1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Peephole optimize the CFG. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/ADT/APInt.h" 14 #include "llvm/ADT/ArrayRef.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/MapVector.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/ScopeExit.h" 20 #include "llvm/ADT/Sequence.h" 21 #include "llvm/ADT/SetOperations.h" 22 #include "llvm/ADT/SetVector.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/Statistic.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/Analysis/AssumptionCache.h" 28 #include "llvm/Analysis/ConstantFolding.h" 29 #include "llvm/Analysis/EHPersonalities.h" 30 #include "llvm/Analysis/GuardUtils.h" 31 #include "llvm/Analysis/InstructionSimplify.h" 32 #include "llvm/Analysis/MemorySSA.h" 33 #include "llvm/Analysis/MemorySSAUpdater.h" 34 #include "llvm/Analysis/TargetTransformInfo.h" 35 #include "llvm/Analysis/ValueTracking.h" 36 #include "llvm/IR/Attributes.h" 37 #include "llvm/IR/BasicBlock.h" 38 #include "llvm/IR/CFG.h" 39 #include "llvm/IR/Constant.h" 40 #include "llvm/IR/ConstantRange.h" 41 #include "llvm/IR/Constants.h" 42 #include "llvm/IR/DataLayout.h" 43 #include "llvm/IR/DerivedTypes.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/IR/GlobalValue.h" 46 #include "llvm/IR/GlobalVariable.h" 47 #include "llvm/IR/IRBuilder.h" 48 #include "llvm/IR/InstrTypes.h" 49 #include "llvm/IR/Instruction.h" 50 #include "llvm/IR/Instructions.h" 51 #include "llvm/IR/IntrinsicInst.h" 52 #include "llvm/IR/Intrinsics.h" 53 #include "llvm/IR/LLVMContext.h" 54 #include "llvm/IR/MDBuilder.h" 55 #include "llvm/IR/Metadata.h" 56 #include "llvm/IR/Module.h" 57 #include "llvm/IR/NoFolder.h" 58 #include "llvm/IR/Operator.h" 59 #include "llvm/IR/PatternMatch.h" 60 #include "llvm/IR/PseudoProbe.h" 61 #include "llvm/IR/Type.h" 62 #include "llvm/IR/Use.h" 63 #include "llvm/IR/User.h" 64 #include "llvm/IR/Value.h" 65 #include "llvm/IR/ValueHandle.h" 66 #include "llvm/Support/BranchProbability.h" 67 #include "llvm/Support/Casting.h" 68 #include "llvm/Support/CommandLine.h" 69 #include "llvm/Support/Debug.h" 70 #include "llvm/Support/ErrorHandling.h" 71 #include "llvm/Support/KnownBits.h" 72 #include "llvm/Support/MathExtras.h" 73 #include "llvm/Support/raw_ostream.h" 74 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 75 #include "llvm/Transforms/Utils/Local.h" 76 #include "llvm/Transforms/Utils/SSAUpdater.h" 77 #include "llvm/Transforms/Utils/ValueMapper.h" 78 #include <algorithm> 79 #include <cassert> 80 #include <climits> 81 #include <cstddef> 82 #include <cstdint> 83 #include <iterator> 84 #include <map> 85 #include <set> 86 #include <tuple> 87 #include <utility> 88 #include <vector> 89 90 using namespace llvm; 91 using namespace PatternMatch; 92 93 #define DEBUG_TYPE "simplifycfg" 94 95 cl::opt<bool> llvm::RequireAndPreserveDomTree( 96 "simplifycfg-require-and-preserve-domtree", cl::Hidden, cl::ZeroOrMore, 97 cl::init(false), 98 cl::desc("Temorary development switch used to gradually uplift SimplifyCFG " 99 "into preserving DomTree,")); 100 101 // Chosen as 2 so as to be cheap, but still to have enough power to fold 102 // a select, so the "clamp" idiom (of a min followed by a max) will be caught. 103 // To catch this, we need to fold a compare and a select, hence '2' being the 104 // minimum reasonable default. 105 static cl::opt<unsigned> PHINodeFoldingThreshold( 106 "phi-node-folding-threshold", cl::Hidden, cl::init(2), 107 cl::desc( 108 "Control the amount of phi node folding to perform (default = 2)")); 109 110 static cl::opt<unsigned> TwoEntryPHINodeFoldingThreshold( 111 "two-entry-phi-node-folding-threshold", cl::Hidden, cl::init(4), 112 cl::desc("Control the maximal total instruction cost that we are willing " 113 "to speculatively execute to fold a 2-entry PHI node into a " 114 "select (default = 4)")); 115 116 static cl::opt<bool> DupRet( 117 "simplifycfg-dup-ret", cl::Hidden, cl::init(false), 118 cl::desc("Duplicate return instructions into unconditional branches")); 119 120 static cl::opt<bool> 121 HoistCommon("simplifycfg-hoist-common", cl::Hidden, cl::init(true), 122 cl::desc("Hoist common instructions up to the parent block")); 123 124 static cl::opt<bool> 125 SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true), 126 cl::desc("Sink common instructions down to the end block")); 127 128 static cl::opt<bool> HoistCondStores( 129 "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true), 130 cl::desc("Hoist conditional stores if an unconditional store precedes")); 131 132 static cl::opt<bool> MergeCondStores( 133 "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true), 134 cl::desc("Hoist conditional stores even if an unconditional store does not " 135 "precede - hoist multiple conditional stores into a single " 136 "predicated store")); 137 138 static cl::opt<bool> MergeCondStoresAggressively( 139 "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false), 140 cl::desc("When merging conditional stores, do so even if the resultant " 141 "basic blocks are unlikely to be if-converted as a result")); 142 143 static cl::opt<bool> SpeculateOneExpensiveInst( 144 "speculate-one-expensive-inst", cl::Hidden, cl::init(true), 145 cl::desc("Allow exactly one expensive instruction to be speculatively " 146 "executed")); 147 148 static cl::opt<unsigned> MaxSpeculationDepth( 149 "max-speculation-depth", cl::Hidden, cl::init(10), 150 cl::desc("Limit maximum recursion depth when calculating costs of " 151 "speculatively executed instructions")); 152 153 static cl::opt<int> 154 MaxSmallBlockSize("simplifycfg-max-small-block-size", cl::Hidden, 155 cl::init(10), 156 cl::desc("Max size of a block which is still considered " 157 "small enough to thread through")); 158 159 // Two is chosen to allow one negation and a logical combine. 160 static cl::opt<unsigned> 161 BranchFoldThreshold("simplifycfg-branch-fold-threshold", cl::Hidden, 162 cl::init(2), 163 cl::desc("Maximum cost of combining conditions when " 164 "folding branches")); 165 166 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps"); 167 STATISTIC(NumLinearMaps, 168 "Number of switch instructions turned into linear mapping"); 169 STATISTIC(NumLookupTables, 170 "Number of switch instructions turned into lookup tables"); 171 STATISTIC( 172 NumLookupTablesHoles, 173 "Number of switch instructions turned into lookup tables (holes checked)"); 174 STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares"); 175 STATISTIC(NumFoldValueComparisonIntoPredecessors, 176 "Number of value comparisons folded into predecessor basic blocks"); 177 STATISTIC(NumFoldBranchToCommonDest, 178 "Number of branches folded into predecessor basic block"); 179 STATISTIC( 180 NumHoistCommonCode, 181 "Number of common instruction 'blocks' hoisted up to the begin block"); 182 STATISTIC(NumHoistCommonInstrs, 183 "Number of common instructions hoisted up to the begin block"); 184 STATISTIC(NumSinkCommonCode, 185 "Number of common instruction 'blocks' sunk down to the end block"); 186 STATISTIC(NumSinkCommonInstrs, 187 "Number of common instructions sunk down to the end block"); 188 STATISTIC(NumSpeculations, "Number of speculative executed instructions"); 189 STATISTIC(NumInvokes, 190 "Number of invokes with empty resume blocks simplified into calls"); 191 192 namespace { 193 194 // The first field contains the value that the switch produces when a certain 195 // case group is selected, and the second field is a vector containing the 196 // cases composing the case group. 197 using SwitchCaseResultVectorTy = 198 SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2>; 199 200 // The first field contains the phi node that generates a result of the switch 201 // and the second field contains the value generated for a certain case in the 202 // switch for that PHI. 203 using SwitchCaseResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>; 204 205 /// ValueEqualityComparisonCase - Represents a case of a switch. 206 struct ValueEqualityComparisonCase { 207 ConstantInt *Value; 208 BasicBlock *Dest; 209 210 ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest) 211 : Value(Value), Dest(Dest) {} 212 213 bool operator<(ValueEqualityComparisonCase RHS) const { 214 // Comparing pointers is ok as we only rely on the order for uniquing. 215 return Value < RHS.Value; 216 } 217 218 bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; } 219 }; 220 221 class SimplifyCFGOpt { 222 const TargetTransformInfo &TTI; 223 DomTreeUpdater *DTU; 224 const DataLayout &DL; 225 ArrayRef<WeakVH> LoopHeaders; 226 const SimplifyCFGOptions &Options; 227 bool Resimplify; 228 229 Value *isValueEqualityComparison(Instruction *TI); 230 BasicBlock *GetValueEqualityComparisonCases( 231 Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases); 232 bool SimplifyEqualityComparisonWithOnlyPredecessor(Instruction *TI, 233 BasicBlock *Pred, 234 IRBuilder<> &Builder); 235 bool PerformValueComparisonIntoPredecessorFolding(Instruction *TI, Value *&CV, 236 Instruction *PTI, 237 IRBuilder<> &Builder); 238 bool FoldValueComparisonIntoPredecessors(Instruction *TI, 239 IRBuilder<> &Builder); 240 241 bool simplifyReturn(ReturnInst *RI, IRBuilder<> &Builder); 242 bool simplifyResume(ResumeInst *RI, IRBuilder<> &Builder); 243 bool simplifySingleResume(ResumeInst *RI); 244 bool simplifyCommonResume(ResumeInst *RI); 245 bool simplifyCleanupReturn(CleanupReturnInst *RI); 246 bool simplifyUnreachable(UnreachableInst *UI); 247 bool simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder); 248 bool simplifyIndirectBr(IndirectBrInst *IBI); 249 bool simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder); 250 bool simplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder); 251 bool simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder); 252 bool SimplifyCondBranchToTwoReturns(BranchInst *BI, IRBuilder<> &Builder); 253 254 bool tryToSimplifyUncondBranchWithICmpInIt(ICmpInst *ICI, 255 IRBuilder<> &Builder); 256 257 bool HoistThenElseCodeToIf(BranchInst *BI, const TargetTransformInfo &TTI, 258 bool EqTermsOnly); 259 bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB, 260 const TargetTransformInfo &TTI); 261 bool SimplifyTerminatorOnSelect(Instruction *OldTerm, Value *Cond, 262 BasicBlock *TrueBB, BasicBlock *FalseBB, 263 uint32_t TrueWeight, uint32_t FalseWeight); 264 bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder, 265 const DataLayout &DL); 266 bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select); 267 bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI); 268 bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder); 269 270 public: 271 SimplifyCFGOpt(const TargetTransformInfo &TTI, DomTreeUpdater *DTU, 272 const DataLayout &DL, ArrayRef<WeakVH> LoopHeaders, 273 const SimplifyCFGOptions &Opts) 274 : TTI(TTI), DTU(DTU), DL(DL), LoopHeaders(LoopHeaders), Options(Opts) { 275 assert((!DTU || !DTU->hasPostDomTree()) && 276 "SimplifyCFG is not yet capable of maintaining validity of a " 277 "PostDomTree, so don't ask for it."); 278 } 279 280 bool simplifyOnce(BasicBlock *BB); 281 bool simplifyOnceImpl(BasicBlock *BB); 282 bool run(BasicBlock *BB); 283 284 // Helper to set Resimplify and return change indication. 285 bool requestResimplify() { 286 Resimplify = true; 287 return true; 288 } 289 }; 290 291 } // end anonymous namespace 292 293 /// Return true if it is safe to merge these two 294 /// terminator instructions together. 295 static bool 296 SafeToMergeTerminators(Instruction *SI1, Instruction *SI2, 297 SmallSetVector<BasicBlock *, 4> *FailBlocks = nullptr) { 298 if (SI1 == SI2) 299 return false; // Can't merge with self! 300 301 // It is not safe to merge these two switch instructions if they have a common 302 // successor, and if that successor has a PHI node, and if *that* PHI node has 303 // conflicting incoming values from the two switch blocks. 304 BasicBlock *SI1BB = SI1->getParent(); 305 BasicBlock *SI2BB = SI2->getParent(); 306 307 SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB)); 308 bool Fail = false; 309 for (BasicBlock *Succ : successors(SI2BB)) 310 if (SI1Succs.count(Succ)) 311 for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) { 312 PHINode *PN = cast<PHINode>(BBI); 313 if (PN->getIncomingValueForBlock(SI1BB) != 314 PN->getIncomingValueForBlock(SI2BB)) { 315 if (FailBlocks) 316 FailBlocks->insert(Succ); 317 Fail = true; 318 } 319 } 320 321 return !Fail; 322 } 323 324 /// Update PHI nodes in Succ to indicate that there will now be entries in it 325 /// from the 'NewPred' block. The values that will be flowing into the PHI nodes 326 /// will be the same as those coming in from ExistPred, an existing predecessor 327 /// of Succ. 328 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred, 329 BasicBlock *ExistPred, 330 MemorySSAUpdater *MSSAU = nullptr) { 331 for (PHINode &PN : Succ->phis()) 332 PN.addIncoming(PN.getIncomingValueForBlock(ExistPred), NewPred); 333 if (MSSAU) 334 if (auto *MPhi = MSSAU->getMemorySSA()->getMemoryAccess(Succ)) 335 MPhi->addIncoming(MPhi->getIncomingValueForBlock(ExistPred), NewPred); 336 } 337 338 /// Compute an abstract "cost" of speculating the given instruction, 339 /// which is assumed to be safe to speculate. TCC_Free means cheap, 340 /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively 341 /// expensive. 342 static InstructionCost computeSpeculationCost(const User *I, 343 const TargetTransformInfo &TTI) { 344 assert(isSafeToSpeculativelyExecute(I) && 345 "Instruction is not safe to speculatively execute!"); 346 return TTI.getUserCost(I, TargetTransformInfo::TCK_SizeAndLatency); 347 } 348 349 /// If we have a merge point of an "if condition" as accepted above, 350 /// return true if the specified value dominates the block. We 351 /// don't handle the true generality of domination here, just a special case 352 /// which works well enough for us. 353 /// 354 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to 355 /// see if V (which must be an instruction) and its recursive operands 356 /// that do not dominate BB have a combined cost lower than Budget and 357 /// are non-trapping. If both are true, the instruction is inserted into the 358 /// set and true is returned. 359 /// 360 /// The cost for most non-trapping instructions is defined as 1 except for 361 /// Select whose cost is 2. 362 /// 363 /// After this function returns, Cost is increased by the cost of 364 /// V plus its non-dominating operands. If that cost is greater than 365 /// Budget, false is returned and Cost is undefined. 366 static bool dominatesMergePoint(Value *V, BasicBlock *BB, 367 SmallPtrSetImpl<Instruction *> &AggressiveInsts, 368 InstructionCost &Cost, 369 InstructionCost Budget, 370 const TargetTransformInfo &TTI, 371 unsigned Depth = 0) { 372 // It is possible to hit a zero-cost cycle (phi/gep instructions for example), 373 // so limit the recursion depth. 374 // TODO: While this recursion limit does prevent pathological behavior, it 375 // would be better to track visited instructions to avoid cycles. 376 if (Depth == MaxSpeculationDepth) 377 return false; 378 379 Instruction *I = dyn_cast<Instruction>(V); 380 if (!I) { 381 // Non-instructions all dominate instructions, but not all constantexprs 382 // can be executed unconditionally. 383 if (ConstantExpr *C = dyn_cast<ConstantExpr>(V)) 384 if (C->canTrap()) 385 return false; 386 return true; 387 } 388 BasicBlock *PBB = I->getParent(); 389 390 // We don't want to allow weird loops that might have the "if condition" in 391 // the bottom of this block. 392 if (PBB == BB) 393 return false; 394 395 // If this instruction is defined in a block that contains an unconditional 396 // branch to BB, then it must be in the 'conditional' part of the "if 397 // statement". If not, it definitely dominates the region. 398 BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator()); 399 if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB) 400 return true; 401 402 // If we have seen this instruction before, don't count it again. 403 if (AggressiveInsts.count(I)) 404 return true; 405 406 // Okay, it looks like the instruction IS in the "condition". Check to 407 // see if it's a cheap instruction to unconditionally compute, and if it 408 // only uses stuff defined outside of the condition. If so, hoist it out. 409 if (!isSafeToSpeculativelyExecute(I)) 410 return false; 411 412 Cost += computeSpeculationCost(I, TTI); 413 414 // Allow exactly one instruction to be speculated regardless of its cost 415 // (as long as it is safe to do so). 416 // This is intended to flatten the CFG even if the instruction is a division 417 // or other expensive operation. The speculation of an expensive instruction 418 // is expected to be undone in CodeGenPrepare if the speculation has not 419 // enabled further IR optimizations. 420 if (Cost > Budget && 421 (!SpeculateOneExpensiveInst || !AggressiveInsts.empty() || Depth > 0 || 422 !Cost.isValid())) 423 return false; 424 425 // Okay, we can only really hoist these out if their operands do 426 // not take us over the cost threshold. 427 for (Use &Op : I->operands()) 428 if (!dominatesMergePoint(Op, BB, AggressiveInsts, Cost, Budget, TTI, 429 Depth + 1)) 430 return false; 431 // Okay, it's safe to do this! Remember this instruction. 432 AggressiveInsts.insert(I); 433 return true; 434 } 435 436 /// Extract ConstantInt from value, looking through IntToPtr 437 /// and PointerNullValue. Return NULL if value is not a constant int. 438 static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) { 439 // Normal constant int. 440 ConstantInt *CI = dyn_cast<ConstantInt>(V); 441 if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy()) 442 return CI; 443 444 // This is some kind of pointer constant. Turn it into a pointer-sized 445 // ConstantInt if possible. 446 IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType())); 447 448 // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*). 449 if (isa<ConstantPointerNull>(V)) 450 return ConstantInt::get(PtrTy, 0); 451 452 // IntToPtr const int. 453 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 454 if (CE->getOpcode() == Instruction::IntToPtr) 455 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) { 456 // The constant is very likely to have the right type already. 457 if (CI->getType() == PtrTy) 458 return CI; 459 else 460 return cast<ConstantInt>( 461 ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false)); 462 } 463 return nullptr; 464 } 465 466 namespace { 467 468 /// Given a chain of or (||) or and (&&) comparison of a value against a 469 /// constant, this will try to recover the information required for a switch 470 /// structure. 471 /// It will depth-first traverse the chain of comparison, seeking for patterns 472 /// like %a == 12 or %a < 4 and combine them to produce a set of integer 473 /// representing the different cases for the switch. 474 /// Note that if the chain is composed of '||' it will build the set of elements 475 /// that matches the comparisons (i.e. any of this value validate the chain) 476 /// while for a chain of '&&' it will build the set elements that make the test 477 /// fail. 478 struct ConstantComparesGatherer { 479 const DataLayout &DL; 480 481 /// Value found for the switch comparison 482 Value *CompValue = nullptr; 483 484 /// Extra clause to be checked before the switch 485 Value *Extra = nullptr; 486 487 /// Set of integers to match in switch 488 SmallVector<ConstantInt *, 8> Vals; 489 490 /// Number of comparisons matched in the and/or chain 491 unsigned UsedICmps = 0; 492 493 /// Construct and compute the result for the comparison instruction Cond 494 ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL) : DL(DL) { 495 gather(Cond); 496 } 497 498 ConstantComparesGatherer(const ConstantComparesGatherer &) = delete; 499 ConstantComparesGatherer & 500 operator=(const ConstantComparesGatherer &) = delete; 501 502 private: 503 /// Try to set the current value used for the comparison, it succeeds only if 504 /// it wasn't set before or if the new value is the same as the old one 505 bool setValueOnce(Value *NewVal) { 506 if (CompValue && CompValue != NewVal) 507 return false; 508 CompValue = NewVal; 509 return (CompValue != nullptr); 510 } 511 512 /// Try to match Instruction "I" as a comparison against a constant and 513 /// populates the array Vals with the set of values that match (or do not 514 /// match depending on isEQ). 515 /// Return false on failure. On success, the Value the comparison matched 516 /// against is placed in CompValue. 517 /// If CompValue is already set, the function is expected to fail if a match 518 /// is found but the value compared to is different. 519 bool matchInstruction(Instruction *I, bool isEQ) { 520 // If this is an icmp against a constant, handle this as one of the cases. 521 ICmpInst *ICI; 522 ConstantInt *C; 523 if (!((ICI = dyn_cast<ICmpInst>(I)) && 524 (C = GetConstantInt(I->getOperand(1), DL)))) { 525 return false; 526 } 527 528 Value *RHSVal; 529 const APInt *RHSC; 530 531 // Pattern match a special case 532 // (x & ~2^z) == y --> x == y || x == y|2^z 533 // This undoes a transformation done by instcombine to fuse 2 compares. 534 if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE)) { 535 // It's a little bit hard to see why the following transformations are 536 // correct. Here is a CVC3 program to verify them for 64-bit values: 537 538 /* 539 ONE : BITVECTOR(64) = BVZEROEXTEND(0bin1, 63); 540 x : BITVECTOR(64); 541 y : BITVECTOR(64); 542 z : BITVECTOR(64); 543 mask : BITVECTOR(64) = BVSHL(ONE, z); 544 QUERY( (y & ~mask = y) => 545 ((x & ~mask = y) <=> (x = y OR x = (y | mask))) 546 ); 547 QUERY( (y | mask = y) => 548 ((x | mask = y) <=> (x = y OR x = (y & ~mask))) 549 ); 550 */ 551 552 // Please note that each pattern must be a dual implication (<--> or 553 // iff). One directional implication can create spurious matches. If the 554 // implication is only one-way, an unsatisfiable condition on the left 555 // side can imply a satisfiable condition on the right side. Dual 556 // implication ensures that satisfiable conditions are transformed to 557 // other satisfiable conditions and unsatisfiable conditions are 558 // transformed to other unsatisfiable conditions. 559 560 // Here is a concrete example of a unsatisfiable condition on the left 561 // implying a satisfiable condition on the right: 562 // 563 // mask = (1 << z) 564 // (x & ~mask) == y --> (x == y || x == (y | mask)) 565 // 566 // Substituting y = 3, z = 0 yields: 567 // (x & -2) == 3 --> (x == 3 || x == 2) 568 569 // Pattern match a special case: 570 /* 571 QUERY( (y & ~mask = y) => 572 ((x & ~mask = y) <=> (x = y OR x = (y | mask))) 573 ); 574 */ 575 if (match(ICI->getOperand(0), 576 m_And(m_Value(RHSVal), m_APInt(RHSC)))) { 577 APInt Mask = ~*RHSC; 578 if (Mask.isPowerOf2() && (C->getValue() & ~Mask) == C->getValue()) { 579 // If we already have a value for the switch, it has to match! 580 if (!setValueOnce(RHSVal)) 581 return false; 582 583 Vals.push_back(C); 584 Vals.push_back( 585 ConstantInt::get(C->getContext(), 586 C->getValue() | Mask)); 587 UsedICmps++; 588 return true; 589 } 590 } 591 592 // Pattern match a special case: 593 /* 594 QUERY( (y | mask = y) => 595 ((x | mask = y) <=> (x = y OR x = (y & ~mask))) 596 ); 597 */ 598 if (match(ICI->getOperand(0), 599 m_Or(m_Value(RHSVal), m_APInt(RHSC)))) { 600 APInt Mask = *RHSC; 601 if (Mask.isPowerOf2() && (C->getValue() | Mask) == C->getValue()) { 602 // If we already have a value for the switch, it has to match! 603 if (!setValueOnce(RHSVal)) 604 return false; 605 606 Vals.push_back(C); 607 Vals.push_back(ConstantInt::get(C->getContext(), 608 C->getValue() & ~Mask)); 609 UsedICmps++; 610 return true; 611 } 612 } 613 614 // If we already have a value for the switch, it has to match! 615 if (!setValueOnce(ICI->getOperand(0))) 616 return false; 617 618 UsedICmps++; 619 Vals.push_back(C); 620 return ICI->getOperand(0); 621 } 622 623 // If we have "x ult 3", for example, then we can add 0,1,2 to the set. 624 ConstantRange Span = ConstantRange::makeAllowedICmpRegion( 625 ICI->getPredicate(), C->getValue()); 626 627 // Shift the range if the compare is fed by an add. This is the range 628 // compare idiom as emitted by instcombine. 629 Value *CandidateVal = I->getOperand(0); 630 if (match(I->getOperand(0), m_Add(m_Value(RHSVal), m_APInt(RHSC)))) { 631 Span = Span.subtract(*RHSC); 632 CandidateVal = RHSVal; 633 } 634 635 // If this is an and/!= check, then we are looking to build the set of 636 // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into 637 // x != 0 && x != 1. 638 if (!isEQ) 639 Span = Span.inverse(); 640 641 // If there are a ton of values, we don't want to make a ginormous switch. 642 if (Span.isSizeLargerThan(8) || Span.isEmptySet()) { 643 return false; 644 } 645 646 // If we already have a value for the switch, it has to match! 647 if (!setValueOnce(CandidateVal)) 648 return false; 649 650 // Add all values from the range to the set 651 for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp) 652 Vals.push_back(ConstantInt::get(I->getContext(), Tmp)); 653 654 UsedICmps++; 655 return true; 656 } 657 658 /// Given a potentially 'or'd or 'and'd together collection of icmp 659 /// eq/ne/lt/gt instructions that compare a value against a constant, extract 660 /// the value being compared, and stick the list constants into the Vals 661 /// vector. 662 /// One "Extra" case is allowed to differ from the other. 663 void gather(Value *V) { 664 bool isEQ = match(V, m_LogicalOr(m_Value(), m_Value())); 665 666 // Keep a stack (SmallVector for efficiency) for depth-first traversal 667 SmallVector<Value *, 8> DFT; 668 SmallPtrSet<Value *, 8> Visited; 669 670 // Initialize 671 Visited.insert(V); 672 DFT.push_back(V); 673 674 while (!DFT.empty()) { 675 V = DFT.pop_back_val(); 676 677 if (Instruction *I = dyn_cast<Instruction>(V)) { 678 // If it is a || (or && depending on isEQ), process the operands. 679 Value *Op0, *Op1; 680 if (isEQ ? match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))) 681 : match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) { 682 if (Visited.insert(Op1).second) 683 DFT.push_back(Op1); 684 if (Visited.insert(Op0).second) 685 DFT.push_back(Op0); 686 687 continue; 688 } 689 690 // Try to match the current instruction 691 if (matchInstruction(I, isEQ)) 692 // Match succeed, continue the loop 693 continue; 694 } 695 696 // One element of the sequence of || (or &&) could not be match as a 697 // comparison against the same value as the others. 698 // We allow only one "Extra" case to be checked before the switch 699 if (!Extra) { 700 Extra = V; 701 continue; 702 } 703 // Failed to parse a proper sequence, abort now 704 CompValue = nullptr; 705 break; 706 } 707 } 708 }; 709 710 } // end anonymous namespace 711 712 static void EraseTerminatorAndDCECond(Instruction *TI, 713 MemorySSAUpdater *MSSAU = nullptr) { 714 Instruction *Cond = nullptr; 715 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 716 Cond = dyn_cast<Instruction>(SI->getCondition()); 717 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 718 if (BI->isConditional()) 719 Cond = dyn_cast<Instruction>(BI->getCondition()); 720 } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) { 721 Cond = dyn_cast<Instruction>(IBI->getAddress()); 722 } 723 724 TI->eraseFromParent(); 725 if (Cond) 726 RecursivelyDeleteTriviallyDeadInstructions(Cond, nullptr, MSSAU); 727 } 728 729 /// Return true if the specified terminator checks 730 /// to see if a value is equal to constant integer value. 731 Value *SimplifyCFGOpt::isValueEqualityComparison(Instruction *TI) { 732 Value *CV = nullptr; 733 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 734 // Do not permit merging of large switch instructions into their 735 // predecessors unless there is only one predecessor. 736 if (!SI->getParent()->hasNPredecessorsOrMore(128 / SI->getNumSuccessors())) 737 CV = SI->getCondition(); 738 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) 739 if (BI->isConditional() && BI->getCondition()->hasOneUse()) 740 if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) { 741 if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL)) 742 CV = ICI->getOperand(0); 743 } 744 745 // Unwrap any lossless ptrtoint cast. 746 if (CV) { 747 if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) { 748 Value *Ptr = PTII->getPointerOperand(); 749 if (PTII->getType() == DL.getIntPtrType(Ptr->getType())) 750 CV = Ptr; 751 } 752 } 753 return CV; 754 } 755 756 /// Given a value comparison instruction, 757 /// decode all of the 'cases' that it represents and return the 'default' block. 758 BasicBlock *SimplifyCFGOpt::GetValueEqualityComparisonCases( 759 Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases) { 760 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 761 Cases.reserve(SI->getNumCases()); 762 for (auto Case : SI->cases()) 763 Cases.push_back(ValueEqualityComparisonCase(Case.getCaseValue(), 764 Case.getCaseSuccessor())); 765 return SI->getDefaultDest(); 766 } 767 768 BranchInst *BI = cast<BranchInst>(TI); 769 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 770 BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE); 771 Cases.push_back(ValueEqualityComparisonCase( 772 GetConstantInt(ICI->getOperand(1), DL), Succ)); 773 return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ); 774 } 775 776 /// Given a vector of bb/value pairs, remove any entries 777 /// in the list that match the specified block. 778 static void 779 EliminateBlockCases(BasicBlock *BB, 780 std::vector<ValueEqualityComparisonCase> &Cases) { 781 llvm::erase_value(Cases, BB); 782 } 783 784 /// Return true if there are any keys in C1 that exist in C2 as well. 785 static bool ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1, 786 std::vector<ValueEqualityComparisonCase> &C2) { 787 std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2; 788 789 // Make V1 be smaller than V2. 790 if (V1->size() > V2->size()) 791 std::swap(V1, V2); 792 793 if (V1->empty()) 794 return false; 795 if (V1->size() == 1) { 796 // Just scan V2. 797 ConstantInt *TheVal = (*V1)[0].Value; 798 for (unsigned i = 0, e = V2->size(); i != e; ++i) 799 if (TheVal == (*V2)[i].Value) 800 return true; 801 } 802 803 // Otherwise, just sort both lists and compare element by element. 804 array_pod_sort(V1->begin(), V1->end()); 805 array_pod_sort(V2->begin(), V2->end()); 806 unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size(); 807 while (i1 != e1 && i2 != e2) { 808 if ((*V1)[i1].Value == (*V2)[i2].Value) 809 return true; 810 if ((*V1)[i1].Value < (*V2)[i2].Value) 811 ++i1; 812 else 813 ++i2; 814 } 815 return false; 816 } 817 818 // Set branch weights on SwitchInst. This sets the metadata if there is at 819 // least one non-zero weight. 820 static void setBranchWeights(SwitchInst *SI, ArrayRef<uint32_t> Weights) { 821 // Check that there is at least one non-zero weight. Otherwise, pass 822 // nullptr to setMetadata which will erase the existing metadata. 823 MDNode *N = nullptr; 824 if (llvm::any_of(Weights, [](uint32_t W) { return W != 0; })) 825 N = MDBuilder(SI->getParent()->getContext()).createBranchWeights(Weights); 826 SI->setMetadata(LLVMContext::MD_prof, N); 827 } 828 829 // Similar to the above, but for branch and select instructions that take 830 // exactly 2 weights. 831 static void setBranchWeights(Instruction *I, uint32_t TrueWeight, 832 uint32_t FalseWeight) { 833 assert(isa<BranchInst>(I) || isa<SelectInst>(I)); 834 // Check that there is at least one non-zero weight. Otherwise, pass 835 // nullptr to setMetadata which will erase the existing metadata. 836 MDNode *N = nullptr; 837 if (TrueWeight || FalseWeight) 838 N = MDBuilder(I->getParent()->getContext()) 839 .createBranchWeights(TrueWeight, FalseWeight); 840 I->setMetadata(LLVMContext::MD_prof, N); 841 } 842 843 /// If TI is known to be a terminator instruction and its block is known to 844 /// only have a single predecessor block, check to see if that predecessor is 845 /// also a value comparison with the same value, and if that comparison 846 /// determines the outcome of this comparison. If so, simplify TI. This does a 847 /// very limited form of jump threading. 848 bool SimplifyCFGOpt::SimplifyEqualityComparisonWithOnlyPredecessor( 849 Instruction *TI, BasicBlock *Pred, IRBuilder<> &Builder) { 850 Value *PredVal = isValueEqualityComparison(Pred->getTerminator()); 851 if (!PredVal) 852 return false; // Not a value comparison in predecessor. 853 854 Value *ThisVal = isValueEqualityComparison(TI); 855 assert(ThisVal && "This isn't a value comparison!!"); 856 if (ThisVal != PredVal) 857 return false; // Different predicates. 858 859 // TODO: Preserve branch weight metadata, similarly to how 860 // FoldValueComparisonIntoPredecessors preserves it. 861 862 // Find out information about when control will move from Pred to TI's block. 863 std::vector<ValueEqualityComparisonCase> PredCases; 864 BasicBlock *PredDef = 865 GetValueEqualityComparisonCases(Pred->getTerminator(), PredCases); 866 EliminateBlockCases(PredDef, PredCases); // Remove default from cases. 