1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Peephole optimize the CFG. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/ADT/APInt.h" 14 #include "llvm/ADT/ArrayRef.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/MapVector.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/ScopeExit.h" 20 #include "llvm/ADT/Sequence.h" 21 #include "llvm/ADT/SetOperations.h" 22 #include "llvm/ADT/SetVector.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/Statistic.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/Analysis/AssumptionCache.h" 28 #include "llvm/Analysis/ConstantFolding.h" 29 #include "llvm/Analysis/EHPersonalities.h" 30 #include "llvm/Analysis/GuardUtils.h" 31 #include "llvm/Analysis/InstructionSimplify.h" 32 #include "llvm/Analysis/MemorySSA.h" 33 #include "llvm/Analysis/MemorySSAUpdater.h" 34 #include "llvm/Analysis/TargetTransformInfo.h" 35 #include "llvm/Analysis/ValueTracking.h" 36 #include "llvm/IR/Attributes.h" 37 #include "llvm/IR/BasicBlock.h" 38 #include "llvm/IR/CFG.h" 39 #include "llvm/IR/Constant.h" 40 #include "llvm/IR/ConstantRange.h" 41 #include "llvm/IR/Constants.h" 42 #include "llvm/IR/DataLayout.h" 43 #include "llvm/IR/DerivedTypes.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/IR/GlobalValue.h" 46 #include "llvm/IR/GlobalVariable.h" 47 #include "llvm/IR/IRBuilder.h" 48 #include "llvm/IR/InstrTypes.h" 49 #include "llvm/IR/Instruction.h" 50 #include "llvm/IR/Instructions.h" 51 #include "llvm/IR/IntrinsicInst.h" 52 #include "llvm/IR/Intrinsics.h" 53 #include "llvm/IR/LLVMContext.h" 54 #include "llvm/IR/MDBuilder.h" 55 #include "llvm/IR/Metadata.h" 56 #include "llvm/IR/Module.h" 57 #include "llvm/IR/NoFolder.h" 58 #include "llvm/IR/Operator.h" 59 #include "llvm/IR/PatternMatch.h" 60 #include "llvm/IR/PseudoProbe.h" 61 #include "llvm/IR/Type.h" 62 #include "llvm/IR/Use.h" 63 #include "llvm/IR/User.h" 64 #include "llvm/IR/Value.h" 65 #include "llvm/IR/ValueHandle.h" 66 #include "llvm/Support/BranchProbability.h" 67 #include "llvm/Support/Casting.h" 68 #include "llvm/Support/CommandLine.h" 69 #include "llvm/Support/Debug.h" 70 #include "llvm/Support/ErrorHandling.h" 71 #include "llvm/Support/KnownBits.h" 72 #include "llvm/Support/MathExtras.h" 73 #include "llvm/Support/raw_ostream.h" 74 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 75 #include "llvm/Transforms/Utils/Local.h" 76 #include "llvm/Transforms/Utils/SSAUpdater.h" 77 #include "llvm/Transforms/Utils/ValueMapper.h" 78 #include <algorithm> 79 #include <cassert> 80 #include <climits> 81 #include <cstddef> 82 #include <cstdint> 83 #include <iterator> 84 #include <map> 85 #include <set> 86 #include <tuple> 87 #include <utility> 88 #include <vector> 89 90 using namespace llvm; 91 using namespace PatternMatch; 92 93 #define DEBUG_TYPE "simplifycfg" 94 95 cl::opt<bool> llvm::RequireAndPreserveDomTree( 96 "simplifycfg-require-and-preserve-domtree", cl::Hidden, cl::ZeroOrMore, 97 cl::init(false), 98 cl::desc("Temorary development switch used to gradually uplift SimplifyCFG " 99 "into preserving DomTree,")); 100 101 // Chosen as 2 so as to be cheap, but still to have enough power to fold 102 // a select, so the "clamp" idiom (of a min followed by a max) will be caught. 103 // To catch this, we need to fold a compare and a select, hence '2' being the 104 // minimum reasonable default. 105 static cl::opt<unsigned> PHINodeFoldingThreshold( 106 "phi-node-folding-threshold", cl::Hidden, cl::init(2), 107 cl::desc( 108 "Control the amount of phi node folding to perform (default = 2)")); 109 110 static cl::opt<unsigned> TwoEntryPHINodeFoldingThreshold( 111 "two-entry-phi-node-folding-threshold", cl::Hidden, cl::init(4), 112 cl::desc("Control the maximal total instruction cost that we are willing " 113 "to speculatively execute to fold a 2-entry PHI node into a " 114 "select (default = 4)")); 115 116 static cl::opt<bool> DupRet( 117 "simplifycfg-dup-ret", cl::Hidden, cl::init(false), 118 cl::desc("Duplicate return instructions into unconditional branches")); 119 120 static cl::opt<bool> 121 HoistCommon("simplifycfg-hoist-common", cl::Hidden, cl::init(true), 122 cl::desc("Hoist common instructions up to the parent block")); 123 124 static cl::opt<bool> 125 SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true), 126 cl::desc("Sink common instructions down to the end block")); 127 128 static cl::opt<bool> HoistCondStores( 129 "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true), 130 cl::desc("Hoist conditional stores if an unconditional store precedes")); 131 132 static cl::opt<bool> MergeCondStores( 133 "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true), 134 cl::desc("Hoist conditional stores even if an unconditional store does not " 135 "precede - hoist multiple conditional stores into a single " 136 "predicated store")); 137 138 static cl::opt<bool> MergeCondStoresAggressively( 139 "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false), 140 cl::desc("When merging conditional stores, do so even if the resultant " 141 "basic blocks are unlikely to be if-converted as a result")); 142 143 static cl::opt<bool> SpeculateOneExpensiveInst( 144 "speculate-one-expensive-inst", cl::Hidden, cl::init(true), 145 cl::desc("Allow exactly one expensive instruction to be speculatively " 146 "executed")); 147 148 static cl::opt<unsigned> MaxSpeculationDepth( 149 "max-speculation-depth", cl::Hidden, cl::init(10), 150 cl::desc("Limit maximum recursion depth when calculating costs of " 151 "speculatively executed instructions")); 152 153 static cl::opt<int> 154 MaxSmallBlockSize("simplifycfg-max-small-block-size", cl::Hidden, cl::init(10), 155 cl::desc("Max size of a block which is still considered " 156 "small enough to thread through")); 157 158 // Two is chosen to allow one negation and a logical combine. 159 static cl::opt<unsigned> 160 BranchFoldThreshold("simplifycfg-branch-fold-threshold", cl::Hidden, 161 cl::init(2), 162 cl::desc("Maximum cost of combining conditions when " 163 "folding branches")); 164 165 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps"); 166 STATISTIC(NumLinearMaps, 167 "Number of switch instructions turned into linear mapping"); 168 STATISTIC(NumLookupTables, 169 "Number of switch instructions turned into lookup tables"); 170 STATISTIC( 171 NumLookupTablesHoles, 172 "Number of switch instructions turned into lookup tables (holes checked)"); 173 STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares"); 174 STATISTIC(NumFoldValueComparisonIntoPredecessors, 175 "Number of value comparisons folded into predecessor basic blocks"); 176 STATISTIC(NumFoldBranchToCommonDest, 177 "Number of branches folded into predecessor basic block"); 178 STATISTIC( 179 NumHoistCommonCode, 180 "Number of common instruction 'blocks' hoisted up to the begin block"); 181 STATISTIC(NumHoistCommonInstrs, 182 "Number of common instructions hoisted up to the begin block"); 183 STATISTIC(NumSinkCommonCode, 184 "Number of common instruction 'blocks' sunk down to the end block"); 185 STATISTIC(NumSinkCommonInstrs, 186 "Number of common instructions sunk down to the end block"); 187 STATISTIC(NumSpeculations, "Number of speculative executed instructions"); 188 STATISTIC(NumInvokes, 189 "Number of invokes with empty resume blocks simplified into calls"); 190 191 namespace { 192 193 // The first field contains the value that the switch produces when a certain 194 // case group is selected, and the second field is a vector containing the 195 // cases composing the case group. 196 using SwitchCaseResultVectorTy = 197 SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2>; 198 199 // The first field contains the phi node that generates a result of the switch 200 // and the second field contains the value generated for a certain case in the 201 // switch for that PHI. 202 using SwitchCaseResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>; 203 204 /// ValueEqualityComparisonCase - Represents a case of a switch. 205 struct ValueEqualityComparisonCase { 206 ConstantInt *Value; 207 BasicBlock *Dest; 208 209 ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest) 210 : Value(Value), Dest(Dest) {} 211 212 bool operator<(ValueEqualityComparisonCase RHS) const { 213 // Comparing pointers is ok as we only rely on the order for uniquing. 214 return Value < RHS.Value; 215 } 216 217 bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; } 218 }; 219 220 class SimplifyCFGOpt { 221 const TargetTransformInfo &TTI; 222 DomTreeUpdater *DTU; 223 const DataLayout &DL; 224 ArrayRef<WeakVH> LoopHeaders; 225 const SimplifyCFGOptions &Options; 226 bool Resimplify; 227 228 Value *isValueEqualityComparison(Instruction *TI); 229 BasicBlock *GetValueEqualityComparisonCases( 230 Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases); 231 bool SimplifyEqualityComparisonWithOnlyPredecessor(Instruction *TI, 232 BasicBlock *Pred, 233 IRBuilder<> &Builder); 234 bool PerformValueComparisonIntoPredecessorFolding(Instruction *TI, Value *&CV, 235 Instruction *PTI, 236 IRBuilder<> &Builder); 237 bool FoldValueComparisonIntoPredecessors(Instruction *TI, 238 IRBuilder<> &Builder); 239 240 bool simplifyReturn(ReturnInst *RI, IRBuilder<> &Builder); 241 bool simplifyResume(ResumeInst *RI, IRBuilder<> &Builder); 242 bool simplifySingleResume(ResumeInst *RI); 243 bool simplifyCommonResume(ResumeInst *RI); 244 bool simplifyCleanupReturn(CleanupReturnInst *RI); 245 bool simplifyUnreachable(UnreachableInst *UI); 246 bool simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder); 247 bool simplifyIndirectBr(IndirectBrInst *IBI); 248 bool simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder); 249 bool simplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder); 250 bool simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder); 251 bool SimplifyCondBranchToTwoReturns(BranchInst *BI, IRBuilder<> &Builder); 252 253 bool tryToSimplifyUncondBranchWithICmpInIt(ICmpInst *ICI, 254 IRBuilder<> &Builder); 255 256 bool HoistThenElseCodeToIf(BranchInst *BI, const TargetTransformInfo &TTI, 257 bool EqTermsOnly); 258 bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB, 259 const TargetTransformInfo &TTI); 260 bool SimplifyTerminatorOnSelect(Instruction *OldTerm, Value *Cond, 261 BasicBlock *TrueBB, BasicBlock *FalseBB, 262 uint32_t TrueWeight, uint32_t FalseWeight); 263 bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder, 264 const DataLayout &DL); 265 bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select); 266 bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI); 267 bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder); 268 269 public: 270 SimplifyCFGOpt(const TargetTransformInfo &TTI, DomTreeUpdater *DTU, 271 const DataLayout &DL, ArrayRef<WeakVH> LoopHeaders, 272 const SimplifyCFGOptions &Opts) 273 : TTI(TTI), DTU(DTU), DL(DL), LoopHeaders(LoopHeaders), Options(Opts) { 274 assert((!DTU || !DTU->hasPostDomTree()) && 275 "SimplifyCFG is not yet capable of maintaining validity of a " 276 "PostDomTree, so don't ask for it."); 277 } 278 279 bool simplifyOnce(BasicBlock *BB); 280 bool simplifyOnceImpl(BasicBlock *BB); 281 bool run(BasicBlock *BB); 282 283 // Helper to set Resimplify and return change indication. 284 bool requestResimplify() { 285 Resimplify = true; 286 return true; 287 } 288 }; 289 290 } // end anonymous namespace 291 292 /// Return true if it is safe to merge these two 293 /// terminator instructions together. 294 static bool 295 SafeToMergeTerminators(Instruction *SI1, Instruction *SI2, 296 SmallSetVector<BasicBlock *, 4> *FailBlocks = nullptr) { 297 if (SI1 == SI2) 298 return false; // Can't merge with self! 299 300 // It is not safe to merge these two switch instructions if they have a common 301 // successor, and if that successor has a PHI node, and if *that* PHI node has 302 // conflicting incoming values from the two switch blocks. 303 BasicBlock *SI1BB = SI1->getParent(); 304 BasicBlock *SI2BB = SI2->getParent(); 305 306 SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB)); 307 bool Fail = false; 308 for (BasicBlock *Succ : successors(SI2BB)) 309 if (SI1Succs.count(Succ)) 310 for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) { 311 PHINode *PN = cast<PHINode>(BBI); 312 if (PN->getIncomingValueForBlock(SI1BB) != 313 PN->getIncomingValueForBlock(SI2BB)) { 314 if (FailBlocks) 315 FailBlocks->insert(Succ); 316 Fail = true; 317 } 318 } 319 320 return !Fail; 321 } 322 323 /// Update PHI nodes in Succ to indicate that there will now be entries in it 324 /// from the 'NewPred' block. The values that will be flowing into the PHI nodes 325 /// will be the same as those coming in from ExistPred, an existing predecessor 326 /// of Succ. 327 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred, 328 BasicBlock *ExistPred, 329 MemorySSAUpdater *MSSAU = nullptr) { 330 for (PHINode &PN : Succ->phis()) 331 PN.addIncoming(PN.getIncomingValueForBlock(ExistPred), NewPred); 332 if (MSSAU) 333 if (auto *MPhi = MSSAU->getMemorySSA()->getMemoryAccess(Succ)) 334 MPhi->addIncoming(MPhi->getIncomingValueForBlock(ExistPred), NewPred); 335 } 336 337 /// Compute an abstract "cost" of speculating the given instruction, 338 /// which is assumed to be safe to speculate. TCC_Free means cheap, 339 /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively 340 /// expensive. 341 static InstructionCost computeSpeculationCost(const User *I, 342 const TargetTransformInfo &TTI) { 343 assert(isSafeToSpeculativelyExecute(I) && 344 "Instruction is not safe to speculatively execute!"); 345 return TTI.getUserCost(I, TargetTransformInfo::TCK_SizeAndLatency); 346 } 347 348 /// If we have a merge point of an "if condition" as accepted above, 349 /// return true if the specified value dominates the block. We 350 /// don't handle the true generality of domination here, just a special case 351 /// which works well enough for us. 352 /// 353 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to 354 /// see if V (which must be an instruction) and its recursive operands 355 /// that do not dominate BB have a combined cost lower than Budget and 356 /// are non-trapping. If both are true, the instruction is inserted into the 357 /// set and true is returned. 358 /// 359 /// The cost for most non-trapping instructions is defined as 1 except for 360 /// Select whose cost is 2. 361 /// 362 /// After this function returns, Cost is increased by the cost of 363 /// V plus its non-dominating operands. If that cost is greater than 364 /// Budget, false is returned and Cost is undefined. 365 static bool dominatesMergePoint(Value *V, BasicBlock *BB, 366 SmallPtrSetImpl<Instruction *> &AggressiveInsts, 367 InstructionCost &Cost, 368 InstructionCost Budget, 369 const TargetTransformInfo &TTI, 370 unsigned Depth = 0) { 371 // It is possible to hit a zero-cost cycle (phi/gep instructions for example), 372 // so limit the recursion depth. 373 // TODO: While this recursion limit does prevent pathological behavior, it 374 // would be better to track visited instructions to avoid cycles. 375 if (Depth == MaxSpeculationDepth) 376 return false; 377 378 Instruction *I = dyn_cast<Instruction>(V); 379 if (!I) { 380 // Non-instructions all dominate instructions, but not all constantexprs 381 // can be executed unconditionally. 382 if (ConstantExpr *C = dyn_cast<ConstantExpr>(V)) 383 if (C->canTrap()) 384 return false; 385 return true; 386 } 387 BasicBlock *PBB = I->getParent(); 388 389 // We don't want to allow weird loops that might have the "if condition" in 390 // the bottom of this block. 391 if (PBB == BB) 392 return false; 393 394 // If this instruction is defined in a block that contains an unconditional 395 // branch to BB, then it must be in the 'conditional' part of the "if 396 // statement". If not, it definitely dominates the region. 397 BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator()); 398 if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB) 399 return true; 400 401 // If we have seen this instruction before, don't count it again. 402 if (AggressiveInsts.count(I)) 403 return true; 404 405 // Okay, it looks like the instruction IS in the "condition". Check to 406 // see if it's a cheap instruction to unconditionally compute, and if it 407 // only uses stuff defined outside of the condition. If so, hoist it out. 408 if (!isSafeToSpeculativelyExecute(I)) 409 return false; 410 411 Cost += computeSpeculationCost(I, TTI); 412 413 // Allow exactly one instruction to be speculated regardless of its cost 414 // (as long as it is safe to do so). 415 // This is intended to flatten the CFG even if the instruction is a division 416 // or other expensive operation. The speculation of an expensive instruction 417 // is expected to be undone in CodeGenPrepare if the speculation has not 418 // enabled further IR optimizations. 419 if (Cost > Budget && 420 (!SpeculateOneExpensiveInst || !AggressiveInsts.empty() || Depth > 0 || 421 !Cost.isValid())) 422 return false; 423 424 // Okay, we can only really hoist these out if their operands do 425 // not take us over the cost threshold. 426 for (Use &Op : I->operands()) 427 if (!dominatesMergePoint(Op, BB, AggressiveInsts, Cost, Budget, TTI, 428 Depth + 1)) 429 return false; 430 // Okay, it's safe to do this! Remember this instruction. 431 AggressiveInsts.insert(I); 432 return true; 433 } 434 435 /// Extract ConstantInt from value, looking through IntToPtr 436 /// and PointerNullValue. Return NULL if value is not a constant int. 437 static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) { 438 // Normal constant int. 439 ConstantInt *CI = dyn_cast<ConstantInt>(V); 440 if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy()) 441 return CI; 442 443 // This is some kind of pointer constant. Turn it into a pointer-sized 444 // ConstantInt if possible. 445 IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType())); 446 447 // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*). 448 if (isa<ConstantPointerNull>(V)) 449 return ConstantInt::get(PtrTy, 0); 450 451 // IntToPtr const int. 452 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 453 if (CE->getOpcode() == Instruction::IntToPtr) 454 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) { 455 // The constant is very likely to have the right type already. 456 if (CI->getType() == PtrTy) 457 return CI; 458 else 459 return cast<ConstantInt>( 460 ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false)); 461 } 462 return nullptr; 463 } 464 465 namespace { 466 467 /// Given a chain of or (||) or and (&&) comparison of a value against a 468 /// constant, this will try to recover the information required for a switch 469 /// structure. 470 /// It will depth-first traverse the chain of comparison, seeking for patterns 471 /// like %a == 12 or %a < 4 and combine them to produce a set of integer 472 /// representing the different cases for the switch. 473 /// Note that if the chain is composed of '||' it will build the set of elements 474 /// that matches the comparisons (i.e. any of this value validate the chain) 475 /// while for a chain of '&&' it will build the set elements that make the test 476 /// fail. 477 struct ConstantComparesGatherer { 478 const DataLayout &DL; 479 480 /// Value found for the switch comparison 481 Value *CompValue = nullptr; 482 483 /// Extra clause to be checked before the switch 484 Value *Extra = nullptr; 485 486 /// Set of integers to match in switch 487 SmallVector<ConstantInt *, 8> Vals; 488 489 /// Number of comparisons matched in the and/or chain 490 unsigned UsedICmps = 0; 491 492 /// Construct and compute the result for the comparison instruction Cond 493 ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL) : DL(DL) { 494 gather(Cond); 495 } 496 497 ConstantComparesGatherer(const ConstantComparesGatherer &) = delete; 498 ConstantComparesGatherer & 499 operator=(const ConstantComparesGatherer &) = delete; 500 501 private: 502 /// Try to set the current value used for the comparison, it succeeds only if 503 /// it wasn't set before or if the new value is the same as the old one 504 bool setValueOnce(Value *NewVal) { 505 if (CompValue && CompValue != NewVal) 506 return false; 507 CompValue = NewVal; 508 return (CompValue != nullptr); 509 } 510 511 /// Try to match Instruction "I" as a comparison against a constant and 512 /// populates the array Vals with the set of values that match (or do not 513 /// match depending on isEQ). 514 /// Return false on failure. On success, the Value the comparison matched 515 /// against is placed in CompValue. 516 /// If CompValue is already set, the function is expected to fail if a match 517 /// is found but the value compared to is different. 518 bool matchInstruction(Instruction *I, bool isEQ) { 519 // If this is an icmp against a constant, handle this as one of the cases. 520 ICmpInst *ICI; 521 ConstantInt *C; 522 if (!((ICI = dyn_cast<ICmpInst>(I)) && 523 (C = GetConstantInt(I->getOperand(1), DL)))) { 524 return false; 525 } 526 527 Value *RHSVal; 528 const APInt *RHSC; 529 530 // Pattern match a special case 531 // (x & ~2^z) == y --> x == y || x == y|2^z 532 // This undoes a transformation done by instcombine to fuse 2 compares. 533 if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE)) { 534 // It's a little bit hard to see why the following transformations are 535 // correct. Here is a CVC3 program to verify them for 64-bit values: 536 537 /* 538 ONE : BITVECTOR(64) = BVZEROEXTEND(0bin1, 63); 539 x : BITVECTOR(64); 540 y : BITVECTOR(64); 541 z : BITVECTOR(64); 542 mask : BITVECTOR(64) = BVSHL(ONE, z); 543 QUERY( (y & ~mask = y) => 544 ((x & ~mask = y) <=> (x = y OR x = (y | mask))) 545 ); 546 QUERY( (y | mask = y) => 547 ((x | mask = y) <=> (x = y OR x = (y & ~mask))) 548 ); 549 */ 550 551 // Please note that each pattern must be a dual implication (<--> or 552 // iff). One directional implication can create spurious matches. If the 553 // implication is only one-way, an unsatisfiable condition on the left 554 // side can imply a satisfiable condition on the right side. Dual 555 // implication ensures that satisfiable conditions are transformed to 556 // other satisfiable conditions and unsatisfiable conditions are 557 // transformed to other unsatisfiable conditions. 558 559 // Here is a concrete example of a unsatisfiable condition on the left 560 // implying a satisfiable condition on the right: 561 // 562 // mask = (1 << z) 563 // (x & ~mask) == y --> (x == y || x == (y | mask)) 564 // 565 // Substituting y = 3, z = 0 yields: 566 // (x & -2) == 3 --> (x == 3 || x == 2) 567 568 // Pattern match a special case: 569 /* 570 QUERY( (y & ~mask = y) => 571 ((x & ~mask = y) <=> (x = y OR x = (y | mask))) 572 ); 573 */ 574 if (match(ICI->getOperand(0), 575 m_And(m_Value(RHSVal), m_APInt(RHSC)))) { 576 APInt Mask = ~*RHSC; 577 if (Mask.isPowerOf2() && (C->getValue() & ~Mask) == C->getValue()) { 578 // If we already have a value for the switch, it has to match! 579 if (!setValueOnce(RHSVal)) 580 return false; 581 582 Vals.push_back(C); 583 Vals.push_back( 584 ConstantInt::get(C->getContext(), 585 C->getValue() | Mask)); 586 UsedICmps++; 587 return true; 588 } 589 } 590 591 // Pattern match a special case: 592 /* 593 QUERY( (y | mask = y) => 594 ((x | mask = y) <=> (x = y OR x = (y & ~mask))) 595 ); 596 */ 597 if (match(ICI->getOperand(0), 598 m_Or(m_Value(RHSVal), m_APInt(RHSC)))) { 599 APInt Mask = *RHSC; 600 if (Mask.isPowerOf2() && (C->getValue() | Mask) == C->getValue()) { 601 // If we already have a value for the switch, it has to match! 602 if (!setValueOnce(RHSVal)) 603 return false; 604 605 Vals.push_back(C); 606 Vals.push_back(ConstantInt::get(C->getContext(), 607 C->getValue() & ~Mask)); 608 UsedICmps++; 609 return true; 610 } 611 } 612 613 // If we already have a value for the switch, it has to match! 614 if (!setValueOnce(ICI->getOperand(0))) 615 return false; 616 617 UsedICmps++; 618 Vals.push_back(C); 619 return ICI->getOperand(0); 620 } 621 622 // If we have "x ult 3", for example, then we can add 0,1,2 to the set. 623 ConstantRange Span = ConstantRange::makeAllowedICmpRegion( 624 ICI->getPredicate(), C->getValue()); 625 626 // Shift the range if the compare is fed by an add. This is the range 627 // compare idiom as emitted by instcombine. 628 Value *CandidateVal = I->getOperand(0); 629 if (match(I->getOperand(0), m_Add(m_Value(RHSVal), m_APInt(RHSC)))) { 630 Span = Span.subtract(*RHSC); 631 CandidateVal = RHSVal; 632 } 633 634 // If this is an and/!= check, then we are looking to build the set of 635 // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into 636 // x != 0 && x != 1. 637 if (!isEQ) 638 Span = Span.inverse(); 639 640 // If there are a ton of values, we don't want to make a ginormous switch. 641 if (Span.isSizeLargerThan(8) || Span.isEmptySet()) { 642 return false; 643 } 644 645 // If we already have a value for the switch, it has to match! 646 if (!setValueOnce(CandidateVal)) 647 return false; 648 649 // Add all values from the range to the set 650 for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp) 651 Vals.push_back(ConstantInt::get(I->getContext(), Tmp)); 652 653 UsedICmps++; 654 return true; 655 } 656 657 /// Given a potentially 'or'd or 'and'd together collection of icmp 658 /// eq/ne/lt/gt instructions that compare a value against a constant, extract 659 /// the value being compared, and stick the list constants into the Vals 660 /// vector. 661 /// One "Extra" case is allowed to differ from the other. 662 void gather(Value *V) { 663 bool isEQ = match(V, m_LogicalOr(m_Value(), m_Value())); 664 665 // Keep a stack (SmallVector for efficiency) for depth-first traversal 666 SmallVector<Value *, 8> DFT; 667 SmallPtrSet<Value *, 8> Visited; 668 669 // Initialize 670 Visited.insert(V); 671 DFT.push_back(V); 672 673 while (!DFT.empty()) { 674 V = DFT.pop_back_val(); 675 676 if (Instruction *I = dyn_cast<Instruction>(V)) { 677 // If it is a || (or && depending on isEQ), process the operands. 678 Value *Op0, *Op1; 679 if (isEQ ? match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))) 680 : match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) { 681 if (Visited.insert(Op1).second) 682 DFT.push_back(Op1); 683 if (Visited.insert(Op0).second) 684 DFT.push_back(Op0); 685 686 continue; 687 } 688 689 // Try to match the current instruction 690 if (matchInstruction(I, isEQ)) 691 // Match succeed, continue the loop 692 continue; 693 } 694 695 // One element of the sequence of || (or &&) could not be match as a 696 // comparison against the same value as the others. 697 // We allow only one "Extra" case to be checked before the switch 698 if (!Extra) { 699 Extra = V; 700 continue; 701 } 702 // Failed to parse a proper sequence, abort now 703 CompValue = nullptr; 704 break; 705 } 706 } 707 }; 708 709 } // end anonymous namespace 710 711 static void EraseTerminatorAndDCECond(Instruction *TI, 712 MemorySSAUpdater *MSSAU = nullptr) { 713 Instruction *Cond = nullptr; 714 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 715 Cond = dyn_cast<Instruction>(SI->getCondition()); 716 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 717 if (BI->isConditional()) 718 Cond = dyn_cast<Instruction>(BI->getCondition()); 719 } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) { 720 Cond = dyn_cast<Instruction>(IBI->getAddress()); 721 } 722 723 TI->eraseFromParent(); 724 if (Cond) 725 RecursivelyDeleteTriviallyDeadInstructions(Cond, nullptr, MSSAU); 726 } 727 728 /// Return true if the specified terminator checks 729 /// to see if a value is equal to constant integer value. 730 Value *SimplifyCFGOpt::isValueEqualityComparison(Instruction *TI) { 731 Value *CV = nullptr; 732 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 733 // Do not permit merging of large switch instructions into their 734 // predecessors unless there is only one predecessor. 735 if (!SI->getParent()->hasNPredecessorsOrMore(128 / SI->getNumSuccessors())) 736 CV = SI->getCondition(); 737 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) 738 if (BI->isConditional() && BI->getCondition()->hasOneUse()) 739 if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) { 740 if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL)) 741 CV = ICI->getOperand(0); 742 } 743 744 // Unwrap any lossless ptrtoint cast. 745 if (CV) { 746 if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) { 747 Value *Ptr = PTII->getPointerOperand(); 748 if (PTII->getType() == DL.getIntPtrType(Ptr->getType())) 749 CV = Ptr; 750 } 751 } 752 return CV; 753 } 754 755 /// Given a value comparison instruction, 756 /// decode all of the 'cases' that it represents and return the 'default' block. 757 BasicBlock *SimplifyCFGOpt::GetValueEqualityComparisonCases( 758 Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases) { 759 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 760 Cases.reserve(SI->getNumCases()); 761 for (auto Case : SI->cases()) 762 Cases.push_back(ValueEqualityComparisonCase(Case.getCaseValue(), 763 Case.getCaseSuccessor())); 764 return SI->getDefaultDest(); 765 } 766 767 BranchInst *BI = cast<BranchInst>(TI); 768 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 769 BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE); 770 Cases.push_back(ValueEqualityComparisonCase( 771 GetConstantInt(ICI->getOperand(1), DL), Succ)); 772 return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ); 773 } 774 775 /// Given a vector of bb/value pairs, remove any entries 776 /// in the list that match the specified block. 777 static void 778 EliminateBlockCases(BasicBlock *BB, 779 std::vector<ValueEqualityComparisonCase> &Cases) { 780 llvm::erase_value(Cases, BB); 781 } 782 783 /// Return true if there are any keys in C1 that exist in C2 as well. 784 static bool ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1, 785 std::vector<ValueEqualityComparisonCase> &C2) { 786 std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2; 787 788 // Make V1 be smaller than V2. 789 if (V1->size() > V2->size()) 790 std::swap(V1, V2); 791 792 if (V1->empty()) 793 return false; 794 if (V1->size() == 1) { 795 // Just scan V2. 796 ConstantInt *TheVal = (*V1)[0].Value; 797 for (unsigned i = 0, e = V2->size(); i != e; ++i) 798 if (TheVal == (*V2)[i].Value) 799 return true; 800 } 801 802 // Otherwise, just sort both lists and compare element by element. 803 array_pod_sort(V1->begin(), V1->end()); 804 array_pod_sort(V2->begin(), V2->end()); 805 unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size(); 806 while (i1 != e1 && i2 != e2) { 807 if ((*V1)[i1].Value == (*V2)[i2].Value) 808 return true; 809 if ((*V1)[i1].Value < (*V2)[i2].Value) 810 ++i1; 811 else 812 ++i2; 813 } 814 return false; 815 } 816 817 // Set branch weights on SwitchInst. This sets the metadata if there is at 818 // least one non-zero weight. 819 static void setBranchWeights(SwitchInst *SI, ArrayRef<uint32_t> Weights) { 820 // Check that there is at least one non-zero weight. Otherwise, pass 821 // nullptr to setMetadata which will erase the existing metadata. 822 MDNode *N = nullptr; 823 if (llvm::any_of(Weights, [](uint32_t W) { return W != 0; })) 824 N = MDBuilder(SI->getParent()->getContext()).createBranchWeights(Weights); 825 SI->setMetadata(LLVMContext::MD_prof, N); 826 } 827 828 // Similar to the above, but for branch and select instructions that take 829 // exactly 2 weights. 830 static void setBranchWeights(Instruction *I, uint32_t TrueWeight, 831 uint32_t FalseWeight) { 832 assert(isa<BranchInst>(I) || isa<SelectInst>(I)); 833 // Check that there is at least one non-zero weight. Otherwise, pass 834 // nullptr to setMetadata which will erase the existing metadata. 835 MDNode *N = nullptr; 836 if (TrueWeight || FalseWeight) 837 N = MDBuilder(I->getParent()->getContext()) 838 .createBranchWeights(TrueWeight, FalseWeight); 839 I->setMetadata(LLVMContext::MD_prof, N); 840 } 841 842 /// If TI is known to be a terminator instruction and its block is known to 843 /// only have a single predecessor block, check to see if that predecessor is 844 /// also a value comparison with the same value, and if that comparison 845 /// determines the outcome of this comparison. If so, simplify TI. This does a 846 /// very limited form of jump threading. 847 bool SimplifyCFGOpt::SimplifyEqualityComparisonWithOnlyPredecessor( 848 Instruction *TI, BasicBlock *Pred, IRBuilder<> &Builder) { 849 Value *PredVal = isValueEqualityComparison(Pred->getTerminator()); 850 if (!PredVal) 851 return false; // Not a value comparison in predecessor. 