1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Peephole optimize the CFG.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/ADT/APInt.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SetOperations.h"
20 #include "llvm/ADT/SetVector.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/Statistic.h"
25 #include "llvm/Analysis/AssumptionCache.h"
26 #include "llvm/Analysis/ConstantFolding.h"
27 #include "llvm/Analysis/EHPersonalities.h"
28 #include "llvm/Analysis/InstructionSimplify.h"
29 #include "llvm/Analysis/TargetTransformInfo.h"
30 #include "llvm/Analysis/ValueTracking.h"
31 #include "llvm/IR/BasicBlock.h"
32 #include "llvm/IR/CFG.h"
33 #include "llvm/IR/CallSite.h"
34 #include "llvm/IR/Constant.h"
35 #include "llvm/IR/ConstantRange.h"
36 #include "llvm/IR/Constants.h"
37 #include "llvm/IR/DataLayout.h"
38 #include "llvm/IR/DebugInfo.h"
39 #include "llvm/IR/DerivedTypes.h"
40 #include "llvm/IR/GlobalValue.h"
41 #include "llvm/IR/GlobalVariable.h"
42 #include "llvm/IR/IRBuilder.h"
43 #include "llvm/IR/InstrTypes.h"
44 #include "llvm/IR/Instruction.h"
45 #include "llvm/IR/Instructions.h"
46 #include "llvm/IR/IntrinsicInst.h"
47 #include "llvm/IR/Intrinsics.h"
48 #include "llvm/IR/LLVMContext.h"
49 #include "llvm/IR/MDBuilder.h"
50 #include "llvm/IR/Metadata.h"
51 #include "llvm/IR/Module.h"
52 #include "llvm/IR/NoFolder.h"
53 #include "llvm/IR/Operator.h"
54 #include "llvm/IR/PatternMatch.h"
55 #include "llvm/IR/Type.h"
56 #include "llvm/IR/User.h"
57 #include "llvm/IR/Value.h"
58 #include "llvm/Support/Casting.h"
59 #include "llvm/Support/CommandLine.h"
60 #include "llvm/Support/Debug.h"
61 #include "llvm/Support/ErrorHandling.h"
62 #include "llvm/Support/KnownBits.h"
63 #include "llvm/Support/MathExtras.h"
64 #include "llvm/Support/raw_ostream.h"
65 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
66 #include "llvm/Transforms/Utils/Local.h"
67 #include "llvm/Transforms/Utils/ValueMapper.h"
68 #include <algorithm>
69 #include <cassert>
70 #include <climits>
71 #include <cstddef>
72 #include <cstdint>
73 #include <iterator>
74 #include <map>
75 #include <set>
76 #include <utility>
77 #include <vector>
78 
79 using namespace llvm;
80 using namespace PatternMatch;
81 
82 #define DEBUG_TYPE "simplifycfg"
83 
84 // Chosen as 2 so as to be cheap, but still to have enough power to fold
85 // a select, so the "clamp" idiom (of a min followed by a max) will be caught.
86 // To catch this, we need to fold a compare and a select, hence '2' being the
87 // minimum reasonable default.
88 static cl::opt<unsigned> PHINodeFoldingThreshold(
89     "phi-node-folding-threshold", cl::Hidden, cl::init(2),
90     cl::desc(
91         "Control the amount of phi node folding to perform (default = 2)"));
92 
93 static cl::opt<bool> DupRet(
94     "simplifycfg-dup-ret", cl::Hidden, cl::init(false),
95     cl::desc("Duplicate return instructions into unconditional branches"));
96 
97 static cl::opt<bool>
98     SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true),
99                cl::desc("Sink common instructions down to the end block"));
100 
101 static cl::opt<bool> HoistCondStores(
102     "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true),
103     cl::desc("Hoist conditional stores if an unconditional store precedes"));
104 
105 static cl::opt<bool> MergeCondStores(
106     "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true),
107     cl::desc("Hoist conditional stores even if an unconditional store does not "
108              "precede - hoist multiple conditional stores into a single "
109              "predicated store"));
110 
111 static cl::opt<bool> MergeCondStoresAggressively(
112     "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false),
113     cl::desc("When merging conditional stores, do so even if the resultant "
114              "basic blocks are unlikely to be if-converted as a result"));
115 
116 static cl::opt<bool> SpeculateOneExpensiveInst(
117     "speculate-one-expensive-inst", cl::Hidden, cl::init(true),
118     cl::desc("Allow exactly one expensive instruction to be speculatively "
119              "executed"));
120 
121 static cl::opt<unsigned> MaxSpeculationDepth(
122     "max-speculation-depth", cl::Hidden, cl::init(10),
123     cl::desc("Limit maximum recursion depth when calculating costs of "
124              "speculatively executed instructions"));
125 
126 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps");
127 STATISTIC(NumLinearMaps,
128           "Number of switch instructions turned into linear mapping");
129 STATISTIC(NumLookupTables,
130           "Number of switch instructions turned into lookup tables");
131 STATISTIC(
132     NumLookupTablesHoles,
133     "Number of switch instructions turned into lookup tables (holes checked)");
134 STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares");
135 STATISTIC(NumSinkCommons,
136           "Number of common instructions sunk down to the end block");
137 STATISTIC(NumSpeculations, "Number of speculative executed instructions");
138 
139 namespace {
140 
141 // The first field contains the value that the switch produces when a certain
142 // case group is selected, and the second field is a vector containing the
143 // cases composing the case group.
144 typedef SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2>
145     SwitchCaseResultVectorTy;
146 // The first field contains the phi node that generates a result of the switch
147 // and the second field contains the value generated for a certain case in the
148 // switch for that PHI.
149 typedef SmallVector<std::pair<PHINode *, Constant *>, 4> SwitchCaseResultsTy;
150 
151 /// ValueEqualityComparisonCase - Represents a case of a switch.
152 struct ValueEqualityComparisonCase {
153   ConstantInt *Value;
154   BasicBlock *Dest;
155 
156   ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest)
157       : Value(Value), Dest(Dest) {}
158 
159   bool operator<(ValueEqualityComparisonCase RHS) const {
160     // Comparing pointers is ok as we only rely on the order for uniquing.
161     return Value < RHS.Value;
162   }
163 
164   bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; }
165 };
166 
167 class SimplifyCFGOpt {
168   const TargetTransformInfo &TTI;
169   const DataLayout &DL;
170   unsigned BonusInstThreshold;
171   AssumptionCache *AC;
172   SmallPtrSetImpl<BasicBlock *> *LoopHeaders;
173   // See comments in SimplifyCFGOpt::SimplifySwitch.
174   bool LateSimplifyCFG;
175   Value *isValueEqualityComparison(TerminatorInst *TI);
176   BasicBlock *GetValueEqualityComparisonCases(
177       TerminatorInst *TI, std::vector<ValueEqualityComparisonCase> &Cases);
178   bool SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI,
179                                                      BasicBlock *Pred,
180                                                      IRBuilder<> &Builder);
181   bool FoldValueComparisonIntoPredecessors(TerminatorInst *TI,
182                                            IRBuilder<> &Builder);
183 
184   bool SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder);
185   bool SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder);
186   bool SimplifySingleResume(ResumeInst *RI);
187   bool SimplifyCommonResume(ResumeInst *RI);
188   bool SimplifyCleanupReturn(CleanupReturnInst *RI);
189   bool SimplifyUnreachable(UnreachableInst *UI);
190   bool SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder);
191   bool SimplifyIndirectBr(IndirectBrInst *IBI);
192   bool SimplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder);
193   bool SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder);
194 
195 public:
196   SimplifyCFGOpt(const TargetTransformInfo &TTI, const DataLayout &DL,
197                  unsigned BonusInstThreshold, AssumptionCache *AC,
198                  SmallPtrSetImpl<BasicBlock *> *LoopHeaders,
199                  bool LateSimplifyCFG)
200       : TTI(TTI), DL(DL), BonusInstThreshold(BonusInstThreshold), AC(AC),
201         LoopHeaders(LoopHeaders), LateSimplifyCFG(LateSimplifyCFG) {}
202 
203   bool run(BasicBlock *BB);
204 };
205 
206 } // end anonymous namespace
207 
208 /// Return true if it is safe to merge these two
209 /// terminator instructions together.
210 static bool
211 SafeToMergeTerminators(TerminatorInst *SI1, TerminatorInst *SI2,
212                        SmallSetVector<BasicBlock *, 4> *FailBlocks = nullptr) {
213   if (SI1 == SI2)
214     return false; // Can't merge with self!
215 
216   // It is not safe to merge these two switch instructions if they have a common
217   // successor, and if that successor has a PHI node, and if *that* PHI node has
218   // conflicting incoming values from the two switch blocks.
219   BasicBlock *SI1BB = SI1->getParent();
220   BasicBlock *SI2BB = SI2->getParent();
221 
222   SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
223   bool Fail = false;
224   for (BasicBlock *Succ : successors(SI2BB))
225     if (SI1Succs.count(Succ))
226       for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) {
227         PHINode *PN = cast<PHINode>(BBI);
228         if (PN->getIncomingValueForBlock(SI1BB) !=
229             PN->getIncomingValueForBlock(SI2BB)) {
230           if (FailBlocks)
231             FailBlocks->insert(Succ);
232           Fail = true;
233         }
234       }
235 
236   return !Fail;
237 }
238 
239 /// Return true if it is safe and profitable to merge these two terminator
240 /// instructions together, where SI1 is an unconditional branch. PhiNodes will
241 /// store all PHI nodes in common successors.
242 static bool
243 isProfitableToFoldUnconditional(BranchInst *SI1, BranchInst *SI2,
244                                 Instruction *Cond,
245                                 SmallVectorImpl<PHINode *> &PhiNodes) {
246   if (SI1 == SI2)
247     return false; // Can't merge with self!
248   assert(SI1->isUnconditional() && SI2->isConditional());
249 
250   // We fold the unconditional branch if we can easily update all PHI nodes in
251   // common successors:
252   // 1> We have a constant incoming value for the conditional branch;
253   // 2> We have "Cond" as the incoming value for the unconditional branch;
254   // 3> SI2->getCondition() and Cond have same operands.
255   CmpInst *Ci2 = dyn_cast<CmpInst>(SI2->getCondition());
256   if (!Ci2)
257     return false;
258   if (!(Cond->getOperand(0) == Ci2->getOperand(0) &&
259         Cond->getOperand(1) == Ci2->getOperand(1)) &&
260       !(Cond->getOperand(0) == Ci2->getOperand(1) &&
261         Cond->getOperand(1) == Ci2->getOperand(0)))
262     return false;
263 
264   BasicBlock *SI1BB = SI1->getParent();
265   BasicBlock *SI2BB = SI2->getParent();
266   SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
267   for (BasicBlock *Succ : successors(SI2BB))
268     if (SI1Succs.count(Succ))
269       for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) {
270         PHINode *PN = cast<PHINode>(BBI);
271         if (PN->getIncomingValueForBlock(SI1BB) != Cond ||
272             !isa<ConstantInt>(PN->getIncomingValueForBlock(SI2BB)))
273           return false;
274         PhiNodes.push_back(PN);
275       }
276   return true;
277 }
278 
279 /// Update PHI nodes in Succ to indicate that there will now be entries in it
280 /// from the 'NewPred' block. The values that will be flowing into the PHI nodes
281 /// will be the same as those coming in from ExistPred, an existing predecessor
282 /// of Succ.
283 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred,
284                                   BasicBlock *ExistPred) {
285   if (!isa<PHINode>(Succ->begin()))
286     return; // Quick exit if nothing to do
287 
288   PHINode *PN;
289   for (BasicBlock::iterator I = Succ->begin(); (PN = dyn_cast<PHINode>(I)); ++I)
290     PN->addIncoming(PN->getIncomingValueForBlock(ExistPred), NewPred);
291 }
292 
293 /// Compute an abstract "cost" of speculating the given instruction,
294 /// which is assumed to be safe to speculate. TCC_Free means cheap,
295 /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively
296 /// expensive.
297 static unsigned ComputeSpeculationCost(const User *I,
298                                        const TargetTransformInfo &TTI) {
299   assert(isSafeToSpeculativelyExecute(I) &&
300          "Instruction is not safe to speculatively execute!");
301   return TTI.getUserCost(I);
302 }
303 
304 /// If we have a merge point of an "if condition" as accepted above,
305 /// return true if the specified value dominates the block.  We
306 /// don't handle the true generality of domination here, just a special case
307 /// which works well enough for us.
308 ///
309 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to
310 /// see if V (which must be an instruction) and its recursive operands
311 /// that do not dominate BB have a combined cost lower than CostRemaining and
312 /// are non-trapping.  If both are true, the instruction is inserted into the
313 /// set and true is returned.
314 ///
315 /// The cost for most non-trapping instructions is defined as 1 except for
316 /// Select whose cost is 2.
317 ///
318 /// After this function returns, CostRemaining is decreased by the cost of
319 /// V plus its non-dominating operands.  If that cost is greater than
320 /// CostRemaining, false is returned and CostRemaining is undefined.
321 static bool DominatesMergePoint(Value *V, BasicBlock *BB,
322                                 SmallPtrSetImpl<Instruction *> *AggressiveInsts,
323                                 unsigned &CostRemaining,
324                                 const TargetTransformInfo &TTI,
325                                 unsigned Depth = 0) {
326   // It is possible to hit a zero-cost cycle (phi/gep instructions for example),
327   // so limit the recursion depth.
328   // TODO: While this recursion limit does prevent pathological behavior, it
329   // would be better to track visited instructions to avoid cycles.
330   if (Depth == MaxSpeculationDepth)
331     return false;
332 
333   Instruction *I = dyn_cast<Instruction>(V);
334   if (!I) {
335     // Non-instructions all dominate instructions, but not all constantexprs
336     // can be executed unconditionally.
337     if (ConstantExpr *C = dyn_cast<ConstantExpr>(V))
338       if (C->canTrap())
339         return false;
340     return true;
341   }
342   BasicBlock *PBB = I->getParent();
343 
344   // We don't want to allow weird loops that might have the "if condition" in
345   // the bottom of this block.
346   if (PBB == BB)
347     return false;
348 
349   // If this instruction is defined in a block that contains an unconditional
350   // branch to BB, then it must be in the 'conditional' part of the "if
351   // statement".  If not, it definitely dominates the region.
352   BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator());
353   if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB)
354     return true;
355 
356   // If we aren't allowing aggressive promotion anymore, then don't consider
357   // instructions in the 'if region'.
358   if (!AggressiveInsts)
359     return false;
360 
361   // If we have seen this instruction before, don't count it again.
362   if (AggressiveInsts->count(I))
363     return true;
364 
365   // Okay, it looks like the instruction IS in the "condition".  Check to
366   // see if it's a cheap instruction to unconditionally compute, and if it
367   // only uses stuff defined outside of the condition.  If so, hoist it out.
368   if (!isSafeToSpeculativelyExecute(I))
369     return false;
370 
371   unsigned Cost = ComputeSpeculationCost(I, TTI);
372 
373   // Allow exactly one instruction to be speculated regardless of its cost
374   // (as long as it is safe to do so).
375   // This is intended to flatten the CFG even if the instruction is a division
376   // or other expensive operation. The speculation of an expensive instruction
377   // is expected to be undone in CodeGenPrepare if the speculation has not
378   // enabled further IR optimizations.
379   if (Cost > CostRemaining &&
380       (!SpeculateOneExpensiveInst || !AggressiveInsts->empty() || Depth > 0))
381     return false;
382 
383   // Avoid unsigned wrap.
384   CostRemaining = (Cost > CostRemaining) ? 0 : CostRemaining - Cost;
385 
386   // Okay, we can only really hoist these out if their operands do
387   // not take us over the cost threshold.
388   for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i)
389     if (!DominatesMergePoint(*i, BB, AggressiveInsts, CostRemaining, TTI,
390                              Depth + 1))
391       return false;
392   // Okay, it's safe to do this!  Remember this instruction.
393   AggressiveInsts->insert(I);
394   return true;
395 }
396 
397 /// Extract ConstantInt from value, looking through IntToPtr
398 /// and PointerNullValue. Return NULL if value is not a constant int.
399 static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) {
400   // Normal constant int.
401   ConstantInt *CI = dyn_cast<ConstantInt>(V);
402   if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy())
403     return CI;
404 
405   // This is some kind of pointer constant. Turn it into a pointer-sized
406   // ConstantInt if possible.
407   IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType()));
408 
409   // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*).
410   if (isa<ConstantPointerNull>(V))
411     return ConstantInt::get(PtrTy, 0);
412 
413   // IntToPtr const int.
414   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
415     if (CE->getOpcode() == Instruction::IntToPtr)
416       if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) {
417         // The constant is very likely to have the right type already.
418         if (CI->getType() == PtrTy)
419           return CI;
420         else
421           return cast<ConstantInt>(
422               ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false));
423       }
424   return nullptr;
425 }
426 
427 namespace {
428 
429 /// Given a chain of or (||) or and (&&) comparison of a value against a
430 /// constant, this will try to recover the information required for a switch
431 /// structure.
432 /// It will depth-first traverse the chain of comparison, seeking for patterns
433 /// like %a == 12 or %a < 4 and combine them to produce a set of integer
434 /// representing the different cases for the switch.
435 /// Note that if the chain is composed of '||' it will build the set of elements
436 /// that matches the comparisons (i.e. any of this value validate the chain)
437 /// while for a chain of '&&' it will build the set elements that make the test
438 /// fail.
439 struct ConstantComparesGatherer {
440   const DataLayout &DL;
441   Value *CompValue; /// Value found for the switch comparison
442   Value *Extra;     /// Extra clause to be checked before the switch
443   SmallVector<ConstantInt *, 8> Vals; /// Set of integers to match in switch
444   unsigned UsedICmps; /// Number of comparisons matched in the and/or chain
445 
446   /// Construct and compute the result for the comparison instruction Cond
447   ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL)
448       : DL(DL), CompValue(nullptr), Extra(nullptr), UsedICmps(0) {
449     gather(Cond);
450   }
451 
452   /// Prevent copy
453   ConstantComparesGatherer(const ConstantComparesGatherer &) = delete;
454   ConstantComparesGatherer &
455   operator=(const ConstantComparesGatherer &) = delete;
456 
457 private:
458   /// Try to set the current value used for the comparison, it succeeds only if
459   /// it wasn't set before or if the new value is the same as the old one
460   bool setValueOnce(Value *NewVal) {
461     if (CompValue && CompValue != NewVal)
462       return false;
463     CompValue = NewVal;
464     return (CompValue != nullptr);
465   }
466 
467   /// Try to match Instruction "I" as a comparison against a constant and
468   /// populates the array Vals with the set of values that match (or do not
469   /// match depending on isEQ).
470   /// Return false on failure. On success, the Value the comparison matched
471   /// against is placed in CompValue.
472   /// If CompValue is already set, the function is expected to fail if a match
473   /// is found but the value compared to is different.
474   bool matchInstruction(Instruction *I, bool isEQ) {
475     // If this is an icmp against a constant, handle this as one of the cases.
476     ICmpInst *ICI;
477     ConstantInt *C;
478     if (!((ICI = dyn_cast<ICmpInst>(I)) &&
479           (C = GetConstantInt(I->getOperand(1), DL)))) {
480       return false;
481     }
482 
483     Value *RHSVal;
484     const APInt *RHSC;
485 
486     // Pattern match a special case
487     // (x & ~2^z) == y --> x == y || x == y|2^z
488     // This undoes a transformation done by instcombine to fuse 2 compares.
489     if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE)) {
490 
491       // It's a little bit hard to see why the following transformations are
492       // correct. Here is a CVC3 program to verify them for 64-bit values:
493 
494       /*
495          ONE  : BITVECTOR(64) = BVZEROEXTEND(0bin1, 63);
496          x    : BITVECTOR(64);
497          y    : BITVECTOR(64);
498          z    : BITVECTOR(64);
499          mask : BITVECTOR(64) = BVSHL(ONE, z);
500          QUERY( (y & ~mask = y) =>
501                 ((x & ~mask = y) <=> (x = y OR x = (y |  mask)))
502          );
503          QUERY( (y |  mask = y) =>
504                 ((x |  mask = y) <=> (x = y OR x = (y & ~mask)))
505          );
506       */
507 
508       // Please note that each pattern must be a dual implication (<--> or
509       // iff). One directional implication can create spurious matches. If the
510       // implication is only one-way, an unsatisfiable condition on the left
511       // side can imply a satisfiable condition on the right side. Dual
512       // implication ensures that satisfiable conditions are transformed to
513       // other satisfiable conditions and unsatisfiable conditions are
514       // transformed to other unsatisfiable conditions.
515 
516       // Here is a concrete example of a unsatisfiable condition on the left
517       // implying a satisfiable condition on the right:
518       //
519       // mask = (1 << z)
520       // (x & ~mask) == y  --> (x == y || x == (y | mask))
521       //
522       // Substituting y = 3, z = 0 yields:
523       // (x & -2) == 3 --> (x == 3 || x == 2)
524 
525       // Pattern match a special case:
526       /*
527         QUERY( (y & ~mask = y) =>
528                ((x & ~mask = y) <=> (x = y OR x = (y |  mask)))
529         );
530       */
531       if (match(ICI->getOperand(0),
532                 m_And(m_Value(RHSVal), m_APInt(RHSC)))) {
533         APInt Mask = ~*RHSC;
534         if (Mask.isPowerOf2() && (C->getValue() & ~Mask) == C->getValue()) {
535           // If we already have a value for the switch, it has to match!
536           if (!setValueOnce(RHSVal))
537             return false;
538 
539           Vals.push_back(C);
540           Vals.push_back(
541               ConstantInt::get(C->getContext(),
542                                C->getValue() | Mask));
543           UsedICmps++;
544           return true;
545         }
546       }
547 
548       // Pattern match a special case:
549       /*
550         QUERY( (y |  mask = y) =>
551                ((x |  mask = y) <=> (x = y OR x = (y & ~mask)))
552         );
553       */
554       if (match(ICI->getOperand(0),
555                 m_Or(m_Value(RHSVal), m_APInt(RHSC)))) {
556         APInt Mask = *RHSC;
557         if (Mask.isPowerOf2() && (C->getValue() | Mask) == C->getValue()) {
558           // If we already have a value for the switch, it has to match!
559           if (!setValueOnce(RHSVal))
560             return false;
561 
562           Vals.push_back(C);
563           Vals.push_back(ConstantInt::get(C->getContext(),
564                                           C->getValue() & ~Mask));
565           UsedICmps++;
566           return true;
567         }
568       }
569 
570       // If we already have a value for the switch, it has to match!
571       if (!setValueOnce(ICI->getOperand(0)))
572         return false;
573 
574       UsedICmps++;
575       Vals.push_back(C);
576       return ICI->getOperand(0);
577     }
578 
579     // If we have "x ult 3", for example, then we can add 0,1,2 to the set.
580     ConstantRange Span = ConstantRange::makeAllowedICmpRegion(
581         ICI->getPredicate(), C->getValue());
582 
583     // Shift the range if the compare is fed by an add. This is the range
584     // compare idiom as emitted by instcombine.
585     Value *CandidateVal = I->getOperand(0);
586     if (match(I->getOperand(0), m_Add(m_Value(RHSVal), m_APInt(RHSC)))) {
587       Span = Span.subtract(*RHSC);
588       CandidateVal = RHSVal;
589     }
590 
591     // If this is an and/!= check, then we are looking to build the set of
592     // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into
593     // x != 0 && x != 1.
594     if (!isEQ)
595       Span = Span.inverse();
596 
597     // If there are a ton of values, we don't want to make a ginormous switch.
598     if (Span.isSizeLargerThan(8) || Span.isEmptySet()) {
599       return false;
600     }
601 
602     // If we already have a value for the switch, it has to match!
603     if (!setValueOnce(CandidateVal))
604       return false;
605 
606     // Add all values from the range to the set
607     for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp)
608       Vals.push_back(ConstantInt::get(I->getContext(), Tmp));
609 
610     UsedICmps++;
611     return true;
612   }
613 
614   /// Given a potentially 'or'd or 'and'd together collection of icmp
615   /// eq/ne/lt/gt instructions that compare a value against a constant, extract
616   /// the value being compared, and stick the list constants into the Vals
617   /// vector.
618   /// One "Extra" case is allowed to differ from the other.
619   void gather(Value *V) {
620     Instruction *I = dyn_cast<Instruction>(V);
621     bool isEQ = (I->getOpcode() == Instruction::Or);
622 
623     // Keep a stack (SmallVector for efficiency) for depth-first traversal
624     SmallVector<Value *, 8> DFT;
625     SmallPtrSet<Value *, 8> Visited;
626 
627     // Initialize
628     Visited.insert(V);
629     DFT.push_back(V);
630 
631     while (!DFT.empty()) {
632       V = DFT.pop_back_val();
633 
634       if (Instruction *I = dyn_cast<Instruction>(V)) {
635         // If it is a || (or && depending on isEQ), process the operands.
636         if (I->getOpcode() == (isEQ ? Instruction::Or : Instruction::And)) {
637           if (Visited.insert(I->getOperand(1)).second)
638             DFT.push_back(I->getOperand(1));
639           if (Visited.insert(I->getOperand(0)).second)
640             DFT.push_back(I->getOperand(0));
641           continue;
642         }
643 
644         // Try to match the current instruction
645         if (matchInstruction(I, isEQ))
646           // Match succeed, continue the loop
647           continue;
648       }
649 
650       // One element of the sequence of || (or &&) could not be match as a
651       // comparison against the same value as the others.
652       // We allow only one "Extra" case to be checked before the switch
653       if (!Extra) {
654         Extra = V;
655         continue;
656       }
657       // Failed to parse a proper sequence, abort now
658       CompValue = nullptr;
659       break;
660     }
661   }
662 };
663 
664 } // end anonymous namespace
665 
666 static void EraseTerminatorInstAndDCECond(TerminatorInst *TI) {
667   Instruction *Cond = nullptr;
668   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
669     Cond = dyn_cast<Instruction>(SI->getCondition());
670   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
671     if (BI->isConditional())
672       Cond = dyn_cast<Instruction>(BI->getCondition());
673   } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) {
674     Cond = dyn_cast<Instruction>(IBI->getAddress());
675   }
676 
677   TI->eraseFromParent();
678   if (Cond)
679     RecursivelyDeleteTriviallyDeadInstructions(Cond);
680 }
681 
682 /// Return true if the specified terminator checks
683 /// to see if a value is equal to constant integer value.
684 Value *SimplifyCFGOpt::isValueEqualityComparison(TerminatorInst *TI) {
685   Value *CV = nullptr;
686   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
687     // Do not permit merging of large switch instructions into their
688     // predecessors unless there is only one predecessor.
689     if (SI->getNumSuccessors() * std::distance(pred_begin(SI->getParent()),
690                                                pred_end(SI->getParent())) <=
691         128)
692       CV = SI->getCondition();
693   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI))
694     if (BI->isConditional() && BI->getCondition()->hasOneUse())
695       if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) {
696         if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL))
697           CV = ICI->getOperand(0);
698       }
699 
700   // Unwrap any lossless ptrtoint cast.
701   if (CV) {
702     if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) {
703       Value *Ptr = PTII->getPointerOperand();
704       if (PTII->getType() == DL.getIntPtrType(Ptr->getType()))
705         CV = Ptr;
706     }
707   }
708   return CV;
709 }
710 
711 /// Given a value comparison instruction,
712 /// decode all of the 'cases' that it represents and return the 'default' block.
713 BasicBlock *SimplifyCFGOpt::GetValueEqualityComparisonCases(
714     TerminatorInst *TI, std::vector<ValueEqualityComparisonCase> &Cases) {
715   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
716     Cases.reserve(SI->getNumCases());
717     for (auto Case : SI->cases())
718       Cases.push_back(ValueEqualityComparisonCase(Case.getCaseValue(),
719                                                   Case.getCaseSuccessor()));
720     return SI->getDefaultDest();
721   }
722 
723   BranchInst *BI = cast<BranchInst>(TI);
724   ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
725   BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE);
726   Cases.push_back(ValueEqualityComparisonCase(
727       GetConstantInt(ICI->getOperand(1), DL), Succ));
728   return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ);
729 }
730 
731 /// Given a vector of bb/value pairs, remove any entries
732 /// in the list that match the specified block.
733 static void
734 EliminateBlockCases(BasicBlock *BB,
735                     std::vector<ValueEqualityComparisonCase> &Cases) {
736   Cases.erase(std::remove(Cases.begin(), Cases.end(), BB), Cases.end());
737 }
738 
739 /// Return true if there are any keys in C1 that exist in C2 as well.
740 static bool ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1,
741                           std::vector<ValueEqualityComparisonCase> &C2) {
742   std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2;
743 
744   // Make V1 be smaller than V2.
745   if (V1->size() > V2->size())
746     std::swap(V1, V2);
747 
748   if (V1->empty())
749     return false;
750   if (V1->size() == 1) {
751     // Just scan V2.
752     ConstantInt *TheVal = (*V1)[0].Value;
753     for (unsigned i = 0, e = V2->size(); i != e; ++i)
754       if (TheVal == (*V2)[i].Value)
755         return true;
756   }
757 
758   // Otherwise, just sort both lists and compare element by element.
759   array_pod_sort(V1->begin(), V1->end());
760   array_pod_sort(V2->begin(), V2->end());
761   unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size();
762   while (i1 != e1 && i2 != e2) {
763     if ((*V1)[i1].Value == (*V2)[i2].Value)
764       return true;
765     if ((*V1)[i1].Value < (*V2)[i2].Value)
766       ++i1;
767     else
768       ++i2;
769   }
770   return false;
771 }
772 
773 /// If TI is known to be a terminator instruction and its block is known to
774 /// only have a single predecessor block, check to see if that predecessor is
775 /// also a value comparison with the same value, and if that comparison
776 /// determines the outcome of this comparison. If so, simplify TI. This does a
777 /// very limited form of jump threading.
778 bool SimplifyCFGOpt::SimplifyEqualityComparisonWithOnlyPredecessor(
779     TerminatorInst *TI, BasicBlock *Pred, IRBuilder<> &Builder) {
780   Value *PredVal = isValueEqualityComparison(Pred->getTerminator());
781   if (!PredVal)
782     return false; // Not a value comparison in predecessor.
783 
784   Value *ThisVal = isValueEqualityComparison(TI);
785   assert(ThisVal && "This isn't a value comparison!!");
786   if (ThisVal != PredVal)
787     return false; // Different predicates.
788 
789   // TODO: Preserve branch weight metadata, similarly to how
790   // FoldValueComparisonIntoPredecessors preserves it.
791 
792   // Find out information about when control will move from Pred to TI's block.
793   std::vector<ValueEqualityComparisonCase> PredCases;
794   BasicBlock *PredDef =
795       GetValueEqualityComparisonCases(Pred->getTerminator(), PredCases);
796   EliminateBlockCases(PredDef, PredCases); // Remove default from cases.
797 
798   // Find information about how control leaves this block.