867 868 // Find information about how control leaves this block. 869 std::vector<ValueEqualityComparisonCase> ThisCases; 870 BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases); 871 EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases. 872 873 // If TI's block is the default block from Pred's comparison, potentially 874 // simplify TI based on this knowledge. 875 if (PredDef == TI->getParent()) { 876 // If we are here, we know that the value is none of those cases listed in 877 // PredCases. If there are any cases in ThisCases that are in PredCases, we 878 // can simplify TI. 879 if (!ValuesOverlap(PredCases, ThisCases)) 880 return false; 881 882 if (isa<BranchInst>(TI)) { 883 // Okay, one of the successors of this condbr is dead. Convert it to a 884 // uncond br. 885 assert(ThisCases.size() == 1 && "Branch can only have one case!"); 886 // Insert the new branch. 887 Instruction *NI = Builder.CreateBr(ThisDef); 888 (void)NI; 889 890 // Remove PHI node entries for the dead edge. 891 ThisCases[0].Dest->removePredecessor(PredDef); 892 893 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 894 << "Through successor TI: " << *TI << "Leaving: " << *NI 895 << "\n"); 896 897 EraseTerminatorAndDCECond(TI); 898 899 if (DTU) 900 DTU->applyUpdates( 901 {{DominatorTree::Delete, PredDef, ThisCases[0].Dest}}); 902 903 return true; 904 } 905 906 SwitchInstProfUpdateWrapper SI = *cast<SwitchInst>(TI); 907 // Okay, TI has cases that are statically dead, prune them away. 908 SmallPtrSet<Constant *, 16> DeadCases; 909 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 910 DeadCases.insert(PredCases[i].Value); 911 912 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 913 << "Through successor TI: " << *TI); 914 915 SmallDenseMap<BasicBlock *, int, 8> NumPerSuccessorCases; 916 for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) { 917 --i; 918 auto *Successor = i->getCaseSuccessor(); 919 if (DTU) 920 ++NumPerSuccessorCases[Successor]; 921 if (DeadCases.count(i->getCaseValue())) { 922 Successor->removePredecessor(PredDef); 923 SI.removeCase(i); 924 if (DTU) 925 --NumPerSuccessorCases[Successor]; 926 } 927 } 928 929 if (DTU) { 930 std::vector<DominatorTree::UpdateType> Updates; 931 for (const std::pair<BasicBlock *, int> &I : NumPerSuccessorCases) 932 if (I.second == 0) 933 Updates.push_back({DominatorTree::Delete, PredDef, I.first}); 934 DTU->applyUpdates(Updates); 935 } 936 937 LLVM_DEBUG(dbgs() << "Leaving: " << *TI << "\n"); 938 return true; 939 } 940 941 // Otherwise, TI's block must correspond to some matched value. Find out 942 // which value (or set of values) this is. 943 ConstantInt *TIV = nullptr; 944 BasicBlock *TIBB = TI->getParent(); 945 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 946 if (PredCases[i].Dest == TIBB) { 947 if (TIV) 948 return false; // Cannot handle multiple values coming to this block. 949 TIV = PredCases[i].Value; 950 } 951 assert(TIV && "No edge from pred to succ?"); 952 953 // Okay, we found the one constant that our value can be if we get into TI's 954 // BB. Find out which successor will unconditionally be branched to. 955 BasicBlock *TheRealDest = nullptr; 956 for (unsigned i = 0, e = ThisCases.size(); i != e; ++i) 957 if (ThisCases[i].Value == TIV) { 958 TheRealDest = ThisCases[i].Dest; 959 break; 960 } 961 962 // If not handled by any explicit cases, it is handled by the default case. 963 if (!TheRealDest) 964 TheRealDest = ThisDef; 965 966 SmallPtrSet<BasicBlock *, 2> RemovedSuccs; 967 968 // Remove PHI node entries for dead edges. 969 BasicBlock *CheckEdge = TheRealDest; 970 for (BasicBlock *Succ : successors(TIBB)) 971 if (Succ != CheckEdge) { 972 if (Succ != TheRealDest) 973 RemovedSuccs.insert(Succ); 974 Succ->removePredecessor(TIBB); 975 } else 976 CheckEdge = nullptr; 977 978 // Insert the new branch. 979 Instruction *NI = Builder.CreateBr(TheRealDest); 980 (void)NI; 981 982 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 983 << "Through successor TI: " << *TI << "Leaving: " << *NI 984 << "\n"); 985 986 EraseTerminatorAndDCECond(TI); 987 if (DTU) { 988 SmallVector<DominatorTree::UpdateType, 2> Updates; 989 Updates.reserve(RemovedSuccs.size()); 990 for (auto *RemovedSucc : RemovedSuccs) 991 Updates.push_back({DominatorTree::Delete, TIBB, RemovedSucc}); 992 DTU->applyUpdates(Updates); 993 } 994 return true; 995 } 996 997 namespace { 998 999 /// This class implements a stable ordering of constant 1000 /// integers that does not depend on their address. This is important for 1001 /// applications that sort ConstantInt's to ensure uniqueness. 1002 struct ConstantIntOrdering { 1003 bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const { 1004 return LHS->getValue().ult(RHS->getValue()); 1005 } 1006 }; 1007 1008 } // end anonymous namespace 1009 1010 static int ConstantIntSortPredicate(ConstantInt *const *P1, 1011 ConstantInt *const *P2) { 1012 const ConstantInt *LHS = *P1; 1013 const ConstantInt *RHS = *P2; 1014 if (LHS == RHS) 1015 return 0; 1016 return LHS->getValue().ult(RHS->getValue()) ? 1 : -1; 1017 } 1018 1019 static inline bool HasBranchWeights(const Instruction *I) { 1020 MDNode *ProfMD = I->getMetadata(LLVMContext::MD_prof); 1021 if (ProfMD && ProfMD->getOperand(0)) 1022 if (MDString *MDS = dyn_cast<MDString>(ProfMD->getOperand(0))) 1023 return MDS->getString().equals("branch_weights"); 1024 1025 return false; 1026 } 1027 1028 /// Get Weights of a given terminator, the default weight is at the front 1029 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight 1030 /// metadata. 1031 static void GetBranchWeights(Instruction *TI, 1032 SmallVectorImpl<uint64_t> &Weights) { 1033 MDNode *MD = TI->getMetadata(LLVMContext::MD_prof); 1034 assert(MD); 1035 for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) { 1036 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i)); 1037 Weights.push_back(CI->getValue().getZExtValue()); 1038 } 1039 1040 // If TI is a conditional eq, the default case is the false case, 1041 // and the corresponding branch-weight data is at index 2. We swap the 1042 // default weight to be the first entry. 1043 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 1044 assert(Weights.size() == 2); 1045 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 1046 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 1047 std::swap(Weights.front(), Weights.back()); 1048 } 1049 } 1050 1051 /// Keep halving the weights until all can fit in uint32_t. 1052 static void FitWeights(MutableArrayRef<uint64_t> Weights) { 1053 uint64_t Max = *std::max_element(Weights.begin(), Weights.end()); 1054 if (Max > UINT_MAX) { 1055 unsigned Offset = 32 - countLeadingZeros(Max); 1056 for (uint64_t &I : Weights) 1057 I >>= Offset; 1058 } 1059 } 1060 1061 static void CloneInstructionsIntoPredecessorBlockAndUpdateSSAUses( 1062 BasicBlock *BB, BasicBlock *PredBlock, ValueToValueMapTy &VMap) { 1063 Instruction *PTI = PredBlock->getTerminator(); 1064 1065 // If we have bonus instructions, clone them into the predecessor block. 1066 // Note that there may be multiple predecessor blocks, so we cannot move 1067 // bonus instructions to a predecessor block. 1068 for (Instruction &BonusInst : *BB) { 1069 if (isa<DbgInfoIntrinsic>(BonusInst) || BonusInst.isTerminator()) 1070 continue; 1071 1072 Instruction *NewBonusInst = BonusInst.clone(); 1073 1074 if (PTI->getDebugLoc() != NewBonusInst->getDebugLoc()) { 1075 // Unless the instruction has the same !dbg location as the original 1076 // branch, drop it. When we fold the bonus instructions we want to make 1077 // sure we reset their debug locations in order to avoid stepping on 1078 // dead code caused by folding dead branches. 1079 NewBonusInst->setDebugLoc(DebugLoc()); 1080 } 1081 1082 RemapInstruction(NewBonusInst, VMap, 1083 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 1084 VMap[&BonusInst] = NewBonusInst; 1085 1086 // If we moved a load, we cannot any longer claim any knowledge about 1087 // its potential value. The previous information might have been valid 1088 // only given the branch precondition. 1089 // For an analogous reason, we must also drop all the metadata whose 1090 // semantics we don't understand. We *can* preserve !annotation, because 1091 // it is tied to the instruction itself, not the value or position. 1092 NewBonusInst->dropUnknownNonDebugMetadata(LLVMContext::MD_annotation); 1093 1094 PredBlock->getInstList().insert(PTI->getIterator(), NewBonusInst); 1095 NewBonusInst->takeName(&BonusInst); 1096 BonusInst.setName(NewBonusInst->getName() + ".old"); 1097 1098 // Update (liveout) uses of bonus instructions, 1099 // now that the bonus instruction has been cloned into predecessor. 1100 SSAUpdater SSAUpdate; 1101 SSAUpdate.Initialize(BonusInst.getType(), 1102 (NewBonusInst->getName() + ".merge").str()); 1103 SSAUpdate.AddAvailableValue(BB, &BonusInst); 1104 SSAUpdate.AddAvailableValue(PredBlock, NewBonusInst); 1105 for (Use &U : make_early_inc_range(BonusInst.uses())) { 1106 auto *UI = cast<Instruction>(U.getUser()); 1107 if (UI->getParent() != PredBlock) 1108 SSAUpdate.RewriteUseAfterInsertions(U); 1109 else // Use is in the same block as, and comes before, NewBonusInst. 1110 SSAUpdate.RewriteUse(U); 1111 } 1112 } 1113 } 1114 1115 bool SimplifyCFGOpt::PerformValueComparisonIntoPredecessorFolding( 1116 Instruction *TI, Value *&CV, Instruction *PTI, IRBuilder<> &Builder) { 1117 BasicBlock *BB = TI->getParent(); 1118 BasicBlock *Pred = PTI->getParent(); 1119 1120 SmallVector<DominatorTree::UpdateType, 32> Updates; 1121 1122 // Figure out which 'cases' to copy from SI to PSI. 1123 std::vector<ValueEqualityComparisonCase> BBCases; 1124 BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases); 1125 1126 std::vector<ValueEqualityComparisonCase> PredCases; 1127 BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases); 1128 1129 // Based on whether the default edge from PTI goes to BB or not, fill in 1130 // PredCases and PredDefault with the new switch cases we would like to 1131 // build. 1132 SmallMapVector<BasicBlock *, int, 8> NewSuccessors; 1133 1134 // Update the branch weight metadata along the way 1135 SmallVector<uint64_t, 8> Weights; 1136 bool PredHasWeights = HasBranchWeights(PTI); 1137 bool SuccHasWeights = HasBranchWeights(TI); 1138 1139 if (PredHasWeights) { 1140 GetBranchWeights(PTI, Weights); 1141 // branch-weight metadata is inconsistent here. 1142 if (Weights.size() != 1 + PredCases.size()) 1143 PredHasWeights = SuccHasWeights = false; 1144 } else if (SuccHasWeights) 1145 // If there are no predecessor weights but there are successor weights, 1146 // populate Weights with 1, which will later be scaled to the sum of 1147 // successor's weights 1148 Weights.assign(1 + PredCases.size(), 1); 1149 1150 SmallVector<uint64_t, 8> SuccWeights; 1151 if (SuccHasWeights) { 1152 GetBranchWeights(TI, SuccWeights); 1153 // branch-weight metadata is inconsistent here. 1154 if (SuccWeights.size() != 1 + BBCases.size()) 1155 PredHasWeights = SuccHasWeights = false; 1156 } else if (PredHasWeights) 1157 SuccWeights.assign(1 + BBCases.size(), 1); 1158 1159 if (PredDefault == BB) { 1160 // If this is the default destination from PTI, only the edges in TI 1161 // that don't occur in PTI, or that branch to BB will be activated. 1162 std::set<ConstantInt *, ConstantIntOrdering> PTIHandled; 1163 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 1164 if (PredCases[i].Dest != BB) 1165 PTIHandled.insert(PredCases[i].Value); 1166 else { 1167 // The default destination is BB, we don't need explicit targets. 1168 std::swap(PredCases[i], PredCases.back()); 1169 1170 if (PredHasWeights || SuccHasWeights) { 1171 // Increase weight for the default case. 1172 Weights[0] += Weights[i + 1]; 1173 std::swap(Weights[i + 1], Weights.back()); 1174 Weights.pop_back(); 1175 } 1176 1177 PredCases.pop_back(); 1178 --i; 1179 --e; 1180 } 1181 1182 // Reconstruct the new switch statement we will be building. 1183 if (PredDefault != BBDefault) { 1184 PredDefault->removePredecessor(Pred); 1185 if (DTU && PredDefault != BB) 1186 Updates.push_back({DominatorTree::Delete, Pred, PredDefault}); 1187 PredDefault = BBDefault; 1188 ++NewSuccessors[BBDefault]; 1189 } 1190 1191 unsigned CasesFromPred = Weights.size(); 1192 uint64_t ValidTotalSuccWeight = 0; 1193 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 1194 if (!PTIHandled.count(BBCases[i].Value) && BBCases[i].Dest != BBDefault) { 1195 PredCases.push_back(BBCases[i]); 1196 ++NewSuccessors[BBCases[i].Dest]; 1197 if (SuccHasWeights || PredHasWeights) { 1198 // The default weight is at index 0, so weight for the ith case 1199 // should be at index i+1. Scale the cases from successor by 1200 // PredDefaultWeight (Weights[0]). 1201 Weights.push_back(Weights[0] * SuccWeights[i + 1]); 1202 ValidTotalSuccWeight += SuccWeights[i + 1]; 1203 } 1204 } 1205 1206 if (SuccHasWeights || PredHasWeights) { 1207 ValidTotalSuccWeight += SuccWeights[0]; 1208 // Scale the cases from predecessor by ValidTotalSuccWeight. 1209 for (unsigned i = 1; i < CasesFromPred; ++i) 1210 Weights[i] *= ValidTotalSuccWeight; 1211 // Scale the default weight by SuccDefaultWeight (SuccWeights[0]). 1212 Weights[0] *= SuccWeights[0]; 1213 } 1214 } else { 1215 // If this is not the default destination from PSI, only the edges 1216 // in SI that occur in PSI with a destination of BB will be 1217 // activated. 1218 std::set<ConstantInt *, ConstantIntOrdering> PTIHandled; 1219 std::map<ConstantInt *, uint64_t> WeightsForHandled; 1220 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 1221 if (PredCases[i].Dest == BB) { 1222 PTIHandled.insert(PredCases[i].Value); 1223 1224 if (PredHasWeights || SuccHasWeights) { 1225 WeightsForHandled[PredCases[i].Value] = Weights[i + 1]; 1226 std::swap(Weights[i + 1], Weights.back()); 1227 Weights.pop_back(); 1228 } 1229 1230 std::swap(PredCases[i], PredCases.back()); 1231 PredCases.pop_back(); 1232 --i; 1233 --e; 1234 } 1235 1236 // Okay, now we know which constants were sent to BB from the 1237 // predecessor. Figure out where they will all go now. 1238 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 1239 if (PTIHandled.count(BBCases[i].Value)) { 1240 // If this is one we are capable of getting... 1241 if (PredHasWeights || SuccHasWeights) 1242 Weights.push_back(WeightsForHandled[BBCases[i].Value]); 1243 PredCases.push_back(BBCases[i]); 1244 ++NewSuccessors[BBCases[i].Dest]; 1245 PTIHandled.erase(BBCases[i].Value); // This constant is taken care of 1246 } 1247 1248 // If there are any constants vectored to BB that TI doesn't handle, 1249 // they must go to the default destination of TI. 1250 for (ConstantInt *I : PTIHandled) { 1251 if (PredHasWeights || SuccHasWeights) 1252 Weights.push_back(WeightsForHandled[I]); 1253 PredCases.push_back(ValueEqualityComparisonCase(I, BBDefault)); 1254 ++NewSuccessors[BBDefault]; 1255 } 1256 } 1257 1258 // Okay, at this point, we know which new successor Pred will get. Make 1259 // sure we update the number of entries in the PHI nodes for these 1260 // successors. 1261 SmallPtrSet<BasicBlock *, 2> SuccsOfPred; 1262 if (DTU) { 1263 SuccsOfPred = {succ_begin(Pred), succ_end(Pred)}; 1264 Updates.reserve(Updates.size() + NewSuccessors.size()); 1265 } 1266 for (const std::pair<BasicBlock *, int /*Num*/> &NewSuccessor : 1267 NewSuccessors) { 1268 for (auto I : seq(0, NewSuccessor.second)) { 1269 (void)I; 1270 AddPredecessorToBlock(NewSuccessor.first, Pred, BB); 1271 } 1272 if (DTU && !SuccsOfPred.contains(NewSuccessor.first)) 1273 Updates.push_back({DominatorTree::Insert, Pred, NewSuccessor.first}); 1274 } 1275 1276 Builder.SetInsertPoint(PTI); 1277 // Convert pointer to int before we switch. 1278 if (CV->getType()->isPointerTy()) { 1279 CV = 1280 Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()), "magicptr"); 1281 } 1282 1283 // Now that the successors are updated, create the new Switch instruction. 1284 SwitchInst *NewSI = Builder.CreateSwitch(CV, PredDefault, PredCases.size()); 1285 NewSI->setDebugLoc(PTI->getDebugLoc()); 1286 for (ValueEqualityComparisonCase &V : PredCases) 1287 NewSI->addCase(V.Value, V.Dest); 1288 1289 if (PredHasWeights || SuccHasWeights) { 1290 // Halve the weights if any of them cannot fit in an uint32_t 1291 FitWeights(Weights); 1292 1293 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 1294 1295 setBranchWeights(NewSI, MDWeights); 1296 } 1297 1298 EraseTerminatorAndDCECond(PTI); 1299 1300 // Okay, last check. If BB is still a successor of PSI, then we must 1301 // have an infinite loop case. If so, add an infinitely looping block 1302 // to handle the case to preserve the behavior of the code. 1303 BasicBlock *InfLoopBlock = nullptr; 1304 for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i) 1305 if (NewSI->getSuccessor(i) == BB) { 1306 if (!InfLoopBlock) { 1307 // Insert it at the end of the function, because it's either code, 1308 // or it won't matter if it's hot. :) 1309 InfLoopBlock = 1310 BasicBlock::Create(BB->getContext(), "infloop", BB->getParent()); 1311 BranchInst::Create(InfLoopBlock, InfLoopBlock); 1312 if (DTU) 1313 Updates.push_back( 1314 {DominatorTree::Insert, InfLoopBlock, InfLoopBlock}); 1315 } 1316 NewSI->setSuccessor(i, InfLoopBlock); 1317 } 1318 1319 if (DTU) { 1320 if (InfLoopBlock) 1321 Updates.push_back({DominatorTree::Insert, Pred, InfLoopBlock}); 1322 1323 Updates.push_back({DominatorTree::Delete, Pred, BB}); 1324 1325 DTU->applyUpdates(Updates); 1326 } 1327 1328 // Here the BB is not a dead block but folded into its predecessors, so move 1329 // the probe and mark it as dangling. 1330 moveAndDanglePseudoProbes(BB, NewSI); 1331 1332 ++NumFoldValueComparisonIntoPredecessors; 1333 return true; 1334 } 1335 1336 /// The specified terminator is a value equality comparison instruction 1337 /// (either a switch or a branch on "X == c"). 1338 /// See if any of the predecessors of the terminator block are value comparisons 1339 /// on the same value. If so, and if safe to do so, fold them together. 1340 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(Instruction *TI, 1341 IRBuilder<> &Builder) { 1342 BasicBlock *BB = TI->getParent(); 1343 Value *CV = isValueEqualityComparison(TI); // CondVal 1344 assert(CV && "Not a comparison?"); 1345 1346 bool Changed = false; 1347 1348 SmallSetVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB)); 1349 while (!Preds.empty()) { 1350 BasicBlock *Pred = Preds.pop_back_val(); 1351 Instruction *PTI = Pred->getTerminator(); 1352 1353 // Don't try to fold into itself. 1354 if (Pred == BB) 1355 continue; 1356 1357 // See if the predecessor is a comparison with the same value. 1358 Value *PCV = isValueEqualityComparison(PTI); // PredCondVal 1359 if (PCV != CV) 1360 continue; 1361 1362 SmallSetVector<BasicBlock *, 4> FailBlocks; 1363 if (!SafeToMergeTerminators(TI, PTI, &FailBlocks)) { 1364 for (auto *Succ : FailBlocks) { 1365 if (!SplitBlockPredecessors(Succ, TI->getParent(), ".fold.split", DTU)) 1366 return false; 1367 } 1368 } 1369 1370 PerformValueComparisonIntoPredecessorFolding(TI, CV, PTI, Builder); 1371 Changed = true; 1372 } 1373 return Changed; 1374 } 1375 1376 // If we would need to insert a select that uses the value of this invoke 1377 // (comments in HoistThenElseCodeToIf explain why we would need to do this), we 1378 // can't hoist the invoke, as there is nowhere to put the select in this case. 1379 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2, 1380 Instruction *I1, Instruction *I2) { 1381 for (BasicBlock *Succ : successors(BB1)) { 1382 for (const PHINode &PN : Succ->phis()) { 1383 Value *BB1V = PN.getIncomingValueForBlock(BB1); 1384 Value *BB2V = PN.getIncomingValueForBlock(BB2); 1385 if (BB1V != BB2V && (BB1V == I1 || BB2V == I2)) { 1386 return false; 1387 } 1388 } 1389 } 1390 return true; 1391 } 1392 1393 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I, bool PtrValueMayBeModified = false); 1394 1395 /// Given a conditional branch that goes to BB1 and BB2, hoist any common code 1396 /// in the two blocks up into the branch block. The caller of this function 1397 /// guarantees that BI's block dominates BB1 and BB2. If EqTermsOnly is given, 1398 /// only perform hoisting in case both blocks only contain a terminator. In that 1399 /// case, only the original BI will be replaced and selects for PHIs are added. 1400 bool SimplifyCFGOpt::HoistThenElseCodeToIf(BranchInst *BI, 1401 const TargetTransformInfo &TTI, 1402 bool EqTermsOnly) { 1403 // This does very trivial matching, with limited scanning, to find identical 1404 // instructions in the two blocks. In particular, we don't want to get into 1405 // O(M*N) situations here where M and N are the sizes of BB1 and BB2. As 1406 // such, we currently just scan for obviously identical instructions in an 1407 // identical order. 1408 BasicBlock *BB1 = BI->getSuccessor(0); // The true destination. 1409 BasicBlock *BB2 = BI->getSuccessor(1); // The false destination 1410 1411 BasicBlock::iterator BB1_Itr = BB1->begin(); 1412 BasicBlock::iterator BB2_Itr = BB2->begin(); 1413 1414 Instruction *I1 = &*BB1_Itr++, *I2 = &*BB2_Itr++; 1415 // Skip debug info if it is not identical. 1416 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1417 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1418 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1419 while (isa<DbgInfoIntrinsic>(I1)) 1420 I1 = &*BB1_Itr++; 1421 while (isa<DbgInfoIntrinsic>(I2)) 1422 I2 = &*BB2_Itr++; 1423 } 1424 // FIXME: Can we define a safety predicate for CallBr? 1425 if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) || 1426 (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) || 1427 isa<CallBrInst>(I1)) 1428 return false; 1429 1430 BasicBlock *BIParent = BI->getParent(); 1431 1432 bool Changed = false; 1433 1434 auto _ = make_scope_exit([&]() { 1435 if (Changed) 1436 ++NumHoistCommonCode; 1437 }); 1438 1439 // Check if only hoisting terminators is allowed. This does not add new 1440 // instructions to the hoist location. 1441 if (EqTermsOnly) { 1442 // Skip any debug intrinsics, as they are free to hoist. 1443 auto *I1NonDbg = &*skipDebugIntrinsics(I1->getIterator()); 1444 auto *I2NonDbg = &*skipDebugIntrinsics(I2->getIterator()); 1445 if (!I1NonDbg->isIdenticalToWhenDefined(I2NonDbg)) 1446 return false; 1447 if (!I1NonDbg->isTerminator()) 1448 return false; 1449 // Now we know that we only need to hoist debug instrinsics and the 1450 // terminator. Let the loop below handle those 2 cases. 1451 } 1452 1453 do { 1454 // If we are hoisting the terminator instruction, don't move one (making a 1455 // broken BB), instead clone it, and remove BI. 1456 if (I1->isTerminator()) 1457 goto HoistTerminator; 1458 1459 // If we're going to hoist a call, make sure that the two instructions we're 1460 // commoning/hoisting are both marked with musttail, or neither of them is 1461 // marked as such. Otherwise, we might end up in a situation where we hoist 1462 // from a block where the terminator is a `ret` to a block where the terminator 1463 // is a `br`, and `musttail` calls expect to be followed by a return. 1464 auto *C1 = dyn_cast<CallInst>(I1); 1465 auto *C2 = dyn_cast<CallInst>(I2); 1466 if (C1 && C2) 1467 if (C1->isMustTailCall() != C2->isMustTailCall()) 1468 return Changed; 1469 1470 if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2)) 1471 return Changed; 1472 1473 // If any of the two call sites has nomerge attribute, stop hoisting. 1474 if (const auto *CB1 = dyn_cast<CallBase>(I1)) 1475 if (CB1->cannotMerge()) 1476 return Changed; 1477 if (const auto *CB2 = dyn_cast<CallBase>(I2)) 1478 if (CB2->cannotMerge()) 1479 return Changed; 1480 1481 if (isa<DbgInfoIntrinsic>(I1) || isa<DbgInfoIntrinsic>(I2)) { 1482 assert (isa<DbgInfoIntrinsic>(I1) && isa<DbgInfoIntrinsic>(I2)); 1483 // The debug location is an integral part of a debug info intrinsic 1484 // and can't be separated from it or replaced. Instead of attempting 1485 // to merge locations, simply hoist both copies of the intrinsic. 1486 BIParent->getInstList().splice(BI->getIterator(), 1487 BB1->getInstList(), I1); 1488 BIParent->getInstList().splice(BI->getIterator(), 1489 BB2->getInstList(), I2); 1490 Changed = true; 1491 } else { 1492 // For a normal instruction, we just move one to right before the branch, 1493 // then replace all uses of the other with the first. Finally, we remove 1494 // the now redundant second instruction. 1495 BIParent->getInstList().splice(BI->getIterator(), 1496 BB1->getInstList(), I1); 1497 if (!I2->use_empty()) 1498 I2->replaceAllUsesWith(I1); 1499 I1->andIRFlags(I2); 1500 unsigned KnownIDs[] = {LLVMContext::MD_tbaa, 1501 LLVMContext::MD_range, 1502 LLVMContext::MD_fpmath, 1503 LLVMContext::MD_invariant_load, 1504 LLVMContext::MD_nonnull, 1505 LLVMContext::MD_invariant_group, 1506 LLVMContext::MD_align, 1507 LLVMContext::MD_dereferenceable, 1508 LLVMContext::MD_dereferenceable_or_null, 1509 LLVMContext::MD_mem_parallel_loop_access, 1510 LLVMContext::MD_access_group, 1511 LLVMContext::MD_preserve_access_index}; 1512 combineMetadata(I1, I2, KnownIDs, true); 1513 1514 // I1 and I2 are being combined into a single instruction. Its debug 1515 // location is the merged locations of the original instructions. 1516 I1->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc()); 1517 1518 I2->eraseFromParent(); 1519 Changed = true; 1520 } 1521 ++NumHoistCommonInstrs; 1522 1523 I1 = &*BB1_Itr++; 1524 I2 = &*BB2_Itr++; 1525 // Skip debug info if it is not identical. 1526 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1527 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1528 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1529 while (isa<DbgInfoIntrinsic>(I1)) 1530 I1 = &*BB1_Itr++; 1531 while (isa<DbgInfoIntrinsic>(I2)) 1532 I2 = &*BB2_Itr++; 1533 } 1534 } while (I1->isIdenticalToWhenDefined(I2)); 1535 1536 return true; 1537 1538 HoistTerminator: 1539 // It may not be possible to hoist an invoke. 1540 // FIXME: Can we define a safety predicate for CallBr? 1541 if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) 1542 return Changed; 1543 1544 // TODO: callbr hoisting currently disabled pending further study. 1545 if (isa<CallBrInst>(I1)) 1546 return Changed; 1547 1548 for (BasicBlock *Succ : successors(BB1)) { 1549 for (PHINode &PN : Succ->phis()) { 1550 Value *BB1V = PN.getIncomingValueForBlock(BB1); 1551 Value *BB2V = PN.getIncomingValueForBlock(BB2); 1552 if (BB1V == BB2V) 1553 continue; 1554 1555 // Check for passingValueIsAlwaysUndefined here because we would rather 1556 // eliminate undefined control flow then converting it to a select. 1557 if (passingValueIsAlwaysUndefined(BB1V, &PN) || 1558 passingValueIsAlwaysUndefined(BB2V, &PN)) 1559 return Changed; 1560 1561 if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V)) 1562 return Changed; 1563 if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V)) 1564 return Changed; 1565 } 1566 } 1567 1568 // Okay, it is safe to hoist the terminator. 1569 Instruction *NT = I1->clone(); 1570 BIParent->getInstList().insert(BI->getIterator(), NT); 1571 if (!NT->getType()->isVoidTy()) { 1572 I1->replaceAllUsesWith(NT); 1573 I2->replaceAllUsesWith(NT); 1574 NT->takeName(I1); 1575 } 1576 Changed = true; 1577 ++NumHoistCommonInstrs; 1578 1579 // Ensure terminator gets a debug location, even an unknown one, in case 1580 // it involves inlinable calls. 1581 NT->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc()); 1582 1583 // PHIs created below will adopt NT's merged DebugLoc. 1584 IRBuilder<NoFolder> Builder(NT); 1585 1586 // Hoisting one of the terminators from our successor is a great thing. 1587 // Unfortunately, the successors of the if/else blocks may have PHI nodes in 1588 // them. If they do, all PHI entries for BB1/BB2 must agree for all PHI 1589 // nodes, so we insert select instruction to compute the final result. 1590 std::map<std::pair<Value *, Value *>, SelectInst *> InsertedSelects; 1591 for (BasicBlock *Succ : successors(BB1)) { 1592 for (PHINode &PN : Succ->phis()) { 1593 Value *BB1V = PN.getIncomingValueForBlock(BB1); 1594 Value *BB2V = PN.getIncomingValueForBlock(BB2); 1595 if (BB1V == BB2V) 1596 continue; 1597 1598 // These values do not agree. Insert a select instruction before NT 1599 // that determines the right value. 1600 SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)]; 1601 if (!SI) { 1602 // Propagate fast-math-flags from phi node to its replacement select. 1603 IRBuilder<>::FastMathFlagGuard FMFGuard(Builder); 1604 if (isa<FPMathOperator>(PN)) 1605 Builder.setFastMathFlags(PN.getFastMathFlags()); 1606 1607 SI = cast<SelectInst>( 1608 Builder.CreateSelect(BI->getCondition(), BB1V, BB2V, 1609 BB1V->getName() + "." + BB2V->getName(), BI)); 1610 } 1611 1612 // Make the PHI node use the select for all incoming values for BB1/BB2 1613 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) 1614 if (PN.getIncomingBlock(i) == BB1 || PN.getIncomingBlock(i) == BB2) 1615 PN.setIncomingValue(i, SI); 1616 } 1617 } 1618 1619 SmallVector<DominatorTree::UpdateType, 4> Updates; 1620 1621 // Update any PHI nodes in our new successors. 1622 for (BasicBlock *Succ : successors(BB1)) { 1623 AddPredecessorToBlock(Succ, BIParent, BB1); 1624 if (DTU) 1625 Updates.push_back({DominatorTree::Insert, BIParent, Succ}); 1626 } 1627 1628 if (DTU) 1629 for (BasicBlock *Succ : successors(BI)) 1630 Updates.push_back({DominatorTree::Delete, BIParent, Succ}); 1631 1632 EraseTerminatorAndDCECond(BI); 1633 if (DTU) 1634 DTU->applyUpdates(Updates); 1635 return Changed; 1636 } 1637 1638 // Check lifetime markers. 1639 static bool isLifeTimeMarker(const Instruction *I) { 1640 if (auto II = dyn_cast<IntrinsicInst>(I)) { 1641 switch (II->getIntrinsicID()) { 1642 default: 1643 break; 1644 case Intrinsic::lifetime_start: 1645 case Intrinsic::lifetime_end: 1646 return true; 1647 } 1648 } 1649 return false; 1650 } 1651 1652 // TODO: Refine this. This should avoid cases like turning constant memcpy sizes 1653 // into variables. 1654 static bool replacingOperandWithVariableIsCheap(const Instruction *I, 1655 int OpIdx) { 1656 return !isa<IntrinsicInst>(I); 1657 } 1658 1659 // All instructions in Insts belong to different blocks that all unconditionally 1660 // branch to a common successor. Analyze each instruction and return true if it 1661 // would be possible to sink them into their successor, creating one common 1662 // instruction instead. For every value that would be required to be provided by 1663 // PHI node (because an operand varies in each input block), add to PHIOperands. 1664 static bool canSinkInstructions( 1665 ArrayRef<Instruction *> Insts, 1666 DenseMap<Instruction *, SmallVector<Value *, 4>> &PHIOperands) { 1667 // Prune out obviously bad instructions to move. Each instruction must have 1668 // exactly zero or one use, and we check later that use is by a single, common 1669 // PHI instruction in the successor. 1670 bool HasUse = !Insts.front()->user_empty(); 1671 for (auto *I : Insts) { 1672 // These instructions may change or break semantics if moved. 1673 if (isa<PHINode>(I) || I->isEHPad() || isa<AllocaInst>(I) || 1674 I->getType()->isTokenTy()) 1675 return false; 1676 1677 // Do not try to sink an instruction in an infinite loop - it can cause 1678 // this algorithm to infinite loop. 1679 if (I->getParent()->getSingleSuccessor() == I->getParent()) 1680 return false; 1681 1682 // Conservatively return false if I is an inline-asm instruction. Sinking 1683 // and merging inline-asm instructions can potentially create arguments 1684 // that cannot satisfy the inline-asm constraints. 1685 // If the instruction has nomerge attribute, return false. 1686 if (const auto *C = dyn_cast<CallBase>(I)) 1687 if (C->isInlineAsm() || C->cannotMerge()) 1688 return false; 1689 1690 // Each instruction must have zero or one use. 1691 if (HasUse && !I->hasOneUse()) 1692 return false; 1693 if (!HasUse && !I->user_empty()) 1694 return false; 1695 } 1696 1697 const Instruction *I0 = Insts.front(); 1698 for (auto *I : Insts) 1699 if (!I->isSameOperationAs(I0)) 1700 return false; 1701 1702 // All instructions in Insts are known to be the same opcode. If they have a 1703 // use, check that the only user is a PHI or in the same block as the 1704 // instruction, because if a user is in the same block as an instruction we're 1705 // contemplating sinking, it must already be determined to be sinkable. 1706 if (HasUse) { 1707 auto *PNUse = dyn_cast<PHINode>(*I0->user_begin()); 1708 auto *Succ = I0->getParent()->getTerminator()->getSuccessor(0); 1709 if (!all_of(Insts, [&PNUse,&Succ](const Instruction *I) -> bool { 1710 auto *U = cast<Instruction>(*I->user_begin()); 1711 return (PNUse && 1712 PNUse->getParent() == Succ && 1713 PNUse->getIncomingValueForBlock(I->getParent()) == I) || 1714 U->getParent() == I->getParent(); 1715 })) 1716 return false; 1717 } 1718 1719 // Because SROA can't handle speculating stores of selects, try not to sink 1720 // loads, stores or lifetime markers of allocas when we'd have to create a 1721 // PHI for the address operand. Also, because it is likely that loads or 1722 // stores of allocas will disappear when Mem2Reg/SROA is run, don't sink 1723 // them. 1724 // This can cause code churn which can have unintended consequences down 1725 // the line - see https://llvm.org/bugs/show_bug.cgi?id=30244. 