1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Peephole optimize the CFG.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/ADT/APInt.h"
14 #include "llvm/ADT/ArrayRef.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/Optional.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SetOperations.h"
19 #include "llvm/ADT/SetVector.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/ADT/StringRef.h"
24 #include "llvm/Analysis/AssumptionCache.h"
25 #include "llvm/Analysis/ConstantFolding.h"
26 #include "llvm/Analysis/EHPersonalities.h"
27 #include "llvm/Analysis/InstructionSimplify.h"
28 #include "llvm/Analysis/MemorySSA.h"
29 #include "llvm/Analysis/MemorySSAUpdater.h"
30 #include "llvm/Analysis/TargetTransformInfo.h"
31 #include "llvm/Analysis/ValueTracking.h"
32 #include "llvm/IR/Attributes.h"
33 #include "llvm/IR/BasicBlock.h"
34 #include "llvm/IR/CFG.h"
35 #include "llvm/IR/CallSite.h"
36 #include "llvm/IR/Constant.h"
37 #include "llvm/IR/ConstantRange.h"
38 #include "llvm/IR/Constants.h"
39 #include "llvm/IR/DataLayout.h"
40 #include "llvm/IR/DerivedTypes.h"
41 #include "llvm/IR/Function.h"
42 #include "llvm/IR/GlobalValue.h"
43 #include "llvm/IR/GlobalVariable.h"
44 #include "llvm/IR/IRBuilder.h"
45 #include "llvm/IR/InstrTypes.h"
46 #include "llvm/IR/Instruction.h"
47 #include "llvm/IR/Instructions.h"
48 #include "llvm/IR/IntrinsicInst.h"
49 #include "llvm/IR/Intrinsics.h"
50 #include "llvm/IR/LLVMContext.h"
51 #include "llvm/IR/MDBuilder.h"
52 #include "llvm/IR/Metadata.h"
53 #include "llvm/IR/Module.h"
54 #include "llvm/IR/NoFolder.h"
55 #include "llvm/IR/Operator.h"
56 #include "llvm/IR/PatternMatch.h"
57 #include "llvm/IR/Type.h"
58 #include "llvm/IR/Use.h"
59 #include "llvm/IR/User.h"
60 #include "llvm/IR/Value.h"
61 #include "llvm/Support/Casting.h"
62 #include "llvm/Support/CommandLine.h"
63 #include "llvm/Support/Debug.h"
64 #include "llvm/Support/ErrorHandling.h"
65 #include "llvm/Support/KnownBits.h"
66 #include "llvm/Support/MathExtras.h"
67 #include "llvm/Support/raw_ostream.h"
68 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
69 #include "llvm/Transforms/Utils/Local.h"
70 #include "llvm/Transforms/Utils/ValueMapper.h"
71 #include <algorithm>
72 #include <cassert>
73 #include <climits>
74 #include <cstddef>
75 #include <cstdint>
76 #include <iterator>
77 #include <map>
78 #include <set>
79 #include <tuple>
80 #include <utility>
81 #include <vector>
82 
83 using namespace llvm;
84 using namespace PatternMatch;
85 
86 #define DEBUG_TYPE "simplifycfg"
87 
88 // Chosen as 2 so as to be cheap, but still to have enough power to fold
89 // a select, so the "clamp" idiom (of a min followed by a max) will be caught.
90 // To catch this, we need to fold a compare and a select, hence '2' being the
91 // minimum reasonable default.
92 static cl::opt<unsigned> PHINodeFoldingThreshold(
93     "phi-node-folding-threshold", cl::Hidden, cl::init(2),
94     cl::desc(
95         "Control the amount of phi node folding to perform (default = 2)"));
96 
97 static cl::opt<bool> DupRet(
98     "simplifycfg-dup-ret", cl::Hidden, cl::init(false),
99     cl::desc("Duplicate return instructions into unconditional branches"));
100 
101 static cl::opt<bool>
102     SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true),
103                cl::desc("Sink common instructions down to the end block"));
104 
105 static cl::opt<bool> HoistCondStores(
106     "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true),
107     cl::desc("Hoist conditional stores if an unconditional store precedes"));
108 
109 static cl::opt<bool> MergeCondStores(
110     "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true),
111     cl::desc("Hoist conditional stores even if an unconditional store does not "
112              "precede - hoist multiple conditional stores into a single "
113              "predicated store"));
114 
115 static cl::opt<bool> MergeCondStoresAggressively(
116     "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false),
117     cl::desc("When merging conditional stores, do so even if the resultant "
118              "basic blocks are unlikely to be if-converted as a result"));
119 
120 static cl::opt<bool> SpeculateOneExpensiveInst(
121     "speculate-one-expensive-inst", cl::Hidden, cl::init(true),
122     cl::desc("Allow exactly one expensive instruction to be speculatively "
123              "executed"));
124 
125 static cl::opt<unsigned> MaxSpeculationDepth(
126     "max-speculation-depth", cl::Hidden, cl::init(10),
127     cl::desc("Limit maximum recursion depth when calculating costs of "
128              "speculatively executed instructions"));
129 
130 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps");
131 STATISTIC(NumLinearMaps,
132           "Number of switch instructions turned into linear mapping");
133 STATISTIC(NumLookupTables,
134           "Number of switch instructions turned into lookup tables");
135 STATISTIC(
136     NumLookupTablesHoles,
137     "Number of switch instructions turned into lookup tables (holes checked)");
138 STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares");
139 STATISTIC(NumSinkCommons,
140           "Number of common instructions sunk down to the end block");
141 STATISTIC(NumSpeculations, "Number of speculative executed instructions");
142 
143 namespace {
144 
145 // The first field contains the value that the switch produces when a certain
146 // case group is selected, and the second field is a vector containing the
147 // cases composing the case group.
148 using SwitchCaseResultVectorTy =
149     SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2>;
150 
151 // The first field contains the phi node that generates a result of the switch
152 // and the second field contains the value generated for a certain case in the
153 // switch for that PHI.
154 using SwitchCaseResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>;
155 
156 /// ValueEqualityComparisonCase - Represents a case of a switch.
157 struct ValueEqualityComparisonCase {
158   ConstantInt *Value;
159   BasicBlock *Dest;
160 
161   ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest)
162       : Value(Value), Dest(Dest) {}
163 
164   bool operator<(ValueEqualityComparisonCase RHS) const {
165     // Comparing pointers is ok as we only rely on the order for uniquing.
166     return Value < RHS.Value;
167   }
168 
169   bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; }
170 };
171 
172 class SimplifyCFGOpt {
173   const TargetTransformInfo &TTI;
174   const DataLayout &DL;
175   SmallPtrSetImpl<BasicBlock *> *LoopHeaders;
176   const SimplifyCFGOptions &Options;
177   bool Resimplify;
178 
179   Value *isValueEqualityComparison(Instruction *TI);
180   BasicBlock *GetValueEqualityComparisonCases(
181       Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases);
182   bool SimplifyEqualityComparisonWithOnlyPredecessor(Instruction *TI,
183                                                      BasicBlock *Pred,
184                                                      IRBuilder<> &Builder);
185   bool FoldValueComparisonIntoPredecessors(Instruction *TI,
186                                            IRBuilder<> &Builder);
187 
188   bool SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder);
189   bool SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder);
190   bool SimplifySingleResume(ResumeInst *RI);
191   bool SimplifyCommonResume(ResumeInst *RI);
192   bool SimplifyCleanupReturn(CleanupReturnInst *RI);
193   bool SimplifyUnreachable(UnreachableInst *UI);
194   bool SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder);
195   bool SimplifyIndirectBr(IndirectBrInst *IBI);
196   bool SimplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder);
197   bool SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder);
198 
199   bool tryToSimplifyUncondBranchWithICmpInIt(ICmpInst *ICI,
200                                              IRBuilder<> &Builder);
201 
202 public:
203   SimplifyCFGOpt(const TargetTransformInfo &TTI, const DataLayout &DL,
204                  SmallPtrSetImpl<BasicBlock *> *LoopHeaders,
205                  const SimplifyCFGOptions &Opts)
206       : TTI(TTI), DL(DL), LoopHeaders(LoopHeaders), Options(Opts) {}
207 
208   bool run(BasicBlock *BB);
209   bool simplifyOnce(BasicBlock *BB);
210 
211   // Helper to set Resimplify and return change indication.
212   bool requestResimplify() {
213     Resimplify = true;
214     return true;
215   }
216 };
217 
218 } // end anonymous namespace
219 
220 /// Return true if it is safe to merge these two
221 /// terminator instructions together.
222 static bool
223 SafeToMergeTerminators(Instruction *SI1, Instruction *SI2,
224                        SmallSetVector<BasicBlock *, 4> *FailBlocks = nullptr) {
225   if (SI1 == SI2)
226     return false; // Can't merge with self!
227 
228   // It is not safe to merge these two switch instructions if they have a common
229   // successor, and if that successor has a PHI node, and if *that* PHI node has
230   // conflicting incoming values from the two switch blocks.
231   BasicBlock *SI1BB = SI1->getParent();
232   BasicBlock *SI2BB = SI2->getParent();
233 
234   SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
235   bool Fail = false;
236   for (BasicBlock *Succ : successors(SI2BB))
237     if (SI1Succs.count(Succ))
238       for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) {
239         PHINode *PN = cast<PHINode>(BBI);
240         if (PN->getIncomingValueForBlock(SI1BB) !=
241             PN->getIncomingValueForBlock(SI2BB)) {
242           if (FailBlocks)
243             FailBlocks->insert(Succ);
244           Fail = true;
245         }
246       }
247 
248   return !Fail;
249 }
250 
251 /// Return true if it is safe and profitable to merge these two terminator
252 /// instructions together, where SI1 is an unconditional branch. PhiNodes will
253 /// store all PHI nodes in common successors.
254 static bool
255 isProfitableToFoldUnconditional(BranchInst *SI1, BranchInst *SI2,
256                                 Instruction *Cond,
257                                 SmallVectorImpl<PHINode *> &PhiNodes) {
258   if (SI1 == SI2)
259     return false; // Can't merge with self!
260   assert(SI1->isUnconditional() && SI2->isConditional());
261 
262   // We fold the unconditional branch if we can easily update all PHI nodes in
263   // common successors:
264   // 1> We have a constant incoming value for the conditional branch;
265   // 2> We have "Cond" as the incoming value for the unconditional branch;
266   // 3> SI2->getCondition() and Cond have same operands.
267   CmpInst *Ci2 = dyn_cast<CmpInst>(SI2->getCondition());
268   if (!Ci2)
269     return false;
270   if (!(Cond->getOperand(0) == Ci2->getOperand(0) &&
271         Cond->getOperand(1) == Ci2->getOperand(1)) &&
272       !(Cond->getOperand(0) == Ci2->getOperand(1) &&
273         Cond->getOperand(1) == Ci2->getOperand(0)))
274     return false;
275 
276   BasicBlock *SI1BB = SI1->getParent();
277   BasicBlock *SI2BB = SI2->getParent();
278   SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
279   for (BasicBlock *Succ : successors(SI2BB))
280     if (SI1Succs.count(Succ))
281       for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) {
282         PHINode *PN = cast<PHINode>(BBI);
283         if (PN->getIncomingValueForBlock(SI1BB) != Cond ||
284             !isa<ConstantInt>(PN->getIncomingValueForBlock(SI2BB)))
285           return false;
286         PhiNodes.push_back(PN);
287       }
288   return true;
289 }
290 
291 /// Update PHI nodes in Succ to indicate that there will now be entries in it
292 /// from the 'NewPred' block. The values that will be flowing into the PHI nodes
293 /// will be the same as those coming in from ExistPred, an existing predecessor
294 /// of Succ.
295 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred,
296                                   BasicBlock *ExistPred,
297                                   MemorySSAUpdater *MSSAU = nullptr) {
298   for (PHINode &PN : Succ->phis())
299     PN.addIncoming(PN.getIncomingValueForBlock(ExistPred), NewPred);
300   if (MSSAU)
301     if (auto *MPhi = MSSAU->getMemorySSA()->getMemoryAccess(Succ))
302       MPhi->addIncoming(MPhi->getIncomingValueForBlock(ExistPred), NewPred);
303 }
304 
305 /// Compute an abstract "cost" of speculating the given instruction,
306 /// which is assumed to be safe to speculate. TCC_Free means cheap,
307 /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively
308 /// expensive.
309 static unsigned ComputeSpeculationCost(const User *I,
310                                        const TargetTransformInfo &TTI) {
311   assert(isSafeToSpeculativelyExecute(I) &&
312          "Instruction is not safe to speculatively execute!");
313   return TTI.getUserCost(I);
314 }
315 
316 /// If we have a merge point of an "if condition" as accepted above,
317 /// return true if the specified value dominates the block.  We
318 /// don't handle the true generality of domination here, just a special case
319 /// which works well enough for us.
320 ///
321 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to
322 /// see if V (which must be an instruction) and its recursive operands
323 /// that do not dominate BB have a combined cost lower than CostRemaining and
324 /// are non-trapping.  If both are true, the instruction is inserted into the
325 /// set and true is returned.
326 ///
327 /// The cost for most non-trapping instructions is defined as 1 except for
328 /// Select whose cost is 2.
329 ///
330 /// After this function returns, CostRemaining is decreased by the cost of
331 /// V plus its non-dominating operands.  If that cost is greater than
332 /// CostRemaining, false is returned and CostRemaining is undefined.
333 static bool DominatesMergePoint(Value *V, BasicBlock *BB,
334                                 SmallPtrSetImpl<Instruction *> &AggressiveInsts,
335                                 unsigned &CostRemaining,
336                                 const TargetTransformInfo &TTI,
337                                 unsigned Depth = 0) {
338   // It is possible to hit a zero-cost cycle (phi/gep instructions for example),
339   // so limit the recursion depth.
340   // TODO: While this recursion limit does prevent pathological behavior, it
341   // would be better to track visited instructions to avoid cycles.
342   if (Depth == MaxSpeculationDepth)
343     return false;
344 
345   Instruction *I = dyn_cast<Instruction>(V);
346   if (!I) {
347     // Non-instructions all dominate instructions, but not all constantexprs
348     // can be executed unconditionally.
349     if (ConstantExpr *C = dyn_cast<ConstantExpr>(V))
350       if (C->canTrap())
351         return false;
352     return true;
353   }
354   BasicBlock *PBB = I->getParent();
355 
356   // We don't want to allow weird loops that might have the "if condition" in
357   // the bottom of this block.
358   if (PBB == BB)
359     return false;
360 
361   // If this instruction is defined in a block that contains an unconditional
362   // branch to BB, then it must be in the 'conditional' part of the "if
363   // statement".  If not, it definitely dominates the region.
364   BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator());
365   if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB)
366     return true;
367 
368   // If we have seen this instruction before, don't count it again.
369   if (AggressiveInsts.count(I))
370     return true;
371 
372   // Okay, it looks like the instruction IS in the "condition".  Check to
373   // see if it's a cheap instruction to unconditionally compute, and if it
374   // only uses stuff defined outside of the condition.  If so, hoist it out.
375   if (!isSafeToSpeculativelyExecute(I))
376     return false;
377 
378   unsigned Cost = ComputeSpeculationCost(I, TTI);
379 
380   // Allow exactly one instruction to be speculated regardless of its cost
381   // (as long as it is safe to do so).
382   // This is intended to flatten the CFG even if the instruction is a division
383   // or other expensive operation. The speculation of an expensive instruction
384   // is expected to be undone in CodeGenPrepare if the speculation has not
385   // enabled further IR optimizations.
386   if (Cost > CostRemaining &&
387       (!SpeculateOneExpensiveInst || !AggressiveInsts.empty() || Depth > 0))
388     return false;
389 
390   // Avoid unsigned wrap.
391   CostRemaining = (Cost > CostRemaining) ? 0 : CostRemaining - Cost;
392 
393   // Okay, we can only really hoist these out if their operands do
394   // not take us over the cost threshold.
395   for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i)
396     if (!DominatesMergePoint(*i, BB, AggressiveInsts, CostRemaining, TTI,
397                              Depth + 1))
398       return false;
399   // Okay, it's safe to do this!  Remember this instruction.
400   AggressiveInsts.insert(I);
401   return true;
402 }
403 
404 /// Extract ConstantInt from value, looking through IntToPtr
405 /// and PointerNullValue. Return NULL if value is not a constant int.
406 static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) {
407   // Normal constant int.
408   ConstantInt *CI = dyn_cast<ConstantInt>(V);
409   if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy())
410     return CI;
411 
412   // This is some kind of pointer constant. Turn it into a pointer-sized
413   // ConstantInt if possible.
414   IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType()));
415 
416   // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*).
417   if (isa<ConstantPointerNull>(V))
418     return ConstantInt::get(PtrTy, 0);
419 
420   // IntToPtr const int.
421   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
422     if (CE->getOpcode() == Instruction::IntToPtr)
423       if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) {
424         // The constant is very likely to have the right type already.
425         if (CI->getType() == PtrTy)
426           return CI;
427         else
428           return cast<ConstantInt>(
429               ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false));
430       }
431   return nullptr;
432 }
433 
434 namespace {
435 
436 /// Given a chain of or (||) or and (&&) comparison of a value against a
437 /// constant, this will try to recover the information required for a switch
438 /// structure.
439 /// It will depth-first traverse the chain of comparison, seeking for patterns
440 /// like %a == 12 or %a < 4 and combine them to produce a set of integer
441 /// representing the different cases for the switch.
442 /// Note that if the chain is composed of '||' it will build the set of elements
443 /// that matches the comparisons (i.e. any of this value validate the chain)
444 /// while for a chain of '&&' it will build the set elements that make the test
445 /// fail.
446 struct ConstantComparesGatherer {
447   const DataLayout &DL;
448 
449   /// Value found for the switch comparison
450   Value *CompValue = nullptr;
451 
452   /// Extra clause to be checked before the switch
453   Value *Extra = nullptr;
454 
455   /// Set of integers to match in switch
456   SmallVector<ConstantInt *, 8> Vals;
457 
458   /// Number of comparisons matched in the and/or chain
459   unsigned UsedICmps = 0;
460 
461   /// Construct and compute the result for the comparison instruction Cond
462   ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL) : DL(DL) {
463     gather(Cond);
464   }
465 
466   ConstantComparesGatherer(const ConstantComparesGatherer &) = delete;
467   ConstantComparesGatherer &
468   operator=(const ConstantComparesGatherer &) = delete;
469 
470 private:
471   /// Try to set the current value used for the comparison, it succeeds only if
472   /// it wasn't set before or if the new value is the same as the old one
473   bool setValueOnce(Value *NewVal) {
474     if (CompValue && CompValue != NewVal)
475       return false;
476     CompValue = NewVal;
477     return (CompValue != nullptr);
478   }
479 
480   /// Try to match Instruction "I" as a comparison against a constant and
481   /// populates the array Vals with the set of values that match (or do not
482   /// match depending on isEQ).
483   /// Return false on failure. On success, the Value the comparison matched
484   /// against is placed in CompValue.
485   /// If CompValue is already set, the function is expected to fail if a match
486   /// is found but the value compared to is different.
487   bool matchInstruction(Instruction *I, bool isEQ) {
488     // If this is an icmp against a constant, handle this as one of the cases.
489     ICmpInst *ICI;
490     ConstantInt *C;
491     if (!((ICI = dyn_cast<ICmpInst>(I)) &&
492           (C = GetConstantInt(I->getOperand(1), DL)))) {
493       return false;
494     }
495 
496     Value *RHSVal;
497     const APInt *RHSC;
498 
499     // Pattern match a special case
500     // (x & ~2^z) == y --> x == y || x == y|2^z
501     // This undoes a transformation done by instcombine to fuse 2 compares.
502     if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE)) {
503       // It's a little bit hard to see why the following transformations are
504       // correct. Here is a CVC3 program to verify them for 64-bit values:
505 
506       /*
507          ONE  : BITVECTOR(64) = BVZEROEXTEND(0bin1, 63);
508          x    : BITVECTOR(64);
509          y    : BITVECTOR(64);
510          z    : BITVECTOR(64);
511          mask : BITVECTOR(64) = BVSHL(ONE, z);
512          QUERY( (y & ~mask = y) =>
513                 ((x & ~mask = y) <=> (x = y OR x = (y |  mask)))
514          );
515          QUERY( (y |  mask = y) =>
516                 ((x |  mask = y) <=> (x = y OR x = (y & ~mask)))
517          );
518       */
519 
520       // Please note that each pattern must be a dual implication (<--> or
521       // iff). One directional implication can create spurious matches. If the
522       // implication is only one-way, an unsatisfiable condition on the left
523       // side can imply a satisfiable condition on the right side. Dual
524       // implication ensures that satisfiable conditions are transformed to
525       // other satisfiable conditions and unsatisfiable conditions are
526       // transformed to other unsatisfiable conditions.
527 
528       // Here is a concrete example of a unsatisfiable condition on the left
529       // implying a satisfiable condition on the right:
530       //
531       // mask = (1 << z)
532       // (x & ~mask) == y  --> (x == y || x == (y | mask))
533       //
534       // Substituting y = 3, z = 0 yields:
535       // (x & -2) == 3 --> (x == 3 || x == 2)
536 
537       // Pattern match a special case:
538       /*
539         QUERY( (y & ~mask = y) =>
540                ((x & ~mask = y) <=> (x = y OR x = (y |  mask)))
541         );
542       */
543       if (match(ICI->getOperand(0),
544                 m_And(m_Value(RHSVal), m_APInt(RHSC)))) {
545         APInt Mask = ~*RHSC;
546         if (Mask.isPowerOf2() && (C->getValue() & ~Mask) == C->getValue()) {
547           // If we already have a value for the switch, it has to match!
548           if (!setValueOnce(RHSVal))
549             return false;
550 
551           Vals.push_back(C);
552           Vals.push_back(
553               ConstantInt::get(C->getContext(),
554                                C->getValue() | Mask));
555           UsedICmps++;
556           return true;
557         }
558       }
559 
560       // Pattern match a special case:
561       /*
562         QUERY( (y |  mask = y) =>
563                ((x |  mask = y) <=> (x = y OR x = (y & ~mask)))
564         );
565       */
566       if (match(ICI->getOperand(0),
567                 m_Or(m_Value(RHSVal), m_APInt(RHSC)))) {
568         APInt Mask = *RHSC;
569         if (Mask.isPowerOf2() && (C->getValue() | Mask) == C->getValue()) {
570           // If we already have a value for the switch, it has to match!
571           if (!setValueOnce(RHSVal))
572             return false;
573 
574           Vals.push_back(C);
575           Vals.push_back(ConstantInt::get(C->getContext(),
576                                           C->getValue() & ~Mask));
577           UsedICmps++;
578           return true;
579         }
580       }
581 
582       // If we already have a value for the switch, it has to match!
583       if (!setValueOnce(ICI->getOperand(0)))
584         return false;
585 
586       UsedICmps++;
587       Vals.push_back(C);
588       return ICI->getOperand(0);
589     }
590 
591     // If we have "x ult 3", for example, then we can add 0,1,2 to the set.
592     ConstantRange Span = ConstantRange::makeAllowedICmpRegion(
593         ICI->getPredicate(), C->getValue());
594 
595     // Shift the range if the compare is fed by an add. This is the range
596     // compare idiom as emitted by instcombine.
597     Value *CandidateVal = I->getOperand(0);
598     if (match(I->getOperand(0), m_Add(m_Value(RHSVal), m_APInt(RHSC)))) {
599       Span = Span.subtract(*RHSC);
600       CandidateVal = RHSVal;
601     }
602 
603     // If this is an and/!= check, then we are looking to build the set of
604     // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into
605     // x != 0 && x != 1.
606     if (!isEQ)
607       Span = Span.inverse();
608 
609     // If there are a ton of values, we don't want to make a ginormous switch.
610     if (Span.isSizeLargerThan(8) || Span.isEmptySet()) {
611       return false;
612     }
613 
614     // If we already have a value for the switch, it has to match!
615     if (!setValueOnce(CandidateVal))
616       return false;
617 
618     // Add all values from the range to the set
619     for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp)
620       Vals.push_back(ConstantInt::get(I->getContext(), Tmp));
621 
622     UsedICmps++;
623     return true;
624   }
625 
626   /// Given a potentially 'or'd or 'and'd together collection of icmp
627   /// eq/ne/lt/gt instructions that compare a value against a constant, extract
628   /// the value being compared, and stick the list constants into the Vals
629   /// vector.
630   /// One "Extra" case is allowed to differ from the other.
631   void gather(Value *V) {
632     Instruction *I = dyn_cast<Instruction>(V);
633     bool isEQ = (I->getOpcode() == Instruction::Or);
634 
635     // Keep a stack (SmallVector for efficiency) for depth-first traversal
636     SmallVector<Value *, 8> DFT;
637     SmallPtrSet<Value *, 8> Visited;
638 
639     // Initialize
640     Visited.insert(V);
641     DFT.push_back(V);
642 
643     while (!DFT.empty()) {
644       V = DFT.pop_back_val();
645 
646       if (Instruction *I = dyn_cast<Instruction>(V)) {
647         // If it is a || (or && depending on isEQ), process the operands.
648         if (I->getOpcode() == (isEQ ? Instruction::Or : Instruction::And)) {
649           if (Visited.insert(I->getOperand(1)).second)
650             DFT.push_back(I->getOperand(1));
651           if (Visited.insert(I->getOperand(0)).second)
652             DFT.push_back(I->getOperand(0));
653           continue;
654         }
655 
656         // Try to match the current instruction
657         if (matchInstruction(I, isEQ))
658           // Match succeed, continue the loop
659           continue;
660       }
661 
662       // One element of the sequence of || (or &&) could not be match as a
663       // comparison against the same value as the others.
664       // We allow only one "Extra" case to be checked before the switch
665       if (!Extra) {
666         Extra = V;
667         continue;
668       }
669       // Failed to parse a proper sequence, abort now
670       CompValue = nullptr;
671       break;
672     }
673   }
674 };
675 
676 } // end anonymous namespace
677 
678 static void EraseTerminatorAndDCECond(Instruction *TI,
679                                       MemorySSAUpdater *MSSAU = nullptr) {
680   Instruction *Cond = nullptr;
681   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
682     Cond = dyn_cast<Instruction>(SI->getCondition());
683   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
684     if (BI->isConditional())
685       Cond = dyn_cast<Instruction>(BI->getCondition());
686   } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) {
687     Cond = dyn_cast<Instruction>(IBI->getAddress());
688   }
689 
690   TI->eraseFromParent();
691   if (Cond)
692     RecursivelyDeleteTriviallyDeadInstructions(Cond, nullptr, MSSAU);
693 }
694 
695 /// Return true if the specified terminator checks
696 /// to see if a value is equal to constant integer value.
697 Value *SimplifyCFGOpt::isValueEqualityComparison(Instruction *TI) {
698   Value *CV = nullptr;
699   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
700     // Do not permit merging of large switch instructions into their
701     // predecessors unless there is only one predecessor.
702     if (!SI->getParent()->hasNPredecessorsOrMore(128 / SI->getNumSuccessors()))
703       CV = SI->getCondition();
704   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI))
705     if (BI->isConditional() && BI->getCondition()->hasOneUse())
706       if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) {
707         if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL))
708           CV = ICI->getOperand(0);
709       }
710 
711   // Unwrap any lossless ptrtoint cast.
712   if (CV) {
713     if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) {
714       Value *Ptr = PTII->getPointerOperand();
715       if (PTII->getType() == DL.getIntPtrType(Ptr->getType()))
716         CV = Ptr;
717     }
718   }
719   return CV;
720 }
721 
722 /// Given a value comparison instruction,
723 /// decode all of the 'cases' that it represents and return the 'default' block.
724 BasicBlock *SimplifyCFGOpt::GetValueEqualityComparisonCases(
725     Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases) {
726   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
727     Cases.reserve(SI->getNumCases());
728     for (auto Case : SI->cases())
729       Cases.push_back(ValueEqualityComparisonCase(Case.getCaseValue(),
730                                                   Case.getCaseSuccessor()));
731     return SI->getDefaultDest();
732   }
733 
734   BranchInst *BI = cast<BranchInst>(TI);
735   ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
736   BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE);
737   Cases.push_back(ValueEqualityComparisonCase(
738       GetConstantInt(ICI->getOperand(1), DL), Succ));
739   return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ);
740 }
741 
742 /// Given a vector of bb/value pairs, remove any entries
743 /// in the list that match the specified block.
744 static void
745 EliminateBlockCases(BasicBlock *BB,
746                     std::vector<ValueEqualityComparisonCase> &Cases) {
747   Cases.erase(std::remove(Cases.begin(), Cases.end(), BB), Cases.end());
748 }
749 
750 /// Return true if there are any keys in C1 that exist in C2 as well.
751 static bool ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1,
752                           std::vector<ValueEqualityComparisonCase> &C2) {
753   std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2;
754 
755   // Make V1 be smaller than V2.
756   if (V1->size() > V2->size())
757     std::swap(V1, V2);
758 
759   if (V1->empty())
760     return false;
761   if (V1->size() == 1) {
762     // Just scan V2.
763     ConstantInt *TheVal = (*V1)[0].Value;
764     for (unsigned i = 0, e = V2->size(); i != e; ++i)
765       if (TheVal == (*V2)[i].Value)
766         return true;
767   }
768 
769   // Otherwise, just sort both lists and compare element by element.
770   array_pod_sort(V1->begin(), V1->end());
771   array_pod_sort(V2->begin(), V2->end());
772   unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size();
773   while (i1 != e1 && i2 != e2) {
774     if ((*V1)[i1].Value == (*V2)[i2].Value)
775       return true;
776     if ((*V1)[i1].Value < (*V2)[i2].Value)
777       ++i1;
778     else
779       ++i2;
780   }
781   return false;
782 }
783 
784 // Set branch weights on SwitchInst. This sets the metadata if there is at
785 // least one non-zero weight.
786 static void setBranchWeights(SwitchInst *SI, ArrayRef<uint32_t> Weights) {
787   // Check that there is at least one non-zero weight. Otherwise, pass
788   // nullptr to setMetadata which will erase the existing metadata.
789   MDNode *N = nullptr;
790   if (llvm::any_of(Weights, [](uint32_t W) { return W != 0; }))
791     N = MDBuilder(SI->getParent()->getContext()).createBranchWeights(Weights);
792   SI->setMetadata(LLVMContext::MD_prof, N);
793 }
794 
795 // Similar to the above, but for branch and select instructions that take
796 // exactly 2 weights.
797 static void setBranchWeights(Instruction *I, uint32_t TrueWeight,
798                              uint32_t FalseWeight) {
799   assert(isa<BranchInst>(I) || isa<SelectInst>(I));
800   // Check that there is at least one non-zero weight. Otherwise, pass
801   // nullptr to setMetadata which will erase the existing metadata.
802   MDNode *N = nullptr;
803   if (TrueWeight || FalseWeight)
804     N = MDBuilder(I->getParent()->getContext())
805             .createBranchWeights(TrueWeight, FalseWeight);
806   I->setMetadata(LLVMContext::MD_prof, N);
807 }
808 
809 /// If TI is known to be a terminator instruction and its block is known to
810 /// only have a single predecessor block, check to see if that predecessor is
811 /// also a value comparison with the same value, and if that comparison
812 /// determines the outcome of this comparison. If so, simplify TI. This does a
813 /// very limited form of jump threading.
