1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Peephole optimize the CFG. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/ADT/APInt.h" 14 #include "llvm/ADT/ArrayRef.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/Optional.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SetOperations.h" 19 #include "llvm/ADT/SetVector.h" 20 #include "llvm/ADT/SmallPtrSet.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/ADT/StringRef.h" 24 #include "llvm/Analysis/AssumptionCache.h" 25 #include "llvm/Analysis/ConstantFolding.h" 26 #include "llvm/Analysis/EHPersonalities.h" 27 #include "llvm/Analysis/InstructionSimplify.h" 28 #include "llvm/Analysis/MemorySSA.h" 29 #include "llvm/Analysis/MemorySSAUpdater.h" 30 #include "llvm/Analysis/TargetTransformInfo.h" 31 #include "llvm/Analysis/ValueTracking.h" 32 #include "llvm/IR/Attributes.h" 33 #include "llvm/IR/BasicBlock.h" 34 #include "llvm/IR/CFG.h" 35 #include "llvm/IR/CallSite.h" 36 #include "llvm/IR/Constant.h" 37 #include "llvm/IR/ConstantRange.h" 38 #include "llvm/IR/Constants.h" 39 #include "llvm/IR/DataLayout.h" 40 #include "llvm/IR/DerivedTypes.h" 41 #include "llvm/IR/Function.h" 42 #include "llvm/IR/GlobalValue.h" 43 #include "llvm/IR/GlobalVariable.h" 44 #include "llvm/IR/IRBuilder.h" 45 #include "llvm/IR/InstrTypes.h" 46 #include "llvm/IR/Instruction.h" 47 #include "llvm/IR/Instructions.h" 48 #include "llvm/IR/IntrinsicInst.h" 49 #include "llvm/IR/Intrinsics.h" 50 #include "llvm/IR/LLVMContext.h" 51 #include "llvm/IR/MDBuilder.h" 52 #include "llvm/IR/Metadata.h" 53 #include "llvm/IR/Module.h" 54 #include "llvm/IR/NoFolder.h" 55 #include "llvm/IR/Operator.h" 56 #include "llvm/IR/PatternMatch.h" 57 #include "llvm/IR/Type.h" 58 #include "llvm/IR/Use.h" 59 #include "llvm/IR/User.h" 60 #include "llvm/IR/Value.h" 61 #include "llvm/Support/Casting.h" 62 #include "llvm/Support/CommandLine.h" 63 #include "llvm/Support/Debug.h" 64 #include "llvm/Support/ErrorHandling.h" 65 #include "llvm/Support/KnownBits.h" 66 #include "llvm/Support/MathExtras.h" 67 #include "llvm/Support/raw_ostream.h" 68 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 69 #include "llvm/Transforms/Utils/Local.h" 70 #include "llvm/Transforms/Utils/ValueMapper.h" 71 #include <algorithm> 72 #include <cassert> 73 #include <climits> 74 #include <cstddef> 75 #include <cstdint> 76 #include <iterator> 77 #include <map> 78 #include <set> 79 #include <tuple> 80 #include <utility> 81 #include <vector> 82 83 using namespace llvm; 84 using namespace PatternMatch; 85 86 #define DEBUG_TYPE "simplifycfg" 87 88 // Chosen as 2 so as to be cheap, but still to have enough power to fold 89 // a select, so the "clamp" idiom (of a min followed by a max) will be caught. 90 // To catch this, we need to fold a compare and a select, hence '2' being the 91 // minimum reasonable default. 92 static cl::opt<unsigned> PHINodeFoldingThreshold( 93 "phi-node-folding-threshold", cl::Hidden, cl::init(2), 94 cl::desc( 95 "Control the amount of phi node folding to perform (default = 2)")); 96 97 static cl::opt<bool> DupRet( 98 "simplifycfg-dup-ret", cl::Hidden, cl::init(false), 99 cl::desc("Duplicate return instructions into unconditional branches")); 100 101 static cl::opt<bool> 102 SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true), 103 cl::desc("Sink common instructions down to the end block")); 104 105 static cl::opt<bool> HoistCondStores( 106 "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true), 107 cl::desc("Hoist conditional stores if an unconditional store precedes")); 108 109 static cl::opt<bool> MergeCondStores( 110 "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true), 111 cl::desc("Hoist conditional stores even if an unconditional store does not " 112 "precede - hoist multiple conditional stores into a single " 113 "predicated store")); 114 115 static cl::opt<bool> MergeCondStoresAggressively( 116 "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false), 117 cl::desc("When merging conditional stores, do so even if the resultant " 118 "basic blocks are unlikely to be if-converted as a result")); 119 120 static cl::opt<bool> SpeculateOneExpensiveInst( 121 "speculate-one-expensive-inst", cl::Hidden, cl::init(true), 122 cl::desc("Allow exactly one expensive instruction to be speculatively " 123 "executed")); 124 125 static cl::opt<unsigned> MaxSpeculationDepth( 126 "max-speculation-depth", cl::Hidden, cl::init(10), 127 cl::desc("Limit maximum recursion depth when calculating costs of " 128 "speculatively executed instructions")); 129 130 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps"); 131 STATISTIC(NumLinearMaps, 132 "Number of switch instructions turned into linear mapping"); 133 STATISTIC(NumLookupTables, 134 "Number of switch instructions turned into lookup tables"); 135 STATISTIC( 136 NumLookupTablesHoles, 137 "Number of switch instructions turned into lookup tables (holes checked)"); 138 STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares"); 139 STATISTIC(NumSinkCommons, 140 "Number of common instructions sunk down to the end block"); 141 STATISTIC(NumSpeculations, "Number of speculative executed instructions"); 142 143 namespace { 144 145 // The first field contains the value that the switch produces when a certain 146 // case group is selected, and the second field is a vector containing the 147 // cases composing the case group. 148 using SwitchCaseResultVectorTy = 149 SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2>; 150 151 // The first field contains the phi node that generates a result of the switch 152 // and the second field contains the value generated for a certain case in the 153 // switch for that PHI. 154 using SwitchCaseResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>; 155 156 /// ValueEqualityComparisonCase - Represents a case of a switch. 157 struct ValueEqualityComparisonCase { 158 ConstantInt *Value; 159 BasicBlock *Dest; 160 161 ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest) 162 : Value(Value), Dest(Dest) {} 163 164 bool operator<(ValueEqualityComparisonCase RHS) const { 165 // Comparing pointers is ok as we only rely on the order for uniquing. 166 return Value < RHS.Value; 167 } 168 169 bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; } 170 }; 171 172 class SimplifyCFGOpt { 173 const TargetTransformInfo &TTI; 174 const DataLayout &DL; 175 SmallPtrSetImpl<BasicBlock *> *LoopHeaders; 176 const SimplifyCFGOptions &Options; 177 bool Resimplify; 178 179 Value *isValueEqualityComparison(Instruction *TI); 180 BasicBlock *GetValueEqualityComparisonCases( 181 Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases); 182 bool SimplifyEqualityComparisonWithOnlyPredecessor(Instruction *TI, 183 BasicBlock *Pred, 184 IRBuilder<> &Builder); 185 bool FoldValueComparisonIntoPredecessors(Instruction *TI, 186 IRBuilder<> &Builder); 187 188 bool SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder); 189 bool SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder); 190 bool SimplifySingleResume(ResumeInst *RI); 191 bool SimplifyCommonResume(ResumeInst *RI); 192 bool SimplifyCleanupReturn(CleanupReturnInst *RI); 193 bool SimplifyUnreachable(UnreachableInst *UI); 194 bool SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder); 195 bool SimplifyIndirectBr(IndirectBrInst *IBI); 196 bool SimplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder); 197 bool SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder); 198 199 bool tryToSimplifyUncondBranchWithICmpInIt(ICmpInst *ICI, 200 IRBuilder<> &Builder); 201 202 public: 203 SimplifyCFGOpt(const TargetTransformInfo &TTI, const DataLayout &DL, 204 SmallPtrSetImpl<BasicBlock *> *LoopHeaders, 205 const SimplifyCFGOptions &Opts) 206 : TTI(TTI), DL(DL), LoopHeaders(LoopHeaders), Options(Opts) {} 207 208 bool run(BasicBlock *BB); 209 bool simplifyOnce(BasicBlock *BB); 210 211 // Helper to set Resimplify and return change indication. 212 bool requestResimplify() { 213 Resimplify = true; 214 return true; 215 } 216 }; 217 218 } // end anonymous namespace 219 220 /// Return true if it is safe to merge these two 221 /// terminator instructions together. 222 static bool 223 SafeToMergeTerminators(Instruction *SI1, Instruction *SI2, 224 SmallSetVector<BasicBlock *, 4> *FailBlocks = nullptr) { 225 if (SI1 == SI2) 226 return false; // Can't merge with self! 227 228 // It is not safe to merge these two switch instructions if they have a common 229 // successor, and if that successor has a PHI node, and if *that* PHI node has 230 // conflicting incoming values from the two switch blocks. 231 BasicBlock *SI1BB = SI1->getParent(); 232 BasicBlock *SI2BB = SI2->getParent(); 233 234 SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB)); 235 bool Fail = false; 236 for (BasicBlock *Succ : successors(SI2BB)) 237 if (SI1Succs.count(Succ)) 238 for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) { 239 PHINode *PN = cast<PHINode>(BBI); 240 if (PN->getIncomingValueForBlock(SI1BB) != 241 PN->getIncomingValueForBlock(SI2BB)) { 242 if (FailBlocks) 243 FailBlocks->insert(Succ); 244 Fail = true; 245 } 246 } 247 248 return !Fail; 249 } 250 251 /// Return true if it is safe and profitable to merge these two terminator 252 /// instructions together, where SI1 is an unconditional branch. PhiNodes will 253 /// store all PHI nodes in common successors. 254 static bool 255 isProfitableToFoldUnconditional(BranchInst *SI1, BranchInst *SI2, 256 Instruction *Cond, 257 SmallVectorImpl<PHINode *> &PhiNodes) { 258 if (SI1 == SI2) 259 return false; // Can't merge with self! 260 assert(SI1->isUnconditional() && SI2->isConditional()); 261 262 // We fold the unconditional branch if we can easily update all PHI nodes in 263 // common successors: 264 // 1> We have a constant incoming value for the conditional branch; 265 // 2> We have "Cond" as the incoming value for the unconditional branch; 266 // 3> SI2->getCondition() and Cond have same operands. 267 CmpInst *Ci2 = dyn_cast<CmpInst>(SI2->getCondition()); 268 if (!Ci2) 269 return false; 270 if (!(Cond->getOperand(0) == Ci2->getOperand(0) && 271 Cond->getOperand(1) == Ci2->getOperand(1)) && 272 !(Cond->getOperand(0) == Ci2->getOperand(1) && 273 Cond->getOperand(1) == Ci2->getOperand(0))) 274 return false; 275 276 BasicBlock *SI1BB = SI1->getParent(); 277 BasicBlock *SI2BB = SI2->getParent(); 278 SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB)); 279 for (BasicBlock *Succ : successors(SI2BB)) 280 if (SI1Succs.count(Succ)) 281 for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) { 282 PHINode *PN = cast<PHINode>(BBI); 283 if (PN->getIncomingValueForBlock(SI1BB) != Cond || 284 !isa<ConstantInt>(PN->getIncomingValueForBlock(SI2BB))) 285 return false; 286 PhiNodes.push_back(PN); 287 } 288 return true; 289 } 290 291 /// Update PHI nodes in Succ to indicate that there will now be entries in it 292 /// from the 'NewPred' block. The values that will be flowing into the PHI nodes 293 /// will be the same as those coming in from ExistPred, an existing predecessor 294 /// of Succ. 295 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred, 296 BasicBlock *ExistPred, 297 MemorySSAUpdater *MSSAU = nullptr) { 298 for (PHINode &PN : Succ->phis()) 299 PN.addIncoming(PN.getIncomingValueForBlock(ExistPred), NewPred); 300 if (MSSAU) 301 if (auto *MPhi = MSSAU->getMemorySSA()->getMemoryAccess(Succ)) 302 MPhi->addIncoming(MPhi->getIncomingValueForBlock(ExistPred), NewPred); 303 } 304 305 /// Compute an abstract "cost" of speculating the given instruction, 306 /// which is assumed to be safe to speculate. TCC_Free means cheap, 307 /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively 308 /// expensive. 309 static unsigned ComputeSpeculationCost(const User *I, 310 const TargetTransformInfo &TTI) { 311 assert(isSafeToSpeculativelyExecute(I) && 312 "Instruction is not safe to speculatively execute!"); 313 return TTI.getUserCost(I); 314 } 315 316 /// If we have a merge point of an "if condition" as accepted above, 317 /// return true if the specified value dominates the block. We 318 /// don't handle the true generality of domination here, just a special case 319 /// which works well enough for us. 320 /// 321 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to 322 /// see if V (which must be an instruction) and its recursive operands 323 /// that do not dominate BB have a combined cost lower than CostRemaining and 324 /// are non-trapping. If both are true, the instruction is inserted into the 325 /// set and true is returned. 326 /// 327 /// The cost for most non-trapping instructions is defined as 1 except for 328 /// Select whose cost is 2. 329 /// 330 /// After this function returns, CostRemaining is decreased by the cost of 331 /// V plus its non-dominating operands. If that cost is greater than 332 /// CostRemaining, false is returned and CostRemaining is undefined. 333 static bool DominatesMergePoint(Value *V, BasicBlock *BB, 334 SmallPtrSetImpl<Instruction *> &AggressiveInsts, 335 unsigned &CostRemaining, 336 const TargetTransformInfo &TTI, 337 unsigned Depth = 0) { 338 // It is possible to hit a zero-cost cycle (phi/gep instructions for example), 339 // so limit the recursion depth. 340 // TODO: While this recursion limit does prevent pathological behavior, it 341 // would be better to track visited instructions to avoid cycles. 342 if (Depth == MaxSpeculationDepth) 343 return false; 344 345 Instruction *I = dyn_cast<Instruction>(V); 346 if (!I) { 347 // Non-instructions all dominate instructions, but not all constantexprs 348 // can be executed unconditionally. 349 if (ConstantExpr *C = dyn_cast<ConstantExpr>(V)) 350 if (C->canTrap()) 351 return false; 352 return true; 353 } 354 BasicBlock *PBB = I->getParent(); 355 356 // We don't want to allow weird loops that might have the "if condition" in 357 // the bottom of this block. 358 if (PBB == BB) 359 return false; 360 361 // If this instruction is defined in a block that contains an unconditional 362 // branch to BB, then it must be in the 'conditional' part of the "if 363 // statement". If not, it definitely dominates the region. 364 BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator()); 365 if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB) 366 return true; 367 368 // If we have seen this instruction before, don't count it again. 369 if (AggressiveInsts.count(I)) 370 return true; 371 372 // Okay, it looks like the instruction IS in the "condition". Check to 373 // see if it's a cheap instruction to unconditionally compute, and if it 374 // only uses stuff defined outside of the condition. If so, hoist it out. 375 if (!isSafeToSpeculativelyExecute(I)) 376 return false; 377 378 unsigned Cost = ComputeSpeculationCost(I, TTI); 379 380 // Allow exactly one instruction to be speculated regardless of its cost 381 // (as long as it is safe to do so). 382 // This is intended to flatten the CFG even if the instruction is a division 383 // or other expensive operation. The speculation of an expensive instruction 384 // is expected to be undone in CodeGenPrepare if the speculation has not 385 // enabled further IR optimizations. 386 if (Cost > CostRemaining && 387 (!SpeculateOneExpensiveInst || !AggressiveInsts.empty() || Depth > 0)) 388 return false; 389 390 // Avoid unsigned wrap. 391 CostRemaining = (Cost > CostRemaining) ? 0 : CostRemaining - Cost; 392 393 // Okay, we can only really hoist these out if their operands do 394 // not take us over the cost threshold. 395 for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) 396 if (!DominatesMergePoint(*i, BB, AggressiveInsts, CostRemaining, TTI, 397 Depth + 1)) 398 return false; 399 // Okay, it's safe to do this! Remember this instruction. 400 AggressiveInsts.insert(I); 401 return true; 402 } 403 404 /// Extract ConstantInt from value, looking through IntToPtr 405 /// and PointerNullValue. Return NULL if value is not a constant int. 406 static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) { 407 // Normal constant int. 408 ConstantInt *CI = dyn_cast<ConstantInt>(V); 409 if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy()) 410 return CI; 411 412 // This is some kind of pointer constant. Turn it into a pointer-sized 413 // ConstantInt if possible. 414 IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType())); 415 416 // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*). 417 if (isa<ConstantPointerNull>(V)) 418 return ConstantInt::get(PtrTy, 0); 419 420 // IntToPtr const int. 421 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 422 if (CE->getOpcode() == Instruction::IntToPtr) 423 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) { 424 // The constant is very likely to have the right type already. 425 if (CI->getType() == PtrTy) 426 return CI; 427 else 428 return cast<ConstantInt>( 429 ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false)); 430 } 431 return nullptr; 432 } 433 434 namespace { 435 436 /// Given a chain of or (||) or and (&&) comparison of a value against a 437 /// constant, this will try to recover the information required for a switch 438 /// structure. 439 /// It will depth-first traverse the chain of comparison, seeking for patterns 440 /// like %a == 12 or %a < 4 and combine them to produce a set of integer 441 /// representing the different cases for the switch. 442 /// Note that if the chain is composed of '||' it will build the set of elements 443 /// that matches the comparisons (i.e. any of this value validate the chain) 444 /// while for a chain of '&&' it will build the set elements that make the test 445 /// fail. 446 struct ConstantComparesGatherer { 447 const DataLayout &DL; 448 449 /// Value found for the switch comparison 450 Value *CompValue = nullptr; 451 452 /// Extra clause to be checked before the switch 453 Value *Extra = nullptr; 454 455 /// Set of integers to match in switch 456 SmallVector<ConstantInt *, 8> Vals; 457 458 /// Number of comparisons matched in the and/or chain 459 unsigned UsedICmps = 0; 460 461 /// Construct and compute the result for the comparison instruction Cond 462 ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL) : DL(DL) { 463 gather(Cond); 464 } 465 466 ConstantComparesGatherer(const ConstantComparesGatherer &) = delete; 467 ConstantComparesGatherer & 468 operator=(const ConstantComparesGatherer &) = delete; 469 470 private: 471 /// Try to set the current value used for the comparison, it succeeds only if 472 /// it wasn't set before or if the new value is the same as the old one 473 bool setValueOnce(Value *NewVal) { 474 if (CompValue && CompValue != NewVal) 475 return false; 476 CompValue = NewVal; 477 return (CompValue != nullptr); 478 } 479 480 /// Try to match Instruction "I" as a comparison against a constant and 481 /// populates the array Vals with the set of values that match (or do not 482 /// match depending on isEQ). 483 /// Return false on failure. On success, the Value the comparison matched 484 /// against is placed in CompValue. 485 /// If CompValue is already set, the function is expected to fail if a match 486 /// is found but the value compared to is different. 487 bool matchInstruction(Instruction *I, bool isEQ) { 488 // If this is an icmp against a constant, handle this as one of the cases. 489 ICmpInst *ICI; 490 ConstantInt *C; 491 if (!((ICI = dyn_cast<ICmpInst>(I)) && 492 (C = GetConstantInt(I->getOperand(1), DL)))) { 493 return false; 494 } 495 496 Value *RHSVal; 497 const APInt *RHSC; 498 499 // Pattern match a special case 500 // (x & ~2^z) == y --> x == y || x == y|2^z 501 // This undoes a transformation done by instcombine to fuse 2 compares. 502 if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE)) { 503 // It's a little bit hard to see why the following transformations are 504 // correct. Here is a CVC3 program to verify them for 64-bit values: 505 506 /* 507 ONE : BITVECTOR(64) = BVZEROEXTEND(0bin1, 63); 508 x : BITVECTOR(64); 509 y : BITVECTOR(64); 510 z : BITVECTOR(64); 511 mask : BITVECTOR(64) = BVSHL(ONE, z); 512 QUERY( (y & ~mask = y) => 513 ((x & ~mask = y) <=> (x = y OR x = (y | mask))) 514 ); 515 QUERY( (y | mask = y) => 516 ((x | mask = y) <=> (x = y OR x = (y & ~mask))) 517 ); 518 */ 519 520 // Please note that each pattern must be a dual implication (<--> or 521 // iff). One directional implication can create spurious matches. If the 522 // implication is only one-way, an unsatisfiable condition on the left 523 // side can imply a satisfiable condition on the right side. Dual 524 // implication ensures that satisfiable conditions are transformed to 525 // other satisfiable conditions and unsatisfiable conditions are 526 // transformed to other unsatisfiable conditions. 527 528 // Here is a concrete example of a unsatisfiable condition on the left 529 // implying a satisfiable condition on the right: 530 // 531 // mask = (1 << z) 532 // (x & ~mask) == y --> (x == y || x == (y | mask)) 533 // 534 // Substituting y = 3, z = 0 yields: 535 // (x & -2) == 3 --> (x == 3 || x == 2) 536 537 // Pattern match a special case: 538 /* 539 QUERY( (y & ~mask = y) => 540 ((x & ~mask = y) <=> (x = y OR x = (y | mask))) 541 ); 542 */ 543 if (match(ICI->getOperand(0), 544 m_And(m_Value(RHSVal), m_APInt(RHSC)))) { 545 APInt Mask = ~*RHSC; 546 if (Mask.isPowerOf2() && (C->getValue() & ~Mask) == C->getValue()) { 547 // If we already have a value for the switch, it has to match! 548 if (!setValueOnce(RHSVal)) 549 return false; 550 551 Vals.push_back(C); 552 Vals.push_back( 553 ConstantInt::get(C->getContext(), 554 C->getValue() | Mask)); 555 UsedICmps++; 556 return true; 557 } 558 } 559 560 // Pattern match a special case: 561 /* 562 QUERY( (y | mask = y) => 563 ((x | mask = y) <=> (x = y OR x = (y & ~mask))) 564 ); 565 */ 566 if (match(ICI->getOperand(0), 567 m_Or(m_Value(RHSVal), m_APInt(RHSC)))) { 568 APInt Mask = *RHSC; 569 if (Mask.isPowerOf2() && (C->getValue() | Mask) == C->getValue()) { 570 // If we already have a value for the switch, it has to match! 571 if (!setValueOnce(RHSVal)) 572 return false; 573 574 Vals.push_back(C); 575 Vals.push_back(ConstantInt::get(C->getContext(), 576 C->getValue() & ~Mask)); 577 UsedICmps++; 578 return true; 579 } 580 } 581 582 // If we already have a value for the switch, it has to match! 583 if (!setValueOnce(ICI->getOperand(0))) 584 return false; 585 586 UsedICmps++; 587 Vals.push_back(C); 588 return ICI->getOperand(0); 589 } 590 591 // If we have "x ult 3", for example, then we can add 0,1,2 to the set. 592 ConstantRange Span = ConstantRange::makeAllowedICmpRegion( 593 ICI->getPredicate(), C->getValue()); 594 595 // Shift the range if the compare is fed by an add. This is the range 596 // compare idiom as emitted by instcombine. 597 Value *CandidateVal = I->getOperand(0); 598 if (match(I->getOperand(0), m_Add(m_Value(RHSVal), m_APInt(RHSC)))) { 599 Span = Span.subtract(*RHSC); 600 CandidateVal = RHSVal; 601 } 602 603 // If this is an and/!= check, then we are looking to build the set of 604 // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into 605 // x != 0 && x != 1. 606 if (!isEQ) 607 Span = Span.inverse(); 608 609 // If there are a ton of values, we don't want to make a ginormous switch. 610 if (Span.isSizeLargerThan(8) || Span.isEmptySet()) { 611 return false; 612 } 613 614 // If we already have a value for the switch, it has to match! 615 if (!setValueOnce(CandidateVal)) 616 return false; 617 618 // Add all values from the range to the set 619 for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp) 620 Vals.push_back(ConstantInt::get(I->getContext(), Tmp)); 621 622 UsedICmps++; 623 return true; 624 } 625 626 /// Given a potentially 'or'd or 'and'd together collection of icmp 627 /// eq/ne/lt/gt instructions that compare a value against a constant, extract 628 /// the value being compared, and stick the list constants into the Vals 629 /// vector. 630 /// One "Extra" case is allowed to differ from the other. 631 void gather(Value *V) { 632 Instruction *I = dyn_cast<Instruction>(V); 633 bool isEQ = (I->getOpcode() == Instruction::Or); 634 635 // Keep a stack (SmallVector for efficiency) for depth-first traversal 636 SmallVector<Value *, 8> DFT; 637 SmallPtrSet<Value *, 8> Visited; 638 639 // Initialize 640 Visited.insert(V); 641 DFT.push_back(V); 642 643 while (!DFT.empty()) { 644 V = DFT.pop_back_val(); 645 646 if (Instruction *I = dyn_cast<Instruction>(V)) { 647 // If it is a || (or && depending on isEQ), process the operands. 648 if (I->getOpcode() == (isEQ ? Instruction::Or : Instruction::And)) { 649 if (Visited.insert(I->getOperand(1)).second) 650 DFT.push_back(I->getOperand(1)); 651 if (Visited.insert(I->getOperand(0)).second) 652 DFT.push_back(I->getOperand(0)); 653 continue; 654 } 655 656 // Try to match the current instruction 657 if (matchInstruction(I, isEQ)) 658 // Match succeed, continue the loop 659 continue; 660 } 661 662 // One element of the sequence of || (or &&) could not be match as a 663 // comparison against the same value as the others. 664 // We allow only one "Extra" case to be checked before the switch 665 if (!Extra) { 666 Extra = V; 667 continue; 668 } 669 // Failed to parse a proper sequence, abort now 670 CompValue = nullptr; 671 break; 672 } 673 } 674 }; 675 676 } // end anonymous namespace 677 678 static void EraseTerminatorAndDCECond(Instruction *TI, 679 MemorySSAUpdater *MSSAU = nullptr) { 680 Instruction *Cond = nullptr; 681 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 682 Cond = dyn_cast<Instruction>(SI->getCondition()); 683 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 684 if (BI->isConditional()) 685 Cond = dyn_cast<Instruction>(BI->getCondition()); 686 } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) { 687 Cond = dyn_cast<Instruction>(IBI->getAddress()); 688 } 689 690 TI->eraseFromParent(); 691 if (Cond) 692 RecursivelyDeleteTriviallyDeadInstructions(Cond, nullptr, MSSAU); 693 } 694 695 /// Return true if the specified terminator checks 696 /// to see if a value is equal to constant integer value. 697 Value *SimplifyCFGOpt::isValueEqualityComparison(Instruction *TI) { 698 Value *CV = nullptr; 699 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 700 // Do not permit merging of large switch instructions into their 701 // predecessors unless there is only one predecessor. 702 if (!SI->getParent()->hasNPredecessorsOrMore(128 / SI->getNumSuccessors())) 703 CV = SI->getCondition(); 704 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) 705 if (BI->isConditional() && BI->getCondition()->hasOneUse()) 706 if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) { 707 if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL)) 708 CV = ICI->getOperand(0); 709 } 710 711 // Unwrap any lossless ptrtoint cast. 712 if (CV) { 713 if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) { 714 Value *Ptr = PTII->getPointerOperand(); 715 if (PTII->getType() == DL.getIntPtrType(Ptr->getType())) 716 CV = Ptr; 717 } 718 } 719 return CV; 720 } 721 722 /// Given a value comparison instruction, 723 /// decode all of the 'cases' that it represents and return the 'default' block. 724 BasicBlock *SimplifyCFGOpt::GetValueEqualityComparisonCases( 725 Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases) { 726 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 727 Cases.reserve(SI->getNumCases()); 728 for (auto Case : SI->cases()) 729 Cases.push_back(ValueEqualityComparisonCase(Case.getCaseValue(), 730 Case.getCaseSuccessor())); 731 return SI->getDefaultDest(); 732 } 733 734 BranchInst *BI = cast<BranchInst>(TI); 735 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 736 BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE); 737 Cases.push_back(ValueEqualityComparisonCase( 738 GetConstantInt(ICI->getOperand(1), DL), Succ)); 739 return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ); 740 } 741 742 /// Given a vector of bb/value pairs, remove any entries 743 /// in the list that match the specified block. 744 static void 745 EliminateBlockCases(BasicBlock *BB, 746 std::vector<ValueEqualityComparisonCase> &Cases) { 747 Cases.erase(std::remove(Cases.begin(), Cases.end(), BB), Cases.end()); 748 } 749 750 /// Return true if there are any keys in C1 that exist in C2 as well. 751 static bool ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1, 752 std::vector<ValueEqualityComparisonCase> &C2) { 753 std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2; 754 755 // Make V1 be smaller than V2. 756 if (V1->size() > V2->size()) 757 std::swap(V1, V2); 758 759 if (V1->empty()) 760 return false; 761 if (V1->size() == 1) { 762 // Just scan V2. 763 ConstantInt *TheVal = (*V1)[0].Value; 764 for (unsigned i = 0, e = V2->size(); i != e; ++i) 765 if (TheVal == (*V2)[i].Value) 766 return true; 767 } 768 769 // Otherwise, just sort both lists and compare element by element. 770 array_pod_sort(V1->begin(), V1->end()); 771 array_pod_sort(V2->begin(), V2->end()); 772 unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size(); 773 while (i1 != e1 && i2 != e2) { 774 if ((*V1)[i1].Value == (*V2)[i2].Value) 775 return true; 776 if ((*V1)[i1].Value < (*V2)[i2].Value) 777 ++i1; 778 else 779 ++i2; 780 } 781 return false; 782 } 783 784 // Set branch weights on SwitchInst. This sets the metadata if there is at 785 // least one non-zero weight. 786 static void setBranchWeights(SwitchInst *SI, ArrayRef<uint32_t> Weights) { 787 // Check that there is at least one non-zero weight. Otherwise, pass 788 // nullptr to setMetadata which will erase the existing metadata. 