852 853 Value *ThisVal = isValueEqualityComparison(TI); 854 assert(ThisVal && "This isn't a value comparison!!"); 855 if (ThisVal != PredVal) 856 return false; // Different predicates. 857 858 // TODO: Preserve branch weight metadata, similarly to how 859 // FoldValueComparisonIntoPredecessors preserves it. 860 861 // Find out information about when control will move from Pred to TI's block. 862 std::vector<ValueEqualityComparisonCase> PredCases; 863 BasicBlock *PredDef = 864 GetValueEqualityComparisonCases(Pred->getTerminator(), PredCases); 865 EliminateBlockCases(PredDef, PredCases); // Remove default from cases. 866 867 // Find information about how control leaves this block. 868 std::vector<ValueEqualityComparisonCase> ThisCases; 869 BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases); 870 EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases. 871 872 // If TI's block is the default block from Pred's comparison, potentially 873 // simplify TI based on this knowledge. 874 if (PredDef == TI->getParent()) { 875 // If we are here, we know that the value is none of those cases listed in 876 // PredCases. If there are any cases in ThisCases that are in PredCases, we 877 // can simplify TI. 878 if (!ValuesOverlap(PredCases, ThisCases)) 879 return false; 880 881 if (isa<BranchInst>(TI)) { 882 // Okay, one of the successors of this condbr is dead. Convert it to a 883 // uncond br. 884 assert(ThisCases.size() == 1 && "Branch can only have one case!"); 885 // Insert the new branch. 886 Instruction *NI = Builder.CreateBr(ThisDef); 887 (void)NI; 888 889 // Remove PHI node entries for the dead edge. 890 ThisCases[0].Dest->removePredecessor(PredDef); 891 892 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 893 << "Through successor TI: " << *TI << "Leaving: " << *NI 894 << "\n"); 895 896 EraseTerminatorAndDCECond(TI); 897 898 if (DTU) 899 DTU->applyUpdates( 900 {{DominatorTree::Delete, PredDef, ThisCases[0].Dest}}); 901 902 return true; 903 } 904 905 SwitchInstProfUpdateWrapper SI = *cast<SwitchInst>(TI); 906 // Okay, TI has cases that are statically dead, prune them away. 907 SmallPtrSet<Constant *, 16> DeadCases; 908 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 909 DeadCases.insert(PredCases[i].Value); 910 911 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 912 << "Through successor TI: " << *TI); 913 914 SmallDenseMap<BasicBlock *, int, 8> NumPerSuccessorCases; 915 for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) { 916 --i; 917 auto *Successor = i->getCaseSuccessor(); 918 if (DTU) 919 ++NumPerSuccessorCases[Successor]; 920 if (DeadCases.count(i->getCaseValue())) { 921 Successor->removePredecessor(PredDef); 922 SI.removeCase(i); 923 if (DTU) 924 --NumPerSuccessorCases[Successor]; 925 } 926 } 927 928 if (DTU) { 929 std::vector<DominatorTree::UpdateType> Updates; 930 for (const std::pair<BasicBlock *, int> &I : NumPerSuccessorCases) 931 if (I.second == 0) 932 Updates.push_back({DominatorTree::Delete, PredDef, I.first}); 933 DTU->applyUpdates(Updates); 934 } 935 936 LLVM_DEBUG(dbgs() << "Leaving: " << *TI << "\n"); 937 return true; 938 } 939 940 // Otherwise, TI's block must correspond to some matched value. Find out 941 // which value (or set of values) this is. 942 ConstantInt *TIV = nullptr; 943 BasicBlock *TIBB = TI->getParent(); 944 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 945 if (PredCases[i].Dest == TIBB) { 946 if (TIV) 947 return false; // Cannot handle multiple values coming to this block. 948 TIV = PredCases[i].Value; 949 } 950 assert(TIV && "No edge from pred to succ?"); 951 952 // Okay, we found the one constant that our value can be if we get into TI's 953 // BB. Find out which successor will unconditionally be branched to. 954 BasicBlock *TheRealDest = nullptr; 955 for (unsigned i = 0, e = ThisCases.size(); i != e; ++i) 956 if (ThisCases[i].Value == TIV) { 957 TheRealDest = ThisCases[i].Dest; 958 break; 959 } 960 961 // If not handled by any explicit cases, it is handled by the default case. 962 if (!TheRealDest) 963 TheRealDest = ThisDef; 964 965 SmallPtrSet<BasicBlock *, 2> RemovedSuccs; 966 967 // Remove PHI node entries for dead edges. 968 BasicBlock *CheckEdge = TheRealDest; 969 for (BasicBlock *Succ : successors(TIBB)) 970 if (Succ != CheckEdge) { 971 if (Succ != TheRealDest) 972 RemovedSuccs.insert(Succ); 973 Succ->removePredecessor(TIBB); 974 } else 975 CheckEdge = nullptr; 976 977 // Insert the new branch. 978 Instruction *NI = Builder.CreateBr(TheRealDest); 979 (void)NI; 980 981 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 982 << "Through successor TI: " << *TI << "Leaving: " << *NI 983 << "\n"); 984 985 EraseTerminatorAndDCECond(TI); 986 if (DTU) { 987 SmallVector<DominatorTree::UpdateType, 2> Updates; 988 Updates.reserve(RemovedSuccs.size()); 989 for (auto *RemovedSucc : RemovedSuccs) 990 Updates.push_back({DominatorTree::Delete, TIBB, RemovedSucc}); 991 DTU->applyUpdates(Updates); 992 } 993 return true; 994 } 995 996 namespace { 997 998 /// This class implements a stable ordering of constant 999 /// integers that does not depend on their address. This is important for 1000 /// applications that sort ConstantInt's to ensure uniqueness. 1001 struct ConstantIntOrdering { 1002 bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const { 1003 return LHS->getValue().ult(RHS->getValue()); 1004 } 1005 }; 1006 1007 } // end anonymous namespace 1008 1009 static int ConstantIntSortPredicate(ConstantInt *const *P1, 1010 ConstantInt *const *P2) { 1011 const ConstantInt *LHS = *P1; 1012 const ConstantInt *RHS = *P2; 1013 if (LHS == RHS) 1014 return 0; 1015 return LHS->getValue().ult(RHS->getValue()) ? 1 : -1; 1016 } 1017 1018 static inline bool HasBranchWeights(const Instruction *I) { 1019 MDNode *ProfMD = I->getMetadata(LLVMContext::MD_prof); 1020 if (ProfMD && ProfMD->getOperand(0)) 1021 if (MDString *MDS = dyn_cast<MDString>(ProfMD->getOperand(0))) 1022 return MDS->getString().equals("branch_weights"); 1023 1024 return false; 1025 } 1026 1027 /// Get Weights of a given terminator, the default weight is at the front 1028 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight 1029 /// metadata. 1030 static void GetBranchWeights(Instruction *TI, 1031 SmallVectorImpl<uint64_t> &Weights) { 1032 MDNode *MD = TI->getMetadata(LLVMContext::MD_prof); 1033 assert(MD); 1034 for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) { 1035 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i)); 1036 Weights.push_back(CI->getValue().getZExtValue()); 1037 } 1038 1039 // If TI is a conditional eq, the default case is the false case, 1040 // and the corresponding branch-weight data is at index 2. We swap the 1041 // default weight to be the first entry. 1042 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 1043 assert(Weights.size() == 2); 1044 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 1045 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 1046 std::swap(Weights.front(), Weights.back()); 1047 } 1048 } 1049 1050 /// Keep halving the weights until all can fit in uint32_t. 1051 static void FitWeights(MutableArrayRef<uint64_t> Weights) { 1052 uint64_t Max = *std::max_element(Weights.begin(), Weights.end()); 1053 if (Max > UINT_MAX) { 1054 unsigned Offset = 32 - countLeadingZeros(Max); 1055 for (uint64_t &I : Weights) 1056 I >>= Offset; 1057 } 1058 } 1059 1060 static void CloneInstructionsIntoPredecessorBlockAndUpdateSSAUses( 1061 BasicBlock *BB, BasicBlock *PredBlock, ValueToValueMapTy &VMap) { 1062 Instruction *PTI = PredBlock->getTerminator(); 1063 1064 // If we have bonus instructions, clone them into the predecessor block. 1065 // Note that there may be multiple predecessor blocks, so we cannot move 1066 // bonus instructions to a predecessor block. 1067 for (Instruction &BonusInst : *BB) { 1068 if (isa<DbgInfoIntrinsic>(BonusInst) || BonusInst.isTerminator()) 1069 continue; 1070 1071 Instruction *NewBonusInst = BonusInst.clone(); 1072 1073 if (PTI->getDebugLoc() != NewBonusInst->getDebugLoc()) { 1074 // Unless the instruction has the same !dbg location as the original 1075 // branch, drop it. When we fold the bonus instructions we want to make 1076 // sure we reset their debug locations in order to avoid stepping on 1077 // dead code caused by folding dead branches. 1078 NewBonusInst->setDebugLoc(DebugLoc()); 1079 } 1080 1081 RemapInstruction(NewBonusInst, VMap, 1082 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 1083 VMap[&BonusInst] = NewBonusInst; 1084 1085 // If we moved a load, we cannot any longer claim any knowledge about 1086 // its potential value. The previous information might have been valid 1087 // only given the branch precondition. 1088 // For an analogous reason, we must also drop all the metadata whose 1089 // semantics we don't understand. We *can* preserve !annotation, because 1090 // it is tied to the instruction itself, not the value or position. 1091 NewBonusInst->dropUnknownNonDebugMetadata(LLVMContext::MD_annotation); 1092 1093 PredBlock->getInstList().insert(PTI->getIterator(), NewBonusInst); 1094 NewBonusInst->takeName(&BonusInst); 1095 BonusInst.setName(NewBonusInst->getName() + ".old"); 1096 1097 // Update (liveout) uses of bonus instructions, 1098 // now that the bonus instruction has been cloned into predecessor. 1099 SSAUpdater SSAUpdate; 1100 SSAUpdate.Initialize(BonusInst.getType(), 1101 (NewBonusInst->getName() + ".merge").str()); 1102 SSAUpdate.AddAvailableValue(BB, &BonusInst); 1103 SSAUpdate.AddAvailableValue(PredBlock, NewBonusInst); 1104 for (Use &U : make_early_inc_range(BonusInst.uses())) { 1105 auto *UI = cast<Instruction>(U.getUser()); 1106 if (UI->getParent() != PredBlock) 1107 SSAUpdate.RewriteUseAfterInsertions(U); 1108 else // Use is in the same block as, and comes before, NewBonusInst. 1109 SSAUpdate.RewriteUse(U); 1110 } 1111 } 1112 } 1113 1114 bool SimplifyCFGOpt::PerformValueComparisonIntoPredecessorFolding( 1115 Instruction *TI, Value *&CV, Instruction *PTI, IRBuilder<> &Builder) { 1116 BasicBlock *BB = TI->getParent(); 1117 BasicBlock *Pred = PTI->getParent(); 1118 1119 SmallVector<DominatorTree::UpdateType, 32> Updates; 1120 1121 // Figure out which 'cases' to copy from SI to PSI. 1122 std::vector<ValueEqualityComparisonCase> BBCases; 1123 BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases); 1124 1125 std::vector<ValueEqualityComparisonCase> PredCases; 1126 BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases); 1127 1128 // Based on whether the default edge from PTI goes to BB or not, fill in 1129 // PredCases and PredDefault with the new switch cases we would like to 1130 // build. 1131 SmallMapVector<BasicBlock *, int, 8> NewSuccessors; 1132 1133 // Update the branch weight metadata along the way 1134 SmallVector<uint64_t, 8> Weights; 1135 bool PredHasWeights = HasBranchWeights(PTI); 1136 bool SuccHasWeights = HasBranchWeights(TI); 1137 1138 if (PredHasWeights) { 1139 GetBranchWeights(PTI, Weights); 1140 // branch-weight metadata is inconsistent here. 1141 if (Weights.size() != 1 + PredCases.size()) 1142 PredHasWeights = SuccHasWeights = false; 1143 } else if (SuccHasWeights) 1144 // If there are no predecessor weights but there are successor weights, 1145 // populate Weights with 1, which will later be scaled to the sum of 1146 // successor's weights 1147 Weights.assign(1 + PredCases.size(), 1); 1148 1149 SmallVector<uint64_t, 8> SuccWeights; 1150 if (SuccHasWeights) { 1151 GetBranchWeights(TI, SuccWeights); 1152 // branch-weight metadata is inconsistent here. 1153 if (SuccWeights.size() != 1 + BBCases.size()) 1154 PredHasWeights = SuccHasWeights = false; 1155 } else if (PredHasWeights) 1156 SuccWeights.assign(1 + BBCases.size(), 1); 1157 1158 if (PredDefault == BB) { 1159 // If this is the default destination from PTI, only the edges in TI 1160 // that don't occur in PTI, or that branch to BB will be activated. 1161 std::set<ConstantInt *, ConstantIntOrdering> PTIHandled; 1162 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 1163 if (PredCases[i].Dest != BB) 1164 PTIHandled.insert(PredCases[i].Value); 1165 else { 1166 // The default destination is BB, we don't need explicit targets. 1167 std::swap(PredCases[i], PredCases.back()); 1168 1169 if (PredHasWeights || SuccHasWeights) { 1170 // Increase weight for the default case. 1171 Weights[0] += Weights[i + 1]; 1172 std::swap(Weights[i + 1], Weights.back()); 1173 Weights.pop_back(); 1174 } 1175 1176 PredCases.pop_back(); 1177 --i; 1178 --e; 1179 } 1180 1181 // Reconstruct the new switch statement we will be building. 1182 if (PredDefault != BBDefault) { 1183 PredDefault->removePredecessor(Pred); 1184 if (DTU && PredDefault != BB) 1185 Updates.push_back({DominatorTree::Delete, Pred, PredDefault}); 1186 PredDefault = BBDefault; 1187 ++NewSuccessors[BBDefault]; 1188 } 1189 1190 unsigned CasesFromPred = Weights.size(); 1191 uint64_t ValidTotalSuccWeight = 0; 1192 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 1193 if (!PTIHandled.count(BBCases[i].Value) && BBCases[i].Dest != BBDefault) { 1194 PredCases.push_back(BBCases[i]); 1195 ++NewSuccessors[BBCases[i].Dest]; 1196 if (SuccHasWeights || PredHasWeights) { 1197 // The default weight is at index 0, so weight for the ith case 1198 // should be at index i+1. Scale the cases from successor by 1199 // PredDefaultWeight (Weights[0]). 1200 Weights.push_back(Weights[0] * SuccWeights[i + 1]); 1201 ValidTotalSuccWeight += SuccWeights[i + 1]; 1202 } 1203 } 1204 1205 if (SuccHasWeights || PredHasWeights) { 1206 ValidTotalSuccWeight += SuccWeights[0]; 1207 // Scale the cases from predecessor by ValidTotalSuccWeight. 1208 for (unsigned i = 1; i < CasesFromPred; ++i) 1209 Weights[i] *= ValidTotalSuccWeight; 1210 // Scale the default weight by SuccDefaultWeight (SuccWeights[0]). 1211 Weights[0] *= SuccWeights[0]; 1212 } 1213 } else { 1214 // If this is not the default destination from PSI, only the edges 1215 // in SI that occur in PSI with a destination of BB will be 1216 // activated. 1217 std::set<ConstantInt *, ConstantIntOrdering> PTIHandled; 1218 std::map<ConstantInt *, uint64_t> WeightsForHandled; 1219 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 1220 if (PredCases[i].Dest == BB) { 1221 PTIHandled.insert(PredCases[i].Value); 1222 1223 if (PredHasWeights || SuccHasWeights) { 1224 WeightsForHandled[PredCases[i].Value] = Weights[i + 1]; 1225 std::swap(Weights[i + 1], Weights.back()); 1226 Weights.pop_back(); 1227 } 1228 1229 std::swap(PredCases[i], PredCases.back()); 1230 PredCases.pop_back(); 1231 --i; 1232 --e; 1233 } 1234 1235 // Okay, now we know which constants were sent to BB from the 1236 // predecessor. Figure out where they will all go now. 1237 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 1238 if (PTIHandled.count(BBCases[i].Value)) { 1239 // If this is one we are capable of getting... 1240 if (PredHasWeights || SuccHasWeights) 1241 Weights.push_back(WeightsForHandled[BBCases[i].Value]); 1242 PredCases.push_back(BBCases[i]); 1243 ++NewSuccessors[BBCases[i].Dest]; 1244 PTIHandled.erase(BBCases[i].Value); // This constant is taken care of 1245 } 1246 1247 // If there are any constants vectored to BB that TI doesn't handle, 1248 // they must go to the default destination of TI. 1249 for (ConstantInt *I : PTIHandled) { 1250 if (PredHasWeights || SuccHasWeights) 1251 Weights.push_back(WeightsForHandled[I]); 1252 PredCases.push_back(ValueEqualityComparisonCase(I, BBDefault)); 1253 ++NewSuccessors[BBDefault]; 1254 } 1255 } 1256 1257 // Okay, at this point, we know which new successor Pred will get. Make 1258 // sure we update the number of entries in the PHI nodes for these 1259 // successors. 1260 SmallPtrSet<BasicBlock *, 2> SuccsOfPred; 1261 if (DTU) { 1262 SuccsOfPred = {succ_begin(Pred), succ_end(Pred)}; 1263 Updates.reserve(Updates.size() + NewSuccessors.size()); 1264 } 1265 for (const std::pair<BasicBlock *, int /*Num*/> &NewSuccessor : 1266 NewSuccessors) { 1267 for (auto I : seq(0, NewSuccessor.second)) { 1268 (void)I; 1269 AddPredecessorToBlock(NewSuccessor.first, Pred, BB); 1270 } 1271 if (DTU && !SuccsOfPred.contains(NewSuccessor.first)) 1272 Updates.push_back({DominatorTree::Insert, Pred, NewSuccessor.first}); 1273 } 1274 1275 Builder.SetInsertPoint(PTI); 1276 // Convert pointer to int before we switch. 1277 if (CV->getType()->isPointerTy()) { 1278 CV = 1279 Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()), "magicptr"); 1280 } 1281 1282 // Now that the successors are updated, create the new Switch instruction. 1283 SwitchInst *NewSI = Builder.CreateSwitch(CV, PredDefault, PredCases.size()); 1284 NewSI->setDebugLoc(PTI->getDebugLoc()); 1285 for (ValueEqualityComparisonCase &V : PredCases) 1286 NewSI->addCase(V.Value, V.Dest); 1287 1288 if (PredHasWeights || SuccHasWeights) { 1289 // Halve the weights if any of them cannot fit in an uint32_t 1290 FitWeights(Weights); 1291 1292 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 1293 1294 setBranchWeights(NewSI, MDWeights); 1295 } 1296 1297 EraseTerminatorAndDCECond(PTI); 1298 1299 // Okay, last check. If BB is still a successor of PSI, then we must 1300 // have an infinite loop case. If so, add an infinitely looping block 1301 // to handle the case to preserve the behavior of the code. 1302 BasicBlock *InfLoopBlock = nullptr; 1303 for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i) 1304 if (NewSI->getSuccessor(i) == BB) { 1305 if (!InfLoopBlock) { 1306 // Insert it at the end of the function, because it's either code, 1307 // or it won't matter if it's hot. :) 1308 InfLoopBlock = 1309 BasicBlock::Create(BB->getContext(), "infloop", BB->getParent()); 1310 BranchInst::Create(InfLoopBlock, InfLoopBlock); 1311 if (DTU) 1312 Updates.push_back( 1313 {DominatorTree::Insert, InfLoopBlock, InfLoopBlock}); 1314 } 1315 NewSI->setSuccessor(i, InfLoopBlock); 1316 } 1317 1318 if (DTU) { 1319 if (InfLoopBlock) 1320 Updates.push_back({DominatorTree::Insert, Pred, InfLoopBlock}); 1321 1322 Updates.push_back({DominatorTree::Delete, Pred, BB}); 1323 1324 DTU->applyUpdates(Updates); 1325 } 1326 1327 ++NumFoldValueComparisonIntoPredecessors; 1328 return true; 1329 } 1330 1331 /// The specified terminator is a value equality comparison instruction 1332 /// (either a switch or a branch on "X == c"). 1333 /// See if any of the predecessors of the terminator block are value comparisons 1334 /// on the same value. If so, and if safe to do so, fold them together. 1335 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(Instruction *TI, 1336 IRBuilder<> &Builder) { 1337 BasicBlock *BB = TI->getParent(); 1338 Value *CV = isValueEqualityComparison(TI); // CondVal 1339 assert(CV && "Not a comparison?"); 1340 1341 bool Changed = false; 1342 1343 SmallSetVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB)); 1344 while (!Preds.empty()) { 1345 BasicBlock *Pred = Preds.pop_back_val(); 1346 Instruction *PTI = Pred->getTerminator(); 1347 1348 // Don't try to fold into itself. 1349 if (Pred == BB) 1350 continue; 1351 1352 // See if the predecessor is a comparison with the same value. 1353 Value *PCV = isValueEqualityComparison(PTI); // PredCondVal 1354 if (PCV != CV) 1355 continue; 1356 1357 SmallSetVector<BasicBlock *, 4> FailBlocks; 1358 if (!SafeToMergeTerminators(TI, PTI, &FailBlocks)) { 1359 for (auto *Succ : FailBlocks) { 1360 if (!SplitBlockPredecessors(Succ, TI->getParent(), ".fold.split", DTU)) 1361 return false; 1362 } 1363 } 1364 1365 PerformValueComparisonIntoPredecessorFolding(TI, CV, PTI, Builder); 1366 Changed = true; 1367 } 1368 return Changed; 1369 } 1370 1371 // If we would need to insert a select that uses the value of this invoke 1372 // (comments in HoistThenElseCodeToIf explain why we would need to do this), we 1373 // can't hoist the invoke, as there is nowhere to put the select in this case. 1374 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2, 1375 Instruction *I1, Instruction *I2) { 1376 for (BasicBlock *Succ : successors(BB1)) { 1377 for (const PHINode &PN : Succ->phis()) { 1378 Value *BB1V = PN.getIncomingValueForBlock(BB1); 1379 Value *BB2V = PN.getIncomingValueForBlock(BB2); 1380 if (BB1V != BB2V && (BB1V == I1 || BB2V == I2)) { 1381 return false; 1382 } 1383 } 1384 } 1385 return true; 1386 } 1387 1388 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I, bool PtrValueMayBeModified = false); 1389 1390 /// Given a conditional branch that goes to BB1 and BB2, hoist any common code 1391 /// in the two blocks up into the branch block. The caller of this function 1392 /// guarantees that BI's block dominates BB1 and BB2. If EqTermsOnly is given, 1393 /// only perform hoisting in case both blocks only contain a terminator. In that 1394 /// case, only the original BI will be replaced and selects for PHIs are added. 1395 bool SimplifyCFGOpt::HoistThenElseCodeToIf(BranchInst *BI, 1396 const TargetTransformInfo &TTI, 1397 bool EqTermsOnly) { 1398 // This does very trivial matching, with limited scanning, to find identical 1399 // instructions in the two blocks. In particular, we don't want to get into 1400 // O(M*N) situations here where M and N are the sizes of BB1 and BB2. As 1401 // such, we currently just scan for obviously identical instructions in an 1402 // identical order. 1403 BasicBlock *BB1 = BI->getSuccessor(0); // The true destination. 1404 BasicBlock *BB2 = BI->getSuccessor(1); // The false destination 1405 1406 BasicBlock::iterator BB1_Itr = BB1->begin(); 1407 BasicBlock::iterator BB2_Itr = BB2->begin(); 1408 1409 Instruction *I1 = &*BB1_Itr++, *I2 = &*BB2_Itr++; 1410 // Skip debug info if it is not identical. 1411 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1412 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1413 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1414 while (isa<DbgInfoIntrinsic>(I1)) 1415 I1 = &*BB1_Itr++; 1416 while (isa<DbgInfoIntrinsic>(I2)) 1417 I2 = &*BB2_Itr++; 1418 } 1419 // FIXME: Can we define a safety predicate for CallBr? 1420 if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) || 1421 (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) || 1422 isa<CallBrInst>(I1)) 1423 return false; 1424 1425 BasicBlock *BIParent = BI->getParent(); 1426 1427 bool Changed = false; 1428 1429 auto _ = make_scope_exit([&]() { 1430 if (Changed) 1431 ++NumHoistCommonCode; 1432 }); 1433 1434 // Check if only hoisting terminators is allowed. This does not add new 1435 // instructions to the hoist location. 1436 if (EqTermsOnly) { 1437 // Skip any debug intrinsics, as they are free to hoist. 1438 auto *I1NonDbg = &*skipDebugIntrinsics(I1->getIterator()); 1439 auto *I2NonDbg = &*skipDebugIntrinsics(I2->getIterator()); 1440 if (!I1NonDbg->isIdenticalToWhenDefined(I2NonDbg)) 1441 return false; 1442 if (!I1NonDbg->isTerminator()) 1443 return false; 1444 // Now we know that we only need to hoist debug instrinsics and the 1445 // terminator. Let the loop below handle those 2 cases. 1446 } 1447 1448 do { 1449 // If we are hoisting the terminator instruction, don't move one (making a 1450 // broken BB), instead clone it, and remove BI. 1451 if (I1->isTerminator()) 1452 goto HoistTerminator; 1453 1454 // If we're going to hoist a call, make sure that the two instructions we're 1455 // commoning/hoisting are both marked with musttail, or neither of them is 1456 // marked as such. Otherwise, we might end up in a situation where we hoist 1457 // from a block where the terminator is a `ret` to a block where the terminator 1458 // is a `br`, and `musttail` calls expect to be followed by a return. 1459 auto *C1 = dyn_cast<CallInst>(I1); 1460 auto *C2 = dyn_cast<CallInst>(I2); 1461 if (C1 && C2) 1462 if (C1->isMustTailCall() != C2->isMustTailCall()) 1463 return Changed; 1464 1465 if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2)) 1466 return Changed; 1467 1468 // If any of the two call sites has nomerge attribute, stop hoisting. 1469 if (const auto *CB1 = dyn_cast<CallBase>(I1)) 1470 if (CB1->cannotMerge()) 1471 return Changed; 1472 if (const auto *CB2 = dyn_cast<CallBase>(I2)) 1473 if (CB2->cannotMerge()) 1474 return Changed; 1475 1476 if (isa<DbgInfoIntrinsic>(I1) || isa<DbgInfoIntrinsic>(I2)) { 1477 assert (isa<DbgInfoIntrinsic>(I1) && isa<DbgInfoIntrinsic>(I2)); 1478 // The debug location is an integral part of a debug info intrinsic 1479 // and can't be separated from it or replaced. Instead of attempting 1480 // to merge locations, simply hoist both copies of the intrinsic. 1481 BIParent->getInstList().splice(BI->getIterator(), 1482 BB1->getInstList(), I1); 1483 BIParent->getInstList().splice(BI->getIterator(), 1484 BB2->getInstList(), I2); 1485 Changed = true; 1486 } else { 1487 // For a normal instruction, we just move one to right before the branch, 1488 // then replace all uses of the other with the first. Finally, we remove 1489 // the now redundant second instruction. 1490 BIParent->getInstList().splice(BI->getIterator(), 1491 BB1->getInstList(), I1); 1492 if (!I2->use_empty()) 1493 I2->replaceAllUsesWith(I1); 1494 I1->andIRFlags(I2); 1495 unsigned KnownIDs[] = {LLVMContext::MD_tbaa, 1496 LLVMContext::MD_range, 1497 LLVMContext::MD_fpmath, 1498 LLVMContext::MD_invariant_load, 1499 LLVMContext::MD_nonnull, 1500 LLVMContext::MD_invariant_group, 1501 LLVMContext::MD_align, 1502 LLVMContext::MD_dereferenceable, 1503 LLVMContext::MD_dereferenceable_or_null, 1504 LLVMContext::MD_mem_parallel_loop_access, 1505 LLVMContext::MD_access_group, 1506 LLVMContext::MD_preserve_access_index}; 1507 combineMetadata(I1, I2, KnownIDs, true); 1508 1509 // I1 and I2 are being combined into a single instruction. Its debug 1510 // location is the merged locations of the original instructions. 1511 I1->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc()); 1512 1513 I2->eraseFromParent(); 1514 Changed = true; 1515 } 1516 ++NumHoistCommonInstrs; 1517 1518 I1 = &*BB1_Itr++; 1519 I2 = &*BB2_Itr++; 1520 // Skip debug info if it is not identical. 1521 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1522 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1523 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1524 while (isa<DbgInfoIntrinsic>(I1)) 1525 I1 = &*BB1_Itr++; 1526 while (isa<DbgInfoIntrinsic>(I2)) 1527 I2 = &*BB2_Itr++; 1528 } 1529 } while (I1->isIdenticalToWhenDefined(I2)); 1530 1531 return true; 1532 1533 HoistTerminator: 1534 // It may not be possible to hoist an invoke. 1535 // FIXME: Can we define a safety predicate for CallBr? 1536 if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) 1537 return Changed; 1538 1539 // TODO: callbr hoisting currently disabled pending further study. 1540 if (isa<CallBrInst>(I1)) 1541 return Changed; 1542 1543 for (BasicBlock *Succ : successors(BB1)) { 1544 for (PHINode &PN : Succ->phis()) { 1545 Value *BB1V = PN.getIncomingValueForBlock(BB1); 1546 Value *BB2V = PN.getIncomingValueForBlock(BB2); 1547 if (BB1V == BB2V) 1548 continue; 1549 1550 // Check for passingValueIsAlwaysUndefined here because we would rather 1551 // eliminate undefined control flow then converting it to a select. 1552 if (passingValueIsAlwaysUndefined(BB1V, &PN) || 1553 passingValueIsAlwaysUndefined(BB2V, &PN)) 1554 return Changed; 1555 1556 if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V)) 1557 return Changed; 1558 if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V)) 1559 return Changed; 1560 } 1561 } 1562 1563 // Okay, it is safe to hoist the terminator. 1564 Instruction *NT = I1->clone(); 1565 BIParent->getInstList().insert(BI->getIterator(), NT); 1566 if (!NT->getType()->isVoidTy()) { 1567 I1->replaceAllUsesWith(NT); 1568 I2->replaceAllUsesWith(NT); 1569 NT->takeName(I1); 1570 } 1571 Changed = true; 1572 ++NumHoistCommonInstrs; 1573 1574 // Ensure terminator gets a debug location, even an unknown one, in case 1575 // it involves inlinable calls. 1576 NT->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc()); 1577 1578 // PHIs created below will adopt NT's merged DebugLoc. 1579 IRBuilder<NoFolder> Builder(NT); 1580 1581 // Hoisting one of the terminators from our successor is a great thing. 1582 // Unfortunately, the successors of the if/else blocks may have PHI nodes in 1583 // them. If they do, all PHI entries for BB1/BB2 must agree for all PHI 1584 // nodes, so we insert select instruction to compute the final result. 1585 std::map<std::pair<Value *, Value *>, SelectInst *> InsertedSelects; 1586 for (BasicBlock *Succ : successors(BB1)) { 1587 for (PHINode &PN : Succ->phis()) { 1588 Value *BB1V = PN.getIncomingValueForBlock(BB1); 1589 Value *BB2V = PN.getIncomingValueForBlock(BB2); 1590 if (BB1V == BB2V) 1591 continue; 1592 1593 // These values do not agree. Insert a select instruction before NT 1594 // that determines the right value. 1595 SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)]; 1596 if (!SI) { 1597 // Propagate fast-math-flags from phi node to its replacement select. 1598 IRBuilder<>::FastMathFlagGuard FMFGuard(Builder); 1599 if (isa<FPMathOperator>(PN)) 1600 Builder.setFastMathFlags(PN.getFastMathFlags()); 1601 1602 SI = cast<SelectInst>( 1603 Builder.CreateSelect(BI->getCondition(), BB1V, BB2V, 1604 BB1V->getName() + "." + BB2V->getName(), BI)); 1605 } 1606 1607 // Make the PHI node use the select for all incoming values for BB1/BB2 1608 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) 1609 if (PN.getIncomingBlock(i) == BB1 || PN.getIncomingBlock(i) == BB2) 1610 PN.setIncomingValue(i, SI); 1611 } 1612 } 1613 1614 SmallVector<DominatorTree::UpdateType, 4> Updates; 1615 1616 // Update any PHI nodes in our new successors. 1617 for (BasicBlock *Succ : successors(BB1)) { 1618 AddPredecessorToBlock(Succ, BIParent, BB1); 1619 if (DTU) 1620 Updates.push_back({DominatorTree::Insert, BIParent, Succ}); 1621 } 1622 1623 if (DTU) 1624 for (BasicBlock *Succ : successors(BI)) 1625 Updates.push_back({DominatorTree::Delete, BIParent, Succ}); 1626 1627 EraseTerminatorAndDCECond(BI); 1628 if (DTU) 1629 DTU->applyUpdates(Updates); 1630 return Changed; 1631 } 1632 1633 // Check lifetime markers. 1634 static bool isLifeTimeMarker(const Instruction *I) { 1635 if (auto II = dyn_cast<IntrinsicInst>(I)) { 1636 switch (II->getIntrinsicID()) { 1637 default: 1638 break; 1639 case Intrinsic::lifetime_start: 1640 case Intrinsic::lifetime_end: 1641 return true; 1642 } 1643 } 1644 return false; 1645 } 1646 1647 // TODO: Refine this. This should avoid cases like turning constant memcpy sizes 1648 // into variables. 1649 static bool replacingOperandWithVariableIsCheap(const Instruction *I, 1650 int OpIdx) { 1651 return !isa<IntrinsicInst>(I); 1652 } 1653 1654 // All instructions in Insts belong to different blocks that all unconditionally 1655 // branch to a common successor. Analyze each instruction and return true if it 1656 // would be possible to sink them into their successor, creating one common 1657 // instruction instead. For every value that would be required to be provided by 1658 // PHI node (because an operand varies in each input block), add to PHIOperands. 1659 static bool canSinkInstructions( 1660 ArrayRef<Instruction *> Insts, 1661 DenseMap<Instruction *, SmallVector<Value *, 4>> &PHIOperands) { 1662 // Prune out obviously bad instructions to move. Each instruction must have 1663 // exactly zero or one use, and we check later that use is by a single, common 1664 // PHI instruction in the successor. 1665 bool HasUse = !Insts.front()->user_empty(); 1666 for (auto *I : Insts) { 1667 // These instructions may change or break semantics if moved. 1668 if (isa<PHINode>(I) || I->isEHPad() || isa<AllocaInst>(I) || 1669 I->getType()->isTokenTy()) 1670 return false; 1671 1672 // Do not try to sink an instruction in an infinite loop - it can cause 1673 // this algorithm to infinite loop. 1674 if (I->getParent()->getSingleSuccessor() == I->getParent()) 1675 return false; 1676 1677 // Conservatively return false if I is an inline-asm instruction. Sinking 1678 // and merging inline-asm instructions can potentially create arguments 1679 // that cannot satisfy the inline-asm constraints. 1680 // If the instruction has nomerge attribute, return false. 1681 if (const auto *C = dyn_cast<CallBase>(I)) 1682 if (C->isInlineAsm() || C->cannotMerge()) 1683 return false; 1684 1685 // Each instruction must have zero or one use. 1686 if (HasUse && !I->hasOneUse()) 1687 return false; 1688 if (!HasUse && !I->user_empty()) 1689 return false; 1690 } 1691 1692 const Instruction *I0 = Insts.front(); 1693 for (auto *I : Insts) 1694 if (!I->isSameOperationAs(I0)) 1695 return false; 1696 1697 // All instructions in Insts are known to be the same opcode. If they have a 1698 // use, check that the only user is a PHI or in the same block as the 1699 // instruction, because if a user is in the same block as an instruction we're 1700 // contemplating sinking, it must already be determined to be sinkable. 