1726 // FIXME: This is a workaround for a deficiency in SROA - see 1727 // https://llvm.org/bugs/show_bug.cgi?id=30188 1728 if (isa<StoreInst>(I0) && any_of(Insts, [](const Instruction *I) { 1729 return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts()); 1730 })) 1731 return false; 1732 if (isa<LoadInst>(I0) && any_of(Insts, [](const Instruction *I) { 1733 return isa<AllocaInst>(I->getOperand(0)->stripPointerCasts()); 1734 })) 1735 return false; 1736 if (isLifeTimeMarker(I0) && any_of(Insts, [](const Instruction *I) { 1737 return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts()); 1738 })) 1739 return false; 1740 1741 // For calls to be sinkable, they must all be indirect, or have same callee. 1742 // I.e. if we have two direct calls to different callees, we don't want to 1743 // turn that into an indirect call. Likewise, if we have an indirect call, 1744 // and a direct call, we don't actually want to have a single indirect call. 1745 if (isa<CallBase>(I0)) { 1746 auto IsIndirectCall = [](const Instruction *I) { 1747 return cast<CallBase>(I)->isIndirectCall(); 1748 }; 1749 bool HaveIndirectCalls = any_of(Insts, IsIndirectCall); 1750 bool AllCallsAreIndirect = all_of(Insts, IsIndirectCall); 1751 if (HaveIndirectCalls) { 1752 if (!AllCallsAreIndirect) 1753 return false; 1754 } else { 1755 // All callees must be identical. 1756 Value *Callee = nullptr; 1757 for (const Instruction *I : Insts) { 1758 Value *CurrCallee = cast<CallBase>(I)->getCalledOperand(); 1759 if (!Callee) 1760 Callee = CurrCallee; 1761 else if (Callee != CurrCallee) 1762 return false; 1763 } 1764 } 1765 } 1766 1767 for (unsigned OI = 0, OE = I0->getNumOperands(); OI != OE; ++OI) { 1768 Value *Op = I0->getOperand(OI); 1769 if (Op->getType()->isTokenTy()) 1770 // Don't touch any operand of token type. 1771 return false; 1772 1773 auto SameAsI0 = [&I0, OI](const Instruction *I) { 1774 assert(I->getNumOperands() == I0->getNumOperands()); 1775 return I->getOperand(OI) == I0->getOperand(OI); 1776 }; 1777 if (!all_of(Insts, SameAsI0)) { 1778 if ((isa<Constant>(Op) && !replacingOperandWithVariableIsCheap(I0, OI)) || 1779 !canReplaceOperandWithVariable(I0, OI)) 1780 // We can't create a PHI from this GEP. 1781 return false; 1782 for (auto *I : Insts) 1783 PHIOperands[I].push_back(I->getOperand(OI)); 1784 } 1785 } 1786 return true; 1787 } 1788 1789 // Assuming canSinkInstructions(Blocks) has returned true, sink the last 1790 // instruction of every block in Blocks to their common successor, commoning 1791 // into one instruction. 1792 static bool sinkLastInstruction(ArrayRef<BasicBlock*> Blocks) { 1793 auto *BBEnd = Blocks[0]->getTerminator()->getSuccessor(0); 1794 1795 // canSinkInstructions returning true guarantees that every block has at 1796 // least one non-terminator instruction. 1797 SmallVector<Instruction*,4> Insts; 1798 for (auto *BB : Blocks) { 1799 Instruction *I = BB->getTerminator(); 1800 do { 1801 I = I->getPrevNode(); 1802 } while (isa<DbgInfoIntrinsic>(I) && I != &BB->front()); 1803 if (!isa<DbgInfoIntrinsic>(I)) 1804 Insts.push_back(I); 1805 } 1806 1807 // The only checking we need to do now is that all users of all instructions 1808 // are the same PHI node. canSinkInstructions should have checked this but 1809 // it is slightly over-aggressive - it gets confused by commutative 1810 // instructions so double-check it here. 1811 Instruction *I0 = Insts.front(); 1812 if (!I0->user_empty()) { 1813 auto *PNUse = dyn_cast<PHINode>(*I0->user_begin()); 1814 if (!all_of(Insts, [&PNUse](const Instruction *I) -> bool { 1815 auto *U = cast<Instruction>(*I->user_begin()); 1816 return U == PNUse; 1817 })) 1818 return false; 1819 } 1820 1821 // We don't need to do any more checking here; canSinkInstructions should 1822 // have done it all for us. 1823 SmallVector<Value*, 4> NewOperands; 1824 for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) { 1825 // This check is different to that in canSinkInstructions. There, we 1826 // cared about the global view once simplifycfg (and instcombine) have 1827 // completed - it takes into account PHIs that become trivially 1828 // simplifiable. However here we need a more local view; if an operand 1829 // differs we create a PHI and rely on instcombine to clean up the very 1830 // small mess we may make. 1831 bool NeedPHI = any_of(Insts, [&I0, O](const Instruction *I) { 1832 return I->getOperand(O) != I0->getOperand(O); 1833 }); 1834 if (!NeedPHI) { 1835 NewOperands.push_back(I0->getOperand(O)); 1836 continue; 1837 } 1838 1839 // Create a new PHI in the successor block and populate it. 1840 auto *Op = I0->getOperand(O); 1841 assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!"); 1842 auto *PN = PHINode::Create(Op->getType(), Insts.size(), 1843 Op->getName() + ".sink", &BBEnd->front()); 1844 for (auto *I : Insts) 1845 PN->addIncoming(I->getOperand(O), I->getParent()); 1846 NewOperands.push_back(PN); 1847 } 1848 1849 // Arbitrarily use I0 as the new "common" instruction; remap its operands 1850 // and move it to the start of the successor block. 1851 for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) 1852 I0->getOperandUse(O).set(NewOperands[O]); 1853 I0->moveBefore(&*BBEnd->getFirstInsertionPt()); 1854 1855 // Update metadata and IR flags, and merge debug locations. 1856 for (auto *I : Insts) 1857 if (I != I0) { 1858 // The debug location for the "common" instruction is the merged locations 1859 // of all the commoned instructions. We start with the original location 1860 // of the "common" instruction and iteratively merge each location in the 1861 // loop below. 1862 // This is an N-way merge, which will be inefficient if I0 is a CallInst. 1863 // However, as N-way merge for CallInst is rare, so we use simplified API 1864 // instead of using complex API for N-way merge. 1865 I0->applyMergedLocation(I0->getDebugLoc(), I->getDebugLoc()); 1866 combineMetadataForCSE(I0, I, true); 1867 I0->andIRFlags(I); 1868 } 1869 1870 if (!I0->user_empty()) { 1871 // canSinkLastInstruction checked that all instructions were used by 1872 // one and only one PHI node. Find that now, RAUW it to our common 1873 // instruction and nuke it. 1874 auto *PN = cast<PHINode>(*I0->user_begin()); 1875 PN->replaceAllUsesWith(I0); 1876 PN->eraseFromParent(); 1877 } 1878 1879 // Finally nuke all instructions apart from the common instruction. 1880 for (auto *I : Insts) 1881 if (I != I0) 1882 I->eraseFromParent(); 1883 1884 return true; 1885 } 1886 1887 namespace { 1888 1889 // LockstepReverseIterator - Iterates through instructions 1890 // in a set of blocks in reverse order from the first non-terminator. 1891 // For example (assume all blocks have size n): 1892 // LockstepReverseIterator I([B1, B2, B3]); 1893 // *I-- = [B1[n], B2[n], B3[n]]; 1894 // *I-- = [B1[n-1], B2[n-1], B3[n-1]]; 1895 // *I-- = [B1[n-2], B2[n-2], B3[n-2]]; 1896 // ... 1897 class LockstepReverseIterator { 1898 ArrayRef<BasicBlock*> Blocks; 1899 SmallVector<Instruction*,4> Insts; 1900 bool Fail; 1901 1902 public: 1903 LockstepReverseIterator(ArrayRef<BasicBlock*> Blocks) : Blocks(Blocks) { 1904 reset(); 1905 } 1906 1907 void reset() { 1908 Fail = false; 1909 Insts.clear(); 1910 for (auto *BB : Blocks) { 1911 Instruction *Inst = BB->getTerminator(); 1912 for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);) 1913 Inst = Inst->getPrevNode(); 1914 if (!Inst) { 1915 // Block wasn't big enough. 1916 Fail = true; 1917 return; 1918 } 1919 Insts.push_back(Inst); 1920 } 1921 } 1922 1923 bool isValid() const { 1924 return !Fail; 1925 } 1926 1927 void operator--() { 1928 if (Fail) 1929 return; 1930 for (auto *&Inst : Insts) { 1931 for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);) 1932 Inst = Inst->getPrevNode(); 1933 // Already at beginning of block. 1934 if (!Inst) { 1935 Fail = true; 1936 return; 1937 } 1938 } 1939 } 1940 1941 void operator++() { 1942 if (Fail) 1943 return; 1944 for (auto *&Inst : Insts) { 1945 for (Inst = Inst->getNextNode(); Inst && isa<DbgInfoIntrinsic>(Inst);) 1946 Inst = Inst->getNextNode(); 1947 // Already at end of block. 1948 if (!Inst) { 1949 Fail = true; 1950 return; 1951 } 1952 } 1953 } 1954 1955 ArrayRef<Instruction*> operator * () const { 1956 return Insts; 1957 } 1958 }; 1959 1960 } // end anonymous namespace 1961 1962 /// Check whether BB's predecessors end with unconditional branches. If it is 1963 /// true, sink any common code from the predecessors to BB. 1964 static bool SinkCommonCodeFromPredecessors(BasicBlock *BB, 1965 DomTreeUpdater *DTU) { 1966 // We support two situations: 1967 // (1) all incoming arcs are unconditional 1968 // (2) there are non-unconditional incoming arcs 1969 // 1970 // (2) is very common in switch defaults and 1971 // else-if patterns; 1972 // 1973 // if (a) f(1); 1974 // else if (b) f(2); 1975 // 1976 // produces: 1977 // 1978 // [if] 1979 // / \ 1980 // [f(1)] [if] 1981 // | | \ 1982 // | | | 1983 // | [f(2)]| 1984 // \ | / 1985 // [ end ] 1986 // 1987 // [end] has two unconditional predecessor arcs and one conditional. The 1988 // conditional refers to the implicit empty 'else' arc. This conditional 1989 // arc can also be caused by an empty default block in a switch. 1990 // 1991 // In this case, we attempt to sink code from all *unconditional* arcs. 1992 // If we can sink instructions from these arcs (determined during the scan 1993 // phase below) we insert a common successor for all unconditional arcs and 1994 // connect that to [end], to enable sinking: 1995 // 1996 // [if] 1997 // / \ 1998 // [x(1)] [if] 1999 // | | \ 2000 // | | \ 2001 // | [x(2)] | 2002 // \ / | 2003 // [sink.split] | 2004 // \ / 2005 // [ end ] 2006 // 2007 SmallVector<BasicBlock*,4> UnconditionalPreds; 2008 bool HaveNonUnconditionalPredecessors = false; 2009 for (auto *PredBB : predecessors(BB)) { 2010 auto *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()); 2011 if (PredBr && PredBr->isUnconditional()) 2012 UnconditionalPreds.push_back(PredBB); 2013 else 2014 HaveNonUnconditionalPredecessors = true; 2015 } 2016 if (UnconditionalPreds.size() < 2) 2017 return false; 2018 2019 // We take a two-step approach to tail sinking. First we scan from the end of 2020 // each block upwards in lockstep. If the n'th instruction from the end of each 2021 // block can be sunk, those instructions are added to ValuesToSink and we 2022 // carry on. If we can sink an instruction but need to PHI-merge some operands 2023 // (because they're not identical in each instruction) we add these to 2024 // PHIOperands. 2025 int ScanIdx = 0; 2026 SmallPtrSet<Value*,4> InstructionsToSink; 2027 DenseMap<Instruction*, SmallVector<Value*,4>> PHIOperands; 2028 LockstepReverseIterator LRI(UnconditionalPreds); 2029 while (LRI.isValid() && 2030 canSinkInstructions(*LRI, PHIOperands)) { 2031 LLVM_DEBUG(dbgs() << "SINK: instruction can be sunk: " << *(*LRI)[0] 2032 << "\n"); 2033 InstructionsToSink.insert((*LRI).begin(), (*LRI).end()); 2034 ++ScanIdx; 2035 --LRI; 2036 } 2037 2038 // If no instructions can be sunk, early-return. 2039 if (ScanIdx == 0) 2040 return false; 2041 2042 // Okay, we *could* sink last ScanIdx instructions. But how many can we 2043 // actually sink before encountering instruction that is unprofitable to sink? 2044 auto ProfitableToSinkInstruction = [&](LockstepReverseIterator &LRI) { 2045 unsigned NumPHIdValues = 0; 2046 for (auto *I : *LRI) 2047 for (auto *V : PHIOperands[I]) { 2048 if (InstructionsToSink.count(V) == 0) 2049 ++NumPHIdValues; 2050 // FIXME: this check is overly optimistic. We may end up not sinking 2051 // said instruction, due to the very same profitability check. 2052 // See @creating_too_many_phis in sink-common-code.ll. 2053 } 2054 LLVM_DEBUG(dbgs() << "SINK: #phid values: " << NumPHIdValues << "\n"); 2055 unsigned NumPHIInsts = NumPHIdValues / UnconditionalPreds.size(); 2056 if ((NumPHIdValues % UnconditionalPreds.size()) != 0) 2057 NumPHIInsts++; 2058 2059 return NumPHIInsts <= 1; 2060 }; 2061 2062 // We've determined that we are going to sink last ScanIdx instructions, 2063 // and recorded them in InstructionsToSink. Now, some instructions may be 2064 // unprofitable to sink. But that determination depends on the instructions 2065 // that we are going to sink. 2066 2067 // First, forward scan: find the first instruction unprofitable to sink, 2068 // recording all the ones that are profitable to sink. 2069 // FIXME: would it be better, after we detect that not all are profitable. 2070 // to either record the profitable ones, or erase the unprofitable ones? 2071 // Maybe we need to choose (at runtime) the one that will touch least instrs? 2072 LRI.reset(); 2073 int Idx = 0; 2074 SmallPtrSet<Value *, 4> InstructionsProfitableToSink; 2075 while (Idx < ScanIdx) { 2076 if (!ProfitableToSinkInstruction(LRI)) { 2077 // Too many PHIs would be created. 2078 LLVM_DEBUG( 2079 dbgs() << "SINK: stopping here, too many PHIs would be created!\n"); 2080 break; 2081 } 2082 InstructionsProfitableToSink.insert((*LRI).begin(), (*LRI).end()); 2083 --LRI; 2084 ++Idx; 2085 } 2086 2087 // If no instructions can be sunk, early-return. 2088 if (Idx == 0) 2089 return false; 2090 2091 // Did we determine that (only) some instructions are unprofitable to sink? 2092 if (Idx < ScanIdx) { 2093 // Okay, some instructions are unprofitable. 2094 ScanIdx = Idx; 2095 InstructionsToSink = InstructionsProfitableToSink; 2096 2097 // But, that may make other instructions unprofitable, too. 2098 // So, do a backward scan, do any earlier instructions become unprofitable? 2099 assert(!ProfitableToSinkInstruction(LRI) && 2100 "We already know that the last instruction is unprofitable to sink"); 2101 ++LRI; 2102 --Idx; 2103 while (Idx >= 0) { 2104 // If we detect that an instruction becomes unprofitable to sink, 2105 // all earlier instructions won't be sunk either, 2106 // so preemptively keep InstructionsProfitableToSink in sync. 2107 // FIXME: is this the most performant approach? 2108 for (auto *I : *LRI) 2109 InstructionsProfitableToSink.erase(I); 2110 if (!ProfitableToSinkInstruction(LRI)) { 2111 // Everything starting with this instruction won't be sunk. 2112 ScanIdx = Idx; 2113 InstructionsToSink = InstructionsProfitableToSink; 2114 } 2115 ++LRI; 2116 --Idx; 2117 } 2118 } 2119 2120 // If no instructions can be sunk, early-return. 2121 if (ScanIdx == 0) 2122 return false; 2123 2124 bool Changed = false; 2125 2126 if (HaveNonUnconditionalPredecessors) { 2127 // It is always legal to sink common instructions from unconditional 2128 // predecessors. However, if not all predecessors are unconditional, 2129 // this transformation might be pessimizing. So as a rule of thumb, 2130 // don't do it unless we'd sink at least one non-speculatable instruction. 2131 // See https://bugs.llvm.org/show_bug.cgi?id=30244 2132 LRI.reset(); 2133 int Idx = 0; 2134 bool Profitable = false; 2135 while (Idx < ScanIdx) { 2136 if (!isSafeToSpeculativelyExecute((*LRI)[0])) { 2137 Profitable = true; 2138 break; 2139 } 2140 --LRI; 2141 ++Idx; 2142 } 2143 if (!Profitable) 2144 return false; 2145 2146 LLVM_DEBUG(dbgs() << "SINK: Splitting edge\n"); 2147 // We have a conditional edge and we're going to sink some instructions. 2148 // Insert a new block postdominating all blocks we're going to sink from. 2149 if (!SplitBlockPredecessors(BB, UnconditionalPreds, ".sink.split", DTU)) 2150 // Edges couldn't be split. 2151 return false; 2152 Changed = true; 2153 } 2154 2155 // Now that we've analyzed all potential sinking candidates, perform the 2156 // actual sink. We iteratively sink the last non-terminator of the source 2157 // blocks into their common successor unless doing so would require too 2158 // many PHI instructions to be generated (currently only one PHI is allowed 2159 // per sunk instruction). 2160 // 2161 // We can use InstructionsToSink to discount values needing PHI-merging that will 2162 // actually be sunk in a later iteration. This allows us to be more 2163 // aggressive in what we sink. This does allow a false positive where we 2164 // sink presuming a later value will also be sunk, but stop half way through 2165 // and never actually sink it which means we produce more PHIs than intended. 2166 // This is unlikely in practice though. 2167 int SinkIdx = 0; 2168 for (; SinkIdx != ScanIdx; ++SinkIdx) { 2169 LLVM_DEBUG(dbgs() << "SINK: Sink: " 2170 << *UnconditionalPreds[0]->getTerminator()->getPrevNode() 2171 << "\n"); 2172 2173 // Because we've sunk every instruction in turn, the current instruction to 2174 // sink is always at index 0. 2175 LRI.reset(); 2176 2177 if (!sinkLastInstruction(UnconditionalPreds)) { 2178 LLVM_DEBUG( 2179 dbgs() 2180 << "SINK: stopping here, failed to actually sink instruction!\n"); 2181 break; 2182 } 2183 2184 NumSinkCommonInstrs++; 2185 Changed = true; 2186 } 2187 if (SinkIdx != 0) 2188 ++NumSinkCommonCode; 2189 return Changed; 2190 } 2191 2192 /// Determine if we can hoist sink a sole store instruction out of a 2193 /// conditional block. 2194 /// 2195 /// We are looking for code like the following: 2196 /// BrBB: 2197 /// store i32 %add, i32* %arrayidx2 2198 /// ... // No other stores or function calls (we could be calling a memory 2199 /// ... // function). 2200 /// %cmp = icmp ult %x, %y 2201 /// br i1 %cmp, label %EndBB, label %ThenBB 2202 /// ThenBB: 2203 /// store i32 %add5, i32* %arrayidx2 2204 /// br label EndBB 2205 /// EndBB: 2206 /// ... 2207 /// We are going to transform this into: 2208 /// BrBB: 2209 /// store i32 %add, i32* %arrayidx2 2210 /// ... // 2211 /// %cmp = icmp ult %x, %y 2212 /// %add.add5 = select i1 %cmp, i32 %add, %add5 2213 /// store i32 %add.add5, i32* %arrayidx2 2214 /// ... 2215 /// 2216 /// \return The pointer to the value of the previous store if the store can be 2217 /// hoisted into the predecessor block. 0 otherwise. 2218 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB, 2219 BasicBlock *StoreBB, BasicBlock *EndBB) { 2220 StoreInst *StoreToHoist = dyn_cast<StoreInst>(I); 2221 if (!StoreToHoist) 2222 return nullptr; 2223 2224 // Volatile or atomic. 2225 if (!StoreToHoist->isSimple()) 2226 return nullptr; 2227 2228 Value *StorePtr = StoreToHoist->getPointerOperand(); 2229 2230 // Look for a store to the same pointer in BrBB. 2231 unsigned MaxNumInstToLookAt = 9; 2232 // Skip pseudo probe intrinsic calls which are not really killing any memory 2233 // accesses. 2234 for (Instruction &CurI : reverse(BrBB->instructionsWithoutDebug(true))) { 2235 if (!MaxNumInstToLookAt) 2236 break; 2237 --MaxNumInstToLookAt; 2238 2239 // Could be calling an instruction that affects memory like free(). 2240 if (CurI.mayHaveSideEffects() && !isa<StoreInst>(CurI)) 2241 return nullptr; 2242 2243 if (auto *SI = dyn_cast<StoreInst>(&CurI)) { 2244 // Found the previous store make sure it stores to the same location. 2245 if (SI->getPointerOperand() == StorePtr) 2246 // Found the previous store, return its value operand. 2247 return SI->getValueOperand(); 2248 return nullptr; // Unknown store. 2249 } 2250 } 2251 2252 return nullptr; 2253 } 2254 2255 /// Estimate the cost of the insertion(s) and check that the PHI nodes can be 2256 /// converted to selects. 2257 static bool validateAndCostRequiredSelects(BasicBlock *BB, BasicBlock *ThenBB, 2258 BasicBlock *EndBB, 2259 unsigned &SpeculatedInstructions, 2260 InstructionCost &Cost, 2261 const TargetTransformInfo &TTI) { 2262 TargetTransformInfo::TargetCostKind CostKind = 2263 BB->getParent()->hasMinSize() 2264 ? TargetTransformInfo::TCK_CodeSize 2265 : TargetTransformInfo::TCK_SizeAndLatency; 2266 2267 bool HaveRewritablePHIs = false; 2268 for (PHINode &PN : EndBB->phis()) { 2269 Value *OrigV = PN.getIncomingValueForBlock(BB); 2270 Value *ThenV = PN.getIncomingValueForBlock(ThenBB); 2271 2272 // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf. 2273 // Skip PHIs which are trivial. 2274 if (ThenV == OrigV) 2275 continue; 2276 2277 Cost += TTI.getCmpSelInstrCost(Instruction::Select, PN.getType(), nullptr, 2278 CmpInst::BAD_ICMP_PREDICATE, CostKind); 2279 2280 // Don't convert to selects if we could remove undefined behavior instead. 2281 if (passingValueIsAlwaysUndefined(OrigV, &PN) || 2282 passingValueIsAlwaysUndefined(ThenV, &PN)) 2283 return false; 2284 2285 HaveRewritablePHIs = true; 2286 ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV); 2287 ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV); 2288 if (!OrigCE && !ThenCE) 2289 continue; // Known safe and cheap. 2290 2291 if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE)) || 2292 (OrigCE && !isSafeToSpeculativelyExecute(OrigCE))) 2293 return false; 2294 InstructionCost OrigCost = OrigCE ? computeSpeculationCost(OrigCE, TTI) : 0; 2295 InstructionCost ThenCost = ThenCE ? computeSpeculationCost(ThenCE, TTI) : 0; 2296 InstructionCost MaxCost = 2297 2 * PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 2298 if (OrigCost + ThenCost > MaxCost) 2299 return false; 2300 2301 // Account for the cost of an unfolded ConstantExpr which could end up 2302 // getting expanded into Instructions. 2303 // FIXME: This doesn't account for how many operations are combined in the 2304 // constant expression. 2305 ++SpeculatedInstructions; 2306 if (SpeculatedInstructions > 1) 2307 return false; 2308 } 2309 2310 return HaveRewritablePHIs; 2311 } 2312 2313 /// Speculate a conditional basic block flattening the CFG. 2314 /// 2315 /// Note that this is a very risky transform currently. Speculating 2316 /// instructions like this is most often not desirable. Instead, there is an MI 2317 /// pass which can do it with full awareness of the resource constraints. 2318 /// However, some cases are "obvious" and we should do directly. An example of 2319 /// this is speculating a single, reasonably cheap instruction. 2320 /// 2321 /// There is only one distinct advantage to flattening the CFG at the IR level: 2322 /// it makes very common but simplistic optimizations such as are common in 2323 /// instcombine and the DAG combiner more powerful by removing CFG edges and 2324 /// modeling their effects with easier to reason about SSA value graphs. 2325 /// 2326 /// 2327 /// An illustration of this transform is turning this IR: 2328 /// \code 2329 /// BB: 2330 /// %cmp = icmp ult %x, %y 2331 /// br i1 %cmp, label %EndBB, label %ThenBB 2332 /// ThenBB: 2333 /// %sub = sub %x, %y 2334 /// br label BB2 2335 /// EndBB: 2336 /// %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ] 2337 /// ... 2338 /// \endcode 2339 /// 2340 /// Into this IR: 2341 /// \code 2342 /// BB: 2343 /// %cmp = icmp ult %x, %y 2344 /// %sub = sub %x, %y 2345 /// %cond = select i1 %cmp, 0, %sub 2346 /// ... 2347 /// \endcode 2348 /// 2349 /// \returns true if the conditional block is removed. 2350 bool SimplifyCFGOpt::SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB, 2351 const TargetTransformInfo &TTI) { 2352 // Be conservative for now. FP select instruction can often be expensive. 2353 Value *BrCond = BI->getCondition(); 2354 if (isa<FCmpInst>(BrCond)) 2355 return false; 2356 2357 BasicBlock *BB = BI->getParent(); 2358 BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0); 2359 InstructionCost Budget = 2360 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 2361 2362 // If ThenBB is actually on the false edge of the conditional branch, remember 2363 // to swap the select operands later. 2364 bool Invert = false; 2365 if (ThenBB != BI->getSuccessor(0)) { 2366 assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?"); 2367 Invert = true; 2368 } 2369 assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block"); 2370 2371 // Keep a count of how many times instructions are used within ThenBB when 2372 // they are candidates for sinking into ThenBB. Specifically: 2373 // - They are defined in BB, and 2374 // - They have no side effects, and 2375 // - All of their uses are in ThenBB. 2376 SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts; 2377 2378 SmallVector<Instruction *, 4> SpeculatedDbgIntrinsics; 2379 2380 unsigned SpeculatedInstructions = 0; 2381 Value *SpeculatedStoreValue = nullptr; 2382 StoreInst *SpeculatedStore = nullptr; 2383 for (BasicBlock::iterator BBI = ThenBB->begin(), 2384 BBE = std::prev(ThenBB->end()); 2385 BBI != BBE; ++BBI) { 2386 Instruction *I = &*BBI; 2387 // Skip debug info. 2388 if (isa<DbgInfoIntrinsic>(I)) { 2389 SpeculatedDbgIntrinsics.push_back(I); 2390 continue; 2391 } 2392 2393 // Skip pseudo probes. The consequence is we lose track of the branch 2394 // probability for ThenBB, which is fine since the optimization here takes 2395 // place regardless of the branch probability. 2396 if (isa<PseudoProbeInst>(I)) { 2397 continue; 2398 } 2399 2400 // Only speculatively execute a single instruction (not counting the 2401 // terminator) for now. 2402 ++SpeculatedInstructions; 2403 if (SpeculatedInstructions > 1) 2404 return false; 2405 2406 // Don't hoist the instruction if it's unsafe or expensive. 2407 if (!isSafeToSpeculativelyExecute(I) && 2408 !(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore( 2409 I, BB, ThenBB, EndBB)))) 2410 return false; 2411 if (!SpeculatedStoreValue && 2412 computeSpeculationCost(I, TTI) > 2413 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic) 2414 return false; 2415 2416 // Store the store speculation candidate. 2417 if (SpeculatedStoreValue) 2418 SpeculatedStore = cast<StoreInst>(I); 2419 2420 // Do not hoist the instruction if any of its operands are defined but not 2421 // used in BB. The transformation will prevent the operand from 2422 // being sunk into the use block. 2423 for (Use &Op : I->operands()) { 2424 Instruction *OpI = dyn_cast<Instruction>(Op); 2425 if (!OpI || OpI->getParent() != BB || OpI->mayHaveSideEffects()) 2426 continue; // Not a candidate for sinking. 2427 2428 ++SinkCandidateUseCounts[OpI]; 2429 } 2430 } 2431 2432 // Consider any sink candidates which are only used in ThenBB as costs for 2433 // speculation. Note, while we iterate over a DenseMap here, we are summing 2434 // and so iteration order isn't significant. 2435 for (SmallDenseMap<Instruction *, unsigned, 4>::iterator 2436 I = SinkCandidateUseCounts.begin(), 2437 E = SinkCandidateUseCounts.end(); 2438 I != E; ++I) 2439 if (I->first->hasNUses(I->second)) { 2440 ++SpeculatedInstructions; 2441 if (SpeculatedInstructions > 1) 2442 return false; 2443 } 2444 2445 // Check that we can insert the selects and that it's not too expensive to do 2446 // so. 2447 bool Convert = SpeculatedStore != nullptr; 2448 InstructionCost Cost = 0; 2449 Convert |= validateAndCostRequiredSelects(BB, ThenBB, EndBB, 2450 SpeculatedInstructions, 2451 Cost, TTI); 2452 if (!Convert || Cost > Budget) 2453 return false; 2454 2455 // If we get here, we can hoist the instruction and if-convert. 2456 LLVM_DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";); 2457 2458 // Insert a select of the value of the speculated store. 2459 if (SpeculatedStoreValue) { 2460 IRBuilder<NoFolder> Builder(BI); 2461 Value *TrueV = SpeculatedStore->getValueOperand(); 2462 Value *FalseV = SpeculatedStoreValue; 2463 if (Invert) 2464 std::swap(TrueV, FalseV); 2465 Value *S = Builder.CreateSelect( 2466 BrCond, TrueV, FalseV, "spec.store.select", BI); 2467 SpeculatedStore->setOperand(0, S); 2468 SpeculatedStore->applyMergedLocation(BI->getDebugLoc(), 2469 SpeculatedStore->getDebugLoc()); 2470 } 2471 2472 // A hoisted conditional probe should be treated as dangling so that it will 2473 // not be over-counted when the samples collected on the non-conditional path 2474 // are counted towards the conditional path. We leave it for the counts 2475 // inference algorithm to figure out a proper count for a danglng probe. 2476 moveAndDanglePseudoProbes(ThenBB, BI); 2477 2478 // Metadata can be dependent on the condition we are hoisting above. 2479 // Conservatively strip all metadata on the instruction. Drop the debug loc 2480 // to avoid making it appear as if the condition is a constant, which would 2481 // be misleading while debugging. 2482 for (auto &I : *ThenBB) { 2483 assert(!isa<PseudoProbeInst>(I) && 2484 "Should not drop debug info from any pseudo probes."); 2485 if (!SpeculatedStoreValue || &I != SpeculatedStore) 2486 I.setDebugLoc(DebugLoc()); 2487 I.dropUnknownNonDebugMetadata(); 2488 } 2489 2490 // Hoist the instructions. 2491 BB->getInstList().splice(BI->getIterator(), ThenBB->getInstList(), 2492 ThenBB->begin(), std::prev(ThenBB->end())); 2493 2494 // Insert selects and rewrite the PHI operands. 2495 IRBuilder<NoFolder> Builder(BI); 2496 for (PHINode &PN : EndBB->phis()) { 2497 unsigned OrigI = PN.getBasicBlockIndex(BB); 2498 unsigned ThenI = PN.getBasicBlockIndex(ThenBB); 2499 Value *OrigV = PN.getIncomingValue(OrigI); 2500 Value *ThenV = PN.getIncomingValue(ThenI); 2501 2502 // Skip PHIs which are trivial. 2503 if (OrigV == ThenV) 2504 continue; 2505 2506 // Create a select whose true value is the speculatively executed value and 2507 // false value is the pre-existing value. Swap them if the branch 2508 // destinations were inverted. 2509 Value *TrueV = ThenV, *FalseV = OrigV; 2510 if (Invert) 2511 std::swap(TrueV, FalseV); 2512 Value *V = Builder.CreateSelect(BrCond, TrueV, FalseV, "spec.select", BI); 2513 PN.setIncomingValue(OrigI, V); 2514 PN.setIncomingValue(ThenI, V); 2515 } 2516 2517 // Remove speculated dbg intrinsics. 2518 // FIXME: Is it possible to do this in a more elegant way? Moving/merging the 2519 // dbg value for the different flows and inserting it after the select. 2520 for (Instruction *I : SpeculatedDbgIntrinsics) 2521 I->eraseFromParent(); 2522 2523 ++NumSpeculations; 2524 return true; 2525 } 2526 2527 /// Return true if we can thread a branch across this block. 2528 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) { 2529 int Size = 0; 2530 2531 SmallPtrSet<const Value *, 32> EphValues; 2532 auto IsEphemeral = [&](const Value *V) { 2533 if (isa<AssumeInst>(V)) 2534 return true; 2535 return isSafeToSpeculativelyExecute(V) && 2536 all_of(V->users(), 2537 [&](const User *U) { return EphValues.count(U); }); 2538 }; 2539 2540 // Walk the loop in reverse so that we can identify ephemeral values properly 2541 // (values only feeding assumes). 2542 for (Instruction &I : reverse(BB->instructionsWithoutDebug())) { 2543 // Can't fold blocks that contain noduplicate or convergent calls. 2544 if (CallInst *CI = dyn_cast<CallInst>(&I)) 2545 if (CI->cannotDuplicate() || CI->isConvergent()) 2546 return false; 2547 2548 // Ignore ephemeral values which are deleted during codegen. 2549 if (IsEphemeral(&I)) 2550 EphValues.insert(&I); 2551 // We will delete Phis while threading, so Phis should not be accounted in 2552 // block's size. 2553 else if (!isa<PHINode>(I)) { 2554 if (Size++ > MaxSmallBlockSize) 2555 return false; // Don't clone large BB's. 2556 } 2557 2558 // We can only support instructions that do not define values that are 2559 // live outside of the current basic block. 2560 for (User *U : I.users()) { 2561 Instruction *UI = cast<Instruction>(U); 2562 if (UI->getParent() != BB || isa<PHINode>(UI)) 2563 return false; 2564 } 2565 2566 // Looks ok, continue checking. 2567 } 2568 2569 return true; 2570 } 2571 2572 /// If we have a conditional branch on a PHI node value that is defined in the 2573 /// same block as the branch and if any PHI entries are constants, thread edges 2574 /// corresponding to that entry to be branches to their ultimate destination. 2575 static bool FoldCondBranchOnPHI(BranchInst *BI, DomTreeUpdater *DTU, 2576 const DataLayout &DL, AssumptionCache *AC) { 2577 BasicBlock *BB = BI->getParent(); 2578 PHINode *PN = dyn_cast<PHINode>(BI->getCondition()); 2579 // NOTE: we currently cannot transform this case if the PHI node is used 2580 // outside of the block. 2581 if (!PN || PN->getParent() != BB || !PN->hasOneUse()) 2582 return false; 2583 2584 // Degenerate case of a single entry PHI. 2585 if (PN->getNumIncomingValues() == 1) { 2586 FoldSingleEntryPHINodes(PN->getParent()); 2587 return true; 2588 } 2589 2590 // Now we know that this block has multiple preds and two succs. 2591 if (!BlockIsSimpleEnoughToThreadThrough(BB)) 2592 return false; 2593 2594 // Okay, this is a simple enough basic block. See if any phi values are 2595 // constants. 2596 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 2597 ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i)); 2598 if (!CB || !CB->getType()->isIntegerTy(1)) 2599 continue; 2600 2601 // Okay, we now know that all edges from PredBB should be revectored to 2602 // branch to RealDest. 2603 BasicBlock *PredBB = PN->getIncomingBlock(i); 2604 BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue()); 2605 2606 if (RealDest == BB) 2607 continue; // Skip self loops. 2608 // Skip if the predecessor's terminator is an indirect branch. 