814 bool SimplifyCFGOpt::SimplifyEqualityComparisonWithOnlyPredecessor(
815     Instruction *TI, BasicBlock *Pred, IRBuilder<> &Builder) {
816   Value *PredVal = isValueEqualityComparison(Pred->getTerminator());
817   if (!PredVal)
818     return false; // Not a value comparison in predecessor.
819 
820   Value *ThisVal = isValueEqualityComparison(TI);
821   assert(ThisVal && "This isn't a value comparison!!");
822   if (ThisVal != PredVal)
823     return false; // Different predicates.
824 
825   // TODO: Preserve branch weight metadata, similarly to how
826   // FoldValueComparisonIntoPredecessors preserves it.
827 
828   // Find out information about when control will move from Pred to TI's block.
829   std::vector<ValueEqualityComparisonCase> PredCases;
830   BasicBlock *PredDef =
831       GetValueEqualityComparisonCases(Pred->getTerminator(), PredCases);
832   EliminateBlockCases(PredDef, PredCases); // Remove default from cases.
833 
834   // Find information about how control leaves this block.
835   std::vector<ValueEqualityComparisonCase> ThisCases;
836   BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases);
837   EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases.
838 
839   // If TI's block is the default block from Pred's comparison, potentially
840   // simplify TI based on this knowledge.
841   if (PredDef == TI->getParent()) {
842     // If we are here, we know that the value is none of those cases listed in
843     // PredCases.  If there are any cases in ThisCases that are in PredCases, we
844     // can simplify TI.
845     if (!ValuesOverlap(PredCases, ThisCases))
846       return false;
847 
848     if (isa<BranchInst>(TI)) {
849       // Okay, one of the successors of this condbr is dead.  Convert it to a
850       // uncond br.
851       assert(ThisCases.size() == 1 && "Branch can only have one case!");
852       // Insert the new branch.
853       Instruction *NI = Builder.CreateBr(ThisDef);
854       (void)NI;
855 
856       // Remove PHI node entries for the dead edge.
857       ThisCases[0].Dest->removePredecessor(TI->getParent());
858 
859       LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
860                         << "Through successor TI: " << *TI << "Leaving: " << *NI
861                         << "\n");
862 
863       EraseTerminatorAndDCECond(TI);
864       return true;
865     }
866 
867     SwitchInst *SI = cast<SwitchInst>(TI);
868     // Okay, TI has cases that are statically dead, prune them away.
869     SmallPtrSet<Constant *, 16> DeadCases;
870     for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
871       DeadCases.insert(PredCases[i].Value);
872 
873     LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
874                       << "Through successor TI: " << *TI);
875 
876     // Collect branch weights into a vector.
877     SmallVector<uint32_t, 8> Weights;
878     MDNode *MD = SI->getMetadata(LLVMContext::MD_prof);
879     bool HasWeight = MD && (MD->getNumOperands() == 2 + SI->getNumCases());
880     if (HasWeight)
881       for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e;
882            ++MD_i) {
883         ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i));
884         Weights.push_back(CI->getValue().getZExtValue());
885       }
886     for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) {
887       --i;
888       if (DeadCases.count(i->getCaseValue())) {
889         if (HasWeight) {
890           std::swap(Weights[i->getCaseIndex() + 1], Weights.back());
891           Weights.pop_back();
892         }
893         i->getCaseSuccessor()->removePredecessor(TI->getParent());
894         SI->removeCase(i);
895       }
896     }
897     if (HasWeight && Weights.size() >= 2)
898       setBranchWeights(SI, Weights);
899 
900     LLVM_DEBUG(dbgs() << "Leaving: " << *TI << "\n");
901     return true;
902   }
903 
904   // Otherwise, TI's block must correspond to some matched value.  Find out
905   // which value (or set of values) this is.
906   ConstantInt *TIV = nullptr;
907   BasicBlock *TIBB = TI->getParent();
908   for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
909     if (PredCases[i].Dest == TIBB) {
910       if (TIV)
911         return false; // Cannot handle multiple values coming to this block.
912       TIV = PredCases[i].Value;
913     }
914   assert(TIV && "No edge from pred to succ?");
915 
916   // Okay, we found the one constant that our value can be if we get into TI's
917   // BB.  Find out which successor will unconditionally be branched to.
918   BasicBlock *TheRealDest = nullptr;
919   for (unsigned i = 0, e = ThisCases.size(); i != e; ++i)
920     if (ThisCases[i].Value == TIV) {
921       TheRealDest = ThisCases[i].Dest;
922       break;
923     }
924 
925   // If not handled by any explicit cases, it is handled by the default case.
926   if (!TheRealDest)
927     TheRealDest = ThisDef;
928 
929   // Remove PHI node entries for dead edges.
930   BasicBlock *CheckEdge = TheRealDest;
931   for (BasicBlock *Succ : successors(TIBB))
932     if (Succ != CheckEdge)
933       Succ->removePredecessor(TIBB);
934     else
935       CheckEdge = nullptr;
936 
937   // Insert the new branch.
938   Instruction *NI = Builder.CreateBr(TheRealDest);
939   (void)NI;
940 
941   LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
942                     << "Through successor TI: " << *TI << "Leaving: " << *NI
943                     << "\n");
944 
945   EraseTerminatorAndDCECond(TI);
946   return true;
947 }
948 
949 namespace {
950 
951 /// This class implements a stable ordering of constant
952 /// integers that does not depend on their address.  This is important for
953 /// applications that sort ConstantInt's to ensure uniqueness.
954 struct ConstantIntOrdering {
955   bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const {
956     return LHS->getValue().ult(RHS->getValue());
957   }
958 };
959 
960 } // end anonymous namespace
961 
962 static int ConstantIntSortPredicate(ConstantInt *const *P1,
963                                     ConstantInt *const *P2) {
964   const ConstantInt *LHS = *P1;
965   const ConstantInt *RHS = *P2;
966   if (LHS == RHS)
967     return 0;
968   return LHS->getValue().ult(RHS->getValue()) ? 1 : -1;
969 }
970 
971 static inline bool HasBranchWeights(const Instruction *I) {
972   MDNode *ProfMD = I->getMetadata(LLVMContext::MD_prof);
973   if (ProfMD && ProfMD->getOperand(0))
974     if (MDString *MDS = dyn_cast<MDString>(ProfMD->getOperand(0)))
975       return MDS->getString().equals("branch_weights");
976 
977   return false;
978 }
979 
980 /// Get Weights of a given terminator, the default weight is at the front
981 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight
982 /// metadata.
983 static void GetBranchWeights(Instruction *TI,
984                              SmallVectorImpl<uint64_t> &Weights) {
985   MDNode *MD = TI->getMetadata(LLVMContext::MD_prof);
986   assert(MD);
987   for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) {
988     ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i));
989     Weights.push_back(CI->getValue().getZExtValue());
990   }
991 
992   // If TI is a conditional eq, the default case is the false case,
993   // and the corresponding branch-weight data is at index 2. We swap the
994   // default weight to be the first entry.
995   if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
996     assert(Weights.size() == 2);
997     ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
998     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
999       std::swap(Weights.front(), Weights.back());
1000   }
1001 }
1002 
1003 /// Keep halving the weights until all can fit in uint32_t.
1004 static void FitWeights(MutableArrayRef<uint64_t> Weights) {
1005   uint64_t Max = *std::max_element(Weights.begin(), Weights.end());
1006   if (Max > UINT_MAX) {
1007     unsigned Offset = 32 - countLeadingZeros(Max);
1008     for (uint64_t &I : Weights)
1009       I >>= Offset;
1010   }
1011 }
1012 
1013 /// The specified terminator is a value equality comparison instruction
1014 /// (either a switch or a branch on "X == c").
1015 /// See if any of the predecessors of the terminator block are value comparisons
1016 /// on the same value.  If so, and if safe to do so, fold them together.
1017 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(Instruction *TI,
1018                                                          IRBuilder<> &Builder) {
1019   BasicBlock *BB = TI->getParent();
1020   Value *CV = isValueEqualityComparison(TI); // CondVal
1021   assert(CV && "Not a comparison?");
1022   bool Changed = false;
1023 
1024   SmallVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB));
1025   while (!Preds.empty()) {
1026     BasicBlock *Pred = Preds.pop_back_val();
1027 
1028     // See if the predecessor is a comparison with the same value.
1029     Instruction *PTI = Pred->getTerminator();
1030     Value *PCV = isValueEqualityComparison(PTI); // PredCondVal
1031 
1032     if (PCV == CV && TI != PTI) {
1033       SmallSetVector<BasicBlock*, 4> FailBlocks;
1034       if (!SafeToMergeTerminators(TI, PTI, &FailBlocks)) {
1035         for (auto *Succ : FailBlocks) {
1036           if (!SplitBlockPredecessors(Succ, TI->getParent(), ".fold.split"))
1037             return false;
1038         }
1039       }
1040 
1041       // Figure out which 'cases' to copy from SI to PSI.
1042       std::vector<ValueEqualityComparisonCase> BBCases;
1043       BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases);
1044 
1045       std::vector<ValueEqualityComparisonCase> PredCases;
1046       BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases);
1047 
1048       // Based on whether the default edge from PTI goes to BB or not, fill in
1049       // PredCases and PredDefault with the new switch cases we would like to
1050       // build.
1051       SmallVector<BasicBlock *, 8> NewSuccessors;
1052 
1053       // Update the branch weight metadata along the way
1054       SmallVector<uint64_t, 8> Weights;
1055       bool PredHasWeights = HasBranchWeights(PTI);
1056       bool SuccHasWeights = HasBranchWeights(TI);
1057 
1058       if (PredHasWeights) {
1059         GetBranchWeights(PTI, Weights);
1060         // branch-weight metadata is inconsistent here.
1061         if (Weights.size() != 1 + PredCases.size())
1062           PredHasWeights = SuccHasWeights = false;
1063       } else if (SuccHasWeights)
1064         // If there are no predecessor weights but there are successor weights,
1065         // populate Weights with 1, which will later be scaled to the sum of
1066         // successor's weights
1067         Weights.assign(1 + PredCases.size(), 1);
1068 
1069       SmallVector<uint64_t, 8> SuccWeights;
1070       if (SuccHasWeights) {
1071         GetBranchWeights(TI, SuccWeights);
1072         // branch-weight metadata is inconsistent here.
1073         if (SuccWeights.size() != 1 + BBCases.size())
1074           PredHasWeights = SuccHasWeights = false;
1075       } else if (PredHasWeights)
1076         SuccWeights.assign(1 + BBCases.size(), 1);
1077 
1078       if (PredDefault == BB) {
1079         // If this is the default destination from PTI, only the edges in TI
1080         // that don't occur in PTI, or that branch to BB will be activated.
1081         std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
1082         for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
1083           if (PredCases[i].Dest != BB)
1084             PTIHandled.insert(PredCases[i].Value);
1085           else {
1086             // The default destination is BB, we don't need explicit targets.
1087             std::swap(PredCases[i], PredCases.back());
1088 
1089             if (PredHasWeights || SuccHasWeights) {
1090               // Increase weight for the default case.
1091               Weights[0] += Weights[i + 1];
1092               std::swap(Weights[i + 1], Weights.back());
1093               Weights.pop_back();
1094             }
1095 
1096             PredCases.pop_back();
1097             --i;
1098             --e;
1099           }
1100 
1101         // Reconstruct the new switch statement we will be building.
1102         if (PredDefault != BBDefault) {
1103           PredDefault->removePredecessor(Pred);
1104           PredDefault = BBDefault;
1105           NewSuccessors.push_back(BBDefault);
1106         }
1107 
1108         unsigned CasesFromPred = Weights.size();
1109         uint64_t ValidTotalSuccWeight = 0;
1110         for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
1111           if (!PTIHandled.count(BBCases[i].Value) &&
1112               BBCases[i].Dest != BBDefault) {
1113             PredCases.push_back(BBCases[i]);
1114             NewSuccessors.push_back(BBCases[i].Dest);
1115             if (SuccHasWeights || PredHasWeights) {
1116               // The default weight is at index 0, so weight for the ith case
1117               // should be at index i+1. Scale the cases from successor by
1118               // PredDefaultWeight (Weights[0]).
1119               Weights.push_back(Weights[0] * SuccWeights[i + 1]);
1120               ValidTotalSuccWeight += SuccWeights[i + 1];
1121             }
1122           }
1123 
1124         if (SuccHasWeights || PredHasWeights) {
1125           ValidTotalSuccWeight += SuccWeights[0];
1126           // Scale the cases from predecessor by ValidTotalSuccWeight.
1127           for (unsigned i = 1; i < CasesFromPred; ++i)
1128             Weights[i] *= ValidTotalSuccWeight;
1129           // Scale the default weight by SuccDefaultWeight (SuccWeights[0]).
1130           Weights[0] *= SuccWeights[0];
1131         }
1132       } else {
1133         // If this is not the default destination from PSI, only the edges
1134         // in SI that occur in PSI with a destination of BB will be
1135         // activated.
1136         std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
1137         std::map<ConstantInt *, uint64_t> WeightsForHandled;
1138         for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
1139           if (PredCases[i].Dest == BB) {
1140             PTIHandled.insert(PredCases[i].Value);
1141 
1142             if (PredHasWeights || SuccHasWeights) {
1143               WeightsForHandled[PredCases[i].Value] = Weights[i + 1];
1144               std::swap(Weights[i + 1], Weights.back());
1145               Weights.pop_back();
1146             }
1147 
1148             std::swap(PredCases[i], PredCases.back());
1149             PredCases.pop_back();
1150             --i;
1151             --e;
1152           }
1153 
1154         // Okay, now we know which constants were sent to BB from the
1155         // predecessor.  Figure out where they will all go now.
1156         for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
1157           if (PTIHandled.count(BBCases[i].Value)) {
1158             // If this is one we are capable of getting...
1159             if (PredHasWeights || SuccHasWeights)
1160               Weights.push_back(WeightsForHandled[BBCases[i].Value]);
1161             PredCases.push_back(BBCases[i]);
1162             NewSuccessors.push_back(BBCases[i].Dest);
1163             PTIHandled.erase(
1164                 BBCases[i].Value); // This constant is taken care of
1165           }
1166 
1167         // If there are any constants vectored to BB that TI doesn't handle,
1168         // they must go to the default destination of TI.
1169         for (ConstantInt *I : PTIHandled) {
1170           if (PredHasWeights || SuccHasWeights)
1171             Weights.push_back(WeightsForHandled[I]);
1172           PredCases.push_back(ValueEqualityComparisonCase(I, BBDefault));
1173           NewSuccessors.push_back(BBDefault);
1174         }
1175       }
1176 
1177       // Okay, at this point, we know which new successor Pred will get.  Make
1178       // sure we update the number of entries in the PHI nodes for these
1179       // successors.
1180       for (BasicBlock *NewSuccessor : NewSuccessors)
1181         AddPredecessorToBlock(NewSuccessor, Pred, BB);
1182 
1183       Builder.SetInsertPoint(PTI);
1184       // Convert pointer to int before we switch.
1185       if (CV->getType()->isPointerTy()) {
1186         CV = Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()),
1187                                     "magicptr");
1188       }
1189 
1190       // Now that the successors are updated, create the new Switch instruction.
1191       SwitchInst *NewSI =
1192           Builder.CreateSwitch(CV, PredDefault, PredCases.size());
1193       NewSI->setDebugLoc(PTI->getDebugLoc());
1194       for (ValueEqualityComparisonCase &V : PredCases)
1195         NewSI->addCase(V.Value, V.Dest);
1196 
1197       if (PredHasWeights || SuccHasWeights) {
1198         // Halve the weights if any of them cannot fit in an uint32_t
1199         FitWeights(Weights);
1200 
1201         SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
1202 
1203         setBranchWeights(NewSI, MDWeights);
1204       }
1205 
1206       EraseTerminatorAndDCECond(PTI);
1207 
1208       // Okay, last check.  If BB is still a successor of PSI, then we must
1209       // have an infinite loop case.  If so, add an infinitely looping block
1210       // to handle the case to preserve the behavior of the code.
1211       BasicBlock *InfLoopBlock = nullptr;
1212       for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i)
1213         if (NewSI->getSuccessor(i) == BB) {
1214           if (!InfLoopBlock) {
1215             // Insert it at the end of the function, because it's either code,
1216             // or it won't matter if it's hot. :)
1217             InfLoopBlock = BasicBlock::Create(BB->getContext(), "infloop",
1218                                               BB->getParent());
1219             BranchInst::Create(InfLoopBlock, InfLoopBlock);
1220           }
1221           NewSI->setSuccessor(i, InfLoopBlock);
1222         }
1223 
1224       Changed = true;
1225     }
1226   }
1227   return Changed;
1228 }
1229 
1230 // If we would need to insert a select that uses the value of this invoke
1231 // (comments in HoistThenElseCodeToIf explain why we would need to do this), we
1232 // can't hoist the invoke, as there is nowhere to put the select in this case.
1233 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2,
1234                                 Instruction *I1, Instruction *I2) {
1235   for (BasicBlock *Succ : successors(BB1)) {
1236     for (const PHINode &PN : Succ->phis()) {
1237       Value *BB1V = PN.getIncomingValueForBlock(BB1);
1238       Value *BB2V = PN.getIncomingValueForBlock(BB2);
1239       if (BB1V != BB2V && (BB1V == I1 || BB2V == I2)) {
1240         return false;
1241       }
1242     }
1243   }
1244   return true;
1245 }
1246 
1247 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I);
1248 
1249 /// Given a conditional branch that goes to BB1 and BB2, hoist any common code
1250 /// in the two blocks up into the branch block. The caller of this function
1251 /// guarantees that BI's block dominates BB1 and BB2.
1252 static bool HoistThenElseCodeToIf(BranchInst *BI,
1253                                   const TargetTransformInfo &TTI) {
1254   // This does very trivial matching, with limited scanning, to find identical
1255   // instructions in the two blocks.  In particular, we don't want to get into
1256   // O(M*N) situations here where M and N are the sizes of BB1 and BB2.  As
1257   // such, we currently just scan for obviously identical instructions in an
1258   // identical order.
1259   BasicBlock *BB1 = BI->getSuccessor(0); // The true destination.
1260   BasicBlock *BB2 = BI->getSuccessor(1); // The false destination
1261 
1262   BasicBlock::iterator BB1_Itr = BB1->begin();
1263   BasicBlock::iterator BB2_Itr = BB2->begin();
1264 
1265   Instruction *I1 = &*BB1_Itr++, *I2 = &*BB2_Itr++;
1266   // Skip debug info if it is not identical.
1267   DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1268   DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1269   if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1270     while (isa<DbgInfoIntrinsic>(I1))
1271       I1 = &*BB1_Itr++;
1272     while (isa<DbgInfoIntrinsic>(I2))
1273       I2 = &*BB2_Itr++;
1274   }
1275   // FIXME: Can we define a safety predicate for CallBr?
1276   if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) ||
1277       (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) ||
1278       isa<CallBrInst>(I1))
1279     return false;
1280 
1281   BasicBlock *BIParent = BI->getParent();
1282 
1283   bool Changed = false;
1284   do {
1285     // If we are hoisting the terminator instruction, don't move one (making a
1286     // broken BB), instead clone it, and remove BI.
1287     if (I1->isTerminator())
1288       goto HoistTerminator;
1289 
1290     // If we're going to hoist a call, make sure that the two instructions we're
1291     // commoning/hoisting are both marked with musttail, or neither of them is
1292     // marked as such. Otherwise, we might end up in a situation where we hoist
1293     // from a block where the terminator is a `ret` to a block where the terminator
1294     // is a `br`, and `musttail` calls expect to be followed by a return.
1295     auto *C1 = dyn_cast<CallInst>(I1);
1296     auto *C2 = dyn_cast<CallInst>(I2);
1297     if (C1 && C2)
1298       if (C1->isMustTailCall() != C2->isMustTailCall())
1299         return Changed;
1300 
1301     if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2))
1302       return Changed;
1303 
1304     if (isa<DbgInfoIntrinsic>(I1) || isa<DbgInfoIntrinsic>(I2)) {
1305       assert (isa<DbgInfoIntrinsic>(I1) && isa<DbgInfoIntrinsic>(I2));
1306       // The debug location is an integral part of a debug info intrinsic
1307       // and can't be separated from it or replaced.  Instead of attempting
1308       // to merge locations, simply hoist both copies of the intrinsic.
1309       BIParent->getInstList().splice(BI->getIterator(),
1310                                      BB1->getInstList(), I1);
1311       BIParent->getInstList().splice(BI->getIterator(),
1312                                      BB2->getInstList(), I2);
1313       Changed = true;
1314     } else {
1315       // For a normal instruction, we just move one to right before the branch,
1316       // then replace all uses of the other with the first.  Finally, we remove
1317       // the now redundant second instruction.
1318       BIParent->getInstList().splice(BI->getIterator(),
1319                                      BB1->getInstList(), I1);
1320       if (!I2->use_empty())
1321         I2->replaceAllUsesWith(I1);
1322       I1->andIRFlags(I2);
1323       unsigned KnownIDs[] = {LLVMContext::MD_tbaa,
1324                              LLVMContext::MD_range,
1325                              LLVMContext::MD_fpmath,
1326                              LLVMContext::MD_invariant_load,
1327                              LLVMContext::MD_nonnull,
1328                              LLVMContext::MD_invariant_group,
1329                              LLVMContext::MD_align,
1330                              LLVMContext::MD_dereferenceable,
1331                              LLVMContext::MD_dereferenceable_or_null,
1332                              LLVMContext::MD_mem_parallel_loop_access,
1333                              LLVMContext::MD_access_group};
1334       combineMetadata(I1, I2, KnownIDs, true);
1335 
1336       // I1 and I2 are being combined into a single instruction.  Its debug
1337       // location is the merged locations of the original instructions.
1338       I1->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc());
1339 
1340       I2->eraseFromParent();
1341       Changed = true;
1342     }
1343 
1344     I1 = &*BB1_Itr++;
1345     I2 = &*BB2_Itr++;
1346     // Skip debug info if it is not identical.
1347     DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1348     DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1349     if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1350       while (isa<DbgInfoIntrinsic>(I1))
1351         I1 = &*BB1_Itr++;
1352       while (isa<DbgInfoIntrinsic>(I2))
1353         I2 = &*BB2_Itr++;
1354     }
1355   } while (I1->isIdenticalToWhenDefined(I2));
1356 
1357   return true;
1358 
1359 HoistTerminator:
1360   // It may not be possible to hoist an invoke.
1361   // FIXME: Can we define a safety predicate for CallBr?
1362   if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))
1363     return Changed;
1364 
1365   // TODO: callbr hoisting currently disabled pending further study.
1366   if (isa<CallBrInst>(I1))
1367     return Changed;
1368 
1369   for (BasicBlock *Succ : successors(BB1)) {
1370     for (PHINode &PN : Succ->phis()) {
1371       Value *BB1V = PN.getIncomingValueForBlock(BB1);
1372       Value *BB2V = PN.getIncomingValueForBlock(BB2);
1373       if (BB1V == BB2V)
1374         continue;
1375 
1376       // Check for passingValueIsAlwaysUndefined here because we would rather
1377       // eliminate undefined control flow then converting it to a select.
1378       if (passingValueIsAlwaysUndefined(BB1V, &PN) ||
1379           passingValueIsAlwaysUndefined(BB2V, &PN))
1380         return Changed;
1381 
1382       if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V))
1383         return Changed;
1384       if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V))
1385         return Changed;
1386     }
1387   }
1388 
1389   // Okay, it is safe to hoist the terminator.
1390   Instruction *NT = I1->clone();
1391   BIParent->getInstList().insert(BI->getIterator(), NT);
1392   if (!NT->getType()->isVoidTy()) {
1393     I1->replaceAllUsesWith(NT);
1394     I2->replaceAllUsesWith(NT);
1395     NT->takeName(I1);
1396   }
1397 
1398   // Ensure terminator gets a debug location, even an unknown one, in case
1399   // it involves inlinable calls.
1400   NT->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc());
1401 
1402   // PHIs created below will adopt NT's merged DebugLoc.
1403   IRBuilder<NoFolder> Builder(NT);
1404 
1405   // Hoisting one of the terminators from our successor is a great thing.
1406   // Unfortunately, the successors of the if/else blocks may have PHI nodes in
1407   // them.  If they do, all PHI entries for BB1/BB2 must agree for all PHI
1408   // nodes, so we insert select instruction to compute the final result.
1409   std::map<std::pair<Value *, Value *>, SelectInst *> InsertedSelects;
1410   for (BasicBlock *Succ : successors(BB1)) {
1411     for (PHINode &PN : Succ->phis()) {
1412       Value *BB1V = PN.getIncomingValueForBlock(BB1);
1413       Value *BB2V = PN.getIncomingValueForBlock(BB2);
1414       if (BB1V == BB2V)
1415         continue;
1416 
1417       // These values do not agree.  Insert a select instruction before NT
1418       // that determines the right value.
1419       SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)];
1420       if (!SI)
1421         SI = cast<SelectInst>(
1422             Builder.CreateSelect(BI->getCondition(), BB1V, BB2V,
1423                                  BB1V->getName() + "." + BB2V->getName(), BI));
1424 
1425       // Make the PHI node use the select for all incoming values for BB1/BB2
1426       for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
1427         if (PN.getIncomingBlock(i) == BB1 || PN.getIncomingBlock(i) == BB2)
1428           PN.setIncomingValue(i, SI);
1429     }
1430   }
1431 
1432   // Update any PHI nodes in our new successors.
1433   for (BasicBlock *Succ : successors(BB1))
1434     AddPredecessorToBlock(Succ, BIParent, BB1);
1435 
1436   EraseTerminatorAndDCECond(BI);
1437   return true;
1438 }
1439 
1440 // All instructions in Insts belong to different blocks that all unconditionally
1441 // branch to a common successor. Analyze each instruction and return true if it
1442 // would be possible to sink them into their successor, creating one common
1443 // instruction instead. For every value that would be required to be provided by
1444 // PHI node (because an operand varies in each input block), add to PHIOperands.
1445 static bool canSinkInstructions(
1446     ArrayRef<Instruction *> Insts,
1447     DenseMap<Instruction *, SmallVector<Value *, 4>> &PHIOperands) {
1448   // Prune out obviously bad instructions to move. Any non-store instruction
1449   // must have exactly one use, and we check later that use is by a single,
1450   // common PHI instruction in the successor.
1451   for (auto *I : Insts) {
1452     // These instructions may change or break semantics if moved.
1453     if (isa<PHINode>(I) || I->isEHPad() || isa<AllocaInst>(I) ||
1454         I->getType()->isTokenTy())
1455       return false;
1456 
1457     // Conservatively return false if I is an inline-asm instruction. Sinking
1458     // and merging inline-asm instructions can potentially create arguments
1459     // that cannot satisfy the inline-asm constraints.
1460     if (const auto *C = dyn_cast<CallBase>(I))
1461       if (C->isInlineAsm())
1462         return false;
1463 
1464     // Everything must have only one use too, apart from stores which
1465     // have no uses.
1466     if (!isa<StoreInst>(I) && !I->hasOneUse())
1467       return false;
1468   }
1469 
1470   const Instruction *I0 = Insts.front();
1471   for (auto *I : Insts)
1472     if (!I->isSameOperationAs(I0))
1473       return false;
1474 
1475   // All instructions in Insts are known to be the same opcode. If they aren't
1476   // stores, check the only user of each is a PHI or in the same block as the
1477   // instruction, because if a user is in the same block as an instruction
1478   // we're contemplating sinking, it must already be determined to be sinkable.
1479   if (!isa<StoreInst>(I0)) {
1480     auto *PNUse = dyn_cast<PHINode>(*I0->user_begin());
1481     auto *Succ = I0->getParent()->getTerminator()->getSuccessor(0);
1482     if (!all_of(Insts, [&PNUse,&Succ](const Instruction *I) -> bool {
1483           auto *U = cast<Instruction>(*I->user_begin());
1484           return (PNUse &&
1485                   PNUse->getParent() == Succ &&
1486                   PNUse->getIncomingValueForBlock(I->getParent()) == I) ||
1487                  U->getParent() == I->getParent();
1488         }))
1489       return false;
1490   }
1491 
1492   // Because SROA can't handle speculating stores of selects, try not
1493   // to sink loads or stores of allocas when we'd have to create a PHI for
1494   // the address operand. Also, because it is likely that loads or stores
1495   // of allocas will disappear when Mem2Reg/SROA is run, don't sink them.
1496   // This can cause code churn which can have unintended consequences down
1497   // the line - see https://llvm.org/bugs/show_bug.cgi?id=30244.
1498   // FIXME: This is a workaround for a deficiency in SROA - see
1499   // https://llvm.org/bugs/show_bug.cgi?id=30188
1500   if (isa<StoreInst>(I0) && any_of(Insts, [](const Instruction *I) {
1501         return isa<AllocaInst>(I->getOperand(1));
1502       }))
1503     return false;
1504   if (isa<LoadInst>(I0) && any_of(Insts, [](const Instruction *I) {
1505         return isa<AllocaInst>(I->getOperand(0));
1506       }))
1507     return false;
1508 
1509   for (unsigned OI = 0, OE = I0->getNumOperands(); OI != OE; ++OI) {
1510     if (I0->getOperand(OI)->getType()->isTokenTy())
1511       // Don't touch any operand of token type.
1512       return false;
1513 
1514     auto SameAsI0 = [&I0, OI](const Instruction *I) {
1515       assert(I->getNumOperands() == I0->getNumOperands());
1516       return I->getOperand(OI) == I0->getOperand(OI);
1517     };
1518     if (!all_of(Insts, SameAsI0)) {
1519       if (!canReplaceOperandWithVariable(I0, OI))
1520         // We can't create a PHI from this GEP.
1521         return false;
1522       // Don't create indirect calls! The called value is the final operand.
1523       if (isa<CallBase>(I0) && OI == OE - 1) {
1524         // FIXME: if the call was *already* indirect, we should do this.
1525         return false;
1526       }
1527       for (auto *I : Insts)
1528         PHIOperands[I].push_back(I->getOperand(OI));
1529     }
1530   }
1531   return true;
1532 }
1533 
1534 // Assuming canSinkLastInstruction(Blocks) has returned true, sink the last
1535 // instruction of every block in Blocks to their common successor, commoning
1536 // into one instruction.
1537 static bool sinkLastInstruction(ArrayRef<BasicBlock*> Blocks) {
1538   auto *BBEnd = Blocks[0]->getTerminator()->getSuccessor(0);
1539 
1540   // canSinkLastInstruction returning true guarantees that every block has at
1541   // least one non-terminator instruction.
1542   SmallVector<Instruction*,4> Insts;
1543   for (auto *BB : Blocks) {
1544     Instruction *I = BB->getTerminator();
1545     do {
1546       I = I->getPrevNode();
1547     } while (isa<DbgInfoIntrinsic>(I) && I != &BB->front());
1548     if (!isa<DbgInfoIntrinsic>(I))
1549       Insts.push_back(I);
1550   }
1551 
1552   // The only checking we need to do now is that all users of all instructions
1553   // are the same PHI node. canSinkLastInstruction should have checked this but
1554   // it is slightly over-aggressive - it gets confused by commutative instructions
1555   // so double-check it here.