799   std::vector<ValueEqualityComparisonCase> ThisCases;
800   BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases);
801   EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases.
802 
803   // If TI's block is the default block from Pred's comparison, potentially
804   // simplify TI based on this knowledge.
805   if (PredDef == TI->getParent()) {
806     // If we are here, we know that the value is none of those cases listed in
807     // PredCases.  If there are any cases in ThisCases that are in PredCases, we
808     // can simplify TI.
809     if (!ValuesOverlap(PredCases, ThisCases))
810       return false;
811 
812     if (isa<BranchInst>(TI)) {
813       // Okay, one of the successors of this condbr is dead.  Convert it to a
814       // uncond br.
815       assert(ThisCases.size() == 1 && "Branch can only have one case!");
816       // Insert the new branch.
817       Instruction *NI = Builder.CreateBr(ThisDef);
818       (void)NI;
819 
820       // Remove PHI node entries for the dead edge.
821       ThisCases[0].Dest->removePredecessor(TI->getParent());
822 
823       DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
824                    << "Through successor TI: " << *TI << "Leaving: " << *NI
825                    << "\n");
826 
827       EraseTerminatorInstAndDCECond(TI);
828       return true;
829     }
830 
831     SwitchInst *SI = cast<SwitchInst>(TI);
832     // Okay, TI has cases that are statically dead, prune them away.
833     SmallPtrSet<Constant *, 16> DeadCases;
834     for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
835       DeadCases.insert(PredCases[i].Value);
836 
837     DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
838                  << "Through successor TI: " << *TI);
839 
840     // Collect branch weights into a vector.
841     SmallVector<uint32_t, 8> Weights;
842     MDNode *MD = SI->getMetadata(LLVMContext::MD_prof);
843     bool HasWeight = MD && (MD->getNumOperands() == 2 + SI->getNumCases());
844     if (HasWeight)
845       for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e;
846            ++MD_i) {
847         ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i));
848         Weights.push_back(CI->getValue().getZExtValue());
849       }
850     for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) {
851       --i;
852       if (DeadCases.count(i->getCaseValue())) {
853         if (HasWeight) {
854           std::swap(Weights[i->getCaseIndex() + 1], Weights.back());
855           Weights.pop_back();
856         }
857         i->getCaseSuccessor()->removePredecessor(TI->getParent());
858         SI->removeCase(i);
859       }
860     }
861     if (HasWeight && Weights.size() >= 2)
862       SI->setMetadata(LLVMContext::MD_prof,
863                       MDBuilder(SI->getParent()->getContext())
864                           .createBranchWeights(Weights));
865 
866     DEBUG(dbgs() << "Leaving: " << *TI << "\n");
867     return true;
868   }
869 
870   // Otherwise, TI's block must correspond to some matched value.  Find out
871   // which value (or set of values) this is.
872   ConstantInt *TIV = nullptr;
873   BasicBlock *TIBB = TI->getParent();
874   for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
875     if (PredCases[i].Dest == TIBB) {
876       if (TIV)
877         return false; // Cannot handle multiple values coming to this block.
878       TIV = PredCases[i].Value;
879     }
880   assert(TIV && "No edge from pred to succ?");
881 
882   // Okay, we found the one constant that our value can be if we get into TI's
883   // BB.  Find out which successor will unconditionally be branched to.
884   BasicBlock *TheRealDest = nullptr;
885   for (unsigned i = 0, e = ThisCases.size(); i != e; ++i)
886     if (ThisCases[i].Value == TIV) {
887       TheRealDest = ThisCases[i].Dest;
888       break;
889     }
890 
891   // If not handled by any explicit cases, it is handled by the default case.
892   if (!TheRealDest)
893     TheRealDest = ThisDef;
894 
895   // Remove PHI node entries for dead edges.
896   BasicBlock *CheckEdge = TheRealDest;
897   for (BasicBlock *Succ : successors(TIBB))
898     if (Succ != CheckEdge)
899       Succ->removePredecessor(TIBB);
900     else
901       CheckEdge = nullptr;
902 
903   // Insert the new branch.
904   Instruction *NI = Builder.CreateBr(TheRealDest);
905   (void)NI;
906 
907   DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
908                << "Through successor TI: " << *TI << "Leaving: " << *NI
909                << "\n");
910 
911   EraseTerminatorInstAndDCECond(TI);
912   return true;
913 }
914 
915 namespace {
916 
917 /// This class implements a stable ordering of constant
918 /// integers that does not depend on their address.  This is important for
919 /// applications that sort ConstantInt's to ensure uniqueness.
920 struct ConstantIntOrdering {
921   bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const {
922     return LHS->getValue().ult(RHS->getValue());
923   }
924 };
925 
926 } // end anonymous namespace
927 
928 static int ConstantIntSortPredicate(ConstantInt *const *P1,
929                                     ConstantInt *const *P2) {
930   const ConstantInt *LHS = *P1;
931   const ConstantInt *RHS = *P2;
932   if (LHS == RHS)
933     return 0;
934   return LHS->getValue().ult(RHS->getValue()) ? 1 : -1;
935 }
936 
937 static inline bool HasBranchWeights(const Instruction *I) {
938   MDNode *ProfMD = I->getMetadata(LLVMContext::MD_prof);
939   if (ProfMD && ProfMD->getOperand(0))
940     if (MDString *MDS = dyn_cast<MDString>(ProfMD->getOperand(0)))
941       return MDS->getString().equals("branch_weights");
942 
943   return false;
944 }
945 
946 /// Get Weights of a given TerminatorInst, the default weight is at the front
947 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight
948 /// metadata.
949 static void GetBranchWeights(TerminatorInst *TI,
950                              SmallVectorImpl<uint64_t> &Weights) {
951   MDNode *MD = TI->getMetadata(LLVMContext::MD_prof);
952   assert(MD);
953   for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) {
954     ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i));
955     Weights.push_back(CI->getValue().getZExtValue());
956   }
957 
958   // If TI is a conditional eq, the default case is the false case,
959   // and the corresponding branch-weight data is at index 2. We swap the
960   // default weight to be the first entry.
961   if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
962     assert(Weights.size() == 2);
963     ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
964     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
965       std::swap(Weights.front(), Weights.back());
966   }
967 }
968 
969 /// Keep halving the weights until all can fit in uint32_t.
970 static void FitWeights(MutableArrayRef<uint64_t> Weights) {
971   uint64_t Max = *std::max_element(Weights.begin(), Weights.end());
972   if (Max > UINT_MAX) {
973     unsigned Offset = 32 - countLeadingZeros(Max);
974     for (uint64_t &I : Weights)
975       I >>= Offset;
976   }
977 }
978 
979 /// The specified terminator is a value equality comparison instruction
980 /// (either a switch or a branch on "X == c").
981 /// See if any of the predecessors of the terminator block are value comparisons
982 /// on the same value.  If so, and if safe to do so, fold them together.
983 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(TerminatorInst *TI,
984                                                          IRBuilder<> &Builder) {
985   BasicBlock *BB = TI->getParent();
986   Value *CV = isValueEqualityComparison(TI); // CondVal
987   assert(CV && "Not a comparison?");
988   bool Changed = false;
989 
990   SmallVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB));
991   while (!Preds.empty()) {
992     BasicBlock *Pred = Preds.pop_back_val();
993 
994     // See if the predecessor is a comparison with the same value.
995     TerminatorInst *PTI = Pred->getTerminator();
996     Value *PCV = isValueEqualityComparison(PTI); // PredCondVal
997 
998     if (PCV == CV && TI != PTI) {
999       SmallSetVector<BasicBlock*, 4> FailBlocks;
1000       if (!SafeToMergeTerminators(TI, PTI, &FailBlocks)) {
1001         for (auto *Succ : FailBlocks) {
1002           if (!SplitBlockPredecessors(Succ, TI->getParent(), ".fold.split"))
1003             return false;
1004         }
1005       }
1006 
1007       // Figure out which 'cases' to copy from SI to PSI.
1008       std::vector<ValueEqualityComparisonCase> BBCases;
1009       BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases);
1010 
1011       std::vector<ValueEqualityComparisonCase> PredCases;
1012       BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases);
1013 
1014       // Based on whether the default edge from PTI goes to BB or not, fill in
1015       // PredCases and PredDefault with the new switch cases we would like to
1016       // build.
1017       SmallVector<BasicBlock *, 8> NewSuccessors;
1018 
1019       // Update the branch weight metadata along the way
1020       SmallVector<uint64_t, 8> Weights;
1021       bool PredHasWeights = HasBranchWeights(PTI);
1022       bool SuccHasWeights = HasBranchWeights(TI);
1023 
1024       if (PredHasWeights) {
1025         GetBranchWeights(PTI, Weights);
1026         // branch-weight metadata is inconsistent here.
1027         if (Weights.size() != 1 + PredCases.size())
1028           PredHasWeights = SuccHasWeights = false;
1029       } else if (SuccHasWeights)
1030         // If there are no predecessor weights but there are successor weights,
1031         // populate Weights with 1, which will later be scaled to the sum of
1032         // successor's weights
1033         Weights.assign(1 + PredCases.size(), 1);
1034 
1035       SmallVector<uint64_t, 8> SuccWeights;
1036       if (SuccHasWeights) {
1037         GetBranchWeights(TI, SuccWeights);
1038         // branch-weight metadata is inconsistent here.
1039         if (SuccWeights.size() != 1 + BBCases.size())
1040           PredHasWeights = SuccHasWeights = false;
1041       } else if (PredHasWeights)
1042         SuccWeights.assign(1 + BBCases.size(), 1);
1043 
1044       if (PredDefault == BB) {
1045         // If this is the default destination from PTI, only the edges in TI
1046         // that don't occur in PTI, or that branch to BB will be activated.
1047         std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
1048         for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
1049           if (PredCases[i].Dest != BB)
1050             PTIHandled.insert(PredCases[i].Value);
1051           else {
1052             // The default destination is BB, we don't need explicit targets.
1053             std::swap(PredCases[i], PredCases.back());
1054 
1055             if (PredHasWeights || SuccHasWeights) {
1056               // Increase weight for the default case.
1057               Weights[0] += Weights[i + 1];
1058               std::swap(Weights[i + 1], Weights.back());
1059               Weights.pop_back();
1060             }
1061 
1062             PredCases.pop_back();
1063             --i;
1064             --e;
1065           }
1066 
1067         // Reconstruct the new switch statement we will be building.
1068         if (PredDefault != BBDefault) {
1069           PredDefault->removePredecessor(Pred);
1070           PredDefault = BBDefault;
1071           NewSuccessors.push_back(BBDefault);
1072         }
1073 
1074         unsigned CasesFromPred = Weights.size();
1075         uint64_t ValidTotalSuccWeight = 0;
1076         for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
1077           if (!PTIHandled.count(BBCases[i].Value) &&
1078               BBCases[i].Dest != BBDefault) {
1079             PredCases.push_back(BBCases[i]);
1080             NewSuccessors.push_back(BBCases[i].Dest);
1081             if (SuccHasWeights || PredHasWeights) {
1082               // The default weight is at index 0, so weight for the ith case
1083               // should be at index i+1. Scale the cases from successor by
1084               // PredDefaultWeight (Weights[0]).
1085               Weights.push_back(Weights[0] * SuccWeights[i + 1]);
1086               ValidTotalSuccWeight += SuccWeights[i + 1];
1087             }
1088           }
1089 
1090         if (SuccHasWeights || PredHasWeights) {
1091           ValidTotalSuccWeight += SuccWeights[0];
1092           // Scale the cases from predecessor by ValidTotalSuccWeight.
1093           for (unsigned i = 1; i < CasesFromPred; ++i)
1094             Weights[i] *= ValidTotalSuccWeight;
1095           // Scale the default weight by SuccDefaultWeight (SuccWeights[0]).
1096           Weights[0] *= SuccWeights[0];
1097         }
1098       } else {
1099         // If this is not the default destination from PSI, only the edges
1100         // in SI that occur in PSI with a destination of BB will be
1101         // activated.
1102         std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
1103         std::map<ConstantInt *, uint64_t> WeightsForHandled;
1104         for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
1105           if (PredCases[i].Dest == BB) {
1106             PTIHandled.insert(PredCases[i].Value);
1107 
1108             if (PredHasWeights || SuccHasWeights) {
1109               WeightsForHandled[PredCases[i].Value] = Weights[i + 1];
1110               std::swap(Weights[i + 1], Weights.back());
1111               Weights.pop_back();
1112             }
1113 
1114             std::swap(PredCases[i], PredCases.back());
1115             PredCases.pop_back();
1116             --i;
1117             --e;
1118           }
1119 
1120         // Okay, now we know which constants were sent to BB from the
1121         // predecessor.  Figure out where they will all go now.
1122         for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
1123           if (PTIHandled.count(BBCases[i].Value)) {
1124             // If this is one we are capable of getting...
1125             if (PredHasWeights || SuccHasWeights)
1126               Weights.push_back(WeightsForHandled[BBCases[i].Value]);
1127             PredCases.push_back(BBCases[i]);
1128             NewSuccessors.push_back(BBCases[i].Dest);
1129             PTIHandled.erase(
1130                 BBCases[i].Value); // This constant is taken care of
1131           }
1132 
1133         // If there are any constants vectored to BB that TI doesn't handle,
1134         // they must go to the default destination of TI.
1135         for (ConstantInt *I : PTIHandled) {
1136           if (PredHasWeights || SuccHasWeights)
1137             Weights.push_back(WeightsForHandled[I]);
1138           PredCases.push_back(ValueEqualityComparisonCase(I, BBDefault));
1139           NewSuccessors.push_back(BBDefault);
1140         }
1141       }
1142 
1143       // Okay, at this point, we know which new successor Pred will get.  Make
1144       // sure we update the number of entries in the PHI nodes for these
1145       // successors.
1146       for (BasicBlock *NewSuccessor : NewSuccessors)
1147         AddPredecessorToBlock(NewSuccessor, Pred, BB);
1148 
1149       Builder.SetInsertPoint(PTI);
1150       // Convert pointer to int before we switch.
1151       if (CV->getType()->isPointerTy()) {
1152         CV = Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()),
1153                                     "magicptr");
1154       }
1155 
1156       // Now that the successors are updated, create the new Switch instruction.
1157       SwitchInst *NewSI =
1158           Builder.CreateSwitch(CV, PredDefault, PredCases.size());
1159       NewSI->setDebugLoc(PTI->getDebugLoc());
1160       for (ValueEqualityComparisonCase &V : PredCases)
1161         NewSI->addCase(V.Value, V.Dest);
1162 
1163       if (PredHasWeights || SuccHasWeights) {
1164         // Halve the weights if any of them cannot fit in an uint32_t
1165         FitWeights(Weights);
1166 
1167         SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
1168 
1169         NewSI->setMetadata(
1170             LLVMContext::MD_prof,
1171             MDBuilder(BB->getContext()).createBranchWeights(MDWeights));
1172       }
1173 
1174       EraseTerminatorInstAndDCECond(PTI);
1175 
1176       // Okay, last check.  If BB is still a successor of PSI, then we must
1177       // have an infinite loop case.  If so, add an infinitely looping block
1178       // to handle the case to preserve the behavior of the code.
1179       BasicBlock *InfLoopBlock = nullptr;
1180       for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i)
1181         if (NewSI->getSuccessor(i) == BB) {
1182           if (!InfLoopBlock) {
1183             // Insert it at the end of the function, because it's either code,
1184             // or it won't matter if it's hot. :)
1185             InfLoopBlock = BasicBlock::Create(BB->getContext(), "infloop",
1186                                               BB->getParent());
1187             BranchInst::Create(InfLoopBlock, InfLoopBlock);
1188           }
1189           NewSI->setSuccessor(i, InfLoopBlock);
1190         }
1191 
1192       Changed = true;
1193     }
1194   }
1195   return Changed;
1196 }
1197 
1198 // If we would need to insert a select that uses the value of this invoke
1199 // (comments in HoistThenElseCodeToIf explain why we would need to do this), we
1200 // can't hoist the invoke, as there is nowhere to put the select in this case.
1201 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2,
1202                                 Instruction *I1, Instruction *I2) {
1203   for (BasicBlock *Succ : successors(BB1)) {
1204     PHINode *PN;
1205     for (BasicBlock::iterator BBI = Succ->begin();
1206          (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
1207       Value *BB1V = PN->getIncomingValueForBlock(BB1);
1208       Value *BB2V = PN->getIncomingValueForBlock(BB2);
1209       if (BB1V != BB2V && (BB1V == I1 || BB2V == I2)) {
1210         return false;
1211       }
1212     }
1213   }
1214   return true;
1215 }
1216 
1217 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I);
1218 
1219 /// Given a conditional branch that goes to BB1 and BB2, hoist any common code
1220 /// in the two blocks up into the branch block. The caller of this function
1221 /// guarantees that BI's block dominates BB1 and BB2.
1222 static bool HoistThenElseCodeToIf(BranchInst *BI,
1223                                   const TargetTransformInfo &TTI) {
1224   // This does very trivial matching, with limited scanning, to find identical
1225   // instructions in the two blocks.  In particular, we don't want to get into
1226   // O(M*N) situations here where M and N are the sizes of BB1 and BB2.  As
1227   // such, we currently just scan for obviously identical instructions in an
1228   // identical order.
1229   BasicBlock *BB1 = BI->getSuccessor(0); // The true destination.
1230   BasicBlock *BB2 = BI->getSuccessor(1); // The false destination
1231 
1232   BasicBlock::iterator BB1_Itr = BB1->begin();
1233   BasicBlock::iterator BB2_Itr = BB2->begin();
1234 
1235   Instruction *I1 = &*BB1_Itr++, *I2 = &*BB2_Itr++;
1236   // Skip debug info if it is not identical.
1237   DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1238   DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1239   if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1240     while (isa<DbgInfoIntrinsic>(I1))
1241       I1 = &*BB1_Itr++;
1242     while (isa<DbgInfoIntrinsic>(I2))
1243       I2 = &*BB2_Itr++;
1244   }
1245   if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) ||
1246       (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)))
1247     return false;
1248 
1249   BasicBlock *BIParent = BI->getParent();
1250 
1251   bool Changed = false;
1252   do {
1253     // If we are hoisting the terminator instruction, don't move one (making a
1254     // broken BB), instead clone it, and remove BI.
1255     if (isa<TerminatorInst>(I1))
1256       goto HoistTerminator;
1257 
1258     if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2))
1259       return Changed;
1260 
1261     // For a normal instruction, we just move one to right before the branch,
1262     // then replace all uses of the other with the first.  Finally, we remove
1263     // the now redundant second instruction.
1264     BIParent->getInstList().splice(BI->getIterator(), BB1->getInstList(), I1);
1265     if (!I2->use_empty())
1266       I2->replaceAllUsesWith(I1);
1267     I1->andIRFlags(I2);
1268     unsigned KnownIDs[] = {LLVMContext::MD_tbaa,
1269                            LLVMContext::MD_range,
1270                            LLVMContext::MD_fpmath,
1271                            LLVMContext::MD_invariant_load,
1272                            LLVMContext::MD_nonnull,
1273                            LLVMContext::MD_invariant_group,
1274                            LLVMContext::MD_align,
1275                            LLVMContext::MD_dereferenceable,
1276                            LLVMContext::MD_dereferenceable_or_null,
1277                            LLVMContext::MD_mem_parallel_loop_access};
1278     combineMetadata(I1, I2, KnownIDs);
1279 
1280     // I1 and I2 are being combined into a single instruction.  Its debug
1281     // location is the merged locations of the original instructions.
1282     if (!isa<CallInst>(I1))
1283       I1->setDebugLoc(
1284           DILocation::getMergedLocation(I1->getDebugLoc(), I2->getDebugLoc()));
1285 
1286     I2->eraseFromParent();
1287     Changed = true;
1288 
1289     I1 = &*BB1_Itr++;
1290     I2 = &*BB2_Itr++;
1291     // Skip debug info if it is not identical.
1292     DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1293     DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1294     if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1295       while (isa<DbgInfoIntrinsic>(I1))
1296         I1 = &*BB1_Itr++;
1297       while (isa<DbgInfoIntrinsic>(I2))
1298         I2 = &*BB2_Itr++;
1299     }
1300   } while (I1->isIdenticalToWhenDefined(I2));
1301 
1302   return true;
1303 
1304 HoistTerminator:
1305   // It may not be possible to hoist an invoke.
1306   if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))
1307     return Changed;
1308 
1309   for (BasicBlock *Succ : successors(BB1)) {
1310     PHINode *PN;
1311     for (BasicBlock::iterator BBI = Succ->begin();
1312          (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
1313       Value *BB1V = PN->getIncomingValueForBlock(BB1);
1314       Value *BB2V = PN->getIncomingValueForBlock(BB2);
1315       if (BB1V == BB2V)
1316         continue;
1317 
1318       // Check for passingValueIsAlwaysUndefined here because we would rather
1319       // eliminate undefined control flow then converting it to a select.
1320       if (passingValueIsAlwaysUndefined(BB1V, PN) ||
1321           passingValueIsAlwaysUndefined(BB2V, PN))
1322         return Changed;
1323 
1324       if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V))
1325         return Changed;
1326       if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V))
1327         return Changed;
1328     }
1329   }
1330 
1331   // Okay, it is safe to hoist the terminator.
1332   Instruction *NT = I1->clone();
1333   BIParent->getInstList().insert(BI->getIterator(), NT);
1334   if (!NT->getType()->isVoidTy()) {
1335     I1->replaceAllUsesWith(NT);
1336     I2->replaceAllUsesWith(NT);
1337     NT->takeName(I1);
1338   }
1339 
1340   IRBuilder<NoFolder> Builder(NT);
1341   // Hoisting one of the terminators from our successor is a great thing.
1342   // Unfortunately, the successors of the if/else blocks may have PHI nodes in
1343   // them.  If they do, all PHI entries for BB1/BB2 must agree for all PHI
1344   // nodes, so we insert select instruction to compute the final result.
1345   std::map<std::pair<Value *, Value *>, SelectInst *> InsertedSelects;
1346   for (BasicBlock *Succ : successors(BB1)) {
1347     PHINode *PN;
1348     for (BasicBlock::iterator BBI = Succ->begin();
1349          (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
1350       Value *BB1V = PN->getIncomingValueForBlock(BB1);
1351       Value *BB2V = PN->getIncomingValueForBlock(BB2);
1352       if (BB1V == BB2V)
1353         continue;
1354 
1355       // These values do not agree.  Insert a select instruction before NT
1356       // that determines the right value.
1357       SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)];
1358       if (!SI)
1359         SI = cast<SelectInst>(
1360             Builder.CreateSelect(BI->getCondition(), BB1V, BB2V,
1361                                  BB1V->getName() + "." + BB2V->getName(), BI));
1362 
1363       // Make the PHI node use the select for all incoming values for BB1/BB2
1364       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1365         if (PN->getIncomingBlock(i) == BB1 || PN->getIncomingBlock(i) == BB2)
1366           PN->setIncomingValue(i, SI);
1367     }
1368   }
1369 
1370   // Update any PHI nodes in our new successors.
1371   for (BasicBlock *Succ : successors(BB1))
1372     AddPredecessorToBlock(Succ, BIParent, BB1);
1373 
1374   EraseTerminatorInstAndDCECond(BI);
1375   return true;
1376 }
1377 
1378 // All instructions in Insts belong to different blocks that all unconditionally
1379 // branch to a common successor. Analyze each instruction and return true if it
1380 // would be possible to sink them into their successor, creating one common
1381 // instruction instead. For every value that would be required to be provided by
1382 // PHI node (because an operand varies in each input block), add to PHIOperands.
1383 static bool canSinkInstructions(
1384     ArrayRef<Instruction *> Insts,
1385     DenseMap<Instruction *, SmallVector<Value *, 4>> &PHIOperands) {
1386   // Prune out obviously bad instructions to move. Any non-store instruction
1387   // must have exactly one use, and we check later that use is by a single,
1388   // common PHI instruction in the successor.
1389   for (auto *I : Insts) {
1390     // These instructions may change or break semantics if moved.
1391     if (isa<PHINode>(I) || I->isEHPad() || isa<AllocaInst>(I) ||
1392         I->getType()->isTokenTy())
1393       return false;
1394 
1395     // Conservatively return false if I is an inline-asm instruction. Sinking
1396     // and merging inline-asm instructions can potentially create arguments
1397     // that cannot satisfy the inline-asm constraints.
1398     if (const auto *C = dyn_cast<CallInst>(I))
1399       if (C->isInlineAsm())
1400         return false;
1401 
1402     // Everything must have only one use too, apart from stores which
1403     // have no uses.
1404     if (!isa<StoreInst>(I) && !I->hasOneUse())
1405       return false;
1406   }
1407 
1408   const Instruction *I0 = Insts.front();
1409   for (auto *I : Insts)
1410     if (!I->isSameOperationAs(I0))
1411       return false;
1412 
1413   // All instructions in Insts are known to be the same opcode. If they aren't
1414   // stores, check the only user of each is a PHI or in the same block as the
1415   // instruction, because if a user is in the same block as an instruction
1416   // we're contemplating sinking, it must already be determined to be sinkable.
1417   if (!isa<StoreInst>(I0)) {
1418     auto *PNUse = dyn_cast<PHINode>(*I0->user_begin());
1419     auto *Succ = I0->getParent()->getTerminator()->getSuccessor(0);
1420     if (!all_of(Insts, [&PNUse,&Succ](const Instruction *I) -> bool {
1421           auto *U = cast<Instruction>(*I->user_begin());
1422           return (PNUse &&
1423                   PNUse->getParent() == Succ &&
1424                   PNUse->getIncomingValueForBlock(I->getParent()) == I) ||
1425                  U->getParent() == I->getParent();
1426         }))
1427       return false;
1428   }
1429 
1430   // Because SROA can't handle speculating stores of selects, try not
1431   // to sink loads or stores of allocas when we'd have to create a PHI for
1432   // the address operand. Also, because it is likely that loads or stores
1433   // of allocas will disappear when Mem2Reg/SROA is run, don't sink them.
1434   // This can cause code churn which can have unintended consequences down
1435   // the line - see https://llvm.org/bugs/show_bug.cgi?id=30244.
1436   // FIXME: This is a workaround for a deficiency in SROA - see
1437   // https://llvm.org/bugs/show_bug.cgi?id=30188
1438   if (isa<StoreInst>(I0) && any_of(Insts, [](const Instruction *I) {
1439         return isa<AllocaInst>(I->getOperand(1));
1440       }))
1441     return false;
1442   if (isa<LoadInst>(I0) && any_of(Insts, [](const Instruction *I) {
1443         return isa<AllocaInst>(I->getOperand(0));
1444       }))
1445     return false;
1446 
1447   for (unsigned OI = 0, OE = I0->getNumOperands(); OI != OE; ++OI) {
1448     if (I0->getOperand(OI)->getType()->isTokenTy())
1449       // Don't touch any operand of token type.
1450       return false;
1451 
1452     auto SameAsI0 = [&I0, OI](const Instruction *I) {
1453       assert(I->getNumOperands() == I0->getNumOperands());
1454       return I->getOperand(OI) == I0->getOperand(OI);
1455     };
1456     if (!all_of(Insts, SameAsI0)) {
1457       if (!canReplaceOperandWithVariable(I0, OI))
1458         // We can't create a PHI from this GEP.
1459         return false;
1460       // Don't create indirect calls! The called value is the final operand.
1461       if ((isa<CallInst>(I0) || isa<InvokeInst>(I0)) && OI == OE - 1) {
1462         // FIXME: if the call was *already* indirect, we should do this.
1463         return false;
1464       }
1465       for (auto *I : Insts)
1466         PHIOperands[I].push_back(I->getOperand(OI));
1467     }
1468   }
1469   return true;
1470 }
1471 
1472 // Assuming canSinkLastInstruction(Blocks) has returned true, sink the last
1473 // instruction of every block in Blocks to their common successor, commoning
1474 // into one instruction.
1475 static bool sinkLastInstruction(ArrayRef<BasicBlock*> Blocks) {
1476   auto *BBEnd = Blocks[0]->getTerminator()->getSuccessor(0);
1477 
1478   // canSinkLastInstruction returning true guarantees that every block has at
1479   // least one non-terminator instruction.
1480   SmallVector<Instruction*,4> Insts;
1481   for (auto *BB : Blocks) {
1482     Instruction *I = BB->getTerminator();
1483     do {
1484       I = I->getPrevNode();
1485     } while (isa<DbgInfoIntrinsic>(I) && I != &BB->front());
1486     if (!isa<DbgInfoIntrinsic>(I))
1487       Insts.push_back(I);
1488   }
1489 
1490   // The only checking we need to do now is that all users of all instructions
1491   // are the same PHI node. canSinkLastInstruction should have checked this but
1492   // it is slightly over-aggressive - it gets confused by commutative instructions
1493   // so double-check it here.
1494   Instruction *I0 = Insts.front();
1495   if (!isa<StoreInst>(I0)) {
1496     auto *PNUse = dyn_cast<PHINode>(*I0->user_begin());
1497     if (!all_of(Insts, [&PNUse](const Instruction *I) -> bool {
1498           auto *U = cast<Instruction>(*I->user_begin());
1499           return U == PNUse;
1500         }))
1501       return false;
1502   }
1503 
1504   // We don't need to do any more checking here; canSinkLastInstruction should
1505   // have done it all for us.
1506   SmallVector<Value*, 4> NewOperands;
1507   for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) {
1508     // This check is different to that in canSinkLastInstruction. There, we
1509     // cared about the global view once simplifycfg (and instcombine) have
1510     // completed - it takes into account PHIs that become trivially
1511     // simplifiable.  However here we need a more local view; if an operand
1512     // differs we create a PHI and rely on instcombine to clean up the very
1513     // small mess we may make.
1514     bool NeedPHI = any_of(Insts, [&I0, O](const Instruction *I) {
1515       return I->getOperand(O) != I0->getOperand(O);
1516     });
1517     if (!NeedPHI) {
1518       NewOperands.push_back(I0->getOperand(O));
1519       continue;
1520     }
1521 
1522     // Create a new PHI in the successor block and populate it.
1523     auto *Op = I0->getOperand(O);
1524     assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!");
1525     auto *PN = PHINode::Create(Op->getType(), Insts.size(),
1526                                Op->getName() + ".sink", &BBEnd->front());
1527     for (auto *I : Insts)
1528       PN->addIncoming(I->getOperand(O), I->getParent());
1529     NewOperands.push_back(PN);
1530   }
1531 
1532   // Arbitrarily use I0 as the new "common" instruction; remap its operands
1533   // and move it to the start of the successor block.