2609 if (isa<IndirectBrInst>(PredBB->getTerminator())) 2610 continue; 2611 2612 SmallVector<DominatorTree::UpdateType, 3> Updates; 2613 2614 // The dest block might have PHI nodes, other predecessors and other 2615 // difficult cases. Instead of being smart about this, just insert a new 2616 // block that jumps to the destination block, effectively splitting 2617 // the edge we are about to create. 2618 BasicBlock *EdgeBB = 2619 BasicBlock::Create(BB->getContext(), RealDest->getName() + ".critedge", 2620 RealDest->getParent(), RealDest); 2621 BranchInst *CritEdgeBranch = BranchInst::Create(RealDest, EdgeBB); 2622 if (DTU) 2623 Updates.push_back({DominatorTree::Insert, EdgeBB, RealDest}); 2624 CritEdgeBranch->setDebugLoc(BI->getDebugLoc()); 2625 2626 // Update PHI nodes. 2627 AddPredecessorToBlock(RealDest, EdgeBB, BB); 2628 2629 // BB may have instructions that are being threaded over. Clone these 2630 // instructions into EdgeBB. We know that there will be no uses of the 2631 // cloned instructions outside of EdgeBB. 2632 BasicBlock::iterator InsertPt = EdgeBB->begin(); 2633 DenseMap<Value *, Value *> TranslateMap; // Track translated values. 2634 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) { 2635 if (PHINode *PN = dyn_cast<PHINode>(BBI)) { 2636 TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB); 2637 continue; 2638 } 2639 // Clone the instruction. 2640 Instruction *N = BBI->clone(); 2641 if (BBI->hasName()) 2642 N->setName(BBI->getName() + ".c"); 2643 2644 // Update operands due to translation. 2645 for (Use &Op : N->operands()) { 2646 DenseMap<Value *, Value *>::iterator PI = TranslateMap.find(Op); 2647 if (PI != TranslateMap.end()) 2648 Op = PI->second; 2649 } 2650 2651 // Check for trivial simplification. 2652 if (Value *V = SimplifyInstruction(N, {DL, nullptr, nullptr, AC})) { 2653 if (!BBI->use_empty()) 2654 TranslateMap[&*BBI] = V; 2655 if (!N->mayHaveSideEffects()) { 2656 N->deleteValue(); // Instruction folded away, don't need actual inst 2657 N = nullptr; 2658 } 2659 } else { 2660 if (!BBI->use_empty()) 2661 TranslateMap[&*BBI] = N; 2662 } 2663 if (N) { 2664 // Insert the new instruction into its new home. 2665 EdgeBB->getInstList().insert(InsertPt, N); 2666 2667 // Register the new instruction with the assumption cache if necessary. 2668 if (auto *Assume = dyn_cast<AssumeInst>(N)) 2669 if (AC) 2670 AC->registerAssumption(Assume); 2671 } 2672 } 2673 2674 // Loop over all of the edges from PredBB to BB, changing them to branch 2675 // to EdgeBB instead. 2676 Instruction *PredBBTI = PredBB->getTerminator(); 2677 for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i) 2678 if (PredBBTI->getSuccessor(i) == BB) { 2679 BB->removePredecessor(PredBB); 2680 PredBBTI->setSuccessor(i, EdgeBB); 2681 } 2682 2683 if (DTU) { 2684 Updates.push_back({DominatorTree::Insert, PredBB, EdgeBB}); 2685 Updates.push_back({DominatorTree::Delete, PredBB, BB}); 2686 2687 DTU->applyUpdates(Updates); 2688 } 2689 2690 // Recurse, simplifying any other constants. 2691 return FoldCondBranchOnPHI(BI, DTU, DL, AC) || true; 2692 } 2693 2694 return false; 2695 } 2696 2697 /// Given a BB that starts with the specified two-entry PHI node, 2698 /// see if we can eliminate it. 2699 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI, 2700 DomTreeUpdater *DTU, const DataLayout &DL) { 2701 // Ok, this is a two entry PHI node. Check to see if this is a simple "if 2702 // statement", which has a very simple dominance structure. Basically, we 2703 // are trying to find the condition that is being branched on, which 2704 // subsequently causes this merge to happen. We really want control 2705 // dependence information for this check, but simplifycfg can't keep it up 2706 // to date, and this catches most of the cases we care about anyway. 2707 BasicBlock *BB = PN->getParent(); 2708 2709 BasicBlock *IfTrue, *IfFalse; 2710 Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse); 2711 if (!IfCond || 2712 // Don't bother if the branch will be constant folded trivially. 2713 isa<ConstantInt>(IfCond)) 2714 return false; 2715 2716 // Don't try to fold an unreachable block. For example, the phi node itself 2717 // can't be the candidate if-condition for a select that we want to form. 2718 if (auto *IfCondPhiInst = dyn_cast<PHINode>(IfCond)) 2719 if (IfCondPhiInst->getParent() == BB) 2720 return false; 2721 2722 // Okay, we found that we can merge this two-entry phi node into a select. 2723 // Doing so would require us to fold *all* two entry phi nodes in this block. 2724 // At some point this becomes non-profitable (particularly if the target 2725 // doesn't support cmov's). Only do this transformation if there are two or 2726 // fewer PHI nodes in this block. 2727 unsigned NumPhis = 0; 2728 for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I) 2729 if (NumPhis > 2) 2730 return false; 2731 2732 // Loop over the PHI's seeing if we can promote them all to select 2733 // instructions. While we are at it, keep track of the instructions 2734 // that need to be moved to the dominating block. 2735 SmallPtrSet<Instruction *, 4> AggressiveInsts; 2736 InstructionCost Cost = 0; 2737 InstructionCost Budget = 2738 TwoEntryPHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 2739 2740 bool Changed = false; 2741 for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) { 2742 PHINode *PN = cast<PHINode>(II++); 2743 if (Value *V = SimplifyInstruction(PN, {DL, PN})) { 2744 PN->replaceAllUsesWith(V); 2745 PN->eraseFromParent(); 2746 Changed = true; 2747 continue; 2748 } 2749 2750 if (!dominatesMergePoint(PN->getIncomingValue(0), BB, AggressiveInsts, 2751 Cost, Budget, TTI) || 2752 !dominatesMergePoint(PN->getIncomingValue(1), BB, AggressiveInsts, 2753 Cost, Budget, TTI)) 2754 return Changed; 2755 } 2756 2757 // If we folded the first phi, PN dangles at this point. Refresh it. If 2758 // we ran out of PHIs then we simplified them all. 2759 PN = dyn_cast<PHINode>(BB->begin()); 2760 if (!PN) 2761 return true; 2762 2763 // Return true if at least one of these is a 'not', and another is either 2764 // a 'not' too, or a constant. 2765 auto CanHoistNotFromBothValues = [](Value *V0, Value *V1) { 2766 if (!match(V0, m_Not(m_Value()))) 2767 std::swap(V0, V1); 2768 auto Invertible = m_CombineOr(m_Not(m_Value()), m_AnyIntegralConstant()); 2769 return match(V0, m_Not(m_Value())) && match(V1, Invertible); 2770 }; 2771 2772 // Don't fold i1 branches on PHIs which contain binary operators or 2773 // select form of or/ands, unless one of the incoming values is an 'not' and 2774 // another one is freely invertible. 2775 // These can often be turned into switches and other things. 2776 auto IsBinOpOrAnd = [](Value *V) { 2777 return match( 2778 V, m_CombineOr(m_BinOp(), m_CombineOr(m_LogicalAnd(), m_LogicalOr()))); 2779 }; 2780 if (PN->getType()->isIntegerTy(1) && 2781 (IsBinOpOrAnd(PN->getIncomingValue(0)) || 2782 IsBinOpOrAnd(PN->getIncomingValue(1)) || IsBinOpOrAnd(IfCond)) && 2783 !CanHoistNotFromBothValues(PN->getIncomingValue(0), 2784 PN->getIncomingValue(1))) 2785 return Changed; 2786 2787 // If all PHI nodes are promotable, check to make sure that all instructions 2788 // in the predecessor blocks can be promoted as well. If not, we won't be able 2789 // to get rid of the control flow, so it's not worth promoting to select 2790 // instructions. 2791 BasicBlock *DomBlock = nullptr; 2792 BasicBlock *IfBlock1 = PN->getIncomingBlock(0); 2793 BasicBlock *IfBlock2 = PN->getIncomingBlock(1); 2794 if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) { 2795 IfBlock1 = nullptr; 2796 } else { 2797 DomBlock = *pred_begin(IfBlock1); 2798 for (BasicBlock::iterator I = IfBlock1->begin(); !I->isTerminator(); ++I) 2799 if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I) && 2800 !isa<PseudoProbeInst>(I)) { 2801 // This is not an aggressive instruction that we can promote. 2802 // Because of this, we won't be able to get rid of the control flow, so 2803 // the xform is not worth it. 2804 return Changed; 2805 } 2806 } 2807 2808 if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) { 2809 IfBlock2 = nullptr; 2810 } else { 2811 DomBlock = *pred_begin(IfBlock2); 2812 for (BasicBlock::iterator I = IfBlock2->begin(); !I->isTerminator(); ++I) 2813 if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I) && 2814 !isa<PseudoProbeInst>(I)) { 2815 // This is not an aggressive instruction that we can promote. 2816 // Because of this, we won't be able to get rid of the control flow, so 2817 // the xform is not worth it. 2818 return Changed; 2819 } 2820 } 2821 assert(DomBlock && "Failed to find root DomBlock"); 2822 2823 LLVM_DEBUG(dbgs() << "FOUND IF CONDITION! " << *IfCond 2824 << " T: " << IfTrue->getName() 2825 << " F: " << IfFalse->getName() << "\n"); 2826 2827 // If we can still promote the PHI nodes after this gauntlet of tests, 2828 // do all of the PHI's now. 2829 Instruction *InsertPt = DomBlock->getTerminator(); 2830 IRBuilder<NoFolder> Builder(InsertPt); 2831 2832 // Move all 'aggressive' instructions, which are defined in the 2833 // conditional parts of the if's up to the dominating block. 2834 if (IfBlock1) 2835 hoistAllInstructionsInto(DomBlock, InsertPt, IfBlock1); 2836 if (IfBlock2) 2837 hoistAllInstructionsInto(DomBlock, InsertPt, IfBlock2); 2838 2839 // Propagate fast-math-flags from phi nodes to replacement selects. 2840 IRBuilder<>::FastMathFlagGuard FMFGuard(Builder); 2841 while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) { 2842 if (isa<FPMathOperator>(PN)) 2843 Builder.setFastMathFlags(PN->getFastMathFlags()); 2844 2845 // Change the PHI node into a select instruction. 2846 Value *TrueVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse); 2847 Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue); 2848 2849 Value *Sel = Builder.CreateSelect(IfCond, TrueVal, FalseVal, "", InsertPt); 2850 PN->replaceAllUsesWith(Sel); 2851 Sel->takeName(PN); 2852 PN->eraseFromParent(); 2853 } 2854 2855 // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement 2856 // has been flattened. Change DomBlock to jump directly to our new block to 2857 // avoid other simplifycfg's kicking in on the diamond. 2858 Instruction *OldTI = DomBlock->getTerminator(); 2859 Builder.SetInsertPoint(OldTI); 2860 Builder.CreateBr(BB); 2861 2862 SmallVector<DominatorTree::UpdateType, 3> Updates; 2863 if (DTU) { 2864 Updates.push_back({DominatorTree::Insert, DomBlock, BB}); 2865 for (auto *Successor : successors(DomBlock)) 2866 Updates.push_back({DominatorTree::Delete, DomBlock, Successor}); 2867 } 2868 2869 OldTI->eraseFromParent(); 2870 if (DTU) 2871 DTU->applyUpdates(Updates); 2872 2873 return true; 2874 } 2875 2876 /// If we found a conditional branch that goes to two returning blocks, 2877 /// try to merge them together into one return, 2878 /// introducing a select if the return values disagree. 2879 bool SimplifyCFGOpt::SimplifyCondBranchToTwoReturns(BranchInst *BI, 2880 IRBuilder<> &Builder) { 2881 auto *BB = BI->getParent(); 2882 assert(BI->isConditional() && "Must be a conditional branch"); 2883 BasicBlock *TrueSucc = BI->getSuccessor(0); 2884 BasicBlock *FalseSucc = BI->getSuccessor(1); 2885 // NOTE: destinations may match, this could be degenerate uncond branch. 2886 ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator()); 2887 ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator()); 2888 2889 // Check to ensure both blocks are empty (just a return) or optionally empty 2890 // with PHI nodes. If there are other instructions, merging would cause extra 2891 // computation on one path or the other. 2892 if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator()) 2893 return false; 2894 if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator()) 2895 return false; 2896 2897 Builder.SetInsertPoint(BI); 2898 // Okay, we found a branch that is going to two return nodes. If 2899 // there is no return value for this function, just change the 2900 // branch into a return. 2901 if (FalseRet->getNumOperands() == 0) { 2902 TrueSucc->removePredecessor(BB); 2903 FalseSucc->removePredecessor(BB); 2904 Builder.CreateRetVoid(); 2905 EraseTerminatorAndDCECond(BI); 2906 if (DTU) { 2907 SmallVector<DominatorTree::UpdateType, 2> Updates; 2908 Updates.push_back({DominatorTree::Delete, BB, TrueSucc}); 2909 if (TrueSucc != FalseSucc) 2910 Updates.push_back({DominatorTree::Delete, BB, FalseSucc}); 2911 DTU->applyUpdates(Updates); 2912 } 2913 return true; 2914 } 2915 2916 // Otherwise, figure out what the true and false return values are 2917 // so we can insert a new select instruction. 2918 Value *TrueValue = TrueRet->getReturnValue(); 2919 Value *FalseValue = FalseRet->getReturnValue(); 2920 2921 // Unwrap any PHI nodes in the return blocks. 2922 if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue)) 2923 if (TVPN->getParent() == TrueSucc) 2924 TrueValue = TVPN->getIncomingValueForBlock(BB); 2925 if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue)) 2926 if (FVPN->getParent() == FalseSucc) 2927 FalseValue = FVPN->getIncomingValueForBlock(BB); 2928 2929 // In order for this transformation to be safe, we must be able to 2930 // unconditionally execute both operands to the return. This is 2931 // normally the case, but we could have a potentially-trapping 2932 // constant expression that prevents this transformation from being 2933 // safe. 2934 if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue)) 2935 if (TCV->canTrap()) 2936 return false; 2937 if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue)) 2938 if (FCV->canTrap()) 2939 return false; 2940 2941 // Okay, we collected all the mapped values and checked them for sanity, and 2942 // defined to really do this transformation. First, update the CFG. 2943 TrueSucc->removePredecessor(BB); 2944 FalseSucc->removePredecessor(BB); 2945 2946 // Insert select instructions where needed. 2947 Value *BrCond = BI->getCondition(); 2948 if (TrueValue) { 2949 // Insert a select if the results differ. 2950 if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) { 2951 } else if (isa<UndefValue>(TrueValue)) { 2952 TrueValue = FalseValue; 2953 } else { 2954 TrueValue = 2955 Builder.CreateSelect(BrCond, TrueValue, FalseValue, "retval", BI); 2956 } 2957 } 2958 2959 Value *RI = 2960 !TrueValue ? Builder.CreateRetVoid() : Builder.CreateRet(TrueValue); 2961 2962 (void)RI; 2963 2964 LLVM_DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:" 2965 << "\n " << *BI << "\nNewRet = " << *RI << "\nTRUEBLOCK: " 2966 << *TrueSucc << "\nFALSEBLOCK: " << *FalseSucc); 2967 2968 EraseTerminatorAndDCECond(BI); 2969 if (DTU) { 2970 SmallVector<DominatorTree::UpdateType, 2> Updates; 2971 Updates.push_back({DominatorTree::Delete, BB, TrueSucc}); 2972 if (TrueSucc != FalseSucc) 2973 Updates.push_back({DominatorTree::Delete, BB, FalseSucc}); 2974 DTU->applyUpdates(Updates); 2975 } 2976 2977 return true; 2978 } 2979 2980 static Value *createLogicalOp(IRBuilderBase &Builder, 2981 Instruction::BinaryOps Opc, Value *LHS, 2982 Value *RHS, const Twine &Name = "") { 2983 // Try to relax logical op to binary op. 2984 if (impliesPoison(RHS, LHS)) 2985 return Builder.CreateBinOp(Opc, LHS, RHS, Name); 2986 if (Opc == Instruction::And) 2987 return Builder.CreateLogicalAnd(LHS, RHS, Name); 2988 if (Opc == Instruction::Or) 2989 return Builder.CreateLogicalOr(LHS, RHS, Name); 2990 llvm_unreachable("Invalid logical opcode"); 2991 } 2992 2993 /// Return true if either PBI or BI has branch weight available, and store 2994 /// the weights in {Pred|Succ}{True|False}Weight. If one of PBI and BI does 2995 /// not have branch weight, use 1:1 as its weight. 2996 static bool extractPredSuccWeights(BranchInst *PBI, BranchInst *BI, 2997 uint64_t &PredTrueWeight, 2998 uint64_t &PredFalseWeight, 2999 uint64_t &SuccTrueWeight, 3000 uint64_t &SuccFalseWeight) { 3001 bool PredHasWeights = 3002 PBI->extractProfMetadata(PredTrueWeight, PredFalseWeight); 3003 bool SuccHasWeights = 3004 BI->extractProfMetadata(SuccTrueWeight, SuccFalseWeight); 3005 if (PredHasWeights || SuccHasWeights) { 3006 if (!PredHasWeights) 3007 PredTrueWeight = PredFalseWeight = 1; 3008 if (!SuccHasWeights) 3009 SuccTrueWeight = SuccFalseWeight = 1; 3010 return true; 3011 } else { 3012 return false; 3013 } 3014 } 3015 3016 /// Determine if the two branches share a common destination and deduce a glue 3017 /// that joins the branches' conditions to arrive at the common destination if 3018 /// that would be profitable. 3019 static Optional<std::pair<Instruction::BinaryOps, bool>> 3020 shouldFoldCondBranchesToCommonDestination(BranchInst *BI, BranchInst *PBI, 3021 const TargetTransformInfo *TTI) { 3022 assert(BI && PBI && BI->isConditional() && PBI->isConditional() && 3023 "Both blocks must end with a conditional branches."); 3024 assert(is_contained(predecessors(BI->getParent()), PBI->getParent()) && 3025 "PredBB must be a predecessor of BB."); 3026 3027 // We have the potential to fold the conditions together, but if the 3028 // predecessor branch is predictable, we may not want to merge them. 3029 uint64_t PTWeight, PFWeight; 3030 BranchProbability PBITrueProb, Likely; 3031 if (TTI && PBI->extractProfMetadata(PTWeight, PFWeight) && 3032 (PTWeight + PFWeight) != 0) { 3033 PBITrueProb = 3034 BranchProbability::getBranchProbability(PTWeight, PTWeight + PFWeight); 3035 Likely = TTI->getPredictableBranchThreshold(); 3036 } 3037 3038 if (PBI->getSuccessor(0) == BI->getSuccessor(0)) { 3039 // Speculate the 2nd condition unless the 1st is probably true. 3040 if (PBITrueProb.isUnknown() || PBITrueProb < Likely) 3041 return {{Instruction::Or, false}}; 3042 } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) { 3043 // Speculate the 2nd condition unless the 1st is probably false. 3044 if (PBITrueProb.isUnknown() || PBITrueProb.getCompl() < Likely) 3045 return {{Instruction::And, false}}; 3046 } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) { 3047 // Speculate the 2nd condition unless the 1st is probably true. 3048 if (PBITrueProb.isUnknown() || PBITrueProb < Likely) 3049 return {{Instruction::And, true}}; 3050 } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) { 3051 // Speculate the 2nd condition unless the 1st is probably false. 3052 if (PBITrueProb.isUnknown() || PBITrueProb.getCompl() < Likely) 3053 return {{Instruction::Or, true}}; 3054 } 3055 return None; 3056 } 3057 3058 static bool performBranchToCommonDestFolding(BranchInst *BI, BranchInst *PBI, 3059 DomTreeUpdater *DTU, 3060 MemorySSAUpdater *MSSAU, 3061 const TargetTransformInfo *TTI) { 3062 BasicBlock *BB = BI->getParent(); 3063 BasicBlock *PredBlock = PBI->getParent(); 3064 3065 // Determine if the two branches share a common destination. 3066 Instruction::BinaryOps Opc; 3067 bool InvertPredCond; 3068 std::tie(Opc, InvertPredCond) = 3069 *shouldFoldCondBranchesToCommonDestination(BI, PBI, TTI); 3070 3071 LLVM_DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB); 3072 3073 IRBuilder<> Builder(PBI); 3074 // The builder is used to create instructions to eliminate the branch in BB. 3075 // If BB's terminator has !annotation metadata, add it to the new 3076 // instructions. 3077 Builder.CollectMetadataToCopy(BB->getTerminator(), 3078 {LLVMContext::MD_annotation}); 3079 3080 // If we need to invert the condition in the pred block to match, do so now. 3081 if (InvertPredCond) { 3082 Value *NewCond = PBI->getCondition(); 3083 if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) { 3084 CmpInst *CI = cast<CmpInst>(NewCond); 3085 CI->setPredicate(CI->getInversePredicate()); 3086 } else { 3087 NewCond = 3088 Builder.CreateNot(NewCond, PBI->getCondition()->getName() + ".not"); 3089 } 3090 3091 PBI->setCondition(NewCond); 3092 PBI->swapSuccessors(); 3093 } 3094 3095 BasicBlock *UniqueSucc = 3096 PBI->getSuccessor(0) == BB ? BI->getSuccessor(0) : BI->getSuccessor(1); 3097 3098 // Before cloning instructions, notify the successor basic block that it 3099 // is about to have a new predecessor. This will update PHI nodes, 3100 // which will allow us to update live-out uses of bonus instructions. 3101 AddPredecessorToBlock(UniqueSucc, PredBlock, BB, MSSAU); 3102 3103 // Try to update branch weights. 3104 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 3105 if (extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight, 3106 SuccTrueWeight, SuccFalseWeight)) { 3107 SmallVector<uint64_t, 8> NewWeights; 3108 3109 if (PBI->getSuccessor(0) == BB) { 3110 // PBI: br i1 %x, BB, FalseDest 3111 // BI: br i1 %y, UniqueSucc, FalseDest 3112 // TrueWeight is TrueWeight for PBI * TrueWeight for BI. 3113 NewWeights.push_back(PredTrueWeight * SuccTrueWeight); 3114 // FalseWeight is FalseWeight for PBI * TotalWeight for BI + 3115 // TrueWeight for PBI * FalseWeight for BI. 3116 // We assume that total weights of a BranchInst can fit into 32 bits. 3117 // Therefore, we will not have overflow using 64-bit arithmetic. 3118 NewWeights.push_back(PredFalseWeight * 3119 (SuccFalseWeight + SuccTrueWeight) + 3120 PredTrueWeight * SuccFalseWeight); 3121 } else { 3122 // PBI: br i1 %x, TrueDest, BB 3123 // BI: br i1 %y, TrueDest, UniqueSucc 3124 // TrueWeight is TrueWeight for PBI * TotalWeight for BI + 3125 // FalseWeight for PBI * TrueWeight for BI. 3126 NewWeights.push_back(PredTrueWeight * (SuccFalseWeight + SuccTrueWeight) + 3127 PredFalseWeight * SuccTrueWeight); 3128 // FalseWeight is FalseWeight for PBI * FalseWeight for BI. 3129 NewWeights.push_back(PredFalseWeight * SuccFalseWeight); 3130 } 3131 3132 // Halve the weights if any of them cannot fit in an uint32_t 3133 FitWeights(NewWeights); 3134 3135 SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(), NewWeights.end()); 3136 setBranchWeights(PBI, MDWeights[0], MDWeights[1]); 3137 3138 // TODO: If BB is reachable from all paths through PredBlock, then we 3139 // could replace PBI's branch probabilities with BI's. 3140 } else 3141 PBI->setMetadata(LLVMContext::MD_prof, nullptr); 3142 3143 // Now, update the CFG. 3144 PBI->setSuccessor(PBI->getSuccessor(0) != BB, UniqueSucc); 3145 3146 if (DTU) 3147 DTU->applyUpdates({{DominatorTree::Insert, PredBlock, UniqueSucc}, 3148 {DominatorTree::Delete, PredBlock, BB}}); 3149 3150 // If BI was a loop latch, it may have had associated loop metadata. 3151 // We need to copy it to the new latch, that is, PBI. 3152 if (MDNode *LoopMD = BI->getMetadata(LLVMContext::MD_loop)) 3153 PBI->setMetadata(LLVMContext::MD_loop, LoopMD); 3154 3155 ValueToValueMapTy VMap; // maps original values to cloned values 3156 CloneInstructionsIntoPredecessorBlockAndUpdateSSAUses(BB, PredBlock, VMap); 3157 3158 // Now that the Cond was cloned into the predecessor basic block, 3159 // or/and the two conditions together. 3160 Value *BICond = VMap[BI->getCondition()]; 3161 PBI->setCondition( 3162 createLogicalOp(Builder, Opc, PBI->getCondition(), BICond, "or.cond")); 3163 3164 // Copy any debug value intrinsics into the end of PredBlock. 3165 for (Instruction &I : *BB) { 3166 if (isa<DbgInfoIntrinsic>(I)) { 3167 Instruction *NewI = I.clone(); 3168 RemapInstruction(NewI, VMap, 3169 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 3170 NewI->insertBefore(PBI); 3171 } 3172 } 3173 3174 ++NumFoldBranchToCommonDest; 3175 return true; 3176 } 3177 3178 /// If this basic block is simple enough, and if a predecessor branches to us 3179 /// and one of our successors, fold the block into the predecessor and use 3180 /// logical operations to pick the right destination. 3181 bool llvm::FoldBranchToCommonDest(BranchInst *BI, DomTreeUpdater *DTU, 3182 MemorySSAUpdater *MSSAU, 3183 const TargetTransformInfo *TTI, 3184 unsigned BonusInstThreshold) { 3185 // If this block ends with an unconditional branch, 3186 // let SpeculativelyExecuteBB() deal with it. 3187 if (!BI->isConditional()) 3188 return false; 3189 3190 BasicBlock *BB = BI->getParent(); 3191 3192 bool Changed = false; 3193 3194 TargetTransformInfo::TargetCostKind CostKind = 3195 BB->getParent()->hasMinSize() ? TargetTransformInfo::TCK_CodeSize 3196 : TargetTransformInfo::TCK_SizeAndLatency; 3197 3198 Instruction *Cond = dyn_cast<Instruction>(BI->getCondition()); 3199 3200 if (!Cond || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) || 3201 Cond->getParent() != BB || !Cond->hasOneUse()) 3202 return Changed; 3203 3204 // Cond is known to be a compare or binary operator. Check to make sure that 3205 // neither operand is a potentially-trapping constant expression. 3206 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0))) 3207 if (CE->canTrap()) 3208 return Changed; 3209 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1))) 3210 if (CE->canTrap()) 3211 return Changed; 3212 3213 // Finally, don't infinitely unroll conditional loops. 3214 if (is_contained(successors(BB), BB)) 3215 return Changed; 3216 3217 // With which predecessors will we want to deal with? 3218 SmallVector<BasicBlock *, 8> Preds; 3219 for (BasicBlock *PredBlock : predecessors(BB)) { 3220 BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator()); 3221 3222 // Check that we have two conditional branches. If there is a PHI node in 3223 // the common successor, verify that the same value flows in from both 3224 // blocks. 3225 if (!PBI || PBI->isUnconditional() || !SafeToMergeTerminators(BI, PBI)) 3226 continue; 3227 3228 // Determine if the two branches share a common destination. 3229 Instruction::BinaryOps Opc; 3230 bool InvertPredCond; 3231 if (auto Recipe = shouldFoldCondBranchesToCommonDestination(BI, PBI, TTI)) 3232 std::tie(Opc, InvertPredCond) = *Recipe; 3233 else 3234 continue; 3235 3236 // Check the cost of inserting the necessary logic before performing the 3237 // transformation. 3238 if (TTI) { 3239 Type *Ty = BI->getCondition()->getType(); 3240 InstructionCost Cost = TTI->getArithmeticInstrCost(Opc, Ty, CostKind); 3241 if (InvertPredCond && (!PBI->getCondition()->hasOneUse() || 3242 !isa<CmpInst>(PBI->getCondition()))) 3243 Cost += TTI->getArithmeticInstrCost(Instruction::Xor, Ty, CostKind); 3244 3245 if (Cost > BranchFoldThreshold) 3246 continue; 3247 } 3248 3249 // Ok, we do want to deal with this predecessor. Record it. 3250 Preds.emplace_back(PredBlock); 3251 } 3252 3253 // If there aren't any predecessors into which we can fold, 3254 // don't bother checking the cost. 3255 if (Preds.empty()) 3256 return Changed; 3257 3258 // Only allow this transformation if computing the condition doesn't involve 3259 // too many instructions and these involved instructions can be executed 3260 // unconditionally. We denote all involved instructions except the condition 3261 // as "bonus instructions", and only allow this transformation when the 3262 // number of the bonus instructions we'll need to create when cloning into 3263 // each predecessor does not exceed a certain threshold. 3264 unsigned NumBonusInsts = 0; 3265 const unsigned PredCount = Preds.size(); 3266 for (Instruction &I : *BB) { 3267 // Don't check the branch condition comparison itself. 3268 if (&I == Cond) 3269 continue; 3270 // Ignore dbg intrinsics, and the terminator. 3271 if (isa<DbgInfoIntrinsic>(I) || isa<BranchInst>(I)) 3272 continue; 3273 // I must be safe to execute unconditionally. 3274 if (!isSafeToSpeculativelyExecute(&I)) 3275 return Changed; 3276 3277 // Account for the cost of duplicating this instruction into each 3278 // predecessor. 3279 NumBonusInsts += PredCount; 3280 // Early exits once we reach the limit. 3281 if (NumBonusInsts > BonusInstThreshold) 3282 return Changed; 3283 } 3284 3285 // Ok, we have the budget. Perform the transformation. 3286 for (BasicBlock *PredBlock : Preds) { 3287 auto *PBI = cast<BranchInst>(PredBlock->getTerminator()); 3288 return performBranchToCommonDestFolding(BI, PBI, DTU, MSSAU, TTI); 3289 } 3290 return Changed; 3291 } 3292 3293 // If there is only one store in BB1 and BB2, return it, otherwise return 3294 // nullptr. 3295 static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) { 3296 StoreInst *S = nullptr; 3297 for (auto *BB : {BB1, BB2}) { 3298 if (!BB) 3299 continue; 3300 for (auto &I : *BB) 3301 if (auto *SI = dyn_cast<StoreInst>(&I)) { 3302 if (S) 3303 // Multiple stores seen. 3304 return nullptr; 3305 else 3306 S = SI; 3307 } 3308 } 3309 return S; 3310 } 3311 3312 static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB, 3313 Value *AlternativeV = nullptr) { 3314 // PHI is going to be a PHI node that allows the value V that is defined in 3315 // BB to be referenced in BB's only successor. 3316 // 3317 // If AlternativeV is nullptr, the only value we care about in PHI is V. It 3318 // doesn't matter to us what the other operand is (it'll never get used). We 3319 // could just create a new PHI with an undef incoming value, but that could 3320 // increase register pressure if EarlyCSE/InstCombine can't fold it with some 3321 // other PHI. So here we directly look for some PHI in BB's successor with V 3322 // as an incoming operand. If we find one, we use it, else we create a new 3323 // one. 3324 // 3325 // If AlternativeV is not nullptr, we care about both incoming values in PHI. 3326 // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV] 3327 // where OtherBB is the single other predecessor of BB's only successor. 3328 PHINode *PHI = nullptr; 3329 BasicBlock *Succ = BB->getSingleSuccessor(); 3330 3331 for (auto I = Succ->begin(); isa<PHINode>(I); ++I) 3332 if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) { 3333 PHI = cast<PHINode>(I); 3334 if (!AlternativeV) 3335 break; 3336 3337 assert(Succ->hasNPredecessors(2)); 3338 auto PredI = pred_begin(Succ); 3339 BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI; 3340 if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV) 3341 break; 3342 PHI = nullptr; 3343 } 3344 if (PHI) 3345 return PHI; 3346 3347 // If V is not an instruction defined in BB, just return it. 3348 if (!AlternativeV && 3349 (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB)) 3350 return V; 3351 3352 PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge", &Succ->front()); 3353 PHI->addIncoming(V, BB); 3354 for (BasicBlock *PredBB : predecessors(Succ)) 3355 if (PredBB != BB) 3356 PHI->addIncoming( 3357 AlternativeV ? AlternativeV : UndefValue::get(V->getType()), PredBB); 3358 return PHI; 3359 } 3360 3361 static bool mergeConditionalStoreToAddress( 3362 BasicBlock *PTB, BasicBlock *PFB, BasicBlock *QTB, BasicBlock *QFB, 3363 BasicBlock *PostBB, Value *Address, bool InvertPCond, bool InvertQCond, 3364 DomTreeUpdater *DTU, const DataLayout &DL, const TargetTransformInfo &TTI) { 3365 // For every pointer, there must be exactly two stores, one coming from 3366 // PTB or PFB, and the other from QTB or QFB. We don't support more than one 3367 // store (to any address) in PTB,PFB or QTB,QFB. 3368 // FIXME: We could relax this restriction with a bit more work and performance 3369 // testing. 3370 StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB); 3371 StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB); 3372 if (!PStore || !QStore) 3373 return false; 3374 3375 // Now check the stores are compatible. 3376 if (!QStore->isUnordered() || !PStore->isUnordered()) 3377 return false; 3378 3379 // Check that sinking the store won't cause program behavior changes. Sinking 3380 // the store out of the Q blocks won't change any behavior as we're sinking 3381 // from a block to its unconditional successor. But we're moving a store from 3382 // the P blocks down through the middle block (QBI) and past both QFB and QTB. 3383 // So we need to check that there are no aliasing loads or stores in 3384 // QBI, QTB and QFB. We also need to check there are no conflicting memory 3385 // operations between PStore and the end of its parent block. 3386 // 3387 // The ideal way to do this is to query AliasAnalysis, but we don't 3388 // preserve AA currently so that is dangerous. Be super safe and just 3389 // check there are no other memory operations at all. 3390 for (auto &I : *QFB->getSinglePredecessor()) 3391 if (I.mayReadOrWriteMemory()) 3392 return false; 3393 for (auto &I : *QFB) 3394 if (&I != QStore && I.mayReadOrWriteMemory()) 3395 return false; 3396 if (QTB) 3397 for (auto &I : *QTB) 3398 if (&I != QStore && I.mayReadOrWriteMemory()) 3399 return false; 3400 for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end(); 3401 I != E; ++I) 3402 if (&*I != PStore && I->mayReadOrWriteMemory()) 3403 return false; 3404 3405 // If we're not in aggressive mode, we only optimize if we have some 3406 // confidence that by optimizing we'll allow P and/or Q to be if-converted. 3407 auto IsWorthwhile = [&](BasicBlock *BB, ArrayRef<StoreInst *> FreeStores) { 3408 if (!BB) 3409 return true; 3410 // Heuristic: if the block can be if-converted/phi-folded and the 3411 // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to 3412 // thread this store. 3413 InstructionCost Cost = 0; 3414 InstructionCost Budget = 3415 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 3416 for (auto &I : BB->instructionsWithoutDebug()) { 3417 // Consider terminator instruction to be free. 3418 if (I.isTerminator()) 3419 continue; 3420 // If this is one the stores that we want to speculate out of this BB, 3421 // then don't count it's cost, consider it to be free. 3422 if (auto *S = dyn_cast<StoreInst>(&I)) 3423 if (llvm::find(FreeStores, S)) 3424 continue; 3425 // Else, we have a white-list of instructions that we are ak speculating. 