1556   Instruction *I0 = Insts.front();
1557   if (!isa<StoreInst>(I0)) {
1558     auto *PNUse = dyn_cast<PHINode>(*I0->user_begin());
1559     if (!all_of(Insts, [&PNUse](const Instruction *I) -> bool {
1560           auto *U = cast<Instruction>(*I->user_begin());
1561           return U == PNUse;
1562         }))
1563       return false;
1564   }
1565 
1566   // We don't need to do any more checking here; canSinkLastInstruction should
1567   // have done it all for us.
1568   SmallVector<Value*, 4> NewOperands;
1569   for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) {
1570     // This check is different to that in canSinkLastInstruction. There, we
1571     // cared about the global view once simplifycfg (and instcombine) have
1572     // completed - it takes into account PHIs that become trivially
1573     // simplifiable.  However here we need a more local view; if an operand
1574     // differs we create a PHI and rely on instcombine to clean up the very
1575     // small mess we may make.
1576     bool NeedPHI = any_of(Insts, [&I0, O](const Instruction *I) {
1577       return I->getOperand(O) != I0->getOperand(O);
1578     });
1579     if (!NeedPHI) {
1580       NewOperands.push_back(I0->getOperand(O));
1581       continue;
1582     }
1583 
1584     // Create a new PHI in the successor block and populate it.
1585     auto *Op = I0->getOperand(O);
1586     assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!");
1587     auto *PN = PHINode::Create(Op->getType(), Insts.size(),
1588                                Op->getName() + ".sink", &BBEnd->front());
1589     for (auto *I : Insts)
1590       PN->addIncoming(I->getOperand(O), I->getParent());
1591     NewOperands.push_back(PN);
1592   }
1593 
1594   // Arbitrarily use I0 as the new "common" instruction; remap its operands
1595   // and move it to the start of the successor block.
1596   for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O)
1597     I0->getOperandUse(O).set(NewOperands[O]);
1598   I0->moveBefore(&*BBEnd->getFirstInsertionPt());
1599 
1600   // Update metadata and IR flags, and merge debug locations.
1601   for (auto *I : Insts)
1602     if (I != I0) {
1603       // The debug location for the "common" instruction is the merged locations
1604       // of all the commoned instructions.  We start with the original location
1605       // of the "common" instruction and iteratively merge each location in the
1606       // loop below.
1607       // This is an N-way merge, which will be inefficient if I0 is a CallInst.
1608       // However, as N-way merge for CallInst is rare, so we use simplified API
1609       // instead of using complex API for N-way merge.
1610       I0->applyMergedLocation(I0->getDebugLoc(), I->getDebugLoc());
1611       combineMetadataForCSE(I0, I, true);
1612       I0->andIRFlags(I);
1613     }
1614 
1615   if (!isa<StoreInst>(I0)) {
1616     // canSinkLastInstruction checked that all instructions were used by
1617     // one and only one PHI node. Find that now, RAUW it to our common
1618     // instruction and nuke it.
1619     assert(I0->hasOneUse());
1620     auto *PN = cast<PHINode>(*I0->user_begin());
1621     PN->replaceAllUsesWith(I0);
1622     PN->eraseFromParent();
1623   }
1624 
1625   // Finally nuke all instructions apart from the common instruction.
1626   for (auto *I : Insts)
1627     if (I != I0)
1628       I->eraseFromParent();
1629 
1630   return true;
1631 }
1632 
1633 namespace {
1634 
1635   // LockstepReverseIterator - Iterates through instructions
1636   // in a set of blocks in reverse order from the first non-terminator.
1637   // For example (assume all blocks have size n):
1638   //   LockstepReverseIterator I([B1, B2, B3]);
1639   //   *I-- = [B1[n], B2[n], B3[n]];
1640   //   *I-- = [B1[n-1], B2[n-1], B3[n-1]];
1641   //   *I-- = [B1[n-2], B2[n-2], B3[n-2]];
1642   //   ...
1643   class LockstepReverseIterator {
1644     ArrayRef<BasicBlock*> Blocks;
1645     SmallVector<Instruction*,4> Insts;
1646     bool Fail;
1647 
1648   public:
1649     LockstepReverseIterator(ArrayRef<BasicBlock*> Blocks) : Blocks(Blocks) {
1650       reset();
1651     }
1652 
1653     void reset() {
1654       Fail = false;
1655       Insts.clear();
1656       for (auto *BB : Blocks) {
1657         Instruction *Inst = BB->getTerminator();
1658         for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
1659           Inst = Inst->getPrevNode();
1660         if (!Inst) {
1661           // Block wasn't big enough.
1662           Fail = true;
1663           return;
1664         }
1665         Insts.push_back(Inst);
1666       }
1667     }
1668 
1669     bool isValid() const {
1670       return !Fail;
1671     }
1672 
1673     void operator--() {
1674       if (Fail)
1675         return;
1676       for (auto *&Inst : Insts) {
1677         for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
1678           Inst = Inst->getPrevNode();
1679         // Already at beginning of block.
1680         if (!Inst) {
1681           Fail = true;
1682           return;
1683         }
1684       }
1685     }
1686 
1687     ArrayRef<Instruction*> operator * () const {
1688       return Insts;
1689     }
1690   };
1691 
1692 } // end anonymous namespace
1693 
1694 /// Check whether BB's predecessors end with unconditional branches. If it is
1695 /// true, sink any common code from the predecessors to BB.
1696 /// We also allow one predecessor to end with conditional branch (but no more
1697 /// than one).
1698 static bool SinkCommonCodeFromPredecessors(BasicBlock *BB) {
1699   // We support two situations:
1700   //   (1) all incoming arcs are unconditional
1701   //   (2) one incoming arc is conditional
1702   //
1703   // (2) is very common in switch defaults and
1704   // else-if patterns;
1705   //
1706   //   if (a) f(1);
1707   //   else if (b) f(2);
1708   //
1709   // produces:
1710   //
1711   //       [if]
1712   //      /    \
1713   //    [f(1)] [if]
1714   //      |     | \
1715   //      |     |  |
1716   //      |  [f(2)]|
1717   //       \    | /
1718   //        [ end ]
1719   //
1720   // [end] has two unconditional predecessor arcs and one conditional. The
1721   // conditional refers to the implicit empty 'else' arc. This conditional
1722   // arc can also be caused by an empty default block in a switch.
1723   //
1724   // In this case, we attempt to sink code from all *unconditional* arcs.
1725   // If we can sink instructions from these arcs (determined during the scan
1726   // phase below) we insert a common successor for all unconditional arcs and
1727   // connect that to [end], to enable sinking:
1728   //
1729   //       [if]
1730   //      /    \
1731   //    [x(1)] [if]
1732   //      |     | \
1733   //      |     |  \
1734   //      |  [x(2)] |
1735   //       \   /    |
1736   //   [sink.split] |
1737   //         \     /
1738   //         [ end ]
1739   //
1740   SmallVector<BasicBlock*,4> UnconditionalPreds;
1741   Instruction *Cond = nullptr;
1742   for (auto *B : predecessors(BB)) {
1743     auto *T = B->getTerminator();
1744     if (isa<BranchInst>(T) && cast<BranchInst>(T)->isUnconditional())
1745       UnconditionalPreds.push_back(B);
1746     else if ((isa<BranchInst>(T) || isa<SwitchInst>(T)) && !Cond)
1747       Cond = T;
1748     else
1749       return false;
1750   }
1751   if (UnconditionalPreds.size() < 2)
1752     return false;
1753 
1754   bool Changed = false;
1755   // We take a two-step approach to tail sinking. First we scan from the end of
1756   // each block upwards in lockstep. If the n'th instruction from the end of each
1757   // block can be sunk, those instructions are added to ValuesToSink and we
1758   // carry on. If we can sink an instruction but need to PHI-merge some operands
1759   // (because they're not identical in each instruction) we add these to
1760   // PHIOperands.
1761   unsigned ScanIdx = 0;
1762   SmallPtrSet<Value*,4> InstructionsToSink;
1763   DenseMap<Instruction*, SmallVector<Value*,4>> PHIOperands;
1764   LockstepReverseIterator LRI(UnconditionalPreds);
1765   while (LRI.isValid() &&
1766          canSinkInstructions(*LRI, PHIOperands)) {
1767     LLVM_DEBUG(dbgs() << "SINK: instruction can be sunk: " << *(*LRI)[0]
1768                       << "\n");
1769     InstructionsToSink.insert((*LRI).begin(), (*LRI).end());
1770     ++ScanIdx;
1771     --LRI;
1772   }
1773 
1774   auto ProfitableToSinkInstruction = [&](LockstepReverseIterator &LRI) {
1775     unsigned NumPHIdValues = 0;
1776     for (auto *I : *LRI)
1777       for (auto *V : PHIOperands[I])
1778         if (InstructionsToSink.count(V) == 0)
1779           ++NumPHIdValues;
1780     LLVM_DEBUG(dbgs() << "SINK: #phid values: " << NumPHIdValues << "\n");
1781     unsigned NumPHIInsts = NumPHIdValues / UnconditionalPreds.size();
1782     if ((NumPHIdValues % UnconditionalPreds.size()) != 0)
1783         NumPHIInsts++;
1784 
1785     return NumPHIInsts <= 1;
1786   };
1787 
1788   if (ScanIdx > 0 && Cond) {
1789     // Check if we would actually sink anything first! This mutates the CFG and
1790     // adds an extra block. The goal in doing this is to allow instructions that
1791     // couldn't be sunk before to be sunk - obviously, speculatable instructions
1792     // (such as trunc, add) can be sunk and predicated already. So we check that
1793     // we're going to sink at least one non-speculatable instruction.
1794     LRI.reset();
1795     unsigned Idx = 0;
1796     bool Profitable = false;
1797     while (ProfitableToSinkInstruction(LRI) && Idx < ScanIdx) {
1798       if (!isSafeToSpeculativelyExecute((*LRI)[0])) {
1799         Profitable = true;
1800         break;
1801       }
1802       --LRI;
1803       ++Idx;
1804     }
1805     if (!Profitable)
1806       return false;
1807 
1808     LLVM_DEBUG(dbgs() << "SINK: Splitting edge\n");
1809     // We have a conditional edge and we're going to sink some instructions.
1810     // Insert a new block postdominating all blocks we're going to sink from.
1811     if (!SplitBlockPredecessors(BB, UnconditionalPreds, ".sink.split"))
1812       // Edges couldn't be split.
1813       return false;
1814     Changed = true;
1815   }
1816 
1817   // Now that we've analyzed all potential sinking candidates, perform the
1818   // actual sink. We iteratively sink the last non-terminator of the source
1819   // blocks into their common successor unless doing so would require too
1820   // many PHI instructions to be generated (currently only one PHI is allowed
1821   // per sunk instruction).
1822   //
1823   // We can use InstructionsToSink to discount values needing PHI-merging that will
1824   // actually be sunk in a later iteration. This allows us to be more
1825   // aggressive in what we sink. This does allow a false positive where we
1826   // sink presuming a later value will also be sunk, but stop half way through
1827   // and never actually sink it which means we produce more PHIs than intended.
1828   // This is unlikely in practice though.
1829   for (unsigned SinkIdx = 0; SinkIdx != ScanIdx; ++SinkIdx) {
1830     LLVM_DEBUG(dbgs() << "SINK: Sink: "
1831                       << *UnconditionalPreds[0]->getTerminator()->getPrevNode()
1832                       << "\n");
1833 
1834     // Because we've sunk every instruction in turn, the current instruction to
1835     // sink is always at index 0.
1836     LRI.reset();
1837     if (!ProfitableToSinkInstruction(LRI)) {
1838       // Too many PHIs would be created.
1839       LLVM_DEBUG(
1840           dbgs() << "SINK: stopping here, too many PHIs would be created!\n");
1841       break;
1842     }
1843 
1844     if (!sinkLastInstruction(UnconditionalPreds))
1845       return Changed;
1846     NumSinkCommons++;
1847     Changed = true;
1848   }
1849   return Changed;
1850 }
1851 
1852 /// Determine if we can hoist sink a sole store instruction out of a
1853 /// conditional block.
1854 ///
1855 /// We are looking for code like the following:
1856 ///   BrBB:
1857 ///     store i32 %add, i32* %arrayidx2
1858 ///     ... // No other stores or function calls (we could be calling a memory
1859 ///     ... // function).
1860 ///     %cmp = icmp ult %x, %y
1861 ///     br i1 %cmp, label %EndBB, label %ThenBB
1862 ///   ThenBB:
1863 ///     store i32 %add5, i32* %arrayidx2
1864 ///     br label EndBB
1865 ///   EndBB:
1866 ///     ...
1867 ///   We are going to transform this into:
1868 ///   BrBB:
1869 ///     store i32 %add, i32* %arrayidx2
1870 ///     ... //
1871 ///     %cmp = icmp ult %x, %y
1872 ///     %add.add5 = select i1 %cmp, i32 %add, %add5
1873 ///     store i32 %add.add5, i32* %arrayidx2
1874 ///     ...
1875 ///
1876 /// \return The pointer to the value of the previous store if the store can be
1877 ///         hoisted into the predecessor block. 0 otherwise.
1878 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB,
1879                                      BasicBlock *StoreBB, BasicBlock *EndBB) {
1880   StoreInst *StoreToHoist = dyn_cast<StoreInst>(I);
1881   if (!StoreToHoist)
1882     return nullptr;
1883 
1884   // Volatile or atomic.
1885   if (!StoreToHoist->isSimple())
1886     return nullptr;
1887 
1888   Value *StorePtr = StoreToHoist->getPointerOperand();
1889 
1890   // Look for a store to the same pointer in BrBB.
1891   unsigned MaxNumInstToLookAt = 9;
1892   for (Instruction &CurI : reverse(BrBB->instructionsWithoutDebug())) {
1893     if (!MaxNumInstToLookAt)
1894       break;
1895     --MaxNumInstToLookAt;
1896 
1897     // Could be calling an instruction that affects memory like free().
1898     if (CurI.mayHaveSideEffects() && !isa<StoreInst>(CurI))
1899       return nullptr;
1900 
1901     if (auto *SI = dyn_cast<StoreInst>(&CurI)) {
1902       // Found the previous store make sure it stores to the same location.
1903       if (SI->getPointerOperand() == StorePtr)
1904         // Found the previous store, return its value operand.
1905         return SI->getValueOperand();
1906       return nullptr; // Unknown store.
1907     }
1908   }
1909 
1910   return nullptr;
1911 }
1912 
1913 /// Speculate a conditional basic block flattening the CFG.
1914 ///
1915 /// Note that this is a very risky transform currently. Speculating
1916 /// instructions like this is most often not desirable. Instead, there is an MI
1917 /// pass which can do it with full awareness of the resource constraints.
1918 /// However, some cases are "obvious" and we should do directly. An example of
1919 /// this is speculating a single, reasonably cheap instruction.
1920 ///
1921 /// There is only one distinct advantage to flattening the CFG at the IR level:
1922 /// it makes very common but simplistic optimizations such as are common in
1923 /// instcombine and the DAG combiner more powerful by removing CFG edges and
1924 /// modeling their effects with easier to reason about SSA value graphs.
1925 ///
1926 ///
1927 /// An illustration of this transform is turning this IR:
1928 /// \code
1929 ///   BB:
1930 ///     %cmp = icmp ult %x, %y
1931 ///     br i1 %cmp, label %EndBB, label %ThenBB
1932 ///   ThenBB:
1933 ///     %sub = sub %x, %y
1934 ///     br label BB2
1935 ///   EndBB:
1936 ///     %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ]
1937 ///     ...
1938 /// \endcode
1939 ///
1940 /// Into this IR:
1941 /// \code
1942 ///   BB:
1943 ///     %cmp = icmp ult %x, %y
1944 ///     %sub = sub %x, %y
1945 ///     %cond = select i1 %cmp, 0, %sub
1946 ///     ...
1947 /// \endcode
1948 ///
1949 /// \returns true if the conditional block is removed.
1950 static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB,
1951                                    const TargetTransformInfo &TTI) {
1952   // Be conservative for now. FP select instruction can often be expensive.
1953   Value *BrCond = BI->getCondition();
1954   if (isa<FCmpInst>(BrCond))
1955     return false;
1956 
1957   BasicBlock *BB = BI->getParent();
1958   BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0);
1959 
1960   // If ThenBB is actually on the false edge of the conditional branch, remember
1961   // to swap the select operands later.
1962   bool Invert = false;
1963   if (ThenBB != BI->getSuccessor(0)) {
1964     assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?");
1965     Invert = true;
1966   }
1967   assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block");
1968 
1969   // Keep a count of how many times instructions are used within ThenBB when
1970   // they are candidates for sinking into ThenBB. Specifically:
1971   // - They are defined in BB, and
1972   // - They have no side effects, and
1973   // - All of their uses are in ThenBB.
1974   SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts;
1975 
1976   SmallVector<Instruction *, 4> SpeculatedDbgIntrinsics;
1977 
1978   unsigned SpeculationCost = 0;
1979   Value *SpeculatedStoreValue = nullptr;
1980   StoreInst *SpeculatedStore = nullptr;
1981   for (BasicBlock::iterator BBI = ThenBB->begin(),
1982                             BBE = std::prev(ThenBB->end());
1983        BBI != BBE; ++BBI) {
1984     Instruction *I = &*BBI;
1985     // Skip debug info.
1986     if (isa<DbgInfoIntrinsic>(I)) {
1987       SpeculatedDbgIntrinsics.push_back(I);
1988       continue;
1989     }
1990 
1991     // Only speculatively execute a single instruction (not counting the
1992     // terminator) for now.
1993     ++SpeculationCost;
1994     if (SpeculationCost > 1)
1995       return false;
1996 
1997     // Don't hoist the instruction if it's unsafe or expensive.
1998     if (!isSafeToSpeculativelyExecute(I) &&
1999         !(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore(
2000                                   I, BB, ThenBB, EndBB))))
2001       return false;
2002     if (!SpeculatedStoreValue &&
2003         ComputeSpeculationCost(I, TTI) >
2004             PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic)
2005       return false;
2006 
2007     // Store the store speculation candidate.
2008     if (SpeculatedStoreValue)
2009       SpeculatedStore = cast<StoreInst>(I);
2010 
2011     // Do not hoist the instruction if any of its operands are defined but not
2012     // used in BB. The transformation will prevent the operand from
2013     // being sunk into the use block.
2014     for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) {
2015       Instruction *OpI = dyn_cast<Instruction>(*i);
2016       if (!OpI || OpI->getParent() != BB || OpI->mayHaveSideEffects())
2017         continue; // Not a candidate for sinking.
2018 
2019       ++SinkCandidateUseCounts[OpI];
2020     }
2021   }
2022 
2023   // Consider any sink candidates which are only used in ThenBB as costs for
2024   // speculation. Note, while we iterate over a DenseMap here, we are summing
2025   // and so iteration order isn't significant.
2026   for (SmallDenseMap<Instruction *, unsigned, 4>::iterator
2027            I = SinkCandidateUseCounts.begin(),
2028            E = SinkCandidateUseCounts.end();
2029        I != E; ++I)
2030     if (I->first->hasNUses(I->second)) {
2031       ++SpeculationCost;
2032       if (SpeculationCost > 1)
2033         return false;
2034     }
2035 
2036   // Check that the PHI nodes can be converted to selects.
2037   bool HaveRewritablePHIs = false;
2038   for (PHINode &PN : EndBB->phis()) {
2039     Value *OrigV = PN.getIncomingValueForBlock(BB);
2040     Value *ThenV = PN.getIncomingValueForBlock(ThenBB);
2041 
2042     // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf.
2043     // Skip PHIs which are trivial.
2044     if (ThenV == OrigV)
2045       continue;
2046 
2047     // Don't convert to selects if we could remove undefined behavior instead.
2048     if (passingValueIsAlwaysUndefined(OrigV, &PN) ||
2049         passingValueIsAlwaysUndefined(ThenV, &PN))
2050       return false;
2051 
2052     HaveRewritablePHIs = true;
2053     ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV);
2054     ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV);
2055     if (!OrigCE && !ThenCE)
2056       continue; // Known safe and cheap.
2057 
2058     if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE)) ||
2059         (OrigCE && !isSafeToSpeculativelyExecute(OrigCE)))
2060       return false;
2061     unsigned OrigCost = OrigCE ? ComputeSpeculationCost(OrigCE, TTI) : 0;
2062     unsigned ThenCost = ThenCE ? ComputeSpeculationCost(ThenCE, TTI) : 0;
2063     unsigned MaxCost =
2064         2 * PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
2065     if (OrigCost + ThenCost > MaxCost)
2066       return false;
2067 
2068     // Account for the cost of an unfolded ConstantExpr which could end up
2069     // getting expanded into Instructions.
2070     // FIXME: This doesn't account for how many operations are combined in the
2071     // constant expression.
2072     ++SpeculationCost;
2073     if (SpeculationCost > 1)
2074       return false;
2075   }
2076 
2077   // If there are no PHIs to process, bail early. This helps ensure idempotence
2078   // as well.
2079   if (!HaveRewritablePHIs && !(HoistCondStores && SpeculatedStoreValue))
2080     return false;
2081 
2082   // If we get here, we can hoist the instruction and if-convert.
2083   LLVM_DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";);
2084 
2085   // Insert a select of the value of the speculated store.
2086   if (SpeculatedStoreValue) {
2087     IRBuilder<NoFolder> Builder(BI);
2088     Value *TrueV = SpeculatedStore->getValueOperand();
2089     Value *FalseV = SpeculatedStoreValue;
2090     if (Invert)
2091       std::swap(TrueV, FalseV);
2092     Value *S = Builder.CreateSelect(
2093         BrCond, TrueV, FalseV, "spec.store.select", BI);
2094     SpeculatedStore->setOperand(0, S);
2095     SpeculatedStore->applyMergedLocation(BI->getDebugLoc(),
2096                                          SpeculatedStore->getDebugLoc());
2097   }
2098 
2099   // Metadata can be dependent on the condition we are hoisting above.
2100   // Conservatively strip all metadata on the instruction.
2101   for (auto &I : *ThenBB)
2102     I.dropUnknownNonDebugMetadata();
2103 
2104   // Hoist the instructions.
2105   BB->getInstList().splice(BI->getIterator(), ThenBB->getInstList(),
2106                            ThenBB->begin(), std::prev(ThenBB->end()));
2107 
2108   // Insert selects and rewrite the PHI operands.
2109   IRBuilder<NoFolder> Builder(BI);
2110   for (PHINode &PN : EndBB->phis()) {
2111     unsigned OrigI = PN.getBasicBlockIndex(BB);
2112     unsigned ThenI = PN.getBasicBlockIndex(ThenBB);
2113     Value *OrigV = PN.getIncomingValue(OrigI);
2114     Value *ThenV = PN.getIncomingValue(ThenI);
2115 
2116     // Skip PHIs which are trivial.
2117     if (OrigV == ThenV)
2118       continue;
2119 
2120     // Create a select whose true value is the speculatively executed value and
2121     // false value is the preexisting value. Swap them if the branch
2122     // destinations were inverted.
2123     Value *TrueV = ThenV, *FalseV = OrigV;
2124     if (Invert)
2125       std::swap(TrueV, FalseV);
2126     Value *V = Builder.CreateSelect(
2127         BrCond, TrueV, FalseV, "spec.select", BI);
2128     PN.setIncomingValue(OrigI, V);
2129     PN.setIncomingValue(ThenI, V);
2130   }
2131 
2132   // Remove speculated dbg intrinsics.
2133   // FIXME: Is it possible to do this in a more elegant way? Moving/merging the
2134   // dbg value for the different flows and inserting it after the select.
2135   for (Instruction *I : SpeculatedDbgIntrinsics)
2136     I->eraseFromParent();
2137 
2138   ++NumSpeculations;
2139   return true;
2140 }
2141 
2142 /// Return true if we can thread a branch across this block.
2143 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) {
2144   unsigned Size = 0;
2145 
2146   for (Instruction &I : BB->instructionsWithoutDebug()) {
2147     if (Size > 10)
2148       return false; // Don't clone large BB's.
2149     ++Size;
2150 
2151     // We can only support instructions that do not define values that are
2152     // live outside of the current basic block.
2153     for (User *U : I.users()) {
2154       Instruction *UI = cast<Instruction>(U);
2155       if (UI->getParent() != BB || isa<PHINode>(UI))
2156         return false;
2157     }
2158 
2159     // Looks ok, continue checking.
2160   }
2161 
2162   return true;
2163 }
2164 
2165 /// If we have a conditional branch on a PHI node value that is defined in the
2166 /// same block as the branch and if any PHI entries are constants, thread edges
2167 /// corresponding to that entry to be branches to their ultimate destination.
2168 static bool FoldCondBranchOnPHI(BranchInst *BI, const DataLayout &DL,
2169                                 AssumptionCache *AC) {
2170   BasicBlock *BB = BI->getParent();
2171   PHINode *PN = dyn_cast<PHINode>(BI->getCondition());
2172   // NOTE: we currently cannot transform this case if the PHI node is used
2173   // outside of the block.
2174   if (!PN || PN->getParent() != BB || !PN->hasOneUse())
2175     return false;
2176 
2177   // Degenerate case of a single entry PHI.
2178   if (PN->getNumIncomingValues() == 1) {
2179     FoldSingleEntryPHINodes(PN->getParent());
2180     return true;
2181   }
2182 
2183   // Now we know that this block has multiple preds and two succs.
2184   if (!BlockIsSimpleEnoughToThreadThrough(BB))
2185     return false;
2186 
2187   // Can't fold blocks that contain noduplicate or convergent calls.
2188   if (any_of(*BB, [](const Instruction &I) {
2189         const CallInst *CI = dyn_cast<CallInst>(&I);
2190         return CI && (CI->cannotDuplicate() || CI->isConvergent());
2191       }))
2192     return false;
2193 
2194   // Okay, this is a simple enough basic block.  See if any phi values are
2195   // constants.
2196   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
2197     ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i));
2198     if (!CB || !CB->getType()->isIntegerTy(1))
2199       continue;
2200 
2201     // Okay, we now know that all edges from PredBB should be revectored to
2202     // branch to RealDest.
2203     BasicBlock *PredBB = PN->getIncomingBlock(i);
2204     BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue());
2205 
2206     if (RealDest == BB)
2207       continue; // Skip self loops.
2208     // Skip if the predecessor's terminator is an indirect branch.
2209     if (isa<IndirectBrInst>(PredBB->getTerminator()))
2210       continue;
2211 
2212     // The dest block might have PHI nodes, other predecessors and other
2213     // difficult cases.  Instead of being smart about this, just insert a new
2214     // block that jumps to the destination block, effectively splitting
2215     // the edge we are about to create.
2216     BasicBlock *EdgeBB =
2217         BasicBlock::Create(BB->getContext(), RealDest->getName() + ".critedge",
2218                            RealDest->getParent(), RealDest);
2219     BranchInst *CritEdgeBranch = BranchInst::Create(RealDest, EdgeBB);
2220     CritEdgeBranch->setDebugLoc(BI->getDebugLoc());
2221 
2222     // Update PHI nodes.
2223     AddPredecessorToBlock(RealDest, EdgeBB, BB);
2224 
2225     // BB may have instructions that are being threaded over.  Clone these
2226     // instructions into EdgeBB.  We know that there will be no uses of the
2227     // cloned instructions outside of EdgeBB.
2228     BasicBlock::iterator InsertPt = EdgeBB->begin();
2229     DenseMap<Value *, Value *> TranslateMap; // Track translated values.
2230     for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
2231       if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
2232         TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB);
2233         continue;
2234       }
2235       // Clone the instruction.
2236       Instruction *N = BBI->clone();
2237       if (BBI->hasName())
2238         N->setName(BBI->getName() + ".c");
2239 
2240       // Update operands due to translation.
2241       for (User::op_iterator i = N->op_begin(), e = N->op_end(); i != e; ++i) {
2242         DenseMap<Value *, Value *>::iterator PI = TranslateMap.find(*i);
2243         if (PI != TranslateMap.end())
2244           *i = PI->second;
2245       }
2246 
2247       // Check for trivial simplification.
2248       if (Value *V = SimplifyInstruction(N, {DL, nullptr, nullptr, AC})) {
2249         if (!BBI->use_empty())
2250           TranslateMap[&*BBI] = V;
2251         if (!N->mayHaveSideEffects()) {
2252           N->deleteValue(); // Instruction folded away, don't need actual inst
2253           N = nullptr;
2254         }
2255       } else {
2256         if (!BBI->use_empty())
2257           TranslateMap[&*BBI] = N;
2258       }
2259       // Insert the new instruction into its new home.
2260       if (N)
2261         EdgeBB->getInstList().insert(InsertPt, N);
2262 
2263       // Register the new instruction with the assumption cache if necessary.
2264       if (auto *II = dyn_cast_or_null<IntrinsicInst>(N))
2265         if (II->getIntrinsicID() == Intrinsic::assume)
2266           AC->registerAssumption(II);
2267     }
2268 
2269     // Loop over all of the edges from PredBB to BB, changing them to branch
2270     // to EdgeBB instead.
2271     Instruction *PredBBTI = PredBB->getTerminator();
2272     for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i)
2273       if (PredBBTI->getSuccessor(i) == BB) {
2274         BB->removePredecessor(PredBB);
2275         PredBBTI->setSuccessor(i, EdgeBB);
2276       }
2277 
2278     // Recurse, simplifying any other constants.
2279     return FoldCondBranchOnPHI(BI, DL, AC) || true;
2280   }
2281 
2282   return false;
2283 }
2284 
2285 /// Given a BB that starts with the specified two-entry PHI node,
2286 /// see if we can eliminate it.
2287 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI,
2288                                 const DataLayout &DL) {
2289   // Ok, this is a two entry PHI node.  Check to see if this is a simple "if
2290   // statement", which has a very simple dominance structure.  Basically, we
2291   // are trying to find the condition that is being branched on, which
2292   // subsequently causes this merge to happen.  We really want control
2293   // dependence information for this check, but simplifycfg can't keep it up
2294   // to date, and this catches most of the cases we care about anyway.
2295   BasicBlock *BB = PN->getParent();
2296   const Function *Fn = BB->getParent();
2297   if (Fn && Fn->hasFnAttribute(Attribute::OptForFuzzing))
2298     return false;
2299 
2300   BasicBlock *IfTrue, *IfFalse;
2301   Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse);
2302   if (!IfCond ||
2303       // Don't bother if the branch will be constant folded trivially.
2304       isa<ConstantInt>(IfCond))
2305     return false;
2306 
2307   // Okay, we found that we can merge this two-entry phi node into a select.
2308   // Doing so would require us to fold *all* two entry phi nodes in this block.
2309   // At some point this becomes non-profitable (particularly if the target
2310   // doesn't support cmov's).  Only do this transformation if there are two or
2311   // fewer PHI nodes in this block.
2312   unsigned NumPhis = 0;
2313   for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I)
2314     if (NumPhis > 2)
2315       return false;
2316 
2317   // Loop over the PHI's seeing if we can promote them all to select
2318   // instructions.  While we are at it, keep track of the instructions
2319   // that need to be moved to the dominating block.