1534   for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O)
1535     I0->getOperandUse(O).set(NewOperands[O]);
1536   I0->moveBefore(&*BBEnd->getFirstInsertionPt());
1537 
1538   // The debug location for the "common" instruction is the merged locations of
1539   // all the commoned instructions.  We start with the original location of the
1540   // "common" instruction and iteratively merge each location in the loop below.
1541   const DILocation *Loc = I0->getDebugLoc();
1542 
1543   // Update metadata and IR flags, and merge debug locations.
1544   for (auto *I : Insts)
1545     if (I != I0) {
1546       Loc = DILocation::getMergedLocation(Loc, I->getDebugLoc());
1547       combineMetadataForCSE(I0, I);
1548       I0->andIRFlags(I);
1549     }
1550   if (!isa<CallInst>(I0))
1551     I0->setDebugLoc(Loc);
1552 
1553   if (!isa<StoreInst>(I0)) {
1554     // canSinkLastInstruction checked that all instructions were used by
1555     // one and only one PHI node. Find that now, RAUW it to our common
1556     // instruction and nuke it.
1557     assert(I0->hasOneUse());
1558     auto *PN = cast<PHINode>(*I0->user_begin());
1559     PN->replaceAllUsesWith(I0);
1560     PN->eraseFromParent();
1561   }
1562 
1563   // Finally nuke all instructions apart from the common instruction.
1564   for (auto *I : Insts)
1565     if (I != I0)
1566       I->eraseFromParent();
1567 
1568   return true;
1569 }
1570 
1571 namespace {
1572 
1573   // LockstepReverseIterator - Iterates through instructions
1574   // in a set of blocks in reverse order from the first non-terminator.
1575   // For example (assume all blocks have size n):
1576   //   LockstepReverseIterator I([B1, B2, B3]);
1577   //   *I-- = [B1[n], B2[n], B3[n]];
1578   //   *I-- = [B1[n-1], B2[n-1], B3[n-1]];
1579   //   *I-- = [B1[n-2], B2[n-2], B3[n-2]];
1580   //   ...
1581   class LockstepReverseIterator {
1582     ArrayRef<BasicBlock*> Blocks;
1583     SmallVector<Instruction*,4> Insts;
1584     bool Fail;
1585   public:
1586     LockstepReverseIterator(ArrayRef<BasicBlock*> Blocks) :
1587       Blocks(Blocks) {
1588       reset();
1589     }
1590 
1591     void reset() {
1592       Fail = false;
1593       Insts.clear();
1594       for (auto *BB : Blocks) {
1595         Instruction *Inst = BB->getTerminator();
1596         for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
1597           Inst = Inst->getPrevNode();
1598         if (!Inst) {
1599           // Block wasn't big enough.
1600           Fail = true;
1601           return;
1602         }
1603         Insts.push_back(Inst);
1604       }
1605     }
1606 
1607     bool isValid() const {
1608       return !Fail;
1609     }
1610 
1611     void operator -- () {
1612       if (Fail)
1613         return;
1614       for (auto *&Inst : Insts) {
1615         for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
1616           Inst = Inst->getPrevNode();
1617         // Already at beginning of block.
1618         if (!Inst) {
1619           Fail = true;
1620           return;
1621         }
1622       }
1623     }
1624 
1625     ArrayRef<Instruction*> operator * () const {
1626       return Insts;
1627     }
1628   };
1629 
1630 } // end anonymous namespace
1631 
1632 /// Given an unconditional branch that goes to BBEnd,
1633 /// check whether BBEnd has only two predecessors and the other predecessor
1634 /// ends with an unconditional branch. If it is true, sink any common code
1635 /// in the two predecessors to BBEnd.
1636 static bool SinkThenElseCodeToEnd(BranchInst *BI1) {
1637   assert(BI1->isUnconditional());
1638   BasicBlock *BBEnd = BI1->getSuccessor(0);
1639 
1640   // We support two situations:
1641   //   (1) all incoming arcs are unconditional
1642   //   (2) one incoming arc is conditional
1643   //
1644   // (2) is very common in switch defaults and
1645   // else-if patterns;
1646   //
1647   //   if (a) f(1);
1648   //   else if (b) f(2);
1649   //
1650   // produces:
1651   //
1652   //       [if]
1653   //      /    \
1654   //    [f(1)] [if]
1655   //      |     | \
1656   //      |     |  |
1657   //      |  [f(2)]|
1658   //       \    | /
1659   //        [ end ]
1660   //
1661   // [end] has two unconditional predecessor arcs and one conditional. The
1662   // conditional refers to the implicit empty 'else' arc. This conditional
1663   // arc can also be caused by an empty default block in a switch.
1664   //
1665   // In this case, we attempt to sink code from all *unconditional* arcs.
1666   // If we can sink instructions from these arcs (determined during the scan
1667   // phase below) we insert a common successor for all unconditional arcs and
1668   // connect that to [end], to enable sinking:
1669   //
1670   //       [if]
1671   //      /    \
1672   //    [x(1)] [if]
1673   //      |     | \
1674   //      |     |  \
1675   //      |  [x(2)] |
1676   //       \   /    |
1677   //   [sink.split] |
1678   //         \     /
1679   //         [ end ]
1680   //
1681   SmallVector<BasicBlock*,4> UnconditionalPreds;
1682   Instruction *Cond = nullptr;
1683   for (auto *B : predecessors(BBEnd)) {
1684     auto *T = B->getTerminator();
1685     if (isa<BranchInst>(T) && cast<BranchInst>(T)->isUnconditional())
1686       UnconditionalPreds.push_back(B);
1687     else if ((isa<BranchInst>(T) || isa<SwitchInst>(T)) && !Cond)
1688       Cond = T;
1689     else
1690       return false;
1691   }
1692   if (UnconditionalPreds.size() < 2)
1693     return false;
1694 
1695   bool Changed = false;
1696   // We take a two-step approach to tail sinking. First we scan from the end of
1697   // each block upwards in lockstep. If the n'th instruction from the end of each
1698   // block can be sunk, those instructions are added to ValuesToSink and we
1699   // carry on. If we can sink an instruction but need to PHI-merge some operands
1700   // (because they're not identical in each instruction) we add these to
1701   // PHIOperands.
1702   unsigned ScanIdx = 0;
1703   SmallPtrSet<Value*,4> InstructionsToSink;
1704   DenseMap<Instruction*, SmallVector<Value*,4>> PHIOperands;
1705   LockstepReverseIterator LRI(UnconditionalPreds);
1706   while (LRI.isValid() &&
1707          canSinkInstructions(*LRI, PHIOperands)) {
1708     DEBUG(dbgs() << "SINK: instruction can be sunk: " << *(*LRI)[0] << "\n");
1709     InstructionsToSink.insert((*LRI).begin(), (*LRI).end());
1710     ++ScanIdx;
1711     --LRI;
1712   }
1713 
1714   auto ProfitableToSinkInstruction = [&](LockstepReverseIterator &LRI) {
1715     unsigned NumPHIdValues = 0;
1716     for (auto *I : *LRI)
1717       for (auto *V : PHIOperands[I])
1718         if (InstructionsToSink.count(V) == 0)
1719           ++NumPHIdValues;
1720     DEBUG(dbgs() << "SINK: #phid values: " << NumPHIdValues << "\n");
1721     unsigned NumPHIInsts = NumPHIdValues / UnconditionalPreds.size();
1722     if ((NumPHIdValues % UnconditionalPreds.size()) != 0)
1723         NumPHIInsts++;
1724 
1725     return NumPHIInsts <= 1;
1726   };
1727 
1728   if (ScanIdx > 0 && Cond) {
1729     // Check if we would actually sink anything first! This mutates the CFG and
1730     // adds an extra block. The goal in doing this is to allow instructions that
1731     // couldn't be sunk before to be sunk - obviously, speculatable instructions
1732     // (such as trunc, add) can be sunk and predicated already. So we check that
1733     // we're going to sink at least one non-speculatable instruction.
1734     LRI.reset();
1735     unsigned Idx = 0;
1736     bool Profitable = false;
1737     while (ProfitableToSinkInstruction(LRI) && Idx < ScanIdx) {
1738       if (!isSafeToSpeculativelyExecute((*LRI)[0])) {
1739         Profitable = true;
1740         break;
1741       }
1742       --LRI;
1743       ++Idx;
1744     }
1745     if (!Profitable)
1746       return false;
1747 
1748     DEBUG(dbgs() << "SINK: Splitting edge\n");
1749     // We have a conditional edge and we're going to sink some instructions.
1750     // Insert a new block postdominating all blocks we're going to sink from.
1751     if (!SplitBlockPredecessors(BI1->getSuccessor(0), UnconditionalPreds,
1752                                 ".sink.split"))
1753       // Edges couldn't be split.
1754       return false;
1755     Changed = true;
1756   }
1757 
1758   // Now that we've analyzed all potential sinking candidates, perform the
1759   // actual sink. We iteratively sink the last non-terminator of the source
1760   // blocks into their common successor unless doing so would require too
1761   // many PHI instructions to be generated (currently only one PHI is allowed
1762   // per sunk instruction).
1763   //
1764   // We can use InstructionsToSink to discount values needing PHI-merging that will
1765   // actually be sunk in a later iteration. This allows us to be more
1766   // aggressive in what we sink. This does allow a false positive where we
1767   // sink presuming a later value will also be sunk, but stop half way through
1768   // and never actually sink it which means we produce more PHIs than intended.
1769   // This is unlikely in practice though.
1770   for (unsigned SinkIdx = 0; SinkIdx != ScanIdx; ++SinkIdx) {
1771     DEBUG(dbgs() << "SINK: Sink: "
1772                  << *UnconditionalPreds[0]->getTerminator()->getPrevNode()
1773                  << "\n");
1774 
1775     // Because we've sunk every instruction in turn, the current instruction to
1776     // sink is always at index 0.
1777     LRI.reset();
1778     if (!ProfitableToSinkInstruction(LRI)) {
1779       // Too many PHIs would be created.
1780       DEBUG(dbgs() << "SINK: stopping here, too many PHIs would be created!\n");
1781       break;
1782     }
1783 
1784     if (!sinkLastInstruction(UnconditionalPreds))
1785       return Changed;
1786     NumSinkCommons++;
1787     Changed = true;
1788   }
1789   return Changed;
1790 }
1791 
1792 /// \brief Determine if we can hoist sink a sole store instruction out of a
1793 /// conditional block.
1794 ///
1795 /// We are looking for code like the following:
1796 ///   BrBB:
1797 ///     store i32 %add, i32* %arrayidx2
1798 ///     ... // No other stores or function calls (we could be calling a memory
1799 ///     ... // function).
1800 ///     %cmp = icmp ult %x, %y
1801 ///     br i1 %cmp, label %EndBB, label %ThenBB
1802 ///   ThenBB:
1803 ///     store i32 %add5, i32* %arrayidx2
1804 ///     br label EndBB
1805 ///   EndBB:
1806 ///     ...
1807 ///   We are going to transform this into:
1808 ///   BrBB:
1809 ///     store i32 %add, i32* %arrayidx2
1810 ///     ... //
1811 ///     %cmp = icmp ult %x, %y
1812 ///     %add.add5 = select i1 %cmp, i32 %add, %add5
1813 ///     store i32 %add.add5, i32* %arrayidx2
1814 ///     ...
1815 ///
1816 /// \return The pointer to the value of the previous store if the store can be
1817 ///         hoisted into the predecessor block. 0 otherwise.
1818 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB,
1819                                      BasicBlock *StoreBB, BasicBlock *EndBB) {
1820   StoreInst *StoreToHoist = dyn_cast<StoreInst>(I);
1821   if (!StoreToHoist)
1822     return nullptr;
1823 
1824   // Volatile or atomic.
1825   if (!StoreToHoist->isSimple())
1826     return nullptr;
1827 
1828   Value *StorePtr = StoreToHoist->getPointerOperand();
1829 
1830   // Look for a store to the same pointer in BrBB.
1831   unsigned MaxNumInstToLookAt = 9;
1832   for (Instruction &CurI : reverse(*BrBB)) {
1833     if (!MaxNumInstToLookAt)
1834       break;
1835     // Skip debug info.
1836     if (isa<DbgInfoIntrinsic>(CurI))
1837       continue;
1838     --MaxNumInstToLookAt;
1839 
1840     // Could be calling an instruction that affects memory like free().
1841     if (CurI.mayHaveSideEffects() && !isa<StoreInst>(CurI))
1842       return nullptr;
1843 
1844     if (auto *SI = dyn_cast<StoreInst>(&CurI)) {
1845       // Found the previous store make sure it stores to the same location.
1846       if (SI->getPointerOperand() == StorePtr)
1847         // Found the previous store, return its value operand.
1848         return SI->getValueOperand();
1849       return nullptr; // Unknown store.
1850     }
1851   }
1852 
1853   return nullptr;
1854 }
1855 
1856 /// \brief Speculate a conditional basic block flattening the CFG.
1857 ///
1858 /// Note that this is a very risky transform currently. Speculating
1859 /// instructions like this is most often not desirable. Instead, there is an MI
1860 /// pass which can do it with full awareness of the resource constraints.
1861 /// However, some cases are "obvious" and we should do directly. An example of
1862 /// this is speculating a single, reasonably cheap instruction.
1863 ///
1864 /// There is only one distinct advantage to flattening the CFG at the IR level:
1865 /// it makes very common but simplistic optimizations such as are common in
1866 /// instcombine and the DAG combiner more powerful by removing CFG edges and
1867 /// modeling their effects with easier to reason about SSA value graphs.
1868 ///
1869 ///
1870 /// An illustration of this transform is turning this IR:
1871 /// \code
1872 ///   BB:
1873 ///     %cmp = icmp ult %x, %y
1874 ///     br i1 %cmp, label %EndBB, label %ThenBB
1875 ///   ThenBB:
1876 ///     %sub = sub %x, %y
1877 ///     br label BB2
1878 ///   EndBB:
1879 ///     %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ]
1880 ///     ...
1881 /// \endcode
1882 ///
1883 /// Into this IR:
1884 /// \code
1885 ///   BB:
1886 ///     %cmp = icmp ult %x, %y
1887 ///     %sub = sub %x, %y
1888 ///     %cond = select i1 %cmp, 0, %sub
1889 ///     ...
1890 /// \endcode
1891 ///
1892 /// \returns true if the conditional block is removed.
1893 static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB,
1894                                    const TargetTransformInfo &TTI) {
1895   // Be conservative for now. FP select instruction can often be expensive.
1896   Value *BrCond = BI->getCondition();
1897   if (isa<FCmpInst>(BrCond))
1898     return false;
1899 
1900   BasicBlock *BB = BI->getParent();
1901   BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0);
1902 
1903   // If ThenBB is actually on the false edge of the conditional branch, remember
1904   // to swap the select operands later.
1905   bool Invert = false;
1906   if (ThenBB != BI->getSuccessor(0)) {
1907     assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?");
1908     Invert = true;
1909   }
1910   assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block");
1911 
1912   // Keep a count of how many times instructions are used within CondBB when
1913   // they are candidates for sinking into CondBB. Specifically:
1914   // - They are defined in BB, and
1915   // - They have no side effects, and
1916   // - All of their uses are in CondBB.
1917   SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts;
1918 
1919   unsigned SpeculationCost = 0;
1920   Value *SpeculatedStoreValue = nullptr;
1921   StoreInst *SpeculatedStore = nullptr;
1922   for (BasicBlock::iterator BBI = ThenBB->begin(),
1923                             BBE = std::prev(ThenBB->end());
1924        BBI != BBE; ++BBI) {
1925     Instruction *I = &*BBI;
1926     // Skip debug info.
1927     if (isa<DbgInfoIntrinsic>(I))
1928       continue;
1929 
1930     // Only speculatively execute a single instruction (not counting the
1931     // terminator) for now.
1932     ++SpeculationCost;
1933     if (SpeculationCost > 1)
1934       return false;
1935 
1936     // Don't hoist the instruction if it's unsafe or expensive.
1937     if (!isSafeToSpeculativelyExecute(I) &&
1938         !(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore(
1939                                   I, BB, ThenBB, EndBB))))
1940       return false;
1941     if (!SpeculatedStoreValue &&
1942         ComputeSpeculationCost(I, TTI) >
1943             PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic)
1944       return false;
1945 
1946     // Store the store speculation candidate.
1947     if (SpeculatedStoreValue)
1948       SpeculatedStore = cast<StoreInst>(I);
1949 
1950     // Do not hoist the instruction if any of its operands are defined but not
1951     // used in BB. The transformation will prevent the operand from
1952     // being sunk into the use block.
1953     for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) {
1954       Instruction *OpI = dyn_cast<Instruction>(*i);
1955       if (!OpI || OpI->getParent() != BB || OpI->mayHaveSideEffects())
1956         continue; // Not a candidate for sinking.
1957 
1958       ++SinkCandidateUseCounts[OpI];
1959     }
1960   }
1961 
1962   // Consider any sink candidates which are only used in CondBB as costs for
1963   // speculation. Note, while we iterate over a DenseMap here, we are summing
1964   // and so iteration order isn't significant.
1965   for (SmallDenseMap<Instruction *, unsigned, 4>::iterator
1966            I = SinkCandidateUseCounts.begin(),
1967            E = SinkCandidateUseCounts.end();
1968        I != E; ++I)
1969     if (I->first->getNumUses() == I->second) {
1970       ++SpeculationCost;
1971       if (SpeculationCost > 1)
1972         return false;
1973     }
1974 
1975   // Check that the PHI nodes can be converted to selects.
1976   bool HaveRewritablePHIs = false;
1977   for (BasicBlock::iterator I = EndBB->begin();
1978        PHINode *PN = dyn_cast<PHINode>(I); ++I) {
1979     Value *OrigV = PN->getIncomingValueForBlock(BB);
1980     Value *ThenV = PN->getIncomingValueForBlock(ThenBB);
1981 
1982     // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf.
1983     // Skip PHIs which are trivial.
1984     if (ThenV == OrigV)
1985       continue;
1986 
1987     // Don't convert to selects if we could remove undefined behavior instead.
1988     if (passingValueIsAlwaysUndefined(OrigV, PN) ||
1989         passingValueIsAlwaysUndefined(ThenV, PN))
1990       return false;
1991 
1992     HaveRewritablePHIs = true;
1993     ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV);
1994     ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV);
1995     if (!OrigCE && !ThenCE)
1996       continue; // Known safe and cheap.
1997 
1998     if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE)) ||
1999         (OrigCE && !isSafeToSpeculativelyExecute(OrigCE)))
2000       return false;
2001     unsigned OrigCost = OrigCE ? ComputeSpeculationCost(OrigCE, TTI) : 0;
2002     unsigned ThenCost = ThenCE ? ComputeSpeculationCost(ThenCE, TTI) : 0;
2003     unsigned MaxCost =
2004         2 * PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
2005     if (OrigCost + ThenCost > MaxCost)
2006       return false;
2007 
2008     // Account for the cost of an unfolded ConstantExpr which could end up
2009     // getting expanded into Instructions.
2010     // FIXME: This doesn't account for how many operations are combined in the
2011     // constant expression.
2012     ++SpeculationCost;
2013     if (SpeculationCost > 1)
2014       return false;
2015   }
2016 
2017   // If there are no PHIs to process, bail early. This helps ensure idempotence
2018   // as well.
2019   if (!HaveRewritablePHIs && !(HoistCondStores && SpeculatedStoreValue))
2020     return false;
2021 
2022   // If we get here, we can hoist the instruction and if-convert.
2023   DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";);
2024 
2025   // Insert a select of the value of the speculated store.
2026   if (SpeculatedStoreValue) {
2027     IRBuilder<NoFolder> Builder(BI);
2028     Value *TrueV = SpeculatedStore->getValueOperand();
2029     Value *FalseV = SpeculatedStoreValue;
2030     if (Invert)
2031       std::swap(TrueV, FalseV);
2032     Value *S = Builder.CreateSelect(
2033         BrCond, TrueV, FalseV, TrueV->getName() + "." + FalseV->getName(), BI);
2034     SpeculatedStore->setOperand(0, S);
2035     SpeculatedStore->setDebugLoc(
2036         DILocation::getMergedLocation(
2037           BI->getDebugLoc(), SpeculatedStore->getDebugLoc()));
2038   }
2039 
2040   // Metadata can be dependent on the condition we are hoisting above.
2041   // Conservatively strip all metadata on the instruction.
2042   for (auto &I : *ThenBB)
2043     I.dropUnknownNonDebugMetadata();
2044 
2045   // Hoist the instructions.
2046   BB->getInstList().splice(BI->getIterator(), ThenBB->getInstList(),
2047                            ThenBB->begin(), std::prev(ThenBB->end()));
2048 
2049   // Insert selects and rewrite the PHI operands.
2050   IRBuilder<NoFolder> Builder(BI);
2051   for (BasicBlock::iterator I = EndBB->begin();
2052        PHINode *PN = dyn_cast<PHINode>(I); ++I) {
2053     unsigned OrigI = PN->getBasicBlockIndex(BB);
2054     unsigned ThenI = PN->getBasicBlockIndex(ThenBB);
2055     Value *OrigV = PN->getIncomingValue(OrigI);
2056     Value *ThenV = PN->getIncomingValue(ThenI);
2057 
2058     // Skip PHIs which are trivial.
2059     if (OrigV == ThenV)
2060       continue;
2061 
2062     // Create a select whose true value is the speculatively executed value and
2063     // false value is the preexisting value. Swap them if the branch
2064     // destinations were inverted.
2065     Value *TrueV = ThenV, *FalseV = OrigV;
2066     if (Invert)
2067       std::swap(TrueV, FalseV);
2068     Value *V = Builder.CreateSelect(
2069         BrCond, TrueV, FalseV, TrueV->getName() + "." + FalseV->getName(), BI);
2070     PN->setIncomingValue(OrigI, V);
2071     PN->setIncomingValue(ThenI, V);
2072   }
2073 
2074   ++NumSpeculations;
2075   return true;
2076 }
2077 
2078 /// Return true if we can thread a branch across this block.
2079 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) {
2080   BranchInst *BI = cast<BranchInst>(BB->getTerminator());
2081   unsigned Size = 0;
2082 
2083   for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
2084     if (isa<DbgInfoIntrinsic>(BBI))
2085       continue;
2086     if (Size > 10)
2087       return false; // Don't clone large BB's.
2088     ++Size;
2089 
2090     // We can only support instructions that do not define values that are
2091     // live outside of the current basic block.
2092     for (User *U : BBI->users()) {
2093       Instruction *UI = cast<Instruction>(U);
2094       if (UI->getParent() != BB || isa<PHINode>(UI))
2095         return false;
2096     }
2097 
2098     // Looks ok, continue checking.
2099   }
2100 
2101   return true;
2102 }
2103 
2104 /// If we have a conditional branch on a PHI node value that is defined in the
2105 /// same block as the branch and if any PHI entries are constants, thread edges
2106 /// corresponding to that entry to be branches to their ultimate destination.
2107 static bool FoldCondBranchOnPHI(BranchInst *BI, const DataLayout &DL,
2108                                 AssumptionCache *AC) {
2109   BasicBlock *BB = BI->getParent();
2110   PHINode *PN = dyn_cast<PHINode>(BI->getCondition());
2111   // NOTE: we currently cannot transform this case if the PHI node is used
2112   // outside of the block.
2113   if (!PN || PN->getParent() != BB || !PN->hasOneUse())
2114     return false;
2115 
2116   // Degenerate case of a single entry PHI.
2117   if (PN->getNumIncomingValues() == 1) {
2118     FoldSingleEntryPHINodes(PN->getParent());
2119     return true;
2120   }
2121 
2122   // Now we know that this block has multiple preds and two succs.
2123   if (!BlockIsSimpleEnoughToThreadThrough(BB))
2124     return false;
2125 
2126   // Can't fold blocks that contain noduplicate or convergent calls.
2127   if (any_of(*BB, [](const Instruction &I) {
2128         const CallInst *CI = dyn_cast<CallInst>(&I);
2129         return CI && (CI->cannotDuplicate() || CI->isConvergent());
2130       }))
2131     return false;
2132 
2133   // Okay, this is a simple enough basic block.  See if any phi values are
2134   // constants.
2135   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
2136     ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i));
2137     if (!CB || !CB->getType()->isIntegerTy(1))
2138       continue;
2139 
2140     // Okay, we now know that all edges from PredBB should be revectored to
2141     // branch to RealDest.
2142     BasicBlock *PredBB = PN->getIncomingBlock(i);
2143     BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue());
2144 
2145     if (RealDest == BB)
2146       continue; // Skip self loops.
2147     // Skip if the predecessor's terminator is an indirect branch.
2148     if (isa<IndirectBrInst>(PredBB->getTerminator()))
2149       continue;
2150 
2151     // The dest block might have PHI nodes, other predecessors and other
2152     // difficult cases.  Instead of being smart about this, just insert a new
2153     // block that jumps to the destination block, effectively splitting
2154     // the edge we are about to create.
2155     BasicBlock *EdgeBB =
2156         BasicBlock::Create(BB->getContext(), RealDest->getName() + ".critedge",
2157                            RealDest->getParent(), RealDest);
2158     BranchInst::Create(RealDest, EdgeBB);
2159 
2160     // Update PHI nodes.
2161     AddPredecessorToBlock(RealDest, EdgeBB, BB);
2162 
2163     // BB may have instructions that are being threaded over.  Clone these
2164     // instructions into EdgeBB.  We know that there will be no uses of the
2165     // cloned instructions outside of EdgeBB.
2166     BasicBlock::iterator InsertPt = EdgeBB->begin();
2167     DenseMap<Value *, Value *> TranslateMap; // Track translated values.
2168     for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
2169       if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
2170         TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB);
2171         continue;
2172       }
2173       // Clone the instruction.
2174       Instruction *N = BBI->clone();
2175       if (BBI->hasName())
2176         N->setName(BBI->getName() + ".c");
2177 
2178       // Update operands due to translation.
2179       for (User::op_iterator i = N->op_begin(), e = N->op_end(); i != e; ++i) {
2180         DenseMap<Value *, Value *>::iterator PI = TranslateMap.find(*i);
2181         if (PI != TranslateMap.end())
2182           *i = PI->second;
2183       }
2184 
2185       // Check for trivial simplification.
2186       if (Value *V = SimplifyInstruction(N, {DL, nullptr, nullptr, AC})) {
2187         if (!BBI->use_empty())
2188           TranslateMap[&*BBI] = V;
2189         if (!N->mayHaveSideEffects()) {
2190           N->deleteValue(); // Instruction folded away, don't need actual inst
2191           N = nullptr;
2192         }
2193       } else {
2194         if (!BBI->use_empty())
2195           TranslateMap[&*BBI] = N;
2196       }
2197       // Insert the new instruction into its new home.
2198       if (N)
2199         EdgeBB->getInstList().insert(InsertPt, N);
2200 
2201       // Register the new instruction with the assumption cache if necessary.
2202       if (auto *II = dyn_cast_or_null<IntrinsicInst>(N))
2203         if (II->getIntrinsicID() == Intrinsic::assume)
2204           AC->registerAssumption(II);
2205     }
2206 
2207     // Loop over all of the edges from PredBB to BB, changing them to branch
2208     // to EdgeBB instead.
2209     TerminatorInst *PredBBTI = PredBB->getTerminator();
2210     for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i)
2211       if (PredBBTI->getSuccessor(i) == BB) {
2212         BB->removePredecessor(PredBB);
2213         PredBBTI->setSuccessor(i, EdgeBB);
2214       }
2215 
2216     // Recurse, simplifying any other constants.
2217     return FoldCondBranchOnPHI(BI, DL, AC) | true;
2218   }
2219 
2220   return false;
2221 }
2222 
2223 /// Given a BB that starts with the specified two-entry PHI node,
2224 /// see if we can eliminate it.
2225 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI,
2226                                 const DataLayout &DL) {
2227   // Ok, this is a two entry PHI node.  Check to see if this is a simple "if
2228   // statement", which has a very simple dominance structure.  Basically, we
2229   // are trying to find the condition that is being branched on, which
2230   // subsequently causes this merge to happen.  We really want control
2231   // dependence information for this check, but simplifycfg can't keep it up
2232   // to date, and this catches most of the cases we care about anyway.
2233   BasicBlock *BB = PN->getParent();
2234   BasicBlock *IfTrue, *IfFalse;
2235   Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse);
2236   if (!IfCond ||
2237       // Don't bother if the branch will be constant folded trivially.
2238       isa<ConstantInt>(IfCond))
2239     return false;
2240 
2241   // Okay, we found that we can merge this two-entry phi node into a select.
2242   // Doing so would require us to fold *all* two entry phi nodes in this block.
2243   // At some point this becomes non-profitable (particularly if the target
2244   // doesn't support cmov's).  Only do this transformation if there are two or
2245   // fewer PHI nodes in this block.
2246   unsigned NumPhis = 0;
2247   for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I)
2248     if (NumPhis > 2)
2249       return false;
2250 
2251   // Loop over the PHI's seeing if we can promote them all to select
2252   // instructions.  While we are at it, keep track of the instructions
2253   // that need to be moved to the dominating block.
2254   SmallPtrSet<Instruction *, 4> AggressiveInsts;
2255   unsigned MaxCostVal0 = PHINodeFoldingThreshold,
2256            MaxCostVal1 = PHINodeFoldingThreshold;
2257   MaxCostVal0 *= TargetTransformInfo::TCC_Basic;
2258   MaxCostVal1 *= TargetTransformInfo::TCC_Basic;
2259 
2260   for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) {
2261     PHINode *PN = cast<PHINode>(II++);
2262     if (Value *V = SimplifyInstruction(PN, {DL, PN})) {
2263       PN->replaceAllUsesWith(V);
2264       PN->eraseFromParent();
2265       continue;
2266     }
2267 
2268     if (!DominatesMergePoint(PN->getIncomingValue(0), BB, &AggressiveInsts,
2269                              MaxCostVal0, TTI) ||
2270         !DominatesMergePoint(PN->getIncomingValue(1), BB, &AggressiveInsts,
2271                              MaxCostVal1, TTI))
2272       return false;
2273   }
2274 
2275   // If we folded the first phi, PN dangles at this point.  Refresh it.  If
2276   // we ran out of PHIs then we simplified them all.
2277   PN = dyn_cast<PHINode>(BB->begin());
2278   if (!PN)
2279     return true;
2280 
2281   // Don't fold i1 branches on PHIs which contain binary operators.  These can
2282   // often be turned into switches and other things.
2283   if (PN->getType()->isIntegerTy(1) &&
2284       (isa<BinaryOperator>(PN->getIncomingValue(0)) ||
2285        isa<BinaryOperator>(PN->getIncomingValue(1)) ||
2286        isa<BinaryOperator>(IfCond)))
2287     return false;
2288 
2289   // If all PHI nodes are promotable, check to make sure that all instructions
2290   // in the predecessor blocks can be promoted as well. If not, we won't be able
2291   // to get rid of the control flow, so it's not worth promoting to select
2292   // instructions.
