, this is an infinite loop that will
3642   // keep getting unwound.
3643   if (PBI->getSuccessor(PBIOp) == BB)
3644     return false;
3645 
3646   // Do not perform this transformation if it would require
3647   // insertion of a large number of select instructions. For targets
3648   // without predication/cmovs, this is a big pessimization.
3649 
3650   // Also do not perform this transformation if any phi node in the common
3651   // destination block can trap when reached by BB or PBB (PR17073). In that
3652   // case, it would be unsafe to hoist the operation into a select instruction.
3653 
3654   BasicBlock *CommonDest = PBI->getSuccessor(PBIOp);
3655   BasicBlock *RemovedDest = PBI->getSuccessor(PBIOp ^ 1);
3656   unsigned NumPhis = 0;
3657   for (BasicBlock::iterator II = CommonDest->begin(); isa<PHINode>(II);
3658        ++II, ++NumPhis) {
3659     if (NumPhis > 2) // Disable this xform.
3660       return false;
3661 
3662     PHINode *PN = cast<PHINode>(II);
3663     Value *BIV = PN->getIncomingValueForBlock(BB);
3664     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BIV))
3665       if (CE->canTrap())
3666         return false;
3667 
3668     unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
3669     Value *PBIV = PN->getIncomingValue(PBBIdx);
3670     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(PBIV))
3671       if (CE->canTrap())
3672         return false;
3673   }
3674 
3675   // Finally, if everything is ok, fold the branches to logical ops.
3676   BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1);
3677 
3678   LLVM_DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent()
3679                     << "AND: " << *BI->getParent());
3680 
3681   SmallVector<DominatorTree::UpdateType, 5> Updates;
3682 
3683   // If OtherDest *is* BB, then BB is a basic block with a single conditional
3684   // branch in it, where one edge (OtherDest) goes back to itself but the other
3685   // exits.  We don't *know* that the program avoids the infinite loop
3686   // (even though that seems likely).  If we do this xform naively, we'll end up
3687   // recursively unpeeling the loop.  Since we know that (after the xform is
3688   // done) that the block *is* infinite if reached, we just make it an obviously
3689   // infinite loop with no cond branch.
3690   if (OtherDest == BB) {
3691     // Insert it at the end of the function, because it's either code,
3692     // or it won't matter if it's hot. :)
3693     BasicBlock *InfLoopBlock =
3694         BasicBlock::Create(BB->getContext(), "infloop", BB->getParent());
3695     BranchInst::Create(InfLoopBlock, InfLoopBlock);
3696     if (DTU)
3697       Updates.push_back({DominatorTree::Insert, InfLoopBlock, InfLoopBlock});
3698     OtherDest = InfLoopBlock;
3699   }
3700 
3701   LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent());
3702 
3703   // BI may have other predecessors.  Because of this, we leave
3704   // it alone, but modify PBI.
3705 
3706   // Make sure we get to CommonDest on True&True directions.
3707   Value *PBICond = PBI->getCondition();
3708   IRBuilder<NoFolder> Builder(PBI);
3709   if (PBIOp)
3710     PBICond = Builder.CreateNot(PBICond, PBICond->getName() + ".not");
3711 
3712   Value *BICond = BI->getCondition();
3713   if (BIOp)
3714     BICond = Builder.CreateNot(BICond, BICond->getName() + ".not");
3715 
3716   // Merge the conditions.
3717   Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge");
3718 
3719   // Modify PBI to branch on the new condition to the new dests.
3720   PBI->setCondition(Cond);
3721   PBI->setSuccessor(0, CommonDest);
3722   PBI->setSuccessor(1, OtherDest);
3723 
3724   if (DTU) {
3725     Updates.push_back({DominatorTree::Insert, PBI->getParent(), OtherDest});
3726     Updates.push_back({DominatorTree::Delete, PBI->getParent(), RemovedDest});
3727 
3728     DTU->applyUpdates(Updates);
3729   }
3730 
3731   // Update branch weight for PBI.
3732   uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
3733   uint64_t PredCommon, PredOther, SuccCommon, SuccOther;
3734   bool HasWeights =
3735       extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
3736                              SuccTrueWeight, SuccFalseWeight);
3737   if (HasWeights) {
3738     PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
3739     PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
3740     SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
3741     SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
3742     // The weight to CommonDest should be PredCommon * SuccTotal +
3743     //                                    PredOther * SuccCommon.
3744     // The weight to OtherDest should be PredOther * SuccOther.
3745     uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) +
3746                                   PredOther * SuccCommon,
3747                               PredOther * SuccOther};
3748     // Halve the weights if any of them cannot fit in an uint32_t
3749     FitWeights(NewWeights);
3750 
3751     setBranchWeights(PBI, NewWeights[0], NewWeights[1]);
3752   }
3753 
3754   // OtherDest may have phi nodes.  If so, add an entry from PBI's
3755   // block that are identical to the entries for BI's block.
3756   AddPredecessorToBlock(OtherDest, PBI->getParent(), BB);
3757 
3758   // We know that the CommonDest already had an edge from PBI to
3759   // it.  If it has PHIs though, the PHIs may have different
3760   // entries for BB and PBI's BB.  If so, insert a select to make
3761   // them agree.
3762   for (PHINode &PN : CommonDest->phis()) {
3763     Value *BIV = PN.getIncomingValueForBlock(BB);
3764     unsigned PBBIdx = PN.getBasicBlockIndex(PBI->getParent());
3765     Value *PBIV = PN.getIncomingValue(PBBIdx);
3766     if (BIV != PBIV) {
3767       // Insert a select in PBI to pick the right value.
3768       SelectInst *NV = cast<SelectInst>(
3769           Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName() + ".mux"));
3770       PN.setIncomingValue(PBBIdx, NV);
3771       // Although the select has the same condition as PBI, the original branch
3772       // weights for PBI do not apply to the new select because the select's
3773       // 'logical' edges are incoming edges of the phi that is eliminated, not
3774       // the outgoing edges of PBI.
3775       if (HasWeights) {
3776         uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
3777         uint64_t PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
3778         uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
3779         uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
3780         // The weight to PredCommonDest should be PredCommon * SuccTotal.
3781         // The weight to PredOtherDest should be PredOther * SuccCommon.
3782         uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther),
3783                                   PredOther * SuccCommon};
3784 
3785         FitWeights(NewWeights);
3786 
3787         setBranchWeights(NV, NewWeights[0], NewWeights[1]);
3788       }
3789     }
3790   }
3791 
3792   LLVM_DEBUG(dbgs() << "INTO: " << *PBI->getParent());
3793   LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent());
3794 
3795   // This basic block is probably dead.  We know it has at least
3796   // one fewer predecessor.
3797   return true;
3798 }
3799 
3800 // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is
3801 // true or to FalseBB if Cond is false.
3802 // Takes care of updating the successors and removing the old terminator.
3803 // Also makes sure not to introduce new successors by assuming that edges to
3804 // non-successor TrueBBs and FalseBBs aren't reachable.
3805 bool SimplifyCFGOpt::SimplifyTerminatorOnSelect(Instruction *OldTerm,
3806                                                 Value *Cond, BasicBlock *TrueBB,
3807                                                 BasicBlock *FalseBB,
3808                                                 uint32_t TrueWeight,
3809                                                 uint32_t FalseWeight) {
3810   auto *BB = OldTerm->getParent();
3811   // Remove any superfluous successor edges from the CFG.
3812   // First, figure out which successors to preserve.
3813   // If TrueBB and FalseBB are equal, only try to preserve one copy of that
3814   // successor.
3815   BasicBlock *KeepEdge1 = TrueBB;
3816   BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr;
3817 
3818   SmallPtrSet<BasicBlock *, 2> RemovedSuccessors;
3819 
3820   // Then remove the rest.
3821   for (BasicBlock *Succ : successors(OldTerm)) {
3822     // Make sure only to keep exactly one copy of each edge.
3823     if (Succ == KeepEdge1)
3824       KeepEdge1 = nullptr;
3825     else if (Succ == KeepEdge2)
3826       KeepEdge2 = nullptr;
3827     else {
3828       Succ->removePredecessor(BB,
3829                               /*KeepOneInputPHIs=*/true);
3830 
3831       if (Succ != TrueBB && Succ != FalseBB)
3832         RemovedSuccessors.insert(Succ);
3833     }
3834   }
3835 
3836   IRBuilder<> Builder(OldTerm);
3837   Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc());
3838 
3839   // Insert an appropriate new terminator.
3840   if (!KeepEdge1 && !KeepEdge2) {
3841     if (TrueBB == FalseBB) {
3842       // We were only looking for one successor, and it was present.
3843       // Create an unconditional branch to it.
3844       Builder.CreateBr(TrueBB);
3845     } else {
3846       // We found both of the successors we were looking for.
3847       // Create a conditional branch sharing the condition of the select.
3848       BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB);
3849       if (TrueWeight != FalseWeight)
3850         setBranchWeights(NewBI, TrueWeight, FalseWeight);
3851     }
3852   } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) {
3853     // Neither of the selected blocks were successors, so this
3854     // terminator must be unreachable.
3855     new UnreachableInst(OldTerm->getContext(), OldTerm);
3856   } else {
3857     // One of the selected values was a successor, but the other wasn't.
3858     // Insert an unconditional branch to the one that was found;
3859     // the edge to the one that wasn't must be unreachable.
3860     if (!KeepEdge1) {
3861       // Only TrueBB was found.
3862       Builder.CreateBr(TrueBB);
3863     } else {
3864       // Only FalseBB was found.
3865       Builder.CreateBr(FalseBB);
3866     }
3867   }
3868 
3869   EraseTerminatorAndDCECond(OldTerm);
3870 
3871   if (DTU) {
3872     SmallVector<DominatorTree::UpdateType, 2> Updates;
3873     Updates.reserve(RemovedSuccessors.size());
3874     for (auto *RemovedSuccessor : RemovedSuccessors)
3875       Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor});
3876     DTU->applyUpdates(Updates);
3877   }
3878 
3879   return true;
3880 }
3881 
3882 // Replaces
3883 //   (switch (select cond, X, Y)) on constant X, Y
3884 // with a branch - conditional if X and Y lead to distinct BBs,
3885 // unconditional otherwise.
3886 bool SimplifyCFGOpt::SimplifySwitchOnSelect(SwitchInst *SI,
3887                                             SelectInst *Select) {
3888   // Check for constant integer values in the select.
3889   ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue());
3890   ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue());
3891   if (!TrueVal || !FalseVal)
3892     return false;
3893 
3894   // Find the relevant condition and destinations.
3895   Value *Condition = Select->getCondition();
3896   BasicBlock *TrueBB = SI->findCaseValue(TrueVal)->getCaseSuccessor();
3897   BasicBlock *FalseBB = SI->findCaseValue(FalseVal)->getCaseSuccessor();
3898 
3899   // Get weight for TrueBB and FalseBB.
3900   uint32_t TrueWeight = 0, FalseWeight = 0;
3901   SmallVector<uint64_t, 8> Weights;
3902   bool HasWeights = HasBranchWeights(SI);
3903   if (HasWeights) {
3904     GetBranchWeights(SI, Weights);
3905     if (Weights.size() == 1 + SI->getNumCases()) {
3906       TrueWeight =
3907           (uint32_t)Weights[SI->findCaseValue(TrueVal)->getSuccessorIndex()];
3908       FalseWeight =
3909           (uint32_t)Weights[SI->findCaseValue(FalseVal)->getSuccessorIndex()];
3910     }
3911   }
3912 
3913   // Perform the actual simplification.
3914   return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, TrueWeight,
3915                                     FalseWeight);
3916 }
3917 
3918 // Replaces
3919 //   (indirectbr (select cond, blockaddress(@fn, BlockA),
3920 //                             blockaddress(@fn, BlockB)))
3921 // with
3922 //   (br cond, BlockA, BlockB).
3923 bool SimplifyCFGOpt::SimplifyIndirectBrOnSelect(IndirectBrInst *IBI,
3924                                                 SelectInst *SI) {
3925   // Check that both operands of the select are block addresses.
3926   BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue());
3927   BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue());
3928   if (!TBA || !FBA)
3929     return false;
3930 
3931   // Extract the actual blocks.
3932   BasicBlock *TrueBB = TBA->getBasicBlock();
3933   BasicBlock *FalseBB = FBA->getBasicBlock();
3934 
3935   // Perform the actual simplification.
3936   return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 0,
3937                                     0);
3938 }
3939 
3940 /// This is called when we find an icmp instruction
3941 /// (a seteq/setne with a constant) as the only instruction in a
3942 /// block that ends with an uncond branch.  We are looking for a very specific
3943 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified.  In
3944 /// this case, we merge the first two "or's of icmp" into a switch, but then the
3945 /// default value goes to an uncond block with a seteq in it, we get something
3946 /// like:
3947 ///
3948 ///   switch i8 %A, label %DEFAULT [ i8 1, label %end    i8 2, label %end ]
3949 /// DEFAULT:
3950 ///   %tmp = icmp eq i8 %A, 92
3951 ///   br label %end
3952 /// end:
3953 ///   ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ]
3954 ///
3955 /// We prefer to split the edge to 'end' so that there is a true/false entry to
3956 /// the PHI, merging the third icmp into the switch.
3957 bool SimplifyCFGOpt::tryToSimplifyUncondBranchWithICmpInIt(
3958     ICmpInst *ICI, IRBuilder<> &Builder) {
3959   BasicBlock *BB = ICI->getParent();
3960 
3961   // If the block has any PHIs in it or the icmp has multiple uses, it is too
3962   // complex.
3963   if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse())
3964     return false;
3965 
3966   Value *V = ICI->getOperand(0);
3967   ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1));
3968 
3969   // The pattern we're looking for is where our only predecessor is a switch on
3970   // 'V' and this block is the default case for the switch.  In this case we can
3971   // fold the compared value into the switch to simplify things.
3972   BasicBlock *Pred = BB->getSinglePredecessor();
3973   if (!Pred || !isa<SwitchInst>(Pred->getTerminator()))
3974     return false;
3975 
3976   SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator());
3977   if (SI->getCondition() != V)
3978     return false;
3979 
3980   // If BB is reachable on a non-default case, then we simply know the value of
3981   // V in this block.  Substitute it and constant fold the icmp instruction
3982   // away.
3983   if (SI->getDefaultDest() != BB) {
3984     ConstantInt *VVal = SI->findCaseDest(BB);
3985     assert(VVal && "Should have a unique destination value");
3986     ICI->setOperand(0, VVal);
3987 
3988     if (Value *V = SimplifyInstruction(ICI, {DL, ICI})) {
3989       ICI->replaceAllUsesWith(V);
3990       ICI->eraseFromParent();
3991     }
3992     // BB is now empty, so it is likely to simplify away.
3993     return requestResimplify();
3994   }
3995 
3996   // Ok, the block is reachable from the default dest.  If the constant we're
3997   // comparing exists in one of the other edges, then we can constant fold ICI
3998   // and zap it.
3999   if (SI->findCaseValue(Cst) != SI->case_default()) {
4000     Value *V;
4001     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
4002       V = ConstantInt::getFalse(BB->getContext());
4003     else
4004       V = ConstantInt::getTrue(BB->getContext());
4005 
4006     ICI->replaceAllUsesWith(V);
4007     ICI->eraseFromParent();
4008     // BB is now empty, so it is likely to simplify away.
4009     return requestResimplify();
4010   }
4011 
4012   // The use of the icmp has to be in the 'end' block, by the only PHI node in
4013   // the block.
4014   BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0);
4015   PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back());
4016   if (PHIUse == nullptr || PHIUse != &SuccBlock->front() ||
4017       isa<PHINode>(++BasicBlock::iterator(PHIUse)))
4018     return false;
4019 
4020   // If the icmp is a SETEQ, then the default dest gets false, the new edge gets
4021   // true in the PHI.
4022   Constant *DefaultCst = ConstantInt::getTrue(BB->getContext());
4023   Constant *NewCst = ConstantInt::getFalse(BB->getContext());
4024 
4025   if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
4026     std::swap(DefaultCst, NewCst);
4027 
4028   // Replace ICI (which is used by the PHI for the default value) with true or
4029   // false depending on if it is EQ or NE.