789 MDNode *N = nullptr; 790 if (llvm::any_of(Weights, [](uint32_t W) { return W != 0; })) 791 N = MDBuilder(SI->getParent()->getContext()).createBranchWeights(Weights); 792 SI->setMetadata(LLVMContext::MD_prof, N); 793 } 794 795 // Similar to the above, but for branch and select instructions that take 796 // exactly 2 weights. 797 static void setBranchWeights(Instruction *I, uint32_t TrueWeight, 798 uint32_t FalseWeight) { 799 assert(isa<BranchInst>(I) || isa<SelectInst>(I)); 800 // Check that there is at least one non-zero weight. Otherwise, pass 801 // nullptr to setMetadata which will erase the existing metadata. 802 MDNode *N = nullptr; 803 if (TrueWeight || FalseWeight) 804 N = MDBuilder(I->getParent()->getContext()) 805 .createBranchWeights(TrueWeight, FalseWeight); 806 I->setMetadata(LLVMContext::MD_prof, N); 807 } 808 809 /// If TI is known to be a terminator instruction and its block is known to 810 /// only have a single predecessor block, check to see if that predecessor is 811 /// also a value comparison with the same value, and if that comparison 812 /// determines the outcome of this comparison. If so, simplify TI. This does a 813 /// very limited form of jump threading. 814 bool SimplifyCFGOpt::SimplifyEqualityComparisonWithOnlyPredecessor( 815 Instruction *TI, BasicBlock *Pred, IRBuilder<> &Builder) { 816 Value *PredVal = isValueEqualityComparison(Pred->getTerminator()); 817 if (!PredVal) 818 return false; // Not a value comparison in predecessor. 819 820 Value *ThisVal = isValueEqualityComparison(TI); 821 assert(ThisVal && "This isn't a value comparison!!"); 822 if (ThisVal != PredVal) 823 return false; // Different predicates. 824 825 // TODO: Preserve branch weight metadata, similarly to how 826 // FoldValueComparisonIntoPredecessors preserves it. 827 828 // Find out information about when control will move from Pred to TI's block. 829 std::vector<ValueEqualityComparisonCase> PredCases; 830 BasicBlock *PredDef = 831 GetValueEqualityComparisonCases(Pred->getTerminator(), PredCases); 832 EliminateBlockCases(PredDef, PredCases); // Remove default from cases. 833 834 // Find information about how control leaves this block. 835 std::vector<ValueEqualityComparisonCase> ThisCases; 836 BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases); 837 EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases. 838 839 // If TI's block is the default block from Pred's comparison, potentially 840 // simplify TI based on this knowledge. 841 if (PredDef == TI->getParent()) { 842 // If we are here, we know that the value is none of those cases listed in 843 // PredCases. If there are any cases in ThisCases that are in PredCases, we 844 // can simplify TI. 845 if (!ValuesOverlap(PredCases, ThisCases)) 846 return false; 847 848 if (isa<BranchInst>(TI)) { 849 // Okay, one of the successors of this condbr is dead. Convert it to a 850 // uncond br. 851 assert(ThisCases.size() == 1 && "Branch can only have one case!"); 852 // Insert the new branch. 853 Instruction *NI = Builder.CreateBr(ThisDef); 854 (void)NI; 855 856 // Remove PHI node entries for the dead edge. 857 ThisCases[0].Dest->removePredecessor(TI->getParent()); 858 859 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 860 << "Through successor TI: " << *TI << "Leaving: " << *NI 861 << "\n"); 862 863 EraseTerminatorAndDCECond(TI); 864 return true; 865 } 866 867 SwitchInst *SI = cast<SwitchInst>(TI); 868 // Okay, TI has cases that are statically dead, prune them away. 869 SmallPtrSet<Constant *, 16> DeadCases; 870 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 871 DeadCases.insert(PredCases[i].Value); 872 873 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 874 << "Through successor TI: " << *TI); 875 876 // Collect branch weights into a vector. 877 SmallVector<uint32_t, 8> Weights; 878 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof); 879 bool HasWeight = MD && (MD->getNumOperands() == 2 + SI->getNumCases()); 880 if (HasWeight) 881 for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e; 882 ++MD_i) { 883 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i)); 884 Weights.push_back(CI->getValue().getZExtValue()); 885 } 886 for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) { 887 --i; 888 if (DeadCases.count(i->getCaseValue())) { 889 if (HasWeight) { 890 std::swap(Weights[i->getCaseIndex() + 1], Weights.back()); 891 Weights.pop_back(); 892 } 893 i->getCaseSuccessor()->removePredecessor(TI->getParent()); 894 SI->removeCase(i); 895 } 896 } 897 if (HasWeight && Weights.size() >= 2) 898 setBranchWeights(SI, Weights); 899 900 LLVM_DEBUG(dbgs() << "Leaving: " << *TI << "\n"); 901 return true; 902 } 903 904 // Otherwise, TI's block must correspond to some matched value. Find out 905 // which value (or set of values) this is. 906 ConstantInt *TIV = nullptr; 907 BasicBlock *TIBB = TI->getParent(); 908 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 909 if (PredCases[i].Dest == TIBB) { 910 if (TIV) 911 return false; // Cannot handle multiple values coming to this block. 912 TIV = PredCases[i].Value; 913 } 914 assert(TIV && "No edge from pred to succ?"); 915 916 // Okay, we found the one constant that our value can be if we get into TI's 917 // BB. Find out which successor will unconditionally be branched to. 918 BasicBlock *TheRealDest = nullptr; 919 for (unsigned i = 0, e = ThisCases.size(); i != e; ++i) 920 if (ThisCases[i].Value == TIV) { 921 TheRealDest = ThisCases[i].Dest; 922 break; 923 } 924 925 // If not handled by any explicit cases, it is handled by the default case. 926 if (!TheRealDest) 927 TheRealDest = ThisDef; 928 929 // Remove PHI node entries for dead edges. 930 BasicBlock *CheckEdge = TheRealDest; 931 for (BasicBlock *Succ : successors(TIBB)) 932 if (Succ != CheckEdge) 933 Succ->removePredecessor(TIBB); 934 else 935 CheckEdge = nullptr; 936 937 // Insert the new branch. 938 Instruction *NI = Builder.CreateBr(TheRealDest); 939 (void)NI; 940 941 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 942 << "Through successor TI: " << *TI << "Leaving: " << *NI 943 << "\n"); 944 945 EraseTerminatorAndDCECond(TI); 946 return true; 947 } 948 949 namespace { 950 951 /// This class implements a stable ordering of constant 952 /// integers that does not depend on their address. This is important for 953 /// applications that sort ConstantInt's to ensure uniqueness. 954 struct ConstantIntOrdering { 955 bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const { 956 return LHS->getValue().ult(RHS->getValue()); 957 } 958 }; 959 960 } // end anonymous namespace 961 962 static int ConstantIntSortPredicate(ConstantInt *const *P1, 963 ConstantInt *const *P2) { 964 const ConstantInt *LHS = *P1; 965 const ConstantInt *RHS = *P2; 966 if (LHS == RHS) 967 return 0; 968 return LHS->getValue().ult(RHS->getValue()) ? 1 : -1; 969 } 970 971 static inline bool HasBranchWeights(const Instruction *I) { 972 MDNode *ProfMD = I->getMetadata(LLVMContext::MD_prof); 973 if (ProfMD && ProfMD->getOperand(0)) 974 if (MDString *MDS = dyn_cast<MDString>(ProfMD->getOperand(0))) 975 return MDS->getString().equals("branch_weights"); 976 977 return false; 978 } 979 980 /// Get Weights of a given terminator, the default weight is at the front 981 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight 982 /// metadata. 983 static void GetBranchWeights(Instruction *TI, 984 SmallVectorImpl<uint64_t> &Weights) { 985 MDNode *MD = TI->getMetadata(LLVMContext::MD_prof); 986 assert(MD); 987 for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) { 988 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i)); 989 Weights.push_back(CI->getValue().getZExtValue()); 990 } 991 992 // If TI is a conditional eq, the default case is the false case, 993 // and the corresponding branch-weight data is at index 2. We swap the 994 // default weight to be the first entry. 995 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 996 assert(Weights.size() == 2); 997 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 998 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 999 std::swap(Weights.front(), Weights.back()); 1000 } 1001 } 1002 1003 /// Keep halving the weights until all can fit in uint32_t. 1004 static void FitWeights(MutableArrayRef<uint64_t> Weights) { 1005 uint64_t Max = *std::max_element(Weights.begin(), Weights.end()); 1006 if (Max > UINT_MAX) { 1007 unsigned Offset = 32 - countLeadingZeros(Max); 1008 for (uint64_t &I : Weights) 1009 I >>= Offset; 1010 } 1011 } 1012 1013 /// The specified terminator is a value equality comparison instruction 1014 /// (either a switch or a branch on "X == c"). 1015 /// See if any of the predecessors of the terminator block are value comparisons 1016 /// on the same value. If so, and if safe to do so, fold them together. 1017 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(Instruction *TI, 1018 IRBuilder<> &Builder) { 1019 BasicBlock *BB = TI->getParent(); 1020 Value *CV = isValueEqualityComparison(TI); // CondVal 1021 assert(CV && "Not a comparison?"); 1022 bool Changed = false; 1023 1024 SmallVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB)); 1025 while (!Preds.empty()) { 1026 BasicBlock *Pred = Preds.pop_back_val(); 1027 1028 // See if the predecessor is a comparison with the same value. 1029 Instruction *PTI = Pred->getTerminator(); 1030 Value *PCV = isValueEqualityComparison(PTI); // PredCondVal 1031 1032 if (PCV == CV && TI != PTI) { 1033 SmallSetVector<BasicBlock*, 4> FailBlocks; 1034 if (!SafeToMergeTerminators(TI, PTI, &FailBlocks)) { 1035 for (auto *Succ : FailBlocks) { 1036 if (!SplitBlockPredecessors(Succ, TI->getParent(), ".fold.split")) 1037 return false; 1038 } 1039 } 1040 1041 // Figure out which 'cases' to copy from SI to PSI. 1042 std::vector<ValueEqualityComparisonCase> BBCases; 1043 BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases); 1044 1045 std::vector<ValueEqualityComparisonCase> PredCases; 1046 BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases); 1047 1048 // Based on whether the default edge from PTI goes to BB or not, fill in 1049 // PredCases and PredDefault with the new switch cases we would like to 1050 // build. 1051 SmallVector<BasicBlock *, 8> NewSuccessors; 1052 1053 // Update the branch weight metadata along the way 1054 SmallVector<uint64_t, 8> Weights; 1055 bool PredHasWeights = HasBranchWeights(PTI); 1056 bool SuccHasWeights = HasBranchWeights(TI); 1057 1058 if (PredHasWeights) { 1059 GetBranchWeights(PTI, Weights); 1060 // branch-weight metadata is inconsistent here. 1061 if (Weights.size() != 1 + PredCases.size()) 1062 PredHasWeights = SuccHasWeights = false; 1063 } else if (SuccHasWeights) 1064 // If there are no predecessor weights but there are successor weights, 1065 // populate Weights with 1, which will later be scaled to the sum of 1066 // successor's weights 1067 Weights.assign(1 + PredCases.size(), 1); 1068 1069 SmallVector<uint64_t, 8> SuccWeights; 1070 if (SuccHasWeights) { 1071 GetBranchWeights(TI, SuccWeights); 1072 // branch-weight metadata is inconsistent here. 1073 if (SuccWeights.size() != 1 + BBCases.size()) 1074 PredHasWeights = SuccHasWeights = false; 1075 } else if (PredHasWeights) 1076 SuccWeights.assign(1 + BBCases.size(), 1); 1077 1078 if (PredDefault == BB) { 1079 // If this is the default destination from PTI, only the edges in TI 1080 // that don't occur in PTI, or that branch to BB will be activated. 1081 std::set<ConstantInt *, ConstantIntOrdering> PTIHandled; 1082 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 1083 if (PredCases[i].Dest != BB) 1084 PTIHandled.insert(PredCases[i].Value); 1085 else { 1086 // The default destination is BB, we don't need explicit targets. 1087 std::swap(PredCases[i], PredCases.back()); 1088 1089 if (PredHasWeights || SuccHasWeights) { 1090 // Increase weight for the default case. 1091 Weights[0] += Weights[i + 1]; 1092 std::swap(Weights[i + 1], Weights.back()); 1093 Weights.pop_back(); 1094 } 1095 1096 PredCases.pop_back(); 1097 --i; 1098 --e; 1099 } 1100 1101 // Reconstruct the new switch statement we will be building. 1102 if (PredDefault != BBDefault) { 1103 PredDefault->removePredecessor(Pred); 1104 PredDefault = BBDefault; 1105 NewSuccessors.push_back(BBDefault); 1106 } 1107 1108 unsigned CasesFromPred = Weights.size(); 1109 uint64_t ValidTotalSuccWeight = 0; 1110 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 1111 if (!PTIHandled.count(BBCases[i].Value) && 1112 BBCases[i].Dest != BBDefault) { 1113 PredCases.push_back(BBCases[i]); 1114 NewSuccessors.push_back(BBCases[i].Dest); 1115 if (SuccHasWeights || PredHasWeights) { 1116 // The default weight is at index 0, so weight for the ith case 1117 // should be at index i+1. Scale the cases from successor by 1118 // PredDefaultWeight (Weights[0]). 1119 Weights.push_back(Weights[0] * SuccWeights[i + 1]); 1120 ValidTotalSuccWeight += SuccWeights[i + 1]; 1121 } 1122 } 1123 1124 if (SuccHasWeights || PredHasWeights) { 1125 ValidTotalSuccWeight += SuccWeights[0]; 1126 // Scale the cases from predecessor by ValidTotalSuccWeight. 1127 for (unsigned i = 1; i < CasesFromPred; ++i) 1128 Weights[i] *= ValidTotalSuccWeight; 1129 // Scale the default weight by SuccDefaultWeight (SuccWeights[0]). 1130 Weights[0] *= SuccWeights[0]; 1131 } 1132 } else { 1133 // If this is not the default destination from PSI, only the edges 1134 // in SI that occur in PSI with a destination of BB will be 1135 // activated. 1136 std::set<ConstantInt *, ConstantIntOrdering> PTIHandled; 1137 std::map<ConstantInt *, uint64_t> WeightsForHandled; 1138 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 1139 if (PredCases[i].Dest == BB) { 1140 PTIHandled.insert(PredCases[i].Value); 1141 1142 if (PredHasWeights || SuccHasWeights) { 1143 WeightsForHandled[PredCases[i].Value] = Weights[i + 1]; 1144 std::swap(Weights[i + 1], Weights.back()); 1145 Weights.pop_back(); 1146 } 1147 1148 std::swap(PredCases[i], PredCases.back()); 1149 PredCases.pop_back(); 1150 --i; 1151 --e; 1152 } 1153 1154 // Okay, now we know which constants were sent to BB from the 1155 // predecessor. Figure out where they will all go now. 1156 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 1157 if (PTIHandled.count(BBCases[i].Value)) { 1158 // If this is one we are capable of getting... 1159 if (PredHasWeights || SuccHasWeights) 1160 Weights.push_back(WeightsForHandled[BBCases[i].Value]); 1161 PredCases.push_back(BBCases[i]); 1162 NewSuccessors.push_back(BBCases[i].Dest); 1163 PTIHandled.erase( 1164 BBCases[i].Value); // This constant is taken care of 1165 } 1166 1167 // If there are any constants vectored to BB that TI doesn't handle, 1168 // they must go to the default destination of TI. 1169 for (ConstantInt *I : PTIHandled) { 1170 if (PredHasWeights || SuccHasWeights) 1171 Weights.push_back(WeightsForHandled[I]); 1172 PredCases.push_back(ValueEqualityComparisonCase(I, BBDefault)); 1173 NewSuccessors.push_back(BBDefault); 1174 } 1175 } 1176 1177 // Okay, at this point, we know which new successor Pred will get. Make 1178 // sure we update the number of entries in the PHI nodes for these 1179 // successors. 1180 for (BasicBlock *NewSuccessor : NewSuccessors) 1181 AddPredecessorToBlock(NewSuccessor, Pred, BB); 1182 1183 Builder.SetInsertPoint(PTI); 1184 // Convert pointer to int before we switch. 1185 if (CV->getType()->isPointerTy()) { 1186 CV = Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()), 1187 "magicptr"); 1188 } 1189 1190 // Now that the successors are updated, create the new Switch instruction. 1191 SwitchInst *NewSI = 1192 Builder.CreateSwitch(CV, PredDefault, PredCases.size()); 1193 NewSI->setDebugLoc(PTI->getDebugLoc()); 1194 for (ValueEqualityComparisonCase &V : PredCases) 1195 NewSI->addCase(V.Value, V.Dest); 1196 1197 if (PredHasWeights || SuccHasWeights) { 1198 // Halve the weights if any of them cannot fit in an uint32_t 1199 FitWeights(Weights); 1200 1201 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 1202 1203 setBranchWeights(NewSI, MDWeights); 1204 } 1205 1206 EraseTerminatorAndDCECond(PTI); 1207 1208 // Okay, last check. If BB is still a successor of PSI, then we must 1209 // have an infinite loop case. If so, add an infinitely looping block 1210 // to handle the case to preserve the behavior of the code. 1211 BasicBlock *InfLoopBlock = nullptr; 1212 for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i) 1213 if (NewSI->getSuccessor(i) == BB) { 1214 if (!InfLoopBlock) { 1215 // Insert it at the end of the function, because it's either code, 1216 // or it won't matter if it's hot. :) 1217 InfLoopBlock = BasicBlock::Create(BB->getContext(), "infloop", 1218 BB->getParent()); 1219 BranchInst::Create(InfLoopBlock, InfLoopBlock); 1220 } 1221 NewSI->setSuccessor(i, InfLoopBlock); 1222 } 1223 1224 Changed = true; 1225 } 1226 } 1227 return Changed; 1228 } 1229 1230 // If we would need to insert a select that uses the value of this invoke 1231 // (comments in HoistThenElseCodeToIf explain why we would need to do this), we 1232 // can't hoist the invoke, as there is nowhere to put the select in this case. 1233 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2, 1234 Instruction *I1, Instruction *I2) { 1235 for (BasicBlock *Succ : successors(BB1)) { 1236 for (const PHINode &PN : Succ->phis()) { 1237 Value *BB1V = PN.getIncomingValueForBlock(BB1); 1238 Value *BB2V = PN.getIncomingValueForBlock(BB2); 1239 if (BB1V != BB2V && (BB1V == I1 || BB2V == I2)) { 1240 return false; 1241 } 1242 } 1243 } 1244 return true; 1245 } 1246 1247 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I); 1248 1249 /// Given a conditional branch that goes to BB1 and BB2, hoist any common code 1250 /// in the two blocks up into the branch block. The caller of this function 1251 /// guarantees that BI's block dominates BB1 and BB2. 1252 static bool HoistThenElseCodeToIf(BranchInst *BI, 1253 const TargetTransformInfo &TTI) { 1254 // This does very trivial matching, with limited scanning, to find identical 1255 // instructions in the two blocks. In particular, we don't want to get into 1256 // O(M*N) situations here where M and N are the sizes of BB1 and BB2. As 1257 // such, we currently just scan for obviously identical instructions in an 1258 // identical order. 1259 BasicBlock *BB1 = BI->getSuccessor(0); // The true destination. 1260 BasicBlock *BB2 = BI->getSuccessor(1); // The false destination 1261 1262 BasicBlock::iterator BB1_Itr = BB1->begin(); 1263 BasicBlock::iterator BB2_Itr = BB2->begin(); 1264 1265 Instruction *I1 = &*BB1_Itr++, *I2 = &*BB2_Itr++; 1266 // Skip debug info if it is not identical. 1267 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1268 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1269 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1270 while (isa<DbgInfoIntrinsic>(I1)) 1271 I1 = &*BB1_Itr++; 1272 while (isa<DbgInfoIntrinsic>(I2)) 1273 I2 = &*BB2_Itr++; 1274 } 1275 // FIXME: Can we define a safety predicate for CallBr? 1276 if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) || 1277 (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) || 1278 isa<CallBrInst>(I1)) 1279 return false; 1280 1281 BasicBlock *BIParent = BI->getParent(); 1282 1283 bool Changed = false; 1284 do { 1285 // If we are hoisting the terminator instruction, don't move one (making a 1286 // broken BB), instead clone it, and remove BI. 1287 if (I1->isTerminator()) 1288 goto HoistTerminator; 1289 1290 // If we're going to hoist a call, make sure that the two instructions we're 1291 // commoning/hoisting are both marked with musttail, or neither of them is 1292 // marked as such. Otherwise, we might end up in a situation where we hoist 1293 // from a block where the terminator is a `ret` to a block where the terminator 1294 // is a `br`, and `musttail` calls expect to be followed by a return. 1295 auto *C1 = dyn_cast<CallInst>(I1); 1296 auto *C2 = dyn_cast<CallInst>(I2); 1297 if (C1 && C2) 1298 if (C1->isMustTailCall() != C2->isMustTailCall()) 1299 return Changed; 1300 1301 if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2)) 1302 return Changed; 1303 1304 if (isa<DbgInfoIntrinsic>(I1) || isa<DbgInfoIntrinsic>(I2)) { 1305 assert (isa<DbgInfoIntrinsic>(I1) && isa<DbgInfoIntrinsic>(I2)); 1306 // The debug location is an integral part of a debug info intrinsic 1307 // and can't be separated from it or replaced. Instead of attempting 1308 // to merge locations, simply hoist both copies of the intrinsic. 1309 BIParent->getInstList().splice(BI->getIterator(), 1310 BB1->getInstList(), I1); 1311 BIParent->getInstList().splice(BI->getIterator(), 1312 BB2->getInstList(), I2); 1313 Changed = true; 1314 } else { 1315 // For a normal instruction, we just move one to right before the branch, 1316 // then replace all uses of the other with the first. Finally, we remove 1317 // the now redundant second instruction. 1318 BIParent->getInstList().splice(BI->getIterator(), 1319 BB1->getInstList(), I1); 1320 if (!I2->use_empty()) 1321 I2->replaceAllUsesWith(I1); 1322 I1->andIRFlags(I2); 1323 unsigned KnownIDs[] = {LLVMContext::MD_tbaa, 1324 LLVMContext::MD_range, 1325 LLVMContext::MD_fpmath, 1326 LLVMContext::MD_invariant_load, 1327 LLVMContext::MD_nonnull, 1328 LLVMContext::MD_invariant_group, 1329 LLVMContext::MD_align, 1330 LLVMContext::MD_dereferenceable, 1331 LLVMContext::MD_dereferenceable_or_null, 1332 LLVMContext::MD_mem_parallel_loop_access, 1333 LLVMContext::MD_access_group}; 1334 combineMetadata(I1, I2, KnownIDs, true); 1335 1336 // I1 and I2 are being combined into a single instruction. Its debug 1337 // location is the merged locations of the original instructions. 1338 I1->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc()); 1339 1340 I2->eraseFromParent(); 1341 Changed = true; 1342 } 1343 1344 I1 = &*BB1_Itr++; 1345 I2 = &*BB2_Itr++; 1346 // Skip debug info if it is not identical. 1347 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1348 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1349 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1350 while (isa<DbgInfoIntrinsic>(I1)) 1351 I1 = &*BB1_Itr++; 1352 while (isa<DbgInfoIntrinsic>(I2)) 1353 I2 = &*BB2_Itr++; 1354 } 1355 } while (I1->isIdenticalToWhenDefined(I2)); 1356 1357 return true; 1358 1359 HoistTerminator: 1360 // It may not be possible to hoist an invoke. 1361 // FIXME: Can we define a safety predicate for CallBr? 1362 if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) 1363 return Changed; 1364 1365 // TODO: callbr hoisting currently disabled pending further study. 1366 if (isa<CallBrInst>(I1)) 1367 return Changed; 1368 1369 for (BasicBlock *Succ : successors(BB1)) { 1370 for (PHINode &PN : Succ->phis()) { 1371 Value *BB1V = PN.getIncomingValueForBlock(BB1); 1372 Value *BB2V = PN.getIncomingValueForBlock(BB2); 1373 if (BB1V == BB2V) 1374 continue; 1375 1376 // Check for passingValueIsAlwaysUndefined here because we would rather 1377 // eliminate undefined control flow then converting it to a select. 1378 if (passingValueIsAlwaysUndefined(BB1V, &PN) || 1379 passingValueIsAlwaysUndefined(BB2V, &PN)) 1380 return Changed; 1381 1382 if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V)) 1383 return Changed; 1384 if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V)) 1385 return Changed; 1386 } 1387 } 1388 1389 // Okay, it is safe to hoist the terminator. 1390 Instruction *NT = I1->clone(); 1391 BIParent->getInstList().insert(BI->getIterator(), NT); 1392 if (!NT->getType()->isVoidTy()) { 1393 I1->replaceAllUsesWith(NT); 1394 I2->replaceAllUsesWith(NT); 1395 NT->takeName(I1); 1396 } 1397 1398 // Ensure terminator gets a debug location, even an unknown one, in case 1399 // it involves inlinable calls. 1400 NT->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc()); 1401 1402 // PHIs created below will adopt NT's merged DebugLoc. 1403 IRBuilder<NoFolder> Builder(NT); 1404 1405 // Hoisting one of the terminators from our successor is a great thing. 1406 // Unfortunately, the successors of the if/else blocks may have PHI nodes in 1407 // them. If they do, all PHI entries for BB1/BB2 must agree for all PHI 1408 // nodes, so we insert select instruction to compute the final result. 1409 std::map<std::pair<Value *, Value *>, SelectInst *> InsertedSelects; 1410 for (BasicBlock *Succ : successors(BB1)) { 1411 for (PHINode &PN : Succ->phis()) { 1412 Value *BB1V = PN.getIncomingValueForBlock(BB1); 1413 Value *BB2V = PN.getIncomingValueForBlock(BB2); 1414 if (BB1V == BB2V) 1415 continue; 1416 1417 // These values do not agree. Insert a select instruction before NT 1418 // that determines the right value. 1419 SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)]; 1420 if (!SI) 1421 SI = cast<SelectInst>( 1422 Builder.CreateSelect(BI->getCondition(), BB1V, BB2V, 1423 BB1V->getName() + "." + BB2V->getName(), BI)); 1424 1425 // Make the PHI node use the select for all incoming values for BB1/BB2 1426 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) 1427 if (PN.getIncomingBlock(i) == BB1 || PN.getIncomingBlock(i) == BB2) 1428 PN.setIncomingValue(i, SI); 1429 } 1430 } 1431 1432 // Update any PHI nodes in our new successors. 1433 for (BasicBlock *Succ : successors(BB1)) 1434 AddPredecessorToBlock(Succ, BIParent, BB1); 1435 1436 EraseTerminatorAndDCECond(BI); 1437 return true; 1438 } 1439 1440 // All instructions in Insts belong to different blocks that all unconditionally 1441 // branch to a common successor. Analyze each instruction and return true if it 1442 // would be possible to sink them into their successor, creating one common 1443 // instruction instead. For every value that would be required to be provided by 1444 // PHI node (because an operand varies in each input block), add to PHIOperands. 1445 static bool canSinkInstructions( 1446 ArrayRef<Instruction *> Insts, 1447 DenseMap<Instruction *, SmallVector<Value *, 4>> &PHIOperands) { 1448 // Prune out obviously bad instructions to move. Any non-store instruction 1449 // must have exactly one use, and we check later that use is by a single, 1450 // common PHI instruction in the successor. 1451 for (auto *I : Insts) { 1452 // These instructions may change or break semantics if moved. 1453 if (isa<PHINode>(I) || I->isEHPad() || isa<AllocaInst>(I) || 1454 I->getType()->isTokenTy()) 1455 return false; 1456 1457 // Conservatively return false if I is an inline-asm instruction. Sinking 1458 // and merging inline-asm instructions can potentially create arguments 1459 // that cannot satisfy the inline-asm constraints. 1460 if (const auto *C = dyn_cast<CallBase>(I)) 1461 if (C->isInlineAsm()) 1462 return false; 1463 1464 // Everything must have only one use too, apart from stores which 1465 // have no uses. 1466 if (!isa<StoreInst>(I) && !I->hasOneUse()) 1467 return false; 1468 } 1469 1470 const Instruction *I0 = Insts.front(); 1471 for (auto *I : Insts) 1472 if (!I->isSameOperationAs(I0)) 1473 return false; 1474 1475 // All instructions in Insts are known to be the same opcode. If they aren't 1476 // stores, check the only user of each is a PHI or in the same block as the 1477 // instruction, because if a user is in the same block as an instruction 1478 // we're contemplating sinking, it must already be determined to be sinkable. 1479 if (!isa<StoreInst>(I0)) { 1480 auto *PNUse = dyn_cast<PHINode>(*I0->user_begin()); 1481 auto *Succ = I0->getParent()->getTerminator()->getSuccessor(0); 1482 if (!all_of(Insts, [&PNUse,&Succ](const Instruction *I) -> bool { 1483 auto *U = cast<Instruction>(*I->user_begin()); 1484 return (PNUse && 1485 PNUse->getParent() == Succ && 1486 PNUse->getIncomingValueForBlock(I->getParent()) == I) || 1487 U->getParent() == I->getParent(); 1488 })) 1489 return false; 1490 } 1491 1492 // Because SROA can't handle speculating stores of selects, try not 1493 // to sink loads or stores of allocas when we'd have to create a PHI for 1494 // the address operand. Also, because it is likely that loads or stores 1495 // of allocas will disappear when Mem2Reg/SROA is run, don't sink them. 1496 // This can cause code churn which can have unintended consequences down 1497 // the line - see https://llvm.org/bugs/show_bug.cgi?id=30244. 1498 // FIXME: This is a workaround for a deficiency in SROA - see 1499 // https://llvm.org/bugs/show_bug.cgi?id=30188 1500 if (isa<StoreInst>(I0) && any_of(Insts, [](const Instruction *I) { 1501 return isa<AllocaInst>(I->getOperand(1)); 1502 })) 1503 return false; 1504 if (isa<LoadInst>(I0) && any_of(Insts, [](const Instruction *I) { 1505 return isa<AllocaInst>(I->getOperand(0)); 1506 })) 1507 return false; 1508 1509 for (unsigned OI = 0, OE = I0->getNumOperands(); OI != OE; ++OI) { 1510 if (I0->getOperand(OI)->getType()->isTokenTy()) 1511 // Don't touch any operand of token type. 1512 return false; 1513 1514 auto SameAsI0 = [&I0, OI](const Instruction *I) { 1515 assert(I->getNumOperands() == I0->getNumOperands()); 1516 return I->getOperand(OI) == I0->getOperand(OI); 1517 }; 1518 if (!all_of(Insts, SameAsI0)) { 1519 if (!canReplaceOperandWithVariable(I0, OI)) 1520 // We can't create a PHI from this GEP. 1521 return false; 1522 // Don't create indirect calls! The called value is the final operand. 1523 if (isa<CallBase>(I0) && OI == OE - 1) { 1524 // FIXME: if the call was *already* indirect, we should do this. 1525 return false; 1526 } 1527 for (auto *I : Insts) 1528 PHIOperands[I].push_back(I->getOperand(OI)); 1529 } 1530 } 1531 return true; 1532 } 1533 1534 // Assuming canSinkLastInstruction(Blocks) has returned true, sink the last 1535 // instruction of every block in Blocks to their common successor, commoning 1536 // into one instruction. 