2293   BasicBlock *DomBlock = nullptr;
2294   BasicBlock *IfBlock1 = PN->getIncomingBlock(0);
2295   BasicBlock *IfBlock2 = PN->getIncomingBlock(1);
2296   if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) {
2297     IfBlock1 = nullptr;
2298   } else {
2299     DomBlock = *pred_begin(IfBlock1);
2300     for (BasicBlock::iterator I = IfBlock1->begin(); !isa<TerminatorInst>(I);
2301          ++I)
2302       if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) {
2303         // This is not an aggressive instruction that we can promote.
2304         // Because of this, we won't be able to get rid of the control flow, so
2305         // the xform is not worth it.
2306         return false;
2307       }
2308   }
2309 
2310   if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) {
2311     IfBlock2 = nullptr;
2312   } else {
2313     DomBlock = *pred_begin(IfBlock2);
2314     for (BasicBlock::iterator I = IfBlock2->begin(); !isa<TerminatorInst>(I);
2315          ++I)
2316       if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) {
2317         // This is not an aggressive instruction that we can promote.
2318         // Because of this, we won't be able to get rid of the control flow, so
2319         // the xform is not worth it.
2320         return false;
2321       }
2322   }
2323 
2324   DEBUG(dbgs() << "FOUND IF CONDITION!  " << *IfCond << "  T: "
2325                << IfTrue->getName() << "  F: " << IfFalse->getName() << "\n");
2326 
2327   // If we can still promote the PHI nodes after this gauntlet of tests,
2328   // do all of the PHI's now.
2329   Instruction *InsertPt = DomBlock->getTerminator();
2330   IRBuilder<NoFolder> Builder(InsertPt);
2331 
2332   // Move all 'aggressive' instructions, which are defined in the
2333   // conditional parts of the if's up to the dominating block.
2334   if (IfBlock1) {
2335     for (auto &I : *IfBlock1)
2336       I.dropUnknownNonDebugMetadata();
2337     DomBlock->getInstList().splice(InsertPt->getIterator(),
2338                                    IfBlock1->getInstList(), IfBlock1->begin(),
2339                                    IfBlock1->getTerminator()->getIterator());
2340   }
2341   if (IfBlock2) {
2342     for (auto &I : *IfBlock2)
2343       I.dropUnknownNonDebugMetadata();
2344     DomBlock->getInstList().splice(InsertPt->getIterator(),
2345                                    IfBlock2->getInstList(), IfBlock2->begin(),
2346                                    IfBlock2->getTerminator()->getIterator());
2347   }
2348 
2349   while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
2350     // Change the PHI node into a select instruction.
2351     Value *TrueVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse);
2352     Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue);
2353 
2354     Value *Sel = Builder.CreateSelect(IfCond, TrueVal, FalseVal, "", InsertPt);
2355     PN->replaceAllUsesWith(Sel);
2356     Sel->takeName(PN);
2357     PN->eraseFromParent();
2358   }
2359 
2360   // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement
2361   // has been flattened.  Change DomBlock to jump directly to our new block to
2362   // avoid other simplifycfg's kicking in on the diamond.
2363   TerminatorInst *OldTI = DomBlock->getTerminator();
2364   Builder.SetInsertPoint(OldTI);
2365   Builder.CreateBr(BB);
2366   OldTI->eraseFromParent();
2367   return true;
2368 }
2369 
2370 /// If we found a conditional branch that goes to two returning blocks,
2371 /// try to merge them together into one return,
2372 /// introducing a select if the return values disagree.
2373 static bool SimplifyCondBranchToTwoReturns(BranchInst *BI,
2374                                            IRBuilder<> &Builder) {
2375   assert(BI->isConditional() && "Must be a conditional branch");
2376   BasicBlock *TrueSucc = BI->getSuccessor(0);
2377   BasicBlock *FalseSucc = BI->getSuccessor(1);
2378   ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator());
2379   ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator());
2380 
2381   // Check to ensure both blocks are empty (just a return) or optionally empty
2382   // with PHI nodes.  If there are other instructions, merging would cause extra
2383   // computation on one path or the other.
2384   if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator())
2385     return false;
2386   if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator())
2387     return false;
2388 
2389   Builder.SetInsertPoint(BI);
2390   // Okay, we found a branch that is going to two return nodes.  If
2391   // there is no return value for this function, just change the
2392   // branch into a return.
2393   if (FalseRet->getNumOperands() == 0) {
2394     TrueSucc->removePredecessor(BI->getParent());
2395     FalseSucc->removePredecessor(BI->getParent());
2396     Builder.CreateRetVoid();
2397     EraseTerminatorInstAndDCECond(BI);
2398     return true;
2399   }
2400 
2401   // Otherwise, figure out what the true and false return values are
2402   // so we can insert a new select instruction.
2403   Value *TrueValue = TrueRet->getReturnValue();
2404   Value *FalseValue = FalseRet->getReturnValue();
2405 
2406   // Unwrap any PHI nodes in the return blocks.
2407   if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue))
2408     if (TVPN->getParent() == TrueSucc)
2409       TrueValue = TVPN->getIncomingValueForBlock(BI->getParent());
2410   if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue))
2411     if (FVPN->getParent() == FalseSucc)
2412       FalseValue = FVPN->getIncomingValueForBlock(BI->getParent());
2413 
2414   // In order for this transformation to be safe, we must be able to
2415   // unconditionally execute both operands to the return.  This is
2416   // normally the case, but we could have a potentially-trapping
2417   // constant expression that prevents this transformation from being
2418   // safe.
2419   if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue))
2420     if (TCV->canTrap())
2421       return false;
2422   if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue))
2423     if (FCV->canTrap())
2424       return false;
2425 
2426   // Okay, we collected all the mapped values and checked them for sanity, and
2427   // defined to really do this transformation.  First, update the CFG.
2428   TrueSucc->removePredecessor(BI->getParent());
2429   FalseSucc->removePredecessor(BI->getParent());
2430 
2431   // Insert select instructions where needed.
2432   Value *BrCond = BI->getCondition();
2433   if (TrueValue) {
2434     // Insert a select if the results differ.
2435     if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) {
2436     } else if (isa<UndefValue>(TrueValue)) {
2437       TrueValue = FalseValue;
2438     } else {
2439       TrueValue =
2440           Builder.CreateSelect(BrCond, TrueValue, FalseValue, "retval", BI);
2441     }
2442   }
2443 
2444   Value *RI =
2445       !TrueValue ? Builder.CreateRetVoid() : Builder.CreateRet(TrueValue);
2446 
2447   (void)RI;
2448 
2449   DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:"
2450                << "\n  " << *BI << "NewRet = " << *RI
2451                << "TRUEBLOCK: " << *TrueSucc << "FALSEBLOCK: " << *FalseSucc);
2452 
2453   EraseTerminatorInstAndDCECond(BI);
2454 
2455   return true;
2456 }
2457 
2458 /// Return true if the given instruction is available
2459 /// in its predecessor block. If yes, the instruction will be removed.
2460 static bool checkCSEInPredecessor(Instruction *Inst, BasicBlock *PB) {
2461   if (!isa<BinaryOperator>(Inst) && !isa<CmpInst>(Inst))
2462     return false;
2463   for (Instruction &I : *PB) {
2464     Instruction *PBI = &I;
2465     // Check whether Inst and PBI generate the same value.
2466     if (Inst->isIdenticalTo(PBI)) {
2467       Inst->replaceAllUsesWith(PBI);
2468       Inst->eraseFromParent();
2469       return true;
2470     }
2471   }
2472   return false;
2473 }
2474 
2475 /// Return true if either PBI or BI has branch weight available, and store
2476 /// the weights in {Pred|Succ}{True|False}Weight. If one of PBI and BI does
2477 /// not have branch weight, use 1:1 as its weight.
2478 static bool extractPredSuccWeights(BranchInst *PBI, BranchInst *BI,
2479                                    uint64_t &PredTrueWeight,
2480                                    uint64_t &PredFalseWeight,
2481                                    uint64_t &SuccTrueWeight,
2482                                    uint64_t &SuccFalseWeight) {
2483   bool PredHasWeights =
2484       PBI->extractProfMetadata(PredTrueWeight, PredFalseWeight);
2485   bool SuccHasWeights =
2486       BI->extractProfMetadata(SuccTrueWeight, SuccFalseWeight);
2487   if (PredHasWeights || SuccHasWeights) {
2488     if (!PredHasWeights)
2489       PredTrueWeight = PredFalseWeight = 1;
2490     if (!SuccHasWeights)
2491       SuccTrueWeight = SuccFalseWeight = 1;
2492     return true;
2493   } else {
2494     return false;
2495   }
2496 }
2497 
2498 /// If this basic block is simple enough, and if a predecessor branches to us
2499 /// and one of our successors, fold the block into the predecessor and use
2500 /// logical operations to pick the right destination.
2501 bool llvm::FoldBranchToCommonDest(BranchInst *BI, unsigned BonusInstThreshold) {
2502   BasicBlock *BB = BI->getParent();
2503 
2504   Instruction *Cond = nullptr;
2505   if (BI->isConditional())
2506     Cond = dyn_cast<Instruction>(BI->getCondition());
2507   else {
2508     // For unconditional branch, check for a simple CFG pattern, where
2509     // BB has a single predecessor and BB's successor is also its predecessor's
2510     // successor. If such pattern exists, check for CSE between BB and its
2511     // predecessor.
2512     if (BasicBlock *PB = BB->getSinglePredecessor())
2513       if (BranchInst *PBI = dyn_cast<BranchInst>(PB->getTerminator()))
2514         if (PBI->isConditional() &&
2515             (BI->getSuccessor(0) == PBI->getSuccessor(0) ||
2516              BI->getSuccessor(0) == PBI->getSuccessor(1))) {
2517           for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
2518             Instruction *Curr = &*I++;
2519             if (isa<CmpInst>(Curr)) {
2520               Cond = Curr;
2521               break;
2522             }
2523             // Quit if we can't remove this instruction.
2524             if (!checkCSEInPredecessor(Curr, PB))
2525               return false;
2526           }
2527         }
2528 
2529     if (!Cond)
2530       return false;
2531   }
2532 
2533   if (!Cond || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) ||
2534       Cond->getParent() != BB || !Cond->hasOneUse())
2535     return false;
2536 
2537   // Make sure the instruction after the condition is the cond branch.
2538   BasicBlock::iterator CondIt = ++Cond->getIterator();
2539 
2540   // Ignore dbg intrinsics.
2541   while (isa<DbgInfoIntrinsic>(CondIt))
2542     ++CondIt;
2543 
2544   if (&*CondIt != BI)
2545     return false;
2546 
2547   // Only allow this transformation if computing the condition doesn't involve
2548   // too many instructions and these involved instructions can be executed
2549   // unconditionally. We denote all involved instructions except the condition
2550   // as "bonus instructions", and only allow this transformation when the
2551   // number of the bonus instructions does not exceed a certain threshold.
2552   unsigned NumBonusInsts = 0;
2553   for (auto I = BB->begin(); Cond != &*I; ++I) {
2554     // Ignore dbg intrinsics.
2555     if (isa<DbgInfoIntrinsic>(I))
2556       continue;
2557     if (!I->hasOneUse() || !isSafeToSpeculativelyExecute(&*I))
2558       return false;
2559     // I has only one use and can be executed unconditionally.
2560     Instruction *User = dyn_cast<Instruction>(I->user_back());
2561     if (User == nullptr || User->getParent() != BB)
2562       return false;
2563     // I is used in the same BB. Since BI uses Cond and doesn't have more slots
2564     // to use any other instruction, User must be an instruction between next(I)
2565     // and Cond.
2566     ++NumBonusInsts;
2567     // Early exits once we reach the limit.
2568     if (NumBonusInsts > BonusInstThreshold)
2569       return false;
2570   }
2571 
2572   // Cond is known to be a compare or binary operator.  Check to make sure that
2573   // neither operand is a potentially-trapping constant expression.
2574   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0)))
2575     if (CE->canTrap())
2576       return false;
2577   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1)))
2578     if (CE->canTrap())
2579       return false;
2580 
2581   // Finally, don't infinitely unroll conditional loops.
2582   BasicBlock *TrueDest = BI->getSuccessor(0);
2583   BasicBlock *FalseDest = (BI->isConditional()) ? BI->getSuccessor(1) : nullptr;
2584   if (TrueDest == BB || FalseDest == BB)
2585     return false;
2586 
2587   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
2588     BasicBlock *PredBlock = *PI;
2589     BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator());
2590 
2591     // Check that we have two conditional branches.  If there is a PHI node in
2592     // the common successor, verify that the same value flows in from both
2593     // blocks.
2594     SmallVector<PHINode *, 4> PHIs;
2595     if (!PBI || PBI->isUnconditional() ||
2596         (BI->isConditional() && !SafeToMergeTerminators(BI, PBI)) ||
2597         (!BI->isConditional() &&
2598          !isProfitableToFoldUnconditional(BI, PBI, Cond, PHIs)))
2599       continue;
2600 
2601     // Determine if the two branches share a common destination.
2602     Instruction::BinaryOps Opc = Instruction::BinaryOpsEnd;
2603     bool InvertPredCond = false;
2604 
2605     if (BI->isConditional()) {
2606       if (PBI->getSuccessor(0) == TrueDest) {
2607         Opc = Instruction::Or;
2608       } else if (PBI->getSuccessor(1) == FalseDest) {
2609         Opc = Instruction::And;
2610       } else if (PBI->getSuccessor(0) == FalseDest) {
2611         Opc = Instruction::And;
2612         InvertPredCond = true;
2613       } else if (PBI->getSuccessor(1) == TrueDest) {
2614         Opc = Instruction::Or;
2615         InvertPredCond = true;
2616       } else {
2617         continue;
2618       }
2619     } else {
2620       if (PBI->getSuccessor(0) != TrueDest && PBI->getSuccessor(1) != TrueDest)
2621         continue;
2622     }
2623 
2624     DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB);
2625     IRBuilder<> Builder(PBI);
2626 
2627     // If we need to invert the condition in the pred block to match, do so now.
2628     if (InvertPredCond) {
2629       Value *NewCond = PBI->getCondition();
2630 
2631       if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) {
2632         CmpInst *CI = cast<CmpInst>(NewCond);
2633         CI->setPredicate(CI->getInversePredicate());
2634       } else {
2635         NewCond =
2636             Builder.CreateNot(NewCond, PBI->getCondition()->getName() + ".not");
2637       }
2638 
2639       PBI->setCondition(NewCond);
2640       PBI->swapSuccessors();
2641     }
2642 
2643     // If we have bonus instructions, clone them into the predecessor block.
2644     // Note that there may be multiple predecessor blocks, so we cannot move
2645     // bonus instructions to a predecessor block.
2646     ValueToValueMapTy VMap; // maps original values to cloned values
2647     // We already make sure Cond is the last instruction before BI. Therefore,
2648     // all instructions before Cond other than DbgInfoIntrinsic are bonus
2649     // instructions.
2650     for (auto BonusInst = BB->begin(); Cond != &*BonusInst; ++BonusInst) {
2651       if (isa<DbgInfoIntrinsic>(BonusInst))
2652         continue;
2653       Instruction *NewBonusInst = BonusInst->clone();
2654       RemapInstruction(NewBonusInst, VMap,
2655                        RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
2656       VMap[&*BonusInst] = NewBonusInst;
2657 
2658       // If we moved a load, we cannot any longer claim any knowledge about
2659       // its potential value. The previous information might have been valid
2660       // only given the branch precondition.
2661       // For an analogous reason, we must also drop all the metadata whose
2662       // semantics we don't understand.
2663       NewBonusInst->dropUnknownNonDebugMetadata();
2664 
2665       PredBlock->getInstList().insert(PBI->getIterator(), NewBonusInst);
2666       NewBonusInst->takeName(&*BonusInst);
2667       BonusInst->setName(BonusInst->getName() + ".old");
2668     }
2669 
2670     // Clone Cond into the predecessor basic block, and or/and the
2671     // two conditions together.
2672     Instruction *New = Cond->clone();
2673     RemapInstruction(New, VMap,
2674                      RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
2675     PredBlock->getInstList().insert(PBI->getIterator(), New);
2676     New->takeName(Cond);
2677     Cond->setName(New->getName() + ".old");
2678 
2679     if (BI->isConditional()) {
2680       Instruction *NewCond = cast<Instruction>(
2681           Builder.CreateBinOp(Opc, PBI->getCondition(), New, "or.cond"));
2682       PBI->setCondition(NewCond);
2683 
2684       uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
2685       bool HasWeights =
2686           extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
2687                                  SuccTrueWeight, SuccFalseWeight);
2688       SmallVector<uint64_t, 8> NewWeights;
2689 
2690       if (PBI->getSuccessor(0) == BB) {
2691         if (HasWeights) {
2692           // PBI: br i1 %x, BB, FalseDest
2693           // BI:  br i1 %y, TrueDest, FalseDest
2694           // TrueWeight is TrueWeight for PBI * TrueWeight for BI.
2695           NewWeights.push_back(PredTrueWeight * SuccTrueWeight);
2696           // FalseWeight is FalseWeight for PBI * TotalWeight for BI +
2697           //               TrueWeight for PBI * FalseWeight for BI.
2698           // We assume that total weights of a BranchInst can fit into 32 bits.
2699           // Therefore, we will not have overflow using 64-bit arithmetic.
2700           NewWeights.push_back(PredFalseWeight *
2701                                    (SuccFalseWeight + SuccTrueWeight) +
2702                                PredTrueWeight * SuccFalseWeight);
2703         }
2704         AddPredecessorToBlock(TrueDest, PredBlock, BB);
2705         PBI->setSuccessor(0, TrueDest);
2706       }
2707       if (PBI->getSuccessor(1) == BB) {
2708         if (HasWeights) {
2709           // PBI: br i1 %x, TrueDest, BB
2710           // BI:  br i1 %y, TrueDest, FalseDest
2711           // TrueWeight is TrueWeight for PBI * TotalWeight for BI +
2712           //              FalseWeight for PBI * TrueWeight for BI.
2713           NewWeights.push_back(PredTrueWeight *
2714                                    (SuccFalseWeight + SuccTrueWeight) +
2715                                PredFalseWeight * SuccTrueWeight);
2716           // FalseWeight is FalseWeight for PBI * FalseWeight for BI.
2717           NewWeights.push_back(PredFalseWeight * SuccFalseWeight);
2718         }
2719         AddPredecessorToBlock(FalseDest, PredBlock, BB);
2720         PBI->setSuccessor(1, FalseDest);
2721       }
2722       if (NewWeights.size() == 2) {
2723         // Halve the weights if any of them cannot fit in an uint32_t
2724         FitWeights(NewWeights);
2725 
2726         SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(),
2727                                            NewWeights.end());
2728         PBI->setMetadata(
2729             LLVMContext::MD_prof,
2730             MDBuilder(BI->getContext()).createBranchWeights(MDWeights));
2731       } else
2732         PBI->setMetadata(LLVMContext::MD_prof, nullptr);
2733     } else {
2734       // Update PHI nodes in the common successors.
2735       for (unsigned i = 0, e = PHIs.size(); i != e; ++i) {
2736         ConstantInt *PBI_C = cast<ConstantInt>(
2737             PHIs[i]->getIncomingValueForBlock(PBI->getParent()));
2738         assert(PBI_C->getType()->isIntegerTy(1));
2739         Instruction *MergedCond = nullptr;
2740         if (PBI->getSuccessor(0) == TrueDest) {
2741           // Create (PBI_Cond and PBI_C) or (!PBI_Cond and BI_Value)
2742           // PBI_C is true: PBI_Cond or (!PBI_Cond and BI_Value)
2743           //       is false: !PBI_Cond and BI_Value
2744           Instruction *NotCond = cast<Instruction>(
2745               Builder.CreateNot(PBI->getCondition(), "not.cond"));
2746           MergedCond = cast<Instruction>(
2747               Builder.CreateBinOp(Instruction::And, NotCond, New, "and.cond"));
2748           if (PBI_C->isOne())
2749             MergedCond = cast<Instruction>(Builder.CreateBinOp(
2750                 Instruction::Or, PBI->getCondition(), MergedCond, "or.cond"));
2751         } else {
2752           // Create (PBI_Cond and BI_Value) or (!PBI_Cond and PBI_C)
2753           // PBI_C is true: (PBI_Cond and BI_Value) or (!PBI_Cond)
2754           //       is false: PBI_Cond and BI_Value
2755           MergedCond = cast<Instruction>(Builder.CreateBinOp(
2756               Instruction::And, PBI->getCondition(), New, "and.cond"));
2757           if (PBI_C->isOne()) {
2758             Instruction *NotCond = cast<Instruction>(
2759                 Builder.CreateNot(PBI->getCondition(), "not.cond"));
2760             MergedCond = cast<Instruction>(Builder.CreateBinOp(
2761                 Instruction::Or, NotCond, MergedCond, "or.cond"));
2762           }
2763         }
2764         // Update PHI Node.
2765         PHIs[i]->setIncomingValue(PHIs[i]->getBasicBlockIndex(PBI->getParent()),
2766                                   MergedCond);
2767       }
2768       // Change PBI from Conditional to Unconditional.
2769       BranchInst *New_PBI = BranchInst::Create(TrueDest, PBI);
2770       EraseTerminatorInstAndDCECond(PBI);
2771       PBI = New_PBI;
2772     }
2773 
2774     // If BI was a loop latch, it may have had associated loop metadata.
2775     // We need to copy it to the new latch, that is, PBI.
2776     if (MDNode *LoopMD = BI->getMetadata(LLVMContext::MD_loop))
2777       PBI->setMetadata(LLVMContext::MD_loop, LoopMD);
2778 
2779     // TODO: If BB is reachable from all paths through PredBlock, then we
2780     // could replace PBI's branch probabilities with BI's.
2781 
2782     // Copy any debug value intrinsics into the end of PredBlock.
2783     for (Instruction &I : *BB)
2784       if (isa<DbgInfoIntrinsic>(I))
2785         I.clone()->insertBefore(PBI);
2786 
2787     return true;
2788   }
2789   return false;
2790 }
2791 
2792 // If there is only one store in BB1 and BB2, return it, otherwise return
2793 // nullptr.
2794 static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) {
2795   StoreInst *S = nullptr;
2796   for (auto *BB : {BB1, BB2}) {
2797     if (!BB)
2798       continue;
2799     for (auto &I : *BB)
2800       if (auto *SI = dyn_cast<StoreInst>(&I)) {
2801         if (S)
2802           // Multiple stores seen.
2803           return nullptr;
2804         else
2805           S = SI;
2806       }
2807   }
2808   return S;
2809 }
2810 
2811 static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB,
2812                                               Value *AlternativeV = nullptr) {
2813   // PHI is going to be a PHI node that allows the value V that is defined in
2814   // BB to be referenced in BB's only successor.
2815   //
2816   // If AlternativeV is nullptr, the only value we care about in PHI is V. It
2817   // doesn't matter to us what the other operand is (it'll never get used). We
2818   // could just create a new PHI with an undef incoming value, but that could
2819   // increase register pressure if EarlyCSE/InstCombine can't fold it with some
2820   // other PHI. So here we directly look for some PHI in BB's successor with V
2821   // as an incoming operand. If we find one, we use it, else we create a new
2822   // one.
2823   //
2824   // If AlternativeV is not nullptr, we care about both incoming values in PHI.
2825   // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV]
2826   // where OtherBB is the single other predecessor of BB's only successor.
2827   PHINode *PHI = nullptr;
2828   BasicBlock *Succ = BB->getSingleSuccessor();
2829 
2830   for (auto I = Succ->begin(); isa<PHINode>(I); ++I)
2831     if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) {
2832       PHI = cast<PHINode>(I);
2833       if (!AlternativeV)
2834         break;
2835 
2836       assert(std::distance(pred_begin(Succ), pred_end(Succ)) == 2);
2837       auto PredI = pred_begin(Succ);
2838       BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI;
2839       if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV)
2840         break;
2841       PHI = nullptr;
2842     }
2843   if (PHI)
2844     return PHI;
2845 
2846   // If V is not an instruction defined in BB, just return it.
2847   if (!AlternativeV &&
2848       (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB))
2849     return V;
2850 
2851   PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge", &Succ->front());
2852   PHI->addIncoming(V, BB);
2853   for (BasicBlock *PredBB : predecessors(Succ))
2854     if (PredBB != BB)
2855       PHI->addIncoming(
2856           AlternativeV ? AlternativeV : UndefValue::get(V->getType()), PredBB);
2857   return PHI;
2858 }
2859 
2860 static bool mergeConditionalStoreToAddress(BasicBlock *PTB, BasicBlock *PFB,
2861                                            BasicBlock *QTB, BasicBlock *QFB,
2862                                            BasicBlock *PostBB, Value *Address,
2863                                            bool InvertPCond, bool InvertQCond,
2864                                            const DataLayout &DL) {
2865   auto IsaBitcastOfPointerType = [](const Instruction &I) {
2866     return Operator::getOpcode(&I) == Instruction::BitCast &&
2867            I.getType()->isPointerTy();
2868   };
2869 
2870   // If we're not in aggressive mode, we only optimize if we have some
2871   // confidence that by optimizing we'll allow P and/or Q to be if-converted.
2872   auto IsWorthwhile = [&](BasicBlock *BB) {
2873     if (!BB)
2874       return true;
2875     // Heuristic: if the block can be if-converted/phi-folded and the
2876     // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to
2877     // thread this store.
2878     unsigned N = 0;
2879     for (auto &I : *BB) {
2880       // Cheap instructions viable for folding.
2881       if (isa<BinaryOperator>(I) || isa<GetElementPtrInst>(I) ||
2882           isa<StoreInst>(I))
2883         ++N;
2884       // Free instructions.
2885       else if (isa<TerminatorInst>(I) || isa<DbgInfoIntrinsic>(I) ||
2886                IsaBitcastOfPointerType(I))
2887         continue;
2888       else
2889         return false;
2890     }
2891     return N <= PHINodeFoldingThreshold;
2892   };
2893 
2894   if (!MergeCondStoresAggressively &&
2895       (!IsWorthwhile(PTB) || !IsWorthwhile(PFB) || !IsWorthwhile(QTB) ||
2896        !IsWorthwhile(QFB)))
2897     return false;
2898 
2899   // For every pointer, there must be exactly two stores, one coming from
2900   // PTB or PFB, and the other from QTB or QFB. We don't support more than one
2901   // store (to any address) in PTB,PFB or QTB,QFB.
2902   // FIXME: We could relax this restriction with a bit more work and performance
2903   // testing.
2904   StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB);
2905   StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB);
2906   if (!PStore || !QStore)
2907     return false;
2908 
2909   // Now check the stores are compatible.
2910   if (!QStore->isUnordered() || !PStore->isUnordered())
2911     return false;
2912 
2913   // Check that sinking the store won't cause program behavior changes. Sinking
2914   // the store out of the Q blocks won't change any behavior as we're sinking
2915   // from a block to its unconditional successor. But we're moving a store from
2916   // the P blocks down through the middle block (QBI) and past both QFB and QTB.
2917   // So we need to check that there are no aliasing loads or stores in
2918   // QBI, QTB and QFB. We also need to check there are no conflicting memory
2919   // operations between PStore and the end of its parent block.
2920   //
2921   // The ideal way to do this is to query AliasAnalysis, but we don't
2922   // preserve AA currently so that is dangerous. Be super safe and just
2923   // check there are no other memory operations at all.
2924   for (auto &I : *QFB->getSinglePredecessor())
2925     if (I.mayReadOrWriteMemory())
2926       return false;
2927   for (auto &I : *QFB)
2928     if (&I != QStore && I.mayReadOrWriteMemory())
2929       return false;
2930   if (QTB)
2931     for (auto &I : *QTB)
2932       if (&I != QStore && I.mayReadOrWriteMemory())
2933         return false;
2934   for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end();
2935        I != E; ++I)
2936     if (&*I != PStore && I->mayReadOrWriteMemory())
2937       return false;
2938 
2939   // OK, we're going to sink the stores to PostBB. The store has to be
2940   // conditional though, so first create the predicate.
2941   Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator())
2942                      ->getCondition();
2943   Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator())
2944                      ->getCondition();
2945 
2946   Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(),
2947                                                 PStore->getParent());
2948   Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(),
2949                                                 QStore->getParent(), PPHI);
2950 
2951   IRBuilder<> QB(&*PostBB->getFirstInsertionPt());
2952 
2953   Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond);
2954   Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond);
2955 
2956   if (InvertPCond)
2957     PPred = QB.CreateNot(PPred);
2958   if (InvertQCond)
2959     QPred = QB.CreateNot(QPred);
2960   Value *CombinedPred = QB.CreateOr(PPred, QPred);
2961 
2962   auto *T =
2963       SplitBlockAndInsertIfThen(CombinedPred, &*QB.GetInsertPoint(), false);
2964   QB.SetInsertPoint(T);
2965   StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address));
2966   AAMDNodes AAMD;
2967   PStore->getAAMetadata(AAMD, /*Merge=*/false);
2968   PStore->getAAMetadata(AAMD, /*Merge=*/true);
2969   SI->setAAMetadata(AAMD);
2970   unsigned PAlignment = PStore->getAlignment();
2971   unsigned QAlignment = QStore->getAlignment();
2972   unsigned TypeAlignment =
2973       DL.getABITypeAlignment(SI->getValueOperand()->getType());
2974   unsigned MinAlignment;
2975   unsigned MaxAlignment;
2976   std::tie(MinAlignment, MaxAlignment) = std::minmax(PAlignment, QAlignment);
2977   // Choose the minimum alignment. If we could prove both stores execute, we
2978   // could use biggest one.  In this case, though, we only know that one of the
2979   // stores executes.  And we don't know it's safe to take the alignment from a
2980   // store that doesn't execute.
2981   if (MinAlignment != 0) {
2982     // Choose the minimum of all non-zero alignments.
2983     SI->setAlignment(MinAlignment);
2984   } else if (MaxAlignment != 0) {
2985     // Choose the minimal alignment between the non-zero alignment and the ABI
2986     // default alignment for the type of the stored value.
2987     SI->setAlignment(std::min(MaxAlignment, TypeAlignment));
2988   } else {
2989     // If both alignments are zero, use ABI default alignment for the type of
2990     // the stored value.
2991     SI->setAlignment(TypeAlignment);
2992   }
2993 
2994   QStore->eraseFromParent();
2995   PStore->eraseFromParent();
2996 
2997   return true;
2998 }
2999 
3000 static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI,
3001                                    const DataLayout &DL) {
3002   // The intention here is to find diamonds or triangles (see below) where each
3003   // conditional block contains a store to the same address. Both of these
3004   // stores are conditional, so they can't be unconditionally sunk. But it may
3005   // be profitable to speculatively sink the stores into one merged store at the
3006   // end, and predicate the merged store on the union of the two conditions of
3007   // PBI and QBI.