4030   ICI->replaceAllUsesWith(DefaultCst);
4031   ICI->eraseFromParent();
4032 
4033   SmallVector<DominatorTree::UpdateType, 2> Updates;
4034 
4035   // Okay, the switch goes to this block on a default value.  Add an edge from
4036   // the switch to the merge point on the compared value.
4037   BasicBlock *NewBB =
4038       BasicBlock::Create(BB->getContext(), "switch.edge", BB->getParent(), BB);
4039   {
4040     SwitchInstProfUpdateWrapper SIW(*SI);
4041     auto W0 = SIW.getSuccessorWeight(0);
4042     SwitchInstProfUpdateWrapper::CaseWeightOpt NewW;
4043     if (W0) {
4044       NewW = ((uint64_t(*W0) + 1) >> 1);
4045       SIW.setSuccessorWeight(0, *NewW);
4046     }
4047     SIW.addCase(Cst, NewBB, NewW);
4048     if (DTU)
4049       Updates.push_back({DominatorTree::Insert, Pred, NewBB});
4050   }
4051 
4052   // NewBB branches to the phi block, add the uncond branch and the phi entry.
4053   Builder.SetInsertPoint(NewBB);
4054   Builder.SetCurrentDebugLocation(SI->getDebugLoc());
4055   Builder.CreateBr(SuccBlock);
4056   PHIUse->addIncoming(NewCst, NewBB);
4057   if (DTU) {
4058     Updates.push_back({DominatorTree::Insert, NewBB, SuccBlock});
4059     DTU->applyUpdates(Updates);
4060   }
4061   return true;
4062 }
4063 
4064 /// The specified branch is a conditional branch.
4065 /// Check to see if it is branching on an or/and chain of icmp instructions, and
4066 /// fold it into a switch instruction if so.
4067 bool SimplifyCFGOpt::SimplifyBranchOnICmpChain(BranchInst *BI,
4068                                                IRBuilder<> &Builder,
4069                                                const DataLayout &DL) {
4070   Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
4071   if (!Cond)
4072     return false;
4073 
4074   // Change br (X == 0 | X == 1), T, F into a switch instruction.
4075   // If this is a bunch of seteq's or'd together, or if it's a bunch of
4076   // 'setne's and'ed together, collect them.
4077 
4078   // Try to gather values from a chain of and/or to be turned into a switch
4079   ConstantComparesGatherer ConstantCompare(Cond, DL);
4080   // Unpack the result
4081   SmallVectorImpl<ConstantInt *> &Values = ConstantCompare.Vals;
4082   Value *CompVal = ConstantCompare.CompValue;
4083   unsigned UsedICmps = ConstantCompare.UsedICmps;
4084   Value *ExtraCase = ConstantCompare.Extra;
4085 
4086   // If we didn't have a multiply compared value, fail.
4087   if (!CompVal)
4088     return false;
4089 
4090   // Avoid turning single icmps into a switch.
4091   if (UsedICmps <= 1)
4092     return false;
4093 
4094   bool TrueWhenEqual = match(Cond, m_LogicalOr(m_Value(), m_Value()));
4095 
4096   // There might be duplicate constants in the list, which the switch
4097   // instruction can't handle, remove them now.
4098   array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate);
4099   Values.erase(std::unique(Values.begin(), Values.end()), Values.end());
4100 
4101   // If Extra was used, we require at least two switch values to do the
4102   // transformation.  A switch with one value is just a conditional branch.
4103   if (ExtraCase && Values.size() < 2)
4104     return false;
4105 
4106   // TODO: Preserve branch weight metadata, similarly to how
4107   // FoldValueComparisonIntoPredecessors preserves it.
4108 
4109   // Figure out which block is which destination.
4110   BasicBlock *DefaultBB = BI->getSuccessor(1);
4111   BasicBlock *EdgeBB = BI->getSuccessor(0);
4112   if (!TrueWhenEqual)
4113     std::swap(DefaultBB, EdgeBB);
4114 
4115   BasicBlock *BB = BI->getParent();
4116 
4117   // MSAN does not like undefs as branch condition which can be introduced
4118   // with "explicit branch".
4119   if (ExtraCase && BB->getParent()->hasFnAttribute(Attribute::SanitizeMemory))
4120     return false;
4121 
4122   LLVM_DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size()
4123                     << " cases into SWITCH.  BB is:\n"
4124                     << *BB);
4125 
4126   SmallVector<DominatorTree::UpdateType, 2> Updates;
4127 
4128   // If there are any extra values that couldn't be folded into the switch
4129   // then we evaluate them with an explicit branch first. Split the block
4130   // right before the condbr to handle it.
4131   if (ExtraCase) {
4132     BasicBlock *NewBB = SplitBlock(BB, BI, DTU, /*LI=*/nullptr,
4133                                    /*MSSAU=*/nullptr, "switch.early.test");
4134 
4135     // Remove the uncond branch added to the old block.
4136     Instruction *OldTI = BB->getTerminator();
4137     Builder.SetInsertPoint(OldTI);
4138 
4139     if (TrueWhenEqual)
4140       Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB);
4141     else
4142       Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB);
4143 
4144     OldTI->eraseFromParent();
4145 
4146     if (DTU)
4147       Updates.push_back({DominatorTree::Insert, BB, EdgeBB});
4148 
4149     // If there are PHI nodes in EdgeBB, then we need to add a new entry to them
4150     // for the edge we just added.
4151     AddPredecessorToBlock(EdgeBB, BB, NewBB);
4152 
4153     LLVM_DEBUG(dbgs() << "  ** 'icmp' chain unhandled condition: " << *ExtraCase
4154                       << "\nEXTRABB = " << *BB);
4155     BB = NewBB;
4156   }
4157 
4158   Builder.SetInsertPoint(BI);
4159   // Convert pointer to int before we switch.
4160   if (CompVal->getType()->isPointerTy()) {
4161     CompVal = Builder.CreatePtrToInt(
4162         CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr");
4163   }
4164 
4165   // Create the new switch instruction now.
4166   SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size());
4167 
4168   // Add all of the 'cases' to the switch instruction.
4169   for (unsigned i = 0, e = Values.size(); i != e; ++i)
4170     New->addCase(Values[i], EdgeBB);
4171 
4172   // We added edges from PI to the EdgeBB.  As such, if there were any
4173   // PHI nodes in EdgeBB, they need entries to be added corresponding to
4174   // the number of edges added.
4175   for (BasicBlock::iterator BBI = EdgeBB->begin(); isa<PHINode>(BBI); ++BBI) {
4176     PHINode *PN = cast<PHINode>(BBI);
4177     Value *InVal = PN->getIncomingValueForBlock(BB);
4178     for (unsigned i = 0, e = Values.size() - 1; i != e; ++i)
4179       PN->addIncoming(InVal, BB);
4180   }
4181 
4182   // Erase the old branch instruction.
4183   EraseTerminatorAndDCECond(BI);
4184   if (DTU)
4185     DTU->applyUpdates(Updates);
4186 
4187   LLVM_DEBUG(dbgs() << "  ** 'icmp' chain result is:\n" << *BB << '\n');
4188   return true;
4189 }
4190 
4191 bool SimplifyCFGOpt::simplifyResume(ResumeInst *RI, IRBuilder<> &Builder) {
4192   if (isa<PHINode>(RI->getValue()))
4193     return simplifyCommonResume(RI);
4194   else if (isa<LandingPadInst>(RI->getParent()->getFirstNonPHI()) &&
4195            RI->getValue() == RI->getParent()->getFirstNonPHI())
4196     // The resume must unwind the exception that caused control to branch here.
4197     return simplifySingleResume(RI);
4198 
4199   return false;
4200 }
4201 
4202 // Check if cleanup block is empty
4203 static bool isCleanupBlockEmpty(iterator_range<BasicBlock::iterator> R) {
4204   for (Instruction &I : R) {
4205     auto *II = dyn_cast<IntrinsicInst>(&I);
4206     if (!II)
4207       return false;
4208 
4209     Intrinsic::ID IntrinsicID = II->getIntrinsicID();
4210     switch (IntrinsicID) {
4211     case Intrinsic::dbg_declare:
4212     case Intrinsic::dbg_value:
4213     case Intrinsic::dbg_label:
4214     case Intrinsic::lifetime_end:
4215       break;
4216     default:
4217       return false;
4218     }
4219   }
4220   return true;
4221 }
4222 
4223 // Simplify resume that is shared by several landing pads (phi of landing pad).
4224 bool SimplifyCFGOpt::simplifyCommonResume(ResumeInst *RI) {
4225   BasicBlock *BB = RI->getParent();
4226 
4227   // Check that there are no other instructions except for debug and lifetime
4228   // intrinsics between the phi's and resume instruction.
4229   if (!isCleanupBlockEmpty(
4230           make_range(RI->getParent()->getFirstNonPHI(), BB->getTerminator())))
4231     return false;
4232 
4233   SmallSetVector<BasicBlock *, 4> TrivialUnwindBlocks;
4234   auto *PhiLPInst = cast<PHINode>(RI->getValue());
4235 
4236   // Check incoming blocks to see if any of them are trivial.
4237   for (unsigned Idx = 0, End = PhiLPInst->getNumIncomingValues(); Idx != End;
4238        Idx++) {
4239     auto *IncomingBB = PhiLPInst->getIncomingBlock(Idx);
4240     auto *IncomingValue = PhiLPInst->getIncomingValue(Idx);
4241 
4242     // If the block has other successors, we can not delete it because
4243     // it has other dependents.
4244     if (IncomingBB->getUniqueSuccessor() != BB)
4245       continue;
4246 
4247     auto *LandingPad = dyn_cast<LandingPadInst>(IncomingBB->getFirstNonPHI());
4248     // Not the landing pad that caused the control to branch here.
4249     if (IncomingValue != LandingPad)
4250       continue;
4251 
4252     if (isCleanupBlockEmpty(
4253             make_range(LandingPad->getNextNode(), IncomingBB->getTerminator())))
4254       TrivialUnwindBlocks.insert(IncomingBB);
4255   }
4256 
4257   // If no trivial unwind blocks, don't do any simplifications.
4258   if (TrivialUnwindBlocks.empty())
4259     return false;
4260 
4261   // Turn all invokes that unwind here into calls.
4262   for (auto *TrivialBB : TrivialUnwindBlocks) {
4263     // Blocks that will be simplified should be removed from the phi node.
4264     // Note there could be multiple edges to the resume block, and we need
4265     // to remove them all.
4266     while (PhiLPInst->getBasicBlockIndex(TrivialBB) != -1)
4267       BB->removePredecessor(TrivialBB, true);
4268 
4269     for (BasicBlock *Pred :
4270          llvm::make_early_inc_range(predecessors(TrivialBB))) {
4271       removeUnwindEdge(Pred, DTU);
4272       ++NumInvokes;
4273     }
4274 
4275     // In each SimplifyCFG run, only the current processed block can be erased.
4276     // Otherwise, it will break the iteration of SimplifyCFG pass. So instead
4277     // of erasing TrivialBB, we only remove the branch to the common resume
4278     // block so that we can later erase the resume block since it has no
4279     // predecessors.
4280     TrivialBB->getTerminator()->eraseFromParent();
4281     new UnreachableInst(RI->getContext(), TrivialBB);
4282     if (DTU)
4283       DTU->applyUpdates({{DominatorTree::Delete, TrivialBB, BB}});
4284   }
4285 
4286   // Delete the resume block if all its predecessors have been removed.
4287   if (pred_empty(BB)) {
4288     if (DTU)
4289       DTU->deleteBB(BB);
4290     else
4291       BB->eraseFromParent();
4292   }
4293 
4294   return !TrivialUnwindBlocks.empty();
4295 }
4296 
4297 // Simplify resume that is only used by a single (non-phi) landing pad.
4298 bool SimplifyCFGOpt::simplifySingleResume(ResumeInst *RI) {
4299   BasicBlock *BB = RI->getParent();
4300   auto *LPInst = cast<LandingPadInst>(BB->getFirstNonPHI());
4301   assert(RI->getValue() == LPInst &&
4302          "Resume must unwind the exception that caused control to here");
4303 
4304   // Check that there are no other instructions except for debug intrinsics.
4305   if (!isCleanupBlockEmpty(
4306           make_range<Instruction *>(LPInst->getNextNode(), RI)))
4307     return false;
4308 
4309   // Turn all invokes that unwind here into calls and delete the basic block.
4310   for (BasicBlock *Pred : llvm::make_early_inc_range(predecessors(BB))) {
4311     removeUnwindEdge(Pred, DTU);
4312     ++NumInvokes;
4313   }
4314 
4315   // The landingpad is now unreachable.  Zap it.
4316   if (DTU)
4317     DTU->deleteBB(BB);
4318   else
4319     BB->eraseFromParent();
4320   return true;
4321 }
4322 
4323 static bool removeEmptyCleanup(CleanupReturnInst *RI, DomTreeUpdater *DTU) {
4324   // If this is a trivial cleanup pad that executes no instructions, it can be
4325   // eliminated.  If the cleanup pad continues to the caller, any predecessor
4326   // that is an EH pad will be updated to continue to the caller and any
4327   // predecessor that terminates with an invoke instruction will have its invoke
4328   // instruction converted to a call instruction.  If the cleanup pad being
4329   // simplified does not continue to the caller, each predecessor will be
4330   // updated to continue to the unwind destination of the cleanup pad being
4331   // simplified.
4332   BasicBlock *BB = RI->getParent();
4333   CleanupPadInst *CPInst = RI->getCleanupPad();
4334   if (CPInst->getParent() != BB)
4335     // This isn't an empty cleanup.
4336     return false;
4337 
4338   // We cannot kill the pad if it has multiple uses.  This typically arises
4339   // from unreachable basic blocks.
4340   if (!CPInst->hasOneUse())
4341     return false;
4342 
4343   // Check that there are no other instructions except for benign intrinsics.
4344   if (!isCleanupBlockEmpty(
4345           make_range<Instruction *>(CPInst->getNextNode(), RI)))
4346     return false;
4347 
4348   // If the cleanup return we are simplifying unwinds to the caller, this will
4349   // set UnwindDest to nullptr.
4350   BasicBlock *UnwindDest = RI->getUnwindDest();
4351   Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr;
4352 
4353   // We're about to remove BB from the control flow.  Before we do, sink any
4354   // PHINodes into the unwind destination.  Doing this before changing the
4355   // control flow avoids some potentially slow checks, since we can currently
4356   // be certain that UnwindDest and BB have no common predecessors (since they
4357   // are both EH pads).
4358   if (UnwindDest) {
4359     // First, go through the PHI nodes in UnwindDest and update any nodes that
4360     // reference the block we are removing
4361     for (BasicBlock::iterator I = UnwindDest->begin(),
4362                               IE = DestEHPad->getIterator();
4363          I != IE; ++I) {
4364       PHINode *DestPN = cast<PHINode>(I);
4365 
4366       int Idx = DestPN->getBasicBlockIndex(BB);
4367       // Since BB unwinds to UnwindDest, it has to be in the PHI node.
4368       assert(Idx != -1);
4369       // This PHI node has an incoming value that corresponds to a control
4370       // path through the cleanup pad we are removing.  If the incoming
4371       // value is in the cleanup pad, it must be a PHINode (because we
4372       // verified above that the block is otherwise empty).  Otherwise, the
4373       // value is either a constant or a value that dominates the cleanup
4374       // pad being removed.
4375       //
4376       // Because BB and UnwindDest are both EH pads, all of their
4377       // predecessors must unwind to these blocks, and since no instruction
4378       // can have multiple unwind destinations, there will be no overlap in
4379       // incoming blocks between SrcPN and DestPN.
4380       Value *SrcVal = DestPN->getIncomingValue(Idx);
4381       PHINode *SrcPN = dyn_cast<PHINode>(SrcVal);
4382 
4383       // Remove the entry for the block we are deleting.
4384       DestPN->removeIncomingValue(Idx, false);
4385 
4386       if (SrcPN && SrcPN->getParent() == BB) {
4387         // If the incoming value was a PHI node in the cleanup pad we are
4388         // removing, we need to merge that PHI node's incoming values into
4389         // DestPN.