1537 static bool sinkLastInstruction(ArrayRef<BasicBlock*> Blocks) { 1538 auto *BBEnd = Blocks[0]->getTerminator()->getSuccessor(0); 1539 1540 // canSinkLastInstruction returning true guarantees that every block has at 1541 // least one non-terminator instruction. 1542 SmallVector<Instruction*,4> Insts; 1543 for (auto *BB : Blocks) { 1544 Instruction *I = BB->getTerminator(); 1545 do { 1546 I = I->getPrevNode(); 1547 } while (isa<DbgInfoIntrinsic>(I) && I != &BB->front()); 1548 if (!isa<DbgInfoIntrinsic>(I)) 1549 Insts.push_back(I); 1550 } 1551 1552 // The only checking we need to do now is that all users of all instructions 1553 // are the same PHI node. canSinkLastInstruction should have checked this but 1554 // it is slightly over-aggressive - it gets confused by commutative instructions 1555 // so double-check it here. 1556 Instruction *I0 = Insts.front(); 1557 if (!isa<StoreInst>(I0)) { 1558 auto *PNUse = dyn_cast<PHINode>(*I0->user_begin()); 1559 if (!all_of(Insts, [&PNUse](const Instruction *I) -> bool { 1560 auto *U = cast<Instruction>(*I->user_begin()); 1561 return U == PNUse; 1562 })) 1563 return false; 1564 } 1565 1566 // We don't need to do any more checking here; canSinkLastInstruction should 1567 // have done it all for us. 1568 SmallVector<Value*, 4> NewOperands; 1569 for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) { 1570 // This check is different to that in canSinkLastInstruction. There, we 1571 // cared about the global view once simplifycfg (and instcombine) have 1572 // completed - it takes into account PHIs that become trivially 1573 // simplifiable. However here we need a more local view; if an operand 1574 // differs we create a PHI and rely on instcombine to clean up the very 1575 // small mess we may make. 1576 bool NeedPHI = any_of(Insts, [&I0, O](const Instruction *I) { 1577 return I->getOperand(O) != I0->getOperand(O); 1578 }); 1579 if (!NeedPHI) { 1580 NewOperands.push_back(I0->getOperand(O)); 1581 continue; 1582 } 1583 1584 // Create a new PHI in the successor block and populate it. 1585 auto *Op = I0->getOperand(O); 1586 assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!"); 1587 auto *PN = PHINode::Create(Op->getType(), Insts.size(), 1588 Op->getName() + ".sink", &BBEnd->front()); 1589 for (auto *I : Insts) 1590 PN->addIncoming(I->getOperand(O), I->getParent()); 1591 NewOperands.push_back(PN); 1592 } 1593 1594 // Arbitrarily use I0 as the new "common" instruction; remap its operands 1595 // and move it to the start of the successor block. 1596 for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) 1597 I0->getOperandUse(O).set(NewOperands[O]); 1598 I0->moveBefore(&*BBEnd->getFirstInsertionPt()); 1599 1600 // Update metadata and IR flags, and merge debug locations. 1601 for (auto *I : Insts) 1602 if (I != I0) { 1603 // The debug location for the "common" instruction is the merged locations 1604 // of all the commoned instructions. We start with the original location 1605 // of the "common" instruction and iteratively merge each location in the 1606 // loop below. 1607 // This is an N-way merge, which will be inefficient if I0 is a CallInst. 1608 // However, as N-way merge for CallInst is rare, so we use simplified API 1609 // instead of using complex API for N-way merge. 1610 I0->applyMergedLocation(I0->getDebugLoc(), I->getDebugLoc()); 1611 combineMetadataForCSE(I0, I, true); 1612 I0->andIRFlags(I); 1613 } 1614 1615 if (!isa<StoreInst>(I0)) { 1616 // canSinkLastInstruction checked that all instructions were used by 1617 // one and only one PHI node. Find that now, RAUW it to our common 1618 // instruction and nuke it. 1619 assert(I0->hasOneUse()); 1620 auto *PN = cast<PHINode>(*I0->user_begin()); 1621 PN->replaceAllUsesWith(I0); 1622 PN->eraseFromParent(); 1623 } 1624 1625 // Finally nuke all instructions apart from the common instruction. 1626 for (auto *I : Insts) 1627 if (I != I0) 1628 I->eraseFromParent(); 1629 1630 return true; 1631 } 1632 1633 namespace { 1634 1635 // LockstepReverseIterator - Iterates through instructions 1636 // in a set of blocks in reverse order from the first non-terminator. 1637 // For example (assume all blocks have size n): 1638 // LockstepReverseIterator I([B1, B2, B3]); 1639 // *I-- = [B1[n], B2[n], B3[n]]; 1640 // *I-- = [B1[n-1], B2[n-1], B3[n-1]]; 1641 // *I-- = [B1[n-2], B2[n-2], B3[n-2]]; 1642 // ... 1643 class LockstepReverseIterator { 1644 ArrayRef<BasicBlock*> Blocks; 1645 SmallVector<Instruction*,4> Insts; 1646 bool Fail; 1647 1648 public: 1649 LockstepReverseIterator(ArrayRef<BasicBlock*> Blocks) : Blocks(Blocks) { 1650 reset(); 1651 } 1652 1653 void reset() { 1654 Fail = false; 1655 Insts.clear(); 1656 for (auto *BB : Blocks) { 1657 Instruction *Inst = BB->getTerminator(); 1658 for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);) 1659 Inst = Inst->getPrevNode(); 1660 if (!Inst) { 1661 // Block wasn't big enough. 1662 Fail = true; 1663 return; 1664 } 1665 Insts.push_back(Inst); 1666 } 1667 } 1668 1669 bool isValid() const { 1670 return !Fail; 1671 } 1672 1673 void operator--() { 1674 if (Fail) 1675 return; 1676 for (auto *&Inst : Insts) { 1677 for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);) 1678 Inst = Inst->getPrevNode(); 1679 // Already at beginning of block. 1680 if (!Inst) { 1681 Fail = true; 1682 return; 1683 } 1684 } 1685 } 1686 1687 ArrayRef<Instruction*> operator * () const { 1688 return Insts; 1689 } 1690 }; 1691 1692 } // end anonymous namespace 1693 1694 /// Check whether BB's predecessors end with unconditional branches. If it is 1695 /// true, sink any common code from the predecessors to BB. 1696 /// We also allow one predecessor to end with conditional branch (but no more 1697 /// than one). 1698 static bool SinkCommonCodeFromPredecessors(BasicBlock *BB) { 1699 // We support two situations: 1700 // (1) all incoming arcs are unconditional 1701 // (2) one incoming arc is conditional 1702 // 1703 // (2) is very common in switch defaults and 1704 // else-if patterns; 1705 // 1706 // if (a) f(1); 1707 // else if (b) f(2); 1708 // 1709 // produces: 1710 // 1711 // [if] 1712 // / \ 1713 // [f(1)] [if] 1714 // | | \ 1715 // | | | 1716 // | [f(2)]| 1717 // \ | / 1718 // [ end ] 1719 // 1720 // [end] has two unconditional predecessor arcs and one conditional. The 1721 // conditional refers to the implicit empty 'else' arc. This conditional 1722 // arc can also be caused by an empty default block in a switch. 1723 // 1724 // In this case, we attempt to sink code from all *unconditional* arcs. 1725 // If we can sink instructions from these arcs (determined during the scan 1726 // phase below) we insert a common successor for all unconditional arcs and 1727 // connect that to [end], to enable sinking: 1728 // 1729 // [if] 1730 // / \ 1731 // [x(1)] [if] 1732 // | | \ 1733 // | | \ 1734 // | [x(2)] | 1735 // \ / | 1736 // [sink.split] | 1737 // \ / 1738 // [ end ] 1739 // 1740 SmallVector<BasicBlock*,4> UnconditionalPreds; 1741 Instruction *Cond = nullptr; 1742 for (auto *B : predecessors(BB)) { 1743 auto *T = B->getTerminator(); 1744 if (isa<BranchInst>(T) && cast<BranchInst>(T)->isUnconditional()) 1745 UnconditionalPreds.push_back(B); 1746 else if ((isa<BranchInst>(T) || isa<SwitchInst>(T)) && !Cond) 1747 Cond = T; 1748 else 1749 return false; 1750 } 1751 if (UnconditionalPreds.size() < 2) 1752 return false; 1753 1754 bool Changed = false; 1755 // We take a two-step approach to tail sinking. First we scan from the end of 1756 // each block upwards in lockstep. If the n'th instruction from the end of each 1757 // block can be sunk, those instructions are added to ValuesToSink and we 1758 // carry on. If we can sink an instruction but need to PHI-merge some operands 1759 // (because they're not identical in each instruction) we add these to 1760 // PHIOperands. 1761 unsigned ScanIdx = 0; 1762 SmallPtrSet<Value*,4> InstructionsToSink; 1763 DenseMap<Instruction*, SmallVector<Value*,4>> PHIOperands; 1764 LockstepReverseIterator LRI(UnconditionalPreds); 1765 while (LRI.isValid() && 1766 canSinkInstructions(*LRI, PHIOperands)) { 1767 LLVM_DEBUG(dbgs() << "SINK: instruction can be sunk: " << *(*LRI)[0] 1768 << "\n"); 1769 InstructionsToSink.insert((*LRI).begin(), (*LRI).end()); 1770 ++ScanIdx; 1771 --LRI; 1772 } 1773 1774 auto ProfitableToSinkInstruction = [&](LockstepReverseIterator &LRI) { 1775 unsigned NumPHIdValues = 0; 1776 for (auto *I : *LRI) 1777 for (auto *V : PHIOperands[I]) 1778 if (InstructionsToSink.count(V) == 0) 1779 ++NumPHIdValues; 1780 LLVM_DEBUG(dbgs() << "SINK: #phid values: " << NumPHIdValues << "\n"); 1781 unsigned NumPHIInsts = NumPHIdValues / UnconditionalPreds.size(); 1782 if ((NumPHIdValues % UnconditionalPreds.size()) != 0) 1783 NumPHIInsts++; 1784 1785 return NumPHIInsts <= 1; 1786 }; 1787 1788 if (ScanIdx > 0 && Cond) { 1789 // Check if we would actually sink anything first! This mutates the CFG and 1790 // adds an extra block. The goal in doing this is to allow instructions that 1791 // couldn't be sunk before to be sunk - obviously, speculatable instructions 1792 // (such as trunc, add) can be sunk and predicated already. So we check that 1793 // we're going to sink at least one non-speculatable instruction. 1794 LRI.reset(); 1795 unsigned Idx = 0; 1796 bool Profitable = false; 1797 while (ProfitableToSinkInstruction(LRI) && Idx < ScanIdx) { 1798 if (!isSafeToSpeculativelyExecute((*LRI)[0])) { 1799 Profitable = true; 1800 break; 1801 } 1802 --LRI; 1803 ++Idx; 1804 } 1805 if (!Profitable) 1806 return false; 1807 1808 LLVM_DEBUG(dbgs() << "SINK: Splitting edge\n"); 1809 // We have a conditional edge and we're going to sink some instructions. 1810 // Insert a new block postdominating all blocks we're going to sink from. 1811 if (!SplitBlockPredecessors(BB, UnconditionalPreds, ".sink.split")) 1812 // Edges couldn't be split. 1813 return false; 1814 Changed = true; 1815 } 1816 1817 // Now that we've analyzed all potential sinking candidates, perform the 1818 // actual sink. We iteratively sink the last non-terminator of the source 1819 // blocks into their common successor unless doing so would require too 1820 // many PHI instructions to be generated (currently only one PHI is allowed 1821 // per sunk instruction). 1822 // 1823 // We can use InstructionsToSink to discount values needing PHI-merging that will 1824 // actually be sunk in a later iteration. This allows us to be more 1825 // aggressive in what we sink. This does allow a false positive where we 1826 // sink presuming a later value will also be sunk, but stop half way through 1827 // and never actually sink it which means we produce more PHIs than intended. 1828 // This is unlikely in practice though. 1829 for (unsigned SinkIdx = 0; SinkIdx != ScanIdx; ++SinkIdx) { 1830 LLVM_DEBUG(dbgs() << "SINK: Sink: " 1831 << *UnconditionalPreds[0]->getTerminator()->getPrevNode() 1832 << "\n"); 1833 1834 // Because we've sunk every instruction in turn, the current instruction to 1835 // sink is always at index 0. 1836 LRI.reset(); 1837 if (!ProfitableToSinkInstruction(LRI)) { 1838 // Too many PHIs would be created. 1839 LLVM_DEBUG( 1840 dbgs() << "SINK: stopping here, too many PHIs would be created!\n"); 1841 break; 1842 } 1843 1844 if (!sinkLastInstruction(UnconditionalPreds)) 1845 return Changed; 1846 NumSinkCommons++; 1847 Changed = true; 1848 } 1849 return Changed; 1850 } 1851 1852 /// Determine if we can hoist sink a sole store instruction out of a 1853 /// conditional block. 1854 /// 1855 /// We are looking for code like the following: 1856 /// BrBB: 1857 /// store i32 %add, i32* %arrayidx2 1858 /// ... // No other stores or function calls (we could be calling a memory 1859 /// ... // function). 1860 /// %cmp = icmp ult %x, %y 1861 /// br i1 %cmp, label %EndBB, label %ThenBB 1862 /// ThenBB: 1863 /// store i32 %add5, i32* %arrayidx2 1864 /// br label EndBB 1865 /// EndBB: 1866 /// ... 1867 /// We are going to transform this into: 1868 /// BrBB: 1869 /// store i32 %add, i32* %arrayidx2 1870 /// ... // 1871 /// %cmp = icmp ult %x, %y 1872 /// %add.add5 = select i1 %cmp, i32 %add, %add5 1873 /// store i32 %add.add5, i32* %arrayidx2 1874 /// ... 1875 /// 1876 /// \return The pointer to the value of the previous store if the store can be 1877 /// hoisted into the predecessor block. 0 otherwise. 1878 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB, 1879 BasicBlock *StoreBB, BasicBlock *EndBB) { 1880 StoreInst *StoreToHoist = dyn_cast<StoreInst>(I); 1881 if (!StoreToHoist) 1882 return nullptr; 1883 1884 // Volatile or atomic. 1885 if (!StoreToHoist->isSimple()) 1886 return nullptr; 1887 1888 Value *StorePtr = StoreToHoist->getPointerOperand(); 1889 1890 // Look for a store to the same pointer in BrBB. 1891 unsigned MaxNumInstToLookAt = 9; 1892 for (Instruction &CurI : reverse(BrBB->instructionsWithoutDebug())) { 1893 if (!MaxNumInstToLookAt) 1894 break; 1895 --MaxNumInstToLookAt; 1896 1897 // Could be calling an instruction that affects memory like free(). 1898 if (CurI.mayHaveSideEffects() && !isa<StoreInst>(CurI)) 1899 return nullptr; 1900 1901 if (auto *SI = dyn_cast<StoreInst>(&CurI)) { 1902 // Found the previous store make sure it stores to the same location. 1903 if (SI->getPointerOperand() == StorePtr) 1904 // Found the previous store, return its value operand. 1905 return SI->getValueOperand(); 1906 return nullptr; // Unknown store. 1907 } 1908 } 1909 1910 return nullptr; 1911 } 1912 1913 /// Speculate a conditional basic block flattening the CFG. 1914 /// 1915 /// Note that this is a very risky transform currently. Speculating 1916 /// instructions like this is most often not desirable. Instead, there is an MI 1917 /// pass which can do it with full awareness of the resource constraints. 1918 /// However, some cases are "obvious" and we should do directly. An example of 1919 /// this is speculating a single, reasonably cheap instruction. 1920 /// 1921 /// There is only one distinct advantage to flattening the CFG at the IR level: 1922 /// it makes very common but simplistic optimizations such as are common in 1923 /// instcombine and the DAG combiner more powerful by removing CFG edges and 1924 /// modeling their effects with easier to reason about SSA value graphs. 1925 /// 1926 /// 1927 /// An illustration of this transform is turning this IR: 1928 /// \code 1929 /// BB: 1930 /// %cmp = icmp ult %x, %y 1931 /// br i1 %cmp, label %EndBB, label %ThenBB 1932 /// ThenBB: 1933 /// %sub = sub %x, %y 1934 /// br label BB2 1935 /// EndBB: 1936 /// %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ] 1937 /// ... 1938 /// \endcode 1939 /// 1940 /// Into this IR: 1941 /// \code 1942 /// BB: 1943 /// %cmp = icmp ult %x, %y 1944 /// %sub = sub %x, %y 1945 /// %cond = select i1 %cmp, 0, %sub 1946 /// ... 1947 /// \endcode 1948 /// 1949 /// \returns true if the conditional block is removed. 1950 static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB, 1951 const TargetTransformInfo &TTI) { 1952 // Be conservative for now. FP select instruction can often be expensive. 1953 Value *BrCond = BI->getCondition(); 1954 if (isa<FCmpInst>(BrCond)) 1955 return false; 1956 1957 BasicBlock *BB = BI->getParent(); 1958 BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0); 1959 1960 // If ThenBB is actually on the false edge of the conditional branch, remember 1961 // to swap the select operands later. 1962 bool Invert = false; 1963 if (ThenBB != BI->getSuccessor(0)) { 1964 assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?"); 1965 Invert = true; 1966 } 1967 assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block"); 1968 1969 // Keep a count of how many times instructions are used within ThenBB when 1970 // they are candidates for sinking into ThenBB. Specifically: 1971 // - They are defined in BB, and 1972 // - They have no side effects, and 1973 // - All of their uses are in ThenBB. 1974 SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts; 1975 1976 SmallVector<Instruction *, 4> SpeculatedDbgIntrinsics; 1977 1978 unsigned SpeculationCost = 0; 1979 Value *SpeculatedStoreValue = nullptr; 1980 StoreInst *SpeculatedStore = nullptr; 1981 for (BasicBlock::iterator BBI = ThenBB->begin(), 1982 BBE = std::prev(ThenBB->end()); 1983 BBI != BBE; ++BBI) { 1984 Instruction *I = &*BBI; 1985 // Skip debug info. 1986 if (isa<DbgInfoIntrinsic>(I)) { 1987 SpeculatedDbgIntrinsics.push_back(I); 1988 continue; 1989 } 1990 1991 // Only speculatively execute a single instruction (not counting the 1992 // terminator) for now. 1993 ++SpeculationCost; 1994 if (SpeculationCost > 1) 1995 return false; 1996 1997 // Don't hoist the instruction if it's unsafe or expensive. 1998 if (!isSafeToSpeculativelyExecute(I) && 1999 !(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore( 2000 I, BB, ThenBB, EndBB)))) 2001 return false; 2002 if (!SpeculatedStoreValue && 2003 ComputeSpeculationCost(I, TTI) > 2004 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic) 2005 return false; 2006 2007 // Store the store speculation candidate. 2008 if (SpeculatedStoreValue) 2009 SpeculatedStore = cast<StoreInst>(I); 2010 2011 // Do not hoist the instruction if any of its operands are defined but not 2012 // used in BB. The transformation will prevent the operand from 2013 // being sunk into the use block. 2014 for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) { 2015 Instruction *OpI = dyn_cast<Instruction>(*i); 2016 if (!OpI || OpI->getParent() != BB || OpI->mayHaveSideEffects()) 2017 continue; // Not a candidate for sinking. 2018 2019 ++SinkCandidateUseCounts[OpI]; 2020 } 2021 } 2022 2023 // Consider any sink candidates which are only used in ThenBB as costs for 2024 // speculation. Note, while we iterate over a DenseMap here, we are summing 2025 // and so iteration order isn't significant. 2026 for (SmallDenseMap<Instruction *, unsigned, 4>::iterator 2027 I = SinkCandidateUseCounts.begin(), 2028 E = SinkCandidateUseCounts.end(); 2029 I != E; ++I) 2030 if (I->first->hasNUses(I->second)) { 2031 ++SpeculationCost; 2032 if (SpeculationCost > 1) 2033 return false; 2034 } 2035 2036 // Check that the PHI nodes can be converted to selects. 2037 bool HaveRewritablePHIs = false; 2038 for (PHINode &PN : EndBB->phis()) { 2039 Value *OrigV = PN.getIncomingValueForBlock(BB); 2040 Value *ThenV = PN.getIncomingValueForBlock(ThenBB); 2041 2042 // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf. 2043 // Skip PHIs which are trivial. 2044 if (ThenV == OrigV) 2045 continue; 2046 2047 // Don't convert to selects if we could remove undefined behavior instead. 2048 if (passingValueIsAlwaysUndefined(OrigV, &PN) || 2049 passingValueIsAlwaysUndefined(ThenV, &PN)) 2050 return false; 2051 2052 HaveRewritablePHIs = true; 2053 ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV); 2054 ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV); 2055 if (!OrigCE && !ThenCE) 2056 continue; // Known safe and cheap. 2057 2058 if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE)) || 2059 (OrigCE && !isSafeToSpeculativelyExecute(OrigCE))) 2060 return false; 2061 unsigned OrigCost = OrigCE ? ComputeSpeculationCost(OrigCE, TTI) : 0; 2062 unsigned ThenCost = ThenCE ? ComputeSpeculationCost(ThenCE, TTI) : 0; 2063 unsigned MaxCost = 2064 2 * PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 2065 if (OrigCost + ThenCost > MaxCost) 2066 return false; 2067 2068 // Account for the cost of an unfolded ConstantExpr which could end up 2069 // getting expanded into Instructions. 2070 // FIXME: This doesn't account for how many operations are combined in the 2071 // constant expression. 2072 ++SpeculationCost; 2073 if (SpeculationCost > 1) 2074 return false; 2075 } 2076 2077 // If there are no PHIs to process, bail early. This helps ensure idempotence 2078 // as well. 2079 if (!HaveRewritablePHIs && !(HoistCondStores && SpeculatedStoreValue)) 2080 return false; 2081 2082 // If we get here, we can hoist the instruction and if-convert. 2083 LLVM_DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";); 2084 2085 // Insert a select of the value of the speculated store. 2086 if (SpeculatedStoreValue) { 2087 IRBuilder<NoFolder> Builder(BI); 2088 Value *TrueV = SpeculatedStore->getValueOperand(); 2089 Value *FalseV = SpeculatedStoreValue; 2090 if (Invert) 2091 std::swap(TrueV, FalseV); 2092 Value *S = Builder.CreateSelect( 2093 BrCond, TrueV, FalseV, "spec.store.select", BI); 2094 SpeculatedStore->setOperand(0, S); 2095 SpeculatedStore->applyMergedLocation(BI->getDebugLoc(), 2096 SpeculatedStore->getDebugLoc()); 2097 } 2098 2099 // Metadata can be dependent on the condition we are hoisting above. 2100 // Conservatively strip all metadata on the instruction. 2101 for (auto &I : *ThenBB) 2102 I.dropUnknownNonDebugMetadata(); 2103 2104 // Hoist the instructions. 2105 BB->getInstList().splice(BI->getIterator(), ThenBB->getInstList(), 2106 ThenBB->begin(), std::prev(ThenBB->end())); 2107 2108 // Insert selects and rewrite the PHI operands. 2109 IRBuilder<NoFolder> Builder(BI); 2110 for (PHINode &PN : EndBB->phis()) { 2111 unsigned OrigI = PN.getBasicBlockIndex(BB); 2112 unsigned ThenI = PN.getBasicBlockIndex(ThenBB); 2113 Value *OrigV = PN.getIncomingValue(OrigI); 2114 Value *ThenV = PN.getIncomingValue(ThenI); 2115 2116 // Skip PHIs which are trivial. 2117 if (OrigV == ThenV) 2118 continue; 2119 2120 // Create a select whose true value is the speculatively executed value and 2121 // false value is the preexisting value. Swap them if the branch 2122 // destinations were inverted. 2123 Value *TrueV = ThenV, *FalseV = OrigV; 2124 if (Invert) 2125 std::swap(TrueV, FalseV); 2126 Value *V = Builder.CreateSelect( 2127 BrCond, TrueV, FalseV, "spec.select", BI); 2128 PN.setIncomingValue(OrigI, V); 2129 PN.setIncomingValue(ThenI, V); 2130 } 2131 2132 // Remove speculated dbg intrinsics. 2133 // FIXME: Is it possible to do this in a more elegant way? Moving/merging the 2134 // dbg value for the different flows and inserting it after the select. 2135 for (Instruction *I : SpeculatedDbgIntrinsics) 2136 I->eraseFromParent(); 2137 2138 ++NumSpeculations; 2139 return true; 2140 } 2141 2142 /// Return true if we can thread a branch across this block. 2143 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) { 2144 unsigned Size = 0; 2145 2146 for (Instruction &I : BB->instructionsWithoutDebug()) { 2147 if (Size > 10) 2148 return false; // Don't clone large BB's. 2149 ++Size; 2150 2151 // We can only support instructions that do not define values that are 2152 // live outside of the current basic block. 2153 for (User *U : I.users()) { 2154 Instruction *UI = cast<Instruction>(U); 2155 if (UI->getParent() != BB || isa<PHINode>(UI)) 2156 return false; 2157 } 2158 2159 // Looks ok, continue checking. 2160 } 2161 2162 return true; 2163 } 2164 2165 /// If we have a conditional branch on a PHI node value that is defined in the 2166 /// same block as the branch and if any PHI entries are constants, thread edges 2167 /// corresponding to that entry to be branches to their ultimate destination. 2168 static bool FoldCondBranchOnPHI(BranchInst *BI, const DataLayout &DL, 2169 AssumptionCache *AC) { 2170 BasicBlock *BB = BI->getParent(); 2171 PHINode *PN = dyn_cast<PHINode>(BI->getCondition()); 2172 // NOTE: we currently cannot transform this case if the PHI node is used 2173 // outside of the block. 2174 if (!PN || PN->getParent() != BB || !PN->hasOneUse()) 2175 return false; 2176 2177 // Degenerate case of a single entry PHI. 2178 if (PN->getNumIncomingValues() == 1) { 2179 FoldSingleEntryPHINodes(PN->getParent()); 2180 return true; 2181 } 2182 2183 // Now we know that this block has multiple preds and two succs. 2184 if (!BlockIsSimpleEnoughToThreadThrough(BB)) 2185 return false; 2186 2187 // Can't fold blocks that contain noduplicate or convergent calls. 2188 if (any_of(*BB, [](const Instruction &I) { 2189 const CallInst *CI = dyn_cast<CallInst>(&I); 2190 return CI && (CI->cannotDuplicate() || CI->isConvergent()); 2191 })) 2192 return false; 2193 2194 // Okay, this is a simple enough basic block. See if any phi values are 2195 // constants. 2196 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 2197 ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i)); 2198 if (!CB || !CB->getType()->isIntegerTy(1)) 2199 continue; 2200 2201 // Okay, we now know that all edges from PredBB should be revectored to 2202 // branch to RealDest. 2203 BasicBlock *PredBB = PN->getIncomingBlock(i); 2204 BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue()); 2205 2206 if (RealDest == BB) 2207 continue; // Skip self loops. 2208 // Skip if the predecessor's terminator is an indirect branch. 2209 if (isa<IndirectBrInst>(PredBB->getTerminator())) 2210 continue; 2211 2212 // The dest block might have PHI nodes, other predecessors and other 2213 // difficult cases. Instead of being smart about this, just insert a new 2214 // block that jumps to the destination block, effectively splitting 2215 // the edge we are about to create. 2216 BasicBlock *EdgeBB = 2217 BasicBlock::Create(BB->getContext(), RealDest->getName() + ".critedge", 2218 RealDest->getParent(), RealDest); 2219 BranchInst *CritEdgeBranch = BranchInst::Create(RealDest, EdgeBB); 2220 CritEdgeBranch->setDebugLoc(BI->getDebugLoc()); 2221 2222 // Update PHI nodes. 2223 AddPredecessorToBlock(RealDest, EdgeBB, BB); 2224 2225 // BB may have instructions that are being threaded over. Clone these 2226 // instructions into EdgeBB. We know that there will be no uses of the 2227 // cloned instructions outside of EdgeBB. 2228 BasicBlock::iterator InsertPt = EdgeBB->begin(); 2229 DenseMap<Value *, Value *> TranslateMap; // Track translated values. 2230 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) { 2231 if (PHINode *PN = dyn_cast<PHINode>(BBI)) { 2232 TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB); 2233 continue; 2234 } 2235 // Clone the instruction. 2236 Instruction *N = BBI->clone(); 2237 if (BBI->hasName()) 2238 N->setName(BBI->getName() + ".c"); 2239 2240 // Update operands due to translation. 2241 for (User::op_iterator i = N->op_begin(), e = N->op_end(); i != e; ++i) { 2242 DenseMap<Value *, Value *>::iterator PI = TranslateMap.find(*i); 2243 if (PI != TranslateMap.end()) 2244 *i = PI->second; 2245 } 2246 2247 // Check for trivial simplification. 2248 if (Value *V = SimplifyInstruction(N, {DL, nullptr, nullptr, AC})) { 2249 if (!BBI->use_empty()) 2250 TranslateMap[&*BBI] = V; 2251 if (!N->mayHaveSideEffects()) { 2252 N->deleteValue(); // Instruction folded away, don't need actual inst 2253 N = nullptr; 2254 } 2255 } else { 2256 if (!BBI->use_empty()) 2257 TranslateMap[&*BBI] = N; 2258 } 2259 // Insert the new instruction into its new home. 2260 if (N) 2261 EdgeBB->getInstList().insert(InsertPt, N); 2262 2263 // Register the new instruction with the assumption cache if necessary. 2264 if (auto *II = dyn_cast_or_null<IntrinsicInst>(N)) 2265 if (II->getIntrinsicID() == Intrinsic::assume) 2266 AC->registerAssumption(II); 2267 } 2268 2269 // Loop over all of the edges from PredBB to BB, changing them to branch 2270 // to EdgeBB instead. 2271 Instruction *PredBBTI = PredBB->getTerminator(); 2272 for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i) 2273 if (PredBBTI->getSuccessor(i) == BB) { 2274 BB->removePredecessor(PredBB); 2275 PredBBTI->setSuccessor(i, EdgeBB); 2276 } 2277 2278 // Recurse, simplifying any other constants. 2279 return FoldCondBranchOnPHI(BI, DL, AC) || true; 2280 } 2281 2282 return false; 2283 } 2284 2285 /// Given a BB that starts with the specified two-entry PHI node, 2286 /// see if we can eliminate it. 2287 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI, 2288 const DataLayout &DL) { 2289 // Ok, this is a two entry PHI node. Check to see if this is a simple "if 2290 // statement", which has a very simple dominance structure. Basically, we 2291 // are trying to find the condition that is being branched on, which 2292 // subsequently causes this merge to happen. We really want control 2293 // dependence information for this check, but simplifycfg can't keep it up 2294 // to date, and this catches most of the cases we care about anyway. 2295 BasicBlock *BB = PN->getParent(); 2296 const Function *Fn = BB->getParent(); 2297 if (Fn && Fn->hasFnAttribute(Attribute::OptForFuzzing)) 2298 return false; 2299 2300 BasicBlock *IfTrue, *IfFalse; 2301 Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse); 2302 if (!IfCond || 2303 // Don't bother if the branch will be constant folded trivially. 2304 isa<ConstantInt>(IfCond)) 2305 return false; 2306 2307 // Okay, we found that we can merge this two-entry phi node into a select. 2308 // Doing so would require us to fold *all* two entry phi nodes in this block. 2309 // At some point this becomes non-profitable (particularly if the target 2310 // doesn't support cmov's). Only do this transformation if there are two or 2311 // fewer PHI nodes in this block. 2312 unsigned NumPhis = 0; 2313 for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I) 2314 if (NumPhis > 2) 2315 return false; 2316 2317 // Loop over the PHI's seeing if we can promote them all to select 2318 // instructions. While we are at it, keep track of the instructions 2319 // that need to be moved to the dominating block. 