1701 if (HasUse) { 1702 auto *PNUse = dyn_cast<PHINode>(*I0->user_begin()); 1703 auto *Succ = I0->getParent()->getTerminator()->getSuccessor(0); 1704 if (!all_of(Insts, [&PNUse,&Succ](const Instruction *I) -> bool { 1705 auto *U = cast<Instruction>(*I->user_begin()); 1706 return (PNUse && 1707 PNUse->getParent() == Succ && 1708 PNUse->getIncomingValueForBlock(I->getParent()) == I) || 1709 U->getParent() == I->getParent(); 1710 })) 1711 return false; 1712 } 1713 1714 // Because SROA can't handle speculating stores of selects, try not to sink 1715 // loads, stores or lifetime markers of allocas when we'd have to create a 1716 // PHI for the address operand. Also, because it is likely that loads or 1717 // stores of allocas will disappear when Mem2Reg/SROA is run, don't sink 1718 // them. 1719 // This can cause code churn which can have unintended consequences down 1720 // the line - see https://llvm.org/bugs/show_bug.cgi?id=30244. 1721 // FIXME: This is a workaround for a deficiency in SROA - see 1722 // https://llvm.org/bugs/show_bug.cgi?id=30188 1723 if (isa<StoreInst>(I0) && any_of(Insts, [](const Instruction *I) { 1724 return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts()); 1725 })) 1726 return false; 1727 if (isa<LoadInst>(I0) && any_of(Insts, [](const Instruction *I) { 1728 return isa<AllocaInst>(I->getOperand(0)->stripPointerCasts()); 1729 })) 1730 return false; 1731 if (isLifeTimeMarker(I0) && any_of(Insts, [](const Instruction *I) { 1732 return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts()); 1733 })) 1734 return false; 1735 1736 for (unsigned OI = 0, OE = I0->getNumOperands(); OI != OE; ++OI) { 1737 Value *Op = I0->getOperand(OI); 1738 if (Op->getType()->isTokenTy()) 1739 // Don't touch any operand of token type. 1740 return false; 1741 1742 auto SameAsI0 = [&I0, OI](const Instruction *I) { 1743 assert(I->getNumOperands() == I0->getNumOperands()); 1744 return I->getOperand(OI) == I0->getOperand(OI); 1745 }; 1746 if (!all_of(Insts, SameAsI0)) { 1747 if ((isa<Constant>(Op) && !replacingOperandWithVariableIsCheap(I0, OI)) || 1748 !canReplaceOperandWithVariable(I0, OI)) 1749 // We can't create a PHI from this GEP. 1750 return false; 1751 // Don't create indirect calls! The called value is the final operand. 1752 if (isa<CallBase>(I0) && OI == OE - 1) { 1753 // FIXME: if the call was *already* indirect, we should do this. 1754 return false; 1755 } 1756 for (auto *I : Insts) 1757 PHIOperands[I].push_back(I->getOperand(OI)); 1758 } 1759 } 1760 return true; 1761 } 1762 1763 // Assuming canSinkInstructions(Blocks) has returned true, sink the last 1764 // instruction of every block in Blocks to their common successor, commoning 1765 // into one instruction. 1766 static bool sinkLastInstruction(ArrayRef<BasicBlock*> Blocks) { 1767 auto *BBEnd = Blocks[0]->getTerminator()->getSuccessor(0); 1768 1769 // canSinkInstructions returning true guarantees that every block has at 1770 // least one non-terminator instruction. 1771 SmallVector<Instruction*,4> Insts; 1772 for (auto *BB : Blocks) { 1773 Instruction *I = BB->getTerminator(); 1774 do { 1775 I = I->getPrevNode(); 1776 } while (isa<DbgInfoIntrinsic>(I) && I != &BB->front()); 1777 if (!isa<DbgInfoIntrinsic>(I)) 1778 Insts.push_back(I); 1779 } 1780 1781 // The only checking we need to do now is that all users of all instructions 1782 // are the same PHI node. canSinkInstructions should have checked this but 1783 // it is slightly over-aggressive - it gets confused by commutative 1784 // instructions so double-check it here. 1785 Instruction *I0 = Insts.front(); 1786 if (!I0->user_empty()) { 1787 auto *PNUse = dyn_cast<PHINode>(*I0->user_begin()); 1788 if (!all_of(Insts, [&PNUse](const Instruction *I) -> bool { 1789 auto *U = cast<Instruction>(*I->user_begin()); 1790 return U == PNUse; 1791 })) 1792 return false; 1793 } 1794 1795 // We don't need to do any more checking here; canSinkInstructions should 1796 // have done it all for us. 1797 SmallVector<Value*, 4> NewOperands; 1798 for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) { 1799 // This check is different to that in canSinkInstructions. There, we 1800 // cared about the global view once simplifycfg (and instcombine) have 1801 // completed - it takes into account PHIs that become trivially 1802 // simplifiable. However here we need a more local view; if an operand 1803 // differs we create a PHI and rely on instcombine to clean up the very 1804 // small mess we may make. 1805 bool NeedPHI = any_of(Insts, [&I0, O](const Instruction *I) { 1806 return I->getOperand(O) != I0->getOperand(O); 1807 }); 1808 if (!NeedPHI) { 1809 NewOperands.push_back(I0->getOperand(O)); 1810 continue; 1811 } 1812 1813 // Create a new PHI in the successor block and populate it. 1814 auto *Op = I0->getOperand(O); 1815 assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!"); 1816 auto *PN = PHINode::Create(Op->getType(), Insts.size(), 1817 Op->getName() + ".sink", &BBEnd->front()); 1818 for (auto *I : Insts) 1819 PN->addIncoming(I->getOperand(O), I->getParent()); 1820 NewOperands.push_back(PN); 1821 } 1822 1823 // Arbitrarily use I0 as the new "common" instruction; remap its operands 1824 // and move it to the start of the successor block. 1825 for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) 1826 I0->getOperandUse(O).set(NewOperands[O]); 1827 I0->moveBefore(&*BBEnd->getFirstInsertionPt()); 1828 1829 // Update metadata and IR flags, and merge debug locations. 1830 for (auto *I : Insts) 1831 if (I != I0) { 1832 // The debug location for the "common" instruction is the merged locations 1833 // of all the commoned instructions. We start with the original location 1834 // of the "common" instruction and iteratively merge each location in the 1835 // loop below. 1836 // This is an N-way merge, which will be inefficient if I0 is a CallInst. 1837 // However, as N-way merge for CallInst is rare, so we use simplified API 1838 // instead of using complex API for N-way merge. 1839 I0->applyMergedLocation(I0->getDebugLoc(), I->getDebugLoc()); 1840 combineMetadataForCSE(I0, I, true); 1841 I0->andIRFlags(I); 1842 } 1843 1844 if (!I0->user_empty()) { 1845 // canSinkLastInstruction checked that all instructions were used by 1846 // one and only one PHI node. Find that now, RAUW it to our common 1847 // instruction and nuke it. 1848 auto *PN = cast<PHINode>(*I0->user_begin()); 1849 PN->replaceAllUsesWith(I0); 1850 PN->eraseFromParent(); 1851 } 1852 1853 // Finally nuke all instructions apart from the common instruction. 1854 for (auto *I : Insts) 1855 if (I != I0) 1856 I->eraseFromParent(); 1857 1858 return true; 1859 } 1860 1861 namespace { 1862 1863 // LockstepReverseIterator - Iterates through instructions 1864 // in a set of blocks in reverse order from the first non-terminator. 1865 // For example (assume all blocks have size n): 1866 // LockstepReverseIterator I([B1, B2, B3]); 1867 // *I-- = [B1[n], B2[n], B3[n]]; 1868 // *I-- = [B1[n-1], B2[n-1], B3[n-1]]; 1869 // *I-- = [B1[n-2], B2[n-2], B3[n-2]]; 1870 // ... 1871 class LockstepReverseIterator { 1872 ArrayRef<BasicBlock*> Blocks; 1873 SmallVector<Instruction*,4> Insts; 1874 bool Fail; 1875 1876 public: 1877 LockstepReverseIterator(ArrayRef<BasicBlock*> Blocks) : Blocks(Blocks) { 1878 reset(); 1879 } 1880 1881 void reset() { 1882 Fail = false; 1883 Insts.clear(); 1884 for (auto *BB : Blocks) { 1885 Instruction *Inst = BB->getTerminator(); 1886 for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);) 1887 Inst = Inst->getPrevNode(); 1888 if (!Inst) { 1889 // Block wasn't big enough. 1890 Fail = true; 1891 return; 1892 } 1893 Insts.push_back(Inst); 1894 } 1895 } 1896 1897 bool isValid() const { 1898 return !Fail; 1899 } 1900 1901 void operator--() { 1902 if (Fail) 1903 return; 1904 for (auto *&Inst : Insts) { 1905 for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);) 1906 Inst = Inst->getPrevNode(); 1907 // Already at beginning of block. 1908 if (!Inst) { 1909 Fail = true; 1910 return; 1911 } 1912 } 1913 } 1914 1915 ArrayRef<Instruction*> operator * () const { 1916 return Insts; 1917 } 1918 }; 1919 1920 } // end anonymous namespace 1921 1922 /// Check whether BB's predecessors end with unconditional branches. If it is 1923 /// true, sink any common code from the predecessors to BB. 1924 /// We also allow one predecessor to end with conditional branch (but no more 1925 /// than one). 1926 static bool SinkCommonCodeFromPredecessors(BasicBlock *BB, 1927 DomTreeUpdater *DTU) { 1928 // We support two situations: 1929 // (1) all incoming arcs are unconditional 1930 // (2) one incoming arc is conditional 1931 // 1932 // (2) is very common in switch defaults and 1933 // else-if patterns; 1934 // 1935 // if (a) f(1); 1936 // else if (b) f(2); 1937 // 1938 // produces: 1939 // 1940 // [if] 1941 // / \ 1942 // [f(1)] [if] 1943 // | | \ 1944 // | | | 1945 // | [f(2)]| 1946 // \ | / 1947 // [ end ] 1948 // 1949 // [end] has two unconditional predecessor arcs and one conditional. The 1950 // conditional refers to the implicit empty 'else' arc. This conditional 1951 // arc can also be caused by an empty default block in a switch. 1952 // 1953 // In this case, we attempt to sink code from all *unconditional* arcs. 1954 // If we can sink instructions from these arcs (determined during the scan 1955 // phase below) we insert a common successor for all unconditional arcs and 1956 // connect that to [end], to enable sinking: 1957 // 1958 // [if] 1959 // / \ 1960 // [x(1)] [if] 1961 // | | \ 1962 // | | \ 1963 // | [x(2)] | 1964 // \ / | 1965 // [sink.split] | 1966 // \ / 1967 // [ end ] 1968 // 1969 SmallVector<BasicBlock*,4> UnconditionalPreds; 1970 Instruction *Cond = nullptr; 1971 for (auto *B : predecessors(BB)) { 1972 auto *T = B->getTerminator(); 1973 if (isa<BranchInst>(T) && cast<BranchInst>(T)->isUnconditional()) 1974 UnconditionalPreds.push_back(B); 1975 else if ((isa<BranchInst>(T) || isa<SwitchInst>(T)) && !Cond) 1976 Cond = T; 1977 else 1978 return false; 1979 } 1980 if (UnconditionalPreds.size() < 2) 1981 return false; 1982 1983 // We take a two-step approach to tail sinking. First we scan from the end of 1984 // each block upwards in lockstep. If the n'th instruction from the end of each 1985 // block can be sunk, those instructions are added to ValuesToSink and we 1986 // carry on. If we can sink an instruction but need to PHI-merge some operands 1987 // (because they're not identical in each instruction) we add these to 1988 // PHIOperands. 1989 unsigned ScanIdx = 0; 1990 SmallPtrSet<Value*,4> InstructionsToSink; 1991 DenseMap<Instruction*, SmallVector<Value*,4>> PHIOperands; 1992 LockstepReverseIterator LRI(UnconditionalPreds); 1993 while (LRI.isValid() && 1994 canSinkInstructions(*LRI, PHIOperands)) { 1995 LLVM_DEBUG(dbgs() << "SINK: instruction can be sunk: " << *(*LRI)[0] 1996 << "\n"); 1997 InstructionsToSink.insert((*LRI).begin(), (*LRI).end()); 1998 ++ScanIdx; 1999 --LRI; 2000 } 2001 2002 // If no instructions can be sunk, early-return. 2003 if (ScanIdx == 0) 2004 return false; 2005 2006 bool Changed = false; 2007 2008 auto ProfitableToSinkInstruction = [&](LockstepReverseIterator &LRI) { 2009 unsigned NumPHIdValues = 0; 2010 for (auto *I : *LRI) 2011 for (auto *V : PHIOperands[I]) 2012 if (InstructionsToSink.count(V) == 0) 2013 ++NumPHIdValues; 2014 LLVM_DEBUG(dbgs() << "SINK: #phid values: " << NumPHIdValues << "\n"); 2015 unsigned NumPHIInsts = NumPHIdValues / UnconditionalPreds.size(); 2016 if ((NumPHIdValues % UnconditionalPreds.size()) != 0) 2017 NumPHIInsts++; 2018 2019 return NumPHIInsts <= 1; 2020 }; 2021 2022 if (Cond) { 2023 // Check if we would actually sink anything first! This mutates the CFG and 2024 // adds an extra block. The goal in doing this is to allow instructions that 2025 // couldn't be sunk before to be sunk - obviously, speculatable instructions 2026 // (such as trunc, add) can be sunk and predicated already. So we check that 2027 // we're going to sink at least one non-speculatable instruction. 2028 LRI.reset(); 2029 unsigned Idx = 0; 2030 bool Profitable = false; 2031 while (ProfitableToSinkInstruction(LRI) && Idx < ScanIdx) { 2032 if (!isSafeToSpeculativelyExecute((*LRI)[0])) { 2033 Profitable = true; 2034 break; 2035 } 2036 --LRI; 2037 ++Idx; 2038 } 2039 if (!Profitable) 2040 return false; 2041 2042 LLVM_DEBUG(dbgs() << "SINK: Splitting edge\n"); 2043 // We have a conditional edge and we're going to sink some instructions. 2044 // Insert a new block postdominating all blocks we're going to sink from. 2045 if (!SplitBlockPredecessors(BB, UnconditionalPreds, ".sink.split", DTU)) 2046 // Edges couldn't be split. 2047 return false; 2048 Changed = true; 2049 } 2050 2051 // Now that we've analyzed all potential sinking candidates, perform the 2052 // actual sink. We iteratively sink the last non-terminator of the source 2053 // blocks into their common successor unless doing so would require too 2054 // many PHI instructions to be generated (currently only one PHI is allowed 2055 // per sunk instruction). 2056 // 2057 // We can use InstructionsToSink to discount values needing PHI-merging that will 2058 // actually be sunk in a later iteration. This allows us to be more 2059 // aggressive in what we sink. This does allow a false positive where we 2060 // sink presuming a later value will also be sunk, but stop half way through 2061 // and never actually sink it which means we produce more PHIs than intended. 2062 // This is unlikely in practice though. 2063 unsigned SinkIdx = 0; 2064 for (; SinkIdx != ScanIdx; ++SinkIdx) { 2065 LLVM_DEBUG(dbgs() << "SINK: Sink: " 2066 << *UnconditionalPreds[0]->getTerminator()->getPrevNode() 2067 << "\n"); 2068 2069 // Because we've sunk every instruction in turn, the current instruction to 2070 // sink is always at index 0. 2071 LRI.reset(); 2072 if (!ProfitableToSinkInstruction(LRI)) { 2073 // Too many PHIs would be created. 2074 LLVM_DEBUG( 2075 dbgs() << "SINK: stopping here, too many PHIs would be created!\n"); 2076 break; 2077 } 2078 2079 if (!sinkLastInstruction(UnconditionalPreds)) { 2080 LLVM_DEBUG( 2081 dbgs() 2082 << "SINK: stopping here, failed to actually sink instruction!\n"); 2083 break; 2084 } 2085 2086 NumSinkCommonInstrs++; 2087 Changed = true; 2088 } 2089 if (SinkIdx != 0) 2090 ++NumSinkCommonCode; 2091 return Changed; 2092 } 2093 2094 /// Determine if we can hoist sink a sole store instruction out of a 2095 /// conditional block. 2096 /// 2097 /// We are looking for code like the following: 2098 /// BrBB: 2099 /// store i32 %add, i32* %arrayidx2 2100 /// ... // No other stores or function calls (we could be calling a memory 2101 /// ... // function). 2102 /// %cmp = icmp ult %x, %y 2103 /// br i1 %cmp, label %EndBB, label %ThenBB 2104 /// ThenBB: 2105 /// store i32 %add5, i32* %arrayidx2 2106 /// br label EndBB 2107 /// EndBB: 2108 /// ... 2109 /// We are going to transform this into: 2110 /// BrBB: 2111 /// store i32 %add, i32* %arrayidx2 2112 /// ... // 2113 /// %cmp = icmp ult %x, %y 2114 /// %add.add5 = select i1 %cmp, i32 %add, %add5 2115 /// store i32 %add.add5, i32* %arrayidx2 2116 /// ... 2117 /// 2118 /// \return The pointer to the value of the previous store if the store can be 2119 /// hoisted into the predecessor block. 0 otherwise. 2120 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB, 2121 BasicBlock *StoreBB, BasicBlock *EndBB) { 2122 StoreInst *StoreToHoist = dyn_cast<StoreInst>(I); 2123 if (!StoreToHoist) 2124 return nullptr; 2125 2126 // Volatile or atomic. 2127 if (!StoreToHoist->isSimple()) 2128 return nullptr; 2129 2130 Value *StorePtr = StoreToHoist->getPointerOperand(); 2131 2132 // Look for a store to the same pointer in BrBB. 2133 unsigned MaxNumInstToLookAt = 9; 2134 // Skip pseudo probe intrinsic calls which are not really killing any memory 2135 // accesses. 2136 for (Instruction &CurI : reverse(BrBB->instructionsWithoutDebug(true))) { 2137 if (!MaxNumInstToLookAt) 2138 break; 2139 --MaxNumInstToLookAt; 2140 2141 // Could be calling an instruction that affects memory like free(). 2142 if (CurI.mayHaveSideEffects() && !isa<StoreInst>(CurI)) 2143 return nullptr; 2144 2145 if (auto *SI = dyn_cast<StoreInst>(&CurI)) { 2146 // Found the previous store make sure it stores to the same location. 2147 if (SI->getPointerOperand() == StorePtr) 2148 // Found the previous store, return its value operand. 2149 return SI->getValueOperand(); 2150 return nullptr; // Unknown store. 2151 } 2152 } 2153 2154 return nullptr; 2155 } 2156 2157 /// Estimate the cost of the insertion(s) and check that the PHI nodes can be 2158 /// converted to selects. 2159 static bool validateAndCostRequiredSelects(BasicBlock *BB, BasicBlock *ThenBB, 2160 BasicBlock *EndBB, 2161 unsigned &SpeculatedInstructions, 2162 InstructionCost &Cost, 2163 const TargetTransformInfo &TTI) { 2164 TargetTransformInfo::TargetCostKind CostKind = 2165 BB->getParent()->hasMinSize() 2166 ? TargetTransformInfo::TCK_CodeSize 2167 : TargetTransformInfo::TCK_SizeAndLatency; 2168 2169 bool HaveRewritablePHIs = false; 2170 for (PHINode &PN : EndBB->phis()) { 2171 Value *OrigV = PN.getIncomingValueForBlock(BB); 2172 Value *ThenV = PN.getIncomingValueForBlock(ThenBB); 2173 2174 // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf. 2175 // Skip PHIs which are trivial. 2176 if (ThenV == OrigV) 2177 continue; 2178 2179 Cost += TTI.getCmpSelInstrCost(Instruction::Select, PN.getType(), nullptr, 2180 CmpInst::BAD_ICMP_PREDICATE, CostKind); 2181 2182 // Don't convert to selects if we could remove undefined behavior instead. 2183 if (passingValueIsAlwaysUndefined(OrigV, &PN) || 2184 passingValueIsAlwaysUndefined(ThenV, &PN)) 2185 return false; 2186 2187 HaveRewritablePHIs = true; 2188 ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV); 2189 ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV); 2190 if (!OrigCE && !ThenCE) 2191 continue; // Known safe and cheap. 2192 2193 if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE)) || 2194 (OrigCE && !isSafeToSpeculativelyExecute(OrigCE))) 2195 return false; 2196 InstructionCost OrigCost = OrigCE ? computeSpeculationCost(OrigCE, TTI) : 0; 2197 InstructionCost ThenCost = ThenCE ? computeSpeculationCost(ThenCE, TTI) : 0; 2198 InstructionCost MaxCost = 2199 2 * PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 2200 if (OrigCost + ThenCost > MaxCost) 2201 return false; 2202 2203 // Account for the cost of an unfolded ConstantExpr which could end up 2204 // getting expanded into Instructions. 2205 // FIXME: This doesn't account for how many operations are combined in the 2206 // constant expression. 2207 ++SpeculatedInstructions; 2208 if (SpeculatedInstructions > 1) 2209 return false; 2210 } 2211 2212 return HaveRewritablePHIs; 2213 } 2214 2215 /// Speculate a conditional basic block flattening the CFG. 2216 /// 2217 /// Note that this is a very risky transform currently. Speculating 2218 /// instructions like this is most often not desirable. Instead, there is an MI 2219 /// pass which can do it with full awareness of the resource constraints. 2220 /// However, some cases are "obvious" and we should do directly. An example of 2221 /// this is speculating a single, reasonably cheap instruction. 2222 /// 2223 /// There is only one distinct advantage to flattening the CFG at the IR level: 2224 /// it makes very common but simplistic optimizations such as are common in 2225 /// instcombine and the DAG combiner more powerful by removing CFG edges and 2226 /// modeling their effects with easier to reason about SSA value graphs. 2227 /// 2228 /// 2229 /// An illustration of this transform is turning this IR: 2230 /// \code 2231 /// BB: 2232 /// %cmp = icmp ult %x, %y 2233 /// br i1 %cmp, label %EndBB, label %ThenBB 2234 /// ThenBB: 2235 /// %sub = sub %x, %y 2236 /// br label BB2 2237 /// EndBB: 2238 /// %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ] 2239 /// ... 2240 /// \endcode 2241 /// 2242 /// Into this IR: 2243 /// \code 2244 /// BB: 2245 /// %cmp = icmp ult %x, %y 2246 /// %sub = sub %x, %y 2247 /// %cond = select i1 %cmp, 0, %sub 2248 /// ... 2249 /// \endcode 2250 /// 2251 /// \returns true if the conditional block is removed. 2252 bool SimplifyCFGOpt::SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB, 2253 const TargetTransformInfo &TTI) { 2254 // Be conservative for now. FP select instruction can often be expensive. 2255 Value *BrCond = BI->getCondition(); 2256 if (isa<FCmpInst>(BrCond)) 2257 return false; 2258 2259 BasicBlock *BB = BI->getParent(); 2260 BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0); 2261 InstructionCost Budget = 2262 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 2263 2264 // If ThenBB is actually on the false edge of the conditional branch, remember 2265 // to swap the select operands later. 2266 bool Invert = false; 2267 if (ThenBB != BI->getSuccessor(0)) { 2268 assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?"); 2269 Invert = true; 2270 } 2271 assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block"); 2272 2273 // Keep a count of how many times instructions are used within ThenBB when 2274 // they are candidates for sinking into ThenBB. Specifically: 2275 // - They are defined in BB, and 2276 // - They have no side effects, and 2277 // - All of their uses are in ThenBB. 2278 SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts; 2279 2280 SmallVector<Instruction *, 4> SpeculatedDbgIntrinsics; 2281 2282 unsigned SpeculatedInstructions = 0; 2283 Value *SpeculatedStoreValue = nullptr; 2284 StoreInst *SpeculatedStore = nullptr; 2285 for (BasicBlock::iterator BBI = ThenBB->begin(), 2286 BBE = std::prev(ThenBB->end()); 2287 BBI != BBE; ++BBI) { 2288 Instruction *I = &*BBI; 2289 // Skip debug info. 2290 if (isa<DbgInfoIntrinsic>(I)) { 2291 SpeculatedDbgIntrinsics.push_back(I); 2292 continue; 2293 } 2294 2295 // Skip pseudo probes. The consequence is we lose track of the branch 2296 // probability for ThenBB, which is fine since the optimization here takes 2297 // place regardless of the branch probability. 2298 if (isa<PseudoProbeInst>(I)) { 2299 continue; 2300 } 2301 2302 // Only speculatively execute a single instruction (not counting the 2303 // terminator) for now. 2304 ++SpeculatedInstructions; 2305 if (SpeculatedInstructions > 1) 2306 return false; 2307 2308 // Don't hoist the instruction if it's unsafe or expensive. 2309 if (!isSafeToSpeculativelyExecute(I) && 2310 !(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore( 2311 I, BB, ThenBB, EndBB)))) 2312 return false; 2313 if (!SpeculatedStoreValue && 2314 computeSpeculationCost(I, TTI) > 2315 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic) 2316 return false; 2317 2318 // Store the store speculation candidate. 2319 if (SpeculatedStoreValue) 2320 SpeculatedStore = cast<StoreInst>(I); 2321 2322 // Do not hoist the instruction if any of its operands are defined but not 2323 // used in BB. The transformation will prevent the operand from 2324 // being sunk into the use block. 2325 for (Use &Op : I->operands()) { 2326 Instruction *OpI = dyn_cast<Instruction>(Op); 2327 if (!OpI || OpI->getParent() != BB || OpI->mayHaveSideEffects()) 2328 continue; // Not a candidate for sinking. 2329 2330 ++SinkCandidateUseCounts[OpI]; 2331 } 2332 } 2333 2334 // Consider any sink candidates which are only used in ThenBB as costs for 2335 // speculation. Note, while we iterate over a DenseMap here, we are summing 2336 // and so iteration order isn't significant. 2337 for (SmallDenseMap<Instruction *, unsigned, 4>::iterator 2338 I = SinkCandidateUseCounts.begin(), 2339 E = SinkCandidateUseCounts.end(); 2340 I != E; ++I) 2341 if (I->first->hasNUses(I->second)) { 2342 ++SpeculatedInstructions; 2343 if (SpeculatedInstructions > 1) 2344 return false; 2345 } 2346 2347 // Check that we can insert the selects and that it's not too expensive to do 2348 // so. 2349 bool Convert = SpeculatedStore != nullptr; 2350 InstructionCost Cost = 0; 2351 Convert |= validateAndCostRequiredSelects(BB, ThenBB, EndBB, 2352 SpeculatedInstructions, 2353 Cost, TTI); 2354 if (!Convert || Cost > Budget) 2355 return false; 2356 2357 // If we get here, we can hoist the instruction and if-convert. 2358 LLVM_DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";); 2359 2360 // Insert a select of the value of the speculated store. 2361 if (SpeculatedStoreValue) { 2362 IRBuilder<NoFolder> Builder(BI); 2363 Value *TrueV = SpeculatedStore->getValueOperand(); 2364 Value *FalseV = SpeculatedStoreValue; 2365 if (Invert) 2366 std::swap(TrueV, FalseV); 2367 Value *S = Builder.CreateSelect( 2368 BrCond, TrueV, FalseV, "spec.store.select", BI); 2369 SpeculatedStore->setOperand(0, S); 2370 SpeculatedStore->applyMergedLocation(BI->getDebugLoc(), 2371 SpeculatedStore->getDebugLoc()); 2372 } 2373 2374 // Metadata can be dependent on the condition we are hoisting above. 2375 // Conservatively strip all metadata on the instruction. Drop the debug loc 2376 // to avoid making it appear as if the condition is a constant, which would 2377 // be misleading while debugging. 2378 for (auto &I : *ThenBB) { 2379 if (!SpeculatedStoreValue || &I != SpeculatedStore) 2380 I.setDebugLoc(DebugLoc()); 2381 I.dropUnknownNonDebugMetadata(); 2382 } 2383 2384 // A hoisted conditional probe should be treated as dangling so that it will 2385 // not be over-counted when the samples collected on the non-conditional path 2386 // are counted towards the conditional path. We leave it for the counts 2387 // inference algorithm to figure out a proper count for a danglng probe. 2388 moveAndDanglePseudoProbes(ThenBB, BI); 2389 2390 // Hoist the instructions. 2391 BB->getInstList().splice(BI->getIterator(), ThenBB->getInstList(), 2392 ThenBB->begin(), std::prev(ThenBB->end())); 2393 2394 // Insert selects and rewrite the PHI operands. 2395 IRBuilder<NoFolder> Builder(BI); 2396 for (PHINode &PN : EndBB->phis()) { 2397 unsigned OrigI = PN.getBasicBlockIndex(BB); 2398 unsigned ThenI = PN.getBasicBlockIndex(ThenBB); 2399 Value *OrigV = PN.getIncomingValue(OrigI); 2400 Value *ThenV = PN.getIncomingValue(ThenI); 2401 2402 // Skip PHIs which are trivial. 2403 if (OrigV == ThenV) 2404 continue; 2405 2406 // Create a select whose true value is the speculatively executed value and 2407 // false value is the pre-existing value. Swap them if the branch 2408 // destinations were inverted. 2409 Value *TrueV = ThenV, *FalseV = OrigV; 2410 if (Invert) 2411 std::swap(TrueV, FalseV); 2412 Value *V = Builder.CreateSelect(BrCond, TrueV, FalseV, "spec.select", BI); 2413 PN.setIncomingValue(OrigI, V); 2414 PN.setIncomingValue(ThenI, V); 2415 } 2416 2417 // Remove speculated dbg intrinsics. 2418 // FIXME: Is it possible to do this in a more elegant way? Moving/merging the 2419 // dbg value for the different flows and inserting it after the select. 2420 for (Instruction *I : SpeculatedDbgIntrinsics) 2421 I->eraseFromParent(); 2422 2423 ++NumSpeculations; 2424 return true; 2425 } 2426 2427 /// Return true if we can thread a branch across this block. 2428 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) { 2429 int Size = 0; 2430 2431 for (Instruction &I : BB->instructionsWithoutDebug()) { 2432 if (Size > MaxSmallBlockSize) 2433 return false; // Don't clone large BB's. 2434 2435 // Can't fold blocks that contain noduplicate or convergent calls. 2436 if (CallInst *CI = dyn_cast<CallInst>(&I)) 2437 if (CI->cannotDuplicate() || CI->isConvergent()) 2438 return false; 2439 2440 // We will delete Phis while threading, so Phis should not be accounted in 2441 // block's size 2442 if (!isa<PHINode>(I)) 2443 ++Size; 2444 2445 // We can only support instructions that do not define values that are 2446 // live outside of the current basic block. 2447 for (User *U : I.users()) { 2448 Instruction *UI = cast<Instruction>(U); 2449 if (UI->getParent() != BB || isa<PHINode>(UI)) 2450 return false; 2451 } 2452 2453 // Looks ok, continue checking. 2454 } 2455 2456 return true; 2457 } 2458 2459 /// If we have a conditional branch on a PHI node value that is defined in the 2460 /// same block as the branch and if any PHI entries are constants, thread edges 2461 /// corresponding to that entry to be branches to their ultimate destination. 2462 static bool FoldCondBranchOnPHI(BranchInst *BI, DomTreeUpdater *DTU, 2463 const DataLayout &DL, AssumptionCache *AC) { 2464 BasicBlock *BB = BI->getParent(); 2465 PHINode *PN = dyn_cast<PHINode>(BI->getCondition()); 2466 // NOTE: we currently cannot transform this case if the PHI node is used 2467 // outside of the block. 2468 if (!PN || PN->getParent() != BB || !PN->hasOneUse()) 2469 return false; 2470 2471 // Degenerate case of a single entry PHI. 2472 if (PN->getNumIncomingValues() == 1) { 2473 FoldSingleEntryPHINodes(PN->getParent()); 2474 return true; 2475 } 2476 2477 // Now we know that this block has multiple preds and two succs. 2478 if (!BlockIsSimpleEnoughToThreadThrough(BB)) 2479 return false; 2480 2481 // Okay, this is a simple enough basic block. See if any phi values are 2482 // constants. 2483 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 2484 ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i)); 2485 if (!CB || !CB->getType()->isIntegerTy(1)) 2486 continue; 2487 2488 // Okay, we now know that all edges from PredBB should be revectored to 2489 // branch to RealDest. 2490 BasicBlock *PredBB = PN->getIncomingBlock(i); 2491 BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue()); 2492 2493 if (RealDest == BB) 2494 continue; // Skip self loops. 2495 // Skip if the predecessor's terminator is an indirect branch. 2496 if (isa<IndirectBrInst>(PredBB->getTerminator())) 2497 continue; 2498 2499 SmallVector<DominatorTree::UpdateType, 3> Updates; 2500 2501 // The dest block might have PHI nodes, other predecessors and other 2502 // difficult cases. Instead of being smart about this, just insert a new 2503 // block that jumps to the destination block, effectively splitting 2504 // the edge we are about to create. 2505 BasicBlock *EdgeBB = 2506 BasicBlock::Create(BB->getContext(), RealDest->getName() + ".critedge", 2507 RealDest->getParent(), RealDest); 2508 BranchInst *CritEdgeBranch = BranchInst::Create(RealDest, EdgeBB); 2509 if (DTU) 2510 Updates.push_back({DominatorTree::Insert, EdgeBB, RealDest}); 2511 CritEdgeBranch->setDebugLoc(BI->getDebugLoc()); 2512 2513 // Update PHI nodes. 2514 AddPredecessorToBlock(RealDest, EdgeBB, BB); 2515 2516 // BB may have instructions that are being threaded over. Clone these 2517 // instructions into EdgeBB. We know that there will be no uses of the 2518 // cloned instructions outside of EdgeBB. 2519 BasicBlock::iterator InsertPt = EdgeBB->begin(); 2520 DenseMap<Value *, Value *> TranslateMap; // Track translated values. 2521 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) { 2522 if (PHINode *PN = dyn_cast<PHINode>(BBI)) { 2523 TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB); 2524 continue; 2525 } 2526 // Clone the instruction. 2527 Instruction *N = BBI->clone(); 2528 if (BBI->hasName()) 2529 N->setName(BBI->getName() + ".c"); 2530 2531 // Update operands due to translation. 2532 for (Use &Op : N->operands()) { 2533 DenseMap<Value *, Value *>::iterator PI = TranslateMap.find(Op); 2534 if (PI != TranslateMap.end()) 2535 Op = PI->second; 2536 } 2537 2538 // Check for trivial simplification. 2539 if (Value *V = SimplifyInstruction(N, {DL, nullptr, nullptr, AC})) { 2540 if (!BBI->use_empty()) 2541 TranslateMap[&*BBI] = V; 2542 if (!N->mayHaveSideEffects()) { 2543 N->deleteValue(); // Instruction folded away, don't need actual inst 2544 N = nullptr; 2545 } 2546 } else { 2547 if (!BBI->use_empty()) 2548 TranslateMap[&*BBI] = N; 2549 } 2550 if (N) { 2551 // Insert the new instruction into its new home. 2552 EdgeBB->getInstList().insert(InsertPt, N); 2553 2554 // Register the new instruction with the assumption cache if necessary. 2555 if (auto *Assume = dyn_cast<AssumeInst>(N)) 2556 if (AC) 2557 AC->registerAssumption(Assume); 2558 } 2559 } 2560 2561 // Loop over all of the edges from PredBB to BB, changing them to branch 2562 // to EdgeBB instead. 2563 Instruction *PredBBTI = PredBB->getTerminator(); 2564 for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i) 2565 if (PredBBTI->getSuccessor(i) == BB) { 2566 BB->removePredecessor(PredBB); 2567 PredBBTI->setSuccessor(i, EdgeBB); 2568 } 2569 2570 if (DTU) { 2571 Updates.push_back({DominatorTree::Insert, PredBB, EdgeBB}); 2572 Updates.push_back({DominatorTree::Delete, PredBB, BB}); 2573 2574 DTU->applyUpdates(Updates); 2575 } 2576 2577 // Recurse, simplifying any other constants. 