3426 if (!isa<BinaryOperator>(I) && !isa<GetElementPtrInst>(I)) 3427 return false; // Not in white-list - not worthwhile folding. 3428 // And finally, if this is a non-free instruction that we are okay 3429 // speculating, ensure that we consider the speculation budget. 3430 Cost += TTI.getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency); 3431 if (Cost > Budget) 3432 return false; // Eagerly refuse to fold as soon as we're out of budget. 3433 } 3434 assert(Cost <= Budget && 3435 "When we run out of budget we will eagerly return from within the " 3436 "per-instruction loop."); 3437 return true; 3438 }; 3439 3440 const std::array<StoreInst *, 2> FreeStores = {PStore, QStore}; 3441 if (!MergeCondStoresAggressively && 3442 (!IsWorthwhile(PTB, FreeStores) || !IsWorthwhile(PFB, FreeStores) || 3443 !IsWorthwhile(QTB, FreeStores) || !IsWorthwhile(QFB, FreeStores))) 3444 return false; 3445 3446 // If PostBB has more than two predecessors, we need to split it so we can 3447 // sink the store. 3448 if (std::next(pred_begin(PostBB), 2) != pred_end(PostBB)) { 3449 // We know that QFB's only successor is PostBB. And QFB has a single 3450 // predecessor. If QTB exists, then its only successor is also PostBB. 3451 // If QTB does not exist, then QFB's only predecessor has a conditional 3452 // branch to QFB and PostBB. 3453 BasicBlock *TruePred = QTB ? QTB : QFB->getSinglePredecessor(); 3454 BasicBlock *NewBB = 3455 SplitBlockPredecessors(PostBB, {QFB, TruePred}, "condstore.split", DTU); 3456 if (!NewBB) 3457 return false; 3458 PostBB = NewBB; 3459 } 3460 3461 // OK, we're going to sink the stores to PostBB. The store has to be 3462 // conditional though, so first create the predicate. 3463 Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator()) 3464 ->getCondition(); 3465 Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator()) 3466 ->getCondition(); 3467 3468 Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(), 3469 PStore->getParent()); 3470 Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(), 3471 QStore->getParent(), PPHI); 3472 3473 IRBuilder<> QB(&*PostBB->getFirstInsertionPt()); 3474 3475 Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond); 3476 Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond); 3477 3478 if (InvertPCond) 3479 PPred = QB.CreateNot(PPred); 3480 if (InvertQCond) 3481 QPred = QB.CreateNot(QPred); 3482 Value *CombinedPred = QB.CreateOr(PPred, QPred); 3483 3484 auto *T = SplitBlockAndInsertIfThen(CombinedPred, &*QB.GetInsertPoint(), 3485 /*Unreachable=*/false, 3486 /*BranchWeights=*/nullptr, DTU); 3487 QB.SetInsertPoint(T); 3488 StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address)); 3489 AAMDNodes AAMD; 3490 PStore->getAAMetadata(AAMD, /*Merge=*/false); 3491 PStore->getAAMetadata(AAMD, /*Merge=*/true); 3492 SI->setAAMetadata(AAMD); 3493 // Choose the minimum alignment. If we could prove both stores execute, we 3494 // could use biggest one. In this case, though, we only know that one of the 3495 // stores executes. And we don't know it's safe to take the alignment from a 3496 // store that doesn't execute. 3497 SI->setAlignment(std::min(PStore->getAlign(), QStore->getAlign())); 3498 3499 QStore->eraseFromParent(); 3500 PStore->eraseFromParent(); 3501 3502 return true; 3503 } 3504 3505 static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI, 3506 DomTreeUpdater *DTU, const DataLayout &DL, 3507 const TargetTransformInfo &TTI) { 3508 // The intention here is to find diamonds or triangles (see below) where each 3509 // conditional block contains a store to the same address. Both of these 3510 // stores are conditional, so they can't be unconditionally sunk. But it may 3511 // be profitable to speculatively sink the stores into one merged store at the 3512 // end, and predicate the merged store on the union of the two conditions of 3513 // PBI and QBI. 3514 // 3515 // This can reduce the number of stores executed if both of the conditions are 3516 // true, and can allow the blocks to become small enough to be if-converted. 3517 // This optimization will also chain, so that ladders of test-and-set 3518 // sequences can be if-converted away. 3519 // 3520 // We only deal with simple diamonds or triangles: 3521 // 3522 // PBI or PBI or a combination of the two 3523 // / \ | \ 3524 // PTB PFB | PFB 3525 // \ / | / 3526 // QBI QBI 3527 // / \ | \ 3528 // QTB QFB | QFB 3529 // \ / | / 3530 // PostBB PostBB 3531 // 3532 // We model triangles as a type of diamond with a nullptr "true" block. 3533 // Triangles are canonicalized so that the fallthrough edge is represented by 3534 // a true condition, as in the diagram above. 3535 BasicBlock *PTB = PBI->getSuccessor(0); 3536 BasicBlock *PFB = PBI->getSuccessor(1); 3537 BasicBlock *QTB = QBI->getSuccessor(0); 3538 BasicBlock *QFB = QBI->getSuccessor(1); 3539 BasicBlock *PostBB = QFB->getSingleSuccessor(); 3540 3541 // Make sure we have a good guess for PostBB. If QTB's only successor is 3542 // QFB, then QFB is a better PostBB. 3543 if (QTB->getSingleSuccessor() == QFB) 3544 PostBB = QFB; 3545 3546 // If we couldn't find a good PostBB, stop. 3547 if (!PostBB) 3548 return false; 3549 3550 bool InvertPCond = false, InvertQCond = false; 3551 // Canonicalize fallthroughs to the true branches. 3552 if (PFB == QBI->getParent()) { 3553 std::swap(PFB, PTB); 3554 InvertPCond = true; 3555 } 3556 if (QFB == PostBB) { 3557 std::swap(QFB, QTB); 3558 InvertQCond = true; 3559 } 3560 3561 // From this point on we can assume PTB or QTB may be fallthroughs but PFB 3562 // and QFB may not. Model fallthroughs as a nullptr block. 3563 if (PTB == QBI->getParent()) 3564 PTB = nullptr; 3565 if (QTB == PostBB) 3566 QTB = nullptr; 3567 3568 // Legality bailouts. We must have at least the non-fallthrough blocks and 3569 // the post-dominating block, and the non-fallthroughs must only have one 3570 // predecessor. 3571 auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) { 3572 return BB->getSinglePredecessor() == P && BB->getSingleSuccessor() == S; 3573 }; 3574 if (!HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) || 3575 !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB)) 3576 return false; 3577 if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) || 3578 (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB))) 3579 return false; 3580 if (!QBI->getParent()->hasNUses(2)) 3581 return false; 3582 3583 // OK, this is a sequence of two diamonds or triangles. 3584 // Check if there are stores in PTB or PFB that are repeated in QTB or QFB. 3585 SmallPtrSet<Value *, 4> PStoreAddresses, QStoreAddresses; 3586 for (auto *BB : {PTB, PFB}) { 3587 if (!BB) 3588 continue; 3589 for (auto &I : *BB) 3590 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) 3591 PStoreAddresses.insert(SI->getPointerOperand()); 3592 } 3593 for (auto *BB : {QTB, QFB}) { 3594 if (!BB) 3595 continue; 3596 for (auto &I : *BB) 3597 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) 3598 QStoreAddresses.insert(SI->getPointerOperand()); 3599 } 3600 3601 set_intersect(PStoreAddresses, QStoreAddresses); 3602 // set_intersect mutates PStoreAddresses in place. Rename it here to make it 3603 // clear what it contains. 3604 auto &CommonAddresses = PStoreAddresses; 3605 3606 bool Changed = false; 3607 for (auto *Address : CommonAddresses) 3608 Changed |= 3609 mergeConditionalStoreToAddress(PTB, PFB, QTB, QFB, PostBB, Address, 3610 InvertPCond, InvertQCond, DTU, DL, TTI); 3611 return Changed; 3612 } 3613 3614 /// If the previous block ended with a widenable branch, determine if reusing 3615 /// the target block is profitable and legal. This will have the effect of 3616 /// "widening" PBI, but doesn't require us to reason about hosting safety. 3617 static bool tryWidenCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI, 3618 DomTreeUpdater *DTU) { 3619 // TODO: This can be generalized in two important ways: 3620 // 1) We can allow phi nodes in IfFalseBB and simply reuse all the input 3621 // values from the PBI edge. 3622 // 2) We can sink side effecting instructions into BI's fallthrough 3623 // successor provided they doesn't contribute to computation of 3624 // BI's condition. 3625 Value *CondWB, *WC; 3626 BasicBlock *IfTrueBB, *IfFalseBB; 3627 if (!parseWidenableBranch(PBI, CondWB, WC, IfTrueBB, IfFalseBB) || 3628 IfTrueBB != BI->getParent() || !BI->getParent()->getSinglePredecessor()) 3629 return false; 3630 if (!IfFalseBB->phis().empty()) 3631 return false; // TODO 3632 // Use lambda to lazily compute expensive condition after cheap ones. 3633 auto NoSideEffects = [](BasicBlock &BB) { 3634 return !llvm::any_of(BB, [](const Instruction &I) { 3635 return I.mayWriteToMemory() || I.mayHaveSideEffects(); 3636 }); 3637 }; 3638 if (BI->getSuccessor(1) != IfFalseBB && // no inf looping 3639 BI->getSuccessor(1)->getTerminatingDeoptimizeCall() && // profitability 3640 NoSideEffects(*BI->getParent())) { 3641 auto *OldSuccessor = BI->getSuccessor(1); 3642 OldSuccessor->removePredecessor(BI->getParent()); 3643 BI->setSuccessor(1, IfFalseBB); 3644 if (DTU) 3645 DTU->applyUpdates( 3646 {{DominatorTree::Insert, BI->getParent(), IfFalseBB}, 3647 {DominatorTree::Delete, BI->getParent(), OldSuccessor}}); 3648 return true; 3649 } 3650 if (BI->getSuccessor(0) != IfFalseBB && // no inf looping 3651 BI->getSuccessor(0)->getTerminatingDeoptimizeCall() && // profitability 3652 NoSideEffects(*BI->getParent())) { 3653 auto *OldSuccessor = BI->getSuccessor(0); 3654 OldSuccessor->removePredecessor(BI->getParent()); 3655 BI->setSuccessor(0, IfFalseBB); 3656 if (DTU) 3657 DTU->applyUpdates( 3658 {{DominatorTree::Insert, BI->getParent(), IfFalseBB}, 3659 {DominatorTree::Delete, BI->getParent(), OldSuccessor}}); 3660 return true; 3661 } 3662 return false; 3663 } 3664 3665 /// If we have a conditional branch as a predecessor of another block, 3666 /// this function tries to simplify it. We know 3667 /// that PBI and BI are both conditional branches, and BI is in one of the 3668 /// successor blocks of PBI - PBI branches to BI. 3669 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI, 3670 DomTreeUpdater *DTU, 3671 const DataLayout &DL, 3672 const TargetTransformInfo &TTI) { 3673 assert(PBI->isConditional() && BI->isConditional()); 3674 BasicBlock *BB = BI->getParent(); 3675 3676 // If this block ends with a branch instruction, and if there is a 3677 // predecessor that ends on a branch of the same condition, make 3678 // this conditional branch redundant. 3679 if (PBI->getCondition() == BI->getCondition() && 3680 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 3681 // Okay, the outcome of this conditional branch is statically 3682 // knowable. If this block had a single pred, handle specially. 3683 if (BB->getSinglePredecessor()) { 3684 // Turn this into a branch on constant. 3685 bool CondIsTrue = PBI->getSuccessor(0) == BB; 3686 BI->setCondition( 3687 ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue)); 3688 return true; // Nuke the branch on constant. 3689 } 3690 3691 // Otherwise, if there are multiple predecessors, insert a PHI that merges 3692 // in the constant and simplify the block result. Subsequent passes of 3693 // simplifycfg will thread the block. 3694 if (BlockIsSimpleEnoughToThreadThrough(BB)) { 3695 pred_iterator PB = pred_begin(BB), PE = pred_end(BB); 3696 PHINode *NewPN = PHINode::Create( 3697 Type::getInt1Ty(BB->getContext()), std::distance(PB, PE), 3698 BI->getCondition()->getName() + ".pr", &BB->front()); 3699 // Okay, we're going to insert the PHI node. Since PBI is not the only 3700 // predecessor, compute the PHI'd conditional value for all of the preds. 3701 // Any predecessor where the condition is not computable we keep symbolic. 3702 for (pred_iterator PI = PB; PI != PE; ++PI) { 3703 BasicBlock *P = *PI; 3704 if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) && PBI != BI && 3705 PBI->isConditional() && PBI->getCondition() == BI->getCondition() && 3706 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 3707 bool CondIsTrue = PBI->getSuccessor(0) == BB; 3708 NewPN->addIncoming( 3709 ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue), 3710 P); 3711 } else { 3712 NewPN->addIncoming(BI->getCondition(), P); 3713 } 3714 } 3715 3716 BI->setCondition(NewPN); 3717 return true; 3718 } 3719 } 3720 3721 // If the previous block ended with a widenable branch, determine if reusing 3722 // the target block is profitable and legal. This will have the effect of 3723 // "widening" PBI, but doesn't require us to reason about hosting safety. 3724 if (tryWidenCondBranchToCondBranch(PBI, BI, DTU)) 3725 return true; 3726 3727 if (auto *CE = dyn_cast<ConstantExpr>(BI->getCondition())) 3728 if (CE->canTrap()) 3729 return false; 3730 3731 // If both branches are conditional and both contain stores to the same 3732 // address, remove the stores from the conditionals and create a conditional 3733 // merged store at the end. 3734 if (MergeCondStores && mergeConditionalStores(PBI, BI, DTU, DL, TTI)) 3735 return true; 3736 3737 // If this is a conditional branch in an empty block, and if any 3738 // predecessors are a conditional branch to one of our destinations, 3739 // fold the conditions into logical ops and one cond br. 3740 3741 // Ignore dbg intrinsics. 3742 if (&*BB->instructionsWithoutDebug().begin() != BI) 3743 return false; 3744 3745 int PBIOp, BIOp; 3746 if (PBI->getSuccessor(0) == BI->getSuccessor(0)) { 3747 PBIOp = 0; 3748 BIOp = 0; 3749 } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) { 3750 PBIOp = 0; 3751 BIOp = 1; 3752 } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) { 3753 PBIOp = 1; 3754 BIOp = 0; 3755 } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) { 3756 PBIOp = 1; 3757 BIOp = 1; 3758 } else { 3759 return false; 3760 } 3761 3762 // Check to make sure that the other destination of this branch 3763 // isn't BB itself. If so, this is an infinite loop that will 3764 // keep getting unwound. 3765 if (PBI->getSuccessor(PBIOp) == BB) 3766 return false; 3767 3768 // Do not perform this transformation if it would require 3769 // insertion of a large number of select instructions. For targets 3770 // without predication/cmovs, this is a big pessimization. 3771 3772 // Also do not perform this transformation if any phi node in the common 3773 // destination block can trap when reached by BB or PBB (PR17073). In that 3774 // case, it would be unsafe to hoist the operation into a select instruction. 3775 3776 BasicBlock *CommonDest = PBI->getSuccessor(PBIOp); 3777 BasicBlock *RemovedDest = PBI->getSuccessor(PBIOp ^ 1); 3778 unsigned NumPhis = 0; 3779 for (BasicBlock::iterator II = CommonDest->begin(); isa<PHINode>(II); 3780 ++II, ++NumPhis) { 3781 if (NumPhis > 2) // Disable this xform. 3782 return false; 3783 3784 PHINode *PN = cast<PHINode>(II); 3785 Value *BIV = PN->getIncomingValueForBlock(BB); 3786 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BIV)) 3787 if (CE->canTrap()) 3788 return false; 3789 3790 unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent()); 3791 Value *PBIV = PN->getIncomingValue(PBBIdx); 3792 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(PBIV)) 3793 if (CE->canTrap()) 3794 return false; 3795 } 3796 3797 // Finally, if everything is ok, fold the branches to logical ops. 3798 BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1); 3799 3800 LLVM_DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent() 3801 << "AND: " << *BI->getParent()); 3802 3803 SmallVector<DominatorTree::UpdateType, 5> Updates; 3804 3805 // If OtherDest *is* BB, then BB is a basic block with a single conditional 3806 // branch in it, where one edge (OtherDest) goes back to itself but the other 3807 // exits. We don't *know* that the program avoids the infinite loop 3808 // (even though that seems likely). If we do this xform naively, we'll end up 3809 // recursively unpeeling the loop. Since we know that (after the xform is 3810 // done) that the block *is* infinite if reached, we just make it an obviously 3811 // infinite loop with no cond branch. 3812 if (OtherDest == BB) { 3813 // Insert it at the end of the function, because it's either code, 3814 // or it won't matter if it's hot. :) 3815 BasicBlock *InfLoopBlock = 3816 BasicBlock::Create(BB->getContext(), "infloop", BB->getParent()); 3817 BranchInst::Create(InfLoopBlock, InfLoopBlock); 3818 if (DTU) 3819 Updates.push_back({DominatorTree::Insert, InfLoopBlock, InfLoopBlock}); 3820 OtherDest = InfLoopBlock; 3821 } 3822 3823 LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent()); 3824 3825 // BI may have other predecessors. Because of this, we leave 3826 // it alone, but modify PBI. 3827 3828 // Make sure we get to CommonDest on True&True directions. 3829 Value *PBICond = PBI->getCondition(); 3830 IRBuilder<NoFolder> Builder(PBI); 3831 if (PBIOp) 3832 PBICond = Builder.CreateNot(PBICond, PBICond->getName() + ".not"); 3833 3834 Value *BICond = BI->getCondition(); 3835 if (BIOp) 3836 BICond = Builder.CreateNot(BICond, BICond->getName() + ".not"); 3837 3838 // Merge the conditions. 3839 Value *Cond = 3840 createLogicalOp(Builder, Instruction::Or, PBICond, BICond, "brmerge"); 3841 3842 // Modify PBI to branch on the new condition to the new dests. 3843 PBI->setCondition(Cond); 3844 PBI->setSuccessor(0, CommonDest); 3845 PBI->setSuccessor(1, OtherDest); 3846 3847 if (DTU) { 3848 Updates.push_back({DominatorTree::Insert, PBI->getParent(), OtherDest}); 3849 Updates.push_back({DominatorTree::Delete, PBI->getParent(), RemovedDest}); 3850 3851 DTU->applyUpdates(Updates); 3852 } 3853 3854 // Update branch weight for PBI. 3855 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 3856 uint64_t PredCommon, PredOther, SuccCommon, SuccOther; 3857 bool HasWeights = 3858 extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight, 3859 SuccTrueWeight, SuccFalseWeight); 3860 if (HasWeights) { 3861 PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight; 3862 PredOther = PBIOp ? PredTrueWeight : PredFalseWeight; 3863 SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight; 3864 SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight; 3865 // The weight to CommonDest should be PredCommon * SuccTotal + 3866 // PredOther * SuccCommon. 3867 // The weight to OtherDest should be PredOther * SuccOther. 3868 uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) + 3869 PredOther * SuccCommon, 3870 PredOther * SuccOther}; 3871 // Halve the weights if any of them cannot fit in an uint32_t 3872 FitWeights(NewWeights); 3873 3874 setBranchWeights(PBI, NewWeights[0], NewWeights[1]); 3875 } 3876 3877 // OtherDest may have phi nodes. If so, add an entry from PBI's 3878 // block that are identical to the entries for BI's block. 3879 AddPredecessorToBlock(OtherDest, PBI->getParent(), BB); 3880 3881 // We know that the CommonDest already had an edge from PBI to 3882 // it. If it has PHIs though, the PHIs may have different 3883 // entries for BB and PBI's BB. If so, insert a select to make 3884 // them agree. 3885 for (PHINode &PN : CommonDest->phis()) { 3886 Value *BIV = PN.getIncomingValueForBlock(BB); 3887 unsigned PBBIdx = PN.getBasicBlockIndex(PBI->getParent()); 3888 Value *PBIV = PN.getIncomingValue(PBBIdx); 3889 if (BIV != PBIV) { 3890 // Insert a select in PBI to pick the right value. 3891 SelectInst *NV = cast<SelectInst>( 3892 Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName() + ".mux")); 3893 PN.setIncomingValue(PBBIdx, NV); 3894 // Although the select has the same condition as PBI, the original branch 3895 // weights for PBI do not apply to the new select because the select's 3896 // 'logical' edges are incoming edges of the phi that is eliminated, not 3897 // the outgoing edges of PBI. 3898 if (HasWeights) { 3899 uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight; 3900 uint64_t PredOther = PBIOp ? PredTrueWeight : PredFalseWeight; 3901 uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight; 3902 uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight; 3903 // The weight to PredCommonDest should be PredCommon * SuccTotal. 3904 // The weight to PredOtherDest should be PredOther * SuccCommon. 3905 uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther), 3906 PredOther * SuccCommon}; 3907 3908 FitWeights(NewWeights); 3909 3910 setBranchWeights(NV, NewWeights[0], NewWeights[1]); 3911 } 3912 } 3913 } 3914 3915 LLVM_DEBUG(dbgs() << "INTO: " << *PBI->getParent()); 3916 LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent()); 3917 3918 // This basic block is probably dead. We know it has at least 3919 // one fewer predecessor. 3920 return true; 3921 } 3922 3923 // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is 3924 // true or to FalseBB if Cond is false. 3925 // Takes care of updating the successors and removing the old terminator. 3926 // Also makes sure not to introduce new successors by assuming that edges to 3927 // non-successor TrueBBs and FalseBBs aren't reachable. 3928 bool SimplifyCFGOpt::SimplifyTerminatorOnSelect(Instruction *OldTerm, 3929 Value *Cond, BasicBlock *TrueBB, 3930 BasicBlock *FalseBB, 3931 uint32_t TrueWeight, 3932 uint32_t FalseWeight) { 3933 auto *BB = OldTerm->getParent(); 3934 // Remove any superfluous successor edges from the CFG. 3935 // First, figure out which successors to preserve. 3936 // If TrueBB and FalseBB are equal, only try to preserve one copy of that 3937 // successor. 3938 BasicBlock *KeepEdge1 = TrueBB; 3939 BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr; 3940 3941 SmallPtrSet<BasicBlock *, 2> RemovedSuccessors; 3942 3943 // Then remove the rest. 3944 for (BasicBlock *Succ : successors(OldTerm)) { 3945 // Make sure only to keep exactly one copy of each edge. 3946 if (Succ == KeepEdge1) 3947 KeepEdge1 = nullptr; 3948 else if (Succ == KeepEdge2) 3949 KeepEdge2 = nullptr; 3950 else { 3951 Succ->removePredecessor(BB, 3952 /*KeepOneInputPHIs=*/true); 3953 3954 if (Succ != TrueBB && Succ != FalseBB) 3955 RemovedSuccessors.insert(Succ); 3956 } 3957 } 3958 3959 IRBuilder<> Builder(OldTerm); 3960 Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc()); 3961 3962 // Insert an appropriate new terminator. 3963 if (!KeepEdge1 && !KeepEdge2) { 3964 if (TrueBB == FalseBB) { 3965 // We were only looking for one successor, and it was present. 3966 // Create an unconditional branch to it. 3967 Builder.CreateBr(TrueBB); 3968 } else { 3969 // We found both of the successors we were looking for. 3970 // Create a conditional branch sharing the condition of the select. 3971 BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB); 3972 if (TrueWeight != FalseWeight) 3973 setBranchWeights(NewBI, TrueWeight, FalseWeight); 3974 } 3975 } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) { 3976 // Neither of the selected blocks were successors, so this 3977 // terminator must be unreachable. 3978 new UnreachableInst(OldTerm->getContext(), OldTerm); 3979 } else { 3980 // One of the selected values was a successor, but the other wasn't. 3981 // Insert an unconditional branch to the one that was found; 3982 // the edge to the one that wasn't must be unreachable. 3983 if (!KeepEdge1) { 3984 // Only TrueBB was found. 3985 Builder.CreateBr(TrueBB); 3986 } else { 3987 // Only FalseBB was found. 3988 Builder.CreateBr(FalseBB); 3989 } 3990 } 3991 3992 EraseTerminatorAndDCECond(OldTerm); 3993 3994 if (DTU) { 3995 SmallVector<DominatorTree::UpdateType, 2> Updates; 3996 Updates.reserve(RemovedSuccessors.size()); 3997 for (auto *RemovedSuccessor : RemovedSuccessors) 3998 Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor}); 3999 DTU->applyUpdates(Updates); 4000 } 4001 4002 return true; 4003 } 4004 4005 // Replaces 4006 // (switch (select cond, X, Y)) on constant X, Y 4007 // with a branch - conditional if X and Y lead to distinct BBs, 4008 // unconditional otherwise. 4009 bool SimplifyCFGOpt::SimplifySwitchOnSelect(SwitchInst *SI, 4010 SelectInst *Select) { 4011 // Check for constant integer values in the select. 4012 ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue()); 4013 ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue()); 4014 if (!TrueVal || !FalseVal) 4015 return false; 4016 4017 // Find the relevant condition and destinations. 4018 Value *Condition = Select->getCondition(); 4019 BasicBlock *TrueBB = SI->findCaseValue(TrueVal)->getCaseSuccessor(); 4020 BasicBlock *FalseBB = SI->findCaseValue(FalseVal)->getCaseSuccessor(); 4021 4022 // Get weight for TrueBB and FalseBB. 4023 uint32_t TrueWeight = 0, FalseWeight = 0; 4024 SmallVector<uint64_t, 8> Weights; 4025 bool HasWeights = HasBranchWeights(SI); 4026 if (HasWeights) { 4027 GetBranchWeights(SI, Weights); 4028 if (Weights.size() == 1 + SI->getNumCases()) { 4029 TrueWeight = 4030 (uint32_t)Weights[SI->findCaseValue(TrueVal)->getSuccessorIndex()]; 4031 FalseWeight = 4032 (uint32_t)Weights[SI->findCaseValue(FalseVal)->getSuccessorIndex()]; 4033 } 4034 } 4035 4036 // Perform the actual simplification. 4037 return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, TrueWeight, 4038 FalseWeight); 4039 } 4040 4041 // Replaces 4042 // (indirectbr (select cond, blockaddress(@fn, BlockA), 4043 // blockaddress(@fn, BlockB))) 4044 // with 4045 // (br cond, BlockA, BlockB). 4046 bool SimplifyCFGOpt::SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, 4047 SelectInst *SI) { 4048 // Check that both operands of the select are block addresses. 4049 BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue()); 4050 BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue()); 4051 if (!TBA || !FBA) 4052 return false; 4053 4054 // Extract the actual blocks. 4055 BasicBlock *TrueBB = TBA->getBasicBlock(); 4056 BasicBlock *FalseBB = FBA->getBasicBlock(); 4057 4058 // Perform the actual simplification. 4059 return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 0, 4060 0); 4061 } 4062 4063 /// This is called when we find an icmp instruction 4064 /// (a seteq/setne with a constant) as the only instruction in a 4065 /// block that ends with an uncond branch. We are looking for a very specific 4066 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified. In 4067 /// this case, we merge the first two "or's of icmp" into a switch, but then the 4068 /// default value goes to an uncond block with a seteq in it, we get something 4069 /// like: 4070 /// 4071 /// switch i8 %A, label %DEFAULT [ i8 1, label %end i8 2, label %end ] 4072 /// DEFAULT: 4073 /// %tmp = icmp eq i8 %A, 92 4074 /// br label %end 4075 /// end: 4076 /// ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ] 4077 /// 4078 /// We prefer to split the edge to 'end' so that there is a true/false entry to 4079 /// the PHI, merging the third icmp into the switch. 4080 bool SimplifyCFGOpt::tryToSimplifyUncondBranchWithICmpInIt( 4081 ICmpInst *ICI, IRBuilder<> &Builder) { 4082 BasicBlock *BB = ICI->getParent(); 4083 4084 // If the block has any PHIs in it or the icmp has multiple uses, it is too 4085 // complex. 4086 if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse()) 4087 return false; 4088 4089 Value *V = ICI->getOperand(0); 4090 ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1)); 4091 4092 // The pattern we're looking for is where our only predecessor is a switch on 4093 // 'V' and this block is the default case for the switch. In this case we can 4094 // fold the compared value into the switch to simplify things. 4095 BasicBlock *Pred = BB->getSinglePredecessor(); 4096 if (!Pred || !isa<SwitchInst>(Pred->getTerminator())) 4097 return false; 4098 4099 SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator()); 4100 if (SI->getCondition() != V) 4101 return false; 4102 4103 // If BB is reachable on a non-default case, then we simply know the value of 4104 // V in this block. Substitute it and constant fold the icmp instruction 4105 // away. 4106 if (SI->getDefaultDest() != BB) { 4107 ConstantInt *VVal = SI->findCaseDest(BB); 4108 assert(VVal && "Should have a unique destination value"); 4109 ICI->setOperand(0, VVal); 4110 4111 if (Value *V = SimplifyInstruction(ICI, {DL, ICI})) { 4112 ICI->replaceAllUsesWith(V); 4113 ICI->eraseFromParent(); 4114 } 4115 // BB is now empty, so it is likely to simplify away. 4116 return requestResimplify(); 4117 } 4118 4119 // Ok, the block is reachable from the default dest. If the constant we're 4120 // comparing exists in one of the other edges, then we can constant fold ICI 4121 // and zap it. 4122 if (SI->findCaseValue(Cst) != SI->case_default()) { 4123 Value *V; 4124 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 4125 V = ConstantInt::getFalse(BB->getContext()); 4126 else 4127 V = ConstantInt::getTrue(BB->getContext()); 4128 4129 ICI->replaceAllUsesWith(V); 4130 ICI->eraseFromParent(); 4131 // BB is now empty, so it is likely to simplify away. 4132 return requestResimplify(); 4133 } 4134 4135 // The use of the icmp has to be in the 'end' block, by the only PHI node in 4136 // the block. 4137 BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0); 4138 PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back()); 4139 if (PHIUse == nullptr || PHIUse != &SuccBlock->front() || 4140 isa<PHINode>(++BasicBlock::iterator(PHIUse))) 4141 return false; 4142 4143 // If the icmp is a SETEQ, then the default dest gets false, the new edge gets 4144 // true in the PHI. 4145 Constant *DefaultCst = ConstantInt::getTrue(BB->getContext()); 4146 Constant *NewCst = ConstantInt::getFalse(BB->getContext()); 4147 4148 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 4149 std::swap(DefaultCst, NewCst); 4150 4151 // Replace ICI (which is used by the PHI for the default value) with true or 4152 // false depending on if it is EQ or NE. 4153 ICI->replaceAllUsesWith(DefaultCst); 4154 ICI->eraseFromParent(); 4155 4156 SmallVector<DominatorTree::UpdateType, 2> Updates; 4157 4158 // Okay, the switch goes to this block on a default value. Add an edge from 4159 // the switch to the merge point on the compared value. 4160 BasicBlock *NewBB = 4161 BasicBlock::Create(BB->getContext(), "switch.edge", BB->getParent(), BB); 4162 { 4163 SwitchInstProfUpdateWrapper SIW(*SI); 4164 auto W0 = SIW.getSuccessorWeight(0); 4165 SwitchInstProfUpdateWrapper::CaseWeightOpt NewW; 4166 if (W0) { 4167 NewW = ((uint64_t(*W0) + 1) >> 1); 4168 SIW.setSuccessorWeight(0, *NewW); 4169 } 4170 SIW.addCase(Cst, NewBB, NewW); 4171 if (DTU) 4172 Updates.push_back({DominatorTree::Insert, Pred, NewBB}); 4173 } 4174 4175 // NewBB branches to the phi block, add the uncond branch and the phi entry. 4176 Builder.SetInsertPoint(NewBB); 4177 Builder.SetCurrentDebugLocation(SI->getDebugLoc()); 4178 Builder.CreateBr(SuccBlock); 4179 PHIUse->addIncoming(NewCst, NewBB); 4180 if (DTU) { 4181 Updates.push_back({DominatorTree::Insert, NewBB, SuccBlock}); 4182 DTU->applyUpdates(Updates); 4183 } 4184 return true; 4185 } 4186 4187 /// The specified branch is a conditional branch. 4188 /// Check to see if it is branching on an or/and chain of icmp instructions, and 4189 /// fold it into a switch instruction if so. 4190 bool SimplifyCFGOpt::SimplifyBranchOnICmpChain(BranchInst *BI, 4191 IRBuilder<> &Builder, 4192 const DataLayout &DL) { 4193 Instruction *Cond = dyn_cast<Instruction>(BI->getCondition()); 4194 if (!Cond) 4195 return false; 4196 4197 // Change br (X == 0 | X == 1), T, F into a switch instruction. 4198 // If this is a bunch of seteq's or'd together, or if it's a bunch of 4199 // 'setne's and'ed together, collect them. 4200 4201 // Try to gather values from a chain of and/or to be turned into a switch 4202 ConstantComparesGatherer ConstantCompare(Cond, DL); 4203 // Unpack the result 4204 SmallVectorImpl<ConstantInt *> &Values = ConstantCompare.Vals; 4205 Value *CompVal = ConstantCompare.CompValue; 4206 unsigned UsedICmps = ConstantCompare.UsedICmps; 4207 Value *ExtraCase = ConstantCompare.Extra; 4208 4209 // If we didn't have a multiply compared value, fail. 4210 if (!CompVal) 4211 return false; 4212 4213 // Avoid turning single icmps into a switch. 4214 if (UsedICmps <= 1) 4215 return false; 4216 4217 bool TrueWhenEqual = match(Cond, m_LogicalOr(m_Value(), m_Value())); 4218 4219 // There might be duplicate constants in the list, which the switch 4220 // instruction can't handle, remove them now. 4221 array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate); 4222 Values.erase(std::unique(Values.begin(), Values.end()), Values.end()); 4223 4224 // If Extra was used, we require at least two switch values to do the 4225 // transformation. A switch with one value is just a conditional branch. 4226 if (ExtraCase && Values.size() < 2) 4227 return false; 4228 4229 // TODO: Preserve branch weight metadata, similarly to how 4230 // FoldValueComparisonIntoPredecessors preserves it. 4231 4232 // Figure out which block is which destination. 