4390         for (unsigned SrcIdx = 0, SrcE = SrcPN->getNumIncomingValues();
4391              SrcIdx != SrcE; ++SrcIdx) {
4392           DestPN->addIncoming(SrcPN->getIncomingValue(SrcIdx),
4393                               SrcPN->getIncomingBlock(SrcIdx));
4394         }
4395       } else {
4396         // Otherwise, the incoming value came from above BB and
4397         // so we can just reuse it.  We must associate all of BB's
4398         // predecessors with this value.
4399         for (auto *pred : predecessors(BB)) {
4400           DestPN->addIncoming(SrcVal, pred);
4401         }
4402       }
4403     }
4404 
4405     // Sink any remaining PHI nodes directly into UnwindDest.
4406     Instruction *InsertPt = DestEHPad;
4407     for (BasicBlock::iterator I = BB->begin(),
4408                               IE = BB->getFirstNonPHI()->getIterator();
4409          I != IE;) {
4410       // The iterator must be incremented here because the instructions are
4411       // being moved to another block.
4412       PHINode *PN = cast<PHINode>(I++);
4413       if (PN->use_empty() || !PN->isUsedOutsideOfBlock(BB))
4414         // If the PHI node has no uses or all of its uses are in this basic
4415         // block (meaning they are debug or lifetime intrinsics), just leave
4416         // it.  It will be erased when we erase BB below.
4417         continue;
4418 
4419       // Otherwise, sink this PHI node into UnwindDest.
4420       // Any predecessors to UnwindDest which are not already represented
4421       // must be back edges which inherit the value from the path through
4422       // BB.  In this case, the PHI value must reference itself.
4423       for (auto *pred : predecessors(UnwindDest))
4424         if (pred != BB)
4425           PN->addIncoming(PN, pred);
4426       PN->moveBefore(InsertPt);
4427     }
4428   }
4429 
4430   std::vector<DominatorTree::UpdateType> Updates;
4431 
4432   // We use make_early_inc_range here because we may remove some predecessors.
4433   for (BasicBlock *PredBB : llvm::make_early_inc_range(predecessors(BB))) {
4434     if (UnwindDest == nullptr) {
4435       if (DTU) {
4436         DTU->applyUpdates(Updates);
4437         Updates.clear();
4438       }
4439       removeUnwindEdge(PredBB, DTU);
4440       ++NumInvokes;
4441     } else {
4442       Instruction *TI = PredBB->getTerminator();
4443       TI->replaceUsesOfWith(BB, UnwindDest);
4444       if (DTU) {
4445         Updates.push_back({DominatorTree::Insert, PredBB, UnwindDest});
4446         Updates.push_back({DominatorTree::Delete, PredBB, BB});
4447       }
4448     }
4449   }
4450 
4451   if (DTU) {
4452     DTU->applyUpdates(Updates);
4453     DTU->deleteBB(BB);
4454   } else
4455     // The cleanup pad is now unreachable.  Zap it.
4456     BB->eraseFromParent();
4457 
4458   return true;
4459 }
4460 
4461 // Try to merge two cleanuppads together.
4462 static bool mergeCleanupPad(CleanupReturnInst *RI) {
4463   // Skip any cleanuprets which unwind to caller, there is nothing to merge
4464   // with.
4465   BasicBlock *UnwindDest = RI->getUnwindDest();
4466   if (!UnwindDest)
4467     return false;
4468 
4469   // This cleanupret isn't the only predecessor of this cleanuppad, it wouldn't
4470   // be safe to merge without code duplication.
4471   if (UnwindDest->getSinglePredecessor() != RI->getParent())
4472     return false;
4473 
4474   // Verify that our cleanuppad's unwind destination is another cleanuppad.
4475   auto *SuccessorCleanupPad = dyn_cast<CleanupPadInst>(&UnwindDest->front());
4476   if (!SuccessorCleanupPad)
4477     return false;
4478 
4479   CleanupPadInst *PredecessorCleanupPad = RI->getCleanupPad();
4480   // Replace any uses of the successor cleanupad with the predecessor pad
4481   // The only cleanuppad uses should be this cleanupret, it's cleanupret and
4482   // funclet bundle operands.
4483   SuccessorCleanupPad->replaceAllUsesWith(PredecessorCleanupPad);
4484   // Remove the old cleanuppad.
4485   SuccessorCleanupPad->eraseFromParent();
4486   // Now, we simply replace the cleanupret with a branch to the unwind
4487   // destination.
4488   BranchInst::Create(UnwindDest, RI->getParent());
4489   RI->eraseFromParent();
4490 
4491   return true;
4492 }
4493 
4494 bool SimplifyCFGOpt::simplifyCleanupReturn(CleanupReturnInst *RI) {
4495   // It is possible to transiantly have an undef cleanuppad operand because we
4496   // have deleted some, but not all, dead blocks.
4497   // Eventually, this block will be deleted.
4498   if (isa<UndefValue>(RI->getOperand(0)))
4499     return false;
4500 
4501   if (mergeCleanupPad(RI))
4502     return true;
4503 
4504   if (removeEmptyCleanup(RI, DTU))
4505     return true;
4506 
4507   return false;
4508 }
4509 
4510 bool SimplifyCFGOpt::simplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) {
4511   BasicBlock *BB = RI->getParent();
4512   if (!BB->getFirstNonPHIOrDbg()->isTerminator())
4513     return false;
4514 
4515   // Find predecessors that end with branches.
4516   SmallVector<BasicBlock *, 8> UncondBranchPreds;
4517   SmallVector<BranchInst *, 8> CondBranchPreds;
4518   for (BasicBlock *P : predecessors(BB)) {
4519     Instruction *PTI = P->getTerminator();
4520     if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) {
4521       if (BI->isUnconditional())
4522         UncondBranchPreds.push_back(P);
4523       else
4524         CondBranchPreds.push_back(BI);
4525     }
4526   }
4527 
4528   // If we found some, do the transformation!
4529   if (!UncondBranchPreds.empty() && DupRet) {
4530     while (!UncondBranchPreds.empty()) {
4531       BasicBlock *Pred = UncondBranchPreds.pop_back_val();
4532       LLVM_DEBUG(dbgs() << "FOLDING: " << *BB
4533                         << "INTO UNCOND BRANCH PRED: " << *Pred);
4534       (void)FoldReturnIntoUncondBranch(RI, BB, Pred, DTU);
4535     }
4536 
4537     // If we eliminated all predecessors of the block, delete the block now.
4538     if (pred_empty(BB)) {
4539       // We know there are no successors, so just nuke the block.
4540       if (DTU)
4541         DTU->deleteBB(BB);
4542       else
4543         BB->eraseFromParent();
4544     }
4545 
4546     return true;
4547   }
4548 
4549   // Check out all of the conditional branches going to this return
4550   // instruction.  If any of them just select between returns, change the
4551   // branch itself into a select/return pair.
4552   while (!CondBranchPreds.empty()) {
4553     BranchInst *BI = CondBranchPreds.pop_back_val();
4554 
4555     // Check to see if the non-BB successor is also a return block.
4556     if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) &&
4557         isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) &&
4558         SimplifyCondBranchToTwoReturns(BI, Builder))
4559       return true;
4560   }
4561   return false;
4562 }
4563 
4564 bool SimplifyCFGOpt::simplifyUnreachable(UnreachableInst *UI) {
4565   BasicBlock *BB = UI->getParent();
4566 
4567   bool Changed = false;
4568 
4569   // If there are any instructions immediately before the unreachable that can
4570   // be removed, do so.
4571   while (UI->getIterator() != BB->begin()) {
4572     BasicBlock::iterator BBI = UI->getIterator();
4573     --BBI;
4574     // Do not delete instructions that can have side effects which might cause
4575     // the unreachable to not be reachable; specifically, calls and volatile
4576     // operations may have this effect.
4577     if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI))
4578       break;
4579 
4580     if (BBI->mayHaveSideEffects()) {
4581       if (auto *SI = dyn_cast<StoreInst>(BBI)) {
4582         if (SI->isVolatile())
4583           break;
4584       } else if (auto *LI = dyn_cast<LoadInst>(BBI)) {
4585         if (LI->isVolatile())
4586           break;
4587       } else if (auto *RMWI = dyn_cast<AtomicRMWInst>(BBI)) {
4588         if (RMWI->isVolatile())
4589           break;
4590       } else if (auto *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) {
4591         if (CXI->isVolatile())
4592           break;
4593       } else if (isa<CatchPadInst>(BBI)) {
4594         // A catchpad may invoke exception object constructors and such, which
4595         // in some languages can be arbitrary code, so be conservative by
4596         // default.
4597         // For CoreCLR, it just involves a type test, so can be removed.
4598         if (classifyEHPersonality(BB->getParent()->getPersonalityFn()) !=
4599             EHPersonality::CoreCLR)
4600           break;
4601       } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) &&
4602                  !isa<LandingPadInst>(BBI)) {
4603         break;
4604       }
4605       // Note that deleting LandingPad's here is in fact okay, although it
4606       // involves a bit of subtle reasoning. If this inst is a LandingPad,
4607       // all the predecessors of this block will be the unwind edges of Invokes,
4608       // and we can therefore guarantee this block will be erased.
4609     }
4610 
4611     // Delete this instruction (any uses are guaranteed to be dead)
4612     if (!BBI->use_empty())
4613       BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
4614     BBI->eraseFromParent();
4615     Changed = true;
4616   }
4617 
4618   // If the unreachable instruction is the first in the block, take a gander
4619   // at all of the predecessors of this instruction, and simplify them.
4620   if (&BB->front() != UI)
4621     return Changed;
4622 
4623   std::vector<DominatorTree::UpdateType> Updates;
4624 
4625   SmallSetVector<BasicBlock *, 8> Preds(pred_begin(BB), pred_end(BB));
4626   for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
4627     auto *Predecessor = Preds[i];
4628     Instruction *TI = Predecessor->getTerminator();
4629     IRBuilder<> Builder(TI);
4630     if (auto *BI = dyn_cast<BranchInst>(TI)) {
4631       // We could either have a proper unconditional branch,
4632       // or a degenerate conditional branch with matching destinations.
4633       if (all_of(BI->successors(),
4634                  [BB](auto *Successor) { return Successor == BB; })) {
4635         new UnreachableInst(TI->getContext(), TI);
4636         TI->eraseFromParent();
4637         Changed = true;
4638       } else {
4639         assert(BI->isConditional() && "Can't get here with an uncond branch.");
4640         Value* Cond = BI->getCondition();
4641         assert(BI->getSuccessor(0) != BI->getSuccessor(1) &&
4642                "The destinations are guaranteed to be different here.");
4643         if (BI->getSuccessor(0) == BB) {
4644           Builder.CreateAssumption(Builder.CreateNot(Cond));
4645           Builder.CreateBr(BI->getSuccessor(1));
4646         } else {
4647           assert(BI->getSuccessor(1) == BB && "Incorrect CFG");
4648           Builder.CreateAssumption(Cond);
4649           Builder.CreateBr(BI->getSuccessor(0));
4650         }
4651         EraseTerminatorAndDCECond(BI);
4652         Changed = true;
4653       }
4654       if (DTU)
4655         Updates.push_back({DominatorTree::Delete, Predecessor, BB});
4656     } else if (auto *SI = dyn_cast<SwitchInst>(TI)) {
4657       SwitchInstProfUpdateWrapper SU(*SI);
4658       for (auto i = SU->case_begin(), e = SU->case_end(); i != e;) {
4659         if (i->getCaseSuccessor() != BB) {
4660           ++i;
4661           continue;
4662         }
4663         BB->removePredecessor(SU->getParent());
4664         i = SU.removeCase(i);
4665         e = SU->case_end();
4666         Changed = true;
4667       }
4668       // Note that the default destination can't be removed!
4669       if (DTU && SI->getDefaultDest() != BB)
4670         Updates.push_back({DominatorTree::Delete, Predecessor, BB});
4671     } else if (auto *II = dyn_cast<InvokeInst>(TI)) {
4672       if (II->getUnwindDest() == BB) {
4673         if (DTU) {
4674           DTU->applyUpdates(Updates);
4675           Updates.clear();
4676         }
4677         removeUnwindEdge(TI->getParent(), DTU);
4678         Changed = true;
4679       }
4680     } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) {
4681       if (CSI->getUnwindDest() == BB) {
4682         if (DTU) {
4683           DTU->applyUpdates(Updates);
4684           Updates.clear();
4685         }
4686         removeUnwindEdge(TI->getParent(), DTU);
4687         Changed = true;
4688         continue;
4689       }
4690 
4691       for (CatchSwitchInst::handler_iterator I = CSI->handler_begin(),
4692                                              E = CSI->handler_end();
4693            I != E; ++I) {
4694         if (*I == BB) {
4695           CSI->removeHandler(I);
4696           --I;
4697           --E;
4698           Changed = true;
4699         }
4700       }
4701       if (DTU)
4702         Updates.push_back({DominatorTree::Delete, Predecessor, BB});
4703       if (CSI->getNumHandlers() == 0) {
4704         if (CSI->hasUnwindDest()) {
4705           // Redirect all predecessors of the block containing CatchSwitchInst
4706           // to instead branch to the CatchSwitchInst's unwind destination.
4707           if (DTU) {
4708             for (auto *PredecessorOfPredecessor : predecessors(Predecessor)) {
4709               Updates.push_back({DominatorTree::Insert,
4710                                  PredecessorOfPredecessor,
4711                                  CSI->getUnwindDest()});
4712               Updates.push_back({DominatorTree::Delete,
4713                                  PredecessorOfPredecessor, Predecessor});
4714             }
4715           }
4716           Predecessor->replaceAllUsesWith(CSI->getUnwindDest());
4717         } else {
4718           // Rewrite all preds to unwind to caller (or from invoke to call).
4719           if (DTU) {
4720             DTU->applyUpdates(Updates);
4721             Updates.clear();
4722           }
4723           SmallVector<BasicBlock *, 8> EHPreds(predecessors(Predecessor));
4724           for (BasicBlock *EHPred : EHPreds)
4725             removeUnwindEdge(EHPred, DTU);
4726         }
4727         // The catchswitch is no longer reachable.
4728         new UnreachableInst(CSI->getContext(), CSI);
4729         CSI->eraseFromParent();
4730         Changed = true;
4731       }
4732     } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
4733       (void)CRI;
4734       assert(CRI->hasUnwindDest() && CRI->getUnwindDest() == BB &&
4735              "Expected to always have an unwind to BB.");
4736       if (DTU)
4737         Updates.push_back({DominatorTree::Delete, Predecessor, BB});
4738       new UnreachableInst(TI->getContext(), TI);
4739       TI->eraseFromParent();
4740       Changed = true;
4741     }
4742   }
4743 
4744   if (DTU)
4745     DTU->applyUpdates(Updates);
4746 
4747   // If this block is now dead, remove it.
4748   if (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) {
4749     // We know there are no successors, so just nuke the block.
4750     if (DTU)
4751       DTU->deleteBB(BB);
4752     else
4753       BB->eraseFromParent();
4754     return true;
4755   }
4756 
4757   return Changed;
4758 }
4759 
4760 static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) {
4761   assert(Cases.size() >= 1);
4762 
4763   array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate);
4764   for (size_t I = 1, E = Cases.size(); I != E; ++I) {
4765     if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1)
4766       return false;
4767   }
4768   return true;
4769 }
4770 
4771 static void createUnreachableSwitchDefault(SwitchInst *Switch,
4772                                            DomTreeUpdater *DTU) {
4773   LLVM_DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n");
4774   auto *BB = Switch->getParent();
4775   BasicBlock *NewDefaultBlock = SplitBlockPredecessors(
4776       Switch->getDefaultDest(), Switch->getParent(), "", DTU);
4777   auto *OrigDefaultBlock = Switch->getDefaultDest();
4778   Switch->setDefaultDest(&*NewDefaultBlock);
4779   if (DTU)
4780     DTU->applyUpdates({{DominatorTree::Insert, BB, &*NewDefaultBlock},
4781                        {DominatorTree::Delete, BB, OrigDefaultBlock}});
4782   SplitBlock(&*NewDefaultBlock, &NewDefaultBlock->front(), DTU);
4783   SmallVector<DominatorTree::UpdateType, 2> Updates;
4784   if (DTU)
4785     for (auto *Successor : successors(NewDefaultBlock))
4786       Updates.push_back({DominatorTree::Delete, NewDefaultBlock, Successor});
4787   auto *NewTerminator = NewDefaultBlock->getTerminator();
4788   new UnreachableInst(Switch->getContext(), NewTerminator);
4789   EraseTerminatorAndDCECond(NewTerminator);
4790   if (DTU)
4791     DTU->applyUpdates(Updates);
4792 }
4793 
4794 /// Turn a switch with two reachable destinations into an integer range
4795 /// comparison and branch.