2578 return FoldCondBranchOnPHI(BI, DTU, DL, AC) || true; 2579 } 2580 2581 return false; 2582 } 2583 2584 /// Given a BB that starts with the specified two-entry PHI node, 2585 /// see if we can eliminate it. 2586 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI, 2587 DomTreeUpdater *DTU, const DataLayout &DL) { 2588 // Ok, this is a two entry PHI node. Check to see if this is a simple "if 2589 // statement", which has a very simple dominance structure. Basically, we 2590 // are trying to find the condition that is being branched on, which 2591 // subsequently causes this merge to happen. We really want control 2592 // dependence information for this check, but simplifycfg can't keep it up 2593 // to date, and this catches most of the cases we care about anyway. 2594 BasicBlock *BB = PN->getParent(); 2595 2596 BasicBlock *IfTrue, *IfFalse; 2597 Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse); 2598 if (!IfCond || 2599 // Don't bother if the branch will be constant folded trivially. 2600 isa<ConstantInt>(IfCond)) 2601 return false; 2602 2603 // Okay, we found that we can merge this two-entry phi node into a select. 2604 // Doing so would require us to fold *all* two entry phi nodes in this block. 2605 // At some point this becomes non-profitable (particularly if the target 2606 // doesn't support cmov's). Only do this transformation if there are two or 2607 // fewer PHI nodes in this block. 2608 unsigned NumPhis = 0; 2609 for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I) 2610 if (NumPhis > 2) 2611 return false; 2612 2613 // Loop over the PHI's seeing if we can promote them all to select 2614 // instructions. While we are at it, keep track of the instructions 2615 // that need to be moved to the dominating block. 2616 SmallPtrSet<Instruction *, 4> AggressiveInsts; 2617 InstructionCost Cost = 0; 2618 InstructionCost Budget = 2619 TwoEntryPHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 2620 2621 bool Changed = false; 2622 for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) { 2623 PHINode *PN = cast<PHINode>(II++); 2624 if (Value *V = SimplifyInstruction(PN, {DL, PN})) { 2625 PN->replaceAllUsesWith(V); 2626 PN->eraseFromParent(); 2627 Changed = true; 2628 continue; 2629 } 2630 2631 if (!dominatesMergePoint(PN->getIncomingValue(0), BB, AggressiveInsts, 2632 Cost, Budget, TTI) || 2633 !dominatesMergePoint(PN->getIncomingValue(1), BB, AggressiveInsts, 2634 Cost, Budget, TTI)) 2635 return Changed; 2636 } 2637 2638 // If we folded the first phi, PN dangles at this point. Refresh it. If 2639 // we ran out of PHIs then we simplified them all. 2640 PN = dyn_cast<PHINode>(BB->begin()); 2641 if (!PN) 2642 return true; 2643 2644 // Return true if at least one of these is a 'not', and another is either 2645 // a 'not' too, or a constant. 2646 auto CanHoistNotFromBothValues = [](Value *V0, Value *V1) { 2647 if (!match(V0, m_Not(m_Value()))) 2648 std::swap(V0, V1); 2649 auto Invertible = m_CombineOr(m_Not(m_Value()), m_AnyIntegralConstant()); 2650 return match(V0, m_Not(m_Value())) && match(V1, Invertible); 2651 }; 2652 2653 // Don't fold i1 branches on PHIs which contain binary operators or 2654 // select form of or/ands, unless one of the incoming values is an 'not' and 2655 // another one is freely invertible. 2656 // These can often be turned into switches and other things. 2657 auto IsBinOpOrAnd = [](Value *V) { 2658 return match( 2659 V, m_CombineOr(m_BinOp(), m_CombineOr(m_LogicalAnd(), m_LogicalOr()))); 2660 }; 2661 if (PN->getType()->isIntegerTy(1) && 2662 (IsBinOpOrAnd(PN->getIncomingValue(0)) || 2663 IsBinOpOrAnd(PN->getIncomingValue(1)) || IsBinOpOrAnd(IfCond)) && 2664 !CanHoistNotFromBothValues(PN->getIncomingValue(0), 2665 PN->getIncomingValue(1))) 2666 return Changed; 2667 2668 // If all PHI nodes are promotable, check to make sure that all instructions 2669 // in the predecessor blocks can be promoted as well. If not, we won't be able 2670 // to get rid of the control flow, so it's not worth promoting to select 2671 // instructions. 2672 BasicBlock *DomBlock = nullptr; 2673 BasicBlock *IfBlock1 = PN->getIncomingBlock(0); 2674 BasicBlock *IfBlock2 = PN->getIncomingBlock(1); 2675 if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) { 2676 IfBlock1 = nullptr; 2677 } else { 2678 DomBlock = *pred_begin(IfBlock1); 2679 for (BasicBlock::iterator I = IfBlock1->begin(); !I->isTerminator(); ++I) 2680 if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I) && 2681 !isa<PseudoProbeInst>(I)) { 2682 // This is not an aggressive instruction that we can promote. 2683 // Because of this, we won't be able to get rid of the control flow, so 2684 // the xform is not worth it. 2685 return Changed; 2686 } 2687 } 2688 2689 if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) { 2690 IfBlock2 = nullptr; 2691 } else { 2692 DomBlock = *pred_begin(IfBlock2); 2693 for (BasicBlock::iterator I = IfBlock2->begin(); !I->isTerminator(); ++I) 2694 if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I) && 2695 !isa<PseudoProbeInst>(I)) { 2696 // This is not an aggressive instruction that we can promote. 2697 // Because of this, we won't be able to get rid of the control flow, so 2698 // the xform is not worth it. 2699 return Changed; 2700 } 2701 } 2702 assert(DomBlock && "Failed to find root DomBlock"); 2703 2704 LLVM_DEBUG(dbgs() << "FOUND IF CONDITION! " << *IfCond 2705 << " T: " << IfTrue->getName() 2706 << " F: " << IfFalse->getName() << "\n"); 2707 2708 // If we can still promote the PHI nodes after this gauntlet of tests, 2709 // do all of the PHI's now. 2710 Instruction *InsertPt = DomBlock->getTerminator(); 2711 IRBuilder<NoFolder> Builder(InsertPt); 2712 2713 // Move all 'aggressive' instructions, which are defined in the 2714 // conditional parts of the if's up to the dominating block. 2715 if (IfBlock1) 2716 hoistAllInstructionsInto(DomBlock, InsertPt, IfBlock1); 2717 if (IfBlock2) 2718 hoistAllInstructionsInto(DomBlock, InsertPt, IfBlock2); 2719 2720 // Propagate fast-math-flags from phi nodes to replacement selects. 2721 IRBuilder<>::FastMathFlagGuard FMFGuard(Builder); 2722 while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) { 2723 if (isa<FPMathOperator>(PN)) 2724 Builder.setFastMathFlags(PN->getFastMathFlags()); 2725 2726 // Change the PHI node into a select instruction. 2727 Value *TrueVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse); 2728 Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue); 2729 2730 Value *Sel = Builder.CreateSelect(IfCond, TrueVal, FalseVal, "", InsertPt); 2731 PN->replaceAllUsesWith(Sel); 2732 Sel->takeName(PN); 2733 PN->eraseFromParent(); 2734 } 2735 2736 // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement 2737 // has been flattened. Change DomBlock to jump directly to our new block to 2738 // avoid other simplifycfg's kicking in on the diamond. 2739 Instruction *OldTI = DomBlock->getTerminator(); 2740 Builder.SetInsertPoint(OldTI); 2741 Builder.CreateBr(BB); 2742 2743 SmallVector<DominatorTree::UpdateType, 3> Updates; 2744 if (DTU) { 2745 Updates.push_back({DominatorTree::Insert, DomBlock, BB}); 2746 for (auto *Successor : successors(DomBlock)) 2747 Updates.push_back({DominatorTree::Delete, DomBlock, Successor}); 2748 } 2749 2750 OldTI->eraseFromParent(); 2751 if (DTU) 2752 DTU->applyUpdates(Updates); 2753 2754 return true; 2755 } 2756 2757 /// If we found a conditional branch that goes to two returning blocks, 2758 /// try to merge them together into one return, 2759 /// introducing a select if the return values disagree. 2760 bool SimplifyCFGOpt::SimplifyCondBranchToTwoReturns(BranchInst *BI, 2761 IRBuilder<> &Builder) { 2762 auto *BB = BI->getParent(); 2763 assert(BI->isConditional() && "Must be a conditional branch"); 2764 BasicBlock *TrueSucc = BI->getSuccessor(0); 2765 BasicBlock *FalseSucc = BI->getSuccessor(1); 2766 // NOTE: destinations may match, this could be degenerate uncond branch. 2767 ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator()); 2768 ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator()); 2769 2770 // Check to ensure both blocks are empty (just a return) or optionally empty 2771 // with PHI nodes. If there are other instructions, merging would cause extra 2772 // computation on one path or the other. 2773 if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator()) 2774 return false; 2775 if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator()) 2776 return false; 2777 2778 Builder.SetInsertPoint(BI); 2779 // Okay, we found a branch that is going to two return nodes. If 2780 // there is no return value for this function, just change the 2781 // branch into a return. 2782 if (FalseRet->getNumOperands() == 0) { 2783 TrueSucc->removePredecessor(BB); 2784 FalseSucc->removePredecessor(BB); 2785 Builder.CreateRetVoid(); 2786 EraseTerminatorAndDCECond(BI); 2787 if (DTU) { 2788 SmallVector<DominatorTree::UpdateType, 2> Updates; 2789 Updates.push_back({DominatorTree::Delete, BB, TrueSucc}); 2790 if (TrueSucc != FalseSucc) 2791 Updates.push_back({DominatorTree::Delete, BB, FalseSucc}); 2792 DTU->applyUpdates(Updates); 2793 } 2794 return true; 2795 } 2796 2797 // Otherwise, figure out what the true and false return values are 2798 // so we can insert a new select instruction. 2799 Value *TrueValue = TrueRet->getReturnValue(); 2800 Value *FalseValue = FalseRet->getReturnValue(); 2801 2802 // Unwrap any PHI nodes in the return blocks. 2803 if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue)) 2804 if (TVPN->getParent() == TrueSucc) 2805 TrueValue = TVPN->getIncomingValueForBlock(BB); 2806 if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue)) 2807 if (FVPN->getParent() == FalseSucc) 2808 FalseValue = FVPN->getIncomingValueForBlock(BB); 2809 2810 // In order for this transformation to be safe, we must be able to 2811 // unconditionally execute both operands to the return. This is 2812 // normally the case, but we could have a potentially-trapping 2813 // constant expression that prevents this transformation from being 2814 // safe. 2815 if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue)) 2816 if (TCV->canTrap()) 2817 return false; 2818 if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue)) 2819 if (FCV->canTrap()) 2820 return false; 2821 2822 // Okay, we collected all the mapped values and checked them for sanity, and 2823 // defined to really do this transformation. First, update the CFG. 2824 TrueSucc->removePredecessor(BB); 2825 FalseSucc->removePredecessor(BB); 2826 2827 // Insert select instructions where needed. 2828 Value *BrCond = BI->getCondition(); 2829 if (TrueValue) { 2830 // Insert a select if the results differ. 2831 if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) { 2832 } else if (isa<UndefValue>(TrueValue)) { 2833 TrueValue = FalseValue; 2834 } else { 2835 TrueValue = 2836 Builder.CreateSelect(BrCond, TrueValue, FalseValue, "retval", BI); 2837 } 2838 } 2839 2840 Value *RI = 2841 !TrueValue ? Builder.CreateRetVoid() : Builder.CreateRet(TrueValue); 2842 2843 (void)RI; 2844 2845 LLVM_DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:" 2846 << "\n " << *BI << "\nNewRet = " << *RI << "\nTRUEBLOCK: " 2847 << *TrueSucc << "\nFALSEBLOCK: " << *FalseSucc); 2848 2849 EraseTerminatorAndDCECond(BI); 2850 if (DTU) { 2851 SmallVector<DominatorTree::UpdateType, 2> Updates; 2852 Updates.push_back({DominatorTree::Delete, BB, TrueSucc}); 2853 if (TrueSucc != FalseSucc) 2854 Updates.push_back({DominatorTree::Delete, BB, FalseSucc}); 2855 DTU->applyUpdates(Updates); 2856 } 2857 2858 return true; 2859 } 2860 2861 /// Return true if either PBI or BI has branch weight available, and store 2862 /// the weights in {Pred|Succ}{True|False}Weight. If one of PBI and BI does 2863 /// not have branch weight, use 1:1 as its weight. 2864 static bool extractPredSuccWeights(BranchInst *PBI, BranchInst *BI, 2865 uint64_t &PredTrueWeight, 2866 uint64_t &PredFalseWeight, 2867 uint64_t &SuccTrueWeight, 2868 uint64_t &SuccFalseWeight) { 2869 bool PredHasWeights = 2870 PBI->extractProfMetadata(PredTrueWeight, PredFalseWeight); 2871 bool SuccHasWeights = 2872 BI->extractProfMetadata(SuccTrueWeight, SuccFalseWeight); 2873 if (PredHasWeights || SuccHasWeights) { 2874 if (!PredHasWeights) 2875 PredTrueWeight = PredFalseWeight = 1; 2876 if (!SuccHasWeights) 2877 SuccTrueWeight = SuccFalseWeight = 1; 2878 return true; 2879 } else { 2880 return false; 2881 } 2882 } 2883 2884 /// Determine if the two branches share a common destination and deduce a glue 2885 /// that joins the branches' conditions to arrive at the common destination if 2886 /// that would be profitable. 2887 static Optional<std::pair<Instruction::BinaryOps, bool>> 2888 shouldFoldCondBranchesToCommonDestination(BranchInst *BI, BranchInst *PBI, 2889 const TargetTransformInfo *TTI) { 2890 assert(BI && PBI && BI->isConditional() && PBI->isConditional() && 2891 "Both blocks must end with a conditional branches."); 2892 assert(is_contained(predecessors(BI->getParent()), PBI->getParent()) && 2893 "PredBB must be a predecessor of BB."); 2894 2895 // We have the potential to fold the conditions together, but if the 2896 // predecessor branch is predictable, we may not want to merge them. 2897 uint64_t PTWeight, PFWeight; 2898 BranchProbability PBITrueProb, Likely; 2899 if (TTI && PBI->extractProfMetadata(PTWeight, PFWeight) && 2900 (PTWeight + PFWeight) != 0) { 2901 PBITrueProb = 2902 BranchProbability::getBranchProbability(PTWeight, PTWeight + PFWeight); 2903 Likely = TTI->getPredictableBranchThreshold(); 2904 } 2905 2906 if (PBI->getSuccessor(0) == BI->getSuccessor(0)) { 2907 // Speculate the 2nd condition unless the 1st is probably true. 2908 if (PBITrueProb.isUnknown() || PBITrueProb < Likely) 2909 return {{Instruction::Or, false}}; 2910 } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) { 2911 // Speculate the 2nd condition unless the 1st is probably false. 2912 if (PBITrueProb.isUnknown() || PBITrueProb.getCompl() < Likely) 2913 return {{Instruction::And, false}}; 2914 } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) { 2915 // Speculate the 2nd condition unless the 1st is probably true. 2916 if (PBITrueProb.isUnknown() || PBITrueProb < Likely) 2917 return {{Instruction::And, true}}; 2918 } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) { 2919 // Speculate the 2nd condition unless the 1st is probably false. 2920 if (PBITrueProb.isUnknown() || PBITrueProb.getCompl() < Likely) 2921 return {{Instruction::Or, true}}; 2922 } 2923 return None; 2924 } 2925 2926 static bool performBranchToCommonDestFolding(BranchInst *BI, BranchInst *PBI, 2927 DomTreeUpdater *DTU, 2928 MemorySSAUpdater *MSSAU, 2929 const TargetTransformInfo *TTI) { 2930 BasicBlock *BB = BI->getParent(); 2931 BasicBlock *PredBlock = PBI->getParent(); 2932 2933 // Determine if the two branches share a common destination. 2934 Instruction::BinaryOps Opc; 2935 bool InvertPredCond; 2936 std::tie(Opc, InvertPredCond) = 2937 *shouldFoldCondBranchesToCommonDestination(BI, PBI, TTI); 2938 2939 LLVM_DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB); 2940 2941 IRBuilder<> Builder(PBI); 2942 // The builder is used to create instructions to eliminate the branch in BB. 2943 // If BB's terminator has !annotation metadata, add it to the new 2944 // instructions. 2945 Builder.CollectMetadataToCopy(BB->getTerminator(), 2946 {LLVMContext::MD_annotation}); 2947 2948 // If we need to invert the condition in the pred block to match, do so now. 2949 if (InvertPredCond) { 2950 Value *NewCond = PBI->getCondition(); 2951 if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) { 2952 CmpInst *CI = cast<CmpInst>(NewCond); 2953 CI->setPredicate(CI->getInversePredicate()); 2954 } else { 2955 NewCond = 2956 Builder.CreateNot(NewCond, PBI->getCondition()->getName() + ".not"); 2957 } 2958 2959 PBI->setCondition(NewCond); 2960 PBI->swapSuccessors(); 2961 } 2962 2963 BasicBlock *UniqueSucc = 2964 PBI->getSuccessor(0) == BB ? BI->getSuccessor(0) : BI->getSuccessor(1); 2965 2966 // Before cloning instructions, notify the successor basic block that it 2967 // is about to have a new predecessor. This will update PHI nodes, 2968 // which will allow us to update live-out uses of bonus instructions. 2969 AddPredecessorToBlock(UniqueSucc, PredBlock, BB, MSSAU); 2970 2971 // Try to update branch weights. 2972 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 2973 if (extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight, 2974 SuccTrueWeight, SuccFalseWeight)) { 2975 SmallVector<uint64_t, 8> NewWeights; 2976 2977 if (PBI->getSuccessor(0) == BB) { 2978 // PBI: br i1 %x, BB, FalseDest 2979 // BI: br i1 %y, UniqueSucc, FalseDest 2980 // TrueWeight is TrueWeight for PBI * TrueWeight for BI. 2981 NewWeights.push_back(PredTrueWeight * SuccTrueWeight); 2982 // FalseWeight is FalseWeight for PBI * TotalWeight for BI + 2983 // TrueWeight for PBI * FalseWeight for BI. 2984 // We assume that total weights of a BranchInst can fit into 32 bits. 2985 // Therefore, we will not have overflow using 64-bit arithmetic. 2986 NewWeights.push_back(PredFalseWeight * 2987 (SuccFalseWeight + SuccTrueWeight) + 2988 PredTrueWeight * SuccFalseWeight); 2989 } else { 2990 // PBI: br i1 %x, TrueDest, BB 2991 // BI: br i1 %y, TrueDest, UniqueSucc 2992 // TrueWeight is TrueWeight for PBI * TotalWeight for BI + 2993 // FalseWeight for PBI * TrueWeight for BI. 2994 NewWeights.push_back(PredTrueWeight * (SuccFalseWeight + SuccTrueWeight) + 2995 PredFalseWeight * SuccTrueWeight); 2996 // FalseWeight is FalseWeight for PBI * FalseWeight for BI. 2997 NewWeights.push_back(PredFalseWeight * SuccFalseWeight); 2998 } 2999 3000 // Halve the weights if any of them cannot fit in an uint32_t 3001 FitWeights(NewWeights); 3002 3003 SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(), NewWeights.end()); 3004 setBranchWeights(PBI, MDWeights[0], MDWeights[1]); 3005 3006 // TODO: If BB is reachable from all paths through PredBlock, then we 3007 // could replace PBI's branch probabilities with BI's. 3008 } else 3009 PBI->setMetadata(LLVMContext::MD_prof, nullptr); 3010 3011 // Now, update the CFG. 3012 PBI->setSuccessor(PBI->getSuccessor(0) != BB, UniqueSucc); 3013 3014 if (DTU) 3015 DTU->applyUpdates({{DominatorTree::Insert, PredBlock, UniqueSucc}, 3016 {DominatorTree::Delete, PredBlock, BB}}); 3017 3018 // If BI was a loop latch, it may have had associated loop metadata. 3019 // We need to copy it to the new latch, that is, PBI. 3020 if (MDNode *LoopMD = BI->getMetadata(LLVMContext::MD_loop)) 3021 PBI->setMetadata(LLVMContext::MD_loop, LoopMD); 3022 3023 ValueToValueMapTy VMap; // maps original values to cloned values 3024 CloneInstructionsIntoPredecessorBlockAndUpdateSSAUses(BB, PredBlock, VMap); 3025 3026 // Now that the Cond was cloned into the predecessor basic block, 3027 // or/and the two conditions together. 3028 Value *NewCond = nullptr; 3029 Value *BICond = VMap[BI->getCondition()]; 3030 3031 if (impliesPoison(BICond, PBI->getCondition())) 3032 NewCond = Builder.CreateBinOp(Opc, PBI->getCondition(), BICond, "or.cond"); 3033 else 3034 NewCond = 3035 Opc == Instruction::And 3036 ? Builder.CreateLogicalAnd(PBI->getCondition(), BICond, "or.cond") 3037 : Builder.CreateLogicalOr(PBI->getCondition(), BICond, "or.cond"); 3038 PBI->setCondition(NewCond); 3039 3040 // Copy any debug value intrinsics into the end of PredBlock. 3041 for (Instruction &I : *BB) { 3042 if (isa<DbgInfoIntrinsic>(I)) { 3043 Instruction *NewI = I.clone(); 3044 RemapInstruction(NewI, VMap, 3045 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 3046 NewI->insertBefore(PBI); 3047 } 3048 } 3049 3050 ++NumFoldBranchToCommonDest; 3051 return true; 3052 } 3053 3054 /// If this basic block is simple enough, and if a predecessor branches to us 3055 /// and one of our successors, fold the block into the predecessor and use 3056 /// logical operations to pick the right destination. 3057 bool llvm::FoldBranchToCommonDest(BranchInst *BI, DomTreeUpdater *DTU, 3058 MemorySSAUpdater *MSSAU, 3059 const TargetTransformInfo *TTI, 3060 unsigned BonusInstThreshold) { 3061 // If this block ends with an unconditional branch, 3062 // let SpeculativelyExecuteBB() deal with it. 3063 if (!BI->isConditional()) 3064 return false; 3065 3066 BasicBlock *BB = BI->getParent(); 3067 3068 bool Changed = false; 3069 3070 TargetTransformInfo::TargetCostKind CostKind = 3071 BB->getParent()->hasMinSize() ? TargetTransformInfo::TCK_CodeSize 3072 : TargetTransformInfo::TCK_SizeAndLatency; 3073 3074 Instruction *Cond = dyn_cast<Instruction>(BI->getCondition()); 3075 3076 if (!Cond || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) || 3077 Cond->getParent() != BB || !Cond->hasOneUse()) 3078 return Changed; 3079 3080 // Cond is known to be a compare or binary operator. Check to make sure that 3081 // neither operand is a potentially-trapping constant expression. 3082 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0))) 3083 if (CE->canTrap()) 3084 return Changed; 3085 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1))) 3086 if (CE->canTrap()) 3087 return Changed; 3088 3089 // Finally, don't infinitely unroll conditional loops. 3090 if (is_contained(successors(BB), BB)) 3091 return Changed; 3092 3093 // With which predecessors will we want to deal with? 3094 SmallVector<BasicBlock *, 8> Preds; 3095 for (BasicBlock *PredBlock : predecessors(BB)) { 3096 BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator()); 3097 3098 // Check that we have two conditional branches. If there is a PHI node in 3099 // the common successor, verify that the same value flows in from both 3100 // blocks. 3101 if (!PBI || PBI->isUnconditional() || !SafeToMergeTerminators(BI, PBI)) 3102 continue; 3103 3104 // Determine if the two branches share a common destination. 3105 Instruction::BinaryOps Opc; 3106 bool InvertPredCond; 3107 if (auto Recipe = shouldFoldCondBranchesToCommonDestination(BI, PBI, TTI)) 3108 std::tie(Opc, InvertPredCond) = *Recipe; 3109 else 3110 continue; 3111 3112 // Check the cost of inserting the necessary logic before performing the 3113 // transformation. 3114 if (TTI) { 3115 Type *Ty = BI->getCondition()->getType(); 3116 InstructionCost Cost = TTI->getArithmeticInstrCost(Opc, Ty, CostKind); 3117 if (InvertPredCond && (!PBI->getCondition()->hasOneUse() || 3118 !isa<CmpInst>(PBI->getCondition()))) 3119 Cost += TTI->getArithmeticInstrCost(Instruction::Xor, Ty, CostKind); 3120 3121 if (Cost > BranchFoldThreshold) 3122 continue; 3123 } 3124 3125 // Ok, we do want to deal with this predecessor. Record it. 3126 Preds.emplace_back(PredBlock); 3127 } 3128 3129 // If there aren't any predecessors into which we can fold, 3130 // don't bother checking the cost. 3131 if (Preds.empty()) 3132 return Changed; 3133 3134 // Only allow this transformation if computing the condition doesn't involve 3135 // too many instructions and these involved instructions can be executed 3136 // unconditionally. We denote all involved instructions except the condition 3137 // as "bonus instructions", and only allow this transformation when the 3138 // number of the bonus instructions we'll need to create when cloning into 3139 // each predecessor does not exceed a certain threshold. 3140 unsigned NumBonusInsts = 0; 3141 const unsigned PredCount = Preds.size(); 3142 for (Instruction &I : *BB) { 3143 // Don't check the branch condition comparison itself. 3144 if (&I == Cond) 3145 continue; 3146 // Ignore dbg intrinsics, and the terminator. 3147 if (isa<DbgInfoIntrinsic>(I) || isa<BranchInst>(I)) 3148 continue; 3149 // I must be safe to execute unconditionally. 3150 if (!isSafeToSpeculativelyExecute(&I)) 3151 return Changed; 3152 3153 // Account for the cost of duplicating this instruction into each 3154 // predecessor. 3155 NumBonusInsts += PredCount; 3156 // Early exits once we reach the limit. 3157 if (NumBonusInsts > BonusInstThreshold) 3158 return Changed; 3159 } 3160 3161 // Ok, we have the budget. Perform the transformation. 3162 for (BasicBlock *PredBlock : Preds) { 3163 auto *PBI = cast<BranchInst>(PredBlock->getTerminator()); 3164 return performBranchToCommonDestFolding(BI, PBI, DTU, MSSAU, TTI); 3165 } 3166 return Changed; 3167 } 3168 3169 // If there is only one store in BB1 and BB2, return it, otherwise return 3170 // nullptr. 3171 static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) { 3172 StoreInst *S = nullptr; 3173 for (auto *BB : {BB1, BB2}) { 3174 if (!BB) 3175 continue; 3176 for (auto &I : *BB) 3177 if (auto *SI = dyn_cast<StoreInst>(&I)) { 3178 if (S) 3179 // Multiple stores seen. 3180 return nullptr; 3181 else 3182 S = SI; 3183 } 3184 } 3185 return S; 3186 } 3187 3188 static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB, 3189 Value *AlternativeV = nullptr) { 3190 // PHI is going to be a PHI node that allows the value V that is defined in 3191 // BB to be referenced in BB's only successor. 3192 // 3193 // If AlternativeV is nullptr, the only value we care about in PHI is V. It 3194 // doesn't matter to us what the other operand is (it'll never get used). We 3195 // could just create a new PHI with an undef incoming value, but that could 3196 // increase register pressure if EarlyCSE/InstCombine can't fold it with some 3197 // other PHI. So here we directly look for some PHI in BB's successor with V 3198 // as an incoming operand. If we find one, we use it, else we create a new 3199 // one. 3200 // 3201 // If AlternativeV is not nullptr, we care about both incoming values in PHI. 3202 // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV] 3203 // where OtherBB is the single other predecessor of BB's only successor. 3204 PHINode *PHI = nullptr; 3205 BasicBlock *Succ = BB->getSingleSuccessor(); 3206 3207 for (auto I = Succ->begin(); isa<PHINode>(I); ++I) 3208 if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) { 3209 PHI = cast<PHINode>(I); 3210 if (!AlternativeV) 3211 break; 3212 3213 assert(Succ->hasNPredecessors(2)); 3214 auto PredI = pred_begin(Succ); 3215 BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI; 3216 if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV) 3217 break; 3218 PHI = nullptr; 3219 } 3220 if (PHI) 3221 return PHI; 3222 3223 // If V is not an instruction defined in BB, just return it. 3224 if (!AlternativeV && 3225 (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB)) 3226 return V; 3227 3228 PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge", &Succ->front()); 3229 PHI->addIncoming(V, BB); 3230 for (BasicBlock *PredBB : predecessors(Succ)) 3231 if (PredBB != BB) 3232 PHI->addIncoming( 3233 AlternativeV ? AlternativeV : UndefValue::get(V->getType()), PredBB); 3234 return PHI; 3235 } 3236 3237 static bool mergeConditionalStoreToAddress( 3238 BasicBlock *PTB, BasicBlock *PFB, BasicBlock *QTB, BasicBlock *QFB, 3239 BasicBlock *PostBB, Value *Address, bool InvertPCond, bool InvertQCond, 3240 DomTreeUpdater *DTU, const DataLayout &DL, const TargetTransformInfo &TTI) { 3241 // For every pointer, there must be exactly two stores, one coming from 3242 // PTB or PFB, and the other from QTB or QFB. We don't support more than one 3243 // store (to any address) in PTB,PFB or QTB,QFB. 3244 // FIXME: We could relax this restriction with a bit more work and performance 3245 // testing. 3246 StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB); 3247 StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB); 3248 if (!PStore || !QStore) 3249 return false; 3250 3251 // Now check the stores are compatible. 3252 if (!QStore->isUnordered() || !PStore->isUnordered()) 3253 return false; 3254 3255 // Check that sinking the store won't cause program behavior changes. Sinking 3256 // the store out of the Q blocks won't change any behavior as we're sinking 3257 // from a block to its unconditional successor. But we're moving a store from 3258 // the P blocks down through the middle block (QBI) and past both QFB and QTB. 3259 // So we need to check that there are no aliasing loads or stores in 3260 // QBI, QTB and QFB. We also need to check there are no conflicting memory 3261 // operations between PStore and the end of its parent block. 3262 // 3263 // The ideal way to do this is to query AliasAnalysis, but we don't 3264 // preserve AA currently so that is dangerous. Be super safe and just 3265 // check there are no other memory operations at all. 3266 for (auto &I : *QFB->getSinglePredecessor()) 3267 if (I.mayReadOrWriteMemory()) 3268 return false; 3269 for (auto &I : *QFB) 3270 if (&I != QStore && I.mayReadOrWriteMemory()) 3271 return false; 3272 if (QTB) 3273 for (auto &I : *QTB) 3274 if (&I != QStore && I.mayReadOrWriteMemory()) 3275 return false; 3276 for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end(); 3277 I != E; ++I) 3278 if (&*I != PStore && I->mayReadOrWriteMemory()) 3279 return false; 3280 3281 // If we're not in aggressive mode, we only optimize if we have some 3282 // confidence that by optimizing we'll allow P and/or Q to be if-converted. 3283 auto IsWorthwhile = [&](BasicBlock *BB, ArrayRef<StoreInst *> FreeStores) { 3284 if (!BB) 3285 return true; 3286 // Heuristic: if the block can be if-converted/phi-folded and the 3287 // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to 3288 // thread this store. 3289 InstructionCost Cost = 0; 3290 InstructionCost Budget = 3291 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 3292 for (auto &I : BB->instructionsWithoutDebug()) { 3293 // Consider terminator instruction to be free. 3294 if (I.isTerminator()) 3295 continue; 3296 // If this is one the stores that we want to speculate out of this BB, 3297 // then don't count it's cost, consider it to be free. 3298 if (auto *S = dyn_cast<StoreInst>(&I)) 3299 if (llvm::find(FreeStores, S)) 3300 continue; 3301 // Else, we have a white-list of instructions that we are ak speculating. 3302 if (!isa<BinaryOperator>(I) && !isa<GetElementPtrInst>(I)) 3303 return false; // Not in white-list - not worthwhile folding. 3304 // And finally, if this is a non-free instruction that we are okay 3305 // speculating, ensure that we consider the speculation budget. 3306 Cost += TTI.getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency); 3307 if (Cost > Budget) 3308 return false; // Eagerly refuse to fold as soon as we're out of budget. 3309 } 3310 assert(Cost <= Budget && 3311 "When we run out of budget we will eagerly return from within the " 3312 "per-instruction loop."); 3313 return true; 3314 }; 3315 3316 const std::array<StoreInst *, 2> FreeStores = {PStore, QStore}; 3317 if (!MergeCondStoresAggressively && 3318 (!IsWorthwhile(PTB, FreeStores) || !IsWorthwhile(PFB, FreeStores) || 3319 !IsWorthwhile(QTB, FreeStores) || !IsWorthwhile(QFB, FreeStores))) 3320 return false; 3321 3322 // If PostBB has more than two predecessors, we need to split it so we can 3323 // sink the store. 3324 if (std::next(pred_begin(PostBB), 2) != pred_end(PostBB)) { 3325 // We know that QFB's only successor is PostBB. And QFB has a single 3326 // predecessor. If QTB exists, then its only successor is also PostBB. 3327 // If QTB does not exist, then QFB's only predecessor has a conditional 3328 // branch to QFB and PostBB. 3329 BasicBlock *TruePred = QTB ? QTB : QFB->getSinglePredecessor(); 3330 BasicBlock *NewBB = 3331 SplitBlockPredecessors(PostBB, {QFB, TruePred}, "condstore.split", DTU); 3332 if (!NewBB) 3333 return false; 3334 PostBB = NewBB; 3335 } 3336 3337 // OK, we're going to sink the stores to PostBB. The store has to be 3338 // conditional though, so first create the predicate. 3339 Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator()) 3340 ->getCondition(); 3341 Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator()) 3342 ->getCondition(); 3343 3344 Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(), 3345 PStore->getParent()); 3346 Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(), 3347 QStore->getParent(), PPHI); 3348 3349 IRBuilder<> QB(&*PostBB->getFirstInsertionPt()); 3350 3351 Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond); 3352 Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond); 3353 3354 if (InvertPCond) 3355 PPred = QB.CreateNot(PPred); 3356 if (InvertQCond) 3357 QPred = QB.CreateNot(QPred); 3358 Value *CombinedPred = QB.CreateOr(PPred, QPred); 3359 3360 auto *T = SplitBlockAndInsertIfThen(CombinedPred, &*QB.GetInsertPoint(), 3361 /*Unreachable=*/false, 3362 /*BranchWeights=*/nullptr, DTU); 3363 QB.SetInsertPoint(T); 3364 StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address)); 3365 AAMDNodes AAMD; 3366 PStore->getAAMetadata(AAMD, /*Merge=*/false); 3367 PStore->getAAMetadata(AAMD, /*Merge=*/true); 3368 SI->setAAMetadata(AAMD); 3369 // Choose the minimum alignment. If we could prove both stores execute, we 3370 // could use biggest one. In this case, though, we only know that one of the 3371 // stores executes. And we don't know it's safe to take the alignment from a 3372 // store that doesn't execute. 