2320   SmallPtrSet<Instruction *, 4> AggressiveInsts;
2321   unsigned MaxCostVal0 = PHINodeFoldingThreshold,
2322            MaxCostVal1 = PHINodeFoldingThreshold;
2323   MaxCostVal0 *= TargetTransformInfo::TCC_Basic;
2324   MaxCostVal1 *= TargetTransformInfo::TCC_Basic;
2325 
2326   for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) {
2327     PHINode *PN = cast<PHINode>(II++);
2328     if (Value *V = SimplifyInstruction(PN, {DL, PN})) {
2329       PN->replaceAllUsesWith(V);
2330       PN->eraseFromParent();
2331       continue;
2332     }
2333 
2334     if (!DominatesMergePoint(PN->getIncomingValue(0), BB, AggressiveInsts,
2335                              MaxCostVal0, TTI) ||
2336         !DominatesMergePoint(PN->getIncomingValue(1), BB, AggressiveInsts,
2337                              MaxCostVal1, TTI))
2338       return false;
2339   }
2340 
2341   // If we folded the first phi, PN dangles at this point.  Refresh it.  If
2342   // we ran out of PHIs then we simplified them all.
2343   PN = dyn_cast<PHINode>(BB->begin());
2344   if (!PN)
2345     return true;
2346 
2347   // Don't fold i1 branches on PHIs which contain binary operators.  These can
2348   // often be turned into switches and other things.
2349   if (PN->getType()->isIntegerTy(1) &&
2350       (isa<BinaryOperator>(PN->getIncomingValue(0)) ||
2351        isa<BinaryOperator>(PN->getIncomingValue(1)) ||
2352        isa<BinaryOperator>(IfCond)))
2353     return false;
2354 
2355   // If all PHI nodes are promotable, check to make sure that all instructions
2356   // in the predecessor blocks can be promoted as well. If not, we won't be able
2357   // to get rid of the control flow, so it's not worth promoting to select
2358   // instructions.
2359   BasicBlock *DomBlock = nullptr;
2360   BasicBlock *IfBlock1 = PN->getIncomingBlock(0);
2361   BasicBlock *IfBlock2 = PN->getIncomingBlock(1);
2362   if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) {
2363     IfBlock1 = nullptr;
2364   } else {
2365     DomBlock = *pred_begin(IfBlock1);
2366     for (BasicBlock::iterator I = IfBlock1->begin(); !I->isTerminator(); ++I)
2367       if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) {
2368         // This is not an aggressive instruction that we can promote.
2369         // Because of this, we won't be able to get rid of the control flow, so
2370         // the xform is not worth it.
2371         return false;
2372       }
2373   }
2374 
2375   if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) {
2376     IfBlock2 = nullptr;
2377   } else {
2378     DomBlock = *pred_begin(IfBlock2);
2379     for (BasicBlock::iterator I = IfBlock2->begin(); !I->isTerminator(); ++I)
2380       if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) {
2381         // This is not an aggressive instruction that we can promote.
2382         // Because of this, we won't be able to get rid of the control flow, so
2383         // the xform is not worth it.
2384         return false;
2385       }
2386   }
2387 
2388   LLVM_DEBUG(dbgs() << "FOUND IF CONDITION!  " << *IfCond
2389                     << "  T: " << IfTrue->getName()
2390                     << "  F: " << IfFalse->getName() << "\n");
2391 
2392   // If we can still promote the PHI nodes after this gauntlet of tests,
2393   // do all of the PHI's now.
2394   Instruction *InsertPt = DomBlock->getTerminator();
2395   IRBuilder<NoFolder> Builder(InsertPt);
2396 
2397   // Move all 'aggressive' instructions, which are defined in the
2398   // conditional parts of the if's up to the dominating block.
2399   if (IfBlock1)
2400     hoistAllInstructionsInto(DomBlock, InsertPt, IfBlock1);
2401   if (IfBlock2)
2402     hoistAllInstructionsInto(DomBlock, InsertPt, IfBlock2);
2403 
2404   while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
2405     // Change the PHI node into a select instruction.
2406     Value *TrueVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse);
2407     Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue);
2408 
2409     Value *Sel = Builder.CreateSelect(IfCond, TrueVal, FalseVal, "", InsertPt);
2410     PN->replaceAllUsesWith(Sel);
2411     Sel->takeName(PN);
2412     PN->eraseFromParent();
2413   }
2414 
2415   // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement
2416   // has been flattened.  Change DomBlock to jump directly to our new block to
2417   // avoid other simplifycfg's kicking in on the diamond.
2418   Instruction *OldTI = DomBlock->getTerminator();
2419   Builder.SetInsertPoint(OldTI);
2420   Builder.CreateBr(BB);
2421   OldTI->eraseFromParent();
2422   return true;
2423 }
2424 
2425 /// If we found a conditional branch that goes to two returning blocks,
2426 /// try to merge them together into one return,
2427 /// introducing a select if the return values disagree.
2428 static bool SimplifyCondBranchToTwoReturns(BranchInst *BI,
2429                                            IRBuilder<> &Builder) {
2430   assert(BI->isConditional() && "Must be a conditional branch");
2431   BasicBlock *TrueSucc = BI->getSuccessor(0);
2432   BasicBlock *FalseSucc = BI->getSuccessor(1);
2433   ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator());
2434   ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator());
2435 
2436   // Check to ensure both blocks are empty (just a return) or optionally empty
2437   // with PHI nodes.  If there are other instructions, merging would cause extra
2438   // computation on one path or the other.
2439   if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator())
2440     return false;
2441   if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator())
2442     return false;
2443 
2444   Builder.SetInsertPoint(BI);
2445   // Okay, we found a branch that is going to two return nodes.  If
2446   // there is no return value for this function, just change the
2447   // branch into a return.
2448   if (FalseRet->getNumOperands() == 0) {
2449     TrueSucc->removePredecessor(BI->getParent());
2450     FalseSucc->removePredecessor(BI->getParent());
2451     Builder.CreateRetVoid();
2452     EraseTerminatorAndDCECond(BI);
2453     return true;
2454   }
2455 
2456   // Otherwise, figure out what the true and false return values are
2457   // so we can insert a new select instruction.
2458   Value *TrueValue = TrueRet->getReturnValue();
2459   Value *FalseValue = FalseRet->getReturnValue();
2460 
2461   // Unwrap any PHI nodes in the return blocks.
2462   if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue))
2463     if (TVPN->getParent() == TrueSucc)
2464       TrueValue = TVPN->getIncomingValueForBlock(BI->getParent());
2465   if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue))
2466     if (FVPN->getParent() == FalseSucc)
2467       FalseValue = FVPN->getIncomingValueForBlock(BI->getParent());
2468 
2469   // In order for this transformation to be safe, we must be able to
2470   // unconditionally execute both operands to the return.  This is
2471   // normally the case, but we could have a potentially-trapping
2472   // constant expression that prevents this transformation from being
2473   // safe.
2474   if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue))
2475     if (TCV->canTrap())
2476       return false;
2477   if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue))
2478     if (FCV->canTrap())
2479       return false;
2480 
2481   // Okay, we collected all the mapped values and checked them for sanity, and
2482   // defined to really do this transformation.  First, update the CFG.
2483   TrueSucc->removePredecessor(BI->getParent());
2484   FalseSucc->removePredecessor(BI->getParent());
2485 
2486   // Insert select instructions where needed.
2487   Value *BrCond = BI->getCondition();
2488   if (TrueValue) {
2489     // Insert a select if the results differ.
2490     if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) {
2491     } else if (isa<UndefValue>(TrueValue)) {
2492       TrueValue = FalseValue;
2493     } else {
2494       TrueValue =
2495           Builder.CreateSelect(BrCond, TrueValue, FalseValue, "retval", BI);
2496     }
2497   }
2498 
2499   Value *RI =
2500       !TrueValue ? Builder.CreateRetVoid() : Builder.CreateRet(TrueValue);
2501 
2502   (void)RI;
2503 
2504   LLVM_DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:"
2505                     << "\n  " << *BI << "NewRet = " << *RI << "TRUEBLOCK: "
2506                     << *TrueSucc << "FALSEBLOCK: " << *FalseSucc);
2507 
2508   EraseTerminatorAndDCECond(BI);
2509 
2510   return true;
2511 }
2512 
2513 /// Return true if the given instruction is available
2514 /// in its predecessor block. If yes, the instruction will be removed.
2515 static bool tryCSEWithPredecessor(Instruction *Inst, BasicBlock *PB) {
2516   if (!isa<BinaryOperator>(Inst) && !isa<CmpInst>(Inst))
2517     return false;
2518   for (Instruction &I : *PB) {
2519     Instruction *PBI = &I;
2520     // Check whether Inst and PBI generate the same value.
2521     if (Inst->isIdenticalTo(PBI)) {
2522       Inst->replaceAllUsesWith(PBI);
2523       Inst->eraseFromParent();
2524       return true;
2525     }
2526   }
2527   return false;
2528 }
2529 
2530 /// Return true if either PBI or BI has branch weight available, and store
2531 /// the weights in {Pred|Succ}{True|False}Weight. If one of PBI and BI does
2532 /// not have branch weight, use 1:1 as its weight.
2533 static bool extractPredSuccWeights(BranchInst *PBI, BranchInst *BI,
2534                                    uint64_t &PredTrueWeight,
2535                                    uint64_t &PredFalseWeight,
2536                                    uint64_t &SuccTrueWeight,
2537                                    uint64_t &SuccFalseWeight) {
2538   bool PredHasWeights =
2539       PBI->extractProfMetadata(PredTrueWeight, PredFalseWeight);
2540   bool SuccHasWeights =
2541       BI->extractProfMetadata(SuccTrueWeight, SuccFalseWeight);
2542   if (PredHasWeights || SuccHasWeights) {
2543     if (!PredHasWeights)
2544       PredTrueWeight = PredFalseWeight = 1;
2545     if (!SuccHasWeights)
2546       SuccTrueWeight = SuccFalseWeight = 1;
2547     return true;
2548   } else {
2549     return false;
2550   }
2551 }
2552 
2553 /// If this basic block is simple enough, and if a predecessor branches to us
2554 /// and one of our successors, fold the block into the predecessor and use
2555 /// logical operations to pick the right destination.
2556 bool llvm::FoldBranchToCommonDest(BranchInst *BI, MemorySSAUpdater *MSSAU,
2557                                   unsigned BonusInstThreshold) {
2558   BasicBlock *BB = BI->getParent();
2559 
2560   const unsigned PredCount = pred_size(BB);
2561 
2562   Instruction *Cond = nullptr;
2563   if (BI->isConditional())
2564     Cond = dyn_cast<Instruction>(BI->getCondition());
2565   else {
2566     // For unconditional branch, check for a simple CFG pattern, where
2567     // BB has a single predecessor and BB's successor is also its predecessor's
2568     // successor. If such pattern exists, check for CSE between BB and its
2569     // predecessor.
2570     if (BasicBlock *PB = BB->getSinglePredecessor())
2571       if (BranchInst *PBI = dyn_cast<BranchInst>(PB->getTerminator()))
2572         if (PBI->isConditional() &&
2573             (BI->getSuccessor(0) == PBI->getSuccessor(0) ||
2574              BI->getSuccessor(0) == PBI->getSuccessor(1))) {
2575           for (auto I = BB->instructionsWithoutDebug().begin(),
2576                     E = BB->instructionsWithoutDebug().end();
2577                I != E;) {
2578             Instruction *Curr = &*I++;
2579             if (isa<CmpInst>(Curr)) {
2580               Cond = Curr;
2581               break;
2582             }
2583             // Quit if we can't remove this instruction.
2584             if (!tryCSEWithPredecessor(Curr, PB))
2585               return false;
2586           }
2587         }
2588 
2589     if (!Cond)
2590       return false;
2591   }
2592 
2593   if (!Cond || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) ||
2594       Cond->getParent() != BB || !Cond->hasOneUse())
2595     return false;
2596 
2597   // Make sure the instruction after the condition is the cond branch.
2598   BasicBlock::iterator CondIt = ++Cond->getIterator();
2599 
2600   // Ignore dbg intrinsics.
2601   while (isa<DbgInfoIntrinsic>(CondIt))
2602     ++CondIt;
2603 
2604   if (&*CondIt != BI)
2605     return false;
2606 
2607   // Only allow this transformation if computing the condition doesn't involve
2608   // too many instructions and these involved instructions can be executed
2609   // unconditionally. We denote all involved instructions except the condition
2610   // as "bonus instructions", and only allow this transformation when the
2611   // number of the bonus instructions we'll need to create when cloning into
2612   // each predecessor does not exceed a certain threshold.
2613   unsigned NumBonusInsts = 0;
2614   for (auto I = BB->begin(); Cond != &*I; ++I) {
2615     // Ignore dbg intrinsics.
2616     if (isa<DbgInfoIntrinsic>(I))
2617       continue;
2618     if (!I->hasOneUse() || !isSafeToSpeculativelyExecute(&*I))
2619       return false;
2620     // I has only one use and can be executed unconditionally.
2621     Instruction *User = dyn_cast<Instruction>(I->user_back());
2622     if (User == nullptr || User->getParent() != BB)
2623       return false;
2624     // I is used in the same BB. Since BI uses Cond and doesn't have more slots
2625     // to use any other instruction, User must be an instruction between next(I)
2626     // and Cond.
2627 
2628     // Account for the cost of duplicating this instruction into each
2629     // predecessor.
2630     NumBonusInsts += PredCount;
2631     // Early exits once we reach the limit.
2632     if (NumBonusInsts > BonusInstThreshold)
2633       return false;
2634   }
2635 
2636   // Cond is known to be a compare or binary operator.  Check to make sure that
2637   // neither operand is a potentially-trapping constant expression.
2638   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0)))
2639     if (CE->canTrap())
2640       return false;
2641   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1)))
2642     if (CE->canTrap())
2643       return false;
2644 
2645   // Finally, don't infinitely unroll conditional loops.
2646   BasicBlock *TrueDest = BI->getSuccessor(0);
2647   BasicBlock *FalseDest = (BI->isConditional()) ? BI->getSuccessor(1) : nullptr;
2648   if (TrueDest == BB || FalseDest == BB)
2649     return false;
2650 
2651   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
2652     BasicBlock *PredBlock = *PI;
2653     BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator());
2654 
2655     // Check that we have two conditional branches.  If there is a PHI node in
2656     // the common successor, verify that the same value flows in from both
2657     // blocks.
2658     SmallVector<PHINode *, 4> PHIs;
2659     if (!PBI || PBI->isUnconditional() ||
2660         (BI->isConditional() && !SafeToMergeTerminators(BI, PBI)) ||
2661         (!BI->isConditional() &&
2662          !isProfitableToFoldUnconditional(BI, PBI, Cond, PHIs)))
2663       continue;
2664 
2665     // Determine if the two branches share a common destination.
2666     Instruction::BinaryOps Opc = Instruction::BinaryOpsEnd;
2667     bool InvertPredCond = false;
2668 
2669     if (BI->isConditional()) {
2670       if (PBI->getSuccessor(0) == TrueDest) {
2671         Opc = Instruction::Or;
2672       } else if (PBI->getSuccessor(1) == FalseDest) {
2673         Opc = Instruction::And;
2674       } else if (PBI->getSuccessor(0) == FalseDest) {
2675         Opc = Instruction::And;
2676         InvertPredCond = true;
2677       } else if (PBI->getSuccessor(1) == TrueDest) {
2678         Opc = Instruction::Or;
2679         InvertPredCond = true;
2680       } else {
2681         continue;
2682       }
2683     } else {
2684       if (PBI->getSuccessor(0) != TrueDest && PBI->getSuccessor(1) != TrueDest)
2685         continue;
2686     }
2687 
2688     LLVM_DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB);
2689     IRBuilder<> Builder(PBI);
2690 
2691     // If we need to invert the condition in the pred block to match, do so now.
2692     if (InvertPredCond) {
2693       Value *NewCond = PBI->getCondition();
2694 
2695       if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) {
2696         CmpInst *CI = cast<CmpInst>(NewCond);
2697         CI->setPredicate(CI->getInversePredicate());
2698       } else {
2699         NewCond =
2700             Builder.CreateNot(NewCond, PBI->getCondition()->getName() + ".not");
2701       }
2702 
2703       PBI->setCondition(NewCond);
2704       PBI->swapSuccessors();
2705     }
2706 
2707     // If we have bonus instructions, clone them into the predecessor block.
2708     // Note that there may be multiple predecessor blocks, so we cannot move
2709     // bonus instructions to a predecessor block.
2710     ValueToValueMapTy VMap; // maps original values to cloned values
2711     // We already make sure Cond is the last instruction before BI. Therefore,
2712     // all instructions before Cond other than DbgInfoIntrinsic are bonus
2713     // instructions.
2714     for (auto BonusInst = BB->begin(); Cond != &*BonusInst; ++BonusInst) {
2715       if (isa<DbgInfoIntrinsic>(BonusInst))
2716         continue;
2717       Instruction *NewBonusInst = BonusInst->clone();
2718       RemapInstruction(NewBonusInst, VMap,
2719                        RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
2720       VMap[&*BonusInst] = NewBonusInst;
2721 
2722       // If we moved a load, we cannot any longer claim any knowledge about
2723       // its potential value. The previous information might have been valid
2724       // only given the branch precondition.
2725       // For an analogous reason, we must also drop all the metadata whose
2726       // semantics we don't understand.
2727       NewBonusInst->dropUnknownNonDebugMetadata();
2728 
2729       PredBlock->getInstList().insert(PBI->getIterator(), NewBonusInst);
2730       NewBonusInst->takeName(&*BonusInst);
2731       BonusInst->setName(BonusInst->getName() + ".old");
2732     }
2733 
2734     // Clone Cond into the predecessor basic block, and or/and the
2735     // two conditions together.
2736     Instruction *CondInPred = Cond->clone();
2737     RemapInstruction(CondInPred, VMap,
2738                      RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
2739     PredBlock->getInstList().insert(PBI->getIterator(), CondInPred);
2740     CondInPred->takeName(Cond);
2741     Cond->setName(CondInPred->getName() + ".old");
2742 
2743     if (BI->isConditional()) {
2744       Instruction *NewCond = cast<Instruction>(
2745           Builder.CreateBinOp(Opc, PBI->getCondition(), CondInPred, "or.cond"));
2746       PBI->setCondition(NewCond);
2747 
2748       uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
2749       bool HasWeights =
2750           extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
2751                                  SuccTrueWeight, SuccFalseWeight);
2752       SmallVector<uint64_t, 8> NewWeights;
2753 
2754       if (PBI->getSuccessor(0) == BB) {
2755         if (HasWeights) {
2756           // PBI: br i1 %x, BB, FalseDest
2757           // BI:  br i1 %y, TrueDest, FalseDest
2758           // TrueWeight is TrueWeight for PBI * TrueWeight for BI.
2759           NewWeights.push_back(PredTrueWeight * SuccTrueWeight);
2760           // FalseWeight is FalseWeight for PBI * TotalWeight for BI +
2761           //               TrueWeight for PBI * FalseWeight for BI.
2762           // We assume that total weights of a BranchInst can fit into 32 bits.
2763           // Therefore, we will not have overflow using 64-bit arithmetic.
2764           NewWeights.push_back(PredFalseWeight *
2765                                    (SuccFalseWeight + SuccTrueWeight) +
2766                                PredTrueWeight * SuccFalseWeight);
2767         }
2768         AddPredecessorToBlock(TrueDest, PredBlock, BB, MSSAU);
2769         PBI->setSuccessor(0, TrueDest);
2770       }
2771       if (PBI->getSuccessor(1) == BB) {
2772         if (HasWeights) {
2773           // PBI: br i1 %x, TrueDest, BB
2774           // BI:  br i1 %y, TrueDest, FalseDest
2775           // TrueWeight is TrueWeight for PBI * TotalWeight for BI +
2776           //              FalseWeight for PBI * TrueWeight for BI.
2777           NewWeights.push_back(PredTrueWeight *
2778                                    (SuccFalseWeight + SuccTrueWeight) +
2779                                PredFalseWeight * SuccTrueWeight);
2780           // FalseWeight is FalseWeight for PBI * FalseWeight for BI.
2781           NewWeights.push_back(PredFalseWeight * SuccFalseWeight);
2782         }
2783         AddPredecessorToBlock(FalseDest, PredBlock, BB, MSSAU);
2784         PBI->setSuccessor(1, FalseDest);
2785       }
2786       if (NewWeights.size() == 2) {
2787         // Halve the weights if any of them cannot fit in an uint32_t
2788         FitWeights(NewWeights);
2789 
2790         SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(),
2791                                            NewWeights.end());
2792         setBranchWeights(PBI, MDWeights[0], MDWeights[1]);
2793       } else
2794         PBI->setMetadata(LLVMContext::MD_prof, nullptr);
2795     } else {
2796       // Update PHI nodes in the common successors.
2797       for (unsigned i = 0, e = PHIs.size(); i != e; ++i) {
2798         ConstantInt *PBI_C = cast<ConstantInt>(
2799             PHIs[i]->getIncomingValueForBlock(PBI->getParent()));
2800         assert(PBI_C->getType()->isIntegerTy(1));
2801         Instruction *MergedCond = nullptr;
2802         if (PBI->getSuccessor(0) == TrueDest) {
2803           // Create (PBI_Cond and PBI_C) or (!PBI_Cond and BI_Value)
2804           // PBI_C is true: PBI_Cond or (!PBI_Cond and BI_Value)
2805           //       is false: !PBI_Cond and BI_Value
2806           Instruction *NotCond = cast<Instruction>(
2807               Builder.CreateNot(PBI->getCondition(), "not.cond"));
2808           MergedCond = cast<Instruction>(
2809                Builder.CreateBinOp(Instruction::And, NotCond, CondInPred,
2810                                    "and.cond"));
2811           if (PBI_C->isOne())
2812             MergedCond = cast<Instruction>(Builder.CreateBinOp(
2813                 Instruction::Or, PBI->getCondition(), MergedCond, "or.cond"));
2814         } else {
2815           // Create (PBI_Cond and BI_Value) or (!PBI_Cond and PBI_C)
2816           // PBI_C is true: (PBI_Cond and BI_Value) or (!PBI_Cond)
2817           //       is false: PBI_Cond and BI_Value
2818           MergedCond = cast<Instruction>(Builder.CreateBinOp(
2819               Instruction::And, PBI->getCondition(), CondInPred, "and.cond"));
2820           if (PBI_C->isOne()) {
2821             Instruction *NotCond = cast<Instruction>(
2822                 Builder.CreateNot(PBI->getCondition(), "not.cond"));
2823             MergedCond = cast<Instruction>(Builder.CreateBinOp(
2824                 Instruction::Or, NotCond, MergedCond, "or.cond"));
2825           }
2826         }
2827         // Update PHI Node.
2828         PHIs[i]->setIncomingValue(PHIs[i]->getBasicBlockIndex(PBI->getParent()),
2829                                   MergedCond);
2830       }
2831 
2832       // PBI is changed to branch to TrueDest below. Remove itself from
2833       // potential phis from all other successors.
2834       if (MSSAU)
2835         MSSAU->changeCondBranchToUnconditionalTo(PBI, TrueDest);
2836 
2837       // Change PBI from Conditional to Unconditional.
2838       BranchInst *New_PBI = BranchInst::Create(TrueDest, PBI);
2839       EraseTerminatorAndDCECond(PBI, MSSAU);
2840       PBI = New_PBI;
2841     }
2842 
2843     // If BI was a loop latch, it may have had associated loop metadata.
2844     // We need to copy it to the new latch, that is, PBI.
2845     if (MDNode *LoopMD = BI->getMetadata(LLVMContext::MD_loop))
2846       PBI->setMetadata(LLVMContext::MD_loop, LoopMD);
2847 
2848     // TODO: If BB is reachable from all paths through PredBlock, then we
2849     // could replace PBI's branch probabilities with BI's.
2850 
2851     // Copy any debug value intrinsics into the end of PredBlock.
2852     for (Instruction &I : *BB)
2853       if (isa<DbgInfoIntrinsic>(I))
2854         I.clone()->insertBefore(PBI);
2855 
2856     return true;
2857   }
2858   return false;
2859 }
2860 
2861 // If there is only one store in BB1 and BB2, return it, otherwise return
2862 // nullptr.
2863 static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) {
2864   StoreInst *S = nullptr;
2865   for (auto *BB : {BB1, BB2}) {
2866     if (!BB)
2867       continue;
2868     for (auto &I : *BB)
2869       if (auto *SI = dyn_cast<StoreInst>(&I)) {
2870         if (S)
2871           // Multiple stores seen.
2872           return nullptr;
2873         else
2874           S = SI;
2875       }
2876   }
2877   return S;
2878 }
2879 
2880 static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB,
2881                                               Value *AlternativeV = nullptr) {
2882   // PHI is going to be a PHI node that allows the value V that is defined in
2883   // BB to be referenced in BB's only successor.
2884   //
2885   // If AlternativeV is nullptr, the only value we care about in PHI is V. It
2886   // doesn't matter to us what the other operand is (it'll never get used). We
2887   // could just create a new PHI with an undef incoming value, but that could
2888   // increase register pressure if EarlyCSE/InstCombine can't fold it with some
2889   // other PHI. So here we directly look for some PHI in BB's successor with V
2890   // as an incoming operand. If we find one, we use it, else we create a new
2891   // one.
2892   //
2893   // If AlternativeV is not nullptr, we care about both incoming values in PHI.
2894   // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV]
2895   // where OtherBB is the single other predecessor of BB's only successor.
2896   PHINode *PHI = nullptr;
2897   BasicBlock *Succ = BB->getSingleSuccessor();
2898 
2899   for (auto I = Succ->begin(); isa<PHINode>(I); ++I)
2900     if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) {
2901       PHI = cast<PHINode>(I);
2902       if (!AlternativeV)
2903         break;
2904 
2905       assert(Succ->hasNPredecessors(2));
2906       auto PredI = pred_begin(Succ);
2907       BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI;
2908       if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV)
2909         break;
2910       PHI = nullptr;
2911     }
2912   if (PHI)
2913     return PHI;
2914 
2915   // If V is not an instruction defined in BB, just return it.
2916   if (!AlternativeV &&
2917       (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB))
2918     return V;
2919 
2920   PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge", &Succ->front());
2921   PHI->addIncoming(V, BB);
2922   for (BasicBlock *PredBB : predecessors(Succ))
2923     if (PredBB != BB)
2924       PHI->addIncoming(
2925           AlternativeV ? AlternativeV : UndefValue::get(V->getType()), PredBB);
2926   return PHI;
2927 }
2928 
2929 static bool mergeConditionalStoreToAddress(BasicBlock *PTB, BasicBlock *PFB,
2930                                            BasicBlock *QTB, BasicBlock *QFB,
2931                                            BasicBlock *PostBB, Value *Address,
2932                                            bool InvertPCond, bool InvertQCond,
2933                                            const DataLayout &DL) {
2934   auto IsaBitcastOfPointerType = [](const Instruction &I) {
2935     return Operator::getOpcode(&I) == Instruction::BitCast &&
2936            I.getType()->isPointerTy();
2937   };
2938 
2939   // If we're not in aggressive mode, we only optimize if we have some
2940   // confidence that by optimizing we'll allow P and/or Q to be if-converted.
2941   auto IsWorthwhile = [&](BasicBlock *BB) {
2942     if (!BB)
2943       return true;
2944     // Heuristic: if the block can be if-converted/phi-folded and the
2945     // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to
2946     // thread this store.
2947     unsigned N = 0;
2948     for (auto &I : BB->instructionsWithoutDebug()) {
2949       // Cheap instructions viable for folding.
2950       if (isa<BinaryOperator>(I) || isa<GetElementPtrInst>(I) ||
2951           isa<StoreInst>(I))
2952         ++N;
2953       // Free instructions.
2954       else if (I.isTerminator() || IsaBitcastOfPointerType(I))
2955         continue;
2956       else
2957         return false;
2958     }
2959     // The store we want to merge is counted in N, so add 1 to make sure
2960     // we're counting the instructions that would be left.
2961     return N <= (PHINodeFoldingThreshold + 1);
2962   };
2963 
2964   if (!MergeCondStoresAggressively &&
2965       (!IsWorthwhile(PTB) || !IsWorthwhile(PFB) || !IsWorthwhile(QTB) ||
2966        !IsWorthwhile(QFB)))
2967     return false;
2968 
2969   // For every pointer, there must be exactly two stores, one coming from
2970   // PTB or PFB, and the other from QTB or QFB. We don't support more than one
2971   // store (to any address) in PTB,PFB or QTB,QFB.
2972   // FIXME: We could relax this restriction with a bit more work and performance
2973   // testing.
2974   StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB);
2975   StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB);
2976   if (!PStore || !QStore)
2977     return false;
2978 
2979   // Now check the stores are compatible.
2980   if (!QStore->isUnordered() || !PStore->isUnordered())
2981     return false;
2982 
2983   // Check that sinking the store won't cause program behavior changes. Sinking
2984   // the store out of the Q blocks won't change any behavior as we're sinking
2985   // from a block to its unconditional successor. But we're moving a store from
2986   // the P blocks down through the middle block (QBI) and past both QFB and QTB.
2987   // So we need to check that there are no aliasing loads or stores in
2988   // QBI, QTB and QFB. We also need to check there are no conflicting memory
2989   // operations between PStore and the end of its parent block.
2990   //
2991   // The ideal way to do this is to query AliasAnalysis, but we don't
2992   // preserve AA currently so that is dangerous. Be super safe and just
2993   // check there are no other memory operations at all.
2994   for (auto &I : *QFB->getSinglePredecessor())
2995     if (I.mayReadOrWriteMemory())
2996       return false;
2997   for (auto &I : *QFB)
2998     if (&I != QStore && I.mayReadOrWriteMemory())
2999       return false;
3000   if (QTB)
3001     for (auto &I : *QTB)
3002       if (&I != QStore && I.mayReadOrWriteMemory())
3003         return false;
3004   for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end();
3005        I != E; ++I)
3006     if (&*I != PStore && I->mayReadOrWriteMemory())
3007       return false;
3008 
3009   // If PostBB has more than two predecessors, we need to split it so we can
3010   // sink the store.
3011   if (std::next(pred_begin(PostBB), 2) != pred_end(PostBB)) {
3012     // We know that QFB's only successor is PostBB. And QFB has a single
3013     // predecessor. If QTB exists, then its only successor is also PostBB.
3014     // If QTB does not exist, then QFB's only predecessor has a conditional
3015     // branch to QFB and PostBB.
3016     BasicBlock *TruePred = QTB ? QTB : QFB->getSinglePredecessor();
3017     BasicBlock *NewBB = SplitBlockPredecessors(PostBB, { QFB, TruePred},
3018                                                "condstore.split");
3019     if (!NewBB)
3020       return false;
3021     PostBB = NewBB;
3022   }
3023 
3024   // OK, we're going to sink the stores to PostBB. The store has to be
3025   // conditional though, so first create the predicate.
3026   Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator())
3027                      ->getCondition();
3028   Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator())
3029                      ->getCondition();
3030 
3031   Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(),
3032                                                 PStore->getParent());
3033   Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(),
3034                                                 QStore->getParent(), PPHI);
3035 
3036   IRBuilder<> QB(&*PostBB->getFirstInsertionPt());
3037 
3038   Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond);
3039   Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond);
3040 
3041   if (InvertPCond)
3042     PPred = QB.CreateNot(PPred);
3043   if (InvertQCond)
3044     QPred = QB.CreateNot(QPred);
3045   Value *CombinedPred = QB.CreateOr(PPred, QPred);
3046 
3047   auto *T =
3048       SplitBlockAndInsertIfThen(CombinedPred, &*QB.GetInsertPoint(), false);
3049   QB.SetInsertPoint(T);
3050   StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address));
3051   AAMDNodes AAMD;
3052   PStore->getAAMetadata(AAMD, /*Merge=*/false);
3053   PStore->getAAMetadata(AAMD, /*Merge=*/true);
3054   SI->setAAMetadata(AAMD);
3055   unsigned PAlignment = PStore->getAlignment();
3056   unsigned QAlignment = QStore->getAlignment();
3057   unsigned TypeAlignment =
3058       DL.getABITypeAlignment(SI->getValueOperand()->getType());
3059   unsigned MinAlignment;
3060   unsigned MaxAlignment;
3061   std::tie(MinAlignment, MaxAlignment) = std::minmax(PAlignment, QAlignment);
3062   // Choose the minimum alignment. If we could prove both stores execute, we
3063   // could use biggest one.  In this case, though, we only know that one of the
3064   // stores executes.  And we don't know it's safe to take the alignment from a
3065   // store that doesn't execute.