3008   //
3009   // This can reduce the number of stores executed if both of the conditions are
3010   // true, and can allow the blocks to become small enough to be if-converted.
3011   // This optimization will also chain, so that ladders of test-and-set
3012   // sequences can be if-converted away.
3013   //
3014   // We only deal with simple diamonds or triangles:
3015   //
3016   //     PBI       or      PBI        or a combination of the two
3017   //    /   \               | \
3018   //   PTB  PFB             |  PFB
3019   //    \   /               | /
3020   //     QBI                QBI
3021   //    /  \                | \
3022   //   QTB  QFB             |  QFB
3023   //    \  /                | /
3024   //    PostBB            PostBB
3025   //
3026   // We model triangles as a type of diamond with a nullptr "true" block.
3027   // Triangles are canonicalized so that the fallthrough edge is represented by
3028   // a true condition, as in the diagram above.
3029   //
3030   BasicBlock *PTB = PBI->getSuccessor(0);
3031   BasicBlock *PFB = PBI->getSuccessor(1);
3032   BasicBlock *QTB = QBI->getSuccessor(0);
3033   BasicBlock *QFB = QBI->getSuccessor(1);
3034   BasicBlock *PostBB = QFB->getSingleSuccessor();
3035 
3036   // Make sure we have a good guess for PostBB. If QTB's only successor is
3037   // QFB, then QFB is a better PostBB.
3038   if (QTB->getSingleSuccessor() == QFB)
3039     PostBB = QFB;
3040 
3041   // If we couldn't find a good PostBB, stop.
3042   if (!PostBB)
3043     return false;
3044 
3045   bool InvertPCond = false, InvertQCond = false;
3046   // Canonicalize fallthroughs to the true branches.
3047   if (PFB == QBI->getParent()) {
3048     std::swap(PFB, PTB);
3049     InvertPCond = true;
3050   }
3051   if (QFB == PostBB) {
3052     std::swap(QFB, QTB);
3053     InvertQCond = true;
3054   }
3055 
3056   // From this point on we can assume PTB or QTB may be fallthroughs but PFB
3057   // and QFB may not. Model fallthroughs as a nullptr block.
3058   if (PTB == QBI->getParent())
3059     PTB = nullptr;
3060   if (QTB == PostBB)
3061     QTB = nullptr;
3062 
3063   // Legality bailouts. We must have at least the non-fallthrough blocks and
3064   // the post-dominating block, and the non-fallthroughs must only have one
3065   // predecessor.
3066   auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) {
3067     return BB->getSinglePredecessor() == P && BB->getSingleSuccessor() == S;
3068   };
3069   if (!HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) ||
3070       !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB))
3071     return false;
3072   if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) ||
3073       (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB)))
3074     return false;
3075   if (!PostBB->hasNUses(2) || !QBI->getParent()->hasNUses(2))
3076     return false;
3077 
3078   // OK, this is a sequence of two diamonds or triangles.
3079   // Check if there are stores in PTB or PFB that are repeated in QTB or QFB.
3080   SmallPtrSet<Value *, 4> PStoreAddresses, QStoreAddresses;
3081   for (auto *BB : {PTB, PFB}) {
3082     if (!BB)
3083       continue;
3084     for (auto &I : *BB)
3085       if (StoreInst *SI = dyn_cast<StoreInst>(&I))
3086         PStoreAddresses.insert(SI->getPointerOperand());
3087   }
3088   for (auto *BB : {QTB, QFB}) {
3089     if (!BB)
3090       continue;
3091     for (auto &I : *BB)
3092       if (StoreInst *SI = dyn_cast<StoreInst>(&I))
3093         QStoreAddresses.insert(SI->getPointerOperand());
3094   }
3095 
3096   set_intersect(PStoreAddresses, QStoreAddresses);
3097   // set_intersect mutates PStoreAddresses in place. Rename it here to make it
3098   // clear what it contains.
3099   auto &CommonAddresses = PStoreAddresses;
3100 
3101   bool Changed = false;
3102   for (auto *Address : CommonAddresses)
3103     Changed |= mergeConditionalStoreToAddress(
3104         PTB, PFB, QTB, QFB, PostBB, Address, InvertPCond, InvertQCond, DL);
3105   return Changed;
3106 }
3107 
3108 /// If we have a conditional branch as a predecessor of another block,
3109 /// this function tries to simplify it.  We know
3110 /// that PBI and BI are both conditional branches, and BI is in one of the
3111 /// successor blocks of PBI - PBI branches to BI.
3112 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI,
3113                                            const DataLayout &DL) {
3114   assert(PBI->isConditional() && BI->isConditional());
3115   BasicBlock *BB = BI->getParent();
3116 
3117   // If this block ends with a branch instruction, and if there is a
3118   // predecessor that ends on a branch of the same condition, make
3119   // this conditional branch redundant.
3120   if (PBI->getCondition() == BI->getCondition() &&
3121       PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
3122     // Okay, the outcome of this conditional branch is statically
3123     // knowable.  If this block had a single pred, handle specially.
3124     if (BB->getSinglePredecessor()) {
3125       // Turn this into a branch on constant.
3126       bool CondIsTrue = PBI->getSuccessor(0) == BB;
3127       BI->setCondition(
3128           ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue));
3129       return true; // Nuke the branch on constant.
3130     }
3131 
3132     // Otherwise, if there are multiple predecessors, insert a PHI that merges
3133     // in the constant and simplify the block result.  Subsequent passes of
3134     // simplifycfg will thread the block.
3135     if (BlockIsSimpleEnoughToThreadThrough(BB)) {
3136       pred_iterator PB = pred_begin(BB), PE = pred_end(BB);
3137       PHINode *NewPN = PHINode::Create(
3138           Type::getInt1Ty(BB->getContext()), std::distance(PB, PE),
3139           BI->getCondition()->getName() + ".pr", &BB->front());
3140       // Okay, we're going to insert the PHI node.  Since PBI is not the only
3141       // predecessor, compute the PHI'd conditional value for all of the preds.
3142       // Any predecessor where the condition is not computable we keep symbolic.
3143       for (pred_iterator PI = PB; PI != PE; ++PI) {
3144         BasicBlock *P = *PI;
3145         if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) && PBI != BI &&
3146             PBI->isConditional() && PBI->getCondition() == BI->getCondition() &&
3147             PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
3148           bool CondIsTrue = PBI->getSuccessor(0) == BB;
3149           NewPN->addIncoming(
3150               ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue),
3151               P);
3152         } else {
3153           NewPN->addIncoming(BI->getCondition(), P);
3154         }
3155       }
3156 
3157       BI->setCondition(NewPN);
3158       return true;
3159     }
3160   }
3161 
3162   if (auto *CE = dyn_cast<ConstantExpr>(BI->getCondition()))
3163     if (CE->canTrap())
3164       return false;
3165 
3166   // If both branches are conditional and both contain stores to the same
3167   // address, remove the stores from the conditionals and create a conditional
3168   // merged store at the end.
3169   if (MergeCondStores && mergeConditionalStores(PBI, BI, DL))
3170     return true;
3171 
3172   // If this is a conditional branch in an empty block, and if any
3173   // predecessors are a conditional branch to one of our destinations,
3174   // fold the conditions into logical ops and one cond br.
3175   BasicBlock::iterator BBI = BB->begin();
3176   // Ignore dbg intrinsics.
3177   while (isa<DbgInfoIntrinsic>(BBI))
3178     ++BBI;
3179   if (&*BBI != BI)
3180     return false;
3181 
3182   int PBIOp, BIOp;
3183   if (PBI->getSuccessor(0) == BI->getSuccessor(0)) {
3184     PBIOp = 0;
3185     BIOp = 0;
3186   } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) {
3187     PBIOp = 0;
3188     BIOp = 1;
3189   } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) {
3190     PBIOp = 1;
3191     BIOp = 0;
3192   } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) {
3193     PBIOp = 1;
3194     BIOp = 1;
3195   } else {
3196     return false;
3197   }
3198 
3199   // Check to make sure that the other destination of this branch
3200   // isn't BB itself.  If so, this is an infinite loop that will
3201   // keep getting unwound.
3202   if (PBI->getSuccessor(PBIOp) == BB)
3203     return false;
3204 
3205   // Do not perform this transformation if it would require
3206   // insertion of a large number of select instructions. For targets
3207   // without predication/cmovs, this is a big pessimization.
3208 
3209   // Also do not perform this transformation if any phi node in the common
3210   // destination block can trap when reached by BB or PBB (PR17073). In that
3211   // case, it would be unsafe to hoist the operation into a select instruction.
3212 
3213   BasicBlock *CommonDest = PBI->getSuccessor(PBIOp);
3214   unsigned NumPhis = 0;
3215   for (BasicBlock::iterator II = CommonDest->begin(); isa<PHINode>(II);
3216        ++II, ++NumPhis) {
3217     if (NumPhis > 2) // Disable this xform.
3218       return false;
3219 
3220     PHINode *PN = cast<PHINode>(II);
3221     Value *BIV = PN->getIncomingValueForBlock(BB);
3222     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BIV))
3223       if (CE->canTrap())
3224         return false;
3225 
3226     unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
3227     Value *PBIV = PN->getIncomingValue(PBBIdx);
3228     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(PBIV))
3229       if (CE->canTrap())
3230         return false;
3231   }
3232 
3233   // Finally, if everything is ok, fold the branches to logical ops.
3234   BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1);
3235 
3236   DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent()
3237                << "AND: " << *BI->getParent());
3238 
3239   // If OtherDest *is* BB, then BB is a basic block with a single conditional
3240   // branch in it, where one edge (OtherDest) goes back to itself but the other
3241   // exits.  We don't *know* that the program avoids the infinite loop
3242   // (even though that seems likely).  If we do this xform naively, we'll end up
3243   // recursively unpeeling the loop.  Since we know that (after the xform is
3244   // done) that the block *is* infinite if reached, we just make it an obviously
3245   // infinite loop with no cond branch.
3246   if (OtherDest == BB) {
3247     // Insert it at the end of the function, because it's either code,
3248     // or it won't matter if it's hot. :)
3249     BasicBlock *InfLoopBlock =
3250         BasicBlock::Create(BB->getContext(), "infloop", BB->getParent());
3251     BranchInst::Create(InfLoopBlock, InfLoopBlock);
3252     OtherDest = InfLoopBlock;
3253   }
3254 
3255   DEBUG(dbgs() << *PBI->getParent()->getParent());
3256 
3257   // BI may have other predecessors.  Because of this, we leave
3258   // it alone, but modify PBI.
3259 
3260   // Make sure we get to CommonDest on True&True directions.
3261   Value *PBICond = PBI->getCondition();
3262   IRBuilder<NoFolder> Builder(PBI);
3263   if (PBIOp)
3264     PBICond = Builder.CreateNot(PBICond, PBICond->getName() + ".not");
3265 
3266   Value *BICond = BI->getCondition();
3267   if (BIOp)
3268     BICond = Builder.CreateNot(BICond, BICond->getName() + ".not");
3269 
3270   // Merge the conditions.
3271   Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge");
3272 
3273   // Modify PBI to branch on the new condition to the new dests.
3274   PBI->setCondition(Cond);
3275   PBI->setSuccessor(0, CommonDest);
3276   PBI->setSuccessor(1, OtherDest);
3277 
3278   // Update branch weight for PBI.
3279   uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
3280   uint64_t PredCommon, PredOther, SuccCommon, SuccOther;
3281   bool HasWeights =
3282       extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
3283                              SuccTrueWeight, SuccFalseWeight);
3284   if (HasWeights) {
3285     PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
3286     PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
3287     SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
3288     SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
3289     // The weight to CommonDest should be PredCommon * SuccTotal +
3290     //                                    PredOther * SuccCommon.
3291     // The weight to OtherDest should be PredOther * SuccOther.
3292     uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) +
3293                                   PredOther * SuccCommon,
3294                               PredOther * SuccOther};
3295     // Halve the weights if any of them cannot fit in an uint32_t
3296     FitWeights(NewWeights);
3297 
3298     PBI->setMetadata(LLVMContext::MD_prof,
3299                      MDBuilder(BI->getContext())
3300                          .createBranchWeights(NewWeights[0], NewWeights[1]));
3301   }
3302 
3303   // OtherDest may have phi nodes.  If so, add an entry from PBI's
3304   // block that are identical to the entries for BI's block.
3305   AddPredecessorToBlock(OtherDest, PBI->getParent(), BB);
3306 
3307   // We know that the CommonDest already had an edge from PBI to
3308   // it.  If it has PHIs though, the PHIs may have different
3309   // entries for BB and PBI's BB.  If so, insert a select to make
3310   // them agree.
3311   PHINode *PN;
3312   for (BasicBlock::iterator II = CommonDest->begin();
3313        (PN = dyn_cast<PHINode>(II)); ++II) {
3314     Value *BIV = PN->getIncomingValueForBlock(BB);
3315     unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
3316     Value *PBIV = PN->getIncomingValue(PBBIdx);
3317     if (BIV != PBIV) {
3318       // Insert a select in PBI to pick the right value.
3319       SelectInst *NV = cast<SelectInst>(
3320           Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName() + ".mux"));
3321       PN->setIncomingValue(PBBIdx, NV);
3322       // Although the select has the same condition as PBI, the original branch
3323       // weights for PBI do not apply to the new select because the select's
3324       // 'logical' edges are incoming edges of the phi that is eliminated, not
3325       // the outgoing edges of PBI.
3326       if (HasWeights) {
3327         uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
3328         uint64_t PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
3329         uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
3330         uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
3331         // The weight to PredCommonDest should be PredCommon * SuccTotal.
3332         // The weight to PredOtherDest should be PredOther * SuccCommon.
3333         uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther),
3334                                   PredOther * SuccCommon};
3335 
3336         FitWeights(NewWeights);
3337 
3338         NV->setMetadata(LLVMContext::MD_prof,
3339                         MDBuilder(BI->getContext())
3340                             .createBranchWeights(NewWeights[0], NewWeights[1]));
3341       }
3342     }
3343   }
3344 
3345   DEBUG(dbgs() << "INTO: " << *PBI->getParent());
3346   DEBUG(dbgs() << *PBI->getParent()->getParent());
3347 
3348   // This basic block is probably dead.  We know it has at least
3349   // one fewer predecessor.
3350   return true;
3351 }
3352 
3353 // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is
3354 // true or to FalseBB if Cond is false.
3355 // Takes care of updating the successors and removing the old terminator.
3356 // Also makes sure not to introduce new successors by assuming that edges to
3357 // non-successor TrueBBs and FalseBBs aren't reachable.
3358 static bool SimplifyTerminatorOnSelect(TerminatorInst *OldTerm, Value *Cond,
3359                                        BasicBlock *TrueBB, BasicBlock *FalseBB,
3360                                        uint32_t TrueWeight,
3361                                        uint32_t FalseWeight) {
3362   // Remove any superfluous successor edges from the CFG.
3363   // First, figure out which successors to preserve.
3364   // If TrueBB and FalseBB are equal, only try to preserve one copy of that
3365   // successor.
3366   BasicBlock *KeepEdge1 = TrueBB;
3367   BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr;
3368 
3369   // Then remove the rest.
3370   for (BasicBlock *Succ : OldTerm->successors()) {
3371     // Make sure only to keep exactly one copy of each edge.
3372     if (Succ == KeepEdge1)
3373       KeepEdge1 = nullptr;
3374     else if (Succ == KeepEdge2)
3375       KeepEdge2 = nullptr;
3376     else
3377       Succ->removePredecessor(OldTerm->getParent(),
3378                               /*DontDeleteUselessPHIs=*/true);
3379   }
3380 
3381   IRBuilder<> Builder(OldTerm);
3382   Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc());
3383 
3384   // Insert an appropriate new terminator.
3385   if (!KeepEdge1 && !KeepEdge2) {
3386     if (TrueBB == FalseBB)
3387       // We were only looking for one successor, and it was present.
3388       // Create an unconditional branch to it.
3389       Builder.CreateBr(TrueBB);
3390     else {
3391       // We found both of the successors we were looking for.
3392       // Create a conditional branch sharing the condition of the select.
3393       BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB);
3394       if (TrueWeight != FalseWeight)
3395         NewBI->setMetadata(LLVMContext::MD_prof,
3396                            MDBuilder(OldTerm->getContext())
3397                                .createBranchWeights(TrueWeight, FalseWeight));
3398     }
3399   } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) {
3400     // Neither of the selected blocks were successors, so this
3401     // terminator must be unreachable.
3402     new UnreachableInst(OldTerm->getContext(), OldTerm);
3403   } else {
3404     // One of the selected values was a successor, but the other wasn't.
3405     // Insert an unconditional branch to the one that was found;
3406     // the edge to the one that wasn't must be unreachable.
3407     if (!KeepEdge1)
3408       // Only TrueBB was found.
3409       Builder.CreateBr(TrueBB);
3410     else
3411       // Only FalseBB was found.
3412       Builder.CreateBr(FalseBB);
3413   }
3414 
3415   EraseTerminatorInstAndDCECond(OldTerm);
3416   return true;
3417 }
3418 
3419 // Replaces
3420 //   (switch (select cond, X, Y)) on constant X, Y
3421 // with a branch - conditional if X and Y lead to distinct BBs,
3422 // unconditional otherwise.
3423 static bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select) {
3424   // Check for constant integer values in the select.
3425   ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue());
3426   ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue());
3427   if (!TrueVal || !FalseVal)
3428     return false;
3429 
3430   // Find the relevant condition and destinations.
3431   Value *Condition = Select->getCondition();
3432   BasicBlock *TrueBB = SI->findCaseValue(TrueVal)->getCaseSuccessor();
3433   BasicBlock *FalseBB = SI->findCaseValue(FalseVal)->getCaseSuccessor();
3434 
3435   // Get weight for TrueBB and FalseBB.
3436   uint32_t TrueWeight = 0, FalseWeight = 0;
3437   SmallVector<uint64_t, 8> Weights;
3438   bool HasWeights = HasBranchWeights(SI);
3439   if (HasWeights) {
3440     GetBranchWeights(SI, Weights);
3441     if (Weights.size() == 1 + SI->getNumCases()) {
3442       TrueWeight =
3443           (uint32_t)Weights[SI->findCaseValue(TrueVal)->getSuccessorIndex()];
3444       FalseWeight =
3445           (uint32_t)Weights[SI->findCaseValue(FalseVal)->getSuccessorIndex()];
3446     }
3447   }
3448 
3449   // Perform the actual simplification.
3450   return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, TrueWeight,
3451                                     FalseWeight);
3452 }
3453 
3454 // Replaces
3455 //   (indirectbr (select cond, blockaddress(@fn, BlockA),
3456 //                             blockaddress(@fn, BlockB)))
3457 // with
3458 //   (br cond, BlockA, BlockB).
3459 static bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI) {
3460   // Check that both operands of the select are block addresses.
3461   BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue());
3462   BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue());
3463   if (!TBA || !FBA)
3464     return false;
3465 
3466   // Extract the actual blocks.
3467   BasicBlock *TrueBB = TBA->getBasicBlock();
3468   BasicBlock *FalseBB = FBA->getBasicBlock();
3469 
3470   // Perform the actual simplification.
3471   return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 0,
3472                                     0);
3473 }
3474 
3475 /// This is called when we find an icmp instruction
3476 /// (a seteq/setne with a constant) as the only instruction in a
3477 /// block that ends with an uncond branch.  We are looking for a very specific
3478 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified.  In
3479 /// this case, we merge the first two "or's of icmp" into a switch, but then the
3480 /// default value goes to an uncond block with a seteq in it, we get something
3481 /// like:
3482 ///
3483 ///   switch i8 %A, label %DEFAULT [ i8 1, label %end    i8 2, label %end ]
3484 /// DEFAULT:
3485 ///   %tmp = icmp eq i8 %A, 92
3486 ///   br label %end
3487 /// end:
3488 ///   ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ]
3489 ///
3490 /// We prefer to split the edge to 'end' so that there is a true/false entry to
3491 /// the PHI, merging the third icmp into the switch.
3492 static bool TryToSimplifyUncondBranchWithICmpInIt(
3493     ICmpInst *ICI, IRBuilder<> &Builder, const DataLayout &DL,
3494     const TargetTransformInfo &TTI, unsigned BonusInstThreshold,
3495     AssumptionCache *AC) {
3496   BasicBlock *BB = ICI->getParent();
3497 
3498   // If the block has any PHIs in it or the icmp has multiple uses, it is too
3499   // complex.
3500   if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse())
3501     return false;
3502 
3503   Value *V = ICI->getOperand(0);
3504   ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1));
3505 
3506   // The pattern we're looking for is where our only predecessor is a switch on
3507   // 'V' and this block is the default case for the switch.  In this case we can
3508   // fold the compared value into the switch to simplify things.
3509   BasicBlock *Pred = BB->getSinglePredecessor();
3510   if (!Pred || !isa<SwitchInst>(Pred->getTerminator()))
3511     return false;
3512 
3513   SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator());
3514   if (SI->getCondition() != V)
3515     return false;
3516 
3517   // If BB is reachable on a non-default case, then we simply know the value of
3518   // V in this block.  Substitute it and constant fold the icmp instruction
3519   // away.
3520   if (SI->getDefaultDest() != BB) {
3521     ConstantInt *VVal = SI->findCaseDest(BB);
3522     assert(VVal && "Should have a unique destination value");
3523     ICI->setOperand(0, VVal);
3524 
3525     if (Value *V = SimplifyInstruction(ICI, {DL, ICI})) {
3526       ICI->replaceAllUsesWith(V);
3527       ICI->eraseFromParent();
3528     }
3529     // BB is now empty, so it is likely to simplify away.
3530     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
3531   }
3532 
3533   // Ok, the block is reachable from the default dest.  If the constant we're
3534   // comparing exists in one of the other edges, then we can constant fold ICI
3535   // and zap it.
3536   if (SI->findCaseValue(Cst) != SI->case_default()) {
3537     Value *V;
3538     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
3539       V = ConstantInt::getFalse(BB->getContext());
3540     else
3541       V = ConstantInt::getTrue(BB->getContext());
3542 
3543     ICI->replaceAllUsesWith(V);
3544     ICI->eraseFromParent();
3545     // BB is now empty, so it is likely to simplify away.
3546     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
3547   }
3548 
3549   // The use of the icmp has to be in the 'end' block, by the only PHI node in
3550   // the block.
3551   BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0);
3552   PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back());
3553   if (PHIUse == nullptr || PHIUse != &SuccBlock->front() ||
3554       isa<PHINode>(++BasicBlock::iterator(PHIUse)))
3555     return false;
3556 
3557   // If the icmp is a SETEQ, then the default dest gets false, the new edge gets
3558   // true in the PHI.
3559   Constant *DefaultCst = ConstantInt::getTrue(BB->getContext());
3560   Constant *NewCst = ConstantInt::getFalse(BB->getContext());
3561 
3562   if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
3563     std::swap(DefaultCst, NewCst);
3564 
3565   // Replace ICI (which is used by the PHI for the default value) with true or
3566   // false depending on if it is EQ or NE.
3567   ICI->replaceAllUsesWith(DefaultCst);
3568   ICI->eraseFromParent();
3569 
3570   // Okay, the switch goes to this block on a default value.  Add an edge from
3571   // the switch to the merge point on the compared value.
3572   BasicBlock *NewBB =
3573       BasicBlock::Create(BB->getContext(), "switch.edge", BB->getParent(), BB);
3574   SmallVector<uint64_t, 8> Weights;
3575   bool HasWeights = HasBranchWeights(SI);
3576   if (HasWeights) {
3577     GetBranchWeights(SI, Weights);
3578     if (Weights.size() == 1 + SI->getNumCases()) {
3579       // Split weight for default case to case for "Cst".
3580       Weights[0] = (Weights[0] + 1) >> 1;
3581       Weights.push_back(Weights[0]);
3582 
3583       SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
3584       SI->setMetadata(
3585           LLVMContext::MD_prof,
3586           MDBuilder(SI->getContext()).createBranchWeights(MDWeights));
3587     }
3588   }
3589   SI->addCase(Cst, NewBB);
3590 
3591   // NewBB branches to the phi block, add the uncond branch and the phi entry.
3592   Builder.SetInsertPoint(NewBB);
3593   Builder.SetCurrentDebugLocation(SI->getDebugLoc());
3594   Builder.CreateBr(SuccBlock);
3595   PHIUse->addIncoming(NewCst, NewBB);
3596   return true;
3597 }
3598 
3599 /// The specified branch is a conditional branch.
3600 /// Check to see if it is branching on an or/and chain of icmp instructions, and
3601 /// fold it into a switch instruction if so.
3602 static bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder,
3603                                       const DataLayout &DL) {
3604   Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
3605   if (!Cond)
3606     return false;
3607 
3608   // Change br (X == 0 | X == 1), T, F into a switch instruction.
3609   // If this is a bunch of seteq's or'd together, or if it's a bunch of
3610   // 'setne's and'ed together, collect them.
3611 
3612   // Try to gather values from a chain of and/or to be turned into a switch
3613   ConstantComparesGatherer ConstantCompare(Cond, DL);
3614   // Unpack the result
3615   SmallVectorImpl<ConstantInt *> &Values = ConstantCompare.Vals;
3616   Value *CompVal = ConstantCompare.CompValue;
3617   unsigned UsedICmps = ConstantCompare.UsedICmps;
3618   Value *ExtraCase = ConstantCompare.Extra;
3619 
3620   // If we didn't have a multiply compared value, fail.
3621   if (!CompVal)
3622     return false;
3623 
3624   // Avoid turning single icmps into a switch.
3625   if (UsedICmps <= 1)
3626     return false;
3627 
3628   bool TrueWhenEqual = (Cond->getOpcode() == Instruction::Or);
3629 
3630   // There might be duplicate constants in the list, which the switch
3631   // instruction can't handle, remove them now.
3632   array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate);
3633   Values.erase(std::unique(Values.begin(), Values.end()), Values.end());
3634 
3635   // If Extra was used, we require at least two switch values to do the
3636   // transformation.  A switch with one value is just a conditional branch.
3637   if (ExtraCase && Values.size() < 2)
3638     return false;
3639 
3640   // TODO: Preserve branch weight metadata, similarly to how
3641   // FoldValueComparisonIntoPredecessors preserves it.
3642 
3643   // Figure out which block is which destination.
3644   BasicBlock *DefaultBB = BI->getSuccessor(1);
3645   BasicBlock *EdgeBB = BI->getSuccessor(0);
3646   if (!TrueWhenEqual)
3647     std::swap(DefaultBB, EdgeBB);
3648 
3649   BasicBlock *BB = BI->getParent();
3650 
3651   DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size()
3652                << " cases into SWITCH.  BB is:\n"
3653                << *BB);
3654 
3655   // If there are any extra values that couldn't be folded into the switch
3656   // then we evaluate them with an explicit branch first.  Split the block
3657   // right before the condbr to handle it.
3658   if (ExtraCase) {
3659     BasicBlock *NewBB =
3660         BB->splitBasicBlock(BI->getIterator(), "switch.early.test");
3661     // Remove the uncond branch added to the old block.
3662     TerminatorInst *OldTI = BB->getTerminator();
3663     Builder.SetInsertPoint(OldTI);
3664 
3665     if (TrueWhenEqual)
3666       Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB);
3667     else
3668       Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB);
3669 
3670     OldTI->eraseFromParent();
3671 
3672     // If there are PHI nodes in EdgeBB, then we need to add a new entry to them
3673     // for the edge we just added.
3674     AddPredecessorToBlock(EdgeBB, BB, NewBB);
3675 
3676     DEBUG(dbgs() << "  ** 'icmp' chain unhandled condition: " << *ExtraCase
3677                  << "\nEXTRABB = " << *BB);
3678     BB = NewBB;
3679   }
3680 
3681   Builder.SetInsertPoint(BI);
3682   // Convert pointer to int before we switch.
3683   if (CompVal->getType()->isPointerTy()) {
3684     CompVal = Builder.CreatePtrToInt(
3685         CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr");
3686   }
3687 
3688   // Create the new switch instruction now.
3689   SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size());
3690 
3691   // Add all of the 'cases' to the switch instruction.
3692   for (unsigned i = 0, e = Values.size(); i != e; ++i)
3693     New->addCase(Values[i], EdgeBB);
3694 
3695   // We added edges from PI to the EdgeBB.  As such, if there were any
3696   // PHI nodes in EdgeBB, they need entries to be added corresponding to
3697   // the number of edges added.
3698   for (BasicBlock::iterator BBI = EdgeBB->begin(); isa<PHINode>(BBI); ++BBI) {
3699     PHINode *PN = cast<PHINode>(BBI);
3700     Value *InVal = PN->getIncomingValueForBlock(BB);
3701     for (unsigned i = 0, e = Values.size() - 1; i != e; ++i)
3702       PN->addIncoming(InVal, BB);
3703   }
3704 
3705   // Erase the old branch instruction.
3706   EraseTerminatorInstAndDCECond(BI);
3707 
3708   DEBUG(dbgs() << "  ** 'icmp' chain result is:\n" << *BB << '\n');
3709   return true;
3710 }
3711 
3712 bool SimplifyCFGOpt::SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder) {
3713   if (isa<PHINode>(RI->getValue()))
3714     return SimplifyCommonResume(RI);
3715   else if (isa<LandingPadInst>(RI->getParent()->getFirstNonPHI()) &&
3716            RI->getValue() == RI->getParent()->getFirstNonPHI())
3717     // The resume must unwind the exception that caused control to branch here.
3718     return SimplifySingleResume(RI);
3719 
3720   return false;
3721 }
3722 
3723 // Simplify resume that is shared by several landing pads (phi of landing pad).
3724 bool SimplifyCFGOpt::SimplifyCommonResume(ResumeInst *RI) {
3725   BasicBlock *BB = RI->getParent();
3726 
3727   // Check that there are no other instructions except for debug intrinsics
3728   // between the phi of landing pads (RI->getValue()) and resume instruction.
3729   BasicBlock::iterator I = cast<Instruction>(RI->getValue())->getIterator(),
3730                        E = RI->getIterator();
3731   while (++I != E)
3732     if (!isa<DbgInfoIntrinsic>(I))
3733       return false;
3734 
3735   SmallSetVector<BasicBlock *, 4> TrivialUnwindBlocks;
3736   auto *PhiLPInst = cast<PHINode>(RI->getValue());
3737 
3738   // Check incoming blocks to see if any of them are trivial.
3739   for (unsigned Idx = 0, End = PhiLPInst->getNumIncomingValues(); Idx != End;
3740        Idx++) {
3741     auto *IncomingBB = PhiLPInst->getIncomingBlock(Idx);
3742     auto *IncomingValue = PhiLPInst->getIncomingValue(Idx);
3743 
3744     // If the block has other successors, we can not delete it because
3745     // it has other dependents.