4796 bool SimplifyCFGOpt::TurnSwitchRangeIntoICmp(SwitchInst *SI,
4797                                              IRBuilder<> &Builder) {
4798   assert(SI->getNumCases() > 1 && "Degenerate switch?");
4799 
4800   bool HasDefault =
4801       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
4802 
4803   auto *BB = SI->getParent();
4804 
4805   // Partition the cases into two sets with different destinations.
4806   BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr;
4807   BasicBlock *DestB = nullptr;
4808   SmallVector<ConstantInt *, 16> CasesA;
4809   SmallVector<ConstantInt *, 16> CasesB;
4810 
4811   for (auto Case : SI->cases()) {
4812     BasicBlock *Dest = Case.getCaseSuccessor();
4813     if (!DestA)
4814       DestA = Dest;
4815     if (Dest == DestA) {
4816       CasesA.push_back(Case.getCaseValue());
4817       continue;
4818     }
4819     if (!DestB)
4820       DestB = Dest;
4821     if (Dest == DestB) {
4822       CasesB.push_back(Case.getCaseValue());
4823       continue;
4824     }
4825     return false; // More than two destinations.
4826   }
4827 
4828   assert(DestA && DestB &&
4829          "Single-destination switch should have been folded.");
4830   assert(DestA != DestB);
4831   assert(DestB != SI->getDefaultDest());
4832   assert(!CasesB.empty() && "There must be non-default cases.");
4833   assert(!CasesA.empty() || HasDefault);
4834 
4835   // Figure out if one of the sets of cases form a contiguous range.
4836   SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr;
4837   BasicBlock *ContiguousDest = nullptr;
4838   BasicBlock *OtherDest = nullptr;
4839   if (!CasesA.empty() && CasesAreContiguous(CasesA)) {
4840     ContiguousCases = &CasesA;
4841     ContiguousDest = DestA;
4842     OtherDest = DestB;
4843   } else if (CasesAreContiguous(CasesB)) {
4844     ContiguousCases = &CasesB;
4845     ContiguousDest = DestB;
4846     OtherDest = DestA;
4847   } else
4848     return false;
4849 
4850   // Start building the compare and branch.
4851 
4852   Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back());
4853   Constant *NumCases =
4854       ConstantInt::get(Offset->getType(), ContiguousCases->size());
4855 
4856   Value *Sub = SI->getCondition();
4857   if (!Offset->isNullValue())
4858     Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off");
4859 
4860   Value *Cmp;
4861   // If NumCases overflowed, then all possible values jump to the successor.
4862   if (NumCases->isNullValue() && !ContiguousCases->empty())
4863     Cmp = ConstantInt::getTrue(SI->getContext());
4864   else
4865     Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch");
4866   BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest);
4867 
4868   // Update weight for the newly-created conditional branch.
4869   if (HasBranchWeights(SI)) {
4870     SmallVector<uint64_t, 8> Weights;
4871     GetBranchWeights(SI, Weights);
4872     if (Weights.size() == 1 + SI->getNumCases()) {
4873       uint64_t TrueWeight = 0;
4874       uint64_t FalseWeight = 0;
4875       for (size_t I = 0, E = Weights.size(); I != E; ++I) {
4876         if (SI->getSuccessor(I) == ContiguousDest)
4877           TrueWeight += Weights[I];
4878         else
4879           FalseWeight += Weights[I];
4880       }
4881       while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) {
4882         TrueWeight /= 2;
4883         FalseWeight /= 2;
4884       }
4885       setBranchWeights(NewBI, TrueWeight, FalseWeight);
4886     }
4887   }
4888 
4889   // Prune obsolete incoming values off the successors' PHI nodes.
4890   for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) {
4891     unsigned PreviousEdges = ContiguousCases->size();
4892     if (ContiguousDest == SI->getDefaultDest())
4893       ++PreviousEdges;
4894     for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
4895       cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
4896   }
4897   for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) {
4898     unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size();
4899     if (OtherDest == SI->getDefaultDest())
4900       ++PreviousEdges;
4901     for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
4902       cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
4903   }
4904 
4905   // Clean up the default block - it may have phis or other instructions before
4906   // the unreachable terminator.
4907   if (!HasDefault)
4908     createUnreachableSwitchDefault(SI, DTU);
4909 
4910   auto *UnreachableDefault = SI->getDefaultDest();
4911 
4912   // Drop the switch.
4913   SI->eraseFromParent();
4914 
4915   if (!HasDefault && DTU)
4916     DTU->applyUpdates({{DominatorTree::Delete, BB, UnreachableDefault}});
4917 
4918   return true;
4919 }
4920 
4921 /// Compute masked bits for the condition of a switch
4922 /// and use it to remove dead cases.
4923 static bool eliminateDeadSwitchCases(SwitchInst *SI, DomTreeUpdater *DTU,
4924                                      AssumptionCache *AC,
4925                                      const DataLayout &DL) {
4926   Value *Cond = SI->getCondition();
4927   unsigned Bits = Cond->getType()->getIntegerBitWidth();
4928   KnownBits Known = computeKnownBits(Cond, DL, 0, AC, SI);
4929 
4930   // We can also eliminate cases by determining that their values are outside of
4931   // the limited range of the condition based on how many significant (non-sign)
4932   // bits are in the condition value.
4933   unsigned ExtraSignBits = ComputeNumSignBits(Cond, DL, 0, AC, SI) - 1;
4934   unsigned MaxSignificantBitsInCond = Bits - ExtraSignBits;
4935 
4936   // Gather dead cases.
4937   SmallVector<ConstantInt *, 8> DeadCases;
4938   SmallDenseMap<BasicBlock *, int, 8> NumPerSuccessorCases;
4939   for (auto &Case : SI->cases()) {
4940     auto *Successor = Case.getCaseSuccessor();
4941     if (DTU)
4942       ++NumPerSuccessorCases[Successor];
4943     const APInt &CaseVal = Case.getCaseValue()->getValue();
4944     if (Known.Zero.intersects(CaseVal) || !Known.One.isSubsetOf(CaseVal) ||
4945         (CaseVal.getMinSignedBits() > MaxSignificantBitsInCond)) {
4946       DeadCases.push_back(Case.getCaseValue());
4947       if (DTU)
4948         --NumPerSuccessorCases[Successor];
4949       LLVM_DEBUG(dbgs() << "SimplifyCFG: switch case " << CaseVal
4950                         << " is dead.\n");
4951     }
4952   }
4953 
4954   // If we can prove that the cases must cover all possible values, the
4955   // default destination becomes dead and we can remove it.  If we know some
4956   // of the bits in the value, we can use that to more precisely compute the
4957   // number of possible unique case values.
4958   bool HasDefault =
4959       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
4960   const unsigned NumUnknownBits =
4961       Bits - (Known.Zero | Known.One).countPopulation();
4962   assert(NumUnknownBits <= Bits);
4963   if (HasDefault && DeadCases.empty() &&
4964       NumUnknownBits < 64 /* avoid overflow */ &&
4965       SI->getNumCases() == (1ULL << NumUnknownBits)) {
4966     createUnreachableSwitchDefault(SI, DTU);
4967     return true;
4968   }
4969 
4970   if (DeadCases.empty())
4971     return false;
4972 
4973   SwitchInstProfUpdateWrapper SIW(*SI);
4974   for (ConstantInt *DeadCase : DeadCases) {
4975     SwitchInst::CaseIt CaseI = SI->findCaseValue(DeadCase);
4976     assert(CaseI != SI->case_default() &&
4977            "Case was not found. Probably mistake in DeadCases forming.");
4978     // Prune unused values from PHI nodes.
4979     CaseI->getCaseSuccessor()->removePredecessor(SI->getParent());
4980     SIW.removeCase(CaseI);
4981   }
4982 
4983   if (DTU) {
4984     std::vector<DominatorTree::UpdateType> Updates;
4985     for (const std::pair<BasicBlock *, int> &I : NumPerSuccessorCases)
4986       if (I.second == 0)
4987         Updates.push_back({DominatorTree::Delete, SI->getParent(), I.first});
4988     DTU->applyUpdates(Updates);
4989   }
4990 
4991   return true;
4992 }
4993 
4994 /// If BB would be eligible for simplification by
4995 /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated
4996 /// by an unconditional branch), look at the phi node for BB in the successor
4997 /// block and see if the incoming value is equal to CaseValue. If so, return
4998 /// the phi node, and set PhiIndex to BB's index in the phi node.
4999 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue,
5000                                               BasicBlock *BB, int *PhiIndex) {
5001   if (BB->getFirstNonPHIOrDbg() != BB->getTerminator())
5002     return nullptr; // BB must be empty to be a candidate for simplification.
5003   if (!BB->getSinglePredecessor())
5004     return nullptr; // BB must be dominated by the switch.
5005 
5006   BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator());
5007   if (!Branch || !Branch->isUnconditional())
5008     return nullptr; // Terminator must be unconditional branch.
5009 
5010   BasicBlock *Succ = Branch->getSuccessor(0);
5011 
5012   for (PHINode &PHI : Succ->phis()) {
5013     int Idx = PHI.getBasicBlockIndex(BB);
5014     assert(Idx >= 0 && "PHI has no entry for predecessor?");
5015 
5016     Value *InValue = PHI.getIncomingValue(Idx);
5017     if (InValue != CaseValue)
5018       continue;
5019 
5020     *PhiIndex = Idx;
5021     return &PHI;
5022   }
5023 
5024   return nullptr;
5025 }
5026 
5027 /// Try to forward the condition of a switch instruction to a phi node
5028 /// dominated by the switch, if that would mean that some of the destination
5029 /// blocks of the switch can be folded away. Return true if a change is made.
5030 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) {
5031   using ForwardingNodesMap = DenseMap<PHINode *, SmallVector<int, 4>>;
5032 
5033   ForwardingNodesMap ForwardingNodes;
5034   BasicBlock *SwitchBlock = SI->getParent();
5035   bool Changed = false;
5036   for (auto &Case : SI->cases()) {
5037     ConstantInt *CaseValue = Case.getCaseValue();
5038     BasicBlock *CaseDest = Case.getCaseSuccessor();
5039 
5040     // Replace phi operands in successor blocks that are using the constant case
5041     // value rather than the switch condition variable:
5042     //   switchbb:
5043     //   switch i32 %x, label %default [
5044     //     i32 17, label %succ
5045     //   ...
5046     //   succ:
5047     //     %r = phi i32 ... [ 17, %switchbb ] ...
5048     // -->
5049     //     %r = phi i32 ... [ %x, %switchbb ] ...
5050 
5051     for (PHINode &Phi : CaseDest->phis()) {
5052       // This only works if there is exactly 1 incoming edge from the switch to
5053       // a phi. If there is >1, that means multiple cases of the switch map to 1
5054       // value in the phi, and that phi value is not the switch condition. Thus,
5055       // this transform would not make sense (the phi would be invalid because
5056       // a phi can't have different incoming values from the same block).
5057       int SwitchBBIdx = Phi.getBasicBlockIndex(SwitchBlock);
5058       if (Phi.getIncomingValue(SwitchBBIdx) == CaseValue &&
5059           count(Phi.blocks(), SwitchBlock) == 1) {
5060         Phi.setIncomingValue(SwitchBBIdx, SI->getCondition());
5061         Changed = true;
5062       }
5063     }
5064 
5065     // Collect phi nodes that are indirectly using this switch's case constants.
5066     int PhiIdx;
5067     if (auto *Phi = FindPHIForConditionForwarding(CaseValue, CaseDest, &PhiIdx))
5068       ForwardingNodes[Phi].push_back(PhiIdx);
5069   }
5070 
5071   for (auto &ForwardingNode : ForwardingNodes) {
5072     PHINode *Phi = ForwardingNode.first;
5073     SmallVectorImpl<int> &Indexes = ForwardingNode.second;
5074     if (Indexes.size() < 2)
5075       continue;
5076 
5077     for (int Index : Indexes)
5078       Phi->setIncomingValue(Index, SI->getCondition());
5079     Changed = true;
5080   }
5081 
5082   return Changed;
5083 }
5084 
5085 /// Return true if the backend will be able to handle
5086 /// initializing an array of constants like C.
5087 static bool ValidLookupTableConstant(Constant *C, const TargetTransformInfo &TTI) {
5088   if (C->isThreadDependent())
5089     return false;
5090   if (C->isDLLImportDependent())
5091     return false;
5092 
5093   if (!isa<ConstantFP>(C) && !isa<ConstantInt>(C) &&
5094       !isa<ConstantPointerNull>(C) && !isa<GlobalValue>(C) &&
5095       !isa<UndefValue>(C) && !isa<ConstantExpr>(C))
5096     return false;
5097 
5098   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
5099     if (!CE->isGEPWithNoNotionalOverIndexing())
5100       return false;
5101     if (!ValidLookupTableConstant(CE->getOperand(0), TTI))
5102       return false;
5103   }
5104 
5105   if (!TTI.shouldBuildLookupTablesForConstant(C))
5106     return false;
5107 
5108   return true;
5109 }
5110 
5111 /// If V is a Constant, return it. Otherwise, try to look up
5112 /// its constant value in ConstantPool, returning 0 if it's not there.
5113 static Constant *
5114 LookupConstant(Value *V,
5115                const SmallDenseMap<Value *, Constant *> &ConstantPool) {
5116   if (Constant *C = dyn_cast<Constant>(V))
5117     return C;
5118   return ConstantPool.lookup(V);
5119 }
5120 
5121 /// Try to fold instruction I into a constant. This works for
5122 /// simple instructions such as binary operations where both operands are
5123 /// constant or can be replaced by constants from the ConstantPool. Returns the
5124 /// resulting constant on success, 0 otherwise.
5125 static Constant *
5126 ConstantFold(Instruction *I, const DataLayout &DL,
5127              const SmallDenseMap<Value *, Constant *> &ConstantPool) {
5128   if (SelectInst *Select = dyn_cast<SelectInst>(I)) {
5129     Constant *A = LookupConstant(Select->getCondition(), ConstantPool);
5130     if (!A)
5131       return nullptr;
5132     if (A->isAllOnesValue())
5133       return LookupConstant(Select->getTrueValue(), ConstantPool);
5134     if (A->isNullValue())
5135       return LookupConstant(Select->getFalseValue(), ConstantPool);
5136     return nullptr;
5137   }
5138 
5139   SmallVector<Constant *, 4> COps;
5140   for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) {
5141     if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool))
5142       COps.push_back(A);
5143     else
5144       return nullptr;
5145   }
5146 
5147   if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
5148     return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0],
5149                                            COps[1], DL);
5150   }
5151 
5152   return ConstantFoldInstOperands(I, COps, DL);
5153 }
5154 
5155 /// Try to determine the resulting constant values in phi nodes
5156 /// at the common destination basic block, *CommonDest, for one of the case
5157 /// destionations CaseDest corresponding to value CaseVal (0 for the default
5158 /// case), of a switch instruction SI.
5159 static bool
5160 GetCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest,
5161                BasicBlock **CommonDest,
5162                SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res,
5163                const DataLayout &DL, const TargetTransformInfo &TTI) {
5164   // The block from which we enter the common destination.
5165   BasicBlock *Pred = SI->getParent();
5166 
5167   // If CaseDest is empty except for some side-effect free instructions through
5168   // which we can constant-propagate the CaseVal, continue to its successor.
5169   SmallDenseMap<Value *, Constant *> ConstantPool;
5170   ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal));
5171   for (Instruction &I :CaseDest->instructionsWithoutDebug()) {
5172     if (I.isTerminator()) {
5173       // If the terminator is a simple branch, continue to the next block.
5174       if (I.getNumSuccessors() != 1 || I.isExceptionalTerminator())
5175         return false;
5176       Pred = CaseDest;
5177       CaseDest = I.getSuccessor(0);
5178     } else if (Constant *C = ConstantFold(&I, DL, ConstantPool)) {
5179       // Instruction is side-effect free and constant.