4233 BasicBlock *DefaultBB = BI->getSuccessor(1); 4234 BasicBlock *EdgeBB = BI->getSuccessor(0); 4235 if (!TrueWhenEqual) 4236 std::swap(DefaultBB, EdgeBB); 4237 4238 BasicBlock *BB = BI->getParent(); 4239 4240 // MSAN does not like undefs as branch condition which can be introduced 4241 // with "explicit branch". 4242 if (ExtraCase && BB->getParent()->hasFnAttribute(Attribute::SanitizeMemory)) 4243 return false; 4244 4245 LLVM_DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size() 4246 << " cases into SWITCH. BB is:\n" 4247 << *BB); 4248 4249 SmallVector<DominatorTree::UpdateType, 2> Updates; 4250 4251 // If there are any extra values that couldn't be folded into the switch 4252 // then we evaluate them with an explicit branch first. Split the block 4253 // right before the condbr to handle it. 4254 if (ExtraCase) { 4255 BasicBlock *NewBB = SplitBlock(BB, BI, DTU, /*LI=*/nullptr, 4256 /*MSSAU=*/nullptr, "switch.early.test"); 4257 4258 // Remove the uncond branch added to the old block. 4259 Instruction *OldTI = BB->getTerminator(); 4260 Builder.SetInsertPoint(OldTI); 4261 4262 if (TrueWhenEqual) 4263 Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB); 4264 else 4265 Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB); 4266 4267 OldTI->eraseFromParent(); 4268 4269 if (DTU) 4270 Updates.push_back({DominatorTree::Insert, BB, EdgeBB}); 4271 4272 // If there are PHI nodes in EdgeBB, then we need to add a new entry to them 4273 // for the edge we just added. 4274 AddPredecessorToBlock(EdgeBB, BB, NewBB); 4275 4276 LLVM_DEBUG(dbgs() << " ** 'icmp' chain unhandled condition: " << *ExtraCase 4277 << "\nEXTRABB = " << *BB); 4278 BB = NewBB; 4279 } 4280 4281 Builder.SetInsertPoint(BI); 4282 // Convert pointer to int before we switch. 4283 if (CompVal->getType()->isPointerTy()) { 4284 CompVal = Builder.CreatePtrToInt( 4285 CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr"); 4286 } 4287 4288 // Create the new switch instruction now. 4289 SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size()); 4290 4291 // Add all of the 'cases' to the switch instruction. 4292 for (unsigned i = 0, e = Values.size(); i != e; ++i) 4293 New->addCase(Values[i], EdgeBB); 4294 4295 // We added edges from PI to the EdgeBB. As such, if there were any 4296 // PHI nodes in EdgeBB, they need entries to be added corresponding to 4297 // the number of edges added. 4298 for (BasicBlock::iterator BBI = EdgeBB->begin(); isa<PHINode>(BBI); ++BBI) { 4299 PHINode *PN = cast<PHINode>(BBI); 4300 Value *InVal = PN->getIncomingValueForBlock(BB); 4301 for (unsigned i = 0, e = Values.size() - 1; i != e; ++i) 4302 PN->addIncoming(InVal, BB); 4303 } 4304 4305 // Erase the old branch instruction. 4306 EraseTerminatorAndDCECond(BI); 4307 if (DTU) 4308 DTU->applyUpdates(Updates); 4309 4310 LLVM_DEBUG(dbgs() << " ** 'icmp' chain result is:\n" << *BB << '\n'); 4311 return true; 4312 } 4313 4314 bool SimplifyCFGOpt::simplifyResume(ResumeInst *RI, IRBuilder<> &Builder) { 4315 if (isa<PHINode>(RI->getValue())) 4316 return simplifyCommonResume(RI); 4317 else if (isa<LandingPadInst>(RI->getParent()->getFirstNonPHI()) && 4318 RI->getValue() == RI->getParent()->getFirstNonPHI()) 4319 // The resume must unwind the exception that caused control to branch here. 4320 return simplifySingleResume(RI); 4321 4322 return false; 4323 } 4324 4325 // Check if cleanup block is empty 4326 static bool isCleanupBlockEmpty(iterator_range<BasicBlock::iterator> R) { 4327 for (Instruction &I : R) { 4328 auto *II = dyn_cast<IntrinsicInst>(&I); 4329 if (!II) 4330 return false; 4331 4332 Intrinsic::ID IntrinsicID = II->getIntrinsicID(); 4333 switch (IntrinsicID) { 4334 case Intrinsic::dbg_declare: 4335 case Intrinsic::dbg_value: 4336 case Intrinsic::dbg_label: 4337 case Intrinsic::lifetime_end: 4338 break; 4339 default: 4340 return false; 4341 } 4342 } 4343 return true; 4344 } 4345 4346 // Simplify resume that is shared by several landing pads (phi of landing pad). 4347 bool SimplifyCFGOpt::simplifyCommonResume(ResumeInst *RI) { 4348 BasicBlock *BB = RI->getParent(); 4349 4350 // Check that there are no other instructions except for debug and lifetime 4351 // intrinsics between the phi's and resume instruction. 4352 if (!isCleanupBlockEmpty( 4353 make_range(RI->getParent()->getFirstNonPHI(), BB->getTerminator()))) 4354 return false; 4355 4356 SmallSetVector<BasicBlock *, 4> TrivialUnwindBlocks; 4357 auto *PhiLPInst = cast<PHINode>(RI->getValue()); 4358 4359 // Check incoming blocks to see if any of them are trivial. 4360 for (unsigned Idx = 0, End = PhiLPInst->getNumIncomingValues(); Idx != End; 4361 Idx++) { 4362 auto *IncomingBB = PhiLPInst->getIncomingBlock(Idx); 4363 auto *IncomingValue = PhiLPInst->getIncomingValue(Idx); 4364 4365 // If the block has other successors, we can not delete it because 4366 // it has other dependents. 4367 if (IncomingBB->getUniqueSuccessor() != BB) 4368 continue; 4369 4370 auto *LandingPad = dyn_cast<LandingPadInst>(IncomingBB->getFirstNonPHI()); 4371 // Not the landing pad that caused the control to branch here. 4372 if (IncomingValue != LandingPad) 4373 continue; 4374 4375 if (isCleanupBlockEmpty( 4376 make_range(LandingPad->getNextNode(), IncomingBB->getTerminator()))) 4377 TrivialUnwindBlocks.insert(IncomingBB); 4378 } 4379 4380 // If no trivial unwind blocks, don't do any simplifications. 4381 if (TrivialUnwindBlocks.empty()) 4382 return false; 4383 4384 // Turn all invokes that unwind here into calls. 4385 for (auto *TrivialBB : TrivialUnwindBlocks) { 4386 // Blocks that will be simplified should be removed from the phi node. 4387 // Note there could be multiple edges to the resume block, and we need 4388 // to remove them all. 4389 while (PhiLPInst->getBasicBlockIndex(TrivialBB) != -1) 4390 BB->removePredecessor(TrivialBB, true); 4391 4392 for (BasicBlock *Pred : 4393 llvm::make_early_inc_range(predecessors(TrivialBB))) { 4394 removeUnwindEdge(Pred, DTU); 4395 ++NumInvokes; 4396 } 4397 4398 // In each SimplifyCFG run, only the current processed block can be erased. 4399 // Otherwise, it will break the iteration of SimplifyCFG pass. So instead 4400 // of erasing TrivialBB, we only remove the branch to the common resume 4401 // block so that we can later erase the resume block since it has no 4402 // predecessors. 4403 TrivialBB->getTerminator()->eraseFromParent(); 4404 new UnreachableInst(RI->getContext(), TrivialBB); 4405 if (DTU) 4406 DTU->applyUpdates({{DominatorTree::Delete, TrivialBB, BB}}); 4407 } 4408 4409 // Delete the resume block if all its predecessors have been removed. 4410 if (pred_empty(BB)) 4411 DeleteDeadBlock(BB, DTU); 4412 4413 return !TrivialUnwindBlocks.empty(); 4414 } 4415 4416 // Simplify resume that is only used by a single (non-phi) landing pad. 4417 bool SimplifyCFGOpt::simplifySingleResume(ResumeInst *RI) { 4418 BasicBlock *BB = RI->getParent(); 4419 auto *LPInst = cast<LandingPadInst>(BB->getFirstNonPHI()); 4420 assert(RI->getValue() == LPInst && 4421 "Resume must unwind the exception that caused control to here"); 4422 4423 // Check that there are no other instructions except for debug intrinsics. 4424 if (!isCleanupBlockEmpty( 4425 make_range<Instruction *>(LPInst->getNextNode(), RI))) 4426 return false; 4427 4428 // Turn all invokes that unwind here into calls and delete the basic block. 4429 for (BasicBlock *Pred : llvm::make_early_inc_range(predecessors(BB))) { 4430 removeUnwindEdge(Pred, DTU); 4431 ++NumInvokes; 4432 } 4433 4434 // The landingpad is now unreachable. Zap it. 4435 DeleteDeadBlock(BB, DTU); 4436 return true; 4437 } 4438 4439 static bool removeEmptyCleanup(CleanupReturnInst *RI, DomTreeUpdater *DTU) { 4440 // If this is a trivial cleanup pad that executes no instructions, it can be 4441 // eliminated. If the cleanup pad continues to the caller, any predecessor 4442 // that is an EH pad will be updated to continue to the caller and any 4443 // predecessor that terminates with an invoke instruction will have its invoke 4444 // instruction converted to a call instruction. If the cleanup pad being 4445 // simplified does not continue to the caller, each predecessor will be 4446 // updated to continue to the unwind destination of the cleanup pad being 4447 // simplified. 4448 BasicBlock *BB = RI->getParent(); 4449 CleanupPadInst *CPInst = RI->getCleanupPad(); 4450 if (CPInst->getParent() != BB) 4451 // This isn't an empty cleanup. 4452 return false; 4453 4454 // We cannot kill the pad if it has multiple uses. This typically arises 4455 // from unreachable basic blocks. 4456 if (!CPInst->hasOneUse()) 4457 return false; 4458 4459 // Check that there are no other instructions except for benign intrinsics. 4460 if (!isCleanupBlockEmpty( 4461 make_range<Instruction *>(CPInst->getNextNode(), RI))) 4462 return false; 4463 4464 // If the cleanup return we are simplifying unwinds to the caller, this will 4465 // set UnwindDest to nullptr. 4466 BasicBlock *UnwindDest = RI->getUnwindDest(); 4467 Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr; 4468 4469 // We're about to remove BB from the control flow. Before we do, sink any 4470 // PHINodes into the unwind destination. Doing this before changing the 4471 // control flow avoids some potentially slow checks, since we can currently 4472 // be certain that UnwindDest and BB have no common predecessors (since they 4473 // are both EH pads). 4474 if (UnwindDest) { 4475 // First, go through the PHI nodes in UnwindDest and update any nodes that 4476 // reference the block we are removing 4477 for (PHINode &DestPN : UnwindDest->phis()) { 4478 int Idx = DestPN.getBasicBlockIndex(BB); 4479 // Since BB unwinds to UnwindDest, it has to be in the PHI node. 4480 assert(Idx != -1); 4481 // This PHI node has an incoming value that corresponds to a control 4482 // path through the cleanup pad we are removing. If the incoming 4483 // value is in the cleanup pad, it must be a PHINode (because we 4484 // verified above that the block is otherwise empty). Otherwise, the 4485 // value is either a constant or a value that dominates the cleanup 4486 // pad being removed. 4487 // 4488 // Because BB and UnwindDest are both EH pads, all of their 4489 // predecessors must unwind to these blocks, and since no instruction 4490 // can have multiple unwind destinations, there will be no overlap in 4491 // incoming blocks between SrcPN and DestPN. 4492 Value *SrcVal = DestPN.getIncomingValue(Idx); 4493 PHINode *SrcPN = dyn_cast<PHINode>(SrcVal); 4494 4495 bool NeedPHITranslation = SrcPN && SrcPN->getParent() == BB; 4496 for (auto *Pred : predecessors(BB)) { 4497 Value *Incoming = 4498 NeedPHITranslation ? SrcPN->getIncomingValueForBlock(Pred) : SrcVal; 4499 DestPN.addIncoming(Incoming, Pred); 4500 } 4501 } 4502 4503 // Sink any remaining PHI nodes directly into UnwindDest. 4504 Instruction *InsertPt = DestEHPad; 4505 for (PHINode &PN : make_early_inc_range(BB->phis())) { 4506 if (PN.use_empty() || !PN.isUsedOutsideOfBlock(BB)) 4507 // If the PHI node has no uses or all of its uses are in this basic 4508 // block (meaning they are debug or lifetime intrinsics), just leave 4509 // it. It will be erased when we erase BB below. 4510 continue; 4511 4512 // Otherwise, sink this PHI node into UnwindDest. 4513 // Any predecessors to UnwindDest which are not already represented 4514 // must be back edges which inherit the value from the path through 4515 // BB. In this case, the PHI value must reference itself. 4516 for (auto *pred : predecessors(UnwindDest)) 4517 if (pred != BB) 4518 PN.addIncoming(&PN, pred); 4519 PN.moveBefore(InsertPt); 4520 // Also, add a dummy incoming value for the original BB itself, 4521 // so that the PHI is well-formed until we drop said predecessor. 4522 PN.addIncoming(UndefValue::get(PN.getType()), BB); 4523 } 4524 } 4525 4526 std::vector<DominatorTree::UpdateType> Updates; 4527 4528 // We use make_early_inc_range here because we will remove all predecessors. 4529 for (BasicBlock *PredBB : llvm::make_early_inc_range(predecessors(BB))) { 4530 if (UnwindDest == nullptr) { 4531 if (DTU) { 4532 DTU->applyUpdates(Updates); 4533 Updates.clear(); 4534 } 4535 removeUnwindEdge(PredBB, DTU); 4536 ++NumInvokes; 4537 } else { 4538 BB->removePredecessor(PredBB); 4539 Instruction *TI = PredBB->getTerminator(); 4540 TI->replaceUsesOfWith(BB, UnwindDest); 4541 if (DTU) { 4542 Updates.push_back({DominatorTree::Insert, PredBB, UnwindDest}); 4543 Updates.push_back({DominatorTree::Delete, PredBB, BB}); 4544 } 4545 } 4546 } 4547 4548 if (DTU) 4549 DTU->applyUpdates(Updates); 4550 4551 DeleteDeadBlock(BB, DTU); 4552 4553 return true; 4554 } 4555 4556 // Try to merge two cleanuppads together. 4557 static bool mergeCleanupPad(CleanupReturnInst *RI) { 4558 // Skip any cleanuprets which unwind to caller, there is nothing to merge 4559 // with. 4560 BasicBlock *UnwindDest = RI->getUnwindDest(); 4561 if (!UnwindDest) 4562 return false; 4563 4564 // This cleanupret isn't the only predecessor of this cleanuppad, it wouldn't 4565 // be safe to merge without code duplication. 4566 if (UnwindDest->getSinglePredecessor() != RI->getParent()) 4567 return false; 4568 4569 // Verify that our cleanuppad's unwind destination is another cleanuppad. 4570 auto *SuccessorCleanupPad = dyn_cast<CleanupPadInst>(&UnwindDest->front()); 4571 if (!SuccessorCleanupPad) 4572 return false; 4573 4574 CleanupPadInst *PredecessorCleanupPad = RI->getCleanupPad(); 4575 // Replace any uses of the successor cleanupad with the predecessor pad 4576 // The only cleanuppad uses should be this cleanupret, it's cleanupret and 4577 // funclet bundle operands. 4578 SuccessorCleanupPad->replaceAllUsesWith(PredecessorCleanupPad); 4579 // Remove the old cleanuppad. 4580 SuccessorCleanupPad->eraseFromParent(); 4581 // Now, we simply replace the cleanupret with a branch to the unwind 4582 // destination. 4583 BranchInst::Create(UnwindDest, RI->getParent()); 4584 RI->eraseFromParent(); 4585 4586 return true; 4587 } 4588 4589 bool SimplifyCFGOpt::simplifyCleanupReturn(CleanupReturnInst *RI) { 4590 // It is possible to transiantly have an undef cleanuppad operand because we 4591 // have deleted some, but not all, dead blocks. 4592 // Eventually, this block will be deleted. 4593 if (isa<UndefValue>(RI->getOperand(0))) 4594 return false; 4595 4596 if (mergeCleanupPad(RI)) 4597 return true; 4598 4599 if (removeEmptyCleanup(RI, DTU)) 4600 return true; 4601 4602 return false; 4603 } 4604 4605 bool SimplifyCFGOpt::simplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) { 4606 BasicBlock *BB = RI->getParent(); 4607 if (!BB->getFirstNonPHIOrDbg()->isTerminator()) 4608 return false; 4609 4610 // Find predecessors that end with branches. 4611 SmallVector<BasicBlock *, 8> UncondBranchPreds; 4612 SmallVector<BranchInst *, 8> CondBranchPreds; 4613 for (BasicBlock *P : predecessors(BB)) { 4614 Instruction *PTI = P->getTerminator(); 4615 if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) { 4616 if (BI->isUnconditional()) 4617 UncondBranchPreds.push_back(P); 4618 else 4619 CondBranchPreds.push_back(BI); 4620 } 4621 } 4622 4623 // If we found some, do the transformation! 4624 if (!UncondBranchPreds.empty() && DupRet) { 4625 while (!UncondBranchPreds.empty()) { 4626 BasicBlock *Pred = UncondBranchPreds.pop_back_val(); 4627 LLVM_DEBUG(dbgs() << "FOLDING: " << *BB 4628 << "INTO UNCOND BRANCH PRED: " << *Pred); 4629 (void)FoldReturnIntoUncondBranch(RI, BB, Pred, DTU); 4630 } 4631 4632 // If we eliminated all predecessors of the block, delete the block now. 4633 if (pred_empty(BB)) 4634 DeleteDeadBlock(BB, DTU); 4635 4636 return true; 4637 } 4638 4639 // Check out all of the conditional branches going to this return 4640 // instruction. If any of them just select between returns, change the 4641 // branch itself into a select/return pair. 4642 while (!CondBranchPreds.empty()) { 4643 BranchInst *BI = CondBranchPreds.pop_back_val(); 4644 4645 // Check to see if the non-BB successor is also a return block. 4646 if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) && 4647 isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) && 4648 SimplifyCondBranchToTwoReturns(BI, Builder)) 4649 return true; 4650 } 4651 return false; 4652 } 4653 4654 bool SimplifyCFGOpt::simplifyUnreachable(UnreachableInst *UI) { 4655 BasicBlock *BB = UI->getParent(); 4656 4657 bool Changed = false; 4658 4659 // If there are any instructions immediately before the unreachable that can 4660 // be removed, do so. 4661 while (UI->getIterator() != BB->begin()) { 4662 BasicBlock::iterator BBI = UI->getIterator(); 4663 --BBI; 4664 // Do not delete instructions that can have side effects which might cause 4665 // the unreachable to not be reachable; specifically, calls and volatile 4666 // operations may have this effect. 4667 if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI)) 4668 break; 4669 4670 if (BBI->mayHaveSideEffects()) { 4671 if (auto *SI = dyn_cast<StoreInst>(BBI)) { 4672 if (SI->isVolatile()) 4673 break; 4674 } else if (auto *LI = dyn_cast<LoadInst>(BBI)) { 4675 if (LI->isVolatile()) 4676 break; 4677 } else if (auto *RMWI = dyn_cast<AtomicRMWInst>(BBI)) { 4678 if (RMWI->isVolatile()) 4679 break; 4680 } else if (auto *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) { 4681 if (CXI->isVolatile()) 4682 break; 4683 } else if (isa<CatchPadInst>(BBI)) { 4684 // A catchpad may invoke exception object constructors and such, which 4685 // in some languages can be arbitrary code, so be conservative by 4686 // default. 4687 // For CoreCLR, it just involves a type test, so can be removed. 4688 if (classifyEHPersonality(BB->getParent()->getPersonalityFn()) != 4689 EHPersonality::CoreCLR) 4690 break; 4691 } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) && 4692 !isa<LandingPadInst>(BBI)) { 4693 break; 4694 } 4695 // Note that deleting LandingPad's here is in fact okay, although it 4696 // involves a bit of subtle reasoning. If this inst is a LandingPad, 4697 // all the predecessors of this block will be the unwind edges of Invokes, 4698 // and we can therefore guarantee this block will be erased. 4699 } 4700 4701 // Delete this instruction (any uses are guaranteed to be dead) 4702 if (!BBI->use_empty()) 4703 BBI->replaceAllUsesWith(UndefValue::get(BBI->getType())); 4704 BBI->eraseFromParent(); 4705 Changed = true; 4706 } 4707 4708 // If the unreachable instruction is the first in the block, take a gander 4709 // at all of the predecessors of this instruction, and simplify them. 4710 if (&BB->front() != UI) 4711 return Changed; 4712 4713 std::vector<DominatorTree::UpdateType> Updates; 4714 4715 SmallSetVector<BasicBlock *, 8> Preds(pred_begin(BB), pred_end(BB)); 4716 for (unsigned i = 0, e = Preds.size(); i != e; ++i) { 4717 auto *Predecessor = Preds[i]; 4718 Instruction *TI = Predecessor->getTerminator(); 4719 IRBuilder<> Builder(TI); 4720 if (auto *BI = dyn_cast<BranchInst>(TI)) { 4721 // We could either have a proper unconditional branch, 4722 // or a degenerate conditional branch with matching destinations. 4723 if (all_of(BI->successors(), 4724 [BB](auto *Successor) { return Successor == BB; })) { 4725 new UnreachableInst(TI->getContext(), TI); 4726 TI->eraseFromParent(); 4727 Changed = true; 4728 } else { 4729 assert(BI->isConditional() && "Can't get here with an uncond branch."); 4730 Value* Cond = BI->getCondition(); 4731 assert(BI->getSuccessor(0) != BI->getSuccessor(1) && 4732 "The destinations are guaranteed to be different here."); 4733 if (BI->getSuccessor(0) == BB) { 4734 Builder.CreateAssumption(Builder.CreateNot(Cond)); 4735 Builder.CreateBr(BI->getSuccessor(1)); 4736 } else { 4737 assert(BI->getSuccessor(1) == BB && "Incorrect CFG"); 4738 Builder.CreateAssumption(Cond); 4739 Builder.CreateBr(BI->getSuccessor(0)); 4740 } 4741 EraseTerminatorAndDCECond(BI); 4742 Changed = true; 4743 } 4744 if (DTU) 4745 Updates.push_back({DominatorTree::Delete, Predecessor, BB}); 4746 } else if (auto *SI = dyn_cast<SwitchInst>(TI)) { 4747 SwitchInstProfUpdateWrapper SU(*SI); 4748 for (auto i = SU->case_begin(), e = SU->case_end(); i != e;) { 4749 if (i->getCaseSuccessor() != BB) { 4750 ++i; 4751 continue; 4752 } 4753 BB->removePredecessor(SU->getParent()); 4754 i = SU.removeCase(i); 4755 e = SU->case_end(); 4756 Changed = true; 4757 } 4758 // Note that the default destination can't be removed! 4759 if (DTU && SI->getDefaultDest() != BB) 4760 Updates.push_back({DominatorTree::Delete, Predecessor, BB}); 4761 } else if (auto *II = dyn_cast<InvokeInst>(TI)) { 4762 if (II->getUnwindDest() == BB) { 4763 if (DTU) { 4764 DTU->applyUpdates(Updates); 4765 Updates.clear(); 4766 } 4767 removeUnwindEdge(TI->getParent(), DTU); 4768 Changed = true; 4769 } 4770 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) { 4771 if (CSI->getUnwindDest() == BB) { 4772 if (DTU) { 4773 DTU->applyUpdates(Updates); 4774 Updates.clear(); 4775 } 4776 removeUnwindEdge(TI->getParent(), DTU); 4777 Changed = true; 4778 continue; 4779 } 4780 4781 for (CatchSwitchInst::handler_iterator I = CSI->handler_begin(), 4782 E = CSI->handler_end(); 4783 I != E; ++I) { 4784 if (*I == BB) { 4785 CSI->removeHandler(I); 4786 --I; 4787 --E; 4788 Changed = true; 4789 } 4790 } 4791 if (DTU) 4792 Updates.push_back({DominatorTree::Delete, Predecessor, BB}); 4793 if (CSI->getNumHandlers() == 0) { 4794 if (CSI->hasUnwindDest()) { 4795 // Redirect all predecessors of the block containing CatchSwitchInst 4796 // to instead branch to the CatchSwitchInst's unwind destination. 4797 if (DTU) { 4798 for (auto *PredecessorOfPredecessor : predecessors(Predecessor)) { 4799 Updates.push_back({DominatorTree::Insert, 4800 PredecessorOfPredecessor, 4801 CSI->getUnwindDest()}); 4802 Updates.push_back({DominatorTree::Delete, 4803 PredecessorOfPredecessor, Predecessor}); 4804 } 4805 } 4806 Predecessor->replaceAllUsesWith(CSI->getUnwindDest()); 4807 } else { 4808 // Rewrite all preds to unwind to caller (or from invoke to call). 4809 if (DTU) { 4810 DTU->applyUpdates(Updates); 4811 Updates.clear(); 4812 } 4813 SmallVector<BasicBlock *, 8> EHPreds(predecessors(Predecessor)); 4814 for (BasicBlock *EHPred : EHPreds) 4815 removeUnwindEdge(EHPred, DTU); 4816 } 4817 // The catchswitch is no longer reachable. 4818 new UnreachableInst(CSI->getContext(), CSI); 4819 CSI->eraseFromParent(); 4820 Changed = true; 4821 } 4822 } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) { 4823 (void)CRI; 4824 assert(CRI->hasUnwindDest() && CRI->getUnwindDest() == BB && 4825 "Expected to always have an unwind to BB."); 4826 if (DTU) 4827 Updates.push_back({DominatorTree::Delete, Predecessor, BB}); 4828 new UnreachableInst(TI->getContext(), TI); 4829 TI->eraseFromParent(); 4830 Changed = true; 4831 } 4832 } 4833 4834 if (DTU) 4835 DTU->applyUpdates(Updates); 4836 4837 // If this block is now dead, remove it. 4838 if (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) { 4839 DeleteDeadBlock(BB, DTU); 4840 return true; 4841 } 4842 4843 return Changed; 4844 } 4845 4846 static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) { 4847 assert(Cases.size() >= 1); 4848 4849 array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate); 4850 for (size_t I = 1, E = Cases.size(); I != E; ++I) { 4851 if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1) 4852 return false; 4853 } 4854 return true; 4855 } 4856 4857 static void createUnreachableSwitchDefault(SwitchInst *Switch, 4858 DomTreeUpdater *DTU) { 4859 LLVM_DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n"); 4860 auto *BB = Switch->getParent(); 4861 BasicBlock *NewDefaultBlock = SplitBlockPredecessors( 4862 Switch->getDefaultDest(), Switch->getParent(), "", DTU); 4863 auto *OrigDefaultBlock = Switch->getDefaultDest(); 4864 Switch->setDefaultDest(&*NewDefaultBlock); 4865 if (DTU) 4866 DTU->applyUpdates({{DominatorTree::Insert, BB, &*NewDefaultBlock}, 4867 {DominatorTree::Delete, BB, OrigDefaultBlock}}); 4868 SplitBlock(&*NewDefaultBlock, &NewDefaultBlock->front(), DTU); 4869 SmallVector<DominatorTree::UpdateType, 2> Updates; 4870 if (DTU) 4871 for (auto *Successor : successors(NewDefaultBlock)) 4872 Updates.push_back({DominatorTree::Delete, NewDefaultBlock, Successor}); 4873 auto *NewTerminator = NewDefaultBlock->getTerminator(); 4874 new UnreachableInst(Switch->getContext(), NewTerminator); 4875 EraseTerminatorAndDCECond(NewTerminator); 4876 if (DTU) 4877 DTU->applyUpdates(Updates); 4878 } 4879 4880 /// Turn a switch with two reachable destinations into an integer range 4881 /// comparison and branch. 4882 bool SimplifyCFGOpt::TurnSwitchRangeIntoICmp(SwitchInst *SI, 4883 IRBuilder<> &Builder) { 4884 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 4885 4886 bool HasDefault = 4887 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 4888 4889 auto *BB = SI->getParent(); 4890 4891 // Partition the cases into two sets with different destinations. 4892 BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr; 4893 BasicBlock *DestB = nullptr; 4894 SmallVector<ConstantInt *, 16> CasesA; 4895 SmallVector<ConstantInt *, 16> CasesB; 4896 4897 for (auto Case : SI->cases()) { 4898 BasicBlock *Dest = Case.getCaseSuccessor(); 4899 if (!DestA) 4900 DestA = Dest; 4901 if (Dest == DestA) { 4902 CasesA.push_back(Case.getCaseValue()); 4903 continue; 4904 } 4905 if (!DestB) 4906 DestB = Dest; 4907 if (Dest == DestB) { 4908 CasesB.push_back(Case.getCaseValue()); 4909 continue; 4910 } 4911 return false; // More than two destinations. 4912 } 4913 4914 assert(DestA && DestB && 4915 "Single-destination switch should have been folded."); 4916 assert(DestA != DestB); 4917 assert(DestB != SI->getDefaultDest()); 4918 assert(!CasesB.empty() && "There must be non-default cases."); 4919 assert(!CasesA.empty() || HasDefault); 4920 4921 // Figure out if one of the sets of cases form a contiguous range. 4922 SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr; 4923 BasicBlock *ContiguousDest = nullptr; 4924 BasicBlock *OtherDest = nullptr; 4925 if (!CasesA.empty() && CasesAreContiguous(CasesA)) { 4926 ContiguousCases = &CasesA; 4927 ContiguousDest = DestA; 4928 OtherDest = DestB; 4929 } else if (CasesAreContiguous(CasesB)) { 4930 ContiguousCases = &CasesB; 4931 ContiguousDest = DestB; 4932 OtherDest = DestA; 4933 } else 4934 return false; 4935 4936 // Start building the compare and branch. 4937 4938 Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back()); 4939 Constant *NumCases = 4940 ConstantInt::get(Offset->getType(), ContiguousCases->size()); 4941 4942 Value *Sub = SI->getCondition(); 4943 if (!Offset->isNullValue()) 4944 Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off"); 4945 4946 Value *Cmp; 4947 // If NumCases overflowed, then all possible values jump to the successor. 4948 if (NumCases->isNullValue() && !ContiguousCases->empty()) 4949 Cmp = ConstantInt::getTrue(SI->getContext()); 4950 else 4951 Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch"); 4952 BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest); 4953 4954 // Update weight for the newly-created conditional branch. 4955 if (HasBranchWeights(SI)) { 4956 SmallVector<uint64_t, 8> Weights; 4957 GetBranchWeights(SI, Weights); 4958 if (Weights.size() == 1 + SI->getNumCases()) { 4959 uint64_t TrueWeight = 0; 4960 uint64_t FalseWeight = 0; 4961 for (size_t I = 0, E = Weights.size(); I != E; ++I) { 4962 if (SI->getSuccessor(I) == ContiguousDest) 4963 TrueWeight += Weights[I]; 4964 else 4965 FalseWeight += Weights[I]; 4966 } 4967 while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) { 4968 TrueWeight /= 2; 4969 FalseWeight /= 2; 4970 } 4971 setBranchWeights(NewBI, TrueWeight, FalseWeight); 4972 } 4973 } 4974 4975 // Prune obsolete incoming values off the successors' PHI nodes. 4976 for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) { 4977 unsigned PreviousEdges = ContiguousCases->size(); 4978 if (ContiguousDest == SI->getDefaultDest()) 4979 ++PreviousEdges; 4980 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I) 4981 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 4982 } 4983 for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) { 4984 unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size(); 4985 if (OtherDest == SI->getDefaultDest()) 4986 ++PreviousEdges; 4987 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I) 4988 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 4989 } 4990 4991 // Clean up the default block - it may have phis or other instructions before 4992 // the unreachable terminator. 4993 if (!HasDefault) 4994 createUnreachableSwitchDefault(SI, DTU); 4995 4996 auto *UnreachableDefault = SI->getDefaultDest(); 4997 4998 // Drop the switch. 4999 SI->eraseFromParent(); 5000 5001 if (!HasDefault && DTU) 5002 DTU->applyUpdates({{DominatorTree::Delete, BB, UnreachableDefault}}); 5003 5004 return true; 5005 } 5006 5007 /// Compute masked bits for the condition of a switch 5008 /// and use it to remove dead cases. 5009 static bool eliminateDeadSwitchCases(SwitchInst *SI, DomTreeUpdater *DTU, 5010 AssumptionCache *AC, 5011 const DataLayout &DL) { 5012 Value *Cond = SI->getCondition(); 5013 unsigned Bits = Cond->getType()->getIntegerBitWidth(); 5014 KnownBits Known = computeKnownBits(Cond, DL, 0, AC, SI); 5015 5016 // We can also eliminate cases by determining that their values are outside of 5017 // the limited range of the condition based on how many significant (non-sign) 5018 // bits are in the condition value. 5019 unsigned ExtraSignBits = ComputeNumSignBits(Cond, DL, 0, AC, SI) - 1; 5020 unsigned MaxSignificantBitsInCond = Bits - ExtraSignBits; 5021 5022 // Gather dead cases. 5023 SmallVector<ConstantInt *, 8> DeadCases; 5024 SmallDenseMap<BasicBlock *, int, 8> NumPerSuccessorCases; 5025 for (auto &Case : SI->cases()) { 5026 auto *Successor = Case.getCaseSuccessor(); 5027 if (DTU) 5028 ++NumPerSuccessorCases[Successor]; 5029 const APInt &CaseVal = Case.getCaseValue()->getValue(); 5030 if (Known.Zero.intersects(CaseVal) || !Known.One.isSubsetOf(CaseVal) || 5031 (CaseVal.getMinSignedBits() > MaxSignificantBitsInCond)) { 5032 DeadCases.push_back(Case.getCaseValue()); 5033 if (DTU) 5034 --NumPerSuccessorCases[Successor]; 5035 LLVM_DEBUG(dbgs() << "SimplifyCFG: switch case " << CaseVal 5036 << " is dead.\n"); 5037 } 5038 } 5039 5040 // If we can prove that the cases must cover all possible values, the 5041 // default destination becomes dead and we can remove it. If we know some 5042 // of the bits in the value, we can use that to more precisely compute the 5043 // number of possible unique case values. 5044 bool HasDefault = 5045 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 5046 const unsigned NumUnknownBits = 5047 Bits - (Known.Zero | Known.One).countPopulation(); 5048 assert(NumUnknownBits <= Bits); 5049 if (HasDefault && DeadCases.empty() && 5050 NumUnknownBits < 64 /* avoid overflow */ && 5051 SI->getNumCases() == (1ULL << NumUnknownBits)) { 5052 createUnreachableSwitchDefault(SI, DTU); 5053 return true; 5054 } 5055 5056 if (DeadCases.empty()) 5057 return false; 5058 5059 SwitchInstProfUpdateWrapper SIW(*SI); 5060 for (ConstantInt *DeadCase : DeadCases) { 5061 SwitchInst::CaseIt CaseI = SI->findCaseValue(DeadCase); 5062 assert(CaseI != SI->case_default() && 5063 "Case was not found. Probably mistake in DeadCases forming."); 5064 // Prune unused values from PHI nodes. 5065 CaseI->getCaseSuccessor()->removePredecessor(SI->getParent()); 5066 SIW.removeCase(CaseI); 5067 } 5068 5069 if (DTU) { 5070 std::vector<DominatorTree::UpdateType> Updates; 5071 for (const std::pair<BasicBlock *, int> &I : NumPerSuccessorCases) 5072 if (I.second == 0) 5073 Updates.push_back({DominatorTree::Delete, SI->getParent(), I.first}); 5074 DTU->applyUpdates(Updates); 5075 } 5076 5077 return true; 5078 } 5079 5080 /// If BB would be eligible for simplification by 5081 /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated 5082 /// by an unconditional branch), look at the phi node for BB in the successor 5083 /// block and see if the incoming value is equal to CaseValue. If so, return 5084 /// the phi node, and set PhiIndex to BB's index in the phi node. 5085 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue, 5086 BasicBlock *BB, int *PhiIndex) { 5087 if (BB->getFirstNonPHIOrDbg() != BB->getTerminator()) 5088 return nullptr; // BB must be empty to be a candidate for simplification. 5089 if (!BB->getSinglePredecessor()) 5090 return nullptr; // BB must be dominated by the switch. 5091 5092 BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator()); 5093 if (!Branch || !Branch->isUnconditional()) 5094 return nullptr; // Terminator must be unconditional branch. 