3373 SI->setAlignment(std::min(PStore->getAlign(), QStore->getAlign())); 3374 3375 QStore->eraseFromParent(); 3376 PStore->eraseFromParent(); 3377 3378 return true; 3379 } 3380 3381 static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI, 3382 DomTreeUpdater *DTU, const DataLayout &DL, 3383 const TargetTransformInfo &TTI) { 3384 // The intention here is to find diamonds or triangles (see below) where each 3385 // conditional block contains a store to the same address. Both of these 3386 // stores are conditional, so they can't be unconditionally sunk. But it may 3387 // be profitable to speculatively sink the stores into one merged store at the 3388 // end, and predicate the merged store on the union of the two conditions of 3389 // PBI and QBI. 3390 // 3391 // This can reduce the number of stores executed if both of the conditions are 3392 // true, and can allow the blocks to become small enough to be if-converted. 3393 // This optimization will also chain, so that ladders of test-and-set 3394 // sequences can be if-converted away. 3395 // 3396 // We only deal with simple diamonds or triangles: 3397 // 3398 // PBI or PBI or a combination of the two 3399 // / \ | \ 3400 // PTB PFB | PFB 3401 // \ / | / 3402 // QBI QBI 3403 // / \ | \ 3404 // QTB QFB | QFB 3405 // \ / | / 3406 // PostBB PostBB 3407 // 3408 // We model triangles as a type of diamond with a nullptr "true" block. 3409 // Triangles are canonicalized so that the fallthrough edge is represented by 3410 // a true condition, as in the diagram above. 3411 BasicBlock *PTB = PBI->getSuccessor(0); 3412 BasicBlock *PFB = PBI->getSuccessor(1); 3413 BasicBlock *QTB = QBI->getSuccessor(0); 3414 BasicBlock *QFB = QBI->getSuccessor(1); 3415 BasicBlock *PostBB = QFB->getSingleSuccessor(); 3416 3417 // Make sure we have a good guess for PostBB. If QTB's only successor is 3418 // QFB, then QFB is a better PostBB. 3419 if (QTB->getSingleSuccessor() == QFB) 3420 PostBB = QFB; 3421 3422 // If we couldn't find a good PostBB, stop. 3423 if (!PostBB) 3424 return false; 3425 3426 bool InvertPCond = false, InvertQCond = false; 3427 // Canonicalize fallthroughs to the true branches. 3428 if (PFB == QBI->getParent()) { 3429 std::swap(PFB, PTB); 3430 InvertPCond = true; 3431 } 3432 if (QFB == PostBB) { 3433 std::swap(QFB, QTB); 3434 InvertQCond = true; 3435 } 3436 3437 // From this point on we can assume PTB or QTB may be fallthroughs but PFB 3438 // and QFB may not. Model fallthroughs as a nullptr block. 3439 if (PTB == QBI->getParent()) 3440 PTB = nullptr; 3441 if (QTB == PostBB) 3442 QTB = nullptr; 3443 3444 // Legality bailouts. We must have at least the non-fallthrough blocks and 3445 // the post-dominating block, and the non-fallthroughs must only have one 3446 // predecessor. 3447 auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) { 3448 return BB->getSinglePredecessor() == P && BB->getSingleSuccessor() == S; 3449 }; 3450 if (!HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) || 3451 !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB)) 3452 return false; 3453 if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) || 3454 (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB))) 3455 return false; 3456 if (!QBI->getParent()->hasNUses(2)) 3457 return false; 3458 3459 // OK, this is a sequence of two diamonds or triangles. 3460 // Check if there are stores in PTB or PFB that are repeated in QTB or QFB. 3461 SmallPtrSet<Value *, 4> PStoreAddresses, QStoreAddresses; 3462 for (auto *BB : {PTB, PFB}) { 3463 if (!BB) 3464 continue; 3465 for (auto &I : *BB) 3466 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) 3467 PStoreAddresses.insert(SI->getPointerOperand()); 3468 } 3469 for (auto *BB : {QTB, QFB}) { 3470 if (!BB) 3471 continue; 3472 for (auto &I : *BB) 3473 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) 3474 QStoreAddresses.insert(SI->getPointerOperand()); 3475 } 3476 3477 set_intersect(PStoreAddresses, QStoreAddresses); 3478 // set_intersect mutates PStoreAddresses in place. Rename it here to make it 3479 // clear what it contains. 3480 auto &CommonAddresses = PStoreAddresses; 3481 3482 bool Changed = false; 3483 for (auto *Address : CommonAddresses) 3484 Changed |= 3485 mergeConditionalStoreToAddress(PTB, PFB, QTB, QFB, PostBB, Address, 3486 InvertPCond, InvertQCond, DTU, DL, TTI); 3487 return Changed; 3488 } 3489 3490 /// If the previous block ended with a widenable branch, determine if reusing 3491 /// the target block is profitable and legal. This will have the effect of 3492 /// "widening" PBI, but doesn't require us to reason about hosting safety. 3493 static bool tryWidenCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI, 3494 DomTreeUpdater *DTU) { 3495 // TODO: This can be generalized in two important ways: 3496 // 1) We can allow phi nodes in IfFalseBB and simply reuse all the input 3497 // values from the PBI edge. 3498 // 2) We can sink side effecting instructions into BI's fallthrough 3499 // successor provided they doesn't contribute to computation of 3500 // BI's condition. 3501 Value *CondWB, *WC; 3502 BasicBlock *IfTrueBB, *IfFalseBB; 3503 if (!parseWidenableBranch(PBI, CondWB, WC, IfTrueBB, IfFalseBB) || 3504 IfTrueBB != BI->getParent() || !BI->getParent()->getSinglePredecessor()) 3505 return false; 3506 if (!IfFalseBB->phis().empty()) 3507 return false; // TODO 3508 // Use lambda to lazily compute expensive condition after cheap ones. 3509 auto NoSideEffects = [](BasicBlock &BB) { 3510 return !llvm::any_of(BB, [](const Instruction &I) { 3511 return I.mayWriteToMemory() || I.mayHaveSideEffects(); 3512 }); 3513 }; 3514 if (BI->getSuccessor(1) != IfFalseBB && // no inf looping 3515 BI->getSuccessor(1)->getTerminatingDeoptimizeCall() && // profitability 3516 NoSideEffects(*BI->getParent())) { 3517 auto *OldSuccessor = BI->getSuccessor(1); 3518 OldSuccessor->removePredecessor(BI->getParent()); 3519 BI->setSuccessor(1, IfFalseBB); 3520 if (DTU) 3521 DTU->applyUpdates( 3522 {{DominatorTree::Insert, BI->getParent(), IfFalseBB}, 3523 {DominatorTree::Delete, BI->getParent(), OldSuccessor}}); 3524 return true; 3525 } 3526 if (BI->getSuccessor(0) != IfFalseBB && // no inf looping 3527 BI->getSuccessor(0)->getTerminatingDeoptimizeCall() && // profitability 3528 NoSideEffects(*BI->getParent())) { 3529 auto *OldSuccessor = BI->getSuccessor(0); 3530 OldSuccessor->removePredecessor(BI->getParent()); 3531 BI->setSuccessor(0, IfFalseBB); 3532 if (DTU) 3533 DTU->applyUpdates( 3534 {{DominatorTree::Insert, BI->getParent(), IfFalseBB}, 3535 {DominatorTree::Delete, BI->getParent(), OldSuccessor}}); 3536 return true; 3537 } 3538 return false; 3539 } 3540 3541 /// If we have a conditional branch as a predecessor of another block, 3542 /// this function tries to simplify it. We know 3543 /// that PBI and BI are both conditional branches, and BI is in one of the 3544 /// successor blocks of PBI - PBI branches to BI. 3545 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI, 3546 DomTreeUpdater *DTU, 3547 const DataLayout &DL, 3548 const TargetTransformInfo &TTI) { 3549 assert(PBI->isConditional() && BI->isConditional()); 3550 BasicBlock *BB = BI->getParent(); 3551 3552 // If this block ends with a branch instruction, and if there is a 3553 // predecessor that ends on a branch of the same condition, make 3554 // this conditional branch redundant. 3555 if (PBI->getCondition() == BI->getCondition() && 3556 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 3557 // Okay, the outcome of this conditional branch is statically 3558 // knowable. If this block had a single pred, handle specially. 3559 if (BB->getSinglePredecessor()) { 3560 // Turn this into a branch on constant. 3561 bool CondIsTrue = PBI->getSuccessor(0) == BB; 3562 BI->setCondition( 3563 ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue)); 3564 return true; // Nuke the branch on constant. 3565 } 3566 3567 // Otherwise, if there are multiple predecessors, insert a PHI that merges 3568 // in the constant and simplify the block result. Subsequent passes of 3569 // simplifycfg will thread the block. 3570 if (BlockIsSimpleEnoughToThreadThrough(BB)) { 3571 pred_iterator PB = pred_begin(BB), PE = pred_end(BB); 3572 PHINode *NewPN = PHINode::Create( 3573 Type::getInt1Ty(BB->getContext()), std::distance(PB, PE), 3574 BI->getCondition()->getName() + ".pr", &BB->front()); 3575 // Okay, we're going to insert the PHI node. Since PBI is not the only 3576 // predecessor, compute the PHI'd conditional value for all of the preds. 3577 // Any predecessor where the condition is not computable we keep symbolic. 3578 for (pred_iterator PI = PB; PI != PE; ++PI) { 3579 BasicBlock *P = *PI; 3580 if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) && PBI != BI && 3581 PBI->isConditional() && PBI->getCondition() == BI->getCondition() && 3582 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 3583 bool CondIsTrue = PBI->getSuccessor(0) == BB; 3584 NewPN->addIncoming( 3585 ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue), 3586 P); 3587 } else { 3588 NewPN->addIncoming(BI->getCondition(), P); 3589 } 3590 } 3591 3592 BI->setCondition(NewPN); 3593 return true; 3594 } 3595 } 3596 3597 // If the previous block ended with a widenable branch, determine if reusing 3598 // the target block is profitable and legal. This will have the effect of 3599 // "widening" PBI, but doesn't require us to reason about hosting safety. 3600 if (tryWidenCondBranchToCondBranch(PBI, BI, DTU)) 3601 return true; 3602 3603 if (auto *CE = dyn_cast<ConstantExpr>(BI->getCondition())) 3604 if (CE->canTrap()) 3605 return false; 3606 3607 // If both branches are conditional and both contain stores to the same 3608 // address, remove the stores from the conditionals and create a conditional 3609 // merged store at the end. 3610 if (MergeCondStores && mergeConditionalStores(PBI, BI, DTU, DL, TTI)) 3611 return true; 3612 3613 // If this is a conditional branch in an empty block, and if any 3614 // predecessors are a conditional branch to one of our destinations, 3615 // fold the conditions into logical ops and one cond br. 3616 3617 // Ignore dbg intrinsics. 3618 if (&*BB->instructionsWithoutDebug().begin() != BI) 3619 return false; 3620 3621 int PBIOp, BIOp; 3622 if (PBI->getSuccessor(0) == BI->getSuccessor(0)) { 3623 PBIOp = 0; 3624 BIOp = 0; 3625 } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) { 3626 PBIOp = 0; 3627 BIOp = 1; 3628 } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) { 3629 PBIOp = 1; 3630 BIOp = 0; 3631 } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) { 3632 PBIOp = 1; 3633 BIOp = 1; 3634 } else { 3635 return false; 3636 } 3637 3638 // Check to make sure that the other destination of this branch 3639 // isn't BB itself. If so, this is an infinite loop that will 3640 // keep getting unwound. 3641 if (PBI->getSuccessor(PBIOp) == BB) 3642 return false; 3643 3644 // Do not perform this transformation if it would require 3645 // insertion of a large number of select instructions. For targets 3646 // without predication/cmovs, this is a big pessimization. 3647 3648 // Also do not perform this transformation if any phi node in the common 3649 // destination block can trap when reached by BB or PBB (PR17073). In that 3650 // case, it would be unsafe to hoist the operation into a select instruction. 3651 3652 BasicBlock *CommonDest = PBI->getSuccessor(PBIOp); 3653 BasicBlock *RemovedDest = PBI->getSuccessor(PBIOp ^ 1); 3654 unsigned NumPhis = 0; 3655 for (BasicBlock::iterator II = CommonDest->begin(); isa<PHINode>(II); 3656 ++II, ++NumPhis) { 3657 if (NumPhis > 2) // Disable this xform. 3658 return false; 3659 3660 PHINode *PN = cast<PHINode>(II); 3661 Value *BIV = PN->getIncomingValueForBlock(BB); 3662 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BIV)) 3663 if (CE->canTrap()) 3664 return false; 3665 3666 unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent()); 3667 Value *PBIV = PN->getIncomingValue(PBBIdx); 3668 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(PBIV)) 3669 if (CE->canTrap()) 3670 return false; 3671 } 3672 3673 // Finally, if everything is ok, fold the branches to logical ops. 3674 BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1); 3675 3676 LLVM_DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent() 3677 << "AND: " << *BI->getParent()); 3678 3679 SmallVector<DominatorTree::UpdateType, 5> Updates; 3680 3681 // If OtherDest *is* BB, then BB is a basic block with a single conditional 3682 // branch in it, where one edge (OtherDest) goes back to itself but the other 3683 // exits. We don't *know* that the program avoids the infinite loop 3684 // (even though that seems likely). If we do this xform naively, we'll end up 3685 // recursively unpeeling the loop. Since we know that (after the xform is 3686 // done) that the block *is* infinite if reached, we just make it an obviously 3687 // infinite loop with no cond branch. 3688 if (OtherDest == BB) { 3689 // Insert it at the end of the function, because it's either code, 3690 // or it won't matter if it's hot. :) 3691 BasicBlock *InfLoopBlock = 3692 BasicBlock::Create(BB->getContext(), "infloop", BB->getParent()); 3693 BranchInst::Create(InfLoopBlock, InfLoopBlock); 3694 if (DTU) 3695 Updates.push_back({DominatorTree::Insert, InfLoopBlock, InfLoopBlock}); 3696 OtherDest = InfLoopBlock; 3697 } 3698 3699 LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent()); 3700 3701 // BI may have other predecessors. Because of this, we leave 3702 // it alone, but modify PBI. 3703 3704 // Make sure we get to CommonDest on True&True directions. 3705 Value *PBICond = PBI->getCondition(); 3706 IRBuilder<NoFolder> Builder(PBI); 3707 if (PBIOp) 3708 PBICond = Builder.CreateNot(PBICond, PBICond->getName() + ".not"); 3709 3710 Value *BICond = BI->getCondition(); 3711 if (BIOp) 3712 BICond = Builder.CreateNot(BICond, BICond->getName() + ".not"); 3713 3714 // Merge the conditions. 3715 Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge"); 3716 3717 // Modify PBI to branch on the new condition to the new dests. 3718 PBI->setCondition(Cond); 3719 PBI->setSuccessor(0, CommonDest); 3720 PBI->setSuccessor(1, OtherDest); 3721 3722 if (DTU) { 3723 Updates.push_back({DominatorTree::Insert, PBI->getParent(), OtherDest}); 3724 Updates.push_back({DominatorTree::Delete, PBI->getParent(), RemovedDest}); 3725 3726 DTU->applyUpdates(Updates); 3727 } 3728 3729 // Update branch weight for PBI. 3730 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 3731 uint64_t PredCommon, PredOther, SuccCommon, SuccOther; 3732 bool HasWeights = 3733 extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight, 3734 SuccTrueWeight, SuccFalseWeight); 3735 if (HasWeights) { 3736 PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight; 3737 PredOther = PBIOp ? PredTrueWeight : PredFalseWeight; 3738 SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight; 3739 SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight; 3740 // The weight to CommonDest should be PredCommon * SuccTotal + 3741 // PredOther * SuccCommon. 3742 // The weight to OtherDest should be PredOther * SuccOther. 3743 uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) + 3744 PredOther * SuccCommon, 3745 PredOther * SuccOther}; 3746 // Halve the weights if any of them cannot fit in an uint32_t 3747 FitWeights(NewWeights); 3748 3749 setBranchWeights(PBI, NewWeights[0], NewWeights[1]); 3750 } 3751 3752 // OtherDest may have phi nodes. If so, add an entry from PBI's 3753 // block that are identical to the entries for BI's block. 3754 AddPredecessorToBlock(OtherDest, PBI->getParent(), BB); 3755 3756 // We know that the CommonDest already had an edge from PBI to 3757 // it. If it has PHIs though, the PHIs may have different 3758 // entries for BB and PBI's BB. If so, insert a select to make 3759 // them agree. 3760 for (PHINode &PN : CommonDest->phis()) { 3761 Value *BIV = PN.getIncomingValueForBlock(BB); 3762 unsigned PBBIdx = PN.getBasicBlockIndex(PBI->getParent()); 3763 Value *PBIV = PN.getIncomingValue(PBBIdx); 3764 if (BIV != PBIV) { 3765 // Insert a select in PBI to pick the right value. 3766 SelectInst *NV = cast<SelectInst>( 3767 Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName() + ".mux")); 3768 PN.setIncomingValue(PBBIdx, NV); 3769 // Although the select has the same condition as PBI, the original branch 3770 // weights for PBI do not apply to the new select because the select's 3771 // 'logical' edges are incoming edges of the phi that is eliminated, not 3772 // the outgoing edges of PBI. 3773 if (HasWeights) { 3774 uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight; 3775 uint64_t PredOther = PBIOp ? PredTrueWeight : PredFalseWeight; 3776 uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight; 3777 uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight; 3778 // The weight to PredCommonDest should be PredCommon * SuccTotal. 3779 // The weight to PredOtherDest should be PredOther * SuccCommon. 3780 uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther), 3781 PredOther * SuccCommon}; 3782 3783 FitWeights(NewWeights); 3784 3785 setBranchWeights(NV, NewWeights[0], NewWeights[1]); 3786 } 3787 } 3788 } 3789 3790 LLVM_DEBUG(dbgs() << "INTO: " << *PBI->getParent()); 3791 LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent()); 3792 3793 // This basic block is probably dead. We know it has at least 3794 // one fewer predecessor. 3795 return true; 3796 } 3797 3798 // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is 3799 // true or to FalseBB if Cond is false. 3800 // Takes care of updating the successors and removing the old terminator. 3801 // Also makes sure not to introduce new successors by assuming that edges to 3802 // non-successor TrueBBs and FalseBBs aren't reachable. 3803 bool SimplifyCFGOpt::SimplifyTerminatorOnSelect(Instruction *OldTerm, 3804 Value *Cond, BasicBlock *TrueBB, 3805 BasicBlock *FalseBB, 3806 uint32_t TrueWeight, 3807 uint32_t FalseWeight) { 3808 auto *BB = OldTerm->getParent(); 3809 // Remove any superfluous successor edges from the CFG. 3810 // First, figure out which successors to preserve. 3811 // If TrueBB and FalseBB are equal, only try to preserve one copy of that 3812 // successor. 3813 BasicBlock *KeepEdge1 = TrueBB; 3814 BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr; 3815 3816 SmallPtrSet<BasicBlock *, 2> RemovedSuccessors; 3817 3818 // Then remove the rest. 3819 for (BasicBlock *Succ : successors(OldTerm)) { 3820 // Make sure only to keep exactly one copy of each edge. 3821 if (Succ == KeepEdge1) 3822 KeepEdge1 = nullptr; 3823 else if (Succ == KeepEdge2) 3824 KeepEdge2 = nullptr; 3825 else { 3826 Succ->removePredecessor(BB, 3827 /*KeepOneInputPHIs=*/true); 3828 3829 if (Succ != TrueBB && Succ != FalseBB) 3830 RemovedSuccessors.insert(Succ); 3831 } 3832 } 3833 3834 IRBuilder<> Builder(OldTerm); 3835 Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc()); 3836 3837 // Insert an appropriate new terminator. 3838 if (!KeepEdge1 && !KeepEdge2) { 3839 if (TrueBB == FalseBB) { 3840 // We were only looking for one successor, and it was present. 3841 // Create an unconditional branch to it. 3842 Builder.CreateBr(TrueBB); 3843 } else { 3844 // We found both of the successors we were looking for. 3845 // Create a conditional branch sharing the condition of the select. 3846 BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB); 3847 if (TrueWeight != FalseWeight) 3848 setBranchWeights(NewBI, TrueWeight, FalseWeight); 3849 } 3850 } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) { 3851 // Neither of the selected blocks were successors, so this 3852 // terminator must be unreachable. 3853 new UnreachableInst(OldTerm->getContext(), OldTerm); 3854 } else { 3855 // One of the selected values was a successor, but the other wasn't. 3856 // Insert an unconditional branch to the one that was found; 3857 // the edge to the one that wasn't must be unreachable. 3858 if (!KeepEdge1) { 3859 // Only TrueBB was found. 3860 Builder.CreateBr(TrueBB); 3861 } else { 3862 // Only FalseBB was found. 3863 Builder.CreateBr(FalseBB); 3864 } 3865 } 3866 3867 EraseTerminatorAndDCECond(OldTerm); 3868 3869 if (DTU) { 3870 SmallVector<DominatorTree::UpdateType, 2> Updates; 3871 Updates.reserve(RemovedSuccessors.size()); 3872 for (auto *RemovedSuccessor : RemovedSuccessors) 3873 Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor}); 3874 DTU->applyUpdates(Updates); 3875 } 3876 3877 return true; 3878 } 3879 3880 // Replaces 3881 // (switch (select cond, X, Y)) on constant X, Y 3882 // with a branch - conditional if X and Y lead to distinct BBs, 3883 // unconditional otherwise. 3884 bool SimplifyCFGOpt::SimplifySwitchOnSelect(SwitchInst *SI, 3885 SelectInst *Select) { 3886 // Check for constant integer values in the select. 3887 ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue()); 3888 ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue()); 3889 if (!TrueVal || !FalseVal) 3890 return false; 3891 3892 // Find the relevant condition and destinations. 3893 Value *Condition = Select->getCondition(); 3894 BasicBlock *TrueBB = SI->findCaseValue(TrueVal)->getCaseSuccessor(); 3895 BasicBlock *FalseBB = SI->findCaseValue(FalseVal)->getCaseSuccessor(); 3896 3897 // Get weight for TrueBB and FalseBB. 3898 uint32_t TrueWeight = 0, FalseWeight = 0; 3899 SmallVector<uint64_t, 8> Weights; 3900 bool HasWeights = HasBranchWeights(SI); 3901 if (HasWeights) { 3902 GetBranchWeights(SI, Weights); 3903 if (Weights.size() == 1 + SI->getNumCases()) { 3904 TrueWeight = 3905 (uint32_t)Weights[SI->findCaseValue(TrueVal)->getSuccessorIndex()]; 3906 FalseWeight = 3907 (uint32_t)Weights[SI->findCaseValue(FalseVal)->getSuccessorIndex()]; 3908 } 3909 } 3910 3911 // Perform the actual simplification. 3912 return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, TrueWeight, 3913 FalseWeight); 3914 } 3915 3916 // Replaces 3917 // (indirectbr (select cond, blockaddress(@fn, BlockA), 3918 // blockaddress(@fn, BlockB))) 3919 // with 3920 // (br cond, BlockA, BlockB). 3921 bool SimplifyCFGOpt::SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, 3922 SelectInst *SI) { 3923 // Check that both operands of the select are block addresses. 3924 BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue()); 3925 BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue()); 3926 if (!TBA || !FBA) 3927 return false; 3928 3929 // Extract the actual blocks. 3930 BasicBlock *TrueBB = TBA->getBasicBlock(); 3931 BasicBlock *FalseBB = FBA->getBasicBlock(); 3932 3933 // Perform the actual simplification. 3934 return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 0, 3935 0); 3936 } 3937 3938 /// This is called when we find an icmp instruction 3939 /// (a seteq/setne with a constant) as the only instruction in a 3940 /// block that ends with an uncond branch. We are looking for a very specific 3941 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified. In 3942 /// this case, we merge the first two "or's of icmp" into a switch, but then the 3943 /// default value goes to an uncond block with a seteq in it, we get something 3944 /// like: 3945 /// 3946 /// switch i8 %A, label %DEFAULT [ i8 1, label %end i8 2, label %end ] 3947 /// DEFAULT: 3948 /// %tmp = icmp eq i8 %A, 92 3949 /// br label %end 3950 /// end: 3951 /// ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ] 3952 /// 3953 /// We prefer to split the edge to 'end' so that there is a true/false entry to 3954 /// the PHI, merging the third icmp into the switch. 3955 bool SimplifyCFGOpt::tryToSimplifyUncondBranchWithICmpInIt( 3956 ICmpInst *ICI, IRBuilder<> &Builder) { 3957 BasicBlock *BB = ICI->getParent(); 3958 3959 // If the block has any PHIs in it or the icmp has multiple uses, it is too 3960 // complex. 3961 if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse()) 3962 return false; 3963 3964 Value *V = ICI->getOperand(0); 3965 ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1)); 3966 3967 // The pattern we're looking for is where our only predecessor is a switch on 3968 // 'V' and this block is the default case for the switch. In this case we can 3969 // fold the compared value into the switch to simplify things. 3970 BasicBlock *Pred = BB->getSinglePredecessor(); 3971 if (!Pred || !isa<SwitchInst>(Pred->getTerminator())) 3972 return false; 3973 3974 SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator()); 3975 if (SI->getCondition() != V) 3976 return false; 3977 3978 // If BB is reachable on a non-default case, then we simply know the value of 3979 // V in this block. Substitute it and constant fold the icmp instruction 3980 // away. 3981 if (SI->getDefaultDest() != BB) { 3982 ConstantInt *VVal = SI->findCaseDest(BB); 3983 assert(VVal && "Should have a unique destination value"); 3984 ICI->setOperand(0, VVal); 3985 3986 if (Value *V = SimplifyInstruction(ICI, {DL, ICI})) { 3987 ICI->replaceAllUsesWith(V); 3988 ICI->eraseFromParent(); 3989 } 3990 // BB is now empty, so it is likely to simplify away. 3991 return requestResimplify(); 3992 } 3993 3994 // Ok, the block is reachable from the default dest. If the constant we're 3995 // comparing exists in one of the other edges, then we can constant fold ICI 3996 // and zap it. 3997 if (SI->findCaseValue(Cst) != SI->case_default()) { 3998 Value *V; 3999 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 4000 V = ConstantInt::getFalse(BB->getContext()); 4001 else 4002 V = ConstantInt::getTrue(BB->getContext()); 4003 4004 ICI->replaceAllUsesWith(V); 4005 ICI->eraseFromParent(); 4006 // BB is now empty, so it is likely to simplify away. 4007 return requestResimplify(); 4008 } 4009 4010 // The use of the icmp has to be in the 'end' block, by the only PHI node in 4011 // the block. 4012 BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0); 4013 PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back()); 4014 if (PHIUse == nullptr || PHIUse != &SuccBlock->front() || 4015 isa<PHINode>(++BasicBlock::iterator(PHIUse))) 4016 return false; 4017 4018 // If the icmp is a SETEQ, then the default dest gets false, the new edge gets 4019 // true in the PHI. 4020 Constant *DefaultCst = ConstantInt::getTrue(BB->getContext()); 4021 Constant *NewCst = ConstantInt::getFalse(BB->getContext()); 4022 4023 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 4024 std::swap(DefaultCst, NewCst); 4025 4026 // Replace ICI (which is used by the PHI for the default value) with true or 4027 // false depending on if it is EQ or NE. 4028 ICI->replaceAllUsesWith(DefaultCst); 4029 ICI->eraseFromParent(); 4030 4031 SmallVector<DominatorTree::UpdateType, 2> Updates; 4032 4033 // Okay, the switch goes to this block on a default value. Add an edge from 4034 // the switch to the merge point on the compared value. 4035 BasicBlock *NewBB = 4036 BasicBlock::Create(BB->getContext(), "switch.edge", BB->getParent(), BB); 4037 { 4038 SwitchInstProfUpdateWrapper SIW(*SI); 4039 auto W0 = SIW.getSuccessorWeight(0); 4040 SwitchInstProfUpdateWrapper::CaseWeightOpt NewW; 4041 if (W0) { 4042 NewW = ((uint64_t(*W0) + 1) >> 1); 4043 SIW.setSuccessorWeight(0, *NewW); 4044 } 4045 SIW.addCase(Cst, NewBB, NewW); 4046 if (DTU) 4047 Updates.push_back({DominatorTree::Insert, Pred, NewBB}); 4048 } 4049 4050 // NewBB branches to the phi block, add the uncond branch and the phi entry. 4051 Builder.SetInsertPoint(NewBB); 4052 Builder.SetCurrentDebugLocation(SI->getDebugLoc()); 4053 Builder.CreateBr(SuccBlock); 4054 PHIUse->addIncoming(NewCst, NewBB); 4055 if (DTU) { 4056 Updates.push_back({DominatorTree::Insert, NewBB, SuccBlock}); 4057 DTU->applyUpdates(Updates); 4058 } 4059 return true; 4060 } 4061 4062 /// The specified branch is a conditional branch. 4063 /// Check to see if it is branching on an or/and chain of icmp instructions, and 4064 /// fold it into a switch instruction if so. 4065 bool SimplifyCFGOpt::SimplifyBranchOnICmpChain(BranchInst *BI, 4066 IRBuilder<> &Builder, 4067 const DataLayout &DL) { 4068 Instruction *Cond = dyn_cast<Instruction>(BI->getCondition()); 4069 if (!Cond) 4070 return false; 4071 4072 // Change br (X == 0 | X == 1), T, F into a switch instruction. 4073 // If this is a bunch of seteq's or'd together, or if it's a bunch of 4074 // 'setne's and'ed together, collect them. 4075 4076 // Try to gather values from a chain of and/or to be turned into a switch 4077 ConstantComparesGatherer ConstantCompare(Cond, DL); 4078 // Unpack the result 4079 SmallVectorImpl<ConstantInt *> &Values = ConstantCompare.Vals; 4080 Value *CompVal = ConstantCompare.CompValue; 4081 unsigned UsedICmps = ConstantCompare.UsedICmps; 4082 Value *ExtraCase = ConstantCompare.Extra; 4083 4084 // If we didn't have a multiply compared value, fail. 4085 if (!CompVal) 4086 return false; 4087 4088 // Avoid turning single icmps into a switch. 4089 if (UsedICmps <= 1) 4090 return false; 4091 4092 bool TrueWhenEqual = match(Cond, m_LogicalOr(m_Value(), m_Value())); 4093 4094 // There might be duplicate constants in the list, which the switch 4095 // instruction can't handle, remove them now. 4096 array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate); 4097 Values.erase(std::unique(Values.begin(), Values.end()), Values.end()); 4098 4099 // If Extra was used, we require at least two switch values to do the 4100 // transformation. A switch with one value is just a conditional branch. 4101 if (ExtraCase && Values.size() < 2) 4102 return false; 4103 4104 // TODO: Preserve branch weight metadata, similarly to how 4105 // FoldValueComparisonIntoPredecessors preserves it. 4106 4107 // Figure out which block is which destination. 4108 BasicBlock *DefaultBB = BI->getSuccessor(1); 4109 BasicBlock *EdgeBB = BI->getSuccessor(0); 4110 if (!TrueWhenEqual) 4111 std::swap(DefaultBB, EdgeBB); 4112 4113 BasicBlock *BB = BI->getParent(); 4114 4115 // MSAN does not like undefs as branch condition which can be introduced 4116 // with "explicit branch". 4117 if (ExtraCase && BB->getParent()->hasFnAttribute(Attribute::SanitizeMemory)) 4118 return false; 4119 4120 LLVM_DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size() 4121 << " cases into SWITCH. BB is:\n" 4122 << *BB); 4123 4124 SmallVector<DominatorTree::UpdateType, 2> Updates; 4125 4126 // If there are any extra values that couldn't be folded into the switch 4127 // then we evaluate them with an explicit branch first. Split the block 4128 // right before the condbr to handle it. 4129 if (ExtraCase) { 4130 BasicBlock *NewBB = SplitBlock(BB, BI, DTU, /*LI=*/nullptr, 4131 /*MSSAU=*/nullptr, "switch.early.test"); 4132 4133 // Remove the uncond branch added to the old block. 4134 Instruction *OldTI = BB->getTerminator(); 4135 Builder.SetInsertPoint(OldTI); 4136 4137 if (TrueWhenEqual) 4138 Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB); 4139 else 4140 Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB); 4141 4142 OldTI->eraseFromParent(); 4143 4144 if (DTU) 4145 Updates.push_back({DominatorTree::Insert, BB, EdgeBB}); 4146 4147 // If there are PHI nodes in EdgeBB, then we need to add a new entry to them 4148 // for the edge we just added. 4149 AddPredecessorToBlock(EdgeBB, BB, NewBB); 4150 4151 LLVM_DEBUG(dbgs() << " ** 'icmp' chain unhandled condition: " << *ExtraCase 4152 << "\nEXTRABB = " << *BB); 4153 BB = NewBB; 4154 } 4155 4156 Builder.SetInsertPoint(BI); 4157 // Convert pointer to int before we switch. 4158 if (CompVal->getType()->isPointerTy()) { 4159 CompVal = Builder.CreatePtrToInt( 4160 CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr"); 4161 } 4162 4163 // Create the new switch instruction now. 4164 SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size()); 4165 4166 // Add all of the 'cases' to the switch instruction. 4167 for (unsigned i = 0, e = Values.size(); i != e; ++i) 4168 New->addCase(Values[i], EdgeBB); 4169 4170 // We added edges from PI to the EdgeBB. As such, if there were any 4171 // PHI nodes in EdgeBB, they need entries to be added corresponding to 4172 // the number of edges added. 