5180 
5181       // If the instruction has uses outside this block or a phi node slot for
5182       // the block, it is not safe to bypass the instruction since it would then
5183       // no longer dominate all its uses.
5184       for (auto &Use : I.uses()) {
5185         User *User = Use.getUser();
5186         if (Instruction *I = dyn_cast<Instruction>(User))
5187           if (I->getParent() == CaseDest)
5188             continue;
5189         if (PHINode *Phi = dyn_cast<PHINode>(User))
5190           if (Phi->getIncomingBlock(Use) == CaseDest)
5191             continue;
5192         return false;
5193       }
5194 
5195       ConstantPool.insert(std::make_pair(&I, C));
5196     } else {
5197       break;
5198     }
5199   }
5200 
5201   // If we did not have a CommonDest before, use the current one.
5202   if (!*CommonDest)
5203     *CommonDest = CaseDest;
5204   // If the destination isn't the common one, abort.
5205   if (CaseDest != *CommonDest)
5206     return false;
5207 
5208   // Get the values for this case from phi nodes in the destination block.
5209   for (PHINode &PHI : (*CommonDest)->phis()) {
5210     int Idx = PHI.getBasicBlockIndex(Pred);
5211     if (Idx == -1)
5212       continue;
5213 
5214     Constant *ConstVal =
5215         LookupConstant(PHI.getIncomingValue(Idx), ConstantPool);
5216     if (!ConstVal)
5217       return false;
5218 
5219     // Be conservative about which kinds of constants we support.
5220     if (!ValidLookupTableConstant(ConstVal, TTI))
5221       return false;
5222 
5223     Res.push_back(std::make_pair(&PHI, ConstVal));
5224   }
5225 
5226   return Res.size() > 0;
5227 }
5228 
5229 // Helper function used to add CaseVal to the list of cases that generate
5230 // Result. Returns the updated number of cases that generate this result.
5231 static uintptr_t MapCaseToResult(ConstantInt *CaseVal,
5232                                  SwitchCaseResultVectorTy &UniqueResults,
5233                                  Constant *Result) {
5234   for (auto &I : UniqueResults) {
5235     if (I.first == Result) {
5236       I.second.push_back(CaseVal);
5237       return I.second.size();
5238     }
5239   }
5240   UniqueResults.push_back(
5241       std::make_pair(Result, SmallVector<ConstantInt *, 4>(1, CaseVal)));
5242   return 1;
5243 }
5244 
5245 // Helper function that initializes a map containing
5246 // results for the PHI node of the common destination block for a switch
5247 // instruction. Returns false if multiple PHI nodes have been found or if
5248 // there is not a common destination block for the switch.
5249 static bool
5250 InitializeUniqueCases(SwitchInst *SI, PHINode *&PHI, BasicBlock *&CommonDest,
5251                       SwitchCaseResultVectorTy &UniqueResults,
5252                       Constant *&DefaultResult, const DataLayout &DL,
5253                       const TargetTransformInfo &TTI,
5254                       uintptr_t MaxUniqueResults, uintptr_t MaxCasesPerResult) {
5255   for (auto &I : SI->cases()) {
5256     ConstantInt *CaseVal = I.getCaseValue();
5257 
5258     // Resulting value at phi nodes for this case value.
5259     SwitchCaseResultsTy Results;
5260     if (!GetCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results,
5261                         DL, TTI))
5262       return false;
5263 
5264     // Only one value per case is permitted.
5265     if (Results.size() > 1)
5266       return false;
5267 
5268     // Add the case->result mapping to UniqueResults.
5269     const uintptr_t NumCasesForResult =
5270         MapCaseToResult(CaseVal, UniqueResults, Results.begin()->second);
5271 
5272     // Early out if there are too many cases for this result.
5273     if (NumCasesForResult > MaxCasesPerResult)
5274       return false;
5275 
5276     // Early out if there are too many unique results.
5277     if (UniqueResults.size() > MaxUniqueResults)
5278       return false;
5279 
5280     // Check the PHI consistency.
5281     if (!PHI)
5282       PHI = Results[0].first;
5283     else if (PHI != Results[0].first)
5284       return false;
5285   }
5286   // Find the default result value.
5287   SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults;
5288   BasicBlock *DefaultDest = SI->getDefaultDest();
5289   GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults,
5290                  DL, TTI);
5291   // If the default value is not found abort unless the default destination
5292   // is unreachable.
5293   DefaultResult =
5294       DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr;
5295   if ((!DefaultResult &&
5296        !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg())))
5297     return false;
5298 
5299   return true;
5300 }
5301 
5302 // Helper function that checks if it is possible to transform a switch with only
5303 // two cases (or two cases + default) that produces a result into a select.
5304 // Example:
5305 // switch (a) {
5306 //   case 10:                %0 = icmp eq i32 %a, 10
5307 //     return 10;            %1 = select i1 %0, i32 10, i32 4
5308 //   case 20:        ---->   %2 = icmp eq i32 %a, 20
5309 //     return 2;             %3 = select i1 %2, i32 2, i32 %1
5310 //   default:
5311 //     return 4;
5312 // }
5313 static Value *ConvertTwoCaseSwitch(const SwitchCaseResultVectorTy &ResultVector,
5314                                    Constant *DefaultResult, Value *Condition,
5315                                    IRBuilder<> &Builder) {
5316   // If we are selecting between only two cases transform into a simple
5317   // select or a two-way select if default is possible.
5318   if (ResultVector.size() == 2 && ResultVector[0].second.size() == 1 &&
5319       ResultVector[1].second.size() == 1) {
5320     ConstantInt *const FirstCase = ResultVector[0].second[0];
5321     ConstantInt *const SecondCase = ResultVector[1].second[0];
5322 
5323     bool DefaultCanTrigger = DefaultResult;
5324     Value *SelectValue = ResultVector[1].first;
5325     if (DefaultCanTrigger) {
5326       Value *const ValueCompare =
5327           Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp");
5328       SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first,
5329                                          DefaultResult, "switch.select");
5330     }
5331     Value *const ValueCompare =
5332         Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp");
5333     return Builder.CreateSelect(ValueCompare, ResultVector[0].first,
5334                                 SelectValue, "switch.select");
5335   }
5336 
5337   // Handle the degenerate case where two cases have the same value.
5338   if (ResultVector.size() == 1 && ResultVector[0].second.size() == 2 &&
5339       DefaultResult) {
5340     Value *Cmp1 = Builder.CreateICmpEQ(
5341         Condition, ResultVector[0].second[0], "switch.selectcmp.case1");
5342     Value *Cmp2 = Builder.CreateICmpEQ(
5343         Condition, ResultVector[0].second[1], "switch.selectcmp.case2");
5344     Value *Cmp = Builder.CreateOr(Cmp1, Cmp2, "switch.selectcmp");
5345     return Builder.CreateSelect(Cmp, ResultVector[0].first, DefaultResult);
5346   }
5347 
5348   return nullptr;
5349 }
5350 
5351 // Helper function to cleanup a switch instruction that has been converted into
5352 // a select, fixing up PHI nodes and basic blocks.
5353 static void RemoveSwitchAfterSelectConversion(SwitchInst *SI, PHINode *PHI,
5354                                               Value *SelectValue,
5355                                               IRBuilder<> &Builder,
5356                                               DomTreeUpdater *DTU) {
5357   std::vector<DominatorTree::UpdateType> Updates;
5358 
5359   BasicBlock *SelectBB = SI->getParent();
5360   BasicBlock *DestBB = PHI->getParent();
5361 
5362   if (DTU && !is_contained(predecessors(DestBB), SelectBB))
5363     Updates.push_back({DominatorTree::Insert, SelectBB, DestBB});
5364   Builder.CreateBr(DestBB);
5365 
5366   // Remove the switch.
5367 
5368   while (PHI->getBasicBlockIndex(SelectBB) >= 0)
5369     PHI->removeIncomingValue(SelectBB);
5370   PHI->addIncoming(SelectValue, SelectBB);
5371 
5372   SmallPtrSet<BasicBlock *, 4> RemovedSuccessors;
5373   for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
5374     BasicBlock *Succ = SI->getSuccessor(i);
5375 
5376     if (Succ == DestBB)
5377       continue;
5378     Succ->removePredecessor(SelectBB);
5379     if (DTU && RemovedSuccessors.insert(Succ).second)
5380       Updates.push_back({DominatorTree::Delete, SelectBB, Succ});
5381   }
5382   SI->eraseFromParent();
5383   if (DTU)
5384     DTU->applyUpdates(Updates);
5385 }
5386 
5387 /// If the switch is only used to initialize one or more
5388 /// phi nodes in a common successor block with only two different
5389 /// constant values, replace the switch with select.
5390 static bool switchToSelect(SwitchInst *SI, IRBuilder<> &Builder,
5391                            DomTreeUpdater *DTU, const DataLayout &DL,
5392                            const TargetTransformInfo &TTI) {
5393   Value *const Cond = SI->getCondition();
5394   PHINode *PHI = nullptr;
5395   BasicBlock *CommonDest = nullptr;
5396   Constant *DefaultResult;
5397   SwitchCaseResultVectorTy UniqueResults;
5398   // Collect all the cases that will deliver the same value from the switch.
5399   if (!InitializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult,
5400                              DL, TTI, /*MaxUniqueResults*/2,
5401                              /*MaxCasesPerResult*/2))
5402     return false;
5403   assert(PHI != nullptr && "PHI for value select not found");
5404 
5405   Builder.SetInsertPoint(SI);
5406   Value *SelectValue =
5407       ConvertTwoCaseSwitch(UniqueResults, DefaultResult, Cond, Builder);
5408   if (SelectValue) {
5409     RemoveSwitchAfterSelectConversion(SI, PHI, SelectValue, Builder, DTU);
5410     return true;
5411   }
5412   // The switch couldn't be converted into a select.
5413   return false;
5414 }
5415 
5416 namespace {
5417 
5418 /// This class represents a lookup table that can be used to replace a switch.
5419 class SwitchLookupTable {
5420 public:
5421   /// Create a lookup table to use as a switch replacement with the contents
5422   /// of Values, using DefaultValue to fill any holes in the table.
5423   SwitchLookupTable(
5424       Module &M, uint64_t TableSize, ConstantInt *Offset,
5425       const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
5426       Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName);
5427 
5428   /// Build instructions with Builder to retrieve the value at
5429   /// the position given by Index in the lookup table.
5430   Value *BuildLookup(Value *Index, IRBuilder<> &Builder);
5431 
5432   /// Return true if a table with TableSize elements of
5433   /// type ElementType would fit in a target-legal register.
5434   static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize,
5435                                  Type *ElementType);
5436 
5437 private:
5438   // Depending on the contents of the table, it can be represented in
5439   // different ways.
5440   enum {
5441     // For tables where each element contains the same value, we just have to
5442     // store that single value and return it for each lookup.
5443     SingleValueKind,
5444 
5445     // For tables where there is a linear relationship between table index
5446     // and values. We calculate the result with a simple multiplication
5447     // and addition instead of a table lookup.
5448     LinearMapKind,
5449 
5450     // For small tables with integer elements, we can pack them into a bitmap
5451     // that fits into a target-legal register. Values are retrieved by
5452     // shift and mask operations.
5453     BitMapKind,
5454 
5455     // The table is stored as an array of values. Values are retrieved by load
5456     // instructions from the table.
5457     ArrayKind
5458   } Kind;
5459 
5460   // For SingleValueKind, this is the single value.
5461   Constant *SingleValue = nullptr;
5462 
5463   // For BitMapKind, this is the bitmap.
5464   ConstantInt *BitMap = nullptr;
5465   IntegerType *BitMapElementTy = nullptr;
5466 
5467   // For LinearMapKind, these are the constants used to derive the value.
5468   ConstantInt *LinearOffset = nullptr;
5469   ConstantInt *LinearMultiplier = nullptr;
5470 
5471   // For ArrayKind, this is the array.
5472   GlobalVariable *Array = nullptr;
5473 };
5474 
5475 } // end anonymous namespace
5476 
5477 SwitchLookupTable::SwitchLookupTable(
5478     Module &M, uint64_t TableSize, ConstantInt *Offset,
5479     const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
5480     Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName) {
5481   assert(Values.size() && "Can't build lookup table without values!");
5482   assert(TableSize >= Values.size() && "Can't fit values in table!");
5483 
5484   // If all values in the table are equal, this is that value.
5485   SingleValue = Values.begin()->second;
5486 
5487   Type *ValueType = Values.begin()->second->getType();
5488 
5489   // Build up the table contents.
5490   SmallVector<Constant *, 64> TableContents(TableSize);
5491   for (size_t I = 0, E = Values.size(); I != E; ++I) {
5492     ConstantInt *CaseVal = Values[I].first;
5493     Constant *CaseRes = Values[I].second;
5494     assert(CaseRes->getType() == ValueType);
5495 
5496     uint64_t Idx = (CaseVal->getValue() - Offset->getValue()).getLimitedValue();
5497     TableContents[Idx] = CaseRes;
5498 
5499     if (CaseRes != SingleValue)
5500       SingleValue = nullptr;
5501   }
5502 
5503   // Fill in any holes in the table with the default result.
5504   if (Values.size() < TableSize) {
5505     assert(DefaultValue &&
5506            "Need a default value to fill the lookup table holes.");
5507     assert(DefaultValue->getType() == ValueType);
5508     for (uint64_t I = 0; I < TableSize; ++I) {
5509       if (!TableContents[I])
5510         TableContents[I] = DefaultValue;
5511     }
5512 
5513     if (DefaultValue != SingleValue)
5514       SingleValue = nullptr;
5515   }
5516 
5517   // If each element in the table contains the same value, we only need to store
5518   // that single value.
5519   if (SingleValue) {
5520     Kind = SingleValueKind;
5521     return;
5522   }
5523 
5524   // Check if we can derive the value with a linear transformation from the
5525   // table index.
5526   if (isa<IntegerType>(ValueType)) {
5527     bool LinearMappingPossible = true;
5528     APInt PrevVal;
5529     APInt DistToPrev;
5530     assert(TableSize >= 2 && "Should be a SingleValue table.");
5531     // Check if there is the same distance between two consecutive values.
5532     for (uint64_t I = 0; I < TableSize; ++I) {
5533       ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]);
5534       if (!ConstVal) {
5535         // This is an undef. We could deal with it, but undefs in lookup tables
5536         // are very seldom. It's probably not worth the additional complexity.
5537         LinearMappingPossible = false;
5538         break;
5539       }
5540       const APInt &Val = ConstVal->getValue();
5541       if (I != 0) {
5542         APInt Dist = Val - PrevVal;
5543         if (I == 1) {
5544           DistToPrev = Dist;
5545         } else if (Dist != DistToPrev) {
5546           LinearMappingPossible = false;
5547           break;
5548         }
5549       }
5550       PrevVal = Val;
5551     }
5552     if (LinearMappingPossible) {
5553       LinearOffset = cast<ConstantInt>(TableContents[0]);
5554       LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev);
5555       Kind = LinearMapKind;
5556       ++NumLinearMaps;
5557       return;
5558     }
5559   }
5560 
5561   // If the type is integer and the table fits in a register, build a bitmap.
5562   if (WouldFitInRegister(DL, TableSize, ValueType)) {
5563     IntegerType *IT = cast<IntegerType>(ValueType);
5564     APInt TableInt(TableSize * IT->getBitWidth(), 0);
5565     for (uint64_t I = TableSize; I > 0; --I) {
5566       TableInt <<= IT->getBitWidth();
5567       // Insert values into the bitmap. Undef values are set to zero.
5568       if (!isa<UndefValue>(TableContents[I - 1])) {
5569         ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]);
5570         TableInt |= Val->getValue().zext(TableInt.getBitWidth());
5571       }
5572     }
5573     BitMap = ConstantInt::get(M.getContext(), TableInt);
5574     BitMapElementTy = IT;
5575     Kind = BitMapKind;
5576     ++NumBitMaps;
5577     return;
5578   }
5579 
5580   // Store the table in an array.