3746     if (IncomingBB->getUniqueSuccessor() != BB)
3747       continue;
3748 
3749     auto *LandingPad = dyn_cast<LandingPadInst>(IncomingBB->getFirstNonPHI());
3750     // Not the landing pad that caused the control to branch here.
3751     if (IncomingValue != LandingPad)
3752       continue;
3753 
3754     bool isTrivial = true;
3755 
3756     I = IncomingBB->getFirstNonPHI()->getIterator();
3757     E = IncomingBB->getTerminator()->getIterator();
3758     while (++I != E)
3759       if (!isa<DbgInfoIntrinsic>(I)) {
3760         isTrivial = false;
3761         break;
3762       }
3763 
3764     if (isTrivial)
3765       TrivialUnwindBlocks.insert(IncomingBB);
3766   }
3767 
3768   // If no trivial unwind blocks, don't do any simplifications.
3769   if (TrivialUnwindBlocks.empty())
3770     return false;
3771 
3772   // Turn all invokes that unwind here into calls.
3773   for (auto *TrivialBB : TrivialUnwindBlocks) {
3774     // Blocks that will be simplified should be removed from the phi node.
3775     // Note there could be multiple edges to the resume block, and we need
3776     // to remove them all.
3777     while (PhiLPInst->getBasicBlockIndex(TrivialBB) != -1)
3778       BB->removePredecessor(TrivialBB, true);
3779 
3780     for (pred_iterator PI = pred_begin(TrivialBB), PE = pred_end(TrivialBB);
3781          PI != PE;) {
3782       BasicBlock *Pred = *PI++;
3783       removeUnwindEdge(Pred);
3784     }
3785 
3786     // In each SimplifyCFG run, only the current processed block can be erased.
3787     // Otherwise, it will break the iteration of SimplifyCFG pass. So instead
3788     // of erasing TrivialBB, we only remove the branch to the common resume
3789     // block so that we can later erase the resume block since it has no
3790     // predecessors.
3791     TrivialBB->getTerminator()->eraseFromParent();
3792     new UnreachableInst(RI->getContext(), TrivialBB);
3793   }
3794 
3795   // Delete the resume block if all its predecessors have been removed.
3796   if (pred_empty(BB))
3797     BB->eraseFromParent();
3798 
3799   return !TrivialUnwindBlocks.empty();
3800 }
3801 
3802 // Simplify resume that is only used by a single (non-phi) landing pad.
3803 bool SimplifyCFGOpt::SimplifySingleResume(ResumeInst *RI) {
3804   BasicBlock *BB = RI->getParent();
3805   LandingPadInst *LPInst = dyn_cast<LandingPadInst>(BB->getFirstNonPHI());
3806   assert(RI->getValue() == LPInst &&
3807          "Resume must unwind the exception that caused control to here");
3808 
3809   // Check that there are no other instructions except for debug intrinsics.
3810   BasicBlock::iterator I = LPInst->getIterator(), E = RI->getIterator();
3811   while (++I != E)
3812     if (!isa<DbgInfoIntrinsic>(I))
3813       return false;
3814 
3815   // Turn all invokes that unwind here into calls and delete the basic block.
3816   for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) {
3817     BasicBlock *Pred = *PI++;
3818     removeUnwindEdge(Pred);
3819   }
3820 
3821   // The landingpad is now unreachable.  Zap it.
3822   BB->eraseFromParent();
3823   if (LoopHeaders)
3824     LoopHeaders->erase(BB);
3825   return true;
3826 }
3827 
3828 static bool removeEmptyCleanup(CleanupReturnInst *RI) {
3829   // If this is a trivial cleanup pad that executes no instructions, it can be
3830   // eliminated.  If the cleanup pad continues to the caller, any predecessor
3831   // that is an EH pad will be updated to continue to the caller and any
3832   // predecessor that terminates with an invoke instruction will have its invoke
3833   // instruction converted to a call instruction.  If the cleanup pad being
3834   // simplified does not continue to the caller, each predecessor will be
3835   // updated to continue to the unwind destination of the cleanup pad being
3836   // simplified.
3837   BasicBlock *BB = RI->getParent();
3838   CleanupPadInst *CPInst = RI->getCleanupPad();
3839   if (CPInst->getParent() != BB)
3840     // This isn't an empty cleanup.
3841     return false;
3842 
3843   // We cannot kill the pad if it has multiple uses.  This typically arises
3844   // from unreachable basic blocks.
3845   if (!CPInst->hasOneUse())
3846     return false;
3847 
3848   // Check that there are no other instructions except for benign intrinsics.
3849   BasicBlock::iterator I = CPInst->getIterator(), E = RI->getIterator();
3850   while (++I != E) {
3851     auto *II = dyn_cast<IntrinsicInst>(I);
3852     if (!II)
3853       return false;
3854 
3855     Intrinsic::ID IntrinsicID = II->getIntrinsicID();
3856     switch (IntrinsicID) {
3857     case Intrinsic::dbg_declare:
3858     case Intrinsic::dbg_value:
3859     case Intrinsic::lifetime_end:
3860       break;
3861     default:
3862       return false;
3863     }
3864   }
3865 
3866   // If the cleanup return we are simplifying unwinds to the caller, this will
3867   // set UnwindDest to nullptr.
3868   BasicBlock *UnwindDest = RI->getUnwindDest();
3869   Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr;
3870 
3871   // We're about to remove BB from the control flow.  Before we do, sink any
3872   // PHINodes into the unwind destination.  Doing this before changing the
3873   // control flow avoids some potentially slow checks, since we can currently
3874   // be certain that UnwindDest and BB have no common predecessors (since they
3875   // are both EH pads).
3876   if (UnwindDest) {
3877     // First, go through the PHI nodes in UnwindDest and update any nodes that
3878     // reference the block we are removing
3879     for (BasicBlock::iterator I = UnwindDest->begin(),
3880                               IE = DestEHPad->getIterator();
3881          I != IE; ++I) {
3882       PHINode *DestPN = cast<PHINode>(I);
3883 
3884       int Idx = DestPN->getBasicBlockIndex(BB);
3885       // Since BB unwinds to UnwindDest, it has to be in the PHI node.
3886       assert(Idx != -1);
3887       // This PHI node has an incoming value that corresponds to a control
3888       // path through the cleanup pad we are removing.  If the incoming
3889       // value is in the cleanup pad, it must be a PHINode (because we
3890       // verified above that the block is otherwise empty).  Otherwise, the
3891       // value is either a constant or a value that dominates the cleanup
3892       // pad being removed.
3893       //
3894       // Because BB and UnwindDest are both EH pads, all of their
3895       // predecessors must unwind to these blocks, and since no instruction
3896       // can have multiple unwind destinations, there will be no overlap in
3897       // incoming blocks between SrcPN and DestPN.
3898       Value *SrcVal = DestPN->getIncomingValue(Idx);
3899       PHINode *SrcPN = dyn_cast<PHINode>(SrcVal);
3900 
3901       // Remove the entry for the block we are deleting.
3902       DestPN->removeIncomingValue(Idx, false);
3903 
3904       if (SrcPN && SrcPN->getParent() == BB) {
3905         // If the incoming value was a PHI node in the cleanup pad we are
3906         // removing, we need to merge that PHI node's incoming values into
3907         // DestPN.
3908         for (unsigned SrcIdx = 0, SrcE = SrcPN->getNumIncomingValues();
3909              SrcIdx != SrcE; ++SrcIdx) {
3910           DestPN->addIncoming(SrcPN->getIncomingValue(SrcIdx),
3911                               SrcPN->getIncomingBlock(SrcIdx));
3912         }
3913       } else {
3914         // Otherwise, the incoming value came from above BB and
3915         // so we can just reuse it.  We must associate all of BB's
3916         // predecessors with this value.
3917         for (auto *pred : predecessors(BB)) {
3918           DestPN->addIncoming(SrcVal, pred);
3919         }
3920       }
3921     }
3922 
3923     // Sink any remaining PHI nodes directly into UnwindDest.
3924     Instruction *InsertPt = DestEHPad;
3925     for (BasicBlock::iterator I = BB->begin(),
3926                               IE = BB->getFirstNonPHI()->getIterator();
3927          I != IE;) {
3928       // The iterator must be incremented here because the instructions are
3929       // being moved to another block.
3930       PHINode *PN = cast<PHINode>(I++);
3931       if (PN->use_empty())
3932         // If the PHI node has no uses, just leave it.  It will be erased
3933         // when we erase BB below.
3934         continue;
3935 
3936       // Otherwise, sink this PHI node into UnwindDest.
3937       // Any predecessors to UnwindDest which are not already represented
3938       // must be back edges which inherit the value from the path through
3939       // BB.  In this case, the PHI value must reference itself.
3940       for (auto *pred : predecessors(UnwindDest))
3941         if (pred != BB)
3942           PN->addIncoming(PN, pred);
3943       PN->moveBefore(InsertPt);
3944     }
3945   }
3946 
3947   for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) {
3948     // The iterator must be updated here because we are removing this pred.
3949     BasicBlock *PredBB = *PI++;
3950     if (UnwindDest == nullptr) {
3951       removeUnwindEdge(PredBB);
3952     } else {
3953       TerminatorInst *TI = PredBB->getTerminator();
3954       TI->replaceUsesOfWith(BB, UnwindDest);
3955     }
3956   }
3957 
3958   // The cleanup pad is now unreachable.  Zap it.
3959   BB->eraseFromParent();
3960   return true;
3961 }
3962 
3963 // Try to merge two cleanuppads together.
3964 static bool mergeCleanupPad(CleanupReturnInst *RI) {
3965   // Skip any cleanuprets which unwind to caller, there is nothing to merge
3966   // with.
3967   BasicBlock *UnwindDest = RI->getUnwindDest();
3968   if (!UnwindDest)
3969     return false;
3970 
3971   // This cleanupret isn't the only predecessor of this cleanuppad, it wouldn't
3972   // be safe to merge without code duplication.
3973   if (UnwindDest->getSinglePredecessor() != RI->getParent())
3974     return false;
3975 
3976   // Verify that our cleanuppad's unwind destination is another cleanuppad.
3977   auto *SuccessorCleanupPad = dyn_cast<CleanupPadInst>(&UnwindDest->front());
3978   if (!SuccessorCleanupPad)
3979     return false;
3980 
3981   CleanupPadInst *PredecessorCleanupPad = RI->getCleanupPad();
3982   // Replace any uses of the successor cleanupad with the predecessor pad
3983   // The only cleanuppad uses should be this cleanupret, it's cleanupret and
3984   // funclet bundle operands.
3985   SuccessorCleanupPad->replaceAllUsesWith(PredecessorCleanupPad);
3986   // Remove the old cleanuppad.
3987   SuccessorCleanupPad->eraseFromParent();
3988   // Now, we simply replace the cleanupret with a branch to the unwind
3989   // destination.
3990   BranchInst::Create(UnwindDest, RI->getParent());
3991   RI->eraseFromParent();
3992 
3993   return true;
3994 }
3995 
3996 bool SimplifyCFGOpt::SimplifyCleanupReturn(CleanupReturnInst *RI) {
3997   // It is possible to transiantly have an undef cleanuppad operand because we
3998   // have deleted some, but not all, dead blocks.
3999   // Eventually, this block will be deleted.
4000   if (isa<UndefValue>(RI->getOperand(0)))
4001     return false;
4002 
4003   if (mergeCleanupPad(RI))
4004     return true;
4005 
4006   if (removeEmptyCleanup(RI))
4007     return true;
4008 
4009   return false;
4010 }
4011 
4012 bool SimplifyCFGOpt::SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) {
4013   BasicBlock *BB = RI->getParent();
4014   if (!BB->getFirstNonPHIOrDbg()->isTerminator())
4015     return false;
4016 
4017   // Find predecessors that end with branches.
4018   SmallVector<BasicBlock *, 8> UncondBranchPreds;
4019   SmallVector<BranchInst *, 8> CondBranchPreds;
4020   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
4021     BasicBlock *P = *PI;
4022     TerminatorInst *PTI = P->getTerminator();
4023     if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) {
4024       if (BI->isUnconditional())
4025         UncondBranchPreds.push_back(P);
4026       else
4027         CondBranchPreds.push_back(BI);
4028     }
4029   }
4030 
4031   // If we found some, do the transformation!
4032   if (!UncondBranchPreds.empty() && DupRet) {
4033     while (!UncondBranchPreds.empty()) {
4034       BasicBlock *Pred = UncondBranchPreds.pop_back_val();
4035       DEBUG(dbgs() << "FOLDING: " << *BB
4036                    << "INTO UNCOND BRANCH PRED: " << *Pred);
4037       (void)FoldReturnIntoUncondBranch(RI, BB, Pred);
4038     }
4039 
4040     // If we eliminated all predecessors of the block, delete the block now.
4041     if (pred_empty(BB)) {
4042       // We know there are no successors, so just nuke the block.
4043       BB->eraseFromParent();
4044       if (LoopHeaders)
4045         LoopHeaders->erase(BB);
4046     }
4047 
4048     return true;
4049   }
4050 
4051   // Check out all of the conditional branches going to this return
4052   // instruction.  If any of them just select between returns, change the
4053   // branch itself into a select/return pair.
4054   while (!CondBranchPreds.empty()) {
4055     BranchInst *BI = CondBranchPreds.pop_back_val();
4056 
4057     // Check to see if the non-BB successor is also a return block.
4058     if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) &&
4059         isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) &&
4060         SimplifyCondBranchToTwoReturns(BI, Builder))
4061       return true;
4062   }
4063   return false;
4064 }
4065 
4066 bool SimplifyCFGOpt::SimplifyUnreachable(UnreachableInst *UI) {
4067   BasicBlock *BB = UI->getParent();
4068 
4069   bool Changed = false;
4070 
4071   // If there are any instructions immediately before the unreachable that can
4072   // be removed, do so.
4073   while (UI->getIterator() != BB->begin()) {
4074     BasicBlock::iterator BBI = UI->getIterator();
4075     --BBI;
4076     // Do not delete instructions that can have side effects which might cause
4077     // the unreachable to not be reachable; specifically, calls and volatile
4078     // operations may have this effect.
4079     if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI))
4080       break;
4081 
4082     if (BBI->mayHaveSideEffects()) {
4083       if (auto *SI = dyn_cast<StoreInst>(BBI)) {
4084         if (SI->isVolatile())
4085           break;
4086       } else if (auto *LI = dyn_cast<LoadInst>(BBI)) {
4087         if (LI->isVolatile())
4088           break;
4089       } else if (auto *RMWI = dyn_cast<AtomicRMWInst>(BBI)) {
4090         if (RMWI->isVolatile())
4091           break;
4092       } else if (auto *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) {
4093         if (CXI->isVolatile())
4094           break;
4095       } else if (isa<CatchPadInst>(BBI)) {
4096         // A catchpad may invoke exception object constructors and such, which
4097         // in some languages can be arbitrary code, so be conservative by
4098         // default.
4099         // For CoreCLR, it just involves a type test, so can be removed.
4100         if (classifyEHPersonality(BB->getParent()->getPersonalityFn()) !=
4101             EHPersonality::CoreCLR)
4102           break;
4103       } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) &&
4104                  !isa<LandingPadInst>(BBI)) {
4105         break;
4106       }
4107       // Note that deleting LandingPad's here is in fact okay, although it
4108       // involves a bit of subtle reasoning. If this inst is a LandingPad,
4109       // all the predecessors of this block will be the unwind edges of Invokes,
4110       // and we can therefore guarantee this block will be erased.
4111     }
4112 
4113     // Delete this instruction (any uses are guaranteed to be dead)
4114     if (!BBI->use_empty())
4115       BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
4116     BBI->eraseFromParent();
4117     Changed = true;
4118   }
4119 
4120   // If the unreachable instruction is the first in the block, take a gander
4121   // at all of the predecessors of this instruction, and simplify them.
4122   if (&BB->front() != UI)
4123     return Changed;
4124 
4125   SmallVector<BasicBlock *, 8> Preds(pred_begin(BB), pred_end(BB));
4126   for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
4127     TerminatorInst *TI = Preds[i]->getTerminator();
4128     IRBuilder<> Builder(TI);
4129     if (auto *BI = dyn_cast<BranchInst>(TI)) {
4130       if (BI->isUnconditional()) {
4131         if (BI->getSuccessor(0) == BB) {
4132           new UnreachableInst(TI->getContext(), TI);
4133           TI->eraseFromParent();
4134           Changed = true;
4135         }
4136       } else {
4137         if (BI->getSuccessor(0) == BB) {
4138           Builder.CreateBr(BI->getSuccessor(1));
4139           EraseTerminatorInstAndDCECond(BI);
4140         } else if (BI->getSuccessor(1) == BB) {
4141           Builder.CreateBr(BI->getSuccessor(0));
4142           EraseTerminatorInstAndDCECond(BI);
4143           Changed = true;
4144         }
4145       }
4146     } else if (auto *SI = dyn_cast<SwitchInst>(TI)) {
4147       for (auto i = SI->case_begin(), e = SI->case_end(); i != e;) {
4148         if (i->getCaseSuccessor() != BB) {
4149           ++i;
4150           continue;
4151         }
4152         BB->removePredecessor(SI->getParent());
4153         i = SI->removeCase(i);
4154         e = SI->case_end();
4155         Changed = true;
4156       }
4157     } else if (auto *II = dyn_cast<InvokeInst>(TI)) {
4158       if (II->getUnwindDest() == BB) {
4159         removeUnwindEdge(TI->getParent());
4160         Changed = true;
4161       }
4162     } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) {
4163       if (CSI->getUnwindDest() == BB) {
4164         removeUnwindEdge(TI->getParent());
4165         Changed = true;
4166         continue;
4167       }
4168 
4169       for (CatchSwitchInst::handler_iterator I = CSI->handler_begin(),
4170                                              E = CSI->handler_end();
4171            I != E; ++I) {
4172         if (*I == BB) {
4173           CSI->removeHandler(I);
4174           --I;
4175           --E;
4176           Changed = true;
4177         }
4178       }
4179       if (CSI->getNumHandlers() == 0) {
4180         BasicBlock *CatchSwitchBB = CSI->getParent();
4181         if (CSI->hasUnwindDest()) {
4182           // Redirect preds to the unwind dest
4183           CatchSwitchBB->replaceAllUsesWith(CSI->getUnwindDest());
4184         } else {
4185           // Rewrite all preds to unwind to caller (or from invoke to call).
4186           SmallVector<BasicBlock *, 8> EHPreds(predecessors(CatchSwitchBB));
4187           for (BasicBlock *EHPred : EHPreds)
4188             removeUnwindEdge(EHPred);
4189         }
4190         // The catchswitch is no longer reachable.
4191         new UnreachableInst(CSI->getContext(), CSI);
4192         CSI->eraseFromParent();
4193         Changed = true;
4194       }
4195     } else if (isa<CleanupReturnInst>(TI)) {
4196       new UnreachableInst(TI->getContext(), TI);
4197       TI->eraseFromParent();
4198       Changed = true;
4199     }
4200   }
4201 
4202   // If this block is now dead, remove it.
4203   if (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) {
4204     // We know there are no successors, so just nuke the block.
4205     BB->eraseFromParent();
4206     if (LoopHeaders)
4207       LoopHeaders->erase(BB);
4208     return true;
4209   }
4210 
4211   return Changed;
4212 }
4213 
4214 static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) {
4215   assert(Cases.size() >= 1);
4216 
4217   array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate);
4218   for (size_t I = 1, E = Cases.size(); I != E; ++I) {
4219     if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1)
4220       return false;
4221   }
4222   return true;
4223 }
4224 
4225 /// Turn a switch with two reachable destinations into an integer range
4226 /// comparison and branch.
4227 static bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder) {
4228   assert(SI->getNumCases() > 1 && "Degenerate switch?");
4229 
4230   bool HasDefault =
4231       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
4232 
4233   // Partition the cases into two sets with different destinations.
4234   BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr;
4235   BasicBlock *DestB = nullptr;
4236   SmallVector<ConstantInt *, 16> CasesA;
4237   SmallVector<ConstantInt *, 16> CasesB;
4238 
4239   for (auto Case : SI->cases()) {
4240     BasicBlock *Dest = Case.getCaseSuccessor();
4241     if (!DestA)
4242       DestA = Dest;
4243     if (Dest == DestA) {
4244       CasesA.push_back(Case.getCaseValue());
4245       continue;
4246     }
4247     if (!DestB)
4248       DestB = Dest;
4249     if (Dest == DestB) {
4250       CasesB.push_back(Case.getCaseValue());
4251       continue;
4252     }
4253     return false; // More than two destinations.
4254   }
4255 
4256   assert(DestA && DestB &&
4257          "Single-destination switch should have been folded.");
4258   assert(DestA != DestB);
4259   assert(DestB != SI->getDefaultDest());
4260   assert(!CasesB.empty() && "There must be non-default cases.");
4261   assert(!CasesA.empty() || HasDefault);
4262 
4263   // Figure out if one of the sets of cases form a contiguous range.
4264   SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr;
4265   BasicBlock *ContiguousDest = nullptr;
4266   BasicBlock *OtherDest = nullptr;
4267   if (!CasesA.empty() && CasesAreContiguous(CasesA)) {
4268     ContiguousCases = &CasesA;
4269     ContiguousDest = DestA;
4270     OtherDest = DestB;
4271   } else if (CasesAreContiguous(CasesB)) {
4272     ContiguousCases = &CasesB;
4273     ContiguousDest = DestB;
4274     OtherDest = DestA;
4275   } else
4276     return false;
4277 
4278   // Start building the compare and branch.
4279 
4280   Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back());
4281   Constant *NumCases =
4282       ConstantInt::get(Offset->getType(), ContiguousCases->size());
4283 
4284   Value *Sub = SI->getCondition();
4285   if (!Offset->isNullValue())
4286     Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off");
4287 
4288   Value *Cmp;
4289   // If NumCases overflowed, then all possible values jump to the successor.
4290   if (NumCases->isNullValue() && !ContiguousCases->empty())
4291     Cmp = ConstantInt::getTrue(SI->getContext());
4292   else
4293     Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch");
4294   BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest);
4295 
4296   // Update weight for the newly-created conditional branch.
4297   if (HasBranchWeights(SI)) {
4298     SmallVector<uint64_t, 8> Weights;
4299     GetBranchWeights(SI, Weights);
4300     if (Weights.size() == 1 + SI->getNumCases()) {
4301       uint64_t TrueWeight = 0;
4302       uint64_t FalseWeight = 0;
4303       for (size_t I = 0, E = Weights.size(); I != E; ++I) {
4304         if (SI->getSuccessor(I) == ContiguousDest)
4305           TrueWeight += Weights[I];
4306         else
4307           FalseWeight += Weights[I];
4308       }
4309       while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) {
4310         TrueWeight /= 2;
4311         FalseWeight /= 2;
4312       }
4313       NewBI->setMetadata(LLVMContext::MD_prof,
4314                          MDBuilder(SI->getContext())
4315                              .createBranchWeights((uint32_t)TrueWeight,
4316                                                   (uint32_t)FalseWeight));
4317     }
4318   }
4319 
4320   // Prune obsolete incoming values off the successors' PHI nodes.
4321   for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) {
4322     unsigned PreviousEdges = ContiguousCases->size();
4323     if (ContiguousDest == SI->getDefaultDest())
4324       ++PreviousEdges;
4325     for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
4326       cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
4327   }
4328   for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) {
4329     unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size();
4330     if (OtherDest == SI->getDefaultDest())
4331       ++PreviousEdges;
4332     for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
4333       cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
4334   }
4335 
4336   // Drop the switch.
4337   SI->eraseFromParent();
4338 
4339   return true;
4340 }
4341 
4342 /// Compute masked bits for the condition of a switch
4343 /// and use it to remove dead cases.
4344 static bool EliminateDeadSwitchCases(SwitchInst *SI, AssumptionCache *AC,
4345                                      const DataLayout &DL) {
4346   Value *Cond = SI->getCondition();
4347   unsigned Bits = Cond->getType()->getIntegerBitWidth();
4348   KnownBits Known = computeKnownBits(Cond, DL, 0, AC, SI);
4349 
4350   // We can also eliminate cases by determining that their values are outside of
4351   // the limited range of the condition based on how many significant (non-sign)
4352   // bits are in the condition value.
4353   unsigned ExtraSignBits = ComputeNumSignBits(Cond, DL, 0, AC, SI) - 1;
4354   unsigned MaxSignificantBitsInCond = Bits - ExtraSignBits;
4355 
4356   // Gather dead cases.
4357   SmallVector<ConstantInt *, 8> DeadCases;
4358   for (auto &Case : SI->cases()) {
4359     const APInt &CaseVal = Case.getCaseValue()->getValue();
4360     if (Known.Zero.intersects(CaseVal) || !Known.One.isSubsetOf(CaseVal) ||
4361         (CaseVal.getMinSignedBits() > MaxSignificantBitsInCond)) {
4362       DeadCases.push_back(Case.getCaseValue());
4363       DEBUG(dbgs() << "SimplifyCFG: switch case " << CaseVal << " is dead.\n");
4364     }
4365   }
4366 
4367   // If we can prove that the cases must cover all possible values, the
4368   // default destination becomes dead and we can remove it.  If we know some
4369   // of the bits in the value, we can use that to more precisely compute the
4370   // number of possible unique case values.
4371   bool HasDefault =
4372       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
4373   const unsigned NumUnknownBits =
4374       Bits - (Known.Zero | Known.One).countPopulation();
4375   assert(NumUnknownBits <= Bits);
4376   if (HasDefault && DeadCases.empty() &&
4377       NumUnknownBits < 64 /* avoid overflow */ &&
4378       SI->getNumCases() == (1ULL << NumUnknownBits)) {
4379     DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n");
4380     BasicBlock *NewDefault =
4381         SplitBlockPredecessors(SI->getDefaultDest(), SI->getParent(), "");
4382     SI->setDefaultDest(&*NewDefault);
4383     SplitBlock(&*NewDefault, &NewDefault->front());
4384     auto *OldTI = NewDefault->getTerminator();
4385     new UnreachableInst(SI->getContext(), OldTI);
4386     EraseTerminatorInstAndDCECond(OldTI);
4387     return true;
4388   }
4389 
4390   SmallVector<uint64_t, 8> Weights;
4391   bool HasWeight = HasBranchWeights(SI);
4392   if (HasWeight) {
4393     GetBranchWeights(SI, Weights);
4394     HasWeight = (Weights.size() == 1 + SI->getNumCases());
4395   }
4396 
4397   // Remove dead cases from the switch.
4398   for (ConstantInt *DeadCase : DeadCases) {
4399     SwitchInst::CaseIt CaseI = SI->findCaseValue(DeadCase);
4400     assert(CaseI != SI->case_default() &&
4401            "Case was not found. Probably mistake in DeadCases forming.");
4402     if (HasWeight) {
4403       std::swap(Weights[CaseI->getCaseIndex() + 1], Weights.back());
4404       Weights.pop_back();
4405     }
4406 
4407     // Prune unused values from PHI nodes.
4408     CaseI->getCaseSuccessor()->removePredecessor(SI->getParent());
4409     SI->removeCase(CaseI);
4410   }
4411   if (HasWeight && Weights.size() >= 2) {
4412     SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
4413     SI->setMetadata(LLVMContext::MD_prof,
4414                     MDBuilder(SI->getParent()->getContext())
4415                         .createBranchWeights(MDWeights));
4416   }
4417 
4418   return !DeadCases.empty();
4419 }
4420 
4421 /// If BB would be eligible for simplification by
4422 /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated
4423 /// by an unconditional branch), look at the phi node for BB in the successor
4424 /// block and see if the incoming value is equal to CaseValue. If so, return
4425 /// the phi node, and set PhiIndex to BB's index in the phi node.
4426 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue,
4427                                               BasicBlock *BB, int *PhiIndex) {
4428   if (BB->getFirstNonPHIOrDbg() != BB->getTerminator())
4429     return nullptr; // BB must be empty to be a candidate for simplification.
4430   if (!BB->getSinglePredecessor())
4431     return nullptr; // BB must be dominated by the switch.
4432 
4433   BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator());
4434   if (!Branch || !Branch->isUnconditional())
4435     return nullptr; // Terminator must be unconditional branch.
4436 
4437   BasicBlock *Succ = Branch->getSuccessor(0);
4438 
4439   BasicBlock::iterator I = Succ->begin();
4440   while (PHINode *PHI = dyn_cast<PHINode>(I++)) {
4441     int Idx = PHI->getBasicBlockIndex(BB);
4442     assert(Idx >= 0 && "PHI has no entry for predecessor?");
4443 
4444     Value *InValue = PHI->getIncomingValue(Idx);
4445     if (InValue != CaseValue)
4446       continue;
4447 
4448     *PhiIndex = Idx;
4449     return PHI;
4450   }
4451 
4452   return nullptr;
4453 }
4454 
4455 /// Try to forward the condition of a switch instruction to a phi node
4456 /// dominated by the switch, if that would mean that some of the destination
4457 /// blocks of the switch can be folded away.
4458 /// Returns true if a change is made.
4459 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) {
4460   typedef DenseMap<PHINode *, SmallVector<int, 4>> ForwardingNodesMap;
4461   ForwardingNodesMap ForwardingNodes;
4462 
4463   for (auto Case : SI->cases()) {
4464     ConstantInt *CaseValue = Case.getCaseValue();
4465     BasicBlock *CaseDest = Case.getCaseSuccessor();
4466 
4467     int PhiIndex;
4468     PHINode *PHI =
4469         FindPHIForConditionForwarding(CaseValue, CaseDest, &PhiIndex);
4470     if (!PHI)
4471       continue;
4472 
4473     ForwardingNodes[PHI].push_back(PhiIndex);
4474   }
4475 
4476   bool Changed = false;
4477 
4478   for (ForwardingNodesMap::iterator I = ForwardingNodes.begin(),
4479                                     E = ForwardingNodes.end();
4480        I != E; ++I) {
4481     PHINode *Phi = I->first;
4482     SmallVectorImpl<int> &Indexes = I->second;
4483 
4484     if (Indexes.size() < 2)
4485       continue;
4486 
4487     for (size_t I = 0, E = Indexes.size(); I != E; ++I)
4488       Phi->setIncomingValue(Indexes[I], SI->getCondition());
4489     Changed = true;
4490   }
4491 
4492   return Changed;
4493 }
4494 
4495 /// Return true if the backend will be able to handle
4496 /// initializing an array of constants like C.