2320 SmallPtrSet<Instruction *, 4> AggressiveInsts; 2321 unsigned MaxCostVal0 = PHINodeFoldingThreshold, 2322 MaxCostVal1 = PHINodeFoldingThreshold; 2323 MaxCostVal0 *= TargetTransformInfo::TCC_Basic; 2324 MaxCostVal1 *= TargetTransformInfo::TCC_Basic; 2325 2326 for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) { 2327 PHINode *PN = cast<PHINode>(II++); 2328 if (Value *V = SimplifyInstruction(PN, {DL, PN})) { 2329 PN->replaceAllUsesWith(V); 2330 PN->eraseFromParent(); 2331 continue; 2332 } 2333 2334 if (!DominatesMergePoint(PN->getIncomingValue(0), BB, AggressiveInsts, 2335 MaxCostVal0, TTI) || 2336 !DominatesMergePoint(PN->getIncomingValue(1), BB, AggressiveInsts, 2337 MaxCostVal1, TTI)) 2338 return false; 2339 } 2340 2341 // If we folded the first phi, PN dangles at this point. Refresh it. If 2342 // we ran out of PHIs then we simplified them all. 2343 PN = dyn_cast<PHINode>(BB->begin()); 2344 if (!PN) 2345 return true; 2346 2347 // Don't fold i1 branches on PHIs which contain binary operators. These can 2348 // often be turned into switches and other things. 2349 if (PN->getType()->isIntegerTy(1) && 2350 (isa<BinaryOperator>(PN->getIncomingValue(0)) || 2351 isa<BinaryOperator>(PN->getIncomingValue(1)) || 2352 isa<BinaryOperator>(IfCond))) 2353 return false; 2354 2355 // If all PHI nodes are promotable, check to make sure that all instructions 2356 // in the predecessor blocks can be promoted as well. If not, we won't be able 2357 // to get rid of the control flow, so it's not worth promoting to select 2358 // instructions. 2359 BasicBlock *DomBlock = nullptr; 2360 BasicBlock *IfBlock1 = PN->getIncomingBlock(0); 2361 BasicBlock *IfBlock2 = PN->getIncomingBlock(1); 2362 if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) { 2363 IfBlock1 = nullptr; 2364 } else { 2365 DomBlock = *pred_begin(IfBlock1); 2366 for (BasicBlock::iterator I = IfBlock1->begin(); !I->isTerminator(); ++I) 2367 if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) { 2368 // This is not an aggressive instruction that we can promote. 2369 // Because of this, we won't be able to get rid of the control flow, so 2370 // the xform is not worth it. 2371 return false; 2372 } 2373 } 2374 2375 if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) { 2376 IfBlock2 = nullptr; 2377 } else { 2378 DomBlock = *pred_begin(IfBlock2); 2379 for (BasicBlock::iterator I = IfBlock2->begin(); !I->isTerminator(); ++I) 2380 if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) { 2381 // This is not an aggressive instruction that we can promote. 2382 // Because of this, we won't be able to get rid of the control flow, so 2383 // the xform is not worth it. 2384 return false; 2385 } 2386 } 2387 2388 LLVM_DEBUG(dbgs() << "FOUND IF CONDITION! " << *IfCond 2389 << " T: " << IfTrue->getName() 2390 << " F: " << IfFalse->getName() << "\n"); 2391 2392 // If we can still promote the PHI nodes after this gauntlet of tests, 2393 // do all of the PHI's now. 2394 Instruction *InsertPt = DomBlock->getTerminator(); 2395 IRBuilder<NoFolder> Builder(InsertPt); 2396 2397 // Move all 'aggressive' instructions, which are defined in the 2398 // conditional parts of the if's up to the dominating block. 2399 if (IfBlock1) 2400 hoistAllInstructionsInto(DomBlock, InsertPt, IfBlock1); 2401 if (IfBlock2) 2402 hoistAllInstructionsInto(DomBlock, InsertPt, IfBlock2); 2403 2404 while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) { 2405 // Change the PHI node into a select instruction. 2406 Value *TrueVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse); 2407 Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue); 2408 2409 Value *Sel = Builder.CreateSelect(IfCond, TrueVal, FalseVal, "", InsertPt); 2410 PN->replaceAllUsesWith(Sel); 2411 Sel->takeName(PN); 2412 PN->eraseFromParent(); 2413 } 2414 2415 // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement 2416 // has been flattened. Change DomBlock to jump directly to our new block to 2417 // avoid other simplifycfg's kicking in on the diamond. 2418 Instruction *OldTI = DomBlock->getTerminator(); 2419 Builder.SetInsertPoint(OldTI); 2420 Builder.CreateBr(BB); 2421 OldTI->eraseFromParent(); 2422 return true; 2423 } 2424 2425 /// If we found a conditional branch that goes to two returning blocks, 2426 /// try to merge them together into one return, 2427 /// introducing a select if the return values disagree. 2428 static bool SimplifyCondBranchToTwoReturns(BranchInst *BI, 2429 IRBuilder<> &Builder) { 2430 assert(BI->isConditional() && "Must be a conditional branch"); 2431 BasicBlock *TrueSucc = BI->getSuccessor(0); 2432 BasicBlock *FalseSucc = BI->getSuccessor(1); 2433 ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator()); 2434 ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator()); 2435 2436 // Check to ensure both blocks are empty (just a return) or optionally empty 2437 // with PHI nodes. If there are other instructions, merging would cause extra 2438 // computation on one path or the other. 2439 if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator()) 2440 return false; 2441 if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator()) 2442 return false; 2443 2444 Builder.SetInsertPoint(BI); 2445 // Okay, we found a branch that is going to two return nodes. If 2446 // there is no return value for this function, just change the 2447 // branch into a return. 2448 if (FalseRet->getNumOperands() == 0) { 2449 TrueSucc->removePredecessor(BI->getParent()); 2450 FalseSucc->removePredecessor(BI->getParent()); 2451 Builder.CreateRetVoid(); 2452 EraseTerminatorAndDCECond(BI); 2453 return true; 2454 } 2455 2456 // Otherwise, figure out what the true and false return values are 2457 // so we can insert a new select instruction. 2458 Value *TrueValue = TrueRet->getReturnValue(); 2459 Value *FalseValue = FalseRet->getReturnValue(); 2460 2461 // Unwrap any PHI nodes in the return blocks. 2462 if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue)) 2463 if (TVPN->getParent() == TrueSucc) 2464 TrueValue = TVPN->getIncomingValueForBlock(BI->getParent()); 2465 if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue)) 2466 if (FVPN->getParent() == FalseSucc) 2467 FalseValue = FVPN->getIncomingValueForBlock(BI->getParent()); 2468 2469 // In order for this transformation to be safe, we must be able to 2470 // unconditionally execute both operands to the return. This is 2471 // normally the case, but we could have a potentially-trapping 2472 // constant expression that prevents this transformation from being 2473 // safe. 2474 if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue)) 2475 if (TCV->canTrap()) 2476 return false; 2477 if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue)) 2478 if (FCV->canTrap()) 2479 return false; 2480 2481 // Okay, we collected all the mapped values and checked them for sanity, and 2482 // defined to really do this transformation. First, update the CFG. 2483 TrueSucc->removePredecessor(BI->getParent()); 2484 FalseSucc->removePredecessor(BI->getParent()); 2485 2486 // Insert select instructions where needed. 2487 Value *BrCond = BI->getCondition(); 2488 if (TrueValue) { 2489 // Insert a select if the results differ. 2490 if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) { 2491 } else if (isa<UndefValue>(TrueValue)) { 2492 TrueValue = FalseValue; 2493 } else { 2494 TrueValue = 2495 Builder.CreateSelect(BrCond, TrueValue, FalseValue, "retval", BI); 2496 } 2497 } 2498 2499 Value *RI = 2500 !TrueValue ? Builder.CreateRetVoid() : Builder.CreateRet(TrueValue); 2501 2502 (void)RI; 2503 2504 LLVM_DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:" 2505 << "\n " << *BI << "NewRet = " << *RI << "TRUEBLOCK: " 2506 << *TrueSucc << "FALSEBLOCK: " << *FalseSucc); 2507 2508 EraseTerminatorAndDCECond(BI); 2509 2510 return true; 2511 } 2512 2513 /// Return true if the given instruction is available 2514 /// in its predecessor block. If yes, the instruction will be removed. 2515 static bool tryCSEWithPredecessor(Instruction *Inst, BasicBlock *PB) { 2516 if (!isa<BinaryOperator>(Inst) && !isa<CmpInst>(Inst)) 2517 return false; 2518 for (Instruction &I : *PB) { 2519 Instruction *PBI = &I; 2520 // Check whether Inst and PBI generate the same value. 2521 if (Inst->isIdenticalTo(PBI)) { 2522 Inst->replaceAllUsesWith(PBI); 2523 Inst->eraseFromParent(); 2524 return true; 2525 } 2526 } 2527 return false; 2528 } 2529 2530 /// Return true if either PBI or BI has branch weight available, and store 2531 /// the weights in {Pred|Succ}{True|False}Weight. If one of PBI and BI does 2532 /// not have branch weight, use 1:1 as its weight. 2533 static bool extractPredSuccWeights(BranchInst *PBI, BranchInst *BI, 2534 uint64_t &PredTrueWeight, 2535 uint64_t &PredFalseWeight, 2536 uint64_t &SuccTrueWeight, 2537 uint64_t &SuccFalseWeight) { 2538 bool PredHasWeights = 2539 PBI->extractProfMetadata(PredTrueWeight, PredFalseWeight); 2540 bool SuccHasWeights = 2541 BI->extractProfMetadata(SuccTrueWeight, SuccFalseWeight); 2542 if (PredHasWeights || SuccHasWeights) { 2543 if (!PredHasWeights) 2544 PredTrueWeight = PredFalseWeight = 1; 2545 if (!SuccHasWeights) 2546 SuccTrueWeight = SuccFalseWeight = 1; 2547 return true; 2548 } else { 2549 return false; 2550 } 2551 } 2552 2553 /// If this basic block is simple enough, and if a predecessor branches to us 2554 /// and one of our successors, fold the block into the predecessor and use 2555 /// logical operations to pick the right destination. 2556 bool llvm::FoldBranchToCommonDest(BranchInst *BI, MemorySSAUpdater *MSSAU, 2557 unsigned BonusInstThreshold) { 2558 BasicBlock *BB = BI->getParent(); 2559 2560 const unsigned PredCount = pred_size(BB); 2561 2562 Instruction *Cond = nullptr; 2563 if (BI->isConditional()) 2564 Cond = dyn_cast<Instruction>(BI->getCondition()); 2565 else { 2566 // For unconditional branch, check for a simple CFG pattern, where 2567 // BB has a single predecessor and BB's successor is also its predecessor's 2568 // successor. If such pattern exists, check for CSE between BB and its 2569 // predecessor. 2570 if (BasicBlock *PB = BB->getSinglePredecessor()) 2571 if (BranchInst *PBI = dyn_cast<BranchInst>(PB->getTerminator())) 2572 if (PBI->isConditional() && 2573 (BI->getSuccessor(0) == PBI->getSuccessor(0) || 2574 BI->getSuccessor(0) == PBI->getSuccessor(1))) { 2575 for (auto I = BB->instructionsWithoutDebug().begin(), 2576 E = BB->instructionsWithoutDebug().end(); 2577 I != E;) { 2578 Instruction *Curr = &*I++; 2579 if (isa<CmpInst>(Curr)) { 2580 Cond = Curr; 2581 break; 2582 } 2583 // Quit if we can't remove this instruction. 2584 if (!tryCSEWithPredecessor(Curr, PB)) 2585 return false; 2586 } 2587 } 2588 2589 if (!Cond) 2590 return false; 2591 } 2592 2593 if (!Cond || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) || 2594 Cond->getParent() != BB || !Cond->hasOneUse()) 2595 return false; 2596 2597 // Make sure the instruction after the condition is the cond branch. 2598 BasicBlock::iterator CondIt = ++Cond->getIterator(); 2599 2600 // Ignore dbg intrinsics. 2601 while (isa<DbgInfoIntrinsic>(CondIt)) 2602 ++CondIt; 2603 2604 if (&*CondIt != BI) 2605 return false; 2606 2607 // Only allow this transformation if computing the condition doesn't involve 2608 // too many instructions and these involved instructions can be executed 2609 // unconditionally. We denote all involved instructions except the condition 2610 // as "bonus instructions", and only allow this transformation when the 2611 // number of the bonus instructions we'll need to create when cloning into 2612 // each predecessor does not exceed a certain threshold. 2613 unsigned NumBonusInsts = 0; 2614 for (auto I = BB->begin(); Cond != &*I; ++I) { 2615 // Ignore dbg intrinsics. 2616 if (isa<DbgInfoIntrinsic>(I)) 2617 continue; 2618 if (!I->hasOneUse() || !isSafeToSpeculativelyExecute(&*I)) 2619 return false; 2620 // I has only one use and can be executed unconditionally. 2621 Instruction *User = dyn_cast<Instruction>(I->user_back()); 2622 if (User == nullptr || User->getParent() != BB) 2623 return false; 2624 // I is used in the same BB. Since BI uses Cond and doesn't have more slots 2625 // to use any other instruction, User must be an instruction between next(I) 2626 // and Cond. 2627 2628 // Account for the cost of duplicating this instruction into each 2629 // predecessor. 2630 NumBonusInsts += PredCount; 2631 // Early exits once we reach the limit. 2632 if (NumBonusInsts > BonusInstThreshold) 2633 return false; 2634 } 2635 2636 // Cond is known to be a compare or binary operator. Check to make sure that 2637 // neither operand is a potentially-trapping constant expression. 2638 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0))) 2639 if (CE->canTrap()) 2640 return false; 2641 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1))) 2642 if (CE->canTrap()) 2643 return false; 2644 2645 // Finally, don't infinitely unroll conditional loops. 2646 BasicBlock *TrueDest = BI->getSuccessor(0); 2647 BasicBlock *FalseDest = (BI->isConditional()) ? BI->getSuccessor(1) : nullptr; 2648 if (TrueDest == BB || FalseDest == BB) 2649 return false; 2650 2651 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 2652 BasicBlock *PredBlock = *PI; 2653 BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator()); 2654 2655 // Check that we have two conditional branches. If there is a PHI node in 2656 // the common successor, verify that the same value flows in from both 2657 // blocks. 2658 SmallVector<PHINode *, 4> PHIs; 2659 if (!PBI || PBI->isUnconditional() || 2660 (BI->isConditional() && !SafeToMergeTerminators(BI, PBI)) || 2661 (!BI->isConditional() && 2662 !isProfitableToFoldUnconditional(BI, PBI, Cond, PHIs))) 2663 continue; 2664 2665 // Determine if the two branches share a common destination. 2666 Instruction::BinaryOps Opc = Instruction::BinaryOpsEnd; 2667 bool InvertPredCond = false; 2668 2669 if (BI->isConditional()) { 2670 if (PBI->getSuccessor(0) == TrueDest) { 2671 Opc = Instruction::Or; 2672 } else if (PBI->getSuccessor(1) == FalseDest) { 2673 Opc = Instruction::And; 2674 } else if (PBI->getSuccessor(0) == FalseDest) { 2675 Opc = Instruction::And; 2676 InvertPredCond = true; 2677 } else if (PBI->getSuccessor(1) == TrueDest) { 2678 Opc = Instruction::Or; 2679 InvertPredCond = true; 2680 } else { 2681 continue; 2682 } 2683 } else { 2684 if (PBI->getSuccessor(0) != TrueDest && PBI->getSuccessor(1) != TrueDest) 2685 continue; 2686 } 2687 2688 LLVM_DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB); 2689 IRBuilder<> Builder(PBI); 2690 2691 // If we need to invert the condition in the pred block to match, do so now. 2692 if (InvertPredCond) { 2693 Value *NewCond = PBI->getCondition(); 2694 2695 if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) { 2696 CmpInst *CI = cast<CmpInst>(NewCond); 2697 CI->setPredicate(CI->getInversePredicate()); 2698 } else { 2699 NewCond = 2700 Builder.CreateNot(NewCond, PBI->getCondition()->getName() + ".not"); 2701 } 2702 2703 PBI->setCondition(NewCond); 2704 PBI->swapSuccessors(); 2705 } 2706 2707 // If we have bonus instructions, clone them into the predecessor block. 2708 // Note that there may be multiple predecessor blocks, so we cannot move 2709 // bonus instructions to a predecessor block. 2710 ValueToValueMapTy VMap; // maps original values to cloned values 2711 // We already make sure Cond is the last instruction before BI. Therefore, 2712 // all instructions before Cond other than DbgInfoIntrinsic are bonus 2713 // instructions. 2714 for (auto BonusInst = BB->begin(); Cond != &*BonusInst; ++BonusInst) { 2715 if (isa<DbgInfoIntrinsic>(BonusInst)) 2716 continue; 2717 Instruction *NewBonusInst = BonusInst->clone(); 2718 RemapInstruction(NewBonusInst, VMap, 2719 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 2720 VMap[&*BonusInst] = NewBonusInst; 2721 2722 // If we moved a load, we cannot any longer claim any knowledge about 2723 // its potential value. The previous information might have been valid 2724 // only given the branch precondition. 2725 // For an analogous reason, we must also drop all the metadata whose 2726 // semantics we don't understand. 2727 NewBonusInst->dropUnknownNonDebugMetadata(); 2728 2729 PredBlock->getInstList().insert(PBI->getIterator(), NewBonusInst); 2730 NewBonusInst->takeName(&*BonusInst); 2731 BonusInst->setName(BonusInst->getName() + ".old"); 2732 } 2733 2734 // Clone Cond into the predecessor basic block, and or/and the 2735 // two conditions together. 2736 Instruction *CondInPred = Cond->clone(); 2737 RemapInstruction(CondInPred, VMap, 2738 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 2739 PredBlock->getInstList().insert(PBI->getIterator(), CondInPred); 2740 CondInPred->takeName(Cond); 2741 Cond->setName(CondInPred->getName() + ".old"); 2742 2743 if (BI->isConditional()) { 2744 Instruction *NewCond = cast<Instruction>( 2745 Builder.CreateBinOp(Opc, PBI->getCondition(), CondInPred, "or.cond")); 2746 PBI->setCondition(NewCond); 2747 2748 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 2749 bool HasWeights = 2750 extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight, 2751 SuccTrueWeight, SuccFalseWeight); 2752 SmallVector<uint64_t, 8> NewWeights; 2753 2754 if (PBI->getSuccessor(0) == BB) { 2755 if (HasWeights) { 2756 // PBI: br i1 %x, BB, FalseDest 2757 // BI: br i1 %y, TrueDest, FalseDest 2758 // TrueWeight is TrueWeight for PBI * TrueWeight for BI. 2759 NewWeights.push_back(PredTrueWeight * SuccTrueWeight); 2760 // FalseWeight is FalseWeight for PBI * TotalWeight for BI + 2761 // TrueWeight for PBI * FalseWeight for BI. 2762 // We assume that total weights of a BranchInst can fit into 32 bits. 2763 // Therefore, we will not have overflow using 64-bit arithmetic. 2764 NewWeights.push_back(PredFalseWeight * 2765 (SuccFalseWeight + SuccTrueWeight) + 2766 PredTrueWeight * SuccFalseWeight); 2767 } 2768 AddPredecessorToBlock(TrueDest, PredBlock, BB, MSSAU); 2769 PBI->setSuccessor(0, TrueDest); 2770 } 2771 if (PBI->getSuccessor(1) == BB) { 2772 if (HasWeights) { 2773 // PBI: br i1 %x, TrueDest, BB 2774 // BI: br i1 %y, TrueDest, FalseDest 2775 // TrueWeight is TrueWeight for PBI * TotalWeight for BI + 2776 // FalseWeight for PBI * TrueWeight for BI. 2777 NewWeights.push_back(PredTrueWeight * 2778 (SuccFalseWeight + SuccTrueWeight) + 2779 PredFalseWeight * SuccTrueWeight); 2780 // FalseWeight is FalseWeight for PBI * FalseWeight for BI. 2781 NewWeights.push_back(PredFalseWeight * SuccFalseWeight); 2782 } 2783 AddPredecessorToBlock(FalseDest, PredBlock, BB, MSSAU); 2784 PBI->setSuccessor(1, FalseDest); 2785 } 2786 if (NewWeights.size() == 2) { 2787 // Halve the weights if any of them cannot fit in an uint32_t 2788 FitWeights(NewWeights); 2789 2790 SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(), 2791 NewWeights.end()); 2792 setBranchWeights(PBI, MDWeights[0], MDWeights[1]); 2793 } else 2794 PBI->setMetadata(LLVMContext::MD_prof, nullptr); 2795 } else { 2796 // Update PHI nodes in the common successors. 2797 for (unsigned i = 0, e = PHIs.size(); i != e; ++i) { 2798 ConstantInt *PBI_C = cast<ConstantInt>( 2799 PHIs[i]->getIncomingValueForBlock(PBI->getParent())); 2800 assert(PBI_C->getType()->isIntegerTy(1)); 2801 Instruction *MergedCond = nullptr; 2802 if (PBI->getSuccessor(0) == TrueDest) { 2803 // Create (PBI_Cond and PBI_C) or (!PBI_Cond and BI_Value) 2804 // PBI_C is true: PBI_Cond or (!PBI_Cond and BI_Value) 2805 // is false: !PBI_Cond and BI_Value 2806 Instruction *NotCond = cast<Instruction>( 2807 Builder.CreateNot(PBI->getCondition(), "not.cond")); 2808 MergedCond = cast<Instruction>( 2809 Builder.CreateBinOp(Instruction::And, NotCond, CondInPred, 2810 "and.cond")); 2811 if (PBI_C->isOne()) 2812 MergedCond = cast<Instruction>(Builder.CreateBinOp( 2813 Instruction::Or, PBI->getCondition(), MergedCond, "or.cond")); 2814 } else { 2815 // Create (PBI_Cond and BI_Value) or (!PBI_Cond and PBI_C) 2816 // PBI_C is true: (PBI_Cond and BI_Value) or (!PBI_Cond) 2817 // is false: PBI_Cond and BI_Value 2818 MergedCond = cast<Instruction>(Builder.CreateBinOp( 2819 Instruction::And, PBI->getCondition(), CondInPred, "and.cond")); 2820 if (PBI_C->isOne()) { 2821 Instruction *NotCond = cast<Instruction>( 2822 Builder.CreateNot(PBI->getCondition(), "not.cond")); 2823 MergedCond = cast<Instruction>(Builder.CreateBinOp( 2824 Instruction::Or, NotCond, MergedCond, "or.cond")); 2825 } 2826 } 2827 // Update PHI Node. 2828 PHIs[i]->setIncomingValue(PHIs[i]->getBasicBlockIndex(PBI->getParent()), 2829 MergedCond); 2830 } 2831 2832 // PBI is changed to branch to TrueDest below. Remove itself from 2833 // potential phis from all other successors. 2834 if (MSSAU) 2835 MSSAU->changeCondBranchToUnconditionalTo(PBI, TrueDest); 2836 2837 // Change PBI from Conditional to Unconditional. 2838 BranchInst *New_PBI = BranchInst::Create(TrueDest, PBI); 2839 EraseTerminatorAndDCECond(PBI, MSSAU); 2840 PBI = New_PBI; 2841 } 2842 2843 // If BI was a loop latch, it may have had associated loop metadata. 2844 // We need to copy it to the new latch, that is, PBI. 2845 if (MDNode *LoopMD = BI->getMetadata(LLVMContext::MD_loop)) 2846 PBI->setMetadata(LLVMContext::MD_loop, LoopMD); 2847 2848 // TODO: If BB is reachable from all paths through PredBlock, then we 2849 // could replace PBI's branch probabilities with BI's. 2850 2851 // Copy any debug value intrinsics into the end of PredBlock. 2852 for (Instruction &I : *BB) 2853 if (isa<DbgInfoIntrinsic>(I)) 2854 I.clone()->insertBefore(PBI); 2855 2856 return true; 2857 } 2858 return false; 2859 } 2860 2861 // If there is only one store in BB1 and BB2, return it, otherwise return 2862 // nullptr. 2863 static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) { 2864 StoreInst *S = nullptr; 2865 for (auto *BB : {BB1, BB2}) { 2866 if (!BB) 2867 continue; 2868 for (auto &I : *BB) 2869 if (auto *SI = dyn_cast<StoreInst>(&I)) { 2870 if (S) 2871 // Multiple stores seen. 2872 return nullptr; 2873 else 2874 S = SI; 2875 } 2876 } 2877 return S; 2878 } 2879 2880 static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB, 2881 Value *AlternativeV = nullptr) { 2882 // PHI is going to be a PHI node that allows the value V that is defined in 2883 // BB to be referenced in BB's only successor. 2884 // 2885 // If AlternativeV is nullptr, the only value we care about in PHI is V. It 2886 // doesn't matter to us what the other operand is (it'll never get used). We 2887 // could just create a new PHI with an undef incoming value, but that could 2888 // increase register pressure if EarlyCSE/InstCombine can't fold it with some 2889 // other PHI. So here we directly look for some PHI in BB's successor with V 2890 // as an incoming operand. If we find one, we use it, else we create a new 2891 // one. 2892 // 2893 // If AlternativeV is not nullptr, we care about both incoming values in PHI. 2894 // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV] 2895 // where OtherBB is the single other predecessor of BB's only successor. 2896 PHINode *PHI = nullptr; 2897 BasicBlock *Succ = BB->getSingleSuccessor(); 2898 2899 for (auto I = Succ->begin(); isa<PHINode>(I); ++I) 2900 if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) { 2901 PHI = cast<PHINode>(I); 2902 if (!AlternativeV) 2903 break; 2904 2905 assert(Succ->hasNPredecessors(2)); 2906 auto PredI = pred_begin(Succ); 2907 BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI; 2908 if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV) 2909 break; 2910 PHI = nullptr; 2911 } 2912 if (PHI) 2913 return PHI; 2914 2915 // If V is not an instruction defined in BB, just return it. 2916 if (!AlternativeV && 2917 (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB)) 2918 return V; 2919 2920 PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge", &Succ->front()); 2921 PHI->addIncoming(V, BB); 2922 for (BasicBlock *PredBB : predecessors(Succ)) 2923 if (PredBB != BB) 2924 PHI->addIncoming( 2925 AlternativeV ? AlternativeV : UndefValue::get(V->getType()), PredBB); 2926 return PHI; 2927 } 2928 2929 static bool mergeConditionalStoreToAddress(BasicBlock *PTB, BasicBlock *PFB, 2930 BasicBlock *QTB, BasicBlock *QFB, 2931 BasicBlock *PostBB, Value *Address, 2932 bool InvertPCond, bool InvertQCond, 2933 const DataLayout &DL) { 2934 auto IsaBitcastOfPointerType = [](const Instruction &I) { 2935 return Operator::getOpcode(&I) == Instruction::BitCast && 2936 I.getType()->isPointerTy(); 2937 }; 2938 2939 // If we're not in aggressive mode, we only optimize if we have some 2940 // confidence that by optimizing we'll allow P and/or Q to be if-converted. 2941 auto IsWorthwhile = [&](BasicBlock *BB) { 2942 if (!BB) 2943 return true; 2944 // Heuristic: if the block can be if-converted/phi-folded and the 2945 // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to 2946 // thread this store. 2947 unsigned N = 0; 2948 for (auto &I : BB->instructionsWithoutDebug()) { 2949 // Cheap instructions viable for folding. 2950 if (isa<BinaryOperator>(I) || isa<GetElementPtrInst>(I) || 2951 isa<StoreInst>(I)) 2952 ++N; 2953 // Free instructions. 2954 else if (I.isTerminator() || IsaBitcastOfPointerType(I)) 2955 continue; 2956 else 2957 return false; 2958 } 2959 // The store we want to merge is counted in N, so add 1 to make sure 2960 // we're counting the instructions that would be left. 2961 return N <= (PHINodeFoldingThreshold + 1); 2962 }; 2963 2964 if (!MergeCondStoresAggressively && 2965 (!IsWorthwhile(PTB) || !IsWorthwhile(PFB) || !IsWorthwhile(QTB) || 2966 !IsWorthwhile(QFB))) 2967 return false; 2968 2969 // For every pointer, there must be exactly two stores, one coming from 2970 // PTB or PFB, and the other from QTB or QFB. We don't support more than one 2971 // store (to any address) in PTB,PFB or QTB,QFB. 2972 // FIXME: We could relax this restriction with a bit more work and performance 2973 // testing. 2974 StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB); 2975 StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB); 2976 if (!PStore || !QStore) 2977 return false; 2978 2979 // Now check the stores are compatible. 2980 if (!QStore->isUnordered() || !PStore->isUnordered()) 2981 return false; 2982 2983 // Check that sinking the store won't cause program behavior changes. Sinking 2984 // the store out of the Q blocks won't change any behavior as we're sinking 2985 // from a block to its unconditional successor. But we're moving a store from 2986 // the P blocks down through the middle block (QBI) and past both QFB and QTB. 2987 // So we need to check that there are no aliasing loads or stores in 2988 // QBI, QTB and QFB. We also need to check there are no conflicting memory 2989 // operations between PStore and the end of its parent block. 2990 // 2991 // The ideal way to do this is to query AliasAnalysis, but we don't 2992 // preserve AA currently so that is dangerous. Be super safe and just 2993 // check there are no other memory operations at all. 2994 for (auto &I : *QFB->getSinglePredecessor()) 2995 if (I.mayReadOrWriteMemory()) 2996 return false; 2997 for (auto &I : *QFB) 2998 if (&I != QStore && I.mayReadOrWriteMemory()) 2999 return false; 3000 if (QTB) 3001 for (auto &I : *QTB) 3002 if (&I != QStore && I.mayReadOrWriteMemory()) 3003 return false; 3004 for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end(); 3005 I != E; ++I) 3006 if (&*I != PStore && I->mayReadOrWriteMemory()) 3007 return false; 3008 3009 // If PostBB has more than two predecessors, we need to split it so we can 3010 // sink the store. 3011 if (std::next(pred_begin(PostBB), 2) != pred_end(PostBB)) { 3012 // We know that QFB's only successor is PostBB. And QFB has a single 3013 // predecessor. If QTB exists, then its only successor is also PostBB. 3014 // If QTB does not exist, then QFB's only predecessor has a conditional 3015 // branch to QFB and PostBB. 3016 BasicBlock *TruePred = QTB ? QTB : QFB->getSinglePredecessor(); 3017 BasicBlock *NewBB = SplitBlockPredecessors(PostBB, { QFB, TruePred}, 3018 "condstore.split"); 3019 if (!NewBB) 3020 return false; 3021 PostBB = NewBB; 3022 } 3023 3024 // OK, we're going to sink the stores to PostBB. The store has to be 3025 // conditional though, so first create the predicate. 3026 Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator()) 3027 ->getCondition(); 3028 Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator()) 3029 ->getCondition(); 3030 3031 Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(), 3032 PStore->getParent()); 3033 Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(), 3034 QStore->getParent(), PPHI); 3035 3036 IRBuilder<> QB(&*PostBB->getFirstInsertionPt()); 3037 3038 Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond); 3039 Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond); 3040 3041 if (InvertPCond) 3042 PPred = QB.CreateNot(PPred); 3043 if (InvertQCond) 3044 QPred = QB.CreateNot(QPred); 3045 Value *CombinedPred = QB.CreateOr(PPred, QPred); 3046 3047 auto *T = 3048 SplitBlockAndInsertIfThen(CombinedPred, &*QB.GetInsertPoint(), false); 3049 QB.SetInsertPoint(T); 3050 StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address)); 3051 AAMDNodes AAMD; 3052 PStore->getAAMetadata(AAMD, /*Merge=*/false); 3053 PStore->getAAMetadata(AAMD, /*Merge=*/true); 3054 SI->setAAMetadata(AAMD); 3055 unsigned PAlignment = PStore->getAlignment(); 3056 unsigned QAlignment = QStore->getAlignment(); 3057 unsigned TypeAlignment = 3058 DL.getABITypeAlignment(SI->getValueOperand()->getType()); 3059 unsigned MinAlignment; 3060 unsigned MaxAlignment; 3061 std::tie(MinAlignment, MaxAlignment) = std::minmax(PAlignment, QAlignment); 3062 // Choose the minimum alignment. If we could prove both stores execute, we 3063 // could use biggest one. In this case, though, we only know that one of the 3064 // stores executes. And we don't know it's safe to take the alignment from a 3065 // store that doesn't execute. 3066 if (MinAlignment != 0) { 3067 // Choose the minimum of all non-zero alignments. 3068 SI->setAlignment(MinAlignment); 3069 } else if (MaxAlignment != 0) { 3070 // Choose the minimal alignment between the non-zero alignment and the ABI 3071 // default alignment for the type of the stored value. 