5581   ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize);
5582   Constant *Initializer = ConstantArray::get(ArrayTy, TableContents);
5583 
5584   Array = new GlobalVariable(M, ArrayTy, /*isConstant=*/true,
5585                              GlobalVariable::PrivateLinkage, Initializer,
5586                              "switch.table." + FuncName);
5587   Array->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
5588   // Set the alignment to that of an array items. We will be only loading one
5589   // value out of it.
5590   Array->setAlignment(Align(DL.getPrefTypeAlignment(ValueType)));
5591   Kind = ArrayKind;
5592 }
5593 
5594 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) {
5595   switch (Kind) {
5596   case SingleValueKind:
5597     return SingleValue;
5598   case LinearMapKind: {
5599     // Derive the result value from the input value.
5600     Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(),
5601                                           false, "switch.idx.cast");
5602     if (!LinearMultiplier->isOne())
5603       Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult");
5604     if (!LinearOffset->isZero())
5605       Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset");
5606     return Result;
5607   }
5608   case BitMapKind: {
5609     // Type of the bitmap (e.g. i59).
5610     IntegerType *MapTy = BitMap->getType();
5611 
5612     // Cast Index to the same type as the bitmap.
5613     // Note: The Index is <= the number of elements in the table, so
5614     // truncating it to the width of the bitmask is safe.
5615     Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast");
5616 
5617     // Multiply the shift amount by the element width.
5618     ShiftAmt = Builder.CreateMul(
5619         ShiftAmt, ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()),
5620         "switch.shiftamt");
5621 
5622     // Shift down.
5623     Value *DownShifted =
5624         Builder.CreateLShr(BitMap, ShiftAmt, "switch.downshift");
5625     // Mask off.
5626     return Builder.CreateTrunc(DownShifted, BitMapElementTy, "switch.masked");
5627   }
5628   case ArrayKind: {
5629     // Make sure the table index will not overflow when treated as signed.
5630     IntegerType *IT = cast<IntegerType>(Index->getType());
5631     uint64_t TableSize =
5632         Array->getInitializer()->getType()->getArrayNumElements();
5633     if (TableSize > (1ULL << (IT->getBitWidth() - 1)))
5634       Index = Builder.CreateZExt(
5635           Index, IntegerType::get(IT->getContext(), IT->getBitWidth() + 1),
5636           "switch.tableidx.zext");
5637 
5638     Value *GEPIndices[] = {Builder.getInt32(0), Index};
5639     Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array,
5640                                            GEPIndices, "switch.gep");
5641     return Builder.CreateLoad(
5642         cast<ArrayType>(Array->getValueType())->getElementType(), GEP,
5643         "switch.load");
5644   }
5645   }
5646   llvm_unreachable("Unknown lookup table kind!");
5647 }
5648 
5649 bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL,
5650                                            uint64_t TableSize,
5651                                            Type *ElementType) {
5652   auto *IT = dyn_cast<IntegerType>(ElementType);
5653   if (!IT)
5654     return false;
5655   // FIXME: If the type is wider than it needs to be, e.g. i8 but all values
5656   // are <= 15, we could try to narrow the type.
5657 
5658   // Avoid overflow, fitsInLegalInteger uses unsigned int for the width.
5659   if (TableSize >= UINT_MAX / IT->getBitWidth())
5660     return false;
5661   return DL.fitsInLegalInteger(TableSize * IT->getBitWidth());
5662 }
5663 
5664 /// Determine whether a lookup table should be built for this switch, based on
5665 /// the number of cases, size of the table, and the types of the results.
5666 static bool
5667 ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize,
5668                        const TargetTransformInfo &TTI, const DataLayout &DL,
5669                        const SmallDenseMap<PHINode *, Type *> &ResultTypes) {
5670   if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10)
5671     return false; // TableSize overflowed, or mul below might overflow.
5672 
5673   bool AllTablesFitInRegister = true;
5674   bool HasIllegalType = false;
5675   for (const auto &I : ResultTypes) {
5676     Type *Ty = I.second;
5677 
5678     // Saturate this flag to true.
5679     HasIllegalType = HasIllegalType || !TTI.isTypeLegal(Ty);
5680 
5681     // Saturate this flag to false.
5682     AllTablesFitInRegister =
5683         AllTablesFitInRegister &&
5684         SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty);
5685 
5686     // If both flags saturate, we're done. NOTE: This *only* works with
5687     // saturating flags, and all flags have to saturate first due to the
5688     // non-deterministic behavior of iterating over a dense map.
5689     if (HasIllegalType && !AllTablesFitInRegister)
5690       break;
5691   }
5692 
5693   // If each table would fit in a register, we should build it anyway.
5694   if (AllTablesFitInRegister)
5695     return true;
5696 
5697   // Don't build a table that doesn't fit in-register if it has illegal types.
5698   if (HasIllegalType)
5699     return false;
5700 
5701   // The table density should be at least 40%. This is the same criterion as for
5702   // jump tables, see SelectionDAGBuilder::handleJTSwitchCase.
5703   // FIXME: Find the best cut-off.
5704   return SI->getNumCases() * 10 >= TableSize * 4;
5705 }
5706 
5707 /// Try to reuse the switch table index compare. Following pattern:
5708 /// \code
5709 ///     if (idx < tablesize)
5710 ///        r = table[idx]; // table does not contain default_value
5711 ///     else
5712 ///        r = default_value;
5713 ///     if (r != default_value)
5714 ///        ...
5715 /// \endcode
5716 /// Is optimized to:
5717 /// \code
5718 ///     cond = idx < tablesize;
5719 ///     if (cond)
5720 ///        r = table[idx];
5721 ///     else
5722 ///        r = default_value;
5723 ///     if (cond)
5724 ///        ...
5725 /// \endcode
5726 /// Jump threading will then eliminate the second if(cond).
5727 static void reuseTableCompare(
5728     User *PhiUser, BasicBlock *PhiBlock, BranchInst *RangeCheckBranch,
5729     Constant *DefaultValue,
5730     const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values) {
5731   ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser);
5732   if (!CmpInst)
5733     return;
5734 
5735   // We require that the compare is in the same block as the phi so that jump
5736   // threading can do its work afterwards.
5737   if (CmpInst->getParent() != PhiBlock)
5738     return;
5739 
5740   Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1));
5741   if (!CmpOp1)
5742     return;
5743 
5744   Value *RangeCmp = RangeCheckBranch->getCondition();
5745   Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType());
5746   Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType());
5747 
5748   // Check if the compare with the default value is constant true or false.
5749   Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
5750                                                  DefaultValue, CmpOp1, true);
5751   if (DefaultConst != TrueConst && DefaultConst != FalseConst)
5752     return;
5753 
5754   // Check if the compare with the case values is distinct from the default
5755   // compare result.
5756   for (auto ValuePair : Values) {
5757     Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
5758                                                 ValuePair.second, CmpOp1, true);
5759     if (!CaseConst || CaseConst == DefaultConst || isa<UndefValue>(CaseConst))
5760       return;
5761     assert((CaseConst == TrueConst || CaseConst == FalseConst) &&
5762            "Expect true or false as compare result.");
5763   }
5764 
5765   // Check if the branch instruction dominates the phi node. It's a simple
5766   // dominance check, but sufficient for our needs.
5767   // Although this check is invariant in the calling loops, it's better to do it
5768   // at this late stage. Practically we do it at most once for a switch.
5769   BasicBlock *BranchBlock = RangeCheckBranch->getParent();
5770   for (BasicBlock *Pred : predecessors(PhiBlock)) {
5771     if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock)
5772       return;
5773   }
5774 
5775   if (DefaultConst == FalseConst) {
5776     // The compare yields the same result. We can replace it.
5777     CmpInst->replaceAllUsesWith(RangeCmp);
5778     ++NumTableCmpReuses;
5779   } else {
5780     // The compare yields the same result, just inverted. We can replace it.
5781     Value *InvertedTableCmp = BinaryOperator::CreateXor(
5782         RangeCmp, ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp",
5783         RangeCheckBranch);
5784     CmpInst->replaceAllUsesWith(InvertedTableCmp);
5785     ++NumTableCmpReuses;
5786   }
5787 }
5788 
5789 /// If the switch is only used to initialize one or more phi nodes in a common
5790 /// successor block with different constant values, replace the switch with
5791 /// lookup tables.
5792 static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder,
5793                                 DomTreeUpdater *DTU, const DataLayout &DL,
5794                                 const TargetTransformInfo &TTI) {
5795   assert(SI->getNumCases() > 1 && "Degenerate switch?");
5796 
5797   BasicBlock *BB = SI->getParent();
5798   Function *Fn = BB->getParent();
5799   // Only build lookup table when we have a target that supports it or the
5800   // attribute is not set.
5801   if (!TTI.shouldBuildLookupTables() ||
5802       (Fn->getFnAttribute("no-jump-tables").getValueAsBool()))
5803     return false;
5804 
5805   // FIXME: If the switch is too sparse for a lookup table, perhaps we could
5806   // split off a dense part and build a lookup table for that.
5807 
5808   // FIXME: This creates arrays of GEPs to constant strings, which means each
5809   // GEP needs a runtime relocation in PIC code. We should just build one big
5810   // string and lookup indices into that.
5811 
5812   // Ignore switches with less than three cases. Lookup tables will not make
5813   // them faster, so we don't analyze them.
5814   if (SI->getNumCases() < 3)
5815     return false;
5816 
5817   // Figure out the corresponding result for each case value and phi node in the
5818   // common destination, as well as the min and max case values.
5819   assert(!SI->cases().empty());
5820   SwitchInst::CaseIt CI = SI->case_begin();
5821   ConstantInt *MinCaseVal = CI->getCaseValue();
5822   ConstantInt *MaxCaseVal = CI->getCaseValue();
5823 
5824   BasicBlock *CommonDest = nullptr;
5825 
5826   using ResultListTy = SmallVector<std::pair<ConstantInt *, Constant *>, 4>;
5827   SmallDenseMap<PHINode *, ResultListTy> ResultLists;
5828 
5829   SmallDenseMap<PHINode *, Constant *> DefaultResults;
5830   SmallDenseMap<PHINode *, Type *> ResultTypes;
5831   SmallVector<PHINode *, 4> PHIs;
5832 
5833   for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) {
5834     ConstantInt *CaseVal = CI->getCaseValue();
5835     if (CaseVal->getValue().slt(MinCaseVal->getValue()))
5836       MinCaseVal = CaseVal;
5837     if (CaseVal->getValue().sgt(MaxCaseVal->getValue()))
5838       MaxCaseVal = CaseVal;
5839 
5840     // Resulting value at phi nodes for this case value.
5841     using ResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>;
5842     ResultsTy Results;
5843     if (!GetCaseResults(SI, CaseVal, CI->getCaseSuccessor(), &CommonDest,
5844                         Results, DL, TTI))
5845       return false;
5846 
5847     // Append the result from this case to the list for each phi.
5848     for (const auto &I : Results) {
5849       PHINode *PHI = I.first;
5850       Constant *Value = I.second;
5851       if (!ResultLists.count(PHI))
5852         PHIs.push_back(PHI);
5853       ResultLists[PHI].push_back(std::make_pair(CaseVal, Value));
5854     }
5855   }
5856 
5857   // Keep track of the result types.
5858   for (PHINode *PHI : PHIs) {
5859     ResultTypes[PHI] = ResultLists[PHI][0].second->getType();
5860   }
5861 
5862   uint64_t NumResults = ResultLists[PHIs[0]].size();
5863   APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue();
5864   uint64_t TableSize = RangeSpread.getLimitedValue() + 1;
5865   bool TableHasHoles = (NumResults < TableSize);
5866 
5867   // If the table has holes, we need a constant result for the default case
5868   // or a bitmask that fits in a register.
5869   SmallVector<std::pair<PHINode *, Constant *>, 4> DefaultResultsList;
5870   bool HasDefaultResults =
5871       GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest,
5872                      DefaultResultsList, DL, TTI);
5873 
5874   bool NeedMask = (TableHasHoles && !HasDefaultResults);
5875   if (NeedMask) {
5876     // As an extra penalty for the validity test we require more cases.
5877     if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark).
5878       return false;
5879     if (!DL.fitsInLegalInteger(TableSize))
5880       return false;
5881   }
5882 
5883   for (const auto &I : DefaultResultsList) {
5884     PHINode *PHI = I.first;
5885     Constant *Result = I.second;
5886     DefaultResults[PHI] = Result;
5887   }
5888 
5889   if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes))
5890     return false;
5891 
5892   std::vector<DominatorTree::UpdateType> Updates;
5893 
5894   // Create the BB that does the lookups.
5895   Module &Mod = *CommonDest->getParent()->getParent();
5896   BasicBlock *LookupBB = BasicBlock::Create(
5897       Mod.getContext(), "switch.lookup", CommonDest->getParent(), CommonDest);
5898 
5899   // Compute the table index value.
5900   Builder.SetInsertPoint(SI);
5901   Value *TableIndex;
5902   if (MinCaseVal->isNullValue())
5903     TableIndex = SI->getCondition();
5904   else
5905     TableIndex = Builder.CreateSub(SI->getCondition(), MinCaseVal,
5906                                    "switch.tableidx");
5907 
5908   // Compute the maximum table size representable by the integer type we are
5909   // switching upon.
5910   unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits();
5911   uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize;
5912   assert(MaxTableSize >= TableSize &&
5913          "It is impossible for a switch to have more entries than the max "
5914          "representable value of its input integer type's size.");
5915 
5916   // If the default destination is unreachable, or if the lookup table covers
5917   // all values of the conditional variable, branch directly to the lookup table
5918   // BB. Otherwise, check that the condition is within the case range.
5919   const bool DefaultIsReachable =
5920       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
5921   const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize);
5922   BranchInst *RangeCheckBranch = nullptr;
5923 
5924   if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
5925     Builder.CreateBr(LookupBB);
5926     if (DTU)
5927       Updates.push_back({DominatorTree::Insert, BB, LookupBB});
5928     // Note: We call removeProdecessor later since we need to be able to get the
5929     // PHI value for the default case in case we're using a bit mask.
5930   } else {
5931     Value *Cmp = Builder.CreateICmpULT(
5932         TableIndex, ConstantInt::get(MinCaseVal->getType(), TableSize));
5933     RangeCheckBranch =
5934         Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest());
5935     if (DTU)
5936       Updates.push_back({DominatorTree::Insert, BB, LookupBB});
5937   }
5938 
5939   // Populate the BB that does the lookups.
5940   Builder.SetInsertPoint(LookupBB);
5941 
5942   if (NeedMask) {
5943     // Before doing the lookup, we do the hole check. The LookupBB is therefore
5944     // re-purposed to do the hole check, and we create a new LookupBB.
5945     BasicBlock *MaskBB = LookupBB;
5946     MaskBB->setName("switch.hole_check");
5947     LookupBB = BasicBlock::Create(Mod.getContext(), "switch.lookup",
5948                                   CommonDest->getParent(), CommonDest);
5949 
5950     // Make the mask's bitwidth at least 8-bit and a power-of-2 to avoid
5951     // unnecessary illegal types.
5952     uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL));
5953     APInt MaskInt(TableSizePowOf2, 0);
5954     APInt One(TableSizePowOf2, 1);
5955     // Build bitmask; fill in a 1 bit for every case.
5956     const ResultListTy &ResultList = ResultLists[PHIs[0]];
5957     for (size_t I = 0, E = ResultList.size(); I != E; ++I) {
5958       uint64_t Idx = (ResultList[I].first->getValue() - MinCaseVal->getValue())
5959                          .getLimitedValue();
5960       MaskInt |= One << Idx;
5961     }
5962     ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt);
5963 
5964     // Get the TableIndex'th bit of the bitmask.
5965     // If this bit is 0 (meaning hole) jump to the default destination,
5966     // else continue with table lookup.
5967     IntegerType *MapTy = TableMask->getType();
5968     Value *MaskIndex =
5969         Builder.CreateZExtOrTrunc(TableIndex, MapTy, "switch.maskindex");
5970     Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, "switch.shifted");
5971     Value *LoBit = Builder.CreateTrunc(
5972         Shifted, Type::getInt1Ty(Mod.getContext()), "switch.lobit");
5973     Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest());
5974     if (DTU) {
5975       Updates.push_back({DominatorTree::Insert, MaskBB, LookupBB});
5976       Updates.push_back({DominatorTree::Insert, MaskBB, SI->getDefaultDest()});
5977     }
5978     Builder.SetInsertPoint(LookupBB);
5979     AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, BB);
5980   }
5981 
5982   if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
5983     // We cached PHINodes in PHIs. To avoid accessing deleted PHINodes later,
5984     // do not delete PHINodes here.