5095 5096 BasicBlock *Succ = Branch->getSuccessor(0); 5097 5098 for (PHINode &PHI : Succ->phis()) { 5099 int Idx = PHI.getBasicBlockIndex(BB); 5100 assert(Idx >= 0 && "PHI has no entry for predecessor?"); 5101 5102 Value *InValue = PHI.getIncomingValue(Idx); 5103 if (InValue != CaseValue) 5104 continue; 5105 5106 *PhiIndex = Idx; 5107 return &PHI; 5108 } 5109 5110 return nullptr; 5111 } 5112 5113 /// Try to forward the condition of a switch instruction to a phi node 5114 /// dominated by the switch, if that would mean that some of the destination 5115 /// blocks of the switch can be folded away. Return true if a change is made. 5116 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) { 5117 using ForwardingNodesMap = DenseMap<PHINode *, SmallVector<int, 4>>; 5118 5119 ForwardingNodesMap ForwardingNodes; 5120 BasicBlock *SwitchBlock = SI->getParent(); 5121 bool Changed = false; 5122 for (auto &Case : SI->cases()) { 5123 ConstantInt *CaseValue = Case.getCaseValue(); 5124 BasicBlock *CaseDest = Case.getCaseSuccessor(); 5125 5126 // Replace phi operands in successor blocks that are using the constant case 5127 // value rather than the switch condition variable: 5128 // switchbb: 5129 // switch i32 %x, label %default [ 5130 // i32 17, label %succ 5131 // ... 5132 // succ: 5133 // %r = phi i32 ... [ 17, %switchbb ] ... 5134 // --> 5135 // %r = phi i32 ... [ %x, %switchbb ] ... 5136 5137 for (PHINode &Phi : CaseDest->phis()) { 5138 // This only works if there is exactly 1 incoming edge from the switch to 5139 // a phi. If there is >1, that means multiple cases of the switch map to 1 5140 // value in the phi, and that phi value is not the switch condition. Thus, 5141 // this transform would not make sense (the phi would be invalid because 5142 // a phi can't have different incoming values from the same block). 5143 int SwitchBBIdx = Phi.getBasicBlockIndex(SwitchBlock); 5144 if (Phi.getIncomingValue(SwitchBBIdx) == CaseValue && 5145 count(Phi.blocks(), SwitchBlock) == 1) { 5146 Phi.setIncomingValue(SwitchBBIdx, SI->getCondition()); 5147 Changed = true; 5148 } 5149 } 5150 5151 // Collect phi nodes that are indirectly using this switch's case constants. 5152 int PhiIdx; 5153 if (auto *Phi = FindPHIForConditionForwarding(CaseValue, CaseDest, &PhiIdx)) 5154 ForwardingNodes[Phi].push_back(PhiIdx); 5155 } 5156 5157 for (auto &ForwardingNode : ForwardingNodes) { 5158 PHINode *Phi = ForwardingNode.first; 5159 SmallVectorImpl<int> &Indexes = ForwardingNode.second; 5160 if (Indexes.size() < 2) 5161 continue; 5162 5163 for (int Index : Indexes) 5164 Phi->setIncomingValue(Index, SI->getCondition()); 5165 Changed = true; 5166 } 5167 5168 return Changed; 5169 } 5170 5171 /// Return true if the backend will be able to handle 5172 /// initializing an array of constants like C. 5173 static bool ValidLookupTableConstant(Constant *C, const TargetTransformInfo &TTI) { 5174 if (C->isThreadDependent()) 5175 return false; 5176 if (C->isDLLImportDependent()) 5177 return false; 5178 5179 if (!isa<ConstantFP>(C) && !isa<ConstantInt>(C) && 5180 !isa<ConstantPointerNull>(C) && !isa<GlobalValue>(C) && 5181 !isa<UndefValue>(C) && !isa<ConstantExpr>(C)) 5182 return false; 5183 5184 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 5185 if (!CE->isGEPWithNoNotionalOverIndexing()) 5186 return false; 5187 if (!ValidLookupTableConstant(CE->getOperand(0), TTI)) 5188 return false; 5189 } 5190 5191 if (!TTI.shouldBuildLookupTablesForConstant(C)) 5192 return false; 5193 5194 return true; 5195 } 5196 5197 /// If V is a Constant, return it. Otherwise, try to look up 5198 /// its constant value in ConstantPool, returning 0 if it's not there. 5199 static Constant * 5200 LookupConstant(Value *V, 5201 const SmallDenseMap<Value *, Constant *> &ConstantPool) { 5202 if (Constant *C = dyn_cast<Constant>(V)) 5203 return C; 5204 return ConstantPool.lookup(V); 5205 } 5206 5207 /// Try to fold instruction I into a constant. This works for 5208 /// simple instructions such as binary operations where both operands are 5209 /// constant or can be replaced by constants from the ConstantPool. Returns the 5210 /// resulting constant on success, 0 otherwise. 5211 static Constant * 5212 ConstantFold(Instruction *I, const DataLayout &DL, 5213 const SmallDenseMap<Value *, Constant *> &ConstantPool) { 5214 if (SelectInst *Select = dyn_cast<SelectInst>(I)) { 5215 Constant *A = LookupConstant(Select->getCondition(), ConstantPool); 5216 if (!A) 5217 return nullptr; 5218 if (A->isAllOnesValue()) 5219 return LookupConstant(Select->getTrueValue(), ConstantPool); 5220 if (A->isNullValue()) 5221 return LookupConstant(Select->getFalseValue(), ConstantPool); 5222 return nullptr; 5223 } 5224 5225 SmallVector<Constant *, 4> COps; 5226 for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) { 5227 if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool)) 5228 COps.push_back(A); 5229 else 5230 return nullptr; 5231 } 5232 5233 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) { 5234 return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0], 5235 COps[1], DL); 5236 } 5237 5238 return ConstantFoldInstOperands(I, COps, DL); 5239 } 5240 5241 /// Try to determine the resulting constant values in phi nodes 5242 /// at the common destination basic block, *CommonDest, for one of the case 5243 /// destionations CaseDest corresponding to value CaseVal (0 for the default 5244 /// case), of a switch instruction SI. 5245 static bool 5246 GetCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest, 5247 BasicBlock **CommonDest, 5248 SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res, 5249 const DataLayout &DL, const TargetTransformInfo &TTI) { 5250 // The block from which we enter the common destination. 5251 BasicBlock *Pred = SI->getParent(); 5252 5253 // If CaseDest is empty except for some side-effect free instructions through 5254 // which we can constant-propagate the CaseVal, continue to its successor. 5255 SmallDenseMap<Value *, Constant *> ConstantPool; 5256 ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal)); 5257 for (Instruction &I :CaseDest->instructionsWithoutDebug()) { 5258 if (I.isTerminator()) { 5259 // If the terminator is a simple branch, continue to the next block. 5260 if (I.getNumSuccessors() != 1 || I.isExceptionalTerminator()) 5261 return false; 5262 Pred = CaseDest; 5263 CaseDest = I.getSuccessor(0); 5264 } else if (Constant *C = ConstantFold(&I, DL, ConstantPool)) { 5265 // Instruction is side-effect free and constant. 5266 5267 // If the instruction has uses outside this block or a phi node slot for 5268 // the block, it is not safe to bypass the instruction since it would then 5269 // no longer dominate all its uses. 5270 for (auto &Use : I.uses()) { 5271 User *User = Use.getUser(); 5272 if (Instruction *I = dyn_cast<Instruction>(User)) 5273 if (I->getParent() == CaseDest) 5274 continue; 5275 if (PHINode *Phi = dyn_cast<PHINode>(User)) 5276 if (Phi->getIncomingBlock(Use) == CaseDest) 5277 continue; 5278 return false; 5279 } 5280 5281 ConstantPool.insert(std::make_pair(&I, C)); 5282 } else { 5283 break; 5284 } 5285 } 5286 5287 // If we did not have a CommonDest before, use the current one. 5288 if (!*CommonDest) 5289 *CommonDest = CaseDest; 5290 // If the destination isn't the common one, abort. 5291 if (CaseDest != *CommonDest) 5292 return false; 5293 5294 // Get the values for this case from phi nodes in the destination block. 5295 for (PHINode &PHI : (*CommonDest)->phis()) { 5296 int Idx = PHI.getBasicBlockIndex(Pred); 5297 if (Idx == -1) 5298 continue; 5299 5300 Constant *ConstVal = 5301 LookupConstant(PHI.getIncomingValue(Idx), ConstantPool); 5302 if (!ConstVal) 5303 return false; 5304 5305 // Be conservative about which kinds of constants we support. 5306 if (!ValidLookupTableConstant(ConstVal, TTI)) 5307 return false; 5308 5309 Res.push_back(std::make_pair(&PHI, ConstVal)); 5310 } 5311 5312 return Res.size() > 0; 5313 } 5314 5315 // Helper function used to add CaseVal to the list of cases that generate 5316 // Result. Returns the updated number of cases that generate this result. 5317 static uintptr_t MapCaseToResult(ConstantInt *CaseVal, 5318 SwitchCaseResultVectorTy &UniqueResults, 5319 Constant *Result) { 5320 for (auto &I : UniqueResults) { 5321 if (I.first == Result) { 5322 I.second.push_back(CaseVal); 5323 return I.second.size(); 5324 } 5325 } 5326 UniqueResults.push_back( 5327 std::make_pair(Result, SmallVector<ConstantInt *, 4>(1, CaseVal))); 5328 return 1; 5329 } 5330 5331 // Helper function that initializes a map containing 5332 // results for the PHI node of the common destination block for a switch 5333 // instruction. Returns false if multiple PHI nodes have been found or if 5334 // there is not a common destination block for the switch. 5335 static bool 5336 InitializeUniqueCases(SwitchInst *SI, PHINode *&PHI, BasicBlock *&CommonDest, 5337 SwitchCaseResultVectorTy &UniqueResults, 5338 Constant *&DefaultResult, const DataLayout &DL, 5339 const TargetTransformInfo &TTI, 5340 uintptr_t MaxUniqueResults, uintptr_t MaxCasesPerResult) { 5341 for (auto &I : SI->cases()) { 5342 ConstantInt *CaseVal = I.getCaseValue(); 5343 5344 // Resulting value at phi nodes for this case value. 5345 SwitchCaseResultsTy Results; 5346 if (!GetCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results, 5347 DL, TTI)) 5348 return false; 5349 5350 // Only one value per case is permitted. 5351 if (Results.size() > 1) 5352 return false; 5353 5354 // Add the case->result mapping to UniqueResults. 5355 const uintptr_t NumCasesForResult = 5356 MapCaseToResult(CaseVal, UniqueResults, Results.begin()->second); 5357 5358 // Early out if there are too many cases for this result. 5359 if (NumCasesForResult > MaxCasesPerResult) 5360 return false; 5361 5362 // Early out if there are too many unique results. 5363 if (UniqueResults.size() > MaxUniqueResults) 5364 return false; 5365 5366 // Check the PHI consistency. 5367 if (!PHI) 5368 PHI = Results[0].first; 5369 else if (PHI != Results[0].first) 5370 return false; 5371 } 5372 // Find the default result value. 5373 SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults; 5374 BasicBlock *DefaultDest = SI->getDefaultDest(); 5375 GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults, 5376 DL, TTI); 5377 // If the default value is not found abort unless the default destination 5378 // is unreachable. 5379 DefaultResult = 5380 DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr; 5381 if ((!DefaultResult && 5382 !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()))) 5383 return false; 5384 5385 return true; 5386 } 5387 5388 // Helper function that checks if it is possible to transform a switch with only 5389 // two cases (or two cases + default) that produces a result into a select. 5390 // Example: 5391 // switch (a) { 5392 // case 10: %0 = icmp eq i32 %a, 10 5393 // return 10; %1 = select i1 %0, i32 10, i32 4 5394 // case 20: ----> %2 = icmp eq i32 %a, 20 5395 // return 2; %3 = select i1 %2, i32 2, i32 %1 5396 // default: 5397 // return 4; 5398 // } 5399 static Value *ConvertTwoCaseSwitch(const SwitchCaseResultVectorTy &ResultVector, 5400 Constant *DefaultResult, Value *Condition, 5401 IRBuilder<> &Builder) { 5402 // If we are selecting between only two cases transform into a simple 5403 // select or a two-way select if default is possible. 5404 if (ResultVector.size() == 2 && ResultVector[0].second.size() == 1 && 5405 ResultVector[1].second.size() == 1) { 5406 ConstantInt *const FirstCase = ResultVector[0].second[0]; 5407 ConstantInt *const SecondCase = ResultVector[1].second[0]; 5408 5409 bool DefaultCanTrigger = DefaultResult; 5410 Value *SelectValue = ResultVector[1].first; 5411 if (DefaultCanTrigger) { 5412 Value *const ValueCompare = 5413 Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp"); 5414 SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first, 5415 DefaultResult, "switch.select"); 5416 } 5417 Value *const ValueCompare = 5418 Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp"); 5419 return Builder.CreateSelect(ValueCompare, ResultVector[0].first, 5420 SelectValue, "switch.select"); 5421 } 5422 5423 // Handle the degenerate case where two cases have the same value. 5424 if (ResultVector.size() == 1 && ResultVector[0].second.size() == 2 && 5425 DefaultResult) { 5426 Value *Cmp1 = Builder.CreateICmpEQ( 5427 Condition, ResultVector[0].second[0], "switch.selectcmp.case1"); 5428 Value *Cmp2 = Builder.CreateICmpEQ( 5429 Condition, ResultVector[0].second[1], "switch.selectcmp.case2"); 5430 Value *Cmp = Builder.CreateOr(Cmp1, Cmp2, "switch.selectcmp"); 5431 return Builder.CreateSelect(Cmp, ResultVector[0].first, DefaultResult); 5432 } 5433 5434 return nullptr; 5435 } 5436 5437 // Helper function to cleanup a switch instruction that has been converted into 5438 // a select, fixing up PHI nodes and basic blocks. 5439 static void RemoveSwitchAfterSelectConversion(SwitchInst *SI, PHINode *PHI, 5440 Value *SelectValue, 5441 IRBuilder<> &Builder, 5442 DomTreeUpdater *DTU) { 5443 std::vector<DominatorTree::UpdateType> Updates; 5444 5445 BasicBlock *SelectBB = SI->getParent(); 5446 BasicBlock *DestBB = PHI->getParent(); 5447 5448 if (DTU && !is_contained(predecessors(DestBB), SelectBB)) 5449 Updates.push_back({DominatorTree::Insert, SelectBB, DestBB}); 5450 Builder.CreateBr(DestBB); 5451 5452 // Remove the switch. 5453 5454 while (PHI->getBasicBlockIndex(SelectBB) >= 0) 5455 PHI->removeIncomingValue(SelectBB); 5456 PHI->addIncoming(SelectValue, SelectBB); 5457 5458 SmallPtrSet<BasicBlock *, 4> RemovedSuccessors; 5459 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { 5460 BasicBlock *Succ = SI->getSuccessor(i); 5461 5462 if (Succ == DestBB) 5463 continue; 5464 Succ->removePredecessor(SelectBB); 5465 if (DTU && RemovedSuccessors.insert(Succ).second) 5466 Updates.push_back({DominatorTree::Delete, SelectBB, Succ}); 5467 } 5468 SI->eraseFromParent(); 5469 if (DTU) 5470 DTU->applyUpdates(Updates); 5471 } 5472 5473 /// If the switch is only used to initialize one or more 5474 /// phi nodes in a common successor block with only two different 5475 /// constant values, replace the switch with select. 5476 static bool switchToSelect(SwitchInst *SI, IRBuilder<> &Builder, 5477 DomTreeUpdater *DTU, const DataLayout &DL, 5478 const TargetTransformInfo &TTI) { 5479 Value *const Cond = SI->getCondition(); 5480 PHINode *PHI = nullptr; 5481 BasicBlock *CommonDest = nullptr; 5482 Constant *DefaultResult; 5483 SwitchCaseResultVectorTy UniqueResults; 5484 // Collect all the cases that will deliver the same value from the switch. 5485 if (!InitializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult, 5486 DL, TTI, /*MaxUniqueResults*/2, 5487 /*MaxCasesPerResult*/2)) 5488 return false; 5489 assert(PHI != nullptr && "PHI for value select not found"); 5490 5491 Builder.SetInsertPoint(SI); 5492 Value *SelectValue = 5493 ConvertTwoCaseSwitch(UniqueResults, DefaultResult, Cond, Builder); 5494 if (SelectValue) { 5495 RemoveSwitchAfterSelectConversion(SI, PHI, SelectValue, Builder, DTU); 5496 return true; 5497 } 5498 // The switch couldn't be converted into a select. 5499 return false; 5500 } 5501 5502 namespace { 5503 5504 /// This class represents a lookup table that can be used to replace a switch. 5505 class SwitchLookupTable { 5506 public: 5507 /// Create a lookup table to use as a switch replacement with the contents 5508 /// of Values, using DefaultValue to fill any holes in the table. 5509 SwitchLookupTable( 5510 Module &M, uint64_t TableSize, ConstantInt *Offset, 5511 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values, 5512 Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName); 5513 5514 /// Build instructions with Builder to retrieve the value at 5515 /// the position given by Index in the lookup table. 5516 Value *BuildLookup(Value *Index, IRBuilder<> &Builder); 5517 5518 /// Return true if a table with TableSize elements of 5519 /// type ElementType would fit in a target-legal register. 5520 static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize, 5521 Type *ElementType); 5522 5523 private: 5524 // Depending on the contents of the table, it can be represented in 5525 // different ways. 5526 enum { 5527 // For tables where each element contains the same value, we just have to 5528 // store that single value and return it for each lookup. 5529 SingleValueKind, 5530 5531 // For tables where there is a linear relationship between table index 5532 // and values. We calculate the result with a simple multiplication 5533 // and addition instead of a table lookup. 5534 LinearMapKind, 5535 5536 // For small tables with integer elements, we can pack them into a bitmap 5537 // that fits into a target-legal register. Values are retrieved by 5538 // shift and mask operations. 5539 BitMapKind, 5540 5541 // The table is stored as an array of values. Values are retrieved by load 5542 // instructions from the table. 5543 ArrayKind 5544 } Kind; 5545 5546 // For SingleValueKind, this is the single value. 5547 Constant *SingleValue = nullptr; 5548 5549 // For BitMapKind, this is the bitmap. 5550 ConstantInt *BitMap = nullptr; 5551 IntegerType *BitMapElementTy = nullptr; 5552 5553 // For LinearMapKind, these are the constants used to derive the value. 5554 ConstantInt *LinearOffset = nullptr; 5555 ConstantInt *LinearMultiplier = nullptr; 5556 5557 // For ArrayKind, this is the array. 5558 GlobalVariable *Array = nullptr; 5559 }; 5560 5561 } // end anonymous namespace 5562 5563 SwitchLookupTable::SwitchLookupTable( 5564 Module &M, uint64_t TableSize, ConstantInt *Offset, 5565 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values, 5566 Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName) { 5567 assert(Values.size() && "Can't build lookup table without values!"); 5568 assert(TableSize >= Values.size() && "Can't fit values in table!"); 5569 5570 // If all values in the table are equal, this is that value. 5571 SingleValue = Values.begin()->second; 5572 5573 Type *ValueType = Values.begin()->second->getType(); 5574 5575 // Build up the table contents. 5576 SmallVector<Constant *, 64> TableContents(TableSize); 5577 for (size_t I = 0, E = Values.size(); I != E; ++I) { 5578 ConstantInt *CaseVal = Values[I].first; 5579 Constant *CaseRes = Values[I].second; 5580 assert(CaseRes->getType() == ValueType); 5581 5582 uint64_t Idx = (CaseVal->getValue() - Offset->getValue()).getLimitedValue(); 5583 TableContents[Idx] = CaseRes; 5584 5585 if (CaseRes != SingleValue) 5586 SingleValue = nullptr; 5587 } 5588 5589 // Fill in any holes in the table with the default result. 5590 if (Values.size() < TableSize) { 5591 assert(DefaultValue && 5592 "Need a default value to fill the lookup table holes."); 5593 assert(DefaultValue->getType() == ValueType); 5594 for (uint64_t I = 0; I < TableSize; ++I) { 5595 if (!TableContents[I]) 5596 TableContents[I] = DefaultValue; 5597 } 5598 5599 if (DefaultValue != SingleValue) 5600 SingleValue = nullptr; 5601 } 5602 5603 // If each element in the table contains the same value, we only need to store 5604 // that single value. 5605 if (SingleValue) { 5606 Kind = SingleValueKind; 5607 return; 5608 } 5609 5610 // Check if we can derive the value with a linear transformation from the 5611 // table index. 5612 if (isa<IntegerType>(ValueType)) { 5613 bool LinearMappingPossible = true; 5614 APInt PrevVal; 5615 APInt DistToPrev; 5616 assert(TableSize >= 2 && "Should be a SingleValue table."); 5617 // Check if there is the same distance between two consecutive values. 5618 for (uint64_t I = 0; I < TableSize; ++I) { 5619 ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]); 5620 if (!ConstVal) { 5621 // This is an undef. We could deal with it, but undefs in lookup tables 5622 // are very seldom. It's probably not worth the additional complexity. 5623 LinearMappingPossible = false; 5624 break; 5625 } 5626 const APInt &Val = ConstVal->getValue(); 5627 if (I != 0) { 5628 APInt Dist = Val - PrevVal; 5629 if (I == 1) { 5630 DistToPrev = Dist; 5631 } else if (Dist != DistToPrev) { 5632 LinearMappingPossible = false; 5633 break; 5634 } 5635 } 5636 PrevVal = Val; 5637 } 5638 if (LinearMappingPossible) { 5639 LinearOffset = cast<ConstantInt>(TableContents[0]); 5640 LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev); 5641 Kind = LinearMapKind; 5642 ++NumLinearMaps; 5643 return; 5644 } 5645 } 5646 5647 // If the type is integer and the table fits in a register, build a bitmap. 5648 if (WouldFitInRegister(DL, TableSize, ValueType)) { 5649 IntegerType *IT = cast<IntegerType>(ValueType); 5650 APInt TableInt(TableSize * IT->getBitWidth(), 0); 5651 for (uint64_t I = TableSize; I > 0; --I) { 5652 TableInt <<= IT->getBitWidth(); 5653 // Insert values into the bitmap. Undef values are set to zero. 5654 if (!isa<UndefValue>(TableContents[I - 1])) { 5655 ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]); 5656 TableInt |= Val->getValue().zext(TableInt.getBitWidth()); 5657 } 5658 } 5659 BitMap = ConstantInt::get(M.getContext(), TableInt); 5660 BitMapElementTy = IT; 5661 Kind = BitMapKind; 5662 ++NumBitMaps; 5663 return; 5664 } 5665 5666 // Store the table in an array. 5667 ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize); 5668 Constant *Initializer = ConstantArray::get(ArrayTy, TableContents); 5669 5670 Array = new GlobalVariable(M, ArrayTy, /*isConstant=*/true, 5671 GlobalVariable::PrivateLinkage, Initializer, 5672 "switch.table." + FuncName); 5673 Array->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); 5674 // Set the alignment to that of an array items. We will be only loading one 5675 // value out of it. 5676 Array->setAlignment(Align(DL.getPrefTypeAlignment(ValueType))); 5677 Kind = ArrayKind; 5678 } 5679 5680 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) { 5681 switch (Kind) { 5682 case SingleValueKind: 5683 return SingleValue; 5684 case LinearMapKind: { 5685 // Derive the result value from the input value. 5686 Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(), 5687 false, "switch.idx.cast"); 5688 if (!LinearMultiplier->isOne()) 5689 Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult"); 5690 if (!LinearOffset->isZero()) 5691 Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset"); 5692 return Result; 5693 } 5694 case BitMapKind: { 5695 // Type of the bitmap (e.g. i59). 5696 IntegerType *MapTy = BitMap->getType(); 5697 5698 // Cast Index to the same type as the bitmap. 5699 // Note: The Index is <= the number of elements in the table, so 5700 // truncating it to the width of the bitmask is safe. 5701 Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast"); 5702 5703 // Multiply the shift amount by the element width. 5704 ShiftAmt = Builder.CreateMul( 5705 ShiftAmt, ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()), 5706 "switch.shiftamt"); 5707 5708 // Shift down. 5709 Value *DownShifted = 5710 Builder.CreateLShr(BitMap, ShiftAmt, "switch.downshift"); 5711 // Mask off. 5712 return Builder.CreateTrunc(DownShifted, BitMapElementTy, "switch.masked"); 5713 } 5714 case ArrayKind: { 5715 // Make sure the table index will not overflow when treated as signed. 5716 IntegerType *IT = cast<IntegerType>(Index->getType()); 5717 uint64_t TableSize = 5718 Array->getInitializer()->getType()->getArrayNumElements(); 5719 if (TableSize > (1ULL << (IT->getBitWidth() - 1))) 5720 Index = Builder.CreateZExt( 5721 Index, IntegerType::get(IT->getContext(), IT->getBitWidth() + 1), 5722 "switch.tableidx.zext"); 5723 5724 Value *GEPIndices[] = {Builder.getInt32(0), Index}; 5725 Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array, 5726 GEPIndices, "switch.gep"); 5727 return Builder.CreateLoad( 5728 cast<ArrayType>(Array->getValueType())->getElementType(), GEP, 5729 "switch.load"); 5730 } 5731 } 5732 llvm_unreachable("Unknown lookup table kind!"); 5733 } 5734 5735 bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL, 5736 uint64_t TableSize, 5737 Type *ElementType) { 5738 auto *IT = dyn_cast<IntegerType>(ElementType); 5739 if (!IT) 5740 return false; 5741 // FIXME: If the type is wider than it needs to be, e.g. i8 but all values 5742 // are <= 15, we could try to narrow the type. 5743 5744 // Avoid overflow, fitsInLegalInteger uses unsigned int for the width. 5745 if (TableSize >= UINT_MAX / IT->getBitWidth()) 5746 return false; 5747 return DL.fitsInLegalInteger(TableSize * IT->getBitWidth()); 5748 } 5749 5750 /// Determine whether a lookup table should be built for this switch, based on 5751 /// the number of cases, size of the table, and the types of the results. 5752 static bool 5753 ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize, 5754 const TargetTransformInfo &TTI, const DataLayout &DL, 5755 const SmallDenseMap<PHINode *, Type *> &ResultTypes) { 5756 if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10) 5757 return false; // TableSize overflowed, or mul below might overflow. 5758 5759 bool AllTablesFitInRegister = true; 5760 bool HasIllegalType = false; 5761 for (const auto &I : ResultTypes) { 5762 Type *Ty = I.second; 5763 5764 // Saturate this flag to true. 5765 HasIllegalType = HasIllegalType || !TTI.isTypeLegal(Ty); 5766 5767 // Saturate this flag to false. 5768 AllTablesFitInRegister = 5769 AllTablesFitInRegister && 5770 SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty); 5771 5772 // If both flags saturate, we're done. NOTE: This *only* works with 5773 // saturating flags, and all flags have to saturate first due to the 5774 // non-deterministic behavior of iterating over a dense map. 5775 if (HasIllegalType && !AllTablesFitInRegister) 5776 break; 5777 } 5778 5779 // If each table would fit in a register, we should build it anyway. 5780 if (AllTablesFitInRegister) 5781 return true; 5782 5783 // Don't build a table that doesn't fit in-register if it has illegal types. 5784 if (HasIllegalType) 5785 return false; 5786 5787 // The table density should be at least 40%. This is the same criterion as for 5788 // jump tables, see SelectionDAGBuilder::handleJTSwitchCase. 5789 // FIXME: Find the best cut-off. 5790 return SI->getNumCases() * 10 >= TableSize * 4; 5791 } 5792 5793 /// Try to reuse the switch table index compare. Following pattern: 5794 /// \code 5795 /// if (idx < tablesize) 5796 /// r = table[idx]; // table does not contain default_value 5797 /// else 5798 /// r = default_value; 5799 /// if (r != default_value) 5800 /// ... 5801 /// \endcode 5802 /// Is optimized to: 5803 /// \code 5804 /// cond = idx < tablesize; 5805 /// if (cond) 5806 /// r = table[idx]; 5807 /// else 5808 /// r = default_value; 5809 /// if (cond) 5810 /// ... 5811 /// \endcode 5812 /// Jump threading will then eliminate the second if(cond). 5813 static void reuseTableCompare( 5814 User *PhiUser, BasicBlock *PhiBlock, BranchInst *RangeCheckBranch, 5815 Constant *DefaultValue, 5816 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values) { 5817 ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser); 5818 if (!CmpInst) 5819 return; 5820 5821 // We require that the compare is in the same block as the phi so that jump 5822 // threading can do its work afterwards. 5823 if (CmpInst->getParent() != PhiBlock) 5824 return; 5825 5826 Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1)); 5827 if (!CmpOp1) 5828 return; 5829 5830 Value *RangeCmp = RangeCheckBranch->getCondition(); 5831 Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType()); 5832 Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType()); 5833 5834 // Check if the compare with the default value is constant true or false. 5835 Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(), 5836 DefaultValue, CmpOp1, true); 5837 if (DefaultConst != TrueConst && DefaultConst != FalseConst) 5838 return; 5839 5840 // Check if the compare with the case values is distinct from the default 5841 // compare result. 5842 for (auto ValuePair : Values) { 5843 Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(), 5844 ValuePair.second, CmpOp1, true); 5845 if (!CaseConst || CaseConst == DefaultConst || isa<UndefValue>(CaseConst)) 5846 return; 5847 assert((CaseConst == TrueConst || CaseConst == FalseConst) && 5848 "Expect true or false as compare result."); 5849 } 5850 5851 // Check if the branch instruction dominates the phi node. It's a simple 5852 // dominance check, but sufficient for our needs. 5853 // Although this check is invariant in the calling loops, it's better to do it 5854 // at this late stage. Practically we do it at most once for a switch. 5855 BasicBlock *BranchBlock = RangeCheckBranch->getParent(); 5856 for (BasicBlock *Pred : predecessors(PhiBlock)) { 5857 if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock) 5858 return; 5859 } 5860 5861 if (DefaultConst == FalseConst) { 5862 // The compare yields the same result. We can replace it. 5863 CmpInst->replaceAllUsesWith(RangeCmp); 5864 ++NumTableCmpReuses; 5865 } else { 5866 // The compare yields the same result, just inverted. We can replace it. 5867 Value *InvertedTableCmp = BinaryOperator::CreateXor( 5868 RangeCmp, ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp", 5869 RangeCheckBranch); 5870 CmpInst->replaceAllUsesWith(InvertedTableCmp); 5871 ++NumTableCmpReuses; 5872 } 5873 } 5874 5875 /// If the switch is only used to initialize one or more phi nodes in a common 5876 /// successor block with different constant values, replace the switch with 5877 /// lookup tables. 5878 static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder, 5879 DomTreeUpdater *DTU, const DataLayout &DL, 5880 const TargetTransformInfo &TTI) { 5881 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 5882 5883 BasicBlock *BB = SI->getParent(); 5884 Function *Fn = BB->getParent(); 5885 // Only build lookup table when we have a target that supports it or the 5886 // attribute is not set. 5887 if (!TTI.shouldBuildLookupTables() || 5888 (Fn->getFnAttribute("no-jump-tables").getValueAsBool())) 5889 return false; 5890 5891 // FIXME: If the switch is too sparse for a lookup table, perhaps we could 5892 // split off a dense part and build a lookup table for that. 5893 5894 // FIXME: This creates arrays of GEPs to constant strings, which means each 5895 // GEP needs a runtime relocation in PIC code. We should just build one big 5896 // string and lookup indices into that. 5897 5898 // Ignore switches with less than three cases. Lookup tables will not make 5899 // them faster, so we don't analyze them. 5900 if (SI->getNumCases() < 3) 5901 return false; 5902 5903 // Figure out the corresponding result for each case value and phi node in the 5904 // common destination, as well as the min and max case values. 5905 assert(!SI->cases().empty()); 5906 SwitchInst::CaseIt CI = SI->case_begin(); 5907 ConstantInt *MinCaseVal = CI->getCaseValue(); 5908 ConstantInt *MaxCaseVal = CI->getCaseValue(); 5909 5910 BasicBlock *CommonDest = nullptr; 5911 5912 using ResultListTy = SmallVector<std::pair<ConstantInt *, Constant *>, 4>; 5913 SmallDenseMap<PHINode *, ResultListTy> ResultLists; 5914 5915 SmallDenseMap<PHINode *, Constant *> DefaultResults; 5916 SmallDenseMap<PHINode *, Type *> ResultTypes; 5917 SmallVector<PHINode *, 4> PHIs; 5918 5919 for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) { 5920 ConstantInt *CaseVal = CI->getCaseValue(); 5921 if (CaseVal->getValue().slt(MinCaseVal->getValue())) 5922 MinCaseVal = CaseVal; 5923 if (CaseVal->getValue().sgt(MaxCaseVal->getValue())) 5924 MaxCaseVal = CaseVal; 5925 5926 // Resulting value at phi nodes for this case value. 5927 using ResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>; 5928 ResultsTy Results; 5929 if (!GetCaseResults(SI, CaseVal, CI->getCaseSuccessor(), &CommonDest, 5930 Results, DL, TTI)) 5931 return false; 5932 5933 // Append the result from this case to the list for each phi. 5934 for (const auto &I : Results) { 5935 PHINode *PHI = I.first; 5936 Constant *Value = I.second; 5937 if (!ResultLists.count(PHI)) 5938 PHIs.push_back(PHI); 5939 ResultLists[PHI].push_back(std::make_pair(CaseVal, Value)); 5940 } 5941 } 5942 5943 // Keep track of the result types. 5944 for (PHINode *PHI : PHIs) { 5945 ResultTypes[PHI] = ResultLists[PHI][0].second->getType(); 5946 } 5947 5948 uint64_t NumResults = ResultLists[PHIs[0]].size(); 5949 APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue(); 5950 uint64_t TableSize = RangeSpread.getLimitedValue() + 1; 5951 bool TableHasHoles = (NumResults < TableSize); 5952 5953 // If the table has holes, we need a constant result for the default case 5954 // or a bitmask that fits in a register. 5955 SmallVector<std::pair<PHINode *, Constant *>, 4> DefaultResultsList; 5956 bool HasDefaultResults = 5957 GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, 5958 DefaultResultsList, DL, TTI); 5959 5960 bool NeedMask = (TableHasHoles && !HasDefaultResults); 5961 if (NeedMask) { 5962 // As an extra penalty for the validity test we require more cases. 5963 if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark). 5964 return false; 5965 if (!DL.fitsInLegalInteger(TableSize)) 5966 return false; 5967 } 5968 5969 for (const auto &I : DefaultResultsList) { 5970 PHINode *PHI = I.first; 5971 Constant *Result = I.second; 5972 DefaultResults[PHI] = Result; 5973 } 5974 5975 if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes)) 5976 return false; 5977 5978 std::vector<DominatorTree::UpdateType> Updates; 5979 5980 // Create the BB that does the lookups. 5981 Module &Mod = *CommonDest->getParent()->getParent(); 5982 BasicBlock *LookupBB = BasicBlock::Create( 5983 Mod.getContext(), "switch.lookup", CommonDest->getParent(), CommonDest); 5984 5985 // Compute the table index value. 