3072 SI->setAlignment(std::min(MaxAlignment, TypeAlignment)); 3073 } else { 3074 // If both alignments are zero, use ABI default alignment for the type of 3075 // the stored value. 3076 SI->setAlignment(TypeAlignment); 3077 } 3078 3079 QStore->eraseFromParent(); 3080 PStore->eraseFromParent(); 3081 3082 return true; 3083 } 3084 3085 static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI, 3086 const DataLayout &DL) { 3087 // The intention here is to find diamonds or triangles (see below) where each 3088 // conditional block contains a store to the same address. Both of these 3089 // stores are conditional, so they can't be unconditionally sunk. But it may 3090 // be profitable to speculatively sink the stores into one merged store at the 3091 // end, and predicate the merged store on the union of the two conditions of 3092 // PBI and QBI. 3093 // 3094 // This can reduce the number of stores executed if both of the conditions are 3095 // true, and can allow the blocks to become small enough to be if-converted. 3096 // This optimization will also chain, so that ladders of test-and-set 3097 // sequences can be if-converted away. 3098 // 3099 // We only deal with simple diamonds or triangles: 3100 // 3101 // PBI or PBI or a combination of the two 3102 // / \ | \ 3103 // PTB PFB | PFB 3104 // \ / | / 3105 // QBI QBI 3106 // / \ | \ 3107 // QTB QFB | QFB 3108 // \ / | / 3109 // PostBB PostBB 3110 // 3111 // We model triangles as a type of diamond with a nullptr "true" block. 3112 // Triangles are canonicalized so that the fallthrough edge is represented by 3113 // a true condition, as in the diagram above. 3114 BasicBlock *PTB = PBI->getSuccessor(0); 3115 BasicBlock *PFB = PBI->getSuccessor(1); 3116 BasicBlock *QTB = QBI->getSuccessor(0); 3117 BasicBlock *QFB = QBI->getSuccessor(1); 3118 BasicBlock *PostBB = QFB->getSingleSuccessor(); 3119 3120 // Make sure we have a good guess for PostBB. If QTB's only successor is 3121 // QFB, then QFB is a better PostBB. 3122 if (QTB->getSingleSuccessor() == QFB) 3123 PostBB = QFB; 3124 3125 // If we couldn't find a good PostBB, stop. 3126 if (!PostBB) 3127 return false; 3128 3129 bool InvertPCond = false, InvertQCond = false; 3130 // Canonicalize fallthroughs to the true branches. 3131 if (PFB == QBI->getParent()) { 3132 std::swap(PFB, PTB); 3133 InvertPCond = true; 3134 } 3135 if (QFB == PostBB) { 3136 std::swap(QFB, QTB); 3137 InvertQCond = true; 3138 } 3139 3140 // From this point on we can assume PTB or QTB may be fallthroughs but PFB 3141 // and QFB may not. Model fallthroughs as a nullptr block. 3142 if (PTB == QBI->getParent()) 3143 PTB = nullptr; 3144 if (QTB == PostBB) 3145 QTB = nullptr; 3146 3147 // Legality bailouts. We must have at least the non-fallthrough blocks and 3148 // the post-dominating block, and the non-fallthroughs must only have one 3149 // predecessor. 3150 auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) { 3151 return BB->getSinglePredecessor() == P && BB->getSingleSuccessor() == S; 3152 }; 3153 if (!HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) || 3154 !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB)) 3155 return false; 3156 if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) || 3157 (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB))) 3158 return false; 3159 if (!QBI->getParent()->hasNUses(2)) 3160 return false; 3161 3162 // OK, this is a sequence of two diamonds or triangles. 3163 // Check if there are stores in PTB or PFB that are repeated in QTB or QFB. 3164 SmallPtrSet<Value *, 4> PStoreAddresses, QStoreAddresses; 3165 for (auto *BB : {PTB, PFB}) { 3166 if (!BB) 3167 continue; 3168 for (auto &I : *BB) 3169 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) 3170 PStoreAddresses.insert(SI->getPointerOperand()); 3171 } 3172 for (auto *BB : {QTB, QFB}) { 3173 if (!BB) 3174 continue; 3175 for (auto &I : *BB) 3176 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) 3177 QStoreAddresses.insert(SI->getPointerOperand()); 3178 } 3179 3180 set_intersect(PStoreAddresses, QStoreAddresses); 3181 // set_intersect mutates PStoreAddresses in place. Rename it here to make it 3182 // clear what it contains. 3183 auto &CommonAddresses = PStoreAddresses; 3184 3185 bool Changed = false; 3186 for (auto *Address : CommonAddresses) 3187 Changed |= mergeConditionalStoreToAddress( 3188 PTB, PFB, QTB, QFB, PostBB, Address, InvertPCond, InvertQCond, DL); 3189 return Changed; 3190 } 3191 3192 /// If we have a conditional branch as a predecessor of another block, 3193 /// this function tries to simplify it. We know 3194 /// that PBI and BI are both conditional branches, and BI is in one of the 3195 /// successor blocks of PBI - PBI branches to BI. 3196 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI, 3197 const DataLayout &DL) { 3198 assert(PBI->isConditional() && BI->isConditional()); 3199 BasicBlock *BB = BI->getParent(); 3200 3201 // If this block ends with a branch instruction, and if there is a 3202 // predecessor that ends on a branch of the same condition, make 3203 // this conditional branch redundant. 3204 if (PBI->getCondition() == BI->getCondition() && 3205 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 3206 // Okay, the outcome of this conditional branch is statically 3207 // knowable. If this block had a single pred, handle specially. 3208 if (BB->getSinglePredecessor()) { 3209 // Turn this into a branch on constant. 3210 bool CondIsTrue = PBI->getSuccessor(0) == BB; 3211 BI->setCondition( 3212 ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue)); 3213 return true; // Nuke the branch on constant. 3214 } 3215 3216 // Otherwise, if there are multiple predecessors, insert a PHI that merges 3217 // in the constant and simplify the block result. Subsequent passes of 3218 // simplifycfg will thread the block. 3219 if (BlockIsSimpleEnoughToThreadThrough(BB)) { 3220 pred_iterator PB = pred_begin(BB), PE = pred_end(BB); 3221 PHINode *NewPN = PHINode::Create( 3222 Type::getInt1Ty(BB->getContext()), std::distance(PB, PE), 3223 BI->getCondition()->getName() + ".pr", &BB->front()); 3224 // Okay, we're going to insert the PHI node. Since PBI is not the only 3225 // predecessor, compute the PHI'd conditional value for all of the preds. 3226 // Any predecessor where the condition is not computable we keep symbolic. 3227 for (pred_iterator PI = PB; PI != PE; ++PI) { 3228 BasicBlock *P = *PI; 3229 if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) && PBI != BI && 3230 PBI->isConditional() && PBI->getCondition() == BI->getCondition() && 3231 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 3232 bool CondIsTrue = PBI->getSuccessor(0) == BB; 3233 NewPN->addIncoming( 3234 ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue), 3235 P); 3236 } else { 3237 NewPN->addIncoming(BI->getCondition(), P); 3238 } 3239 } 3240 3241 BI->setCondition(NewPN); 3242 return true; 3243 } 3244 } 3245 3246 if (auto *CE = dyn_cast<ConstantExpr>(BI->getCondition())) 3247 if (CE->canTrap()) 3248 return false; 3249 3250 // If both branches are conditional and both contain stores to the same 3251 // address, remove the stores from the conditionals and create a conditional 3252 // merged store at the end. 3253 if (MergeCondStores && mergeConditionalStores(PBI, BI, DL)) 3254 return true; 3255 3256 // If this is a conditional branch in an empty block, and if any 3257 // predecessors are a conditional branch to one of our destinations, 3258 // fold the conditions into logical ops and one cond br. 3259 3260 // Ignore dbg intrinsics. 3261 if (&*BB->instructionsWithoutDebug().begin() != BI) 3262 return false; 3263 3264 int PBIOp, BIOp; 3265 if (PBI->getSuccessor(0) == BI->getSuccessor(0)) { 3266 PBIOp = 0; 3267 BIOp = 0; 3268 } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) { 3269 PBIOp = 0; 3270 BIOp = 1; 3271 } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) { 3272 PBIOp = 1; 3273 BIOp = 0; 3274 } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) { 3275 PBIOp = 1; 3276 BIOp = 1; 3277 } else { 3278 return false; 3279 } 3280 3281 // Check to make sure that the other destination of this branch 3282 // isn't BB itself. If so, this is an infinite loop that will 3283 // keep getting unwound. 3284 if (PBI->getSuccessor(PBIOp) == BB) 3285 return false; 3286 3287 // Do not perform this transformation if it would require 3288 // insertion of a large number of select instructions. For targets 3289 // without predication/cmovs, this is a big pessimization. 3290 3291 // Also do not perform this transformation if any phi node in the common 3292 // destination block can trap when reached by BB or PBB (PR17073). In that 3293 // case, it would be unsafe to hoist the operation into a select instruction. 3294 3295 BasicBlock *CommonDest = PBI->getSuccessor(PBIOp); 3296 unsigned NumPhis = 0; 3297 for (BasicBlock::iterator II = CommonDest->begin(); isa<PHINode>(II); 3298 ++II, ++NumPhis) { 3299 if (NumPhis > 2) // Disable this xform. 3300 return false; 3301 3302 PHINode *PN = cast<PHINode>(II); 3303 Value *BIV = PN->getIncomingValueForBlock(BB); 3304 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BIV)) 3305 if (CE->canTrap()) 3306 return false; 3307 3308 unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent()); 3309 Value *PBIV = PN->getIncomingValue(PBBIdx); 3310 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(PBIV)) 3311 if (CE->canTrap()) 3312 return false; 3313 } 3314 3315 // Finally, if everything is ok, fold the branches to logical ops. 3316 BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1); 3317 3318 LLVM_DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent() 3319 << "AND: " << *BI->getParent()); 3320 3321 // If OtherDest *is* BB, then BB is a basic block with a single conditional 3322 // branch in it, where one edge (OtherDest) goes back to itself but the other 3323 // exits. We don't *know* that the program avoids the infinite loop 3324 // (even though that seems likely). If we do this xform naively, we'll end up 3325 // recursively unpeeling the loop. Since we know that (after the xform is 3326 // done) that the block *is* infinite if reached, we just make it an obviously 3327 // infinite loop with no cond branch. 3328 if (OtherDest == BB) { 3329 // Insert it at the end of the function, because it's either code, 3330 // or it won't matter if it's hot. :) 3331 BasicBlock *InfLoopBlock = 3332 BasicBlock::Create(BB->getContext(), "infloop", BB->getParent()); 3333 BranchInst::Create(InfLoopBlock, InfLoopBlock); 3334 OtherDest = InfLoopBlock; 3335 } 3336 3337 LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent()); 3338 3339 // BI may have other predecessors. Because of this, we leave 3340 // it alone, but modify PBI. 3341 3342 // Make sure we get to CommonDest on True&True directions. 3343 Value *PBICond = PBI->getCondition(); 3344 IRBuilder<NoFolder> Builder(PBI); 3345 if (PBIOp) 3346 PBICond = Builder.CreateNot(PBICond, PBICond->getName() + ".not"); 3347 3348 Value *BICond = BI->getCondition(); 3349 if (BIOp) 3350 BICond = Builder.CreateNot(BICond, BICond->getName() + ".not"); 3351 3352 // Merge the conditions. 3353 Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge"); 3354 3355 // Modify PBI to branch on the new condition to the new dests. 3356 PBI->setCondition(Cond); 3357 PBI->setSuccessor(0, CommonDest); 3358 PBI->setSuccessor(1, OtherDest); 3359 3360 // Update branch weight for PBI. 3361 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 3362 uint64_t PredCommon, PredOther, SuccCommon, SuccOther; 3363 bool HasWeights = 3364 extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight, 3365 SuccTrueWeight, SuccFalseWeight); 3366 if (HasWeights) { 3367 PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight; 3368 PredOther = PBIOp ? PredTrueWeight : PredFalseWeight; 3369 SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight; 3370 SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight; 3371 // The weight to CommonDest should be PredCommon * SuccTotal + 3372 // PredOther * SuccCommon. 3373 // The weight to OtherDest should be PredOther * SuccOther. 3374 uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) + 3375 PredOther * SuccCommon, 3376 PredOther * SuccOther}; 3377 // Halve the weights if any of them cannot fit in an uint32_t 3378 FitWeights(NewWeights); 3379 3380 setBranchWeights(PBI, NewWeights[0], NewWeights[1]); 3381 } 3382 3383 // OtherDest may have phi nodes. If so, add an entry from PBI's 3384 // block that are identical to the entries for BI's block. 3385 AddPredecessorToBlock(OtherDest, PBI->getParent(), BB); 3386 3387 // We know that the CommonDest already had an edge from PBI to 3388 // it. If it has PHIs though, the PHIs may have different 3389 // entries for BB and PBI's BB. If so, insert a select to make 3390 // them agree. 3391 for (PHINode &PN : CommonDest->phis()) { 3392 Value *BIV = PN.getIncomingValueForBlock(BB); 3393 unsigned PBBIdx = PN.getBasicBlockIndex(PBI->getParent()); 3394 Value *PBIV = PN.getIncomingValue(PBBIdx); 3395 if (BIV != PBIV) { 3396 // Insert a select in PBI to pick the right value. 3397 SelectInst *NV = cast<SelectInst>( 3398 Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName() + ".mux")); 3399 PN.setIncomingValue(PBBIdx, NV); 3400 // Although the select has the same condition as PBI, the original branch 3401 // weights for PBI do not apply to the new select because the select's 3402 // 'logical' edges are incoming edges of the phi that is eliminated, not 3403 // the outgoing edges of PBI. 3404 if (HasWeights) { 3405 uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight; 3406 uint64_t PredOther = PBIOp ? PredTrueWeight : PredFalseWeight; 3407 uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight; 3408 uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight; 3409 // The weight to PredCommonDest should be PredCommon * SuccTotal. 3410 // The weight to PredOtherDest should be PredOther * SuccCommon. 3411 uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther), 3412 PredOther * SuccCommon}; 3413 3414 FitWeights(NewWeights); 3415 3416 setBranchWeights(NV, NewWeights[0], NewWeights[1]); 3417 } 3418 } 3419 } 3420 3421 LLVM_DEBUG(dbgs() << "INTO: " << *PBI->getParent()); 3422 LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent()); 3423 3424 // This basic block is probably dead. We know it has at least 3425 // one fewer predecessor. 3426 return true; 3427 } 3428 3429 // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is 3430 // true or to FalseBB if Cond is false. 3431 // Takes care of updating the successors and removing the old terminator. 3432 // Also makes sure not to introduce new successors by assuming that edges to 3433 // non-successor TrueBBs and FalseBBs aren't reachable. 3434 static bool SimplifyTerminatorOnSelect(Instruction *OldTerm, Value *Cond, 3435 BasicBlock *TrueBB, BasicBlock *FalseBB, 3436 uint32_t TrueWeight, 3437 uint32_t FalseWeight) { 3438 // Remove any superfluous successor edges from the CFG. 3439 // First, figure out which successors to preserve. 3440 // If TrueBB and FalseBB are equal, only try to preserve one copy of that 3441 // successor. 3442 BasicBlock *KeepEdge1 = TrueBB; 3443 BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr; 3444 3445 // Then remove the rest. 3446 for (BasicBlock *Succ : successors(OldTerm)) { 3447 // Make sure only to keep exactly one copy of each edge. 3448 if (Succ == KeepEdge1) 3449 KeepEdge1 = nullptr; 3450 else if (Succ == KeepEdge2) 3451 KeepEdge2 = nullptr; 3452 else 3453 Succ->removePredecessor(OldTerm->getParent(), 3454 /*KeepOneInputPHIs=*/true); 3455 } 3456 3457 IRBuilder<> Builder(OldTerm); 3458 Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc()); 3459 3460 // Insert an appropriate new terminator. 3461 if (!KeepEdge1 && !KeepEdge2) { 3462 if (TrueBB == FalseBB) 3463 // We were only looking for one successor, and it was present. 3464 // Create an unconditional branch to it. 3465 Builder.CreateBr(TrueBB); 3466 else { 3467 // We found both of the successors we were looking for. 3468 // Create a conditional branch sharing the condition of the select. 3469 BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB); 3470 if (TrueWeight != FalseWeight) 3471 setBranchWeights(NewBI, TrueWeight, FalseWeight); 3472 } 3473 } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) { 3474 // Neither of the selected blocks were successors, so this 3475 // terminator must be unreachable. 3476 new UnreachableInst(OldTerm->getContext(), OldTerm); 3477 } else { 3478 // One of the selected values was a successor, but the other wasn't. 3479 // Insert an unconditional branch to the one that was found; 3480 // the edge to the one that wasn't must be unreachable. 3481 if (!KeepEdge1) 3482 // Only TrueBB was found. 3483 Builder.CreateBr(TrueBB); 3484 else 3485 // Only FalseBB was found. 3486 Builder.CreateBr(FalseBB); 3487 } 3488 3489 EraseTerminatorAndDCECond(OldTerm); 3490 return true; 3491 } 3492 3493 // Replaces 3494 // (switch (select cond, X, Y)) on constant X, Y 3495 // with a branch - conditional if X and Y lead to distinct BBs, 3496 // unconditional otherwise. 3497 static bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select) { 3498 // Check for constant integer values in the select. 3499 ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue()); 3500 ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue()); 3501 if (!TrueVal || !FalseVal) 3502 return false; 3503 3504 // Find the relevant condition and destinations. 3505 Value *Condition = Select->getCondition(); 3506 BasicBlock *TrueBB = SI->findCaseValue(TrueVal)->getCaseSuccessor(); 3507 BasicBlock *FalseBB = SI->findCaseValue(FalseVal)->getCaseSuccessor(); 3508 3509 // Get weight for TrueBB and FalseBB. 3510 uint32_t TrueWeight = 0, FalseWeight = 0; 3511 SmallVector<uint64_t, 8> Weights; 3512 bool HasWeights = HasBranchWeights(SI); 3513 if (HasWeights) { 3514 GetBranchWeights(SI, Weights); 3515 if (Weights.size() == 1 + SI->getNumCases()) { 3516 TrueWeight = 3517 (uint32_t)Weights[SI->findCaseValue(TrueVal)->getSuccessorIndex()]; 3518 FalseWeight = 3519 (uint32_t)Weights[SI->findCaseValue(FalseVal)->getSuccessorIndex()]; 3520 } 3521 } 3522 3523 // Perform the actual simplification. 3524 return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, TrueWeight, 3525 FalseWeight); 3526 } 3527 3528 // Replaces 3529 // (indirectbr (select cond, blockaddress(@fn, BlockA), 3530 // blockaddress(@fn, BlockB))) 3531 // with 3532 // (br cond, BlockA, BlockB). 3533 static bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI) { 3534 // Check that both operands of the select are block addresses. 3535 BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue()); 3536 BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue()); 3537 if (!TBA || !FBA) 3538 return false; 3539 3540 // Extract the actual blocks. 3541 BasicBlock *TrueBB = TBA->getBasicBlock(); 3542 BasicBlock *FalseBB = FBA->getBasicBlock(); 3543 3544 // Perform the actual simplification. 3545 return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 0, 3546 0); 3547 } 3548 3549 /// This is called when we find an icmp instruction 3550 /// (a seteq/setne with a constant) as the only instruction in a 3551 /// block that ends with an uncond branch. We are looking for a very specific 3552 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified. In 3553 /// this case, we merge the first two "or's of icmp" into a switch, but then the 3554 /// default value goes to an uncond block with a seteq in it, we get something 3555 /// like: 3556 /// 3557 /// switch i8 %A, label %DEFAULT [ i8 1, label %end i8 2, label %end ] 3558 /// DEFAULT: 3559 /// %tmp = icmp eq i8 %A, 92 3560 /// br label %end 3561 /// end: 3562 /// ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ] 3563 /// 3564 /// We prefer to split the edge to 'end' so that there is a true/false entry to 3565 /// the PHI, merging the third icmp into the switch. 3566 bool SimplifyCFGOpt::tryToSimplifyUncondBranchWithICmpInIt( 3567 ICmpInst *ICI, IRBuilder<> &Builder) { 3568 BasicBlock *BB = ICI->getParent(); 3569 3570 // If the block has any PHIs in it or the icmp has multiple uses, it is too 3571 // complex. 3572 if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse()) 3573 return false; 3574 3575 Value *V = ICI->getOperand(0); 3576 ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1)); 3577 3578 // The pattern we're looking for is where our only predecessor is a switch on 3579 // 'V' and this block is the default case for the switch. In this case we can 3580 // fold the compared value into the switch to simplify things. 3581 BasicBlock *Pred = BB->getSinglePredecessor(); 3582 if (!Pred || !isa<SwitchInst>(Pred->getTerminator())) 3583 return false; 3584 3585 SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator()); 3586 if (SI->getCondition() != V) 3587 return false; 3588 3589 // If BB is reachable on a non-default case, then we simply know the value of 3590 // V in this block. Substitute it and constant fold the icmp instruction 3591 // away. 3592 if (SI->getDefaultDest() != BB) { 3593 ConstantInt *VVal = SI->findCaseDest(BB); 3594 assert(VVal && "Should have a unique destination value"); 3595 ICI->setOperand(0, VVal); 3596 3597 if (Value *V = SimplifyInstruction(ICI, {DL, ICI})) { 3598 ICI->replaceAllUsesWith(V); 3599 ICI->eraseFromParent(); 3600 } 3601 // BB is now empty, so it is likely to simplify away. 3602 return requestResimplify(); 3603 } 3604 3605 // Ok, the block is reachable from the default dest. If the constant we're 3606 // comparing exists in one of the other edges, then we can constant fold ICI 3607 // and zap it. 3608 if (SI->findCaseValue(Cst) != SI->case_default()) { 3609 Value *V; 3610 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 3611 V = ConstantInt::getFalse(BB->getContext()); 3612 else 3613 V = ConstantInt::getTrue(BB->getContext()); 3614 3615 ICI->replaceAllUsesWith(V); 3616 ICI->eraseFromParent(); 3617 // BB is now empty, so it is likely to simplify away. 3618 return requestResimplify(); 3619 } 3620 3621 // The use of the icmp has to be in the 'end' block, by the only PHI node in 3622 // the block. 3623 BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0); 3624 PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back()); 3625 if (PHIUse == nullptr || PHIUse != &SuccBlock->front() || 3626 isa<PHINode>(++BasicBlock::iterator(PHIUse))) 3627 return false; 3628 3629 // If the icmp is a SETEQ, then the default dest gets false, the new edge gets 3630 // true in the PHI. 3631 Constant *DefaultCst = ConstantInt::getTrue(BB->getContext()); 3632 Constant *NewCst = ConstantInt::getFalse(BB->getContext()); 3633 3634 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 3635 std::swap(DefaultCst, NewCst); 3636 3637 // Replace ICI (which is used by the PHI for the default value) with true or 3638 // false depending on if it is EQ or NE. 3639 ICI->replaceAllUsesWith(DefaultCst); 3640 ICI->eraseFromParent(); 3641 3642 // Okay, the switch goes to this block on a default value. Add an edge from 3643 // the switch to the merge point on the compared value. 3644 BasicBlock *NewBB = 3645 BasicBlock::Create(BB->getContext(), "switch.edge", BB->getParent(), BB); 3646 SmallVector<uint64_t, 8> Weights; 3647 bool HasWeights = HasBranchWeights(SI); 3648 if (HasWeights) { 3649 GetBranchWeights(SI, Weights); 3650 if (Weights.size() == 1 + SI->getNumCases()) { 3651 // Split weight for default case to case for "Cst". 3652 Weights[0] = (Weights[0] + 1) >> 1; 3653 Weights.push_back(Weights[0]); 3654 3655 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 3656 setBranchWeights(SI, MDWeights); 3657 } 3658 } 3659 SI->addCase(Cst, NewBB); 3660 3661 // NewBB branches to the phi block, add the uncond branch and the phi entry. 3662 Builder.SetInsertPoint(NewBB); 3663 Builder.SetCurrentDebugLocation(SI->getDebugLoc()); 3664 Builder.CreateBr(SuccBlock); 3665 PHIUse->addIncoming(NewCst, NewBB); 3666 return true; 3667 } 3668 3669 /// The specified branch is a conditional branch. 3670 /// Check to see if it is branching on an or/and chain of icmp instructions, and 3671 /// fold it into a switch instruction if so. 3672 static bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder, 3673 const DataLayout &DL) { 3674 Instruction *Cond = dyn_cast<Instruction>(BI->getCondition()); 3675 if (!Cond) 3676 return false; 3677 3678 // Change br (X == 0 | X == 1), T, F into a switch instruction. 3679 // If this is a bunch of seteq's or'd together, or if it's a bunch of 3680 // 'setne's and'ed together, collect them. 3681 3682 // Try to gather values from a chain of and/or to be turned into a switch 3683 ConstantComparesGatherer ConstantCompare(Cond, DL); 3684 // Unpack the result 3685 SmallVectorImpl<ConstantInt *> &Values = ConstantCompare.Vals; 3686 Value *CompVal = ConstantCompare.CompValue; 3687 unsigned UsedICmps = ConstantCompare.UsedICmps; 3688 Value *ExtraCase = ConstantCompare.Extra; 3689 3690 // If we didn't have a multiply compared value, fail. 3691 if (!CompVal) 3692 return false; 3693 3694 // Avoid turning single icmps into a switch. 3695 if (UsedICmps <= 1) 3696 return false; 3697 3698 bool TrueWhenEqual = (Cond->getOpcode() == Instruction::Or); 3699 3700 // There might be duplicate constants in the list, which the switch 3701 // instruction can't handle, remove them now. 3702 array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate); 3703 Values.erase(std::unique(Values.begin(), Values.end()), Values.end()); 3704 3705 // If Extra was used, we require at least two switch values to do the 3706 // transformation. A switch with one value is just a conditional branch. 3707 if (ExtraCase && Values.size() < 2) 3708 return false; 3709 3710 // TODO: Preserve branch weight metadata, similarly to how 3711 // FoldValueComparisonIntoPredecessors preserves it. 3712 3713 // Figure out which block is which destination. 3714 BasicBlock *DefaultBB = BI->getSuccessor(1); 3715 BasicBlock *EdgeBB = BI->getSuccessor(0); 3716 if (!TrueWhenEqual) 3717 std::swap(DefaultBB, EdgeBB); 3718 3719 BasicBlock *BB = BI->getParent(); 3720 3721 LLVM_DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size() 3722 << " cases into SWITCH. BB is:\n" 3723 << *BB); 3724 3725 // If there are any extra values that couldn't be folded into the switch 3726 // then we evaluate them with an explicit branch first. Split the block 3727 // right before the condbr to handle it. 3728 if (ExtraCase) { 3729 BasicBlock *NewBB = 3730 BB->splitBasicBlock(BI->getIterator(), "switch.early.test"); 3731 // Remove the uncond branch added to the old block. 3732 Instruction *OldTI = BB->getTerminator(); 3733 Builder.SetInsertPoint(OldTI); 3734 3735 if (TrueWhenEqual) 3736 Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB); 3737 else 3738 Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB); 3739 3740 OldTI->eraseFromParent(); 3741 3742 // If there are PHI nodes in EdgeBB, then we need to add a new entry to them 3743 // for the edge we just added. 3744 AddPredecessorToBlock(EdgeBB, BB, NewBB); 3745 3746 LLVM_DEBUG(dbgs() << " ** 'icmp' chain unhandled condition: " << *ExtraCase 3747 << "\nEXTRABB = " << *BB); 3748 BB = NewBB; 3749 } 3750 3751 Builder.SetInsertPoint(BI); 3752 // Convert pointer to int before we switch. 3753 if (CompVal->getType()->isPointerTy()) { 3754 CompVal = Builder.CreatePtrToInt( 3755 CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr"); 3756 } 3757 3758 // Create the new switch instruction now. 3759 SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size()); 3760 3761 // Add all of the 'cases' to the switch instruction. 3762 for (unsigned i = 0, e = Values.size(); i != e; ++i) 3763 New->addCase(Values[i], EdgeBB); 3764 3765 // We added edges from PI to the EdgeBB. As such, if there were any 3766 // PHI nodes in EdgeBB, they need entries to be added corresponding to 3767 // the number of edges added. 3768 for (BasicBlock::iterator BBI = EdgeBB->begin(); isa<PHINode>(BBI); ++BBI) { 3769 PHINode *PN = cast<PHINode>(BBI); 3770 Value *InVal = PN->getIncomingValueForBlock(BB); 3771 for (unsigned i = 0, e = Values.size() - 1; i != e; ++i) 3772 PN->addIncoming(InVal, BB); 3773 } 3774 3775 // Erase the old branch instruction. 3776 EraseTerminatorAndDCECond(BI); 3777 3778 LLVM_DEBUG(dbgs() << " ** 'icmp' chain result is:\n" << *BB << '\n'); 3779 return true; 3780 } 3781 3782 bool SimplifyCFGOpt::SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder) { 3783 if (isa<PHINode>(RI->getValue())) 3784 return SimplifyCommonResume(RI); 3785 else if (isa<LandingPadInst>(RI->getParent()->getFirstNonPHI()) && 3786 RI->getValue() == RI->getParent()->getFirstNonPHI()) 3787 // The resume must unwind the exception that caused control to branch here. 3788 return SimplifySingleResume(RI); 3789 3790 return false; 3791 } 3792 3793 // Simplify resume that is shared by several landing pads (phi of landing pad). 3794 bool SimplifyCFGOpt::SimplifyCommonResume(ResumeInst *RI) { 3795 BasicBlock *BB = RI->getParent(); 3796 3797 // Check that there are no other instructions except for debug intrinsics 3798 // between the phi of landing pads (RI->getValue()) and resume instruction. 3799 BasicBlock::iterator I = cast<Instruction>(RI->getValue())->getIterator(), 3800 E = RI->getIterator(); 3801 while (++I != E) 3802 if (!isa<DbgInfoIntrinsic>(I)) 3803 return false; 3804 3805 SmallSetVector<BasicBlock *, 4> TrivialUnwindBlocks; 3806 auto *PhiLPInst = cast<PHINode>(RI->getValue()); 3807 3808 // Check incoming blocks to see if any of them are trivial. 