4497 static bool ValidLookupTableConstant(Constant *C, const TargetTransformInfo &TTI) {
4498   if (C->isThreadDependent())
4499     return false;
4500   if (C->isDLLImportDependent())
4501     return false;
4502 
4503   if (!isa<ConstantFP>(C) && !isa<ConstantInt>(C) &&
4504       !isa<ConstantPointerNull>(C) && !isa<GlobalValue>(C) &&
4505       !isa<UndefValue>(C) && !isa<ConstantExpr>(C))
4506     return false;
4507 
4508   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
4509     if (!CE->isGEPWithNoNotionalOverIndexing())
4510       return false;
4511     if (!ValidLookupTableConstant(CE->getOperand(0), TTI))
4512       return false;
4513   }
4514 
4515   if (!TTI.shouldBuildLookupTablesForConstant(C))
4516     return false;
4517 
4518   return true;
4519 }
4520 
4521 /// If V is a Constant, return it. Otherwise, try to look up
4522 /// its constant value in ConstantPool, returning 0 if it's not there.
4523 static Constant *
4524 LookupConstant(Value *V,
4525                const SmallDenseMap<Value *, Constant *> &ConstantPool) {
4526   if (Constant *C = dyn_cast<Constant>(V))
4527     return C;
4528   return ConstantPool.lookup(V);
4529 }
4530 
4531 /// Try to fold instruction I into a constant. This works for
4532 /// simple instructions such as binary operations where both operands are
4533 /// constant or can be replaced by constants from the ConstantPool. Returns the
4534 /// resulting constant on success, 0 otherwise.
4535 static Constant *
4536 ConstantFold(Instruction *I, const DataLayout &DL,
4537              const SmallDenseMap<Value *, Constant *> &ConstantPool) {
4538   if (SelectInst *Select = dyn_cast<SelectInst>(I)) {
4539     Constant *A = LookupConstant(Select->getCondition(), ConstantPool);
4540     if (!A)
4541       return nullptr;
4542     if (A->isAllOnesValue())
4543       return LookupConstant(Select->getTrueValue(), ConstantPool);
4544     if (A->isNullValue())
4545       return LookupConstant(Select->getFalseValue(), ConstantPool);
4546     return nullptr;
4547   }
4548 
4549   SmallVector<Constant *, 4> COps;
4550   for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) {
4551     if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool))
4552       COps.push_back(A);
4553     else
4554       return nullptr;
4555   }
4556 
4557   if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
4558     return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0],
4559                                            COps[1], DL);
4560   }
4561 
4562   return ConstantFoldInstOperands(I, COps, DL);
4563 }
4564 
4565 /// Try to determine the resulting constant values in phi nodes
4566 /// at the common destination basic block, *CommonDest, for one of the case
4567 /// destionations CaseDest corresponding to value CaseVal (0 for the default
4568 /// case), of a switch instruction SI.
4569 static bool
4570 GetCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest,
4571                BasicBlock **CommonDest,
4572                SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res,
4573                const DataLayout &DL, const TargetTransformInfo &TTI) {
4574   // The block from which we enter the common destination.
4575   BasicBlock *Pred = SI->getParent();
4576 
4577   // If CaseDest is empty except for some side-effect free instructions through
4578   // which we can constant-propagate the CaseVal, continue to its successor.
4579   SmallDenseMap<Value *, Constant *> ConstantPool;
4580   ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal));
4581   for (BasicBlock::iterator I = CaseDest->begin(), E = CaseDest->end(); I != E;
4582        ++I) {
4583     if (TerminatorInst *T = dyn_cast<TerminatorInst>(I)) {
4584       // If the terminator is a simple branch, continue to the next block.
4585       if (T->getNumSuccessors() != 1 || T->isExceptional())
4586         return false;
4587       Pred = CaseDest;
4588       CaseDest = T->getSuccessor(0);
4589     } else if (isa<DbgInfoIntrinsic>(I)) {
4590       // Skip debug intrinsic.
4591       continue;
4592     } else if (Constant *C = ConstantFold(&*I, DL, ConstantPool)) {
4593       // Instruction is side-effect free and constant.
4594 
4595       // If the instruction has uses outside this block or a phi node slot for
4596       // the block, it is not safe to bypass the instruction since it would then
4597       // no longer dominate all its uses.
4598       for (auto &Use : I->uses()) {
4599         User *User = Use.getUser();
4600         if (Instruction *I = dyn_cast<Instruction>(User))
4601           if (I->getParent() == CaseDest)
4602             continue;
4603         if (PHINode *Phi = dyn_cast<PHINode>(User))
4604           if (Phi->getIncomingBlock(Use) == CaseDest)
4605             continue;
4606         return false;
4607       }
4608 
4609       ConstantPool.insert(std::make_pair(&*I, C));
4610     } else {
4611       break;
4612     }
4613   }
4614 
4615   // If we did not have a CommonDest before, use the current one.
4616   if (!*CommonDest)
4617     *CommonDest = CaseDest;
4618   // If the destination isn't the common one, abort.
4619   if (CaseDest != *CommonDest)
4620     return false;
4621 
4622   // Get the values for this case from phi nodes in the destination block.
4623   BasicBlock::iterator I = (*CommonDest)->begin();
4624   while (PHINode *PHI = dyn_cast<PHINode>(I++)) {
4625     int Idx = PHI->getBasicBlockIndex(Pred);
4626     if (Idx == -1)
4627       continue;
4628 
4629     Constant *ConstVal =
4630         LookupConstant(PHI->getIncomingValue(Idx), ConstantPool);
4631     if (!ConstVal)
4632       return false;
4633 
4634     // Be conservative about which kinds of constants we support.
4635     if (!ValidLookupTableConstant(ConstVal, TTI))
4636       return false;
4637 
4638     Res.push_back(std::make_pair(PHI, ConstVal));
4639   }
4640 
4641   return Res.size() > 0;
4642 }
4643 
4644 // Helper function used to add CaseVal to the list of cases that generate
4645 // Result.
4646 static void MapCaseToResult(ConstantInt *CaseVal,
4647                             SwitchCaseResultVectorTy &UniqueResults,
4648                             Constant *Result) {
4649   for (auto &I : UniqueResults) {
4650     if (I.first == Result) {
4651       I.second.push_back(CaseVal);
4652       return;
4653     }
4654   }
4655   UniqueResults.push_back(
4656       std::make_pair(Result, SmallVector<ConstantInt *, 4>(1, CaseVal)));
4657 }
4658 
4659 // Helper function that initializes a map containing
4660 // results for the PHI node of the common destination block for a switch
4661 // instruction. Returns false if multiple PHI nodes have been found or if
4662 // there is not a common destination block for the switch.
4663 static bool InitializeUniqueCases(SwitchInst *SI, PHINode *&PHI,
4664                                   BasicBlock *&CommonDest,
4665                                   SwitchCaseResultVectorTy &UniqueResults,
4666                                   Constant *&DefaultResult,
4667                                   const DataLayout &DL,
4668                                   const TargetTransformInfo &TTI) {
4669   for (auto &I : SI->cases()) {
4670     ConstantInt *CaseVal = I.getCaseValue();
4671 
4672     // Resulting value at phi nodes for this case value.
4673     SwitchCaseResultsTy Results;
4674     if (!GetCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results,
4675                         DL, TTI))
4676       return false;
4677 
4678     // Only one value per case is permitted
4679     if (Results.size() > 1)
4680       return false;
4681     MapCaseToResult(CaseVal, UniqueResults, Results.begin()->second);
4682 
4683     // Check the PHI consistency.
4684     if (!PHI)
4685       PHI = Results[0].first;
4686     else if (PHI != Results[0].first)
4687       return false;
4688   }
4689   // Find the default result value.
4690   SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults;
4691   BasicBlock *DefaultDest = SI->getDefaultDest();
4692   GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults,
4693                  DL, TTI);
4694   // If the default value is not found abort unless the default destination
4695   // is unreachable.
4696   DefaultResult =
4697       DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr;
4698   if ((!DefaultResult &&
4699        !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg())))
4700     return false;
4701 
4702   return true;
4703 }
4704 
4705 // Helper function that checks if it is possible to transform a switch with only
4706 // two cases (or two cases + default) that produces a result into a select.
4707 // Example:
4708 // switch (a) {
4709 //   case 10:                %0 = icmp eq i32 %a, 10
4710 //     return 10;            %1 = select i1 %0, i32 10, i32 4
4711 //   case 20:        ---->   %2 = icmp eq i32 %a, 20
4712 //     return 2;             %3 = select i1 %2, i32 2, i32 %1
4713 //   default:
4714 //     return 4;
4715 // }
4716 static Value *ConvertTwoCaseSwitch(const SwitchCaseResultVectorTy &ResultVector,
4717                                    Constant *DefaultResult, Value *Condition,
4718                                    IRBuilder<> &Builder) {
4719   assert(ResultVector.size() == 2 &&
4720          "We should have exactly two unique results at this point");
4721   // If we are selecting between only two cases transform into a simple
4722   // select or a two-way select if default is possible.
4723   if (ResultVector[0].second.size() == 1 &&
4724       ResultVector[1].second.size() == 1) {
4725     ConstantInt *const FirstCase = ResultVector[0].second[0];
4726     ConstantInt *const SecondCase = ResultVector[1].second[0];
4727 
4728     bool DefaultCanTrigger = DefaultResult;
4729     Value *SelectValue = ResultVector[1].first;
4730     if (DefaultCanTrigger) {
4731       Value *const ValueCompare =
4732           Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp");
4733       SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first,
4734                                          DefaultResult, "switch.select");
4735     }
4736     Value *const ValueCompare =
4737         Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp");
4738     return Builder.CreateSelect(ValueCompare, ResultVector[0].first,
4739                                 SelectValue, "switch.select");
4740   }
4741 
4742   return nullptr;
4743 }
4744 
4745 // Helper function to cleanup a switch instruction that has been converted into
4746 // a select, fixing up PHI nodes and basic blocks.
4747 static void RemoveSwitchAfterSelectConversion(SwitchInst *SI, PHINode *PHI,
4748                                               Value *SelectValue,
4749                                               IRBuilder<> &Builder) {
4750   BasicBlock *SelectBB = SI->getParent();
4751   while (PHI->getBasicBlockIndex(SelectBB) >= 0)
4752     PHI->removeIncomingValue(SelectBB);
4753   PHI->addIncoming(SelectValue, SelectBB);
4754 
4755   Builder.CreateBr(PHI->getParent());
4756 
4757   // Remove the switch.
4758   for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
4759     BasicBlock *Succ = SI->getSuccessor(i);
4760 
4761     if (Succ == PHI->getParent())
4762       continue;
4763     Succ->removePredecessor(SelectBB);
4764   }
4765   SI->eraseFromParent();
4766 }
4767 
4768 /// If the switch is only used to initialize one or more
4769 /// phi nodes in a common successor block with only two different
4770 /// constant values, replace the switch with select.
4771 static bool SwitchToSelect(SwitchInst *SI, IRBuilder<> &Builder,
4772                            AssumptionCache *AC, const DataLayout &DL,
4773                            const TargetTransformInfo &TTI) {
4774   Value *const Cond = SI->getCondition();
4775   PHINode *PHI = nullptr;
4776   BasicBlock *CommonDest = nullptr;
4777   Constant *DefaultResult;
4778   SwitchCaseResultVectorTy UniqueResults;
4779   // Collect all the cases that will deliver the same value from the switch.
4780   if (!InitializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult,
4781                              DL, TTI))
4782     return false;
4783   // Selects choose between maximum two values.
4784   if (UniqueResults.size() != 2)
4785     return false;
4786   assert(PHI != nullptr && "PHI for value select not found");
4787 
4788   Builder.SetInsertPoint(SI);
4789   Value *SelectValue =
4790       ConvertTwoCaseSwitch(UniqueResults, DefaultResult, Cond, Builder);
4791   if (SelectValue) {
4792     RemoveSwitchAfterSelectConversion(SI, PHI, SelectValue, Builder);
4793     return true;
4794   }
4795   // The switch couldn't be converted into a select.
4796   return false;
4797 }
4798 
4799 namespace {
4800 
4801 /// This class represents a lookup table that can be used to replace a switch.
4802 class SwitchLookupTable {
4803 public:
4804   /// Create a lookup table to use as a switch replacement with the contents
4805   /// of Values, using DefaultValue to fill any holes in the table.
4806   SwitchLookupTable(
4807       Module &M, uint64_t TableSize, ConstantInt *Offset,
4808       const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
4809       Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName);
4810 
4811   /// Build instructions with Builder to retrieve the value at
4812   /// the position given by Index in the lookup table.
4813   Value *BuildLookup(Value *Index, IRBuilder<> &Builder);
4814 
4815   /// Return true if a table with TableSize elements of
4816   /// type ElementType would fit in a target-legal register.
4817   static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize,
4818                                  Type *ElementType);
4819 
4820 private:
4821   // Depending on the contents of the table, it can be represented in
4822   // different ways.
4823   enum {
4824     // For tables where each element contains the same value, we just have to
4825     // store that single value and return it for each lookup.
4826     SingleValueKind,
4827 
4828     // For tables where there is a linear relationship between table index
4829     // and values. We calculate the result with a simple multiplication
4830     // and addition instead of a table lookup.
4831     LinearMapKind,
4832 
4833     // For small tables with integer elements, we can pack them into a bitmap
4834     // that fits into a target-legal register. Values are retrieved by
4835     // shift and mask operations.
4836     BitMapKind,
4837 
4838     // The table is stored as an array of values. Values are retrieved by load
4839     // instructions from the table.
4840     ArrayKind
4841   } Kind;
4842 
4843   // For SingleValueKind, this is the single value.
4844   Constant *SingleValue;
4845 
4846   // For BitMapKind, this is the bitmap.
4847   ConstantInt *BitMap;
4848   IntegerType *BitMapElementTy;
4849 
4850   // For LinearMapKind, these are the constants used to derive the value.
4851   ConstantInt *LinearOffset;
4852   ConstantInt *LinearMultiplier;
4853 
4854   // For ArrayKind, this is the array.
4855   GlobalVariable *Array;
4856 };
4857 
4858 } // end anonymous namespace
4859 
4860 SwitchLookupTable::SwitchLookupTable(
4861     Module &M, uint64_t TableSize, ConstantInt *Offset,
4862     const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
4863     Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName)
4864     : SingleValue(nullptr), BitMap(nullptr), BitMapElementTy(nullptr),
4865       LinearOffset(nullptr), LinearMultiplier(nullptr), Array(nullptr) {
4866   assert(Values.size() && "Can't build lookup table without values!");
4867   assert(TableSize >= Values.size() && "Can't fit values in table!");
4868 
4869   // If all values in the table are equal, this is that value.
4870   SingleValue = Values.begin()->second;
4871 
4872   Type *ValueType = Values.begin()->second->getType();
4873 
4874   // Build up the table contents.
4875   SmallVector<Constant *, 64> TableContents(TableSize);
4876   for (size_t I = 0, E = Values.size(); I != E; ++I) {
4877     ConstantInt *CaseVal = Values[I].first;
4878     Constant *CaseRes = Values[I].second;
4879     assert(CaseRes->getType() == ValueType);
4880 
4881     uint64_t Idx = (CaseVal->getValue() - Offset->getValue()).getLimitedValue();
4882     TableContents[Idx] = CaseRes;
4883 
4884     if (CaseRes != SingleValue)
4885       SingleValue = nullptr;
4886   }
4887 
4888   // Fill in any holes in the table with the default result.
4889   if (Values.size() < TableSize) {
4890     assert(DefaultValue &&
4891            "Need a default value to fill the lookup table holes.");
4892     assert(DefaultValue->getType() == ValueType);
4893     for (uint64_t I = 0; I < TableSize; ++I) {
4894       if (!TableContents[I])
4895         TableContents[I] = DefaultValue;
4896     }
4897 
4898     if (DefaultValue != SingleValue)
4899       SingleValue = nullptr;
4900   }
4901 
4902   // If each element in the table contains the same value, we only need to store
4903   // that single value.
4904   if (SingleValue) {
4905     Kind = SingleValueKind;
4906     return;
4907   }
4908 
4909   // Check if we can derive the value with a linear transformation from the
4910   // table index.
4911   if (isa<IntegerType>(ValueType)) {
4912     bool LinearMappingPossible = true;
4913     APInt PrevVal;
4914     APInt DistToPrev;
4915     assert(TableSize >= 2 && "Should be a SingleValue table.");
4916     // Check if there is the same distance between two consecutive values.
4917     for (uint64_t I = 0; I < TableSize; ++I) {
4918       ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]);
4919       if (!ConstVal) {
4920         // This is an undef. We could deal with it, but undefs in lookup tables
4921         // are very seldom. It's probably not worth the additional complexity.
4922         LinearMappingPossible = false;
4923         break;
4924       }
4925       const APInt &Val = ConstVal->getValue();
4926       if (I != 0) {
4927         APInt Dist = Val - PrevVal;
4928         if (I == 1) {
4929           DistToPrev = Dist;
4930         } else if (Dist != DistToPrev) {
4931           LinearMappingPossible = false;
4932           break;
4933         }
4934       }
4935       PrevVal = Val;
4936     }
4937     if (LinearMappingPossible) {
4938       LinearOffset = cast<ConstantInt>(TableContents[0]);
4939       LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev);
4940       Kind = LinearMapKind;
4941       ++NumLinearMaps;
4942       return;
4943     }
4944   }
4945 
4946   // If the type is integer and the table fits in a register, build a bitmap.
4947   if (WouldFitInRegister(DL, TableSize, ValueType)) {
4948     IntegerType *IT = cast<IntegerType>(ValueType);
4949     APInt TableInt(TableSize * IT->getBitWidth(), 0);
4950     for (uint64_t I = TableSize; I > 0; --I) {
4951       TableInt <<= IT->getBitWidth();
4952       // Insert values into the bitmap. Undef values are set to zero.
4953       if (!isa<UndefValue>(TableContents[I - 1])) {
4954         ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]);
4955         TableInt |= Val->getValue().zext(TableInt.getBitWidth());
4956       }
4957     }
4958     BitMap = ConstantInt::get(M.getContext(), TableInt);
4959     BitMapElementTy = IT;
4960     Kind = BitMapKind;
4961     ++NumBitMaps;
4962     return;
4963   }
4964 
4965   // Store the table in an array.
4966   ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize);
4967   Constant *Initializer = ConstantArray::get(ArrayTy, TableContents);
4968 
4969   Array = new GlobalVariable(M, ArrayTy, /*constant=*/true,
4970                              GlobalVariable::PrivateLinkage, Initializer,
4971                              "switch.table." + FuncName);
4972   Array->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
4973   Kind = ArrayKind;
4974 }
4975 
4976 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) {
4977   switch (Kind) {
4978   case SingleValueKind:
4979     return SingleValue;
4980   case LinearMapKind: {
4981     // Derive the result value from the input value.
4982     Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(),
4983                                           false, "switch.idx.cast");
4984     if (!LinearMultiplier->isOne())
4985       Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult");
4986     if (!LinearOffset->isZero())
4987       Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset");
4988     return Result;
4989   }
4990   case BitMapKind: {
4991     // Type of the bitmap (e.g. i59).
4992     IntegerType *MapTy = BitMap->getType();
4993 
4994     // Cast Index to the same type as the bitmap.
4995     // Note: The Index is <= the number of elements in the table, so
4996     // truncating it to the width of the bitmask is safe.
4997     Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast");
4998 
4999     // Multiply the shift amount by the element width.
5000     ShiftAmt = Builder.CreateMul(
5001         ShiftAmt, ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()),
5002         "switch.shiftamt");
5003 
5004     // Shift down.
5005     Value *DownShifted =
5006         Builder.CreateLShr(BitMap, ShiftAmt, "switch.downshift");
5007     // Mask off.
5008     return Builder.CreateTrunc(DownShifted, BitMapElementTy, "switch.masked");
5009   }
5010   case ArrayKind: {
5011     // Make sure the table index will not overflow when treated as signed.
5012     IntegerType *IT = cast<IntegerType>(Index->getType());
5013     uint64_t TableSize =
5014         Array->getInitializer()->getType()->getArrayNumElements();
5015     if (TableSize > (1ULL << (IT->getBitWidth() - 1)))
5016       Index = Builder.CreateZExt(
5017           Index, IntegerType::get(IT->getContext(), IT->getBitWidth() + 1),
5018           "switch.tableidx.zext");
5019 
5020     Value *GEPIndices[] = {Builder.getInt32(0), Index};
5021     Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array,
5022                                            GEPIndices, "switch.gep");
5023     return Builder.CreateLoad(GEP, "switch.load");
5024   }
5025   }
5026   llvm_unreachable("Unknown lookup table kind!");
5027 }
5028 
5029 bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL,
5030                                            uint64_t TableSize,
5031                                            Type *ElementType) {
5032   auto *IT = dyn_cast<IntegerType>(ElementType);
5033   if (!IT)
5034     return false;
5035   // FIXME: If the type is wider than it needs to be, e.g. i8 but all values
5036   // are <= 15, we could try to narrow the type.
5037 
5038   // Avoid overflow, fitsInLegalInteger uses unsigned int for the width.
5039   if (TableSize >= UINT_MAX / IT->getBitWidth())
5040     return false;
5041   return DL.fitsInLegalInteger(TableSize * IT->getBitWidth());
5042 }
5043 
5044 /// Determine whether a lookup table should be built for this switch, based on
5045 /// the number of cases, size of the table, and the types of the results.
5046 static bool
5047 ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize,
5048                        const TargetTransformInfo &TTI, const DataLayout &DL,
5049                        const SmallDenseMap<PHINode *, Type *> &ResultTypes) {
5050   if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10)
5051     return false; // TableSize overflowed, or mul below might overflow.
5052 
5053   bool AllTablesFitInRegister = true;
5054   bool HasIllegalType = false;
5055   for (const auto &I : ResultTypes) {
5056     Type *Ty = I.second;
5057 
5058     // Saturate this flag to true.
5059     HasIllegalType = HasIllegalType || !TTI.isTypeLegal(Ty);
5060 
5061     // Saturate this flag to false.
5062     AllTablesFitInRegister =
5063         AllTablesFitInRegister &&
5064         SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty);
5065 
5066     // If both flags saturate, we're done. NOTE: This *only* works with
5067     // saturating flags, and all flags have to saturate first due to the
5068     // non-deterministic behavior of iterating over a dense map.
5069     if (HasIllegalType && !AllTablesFitInRegister)
5070       break;
5071   }
5072 
5073   // If each table would fit in a register, we should build it anyway.
5074   if (AllTablesFitInRegister)
5075     return true;
5076 
5077   // Don't build a table that doesn't fit in-register if it has illegal types.
5078   if (HasIllegalType)
5079     return false;
5080 
5081   // The table density should be at least 40%. This is the same criterion as for
5082   // jump tables, see SelectionDAGBuilder::handleJTSwitchCase.
5083   // FIXME: Find the best cut-off.
5084   return SI->getNumCases() * 10 >= TableSize * 4;
5085 }
5086 
5087 /// Try to reuse the switch table index compare. Following pattern:
5088 /// \code
5089 ///     if (idx < tablesize)
5090 ///        r = table[idx]; // table does not contain default_value
5091 ///     else
5092 ///        r = default_value;
5093 ///     if (r != default_value)
5094 ///        ...
5095 /// \endcode
5096 /// Is optimized to:
5097 /// \code
5098 ///     cond = idx < tablesize;
5099 ///     if (cond)
5100 ///        r = table[idx];
5101 ///     else
5102 ///        r = default_value;
5103 ///     if (cond)
5104 ///        ...
5105 /// \endcode
5106 /// Jump threading will then eliminate the second if(cond).
5107 static void reuseTableCompare(
5108     User *PhiUser, BasicBlock *PhiBlock, BranchInst *RangeCheckBranch,
5109     Constant *DefaultValue,
5110     const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values) {
5111 
5112   ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser);
5113   if (!CmpInst)
5114     return;
5115 
5116   // We require that the compare is in the same block as the phi so that jump
5117   // threading can do its work afterwards.
5118   if (CmpInst->getParent() != PhiBlock)
5119     return;
5120 
5121   Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1));
5122   if (!CmpOp1)
5123     return;
5124 
5125   Value *RangeCmp = RangeCheckBranch->getCondition();
5126   Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType());
5127   Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType());
5128 
5129   // Check if the compare with the default value is constant true or false.
5130   Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
5131                                                  DefaultValue, CmpOp1, true);
5132   if (DefaultConst != TrueConst && DefaultConst != FalseConst)
5133     return;
5134 
5135   // Check if the compare with the case values is distinct from the default
5136   // compare result.
5137   for (auto ValuePair : Values) {
5138     Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
5139                                                 ValuePair.second, CmpOp1, true);
5140     if (!CaseConst || CaseConst == DefaultConst)
5141       return;
5142     assert((CaseConst == TrueConst || CaseConst == FalseConst) &&
5143            "Expect true or false as compare result.");
5144   }
5145 
5146   // Check if the branch instruction dominates the phi node. It's a simple
5147   // dominance check, but sufficient for our needs.
5148   // Although this check is invariant in the calling loops, it's better to do it
5149   // at this late stage. Practically we do it at most once for a switch.
5150   BasicBlock *BranchBlock = RangeCheckBranch->getParent();
5151   for (auto PI = pred_begin(PhiBlock), E = pred_end(PhiBlock); PI != E; ++PI) {
5152     BasicBlock *Pred = *PI;
5153     if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock)
5154       return;
5155   }
5156 
5157   if (DefaultConst == FalseConst) {
5158     // The compare yields the same result. We can replace it.
5159     CmpInst->replaceAllUsesWith(RangeCmp);
5160     ++NumTableCmpReuses;
5161   } else {
5162     // The compare yields the same result, just inverted. We can replace it.
5163     Value *InvertedTableCmp = BinaryOperator::CreateXor(
5164         RangeCmp, ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp",
5165         RangeCheckBranch);
5166     CmpInst->replaceAllUsesWith(InvertedTableCmp);
5167     ++NumTableCmpReuses;
5168   }
5169 }
5170 
5171 /// If the switch is only used to initialize one or more phi nodes in a common
5172 /// successor block with different constant values, replace the switch with
5173 /// lookup tables.
5174 static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder,
5175                                 const DataLayout &DL,
5176                                 const TargetTransformInfo &TTI) {
5177   assert(SI->getNumCases() > 1 && "Degenerate switch?");
5178 
5179   Function *Fn = SI->getParent()->getParent();
5180   // Only build lookup table when we have a target that supports it or the
5181   // attribute is not set.
5182   if (!TTI.shouldBuildLookupTables() ||
5183       (Fn->getFnAttribute("no-jump-tables").getValueAsString() == "true"))
5184     return false;
5185 
5186   // FIXME: If the switch is too sparse for a lookup table, perhaps we could
5187   // split off a dense part and build a lookup table for that.
5188 
5189   // FIXME: This creates arrays of GEPs to constant strings, which means each
5190   // GEP needs a runtime relocation in PIC code. We should just build one big
5191   // string and lookup indices into that.
5192 
5193   // Ignore switches with less than three cases. Lookup tables will not make
5194   // them faster, so we don't analyze them.
5195   if (SI->getNumCases() < 3)
5196     return false;
5197 
5198   // Figure out the corresponding result for each case value and phi node in the
5199   // common destination, as well as the min and max case values.
5200   assert(SI->case_begin() != SI->case_end());
5201   SwitchInst::CaseIt CI = SI->case_begin();
5202   ConstantInt *MinCaseVal = CI->getCaseValue();
5203   ConstantInt *MaxCaseVal = CI->getCaseValue();
5204 
5205   BasicBlock *CommonDest = nullptr;
5206   typedef SmallVector<std::pair<ConstantInt *, Constant *>, 4> ResultListTy;
5207   SmallDenseMap<PHINode *, ResultListTy> ResultLists;
5208   SmallDenseMap<PHINode *, Constant *> DefaultResults;
5209   SmallDenseMap<PHINode *, Type *> ResultTypes;
5210   SmallVector<PHINode *, 4> PHIs;
5211 
5212   for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) {
5213     ConstantInt *CaseVal = CI->getCaseValue();
5214     if (CaseVal->getValue().slt(MinCaseVal->getValue()))
5215       MinCaseVal = CaseVal;
5216     if (CaseVal->getValue().sgt(MaxCaseVal->getValue()))
5217       MaxCaseVal = CaseVal;
5218 
5219     // Resulting value at phi nodes for this case value.
5220     typedef SmallVector<std::pair<PHINode *, Constant *>, 4> ResultsTy;
5221     ResultsTy Results;
5222     if (!GetCaseResults(SI, CaseVal, CI->getCaseSuccessor(), &CommonDest,
5223                         Results, DL, TTI))
5224       return false;
5225 
5226     // Append the result from this case to the list for each phi.
5227     for (const auto &I : Results) {
5228       PHINode *PHI = I.first;
5229       Constant *Value = I.second;
5230       if (!ResultLists.count(PHI))
5231         PHIs.push_back(PHI);
5232       ResultLists[PHI].push_back(std::make_pair(CaseVal, Value));
5233     }
5234   }
5235 
5236   // Keep track of the result types.
5237   for (PHINode *PHI : PHIs) {
5238     ResultTypes[PHI] = ResultLists[PHI][0].second->getType();
5239   }
5240 
5241   uint64_t NumResults = ResultLists[PHIs[0]].size();
5242   APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue();
5243   uint64_t TableSize = RangeSpread.getLimitedValue() + 1;
5244   bool TableHasHoles = (NumResults < TableSize);
5245 
5246   // If the table has holes, we need a constant result for the default case
5247   // or a bitmask that fits in a register.
5248   SmallVector<std::pair<PHINode *, Constant *>, 4> DefaultResultsList;
5249   bool HasDefaultResults =
5250       GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest,
5251                      DefaultResultsList, DL, TTI);
5252 
5253   bool NeedMask = (TableHasHoles && !HasDefaultResults);
5254   if (NeedMask) {
5255     // As an extra penalty for the validity test we require more cases.
5256     if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark).
5257       return false;
5258     if (!DL.fitsInLegalInteger(TableSize))
5259       return false;
5260   }
5261 
5262   for (const auto &I : DefaultResultsList) {
5263     PHINode *PHI = I.first;
5264     Constant *Result = I.second;
5265     DefaultResults[PHI] = Result;
5266   }
5267 
5268   if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes))
5269     return false;
5270 
5271   // Create the BB that does the lookups.
5272   Module &Mod = *CommonDest->getParent()->getParent();
5273   BasicBlock *LookupBB = BasicBlock::Create(
5274       Mod.getContext(), "switch.lookup", CommonDest->getParent(), CommonDest);
5275 
5276   // Compute the table index value.
5277   Builder.SetInsertPoint(SI);
5278   Value *TableIndex;
5279   if (MinCaseVal->isNullValue())
5280     TableIndex = SI->getCondition();
5281   else
5282     TableIndex = Builder.CreateSub(SI->getCondition(), MinCaseVal,
5283                                    "switch.tableidx");
5284 
5285   // Compute the maximum table size representable by the integer type we are
5286   // switching upon.