5985     SI->getDefaultDest()->removePredecessor(BB,
5986                                             /*KeepOneInputPHIs=*/true);
5987     if (DTU)
5988       Updates.push_back({DominatorTree::Delete, BB, SI->getDefaultDest()});
5989   }
5990 
5991   bool ReturnedEarly = false;
5992   for (PHINode *PHI : PHIs) {
5993     const ResultListTy &ResultList = ResultLists[PHI];
5994 
5995     // If using a bitmask, use any value to fill the lookup table holes.
5996     Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI];
5997     StringRef FuncName = Fn->getName();
5998     SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultList, DV, DL,
5999                             FuncName);
6000 
6001     Value *Result = Table.BuildLookup(TableIndex, Builder);
6002 
6003     // If the result is used to return immediately from the function, we want to
6004     // do that right here.
6005     if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->user_begin()) &&
6006         PHI->user_back() == CommonDest->getFirstNonPHIOrDbg()) {
6007       Builder.CreateRet(Result);
6008       ReturnedEarly = true;
6009       break;
6010     }
6011 
6012     // Do a small peephole optimization: re-use the switch table compare if
6013     // possible.
6014     if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) {
6015       BasicBlock *PhiBlock = PHI->getParent();
6016       // Search for compare instructions which use the phi.
6017       for (auto *User : PHI->users()) {
6018         reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList);
6019       }
6020     }
6021 
6022     PHI->addIncoming(Result, LookupBB);
6023   }
6024 
6025   if (!ReturnedEarly) {
6026     Builder.CreateBr(CommonDest);
6027     if (DTU)
6028       Updates.push_back({DominatorTree::Insert, LookupBB, CommonDest});
6029   }
6030 
6031   // Remove the switch.
6032   SmallPtrSet<BasicBlock *, 8> RemovedSuccessors;
6033   for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
6034     BasicBlock *Succ = SI->getSuccessor(i);
6035 
6036     if (Succ == SI->getDefaultDest())
6037       continue;
6038     Succ->removePredecessor(BB);
6039     RemovedSuccessors.insert(Succ);
6040   }
6041   SI->eraseFromParent();
6042 
6043   if (DTU) {
6044     for (BasicBlock *RemovedSuccessor : RemovedSuccessors)
6045       Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor});
6046     DTU->applyUpdates(Updates);
6047   }
6048 
6049   ++NumLookupTables;
6050   if (NeedMask)
6051     ++NumLookupTablesHoles;
6052   return true;
6053 }
6054 
6055 static bool isSwitchDense(ArrayRef<int64_t> Values) {
6056   // See also SelectionDAGBuilder::isDense(), which this function was based on.
6057   uint64_t Diff = (uint64_t)Values.back() - (uint64_t)Values.front();
6058   uint64_t Range = Diff + 1;
6059   uint64_t NumCases = Values.size();
6060   // 40% is the default density for building a jump table in optsize/minsize mode.
6061   uint64_t MinDensity = 40;
6062 
6063   return NumCases * 100 >= Range * MinDensity;
6064 }
6065 
6066 /// Try to transform a switch that has "holes" in it to a contiguous sequence
6067 /// of cases.
6068 ///
6069 /// A switch such as: switch(i) {case 5: case 9: case 13: case 17:} can be
6070 /// range-reduced to: switch ((i-5) / 4) {case 0: case 1: case 2: case 3:}.
6071 ///
6072 /// This converts a sparse switch into a dense switch which allows better
6073 /// lowering and could also allow transforming into a lookup table.
6074 static bool ReduceSwitchRange(SwitchInst *SI, IRBuilder<> &Builder,
6075                               const DataLayout &DL,
6076                               const TargetTransformInfo &TTI) {
6077   auto *CondTy = cast<IntegerType>(SI->getCondition()->getType());
6078   if (CondTy->getIntegerBitWidth() > 64 ||
6079       !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth()))
6080     return false;
6081   // Only bother with this optimization if there are more than 3 switch cases;
6082   // SDAG will only bother creating jump tables for 4 or more cases.
6083   if (SI->getNumCases() < 4)
6084     return false;
6085 
6086   // This transform is agnostic to the signedness of the input or case values. We
6087   // can treat the case values as signed or unsigned. We can optimize more common
6088   // cases such as a sequence crossing zero {-4,0,4,8} if we interpret case values
6089   // as signed.
6090   SmallVector<int64_t,4> Values;
6091   for (auto &C : SI->cases())
6092     Values.push_back(C.getCaseValue()->getValue().getSExtValue());
6093   llvm::sort(Values);
6094 
6095   // If the switch is already dense, there's nothing useful to do here.
6096   if (isSwitchDense(Values))
6097     return false;
6098 
6099   // First, transform the values such that they start at zero and ascend.
6100   int64_t Base = Values[0];
6101   for (auto &V : Values)
6102     V -= (uint64_t)(Base);
6103 
6104   // Now we have signed numbers that have been shifted so that, given enough
6105   // precision, there are no negative values. Since the rest of the transform
6106   // is bitwise only, we switch now to an unsigned representation.
6107 
6108   // This transform can be done speculatively because it is so cheap - it
6109   // results in a single rotate operation being inserted.
6110   // FIXME: It's possible that optimizing a switch on powers of two might also
6111   // be beneficial - flag values are often powers of two and we could use a CLZ
6112   // as the key function.
6113 
6114   // countTrailingZeros(0) returns 64. As Values is guaranteed to have more than
6115   // one element and LLVM disallows duplicate cases, Shift is guaranteed to be
6116   // less than 64.
6117   unsigned Shift = 64;
6118   for (auto &V : Values)
6119     Shift = std::min(Shift, countTrailingZeros((uint64_t)V));
6120   assert(Shift < 64);
6121   if (Shift > 0)
6122     for (auto &V : Values)
6123       V = (int64_t)((uint64_t)V >> Shift);
6124 
6125   if (!isSwitchDense(Values))
6126     // Transform didn't create a dense switch.
6127     return false;
6128 
6129   // The obvious transform is to shift the switch condition right and emit a
6130   // check that the condition actually cleanly divided by GCD, i.e.
6131   //   C & (1 << Shift - 1) == 0
6132   // inserting a new CFG edge to handle the case where it didn't divide cleanly.
6133   //
6134   // A cheaper way of doing this is a simple ROTR(C, Shift). This performs the
6135   // shift and puts the shifted-off bits in the uppermost bits. If any of these
6136   // are nonzero then the switch condition will be very large and will hit the
6137   // default case.
6138 
6139   auto *Ty = cast<IntegerType>(SI->getCondition()->getType());
6140   Builder.SetInsertPoint(SI);
6141   auto *ShiftC = ConstantInt::get(Ty, Shift);
6142   auto *Sub = Builder.CreateSub(SI->getCondition(), ConstantInt::get(Ty, Base));
6143   auto *LShr = Builder.CreateLShr(Sub, ShiftC);
6144   auto *Shl = Builder.CreateShl(Sub, Ty->getBitWidth() - Shift);
6145   auto *Rot = Builder.CreateOr(LShr, Shl);
6146   SI->replaceUsesOfWith(SI->getCondition(), Rot);
6147 
6148   for (auto Case : SI->cases()) {
6149     auto *Orig = Case.getCaseValue();
6150     auto Sub = Orig->getValue() - APInt(Ty->getBitWidth(), Base);
6151     Case.setValue(
6152         cast<ConstantInt>(ConstantInt::get(Ty, Sub.lshr(ShiftC->getValue()))));
6153   }
6154   return true;
6155 }
6156 
6157 bool SimplifyCFGOpt::simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) {
6158   BasicBlock *BB = SI->getParent();
6159 
6160   if (isValueEqualityComparison(SI)) {
6161     // If we only have one predecessor, and if it is a branch on this value,
6162     // see if that predecessor totally determines the outcome of this switch.
6163     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
6164       if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder))
6165         return requestResimplify();
6166 
6167     Value *Cond = SI->getCondition();
6168     if (SelectInst *Select = dyn_cast<SelectInst>(Cond))
6169       if (SimplifySwitchOnSelect(SI, Select))
6170         return requestResimplify();
6171 
6172     // If the block only contains the switch, see if we can fold the block
6173     // away into any preds.
6174     if (SI == &*BB->instructionsWithoutDebug().begin())
6175       if (FoldValueComparisonIntoPredecessors(SI, Builder))
6176         return requestResimplify();
6177   }
6178 
6179   // Try to transform the switch into an icmp and a branch.
6180   if (TurnSwitchRangeIntoICmp(SI, Builder))
6181     return requestResimplify();
6182 
6183   // Remove unreachable cases.
6184   if (eliminateDeadSwitchCases(SI, DTU, Options.AC, DL))
6185     return requestResimplify();
6186 
6187   if (switchToSelect(SI, Builder, DTU, DL, TTI))
6188     return requestResimplify();
6189 
6190   if (Options.ForwardSwitchCondToPhi && ForwardSwitchConditionToPHI(SI))
6191     return requestResimplify();
6192 
6193   // The conversion from switch to lookup tables results in difficult-to-analyze
6194   // code and makes pruning branches much harder. This is a problem if the
6195   // switch expression itself can still be restricted as a result of inlining or
6196   // CVP. Therefore, only apply this transformation during late stages of the
6197   // optimisation pipeline.
6198   if (Options.ConvertSwitchToLookupTable &&
6199       SwitchToLookupTable(SI, Builder, DTU, DL, TTI))
6200     return requestResimplify();
6201 
6202   if (ReduceSwitchRange(SI, Builder, DL, TTI))
6203     return requestResimplify();
6204 
6205   return false;
6206 }
6207 
6208 bool SimplifyCFGOpt::simplifyIndirectBr(IndirectBrInst *IBI) {
6209   BasicBlock *BB = IBI->getParent();
6210   bool Changed = false;
6211 
6212   // Eliminate redundant destinations.
6213   SmallPtrSet<Value *, 8> Succs;
6214   SmallPtrSet<BasicBlock *, 8> RemovedSuccs;
6215   for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
6216     BasicBlock *Dest = IBI->getDestination(i);
6217     if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) {
6218       if (!Dest->hasAddressTaken())
6219         RemovedSuccs.insert(Dest);
6220       Dest->removePredecessor(BB);
6221       IBI->removeDestination(i);
6222       --i;
6223       --e;
6224       Changed = true;
6225     }
6226   }
6227 
6228   if (DTU) {
6229     std::vector<DominatorTree::UpdateType> Updates;
6230     Updates.reserve(RemovedSuccs.size());
6231     for (auto *RemovedSucc : RemovedSuccs)
6232       Updates.push_back({DominatorTree::Delete, BB, RemovedSucc});
6233     DTU->applyUpdates(Updates);
6234   }
6235 
6236   if (IBI->getNumDestinations() == 0) {
6237     // If the indirectbr has no successors, change it to unreachable.
6238     new UnreachableInst(IBI->getContext(), IBI);
6239     EraseTerminatorAndDCECond(IBI);
6240     return true;
6241   }
6242 
6243   if (IBI->getNumDestinations() == 1) {
6244     // If the indirectbr has one successor, change it to a direct branch.
6245     BranchInst::Create(IBI->getDestination(0), IBI);
6246     EraseTerminatorAndDCECond(IBI);
6247     return true;
6248   }
6249 
6250   if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) {
6251     if (SimplifyIndirectBrOnSelect(IBI, SI))
6252       return requestResimplify();
6253   }
6254   return Changed;
6255 }
6256 
6257 /// Given an block with only a single landing pad and a unconditional branch
6258 /// try to find another basic block which this one can be merged with.  This
6259 /// handles cases where we have multiple invokes with unique landing pads, but
6260 /// a shared handler.
6261 ///
6262 /// We specifically choose to not worry about merging non-empty blocks
6263 /// here.  That is a PRE/scheduling problem and is best solved elsewhere.  In
6264 /// practice, the optimizer produces empty landing pad blocks quite frequently
6265 /// when dealing with exception dense code.  (see: instcombine, gvn, if-else
6266 /// sinking in this file)
6267 ///
6268 /// This is primarily a code size optimization.  We need to avoid performing
6269 /// any transform which might inhibit optimization (such as our ability to
6270 /// specialize a particular handler via tail commoning).  We do this by not
6271 /// merging any blocks which require us to introduce a phi.  Since the same
6272 /// values are flowing through both blocks, we don't lose any ability to
6273 /// specialize.  If anything, we make such specialization more likely.
6274 ///
6275 /// TODO - This transformation could remove entries from a phi in the target
6276 /// block when the inputs in the phi are the same for the two blocks being
6277 /// merged.  In some cases, this could result in removal of the PHI entirely.
6278 static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI,
6279                                  BasicBlock *BB, DomTreeUpdater *DTU) {
6280   auto Succ = BB->getUniqueSuccessor();
6281   assert(Succ);
6282   // If there's a phi in the successor block, we'd likely have to introduce
6283   // a phi into the merged landing pad block.
6284   if (isa<PHINode>(*Succ->begin()))
6285     return false;
6286 
6287   for (BasicBlock *OtherPred : predecessors(Succ)) {
6288     if (BB == OtherPred)
6289       continue;
6290     BasicBlock::iterator I = OtherPred->begin();
6291     LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I);
6292     if (!LPad2 || !LPad2->isIdenticalTo(LPad))
6293       continue;
6294     for (++I; isa<DbgInfoIntrinsic>(I); ++I)
6295       ;
6296     BranchInst *BI2 = dyn_cast<BranchInst>(I);
6297     if (!BI2 || !BI2->isIdenticalTo(BI))
6298       continue;
6299 
6300     std::vector<DominatorTree::UpdateType> Updates;
6301 
6302     // We've found an identical block.  Update our predecessors to take that
6303     // path instead and make ourselves dead.
6304     SmallPtrSet<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB));
6305     for (BasicBlock *Pred : Preds) {
6306       InvokeInst *II = cast<InvokeInst>(Pred->getTerminator());
6307       assert(II->getNormalDest() != BB && II->getUnwindDest() == BB &&
6308              "unexpected successor");
6309       II->setUnwindDest(OtherPred);
6310       if (DTU) {
6311         Updates.push_back({DominatorTree::Insert, Pred, OtherPred});
6312         Updates.push_back({DominatorTree::Delete, Pred, BB});
6313       }
6314     }
6315 
6316     // The debug info in OtherPred doesn't cover the merged control flow that
6317     // used to go through BB.  We need to delete it or update it.
6318     for (auto I = OtherPred->begin(), E = OtherPred->end(); I != E;) {
6319       Instruction &Inst = *I;
6320       I++;
6321       if (isa<DbgInfoIntrinsic>(Inst))
6322         Inst.eraseFromParent();
6323     }
6324 
6325     SmallPtrSet<BasicBlock *, 16> Succs(succ_begin(BB), succ_end(BB));
6326     for (BasicBlock *Succ : Succs) {
6327       Succ->removePredecessor(BB);
6328       if (DTU)
6329         Updates.push_back({DominatorTree::Delete, BB, Succ});
6330     }
6331 
6332     IRBuilder<> Builder(BI);
6333     Builder.CreateUnreachable();
6334     BI->eraseFromParent();
6335     if (DTU)
6336       DTU->applyUpdates(Updates);
6337     return true;
6338   }
6339   return false;
6340 }
6341 
6342 bool SimplifyCFGOpt::simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder) {
6343   return Branch->isUnconditional() ? simplifyUncondBranch(Branch, Builder)
6344                                    : simplifyCondBranch(Branch, Builder);
6345 }
6346 
6347 bool SimplifyCFGOpt::simplifyUncondBranch(BranchInst *BI,
6348                                           IRBuilder<> &Builder) {
6349   BasicBlock *BB = BI->getParent();
6350   BasicBlock *Succ = BI->getSuccessor(0);
6351 
6352   // If the Terminator is the only non-phi instruction, simplify the block.