3809 for (unsigned Idx = 0, End = PhiLPInst->getNumIncomingValues(); Idx != End; 3810 Idx++) { 3811 auto *IncomingBB = PhiLPInst->getIncomingBlock(Idx); 3812 auto *IncomingValue = PhiLPInst->getIncomingValue(Idx); 3813 3814 // If the block has other successors, we can not delete it because 3815 // it has other dependents. 3816 if (IncomingBB->getUniqueSuccessor() != BB) 3817 continue; 3818 3819 auto *LandingPad = dyn_cast<LandingPadInst>(IncomingBB->getFirstNonPHI()); 3820 // Not the landing pad that caused the control to branch here. 3821 if (IncomingValue != LandingPad) 3822 continue; 3823 3824 bool isTrivial = true; 3825 3826 I = IncomingBB->getFirstNonPHI()->getIterator(); 3827 E = IncomingBB->getTerminator()->getIterator(); 3828 while (++I != E) 3829 if (!isa<DbgInfoIntrinsic>(I)) { 3830 isTrivial = false; 3831 break; 3832 } 3833 3834 if (isTrivial) 3835 TrivialUnwindBlocks.insert(IncomingBB); 3836 } 3837 3838 // If no trivial unwind blocks, don't do any simplifications. 3839 if (TrivialUnwindBlocks.empty()) 3840 return false; 3841 3842 // Turn all invokes that unwind here into calls. 3843 for (auto *TrivialBB : TrivialUnwindBlocks) { 3844 // Blocks that will be simplified should be removed from the phi node. 3845 // Note there could be multiple edges to the resume block, and we need 3846 // to remove them all. 3847 while (PhiLPInst->getBasicBlockIndex(TrivialBB) != -1) 3848 BB->removePredecessor(TrivialBB, true); 3849 3850 for (pred_iterator PI = pred_begin(TrivialBB), PE = pred_end(TrivialBB); 3851 PI != PE;) { 3852 BasicBlock *Pred = *PI++; 3853 removeUnwindEdge(Pred); 3854 } 3855 3856 // In each SimplifyCFG run, only the current processed block can be erased. 3857 // Otherwise, it will break the iteration of SimplifyCFG pass. So instead 3858 // of erasing TrivialBB, we only remove the branch to the common resume 3859 // block so that we can later erase the resume block since it has no 3860 // predecessors. 3861 TrivialBB->getTerminator()->eraseFromParent(); 3862 new UnreachableInst(RI->getContext(), TrivialBB); 3863 } 3864 3865 // Delete the resume block if all its predecessors have been removed. 3866 if (pred_empty(BB)) 3867 BB->eraseFromParent(); 3868 3869 return !TrivialUnwindBlocks.empty(); 3870 } 3871 3872 // Simplify resume that is only used by a single (non-phi) landing pad. 3873 bool SimplifyCFGOpt::SimplifySingleResume(ResumeInst *RI) { 3874 BasicBlock *BB = RI->getParent(); 3875 LandingPadInst *LPInst = dyn_cast<LandingPadInst>(BB->getFirstNonPHI()); 3876 assert(RI->getValue() == LPInst && 3877 "Resume must unwind the exception that caused control to here"); 3878 3879 // Check that there are no other instructions except for debug intrinsics. 3880 BasicBlock::iterator I = LPInst->getIterator(), E = RI->getIterator(); 3881 while (++I != E) 3882 if (!isa<DbgInfoIntrinsic>(I)) 3883 return false; 3884 3885 // Turn all invokes that unwind here into calls and delete the basic block. 3886 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) { 3887 BasicBlock *Pred = *PI++; 3888 removeUnwindEdge(Pred); 3889 } 3890 3891 // The landingpad is now unreachable. Zap it. 3892 if (LoopHeaders) 3893 LoopHeaders->erase(BB); 3894 BB->eraseFromParent(); 3895 return true; 3896 } 3897 3898 static bool removeEmptyCleanup(CleanupReturnInst *RI) { 3899 // If this is a trivial cleanup pad that executes no instructions, it can be 3900 // eliminated. If the cleanup pad continues to the caller, any predecessor 3901 // that is an EH pad will be updated to continue to the caller and any 3902 // predecessor that terminates with an invoke instruction will have its invoke 3903 // instruction converted to a call instruction. If the cleanup pad being 3904 // simplified does not continue to the caller, each predecessor will be 3905 // updated to continue to the unwind destination of the cleanup pad being 3906 // simplified. 3907 BasicBlock *BB = RI->getParent(); 3908 CleanupPadInst *CPInst = RI->getCleanupPad(); 3909 if (CPInst->getParent() != BB) 3910 // This isn't an empty cleanup. 3911 return false; 3912 3913 // We cannot kill the pad if it has multiple uses. This typically arises 3914 // from unreachable basic blocks. 3915 if (!CPInst->hasOneUse()) 3916 return false; 3917 3918 // Check that there are no other instructions except for benign intrinsics. 3919 BasicBlock::iterator I = CPInst->getIterator(), E = RI->getIterator(); 3920 while (++I != E) { 3921 auto *II = dyn_cast<IntrinsicInst>(I); 3922 if (!II) 3923 return false; 3924 3925 Intrinsic::ID IntrinsicID = II->getIntrinsicID(); 3926 switch (IntrinsicID) { 3927 case Intrinsic::dbg_declare: 3928 case Intrinsic::dbg_value: 3929 case Intrinsic::dbg_label: 3930 case Intrinsic::lifetime_end: 3931 break; 3932 default: 3933 return false; 3934 } 3935 } 3936 3937 // If the cleanup return we are simplifying unwinds to the caller, this will 3938 // set UnwindDest to nullptr. 3939 BasicBlock *UnwindDest = RI->getUnwindDest(); 3940 Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr; 3941 3942 // We're about to remove BB from the control flow. Before we do, sink any 3943 // PHINodes into the unwind destination. Doing this before changing the 3944 // control flow avoids some potentially slow checks, since we can currently 3945 // be certain that UnwindDest and BB have no common predecessors (since they 3946 // are both EH pads). 3947 if (UnwindDest) { 3948 // First, go through the PHI nodes in UnwindDest and update any nodes that 3949 // reference the block we are removing 3950 for (BasicBlock::iterator I = UnwindDest->begin(), 3951 IE = DestEHPad->getIterator(); 3952 I != IE; ++I) { 3953 PHINode *DestPN = cast<PHINode>(I); 3954 3955 int Idx = DestPN->getBasicBlockIndex(BB); 3956 // Since BB unwinds to UnwindDest, it has to be in the PHI node. 3957 assert(Idx != -1); 3958 // This PHI node has an incoming value that corresponds to a control 3959 // path through the cleanup pad we are removing. If the incoming 3960 // value is in the cleanup pad, it must be a PHINode (because we 3961 // verified above that the block is otherwise empty). Otherwise, the 3962 // value is either a constant or a value that dominates the cleanup 3963 // pad being removed. 3964 // 3965 // Because BB and UnwindDest are both EH pads, all of their 3966 // predecessors must unwind to these blocks, and since no instruction 3967 // can have multiple unwind destinations, there will be no overlap in 3968 // incoming blocks between SrcPN and DestPN. 3969 Value *SrcVal = DestPN->getIncomingValue(Idx); 3970 PHINode *SrcPN = dyn_cast<PHINode>(SrcVal); 3971 3972 // Remove the entry for the block we are deleting. 3973 DestPN->removeIncomingValue(Idx, false); 3974 3975 if (SrcPN && SrcPN->getParent() == BB) { 3976 // If the incoming value was a PHI node in the cleanup pad we are 3977 // removing, we need to merge that PHI node's incoming values into 3978 // DestPN. 3979 for (unsigned SrcIdx = 0, SrcE = SrcPN->getNumIncomingValues(); 3980 SrcIdx != SrcE; ++SrcIdx) { 3981 DestPN->addIncoming(SrcPN->getIncomingValue(SrcIdx), 3982 SrcPN->getIncomingBlock(SrcIdx)); 3983 } 3984 } else { 3985 // Otherwise, the incoming value came from above BB and 3986 // so we can just reuse it. We must associate all of BB's 3987 // predecessors with this value. 3988 for (auto *pred : predecessors(BB)) { 3989 DestPN->addIncoming(SrcVal, pred); 3990 } 3991 } 3992 } 3993 3994 // Sink any remaining PHI nodes directly into UnwindDest. 3995 Instruction *InsertPt = DestEHPad; 3996 for (BasicBlock::iterator I = BB->begin(), 3997 IE = BB->getFirstNonPHI()->getIterator(); 3998 I != IE;) { 3999 // The iterator must be incremented here because the instructions are 4000 // being moved to another block. 4001 PHINode *PN = cast<PHINode>(I++); 4002 if (PN->use_empty()) 4003 // If the PHI node has no uses, just leave it. It will be erased 4004 // when we erase BB below. 4005 continue; 4006 4007 // Otherwise, sink this PHI node into UnwindDest. 4008 // Any predecessors to UnwindDest which are not already represented 4009 // must be back edges which inherit the value from the path through 4010 // BB. In this case, the PHI value must reference itself. 4011 for (auto *pred : predecessors(UnwindDest)) 4012 if (pred != BB) 4013 PN->addIncoming(PN, pred); 4014 PN->moveBefore(InsertPt); 4015 } 4016 } 4017 4018 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) { 4019 // The iterator must be updated here because we are removing this pred. 4020 BasicBlock *PredBB = *PI++; 4021 if (UnwindDest == nullptr) { 4022 removeUnwindEdge(PredBB); 4023 } else { 4024 Instruction *TI = PredBB->getTerminator(); 4025 TI->replaceUsesOfWith(BB, UnwindDest); 4026 } 4027 } 4028 4029 // The cleanup pad is now unreachable. Zap it. 4030 BB->eraseFromParent(); 4031 return true; 4032 } 4033 4034 // Try to merge two cleanuppads together. 4035 static bool mergeCleanupPad(CleanupReturnInst *RI) { 4036 // Skip any cleanuprets which unwind to caller, there is nothing to merge 4037 // with. 4038 BasicBlock *UnwindDest = RI->getUnwindDest(); 4039 if (!UnwindDest) 4040 return false; 4041 4042 // This cleanupret isn't the only predecessor of this cleanuppad, it wouldn't 4043 // be safe to merge without code duplication. 4044 if (UnwindDest->getSinglePredecessor() != RI->getParent()) 4045 return false; 4046 4047 // Verify that our cleanuppad's unwind destination is another cleanuppad. 4048 auto *SuccessorCleanupPad = dyn_cast<CleanupPadInst>(&UnwindDest->front()); 4049 if (!SuccessorCleanupPad) 4050 return false; 4051 4052 CleanupPadInst *PredecessorCleanupPad = RI->getCleanupPad(); 4053 // Replace any uses of the successor cleanupad with the predecessor pad 4054 // The only cleanuppad uses should be this cleanupret, it's cleanupret and 4055 // funclet bundle operands. 4056 SuccessorCleanupPad->replaceAllUsesWith(PredecessorCleanupPad); 4057 // Remove the old cleanuppad. 4058 SuccessorCleanupPad->eraseFromParent(); 4059 // Now, we simply replace the cleanupret with a branch to the unwind 4060 // destination. 4061 BranchInst::Create(UnwindDest, RI->getParent()); 4062 RI->eraseFromParent(); 4063 4064 return true; 4065 } 4066 4067 bool SimplifyCFGOpt::SimplifyCleanupReturn(CleanupReturnInst *RI) { 4068 // It is possible to transiantly have an undef cleanuppad operand because we 4069 // have deleted some, but not all, dead blocks. 4070 // Eventually, this block will be deleted. 4071 if (isa<UndefValue>(RI->getOperand(0))) 4072 return false; 4073 4074 if (mergeCleanupPad(RI)) 4075 return true; 4076 4077 if (removeEmptyCleanup(RI)) 4078 return true; 4079 4080 return false; 4081 } 4082 4083 bool SimplifyCFGOpt::SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) { 4084 BasicBlock *BB = RI->getParent(); 4085 if (!BB->getFirstNonPHIOrDbg()->isTerminator()) 4086 return false; 4087 4088 // Find predecessors that end with branches. 4089 SmallVector<BasicBlock *, 8> UncondBranchPreds; 4090 SmallVector<BranchInst *, 8> CondBranchPreds; 4091 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 4092 BasicBlock *P = *PI; 4093 Instruction *PTI = P->getTerminator(); 4094 if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) { 4095 if (BI->isUnconditional()) 4096 UncondBranchPreds.push_back(P); 4097 else 4098 CondBranchPreds.push_back(BI); 4099 } 4100 } 4101 4102 // If we found some, do the transformation! 4103 if (!UncondBranchPreds.empty() && DupRet) { 4104 while (!UncondBranchPreds.empty()) { 4105 BasicBlock *Pred = UncondBranchPreds.pop_back_val(); 4106 LLVM_DEBUG(dbgs() << "FOLDING: " << *BB 4107 << "INTO UNCOND BRANCH PRED: " << *Pred); 4108 (void)FoldReturnIntoUncondBranch(RI, BB, Pred); 4109 } 4110 4111 // If we eliminated all predecessors of the block, delete the block now. 4112 if (pred_empty(BB)) { 4113 // We know there are no successors, so just nuke the block. 4114 if (LoopHeaders) 4115 LoopHeaders->erase(BB); 4116 BB->eraseFromParent(); 4117 } 4118 4119 return true; 4120 } 4121 4122 // Check out all of the conditional branches going to this return 4123 // instruction. If any of them just select between returns, change the 4124 // branch itself into a select/return pair. 4125 while (!CondBranchPreds.empty()) { 4126 BranchInst *BI = CondBranchPreds.pop_back_val(); 4127 4128 // Check to see if the non-BB successor is also a return block. 4129 if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) && 4130 isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) && 4131 SimplifyCondBranchToTwoReturns(BI, Builder)) 4132 return true; 4133 } 4134 return false; 4135 } 4136 4137 bool SimplifyCFGOpt::SimplifyUnreachable(UnreachableInst *UI) { 4138 BasicBlock *BB = UI->getParent(); 4139 4140 bool Changed = false; 4141 4142 // If there are any instructions immediately before the unreachable that can 4143 // be removed, do so. 4144 while (UI->getIterator() != BB->begin()) { 4145 BasicBlock::iterator BBI = UI->getIterator(); 4146 --BBI; 4147 // Do not delete instructions that can have side effects which might cause 4148 // the unreachable to not be reachable; specifically, calls and volatile 4149 // operations may have this effect. 4150 if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI)) 4151 break; 4152 4153 if (BBI->mayHaveSideEffects()) { 4154 if (auto *SI = dyn_cast<StoreInst>(BBI)) { 4155 if (SI->isVolatile()) 4156 break; 4157 } else if (auto *LI = dyn_cast<LoadInst>(BBI)) { 4158 if (LI->isVolatile()) 4159 break; 4160 } else if (auto *RMWI = dyn_cast<AtomicRMWInst>(BBI)) { 4161 if (RMWI->isVolatile()) 4162 break; 4163 } else if (auto *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) { 4164 if (CXI->isVolatile()) 4165 break; 4166 } else if (isa<CatchPadInst>(BBI)) { 4167 // A catchpad may invoke exception object constructors and such, which 4168 // in some languages can be arbitrary code, so be conservative by 4169 // default. 4170 // For CoreCLR, it just involves a type test, so can be removed. 4171 if (classifyEHPersonality(BB->getParent()->getPersonalityFn()) != 4172 EHPersonality::CoreCLR) 4173 break; 4174 } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) && 4175 !isa<LandingPadInst>(BBI)) { 4176 break; 4177 } 4178 // Note that deleting LandingPad's here is in fact okay, although it 4179 // involves a bit of subtle reasoning. If this inst is a LandingPad, 4180 // all the predecessors of this block will be the unwind edges of Invokes, 4181 // and we can therefore guarantee this block will be erased. 4182 } 4183 4184 // Delete this instruction (any uses are guaranteed to be dead) 4185 if (!BBI->use_empty()) 4186 BBI->replaceAllUsesWith(UndefValue::get(BBI->getType())); 4187 BBI->eraseFromParent(); 4188 Changed = true; 4189 } 4190 4191 // If the unreachable instruction is the first in the block, take a gander 4192 // at all of the predecessors of this instruction, and simplify them. 4193 if (&BB->front() != UI) 4194 return Changed; 4195 4196 SmallVector<BasicBlock *, 8> Preds(pred_begin(BB), pred_end(BB)); 4197 for (unsigned i = 0, e = Preds.size(); i != e; ++i) { 4198 Instruction *TI = Preds[i]->getTerminator(); 4199 IRBuilder<> Builder(TI); 4200 if (auto *BI = dyn_cast<BranchInst>(TI)) { 4201 if (BI->isUnconditional()) { 4202 if (BI->getSuccessor(0) == BB) { 4203 new UnreachableInst(TI->getContext(), TI); 4204 TI->eraseFromParent(); 4205 Changed = true; 4206 } 4207 } else { 4208 Value* Cond = BI->getCondition(); 4209 if (BI->getSuccessor(0) == BB) { 4210 Builder.CreateAssumption(Builder.CreateNot(Cond)); 4211 Builder.CreateBr(BI->getSuccessor(1)); 4212 EraseTerminatorAndDCECond(BI); 4213 } else if (BI->getSuccessor(1) == BB) { 4214 Builder.CreateAssumption(Cond); 4215 Builder.CreateBr(BI->getSuccessor(0)); 4216 EraseTerminatorAndDCECond(BI); 4217 Changed = true; 4218 } 4219 } 4220 } else if (auto *SI = dyn_cast<SwitchInst>(TI)) { 4221 for (auto i = SI->case_begin(), e = SI->case_end(); i != e;) { 4222 if (i->getCaseSuccessor() != BB) { 4223 ++i; 4224 continue; 4225 } 4226 BB->removePredecessor(SI->getParent()); 4227 i = SI->removeCase(i); 4228 e = SI->case_end(); 4229 Changed = true; 4230 } 4231 } else if (auto *II = dyn_cast<InvokeInst>(TI)) { 4232 if (II->getUnwindDest() == BB) { 4233 removeUnwindEdge(TI->getParent()); 4234 Changed = true; 4235 } 4236 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) { 4237 if (CSI->getUnwindDest() == BB) { 4238 removeUnwindEdge(TI->getParent()); 4239 Changed = true; 4240 continue; 4241 } 4242 4243 for (CatchSwitchInst::handler_iterator I = CSI->handler_begin(), 4244 E = CSI->handler_end(); 4245 I != E; ++I) { 4246 if (*I == BB) { 4247 CSI->removeHandler(I); 4248 --I; 4249 --E; 4250 Changed = true; 4251 } 4252 } 4253 if (CSI->getNumHandlers() == 0) { 4254 BasicBlock *CatchSwitchBB = CSI->getParent(); 4255 if (CSI->hasUnwindDest()) { 4256 // Redirect preds to the unwind dest 4257 CatchSwitchBB->replaceAllUsesWith(CSI->getUnwindDest()); 4258 } else { 4259 // Rewrite all preds to unwind to caller (or from invoke to call). 4260 SmallVector<BasicBlock *, 8> EHPreds(predecessors(CatchSwitchBB)); 4261 for (BasicBlock *EHPred : EHPreds) 4262 removeUnwindEdge(EHPred); 4263 } 4264 // The catchswitch is no longer reachable. 4265 new UnreachableInst(CSI->getContext(), CSI); 4266 CSI->eraseFromParent(); 4267 Changed = true; 4268 } 4269 } else if (isa<CleanupReturnInst>(TI)) { 4270 new UnreachableInst(TI->getContext(), TI); 4271 TI->eraseFromParent(); 4272 Changed = true; 4273 } 4274 } 4275 4276 // If this block is now dead, remove it. 4277 if (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) { 4278 // We know there are no successors, so just nuke the block. 4279 if (LoopHeaders) 4280 LoopHeaders->erase(BB); 4281 BB->eraseFromParent(); 4282 return true; 4283 } 4284 4285 return Changed; 4286 } 4287 4288 static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) { 4289 assert(Cases.size() >= 1); 4290 4291 array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate); 4292 for (size_t I = 1, E = Cases.size(); I != E; ++I) { 4293 if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1) 4294 return false; 4295 } 4296 return true; 4297 } 4298 4299 /// Turn a switch with two reachable destinations into an integer range 4300 /// comparison and branch. 4301 static bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder) { 4302 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 4303 4304 bool HasDefault = 4305 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 4306 4307 // Partition the cases into two sets with different destinations. 4308 BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr; 4309 BasicBlock *DestB = nullptr; 4310 SmallVector<ConstantInt *, 16> CasesA; 4311 SmallVector<ConstantInt *, 16> CasesB; 4312 4313 for (auto Case : SI->cases()) { 4314 BasicBlock *Dest = Case.getCaseSuccessor(); 4315 if (!DestA) 4316 DestA = Dest; 4317 if (Dest == DestA) { 4318 CasesA.push_back(Case.getCaseValue()); 4319 continue; 4320 } 4321 if (!DestB) 4322 DestB = Dest; 4323 if (Dest == DestB) { 4324 CasesB.push_back(Case.getCaseValue()); 4325 continue; 4326 } 4327 return false; // More than two destinations. 4328 } 4329 4330 assert(DestA && DestB && 4331 "Single-destination switch should have been folded."); 4332 assert(DestA != DestB); 4333 assert(DestB != SI->getDefaultDest()); 4334 assert(!CasesB.empty() && "There must be non-default cases."); 4335 assert(!CasesA.empty() || HasDefault); 4336 4337 // Figure out if one of the sets of cases form a contiguous range. 4338 SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr; 4339 BasicBlock *ContiguousDest = nullptr; 4340 BasicBlock *OtherDest = nullptr; 4341 if (!CasesA.empty() && CasesAreContiguous(CasesA)) { 4342 ContiguousCases = &CasesA; 4343 ContiguousDest = DestA; 4344 OtherDest = DestB; 4345 } else if (CasesAreContiguous(CasesB)) { 4346 ContiguousCases = &CasesB; 4347 ContiguousDest = DestB; 4348 OtherDest = DestA; 4349 } else 4350 return false; 4351 4352 // Start building the compare and branch. 4353 4354 Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back()); 4355 Constant *NumCases = 4356 ConstantInt::get(Offset->getType(), ContiguousCases->size()); 4357 4358 Value *Sub = SI->getCondition(); 4359 if (!Offset->isNullValue()) 4360 Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off"); 4361 4362 Value *Cmp; 4363 // If NumCases overflowed, then all possible values jump to the successor. 4364 if (NumCases->isNullValue() && !ContiguousCases->empty()) 4365 Cmp = ConstantInt::getTrue(SI->getContext()); 4366 else 4367 Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch"); 4368 BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest); 4369 4370 // Update weight for the newly-created conditional branch. 4371 if (HasBranchWeights(SI)) { 4372 SmallVector<uint64_t, 8> Weights; 4373 GetBranchWeights(SI, Weights); 4374 if (Weights.size() == 1 + SI->getNumCases()) { 4375 uint64_t TrueWeight = 0; 4376 uint64_t FalseWeight = 0; 4377 for (size_t I = 0, E = Weights.size(); I != E; ++I) { 4378 if (SI->getSuccessor(I) == ContiguousDest) 4379 TrueWeight += Weights[I]; 4380 else 4381 FalseWeight += Weights[I]; 4382 } 4383 while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) { 4384 TrueWeight /= 2; 4385 FalseWeight /= 2; 4386 } 4387 setBranchWeights(NewBI, TrueWeight, FalseWeight); 4388 } 4389 } 4390 4391 // Prune obsolete incoming values off the successors' PHI nodes. 4392 for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) { 4393 unsigned PreviousEdges = ContiguousCases->size(); 4394 if (ContiguousDest == SI->getDefaultDest()) 4395 ++PreviousEdges; 4396 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I) 4397 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 4398 } 4399 for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) { 4400 unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size(); 4401 if (OtherDest == SI->getDefaultDest()) 4402 ++PreviousEdges; 4403 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I) 4404 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 4405 } 4406 4407 // Drop the switch. 4408 SI->eraseFromParent(); 4409 4410 return true; 4411 } 4412 4413 /// Compute masked bits for the condition of a switch 4414 /// and use it to remove dead cases. 4415 static bool eliminateDeadSwitchCases(SwitchInst *SI, AssumptionCache *AC, 4416 const DataLayout &DL) { 4417 Value *Cond = SI->getCondition(); 4418 unsigned Bits = Cond->getType()->getIntegerBitWidth(); 4419 KnownBits Known = computeKnownBits(Cond, DL, 0, AC, SI); 4420 4421 // We can also eliminate cases by determining that their values are outside of 4422 // the limited range of the condition based on how many significant (non-sign) 4423 // bits are in the condition value. 4424 unsigned ExtraSignBits = ComputeNumSignBits(Cond, DL, 0, AC, SI) - 1; 4425 unsigned MaxSignificantBitsInCond = Bits - ExtraSignBits; 4426 4427 // Gather dead cases. 4428 SmallVector<ConstantInt *, 8> DeadCases; 4429 for (auto &Case : SI->cases()) { 4430 const APInt &CaseVal = Case.getCaseValue()->getValue(); 4431 if (Known.Zero.intersects(CaseVal) || !Known.One.isSubsetOf(CaseVal) || 4432 (CaseVal.getMinSignedBits() > MaxSignificantBitsInCond)) { 4433 DeadCases.push_back(Case.getCaseValue()); 4434 LLVM_DEBUG(dbgs() << "SimplifyCFG: switch case " << CaseVal 4435 << " is dead.\n"); 4436 } 4437 } 4438 4439 // If we can prove that the cases must cover all possible values, the 4440 // default destination becomes dead and we can remove it. If we know some 4441 // of the bits in the value, we can use that to more precisely compute the 4442 // number of possible unique case values. 4443 bool HasDefault = 4444 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 4445 const unsigned NumUnknownBits = 4446 Bits - (Known.Zero | Known.One).countPopulation(); 4447 assert(NumUnknownBits <= Bits); 4448 if (HasDefault && DeadCases.empty() && 4449 NumUnknownBits < 64 /* avoid overflow */ && 4450 SI->getNumCases() == (1ULL << NumUnknownBits)) { 4451 LLVM_DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n"); 4452 BasicBlock *NewDefault = 4453 SplitBlockPredecessors(SI->getDefaultDest(), SI->getParent(), ""); 4454 SI->setDefaultDest(&*NewDefault); 4455 SplitBlock(&*NewDefault, &NewDefault->front()); 4456 auto *OldTI = NewDefault->getTerminator(); 4457 new UnreachableInst(SI->getContext(), OldTI); 4458 EraseTerminatorAndDCECond(OldTI); 4459 return true; 4460 } 4461 4462 SmallVector<uint64_t, 8> Weights; 4463 bool HasWeight = HasBranchWeights(SI); 4464 if (HasWeight) { 4465 GetBranchWeights(SI, Weights); 4466 HasWeight = (Weights.size() == 1 + SI->getNumCases()); 4467 } 4468 4469 // Remove dead cases from the switch. 4470 for (ConstantInt *DeadCase : DeadCases) { 4471 SwitchInst::CaseIt CaseI = SI->findCaseValue(DeadCase); 4472 assert(CaseI != SI->case_default() && 4473 "Case was not found. Probably mistake in DeadCases forming."); 4474 if (HasWeight) { 4475 std::swap(Weights[CaseI->getCaseIndex() + 1], Weights.back()); 4476 Weights.pop_back(); 4477 } 4478 4479 // Prune unused values from PHI nodes. 4480 CaseI->getCaseSuccessor()->removePredecessor(SI->getParent()); 4481 SI->removeCase(CaseI); 4482 } 4483 if (HasWeight && Weights.size() >= 2) { 4484 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 4485 setBranchWeights(SI, MDWeights); 4486 } 4487 4488 return !DeadCases.empty(); 4489 } 4490 4491 /// If BB would be eligible for simplification by 4492 /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated 4493 /// by an unconditional branch), look at the phi node for BB in the successor 4494 /// block and see if the incoming value is equal to CaseValue. If so, return 4495 /// the phi node, and set PhiIndex to BB's index in the phi node. 4496 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue, 4497 BasicBlock *BB, int *PhiIndex) { 4498 if (BB->getFirstNonPHIOrDbg() != BB->getTerminator()) 4499 return nullptr; // BB must be empty to be a candidate for simplification. 4500 if (!BB->getSinglePredecessor()) 4501 return nullptr; // BB must be dominated by the switch. 4502 4503 BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator()); 4504 if (!Branch || !Branch->isUnconditional()) 4505 return nullptr; // Terminator must be unconditional branch. 4506 4507 BasicBlock *Succ = Branch->getSuccessor(0); 4508 4509 for (PHINode &PHI : Succ->phis()) { 4510 int Idx = PHI.getBasicBlockIndex(BB); 4511 assert(Idx >= 0 && "PHI has no entry for predecessor?"); 4512 4513 Value *InValue = PHI.getIncomingValue(Idx); 4514 if (InValue != CaseValue) 4515 continue; 4516 4517 *PhiIndex = Idx; 4518 return &PHI; 4519 } 4520 4521 return nullptr; 4522 } 4523 4524 /// Try to forward the condition of a switch instruction to a phi node 4525 /// dominated by the switch, if that would mean that some of the destination 4526 /// blocks of the switch can be folded away. Return true if a change is made. 4527 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) { 4528 using ForwardingNodesMap = DenseMap<PHINode *, SmallVector<int, 4>>; 4529 4530 ForwardingNodesMap ForwardingNodes; 4531 BasicBlock *SwitchBlock = SI->getParent(); 4532 bool Changed = false; 4533 for (auto &Case : SI->cases()) { 4534 ConstantInt *CaseValue = Case.getCaseValue(); 4535 BasicBlock *CaseDest = Case.getCaseSuccessor(); 4536 4537 // Replace phi operands in successor blocks that are using the constant case 4538 // value rather than the switch condition variable: 4539 // switchbb: 4540 // switch i32 %x, label %default [ 4541 // i32 17, label %succ 4542 // ... 4543 // succ: 4544 // %r = phi i32 ... [ 17, %switchbb ] ... 4545 // --> 4546 // %r = phi i32 ... [ %x, %switchbb ] ... 4547 4548 for (PHINode &Phi : CaseDest->phis()) { 4549 // This only works if there is exactly 1 incoming edge from the switch to 4550 // a phi. If there is >1, that means multiple cases of the switch map to 1 4551 // value in the phi, and that phi value is not the switch condition. Thus, 4552 // this transform would not make sense (the phi would be invalid because 4553 // a phi can't have different incoming values from the same block). 4554 int SwitchBBIdx = Phi.getBasicBlockIndex(SwitchBlock); 4555 if (Phi.getIncomingValue(SwitchBBIdx) == CaseValue && 4556 count(Phi.blocks(), SwitchBlock) == 1) { 4557 Phi.setIncomingValue(SwitchBBIdx, SI->getCondition()); 4558 Changed = true; 4559 } 4560 } 4561 4562 // Collect phi nodes that are indirectly using this switch's case constants. 4563 int PhiIdx; 4564 if (auto *Phi = FindPHIForConditionForwarding(CaseValue, CaseDest, &PhiIdx)) 4565 ForwardingNodes[Phi].push_back(PhiIdx); 4566 } 4567 4568 for (auto &ForwardingNode : ForwardingNodes) { 4569 PHINode *Phi = ForwardingNode.first; 4570 SmallVectorImpl<int> &Indexes = ForwardingNode.second; 4571 if (Indexes.size() < 2) 4572 continue; 4573 4574 for (int Index : Indexes) 4575 Phi->setIncomingValue(Index, SI->getCondition()); 4576 Changed = true; 4577 } 4578 4579 return Changed; 4580 } 4581 4582 /// Return true if the backend will be able to handle 4583 /// initializing an array of constants like C. 4584 static bool ValidLookupTableConstant(Constant *C, const TargetTransformInfo &TTI) { 4585 if (C->isThreadDependent()) 4586 return false; 4587 if (C->isDLLImportDependent()) 4588 return false; 4589 4590 if (!isa<ConstantFP>(C) && !isa<ConstantInt>(C) && 4591 !isa<ConstantPointerNull>(C) && !isa<GlobalValue>(C) && 4592 !isa<UndefValue>(C) && !isa<ConstantExpr>(C)) 4593 return false; 4594 4595 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 4596 if (!CE->isGEPWithNoNotionalOverIndexing()) 4597 return false; 4598 if (!ValidLookupTableConstant(CE->getOperand(0), TTI)) 4599 return false; 4600 } 4601 4602 if (!TTI.shouldBuildLookupTablesForConstant(C)) 4603 return false; 4604 4605 return true; 4606 } 4607 4608 /// If V is a Constant, return it. Otherwise, try to look up 4609 /// its constant value in ConstantPool, returning 0 if it's not there. 