3066   if (MinAlignment != 0) {
3067     // Choose the minimum of all non-zero alignments.
3068     SI->setAlignment(MinAlignment);
3069   } else if (MaxAlignment != 0) {
3070     // Choose the minimal alignment between the non-zero alignment and the ABI
3071     // default alignment for the type of the stored value.
3072     SI->setAlignment(std::min(MaxAlignment, TypeAlignment));
3073   } else {
3074     // If both alignments are zero, use ABI default alignment for the type of
3075     // the stored value.
3076     SI->setAlignment(TypeAlignment);
3077   }
3078 
3079   QStore->eraseFromParent();
3080   PStore->eraseFromParent();
3081 
3082   return true;
3083 }
3084 
3085 static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI,
3086                                    const DataLayout &DL) {
3087   // The intention here is to find diamonds or triangles (see below) where each
3088   // conditional block contains a store to the same address. Both of these
3089   // stores are conditional, so they can't be unconditionally sunk. But it may
3090   // be profitable to speculatively sink the stores into one merged store at the
3091   // end, and predicate the merged store on the union of the two conditions of
3092   // PBI and QBI.
3093   //
3094   // This can reduce the number of stores executed if both of the conditions are
3095   // true, and can allow the blocks to become small enough to be if-converted.
3096   // This optimization will also chain, so that ladders of test-and-set
3097   // sequences can be if-converted away.
3098   //
3099   // We only deal with simple diamonds or triangles:
3100   //
3101   //     PBI       or      PBI        or a combination of the two
3102   //    /   \               | \
3103   //   PTB  PFB             |  PFB
3104   //    \   /               | /
3105   //     QBI                QBI
3106   //    /  \                | \
3107   //   QTB  QFB             |  QFB
3108   //    \  /                | /
3109   //    PostBB            PostBB
3110   //
3111   // We model triangles as a type of diamond with a nullptr "true" block.
3112   // Triangles are canonicalized so that the fallthrough edge is represented by
3113   // a true condition, as in the diagram above.
3114   BasicBlock *PTB = PBI->getSuccessor(0);
3115   BasicBlock *PFB = PBI->getSuccessor(1);
3116   BasicBlock *QTB = QBI->getSuccessor(0);
3117   BasicBlock *QFB = QBI->getSuccessor(1);
3118   BasicBlock *PostBB = QFB->getSingleSuccessor();
3119 
3120   // Make sure we have a good guess for PostBB. If QTB's only successor is
3121   // QFB, then QFB is a better PostBB.
3122   if (QTB->getSingleSuccessor() == QFB)
3123     PostBB = QFB;
3124 
3125   // If we couldn't find a good PostBB, stop.
3126   if (!PostBB)
3127     return false;
3128 
3129   bool InvertPCond = false, InvertQCond = false;
3130   // Canonicalize fallthroughs to the true branches.
3131   if (PFB == QBI->getParent()) {
3132     std::swap(PFB, PTB);
3133     InvertPCond = true;
3134   }
3135   if (QFB == PostBB) {
3136     std::swap(QFB, QTB);
3137     InvertQCond = true;
3138   }
3139 
3140   // From this point on we can assume PTB or QTB may be fallthroughs but PFB
3141   // and QFB may not. Model fallthroughs as a nullptr block.
3142   if (PTB == QBI->getParent())
3143     PTB = nullptr;
3144   if (QTB == PostBB)
3145     QTB = nullptr;
3146 
3147   // Legality bailouts. We must have at least the non-fallthrough blocks and
3148   // the post-dominating block, and the non-fallthroughs must only have one
3149   // predecessor.
3150   auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) {
3151     return BB->getSinglePredecessor() == P && BB->getSingleSuccessor() == S;
3152   };
3153   if (!HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) ||
3154       !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB))
3155     return false;
3156   if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) ||
3157       (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB)))
3158     return false;
3159   if (!QBI->getParent()->hasNUses(2))
3160     return false;
3161 
3162   // OK, this is a sequence of two diamonds or triangles.
3163   // Check if there are stores in PTB or PFB that are repeated in QTB or QFB.
3164   SmallPtrSet<Value *, 4> PStoreAddresses, QStoreAddresses;
3165   for (auto *BB : {PTB, PFB}) {
3166     if (!BB)
3167       continue;
3168     for (auto &I : *BB)
3169       if (StoreInst *SI = dyn_cast<StoreInst>(&I))
3170         PStoreAddresses.insert(SI->getPointerOperand());
3171   }
3172   for (auto *BB : {QTB, QFB}) {
3173     if (!BB)
3174       continue;
3175     for (auto &I : *BB)
3176       if (StoreInst *SI = dyn_cast<StoreInst>(&I))
3177         QStoreAddresses.insert(SI->getPointerOperand());
3178   }
3179 
3180   set_intersect(PStoreAddresses, QStoreAddresses);
3181   // set_intersect mutates PStoreAddresses in place. Rename it here to make it
3182   // clear what it contains.
3183   auto &CommonAddresses = PStoreAddresses;
3184 
3185   bool Changed = false;
3186   for (auto *Address : CommonAddresses)
3187     Changed |= mergeConditionalStoreToAddress(
3188         PTB, PFB, QTB, QFB, PostBB, Address, InvertPCond, InvertQCond, DL);
3189   return Changed;
3190 }
3191 
3192 /// If we have a conditional branch as a predecessor of another block,
3193 /// this function tries to simplify it.  We know
3194 /// that PBI and BI are both conditional branches, and BI is in one of the
3195 /// successor blocks of PBI - PBI branches to BI.
3196 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI,
3197                                            const DataLayout &DL) {
3198   assert(PBI->isConditional() && BI->isConditional());
3199   BasicBlock *BB = BI->getParent();
3200 
3201   // If this block ends with a branch instruction, and if there is a
3202   // predecessor that ends on a branch of the same condition, make
3203   // this conditional branch redundant.
3204   if (PBI->getCondition() == BI->getCondition() &&
3205       PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
3206     // Okay, the outcome of this conditional branch is statically
3207     // knowable.  If this block had a single pred, handle specially.
3208     if (BB->getSinglePredecessor()) {
3209       // Turn this into a branch on constant.
3210       bool CondIsTrue = PBI->getSuccessor(0) == BB;
3211       BI->setCondition(
3212           ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue));
3213       return true; // Nuke the branch on constant.
3214     }
3215 
3216     // Otherwise, if there are multiple predecessors, insert a PHI that merges
3217     // in the constant and simplify the block result.  Subsequent passes of
3218     // simplifycfg will thread the block.
3219     if (BlockIsSimpleEnoughToThreadThrough(BB)) {
3220       pred_iterator PB = pred_begin(BB), PE = pred_end(BB);
3221       PHINode *NewPN = PHINode::Create(
3222           Type::getInt1Ty(BB->getContext()), std::distance(PB, PE),
3223           BI->getCondition()->getName() + ".pr", &BB->front());
3224       // Okay, we're going to insert the PHI node.  Since PBI is not the only
3225       // predecessor, compute the PHI'd conditional value for all of the preds.
3226       // Any predecessor where the condition is not computable we keep symbolic.
3227       for (pred_iterator PI = PB; PI != PE; ++PI) {
3228         BasicBlock *P = *PI;
3229         if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) && PBI != BI &&
3230             PBI->isConditional() && PBI->getCondition() == BI->getCondition() &&
3231             PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
3232           bool CondIsTrue = PBI->getSuccessor(0) == BB;
3233           NewPN->addIncoming(
3234               ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue),
3235               P);
3236         } else {
3237           NewPN->addIncoming(BI->getCondition(), P);
3238         }
3239       }
3240 
3241       BI->setCondition(NewPN);
3242       return true;
3243     }
3244   }
3245 
3246   if (auto *CE = dyn_cast<ConstantExpr>(BI->getCondition()))
3247     if (CE->canTrap())
3248       return false;
3249 
3250   // If both branches are conditional and both contain stores to the same
3251   // address, remove the stores from the conditionals and create a conditional
3252   // merged store at the end.
3253   if (MergeCondStores && mergeConditionalStores(PBI, BI, DL))
3254     return true;
3255 
3256   // If this is a conditional branch in an empty block, and if any
3257   // predecessors are a conditional branch to one of our destinations,
3258   // fold the conditions into logical ops and one cond br.
3259 
3260   // Ignore dbg intrinsics.
3261   if (&*BB->instructionsWithoutDebug().begin() != BI)
3262     return false;
3263 
3264   int PBIOp, BIOp;
3265   if (PBI->getSuccessor(0) == BI->getSuccessor(0)) {
3266     PBIOp = 0;
3267     BIOp = 0;
3268   } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) {
3269     PBIOp = 0;
3270     BIOp = 1;
3271   } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) {
3272     PBIOp = 1;
3273     BIOp = 0;
3274   } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) {
3275     PBIOp = 1;
3276     BIOp = 1;
3277   } else {
3278     return false;
3279   }
3280 
3281   // Check to make sure that the other destination of this branch
3282   // isn't BB itself.  If so, this is an infinite loop that will
3283   // keep getting unwound.
3284   if (PBI->getSuccessor(PBIOp) == BB)
3285     return false;
3286 
3287   // Do not perform this transformation if it would require
3288   // insertion of a large number of select instructions. For targets
3289   // without predication/cmovs, this is a big pessimization.
3290 
3291   // Also do not perform this transformation if any phi node in the common
3292   // destination block can trap when reached by BB or PBB (PR17073). In that
3293   // case, it would be unsafe to hoist the operation into a select instruction.
3294 
3295   BasicBlock *CommonDest = PBI->getSuccessor(PBIOp);
3296   unsigned NumPhis = 0;
3297   for (BasicBlock::iterator II = CommonDest->begin(); isa<PHINode>(II);
3298        ++II, ++NumPhis) {
3299     if (NumPhis > 2) // Disable this xform.
3300       return false;
3301 
3302     PHINode *PN = cast<PHINode>(II);
3303     Value *BIV = PN->getIncomingValueForBlock(BB);
3304     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BIV))
3305       if (CE->canTrap())
3306         return false;
3307 
3308     unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
3309     Value *PBIV = PN->getIncomingValue(PBBIdx);
3310     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(PBIV))
3311       if (CE->canTrap())
3312         return false;
3313   }
3314 
3315   // Finally, if everything is ok, fold the branches to logical ops.
3316   BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1);
3317 
3318   LLVM_DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent()
3319                     << "AND: " << *BI->getParent());
3320 
3321   // If OtherDest *is* BB, then BB is a basic block with a single conditional
3322   // branch in it, where one edge (OtherDest) goes back to itself but the other
3323   // exits.  We don't *know* that the program avoids the infinite loop
3324   // (even though that seems likely).  If we do this xform naively, we'll end up
3325   // recursively unpeeling the loop.  Since we know that (after the xform is
3326   // done) that the block *is* infinite if reached, we just make it an obviously
3327   // infinite loop with no cond branch.
3328   if (OtherDest == BB) {
3329     // Insert it at the end of the function, because it's either code,
3330     // or it won't matter if it's hot. :)
3331     BasicBlock *InfLoopBlock =
3332         BasicBlock::Create(BB->getContext(), "infloop", BB->getParent());
3333     BranchInst::Create(InfLoopBlock, InfLoopBlock);
3334     OtherDest = InfLoopBlock;
3335   }
3336 
3337   LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent());
3338 
3339   // BI may have other predecessors.  Because of this, we leave
3340   // it alone, but modify PBI.
3341 
3342   // Make sure we get to CommonDest on True&True directions.
3343   Value *PBICond = PBI->getCondition();
3344   IRBuilder<NoFolder> Builder(PBI);
3345   if (PBIOp)
3346     PBICond = Builder.CreateNot(PBICond, PBICond->getName() + ".not");
3347 
3348   Value *BICond = BI->getCondition();
3349   if (BIOp)
3350     BICond = Builder.CreateNot(BICond, BICond->getName() + ".not");
3351 
3352   // Merge the conditions.
3353   Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge");
3354 
3355   // Modify PBI to branch on the new condition to the new dests.
3356   PBI->setCondition(Cond);
3357   PBI->setSuccessor(0, CommonDest);
3358   PBI->setSuccessor(1, OtherDest);
3359 
3360   // Update branch weight for PBI.
3361   uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
3362   uint64_t PredCommon, PredOther, SuccCommon, SuccOther;
3363   bool HasWeights =
3364       extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
3365                              SuccTrueWeight, SuccFalseWeight);
3366   if (HasWeights) {
3367     PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
3368     PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
3369     SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
3370     SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
3371     // The weight to CommonDest should be PredCommon * SuccTotal +
3372     //                                    PredOther * SuccCommon.
3373     // The weight to OtherDest should be PredOther * SuccOther.
3374     uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) +
3375                                   PredOther * SuccCommon,
3376                               PredOther * SuccOther};
3377     // Halve the weights if any of them cannot fit in an uint32_t
3378     FitWeights(NewWeights);
3379 
3380     setBranchWeights(PBI, NewWeights[0], NewWeights[1]);
3381   }
3382 
3383   // OtherDest may have phi nodes.  If so, add an entry from PBI's
3384   // block that are identical to the entries for BI's block.
3385   AddPredecessorToBlock(OtherDest, PBI->getParent(), BB);
3386 
3387   // We know that the CommonDest already had an edge from PBI to
3388   // it.  If it has PHIs though, the PHIs may have different
3389   // entries for BB and PBI's BB.  If so, insert a select to make
3390   // them agree.
3391   for (PHINode &PN : CommonDest->phis()) {
3392     Value *BIV = PN.getIncomingValueForBlock(BB);
3393     unsigned PBBIdx = PN.getBasicBlockIndex(PBI->getParent());
3394     Value *PBIV = PN.getIncomingValue(PBBIdx);
3395     if (BIV != PBIV) {
3396       // Insert a select in PBI to pick the right value.
3397       SelectInst *NV = cast<SelectInst>(
3398           Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName() + ".mux"));
3399       PN.setIncomingValue(PBBIdx, NV);
3400       // Although the select has the same condition as PBI, the original branch
3401       // weights for PBI do not apply to the new select because the select's
3402       // 'logical' edges are incoming edges of the phi that is eliminated, not
3403       // the outgoing edges of PBI.
3404       if (HasWeights) {
3405         uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
3406         uint64_t PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
3407         uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
3408         uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
3409         // The weight to PredCommonDest should be PredCommon * SuccTotal.
3410         // The weight to PredOtherDest should be PredOther * SuccCommon.
3411         uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther),
3412                                   PredOther * SuccCommon};
3413 
3414         FitWeights(NewWeights);
3415 
3416         setBranchWeights(NV, NewWeights[0], NewWeights[1]);
3417       }
3418     }
3419   }
3420 
3421   LLVM_DEBUG(dbgs() << "INTO: " << *PBI->getParent());
3422   LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent());
3423 
3424   // This basic block is probably dead.  We know it has at least
3425   // one fewer predecessor.
3426   return true;
3427 }
3428 
3429 // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is
3430 // true or to FalseBB if Cond is false.
3431 // Takes care of updating the successors and removing the old terminator.
3432 // Also makes sure not to introduce new successors by assuming that edges to
3433 // non-successor TrueBBs and FalseBBs aren't reachable.
3434 static bool SimplifyTerminatorOnSelect(Instruction *OldTerm, Value *Cond,
3435                                        BasicBlock *TrueBB, BasicBlock *FalseBB,
3436                                        uint32_t TrueWeight,
3437                                        uint32_t FalseWeight) {
3438   // Remove any superfluous successor edges from the CFG.
3439   // First, figure out which successors to preserve.
3440   // If TrueBB and FalseBB are equal, only try to preserve one copy of that
3441   // successor.
3442   BasicBlock *KeepEdge1 = TrueBB;
3443   BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr;
3444 
3445   // Then remove the rest.
3446   for (BasicBlock *Succ : successors(OldTerm)) {
3447     // Make sure only to keep exactly one copy of each edge.
3448     if (Succ == KeepEdge1)
3449       KeepEdge1 = nullptr;
3450     else if (Succ == KeepEdge2)
3451       KeepEdge2 = nullptr;
3452     else
3453       Succ->removePredecessor(OldTerm->getParent(),
3454                               /*KeepOneInputPHIs=*/true);
3455   }
3456 
3457   IRBuilder<> Builder(OldTerm);
3458   Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc());
3459 
3460   // Insert an appropriate new terminator.
3461   if (!KeepEdge1 && !KeepEdge2) {
3462     if (TrueBB == FalseBB)
3463       // We were only looking for one successor, and it was present.
3464       // Create an unconditional branch to it.
3465       Builder.CreateBr(TrueBB);
3466     else {
3467       // We found both of the successors we were looking for.
3468       // Create a conditional branch sharing the condition of the select.
3469       BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB);
3470       if (TrueWeight != FalseWeight)
3471         setBranchWeights(NewBI, TrueWeight, FalseWeight);
3472     }
3473   } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) {
3474     // Neither of the selected blocks were successors, so this
3475     // terminator must be unreachable.
3476     new UnreachableInst(OldTerm->getContext(), OldTerm);
3477   } else {
3478     // One of the selected values was a successor, but the other wasn't.
3479     // Insert an unconditional branch to the one that was found;
3480     // the edge to the one that wasn't must be unreachable.
3481     if (!KeepEdge1)
3482       // Only TrueBB was found.
3483       Builder.CreateBr(TrueBB);
3484     else
3485       // Only FalseBB was found.
3486       Builder.CreateBr(FalseBB);
3487   }
3488 
3489   EraseTerminatorAndDCECond(OldTerm);
3490   return true;
3491 }
3492 
3493 // Replaces
3494 //   (switch (select cond, X, Y)) on constant X, Y
3495 // with a branch - conditional if X and Y lead to distinct BBs,
3496 // unconditional otherwise.
3497 static bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select) {
3498   // Check for constant integer values in the select.
3499   ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue());
3500   ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue());
3501   if (!TrueVal || !FalseVal)
3502     return false;
3503 
3504   // Find the relevant condition and destinations.
3505   Value *Condition = Select->getCondition();
3506   BasicBlock *TrueBB = SI->findCaseValue(TrueVal)->getCaseSuccessor();
3507   BasicBlock *FalseBB = SI->findCaseValue(FalseVal)->getCaseSuccessor();
3508 
3509   // Get weight for TrueBB and FalseBB.
3510   uint32_t TrueWeight = 0, FalseWeight = 0;
3511   SmallVector<uint64_t, 8> Weights;
3512   bool HasWeights = HasBranchWeights(SI);
3513   if (HasWeights) {
3514     GetBranchWeights(SI, Weights);
3515     if (Weights.size() == 1 + SI->getNumCases()) {
3516       TrueWeight =
3517           (uint32_t)Weights[SI->findCaseValue(TrueVal)->getSuccessorIndex()];
3518       FalseWeight =
3519           (uint32_t)Weights[SI->findCaseValue(FalseVal)->getSuccessorIndex()];
3520     }
3521   }
3522 
3523   // Perform the actual simplification.
3524   return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, TrueWeight,
3525                                     FalseWeight);
3526 }
3527 
3528 // Replaces
3529 //   (indirectbr (select cond, blockaddress(@fn, BlockA),
3530 //                             blockaddress(@fn, BlockB)))
3531 // with
3532 //   (br cond, BlockA, BlockB).
3533 static bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI) {
3534   // Check that both operands of the select are block addresses.
3535   BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue());
3536   BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue());
3537   if (!TBA || !FBA)
3538     return false;
3539 
3540   // Extract the actual blocks.
3541   BasicBlock *TrueBB = TBA->getBasicBlock();
3542   BasicBlock *FalseBB = FBA->getBasicBlock();
3543 
3544   // Perform the actual simplification.
3545   return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 0,
3546                                     0);
3547 }
3548 
3549 /// This is called when we find an icmp instruction
3550 /// (a seteq/setne with a constant) as the only instruction in a
3551 /// block that ends with an uncond branch.  We are looking for a very specific
3552 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified.  In
3553 /// this case, we merge the first two "or's of icmp" into a switch, but then the
3554 /// default value goes to an uncond block with a seteq in it, we get something
3555 /// like:
3556 ///
3557 ///   switch i8 %A, label %DEFAULT [ i8 1, label %end    i8 2, label %end ]
3558 /// DEFAULT:
3559 ///   %tmp = icmp eq i8 %A, 92
3560 ///   br label %end
3561 /// end:
3562 ///   ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ]
3563 ///
3564 /// We prefer to split the edge to 'end' so that there is a true/false entry to
3565 /// the PHI, merging the third icmp into the switch.
3566 bool SimplifyCFGOpt::tryToSimplifyUncondBranchWithICmpInIt(
3567     ICmpInst *ICI, IRBuilder<> &Builder) {
3568   BasicBlock *BB = ICI->getParent();
3569 
3570   // If the block has any PHIs in it or the icmp has multiple uses, it is too
3571   // complex.
3572   if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse())
3573     return false;
3574 
3575   Value *V = ICI->getOperand(0);
3576   ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1));
3577 
3578   // The pattern we're looking for is where our only predecessor is a switch on
3579   // 'V' and this block is the default case for the switch.  In this case we can
3580   // fold the compared value into the switch to simplify things.
3581   BasicBlock *Pred = BB->getSinglePredecessor();
3582   if (!Pred || !isa<SwitchInst>(Pred->getTerminator()))
3583     return false;
3584 
3585   SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator());
3586   if (SI->getCondition() != V)
3587     return false;
3588 
3589   // If BB is reachable on a non-default case, then we simply know the value of
3590   // V in this block.  Substitute it and constant fold the icmp instruction
3591   // away.
3592   if (SI->getDefaultDest() != BB) {
3593     ConstantInt *VVal = SI->findCaseDest(BB);
3594     assert(VVal && "Should have a unique destination value");
3595     ICI->setOperand(0, VVal);
3596 
3597     if (Value *V = SimplifyInstruction(ICI, {DL, ICI})) {
3598       ICI->replaceAllUsesWith(V);
3599       ICI->eraseFromParent();
3600     }
3601     // BB is now empty, so it is likely to simplify away.
3602     return requestResimplify();
3603   }
3604 
3605   // Ok, the block is reachable from the default dest.  If the constant we're
3606   // comparing exists in one of the other edges, then we can constant fold ICI
3607   // and zap it.
3608   if (SI->findCaseValue(Cst) != SI->case_default()) {
3609     Value *V;
3610     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
3611       V = ConstantInt::getFalse(BB->getContext());
3612     else
3613       V = ConstantInt::getTrue(BB->getContext());
3614 
3615     ICI->replaceAllUsesWith(V);
3616     ICI->eraseFromParent();
3617     // BB is now empty, so it is likely to simplify away.
3618     return requestResimplify();
3619   }
3620 
3621   // The use of the icmp has to be in the 'end' block, by the only PHI node in
3622   // the block.
3623   BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0);
3624   PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back());
3625   if (PHIUse == nullptr || PHIUse != &SuccBlock->front() ||
3626       isa<PHINode>(++BasicBlock::iterator(PHIUse)))
3627     return false;
3628 
3629   // If the icmp is a SETEQ, then the default dest gets false, the new edge gets
3630   // true in the PHI.
3631   Constant *DefaultCst = ConstantInt::getTrue(BB->getContext());
3632   Constant *NewCst = ConstantInt::getFalse(BB->getContext());
3633 
3634   if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
3635     std::swap(DefaultCst, NewCst);
3636 
3637   // Replace ICI (which is used by the PHI for the default value) with true or
3638   // false depending on if it is EQ or NE.
3639   ICI->replaceAllUsesWith(DefaultCst);
3640   ICI->eraseFromParent();
3641 
3642   // Okay, the switch goes to this block on a default value.  Add an edge from
3643   // the switch to the merge point on the compared value.
3644   BasicBlock *NewBB =
3645       BasicBlock::Create(BB->getContext(), "switch.edge", BB->getParent(), BB);
3646   SmallVector<uint64_t, 8> Weights;
3647   bool HasWeights = HasBranchWeights(SI);
3648   if (HasWeights) {
3649     GetBranchWeights(SI, Weights);
3650     if (Weights.size() == 1 + SI->getNumCases()) {
3651       // Split weight for default case to case for "Cst".
3652       Weights[0] = (Weights[0] + 1) >> 1;
3653       Weights.push_back(Weights[0]);
3654 
3655       SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
3656       setBranchWeights(SI, MDWeights);
3657     }
3658   }
3659   SI->addCase(Cst, NewBB);
3660 
3661   // NewBB branches to the phi block, add the uncond branch and the phi entry.
3662   Builder.SetInsertPoint(NewBB);
3663   Builder.SetCurrentDebugLocation(SI->getDebugLoc());
3664   Builder.CreateBr(SuccBlock);
3665   PHIUse->addIncoming(NewCst, NewBB);
3666   return true;
3667 }
3668 
3669 /// The specified branch is a conditional branch.
3670 /// Check to see if it is branching on an or/and chain of icmp instructions, and
3671 /// fold it into a switch instruction if so.
3672 static bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder,
3673                                       const DataLayout &DL) {
3674   Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
3675   if (!Cond)
3676     return false;
3677 
3678   // Change br (X == 0 | X == 1), T, F into a switch instruction.
3679   // If this is a bunch of seteq's or'd together, or if it's a bunch of
3680   // 'setne's and'ed together, collect them.
3681 
3682   // Try to gather values from a chain of and/or to be turned into a switch
3683   ConstantComparesGatherer ConstantCompare(Cond, DL);
3684   // Unpack the result
3685   SmallVectorImpl<ConstantInt *> &Values = ConstantCompare.Vals;
3686   Value *CompVal = ConstantCompare.CompValue;
3687   unsigned UsedICmps = ConstantCompare.UsedICmps;
3688   Value *ExtraCase = ConstantCompare.Extra;
3689 
3690   // If we didn't have a multiply compared value, fail.
3691   if (!CompVal)
3692     return false;
3693 
3694   // Avoid turning single icmps into a switch.
3695   if (UsedICmps <= 1)
3696     return false;
3697 
3698   bool TrueWhenEqual = (Cond->getOpcode() == Instruction::Or);
3699 
3700   // There might be duplicate constants in the list, which the switch
3701   // instruction can't handle, remove them now.
3702   array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate);
3703   Values.erase(std::unique(Values.begin(), Values.end()), Values.end());
3704 
3705   // If Extra was used, we require at least two switch values to do the
3706   // transformation.  A switch with one value is just a conditional branch.
3707   if (ExtraCase && Values.size() < 2)
3708     return false;
3709 
3710   // TODO: Preserve branch weight metadata, similarly to how
3711   // FoldValueComparisonIntoPredecessors preserves it.
3712 
3713   // Figure out which block is which destination.
3714   BasicBlock *DefaultBB = BI->getSuccessor(1);
3715   BasicBlock *EdgeBB = BI->getSuccessor(0);
3716   if (!TrueWhenEqual)
3717     std::swap(DefaultBB, EdgeBB);
3718 
3719   BasicBlock *BB = BI->getParent();
3720 
3721   LLVM_DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size()
3722                     << " cases into SWITCH.  BB is:\n"
3723                     << *BB);
3724 
3725   // If there are any extra values that couldn't be folded into the switch
3726   // then we evaluate them with an explicit branch first.  Split the block
3727   // right before the condbr to handle it.
3728   if (ExtraCase) {
3729     BasicBlock *NewBB =
3730         BB->splitBasicBlock(BI->getIterator(), "switch.early.test");
3731     // Remove the uncond branch added to the old block.
3732     Instruction *OldTI = BB->getTerminator();
3733     Builder.SetInsertPoint(OldTI);
3734 
3735     if (TrueWhenEqual)
3736       Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB);
3737     else
3738       Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB);
3739 
3740     OldTI->eraseFromParent();
3741 
3742     // If there are PHI nodes in EdgeBB, then we need to add a new entry to them
3743     // for the edge we just added.
3744     AddPredecessorToBlock(EdgeBB, BB, NewBB);
3745 
3746     LLVM_DEBUG(dbgs() << "  ** 'icmp' chain unhandled condition: " << *ExtraCase
3747                       << "\nEXTRABB = " << *BB);
3748     BB = NewBB;
3749   }
3750 
3751   Builder.SetInsertPoint(BI);
3752   // Convert pointer to int before we switch.
3753   if (CompVal->getType()->isPointerTy()) {
3754     CompVal = Builder.CreatePtrToInt(
3755         CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr");
3756   }
3757 
3758   // Create the new switch instruction now.
3759   SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size());
3760 
3761   // Add all of the 'cases' to the switch instruction.
3762   for (unsigned i = 0, e = Values.size(); i != e; ++i)
3763     New->addCase(Values[i], EdgeBB);
3764 
3765   // We added edges from PI to the EdgeBB.  As such, if there were any
3766   // PHI nodes in EdgeBB, they need entries to be added corresponding to
3767   // the number of edges added.
3768   for (BasicBlock::iterator BBI = EdgeBB->begin(); isa<PHINode>(BBI); ++BBI) {
3769     PHINode *PN = cast<PHINode>(BBI);
3770     Value *InVal = PN->getIncomingValueForBlock(BB);
3771     for (unsigned i = 0, e = Values.size() - 1; i != e; ++i)
3772       PN->addIncoming(InVal, BB);
3773   }
3774 
3775   // Erase the old branch instruction.
3776   EraseTerminatorAndDCECond(BI);
3777 
3778   LLVM_DEBUG(dbgs() << "  ** 'icmp' chain result is:\n" << *BB << '\n');
3779   return true;
3780 }
3781 
3782 bool SimplifyCFGOpt::SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder) {
3783   if (isa<PHINode>(RI->getValue()))
3784     return SimplifyCommonResume(RI);
3785   else if (isa<LandingPadInst>(RI->getParent()->getFirstNonPHI()) &&
3786            RI->getValue() == RI->getParent()->getFirstNonPHI())
3787     // The resume must unwind the exception that caused control to branch here.
3788     return SimplifySingleResume(RI);
3789 
3790   return false;
3791 }
3792 
3793 // Simplify resume that is shared by several landing pads (phi of landing pad).
3794 bool SimplifyCFGOpt::SimplifyCommonResume(ResumeInst *RI) {
3795   BasicBlock *BB = RI->getParent();
3796 
3797   // Check that there are no other instructions except for debug intrinsics
3798   // between the phi of landing pads (RI->getValue()) and resume instruction.
3799   BasicBlock::iterator I = cast<Instruction>(RI->getValue())->getIterator(),
3800                        E = RI->getIterator();
3801   while (++I != E)
3802     if (!isa<DbgInfoIntrinsic>(I))
3803       return false;
3804 
3805   SmallSetVector<BasicBlock *, 4> TrivialUnwindBlocks;
3806   auto *PhiLPInst = cast<PHINode>(RI->getValue());
3807 
3808   // Check incoming blocks to see if any of them are trivial.