4173 for (BasicBlock::iterator BBI = EdgeBB->begin(); isa<PHINode>(BBI); ++BBI) { 4174 PHINode *PN = cast<PHINode>(BBI); 4175 Value *InVal = PN->getIncomingValueForBlock(BB); 4176 for (unsigned i = 0, e = Values.size() - 1; i != e; ++i) 4177 PN->addIncoming(InVal, BB); 4178 } 4179 4180 // Erase the old branch instruction. 4181 EraseTerminatorAndDCECond(BI); 4182 if (DTU) 4183 DTU->applyUpdates(Updates); 4184 4185 LLVM_DEBUG(dbgs() << " ** 'icmp' chain result is:\n" << *BB << '\n'); 4186 return true; 4187 } 4188 4189 bool SimplifyCFGOpt::simplifyResume(ResumeInst *RI, IRBuilder<> &Builder) { 4190 if (isa<PHINode>(RI->getValue())) 4191 return simplifyCommonResume(RI); 4192 else if (isa<LandingPadInst>(RI->getParent()->getFirstNonPHI()) && 4193 RI->getValue() == RI->getParent()->getFirstNonPHI()) 4194 // The resume must unwind the exception that caused control to branch here. 4195 return simplifySingleResume(RI); 4196 4197 return false; 4198 } 4199 4200 // Check if cleanup block is empty 4201 static bool isCleanupBlockEmpty(iterator_range<BasicBlock::iterator> R) { 4202 for (Instruction &I : R) { 4203 auto *II = dyn_cast<IntrinsicInst>(&I); 4204 if (!II) 4205 return false; 4206 4207 Intrinsic::ID IntrinsicID = II->getIntrinsicID(); 4208 switch (IntrinsicID) { 4209 case Intrinsic::dbg_declare: 4210 case Intrinsic::dbg_value: 4211 case Intrinsic::dbg_label: 4212 case Intrinsic::lifetime_end: 4213 break; 4214 default: 4215 return false; 4216 } 4217 } 4218 return true; 4219 } 4220 4221 // Simplify resume that is shared by several landing pads (phi of landing pad). 4222 bool SimplifyCFGOpt::simplifyCommonResume(ResumeInst *RI) { 4223 BasicBlock *BB = RI->getParent(); 4224 4225 // Check that there are no other instructions except for debug and lifetime 4226 // intrinsics between the phi's and resume instruction. 4227 if (!isCleanupBlockEmpty( 4228 make_range(RI->getParent()->getFirstNonPHI(), BB->getTerminator()))) 4229 return false; 4230 4231 SmallSetVector<BasicBlock *, 4> TrivialUnwindBlocks; 4232 auto *PhiLPInst = cast<PHINode>(RI->getValue()); 4233 4234 // Check incoming blocks to see if any of them are trivial. 4235 for (unsigned Idx = 0, End = PhiLPInst->getNumIncomingValues(); Idx != End; 4236 Idx++) { 4237 auto *IncomingBB = PhiLPInst->getIncomingBlock(Idx); 4238 auto *IncomingValue = PhiLPInst->getIncomingValue(Idx); 4239 4240 // If the block has other successors, we can not delete it because 4241 // it has other dependents. 4242 if (IncomingBB->getUniqueSuccessor() != BB) 4243 continue; 4244 4245 auto *LandingPad = dyn_cast<LandingPadInst>(IncomingBB->getFirstNonPHI()); 4246 // Not the landing pad that caused the control to branch here. 4247 if (IncomingValue != LandingPad) 4248 continue; 4249 4250 if (isCleanupBlockEmpty( 4251 make_range(LandingPad->getNextNode(), IncomingBB->getTerminator()))) 4252 TrivialUnwindBlocks.insert(IncomingBB); 4253 } 4254 4255 // If no trivial unwind blocks, don't do any simplifications. 4256 if (TrivialUnwindBlocks.empty()) 4257 return false; 4258 4259 // Turn all invokes that unwind here into calls. 4260 for (auto *TrivialBB : TrivialUnwindBlocks) { 4261 // Blocks that will be simplified should be removed from the phi node. 4262 // Note there could be multiple edges to the resume block, and we need 4263 // to remove them all. 4264 while (PhiLPInst->getBasicBlockIndex(TrivialBB) != -1) 4265 BB->removePredecessor(TrivialBB, true); 4266 4267 for (BasicBlock *Pred : 4268 llvm::make_early_inc_range(predecessors(TrivialBB))) { 4269 removeUnwindEdge(Pred, DTU); 4270 ++NumInvokes; 4271 } 4272 4273 // In each SimplifyCFG run, only the current processed block can be erased. 4274 // Otherwise, it will break the iteration of SimplifyCFG pass. So instead 4275 // of erasing TrivialBB, we only remove the branch to the common resume 4276 // block so that we can later erase the resume block since it has no 4277 // predecessors. 4278 TrivialBB->getTerminator()->eraseFromParent(); 4279 new UnreachableInst(RI->getContext(), TrivialBB); 4280 if (DTU) 4281 DTU->applyUpdates({{DominatorTree::Delete, TrivialBB, BB}}); 4282 } 4283 4284 // Delete the resume block if all its predecessors have been removed. 4285 if (pred_empty(BB)) { 4286 if (DTU) 4287 DTU->deleteBB(BB); 4288 else 4289 BB->eraseFromParent(); 4290 } 4291 4292 return !TrivialUnwindBlocks.empty(); 4293 } 4294 4295 // Simplify resume that is only used by a single (non-phi) landing pad. 4296 bool SimplifyCFGOpt::simplifySingleResume(ResumeInst *RI) { 4297 BasicBlock *BB = RI->getParent(); 4298 auto *LPInst = cast<LandingPadInst>(BB->getFirstNonPHI()); 4299 assert(RI->getValue() == LPInst && 4300 "Resume must unwind the exception that caused control to here"); 4301 4302 // Check that there are no other instructions except for debug intrinsics. 4303 if (!isCleanupBlockEmpty( 4304 make_range<Instruction *>(LPInst->getNextNode(), RI))) 4305 return false; 4306 4307 // Turn all invokes that unwind here into calls and delete the basic block. 4308 for (BasicBlock *Pred : llvm::make_early_inc_range(predecessors(BB))) { 4309 removeUnwindEdge(Pred, DTU); 4310 ++NumInvokes; 4311 } 4312 4313 // The landingpad is now unreachable. Zap it. 4314 if (DTU) 4315 DTU->deleteBB(BB); 4316 else 4317 BB->eraseFromParent(); 4318 return true; 4319 } 4320 4321 static bool removeEmptyCleanup(CleanupReturnInst *RI, DomTreeUpdater *DTU) { 4322 // If this is a trivial cleanup pad that executes no instructions, it can be 4323 // eliminated. If the cleanup pad continues to the caller, any predecessor 4324 // that is an EH pad will be updated to continue to the caller and any 4325 // predecessor that terminates with an invoke instruction will have its invoke 4326 // instruction converted to a call instruction. If the cleanup pad being 4327 // simplified does not continue to the caller, each predecessor will be 4328 // updated to continue to the unwind destination of the cleanup pad being 4329 // simplified. 4330 BasicBlock *BB = RI->getParent(); 4331 CleanupPadInst *CPInst = RI->getCleanupPad(); 4332 if (CPInst->getParent() != BB) 4333 // This isn't an empty cleanup. 4334 return false; 4335 4336 // We cannot kill the pad if it has multiple uses. This typically arises 4337 // from unreachable basic blocks. 4338 if (!CPInst->hasOneUse()) 4339 return false; 4340 4341 // Check that there are no other instructions except for benign intrinsics. 4342 if (!isCleanupBlockEmpty( 4343 make_range<Instruction *>(CPInst->getNextNode(), RI))) 4344 return false; 4345 4346 // If the cleanup return we are simplifying unwinds to the caller, this will 4347 // set UnwindDest to nullptr. 4348 BasicBlock *UnwindDest = RI->getUnwindDest(); 4349 Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr; 4350 4351 // We're about to remove BB from the control flow. Before we do, sink any 4352 // PHINodes into the unwind destination. Doing this before changing the 4353 // control flow avoids some potentially slow checks, since we can currently 4354 // be certain that UnwindDest and BB have no common predecessors (since they 4355 // are both EH pads). 4356 if (UnwindDest) { 4357 // First, go through the PHI nodes in UnwindDest and update any nodes that 4358 // reference the block we are removing 4359 for (BasicBlock::iterator I = UnwindDest->begin(), 4360 IE = DestEHPad->getIterator(); 4361 I != IE; ++I) { 4362 PHINode *DestPN = cast<PHINode>(I); 4363 4364 int Idx = DestPN->getBasicBlockIndex(BB); 4365 // Since BB unwinds to UnwindDest, it has to be in the PHI node. 4366 assert(Idx != -1); 4367 // This PHI node has an incoming value that corresponds to a control 4368 // path through the cleanup pad we are removing. If the incoming 4369 // value is in the cleanup pad, it must be a PHINode (because we 4370 // verified above that the block is otherwise empty). Otherwise, the 4371 // value is either a constant or a value that dominates the cleanup 4372 // pad being removed. 4373 // 4374 // Because BB and UnwindDest are both EH pads, all of their 4375 // predecessors must unwind to these blocks, and since no instruction 4376 // can have multiple unwind destinations, there will be no overlap in 4377 // incoming blocks between SrcPN and DestPN. 4378 Value *SrcVal = DestPN->getIncomingValue(Idx); 4379 PHINode *SrcPN = dyn_cast<PHINode>(SrcVal); 4380 4381 // Remove the entry for the block we are deleting. 4382 DestPN->removeIncomingValue(Idx, false); 4383 4384 if (SrcPN && SrcPN->getParent() == BB) { 4385 // If the incoming value was a PHI node in the cleanup pad we are 4386 // removing, we need to merge that PHI node's incoming values into 4387 // DestPN. 4388 for (unsigned SrcIdx = 0, SrcE = SrcPN->getNumIncomingValues(); 4389 SrcIdx != SrcE; ++SrcIdx) { 4390 DestPN->addIncoming(SrcPN->getIncomingValue(SrcIdx), 4391 SrcPN->getIncomingBlock(SrcIdx)); 4392 } 4393 } else { 4394 // Otherwise, the incoming value came from above BB and 4395 // so we can just reuse it. We must associate all of BB's 4396 // predecessors with this value. 4397 for (auto *pred : predecessors(BB)) { 4398 DestPN->addIncoming(SrcVal, pred); 4399 } 4400 } 4401 } 4402 4403 // Sink any remaining PHI nodes directly into UnwindDest. 4404 Instruction *InsertPt = DestEHPad; 4405 for (BasicBlock::iterator I = BB->begin(), 4406 IE = BB->getFirstNonPHI()->getIterator(); 4407 I != IE;) { 4408 // The iterator must be incremented here because the instructions are 4409 // being moved to another block. 4410 PHINode *PN = cast<PHINode>(I++); 4411 if (PN->use_empty() || !PN->isUsedOutsideOfBlock(BB)) 4412 // If the PHI node has no uses or all of its uses are in this basic 4413 // block (meaning they are debug or lifetime intrinsics), just leave 4414 // it. It will be erased when we erase BB below. 4415 continue; 4416 4417 // Otherwise, sink this PHI node into UnwindDest. 4418 // Any predecessors to UnwindDest which are not already represented 4419 // must be back edges which inherit the value from the path through 4420 // BB. In this case, the PHI value must reference itself. 4421 for (auto *pred : predecessors(UnwindDest)) 4422 if (pred != BB) 4423 PN->addIncoming(PN, pred); 4424 PN->moveBefore(InsertPt); 4425 } 4426 } 4427 4428 std::vector<DominatorTree::UpdateType> Updates; 4429 4430 // We use make_early_inc_range here because we may remove some predecessors. 4431 for (BasicBlock *PredBB : llvm::make_early_inc_range(predecessors(BB))) { 4432 if (UnwindDest == nullptr) { 4433 if (DTU) { 4434 DTU->applyUpdates(Updates); 4435 Updates.clear(); 4436 } 4437 removeUnwindEdge(PredBB, DTU); 4438 ++NumInvokes; 4439 } else { 4440 Instruction *TI = PredBB->getTerminator(); 4441 TI->replaceUsesOfWith(BB, UnwindDest); 4442 if (DTU) { 4443 Updates.push_back({DominatorTree::Insert, PredBB, UnwindDest}); 4444 Updates.push_back({DominatorTree::Delete, PredBB, BB}); 4445 } 4446 } 4447 } 4448 4449 if (DTU) { 4450 DTU->applyUpdates(Updates); 4451 DTU->deleteBB(BB); 4452 } else 4453 // The cleanup pad is now unreachable. Zap it. 4454 BB->eraseFromParent(); 4455 4456 return true; 4457 } 4458 4459 // Try to merge two cleanuppads together. 4460 static bool mergeCleanupPad(CleanupReturnInst *RI) { 4461 // Skip any cleanuprets which unwind to caller, there is nothing to merge 4462 // with. 4463 BasicBlock *UnwindDest = RI->getUnwindDest(); 4464 if (!UnwindDest) 4465 return false; 4466 4467 // This cleanupret isn't the only predecessor of this cleanuppad, it wouldn't 4468 // be safe to merge without code duplication. 4469 if (UnwindDest->getSinglePredecessor() != RI->getParent()) 4470 return false; 4471 4472 // Verify that our cleanuppad's unwind destination is another cleanuppad. 4473 auto *SuccessorCleanupPad = dyn_cast<CleanupPadInst>(&UnwindDest->front()); 4474 if (!SuccessorCleanupPad) 4475 return false; 4476 4477 CleanupPadInst *PredecessorCleanupPad = RI->getCleanupPad(); 4478 // Replace any uses of the successor cleanupad with the predecessor pad 4479 // The only cleanuppad uses should be this cleanupret, it's cleanupret and 4480 // funclet bundle operands. 4481 SuccessorCleanupPad->replaceAllUsesWith(PredecessorCleanupPad); 4482 // Remove the old cleanuppad. 4483 SuccessorCleanupPad->eraseFromParent(); 4484 // Now, we simply replace the cleanupret with a branch to the unwind 4485 // destination. 4486 BranchInst::Create(UnwindDest, RI->getParent()); 4487 RI->eraseFromParent(); 4488 4489 return true; 4490 } 4491 4492 bool SimplifyCFGOpt::simplifyCleanupReturn(CleanupReturnInst *RI) { 4493 // It is possible to transiantly have an undef cleanuppad operand because we 4494 // have deleted some, but not all, dead blocks. 4495 // Eventually, this block will be deleted. 4496 if (isa<UndefValue>(RI->getOperand(0))) 4497 return false; 4498 4499 if (mergeCleanupPad(RI)) 4500 return true; 4501 4502 if (removeEmptyCleanup(RI, DTU)) 4503 return true; 4504 4505 return false; 4506 } 4507 4508 bool SimplifyCFGOpt::simplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) { 4509 BasicBlock *BB = RI->getParent(); 4510 if (!BB->getFirstNonPHIOrDbg()->isTerminator()) 4511 return false; 4512 4513 // Find predecessors that end with branches. 4514 SmallVector<BasicBlock *, 8> UncondBranchPreds; 4515 SmallVector<BranchInst *, 8> CondBranchPreds; 4516 for (BasicBlock *P : predecessors(BB)) { 4517 Instruction *PTI = P->getTerminator(); 4518 if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) { 4519 if (BI->isUnconditional()) 4520 UncondBranchPreds.push_back(P); 4521 else 4522 CondBranchPreds.push_back(BI); 4523 } 4524 } 4525 4526 // If we found some, do the transformation! 4527 if (!UncondBranchPreds.empty() && DupRet) { 4528 while (!UncondBranchPreds.empty()) { 4529 BasicBlock *Pred = UncondBranchPreds.pop_back_val(); 4530 LLVM_DEBUG(dbgs() << "FOLDING: " << *BB 4531 << "INTO UNCOND BRANCH PRED: " << *Pred); 4532 (void)FoldReturnIntoUncondBranch(RI, BB, Pred, DTU); 4533 } 4534 4535 // If we eliminated all predecessors of the block, delete the block now. 4536 if (pred_empty(BB)) { 4537 // We know there are no successors, so just nuke the block. 4538 if (DTU) 4539 DTU->deleteBB(BB); 4540 else 4541 BB->eraseFromParent(); 4542 } 4543 4544 return true; 4545 } 4546 4547 // Check out all of the conditional branches going to this return 4548 // instruction. If any of them just select between returns, change the 4549 // branch itself into a select/return pair. 4550 while (!CondBranchPreds.empty()) { 4551 BranchInst *BI = CondBranchPreds.pop_back_val(); 4552 4553 // Check to see if the non-BB successor is also a return block. 4554 if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) && 4555 isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) && 4556 SimplifyCondBranchToTwoReturns(BI, Builder)) 4557 return true; 4558 } 4559 return false; 4560 } 4561 4562 bool SimplifyCFGOpt::simplifyUnreachable(UnreachableInst *UI) { 4563 BasicBlock *BB = UI->getParent(); 4564 4565 bool Changed = false; 4566 4567 // If there are any instructions immediately before the unreachable that can 4568 // be removed, do so. 4569 while (UI->getIterator() != BB->begin()) { 4570 BasicBlock::iterator BBI = UI->getIterator(); 4571 --BBI; 4572 // Do not delete instructions that can have side effects which might cause 4573 // the unreachable to not be reachable; specifically, calls and volatile 4574 // operations may have this effect. 4575 if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI)) 4576 break; 4577 4578 if (BBI->mayHaveSideEffects()) { 4579 if (auto *SI = dyn_cast<StoreInst>(BBI)) { 4580 if (SI->isVolatile()) 4581 break; 4582 } else if (auto *LI = dyn_cast<LoadInst>(BBI)) { 4583 if (LI->isVolatile()) 4584 break; 4585 } else if (auto *RMWI = dyn_cast<AtomicRMWInst>(BBI)) { 4586 if (RMWI->isVolatile()) 4587 break; 4588 } else if (auto *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) { 4589 if (CXI->isVolatile()) 4590 break; 4591 } else if (isa<CatchPadInst>(BBI)) { 4592 // A catchpad may invoke exception object constructors and such, which 4593 // in some languages can be arbitrary code, so be conservative by 4594 // default. 4595 // For CoreCLR, it just involves a type test, so can be removed. 4596 if (classifyEHPersonality(BB->getParent()->getPersonalityFn()) != 4597 EHPersonality::CoreCLR) 4598 break; 4599 } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) && 4600 !isa<LandingPadInst>(BBI)) { 4601 break; 4602 } 4603 // Note that deleting LandingPad's here is in fact okay, although it 4604 // involves a bit of subtle reasoning. If this inst is a LandingPad, 4605 // all the predecessors of this block will be the unwind edges of Invokes, 4606 // and we can therefore guarantee this block will be erased. 4607 } 4608 4609 // Delete this instruction (any uses are guaranteed to be dead) 4610 if (!BBI->use_empty()) 4611 BBI->replaceAllUsesWith(UndefValue::get(BBI->getType())); 4612 BBI->eraseFromParent(); 4613 Changed = true; 4614 } 4615 4616 // If the unreachable instruction is the first in the block, take a gander 4617 // at all of the predecessors of this instruction, and simplify them. 4618 if (&BB->front() != UI) 4619 return Changed; 4620 4621 std::vector<DominatorTree::UpdateType> Updates; 4622 4623 SmallSetVector<BasicBlock *, 8> Preds(pred_begin(BB), pred_end(BB)); 4624 for (unsigned i = 0, e = Preds.size(); i != e; ++i) { 4625 auto *Predecessor = Preds[i]; 4626 Instruction *TI = Predecessor->getTerminator(); 4627 IRBuilder<> Builder(TI); 4628 if (auto *BI = dyn_cast<BranchInst>(TI)) { 4629 // We could either have a proper unconditional branch, 4630 // or a degenerate conditional branch with matching destinations. 4631 if (all_of(BI->successors(), 4632 [BB](auto *Successor) { return Successor == BB; })) { 4633 new UnreachableInst(TI->getContext(), TI); 4634 TI->eraseFromParent(); 4635 Changed = true; 4636 } else { 4637 assert(BI->isConditional() && "Can't get here with an uncond branch."); 4638 Value* Cond = BI->getCondition(); 4639 assert(BI->getSuccessor(0) != BI->getSuccessor(1) && 4640 "The destinations are guaranteed to be different here."); 4641 if (BI->getSuccessor(0) == BB) { 4642 Builder.CreateAssumption(Builder.CreateNot(Cond)); 4643 Builder.CreateBr(BI->getSuccessor(1)); 4644 } else { 4645 assert(BI->getSuccessor(1) == BB && "Incorrect CFG"); 4646 Builder.CreateAssumption(Cond); 4647 Builder.CreateBr(BI->getSuccessor(0)); 4648 } 4649 EraseTerminatorAndDCECond(BI); 4650 Changed = true; 4651 } 4652 if (DTU) 4653 Updates.push_back({DominatorTree::Delete, Predecessor, BB}); 4654 } else if (auto *SI = dyn_cast<SwitchInst>(TI)) { 4655 SwitchInstProfUpdateWrapper SU(*SI); 4656 for (auto i = SU->case_begin(), e = SU->case_end(); i != e;) { 4657 if (i->getCaseSuccessor() != BB) { 4658 ++i; 4659 continue; 4660 } 4661 BB->removePredecessor(SU->getParent()); 4662 i = SU.removeCase(i); 4663 e = SU->case_end(); 4664 Changed = true; 4665 } 4666 // Note that the default destination can't be removed! 4667 if (DTU && SI->getDefaultDest() != BB) 4668 Updates.push_back({DominatorTree::Delete, Predecessor, BB}); 4669 } else if (auto *II = dyn_cast<InvokeInst>(TI)) { 4670 if (II->getUnwindDest() == BB) { 4671 if (DTU) { 4672 DTU->applyUpdates(Updates); 4673 Updates.clear(); 4674 } 4675 removeUnwindEdge(TI->getParent(), DTU); 4676 Changed = true; 4677 } 4678 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) { 4679 if (CSI->getUnwindDest() == BB) { 4680 if (DTU) { 4681 DTU->applyUpdates(Updates); 4682 Updates.clear(); 4683 } 4684 removeUnwindEdge(TI->getParent(), DTU); 4685 Changed = true; 4686 continue; 4687 } 4688 4689 for (CatchSwitchInst::handler_iterator I = CSI->handler_begin(), 4690 E = CSI->handler_end(); 4691 I != E; ++I) { 4692 if (*I == BB) { 4693 CSI->removeHandler(I); 4694 --I; 4695 --E; 4696 Changed = true; 4697 } 4698 } 4699 if (DTU) 4700 Updates.push_back({DominatorTree::Delete, Predecessor, BB}); 4701 if (CSI->getNumHandlers() == 0) { 4702 if (CSI->hasUnwindDest()) { 4703 // Redirect all predecessors of the block containing CatchSwitchInst 4704 // to instead branch to the CatchSwitchInst's unwind destination. 4705 if (DTU) { 4706 for (auto *PredecessorOfPredecessor : predecessors(Predecessor)) { 4707 Updates.push_back({DominatorTree::Insert, 4708 PredecessorOfPredecessor, 4709 CSI->getUnwindDest()}); 4710 Updates.push_back({DominatorTree::Delete, 4711 PredecessorOfPredecessor, Predecessor}); 4712 } 4713 } 4714 Predecessor->replaceAllUsesWith(CSI->getUnwindDest()); 4715 } else { 4716 // Rewrite all preds to unwind to caller (or from invoke to call). 4717 if (DTU) { 4718 DTU->applyUpdates(Updates); 4719 Updates.clear(); 4720 } 4721 SmallVector<BasicBlock *, 8> EHPreds(predecessors(Predecessor)); 4722 for (BasicBlock *EHPred : EHPreds) 4723 removeUnwindEdge(EHPred, DTU); 4724 } 4725 // The catchswitch is no longer reachable. 4726 new UnreachableInst(CSI->getContext(), CSI); 4727 CSI->eraseFromParent(); 4728 Changed = true; 4729 } 4730 } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) { 4731 (void)CRI; 4732 assert(CRI->hasUnwindDest() && CRI->getUnwindDest() == BB && 4733 "Expected to always have an unwind to BB."); 4734 if (DTU) 4735 Updates.push_back({DominatorTree::Delete, Predecessor, BB}); 4736 new UnreachableInst(TI->getContext(), TI); 4737 TI->eraseFromParent(); 4738 Changed = true; 4739 } 4740 } 4741 4742 if (DTU) 4743 DTU->applyUpdates(Updates); 4744 4745 // If this block is now dead, remove it. 4746 if (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) { 4747 // We know there are no successors, so just nuke the block. 4748 if (DTU) 4749 DTU->deleteBB(BB); 4750 else 4751 BB->eraseFromParent(); 4752 return true; 4753 } 4754 4755 return Changed; 4756 } 4757 4758 static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) { 4759 assert(Cases.size() >= 1); 4760 4761 array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate); 4762 for (size_t I = 1, E = Cases.size(); I != E; ++I) { 4763 if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1) 4764 return false; 4765 } 4766 return true; 4767 } 4768 4769 static void createUnreachableSwitchDefault(SwitchInst *Switch, 4770 DomTreeUpdater *DTU) { 4771 LLVM_DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n"); 4772 auto *BB = Switch->getParent(); 4773 BasicBlock *NewDefaultBlock = SplitBlockPredecessors( 4774 Switch->getDefaultDest(), Switch->getParent(), "", DTU); 4775 auto *OrigDefaultBlock = Switch->getDefaultDest(); 4776 Switch->setDefaultDest(&*NewDefaultBlock); 4777 if (DTU) 4778 DTU->applyUpdates({{DominatorTree::Insert, BB, &*NewDefaultBlock}, 4779 {DominatorTree::Delete, BB, OrigDefaultBlock}}); 4780 SplitBlock(&*NewDefaultBlock, &NewDefaultBlock->front(), DTU); 4781 SmallVector<DominatorTree::UpdateType, 2> Updates; 4782 if (DTU) 4783 for (auto *Successor : successors(NewDefaultBlock)) 4784 Updates.push_back({DominatorTree::Delete, NewDefaultBlock, Successor}); 4785 auto *NewTerminator = NewDefaultBlock->getTerminator(); 4786 new UnreachableInst(Switch->getContext(), NewTerminator); 4787 EraseTerminatorAndDCECond(NewTerminator); 4788 if (DTU) 4789 DTU->applyUpdates(Updates); 4790 } 4791 4792 /// Turn a switch with two reachable destinations into an integer range 4793 /// comparison and branch. 4794 bool SimplifyCFGOpt::TurnSwitchRangeIntoICmp(SwitchInst *SI, 4795 IRBuilder<> &Builder) { 4796 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 4797 4798 bool HasDefault = 4799 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 4800 4801 auto *BB = SI->getParent(); 4802 4803 // Partition the cases into two sets with different destinations. 4804 BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr; 4805 BasicBlock *DestB = nullptr; 4806 SmallVector<ConstantInt *, 16> CasesA; 4807 SmallVector<ConstantInt *, 16> CasesB; 4808 4809 for (auto Case : SI->cases()) { 4810 BasicBlock *Dest = Case.getCaseSuccessor(); 4811 if (!DestA) 4812 DestA = Dest; 4813 if (Dest == DestA) { 4814 CasesA.push_back(Case.getCaseValue()); 4815 continue; 4816 } 4817 if (!DestB) 4818 DestB = Dest; 4819 if (Dest == DestB) { 4820 CasesB.push_back(Case.getCaseValue()); 4821 continue; 4822 } 4823 return false; // More than two destinations. 4824 } 4825 4826 assert(DestA && DestB && 4827 "Single-destination switch should have been folded."); 4828 assert(DestA != DestB); 4829 assert(DestB != SI->getDefaultDest()); 4830 assert(!CasesB.empty() && "There must be non-default cases."); 4831 assert(!CasesA.empty() || HasDefault); 4832 4833 // Figure out if one of the sets of cases form a contiguous range. 4834 SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr; 4835 BasicBlock *ContiguousDest = nullptr; 4836 BasicBlock *OtherDest = nullptr; 4837 if (!CasesA.empty() && CasesAreContiguous(CasesA)) { 4838 ContiguousCases = &CasesA; 4839 ContiguousDest = DestA; 4840 OtherDest = DestB; 4841 } else if (CasesAreContiguous(CasesB)) { 4842 ContiguousCases = &CasesB; 4843 ContiguousDest = DestB; 4844 OtherDest = DestA; 4845 } else 4846 return false; 4847 4848 // Start building the compare and branch. 4849 4850 Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back()); 4851 Constant *NumCases = 4852 ConstantInt::get(Offset->getType(), ContiguousCases->size()); 4853 4854 Value *Sub = SI->getCondition(); 4855 if (!Offset->isNullValue()) 4856 Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off"); 4857 4858 Value *Cmp; 4859 // If NumCases overflowed, then all possible values jump to the successor. 4860 if (NumCases->isNullValue() && !ContiguousCases->empty()) 4861 Cmp = ConstantInt::getTrue(SI->getContext()); 4862 else 4863 Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch"); 4864 BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest); 4865 4866 // Update weight for the newly-created conditional branch. 4867 if (HasBranchWeights(SI)) { 4868 SmallVector<uint64_t, 8> Weights; 4869 GetBranchWeights(SI, Weights); 4870 if (Weights.size() == 1 + SI->getNumCases()) { 4871 uint64_t TrueWeight = 0; 4872 uint64_t FalseWeight = 0; 4873 for (size_t I = 0, E = Weights.size(); I != E; ++I) { 4874 if (SI->getSuccessor(I) == ContiguousDest) 4875 TrueWeight += Weights[I]; 4876 else 4877 FalseWeight += Weights[I]; 4878 } 4879 while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) { 4880 TrueWeight /= 2; 4881 FalseWeight /= 2; 4882 } 4883 setBranchWeights(NewBI, TrueWeight, FalseWeight); 4884 } 4885 } 4886 4887 // Prune obsolete incoming values off the successors' PHI nodes. 4888 for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) { 4889 unsigned PreviousEdges = ContiguousCases->size(); 4890 if (ContiguousDest == SI->getDefaultDest()) 4891 ++PreviousEdges; 4892 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I) 4893 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 4894 } 4895 for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) { 4896 unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size(); 4897 if (OtherDest == SI->getDefaultDest()) 4898 ++PreviousEdges; 4899 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I) 4900 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 4901 } 4902 4903 // Clean up the default block - it may have phis or other instructions before 4904 // the unreachable terminator. 4905 if (!HasDefault) 4906 createUnreachableSwitchDefault(SI, DTU); 4907 4908 auto *UnreachableDefault = SI->getDefaultDest(); 4909 4910 // Drop the switch. 4911 SI->eraseFromParent(); 4912 4913 if (!HasDefault && DTU) 4914 DTU->applyUpdates({{DominatorTree::Delete, BB, UnreachableDefault}}); 4915 4916 return true; 4917 } 4918 4919 /// Compute masked bits for the condition of a switch 4920 /// and use it to remove dead cases. 4921 static bool eliminateDeadSwitchCases(SwitchInst *SI, DomTreeUpdater *DTU, 4922 AssumptionCache *AC, 4923 const DataLayout &DL) { 4924 Value *Cond = SI->getCondition(); 4925 unsigned Bits = Cond->getType()->getIntegerBitWidth(); 4926 KnownBits Known = computeKnownBits(Cond, DL, 0, AC, SI); 4927 4928 // We can also eliminate cases by determining that their values are outside of 4929 // the limited range of the condition based on how many significant (non-sign) 4930 // bits are in the condition value. 4931 unsigned ExtraSignBits = ComputeNumSignBits(Cond, DL, 0, AC, SI) - 1; 4932 unsigned MaxSignificantBitsInCond = Bits - ExtraSignBits; 4933 4934 // Gather dead cases. 4935 SmallVector<ConstantInt *, 8> DeadCases; 4936 SmallDenseMap<BasicBlock *, int, 8> NumPerSuccessorCases; 4937 for (auto &Case : SI->cases()) { 4938 auto *Successor = Case.getCaseSuccessor(); 4939 if (DTU) 4940 ++NumPerSuccessorCases[Successor]; 4941 const APInt &CaseVal = Case.getCaseValue()->getValue(); 4942 if (Known.Zero.intersects(CaseVal) || !Known.One.isSubsetOf(CaseVal) || 4943 (CaseVal.getMinSignedBits() > MaxSignificantBitsInCond)) { 4944 DeadCases.push_back(Case.getCaseValue()); 4945 if (DTU) 4946 --NumPerSuccessorCases[Successor]; 4947 LLVM_DEBUG(dbgs() << "SimplifyCFG: switch case " << CaseVal 4948 << " is dead.\n"); 4949 } 4950 } 4951 4952 // If we can prove that the cases must cover all possible values, the 4953 // default destination becomes dead and we can remove it. If we know some 4954 // of the bits in the value, we can use that to more precisely compute the 4955 // number of possible unique case values. 4956 bool HasDefault = 4957 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 4958 const unsigned NumUnknownBits = 4959 Bits - (Known.Zero | Known.One).countPopulation(); 4960 assert(NumUnknownBits <= Bits); 4961 if (HasDefault && DeadCases.empty() && 4962 NumUnknownBits < 64 /* avoid overflow */ && 4963 SI->getNumCases() == (1ULL << NumUnknownBits)) { 4964 createUnreachableSwitchDefault(SI, DTU); 4965 return true; 4966 } 4967 4968 if (DeadCases.empty()) 4969 return false; 4970 4971 SwitchInstProfUpdateWrapper SIW(*SI); 4972 for (ConstantInt *DeadCase : DeadCases) { 4973 SwitchInst::CaseIt CaseI = SI->findCaseValue(DeadCase); 4974 assert(CaseI != SI->case_default() && 4975 "Case was not found. Probably mistake in DeadCases forming."); 4976 // Prune unused values from PHI nodes. 4977 CaseI->getCaseSuccessor()->removePredecessor(SI->getParent()); 4978 SIW.removeCase(CaseI); 4979 } 4980 4981 if (DTU) { 4982 std::vector<DominatorTree::UpdateType> Updates; 4983 for (const std::pair<BasicBlock *, int> &I : NumPerSuccessorCases) 4984 if (I.second == 0) 4985 Updates.push_back({DominatorTree::Delete, SI->getParent(), I.first}); 4986 DTU->applyUpdates(Updates); 4987 } 4988 4989 return true; 4990 } 4991 4992 /// If BB would be eligible for simplification by 4993 /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated 4994 /// by an unconditional branch), look at the phi node for BB in the successor 4995 /// block and see if the incoming value is equal to CaseValue. If so, return 4996 /// the phi node, and set PhiIndex to BB's index in the phi node. 4997 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue, 4998 BasicBlock *BB, int *PhiIndex) { 4999 if (BB->getFirstNonPHIOrDbg() != BB->getTerminator()) 5000 return nullptr; // BB must be empty to be a candidate for simplification. 5001 if (!BB->getSinglePredecessor()) 5002 return nullptr; // BB must be dominated by the switch. 5003 5004 BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator()); 5005 if (!Branch || !Branch->isUnconditional()) 5006 return nullptr; // Terminator must be unconditional branch. 5007 5008 BasicBlock *Succ = Branch->getSuccessor(0); 5009 5010 for (PHINode &PHI : Succ->phis()) { 5011 int Idx = PHI.getBasicBlockIndex(BB); 5012 assert(Idx >= 0 && "PHI has no entry for predecessor?"); 5013 5014 Value *InValue = PHI.getIncomingValue(Idx); 5015 if (InValue != CaseValue) 5016 continue; 5017 5018 *PhiIndex = Idx; 5019 return &PHI; 5020 } 5021 5022 return nullptr; 5023 } 5024 5025 /// Try to forward the condition of a switch instruction to a phi node 5026 /// dominated by the switch, if that would mean that some of the destination 5027 /// blocks of the switch can be folded away. Return true if a change is made. 5028 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) { 5029 using ForwardingNodesMap = DenseMap<PHINode *, SmallVector<int, 4>>; 5030 5031 ForwardingNodesMap ForwardingNodes; 5032 BasicBlock *SwitchBlock = SI->getParent(); 5033 bool Changed = false; 5034 for (auto &Case : SI->cases()) { 5035 ConstantInt *CaseValue = Case.getCaseValue(); 5036 BasicBlock *CaseDest = Case.getCaseSuccessor(); 5037 5038 // Replace phi operands in successor blocks that are using the constant case 5039 // value rather than the switch condition variable: 5040 // switchbb: 5041 // switch i32 %x, label %default [ 5042 // i32 17, label %succ 5043 // ... 5044 // succ: 5045 // %r = phi i32 ... [ 17, %switchbb ] ... 5046 // --> 5047 // %r = phi i32 ... [ %x, %switchbb ] ... 