4610 static Constant * 4611 LookupConstant(Value *V, 4612 const SmallDenseMap<Value *, Constant *> &ConstantPool) { 4613 if (Constant *C = dyn_cast<Constant>(V)) 4614 return C; 4615 return ConstantPool.lookup(V); 4616 } 4617 4618 /// Try to fold instruction I into a constant. This works for 4619 /// simple instructions such as binary operations where both operands are 4620 /// constant or can be replaced by constants from the ConstantPool. Returns the 4621 /// resulting constant on success, 0 otherwise. 4622 static Constant * 4623 ConstantFold(Instruction *I, const DataLayout &DL, 4624 const SmallDenseMap<Value *, Constant *> &ConstantPool) { 4625 if (SelectInst *Select = dyn_cast<SelectInst>(I)) { 4626 Constant *A = LookupConstant(Select->getCondition(), ConstantPool); 4627 if (!A) 4628 return nullptr; 4629 if (A->isAllOnesValue()) 4630 return LookupConstant(Select->getTrueValue(), ConstantPool); 4631 if (A->isNullValue()) 4632 return LookupConstant(Select->getFalseValue(), ConstantPool); 4633 return nullptr; 4634 } 4635 4636 SmallVector<Constant *, 4> COps; 4637 for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) { 4638 if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool)) 4639 COps.push_back(A); 4640 else 4641 return nullptr; 4642 } 4643 4644 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) { 4645 return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0], 4646 COps[1], DL); 4647 } 4648 4649 return ConstantFoldInstOperands(I, COps, DL); 4650 } 4651 4652 /// Try to determine the resulting constant values in phi nodes 4653 /// at the common destination basic block, *CommonDest, for one of the case 4654 /// destionations CaseDest corresponding to value CaseVal (0 for the default 4655 /// case), of a switch instruction SI. 4656 static bool 4657 GetCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest, 4658 BasicBlock **CommonDest, 4659 SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res, 4660 const DataLayout &DL, const TargetTransformInfo &TTI) { 4661 // The block from which we enter the common destination. 4662 BasicBlock *Pred = SI->getParent(); 4663 4664 // If CaseDest is empty except for some side-effect free instructions through 4665 // which we can constant-propagate the CaseVal, continue to its successor. 4666 SmallDenseMap<Value *, Constant *> ConstantPool; 4667 ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal)); 4668 for (Instruction &I :CaseDest->instructionsWithoutDebug()) { 4669 if (I.isTerminator()) { 4670 // If the terminator is a simple branch, continue to the next block. 4671 if (I.getNumSuccessors() != 1 || I.isExceptionalTerminator()) 4672 return false; 4673 Pred = CaseDest; 4674 CaseDest = I.getSuccessor(0); 4675 } else if (Constant *C = ConstantFold(&I, DL, ConstantPool)) { 4676 // Instruction is side-effect free and constant. 4677 4678 // If the instruction has uses outside this block or a phi node slot for 4679 // the block, it is not safe to bypass the instruction since it would then 4680 // no longer dominate all its uses. 4681 for (auto &Use : I.uses()) { 4682 User *User = Use.getUser(); 4683 if (Instruction *I = dyn_cast<Instruction>(User)) 4684 if (I->getParent() == CaseDest) 4685 continue; 4686 if (PHINode *Phi = dyn_cast<PHINode>(User)) 4687 if (Phi->getIncomingBlock(Use) == CaseDest) 4688 continue; 4689 return false; 4690 } 4691 4692 ConstantPool.insert(std::make_pair(&I, C)); 4693 } else { 4694 break; 4695 } 4696 } 4697 4698 // If we did not have a CommonDest before, use the current one. 4699 if (!*CommonDest) 4700 *CommonDest = CaseDest; 4701 // If the destination isn't the common one, abort. 4702 if (CaseDest != *CommonDest) 4703 return false; 4704 4705 // Get the values for this case from phi nodes in the destination block. 4706 for (PHINode &PHI : (*CommonDest)->phis()) { 4707 int Idx = PHI.getBasicBlockIndex(Pred); 4708 if (Idx == -1) 4709 continue; 4710 4711 Constant *ConstVal = 4712 LookupConstant(PHI.getIncomingValue(Idx), ConstantPool); 4713 if (!ConstVal) 4714 return false; 4715 4716 // Be conservative about which kinds of constants we support. 4717 if (!ValidLookupTableConstant(ConstVal, TTI)) 4718 return false; 4719 4720 Res.push_back(std::make_pair(&PHI, ConstVal)); 4721 } 4722 4723 return Res.size() > 0; 4724 } 4725 4726 // Helper function used to add CaseVal to the list of cases that generate 4727 // Result. Returns the updated number of cases that generate this result. 4728 static uintptr_t MapCaseToResult(ConstantInt *CaseVal, 4729 SwitchCaseResultVectorTy &UniqueResults, 4730 Constant *Result) { 4731 for (auto &I : UniqueResults) { 4732 if (I.first == Result) { 4733 I.second.push_back(CaseVal); 4734 return I.second.size(); 4735 } 4736 } 4737 UniqueResults.push_back( 4738 std::make_pair(Result, SmallVector<ConstantInt *, 4>(1, CaseVal))); 4739 return 1; 4740 } 4741 4742 // Helper function that initializes a map containing 4743 // results for the PHI node of the common destination block for a switch 4744 // instruction. Returns false if multiple PHI nodes have been found or if 4745 // there is not a common destination block for the switch. 4746 static bool 4747 InitializeUniqueCases(SwitchInst *SI, PHINode *&PHI, BasicBlock *&CommonDest, 4748 SwitchCaseResultVectorTy &UniqueResults, 4749 Constant *&DefaultResult, const DataLayout &DL, 4750 const TargetTransformInfo &TTI, 4751 uintptr_t MaxUniqueResults, uintptr_t MaxCasesPerResult) { 4752 for (auto &I : SI->cases()) { 4753 ConstantInt *CaseVal = I.getCaseValue(); 4754 4755 // Resulting value at phi nodes for this case value. 4756 SwitchCaseResultsTy Results; 4757 if (!GetCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results, 4758 DL, TTI)) 4759 return false; 4760 4761 // Only one value per case is permitted. 4762 if (Results.size() > 1) 4763 return false; 4764 4765 // Add the case->result mapping to UniqueResults. 4766 const uintptr_t NumCasesForResult = 4767 MapCaseToResult(CaseVal, UniqueResults, Results.begin()->second); 4768 4769 // Early out if there are too many cases for this result. 4770 if (NumCasesForResult > MaxCasesPerResult) 4771 return false; 4772 4773 // Early out if there are too many unique results. 4774 if (UniqueResults.size() > MaxUniqueResults) 4775 return false; 4776 4777 // Check the PHI consistency. 4778 if (!PHI) 4779 PHI = Results[0].first; 4780 else if (PHI != Results[0].first) 4781 return false; 4782 } 4783 // Find the default result value. 4784 SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults; 4785 BasicBlock *DefaultDest = SI->getDefaultDest(); 4786 GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults, 4787 DL, TTI); 4788 // If the default value is not found abort unless the default destination 4789 // is unreachable. 4790 DefaultResult = 4791 DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr; 4792 if ((!DefaultResult && 4793 !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()))) 4794 return false; 4795 4796 return true; 4797 } 4798 4799 // Helper function that checks if it is possible to transform a switch with only 4800 // two cases (or two cases + default) that produces a result into a select. 4801 // Example: 4802 // switch (a) { 4803 // case 10: %0 = icmp eq i32 %a, 10 4804 // return 10; %1 = select i1 %0, i32 10, i32 4 4805 // case 20: ----> %2 = icmp eq i32 %a, 20 4806 // return 2; %3 = select i1 %2, i32 2, i32 %1 4807 // default: 4808 // return 4; 4809 // } 4810 static Value *ConvertTwoCaseSwitch(const SwitchCaseResultVectorTy &ResultVector, 4811 Constant *DefaultResult, Value *Condition, 4812 IRBuilder<> &Builder) { 4813 assert(ResultVector.size() == 2 && 4814 "We should have exactly two unique results at this point"); 4815 // If we are selecting between only two cases transform into a simple 4816 // select or a two-way select if default is possible. 4817 if (ResultVector[0].second.size() == 1 && 4818 ResultVector[1].second.size() == 1) { 4819 ConstantInt *const FirstCase = ResultVector[0].second[0]; 4820 ConstantInt *const SecondCase = ResultVector[1].second[0]; 4821 4822 bool DefaultCanTrigger = DefaultResult; 4823 Value *SelectValue = ResultVector[1].first; 4824 if (DefaultCanTrigger) { 4825 Value *const ValueCompare = 4826 Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp"); 4827 SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first, 4828 DefaultResult, "switch.select"); 4829 } 4830 Value *const ValueCompare = 4831 Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp"); 4832 return Builder.CreateSelect(ValueCompare, ResultVector[0].first, 4833 SelectValue, "switch.select"); 4834 } 4835 4836 return nullptr; 4837 } 4838 4839 // Helper function to cleanup a switch instruction that has been converted into 4840 // a select, fixing up PHI nodes and basic blocks. 4841 static void RemoveSwitchAfterSelectConversion(SwitchInst *SI, PHINode *PHI, 4842 Value *SelectValue, 4843 IRBuilder<> &Builder) { 4844 BasicBlock *SelectBB = SI->getParent(); 4845 while (PHI->getBasicBlockIndex(SelectBB) >= 0) 4846 PHI->removeIncomingValue(SelectBB); 4847 PHI->addIncoming(SelectValue, SelectBB); 4848 4849 Builder.CreateBr(PHI->getParent()); 4850 4851 // Remove the switch. 4852 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { 4853 BasicBlock *Succ = SI->getSuccessor(i); 4854 4855 if (Succ == PHI->getParent()) 4856 continue; 4857 Succ->removePredecessor(SelectBB); 4858 } 4859 SI->eraseFromParent(); 4860 } 4861 4862 /// If the switch is only used to initialize one or more 4863 /// phi nodes in a common successor block with only two different 4864 /// constant values, replace the switch with select. 4865 static bool switchToSelect(SwitchInst *SI, IRBuilder<> &Builder, 4866 const DataLayout &DL, 4867 const TargetTransformInfo &TTI) { 4868 Value *const Cond = SI->getCondition(); 4869 PHINode *PHI = nullptr; 4870 BasicBlock *CommonDest = nullptr; 4871 Constant *DefaultResult; 4872 SwitchCaseResultVectorTy UniqueResults; 4873 // Collect all the cases that will deliver the same value from the switch. 4874 if (!InitializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult, 4875 DL, TTI, 2, 1)) 4876 return false; 4877 // Selects choose between maximum two values. 4878 if (UniqueResults.size() != 2) 4879 return false; 4880 assert(PHI != nullptr && "PHI for value select not found"); 4881 4882 Builder.SetInsertPoint(SI); 4883 Value *SelectValue = 4884 ConvertTwoCaseSwitch(UniqueResults, DefaultResult, Cond, Builder); 4885 if (SelectValue) { 4886 RemoveSwitchAfterSelectConversion(SI, PHI, SelectValue, Builder); 4887 return true; 4888 } 4889 // The switch couldn't be converted into a select. 4890 return false; 4891 } 4892 4893 namespace { 4894 4895 /// This class represents a lookup table that can be used to replace a switch. 4896 class SwitchLookupTable { 4897 public: 4898 /// Create a lookup table to use as a switch replacement with the contents 4899 /// of Values, using DefaultValue to fill any holes in the table. 4900 SwitchLookupTable( 4901 Module &M, uint64_t TableSize, ConstantInt *Offset, 4902 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values, 4903 Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName); 4904 4905 /// Build instructions with Builder to retrieve the value at 4906 /// the position given by Index in the lookup table. 4907 Value *BuildLookup(Value *Index, IRBuilder<> &Builder); 4908 4909 /// Return true if a table with TableSize elements of 4910 /// type ElementType would fit in a target-legal register. 4911 static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize, 4912 Type *ElementType); 4913 4914 private: 4915 // Depending on the contents of the table, it can be represented in 4916 // different ways. 4917 enum { 4918 // For tables where each element contains the same value, we just have to 4919 // store that single value and return it for each lookup. 4920 SingleValueKind, 4921 4922 // For tables where there is a linear relationship between table index 4923 // and values. We calculate the result with a simple multiplication 4924 // and addition instead of a table lookup. 4925 LinearMapKind, 4926 4927 // For small tables with integer elements, we can pack them into a bitmap 4928 // that fits into a target-legal register. Values are retrieved by 4929 // shift and mask operations. 4930 BitMapKind, 4931 4932 // The table is stored as an array of values. Values are retrieved by load 4933 // instructions from the table. 4934 ArrayKind 4935 } Kind; 4936 4937 // For SingleValueKind, this is the single value. 4938 Constant *SingleValue = nullptr; 4939 4940 // For BitMapKind, this is the bitmap. 4941 ConstantInt *BitMap = nullptr; 4942 IntegerType *BitMapElementTy = nullptr; 4943 4944 // For LinearMapKind, these are the constants used to derive the value. 4945 ConstantInt *LinearOffset = nullptr; 4946 ConstantInt *LinearMultiplier = nullptr; 4947 4948 // For ArrayKind, this is the array. 4949 GlobalVariable *Array = nullptr; 4950 }; 4951 4952 } // end anonymous namespace 4953 4954 SwitchLookupTable::SwitchLookupTable( 4955 Module &M, uint64_t TableSize, ConstantInt *Offset, 4956 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values, 4957 Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName) { 4958 assert(Values.size() && "Can't build lookup table without values!"); 4959 assert(TableSize >= Values.size() && "Can't fit values in table!"); 4960 4961 // If all values in the table are equal, this is that value. 4962 SingleValue = Values.begin()->second; 4963 4964 Type *ValueType = Values.begin()->second->getType(); 4965 4966 // Build up the table contents. 4967 SmallVector<Constant *, 64> TableContents(TableSize); 4968 for (size_t I = 0, E = Values.size(); I != E; ++I) { 4969 ConstantInt *CaseVal = Values[I].first; 4970 Constant *CaseRes = Values[I].second; 4971 assert(CaseRes->getType() == ValueType); 4972 4973 uint64_t Idx = (CaseVal->getValue() - Offset->getValue()).getLimitedValue(); 4974 TableContents[Idx] = CaseRes; 4975 4976 if (CaseRes != SingleValue) 4977 SingleValue = nullptr; 4978 } 4979 4980 // Fill in any holes in the table with the default result. 4981 if (Values.size() < TableSize) { 4982 assert(DefaultValue && 4983 "Need a default value to fill the lookup table holes."); 4984 assert(DefaultValue->getType() == ValueType); 4985 for (uint64_t I = 0; I < TableSize; ++I) { 4986 if (!TableContents[I]) 4987 TableContents[I] = DefaultValue; 4988 } 4989 4990 if (DefaultValue != SingleValue) 4991 SingleValue = nullptr; 4992 } 4993 4994 // If each element in the table contains the same value, we only need to store 4995 // that single value. 4996 if (SingleValue) { 4997 Kind = SingleValueKind; 4998 return; 4999 } 5000 5001 // Check if we can derive the value with a linear transformation from the 5002 // table index. 5003 if (isa<IntegerType>(ValueType)) { 5004 bool LinearMappingPossible = true; 5005 APInt PrevVal; 5006 APInt DistToPrev; 5007 assert(TableSize >= 2 && "Should be a SingleValue table."); 5008 // Check if there is the same distance between two consecutive values. 5009 for (uint64_t I = 0; I < TableSize; ++I) { 5010 ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]); 5011 if (!ConstVal) { 5012 // This is an undef. We could deal with it, but undefs in lookup tables 5013 // are very seldom. It's probably not worth the additional complexity. 5014 LinearMappingPossible = false; 5015 break; 5016 } 5017 const APInt &Val = ConstVal->getValue(); 5018 if (I != 0) { 5019 APInt Dist = Val - PrevVal; 5020 if (I == 1) { 5021 DistToPrev = Dist; 5022 } else if (Dist != DistToPrev) { 5023 LinearMappingPossible = false; 5024 break; 5025 } 5026 } 5027 PrevVal = Val; 5028 } 5029 if (LinearMappingPossible) { 5030 LinearOffset = cast<ConstantInt>(TableContents[0]); 5031 LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev); 5032 Kind = LinearMapKind; 5033 ++NumLinearMaps; 5034 return; 5035 } 5036 } 5037 5038 // If the type is integer and the table fits in a register, build a bitmap. 5039 if (WouldFitInRegister(DL, TableSize, ValueType)) { 5040 IntegerType *IT = cast<IntegerType>(ValueType); 5041 APInt TableInt(TableSize * IT->getBitWidth(), 0); 5042 for (uint64_t I = TableSize; I > 0; --I) { 5043 TableInt <<= IT->getBitWidth(); 5044 // Insert values into the bitmap. Undef values are set to zero. 5045 if (!isa<UndefValue>(TableContents[I - 1])) { 5046 ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]); 5047 TableInt |= Val->getValue().zext(TableInt.getBitWidth()); 5048 } 5049 } 5050 BitMap = ConstantInt::get(M.getContext(), TableInt); 5051 BitMapElementTy = IT; 5052 Kind = BitMapKind; 5053 ++NumBitMaps; 5054 return; 5055 } 5056 5057 // Store the table in an array. 5058 ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize); 5059 Constant *Initializer = ConstantArray::get(ArrayTy, TableContents); 5060 5061 Array = new GlobalVariable(M, ArrayTy, /*constant=*/true, 5062 GlobalVariable::PrivateLinkage, Initializer, 5063 "switch.table." + FuncName); 5064 Array->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); 5065 // Set the alignment to that of an array items. We will be only loading one 5066 // value out of it. 5067 Array->setAlignment(DL.getPrefTypeAlignment(ValueType)); 5068 Kind = ArrayKind; 5069 } 5070 5071 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) { 5072 switch (Kind) { 5073 case SingleValueKind: 5074 return SingleValue; 5075 case LinearMapKind: { 5076 // Derive the result value from the input value. 5077 Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(), 5078 false, "switch.idx.cast"); 5079 if (!LinearMultiplier->isOne()) 5080 Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult"); 5081 if (!LinearOffset->isZero()) 5082 Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset"); 5083 return Result; 5084 } 5085 case BitMapKind: { 5086 // Type of the bitmap (e.g. i59). 5087 IntegerType *MapTy = BitMap->getType(); 5088 5089 // Cast Index to the same type as the bitmap. 5090 // Note: The Index is <= the number of elements in the table, so 5091 // truncating it to the width of the bitmask is safe. 5092 Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast"); 5093 5094 // Multiply the shift amount by the element width. 5095 ShiftAmt = Builder.CreateMul( 5096 ShiftAmt, ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()), 5097 "switch.shiftamt"); 5098 5099 // Shift down. 5100 Value *DownShifted = 5101 Builder.CreateLShr(BitMap, ShiftAmt, "switch.downshift"); 5102 // Mask off. 5103 return Builder.CreateTrunc(DownShifted, BitMapElementTy, "switch.masked"); 5104 } 5105 case ArrayKind: { 5106 // Make sure the table index will not overflow when treated as signed. 5107 IntegerType *IT = cast<IntegerType>(Index->getType()); 5108 uint64_t TableSize = 5109 Array->getInitializer()->getType()->getArrayNumElements(); 5110 if (TableSize > (1ULL << (IT->getBitWidth() - 1))) 5111 Index = Builder.CreateZExt( 5112 Index, IntegerType::get(IT->getContext(), IT->getBitWidth() + 1), 5113 "switch.tableidx.zext"); 5114 5115 Value *GEPIndices[] = {Builder.getInt32(0), Index}; 5116 Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array, 5117 GEPIndices, "switch.gep"); 5118 return Builder.CreateLoad( 5119 cast<ArrayType>(Array->getValueType())->getElementType(), GEP, 5120 "switch.load"); 5121 } 5122 } 5123 llvm_unreachable("Unknown lookup table kind!"); 5124 } 5125 5126 bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL, 5127 uint64_t TableSize, 5128 Type *ElementType) { 5129 auto *IT = dyn_cast<IntegerType>(ElementType); 5130 if (!IT) 5131 return false; 5132 // FIXME: If the type is wider than it needs to be, e.g. i8 but all values 5133 // are <= 15, we could try to narrow the type. 5134 5135 // Avoid overflow, fitsInLegalInteger uses unsigned int for the width. 5136 if (TableSize >= UINT_MAX / IT->getBitWidth()) 5137 return false; 5138 return DL.fitsInLegalInteger(TableSize * IT->getBitWidth()); 5139 } 5140 5141 /// Determine whether a lookup table should be built for this switch, based on 5142 /// the number of cases, size of the table, and the types of the results. 5143 static bool 5144 ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize, 5145 const TargetTransformInfo &TTI, const DataLayout &DL, 5146 const SmallDenseMap<PHINode *, Type *> &ResultTypes) { 5147 if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10) 5148 return false; // TableSize overflowed, or mul below might overflow. 5149 5150 bool AllTablesFitInRegister = true; 5151 bool HasIllegalType = false; 5152 for (const auto &I : ResultTypes) { 5153 Type *Ty = I.second; 5154 5155 // Saturate this flag to true. 5156 HasIllegalType = HasIllegalType || !TTI.isTypeLegal(Ty); 5157 5158 // Saturate this flag to false. 5159 AllTablesFitInRegister = 5160 AllTablesFitInRegister && 5161 SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty); 5162 5163 // If both flags saturate, we're done. NOTE: This *only* works with 5164 // saturating flags, and all flags have to saturate first due to the 5165 // non-deterministic behavior of iterating over a dense map. 5166 if (HasIllegalType && !AllTablesFitInRegister) 5167 break; 5168 } 5169 5170 // If each table would fit in a register, we should build it anyway. 5171 if (AllTablesFitInRegister) 5172 return true; 5173 5174 // Don't build a table that doesn't fit in-register if it has illegal types. 5175 if (HasIllegalType) 5176 return false; 5177 5178 // The table density should be at least 40%. This is the same criterion as for 5179 // jump tables, see SelectionDAGBuilder::handleJTSwitchCase. 5180 // FIXME: Find the best cut-off. 5181 return SI->getNumCases() * 10 >= TableSize * 4; 5182 } 5183 5184 /// Try to reuse the switch table index compare. Following pattern: 5185 /// \code 5186 /// if (idx < tablesize) 5187 /// r = table[idx]; // table does not contain default_value 5188 /// else 5189 /// r = default_value; 5190 /// if (r != default_value) 5191 /// ... 5192 /// \endcode 5193 /// Is optimized to: 5194 /// \code 5195 /// cond = idx < tablesize; 5196 /// if (cond) 5197 /// r = table[idx]; 5198 /// else 5199 /// r = default_value; 5200 /// if (cond) 5201 /// ... 5202 /// \endcode 5203 /// Jump threading will then eliminate the second if(cond). 5204 static void reuseTableCompare( 5205 User *PhiUser, BasicBlock *PhiBlock, BranchInst *RangeCheckBranch, 5206 Constant *DefaultValue, 5207 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values) { 5208 ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser); 5209 if (!CmpInst) 5210 return; 5211 5212 // We require that the compare is in the same block as the phi so that jump 5213 // threading can do its work afterwards. 5214 if (CmpInst->getParent() != PhiBlock) 5215 return; 5216 5217 Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1)); 5218 if (!CmpOp1) 5219 return; 5220 5221 Value *RangeCmp = RangeCheckBranch->getCondition(); 5222 Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType()); 5223 Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType()); 5224 5225 // Check if the compare with the default value is constant true or false. 5226 Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(), 5227 DefaultValue, CmpOp1, true); 5228 if (DefaultConst != TrueConst && DefaultConst != FalseConst) 5229 return; 5230 5231 // Check if the compare with the case values is distinct from the default 5232 // compare result. 5233 for (auto ValuePair : Values) { 5234 Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(), 5235 ValuePair.second, CmpOp1, true); 5236 if (!CaseConst || CaseConst == DefaultConst || isa<UndefValue>(CaseConst)) 5237 return; 5238 assert((CaseConst == TrueConst || CaseConst == FalseConst) && 5239 "Expect true or false as compare result."); 5240 } 5241 5242 // Check if the branch instruction dominates the phi node. It's a simple 5243 // dominance check, but sufficient for our needs. 5244 // Although this check is invariant in the calling loops, it's better to do it 5245 // at this late stage. Practically we do it at most once for a switch. 5246 BasicBlock *BranchBlock = RangeCheckBranch->getParent(); 5247 for (auto PI = pred_begin(PhiBlock), E = pred_end(PhiBlock); PI != E; ++PI) { 5248 BasicBlock *Pred = *PI; 5249 if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock) 5250 return; 5251 } 5252 5253 if (DefaultConst == FalseConst) { 5254 // The compare yields the same result. We can replace it. 5255 CmpInst->replaceAllUsesWith(RangeCmp); 5256 ++NumTableCmpReuses; 5257 } else { 5258 // The compare yields the same result, just inverted. We can replace it. 5259 Value *InvertedTableCmp = BinaryOperator::CreateXor( 5260 RangeCmp, ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp", 5261 RangeCheckBranch); 5262 CmpInst->replaceAllUsesWith(InvertedTableCmp); 5263 ++NumTableCmpReuses; 5264 } 5265 } 5266 5267 /// If the switch is only used to initialize one or more phi nodes in a common 5268 /// successor block with different constant values, replace the switch with 5269 /// lookup tables. 5270 static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder, 5271 const DataLayout &DL, 5272 const TargetTransformInfo &TTI) { 5273 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 5274 5275 Function *Fn = SI->getParent()->getParent(); 5276 // Only build lookup table when we have a target that supports it or the 5277 // attribute is not set. 5278 if (!TTI.shouldBuildLookupTables() || 5279 (Fn->getFnAttribute("no-jump-tables").getValueAsString() == "true")) 5280 return false; 5281 5282 // FIXME: If the switch is too sparse for a lookup table, perhaps we could 5283 // split off a dense part and build a lookup table for that. 5284 5285 // FIXME: This creates arrays of GEPs to constant strings, which means each 5286 // GEP needs a runtime relocation in PIC code. We should just build one big 5287 // string and lookup indices into that. 5288 5289 // Ignore switches with less than three cases. Lookup tables will not make 5290 // them faster, so we don't analyze them. 5291 if (SI->getNumCases() < 3) 5292 return false; 5293 5294 // Figure out the corresponding result for each case value and phi node in the 5295 // common destination, as well as the min and max case values. 5296 assert(!empty(SI->cases())); 5297 SwitchInst::CaseIt CI = SI->case_begin(); 5298 ConstantInt *MinCaseVal = CI->getCaseValue(); 5299 ConstantInt *MaxCaseVal = CI->getCaseValue(); 5300 5301 BasicBlock *CommonDest = nullptr; 5302 5303 using ResultListTy = SmallVector<std::pair<ConstantInt *, Constant *>, 4>; 5304 SmallDenseMap<PHINode *, ResultListTy> ResultLists; 5305 5306 SmallDenseMap<PHINode *, Constant *> DefaultResults; 5307 SmallDenseMap<PHINode *, Type *> ResultTypes; 5308 SmallVector<PHINode *, 4> PHIs; 5309 5310 for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) { 5311 ConstantInt *CaseVal = CI->getCaseValue(); 5312 if (CaseVal->getValue().slt(MinCaseVal->getValue())) 5313 MinCaseVal = CaseVal; 5314 if (CaseVal->getValue().sgt(MaxCaseVal->getValue())) 5315 MaxCaseVal = CaseVal; 5316 5317 // Resulting value at phi nodes for this case value. 5318 using ResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>; 5319 ResultsTy Results; 5320 if (!GetCaseResults(SI, CaseVal, CI->getCaseSuccessor(), &CommonDest, 5321 Results, DL, TTI)) 5322 return false; 5323 5324 // Append the result from this case to the list for each phi. 5325 for (const auto &I : Results) { 5326 PHINode *PHI = I.first; 5327 Constant *Value = I.second; 5328 if (!ResultLists.count(PHI)) 5329 PHIs.push_back(PHI); 5330 ResultLists[PHI].push_back(std::make_pair(CaseVal, Value)); 5331 } 5332 } 5333 5334 // Keep track of the result types. 5335 for (PHINode *PHI : PHIs) { 5336 ResultTypes[PHI] = ResultLists[PHI][0].second->getType(); 5337 } 5338 5339 uint64_t NumResults = ResultLists[PHIs[0]].size(); 5340 APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue(); 5341 uint64_t TableSize = RangeSpread.getLimitedValue() + 1; 5342 bool TableHasHoles = (NumResults < TableSize); 5343 5344 // If the table has holes, we need a constant result for the default case 5345 // or a bitmask that fits in a register. 5346 SmallVector<std::pair<PHINode *, Constant *>, 4> DefaultResultsList; 5347 bool HasDefaultResults = 5348 GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, 5349 DefaultResultsList, DL, TTI); 5350 5351 bool NeedMask = (TableHasHoles && !HasDefaultResults); 5352 if (NeedMask) { 5353 // As an extra penalty for the validity test we require more cases. 5354 if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark). 5355 return false; 5356 if (!DL.fitsInLegalInteger(TableSize)) 5357 return false; 5358 } 5359 5360 for (const auto &I : DefaultResultsList) { 5361 PHINode *PHI = I.first; 5362 Constant *Result = I.second; 5363 DefaultResults[PHI] = Result; 5364 } 5365 5366 if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes)) 5367 return false; 5368 5369 // Create the BB that does the lookups. 5370 Module &Mod = *CommonDest->getParent()->getParent(); 5371 BasicBlock *LookupBB = BasicBlock::Create( 5372 Mod.getContext(), "switch.lookup", CommonDest->getParent(), CommonDest); 5373 5374 // Compute the table index value. 