3809   for (unsigned Idx = 0, End = PhiLPInst->getNumIncomingValues(); Idx != End;
3810        Idx++) {
3811     auto *IncomingBB = PhiLPInst->getIncomingBlock(Idx);
3812     auto *IncomingValue = PhiLPInst->getIncomingValue(Idx);
3813 
3814     // If the block has other successors, we can not delete it because
3815     // it has other dependents.
3816     if (IncomingBB->getUniqueSuccessor() != BB)
3817       continue;
3818 
3819     auto *LandingPad = dyn_cast<LandingPadInst>(IncomingBB->getFirstNonPHI());
3820     // Not the landing pad that caused the control to branch here.
3821     if (IncomingValue != LandingPad)
3822       continue;
3823 
3824     bool isTrivial = true;
3825 
3826     I = IncomingBB->getFirstNonPHI()->getIterator();
3827     E = IncomingBB->getTerminator()->getIterator();
3828     while (++I != E)
3829       if (!isa<DbgInfoIntrinsic>(I)) {
3830         isTrivial = false;
3831         break;
3832       }
3833 
3834     if (isTrivial)
3835       TrivialUnwindBlocks.insert(IncomingBB);
3836   }
3837 
3838   // If no trivial unwind blocks, don't do any simplifications.
3839   if (TrivialUnwindBlocks.empty())
3840     return false;
3841 
3842   // Turn all invokes that unwind here into calls.
3843   for (auto *TrivialBB : TrivialUnwindBlocks) {
3844     // Blocks that will be simplified should be removed from the phi node.
3845     // Note there could be multiple edges to the resume block, and we need
3846     // to remove them all.
3847     while (PhiLPInst->getBasicBlockIndex(TrivialBB) != -1)
3848       BB->removePredecessor(TrivialBB, true);
3849 
3850     for (pred_iterator PI = pred_begin(TrivialBB), PE = pred_end(TrivialBB);
3851          PI != PE;) {
3852       BasicBlock *Pred = *PI++;
3853       removeUnwindEdge(Pred);
3854     }
3855 
3856     // In each SimplifyCFG run, only the current processed block can be erased.
3857     // Otherwise, it will break the iteration of SimplifyCFG pass. So instead
3858     // of erasing TrivialBB, we only remove the branch to the common resume
3859     // block so that we can later erase the resume block since it has no
3860     // predecessors.
3861     TrivialBB->getTerminator()->eraseFromParent();
3862     new UnreachableInst(RI->getContext(), TrivialBB);
3863   }
3864 
3865   // Delete the resume block if all its predecessors have been removed.
3866   if (pred_empty(BB))
3867     BB->eraseFromParent();
3868 
3869   return !TrivialUnwindBlocks.empty();
3870 }
3871 
3872 // Simplify resume that is only used by a single (non-phi) landing pad.
3873 bool SimplifyCFGOpt::SimplifySingleResume(ResumeInst *RI) {
3874   BasicBlock *BB = RI->getParent();
3875   LandingPadInst *LPInst = dyn_cast<LandingPadInst>(BB->getFirstNonPHI());
3876   assert(RI->getValue() == LPInst &&
3877          "Resume must unwind the exception that caused control to here");
3878 
3879   // Check that there are no other instructions except for debug intrinsics.
3880   BasicBlock::iterator I = LPInst->getIterator(), E = RI->getIterator();
3881   while (++I != E)
3882     if (!isa<DbgInfoIntrinsic>(I))
3883       return false;
3884 
3885   // Turn all invokes that unwind here into calls and delete the basic block.
3886   for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) {
3887     BasicBlock *Pred = *PI++;
3888     removeUnwindEdge(Pred);
3889   }
3890 
3891   // The landingpad is now unreachable.  Zap it.
3892   if (LoopHeaders)
3893     LoopHeaders->erase(BB);
3894   BB->eraseFromParent();
3895   return true;
3896 }
3897 
3898 static bool removeEmptyCleanup(CleanupReturnInst *RI) {
3899   // If this is a trivial cleanup pad that executes no instructions, it can be
3900   // eliminated.  If the cleanup pad continues to the caller, any predecessor
3901   // that is an EH pad will be updated to continue to the caller and any
3902   // predecessor that terminates with an invoke instruction will have its invoke
3903   // instruction converted to a call instruction.  If the cleanup pad being
3904   // simplified does not continue to the caller, each predecessor will be
3905   // updated to continue to the unwind destination of the cleanup pad being
3906   // simplified.
3907   BasicBlock *BB = RI->getParent();
3908   CleanupPadInst *CPInst = RI->getCleanupPad();
3909   if (CPInst->getParent() != BB)
3910     // This isn't an empty cleanup.
3911     return false;
3912 
3913   // We cannot kill the pad if it has multiple uses.  This typically arises
3914   // from unreachable basic blocks.
3915   if (!CPInst->hasOneUse())
3916     return false;
3917 
3918   // Check that there are no other instructions except for benign intrinsics.
3919   BasicBlock::iterator I = CPInst->getIterator(), E = RI->getIterator();
3920   while (++I != E) {
3921     auto *II = dyn_cast<IntrinsicInst>(I);
3922     if (!II)
3923       return false;
3924 
3925     Intrinsic::ID IntrinsicID = II->getIntrinsicID();
3926     switch (IntrinsicID) {
3927     case Intrinsic::dbg_declare:
3928     case Intrinsic::dbg_value:
3929     case Intrinsic::dbg_label:
3930     case Intrinsic::lifetime_end:
3931       break;
3932     default:
3933       return false;
3934     }
3935   }
3936 
3937   // If the cleanup return we are simplifying unwinds to the caller, this will
3938   // set UnwindDest to nullptr.
3939   BasicBlock *UnwindDest = RI->getUnwindDest();
3940   Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr;
3941 
3942   // We're about to remove BB from the control flow.  Before we do, sink any
3943   // PHINodes into the unwind destination.  Doing this before changing the
3944   // control flow avoids some potentially slow checks, since we can currently
3945   // be certain that UnwindDest and BB have no common predecessors (since they
3946   // are both EH pads).
3947   if (UnwindDest) {
3948     // First, go through the PHI nodes in UnwindDest and update any nodes that
3949     // reference the block we are removing
3950     for (BasicBlock::iterator I = UnwindDest->begin(),
3951                               IE = DestEHPad->getIterator();
3952          I != IE; ++I) {
3953       PHINode *DestPN = cast<PHINode>(I);
3954 
3955       int Idx = DestPN->getBasicBlockIndex(BB);
3956       // Since BB unwinds to UnwindDest, it has to be in the PHI node.
3957       assert(Idx != -1);
3958       // This PHI node has an incoming value that corresponds to a control
3959       // path through the cleanup pad we are removing.  If the incoming
3960       // value is in the cleanup pad, it must be a PHINode (because we
3961       // verified above that the block is otherwise empty).  Otherwise, the
3962       // value is either a constant or a value that dominates the cleanup
3963       // pad being removed.
3964       //
3965       // Because BB and UnwindDest are both EH pads, all of their
3966       // predecessors must unwind to these blocks, and since no instruction
3967       // can have multiple unwind destinations, there will be no overlap in
3968       // incoming blocks between SrcPN and DestPN.
3969       Value *SrcVal = DestPN->getIncomingValue(Idx);
3970       PHINode *SrcPN = dyn_cast<PHINode>(SrcVal);
3971 
3972       // Remove the entry for the block we are deleting.
3973       DestPN->removeIncomingValue(Idx, false);
3974 
3975       if (SrcPN && SrcPN->getParent() == BB) {
3976         // If the incoming value was a PHI node in the cleanup pad we are
3977         // removing, we need to merge that PHI node's incoming values into
3978         // DestPN.
3979         for (unsigned SrcIdx = 0, SrcE = SrcPN->getNumIncomingValues();
3980              SrcIdx != SrcE; ++SrcIdx) {
3981           DestPN->addIncoming(SrcPN->getIncomingValue(SrcIdx),
3982                               SrcPN->getIncomingBlock(SrcIdx));
3983         }
3984       } else {
3985         // Otherwise, the incoming value came from above BB and
3986         // so we can just reuse it.  We must associate all of BB's
3987         // predecessors with this value.
3988         for (auto *pred : predecessors(BB)) {
3989           DestPN->addIncoming(SrcVal, pred);
3990         }
3991       }
3992     }
3993 
3994     // Sink any remaining PHI nodes directly into UnwindDest.
3995     Instruction *InsertPt = DestEHPad;
3996     for (BasicBlock::iterator I = BB->begin(),
3997                               IE = BB->getFirstNonPHI()->getIterator();
3998          I != IE;) {
3999       // The iterator must be incremented here because the instructions are
4000       // being moved to another block.
4001       PHINode *PN = cast<PHINode>(I++);
4002       if (PN->use_empty())
4003         // If the PHI node has no uses, just leave it.  It will be erased
4004         // when we erase BB below.
4005         continue;
4006 
4007       // Otherwise, sink this PHI node into UnwindDest.
4008       // Any predecessors to UnwindDest which are not already represented
4009       // must be back edges which inherit the value from the path through
4010       // BB.  In this case, the PHI value must reference itself.
4011       for (auto *pred : predecessors(UnwindDest))
4012         if (pred != BB)
4013           PN->addIncoming(PN, pred);
4014       PN->moveBefore(InsertPt);
4015     }
4016   }
4017 
4018   for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) {
4019     // The iterator must be updated here because we are removing this pred.
4020     BasicBlock *PredBB = *PI++;
4021     if (UnwindDest == nullptr) {
4022       removeUnwindEdge(PredBB);
4023     } else {
4024       Instruction *TI = PredBB->getTerminator();
4025       TI->replaceUsesOfWith(BB, UnwindDest);
4026     }
4027   }
4028 
4029   // The cleanup pad is now unreachable.  Zap it.
4030   BB->eraseFromParent();
4031   return true;
4032 }
4033 
4034 // Try to merge two cleanuppads together.
4035 static bool mergeCleanupPad(CleanupReturnInst *RI) {
4036   // Skip any cleanuprets which unwind to caller, there is nothing to merge
4037   // with.
4038   BasicBlock *UnwindDest = RI->getUnwindDest();
4039   if (!UnwindDest)
4040     return false;
4041 
4042   // This cleanupret isn't the only predecessor of this cleanuppad, it wouldn't
4043   // be safe to merge without code duplication.
4044   if (UnwindDest->getSinglePredecessor() != RI->getParent())
4045     return false;
4046 
4047   // Verify that our cleanuppad's unwind destination is another cleanuppad.
4048   auto *SuccessorCleanupPad = dyn_cast<CleanupPadInst>(&UnwindDest->front());
4049   if (!SuccessorCleanupPad)
4050     return false;
4051 
4052   CleanupPadInst *PredecessorCleanupPad = RI->getCleanupPad();
4053   // Replace any uses of the successor cleanupad with the predecessor pad
4054   // The only cleanuppad uses should be this cleanupret, it's cleanupret and
4055   // funclet bundle operands.
4056   SuccessorCleanupPad->replaceAllUsesWith(PredecessorCleanupPad);
4057   // Remove the old cleanuppad.
4058   SuccessorCleanupPad->eraseFromParent();
4059   // Now, we simply replace the cleanupret with a branch to the unwind
4060   // destination.
4061   BranchInst::Create(UnwindDest, RI->getParent());
4062   RI->eraseFromParent();
4063 
4064   return true;
4065 }
4066 
4067 bool SimplifyCFGOpt::SimplifyCleanupReturn(CleanupReturnInst *RI) {
4068   // It is possible to transiantly have an undef cleanuppad operand because we
4069   // have deleted some, but not all, dead blocks.
4070   // Eventually, this block will be deleted.
4071   if (isa<UndefValue>(RI->getOperand(0)))
4072     return false;
4073 
4074   if (mergeCleanupPad(RI))
4075     return true;
4076 
4077   if (removeEmptyCleanup(RI))
4078     return true;
4079 
4080   return false;
4081 }
4082 
4083 bool SimplifyCFGOpt::SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) {
4084   BasicBlock *BB = RI->getParent();
4085   if (!BB->getFirstNonPHIOrDbg()->isTerminator())
4086     return false;
4087 
4088   // Find predecessors that end with branches.
4089   SmallVector<BasicBlock *, 8> UncondBranchPreds;
4090   SmallVector<BranchInst *, 8> CondBranchPreds;
4091   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
4092     BasicBlock *P = *PI;
4093     Instruction *PTI = P->getTerminator();
4094     if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) {
4095       if (BI->isUnconditional())
4096         UncondBranchPreds.push_back(P);
4097       else
4098         CondBranchPreds.push_back(BI);
4099     }
4100   }
4101 
4102   // If we found some, do the transformation!
4103   if (!UncondBranchPreds.empty() && DupRet) {
4104     while (!UncondBranchPreds.empty()) {
4105       BasicBlock *Pred = UncondBranchPreds.pop_back_val();
4106       LLVM_DEBUG(dbgs() << "FOLDING: " << *BB
4107                         << "INTO UNCOND BRANCH PRED: " << *Pred);
4108       (void)FoldReturnIntoUncondBranch(RI, BB, Pred);
4109     }
4110 
4111     // If we eliminated all predecessors of the block, delete the block now.
4112     if (pred_empty(BB)) {
4113       // We know there are no successors, so just nuke the block.
4114       if (LoopHeaders)
4115         LoopHeaders->erase(BB);
4116       BB->eraseFromParent();
4117     }
4118 
4119     return true;
4120   }
4121 
4122   // Check out all of the conditional branches going to this return
4123   // instruction.  If any of them just select between returns, change the
4124   // branch itself into a select/return pair.
4125   while (!CondBranchPreds.empty()) {
4126     BranchInst *BI = CondBranchPreds.pop_back_val();
4127 
4128     // Check to see if the non-BB successor is also a return block.
4129     if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) &&
4130         isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) &&
4131         SimplifyCondBranchToTwoReturns(BI, Builder))
4132       return true;
4133   }
4134   return false;
4135 }
4136 
4137 bool SimplifyCFGOpt::SimplifyUnreachable(UnreachableInst *UI) {
4138   BasicBlock *BB = UI->getParent();
4139 
4140   bool Changed = false;
4141 
4142   // If there are any instructions immediately before the unreachable that can
4143   // be removed, do so.
4144   while (UI->getIterator() != BB->begin()) {
4145     BasicBlock::iterator BBI = UI->getIterator();
4146     --BBI;
4147     // Do not delete instructions that can have side effects which might cause
4148     // the unreachable to not be reachable; specifically, calls and volatile
4149     // operations may have this effect.
4150     if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI))
4151       break;
4152 
4153     if (BBI->mayHaveSideEffects()) {
4154       if (auto *SI = dyn_cast<StoreInst>(BBI)) {
4155         if (SI->isVolatile())
4156           break;
4157       } else if (auto *LI = dyn_cast<LoadInst>(BBI)) {
4158         if (LI->isVolatile())
4159           break;
4160       } else if (auto *RMWI = dyn_cast<AtomicRMWInst>(BBI)) {
4161         if (RMWI->isVolatile())
4162           break;
4163       } else if (auto *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) {
4164         if (CXI->isVolatile())
4165           break;
4166       } else if (isa<CatchPadInst>(BBI)) {
4167         // A catchpad may invoke exception object constructors and such, which
4168         // in some languages can be arbitrary code, so be conservative by
4169         // default.
4170         // For CoreCLR, it just involves a type test, so can be removed.
4171         if (classifyEHPersonality(BB->getParent()->getPersonalityFn()) !=
4172             EHPersonality::CoreCLR)
4173           break;
4174       } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) &&
4175                  !isa<LandingPadInst>(BBI)) {
4176         break;
4177       }
4178       // Note that deleting LandingPad's here is in fact okay, although it
4179       // involves a bit of subtle reasoning. If this inst is a LandingPad,
4180       // all the predecessors of this block will be the unwind edges of Invokes,
4181       // and we can therefore guarantee this block will be erased.
4182     }
4183 
4184     // Delete this instruction (any uses are guaranteed to be dead)
4185     if (!BBI->use_empty())
4186       BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
4187     BBI->eraseFromParent();
4188     Changed = true;
4189   }
4190 
4191   // If the unreachable instruction is the first in the block, take a gander
4192   // at all of the predecessors of this instruction, and simplify them.
4193   if (&BB->front() != UI)
4194     return Changed;
4195 
4196   SmallVector<BasicBlock *, 8> Preds(pred_begin(BB), pred_end(BB));
4197   for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
4198     Instruction *TI = Preds[i]->getTerminator();
4199     IRBuilder<> Builder(TI);
4200     if (auto *BI = dyn_cast<BranchInst>(TI)) {
4201       if (BI->isUnconditional()) {
4202         if (BI->getSuccessor(0) == BB) {
4203           new UnreachableInst(TI->getContext(), TI);
4204           TI->eraseFromParent();
4205           Changed = true;
4206         }
4207       } else {
4208         Value* Cond = BI->getCondition();
4209         if (BI->getSuccessor(0) == BB) {
4210           Builder.CreateAssumption(Builder.CreateNot(Cond));
4211           Builder.CreateBr(BI->getSuccessor(1));
4212           EraseTerminatorAndDCECond(BI);
4213         } else if (BI->getSuccessor(1) == BB) {
4214           Builder.CreateAssumption(Cond);
4215           Builder.CreateBr(BI->getSuccessor(0));
4216           EraseTerminatorAndDCECond(BI);
4217           Changed = true;
4218         }
4219       }
4220     } else if (auto *SI = dyn_cast<SwitchInst>(TI)) {
4221       for (auto i = SI->case_begin(), e = SI->case_end(); i != e;) {
4222         if (i->getCaseSuccessor() != BB) {
4223           ++i;
4224           continue;
4225         }
4226         BB->removePredecessor(SI->getParent());
4227         i = SI->removeCase(i);
4228         e = SI->case_end();
4229         Changed = true;
4230       }
4231     } else if (auto *II = dyn_cast<InvokeInst>(TI)) {
4232       if (II->getUnwindDest() == BB) {
4233         removeUnwindEdge(TI->getParent());
4234         Changed = true;
4235       }
4236     } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) {
4237       if (CSI->getUnwindDest() == BB) {
4238         removeUnwindEdge(TI->getParent());
4239         Changed = true;
4240         continue;
4241       }
4242 
4243       for (CatchSwitchInst::handler_iterator I = CSI->handler_begin(),
4244                                              E = CSI->handler_end();
4245            I != E; ++I) {
4246         if (*I == BB) {
4247           CSI->removeHandler(I);
4248           --I;
4249           --E;
4250           Changed = true;
4251         }
4252       }
4253       if (CSI->getNumHandlers() == 0) {
4254         BasicBlock *CatchSwitchBB = CSI->getParent();
4255         if (CSI->hasUnwindDest()) {
4256           // Redirect preds to the unwind dest
4257           CatchSwitchBB->replaceAllUsesWith(CSI->getUnwindDest());
4258         } else {
4259           // Rewrite all preds to unwind to caller (or from invoke to call).
4260           SmallVector<BasicBlock *, 8> EHPreds(predecessors(CatchSwitchBB));
4261           for (BasicBlock *EHPred : EHPreds)
4262             removeUnwindEdge(EHPred);
4263         }
4264         // The catchswitch is no longer reachable.
4265         new UnreachableInst(CSI->getContext(), CSI);
4266         CSI->eraseFromParent();
4267         Changed = true;
4268       }
4269     } else if (isa<CleanupReturnInst>(TI)) {
4270       new UnreachableInst(TI->getContext(), TI);
4271       TI->eraseFromParent();
4272       Changed = true;
4273     }
4274   }
4275 
4276   // If this block is now dead, remove it.
4277   if (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) {
4278     // We know there are no successors, so just nuke the block.
4279     if (LoopHeaders)
4280       LoopHeaders->erase(BB);
4281     BB->eraseFromParent();
4282     return true;
4283   }
4284 
4285   return Changed;
4286 }
4287 
4288 static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) {
4289   assert(Cases.size() >= 1);
4290 
4291   array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate);
4292   for (size_t I = 1, E = Cases.size(); I != E; ++I) {
4293     if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1)
4294       return false;
4295   }
4296   return true;
4297 }
4298 
4299 /// Turn a switch with two reachable destinations into an integer range
4300 /// comparison and branch.
4301 static bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder) {
4302   assert(SI->getNumCases() > 1 && "Degenerate switch?");
4303 
4304   bool HasDefault =
4305       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
4306 
4307   // Partition the cases into two sets with different destinations.
4308   BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr;
4309   BasicBlock *DestB = nullptr;
4310   SmallVector<ConstantInt *, 16> CasesA;
4311   SmallVector<ConstantInt *, 16> CasesB;
4312 
4313   for (auto Case : SI->cases()) {
4314     BasicBlock *Dest = Case.getCaseSuccessor();
4315     if (!DestA)
4316       DestA = Dest;
4317     if (Dest == DestA) {
4318       CasesA.push_back(Case.getCaseValue());
4319       continue;
4320     }
4321     if (!DestB)
4322       DestB = Dest;
4323     if (Dest == DestB) {
4324       CasesB.push_back(Case.getCaseValue());
4325       continue;
4326     }
4327     return false; // More than two destinations.
4328   }
4329 
4330   assert(DestA && DestB &&
4331          "Single-destination switch should have been folded.");
4332   assert(DestA != DestB);
4333   assert(DestB != SI->getDefaultDest());
4334   assert(!CasesB.empty() && "There must be non-default cases.");
4335   assert(!CasesA.empty() || HasDefault);
4336 
4337   // Figure out if one of the sets of cases form a contiguous range.
4338   SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr;
4339   BasicBlock *ContiguousDest = nullptr;
4340   BasicBlock *OtherDest = nullptr;
4341   if (!CasesA.empty() && CasesAreContiguous(CasesA)) {
4342     ContiguousCases = &CasesA;
4343     ContiguousDest = DestA;
4344     OtherDest = DestB;
4345   } else if (CasesAreContiguous(CasesB)) {
4346     ContiguousCases = &CasesB;
4347     ContiguousDest = DestB;
4348     OtherDest = DestA;
4349   } else
4350     return false;
4351 
4352   // Start building the compare and branch.
4353 
4354   Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back());
4355   Constant *NumCases =
4356       ConstantInt::get(Offset->getType(), ContiguousCases->size());
4357 
4358   Value *Sub = SI->getCondition();
4359   if (!Offset->isNullValue())
4360     Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off");
4361 
4362   Value *Cmp;
4363   // If NumCases overflowed, then all possible values jump to the successor.
4364   if (NumCases->isNullValue() && !ContiguousCases->empty())
4365     Cmp = ConstantInt::getTrue(SI->getContext());
4366   else
4367     Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch");
4368   BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest);
4369 
4370   // Update weight for the newly-created conditional branch.
4371   if (HasBranchWeights(SI)) {
4372     SmallVector<uint64_t, 8> Weights;
4373     GetBranchWeights(SI, Weights);
4374     if (Weights.size() == 1 + SI->getNumCases()) {
4375       uint64_t TrueWeight = 0;
4376       uint64_t FalseWeight = 0;
4377       for (size_t I = 0, E = Weights.size(); I != E; ++I) {
4378         if (SI->getSuccessor(I) == ContiguousDest)
4379           TrueWeight += Weights[I];
4380         else
4381           FalseWeight += Weights[I];
4382       }
4383       while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) {
4384         TrueWeight /= 2;
4385         FalseWeight /= 2;
4386       }
4387       setBranchWeights(NewBI, TrueWeight, FalseWeight);
4388     }
4389   }
4390 
4391   // Prune obsolete incoming values off the successors' PHI nodes.
4392   for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) {
4393     unsigned PreviousEdges = ContiguousCases->size();
4394     if (ContiguousDest == SI->getDefaultDest())
4395       ++PreviousEdges;
4396     for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
4397       cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
4398   }
4399   for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) {
4400     unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size();
4401     if (OtherDest == SI->getDefaultDest())
4402       ++PreviousEdges;
4403     for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
4404       cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
4405   }
4406 
4407   // Drop the switch.
4408   SI->eraseFromParent();
4409 
4410   return true;
4411 }
4412 
4413 /// Compute masked bits for the condition of a switch
4414 /// and use it to remove dead cases.
4415 static bool eliminateDeadSwitchCases(SwitchInst *SI, AssumptionCache *AC,
4416                                      const DataLayout &DL) {
4417   Value *Cond = SI->getCondition();
4418   unsigned Bits = Cond->getType()->getIntegerBitWidth();
4419   KnownBits Known = computeKnownBits(Cond, DL, 0, AC, SI);
4420 
4421   // We can also eliminate cases by determining that their values are outside of
4422   // the limited range of the condition based on how many significant (non-sign)
4423   // bits are in the condition value.
4424   unsigned ExtraSignBits = ComputeNumSignBits(Cond, DL, 0, AC, SI) - 1;
4425   unsigned MaxSignificantBitsInCond = Bits - ExtraSignBits;
4426 
4427   // Gather dead cases.
4428   SmallVector<ConstantInt *, 8> DeadCases;
4429   for (auto &Case : SI->cases()) {
4430     const APInt &CaseVal = Case.getCaseValue()->getValue();
4431     if (Known.Zero.intersects(CaseVal) || !Known.One.isSubsetOf(CaseVal) ||
4432         (CaseVal.getMinSignedBits() > MaxSignificantBitsInCond)) {
4433       DeadCases.push_back(Case.getCaseValue());
4434       LLVM_DEBUG(dbgs() << "SimplifyCFG: switch case " << CaseVal
4435                         << " is dead.\n");
4436     }
4437   }
4438 
4439   // If we can prove that the cases must cover all possible values, the
4440   // default destination becomes dead and we can remove it.  If we know some
4441   // of the bits in the value, we can use that to more precisely compute the
4442   // number of possible unique case values.
4443   bool HasDefault =
4444       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
4445   const unsigned NumUnknownBits =
4446       Bits - (Known.Zero | Known.One).countPopulation();
4447   assert(NumUnknownBits <= Bits);
4448   if (HasDefault && DeadCases.empty() &&
4449       NumUnknownBits < 64 /* avoid overflow */ &&
4450       SI->getNumCases() == (1ULL << NumUnknownBits)) {
4451     LLVM_DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n");
4452     BasicBlock *NewDefault =
4453         SplitBlockPredecessors(SI->getDefaultDest(), SI->getParent(), "");
4454     SI->setDefaultDest(&*NewDefault);
4455     SplitBlock(&*NewDefault, &NewDefault->front());
4456     auto *OldTI = NewDefault->getTerminator();
4457     new UnreachableInst(SI->getContext(), OldTI);
4458     EraseTerminatorAndDCECond(OldTI);
4459     return true;
4460   }
4461 
4462   SmallVector<uint64_t, 8> Weights;
4463   bool HasWeight = HasBranchWeights(SI);
4464   if (HasWeight) {
4465     GetBranchWeights(SI, Weights);
4466     HasWeight = (Weights.size() == 1 + SI->getNumCases());
4467   }
4468 
4469   // Remove dead cases from the switch.
4470   for (ConstantInt *DeadCase : DeadCases) {
4471     SwitchInst::CaseIt CaseI = SI->findCaseValue(DeadCase);
4472     assert(CaseI != SI->case_default() &&
4473            "Case was not found. Probably mistake in DeadCases forming.");
4474     if (HasWeight) {
4475       std::swap(Weights[CaseI->getCaseIndex() + 1], Weights.back());
4476       Weights.pop_back();
4477     }
4478 
4479     // Prune unused values from PHI nodes.
4480     CaseI->getCaseSuccessor()->removePredecessor(SI->getParent());
4481     SI->removeCase(CaseI);
4482   }
4483   if (HasWeight && Weights.size() >= 2) {
4484     SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
4485     setBranchWeights(SI, MDWeights);
4486   }
4487 
4488   return !DeadCases.empty();
4489 }
4490 
4491 /// If BB would be eligible for simplification by
4492 /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated
4493 /// by an unconditional branch), look at the phi node for BB in the successor
4494 /// block and see if the incoming value is equal to CaseValue. If so, return
4495 /// the phi node, and set PhiIndex to BB's index in the phi node.
4496 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue,
4497                                               BasicBlock *BB, int *PhiIndex) {
4498   if (BB->getFirstNonPHIOrDbg() != BB->getTerminator())
4499     return nullptr; // BB must be empty to be a candidate for simplification.
4500   if (!BB->getSinglePredecessor())
4501     return nullptr; // BB must be dominated by the switch.
4502 
4503   BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator());
4504   if (!Branch || !Branch->isUnconditional())
4505     return nullptr; // Terminator must be unconditional branch.
4506 
4507   BasicBlock *Succ = Branch->getSuccessor(0);
4508 
4509   for (PHINode &PHI : Succ->phis()) {
4510     int Idx = PHI.getBasicBlockIndex(BB);
4511     assert(Idx >= 0 && "PHI has no entry for predecessor?");
4512 
4513     Value *InValue = PHI.getIncomingValue(Idx);
4514     if (InValue != CaseValue)
4515       continue;
4516 
4517     *PhiIndex = Idx;
4518     return &PHI;
4519   }
4520 
4521   return nullptr;
4522 }
4523 
4524 /// Try to forward the condition of a switch instruction to a phi node
4525 /// dominated by the switch, if that would mean that some of the destination
4526 /// blocks of the switch can be folded away. Return true if a change is made.
4527 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) {
4528   using ForwardingNodesMap = DenseMap<PHINode *, SmallVector<int, 4>>;
4529 
4530   ForwardingNodesMap ForwardingNodes;
4531   BasicBlock *SwitchBlock = SI->getParent();
4532   bool Changed = false;
4533   for (auto &Case : SI->cases()) {
4534     ConstantInt *CaseValue = Case.getCaseValue();
4535     BasicBlock *CaseDest = Case.getCaseSuccessor();
4536 
4537     // Replace phi operands in successor blocks that are using the constant case
4538     // value rather than the switch condition variable:
4539     //   switchbb:
4540     //   switch i32 %x, label %default [
4541     //     i32 17, label %succ
4542     //   ...
4543     //   succ:
4544     //     %r = phi i32 ... [ 17, %switchbb ] ...
4545     // -->
4546     //     %r = phi i32 ... [ %x, %switchbb ] ...
4547 
4548     for (PHINode &Phi : CaseDest->phis()) {
4549       // This only works if there is exactly 1 incoming edge from the switch to
4550       // a phi. If there is >1, that means multiple cases of the switch map to 1
4551       // value in the phi, and that phi value is not the switch condition. Thus,
4552       // this transform would not make sense (the phi would be invalid because
4553       // a phi can't have different incoming values from the same block).
4554       int SwitchBBIdx = Phi.getBasicBlockIndex(SwitchBlock);
4555       if (Phi.getIncomingValue(SwitchBBIdx) == CaseValue &&
4556           count(Phi.blocks(), SwitchBlock) == 1) {
4557         Phi.setIncomingValue(SwitchBBIdx, SI->getCondition());
4558         Changed = true;
4559       }
4560     }
4561 
4562     // Collect phi nodes that are indirectly using this switch's case constants.