5986 Builder.SetInsertPoint(SI); 5987 Value *TableIndex; 5988 if (MinCaseVal->isNullValue()) 5989 TableIndex = SI->getCondition(); 5990 else 5991 TableIndex = Builder.CreateSub(SI->getCondition(), MinCaseVal, 5992 "switch.tableidx"); 5993 5994 // Compute the maximum table size representable by the integer type we are 5995 // switching upon. 5996 unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits(); 5997 uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize; 5998 assert(MaxTableSize >= TableSize && 5999 "It is impossible for a switch to have more entries than the max " 6000 "representable value of its input integer type's size."); 6001 6002 // If the default destination is unreachable, or if the lookup table covers 6003 // all values of the conditional variable, branch directly to the lookup table 6004 // BB. Otherwise, check that the condition is within the case range. 6005 const bool DefaultIsReachable = 6006 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 6007 const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize); 6008 BranchInst *RangeCheckBranch = nullptr; 6009 6010 if (!DefaultIsReachable || GeneratingCoveredLookupTable) { 6011 Builder.CreateBr(LookupBB); 6012 if (DTU) 6013 Updates.push_back({DominatorTree::Insert, BB, LookupBB}); 6014 // Note: We call removeProdecessor later since we need to be able to get the 6015 // PHI value for the default case in case we're using a bit mask. 6016 } else { 6017 Value *Cmp = Builder.CreateICmpULT( 6018 TableIndex, ConstantInt::get(MinCaseVal->getType(), TableSize)); 6019 RangeCheckBranch = 6020 Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest()); 6021 if (DTU) 6022 Updates.push_back({DominatorTree::Insert, BB, LookupBB}); 6023 } 6024 6025 // Populate the BB that does the lookups. 6026 Builder.SetInsertPoint(LookupBB); 6027 6028 if (NeedMask) { 6029 // Before doing the lookup, we do the hole check. The LookupBB is therefore 6030 // re-purposed to do the hole check, and we create a new LookupBB. 6031 BasicBlock *MaskBB = LookupBB; 6032 MaskBB->setName("switch.hole_check"); 6033 LookupBB = BasicBlock::Create(Mod.getContext(), "switch.lookup", 6034 CommonDest->getParent(), CommonDest); 6035 6036 // Make the mask's bitwidth at least 8-bit and a power-of-2 to avoid 6037 // unnecessary illegal types. 6038 uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL)); 6039 APInt MaskInt(TableSizePowOf2, 0); 6040 APInt One(TableSizePowOf2, 1); 6041 // Build bitmask; fill in a 1 bit for every case. 6042 const ResultListTy &ResultList = ResultLists[PHIs[0]]; 6043 for (size_t I = 0, E = ResultList.size(); I != E; ++I) { 6044 uint64_t Idx = (ResultList[I].first->getValue() - MinCaseVal->getValue()) 6045 .getLimitedValue(); 6046 MaskInt |= One << Idx; 6047 } 6048 ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt); 6049 6050 // Get the TableIndex'th bit of the bitmask. 6051 // If this bit is 0 (meaning hole) jump to the default destination, 6052 // else continue with table lookup. 6053 IntegerType *MapTy = TableMask->getType(); 6054 Value *MaskIndex = 6055 Builder.CreateZExtOrTrunc(TableIndex, MapTy, "switch.maskindex"); 6056 Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, "switch.shifted"); 6057 Value *LoBit = Builder.CreateTrunc( 6058 Shifted, Type::getInt1Ty(Mod.getContext()), "switch.lobit"); 6059 Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest()); 6060 if (DTU) { 6061 Updates.push_back({DominatorTree::Insert, MaskBB, LookupBB}); 6062 Updates.push_back({DominatorTree::Insert, MaskBB, SI->getDefaultDest()}); 6063 } 6064 Builder.SetInsertPoint(LookupBB); 6065 AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, BB); 6066 } 6067 6068 if (!DefaultIsReachable || GeneratingCoveredLookupTable) { 6069 // We cached PHINodes in PHIs. To avoid accessing deleted PHINodes later, 6070 // do not delete PHINodes here. 6071 SI->getDefaultDest()->removePredecessor(BB, 6072 /*KeepOneInputPHIs=*/true); 6073 if (DTU) 6074 Updates.push_back({DominatorTree::Delete, BB, SI->getDefaultDest()}); 6075 } 6076 6077 bool ReturnedEarly = false; 6078 for (PHINode *PHI : PHIs) { 6079 const ResultListTy &ResultList = ResultLists[PHI]; 6080 6081 // If using a bitmask, use any value to fill the lookup table holes. 6082 Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI]; 6083 StringRef FuncName = Fn->getName(); 6084 SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultList, DV, DL, 6085 FuncName); 6086 6087 Value *Result = Table.BuildLookup(TableIndex, Builder); 6088 6089 // If the result is used to return immediately from the function, we want to 6090 // do that right here. 6091 if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->user_begin()) && 6092 PHI->user_back() == CommonDest->getFirstNonPHIOrDbg()) { 6093 Builder.CreateRet(Result); 6094 ReturnedEarly = true; 6095 break; 6096 } 6097 6098 // Do a small peephole optimization: re-use the switch table compare if 6099 // possible. 6100 if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) { 6101 BasicBlock *PhiBlock = PHI->getParent(); 6102 // Search for compare instructions which use the phi. 6103 for (auto *User : PHI->users()) { 6104 reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList); 6105 } 6106 } 6107 6108 PHI->addIncoming(Result, LookupBB); 6109 } 6110 6111 if (!ReturnedEarly) { 6112 Builder.CreateBr(CommonDest); 6113 if (DTU) 6114 Updates.push_back({DominatorTree::Insert, LookupBB, CommonDest}); 6115 } 6116 6117 // Remove the switch. 6118 SmallPtrSet<BasicBlock *, 8> RemovedSuccessors; 6119 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { 6120 BasicBlock *Succ = SI->getSuccessor(i); 6121 6122 if (Succ == SI->getDefaultDest()) 6123 continue; 6124 Succ->removePredecessor(BB); 6125 RemovedSuccessors.insert(Succ); 6126 } 6127 SI->eraseFromParent(); 6128 6129 if (DTU) { 6130 for (BasicBlock *RemovedSuccessor : RemovedSuccessors) 6131 Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor}); 6132 DTU->applyUpdates(Updates); 6133 } 6134 6135 ++NumLookupTables; 6136 if (NeedMask) 6137 ++NumLookupTablesHoles; 6138 return true; 6139 } 6140 6141 static bool isSwitchDense(ArrayRef<int64_t> Values) { 6142 // See also SelectionDAGBuilder::isDense(), which this function was based on. 6143 uint64_t Diff = (uint64_t)Values.back() - (uint64_t)Values.front(); 6144 uint64_t Range = Diff + 1; 6145 uint64_t NumCases = Values.size(); 6146 // 40% is the default density for building a jump table in optsize/minsize mode. 6147 uint64_t MinDensity = 40; 6148 6149 return NumCases * 100 >= Range * MinDensity; 6150 } 6151 6152 /// Try to transform a switch that has "holes" in it to a contiguous sequence 6153 /// of cases. 6154 /// 6155 /// A switch such as: switch(i) {case 5: case 9: case 13: case 17:} can be 6156 /// range-reduced to: switch ((i-5) / 4) {case 0: case 1: case 2: case 3:}. 6157 /// 6158 /// This converts a sparse switch into a dense switch which allows better 6159 /// lowering and could also allow transforming into a lookup table. 6160 static bool ReduceSwitchRange(SwitchInst *SI, IRBuilder<> &Builder, 6161 const DataLayout &DL, 6162 const TargetTransformInfo &TTI) { 6163 auto *CondTy = cast<IntegerType>(SI->getCondition()->getType()); 6164 if (CondTy->getIntegerBitWidth() > 64 || 6165 !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth())) 6166 return false; 6167 // Only bother with this optimization if there are more than 3 switch cases; 6168 // SDAG will only bother creating jump tables for 4 or more cases. 6169 if (SI->getNumCases() < 4) 6170 return false; 6171 6172 // This transform is agnostic to the signedness of the input or case values. We 6173 // can treat the case values as signed or unsigned. We can optimize more common 6174 // cases such as a sequence crossing zero {-4,0,4,8} if we interpret case values 6175 // as signed. 6176 SmallVector<int64_t,4> Values; 6177 for (auto &C : SI->cases()) 6178 Values.push_back(C.getCaseValue()->getValue().getSExtValue()); 6179 llvm::sort(Values); 6180 6181 // If the switch is already dense, there's nothing useful to do here. 6182 if (isSwitchDense(Values)) 6183 return false; 6184 6185 // First, transform the values such that they start at zero and ascend. 6186 int64_t Base = Values[0]; 6187 for (auto &V : Values) 6188 V -= (uint64_t)(Base); 6189 6190 // Now we have signed numbers that have been shifted so that, given enough 6191 // precision, there are no negative values. Since the rest of the transform 6192 // is bitwise only, we switch now to an unsigned representation. 6193 6194 // This transform can be done speculatively because it is so cheap - it 6195 // results in a single rotate operation being inserted. 6196 // FIXME: It's possible that optimizing a switch on powers of two might also 6197 // be beneficial - flag values are often powers of two and we could use a CLZ 6198 // as the key function. 6199 6200 // countTrailingZeros(0) returns 64. As Values is guaranteed to have more than 6201 // one element and LLVM disallows duplicate cases, Shift is guaranteed to be 6202 // less than 64. 6203 unsigned Shift = 64; 6204 for (auto &V : Values) 6205 Shift = std::min(Shift, countTrailingZeros((uint64_t)V)); 6206 assert(Shift < 64); 6207 if (Shift > 0) 6208 for (auto &V : Values) 6209 V = (int64_t)((uint64_t)V >> Shift); 6210 6211 if (!isSwitchDense(Values)) 6212 // Transform didn't create a dense switch. 6213 return false; 6214 6215 // The obvious transform is to shift the switch condition right and emit a 6216 // check that the condition actually cleanly divided by GCD, i.e. 6217 // C & (1 << Shift - 1) == 0 6218 // inserting a new CFG edge to handle the case where it didn't divide cleanly. 6219 // 6220 // A cheaper way of doing this is a simple ROTR(C, Shift). This performs the 6221 // shift and puts the shifted-off bits in the uppermost bits. If any of these 6222 // are nonzero then the switch condition will be very large and will hit the 6223 // default case. 6224 6225 auto *Ty = cast<IntegerType>(SI->getCondition()->getType()); 6226 Builder.SetInsertPoint(SI); 6227 auto *ShiftC = ConstantInt::get(Ty, Shift); 6228 auto *Sub = Builder.CreateSub(SI->getCondition(), ConstantInt::get(Ty, Base)); 6229 auto *LShr = Builder.CreateLShr(Sub, ShiftC); 6230 auto *Shl = Builder.CreateShl(Sub, Ty->getBitWidth() - Shift); 6231 auto *Rot = Builder.CreateOr(LShr, Shl); 6232 SI->replaceUsesOfWith(SI->getCondition(), Rot); 6233 6234 for (auto Case : SI->cases()) { 6235 auto *Orig = Case.getCaseValue(); 6236 auto Sub = Orig->getValue() - APInt(Ty->getBitWidth(), Base); 6237 Case.setValue( 6238 cast<ConstantInt>(ConstantInt::get(Ty, Sub.lshr(ShiftC->getValue())))); 6239 } 6240 return true; 6241 } 6242 6243 bool SimplifyCFGOpt::simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) { 6244 BasicBlock *BB = SI->getParent(); 6245 6246 if (isValueEqualityComparison(SI)) { 6247 // If we only have one predecessor, and if it is a branch on this value, 6248 // see if that predecessor totally determines the outcome of this switch. 6249 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 6250 if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder)) 6251 return requestResimplify(); 6252 6253 Value *Cond = SI->getCondition(); 6254 if (SelectInst *Select = dyn_cast<SelectInst>(Cond)) 6255 if (SimplifySwitchOnSelect(SI, Select)) 6256 return requestResimplify(); 6257 6258 // If the block only contains the switch, see if we can fold the block 6259 // away into any preds. 6260 if (SI == &*BB->instructionsWithoutDebug().begin()) 6261 if (FoldValueComparisonIntoPredecessors(SI, Builder)) 6262 return requestResimplify(); 6263 } 6264 6265 // Try to transform the switch into an icmp and a branch. 6266 if (TurnSwitchRangeIntoICmp(SI, Builder)) 6267 return requestResimplify(); 6268 6269 // Remove unreachable cases. 6270 if (eliminateDeadSwitchCases(SI, DTU, Options.AC, DL)) 6271 return requestResimplify(); 6272 6273 if (switchToSelect(SI, Builder, DTU, DL, TTI)) 6274 return requestResimplify(); 6275 6276 if (Options.ForwardSwitchCondToPhi && ForwardSwitchConditionToPHI(SI)) 6277 return requestResimplify(); 6278 6279 // The conversion from switch to lookup tables results in difficult-to-analyze 6280 // code and makes pruning branches much harder. This is a problem if the 6281 // switch expression itself can still be restricted as a result of inlining or 6282 // CVP. Therefore, only apply this transformation during late stages of the 6283 // optimisation pipeline. 6284 if (Options.ConvertSwitchToLookupTable && 6285 SwitchToLookupTable(SI, Builder, DTU, DL, TTI)) 6286 return requestResimplify(); 6287 6288 if (ReduceSwitchRange(SI, Builder, DL, TTI)) 6289 return requestResimplify(); 6290 6291 return false; 6292 } 6293 6294 bool SimplifyCFGOpt::simplifyIndirectBr(IndirectBrInst *IBI) { 6295 BasicBlock *BB = IBI->getParent(); 6296 bool Changed = false; 6297 6298 // Eliminate redundant destinations. 6299 SmallPtrSet<Value *, 8> Succs; 6300 SmallPtrSet<BasicBlock *, 8> RemovedSuccs; 6301 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 6302 BasicBlock *Dest = IBI->getDestination(i); 6303 if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) { 6304 if (!Dest->hasAddressTaken()) 6305 RemovedSuccs.insert(Dest); 6306 Dest->removePredecessor(BB); 6307 IBI->removeDestination(i); 6308 --i; 6309 --e; 6310 Changed = true; 6311 } 6312 } 6313 6314 if (DTU) { 6315 std::vector<DominatorTree::UpdateType> Updates; 6316 Updates.reserve(RemovedSuccs.size()); 6317 for (auto *RemovedSucc : RemovedSuccs) 6318 Updates.push_back({DominatorTree::Delete, BB, RemovedSucc}); 6319 DTU->applyUpdates(Updates); 6320 } 6321 6322 if (IBI->getNumDestinations() == 0) { 6323 // If the indirectbr has no successors, change it to unreachable. 6324 new UnreachableInst(IBI->getContext(), IBI); 6325 EraseTerminatorAndDCECond(IBI); 6326 return true; 6327 } 6328 6329 if (IBI->getNumDestinations() == 1) { 6330 // If the indirectbr has one successor, change it to a direct branch. 6331 BranchInst::Create(IBI->getDestination(0), IBI); 6332 EraseTerminatorAndDCECond(IBI); 6333 return true; 6334 } 6335 6336 if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) { 6337 if (SimplifyIndirectBrOnSelect(IBI, SI)) 6338 return requestResimplify(); 6339 } 6340 return Changed; 6341 } 6342 6343 /// Given an block with only a single landing pad and a unconditional branch 6344 /// try to find another basic block which this one can be merged with. This 6345 /// handles cases where we have multiple invokes with unique landing pads, but 6346 /// a shared handler. 6347 /// 6348 /// We specifically choose to not worry about merging non-empty blocks 6349 /// here. That is a PRE/scheduling problem and is best solved elsewhere. In 6350 /// practice, the optimizer produces empty landing pad blocks quite frequently 6351 /// when dealing with exception dense code. (see: instcombine, gvn, if-else 6352 /// sinking in this file) 6353 /// 6354 /// This is primarily a code size optimization. We need to avoid performing 6355 /// any transform which might inhibit optimization (such as our ability to 6356 /// specialize a particular handler via tail commoning). We do this by not 6357 /// merging any blocks which require us to introduce a phi. Since the same 6358 /// values are flowing through both blocks, we don't lose any ability to 6359 /// specialize. If anything, we make such specialization more likely. 6360 /// 6361 /// TODO - This transformation could remove entries from a phi in the target 6362 /// block when the inputs in the phi are the same for the two blocks being 6363 /// merged. In some cases, this could result in removal of the PHI entirely. 6364 static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI, 6365 BasicBlock *BB, DomTreeUpdater *DTU) { 6366 auto Succ = BB->getUniqueSuccessor(); 6367 assert(Succ); 6368 // If there's a phi in the successor block, we'd likely have to introduce 6369 // a phi into the merged landing pad block. 6370 if (isa<PHINode>(*Succ->begin())) 6371 return false; 6372 6373 for (BasicBlock *OtherPred : predecessors(Succ)) { 6374 if (BB == OtherPred) 6375 continue; 6376 BasicBlock::iterator I = OtherPred->begin(); 6377 LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I); 6378 if (!LPad2 || !LPad2->isIdenticalTo(LPad)) 6379 continue; 6380 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 6381 ; 6382 BranchInst *BI2 = dyn_cast<BranchInst>(I); 6383 if (!BI2 || !BI2->isIdenticalTo(BI)) 6384 continue; 6385 6386 std::vector<DominatorTree::UpdateType> Updates; 6387 6388 // We've found an identical block. Update our predecessors to take that 6389 // path instead and make ourselves dead. 6390 SmallPtrSet<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB)); 6391 for (BasicBlock *Pred : Preds) { 6392 InvokeInst *II = cast<InvokeInst>(Pred->getTerminator()); 6393 assert(II->getNormalDest() != BB && II->getUnwindDest() == BB && 6394 "unexpected successor"); 6395 II->setUnwindDest(OtherPred); 6396 if (DTU) { 6397 Updates.push_back({DominatorTree::Insert, Pred, OtherPred}); 6398 Updates.push_back({DominatorTree::Delete, Pred, BB}); 6399 } 6400 } 6401 6402 // The debug info in OtherPred doesn't cover the merged control flow that 6403 // used to go through BB. We need to delete it or update it. 6404 for (auto I = OtherPred->begin(), E = OtherPred->end(); I != E;) { 6405 Instruction &Inst = *I; 6406 I++; 6407 if (isa<DbgInfoIntrinsic>(Inst)) 6408 Inst.eraseFromParent(); 6409 } 6410 6411 SmallPtrSet<BasicBlock *, 16> Succs(succ_begin(BB), succ_end(BB)); 6412 for (BasicBlock *Succ : Succs) { 6413 Succ->removePredecessor(BB); 6414 if (DTU) 6415 Updates.push_back({DominatorTree::Delete, BB, Succ}); 6416 } 6417 6418 IRBuilder<> Builder(BI); 6419 Builder.CreateUnreachable(); 6420 BI->eraseFromParent(); 6421 if (DTU) 6422 DTU->applyUpdates(Updates); 6423 return true; 6424 } 6425 return false; 6426 } 6427 6428 bool SimplifyCFGOpt::simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder) { 6429 return Branch->isUnconditional() ? simplifyUncondBranch(Branch, Builder) 6430 : simplifyCondBranch(Branch, Builder); 6431 } 6432 6433 bool SimplifyCFGOpt::simplifyUncondBranch(BranchInst *BI, 6434 IRBuilder<> &Builder) { 6435 BasicBlock *BB = BI->getParent(); 6436 BasicBlock *Succ = BI->getSuccessor(0); 6437 6438 // If the Terminator is the only non-phi instruction, simplify the block. 6439 // If LoopHeader is provided, check if the block or its successor is a loop 6440 // header. (This is for early invocations before loop simplify and 6441 // vectorization to keep canonical loop forms for nested loops. These blocks 6442 // can be eliminated when the pass is invoked later in the back-end.) 6443 // Note that if BB has only one predecessor then we do not introduce new 6444 // backedge, so we can eliminate BB. 6445 bool NeedCanonicalLoop = 6446 Options.NeedCanonicalLoop && 6447 (!LoopHeaders.empty() && BB->hasNPredecessorsOrMore(2) && 6448 (is_contained(LoopHeaders, BB) || is_contained(LoopHeaders, Succ))); 6449 BasicBlock::iterator I = BB->getFirstNonPHIOrDbg(true)->getIterator(); 6450 if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() && 6451 !NeedCanonicalLoop && TryToSimplifyUncondBranchFromEmptyBlock(BB, DTU)) 6452 return true; 6453 6454 // If the only instruction in the block is a seteq/setne comparison against a 6455 // constant, try to simplify the block. 6456 if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) 6457 if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) { 6458 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 6459 ; 6460 if (I->isTerminator() && 6461 tryToSimplifyUncondBranchWithICmpInIt(ICI, Builder)) 6462 return true; 6463 } 6464 6465 // See if we can merge an empty landing pad block with another which is 6466 // equivalent. 6467 if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) { 6468 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 6469 ; 6470 if (I->isTerminator() && TryToMergeLandingPad(LPad, BI, BB, DTU)) 6471 return true; 6472 } 6473 6474 // If this basic block is ONLY a compare and a branch, and if a predecessor 6475 // branches to us and our successor, fold the comparison into the 6476 // predecessor and use logical operations to update the incoming value 6477 // for PHI nodes in common successor. 6478 if (FoldBranchToCommonDest(BI, DTU, /*MSSAU=*/nullptr, &TTI, 6479 Options.BonusInstThreshold)) 6480 return requestResimplify(); 6481 return false; 6482 } 6483 6484 static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) { 6485 BasicBlock *PredPred = nullptr; 6486 for (auto *P : predecessors(BB)) { 6487 BasicBlock *PPred = P->getSinglePredecessor(); 6488 if (!PPred || (PredPred && PredPred != PPred)) 6489 return nullptr; 6490 PredPred = PPred; 6491 } 6492 return PredPred; 6493 } 6494 6495 bool SimplifyCFGOpt::simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) { 6496 BasicBlock *BB = BI->getParent(); 6497 if (!Options.SimplifyCondBranch) 6498 return false; 6499 6500 // Conditional branch 6501 if (isValueEqualityComparison(BI)) { 6502 // If we only have one predecessor, and if it is a branch on this value, 6503 // see if that predecessor totally determines the outcome of this 6504 // switch. 6505 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 6506 if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder)) 6507 return requestResimplify(); 6508 6509 // This block must be empty, except for the setcond inst, if it exists. 6510 // Ignore dbg and pseudo intrinsics. 6511 auto I = BB->instructionsWithoutDebug(true).begin(); 6512 if (&*I == BI) { 6513 if (FoldValueComparisonIntoPredecessors(BI, Builder)) 6514 return requestResimplify(); 6515 } else if (&*I == cast<Instruction>(BI->getCondition())) { 6516 ++I; 6517 if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder)) 6518 return requestResimplify(); 6519 } 6520 } 6521 6522 // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction. 6523 if (SimplifyBranchOnICmpChain(BI, Builder, DL)) 6524 return true; 6525 6526 // If this basic block has dominating predecessor blocks and the dominating 6527 // blocks' conditions imply BI's condition, we know the direction of BI. 6528 Optional<bool> Imp = isImpliedByDomCondition(BI->getCondition(), BI, DL); 6529 if (Imp) { 6530 // Turn this into a branch on constant. 6531 auto *OldCond = BI->getCondition(); 6532 ConstantInt *TorF = *Imp ? ConstantInt::getTrue(BB->getContext()) 6533 : ConstantInt::getFalse(BB->getContext()); 6534 BI->setCondition(TorF); 6535 RecursivelyDeleteTriviallyDeadInstructions(OldCond); 6536 return requestResimplify(); 6537 } 6538 6539 // If this basic block is ONLY a compare and a branch, and if a predecessor 6540 // branches to us and one of our successors, fold the comparison into the 6541 // predecessor and use logical operations to pick the right destination. 6542 if (FoldBranchToCommonDest(BI, DTU, /*MSSAU=*/nullptr, &TTI, 6543 Options.BonusInstThreshold)) 6544 return requestResimplify(); 6545 6546 // We have a conditional branch to two blocks that are only reachable 6547 // from BI. We know that the condbr dominates the two blocks, so see if 6548 // there is any identical code in the "then" and "else" blocks. If so, we 6549 // can hoist it up to the branching block. 6550 if (BI->getSuccessor(0)->getSinglePredecessor()) { 6551 if (BI->getSuccessor(1)->getSinglePredecessor()) { 6552 if (HoistCommon && 6553 HoistThenElseCodeToIf(BI, TTI, !Options.HoistCommonInsts)) 6554 return requestResimplify(); 6555 } else { 6556 // If Successor #1 has multiple preds, we may be able to conditionally 6557 // execute Successor #0 if it branches to Successor #1. 6558 Instruction *Succ0TI = BI->getSuccessor(0)->getTerminator(); 6559 if (Succ0TI->getNumSuccessors() == 1 && 6560 Succ0TI->getSuccessor(0) == BI->getSuccessor(1)) 6561 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), TTI)) 6562 return requestResimplify(); 6563 } 6564 } else if (BI->getSuccessor(1)->getSinglePredecessor()) { 6565 // If Successor #0 has multiple preds, we may be able to conditionally 6566 // execute Successor #1 if it branches to Successor #0. 6567 Instruction *Succ1TI = BI->getSuccessor(1)->getTerminator(); 6568 if (Succ1TI->getNumSuccessors() == 1 && 6569 Succ1TI->getSuccessor(0) == BI->getSuccessor(0)) 6570 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), TTI)) 6571 return requestResimplify(); 6572 } 6573 6574 // If this is a branch on a phi node in the current block, thread control 6575 // through this block if any PHI node entries are constants. 6576 if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition())) 6577 if (PN->getParent() == BI->getParent()) 6578 if (FoldCondBranchOnPHI(BI, DTU, DL, Options.AC)) 6579 return requestResimplify(); 6580 6581 // Scan predecessor blocks for conditional branches. 6582 for (BasicBlock *Pred : predecessors(BB)) 6583 if (BranchInst *PBI = dyn_cast<BranchInst>(Pred->getTerminator())) 6584 if (PBI != BI && PBI->isConditional()) 6585 if (SimplifyCondBranchToCondBranch(PBI, BI, DTU, DL, TTI)) 6586 return requestResimplify(); 6587 6588 // Look for diamond patterns. 6589 if (MergeCondStores) 6590 if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB)) 6591 if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator())) 6592 if (PBI != BI && PBI->isConditional()) 6593 if (mergeConditionalStores(PBI, BI, DTU, DL, TTI)) 6594 return requestResimplify(); 6595 6596 return false; 6597 } 6598 6599 /// Check if passing a value to an instruction will cause undefined behavior. 6600 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I, bool PtrValueMayBeModified) { 6601 Constant *C = dyn_cast<Constant>(V); 6602 if (!C) 6603 return false; 6604 6605 if (I->use_empty()) 6606 return false; 6607 6608 if (C->isNullValue() || isa<UndefValue>(C)) { 6609 // Only look at the first use, avoid hurting compile time with long uselists 6610 User *Use = *I->user_begin(); 6611 6612 // Now make sure that there are no instructions in between that can alter 6613 // control flow (eg. calls) 6614 for (BasicBlock::iterator 6615 i = ++BasicBlock::iterator(I), 6616 UI = BasicBlock::iterator(dyn_cast<Instruction>(Use)); 6617 i != UI; ++i) { 6618 if (i == I->getParent()->end()) 6619 return false; 6620 if (!isGuaranteedToTransferExecutionToSuccessor(&*i)) 6621 return false; 6622 } 6623 6624 // Look through GEPs. A load from a GEP derived from NULL is still undefined 6625 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use)) 6626 if (GEP->getPointerOperand() == I) { 6627 if (!GEP->isInBounds() || !GEP->hasAllZeroIndices()) 6628 PtrValueMayBeModified = true; 6629 return passingValueIsAlwaysUndefined(V, GEP, PtrValueMayBeModified); 6630 } 6631 6632 // Look through bitcasts. 6633 if (BitCastInst *BC = dyn_cast<BitCastInst>(Use)) 6634 return passingValueIsAlwaysUndefined(V, BC, PtrValueMayBeModified); 6635 6636 // Load from null is undefined. 6637 if (LoadInst *LI = dyn_cast<LoadInst>(Use)) 6638 if (!LI->isVolatile()) 6639 return !NullPointerIsDefined(LI->getFunction(), 6640 LI->getPointerAddressSpace()); 6641 6642 // Store to null is undefined. 6643 if (StoreInst *SI = dyn_cast<StoreInst>(Use)) 6644 if (!SI->isVolatile()) 6645 return (!NullPointerIsDefined(SI->getFunction(), 6646 SI->getPointerAddressSpace())) && 6647 SI->getPointerOperand() == I; 6648 6649 if (auto *CB = dyn_cast<CallBase>(Use)) { 6650 if (C->isNullValue() && NullPointerIsDefined(CB->getFunction())) 6651 return false; 6652 // A call to null is undefined. 6653 if (CB->getCalledOperand() == I) 6654 return true; 6655 6656 if (C->isNullValue()) { 6657 for (const llvm::Use &Arg : CB->args()) 6658 if (Arg == I) { 6659 unsigned ArgIdx = CB->getArgOperandNo(&Arg); 6660 if (CB->isPassingUndefUB(ArgIdx) && 6661 CB->paramHasAttr(ArgIdx, Attribute::NonNull)) { 6662 // Passing null to a nonnnull+noundef argument is undefined. 6663 return !PtrValueMayBeModified; 6664 } 6665 } 6666 } else if (isa<UndefValue>(C)) { 6667 // Passing undef to a noundef argument is undefined. 6668 for (const llvm::Use &Arg : CB->args()) 6669 if (Arg == I) { 6670 unsigned ArgIdx = CB->getArgOperandNo(&Arg); 6671 if (CB->isPassingUndefUB(ArgIdx)) { 6672 // Passing undef to a noundef argument is undefined. 6673 return true; 6674 } 6675 } 6676 } 6677 } 6678 } 6679 return false; 6680 } 6681 6682 /// If BB has an incoming value that will always trigger undefined behavior 6683 /// (eg. null pointer dereference), remove the branch leading here. 6684 static bool removeUndefIntroducingPredecessor(BasicBlock *BB, 6685 DomTreeUpdater *DTU) { 6686 for (PHINode &PHI : BB->phis()) 6687 for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i) 6688 if (passingValueIsAlwaysUndefined(PHI.getIncomingValue(i), &PHI)) { 6689 BasicBlock *Predecessor = PHI.getIncomingBlock(i); 6690 Instruction *T = Predecessor->getTerminator(); 6691 IRBuilder<> Builder(T); 6692 if (BranchInst *BI = dyn_cast<BranchInst>(T)) { 6693 BB->removePredecessor(Predecessor); 6694 // Turn uncoditional branches into unreachables and remove the dead 6695 // destination from conditional branches. 6696 if (BI->isUnconditional()) 6697 Builder.CreateUnreachable(); 6698 else 6699 Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1) 6700 : BI->getSuccessor(0)); 6701 BI->eraseFromParent(); 6702 if (DTU) 6703 DTU->applyUpdates({{DominatorTree::Delete, Predecessor, BB}}); 6704 return true; 6705 } 6706 // TODO: SwitchInst. 6707 } 6708 6709 return false; 6710 } 6711 6712 bool SimplifyCFGOpt::simplifyOnceImpl(BasicBlock *BB) { 6713 bool Changed = false; 6714 6715 assert(BB && BB->getParent() && "Block not embedded in function!"); 6716 assert(BB->getTerminator() && "Degenerate basic block encountered!"); 6717 6718 // Remove basic blocks that have no predecessors (except the entry block)... 6719 // or that just have themself as a predecessor. These are unreachable. 6720 if ((pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) || 6721 BB->getSinglePredecessor() == BB) { 6722 LLVM_DEBUG(dbgs() << "Removing BB: \n" << *BB); 6723 DeleteDeadBlock(BB, DTU); 6724 return true; 6725 } 6726 6727 // Check to see if we can constant propagate this terminator instruction 6728 // away... 6729 Changed |= ConstantFoldTerminator(BB, /*DeleteDeadConditions=*/true, 6730 /*TLI=*/nullptr, DTU); 6731 6732 // Check for and eliminate duplicate PHI nodes in this block. 6733 Changed |= EliminateDuplicatePHINodes(BB); 6734 6735 // Check for and remove branches that will always cause undefined behavior. 6736 Changed |= removeUndefIntroducingPredecessor(BB, DTU); 6737 6738 // Merge basic blocks into their predecessor if there is only one distinct 6739 // pred, and if there is only one distinct successor of the predecessor, and 6740 // if there are no PHI nodes. 6741 if (MergeBlockIntoPredecessor(BB, DTU)) 6742 return true; 6743 6744 if (SinkCommon && Options.SinkCommonInsts) 6745 Changed |= SinkCommonCodeFromPredecessors(BB, DTU); 6746 6747 IRBuilder<> Builder(BB); 6748 6749 if (Options.FoldTwoEntryPHINode) { 6750 // If there is a trivial two-entry PHI node in this basic block, and we can 6751 // eliminate it, do so now. 6752 if (auto *PN = dyn_cast<PHINode>(BB->begin())) 6753 if (PN->getNumIncomingValues() == 2) 6754 Changed |= FoldTwoEntryPHINode(PN, TTI, DTU, DL); 6755 } 6756 6757 Instruction *Terminator = BB->getTerminator(); 6758 Builder.SetInsertPoint(Terminator); 6759 switch (Terminator->getOpcode()) { 6760 case Instruction::Br: 6761 Changed |= simplifyBranch(cast<BranchInst>(Terminator), Builder); 6762 break; 6763 case Instruction::Ret: 6764 Changed |= simplifyReturn(cast<ReturnInst>(Terminator), Builder); 6765 break; 6766 case Instruction::Resume: 6767 Changed |= simplifyResume(cast<ResumeInst>(Terminator), Builder); 6768 break; 6769 case Instruction::CleanupRet: 6770 Changed |= simplifyCleanupReturn(cast<CleanupReturnInst>(Terminator)); 6771 break; 6772 case Instruction::Switch: 6773 Changed |= simplifySwitch(cast<SwitchInst>(Terminator), Builder); 6774 break; 6775 case Instruction::Unreachable: 6776 Changed |= simplifyUnreachable(cast<UnreachableInst>(Terminator)); 6777 break; 6778 case Instruction::IndirectBr: 6779 Changed |= simplifyIndirectBr(cast<IndirectBrInst>(Terminator)); 6780 break; 6781 } 6782 6783 return Changed; 6784 } 6785 6786 bool SimplifyCFGOpt::simplifyOnce(BasicBlock *BB) { 6787 bool Changed = simplifyOnceImpl(BB); 6788 6789 return Changed; 6790 } 6791 6792 bool SimplifyCFGOpt::run(BasicBlock *BB) { 6793 bool Changed = false; 6794 6795 // Repeated simplify BB as long as resimplification is requested. 6796 do { 6797 Resimplify = false; 6798 6799 // Perform one round of simplifcation. Resimplify flag will be set if 6800 // another iteration is requested. 6801 Changed |= simplifyOnce(BB); 6802 } while (Resimplify); 6803 6804 return Changed; 6805 } 6806 6807 bool llvm::simplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI, 6808 DomTreeUpdater *DTU, const SimplifyCFGOptions &Options, 6809 ArrayRef<WeakVH> LoopHeaders) { 6810 return SimplifyCFGOpt(TTI, DTU, BB->getModule()->getDataLayout(), LoopHeaders, 6811 Options) 6812 .run(BB); 6813 } 6814