5048 5049 for (PHINode &Phi : CaseDest->phis()) { 5050 // This only works if there is exactly 1 incoming edge from the switch to 5051 // a phi. If there is >1, that means multiple cases of the switch map to 1 5052 // value in the phi, and that phi value is not the switch condition. Thus, 5053 // this transform would not make sense (the phi would be invalid because 5054 // a phi can't have different incoming values from the same block). 5055 int SwitchBBIdx = Phi.getBasicBlockIndex(SwitchBlock); 5056 if (Phi.getIncomingValue(SwitchBBIdx) == CaseValue && 5057 count(Phi.blocks(), SwitchBlock) == 1) { 5058 Phi.setIncomingValue(SwitchBBIdx, SI->getCondition()); 5059 Changed = true; 5060 } 5061 } 5062 5063 // Collect phi nodes that are indirectly using this switch's case constants. 5064 int PhiIdx; 5065 if (auto *Phi = FindPHIForConditionForwarding(CaseValue, CaseDest, &PhiIdx)) 5066 ForwardingNodes[Phi].push_back(PhiIdx); 5067 } 5068 5069 for (auto &ForwardingNode : ForwardingNodes) { 5070 PHINode *Phi = ForwardingNode.first; 5071 SmallVectorImpl<int> &Indexes = ForwardingNode.second; 5072 if (Indexes.size() < 2) 5073 continue; 5074 5075 for (int Index : Indexes) 5076 Phi->setIncomingValue(Index, SI->getCondition()); 5077 Changed = true; 5078 } 5079 5080 return Changed; 5081 } 5082 5083 /// Return true if the backend will be able to handle 5084 /// initializing an array of constants like C. 5085 static bool ValidLookupTableConstant(Constant *C, const TargetTransformInfo &TTI) { 5086 if (C->isThreadDependent()) 5087 return false; 5088 if (C->isDLLImportDependent()) 5089 return false; 5090 5091 if (!isa<ConstantFP>(C) && !isa<ConstantInt>(C) && 5092 !isa<ConstantPointerNull>(C) && !isa<GlobalValue>(C) && 5093 !isa<UndefValue>(C) && !isa<ConstantExpr>(C)) 5094 return false; 5095 5096 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 5097 if (!CE->isGEPWithNoNotionalOverIndexing()) 5098 return false; 5099 if (!ValidLookupTableConstant(CE->getOperand(0), TTI)) 5100 return false; 5101 } 5102 5103 if (!TTI.shouldBuildLookupTablesForConstant(C)) 5104 return false; 5105 5106 return true; 5107 } 5108 5109 /// If V is a Constant, return it. Otherwise, try to look up 5110 /// its constant value in ConstantPool, returning 0 if it's not there. 5111 static Constant * 5112 LookupConstant(Value *V, 5113 const SmallDenseMap<Value *, Constant *> &ConstantPool) { 5114 if (Constant *C = dyn_cast<Constant>(V)) 5115 return C; 5116 return ConstantPool.lookup(V); 5117 } 5118 5119 /// Try to fold instruction I into a constant. This works for 5120 /// simple instructions such as binary operations where both operands are 5121 /// constant or can be replaced by constants from the ConstantPool. Returns the 5122 /// resulting constant on success, 0 otherwise. 5123 static Constant * 5124 ConstantFold(Instruction *I, const DataLayout &DL, 5125 const SmallDenseMap<Value *, Constant *> &ConstantPool) { 5126 if (SelectInst *Select = dyn_cast<SelectInst>(I)) { 5127 Constant *A = LookupConstant(Select->getCondition(), ConstantPool); 5128 if (!A) 5129 return nullptr; 5130 if (A->isAllOnesValue()) 5131 return LookupConstant(Select->getTrueValue(), ConstantPool); 5132 if (A->isNullValue()) 5133 return LookupConstant(Select->getFalseValue(), ConstantPool); 5134 return nullptr; 5135 } 5136 5137 SmallVector<Constant *, 4> COps; 5138 for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) { 5139 if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool)) 5140 COps.push_back(A); 5141 else 5142 return nullptr; 5143 } 5144 5145 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) { 5146 return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0], 5147 COps[1], DL); 5148 } 5149 5150 return ConstantFoldInstOperands(I, COps, DL); 5151 } 5152 5153 /// Try to determine the resulting constant values in phi nodes 5154 /// at the common destination basic block, *CommonDest, for one of the case 5155 /// destionations CaseDest corresponding to value CaseVal (0 for the default 5156 /// case), of a switch instruction SI. 5157 static bool 5158 GetCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest, 5159 BasicBlock **CommonDest, 5160 SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res, 5161 const DataLayout &DL, const TargetTransformInfo &TTI) { 5162 // The block from which we enter the common destination. 5163 BasicBlock *Pred = SI->getParent(); 5164 5165 // If CaseDest is empty except for some side-effect free instructions through 5166 // which we can constant-propagate the CaseVal, continue to its successor. 5167 SmallDenseMap<Value *, Constant *> ConstantPool; 5168 ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal)); 5169 for (Instruction &I :CaseDest->instructionsWithoutDebug()) { 5170 if (I.isTerminator()) { 5171 // If the terminator is a simple branch, continue to the next block. 5172 if (I.getNumSuccessors() != 1 || I.isExceptionalTerminator()) 5173 return false; 5174 Pred = CaseDest; 5175 CaseDest = I.getSuccessor(0); 5176 } else if (Constant *C = ConstantFold(&I, DL, ConstantPool)) { 5177 // Instruction is side-effect free and constant. 5178 5179 // If the instruction has uses outside this block or a phi node slot for 5180 // the block, it is not safe to bypass the instruction since it would then 5181 // no longer dominate all its uses. 5182 for (auto &Use : I.uses()) { 5183 User *User = Use.getUser(); 5184 if (Instruction *I = dyn_cast<Instruction>(User)) 5185 if (I->getParent() == CaseDest) 5186 continue; 5187 if (PHINode *Phi = dyn_cast<PHINode>(User)) 5188 if (Phi->getIncomingBlock(Use) == CaseDest) 5189 continue; 5190 return false; 5191 } 5192 5193 ConstantPool.insert(std::make_pair(&I, C)); 5194 } else { 5195 break; 5196 } 5197 } 5198 5199 // If we did not have a CommonDest before, use the current one. 5200 if (!*CommonDest) 5201 *CommonDest = CaseDest; 5202 // If the destination isn't the common one, abort. 5203 if (CaseDest != *CommonDest) 5204 return false; 5205 5206 // Get the values for this case from phi nodes in the destination block. 5207 for (PHINode &PHI : (*CommonDest)->phis()) { 5208 int Idx = PHI.getBasicBlockIndex(Pred); 5209 if (Idx == -1) 5210 continue; 5211 5212 Constant *ConstVal = 5213 LookupConstant(PHI.getIncomingValue(Idx), ConstantPool); 5214 if (!ConstVal) 5215 return false; 5216 5217 // Be conservative about which kinds of constants we support. 5218 if (!ValidLookupTableConstant(ConstVal, TTI)) 5219 return false; 5220 5221 Res.push_back(std::make_pair(&PHI, ConstVal)); 5222 } 5223 5224 return Res.size() > 0; 5225 } 5226 5227 // Helper function used to add CaseVal to the list of cases that generate 5228 // Result. Returns the updated number of cases that generate this result. 5229 static uintptr_t MapCaseToResult(ConstantInt *CaseVal, 5230 SwitchCaseResultVectorTy &UniqueResults, 5231 Constant *Result) { 5232 for (auto &I : UniqueResults) { 5233 if (I.first == Result) { 5234 I.second.push_back(CaseVal); 5235 return I.second.size(); 5236 } 5237 } 5238 UniqueResults.push_back( 5239 std::make_pair(Result, SmallVector<ConstantInt *, 4>(1, CaseVal))); 5240 return 1; 5241 } 5242 5243 // Helper function that initializes a map containing 5244 // results for the PHI node of the common destination block for a switch 5245 // instruction. Returns false if multiple PHI nodes have been found or if 5246 // there is not a common destination block for the switch. 5247 static bool 5248 InitializeUniqueCases(SwitchInst *SI, PHINode *&PHI, BasicBlock *&CommonDest, 5249 SwitchCaseResultVectorTy &UniqueResults, 5250 Constant *&DefaultResult, const DataLayout &DL, 5251 const TargetTransformInfo &TTI, 5252 uintptr_t MaxUniqueResults, uintptr_t MaxCasesPerResult) { 5253 for (auto &I : SI->cases()) { 5254 ConstantInt *CaseVal = I.getCaseValue(); 5255 5256 // Resulting value at phi nodes for this case value. 5257 SwitchCaseResultsTy Results; 5258 if (!GetCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results, 5259 DL, TTI)) 5260 return false; 5261 5262 // Only one value per case is permitted. 5263 if (Results.size() > 1) 5264 return false; 5265 5266 // Add the case->result mapping to UniqueResults. 5267 const uintptr_t NumCasesForResult = 5268 MapCaseToResult(CaseVal, UniqueResults, Results.begin()->second); 5269 5270 // Early out if there are too many cases for this result. 5271 if (NumCasesForResult > MaxCasesPerResult) 5272 return false; 5273 5274 // Early out if there are too many unique results. 5275 if (UniqueResults.size() > MaxUniqueResults) 5276 return false; 5277 5278 // Check the PHI consistency. 5279 if (!PHI) 5280 PHI = Results[0].first; 5281 else if (PHI != Results[0].first) 5282 return false; 5283 } 5284 // Find the default result value. 5285 SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults; 5286 BasicBlock *DefaultDest = SI->getDefaultDest(); 5287 GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults, 5288 DL, TTI); 5289 // If the default value is not found abort unless the default destination 5290 // is unreachable. 5291 DefaultResult = 5292 DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr; 5293 if ((!DefaultResult && 5294 !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()))) 5295 return false; 5296 5297 return true; 5298 } 5299 5300 // Helper function that checks if it is possible to transform a switch with only 5301 // two cases (or two cases + default) that produces a result into a select. 5302 // Example: 5303 // switch (a) { 5304 // case 10: %0 = icmp eq i32 %a, 10 5305 // return 10; %1 = select i1 %0, i32 10, i32 4 5306 // case 20: ----> %2 = icmp eq i32 %a, 20 5307 // return 2; %3 = select i1 %2, i32 2, i32 %1 5308 // default: 5309 // return 4; 5310 // } 5311 static Value *ConvertTwoCaseSwitch(const SwitchCaseResultVectorTy &ResultVector, 5312 Constant *DefaultResult, Value *Condition, 5313 IRBuilder<> &Builder) { 5314 // If we are selecting between only two cases transform into a simple 5315 // select or a two-way select if default is possible. 5316 if (ResultVector.size() == 2 && ResultVector[0].second.size() == 1 && 5317 ResultVector[1].second.size() == 1) { 5318 ConstantInt *const FirstCase = ResultVector[0].second[0]; 5319 ConstantInt *const SecondCase = ResultVector[1].second[0]; 5320 5321 bool DefaultCanTrigger = DefaultResult; 5322 Value *SelectValue = ResultVector[1].first; 5323 if (DefaultCanTrigger) { 5324 Value *const ValueCompare = 5325 Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp"); 5326 SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first, 5327 DefaultResult, "switch.select"); 5328 } 5329 Value *const ValueCompare = 5330 Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp"); 5331 return Builder.CreateSelect(ValueCompare, ResultVector[0].first, 5332 SelectValue, "switch.select"); 5333 } 5334 5335 // Handle the degenerate case where two cases have the same value. 5336 if (ResultVector.size() == 1 && ResultVector[0].second.size() == 2 && 5337 DefaultResult) { 5338 Value *Cmp1 = Builder.CreateICmpEQ( 5339 Condition, ResultVector[0].second[0], "switch.selectcmp.case1"); 5340 Value *Cmp2 = Builder.CreateICmpEQ( 5341 Condition, ResultVector[0].second[1], "switch.selectcmp.case2"); 5342 Value *Cmp = Builder.CreateOr(Cmp1, Cmp2, "switch.selectcmp"); 5343 return Builder.CreateSelect(Cmp, ResultVector[0].first, DefaultResult); 5344 } 5345 5346 return nullptr; 5347 } 5348 5349 // Helper function to cleanup a switch instruction that has been converted into 5350 // a select, fixing up PHI nodes and basic blocks. 5351 static void RemoveSwitchAfterSelectConversion(SwitchInst *SI, PHINode *PHI, 5352 Value *SelectValue, 5353 IRBuilder<> &Builder, 5354 DomTreeUpdater *DTU) { 5355 std::vector<DominatorTree::UpdateType> Updates; 5356 5357 BasicBlock *SelectBB = SI->getParent(); 5358 BasicBlock *DestBB = PHI->getParent(); 5359 5360 if (DTU && !is_contained(predecessors(DestBB), SelectBB)) 5361 Updates.push_back({DominatorTree::Insert, SelectBB, DestBB}); 5362 Builder.CreateBr(DestBB); 5363 5364 // Remove the switch. 5365 5366 while (PHI->getBasicBlockIndex(SelectBB) >= 0) 5367 PHI->removeIncomingValue(SelectBB); 5368 PHI->addIncoming(SelectValue, SelectBB); 5369 5370 SmallPtrSet<BasicBlock *, 4> RemovedSuccessors; 5371 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { 5372 BasicBlock *Succ = SI->getSuccessor(i); 5373 5374 if (Succ == DestBB) 5375 continue; 5376 Succ->removePredecessor(SelectBB); 5377 if (DTU && RemovedSuccessors.insert(Succ).second) 5378 Updates.push_back({DominatorTree::Delete, SelectBB, Succ}); 5379 } 5380 SI->eraseFromParent(); 5381 if (DTU) 5382 DTU->applyUpdates(Updates); 5383 } 5384 5385 /// If the switch is only used to initialize one or more 5386 /// phi nodes in a common successor block with only two different 5387 /// constant values, replace the switch with select. 5388 static bool switchToSelect(SwitchInst *SI, IRBuilder<> &Builder, 5389 DomTreeUpdater *DTU, const DataLayout &DL, 5390 const TargetTransformInfo &TTI) { 5391 Value *const Cond = SI->getCondition(); 5392 PHINode *PHI = nullptr; 5393 BasicBlock *CommonDest = nullptr; 5394 Constant *DefaultResult; 5395 SwitchCaseResultVectorTy UniqueResults; 5396 // Collect all the cases that will deliver the same value from the switch. 5397 if (!InitializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult, 5398 DL, TTI, /*MaxUniqueResults*/2, 5399 /*MaxCasesPerResult*/2)) 5400 return false; 5401 assert(PHI != nullptr && "PHI for value select not found"); 5402 5403 Builder.SetInsertPoint(SI); 5404 Value *SelectValue = 5405 ConvertTwoCaseSwitch(UniqueResults, DefaultResult, Cond, Builder); 5406 if (SelectValue) { 5407 RemoveSwitchAfterSelectConversion(SI, PHI, SelectValue, Builder, DTU); 5408 return true; 5409 } 5410 // The switch couldn't be converted into a select. 5411 return false; 5412 } 5413 5414 namespace { 5415 5416 /// This class represents a lookup table that can be used to replace a switch. 5417 class SwitchLookupTable { 5418 public: 5419 /// Create a lookup table to use as a switch replacement with the contents 5420 /// of Values, using DefaultValue to fill any holes in the table. 5421 SwitchLookupTable( 5422 Module &M, uint64_t TableSize, ConstantInt *Offset, 5423 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values, 5424 Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName); 5425 5426 /// Build instructions with Builder to retrieve the value at 5427 /// the position given by Index in the lookup table. 5428 Value *BuildLookup(Value *Index, IRBuilder<> &Builder); 5429 5430 /// Return true if a table with TableSize elements of 5431 /// type ElementType would fit in a target-legal register. 5432 static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize, 5433 Type *ElementType); 5434 5435 private: 5436 // Depending on the contents of the table, it can be represented in 5437 // different ways. 5438 enum { 5439 // For tables where each element contains the same value, we just have to 5440 // store that single value and return it for each lookup. 5441 SingleValueKind, 5442 5443 // For tables where there is a linear relationship between table index 5444 // and values. We calculate the result with a simple multiplication 5445 // and addition instead of a table lookup. 5446 LinearMapKind, 5447 5448 // For small tables with integer elements, we can pack them into a bitmap 5449 // that fits into a target-legal register. Values are retrieved by 5450 // shift and mask operations. 5451 BitMapKind, 5452 5453 // The table is stored as an array of values. Values are retrieved by load 5454 // instructions from the table. 5455 ArrayKind 5456 } Kind; 5457 5458 // For SingleValueKind, this is the single value. 5459 Constant *SingleValue = nullptr; 5460 5461 // For BitMapKind, this is the bitmap. 5462 ConstantInt *BitMap = nullptr; 5463 IntegerType *BitMapElementTy = nullptr; 5464 5465 // For LinearMapKind, these are the constants used to derive the value. 5466 ConstantInt *LinearOffset = nullptr; 5467 ConstantInt *LinearMultiplier = nullptr; 5468 5469 // For ArrayKind, this is the array. 5470 GlobalVariable *Array = nullptr; 5471 }; 5472 5473 } // end anonymous namespace 5474 5475 SwitchLookupTable::SwitchLookupTable( 5476 Module &M, uint64_t TableSize, ConstantInt *Offset, 5477 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values, 5478 Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName) { 5479 assert(Values.size() && "Can't build lookup table without values!"); 5480 assert(TableSize >= Values.size() && "Can't fit values in table!"); 5481 5482 // If all values in the table are equal, this is that value. 5483 SingleValue = Values.begin()->second; 5484 5485 Type *ValueType = Values.begin()->second->getType(); 5486 5487 // Build up the table contents. 5488 SmallVector<Constant *, 64> TableContents(TableSize); 5489 for (size_t I = 0, E = Values.size(); I != E; ++I) { 5490 ConstantInt *CaseVal = Values[I].first; 5491 Constant *CaseRes = Values[I].second; 5492 assert(CaseRes->getType() == ValueType); 5493 5494 uint64_t Idx = (CaseVal->getValue() - Offset->getValue()).getLimitedValue(); 5495 TableContents[Idx] = CaseRes; 5496 5497 if (CaseRes != SingleValue) 5498 SingleValue = nullptr; 5499 } 5500 5501 // Fill in any holes in the table with the default result. 5502 if (Values.size() < TableSize) { 5503 assert(DefaultValue && 5504 "Need a default value to fill the lookup table holes."); 5505 assert(DefaultValue->getType() == ValueType); 5506 for (uint64_t I = 0; I < TableSize; ++I) { 5507 if (!TableContents[I]) 5508 TableContents[I] = DefaultValue; 5509 } 5510 5511 if (DefaultValue != SingleValue) 5512 SingleValue = nullptr; 5513 } 5514 5515 // If each element in the table contains the same value, we only need to store 5516 // that single value. 5517 if (SingleValue) { 5518 Kind = SingleValueKind; 5519 return; 5520 } 5521 5522 // Check if we can derive the value with a linear transformation from the 5523 // table index. 5524 if (isa<IntegerType>(ValueType)) { 5525 bool LinearMappingPossible = true; 5526 APInt PrevVal; 5527 APInt DistToPrev; 5528 assert(TableSize >= 2 && "Should be a SingleValue table."); 5529 // Check if there is the same distance between two consecutive values. 5530 for (uint64_t I = 0; I < TableSize; ++I) { 5531 ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]); 5532 if (!ConstVal) { 5533 // This is an undef. We could deal with it, but undefs in lookup tables 5534 // are very seldom. It's probably not worth the additional complexity. 5535 LinearMappingPossible = false; 5536 break; 5537 } 5538 const APInt &Val = ConstVal->getValue(); 5539 if (I != 0) { 5540 APInt Dist = Val - PrevVal; 5541 if (I == 1) { 5542 DistToPrev = Dist; 5543 } else if (Dist != DistToPrev) { 5544 LinearMappingPossible = false; 5545 break; 5546 } 5547 } 5548 PrevVal = Val; 5549 } 5550 if (LinearMappingPossible) { 5551 LinearOffset = cast<ConstantInt>(TableContents[0]); 5552 LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev); 5553 Kind = LinearMapKind; 5554 ++NumLinearMaps; 5555 return; 5556 } 5557 } 5558 5559 // If the type is integer and the table fits in a register, build a bitmap. 5560 if (WouldFitInRegister(DL, TableSize, ValueType)) { 5561 IntegerType *IT = cast<IntegerType>(ValueType); 5562 APInt TableInt(TableSize * IT->getBitWidth(), 0); 5563 for (uint64_t I = TableSize; I > 0; --I) { 5564 TableInt <<= IT->getBitWidth(); 5565 // Insert values into the bitmap. Undef values are set to zero. 5566 if (!isa<UndefValue>(TableContents[I - 1])) { 5567 ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]); 5568 TableInt |= Val->getValue().zext(TableInt.getBitWidth()); 5569 } 5570 } 5571 BitMap = ConstantInt::get(M.getContext(), TableInt); 5572 BitMapElementTy = IT; 5573 Kind = BitMapKind; 5574 ++NumBitMaps; 5575 return; 5576 } 5577 5578 // Store the table in an array. 5579 ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize); 5580 Constant *Initializer = ConstantArray::get(ArrayTy, TableContents); 5581 5582 Array = new GlobalVariable(M, ArrayTy, /*isConstant=*/true, 5583 GlobalVariable::PrivateLinkage, Initializer, 5584 "switch.table." + FuncName); 5585 Array->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); 5586 // Set the alignment to that of an array items. We will be only loading one 5587 // value out of it. 5588 Array->setAlignment(Align(DL.getPrefTypeAlignment(ValueType))); 5589 Kind = ArrayKind; 5590 } 5591 5592 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) { 5593 switch (Kind) { 5594 case SingleValueKind: 5595 return SingleValue; 5596 case LinearMapKind: { 5597 // Derive the result value from the input value. 5598 Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(), 5599 false, "switch.idx.cast"); 5600 if (!LinearMultiplier->isOne()) 5601 Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult"); 5602 if (!LinearOffset->isZero()) 5603 Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset"); 5604 return Result; 5605 } 5606 case BitMapKind: { 5607 // Type of the bitmap (e.g. i59). 5608 IntegerType *MapTy = BitMap->getType(); 5609 5610 // Cast Index to the same type as the bitmap. 5611 // Note: The Index is <= the number of elements in the table, so 5612 // truncating it to the width of the bitmask is safe. 5613 Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast"); 5614 5615 // Multiply the shift amount by the element width. 5616 ShiftAmt = Builder.CreateMul( 5617 ShiftAmt, ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()), 5618 "switch.shiftamt"); 5619 5620 // Shift down. 5621 Value *DownShifted = 5622 Builder.CreateLShr(BitMap, ShiftAmt, "switch.downshift"); 5623 // Mask off. 5624 return Builder.CreateTrunc(DownShifted, BitMapElementTy, "switch.masked"); 5625 } 5626 case ArrayKind: { 5627 // Make sure the table index will not overflow when treated as signed. 5628 IntegerType *IT = cast<IntegerType>(Index->getType()); 5629 uint64_t TableSize = 5630 Array->getInitializer()->getType()->getArrayNumElements(); 5631 if (TableSize > (1ULL << (IT->getBitWidth() - 1))) 5632 Index = Builder.CreateZExt( 5633 Index, IntegerType::get(IT->getContext(), IT->getBitWidth() + 1), 5634 "switch.tableidx.zext"); 5635 5636 Value *GEPIndices[] = {Builder.getInt32(0), Index}; 5637 Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array, 5638 GEPIndices, "switch.gep"); 5639 return Builder.CreateLoad( 5640 cast<ArrayType>(Array->getValueType())->getElementType(), GEP, 5641 "switch.load"); 5642 } 5643 } 5644 llvm_unreachable("Unknown lookup table kind!"); 5645 } 5646 5647 bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL, 5648 uint64_t TableSize, 5649 Type *ElementType) { 5650 auto *IT = dyn_cast<IntegerType>(ElementType); 5651 if (!IT) 5652 return false; 5653 // FIXME: If the type is wider than it needs to be, e.g. i8 but all values 5654 // are <= 15, we could try to narrow the type. 5655 5656 // Avoid overflow, fitsInLegalInteger uses unsigned int for the width. 5657 if (TableSize >= UINT_MAX / IT->getBitWidth()) 5658 return false; 5659 return DL.fitsInLegalInteger(TableSize * IT->getBitWidth()); 5660 } 5661 5662 /// Determine whether a lookup table should be built for this switch, based on 5663 /// the number of cases, size of the table, and the types of the results. 5664 static bool 5665 ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize, 5666 const TargetTransformInfo &TTI, const DataLayout &DL, 5667 const SmallDenseMap<PHINode *, Type *> &ResultTypes) { 5668 if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10) 5669 return false; // TableSize overflowed, or mul below might overflow. 5670 5671 bool AllTablesFitInRegister = true; 5672 bool HasIllegalType = false; 5673 for (const auto &I : ResultTypes) { 5674 Type *Ty = I.second; 5675 5676 // Saturate this flag to true. 5677 HasIllegalType = HasIllegalType || !TTI.isTypeLegal(Ty); 5678 5679 // Saturate this flag to false. 5680 AllTablesFitInRegister = 5681 AllTablesFitInRegister && 5682 SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty); 5683 5684 // If both flags saturate, we're done. NOTE: This *only* works with 5685 // saturating flags, and all flags have to saturate first due to the 5686 // non-deterministic behavior of iterating over a dense map. 5687 if (HasIllegalType && !AllTablesFitInRegister) 5688 break; 5689 } 5690 5691 // If each table would fit in a register, we should build it anyway. 5692 if (AllTablesFitInRegister) 5693 return true; 5694 5695 // Don't build a table that doesn't fit in-register if it has illegal types. 5696 if (HasIllegalType) 5697 return false; 5698 5699 // The table density should be at least 40%. This is the same criterion as for 5700 // jump tables, see SelectionDAGBuilder::handleJTSwitchCase. 5701 // FIXME: Find the best cut-off. 5702 return SI->getNumCases() * 10 >= TableSize * 4; 5703 } 5704 5705 /// Try to reuse the switch table index compare. Following pattern: 5706 /// \code 5707 /// if (idx < tablesize) 5708 /// r = table[idx]; // table does not contain default_value 5709 /// else 5710 /// r = default_value; 5711 /// if (r != default_value) 5712 /// ... 5713 /// \endcode 5714 /// Is optimized to: 5715 /// \code 5716 /// cond = idx < tablesize; 5717 /// if (cond) 5718 /// r = table[idx]; 5719 /// else 5720 /// r = default_value; 5721 /// if (cond) 5722 /// ... 5723 /// \endcode 5724 /// Jump threading will then eliminate the second if(cond). 5725 static void reuseTableCompare( 5726 User *PhiUser, BasicBlock *PhiBlock, BranchInst *RangeCheckBranch, 5727 Constant *DefaultValue, 5728 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values) { 5729 ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser); 5730 if (!CmpInst) 5731 return; 5732 5733 // We require that the compare is in the same block as the phi so that jump 5734 // threading can do its work afterwards. 5735 if (CmpInst->getParent() != PhiBlock) 5736 return; 5737 5738 Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1)); 5739 if (!CmpOp1) 5740 return; 5741 5742 Value *RangeCmp = RangeCheckBranch->getCondition(); 5743 Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType()); 5744 Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType()); 5745 5746 // Check if the compare with the default value is constant true or false. 5747 Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(), 5748 DefaultValue, CmpOp1, true); 5749 if (DefaultConst != TrueConst && DefaultConst != FalseConst) 5750 return; 5751 5752 // Check if the compare with the case values is distinct from the default 5753 // compare result. 5754 for (auto ValuePair : Values) { 5755 Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(), 5756 ValuePair.second, CmpOp1, true); 5757 if (!CaseConst || CaseConst == DefaultConst || isa<UndefValue>(CaseConst)) 5758 return; 5759 assert((CaseConst == TrueConst || CaseConst == FalseConst) && 5760 "Expect true or false as compare result."); 5761 } 5762 5763 // Check if the branch instruction dominates the phi node. It's a simple 5764 // dominance check, but sufficient for our needs. 5765 // Although this check is invariant in the calling loops, it's better to do it 5766 // at this late stage. Practically we do it at most once for a switch. 5767 BasicBlock *BranchBlock = RangeCheckBranch->getParent(); 5768 for (BasicBlock *Pred : predecessors(PhiBlock)) { 5769 if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock) 5770 return; 5771 } 5772 5773 if (DefaultConst == FalseConst) { 5774 // The compare yields the same result. We can replace it. 5775 CmpInst->replaceAllUsesWith(RangeCmp); 5776 ++NumTableCmpReuses; 5777 } else { 5778 // The compare yields the same result, just inverted. We can replace it. 5779 Value *InvertedTableCmp = BinaryOperator::CreateXor( 5780 RangeCmp, ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp", 5781 RangeCheckBranch); 5782 CmpInst->replaceAllUsesWith(InvertedTableCmp); 5783 ++NumTableCmpReuses; 5784 } 5785 } 5786 5787 /// If the switch is only used to initialize one or more phi nodes in a common 5788 /// successor block with different constant values, replace the switch with 5789 /// lookup tables. 5790 static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder, 5791 DomTreeUpdater *DTU, const DataLayout &DL, 5792 const TargetTransformInfo &TTI) { 5793 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 5794 5795 BasicBlock *BB = SI->getParent(); 5796 Function *Fn = BB->getParent(); 5797 // Only build lookup table when we have a target that supports it or the 5798 // attribute is not set. 5799 if (!TTI.shouldBuildLookupTables() || 5800 (Fn->getFnAttribute("no-jump-tables").getValueAsBool())) 5801 return false; 5802 5803 // FIXME: If the switch is too sparse for a lookup table, perhaps we could 5804 // split off a dense part and build a lookup table for that. 5805 5806 // FIXME: This creates arrays of GEPs to constant strings, which means each 5807 // GEP needs a runtime relocation in PIC code. We should just build one big 5808 // string and lookup indices into that. 5809 5810 // Ignore switches with less than three cases. Lookup tables will not make 5811 // them faster, so we don't analyze them. 5812 if (SI->getNumCases() < 3) 5813 return false; 5814 5815 // Figure out the corresponding result for each case value and phi node in the 5816 // common destination, as well as the min and max case values. 5817 assert(!SI->cases().empty()); 5818 SwitchInst::CaseIt CI = SI->case_begin(); 5819 ConstantInt *MinCaseVal = CI->getCaseValue(); 5820 ConstantInt *MaxCaseVal = CI->getCaseValue(); 5821 5822 BasicBlock *CommonDest = nullptr; 5823 5824 using ResultListTy = SmallVector<std::pair<ConstantInt *, Constant *>, 4>; 5825 SmallDenseMap<PHINode *, ResultListTy> ResultLists; 5826 5827 SmallDenseMap<PHINode *, Constant *> DefaultResults; 5828 SmallDenseMap<PHINode *, Type *> ResultTypes; 5829 SmallVector<PHINode *, 4> PHIs; 5830 5831 for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) { 5832 ConstantInt *CaseVal = CI->getCaseValue(); 5833 if (CaseVal->getValue().slt(MinCaseVal->getValue())) 5834 MinCaseVal = CaseVal; 5835 if (CaseVal->getValue().sgt(MaxCaseVal->getValue())) 5836 MaxCaseVal = CaseVal; 5837 5838 // Resulting value at phi nodes for this case value. 5839 using ResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>; 5840 ResultsTy Results; 5841 if (!GetCaseResults(SI, CaseVal, CI->getCaseSuccessor(), &CommonDest, 5842 Results, DL, TTI)) 5843 return false; 5844 5845 // Append the result from this case to the list for each phi. 5846 for (const auto &I : Results) { 5847 PHINode *PHI = I.first; 5848 Constant *Value = I.second; 5849 if (!ResultLists.count(PHI)) 5850 PHIs.push_back(PHI); 5851 ResultLists[PHI].push_back(std::make_pair(CaseVal, Value)); 5852 } 5853 } 5854 5855 // Keep track of the result types. 5856 for (PHINode *PHI : PHIs) { 5857 ResultTypes[PHI] = ResultLists[PHI][0].second->getType(); 5858 } 5859 5860 uint64_t NumResults = ResultLists[PHIs[0]].size(); 5861 APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue(); 5862 uint64_t TableSize = RangeSpread.getLimitedValue() + 1; 5863 bool TableHasHoles = (NumResults < TableSize); 5864 5865 // If the table has holes, we need a constant result for the default case 5866 // or a bitmask that fits in a register. 5867 SmallVector<std::pair<PHINode *, Constant *>, 4> DefaultResultsList; 5868 bool HasDefaultResults = 5869 GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, 5870 DefaultResultsList, DL, TTI); 5871 5872 bool NeedMask = (TableHasHoles && !HasDefaultResults); 5873 if (NeedMask) { 5874 // As an extra penalty for the validity test we require more cases. 5875 if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark). 5876 return false; 5877 if (!DL.fitsInLegalInteger(TableSize)) 5878 return false; 5879 } 5880 5881 for (const auto &I : DefaultResultsList) { 5882 PHINode *PHI = I.first; 5883 Constant *Result = I.second; 5884 DefaultResults[PHI] = Result; 5885 } 5886 5887 if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes)) 5888 return false; 5889 5890 std::vector<DominatorTree::UpdateType> Updates; 5891 5892 // Create the BB that does the lookups. 5893 Module &Mod = *CommonDest->getParent()->getParent(); 5894 BasicBlock *LookupBB = BasicBlock::Create( 5895 Mod.getContext(), "switch.lookup", CommonDest->getParent(), CommonDest); 5896 5897 // Compute the table index value. 