4563     int PhiIdx;
4564     if (auto *Phi = FindPHIForConditionForwarding(CaseValue, CaseDest, &PhiIdx))
4565       ForwardingNodes[Phi].push_back(PhiIdx);
4566   }
4567 
4568   for (auto &ForwardingNode : ForwardingNodes) {
4569     PHINode *Phi = ForwardingNode.first;
4570     SmallVectorImpl<int> &Indexes = ForwardingNode.second;
4571     if (Indexes.size() < 2)
4572       continue;
4573 
4574     for (int Index : Indexes)
4575       Phi->setIncomingValue(Index, SI->getCondition());
4576     Changed = true;
4577   }
4578 
4579   return Changed;
4580 }
4581 
4582 /// Return true if the backend will be able to handle
4583 /// initializing an array of constants like C.
4584 static bool ValidLookupTableConstant(Constant *C, const TargetTransformInfo &TTI) {
4585   if (C->isThreadDependent())
4586     return false;
4587   if (C->isDLLImportDependent())
4588     return false;
4589 
4590   if (!isa<ConstantFP>(C) && !isa<ConstantInt>(C) &&
4591       !isa<ConstantPointerNull>(C) && !isa<GlobalValue>(C) &&
4592       !isa<UndefValue>(C) && !isa<ConstantExpr>(C))
4593     return false;
4594 
4595   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
4596     if (!CE->isGEPWithNoNotionalOverIndexing())
4597       return false;
4598     if (!ValidLookupTableConstant(CE->getOperand(0), TTI))
4599       return false;
4600   }
4601 
4602   if (!TTI.shouldBuildLookupTablesForConstant(C))
4603     return false;
4604 
4605   return true;
4606 }
4607 
4608 /// If V is a Constant, return it. Otherwise, try to look up
4609 /// its constant value in ConstantPool, returning 0 if it's not there.
4610 static Constant *
4611 LookupConstant(Value *V,
4612                const SmallDenseMap<Value *, Constant *> &ConstantPool) {
4613   if (Constant *C = dyn_cast<Constant>(V))
4614     return C;
4615   return ConstantPool.lookup(V);
4616 }
4617 
4618 /// Try to fold instruction I into a constant. This works for
4619 /// simple instructions such as binary operations where both operands are
4620 /// constant or can be replaced by constants from the ConstantPool. Returns the
4621 /// resulting constant on success, 0 otherwise.
4622 static Constant *
4623 ConstantFold(Instruction *I, const DataLayout &DL,
4624              const SmallDenseMap<Value *, Constant *> &ConstantPool) {
4625   if (SelectInst *Select = dyn_cast<SelectInst>(I)) {
4626     Constant *A = LookupConstant(Select->getCondition(), ConstantPool);
4627     if (!A)
4628       return nullptr;
4629     if (A->isAllOnesValue())
4630       return LookupConstant(Select->getTrueValue(), ConstantPool);
4631     if (A->isNullValue())
4632       return LookupConstant(Select->getFalseValue(), ConstantPool);
4633     return nullptr;
4634   }
4635 
4636   SmallVector<Constant *, 4> COps;
4637   for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) {
4638     if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool))
4639       COps.push_back(A);
4640     else
4641       return nullptr;
4642   }
4643 
4644   if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
4645     return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0],
4646                                            COps[1], DL);
4647   }
4648 
4649   return ConstantFoldInstOperands(I, COps, DL);
4650 }
4651 
4652 /// Try to determine the resulting constant values in phi nodes
4653 /// at the common destination basic block, *CommonDest, for one of the case
4654 /// destionations CaseDest corresponding to value CaseVal (0 for the default
4655 /// case), of a switch instruction SI.
4656 static bool
4657 GetCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest,
4658                BasicBlock **CommonDest,
4659                SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res,
4660                const DataLayout &DL, const TargetTransformInfo &TTI) {
4661   // The block from which we enter the common destination.
4662   BasicBlock *Pred = SI->getParent();
4663 
4664   // If CaseDest is empty except for some side-effect free instructions through
4665   // which we can constant-propagate the CaseVal, continue to its successor.
4666   SmallDenseMap<Value *, Constant *> ConstantPool;
4667   ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal));
4668   for (Instruction &I :CaseDest->instructionsWithoutDebug()) {
4669     if (I.isTerminator()) {
4670       // If the terminator is a simple branch, continue to the next block.
4671       if (I.getNumSuccessors() != 1 || I.isExceptionalTerminator())
4672         return false;
4673       Pred = CaseDest;
4674       CaseDest = I.getSuccessor(0);
4675     } else if (Constant *C = ConstantFold(&I, DL, ConstantPool)) {
4676       // Instruction is side-effect free and constant.
4677 
4678       // If the instruction has uses outside this block or a phi node slot for
4679       // the block, it is not safe to bypass the instruction since it would then
4680       // no longer dominate all its uses.
4681       for (auto &Use : I.uses()) {
4682         User *User = Use.getUser();
4683         if (Instruction *I = dyn_cast<Instruction>(User))
4684           if (I->getParent() == CaseDest)
4685             continue;
4686         if (PHINode *Phi = dyn_cast<PHINode>(User))
4687           if (Phi->getIncomingBlock(Use) == CaseDest)
4688             continue;
4689         return false;
4690       }
4691 
4692       ConstantPool.insert(std::make_pair(&I, C));
4693     } else {
4694       break;
4695     }
4696   }
4697 
4698   // If we did not have a CommonDest before, use the current one.
4699   if (!*CommonDest)
4700     *CommonDest = CaseDest;
4701   // If the destination isn't the common one, abort.
4702   if (CaseDest != *CommonDest)
4703     return false;
4704 
4705   // Get the values for this case from phi nodes in the destination block.
4706   for (PHINode &PHI : (*CommonDest)->phis()) {
4707     int Idx = PHI.getBasicBlockIndex(Pred);
4708     if (Idx == -1)
4709       continue;
4710 
4711     Constant *ConstVal =
4712         LookupConstant(PHI.getIncomingValue(Idx), ConstantPool);
4713     if (!ConstVal)
4714       return false;
4715 
4716     // Be conservative about which kinds of constants we support.
4717     if (!ValidLookupTableConstant(ConstVal, TTI))
4718       return false;
4719 
4720     Res.push_back(std::make_pair(&PHI, ConstVal));
4721   }
4722 
4723   return Res.size() > 0;
4724 }
4725 
4726 // Helper function used to add CaseVal to the list of cases that generate
4727 // Result. Returns the updated number of cases that generate this result.
4728 static uintptr_t MapCaseToResult(ConstantInt *CaseVal,
4729                                  SwitchCaseResultVectorTy &UniqueResults,
4730                                  Constant *Result) {
4731   for (auto &I : UniqueResults) {
4732     if (I.first == Result) {
4733       I.second.push_back(CaseVal);
4734       return I.second.size();
4735     }
4736   }
4737   UniqueResults.push_back(
4738       std::make_pair(Result, SmallVector<ConstantInt *, 4>(1, CaseVal)));
4739   return 1;
4740 }
4741 
4742 // Helper function that initializes a map containing
4743 // results for the PHI node of the common destination block for a switch
4744 // instruction. Returns false if multiple PHI nodes have been found or if
4745 // there is not a common destination block for the switch.
4746 static bool
4747 InitializeUniqueCases(SwitchInst *SI, PHINode *&PHI, BasicBlock *&CommonDest,
4748                       SwitchCaseResultVectorTy &UniqueResults,
4749                       Constant *&DefaultResult, const DataLayout &DL,
4750                       const TargetTransformInfo &TTI,
4751                       uintptr_t MaxUniqueResults, uintptr_t MaxCasesPerResult) {
4752   for (auto &I : SI->cases()) {
4753     ConstantInt *CaseVal = I.getCaseValue();
4754 
4755     // Resulting value at phi nodes for this case value.
4756     SwitchCaseResultsTy Results;
4757     if (!GetCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results,
4758                         DL, TTI))
4759       return false;
4760 
4761     // Only one value per case is permitted.
4762     if (Results.size() > 1)
4763       return false;
4764 
4765     // Add the case->result mapping to UniqueResults.
4766     const uintptr_t NumCasesForResult =
4767         MapCaseToResult(CaseVal, UniqueResults, Results.begin()->second);
4768 
4769     // Early out if there are too many cases for this result.
4770     if (NumCasesForResult > MaxCasesPerResult)
4771       return false;
4772 
4773     // Early out if there are too many unique results.
4774     if (UniqueResults.size() > MaxUniqueResults)
4775       return false;
4776 
4777     // Check the PHI consistency.
4778     if (!PHI)
4779       PHI = Results[0].first;
4780     else if (PHI != Results[0].first)
4781       return false;
4782   }
4783   // Find the default result value.
4784   SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults;
4785   BasicBlock *DefaultDest = SI->getDefaultDest();
4786   GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults,
4787                  DL, TTI);
4788   // If the default value is not found abort unless the default destination
4789   // is unreachable.
4790   DefaultResult =
4791       DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr;
4792   if ((!DefaultResult &&
4793        !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg())))
4794     return false;
4795 
4796   return true;
4797 }
4798 
4799 // Helper function that checks if it is possible to transform a switch with only
4800 // two cases (or two cases + default) that produces a result into a select.
4801 // Example:
4802 // switch (a) {
4803 //   case 10:                %0 = icmp eq i32 %a, 10
4804 //     return 10;            %1 = select i1 %0, i32 10, i32 4
4805 //   case 20:        ---->   %2 = icmp eq i32 %a, 20
4806 //     return 2;             %3 = select i1 %2, i32 2, i32 %1
4807 //   default:
4808 //     return 4;
4809 // }
4810 static Value *ConvertTwoCaseSwitch(const SwitchCaseResultVectorTy &ResultVector,
4811                                    Constant *DefaultResult, Value *Condition,
4812                                    IRBuilder<> &Builder) {
4813   assert(ResultVector.size() == 2 &&
4814          "We should have exactly two unique results at this point");
4815   // If we are selecting between only two cases transform into a simple
4816   // select or a two-way select if default is possible.
4817   if (ResultVector[0].second.size() == 1 &&
4818       ResultVector[1].second.size() == 1) {
4819     ConstantInt *const FirstCase = ResultVector[0].second[0];
4820     ConstantInt *const SecondCase = ResultVector[1].second[0];
4821 
4822     bool DefaultCanTrigger = DefaultResult;
4823     Value *SelectValue = ResultVector[1].first;
4824     if (DefaultCanTrigger) {
4825       Value *const ValueCompare =
4826           Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp");
4827       SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first,
4828                                          DefaultResult, "switch.select");
4829     }
4830     Value *const ValueCompare =
4831         Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp");
4832     return Builder.CreateSelect(ValueCompare, ResultVector[0].first,
4833                                 SelectValue, "switch.select");
4834   }
4835 
4836   return nullptr;
4837 }
4838 
4839 // Helper function to cleanup a switch instruction that has been converted into
4840 // a select, fixing up PHI nodes and basic blocks.
4841 static void RemoveSwitchAfterSelectConversion(SwitchInst *SI, PHINode *PHI,
4842                                               Value *SelectValue,
4843                                               IRBuilder<> &Builder) {
4844   BasicBlock *SelectBB = SI->getParent();
4845   while (PHI->getBasicBlockIndex(SelectBB) >= 0)
4846     PHI->removeIncomingValue(SelectBB);
4847   PHI->addIncoming(SelectValue, SelectBB);
4848 
4849   Builder.CreateBr(PHI->getParent());
4850 
4851   // Remove the switch.
4852   for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
4853     BasicBlock *Succ = SI->getSuccessor(i);
4854 
4855     if (Succ == PHI->getParent())
4856       continue;
4857     Succ->removePredecessor(SelectBB);
4858   }
4859   SI->eraseFromParent();
4860 }
4861 
4862 /// If the switch is only used to initialize one or more
4863 /// phi nodes in a common successor block with only two different
4864 /// constant values, replace the switch with select.
4865 static bool switchToSelect(SwitchInst *SI, IRBuilder<> &Builder,
4866                            const DataLayout &DL,
4867                            const TargetTransformInfo &TTI) {
4868   Value *const Cond = SI->getCondition();
4869   PHINode *PHI = nullptr;
4870   BasicBlock *CommonDest = nullptr;
4871   Constant *DefaultResult;
4872   SwitchCaseResultVectorTy UniqueResults;
4873   // Collect all the cases that will deliver the same value from the switch.
4874   if (!InitializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult,
4875                              DL, TTI, 2, 1))
4876     return false;
4877   // Selects choose between maximum two values.
4878   if (UniqueResults.size() != 2)
4879     return false;
4880   assert(PHI != nullptr && "PHI for value select not found");
4881 
4882   Builder.SetInsertPoint(SI);
4883   Value *SelectValue =
4884       ConvertTwoCaseSwitch(UniqueResults, DefaultResult, Cond, Builder);
4885   if (SelectValue) {
4886     RemoveSwitchAfterSelectConversion(SI, PHI, SelectValue, Builder);
4887     return true;
4888   }
4889   // The switch couldn't be converted into a select.
4890   return false;
4891 }
4892 
4893 namespace {
4894 
4895 /// This class represents a lookup table that can be used to replace a switch.
4896 class SwitchLookupTable {
4897 public:
4898   /// Create a lookup table to use as a switch replacement with the contents
4899   /// of Values, using DefaultValue to fill any holes in the table.
4900   SwitchLookupTable(
4901       Module &M, uint64_t TableSize, ConstantInt *Offset,
4902       const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
4903       Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName);
4904 
4905   /// Build instructions with Builder to retrieve the value at
4906   /// the position given by Index in the lookup table.
4907   Value *BuildLookup(Value *Index, IRBuilder<> &Builder);
4908 
4909   /// Return true if a table with TableSize elements of
4910   /// type ElementType would fit in a target-legal register.
4911   static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize,
4912                                  Type *ElementType);
4913 
4914 private:
4915   // Depending on the contents of the table, it can be represented in
4916   // different ways.
4917   enum {
4918     // For tables where each element contains the same value, we just have to
4919     // store that single value and return it for each lookup.
4920     SingleValueKind,
4921 
4922     // For tables where there is a linear relationship between table index
4923     // and values. We calculate the result with a simple multiplication
4924     // and addition instead of a table lookup.
4925     LinearMapKind,
4926 
4927     // For small tables with integer elements, we can pack them into a bitmap
4928     // that fits into a target-legal register. Values are retrieved by
4929     // shift and mask operations.
4930     BitMapKind,
4931 
4932     // The table is stored as an array of values. Values are retrieved by load
4933     // instructions from the table.
4934     ArrayKind
4935   } Kind;
4936 
4937   // For SingleValueKind, this is the single value.
4938   Constant *SingleValue = nullptr;
4939 
4940   // For BitMapKind, this is the bitmap.
4941   ConstantInt *BitMap = nullptr;
4942   IntegerType *BitMapElementTy = nullptr;
4943 
4944   // For LinearMapKind, these are the constants used to derive the value.
4945   ConstantInt *LinearOffset = nullptr;
4946   ConstantInt *LinearMultiplier = nullptr;
4947 
4948   // For ArrayKind, this is the array.
4949   GlobalVariable *Array = nullptr;
4950 };
4951 
4952 } // end anonymous namespace
4953 
4954 SwitchLookupTable::SwitchLookupTable(
4955     Module &M, uint64_t TableSize, ConstantInt *Offset,
4956     const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
4957     Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName) {
4958   assert(Values.size() && "Can't build lookup table without values!");
4959   assert(TableSize >= Values.size() && "Can't fit values in table!");
4960 
4961   // If all values in the table are equal, this is that value.
4962   SingleValue = Values.begin()->second;
4963 
4964   Type *ValueType = Values.begin()->second->getType();
4965 
4966   // Build up the table contents.
4967   SmallVector<Constant *, 64> TableContents(TableSize);
4968   for (size_t I = 0, E = Values.size(); I != E; ++I) {
4969     ConstantInt *CaseVal = Values[I].first;
4970     Constant *CaseRes = Values[I].second;
4971     assert(CaseRes->getType() == ValueType);
4972 
4973     uint64_t Idx = (CaseVal->getValue() - Offset->getValue()).getLimitedValue();
4974     TableContents[Idx] = CaseRes;
4975 
4976     if (CaseRes != SingleValue)
4977       SingleValue = nullptr;
4978   }
4979 
4980   // Fill in any holes in the table with the default result.
4981   if (Values.size() < TableSize) {
4982     assert(DefaultValue &&
4983            "Need a default value to fill the lookup table holes.");
4984     assert(DefaultValue->getType() == ValueType);
4985     for (uint64_t I = 0; I < TableSize; ++I) {
4986       if (!TableContents[I])
4987         TableContents[I] = DefaultValue;
4988     }
4989 
4990     if (DefaultValue != SingleValue)
4991       SingleValue = nullptr;
4992   }
4993 
4994   // If each element in the table contains the same value, we only need to store
4995   // that single value.
4996   if (SingleValue) {
4997     Kind = SingleValueKind;
4998     return;
4999   }
5000 
5001   // Check if we can derive the value with a linear transformation from the
5002   // table index.
5003   if (isa<IntegerType>(ValueType)) {
5004     bool LinearMappingPossible = true;
5005     APInt PrevVal;
5006     APInt DistToPrev;
5007     assert(TableSize >= 2 && "Should be a SingleValue table.");
5008     // Check if there is the same distance between two consecutive values.
5009     for (uint64_t I = 0; I < TableSize; ++I) {
5010       ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]);
5011       if (!ConstVal) {
5012         // This is an undef. We could deal with it, but undefs in lookup tables
5013         // are very seldom. It's probably not worth the additional complexity.
5014         LinearMappingPossible = false;
5015         break;
5016       }
5017       const APInt &Val = ConstVal->getValue();
5018       if (I != 0) {
5019         APInt Dist = Val - PrevVal;
5020         if (I == 1) {
5021           DistToPrev = Dist;
5022         } else if (Dist != DistToPrev) {
5023           LinearMappingPossible = false;
5024           break;
5025         }
5026       }
5027       PrevVal = Val;
5028     }
5029     if (LinearMappingPossible) {
5030       LinearOffset = cast<ConstantInt>(TableContents[0]);
5031       LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev);
5032       Kind = LinearMapKind;
5033       ++NumLinearMaps;
5034       return;
5035     }
5036   }
5037 
5038   // If the type is integer and the table fits in a register, build a bitmap.
5039   if (WouldFitInRegister(DL, TableSize, ValueType)) {
5040     IntegerType *IT = cast<IntegerType>(ValueType);
5041     APInt TableInt(TableSize * IT->getBitWidth(), 0);
5042     for (uint64_t I = TableSize; I > 0; --I) {
5043       TableInt <<= IT->getBitWidth();
5044       // Insert values into the bitmap. Undef values are set to zero.
5045       if (!isa<UndefValue>(TableContents[I - 1])) {
5046         ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]);
5047         TableInt |= Val->getValue().zext(TableInt.getBitWidth());
5048       }
5049     }
5050     BitMap = ConstantInt::get(M.getContext(), TableInt);
5051     BitMapElementTy = IT;
5052     Kind = BitMapKind;
5053     ++NumBitMaps;
5054     return;
5055   }
5056 
5057   // Store the table in an array.
5058   ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize);
5059   Constant *Initializer = ConstantArray::get(ArrayTy, TableContents);
5060 
5061   Array = new GlobalVariable(M, ArrayTy, /*constant=*/true,
5062                              GlobalVariable::PrivateLinkage, Initializer,
5063                              "switch.table." + FuncName);
5064   Array->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
5065   // Set the alignment to that of an array items. We will be only loading one
5066   // value out of it.
5067   Array->setAlignment(DL.getPrefTypeAlignment(ValueType));
5068   Kind = ArrayKind;
5069 }
5070 
5071 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) {
5072   switch (Kind) {
5073   case SingleValueKind:
5074     return SingleValue;
5075   case LinearMapKind: {
5076     // Derive the result value from the input value.
5077     Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(),
5078                                           false, "switch.idx.cast");
5079     if (!LinearMultiplier->isOne())
5080       Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult");
5081     if (!LinearOffset->isZero())
5082       Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset");
5083     return Result;
5084   }
5085   case BitMapKind: {
5086     // Type of the bitmap (e.g. i59).
5087     IntegerType *MapTy = BitMap->getType();
5088 
5089     // Cast Index to the same type as the bitmap.
5090     // Note: The Index is <= the number of elements in the table, so
5091     // truncating it to the width of the bitmask is safe.
5092     Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast");
5093 
5094     // Multiply the shift amount by the element width.
5095     ShiftAmt = Builder.CreateMul(
5096         ShiftAmt, ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()),
5097         "switch.shiftamt");
5098 
5099     // Shift down.
5100     Value *DownShifted =
5101         Builder.CreateLShr(BitMap, ShiftAmt, "switch.downshift");
5102     // Mask off.
5103     return Builder.CreateTrunc(DownShifted, BitMapElementTy, "switch.masked");
5104   }
5105   case ArrayKind: {
5106     // Make sure the table index will not overflow when treated as signed.
5107     IntegerType *IT = cast<IntegerType>(Index->getType());
5108     uint64_t TableSize =
5109         Array->getInitializer()->getType()->getArrayNumElements();
5110     if (TableSize > (1ULL << (IT->getBitWidth() - 1)))
5111       Index = Builder.CreateZExt(
5112           Index, IntegerType::get(IT->getContext(), IT->getBitWidth() + 1),
5113           "switch.tableidx.zext");
5114 
5115     Value *GEPIndices[] = {Builder.getInt32(0), Index};
5116     Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array,
5117                                            GEPIndices, "switch.gep");
5118     return Builder.CreateLoad(
5119         cast<ArrayType>(Array->getValueType())->getElementType(), GEP,
5120         "switch.load");
5121   }
5122   }
5123   llvm_unreachable("Unknown lookup table kind!");
5124 }
5125 
5126 bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL,
5127                                            uint64_t TableSize,
5128                                            Type *ElementType) {
5129   auto *IT = dyn_cast<IntegerType>(ElementType);
5130   if (!IT)
5131     return false;
5132   // FIXME: If the type is wider than it needs to be, e.g. i8 but all values
5133   // are <= 15, we could try to narrow the type.
5134 
5135   // Avoid overflow, fitsInLegalInteger uses unsigned int for the width.
5136   if (TableSize >= UINT_MAX / IT->getBitWidth())
5137     return false;
5138   return DL.fitsInLegalInteger(TableSize * IT->getBitWidth());
5139 }
5140 
5141 /// Determine whether a lookup table should be built for this switch, based on
5142 /// the number of cases, size of the table, and the types of the results.
5143 static bool
5144 ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize,
5145                        const TargetTransformInfo &TTI, const DataLayout &DL,
5146                        const SmallDenseMap<PHINode *, Type *> &ResultTypes) {
5147   if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10)
5148     return false; // TableSize overflowed, or mul below might overflow.
5149 
5150   bool AllTablesFitInRegister = true;
5151   bool HasIllegalType = false;
5152   for (const auto &I : ResultTypes) {
5153     Type *Ty = I.second;
5154 
5155     // Saturate this flag to true.
5156     HasIllegalType = HasIllegalType || !TTI.isTypeLegal(Ty);
5157 
5158     // Saturate this flag to false.
5159     AllTablesFitInRegister =
5160         AllTablesFitInRegister &&
5161         SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty);
5162 
5163     // If both flags saturate, we're done. NOTE: This *only* works with
5164     // saturating flags, and all flags have to saturate first due to the
5165     // non-deterministic behavior of iterating over a dense map.
5166     if (HasIllegalType && !AllTablesFitInRegister)
5167       break;
5168   }
5169 
5170   // If each table would fit in a register, we should build it anyway.
5171   if (AllTablesFitInRegister)
5172     return true;
5173 
5174   // Don't build a table that doesn't fit in-register if it has illegal types.
5175   if (HasIllegalType)
5176     return false;
5177 
5178   // The table density should be at least 40%. This is the same criterion as for
5179   // jump tables, see SelectionDAGBuilder::handleJTSwitchCase.
5180   // FIXME: Find the best cut-off.
5181   return SI->getNumCases() * 10 >= TableSize * 4;
5182 }
5183 
5184 /// Try to reuse the switch table index compare. Following pattern:
5185 /// \code
5186 ///     if (idx < tablesize)
5187 ///        r = table[idx]; // table does not contain default_value
5188 ///     else
5189 ///        r = default_value;
5190 ///     if (r != default_value)
5191 ///        ...
5192 /// \endcode
5193 /// Is optimized to:
5194 /// \code
5195 ///     cond = idx < tablesize;
5196 ///     if (cond)
5197 ///        r = table[idx];
5198 ///     else
5199 ///        r = default_value;
5200 ///     if (cond)
5201 ///        ...
5202 /// \endcode
5203 /// Jump threading will then eliminate the second if(cond).
5204 static void reuseTableCompare(
5205     User *PhiUser, BasicBlock *PhiBlock, BranchInst *RangeCheckBranch,
5206     Constant *DefaultValue,
5207     const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values) {
5208   ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser);
5209   if (!CmpInst)
5210     return;
5211 
5212   // We require that the compare is in the same block as the phi so that jump
5213   // threading can do its work afterwards.
5214   if (CmpInst->getParent() != PhiBlock)
5215     return;
5216 
5217   Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1));
5218   if (!CmpOp1)
5219     return;
5220 
5221   Value *RangeCmp = RangeCheckBranch->getCondition();
5222   Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType());
5223   Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType());
5224 
5225   // Check if the compare with the default value is constant true or false.
5226   Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
5227                                                  DefaultValue, CmpOp1, true);
5228   if (DefaultConst != TrueConst && DefaultConst != FalseConst)
5229     return;
5230 
5231   // Check if the compare with the case values is distinct from the default
5232   // compare result.
5233   for (auto ValuePair : Values) {
5234     Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
5235                                                 ValuePair.second, CmpOp1, true);
5236     if (!CaseConst || CaseConst == DefaultConst || isa<UndefValue>(CaseConst))
5237       return;
5238     assert((CaseConst == TrueConst || CaseConst == FalseConst) &&
5239            "Expect true or false as compare result.");
5240   }
5241 
5242   // Check if the branch instruction dominates the phi node. It's a simple
5243   // dominance check, but sufficient for our needs.
5244   // Although this check is invariant in the calling loops, it's better to do it
5245   // at this late stage. Practically we do it at most once for a switch.
5246   BasicBlock *BranchBlock = RangeCheckBranch->getParent();
5247   for (auto PI = pred_begin(PhiBlock), E = pred_end(PhiBlock); PI != E; ++PI) {
5248     BasicBlock *Pred = *PI;
5249     if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock)
5250       return;
5251   }
5252 
5253   if (DefaultConst == FalseConst) {
5254     // The compare yields the same result. We can replace it.
5255     CmpInst->replaceAllUsesWith(RangeCmp);
5256     ++NumTableCmpReuses;
5257   } else {
5258     // The compare yields the same result, just inverted. We can replace it.
5259     Value *InvertedTableCmp = BinaryOperator::CreateXor(
5260         RangeCmp, ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp",
5261         RangeCheckBranch);
5262     CmpInst->replaceAllUsesWith(InvertedTableCmp);
5263     ++NumTableCmpReuses;
5264   }
5265 }
5266 
5267 /// If the switch is only used to initialize one or more phi nodes in a common
5268 /// successor block with different constant values, replace the switch with
5269 /// lookup tables.
5270 static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder,
5271                                 const DataLayout &DL,
5272                                 const TargetTransformInfo &TTI) {
5273   assert(SI->getNumCases() > 1 && "Degenerate switch?");
5274 
5275   Function *Fn = SI->getParent()->getParent();
5276   // Only build lookup table when we have a target that supports it or the
5277   // attribute is not set.
5278   if (!TTI.shouldBuildLookupTables() ||
5279       (Fn->getFnAttribute("no-jump-tables").getValueAsString() == "true"))
5280     return false;
5281 
5282   // FIXME: If the switch is too sparse for a lookup table, perhaps we could
5283   // split off a dense part and build a lookup table for that.
5284 
5285   // FIXME: This creates arrays of GEPs to constant strings, which means each
5286   // GEP needs a runtime relocation in PIC code. We should just build one big
5287   // string and lookup indices into that.
5288 
5289   // Ignore switches with less than three cases. Lookup tables will not make
5290   // them faster, so we don't analyze them.
5291   if (SI->getNumCases() < 3)
5292     return false;
5293 
5294   // Figure out the corresponding result for each case value and phi node in the
5295   // common destination, as well as the min and max case values.
5296   assert(!empty(SI->cases()));
5297   SwitchInst::CaseIt CI = SI->case_begin();
5298   ConstantInt *MinCaseVal = CI->getCaseValue();
5299   ConstantInt *MaxCaseVal = CI->getCaseValue();
5300 
5301   BasicBlock *CommonDest = nullptr;
5302 
5303   using ResultListTy = SmallVector<std::pair<ConstantInt *, Constant *>, 4>;
5304   SmallDenseMap<PHINode *, ResultListTy> ResultLists;
5305 
5306   SmallDenseMap<PHINode *, Constant *> DefaultResults;
5307   SmallDenseMap<PHINode *, Type *> ResultTypes;
5308   SmallVector<PHINode *, 4> PHIs;
5309 
5310   for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) {
5311     ConstantInt *CaseVal = CI->getCaseValue();
5312     if (CaseVal->getValue().slt(MinCaseVal->getValue()))
5313       MinCaseVal = CaseVal;
5314     if (CaseVal->getValue().sgt(MaxCaseVal->getValue()))
5315       MaxCaseVal = CaseVal;
5316 
5317     // Resulting value at phi nodes for this case value.
5318     using ResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>;
5319     ResultsTy Results;
5320     if (!GetCaseResults(SI, CaseVal, CI->getCaseSuccessor(), &CommonDest,
5321                         Results, DL, TTI))
5322       return false;
5323 
5324     // Append the result from this case to the list for each phi.
5325     for (const auto &I : Results) {
5326       PHINode *PHI = I.first;
5327       Constant *Value = I.second;
5328       if (!ResultLists.count(PHI))
5329         PHIs.push_back(PHI);
5330       ResultLists[PHI].push_back(std::make_pair(CaseVal, Value));
5331     }
5332   }
5333 
5334   // Keep track of the result types.
5335   for (PHINode *PHI : PHIs) {
5336     ResultTypes[PHI] = ResultLists[PHI][0].second->getType();
5337   }
5338 
5339   uint64_t NumResults = ResultLists[PHIs[0]].size();
5340   APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue();
5341   uint64_t TableSize = RangeSpread.getLimitedValue() + 1;
5342   bool TableHasHoles = (NumResults < TableSize);
5343 
5344   // If the table has holes, we need a constant result for the default case
5345   // or a bitmask that fits in a register.
5346   SmallVector<std::pair<PHINode *, Constant *>, 4> DefaultResultsList;
5347   bool HasDefaultResults =
5348       GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest,
5349                      DefaultResultsList, DL, TTI);
5350 
5351   bool NeedMask = (TableHasHoles && !HasDefaultResults);
5352   if (NeedMask) {
5353     // As an extra penalty for the validity test we require more cases.
5354     if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark).
5355       return false;
5356     if (!DL.fitsInLegalInteger(TableSize))
5357       return false;
5358   }
5359 
5360   for (const auto &I : DefaultResultsList) {
5361     PHINode *PHI = I.first;
5362     Constant *Result = I.second;
5363     DefaultResults[PHI] = Result;
5364   }
5365 
5366   if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes))
5367     return false;
5368 
5369   // Create the BB that does the lookups.
5370   Module &Mod = *CommonDest->getParent()->getParent();
5371   BasicBlock *LookupBB = BasicBlock::Create(
5372       Mod.getContext(), "switch.lookup", CommonDest->getParent(), CommonDest);
5373 
5374   // Compute the table index value.