5375 Builder.SetInsertPoint(SI); 5376 Value *TableIndex; 5377 if (MinCaseVal->isNullValue()) 5378 TableIndex = SI->getCondition(); 5379 else 5380 TableIndex = Builder.CreateSub(SI->getCondition(), MinCaseVal, 5381 "switch.tableidx"); 5382 5383 // Compute the maximum table size representable by the integer type we are 5384 // switching upon. 5385 unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits(); 5386 uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize; 5387 assert(MaxTableSize >= TableSize && 5388 "It is impossible for a switch to have more entries than the max " 5389 "representable value of its input integer type's size."); 5390 5391 // If the default destination is unreachable, or if the lookup table covers 5392 // all values of the conditional variable, branch directly to the lookup table 5393 // BB. Otherwise, check that the condition is within the case range. 5394 const bool DefaultIsReachable = 5395 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 5396 const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize); 5397 BranchInst *RangeCheckBranch = nullptr; 5398 5399 if (!DefaultIsReachable || GeneratingCoveredLookupTable) { 5400 Builder.CreateBr(LookupBB); 5401 // Note: We call removeProdecessor later since we need to be able to get the 5402 // PHI value for the default case in case we're using a bit mask. 5403 } else { 5404 Value *Cmp = Builder.CreateICmpULT( 5405 TableIndex, ConstantInt::get(MinCaseVal->getType(), TableSize)); 5406 RangeCheckBranch = 5407 Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest()); 5408 } 5409 5410 // Populate the BB that does the lookups. 5411 Builder.SetInsertPoint(LookupBB); 5412 5413 if (NeedMask) { 5414 // Before doing the lookup, we do the hole check. The LookupBB is therefore 5415 // re-purposed to do the hole check, and we create a new LookupBB. 5416 BasicBlock *MaskBB = LookupBB; 5417 MaskBB->setName("switch.hole_check"); 5418 LookupBB = BasicBlock::Create(Mod.getContext(), "switch.lookup", 5419 CommonDest->getParent(), CommonDest); 5420 5421 // Make the mask's bitwidth at least 8-bit and a power-of-2 to avoid 5422 // unnecessary illegal types. 5423 uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL)); 5424 APInt MaskInt(TableSizePowOf2, 0); 5425 APInt One(TableSizePowOf2, 1); 5426 // Build bitmask; fill in a 1 bit for every case. 5427 const ResultListTy &ResultList = ResultLists[PHIs[0]]; 5428 for (size_t I = 0, E = ResultList.size(); I != E; ++I) { 5429 uint64_t Idx = (ResultList[I].first->getValue() - MinCaseVal->getValue()) 5430 .getLimitedValue(); 5431 MaskInt |= One << Idx; 5432 } 5433 ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt); 5434 5435 // Get the TableIndex'th bit of the bitmask. 5436 // If this bit is 0 (meaning hole) jump to the default destination, 5437 // else continue with table lookup. 5438 IntegerType *MapTy = TableMask->getType(); 5439 Value *MaskIndex = 5440 Builder.CreateZExtOrTrunc(TableIndex, MapTy, "switch.maskindex"); 5441 Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, "switch.shifted"); 5442 Value *LoBit = Builder.CreateTrunc( 5443 Shifted, Type::getInt1Ty(Mod.getContext()), "switch.lobit"); 5444 Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest()); 5445 5446 Builder.SetInsertPoint(LookupBB); 5447 AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, SI->getParent()); 5448 } 5449 5450 if (!DefaultIsReachable || GeneratingCoveredLookupTable) { 5451 // We cached PHINodes in PHIs. To avoid accessing deleted PHINodes later, 5452 // do not delete PHINodes here. 5453 SI->getDefaultDest()->removePredecessor(SI->getParent(), 5454 /*KeepOneInputPHIs=*/true); 5455 } 5456 5457 bool ReturnedEarly = false; 5458 for (PHINode *PHI : PHIs) { 5459 const ResultListTy &ResultList = ResultLists[PHI]; 5460 5461 // If using a bitmask, use any value to fill the lookup table holes. 5462 Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI]; 5463 StringRef FuncName = Fn->getName(); 5464 SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultList, DV, DL, 5465 FuncName); 5466 5467 Value *Result = Table.BuildLookup(TableIndex, Builder); 5468 5469 // If the result is used to return immediately from the function, we want to 5470 // do that right here. 5471 if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->user_begin()) && 5472 PHI->user_back() == CommonDest->getFirstNonPHIOrDbg()) { 5473 Builder.CreateRet(Result); 5474 ReturnedEarly = true; 5475 break; 5476 } 5477 5478 // Do a small peephole optimization: re-use the switch table compare if 5479 // possible. 5480 if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) { 5481 BasicBlock *PhiBlock = PHI->getParent(); 5482 // Search for compare instructions which use the phi. 5483 for (auto *User : PHI->users()) { 5484 reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList); 5485 } 5486 } 5487 5488 PHI->addIncoming(Result, LookupBB); 5489 } 5490 5491 if (!ReturnedEarly) 5492 Builder.CreateBr(CommonDest); 5493 5494 // Remove the switch. 5495 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { 5496 BasicBlock *Succ = SI->getSuccessor(i); 5497 5498 if (Succ == SI->getDefaultDest()) 5499 continue; 5500 Succ->removePredecessor(SI->getParent()); 5501 } 5502 SI->eraseFromParent(); 5503 5504 ++NumLookupTables; 5505 if (NeedMask) 5506 ++NumLookupTablesHoles; 5507 return true; 5508 } 5509 5510 static bool isSwitchDense(ArrayRef<int64_t> Values) { 5511 // See also SelectionDAGBuilder::isDense(), which this function was based on. 5512 uint64_t Diff = (uint64_t)Values.back() - (uint64_t)Values.front(); 5513 uint64_t Range = Diff + 1; 5514 uint64_t NumCases = Values.size(); 5515 // 40% is the default density for building a jump table in optsize/minsize mode. 5516 uint64_t MinDensity = 40; 5517 5518 return NumCases * 100 >= Range * MinDensity; 5519 } 5520 5521 /// Try to transform a switch that has "holes" in it to a contiguous sequence 5522 /// of cases. 5523 /// 5524 /// A switch such as: switch(i) {case 5: case 9: case 13: case 17:} can be 5525 /// range-reduced to: switch ((i-5) / 4) {case 0: case 1: case 2: case 3:}. 5526 /// 5527 /// This converts a sparse switch into a dense switch which allows better 5528 /// lowering and could also allow transforming into a lookup table. 5529 static bool ReduceSwitchRange(SwitchInst *SI, IRBuilder<> &Builder, 5530 const DataLayout &DL, 5531 const TargetTransformInfo &TTI) { 5532 auto *CondTy = cast<IntegerType>(SI->getCondition()->getType()); 5533 if (CondTy->getIntegerBitWidth() > 64 || 5534 !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth())) 5535 return false; 5536 // Only bother with this optimization if there are more than 3 switch cases; 5537 // SDAG will only bother creating jump tables for 4 or more cases. 5538 if (SI->getNumCases() < 4) 5539 return false; 5540 5541 // This transform is agnostic to the signedness of the input or case values. We 5542 // can treat the case values as signed or unsigned. We can optimize more common 5543 // cases such as a sequence crossing zero {-4,0,4,8} if we interpret case values 5544 // as signed. 5545 SmallVector<int64_t,4> Values; 5546 for (auto &C : SI->cases()) 5547 Values.push_back(C.getCaseValue()->getValue().getSExtValue()); 5548 llvm::sort(Values); 5549 5550 // If the switch is already dense, there's nothing useful to do here. 5551 if (isSwitchDense(Values)) 5552 return false; 5553 5554 // First, transform the values such that they start at zero and ascend. 5555 int64_t Base = Values[0]; 5556 for (auto &V : Values) 5557 V -= (uint64_t)(Base); 5558 5559 // Now we have signed numbers that have been shifted so that, given enough 5560 // precision, there are no negative values. Since the rest of the transform 5561 // is bitwise only, we switch now to an unsigned representation. 5562 uint64_t GCD = 0; 5563 for (auto &V : Values) 5564 GCD = GreatestCommonDivisor64(GCD, (uint64_t)V); 5565 5566 // This transform can be done speculatively because it is so cheap - it results 5567 // in a single rotate operation being inserted. This can only happen if the 5568 // factor extracted is a power of 2. 5569 // FIXME: If the GCD is an odd number we can multiply by the multiplicative 5570 // inverse of GCD and then perform this transform. 5571 // FIXME: It's possible that optimizing a switch on powers of two might also 5572 // be beneficial - flag values are often powers of two and we could use a CLZ 5573 // as the key function. 5574 if (GCD <= 1 || !isPowerOf2_64(GCD)) 5575 // No common divisor found or too expensive to compute key function. 5576 return false; 5577 5578 unsigned Shift = Log2_64(GCD); 5579 for (auto &V : Values) 5580 V = (int64_t)((uint64_t)V >> Shift); 5581 5582 if (!isSwitchDense(Values)) 5583 // Transform didn't create a dense switch. 5584 return false; 5585 5586 // The obvious transform is to shift the switch condition right and emit a 5587 // check that the condition actually cleanly divided by GCD, i.e. 5588 // C & (1 << Shift - 1) == 0 5589 // inserting a new CFG edge to handle the case where it didn't divide cleanly. 5590 // 5591 // A cheaper way of doing this is a simple ROTR(C, Shift). This performs the 5592 // shift and puts the shifted-off bits in the uppermost bits. If any of these 5593 // are nonzero then the switch condition will be very large and will hit the 5594 // default case. 5595 5596 auto *Ty = cast<IntegerType>(SI->getCondition()->getType()); 5597 Builder.SetInsertPoint(SI); 5598 auto *ShiftC = ConstantInt::get(Ty, Shift); 5599 auto *Sub = Builder.CreateSub(SI->getCondition(), ConstantInt::get(Ty, Base)); 5600 auto *LShr = Builder.CreateLShr(Sub, ShiftC); 5601 auto *Shl = Builder.CreateShl(Sub, Ty->getBitWidth() - Shift); 5602 auto *Rot = Builder.CreateOr(LShr, Shl); 5603 SI->replaceUsesOfWith(SI->getCondition(), Rot); 5604 5605 for (auto Case : SI->cases()) { 5606 auto *Orig = Case.getCaseValue(); 5607 auto Sub = Orig->getValue() - APInt(Ty->getBitWidth(), Base); 5608 Case.setValue( 5609 cast<ConstantInt>(ConstantInt::get(Ty, Sub.lshr(ShiftC->getValue())))); 5610 } 5611 return true; 5612 } 5613 5614 bool SimplifyCFGOpt::SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) { 5615 BasicBlock *BB = SI->getParent(); 5616 5617 if (isValueEqualityComparison(SI)) { 5618 // If we only have one predecessor, and if it is a branch on this value, 5619 // see if that predecessor totally determines the outcome of this switch. 5620 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 5621 if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder)) 5622 return requestResimplify(); 5623 5624 Value *Cond = SI->getCondition(); 5625 if (SelectInst *Select = dyn_cast<SelectInst>(Cond)) 5626 if (SimplifySwitchOnSelect(SI, Select)) 5627 return requestResimplify(); 5628 5629 // If the block only contains the switch, see if we can fold the block 5630 // away into any preds. 5631 if (SI == &*BB->instructionsWithoutDebug().begin()) 5632 if (FoldValueComparisonIntoPredecessors(SI, Builder)) 5633 return requestResimplify(); 5634 } 5635 5636 // Try to transform the switch into an icmp and a branch. 5637 if (TurnSwitchRangeIntoICmp(SI, Builder)) 5638 return requestResimplify(); 5639 5640 // Remove unreachable cases. 5641 if (eliminateDeadSwitchCases(SI, Options.AC, DL)) 5642 return requestResimplify(); 5643 5644 if (switchToSelect(SI, Builder, DL, TTI)) 5645 return requestResimplify(); 5646 5647 if (Options.ForwardSwitchCondToPhi && ForwardSwitchConditionToPHI(SI)) 5648 return requestResimplify(); 5649 5650 // The conversion from switch to lookup tables results in difficult-to-analyze 5651 // code and makes pruning branches much harder. This is a problem if the 5652 // switch expression itself can still be restricted as a result of inlining or 5653 // CVP. Therefore, only apply this transformation during late stages of the 5654 // optimisation pipeline. 5655 if (Options.ConvertSwitchToLookupTable && 5656 SwitchToLookupTable(SI, Builder, DL, TTI)) 5657 return requestResimplify(); 5658 5659 if (ReduceSwitchRange(SI, Builder, DL, TTI)) 5660 return requestResimplify(); 5661 5662 return false; 5663 } 5664 5665 bool SimplifyCFGOpt::SimplifyIndirectBr(IndirectBrInst *IBI) { 5666 BasicBlock *BB = IBI->getParent(); 5667 bool Changed = false; 5668 5669 // Eliminate redundant destinations. 5670 SmallPtrSet<Value *, 8> Succs; 5671 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 5672 BasicBlock *Dest = IBI->getDestination(i); 5673 if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) { 5674 Dest->removePredecessor(BB); 5675 IBI->removeDestination(i); 5676 --i; 5677 --e; 5678 Changed = true; 5679 } 5680 } 5681 5682 if (IBI->getNumDestinations() == 0) { 5683 // If the indirectbr has no successors, change it to unreachable. 5684 new UnreachableInst(IBI->getContext(), IBI); 5685 EraseTerminatorAndDCECond(IBI); 5686 return true; 5687 } 5688 5689 if (IBI->getNumDestinations() == 1) { 5690 // If the indirectbr has one successor, change it to a direct branch. 5691 BranchInst::Create(IBI->getDestination(0), IBI); 5692 EraseTerminatorAndDCECond(IBI); 5693 return true; 5694 } 5695 5696 if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) { 5697 if (SimplifyIndirectBrOnSelect(IBI, SI)) 5698 return requestResimplify(); 5699 } 5700 return Changed; 5701 } 5702 5703 /// Given an block with only a single landing pad and a unconditional branch 5704 /// try to find another basic block which this one can be merged with. This 5705 /// handles cases where we have multiple invokes with unique landing pads, but 5706 /// a shared handler. 5707 /// 5708 /// We specifically choose to not worry about merging non-empty blocks 5709 /// here. That is a PRE/scheduling problem and is best solved elsewhere. In 5710 /// practice, the optimizer produces empty landing pad blocks quite frequently 5711 /// when dealing with exception dense code. (see: instcombine, gvn, if-else 5712 /// sinking in this file) 5713 /// 5714 /// This is primarily a code size optimization. We need to avoid performing 5715 /// any transform which might inhibit optimization (such as our ability to 5716 /// specialize a particular handler via tail commoning). We do this by not 5717 /// merging any blocks which require us to introduce a phi. Since the same 5718 /// values are flowing through both blocks, we don't lose any ability to 5719 /// specialize. If anything, we make such specialization more likely. 5720 /// 5721 /// TODO - This transformation could remove entries from a phi in the target 5722 /// block when the inputs in the phi are the same for the two blocks being 5723 /// merged. In some cases, this could result in removal of the PHI entirely. 5724 static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI, 5725 BasicBlock *BB) { 5726 auto Succ = BB->getUniqueSuccessor(); 5727 assert(Succ); 5728 // If there's a phi in the successor block, we'd likely have to introduce 5729 // a phi into the merged landing pad block. 5730 if (isa<PHINode>(*Succ->begin())) 5731 return false; 5732 5733 for (BasicBlock *OtherPred : predecessors(Succ)) { 5734 if (BB == OtherPred) 5735 continue; 5736 BasicBlock::iterator I = OtherPred->begin(); 5737 LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I); 5738 if (!LPad2 || !LPad2->isIdenticalTo(LPad)) 5739 continue; 5740 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 5741 ; 5742 BranchInst *BI2 = dyn_cast<BranchInst>(I); 5743 if (!BI2 || !BI2->isIdenticalTo(BI)) 5744 continue; 5745 5746 // We've found an identical block. Update our predecessors to take that 5747 // path instead and make ourselves dead. 5748 SmallPtrSet<BasicBlock *, 16> Preds; 5749 Preds.insert(pred_begin(BB), pred_end(BB)); 5750 for (BasicBlock *Pred : Preds) { 5751 InvokeInst *II = cast<InvokeInst>(Pred->getTerminator()); 5752 assert(II->getNormalDest() != BB && II->getUnwindDest() == BB && 5753 "unexpected successor"); 5754 II->setUnwindDest(OtherPred); 5755 } 5756 5757 // The debug info in OtherPred doesn't cover the merged control flow that 5758 // used to go through BB. We need to delete it or update it. 5759 for (auto I = OtherPred->begin(), E = OtherPred->end(); I != E;) { 5760 Instruction &Inst = *I; 5761 I++; 5762 if (isa<DbgInfoIntrinsic>(Inst)) 5763 Inst.eraseFromParent(); 5764 } 5765 5766 SmallPtrSet<BasicBlock *, 16> Succs; 5767 Succs.insert(succ_begin(BB), succ_end(BB)); 5768 for (BasicBlock *Succ : Succs) { 5769 Succ->removePredecessor(BB); 5770 } 5771 5772 IRBuilder<> Builder(BI); 5773 Builder.CreateUnreachable(); 5774 BI->eraseFromParent(); 5775 return true; 5776 } 5777 return false; 5778 } 5779 5780 bool SimplifyCFGOpt::SimplifyUncondBranch(BranchInst *BI, 5781 IRBuilder<> &Builder) { 5782 BasicBlock *BB = BI->getParent(); 5783 BasicBlock *Succ = BI->getSuccessor(0); 5784 5785 // If the Terminator is the only non-phi instruction, simplify the block. 5786 // If LoopHeader is provided, check if the block or its successor is a loop 5787 // header. (This is for early invocations before loop simplify and 5788 // vectorization to keep canonical loop forms for nested loops. These blocks 5789 // can be eliminated when the pass is invoked later in the back-end.) 5790 // Note that if BB has only one predecessor then we do not introduce new 5791 // backedge, so we can eliminate BB. 5792 bool NeedCanonicalLoop = 5793 Options.NeedCanonicalLoop && 5794 (LoopHeaders && BB->hasNPredecessorsOrMore(2) && 5795 (LoopHeaders->count(BB) || LoopHeaders->count(Succ))); 5796 BasicBlock::iterator I = BB->getFirstNonPHIOrDbg()->getIterator(); 5797 if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() && 5798 !NeedCanonicalLoop && TryToSimplifyUncondBranchFromEmptyBlock(BB)) 5799 return true; 5800 5801 // If the only instruction in the block is a seteq/setne comparison against a 5802 // constant, try to simplify the block. 5803 if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) 5804 if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) { 5805 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 5806 ; 5807 if (I->isTerminator() && 5808 tryToSimplifyUncondBranchWithICmpInIt(ICI, Builder)) 5809 return true; 5810 } 5811 5812 // See if we can merge an empty landing pad block with another which is 5813 // equivalent. 5814 if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) { 5815 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 5816 ; 5817 if (I->isTerminator() && TryToMergeLandingPad(LPad, BI, BB)) 5818 return true; 5819 } 5820 5821 // If this basic block is ONLY a compare and a branch, and if a predecessor 5822 // branches to us and our successor, fold the comparison into the 5823 // predecessor and use logical operations to update the incoming value 5824 // for PHI nodes in common successor. 5825 if (FoldBranchToCommonDest(BI, nullptr, Options.BonusInstThreshold)) 5826 return requestResimplify(); 5827 return false; 5828 } 5829 5830 static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) { 5831 BasicBlock *PredPred = nullptr; 5832 for (auto *P : predecessors(BB)) { 5833 BasicBlock *PPred = P->getSinglePredecessor(); 5834 if (!PPred || (PredPred && PredPred != PPred)) 5835 return nullptr; 5836 PredPred = PPred; 5837 } 5838 return PredPred; 5839 } 5840 5841 bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) { 5842 BasicBlock *BB = BI->getParent(); 5843 const Function *Fn = BB->getParent(); 5844 if (Fn && Fn->hasFnAttribute(Attribute::OptForFuzzing)) 5845 return false; 5846 5847 // Conditional branch 5848 if (isValueEqualityComparison(BI)) { 5849 // If we only have one predecessor, and if it is a branch on this value, 5850 // see if that predecessor totally determines the outcome of this 5851 // switch. 5852 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 5853 if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder)) 5854 return requestResimplify(); 5855 5856 // This block must be empty, except for the setcond inst, if it exists. 5857 // Ignore dbg intrinsics. 5858 auto I = BB->instructionsWithoutDebug().begin(); 5859 if (&*I == BI) { 5860 if (FoldValueComparisonIntoPredecessors(BI, Builder)) 5861 return requestResimplify(); 5862 } else if (&*I == cast<Instruction>(BI->getCondition())) { 5863 ++I; 5864 if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder)) 5865 return requestResimplify(); 5866 } 5867 } 5868 5869 // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction. 5870 if (SimplifyBranchOnICmpChain(BI, Builder, DL)) 5871 return true; 5872 5873 // If this basic block has dominating predecessor blocks and the dominating 5874 // blocks' conditions imply BI's condition, we know the direction of BI. 5875 Optional<bool> Imp = isImpliedByDomCondition(BI->getCondition(), BI, DL); 5876 if (Imp) { 5877 // Turn this into a branch on constant. 5878 auto *OldCond = BI->getCondition(); 5879 ConstantInt *TorF = *Imp ? ConstantInt::getTrue(BB->getContext()) 5880 : ConstantInt::getFalse(BB->getContext()); 5881 BI->setCondition(TorF); 5882 RecursivelyDeleteTriviallyDeadInstructions(OldCond); 5883 return requestResimplify(); 5884 } 5885 5886 // If this basic block is ONLY a compare and a branch, and if a predecessor 5887 // branches to us and one of our successors, fold the comparison into the 5888 // predecessor and use logical operations to pick the right destination. 5889 if (FoldBranchToCommonDest(BI, nullptr, Options.BonusInstThreshold)) 5890 return requestResimplify(); 5891 5892 // We have a conditional branch to two blocks that are only reachable 5893 // from BI. We know that the condbr dominates the two blocks, so see if 5894 // there is any identical code in the "then" and "else" blocks. If so, we 5895 // can hoist it up to the branching block. 5896 if (BI->getSuccessor(0)->getSinglePredecessor()) { 5897 if (BI->getSuccessor(1)->getSinglePredecessor()) { 5898 if (HoistThenElseCodeToIf(BI, TTI)) 5899 return requestResimplify(); 5900 } else { 5901 // If Successor #1 has multiple preds, we may be able to conditionally 5902 // execute Successor #0 if it branches to Successor #1. 5903 Instruction *Succ0TI = BI->getSuccessor(0)->getTerminator(); 5904 if (Succ0TI->getNumSuccessors() == 1 && 5905 Succ0TI->getSuccessor(0) == BI->getSuccessor(1)) 5906 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), TTI)) 5907 return requestResimplify(); 5908 } 5909 } else if (BI->getSuccessor(1)->getSinglePredecessor()) { 5910 // If Successor #0 has multiple preds, we may be able to conditionally 5911 // execute Successor #1 if it branches to Successor #0. 5912 Instruction *Succ1TI = BI->getSuccessor(1)->getTerminator(); 5913 if (Succ1TI->getNumSuccessors() == 1 && 5914 Succ1TI->getSuccessor(0) == BI->getSuccessor(0)) 5915 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), TTI)) 5916 return requestResimplify(); 5917 } 5918 5919 // If this is a branch on a phi node in the current block, thread control 5920 // through this block if any PHI node entries are constants. 5921 if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition())) 5922 if (PN->getParent() == BI->getParent()) 5923 if (FoldCondBranchOnPHI(BI, DL, Options.AC)) 5924 return requestResimplify(); 5925 5926 // Scan predecessor blocks for conditional branches. 5927 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 5928 if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator())) 5929 if (PBI != BI && PBI->isConditional()) 5930 if (SimplifyCondBranchToCondBranch(PBI, BI, DL)) 5931 return requestResimplify(); 5932 5933 // Look for diamond patterns. 5934 if (MergeCondStores) 5935 if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB)) 5936 if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator())) 5937 if (PBI != BI && PBI->isConditional()) 5938 if (mergeConditionalStores(PBI, BI, DL)) 5939 return requestResimplify(); 5940 5941 return false; 5942 } 5943 5944 /// Check if passing a value to an instruction will cause undefined behavior. 5945 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I) { 5946 Constant *C = dyn_cast<Constant>(V); 5947 if (!C) 5948 return false; 5949 5950 if (I->use_empty()) 5951 return false; 5952 5953 if (C->isNullValue() || isa<UndefValue>(C)) { 5954 // Only look at the first use, avoid hurting compile time with long uselists 5955 User *Use = *I->user_begin(); 5956 5957 // Now make sure that there are no instructions in between that can alter 5958 // control flow (eg. calls) 5959 for (BasicBlock::iterator 5960 i = ++BasicBlock::iterator(I), 5961 UI = BasicBlock::iterator(dyn_cast<Instruction>(Use)); 5962 i != UI; ++i) 5963 if (i == I->getParent()->end() || i->mayHaveSideEffects()) 5964 return false; 5965 5966 // Look through GEPs. A load from a GEP derived from NULL is still undefined 5967 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use)) 5968 if (GEP->getPointerOperand() == I) 5969 return passingValueIsAlwaysUndefined(V, GEP); 5970 5971 // Look through bitcasts. 5972 if (BitCastInst *BC = dyn_cast<BitCastInst>(Use)) 5973 return passingValueIsAlwaysUndefined(V, BC); 5974 5975 // Load from null is undefined. 5976 if (LoadInst *LI = dyn_cast<LoadInst>(Use)) 5977 if (!LI->isVolatile()) 5978 return !NullPointerIsDefined(LI->getFunction(), 5979 LI->getPointerAddressSpace()); 5980 5981 // Store to null is undefined. 5982 if (StoreInst *SI = dyn_cast<StoreInst>(Use)) 5983 if (!SI->isVolatile()) 5984 return (!NullPointerIsDefined(SI->getFunction(), 5985 SI->getPointerAddressSpace())) && 5986 SI->getPointerOperand() == I; 5987 5988 // A call to null is undefined. 5989 if (auto CS = CallSite(Use)) 5990 return !NullPointerIsDefined(CS->getFunction()) && 5991 CS.getCalledValue() == I; 5992 } 5993 return false; 5994 } 5995 5996 /// If BB has an incoming value that will always trigger undefined behavior 5997 /// (eg. null pointer dereference), remove the branch leading here. 5998 static bool removeUndefIntroducingPredecessor(BasicBlock *BB) { 5999 for (PHINode &PHI : BB->phis()) 6000 for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i) 6001 if (passingValueIsAlwaysUndefined(PHI.getIncomingValue(i), &PHI)) { 6002 Instruction *T = PHI.getIncomingBlock(i)->getTerminator(); 6003 IRBuilder<> Builder(T); 6004 if (BranchInst *BI = dyn_cast<BranchInst>(T)) { 6005 BB->removePredecessor(PHI.getIncomingBlock(i)); 6006 // Turn uncoditional branches into unreachables and remove the dead 6007 // destination from conditional branches. 6008 if (BI->isUnconditional()) 6009 Builder.CreateUnreachable(); 6010 else 6011 Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1) 6012 : BI->getSuccessor(0)); 6013 BI->eraseFromParent(); 6014 return true; 6015 } 6016 // TODO: SwitchInst. 6017 } 6018 6019 return false; 6020 } 6021 6022 bool SimplifyCFGOpt::simplifyOnce(BasicBlock *BB) { 6023 bool Changed = false; 6024 6025 assert(BB && BB->getParent() && "Block not embedded in function!"); 6026 assert(BB->getTerminator() && "Degenerate basic block encountered!"); 6027 6028 // Remove basic blocks that have no predecessors (except the entry block)... 6029 // or that just have themself as a predecessor. These are unreachable. 6030 if ((pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) || 6031 BB->getSinglePredecessor() == BB) { 6032 LLVM_DEBUG(dbgs() << "Removing BB: \n" << *BB); 6033 DeleteDeadBlock(BB); 6034 return true; 6035 } 6036 6037 // Check to see if we can constant propagate this terminator instruction 6038 // away... 6039 Changed |= ConstantFoldTerminator(BB, true); 6040 6041 // Check for and eliminate duplicate PHI nodes in this block. 6042 Changed |= EliminateDuplicatePHINodes(BB); 6043 6044 // Check for and remove branches that will always cause undefined behavior. 6045 Changed |= removeUndefIntroducingPredecessor(BB); 6046 6047 // Merge basic blocks into their predecessor if there is only one distinct 6048 // pred, and if there is only one distinct successor of the predecessor, and 6049 // if there are no PHI nodes. 6050 if (MergeBlockIntoPredecessor(BB)) 6051 return true; 6052 6053 if (SinkCommon && Options.SinkCommonInsts) 6054 Changed |= SinkCommonCodeFromPredecessors(BB); 6055 6056 IRBuilder<> Builder(BB); 6057 6058 // If there is a trivial two-entry PHI node in this basic block, and we can 6059 // eliminate it, do so now. 6060 if (auto *PN = dyn_cast<PHINode>(BB->begin())) 6061 if (PN->getNumIncomingValues() == 2) 6062 Changed |= FoldTwoEntryPHINode(PN, TTI, DL); 6063 6064 Builder.SetInsertPoint(BB->getTerminator()); 6065 if (auto *BI = dyn_cast<BranchInst>(BB->getTerminator())) { 6066 if (BI->isUnconditional()) { 6067 if (SimplifyUncondBranch(BI, Builder)) 6068 return true; 6069 } else { 6070 if (SimplifyCondBranch(BI, Builder)) 6071 return true; 6072 } 6073 } else if (auto *RI = dyn_cast<ReturnInst>(BB->getTerminator())) { 6074 if (SimplifyReturn(RI, Builder)) 6075 return true; 6076 } else if (auto *RI = dyn_cast<ResumeInst>(BB->getTerminator())) { 6077 if (SimplifyResume(RI, Builder)) 6078 return true; 6079 } else if (auto *RI = dyn_cast<CleanupReturnInst>(BB->getTerminator())) { 6080 if (SimplifyCleanupReturn(RI)) 6081 return true; 6082 } else if (auto *SI = dyn_cast<SwitchInst>(BB->getTerminator())) { 6083 if (SimplifySwitch(SI, Builder)) 6084 return true; 6085 } else if (auto *UI = dyn_cast<UnreachableInst>(BB->getTerminator())) { 6086 if (SimplifyUnreachable(UI)) 6087 return true; 6088 } else if (auto *IBI = dyn_cast<IndirectBrInst>(BB->getTerminator())) { 6089 if (SimplifyIndirectBr(IBI)) 6090 return true; 6091 } 6092 6093 return Changed; 6094 } 6095 6096 bool SimplifyCFGOpt::run(BasicBlock *BB) { 6097 bool Changed = false; 6098 6099 // Repeated simplify BB as long as resimplification is requested. 6100 do { 6101 Resimplify = false; 6102 6103 // Perform one round of simplifcation. Resimplify flag will be set if 6104 // another iteration is requested. 6105 Changed |= simplifyOnce(BB); 6106 } while (Resimplify); 6107 6108 return Changed; 6109 } 6110 6111 bool llvm::simplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI, 6112 const SimplifyCFGOptions &Options, 6113 SmallPtrSetImpl<BasicBlock *> *LoopHeaders) { 6114 return SimplifyCFGOpt(TTI, BB->getModule()->getDataLayout(), LoopHeaders, 6115 Options) 6116 .run(BB); 6117 } 6118