5287   unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits();
5288   uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize;
5289   assert(MaxTableSize >= TableSize &&
5290          "It is impossible for a switch to have more entries than the max "
5291          "representable value of its input integer type's size.");
5292 
5293   // If the default destination is unreachable, or if the lookup table covers
5294   // all values of the conditional variable, branch directly to the lookup table
5295   // BB. Otherwise, check that the condition is within the case range.
5296   const bool DefaultIsReachable =
5297       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
5298   const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize);
5299   BranchInst *RangeCheckBranch = nullptr;
5300 
5301   if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
5302     Builder.CreateBr(LookupBB);
5303     // Note: We call removeProdecessor later since we need to be able to get the
5304     // PHI value for the default case in case we're using a bit mask.
5305   } else {
5306     Value *Cmp = Builder.CreateICmpULT(
5307         TableIndex, ConstantInt::get(MinCaseVal->getType(), TableSize));
5308     RangeCheckBranch =
5309         Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest());
5310   }
5311 
5312   // Populate the BB that does the lookups.
5313   Builder.SetInsertPoint(LookupBB);
5314 
5315   if (NeedMask) {
5316     // Before doing the lookup, we do the hole check. The LookupBB is therefore
5317     // re-purposed to do the hole check, and we create a new LookupBB.
5318     BasicBlock *MaskBB = LookupBB;
5319     MaskBB->setName("switch.hole_check");
5320     LookupBB = BasicBlock::Create(Mod.getContext(), "switch.lookup",
5321                                   CommonDest->getParent(), CommonDest);
5322 
5323     // Make the mask's bitwidth at least 8-bit and a power-of-2 to avoid
5324     // unnecessary illegal types.
5325     uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL));
5326     APInt MaskInt(TableSizePowOf2, 0);
5327     APInt One(TableSizePowOf2, 1);
5328     // Build bitmask; fill in a 1 bit for every case.
5329     const ResultListTy &ResultList = ResultLists[PHIs[0]];
5330     for (size_t I = 0, E = ResultList.size(); I != E; ++I) {
5331       uint64_t Idx = (ResultList[I].first->getValue() - MinCaseVal->getValue())
5332                          .getLimitedValue();
5333       MaskInt |= One << Idx;
5334     }
5335     ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt);
5336 
5337     // Get the TableIndex'th bit of the bitmask.
5338     // If this bit is 0 (meaning hole) jump to the default destination,
5339     // else continue with table lookup.
5340     IntegerType *MapTy = TableMask->getType();
5341     Value *MaskIndex =
5342         Builder.CreateZExtOrTrunc(TableIndex, MapTy, "switch.maskindex");
5343     Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, "switch.shifted");
5344     Value *LoBit = Builder.CreateTrunc(
5345         Shifted, Type::getInt1Ty(Mod.getContext()), "switch.lobit");
5346     Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest());
5347 
5348     Builder.SetInsertPoint(LookupBB);
5349     AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, SI->getParent());
5350   }
5351 
5352   if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
5353     // We cached PHINodes in PHIs. To avoid accessing deleted PHINodes later,
5354     // do not delete PHINodes here.
5355     SI->getDefaultDest()->removePredecessor(SI->getParent(),
5356                                             /*DontDeleteUselessPHIs=*/true);
5357   }
5358 
5359   bool ReturnedEarly = false;
5360   for (size_t I = 0, E = PHIs.size(); I != E; ++I) {
5361     PHINode *PHI = PHIs[I];
5362     const ResultListTy &ResultList = ResultLists[PHI];
5363 
5364     // If using a bitmask, use any value to fill the lookup table holes.
5365     Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI];
5366     StringRef FuncName = Fn->getName();
5367     SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultList, DV, DL,
5368                             FuncName);
5369 
5370     Value *Result = Table.BuildLookup(TableIndex, Builder);
5371 
5372     // If the result is used to return immediately from the function, we want to
5373     // do that right here.
5374     if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->user_begin()) &&
5375         PHI->user_back() == CommonDest->getFirstNonPHIOrDbg()) {
5376       Builder.CreateRet(Result);
5377       ReturnedEarly = true;
5378       break;
5379     }
5380 
5381     // Do a small peephole optimization: re-use the switch table compare if
5382     // possible.
5383     if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) {
5384       BasicBlock *PhiBlock = PHI->getParent();
5385       // Search for compare instructions which use the phi.
5386       for (auto *User : PHI->users()) {
5387         reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList);
5388       }
5389     }
5390 
5391     PHI->addIncoming(Result, LookupBB);
5392   }
5393 
5394   if (!ReturnedEarly)
5395     Builder.CreateBr(CommonDest);
5396 
5397   // Remove the switch.
5398   for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
5399     BasicBlock *Succ = SI->getSuccessor(i);
5400 
5401     if (Succ == SI->getDefaultDest())
5402       continue;
5403     Succ->removePredecessor(SI->getParent());
5404   }
5405   SI->eraseFromParent();
5406 
5407   ++NumLookupTables;
5408   if (NeedMask)
5409     ++NumLookupTablesHoles;
5410   return true;
5411 }
5412 
5413 static bool isSwitchDense(ArrayRef<int64_t> Values) {
5414   // See also SelectionDAGBuilder::isDense(), which this function was based on.
5415   uint64_t Diff = (uint64_t)Values.back() - (uint64_t)Values.front();
5416   uint64_t Range = Diff + 1;
5417   uint64_t NumCases = Values.size();
5418   // 40% is the default density for building a jump table in optsize/minsize mode.
5419   uint64_t MinDensity = 40;
5420 
5421   return NumCases * 100 >= Range * MinDensity;
5422 }
5423 
5424 /// Try to transform a switch that has "holes" in it to a contiguous sequence
5425 /// of cases.
5426 ///
5427 /// A switch such as: switch(i) {case 5: case 9: case 13: case 17:} can be
5428 /// range-reduced to: switch ((i-5) / 4) {case 0: case 1: case 2: case 3:}.
5429 ///
5430 /// This converts a sparse switch into a dense switch which allows better
5431 /// lowering and could also allow transforming into a lookup table.
5432 static bool ReduceSwitchRange(SwitchInst *SI, IRBuilder<> &Builder,
5433                               const DataLayout &DL,
5434                               const TargetTransformInfo &TTI) {
5435   auto *CondTy = cast<IntegerType>(SI->getCondition()->getType());
5436   if (CondTy->getIntegerBitWidth() > 64 ||
5437       !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth()))
5438     return false;
5439   // Only bother with this optimization if there are more than 3 switch cases;
5440   // SDAG will only bother creating jump tables for 4 or more cases.
5441   if (SI->getNumCases() < 4)
5442     return false;
5443 
5444   // This transform is agnostic to the signedness of the input or case values. We
5445   // can treat the case values as signed or unsigned. We can optimize more common
5446   // cases such as a sequence crossing zero {-4,0,4,8} if we interpret case values
5447   // as signed.
5448   SmallVector<int64_t,4> Values;
5449   for (auto &C : SI->cases())
5450     Values.push_back(C.getCaseValue()->getValue().getSExtValue());
5451   std::sort(Values.begin(), Values.end());
5452 
5453   // If the switch is already dense, there's nothing useful to do here.
5454   if (isSwitchDense(Values))
5455     return false;
5456 
5457   // First, transform the values such that they start at zero and ascend.
5458   int64_t Base = Values[0];
5459   for (auto &V : Values)
5460     V -= Base;
5461 
5462   // Now we have signed numbers that have been shifted so that, given enough
5463   // precision, there are no negative values. Since the rest of the transform
5464   // is bitwise only, we switch now to an unsigned representation.
5465   uint64_t GCD = 0;
5466   for (auto &V : Values)
5467     GCD = GreatestCommonDivisor64(GCD, (uint64_t)V);
5468 
5469   // This transform can be done speculatively because it is so cheap - it results
5470   // in a single rotate operation being inserted. This can only happen if the
5471   // factor extracted is a power of 2.
5472   // FIXME: If the GCD is an odd number we can multiply by the multiplicative
5473   // inverse of GCD and then perform this transform.
5474   // FIXME: It's possible that optimizing a switch on powers of two might also
5475   // be beneficial - flag values are often powers of two and we could use a CLZ
5476   // as the key function.
5477   if (GCD <= 1 || !isPowerOf2_64(GCD))
5478     // No common divisor found or too expensive to compute key function.
5479     return false;
5480 
5481   unsigned Shift = Log2_64(GCD);
5482   for (auto &V : Values)
5483     V = (int64_t)((uint64_t)V >> Shift);
5484 
5485   if (!isSwitchDense(Values))
5486     // Transform didn't create a dense switch.
5487     return false;
5488 
5489   // The obvious transform is to shift the switch condition right and emit a
5490   // check that the condition actually cleanly divided by GCD, i.e.
5491   //   C & (1 << Shift - 1) == 0
5492   // inserting a new CFG edge to handle the case where it didn't divide cleanly.
5493   //
5494   // A cheaper way of doing this is a simple ROTR(C, Shift). This performs the
5495   // shift and puts the shifted-off bits in the uppermost bits. If any of these
5496   // are nonzero then the switch condition will be very large and will hit the
5497   // default case.
5498 
5499   auto *Ty = cast<IntegerType>(SI->getCondition()->getType());
5500   Builder.SetInsertPoint(SI);
5501   auto *ShiftC = ConstantInt::get(Ty, Shift);
5502   auto *Sub = Builder.CreateSub(SI->getCondition(), ConstantInt::get(Ty, Base));
5503   auto *LShr = Builder.CreateLShr(Sub, ShiftC);
5504   auto *Shl = Builder.CreateShl(Sub, Ty->getBitWidth() - Shift);
5505   auto *Rot = Builder.CreateOr(LShr, Shl);
5506   SI->replaceUsesOfWith(SI->getCondition(), Rot);
5507 
5508   for (auto Case : SI->cases()) {
5509     auto *Orig = Case.getCaseValue();
5510     auto Sub = Orig->getValue() - APInt(Ty->getBitWidth(), Base);
5511     Case.setValue(
5512         cast<ConstantInt>(ConstantInt::get(Ty, Sub.lshr(ShiftC->getValue()))));
5513   }
5514   return true;
5515 }
5516 
5517 bool SimplifyCFGOpt::SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) {
5518   BasicBlock *BB = SI->getParent();
5519 
5520   if (isValueEqualityComparison(SI)) {
5521     // If we only have one predecessor, and if it is a branch on this value,
5522     // see if that predecessor totally determines the outcome of this switch.
5523     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
5524       if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder))
5525         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5526 
5527     Value *Cond = SI->getCondition();
5528     if (SelectInst *Select = dyn_cast<SelectInst>(Cond))
5529       if (SimplifySwitchOnSelect(SI, Select))
5530         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5531 
5532     // If the block only contains the switch, see if we can fold the block
5533     // away into any preds.
5534     BasicBlock::iterator BBI = BB->begin();
5535     // Ignore dbg intrinsics.
5536     while (isa<DbgInfoIntrinsic>(BBI))
5537       ++BBI;
5538     if (SI == &*BBI)
5539       if (FoldValueComparisonIntoPredecessors(SI, Builder))
5540         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5541   }
5542 
5543   // Try to transform the switch into an icmp and a branch.
5544   if (TurnSwitchRangeIntoICmp(SI, Builder))
5545     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5546 
5547   // Remove unreachable cases.
5548   if (EliminateDeadSwitchCases(SI, AC, DL))
5549     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5550 
5551   if (SwitchToSelect(SI, Builder, AC, DL, TTI))
5552     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5553 
5554   if (ForwardSwitchConditionToPHI(SI))
5555     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5556 
5557   // The conversion from switch to lookup tables results in difficult-to-analyze
5558   // code and makes pruning branches much harder. This is a problem if the
5559   // switch expression itself can still be restricted as a result of inlining or
5560   // CVP. Therefore, only apply this transformation during late stages of the
5561   // optimisation pipeline.
5562   if (LateSimplifyCFG && SwitchToLookupTable(SI, Builder, DL, TTI))
5563     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5564 
5565   if (ReduceSwitchRange(SI, Builder, DL, TTI))
5566     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5567 
5568   return false;
5569 }
5570 
5571 bool SimplifyCFGOpt::SimplifyIndirectBr(IndirectBrInst *IBI) {
5572   BasicBlock *BB = IBI->getParent();
5573   bool Changed = false;
5574 
5575   // Eliminate redundant destinations.
5576   SmallPtrSet<Value *, 8> Succs;
5577   for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
5578     BasicBlock *Dest = IBI->getDestination(i);
5579     if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) {
5580       Dest->removePredecessor(BB);
5581       IBI->removeDestination(i);
5582       --i;
5583       --e;
5584       Changed = true;
5585     }
5586   }
5587 
5588   if (IBI->getNumDestinations() == 0) {
5589     // If the indirectbr has no successors, change it to unreachable.
5590     new UnreachableInst(IBI->getContext(), IBI);
5591     EraseTerminatorInstAndDCECond(IBI);
5592     return true;
5593   }
5594 
5595   if (IBI->getNumDestinations() == 1) {
5596     // If the indirectbr has one successor, change it to a direct branch.
5597     BranchInst::Create(IBI->getDestination(0), IBI);
5598     EraseTerminatorInstAndDCECond(IBI);
5599     return true;
5600   }
5601 
5602   if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) {
5603     if (SimplifyIndirectBrOnSelect(IBI, SI))
5604       return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5605   }
5606   return Changed;
5607 }
5608 
5609 /// Given an block with only a single landing pad and a unconditional branch
5610 /// try to find another basic block which this one can be merged with.  This
5611 /// handles cases where we have multiple invokes with unique landing pads, but
5612 /// a shared handler.
5613 ///
5614 /// We specifically choose to not worry about merging non-empty blocks
5615 /// here.  That is a PRE/scheduling problem and is best solved elsewhere.  In
5616 /// practice, the optimizer produces empty landing pad blocks quite frequently
5617 /// when dealing with exception dense code.  (see: instcombine, gvn, if-else
5618 /// sinking in this file)
5619 ///
5620 /// This is primarily a code size optimization.  We need to avoid performing
5621 /// any transform which might inhibit optimization (such as our ability to
5622 /// specialize a particular handler via tail commoning).  We do this by not
5623 /// merging any blocks which require us to introduce a phi.  Since the same
5624 /// values are flowing through both blocks, we don't loose any ability to
5625 /// specialize.  If anything, we make such specialization more likely.
5626 ///
5627 /// TODO - This transformation could remove entries from a phi in the target
5628 /// block when the inputs in the phi are the same for the two blocks being
5629 /// merged.  In some cases, this could result in removal of the PHI entirely.
5630 static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI,
5631                                  BasicBlock *BB) {
5632   auto Succ = BB->getUniqueSuccessor();
5633   assert(Succ);
5634   // If there's a phi in the successor block, we'd likely have to introduce
5635   // a phi into the merged landing pad block.
5636   if (isa<PHINode>(*Succ->begin()))
5637     return false;
5638 
5639   for (BasicBlock *OtherPred : predecessors(Succ)) {
5640     if (BB == OtherPred)
5641       continue;
5642     BasicBlock::iterator I = OtherPred->begin();
5643     LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I);
5644     if (!LPad2 || !LPad2->isIdenticalTo(LPad))
5645       continue;
5646     for (++I; isa<DbgInfoIntrinsic>(I); ++I) {
5647     }
5648     BranchInst *BI2 = dyn_cast<BranchInst>(I);
5649     if (!BI2 || !BI2->isIdenticalTo(BI))
5650       continue;
5651 
5652     // We've found an identical block.  Update our predecessors to take that
5653     // path instead and make ourselves dead.
5654     SmallSet<BasicBlock *, 16> Preds;
5655     Preds.insert(pred_begin(BB), pred_end(BB));
5656     for (BasicBlock *Pred : Preds) {
5657       InvokeInst *II = cast<InvokeInst>(Pred->getTerminator());
5658       assert(II->getNormalDest() != BB && II->getUnwindDest() == BB &&
5659              "unexpected successor");
5660       II->setUnwindDest(OtherPred);
5661     }
5662 
5663     // The debug info in OtherPred doesn't cover the merged control flow that
5664     // used to go through BB.  We need to delete it or update it.
5665     for (auto I = OtherPred->begin(), E = OtherPred->end(); I != E;) {
5666       Instruction &Inst = *I;
5667       I++;
5668       if (isa<DbgInfoIntrinsic>(Inst))
5669         Inst.eraseFromParent();
5670     }
5671 
5672     SmallSet<BasicBlock *, 16> Succs;
5673     Succs.insert(succ_begin(BB), succ_end(BB));
5674     for (BasicBlock *Succ : Succs) {
5675       Succ->removePredecessor(BB);
5676     }
5677 
5678     IRBuilder<> Builder(BI);
5679     Builder.CreateUnreachable();
5680     BI->eraseFromParent();
5681     return true;
5682   }
5683   return false;
5684 }
5685 
5686 bool SimplifyCFGOpt::SimplifyUncondBranch(BranchInst *BI,
5687                                           IRBuilder<> &Builder) {
5688   BasicBlock *BB = BI->getParent();
5689   BasicBlock *Succ = BI->getSuccessor(0);
5690 
5691   if (SinkCommon && SinkThenElseCodeToEnd(BI))
5692     return true;
5693 
5694   // If the Terminator is the only non-phi instruction, simplify the block.
5695   // If LoopHeader is provided, check if the block or its successor is a loop
5696   // header. (This is for early invocations before loop simplify and
5697   // vectorization to keep canonical loop forms for nested loops. These blocks
5698   // can be eliminated when the pass is invoked later in the back-end.)
5699   bool NeedCanonicalLoop =
5700       !LateSimplifyCFG &&
5701       (LoopHeaders && (LoopHeaders->count(BB) || LoopHeaders->count(Succ)));
5702   BasicBlock::iterator I = BB->getFirstNonPHIOrDbg()->getIterator();
5703   if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() &&
5704       !NeedCanonicalLoop && TryToSimplifyUncondBranchFromEmptyBlock(BB))
5705     return true;
5706 
5707   // If the only instruction in the block is a seteq/setne comparison against a
5708   // constant, try to simplify the block.
5709   if (ICmpInst *ICI = dyn_cast<ICmpInst>(I))
5710     if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) {
5711       for (++I; isa<DbgInfoIntrinsic>(I); ++I)
5712         ;
5713       if (I->isTerminator() &&
5714           TryToSimplifyUncondBranchWithICmpInIt(ICI, Builder, DL, TTI,
5715                                                 BonusInstThreshold, AC))
5716         return true;
5717     }
5718 
5719   // See if we can merge an empty landing pad block with another which is
5720   // equivalent.
5721   if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) {
5722     for (++I; isa<DbgInfoIntrinsic>(I); ++I) {
5723     }
5724     if (I->isTerminator() && TryToMergeLandingPad(LPad, BI, BB))
5725       return true;
5726   }
5727 
5728   // If this basic block is ONLY a compare and a branch, and if a predecessor
5729   // branches to us and our successor, fold the comparison into the
5730   // predecessor and use logical operations to update the incoming value
5731   // for PHI nodes in common successor.
5732   if (FoldBranchToCommonDest(BI, BonusInstThreshold))
5733     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5734   return false;
5735 }
5736 
5737 static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) {
5738   BasicBlock *PredPred = nullptr;
5739   for (auto *P : predecessors(BB)) {
5740     BasicBlock *PPred = P->getSinglePredecessor();
5741     if (!PPred || (PredPred && PredPred != PPred))
5742       return nullptr;
5743     PredPred = PPred;
5744   }
5745   return PredPred;
5746 }
5747 
5748 bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) {
5749   BasicBlock *BB = BI->getParent();
5750 
5751   // Conditional branch
5752   if (isValueEqualityComparison(BI)) {
5753     // If we only have one predecessor, and if it is a branch on this value,
5754     // see if that predecessor totally determines the outcome of this
5755     // switch.
5756     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
5757       if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder))
5758         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5759 
5760     // This block must be empty, except for the setcond inst, if it exists.
5761     // Ignore dbg intrinsics.
5762     BasicBlock::iterator I = BB->begin();
5763     // Ignore dbg intrinsics.
5764     while (isa<DbgInfoIntrinsic>(I))
5765       ++I;
5766     if (&*I == BI) {
5767       if (FoldValueComparisonIntoPredecessors(BI, Builder))
5768         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5769     } else if (&*I == cast<Instruction>(BI->getCondition())) {
5770       ++I;
5771       // Ignore dbg intrinsics.
5772       while (isa<DbgInfoIntrinsic>(I))
5773         ++I;
5774       if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder))
5775         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5776     }
5777   }
5778 
5779   // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction.
5780   if (SimplifyBranchOnICmpChain(BI, Builder, DL))
5781     return true;
5782 
5783   // If this basic block has a single dominating predecessor block and the
5784   // dominating block's condition implies BI's condition, we know the direction
5785   // of the BI branch.
5786   if (BasicBlock *Dom = BB->getSinglePredecessor()) {
5787     auto *PBI = dyn_cast_or_null<BranchInst>(Dom->getTerminator());
5788     if (PBI && PBI->isConditional() &&
5789         PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
5790       assert(PBI->getSuccessor(0) == BB || PBI->getSuccessor(1) == BB);
5791       bool CondIsTrue = PBI->getSuccessor(0) == BB;
5792       Optional<bool> Implication = isImpliedCondition(
5793           PBI->getCondition(), BI->getCondition(), DL, CondIsTrue);
5794       if (Implication) {
5795         // Turn this into a branch on constant.
5796         auto *OldCond = BI->getCondition();
5797         ConstantInt *CI = *Implication
5798                               ? ConstantInt::getTrue(BB->getContext())
5799                               : ConstantInt::getFalse(BB->getContext());
5800         BI->setCondition(CI);
5801         RecursivelyDeleteTriviallyDeadInstructions(OldCond);
5802         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5803       }
5804     }
5805   }
5806 
5807   // If this basic block is ONLY a compare and a branch, and if a predecessor
5808   // branches to us and one of our successors, fold the comparison into the
5809   // predecessor and use logical operations to pick the right destination.
5810   if (FoldBranchToCommonDest(BI, BonusInstThreshold))
5811     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5812 
5813   // We have a conditional branch to two blocks that are only reachable
5814   // from BI.  We know that the condbr dominates the two blocks, so see if
5815   // there is any identical code in the "then" and "else" blocks.  If so, we
5816   // can hoist it up to the branching block.
5817   if (BI->getSuccessor(0)->getSinglePredecessor()) {
5818     if (BI->getSuccessor(1)->getSinglePredecessor()) {
5819       if (HoistThenElseCodeToIf(BI, TTI))
5820         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5821     } else {
5822       // If Successor #1 has multiple preds, we may be able to conditionally
5823       // execute Successor #0 if it branches to Successor #1.
5824       TerminatorInst *Succ0TI = BI->getSuccessor(0)->getTerminator();
5825       if (Succ0TI->getNumSuccessors() == 1 &&
5826           Succ0TI->getSuccessor(0) == BI->getSuccessor(1))
5827         if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), TTI))
5828           return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5829     }
5830   } else if (BI->getSuccessor(1)->getSinglePredecessor()) {
5831     // If Successor #0 has multiple preds, we may be able to conditionally
5832     // execute Successor #1 if it branches to Successor #0.
5833     TerminatorInst *Succ1TI = BI->getSuccessor(1)->getTerminator();
5834     if (Succ1TI->getNumSuccessors() == 1 &&
5835         Succ1TI->getSuccessor(0) == BI->getSuccessor(0))
5836       if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), TTI))
5837         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5838   }
5839 
5840   // If this is a branch on a phi node in the current block, thread control
5841   // through this block if any PHI node entries are constants.
5842   if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition()))
5843     if (PN->getParent() == BI->getParent())
5844       if (FoldCondBranchOnPHI(BI, DL, AC))
5845         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5846 
5847   // Scan predecessor blocks for conditional branches.
5848   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
5849     if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
5850       if (PBI != BI && PBI->isConditional())
5851         if (SimplifyCondBranchToCondBranch(PBI, BI, DL))
5852           return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5853 
5854   // Look for diamond patterns.
5855   if (MergeCondStores)
5856     if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB))
5857       if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator()))
5858         if (PBI != BI && PBI->isConditional())
5859           if (mergeConditionalStores(PBI, BI, DL))
5860             return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5861 
5862   return false;
5863 }
5864 
5865 /// Check if passing a value to an instruction will cause undefined behavior.
5866 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I) {
5867   Constant *C = dyn_cast<Constant>(V);
5868   if (!C)
5869     return false;
5870 
5871   if (I->use_empty())
5872     return false;
5873 
5874   if (C->isNullValue() || isa<UndefValue>(C)) {
5875     // Only look at the first use, avoid hurting compile time with long uselists
5876     User *Use = *I->user_begin();
5877 
5878     // Now make sure that there are no instructions in between that can alter
5879     // control flow (eg. calls)
5880     for (BasicBlock::iterator
5881              i = ++BasicBlock::iterator(I),
5882              UI = BasicBlock::iterator(dyn_cast<Instruction>(Use));
5883          i != UI; ++i)
5884       if (i == I->getParent()->end() || i->mayHaveSideEffects())
5885         return false;
5886 
5887     // Look through GEPs. A load from a GEP derived from NULL is still undefined
5888     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use))
5889       if (GEP->getPointerOperand() == I)
5890         return passingValueIsAlwaysUndefined(V, GEP);
5891 
5892     // Look through bitcasts.
5893     if (BitCastInst *BC = dyn_cast<BitCastInst>(Use))
5894       return passingValueIsAlwaysUndefined(V, BC);
5895 
5896     // Load from null is undefined.
5897     if (LoadInst *LI = dyn_cast<LoadInst>(Use))
5898       if (!LI->isVolatile())
5899         return LI->getPointerAddressSpace() == 0;
5900 
5901     // Store to null is undefined.
5902     if (StoreInst *SI = dyn_cast<StoreInst>(Use))
5903       if (!SI->isVolatile())
5904         return SI->getPointerAddressSpace() == 0 &&
5905                SI->getPointerOperand() == I;
5906 
5907     // A call to null is undefined.
5908     if (auto CS = CallSite(Use))
5909       return CS.getCalledValue() == I;
5910   }
5911   return false;
5912 }
5913 
5914 /// If BB has an incoming value that will always trigger undefined behavior
5915 /// (eg. null pointer dereference), remove the branch leading here.
5916 static bool removeUndefIntroducingPredecessor(BasicBlock *BB) {
5917   for (BasicBlock::iterator i = BB->begin();
5918        PHINode *PHI = dyn_cast<PHINode>(i); ++i)
5919     for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i)
5920       if (passingValueIsAlwaysUndefined(PHI->getIncomingValue(i), PHI)) {
5921         TerminatorInst *T = PHI->getIncomingBlock(i)->getTerminator();
5922         IRBuilder<> Builder(T);
5923         if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
5924           BB->removePredecessor(PHI->getIncomingBlock(i));
5925           // Turn uncoditional branches into unreachables and remove the dead
5926           // destination from conditional branches.
5927           if (BI->isUnconditional())
5928             Builder.CreateUnreachable();
5929           else
5930             Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1)
5931                                                        : BI->getSuccessor(0));
5932           BI->eraseFromParent();
5933           return true;
5934         }
5935         // TODO: SwitchInst.
5936       }
5937 
5938   return false;
5939 }
5940 
5941 bool SimplifyCFGOpt::run(BasicBlock *BB) {
5942   bool Changed = false;
5943 
5944   assert(BB && BB->getParent() && "Block not embedded in function!");
5945   assert(BB->getTerminator() && "Degenerate basic block encountered!");
5946 
5947   // Remove basic blocks that have no predecessors (except the entry block)...
5948   // or that just have themself as a predecessor.  These are unreachable.
5949   if ((pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) ||
5950       BB->getSinglePredecessor() == BB) {
5951     DEBUG(dbgs() << "Removing BB: \n" << *BB);
5952     DeleteDeadBlock(BB);
5953     return true;
5954   }
5955 
5956   // Check to see if we can constant propagate this terminator instruction
5957   // away...
5958   Changed |= ConstantFoldTerminator(BB, true);
5959 
5960   // Check for and eliminate duplicate PHI nodes in this block.
5961   Changed |= EliminateDuplicatePHINodes(BB);
5962 
5963   // Check for and remove branches that will always cause undefined behavior.
5964   Changed |= removeUndefIntroducingPredecessor(BB);
5965 
5966   // Merge basic blocks into their predecessor if there is only one distinct
5967   // pred, and if there is only one distinct successor of the predecessor, and
5968   // if there are no PHI nodes.
5969   //
5970   if (MergeBlockIntoPredecessor(BB))
5971     return true;
5972 
5973   IRBuilder<> Builder(BB);
5974 
5975   // If there is a trivial two-entry PHI node in this basic block, and we can
5976   // eliminate it, do so now.
5977   if (PHINode *PN = dyn_cast<PHINode>(BB->begin()))
5978     if (PN->getNumIncomingValues() == 2)
5979       Changed |= FoldTwoEntryPHINode(PN, TTI, DL);
5980 
5981   Builder.SetInsertPoint(BB->getTerminator());
5982   if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
5983     if (BI->isUnconditional()) {
5984       if (SimplifyUncondBranch(BI, Builder))
5985         return true;
5986     } else {
5987       if (SimplifyCondBranch(BI, Builder))
5988         return true;
5989     }
5990   } else if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
5991     if (SimplifyReturn(RI, Builder))
5992       return true;
5993   } else if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator())) {
5994     if (SimplifyResume(RI, Builder))
5995       return true;
5996   } else if (CleanupReturnInst *RI =
5997                  dyn_cast<CleanupReturnInst>(BB->getTerminator())) {
5998     if (SimplifyCleanupReturn(RI))
5999       return true;
6000   } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
6001     if (SimplifySwitch(SI, Builder))
6002       return true;
6003   } else if (UnreachableInst *UI =
6004                  dyn_cast<UnreachableInst>(BB->getTerminator())) {
6005     if (SimplifyUnreachable(UI))
6006       return true;
6007   } else if (IndirectBrInst *IBI =
6008                  dyn_cast<IndirectBrInst>(BB->getTerminator())) {
6009     if (SimplifyIndirectBr(IBI))
6010       return true;
6011   }
6012 
6013   return Changed;
6014 }
6015 
6016 /// This function is used to do simplification of a CFG.
6017 /// For example, it adjusts branches to branches to eliminate the extra hop,
6018 /// eliminates unreachable basic blocks, and does other "peephole" optimization
6019 /// of the CFG.  It returns true if a modification was made.
6020 ///
6021 bool llvm::SimplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI,
6022                        unsigned BonusInstThreshold, AssumptionCache *AC,
6023                        SmallPtrSetImpl<BasicBlock *> *LoopHeaders,
6024                        bool LateSimplifyCFG) {
6025   return SimplifyCFGOpt(TTI, BB->getModule()->getDataLayout(),
6026                         BonusInstThreshold, AC, LoopHeaders, LateSimplifyCFG)
6027       .run(BB);
6028 }
6029