6353   // If LoopHeader is provided, check if the block or its successor is a loop
6354   // header. (This is for early invocations before loop simplify and
6355   // vectorization to keep canonical loop forms for nested loops. These blocks
6356   // can be eliminated when the pass is invoked later in the back-end.)
6357   // Note that if BB has only one predecessor then we do not introduce new
6358   // backedge, so we can eliminate BB.
6359   bool NeedCanonicalLoop =
6360       Options.NeedCanonicalLoop &&
6361       (!LoopHeaders.empty() && BB->hasNPredecessorsOrMore(2) &&
6362        (is_contained(LoopHeaders, BB) || is_contained(LoopHeaders, Succ)));
6363   BasicBlock::iterator I = BB->getFirstNonPHIOrDbg(true)->getIterator();
6364   if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() &&
6365       !NeedCanonicalLoop && TryToSimplifyUncondBranchFromEmptyBlock(BB, DTU))
6366     return true;
6367 
6368   // If the only instruction in the block is a seteq/setne comparison against a
6369   // constant, try to simplify the block.
6370   if (ICmpInst *ICI = dyn_cast<ICmpInst>(I))
6371     if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) {
6372       for (++I; isa<DbgInfoIntrinsic>(I); ++I)
6373         ;
6374       if (I->isTerminator() &&
6375           tryToSimplifyUncondBranchWithICmpInIt(ICI, Builder))
6376         return true;
6377     }
6378 
6379   // See if we can merge an empty landing pad block with another which is
6380   // equivalent.
6381   if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) {
6382     for (++I; isa<DbgInfoIntrinsic>(I); ++I)
6383       ;
6384     if (I->isTerminator() && TryToMergeLandingPad(LPad, BI, BB, DTU))
6385       return true;
6386   }
6387 
6388   // If this basic block is ONLY a compare and a branch, and if a predecessor
6389   // branches to us and our successor, fold the comparison into the
6390   // predecessor and use logical operations to update the incoming value
6391   // for PHI nodes in common successor.
6392   if (FoldBranchToCommonDest(BI, DTU, /*MSSAU=*/nullptr, &TTI,
6393                              Options.BonusInstThreshold))
6394     return requestResimplify();
6395   return false;
6396 }
6397 
6398 static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) {
6399   BasicBlock *PredPred = nullptr;
6400   for (auto *P : predecessors(BB)) {
6401     BasicBlock *PPred = P->getSinglePredecessor();
6402     if (!PPred || (PredPred && PredPred != PPred))
6403       return nullptr;
6404     PredPred = PPred;
6405   }
6406   return PredPred;
6407 }
6408 
6409 bool SimplifyCFGOpt::simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) {
6410   BasicBlock *BB = BI->getParent();
6411   if (!Options.SimplifyCondBranch)
6412     return false;
6413 
6414   // Conditional branch
6415   if (isValueEqualityComparison(BI)) {
6416     // If we only have one predecessor, and if it is a branch on this value,
6417     // see if that predecessor totally determines the outcome of this
6418     // switch.
6419     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
6420       if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder))
6421         return requestResimplify();
6422 
6423     // This block must be empty, except for the setcond inst, if it exists.
6424     // Ignore dbg and pseudo intrinsics.
6425     auto I = BB->instructionsWithoutDebug(true).begin();
6426     if (&*I == BI) {
6427       if (FoldValueComparisonIntoPredecessors(BI, Builder))
6428         return requestResimplify();
6429     } else if (&*I == cast<Instruction>(BI->getCondition())) {
6430       ++I;
6431       if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder))
6432         return requestResimplify();
6433     }
6434   }
6435 
6436   // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction.
6437   if (SimplifyBranchOnICmpChain(BI, Builder, DL))
6438     return true;
6439 
6440   // If this basic block has dominating predecessor blocks and the dominating
6441   // blocks' conditions imply BI's condition, we know the direction of BI.
6442   Optional<bool> Imp = isImpliedByDomCondition(BI->getCondition(), BI, DL);
6443   if (Imp) {
6444     // Turn this into a branch on constant.
6445     auto *OldCond = BI->getCondition();
6446     ConstantInt *TorF = *Imp ? ConstantInt::getTrue(BB->getContext())
6447                              : ConstantInt::getFalse(BB->getContext());
6448     BI->setCondition(TorF);
6449     RecursivelyDeleteTriviallyDeadInstructions(OldCond);
6450     return requestResimplify();
6451   }
6452 
6453   // If this basic block is ONLY a compare and a branch, and if a predecessor
6454   // branches to us and one of our successors, fold the comparison into the
6455   // predecessor and use logical operations to pick the right destination.
6456   if (FoldBranchToCommonDest(BI, DTU, /*MSSAU=*/nullptr, &TTI,
6457                              Options.BonusInstThreshold))
6458     return requestResimplify();
6459 
6460   // We have a conditional branch to two blocks that are only reachable
6461   // from BI.  We know that the condbr dominates the two blocks, so see if
6462   // there is any identical code in the "then" and "else" blocks.  If so, we
6463   // can hoist it up to the branching block.
6464   if (BI->getSuccessor(0)->getSinglePredecessor()) {
6465     if (BI->getSuccessor(1)->getSinglePredecessor()) {
6466       if (HoistCommon &&
6467           HoistThenElseCodeToIf(BI, TTI, !Options.HoistCommonInsts))
6468         return requestResimplify();
6469     } else {
6470       // If Successor #1 has multiple preds, we may be able to conditionally
6471       // execute Successor #0 if it branches to Successor #1.
6472       Instruction *Succ0TI = BI->getSuccessor(0)->getTerminator();
6473       if (Succ0TI->getNumSuccessors() == 1 &&
6474           Succ0TI->getSuccessor(0) == BI->getSuccessor(1))
6475         if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), TTI))
6476           return requestResimplify();
6477     }
6478   } else if (BI->getSuccessor(1)->getSinglePredecessor()) {
6479     // If Successor #0 has multiple preds, we may be able to conditionally
6480     // execute Successor #1 if it branches to Successor #0.
6481     Instruction *Succ1TI = BI->getSuccessor(1)->getTerminator();
6482     if (Succ1TI->getNumSuccessors() == 1 &&
6483         Succ1TI->getSuccessor(0) == BI->getSuccessor(0))
6484       if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), TTI))
6485         return requestResimplify();
6486   }
6487 
6488   // If this is a branch on a phi node in the current block, thread control
6489   // through this block if any PHI node entries are constants.
6490   if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition()))
6491     if (PN->getParent() == BI->getParent())
6492       if (FoldCondBranchOnPHI(BI, DTU, DL, Options.AC))
6493         return requestResimplify();
6494 
6495   // Scan predecessor blocks for conditional branches.
6496   for (BasicBlock *Pred : predecessors(BB))
6497     if (BranchInst *PBI = dyn_cast<BranchInst>(Pred->getTerminator()))
6498       if (PBI != BI && PBI->isConditional())
6499         if (SimplifyCondBranchToCondBranch(PBI, BI, DTU, DL, TTI))
6500           return requestResimplify();
6501 
6502   // Look for diamond patterns.
6503   if (MergeCondStores)
6504     if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB))
6505       if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator()))
6506         if (PBI != BI && PBI->isConditional())
6507           if (mergeConditionalStores(PBI, BI, DTU, DL, TTI))
6508             return requestResimplify();
6509 
6510   return false;
6511 }
6512 
6513 /// Check if passing a value to an instruction will cause undefined behavior.
6514 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I, bool PtrValueMayBeModified) {
6515   Constant *C = dyn_cast<Constant>(V);
6516   if (!C)
6517     return false;
6518 
6519   if (I->use_empty())
6520     return false;
6521 
6522   if (C->isNullValue() || isa<UndefValue>(C)) {
6523     // Only look at the first use, avoid hurting compile time with long uselists
6524     User *Use = *I->user_begin();
6525 
6526     // Now make sure that there are no instructions in between that can alter
6527     // control flow (eg. calls)
6528     for (BasicBlock::iterator
6529              i = ++BasicBlock::iterator(I),
6530              UI = BasicBlock::iterator(dyn_cast<Instruction>(Use));
6531          i != UI; ++i)
6532       if (i == I->getParent()->end() || i->mayHaveSideEffects())
6533         return false;
6534 
6535     // Look through GEPs. A load from a GEP derived from NULL is still undefined
6536     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use))
6537       if (GEP->getPointerOperand() == I) {
6538         if (!GEP->isInBounds() || !GEP->hasAllZeroIndices())
6539           PtrValueMayBeModified = true;
6540         return passingValueIsAlwaysUndefined(V, GEP, PtrValueMayBeModified);
6541       }
6542 
6543     // Look through bitcasts.
6544     if (BitCastInst *BC = dyn_cast<BitCastInst>(Use))
6545       return passingValueIsAlwaysUndefined(V, BC, PtrValueMayBeModified);
6546 
6547     // Load from null is undefined.
6548     if (LoadInst *LI = dyn_cast<LoadInst>(Use))
6549       if (!LI->isVolatile())
6550         return !NullPointerIsDefined(LI->getFunction(),
6551                                      LI->getPointerAddressSpace());
6552 
6553     // Store to null is undefined.
6554     if (StoreInst *SI = dyn_cast<StoreInst>(Use))
6555       if (!SI->isVolatile())
6556         return (!NullPointerIsDefined(SI->getFunction(),
6557                                       SI->getPointerAddressSpace())) &&
6558                SI->getPointerOperand() == I;
6559 
6560     if (auto *CB = dyn_cast<CallBase>(Use)) {
6561       if (C->isNullValue() && NullPointerIsDefined(CB->getFunction()))
6562         return false;
6563       // A call to null is undefined.
6564       if (CB->getCalledOperand() == I)
6565         return true;
6566 
6567       if (C->isNullValue()) {
6568         for (const llvm::Use &Arg : CB->args())
6569           if (Arg == I) {
6570             unsigned ArgIdx = CB->getArgOperandNo(&Arg);
6571             if (CB->isPassingUndefUB(ArgIdx) &&
6572                 CB->paramHasAttr(ArgIdx, Attribute::NonNull)) {
6573               // Passing null to a nonnnull+noundef argument is undefined.
6574               return !PtrValueMayBeModified;
6575             }
6576           }
6577       } else if (isa<UndefValue>(C)) {
6578         // Passing undef to a noundef argument is undefined.
6579         for (const llvm::Use &Arg : CB->args())
6580           if (Arg == I) {
6581             unsigned ArgIdx = CB->getArgOperandNo(&Arg);
6582             if (CB->isPassingUndefUB(ArgIdx)) {
6583               // Passing undef to a noundef argument is undefined.
6584               return true;
6585             }
6586           }
6587       }
6588     }
6589   }
6590   return false;
6591 }
6592 
6593 /// If BB has an incoming value that will always trigger undefined behavior
6594 /// (eg. null pointer dereference), remove the branch leading here.
6595 static bool removeUndefIntroducingPredecessor(BasicBlock *BB,
6596                                               DomTreeUpdater *DTU) {
6597   for (PHINode &PHI : BB->phis())
6598     for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i)
6599       if (passingValueIsAlwaysUndefined(PHI.getIncomingValue(i), &PHI)) {
6600         BasicBlock *Predecessor = PHI.getIncomingBlock(i);
6601         Instruction *T = Predecessor->getTerminator();
6602         IRBuilder<> Builder(T);
6603         if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
6604           BB->removePredecessor(Predecessor);
6605           // Turn uncoditional branches into unreachables and remove the dead
6606           // destination from conditional branches.
6607           if (BI->isUnconditional())
6608             Builder.CreateUnreachable();
6609           else
6610             Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1)
6611                                                        : BI->getSuccessor(0));
6612           BI->eraseFromParent();
6613           if (DTU)
6614             DTU->applyUpdates({{DominatorTree::Delete, Predecessor, BB}});
6615           return true;
6616         }
6617         // TODO: SwitchInst.
6618       }
6619 
6620   return false;
6621 }
6622 
6623 bool SimplifyCFGOpt::simplifyOnceImpl(BasicBlock *BB) {
6624   bool Changed = false;
6625 
6626   assert(BB && BB->getParent() && "Block not embedded in function!");
6627   assert(BB->getTerminator() && "Degenerate basic block encountered!");
6628 
6629   // Remove basic blocks that have no predecessors (except the entry block)...
6630   // or that just have themself as a predecessor.  These are unreachable.
6631   if ((pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) ||
6632       BB->getSinglePredecessor() == BB) {
6633     LLVM_DEBUG(dbgs() << "Removing BB: \n" << *BB);
6634     DeleteDeadBlock(BB, DTU);
6635     return true;
6636   }
6637 
6638   // Check to see if we can constant propagate this terminator instruction
6639   // away...
6640   Changed |= ConstantFoldTerminator(BB, /*DeleteDeadConditions=*/true,
6641                                     /*TLI=*/nullptr, DTU);
6642 
6643   // Check for and eliminate duplicate PHI nodes in this block.
6644   Changed |= EliminateDuplicatePHINodes(BB);
6645 
6646   // Check for and remove branches that will always cause undefined behavior.
6647   Changed |= removeUndefIntroducingPredecessor(BB, DTU);
6648 
6649   // Merge basic blocks into their predecessor if there is only one distinct
6650   // pred, and if there is only one distinct successor of the predecessor, and
6651   // if there are no PHI nodes.
6652   if (MergeBlockIntoPredecessor(BB, DTU))
6653     return true;
6654 
6655   if (SinkCommon && Options.SinkCommonInsts)
6656     Changed |= SinkCommonCodeFromPredecessors(BB, DTU);
6657 
6658   IRBuilder<> Builder(BB);
6659 
6660   if (Options.FoldTwoEntryPHINode) {
6661     // If there is a trivial two-entry PHI node in this basic block, and we can
6662     // eliminate it, do so now.
6663     if (auto *PN = dyn_cast<PHINode>(BB->begin()))
6664       if (PN->getNumIncomingValues() == 2)
6665         Changed |= FoldTwoEntryPHINode(PN, TTI, DTU, DL);
6666   }
6667 
6668   Instruction *Terminator = BB->getTerminator();
6669   Builder.SetInsertPoint(Terminator);
6670   switch (Terminator->getOpcode()) {
6671   case Instruction::Br:
6672     Changed |= simplifyBranch(cast<BranchInst>(Terminator), Builder);
6673     break;
6674   case Instruction::Ret:
6675     Changed |= simplifyReturn(cast<ReturnInst>(Terminator), Builder);
6676     break;
6677   case Instruction::Resume:
6678     Changed |= simplifyResume(cast<ResumeInst>(Terminator), Builder);
6679     break;
6680   case Instruction::CleanupRet:
6681     Changed |= simplifyCleanupReturn(cast<CleanupReturnInst>(Terminator));
6682     break;
6683   case Instruction::Switch:
6684     Changed |= simplifySwitch(cast<SwitchInst>(Terminator), Builder);
6685     break;
6686   case Instruction::Unreachable:
6687     Changed |= simplifyUnreachable(cast<UnreachableInst>(Terminator));
6688     break;
6689   case Instruction::IndirectBr:
6690     Changed |= simplifyIndirectBr(cast<IndirectBrInst>(Terminator));
6691     break;
6692   }
6693 
6694   return Changed;
6695 }
6696 
6697 bool SimplifyCFGOpt::simplifyOnce(BasicBlock *BB) {
6698   bool Changed = simplifyOnceImpl(BB);
6699 
6700   return Changed;
6701 }
6702 
6703 bool SimplifyCFGOpt::run(BasicBlock *BB) {
6704   bool Changed = false;
6705 
6706   // Repeated simplify BB as long as resimplification is requested.
6707   do {
6708     Resimplify = false;
6709 
6710     // Perform one round of simplifcation. Resimplify flag will be set if
6711     // another iteration is requested.
6712     Changed |= simplifyOnce(BB);
6713   } while (Resimplify);
6714 
6715   return Changed;
6716 }
6717 
6718 bool llvm::simplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI,
6719                        DomTreeUpdater *DTU, const SimplifyCFGOptions &Options,
6720                        ArrayRef<WeakVH> LoopHeaders) {
6721   return SimplifyCFGOpt(TTI, DTU, BB->getModule()->getDataLayout(), LoopHeaders,
6722                         Options)
6723       .run(BB);
6724 }
6725