5375   Builder.SetInsertPoint(SI);
5376   Value *TableIndex;
5377   if (MinCaseVal->isNullValue())
5378     TableIndex = SI->getCondition();
5379   else
5380     TableIndex = Builder.CreateSub(SI->getCondition(), MinCaseVal,
5381                                    "switch.tableidx");
5382 
5383   // Compute the maximum table size representable by the integer type we are
5384   // switching upon.
5385   unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits();
5386   uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize;
5387   assert(MaxTableSize >= TableSize &&
5388          "It is impossible for a switch to have more entries than the max "
5389          "representable value of its input integer type's size.");
5390 
5391   // If the default destination is unreachable, or if the lookup table covers
5392   // all values of the conditional variable, branch directly to the lookup table
5393   // BB. Otherwise, check that the condition is within the case range.
5394   const bool DefaultIsReachable =
5395       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
5396   const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize);
5397   BranchInst *RangeCheckBranch = nullptr;
5398 
5399   if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
5400     Builder.CreateBr(LookupBB);
5401     // Note: We call removeProdecessor later since we need to be able to get the
5402     // PHI value for the default case in case we're using a bit mask.
5403   } else {
5404     Value *Cmp = Builder.CreateICmpULT(
5405         TableIndex, ConstantInt::get(MinCaseVal->getType(), TableSize));
5406     RangeCheckBranch =
5407         Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest());
5408   }
5409 
5410   // Populate the BB that does the lookups.
5411   Builder.SetInsertPoint(LookupBB);
5412 
5413   if (NeedMask) {
5414     // Before doing the lookup, we do the hole check. The LookupBB is therefore
5415     // re-purposed to do the hole check, and we create a new LookupBB.
5416     BasicBlock *MaskBB = LookupBB;
5417     MaskBB->setName("switch.hole_check");
5418     LookupBB = BasicBlock::Create(Mod.getContext(), "switch.lookup",
5419                                   CommonDest->getParent(), CommonDest);
5420 
5421     // Make the mask's bitwidth at least 8-bit and a power-of-2 to avoid
5422     // unnecessary illegal types.
5423     uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL));
5424     APInt MaskInt(TableSizePowOf2, 0);
5425     APInt One(TableSizePowOf2, 1);
5426     // Build bitmask; fill in a 1 bit for every case.
5427     const ResultListTy &ResultList = ResultLists[PHIs[0]];
5428     for (size_t I = 0, E = ResultList.size(); I != E; ++I) {
5429       uint64_t Idx = (ResultList[I].first->getValue() - MinCaseVal->getValue())
5430                          .getLimitedValue();
5431       MaskInt |= One << Idx;
5432     }
5433     ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt);
5434 
5435     // Get the TableIndex'th bit of the bitmask.
5436     // If this bit is 0 (meaning hole) jump to the default destination,
5437     // else continue with table lookup.
5438     IntegerType *MapTy = TableMask->getType();
5439     Value *MaskIndex =
5440         Builder.CreateZExtOrTrunc(TableIndex, MapTy, "switch.maskindex");
5441     Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, "switch.shifted");
5442     Value *LoBit = Builder.CreateTrunc(
5443         Shifted, Type::getInt1Ty(Mod.getContext()), "switch.lobit");
5444     Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest());
5445 
5446     Builder.SetInsertPoint(LookupBB);
5447     AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, SI->getParent());
5448   }
5449 
5450   if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
5451     // We cached PHINodes in PHIs. To avoid accessing deleted PHINodes later,
5452     // do not delete PHINodes here.
5453     SI->getDefaultDest()->removePredecessor(SI->getParent(),
5454                                             /*KeepOneInputPHIs=*/true);
5455   }
5456 
5457   bool ReturnedEarly = false;
5458   for (PHINode *PHI : PHIs) {
5459     const ResultListTy &ResultList = ResultLists[PHI];
5460 
5461     // If using a bitmask, use any value to fill the lookup table holes.
5462     Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI];
5463     StringRef FuncName = Fn->getName();
5464     SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultList, DV, DL,
5465                             FuncName);
5466 
5467     Value *Result = Table.BuildLookup(TableIndex, Builder);
5468 
5469     // If the result is used to return immediately from the function, we want to
5470     // do that right here.
5471     if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->user_begin()) &&
5472         PHI->user_back() == CommonDest->getFirstNonPHIOrDbg()) {
5473       Builder.CreateRet(Result);
5474       ReturnedEarly = true;
5475       break;
5476     }
5477 
5478     // Do a small peephole optimization: re-use the switch table compare if
5479     // possible.
5480     if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) {
5481       BasicBlock *PhiBlock = PHI->getParent();
5482       // Search for compare instructions which use the phi.
5483       for (auto *User : PHI->users()) {
5484         reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList);
5485       }
5486     }
5487 
5488     PHI->addIncoming(Result, LookupBB);
5489   }
5490 
5491   if (!ReturnedEarly)
5492     Builder.CreateBr(CommonDest);
5493 
5494   // Remove the switch.
5495   for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
5496     BasicBlock *Succ = SI->getSuccessor(i);
5497 
5498     if (Succ == SI->getDefaultDest())
5499       continue;
5500     Succ->removePredecessor(SI->getParent());
5501   }
5502   SI->eraseFromParent();
5503 
5504   ++NumLookupTables;
5505   if (NeedMask)
5506     ++NumLookupTablesHoles;
5507   return true;
5508 }
5509 
5510 static bool isSwitchDense(ArrayRef<int64_t> Values) {
5511   // See also SelectionDAGBuilder::isDense(), which this function was based on.
5512   uint64_t Diff = (uint64_t)Values.back() - (uint64_t)Values.front();
5513   uint64_t Range = Diff + 1;
5514   uint64_t NumCases = Values.size();
5515   // 40% is the default density for building a jump table in optsize/minsize mode.
5516   uint64_t MinDensity = 40;
5517 
5518   return NumCases * 100 >= Range * MinDensity;
5519 }
5520 
5521 /// Try to transform a switch that has "holes" in it to a contiguous sequence
5522 /// of cases.
5523 ///
5524 /// A switch such as: switch(i) {case 5: case 9: case 13: case 17:} can be
5525 /// range-reduced to: switch ((i-5) / 4) {case 0: case 1: case 2: case 3:}.
5526 ///
5527 /// This converts a sparse switch into a dense switch which allows better
5528 /// lowering and could also allow transforming into a lookup table.
5529 static bool ReduceSwitchRange(SwitchInst *SI, IRBuilder<> &Builder,
5530                               const DataLayout &DL,
5531                               const TargetTransformInfo &TTI) {
5532   auto *CondTy = cast<IntegerType>(SI->getCondition()->getType());
5533   if (CondTy->getIntegerBitWidth() > 64 ||
5534       !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth()))
5535     return false;
5536   // Only bother with this optimization if there are more than 3 switch cases;
5537   // SDAG will only bother creating jump tables for 4 or more cases.
5538   if (SI->getNumCases() < 4)
5539     return false;
5540 
5541   // This transform is agnostic to the signedness of the input or case values. We
5542   // can treat the case values as signed or unsigned. We can optimize more common
5543   // cases such as a sequence crossing zero {-4,0,4,8} if we interpret case values
5544   // as signed.
5545   SmallVector<int64_t,4> Values;
5546   for (auto &C : SI->cases())
5547     Values.push_back(C.getCaseValue()->getValue().getSExtValue());
5548   llvm::sort(Values);
5549 
5550   // If the switch is already dense, there's nothing useful to do here.
5551   if (isSwitchDense(Values))
5552     return false;
5553 
5554   // First, transform the values such that they start at zero and ascend.
5555   int64_t Base = Values[0];
5556   for (auto &V : Values)
5557     V -= (uint64_t)(Base);
5558 
5559   // Now we have signed numbers that have been shifted so that, given enough
5560   // precision, there are no negative values. Since the rest of the transform
5561   // is bitwise only, we switch now to an unsigned representation.
5562   uint64_t GCD = 0;
5563   for (auto &V : Values)
5564     GCD = GreatestCommonDivisor64(GCD, (uint64_t)V);
5565 
5566   // This transform can be done speculatively because it is so cheap - it results
5567   // in a single rotate operation being inserted. This can only happen if the
5568   // factor extracted is a power of 2.
5569   // FIXME: If the GCD is an odd number we can multiply by the multiplicative
5570   // inverse of GCD and then perform this transform.
5571   // FIXME: It's possible that optimizing a switch on powers of two might also
5572   // be beneficial - flag values are often powers of two and we could use a CLZ
5573   // as the key function.
5574   if (GCD <= 1 || !isPowerOf2_64(GCD))
5575     // No common divisor found or too expensive to compute key function.
5576     return false;
5577 
5578   unsigned Shift = Log2_64(GCD);
5579   for (auto &V : Values)
5580     V = (int64_t)((uint64_t)V >> Shift);
5581 
5582   if (!isSwitchDense(Values))
5583     // Transform didn't create a dense switch.
5584     return false;
5585 
5586   // The obvious transform is to shift the switch condition right and emit a
5587   // check that the condition actually cleanly divided by GCD, i.e.
5588   //   C & (1 << Shift - 1) == 0
5589   // inserting a new CFG edge to handle the case where it didn't divide cleanly.
5590   //
5591   // A cheaper way of doing this is a simple ROTR(C, Shift). This performs the
5592   // shift and puts the shifted-off bits in the uppermost bits. If any of these
5593   // are nonzero then the switch condition will be very large and will hit the
5594   // default case.
5595 
5596   auto *Ty = cast<IntegerType>(SI->getCondition()->getType());
5597   Builder.SetInsertPoint(SI);
5598   auto *ShiftC = ConstantInt::get(Ty, Shift);
5599   auto *Sub = Builder.CreateSub(SI->getCondition(), ConstantInt::get(Ty, Base));
5600   auto *LShr = Builder.CreateLShr(Sub, ShiftC);
5601   auto *Shl = Builder.CreateShl(Sub, Ty->getBitWidth() - Shift);
5602   auto *Rot = Builder.CreateOr(LShr, Shl);
5603   SI->replaceUsesOfWith(SI->getCondition(), Rot);
5604 
5605   for (auto Case : SI->cases()) {
5606     auto *Orig = Case.getCaseValue();
5607     auto Sub = Orig->getValue() - APInt(Ty->getBitWidth(), Base);
5608     Case.setValue(
5609         cast<ConstantInt>(ConstantInt::get(Ty, Sub.lshr(ShiftC->getValue()))));
5610   }
5611   return true;
5612 }
5613 
5614 bool SimplifyCFGOpt::SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) {
5615   BasicBlock *BB = SI->getParent();
5616 
5617   if (isValueEqualityComparison(SI)) {
5618     // If we only have one predecessor, and if it is a branch on this value,
5619     // see if that predecessor totally determines the outcome of this switch.
5620     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
5621       if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder))
5622         return requestResimplify();
5623 
5624     Value *Cond = SI->getCondition();
5625     if (SelectInst *Select = dyn_cast<SelectInst>(Cond))
5626       if (SimplifySwitchOnSelect(SI, Select))
5627         return requestResimplify();
5628 
5629     // If the block only contains the switch, see if we can fold the block
5630     // away into any preds.
5631     if (SI == &*BB->instructionsWithoutDebug().begin())
5632       if (FoldValueComparisonIntoPredecessors(SI, Builder))
5633         return requestResimplify();
5634   }
5635 
5636   // Try to transform the switch into an icmp and a branch.
5637   if (TurnSwitchRangeIntoICmp(SI, Builder))
5638     return requestResimplify();
5639 
5640   // Remove unreachable cases.
5641   if (eliminateDeadSwitchCases(SI, Options.AC, DL))
5642     return requestResimplify();
5643 
5644   if (switchToSelect(SI, Builder, DL, TTI))
5645     return requestResimplify();
5646 
5647   if (Options.ForwardSwitchCondToPhi && ForwardSwitchConditionToPHI(SI))
5648     return requestResimplify();
5649 
5650   // The conversion from switch to lookup tables results in difficult-to-analyze
5651   // code and makes pruning branches much harder. This is a problem if the
5652   // switch expression itself can still be restricted as a result of inlining or
5653   // CVP. Therefore, only apply this transformation during late stages of the
5654   // optimisation pipeline.
5655   if (Options.ConvertSwitchToLookupTable &&
5656       SwitchToLookupTable(SI, Builder, DL, TTI))
5657     return requestResimplify();
5658 
5659   if (ReduceSwitchRange(SI, Builder, DL, TTI))
5660     return requestResimplify();
5661 
5662   return false;
5663 }
5664 
5665 bool SimplifyCFGOpt::SimplifyIndirectBr(IndirectBrInst *IBI) {
5666   BasicBlock *BB = IBI->getParent();
5667   bool Changed = false;
5668 
5669   // Eliminate redundant destinations.
5670   SmallPtrSet<Value *, 8> Succs;
5671   for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
5672     BasicBlock *Dest = IBI->getDestination(i);
5673     if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) {
5674       Dest->removePredecessor(BB);
5675       IBI->removeDestination(i);
5676       --i;
5677       --e;
5678       Changed = true;
5679     }
5680   }
5681 
5682   if (IBI->getNumDestinations() == 0) {
5683     // If the indirectbr has no successors, change it to unreachable.
5684     new UnreachableInst(IBI->getContext(), IBI);
5685     EraseTerminatorAndDCECond(IBI);
5686     return true;
5687   }
5688 
5689   if (IBI->getNumDestinations() == 1) {
5690     // If the indirectbr has one successor, change it to a direct branch.
5691     BranchInst::Create(IBI->getDestination(0), IBI);
5692     EraseTerminatorAndDCECond(IBI);
5693     return true;
5694   }
5695 
5696   if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) {
5697     if (SimplifyIndirectBrOnSelect(IBI, SI))
5698       return requestResimplify();
5699   }
5700   return Changed;
5701 }
5702 
5703 /// Given an block with only a single landing pad and a unconditional branch
5704 /// try to find another basic block which this one can be merged with.  This
5705 /// handles cases where we have multiple invokes with unique landing pads, but
5706 /// a shared handler.
5707 ///
5708 /// We specifically choose to not worry about merging non-empty blocks
5709 /// here.  That is a PRE/scheduling problem and is best solved elsewhere.  In
5710 /// practice, the optimizer produces empty landing pad blocks quite frequently
5711 /// when dealing with exception dense code.  (see: instcombine, gvn, if-else
5712 /// sinking in this file)
5713 ///
5714 /// This is primarily a code size optimization.  We need to avoid performing
5715 /// any transform which might inhibit optimization (such as our ability to
5716 /// specialize a particular handler via tail commoning).  We do this by not
5717 /// merging any blocks which require us to introduce a phi.  Since the same
5718 /// values are flowing through both blocks, we don't lose any ability to
5719 /// specialize.  If anything, we make such specialization more likely.
5720 ///
5721 /// TODO - This transformation could remove entries from a phi in the target
5722 /// block when the inputs in the phi are the same for the two blocks being
5723 /// merged.  In some cases, this could result in removal of the PHI entirely.
5724 static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI,
5725                                  BasicBlock *BB) {
5726   auto Succ = BB->getUniqueSuccessor();
5727   assert(Succ);
5728   // If there's a phi in the successor block, we'd likely have to introduce
5729   // a phi into the merged landing pad block.
5730   if (isa<PHINode>(*Succ->begin()))
5731     return false;
5732 
5733   for (BasicBlock *OtherPred : predecessors(Succ)) {
5734     if (BB == OtherPred)
5735       continue;
5736     BasicBlock::iterator I = OtherPred->begin();
5737     LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I);
5738     if (!LPad2 || !LPad2->isIdenticalTo(LPad))
5739       continue;
5740     for (++I; isa<DbgInfoIntrinsic>(I); ++I)
5741       ;
5742     BranchInst *BI2 = dyn_cast<BranchInst>(I);
5743     if (!BI2 || !BI2->isIdenticalTo(BI))
5744       continue;
5745 
5746     // We've found an identical block.  Update our predecessors to take that
5747     // path instead and make ourselves dead.
5748     SmallPtrSet<BasicBlock *, 16> Preds;
5749     Preds.insert(pred_begin(BB), pred_end(BB));
5750     for (BasicBlock *Pred : Preds) {
5751       InvokeInst *II = cast<InvokeInst>(Pred->getTerminator());
5752       assert(II->getNormalDest() != BB && II->getUnwindDest() == BB &&
5753              "unexpected successor");
5754       II->setUnwindDest(OtherPred);
5755     }
5756 
5757     // The debug info in OtherPred doesn't cover the merged control flow that
5758     // used to go through BB.  We need to delete it or update it.
5759     for (auto I = OtherPred->begin(), E = OtherPred->end(); I != E;) {
5760       Instruction &Inst = *I;
5761       I++;
5762       if (isa<DbgInfoIntrinsic>(Inst))
5763         Inst.eraseFromParent();
5764     }
5765 
5766     SmallPtrSet<BasicBlock *, 16> Succs;
5767     Succs.insert(succ_begin(BB), succ_end(BB));
5768     for (BasicBlock *Succ : Succs) {
5769       Succ->removePredecessor(BB);
5770     }
5771 
5772     IRBuilder<> Builder(BI);
5773     Builder.CreateUnreachable();
5774     BI->eraseFromParent();
5775     return true;
5776   }
5777   return false;
5778 }
5779 
5780 bool SimplifyCFGOpt::SimplifyUncondBranch(BranchInst *BI,
5781                                           IRBuilder<> &Builder) {
5782   BasicBlock *BB = BI->getParent();
5783   BasicBlock *Succ = BI->getSuccessor(0);
5784 
5785   // If the Terminator is the only non-phi instruction, simplify the block.
5786   // If LoopHeader is provided, check if the block or its successor is a loop
5787   // header. (This is for early invocations before loop simplify and
5788   // vectorization to keep canonical loop forms for nested loops. These blocks
5789   // can be eliminated when the pass is invoked later in the back-end.)
5790   // Note that if BB has only one predecessor then we do not introduce new
5791   // backedge, so we can eliminate BB.
5792   bool NeedCanonicalLoop =
5793       Options.NeedCanonicalLoop &&
5794       (LoopHeaders && BB->hasNPredecessorsOrMore(2) &&
5795        (LoopHeaders->count(BB) || LoopHeaders->count(Succ)));
5796   BasicBlock::iterator I = BB->getFirstNonPHIOrDbg()->getIterator();
5797   if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() &&
5798       !NeedCanonicalLoop && TryToSimplifyUncondBranchFromEmptyBlock(BB))
5799     return true;
5800 
5801   // If the only instruction in the block is a seteq/setne comparison against a
5802   // constant, try to simplify the block.
5803   if (ICmpInst *ICI = dyn_cast<ICmpInst>(I))
5804     if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) {
5805       for (++I; isa<DbgInfoIntrinsic>(I); ++I)
5806         ;
5807       if (I->isTerminator() &&
5808           tryToSimplifyUncondBranchWithICmpInIt(ICI, Builder))
5809         return true;
5810     }
5811 
5812   // See if we can merge an empty landing pad block with another which is
5813   // equivalent.
5814   if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) {
5815     for (++I; isa<DbgInfoIntrinsic>(I); ++I)
5816       ;
5817     if (I->isTerminator() && TryToMergeLandingPad(LPad, BI, BB))
5818       return true;
5819   }
5820 
5821   // If this basic block is ONLY a compare and a branch, and if a predecessor
5822   // branches to us and our successor, fold the comparison into the
5823   // predecessor and use logical operations to update the incoming value
5824   // for PHI nodes in common successor.
5825   if (FoldBranchToCommonDest(BI, nullptr, Options.BonusInstThreshold))
5826     return requestResimplify();
5827   return false;
5828 }
5829 
5830 static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) {
5831   BasicBlock *PredPred = nullptr;
5832   for (auto *P : predecessors(BB)) {
5833     BasicBlock *PPred = P->getSinglePredecessor();
5834     if (!PPred || (PredPred && PredPred != PPred))
5835       return nullptr;
5836     PredPred = PPred;
5837   }
5838   return PredPred;
5839 }
5840 
5841 bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) {
5842   BasicBlock *BB = BI->getParent();
5843   const Function *Fn = BB->getParent();
5844   if (Fn && Fn->hasFnAttribute(Attribute::OptForFuzzing))
5845     return false;
5846 
5847   // Conditional branch
5848   if (isValueEqualityComparison(BI)) {
5849     // If we only have one predecessor, and if it is a branch on this value,
5850     // see if that predecessor totally determines the outcome of this
5851     // switch.
5852     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
5853       if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder))
5854         return requestResimplify();
5855 
5856     // This block must be empty, except for the setcond inst, if it exists.
5857     // Ignore dbg intrinsics.
5858     auto I = BB->instructionsWithoutDebug().begin();
5859     if (&*I == BI) {
5860       if (FoldValueComparisonIntoPredecessors(BI, Builder))
5861         return requestResimplify();
5862     } else if (&*I == cast<Instruction>(BI->getCondition())) {
5863       ++I;
5864       if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder))
5865         return requestResimplify();
5866     }
5867   }
5868 
5869   // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction.
5870   if (SimplifyBranchOnICmpChain(BI, Builder, DL))
5871     return true;
5872 
5873   // If this basic block has dominating predecessor blocks and the dominating
5874   // blocks' conditions imply BI's condition, we know the direction of BI.
5875   Optional<bool> Imp = isImpliedByDomCondition(BI->getCondition(), BI, DL);
5876   if (Imp) {
5877     // Turn this into a branch on constant.
5878     auto *OldCond = BI->getCondition();
5879     ConstantInt *TorF = *Imp ? ConstantInt::getTrue(BB->getContext())
5880                              : ConstantInt::getFalse(BB->getContext());
5881     BI->setCondition(TorF);
5882     RecursivelyDeleteTriviallyDeadInstructions(OldCond);
5883     return requestResimplify();
5884   }
5885 
5886   // If this basic block is ONLY a compare and a branch, and if a predecessor
5887   // branches to us and one of our successors, fold the comparison into the
5888   // predecessor and use logical operations to pick the right destination.
5889   if (FoldBranchToCommonDest(BI, nullptr, Options.BonusInstThreshold))
5890     return requestResimplify();
5891 
5892   // We have a conditional branch to two blocks that are only reachable
5893   // from BI.  We know that the condbr dominates the two blocks, so see if
5894   // there is any identical code in the "then" and "else" blocks.  If so, we
5895   // can hoist it up to the branching block.
5896   if (BI->getSuccessor(0)->getSinglePredecessor()) {
5897     if (BI->getSuccessor(1)->getSinglePredecessor()) {
5898       if (HoistThenElseCodeToIf(BI, TTI))
5899         return requestResimplify();
5900     } else {
5901       // If Successor #1 has multiple preds, we may be able to conditionally
5902       // execute Successor #0 if it branches to Successor #1.
5903       Instruction *Succ0TI = BI->getSuccessor(0)->getTerminator();
5904       if (Succ0TI->getNumSuccessors() == 1 &&
5905           Succ0TI->getSuccessor(0) == BI->getSuccessor(1))
5906         if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), TTI))
5907           return requestResimplify();
5908     }
5909   } else if (BI->getSuccessor(1)->getSinglePredecessor()) {
5910     // If Successor #0 has multiple preds, we may be able to conditionally
5911     // execute Successor #1 if it branches to Successor #0.
5912     Instruction *Succ1TI = BI->getSuccessor(1)->getTerminator();
5913     if (Succ1TI->getNumSuccessors() == 1 &&
5914         Succ1TI->getSuccessor(0) == BI->getSuccessor(0))
5915       if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), TTI))
5916         return requestResimplify();
5917   }
5918 
5919   // If this is a branch on a phi node in the current block, thread control
5920   // through this block if any PHI node entries are constants.
5921   if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition()))
5922     if (PN->getParent() == BI->getParent())
5923       if (FoldCondBranchOnPHI(BI, DL, Options.AC))
5924         return requestResimplify();
5925 
5926   // Scan predecessor blocks for conditional branches.
5927   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
5928     if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
5929       if (PBI != BI && PBI->isConditional())
5930         if (SimplifyCondBranchToCondBranch(PBI, BI, DL))
5931           return requestResimplify();
5932 
5933   // Look for diamond patterns.
5934   if (MergeCondStores)
5935     if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB))
5936       if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator()))
5937         if (PBI != BI && PBI->isConditional())
5938           if (mergeConditionalStores(PBI, BI, DL))
5939             return requestResimplify();
5940 
5941   return false;
5942 }
5943 
5944 /// Check if passing a value to an instruction will cause undefined behavior.
5945 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I) {
5946   Constant *C = dyn_cast<Constant>(V);
5947   if (!C)
5948     return false;
5949 
5950   if (I->use_empty())
5951     return false;
5952 
5953   if (C->isNullValue() || isa<UndefValue>(C)) {
5954     // Only look at the first use, avoid hurting compile time with long uselists
5955     User *Use = *I->user_begin();
5956 
5957     // Now make sure that there are no instructions in between that can alter
5958     // control flow (eg. calls)
5959     for (BasicBlock::iterator
5960              i = ++BasicBlock::iterator(I),
5961              UI = BasicBlock::iterator(dyn_cast<Instruction>(Use));
5962          i != UI; ++i)
5963       if (i == I->getParent()->end() || i->mayHaveSideEffects())
5964         return false;
5965 
5966     // Look through GEPs. A load from a GEP derived from NULL is still undefined
5967     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use))
5968       if (GEP->getPointerOperand() == I)
5969         return passingValueIsAlwaysUndefined(V, GEP);
5970 
5971     // Look through bitcasts.
5972     if (BitCastInst *BC = dyn_cast<BitCastInst>(Use))
5973       return passingValueIsAlwaysUndefined(V, BC);
5974 
5975     // Load from null is undefined.
5976     if (LoadInst *LI = dyn_cast<LoadInst>(Use))
5977       if (!LI->isVolatile())
5978         return !NullPointerIsDefined(LI->getFunction(),
5979                                      LI->getPointerAddressSpace());
5980 
5981     // Store to null is undefined.
5982     if (StoreInst *SI = dyn_cast<StoreInst>(Use))
5983       if (!SI->isVolatile())
5984         return (!NullPointerIsDefined(SI->getFunction(),
5985                                       SI->getPointerAddressSpace())) &&
5986                SI->getPointerOperand() == I;
5987 
5988     // A call to null is undefined.
5989     if (auto CS = CallSite(Use))
5990       return !NullPointerIsDefined(CS->getFunction()) &&
5991              CS.getCalledValue() == I;
5992   }
5993   return false;
5994 }
5995 
5996 /// If BB has an incoming value that will always trigger undefined behavior
5997 /// (eg. null pointer dereference), remove the branch leading here.
5998 static bool removeUndefIntroducingPredecessor(BasicBlock *BB) {
5999   for (PHINode &PHI : BB->phis())
6000     for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i)
6001       if (passingValueIsAlwaysUndefined(PHI.getIncomingValue(i), &PHI)) {
6002         Instruction *T = PHI.getIncomingBlock(i)->getTerminator();
6003         IRBuilder<> Builder(T);
6004         if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
6005           BB->removePredecessor(PHI.getIncomingBlock(i));
6006           // Turn uncoditional branches into unreachables and remove the dead
6007           // destination from conditional branches.
6008           if (BI->isUnconditional())
6009             Builder.CreateUnreachable();
6010           else
6011             Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1)
6012                                                        : BI->getSuccessor(0));
6013           BI->eraseFromParent();
6014           return true;
6015         }
6016         // TODO: SwitchInst.
6017       }
6018 
6019   return false;
6020 }
6021 
6022 bool SimplifyCFGOpt::simplifyOnce(BasicBlock *BB) {
6023   bool Changed = false;
6024 
6025   assert(BB && BB->getParent() && "Block not embedded in function!");
6026   assert(BB->getTerminator() && "Degenerate basic block encountered!");
6027 
6028   // Remove basic blocks that have no predecessors (except the entry block)...
6029   // or that just have themself as a predecessor.  These are unreachable.
6030   if ((pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) ||
6031       BB->getSinglePredecessor() == BB) {
6032     LLVM_DEBUG(dbgs() << "Removing BB: \n" << *BB);
6033     DeleteDeadBlock(BB);
6034     return true;
6035   }
6036 
6037   // Check to see if we can constant propagate this terminator instruction
6038   // away...
6039   Changed |= ConstantFoldTerminator(BB, true);
6040 
6041   // Check for and eliminate duplicate PHI nodes in this block.
6042   Changed |= EliminateDuplicatePHINodes(BB);
6043 
6044   // Check for and remove branches that will always cause undefined behavior.
6045   Changed |= removeUndefIntroducingPredecessor(BB);
6046 
6047   // Merge basic blocks into their predecessor if there is only one distinct
6048   // pred, and if there is only one distinct successor of the predecessor, and
6049   // if there are no PHI nodes.
6050   if (MergeBlockIntoPredecessor(BB))
6051     return true;
6052 
6053   if (SinkCommon && Options.SinkCommonInsts)
6054     Changed |= SinkCommonCodeFromPredecessors(BB);
6055 
6056   IRBuilder<> Builder(BB);
6057 
6058   // If there is a trivial two-entry PHI node in this basic block, and we can
6059   // eliminate it, do so now.
6060   if (auto *PN = dyn_cast<PHINode>(BB->begin()))
6061     if (PN->getNumIncomingValues() == 2)
6062       Changed |= FoldTwoEntryPHINode(PN, TTI, DL);
6063 
6064   Builder.SetInsertPoint(BB->getTerminator());
6065   if (auto *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
6066     if (BI->isUnconditional()) {
6067       if (SimplifyUncondBranch(BI, Builder))
6068         return true;
6069     } else {
6070       if (SimplifyCondBranch(BI, Builder))
6071         return true;
6072     }
6073   } else if (auto *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
6074     if (SimplifyReturn(RI, Builder))
6075       return true;
6076   } else if (auto *RI = dyn_cast<ResumeInst>(BB->getTerminator())) {
6077     if (SimplifyResume(RI, Builder))
6078       return true;
6079   } else if (auto *RI = dyn_cast<CleanupReturnInst>(BB->getTerminator())) {
6080     if (SimplifyCleanupReturn(RI))
6081       return true;
6082   } else if (auto *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
6083     if (SimplifySwitch(SI, Builder))
6084       return true;
6085   } else if (auto *UI = dyn_cast<UnreachableInst>(BB->getTerminator())) {
6086     if (SimplifyUnreachable(UI))
6087       return true;
6088   } else if (auto *IBI = dyn_cast<IndirectBrInst>(BB->getTerminator())) {
6089     if (SimplifyIndirectBr(IBI))
6090       return true;
6091   }
6092 
6093   return Changed;
6094 }
6095 
6096 bool SimplifyCFGOpt::run(BasicBlock *BB) {
6097   bool Changed = false;
6098 
6099   // Repeated simplify BB as long as resimplification is requested.
6100   do {
6101     Resimplify = false;
6102 
6103     // Perform one round of simplifcation. Resimplify flag will be set if
6104     // another iteration is requested.
6105     Changed |= simplifyOnce(BB);
6106   } while (Resimplify);
6107 
6108   return Changed;
6109 }
6110 
6111 bool llvm::simplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI,
6112                        const SimplifyCFGOptions &Options,
6113                        SmallPtrSetImpl<BasicBlock *> *LoopHeaders) {
6114   return SimplifyCFGOpt(TTI, BB->getModule()->getDataLayout(), LoopHeaders,
6115                         Options)
6116       .run(BB);
6117 }
6118