5898 Builder.SetInsertPoint(SI); 5899 Value *TableIndex; 5900 if (MinCaseVal->isNullValue()) 5901 TableIndex = SI->getCondition(); 5902 else 5903 TableIndex = Builder.CreateSub(SI->getCondition(), MinCaseVal, 5904 "switch.tableidx"); 5905 5906 // Compute the maximum table size representable by the integer type we are 5907 // switching upon. 5908 unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits(); 5909 uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize; 5910 assert(MaxTableSize >= TableSize && 5911 "It is impossible for a switch to have more entries than the max " 5912 "representable value of its input integer type's size."); 5913 5914 // If the default destination is unreachable, or if the lookup table covers 5915 // all values of the conditional variable, branch directly to the lookup table 5916 // BB. Otherwise, check that the condition is within the case range. 5917 const bool DefaultIsReachable = 5918 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 5919 const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize); 5920 BranchInst *RangeCheckBranch = nullptr; 5921 5922 if (!DefaultIsReachable || GeneratingCoveredLookupTable) { 5923 Builder.CreateBr(LookupBB); 5924 if (DTU) 5925 Updates.push_back({DominatorTree::Insert, BB, LookupBB}); 5926 // Note: We call removeProdecessor later since we need to be able to get the 5927 // PHI value for the default case in case we're using a bit mask. 5928 } else { 5929 Value *Cmp = Builder.CreateICmpULT( 5930 TableIndex, ConstantInt::get(MinCaseVal->getType(), TableSize)); 5931 RangeCheckBranch = 5932 Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest()); 5933 if (DTU) 5934 Updates.push_back({DominatorTree::Insert, BB, LookupBB}); 5935 } 5936 5937 // Populate the BB that does the lookups. 5938 Builder.SetInsertPoint(LookupBB); 5939 5940 if (NeedMask) { 5941 // Before doing the lookup, we do the hole check. The LookupBB is therefore 5942 // re-purposed to do the hole check, and we create a new LookupBB. 5943 BasicBlock *MaskBB = LookupBB; 5944 MaskBB->setName("switch.hole_check"); 5945 LookupBB = BasicBlock::Create(Mod.getContext(), "switch.lookup", 5946 CommonDest->getParent(), CommonDest); 5947 5948 // Make the mask's bitwidth at least 8-bit and a power-of-2 to avoid 5949 // unnecessary illegal types. 5950 uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL)); 5951 APInt MaskInt(TableSizePowOf2, 0); 5952 APInt One(TableSizePowOf2, 1); 5953 // Build bitmask; fill in a 1 bit for every case. 5954 const ResultListTy &ResultList = ResultLists[PHIs[0]]; 5955 for (size_t I = 0, E = ResultList.size(); I != E; ++I) { 5956 uint64_t Idx = (ResultList[I].first->getValue() - MinCaseVal->getValue()) 5957 .getLimitedValue(); 5958 MaskInt |= One << Idx; 5959 } 5960 ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt); 5961 5962 // Get the TableIndex'th bit of the bitmask. 5963 // If this bit is 0 (meaning hole) jump to the default destination, 5964 // else continue with table lookup. 5965 IntegerType *MapTy = TableMask->getType(); 5966 Value *MaskIndex = 5967 Builder.CreateZExtOrTrunc(TableIndex, MapTy, "switch.maskindex"); 5968 Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, "switch.shifted"); 5969 Value *LoBit = Builder.CreateTrunc( 5970 Shifted, Type::getInt1Ty(Mod.getContext()), "switch.lobit"); 5971 Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest()); 5972 if (DTU) { 5973 Updates.push_back({DominatorTree::Insert, MaskBB, LookupBB}); 5974 Updates.push_back({DominatorTree::Insert, MaskBB, SI->getDefaultDest()}); 5975 } 5976 Builder.SetInsertPoint(LookupBB); 5977 AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, BB); 5978 } 5979 5980 if (!DefaultIsReachable || GeneratingCoveredLookupTable) { 5981 // We cached PHINodes in PHIs. To avoid accessing deleted PHINodes later, 5982 // do not delete PHINodes here. 5983 SI->getDefaultDest()->removePredecessor(BB, 5984 /*KeepOneInputPHIs=*/true); 5985 if (DTU) 5986 Updates.push_back({DominatorTree::Delete, BB, SI->getDefaultDest()}); 5987 } 5988 5989 bool ReturnedEarly = false; 5990 for (PHINode *PHI : PHIs) { 5991 const ResultListTy &ResultList = ResultLists[PHI]; 5992 5993 // If using a bitmask, use any value to fill the lookup table holes. 5994 Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI]; 5995 StringRef FuncName = Fn->getName(); 5996 SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultList, DV, DL, 5997 FuncName); 5998 5999 Value *Result = Table.BuildLookup(TableIndex, Builder); 6000 6001 // If the result is used to return immediately from the function, we want to 6002 // do that right here. 6003 if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->user_begin()) && 6004 PHI->user_back() == CommonDest->getFirstNonPHIOrDbg()) { 6005 Builder.CreateRet(Result); 6006 ReturnedEarly = true; 6007 break; 6008 } 6009 6010 // Do a small peephole optimization: re-use the switch table compare if 6011 // possible. 6012 if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) { 6013 BasicBlock *PhiBlock = PHI->getParent(); 6014 // Search for compare instructions which use the phi. 6015 for (auto *User : PHI->users()) { 6016 reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList); 6017 } 6018 } 6019 6020 PHI->addIncoming(Result, LookupBB); 6021 } 6022 6023 if (!ReturnedEarly) { 6024 Builder.CreateBr(CommonDest); 6025 if (DTU) 6026 Updates.push_back({DominatorTree::Insert, LookupBB, CommonDest}); 6027 } 6028 6029 // Remove the switch. 6030 SmallPtrSet<BasicBlock *, 8> RemovedSuccessors; 6031 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { 6032 BasicBlock *Succ = SI->getSuccessor(i); 6033 6034 if (Succ == SI->getDefaultDest()) 6035 continue; 6036 Succ->removePredecessor(BB); 6037 RemovedSuccessors.insert(Succ); 6038 } 6039 SI->eraseFromParent(); 6040 6041 if (DTU) { 6042 for (BasicBlock *RemovedSuccessor : RemovedSuccessors) 6043 Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor}); 6044 DTU->applyUpdates(Updates); 6045 } 6046 6047 ++NumLookupTables; 6048 if (NeedMask) 6049 ++NumLookupTablesHoles; 6050 return true; 6051 } 6052 6053 static bool isSwitchDense(ArrayRef<int64_t> Values) { 6054 // See also SelectionDAGBuilder::isDense(), which this function was based on. 6055 uint64_t Diff = (uint64_t)Values.back() - (uint64_t)Values.front(); 6056 uint64_t Range = Diff + 1; 6057 uint64_t NumCases = Values.size(); 6058 // 40% is the default density for building a jump table in optsize/minsize mode. 6059 uint64_t MinDensity = 40; 6060 6061 return NumCases * 100 >= Range * MinDensity; 6062 } 6063 6064 /// Try to transform a switch that has "holes" in it to a contiguous sequence 6065 /// of cases. 6066 /// 6067 /// A switch such as: switch(i) {case 5: case 9: case 13: case 17:} can be 6068 /// range-reduced to: switch ((i-5) / 4) {case 0: case 1: case 2: case 3:}. 6069 /// 6070 /// This converts a sparse switch into a dense switch which allows better 6071 /// lowering and could also allow transforming into a lookup table. 6072 static bool ReduceSwitchRange(SwitchInst *SI, IRBuilder<> &Builder, 6073 const DataLayout &DL, 6074 const TargetTransformInfo &TTI) { 6075 auto *CondTy = cast<IntegerType>(SI->getCondition()->getType()); 6076 if (CondTy->getIntegerBitWidth() > 64 || 6077 !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth())) 6078 return false; 6079 // Only bother with this optimization if there are more than 3 switch cases; 6080 // SDAG will only bother creating jump tables for 4 or more cases. 6081 if (SI->getNumCases() < 4) 6082 return false; 6083 6084 // This transform is agnostic to the signedness of the input or case values. We 6085 // can treat the case values as signed or unsigned. We can optimize more common 6086 // cases such as a sequence crossing zero {-4,0,4,8} if we interpret case values 6087 // as signed. 6088 SmallVector<int64_t,4> Values; 6089 for (auto &C : SI->cases()) 6090 Values.push_back(C.getCaseValue()->getValue().getSExtValue()); 6091 llvm::sort(Values); 6092 6093 // If the switch is already dense, there's nothing useful to do here. 6094 if (isSwitchDense(Values)) 6095 return false; 6096 6097 // First, transform the values such that they start at zero and ascend. 6098 int64_t Base = Values[0]; 6099 for (auto &V : Values) 6100 V -= (uint64_t)(Base); 6101 6102 // Now we have signed numbers that have been shifted so that, given enough 6103 // precision, there are no negative values. Since the rest of the transform 6104 // is bitwise only, we switch now to an unsigned representation. 6105 6106 // This transform can be done speculatively because it is so cheap - it 6107 // results in a single rotate operation being inserted. 6108 // FIXME: It's possible that optimizing a switch on powers of two might also 6109 // be beneficial - flag values are often powers of two and we could use a CLZ 6110 // as the key function. 6111 6112 // countTrailingZeros(0) returns 64. As Values is guaranteed to have more than 6113 // one element and LLVM disallows duplicate cases, Shift is guaranteed to be 6114 // less than 64. 6115 unsigned Shift = 64; 6116 for (auto &V : Values) 6117 Shift = std::min(Shift, countTrailingZeros((uint64_t)V)); 6118 assert(Shift < 64); 6119 if (Shift > 0) 6120 for (auto &V : Values) 6121 V = (int64_t)((uint64_t)V >> Shift); 6122 6123 if (!isSwitchDense(Values)) 6124 // Transform didn't create a dense switch. 6125 return false; 6126 6127 // The obvious transform is to shift the switch condition right and emit a 6128 // check that the condition actually cleanly divided by GCD, i.e. 6129 // C & (1 << Shift - 1) == 0 6130 // inserting a new CFG edge to handle the case where it didn't divide cleanly. 6131 // 6132 // A cheaper way of doing this is a simple ROTR(C, Shift). This performs the 6133 // shift and puts the shifted-off bits in the uppermost bits. If any of these 6134 // are nonzero then the switch condition will be very large and will hit the 6135 // default case. 6136 6137 auto *Ty = cast<IntegerType>(SI->getCondition()->getType()); 6138 Builder.SetInsertPoint(SI); 6139 auto *ShiftC = ConstantInt::get(Ty, Shift); 6140 auto *Sub = Builder.CreateSub(SI->getCondition(), ConstantInt::get(Ty, Base)); 6141 auto *LShr = Builder.CreateLShr(Sub, ShiftC); 6142 auto *Shl = Builder.CreateShl(Sub, Ty->getBitWidth() - Shift); 6143 auto *Rot = Builder.CreateOr(LShr, Shl); 6144 SI->replaceUsesOfWith(SI->getCondition(), Rot); 6145 6146 for (auto Case : SI->cases()) { 6147 auto *Orig = Case.getCaseValue(); 6148 auto Sub = Orig->getValue() - APInt(Ty->getBitWidth(), Base); 6149 Case.setValue( 6150 cast<ConstantInt>(ConstantInt::get(Ty, Sub.lshr(ShiftC->getValue())))); 6151 } 6152 return true; 6153 } 6154 6155 bool SimplifyCFGOpt::simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) { 6156 BasicBlock *BB = SI->getParent(); 6157 6158 if (isValueEqualityComparison(SI)) { 6159 // If we only have one predecessor, and if it is a branch on this value, 6160 // see if that predecessor totally determines the outcome of this switch. 6161 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 6162 if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder)) 6163 return requestResimplify(); 6164 6165 Value *Cond = SI->getCondition(); 6166 if (SelectInst *Select = dyn_cast<SelectInst>(Cond)) 6167 if (SimplifySwitchOnSelect(SI, Select)) 6168 return requestResimplify(); 6169 6170 // If the block only contains the switch, see if we can fold the block 6171 // away into any preds. 6172 if (SI == &*BB->instructionsWithoutDebug().begin()) 6173 if (FoldValueComparisonIntoPredecessors(SI, Builder)) 6174 return requestResimplify(); 6175 } 6176 6177 // Try to transform the switch into an icmp and a branch. 6178 if (TurnSwitchRangeIntoICmp(SI, Builder)) 6179 return requestResimplify(); 6180 6181 // Remove unreachable cases. 6182 if (eliminateDeadSwitchCases(SI, DTU, Options.AC, DL)) 6183 return requestResimplify(); 6184 6185 if (switchToSelect(SI, Builder, DTU, DL, TTI)) 6186 return requestResimplify(); 6187 6188 if (Options.ForwardSwitchCondToPhi && ForwardSwitchConditionToPHI(SI)) 6189 return requestResimplify(); 6190 6191 // The conversion from switch to lookup tables results in difficult-to-analyze 6192 // code and makes pruning branches much harder. This is a problem if the 6193 // switch expression itself can still be restricted as a result of inlining or 6194 // CVP. Therefore, only apply this transformation during late stages of the 6195 // optimisation pipeline. 6196 if (Options.ConvertSwitchToLookupTable && 6197 SwitchToLookupTable(SI, Builder, DTU, DL, TTI)) 6198 return requestResimplify(); 6199 6200 if (ReduceSwitchRange(SI, Builder, DL, TTI)) 6201 return requestResimplify(); 6202 6203 return false; 6204 } 6205 6206 bool SimplifyCFGOpt::simplifyIndirectBr(IndirectBrInst *IBI) { 6207 BasicBlock *BB = IBI->getParent(); 6208 bool Changed = false; 6209 6210 // Eliminate redundant destinations. 6211 SmallPtrSet<Value *, 8> Succs; 6212 SmallPtrSet<BasicBlock *, 8> RemovedSuccs; 6213 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 6214 BasicBlock *Dest = IBI->getDestination(i); 6215 if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) { 6216 if (!Dest->hasAddressTaken()) 6217 RemovedSuccs.insert(Dest); 6218 Dest->removePredecessor(BB); 6219 IBI->removeDestination(i); 6220 --i; 6221 --e; 6222 Changed = true; 6223 } 6224 } 6225 6226 if (DTU) { 6227 std::vector<DominatorTree::UpdateType> Updates; 6228 Updates.reserve(RemovedSuccs.size()); 6229 for (auto *RemovedSucc : RemovedSuccs) 6230 Updates.push_back({DominatorTree::Delete, BB, RemovedSucc}); 6231 DTU->applyUpdates(Updates); 6232 } 6233 6234 if (IBI->getNumDestinations() == 0) { 6235 // If the indirectbr has no successors, change it to unreachable. 6236 new UnreachableInst(IBI->getContext(), IBI); 6237 EraseTerminatorAndDCECond(IBI); 6238 return true; 6239 } 6240 6241 if (IBI->getNumDestinations() == 1) { 6242 // If the indirectbr has one successor, change it to a direct branch. 6243 BranchInst::Create(IBI->getDestination(0), IBI); 6244 EraseTerminatorAndDCECond(IBI); 6245 return true; 6246 } 6247 6248 if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) { 6249 if (SimplifyIndirectBrOnSelect(IBI, SI)) 6250 return requestResimplify(); 6251 } 6252 return Changed; 6253 } 6254 6255 /// Given an block with only a single landing pad and a unconditional branch 6256 /// try to find another basic block which this one can be merged with. This 6257 /// handles cases where we have multiple invokes with unique landing pads, but 6258 /// a shared handler. 6259 /// 6260 /// We specifically choose to not worry about merging non-empty blocks 6261 /// here. That is a PRE/scheduling problem and is best solved elsewhere. In 6262 /// practice, the optimizer produces empty landing pad blocks quite frequently 6263 /// when dealing with exception dense code. (see: instcombine, gvn, if-else 6264 /// sinking in this file) 6265 /// 6266 /// This is primarily a code size optimization. We need to avoid performing 6267 /// any transform which might inhibit optimization (such as our ability to 6268 /// specialize a particular handler via tail commoning). We do this by not 6269 /// merging any blocks which require us to introduce a phi. Since the same 6270 /// values are flowing through both blocks, we don't lose any ability to 6271 /// specialize. If anything, we make such specialization more likely. 6272 /// 6273 /// TODO - This transformation could remove entries from a phi in the target 6274 /// block when the inputs in the phi are the same for the two blocks being 6275 /// merged. In some cases, this could result in removal of the PHI entirely. 6276 static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI, 6277 BasicBlock *BB, DomTreeUpdater *DTU) { 6278 auto Succ = BB->getUniqueSuccessor(); 6279 assert(Succ); 6280 // If there's a phi in the successor block, we'd likely have to introduce 6281 // a phi into the merged landing pad block. 6282 if (isa<PHINode>(*Succ->begin())) 6283 return false; 6284 6285 for (BasicBlock *OtherPred : predecessors(Succ)) { 6286 if (BB == OtherPred) 6287 continue; 6288 BasicBlock::iterator I = OtherPred->begin(); 6289 LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I); 6290 if (!LPad2 || !LPad2->isIdenticalTo(LPad)) 6291 continue; 6292 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 6293 ; 6294 BranchInst *BI2 = dyn_cast<BranchInst>(I); 6295 if (!BI2 || !BI2->isIdenticalTo(BI)) 6296 continue; 6297 6298 std::vector<DominatorTree::UpdateType> Updates; 6299 6300 // We've found an identical block. Update our predecessors to take that 6301 // path instead and make ourselves dead. 6302 SmallPtrSet<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB)); 6303 for (BasicBlock *Pred : Preds) { 6304 InvokeInst *II = cast<InvokeInst>(Pred->getTerminator()); 6305 assert(II->getNormalDest() != BB && II->getUnwindDest() == BB && 6306 "unexpected successor"); 6307 II->setUnwindDest(OtherPred); 6308 if (DTU) { 6309 Updates.push_back({DominatorTree::Insert, Pred, OtherPred}); 6310 Updates.push_back({DominatorTree::Delete, Pred, BB}); 6311 } 6312 } 6313 6314 // The debug info in OtherPred doesn't cover the merged control flow that 6315 // used to go through BB. We need to delete it or update it. 6316 for (auto I = OtherPred->begin(), E = OtherPred->end(); I != E;) { 6317 Instruction &Inst = *I; 6318 I++; 6319 if (isa<DbgInfoIntrinsic>(Inst)) 6320 Inst.eraseFromParent(); 6321 } 6322 6323 SmallPtrSet<BasicBlock *, 16> Succs(succ_begin(BB), succ_end(BB)); 6324 for (BasicBlock *Succ : Succs) { 6325 Succ->removePredecessor(BB); 6326 if (DTU) 6327 Updates.push_back({DominatorTree::Delete, BB, Succ}); 6328 } 6329 6330 IRBuilder<> Builder(BI); 6331 Builder.CreateUnreachable(); 6332 BI->eraseFromParent(); 6333 if (DTU) 6334 DTU->applyUpdates(Updates); 6335 return true; 6336 } 6337 return false; 6338 } 6339 6340 bool SimplifyCFGOpt::simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder) { 6341 return Branch->isUnconditional() ? simplifyUncondBranch(Branch, Builder) 6342 : simplifyCondBranch(Branch, Builder); 6343 } 6344 6345 bool SimplifyCFGOpt::simplifyUncondBranch(BranchInst *BI, 6346 IRBuilder<> &Builder) { 6347 BasicBlock *BB = BI->getParent(); 6348 BasicBlock *Succ = BI->getSuccessor(0); 6349 6350 // If the Terminator is the only non-phi instruction, simplify the block. 6351 // If LoopHeader is provided, check if the block or its successor is a loop 6352 // header. (This is for early invocations before loop simplify and 6353 // vectorization to keep canonical loop forms for nested loops. These blocks 6354 // can be eliminated when the pass is invoked later in the back-end.) 6355 // Note that if BB has only one predecessor then we do not introduce new 6356 // backedge, so we can eliminate BB. 6357 bool NeedCanonicalLoop = 6358 Options.NeedCanonicalLoop && 6359 (!LoopHeaders.empty() && BB->hasNPredecessorsOrMore(2) && 6360 (is_contained(LoopHeaders, BB) || is_contained(LoopHeaders, Succ))); 6361 BasicBlock::iterator I = BB->getFirstNonPHIOrDbg(true)->getIterator(); 6362 if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() && 6363 !NeedCanonicalLoop && TryToSimplifyUncondBranchFromEmptyBlock(BB, DTU)) 6364 return true; 6365 6366 // If the only instruction in the block is a seteq/setne comparison against a 6367 // constant, try to simplify the block. 6368 if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) 6369 if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) { 6370 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 6371 ; 6372 if (I->isTerminator() && 6373 tryToSimplifyUncondBranchWithICmpInIt(ICI, Builder)) 6374 return true; 6375 } 6376 6377 // See if we can merge an empty landing pad block with another which is 6378 // equivalent. 6379 if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) { 6380 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 6381 ; 6382 if (I->isTerminator() && TryToMergeLandingPad(LPad, BI, BB, DTU)) 6383 return true; 6384 } 6385 6386 // If this basic block is ONLY a compare and a branch, and if a predecessor 6387 // branches to us and our successor, fold the comparison into the 6388 // predecessor and use logical operations to update the incoming value 6389 // for PHI nodes in common successor. 6390 if (FoldBranchToCommonDest(BI, DTU, /*MSSAU=*/nullptr, &TTI, 6391 Options.BonusInstThreshold)) 6392 return requestResimplify(); 6393 return false; 6394 } 6395 6396 static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) { 6397 BasicBlock *PredPred = nullptr; 6398 for (auto *P : predecessors(BB)) { 6399 BasicBlock *PPred = P->getSinglePredecessor(); 6400 if (!PPred || (PredPred && PredPred != PPred)) 6401 return nullptr; 6402 PredPred = PPred; 6403 } 6404 return PredPred; 6405 } 6406 6407 bool SimplifyCFGOpt::simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) { 6408 BasicBlock *BB = BI->getParent(); 6409 if (!Options.SimplifyCondBranch) 6410 return false; 6411 6412 // Conditional branch 6413 if (isValueEqualityComparison(BI)) { 6414 // If we only have one predecessor, and if it is a branch on this value, 6415 // see if that predecessor totally determines the outcome of this 6416 // switch. 6417 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 6418 if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder)) 6419 return requestResimplify(); 6420 6421 // This block must be empty, except for the setcond inst, if it exists. 6422 // Ignore dbg and pseudo intrinsics. 6423 auto I = BB->instructionsWithoutDebug(true).begin(); 6424 if (&*I == BI) { 6425 if (FoldValueComparisonIntoPredecessors(BI, Builder)) 6426 return requestResimplify(); 6427 } else if (&*I == cast<Instruction>(BI->getCondition())) { 6428 ++I; 6429 if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder)) 6430 return requestResimplify(); 6431 } 6432 } 6433 6434 // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction. 6435 if (SimplifyBranchOnICmpChain(BI, Builder, DL)) 6436 return true; 6437 6438 // If this basic block has dominating predecessor blocks and the dominating 6439 // blocks' conditions imply BI's condition, we know the direction of BI. 6440 Optional<bool> Imp = isImpliedByDomCondition(BI->getCondition(), BI, DL); 6441 if (Imp) { 6442 // Turn this into a branch on constant. 6443 auto *OldCond = BI->getCondition(); 6444 ConstantInt *TorF = *Imp ? ConstantInt::getTrue(BB->getContext()) 6445 : ConstantInt::getFalse(BB->getContext()); 6446 BI->setCondition(TorF); 6447 RecursivelyDeleteTriviallyDeadInstructions(OldCond); 6448 return requestResimplify(); 6449 } 6450 6451 // If this basic block is ONLY a compare and a branch, and if a predecessor 6452 // branches to us and one of our successors, fold the comparison into the 6453 // predecessor and use logical operations to pick the right destination. 6454 if (FoldBranchToCommonDest(BI, DTU, /*MSSAU=*/nullptr, &TTI, 6455 Options.BonusInstThreshold)) 6456 return requestResimplify(); 6457 6458 // We have a conditional branch to two blocks that are only reachable 6459 // from BI. We know that the condbr dominates the two blocks, so see if 6460 // there is any identical code in the "then" and "else" blocks. If so, we 6461 // can hoist it up to the branching block. 6462 if (BI->getSuccessor(0)->getSinglePredecessor()) { 6463 if (BI->getSuccessor(1)->getSinglePredecessor()) { 6464 if (HoistCommon && 6465 HoistThenElseCodeToIf(BI, TTI, !Options.HoistCommonInsts)) 6466 return requestResimplify(); 6467 } else { 6468 // If Successor #1 has multiple preds, we may be able to conditionally 6469 // execute Successor #0 if it branches to Successor #1. 6470 Instruction *Succ0TI = BI->getSuccessor(0)->getTerminator(); 6471 if (Succ0TI->getNumSuccessors() == 1 && 6472 Succ0TI->getSuccessor(0) == BI->getSuccessor(1)) 6473 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), TTI)) 6474 return requestResimplify(); 6475 } 6476 } else if (BI->getSuccessor(1)->getSinglePredecessor()) { 6477 // If Successor #0 has multiple preds, we may be able to conditionally 6478 // execute Successor #1 if it branches to Successor #0. 6479 Instruction *Succ1TI = BI->getSuccessor(1)->getTerminator(); 6480 if (Succ1TI->getNumSuccessors() == 1 && 6481 Succ1TI->getSuccessor(0) == BI->getSuccessor(0)) 6482 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), TTI)) 6483 return requestResimplify(); 6484 } 6485 6486 // If this is a branch on a phi node in the current block, thread control 6487 // through this block if any PHI node entries are constants. 6488 if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition())) 6489 if (PN->getParent() == BI->getParent()) 6490 if (FoldCondBranchOnPHI(BI, DTU, DL, Options.AC)) 6491 return requestResimplify(); 6492 6493 // Scan predecessor blocks for conditional branches. 6494 for (BasicBlock *Pred : predecessors(BB)) 6495 if (BranchInst *PBI = dyn_cast<BranchInst>(Pred->getTerminator())) 6496 if (PBI != BI && PBI->isConditional()) 6497 if (SimplifyCondBranchToCondBranch(PBI, BI, DTU, DL, TTI)) 6498 return requestResimplify(); 6499 6500 // Look for diamond patterns. 6501 if (MergeCondStores) 6502 if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB)) 6503 if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator())) 6504 if (PBI != BI && PBI->isConditional()) 6505 if (mergeConditionalStores(PBI, BI, DTU, DL, TTI)) 6506 return requestResimplify(); 6507 6508 return false; 6509 } 6510 6511 /// Check if passing a value to an instruction will cause undefined behavior. 6512 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I, bool PtrValueMayBeModified) { 6513 Constant *C = dyn_cast<Constant>(V); 6514 if (!C) 6515 return false; 6516 6517 if (I->use_empty()) 6518 return false; 6519 6520 if (C->isNullValue() || isa<UndefValue>(C)) { 6521 // Only look at the first use, avoid hurting compile time with long uselists 6522 User *Use = *I->user_begin(); 6523 6524 // Now make sure that there are no instructions in between that can alter 6525 // control flow (eg. calls) 6526 for (BasicBlock::iterator 6527 i = ++BasicBlock::iterator(I), 6528 UI = BasicBlock::iterator(dyn_cast<Instruction>(Use)); 6529 i != UI; ++i) 6530 if (i == I->getParent()->end() || i->mayHaveSideEffects()) 6531 return false; 6532 6533 // Look through GEPs. A load from a GEP derived from NULL is still undefined 6534 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use)) 6535 if (GEP->getPointerOperand() == I) { 6536 if (!GEP->isInBounds() || !GEP->hasAllZeroIndices()) 6537 PtrValueMayBeModified = true; 6538 return passingValueIsAlwaysUndefined(V, GEP, PtrValueMayBeModified); 6539 } 6540 6541 // Look through bitcasts. 6542 if (BitCastInst *BC = dyn_cast<BitCastInst>(Use)) 6543 return passingValueIsAlwaysUndefined(V, BC, PtrValueMayBeModified); 6544 6545 // Load from null is undefined. 6546 if (LoadInst *LI = dyn_cast<LoadInst>(Use)) 6547 if (!LI->isVolatile()) 6548 return !NullPointerIsDefined(LI->getFunction(), 6549 LI->getPointerAddressSpace()); 6550 6551 // Store to null is undefined. 6552 if (StoreInst *SI = dyn_cast<StoreInst>(Use)) 6553 if (!SI->isVolatile()) 6554 return (!NullPointerIsDefined(SI->getFunction(), 6555 SI->getPointerAddressSpace())) && 6556 SI->getPointerOperand() == I; 6557 6558 if (auto *CB = dyn_cast<CallBase>(Use)) { 6559 if (C->isNullValue() && NullPointerIsDefined(CB->getFunction())) 6560 return false; 6561 // A call to null is undefined. 6562 if (CB->getCalledOperand() == I) 6563 return true; 6564 6565 if (C->isNullValue()) { 6566 for (const llvm::Use &Arg : CB->args()) 6567 if (Arg == I) { 6568 unsigned ArgIdx = CB->getArgOperandNo(&Arg); 6569 if (CB->isPassingUndefUB(ArgIdx) && 6570 CB->paramHasAttr(ArgIdx, Attribute::NonNull)) { 6571 // Passing null to a nonnnull+noundef argument is undefined. 6572 return !PtrValueMayBeModified; 6573 } 6574 } 6575 } else if (isa<UndefValue>(C)) { 6576 // Passing undef to a noundef argument is undefined. 6577 for (const llvm::Use &Arg : CB->args()) 6578 if (Arg == I) { 6579 unsigned ArgIdx = CB->getArgOperandNo(&Arg); 6580 if (CB->isPassingUndefUB(ArgIdx)) { 6581 // Passing undef to a noundef argument is undefined. 6582 return true; 6583 } 6584 } 6585 } 6586 } 6587 } 6588 return false; 6589 } 6590 6591 /// If BB has an incoming value that will always trigger undefined behavior 6592 /// (eg. null pointer dereference), remove the branch leading here. 6593 static bool removeUndefIntroducingPredecessor(BasicBlock *BB, 6594 DomTreeUpdater *DTU) { 6595 for (PHINode &PHI : BB->phis()) 6596 for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i) 6597 if (passingValueIsAlwaysUndefined(PHI.getIncomingValue(i), &PHI)) { 6598 BasicBlock *Predecessor = PHI.getIncomingBlock(i); 6599 Instruction *T = Predecessor->getTerminator(); 6600 IRBuilder<> Builder(T); 6601 if (BranchInst *BI = dyn_cast<BranchInst>(T)) { 6602 BB->removePredecessor(Predecessor); 6603 // Turn uncoditional branches into unreachables and remove the dead 6604 // destination from conditional branches. 6605 if (BI->isUnconditional()) 6606 Builder.CreateUnreachable(); 6607 else 6608 Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1) 6609 : BI->getSuccessor(0)); 6610 BI->eraseFromParent(); 6611 if (DTU) 6612 DTU->applyUpdates({{DominatorTree::Delete, Predecessor, BB}}); 6613 return true; 6614 } 6615 // TODO: SwitchInst. 6616 } 6617 6618 return false; 6619 } 6620 6621 bool SimplifyCFGOpt::simplifyOnceImpl(BasicBlock *BB) { 6622 bool Changed = false; 6623 6624 assert(BB && BB->getParent() && "Block not embedded in function!"); 6625 assert(BB->getTerminator() && "Degenerate basic block encountered!"); 6626 6627 // Remove basic blocks that have no predecessors (except the entry block)... 6628 // or that just have themself as a predecessor. These are unreachable. 6629 if ((pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) || 6630 BB->getSinglePredecessor() == BB) { 6631 LLVM_DEBUG(dbgs() << "Removing BB: \n" << *BB); 6632 DeleteDeadBlock(BB, DTU); 6633 return true; 6634 } 6635 6636 // Check to see if we can constant propagate this terminator instruction 6637 // away... 6638 Changed |= ConstantFoldTerminator(BB, /*DeleteDeadConditions=*/true, 6639 /*TLI=*/nullptr, DTU); 6640 6641 // Check for and eliminate duplicate PHI nodes in this block. 6642 Changed |= EliminateDuplicatePHINodes(BB); 6643 6644 // Check for and remove branches that will always cause undefined behavior. 6645 Changed |= removeUndefIntroducingPredecessor(BB, DTU); 6646 6647 // Merge basic blocks into their predecessor if there is only one distinct 6648 // pred, and if there is only one distinct successor of the predecessor, and 6649 // if there are no PHI nodes. 6650 if (MergeBlockIntoPredecessor(BB, DTU)) 6651 return true; 6652 6653 if (SinkCommon && Options.SinkCommonInsts) 6654 Changed |= SinkCommonCodeFromPredecessors(BB, DTU); 6655 6656 IRBuilder<> Builder(BB); 6657 6658 if (Options.FoldTwoEntryPHINode) { 6659 // If there is a trivial two-entry PHI node in this basic block, and we can 6660 // eliminate it, do so now. 6661 if (auto *PN = dyn_cast<PHINode>(BB->begin())) 6662 if (PN->getNumIncomingValues() == 2) 6663 Changed |= FoldTwoEntryPHINode(PN, TTI, DTU, DL); 6664 } 6665 6666 Instruction *Terminator = BB->getTerminator(); 6667 Builder.SetInsertPoint(Terminator); 6668 switch (Terminator->getOpcode()) { 6669 case Instruction::Br: 6670 Changed |= simplifyBranch(cast<BranchInst>(Terminator), Builder); 6671 break; 6672 case Instruction::Ret: 6673 Changed |= simplifyReturn(cast<ReturnInst>(Terminator), Builder); 6674 break; 6675 case Instruction::Resume: 6676 Changed |= simplifyResume(cast<ResumeInst>(Terminator), Builder); 6677 break; 6678 case Instruction::CleanupRet: 6679 Changed |= simplifyCleanupReturn(cast<CleanupReturnInst>(Terminator)); 6680 break; 6681 case Instruction::Switch: 6682 Changed |= simplifySwitch(cast<SwitchInst>(Terminator), Builder); 6683 break; 6684 case Instruction::Unreachable: 6685 Changed |= simplifyUnreachable(cast<UnreachableInst>(Terminator)); 6686 break; 6687 case Instruction::IndirectBr: 6688 Changed |= simplifyIndirectBr(cast<IndirectBrInst>(Terminator)); 6689 break; 6690 } 6691 6692 return Changed; 6693 } 6694 6695 bool SimplifyCFGOpt::simplifyOnce(BasicBlock *BB) { 6696 bool Changed = simplifyOnceImpl(BB); 6697 6698 return Changed; 6699 } 6700 6701 bool SimplifyCFGOpt::run(BasicBlock *BB) { 6702 bool Changed = false; 6703 6704 // Repeated simplify BB as long as resimplification is requested. 6705 do { 6706 Resimplify = false; 6707 6708 // Perform one round of simplifcation. Resimplify flag will be set if 6709 // another iteration is requested. 6710 Changed |= simplifyOnce(BB); 6711 } while (Resimplify); 6712 6713 return Changed; 6714 } 6715 6716 bool llvm::simplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI, 6717 DomTreeUpdater *DTU, const SimplifyCFGOptions &Options, 6718 ArrayRef<WeakVH> LoopHeaders) { 6719 return SimplifyCFGOpt(TTI, DTU, BB->getModule()->getDataLayout(), LoopHeaders, 6720 Options) 6721 .run(BB); 6722 } 6723